This operation manual is intended for users with basic knowledge of

This operation manual is intended for users with basic knowledge of
This operation manual is intended for users with basic knowledge of electricity and electric
devices.
* LSLV-S100 is the official name for S100.
Safety Information
Safety Information
Read and follow all safety instructions in this manual precisely to avoid unsafe operating
conditions, property damage, personal injury, or death.
Safety symbols in this manual
Indicates an imminently hazardous situation which, if not avoided, will result in severe injury or death.
Indicates a potentially hazardous situation which, if not avoided, could result in injury or death.
Indicates a potentially hazardous situation that, if not avoided, could result in minor injury or property
damage.
Safety information
• Do not open the cover of the equipment while it is on or operating. Likewise, do not operate the
inverter while the cover is open. Exposure of high voltage terminals or charging area to the
external environment may result in an electric shock. Do not remove any covers or touch the
internal circuit boards (PCBs) or electrical contacts on the product when the power is on or
during operation. Doing so may result in serious injury, death, or serious property damage.
• Do not open the cover of the equipment even when the power supply to the inverter has
been turned off unless it is necessary for maintenance or regular inspection. Opening the
cover may result in an electric shock even when the power supply is off.
• The equipment may hold charge long after the power supply has been turned off. Use a multimeter to make sure that there is no voltage before working on the inverter, motor or motor cable.
ii
Safety Information
• This equipment must be grounded for safe and proper operation.
• Do not supply power to a faulty inverter. If you find that the inverter is faulty, disconnect the
power supply and have the inverter professionally repaired.
• The inverter becomes hot during operation. Avoid touching the inverter until it has cooled to
avoid burns.
• Do not allow foreign objects, such as screws, metal chips, debris, water, or oil to get inside the
inverter. Allowing foreign objects inside the inverter may cause the inverter to malfunction or
result in a fire.
• Do not operate the inverter with wet hands. Doing so may result in electric shock.
• Check the information about the protection level for the circuits and devices.
The following connection terminals and devices are the Electrical Protection level 0. It means that
the circuit protection level depends on the basic insulation. If there is no basic insulation is failed, it
may cause electric shock accident. When installing or wiring the connection terminals and devices,
take the same protective action as with the power wire.
- Multi-function Input: P1-P7, CM
- Analog Frequency Input: VR, V1, I2, TI
- Safety Function: SA, SB, SC
- Analog Output: AO, TO
- Contact: Q1, EG, 24, A1, B1, C1, S+, S-, SG
- Fan
• The protection level of this equipment (inverter) is the Electrical Protection level I.
iii
Safety Information
• Do not modify the interior workings of the inverter. Doing so will void the warranty.
• The inverter is designed for 3-phase motor operation. Do not use the inverter to operate a single
phase motor.
• Do not place heavy objects on top of electric cables. Doing so may damage the cable and
result in an electric shock.
• Do not operate Disconnect Switch when motor is operating.
Note
Maximum allowed prospective short-circuit current at the input power connection is defined in IEC
60439-1 as 100 kA. Depending on the selected MCCB, the LSLV-S100 Series is suitable for use in circuits
capable of delivering a maximum of 100 kA RMS symmetrical amperes at the drive's maximum rated
voltage. The following table shows the recommended MCCB for RMS symmetrical amperes.
Remarque
Le courant maximum de court-circuit présumé autorisé au connecteur d’alimentation électrique est
défini dans la norme IEC 60439-1 comme égal à 100 kA. Selon le MCCB sélectionné, la série LSLV-S100
peut être utilisée sur des circuits pouvant fournir un courant RMS symétrique de 100 kA maximum en
ampères à la tension nominale maximale du variateur. Le tableau suivant indique le MCCB
recommandé selon le courant RMS symétrique en ampères.
Working Voltage
240V(50/60Hz)
480V(50/60Hz)
iv
UTE100(E/N) UTS150(N/H/L) ABS33c
50/65 kA
65/100/150 kA 30 kA
25/35 kA
35/65/100 kA 7.5 kA
ABS53c
35 kA
10 kA
ABS63c
35 kA
10 kA
ABS103c
85 kA
26 kA
Safety Information
Quick Reference Table
The following table contains situations frequently encountered by users while working with
inverters. Refer to the typical and practical situations in the table to quickly and easily locate
answers to your questions.
Situation
I want to run a slightly higher rated motor than the inverter’s rated capacity.
I want to configure the inverter to start operating as soon as the power source is
applied.
I want to configure the motor’s parameters.
Reference
p. 194
p. 78
p.138
I want to set up sensorless vector control.
p.141
Something seems to be wrong with the inverter or the motor.
p. 212, p.325
What is auto tuning?
p.138
What are the recommended wiring lengths?
p. 212, p.325
The motor is too noisy.
p. 160
I want to apply PID control on my system.
p. 130
What are the factory default settingss for P1–P5 multi-function terminals?
p. 26
I want to view all of the parameters I have modified.
p. 168
I want to review recent fault trip and warning histories.
p. 289
I want to change the inverter’s operation frequency using a potentiometer.
p. 51
I want to install a frequency meter using an analog terminal.
p. 27
I want to display the supply current to motor.
p. 54
I want to operate the inverter using a multi-step speed configuration.
p. 71
The motor runs too hot.
p. 193
The inverter is too hot.
p. 201
The cooling fan does not work.
p. 331
I want to change the items that are monitored on the keypad.
p. 188
v
Table of Contents
Table of Contents
1
2
3
Preparing the Installation ............................................................................................1
1.1
Product Identification................................................................................................................... 1
1.2
Part Names......................................................................................................................................... 3
1.3
Installation Considerations ........................................................................................................ 5
1.4
Selecting and Preparing a Site for Installation................................................................. 6
1.5
Cable Selection ................................................................................................................................ 9
Installing the Inverter ................................................................................................ 11
2.1
Mounting the Inverter .............................................................................................................. 13
2.2
Cable Wiring ................................................................................................................................... 17
2.3
Post-Installation Checklist ....................................................................................................... 32
2.4
Test Run ............................................................................................................................................ 33
Learning to Perform Basic Operations ................................................................... 37
3.1
About the Keypad ....................................................................................................................... 37
3.2
3.1.1 About the Display ...................................................................................................... 38
3.1.2 Operation Keys ............................................................................................................ 39
3.1.3 Control Menu ............................................................................................................... 40
Learning to Use the Keypad................................................................................................... 41
3.3
3.2.1
Group and Code Selection .................................................................................... 41
3.2.2
Navigating Directly to Different Codes ........................................................... 42
3.2.3 Setting Parameter Values ....................................................................................... 43
3.2.4 Configuring the [ESC] Key ..................................................................................... 44
Actual Application Examples ................................................................................................ 45
3.3.1
Acceleration Time Configuration ....................................................................... 45
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
Frequency Reference Configuration ................................................................ 46
Jog Frequency Configuration .............................................................................. 48
Initializing All Parameters....................................................................................... 48
Frequency Setting (Keypad) and Operation (via Terminal Input) ..... 50
Frequency Setting (Potentiometer) and Operation (Terminal Input)
............................................................................................................................................ 51
Frequency Setting (Potentiometer) and Operation (Keypad) ............ 52
3.3.7
vi
Table of Contens
3.4
Monitoring the Operation ...................................................................................................... 54
3.4.1
3.4.2
4
Output Current Monitoring .................................................................................. 54
Fault Trip Monitoring................................................................................................ 55
Learning Basic Features............................................................................................. 57
4.1
Setting Frequency Reference ................................................................................................ 60
4.1.1
Keypad as the Source (KeyPad-1 setting) ...................................................... 60
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
Keypad as the Source (KeyPad-2 setting) ...................................................... 60
V1 Terminal as the Source...................................................................................... 61
Setting a Frequency Reference with Input Voltage (Terminal I2)...... 68
Setting a Frequency with TI Pulse Input ......................................................... 68
Setting a Frequency Reference via RS-485 Communication ............... 70
4.2
Frequency Hold by Analog Input........................................................................................ 70
4.3
Changing the Displayed Units (Hz↔Rpm)..................................................................... 71
4.4
Setting Multi-step Frequency ............................................................................................... 71
4.5
Command Source Configuration ........................................................................................ 73
4.5.1
4.5.2
4.5.3
The Keypad as a Command Input Device ..................................................... 73
Terminal Block as a Command Input Device (Fwd/Rev Run
Commands)................................................................................................................. 74
Terminal Block as a Command Input Device (Run and Rotation
Direction Commands)............................................................................................ 75
4.6
4.5.4 RS-485 Communication as a Command Input Device ........................... 75
Local/Remote Mode Switching............................................................................................ 76
4.7
Forward or Reverse Run Prevention .................................................................................. 78
4.8
Power-on Run................................................................................................................................ 78
4.9
Reset and Restart ......................................................................................................................... 79
4.10 Setting Acceleration and Deceleration Times............................................................... 80
4.10.1 Acc/Dec Time Based on Maximum Frequency........................................... 80
4.10.2 Acc/Dec Time Based on Operation Frequency ........................................... 82
4.10.3 Multi-step Acc/Dec Time Configuration......................................................... 82
4.10.4 Configuring Acc/Dec Time Switch Frequency ............................................ 84
4.11 Acc/Dec Pattern Configuration ............................................................................................ 85
4.12 Stopping the Acc/Dec Operation........................................................................................ 88
vii
Table of Contents
4.13 V/F(Voltage/Frequency) Control ......................................................................................... 88
4.13.1 Linear V/F Pattern Operation................................................................................ 88
4.13.2 Square Reduction V/F pattern Operation...................................................... 89
4.13.3 User V/F Pattern Operation ................................................................................... 90
4.14 Torque Boost .................................................................................................................................. 91
4.14.1 Manual Torque Boost ............................................................................................... 91
4.14.2 Auto Torque Boost-1................................................................................................. 92
4.14.3 Auto Torque Boost-2................................................................................................. 93
4.15 Output Voltage Setting ............................................................................................................ 93
4.16 Start Mode Setting...................................................................................................................... 93
4.16.1 Acceleration Start....................................................................................................... 94
4.16.2 Start After DC Braking.............................................................................................. 94
4.17 Stop Mode Setting...................................................................................................................... 95
4.17.1 Deceleration Stop ...................................................................................................... 95
4.17.2 Stop After DC Braking .............................................................................................. 95
4.17.3 Free Run Stop ............................................................................................................... 96
4.17.4 Power Braking.............................................................................................................. 97
4.18 Frequency Limit............................................................................................................................ 98
4.18.1 Frequency Limit Using Maximum Frequency and Start Frequency 98
4.18.2 Frequency Limit Using Upper and Lower Limit Frequency Values .. 98
4.18.3 Frequency Jump......................................................................................................... 99
4.19 2nd Operation Mode Setting.................................................................................................100
4.20 Multi-function Input Terminal Control ...........................................................................101
4.21 P2P Setting....................................................................................................................................103
4.22 Multi-keypad Setting ...............................................................................................................104
4.23 User Sequence Setting ...........................................................................................................105
4.24 Fire Mode Operation ...............................................................................................................111
5
viii
Learning Advanced Features.................................................................................. 115
5.1
Operating with Auxiliary References ...............................................................................116
5.2
Jog operation ..............................................................................................................................120
5.2.1
Jog Operation 1-Forward Jog by Multi-function Terminal .................120
5.2.2
Jog Operation 2-Fwd/Rev Jog by Multi-function Terminal ................122
Table of Contens
5.3
5.2.3 Jog Operation by Keypad ....................................................................................122
Up-down Operation ................................................................................................................123
5.4
3-Wire Operation .......................................................................................................................124
5.5
Safe Operation Mode ..............................................................................................................125
5.6
Dwell Operation .........................................................................................................................127
5.7
Slip Compensation Operation ............................................................................................128
5.8
PID Control ....................................................................................................................................130
5.8.1
5.8.2
5.9
PID Basic Operation ................................................................................................130
Pre-PID Operation....................................................................................................136
5.8.3 PID Operation Sleep Mode .................................................................................136
5.8.4 PID Switching (PID Openloop) ..........................................................................137
Auto Tuning ..................................................................................................................................138
5.10 Sensorless Vector Control......................................................................................................141
5.10.1 Sensorless Vector Control Operation Setting ............................................143
5.10.2 Sensorless Vector Control Operation Guide...............................................146
5.11 Kinetic Energy Buffering Operation .................................................................................148
5.12 Torque Control ............................................................................................................................151
5.13 Energy Saving Operation ......................................................................................................154
5.13.1 Manual Energy Saving Operation ...................................................................154
5.13.2 Automatic Energy Saving Operation .............................................................154
5.14 Speed Search Operation........................................................................................................155
5.15 Auto Restart Settings ...............................................................................................................159
5.16 Operational Noise Settings (carrier frequency settings) .......................................160
5.17 2nd Motor Operation .................................................................................................................161
5.18 Supply Power Transition ........................................................................................................163
5.19 Cooling Fan Control .................................................................................................................164
5.20 Input Power Frequency and Voltage Settings ............................................................164
5.21 Read, Write, and Save Parameters .....................................................................................165
5.22 Parameter Initialization...........................................................................................................165
5.23 Parameter View Lock................................................................................................................166
5.24 Parameter Lock ...........................................................................................................................167
5.25 Changed Parameter Display ................................................................................................168
ix
Table of Contents
5.26 User Group ....................................................................................................................................169
5.27 Easy Start On ................................................................................................................................170
5.28 Config(CNF) Mode ....................................................................................................................172
5.29 Timer Settings .............................................................................................................................173
5.30 Brake Control ...............................................................................................................................173
5.31 Multi-Function Output On/Off Control ..........................................................................175
5.32 Press Regeneration Prevention ..........................................................................................175
5.33 Analog Output ............................................................................................................................177
5.33.1 Voltage and Current Analog Output..............................................................177
5.33.2 Analog Pulse Output ..............................................................................................179
5.34 Digital Output .............................................................................................................................182
5.34.1 Multi-function Output Terminal and Relay Settings ..............................182
5.34.2 Fault Trip Output using Multi-Function Output Terminal and Relay
..........................................................................................................................................186
5.34.3 Multi-function Output Terminal Delay Time Settings ...........................187
5.35 Keypad Language Settings ..................................................................................................188
5.36 Operation State Monitor........................................................................................................188
5.37 Operation Time Monitor ........................................................................................................191
6
Learning Protection Features ................................................................................. 193
6.1
Motor Protection .......................................................................................................................193
6.1.1
6.2
6.1.2 Overload Early Warning and Trip .....................................................................194
6.1.3 Stall Prevention and Flux Braking ....................................................................196
Inverter and Sequence Protection....................................................................................199
6.2.1
6.2.2
6.3
x
Electronic Thermal Motor Overheating Prevention (ETH) ..................193
Open-phase Protection ........................................................................................199
External Trip Signal ..................................................................................................200
6.2.3 Inverter Overload Protection .............................................................................201
6.2.4 Speed Command Loss ..........................................................................................202
6.2.5 Dynamic Braking (DB) Resistor Configuration ..........................................204
Under load Fault Trip and Warning...................................................................................205
6.3.1
Fan Fault Detection .................................................................................................207
6.3.2
Lifetime diagnosis of components .................................................................207
Table of Contens
6.3.3
6.3.4
6.3.5
6.3.6
6.4
7
6.3.7 Operation Mode on Option Card Trip ...........................................................211
6.3.8 No Motor Trip .............................................................................................................212
6.3.9 Low voltage trip 2 ....................................................................................................212
Fault/Warning List .....................................................................................................................212
RS-485 Communication Features .......................................................................... 215
7.1
Communication Standards ..................................................................................................215
7.2
Communication System Configuration .........................................................................215
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.3
Communication Line Connection ...................................................................216
Setting Communication Parameters .............................................................216
Setting Operation Command and Frequency ..........................................218
Command Loss Protective Operation ...........................................................219
Setting Virtual Multi-Function Input ..............................................................219
7.2.6 Saving Parameters Defined by Communication .....................................220
7.2.7 Total Memory Map for Communication ......................................................221
7.2.8 Parameter Group for Data Transmission ......................................................221
Communication Protocol ......................................................................................................222
7.3.1
8
Low Voltage Fault Trip............................................................................................209
Output Block by Multi-Function Terminal ...................................................210
Trip Status Reset........................................................................................................210
Inverter Diagnosis State........................................................................................211
LS INV 485 Protocol .................................................................................................222
7.4
7.3.2 Modbus-RTU Protocol ...........................................................................................228
Compatible Common Area Parameter...........................................................................231
7.5
S100 Expansion Common Area Parameter ..................................................................234
7.5.1
7.5.2
Monitoring Area Parameter (Read Only)......................................................234
Control Area Parameter (Read/ Write) ...........................................................239
7.5.3
Inverter Memory Control Area Parameter (Read and Write)..............241
Table of Functions .................................................................................................... 245
8.1
Operation Group .......................................................................................................................245
8.2
Drive group (PAR→dr) ............................................................................................................247
8.3
Basic Function group (PAR→bA) .......................................................................................252
8.4
Expanded Function group (PAR→Ad)............................................................................257
xi
Table of Contents
8.5
Control Function group (PAR→Cn) ..................................................................................262
8.6
Input Terminal Block Function group (PAR→In)........................................................267
8.7
Output Terminal Block Function group (PAR→OU).................................................272
8.8
Communication Function group (PAR→CM) .............................................................277
8.9
Application Function group (PAR→AP) .........................................................................282
8.10 Protection Function group (PAR→Pr) .............................................................................285
8.11 2nd Motor Function group (PAR→M2) ..........................................................................290
8.12 User Sequence group (US)....................................................................................................292
8.13 User Sequence Function group(UF) ................................................................................296
8.14 Groups for LCD Keypad Only...............................................................................................316
8.14.1 Trip Mode (TRP Last-x)...........................................................................................316
8.14.2 Config Mode (CNF)..................................................................................................316
9
Troubleshooting ....................................................................................................... 321
9.1
Trips and Warnings ...................................................................................................................321
9.1.1
Fault Trips .....................................................................................................................321
9.2
9.1.2 Warning Messages ..................................................................................................324
Troubleshooting Fault Trips..................................................................................................325
9.3
Troubleshooting Other Faults .............................................................................................327
10 Maintenance .............................................................................................................. 333
10.1 Regular Inspection Lists .........................................................................................................333
10.1.1 Daily Inspections ......................................................................................................333
10.1.2 Annual Inspections .................................................................................................334
10.1.3 Bi-annual Inspections ............................................................................................336
10.2 Storage and Disposal...............................................................................................................336
10.2.1 Storage ..........................................................................................................................336
10.2.2 Disposal.........................................................................................................................337
11 Technical Specification ............................................................................................ 339
11.1 Input and Output Specification .........................................................................................339
11.2 Product Specification Details ..............................................................................................343
11.3 External Dimensions (IP 66 Type) ......................................................................................346
11.4 Peripheral Devices.....................................................................................................................351
xii
Table of Contens
11.5 Fuse and Reactor Specifications ........................................................................................352
11.6 Terminal Screw Specification...............................................................................................353
11.7 Braking Resistor Specification .............................................................................................355
11.8 Continuous Rated Current Derating................................................................................356
11.9 Heat Emmission .........................................................................................................................358
Product Warranty ............................................................................................................. 359
Index ................................................................................................................................... 367
xiii
Preparing the Installation
1 Preparing the Installation
This chapter provides details on product identification, part names, correct installation and cable
specifications. To install the inverter correctly and safely, carefully read and follow the instructions.
1.1 Product Identification
The S100 Inverter is manufactured in a range of product groups based on drive capacity and
power source specifications. Product name and specifications are detailed on the rating plate. The
illustration on the next page shows the location of the rating plate. Check the rating plate before
installing the product and make sure that the product meets your requirements. For more
detailed product specifications, refer to 11.1 Input and Output Specification on page 339.
Note
Check the product name, open the packaging, and then confirm that the product is free from defects.
Contact your supplier if you have any issues or questions about your product.
1
Preparing the Installation
2
Preparing the Installation
1.2 Part Names
The illustration below displays part names. Details may vary between product groups.
Full product
Do not operate Disconnect Switch when motor is operating.
Cooling fan is only supported to 5.5~7.5kW products.
3
Preparing the Installation
Front cover removed
4
Preparing the Installation
1.3 Installation Considerations
Inverters are composed of various precision, electronic devices, and therefore the installation
environment can significantly impact the lifespan and reliability of the product. The table below
details the ideal operation and installation conditions for the inverter.
Items
Description
Ambient Temperature* Heavy Duty: 14–122°F (-10– 40℃)
Ambient Humidity
90% relative humidity (no condensation)
- 4–149°F (-20–65℃)
Storage Temperature
Environmental Factors
An environment free from corrosive or flammable gases, oil residue or dust
Altitude/Vibration
Lower than 3,280 ft (1,000 m) above sea level/less than 1G (9.8m/sec2)
Air Pressure
70 –106kPa
* The ambient temperature is the temperature measured at a point 2” (5 cm) from the surface of
the inverter.
Do not allow the ambient temperature to exceed the allowable range while operating the inverter.
5
Preparing the Installation
1.4 Selecting and Preparing a Site for Installation
When selecting an installation location consider the following points:
• The inverter must be installed on a wall that can support the inverter’s weight.
• The location must be free from vibration. Vibration can adversely affect the operation of the
inverter.
• The inverter can become very hot during operation. Install the inverter on a surface that is
fire-resistant or flame-retardant and with sufficient clearance around the inverter to allow air
to circulate. The illustrations below detail the required installation clearances.
6
Preparing the Installation
• Ensure sufficient air circulation is provided around the inverter when it is installed. If the
inverter is to be installed inside a panel, enclosure, or cabinet rack, carefully consider the
position of the inverter’s cooling fan and the ventilation louver. The cooling fan must be
positioned to efficiently transfer the heat generated by the operation of the inverter.
7
Preparing the Installation
• If you are installing multiple inverters, of different ratings, provide sufficient clearance to meet
the clearance specifications of the larger inverter.
8
Preparing the Installation
1.5 Cable Selection
When you install power and signal cables in the terminal blocks, only use cables that meet the
required specification for the safe and reliable operation of the product. Refer to the following
information to assist you with cable selection.
• Wherever possible use cables with the largest cross-sectional area for mains power wiring, to
ensure that voltage drop does not exceed 2%.
• Use copper cables rated for 600V, 75℃ for power terminal wiring.
• Use copper cables rated for 300V, 75℃ for control terminal wiring.
Ground Cable and Power Cable Specifications
Ground
Load (kW)
0.4
0.75
1.5
2.2
3.7
3–Phase 200V 4
5.5
7.5
11
15
0.4
0.75
1.5
2.2
3.7
4
3–Phase 400V
5.5
7.5
11
15
18.5
22
mm2
4
AWG
Power I/O
mm2
R/S/T
U/V/W
AWG
R/S/T
U/V/W
2
2
14
14
3.5
3.5
12
12
12
5.5
10
6
6
10
10
14
6
10
16
10
16
8
6
8
6
4
12
2
2
14
14
4
12
2.5
2.5
14
14
4
4
12
12
6
6
10
10
10
10
8
8
8
8
14
6
9
Preparing the Installation
Signal (Control) Cable Specifications
Terminals
P1–P5/
CM/VR/V1/I2/AO/Q1/
EG/24/ SA,SB,SC/S+,S,SG
A1/B1/C1
10
Signal Cable
Without Crimp Terminal Connectors
(Bare wire)
mm2
AWG
With Crimp Terminal Connectors
(Bootlace Ferrule)
mm2
AWG
0.75
18
0.5
20
1.0
17
1.5
15
Installing the Inverter
2 Installing the Inverter
This chapter describes the physical and electrical installation methods, including mounting and
wiring of the product. Refer to the flowchart and basic configuration diagram provided below to
understand the procedures and installation methods to be followed to install the product
correctly.
Installation Flowchart
The flowchart lists the sequence to be followed during installation. The steps cover equipment
installation and testing of the product. More information on each step is referenced in the steps.
*
Product Identification (p.1)
Select the Installation Location (p.5)
Mounting the Inverter (p.13)
Wiring the Ground Connection (p.20)
Power and Signal Wiring (p.21)
Post-Installation Checks (p.32)
Turning on the Inverter
Parameter Configuration (p.45)
Testing (p.33)
11
Installing the Inverter
Basic Configuration Diagram
The reference diagram below shows a typical system configuration showing the inverter and
peripheral devices.
Prior to installing the inverter, ensure that the product is suitable for the application (power rating,
capacity, etc). Ensure that all of the required peripherals and optional devices (resistor brakes,
contactors, noise filters, etc.) are available. For more details on peripheral devices, refer to 11.4
Peripheral Devices on page 351.
• Figures in this manual are shown with covers or circuit breakers removed to show a more detailed
view of the installation arrangements. Install covers and circuit breakers before operating the
inverter. Operate the product according to the instructions in this manual.
• Do not start or stop the inverter using a magnetic contactor, installed on the input power supply.
• If the inverter is damaged and loses control, the machine may cause a dangerous situation. Install
an additional safety device such as an emergency brake to prevent these situations.
• High levels of current draw during power-on can affect the system. Ensure that correctly rated
circuit breakers are installed to operate safely during power-on situations.
• Reactors can be installed to improve the power factor. Note that reactors may be installed
within 30 ft (9.14 m) from the power source if the input power exceeds 10 times of inverter
capacity. Refer to 11.5 Fuse and Reactor Specifications on page 352 and carefully select a
reactor that meets the requirements.
12
Installing the Inverter
2.1 Mounting the Inverter
Mount the inverter on a wall or inside a panel following the procedures provided below. Before
installation, ensure that there is sufficient space to meet the clearance specifications, and that
there are no obstacles impeding the cooling fan’s air flow.
Select a wall or panel suitable to support the installation. Refer to 11.3 External Dimensions (IP 66
Type) on page 346 and check the inverter’s mounting bracket dimensions.
1
Use a level to draw a horizontal line on the mounting surface, and then carefully mark the
fixing points.
2
Drill the two upper mounting bolt holes, and then install the mounting bolts. Do not fully
tighten the bolts at this time. Fully tighten the mounting bolts after the inverter has been
mounted.
13
Installing the Inverter
3
Mount the inverter on the wall or inside a panel using the two upper bolts, and then fully
tighten the mounting bolts. Ensure that the inverter is placed flat on the mounting surface,
and that the installation surface can securely support the weight of the inverter.
14
Installing the Inverter
Note
The quantity and dimensions of the mounting brackets vary based on frame size. Refer to 11.3 External
Dimensions (IP 66 Type) on page 346 for detailed information about your model.
15
Installing the Inverter
• Do not transport the inverter by lifting with the inverter’s covers or plastic surfaces. The inverter
may tip over if covers break, causing injuries or damage to the product. Always support the
inverter using the metal frames when moving it.
• Hi-capacity inverters are very heavy and bulky. Use an appropriate transport method that is
suitable for the weight.
• Do not install the inverter on the floor or mount it sideways against a wall. The inverter MUST be
installed vertically, on a wall or inside a panel, with its rear flat on the mounting surface.
16
Installing the Inverter
2.2 Cable Wiring
Open the front cover, remove the cable guides and control terminal cover, and then install the
ground connection as specified. Complete the cable connections by connecting an appropriately
rated cable to the terminals on the power and control terminal blocks.
Read the following information carefully before carrying out wiring connections to the inverter. All
warning instructions must be followed.
• Install the inverter before carrying out wiring connections.
• Ensure that no small metal debris, such as wire cut-offs, remain inside the inverter. Metal debris in
the inverter may cause inverter failure.
• Tighten terminal screws to their specified torque. Loose terminal block screws may allow the
cables to disconnect and cause short circuit or inverter failure. Refer to 11.6 Terminal Screw
Specification on page 353 for torque specifications.
• Do not place heavy objects on top of electric cables. Heavy objects may damage the cable and
result in electric shock.
• The power supply system for this equipment (inverter) is a grounded system. Only use a grounded
power supply system for this equipment (inverter). Do not use a TT, TN, IT, or corner grounded
system with the inverter.
• The equipment may generate direct current in the protective ground wire. When installing the
residual current device (RCD) or residual current monitoring (RCM), only Type B RCDs and RCMs
can be used.
• Use cables with the largest cross-sectional area, appropriate for power terminal wiring, to ensure
that voltage drop does not exceed 2%.
• Use copper cables rated at 600V, 75℃ for power terminal wiring.
• Use copper cables rated at 300V, 75℃ for control terminal wiring.
• Separate control circuit wires from the main sircuits and other high voltage circuits(200V relay
sequence circuit).
• Check for short circuits or wiring failure in the control circuit. They could cause system failure or
device malfunction.
• Use shielded cables when wiring the control circuit. Failure to do so may cause malfunction due to
interference. If a ground is needed, use STP (Shielded Twisted Pair) cables.
• If you need to re-wire the terminals due to wiring-related faults, ensure that the inverter keypad
display is turned off and the charge lamp under the front cover is off before working on wiring
connections. The inverter may hold a high voltage electric charge long after the power supply has
been turned off.
17
Installing the Inverter
Step 1 Front Cover
The front cover must be removed to install cables. Refer to the following procedures to remove
the cover.
0.4~15kW (3-phase 2type), 0.4~22kW (3-phase 4type)
1
Loosen the bolt that secures the front cover. Then remove the cover by lifting it from the
bottom and moving it away from the front of the inverter.
18
Installing the Inverter
2
Set the bushing to every wiring hole before installing to power and I/O board terminals. Use
the bushing that is NEMA 4X (IP66) or more.
3
Connect the cables to the power terminals and the control terminals. For cable specifications,
refer to 1.5 Cable Selection on page 9.
Note
To connect an LCD keypad, remove the plastic knock-out from the bottom of the front cover (right side)
or from the control terminal cover. Then connect the signal cable to the RJ-45 port on the control
board.
19
Installing the Inverter
Step 2 Ground Connection
Remove the front cover(s), cable guide, and the control terminal cover. Then follow the
instructions below to install the ground connection for the inverter.
1
Locate the ground terminal and connect an appropriately rated ground cable to the
terminals. Refer to 1.5 Cable Selection on page 9 to find the appropriate cable specification for
your installation.
2
Connect the other ends of the ground cables to the supply earth (ground) terminal.
Note
• 200 V products require Class 3 grounding. Resistance to ground must be < 100Ω.
• 400 V products require Special Class 3 grounding. Resistance to ground must be < 10Ω.
Install ground connections for the inverter and the motor by following the correct specifications to
ensure safe and accurate operation. Using the inverter and the motor without the specified grounding
connections may result in electric shock.
20
Installing the Inverter
Step 3 Power Terminal Wiring
The following illustration shows the terminal layout on the power terminal block. Refer to the
detailed descriptions to understand the function and location of each terminal before making
wiring connections. Ensure that the cables selected meet or exceed the specifications in 1.5 Cable
Selection on page 9 before installing them.
• Apply rated torques to the terminal screws. Loose screws may cause short circuits and
malfunctions. Tightening the screw too much may damage the terminals and cause short circuits
and malfuctions.
• Use copper wires only with 600V, 75℃ rating for the power terminal wiring, and 300V, 75℃rating
for the control terminal wiring.
• Do not connect two wires to one terminal when wiring the power.
• Power supply wirings must be connected to the R, S, and T terminals. Connecting them to
the U, V, W terminals causes internal damages to the inverter. Motor should be connected to
the U, V, and W Terminals. Arrangement of the phase sequence is not necessary.
• Appliquer des couples de marche aux vis des bornes. Des vis desserrées peuvent provoquer des
courts-circuits et des dysfonctionnements. Ne pas trop serrer la vis, car cela risqué d’endommager
les bornes et de provoquer des courts-circuits et des dysfonctionnements. Utiliser uniquement
des fils de cuivre avec une valeur nominale de 600 V, 75 ℃ pour le câblage de la borne
d’alimentation, et une valeur nominale de 300 V, 75 ℃ pour le câblage de la borne de
commande.
• Ne jamais connecter deux câbles à une borne lors du câblage de l'alimentation.
• Les câblages de l’alimentation électrique doivent être connectés aux bornes R, S et T. Leur
connexion aux bornes U, V et W provoque des dommages internes à l’onduleur. Le moteur
doit être raccordé aux bornes U, V et W. L’arrangement de l’ordre de phase n’est pas
nécessaire.
21
Installing the Inverter
0.4~4.0kW (3-phase)
22
Installing the Inverter
5.5–22kW (3-phase)
Power Terminal Labels and Descriptions
Terminal Labels
R(L1)/S(L2)/T(L3)
P1(+)/N(-)
Name
AC power input terminal
DC link terminal
P1(+)/P2(+)
DC reactor terminal
P2(+)/B
Brake resistor terminals
U/V/W
Motor output terminals
Description
Mains supply AC power connections.
DC voltage terminals.
DC reactor wiring connection. (Remove
the short-bar when you use the DC
reactor.)
Brake resistor wiring connection.
3-phase induction motor wiring
connections.
Note
• Use STP (Shielded Twisted Pair) cables to connect a remotely located motor with the inverter. Do
not use 3 core cables.
• When you operating Brake resistor, the motor may vibrate under the Flux braking operation. In
this case, please turn off the Flux braking(Pr.50).
• Make sure that the total cable length does not exceed 665ft (202m). For inverters < = 4.0kW
capacity, ensure that the total cable length does not exceed 165ft (50m).
• Long cable runs can cause reduced motor torque in low frequency applications due to voltage
23
Installing the Inverter
drop. Long cable runs also increase a circuit’s susceptibility to stray capacitance and may trigger
over-current protection devices or result in malfunction of equipment connected to the inverter.
• Voltage drop is calculated by using the following formula:
Voltage Drop (V) = [√3 X cable resistance (mΩ/m) X cable length (m) X current(A)] / 1000
• Use cables with the largest possible cross-sectional area to ensure that voltage drop is minimized
over long cable runs. Lowering the carrier frequency and installing a micro surge filter may also
help to reduce voltage drop.
Distance
Allowed Carrier Frequency
< 165ft (50m)
< 15 kHz
< 330ft (100m)
< 5 kHz
> 330ft (100m)
< 2.5 kHz
Do not connect power to the inverter until installation has been fully completed and the inverter is
ready to be operated. Doing so may result in electric shock.
• Power supply cables must be connected to the R, S, and T terminals. Connecting power cables to
other terminals will damage the inverter.
• Use insulated ring lugs when connecting cables to R/S/T and U/V/W terminals.
• The inverter’s power terminal connections can cause harmonics that may interfere with other
communication devices located near to the inverter. To reduce interference the installation of
noise filters or line filters may be required.
• To avoid circuit interruption or damaging connected equipment, do not install phase-advanced
condensers, surge protection, or electronic noise filters on the output side of the inverter.
• To avoid circuit interruption or damaging connected equipment, do not install magnetic
contactors on the output side of the inverter.
Step 4 Control Terminal Wiring
The illustrations below show the detailed layout of control wiring terminals, and control board
switches. Refer to the detailed information provided below and 1.5 Cable Selection on page 9
before installing control terminal wiring and ensure that the cables used meet the required
specifications.
24
Installing the Inverter
Control Board Switches
Switch
SW1
SW2
SW3
SW4
Description
NPN/PNP mode selection switch
analog voltage/current input terminal selection switch
analog voltage/current output terminal selection switch
Terminating Resistor selection switch
25
Installing the Inverter
Input Terminal Labels and Descriptions
Function
Label
P1–P5
Multifunction
terminal
configuration
CM
VR
Analog input
configuration
V1
26
Name
Multi-function
Input 1-5
Common
Sequence
Potentiometer
frequency
reference input
Voltage input for
frequency
reference input
Description
Configurable for multi-function input terminals.
Factory default terminals and setup are as follows:
• P1: Fx
• P2: Rx
• P3: BX
• P4: RST
• P5: Speed-L
Common terminal for analog terminal inputs and
outputs.
Used to setup or modify a frequency reference via
analog voltage or current input.
• Maximum Voltage Output: 12V
• Maximum Current Output: 100mA,
• Potentiometer: 1–5kΩ
Used to setup or modify a frequency reference via
analog voltage input terminal.
• Unipolar: 0–10V (12V Max.)
Installing the Inverter
Function
Label
Name
I2
Voltage/current
input for
frequency
reference input
TI
Pulse input for
frequency
reference input
(pulse train)
SA
Safety input A
Safety
functionality
SB
configuration
SC
Safety input B
Description
• Bipolar: -10–10V (±12V Max.)
Used to setup or modify a frequency reference via
analog voltage or current input terminals.
Switch between voltage (V2) and current (I2) modes
using a control board switch (SW2).
V2 Mode:
• Unipolar: 0–10V (12V Max.)
I2 Mode
• Input current: 4–20mA
• Maximum Input current: 24mA
• Input resistance: 249Ω
Setup or modify frequency references using pulse
inputs from 0 to 32kHz.
• Low Level: 0–0.8V
• High Level: 3.5–12V
(Pulse input TI and Multi-function terminal P5 share
the same terminal. Sel the ln.69 P5 Define to 54(TI).)
Used to block the output from the inverter in an
emergency.
Conditions:
• Normal Operation: Both the SA and SB terminals
are connected to the SC terminal.
• Output Block: One or both of the SA and SB
terminals lose connection with the SC terminal.
Safety input power
DC 24V, < 25mA
source
Output/Communication Terminal Labels and Descriptions
Function
Label
Name
Analog output
AO
Voltage/Current
Output
Description
Used to send inverter output information to
external devices: output frequency, output current,
output voltage, or a DC voltage.
Operate switch (SW3) to select the signal output
type (voltage or current) at the AO terminal.
Output Signal Specifications:
• Output voltage: 0–10V
• Maximum output voltage/current: 12V/10mA
• Output current: 0–20mA
• Maximum output current: 24mA
• Factory default output: Frequency
27
Installing the Inverter
Function
Label
Name
TO
Pulse Output
Q1
Multi-functional
(open collector)
EG
Common
24
External 24V
power source
Digital output
A1/C1/B1
Communication S+/S-/SG
Description
Sends pulse signals to external devices to provide a
single output value from the inverter of either:
output frequency, output current, output voltage,
or DC voltage.
Output Signal Specifications:
• Output frequency: 0–32kHz
• Output voltage: 0–12V
• Factory default output: Frequency
(Pulse output TO and Multi-function output Q1
share the same terminal. Sel the OU.33Q1 Define to
38(TO).)
DC 26V, 100mA or less
Factory default output: Run
Common ground contact for an open collector
(with external power source)
Maximum output current: 150mA
Sends out alarm signals when the inverter’s safety
features are activated (AC 250V <1A, DC 30V < 1A).
• Fault condition: A1 and C1 contacts are
Fault signal output
connected (B1 and C1 open connection)
• Normal operation: B1 and C1 contacts are
connected (A1 and C1 open connection)
Used to send or receive RS-485 signals. Refer to 7
RS-485 signal line RS-485 Communication Features on page 215 for
more details.
Preinsulated Crimp Terminal Connectors (Bootlace Ferrule) .
Use preinsulated crimp terminal connectors to increase reliability of the control terminal wiring.
Refer to the specifications below to determine the crimp terminals to fit various cable sizes.
28
Installing the Inverter
Dimensions (inches/mm)
Manufacturer
L*
P
d1
D
10.4 0.4 / 6.0
CE002506
26
0.25
0.04 / 1.1 0.1 / 2.5 JEONO
CE002508
12.4 0.5 / 8.0
(Jeono Electric,
CE005006
22
0.50 12.0 0.45 / 6.0 0.05 / 1.3 0.125 / 3.2
http://www.jeono.com/)
CE007506
20
0.75 12.0 0.45 / 6.0 0.06 / 1.5 0.13 / 3.4
* If the length (L) of the crimp terminals exceeds 0.5” (12.7mm) after wiring, the control terminal
cover may not close fully.
P/N
Cable Spec.
AWG mm2
To connect cables to the control terminals without using crimp terminals, refer to the following
illustration detailing the correct length of exposed conductor at the end of the control cable.
Note
• While making wiring connections at the control terminals, ensure that the total cable length does
not exceed 165ft (50m).
• Ensure that the length of any safety related wiring does not exceed 100ft (30m).
• Ensure that the cable length between an LCD keypad and the inverter does not exceed 10ft
(3.04m). Cable connections longer than 10ft (3.04m) may cause signal errors.
• Use ferrite material to protect signal cables from electro-magnetic interference.
• Take care when supporting cables using cable ties, to apply the cable ties no closer than 6 inches
from the inverter. This provides sufficient access to fully close the front cover.
• When making control terminal cable connections, use a small flat-tip screw driver (0.1in wide
(2.5mm) and 0.015in thick (0.4mm) at the tip).
29
Installing the Inverter
SA,SB, SC, they are shorted, have 24V voltage. Do not connect power to the inverter until installation
has been fully completed and the inverter is ready to be operated. Doing so may result in electric shock.
Step 5 PNP/NPN Mode Selection
The S100 inverter supports both PNP (Source) and NPN (Sink) modes for sequence inputs at the
terminal. Select an appropriate mode to suit requirements using the PNP/NPN selection switch
(SW1) on the control board. Refer to the following information for detailed applications.
PNP Mode (Source)
Select PNP using the PNP/NPN selection switch (SW1). Note that the factory default setting is NPN
mode. CM is is the common ground terminal for all analog inputs at the terminal, and P24 is 24V
internal source. If you are using an external 24V source, build a circuit that connects the external
source (-) and the CM terminal.
NPN Mode (Sink)
Select NPN using the PNP/NPN selection switch (SW1). Note that the factory default setting is NPN
mode. CM is is the common ground terminal for all analog inputs at the terminal, and P24 is 24V
internal source.
30
Installing the Inverter
Step 6 Re-assembling the Cover
Re-assemble the cover after completing the wiring and basic configurations.
31
Installing the Inverter
2.3 Post-Installation Checklist
After completing the installation, check the items in the following table to make sure that the
inverter has been safely and correctly installed.
Items
Check Point
Is the installation location appropriate?
Does the environment meet the inverter’s operating
conditions?
Installation
Does the power source match the inverter’s rated input?
Location/Power Is the inverter’s rated output sufficient to supply the
I/O Verification
equipment?
(Degraded performance will result in certain circumstances.
Refer to 11.8 Continuous Rated Current Derating on page 356
for details.
Is a circuit breaker installed on the input side of the inverter?
Is the circuit breaker correctly rated?
Are the power source cables correctly connected to the R/S/T
terminals of the inverter?
(Caution: connecting the power source to the U/V/W
terminals may damage the inverter.)
Are the motor output cables connected in the correct phase
rotation (U/V/W)?
(Caution: motors will rotate in reverse direction if three phase
cables are not wired in the correct rotation.)
Are the cables used in the power terminal connections
Power Terminal correctly rated?
Wiring
Is the inverter grounded correctly?
Are the power terminal screws and the ground terminal
screws tightened to their specified torques?
Are the overload protection circuits installed correctly on
the motors (if multiple motors are run using one inverter)?
Is the inverter separated from the power source by a
magnetic contactor (if a braking resistor is in use)?
Are advanced-phase capacitors, surge protection and
electromagnetic interference filters installed correctly?
(These devices MUST not be installed on the output side of
the inverter.)
Are STP (shielded twisted pair) cables used for control
terminal wiring?
Control Terminal Is the shielding of the STP wiring properly grounded?
Wiring
If 3-wire operation is required, are the multi-function input
terminals defined prior to the installation of the control
wiring connections?
32
Ref.
p.5
p.6
p.339
p.339
p.12
p.339
p.21
p.21
p.9
p.20
p. 21
p.12
p.21
p.24
Result
Installing the Inverter
Items
Miscellaneous
Check Point
Are the control cables properly wired?
Are the control terminal screws tightened to their specified
torques?
Is the total cable length of all control wiring < 165ft
(100m)?
Is the total length of safety wiring < 100ft (30m)?
Are optional cards connected correctly?
Is there any debris left inside the inverter?
Are any cables contacting adjacent terminals, creating a
potential short circuit risk?
Are the control terminal connections separated from the
power terminal connections?
Have the capacitors been replaced if they have been in use
for > 2 years?
Have the fans been replaced if they have been in use for >
3 years?
Has a fuse been installed for the power source?
Are the connections to the motor separated from other
connections?
Ref.
p24
Result
p.17
p.29
p.29
p.17
p.352
-
Note
STP (Shielded Twisted Pair) cable has a highly conductive, shielded screen around twisted cable pairs.
STP cables protect conductors from electromagnetic interference.
2.4 Test Run
After the post-installation checklist has been completed, follow the instructions below to test the
inverter.
1
Turn on the power supply to the inverter. Ensure that the keypad display light is on.
2
Select the command source.
3
Set a frequency reference, and then check the following:
• If V1 is selected as the frequency reference source, does the reference change according to
the input voltage at VR?
• If V2 is selected as the frequency reference source, is the voltage/current selector switch
(SW2) set to voltage, and does the reference change according to the input voltage?
33
Installing the Inverter
• If I2 is selected as the frequency reference source, is the voltage/current selector switch
(SW2) set to current, and does the reference change according to the input current?
4
Set the acceleration and deceleration time.
5
Start the motor and check the following:
• Ensure that the motor rotates in the correct direction (refer to the note below).
• Ensure that the motor accelerates and decelerates according to the set times, and that the
motor speed reaches the frequency reference.
Note
If the forward command (Fx) is on, the motor should rotate counterclockwise when viewed from
the load side of the motor. If the motor rotates in the reverse direction, switch the cables at the U
and V terminals.
Remarque
Si la commande avant (Fx) est activée, le moteur doit tourner dans le sens anti-horaire si on le
regarde côté charge du moteur. Si le moteur tourne dans le sens inverse, inverser les câbles aux
bornes U et V.
Verifying the Motor Rotation
1
On the keypad, set the drv (Frequency reference source) code in the Operation group to 0
(Keypad).
2
Set a frequency reference.
3
Press the [RUN] key. Motor starts forward operation.
4
Observe the motor’s rotation from the load side and ensure that the motor rotates
counterclockwise (forward).
If the motor rotates in the reverse direction, two of the U/V/W terminals need to be switched.
34
Installing the Inverter
• Check the parameter settings before running the inverter. Parameter settings may have to be
adjusted depending on the load.
• To avoid damaging the inverter, do not supply the inverter with an input voltage that exceeds the
rated voltage for the equipment.
• Before running the motor at maximum speed, confirm the motor’s rated capacity. As inverters can
be used to easily increase motor speed, use caution to ensure that motor speeds do not accidently
exceed the motor’s rated capacity.
35
Installing the Inverter
36
Learning to Perform Basic Operations
3 Learning to Perform Basic Operations
This chapter describes the keypad layout and functions. It also introduces parameter groups and
codes, required to perform basic operations. The chapter also outlines the correct operation of the
inverter before advancing to more complex applications. Examples are provided to demonstrate
how the inverter actually operates.
3.1 About the Keypad
The keypad is composed of two main components – the display and the operation (input) keys.
Refer to the following illustration to identify part names and functions.
37
Learning to Perform Basic Operations
3.1.1 About the Display
The following table lists display part names and their functions.
No.
Name
❶
7-Segment Display
❷
SET Indicator
❸
RUN Indicator
❹
FWD Indicator
REV Indicator
❺
Function
Displays current operational status and parameter
information.
LED flashes during parameter configuration and when the
ESC key operates as the multi-function key.
LED turns on (steady) during an operation, and flashes
during acceleration or deceleration.
LED turns on (steady) during forward operation.
LED turns on (steady) during reverse operation.
The table below lists the way that the keypad displays characters (letters and numbers).
0
0
A
A
K
K
U
U
1
1
B
B
L
L
V
V
2
2
C
C
M
M
W
W
3
3
D
D
N
N
X
X
4
4
E
E
O
O
Y
Y
5
5
F
F
P
P
Z
Z
6
6
G
G
Q
Q
-
-
7
7
H
H
R
R
-
-
8
8
I
I
S
S
-
-
9
9
J
J
T
T
-
-
38
Learning to Perform Basic Operations
3.1.2 Operation Keys
The following table lists the names and functions of the keypad’s operation keys.
Key
Name
[RUN] key
[STOP/RESET] key
,
[▲] key, [▼] key
,
[◀] key, [▶] key
[ENT] key
[ESC] key
Description
Used to run the inverter (inputs a RUN command).
STOP: stops the inverter.
RESET: resets the inverter following fault or failure condition.
Switch between codes, or to increase or decrease parameter
values.
Switch between groups, or to move the cursor during
parameter setup or modification.
Used to select, confirm, or save a parameter value.
A multi-function key used to configure different functions, such as:
• Jog operation
• Remote/Local mode switching
• Cancellation of an input during parameter setup
Install a separate emergency stop switch in the circuit. The [STOP/RESET] key on the keypad works only
when the inverter has been configured to accept an input from the keypad.
39
Learning to Perform Basic Operations
3.1.3 Control Menu
The S100 inverter control menu uses the following groups.
Group
Operation
Display
-
Drive
DR
Basic
BA
Advanced
AD
CN
IN
Control
Input Terminal
Output Terminal
OU
Communication
CM
Application
AP
PR
Protection
Motor 2 (Secondary Motor)
M2
User Sequence
User Sequence Function
US
UF
40
Description
Configures basic parameters for inverter operation.
These include reference frequencies and acceleration or
deceleration times. Frequencies will only be displayed if
an LCD keypad is in use.
Configures parameters for basic operations. These
include jog operation, motor capacity evaluation,
torque boost, and other keypad related parameters.
Configures basic parameters, including motorrelated parameters and multi-step frequencies.
Configure acceleration or deceleration patterns and
to setup frequency limits.
Configures sensorless vector - related features.
Configures input terminal–related features, including
digital multi–functional inputs and analog inputs.
Configures output terminal–related features such as
relays and analog outputs.
Configures communication features for RS-485 or
other communication options.
Configures PID control–related sequences and
operations.
Configures motor or inverter protection features.
Configures secondary motor related features. The
secondary motor (M2) group appears on the keypad
only when one of the multi-function input terminals
(In.65–In.69) has been set to 26 (Secondary motor).
Used to implement simple sequences with various
function blocks.
Learning to Perform Basic Operations
3.2 Learning to Use the Keypad
The keypad enables movement between groups and codes. It also enables users to select and
configure functions. At code level, you can set parameter values to turn on or off specific functions,
or decide how the functions will be used. Refer to 8 Table of Functions on page 245 to find the
functions you need.
Confirm the correct values (or the correct range of the values), and then follow the examples
below to configure the inverter with the keypad.
3.2.1 Group and Code Selection
Follow the examples below to learn how to switch between groups and codes.
Step Instruction
1
Move to the group you
want using the [◀] and [▶]
keys.
2
Move up and down
through the codes using
the [▲] and [▼] keys until
you locate the code that
you require.
3
Press the [ENT] key to save
the change.
Keypad Display
-
41
Learning to Perform Basic Operations
Note
For some settings, pressing the [▲] or [▼] key will not increase or decrease the code number by 1.
Code numbers may be skipped and not be displayed. This is because certain code numbers have been
intentionally left blank (or reserved) for new functions to be added in the future. Also some features
may have been hidden (disabled) because a certain code has been set to disable the functions for
relevant codes.
As an example, if Ad.24 (Frequency Limit) is set to 0 (No), the next codes, Ad.25 (Freq Limit Lo) and
Ad.26 (Freq Limit Hi), will not be displayed. If you set code Ad.24 to 1 (Yes) and enable the frequency
limit feature, codes Ad.25 and 26 will appear to allow the maximum and minimum frequency
limitations to be set up.
3.2.2 Navigating Directly to Different Codes
The following example details navigating to code dr. 95, from the initial code in the Drive group (dr.
0). This example applies to all groups whenever you would like to navigate to a specific code
number.
Step
1
2
3
4
42
Instruction
Ensure that you are currently at the first code of the Drive group
(dr.0).
Press the [ENT] key.
Number ‘9’ will flash.
Press the [▼] key to display ‘5,’ the first 1s’ place of the group
destination, ’95.’
Press the [◀] key to move to the 10s’ place.
The cursor will move to the left and ‘05’ will be displayed. This time,
the number ‘0’ will be flashing.
Keypad Display
DR.0
(
%
)5
Learning to Perform Basic Operations
Step
5
6
Instruction
Press the [▲] key to increase the number from ‘0’ to ‘9,’ the 10s
place digit of the destination, ’95.’
Press the [ENT] key.
Code dr.95 is displayed.
Keypad Display
95
DR.95
3.2.3 Setting Parameter Values
Enable or disable features by setting or modifying parameter values for different codes. Directly
enter setting values, such as frequency references, supply voltages, and motor speeds. Follow the
instructions below to learn to set or modify parameter values.
Step
1
Instruction
Keypad Display
Select the group and code to setup or modify
parameter settings, and then press the [ENT]
key.
The first number on the right side of the
display will flash.
2
Press the [◀] or [▶] key to move the cursor to
the number that you would like to modify.
3
Press the [▲] or [▼] key to adjust the value,
and then press the [ENT] key to confirm it.
The selected value will flash on the display.
4
Press the [ENT] key again to save the change.
5.)
-
43
Learning to Perform Basic Operations
Note
• A flashing number on the display indicates that the keypad is waiting for an input from the user.
Changes will be saved when the [ENT] key is pressed while the number is flashing. The setting
change will be canceled if you press any other key.
• Each code’s parameter values have default features and ranges specified. Refer to 8 Table of
Functions on page 245 for information about the features and ranges before setting or modifying
parameter values.
3.2.4 Configuring the [ESC] Key
The [ESC] key is a multi-functional key that can be configured to carry out a number of different
functions. Refer to 4.6 Local/Remote Mode Switching on page 76 for more information about the
other functions of the [ESC] key. The following example shows how to configure the [ESC] key to
perform a jog operation.
Step
1
2
3
44
Instruction
Ensure that you are currently at the first code of the Operation
group, and that code 0.00 (Command Frequency) is displayed.
Press the [▶] key.
You have moved to the initial code of the Drive group (dr.0).
Press the [▲] or [▼] key to select code 90 (ESC key configuration),
and then press the [ENT] key.
Keypad Display
0.00
DR.0
DR.90
Learning to Perform Basic Operations
Step
4
5
Instruction
Keypad Display
Code dr.90 currently has an initial parameter value of, 0 (adjust to
the initial position).
Press the [▲] key to modify the value to 1 (Jog key) and then press
the [ENT] key.
The new parameter value will flash.
Press the [ENT] key again to save changes.
-
)
Note
• If the code dr. 90 (ESC key configuration) is set to 1 (JOG Key) or 2 (Local/Remote), the SET indicator
will flash when the [ESC] key is pressed.
• The factory default setting for code dr. 90 is 0 (move to the initial position). You can navigate back
to the initial position (code 0.00 of the Operation group) immediately, by pressing the [ESC] key
while configuring any codes in any groups.
3.3 Actual Application Examples
3.3.1 Acceleration Time Configuration
The following is an example demonstrating how to modify the ACC (Acceleration time) code value
(from 5.0 to 16.0) from the Operation group.
45
Learning to Perform Basic Operations
Step
1
2
3
4
5
6
7
8
Instruction
Keypad Display
Ensure that the first code of the Operation group is selected, and
0.00
code 0.00 (Command Frequency) is displayed.
Press the [▲] key.
ACC
The display will change to the second code in the Operation
group, the ACC (Acceleration Time) code.
Press the [ENT] key.
The number ‘5.0’ will be displayed, with ‘0’ flashing. This indicates
5.)
that the current acceleration time is set to 5.0 seconds. The flashing
value is ready to be modified by using the keypad.
Press the [◀] key to change the first place value.
%.0
‘5’ will be flashing now. This indicates the flashing value, ‘5’ is ready
to be modified.
Press the [▲] key to change the number ‘5’ into ‘6’, the first place
^.0
value of the target number ’16.’
Press the [◀] key to move to the 10s, place value.
The number in the 10s position, ‘0’ in ‘06’ will start to flash
Press the [▲] key to change the number from ‘0’ to ‘1’, to match
the 10s place value of the target number’16,’ and then press the
[ENT] key.
Both digits will flash on the display.
Press the [ENT] key once again to save changes.
‘ACC’ will be displayed. The change to the acceleration time setup
has been completed.
)6.0
!^,)
ACC
3.3.2 Frequency Reference Configuration
The following is an example to demonstrate configuring a frequency reference of 30.05 (Hz) from
the first code in the Operation group (0.00).
46
Learning to Perform Basic Operations
Step
1
2
3
4
5
6
7
Instruction
Ensure that the first code of the Operation group is selected, and
the code 0.00 (Command Frequency) is displayed.
Press the [ENT] key.
The value, 0.00 will be displayed with the ‘0’ in the 1/100s place
value flashing.
Press the [◀] key 3 times to move to the 10s place value.
The ‘0’ at the 10s place value will start to flash.
Press the [▲] key to change it to ‘3,’ the 10s place value of the
target frequency, ‘30.05.’
Press the [▶] key 3 times.
The ‘0’ at the 1/100s place position will flash.
Press the [▲] key to change it to ‘5,’ the 1/100 place value of the
target frequency, ‘30.05,’ and then press the [ENT] key.
The parameter value will flash on the display.
Press the [ENT] key once again to save changes.
Flashing stops. The frequency reference has been configured to
30.05 Hz.
Keypad Display
0.00
0.0)
)0.00
#0.00
30.0)
#),)%
30.05
Note
• A flashing number on the display indicates that the keypad is waiting for an input from the user.
Changes are saved when the [ENT] key is pressed while the value is flashing. Changes will be
canceled if any other key is pressed.
• The S100 inverter keypad display can display up to 4 digits. However, 5-digit figures can be used
and are accessed by pressing the [◀] or [▶] key, to allow keypad input.
47
Learning to Perform Basic Operations
3.3.3 Jog Frequency Configuration
The following example demonstrates how to configure Jog Frequency by modifying code 11 in
the Drive group (Jog Frequency) from 10.00(Hz) to 20.00(Hz). You can configure the parameters for
different codes in any other group in exactly the same way.
Step
1
2
3
4
5
Instruction
Go to code 11(Jog Frequency) in the Drive group.
Press the [ENT] key.
The current Jog Frequency value (10.00) for code dr.11 is displayed.
Press the [◀] key 3 times to move to the 10s place value.
Number ‘1’ at the 10s place position will flash.
Press the [▲] key to change the value to ‘2,’ to match the 10s
place value of the target value’20.00,’ and then press the [ENT]
key.
All parameter digits will flash on the display.
Press the [ENT] key once again to save the changes.
Code dr.11 will be displayed. The parameter change has been
completed.
Keypad Display
DR.1
10.0)
!0.00
@),))
DR.1
3.3.4 Initializing All Parameters
The following example demonstrates parameter initialization using code dr.93 (Parameter
Initialization) in the Drive group. Once executed, parameter initialization will delete all modified
values for all codes and groups.
48
Learning to Perform Basic Operations
Step
1
2
3
4
5
6
7
8
9
Instruction
Go to code 0 (Jog Frequency) in the Drive group.
Press the [ENT] key.
The current parameter value (9) will be displayed.
Press the [q] key to change the first place value to ‘3’ of the target
code, ’93.’
Press the [◀] key to move to the 10s place position.
‘03’ will be displayed.
Press the [▲] or [▼] key to change the ‘0’ to ‘9’ of the target
code, ’93.’
Press the [ENT] key.
Code dr.93 will be displayed.
Press the [ENT] key once again.
The current parameter value for code dr.93 is set to 0 (Do not
initialize).
Press the [▲] key to change the value to 1 (All Grp), and then press
the [ENT] key.
The parameter value will flash.
Press the [ENT] key once again.
Parameter initialization begins. Parameter initialization is complete
when code dr.93 reappears on the display.
Keypad Display
DR.0
(
#
)3
(3
DR.93
)
DR.93
Note
Following parameter initialization, all parameters are reset to factory default values. Ensure that
parameters are reconfigured before running the inverter again after an initialization.
49
Learning to Perform Basic Operations
3.3.5 Frequency Setting (Keypad) and Operation (via Terminal Input)
Step
1
2
3
4
5
6
7
Instruction
Keypad Display
Turn on the inverter.
Ensure that the first code of the Operation group is selected, and
code 0.00 (Command Frequency) is displayed, then press the
0.0)
[ENT] key.
The first digit on the right will flash.
Press the [◀] key 3 times to go to the 10s place position.
)0.00
The number ‘0’ at the 10s place position will flash.
Press the [▲] key to change it to 1, and then press the [ENT] key.
!),))
The parameter value (10.00) will flash.
Press the [ENT] key once again to save changes.
10.00
A change of reference frequency to 10.00 Hz has been completed.
Refer to the wiring diagram at the bottom of the table, and close
the switch between the P1 (FX) and CM terminals.
The RUN indicator light flashes and the FWD indicator light comes
on steady. The current acceleration frequency is displayed.
When the frequency reference is reached (10Hz), open the switch
between the P1 (FX) and CM terminals.
The RUN indicator light flashes again and the current deceleration
frequency is displayed. When the frequency reaches 0Hz, the RUN
and FWD indicator lights turn off, and the frequency reference
(10.00Hz) is displayed again.
[Wiring Diagram]
[Operation Pattern]
Note
The instructions in the table are based on the factory default parameter settings. The inverter may not
work correctly if the default parameter settings are changed after the inverter is purchased. In such
cases, initialize all parameters to reset the values to factory default parameter settings before following
the instructions in the table (refer to 5.22 Parameter Initialization on page 165).
50
Learning to Perform Basic Operations
3.3.6 Frequency Setting (Potentiometer) and Operation (Terminal
Input)
Step
1
2
3
4
5
6
7
8
9
10
Instruction
Keypad Display
Turn on the inverter.
Ensure that the first code of the Operation group is selected, and
0.00
the code 0.00 (Command Frequency) is displayed.
Press the [▲] key 4 times to go to the Frq (Frequency reference
FRQ
source) code.
Press the [ENT] key.
)
The Frq code in the Operation group is currently set to 0 (keypad).
Press the [▲] key to change the parameter value to 2
@
(Potentiometer), and then press the [ENT] key.
The new parameter value will flash.
Press the [ENT] key once again.
The Frq code will be displayed again. The frequency input has
FRQ
been configured for the potentiometer.
Press the [▼] key 4 times.
0.00
Returns to the first code of the Operation group (0.00).From here
frequency setting values can be monitored.
Adjust the potentiometer to increase or decrease the frequency
reference to 10Hz.
Refer to the wiring diagram at the bottom of the table, and close
the switch between the P1 (FX) and CM terminals.
The RUN indicator light flashes and the FWD indicator light comes
on steady. The current acceleration frequency is displayed.
When the frequency reference is reached (10Hz), open the switch
between the P1 (FX) and CM terminals.
The RUN indicator light flashes again and the current deceleration
frequency is displayed. When the frequency reaches 0Hz, the RUN
and FWD indicators turn off, and the frequency reference
(10.00Hz) is displayed again.
51
Learning to Perform Basic Operations
[Wiring Diagram]
[Operation Pattern]
Note
The instructions in the table are based on the factory default parameter settings. The inverter may not
work correctly if the default parameter settings are changed after the inverter is purchased. In such
cases, initialize all parameters to reset the factory default parameter settings before following the
instructions in the table (refer to 5.22 Parameter Initialization on page 165).
3.3.7 Frequency Setting (Potentiometer) and Operation (Keypad)
Step
1
2
3
4
5
6
7
52
Instruction
Turn on the inverter.
Ensure that the first code of the Operation group is
selected, and the code 0.00 (Command Frequency) is
displayed.
Press the [▲] key 4 times to go to the drv code.
Press the [ENT] key.
The drv code in the Operation group is currently set to 1
(Analog Terminal).
Press the [▼] key to change the parameter value to 0
(Keypad), and then press the [ENT] key.
The new parameter value will flash.
Press the [ENT] key once again.
The drv code is displayed again. The frequency input has
been configured for the keypad.
Press the [▲] key.
To move to the Frq (Frequency reference source) code.
Keypad Display
-
0.00
DRV
)
DRV
FRQ
Learning to Perform Basic Operations
Step
8
9
10
11
12
13
14
Instruction
Press the [ENT] key.
The Frq code in the Operation group is set to 0 (Keypad).
Press the [▲] key to change it to 2 (Potentiometer), and then
press the [ENT] key.
The new parameter value will flash.
Press the [ENT] key once again.
The Frq code is displayed again. The frequency input has
been configured for potentiometer.
Press the [▼] key 4 times.
Returns to the first code of the Operation group (0.00). From
here frequency setting values can be monitored.
Adjust the potentiometer to increase or decrease the
frequency reference to 10Hz.
Press the [RUN] key on the keypad.
The RUN indicator light flashes and the FWD indicator light
comes on steady. The current acceleration frequency is
displayed.
When the frequency reaches the reference (10Hz), press the
[STOP/RESET] key on the keypad.
The RUN indicator light flashes again and the current
deceleration frequency is displayed. When the frequency
reaches 0Hz, the RUN and FWD indicator lights turn off, and
the frequency reference (10.00Hz) is displayed again.
[Wiring Diagram]
Keypad Display
)
@
FRQ
0.00
-
[Operation Pattern]
Note
The instructions in the table are based on the factory default parameter settings. The inverter may not
work correctly if the default parameter settings are changed after the inverter is purchased. In such
cases, initialize all parameters to reset the factory default parameter settings before following the
instructions in the table (refer to 5.22 Parameter Initialization on page 165).
53
Learning to Perform Basic Operations
3.4 Monitoring the Operation
3.4.1 Output Current Monitoring
The following example demonstrates how to monitor the output current in the Operation group
using the keypad.
Step
1
2
3
4
Instruction
Ensure that the first code of the Operation group is selected,
and the code 0.00 (Command Frequency) is displayed.
Press the [▲] or [▼] key to move to the Cur code.
Press the [ENT] key.
The output current (5.0A) is displayed.
Press the [ENT] key again.
Returns to the Cur code.
Keypad Display
0.00
CUR
5.0
CUR
Note
You can use the dCL (DC link voltage monitor) and vOL (output voltage monitor) codes in the
Operation group in exactly the same way as shown in the example above, to monitor each function’s
relevant values.
54
Learning to Perform Basic Operations
3.4.2 Fault Trip Monitoring
The following example demonstrates how to monitor fault trip conditions in the Operation group
using the keypad.
Step
1
2
3
4
5
Instruction
Refer to the example keypad display.
An over current trip fault has occurred.
Press the [ENT] key, and then the [▲] key.
The operation frequency at the time of the fault (30.00Hz) is
displayed.
Press the [▲] key.
The output current at the time of the fault (5.0A) is displayed.
Press the [▲] key.
The operation status at the time of the fault is displayed. ACC on
the display indicates that the fault occurred during acceleration.
Press the [STOP/RESET] key.
The inverter resets and the fault condition is cleared. The
frequency reference is displayed on the keypad.
Keypad Display
OCT
30.00
5.0
ACC
30.00
55
Learning to Perform Basic Operations
Note
• If multiple fault trips occur at the same time, a maximum of 3 fault trip records can be retrieved as
shown in the following example.
• If a warning condition occurs while running at a specified frequency, the current frequency and
the WARN signal will be displayed alternately, at 1 second intervals. Refer to 6.3 Under load
Fault Trip and Warning on page 205 for more details.
56
Learning Basic Features
4 Learning Basic Features
This chapter describes the basic features of the S100 inverter. Check the reference page in the
table to see the detailed description for each of the advanced features.
Basic Tasks
Frequency reference source
configuration for the keypad
Frequency reference source
configuration for the
terminal block (input
voltage)
Frequency reference source
configuration for the
terminal block (input
current)
Frequency reference source
configuration for the
terminal block (input pulse)
Frequency reference source
configuration for RS-485
communication
Frequency control using
analog inputs
Motor operation display
options
Multi-step speed (frequency)
configuration
Command source
configuration for keypad
buttons
Command source
configuration for terminal
block inputs
Command source
configuration for RS-485
communication
Local/remote switching via
the [ESC] key
Description
Configures the inverter to allow you to setup or modify
frequency reference using the Keypad.
Ref.
p.60
Configures the inverter to allow input voltages at the terminal
block (V1, V2) and to setup or modify a frequency reference.
p.61,
p.68
Configures the inverter to allow input currents at the terminal
block (I2) and to setup or modify a frequency reference.
p.66
Configures the inverter to allow input pulse at the terminal
block (TI) and to setup or modify a frequency reference.
p.68
Configures the inverter to allow communication signals from
upper level controllers, such as PLCs or PCs, and to setup or
modify a frequency reference.
Enables the user to hold a frequency using analog inputs at
terminals.
Configures the display of motor operation values. Motor
operation is displayed either in frequency (Hz) or speed (rpm).
Configures multi-step frequency operations by receiving an
input at the terminals defined for each step frequency.
Configures the inverter to allow the manual operation of the
[FWD], [REV] and [Stop] keys.
p.70
p.70
p.71
p.71
p.73
Configures the inverter to accept inputs at the FX/RX terminals. p.74
Configures the inverter to accept communication signals from
p.75
upper level controllers, such as PLCs or PCs.
Configures the inverter to switch between local and remote
operation modes when the [ESC] key is pressed.
When the inverter is operated using remote inputs (any input
other than one from the keypad), this configuration can be
used to perform maintenance on the inverter, without losing
or altering saved parameter settings. It can also be used to
override remotes and use the keypad immediately in
emergencies.
p.76
57
Learning Basic Features
Basic Tasks
Motor rotation control
Description
Configures the inverter to limit a motor’s rotation direction.
Configures the inverter to start operating at power-on. With
this configuration, the inverter begins to run and the motor
Automatic start-up at
accelerates as soon as power is supplied to the inverter. To use
power-on
automatic start-up configuration, the operation command
terminals at the terminal block must be turned on.
Configures the inverter to start operating when the inverter is
reset following a fault trip. In this configuration, the inverter
Automatic restart after reset starts to run and the motor accelerates as soon as the inverter
of a fault trip condition
is reset following a fault trip condition.
For automatic start-up configuration to work, the operation
command terminals at the terminal block must be turned on.
Acc/Dec time configuration
Configures the acceleration and deceleration times for a motor
based on the Max.
based on a defined maximum frequency.
Frequency
Acc/Dec time configuration
Configures acceleration and deceleration times for a motor
based on the frequency
based on a defined frequency reference.
reference
Multi-stage Acc/Dec time
Configures multi-stage acceleration and deceleration times for
a motor based on defined parameters for the multi-function
configuration using the
terminals.
multi-function terminal
Acc/Dec time transition
Enables modification of acceleration and deceleration
speed (frequency)
gradients without configuring the multi-functional terminals.
configuration
Enables modification of the acceleration and deceleration
Acc/Dec pattern
gradient patterns. Basic patterns to choose from include linear
configuration
and S-curve patterns.
Stops the current acceleration or deceleration and controls
motor operation at a constant speed. Multi-function terminals
Acc/Dec stop command
must be configured for this command .
Configures the inverter to run a motor at a constant torque. To
Linear V/F pattern operation maintain the required torque, the operating frequency may
vary during operation.
Configures the inverter to run the motor at a square reduction
Square reduction V/F
V/F pattern. Fans and pumps are appropriate loads for square
pattern operation
reduction V/F operation.
Enables the user to configure a V/F pattern to match the
User V/F pattern
characteristics of a motor. This configuration is for specialconfiguration
purpose motor applications to achieve optimal performance.
Manual configuration of the inverter to produce a momentary
torque boost. This configuration is for loads that require a large
Manual torque boost
amount of starting torque, such as elevators or lifts.
Automatic configuration of the inverter that provides “auto
Automatic torque boost
tuning” that produces a momentary torque boost. This
58
Ref.
p.78
p.78
p.79
p.80
p.82
p.82
p.84
p.85
p.88
p.88
p.89
p.90
p.91
p.92
Learning Basic Features
Basic Tasks
Description
configuration is for loads that require a large amount of
starting torque, such as elevators or lifts.
Adjusts the output voltage to the motor when the power
Output voltage adjustment supply to the inverter differs from the motor’s rated input
voltage.
Accelerating start is the general way to start motor operation.
The typical application configures the motor to accelerate to a
Accelerating start
target frequency in response to a run command, however
there may be other start or acceleration conditions defined.
Configures the inverter to perform DC braking before the
motor starts rotating again. This configuration is used when
Start after DC braking
the motor will be rotating before the voltage is supplied from
the inverter.
Deceleration stop is the typical method used to stop a motor.
The motor decelerates to 0Hz and stops on a stop command,
Deceleration stop
however there may be other stop or deceleration conditions
defined.
Configures the inverter to apply DC braking during motor
deceleration. The frequency at which DC braking occurs must
Stopping by DC braking
be defined and during deceleration, when the motor reaches
the defined frequency, DC braking is applied.
Configures the inverter to stop output to the motor using a
Free-run stop
stop command. The motor will free-run until it slows down and
stops.
Configures the inverter to provide optimal, motor deceleration,
Power braking
without tripping over-voltage protection.
Start/maximum frequency Configures the frequency reference limits by defining a start
frequency and a maximum frequency.
configuration
Upper/lower frequency limit Configures the frequency reference limits by defining an upper
limit and a lower limit.
configuration
Configures the inverter to avoid running a motor in
Frequency jump
mechanically resonating frequencies.
Used to configure the 2nd operation mode and switch between
2nd Operation Configuration
the operation modes according to your requirements.
Multi-function input
Enables the user to improve the responsiveness of the multiterminal control
function input terminals.
configuration
P2P communication
Configures the inverter to share input and output devices with
configuration
other inverters.
Enables the user to monitor multiple inverters with one
Multi-keypad configuration
monitoring device.
Enables the user to implement simple sequences using various
User sequence configuration
function blocks.
Ref.
p.93
p.94
p.94
p.95
p.95
p.96
p.97
p.98
p.98
p.99
p.100
p.101
p.103
p.103
p.105
59
Learning Basic Features
4.1 Setting Frequency Reference
The S100 inverter provides several methods to setup and modify a frequency reference for an
operation. The keypad, analog inputs [for example voltage (V1, V2) and current (I2) signals], or RS485 (digital signals from higher-level controllers, such as PC or PLC) can be used. If UserSeqLink is
selected, the common area can be linked with user sequence output and can be used as
frequency reference.
Group
Code
Operation Frq
Name
LCD Display
Frequency
reference source
Ref Freq Src
Parameter Setting Setting Range
0
KeyPad-1
1
KeyPad-2
2
V1
4
V2
0–12
5
I2
6
Int 485
8
Field Bus
9
UserSeqLink
12 Pulse
Unit
-
4.1.1 Keypad as the Source (KeyPad-1 setting)
You can modify frequency reference by using the keypad and apply changes by pressing the [ENT]
key. To use the keypad as a frequency reference input source, go to the Frq (Frequency reference
source) code in the Operation group and change the parameter value to 0 (Keypad-1). Input the
frequency reference for an operation at the 0.00(Command Frequency) code in the Operation
group.)
Group
Code
Name
LCD Display Parameter Setting Setting Range
Unit
Frequency
Frq
Freq Ref Src 0
KeyPad-1
0–12
reference source
Operation
Frequency
0.00
0.00
Min to Max Frq*
Hz
reference
* You cannot set a frequency reference that exceeds the Max. Frequency, as configured with dr.20.
4.1.2 Keypad as the Source (KeyPad-2 setting)
You can use the [▲] and [▼] keys to modify a frequency reference. To use this as a second option,
set the keypad as the source of the frequency reference, by going to the Frq (Frequency reference
source) code in the Operation group and change the parameter value to 1 (Keypad-2). This allows
frequency reference values to be increased or decreased by pressing the [▲] and [▼] keys.
60
Learning Basic Features
Group
Code
Name
LCD Display Parameter Setting Setting Range
Unit
Frequency
Frq
Freq Ref Src 1
KeyPad-2
0–12
reference source
Operation
Frequency
0.00
0.00
Min to Max Frq* Hz
reference
* You cannot set a frequency reference that exceeds the Max. Frequency, as configured with dr.20.
4.1.3 V1 Terminal as the Source
You can set and modify a frequency reference by setting voltage inputs when using the V1
terminal. Use voltage inputs ranging from 0 to 10V (unipolar) for forward only operation. Use
voltage inputs ranging from -10 to +10V (bipolar) for both directions, where negative voltage
inputs are used reverse operations.
4.1.3.1 Setting a Frequency Reference for 0–10V Input
Set code 06 (V1 Polarity) to 0 (unipolar) in the Input Terminal group (IN). Use a voltage output from
an external source or use the voltage output from the VR terminal to provide inputs to V1. Refer to
the diagrams below for the wiring required for each application.
[External source application]
[Internal source (VR) application]
Group
Code Name
Frequency reference
Operation Frq
source
Frequency at
01
maximum analog
input
In
05
V1 input monitor
06
V1 polarity options
LCD Display
Parameter Setting Setting Range Unit
Freq Ref Src
2
Freq at 100%
V1 Monitor
[V]
V1 Polarity
0–12
-
Maximum
frequency
0.00–
Max.
Frequency
Hz
0.00
0.00–12.00
V
0–1
-
0
V1
Unipolar
61
Learning Basic Features
Group
Code Name
V1 input filter time
07
constant
V1 minimum input
08
voltage
V1 output at minimum
09
voltage (%)
V1 maximum input
10
voltage
V1 output at maximum
11
voltage (%)
Rotation direction
16
options
17
V1 Quantizing level
LCD Display
Parameter Setting Setting Range Unit
V1 Filter
10
0–10000
ms
V1 volt x1
0.00
0.00–10.00
V
V1 Perc y1
0.00
0.00–100.00 %
V1 Volt x2
10.00
0 .00– 12.00
V
V1 Perc y2
100.00
0–100
%
V1 Inverting
0
0–1
-
V1
Quantizing
0.04
0.00*, 0.04–
10.00
%
No
* Quantizing is disabled if ‘0’ is selected.
0–10V Input Voltage Setting Details
Code
In.01 Freq at 100%
Description
Configures the frequency reference at the maximum input voltage when a
potentiometer is connected to the control terminal block. A frequency set with
code In.01 becomes the maximum frequency only if the value set in code In.11
(or In.15) is 100(%).
• Set code In.01 to 40.00 and use default values for codes In.02–In.16. Motor
will run at 40.00Hz when a 10V input is provided at V1.
• Set code In.11 to 50.00and use default values for codes In.01–In.16. Motor
will run at 30.00Hz (50% of the default maximum frequency–60Hz) when a
10V input is provided at V1.
In.05 V1 Monitor[V] Configures the inverter to monitor the input voltage at V1.
V1 Filter may be used when there are large variations between reference
frequencies. Variations can be mitigated by increasing the time constant, but this
will require an increased response time.
In.07 V1 Filter
The value t (time) indicates the time required for the frequency to reach 63% of
the reference, when external input voltages are provided in multiple steps.
62
Learning Basic Features
Code
Description
[V1 Filter ]
These parameters are used to configure the gradient level and offset values of the
Output Frequency, based on the Input Voltage.
In.08 V1 Volt x1–
In.11 V1 Perc y2
[Volt x1–In.11 V1 Perc y2]
Inverts the direction of rotation. Set this code to 1 (Yes) if you need the motor to
run in the opposite direction from the current rotation.
Quantizing may be used when the noise level is high in the analog input (V1
terminal) signal.
Quantizing is useful when you are operating a noise-sensitive system, because it
suppresses any signal noise. However, quantizing will diminish system sensitivity
In.17.V1 Quantizing (resultant power of the output frequency will decrease based on the analog
input).
You can also turn on the low-pass filter using code In.07 to reduce the noise, but
increasing the value will reduce responsiveness and may cause pulsations
(ripples) in the output frequency.
In.16 V1 Inverting
63
Learning Basic Features
Code
Description
Parameter values for quantizing refer to a percentage based on the maximum
input. Therefore, if the value is set to 1% of the analog maximum input (60Hz), the
output frequency will increase or decrease by 0.6Hz per 0.1V difference.
When the analog input is increased, an increase to the input equal to 75% of the
set value will change the output frequency, and then the frequency will increase
according to the set value. Likewise, when the analog input decreases, a decrease
in the input equal to 75% of the set value will make an initial change to the
output frequency.
As a result, the output frequency will be different at acceleration and
deceleration, mitigating the effect of analog input changes over the output
frequency.
[V1 Quantizing]
4.1.3.2 Setting a Frequency Reference for -10–10V Input
Set the Frq (Frequency reference source) code in the Operation group to 2 (V1), and then set code
06 (V1 Polarity) to 1 (bipolar) in the Input Terminal group (IN). Use the output voltage from an
external source to provide input to V1.
[V1 terminal wiring]
64
Learning Basic Features
[Bipolar input voltage and output frequency]
Group
Code
Operation Frq
01
05
06
In
12
13
14
15
Name
Frequency reference
source
Frequency at
maximum analog
input
V1 input monitor
V1 polarity options
V1 minimum input
voltage
V1 output at
minimum voltage (%)
V1maximum input
voltage
V1 output at
maximum voltage (%)
LCD Display
Parameter Setting Setting Range
Unit
Freq Ref Src
2
0–12
-
Freq at 100% 60.00
0– Max
Frequency
Hz
V1 Monitor
V1 Polarity
0.00
1 Bipolar
0.00–12.00V
0–1
V
-
V1- volt x1
0.00
10.00–0.00V
V
V1- Perc y1
0.00
-100.00–0.00% %
V1- Volt x2
-10.00
-12.00 –0.00V
V1- Perc y2
-100.00
-100.00–0.00% %
V1
V
Rotational Directions for Different Voltage Inputs
Command / Voltage Input voltage
Input
0–10V
FWD
REV
-10–0V
Forward
Reverse
Reverse
Forward
65
Learning Basic Features
-10–10V Voltage Input Setting Details
Code
Description
Sets the gradient level and off-set value of the output frequency in relation to the
input voltage. These codes are displayed only when In.06 is set to 1 (bipolar).
As an example, if the minimum input voltage (at V1) is set to -2 (V) with 10%
output ratio, and the maximum voltage is set to -8 (V) with 80% output ratio
respectively, the output frequency will vary within the range of 6 - 48 Hz.
In.12 V1- volt x1–
In.15 V1- Perc y2
[In.12 V1-volt X1–In.15 V1 Perc y]
For details about the 0–+10V analog inputs, refer to the code descriptions In.08
V1 volt x1–In.11 V1 Perc y2 on page 63.
4.1.3.3 Setting a Reference Frequency using Input Current (I2)
You can set and modify a frequency reference using input current at the I2 terminal after selecting
current input at SW 2. Set the Frq (Frequency reference source) code in the Operation group to 5
(I2) and apply 4–20mA input current to I2.
Group
Code Name
Frequency reference
Operation Frq
source
Frequency at
01
maximum analog input
50
I2 input monitor
In
I2 input filter time
52
constant
I2 minimum input
53
current
66
LCD Display
Parameter Setting Setting Range Unit
Freq Ref Src
5
I2
0–12
-
I2 Monitor
0.00
0– Maximum
Hz
Frequency
0.00–24.00
mA
I2 Filter
10
0–10000
ms
I2 Curr x1
4.00
0.00–20.00
mA
Freq at 100% 60.00
Learning Basic Features
Group
Code Name
I2 output at minimum
54
current (%)
I2 maximum input
55
current
I2 output at maximum
56
current (%)
I2 rotation direction
61
options
62
I2 Quantizing level
* Quantizing is disabled if ‘0’ is selected.
LCD Display
Parameter Setting Setting Range Unit
I2 Perc y1
0.00
0–100
%
I2 Curr x2
20.00
0.00–24.00
mA
I2 Perc y2
100.00
0.00–100.00
%
I2 Inverting
0
0–1
-
I2 Quantizing 0.04
No
0*, 0.04–10.00 %
Input Current (I2) Setting Details
Code
Description
Configures the frequency reference for operation at the maximum current (when
In.56 is set to 100%).
• If In.01 is set to 40.00Hz, and default settings are used for In.53–56, 20mA
In.01 Freq at 100%
input current (max) to I2 will produce a frequency reference of 40.00Hz.
• If In.56 is set to 50.00 (%), and default settings are used for In.01 (60Hz) and
In.53–55, 20mA input current (max) to I2 will produce a frequency reference
of 30.00Hz (50% of 60Hz).
In.50 I2 Monitor
Used to monitor input current at I2.
Configures the time for the operation frequency to reach 63% of target
In.52 I2 Filter
frequency based on the input current at I2.
Configures the gradient level and off-set value of the output frequency.
In.53 I2 Curr x1–
In.56 I2 Perc y2
[Gradient and off-set configuration based on output frequency]
67
Learning Basic Features
4.1.4 Setting a Frequency Reference with Input Voltage (Terminal I2)
Set and modify a frequency reference using input voltage at I2 (V2) terminal by setting SW2 to V2.
Set the Frq (Frequency reference source) code in the Operation group to 4 (V2) and apply 0–12V
input voltage to I2 (=V2, Analog current/voltage input terminal). Codes In.35–47 will not be
displayed when I2 is set to receive current input (Frq code parameter is set to 5).
Group
Code Name
Frequency
Operation Frq
reference source
35
V2 input display
V2 input filter time
37
constant
Minimum V2 input
38
voltage
Output% at
39
minimum V2
voltage
In
Maximum V2 input
40
voltage
Output% at
41
maximum V2
voltage
Invert V2 rotational
46
direction
47
LCD Display
Parameter Setting Setting Range Unit
Freq Ref Src
4
V2 Monitor
0–12
-
0.00
0.00–12.00
V
V2 Filter
10
0–10000
ms
V2 Volt x1
0.00
0.00–10.00
V
V2 Perc y1
0.00
0.00–100.00
%
V2 Volt x2
10.00
0.00–10.00
V
V2 Perc y2
100.00
0.00–100.00
%
V2 Inverting
0
0–1
-
0.00*, 0.04–
10.00
%
V2 quantizing level V2 Quantizing
V2
No
0.04
* Quantizing is disabled if ‘0’ is selected.
4.1.5 Setting a Frequency with TI Pulse Input
Set a frequency reference by setting the Frq (Frequency reference source) code in Operation
group to 12 (Pulse). Set the In.69 P5 Define to 54(TI) and providing 0–32.00kHz pulse frequency to
P5.
Group
Code
Operation
Frq
69
In
01
68
Name
Frequency
reference source
P5 terminal
function setting
Frequency at
maximum analog
LCD Display
Parameter Setting Setting Range Unit
Freq Ref Src
12 Pulse
0–12
-
P5 Define
54 TI
0-54
-
Freq at 100%
60.00
0.00–
Maximum
Hz
Learning Basic Features
Group
Code
91
92
93
94
95
96
97
98
Name
input
Pulse input display
TI input filter time
constant
TI input minimum
pulse
Output% at TI
minimum pulse
TI Input maximum
pulse
Output% at TI
maximum pulse
Invert TI direction
of rotation
TI quantizing level
LCD Display
Pulse Monitor
Parameter Setting Setting Range Unit
frequency
0.00
0.00–50.00
kHz
TI Filter
10
0–9999
ms
TI Pls x1
0.00
0.00–32.00
kHz
TI Perc y1
0.00
0.00–100.00
%
TI Pls x2
32.00
0.00–32.00
kHz
TI Perc y2
100.00
0.00–100.00
%
TI Inverting
0
0–1
-
TI Quantizing
0.04
0.00*, 0.04–
10.00
%
No
*Quantizing is disabled if ‘0’ is selected.
TI Pulse Input Setting Details
Code
Description
Pulse input TI and Multi-function terminal P5 share the same therminal.
In.69 P5 Define
Set the In.69 P5 Define to 54(TI).
Configures the frequency reference at the maximum pulse input. The frequency
reference is based on 100% of the value set with In.96.
• If In.01 is set to 40.00 and codes In.93–96 are set at default, 32kHz input to TI
In.01 Freq at 100%
yields a frequency reference of 40.00Hz.
• If In.96 is set to 50.00 and codes In.01, In.93–95 are set at default, 32kHz input
to the TI terminal yields a frequency reference of 30.00Hz.
In.91 Pulse Monitor Displays the pulse frequency supplied at TI.
Sets the time for the pulse input at TI to reach 63% of its nominal frequency
In.92 TI Filter
(when the pulse frequency is supplied in multiple steps).
Configures the gradient level and offset values for the output frequency.
In.93 TI Pls x1–
In.96 TI Perc y2
69
Learning Basic Features
Code
Description
In.97 TI Inverting–
Identical to In.16–17 (refer to In.16 V1 Inverting/In.17.V1 Quantizing on page 63).
In.98 TI Quantizing
4.1.6 Setting a Frequency Reference via RS-485 Communication
Control the inverter with upper-level controllers, such as PCs or PLCs, via RS-485 communication.
Set the Frq (Frequency reference source) code in the Operation group to 6 (Int 485) and use the
RS-485 signal input terminals (S+/S-/SG) for communication. Refer to 7 RS-485 Communication
Features on page 215.
Group
Code Name
Frequency reference
Operation Frq
source
Integrated RS-485
01
communication
inverter ID
Integrated
02
communication
protocol
In
Integrated
03
communication speed
04
LCD Display
Parameter Setting Setting Range Unit
Freq Ref Src
6
Int 485
0–12
-
Int485 St ID
-
1
1–250
-
Int485 Proto
0
1
2
ModBus RTU
0–2
Reserved
LS Inv 485
Int485 BaudR
3
9600 bps
0–7
-
Integrated
communication frame Int485 Mode
configuration
0
1
2
3
D8/PN/S1
D8/PN/S2
D8/PE/S1
D8/PO/S1
0–3
-
-
4.2 Frequency Hold by Analog Input
If you set a frequency reference via analog input at the control terminal block, you can hold the
operation frequency of the inverter by assigning a multi-function input as the analog frequency
hold terminal. The operation frequency will be fixed upon an analog input signal.
group
Code
Operation Frq
70
Name
LCD Display
Frequency reference
Freq Ref Src
source
Parameter Setting Setting Range
0 Keypad-1
1 Keypad-2
2 V1
0–12
4 V2
5 I2
6 Int 485
Unit
-
Learning Basic Features
group
Code
Name
LCD Display
In
65–69
Px terminal
configuration
Px Define(Px:
P1–P5)
Parameter Setting Setting Range
8 Field Bus
12 Pulse
Unit
21 Analog Hold
-
0~54
4.3 Changing the Displayed Units (Hz↔Rpm)
You can change the units used to display the operational speed of the inverter by setting Dr. 21
(Speed unit selection) to 0 (Hz) or 1 (Rpm). This function is available only with the LCD keypad.
Group Code
dr
21
Name
Speed unit
selection
LCD Display
Hz/Rpm Sel
Parameter Setting
0
Hz Display
1
Rpm Display
Setting Range
Unit
0–1
-
4.4 Setting Multi-step Frequency
Multi-step operations can be carried out by assigning different speeds (or frequencies) to the Px
terminals. Step 0 uses the frequency reference source set with the Frq code in the Operation group.
Px terminal parameter values 7 (Speed-L), 8 (Speed-M) and 9 (Speed-H) are recognized as binary
commands and work in combination with Fx or Rx run commands. The inverter operates
according to the frequencies set with St.1–3 (multi-step frequency 1–3) , bA.53–56 (multi-step
frequency 4–7) and the binary command combinations.
Group
Code
Name
Operation St1–St3 Multi-step frequency
1–3
bA
53–56 Multi-step frequency
4–7
In
65–69 Px terminal
LCD Display
Parameter Setting
Step Freq - 1–3
Step Freq - 4–7
Px Define (Px:
7
Speed-L
Setting Range
0–Maximum
frequency
0–Maximum
frequency
0~54
Unit
Hz
Hz
-
71
Learning Basic Features
Group
Code
89
Name
configuration
LCD Display
P1–P5)
Multi-step command
InCheck Time
delay time
Parameter Setting
8
Speed-M
9
Speed-H
Setting Range Unit
-
1
1–5000
ms
Multi-step Frequency Setting Details
Code
Operation group
St 1–St3
Step Freq - 1–3
bA.53–56
Step Freq - 4–7
Description
Configure multi-step frequency1–3.
If an LCD keypad is in use, bA.50–52 is used instead of St1–St3 (multi-step
frequency 1–3).
Configure multi-step frequency 4–7.
Choose the terminals to setup as multi-step inputs, and then set the relevant
codes (In.65–69) to 7(Speed-L), 8(Speed-M), or 9(Speed-H).
Provided that terminals P3, P4 and P5 have been set to Speed-L, Speed-M and
Speed-H respectively, the following multi-step operation will be available.
In.65–69 Px Define
72
Learning Basic Features
Code
Description
[An example of a multi-step operation]
Speed
Fx/Rx
P5
P4
P3
0

1


2


3



4


5



6



7




Set a time interval for the inverter to check for additional terminal block inputs
after receiving an input signal.
In.89 InCheck Time
After adjusting In.89 to 100ms and an input signal is received at P5, the inverter
will search for inputs at other terminals for 100ms, before proceeding to
accelerate or decelerate based on P5’s configuration.
4.5 Command Source Configuration
Various devices can be selected as command input devices for theS100 inverter. Input devices
available to select include keypad, multi-function input terminal, RS-485 communication and field
bus adapter.
Group
Code
Operation drv
Name
LCD Display
Command Source Cmd Source*
Parameter Setting Setting Range
0
Keypad
1
Fx/Rx-1
2
Fx/Rx-2
0–5
3
Int 485
4
Field Bus
5
UserSeqLink
Unit
-
* Displayed under DRV-06 on the LCD keypad.
4.5.1 The Keypad as a Command Input Device
The keypad can be selected as a command input device to send command signals to the inverter.
This is configured by setting the drv (command source) code to 0 (Keypad). Press the [RUN] key on
the keypad to start an operation, and the [STOP/RESET] key to end it.
73
Learning Basic Features
group
Code
Operation drv
Name
Command source
LCD Display
Cmd Source*
Parameter Setting Setting Range
0
KeyPad
0–5
Unit
-
* Displayed under DRV-06 on the LCD keypad.
4.5.2 Terminal Block as a Command Input Device (Fwd/Rev Run
Commands)
Multi-function terminals can be selected as a command input device. This is configured by setting
the drv (command source) code in the Operation group to 1(Fx/Rx). Select 2 terminals for the
forward and reverse operations, and then set the relevant codes (2 of the 5 multi-function terminal
codes, In.65–69 for P1–P5) to 1(Fx) and 2(Rx) respectively. This application enables both terminals
to be turned on or off at the same time, constituting a stop command that will cause the inverter
to stop operation.
Group
Code
Operation drv
Name
LCD Display
Command source Cmd Source*
Parameter Setting Setting Range Unit
1
Fx/Rx-1
0–5
Px Define(Px: P1– 1
Fx
65–69 Px terminal
In
0~54
configuration
P5)
2
Rx
* Displayed under DRV-06 on the LCD keypad.
Fwd/Rev Command by Multi-function Terminal – Setting Details
Code
Operation group
drv– Cmd Source
In.65–69 Px Define
74
Description
Set to 1(Fx/Rx-1).
Assign a terminal for forward (Fx) operation.
Assign a terminal for reverse (Rx) operation.
Learning Basic Features
4.5.3 Terminal Block as a Command Input Device (Run and Rotation
Direction Commands)
Multi-function terminals can be selected as a command input device. This is configured by setting
the drv (command source) code in the Operation group to 2(Fx/Rx-2). Select 2 terminals for run
and rotation direction commands, and then select the relevant codes (2 of the 5 multi-function
terminal codes, In.65–69 for P1–P5) to 1(Fx) and 2(Rx) respectively. This application uses an Fx input
as a run command, and an Rx input to change a motor’s rotation direction (On-Rx, Off-Fx).
Group
Code
Operation Drv
Name
Command source
LCD Display
Cmd Source*
Px Define (Px: P1
65–69 Px terminal
configuration
– P5)
* Displayed under DRV-06 on the LCD keypad.
In
Parameter Setting
2 Fx/Rx-2
Setting Range Unit
0–5
-
1
2
0~54
Fx
Rx
-
Run Command and Fwd/Rev Change Command Using Multi-function Terminal – Setting
Details
Code
Operation group
drv Cmd Source
In.65–69 Px Define
Description
Set to 2(Fx/Rx-2).
Assign a terminal for run command (Fx).
Assign a terminal for changing rotation direction (Rx).
4.5.4 RS-485 Communication as a Command Input Device
Internal RS-485 communication can be selected as a command input device by setting the drv
(command source) code in the Operation group to 3(Int 485). This configuration uses upper level
controllers such as PCs or PLCs to control the inverter by transmitting and receiving signals via the
S+, S-, and Sg terminals at the terminal block. For more details, refer to 7 RS-485 Communication
Features on page 215.
Group
Code Name
Operation drv Command source
LCD Display Parameter Setting Setting Range Unit
Cmd Source* 3
Int 485
0–5
-
75
Learning Basic Features
Group
Code Name
LCD Display
01
Integrated
Int485 St ID
communication inverter
ID
02
Integrated
Int485 Proto
communication protocol
CM
03
Integrated
Int485 BaudR
communication speed
04
Integrated
Int485 Mode
communication frame
setup
* Displayed under DRV-06 on the LCD keypad.
Parameter Setting Setting Range Unit
1
1–250
0
3
0
ModBus
0–2
RTU
9600 bps
0–7
-
D8 / PN /
S1
-
0–3
-
4.6 Local/Remote Mode Switching
Local/remote switching is useful for checking the operation of an inverter or to perform an
inspection while retaining all parameter values. Also, in an emergency, it can also be used to
override control and operate the system manually using the keypad.
The [ESC] key is a programmable key that can be configured to carry out multiple functions. For
more details, refer to 3.2.4 Configuring the [ESC] Key on page 44.
Group
Code Name
dr
90
[ESC] key functions
Operation drv Command source
LCD Display
Cmd
Source*
* Displayed under DRV-06 on the LCD keypad.
Parameter Setting
2 Local/Remote
1 Fx/Rx-1
Setting Range
0–2
0–5
Unit
-
Local/Remote Mode Switching Setting Details
Code
Description
Set dr.90 to 2(Local/Remote) to perform local/remote switching using the [ESC]
key. Once the value is set, the inverter will automatically begin operating in
remote mode. Changing from local to remote will not alter any previously
configured parameter values and the operation of the inverter will not change.
dr.90
Press the [ESC] key to switch the operation mode back to “local.”The SET light will
[ESC] key functions
flash, and the inverter will operate using the [RUN] key on the keypad. Press the
[ESC] key again to switch the operation mode back to “remote.”The SET light will
turn off and the inverter will operate according to the previous drv code
configuration.
76
Learning Basic Features
Note
Local/Remote Operation
• Full control of the inverter is available with the keypad during local operation (local operation).
• During local operation, jog commands will only work if one of the P1–P5 multi-function terminals
(codes In.65–69) is set to 13(RUN Enable) and the relevant terminal is turned on.
• During remote operation (remote operation), the inverter will operate according to the previously
set frequency reference source and the command received from the input device.
• If Ad.10 (power-on run) is set to 0(No), the inverter will NOT operate on power-on even when the
following terminals are turned on:
- Fwd/Rev run (Fx/Rx) terminal
- Fwd/Rev jog terminal (Fwd jog/Rev Jog)
- Pre-Excitation terminal
To operate the inverter manually with the keypad, switch to local mode. Use caution when
switching back to remote operation mode as the inverter will stop operating. If Ad.10 (power-on
run) is set to 0(No), a command through the input terminals will work ONLY AFTER all the
terminals listed above have been turned off and then turned on again.
• If the inverter has been reset to clear a fault trip during an operation, the inverter will switch to
local operation mode at power-on, and full control of the inverter will be with the keypad. The
inverter will stop operating when operation mode is switched from “local” to “remote”. In this case,
a run command through an input terminal will work ONLY AFTER all the input terminals have
been turned off.
Inverter Operation During Local/Remote Switching
Switching operation mode from “remote” to “local” while the inverter is running will cause the inverter
to stop operating. Switching operation mode from “local” to “remote” however, will cause the inverter to
operate based on the command source:
• Analog commands via terminal input: the inverter will continue to run without interruption based
on the command at the terminal block. If a reverse operation (Rx) signal is ON at the terminal block
at startup, the inverter will operate in the reverse direction even if it was running in the forward
direction in local operation mode before the reset.
• Digital source commands: all command sources except terminal block command sources (which
are analog sources) are digital command sources that include the keypad, LCD keypad, and
communication sources. The inverter stops operation when switching to remote operation mode,
and then starts operation when the next command is given.
Use local/remote operation mode switching only when it is necessary. Improper mode switching may
result in interruption of the inverter’s operation.
77
Learning Basic Features
4.7 Forward or Reverse Run Prevention
The rotation direction of motors can be configured to prevent motors to only run in one direction.
Pressing the [REV] key on the LCD keypad when direction prevention is configured, will cause the
motor to decelerate to 0Hz and stop. The inverter will remain on.
Group Code Name
LCD Display
Ad
Run Prevent
09
Run prevention options
Parameter Setting
0 None
1 Forward Prev
2 Reverse Prev
Setting Range
Unit
0–2
-
Forward/Reverse Run Prevention Setting Details
Code
Description
Choose a direction to prevent.
Setting
0
None
Ad.09 Run Prevent
1
Forward Prev
2
Reverse Prev
Description
Do not set run prevention.
Set forward run prevention.
Set reverse run prevention.
4.8 Power-on Run
A power-on command can be setup to start an inverter operation after powering up, based on
terminal block operation commands (if they have been configured). To enable power-on run set
the drv (command source) code to 1(Fx/Rx-1) or 2 (Fx/Rx-2) in the Operation group.
Group
Parameter Setting
Fx/Rx-1 or
Operation drv Command source
Cmd Source* 1, 2
Fx/Rx-2
Ad
10
Power-on run
Power-on Run 1 Yes
* Displayed under DRV-06 on the LCD keypad.
78
Code Name
LCD Display
Setting Range
Unit
0–5
-
0–1
-
Learning Basic Features
Note
• A fault trip may be triggered if the inverter starts operation while a motor’s load (fan-type load) is
in free-run state. To prevent this from happening, set bit4 to 1 in Cn. 71 (speed search options) of
the Control group. The inverter will perform a speed search at the beginning of the operation.
• If the speed search is not enabled, the inverter will begin its operation in a normal V/F pattern and
accelerate the motor. If the inverter has been turned on without power-on run enabled, the
terminal block command must first be turned off, and then turned on again to begin the inverter’s
operation.
Use caution when operating the inverter with Power-on Run enabled as the motor will begin rotating
when the inverter starts up.
4.9 Reset and Restart
Reset and restart operations can be setup for inverter operation following a fault trip, based on the
terminal block operation command (if it is configured). When a fault trip occurs, the inverter cuts
off the output and the motor will free-run. Another fault trip may be triggered if the inverter
begins its operation while motor load is in a free-run state.
Group
Code Name
drv Command source
LCD Display
Cmd
Operation
Source*
08
Reset restart setup
RST Restart
09
No. of auto restart
Retry
Pr
Number
10
Auto restart delay time Retry Delay
* Displayed under DRV-06 in an LCD keypad.
Parameter Setting
1 Fx/Rx-1 or
2 Fx/Rx-2
1 Yes
0
1.0
Setting Range
0–5
Unit
-
0–1
0–10
0–60
sec
79
Learning Basic Features
Note
• To prevent a repeat fault trip from occurring, set Cn.71 (speed search options) bit 2 equal to 1. The
inverter will perform a speed search at the beginning of the operation.
• If the speed search is not enabled, the inverter will start its operation in a normal V/F pattern and
accelerate the motor. If the inverter has been turned on without ‘reset and restart’ enabled, the
terminal block command must be first turned off, and then turned on again to begin the inverter’s
operation.
Use caution when operating the inverter with Power-on Run enabled as the motor will begin rotating
when the inverter starts up.
4.10 Setting Acceleration and Deceleration Times
4.10.1 Acc/Dec Time Based on Maximum Frequency
Acc/Dec time values can be set based on maximum frequency, not on inverter operation
frequency. To set Acc/Dec time values based on maximum frequency, set bA. 08 (Acc/Dec
reference) in the Basic group to 0 (Max Freq).
Acceleration time set at the ACC (Acceleration time) code in the Operation group (dr.03 in an LCD
keypad) refers to the time required for the inverter to reach the maximum frequency from a
stopped (0Hz) state. Likewise, the value set at the dEC (deceleration time) code in the Operation
group (dr.04 in an LCD keypad) refers to the time required to return to a stopped state (0Hz) from
the maximum frequency.
Group
Operation
Code
ACC
dEC
20
bA
08
09
80
Name
Acceleration time
Deceleration time
Maximum
frequency
Acc/Dec reference
frequency
Time scale
LCD Display
Acc Time
Dec Time
Parameter Setting
20.0
30.0
Setting Range
0.0–600.0
0.0–600.0
Unit
sec
sec
Max Freq
60.00
40.00–400.00
Hz
Ramp T Mode
0
Max Freq
0–1
-
Time scale
1
0.1sec
0–2
-
Learning Basic Features
Acc/Dec Time Based on Maximum Frequency – Setting Details
Code
Description
Set the parameter value to 0 (Max Freq) to setup Acc/Dec time based on
maximum frequency.
Configuration
0
Max Freq
1
bA.08
Ramp T Mode
Delta Freq
Description
Set the Acc/Dec time based on maximum
frequency.
Set the Acc/Dec time based on operating
frequency.
If, for example, maximum frequency is 60.00Hz, the Acc/Dec times are set to 5
seconds, and the frequency reference for operation is set at 30Hz (half of 60Hz),
the time required to reach 30Hz therefore is 2.5 seconds (half of 5 seconds).
Use the time scale for all time-related values. It is particularly useful when a more
accurate Acc/Dec times are required because of load characteristics, or when the
maximum time range needs to be extended.
bA.09 Time scale
Configuration
0
0.01sec
1
0.1sec
2
1sec
Description
Sets 0.01 second as the minimum unit.
Sets 0.1 second as the minimum unit.
Sets 1 second as the minimum unit.
Note that the range of maximum time values may change automatically when the units are changed. If
for example, the acceleration time is set at 6000 seconds, a time scale change from 1 second to 0.01
second will result in a modified acceleration time of 60.00 seconds.
81
Learning Basic Features
4.10.2 Acc/Dec Time Based on Operation Frequency
Acc/Dec times can be set based on the time required to reach the next step frequency from the
existing operation frequency. To set the Acc/Dec time values based on the existing operation
frequency, set bA. 08 (acc/dec reference) in the Basic group to 1 (Delta Freq).
Group
Operation
bA
Code Name
ACC Acceleration time
LCD Display
Acc Time
Parameter Setting
20.0
Setting Range
0.0–600.0
Unit
sec
dEC Deceleration time
Dec Time
30.0
0.0–600.0
0–1
sec
08
Acc/Dec reference Ramp T Mode
1
Delta Freq
-
Acc/Dec Time Based on Operation Frequency – Setting Details
Code
Description
Set the parameter value to 1 (Delta Freq) to set Acc/Dec times based on
Maximum frequency.
Configuration
0
Max Freq
1
bA.08
Ramp T Mode
Delta Freq
Description
Set the Acc/Dec time based on Maximum
frequency.
Set the Acc/Dec time based on Operation
frequency.
If Acc/Dec times are set to 5 seconds, and multiple frequency references are used
in the operation in 2 steps, at 10Hz and 30 Hz, each acceleration stage will take 5
seconds (refer to the graph below).
4.10.3 Multi-step Acc/Dec Time Configuration
Acc/Dec times can be configured via a multi-function terminal by setting the ACC (acceleration
time) and dEC (deceleration time) codes in the Operation group.
82
Learning Basic Features
Group
Code
ACC
Operation
dEC
bA
Name
Acceleration time
Deceleration time
Multi-step
70–82
acceleration time1–7
Multi-step
71–83
deceleration time1–7
LCD Display
Acc Time
Dec Time
65–69
Px terminal
configuration
Px Define
(Px: P1–P5)
89
Multi-step command
delay time
In Check Time 1
In
Parameter Setting Setting Range Unit
20.0
0.0–600.0
sec
30.0
0.0–600.0
sec
Acc Time 1–7 x.xx
0.0–600.0
sec
Dec Time 1–7 x.xx
0.0–600.0
sec
0~54
-
1–5000
ms
11 XCEL-L
12 XCEL-M
49 XCEL-H
Acc/Dec Time Setup via Multi-function Terminals – Setting Details
Code
Description
bA. 70–82 Acc Time 1–7 Set multi-step acceleration time1–7.
bA.71–83 Dec Time 1–7 Set multi-step deceleration time1–7.
Choose and configure the terminals to use for multi-step Acc/Dec time
inputs.
In.65–69
Px Define (P1–P5)
Configuration
11
XCEL-L
12
XCEL-M
49
XCEL-H
Description
Acc/Dec command-L
Acc/Dec command-M
Acc/Dec command-H
Acc/Dec commands are recognized as binary code inputs and will control the
acceleration and deceleration based on parameter values set with bA.70–82
and bA.71–83.
If, for example, the P4 and P5 terminals are set as XCEL-L and XCEL
respectively, the following operation will be available.
83
Learning Basic Features
Code
Description
In.89 In Check Time
Acc/Dec time
P5
P4
0

1

2


3
Set the time for the inverter to check for other terminal block inputs. If In.89 is
set to 100ms and a signal is supplied to the P4 terminal, the inverter searches
for other inputs over the next 100ms. When the time expires, the Acc/Dec
time will be set based on the input received at P4.
4.10.4 Configuring Acc/Dec Time Switch Frequency
You can switch between two different sets of Acc/Dec times (Acc/Dec gradients) by configuring
the switch frequency without configuring the multi-function terminals.
Group
Operation
bA
Ad
84
Code Name
ACC Acceleration time
dEC Deceleration time
Multi-step
70
acceleration time1
Multi-step
71
deceleration time1
Acc/Dec time switch
60
frequency
LCD Display
Acc Time
Dec Time
Parameter Setting Setting Range Unit
10.0
0.0–600.0
sec
10.0
0.0–600.0
sec
Acc Time-1
20.0
0.0–600.0
sec
Dec Time-1
20.0
0.0–600.0
sec
Xcel Change
Frq
30.00
0–Maximum
frequency
Hz
Learning Basic Features
Acc/Dec Time Switch Frequency Setting Details
Code
Ad.60
Xcel Change Fr
Description
After the Acc/Dec switch frequency has been set, Acc/Dec gradients configured at
bA.70 and 71 will be used when the inverter’s operation frequency is at or below
the switch frequency. If the operation frequency exceeds the switch frequency,
the configured gradient level, configured for the ACC and dEC codes, will be used.
If you configure the P1–P5 multi-function input terminals for multi-step Acc/Dec
gradients (XCEL-L, XCEL-M, XCEL-H), the inverter will operate based on the
Acc/Dec inputs at the terminals instead of the Acc/Dec switch frequency
configurations.
4.11 Acc/Dec Pattern Configuration
Acc/Dec gradient level patterns can be configured to enhance and smooth the inverter’s
acceleration and deceleration curves. Linear pattern features a linear increase or decrease to the
output frequency, at a fixed rate. For an S-curve pattern a smoother and more gradual increase
or decrease of output frequency, ideal for lift-type loads or elevator doors, etc. S-curve gradient
level can be adjusted using codes Ad. 03–06 in the Advanced group.
Group Code Name
bA
08
Acc/Dec reference
01
Acceleration pattern
02
Deceleration pattern
03
S-curve Acc start
gradient
04
S-curve Acc end
Ad
gradient
05
S-curve Dec start
gradient
06
S-curve Dec end
gradient
LCD Display
Ramp T mode
Acc Pattern
Dec Pattern
Acc S Start
Parameter Setting Setting Range
0 Max Freq
0–1
0 Linear
0–1
1 S-curve
Unit
-
40
1–100
%
40
1–100
%
Dec S Start
40
1–100
%
Dec S End
40
1–100
%
Acc S End
85
Learning Basic Features
Acc/Dec Pattern Setting Details
Code
Description
Sets the gradient level as acceleration starts when using an S-curve, Acc/Dec
pattern. Ad. 03 defines S-curve gradient level as a percentage, up to half of total
acceleration.
If the frequency reference and maximum frequency are set at 60Hz and Ad.03 is
Ad.03 Acc S Start
set to 50%, Ad. 03 configures acceleration up to 30Hz (half of 60Hz).The inverter
will operate S-curve acceleration in the 0-15Hz frequency range (50% of 30Hz).
Linear acceleration will be applied to the remaining acceleration within the 15–
30Hz frequency range.
Sets the gradient level as acceleration ends when using an S-curve Acc/Dec
pattern. Ad. 03 defines S-curve gradient level as a percentage, above half of total
acceleration.
If the frequency reference and the maximum frequency are set at 60Hz and Ad.04
Ad.04 Acc S End
is set to 50%, setting Ad. 04 configures acceleration to increase from 30Hz (half of
60Hz) to 60Hz (end of acceleration). Linear acceleration will be applied within the
30-45Hz frequency range. The inverter will perform an S-curve acceleration for
the remaining acceleration in the 45–60Hz frequency range.
Ad.05 Dec S Start – Sets the rate of S-curve deceleration. Configuration for codes Ad.05 and Ad.06
may be performed the same way as configuring codes Ad.03 and Ad.04.
Ad.06 Dec S End
[Acceleration / deceleration pattern configuration]
86
Learning Basic Features
[Acceleration / deceleration S-curve parrten configuration]
Note
The Actual Acc/Dec time during an S-curve application
Actual acceleration time = user-configured acceleration time + user-configured acceleration time x
starting gradient level/2 + user-configured acceleration time x ending gradient level/2.
Actual deceleration time = user-configured deceleration time + user-configured deceleration time x
starting gradient level/2 + user-configured deceleration time x ending gradient level/2.
Note that actual Acc/Dec times become greater than user defined Acc/Dec times when S-curve
Acc/Dec patterns are in use.
87
Learning Basic Features
4.12 Stopping the Acc/Dec Operation
Configure the multi-function input terminals to stop acceleration or deceleration and operate the
inverter at a fixed frequency.
Group
In
Code Name
65–69 Px terminal
configuration
LCD Display
Px Define(Px: P1–
P5)
Parameter Setting
25 XCEL Stop
Setting Range Unit
0~54
-
4.13 V/F(Voltage/Frequency) Control
Configure the inverter’s output voltages, gradient levels and output patterns to achieve a target
output frequency with V/F control. The amount of of torque boost used during low frequency
operations can also be adjusted.
4.13.1 Linear V/F Pattern Operation
A linear V/F pattern configures the inverter to increase or decrease the output voltage at a fixed
rate for different operation frequencies based on V/F characteristics. A linear V/F pattern is
partcularly useful when a constant torque load is applied.
Group Code Name
dr
09
Control mode
18
Base frequency
19
Start frequency
bA
07
V/F pattern
88
LCD Display
Control Mode
Base Freq
Start Freq
V/F Pattern
Parameter Setting
0
V/F
60.00
0.50
0
Linear
Setting Range
0–4
30.00–400.00
0.01–10.00
0–3
Unit
Hz
Hz
-
Learning Basic Features
Linear V/F Pattern Setting Details
Code
Description
Sets the base frequency. A base frequency is the inverter’s output frequency
when running at its rated voltage. Refer to the motor’s rating plate to set this
parameter value.
Sets the start frequency. A start frequency is a frequency at which the inverter
starts voltage output. The inverter does not produce output voltage while the
frequency reference is lower than the set frequency. However, if a deceleration
stop is made while operating above the start frequency, output voltage will
continue until the operation frequency reaches a full-stop (0Hz).
dr.18 Base Freq
dr.19 Start Freq
4.13.2 Square Reduction V/F pattern Operation
Square reduction V/F pattern is ideal for loads such as fans and pumps. It provides non-linear
acceleration and deceleration patterns to sustain torque throughout the whole frequency range.
Group Code Name
LCD Display
bA
V/F Pattern
07
V/F pattern
Parameter Setting
1 Square
3 Square2
Setting Range Unit
0–3
-
Square Reduction V/F pattern Operation - Setting Details
Code
bA.07 V/F Pattern
Description
Sets the parameter value to 1(Square) or 3(Square2) according to the load’s start
characteristics.
Setting
Function
1
Square
The inverter produces output voltage proportional to 1.5
square of the operation frequency.
3
Square2 The inverter produces output voltage proportional to 2
square of the operation frequency. This setup is ideal for
variable torque loads such as fans or pumps.
89
Learning Basic Features
4.13.3 User V/F Pattern Operation
The S100 inverter allows the configuration of user-defined V/F patterns to suit the load
characteristics of special motors.
Group Code Name
07
V/F pattern
bA
LCD Display
V/F Pattern
Parameter Setting Setting Range
0–3
2 User V/F
41
User Frequency1
User Freq 1
15.00
42
User Voltage1
User Volt 1
25
43
User Frequency2
User Freq 2
30.00
44
User Voltage2
User Volt 2
50
45
User Frequency3
User Freq 3
45.00
46
User Voltage3
User Volt 3
47
User Frequency4
User Freq 4
48
User Voltage4
User Volt 4
75
Maximum
frequency
100
0–Maximum
frequency
0–100
0–Maximum
frequency
0–100
0–Maximum
frequency
0–100
0–Maximum
frequency
0–100%
Unit
Hz
%
Hz
%
Hz
%
Hz
%
User V/F pattern Setting Details
Code
Description
Set the parameter values to assign arbitrary frequencies (User Freq 1–4) for start
bA.41 User Freq 1–
and maximum frequencies. Voltages can also be set to correspond with each
bA.48 User Volt 4
frequency, and for each user voltage (User Volt 1–4).
The 100% output voltage in the figure below is based on the parameter settings of bA.15 (motor
rated voltage). If bA.15 is set to 0 it will be based on the input voltage.
90
Learning Basic Features
• When a normal induction motor is in use, care must be taken not to configure the output pattern
away from a linear V/F pattern. Non-linear V/F patterns may cause insufficient motor torque or
motor overheating due to over-excitation.
• When a user V/F pattern is in use, forward torque boost (dr.16) and reverse torque boost (dr.17) do
not operate.
4.14 Torque Boost
4.14.1 Manual Torque Boost
Manual torque boost enables users to adjust output voltage during low speed operation or motor
start. Increase low speed torque or improve motor starting properties by manually increasing
output voltage. Configure manual torque boost while running loads that require high starting
torque, such as lift-type loads.
Group Code
15
Dr
16
17
Name
Torque boost options
Forward torque boost
Reverse torque boost
LCD Display
Torque Boost
Fwd Boost
Rev Boost
Parameter Setting
0
Manual
2.0
2.0
Setting Range
0–1
0.0–15.0
0.0–15.0
Unit
%
%
91
Learning Basic Features
Manual Torque Boost Setting Details
Code
dr.16 Fwd Boost
dr.17 Rev Boost
Description
Set torque boost for forward operation.
Set torque boost for reverse operation.
Excessive torque boost will result in over-excitation and motor overheating .
4.14.2 Auto Torque Boost-1
Auto torque boost enables the inverter to automatically calculate the amount of output voltage
required for torque boost based on the entered motor parameters. Because auto torque boost
requires motor-related parameters such as stator resistance, inductance, and no-load current, auto
tuning (bA.20) has to be performed before auto torque boost can be configured [Refer to 5.9 Auto
Tuning on page 138]. Similarly to manual torque boost, configure auto torque boost while running
a load that requires high starting torque, such as lift-type loads.
Group Code
Dr
15
bA
20
92
Name
torque boost mode
auto tuning
LCD Display
Parameter Setting Setting Range
Torque Boost 1
Auto1
0–2
Auto Tuning 3
Rs+Lsigma 0–6
Unit
-
Learning Basic Features
4.14.3 Auto Torque Boost-2
In V/F operation, this adjusts the output voltage if operation is unavailable due to a low output
voltage. It is used when operation is unavailable, due to a lack of starting torque, by providing a
voltage boost to the output voltage via the torque current.
Group Code
Dr
15
Name
torque boost mode
LCD Display
Parameter Setting Setting Range
Torque Boost 2
Auto2
0–2
Unit
-
4.15 Output Voltage Setting
Output voltage settings are required when a motor’s rated voltage differs from the input voltage
to the inverter. Set bA.15 to configure the motor’s rated operating voltage. The set voltage
becomes the output voltage of the inverter’s base frequency. When the inverter operates above
the base frequency, and when the motor’s voltage rating is lower than the input voltage at the
inverter, the inverter adjusts the voltage and supplies the motor with the voltage set at bA.15
(motor rated voltage). If the motor’s rated voltage is higher than the input voltage at the inverter,
the inverter will supply the inverter input voltage to the motor.
If bA.15 (motor rated voltage) is set to 0, the inverter corrects the output voltage based on the
input voltage in the stopped condition. If the frequency is higher than the base frequency, when
the input voltage is lower than the parameter setting, the input voltage will be the inverter output
voltage.
Group Code Name
bA
15
Motor rated voltage
LCD Display
Rated Volt
Parameter Setting Setting Range
0, 170–480
0
Unit
V
4.16 Start Mode Setting
93
Learning Basic Features
Select the start mode to use when the operation command is input with the motor in the stopped
condition.
4.16.1 Acceleration Start
Acceleration start is a general acceleration mode. If there are no extra settings applied, the motor
accelerates directly to the frequency reference when the command is input.
Group Code Name
Ad
07
Start mode
LCD Display
Start mode
Parameter Setting Setting Range
0
Acc
0–1
Unit
-
4.16.2 Start After DC Braking
This start mode supplies a DC voltage for a set amount of time to provide DC braking before an
inverter starts to accelerate a motor. If the motor continues to rotate due to its inertia, DC braking
will stop the motor, allowing the motor to accelerate from a stopped condition. DC braking can
also be used with a mechanical brake connected to a motor shaft when a constant torque load is
applied, if a constant torque is required after the the mechanical brake is released.
Group Code
07
Ad
12
13
Name
Start mode
Start DC braking time
DC Injection Level
LCD Display
Start Mode
DC-Start Time
DC Inj Level
Parameter Setting
1
DC-Start
0.00
50
Setting Range
0–1
0.00–60.00
0–200
The amount of DC braking required is based on the motor’s rated current. Do not use DC braking
resistance values that can cause current draw to exceed the rated current of the inverter. If the DC
braking resistance is too high or brake time is too long, the motor may overheat or be damaged.
94
Unit
sec
%
Learning Basic Features
4.17 Stop Mode Setting
Select a stop mode to stop the inverter operation.
4.17.1 Deceleration Stop
Deceleration stop is a general stop mode. If there are no extra settings applied, the motor
decelerates down to 0Hz and stops, as shown in the figure below.
Group Code Name
Ad
08
Stop mode
LCD Display
Stop Mode
Parameter Setting Setting Range
0–4
0
Dec
Unit
-
4.17.2 Stop After DC Braking
When the operation frequency reaches the set value during deceleration (DC braking frequency),
the inverter stops the motor by supplying DC power to the motor. With a stop command input,
the inverter begins decelerating the motor. When the frequency reaches the DC braking
frequency set at Ad.17, the inverter supplies DC voltage to the motor and stops it.
Group Code
08
Ad
14
15
16
17
Name
Stop mode
Output block time
before braking
DC braking time
DC braking amount
DC braking frequency
LCD Display
Stop Mode
Parameter Setting Setting Range Unit
0–4
0
Dec
-
DC-Block Time
0.10
0.00–60.00
sec
DC-Brake Time
DC-Brake Level
DC-Brake Freq
1.00
50
5.00
0–60
0–200
0.00–60.00
sec
%
Hz
DC Braking After Stop Setting Details
95
Learning Basic Features
Code
Ad.14 DC-Block Time
Ad.15 DC-Brake Time
Ad.16 DC-Brake Level
Ad.17 DC-Brake Freq
Description
Set the time to block the inverter output before DC braking. If the inertia of
the load is great, or if DC braking frequency (Ad.17) is set too high, a fault trip
may occur due to overcurrent conditions when the inverter supplies DC
voltage to the motor. Prevent overcurrent fault trips by adjusting the output
block time before DC braking.
Set the time duration for the DC voltage supply to the motor.
Set the amount of DC braking to apply. The parameter setting is based on the
rated current of the motor.
Set the frequency to start DC braking. When the frequency is reached, the
inverter starts deceleration. If the dwell frequency is set lower than the DC
braking frequency, dwell operation will not work and DC braking will start
instead.
• Note that the motor can overheat or be damaged if excessive amount of DC braking is applied to
the motor, or DC braking time is set too long.
• DC braking is configured based on the motor’s rated current. To prevent overheating or damaging
motors, do not set the current value higher than the inverter’s rated current.
4.17.3 Free Run Stop
When the Operation command is off, the inverter output turns off, and the load stops due to
residual inertia.
Group Code Name
Ad
08
Stop Method
96
LCD Display
Stop Mode
Parameter Setting Setting Range
2
Free-Run 0–4
Unit
-
Learning Basic Features
Note that when there is high inertia on the output side and the motor is operating at high speed, the
load’s inertia will cause the motor to continue rotating even if the inverter output is blocked.
4.17.4 Power Braking
When the inverter’s DC voltage rises above a specified level due to motor regenerated energy, a
control is made to either adjust the deceleration gradient level or reaccelerate the motor in order
to reduce the regenerated energy. Power braking can be used when short deceleration times are
needed without brake resistors, or when optimum deceleration is needed without causing an
over voltage fault trip.
Group Code Name
Ad
08
Stop mode
LCD Display
Stop Mode
Parameter Setting
4
Power Braking
Setting Range Unit
0–4
-
• To prevent overheating or damaging the motor, do not apply power braking to the loads that
require frequent deceleration.
• Stall prevention and power braking only operate during deceleration, and power braking takes
priority over stall prevention. In other words, when both Pr.50 (stall prevention and flux braking) and
Ad.08 (power braking) are set, power braking will take precedence and operate.
• Note that if deceleration time is too short or inertia of the load is too great, an overvoltage fault trip
may occur.
• Note that if a free run stop is used, the actual deceleration time can be longer than the pre-set
deceleration time.
97
Learning Basic Features
4.18 Frequency Limit
Operation frequency can be limited by setting maximum frequency, start frequency, upper limit
frequency and lower limit frequency.
4.18.1 Frequency Limit Using Maximum Frequency and Start
Frequency
Group Code
19
dr
20
Name
Start frequency
LCD Display
Start Freq
Maximum frequency Max Freq
Parameter Setting Setting Range
0.01–10.00
0.50
60.00
40.00–400.00
Unit
Hz
Hz
Frequency Limit Using Maximum Frequency and Start Frequency - Setting Details
Code
dr.19 Start Freq
dr.20 Max Freq
Description
Set the lower limit value for speed unit parameters that are expressed in Hz or
rpm. If an input frequency is lower than the start frequency, the parameter value
will be 0.00.
Set upper and lower frequency limits. All frequency selections are restricted to
frequencies from within the upper and lower limits.
This restriction also applies when you in input a frequency reference using the
keypad.
4.18.2 Frequency Limit Using Upper and Lower Limit Frequency Values
Group Code
24
25
Ad
26
Name
Frequency limit
Frequency lower limit
value
LCD Display
Freq Limit
Freq Limit Lo
Frequency upper limit
Freq Limit Hi
value
Parameter Setting Setting Range
0
No
0–1
0.0–maximum
0.50
frequency
minimum–
Maximum
maximum
frequency
frequency
Unit
Hz
Hz
Frequency Limit Using Upper and Lower Limit Frequencies - Setting Details
Code
Ad.24 Freq Limit
98
Description
The initial setting is 0(No). Changing the setting to 1(Yes) allows the setting of
Learning Basic Features
Code
Ad.25 Freq Limit Lo,
Ad.26 Freq Limit Hi
Description
frequencies between the lower limit frequency (Ad.25) and the upper limit
frequency (Ad.26). When the setting is 0(No), codes Ad.25 and Ad.26 are not
visible.
Set an upper limit frequency to all speed unit parameters that are expressed in
Hz or rpm, except for the base frequency (dr.18). Frequency cannot be set
higher than the upper limit frequency.
4.18.3 Frequency Jump
Use frequency jump to avoid mechanical resonance frequencies. Jump through frequency bands
when a motor accelerates and decelerates. Operation frequencies cannot be set within the pre-set
frequency jump band.
When a frequency setting is increased, while the frequency parameter setting value (voltage,
current, RS-485 communication, keypad setting, etc.) is within a jump frequency band , the
frequency will be maintained at the lower limit value of the frequency band. Then, the frequency
will increase when the frequency parameter setting exceeds the range of frequencies used by the
frequency jump band.
Group
Ad
Code Name
27
Frequency jump
Jump frequency
28
lower limit1
Jump frequency
29
upper limit1
30
Jump frequency
LCD Display Parameter Setting Setting Range
Jump Freq 0
No
0–1
0.00–Jump frequency upper
Jump Lo 1 10.00
limit 1
Jump frequency lower limit
Jump Hi 1 15.00
1–Maximum frequency
Jump Lo 2 20.00
0.00–Jump frequency upper
Unit
Hz
Hz
Hz
99
Learning Basic Features
Group
Code Name
lower limit 2
Jump frequency
31
upper limit 2
Jump frequency
32
lower limit 3
Jump frequency
33
upper limit 3
LCD Display Parameter Setting Setting Range
limit 2
Jump frequency lower limit
Jump Hi 2 25.00
2–Maximum frequency
0.00–Jump frequency upper
Jump Lo 3 30.00
limit 3
Jump frequency lower limit
Jump Hi 3 35.00
3–Maximum frequency
Unit
Hz
Hz
Hz
4.19 2nd Operation Mode Setting
Apply two types of operation modes and switch between them as required. For both the first and
second command source, set the frequency after shifting operation commands to the multifunction input terminal. Mode swiching can be used to stop remote control during an operation
using the communication option and to switch operation mode to operate via the local panel, or
to operate the inverter from another remote control location.
Select one of the multi-function terminals from codes In. 65–69 and set the parameter value to 15
(2nd Source).
Group Code
drv
Opera
tion Frq
04
bA
100
05
Name
Command source
Frequency reference
source
2nd Command source
2nd Frequency reference
source
LCD Display
Cmd Source*
Parameter Setting
1
Fx/Rx-1
Setting Range Unit
0–5
-
Freq Ref Src
2
V1
0–12
-
Cmd 2nd Src
0
Keypad
0–4
-
Freq 2nd Src
0
KeyPad-1
0–12
-
Learning Basic Features
Group Code
In
Name
LCD Display
Px Define
65–69 Px terminal configuration
(Px: P1–P5)
Parameter Setting
Setting Range Unit
15
0~54
2nd Source
-
* Displayed under DRV-06 in an LCD keypad.
2nd Operation Mode Setting Details
Code
Description
If signals are provided to the multi-function terminal set as the 2nd command
source (2nd Source), the operation can be performed using the set values from
bA.04 Cmd 2nd Src bA.04-05 instead of the set values from the drv and Frq codes in the Operation
bA.05 Freq 2nd Src group.
The 2nd command source settings cannot be changed while operating with the
1st command source (Main Source).
• When setting the multi-function terminal to the 2nd command source (2nd Source) and input (On)
the signal, operation state is changed because the frequency setting and the Operation command
will be changed to the 2nd command. Before shifting input to the multi-function terminal, ensure
that the 2nd command is correctly set. Note that if the deceleration time is too short or inertia of the
load is too high, an overvoltage fault trip may occur.
• Depending on the parameter settings, the inverter may stop operating when you switch the
command modes.
4.20 Multi-function Input Terminal Control
Filter time constants and the type of multi-function input terminals can be configured to improve
the response of input terminals
Group Code Name
85
Multi-function input
terminal On filter
86
Multi-function input
terminal Off filter
In
87
Multi-function input
terminal selection
90
Multi-function input
terminal status
* Displayed as
LCD Display
DI On Delay
Parameter Setting Setting Range
10
0–10000
Unit
ms
DI Off Delay
3
0–10000
ms
DI NC/NO Sel
0 0000*
-
-
DI Status
0 0000*
-
-
on the keypad.
101
Learning Basic Features
Multi-function Input Terminal Control Setting Details
Code
Description
Select whether or not to activate the time values set at In.85 and In.86. If
deactivated, the time values are set to the default values at In.85 and In.86. If
activated, the set time values at In.85 and In.86 are set to the corresponding
terminals.
In.84 DI Delay Sel
Type
B terminal status (Normally
Closed)
A terminal status (Normally
Open)
Keypad
LCD keypad
In.85 DI On Delay,
In.86 DI Off Delay
If the input terminal’s state is not changed during the set time, when the terminal
receives an input, it is recognized as On or Off.
Select terminal contact types for each input terminal. The position of the
indicator light corresponds to the segment that is on as shown in the table below.
With the bottom segment on, it indicates that the terminal is configured as a A
terminal (Normally Open) contact. With the top segment on, it indicates that the
terminal is configured as a B terminal (Normally Closed) contact. Terminals are
numbered P1–P5, from right to left.
In.87 DI NC/NO Sel
Type
B terminal status (Normally
Closed)
A terminal status (Normally
Open)
Keypad
LCD keypad
Display the configuration of each contact. When a segment is configured as A
terminal using dr.87, the On condition is indicated by the top segment turning on.
The Off condition is indicated when the bottom segment is turned on. When
contacts are configured as B terminals, the segment lights behave conversely.
Terminals are numbered P1–P5, from right to left.
In.90 DI Status
Type
Keypad
LCD keypad
102
A terminal setting (On)
A terminal setting (Off)
Learning Basic Features
4.21 P2P Setting
The P2P function is used to share input and output devices between multiple inverters. To enable
P2P setting, RS-485 communication must be turned on .
Inverters connected through P2P communication are designated as either a master or slaves . The
Master inverter controls the input and output of slave inverters. Slave inverters provide input and
output actions. When using the multi-function output, a slave inverter can select to use either the
master inverter’s output or its own output. When using P2P communication, first designate the
slave inverter and then the master inverter. If the master inverter is designated first, connected
inverters may interpret the condition as a loss of communication.
Master Parameter
Group Code Name
P2P
CM
95
Communication
selection
80
Analog input1
81
Analog input2
US
82
Digital input
85
Analog output
88
Digital output
Slave Parameter
Group Code Name
P2P
95
Communication
selection
CM
P2P DO setting
96
selection
P2P Setting Details
Code
CM.95 Int 485 Func
US.80–82 P2P Input Data
US.85, 88 P2P Output Data
LCD Display
Parameter Setting
Setting Range
Unit
Int 485 Func
1
0–3
-
P2P In V1
0
0–12,000
%
P2P In I2
0
-12,000–12,000 %
P2P In DI
0
0–0x7F
bit
P2P Out AO1
0
0–10,000
%
P2P Out DO
0
0–0x03
bit
LCD Display
Parameter Setting
Setting Range
Unit
Int 485 Func
2
P2P Slave
0–3
-
P2P OUT Sel
0
No
0–2
bit
P2P Master
Description
Set master inverter to 1(P2P Master), slave inverter to 2(P2P Slave).
Input data sent from the slave inverter.
Output data transmitted to the slave inverter.
• P2P features work only with code version 1.00, IO S/W version 0.11, and keypad S/W version 1.07
or higher versions.
• Set the user sequence functions to use P2P features..
103
Learning Basic Features
4.22 Multi-keypad Setting
Use multi-keypad settings to control more than one inverter with one keypad. To use this function,
first configure RS-485 communication.
The group of inverters to be controlled by the keypad will include a master inverter. The master
inverter monitors the other inverters, and slave inverter responds to the master inverter’s input.
When using multi-function output, a slave inverter can select to use either the master inverter’s
output or its own output. When using the multi keypad, first designate the slave inverter and then
the master inverter. If the master inverter is designated first, connected inverters may interpret the
condition as a loss of communication.
Master Parameter
Group Code Name
P2P Communication
CM
95
selection
03
Multi-keypad ID
CNF
Multi-function key
42
selection
LCD Display
Parameter Setting
Setting Range
Unit
Int 485 Func
3
0–3
-
Multi KPD ID
3
3–99
-
Multi Key Sel
4
0–4
-
Parameter Setting
3
Setting Range
3–99
Unit
-
3
0–3
-
Slave Parameter
Group Code Name
LCD Display
01
Station ID
Int485 St ID
CM
P2P communication
95
Int 485 Func
options
KPD-Ready
Multi KPD
KPD-Ready
Multi-keypad Setting Details
Code
Description
Prevents conflict by designating a unique identification value to an inverter.
CM.01 Int485 St ID
Values can be selected from numbers between 3–99.
CM.95 Int 485 Func Set the value to 3(KPD-Ready) for both master and slave inverter
CNF-03 Multi KPD ID Select an inverter to monitor from the group of inverters.
CNF-42 Multi key Sel Select a multi-function key type 4(Multi KPD) .
• Multi-keypad (Multi-KPD) features work only with code version 1.00, IO S/W version 0.11, and
keypad S/W version 1.07 or higher versions.
• The multi-keypad feature will not work when the multi-keypad ID (CNF-03 Multi-KPD ID) setting is
identical to the RS-485 communication station ID (CM-01 Int485 st ID) setting.
• The master/slave setting cannot be changed while the inverter is operating in slave mode.
104
Learning Basic Features
4.23 User Sequence Setting
User Sequence creates a simple sequence from a combination of different function blocks. The
sequence can comprise of a maximum of 18 steps using 29 function blocks and 30 void
parameters.
1 Loop refers to a single execution of a user configured sequence that contains a maximum of 18
steps. Users can select a Loop Time of between 10-1,000ms.
The codes for user sequences configuration can be found in the US group (for user sequence
settings) and the UF group (for function block settings).
Group Code Name
AP
02
User sequence activation
User sequence operation
01
command
User sequence operation
02
time
11–
Output address link1–18
28
31–
Input value setting1–30
US
60
UF
LCD Display
User Seq En
Parameter Setting Setting Range Unit
0
0–1
-
User Seq Con
0
0–2
-
User Loop Time
0
0–5
-
Link UserOut1–
18
0
0–0xFFFF
-
Void Para1–30
0
-9999–9999
-
0
0–12,000
%
Analog input 2
Digital input
Analog output
Digital output
P2P In V1(-10–10
V)
P2P In I2
P2P In D
P2P Out AO1
P2P Out DO
0
0
0
0
-12,000
–12,000
0–0x7F
0–0x03
%
bit
%
bit
01
User function 1
User Func1
0
0–28
-
02
User function input 1-A
User Input 1-A
0
0–0xFFFF
-
03
User function input 1-B
User Input 1-B
0
0–0xFFFF
-
04
User function input 1-C
User Input 1-C
0
0–0xFFFF
-
05
User function output 1
User Output 1
0
-32767–32767 -
06
User function 2
User Func2
0
0–28
-
07
User function input 2-A
User Input 2-A
0
0–0xFFFF
-
08
User function input 2-B
User Input 2-B
0
0–0xFFFF
-
09
User function input 2-C
User Input 2-C
0
0–0xFFFF
-
10
User function output 2
User Output 2
0
-32767–32767 -
11
User function 3
User Func3
0
0–28
-
12
User function input 3-A
User Input 3-A
0
0–0xFFFF
-
13
User function input 3-B
User Input 3-B
0
0–0xFFFF
-
80
Analog input 1
81
82
85
88
105
Learning Basic Features
Group Code Name
14
User function input 3-C
106
LCD Display
User Input 3-C
Parameter Setting Setting Range Unit
0–0xFFFF
0
-
15
User function output 3
User Output 3
0
-32767–32767 -
16
Uer function 4
User Func4
0
0–28
-
17
User function input 4-A
User Input 4-A
0
0–0xFFFF
-
18
User function input 4-B
User Input 4-B
0
0–0xFFFF
-
19
User function input 4-C
User Input 4-C
0
0–0xFFFF
-
20
User function output 4
User Output 4
0
-32767–32767 -
21
User function 5
User Func5
0
0–28
-
22
User function input 5-A
User Input 5-A
0
0–0xFFFF
-
23
User function input 5-B
User Input 5-B
0
0–0xFFFF
-
24
User function input 5-C
User Input 5-C
0
0–0xFFFF
-
25
User function output 5
User Output 5
0
-32767–32767 -
26
User function 6
User Func6
0
0–28
-
27
User function input 6-A
User Input 6-A
0
0–0xFFFF
-
28
User function input 6-B
User Input 6-B
0
0–0xFFFF
-
29
User function input 6-C
User Input 6-C
0
0–0xFFFF
-
30
User function output 6
User Output 6
0
-32767–32767 -
31
User function 7
User Func7
0
0–28
-
32
User function input 7-A
User Input 7-A
0
0–0xFFFF
-
33
User function input 7-B
User Input 7-B
0
0–0xFFFF
-
34
User function input 7-C
User Input 7-C
0
0–0xFFFF
-
35
User function output 7
User Output 7
0
-32767–32767 -
36
User function 8
User Func8
0
0–28
-
37
User function input 8-A
User Input 8-A
0
0–0xFFFF
-
38
User function input8-B
User Input 8-B
0
0–0xFFFF
-
39
User function input 8-C
User Input 8-C
0
0–0xFFFF
-
40
User function output 8
User Output 8
0
-32767–32767 -
41
User function 9
User Func9
0
0–28
-
42
User function input 9-A
User Input 9-A
0
0–0xFFFF
-
43
User function input 9-B
User Input 9-B
0
0–0xFFFF
-
44
User function input 9-C
User Input 9-C
0
0–0xFFFF
-
45
User function output 9
User Output 9
0
-32767–32767 -
46
User function 10
User Func10
0
0–28
-
47
User function input 10-A
User Input 10-A
0
0–0xFFFF
-
48
User function input 10-B
User Input 10-B
0
0–0xFFFF
-
Learning Basic Features
Group Code Name
49
User function input 10-C
LCD Display
User Input 10-C
Parameter Setting Setting Range Unit
0–0xFFFF
0
-
50
User function output 10
User Output 10
0
-32767–32767 -
51
User function 11
User Func11
0
0–28
-
52
User function input 11-A
User Input 11-A
0
0–0xFFFF
-
53
User function input 11-B
User Input 11-B
0
0–0xFFFF
-
54
User function input 11-C
User Input 11-C
0
0–0xFFFF
-
55
User function output 11
User Output 11
0
-32767–32767 -
56
User function 12
User Func12
0
0–28
-
57
User function input 12-A
User Input 12-A
0
0–0xFFFF
-
58
User function input 12-B
User Input 12-B
0
0–0xFFFF
-
59
User function input 12-C
User Input 12-C
0
0–0xFFFF
-
60
User function output 12
User Output 12
0
-32767–32767 -
61
User function 13
User Func13
0
0–28
-
62
User function input 13-A
User Input 13-A
0
0–0xFFFF
-
63
User function input 13-B
User Input 13-B
0
0–0xFFFF
-
64
User function input 13-C
User Input 13-C
0
0–0xFFFF
-
65
User function output 13
User Output 13
0
-32767–32767 -
66
User function 14
User Func14
0
0–28
-
67
User function input 14-A
User Input 14-A
0
0–0xFFFF
-
68
User function input14-B
User Input 14-B
0
0–0xFFFF
-
69
User function input 14-C
User Input 14-C
0
0–0xFFFF
-
70
User function output14
User Output 14
0
-32767–32767 -
71
User function 15
User Func15
0
0–28
-
72
User function input 15-A
User Input 15-A
0
0–0xFFFF
-
73
User function input 15-B
User Input 15-B
0
0–0xFFFF
-
74
User function input 15-C
User Input 15-C
0
0–0xFFFF
-
75
User function output 15
User Output 15
0
-32767–32767 -
76
User function 16
User Func16
0
0–28
-
77
User function input 16-A
User Input 16-A
0
0–0xFFFF
-
78
User function input 16-B
User Input 16-B
0
0–0xFFFF
-
79
User function input 16-C
User Input 16-C
0
0–0xFFFF
-
80
User function output 16
User Output 16
0
-32767–32767 -
81
User function 17
User Func17
0
0–28
-
82
User function input 17-A
User Input 17-A
0
0–0xFFFF
-
83
User function input 17-B
User Input 17-B
0
0–0xFFFF
-
107
Learning Basic Features
Group Code Name
84
User function input 17-C
LCD Display
User Input 17-C
Parameter Setting Setting Range Unit
0–0xFFFF
0
-
85
User function output 17
User Output 17
0
-32767–32767 -
86
User function 18
User Func18
0
0–28
-
87
User function input 18-A
User Input 18-A
0
0–0xFFFF
-
88
User function input 18-B
User Input 18-B
0
0–0xFFFF
-
89
User function input 18-C
User Input 18-C
0
0–0xFFFF
-
90
User function output 18
User Output 18
0
-32767–32767 -
User Sequence Setting Details
Code
Description
AP.02 User Seq En
Display the parameter groups related to a user sequence.
Set Sequence Run and Sequence Stop with the keypad.
Parameters cannot be adjusted during an operation. To adjust parameters,
US.01 User Seq Con
the operation must be stopped.
Set the user sequence Loop Time.
US.02 User Loop Time
User sequence loop time can be set to 0.01s/0.02s/ 0.05s/0.1s/0.5s/1s.
Set parameters to connect 18 Function Blocks. If the input value is 0x0000,
an output value cannot be used.
US.11–28
To use the output value in step 1 for the frequency reference (Cmd
Link UserOut1–18
Frequency), input the communication address(0x1101) of the Cmd
frequency as the Link UserOut1 parameter.
Set 30 void parameters. Use when constant (Const) parameter input is
US.31–60 Void Para1–30
needed in the user function block.
Set user defined functions for the 18 function blocks.
If the function block setting is invalid, the output of the User Output@ is -1.
UF.01–90
All the outputs from the User Output@ are read only, and can be used with
the user output link@ (Link UserOut@) of the US group.
Function Block Parameter Structure
Type
Description
User Func @*
Choose the function to perform in the function block.
User Input @-A
Communication address of the function’s first input parameter.
User Input @-B
Communication address of the function’s second input parameter.
User Input @-C
Communication address of the function’s third input parameter.
User Output @
Output value (Read Only) after performing the function block.
* @ is the step number (1-18).
108
Learning Basic Features
User Function Operation Condition
Number Type
0
NOP
1
ADD
2
SUB
3
ADDSUB
4
MIN
5
MAX
6
ABS
7
NEGATE
8
REMAINDER
9
MPYDIV
10
COMPARE-GT
(greater than)
11
COMPAREGTEQ
(great than or
equal to)
12
COMPAREEQUAL
13
COMPARENEQUAL
14
TIMER
Description
No Operation.
Addition operation, (A + B) + C
If the C parameter is 0x0000, it will be recognized as 0.
Subtraction operation, (A - B) – C
If the C parameter is 0x0000, it will be recognized as 0.
Addition andsubtraction compound operation, (A + B) – C
If the C parameter is 0x0000, it will be recognized as 0.
Output the smallest value of the input values, MIN(A, B, C).
If the C parameter is 0x0000, operate only with A, B.
Output the largest value of the input values, MAX(A, B, C).
If the C parameter is 0x0000, operate only with A, B.
Output the absolute value of the A parameter, | A |.
This operation does not use the B, or C parameter.
Output the negative value of the A parameter, -( A ).
This operation does not use the B, or C parameter.
Remainder operation of A and B, A % B
This operation does not use the C parameter.
Multiplication, division compound operation, (A x B)/C.
If the C parameter is 0x0000, output the multiplication operation of (A x B).
Comparison operation: if (A > B) the output is C; if (A </=B) the output is 0.
If the condition is met, the output parameter is C. If the condition is not met,
the output is 0(False). If the C parameter is 0x0000 and if the condition is
met, the output is 1(True).
Comparison operation; if (A >/= B) output is C; if (A<B) the output is 0.
If the condition is met, the output parameter is C. If the condition is not met,
the output is 0(False). If the C parameter is 0x0000 and if the condition is
met, the output is 1(True).
Comparison operation, if(A == B) then the output is C. For all other values
the output is 0.
If the condition is met, the output parameter is C. if the condition is not met,
the output is 0(False). If the C parameter is 0x0000 and if the condition is
met, the output is 1(True).
Comparison operation, if(A != B) then the output is C. For all other values the
output is 0.
If the condition is met, the output parameter is C. If the condition is not met,
the output is 0(False). If the C parameter is 0x0000 and if the condition is
met, the output is 1(True).
Adds 1 each time a user sequence completes a loop.
A: Max Loop, B: Timer Run/Stop, C: Choose output mode.
If input of B is 1, timer stops (output is 0). If input is 0, timer runs.
If input of C is 1, output the current timer value.
If input of C is 0, output 1 when timer value exceeds A(Max) value.
109
Learning Basic Features
Number Type
15
16
17
18
19
20
21
22
23
24
25
26
110
Description
If the C parameter is 0x0000, C will be recognized as 0.
Timer overflow Initializes the timer value to 0.
Sets a limit for the A parameter.
If input to A is between B and C, output the input to A.
LIMIT
If input to A is larger than B, output B. If input of A is smaller than C, output
C.
B parameter must be greater than or equal to the C parameter.
Output the AND operation, (A and B) and C.
AND
If the C parameter is 0x0000, operate only with A, B.
Output the OR operation, (A | B) | C.
OR
If the C parameter is 0x0000, operate only with A, B.
Output the XOR operation, (A ^ B) ^ C.
XOR
If the C parameter is 0x0000, operate only with A, B.
Output the AND/OR operation, (A andB) | C.
AND/OR
If the C parameter is 0x0000, operate only with A, B.
Output a value after selecting one of two inputs, if (A) then B otherwise C.
SWITCH
If the input at A is 1, the output will be B. If the input at A is 0, the output
parameter will be C.
Test the B bit of the A parameter, BITTEST(A, B).
If the B bit of the A input is 1, the output is 1. If it is 0, then the output is 0.
BITTEST
The input value of B must be between 0–16. If the value is higher than 16, it
will be recognized as 16. If input at B is 0, the output is always 0.
Set the B bit of the A parameter, BITSET(A, B). Output the changed value
after setting the B bit to input at A.
The input value of B must be between 0–16. If the value is higher than 16, it
BITSET
will be recognized as 16. If the input at B is 0, the output is always 0. This
operation does not use the C parameter.
Clear the B bit of the A parameter, BITCLEAR(A, B). Output the changed
value after clearing the B bit to input at A.
The input value of B must be between 0–16. If the value is higher than 16, it
BITCLEAR
will be recognized as 16. If the input at B is 0, the output is always 0. This
operation does not use the C parameter.
Output the input at A as the B filter gains time constant, B x US-02 (US Loop
Time.
LOWPASSFILTER
In the above formula, set the time when the output of A reaches 63.3%
C stands for the filter operation. If it is 0, the operation is started.
P, I gain = A, B parameter input, then output as C.
Conditions for PI_PROCESS output: C = 0: Const PI,
C = 1: PI_PROCESS-B >= PI_PROCESS-OUT >= 0,
PI_CONTROL
C = 2: PI_PROCESS-B >= PI_PROCESS-OUT >= -(PI_PROCESS-B),
P gain = A/100, I gain = 1/(Bx Loop Time),
If there is an error with PI settings, output -1.
PI_PROCESS
A is an input error, B is an output limit, C is the value of Const PI output.
Learning Basic Features
Number Type
27
UPCOUNT
28
DOWNCOUNT
Description
Range of C is 0–32,767.
Upcounts the pulses and then output the value- UPCOUNT(A, B, C).
After receiving a trigger input (A), outputs are upcounted by C conditions. If
the B inputs is 1, do not operate and display 0. If the B inputs is 0, operate.
If the C parameter is 0, upcount when the input at A changes from 0 to 1.
If the C parameter is 1, upcount when the input at A is changed from 1 to 0.
If the C parameter is 2, upcount whenever the input at A changes.
Output range is: 0–32767
Downcounts the pulses and then output the value- DOWNCOUNT(A, B, C).
After receiving a trigger input (A), outputs are downcounted by C
conditions. If the B input is 1, do not operate and display the initial value of
C. If the B input is 0, operate.
Downcounts when the A parameter changes from 0 to 1.
Note
The Pl process block (Pl_PROCESS Block) must be used after the PI control block (PI_CONTROL Block)
for proper Pl control operation. Pl control operation cannot be performed if there is another block
between the two blocks, or if the blocks are placed in an incorrect order.
User sequence features work only with code version 1.00, IO S/W version 0.11, and keypad S/W version
1.07 or higher versions.
4.24 Fire Mode Operation
This function is used to allow the inverter to ignore minor faults during emergency situations, such
as fire, and provides continuous operation to fire pumps.
When turned on, Fire mode forces the inverter to ignore all minor fault trips and repeat a Reset
and Restart for major fault trips, regardless of the restart trial count limit. The retry delay time set at
PR. 10 (Retry Delay) still applies while the inverter performs a Reset and Restart.
Fire Mode Parameter Settings
Group Code Name
Ad
80
81
Fire Mode selection
Fire Mode frequency
LCD Display
Parameter Setting
Fire Mode Sel 1
Fire Mode
Fire Mode
0-60
Setting
Range
0–2
0–60
Unit
-
111
Learning Basic Features
Group Code Name
LCD Display
Parameter Setting
Setting
Range
Unit
Freq
Fire Mode Dir 0–1
0–1
Fire Mode
83
Not configurable
Cnt
65–
Px Define
Px terminal configuration
51 Fire Mode
0~54
In
69
(Px: P1– P7)
The inverter runs in Fire mode when Ad. 80 (Fire Mode Sel) is set to ‘2 (Fire Mode)’, and the multifunction terminal (In. 65-69) configured for Fire mode (51: Fire Mode) is turned on. The Fire mode
count increases by 1 at Ad. 83 (Fire Mode Count) each time a Fire mode operation is run.
82
Fire Mode run direction
Fire Mode operation
count
Fire mode operation may result in inverter malfunction. Note that Fire mode operation voids the
product warranty – the inverter is covered by the product warranty only when the Fire mode count is
‘0.’
Fire Mode Function Setting Details
Code
Description
Ad.81 Fire
Mode
frequency
Fire mode
frequency
reference
Dr.03 Acc
Time /
Dr.04 Dec
Time
Details
The frequency set at Ad. 81 (Fire mode frequency) is used for the
inverter operation in Fire mode. The Fire mode frequency takes
priority over the Jog frequency, Multi-step frequencies, and the
keypad input frequency.
When Fire mode operation is turned on, the inverter accelerates for
Fire mode Acc/Dec the time set at Dr.03 (Acc Time), and then decelerates based on the
times
deceleration time set at Dr.04 (Dec Time). It stops when the Px
terminal input is turned off (Fire mode operation is turned off).
Some fault trips are ignored during Fire mode operation. The fault
trip history is saved, but trip outputs are disabled even when they
are configured at the multi-function output terminals.
PR.10 Retry
Delay
Fault trip process
Fault trips that are ignored in Fire mode
BX, External Trip, Low Voltage Trip, Inverter Overheat, Inverter
Overload, Overload, Electrical Thermal Trip, Input/Output Open
Phase, Motor Overload, Fan Trip, No Motor Trips, and other minor
fault trips.
For the following fault trips, the inverter performs a Reset and
Restart until the trip conditions are released. The retry delay time
112
Learning Basic Features
Code
Description
Details
set at PR. 10 (Retry Delay) applies while the inverter performs a
Reset and Restart.
Fault trips that force a Reset Restart in Fire mode
Over Voltage, Over Current1(OC1), Ground Fault Trip
The inverter stops operating when the following fault trips occur:
Fault trips that stop inverter operation in Fire mode
H/W Diag, Over Current 2 (Arm-Short)
113
Learning Basic Features
114
Learning Advanced Features
5 Learning Advanced Features
This chapter describes the advanced features of the S100 inverter. Check the reference page in the
table to see the detailed description for each of the advanced features.
Advanced Tasks
Description
Use the main and auxiliary frequencies in the predefined formulas
to create various operating conditions. Auxiliary frequency
Auxiliary frequency
operation is ideal for Draw Operation* as this feature enables fineoperation
tuning of operation speeds.
Jog operation is a kind of a manual operation. The inverter operates
Jog operation
to a set of parameter settings predefined for Jog operation, while
the Jog command button is pressed.
Uses the upper and lower limit value switch output signals (i.e.
Up-down operation
signals from a flow meter) as Acc/Dec commands to motors.
3-wire operation is used to latch an input signal. This configuration is
3-wire operation
used to operate the inverter by a push button.
This safety feature allows the inverter’s operation only after a signal
is input to the multi-function terminal designated for the safety
Safety operation
operation mode. This feature is useful when extra care is needed in
mode
operating the inverter using the multi-purpose terminals.
Use this feature for the lift-type loads such as elevators, when the
torque needs to be maintained while the brakes are applied or
Dwell operation
released.
This feature ensures that the motor rotates at a constant speed, by
Slip compensation
compensating for the motor slip as a load increases.
PID control provides constant automated control of flow, pressure,
PID control
and temperature by adjusting the output frequency of the inverter.
Used to automatically measure the motor control parameters to
Auto-tuning
optimize the inverter’s control mode performance.
An efficient mode to control magnetic flux and torque without
special sensors. Efficiency is achieved through the high torque
Sensorless vector
control
characteristics at low current when compared with the V/F control
mode.
Used to maintain the DC link voltage for as long as possible by
Energy buffering
controlling the inverter output frequency during power
operation
interruptions, thus to delay a low voltage fault trip.
Energy saving
Used to save energy by reducing the voltage supplied to motors
operation
during low-load and no-load conditions.
Speed search
Used to prevent fault trips when the inverter voltage is output while
the motor is idling or free-running.
operation
Auto restart configuration is used to automatically restart the
Auto restart operation inverter when a trip condition is released, after the inverter stops
operating due to activation of protective devices (fault trips).
Ref.
p.116
p.120
p.123
p.124
p.125
p.127
p.128
p.130
p.138
p.141
p.148
p.151
p.155
p.159
115
Learning Advanced Features
Advanced Tasks
Second motor
operation
Commercial power
source switch
operation
Cooling fan control
Description
Used to switch equipment operation by connecting two motors to
one inverter. Configure and operate the second motor using the
terminal input defined for the second motor operation.
Used to switch the power source to the motor from the inverter
output to a commercial power source, or vice versa.
Ref.
p.161
p.163
Used to control the cooling fan of the inverter.
p.164
Set the timer value and control the On/Off state of the multiTimer settings
p.173
function output and relay.
Used to control the On/Off operation of the load’s electronic braking
p.173
Brake control
system.
Multi-function output Set standard values and turn On/Off the output relays or multip.175
function output terminals according to the analog input value.
On/Off control
Regeneration
Used during a press operation to avoid motor regeneration, by
prevention for press
p.175
increasing the motor operation speed.
operation.
* Draw operation is an openloop tension control. This feature allows a constant tension to be
applied to the material that is drawn by a motor-driven device, by fine-tuning the motor speed
using operation frequencies that are proportional to a ratio of the main frequency reference.
5.1 Operating with Auxiliary References
Frequency references can be configured with various calculated conditions that use the main and
auxiliary frequency references simultaneously. The main frequency reference is used as the
operating frequency, while auxiliary references are used to modify and fine-tune the main
reference.
Group
Name
Frequency reference
Operation Frq
source
Auxiliary frequency
01
reference source
Auxiliary frequency
bA
02
reference calculation
type
Auxiliary frequency
03
reference gain
Px terminal
In
65– 71
configuration
116
Code
LCD Display
Parameter Setting
Setting Range Unit
Freq Ref Src
0
Keypad-1
0–12
-
Aux Ref Src
1
V1
0–4
-
M+(G*A)
0–7
-
Aux Calc Type 0
Aux Ref Gain
0.0
Px Define
40
-200.0–200.0 %
dis Aux Ref
-
-
Learning Advanced Features
The table above lists the available calculated conditions for the main and auxiliary frequency
references. Refer to the table to see how the calculations apply to an example where the Frq code
has been set to 0(Keypad-1), and the inverter is operating at a main reference frequency of
30.00Hz. Signals at -10 – +10V are received at terminal V1, with the reference gain set at 5%. In this
example, the resulting frequency reference is fine-tuned within the range of 27.00–33.00Hz [Codes
In.01–16 must be set to the default values, and In.06 (V1 Polarity), set to 1 (Bipolar)].
Auxiliary Reference Setting Details
Code
Description
Set the input type to be used for the auxiliary frequency reference.
Configuration
0
None
1
V1
bA.01 Aux Ref Src
bA.02 Aux Calc Type
Description
Auxiliary frequency reference is disabled.
Sets the V1 (voltage) terminal at the control terminal block
as the source of auxiliary frequency reference.
3
V2
Sets the V2 (voltage) terminal at the control terminal block
as the source of auxiliary frequency reference (SW2 must be
set to “voltage”).
4
I2
Sets the I2 (current) terminal at the control terminal block
as the source of auxiliary frequency reference (SW2 must be
set to “current”).
5
Pulse
Sets the TI (pulse) terminal at the control terminal block as
the source of auxiliary frequency reference.
Set the auxiliary reference gain with bA.03 (Aux Ref Gain) to configure the
auxiliary reference and set the percentage to be reflected when calculating the
main reference. Note that items 4–7 below may result in either plus (+) or
minus (-) references (forward or reverse operation) even when unipolar analog
inputs are used.
Configuration
0 M+(G*A)
1 M*(G*A)
2 M/(G*A)
3 M+{M*(G*A)}
4 M+G*2*(A-50)
Formula for frequency reference
Main reference+(bA.03xbA.01xIn.01)
x(bA.03xbA.01)
Main reference/(bA.03xbA.01)
Main reference+{Main reference x(bA.03xbA.01)}
Main reference+bA.03x2x(bA.01–50)x In.01
5
M*{G*2*(A-50)}
Main reference x{bA.03x2x(bA.01–50)}
6
M/{G*2*(A-50)}
Main reference/{bA.03x2x(bA.01–50)}
7
M+M*G*2*(A-50)
Main reference+Main reference x bA.03x2x(bA.01–
50)
M: Main frequency reference (Hz or rpm)
G: Auxiliary reference gain (%)
A: Auxiliary frequency reference (Hz or rpm) or gain (%)
117
Learning Advanced Features
Code
bA.03 Aux Ref Gain
In.65–69 Px Define
Description
Adjust the size of the input (bA.01 Aux Ref Src) configured for auxiliary
frequency.
Set one of the multi-function input terminals to 40(dis Aux Ref) and turn it on
to disable the auxiliary frequency reference. The inverter will operate using the
main frequency reference only.
Auxiliary Reference Operation Ex #1
Keypad Frequency Setting is Main Frequency and V1 Analog Voltage is Auxiliary Frequency
• Main frequency: Keypad (operation frequency 30Hz)
• Maximum frequency setting (dr.20): 400Hz
• Auxiliary frequency setting (bA.01): V1[Display by percentage(%) or auxiliary frequency (Hz)
depending on the operation setting condition]
• Auxiliary reference gain setting (bA.03): 50%
• In.01–32: Factory default
Example: an input voltage of 6V is supplied to V1, and the frequency corresponding to 10V is 60Hz.
The table below shows the auxiliary frequency A as 36Hz[=60Hz X (6V/10V)] or 60%[= 100% X
(6V/10V)].
Setting*
0
M[Hz]+(G[%]*A[Hz])
1
M[Hz]*(G[%]*A[%])
2
M[Hz]/(G[%]*A[%])
3
M[Hz]+{M[Hz]*(G[%]*A[%])}
4
M[Hz]+G[%]*2*(A[%]-50[%])[Hz]
5
M[HZ]*{G[%]*2*(A[%]-50[%])}
6
M[HZ]/{G[%]*2*(A[%]-50[%])}
7
M[HZ]+M[HZ]*G[%]*2*(A[%]-50[%])
Calculating final command frequency**
30Hz(M)+(50%(G)x36Hz(A))=48Hz
30Hz(M)x(50%(G)x60%(A))=9Hz
30Hz(M)/(50%(G)x60%(A))=100Hz
30Hz(M)+{30[Hz]x(50%(G)x60%(A))}=39Hz
30Hz(M)+50%(G)x2x(60%(A)–50%)x60Hz=36Hz
30Hz(M)x{50%(G)x2x(60%(A)–50%)}=3Hz
30Hz(M)/{50%(G)x2x(60%–50%)}=300Hz
30Hz(M)+30Hz(M)x50%(G)x2x(60%(A)–50%)=33Hz
*M: main frequency reference (Hz or rpm)/G: auxiliary reference gain (%)/A: auxiliary frequency
reference (Hz or rpm) or gain (%).
**If the frequency setting is changed to rpm, it is converted to rpm instead of Hz.
118
Learning Advanced Features
Auxiliary Reference Operation Ex #2
Keypad Frequency Setting is Main Frequency and I2 Analog Voltage is Auxiliary Frequency
• Main frequency: Keypad (Operation frequency 30Hz)
• Maximum frequency setting (dr.20): 400Hz
• Auxiliary frequency setting (bA.01): I2 [Display by percentage(%) or auxiliary frequency(Hz)
depending on the operation setting condition]
• Auxiliary reference gain setting (bA.03): 50%
• In.01–32: Factory default
Example: an input current of 10.4mA is applied to I2, with the frequency corresponding to 20mA of
60Hz. The table below shows auxiliary frequency A as 24Hz(=60[Hz] X {(10.4[mA]-4[mA])/(20[mA] 4[mA])} or 40%(=100[%] X {(10.4[mA] - 4[mA])/(20[mA] - 4[mA])}.
Setting*
0
M[Hz]+(G[%]*A[Hz])
1
M[Hz]*(G[%]*A[%])
2
M[Hz]/(G[%]*A[%])
3
M[Hz]+{M[Hz]*(G[%]*A[%])}
4
M[Hz]+G[%]*2*(A[%]-50[%])[Hz]
5
M[HZ]*{G[%]*2*(A[%]-50[%])
Calculating final command frequency**
30Hz(M)+(50%(G)x24Hz(A))=42Hz
30Hz(M)x(50%(G)x40%(A))=6Hz
30Hz(M)/(50%(G)x40%(A))=150Hz
30Hz(M)+{30[Hz]x(50%(G)x40%(A))}=36Hz
30Hz(M)+50%(G)x2x(40%(A)–50%)x60Hz=24Hz
6
M[HZ]/{G[%]*2*(A[%]-50[%])}
7
M[HZ]+M[HZ]*G[%]*2*(A[%]-50[%])
30Hz(M)/{50%(G)x2x(60%–40%)} = -300Hz(Reverse)
30Hz(M)+30Hz(M)x50%(G)x2x (40%(A)–50%)=27Hz
30Hz(M)x{50%(G)x2x(40%(A)–50%)} = -3Hz(Reverse)
* M: main frequency reference (Hz or rpm)/G: auxiliary reference gain (%)/A: auxiliary frequency
reference Hz or rpm) or gain (%).
**If the frequency setting is changed to rpm, it is converted to rpm instead of Hz.
Auxiliary Reference Operation Ex #3
V1 is Main Frequency and I2 is Auxiliary Frequency
• Main frequency: V1 (frequency command setting to 5V and is set to 30Hz)
• Maximum frequency setting (dr.20): 400Hz
• Auxiliary frequency (bA.01): I2[Display by percentage (%) or auxiliary frequency (Hz) depending
on the operation setting condition]
• Auxiliary reference gain (bA.03): 50%
• In.01–32: Factory default
Example: an input current of 10.4mA is applied to I2, with the frequency corresponding to 20mA of
60Hz. The table below shows auxiliary frequency Aas 24Hz(=60[Hz]x{(10.4[mA]-4[mA])/(20[mA]-
119
Learning Advanced Features
4[mA])} or 40%(=100[%] x {(10.4[mA] - 4[mA]) /(20 [mA] - 4[mA])}.
Setting*
0
M[Hz]+(G[%]*A[Hz])
1
M[Hz]*(G[%]*A[%])
2
M[Hz]/(G[%]*A[%])
3
M[Hz]+{M[Hz]*(G[%]*A[%])}
4
M[Hz]+G[%]*2*(A[%]-50[%])[Hz]
5
M[HZ]*{G[%]*2*(A[%]-50[%])}
Calculating final command frequency**
30Hz(M)+(50%(G)x24Hz(A))=42Hz
30Hz(M)x(50%(G)x40%(A))=6Hz
30Hz(M)/(50%(G)x40%(A))=150Hz
30Hz(M)+{30[Hz]x(50%(G)x40%(A))}=36Hz
30Hz(M)+50%(G)x2x(40%(A)–50%)x60Hz=24Hz
6
M[HZ]/{G[%]*2*(A[%]-50[%])}
7
M[HZ]+M[HZ]*G[%]*2*(A[%]-50[%])
30Hz(M)/{50%(G)x2x(60%–40%)}=-300Hz(Reverse)
30Hz(M)+30Hz(M)x50%(G)x2x(40%(A)–50%)=27Hz
30Hz(M)x{50%(G)x2x(40%(A)–50%)}=-3Hz(Reverse)
* M: main frequency reference (Hz or rpm)/G: auxiliary reference gain (%)/A: auxiliary frequency
reference (Hz or rpm) or gain (%).
**If the frequency setting is changed to rpm, it is converted to rpm instead of Hz.
Note
When the maximum frequency value is high, output frequency deviation may result due to analog
input variation and deviations in the calculations.
5.2 Jog operation
The jog operation allows for a temporary control of the inverter. You can enter a jog operation
command using the multi-function terminals or by using the [ESC] key on the keypad.
The jog operation is the second highest priority operation, after the dwell operation. If a jog
operation is requested while operating the multi-step, up-down, or 3-wire operation modes, the
jog operation overrides all other operation modes.
5.2.1 Jog Operation 1-Forward Jog by Multi-function Terminal
The jog operation is available in either forward or reverse direction, using the keypad or multifunction terminal inputs. The table below lists parameter setting for a forward jog operation using
the multi-function terminal inputs.
Group Code
dr
11
120
Name
Jog frequency
LCD Display
JOG Frequency
Parameter Setting
10.00
Setting Range Unit
0.50Hz
Maximum
Learning Advanced Features
Group Code
Name
12
In
Jog operation
acceleration time
13
Jog operation
deceleration time
65-69 Px terminal
configuration
LCD Display
Parameter Setting
JOG Acc Time
20.00
Setting Range Unit
frequency
0.00-600.00
sec
JOG Dec Time
30.00
0.00-600.00
sec
Px Define(Px:
P1–P5)
6
0~54
-
JOG
Forward Jog Description Details
Code
In.65–69 Px Define
Description
Select the jog frequency from P1- P5 and then select 6. Jog from In.65-69.
dr.11 JOG Frequency
[Terminal settings for jog operation]
Set the operation frequency.
dr.12 JOG Acc Time
dr.13 JOG Dec Time
Set the acceleration speed.
Set the deceleration speed.
If a signal is entered at the jog terminal while an FX operation command is on, the operation
frequency changes to the jog frequency and the jog operation begins.
121
Learning Advanced Features
5.2.2 Jog Operation 2-Fwd/Rev Jog by Multi-function Terminal
For jog operation 1, an operation command must be entered to start operation, but while using
jog operation 2, a terminal that is set for a forward or reverse jog also starts an operation. The
priorities for frequency, Acc/Dec time and terminal block input during operation in relation to
other operating modes (Dwell, 3-wire, up/down, etc.) are identical to jog operation 1. If a different
operation command is entered during a jog operation, it is ignored and the operation maintains
the jog frequency.
Group Code
dr
11
12
13
In
65-69
Name
Jog frequency
LCD Display
JOG Frequency
JOG Acc Time
Parameter setting Setting Range
10.00
0.50-Maximum
frequency
20.00
0.00-600.00
Jog operation
acceleration time
Operation
deceleration time
Px terminal
configuration
sec
JOG Dec Time
30.00
0.00-600.00
sec
0~54
-
Px Define(Px: P1-P5) 46 FWD JOG
47 REV JOG
Unit
Hz
5.2.3 Jog Operation by Keypad
Group Code
Dr
90
Name
[ESC] key functions
LCD Display
-
Parameter Setting Setting Range Unit
1
JOG Key -
06
Command source
Cmd Source* 0
* Displayed under DRV-06 on the LCD keypad.
122
Keypad -
-
Learning Advanced Features
Set dr.90 to 1(JOG Key) and set the drv code in the Operation group to 0(Keypad). When the [ESC]
key is pressed, the SET display light flashes and the jog operation is ready to start. Pressing the
[RUN] key starts the operation and the inverter accelerates or decelerates to the designated jog
frequency. Releasing the [RUN] key stops the jog operation. Set the Acc/Dec time for the jog
operation frequency at dr.12 and dr.13.
5.3 Up-down Operation
The Acc/Dec time can be controlled through input at the multi-function terminal block. Similar to
a flowmeter, the up-down operation can be applied easily to a system that uses the upper-lower
limit switch signals for Acc/Dec commands.
Group Code
Ad
65
In
65-69
Name
LCD Display
Up-down operation U/D Save Mode
frequency save
Px terminal
Px Define(Px: P1-P5)
configuration
Parameter Setting
1
Yes
Setting Range Unit
0-1
-
17
18
20
0~54
Up
Down
U/D Clear
-
Up-down Operation Setting Details
Code
In.65-69 Px Define
Description
Select two terminals for up-down operation and set them to 17 (Up) and 18
(Down), respectively. With the operation command input, acceleration begins
when the Up terminal signal is on. Acceleration stops and constant speed
operation begins when the signal is off.
During operation, deceleration begins when the Down signal is on.
Deceleration stops and constant speed operation begins when both Up and
Down signals are entered at the same time.
123
Learning Advanced Features
Code
Description
Ad.65 U/D Save Mode During a constant speed operation, the operating frequency is saved
automatically in the following conditions: the operation command (Fx or Rx) is
off, a fault trip occurs, or the power is off.
When the operation command is turned on again, or when the inverter regains
the power source or resumes to a normal operation from a fault trip, it resumes
operation at the saved frequency. To delete the saved frequency, use the multifunction terminal block. Set one of the multi-function terminals to 20 (U/D
Clear) and apply signals to it during constant speed operation. The saved
frequency and the up-down operation configuration will be deleted.
5.4 3-Wire Operation
The 3-wire operation latches the signal input (the signal stays on after the button is released), and
is used when operating the inverter with a push button.
Group
Code
Operation drv
In
65-69
Name
LCD Display
Command source Cmd Source*
Px terminal
Px Define(Px: P1configuration
P5)
* Displayed under DRV-06 in an LCD keypad.
124
Parameter Setting
1
Fx/Rx - 1
14
3-Wire
Setting Range
0~54
Unit
-
Learning Advanced Features
To enable the 3-wire operation, the following circuit sequence is necessary. The minimum input
time (t) for 3-wire operation is 1ms, and the operation stops when both forward and reverse
operation commands are entered at the same time.
[Terminal connections for 3-wire operation]
[3-wire operation]
5.5 Safe Operation Mode
When the multi-function terminals are configured to operate in safe mode, operation commands
can be entered in the Safe operation mode only. Safe operation mode is used to safely and
carefully control the inverter through the multi-function terminals.
Group
Ad
Code
70
71
72
In
65-69
Name
Safe operation
selection
Safe operation stop
mode
Safe operation
deceleration time
Px terminal
configuration
LCD Display
Run En Mode
Parameter Setting Setting Range
1 DI Dependent -
Unit
-
Run Dis Stop
0
0-2
-
Q-Stop Time
5.0
0.0-600.0
sec
0~54
-
Free-Run
Px Define(Px: P1- 13 RUN Enable
P5)
125
Learning Advanced Features
Safe Operation Mode Setting Details
Code
In.65–69 Px Define
Ad.70 Run En Mode
Ad.71 Run Dis Stop
Description
From the multi-function terminals, select a terminal to operate in safe operation
mode and set it to 13 (RUN Enable).
Setting
0
Always Enable
1
DI Dependent
Function
Enables safe operation mode.
Recognizes the operation command from a multifunction input terminal.
Set the operation of the inverter when the multi-function input terminal in safe
operation mode is off.
Setting
1
Free-Run
Ad.72 Q-Stop Time
126
Function
Blocks the inverter output when the multifunction terminal is off.
2
Q-Stop
The deceleration time (Q-Stop Time) used in safe
operation mode. It stops after deceleration and
then the operation can resume only when the
operation command is entered again. The
operation will not begin if only the multi-function
terminal is on.
3
Q-Stop
The inverter decelerates to the deceleration time
Resume
(Q-Stop Time) in safe operation mode. It stops after
deceleration. Then if the multi-function terminal is
on, the operation resumes as soon as the
operation command is entered again.
Sets the deceleration time when Ad.71 (Run Dis Stop) is set to 1 (Q-Stop) or 2
(Q-Stop Resume).
Learning Advanced Features
5.6 Dwell Operation
The dwell operation is used to manitain torque during the application and release of the brakes on
lift-type loads. Inverter dwell operation is based on the Acc/Dec dwell frequency and the dwell
time set by the user. The following points also affect dwell operation:
• Acceleration Dwell Operation: When an operation command runs, acceleration continues
until the acceleration dwell frequency and constant speed is reached within the acceleration
dwell operation time (Acc Dwell Time). After the Acc Dwell Time has passed, acceleration is
carried out based on the acceleration time and the operation speed that was originally set.
• Deceleration Dwell Operation: When a stop command is run, deceleration continues until
the deceleration dwell frequency and constant speed is reached within the deceleration dwell
operation time (Dec Dwell Freq). After the set time has passed, deceleration is carried out
based on the deceleration time that was originally set, then the operation stops.
When dr.09 (Control Mode) is set to 0 (V/F), the inverter can be used for operations with dwell
frequency before opening the mechanical brake of lift-type loads, such as an elevator.
Group Code Name
Ad
20 Dwell frequency during
acceleration
21
22
23
Operation time during
acceleration
Dwell frequency during
deceleration
Operation time during
deceleration
LCD Display
Parameter Setting Setting Range
Acc Dwell Freq 5.00
Start frequency
– Maximum
frequency
Acc Dwell Time 0.0
0.0–10.0
Unit
Hz
Dec Dwell Freq 5.00
Hz
Dec Dwell Time 0.0
Start frequency
– Maximum
frequency
0 .0-60.0
s
s
127
Learning Advanced Features
Note
Dwell operation does not work when:
• Dwell operation time is set to 0 sec or dwell frequency is set to 0 Hz.
• Re-acceleration is attempted from stop or during deceleration, as only the first acceleration dwell
operation command is valid.
[Acceleration dwell operation]
Although deceleration dwell operation is carried out whenever stop commands are entered and
the deceleration dwell frequency is passed through, it does not work during a deceleration by
simple frequency change (which is not a deceleration due to a stop operation), or during external
brake control applications.
[Deceleration dwell operation]
When a dwell operation is carried out for a lift - type load before its mechanical brake is released,
motors can be damaged or their lifecyle reduced due to overflow current in the motor.
5.7 Slip Compensation Operation
Slip refers to the variation between the setting frequency (synchronous speed) and motor rotation
speed. As the load increases there can be variations between the setting frequency and motor
rotation speed. Slip compensation is used for loads that require compensation of these speed
variations.
128
Learning Advanced Features
Group Code
dr
09
14
Name
Control mode
Motor capacity
bA
Number of motor
poles
Rated slip speed
Rated motor
current
Motor no-load
current
Motor efficiency
Load inertia rate
11
12
13
14
16
17
LCD Display
Parameter Setting
Control Mode 2 Slip Compen
Motor Capacity 2 0.75 kW (0.75kW
based)
Pole Number
4
Setting Range
0-15
Unit
-
2-48
-
Rated Slip
Rated Curr
90 (0.75kW based)
3.6 (0.75kW based)
0-3000
1.0-1000.0
rpm
A
Noload Curr
1.6 (0.75kW based)
0.5-1000.0
A
Efficiency
Inertia Rate
72 (0.75kW based)
0 (0.75kW based)
70-100
0-8
%
-
Slip Compensation Operation Setting Details
Code
Description
dr.09 Control Mode
Set dr.09 to 2 (Slip Compen) to carry out the slip compensation operation.
dr.14 Motor Capacity Set the capacity of the motor connected to the inverter.
bA.11 Pole Number
bA.12 Rated Slip
bA.13 Rated Curr
bA.14 Noload Curr
bA.16 Efficiency
bA.17 Inertia Rate
Enter the number of poles from the motor rating plate.
Enter the number of rated rotations from the motor rating plate.
Enter the rated current from the motor rating plate.
Enter the measured current when the load on the motor axis is removed and
when the motor is operated at the rated frequency. If no-load current is difficult
to measure, enter a current equivalent to 30-50% of the rated motor current.
Enter the efficiency from the motor rating place.
Select load inertia based on motor inertia.
Setting
0
1
2-8
Function
Less than 10 times motor inertia
10 times motor inertia
More than 10 times motor inertia
𝑓𝑠 = 𝑓𝑟 −
𝑅𝑅𝑅 × 𝑃
120
𝑓𝑠 =Rated slip frequency
𝑓𝑟 =Rated frequency
𝑟𝑟𝑟=Number of the rated motor rotations
𝑃=Number of motor poles
129
Learning Advanced Features
5.8 PID Control
Pid control is one of the most common auto-control methods. It uses a combination of
proportional, integral, and differential (PID) control that provides more effective control for
automated systems. The functions of PID control that can be applied to the inverter operation are
as follows:
Purpose
Speed control
Pressure control
Flow control
Temperature control
Function
Controls speed by using feedback about the existing speed level of the
equipment or machinery to be controlled. Control maintains
consistent speed or operates at the target speed.
Controls pressure by using feedback about the existing pressure level
of the equipment or machinery to be controlled. Control maintains
consistent pressure or operates at the target pressure.
Controls flow by using feedback about the amount of existing flow in
the equipment or machinery to be controlled. Control maintains
consistent flow or operates at a target flow.
Controls temperature by using feedback about the existing
temperature level of the equipment or machinery to be controlled.
Control maintains a consistent temperature or operates at a target
termperature.
5.8.1 PID Basic Operation
PID operates by controlling the output frequency of the inverter, through automated system
process control to maintain speed, pressure, flow, temperature and tension.
Group Code
AP
01
16
17
18
130
Name
Application function
selection
PID output monitor
PID reference monitor
PID feedback monitor
LCD Display
App Mode
Parameter Setting
2 Proc PID
Setting Range Unit
0–2
-
PID Output
PID Ref Value
PID Fdb Value
-
-
-
Learning Advanced Features
Group Code
19
20
21
22
23
24
25
26
27
29
30
31
32
34
35
36
37
38
39
40
42
43
44
45
In
65-69
Name
PID reference setting
LCD Display
PID Ref Set
Parameter Setting
50.00
0 Keypad
0 V1
50.0
Setting Range
-100.00100.00
0-11
0-10
0.0-1000.0
PID reference source
PID feedback source
PID controller
proportional gain
PID controller integral
time
PID controller
differential time
PID controller feedforward
compensation gain
Proportional gain
scale
PID output filter
PID maximum
frequency
PID minimum
frequency
PID output reverse
PID output scale
PID controller
motion frequency
PID controller
motion level
PID controller
motion delay time
PID sleep mode
delay time
PID sleep mode
frequency
PID wake-up level
PID wake-up mode
selection
PID controller unit
selection
PID unit gain
PID unit scale
PID 2nd proportional
gain
Px terminal
configuration
PID Ref Source
PID F/B Source
PID P-Gain
%
PID I-Time
10.0
0.0-200.0
sec
PID D-Time
0
0-1000
PID F-Gain
0.0
0-1000
mse
c
%
P Gain Scale
100.0
0.0-100.0
%
PID Out LPF
PID Limit Hi
0
60.00
ms
Hz
PID Limit Lo
0.5
PID Out Inv
PID Out Scale
Pre-PID Freq
0 No
100.0
0.00
Pre-PID Exit
0.0
0-10000
-300.00300.00
-300.00300.00
0-1
0.1-1000.0
0–Maximum
frequency
0.0-100.0
Pre-PID Delay
600
0-9999
sec
PID Sleep DT
60.0
0-999.9
sec
PID Sleep Freq
0.00
0–Maximum
frequency
0-100
0-2
Hz
%
-
0-12
-
PID WakeUp Lev 35
PID WakeUp
0 Below Level
Mod
PID Unit Sel
0 %
Unit
%
Hz
%
Hz
%
PID Unit Gain
PID Unit Scale
PID P2-Gain
100.0
2 x1
100.00
0-300
0-4
0-1000
%
%
Px Define (Px:
P1-P5)
22 I-Term Clear
23 PID Openloop
24 P Gain2
0~54
-
131
Learning Advanced Features
PID Basic Operation Setting Details
Code
AP.01 App Mode
AP.16 PID Output
AP.17 PID Ref Value
AP.18 PID Fdb Value
AP.19 PID Ref Set
AP.20 PID Ref Source
Description
Set the code to 2 (Proc PID) to select functions for the process PID.
Displays the existing output value of the PID controller. The unit, gain, and scale
that were set at AP. 42-44 are applied on the display.
Displays the existing reference value set for the PID controller. The unit, gain,
and scale that were set at AP. 42-44 are applied on the display.
Displays the input value of the PID controller that is included in the latest
feedback. The unit, gain, and scale that were set at AP. 42-44 are applied on the
display.
When AP.20 (PID control reference source) is set to 0 (Keypad), the reference
value can be entered. If the reference source is set to any other value, the
setting values for AP.19 are void.
Selects the reference input for the PID control. If the V1 terminal is set to PID
feedback source (PID F/B Source), the V1 terminal cannot be set to the PID
reference source (PID Ref Source). To set V1 as a reference source, change the
feedback source.
Setting
0 Keypad
1 V1
3 V2
4 I2
AP.21 PID F/B Source
AP.22 PID P-Gain,
AP.26 P Gain Scale
132
Function
Keypad
-10-10V input voltage terminal
I2 analog input terminal
[When analog voltage/current input terminal selection
switch (SW2) at the terminal block is set to I (current),
input 4-20mA current. If it is set to V (voltage), input 0–
10V voltage]
5 Int. 485
RS-485 input terminal
7 FieldBus
Communication command via a communication
option card
9 UserSeqLink Link the common area with the user sequence
output.
11 Pulse
TI Pulse input terminal (0-32kHz Pulse input)
When using the keypad, the PID reference setting can be displayed at AP.17.
When using the LDC keypad, the PID reference setting can be monitored from
Selects feedback input for PID control. Items can be selected as reference input,
except the keypad input (Keypad-1 and Keypad-2). Feedback cannot be set to
an input item that is identical to the item selected as the reference. For
example, when Ap.20 (Ref Source) is set to 1 (V1), for AP. 21 (PID F/B Source), an
input other than the V1 terminal must be selected. When using the LCD
keypad, the volume of feedback can be monitored using a code from the
config mode (CNF) -06-08, by setting it to 18 (PID Fbk Value).
Sets the output ratio for differences (errors) between reference and feedback. If
the Pgain is set to 50%, then 50% of the error is output. The setting range for
Pgain is 0.0-1,000%. For ratios below 0.1%, use AP.26 (P Gain Scale).
Learning Advanced Features
Code
AP.23 PID I- Time
AP.24 PID D-Time
AP.25 PID F-Gain
AP.27 PID Out LPF
AP.29 PID Limit Hi,
AP.30 PID Limit Lo
AP.32 PID Out Scale
AP.42 PID Unit Sel
AP.43 PID Unit Gain,
AP.44 PID Unit Scale
AP.45 PID P2-Gain
Description
Sets the time to output accumulated errors. When the error is 100%, the time
taken for 100% output is set. When the integral time (PID I-Time) is set to 1
second, 100% output occurs after 1 second of the error remaining at 100%.
Differences in a normal state can be reduced by PID I Time. When the multifunction terminal block is set to 21(I-Term Clear) and is turned on, all of the
accumulated errors are deleted.
Sets the output volume for the rate of change in errors. If the differential time
(PID D-Time) is set to 1ms and the rate of change in errors per sec is 100%,
output occurs at 1% per 10ms.
Sets the ratio that adds the target to the PID output. Adjusting this value leads
to a faster response.
Used when the output of the PID controller changes too fast or the entire
system is unstable, due to severe oscillation. In general, a lower value (default
value=0) is used to speed up response time, but in some cases a higher value
increases stability. The higher the value, the more stable the PID controller
output is, but the slower the response time.
Limits the output of the controller.
Adjusts the volume of the controller output.
Sets the unit of the control variable (available only on the LCD keypad).
Setting
Function
0 %
Displays a percentage without a physical quantity given.
1 Bar
Various units of pressure can be selected.
2 mBar
3 Pa
4 kPa
5 Hz
Displays the inverter output frequency or the motor rotation
6 rpm speed.
7 V
Displays in voltage/current/power/horsepower.
8 I
9 kW
10 HP
11 °C
Displays in Celsius or Fahrenheit.
12 °F
Adjusts the size to fit the unit selected at AP.41 PID Unit Sel.
The PID controller’s gain can be adjusted using the multi-function terminal.
When a terminal is selected from In.65-69 and set to 24 (P Gain2), and if the
selected terminal is entered, the gain set in AP.22 and AP.23 can be switched to
the gain set in AP.45.
133
Learning Advanced Features
Note
When the PID switch operation (switching from PID operation to general operation) enters the multifunction input, [%] values are converted to [Hz] values. The normal PID output, PID OUT, is unipolar, and
is limited by AP.29 (PID Limit Hi) and AP.30 (PID Limit Lo). A calculation of 100.0% is based on the dr.20
(Max Freq) parameter setting.
134
Learning Advanced Features
135
Learning Advanced Features
[PID control block diagram]
5.8.2 Pre-PID Operation
When an operation command is entered that does not include PID control, general acceleration
occurs until the set frequency is reached. When the controlled variables increase to a particular
point, the PID operation begins.
Pre-PID Operation Setting Details
Code
AP.34 Pre-PID Freq
Description
When general acceleration is required, the frequency up to general acceleration
is entered. If Pre-PID Freq is set to 30Hz, the general operation continues until the
control variable (PID feedback variable) set at AP. 35 is exceeded.
AP.35 Pre-PID Exit, When the feedback variable of the PID controller is higher than the value set at
AP.36 Pre-PID Delay AP. 35, the PID control operation begins. However, when a value is set for AP.36
(Pre-PID Delay) and a feedback variable less than the value set at AP.35 is
maintained for a set amount of time, the “pre-PID Fail” fault trip will occur and the
output will be blocked.
5.8.3 PID Operation Sleep Mode
If the operation continues at a frequency lower than the set condition for PID operation, the PID
136
Learning Advanced Features
operation sleep mode starts. When PID operation sleep mode starts, the operation will stop until
the feedback exceeds the parameter value set at AP.39 (PID WakeUp Lev).
PID Operation Sleep Mode Setting Details
Code
AP.37 PID Sleep DT,
AP.38 PID Sleep Freq
Description
If an operation frequency lower than the value set at AP.38 is maintained for
the time set at AP.37, the operation stops and the PID operation sleep mode
starts.
AP.39 PID WakeUp Lev, Starts the PID operation when in PID operation sleep mode.
AP.40 PID WakeUp Mod If AP. 40 is set to 0 (Below Level), the PID operation starts when the feedback
variable is less than the value set as the AP. 39 parameter setting. If AP. 40 is set
to 1 (Above Level), the operation starts when the feedback variable is higher
than the value set at AP. 39. If AP. 40 is set to 2 (Beyond Level), the operation
starts when the difference between the reference value and the feedback
variable is greater than the value set at AP. 39.
5.8.4 PID Switching (PID Openloop)
When one of the multi-function terminals (In. 65-69) is set to 23 (PID Openloop) and is turned on,
the PID operation stops and is switched to general operation. When the terminal turns off, the PID
operation starts again.
137
Learning Advanced Features
5.9 Auto Tuning
The motor parameters can be measured automatically and can be used for auto torque boost or
sensorless vector control.
Example - Auto Tuning Based on 0.75kW, 200V Motor
Group Code Name
LCD Display
Parameter Setting
dr
14
Motor capacity
Motor Capacity 1
0.75 kW
bA
11
Motor pole
Pole Number
4
number
12
Rated slip speed
Rated Slip
40
13
Rated motor
Rated Curr
3.6
current
14
Motor no-load
Noload curr
1.6
current
15
Motor rated
Rated Volt
220
voltage
16
Motor efficiency
Efficiency
72
20
Auto tuning
Auto Tuning
0
None
21
Stator resistance
Rs
26.00
22
23
24
138
Leakage
inductance
Stator inductance
Lsigma
179.4
Ls
1544
Rotor time
constant
Tr
145
Setting Range
0-15
2-48
Unit
-
0-3000
1.0-1000.0
rpm
A
0.5-1000.0
A
170-480
V
70-100
Depends on the
motor setting
Depends on the
motor setting
Depends on the
motor setting
25-5000
%
Ω
mH
mH
ms
Learning Advanced Features
Auto Tuning Default Parameter Setting
Motor Capacity Rated Current No-load
(kW)
(A)
Current (A)
200V
0.2
1.1
0.8
0.4
2.4
1.4
0.75 3.4
1.7
1.5
6.4
2.6
2.2
8.6
3.3
3.7
13.8
5.0
5.5
21.0
7.1
7.5
28.2
9.3
11
40.0
12.4
15
53.6
15.5
18.5 65.6
19.0
22
76.8
21.5
400V
0.2
0.7
0.5
0.4
1.4
0.8
0.75 2.0
1.0
1.5
3.7
1.5
2.2
5.0
1.9
3.7
8.0
2.9
5.5
12.1
4.1
7.5
16.3
5.4
11
23.2
7.2
15
31.0
9.0
18.5 38.0
11.0
22
44.5
12.5
Rated Slip
Frequency(Hz)
3.33
3.33
3.00
2.67
2.33
2.33
1.50
1.33
1.00
1.00
1.00
1.00
3.33
3.33
3.00
2.67
2.33
2.33
1.50
1.33
1.00
1.00
1.00
1.00
Stator
Resistance(Ω)
14.0
6.70
2.600
1.170
0.840
0.500
0.314
0.169
0.120
0.084
0.068
0.056
28.00
14.0
7.81
3.52
2.520
1.500
0.940
0.520
0.360
0.250
0.168
0.168
Leakage
Inductance (mH)
40.4
26.9
17.94
9.29
6.63
4.48
3.19
2.844
1.488
1.118
0.819
0.948
121.2
80.8
53.9
27.9
19.95
13.45
9.62
8.53
4.48
3.38
2.457
2.844
Auto Tuning Parameter Setting Details
Code
Description
Select an auto tuning type and run it. Select one of the options and then press the
[ENT] key to run the auto tuning.
Setting
0 None
bA.20 Auto Tuning
1
All (rotating
type)
Function
Auto tuning function is not enabled. Also, if you select
one of the auto tuning options and run it, the parameter
value will revert back to “0” when the auto tuning is
complete.
Measures all motor parameters, including stator
resistance (Rs), stator inductance (Lsigma), no-load
current (Noload Curr), rotor time constant (Tr), etc., while
the motor is rotating. As the motor is rotating while the
139
Learning Advanced Features
Code
Description
parameters are being measured, if the load is connected
to the motor spindle, the parameters may not be
measured accurately. For accurate measurements,
remove the load attached to the motor spindle.
However, note that the rotor time constant (Tr) must be
measured in a stopped position.
2 All (static
Measures all parameters while the motor is in the stopped
type)
position. Measures stator resistance (Rs), stator
inductance (Lsigma), no-load current (Noload Curr), rotor
time constant (Tr), etc., while the motor is in the stopped
position. As the motor is not rotating while the
parameters are measured, the measurements are not
affected when the load is connected to the motor spindle.
However, when measuring parameters, do not rotate the
motor spindle on the load side.
3 Rs+Lsigma
Measures parameters while the motor is rotating. The
(rotating
measured motor parameters are used for auto torque
type)
boost or sensorless vector control.
6 Tr (static
Measures the rotor time constant (Tr) with the motor in
type)
the stopped position and Control Mode (dr.09) is set to IM
Sensorless.
Displays motor parameters measured by auto tuning. For parameters that are not
bA.14 Noload Curr,
included in the auto tuning measurement list, the default setting will be
bA.21 Rs–bA.24 Tr
displayed.
• Perform auto tuning ONLY after the motor has completely stopped running.
• Before you run auto tuning, check the motor pole number, rated slip, rated current, rated volage
and efficiency on the motor’s rating plate and enter the data. The default parameter setting is used
for values that are not entered.
• When measuring all parameters after selecting 2 ( All - static type) at bA20: compared with rotation
type auto tuning where parameters are measured while the motor is rotating, parameter values
measured with static auto tuning may be less accurate. Inaccuracy of the measured parameters
may degrade the performance of sensorless operation. Therefore, run static type auto tuning by
selecting 2 (All) only when the motor cannot be rotated (when gearing and belts cannot be
separated easily, or when the motor cannot be separated mechanically from the load).
140
Learning Advanced Features
5.10 Sensorless Vector Control
Sensorless vector control is an operation to carry out vector control without the rotation speed
feedback from the motor but with an estimation of the motor rotation speed calculated by the
inverter. Compared to V/F control, sensorless vector control can generate greater torque at a lower
level of current.
Group
dr
In
Cn
Code
09
14
Name
Control mode
Motor capacity
18
11
12
Base frequency
Motor pole number
Rated slip speed
13
Rated motor current
14
Motor no-load current
15
16
Rated motor voltage
Motor efficiency
20
09
10
20
Auto tuning
Pre-Excite time
Pre-Excite amount
Sensorless second gain
display setting
Sensorless speed
controller proportional
gain1
Sensorless speed
controller integral gain 1
Sensorless speed
controller proportional
gain 2
Sensorless speed
controller integral gain 2
Flux estimator
proportional gain
Flux estimator integral
gain
Speed estimator
proportional gain
Speed estimator
integral gain1
21
22
23*
24*
26*
27*
28*
29*
LCD Display
Parameter Setting
Control Mode 4 IM Sensorless
Motor Capacity Depends on the
motor capacity
Base Freq
60
Pole Number 4
Rated Slip
Depends on the
motor capacity
Rated Curr
Depends on the
motor capacity
Noload curr
Depends on the
motor capacity
Rated Volt
220/380/440/480
Efficiency
Depends on the
motor capacity
Auto Tuning
1
All
PreExTime
1.0
Flux Force
100.0
SL2 G View Sel 1
Yes
Setting Range Unit
0-15
30-400
2-48
0-3000
Hz
Hz
1-1000
A
0.5-1000
A
170-480
70-100
V
%
0.0-60.0
100.0-300.0
0-1
s
%
-
ASR-SL P Gain1 Depends on the
motor capacity
0-5000
%
ASR-SL I Gain1 Depends on the
motor capacity
ASR-SL P Gain2 Depends on the
motor capacity
10-9999
ms
1-1000
%
1-1000
%
10-200
%
10-200
%
0-32767
-
100-1000
-
ASR-SL I Gain2 Depends on the
motor capacity
Flux P Gain
Depends on the
motor capacity
Flux I Gain
Depends on the
motor capacity
S-Est P Gain1
Depends on the
motor capacity
S-Est I Gain1
Depends on the
motor capacity
141
Learning Advanced Features
Group
Name
LCD Display
Parameter Setting
Speed estimator
S-Est I Gain2
Depends on the
integral gain2
motor capacity
31*
Sensorless current
ACR SL P Gain 75
controller proportional
gain
32*
Sensorless current
ACR SL I Gain 120
controller integral gain
52
Torque controller
Torque Out LPF 0
output filter
53
Torque limit setting
Torque Lmt Src 0
Keypad-1
54
Forward direction
FWD +Trq Lmt 180.0
retrograde torque limit
55
Forward direction
FWD -Trq Lmt 180.0
regenerative torque
limit
56
Reverse direction
REV +Trq Lmt 180.0
retrograde torque limit
57
Reverse direction
REV -Trq Lmt
180.0
regenerative torque
limit
85*
Flux estimator
Flux P Gain1
370
proportional gain 1
86*
Flux estimator
Flux P Gain2
0
proportional gain 2
87*
Flux estimator
Flux P Gain3
100
proportional gain 3
88*
Flux estimator integral Flux I Gain1
50
gain 1
89*
Flux estimator integral Flux I Gain2
50
gain2
90*
Flux estimator integral Flux I Gain3
50
gain 3
91*
Sensorless voltage
SL Volt Comp1 30
compensation 1
92*
Sensorless voltage
SL Volt Comp2 20
compensation 2
93*
Sensorless voltage
SL Volt Comp3 20
compensation 3
94*
Sensorless field
SL FW Freq
95.0
weakening start
frequency
95*
Sensorless gain
SL Fc Freq
2.00
switching frequency
*Cn.23-32 and Cn.85-95 can be displayed only when Cn.20 is set to 1 (Yes).
142
Code
30*
Setting Range Unit
100-10000
10-1000
-
10-1000
-
0-2000
ms
0-12
0.0-200.0
%
0.0-200.0
%
0.0-200.0
%
0.0-200.0
%
100-700
-
0-100
-
0-500
-
0-200
-
0-200
-
0-200
-
0-60
-
0-60
-
0-60
-
80.0-110.0
%
0.00-8.00
Hz
Learning Advanced Features
For high-performance operation, the parameters of the motor connected to the inverter output must
be measured. Use auto tuning (bA.20 Auto Tuning) to measure the parameters before you run
sensorless vector operation. To run high-performance sensorless vector control, the inverter and the
motor must have the same capacity. If the motor capacity is smaller than the inverter capacity by more
than two levels, control may be inaccurate. In that case, change the control mode to V/F control. When
operating with sensorless vector control, do not connect multiple motors to the inverter output.
5.10.1 Sensorless Vector Control Operation Setting
To run sensorless vector control operation, set dr.09 (Control Mode) to 4 (IM sensorless), select the
capacity of the motor you will use at dr.14 (Motor Capacity), and select the appropriate codes to
enter the rating plate information of the motor.
Code
drv.18 Base Freq
bA.11 Pole Number
bA.12 Rated Slip
bA.13 Rated Curr
bA.15 Rated Volt
bA.16 Efficiency
Input (Motor Rating Plate Information)
Base frequency
Motor pole number
Rated slip
Rated current
Rated voltage
Efficiency (when no information is on the rating plate, default values are used.)
After setting each code, set bA.20 (Auto tuning) to 1 (All - rotation type) or 2 (All - static type) and
run auto tuning. Because rotation type auto tuning is more accurate than static type auto tuning,
select 1 (All - rotation type) and run auto tuning if you can rotate the motor.
Note
Excitation Current
A motor can be operated only after magnetic flux is generated by current flowing through a coil. The
power supply used to generate the magnetic flux is called the excitation current. The stator coil that is
used with the inverter does not have a permanent magnetic flux, so the magnetic flux must be
generated by supplying an excitation current to the coil before operating the motor.
143
Learning Advanced Features
Sensorless Vector Control Operation Setting Details
Code
Cn.20 SL2 G View Sel
Cn.09 PreExTime
Cn.10 Flux Force
Description
Setting
0
No
1
Yes
Function
Does not display sensorless (II) vector control gain code.
Allows the user to set various gains applied when the motor
rotates faster than medium speed (approx. 1/2 of the base
frequency) through sensorless (II) vector control.
Codes available when setting to 1 (Yes): Cn.23 ASR-SL P Gain2/Cn.24 ASR-SL I
Gain2/Cn.26 Flux P Gain/Cn.27 Flux I Gain Gain3/Cn.28 S-Est P Gain1/Cn.29 SEst I Gain1/Cn.30 S-Est I Gain1/Cn.31 ACR SL P Gain/Cn.32 ACR SL I Gain
Sets pre-excitation time. Pre-excitation is used to start the operation after
performing excitation up to the motor’s rated flux.
Allows for the reduction of the pre-excitation time. The motor flux increases
up to the rated flux with the time constant as shown in the following figure.
To reduce the time taken to reach the rated flux, a higher motor flux base
value than the rated flux must be provided. When the magnetic flux reaches
the rated flux, the provided motor flux base value is reduced.
Cn.11 Hold Time
Sets the zero-speed control time (hold time) in the stopped position. The
output is blocked after zero-speed operation for a set period when the motor
decelerates and is stopped by a stop command.
Cn.21 ASR-SL P Gain1,
Cn.22 ASR-SL I Gain1
Changes the speed PI controller gain during sensorless vector control. For a PI
speed controller, P gain is a proportional gain for the speed deviation. If
speed deviation becomes higher than the torque the output command
144
Learning Advanced Features
Code
Cn.23 ASR-SL P Gain2,
Cn.24 ASR-SL I Gain2
Description
increases accordingly. As the value increases, the faster the speed deviation
decreases. The speed controller I gain is the integral gain for speed deviation.
It is the time taken for the gain to reach the rated torque output command
while a constant speed deviation continues. The lower the value becomes,
the faster the speed deviation decreases.
Appears only when 1 (Yes) is selected for Cn.20 (SL2 G view Sel). The speed
controller gain can be increased to more than the medium speed for
sensorless vector control. Cn.23 ASR-SL P Gain2 is set as a percentage of the
low speed gain Cn.21 ASR-SL P Gain1 - if P Gain 2 is less than 100.0%, the
responsiveness decreases. For example, if Cn.21 ASR-SL P Gain1 is 50.0% and
Cn.23 ASR-SL P Gain2 is 50.0%, the actual middle speed or faster speed
controller P gain is 25.0%.
Cn.24 ASR-SL I Gain2 is also set as a percentage of the Cn.22 ASR-SL I Gain1.
For I gain, the smaller the I gain 2 becomes, the slower the response time
becomes. For example, if Cn.22 ASR-SL I Gain1 is 100ms and Cn.24 ASR-SL I
Gain2 is 50.0%, the middle speed or faster speed controller I gain is 200 ms.
The controller gain is set according to the default motor parameters and
Acc/Dec time.
Cn.26 Flux P Gain,
Sensorless vector control requires the rotor flux estimator. For the adjustment
of flux estimator gain, refer to 5.10.2 Sensorless Vector Control Operation Guide
Cn.27 Flux I Gain,
Cn.85-87 Flux P Gain13, to on page 146.
Cn.88-90 Flux I Gain1-3
Cn.28 S-Est P Gain1,
Speed estimator gain for sensorless vector control can be adjusted. To adjust
speed estimator gain, refer 5.10.2 Sensorless Vector Control Operation Guide to
Cn.29 S-Est I Gain1,
Cn.30 S-Est I Gain2
on page 146.
Cn.31 ACR SL P Gain,
Adjusts the P and I gains of the sensorless current controller. For the
Cn.32 ACR SL I Gain
adjustment of sensorless current controller gain, refer to 5.10.2 Sensorless
Vector Control Operation Guide to on page 146.
Cn.53 Torque Lmt Src
Select a type of torque limit setting, using the keypad, terminal block analog
input (V1 and I2) or communication power. When setting torque limit, adjust
the torque size by limiting the speed controller output. Set the retrograde
and regenerative limits for forward and reverse operation.
Setting
Function
0
KeyPad-1
Sets the torque limit with the keypad.
1
KeyPad-2
2
V1
Sets the torque limit with the analog input
terminal of the terminal block.
4
V2
5
I2
6
Int 485
Sets the torque limit with the communication
terminal of the terminal block.
8
FieldBus
Sets the torque limit with the FieldBus
communication option.
9
UserSeqLink This enters the torque reference by linking the
common area with the user sequence output.
145
Learning Advanced Features
Code
Cn.54 FWD +Trq Lmt
Cn.55 FWD –Trq Lmt
Cn.56 REV +Trq Lmt
Cn.57 REV –Trq Lmt
In.02 Torque at 100%
Cn.91-93
SL Volt Comp1-3
Cn.52 Torque Out LPF
Description
12
Pulse
Sets the torque limit with the pulse input of the
terminal block.
The torque limit can be set up to 200% of the rated motor torque.
Sets the torque limit for forward retrograde (motoring) operation.
Sets the torque limit for forward regenerative operation.
Sets the torque limit for reverse retrograde (motoring) operation.
Sets the torque limit for reverse regenerative operation.
Sets the maximum torque. For example, if In.02 is set to 200% and an input
voltage (V1) is used, the torque limit is 200% when 10V is entered. However,
when the VI terminal is set up with the factory default setting and the torque
limit setup uses a method other than the keypad, check the parameter
settings in the monitor mode. In the Config Mode CNF.21-23 (only displayed
when using LCD keypad), select 21(Torque limit).
Adjust output voltage compensation values for sensorless vector control. For
output voltage compensation, refer to 5.10.2 Sensorless Vector Control
Operation Guide to on page 146.
Sets the time constant for torque command by setting the torque controller
output filter.
Adjust the controller gain according to the load’s characteristics. However, the motor can overheat or
the system may become unstable depending on the controller gain settings.
Note
Speed controller gain can improve the speed control waveform while monitoring the changes in
speed. If speed deviation does not decrease quickly, increase the speed controller P gain or decrease I
gain (time in ms). However, if the P gain is increased too high or I gain is decreased too low, severe
vibration may occur. If oscillation occurs in the speed waveform, try to increase I gain (ms) or reduce P
gain to adjust the waveform.
5.10.2 Sensorless Vector Control Operation Guide
Problem
The amount of starting
torque is insufficient.
146
Relevant function code
bA.24 Tr
Cn.09 PreExTime
Cn.10 Flux Force
Cn.31 ACR SL P Gain
Cn.54–57 Trq Lmt
Cn.93 SL Volt Comp3
Troubleshooting
Set the value of Cn. 90 to be more than 3 times
the value of bA.24 or increase the value of Cn.10
by increments of 50%. If the value of Cn.10 is
high, an overcurrent trip at start can occur. In
this case, reduce the value of Cn.31 by
decrements of 10.
Learning Advanced Features
Problem
Relevant function code Troubleshooting
Increase the value of Trg Lmt (Cn.54-57) by
increments of 10%.
Increase the value of Cn.93 by increments of 5.
The output frequency is
higher than the base
frequency during no-load
operation at low speed
(10Hz or lower).
The motor hunts or the
amount of torque is not
sufficient while the load is
increasing at low speed
(10Hz or lower).
Cn.91 SL Volt Comp1
Decrease the value of Cn.91 by decrements of 5.
Cn.04 Carrier Freq
Cn.21 ASR-SL P Gain1
Cn.22 ASR-SL I Gain1
Cn.93 SL Volt Comp3
If the motor hunts at low speed, increase the
value of Cn.22 by increments of 50m/s, and if
hunting does not occur, increase the value of
Cn.21 to find the optimal operating condition.
If the amount of torque is insufficient, increase
the value of Cn.93 by increments of 5.
If the motor hunts or the amount of torque is
insufficient in the 5-10Hz range, decrease the
value of Cn.04 by increments of 1kHz (if Cn.04 is
set to exceed 3kHz).
The motor hunts or
overcurrent trip occurs in
Cn.92 SL Volt Comp2
Cn.93 SL Volt Comp3
regenerative load at low
speed (10 Hz or lower).
Over voltage trip occurs due
to sudden
acceleration/deceleration or
sudden load fluctuation
Cn.24 ASR-SL I Gain2
(with no brake resistor
installed) at mid speed
(30Hz or higher).
Over current trip occurs due
to sudden load fluctuation Cn.54–57 Trq Lmt
at high speed (50 Hz or
Cn.94 SL FW Freq
higher).
The motor hunts when the
Cn.22 ASR-SL I Gain1
load increases from the base
Cn.23 ASR-SL I Gain2
frequency or higher.
The motor hunts as the load Cn.28 S-Est P Gain1
Cn.29 S-Est I Gain1
increases.
Increase the value of Cn.92-93 by increments of
5 at the same time.
Decrease the value of Cn.2 by decrements of
5%.
Decrease the value of Cn.54-57 by decrements
of 10% (if the parameter setting is 150% or
higher).
Increase/decrease the value of Cn.94 by
increments/decrements of 5% (set below
100%).
Increase the value of Cn.22 by increments of
50m/s or decrease the value of Cn.24 by
decrements of 5%.
At low speed (10Hz or lower), increase the value
of Cn.29 by increments of 5.
At mid speed (30 Hz or higher), increase the
value of Cn.28 by increments of 500. If the
parameter setting is too extreme, over current
147
Learning Advanced Features
Problem
Relevant function code Troubleshooting
trip may occur at low speed.
The motor speed level
Select 6. Tr (static type) from bA. 24 and run
bA.20 Auto Tuning
decreases.
bA.24 Rotor time constant tuning.
*Hunting: Symptom of irregular vibration of the equipment.
5.11 Kinetic Energy Buffering Operation
When the input power supply is disconnected, the inverter’s DC link voltage decreases, and a low
voltage trip occurs blocking the output. A kinetic energy buffering operation uses regenerative
energy generated by the motor during the blackout to maintain the DC link voltage. This extends
the time for a low voltage trip to occur, after an instantaneous power interruption.
Group Code Name
77
78
Cn
79
80
81
82
83
In
65
~71
LCD Display
Kinetic energy buffering
selection
Kinetic energy buffering
start level
Kinetic energy buffering
stop level
Energy buffering P gain
Energy buffering
I gain
Energy buffering
Slip gain
Energy buffering
acceleration time
KEB Select
Parameter Setting Setting Range Unit
0
None
0~2
1
KEB-1
2
KEB-2
KEB Start Lev
125.0
110.0~200.0
KEB Stop Lev
130.0
Cn-78~210.0 %
KEB P Gain
1000
0-20000
KEB I Gain
500
1~20000
KEB Slip Gain
30.0
0~2000.0%
KEB Acc Time
10.0
0.0~600.0(s)
Pn terminal function setting Pn Define
52
KEB-1 Select -
%
-
Kinetic Energy Buffering Operation Setting Details
Code
Cn.77 KEB Select
148
Description
Select the kinetic energy buffering operation when the input power is
disconnected. If 1 or 2 is selected, it controls the inverter's output frequency
and charges the DC link (inverter's DC part) with energy generated from the
motor. Also, this function can be set using a terminal input. From the Pn
terminal function settings, select KEB-1 Select, and then turn on the terminal
block to run the KEB-1 function. (If KEB-1 Select is selected, KEB-1 or KEB-2
cannot be set in Cn-77.)
Learning Advanced Features
Code
Description
Setting
0 None
1
KEB-1
2
KEB-2
Function
General deceleration is carried out until a low voltage trip
occurs.
When the input power is blocked, it charges the DC link with
regenerated energy. When the input power is restored, it
restores normal operation from the energy buffering
operation to the frequency reference operation. KEB Acc
Time in Cn-89 is applied as the operation frequency
acceleration time when restoring to the normal operation.
When the input power is blocked, it charges the DC link with
regenerated energy. When the input power is restored, it
changes from the energy buffering operation to the
deceleration stop operation. The Dec Time in dr-04 is applied
as the operation frequency deceleration time during the
deceleration stop operation.
[KEB-1]
[KEB-2]
149
Learning Advanced Features
Code
Cn.78 KEB Start Lev,
Cn.79 KEB Stop Lev
Cn.80 KEB P Gain
Cn.81 KEB I Gain
Cn.82 KEB Slip Gain
Cn.83 KEB Acc Time
Description
Sets the start and stop points of the kinetic energy buffering operation. The set
values must be based on the low voltage trip level as 100% and the stop level
(Cn. 79) must be set higher than the start level (Cn.78).
The controller P Gain is for maintaining the voltage of the DC power
section during thekinetic energy buffering operation. Change the setting
value when a low voltage trip occurs right after a power failure.
The controller I Gain is for maintaining the voltage of the DC power section
during the kinetic energy buffering operation. Sets the gain value to
maintain the frequency during the kinetic energy buffering operation until
the inverter stops.
The slip gain is for preventing a low voltage trip due to load when the kinetic
energy buffering operation start from blackout.
Set the acceleration time of operation frequency when it restores normal
operation from the kinetic energy buffering operation under the input power
is restored.
Depending on the duration of Instantaneous power interruptions and the amount of load inertia, a low
voltage trip may occur even during a kinetic energy buffering operation. Motors may vibrate during
kinetic energy buffering operation for some loads except variable torque load (for example, fan or
pump loads).
150
Learning Advanced Features
5.12 Torque Control
When the motor output torque is greater than the load, the speed of motor becomes too fast. To
prevent this, set the speed limit. (The torque control function cannot be used while the speed limit
function is running.)
The torque control function controls the motor to maintain the preset torque value. The motor
rotation speed maintains the speed constantly when the output torque and load torque of the
motor keep a balance. Therefore, the motor rotation speed is decided by the load when
controlling the torque.
Torque control setting option
Group Code
Name
LCD Display
Parameter Setting
09
Control mode
Control Mode
4
IM Sensorless
dr
10
Torque control
Torque Control
1
Yes
Torque control setting option details
Group
Code
Name
Parameter Setting
02
Cmd Torque
0.0
Unit
Unit
%
08
Trq Ref Src
0
Keypad-1
-
09
Control Mode
4
IM Sensorless
-
10
Torque Control
1
Yes
-
22
(+) Trq Gain
-
50-150
%
23
(-) Trq Gain
-
50-150
%
20
Auto Tuning
1
Yes
-
62
Speed LmtSrc
0
Keypad-1
-
63
FWD Speed Lmt
-
60.00
Hz
64
REV Speed Lmt
-
60.00
Hz
65
Speed Lmt Gain
-
100
%
In
65-69
Px Define
35
Speed/Torque
-
OU
31-33
Relay x or Q1
27
Torque Dect
-
OU
59
TD Level
-
100
%
OU
60
TD Band
-
5.0
%
dr
bA
Cn
151
Learning Advanced Features
Note
• To operate in torque control mode, basic operation conditions must be set. For more information,
refer to Sensorless Vector Control Operation Guide to on page 146.
• The torque control cannot be used in a low speed regeneration area or low load conditions.
• If you change the rotation direction while operating, an over current trip or low speed reverse
direction error will be generated.
Torque reference setting option
The torque reference can be set using the same method as the target frequency setting. If Torque
Control Mode is selected, the target frequency is not used.
Group Code Name
LCD Display
dr
08
Torque reference setting
Trq Ref Src
02
Torque command
Cmd Torque
Parameter Setting
0 Keypad-1
1 Keypad-2
2 V1
4 V2
5 I2
6 Int 485
8 FieldBus
9 UserSeqLink
12 Pulse
-180-180
Unit
-
%
0 Keypad-1
1 Keypad-2
2 V1
62
Speed limit setting
Speed LmtSrc
Cn
4 V2
5 I2
-
6 Int 485
7 FieldBus
8 UserSeqLink
63
Positive-direction speed limit
64
65
In
02
CNF*
21
152
FWD Speed Lmt
0-Maximum frequency
Hz
Negative-direction speed limit REV Speed Lmt
0- Maximum frequency
Hz
Speed limit operation gain
Torque at maximum analog
input
Monitor mode display 1
Speed Lmt Gain
100-5000
%
Torque at 100%
-12.00-12.00
mA
Monitor Line-1
1 Speed
Learning Advanced Features
Group Code Name
22
Monitor mode display 2
23
Monitor mode display 3
LCD Display
Monitor Line-2
Parameter Setting
2 Output Current
Monitor Line-3
3 Output Voltage
Unit
* For LCD keypad
Torque reference setting details
Code
Description
Select an input method to use as the torque reference.
Parameter Setting
0
Keypad-1
1
Keypad-2
2,4,5 V1,V2,I2
dr-08
Cn-02
Description
Sets the torque reference with the keypad.
Sets the torque reference using the voltage or current
input terminal of the terminal block.
6
Int 485
Sets the torque reference with the communication
terminal of the terminal block.
8
FieldBus
Input the torque reference using the inverter's
FieldBus option.
9
UserSeqLink Enters torque reference by linking common area
with the user sequence output.
12
Pulse
Input the torque reference using the pulse input on
the inverter's terminal block.
The torque reference can be set up to 180% of the maximum rated motor
torque.
In-02
Sets the maximum torque. You can check the set maximum torque in Monitor
(MON) mode.
CNF-21–23
Select a parameter from the Config(CNF) mode and then select(19 Torque Ref).
Speed limit details
Code
Description
Select a method for setting the speed limit value.
Cn-62
Cn-63
Parameter Setting
0
Keypad-1
1
Keypad-2
2,4,5 V1,V2,I2
6
Int 485
7
FieldBus
8
UserSeqLink
Description
Sets the speed limit value with the keypad.
Sets the speed limit value using the same method as
the frequency command. You can check the setting in
Monitor (MON) mode.
Sets the positive-direction speed limit value.
153
Learning Advanced Features
Code
Cn-64
Cn-65
CNF-21~23
Description
Sets the negative-direction speed limit value.
Sets the decrease rate of the torque reference when the motor speed exceeds
the speed limit value.
Select a parameter from the Config (CNF) mode and then select21 Torque Bias.
Select a multi-functional input terminal to set as the (35 Speed/Torque). If you
turn on the terminal while the operation is stopped, it operates in vector control
(speed limit) mode.
In 65-71
5.13 Energy Saving Operation
5.13.1 Manual Energy Saving Operation
If the inverter output current is lower than the current which is set at bA.14 (Noload Curr), the
output voltage must be reduced as low as the level set at Ad.51 (Energy Save). The voltage before
the energy saving operation starts will become the base value of the percentage. Manual energy
saving operation will not be carried out during acceleration and deceleration.
Group
Code
50
Ad
51
Name
Energy saving
operation
Energy saving
amount
LCD Display
Parameter Setting
Setting Range
Unit
E-Save Mode
1
-
-
Energy Save
30
0–30
%
Manual
5.13.2 Automatic Energy Saving Operation
The amount of energy saving can be automatically calculated based on the rated motor current
(bA.13) and the no-load current (bA.14). From the calculations, the output voltage can be adjusted.
154
Learning Advanced Features
Group
Code
Name
LCD Display
Parameter Setting
Setting Range
Unit
Ad
50
Energy saving
operation
E-Save Mode
2
-
-
Auto
If operation frequency is changed or acceleration and /deceleration is carried out by a stop command
during the energy saving operation, the actual Acc/Dec time may take longer than the set Acc/Dec
time due to the time required to return to the gerneral operation from the energy saving operation.
5.14 Speed Search Operation
This operation is used to prevent fault trips that can occur while the inverter output voltage is
disconnected and the motor is idling. Because this feature estimates the motor rotation speed
based on the inverter output current, it does not give the exact speed.
Group
Code
70
71
72
Cn
73
74
75
31
OU
33
*Displayed as
Name
Speed search mode
selection
Speed search
operation selection
Speed search
reference current
Speed search
proportional gain
Speed search integral
gain
Output block time
before speed search
Multi-function relay 1
item
Multi-function output
1 item
LCD Display
Parameter Setting
SS Mode
0
Speed Search
0000*
SS Sup-Current -
Setting Range Unit
Flying Start-1 -
Below 75kW
-
-
bit
80–200
%
SS P-Gain
100
0–9999
-
SS I-Gain
200
0–9999
-
SS Block Time
1.0
0–60
sec
Relay 1
19
Speed Search -
-
Q1 Define
on the Keypad.
155
Learning Advanced Features
Speed Search Operation Setting Details
Code
Description
Select a speed search type.
Setting
0
Flying Start1
Cn.70 SS Mode
Cn.71 Speed Search
156
Function
The speed search is carried out as it controls the
inverter output current during idling below the
Cn.72 (SS Sup-Current) parameter setting. If the
direction of the idling motor and the direction of
operation command at restart are the same, a stable
speed search function can be performed at about 10
Hz or lower. However, if the direction of the idling
motor and the direction of operation command at
restart are different, the speed search does not
produce a satisfactory result because the direction of
idling cannot be established.
1
Flying Start- The speed search is carried out as it PI controls the
2
ripple current which is generated by the counter
electromotive force during no-load rotation.
Because this mode establishes the direction of the
idling motor (forward/reverse), the speed search
function is stable regardless of the direction of the
idling motor and direction of operation command.
However because the ripple current is used which is
generated by the counter electromotive force at idle
(the counter electromotive force is proportional to
the idle speed), the idle frequency is not determined
accurately and re-acceleration may start from zero
speed when the speed search is performed for the
idling motor at low speed (about 10 - 15 Hz, though
it depends on motor characteristics).
Speed search can be selected from the following 4 options. If the top display
segment is on it is enabled (On), and if the bottom segment is on it is disabled
(Off).
Item
Keypad
LCD keypad
Bit Setting On Status
Bit setting Off Status
Learning Advanced Features
Code
Description
Type and Functions of Speed Search Setting
Setting
Function
bit4
bit3
bit2
bit1

Speed search for general acceleration

Initialization after a fault trip

Restart after instantaneous power
interruption

Starting with power-on
• Speed search for general acceleration: If bit 1 is set to 1 and the
inverter operation command runs, acceleration starts with speed search
operation. When the motor is rotating under load, a fault trip may occur if
the operation command is run for the inverter to provide output voltage.
The speed search function prevents such fault trip from occurring.
• Initialization after a fault trip: If Bit 2 is set to 1 and Pr.08 (RST Restart) is
set to 1 (Yes), the speed search operation automatically accelerates the
motor to the operation frequency used before the fault trip, when the
[Reset] key is pressed (or the terminal block is initialized) after a fault trip.
• Automatic restart after reset of a fault trip: If bit 3 is set to 1, and if a
low voltage trip occurs due to a power interruption but the power is
restored before the internal power shuts down, the speed search
operation accelerates the motor back to its frequency reference before
the low voltage trip.
If an instantaneous power interruption occurs and the input power is
disconnected, the inverter generates a low voltage trip and blocks the
output. When the input power returns, the operation frequency before the
low voltage trip and the voltage is increased by the inverter’s inner PI
control.
If the current increases above the value set at Cn.72, the voltage stops
increasing and the frequency decreases (t1 zone). If the current decreases
below the value set at Cn.27, the voltage increases again and the
frequency stops decelerating (t2 zone). When the normal frequency and
voltage are resumed, the speed search operation accelerates the motor
back to its frequency reference before the fault trip.
157
Learning Advanced Features
Code
Description
• Starting with power-on: Set bit 4 to 1 and Ad.10 (Power-on Run) to 1
(Yes). If inverter input power is supplied while the inverter operation
command is on, the speed search operation will accelerate the motor up
to the frequency reference.
Cn.72 SS Sup-Current
Cn.73 SS P/I-Gain,
Cn.75 SS Block Time
The amount of current flow is controlled during speed search operation based
on the motor’s rated current. If Cn.70 (SS mode) is set to 1 (Flying Start-2), this
code is not visible.
The P/I gain of the speed search controller can be adjusted. If Cn.70 (SS Mode)
is set to 1 (Flying Start-2), different factory defaults based on motor capacity
are used and defined in dr.14 (Motor Capacity).
Note
• If operated within the rated output, the S100 series inverter is designed to withstand instantaneous
power interruptions within 15 ms and maintain normal operation. Based on the rated heavy load
current, safe operation during an instantaneous power interruption is guaranteed for 200V and
400V inverters (whose rated input voltages are 200-230 VAC and 380-460 VAC respectively).
• The DC voltage inside the inverter may vary depending on the output load. If the power
interruption time is longer than 15 ms, a low voltage trip may occur.
158
Learning Advanced Features
When operating in sensorless II mode while the starting load is in free-run, the speed search function
(for general acceleration) must be set for smooth operation. If the speed search function is not set, an
overcurrent trip or overload trip may occur.
5.15 Auto Restart Settings
When inverter operation stops due to a fault and a fault trip is activated, the inverter automatically
restarts based on the parameter settings.
Group
Pr
Code
08
09
10
71
72
Cn
73
74
75
*Displayed as
Name
Select start at trip reset
Auto restart count
Auto restart delay time
Select speed search
operation
Speed search startup current
Speed search proportional
gain
Speed search integral gain
Output block time before
speed search.
LCD Display
RST Restart
Retry Number
Retry Delay
Parameter Setting
0
No
0
1.0
Setting Range
0–1
0–10
0.0–60.0
Unit
s
Speed Search -
0000*–1111
bit
SS SupCurrent
150
80–200
%
SS P-Gain
100
0–9999
SS I-Gain
200
0–9999
SS Block Time 1.0
0.0–60.0
s
on the keypad.
Auto Restart Setting Details
Code
Description
Only operates when Pr.08 (RST Restart) is set to 1(Yes). The number of attempts
to try the auto restart is set at Pr.09 (Auto Restart Count).
If a fault trip occurs during operation, the inverter automatically restarts after
the set time programmed at Pr.10 (Retry Delay). At each restart, the inverter
counts the number of tries and subtracts it from the number set at Pr.09 until
Pr.08 RST Restart,
the retry number count reaches 0.
Pr.09 Retry Number,
After an auto restart, if a fault trip does not occur within 60 sec, it will increase
Pr.10 Retry Delay
the restart count number. The maximum count number is limited by the
number set at Pr.09 (Auto Restart Count).
If the inverter stops due to low voltage, emergency stop (Bx), inverter
overheating, or hardware diagnosis, an auto restart is not activated. At auto
restart, the acceleration options are identical to those of speed search
159
Learning Advanced Features
Code
Description
operation. Codes Cn.72–75 can be set based on the load. Information about the
speed search function can be found at 5.14 Speed Search Operation on page 155.
[Example of auto restart with a setting of 2]
If the auto restart number is set, be careful when the inverter resets from a fault trip. The motor may
automatically start to rotate.
5.16 Operational Noise Settings (carrier frequency
settings)
Group
Cn
Code
04
Name
Carrier Frequency
LCD Display
Carrier Freq
Parameter Setting
3.0
05
Switching Mode
PWM* Mode
0
* PWM: Pulse width modulation
160
Setting Range Unit
1.0–15.0
kHz
Normal PWM 0–1
-
Learning Advanced Features
Operational Noise Setting Details
Code
Description
Adjust motor operational noise by changing carrier frequency settings. Power
transistors (IGBT) in the inverter generate and supply high frequency switching
voltage to the motor. The switching speed in this process refers to the carrier
Cn.04 Carrier Freq
frequency. If the carrier frequency is set high, it reduces operational noise from the
motor, and if the carrier frequency is set low, it increases operational noise from
the motor.
The heat loss and leakage current from the inverter can be reduced by changing
the load rate option at Cn.05 (PWM Mode). Selecting 1 (LowLeakage PWM)
reduces heat loss and leakage current, compared to when 0 (Normal PWM) is
selected. However, it increases the motor noise. Low leakage PWM uses 2 phase
PWM modulation mode, which helps minimize degradation and reduces
switching loss by approximately 30%.
Cn.05 PWM Mode
Item
Carrier frequency
1.0kHz
Low Leakage PWM
↑
15kHz
Normal PWM
↓
Heat generation
↓
↑
Noise generation
↓
↑
Leakage current
↓
↑
Motor noise
5.17 2nd Motor Operation
The 2nd motor operation is used when a single inverter switch operates two motors. Using the 2nd
motor operation, a parameter for the 2nd motor is set. The 2nd motor is operated when a multifunction terminal input defined as a 2nd motor function is turned on.
Group Code
Name
Px terminal
65– 69
configuration
LCD Display
Parameter Setting
In
Px Define(Px: P1–P5) 26
Setting Range Unit
2nd Motor 0~54
-
2nd Motor Operation Setting Details
Code
Description
Set one of the the multi-function input terminals (P1–P5) to 26 (2nd Motor) to
display M2 (2nd motor group) group. An input signal to a multi-function terminal
In.65–69 Px Define set to 2nd motor will operate the motor according to the code settings listed
below. However, if the inverter is in operation, input signals to the multi-function
terminals will not read as a 2nd motor parameter.
161
Learning Advanced Features
Code
Description
Pr.50 (Stall Prevent) must be set first, before M2.28 (M2-Stall Lev) settings can be
used. Also, Pr.40 (ETH Trip Sel) must be set first, before M2.29 (M2-ETH 1min) and
M2.30 (M2.ETH Cont) settings.
Parameter Setting at Multi-function Terminal Input on a 2nd Motor
Code
M2.04 Acc Time
M2.05 Dec Time
M2.06 Capacity
M2.07 Base Freq
M2.08 Ctrl Mode
M2.10 Pole Num
M2.11 Rate Slip
M2.12 Rated Curr
M2.13 Noload Curr
M2.14 Rated Volt
Description
Acceleration time
Deceleration time
Motor capacity
Motor base frequency
Control mode
Pole number
Rated slip
Rated current
No-load current
Motor rated voltage
Code
M2.16 Inertia Rt
M2.17 Rs
M2.18 Lsigma
M2.19 Ls
M2.20 Tr
M2.25 V/F Patt
M2.26 Fwd Boost
M2.27 Rev Boost
M2.28 Stall Lev
M2.29 ETH 1min
M2.15 Efficiency
Motor efficiency
M2.30 ETH Cont
Description
Load inertia rate
Stator resistance
Leakage inductance
Stator inductance
Rotor time constant
V/F pattern
Forward torque boost
Reverse torque boost
Stall prevention level
Motor heat protection
1min rating
Motor heat protection
continuous rating
Example - 2nd Motor Operation
Use the 2nd motor operation when switching operation between a 7.5kW motor and a secondary
3.7kW motor connected to terminal P3. Refer to the following settings.
Group Code
In
67
06
M2
08
162
Name
Terminal P3 configuration
Motor capacity
Control mode
LCD Display
P3 Define
M2-Capacity
M2-Ctrl Mode
Parameter Setting
26 2nd Motor
3.7kW
0
V/F
Setting Range
-
Unit
-
Learning Advanced Features
5.18 Supply Power Transition
Supply power transition is used to switch the power source for the motor connected to the
inverter from the inverter output power to the main supply power source (commercial power
source), or vice versa.
Group Code
Name
LCD Display
Px terminal
Px Define(Px: P1–
In
65–69
configuration
P5)
Multi-function relay1
31
Relay1
items
OU
Multi-function output1
33
Q1 Define
items
Supply Power Transition Setting Details
Code
In.65–69 Px Define
Parameter Setting
Setting Range
Unit
16
Exchange
0~54
-
17
Inverter
Line
-
-
18
Comm Line -
-
Description
When the motor power source changes from inverter output to main supply
power, select a terminal to use and set the code value to 16 (Exchange). Power
will be switched when the selected terminal is on. To reverse the transition,
switch off the terminal.
Set multi-function relay or multi-function output to 17 (Inverter Line) or 18
(COMM line). Relay operation sequence is as follows.
OU.31 Realy 1 Define,
OU.33 Q1 Define
163
Learning Advanced Features
5.19 Cooling Fan Control
This function turns the inverter’s heat-sink cooling fan on and off. It is used in situations where the
load stops and starts frequently, or noise free environment is required. The correct use of cooling
fan control can extend the cooling fan’s life.
Group Code
Ad
64
Name
Cooling fan control
LCD Display
FAN Control
Parameter Setting
0
During Run
Setting Range Unit
0–2
-
Cooling Fan Control Detail Settings
Code
Description
Settings
0
During Run
1
Always On
2
Temp
Control
Ad.64 Fan Control
Description
Cooling fan runs when the power is supplied to the
inverter and the operation command is on. The cooling fan
stops when the power is supplied to the inverter and the
operation command is off. When the inverter heat sink
temperature is higher than its set value, the cooling fan
operates automatically regardless of its operation status.
Cooling fan runs constantly if the power is supplied to the
inverter.
With power connected and the run operation command
on, if the setting is in Temp Control, the cooling fan will not
operate unless the temperature in the heat sink reaches
the set temperature.
Note
Despite setting Ad.64 to 0(During Run), if the heat sink temperature reaches a set level by current input
harmonic wave or noise, the cooling fan may run as a protection function.
5.20 Input Power Frequency and Voltage Settings
Select the frequency for inverter input power. If the frequency changes from 60Hz to 50Hz, all
other frequency (or RPM) settings including the maximum frequency, base frequency etc., will
change to 50Hz. Likewise, changing the input power frequency setting from 50Hz to 60Hz will
change all related function item settings from 50Hz to 60Hz.
Group Code
bA
10
164
Name
Input power frequency
LCD Display
60/50 Hz Sel
Parameter Setting Setting Range Unit
0–1
0
60Hz
-
Learning Advanced Features
Set Inverter input power voltage at bA.19. Low voltage fault trip level changes automatically to
the set voltage standard.
Group Code
Name
LCD Display
bA
Input power voltage
AC Input Volt
19
Parameter Setting Setting Range Unit
220V 220
170–240
V
400V 380
320–480
5.21 Read, Write, and Save Parameters
Use read, write and save function parameters on the inverter to copy parameters from the inverter
to the keypad or from the keypad to the inverter.
Group Code Name
46
Parameter read
CNF* 47
Parameter write
48
Parameter save
*Available on LCD keypad only.
LCD Display
Parameter Read
Parameter Write
Parameter Save
Parameter Setting
1
Yes
1
Yes
1
Yes
Setting Range
-
Unit
-
Read, Write, and Save Parameter Setting Details
Code
Description
CNF-46 Parameter Read
Copies saved parameters from the inverter to the keypad. Saved parameters
on the keypad will be deleted and replaced with copied parameters.
Copies saved parameters from the keypad to the inverter. Saved parameters
on the inverter will be deleted and replaced with copied parameters. If an
CNF-47 Parameter Write error occurs during parameter writing, previous saved data will be used. If
there is no saved data on the Keypad, ‘EEP Rom Empty’ message will be
displayed.
As parameters set during communication transmission are saved to RAM,
the setting values will be lost if the power goes off and on. When setting
CNF-48 Parameter Save
parameters during communication transmission, select 1 (Yes) from CNF-48
code to save the set parameter.
5.22 Parameter Initialization
User changes to parameters can be initialized (reset) to factory default settings on all or selected
groups. However, during a fault trip situation or operation, parameters cannot be initialized.
165
Learning Advanced Features
Group
dr*
Code
93
Name
LCD Display
Parameter initialization -
Parameter Setting Setting Range Unit
0–16
0
No
CNF**
40
Parameter initialization Parameter Init
0
No
0–16
* For keypad
** For LCD keypad
Parameter Initialization Setting Details
Code
dr.93,
CNF-40 Parameter Init
Description
Setting
LCD Display
Function
0
No
-
No
1
Initialize all groups
All Grp
2
3
4
5
6
7
8
9
12
13
Initialize dr group
Initialize bA group
Initialize Ad group
Initialize Cn group
Initialize In group
Initialize OU group
Initialize CM group
Initialize AP group
Initialize Pr group
Initialize M2 group
Initialize
OperationGroup
DRV Grp
BAS Grp
ADV Grp
CON Grp
IN Grp
OUT Grp
COM Grp
APP Grp
PRT Grp
M2 Grp
16
Initialize all data. Select 1(All
Grp) and press [PROG/ENT]
key to start initialization. On
completion, 0(No) will be
displayed.
Initialize data by groups.
Select initialize group and
press [PROG/ENT] key to start
initialization. On completion,
0(No) will be displayed.
SPS Grp
5.23 Parameter View Lock
Use parameter view lock to hide parameters after registering and entering a user password.
Group Code
50
CNF*
51
Name
Parameter view lock
Parameter view lock
password
* Available on LCD keypad only.
166
LCD Display
View Lock Set
Parameter Setting
Unlocked
Setting Range
0–9999
View Lock Pw
Password
0–9999
Unit
Learning Advanced Features
Parameter View Lock Setting Details
Code
Description
Register a password to allow access to parameter view lock. Follow the steps
below to register a password.
No
1
CNF-51 View Lock Pw
2
3
4
5
CNF-50 View Lock Set
Procedure
[PROG/ENT] key on CNF-51 code will show the previous password
input window. If registration is made for the first time, enter 0. It is
the factory default.
If a password had been set, enter the saved password.
If the entered password matches the saved password, a new
window prompting the user to enter a new password will be
displayed (the process will not progress to the next stage until the
user enters a valid password).
Register a new password.
After registration, code CNF-51 will be displayed.
To enable parameter view lock, enter a registered password. [Locked] sign
will be displayed on the screen to indicate that parameter view lock is
enabled. To disable parameter view lock, re-enter the password. The [locked]
sign will disappear.
5.24 Parameter Lock
Use parameter lock to prevent unauthorized modification of parameter settings. To enable
parameter lock, register and enter a user password first.
Group Code
94
dr
95
CNF*
Name
Password registration
LCD Display
-
Parameter Setting
-
Setting Range Unit
0–9999
-
Parameter lock password
-
-
0–9999
-
52
Parameter lock
Key Lock Set
Unlocked
0–9999
-
53
Parameter lock password
Key Lock PW
Password
0–9999
-
*Available on LCD keypad only.
Parameter Lock Setting Details
Code
Description
Register a password to prohibit parameter modifications. Follow the
CNF-53 Key Lock Pw
procedures below to register a password.
167
Learning Advanced Features
Code
CNF-52 Key Lock Set
Description
No
Procedures
1
Press the [PROG/ENT] key on CNF-53 code and the saved password
input window will be displayed. If password registration is being
made for the first time, enter 0. It is the factory default.
2
If a saved password has been set, enter the saved password.
3
If the entered password matches the saved password, then a new
window to enter a new password will be displayed. (The process will
not move to next stage until the user enters a valid password).
4
Register a new password.
5
After registration, Code CNF-51 will be displayed.
To enable parameter lock, enter the registered password. [Locked] sign will be
displayed on the screen to indicate that prohibition is enabled. Once enabled,
Pressing the [PROG/ENT] key on function code will not allow the display edit
mode to run. To disable parameter modification prohibition, re-enter the
password. The [Locked] sign will disapear.
If parameter view lock and parameter lock functions are enabled, no inverter operation related function
changes can be made. It is very important that you memorize the password.
5.25 Changed Parameter Display
This feature displays all the parameters that are different from the factory defaults. Use this feature
to track changed parameters.
Group Code Name
LCD Display
CNF* 41
Changed parameter display Changed Para
* Available on LCD keypad only.
Changed Parameter Display Setting Details
Code
Description
Setting
CNF-41 Changed Para
168
0
1
View All
View Changed
Parameter Setting Setting Range Unit
0
View All -
Function
Display all parameters
Display changed parameters only
Learning Advanced Features
5.26 User Group
Create a user defined group and register user-selected parameters from the existing function
groups. The user group can carry up to a maximum of 64 parameter registrations.
Group Code Name
42
LCD Display
Multi-function key settings
CNF*
Delete all user registered
codes
* Available on LCD keypad only.
45
Multi Key Sel
Parameter Setting
UserGrp
3
SelKey
UserGrp AllDel 0
No
Setting Range Unit
-
-
-
-
User Group Setting Details
Code
Description
Select 3(UserGrp SelKey) from the multi-function key setting options. If user
group parameters are not registered, setting the multi-function key to the
user group select key (UserGrp SelKey) will not display user group (USR Grp)
item on the Keypad.
Follow the procedures below to register parameters to a user group.
No
1
2
CNF-42 Multi-Key Sel
Procedure
Set CNF- 42 to 3(UserGrp SelKey). A
icon will be displayed at
the top of the LCD display.
In the parameter mode (PAR Mode), move to the parameter you
need to register and press the [MULTI] key. For example, if the
[MULTI] key is pressed in the frequency reference in DRV 01 (Cmd
Frequency), the screen below will be displayed.
❶ Group name and code number of the parameter
❷ Name of the parameter
❸ Code number to be used in the user group. Pressing the
[PROG/ENT] key on the code number (40 Code) will register
169
Learning Advanced Features
Code
Description
3
4
5
DRV-01 as code 40 in the user group.
❹ Existing parameter registered as the user group code 40
❺ Setting range of the user group code. Entering 0 cancels the
settings.
Set a code number (❸) to use to register the parameter in the
user group. Select code number and press [PROG/ENT] key.
Changing the value in ❸ will also change the value in ❹. If no
code is registered, ‘Empty Code’ will be displayed. Entering 0
cancels the settings.
The registered parameters are listed in the user group in U&M
mode. You can register one parameter multiple times if necessary.
For example, a parameter can be registered as code 2, code 11,
and more in the user group.
Follow the procedures below to delete parameters in the user group.
No.
1
Settings
Set CNF- 42 to 3(UserGrp SelKey). A
icon will be displayed at
the top of the LCD display.
2
In the USR group in U&M mode, move the cursor to the code that
is to be deleted.
3
Press the [MULTI] key.
4
Move to YES on the deletion confirmation screen, and press the
[PROG/ENT] key.
5
Deletion completed.
CNF-25 UserGrp AllDel Set to 1(Yes) to delete all registered parameters in the user group.
5.27 Easy Start On
Run Easy Start On to easily setup the basic motor parameters required to operate a motor in a
batch. Set CNF-61(Easy Start On) to 1(Yes) to activate the feature, initialize all parameters by setting
CNF-40 (Parameter Init) to 1 (All Grp), and restart the inverter to activate Easy Start On.
Group Code Name
LCD Display
CNF* 61
Parameter easy start settings Easy Start On
*Available on LCD keypad only.
170
Parameter Setting Setting Range Unit
1
Yes
-
Learning Advanced Features
Easy Start On Setting Details
Code
CNF-61 Easy Start On
Description
Follow the procedures listed below to set parameter easy start.
No
Procedures
1
Set CNF-61 (Easy Start On) to 1(Yes).
2
Select 1(All Grp) in CNF-40 (Parameter Init) to initialize all
parameters in the inverter.
3
Restarting the inverter will activate the Easy Start On. Set the values
in the following screens on the LCD keypad. To escape from the Easy
Start On, press the [ESC] key.
•
•
•
•
•
•
•
•
Start Easy Set: Select Yes.
DRV-14 Motor Capacity: Set motor capacity.
BAS-11 Pole Number: Set motor pole number.
BAS-15 Rated Volt: Set motor rated voltage.
BAS-10 60/50Hz Sel: Set motor rated frequency.
BAS-19 AC Input Volt: Set input voltage.
DRV-06 Cmd Source: Set command source.
DRV-01 Cmd Frequency: Set operation frequency.
When the settings are completed, the minimum parameter setting
on the motor has been made. The LCD keypay will return to a
monitoring display. Now the motor can be operated with the
command source set at DRV-06.
171
Learning Advanced Features
5.28 Config(CNF) Mode
The config mode parameters are used to configure the LCD keypad related features.
Group Code
Name
LCD brightness/contrast
2
adjustment
10
Inverter S/W version
11
Keypad S/W version
12
Keypad title version
CNF*
30–32
Power slot type
44
Erase trip history
60
Add title update
Initialize accumulated
62
electric energy
* Available on the LCD keypad only.
LCD Display
Parameter Setting Setting Range Unit
LCD Contrast
-
-
Inv S/W Ver
Keypad S/W Ver
KPD Title Ver
Option-x Type
Erase All Trip
Add Title Up
x.xx
x.xx
x.xx
None
No
No
-
-
-
-
WH Count Reset No
Config Mode Parameter Setting Details
Code
Description
CNF-2 LCD contrast
Adjusts LCD brightness/contrast on the LCD keypad.
CNF-10 Inv S/W Ver,
CNF-11 Keypad S/W Ver
Check OS version in the inverter and on the LCD keypad.
CNF-12 KPD title Ver
Checks title version on the LCD keypad.
CNF-30–32 Option-x type
Checks type of powerboard installed in 1–3 power slot.
CNF-44 Erase all trip
Deletes stored trip history.
CNF-60 Add Title Up
When inverter SW version is updated and more code is added, CNF-60
settings will add, display, and operate the added codes. Set CNF-60 to
1(Yes) and disconnect the LCD keypad from the inverter. Reconnecting the
LCD keypad to the inverter updates titles.
CNF-62 WH Count Reset
Initialize accumulated electric energy consumption count.
172
Learning Advanced Features
5.29 Timer Settings
Set a multi-function input terminal to a timer and On/Off control the multi-function output and
relay according to the timer settings.
Group Code
In
65–69
OU
31
33
55
56
Name
Px terminal
configuration
Multi-function relay1
Multi-function output1
Timer on delay
Timer off delay
LCD Display
Px Define(Px: P1–
P5)
Relay 1
Q1 Define
Timer on delay
Timer off delay
Parameter Setting Setting Range Unit
38
Timer In
0~54
-
28
Timer Out
-
-
0.00–100
0.00–100
sec
sec
3.00
1.00
Timer Setting Details
Code
Description
In.65–69 Px Define
Choose one of the multi-function input terminals and change it to a timer
terminal by setting it to 38 (Timer In).
OU.31 Relay1,
OU.33 Q1 Define
Set multi-function output terminal or relay to be used as a timer to 28 (Timer
out).
Input a signal (On) to the timer terminal to operate a timer output (Timer out)
OU.55 TimerOn Delay,
after the time set at OU.55 has passed. When the multi-function input terminal
OU.56 TimerOff Delay
is off, multi-function output or relay turns off after the time set at OU.56.
5.30 Brake Control
Brake control is used to control the On/Off operation of electronic brake load system.
Group Code Name
dr
09
Control mode
41
Brake open current
42
Brake open delay time
Ad
Brake open forward
44
frequency
LCD Display
Control Mode
BR Rls Curr
BR Rls Dly
Parameter Setting
0
V/F
50.0
1.00
BR Rls Fwd Fr
1.00
Setting Range
0.0–180%
0.0–10.0
0–Maximum
frequency
Unit
%
sec
Hz
173
Learning Advanced Features
Group Code Name
Brake open reverse
45
frequency
46
Brake close delay time
47
Brake close frequency
LCD Display
Parameter Setting
BR Rls Rev Fr
1.00
BR Eng Dly
1.00
BR Eng Fr
2.00
Setting Range
0–Maximum
frequency
0.00–10.00
0–Maximum
frequency
Unit
Hz
sec
Hz
Multi-function relay1
Relay 1
item
OU
35 BR Control: Multi-function output1
33
Q1 Define
item
When brake control is activated, DC braking (Ad.12) at inverter start and dwell operation (Ad.20–23)
do not operate.
31
• Brake release sequence: During motor stop state, if an operation command is entered, the
inverter accelerates up to brake release frequency (Ad.44– 45) in forward or in reverse
direction. After reaching brake release frequency, if motor current reaches brake release
current (BR Rls Curr), the output relay or multi function output terminal for brake control
sends a release signal. Once the signal has been sent, acceleration will begin after maintaining
frequency for brake release delay time (BR Rls Dly).
• Brake engage sequence: If a stop command is sent during operation, the motor decelerates.
Once the output frequency reaches brake engage frequency (BR Eng Fr), the motor stops
deceleration and sends out a brake engage signal to a preset output terminal. Frequency is
maintained for the brake engage delay time (BR Eng Dly) and will become 0 afterwards. If DC
braking time (Ad.15) and DC braking resistance (Ad.16) are set, inverter output is blocked after
DC braking. For DC braking, refer to 4.17.2 Stop After DC Braking on page 95.
174
Learning Advanced Features
5.31 Multi-Function Output On/Off Control
Set reference values (on/off level) for analog input and control output relay or multi-function
output terminal on/off status accordingly.
Group Code Name
Output terminal on/off
66
control mode
Ad
LCD Display
Parameter Setting Setting Range
Unit
On/Off Ctrl Src
1
-
V1
-
67
Output terminal on level On-C Level
90.00
Output terminal
%
off level– 100.00%
68
Output terminal off level Off-C Level
10.00
0.00–Output
terminal on level
%
Multi-function relay1
item
Multi-function output1
item
34 On/Off
-
-
31
OU
33
Relay 1
Q1 Define
Multi-function Output On/Off Control Setting Details
Code
Description
Ad.66 On/Off Ctrl Src
Select analog input On/Off control.
Ad.67 On-C Level ,
Ad.68 Off-C Level
Set On/Off level at the output terminal.
5.32 Press Regeneration Prevention
Press regeneration prevention is used during press operations to prevent braking during the
regeneration process. If motor regeneration occurs during a press operation, motor operation speed
automatically goes up to avoid the regeneration zone.
175
Learning Advanced Features
Group Code Name
Select press regeneration
74
prevention for press
Press regeneration
75
prevention operation
voltage level
Press regeneration
Ad
prevention
76
compensation frequency
limit
Press regeneration
77
prevention P gain
Press regeneration
78
prevention I gain
LCD Display
Parameter Setting Setting Range
Unit
RegenAvd Sel
0
-
RegenAvd Level
No
0–1
350V
200V: 300–400V
700V
400V: 600–800V
V
CompFreq Limit 1.00(Hz)
0.00– 10.00Hz
Hz
RegenAvd Pgain 50.0(%)
0 .0– 100.0%
%
RegenAvd Igain
20–30000ms
ms
500(ms)
Press Regeneration Prevention Setting Details
Code
Description
Frequent regeneration voltage from a press load during constant speed
motor operation may force excessive work on the brake unit which may
damage or shorten the brake life. To prevent this situation, select Ad.74
Ad.74 RegenAvd Sel
(RegenAvd Sel) to control DC link voltage and disable the brake unit
operation.
Set brake operation prevention level voltage when the DC link voltage goes
Ad.75 RegenAvd Level
up due to regeneration.
Set alternative frequency width that can replace actual operation frequency
Ad.76 CompFreq Limit
during regeneration prevention.
Ad.77 RegenAvd Pgain, To prevent regeneration zone, set P gain/I gain in the DC link voltage supress
Ad.78 RegenAvd Igain PI controller.
176
Learning Advanced Features
Note
Press regeneration prevention does not operate during accelerations or decelerations, but it only
operates during constant speed motor operation. When regeneration prevention is activated, output
frequency may change within the range set at Ad.76 (CompFreq Limit).
5.33 Analog Output
An analog output terminal provides output of 0–10V voltage, 4–20mA current, or 0–32kHz pulse.
5.33.1 Voltage and Current Analog Output
An output size can be adjusted by selecting an output option at AO(Analog Output) terminal. Set
the analog voltage/current output terminal setting switch (SW3) to change the output type
(voltage/current).
Group Code
01
02
03
OU
04
Name
Analog output1
Analog output1 gain
Analog output1 bias
Analog output1 filter
LCD Display
AO1 Mode
AO1 Gain
AO1 Bias
AO1 Filter
05
Analog constant output1
06
Analog output1 monitor
Parameter Setting
0
Frequency
100.0
0.0
5
Setting Range
0–15
-1000.0–1000.0
-100.0–100.0
0–10000
Unit
%
%
ms
AO1 Const % 0.0
0.0–100.0
%
AO1 Monitor
0.0–1000.0
%
0.0
Voltage and Current Analog Output Setting Details
Code
Description
Select a constant value for output. The following example for output voltage
setting.
Setting
0
Frequency
OU.01 AO1 Mode
1
2
Output
Current
Output
Voltage
Function
Outputs operation frequency as a standard. 10V
output is made from the frequency set at dr.20(Max
Freq)
10V output is made from 200% of inverter rated
current (heavy load).
Sets the outputs based on the inverter output
voltage. 10V output is made from a set voltage in
bA.15 (Rated V).
177
Learning Advanced Features
Code
Description
3
DC Link Volt
4
Torque
5
Ouput Power
6
Idse
7
Iqse
8
Target Freq
If 0V is set in bA.15, 200V/400V models output 10V
based on the actual input voltages ( 240V and 480V
respectively).
Outputs inverter DC link voltage as a standard.
Outputs 10V when the DC link voltage is 410Vdc for
200V models, and 820Vdc for 400V models.
Outputs the generated torque as a standard.
Outputs 10V at 250% of motor rated torque.
Monitors output wattage. 200% of rated output is
the maximum display voltage (10V).
Outputs the maximum voltage at 200% of no load
current.
Outputs the maximum voltage at 250% of rated
torque current
𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐
= � 𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2 − 𝑛𝑛 𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2
Outputs set frequency as a standard. Outputs 10V
at the maximum frequency (dr.20).
9
Ramp Freq
Outputs frequency calculated with Acc/Dec
function as a standard. May vary with actual output
frequency. Outputs 10V.
12
PID Ref Value
Outputs command value of a PID controller as a
standard. Outputs approximately 6.6V at 100%.
13
PID Fdk Value Outputs feedback volume of a PID controller as a
standard. Outputs approximately 6.6V at 100%.
14
PID Output
Outputs output value of a PID controller as a
standard. Outputs approximately 10V at 100%.
15
Constant
Outputs OU.05 (AO1 Const %) value as a standard.
Adjusts output value and offset. If frequency is selected as an output item, it
will operate as shown below.
OU.02 AO1 Gain,
OU.03 AO1 Bias
𝐴𝐴1 =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
× 𝐴𝐴1 𝐺𝐺𝐺𝐺 + 𝐴𝐴1 𝐵𝐵𝐵𝐵
𝑀𝑀𝑀𝑀𝑀𝑀𝑀
The graph below illustrates the analog voltage output (AO1) changes depend
on OU.02 (AO1 Gain) and OU.3 (AO1 Bias) values. Y-axis is analog output
voltage (0–10V), and X-axis is % value of the output item.
Example, if the maximum frequency set at dr.20 (Max Freq) is 60Hz and the
present output frequency is 30Hz, then the x-axis value on the next graph is
50%.
178
Learning Advanced Features
Code
Description
OU.04 AO1 Filter
Set filter time constant on analog output.
If analog output at OU.01 (AO1 Mode) is set to 15(Constant), the analog
voltage output is dependent on the set parameter values (0–100%).
Monitors analog output value. Displays the maximum output voltage as a
percentage (%) with 10V as the standard.
OU.05 A01 Const %
OU.06 AO1 Monitor
5.33.2 Analog Pulse Output
Output item selection and pulse size adjustment can be made for the TO (Pulse Output) terminal.
Group Code
33
61
62
63
OU
64
65
66
Name
Multi-function output 1
Pulse output setting
Pulse output gain
Pulse output bias
Pulse output filter
Pulse output constant
output2
Pulse output monitor
LCD Display
Q1 define
TO Mode
TO Gain
TO Bias
TO Filter
Parameter Setting
39 TO
0 Frequency
100.0
0.0
5
Setting Range
0–38
0–15
-1000.0–1000.0
-100.0-100.0
0–10000
Unit
%
%
ms
TO Const %
0.0
0.0-100.0
%
TO Monitor
0.0
0.0–1000.0
%
179
Learning Advanced Features
Analog Pulse Output Setting Details
Code
Description
Pulse output TO and multi-function output Q1 share the same terminal. Set OU.33
to 32kHz pulse output and follow the instructions below to make wiring
connections that configure the open collector output circuit.
1. Connect a 1/4W, 560Ω resistor between VR and Q1 terminals.
2. Connect EG and CM terminals.
When wiring the resistor, a resistance of 560Ω or less is recommended to stably
provide 32kHz pulse output.
OU.33 Q1 Define
Adjusts output value and offset. If frequency is selected as an output, it will
operate as shown below.
OU.62 TO Gain,
OU.63 TO Bias
𝑇𝑇 =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
× 𝑇𝑇 𝐺𝐺𝐺𝐺 + 𝑇𝑇 𝐵𝐵𝐵𝐵
𝑀𝑀𝑀𝑀𝑀𝑀𝑀
The following graph illustrates that the pulse output (TO) changes depend on
OU.62 (TO Gain) and OU.63 (TO Bias) values. The Y-axis is an analog output
current(0–32kHz), and X-axis is % value on output item.
For example, if the maximum frequency set with dr.20 (Max Freq) is 60Hz and
present output frequency is 30Hz, then the x-axis value on the next graph is 50%.
180
Learning Advanced Features
Code
Description
OU.64 TO Filter
Sets filter time constant on analog output.
If analog output item is set to constant, the analog pulse output is dependent on
the set parameter values.
Monitors analog output value. Displays the maximum output pulse (32kHz) as a
percentage (%) of the standard.
OU.65 TO Const %
OU.66 TO Monitor
Note
OU.08 AO2 Gain and OU.09 AO2 Bias Tuning Mode on 4–20mA output
1
Set OU.07 (AO2 Mode) to constant, and set OU.11 (AO2 Const %) to 0.0 %.
2
Set OU.09 (AO2 Bias) to 20.0% and then check current output. 4mA output should be displayed.
3
If the value is less than 4mA, gradually increase OU.09 (AO2 Bias) until 4mA is measured. If the
value is more than 4mA, gradually decrease OU.09 (AO2 Bias) until 4mA is measured.
4
Set OU.11 AO2 Const % to 100.0%
Set OU.08 (AO2 Gain) to 80.0% and measure current output at 20mA. If the value is less than
20mA, gradually increase OU.08 (AO2 Gain) until 20mA is measured. If the value is more than
20mA, gradually decrease OU.08 (AO2 Gain) until 20mA is measured.
The functions for each code are identical to the descriptions for the 0–10V voltage outputs with an
output range 4–20mA.
181
Learning Advanced Features
5.34 Digital Output
5.34.1 Multi-function Output Terminal and Relay Settings
Group Code Name
30
Fault output item
Multi-function relay1
31
setting
Multi-function output1
33
setting
OU
Multi-function output
41
monitor
57
Detection frequency
Detection frequency
58
band
65–69 Px terminal configuration
In
*Displayed as
LCD Display
Trip Out Mode
Parameter Setting Setting Range
010*
-
Unit
bit
Relay 1
29
Trip
-
-
Q1 Define
14
Run
-
-
DO Status
-
00– 11
bit
FDT Frequency
30.00
FDT Band
10.00
0.00–Maximum
Hz
frequency
Px Define
16
0~54
Exchange
-
on the keypad.
Multi-function Output Terminal and Relay Setting Details
Code
Description
OU.31 Relay1
Set relay (Relay 1) output options.
Select output options for multi-function output terminal (Q1). Q1 is open collector
OU.33 Q1 Define
TR output.
Set output terminal and relay functions according to OU.57 FDT (Frequency),
OU.58 (FDT Band) settings and fault trip conditions.
OU.41 DO Status
182
Setting
0 None
1 FDT-1
Function
No output signal.
Detects inverter output frequency reaching the user set
frequency. Outputs a signal when the absolute value
(set frequency–output frequency) < detected frequency
width/2.
When detected frequency width is 10Hz, FDT-1 output
is as shown in the graph below.
Learning Advanced Features
Code
Description
2
FDT-2
Outputs a signal when the user set frequency and
detected frequency (FDT Frequency) are equal, and
fulfills FDT-1 condition at the same time.
[Absolute value (set frequency-detected frequency) <
detected frequency width/2]&[FDT-1]
Detected frequency width is 10Hz. When the detected
frequency is set to 30Hz, FDT-2 output is as shown in
the graph below.
3
FDT-3
Outputs a signal when the Absolute value (output
frequency–operation frequency) < detected frequency
width/2.
Detected frequency width is 10Hz. When detected
frequency is set to 30Hz, FDT-3 output is as shown in
the graph below.
4
FDT-4
Output signal can be separately set for acceleration and
deceleration conditions.
183
Learning Advanced Features
Code
Description
• In acceleration: Operation frequency≧ Detected
frequency
• In deceleration: Operation frequency>(Detected
frequency–Detected frequency width/2)
Detected frequency width is 10Hz. When detected
frequency is set to 30Hz, FDT-4 output is as shown in
the graph below.
184
5
6
Overload
IOL
7
8
9
Underload
Fan Warning
Stall
10
Over voltage
11
Low Voltage
12
13
Over Heat
Lost command
14
RUN
Outputs a signal at motor overload.
Outputs a signal when a fault is triggered from a
protective function operation by inverter overload
inverse proportion.
Outputs a signal at load fault warning.
Outputs a signal at fan fault warning.
Outputs a signal when a motor is overloaded and
stalled.
Outputs a signal when the inverter DC link voltage rises
above the protective operation voltage.
Outputs a signal when the inverter DC link voltage
drops below the low voltage protective level.
Outputs signal when the inverter overheats.
Outputs a signal when there is a loss of analog input
terminal and RS-485 communication command at the
terminal block.
Outputs a signal when communication power and
expansion an I/O power card is installed, and also
outputs a signal when losing analog input and
communication power commands.
Outputs a signal when operation command is entered
and the inverter outputs voltage.
No signal output during DC braking.
Learning Advanced Features
Code
Description
15
Stop
16
Steady
17
Inverter line
18
Comm line
19
Speed search
22
Ready
28
Timer Out
29
Trip
31
DB Warn %ED
34
On/Off Control
35
BR Control
40
KEB Operating
Outputs a signal at operation command off, and when
there is no inverter output voltage.
Outputs a signal in steady operation.
Outputs a signal while the motor is driven by the
inverter line.
Outputs a signal while the motor is driven by a
commercial power source. For details, refer to 5.18
Supply Power Transition on page 163.
Outputs a signal during inverter speed search
operation.
For details, refer to 5.14 Speed Search Operation on page
155.
Outputs signal when the inverter is in stand by
operation and ready to receive an external operation
command.
A timer function to operate terminal output after a
certain time by using multi-function terminal block
input. For more details, refer to 5.29 Timer Settings
on page 173.
Outputs a signal after a fault trip
Refer to 5.31 Multi-Function Output On/Off Control on
page 175.
Refer to 6.2.5 Dynamic Braking (DB) Resistor
Configuration on page 204.
Outputs a signal using an analog input value as a
standard.
Refer to 5.31 Multi-Function Output On/Off Control on
page 175.
Outputs a brake release signal.
Refer to 5.30 Brake Control on page 173.
This outputs when the energy buffering operation is
started because of low voltage of the inverter's DC
power section due to a power failure on the input
power. (This outputs in the energy buffering state
before the input power restoration regardless of KEB1 and KEB-2 mode settings.)
185
Learning Advanced Features
5.34.2 Fault Trip Output using Multi-Function Output Terminal and
Relay
The inverter can output fault trip state using multi-function output terminal (Q1) and relay (Relay
1).
Group
OU
Code
30
31
33
53
54
Name
Fault trip output mode
Multi-function relay1
Multi-function output1
Fault trip output on delay
Fault trip output off delay
LCD Display
Trip Out Mode
Relay 1
Q1 Define
TripOut OnDly
TripOut OffDly
Parameter Setting
010
29
Trip
14
Run
0.00
0.00
Setting Range
0.00–100.00
0.00–100.00
Unit
bit
sec
sec
Fault Trip Output by Multi-function Output Terminal and Relay - Setting Details
Code
Description
Fault trip relay operates based on the fault trip output settings.
Item
Keypad
bit on
bit off
LCD keypad
OU.30 Trip Out Mode
Select fault trip output terminal/relay and select 29(Trip Mode) at codes OU.
31, 33. When a fault trip occurs in the inverter, the relevant terminal and relay
will operate. Depending on the fault trip type, terminal and relay operation
can be configured as shown in the table below.
Setting
bit3
bit2
Function
bit1



OU.31 Relay1
OU.33 Q1 Define
OU.53 TripOut On Dly,
OU.54 TripOut OffDly
186
Operates when low voltage fault trips occur
Operates when fault trips other than low voltage
occur
Operates when auto restart fails (Pr. 08–09)
Set relay output (Relay 1).
Select output for multi-function output terminal (Q1). Q1 is open collector TR
output.
If a fault trip occurs, trip relay or multi-function output operates after the time
delay set in OU.53. Terminal is off with the input initialized after the time delay
set in OU.53.
Learning Advanced Features
5.34.3 Multi-function Output Terminal Delay Time Settings
Set on-delay and off-delay times separately to control the output terminal and relay operation
times. The delay time set at codes OU.50–51 applies to multi-function output terminal (Q1) and
relay (Relay 1), except when the multi-function output function is in fault trip mode.
Group
OU
Code Name
Multi-function output
50
On delay
Multi-function output
51
Off delay
Select multi-function
52
output terminal
* Displayed as
LCD Display
Parameter Setting Setting Range Unit
DO On Delay
0.00
0.00–100.00
s
DO Off Delay
0.00
0.00–100.00
s
00–11
bit
DO NC/NO Sel 00*
on keypad.
Output Terminal Delay Time Setting Details
Code
Description
Select terminal type for relay and multi-function output terminal. An additional
three terminal type selection bits at the terminal block will be added when an
expansion I/O is added. By setting the relevant bit to 0, it will operate A terminal
(Normally Open), and setting it to 1 will operate B terminal (Normally Closed).
Shown below in the table are Relay 1 and Q1 settings starting from the right bit.
OU.52 DO NC/NO Sel
Item
bit on
bit off
Keypad
LCD keypad
187
Learning Advanced Features
5.35 Keypad Language Settings
Select the language to be displayed on the LCD keypad. Keypad S/W Ver 1.04 and above provides
language selections.
Group
Code Name
Select keypad
CNF*
01
language
* Available on LCD keypad only.
LCD Display
Parameter Setting Setting Range Unit
0
English
1
Korean
Language Sel
5.36 Operation State Monitor
The inverter’s operation condition can be monitored using the LCD keypad. If the monitoring
option is selected in config (CNF) mode, a maximum of four items can be monitored
simultaneously. Monitoring mode displays three different items on the LCD keypad, but only one
item can be displayed in the status window at a time.
Group
Code Name
Display item condition
20
display window
21
Monitor mode display 1
CNF*
22
Monitor mode display 2
23
Monitor mode display 3
24
Monitor mode initialize
*Available on LCD keypad only.
LCD Display
Parameter Setting
Setting Range Unit
Anytime Para
0 Frequency
-
-
Monitor Line-1
Monitor Line-2
Monitor Line-3
Mon Mode Init
0
2
3
0
-
Hz
A
V
-
Frequency
Output Current
Output Voltage
No
Operation State Monitor Setting Details
Code
Description
Select items to display on the top-right side of the LCD keypad screen.
Choose the parameter settings based on the information to be displayed.
Codes CNF-20–23 share the same setting options as listed in the table
below.
CNF-20 AnyTime Para
188
Setting
0
Frequency
1
Speed
2
3
Output Current
Output Voltage
Function
On stop, displays the set frequency. During
operation, displays the actual output
frequency (Hz).
On stop, displays the set speed (rpm). During
operation, displays the actual operating speed
(rpm).
Displays output current.
Displays output voltage.
Learning Advanced Features
Code
Description
4
Output Power
5
WHour
Counter
6
DCLink Voltage
7
DI Status
Displays output power.
Displays inverter power consumption.
Displays DC link voltage within the inverter.
Displays input terminal status of the terminal
block. Starting from the right, displays P1–P8.
8
DO Status
Displays output terminal status of the terminal
block. Starting from the right, Relay1, Relay2,
and Q1.
9
V1 Monitor[V]
Displays the input voltage value at terminal V1
(V).
Displays input voltage terminal V1 value as a
10 V1 Monitor[%]
percentage. If -10V, 0V, +10V is measured,
-100%, 0%, 100% will be displayed.
13 V2 Monitor[V]
Displays input voltage terminal V2 value (V).
14 V2 Monitor[%]
Displays input voltage terminal V2 value as a
percentage.
15 I2 Monitor[mA] Displays input current terminal I2 value (A).
16 I2 Monitor[%]
Displays input current terminal I2 value as a
percentage.
17 PID Output
Displays output of PID controller.
18 PID Ref Value
Displays reference value of PID controller.
19 PID Fdb Value
Displays feedback volume of PID controller.
20 Torque
If the torque reference command mode (DRV08) is set to a value other than keypad (0 or 1),
the torque reference value is displayed.
21 Torque Limit
If torque limit setting (Cn.53) is set to a value
other than keypad (0 or 1), the torque limit
value is displayed.
23 Spd Limit
If the speed limit setting (Cn.62) on torque
control mode is set to a value other than
keypad (0 or 1), the speed limit setting is
displayed.
24 Load Speed
Displays the speed of a load in the desired
scale and unit. Displays the speed of a load
that ADV-61 (Load Spd Gain) and ADV-62
(Load Spd Scale) are applied as rpm or mpm
set at ADV-63 (Load Spd Unit).
Select the items to be displayed in monitor mode. Monitor mode is the
first displayed mode when the inverter is powered on. A total of three
CNF-21–23 Monitor Line-x
items, from monitor line-1 to monitor line- 3, can be displayed
simultaneously.
Selecting 1(Yes) initializes CNF-20–23.
CNF-24 Mon Mode Init
189
Learning Advanced Features
Load Speed Display Setting
Group
Code
Name
LCD Display
Parameter Setting
61(40) Rotation count speed gain Load Spd Gain ADV(M2) 62(41) Rotation count speed scale Load Spd Scale 0
63(42) Rotation count speed unit Load Spd Unit 2
100.0
x1
rpm
Setting
Range
1~6000.0[%]
0~4
0~1
Unit
Hz
A
Load Speed Display Setting Detail
Code
Description
If monitoring item 24 Load Speed is selected and if the motor spindle and
ADV-61(M2-40)
the load are connected with belt, the actual number of revolutions can be
Load Spd Gain
displayed by calculating the pulley ratio.
ADV-62(M2-41)
Load Spd Scale
Selects the decimal places that monitoring item 24 Load Speed displays
(from x1–x0.0001).
Selects the unit of monitoring item 24 Load Speed. Selects between RPM
(Revolution Per Minute) and MPM (Meter Per Minute) for the unit.
ADV-63(M2-42)
Load Spd Unit
For example, if line speed is 300 [mpm] at 800 [rpm], set ADV61 (Load Spd
Gain) to "37.5%" to display the line speed. Also, set ADV62 (Load Sped Scale)
to "X 0.1" to display the value to the first decimal point. And set ADV63 (Load
Spd Unit) to mpm. Now, the monitoring item 24 Load Speed is displayed on
the keypad display as 300.0 mpm instead of 800 rpm.
Note
Inverter power consumption
Values are calculated using voltage and current. Electric power is calculated every second and the
results are accumulated. Setting CNF-62 (WH Count Reset) value to 1(Yes) will reset cumulated electric
energy consumption. Power consumption is displayed as shown below:
•
•
•
•
Less than 1,000 kW: Units are in kW, displayed in 999.9 kW format.
1–99 MW: Units are in MW, displayed in 99.99 MWh format.
100–999 MW: Units are in MW, displayed in 999.9 MWh format.
More than 1,000 MW: Units are in MW, displayed in 9,999 MWh format and can be displayed up to
65,535 MW. (Values exceeding 65,535MW will reset the value to 0, and units will return to kW. It will
be displayed in 999.9 kW format).
190
Learning Advanced Features
5.37 Operation Time Monitor
Monitors inverter and fan operation time.
Group
Code Name
Inverter operation
70
accumulated time
Inverter operation
71
accumulated time
Inverter operation
72
accumulated time
CNF*
initialization
Cooling fan operation
74
accumulated time
Cooling fan operation
75
accumulated time
initialization
*Available on LCD keypad only.
LCD Display
Parameter Setting
Setting Range
Unit
On-time
0/00/00 00:00
-
min
Run-time
0/00/00 00:00
-
min
Time Reset
0
0–1
-
Fan time
0/00/00 00:00
-
min
0–1
-
Fan Time Reset 0
No
No
Operation Time Monitor Setting Details
Code
Description
CNF-70 On-time
Displays accumulated power supply time. Information is displayed in
[YY/MM/DD Hr: Min (0/00/00 00: 00)] format.
Displays accumulated time of voltage output by operation command input.
Information is displayed in [YY/MM/DD Hr: Min (0/00/00 00: 00)] format.
Setting 1(Yes) will delete power supply accumulated time (On-time) and
operation accumulated time (Run-time) and is displayed as 0/00/00 00:00
CNF-72 Time Reset
format.
Displays accumulated time of inverter cooling fan operation. Information will
CNF-74 Fan time
be displayed in [YY/MM/DD Hr: Min (0/00/00 00: 00)] format.
Setting 1(Yes) will delete cooling fan operation accumulated time(on-time) and
CNF-75 Fan Time Reset operation accumulated time (Run-time) and will display it in 0/00/00 00:00
format.
CNF-71 Run-time
191
Learning Advanced Features
192
Learning Protection Features
6 Learning Protection Features
Protection features provided by the S100 series inverter are categorized into two types: protection
from overheating damage to the motor, and protection against the inverter malfunction.
6.1 Motor Protection
6.1.1 Electronic Thermal Motor Overheating Prevention (ETH)
ETH is a protective function that uses the output current of the inverter without a separate
temperature sensor, to predict a rise in motor temperature to protect the motor based on its heat
characteristics.
Group Code Name
Pr
40
Electronic thermal
prevention fault trip
selection
41
Motor cooling fan type
42
Electronic thermal one
minute rating
43
Electronic thermal
prevention continuous
rating
LCD Display
ETH Trip Sel
Parameter Setting Setting range Unit
0
None
0-2
-
Motor Cooling
ETH 1min
0
150
ETH Cont
120
Self-cool
120-200
%
50-150
%
Electronic Thermal (ETH) Prevention Function Setting Details
Code
Description
Pr.40 ETH Trip Sel
ETH can be selected to provide motor thermal protection. The LCD screen
displays “E-Thermal.”
Setting
0 None
1 Free-Run
Pr.41 Motor Cooling
Function
The ETH function is not activated.
The inverter output is blocked. The motor coasts to a
halt (free-run).
2 Dec
The inverter decelerates the motor to a stop.
Select the drive mode of the cooling fan, attached to the motor.
Setting
0 Self-cool
Function
As the cooling fan is connected to the motor axis, the
193
Learning Protection Features
Code
Description
1
Pr.42 ETH 1 min
Pr.43 ETH Cont
Forced-cool
cooling effect varies, based on motor speed. Most
universal induction motors have this design.
Additional power is supplied to operate the cooling fan.
This provides extended operation at low speeds. Motors
designed for inverters typically have this design.
The amount of input current that can be continuously supplied to the motor
for 1 minute, based on the motor-rated current (bA.13).
Sets the amount of current with the ETH function activated. The range below
details the set values that can be used during continuous operation without
the protection function.
6.1.2 Overload Early Warning and Trip
A warning or fault ‘trip’ (cutoff) occurs when the motor reaches an overload state, based on the
motor’s rated current. The amount of current for warnings and trips can be set separately.
194
Learning Protection Features
Group Code Name
Pr
17
Overload warning selection
18
Overload warning level
19
Overload warning time
20
Motion at overload trip
21
Overload trip level
22
Overload trip time
OU
31
Multi-function relay 1 item
33
Multi-function output 1
item
LCD Display
OL Warn Select
OL Warn Level
OL Warn Time
OL Trip Select
OL Trip Level
OL Trip Time
Relay 1
Q1 Define
Parameter Setting
1
Yes
150
10.0
1
Free-Run
180
60.0
5
Over Load
Setting range
0-1
30-180
0-30
30-200
0-60.0
-
Unit
%
s
%
s
-
Overload Early Warning and Trip Setting Details
Coden
Description
Pr.17 OL Warn Select If the overload reaches the warning level, the terminal block multi-function
output terminal and relay are used to output a warning signal. If 1 (Yes) is
selected, it will operate. If 0 (No) is selected, it will not operate.
Pr.18 OL Warn Level, When the input current to the motor is greater than the overload warning level
Pr.19 OL Warn Time (OL Warn Level) and continues at that level during the overload warning time
(OL Warn Time), the multi-function output (Relay 1, Q1) sends a warning signal.
When Over Load is selected at OU.31 and 33, the multi-function output terminal
or relay outputs a signal. The the signal output does not block the inverter
output.
Pr.20 OL Trip Select Select the inverter protective action in the event of an overload fault trip.
Setting
0 None
Pr.21 OL Trip Level,
Pr.22 OL Trip Time
Function
No protective action is taken.
In the event of an overload fault, inverter output is
1 Free-Run
blocked and the motor will free-run due to inertia.
3 Dec
If a fault trip occurs, the motor decelerates and stops.
When the current supplied to the motor is greater than the preset value at the
overload trip level (OL Trip Level) and continues to be supplied during the
overload trip time (OL Trip Time), the inverter output is either blocked according
to the preset mode from Pr. 17 or slows to a stop after deceleration.
195
Learning Protection Features
Note
Overload warnings warn of an overload before an overload fault trip occurs. The overload warning
signal may not work in an overload fault trip situation, if the overload warn level (OL Warn Level) and
the overload warn time (OL Warn Time) are set higher than the overload trip level (OL Trip Level) and
overload trip time (OL Trip Time).
6.1.3 Stall Prevention and Flux Braking
The stall prevention function is a protective function that prevents motor stall caused by overloads.
If a motor stall occurs due to an overload, the inverter operation frequency is adjusted
automatically. When stall is caused by overload, high currents are induced in the motor may cause
motor overheat or damage the motor and interrupt operation of the motor-driven devices.
To protect the motor from overload faults, the inverter output frequency is adjusted automatically,
based on the size of load.
Group Code Name
Pr
50
Stall prevention and
flux braking
51
Stall frequency 1
OU
196
LCD Display
Stall Prevent
Parameter Setting Setting range
0000*
-
Unit
bit
Stall Freq 1
60.00
Hz
52
53
Stall level 1
Stall frequency 2
Stall Level 1
Stall Freq 2
180
60.00
54
55
Stall level 2
Stall frequency 3
Stall Level 2
Stall Freq 3
180
60.00
56
57
Stall level 3
Stall frequency 4
Stall Level 3
Stall Freq 4
180
60.00
58
31
Stall level 4
Multi-function relay 1
item
Stall Level 4
Relay 1
180
9 Stall
Start frequency–
Stall Freq 1
30-250
Stall Freq 1–Stall
Freq 3
30-250
Stall Freq 2–Stall
Freq 4
30-250
Stall Freq 3–
Maximum
frequency
30-250
-
%
Hz
%
Hz
%
Hz
%
-
Learning Protection Features
Group Code Name
33
Multi-function output
1 item
LCD Display
Q1 Define
Parameter Setting Setting range
* The value is displayed on the keypad as
Unit
.
Stall Prevention Function and Flux Braking Setting Details
Code
Pr.50 Stall Prevent
Description
Stall prevention can be configured for acceleration, deceleration, or while
operating a motor at constant speed. When the top LCD segment is on, the
corresponding bit is set. When the bottom LCD segment is on, the corresponding
bit is off.
Item
Bit Status (On)
Bit Status (Off)
Keypad
LCD keypad
Setting
Bit 4
Function
Bit 3
Bit 2



Setting
0001 Stall
protection
during
acceleration
0010 Stall
protection
while
operating at
constant
speed
0100 Stall
protection
during
Bit 1

Stall protection during acceleration
Stall protection while operating at a
constant speed
Stall protection during deceleration
Flux braking during deceleration
Function
If inverter output current exceeds the preset stall level
(Pr. 52, 54, 56, 58) during acceleration, the motor stops
accelerating and starts decelerating. If current level
stays above the stall level, the motor decelerates to the
start frequency (dr.19). If the current level causes
deceleration below the preset level while operating
the stall protection function, the motor resumes
acceleration.
Similar to stall protection function during acceleration,
the output frequency automatically decelerates when
the current level exceeds the preset stall level while
operating at constant speed. When the load current
decelerates below the preset level, it resumes
acceleration.
The inverter decelerates and keeps the DC link voltage
below a certain level to prevent an over voltage fault
trip during deceleration. As a result, deceleration times
197
Learning Protection Features
Code
Description
deceleration
1000 Flux braking
during
deceleration
1100 Stall
protection
and flux
braking
during
deceleration
Pr.51 Stall Freq 1Pr.58 Stall Level 4
198
can be longer than the set time depending on the
load.
When using flux braking, deceleration time may be
reduced because regenerative energy is expended at
the motor.
Stall protection and flux braking operate together
during deceleration to achieve the shortest and most
stable deceleration performance.
Additional stall protection levels can be configured for different frequencies, based
on the load type. As shown in the graph below, the stall level can be set above the
base frequency. The lower and upper limits are set using numbers that correspond
in ascending order. For example, the range for Stall Frequency 2 (Stall Freq 2)
becomes the lower limit for Stall Frequency 1 (Stall Freq 1) and the upper limit for
Stall Frequency 3 (Stall Freq 3).
Learning Protection Features
Code
Description
Note
Stall protection and flux braking operate together only during deceleration. Turn on the third and
fourth bits of Pr.50 (Stall Prevention) to achieve the shortest and most stable deceleration performance
without triggering an overvoltage fault trip for loads with high inertia and short deceleration times. Do
not use this function when frequent deceleration of the load is required, as the motor can overheat and
may be damaged easily.
When you operating Brake resistor, the motor may vibrate under the Flux braking operation. In this
case, please turn off the Flux braking(Pr.50).
• Use caution when decelerating while using stall protection as depending on the load, the
deceleration time can take longer than the time set. Acceleration stops when stall protection
operates during acceleration. This may make the actual acceleration time longer than the preset
acceleration time.
• When the motor is operating, Stall Level 1 applies and determines the operation of stall protection.
6.2 Inverter and Sequence Protection
6.2.1 Open-phase Protection
Open-phase protection is used to prevent overcurrent levels induced at the inverter inputs due to an
open-phase within the input power supply. Open-phase output protection is also available. An openphase at the connection between the motor and the inverter output may cause the motor to stall, due
to a lack of torque.
199
Learning Protection Features
Group Code
Pr
05
06
Name
Input/output openphase protection
Open-phase input
voltage band
LCD Display
Phase Loss Chk
Parameter Setting Setting range Unit
00*
bit
IPO V Band
40
* The value is displayed on the keypad as
1-100V
V
.
Input and Output Open-phase Protection Setting Details
Code
Description
Pr.05 Phase Loss Chk, When open-phase protection is operating, input and output configurations are
displayed differently. When the top LCD segment is On, the corresponding bit is
Pr.06 IPO V Band
set to On. When the bottom LCD segment is On, the corresponding bit is set to
Off.
Item
Bit status (On)
Bit status (Off)
Keypad
LCD keypad
Setting
Bit 2
Function
Bit 1


Output open-phase protection
Input open-phase protection
6.2.2 External Trip Signal
Set one of the multi-function input terminals to 4 (External Trip) to allow the inverter to stop
operation when abnormal operating conditions arise.
Group Code
In
65-69
87
200
Name
Px terminal setting
options
Multi-function input
contact selction
LCD Display
Px Define
(Px: P1-P5)
DI NC/NO Sel
Parameter Setting Setting range
4
External Trip 0~54
-
Unit
bit
Learning Protection Features
External Trip Signal Setting Details
Code
Description
In.87 DI NC/NO Sel Selects the type of input contact. If the mark of the switch is at the bottom (0), it
operates as an A contact (Normally Open). If the mark is at the top (1), it operates
as a B contact (Normally Closed).
The corresponding terminals for each bit are as follows:
Bit
11 10 9
8
7
6
5
4
3
2
1
Terminal
P5 P4 P3 P2 P1
6.2.3 Inverter Overload Protection
When the inverter input current exceeds the rated current, a protective function is activated to
prevent damages to the inverter based on inverse proportional characteristics.
Group Code Name
OU
31
Multi-function relay 1
33
Multi-function output 1
LCD Display
Relay 1
Q1 Define
Parameter Setting
6
IOL
Setting range
-
Unit
-
Note
A warning signal output can be provided in advance by the multi-function output terminal before the
inverter overload protection function (IOLT) operates. When the overcurrent time reaches 60% of the
allowed overcurrent (150%, 1 min), a warning signal output is provided (signal output at 150%, 36sec).
201
Learning Protection Features
6.2.4 Speed Command Loss
When setting operation speed using an analog input at the terminal block, communication
options, or the keypad, speed command loss setting can be used to select the inverter operation
for situations when the speed command is lost due to the disconnection of signal cables.
Group Code Name
Pr
12
Speed command loss
operation mode
13
Time to determine
speed command loss
14
Operation frequency
at speed command
loss
15
Analog input loss
decision level
OU
31
Multi-function Relay 1
33
Multi-function output
1
LCD Display
Parameter Setting
Lost Cmd Mode 1
Free-Run
Setting range
-
Unit
-
Lost Cmd Time 1.0
0.1-120
s
Lost Preset F
0.00
AI Lost Level
0
Half of x1
Start
Hz
frequency–
Max. frequency
-
Relay 1
Q1 Define
13
Lost
Command
-
-
Speed Command Loss Setting Details
Code
Description
Pr.12 Lost Cmd Mode In situations when speed commands are lost, the inverter can be configured to
operate in a specific mode:
Setting
Function
0
None
The speed command immediately becomes the
operation frequency without any protection
function.
1
Free-Run
The inverter blocks output. The motor performs in
free-run condition.
2
Dec
The motor decelerates and then stops at the time
set at Pr.07 (Trip Dec Time).
3
Hold Input
The inverter calculates the average input value for
10 seconds before the loss of the speed command
and uses it as the speed reference.
4
Hold Output
The inverter calculates the average output value for
10 seconds before the loss of the speed command
and uses it as the speed reference.
5
Lost Preset
The inverter operates at the frequency set at Pr. 14
(Lost Preset F).
Pr.15 AI Lost Level,
Configure the voltage and decision time for speed command loss when using
Pr.13 Lst Cmd Time
analog input.
Setting
Function
0
Half of x1
Based on the values set at In.08 and In.12,
202
Learning Protection Features
Code
Pr.14 Lost Preset F
Description
protective operation starts when the input signal is
reduced to half of the initial value of the analog
input set using the speed command (Frq code of
Operation group) and it continues for the time
(speed loss decision time) set at Pr. 13 (Lost Cmd
Time). For example, set the speed command to 2
(V1) at the Frq code in the Operation group, and
In.06 (V1 Polarity) to 0 (Unipolar). When the voltage
input drops to less than half of the value set at In.08
(V1 Volt x 1), the protective function is activated.
1
Below x1
The protective operation starts when the signal
becomes smaller than the initial value of the analog
input set by the speed command and it continues
for the speed loss decision time set at Pr.13 (Lost
Cmd Time). Codes In.08 and In.12 are used to set
the standard values.
In situations where speed commands are lost, set the operation mode (Pr.12
Lost Cmd Mode) to 5 (Lost Preset). This operates the protection function and
sets the frequency so that the operation can continue.
Set Pr.15 (Al Lost Level) to 1 (Below x 1), Pr.12 (Lost Cmd Mode) to 2 (Dec), and Pr.13 (Lost Cmd
Time) to 5 sec. Then it operates as follows:
Note
If speed command is lost while using communication options or the integrated RS-485
communication, the protection function operates after the command loss decision time set at Pr.13
(Lost Cmd Time) is passed.
203
Learning Protection Features
6.2.5 Dynamic Braking (DB) Resistor Configuration
For S100 series, the braking resistor circuit is integrated inside the inverter.
Group Code Name
Pr
66
Braking resistor
configuration
OU
31
Multi-function relay 1
item
33
Multi-function
output 1 item
LCD Display
DB Warn %ED
Parameter Setting
10
Relay 1
31
Setting range
0-30
DB Warn %ED -
Unit
%
-
Q1 Define
Dynamic Breaking Resistor Setting Details
Code
Pr.66 DB Warn %ED
Description
Set braking resistor configuration (%ED: Duty cycle). Braking resistor
configuration sets the rate at which the braking resistor operates for one
operation cycle. The maximum time for continuous braking is 15 sec and the
braking resistor signal is not output from the inverter after the 15 sec period has
expired. An example of braking resistor set up is as follows:
%𝐸𝐸 =
𝑇_𝑑𝑑𝑑
× 100%
𝑇_𝑎𝑎𝑎 + 𝑇_𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑇_𝑑𝑑𝑑 + 𝑇_𝑠𝑠𝑠𝑠
[Example 1]
%𝐸𝐸 =
204
𝑇_𝑑𝑑𝑑
× 100%
𝑇_𝑑𝑑𝑑 + 𝑇_𝑠𝑠𝑠𝑠𝑠𝑠1 + 𝑇_𝑎𝑎𝑎 + 𝑇_𝑠𝑠𝑠𝑠𝑠𝑠2
Learning Protection Features
Code
Description
[Example 2]
• T_acc: Acceleration time to set frequency
• T_steady: Constant speed operation time at set frequency
• T_dec: Deceleration time to a frequency lower than constant speed
operation or the stop time from constant speed operation frequency
• T_stop: Stop time until operation resumes
Do not set the braking resistor to exceed the resistor’s power rating. If overloaded, it can overheat and
cause a fire. When using a resistor with a heat sensor, the sensor output can be used as an external trip
signal for the inverter’s multi-function input.
6.3 Under load Fault Trip and Warning
Group Code Name
Pr
25 Under load warning
selection
26 Under load warning
time
27 Under load trip selection
28 Under load trip timer
29 Under load upper limit
level
30 Under load lower limit
level
LCD Display
UL Warn Sel
Parameter Setting
1
Yes
UL Warn Time 10.0
UL Trip Sel
UL Trip Time
UL LF Level
1
30.0
30
UL BF Level
30
Free-Run
Setting range
0-1
Unit
-
0-600
sec
0-600
10-100
sec
%
10-100
%
205
Learning Protection Features
Under Load Trip and Warning Setting Details
Code
Pr.27 UL Trip Sel
Description
Sets the underload fault trip occurs. If set to 0(None), does not detect the
underload fault trip. If set to 1 (Free-Run), the output is blocked in an
underload fault trip situation. If set to 2 (Dec), the motor decelerates and
stops when an underload trip occurs.
Pr.25 UL Warn Sel
Sets the underload warning options. Set to 1(Yes) and set the multi-function
output terminals (at OU-31 and 33) to 7 (Underload). The warning signals are
output when an underload condition arises.
The protection function operates when the underload level condition
explained above is maintained for a set warning time or fault trip time. This
function does not operate if energy-saving operation is activated at Ad-50
(E-Save Mode).
• Setting Heavy Duty
- Do not support Pr.29.
- At Pr.30, the underload level is decided based on the motor’s rated current.
Pr.26 UL Warn Time,
Pr.28 UL Trip Time
Pr.29 UL LF Level,
Pr.30 UL BF Level
206
Learning Protection Features
6.3.1 Fan Fault Detection
Group
Pr
OU
OU
Code
79
31
33
Name
Cooling fan fault selection
Multi-function relay 1
Multi-function output 1
LCD Display
Parameter Setting Setting range
FAN Trip Mode 0
Trip
Relay 1
8 FAN Warning
Q1 Define
Unit
-
Fan Fault Detection Setting Details
Code
Pr.79 FAN Trip Mode
Description
Set the cooling fan fault mode.
Setting
0
Trip
OU.33 Q1 Define,
OU.31 Relay1
Function
The inverter output is blocked and the fan trip is
displayed when a cooling fan error is detected.
1
Warning
When OU.33 (Q1 Define) and OU.31 (Relay1) are set
to 8 (FAN Warning), the fan error signal is output
and the operation continues.
When the code value is set to 8 (FAN Warning), the fan error signal is output and
operation continues. However, when the inverter inside temperature rises
above a certain level, output is blocked due to activation of overheat protection.
6.3.2 Lifetime diagnosis of components
Registering a capacitance reference for inspection
Note
To perform a capacitor diagnosis, a capacitance reference must be measured and registered by setting
Pr-61 (CAP Diag) to 1 (Ref Diag) when the inverter is used for the first time. The measured reference
value is saved at Pr-63 and is used asthe reference for the capacitor life diagnosis.
Refer to the following instructions to measure a reference capacitance.
1
Set an appropriate capacitor diagnosis current based on the inverter’s rated output at Pr-60
(CAP DiagCurr).
• The capacitor diagnosis current is a direct current that is applied to the capacitor for
inspection, and is defined asin a percentage of the rated inverter output. Because the value
is defined based on the inverter output, set an appropriate value if the motor has smaller
rated current.
2
At Pr-62 (CAP Exchange Level), set the capacitor replacement warning level to a value
207
Learning Protection Features
between 50.0% and 95.0%
3
Set Pr-61 (CAP Diag) to “1” (Ref Diag). Then, the direct current set at Pr-60 (CAP DiagCurr)is
output.
• The capacitor diagnosis is only available when the inverter is stopped.
• If Pr-61is set to 1 (Ref Diag), the displayed value at Pr-63 reflects 100% of the measured
capacitance.
• If you plan to perform a capacitor diagnosis using Pr-61(CAP Diag), the initial capacitance
must be measured when the inverter is used for the first time. A capacitance measured on
a used inverter leads to inaccurate inspection results due to an incorrect reference
capacitance value.
4
Turn off the input to the inverter.
5
Turn on the inverter when a low voltage trip (LVT) occurs.
6
View the value displayed at Pr-63 (CAP Diag Level). When Pr-61 is set to “1” (Ref Diag), Pr-63
displays100% of the capacitance.
[Main Capacitor Diagnosis details]
Group Code Name
LCD Display
60
Capacitance
Diagnose current
Level
CAP. DiagPerc
Setting value
Setting Range
Unit
0.0
10.0-100.0
%
0 None
61
Pr
62
63
CAP. Diagnosis
mode
CAP Exchange
Level
CAP Diag Level
1 Ref Diag
2 Pre Diag
3 Init Diag
CAP. Diag
0
CAP Exchange
Level
0
50.0 ~ 95.0
%
CAP Diag Level 0
0.0 ~ 100.0
%
%
Inspecting the capacitor life and initializing the capacitance reference
Refer to the following instructions to inspect the capacitor life and initialize the capacitance
reference.
Note
To perform a capacitor diagnosis, a capacitance reference must be measured and registered by setting
Pr-61 (CAP Diag) to 1 (Ref Diag) when the inverter is used for the first time. The measured reference
value is registered at Pr-63, and is used asthe reference for the capacitor life diagnosis.
208
Learning Protection Features
1
On an inverter whose run time has reached the cumulated time for capacitor replacement,
set Pr-61 (CAP Diag) to 2 (Pre Diag).
2
Check the value displayed at Pr-63 (CAP Diag Level). If the value displayed at Pr-63 is smaller
than the value set at Pr-62 (CAP. Level 1), a capacitor replacement warning (CAP Exchange)
will occur.
3
While the capacitor replacement warning continues, confirm that the first bit at Pr-89
(Inverter State) is set.
4
Set Pr-62 to 0.0%. The capacitor replacement warning (CAP Exchange) will be released.
5
Set Pr-61 to 3 (CAP. Init) and make sure that the value displayed at Pr-63has changed to 0.0%.
Lifetime diagnosis for fans
Enter the Pr-87(Fan exchange warning level) code (%). After the selected usage (%) is reached (out
of 50,000 hours), the fan exchange warning message will appear in the multi-functional output or
keypad.
The total fan usage level (%) appears at Pr-86. When exchanging fans, you may initialize the
accumulated value to 0 by setting the CNF-75 (Initializing accumulated time for cooling fans) to 1.
Group Code Name
Accumulated percentof
86
fan usage
Pr
Fan exchange warning
87
Level
CNF*
OU
75
31
32
33
LCD Display
Setting value
FAN Time Perc
0.0
Setting Range Unit
0.0-6553.5
%
FAN Exchange
level
90.0
0.0-100.0
%
-
-
Initialize operation time
FAN Time Rst
of cooling fans
Multi-function relay 1 Relay 1
Multi-function relay 2 Relay 2
Multi-function output 1 Q1 Define
0
No
1
Yes
38
FAN
Exchange
-
* Available on LCD keypad only.
6.3.3 Low Voltage Fault Trip
When inverter input power is lost and the internal DC link voltage drops below a certain voltage level,
the inverter stops output and a low voltage trip occurs.
Group Code Name
Pr
81
Low voltage trip
decision delay time
LCD Display
LVT Delay
Parameter Setting
0.0
Setting range
0-60
Unit
sec
209
Learning Protection Features
Group Code Name
OU
31
Multi-function relay 1
33
Multi-function output 1
LCD Display
Relay 1
Q1 Define
Parameter Setting
11
Low Voltage
Setting range
Unit
-
Low Voltage Fault Trip Setting Details
Code
Pr.81 LVT Delay
Description
If the code value is set to 11 (Low Voltage), the inverter stops the output first
when a low voltage trip condition arises, then a fault trip occurs after the low
voltage trip decision time is passed. The warning signal for a low voltage fault
trip can be provided using the multi-function output or a relay. However, the
low voltage trip delay time (LVT Delay time) does not apply to warning signals.
6.3.4 Output Block by Multi-Function Terminal
When the multi-function input terminal is set as the output block signal terminal and the signal is
input to the terminal, then the operation stops.
Group Code
In
65-69
Name
Px terminal setting
options
LCD Display
Parameter Setting Setting range Unit
Px Define(Px: P1-P5) 5
BX
0~54
-
Output Block by Multi-Function Terminal Setting Details
Code
In.65-69 Px Define
Description
When the operation of the multi-function input terminal is set to 5 (BX) and is
turned on during operation, the inverter blocks the output and ‘BX’ is displayed
on the keypad display. While ‘BX’ is displayed on the keypad screen, the inverter’s
operation information including the operation frequency and current at the
time of BX signal can be monitored. The inverter resumes operation when the
BX terminal turns off and operation command is input.
6.3.5 Trip Status Reset
Restart the inverter using the keypad or analog input terminal, to reset the trip status.
Group Code
In
65-69
210
Name
Px terminal setting
options
LCD Display
Parameter Setting Setting range Unit
Px Define(Px: P1-P5) 3
RST
0~54
-
Learning Protection Features
Trip Status Reset Setting Details
Code
In.65-69 Px Define
Description
Press [Stop/Reset] key on the keypad or use the multi-function input terminal to
restart the inverter. Set the multi-function input terminal to 3 (RST) and turn on
the terminal to reset the trip status.
6.3.6 Inverter Diagnosis State
Check the diagnosis of components or devices for inverter to check if they need to be replaced.
Group
Pr
Code
Name
89
CAP, FAN
replacement
warning
Parameter
Setting
LCD Display
Inverter State
Setting Range
Unit
Bit
00
01
10
Bit
00-10
CAP Warning
FAN Warning
6.3.7 Operation Mode on Option Card Trip
Option card trips may occur when an option card is used with the inverter. Set the operation mode
for the inverter when a communication error occurs between the option card and the inverter body, or
when the option card is detached during operation.
Group Code Name
LCD Display
Parameter Setting Setting range Unit
Pr
80
Operation mode on option Opt Trip Mode
0 None
0-3
card trip
1 Free-Run
2 Dec
Operation Mode on Option Trip Setting Details
Code
Pr.80 Opt Trip Mode
Description
Setting
0
None
1
Free-Run
2
Dec
Function
No operation
The inverter output is blocked and fault trip
information is shown on the keypad.
The motor decelerates to the value set at Pr.07 (Trip
Dec Time).
211
Learning Protection Features
6.3.8 No Motor Trip
If an operation command is run when the motor is disconnected from the inverter output
terminal, a ‘no motor trip’ occurs and a protective operation is performed by the system.
Group Code Name
Pr
31
Operation on no motor trip
32
No motor trip current level
33
No motor detection time
LCD Display
No Motor Trip
No Motor Level
No Motor Time
Parameter Setting
0
None
5
3.0
Setting range
1-100
0.1-10
Unit
%
s
No Motor Trip Setting Details
Code
Description
Pr.32 No Motor Level, If the output current value [based on the rated current (bA.13)] is lower than the
Pr.33 No Motor Time value set at Pr.32 (No Motor Level), and if this continues for the time set at Pr.33
(No Motor Time), a ‘no motor trip’ occurs.
If bA.07 (V/F Pattern) is set to 1 (Square), set Pr.32 (No Motor Level) to a value lower than the factory
default. Otherwise, ‘no motor trip’ due to a lack of output current will result when the ‘no motor trip’
operation is set.
6.3.9 Low voltage trip 2
If you set the Pr-82(LV2 Selection) code to Yes (1), the trip notification is displayed when a low
voltage trip occurs. In this case, even if the voltage of the DC Link condenser is higher than the trip
level, the LV2 trip will not be retrieved. To retrieve the trip, reset the inverter. The trip history will not
be saved.
Group
Code
Name
LCD Display
Pr
82
LV2 Selection
LV2 Enable
Parameter
Setting
Yes(1)
Setting Range
Unit
0/1
-
6.4 Fault/Warning List
The following list shows the types of faults and warnings that can occur while using the S100
inverter. Please refer to 6 Learning Protection Features on page 193 for details about faults and
warnings.
212
Learning Protection Features
Category
Major fault
Latch type
Level type
Hardware
damage
LCD Display
Details
Over Current1
Over current trip
Over Voltage
Over voltage trip
External Trip
Trip due to an external signal
NTC Open
Temperature sensor fault trip
Over Current2
ARM short current fault trip
Option Trip-x*
Option fault trip*
Over Heat
Over heat fault trip
Out Phase Open
Output open-phase fault trip
In Phase Open
Input open-phase fault trip
Inverter OLT
Inverter overload fault trip
Ground Trip
Ground fault trip
Fan Trip
Fan fault trip
E-Thermal
Motor overheat fault trip
Pre-PID Fail
Pre-PID operation failure
IO Board Trip
IO Board connection fault trip
Ext-Brake
External brake fault trip
No Motor Trip
No motor fault trip
Low Voltage 2
Low voltage fault trip during operation
ParaWrite Trip**
Write parameter fault trip
Low Voltage
Low voltage fault trip
BX
Emergency stop fault trip
Lost Command
Command loss trip
Safety A(B) Err
Safety A(B) contact trip
EEP Err
External memory error
ADC Off Set
Analog input error
Watch Dog-1
CPU Watch Dog fault trip
Watch Dog-2
Minor fault
Warning
Over Load
Motor overload fault trip
Under Load
Motor underload fault trip
Lost Command
Command loss fault trip warning
Over Load
Overload warning
Under Load
Under load warning
213
Learning Protection Features
Category
LCD Display
Details
Inverter OLT
Inverter overload warning
Fan Warning
Fan operation warning
DB Warn %ED
Braking resistor braking rate warning
Retry Tr Tune
Rotor time constant tuning error
CAP Exchange
Capacitor replacement warning
FAN Exchange
Fan replacement warning
* Applies only when an option board is used.
** Displayed on an LCD keypad only.
214
RS-485 Communication Features
7 RS-485 Communication Features
This section in the user manual explains how to control the inverter with a PLC or a computer over
a long distance using the RS-485 communication features. To use the RS-485 communication
features, connect the communication cables and set the communication parameters on the
inverter. Refer to the communication protocols and parameters to configure and use the RS-485
communication features.
7.1 Communication Standards
Following the RS-485 communication standards, S100 products exchange data with a PLC and
computer. The RS-485 communication standards support the Multi-drop Link System and offer an
interface that is strongly resistant to noise. Please refer to the following table for details about the
communication standards.
Item
Communication method/
Transmission type
Inverter type name
Number of connected
inverters/ Transmission
distance
Recommended cable size
Installation type
Power supply
Communication speed
Control procedure
Communication system
Character system
Stop bit length
Frame error check
Parity check
Standard
RS-485/Bus type, Multi-drop Link System
S100
Maximum of 16 inverters / Maximum1,200m (recommended distance:
within 700m)
0.75mm², (18AWG), Shielded Type Twisted-Pair (STP) Wire
Dedicated terminals (S+/S-/SG) on the control terminal block
Supplied by the inverter - insulated power source from the inverter’s
internal circuit
1,200/2,400/9,600/19,200/38,400/57,600/115,200 bps
Asynchronous communications system
Half duplex system
Modbus-RTU: Binary / LS Bus: ASCII
1-bit/2-bit
2 bytes
None/Even/Odd
7.2 Communication System Configuration
In an RS-485 communication system, the PLC or computer is the master device and the inverter is
the slave device. When using a computer as the master, the RS-232 converter must be integrated
215
RS-485 Communication Features
with the computer, so that it can communicate with the inverter through the RS-232/RS-485
converter. Specifications and performance of converters may vary depending on the
manufacturer, but the basic functions are identical. Please refer to the converter manufacturer’s
user manual for details about features and specifications.
Connect the wires and configure the communication parameters on the inverter by referring to
the following illustration of the communication system configuration.
7.2.1 Communication Line Connection
Make sure that the inverter is turned off completely, and then connect the RS-485 communication
line to the S+/S-/SG terminals of the terminal block. The maximum number of inverters you can
connect is 16. For communication lines, use shielded twisted pair (STP) cables.
The maximum length of the communication line is 1,200 meters, but it is recommended to use no
more than 700 meters of communication line to ensure stable communication. Please use a
repeater to enhance the communication speed when using a communication line longer than
1,200 meters or when using a large number of devices. A repeater is effective when smooth
communication is not available due to noise interference.
When wiring the communication line, make sure that the SG terminals on the PLC and inverter are
connected. SG terminals prevent communication errors due to electronic noise interference.
7.2.2 Setting Communication Parameters
Before proceeding with setting communication configurations, make sure that the
communication lines are connected properly. Turn on the inverter and set the communication
parameters.
216
RS-485 Communication Features
Group
CM
Code
01
02
03
04
05
Name
Built-in communication
inverter ID
Built-in communication
protocol
Built-in communication
speed
Built-in communication
frame setting
Transmission delay after
reception
LCD Display
Int485 St ID
Parameter Setting Setting range
1
1-250
Unit
-
Int485 Proto
0
ModBus RTU 0, 2
-
Int485 BaudR 3
9600 bps
0-7
-
Int485 Mode
0
D8/PN/S1
0-3
-
Resp Delay
5
0-1000
ms
Communication Parameters Setting Details
Code
CM.01 Int485 St ID
CM.02 Int485 Proto
Description
Set the inverter station ID between 1 and 250.
Select one of the two built-in protocols: Modbus-RTU or LS INV 485.
CM.03 Int485 BaudR
Setting
Function
0
Modbus-RTU
Modbus-RTU compatible protocol
2
LS INV 485
Dedicated protocol for the LS inverter
Set a communication setting speed up to 115,200 bps.
CM.04 Int485 Mode
CM.05 Resp Delay
Setting
Function
0
1,200 bps
1
2,400 bps
2
4,800 bps
3
9,600 bps
4
19,200 bps
5
38,400 bps
6
56K bps
7
115 Kbps
Set a communication configuration. Set the data length, parity check method,
and the number of stop bits.
Setting
Function
0
D8/PN/S1
8-bit data / no parity check / 1 stop bit
1
D8/PN/S2
8-bit data / no parity check / 2 stop bits
2
D8/PE/S1
8-bit data / even parity / 1 stop bit
3
D8/PO/S1
8-bit data / odd parity / 1 stop bit
Set the response time for the slave (inverter) to react to the request from the
217
RS-485 Communication Features
Code
Description
master. Response time is used in a system where the slave device response is
too fast for the master device to process. Set this code to an appropriate value
for smooth master-slave communication.
7.2.3 Setting Operation Command and Frequency
To select the built-in RS485 communication as the source of command, set the Frq code to 6
(Int485) on the keypad (basic keypad with 7-segment display). On an LCD keypad, set the DRV
code to 3 (Int485). Then, set common area parameters for the operation command and
frequency via communication.
Group Code
Pr
12
13
14
OU
31
33
Name
Speed command loss
operation mode
Time to determine speed
command loss
Operation frequency at
speed command loss
LCD Display
Parameter Setting Setting range
Lost Cmd Mode 1
Free-Run
0-5
Unit
-
Lost Cmd Time
1.0
0.1-120
s
Lost Preset F
0.00
Hz
Multi-function relay 1
Multi-function output 1
Relay 1
Q1 Define
13
Start
frequency–
Maximum
frequency
0-35
Parameter Setting Setting range
3 Int 485
0-5
6 Int 485
0-12
Unit
-
Group
Code
Operation DRV
Frq
Name
LCD Display
Command source Cmd Source*
Frequency setting Freq Ref Src
method
* Displayed in DRV-06 on an LCD keypad.
218
Lost
Command
-
RS-485 Communication Features
7.2.4 Command Loss Protective Operation
Configure the command loss decision standards and protective operations run when a
communication problem lasts for a specified period of time.
Command Loss Protective Operation Setting Details
Code
Description
Pr.12 Lost Cmd Mode, Select the operation to run when a communication error has occurred and
Pr.13 Lost Cmd Time lasted exceeding the time set at Pr. 13.
Setting
Function
0
None
The speed command immediately becomes the
operation frequency without any protection
function.
1
Free-Run
The inverter blocks output. The motor performs in
free-run condition.
2
Dec
The motor decelerates and then stops at the time
set at Pr.07 (Trip Dec Time).
3
Hold Input
The inverter calculates the average input value for
10 seconds before the loss of the speed command
and uses it as the speed reference.
4
Hold Output
The inverter calculates the average output value for
10 seconds before the loss of the speed command
and uses it as the speed reference.
5
Lost Preset
The inverter operates at the frequency set at Pr. 14
(Lost Preset F).
7.2.5 Setting Virtual Multi-Function Input
Multi-function input can be controlled using a communication address (0h0385). Set codes
CM.70–77 to the functions to operate, and then set the BIT relevant to the function to 1 at 0h0322
to operate it. Virtual multi-function operates independently from In.65-69 analog multi-function
inputs and cannot be set redundantly. Virtual multi-function input can be monitored using CM.86
(Virt Dl Status). Before you configure the virtual multi-function inputs, set the DRV code according
to the command source.
219
RS-485 Communication Features
Group
CM
Code
70-77
86
Name
Communication multifunction input x
Communication multifunction input
monitoring
LCD Display
Virtual DI x
(x: 1-8)
Virt DI Status
Parameter Setting Setting range
0
None
0-49
Unit
-
-
-
-
-
Example: When sending an Fx command by controlling virtual multi-function input in the
common area via Int485, set CM.70 to FX and set address 0h0322 to 0h0001.
Note
The following are values and functions that are applied to address 0h0322:.
Setting
Function
0h0001
0h0003
0h0000
Forward operation (Fx)
Reverse operation (Rx)
Stop
7.2.6 Saving Parameters Defined by Communication
If you turn off the inverter after setting the common area parameters or keypad parameters via
communication and operate the inverter, the changes are lost and the values changed via
communication revert to the previous setting values when you turn on the inverter.
Set CNF-48 to 1 (Yes) to allow all the changes over comunication to be saved, so that the inverter
retains all the existing values even after the power has been turned off.
Setting address 0h03E0 to 0 and then setting it again to 1 via communication allows the existing
parameter settings to be saved. However, setting address 0h03E0 to 1 and then setting it to 0 does
not carry out the same function. Parameters defined by communication can only be saved using
an LCD keypad.
Group
CNF*
Code
48
Name
Save parameters
*Available on an LCD keypad only.
220
LCD Display
Parameter Setting Setting range Unit
Parameter Save 0
No
0 -1
1
Yes
RS-485 Communication Features
7.2.7 Total Memory Map for Communication
Communication Area
Communication common compatible
area
Parameter registration type area
S100 communication common area
Memory Map
Details
0h0000-0h00FF iS5, iP5A, iV5, iG5A compatible area
0h0100-0h01FF Areas registered at CM.31–38 and CM.51–
58
0h0200Area registered for User Group
0h023F
0h0240Area registered for Macro Group
0h027F
0h0280-0h02FF Reserved
0h0300Inverter monitoring area
0h037F
0h0380Inverter control area
0h03DF
0h03E0-0h03FF Inverter memory control area
0h0400-0h0FFF Reserved
0h1100
dr Group
0h1200
bA Group
0h1300
Ad Group
0h1400
Cn Group
0h1500
In Group
0h1600
OU Group
0h1700
CM Group
0h1800
AP Group
0h1B00
Pr Group
0h1C00
M2 Group
7.2.8 Parameter Group for Data Transmission
By defining a parameter group for data transmission, the communication addresses registered in
the communication function group (CM) can be used in communication. Parameter group for
data transmission may be defined to transmit multiple parameters at once, into the
communication frame.
Group
CM
Code
31-38
51-58
Name
LCD Display
Output communication Para Status-x
address x
Input communication Para Control-x
address x
Parameter Setting Setting range Unit
0000-FFFF
Hex
-
-
0000-FFFF
Hex
221
RS-485 Communication Features
Currently Registered CM Group Parameter
Address
Parameter
Status Parameter-10h0100-0h0107
Status Parameter-8
Control Parameter-10h0110-0h0117
Control Parameter-8
Assigned content by bit
Parameter communication code value registered at CM.31-38
(Read-only)
Parameter communication code value registered at CM.51-58
(Read/Write access)
Note
When registering control parameters, register the operation speed (0h0005, 0h0380, 0h0381) and
operation command (0h0006, 0h0382) parameters at the end of a parameter control frame. For
example, when the parameter control frame has 5 parameter control items (Para Control - x), register
the operation speed at Para Control-4 and the operation command to Para Control-5.
7.3 Communication Protocol
The built-in RS-485 communication supports LS INV 485 and Modbus-RTU protocols.
7.3.1 LS INV 485 Protocol
The slave device (inverter) responds to read and write requests from the master device (PLC or PC).
Request
ENQ
Station ID
CMD
Data
SUM
EOT
1 byte
2 bytes
1 byte
n bytes
2 bytes
1 byte
CMD
1 byte
Data
n x 4 bytes
SUM
2 bytes
EOT
1 byte
NAK
Station ID
CMD
Error code
1 byte
2 bytes
1 byte
2 bytes
• A request starts with ENQ and ends with EOT.
SUM
2 bytes
EOT
1 byte
Normal Response
ACK
1 byte
Station ID
2 bytes
Error Response
222
RS-485 Communication Features
• A normal response starts with ACK and ends with EOT.
• An error response starts with NAK and ends with EOT.
• A station ID indicates the inverter number and is displayed as a two-byte ASCII-HEX string
that uses characters 0-9 and A-F.
• CMD: Uses uppercase characters (returns an IF error if lowercase characters are
encountered)—please refer to the following table.
Character
‘R’
ASCII-HEX
52h
Command
Read
‘W’
57h
Write
‘X’
58h
Request monitor registration
‘Y;
59h
Perform monitor registration
• Data: ASCII-HEX (for example, when the data value is 3000: 3000 → ‘0’’B’’B’’8’h → 30h 42h
42h 38h)
• Error code: ASCII-HEX (refer to 7.3.1.4 Error Code on page 226)
• Transmission/reception buffer size: Transmission=39 bytes, Reception=44 bytes
• Monitor registration buffer: 8 Words
• SUM: Checks communication errors via sum.
SUM=a total of the lower 8 bits values for station ID, command and data (Station
ID+CMD+Data) in ASCII-HEX.
For example, a command to read 1 address from address 3000:
SUM=‘0’+‘1’+’R’+‘3’+‘0’+‘0’+‘0’+’1’ = 30h+31h+52h+33h+30h+30h+30h+31h = 1A7h (the
control value is not included: ENQ, ACK, NAK, etc.).
ENQ
Station ID
05h
‘01’
1 byte 2 bytes
CMD
Address
‘R’
1 byte
‘3000’
4 bytes
Number of
Addresses
‘1’
1 byte
SUM
EOT
‘A7’
2 bytes
04h
1 byte
Note
Broadcasting
Broadcasting sends commands to all inverters connected to the network simultaneously. When
commands are sent from station ID 255, each inverter acts on the command regardless of the station
ID. However no response is issued for commands transmitted by broadcasting.
7.3.1.1 Detailed Read Protocol
Read Request: Reads successive n words from address XXXX.
223
RS-485 Communication Features
ENQ
Station ID
CMD
Address
Number of SUM
Addresses
05h
‘01’-’FA’
‘R’
‘XXXX‘
‘1’-‘8’ = n
‘XX’
1 byte
2 bytes
1 byte
4 bytes
1 byte
2 bytes
Total bytes=12. Characters are displayed inside single quotation marks(‘).
EOT
04h
1 byte
Read Normal Response
ACK
Station ID
CMD
06h
‘01’-‘FA’
‘R’
1 byte
2 bytes
1 byte
Total bytes= (7 x n x 4): a maximum of 39
Data
‘XXXX’
n x 4 bytes
SUM
‘XX’
2 bytes
EOT
04h
1 byte
Error code
‘**’
2 bytes
SUM
‘XX’
2 bytes
EOT
04h
1 byte
Read Error Response
NAK
15h
1 byte
Total bytes=9
Station ID
‘01’-‘FA’
2 bytes
CMD
‘R’
1 byte
7.3.1.2 Detailed Write Protocol
Write Request: Writes successive n words to address XXXX.
ENQ
Station ID
CMD
Address
05h
‘01’-‘FA’
‘W’
‘XXXX’
1 byte 2 bytes
1 byte
4 bytes
Total bytes= (12 + n x 4): a maximum of 44
Number of
Addresses
‘1’-‘8’ = n
1 byte
Data
SUM
EOT
‘XXXX…’
n x 4 bytes
‘XX’
2 bytes
04h
1 byte
Write Normal Response
ACK
Station ID
CMD
06h
‘01’-‘FA’
‘W’
1 byte
2 bytes
1 byte
Total bytes= (7 + n x 4): a maximum of 39
224
Data
‘XXXX…’
n x 4 bytes
SUM
‘XX’
2 bytes
EOT
04h
1 byte
RS-485 Communication Features
Write Error Response
NAK
15h
1 byte
Total bytes=9
Station ID
‘01’-‘FA’
2 bytes
CMD
‘W’
1 byte
Error Code
‘**’
2 bytes
SUM
‘XX’
2 bytes
EOT
04h
1 byte
7.3.1.3 Monitor Registration Detailed Protocol
Monitor registration request is made to designate the type of data that requires continuous
monitoring and periodic updating.
Monitor Registration Request: Registration requests for n addresses (where n refers to the
number of addresses. The addresses do not have to be contiguous.)
ENQ
Station ID
CMD
05h
‘01’-‘FA’
‘X’
1 byte
2 bytes
1 byte
Total bytes= (8 + n x 4): a maximum of 40
Number of
Addresses
‘1’-‘8’=n
1 byte
Address
SUM
EOT
‘XXXX…’
n x 4 bytes
‘XX’
2 bytes
04h
1 byte
Monitor Registration Normal Response
ACK
06h
1 byte
Total bytes=7
Station ID
‘01’-‘FA’
2 bytes
CMD
‘X’
1 byte
SUM
‘XX’
2 bytes
EOT
04h
1 byte
Monitor Registration Error Response
NAK
15h
1 byte
Total bytes=9
Station ID
‘01’-‘FA’
2 bytes
CMD
‘X’
1 byte
Error Code
‘**’
2 bytes
SUM
‘XX’
2 bytes
EOT
04h
1 byte
Monitor Registration Perform Request: A data read request for a registered address, received
from a monitor registration request
ENQ
05h
1 byte
Station ID
‘01’-‘FA’
2 bytes
CMD
‘Y’
1 byte
SUM
‘XX’
2 bytes
EOT
04h
1 byte
225
RS-485 Communication Features
Total bytes=7
Monitor Registration Execution Normal Response
ACK
Station ID
CMD
06h
‘01’-‘FA’
‘Y’
1 byte
2 bytes
1 byte
Total bytes= (7 + n x 4): a maximum of 39
Data
‘XXXX…’
n x 4 bytes
SUM
‘XX’
2 bytes
EOT
04h
1 byte
Error Code
‘**’
2 bytes
SUM
‘XX’
2 bytes
EOT
04h
1 byte
Monitor Registration Execution Error Response
NAK
15h
1 byte
Total bytes=9
Station ID
‘01’-‘FA’
2 bytes
CMD
‘Y’
1 byte
7.3.1.4 Error Code
Code
ILLEGAL FUNCTION
Abbreviation
IF
ILLEGAL DATA ADDRESS IA
ILLEGAL DATA VALUE
ID
WRITE MODE ERROR
WM
FRAME ERROR
226
FE
Description
The requested function cannot be performed by a slave
because the corresponding function does not exist.
The received parameter address is invalid at the slave.
The received parameter data is invalid at the slave.
Tried writing (W) to a parameter that does not allow writing
(read-only parameters, or when writing is prohibited during
operation)
The frame size does not match.
RS-485 Communication Features
7.3.1.5 ASCII Code
Character
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
Hex
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
Character
q
r
s
t
u
v
w
x
y
z
0
1
2
3
4
5
6
7
8
9
space
!
"
#
$
%
&
'
(
)
*
+
,
.
/
:
;
<
=
>
?
Hex
71
72
73
74
75
76
77
78
79
7A
30
31
32
33
34
35
36
37
38
39
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
3A
3B
3C
3D
3E
3F
Character
@
[
\
]
{
|
}
BEL
BS
CAN
CR
DC1
DC2
DC3
DC4
DEL
DLE
EM
ACK
ENQ
EOT
ESC
ETB
ETX
FF
FS
GS
HT
LF
NAK
NUL
RS
S1
SO
SOH
STX
SUB
SYN
US
VT
Hex
40
5B
5C
5D
5E
5F
60
7B
7C
7D
7E
07
08
18
0D
11
12
13
14
7F
10
19
06
05
04
1B
17
03
0C
1C
1D
09
0A
15
00
1E
0F
0E
01
02
1A
16
1F
0B
227
RS-485 Communication Features
7.3.2 Modbus-RTU Protocol
7.3.2.1 Function Code and Protocol (unit: byte)
In the following section, station ID is the value set at CM.01 (Int485 St ID), and starting address is
the communication address. (starting address size is in bytes). For more information about
communication addresses, refer to 7.4 Compatible Common Area Parameter on page 231.
Function Code #03: Read Holding Register
Query Field Name
Station ID
Function(0x03)
Starting Address Hi
Starting Address Lo
# of Points Hi
# of Points Lo
CRC Lo
CRC Hi
Response Field Name
Station ID
Function (0x03)
Byte Count
Data Hi
Data Lo
…
…
Data Hi
Data Lo
CRC Lo
CRC Hi
# number of Points
Function Code #04: Read Input Register
Query Field Name
Station ID
Function(0x04)
Starting Address Hi
Starting Address Lo
# of Points Hi
# of Points Lo
CRC Lo
CRC Hi
Response Field Name
Station ID
Function (0x04)
Byte Count
Data Hi
Data Lo
…
…
Data Hi
Data Lo
CRC Lo
CRC Hi
Function Code #06: Preset Single Register
228
# number of Points
RS-485 Communication Features
Query Field Name
Station ID
Function (0x06)
Starting Address Hi
Register Address Lo
Preset Data Hi
Preset Data Lo
CRC Lo
CRC Hi
Response Field Name
Station ID
Function (0x06)
Register Address Hi
Register Address Lo
Preset Data Hi
Preset Data Lo
CRC Lo
CRC Hi
Function Code #16 (hex 0h10): Preset Multiple Register
Query Field Name
Station ID
Function (0x10)
Starting Address Hi
Starting Address Lo
# of Register Hi
# of Register Lo
Byte Count
Data Hi
Data Lo
…
…
Data Hi
Data Lo
CRC Lo
CRC Hi
Response Field Name
Station ID
Function (0x10)
Starting Address Hi
Starting Address Lo
# of Register Hi
# of Register Lo
CRC Lo
CRC Hi
# number of Points
Exception Code
Code
01: ILLEGAL FUNCTION
02: ILLEGAL DATA ADRESS
03: ILLEGAL DATA VALUE
229
RS-485 Communication Features
Code
06: SLAVE DEVICE BUSY
Response
Field Name
Station ID
Function*
Exception Code
CRC Lo
CRC Hi
* The function value uses the top level bit for all query values.
Example of Modbus-RTU Communication in Use
When the Acc time (Communication address 0x1103) is changed to 5.0 sec and the Dec time
(Communication address 0x1104) is changed to 10.0 sec.
Frame Transmission from Master to Slave (Request)
Item
Station Function Starting Address # of
ID
Register
Hex
0x01
0x10
0x1102
0x0002
Description CM.01
Preset
Starting
Int485 St Multiple Address -1
ID
Register (0x1103-1)
Frame Transmission from Slave to Master (Response)
Item
Station ID
Function
Starting Address
Hex
Description
230
Byte
Count
0x04
-
Data 1
Data 2
0x0032
50
(ACC
time
5.0sec)
0x0064 0x1202
100
(DEC
time
10.0sec)
# of Register
0x01
0x10
0x1102
0x0002
CM.01
Preset Multiple Starting Address -1 Int485 St ID Register
(0x1103-1)
CRC
0xE534
-
CRC
RS-485 Communication Features
7.4 Compatible Common Area Parameter
The following are common area parameters compatible with iS5, iP5A, iV5, and iG5A.
Comm. Address Parameter
Scale
Unit
R/W
Assigned Content by Bit
0h0000
0h0001
Inverter model
Inverter capacity
-
-
R
R
6: S100
0: 0.75 kW, 1: 1.5 kW, 2: 2.2 kW
3: 3.7 kW, 4: 5.5 kW, 5: 7.5 kW
6: 11 kW,
7: 15 kW, 8: 18.5 kW
9: 22 kW
256: 0.4 kW, 257: 1.1 kW, 258: 3.0 kW
259: 4.0 kW
0h0002
Inverter input
voltage
Version
-
-
R
-
-
R
0: 220V product
1: 440V product
Example 0h0100: Version 1.00
Example 0h0101: Version 1.01
Hz
R/W
R/W
-
R
0h0003
0h0004
0h0005
0h0006
Reserved
Command
0.01
frequency
Operation
command (option)
B15
B14
B13
B12
B11
B10
B9
B8
B7
B6
R/W
0h0007
Acceleration time
0.1
s
R/W
B5
B4
B3
B2
B1
B0
-
Reserved
0: Keypad Freq,
1: Keypad Torq
2-16: Terminal block multistep speed
17: Up, 18: Down
19: STEADY
22: V1, 24: V2, 25: I2,
26: Reserved
27: Built-in 485
28: Communication option
30: JOG, 31: PID
0: Keypad
1: Fx/Rx-1
2: Fx/Rx-2
3: Built-in 485
4: Communication option
Reserved
Emergency stop
W: Trip initialization (01), R:
Trip status
Reverse operation (R)
Forward operation (F)
Stop (S)
231
RS-485 Communication Features
Comm. Address Parameter
Scale
Unit
R/W
Assigned Content by Bit
0h0008
0h0009
0h000A
0h000B
0h000C
0h000D
0h000E
0.1
0.1
0.01
1
1
0.1
-
s
A
Hz
V
V
kW
-
R/W
R
R
R
R
R
R
B15
B14
Deceleration time
Output current
Output frequency
Output voltage
DC link voltage
Output power
Operation status
B13
B12
B11
B10
B9
B8
B7
B6
B5
B4
B3
B2
B1
0h000F
232
Fault trip
information
-
-
R
B0
B15
B14
B13
B12
B11
B10
B9
B8
B7
B6
B5
B4
B3
B2
B1
0: Remote, 1: Keypad Local
1: Frequency command
source by communication
(built-in, option)
1: Operation command
source by communication
(built-in, option)
Reverse operation command
Forward operation command
Brake release signal
Jog mode
Drive stopped.
DC Braking
Speed reached
Decelerating
Accelerating
Fault Trip - operates
according to Pr.30 setting
Operating in reverse direction
Operating in forward
direction
Stopped
Reserved
Reserved
Reserved
Reserved
Reserved
H/W-Diag
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Level Type trip
Reserved
Reserved
RS-485 Communication Features
Comm. Address Parameter
Scale
0h0010
Input terminal
information
-
0h0011
Output terminal
information
-
-
R
0h0012
0h0013
0h0014
0h0015
V1
V2
I2
Motor rotation
speed
Reserved
0.01
0.01
0.01
1
%
%
%
rpm
R
R
R
R
B0
Latch Type trip
B15Reserved
B7
B6
Reserved
B5
Reserved
B4
P5
B3
P4
B2
P3
B1
P2
B0
P1
B15
Reserved
B14
Reserved
B13
Reserved
B12
Reserved
B11
Reserved
B10
Reserved
B9
Reserved
B8
Reserved
B7
Reserved
B6
Reserved
B5
Reserved
B4
Reserved
B3
Reserved
B2
Reserved
B1
MO
B0
Relay 1
V1 input voltage
V2 input voltage
I2 input current
Displays existing motor rotation speed
-
-
-
-
Select Hz/rpm
Display the number of poles for the
selected motor
-
R
R
0: Hz unit, 1: rpm unit
Display the number of poles for the
selected motor
0h0016
- 0h0019
0h001A
0h001B
Unit
-
R/W
R
Assigned Content by Bit
233
RS-485 Communication Features
7.5 S100 Expansion Common Area Parameter
7.5.1 Monitoring Area Parameter (Read Only)
Comm. Address
Parameter
Scale
Unit
Assigned content by bit
0h0300
Inverter model
-
-
S100: 0006h
0h0301
Inverter capacity
-
-
0.4 kW: 1900h, 0.75 kW: 3200h
1.1 kW: 4011h, 1.5 kW: 4015h
2.2 kW: 4022h, 3.0 kW: 4030h
3.7 kW: 4037h, 4.0 kW: 4040h
5.5 kW: 4055h, 7.5 kW: 4075h
11 kW: 40B0h, 15 kW: 40F0h
18.5 kW: 4125h, 22 kW: 4160h
0h0302
Inverter input
voltage/power
(Single phase, 3phase)/cooling
method
-
-
100 V single phase self cooling: 0120h, 200 V
3-phase forced cooling: 0231h
100 V single phase forced cooling: 0121h, 400
V single phase self cooling: 0420h
200 V single phase self cooling: 0220h, 400 V
3-phase self cooling: 0430h
200 V 3-phase self cooling: 0230h, 400 V single
phase forced cooling: 0421h
200 V single phase forced cooling: 0221h, 400
V 3-phase forced cooling: 0431h
(Ex) 0h0100: Version 1.00
0h0303
Inverter S/W
version
-
-
0h0304
Reserved
-
-
-
0h0305
Inverter operation
state
-
-
B15
0h0101: Version 1.01
B12
0: Normal state
4: Warning occurred
8: Fault occurred [operates
according to Pr. 30 (Trip Out Mode)
setting.]
B11 -
-
B14
B13
B8
B7
B6
B5
234
1: Speed searching
2: Accelerating
3: Operating at constant rate
4: Decelerating
RS-485 Communication Features
Comm. Address
Parameter
Scale
Unit
Assigned content by bit
B4
B3
B2
B1
5: Decelerating to stop
6: H/W OCS
7: S/W OCS
8: Dwell operating
0: Stopped
1: Operating in forward direction
2: Operating in reverse direction
3: DC operating (0 speed control)
B0
0h0306
0h0307
0h0308
0h0309 -0h30F
0h0310
0h0311
0h0312
0h0313
0h0314
0h0315
0h0316
0h0317
Inverter operation
frequency
command source
LCD keypad S/W
version
LCD keypad title
version
Reserved
Output current
Output frequency
Output rpm
Motor feedback
speed
Output voltage
DC Link voltage
Output power
Output torque
-
-
B15
B14
B13
B12
B11
B10
B9
B8
B7
B6
B5
B4
B3
B2
B1
B0
Operation command source
0: Keypad
1: Communication option
2: User Sequence
3: Built-in RS 485
4: Terminal block
-
-
Frequency command source
0: Keypad speed
1: Keypad torque
2-4: Up/Down operation speed
5: V1, 7: V2, 8: I2
9: Pulse
10: Built-in RS 485
11: Communication option
12: User Sequence
13: Jog
14: PID
25-39: Multi-step speed frequency
(Ex.) 0h0100: Version 1.00
-
-
(Ex.) 0h0101: Version 1.01
0.1
0.01
0
0
A
Hz
rpm
rpm
-32768 rpm-32767 rpm (directional)
1
1
0.1
0.1
V
V
kW
%
-
235
RS-485 Communication Features
Comm. Address
Parameter
Scale
Unit
Assigned content by bit
0h0318
0h0319
0h031A
PID reference
PID feedback
Display the
number of poles
for the 1st motor
Display the
number of poles
for the 2nd motor
Display the
number of poles
for the selected
motor
Select Hz/rpm
Reserved
0.1
0.1
-
%
%
-
Displays the number of poles for the first
motor
-
-
Displays the number of poles for the 2nd
motor
-
-
Displays the number of poles for the selected
motor
-
-
0: Hz, 1: rpm
-
0h031B
0h031C
0h031D
0h031E
- 0h031F
0h0320
Digital input
information
0h0321
Digital output
information
-
-
0h0322
Virtual digital input information
-
236
BI5
B7
B6
B5
B4
B3
B2
B1
B0
BI5
B4
B3
B2
B1
B0
B15
B8
B7
B6
B5
B4
B3
B2
B1
B0
Reserved
Reserved
Reserved
Reserved
P5(I/O board)
P4(I/O board)
P3(I/O board)
P2(I/O board)
P1(I/O board)
Reserved
Reserved
Reserved
Reserved
Reserved
Q1
Relay 1
Reserved
Reserved
Reserved
Virtual DI 8(CM.77)
Virtual DI 7(CM.76)
Virtual DI 6(CM.75)
Virtual DI 5(CM.74)
Virtual DI 4(CM.73)
Virtual DI 3(CM.72)
Virtual DI 2(CM.71)
Virtual DI 1(CM.70)
RS-485 Communication Features
Comm. Address
Parameter
Scale
Unit
Assigned content by bit
0h0323
Display the
selected motor
AI1
Reserved
AI3
AI4
AO1
AO2
AO3
AO4
Reserved
Inverter module
temperature
Inverter power
consumption
Inverter power
consumption
Latch type trip
information - 1
-
-
0: 1st motor/1: 2nd motor
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
-
%
%
%
%
%
%
%
%
-
Analog input V1 (I/O board)
1
℃
-
1
kWh -
1
MWh -
-
-
-
-
0h0324
0h0325
0h0326
0h0327
0h0328
0h0329
0h032A
0h032B
0h032C
0h032D
0h032E
0h032F
0h0330
0h0331
Latch type trip
information - 2
Analog input V2 (I/O board)
Analog input I2 (I/O board)
Analog output 1 (I/O board)
Analog output 2 (I/O board)
Reserved
Reserved
-
BI5
BI4
BI3
BI2
BI1
BI0
B9
B8
B7
B6
B5
B4
B3
B2
B1
B0
BI5
BI4
BI3
BI2
BI1
BI0
B9
Fuse Open Trip
Over Heat Trip
Arm Short
External Trip
Overvoltage Trip
Overcurrent Trip
NTC Trip
Reserved
Reserved
Input open-phase trip
Output open-phase trip
Ground Fault Trip
E-Thermal Trip
Inverter Overload Trip
Underload Trip
Overload Trip
Reserved
Reserved
Safety option to block inverter
output at the terminal block
input (only for products rated at
90 kW and above).
Reserved
Reserved
Bad option card
No motor trip
237
RS-485 Communication Features
Comm. Address
Parameter
Scale
Unit
0h0332
Level type trip
information
-
-
0h0333
H/W Diagnosis Trip information
-
0h0334
Warning
information
-
238
-
Assigned content by bit
B8
B7
B6
B5
B4
B3
B2
B1
B0
B15
B8
B7
B6
B5
B4
B3
B2
B1
B0
B15
B6
B5
B4
B3
B2
B1
B0
B15
-
External brake trip
Bad contact at basic I/O board
Pre PID Fail
Error while writing parameter
Reserved
FAN Trip
PTC (Thermal sensor) Trip
Reserved
MC Fail Trip
Reserved
Reserved
Reserved
Reserved
SafetyB
SafetyA
Keypad Lost Command
Lost Command
LV
BX
Reserved
Reserved
Reserved
Queue Full
Reserved
Watchdog-2 error
Watchdog-1 error
EEPROM error
ADC error
Reserved
Reserved
B10
B9
B8
B7
B6
B5
B4
B3
B2
Reserved
Auto Tuning failed
Keypad lost
Encoder disconnection
Wrong installation of encoder
DB
FAN running
Lost command
Inverter Overload
RS-485 Communication Features
Comm. Address
Parameter
Scale
Unit
Assigned content by bit
B1
B0
-
0h0335 -0h033F
Reserved
-
-
0h0340
On Time date
0
Day
0h0341
On Time minute
0
Min
0h0342
Run Time date
0
Day
0h0343
Run Time minute
0
Min
0h0344
Fan Time date
0
Day
0h0345
Fan Time minute
0
Min
0h0346
-0h0348
Reserved
-
-
0h0349
0h034A
0h034B
0h034C
Reserved
Option 1
Reserved
Reserved
-
-
Underload
Overload
Total number of days the inverter has been
powered on
Total number of minutes excluding the total
number of On Time days
Total number of days the inverter has driven
the motor
Total number of minutes excluding the total
number of Run Time days
Total number of days the heat sink fan has
been running
Total number of minutes excluding the total
number of Fan Time days
0: None, 9: CANopen
7.5.2 Control Area Parameter (Read/ Write)
Comm. Address
0h0380
0h0381
0h0382
Parameter
Frequency
command
RPM
command
Operation
command
Scale
0.01
Unit
Hz
Assigned Content by Bit
Command frequency setting
1
rpm
Command rpm setting
-
-
B7
B6
B5
B4
B3
B2
B1
Reserved
Reserved
Reserved
Reserved
0  1: Free-run stop
0  1: Trip initialization
0: Reverse command, 1: Forward
command
239
RS-485 Communication Features
Comm. Address
Parameter
0h0383
Acceleration 0.1
time
Deceleration 0.1
time
Virtual digital input control
(0: Off, 1:On)
0h0384
0h0385
Scale
Unit
Assigned Content by Bit
B0
0: Stop command, 1: Run command
Example: Forward operation command 0003h,
Reverse operation command 0001h.
s
Acceleration time setting
s
Deceleration time setting
-
0h0386
Digital output control
(0:Off, 1:On)
-
0h0387
0h0388
0h0389
Reserved
PID reference
PID feedback
value
Motor rated
current
Motor rated
voltage
0.1
0.1
%
%
BI5
Reserved
Reserved
B8
Reserved
B7
Virtual DI 8(CM.77)
B6
Virtual DI 7(CM.76)
B5
Virtual DI 6(CM.75)
B4
Virtual DI 5(CM.74)
B3
Virtual DI 4(CM.73)
B2
Virtual DI 3(CM.72)
B1
Virtual DI 2(CM.71)
B0
Virtual DI 1(CM.70)
BI5
Reserved
BI4
Reserved
BI3
Reserved
BI2
Reserved
BI1
Reserved
BI0
Reserved
B9
Reserved
B8
Reserved
B7
Reserved
B6
Reserved
B5
Reserved
B4
Reserved
B3
Reserved
B2
Reserved
B1
Q1 (I/O board, OU.33: None)
B0
Relay 1 (I/O board, OU.31: None)
Reserved
PID reference command
PID feedback value
0.1
A
-
1
V
-
0h038A
0h038B
240
RS-485 Communication Features
Comm. Address
0h038C0h038F
0h0390
0h0391
0h0392
0h0393
0h0394
0h0395
0h0396- 0h399
0h039A
Parameter
Reserved
Scale
Unit
Assigned Content by Bit
-
Torque Ref
Fwd Pos
Torque Limit
Fwd Neg
Torque Limit
Rev Pos
Torque Limit
Rev Neg
Torque Limit
Torque Bias
Reserved
Anytime Para
0.1
0.1
%
%
Torque command
Forward motoring torque limit
0.1
%
Forward regenerative torque limit
0.1
%
Reverse motoring torque limit
0.1
%
Reverse regenerative torque limit
0.1
-
%
-
Torque bias
*
Set the CNF.20 value (refer to 5.36 Operation State
Monitor on page 188)
*
Set the CNF.21 value (refer to 5.36 Operation State
Monitor on page 188)
*
Set the CNF.22 value (refer to 5.36 Operation State
Monitor on page 188)
*
Set the CNF.23 value (refer to 5.36 Operation State
Monitor on page 188)
0h039B
Monitor Line- 1
-
0h039C
Monitor Line- 2
-
0h039D
Monitor Line- 3
-
* Displayed on an LCD keypad only.
Note
A frequency set via communication using the common area frequency address (0h0380, 0h0005) is not
saved even when used with the parameter save function. To save a changed frequency to use after a
power cycle, follow these steps:
1
Set dr.07 to Keypad-1 and select a random target frequency.
2
Set the frequency via communication into the parameter area frequency address (0h1101).
3
Perform the parameter save (0h03E0: '1') before turning off the power. After the power cycle, the
frequency set before turning off the power is displayed.
7.5.3 Inverter Memory Control Area Parameter (Read and Write)
Comm.
Address
0h03E0
Parameter
Scale
Unit
Save parameters
-
-
Changeable
Function
During Operation
X
0: No, 1:Yes
241
RS-485 Communication Features
Comm.
Address
0h03E1
0h03E2
0h03E3
0h03E4
0h03E5
0h03E6
0h03E7
0h03E8
0h03E9
0h03EA
0h03EB
0h03EC
Parameter
Scale
Unit
Monitor mode
initialization
Parameter
initialization
-
-
Changeable
Function
During Operation
O
0: No, 1:Yes
-
-
X
Display changed
parameters
Reserved
Delete all fault
history
Delete userregistrated codes
Hide parameter
mode
Lock parameter
mode
Easy start on
(easy parameter
setup mode)
Initializing power
consumption
Initialize inverter
operation
accumulative
time
Initialize cooling
fan accumulated
operation time
-
-
O
0: No, 1: All Grp, 2: Drv Grp
3: bA Grp, 4: Ad Grp, 5: Cn Grp
6: In Grp, 7: OU Grp, 8: CM Grp
9: AP Grp, 12: Pr Grp, 13: M2 Grp
Setting is prohibited during
fault trip interruptions.
0: No, 1: Yes
-
-
O
0: No, 1: Yes
-
-
O
0: No, 1: Yes
0
Hex
O
0
Hex
O
-
-
O
Write: 0-9999
Read: 0: Unlock, 1: Lock
Write: 0-9999
Read: 0: Unlock, 1: Lock
0: No, 1: Yes
-
-
O
0: No, 1: Yes
-
-
O
0: No, 1: Yes
-
-
O
0: No, 1: Yes
Note
• When setting parameters in the inverter memory control area, the values are reflected to the
inverter operation and saved. Parameters set in other areas via communication are reflected
to the inverter operation, but are not saved. All set values are cleared following an inverter
power cycle and revert back to its previous values. When setting parameters via
communication, ensure that a parameter save is completed prior to shutting the inverter
down.
• Set parameters very carefully. After setting a parameter to 0 via communication, set it to
another value. If a parameter has been set to a value other than 0 and a non-zero value is
242
RS-485 Communication Features
entered again, an error message is returned. The previously-set value can be identified by
reading the parameter when operating the inverter via communication.
• The addresses 0h03E7 and 0h03E8 are parameters for entering the password. When the
password is entered, the condition will change from Lock to Unlock, and vice versa. When the
same parameter value is entered continuously, the parameter is executed just once.
Therefore, if the same value is entered again, change it to another value first and then re-enter
the previous value. For example, if you want to enter 244 twice, enter it in the following order:
244  0  244.
It may take longer to set the parameter values in the inverter memory control area because all data is
saved to the inverter. Be careful as communication may be lost during parameter setup if parameter
setup is continues for an extended period of time.
243
RS-485 Communication Features
244
Table of Functions
8 Table of Functions
This chapter lists all the function settings for S100 series inverter. Set the parameters required
according to the following references. If a set value input is out of range, the following messages
will be displayed on the keyboard. In these cases, the inverter will not operate with the [ENT] key.
• Set value not allocated: rd
• Set value repetition (multi-function input, PID reference, PID feedback related): OL
• Set value not allowed (select value, V2, I2): no
8.1 Operation Group
The Operation group is used only in the basic keypad mode. It will not be displayed on an LCD
keypad. If the LCD keypad is connected, the corresponding functions will be found in the
Drive(DRV) group.
SL: Sensorless vector control (dr.09)
*O/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common
Code Comm. Name
Keypad
Setting Range
Initial Value Property*
Address
Display
0h1F00 Target
0.00
0-Maximum
0.00
O/7
frequency
frequency(Hz)
0h1F01 Acceleration
ACC
0.0-600.0(s)
20.0
O/7
time
0h1F02 Deceleration
dEC
0.0-600.0(s)
30.0
O/7
time
0h1F03 Command
drv
0
Keypad
1:
X/7
source
Fx/Rx-1
1
Fx/Rx-1
2
Fx/Rx-2
3
Int 485
1
4
Field Bus
0h1F04 Frequency
Frq
0
Keypad-1 0: Keypad-1 X/7
reference
1
Keypad-2
source
2
V1
4
V2
5
I2
6
Int 485
1
V/F SL Ref.
O
O p.42
O
O p.80
O
O p.80
O
O p.73
O
O p.60
Table of options are provided separately in the option manual.
245
Table of Functions
Code Comm. Name
Address
-
0h1F05 Multi-step
speed
frequency 1
0h1F06 Multi-step
speed
frequency 2
0h1F07 Multi-step
speed
frequency 3
0h1F08 Output current
0h1F09 Motor
revolutions per
minute
0h1F0A Inverter direct
current voltage
0h1F0B Inverter output
voltage
0h1F0C Out of order
signal
0h1F0D Select rotation
direction
-
246
Keypad
Display
St1
Setting Range
8
Field Bus
12
Pulse
0.00-Maximum
frequency(Hz)
Initial Value Property* V/F SL Ref.
10.00
O/7
O
O p.71
St2
0.00-Maximum
frequency(Hz)
20.00
O/7
O
O p.71
St3
0.00-Maximum
frequency(Hz)
30.00
O/7
O
O p.71
-/7
-/7
O
O
O p.54
O -
-/7
O
O p.54
vOL
-/7
O
O p.54
nOn
-/7
O
O -
O/7
O
O -
CUr
Rpm
dCL
drC
-
F Forward run
r Reverse run
-
F
Table of Functions
8.2 Drive group (PAR→dr)
In the following table, data shaded in grey will be displayed when the related code has been
selected.
SL: Sensorless vector control (dr.09)
*O/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common
Code Comm. Name
LCD Display Setting Range Initial
Property*
Address
value
00
Jump Code
Jump Code 1-99
9
O/A
2
0h1101 Target
Cmd
Start frequency 0.00
O/L
01
frequency
Frequency
- Maximum
frequency(Hz)
Torque
02
0h1102
Cmd Torque -180~180[%]
0.0
O/A
command
032 0h1103 Acceleration
Acc Time
0.0-600.0(s)
20.0
O/L
time
042 0h1104 Deceleration Dec Time
0.0-600.0(s)
30.0
O/L
time
062 0h1106 Command
Cmd Source 0 Keypad
1:
X/L
source
Fx/Rx-1
1 Fx/Rx-1
2 Fx/Rx-2
3 Int 485
4 Field Bus
5 UserSeqLi
nk
2
07
0h1107 Frequency
Freq Ref Src 0 Keypad-1 0:
X/L
reference
1 Keypad-2 Keypad-1
source
2 V1
4 V2
5 I2
6 Int 485
8 Field Bus
9 UserSeqLi
nk
12 Pulse
08
0h1108 Torque
Trq Ref Src
0 Keypad-1 0:
X/A
reference
Keypad-1
1 Keypad-2
setting
2 V1
4 V2
5 I2
2
V/F SL Ref.
O
O
O p.42
O p.46
X
O -
O
O p.80
O
O p.80
O
O p.73
O
O p.60
X
O -
Displayed when an LCD keypad is in use.
247
Table of Functions
Code Comm. Name
Address
LCD Display
Setting Range
Property* V/F SL Ref.
0: V/F
X/A
O
O p.88,
p.128,
p.141
0: No
X/A
X
O -
10.00
O/A
O
O p.120
20.0
O/A
O
O p.120
30.0
O/A
O
O p.120
Varies by
Motor
capacity
X/A
O
O p.138
0: Manual X/A
O
X -
2.0
O
X p.91
6
8
9
09
0h1109
10
0h110A
11
0h110B
12
0h110C
13
0h110D
14
0h110E
15
0h110F
Int 485
FieldBus
UserSeqLi
nk
12 Pulse
Control mode Control Mode 0 V/F
2 Slip
Compen
4 IM
Sensorless
Torque Control Torque
0 No
Control
1 Yes
0.00, Start
Jog frequency Jog
frequencyFrequency
Maximum
frequency(Hz)
Jog run
Jog Acc Time 0.0-600.0(s)
acceleration
time
Jog run
Jog Dec Time 0.0-600.0(s)
deceleration
time
0: 0.2kW,
Motor
Motor
1: 0.4kW
capacity
Capacity
2: 0.75kW,
3: 1.1kW
4: 1.5kW,
5: 2.2kW
6: 3.0kW,
7: 3.7kW
8: 4.0kW,
9: 5.5kW
10: 7.5kW,
11: 11.0kW
12: 15.0kW,
13: 18.5kW
14: 22.0kW,
15: 30.0kW
Torque boost Torque Boost 0 Manual
1 Auto1
options
Initial
value
2
16
3
3
0h1110 Forward
Torque boost
Fwd Boost
Auto2
0.0-15.0(%)
Displayed when dr.15 is set to 0 (Manual) or 2(Auto2)
248
X/A
Table of Functions
Code Comm. Name
Address
173 0h1111 Reverse
Torque boost
LCD Display
Setting Range
Rev Boost
0.0-15.0(%)
18
0h1112 Base
frequency
0h1113 Start
frequency
0h1114 Maximum
frequency
Base Freq
0h1115 Select speed
unit
Hz/Rpm Sel
19
20
21
Initial
value
2.0
Property* V/F SL Ref.
X/A
O
X p.91
30.00400.00(Hz)
0.01-10.00(Hz)
60.00
X/A
O
O p.88
0.50
X/A
O
O p.88
40.00400.00(Hz)[V/F,
Slip Compen]
40.00120.00(Hz)[IM
Sensorless]
0 Hz Display
1 Rpm
Display
50.0 ~ 150.0[%]
60.00
X/A
O
O p.98
0:Hz
Display
O/L
O
O p.71
100.0
O/A
X
O -
(-)Trq Gain
50.0 ~ 150.0[%] 100.0
O/A
X
O -
(-)Trq Gain0
50.0 ~ 150.0[%] 80.0
O/A
X
O -
(-)Trq Offset
0.0 ~ 100.0[%]
O/A
X
O -
-
Select ranges 0: run
O/7
inverter
frequency
displays at
power input
0 Run
frequency
1 Acceleratio
n time
2 Decelerati
on time
3 Command
source
4 Frequency
reference
source
5 Multi-step
speed
O
O -
Start Freq
Max Freq
4
0h1116 (+)Torque gain (+)Trq Gain
4
0h1117 (-)Torque gain
(-)Torque gain
0h1118
0
(-)Torque
0h1119
offset
0h1150 Select ranges
at power input
22
23
4
24
4
25
80
5
4
Displayed when dr.10 is set to 1 (YES)
5
Will not be displayed when an LCD keypad is in use
40.0
249
Table of Functions
Code Comm. Name
Address
LCD Display
Setting Range
6
7
8
9
10
11
12
13
14
frequency
1
Multi-step
speed
frequency
2
Multi-step
speed
frequency
3
Output
current
Motor RPM
Inverter DC
voltage
User select
signal
(dr.81)
Currently
out of
order
Select run
direction
output
current2
Initial
value
Property* V/F SL Ref.
15 Motor
RPM2
16 Inverter DC
voltage2
815
250
0h1151 Select monitor code
17 User select
signal2
(dr.81)
Monitors user 0:
selected code output
voltage
0 Output
voltage(V)
1 Output
electric
power(kW)
2 Torque(kgf
 m)
O/7
O
O -
Table of Functions
Code Comm. Name
Address
895 0h03E3 Display
changed
parameter
LCD Display
Setting Range
-
0
1
905
-
0
0h115A [ESC] key
functions
0h115B Smart copy
O/7
O
O p.168
X/7
O
O p44,
p.76,
p.122
X/A
O
O -
No
All Grp
dr Grp
bA Grp
Ad Grp
Cn Grp
In Grp
OU Grp
CM Grp
AP Grp
Pr Grp
M2 Grp
run Grp
X/7
O
O p.165
O/7
O
O p.166
O/7
O
O p167
-
-/7
O
O -
IO S/W Ver
-/A
O
O -
-/A
O
O -
SmartCopy
0
1
2
3
935
0h115D Parameter
initialization
945
0h115E Password
registration
955
0h115F Parameter lock
settings
975
0h1161 Software
version
0h1162 Display I/O
board version
0h1163 Display I/O
board H/W
version
98
99
Property* V/F SL Ref.
View All
View
Changed
Move to
0:
initial
None
position
JOG Key
Local/Rem
ote
None
0:None
1
2
91
Initial
value
0:
View All
-
IO H/W Ver
0
1
2
3
4
5
6
7
8
9
12
13
16
099
99
099
99
0
1
2
SmartRDo
wnload
SmartWDo
wnLoad
SmartUpLo
ad
0:No
Multiple IO Standard
Standard IO
IO
Standard
IO (M)
251
Table of Functions
8.3 Basic Function group (PAR→bA)
In the following table, the data shaded in grey will be displayed when a related code has been
selected.
SL: Sensorless vector control function (dr.09)
*O/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common
Comm.
Initial
Code
Name
LCD Display
Setting Range
Property* V/F SL Ref.
Address
Value
00
Jump Code
Jump Code
1-99
20
O
O O p.42
0 None
1 V1
Auxiliary
01
0h1201 reference
Aux Ref Src
3 V2
0:None X/A
O O p.116
source
4 I2
6 Pulse
0
1
2
3
02
6
Auxiliary
4
0h1202 command
Aux Calc Type
calculation type
5
6
7
6
03
0h1203
Auxiliary
Aux Ref Gain
command gain
04
0h1204
2nd command
Cmd 2nd Src
source
05
0h1205
2nd frequency
source
Freq 2nd Src
M+(G*A)
Mx (G*A)
M/(G*A)
M+[M*(G*A)]
M+G*2(A0:
50%)
M+(GA X/A
Mx[G*2(A)
50%)
M/[G*2(A50%)]
M+M*G*2(A50%)
-200.0-200.0(%)
0
1
2
3
4
0
1
2
4
5
6
8
Keypad
Fx/Rx-1
Fx/Rx-2
Int 485
FieldBus
Keypad-1
Keypad-2
V1
V2
I2
Int 485
FieldBus
9
UserSeqLink
12 Pulse
6
Displayed if bA.01 is not set to 0 (None).
252
O
O
p.116
O/A
O
O
p.116
1:
X/A
Fx/Rx-1
O
O
p.100
0:
Keypad O/A
-1
O
O
p.100
100.0
Table of Functions
Code
06
Comm.
Name
Address
2nd Torque
0h1206 command
source
V/F pattern
options
07
0h1207
08
Acc/dec
0h1208 standard
frequency
09
Time scale
0h1209
settings
10
0h120A
11
0h120B
12
0h120C
13
0h120D
14
0h120E
15
0h120F
16
0h1210
17
0h1211
18
19
Input power
frequency
Number of
motor poles
Rated slip
speed
Motor rated
current
Motor noload
current
Motor rated
voltage
Motor
efficiency
Load inertia
rate
Trim power
0h1212
display
Input power
0h1213
voltage
LCD Display
Trq 2nd Src
V/F Pattern
Ramp T Mode
Time Scale
60/50 Hz Sel
Setting Range
0
1
2
4
5
6
8
Keypad-1
Keypad-2
V1
V2
I2
Int 485
FieldBus
9
UserSeqLink
12
0
1
2
3
0
Pulse
Linear
Square
User V/F
Square 2
Max Freq
1
Delta Freq
0
1
2
0
1
0.01 sec
0.1 sec
1 sec
60Hz
50Hz
Initial
Value
Property* V/F SL
Ref.
0:
Keypad O
-1
X
O
0:
Linear
X/A
O
X
p.88
0:
Max
Freq
X/A
O
O
p.80
1:0.1
sec
X/A
O
O
p.80
0:60Hz X/A
O
O
p.164
X/A
O
O
p.128
O
O
p.128
O
O
p.128
O
O
p.128
Pole Number
2-48
Rated Slip
0-3000(Rpm)
Rated Curr
1.0-1000.0(A)
Noload Curr
0.0-1000.0(A)
Depen
X/A
dent
on
motor X/A
setting
X/A
Rated Volt
170-480(V)
0
X/A
O
O
p.93
Efficiency
70-100(%)
Depen
dent
on
X/A
motor
setting
O
O
p.128
Inertia Rate
0-8
X/A
O
O
p.128
O/A
O
O
-
220/38
O/A
0V
O
O
p.164
Trim Power % 70-130(%)
AC Input Volt
170-480V
253
Table of Functions
Code
Comm.
Name
Address
LCD Display
Setting Range
0
1
20
-
Auto Tuning
Auto
Tuning
2
3
6
21
22
23
24
7
7
25
7
26
7
31
41
Stator
resistance
Leakage
inductance
Stator
inductance
Rotor time
constant
Stator
inductance
scale
Rotor time
constant scale
Regeneration
inductance
scale
User
0h1229
frequency1
0h122A User voltage1
-
8
8
42
User
frequency2
8
0h122B
8
0h122C User voltage2
User
0h122D
frequency3
0h122E User voltage3
User
0h122F
frequency4
43
44
8
45
8
46
8
47
Dependent on
motor setting
Ls
Ref.
X
O
p.138
Depen X/A
dent
on
X/A
motor
setting X/A
X
O
p.138
X
O
p.138
X
O
p.138
Tr
25-5000(ms)
-
X/A
X
O
p.138
Ls Scale
50 ~ 150[%]
100
X/A
X
O
-
Tr Scale
50 ~ 150[%]
100
X/A
X
O
-
Ls Regen
Scale
70 ~ 100[%]
80
X/A
X
O
-
15.00
X/A
O
X
p.90
25
X/A
O
X
p.90
30.00
X/A
O
X
p.90
50
X/A
O
X
p.90
45.00
X/A
O
X
p.90
75
X/A
Maxim
X/A
um
O
X
p.90
O
X
p.90
User Freq 1
User Volt 1
User Freq 2
User Volt 2
User Freq 3
User Volt 3
User Freq 4
0.00-Maximum
frequency(Hz)
0-100(%)
0.00-0.00Maximum
frequency(Hz)
0-100(%)
0.00-Maximum
frequency(Hz)
0-100(%)
0.00-Maximum
frequency(Hz)
7
Displayed when dr.09 is set to 4(IM Sensorless)
8
Displayed if either bA.07 or M2.25 is set to 2 (User V/F).
254
Property* V/F SL
None
All (Rotation
type)
ALL (Static
type)
0:None X/A
Rs+Lsigma
(Rotation
type)
Tr (Static
type)
Rs
Lsigma
Initial
Value
Table of Functions
Code
8
48
50
9
9
51
9
52
53
10
10
54
10
55
10
56
70
71
72
11
11
73
9
Comm.
Name
Address
Initial
Property* V/F SL
Value
freque
ncy
100
X/A
O X
LCD Display
Setting Range
User Volt 4
0-100(%)
Step Freq-1
0.00-Maximum
frequency(Hz)
10.00
O/L
O
O
p.71
Step Freq-2
0.00-Maximum
frequency(Hz)
20.00
O/L
O
O
p.71
Step Freq-3
0.00-Maximum
frequency(Hz)
30.00
O/L
O
O
p.71
Step Freq-4
0.00-Maximum
frequency(Hz)
40.00
O/A
O
O
p.71
Step Freq-5
0.00-Maximum
frequency(Hz)
50.00
O/A
O
O
p.71
Multi-step
0h1237 speed
frequency6
Step Freq-6
0.00-Maximum
frequency(Hz)
O
O
p.71
Multi-step
0h1238 speed
frequency7
Step Freq-7
0.00-Maximum
frequency(Hz)
O
O
p.71
Acc Time-1
0.0-600.0(s)
20.0
O/A
O
O
p.82
Dec Time-1
0.0-600.0(s)
20.0
O/A
O
O
p.82
Acc Time-2
0.0-600.0(s)
30.0
O/A
O
O
p.82
Dec Time-2
0.0-600.0(s)
30.0
O/A
O
O
p.82
0h1230 User voltage4
Multi-step
0h1232 speed
frequency1
Multi-step
0h1233 speed
frequency2
Multi-step
0h1234 speed
frequency3
Multi-step
0h1235 speed
frequency4
Multi-step
0h1236 speed
frequency5
Multi-step
0h1246 acceleration
time1
Multi-step
0h1247 deceleration
time1
Multi-step
0h1248 acceleration
time2
Multi-step
0h1249 deceleration
time2
Maxim
um
O/A
freque
ncy
Maxim
um
O/A
freque
ncy
Ref.
p.90
Displayed when an LCD keypad is in use.
10
Displayed if one of In.65-71 is set to Speed–L/M/H
11
Displayed one of In.65-71 is set to Xcel–L/M/H.
255
Table of Functions
Code
11
74
11
75
11
76
11
77
11
78
11
79
11
80
11
81
11
82
11
83
256
Comm.
Name
Address
Multi-step
0h124A acceleration
time3
Multi-step
0h124B deceleration
time3
Multi-step
0h124C acceleration
time4
Multi-step
0h124D deceleration
time4
Multi-step
0h124E acceleration
time5
Multi-step
0h124F deceleration
time5
Multi-step
0h1250 acceleration
time6
Multi-step
0h1251 deceleration
time6
Multi-step
0h1252 acceleration
time7
Multi-step
0h1253 deceleration
time7
LCD Display
Setting Range
Initial
Value
Property* V/F SL
Ref.
Acc Time-3
0.0-600.0(s)
40.0
O/A
O
O
p.82
Dec Time-3
0.0-600.0(s)
40.0
O/A
O
O
p.82
Acc Time-4
0.0-600.0(s)
50.0
O/A
O
O
p.82
Dec Time-4
0.0-600.0(s)
50.0
O/A
O
O
p.82
Acc Time-5
0.0-600.0(s)
40.0
O/A
O
O
p.82
Dec Time-5
0.0-600.0(s)
40.0
O/A
O
O
p.82
Acc Time-6
0.0-600.0(s)
30.0
O/A
O
O
p.82
Dec Time-6
0.0-600.0(s)
30.0
O/A
O
O
p.82
Acc Time-7
0.0-600.0(s)
20.0
O/A
O
O
p.82
Dec Time-7
0.0-600.0(s)
20.0
O/A
O
O
p.82
Table of Functions
8.4 Expanded Function group (PAR→Ad)
In the following table, the data shaded in grey will be displayed when a related code has been
selected.
SL: Sensorless vector control (dr.09)
*O/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common
Comm.
Initial
Code
Name
LCD Display Setting Range
Property*
Address
Value
00
Jump Code
Jump Code 1-99
24
O/A
Acceleration
01
0h1301
Acc Pattern 0 Linear
X/A
pattern
0:
Linear
Deceleration
02
0h1302
Dec Pattern 1 S-curve
X/A
pattern
S-curve
acceleration
12
0h1303
Acc S Start
1-100(%)
40
X/A
03
start point
gradient
S-curve
12
0h1304 acceleration end Acc S End
1-100(%)
40
X/A
04
point gradient
S-curve
deceleration
13
0h1305
Dec S Start
1-100(%)
40
X/A
05
start point
gradient
S-curve
deceleration
13
0h1306
Dec S End
1-100(%)
40
X/A
06
end point
gradient
0 Acc
07
0h1307 Start Mode
Start Mode
0:Acc
X/A
1 DC-Start
0 Dec
1 DC-Brake
08
0h1308 Stop Mode
Stop Mode
0:Dec X/A
2 Free-Run
Power
4
Braking
0 None
Selection of
Forward
prohibited
09
0h1309
Run Prevent 1
0: None X/A
Prev
rotation
direction
2 Reverse Prev
12
Displayed when Ad. 01 is set to 1 (S-curve).
13
Displayed when Ad. 02 is set to 1 (S-curve).
V/F SL Ref.
O
O
p.42
O
O
p.85
O
O
p.85
O
O
p.85
O
O
p.85
O
O
p.85
O
O
p.85
O
O
p.93
O
O
p.95
O
O
p.78
257
Table of Functions
Code
10
12
14
13
14
15
15
15
15
16
15
17
Comm.
Name
Address
Starting with
0h130A
power on
DC braking time
0h130C
at startup
Amount of
0h130D
applied DC
Output blocking
0h130E time before DC
braking
LCD Display
Setting Range
Initial
Value
Property* V/F SL Ref.
Power-on
Run
DC-Start
Time
0
1
No
Yes
0:No
O/A
O
O
p.78
0.00-60.00(s)
0.00
X/A
O
O
p.93
DC Inj Level
0-200(%)
50
X/A
O
O
p.93
DC-Block
Time
0.00- 60.00(s)
0.10
X/A
O
O
p.95
0.00- 60.00(s)
1.00
X/A
O
O
p.95
0-200(%)
50
X/A
O
O
p.95
5.00
X/A
O
O
p.95
5.00
X/A
O
O
p.127
0.0-60.0(s)
0.0
X/A
O
O
p.127
Start frequencyMaximum
frequency(Hz)
5.00
X/A
O
O
p.127
0.0-60.0(s)
0.0
X/A
O
O
p.127
0:No
X/A
O
O
p.98
0.50
O/A
O
O
p.98
maxim
um
X/A
frequen
cy
O
O
p.98
0:No
O
O
p.99
DC-Brake
Time
DC-Brake
0h1310 DC braking rate
Level
DC braking
DC-Brake
0h1311
frequency
Freq
0h130F DC braking time
Dwell frequency Acc Dwell
on acceleration Freq
20
0h1314
21
Dwell operation
Acc Dwell
0h1315 time on
Time
acceleration
22
0h1316
23
Dwell operation
Dec Dwell
0h1317 time on
Time
deceleration
24
25
Dwell frequency Dec Dwell
on deceleration Freq
0 No
1 Yes
Frequency
0.00-Upper limit
0h1319
Freq Limit Lo
lower limit value
frequency(Hz)
Lower limit
Frequency
frequency0h131A upper limit
Freq Limit Hi
Maximum
value
frequency(Hz)
0 No
0h131B Frequency jump Jump Freq
1 Yes
0h1318 Frequency limit Freq Limit
16
16
26
27
14
Displayed when Ad. 07 is set to 1 (DC-Start).
15
Displayed when Ad. 08 is set to 1 (DC-Brake).
16
Displayed when Ad. 24 is set to 1 (Yes).
258
Start frequency60Hz
Start frequencyMaximum
frequency(Hz)
X/A
Table of Functions
Code
Comm.
Name
Address
LCD Display
17
0h131C
Jump frequency
Jump Lo 1
lower limit1
17
0h131D
Jump frequency
Jump Hi 1
upper limit1
17
0h131E
Jump frequency
Jump Lo 2
lower limit2
17
0h131F
Jump frequency
Jump Hi 2
upper limit2
17
0h1320
Jump frequency
Jump Lo 3
lower limit3
17
0h1321
Jump frequency
Jump Hi 3
upper limit3
18
0h1329
18
0h132A
18
0h132C
18
0h132D
18
0h132E
47
18
0h132F
50
0h1332
28
29
30
31
32
33
41
42
44
45
46
Brake release
current
Brake release
delay time
Brake release
Forward
frequency
Brake release
Reverse
frequency
Brake engage
delay time
Brake engage
frequency
Energy saving
operation
Setting Range
0.00-Jump
frequency upper
limit1(Hz)
Jump frequency
lower limit1Maximum
frequency(Hz)
0.00-Jump
frequency upper
limit2(Hz)
Jump frequency
lower limit2Maximum
frequency(Hz)
0.00-Jump
frequency upper
limit3(Hz)
Jump frequency
lower limit3Maximum
frequency(Hz)
Initial
Value
Property* V/F SL Ref.
10.00
O/A
O
O
p.99
15.00
O/A
O
O
p.99
20.00
O/A
O
O
p.99
25.00
O/A
O
O
p.99
30.00
O/A
O
O
p.99
35.00
O/A
O
O
p.99
BR Rls Curr
0.0-180.0(%)
50.0
O/A
O
O
p.173
BR Rls Dly
0.00-10.00(s)
1.00
X/A
O
O
p.173
BR Rls Fwd Fr
0.00-Maximum
frequency(Hz)
1.00
X/A
O
O
p.173
BR Rls Rev Fr
0.00-Maximum
frequency(Hz)
1.00
X/A
O
O
p.173
BR Eng Dly
0.00-10.00(s)
1.00
X/A
O
O
p.173
2.00
X/A
O
O
p.173
0:None X /A
O
X
p.151
0.00-Maximum
frequency(Hz)
0 None
1
Manual
E-Save Mode
2 Auto
BR Eng Fr
17
Displayed when Ad. 27 is set to 1 (Yes).
18
Displayed if either OU.31 or OU.33 is set to 35 (BR Control).
259
Table of Functions
Code
51
19
60
61
Comm.
Name
Address
Energy saving
0h1333
level
Acc/Dec time
0h133C transition
frequency
Rotation count
0h133D speed gain
LCD Display
Setting Range
Initial
Value
Property* V/F SL Ref.
Energy Save
0-30(%)
0
O/A
O
X
p.151
Xcel Change
Fr
0.00-Maximum
frequency(Hz)
0.00
X/A
O
O
p.84
Load Spd
Gain
0.1~6000.0[%]
100.0
O/A
O
O
-
0: x 1
O/A
O
O
-
0: rpm
O/A
O
O
-
0:Durin
O/A
g Run
O
O
p.164
0:No
O/A
O
O
p.123
0:None X/A
O
O
p.123
90.00
X/A
O
O
p.175
10.00
X/A
O
O
p.175
0:Alway
s
X/A
Enable
O
O
p.125
0:FreeX/A
Run
O
O
p.125
5.0
O
O
p.125
62
Rotation count
0h133E speed scale
Load Spd
Scale
63
0h133F
Rotation count
speed unit
Load Spd
Unit
64
Cooling fan
0h1340 control
FAN Control
65
Up/down
0h1341 operation
frequency save
U/D Save
Mode
66
Output contact
On/Off Ctrl
0h1342 On/Off control Src
options
67
Output contact
On-Ctrl Level
0h1343 On level
68
Output contact
Off-Ctrl Level
0h1344 Off level
70
Safe operation
0h1346 selection
Run En Mode
Safe operation
stop options
Run Dis Stop
Safe operation
0h1348 deceleration
time
Q-Stop Time
71
20
20
72
0h1347
0
1
2
3
4
0
1
0
1
0
x1
x 0.1
x 0.01
x 0.001
x 0.0001
Rpm
mpm
During Run
Always ON
Temp
Control
No
1
Yes
2
0 None
1 V1
3 V2
4 I2
6 Pulse
Output contact
off level100.00%
-100.00-output
contact on level
(%)
Always
0
Enable
DI
1
Dependent
0 Free-Run
1 Q-Stop
Q-Stop
2
Resume
0.0-600.0(s)
19
Displayed if Ad.50 is not set to 0 (None).
20
Displayed when Ad.70 is set to 1 (DI Dependent).
260
O/A
Table of Functions
Code
74
75
76
21
21
77
21
78
79
Comm.
Name
Address
Selection of
regeneration
0h134A evasion
function for
press
Voltage level of
regeneration
0h134B
evasion motion
for press
Compensation
frequency limit
0h134C of regeneration
evasion for
press
Regeneration
0h134D evasion for
press P gain
Regeneration
0h134E evasion for
press I gain
0h134F
80
0h1350
23
0h1351
23
0h1352
81
82
23
83
LCD Display
RegenAvd Sel
Setting Range
0
No
1
Yes
Property* V/F SL Ref.
0:No
X/A
O
O
p.175
X/A
O
O
p.175
200V : 300-400V
350
400V : 600-800V
700
CompFreq
Limit
0.00- 10.00Hz
1.00
X/A
O
O
p.175
RegenAvd
Pgain
0.0- 100.0%
50.0
O/A
O
O
p.175
RegenAvd
Igain
20-30000(ms)
500
O/A
O
O
p.175
X/A
O
O
-
0:None X/A
O
X
p .111
60.00
X/A
O
X
p.111
0:
Forwar X/A
d
O
X
p.111
RegenAvd
Level
200V:
22
DB Unit turn on DB Turn On Min ~400[V]
voltage level
Lev
400V:
22
Min ~800[V]
0 None
Fire mode
1 Fire Mode
Fire Mode Sel
selection
Fire Mode
2
Test
Fire mode
Fire Mode
0.00~60.00(Hz]
frequency
Freq
0 Forward
Fire mode
Fire Mode Dir
direction
1 Reverse
Fire Mode
Count
Initial
Value
Fire Mode
Cnt
Can not be
modified
390[V]
780[V]
p.111
21
Displayed when Ad.74 is set to 1 (Yes).
22
DC voltage value (convert bA.19 AC Input voltage) + 20V (200V type) or + 40V (400V type)
23
Displayed when Ad.80 is set to 1 (Yes).
261
Table of Functions
8.5 Control Function group (PAR→Cn)
In the following table, the data shaded in grey will be displayed when a related code has been
selected.
SL: Sensorless vector control (dr.09)
*O/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common
Comm.
Initial
Code
Name
LCD Display
Setting Range
Property*
Address
Value
00
Jump Code
Jump Code
1-99
4
O/A
V/F:
1.015.0(kH
24
Heavy z)
3.0
O/A
Duty SL:
2.015.0(kH
Carrier
04
0h1404
Carrier Freq
z)
frequency
V/F:
1.0- 5.0
Norm
25
(kHz)
al
2.0
SL:
Duty
2.05.0(kHz)
Normal
0
PWM
0:Norm
05
0h1405 Switching mode PWM Mode
X/A
Lowlea
al PWM
1
kage
PWM
Initial excitation
09
0h1409
PreExTime
0.00-60.00(s)
1.00
X/A
time
Initial excitation
10
0h140A
Flux Force
100.0-300.0(%) 100.0
X/A
amount
11
Continued
0h140B operation
duration
Hold Time
20
Sensorless 2nd
0h1414 gain display
setting
SL2 G View Sel
0.00-60.00(s)
0
No
1
Yes
24
In case of 0.4~4.0kW, the setting range is 2.0~15.0(kHz).
25
In case of 0.4~4.0kW, the setting range is 2.0~5.0(kHz).
262
V/F SL Ref.
O
O p.42
O
O p.160
p.160
O
O p.160
X
O p.144
X
O p.144
0.00
X/A
X
O p.144
0:No
O/A
X
O p.144
Table of Functions
Code
21
22
23
26
26
24
26
25
26
26
26
27
26
28
26
29
26
30
26
31
26
32
48
49
52
53
26
Comm.
Name
Address
Sensorless speed
controller
0h1415
proportional
gain1
Sensorless speed
0h1416 controller integral
gain1
Sensorless speed
controller
0h1417 proportional
gain2
Sensorless speed
0h1418 controller integral
gain2
Sensorless speed
0h1419 controller integral
gain 0
Flux estimator
0h141A proportional gain
Flux estimator
0h141B
integral gain
Speed estimator
0h141C
proportional gain
0h141 Speed estimator
integral gain1
D
Speed estimator
0h141E integral gain2
Sensorless
0h141F current controller
proportional gain
Sensorless
0h1420 current controller
integral gain
Current controller
P gain
Current controller
I gain
Torque controller
0h1434
output filter
Torque limit
0h1435
setting options
LCD Display
Setting Range
ASR-SL
P Gain1
0-5000(%)
Initial
Value
Property* V/F SL Ref.
Depen O/A
dent on
motor
setting
O/A
X
O p.144
X
O p.144
1.0-1000.0(%)
O/A
X
O p.144
ASR-SL I Gain2 1.0-1000.0(%)
O/A
X
O p.144
ASR-SL I Gain0 10~9999(ms)
O/A
X
O -
O/A
Depen
dent on O/A
motor
setting O/A
X
O p.144
X
O p.144
X
O p.144
ASR-SL I Gain1 10-9999(ms)
ASR-SL P
Gain2
Flux P Gain
10-200(%)
Flux I Gain
10-200(%)
S-Est P Gain1
0-32767
S-Est I Gain1
100-1000
O/A
X
O p.144
S-Est I Gain2
100-10000
O/A
X
O p.144
ACR SL
P Gain
10-1000
O/A
X
O p.144
ACR SL I Gain
10 -1000
O/A
X
O p.144
ACR P Gain
0-10000
1200
O/A
X
O -
ACR I Gain
0-10000
120
O/A
X
O -
Torque Out
LPF
0-2000(ms)
0
X/A
X
O p.144
Torque Lmt
Src
0
1
2
4
0:
Keypad X/A
-1
X
O p.144
Keypad-1
Keypad-2
V1
V2
Displayed when dr.09 is set to 4 (IM Sensorless) and Cn.20 is set to 1 (YES).
263
Table of Functions
Code
Comm.
Name
Address
LCD Display
Setting Range
Initial
Value
Property* V/F SL Ref.
5
6
8
I2
Int 485
FieldBus
UserSeqLin
9
k
12 Pulse
Positive-direction
FWD
0h1436 reverse
+Trq Lmt
torque limit
0.0-200.0(%)
180
O/A
X
O p.144
27
Positive-direction FWD
0h1437 regeneration
–Trq Lmt
torque limit
0.0-200.0(%)
180
O/A
X
O p.144
27
Negative0h1438 direction reverse
torque limit
REV +Trq Lmt
0.0-200.0(%)
180
O/A
X
O p.144
27
Negativedirection
0h1439 regeneration
torque limit
REV –Trq Lmt
0.0-200.0(%)
180
O/A
X
O p.144
0:
Keypad X/A
-1
X
O -
60.00
O/A
X
O -
60.00
O/A
X
O -
500
O/A
X
O -
0:
Flying
X/A
O
O p.155
54
27
55
56
57
0
1
2
4
Speed Lmt Src 5
6
7
27
Speed limit
0h143E Setting
27
Positive-direction FWD Speed
0h143F speed limit
Lmt
62
63
27
64
27
65
70
27
Negative0h1440 direction speed
limit
Speed limit
0h1441 operation gain
0h
Speed search
1446
mode selection
REV Speed
Lmt
Speed Lmt
Gain
SS Mode
Keypad-1
Keypad-2
V1
V2
I2
Int 485
FieldBus
UserSeqLin
8
k
0.00~
Maximum
frequency (Hz)
0.00~
Maximum
frequency (Hz)
100~5000[%]
0
Flying
28
Start-1
Displayed when dr.09 is set to 4 (IM Sensorless). This will change the initial value of the
parameter at Ad.74 (Torque limit) to 150%.
28
Will not be displayed if dr.09 is set to 4 (IM Sensorless).
264
Table of Functions
Code
Comm.
Name
Address
LCD Display
Setting Range
Flying
Start-2
bit 0000- 1111
1
00
01
Speed search
0h1447 operation
selection
71
00
10
Speed Search
01
00
Initial
Value
Start-1
Property* V/F SL Ref.
Selection of
speed
search
on
acceleration
When
starting on
initialization
after fault
29
trip
X/A
0000
When
restarting
after
instantaneo
us power
interruption
O
O p.155
O/A
O
O p.155
O/A
O
O p.155
O/A
O
O p.155
When
10 starting
00 with power
on
72
30
0h1448
Speed search
SS Supreference current Current
80-200(%)
31
0h1449
Speed search
SS P-Gain
proportional gain
0-9999
31
0h144A
Speed search
integral gain
0-9999
73
74
SS I-Gain
150
Flying
Start-1
: 100
Flying
Start-2
32
: 600
Flying
Start-1
: 200
Flying
Start-2
: 1000
29
The initial value 0000 will be displayed on the keypad as
30
Displayed when any of the Cn.71 code bits are set to 1 and Cn70 is set to 0 (Flying Start-1).
31
Displayed when any of the Cn.71 code bits are set to 1.
32
The initial value is 1200 when the motor-rated capacity is less than 7.5 kW
.
265
Table of Functions
Code
31
75
31
76
Comm.
Name
Address
Output blocking
0h144B time before
speed search
Speed search
0h144C
Estimator gain
0h144
D
77
33
0h144E
33
0h144F
33
0h1450
33
0h1451
33
0h1452
33
0h1453
34
0h1455
34
0h1456
34
0h1457
34
0h1458
34
0h1459
34
0h145A
34
0h145B
34
0h145C
78
79
80
81
82
83
85
86
87
88
89
90
91
92
LCD Display
Setting Range
Initial
Value
Property* V/F SL Ref.
SS Block Time
0.0-60.0(s)
1.0
X/A
O
O p.155
Spd Est Gain
50-150(%)
100
O/A
O
O -
0
1
2
No
KEB-1
KEB-2
0:No
X/A
O
O p.148
KEB Start Lev
110.0-200.0(%)
125.0
X/A
O
O p.148
KEB Stop Lev
Cn78~210.0(%) 130.0
X/A
O
O p.148
KEB P Gain
0-20000
1000
O/A
O
O p.148
KEB I Gain
1~20000
500
O/A
O
O p.148
KEB Slip Gain
0~2000.0%
30.0
O/A
O
O p.148
KEB Acc Time
0.0~600.0(s)
10.0
O/A
O
O p.148
Flux P Gain1
100-700
370
O/A
X
O p.144
Flux P Gain2
0-100
0
O/A
X
O p.144
Flux P Gain3
0-500
100
O/A
X
O p.144
Flux I Gain1
0-200
50
O/A
X
O p.144
Flux I Gain2
0-200
50
O/A
X
O p.144
Flux I Gain3
0-200
50
O/A
X
O p.144
Depen O/A
dent on
motor
setting O/A
X
O p.144
X
O p.144
Energy buffering
KEB Select
selection
Energy buffering
start level
Energy buffering
stop level
Energy buffering
P gain
Energy buffering
I gain
Energy buffering
Slip gain
Energy buffering
acceleration time
Flux estimator
proportional
gain1
Flux estimator
proportional
gain2
Flux estimator
proportional
gain3
Flux estimator
integral gain1
Flux estimator
integral gain2
Flux estimator
integral gain3
Sensorless
voltage
compensation1
Sensorless
voltage
compensation2
SL Volt Comp1 0-60
SL Volt Comp2 0-60
33
Displayed when Cn.77 is not set to 0 (No).
34
Displayed when Cn.20 is set to 1 (Yes).
266
Table of Functions
Code
34
93
34
94
34
95
Comm.
Name
Address
Sensorless
0h145
voltage
D
compensation3
Sensorless field
0h145E weakening start
frequency
Sensorless gain
0h145F switching
frequency
LCD Display
Setting Range
Initial
Value
SL Volt Comp3 0-60
Property* V/F SL Ref.
O/A
X
O p.144
SL FW Freq
80.0-110.0(%)
100.0
X/A
X
O p.141
SL Fc Freq
0.00-8.00(Hz)
2.00
X/A
X
O p.141
8.6 Input Terminal Block Function group (PAR→In)
In the following table, the data shaded in grey will be displayed when a related code has been
selected.
SL: Sensorless vector control (dr.09)
*O/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common
Comm.
Initial
Code
Name
LCD Display
Setting Range
Property*
Address
Value
00
Jump Code
Jump Code
1-99
65
O/A
Maxim
Frequency for
Start frequencyum
Freq at 100% Maximum
01
0h1501 maximum
O/A
freque
analog input
frequency(Hz)
ncy
Torque at
Torque
0.0-200.0(%)
100.0 O/A
02
0h1502 maximum
at100%
analog input
V1 input
V1 Monitor(V) -12.00-12.00(V)
0.00
-/A
05
0h1505 voltage
display
V1 input
0 Unipolar
0:
06
0h1506 polarity
V1 Polarity
Unipola X/A
1 Bipolar
selection
r
Time constant
07
0h1507 of V1 input
V1 Filter
0-10000(ms)
10
O/A
filter
V1 Minimum
08
0h1508
V1 Volt x1
0.00-10.00(V)
0.00
O/A
input voltage
V1 output at
09
0h1509 Minimum
V1 Perc y1
0.00-100.00(%)
0.00
O/A
voltage (%)
V/F SL Ref.
O
O p.42
O
O p.61
X
X
O
O p.61
O
O p.61
O
O p.61
O
O p.61
O
O p.61
-
267
Table of Functions
Code
10
11
12
35
35
13
Comm.
Name
Address
V1 Maximum
0h150A
input voltage
V1 output at
0h150B Maximum
voltage (%)
V1 Minimum
0h150C
input voltage
V1output at
0h150D Minimum
voltage (%)
35
0h150E
35
0h150F
14
15
16
0h1510
17
0h1511
V1 Maximum
input voltage
V1 output at
Maximum
voltage (%)
V1 rotation
direction
change
V1
quantization
level
V2 input
voltage
display
LCD Display
Setting Range
Initial
Value
Property* V/F SL Ref.
V1 Volt x2
0.00-12.00(V)
10.00
O/A
O
O p.61
V1 Perc y2
0.00-100.00(%)
100.00 O/A
O
O p.61
V1 –Volt x1’
-10.00- 0.00(V)
0.00
O/A
O
O p.64
V1 –Perc y1’
-100.00-0.00(%)
0.00
O/A
O
O p.64
V1 –Volt x2’
-12.00- 0.00(V)
-10.00
O/A
O
O p.64
V1 –Perc y2’
-100.00-0.00(%)
-100.00 O/A
O
O p.64
0: No
O/A
O
O p.61
0.04
X/A
O
O p.61
0.00
-/A
O
O p.68
V1 Inverting
0
No
1
Yes
36
V1 Quantizing
0.00 , 0.0410.00(%)
37
0h1523
37
0h1525
V2 input filter
V2 Filter
time constant
0-10000(ms)
10
O/A
O
O p.68
37
0h1526
V2 Minimum
input voltage
V2 Volt x1
0.00-10.00(V)
0.00
O/A
X
X
V2 Perc y1
0.00-100.00(%)
0.00
O/A
O
O p.68
V2 Volt x2
0.00-10.00(V)
10
O/A
X
X
V2 Perc y2
0.00-100.00(%)
100.00 O/A
O
O p.68
35
37
38
37
39
37
40
37
41
V2 output at
0h1527 Minimum
voltage (%)
V2 Maximum
input voltage
V2 output at
0h1529 Maximum
voltage (%)
0h1528
V2 Monitor(V) 0.00-12.00(V)
p.68
p.68
35
Displayed when In.06 is set to 1 (Bipolar).
36
Quantizing is not used when set to 0.
37
Displayed when V is selected on the analog current/voltage input circuit selection switch (SW2).
268
Table of Functions
Code
37
46
37
47
50
38
Comm.
Name
Address
V2 rotation
0h152E direction
change
V2
0h152F quantization
level
I2 input
0h1532 current
display
38
0h1534
38
0h1535
38
0h1536
38
0h1537
38
0h1538
38
0h153D
52
53
54
55
56
61
38
I2 minimum
input current
I2 output at
Minimum
current (%)
I2 maximum
input current
I2 output at
Maximum
current (%)
Changing
rotation
direction of I2
I2
quantization
level
0h153E
65
P1 terminal
0h1541 function
setting
67
68
38
V2 Inverting
P2 terminal
0h1542 function
setting
P3 terminal
0h1543 function
setting
P4 terminal
0h1544 function
setting
Setting Range
0
No
1
Yes
Initial
Value
Property* V/F SL Ref.
0:No
O/A
O
O p.68
36
V2 Quantizing
0.00 , 0.0410.00(%)
0.04
O/A
O
O p.68
I2 Monitor
(mA)
0-24(mA)
0.00
-/A
O
O p.66
0-10000(ms)
10
O/A
O
O p.66
I2 Curr x1
0.00-20.00(mA)
4.00
O/A
O
O p.66
I2 Perc y1
0.00-100.00(%)
0.00
O/A
O
O p.66
I2 Curr x2
0.00-24.00(mA)
20.00
O/A
O
O p.66
I2 Perc y2
0.00-100.00(%)
100.00 O/A
O
O p.66
0:No
O/A
O
O p.66
0.04
O/A
O
O p.66
1:Fx
X/A
O
O p.73
I2 input filter
I2 Filter
time constant
62
66
LCD Display
I2 Inverting
0
No
1
Yes
36
I2 Quantizing
0.00 ,0.0410.00(%)
0
None
1
Fx
P2 Define
2
Rx
2:Rx
X/A
O
O p.73
P3 Define
3
RST
5:BX
X/A
O
O p.210
P4 Define
4
External Trip
3:RST
X/A
O
O p.200
P1 Define
Displayed when I is selected on the analog current/voltage input circuit selection switch (SW2).
269
Table of Functions
Code
Comm.
Name
Address
LCD Display
Setting Range
Initial
Value
Property* V/F SL Ref.
69
P5 terminal
0h1545 function
setting
P5 Define
5
BX
7:Sp-L
X/A
O
O p.210
P6 Define
6
JOG
8:Sp-M X/A
O
O p.120
P7 Define
7
Speed-L
9:Sp-H
O
O p.71
8
9
11
12
13
14
15
16
17
18
20
21
22
23
24
25
26
34
38
40
46
47
49
50
51
52
54
Speed-M
Speed-H
XCEL-L
XCEL-M
RUN Enable
3-Wire
2nd Source
Exchange
Up
Down
U/D Clear
Analog Hold
I-Term Clear
PID Openloop
P Gain2
XCEL Stop
2nd Motor
Pre Excite
Timer In
dis Aux Ref
FWD JOG
REV JOG
XCEL-H
User Seq
Fire Mode
KEB-1 Select
39
TI
70
71
39
P6 terminal
0h1546 function
setting
P7 terminal
0h1547 function
setting
X/A
Displayed when P5 is selected on Px terminal function.(Only Standard I/O)
270
p.71
p.71
p.82
p.82
p.125
p.124
p.100
p.163
p.123
p.123
p.123
p.70
p.130
p.130
p.130
p.88
p.161
p.173
p.116
p.122
p.122
p.82
p.105
p.111
p.148
-
Table of Functions
Code
84
85
86
87
89
90
Comm.
Name
Address
Multi-function
input terminal
0h1554
On filter
selection
Multi-function
0h1555 input terminal
On filter
Multi-function
0h1556 input terminal
Off filter
Multi-function
input
0h1557
contact
selection
Multi-step
0h1559 command
delay time
LCD Display
Setting Range
Dl Delay Sel
P7 ~ P1
0
Disable(Off)
1
91
0h155B
92
0h155C
93
0h155D
94
0h153E
95
0h155F
96
0h1560
97
0h1561
Property* V/F SL Ref.
1
40 O/A
1111
O
O p.101
DI On Delay
0-10000(ms)
10
O/A
O
O p.101
DI Off Delay
0-10000(ms)
3
O/A
O
O p.101
P7 – P1
0
A contact
DI NC/NO Sel 0
41 X/A
(NO)
0000
1
B contact (NC)
O
O p.101
InCheck Time 1-5000(ms)
X/A
O
O p.71
0
41 -/A
0000
O
O p.101
Pulse Monitor
0.00-50.00(kHz)
(kHz)
0.00
-/A
O
O p.68
TI Filter
0-9999(ms)
10
O/A
O
O p.68
TI Pls x1
0.00-32.00(kHz)
0.00
O/A
O
O p.68
TI Perc y1
0.00-100.00(%)
0.00
O/A
O
O p.68
TI Pls x2
0.00-32.00(kHz)
32.00
O/A
O
O p.68
TI Perc y2
0-100(%)
100.00 O/A
O
O p.68
0:No
O
O p.68
Multi-function
0h155A input terminal DI Status
status
Pulse input
amount
display
TI input filter
time constant
TI Minimum
input pulse
TI output at
Minimum
pulse (%)
TI Maximum
input pulse
TI Output at
Maximum
pulse (%)
TI rotation
direction
change
Enable(On)
Initial
Value
TI Inverting
P7 – P1
0
release(Off)
Connection
1
(On)
0
No
1
Yes
40
The initial value 11111 will be displayed on the keypad as
41
The initial value 0000 will be displayed on the keypad as
1
O/A
.
271
Table of Functions
Code
98
99
Comm.
Name
Address
TI
0h1562 quantization
level
Initial
Value
Property* V/F SL Ref.
0.00 , 0.0410.00(%)
0.04
O/A
O
O p.68
Bit
00
01
10
11
00
-/A
O
O -
LCD Display
Setting Range
TI Quantizing
36
SW1(NPN/PNP)
0h1563 SW2(V1/V2[I2]) IO SW State
status
00~11
V2, NPN
V2, PNP
I2, NPN
I2, PNP
8.7 Output Terminal Block Function group (PAR→OU)
In the following table, the data shaded in grey will be displayed when a related code has been
selected.
SL: Sensorless vector control (dr.09)
*O/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common
Comm.
Initial
Code
Name
LCD Display Setting Range
Property*
Address
Value
00
Jump Code
JumpCode 1-99
30
O/A
0 Frequency
1 Output Current
2 Output Voltage
3 DCLink Voltage
4 Torque
5 Output Power
6 Idse
Analog
0:Freque
01
0h1601
AO1 Mode 7 Iqse
O/A
output 1 item
ncy
8 Target Freq
9 Ramp Freq
10 Speed Fdb
12 PID Ref Value
13 PID Fdb Value
14 PID Output
15 Constant
Analog
02
0h1602
AO1 Gain -1000.0-1000.0(%)
100.0
O/A
output 1 gain
Analog
03
0h1603
AO1 Bias
-100.0-100.0(%)
0.0
O/A
output 1 bias
Analog
04
0h1604
AO1 Filter 0-10000(ms)
5
O/A
output 1 filter
272
V/F SL Ref.
O
O p.42
O
O p.177
O
O p.177
O
O p.177
O
O p.177
Table of Functions
Code
Comm.
Address
05
0h1606
06
0h1606
Name
Analog
constant
output 1
Analog
output 1
monitor
LCD Display Setting Range
Initial
Value
Property* V/F SL Ref.
AO1
Const %
0.0-100.0(%)
0.0
O/A
O
O p.177
AO1
Monitor
0.0-1000.0(%)
0.0
-/A
O
O p.177
O/A
O
O p.186
O/A
O
O p.182
bit 000-111
1
30
0h161E
Fault output
item
Trip Out
Mode
0
1
2
Any faults other
42
than low
010
voltage
Automatic
restart final
failure
None
FDT-1
FDT-2
3
FDT-3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
22
28
29
FDT-4
Over Load
IOL
Under Load
Fan Warning
Stall
Over Voltage
29:Trip
Low Voltage
Over Heat
Lost Command
Run
Stop
Steady
Inverter Line
Comm Line
Speed Search
Ready
Timer Out
Trip
2
3
31
42
0h161F
Multifunction relay Relay 1
1 item
Low voltage
The initial value 0010 will be displayed on the keypad as
.
273
Table of Functions
Code
Comm.
Address
Name
LCD Display Setting Range
31
34
35
36
37
Initial
Value
Property* V/F SL Ref.
14:Run
O/A
DB Warn%ED
On/Off Control
BR Control
CAP.Exchange
FAN Exchange
38 Fire Mode
43
39 TO
40 KEB Operating
0
1
2
3
4
5
6
7
8
9
10
11
12
None
FDT-1
FDT-2
FDT-3
FDT-4
Over Load
IOL
Under Load
Fan Warning
Stall
Over Voltage
Low Voltage
Over Heat
13 Lost Command
33
43
0h1621
Multifunction
Q1 Define
output1 item
Supprted only Standard I/O
274
14
15
16
17
18
19
22
28
29
31
34
35
36
37
38
39
40
Run
Stop
Steady
Inverter Line
Comm Line
Speed Search
Ready
Timer Out
Trip
DB Warn%ED
On/Off Control
BR Control
CAP. Exchange
FAN Exchange
Fire Mode
43
TO
KEB Operating
O
O p.182
Table of Functions
Code
Comm.
Address
41
0h1629
50
0h1632
51
0h1633
52
0h1634
53
0h1635
54
0h1636
55
h1637
56
0h1638
57
0h1639
58
0h163A
61
44
0h163D
Name
Multifunction
output
monitor
Multifunction
output
On delay
Multifunction
output
Off delay
Multifunction
output
contact
selection
Fault output
On delay
Fault output
Off delay
Timer
On delay
Timer
Off delay
Detected
frequency
Detected
frequency
band
Pulse output
gain
LCD Display Setting Range
Initial
Value
Property* V/F SL Ref.
DO Status
-
00
-/A
-
-
DO On
Delay
0.00-100.00(s)
0.00
O/A
O
O p.187
DO Off
Delay
0.00-100.00(s)
0.00
O/A
O
O p.187
44
X/A
O
O p.187
0.00-100.00(s)
0.00
O/A
O
O p.186
0.00-100.00(s)
0.00
O/A
O
O p.186
0.00-100.00(s)
0.00
O/A
O
O p.173
0.00-100.00(s)
0.00
O/A
O
O p.173
0.00-Maximum
frequency(Hz)
30.00
O/A
O
O p.182
FDT Band
0.00-Maximum
frequency(Hz)
10.00
O/A
O
O p.182
TO Mode
0
1
2
3
4
5
6
7
8
9
Frequency
Output Current
Output Voltage
DCLink Voltage
0:
Torque
Frequen O/A
Output Power
cy
Idse
Iqse
Target Freq
Ramp Freq
O
O p.179
DO
NC/NO Sel
TripOut
OnDly
TripOut
OffDly
TimerOn
Delay
TimerOff
Delay
FDT
Frequency
Q1, Relay1
0 A contact (NO)
1
00
p.182
B contact (NC)
The initial value 0000 will be displayed on the keypad as
.
275
Table of Functions
Code
Comm.
Address
Name
LCD Display Setting Range
10
12
13
14
15
62
0h163E
63
0h163F
64
0h1640
65
0h1641
66
0h1642
276
Pulse output
gain
Pulse output
bias
Pulse output
filter
Pulse output
constant
output 2
Pulse output
monitor
Initial
Value
Property* V/F SL Ref.
Speed Fdb
PID Ref Value
PID Fdb Value
PID Output
Constant
TO Gain
-1000.0-1000.0(%)
100.0
O/A
O
O p.179
TO Bias
-100.0-100.0(%)
0.0
O/A
O
O p.179
TO Filter
0-10000(ms)
5
O/A
O
O p.179
TO Const % 0.0-100.0(%)
0.0
O/A
O
O p.179
TO Monitor 0.0-1000.0(%)
0.0
-/A
O
O p.179
Table of Functions
8.8 Communication Function group (PAR→CM)
In the following table, the data shaded in grey will be displayed when a related code has been
selected.
SL: Sensorless vector control (dr.09)
*O/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common
Comm.
Initial
Code
Name
LCD Display Setting Range
Property*
Address
Value
00
Jump Code
Jump Code 1-99
20
O/A
Built-in
communicatio
01
0h1701
Int485 St ID 1-250
1
O/A
n
inverter ID
Built-in
0 ModBus RTU
0:
communicatio
45
0h1702
Int485 Proto
ModBus O/A
02
n
2 LS Inv 485
RTU
protocol
0 1200 bps
1 2400 bps
2 4800 bps
Built-in
3 9600 bps
3:
45
0h1703 communicatio Int485 BaudR 4 19200 bps
O/A
03
9600 bps
n speed
5 38400 bps
6 56 Kbps
46
7 115 Kbps
0 D8/PN/S1
Built-in
0:
1 D8/PN/S2
45
0h1704 communicatio Int485 Mode
D8/PN/S O/A
04
2 D8/PE/S1
n frame setting
1
3 D8/PO/S1
Transmission
45
0h1705 delay
Resp Delay
0-1000(ms)
5ms
O/A
05
after reception
Communicatio
47
0h1706 n option
FBus S/W Ver 0.00
O/A
06
S/W version
Communicatio
47
0h1707 n option
FBus ID
0-255
1
O/A
07
inverter ID
45
Will not be displayed when P2P and MultiKPD is set.
46
115,200bps
47
Displayed only when a communication option card is installed.
V/F SL Ref.
O
O p.42
O
O p.216
O
O p.216
O
O p.216
O
O p.216
O
O p.216
O
O -
O
O -
277
Table of Functions
Code
Comm.
Address
47
0h1708
09
47
0h1709
30
0h171E
08
48
0h171F
48
0h1720
48
0h1721
48
0h1722
48
0h1723
48
0h1724
48
0h1725
38
48
0h1726
50
0h1732
31
32
33
34
35
36
37
51
49
0h1733
Name
FIELD BUS
communicatio
n speed
Communicatio
n option LED
status
Number of
output
parameters
Output
Communicatio
n address1
Output
Communicatio
n address2
Output
Communicatio
n address3
Output
Communicatio
n address4
Output
Communicatio
n address5
Output
Communicatio
n address6
Output
Communicatio
n address7
Output
Communicatio
n address8
Number of
input
parameters
Input
Communicatio
n address1
LCD Display
Setting Range
Initial
Value
Property* V/F SL Ref.
FBUS
BaudRate
-
12Mbps
-/A
O
O -
FieldBus LED -
-
O/A
O
O -
ParaStatus
Num
3
O/A
O
O
Para Stauts-1 0000-FFFF Hex
000A
O/A
O
O p.221
Para Stauts-2 0000-FFFF Hex
000E
O/A
O
O p.221
Para Stauts-3 0000-FFFF Hex
000F
O/A
O
O p.221
Para Stauts-4 0000-FFFF Hex
0000
O/A
O
O p.221
Para Stauts-5 0000-FFFF Hex
0000
O/A
O
O p.221
Para Stauts-6 0000-FFFF Hex
0000
O/A
O
O p.221
Para Stauts-7 0000-FFFF Hex
0000
O/A
O
O p.221
Para Stauts-8 0000-FFFF Hex
0000
O/A
O
O p.221
Para Ctrl
Num
2
O/A
O
O
0005
X/A
O
O p.221
0-8
0-8
Para Control0000-FFFF Hex
1
48
Only the range of addresses set at COM-30 is displayed.
49
Only the range of addresses set at COM-50 is displayed.
278
Table of Functions
Code
Comm.
Address
49
0h1734
49
0h1735
49
0h1736
49
0h1737
49
0h1738
49
0h1739
58
49
0h173A
68
0h1744
70
0h1746
71
0h1747
72
0h1748
73
0h1749
74
0h174A
52
53
54
55
56
57
Name
Input
Communicatio
n address2
Input
Communicatio
n address3
Input
Communicatio
n address4
Input
Communicatio
n address5
Input
Communicatio
n address6
Input
Communicatio
n address7
Input
Communicatio
n address8
Field bus data
swap
Communicatio
n multifunction input
1
Communicatio
n multifunction input
2
Communicatio
n multifunction input
3
Communicatio
n multifunction input
4
Communicatio
n multifunction input
5
Initial
Value
Property* V/F SL Ref.
Para Control0000-FFFF Hex
2
0006
X/A
O
O p.221
Para Control0000-FFFF Hex
3
0000
X/A
O
O p.221
Para Control0000-FFFF Hex
4
0000
X/A
O
O p.221
Para Control0000-FFFF Hex
5
0000
X/A
O
O p.221
Para Control0000-FFFF Hex
6
0000
X/A
O
O p.221
Para Control0000-FFFF Hex
7
0000
X/A
O
O p.221
Para Control0000-FFFF Hex
8
0000
X/A
O
O p.221
LCD Display
Setting Range
FBus Swap
Sel
0
1
No
Yes
0
X/A
O
O p.221
Virtual DI 1
0
None
0:None
O/A
O
O p.240
Virtual DI 2
1
Fx
0:None
O/A
O
O p.240
Virtual DI 3
2
Rx
0:None
O/A
O
O p.240
Virtual DI 4
3
RST
0:None
O/A
O
O p.240
Virtual DI 5
4
External Trip 0:None
O/A
O
O p.240
279
Table of Functions
Code
Comm.
Address
75
0h174B
76
0h174C
77
0h174D
Name
LCD Display
Communicatio
n multiVirtual DI 6
function input
6
Communicatio
n multiVirtual DI 7
function input
7
Communicatio
n multiVirtual DI 8
function input
8
Setting Range
Initial
Value
Property* V/F SL Ref.
5
BX
0:None
O/A
O
O p.240
6
JOG
0:None
O/A
O
O p.240
7
8
9
11
12
13
14
15
16
17
18
20
21
22
Speed-L
Speed-M
Speed-H
XCEL-L
XCEL-M
RUN Enable
3-Wire
2nd Source
Exchange
Up
Down
U/D Clear
Analog Hold
I-Term Clear
0:None
PID
Openloop
P Gain2
XCEL Stop
2nd Motor
Pre Excite
Timer In
dis Aux Ref
FWD JOG
REV JOG
O/A
O
O p.240
X/A
O
O p.219
23
24
25
26
34
38
40
46
47
49
50
51
52
54
86
50
0h1756
XCEL-H
User Seq
Fire Mode
KEB-1 Select
50
TI
Communicatio
n multiVirt DI Status function input
monitoring
Displayed when P5 is selected on Px terminal function
280
0
Table of Functions
Code
Comm.
Address
90
0h175A
91
0h175B
92
0h175C
93
0h175D
94
51
95
96
52
-
Name
Selection of
data frame
communicatio
n monitor
Data frame Rev
count
Data frame Err
count
NAK frame
count
Communicatio
n data upload
LCD Display
Comm Mon
Sel
Rcv Frame
Num
Err Frame
Num
NAK Frame
Num
Comm
Update
0h1760
P2P
communicatio Int 485 Func
n selection
-
DO setting
selection
P2P OUT Sel
Initial
Value
Property* V/F SL Ref.
0
O/A
O
O -
0~65535
0
O/A
O
O -
0~65535
0
O/A
O
O -
0~65535
0
O/A
O
O -
0:No
-/A
O
O -
0:
Disable
All
X/A
O
O p.103
0:No
O/A
O
O p.103
Setting Range
0
Int485
1
KeyPad
0
1
0
1
2
No
Yes
Disable All
P2P Master
P2P Slave
M-KPD
3
Ready
Bit 000~111
Analog
001
output
Multi010 function
relay
Multi100 function
output
51
Displayed only when a communication option card is installed.
52
Displayed when AP.01 is set to 2 (Proc PID).
281
Table of Functions
8.9 Application Function group (PAR→AP)
In the following table, the data shaded in grey will be displayed when a related code has been
selected.
SL: Sensorless vector control (dr.09)
*O/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common
Comm.
Initial
Property
Code
Name
LCD Display
Setting Range
Address
Value
*
00
Jump Code
Jump Code
1-99
20
O/A
0
None
Application
0:
01
0h1801 function
App Mode
1
X/A
None
selection
2
Proc PID
0
No
Enable user
02
User Seq En
0:No
X/A
sequence
1
Yes
PID output
53
0h1810
PID Output
(%)
0.00
-/A
16
monitor
PID reference
53
0h1811
PID Ref Value (%)
50.00
-/A
17
monitor
53
0h1812
PID feedback
monitor
PID Fdb Value
53
0h1813
PID reference
setting
PID Ref Set
53
0h1814
PID reference
source
PID
Ref Source
53
0h1815
PID feedback
source
PID
F/B Source
18
19
20
21
53
Displayed when AP.01 is set to 2 (Proc PID).
282
(%)
-100.00100.00(%)
0 Keypad
1 V1
3 V2
4 I2
5 Int 485
7 FieldBus
UserSeqL
8
ink
11 Pulse
0 V1
2 V2
3 I2
4 Int 485
6 FieldBus
UserSeqL
7
ink
10 Pulse
V/F SL Ref.
O
O p.42
O
O p.130
O
O p.105
O
O p.130
O
O p.130
0.00
-/A
O
O p.130
50.00
O/A
O
O p.130
0:
Keypad
X/A
O
O p.130
0:V1
X/A
O
O p.130
Table of Functions
Code
Comm.
Address
53
0h1816
53
0h1817
53
0h1818
22
23
24
Name
PID controller
proportional
gain
PID controller
integral time
PID controller
differentiation
time
Initial
Value
Property
V/F SL Ref.
*
LCD Display
Setting Range
PID P-Gain
0.0-1000.0(%) 50.0
O/A
O
O p.130
PID I-Time
0.0-200.0(s)
10.0
O/A
O
O p.130
PID D-Time
0-1000(ms)
0
O/A
O
O p.130
0.0-1000.0(%) 0.0
O/A
O
O p.130
0.0-100.0(%)
100.0
X/A
O
O p.130
0-10000(ms)
Process
0
PID
Normal
1
PID
PID lower limit
frequency300.00(Hz)
-300.00 -PID
upper limit
frequency(Hz)
0 No
1 Yes
0.1-1000.0(%)
0.00Maximum
frequency(Hz)
0
O/A
O
O p.130
0
X/A
O
O -
60.00
O/A
O
O p.130
-60.00
O/A
O
O p.130
0:No
X/A
O
O p.130
100.0
X/A
O
O p.130
0.00
X/A
O
O p.130
Pre-PID Exit
0.0-100.0(%)
0.0
X/A
O
O p.130
Pre-PID Delay
0-9999(s)
600
O/A
O
O p.130
PID Sleep DT
0.0-999.9(s)
60.0
O/A
O
O p.130
53
0h1819
53
0h181A
53
0h181B
PID controller
feed-forward
PID F-Gain
compensation
gain
Proportional
P Gain Scale
gain scale
PID output filter PID Out LPF
53
0h181C
PID Mode
PID Mode
53
0h181D
PID upper limit
frequency
PID Limit Hi
53
0h181E
PID lower limit
frequency
PID Limit Lo
53
0h181F
53
0h1820
53
0h1822
53
0h1823
53
0h1824
53
0h1825
53
0h1826
PID sleep mode PID Sleep
frequency
Freq
0.00Maximum
0.00
frequency(Hz)
O/A
O
O p.130
53
0h1827
PID wake-up
level
0-100(%)
O/A
O
O p.130
25
26
27
28
29
30
31
32
34
35
36
37
38
39
PID output
inverse
PID output scale
PID controller
motion
frequency
PID controller
motion level
PID controller
motion delay
time
PID sleep mode
delay time
PID Out Inv
PID Out Scale
Pre-PID Freq
PIDWakeUp
Lev
35
283
Table of Functions
Code
Comm.
Address
Name
LCD Display
Setting Range
Below
Level
Above
1
Level
Beyond
2
Level
0 %
1 Bar
2 mBar
3 Pa
4 kPa
5 Hz
6 rpm
7 V
8 I
9 kW
10 HP
11 ℃
Initial
Value
Property
V/F SL Ref.
*
0:Below
Level
O/A
O
O p.130
0:%
O/A
O
O p.130
100.00
O/A
O
O p.130
2:x 1
O/A
O
O p.130
X/A
O
O p.130
0
53
0h1828
PID wake-up
mode setting
PID WakeUp
Mod
53
0h182A
PID controller
unit selection
PID Unit Sel
40
42
53
0h182B
PID unit gain
PID Unit Gain
53
0h182C
PID unit scale
PID Unit
Scale
0h182D
PID 2nd
proportional
gain
PID P2-Gain
43
44
53
45
284
12 ℉
0.00300.00(%)
0
x100
1
x10
2
x1
3
x 0.1
4
x 0.01
0.0-1000.0(%) 100.0
Table of Functions
8.10 Protection Function group (PAR→Pr)
In the following table, the data shaded in grey will be displayed when a related code has been
selected.
SL: Sensorless vector control (dr.09)
*O/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common
Comm.
Initial
Property
Code
Name
LCD Display Setting Range
V/F SL Ref.
Address
Value
*
00
04
-
Jump Code
0h1B04
Load level
setting
Jump Code
Load Duty
1-99
0
Normal
Duty
1
Heavy Duty
40
O/A
O
O p.42
1:Heavy
Duty
X/A
O
O p.194
X/A
O
O p.199
bi 00-11
05
0h1B05
Input/output
open-phase
protection
Phase Loss
Chk
01
10
06
0h1B06
Input voltage
range during
open-phase
07
0h1B07
Deceleration
Trip Dec
time at fault trip Time
08
0h1B08
Selection of
startup on trip
reset
09
0h1B09
10
55
Number of
automatic
restarts
Automatic
0h1B0A restart
delay time
IPO V Band
RST Restart
Output
open phase
00
54
Input open
phase
1-100(V)
15
X/A
O
O p.199
0.0-600.0(s)
3.0
O/A
O
O -
0:No
O/A
O
O p.159
0
No
1
Yes
Retry
Number
0-10
0
O/A
O
O p.159
Retry Delay
0.0-60.0(s)
1.0
O/A
O
O p.159
54
The initial value 0000 will be displayed on the keypad as
55
Displayed when Pr.09 is set higher than 0.
.
285
Table of Functions
Code
Motion
0h1B0C at speed
command loss
12
13
Comm.
Name
Address
56
56
14
56
15
Time to decide
0h1B0D speed
command loss
Operation
frequency
0h1B0E at speed
command
loss
0h1B0F
17
0h1B11
18
0h1B12
19
0h1B13
20
0h1B14
21
0h1B15
22
0h1B16
Analog input
loss decision
level
Setting Range
Initial
Value
Property
V/F SL Ref.
*
Lost Cmd
Mode
0
1
2
3
4
5
0:None
O/A
O
O p.202
1.0
O/A
O
O p.202
O/A
O
O p.202
0:Half of
O/A
x1
O
O p.202
0:No
O/A
O
O p.194
30-180(%)
150
O/A
O
O p.194
0.0-30.0(s)
10.0
O/A
O
O p.194
1:FreeRun
O/A
O
O p.194
OL Trip Level 30-200(%)
180
O/A
O
O p.194
OL Trip Time 0.0-60.0(s)
60.0
O/A
O
O p.194
0:No
O/A
O
O p.205
10.0
O/A
O
O p.205
Lost Cmd
Time
AI Lost Level
OL Warn
Level
OL Warn
Time
Motion at
overload fault
OL Trip
Select
Overload fault
level
Overload fault
time
25
0h1B19
26
0h1B1A
Underload
warning time
OL Warn
Select
UL Warn Sel
UL Warn
Time
Displayed when Pr.12 is not set to 0 (NONE).
286
None
Free-Run
Dec
Hold Input
Hold
Lost Preset
0.1-120(s)
Start frequencyLost Preset F Maximum
0.00
frequency(Hz)
Overload
warning
selection
Overload alarm
level
Overload
warning time
Underload
warning
selection
56
LCD Display
0
Half x1
1
Below x1
0
No
1
Yes
0
1
None
Free-Run
2
Dec
0
No
1
Yes
0.0-600.0(s)
Table of Functions
Code
Comm.
Name
Address
27
Underload fault
0h1B1B
UL Trip Sel
selection
28
0h1B1C
29
30
0h1B1F
32
0h1B20
33
0h1B21
No motor
motion at
detection
No motor
detection
current level
No motor
detection delay
40
0h1B28
Electronic
thermal fault
selection
41
0h1B29
Motor cooling
fan type
43
45
50
Setting Range
Initial
Value
Property
V/F SL Ref.
*
0
1
2
0:None
O/A
O
O p.205
30.0
O/A
O
O p.205
30
O/A
O
O p.205
30
O/A
O
O p.205
0:None
O/A
O
O p.212
None
Free-Run
Dec
Underload fault
UL Trip Time 0.0-600.0(s)
time
Underload
0h1B1D
UL LF Level 10-30(%)
lower limit level
Underload
0h1B1E
UL BF Level 30-100(%)
upper limit level
31
42
LCD Display
Electronic
0h1B2A thermal 1
minute rating
Electronic
thermal
0h1B2B
continuous
rating
0h1B2D BX trip mode
0h1B32
No Motor
Trip
0
None
1
Free-Run
No Motor
Level
1-100(%)
5
O/A
O
O p.212
No Motor
Time
0.1-10.0(s)
3.0
O/A
O
O p.212
0:None
O/A
O
O p.193
O/A
O
O p.193
ETH Trip Sel
Motor
Cooling
0
None
1
2
0
Free-Run
Dec
Self-cool
1
0:SelfForced-cool cool
ETH 1min
120-200(%)
150
O/A
O
O p.193
ETH Cont
50-150(%)
120
O/A
O
O p.193
BX Mode
0
1
0
X/A
O
O -
X/A
O
O p.196
Free-Run
Dec
bit 0000-1111
Stall prevention
motion and flux Stall Prevent
0000
000 Acceleratin
braking
1 g
287
Table of Functions
Code
Comm.
Name
Address
LCD Display
Initial
Value
Property
V/F SL Ref.
*
60.00
O/A
O
O p.196
180
X/A
O
O p.196
60.00
O/A
O
O p.196
180
X/A
O
O p.196
60.00
O/A
O
O p.196
180
X/A
O
O p.196
60.00
O/A
O
O p.196
180
X/A
O
O p.196
0 ~ 150[%]
0
O/A
O
O -
Setting Range
001 At constant
0 speed
At
010
deceleratio
0
n
100 FluxBrakin
0 g
Start frequencyStall
frequency2(Hz)
30-250(%)
Stall
frequency1Stall
frequency3(Hz)
30-250(%)
Stall
frequency2Stall
frequency4(Hz)
30-250(%)
Stall
frequency3Maximum
frequency(Hz)
30-250(%)
51
0h1B33
Stall frequency1 Stall Freq 1
52
0h1B34
Stall level1
53
0h1B35
Stall frequency2 Stall Freq 2
54
0h1B36
Stall level2
55
0h1B37
Stall frequency3 Stall Freq 3
56
0h1B38
Stall level3
57
0h1B39
Stall frequency4 Stall Freq 4
58
0h1B3A Stall level4
59
Flux braking
0h1B3B gain
Stall Level 4
Flux Brake
Kp
60
CAP diagnosis
0h1B3C level
CAP. Diag
Perc
10 ~ 100[%]
0
O/A
O
O -
CAP. Diag
0
1
2
3
0
X/A
O
-
50.0 ~ 95.0[%]
0
X/A
O
O -
0.0~100.0[%]
0.0
-/A
O
O -
61
57
57
0h1B3E
CAP Exchange
Level
57
0h1B3F
CAP Diag Level
62
63
57
CAP diagnosis
0h1B3D mode
Stall Level 1
Stall Level 2
Stall Level 3
CAP
Exchange
Level
CAP Diag
Level
None
Ref Diag
Pre Diag
Init Diag
The Pr.61-63 codes are displayed when the Pr.60(CAP.DiagPrec) is set to more than 0.
288
Table of Functions
Code
66
73
74
58
58
75
Comm.
Name
LCD Display
Address
DB resistor
DB
0h1B42
warning level
Warn %ED
Speed deviation
0h1B22
Speed Dev Trip
trip
Speed deviation
0h1B23
Speed Dev Band
band
Speed deviation
0h1B24
Speed Dev Time
time
Setting Range
Initial
Value
Property
V/F SL Ref.
*
0-30(%)
0
O/A
O
O p.204
0
1
0:No
O/A
O
O
1 ~ 20
5
O/A
O
O
0 ~ 120
60
O/A
O
O
1:Warnin
O/A
g
O
O p.206
1:FreeRun
O/A
O
O p.211
0.0
X/A
O
O p.207
0
X/A
O
O -
No
Yes
79
0h1B4F
Cooling fan fault FAN Trip
selection
Mode
0
Trip
1
Warning
80
0h1B50
Motion
selection
at option trip
Opt Trip
Mode
0
1
2
None
Free-Run
Dec
81
0h1B51
Low voltage
fault decision
delay time
LVT Delay
0.0-60.0(s)
82
0h1B52
LV2 Selection
LV2 Enable
86
0h1B56
Accumulated
percent of fan
usage
Fan Time
Perc
0.0~100.0[%]
0.0
-/A
O
O -
87
0h1B57
Fan exchange
warning level
Fan
Exchange
level
0.0~100.0[%]
90.0
O/A
O
O -
0h1B58
Fan reset time
Fan Time Rst
0
X/A
O
O -
0h1B59
CAP, FAN Status
CAP, FAN
State
0
-/A
O
O -
59
0h1B5A
Warning
information
-
-
-
-/7
O
O -
59
0h1B5B Fault history 1
-
-
-
-/7
O
O -
88
59
89
90
91
0
No
1
Yes
0 No
1 Yes
Bit 00~10
00
CAP
01
Warning
FAN
10
Warning
58
Displayed when Pr.73 is set to 1(YES)
59
Will not be displayed when an LCD keypad is in use.
289
Table of Functions
Code
59
92
Comm.
Name
Address
0h1B5C Fault history 2
-
Initial
Value
-
Property
V/F SL Ref.
*
-/7
O O -
LCD Display
Setting Range
-
59
0h1B5D Fault history 3
-
-
-
-/7
O
O -
59
0h1B5E
Fault history 4
-
-
-
-/7
O
O -
59
0h1B5F
Fault history 5
-
-
-
-/7
O
O -
59
0h1B60
Fault history
deletion
-
0
1
0:No
-/7
O
O -
93
94
95
96
No
Yes
8.11 2nd Motor Function group (PAR→M2)
The 2nd Motor function group will be displayed if any of In.65-69 are set to 26 (2nd MOTOR). In the
following table, the data shaded in grey will be displayed when a related code has been selected.
SL: Sensorless vector control (dr.09)
*O/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common
Comm.
Initial
Code
Name
LCD Display Setting Range
Property*
Address
Value
00
Jump Code
Jump Code 1-99
14
O/A
V/F SL Ref.
O
O
p.42
04
0h1C04
Acceleration
time
M2-Acc Time 0.0-600.0(s)
20.0
O/A
O
O
p.161
05
0h1C05
Deceleration
time
M2-Dec
Time
30.0
O/A
O
O
p.161
Motor capacity
0
1
2
3
4
5
6
7
M2-Capacity
8
9
10
11
12
13
14
15
-
X/A
O
O
p.161
06
290
0h1C06
0.0-600.0(s)
0.2 kW
0.4 kW
0.75 kW
1.1 kW
1.5 kW
2.2 kW
3.0 kW
3.7 kW
4.0 kW
5.5 kW
7.5 kW
11.0 kW
15.0 kW
18.5 kW
22.0 kW
30.0 kW
Table of Functions
Code
Comm.
Address
Name
LCD Display
Setting Range
07
0h1C07
Base frequency
M2-Base
Freq
08
0h1C08
Control mode
M2-Ctrl
Mode
30.00400.00(Hz)
0 V/F
Slip
2
Compen
IM
4
Sensorless
10
0h1C0A
Number of
motor poles
11
0h1C0B
12
0h1C0C
13
0h1C0D
14
0h1C0E
15
0h1C0F
16
0h1C10
17
-
18
-
19
-
20
25
60
-
0h1C19
M2-Pole
Num
M2-Rated
Rated slip speed
Slip
Motor rated
M2-Rated
current
Curr
Motor no-load M2-Noload
current
Curr
Motor rated
M2-Rated
voltage
Volt
M2Motor efficiency
Efficiency
Load inertia rate M2-Inertia Rt
Stator
M2-Rs
resistance
Leakage
M2-Lsigma
inductance
Stator
M2-Ls
inductance
Rotor time
M2-Tr
constant
V/F pattern
M2-V/F Patt
Initial
Property*
Value
V/F SL Ref.
60.00 X/A
O
O
p.161
0:V/F X/A
O
O
p.161
2-48
X/A
O
O
p.161
0-3000(rpm)
X/A
O
O
p.161
1.0-1000.0(A)
X/A
O
O
p.161
0.5-1000.0(A)
X/A
Depe
ndent
X/A
on
moto
X/A
r
settin X/A
gs
X/A
O
O
p.161
O
O
p.161
O
O
p.161
O
O
p.161
O
O
p.161
X/A
O
O
p.161
X/A
O
O
p.161
X/A
O
O
p.161
0:
Linea X/A
r
O
O
p.161
X/A
O
O
p.161
X/A
O
O
p.161
X/A
O
O
p.161
170-480(V)
70-100(%)
0-8
Dependent on
motor settings
25-5000(ms)
0
Linear
1
Square
2
User V/F
26
0h1C1A
Forward Torque M2-Fwd
boost
Boost
0.0-15.0(%)
27
0h1C1B
Reverse Torque M2-Rev
boost
Boost
0.0-15.0(%)
28
0h1C1C
Stall prevention
M2-Stall Lev 30-150(%)
level
60
2.0
150
Displayed when M2.08 is set to 4 (IM Sensorless).
291
Table of Functions
Code
Comm.
Address
Name
LCD Display
Setting Range
Initial
Property*
Value
V/F SL Ref.
29
0h1C1D
Electronic
thermal 1
minute rating
M2-ETH
1min
100-200(%)
150
X/A
O
O
p.161
30
0h1C1E
Electronic
thermal
continuous
rating
M2-ETH
Cont
50-150(%)
100
X/A
O
O
p.161
40
0h1C28
Rotation count
speed gain
Load Spd
Gain
0~6000.0[%]
100.0 O/A
O
O
-
0: x 1 O/A
O
O
-
0:
rpm
O
O
-
41
0h1C29
Rotation count
speed scale
Load Spd
Scale
42
0h1C2A
Rotation count
speed unit
Load Spd
Unit
0
1
2
3
4
0
1
x1
x 0.1
x 0.01
x 0.001
x 0.0001
Rpm
mpm
O/A
8.12 User Sequence group (US)
This group appears when AP.02 is set to 1 (Yes) or CM.95 is set to 2 (P2P Master). The parameter
cannot be changed while the user sequence is running.
SL: Sensorless vector control function (dr.09)
*O/X: Write-enabled during operation, 7/L/A: keypad/LCD keypad/common
Code Comm. Name
LCD Display
Setting
Initial Property*
Address
Range
Value
00
Jump code
Jump Code
1-99
31
O/A
01
0h1D01 User sequence
User Seq Con 0 Stop
0:Stop X/A
operation
1 Run
command
2 Digital In
Run
02
0h1D02 User sequence
US Loop Time 0 0.01s
1:0.02s X/A
operation loop
1 0.02s
time
2 0.05s
3 0.1s
4 0.5s
5 1s
11
0h1D0B Output address
Link UserOut1 0-0xFFFF
0
X/A
link1
292
V/F
SL Ref.
O
O
O p.42
O p.105
O
O p.105
O
O p.105
Table of Functions
Code
Comm. Name
Address
0h1D0C Output address
link2
0h1D0D Output address
link3
0h1D0E Output address
link4
0h1D0F Output address
link5
Setting
Range
Link UserOut2 0-0xFFFF
Initial
Value
0
Property* V/F
SL Ref.
X/A
O
O p.105
Link UserOut3 0-0xFFFF
0
X/A
O
O p.105
Link UserOut4 0-0xFFFF
0
X/A
O
O p.105
Link UserOut5 0-0xFFFF
0
X/A
O
O p.105
16
0h1D10 Output address
link6
Link UserOut6 0-0xFFFF
0
X/A
O
O p.105
17
0h1D11 Output address
link7
0h1D12 Output address
link8
0h1D13 Output address
link9
0h1D14 Output address
link10
0h1D15 Output address
link11
0h1D16 Output address
link12
0h1D17 Output address
link13
0h1D18 Output address
link14
0h1D19 Output address
link15
0h1D1A Output address
link16
0h1D1B Output address
link17
0h1D1C Output address
link18
0h1D1F Input constant
setting1
0h1D20 Input constant
setting2
0h1D21 Input constant
setting3
0h1D22 Input constant
setting4
Link UserOut7 0-0xFFFF
0
X/A
O
O p.105
Link UserOut8 0-0xFFFF
0
X/A
O
O p.105
Link UserOut9 0-0xFFFF
0
X/A
O
O p.105
Link
UserOut10
Link
UserOut11
Link
UserOut12
Link
UserOut13
Link
UserOut14
Link
UserOut15
Link
UserOut16
Link
UserOut17
Link
UserOut18
Void Para1
0-0xFFFF
0
X/A
O
O p.105
0-0xFFFF
0
X/A
O
O p.105
0-0xFFFF
0
X/A
O
O p.105
0-0xFFFF
0
X/A
O
O p.105
0-0xFFFF
0
X/A
O
O p.105
0-0xFFFF
0
X/A
O
O p.105
0-0xFFFF
0
X/A
O
O p.105
0-0xFFFF
0
X/A
O
O p.105
0-0xFFFF
0
X/A
O
O p.105
-9999-9999
0
X/A
O
O p.105
Void Para2
-9999-9999
0
X/A
O
O p.105
Void Para3
-9999-9999
0
X/A
O
O p.105
Void Para4
-9999-9999
0
X/A
O
O p.105
12
13
14
15
18
19
20
21
22
23
24
25
26
27
28
31
32
33
34
LCD Display
293
Table of Functions
Code
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
294
Comm. Name
Address
0h1D23 Input constant
setting5
0h1D24 Input constant
setting6
0h1D25 Input constant
setting7
0h1D26 Input constant
setting8
LCD Display
Initial
Value
0
Property* V/F
SL Ref.
Void Para5
Setting
Range
-9999-9999
X/A
O
O p.105
Void Para6
-9999-9999
0
X/A
O
O p.105
Void Para7
-9999-9999
0
X/A
O
O p.105
Void Para8
-9999-9999
0
X/A
O
O p.105
0h1D27 Input constant
setting9
0h1D28 Input constant
setting10
0h1D29 Input constant
setting11
0h1D2A Input constant
setting12
0h1D2B Input constant
setting13
0h1D2C Input constant
setting14
0h1D2D Input constant
setting15
0h1D2E Input constant
setting16
0h1D2F Input constant
setting17
0h1D30 Input constant
setting18
0h1D31 Input constant
setting19
0h1D32 Input constant
setting20
0h1D33 Input constant
setting21
0h1D34 Input constant
setting22
0h1D35 Input constant
setting23
0h1D36 Input constant
setting24
0h1D37 Input constant
setting25
Void Para9
-9999-9999
0
X/A
O
O p.105
Void Para10
-9999-9999
0
X/A
O
O p.105
Void Para11
-9999-9999
0
X/A
O
O p.105
Void Para12
-9999-9999
0
X/A
O
O p.105
Void Para13
-9999-9999
0
X/A
O
O p.105
Void Para14
-9999-9999
0
X/A
O
O p.105
Void Para15
-9999-9999
0
X/A
O
O p.105
Void Para16
-9999-9999
0
X/A
O
O p.105
Void Para17
-9999-9999
0
X/A
O
O p.105
Void Para18
-9999-9999
0
X/A
O
O p.105
Void Para19
-9999-9999
0
X/A
O
O p.105
Void Para20
-9999-9999
0
X/A
O
O p.105
Void Para21
-9999-9999
0
X/A
O
O p.105
Void Para22
-9999-9999
0
X/A
O
O p.105
Void Para23
-9999-9999
0
X/A
O
O p.105
Void Para24
-9999-9999
0
X/A
O
O p.105
Void Para25
-9999-9999
0
X/A
O
O p.105
Table of Functions
Code
56
57
58
59
Comm. Name
Address
0h1D38 Input constant
setting26
0h1D39 Input constant
setting27
0h1D3A Input constant
setting28
0h1D3B Input constant
setting29
LCD Display
Initial
Value
0
Property* V/F
SL Ref.
Void Para26
Setting
Range
-9999-9999
X/A
O
O p.105
Void Para27
-9999-9999
0
X/A
O
O p.105
Void Para28
-9999-9999
0
X/A
O
O p.105
Void Para29
-9999-9999
0
X/A
O
O p.105
0
X/A
O
O p.105
60
0h1D3C Input constant
setting30
Void Para30
-9999-9999
80
P2P In V1
0-12,000
-/A
O
O p.105
81
0h1D50 Analog input 1
S
0h1D51 Analog input2
P2P In I2
-/A
O
O p.105
82
85
88
0h1D52 Digital input
0h1D55 Analog output
0h1D58 Digital output
P2P In DI
P2P OutAO1
P2P OutDO
-12,00012,000
0-0x7F
0-10,000
0-0x03
-/A
X/A
X/A
O
O
O
O p.105
O p.105
O p.105
0
0
295
Table of Functions
8.13 User Sequence Function group(UF)
This group appears when AP.02 is set to 1 (Yes) or CM.95 is set to 2 (P2P Master). The parameter
cannot be changed while the user sequence is running.
SL: Sensorless vector control function (dr.09)
*O/X: Write-enabled during operation, 7/L/A: keypad/LCD keypad/common
Code Comm. Name
LCD
Setting Range
Initial Property* V/F SL Ref.
Address
Display
Value
00
Jump code
Jump
1-99
41
O/A O O p.42
Code
01
0h1E01 User function1
User
0 NOP
0:NOP X/A
O O p.105
Func1
1 ADD
2 SUB
3 ADDSUB
4 MIN
5 MAX
6 ABS
7 NEGATE
8 MPYDIV
9 REMAINDER
10 COMPARE-GT
11 COMPARE-GEQ
12 COMPAREEQUAL
13 COMPARENEQUAL
14 TIMER
15 LIMIT
16 AND
17 OR
18 XOR
19 ANDOR
20 SWITCH
21 BITTEST
22 BITSET
23 BITCLEAR
24 LOWPASSFILTER
25 PI_CONTORL
296
Table of Functions
Code Comm. Name
Address
02
03
04
05
06
0h1E02 User function
input1-A
0h1E03 User function
input1-B
0h1E04 User function
input1-C
0h1E05 User function
output1
0h1E06 User function 2
LCD
Display
User
Input1-A
User
Input1-B
User
Input1-C
User
Output1
User
Func2
Setting Range
Initial
Value
Property* V/F SL Ref.
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
X/A
O
O
p.105
0
1
2
3
4
5
6
7
8
9
10
11
NOP
0:NOP
ADD
SUB
ADDSUB
MIN
MAX
ABS
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
12 COMPAREEQUAL
13 COMPARENEQUAL
14 TIMER
15 LIMIT
16 AND
17 OR
18 XOR
19 ANDOR
20 SWITCH
21 BITTEST
22 BITSET
23 BITCLEAR
297
Table of Functions
Code Comm. Name
Address
LCD
Display
Setting Range
Initial
Value
Property* V/F SL Ref.
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
X/A
O
O
p.105
24 LOWPASSFILTER
07
08
09
10
11
0h1E07 User function
input2-A
0h1E08 User function
input2-B
0h1E09 User function
input2-C
0h1E0A User function
output2
0h1E0B User function3
User
Input2-A
User
Input2-B
User
Input2-C
User
Output2
User
Func3
0
1
2
3
4
5
6
7
8
9
10
11
NOP
0:NOP
ADD
SUB
ADDSUB
MIN
MAX
ABS
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
12 COMPAREEQUAL
13 COMPARENEQUAL
14 TIMER
15 LIMIT
16 AND
17 OR
18 XOR
19 ANDOR
20 SWITCH
21 BITTEST
298
Table of Functions
Code Comm. Name
Address
LCD
Display
Setting Range
Initial
Value
Property* V/F SL Ref.
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
X/A
O
O
p.105
22 BITSET
23 BITCLEAR
24 LOWPASSFILTER
12
13
14
15
16
0h1E0C User function
input3-A
0h1E0D User function
input3-B
0h1E0E User function
input3-C
User function
0h1E0F
output3
User function4
0h1E10
User
Input3-A
User
Input3-B
User
Input3-C
User
Output3
User
Func4
0
1
2
3
4
5
6
7
8
9
10
11
NOP
0:NOP
ADD
SUB
ADDSUB
MIN
MAX
ABS
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
12 COMPAREEQUAL
13 COMPARENEQUAL
14
15
16
17
18
19
TIMER
LIMIT
AND
OR
XOR
ANDOR
299
Table of Functions
Code Comm. Name
Address
LCD
Display
Setting Range
Initial
Value
Property* V/F SL Ref.
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
X/A
O
O
p.105
20
21
22
23
24
17
18
19
20
21
User function
input4-A
User function
0h1E12
input4-B
User function
0h1E13
input4-C
User function
0h1E14
output4
User function5
0h1E11
0h1E15
User
Input4-A
User
Input4-B
User
Input4-C
User
Output4
User
Func5
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
300
SWITCH
BITTEST
BITSET
BITCLEAR
LOWPASSFILTER
NOP
0:NOP
ADD
SUB
ADDSUB
MIN
MAX
ABS
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
COMPAREEQUAL
COMPARENEQUAL
TIMER
LIMIT
AND
OR
XOR
ANDOR
Table of Functions
Code Comm. Name
Address
LCD
Display
Setting Range
Initial
Value
Property* V/F SL Ref.
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
0
1
2
3
4
5
6
NOP
ADD
SUB
ADDSUB
MIN
MAX
ABS
0:NOP
X/A
O
O
p.105
7
8
9
10
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
20
21
22
23
24
22
23
24
25
26
User function
input5-A
User function
0h1E17
input5-B
User function
0h1E18
input5-C
User function
0h1E19
output5
User function6
0h1E16
0h1E1A
User
Input5-A
User
Input5-B
User
Input5-C
User
Output5
User
Func6
SWITCH
BITTEST
BITSET
BITCLEAR
LOWPASSFILTER
11 COMPARE-GEQ
12 COMPAREEQUAL
13 COMPARENEQUAL
14 TIMER
15 LIMIT
16 AND
17 OR
301
Table of Functions
Code Comm. Name
Address
LCD
Display
Setting Range
Initial
Value
Property* V/F SL Ref.
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
0 NOP
1 ADD
0:NOP
X/A
O
O
p.105
18
19
20
21
22
23
24
27
28
29
30
31
User function
input6-A
User function
0h1E1C
input6-B
User function
0h1E1D
input6-C
User function
0h1E1E
output6
User function7
0h1E1B
User
Input6-A
User
Input6-B
User
Input6-C
User
Output6
User
Func7
XOR
ANDOR
SWITCH
BITTEST
BITSET
BITCLEAR
LOWPASSFILTER
2 SUB
0h1E1F
3
4
5
6
7
8
9
10
11
ADDSUB
MIN
MAX
ABS
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
12 COMPAREEQUAL
13 COMPARE14 TIMER
15 LIMIT
302
Table of Functions
Code Comm. Name
Address
LCD
Display
Setting Range
16
17
18
19
20
21
22
23
24
32
33
34
35
User function
input7-A
User function
0h1E21
input7-B
User function
0h1E22 input7-C
0h1E20
0h1E23
36
0h1E24
User function
output7
User function8
Initial
Value
Property* V/F SL Ref.
0
X/A
O
O
p.105
0
X/A
O
O
p.105
0
X/A
O
O
p.105
-/A
O
O
p.105
X/A
O
O
p.105
AND
OR
XOR
ANDOR
SWITCH
BITTEST
BITSET
BITCLEAR
LOWPASSFILTER
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
User
Input7-A
User
0-0xFFFF
Input7-B
User
0-0xFFFF
Input7-C
User
-32767-32767
0
Output7
User
0 NOP
0:NOP
Func8
1 ADD
2 SUB
3 ADDSUB
4 MIN
5 MAX
6 ABS
7 NEGATE
8 MPYDIV
9 REMAINDER
10 COMPARE-GT
11 COMPARE-GEQ
12 COMPAREEQUAL
13 COMPARENEQUAL
303
Table of Functions
Code Comm. Name
Address
LCD
Display
Setting Range
Initial
Value
Property* V/F SL Ref.
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
X/A
O
O
p.105
14
15
16
17
18
19
20
21
22
23
24
37
38
39
40
41
User function
0h1E25 input8-A
User
Input8-A
User function
input8-B
User function
0h1E27
input8-C
User function
0h1E28
output8
User function9
User
Input8-B
User
Input8-C
User
Output8
User
Func9
0h1E26
0h1E29
0
1
2
3
4
5
6
7
8
9
10
11
TIMER
LIMIT
AND
OR
XOR
ANDOR
SWITCH
BITTEST
BITSET
BITCLEAR
LOWPASSFILTER
NOP
0:NOP
ADD
SUB
ADDSUB
MIN
MAX
ABS
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
12 COMPAREEQUAL
304
Table of Functions
Code Comm. Name
Address
LCD
Display
Setting Range
Initial
Value
Property* V/F SL Ref.
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
X/A
O
O
p.105
13 COMPARENEQUAL
14 TIMER
15 LIMIT
16 AND
17 OR
18 XOR
19 ANDOR
20 SWITCH
21 BITTEST
22 BITSET
23 BITCLEAR
24 LOWPASSFILTER
42
43
44
45
46
User function
input9-A
User function
0h1E2B
input9-B
User function
0h1E2C
input9-C
User function
0h1E2D
output9
User function10
0h1E2A
0h1E2E
User
Input9-A
User
Input9-B
User
Input9-C
User
Output9
User
Func10
0
1
2
3
4
5
6
7
8
9
10
11
NOP
0:NOP
ADD
SUB
ADDSUB
MIN
MAX
ABS
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
305
Table of Functions
Code Comm. Name
Address
LCD
Display
Setting Range
Initial
Value
Property* V/F SL Ref.
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
0
1
2
3
4
5
6
7
0:NOP
X/A
O
O
p.105
12 COMPAREEQUAL
13 COMPARENEQUAL
14 TIMER
15 LIMIT
16 AND
17 OR
18 XOR
19 ANDOR
20 SWITCH
21 BITTEST
22 BITSET
23 BITCLEAR
24 LOWPASSFILTER
47
User function
0h1E2F input10-A
48
User function
0h1E30 input10-B
49
User function
0h1E31 input10-C
50
0h1E32
51
0h1E33
306
User function
output10
User function11
User
Input10A
User
Input10B
User
Input10C
User
Output10
User
Func11
NOP
ADD
SUB
ADDSUB
MIN
MAX
ABS
NEGATE
Table of Functions
Code Comm. Name
Address
LCD
Display
Setting Range
Initial
Value
Property* V/F SL Ref.
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
0
1
2
3
0:NOP
X/A
O
O
p.105
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
52
User function
0h1E34 input11-A
53
User function
0h1E35 input11-B
54
User function
0h1E36 input11-C
55
0h1E37
56
0h1E38
User function
output11
User function12
User
Input11A
User
Input11B
User
Input11C
User
Output11
User
Func12
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
COMPAREEQUAL
COMPARENEQUAL
TIMER
LIMIT
AND
OR
XOR
ANDOR
SWITCH
BITTEST
BITSET
BITCLEAR
LOWPASSFILTER
NOP
ADD
SUB
ADDSUB
307
Table of Functions
Code Comm. Name
Address
LCD
Display
Setting Range
4
5
6
7
8
9
10
11
Initial
Value
Property* V/F SL Ref.
0
X/A
O
O
p.105
0
X/A
O
O
p.105
0
X/A
O
O
p.105
0
-/A
O
O
p.105
MIN
MAX
ABS
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
12 COMPAREEQUAL
13 COMPARENEQUAL
14 TIMER
15 LIMIT
16 AND
17 OR
18 XOR
19 ANDOR
20 SWITCH
21 BITTEST
22 BITSET
23 BITCLEAR
24 LOWPASSFILTER
57
User function
0h1E39 input12-A
58
User function
0h1E3A input12-B
59
User function
0h1E3B input12-C
60
308
0h1E3C
User function
output12
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
User
Input12A
User
0-0xFFFF
Input12B
User
0-0xFFFF
Input12C
User
-32767-32767
Output12
Table of Functions
Code Comm. Name
Address
61
User function13
0h1E3D
62
User function
0h1E3E input13-A
63
User function
0h1E3F input13-B
LCD
Display
User
Func13
Setting Range
0
1
2
3
4
5
6
7
8
9
10
11
NOP
ADD
SUB
ADDSUB
MIN
MAX
ABS
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
Initial
Value
0:NOP
Property* V/F SL Ref.
X/A
O
O
p.105
0
X/A
O
O
p.105
0
X/A
O
O
p.105
12 COMPAREEQUAL
13 COMPARENEQUAL
14 TIMER
15 LIMIT
16 AND
17 OR
18 XOR
19 ANDOR
20 SWITCH
21 BITTEST
22 BITSET
23 BITCLEAR
24 LOWPASSFILTER
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
User
Input13A
User
0-0xFFFF
Input13B
309
Table of Functions
Code Comm. Name
Address
64
User function
0h1E40 input13-C
65
0h1E41
66
User function
output13
User function14
LCD
Display
User
Input13C
User
Output13
User
Func14
310
0h1E43 User function
0-0xFFFF
Initial
Value
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
X/A
O
O
p.105
X/A
O
O
p.105
0
1
2
3
4
5
6
7
8
9
10
11
NOP
0:NOP
ADD
SUB
ADDSUB
MIN
MAX
ABS
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
Property* V/F SL Ref.
12 COMPAREEQUAL
13 COMPARENEQUAL
14 TIMER
15 LIMIT
16 AND
17 OR
18 XOR
19 ANDOR
20 SWITCH
21 BITTEST
22 BITSET
23 BITCLEAR
24 LOWPASSFILTER
0h1E42
67
Setting Range
User
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
0
Table of Functions
Code Comm. Name
Address
input14-A
68
User function
0h1E44 input14-B
69
User function
0h1E45 input14-C
70
0h1E46
71
0h1E47
User function
output14
User function15
LCD
Display
Input14A
User
Input14B
User
Input14C
User
Output14
User
Func15
Setting Range
Initial
Value
Property* V/F SL Ref.
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
X/A
O
O
p.105
0
1
2
3
4
5
6
7
8
9
10
11
NOP
0:NOP
ADD
SUB
ADDSUB
MIN
MAX
ABS
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
12 COMPAREEQUAL
13 COMPARENEQUAL
14 TIMER
15 LIMIT
16 AND
17 OR
18 XOR
19 ANDOR
20 SWITCH
21 BITTEST
22 BITSET
23 BITCLEAR
24 LOWPASSFILTER
25 PI_CONTORL
311
Table of Functions
Code Comm. Name
Address
72
User function
0h1E48 input15-A
73
User function
0h1E49 input15-B
74
User function
0h1E4A input15-C
75
0h1E4B
76
0h1E4C
User function
output15
User function 16
LCD
Display
User
Input15A
User
Input15B
User
Input15C
User
Output15
User
Func16
Setting Range
Initial
Value
Property* V/F SL Ref.
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
X/A
O
O
p.105
0
1
2
3
4
5
6
7
8
9
10
11
NOP
0:NOP
ADD
SUB
ADDSUB
MIN
MAX
ABS
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
12 COMPAREEQUAL
13 COMPARENEQUAL
14 TIMER
15 LIMIT
16 AND
17 OR
18 XOR
19 ANDOR
20 SWITCH
21 BITTEST
312
Table of Functions
Code Comm. Name
Address
LCD
Display
Setting Range
Initial
Value
Property* V/F SL Ref.
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
X/A
O
O
p.105
22 BITSET
23 BITCLEAR
24 LOWPASSFILTER
77
User function
0h1E4D input16-A
78
User function
0h1E4E input16-B
79
User function
0h1E4F input16-C
80
0h1E50
81
0h1E51
User function
output16
User function 17
User
Input16A
User
Input16B
User
Input16C
User
Output16
User
Func17
0
1
2
3
4
5
6
7
8
9
10
11
NOP
0:NOP
ADD
SUB
ADDSUB
MIN
MAX
ABS
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
12 COMPAREEQUAL
13 COMPARENEQUAL
14 TIMER
15 LIMIT
16 AND
17 OR
313
Table of Functions
Code Comm. Name
Address
LCD
Display
Setting Range
Initial
Value
Property* V/F SL Ref.
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
0-0xFFFF
0
X/A
O
O
p.105
-32767-32767
0
-/A
O
O
p.105
X/A
O
O
p.105
18
19
20
21
22
23
24
82
User function
0h1E52 input17-A
83
User function
0h1E53 input17-B
84
User function
0h1E54 input17-C
85
0h1E55
86
0h1E56
User function
output17
User function 18
User
Input17A
User
Input17B
User
Input17C
User
Output17
User
Func18
0
1
2
3
4
5
6
7
8
9
10
11
XOR
ANDOR
SWITCH
BITTEST
BITSET
BITCLEAR
LOWPASSFILTER
NOP
0:NOP
ADD
SUB
ADDSUB
MIN
MAX
ABS
NEGATE
MPYDIV
REMAINDER
COMPARE-GT
COMPARE-GEQ
12 COMPAREEQUAL
13 COMPARENEQUAL
314
Table of Functions
Code Comm. Name
Address
LCD
Display
Setting Range
14
15
16
17
18
19
20
21
22
23
24
87
User function
0h1E57 input18-A
88
User function
0h1E58 input18-B
89
User function
0h1E59 input18-C
90
0h1E5A
User function
output18
Initial
Value
Property* V/F SL Ref.
0
X/A
O
O
p.105
0
X/A
O
O
p.105
0
X/A
O
O
p.105
0
-/A
O
O
p.105
TIMER
LIMIT
AND
OR
XOR
ANDOR
SWITCH
BITTEST
BITSET
BITCLEAR
LOWPASSFILTER
25 PI_CONTORL
26 PI_PROCESS
27 UPCOUNT
28 DOWNCOUNT
0-0xFFFF
User
Input18A
User
0-0xFFFF
Input18B
User
0-0xFFFF
Input18C
User
-32767-32767
Output18
315
Table of Functions
8.14 Groups for LCD Keypad Only
8.14.1 Trip Mode (TRP Last-x)
Code Name
LCD Display
Setting Range
Initial Value
Ref.
00
Trip type display
Trip Name(x)
-
-
-
01
Frequency reference at trip Output Freq
-
-
-
02
Output current at trip
-
-
-
03
Acceleration/Deceleration
Inverter State
state at trip
-
-
-
DCLink Voltage
Temperature
DI Status
DO Status
Trip On Time
-
0000 0000
000
0/00/00 00:00
-
Trip Run Time
-
0/00/00 00:00
-
Trip Delete?
0
1
04
05
06
07
08
09
10
DC section state
NTC temperature
Input terminal state
10
Delete trip history
Output terminal state
Trip time after Power on
Trip time after operation
start
Output Current
No
Yes
8.14.2 Config Mode (CNF)
Code Name
LCD Display
Setting Range
Initial Value
Ref.
00
Jump Code
1-99
42
p.42
Language Sel
0 : English
0 : English
p.188
01
Jump code
Keypad language
selection
02
LCD constrast adjustment LCD Contrast
-
-
p.172
03
10
11
12
Multi keypad ID
Inverter S/W version
LCD keypad S/W version
LCD keypad title version
Multi KPD ID
Inv S/W Ver
Keypad S/W Ver
KPD Title Ver
3-99
-
3
-
p.103
p.172
p.172
p.172
20
Status window display
item
Anytime Para
0 Frequency
0: Frequency
p.188
316
Table of Functions
Code Name
21
22
23
Monitor mode display
item1
Monitor mode display
item2
Monitor mode display
item3
LCD Display
Setting Range
Initial Value
Ref.
Monitor Line-1
1 Speed
0: Frequency
p.188
Monitor Line-2
Monitor Line-3
24
Monitor mode
initialization
30
31
32
Option slot 1 type display Option-1 Type
Option slot 2 type display Option-2 Type
Option slot 3 type display Option-3 Type
40
Parameter initialization
Mon Mode Init
Parameter Init
Output
2:Output
Current
Current
3 Output
4 Output Power
5 WHour
6 DCLink
2
7
8
9
10
13
14
15
16
17
18
19
20
21
23
24
0
1
0
6
9
0
1
2
3
4
5
6
7
DI State
DO State
V1 Monitor(V)
V1 Monitor(%)
V2 Monitor(V)
3:Output
V2 Monitor(%)
Voltage
I2
I2 Monitor(%)
PID Output
PID Ref Value
PID Fdb Value
Torque
Torque Limit
Speed Limit
Load Speed
No
Yes
None
Ethernet
CANopen
No
All Grp
DRV Grp
BAS Grp
ADV Grp
CON Grp
IN Grp
OUT Grp
p.188
p.188
0:No
p.188
0:None
0:None
0:None
p.172
p.172
p.172
p.165
317
Table of Functions
Code Name
LCD Display
41
Display changed
Parameter
Changed Para
42
Multi key item
Multi Key Sel
Setting Range
8
9
11
12
13
0
1
0
1
2
Initial Value
Ref.
COM Grp
APP Grp
61
APO Grp
PRT Grp
M2 Grp
View All
0:View All
View Changed
None
JOG Key
Local/Remote
0:None
UserGrp
3
SelKey
p.168
p.169
4 Multi KPD
43
Macro function item
Macro Select
44
Trip history deletion
Erase All Trip
45
User registration code
deletion
UserGrp AllDel
46
Read parameters
Parameter Read
47
Write parameters
Parameter
Write
48
Save parameters
Parameter Save
50
Hide parameter mode
Password for hiding
parameter mode
Lock parameter edit
Password for locking
parameter edit
View Lock Set
0 No
1 Yes
0 No
1 Yes
0 No
1 Yes
0 No
1 Yes
0 No
1 Yes
0-9999
View Lock Pw
51
52
53
0:None
-
0:No
p.172
0:No
p.169
0:No
p.165
0: No
p.165
0:No
p.165
Un-locked
p.166
0-9999
Password
p.166
Key Lock Set
0-9999
Un-locked
p.167
Key Lock Pw
0-9999
Password
p.167
0:No
p.172
1:Yes
p.169
0:No
p.172
60
Additional title update
61
Simple parameter setting Easy Start On
62
Power consumption
61
Add Title Up
WHCount Reset
Supported only Extension I/O(Option)
318
0 None
0
1
0
1
0
No
Yes
No
Yes
No
Table of Functions
Code Name
initialization
70
71
Accumulated inverter
motion time
Accumulated inverter
operation time
LCD Display
On-time
Run-time
72
Accumulated inverter
operation time
initialization
74
Accumulated cooling fan
Fan Time
operation time
75
Reset of accumulated
cooling fan operation
time
Time Reset
Setting Range
1 Yes
Year/month/day
hour:minute
Year/month/day
hour:minute
0 No
Initial Value
Ref.
-
p.191
-
p.191
0:No
p.191
1 Yes
Year/month/day
hour:minute
-
p.191
0:No
p.191
0 No
Fan Time Rst
1 Yes
319
Table of Functions
320
Troubleshooting
9 Troubleshooting
This chapter explains how to troubleshoot a problem when inverter protective functions, fault
trips, warning signals, or a fault occurs. If the inverter does not work normally after following the
suggested troubleshooting steps, please contact the LSIS customer service center.
9.1 Trips and Warnings
When the inverter detects a fault, it stops the operation (trips) or sends out a warning signal. When
a trip or warning occurs, the keypad displays the information briefly. If the LCD keypad is used,
detailed information is shown on the LCD display. Users can read the warning message at Pr.90.
When more than 2 trips occur at roughly the same time, the keypad (basic keypad with 7-segment
display) displays the higher priority fault trip information, while the LCD keypad shows the
information for the fault trip that occurred first.
The fault conditions can be categorized as follows:
• Level: When the fault is corrected, the trip or warning signal disappears and the fault is not
saved in the fault history.
• Latch: When the fault is corrected and a reset input signal is provided, the trip or warning signal
disappears.
• Fatal: When the fault is corrected, the fault trip or warning signal disappears only after the user
turns off the inverter, waits until the charge indicator light goes off, and turns the inverter on
again. If the the inverter is still in a fault condition after powering it on again, please contact the
supplier or the LSIS customer service center.
9.1.1 Fault Trips
Protection Functions for Output Current and Input Voltage
Keypad Display LCD Display Type
Over Load Latch
OLT
ULT
OCT
Under Load Latch
Over
Current1
Latch
Description
Displayed when the motor overload trip is activated and the
actual load level exceeds the set level. Operates when Pr.20
is set to a value other than 0.
Displayed when the motor underload trip is activated and
the actual load level is less than the set level. Operates when
Pr.27 is set to a value other than 0.
Displayed when inverter output current exceeds 200% of
the rated current.
321
Troubleshooting
Keypad Display LCD Display Type
Latch
OVT Over
Voltage
Low Voltage Level
Description
Displayed when internal DC circuit voltage exceeds the
specified value.
Displayed when internal DC circuit voltage is less than the
LVT
specified value.
Latch
Displayed when internal DC circuit voltage is less than the
LV2 Low
Voltage2
specified value during inverter operation.
Ground
Latch
Displayed when a ground fault trip occurs on the output
GFT
Trip*
side of the inverter and causes the current to exceed the
specified value. The specified value varies depending on
inverter capacity.
E-Thermal
Latch
Displayed
based on inverse time-limit thermal
ETH
characteristics to prevent motor overheating. Operates
when Pr.40 is set to a value other than 0.
Displayed when a 3-phase inverter output has one or more
POT Out Phase Latch
Open
phases in an open circuit condition. Operates when bit 1 of
Pr.05 is set to 1.
In Phase
Latch
Displayed when a 3-phase inverter input has one or more
IPO
Open
phases in an open circuit condition. Operates only when bit
2 of Pr.05 is set to 1.
Displayed when the inverter has been protected from
IOL Inverter OLT Latch
overload and resultant overheating, based on inverse timelimit thermal characteristics. Allowable overload rates for the
inverter are 150% for 1 min and 200% for 4 sec. Protection is
based on inverter rated capacity, and may vary depending
on the device’s capacity.
Displayed when the motor is not connected during inverter
NMT No Motor Latch
Trip
operation. Operates when Pr.31 is set to 1.
* S100 inverters rated for 4.0kW or less do not support the ground fault trip (GFT) feature.
Therefore, an over current trip (OCT) or over voltage trip (OVT) may occur when there is a lowresistance ground fault.
Protection Functions Using Abnormal Internal Circuit Conditions and External Signals
Keypad Display LCD Display
OHT Over Heat
OC2
EXT
322
Over
Current2
External Trip
Type
Latch
Latch
Latch
Description
Displayed when the tempertature of the inverter heat sink
exceeds the specified value.
Displayed when the DC circuit in the inverter detects a
specified level of excessive, short circuit current.
Displayed when an external fault signal is provided by the
multi-function terminal. Set one of the multi-function input
terminals at In.65-69 to 4 (External Trip) to enable external
trip.
Troubleshooting
Keypad Display LCD Display
BX
BX
HWT
H/W-Diag
Type
Level
Fatal
Description
Displayed when the inverter output is blocked by a signal
provided from the multi-function terminal. Set one of the
multi-function input terminals at In.65-69 to 5 (BX) to enable
input block function.
Displayed when an error is detected in the memory
(EEPRom), analog-digital converter output (ADC Off Set), or
CPU watchdog (Watch Dog-1, Watch Dog-2).
EEP Err: An error in reading/writing parameters due to
keypad or memory (EEPRom) fault.
NTC
FAN
PID
XBR
SFA
NTC Open
Latch
Fan Trip
Latch
Pre-PID Fail
Latch
Ext-Brake
Latch
Safety A(B)
Err
Level
ADC Off Set: An error in the current sensing circuit (U/V/W
terminal, current sensor, etc.).
Displayed when an error is detected in the temperature
sensor of the Insulated Gate Bipolar Transistor (IGBT).
Displayed when an error is detected in the cooling fan. Set
Pr.79 to 0 to activate fan trip (for models below 22kW
capacity).
Displayed when pre-PID is operating with functions set at
AP.34–AP.36. A fault trip occurs when a controlled variable
(PID feedback) is measured below the set value and the low
feedback continues, as it is treated as a load fault.
Operates when the external brake signal is provided by the
multi-function terminal. Occurs when the inverter output
starting current remains below the set value at Ad.41. Set
either OU.31 or OU.32 to 35 (BR Control).
Displayed when at least one of the two safety input signals is
off.
SFB
Protection Functions for Communication Options
Keypad Display LCD Display
LOR Lost
Command
IOT
S100
Type
Level
IO Board Trip Latch
Description
Displayed when a frequency or operation command error is
detected during inverter operation by controllers other than
the keypad (e.g., using a terminal block and a
communication mode). Activate by setting Pr.12 to any
value other than 0.
Displayed when the I/O board or external communication
card is not connected to the inverter or there is a bad
connection.
323
Troubleshooting
Keypad Display LCD Display
Type
Description
Latch
Displayed when the S100 error code continues for
more than 5 sec.
(‘Errc’ -> ’-rrc’ -> E-rc’ -> ’Er-c’ -> ‘Err-‘ -> ’- -rc’ -> ‘Er- -‘ -> ’- - - -‘
-> ’Errc’ -> …)
Displayed when communication fails during parameter
writing. Occurs when using an LCD keypad due to a control
cable fault or a bad connection.
Displayed when a communication error is detected
between the inverter and the communication board. Occurs
when the communication option card is installed.
ERRC
PAR
OPT
ParaWrite
Trip
Option Trip-1 Latch
9.1.2 Warning Messages
Keypad Display LCD Display
Over Load
OLW
ULW
IOLW
LCW
FANW
EFAN
ECAP
324
Under Load
Description
Displayed when the motor is overloaded. Operates when Pr.17 is set to
1. To operate, select 5. Set the digital output terminal or relay (OU.31 or
OU.33) to 5 (Over Load) to receive overload warning output signals.
Displayed when the motor is underloaded. Operates when Pr.25 is set
to 1. Set the digital output terminal or relay (OU.31 or OU.33) to 7
(Under Load) to receive underload warning output signals.
INV Over
Displayed when the overload time equivalent to 60% of the inverter
Load
overheat protection (inverter IOLT) level, is accumulated. Set the digital
output terminal or relay (OU.31 or OU.33) to 6 (IOL) to receive inverter
overload warning output signals.
Lost
Lost command warning alarm occurs even with Pr.12 set to 0. The
Command
warning alarm occurs based on the condition set at Pr.13- 15. Set the
digital output terminal or relay (OU.31 or OU.33) to 13 (Lost Command)
to receive lost command warning output signals. If the communication
settings and status are not suitable for P2P, a Lost Command alarm
occurs.
Fan Warning Displayed when an error is detected from the cooling fan while Pr.79 is
set to 1. Set the digital output terminal or relay (OU.31 or OU.33) to 8
(Fan Warning) to receive fan warning output signals
An alarm occurs when the value set at PRT-86 is less than the value set
Fan
at PRT-87. To receive fan exchange output signals, set the digital output
Exchange
terminal or relay (OUT-31 or OUT-33) to 38 (Fan Exchange).
An alarm occurs when the value set at PRT-63 is less than the value set
CAP
at PRT-62 (the value set at PRT-61 must be 2 (Pre Diag)). To receive CAP
Exchange
exchange signals, set the digital output terminal or relay (OUT-31 or
OUT-33) to 36 (CAP Exchange).
Troubleshooting
Keypad Display LCD Display
DBW DB
Warn %ED
Retry Tr Tune
TRTR
Description
Displayed when the DB resistor usage rate exceeds the set value. Set
the detection level at Pr.66.
Tr tune error warning alarm is activated when Dr.9 is set to 4. The
warning alarm occurs when the motor’s rotor time constant (Tr) is
either too low or too high.
9.2 Troubleshooting Fault Trips
When a fault trip or warning occurs due to a protection function, refer to the following table for
possible causes and remedies.
Type
Over Load
Under Load
Cause
The load is greater than the motor’s rated
capacity.
The set value for the overload trip level
(Pr.21) is too low.
There is a motor-load connection problem.
The set value for underload level (Pr.29,
Pr.30) is less than the system’s minimum
load.
Over Current1 Acc/Dec time is too short, compared to load
inertia (GD2).
The inverter load is greater than the rated
capacity.
The inverter supplied an output while the
motor was idling.
Over Voltage
Low Voltage
The mechanical brake of the motor is
operating too fast.
Deceleration time is too short for the load
inertia (GD2).
A generative load occurs at the inverter
output.
The input voltage is too high.
The input voltage is too low.
A load greater than the power capacity is
connected to the system (e.g., a welder,
direct motor connection, etc.)
The magnetic contactor connected to the
Remedy
Ensure that the motor and inverter have
appropriate capacity ratings.
Increase the set value for the overload
trip level.
Replace the motor and inverter with
models with lower capacity.
Reduce the set value for the underload
level.
Increase Acc/Dec time.
Replace the inverter with a model that
has increased capacity.
Operate the inverter after the motor has
stopped or use the speed search
function (Cn.60).
Check the mechanical brake.
Increase the acceleration time.
Use the braking unit.
Determine if the input voltage is above
the specified value.
Determine if the input voltage is below
the specificed value.
Increase the power capacity.
Replace the magnetic contactor.
325
Troubleshooting
Type
Cause
power source has a faulty connection.
Low Voltage2 The input voltage has decreased during the
operation.
An input phase-loss has occurred.
The power supply magnetic contactor is
faulty.
Ground Trip
A ground fault has occurred in the inverter
output wiring.
The motor insulation is damaged.
E-Thermal
The motor has overheated.
The inverter load is greater than the rated
capacity.
The set value for electronic thermal
protection is too low.
The inverter has been operated at low
speed for an extended duration.
Output Phase The magnetic contactor on the output side
has a connection fault.
Open
The output wiring is faulty.
Input Phase
The magnetic contactor on the input side
has a connection fault.
Open
The input wiring is faulty.
The DC link capacitor needs to be replaced.
Remedy
Determine if the input voltage is above
the specified value.
Check the input wiring.
Replace the magnetic contractor.
Check the output wiring.
Replace the motor.
Reduce the load or operation frequency.
Replace the inverter with a model that
has increased capacity.
Set an appropriate electronic thermal
level.
Replace the motor with a model that
supplies extra power to the cooling fan.
Check the magnetic contactor on the
output side.
Check the output wiring.
Check the magnetic contactor on the
input side.
Check the input wiring.
Replace the DC link capacitor. Contact
the retailer or the LSIS customer service
center.
Inverter OLT
The load is greater than the rated motor
Replace the motor and inverter with
capacity.
models that have increased capacity.
The torque boost level is too high.
Reduce the torque boost level.
Over Heat
There is a problem with the cooling system. Determine if a foreign object is
obstructing the air inlet, outlet, or vent.
The inverter cooling fan has been operated Replace the cooling fan.
for an extended period.
The ambient temperature is too high.
Keep the ambient temperature below
50℃.
Over Current2 Output wiring is short-circuited.
Check the output wiring.
There is a fault with the electronic
Do not operate the inverter. Contact the
semiconductor (IGBT).
retailer or the LSIS customer service
center.
NTC Open
The ambient temperature is too low.
Keep the ambient temperature above 10℃.
There is a fault with the internal
Contact the retailer or the LSIS customer
temperature sensor.
service center.
FAN Lock
A foreign object is obstructing the fan’s air Remove the foreign object from the air
326
Troubleshooting
Type
IP54 FAN Trip
Cause
vent.
The cooling fan needs to be replaced.
The fan connector is not connected.
The fan connector needs to be replaced.
Remedy
inlet or outlet.
Replace the cooling fan.
Connect the fan connector.
Replace the fan connector.
9.3 Troubleshooting Other Faults
When a fault other than those identified as fault trips or warnings occurs, refer to the following
table for possible causes and remedies.
Type
Parameters
cannot be set.
Cause
The inverter is in operation (driving
mode).
Remedy
Stop the inverter to change to program
mode and set the parameter.
The parameter access is incorrect.
Check the correct parameter access
level and set the parameter.
Check the password, disable the
parameter lock and set the parameter.
Check the power input to resolve the
low voltage and set the parameter.
Check the frequency command source
setting.
Check the operation command source
setting.
Check the terminal connections R/S/T
and U/V/W.
Turn on the inverter.
Turn on the operation command (RUN).
Unlock the motor or lower the load
level.
Operate the motor independently.
Reset the emergency stop signal.
Check the wiring for the control circuit
terminal.
Check the input option for the
frequency command.
Check the input voltage or current for
the frequency command.
Check the PNP/NPN mode setting.
The password is incorrect.
Low voltage is detected.
The motor does
not rotate.
The frequency command source is set
incorrectly.
The operation command source is set
incorrectly.
Power is not supplied to the terminal
R/S/T.
The charge lamp is turned off.
The operation command is off.
The motor is locked.
The load is too high.
An emergency stop signal is input.
The wiring for the control circuit terminal
is incorrect.
The input option for the frequency
command is incorrect.
The input voltage or current for the
frequency command is incorrect.
The PNP/NPN mode is selected
incorrectly.
The frequency command value is too low. Check the frequency command and
input a value above the minimum
327
Troubleshooting
Type
Cause
The [STOP/RESET] key is pressed.
Motor torque is too low.
The motor
rotates in the
opposite
direction to the
command.
The motor only
rotates in one
direction.
The wiring for the motor output cable is
incorrect.
The signal connection between the
control circuit terminal (forward/reverse
rotation) of the inverter and the
forward/reverse rotation signal on the
control panel side is incorrect.
Reverse rotation prevention is selected.
Remedy
frequency.
Check that the stoppage is normal, if so
resume operation normally.
Change the operation modes (V/F, IM,
and Sensorless). If the fault remains,
replace the inverter with a model with
increased capacity.
Determine if the cable on the output
side is wired correctly to the phase
(U/V/W) of the motor.
Check the forward/reverse rotation
wiring.
Remove the reverse rotation
prevention.
The reverse rotation signal is not
Check the input signal associated with
provided, even when a 3-wire sequence is the 3-wire operation and adjust as
selected.
necessary.
The motor is
The load is too heavy.
Reduce the load.
overheating.
Increase the Acc/Dec time.
Check the motor parameters and set
the correct values.
Replace the motor and the inverter with
models with appropriate capacity for
the load.
The ambient temperature of the motor is Lower the ambient temperature of the
too high.
motor.
The phase-to-phase voltage of the
Use a motor that can withstand phasemotor is insufficient.
to-phase voltages surges greater than
the maximum surge voltage.
Only use motors suitable for apllications
with inverters.
Connect the AC reactor to the inverter
output (set the carrier frequency to 2
kHz).
The motor fan has stopped or the fan is
Check the motor fan and remove any
obstructed with debris.
foreign objects.
The motor stops The load is too high.
Reduce the load.
during
Replace the motor and the inverter with
acceleration or
models with capacity appropriate for
when connected
the load.
to load.
328
Troubleshooting
Type
Cause
The motor does The frequency command value is low.
not accelerate.
The load is too high.
/The acceleration
time is too long.
The acceleration time is too long.
The combined values of the motor
properties and the inverter parameter are
incorrect.
The stall prevention level during
acceleration is low.
The stall prevention level during
operation is low.
Starting torque is insufficient.
Motor speed
varies during
operation.
The motor
rotation is
different from the
setting.
The motor
deceleration time
is too long even
with Dynamic
Braking (DB)
resistor
connected.
Operation is
difficult in
underload
applications.
While the
inverter is in
operation, a
control unit
malfunctions or
noise occurs.
When the
Remedy
Set an appropriate value.
Reduce the load and increase the
acceleration time. Check the
mechanical brake status.
Change the acceleration time.
Change the motor related parameters.
Change the stall prevention level.
Change the stall prevention level.
Change to vector control operation
mode. If the fault is still not corrected,
replace the inverter with a model with
increased capacity.
There is a high variance in load.
Replace the motor and inverter with
models with increased capacity.
The input voltage varies.
Reduce input voltage variation.
Motor speed variations occur at a specific Adjust the output frequency to avoid a
frequency.
resonance area.
The V/F pattern is set incorrectly.
Set a V/F pattern that is suitable for the
motor specification.
The deceleration time is set too long.
The motor torque is insufficient.
Change the setting accordingly.
If motor parameters are normal, it is
likely to be a motor capacity fault.
Replace the motor with a model with
increased capacity.
The load is higher than the internal torque Replace the inverter with a model with
limit determined by the rated current of
increased capacity.
the inverter.
The carrier frequency is too high.
Reduce the carrier frequency.
Over-excitation has occurred due to an
Reduce the torque boost value to avoid
inaccurate V/F setting at low speed.
over-excitation.
Noise occurs due to switching inside the
inverter.
Change the carrier frequency to the
minimum value.
Install a micro surge filter in the inverter
output.
An earth leakage breaker will interrupt
Connect the inverter to a ground
329
Troubleshooting
Type
inverter is
operating, the
earth leakage
breaker is
activated.
Remedy
terminal.
Check that the ground resistance is less
than 100Ω for 200V inverters and less
than 10Ω for 400V inverters.
Check the capacity of the earth leakage
breaker and make the appropriate
connection, based on the rated current
of the inverter.
Lower the carrier frequency.
Make the cable length between the
inverter and the motor as short as
possible.
The motor
Phase-to-phase voltage of 3-phase power Check the input voltage and balance
vibrates severely source is not balanced.
the voltage.
and does not
Check and test the motor’s insulation.
rotate normally.
The motor makes Resonance occurs between the motor's
Slightly increase or decrease the carrier
humming, or
natural frequency and the carrier
frequency.
frequency.
loud noises.
Resonance occurs between the motor's
Slightly increase or decrease the carrier
natural frequency and the inverter’s
frequency.
output frequency.
Use the frequency jump function to
avoid the frequency band where
resonance occurs.
The motor
The frequency input command is an
In situations of noise inflow on the
external, analog command.
analog input side that results in
vibrates/hunts.
command interference, change the
input filter time constant (In.07).
The wiring length between the inverter
Ensure that the total cable length
and the motor is too long.
between the inverter and the motor is
less than 200m (50m for motors rated
3.7 kW or lower).
The motor does It is difficult to decelerate sufficiently,
Adjust the DC braking parameter.
because DC braking is not operating
not come to a
Increase the set value for the DC
normally.
complete stop
braking current.
when the
Increase the set value for the DC
inverter output
braking stopping time.
stops.
The output
The frequency reference is within the
Set the frequency reference higher than
the jump frequency range.
frequency does jump frequency range.
not increase to
The frequency reference is exceeding the Set the upper limit of the frequency
the frequency
upper limit of the frequency command.
command higher than the frequency
reference.
reference.
Because the load is too heavy, the stall
Replace the inverter with a model with
330
Cause
the supply if current flows to ground
during inverter operation.
Troubleshooting
Type
The cooling fan
does not rotate.
Cause
prevention function is working.
The control parameter for the cooling fan
is set incorrectly.
Remedy
increased capacity.
Check the control parameter setting for
the cooling fan.
331
Troubleshooting
332
Maintenance
10 Maintenance
This chapter explains how to replace the cooling fan, the regular inspections to complete, and
how to store and dispose of the product. An inverter is vulnerable to environmental conditions
and faults also occur due to component wear and tear. To prevent breakdowns, please follow the
maintenance recommendations in this section.
• Before you inspect the product, read all safety instructions contained in this manual.
• Before you clean the product, ensure that the power is off.
• Clean the inverter with a dry cloth. Cleaning with wet cloths, water, solvents, or detergents may
result in electric shock or damage to the product.
10.1 Regular Inspection Lists
10.1.1 Daily Inspections
Inspection
area
All
Inspection
Inspection details
item
Ambient
Is the ambient
environment temperature and
humidity within the
design range, and is
there any dust or
foreign objects
present?
Inspection
method
Refer to 1.3
Installation
Considerations
on page 5.
Inverter
Visual
inspection
Power
voltage
Is there any
abnormal vibration
or noise?
Are the input and
output voltages
normal?
Measure
voltages
between R/ S/
T-phases in. the
inverter
terminal block.
Judgment
standard
No icing
(ambient
temperature: 10 - +40) and
no
condensation
(ambient
humidity below
50%)
No abnormality
Inspection
equipment
Thermometer,
hygrometer,
recorder
Refer to 11.1
Digital
Input and
multimeter
tester
Output
Specification on
page 339.
333
Maintenance
Inspection
area
Input/Output
circuit
Inspection
item
Smoothing
capacitor
Cooling
system
Cooling fan
Display
Measuring
device
Motor
All
Inspection details
Inspection
method
Is there any leakage Visual
from the inside?
inspection
Is the capacitor
swollen?
Is there any
Turn off the
abnormal vibration system and
or noise?
check
operation by
rotating the fan
manually.
Is the display value Check the
normal?
display value
on the panel.
Is there any
abnormal vibration
or noise?
Is there any
abnormal smell?
Visual
inspection
Judgment
Inspection
standard
equipment
No abnormality -
Fan rotates
smoothly
-
Check and
Voltmeter,
manage
ammeter, etc.
specified
values.
No abnormality -
Check for
overheating or
damage.
10.1.2 Annual Inspections
Inspection
Inspection item
area
Input/Output All
circuit
334
Inspection
details
Megger test
(between
input/output
terminals and
and earth
terminal)
Inspection
method
Disconnect
inverter and
short
R/S/T/U/V/W
terminals, and
then measure
from each
terminal to the
ground
terminal using
a Megger.
Is there
Tighten up all
anything loose screws.
in the device?
Is there any
Visual
evidence of
inspection
Judgment
standard
Must be
above 5 MΩ
No
abnormality
Inspection
equipment
DC 500 V Megger
Maintenance
Inspection
area
Inspection item Inspection
details
parts
overheating?
Cable
Are there any
connections
corroded
cables?
Is there any
damage to
cable
insulation?
Terminal block Is there any
damage?
Smoothing
condenser
Relay
Measure
electrostatic
capacity.
Is there any
chattering
noise during
operation?
Is there any
damage to the
contacts?
Braking resistor Is there any
damage from
resistance?
Check for
disconnection.
Control
circuit
Protection
circuit
Operation
check
Inspection
method
Judgment
standard
Inspection
equipment
Visual
inspection
No
abnormality
-
Visual
inspection
No
abnormality
-
Measure with Rated
capacity meter. capacity over
85%
Capacity meter
Visual
inspection
No
abnormality
-
No
abnormality
Digital multimeter /
anaog tester
Visual
inspection
Visual
inspection
Disconnect
one side and
measure with a
tester.
Must be
within ±10%
of the rated
value of the
resistor.
Digital multimeter
Check for
Measure
Balance the
or DC voltmeter
output voltage voltage
voltage
imbalance
between the
between
while the
inverter output phases: within
inverter is in
terminal U/ V/ 4V for 200V
operation.
W.
series and
within 8V for
400V series.
Is there an error Test the
The circuit
in the display inverter ouput must work
circuit after the protection in
according to
sequence
both short and the sequence.
335
Maintenance
Inspection
area
Cooling
system
Display
Inspection item Inspection
Inspection
details
method
protection test? open circuit
conditions.
Cooling fan
Are any of the Check all
fan parts loose? connected
parts and
tighten all
screws.
Display device Is the display
Check the
value normal? command
value on the
display device.
Judgment
standard
Inspection
equipment
No
abnormality
-
Specified and Voltmeter,
Ammeter, etc.
managed
values must
match.
10.1.3 Bi-annual Inspections
Inspection
area
Motor
Inspection
item
Insulation
resistance
Inspection
details
Megger test
(between the
input, output
and earth
terminals).
Inspection
method
Disconnect the
cables for
terminals U/V/
W and test the
wiring.
Judgment
standard
Must be
above 5 MΩ
Inspection
equipment
DC 500 V Megger
Do not run an insulation resistance test (Megger) on the control circuit as it may result in damage to the
product.
10.2 Storage and Disposal
10.2.1 Storage
If you are not using the product for an extended period, store it in the following way:
• Store the product in the same environmental conditions as specified for operation (refer to 1.3
Installation Considerations on page 5).
• When storing the product for a period longer than 3 months, store it between 10˚C and 30˚C,
336
Maintenance
to prevent depletion of the electrolytic capacitor.
• Do not expose the inverter to snow, rain, fog, or dust.
• Package the inverter in a way that prevents contact with moisture. Keep the moisture level
below 70% in the package by including a desiccant, such as silica gel.
10.2.2 Disposal
When disposing of the product, categorize it as general industrial waste. Recyclable materials are
included in the product, so recycle them whenever possible. The packing materials and all metal
parts can be recycled. Although plastic can also be recycled, it can be incinerated under contolled
conditions in some regions.
If the inverter has not been operated for a long time, capacitors lose their charging characteristics and
are depleted. To prevent depletion, turn on the product once a year and allow the device to operate for
30-60 min. Run the device under no-load conditions.
337
Maintenance
338
Technical Specification
11 Technical Specification
11.1 Input and Output Specification
3 Phase 200V (0.4-4 kW)
Model □□□□S100–2□□□
0004
0008
0015
0022
0037
0040
Applied
motor
HP
0.5
1.0
2.0
3.0
5.0
5.4
kW
0.4
0.75
1.5
2.2
3.7
4.0
Rated apacity Heavy
(kVA)
load
Rated current Heavy
(A)
load
Output frequency
1.0
1.9
3.0
4.2
6.1
6.5
2.5
5.0
8.0
11.0
16.0
17.0
Output voltage (V)
3-phase 200-240 V
Working voltage (V)
3-phase 200-240 VAC (-15% to +10%)
Input frequency
50-60 Hz (±5%)
Rated current Heavy
(A)
load
2.2
4.9
8.4
17.5
18.5
7.9/3.6
7.9/3.6
11.5/5.2 11.7/5.3 12.3/5.6 12.3/5.6
Rated
output
Rated
input
Heavy load
Weight (lb /kg)
•
•
•
•
0-400 Hz (IM Sensorless: 0-120 Hz)
11.8
The standard motor capacity is based on a standard 4-pole motor.
The standard used for 200 V inverters is based on a 220 V supply voltage, and for 400V
inverters is based on a 440 V supply voltage.
The rated output current is limited based on the carrier frequency set at Cn.04.
The output voltage becomes 20~40% lower during no-load operations to protect the
inverter from the impact of the motor closing and opening (0.4~4.0kW models only).
339
Technical Specification
3 Phase 200V (5.5-15 kW)
0055
0075
0110
0150
HP
7.5
10
15
20
kW
5.5
7.5
11
15
Rated capacity Heavy
(kVA)
load
Rated current Heavy
(A)
load
9.1
12.2
17.5
22.9
24.0
32.0
46.0
60.0
Output frequency
0-400 Hz (IM Sensorless : 0-120 Hz)
Output voltage (V)
3 phase 200-240V
Working voltage (V)
3 phase 200-240VAC (-15% to +10%)
Input frequency
50-60 Hz (±5%)
Model □□□□S100–2□□□
Applied
motor
Rated
output
Rated
input
Heavy load
Rated current
(A)
Weight (lb /kg)
•
•
•
340
Heavy
load
25.8
34.9
50.8
66.7
19.8/9.0
19.8/9.0
21.2/9.6
26.7/12.1
The standard motor capacity is based on a standard 4-pole motor.
The standard used for 200 V inverters is based on a 220 V supply voltage, and for 400V
inverters is based on a 440 V supply voltage.
The rated output current is limited based on the carrier frequency set at Cn.04.
Technical Specification
3-Phase 400V (0.4-4 kW)
0004
0008
0015
0022
0037
0040
HP
0.5
1.0
2.0
3.0
5.0
5.4
kW
0.4
0.75
1.5
2.2
3.7
4.0
Rated
Heavy
capacity (kVA) load
Rated current Heavy
(A)
load
1.0
1.9
3.0
4.2
6.1
6.5
1.3
2.5
4.0
5.5
8.0
9.0
Output frequency
0-400 Hz (IM Sensorless: 0-120 Hz)
Output voltage (V)
3-phase 380-480V
8.7
9.8
Model □□□□S100–4□□□
Applied
motor
Rated
output
Heavy load
Rated input Working voltage (V)
Input frequency
Rated current Heavy
(A)
load
Weight (lb /kg)
•
•
•
•
3-phase 380-480VAC (-15% to +10%)
50-60 Hz (±5%)
1.1
2.4
4.2
5.9
8.2/3.7
8.2/3.7
11.7/5.3 12.1/5.5 12.3/5.6 12.3/5.6
The standard motor capacity is based on a standard 4-pole motor
The standard used for 200 V inverters is based on a 220 V supply voltage, and for 400V
inverters is based on a 440 V supply voltage.
The rated output current is limited based on the carrier frequency set at Cn.04.
The output voltage becomes 20~40% lower during no-load operations to protect the
inverter from the impact of the motor closing and opening (0.4~4.0kW models only).
341
Technical Specification
3-Phase 400V (5.5-22 kW)
0055
0075
0110
0150
0185
0220
HP
7.5
10
15
20
25
30
kW
5.5
7.5
11
15
18.5
22
Heavy
load
Heavy
load
9.1
12.2
18.3
22.9
29.7
34.3
12.0
16.0
24.0
30.0
39.0
45.0
43.6
50.7
Model □□□□S100–4□□□
Applied
motor
Rated
output
Heavy load
Rated capacity
(kVA)
Rated current
(A)
Output frequency
0-400 Hz (IM Sensorless: 0-120 Hz)
Output voltage (V)
3-phase 380-480V
Rated input Working voltage (V)
Input frequency
Rated current Heavy
(A)
load
Weight (lb /kg)
•
•
•
342
3-phase 380-480VAC (-15% to +10%)
50-60 Hz (±5%)
12.9
17.5
26.5
33.4
19.4/8.8 19.6/8.9 21.2/9.6 21.6/9.8 27.3/12.4 27.3/12.4
The standard motor capacity is based on a standard 4-pole motor.
The standard used for 200 V inverters is based on a 220 V supply voltage, and for 400V
inverters is based on a 440 V supply voltage.
The rated output current is limited based on the carrier frequency set at Cn.04.
Technical Specification
11.2 Product Specification Details
Items
Control
Operation
Description
Control method
V/F control, slip compensation, sensorless vector
Frequency settings
power resolution
Frequency accuracy
Digital command: 0.01 Hz
Analog command: 0.06 Hz (60 Hz standard)
1% of maximum output frequency
V/F pattern
Linear, square reduction, user V/F
Overload capacity
Heavy load rated current: 150% 1 min
Torque boost
Manual torque boost, automatic torque boost
Operation type
Frequency settings
Select key pad, terminal strip, or communication operation
Analog type: -10~10V, 0~10V, 4~20mA
Digital type: key pad, pulse train input
• PID control
• Up-down operation
• 3-wire operation
• DC braking
• Frequency limit
• Frequency jump
• Second function
• Slip compensation
• Anti-forward and reverse
• Automatic restart
direction rotation
• Automatic tuning
• Commercial transition
• Energy buffering
• Speed search
• Flux braking
• Power braking
• Fire Mode
• Leakage reduction
Select PNP (Source) or NPN (Sink) mode. Functions can be set
according to In.65- In.69 codes and parameter settings.
Operation function
Input
Output
Multi
function
terminal
(5EA)
P1-P5
Forward direction operation
Reset
Emergency stop
Multi step speed frequencyhigh/med/low
DC braking during stop
Frequency increase
3-wire
Local/remote operation mode
transition
Select acc/dec/stop
• Reverse direction
operation
• External trip
• Jog operation
• Multi step acc/dechigh/med/low
•
• Second motor selection
•
• Frequency reduction
•
• Fix analog command
•
frequency
•
Transtion from PID to
•
general operation
Pulse train 0-32 kHz, Low Level: 0-0.8V, High Level: 3.5-12V
Multi
Fault output and inverter Less than DC 24V, 50mA
operation status output
function
open
•
•
•
•
343
Technical Specification
Items
Description
collector
terminal
Protection Trip
function
Alarm
Multi
Less than (N.O., N.C.) AC250V 1A,
Less than DC 30V, 1A
function
relay
terminal
Analog
0-12Vdc (0-24mA): Select frequency, output current, output
output
voltage, DC terminal voltage and others
Pulse train Maximum 32 kHz, 10-12V
• Over current trip
• Over voltage trip
• External signal trip
• Temperature sensor trip
• ARM short circuit current trip • Inverter over heat
• Over heat trip
• Option trip
• Input imaging trip
• Output imaging trip
• Ground trip
• Inverter overload trip
• Motor over heat trip
• Fan trip
• I/O board link trip
• Pre-PID operation failure
• No motor trip
• External break trip
• Parameter writing trip
• Low voltage trip during
operation
• Emergency stop trip
• Low voltage trip
• Command loss trip
• Safety A(B) trip
• External memory error
• Analog input error
• CPU watchdog trip
• Motor overload trip
• Motor normal load trip
Command loss trip alarm, overload alarm, normal load alarm,
inverter overload alarm, fan operation alarm, resistance braking
rate alarm, number of corrections on rotor tuning error
Instantaneous
Heavy load less than15 ms: continue operation
blackout
(must be within the rated input voltage and rated output
range)
Heavy load more than 15 ms: auto restart operation
Structure/ Cooling type
Forced fan cooling structure
working
Forced cooling type: 0.4-15 kW 200V/0.4-22 kW 400V (excluding
some models)
environme
nt
Protection structure
IP66(NEMA 4X Indoor Only)
Ambient temperature Heavy load: -10-40℃ (14–104°F)
No ice or frost should be present.
Ambient humidity
Relative humidity less than 90% RH (to avoid condensation
forming)
Storage temperature. -20°C-65°C (-4–149°F)
344
Technical Specification
Items
Description
Surrounding
environment
Operation
altitude/oscillation
Pressure
Prevent contact with corrosive gases, inflammable gases, oil
stains, dust, and other pollutants (Pollution Degree 3
Environment).
No higher than 3280ft (1,000m). Less than 9.8m/sec2 (1G).
70-106 kPa
345
Technical Specification
11.3 External Dimensions (IP 66 Type)
0.4~4.0kW (3-Phase)
Items
W1
0004S100-2 180
3phase 0008S100-2 (7.09)
346
W2
H1
H2
H3
D1
D2
A
Φ
T1
T2
170 256.6 245 8.2
174.2 188.2 4.5
4.5
22.3
(6.69) (1010) (9.65) (0.32) (6.86) (7.41) (0.18) (0.18) (0.88)
Technical Specification
Items
200V 0015S100-2
0022S100-2
0037S100-2
0040S100-2
0004S100-4
0008S100-4
30015S100-4
phase
400V 0022S100-4
0037S100-4
0040S100-4
W1
W2
H1
H2
H3
D1
D2
A
Φ
T1
T2
220
(8.66)
204 258.8 241 11.8 201 215 5.5
5.5
22.3 28.6
(8.03) (10.19) (9.49) (0.46) (7.91) (8.46) (0.22) (0.22) (0.88) (1.13)
180
(7.09)
170 256.6 245 8.2
174.2 188.2 4.5
4.5
22.3
(6.69) (1010) (9.65) (0.32) (6.86) (7.41) (0.18) (0.18) (0.88)
220
(8.66)
204 258.8 241 11.8 201 215 5.5
5.5
22.3 28.6
(8.03) (10.19) (9.49) (0.46) (7.91) (8.46) (0.22) (0.22) (0.88) (1.13)
Units: mm (inches)
347
Technical Specification
5.5~7.5Kw (3-Phase)
Items
30055S100-2
phase
200V 0075S100-2
30055S100-4
phase
400V 0075S100-4
Units: mm (inches)
348
W1
W2
H1
H2
H3
D1
D2
A
Φ
T1
T2
250
(9.84)
232 328
308
11
227.2 241.2 6
6
22.3 28.6
(9.13) (12.91) (12.13) (0.43) (8.94) (9.50) (0.24) (0.24) (0.88) (1.13)
250
(9.84)
232 328
308
11
227.2 241.2 6
6
22.3 28.6
(9.13) (12.91) (12.13) (0.43) (8.94) (9.50) (0.24) (0.24) (0.88) (1.13)
Technical Specification
11.0~22.0kW (3 Phase)
349
Technical Specification
Items
H1
H2
H3
D1
D2
A
260
229
0110S100-2
3(10.24) (9.02)
phase
270.8
200V 0150S100-2 300
(11.81) (10.66)
399.6
(15.73)
460
(18.11)
377
(14.84)
436.5
(17.19)
14.6
(0.57)
15.5
(0.61)
245.4
(9.66)
250
(9.84)
259.6
(10.22)
264
(10.39)
6
(0.24)
6
(0.24)
0110S100-4 260
3(10.24)
phase 0150S100-4
400V 0185S100-4 300
0220S100-4 (11.81)
399.6 377
14.6 245.4 259.6 6
(15.73) (14.84) (0.57) (9.66) (10.22) (0.24)
22.3 34.9
(0.88) (1.37)
270.8 460
436.5 15.5 250 264
6
(10.66) (18.11) (17.19) (0.61) (9.84) (10.39) (0.24)
22.3 44.5
(0.88) (1.75)
Units: mm (inches)
350
W1
W2
229
(9.02)
Φ
T1
T2
22.3
(0.88)
22.3
(0.88)
34.9
(1.37)
44.5
(1.75)
Technical Specification
11.4 Peripheral Devices
Compatible Circuit Breaker, Leakage Breaker and Magnetic Contactor Models
(manufactured by LSIS)
Product (kW)
30.4
phase
200V 0.75
1.5
Circuit Breaker
Model
Current (A) Model
5
10
ABS33c
2.2
3.7
4
5.5 ABS53c
7.5 ABS63c
11
ABS103c
15
30.4
phase 0.75
400V
1.5
2.2
Leakage Breaker
Magnetic Contactor
Current (A) Model
Current (A) Model
Current (A)
MC-6a
5
9
20
20
MC-9a,
MC-9b
MC-18a,
MC-18b
MC-22b
30
30
MC-32a
15
20
30
50
60
100
125
3
5
10
EBS33c
UTE100
50
60
90
UTS150 125
15
EBS53c
EBS63c
50
60
100
EBS103c
125
5
15
ABS33c
3.7
4
5.5
7.5
11 ABS53c
15 ABS63c
18.5
ABS103c
22
10
15
10
EBS33c
15
20
UTE100 20
15
20
30
30
30
50
60
75
50
60
80
100
90
EBS53c
EBS63c
50
60
75
EBS103c
100
11
32
18
22
55
MC-65a 65
MC-85a 85
MC-130a 130
MC-50a
MC-6a
MC-6a
7
MC-9a,
MC-9b
MC-12a,
MC-12b
MC-18a,
MC-18b
9
MC-22b
22
32
50
65
75
85
MC-32a
MC-50a
MC-65a
MC-75a
MC-85a
12
18
351
Technical Specification
11.5 Fuse and Reactor Specifications
Product (kW)
AC Input Fuse
AC Reactor
Current (A) Voltage (V) Inductance
(mH)
DC Reactor
Current(A) Inductance Current (A)
(mH)
10
1.20
10
4
8.67
1.5
2.2
15
20
0.88
0.56
14
20
3
13.05
18.45
3.7
32
4
5.5
7.5
11
15
50
50
63
80
100
0.39
30
0.30
0.22
0.16
0.13
34
45
64
79
1.60
1.25
0.95
0.70
32
43
61
75
4.81
4.8
16
4.27
3.23
2.34
7.5
10
12
8
6.41
8.9
1.22
15
5.4
13.2
1.12
0.78
0.59
0.46
0.40
0.30
19
27
35
44
52
68
3.20
2.50
1.90
1.40
1.00
0.70
17
25
32
41
49
64
0.4
0.75
3-phase
200V
0.4
0.75
3-phase
400V
1.5
2.2
3.7
4
5.5
7.5
11
15
18.5
22
10
15
20
32
35
50
63
70
100
600
1.33
26.35
Only use Class H or RK5, UL listed input fuses and UL listed circuit breakers. See the table above for
the voltage and current ratings for fuses and circuit breakers.
Utiliser UNIQUEMENT des fusibles d’entrée homologués de Classe H ou RK5 UL et des disjoncteurs UL.
Se reporter au tableau ci-dessus pour la tension et le courant nominal des fusibless et des disjoncteurs.
352
Technical Specification
11.6 Terminal Screw Specification
Input/Output Terminal Screw Specification
Product (kW)
Terminal Screw Size
Screw Torque (Kgfcm/Nm)
0.4
0.75
1.5
3-phase
200V
M3.5
2.2
3.7
4
5.5
2.1-6.1/0.2-0.6
M4
7.5
11
15
M5
4.0-10.2/0.4-1.0
0.4
0.75
1.5
M3.5
2.2
2.1-6.1/0.2-0.6
3.7
3-phase
400V
4
5.5
M4
7.5
11
15
18.5
22
M5
4.0-10.2/0.4-1.0
Control Circuit Terminal Screw Specification
Terminal
P1-P5/
CM/VR/V1/I2/AO/Q1/EG/24/
SA,SB,SC/S+,S-,SG
A1/B1/C1
Terminal Screw Size
M2
Screw Torque (Kgfcm/Nm)
2.2-2.5/0.22-0.25
M2.6
4.0/0.4
353
Technical Specification
Apply the rated torque when tightening terminal screws. Loose screws may cause short circuits and
malfunctions. Overtightening terminal screws may damage the terminals and cause short circuits and
malfunctions. Use copper conductors only, rated at 600V, 75℃ for power terminal wiring, and rated at
300V, 75℃ for control terminal wiring.
Appliquer des couples de marche aux vis des bornes. Des vis desserrées peuvent provoquer des courtscircuits et des dysfonctionnements. Ne pas trop serrer la vis, car cela risque d’endommager les bornes
et de provoquer des courts-circuits et des dysfonctionnements. Utiliser uniquement des fils de cuivre
avec une valeur nominale de 600 V, 75 ℃ pour le câblage de la borne d’alimentation, et une valeur
nominale de 300 V, 75 ℃ pour le câblage de la borne de commande.
354
Technical Specification
11.7 Braking Resistor Specification
Product (kW)
3-phase
200V
3-phase
400V
Rated Capacity (W)
0.4
0.75
1.5
2.2
3.7
4
5.5
7.5
11
15
0.4
Resistance (Ω)
300
150
60
50
33
33
20
15
10
8
1,200
100
150
300
400
600
600
800
1,200
2,400
2,400
100
0.75
1.5
2.2
3.7
600
300
200
130
150
300
400
600
4
130
600
5.5
7.5
11
15
18.5
22
85
60
40
30
20
20
1,000
1,200
2,000
2,400
3,600
3,600
• The standard for braking torque is 150% and the working rate (%ED) is 5%. If the working rate
is 10%, the rated capacity for braking resistance must be calculated at twice the standard.
355
Technical Specification
11.8 Continuous Rated Current Derating
Derating by Carrier Frequency
The continuous rated current of the inverter is limited based on the carrier frequency. Refer to the
following graph.
200V
Carrier Frequency
(kHz)
1-6
9
12
15
356
Constant-rated
Current (%)
100
84.4
76.7
72.0
400V
Carrier Frequency
(kHz)
1-6
9
12
15
Constant-rated
Current (%)
100
81.1
71.7
66.0
Technical Specification
Derating by Input Voltage
The continuous rated current of the inverter is limited based on the input voltage. Refer to the
following graph.
357
Technical Specification
11.9 Heat Emmission
The following graph shows the inverters’ heat emission characteristics (by product capacity).
Heat emission data is based on operations with default carrier frequencysettings, under normal
operating conditions. For detailed information on carrier frequency, refer to 5.16 Operational Noise
Settings (carrier frequency settings) on page 160.
358
Technical Specification
Product Warranty
Warranty Information
Fill in this warranty information form and keep this page for future reference or when warranty
service may be required.
Product Name
LSIS Standard Inverter
Date of Installation
Model Name
LSLV-S100
Warranty Period
Name
(or company)
Customer Info
Address
Contact Info.
Name
Retailer Info
Address
Contact info.
Warranty Period
The product warranty covers product malfunctions, under normal operating conditions, for 12
months from the date of installation. If the date of installation is unknown, the product warranty is
valid for 18 months from the date of manufacturing. Please note that the product warranty terms
may vary depending on purchase or installation contracts.
Warranty Service Information
During the product warranty period, warranty service (free of charge) is provided for product
malfunctions caused under normal operating conditions. For warranty service, contact an official
LSIS agent or service center.
359
Technical Specification
Non-Warranty Service
A service fee will be incurred for malfunctions in the following cases:
•
•
•
•
•
•
intentional abuse or negligence
power supply problems or from other appliances being connected to the product
acts of nature (fire, flood, earthquake, gas accidents etc.)
modifications or repair by unauthorized persons
missing authentic LSIS rating plates
expired warranty period
Visit Our Website
Visit us at http://www.lsis.com for detailed service information.
360
361
UL mark
The UL mark applies to products in the United States and Canada. This mark indicates that UL has
tested and evaluated the products and determined that the products satisfy the UL standards for
product safety. If a product received UL certification, this means that all components inside the
product had been certified for UL standards as well.
Suitable for Installation in a compartment Handing Conditioned Air
CE mark
The CE mark indicates that the products carrying this mark comply with European safety and
environmental regulations. European standards include the Machinery Directive for machine
manufacturers, the Low Voltage Directive for electronics manufacturers and the EMC guidelines
for safe noise control.
Low Voltage Directive
We have confirmed that our products comply with the Low Voltage Directive (EN 61800-5-1).
EMC Directive
The Directive defines the requirements for immunity and emissions of electrical equipment used
within the European Union. The EMC product standard (EN 61800-3) covers requirements stated
for drives.
362
363
364
365
366
Index
2
Acc/Dec reference frequency ............................................. 80
2 square reducion........................................................................ 58
Acc/Dec stop ................................................................................... 88
24 terminal ............................................................................... 28, 30
Acc/Dec time................................................................................... 80
2nd Motor group....Refer to M2(2nd Motor) group
Acc/Dec time switch frequency.........................................84
configuration via multi-function terminal ...................82
maximum frequency...............................................................80
operation frequency ................................................................82
2nd Motor Operation............................................................ 161
2nd Operation mode ............................................................... 100
2nd command source ............................................................101
Shared command (Main Source) ...................................101
3
3-phase 200V (0.4~4k W) .................................................. 340
3-phase 200V (5.5~15 kW) ............................................... 341
3-phase 400V (0.4~4 kW) .................................................. 342
3-Wire Operation ...................................................................... 124
4
4-pole standard motor ............................................. 339, 342
7
7-segment display....................................................................... 38
letters................................................................................................38
numbers .........................................................................................38
Ramp T Mode...............................................................................80
accumulated electric energy initialize ....................... 172
Ad (Expanded function group)....................................... 257
Ad(Advanced) group ................................................................. 40
Add User group
UserGrp SelKey ........................................................................169
Advanced group ......... Refer to Ad(Advanced) group
analog frequency hold............................................................. 70
Analog Hold..................................................................................70
Analog Hold...............Refer to analog frequency hold
analog input............................................................................ 26, 40
I2 current input ...........................................................................66
I2 voltage input...........................................................................68
TI Pulse input ................................................................................68
V1 voltage input .........................................................................61
analog input selection switch(SW2) ..................... 25, 68
analog output ........................................................................ 27, 40
AO terminal ...................................................................................27
pulse output .............................................................................. 179
voltage and current output ..............................................177
Analog Output ............................................................................ 177
A
A terminal (Normally Open) ............................................. 102
analog output selection switch(SW3)............... 25, 177
AO terminal ................................................................. 27, 78, 177
analog output selection switch(SW3) ............................25
A1/C1/B1 terminal....................................................................... 28
AP(Application Function group) .................................... 282
AC power input terminal ..... Refer to R/S/T terminal
AP(Application group).............................................................. 40
Acc/Dec pattern ................................................................... 58, 85
Application group... Refer to AP(Application) group
linear pattern................................................................................85
S-curve pattern ...........................................................................85
ARM short current fault trip..................... Refer to Over
Acc/Dec reference ....................................................................... 82
Delta Freq.......................................................................................81
Max Freq .........................................................................................81
Current2
ASCII code ...................................................................................... 227
asynchronous communications system................... 215
367
auto restart settings................................................................ 159
broadcast......................................................................................... 223
auto torque boost .............................................................. 92, 93
built-in communication ...........................Refer to RS-485
auto tuning ........................................................................ 92, 138
BX 213, 323
auto tuning .................................................................................... 138
All(rotating) ................................................................................ 139
All(static) ...................................................................................... 139
default parameter setting ..................................................139
Tr(static) ........................................................................................ 139
Auto Tuning................................................................................... 254
auxiliary frequency ................................................................... 116
auxiliary frequency reference configuration ...........117
auxiliary reference ..................................................................116
auxiliary reference gain .......................................................117
configuration ............................................................................ 116
final command frequency calculation ........................118
main reference ......................................................................... 116
C
cable.......................................................................9, 19, 20, 21, 24
selection.............................................................. 9, 19, 20, 21, 24
shielded twisted pair ...............................................................33
signal(control) cable specifications ..................................10
Cable
Ground Specifications............................................................... 9
Power I/O Cable Specifications ............................................ 9
cable tie ............................................................................................... 29
carrier frequency............................................................... 23, 161
derating........................................................................................ 356
B
charge indicator .................................................... 17, 321, 327
B terminal (Normally Closed) .......................................... 102
cleaning ............................................................................................ 333
bA(Basic function group) .................................................... 252
CM terminal ............................................................................ 26, 30
bA(Basic group) ............................................................................. 40
CM(communication function group)......................... 277
basic configuration diagram ............................................... 12
CM(Communication group)................................................. 40
Basic group ................................. Refer to bA(Basic) group
Cn (Control Function group)............................................ 262
basic operation .............................................................................. 37
Cn(Control) group ....................................................................... 40
bit 102
code number input .................................................................... 42
bit (Off) ......................................................................................... 102
bit (On) .......................................................................................... 102
bit setting .................................................................................... 102
multi-function input setting .............................................102
multi-function output setting..........................................186
speed search setting .............................................................156
stall prevention ........................................................................ 197
Bootlace Ferrule ............................................................................ 28
brake control ................................................................................ 173
charge lamp ..................................................................................... 17
command........................................................................................... 73
configuration ...............................................................................73
Command
Cmd Source ..................................................................................73
command source
keypad .............................................................................................73
Command source
fwd/rev command terminal ................................................74
RS-485 ..............................................................................................75
run command/rotational direction configuration ..75
BR Control ................................................................................... 174
brake engage sequence .....................................................174
brake release sequence.......................................................174
commercial power source transition ......................... 163
brake resistor ................................................................................... 23
common terminal .......................... Refer to EG terminal
brake unit ........................................................................................ 176
communication........................................................................... 215
braking resistance
braking torque ......................................................................... 355
braking resistors............................................................................ 12
368
command loss protective operation ...........................219
communication address.....................................................228
communication line connection....................................216
communication parameters.............................................216
communication speed ........................................................217
communication standards ................................................215
memory map ............................................................................ 221
PLC .................................................................................................. 215
protocol........................................................................................ 222
saving parameters defined by communication ....220
setting virtual multi-function input ..............................219
Digital Output.............................................................................. 182
Communication group .....................................CM(Refer to
Dwell Operation ......................................................................... 127
Communication) group
compatible common area parameter....................... 231
digital source ................................................................................... 77
disposal ................................................................................. 333, 337
dr(Drive group) .................................................................. 40, 247
draw operation ........................................................................... 115
Drive group...................................Refer to dr(Drive) group
Acc/Dec dewel frequency..................................................127
acceleration Dwell..................................................................127
deceleration Dwell .................................................................127
config (CNF) mode .................................................................. 172
E
Considerations for the installation
Air Pressure...................................................................................... 5
Altitude/Vibration........................................................................ 5
Ambient Humidity ...................................................................... 5
Environmental Factors .............................................................. 5
Considerations for the installation
Ambient Temperature............................................................... 5
earth leakage breaker............................................................ 329
EEP Rom Empty.......................................................................... 165
EG terminal ....................................................................................... 28
electronic thermal overheating protection (ETH)
.......................................................................................................... 193
contact
A contact ..................................................................................... 201
B contact...................................................................................... 201
Control group ......................Refer to Cn(Control) group
control terminal board wiring ............................................ 24
cooling fan
fan Operation accumulated time ..................................191
fan Operation accumulated time initialization.......191
Cooling Fan ................................................................................... 164
Fan Control ................................................................................. 164
cooling fan malfunction....................................................... 207
CPU Watch Dog fault trip .................................................. 213
D
DB resistor
braking resistor circuit..........................................................204
DB Warn %ED............................................................................ 204
DB Warn %ED............................... Refer to DB Warn %ED
DC braking after start............................................................... 94
DC braking after stop............................................................... 95
DC braking frequency .............................................................. 95
DC link voltage ............................................................... 115, 148
emergency stop fault trip.................................Refer to BX
energy buttfering operation............................................. 148
energy saving operation ..................................................... 154
automatic energy saving operation .............................154
manual energy saving operation...................................154
error code ....................................................................................... 226
FE(frame error).......................................................................... 226
IA(illegal data address) .........................................................226
ID(illegal data value)..............................................................226
IF(illegal function) ...................................................................226
WM(write mode error) .........................................................226
ESC key ................................................................................................ 39
[ESC] key configuration .......................................................122
[ESC] key setup............................................................................76
cancel input ..................................................................................39
Jog key.............................................................................................44
local/remote switching...........................................................76
multi-function key.....................................................................76
remote / local operation switching..................................77
ETH .................Refer to electronic thermal overheating
protection (ETH)
E-Thermal ........................................................................................ 213
Exciting Current .......................................................................... 143
369
external 24V power terminal.. Refer to 24 terminal
frequency setting ......................................................................... 60
External Trip ....................................................................... 213, 322
I2 current input ...........................................................................66
I2 voltage input...........................................................................68
keypad .............................................................................................60
RS-485 ..............................................................................................70
TI Pulse input ................................................................................68
V1 voltage input .........................................................................61
variable resistor ...........................................................................51
external trip signal.................................................................... 200
frequency setting (Pulse train) terminal...Refer to TI
external dimensions
0.8~1.5kW(Single Phase), 1.5~2.2kW(3 Phase).......348
External dimensions ................................................................ 346
External dimensions
0.4kW(Single Phase), 0.4~0.8kW(3 Phase) ................346
terminal
F
frequency setting(voltage) terminal..........Refer to V1
factory default .............................................................. 50, 52, 53
fuse....................................................................................................... 352
terminal
fan trip ............................................................................................... 207
Fan Trip.................................................................................. 213, 323
G
fan warning.................................................................................... 207
Fan Warning...................................................................... 214, 324
ground.................................................................................................. 20
fatal ...................................................................................................... 321
class 3 ground..........................................................................20
class 3 ground..............................................................................20
ground terminal.......................................................20
fault ...................................................................................................... 212
fatal ................................................................................................. 321
fault/warning list .....................................................................212
latch................................................................................................ 321
level ................................................................................................ 321
major fault .................................................................................. 213
Ground Trip........................................................................ 213, 322
fault signal output terminal ........ Refer to A1/C1/B1
ground fault trip ......................................................................322
Ground
Ground Cable Specifications ................................................. 9
ground fault trip ............................... Refer to Ground Trip
terminal
H
FE(FRAME ERROR).................................................................... 226
ferrite...................................................................................................... 29
fieldbus........................................................................................ 60, 73
communication option .......................................................100
Fieldbus.............................................................. Refer to fieldbus
half duplex system ................................................................... 215
Heavy Duty .......................................................................................... 5
hunting.............................................................................................. 147
filter time constant...................................................................... 62
I
filter time constant number.............................................. 101
flux braking .................................................................................... 196
free run stop .................................................................................... 96
I2 27, 66
frequency jump ............................................................................. 99
analog input selection switch(SW2)................................27
frequency setting(current/voltage) terminal .............27
frequency limit ............................................................................... 98
IA(illegal data address).......................................................... 226
frequency jump ..........................................................................99
frequency upper and lower limit value .........................98
maximum/start frequency ...................................................98
ID(illegal data value) ............................................................... 226
frequency reference .......................................................... 60, 94
370
IF(illegal function) ...................................................................... 226
In Phase Open................................................................. 213, 322
In(Input Terminal Block Function group) ................ 267
In(Input Terminal) group......................................................... 40
input open-phase fault trip.............. Refer to In Phase
Open
operation keys .............................................................................37
S/W version ................................................................................ 172
Keypad
Keypad Language ..................................................................188
input phase open
input open-phase protection ..........................................200
input power frequency ......................................................... 164
input power voltage ............................................................... 165
input terminal ................................................................................. 26
CM terminal ..................................................................................26
I2 terminal ......................................................................................27
keypad display................................................................................ 38
keypad key ........................................................................................ 39
[▲]/[▼]/[◀]/[▶] key..............................................................39
[ESC] key .........................................................................................39
[RUN] key........................................................................................39
[STOP/RESET] key ......................................................................39
P1–P7 terminal............................................................................26
SA terminal ....................................................................................27
SB terminal ....................................................................................27
SC terminal ....................................................................................27
TI terminal ......................................................................................27
V1 terminal ....................................................................................26
VR terminal ....................................................................................26
Input Terminal group ....... Refer to In(input terminal)
L
latch ..................................................................................................... 321
LCD keypad....................................................................................... 19
LCD brightness/contrast adjustment ..........................172
wiring length................................................................................29
leakage breaker .......................................................................... 351
level...................................................................................................... 321
group
Lifetime diagnosis of components
inspection
lifetime diagnosis for fans ..................................................209
annual inspection...................................................................334
bi-annual inspection)............................................................336
lift-type load....................................................... 85, 91, 92, 127
installation.......................................................................................... 11
linear pattern ................................................................................... 85
basic configuration diagram ...............................................12
Installation flowchart ...............................................................11
wiring ...............................................................................................17
linear V/F pattern operation................................................ 88
Installation
Mounting the Inverter ............................................................13
installation considerations................................ 5, 333, 336
J
Jog Operation.............................................................................. 120
[ESC] key configuration ..........................................................44
FWD Jog....................................................................................... 120
Jog frequency ........................................................................... 120
keypad .......................................................................................... 122
jump frequency ............................................................................. 99
K
keypad .................................................................................................. 37
display ..............................................................................................37
linear V/F pattern Operation
base frequency ...........................................................................89
start frequency ............................................................................89
local operation
[ESC] key .........................................................................................76
Local/Remote Mode Switching .........................................76
remote peration .........................................................................77
local Operation .............................................................................. 77
locating the installation site.................................................... 6
location.............................................................................................. 6
loop...................................................................................................... 105
loop time ......................................................................................... 108
Lost Command ................................................... 213, 323, 324
command loss fault trip warning...................................213
command loss trip .................................................................213
low voltage .................................................................................... 209
low voltage fault trip .............................................................209
low voltage trip 2 ....................................................................212
371
Low Voltage....................................................................... 213, 322
low voltage fault trip .............................................................213
LowLeakage PWM ................................................................... 161
LS INV 485 protocol ............................................................... 222
multi-drop Link System ........................................................ 215
Multi-function (open collector) output terminal
Multi-function output item1(Q1 Define) ...................274
Multi-function relay 1 item(Relay 1) .............................273
multi-function input terminal ............................................. 26
M
M2(2nd Motor Function group).................................... 290
M2(2nd Motor) group ............................................................. 40
magnetic contactor .................................................................... 24
Magnetic contactor ................................................................. 351
maintenance ................................................................................. 333
manual torque boost ................................................................ 91
Master ................................................................................................ 215
master inverter ............................................................................ 104
master unit ..................................................................................... 103
megger test ................................................................................... 334
micro surge filter .......................................................................... 23
momentary power interruption............. 148, 156, 158
monitor ................................................................................................ 54
monitor registration protocol details...........................225
Operation State Monitor.....................................................188
Operation time monitor......................................................191
motor output voltage adjustment.................................. 93
motor protection....................................................................... 193
motor rotational direction..................................................... 34
motor thermal protection(ETH)
ETH trip ......................................................................................... 193
E-Thermal .................................................................................... 193
mounting bolt ................................................................................ 13
mounting bracket ........................................................................ 15
factory default .............................................................................26
multi-function input terminal Off filter .......................101
multi-function input terminal On filter .......................101
P1–P7...............................................................................................Refer
multi-function input terminal control ....................... 101
multi-function key .............................................................. 38, 44
[ESC] key .........................................................................................44
Multi Key Sel .............................................................................. 318
multi-function key options................................................318
multi-function output
multi-function output terminal delay time settings
.................................................................................................... 187
multi-function output terminal
multi-function output on/off control ..........................175
multi-function output terminal and relay settings
.................................................................................................... 182
multi-function output terminal delay time settings
.................................................................................................... 187
trip output by multi-function output terminal and
relay ......................................................................................... 186
multi-function(open collector) output terminal
................................................................. Refer to Q1 terminal
multi-keypad................................................................................. 104
master parameter...................................................................104
multi-keypad)
setting ........................................................................................... 104
multi-step frequency ................................................................. 71
setting ..............................................................................................71
Speed-L/Speed-M/Speed-H ................................................72
multi function input terminal
In.65~71 ....................................................................................... 269
Px terminal function setting .............................................269
multi function input terminal
Px Define ..................................................................................... 269
multi keypad
Multi KPD..................................................................................... 104
multi keypad(Multi-keypad)
slave parameter ....................................................................... 104
372
N
N- terminal(- DC link terminal) ......................................... 23
no motor trip ............................................................................... 212
No Motor Trip.................................................................. 213, 322
noise....................................................................................................... 63
Normal PWM ............................................................................... 161
NPN mode(Sink)........................................................................... 30
O
Over Load ........................................................................... 213, 321
overload fault trip ...................................................................213
overload warning ........................................................ 213, 324
Over Voltage..................................................................... 213, 322
oOut Phase Open..................................................................... 322
over voltage trip ............................ Refer to Over Voltage
open-phase protection......................................................... 199
overload.......................................................Refer to Over Load
Operation frequency ........Refer to frequency setting
overload overload trip .........................................................194
overload warning ...................................................................194
operation group......................................................................... 245
Operation group........................................................................... 40
operation noise .......................................................................... 160
carrier frequency .....................................................................161
frequency jump ..........................................................................99
Operation time ........................................................................... 191
operation accumulated time ...........................................191
Operation accumulated time...........................................191
Operation accumulated time initialization...............191
option trip............................... 211, Refer to Option Trip-x
Option Trip-x ................................................................................ 213
option trip ................................................................................... 213
OU(Output Terminal Block Function group)........ 272
OU(Output Terminal) group ................................................ 40
Out Phase Open ........................................................................ 213
output block by multi-function terminal................ 210
output open-phase fault trip......Refer to Out Phase
Open
overload trip.............................................Refer to Over Load
P
P/Igain................................................................................................ 158
P1+ terminals(+ DC link terminals) ............................... 23
P2P ....................................................................................................... 103
communication function ...................................................103
master parameter...................................................................103
setting ........................................................................................... 103
slave parameter .......................................................................103
parameter........................................................................................... 43
display changed parameter..............................................168
hide parameters ......................................................................166
initialization................................................................................ 165
parameter lock .........................................................................167
parameter setting......................................................................43
password .......................................................................... 166, 167
read/write/save ........................................................................165
output terminal............................ Refer to R/S/T terminal
parameter view lock ............................................................... 166
Output Terminal group...................Refer to OU(output
part names ........................................................................................... 3
terminal) group
parts illustrated ................................................................................. 3
output/communication terminal...................................... 27
password.............................................................................. 166, 242
24 terminal ....................................................................................28
A1/C1/B1 terminal.....................................................................28
AO terminal ...................................................................................27
EG terminal....................................................................................28
Q1 terminal ...................................................................................28
S+/S-/SG terminal ......................................................................28
TO terminal....................................................................................28
Password .......................................................................................... 167
over current trip .......................... Refer to Over Current1
Over Current1 .................................................................. 213, 321
Over Current2 .................................................................. 213, 322
Over Heat............................................................................ 213, 322
over heat fault trip .............................. Refer to Over Heat
Peripheral devices ..................................................................... 351
phase-to-phase voltage....................................................... 328
PID control ..................................................................................... 130
basic PID operation................................................................130
configuration ............................................................................ 130
Differential time(PID D-Time) ...........................................133
integral time(PID I-Time) .....................................................133
oscillation .................................................................................... 133
Pgain .............................................................................................. 132
PID control block diagram .................................................136
PID feedback ............................................................................. 323
373
PID Operation Sleep mode ...............................................136
PID output .................................................................................. 132
PID reference ............................................................................. 132
PID Switching............................................................................ 137
Pre-PID Operation ..................................................................136
R
R/S/T terminal................................................................................. 24
R/S/T terminals .................................................................. 23, 327
PNP mode(Source) ..................................................................... 30
rated .................................................................................................... 339
PNP/NPN mode selection switch(SW1) ..................... 25
braking resistance rated capacity ..................................355
rated input.................................................................................. 339
NPN mode(Sink).........................................................................30
PNP mode(Source)....................................................................30
Rated
post-installation checklist ....................................................... 32
rated output .............................................................................. 339
power consumption ................................................... 188, 190
rated torque current ............................................................... 177
power slot....................................................................................... 172
rating
power terminal............................................................................... 23
N- terminal.....................................................................................23
P2+/B terminal ............................................................................23
U/V/W terminal ...........................................................................23
power terminal board wiring .............................................. 21
power terminals
R/S/T terminals ............................................................................23
rated motor current...............................................................129
rated motor voltage ..............................................................138
rated slip frequency...............................................................129
rated slip speed........................................................................129
reactor....................................................................................... 12, 352
regenerated energy........................................................ 97, 148
remote operation......................................................................... 77
Pr(Protection Function group) ........................................ 285
[ESC] key .........................................................................................76
local operation ............................................................................77
Local/Remote Mode Switching .........................................76
Pr(Protection) group .................................................................. 40
Reset Restart ....................refer to restarting after a trip
pre-exciting time ....................................................................... 144
resonance frequency ................................................................. 99
Preinsulated Crimp Terminal ............................................... 28
carrier frequency .....................................................................160
frequency jump ..........................................................................99
Power-on Run ....................... Refer to start at power-on
press regeneration prevention ....................................... 175
Press regeneration prevention
P gain/I gain ............................................................................... 176
Protection group ..........Refer to Pr(Protection) group
protocol ............................................................................................ 222
restarting after a trip ................................................................. 79
RS-232 ............................................................................................... 215
communication .......................................................................215
RS-485 ............................................................................................... 215
PWM ................................................................................................... 160
communication .......................................................................215
converter ..................................................................................... 215
integrated communication..................................................70
signal terminal ..................................................................... 28, 70
frequency modulation.........................................................160
RS-485 signal input terminal ...... Refer to S+/S-/SG
LS INV 485 protocol ...............................................................222
Pulse output terminal ................. Refer to TO terminal
terminal
Q
Q1 terminal....................................................................................... 28
run prevention
Fwd ....................................................................................................78
Rev .....................................................................................................78
quantizing ................................................ Refer to Quantizing
Quantizing ......................................................................................... 63
noise..................................................................................................63
S
S/W version ................................................................................... 172
374
keypad .......................................................................................... 172
product......................................................................................... 172
S+/S-/SG terminal ....................................................................... 28
S100 expansion common area parameter
control area parameter(Read/Write) ............................239
memory control area parameter(Read/Write)........241
monitor area parameter (read only) .............................234
SA terminal ....................................................................................... 27
Safe Operation mode............................................................ 125
safety information ...........................................................................ii
safety input power terminal .....Refer to SC terminal
safety inputA terminal ...................Refer to SA terminal
Safety inputB terminal................... Refer to SB terminal
SB terminal ........................................................................................ 27
SC terminal........................................................................................ 27
screw specification
control circuit terminal screw ......................................353
input/output terminal screw............................................353
screw size .................................................................................... 353
screw torque.............................................................................. 353
S-curve pattern .............................................................................. 85
actual Acc/Dec time .................................................................87
sensorless vector control..................................................... 141
configuration ............................................................................ 143
Hold Time .................................................................................... 144
Igain................................................................................................ 144
IM Sensorless............................................................................. 143
Pgain .............................................................................................. 144
pre-exciting time.....................................................................144
sensorless vector control operation guide ...............146
sequence common terminal ....................Reftrer to CM
terminal
serge killer ......................................................................................... 32
setting virtual multi-function input............................. 219
single phase 200V (0.4~2.2 kW) ................................... 339
speed search operation ....................................................... 155
Flying Start-1 ............................................................................. 156
Flying Start-2 ............................................................................. 156
options.......................................................................................... 156
P/Igain ........................................................................................... 158
speed unit selection (Hz or Rpm) ................................... 71
Square reduction
Square reduction load ............................................................89
V/F pattern Operation .............................................................89
stall
bit on/off...................................................................................... 197
stall prevention ........................................................................196
Stall....................................................................................................... 196
start at power-on ......................................................................... 78
start mode......................................................................................... 93
acceleration start........................................................................94
start after DC braking ..............................................................94
Station................................................................................................ 104
Station ID......................................................................................... 228
stop mode......................................................................................... 95
DC braking after stop ..............................................................95
deceleration stop .......................................................................95
free run stop .................................................................................96
power braking .............................................................................97
storage .............................................................................................. 336
Storing Temperature ..................................................................... 5
surge killer ......................................................................................... 24
SW1 ..........................Refer to PNP/NPN mode selection
switch(SW1)
SW2 ....Refer to analog input selection switch(SW2)
SW3 Refer to analog output selection switch(SW3)
switch..................................................................................................... 25
analog input selection switch(SW2)................................25
analog output selection switch(SW3) ............................25
PNP/NPN mode selection switch(SW1) ........................25
Slave .................................................................................................... 215
T
slave inverter................................................................................. 104
slave unit.......................................................................................... 103
Slip ........................................................................................................ 128
slip compensation operation........................................... 128
speed command loss ............................................................ 202
target frequency
Cmd Frequency .......................................................................247
technical specification............................................................ 339
terminal............................................................................................. 102
375
A terminal......................................................................... 102, 187
B terminal ......................................................................... 102, 187
Under Load .................................................................................... 213
underload fault trip................................................................213
underload trip........................................................................... 321
underload warning..................................................... 213, 324
terminal for frequency reference setting ......Refer to
VR terminal
test run ................................................................................................. 33
underload fault trip ........................ Refer to Under Load
TI terminal................................................................................. 27, 68
update ................................................................................... 172, 225
time scale
Up-Down Operation............................................................... 123
0.01sec .............................................................................................81
0.1sec................................................................................................81
1sec....................................................................................................81
time scale setting ......................................................................... 80
Timer ................................................................................................... 173
US292
US(User Sequence) group..................................................... 40
user group...................................................................................... 169
delete parameters ..................................................................169
user group
TO terminal ........................................................................... 28, 179
parameter registration.........................................................169
torque.................................................................................................... 23
user sequence ............................................................................. 105
torque control........................................................................... 151
torque reference setting option .....................................152
function block parameter ..................................................108
setting ........................................................................................... 105
UF group...................................................................................... 105
US group...................................................................................... 105
user function operation condition ................................109
void parameter ............................................................. 105, 108
torque boost.................................................................................... 91
auto torque boost ............................................................. 92, 93
manual torque boost...............................................................91
overexcitation ..............................................................................92
trip ........................................................................................................ 321
User Sequence Function group......Refer to UF(User
fault/waring list ........................................................................ 212
trip condition monitor ............................................................55
trip status reset......................................................................... 210
User Sequence group...Refer to US(user sequence)
Trip
troubleshooting ......................................................................325
trip(Trip)
Sequence Function) group
group
user V/F pattern Operation.................................................. 90
using the keypad.......................................................................... 41
groups/codes...............................................................................41
Jog Operation key .....................................................................44
moving directly to a code .....................................................42
Erase trip history......................................................................172
troubleshooting.......................................................................... 321
other faults ................................................................................. 327
troubleshooting fault trips ................................................. 325
using the using the keypad
parameter setting......................................................................43
U
V
U&M mode ................................................................................... 169
V/F control......................................................................................... 88
U/V/W terminal .................................................................... 23, 24
linear V/F pattern operation.................................................88
Square reductionV/F pattern Operation.......................89
user V/F pattern Operation...................................................90
U/V/W terminals........................................................................ 327
UF 296
UF(User Sequence Function) group .............................. 40
under load
under load trip.......................................................................... 205
under load warning...............................................................205
376
V1 terminal............................................................................... 26, 61
V2
analog input selection switch(SW2)................................27
V2 input............................................................................................... 68
I2 voltage input...........................................................................68
wiring..................................................................................................... 17
variable resistor .............................................................................. 51
3 core cable ...................................................................................23
circuit breaker ........................................................................... 351
control terminal board wiring.............................................24
copper cable.................................................................................17
cover disassembly .....................................................................18
ferrite ................................................................................................29
ground.............................................................................................20
power terminal board wiring ..............................................21
signal wiring .................................................................................28
torque...............................................................................................17
wiring length........................................................................ 23, 29
variable torque load....................................................... 89, 150
voltage drop .................................................................................... 23
voltage/current output terminal................ Refer to AO
terminal
VR terminal .............................................................................. 26, 61
W
warning ............................................................................................. 321
WM(write mode error).......................................................... 226
Warning
fault/warning list .....................................................................212
377
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising