Electrodermal Response (EDR)

Electrodermal Response (EDR)
42 Aero Camino, Goleta, CA 93117
Tel (805) 685-0066 | Fax (805) 685-0067
info@biopac.com | www.biopac.com
Updated 05.31.16
Application Note AH-187
Electrodermal Response (EDR) with an MP System
This application note is concerned with how to record galvanic skin response (EDA), also known as the
electrodermal response (EDR), and observe changes with the amplifier module or telemetry module of the MP
System. With the MP System, you will measure both subtle and sudden changes in electrodermal activity, based
on your protocols.
Electrodermal Response Basics
Electrodermal response (EDR) measurements show the activity of the eccrine sweat glands. Typically, one will
place electrodes where the concentration of these glands is the highest: namely, the fingertips. Responses are a
function of the pre-secretory activity of eccrine sweat glands and the filling of the sudorific tubules. The
combination of these sudorific elements serves to increase the conductivity of the skin when activated.
When one applies a very small electric voltage (0.5 V) between two electrodes (Ag-AgCl), the manifested
electrical conductance varies in direct proportion to the electric current flowing between the electrodes. The
electrical conductance is a function of increasing eccrine activity. For instance, if a subject is presented a stimulus
and the palms start to sweat, this response indicates a highly-stimulated state. The EDR of this subject will then
be higher than the subject’s baseline. If another subject receives the same stimulus and the palms remain as
"cool as a cucumber," the EDA reading remain unchanged with respect to the baseline. EDR undergoes relatively
fast habituation (decrease of amplitude) in the event the same stimulus is repeated over and over to the same
AcqKnowledge software features: EDR
Automated analysis within AcqKnowledge software, version 4 or greater
Automated event-related analysis determining specific or non-specific responses
Textual event markers
On-line and off-line analysis
Remote monitoring through the TEL100C
On-line journal for note taking
Automatic stimulation presentation (up to 16 on/off control channels)
Export results to statistical programs for further analysis
Applications: EDR
Polygraph ("lie detector")
Measure stress, arousal, emotional excitement
Physiological biofeedback
Measure absolute or relative response levels to different stimuli
Relaxation Training
MP System Equipment: EDR
EDR data can be collected via the following devices: EDA100C, EDA100C-MRI, the BN-PPGED Bionomadix
wireless and the TEL100C (the wireless model TEL100C-RF is not recommended for EDR applications).
If using the EDA100C/EDA100C-MRI
Acquisition Unit:
MP150 or MP100
EDA100C or EDA100C-MRI module
Transducer/Electrode option: TSD203 electrodermal response transducer set or
EL507 disposable electrodes with a pair of LEAD110C electrode leads.
For MRI: EL509 disposable electrodes, LEAD108 leads connecting to
the MECMRI-TRANS cable/filter combination.
GEL101 skin conductance electrode paste or other electrolytic mixture
Module extension MEC100C (3 meter cable extends lead between
EDA100C and TSD203)
BIOPAC Systems, Inc.
Application Note 187—EDR
If using the BN-PPGED
Acquisition Unit:
Transducer/Electrode option
MP150 or MP100
EL507 disposable electrodes and BN-EDA-LEAD2 or BN-EDA25-LEAD2
EL101 skin conductance electrode paste or other electrolytic mixture
If using the TEL100C
Acquisition Unit:
MP150 or MP36R
TEL100C module
Transducer/Electrode option: SS3A electrodermal response transducer or
EL507 disposable electrodes with SS57L leads
GEL101 skin conductance electrode paste or other electrolytic mixture
Hardware Setup
1. Set the Gain switch on the EDA100.
To measure galvanic skin responses, estimate the approximate units of the skin conductance (μmho) to
be investigated.
The unit of measurement for the EDA100 is the μmho(micromho). Note: μmho = μsiemens. The
mho is the reciprocal of the unit of measurement for resistance, the ohm.
Larger values indicate a higher level of conductivity; smaller values indicate less conductivity. For
 If the subject is shown provocative slides, the response may be in the 0-50 μmho range.
 If the subject is presented with a sudden 120dB buzzer in a quiet room, the response may be in
the 0-200 μmho range.
Once the appropriate range for the experiment has been determined, choose the proper switch setting
from the chart below.
Conductance Range
0-200 μmho
0-100 μmho
0-50 μmho
0-20 μmho
0.05 Hz
±200 μmho
±100 μmho
±50 μmho
±20 μmho
Gain Switch
20 μmho/V
10 μmho/V
5 μmho/V
2 μmho/V
For example, for the 0-100 μmho
range, set the module Gain switch to
the 10 μmho/V setting (on the
module Gain switch, mho is an
upside down ohm symbol).
2. Set the three Filter switches on the EDA100C to the appropriate filtering option for your protocol.
Low Pass
1 Hz LP
10 Hz LP
High Pass
0.5 Hz HP
0.05 Hz HP
Sufficient for almost all EDR studies
Use to investigate higher frequency components of the
Gives direct (absolute) EDR readings from the subject.
Provides relative EDR recordings. Removes low
frequency signals. The effect of using the 0.5 Hz HP
setting will be that the subject’s baseline will return to
nearly zero 1 second after a response change. The
result provides an indicator of EDR changes as
opposed to a specific EDR level.
Provides relative EDR recordings. Removes very low
frequency signals. The effect of using the 0.05 Hz HP
setting will be that your subject’s baseline will return to
nearly zero 10 seconds after a response change. The
result provides an indicator of EDR changes as
opposed to a specific EDR level.
Page 2 of 4
BIOPAC Systems, Inc.
Application Note 187—EDR
3. Set the Channel switch on the top of the EDA100.
Select 1-16 to correspond with an available Analog Input channel.
4. Plug in inputs:
o If using TS203 transducer:
Plug the two colored electrode cables into the VIN+ and VIN- inputs.
 Either blue lead can be connected to either VIN input.
b) Plug the black cable into the GND.
o If using LEAD110C/EL507:
Plug the two cables into the VIN+ and VIN- inputs.
o If using LEAD108/EL509:
a) Plug the two cables into the VIN+ and VIN- of the MECMRI-1 cable.
b) Gel the EL509 electrodes when applying to the subject.
GROUNDING When using the EDA100C amplifier with other biopotential amplifiers attached to the same
subject, do not attach the ground lead from the biopotential amplifier(s) to the subject. The subject is
already appropriately referenced (grounded) to the system via the VIN- attachment to the EDA100C. If a
biopotential ground is attached to the subject, then currents sourced from the EDA100C will be split to the
biopotential amplifier ground lead, potentially resulting in measurement errors. If biopotential amplifiers do
require a ground lead, when used with a EDA100C, then the AC lead (CBL205) can be used in series
with the biopotential ground lead.
Optional If using the module extension cable for up to three meters of extra distance between the
subject and the MP acquisition unit, plug the MEC100C into the EDA100C inputs and then plug
the TSD203 into the MEC100C inputs.
1. If using the BioNomadix wireless monitoring system, gain and filter settings are factory set. Filter settings
can be changed, please refer to the MP Hardware guide, in the BioNomadix section for further details.
2. Attach the BN-EDA-LEAD2 or BN-EDA25-LEAD2 to channel B of the BioNomadix transmission module.
1. If using the TEL100 Remote Monitoring System, for EDA measurements, the following gain settings
correspond to μmhos. These settings can then be used to calibrate the signal using the rescaling feature
in AcqKnowledge (see AH-103 for more details on TEL100 setup). Set the filter setting for DC.
TEL100 Gain
TEL100 Gain
2. Connect the SS3A to the channel that will be recording the EDA. If using disposable EL507 electrodes,
connect the SS57L to the recording channel.
Subject Setup using TSD203 Electrode
The TSD203 transducer provides a small constant current between the
electrode sites when used with the EDA100C, and the measured resistance
between the two electrodes constitutes the electrodermal response. When
using the TSD203 to measure electrodermal response, you will need to
determine the choice of electrolyte. For effective monitoring of local eccrine
activity, use a higher impedance electrolyte with hyposaturated electrolyte
concentrations of Cl- (on the order of physiological levels). Many of our
researchers have found electrolyte mixtures of 0.05M NaCl are optimal;
BIOPAC GEL101 skin conductance electrode paste is a convenient option.
Page 3 of 4
EDA100C with MEC100C andTSD203
BIOPAC Systems, Inc.
Application Note 187—EDR
1. Apply GEL101 to the skin at the point of electrode contact and rub it in. The gel must have a chance to be
absorbed and make good contact before recording begins.
2. Make sure the cavities of the TSD203 transducer are clean and fill them with GEL101 (or your own
electrolyte mixture).
3. Attach the TSD203 electrode to the subject's fingertips as shown in the picture above, and then wrap the
electrode around the fingers with the Velcro straps, applying mild tension.
4. Wait 5 minutes (minimum) before starting to record data.
Software Setup
AcqKnowledge 4.0 and above “walk” through the calibration process; AcqKnowledge 3 and below require manual
entry of scale values for appropriate scaling of the EDA signal. The following steps are shown for reference for
those running older versions of the software; note that these values are not applicable to BioNomadix units.
1. Open the Change Scaling Parameters dialog for the
selected EDA100C channel (MP menu > Setup
2. Enter CAL1 Input Value as 0.
3. Enter CAL1 Scale Value as 0.
4. Enter CAL2 Input Value as 1.
5. Enter CAL2 Scale Value to match the Gain setting on the
EDA100C per the chart below.
EDA100C Gain Switch
Cal 2 Scale value
20 μmho/V
10 μmho/V
5 μmho/V
2 μmho/V
6. Enter the Units as μmho.
Scale settings for EDA100C @ 10 μmho/V Gain
7. Click OK to establish the settings and close out of the
Scaling Parameters dialog.
For example: To use the 0-100 μmho range, set the switch on the EDA100C front panel to 10 μmho/V, set the
channel on top of the module to the corresponding software channel, open Scaling for that
channel, and type in these values: Cal1: Input: 0, Scale 0
Cal2: Input 1, Scale 10
Units: micromhos
Optional Calibration
To verify the Gain setting of the EDA100C:
1. Calibrate AcqKnowledge for lower frequency response at DC:
2. Place both lower frequency response (HP) filters on the
EDA100C to DC.
3. Set the Gain switch on the EDA100C to 5μmho/V.
4. Perform measurement with electrodes disconnected.
5. AcqKnowledge should produce a reading of 0 μmho. If
slightly off, adjust he ZERO trim pot on the top front of the
EDA100C to perfectly zero the reading.
6. Insulate a 100kohm resistor and place it from electrode pad
to electrode pad resistor must be insulated from fingers).
Perform measurement with electrode-resistor setup.
Input voltages mapped to sensitivity
7. AcqKnowledge should produce a reading of 10 μmho.
For example:
In the Scaling window, set the Input voltages so they map to the "DC" conductance ranges
indicated by the sensitivity setting. Cal 1: Input 0, Scale 0
Cal2: Input 1, Scale 5
Units: micromhos
Page 4 of 4
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF