Wiring the 2016 FRC Control System

Wiring the 2016 FRC Control System
Wiring the 2016 FRC Control System
This document details the wiring of a basic electronics board for bench-top testing.
The images shown in this section reflect the setup for a Robot Control System using a roboRIO and
VictorSP motor controllers. The setup is similar for Jaguars, Talon SRXs, Victor 884/888s, or Victor
SPs.
Gather Materials
Locate the following control system components and tools
Note: There is one set of items required that is not contained in the kickoff kit. You will need some
method of connecting the Victor SP wires to the CIM motor wires. The images below show the use of
both wire nuts (not recommended for permanent FRC use as they are not intended for vibration
environments) and quick disconnect terminals. The Digikey, or TE Connectivity vouchers in the
Virtual Kit can be used to purchase suitable quick-disconnecting or splice connectors or they can
typically be found at your local hardware or electronics parts store.
• Kit Materials:
◦ Power Distribution Panel (PDP)
◦ roboRIO
◦ Pneumatics Control Module (PCM)
◦ Voltage Regulator Module (VRM)
Wiring the 2016 FRC Control System
Page 1
Wiring the 2016 FRC Control System
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
OM5P-AN radio (with power cable and Ethernet cable)
Robot Signal Light (RSL)
4x Victor SP speed controllers
2x PWM y-cables
120A Circuit breaker
4x 40A Circuit breaker
6 AWG Red wire
10 AWG Red/Black wire
18 AWG Red/Black wire
22AWG yellow/green twisted CAN cable
2x Andersen SB50 battery connectors
6AWG Terminal lugs
12V Battery
Red/Black Electrical tape
Dual Lock material or fasteners
Zip ties
1/4" or 1/2" plywood
• Tools Required:
◦ Wago Tool or small flat-head screwdriver
◦ Very small flat head screwdriver (eyeglass repair size)
◦ Philips head screw driver
◦ 5mm Hex key (3/16" may work if metric is unavailable)
◦ 1/16" Hex key
◦ Wire cutters, strippers, and crimpers
◦ 7/16” box end wrench or nut driver
Create the Base for the Control System
For a benchtop test board, cut piece of 1/4” or 1/2" material (wood or plastic) approximately 24" x
16". For a Robot Quick Build control board see the supporting documentation for the proper size
board for the chosen chassis configuration.
Wiring the 2016 FRC Control System
Page 2
Wiring the 2016 FRC Control System
Layout the Core Control System Components
Layout the components on the board. One layout that should work is shown in the images above.
Note: If creating the board for a robot chassis, per the QuickBuild instructions for the long
orientation, you may wish to turn the battery 90 degrees clockwise compared to the image
above and spread the components on each side accordingly in order to accommodate
building a box to retain the battery without hitting the CIM motors.
Wiring the 2016 FRC Control System
Page 3
Wiring the 2016 FRC Control System
Fasten components
Using the Dual Lock or hardware, fasten all components to the board. Note that in many FRC games
robot-to-robot contact may be substantial and Dual Lock alone is unlikely to stand up as a fastener
for many electronic components. Teams may wish to use nut and bolt fasteners or (as shown in the
image above) cable ties, with or without Dual Lock to secure devices to the board.
Wiring the 2016 FRC Control System
Page 4
Wiring the 2016 FRC Control System
Attach Battery Connector to PDP
Requires: Battery Connector, 6AWG terminal lugs, 1/16" Allen, 5mm Allen, 7/16" Box end
1. Attach terminal lugs to battery connector.
2. Using a 1/16" Allen wrench, remove the two screws securing the PDP terminal cover.
3. Using a 5mm Allen wrench (3/16" will work if metric is not available), remove the negative (-)
bolt and washer from the PDP and fasten the negative terminal of the battery connector.
4. Using a 7/16" box end wrench, remove the nut on the "Batt" side of the main breaker and
secure the positive terminal of the battery conenctor
Wiring the 2016 FRC Control System
Page 5
Wiring the 2016 FRC Control System
Wire Breaker to PDP
Requires: 6AWG red wire, 2x 6AWG terminal lugs, 5mm Allen, 7/16" box end
Secure one terminal lug to the end of the 6AWG red wire. Using the 7/16" box end, remove the nut
from the "AUX" side of the 120A main breaker and place the terminal over the stud. Loosely secure
the nut (you may wish to remove it shortly to cut, strip, and crimp the other end of the wire). Measure
out the length of wire required to reach the positive terminal of the PDP.
1. Cut, strip, and crimp the terminal to the 2nd end of the red 6AWG wire.
2. Using the 7/16" box end, secure the wire to the "AUX" side of the 120A main breaker.
3. Using the 5mm, secure the other end to the PDP positive terminal.
Wiring the 2016 FRC Control System
Page 6
Wiring the 2016 FRC Control System
Insulate PDP connections
Requires: 1/16" Allen, Electrical tape
1. Using electrical tape, insulate the two connections to the 120A breaker. Also insulate any part
of the PDP terminals which will be exposed when the cover is replaced. One method for
insulating the main breaker connections is to wrap the stud and nut first, then use the tape
wrapped around the terminal and wire to secure the tape.
2. Using the 1/16" Allen wrench, replace the PDP terminal cover
Wago connectors
The next step will involve using the Wago connectors on the PDP. To use the Wago connectors,
insert a small flat blade screwdriver into the rectangular hole at a shallow angle then angle the
Wiring the 2016 FRC Control System
Page 7
Wiring the 2016 FRC Control System
screwdriver upwards as you continue to press in to actuate the lever, opening the terminal. Two
sizes of Wago connector are found on the PDP:
• Small Wago connector: Accepts 10AWG-24AWG, strip 11-12mm (~7/16")
• Large Wago connector: Accepts 6AWG-12AWG, strip 12-13mm(~1/2")
To maximize pullout force and minimize connection resistance wires should not be tinned (and
ideally not twisted) before inserting into the Wago connector.
Motor Controller Power
Requires: Wire Stripper, Small Flat Screwdriver,
For each of the 4 Victor SP motor controllers:
1. Cut and strip the red and black power input wires wire, then insert into one of the 40A (larger)
Wago terminal pairs.
Weidmuller Connectors
The correct strip length is ~5/16" (8mm), not the 5/8" mentioned in the video.
A number of the CAN and power connectors in the system use a Weidmuller LSF series wire-toboard connector. There are a few things to keep in mind when using this connector for best results:
• Wire should be 16AWG to 24AWG (consult rules to verify required gauge for power wiring)
Wiring the 2016 FRC Control System
Page 8
Wiring the 2016 FRC Control System
• Wire ends should be stripped approximately 5/16"
• To insert or remove the wire, press down on the corresponding "button" to open the terminal
After making the connection check to be sure that it is clean and secure:
• Verify that there are no "whiskers" outside the connector that may cause a short circuit
• Tug on the wire to verify that it is seated fully. If the wire comes out and is the correct gauge it
needs to be inserted further and/or stripped back further.
roboRIO Power
Requires: 10A/20A mini fuses, Wire stripper, very small flat screwdriver, 18AWG Red and Black
1. Insert the 10A and 20A mini fuses in the PDP in the locations shown on the silk screen (and
in the image above)
Wiring the 2016 FRC Control System
Page 9
Wiring the 2016 FRC Control System
2. Strip ~5/16" on both the red and black 18AWG wire and connect to the "Vbat Controller
PWR" terminals on the PDB
3. Measure the required length to reach the power input on the roboRIO. Take care to leave
enough length to route the wires around any other components such as the battery and to
allow for any strain relief or cable management.
4. Cut and strip the wire.
5. Using a very small flat screwdriver connect the wires to the power input connector of the
roboRIO (red to V, black to C). Also make sure that the power connector is screwed
down securely to the roboRIO.
Voltage Regulator Module Power
Requires: Wire stripper, small flat screwdriver (optional), 18AWG red and black wire
1. Strip ~5/16" on the end of the red and black 18AWG wire.
2. Connect the wire to one of the two terminal pairs labeled "Vbat VRM PCM PWR" on the PDP.
Wiring the 2016 FRC Control System
Page 10
Wiring the 2016 FRC Control System
3. Measure the length required to reach the "12Vin" terminals on the VRM. Take care to leave
enough length to route the wires around any other components such as the battery and to
allow for any strain relief or cable management.
4. Cut and strip ~5/16" from the end of the wire.
5. Connect the wire to the VRM 12Vin terminals.
Pneumatics Control Module Power (Optional)
Requires: Wire stripper, small flat screwdriver (optional), 18AWG red and black wire
Note: The PCM is an optional component used for controlling pneumatics on the robot.
1. Strip ~5/16" on the end of the red and black 18AWG wire.
2. Connect the wire to one of the two terminal pairs labeled "Vbat VRM PCM PWR" on the PDP.
Wiring the 2016 FRC Control System
Page 11
Wiring the 2016 FRC Control System
3. Measure the length required to reach the "Vin" terminals on the VRM. Take care to leave
enough length to route the wires around any other components such as the battery and to
allow for any strain relief or cable management.
4. Cut and strip ~5/16" from the end of the wire.
5. Connect the wire to the VRM 12Vin terminals.
Radio Power and Ethernet
Note: This is different than the 2015 radio!!!!!
Requires: Wire stripper, small flat screwdriver (optional), OM5P-AN power wiring, Ethernet cable
1. Strip ~5/16" off of each wire on the power cord.
2. Locate the wire with the white stripes on it (one wire has white stripes, the other has writing)
and attach it to either of the two red terminals on the "12V/2A" supply of the VRM.
3. Connect the other wire (with writing on it) to the black terminal immediately to the right of the
red terminal used above.
4. Plug the barrel connector into the back of the OM5P-AN
5. Plug the Ethernet cable into either port on the back of the OM5P-AN and into the roboRIO.
Note: If you wish to verify the polarity of the radio power connection using a DMM or Continuity
tester, the connector is center pin positive. This means that the wire connecting to the red terminal
should be connected to the center of the connector, the wire connecting to the black terminal should
be connected to the outside of the connector.
Wiring the 2016 FRC Control System
Page 12
Wiring the 2016 FRC Control System
RoboRIO to PCM CAN
Requires: Wire stripper, small flat screwdriver (optional), yellow/green twisted CAN cable
Note: The PCM is an optional component used for controlling pneumatics on the robot. If you are not
using the PCM, wire the CAN connection directly from the roboRIO (shown in this step) to the PDP
(show in the next step).
1. Strip ~5/16" off of each of the CAN wires.
2. Insert the wires into the appropriate CAN terminals on the roboRIO (Yellow->YEL, Green>GRN).
3. Measure the length required to reach the CAN terminals of the PCM (either of the two
available pairs). Cut and strip ~5/16" off this end of the wires.
4. Insert the wires into the appropriate color coded CAN terminals on the PCM. You may use
either of the Yellow/Green terminal pairs on the PCM, there is no defined in or out.
Wiring the 2016 FRC Control System
Page 13
Wiring the 2016 FRC Control System
PCM to PDP CAN
Requires: Wire stripper, small flat screwdriver (optional), yellow/green twisted CAN cable
Note: The PCM is an optional component used for controlling pneumatics on the robot. If you are not
using the PCM, wire the CAN connection directly from the roboRIO (shown in the above step) to the
PDP (show in this step).
1. Strip ~5/16" off of each of the CAN wires.
2. Insert the wires into the appropriate CAN terminals on the PCM.
3. Measure the length required to reach the CAN terminals of the PDP (either of the two
available pairs). Cut and strip ~5/16" off this end of the wires.
4. Insert the wires into the appropriate color coded CAN terminals on the PDP. You may use
either of the Yellow/Green terminal pairs on the PDP, there is no defined in or out.
Wiring the 2016 FRC Control System
Page 14
Wiring the 2016 FRC Control System
Note: The PDP ships with the CAN bus terminating resistor jumper in the "ON" position. It is
recommended to leave the jumper in this position and place any additional CAN nodes between the
roboRIO and the PDP (leaving the PDP as the end of the bus). If you wish to place the PDP in the
middle of the bus (utilizing both pairs of PDP CAN terminals) move the jumper to the "OFF" position
and place your own 120 ohm terminating resistor at the end of your CAN bus chain.
PWM Cables
Requires: (Optional) 2x PWM Y-cable
Option 1 (Direct connect):
1. Connect the PWM cables from each Victor SP directly to the roboRIO. The black wire should
be towards the outside of the roboRIO. It is recommended to connect the left side to PWM 0
and 1 and the right side to PWM 2 and 3 for the most straightforward programming
Wiring the 2016 FRC Control System
Page 15
Wiring the 2016 FRC Control System
experience, but any channel will work as long as you note which side goes to which channel
and adjust the code accordingly.
Option 2 (Y-cable):
1. Connect 1 PWM Y-cable to the PWM cables for the Victor SPs controlling one side of the
robot. The brown wire on the Y-cable should match the black wire on the PWM cable.
2. Connect the PWM Y-cables to the PWM ports on the roboRIO. The brown wire should be
towards the outside of the roboRIO. It is recommended to connect the left side to PWM 0 and
the right side to PWM 1 for the most straightforward programming experience, but any
channel will work as long as you note which side goes to which channel and adjust the code
accordingly.
Robot Signal Light
Requires: Wire stripper, 2 pin cable, Robot Signal Light, 18AWG red wire, very small flat screwdriver
Wiring the 2016 FRC Control System
Page 16
Wiring the 2016 FRC Control System
1.
2.
3.
4.
5.
Cut one end off of the 2 pin cable and strip both wires
Insert the black wire into the center, "N" terminal and tighten the terminal.
Strip the 18AWG red wire and insert into the "La" terminal and tighten the terminal.
Cut and strip the other end of the 18AWG wire to insert into the "Lb" terminal
Insert the red wire from the two pin cable into the "Lb" terminal with the 18AWG red wire and
tighten the terminal.
6. Connect the two-pin connector to the RSL port on the roboRIO. The black wire should be
closest to the outside of the roboRIO.
You may wish to temporarily secure the RSL to the control board using zipties or Dual Lock (it is
recommended to move the RSL to a more visible location as the robot is being constructed)
Circuit Breakers
Requires: 4x 40A circuit breakers
Insert 40-amp Circuit Breakers into the positions on the PDP corresponding with the Wago
connectors the Talons are connected to. Note that, for all breakers, the breaker corresponds with the
nearest positive (red) terminal (see graphic above). All negative terminals on the board are directly
connected internally.
Wiring the 2016 FRC Control System
Page 17
Wiring the 2016 FRC Control System
If working on a Robot Quick Build, stop here and insert the board into the robot chassis
before continuing.
Motor Power
Requires: Wire stripper, wire crimper, phillips head screwdriver, wire connecting hardware
For each CIM motor:
1. Strip the ends of the red and black wires from the CIM and the white and green wires from
the Victor SP
2. Connect the motor wires to the Victor SP output wires (it is recommended to connect the red
wire to the white M+ output)
The images above show examples using wirenuts or quick disconnect terminals.
Wiring the 2016 FRC Control System
Page 18
Wiring the 2016 FRC Control System
Battery Box
Requires: Plywood Scraps, plywood cutting tool (e.g. saw), 10x 2" wood screws, drill, 1/8" drill but,
Philips head driver bit or philips head screwdriver, velcro wrap
Construct a battery box. the design shown uses scraps of plywood left over from cutting out the
electronics board (4 pieces 4"x1.5" for the short sides of the battery stacked 2 high, 3 pieces 6"x1.5"
for the front and back stacked 2 high in the back). Use the velcro wrap to make a pair of straps which
will overlap to secure the battery.
Note: The battery box shown here is an example, sufficient for driving the robot. Teams
should ensure that their battery will be securely held in their final design in the face of
potentially violent robot-to-robot collision.
Wiring the 2016 FRC Control System
Page 19
Wiring the 2016 FRC Control System
STOP
STOP!!
Before plugging in the battery, make sure all connections have been made with the proper polarity.
Ideally have someone that did not wire the robot check to make sure all connections are correct.
• Start with the battery and verify that the red wire is connected to the positive terminal
• Check that the red wire passes through the main breaker and to the + terminal of the PDP
and that the black wire travels directly to the - terminal.
• For each motor controller, verify that the red wire goes from the red PDP terminal to the Talon
input labeled with the red + (not the white M+!!!!)
• For each device on the end of the PDP, verify that the red wire connects to the red terminal
on the PDP and the red terminal on the component.
• Verify that the wire with the white stripe on the radio power supply is connected to the red
terminal of the Radio supply on the VRM
It is also recommended to put the robot on blocks so the wheels are off the ground before
proceeding. This will prevent any unexpected movement from becoming dangerous.
Wiring the 2016 FRC Control System
Page 20
Wiring the 2016 FRC Control System
Manage Wires
Requires: Zip ties
Now may be a good time to add a few zip ties to manage some of the wires before proceeding. This
will help keep the robot wiring neat.
Connect Battery
Connect the battery to the robot side of the Andersen connector. Power on the robot by moving the
lever on the top of the 120A main breaker into the ridge on the top of the housing.
Wiring the 2016 FRC Control System
Page 21
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement