INSTRUCTION MANUAL UNDER/OVERVOLTAGE PROTECTION

INSTRUCTION MANUAL UNDER/OVERVOLTAGE PROTECTION
6 F 2 S 0 9 0 4
INSTRUCTION MANUAL
UNDER/OVERVOLTAGE PROTECTION RELAY
GRD130 - xxxD
© TOSHIBA Corporation 2010
All Rights Reserved.
( Ver. 1.1 )
6 F 2 S 0 9 0 4
Safety Precautions
Before using this product, please read this chapter carefully.
This chapter describes the safety precautions recommended when using the GRD130. Before
installing and using the equipment, this chapter must be thoroughly read and understood.
Explanation of symbols used
Signal words such as DANGER, WARNING, and two kinds of CAUTION, will be followed by
important safety information that must be carefully reviewed.
DANGER
Indicates an imminently hazardous situation which will result in death or
serious injury if you do not follow the instructions.
WARNING
Indicates a potentially hazardous situation which could result in death or
serious injury if you do not follow the instructions.
CAUTION
Indicates a potentially hazardous situation which if not avoided, may result in
minor injury or moderate injury.
CAUTION
Indicates a potentially hazardous situation which if not avoided, may result in
property damage.
⎯ 1 ⎯
6 F 2 S 0 9 0 4
DANGER
• Exposed terminals
Do not touch the terminals of this equipment while the power is on, as the high voltage generated
is dangerous.
• Residual voltage
Hazardous voltage can be present in the DC circuit just after switching off the DC power supply. It
takes approximately 30 seconds for the voltage to discharge.
• Fiber optic
Do not view directly with optical instruments.
CAUTION
• Earth
The earthing terminal of the equipment must be securely earthed.
CAUTION
• Operating environment
The equipment must only used within the range of ambient temperature, humidity and dust
detailed in the specification and in an environment free of abnormal vibration.
• Ratings
Before applying AC voltage or the DC power supply to the equipment, check that they conform to
the equipment ratings.
• Printed circuit board
Do not attach and remove printed circuit boards when the DC power to the equipment is on, as this
may cause the equipment to malfunction.
• External circuit
When connecting the output contacts of the equipment to an external circuit, carefully check the
supply voltage used in order to prevent the connected circuit from overheating.
• Connection cable
Carefully handle the connection cable without applying excessive force.
• DC power
If dc power has not been supplied to the relay for two days or more, then all fault records, event
records and disturbance records and internal clock may be cleared soon after restoring the power.
This is because the back-up RAM may have discharged and may contain uncertain data.
• Modification
Do not modify this equipment, as this may cause the equipment to malfunction.
⎯ 2 ⎯
6 F 2 S 0 9 0 4
• Short-link
Do not remove a short-link which is mounted at the terminal block on the rear of the relay before
shipment, as this may cause the performance of this equipment such as withstand voltage, etc., to
reduce.
• Disposal
This product does not contain expendable supplies nor parts that can be recycled. When disposing
of this equipment, do so in a safe manner according to local regulations as an industrial waste. If
any points are unclear, please contact our sales representatives.
•
Plastics material
This product contains the following plastics material.
- ABS, Polycarbonate, Acrylic resins
⎯ 3 ⎯
6 F 2 S 0 9 0 4
Contents
Safety Precautions
1
1.
Introduction
8
2.
Application Notes
10
2.1
10
10
14
18
21
24
24
26
27
28
33
34
2.2
2.3
2.4
3.
Technical Description
36
3.1
36
36
40
40
40
41
43
44
44
44
45
45
46
46
46
47
48
49
49
50
50
52
3.2
3.3
3.4
3.5
4.
Overvoltage and Undervoltage Protection
2.1.1 Phase Overvoltage Protection
2.1.2 Phase Undervoltage Protection
2.1.3 Zero Phase Sequence Overvoltage Protection
2.1.4 Negative Phase Sequence Overvoltage Protection
Frequency Protection
2.2.1 Frequency element
2.2.2 Frequency rate-of-change element
2.2.3 Trip Circuit
Synchronism Check function
Setting
Trip and Alarm Signal Output
Hardware Description
3.1.1 Outline of Hardware Modules
Input and Output Signals
3.2.1 AC Input Signals
3.2.2 Binary Input Signals
3.2.3 Binary Output Signals
3.2.4 PLC (Programmable Logic Controller) Function
Automatic Supervision
3.3.1 Basic Concept of Supervision
3.3.2 Relay Monitoring
3.3.3 Trip Circuit Supervision
3.3.4 Circuit Breaker Monitoring
3.3.4 PLC Data and IEC61850 Mapping Data Monitoring
3.3.5 IEC61850 Communication Monitoring
3.3.6 Failure Alarms
3.3.7 Trip Blocking
3.3.9 Setting
Recording Function
3.4.1 Fault Recording
3.4.2 Event Recording
3.4.3 Disturbance Recording
Metering Function
User Interface
53
4.1
53
Outline of User Interface
⎯ 4 ⎯
6 F 2 S 0 9 0 4
4.2
4.3
4.4
4.5
4.6
4.7
5.
6.
4.1.1 Front Panel
4.1.2 Communication Ports
Operation of the User Interface
4.2.1 LCD and LED Displays
4.2.2 Relay Menu
4.2.3 Displaying Records
4.2.4 Displaying the Status
4.2.5 Viewing the Settings
4.2.6 Changing the Settings
4.2.7 Testing
Personal Computer Interface
Relay Setting and Monitoring System
IEC 60870-5-103 Interface
IEC 61850 Communication
Clock Function
53
55
56
56
59
62
66
71
72
99
102
102
103
103
104
Installation
105
5.1
5.2
5.3
5.4
5.5
Receipt of Relays
Relay Mounting
Electrostatic Discharge
Handling Precautions
External Connections
105
105
105
105
106
Commissioning and Maintenance
107
6.1
6.2
107
108
108
108
109
110
110
110
111
112
114
114
120
120
121
121
121
123
123
123
124
125
6.3
6.4
6.5
6.6
6.7
Outline of Commissioning Tests
Cautions
6.2.1 Safety Precautions
6.2.2 Precautions for Testing
Preparations
Hardware Tests
6.4.1 User Interfaces
6.4.2 Binary Input Circuit
6.4.3 Binary Output Circuit
6.4.4 AC Input Circuits
Function Test
6.5.1 Measuring Element
6.5.2 Protection Scheme
6.5.3 Metering and Recording
Conjunctive Tests
6.6.1 On Load Test
6.6.2 Tripping and Reclosing Circuit Test
Maintenance
6.7.1 Regular Testing
6.7.2 Failure Tracing and Repair
6.7.3 Replacing Failed Relay Unit
6.7.4 Resumption of Service
⎯ 5 ⎯
6 F 2 S 0 9 0 4
6.7.5 Storage
7.
125
Putting Relay into Service
126
⎯ 6 ⎯
6 F 2 S 0 9 0 4
Appendix A Signal List
127
Appendix B Event Record Items
169
Appendix C Binary Output Default Setting List
173
Appendix D Details of Relay Menu and LCD & Button Operation
175
Appendix E Case Outline
187
Appendix F Typical External Connection
189
Appendix G Relay Setting Sheet
197
Appendix H Commissioning Test Sheet (sample)
227
Appendix I
231
Return Repair Form
Appendix J Technical Data
237
Appendix K Symbols Used in Scheme Logic
243
Appendix L IEC60870-5-103: Interoperability
247
Appendix M IEC61850: MICS & PICS
259
Appendix N Ordering
293
„ The data given in this manual are subject to change without notice. (Ver.1.1)
⎯ 7 ⎯
6 F 2 S 0 9 0 4
1. Introduction
GRD130 series relays provide overvoltage and undervoltage protection for distribution
substations, generators, motors and transformers.
The GRD130 series has two models and provides the following protection schemes in both
models.
• Overvoltage and undervoltage protection with definite time or inverse time characteristics
• Instantaneous overvoltage and undervoltage protection
• Over- and under-frequency protection
• Frequency rate-of-change protection
The GRD130 series provides the following protection schemes depending on the models.
• Zero phase sequence overvoltage protection
• Negative phase sequence overvoltage protection
The GRD130 series provides the following functions for all models.
• Eight settings groups
• Configurable binary inputs and outputs
• Circuit breaker condition monitoring
• Trip circuit supervision
• Automatic self-supervision
• Synchronizm check function
• Menu-based HMI system
• Configurable LED indication
• Metering and recording functions
• Rear mounted serial communication interface RS485 or fibre optic port for RSM,
IEC60870-5-103 communication
• Front mounted RS232 serial port for local PC communication
• Ethernet LAN port for IEC61850 communication
All models provide continuous monitoring of internal circuits and of software. External circuits
are also monitored, by trip circuit supervision and CB condition monitoring features.
A user-friendly HMI is provided through a backlit LCD, programmable LEDs, keypad and
menu-based operating system. PC access is also provided, either for local connection via a
front-mounted RS232 port, or for remote connection via a rear-mounted RS485, fibre optic port or
Ethernet LAN port. The communication system allows the user to read and modify the relay
settings, and to access data gathered by the relay’s metering and recording functions. Further, data
communication with substation control and automation systems is supported according to the IEC
61850 and IEC 60870-5-103 standards.
Table 1.1.1 shows the members of the GRD130 series and identifies the functions to be provided
by each member.
⎯ 8 ⎯
6 F 2 S 0 9 0 4
Table 1.1.1 Series Members and Functions
GRD130 -
Model Number
210
[APPL] setting
1PP
410
1PN
2PP
3PN
3PP
2PP
[APPLVES] setting
OFF
Ve
Vs
OFF
Ve
Vs
OFF
OFF
Ve
Vs
OFF
Ve
Vs
OFF
Ve
Vs
O/V IDMT
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
O/V DT
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
U/V IDMT
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
U/V DT
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
ZOV IDMT
9
9
9∗
9
9∗
9
9
ZOV DT
9
9
9∗
9
9∗
9
9
NOV IDMT
9
9
9
9
9
9
9
9
9
9
NOV DT
9
9
9
9
9
9
9
9
9
9
FRQ
9
9
9
9
9
9
9
9
9
9
9
9
9
DFRQ
9
9
9
9
9
9
9
9
9
9
9
9
9
SYN
9
9
9
9
9
Trip circuit supervision
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
Self supervision
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
CB state monitoring
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
Trip counter alarm
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
Multiple settings groups
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
Metering
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
Fault records
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
Event records
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
Disturbance records
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
IEC60870-5-103
communication
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9 9 9
9 9 9
IEC61850 communication 9
1PP: single phase-to-phase voltage
1PN: single phase-to-neutral voltage
2PP: two phase-to-phase voltage
3PP: three phase-to-phase voltage
3PN: three phase-to-neutral voltage
Ve: zero phase sequence voltage V0
Vs: reference voltage for synchronism check
IDMT: inverse definite minimum time
DT: definite time
O/V: overvoltage protection
U/V: undervoltage protection
ZOV: zero phase sequence overvoltage
NOV: negative phase sequence overvoltage
FRQ: Frequency protection
DFRQ: Frequency rate-of-change protection
SYN: synchronism check
(9∗): V0 calculated from three phase voltages
CAUTION: Do not change the APPL and APPLVES setting under service condition of the relay.
⎯ 9 ⎯
6 F 2 S 0 9 0 4
2. Application Notes
2.1
Overvoltage and Undervoltage Protection
2.1.1
Phase Overvoltage Protection
GRD130 provides four independent phase overvoltage elements with programmable
dropoff/pickup(DO/PU) ratio. OV1 and OV2 are programmable for inverse time (IDMT) or
definite time (DT) operation. OV3 and OV4 have definite time characteristic only.
Figure 2.1.1 shows the characteristic of overvoltage elements.
Pickup
Dropoff
0
Figure 2.1.1
V
Characteristic of Overvoltage Elements
The overvoltage protection element OV1 and OV2 have the IDMT characteristic defined by
equation (1) following the form described in IEC 60255-127:
⎧⎡
⎤ ⎫
k
⎪⎢
⎥ + c⎪
t (G ) = TMS × ⎨ ⎢
a
⎥ ⎬
⎪⎢ V
− 1⎥ ⎪
⎦ ⎭
⎩ ⎣ Vs
(1)
( )
where:
t = operating time for constant voltage V (seconds),
V = energising voltage (V),
Vs = overvoltage setting (V),
TMS = time multiplier setting.
k, a, c = constants defining curve.
The IDMT characteristic is illustrated in Figure 2.1.2. In addition to the IDMT curve in Figure
2.1.2, a user configurable curve is available by the scheme switches [OV1EN] and [OV2EN]. If
required, set the scheme switch [OV∗EN] to “C” and set the curve defining constants k, a, c. These
curves are defined in Table 2.1.1.
Table 2.1.1 Specification of Inverse Time Curves
Curve Description
k
a
c
“IDMT”
1
1
0
“C” (User Configurable)
0.000 – 30.000
by 0.001 step
0.00 – 5.00
by 0.01 step
0.000 – 5.000
by 0.001 step
⎯ 10 ⎯
6 F 2 S 0 9 0 4
The OV3 and OV4 elements are used for definite time overvoltage protection.
Definite time reset
The definite time resetting characteristic is applied to the OV1 and OV2 elements when the
inverse time delay is used.
If definite time resetting is selected, and the delay period is set to instantaneous, then no
intentional delay is added. As soon as the energising voltage falls below the reset threshold, the
element returns to its reset condition.
If the delay period is set to some value in seconds, then an intentional delay is added to the reset
period. If the energising voltage exceeds the setting for a transient period without causing tripping,
then resetting is delayed for a user-definable period. When the energising voltage falls below the
reset threshold, the integral state (the point towards operation that it has travelled) of the timing
function (IDMT) is held for that period.
This does not apply following a trip operation, in which case resetting is always instantaneous.
Both OV1 and OV2 have a programmable drop off/pickup(DO/PU) ratio.
Overvoltage Inverse Time
Curves
1000.000
Operating Time (secs)
100.000
10.000
TMS = 10
TMS = 5
TMS = 2
1.000
TMS = 1
0.100
1
1.5
2
2.5
3
Applied Voltage (x Vs)
Figure 2.1.2
IDMT Characteristic
Scheme Logic
Figures 2.1.3 to 2.1.6 show the scheme logic of the overvoltage protection OV1 to OV4.
The OV1 protection provides selective definite time or inverse time characteristic as shown in
Figure 2.1.3. The definite time protection is enabled by setting [OV1EN] to “DT”, and trip signal
OV1 TRIP is given through the delayed pick-up timer TOV1. The inverse time protection is
enabled by setting [OV1EN] to “IDMT”, and trip signal OV1 TRIP is given.
The OV2 protection also provides selective definite time or inverse time characteristic as shown in
⎯ 11 ⎯
6 F 2 S 0 9 0 4
Figure 2.1.4. The scheme logic of OV2 is the same as that of the OV1.
Figure 2.1.5 and Figure 2.1.6 show the scheme logic of the definite time overvoltage protection
OV3 and OV4. The OV3 and OV4 give trip and alarm signals OV3_TRIP and OV4_ALARM
through the delayed pick-up timers TOV3 and TOV4 respectively.
The OV1 to OV4 protection can be disabled by the scheme switches [OV1EN] to [OV4EN] or the
PLC signals OV1_BLOCK to OV4_BLOCK respectively.
OV1 2(∗)
52
3(∗)
53
1(∗)
TOV1
51
1(∗)
39
&
&
&
t
0
&
&
t
0
OV1 2(∗) 40
INST
3(∗) 41
[OV1EN] "DT"
0
&
t
0.00 - 300.00s
102
≥1
103
≥1
104
≥1
&
≥1
OV1-A_TRIP
OV1-B_TRIP
OV1-C_TRIP
101
OV1_TRIP
≥1
&
+
"IDMT"
1584 OV1_BLOCK
&
1
Figure 2.1.3
OV2 2(∗)
55
3(∗)
56
1(∗)
OV2 2(∗)
INST
3(∗)
TOV2
54
1(∗)
OV1 Overvoltage Protection
45
&
&
t
0
&
&
t
0
&
&
t
0
46
0.00 - 300.00s
109
≥1
110
≥1
111
≥1
OV2-A_TRIP
OV2-B_TRIP
OV2-C_TRIP
47
&
[OV2EN] "DT"
≥1
108
OV2_TRIP
≥1
&
+
"IDMT"
1585 OV2_BLOCK
&
1
Figure 2.1.4
1(∗)
TOV3
57
OV3 2(∗)
58
3(∗)
59
OV2 Overvoltage Protection
[OV3EN]
+
&
&
t
0
116
&
&
t
0
117
&
&
t
0
118
0.00 - 300.00s
1586 OV3_BLOCK
1
Figure 2.1.5
OV3 Overvoltage Protection
⎯ 12 ⎯
≥1
OV3-A_TRIP
OV3-B_TRIP
OV3-C_TRIP
115
OV3_TRIP
6 F 2 S 0 9 0 4
TOV4
518
1(∗)
OV4 2(∗)
519
3(∗)
520
[OV4EN]
+
&
t
0
436
&
&
t
0
437
&
&
t
0
438
&
0.00 - 300.00s
1587 OV4_BLOCK
≥1
1
Figure 2.1.6
OV4-A_ALARM
OV4-B_ALARM
OV4-C_ALARM
435
OV4_ALARM
OV4 Overvoltage Protection
(∗)Note : Phases 1, 2 and 3 are replaced with the followings:
Phase
[APPL] setting
1PP
1PN
2PP
3PN
3PP
1
phase-to-phase
phase-to-neutral
A - B phase
A phase
A - B phase
2
-
-
B - C phase
B phase
B - C phase
3
-
-
-
C phase
C - A phase
Setting
The table shows the setting elements necessary for the overvoltage protection and their setting
ranges.
Element
Range
Step
Default
Remarks
OV1
10.0 – 200.0 V
0.1 V
120.0 V
OV1 threshold setting
TOV1M
0.05 – 100.00
0.01
1.00
OV1 time multiplier setting. Required if [OV1EN] = IDMT.
TOV1
0.00 – 300.00 s
0.01 s
1.00 s
OV1 definite time setting. Required if [OV1EN] = DT.
TOV1R
0.0 – 300.0 s
0.1 s
0.0 s
OV1 definite time delayed reset.
OV1DPR
10 – 98 %
1%
95 %
OV1 DO/PU ratio setting.
OV2
10.0 – 200.0 V
0.1 V
140.0 V
OV2 threshold setting
TOV2M
0.05 – 100.00
0.01
1.00
OV2 time multiplier setting. Required if [OV2EN] = IDMT.
TOV2
0.00 – 300.00 s
0.01 s
1.00 s
OV2 definite time setting. Required if [OV2EN] = DT.
TOV2R
0.0 – 300.0 s
0.1 s
0.0 s
OV2 definite time delayed reset.
OV2DPR
10 – 98 %
1%
95 %
OV2 DO/PU ratio setting.
OV3
10.0 – 200.0 V
0.1 V
140.0 V
OV3 threshold setting.
TOV3
0.00 – 300.00 s
0.01 s
1.00 s
OV3 definite time setting.
OV3DPR
10 - 98 %
1%
95 %
OV3 DO/PU ratio setting.
OV4
10.0 – 200.0 V
0.1 V
140.0 V
OV4 threshold setting.
TOV4
0.00 – 300.00 s
0.01 s
1.00 s
OV4 definite time setting.
OV4DPR
10 - 98 %
1%
95 %
OV4 DO/PU ratio setting.
[OV1EN]
Off/DT/IDMT/C
Off
OV1 Enable
[OV2EN]
Off/DT/IDMT/C
Off
OV2 Enable
[OV3EN]
Off / On
Off
OV3 Enable
[OV4EN]
Off / On
Off
OV4 Enable
⎯ 13 ⎯
6 F 2 S 0 9 0 4
2.1.2
Phase Undervoltage Protection
GRD130 provides four independent phase undervoltage elements. UV1 and UV2 are
programmable for inverse time (IDMT) or definite time (DT) operation. UV3 and UV4 have
definite time characteristic only.
Figure 2.1.7 shows the characteristic of the undervoltage elements.
0
Figure 2.1.7
V
Characteristic of Undervoltage Elements
The undervoltage protection element UV1 has an IDMT characteristic defined by equation (2)
following the form described in IEC 60255-127:
⎧⎡
k
⎪
t (G ) = TMS × ⎨ ⎢⎢
⎪ ⎢1 − V
Vs
⎩⎣
( )
⎤ ⎫
⎥ + c⎪
⎬
a ⎥
⎥⎦ ⎪⎭
(2)
where:
t = operating time for constant voltage V (seconds),
V = energising voltage (V),
Vs = undervoltage setting (V),
TMS = time multiplier setting.
k, a, c = constants defining curve.
The IDMT characteristic is illustrated in Figure 2.1.8. In addition to the IDMT curve in Figure
2.1.8, a user configurable curve is available by the scheme switches [UV1EN] and [UV2EN]. If
required, set the scheme switch [UV∗EN] to “C” and set the curve defining constants k, a, c. These
curves are defined in Table 2.1.1.
The UV3 and UV4 elements are used for definite time overvoltage protection.
Definite time reset
The definite time resetting characteristic is applied to the UV1 and UV2 elements when the
inverse time delay is used.
If definite time resetting is selected, and the delay period is set to instantaneous, then no
intentional delay is added. As soon as the energising voltage rises above the reset threshold, the
element returns to its reset condition.
If the delay period is set to some value in seconds, then an intentional delay is added to the reset
period. If the energising voltage is below the undervoltage setting for a transient period without
causing tripping, then resetting is delayed for a user-definable period. When the energising
voltage rises above the reset threshold, the integral state (the point towards operation that it has
travelled) of the timing function (IDMT) is held for that period.
This does not apply following a trip operation, in which case resetting is always instantaneous.
⎯ 14 ⎯
6 F 2 S 0 9 0 4
Undervoltage Inverse Time
Curves
1000.000
Operating Time (secs)
100.000
TMS = 10
10.000
TMS = 5
TMS = 2
TMS = 1
1.000
0
0.2
0.4
0.6
0.8
1
Applied Voltage (x Vs)
Figure 2.1.8
IDMT Characteristic
Scheme Logic
Figures 2.1.9 to 2.1.12 show the scheme logic of the undervoltage protection UV1 to UV4.
The UV1 protection provides a selective definite time or inverse time characteristic as shown in
Figure 2.1.8. The definite time protection is enabled by setting [UV1EN] to “DT”, and trip signal
UV1_TRIP is given through the delayed pick-up timer TUV1. The inverse time protection is
enabled by setting [UV1EN] to “IDMT”, and trip signal UV1_TRIP is given.
The UV2 protection also provides a selective definite time or inverse time characteristic as shown
in Figure 2.1.10. The scheme logic of UV2 is the same as that of the UV1.
Figure 2.1.11 and Figure 2.1.12 show the scheme logic of the definite time undervoltage
protection UV3 and UV4. The UV3 and UV4 give trip and alarm signals UV3_TRIP and
UV4_ALARM through the delayed pick-up timers TUV3 and TUV4 respectively.
The UV1 to UV4 protection can be disabled by the scheme switches [UV1EN] to [UV4EN] or the
PLC signals UV1_BLOCK to UV4_BLOCK respectively.
In addition, there is a user programmable voltage threshold VBLK. If all measured phase voltages
drop below this setting, then both UV1 to UV4 are prevented from operating. This function can be
blocked by the scheme switch [VBLKEN]. The [VBLKEN] should be set to “OFF” (not used)
when the UV elements are used as fault detectors, and set to “ON” (used) when used for load
shedding.
Note: The VBLK must be set lower than any other UV setting values.
⎯ 15 ⎯
6 F 2 S 0 9 0 4
1(∗)
UV1 2(∗) 61
3(∗)
1(∗)
UV1 2(∗)
INST
3(∗)
1(∗)
&
&
t
TUV1
0
&
&
t
0
&
&
t
0
60
62
157
158
123
≥1
124
≥1
125
≥1
0.00 - 300.00s
UV1-A_TRIP
UV1-B_TRIP
UV1-C_TRIP
159
UVBLK
566
UVBLK 2(∗)
567
3(∗)
568
97
1
&
≥1
&
NON
UVBLK
122
UV1_TRIP
&
[VBLKEN]
+
"ON"
[UVTST]
+
"OFF"
&
[UV1EN]
"DT"
≥1
+
"IDMT"
1
1588 UV1_BLOCK
Figure 2.1.9
1(∗)
1(∗)
UV2 2(∗)
INST
3(∗)
&
&
t
TUV2
0
&
&
t
0
&
&
t
0
63
UV2 2(∗) 64
3(∗)
UV1 Undervoltage Protection
65
177
178
NON
UVBLK
179
[UV2EN]
"DT"
131
≥1
132
≥1
0.00 - 300.00s
≥1
+
≥1
&
"IDMT"
&
1
1589 UV2_BLOCK
&
Figure 2.1.10
1(∗)
UV3 2(∗)
3(∗)
TUV3
67
68
[UV3EN]
+
UV2 Undervoltage Protection
66
"ON"
&
&
t
0
137
&
&
t
0
138
&
&
t
0
139
0.00 - 300.00s
NON BLK
1590 UV3_BLOCK
≥1
1
Figure 2.1.11
UV3-A_TRIP
UV3-B_TRIP
UV3-C_TRIP
136
UV3_TRIP
UV3 Undervoltage Protection
⎯ 16 ⎯
130
≥1
129
UV2-A_TRIP
UV2-B_TRIP
UV2-C_TRIP
UV2_TRI
P
6 F 2 S 0 9 0 4
1(∗)
UV4 2(∗)
3(∗)
TUV4
528
529
530
[UV4EN]
+
"ON"
&
&
t
0
444
&
&
t
0
445
&
&
t
0
446
0.00 - 300.00s
NON BLK
1591 UV4_BLOCK
≥1
1
Figure 2.1.12
443
UV4-A_ALARM
UV4-B_ALARM
UV4-C_ALARM
UV4_ALARM
UV4 Undervoltage Protection
(∗)Note : Phases 1, 2 and 3 are replaced with the followings:
Phase
[APPL] setting
1PP
1PN
2PP
3PN
3PP
1
phase-to-phase
phase-to-neutral
A - B phase
A phase
A - B phase
2
-
-
B - C phase
B phase
B - C phase
3
-
-
-
C phase
C - A phase
Setting
The table shows the setting elements necessary for the undervoltage protection and their setting
ranges.
Element
Range
Step
Default
Remarks
UV1
5.0 – 130.0 V
0.1 V
60.0 V
UV1 threshold setting
TUV1M
0.05– 100.00
0.01
1.00
UVI time multiplier setting. Required if [UV1EN] = IDMT.
TUV1
0.00 – 300.00 s
0.01 s
1.00 s
UV1 definite time setting. Required if [UV1EN] = DT.
TUV1R
0.0 – 300.0 s
0.1 s
0.0 s
UV1 definite time delayed reset.
UV2
5.0 – 130.0 V
0.1 V
40.0 V
UV1 threshold setting
TUV2M
0.05– 100.00
0.01
1.00
UVI time multiplier setting. Required if [UV2EN] = IDMT.
TUV2
0.00 – 300.00 s
0.01 s
1.00 s
UV1 definite time setting. Required if [UV2EN] = DT.
TUV2R
0.0 – 300.0 s
0.1 s
0.0 s
UV1 definite time delayed reset.
UV3
5.0 – 130.0 V
0.1 V
40.0 V
UV3 threshold setting.
TUV3
0.00 – 300.00 s
0.01 s
1.00 s
UV3 definite time setting.
UV4
5.0 – 130.0 V
0.1 V
40.0 V
UV4 threshold setting.
TUV4
0.00 – 300.00 s
0.01 s
1.00 s
UV4 definite time setting.
VBLK
5.0 - 20.0 V
0.1 V
10.0 V
Undervoltage block threshold setting.
[UV1EN]
Off/ DT/ IDMT/
C
DT
UV1 Enable
[VBLKEN]
Off / On
Off
UV block Enable
[UV2EN]
Off/ DT/ IDMT/
C
DT
UV2 Enable
[UV3EN]
Off / On
Off
UV3 Enable
[UV4EN]
Off / On
Off
UV4 Enable
⎯ 17 ⎯
6 F 2 S 0 9 0 4
2.1.3
Zero Phase Sequence Overvoltage Protection
The zero phase sequence overvoltage protection (ZOV) is applied to earth fault detection on
unearthed, resistance-earthed system or on ac generators.
The ZOV is available for the following models and their [APPLVES] settings:
Model
210
[APPLVES] setting
-
Off
Ve
Vs
9(∗1)
9(∗2)
9(∗1)
9(∗2)
ZOV
410
Note: (∗1); V0 is measured directly in the form of the system residual voltage.
(∗2); V0 is calculated from the three measured phase voltages.
The low voltage settings which may be applied make the ZOV element susceptible to any 3rd
harmonic component which may be superimposed on the input signal. Therefore, a 3rd harmonic
filter is provided to suppress such superimposed components.
For the earth fault detection, following two methods are in general use.
• Measuring the zero sequence voltage produced by VT residual connection (broken-delta
connection) as shown in Figure 2.1.13.
• Measuring the residual voltage across the earthing transformers as shown in Figure 2.2.14.
A
B
C
GRD130
V0
Figure 2.1.13
A
Earth Fault Detection on Unearthed System
B
G
V0
GRD130
Resistor
Figure 2.1.14
Earth Fault Detection on Generator
Two independent elements ZOV1 and ZOV2 are provided. These elements are programmable for
definite time delayed or inverse time delayed (IDMT) operation.
⎯ 18 ⎯
6 F 2 S 0 9 0 4
The inverse time characteristic is defined by equation (3) following the form described in IEC
60255-127:
⎧⎡
⎤ ⎫
k
⎪⎢
⎥ + c⎪
t (G ) = TMS × ⎨ ⎢
a
⎥ ⎬
V
⎪⎢
− 1⎥ ⎪
⎦ ⎭
⎩ ⎣ Vs
(3)
( )
where:
t = operating time for constant voltage V0 (seconds),
V0 = Zero sequence voltage (V),
Vs = Zero sequence overvoltage setting (V),
TMS = time multiplier setting.
k, a, c = constants defining curve.
The IDMT characteristic is illustrated in Figure 2.1.15. In addition to the IDMT curve in Figure
2.1.15, a user configurable curve is available by the scheme switches [ZOV1EN] and [ZOV2EN].
If required, set the scheme switch [ZOV∗EN] to “C” and set the curve defining constants k, a, c.
These curves are defined in Table 2.1.1.
ZOV Overvoltage
Inverse Time Curves
1000.000
Operating Time (secs)
100.000
10.000
1.000
T MS = 10
T MS = 5
T MS = 2
0.100
T MS = 1
0.010
0
5
10
15
20
Applied Voltage (x Vs)
Figure 2.1.15
IDMT Characteristic for ZOV
⎯ 19 ⎯
6 F 2 S 0 9 0 4
Definite time reset
A definite time reset characteristic is applied when the inverse time delay is used. Its operation is
identical to that for the phase overvoltage protection.
Scheme Logic
Figures 2.1.16 and 2.1.17 show the scheme logic of the zero-phase sequence overvoltage
protection. Two zero-phase sequence overvoltage elements ZOV1 and ZOV2 with independent
thresholds output trip signals ZOV1 TRIP and ZOV2 TRIP through delayed pick-up timers
TZOV1 and TZOV2.
The tripping can be disabled by the scheme switches [ZOV1EN] and [ZOV2EN] or PLC signals
ZOV1 BLOCK and ZOV2 BLOCK.
ZOV1
ZOV1
INST
[ZOV1EN]
TZOV1
93
&
0
t
&
≥1
197
143
ZOV1 TRIP
0.00 - 300.00s
"DT"
≥1
&
+
"IDMT"
1
1592 ZOV1_BLOCK
Figure 2.1.16
ZOV2
ZOV2
INST
[ZOV2EN]
ZOV1 Overvoltage Protection
TZOV2
94
&
0
t
&
≥1
198
144
ZOV2_ALARM
0.00 - 300.00s
"DT"
≥1
&
+
"IDMT"
1593 ZOV2_BLOCK
1
Figure 2.1.17
ZOV2 Overvoltage Protection
Setting
The table below shows the setting elements necessary for the zero sequence overvoltage
protection and their setting ranges.
Element
Range
Step
Default
Remarks
ZOV1
1.0 - 130.0 V
0.1V
20.0 V
ZOV1 threshold setting (V0) for tripping.
TZOV1M
0.05 – 100.00
0.01
1.00
ZOV1 time multiplier setting. Required if [ZOV1EN]=IDMT.
TZOV1
0.00 – 300.00 s
0.01 s
1.00 s
ZOV1 definite time setting. Required if [ZOV1EN]=DT.
TZOV1R
0.0 – 300.0 s
0.1 s
0.0 s
ZOV1 definite time delayed reset.
ZOV2
1.0 - 130.0 V
0.1V
40.0 V
ZOV2 threshold setting (V0) for alarming.
TZOV2M
0.05 – 100.00
0.01
1.00
ZOV2 time multiplier setting. Required if [ZOV2EN]=IDMT.
TZOV2
0.00 – 300.00 s
0.01 s
1.00 s
ZOV2 definite time setting. Required if [ZOV2EN]=DT.
TZOV2R
0.0 – 300.0 s
0.1 s
0.0 s
ZOV2 definite time delayed reset.
[APPLVES]
Off / Ve / Vs
Ve
Ves(VT) setting
[ZOV1EN]
Off /DT/ IDMT/ C
DT
ZOV1 Enable
[ZOV2EN]
Off / On
Off
ZOV2 Enable
⎯ 20 ⎯
6 F 2 S 0 9 0 4
2.1.4
Negative Phase Sequence Overvoltage Protection
The negative phase sequence overvoltage protection is used to detect voltage unbalance
conditions such as reverse-phase rotation, unbalanced voltage supply etc.
The NOV protection is applied to protect three-phase motors from the damage which may be
caused by the voltage unbalance. Unbalanced voltage supply to motors due to a phase loss can
lead to increases in the negative sequence voltage.
The NOV protection is also applied to prevent the starting of the motor in the wrong direction, if
the phase sequence is reversed.
Two independent elements NOV1 and NOV2 are provided. The elements are programmable for
definite time delayed or inverse time delayed (IDMT) operation.
The inverse time characteristic is defined by equation (4) following the form described in IEC
60255-127.
⎧⎡
⎤ ⎫
k
⎪⎢
⎥ + c⎪
t (G ) = TMS × ⎨ ⎢
a
⎥ ⎬
⎪⎢ V
− 1⎥ ⎪
⎦ ⎭
⎩ ⎣ Vs
(4)
( )
where:
t = operating time for constant voltage V2 (seconds),
V2 = Negative sequence voltage (V),
Vs = Negative sequence overvoltage setting (V),
TMS = time multiplier setting.
k, a, c = constants defining curve.
The IDMT characteristic is illustrated in Figure 2.1.18. In addition to the IDMT curve in Figure
2.1.18, a user configurable curve is available by the scheme switches [NOV1EN] and [NOV2EN].
If required, set the scheme switch [NOV∗EN] to “C” and set the curve defining constants k, a, c.
These curves are defined in Table 2.1.1.
⎯ 21 ⎯
6 F 2 S 0 9 0 4
NOV Overvoltage
Inverse Time Curves
1000.000
Operating Time (secs)
100.000
10.000
1.000
TMS = 10
TMS = 5
TMS = 2
0.100
TMS = 1
0.010
0
5
10
15
20
Applied Voltage (x Vs)
Figure 2.1.18
IDMT Characteristic for NOV
Definite time reset
A definite time reset characteristic is applied to the NOV1 element when the inverse time delay is
used. Its operation is identical to that for the phase overvoltage protection.
Scheme Logic
Figures 2.1.19 and 2.1.20 show the scheme logic of the negative sequence overvoltage protection.
Two negative sequence overvoltage elements NOV1 and NOV2 with independent thresholds
output trip signals NOV1 TRIP and NOV2 TRIP through delayed pick-up timers TNOV1 and
TNOV2.
The tripping can be disabled by the scheme switches [NOV1EN] and [NOV2EN] or PLC signals
NOV1 BLOCK and NOV2 BLOCK.
NOV1
NOV1
INST
[NOV1EN]
TNOV1
95
&
&
0
t
≥1
199
0.00 - 300.00s
"DT"
≥1
&
+
"IDMT"
1596 NOV1_BLOCK
1
Figure 2.1.19
NOV1 Overvoltage Protection
⎯ 22 ⎯
145
NOV1 TRIP
6 F 2 S 0 9 0 4
NOV2
NOV2
INST
[NOV2EN]
TNOV2
96
&
0
t
&
≥1
200
146
NOV2_ALARM
0.00 - 300.00s
"DT"
≥1
&
+
"IDMT"
1597 NOV2_BLOCK
1
Figure 2.1.20
NOV2 Overvoltage Protection
Setting
The table below shows the setting elements necessary for the negative sequence overvoltage
protection and their setting ranges.
The delay time setting TNOV1 and TNOV2 is added to the inherent delay of the measuring
elements NOV1 and NOV2. The minimum operating time of the NOV elements is around 200ms.
Element
Range
Step
Default
Remarks
NOV1
1.0 - 130.0 V
0.1V
20.0 V
NOV1 threshold setting for tripping.
TNOV1M
0.05 – 100.00
0.01
1.00
NOV1 time multiplier setting. Required if [NOV1EN]=IDMT.
TNOV1
0.00 – 300.00 s
0.01 s
1.00 s
NOV1 definite time setting. Required if [NOV1EN]=DT.
TNOV1R
0.0 – 300.0 s
0.1 s
0.0 s
NOV1 definite time delayed reset.
NOV2
1.0 - 130.0 V
0.1V
40.0 V
NOV2 threshold setting for alarming.
TNOV2M
0.05 – 100.00
0.01
1.00
NOV2 time multiplier setting. Required if [NOV2EN]=IDMT.
TNOV2
0.00 – 300.00 s
0.01 s
1.00 s
NOV2 definite time setting. Required if [NOV2EN]=DT.
TNOV2R
0.0 – 300.0 s
0.1 s
0.0 s
NOV2 definite time delayed reset.
[NOV1EN]
Off /DT/ IDMT/ C
Off
NOV1 Enable
[NOV2EN]
Off / On
Off
NOV2 Enable
⎯ 23 ⎯
6 F 2 S 0 9 0 4
2.2
Frequency Protection
For a four-stage frequency protection, GRD130 incorporates dedicated frequency measuring
elements and scheme logic for each stage. Each stage is programmable for underfrequency,
overfrequency or frequency rate-of-change protection.
Underfrequency protection is provided to maintain the balance between the power generation
capability and the loads. It is also used to maintain the frequency within the normal range by load
shedding.
Overfrequency protection is typically applied to protect synchronous machines from possible damage
due to overfrequency conditions.
Frequency rate of change protection is applied to ensure that load shedding occurs very quickly
when the frequency change is very rapid.
A-phase to B-phase voltage is used to detect frequency.
2.2.1
Frequency element
Underfrequency element UF operates when the power system frequency falls under the setting
value.
Overfrequency element OF operates when the power system frequency rises over the setting
value.
These elements measure the frequency and check for underfrequency or overfrequency every 5
ms. They operate when the underfrequency or overfrequency condition is detected 16 consecutive
times.
The outputs of both the UF and OF elements is invalidated by undervoltage block element
(FRQBLK) operation during an undervoltage condition.
Figure 2.2.1 shows characteristics of UF and OF elements.
Hz
OF
OF setting
UF setting
UF
0
FVBLK setting
Figure 2.2.1
V
Underfrequency and Overfrequency Element
Scheme Logic
Figure 2.2.2 shows the scheme logic for the frequency protection in stage 1. The frequency
element FRQ1 can output a trip command under the condition that the system voltage is higher
than the setting of the undervoltage element FRQBLK (FRQBLK=1). The FRQ1 element is
programmable for underfrequency or overfrequency operation by the scheme switch [FRQ1EN].
The tripping can be disabled by the scheme switches [FRQ1EN] or PLC logic signal FRQ1
BLOCK.
The stage 2 (FRQ2) to stage 4 (FRQ4) are the same logic of FRQ1
⎯ 24 ⎯
6 F 2 S 0 9 0 4
TFRQ1
FRQ1
t
218
OF
&
&
≥1
&
FRQ2
&
&
≥1
&
&
≥1
FRQ4
&
≥1
0
359
&
FRQ4_TRIP
0.00 - 300.00s
1
UF
FRQ3_TRIP
TFRQ4
t
221
&
358
0.00 - 300.00s
&
OF
0
&
1
UF
FRQ2_TRIP
TFRQ3
t
220
OF
357
0.00 - 300.00s
&
FRQ3
0
&
1
UF
FRQ1_TRIP
TFRQ2
t
219
OF
356
0.00 - 300.00s
1
UF
0
&
&
FRQBLK
[FRQ1EN]
+
[FRQ2EN]
+
[FRQ3EN]
+
[FRQ4EN]
+
222
1
NON FRQBLK
"OF"
"UF"
≥1
"OF"
"UF"
≥1
"OF"
"UF"
≥1
"OF"
"UF"
≥1
1600 FRQ1_BLOCK
1
1601 FRQ2_BLOCK
1
1602 FRQ3_BLOCK
1
1603 FRQ4_BLOCK
1
Figure 2.2.2
Scheme Logic for Frequency Protection
Setting
The setting elements necessary for the frequency protection and their setting ranges are shown in
the table below.
Element
FRQ1
TFRQ1
FRQ2
TFRQ2
FRQ3
TFRQ3
FRQ4
TFRQ4
FRQBLK
FRQ1EN
FRQ2EN
FRQ3EN
FRQ4EN
Range
-10.00 – +10.00 Hz
0.00 – 300.00 s
-10.00 – +10.00 Hz
0.00 – 300.00 s
-10.00 – +10.00 Hz
0.00 – 300.00 s
-10.00 – +10.00 Hz
0.00 – 300.00 s
40.0 – 100.0 V
Off / OF / UF
Off / OF / UF
Off / OF / UF
Off / OF / UF
Step
0.01 Hz
0.01 s
0.01 Hz
0.01 s
0.01 Hz
0.01 s
0.01 Hz
0.01 s
0.1 V
Default
-1.00 Hz
1.00 s
-1.00 Hz
1.00 s
-1.00 Hz
1.00 s
-1.00 Hz
1.00 s
40.0 V
Off
Off
Off
Off
⎯ 25 ⎯
Remarks
FRQ1 frequency element setting
Timer setting of FRQ1
FRQ2 frequency element setting
Timer setting of FRQ2
FRQ3 frequency element setting
Timer setting of FRQ3
FRQ4 frequency element setting
Timer setting of FRQ4
UV block setting
FRQ1 Enable
FRQ2 Enable
FRQ3 Enable
FRQ4 Enable
6 F 2 S 0 9 0 4
2.2.2
Frequency rate-of-change element
The frequency rate-of-change element calculates the gradient of frequency change (df/dt). Each of
the two frequency stages in GRD130 provides two rate-of-change elements, a frequency decay
rate element (D) and a frequency rise rate element (R). These elements measure the change in
frequency (Δf) over a time interval (Δt=100ms), as shown Figure 2.2.3 and calculate the Δf/Δt
every 5 ms. They operate when the frequency change exceeds the setting value 50 consecutive
times.
Both D and R elements output is invalidated by undervoltage block element (FRQBLK) operation
during undervoltage condition.
Hz
Δf
Δt
sec
Figure 2.2.3
Frequency Rate-of-Change Element
Scheme Logic
Figure 2.2.4 shows the scheme logic of frequency rate-of-change protection in stage 1. The
frequency rate-of-change element DFRQ1 can output a trip command under the condition that the
system voltage is higher than the setting of the undervoltage element FRQBLK (FRQBLK=1).
The DFRQ1 element is programmable for frequency decay rate or frequency rise rate operation by
the scheme switch [DFRQ1EN].
The tripping can be disabled by the scheme switches [DFRQ1EN] or PLC logic signal DFRQ1
BLOCK.
The stage 2 (DFRQ2) to stage 4 (DFRQ4) are the same logic of DFRQ1.
Setting
The setting elements necessary for the frequency protection and their setting ranges are shown in
the table below.
Element
DFRQ1
DFRQ2
DFRQ3
DFRQ4
FRQBLK
DFRQ1EN
DFRQ2EN
DFRQ3EN
DFRQ4EN
Range
0.1 – 15.0 Hz/s
0.1 – 15.0 Hz/s
0.1 – 15.0 Hz/s
0.1 – 15.0 Hz/s
40.0 – 100.0 V
Off / R / D
Off / R / D
Off / R / D
Off / R / D
Step
0.1 Hz/s
0.1 Hz/s
0.1 Hz/s
0.1 Hz/s
0.1 V
Default
0.5 Hz/s
0.5 Hz/s
0.5 Hz/s
0.5 Hz/s
40.0 V
Off
Off
Off
Off
⎯ 26 ⎯
Remarks
DFRQ1 element setting
DFRQ2 element setting
DFRQ3 element setting
DFRQ4 element setting
UV block setting
DFRQ1 Enable
DFRQ2 Enable
DFRQ3 Enable
DFRQ4 Enable
6 F 2 S 0 9 0 4
DFRQ1
225
R
&
360
≥1
&
&
&
&
&
&
&
&
DFRQ1_TRIP
1
D
&
DFRQ2
226
R
&
361
≥1
DFRQ2_TRIP
1
D
&
DFRQ3
227
R
&
362
DFRQ3_TRIP
1
D
DFRQ4
≥1
&
228
R
&
≥1
363
DFRQ4_TRIP
1
D
&
222
FRQBLK
[DFRQ1EN]
+
[DFRQ2EN]
+
[DFRQ3EN]
+
[DFRQ4EN]
+
1
NON FRQBLK
"R"
"D"
≥1
"R"
"D"
≥1
"R"
"D"
≥1
"R"
"D"
≥1
1576 DFRQ1_BLOCK
1
1577 DFRQ2_BLOCK
1
1578 DFRQ3_BLOCK
1
1579 DFRQ4_BLOCK
1
Figure 2.2.4
2.2.3
Scheme Logic of Frequency Rate-of-change Protection
Trip Circuit
The trip circuit of the frequency protection is configured with the combination of FRQ trip and
DFRQ trip. The trip circuit is configured by the PLC function as shown in Figure 2.2.5.
FRQ1 TRIP
≥1
1680 FRQ_S1_TRIP
≥1
DFRQ1 TRIP
FRQ2 TRIP
DFRQ2 TRIP
FRQ3 TRIP
DFRQ3 TRIP
FRQ4 TRIP
DFRQ4 TRIP
≥1
1681 FRQ_S2_TRIP
≥1
1682 FRQ_S3_TRIP
≥1
1683 FRQ_S4_TRIP
By PLC
2.2.5 Frequency Protection Trip circuit
⎯ 27 ⎯
355
FRQ_TRIP
6 F 2 S 0 9 0 4
2.3
Synchronism Check function
GRD130 can offer an autoreclosing relay the voltage and synchronism check function.
There are four voltage modes in three-phase autoreclose mode, as shown below when all three
phases of the circuit breaker are open. The voltage and synchronism check is applicable to voltage
modes 1 to 3 and controls the energising process of the lines and busbars in the three-phase
autoreclose mode.
Voltage Mode
1
2
3
4
Busbar voltage (VB)
live
live
dead
dead
Line voltage (VL)
live
dead
live
dead
The synchronism check is performed for voltage mode 1 while the voltage check is performed for
voltage modes 2 and 3.
The mode 4 is used for manual closing.
[VCHK]
+
"OFF"
"LD"
"DL"
"DD"
OVB
&
UVB
536
OVL
533
SYN
532
0
414
t
0
t
0
VCHK_LBDL
&
≥1
415
VCHK_DBLL
&
416
VCHK_DBDL
&
413
VCHK_SYN
0.01 - 10.00S
TDBDL
&
535
t
0.01 - 10.00S
TDBLL
&
UVL
"S "
TLBDL
534
412
VCHK
0.01 - 10.00S
TSYN
t
0
0.01 – 10.00S
Figure 2.3.6 Energising Control Scheme
Figure 2.3.6 shows the energising control scheme. The voltage and synchronism check output
signal VCHK is generated when the following conditions have been established;
• Synchronism check element SYN operates and on-delay timer TSYN is picked up.
• Busbar overvoltage detector OVB and line undervoltage detector UVL operate, and
on-delay timer TLBDL is picked up. (This detects live bus and dead line condition.)
• Busbar undervoltage detector UVB and line overvoltage detector OVL operate, and
on-delay timer TDBLL is picked up. (This detects dead bus and live line condition.)
Using the scheme switch [VCHK], the energising direction can be selected.
⎯ 28 ⎯
6 F 2 S 0 9 0 4
Setting of [VCHK]
Energising control
LD
Reclosed under "live bus and dead line" condition or with synchronism check
DL
Reclosed under "dead bus and live line" condition or with synchronism check
DD
Reclosed under "dead bus and dead line" condition
S
Reclosed with synchronism check only.
OFF
Reclosed without voltage and synchronism check.
When [VCHK] is set to "LD", the line is energised in the direction from the busbar to line under
"live bus and dead line" condition. When [VCHK] is set to "DL", the line is energised in the
direction from the line to busbar under "dead bus and live line" condition. When [VCHK] is set to
"DD", the line is under "dead bus and dead line" condition.
When a synchronism check output exists, autoreclose is executed regardless of the scheme switch
position.
When [VCHK] is set to "S", a three-phase autoreclose is performed with the synchronism check
only.
When [VCHK] is set to "OFF", three-phase autoreclose is performed without voltage and
synchronism check.
The voltage and synchronism check requires a single-phase voltage from the busbar and the line.
Additionally, it is not necessary to fix the phase of the reference voltage.
To match the busbar voltage and line voltage for the voltage and synchronism check option
mentioned above, the GRD130 has the following three switches and VT ratio settings as shown in
Figure 2.3.7.
[VTPHSEL]: This switch is used to match the voltage phases. If the A-phase voltage or
A-phase to B-phase voltage is used as a reference voltage, "A" is selected.
[VT-RATE]: This switch is used to match the magnitude and phase angle. "PH-G" is
selected when the reference voltage is a single-phase voltage while "PH-PH" is
selected when it is a phase-to-phase voltage.
[VES-RATE]: This switch is for reference voltage (Ves) and the setting method is same is
above.
[3PH-VT]:
"Bus"; - The three phase voltages (Va, Vb, Vc) are Busbar voltage (VB).
- The reference voltage (Ves) is Line voltage(VL).
"Line"; - The three phase voltages (Va, Vb, Vc) are Line voltage (VL).
- The reference voltage (Ves) is Busbar voltage(VB).
⎯ 29 ⎯
6 F 2 S 0 9 0 4
Three phase
voltages
Reference
voltage
Va
Vb
Voltage check
&
Synchronism check
Vc
Ves
[VTPHSEL]
+
"A"
+
"B"
+
"C"
[VT - RATE]
+
"PH-PH"
+
"PH-G"
[VES - RATE]
+
"PH-PH"
+
"PH-G"
[3PH - VT]
+
+
"Bus"
"Line"
Figure 2.3.7 Matching of Busbar Voltage and Line Voltage
Characteristics of OVL, UVL, OVB, UVB, and SYN
The voltage check and synchronism check elements are used for autoreclose.
The output of the voltage check element is used to check whether the line voltage (VL) and busbar
voltage (VB) are dead or live. The voltage check element has undervoltage detectors UVL and
UVB, and overvoltage detectors OVL and OVB for the line voltage and busbar voltage check. The
under voltage detector checks that the line or busbar is dead while the overvoltage detector checks
that it is live. These detectors function in the same manner as other level detectors described later.
Figure 2.3.8 shows the voltage and synchronism check zone.
VLLine voltage
(Incoming voltage)
Dead bus and
live line
A
B
Live bus and
live line
OVL
A, C, D: Voltage check
B: Synchronism check
Dead bus and
dead line
Live bus and
dead line
UVL
C
0V
D
UVB
OVB
VB Busbar voltage
(Runningvoltage)
Figure 2.3.8 Voltage and Synchronism Check Zone
The synchronism check element SYN is composed of the following check functions:
⎯ 30 ⎯
6 F 2 S 0 9 0 4
-
SYNΔθ(SYNθ): checks the phase angle difference between the line voltage (incoming
voltage) and the busbar voltage (running voltage)
-
SYNUV/OV: check the line voltage and the busbar voltage
-
SYNΔV(SYNDV): checks the voltage difference between the line voltage (incoming
voltage) and the busbar voltage (running voltage)
-
SYNΔf(SYNDf): checks the frequency difference between the line voltage (incoming
voltage) and the busbar voltage (running voltage)
The SYN is configured by these detectors as shown in Figure 2.3.9. The SYNΔf can be disabled by
the scheme switch [DfEN].
SYNΔθ
&
SYNUV/OV
&
SYN
OUTPUT
SYNΔV
+ "Off"
SYNΔf
[DfEN]
"On"
Figure 2.3.9 Block diagram of SYN1
Figure 2.3.10 shows the characteristics of the synchronism check element used for the autoreclose
if the line and busbar are live.
The synchronism check element operates if both the voltage difference and phase angle difference
are within their setting values.
θS = SYNθ setting
VL
θs
VB
θ
ΔV
SYNOV
SYNUV
Figure 2.3.10 Synchronism Check
For the element SYN, the voltage difference is checked by the following equations.
SYNOV ≤ VB ≤ SYNUV
SYNOV ≤ VL ≤ SYNUV
ΔV = |VL − VB| ≤ ΔVs
where,
ΔVs = Voltage difference setting
VB = busbar voltage
⎯ 31 ⎯
6 F 2 S 0 9 0 4
VL = line voltage
SYNOV = lower voltage setting
SYNUV = upper voltage setting
ΔV = Voltage difference
The frequency difference is checked by the following equations.
Δf = |fVL1 − fVB| ≤ Δfs
where,
fVB = frequency of VB
fVL = frequency of VL
Δf = frequency difference
Δfs= frequency difference setting
The phase difference is checked by the following equations.
VB ⋅ VL cos θ ≥ 0
VB ⋅ VL sin (SYNθS) ≥ VB ⋅ VL sinθ
where,
θ = phase difference between VB and VL
SYNθs = phase difference setting
Note:
The relay can directly detect a slip cycle (frequency difference Δf) if Δf is not used.
When the phase difference setting SYNθs and the synchronism check time setting
TSYN are given a detected maximum slip cycle is determined using the following
equation:
f=
SYNθs
180°×TSYN
where,
f = slip cycle
SYNθs = phase difference setting (degree)
TSYN = setting of synchronism check timer TSYN (second)
⎯ 32 ⎯
6 F 2 S 0 9 0 4
Setting
The setting elements necessary for the voltage and synchronism check function and their setting
ranges are shown in the table below.
Element
OVB
UVB
OVL
UVL
SYNUV
SYNOV
SYNDV
SYN θ
SYNDf
TSYN
TLBDL
TDBLL
TDBDL
[VCHK]
[DfEN]
[VTPHSEL]
[VT-RATE]
[VES-RATE]
[3PH-VT]
Range
10 - 150 V
10 - 150 V
10 - 150 V
10 - 150 V
10 - 150 V
10 - 150 V
0 - 150 V
5 - 75°
0.01 – 2.00 Hz
0.01 - 10.00 s
0.01 - 10.00 s
0.01 - 10.00 s
0.01 - 10.00 s
Off/LD/DL/DD/S
Off/On
A/B/C
PH-G / PH-PH
PH-G / PH-PH
Bus / Line
Step
1V
1V
1V
1V
1V
1V
1V
1°
0.01 Hz
0.01 s
0.01 s
0.01 s
0.01 s
Default
51 V
13 V
51 V
13 V
83 V
51 V
150 V
30°
1.00 Hz
1.00 s
0.05 s
0.05 s
0.05 s
Off
Off
A
PH-G
PH-G
Line
⎯ 33 ⎯
Remarks
Live bus check
Dead bus check
Live line check
Dead line check
UV element of synchronism check
OV element of synchronism check
Voltage difference for SYN
Synchronism check (phase angle difference)
Frequency difference check for SYN
Synchronism check time (Live-bus & Live-line)
Voltage check time (Live-bus & Dead-line)
Voltage check time (dead-bus & Live-line)
Voltage check time (Dead-bus & Dead-line)
Autoreclosing voltage check
Frequency difference checking enable
VT phase selection
VT rating
Ves rating
3-phase VT location
6 F 2 S 0 9 0 4
2.4
Trip and Alarm Signal Output
GRD130 provides various trip and alarm signal outputs such as three-phase and single-phase trip
and alarm for each protection. Figures 2.4.1 shows gathered trip and alarm signals for each
protection.
GRD130 provides 8 auxiliary relays for binary outputs as described in Section 3.2.7. These
auxiliary relays can be assigned to any protection outputs by PLC function.
After the trip signal disappears by clearing the fault, the reset time of the tripping output relay can
be programmed by PLC function. The setting is respective for each output relay.
When the relay is latched, it can be reset with the RESET key on the relay front panel or a binary
input by PLC signal. This resetting resets all the output relays collectively.
For the tripping output relay, a check must be made to ensure that the tripping circuit is open by
monitoring the` status of a circuit breaker auxiliary contact prior to the tripping output relay
resetting, in order to prevent the tripping output relay from directly interrupting the circuit breaker
tripping coil current.
OV1 TRIP
OV2 TRIP
OV3 TRIP
≥1
UV1 TRIP
371
GEN_TRIP
UV2 TRIP
UV3 TRIP
ZOV1 TRIP
NOV1 TRIP
OV1-A TRIP
372
OV2-A TRIP
OV3-A TRIP
≥1
GEN_TRIP-A
UV1-A TRIP
UV2-A TRIP
UV3-A TRIP
OV1-B TRIP
373
OV2-B TRIP
OV3-B TRIP
≥1
GEN_TRIP-B
UV1-B TRIP
UV2-B TRIP
UV3-B TRIP
2.4.1 Tripping and Alarm Outputs
⎯ 34 ⎯
6 F 2 S 0 9 0 4
OV1-C TRIP
374
OV2-C TRIP
≥1
OV3-C TRIP
GEN_TRIP-C
UV1-C TRIP
UV2-C TRIP
UV3-C TRIP
375
ZOV1_TRIP
FRQ1 TRIP
≥1
1680 FRQ_S1_TRIP
≥1
DFRQ1 TRIP
FRQ2 TRIP
DFRQ2 TRIP
FRQ3 TRIP
DFRQ3 TRIP
FRQ4 TRIP
DFRQ4 TRIP
GEN. TRIP-N
≥1
1681 FRQ_S2_TRIP
≥1
1682 FRQ_S3_TRIP
≥1
1683 FRQ_S4_TRIP
355
FRQ_TRIP
By PLC
OV4 ALARM
≥1
UV4 ALARM
380
GEN_ALARM
ZOV2 ALARM
NOV2 ALARM
OV4-A ALARM
UV4-A ALARM
OV4-B ALARM
UV4-B ALARM
OV4-C ALARM
UV4-C ALARM
≥1
381
≥1
382
≥1
383
384
ZOV2 ALARM
GEN_ALARM-A
GEN_ALARM-B
GEN_ALARM-C
GEN_ALARM-N
2.4.1 Tripping and Alarm Outputs (cont’d)
⎯ 35 ⎯
6 F 2 S 0 9 0 4
3. Technical Description
3.1
Hardware Description
3.1.1
Outline of Hardware Modules
The case outline of GRD130 is shown in Appendix E.
The hardware structure of GRD130 is shown in Figure 3.1.1.
The GRD130 relay unit consists of the following hardware modules. These modules are fixed in a
frame and cannot be taken off individually. The human machine interface module is provided with
the front panel.
• Power module (POWD)
• Signal processing module (SPMD)
• Human machine interface module (HMI)
The hardware block diagram of GRD130 is shown in Figure 3.1.2.
SPMD
POWD
HMI
IN SERVI CE
TR IP
ALARM
VIEW
RESET
A
Handle for relay
withdrawal
B
0V CAN
CEL ENTER
END
Figure 3.1.1 Hardware Structure without Case
⎯ 36 ⎯
6 F 2 S 0 9 0 4
DC
supply
Binary
input
AC input
V
POWD
ETH
Ethernet LAN I/F
× 1 or 2
SPMD2
DC/DC
Converter
Photo-coupler
×8
VT x 4
(Max)
Analogue
filter
Multiplexer
A/D
converter
MPU
RAM
ROM
Remote PC
RS485 or
Optical fibre
port × 1
Remote PC
Auxiliary relay
×8
Binary output
(Trip
command etc.)
IRIG-B port
External
clock
Human machine
Interface (HMI)
Liquid crystal display
16 characters × 2 lines
LEDs
Local
personal
computer
RS232C
I/F
Operation keys
Monitoring
jacks
Models 110D and 410D
Figure 3.1.2 Hardware Block Diagram
POWD Module
The POWD module insulates between the internal and external circuits through an auxiliary
transformer and transforms the magnitude of AC input signals to suit the electronic circuits. The
AC input signals may be one to three phase currents and a residual current depending on the relay
model.
This module incorporates max. 4 auxiliary VTs, DC/DC converter and 8 photo-coupler circuits for
binary input signals.
The available input voltage ratings of the DC/DC converter are, 24V, 48V, 110V/125V or
220/250V. The normal range of input voltage is shown in Appendix I.
SPMD Module (SPMD2)
The SPMD module consists of analogue filter, multiplexer, analogue to digital (A/D) converter,
main processing unit (MPU), random access memory (RAM) and read only memory (ROM) and
executes all kinds of processing such as protection, measurement, recording and display.
The analogue filter performs low-pass filtering for the corresponding current signals.
The A/D converter has a resolution of 12 bits and samples input signals at sampling frequencies of
2400 Hz (at 50 Hz) and 2880 Hz (at 60 Hz).
RS485, fibre optic and/or Ethernet LAN serial ports are provided for communication to a remote
PC, and IRIG-B port also can be provided for external clock. Ethernet LAN ports are mounted on
ETH sub-module.
Auxiliary relays for binary output signals are provided.
The SPMD module incorporates 8 auxiliary relays (BO1-BO7 and FAIL) for binary output
⎯ 37 ⎯
6 F 2 S 0 9 0 4
signals. Auxiliary relays BO1 to BO6 are user configurable output signals and have one normally
open and one normally closed contact. BO7 is also a user-configurable output signal and has one
normally open contact. (Refer to Appendix F.) The auxiliary relay FAIL has one normally open
and one normally closed contacts, and operates when a relay failure or abnormality in the DC
circuit is detected.
Human Machine Interface (HMI) Module
The operator can access the GRD130 via the human machine interface (HMI) module. As shown
in Figure 3.1.3, the HMI panel has a liquid crystal display (LCD), light emitting diodes (LED),
view and reset keys, operation keys, monitoring jacks and an RS232C connector on the front
panel.
The LCD consists of 16 columns by 2 rows with a back-light and displays recording, status and
setting data.
There are a total of 9 LED indicators and their signal labels and LED colors are defined as follows:
Label
Color
Remarks
IN SERVICE
Green
Lit when the relay is in service and flickered when the relay is in “Test” menu.
TRIP
Red
Lit when a trip command is issued.
ALARM
Red
Lit when a failure is detected.
(LED1)
Yellow
(LED2)
Yellow
(LED3)
Yellow
(LED4)
Yellow
(LED5)
Yellow
(LED6)
Yellow
LED1 to LED6 are user-configurable. Each is driven via a logic gate which can be programmed
for OR gate or AND gate operation. Further, each LED has a programmable reset characteristic,
settable for instantaneous drop-off, or for latching operation. A configurable LED can be
programmed to indicate the OR combination of a maximum of 4 elements, the individual statuses
of which can be viewed on the LCD screen as “Virtual LEDs.” For the setting, see Section
4.2.6.10. For the operation, see Section 4.2.1.
The TRIP LED and an operated LED if latching operation is selected, must be reset by user, either
by pressing the RESET key, by energising a binary input which has been programmed for
‘Remote Reset’ operation, or by a communications command. Other LEDs operate as long as a
signal is present. The RESET key is ineffective for these LEDs. Further, the TRIP LED is
controlled with the scheme switch [AOLED] whether it is lit or not by an output of alarm element
such as OV4 ALARM, UV4 ALARM, etc..
The VIEW key starts the LCD indication and switches between windows. The RESET key
clears the LCD indication and turns off the LCD back-light.
The operation keys are used to display the record, status and setting data on the LCD, input the
settings or change the settings.
The monitoring jacks and two pairs of LEDs, A and B, on top of the jacks can be used while the
test mode is selected in the LCD window. Signals can be displayed on LED A or LED B by
selecting the signal to be observed from the "Signal List" and setting it in the window and the
signals can be transmitted to an oscilloscope via the monitoring jacks. (For the "Signal List", see
Appendix B.)
⎯ 38 ⎯
6 F 2 S 0 9 0 4
The RS232C connector is a 9-way D-type connector for serial RS232C connection. This
connector is used for connection with a local personal computer.
Screw for cover
Liquid crystal
display
IN SERVICE
TRIP
ALARM
Light emitting
diodes (LED)
VIEW
RESET
Operation keys
Light emitting
diodes (LED)
Monitoring Jacks
A
B
RS232C connector
0V CAN
CEL ENTER
END
Screw for handle
To a local PC
Screw for cover
Figure 3.1.3 Front Panel
⎯ 39 ⎯
6 F 2 S 0 9 0 4
3.2
Input and Output Signals
3.2.1
AC Input Signals
Table 3.2.1 shows the AC input signals necessary for the GRD130 model and their respective
input terminal numbers. Their terminal members depend on their scheme switch [APPLVES]
setting.
Table 3.2.1 AC Input Signals
: Scheme switch [APPLVES] setting
Model
Term. No.
of TB1
210
410
1PP
1PN
2PP
3PN
3PP
2PP
1-2
Phase-tophase
voltage
Phase-toneutral
voltage
A-B phase
voltage
A phase
voltage
A-B phase
voltage
A-B phase
voltage
3-4
Ve or Vs (*)
Ve or Vs (*)
B-C phase
voltage
B phase
voltage
B-C phase
voltage
B-C phase
voltage
5-6
---
---
---
C phase
voltage
C-A phase
voltage
---
7-8
---
---
---
---
Ve or Vs (*)
Ve or Vs (*)
(*): Residual voltage Ve or Reference voltage Vs for synchronism check depend on the [APPLVES]
setting.
3.2.2
Binary Input Signals
The GRD130 provides eight programmable binary input circuits. Each binary input circuit is
programmable by PLC function, and provided with the function of Logic level inversion.
The binary input circuit of the GRD130 is provided with a logic level inversion function and a
pick-up and drop-off delay timer function as shown in Figure 3.2.1. Each input circuit has a binary
switch BISNS which can be used to select either normal or inverted operation. This allows the
inputs to be driven either by normally open or normally closed contacts. Where the driving contact
meets the contact conditions then the BISNS can be set to “Norm” (normal). If not, then “Inv”
(inverted) should be selected. The pick-up and drop-off delay times can be set 0.0 to 300.00s
respectively.
Logic level inversion function, and pick-up and drop-off delay timer settings are as follow:
Element
Contents
Range
Step
Default
BI1SNS - BI8SNS
Binary switch
Norm/ Inv
BI1PUD - BI8PUD
Delayed pick-up timer
0.00 - 300.00s
0.01s
0.00
BI1DOD - BI8DOD
Delayed drop-off timer
0.00 - 300.00s
0.01s
0.00
Norm
The binary input signals can be programmed to switch between eight settings groups. Change of
active setting group is performed by PLC (Signal No. 2640 to 2647).
Four alarm messages (Alarm1 to Alarm4) can be set. The user can define a text message within 16
characters for each alarm. The messages are valid for any of the input signals BI1 to BI8 by setting.
Then when inputs associated with that alarm are raised, the defined text is displayed on the LCD.
These alarm output signals are signal Nos. 2560 to 2563.
⎯ 40 ⎯
6 F 2 S 0 9 0 4
GRD130
(+) (−)
BI1
1284
BI1PUD
BI1DOD
t
0
0
t
BI1
[BI1SNS]
"Norm"
"Inv"
BI2
1285
BI2PUD
BI2DOD
t
0
0
t
BI2
1
[BI2SNS]
769
"Norm"
"Inv"
BI8
768
1291
BI8PUD
BI8DOD
t
0
0
t
1
[BI8SNS]
775
BI8
"Norm"
"Inv"
1
1
0V
Figure 3.2.1 Logic Level Inversion
3.2.3
Binary Output Signals
The number of binary output signals and their output terminals are as shown in Appendix E. All
outputs, except the relay failure signal, can be configured.
GRD130 provides 8 auxiliary relays which is composed of one auxiliary relay FAIL for relay fail
output and seven programmable auxiliary relays BO1 to BO7. BO1 to BO7 can be programmed.
The reset time of the tripping output relay following fault clearance can be programmed. The
setting is respective for each output relay.
The signals shown in the signal list in Appendix B can be assigned to the output relays BOs
individually or in arbitrary combinations. Signals can be combined using either an AND circuit or
OR circuit with 6 gates each as shown in Figure 3.2.2. The output circuit can be configured
according to the setting menu. Appendix G shows the factory default settings.
Further, each BO has a programmable reset characteristic, settable for instantaneous drop-off
“Inst”, for delayed drop-off “Dl”, for dwell operation “Dw” or for latching operation “Latch” by
the scheme switch [RESET]. The time of the delayed drop-off “Dl” or dwell operation “Dw” can
be set by TBO. When “Dw” selected, the BO outputs for the TBO set time if the input signal does
not continue on the TBO set time. If the input signal continues more, the BO output is continuous
for the input signal time.
When the relay is latched, it can be reset with the RESET key on the relay front panel or a binary
input. This resetting resets all the output relays collectively.
The relay failure contact closes when a relay defect or abnormality in the DC power supply circuit
is detected.
⎯ 41 ⎯
6 F 2 S 0 9 0 4
Signal List
&
Appendix B
Auxiliary relay
6 GATES
or
≥1
≥1
6 GATES
&
TBO
&
[RESET]
+
"Dw"
t
0.00 – 10.00s
"Dl"
&
"Lat"
+
0
S
F/F
R
Reset button
≥
By PLC
768
1639 IND.RESET
BI1_COMMAND
Figure 3.2.3 Configurable Output
Settings
The setting elements necessary for binary output relays and their setting ranges are as follows:
Element
[RESET]
Range
Inst Dl / Dw /Lat
Step
Default
See Appendix C
TBO
0.00 – 10.00s
0.01s
See Appendix C
⎯ 42 ⎯
Remarks
Output relay reset time. Instantaneous,
delayed, dwell or latched.
6 F 2 S 0 9 0 4
3.2.4
PLC (Programmable Logic Controller) Function
GRD130 is provided with a PLC function allowing user-configurable sequence logic on binary
signals. The sequence logic with timers, flip-flops, AND, OR, XOR, NOT logic, etc. can be
produced by using the PC software “PLC tool” and linked to signals corresponding to relay
elements or binary circuits.
Configurable binary inputs and the initiation trigger of fault records and disturbance records are
programmed using the PLC function. Temporary signals are provided for complicated logic or for
using a user-configured signal in many logic sequences.
PLC logic is assigned to protection signals by using the PLC tool. For PLC tool, refer to the PLC
tool instruction manual.
Figure 3.2.4.1 Sample Screen for PLC Tool
⎯ 43 ⎯
6 F 2 S 0 9 0 4
3.3
Automatic Supervision
3.3.1
Basic Concept of Supervision
Though the protection system is in a non-operating state under normal conditions, it waits for a
power system fault to occur at any time, and must operate for the fault without fail. Therefore, the
automatic supervision function, which checks the health of the protection system during normal
operation, plays an important role. The GRD130 implements an automatic supervision function,
based on the following concepts:
• The supervising function should not affect the protection performance.
• Perform supervision with no omissions wherever possible.
• When a failure occurs, it is recorded as Alarm record, the user should be able to easily identify
the location of the failure.
3.3.2
Relay Monitoring
The relay is supervised by the following functions.
AC input imbalance monitoring
The AC current input is monitored to check that the following equation is satisfied and the health
of the AC input circuit is verified.
• Zero sequence voltage monitoring for [APPL-VT]= “3PN” setting
|Va + Vb + Vc| / 3 ≤ 6.35 (V)
• Negative sequence voltage monitoring for [APPL-VT]= “3PN” setting
|Va + a2Vb + aVc| / 3 ≤ 6.35 (V)
where, a = Phase shifter of 120°, a2 = Phase shifter of 240°
The zero sequence monitoring and negative sequence monitoring allow high sensitivity detection
of failures that have occurred in the AC input circuits. These monitoring can be disabled by the
scheme switches [V0SVEN] and [V2SVEN] respectively.
The negative sequence voltage monitoring allows high sensitivity detection of failures in the
voltage input circuit, and it is effective for detection particularly when cables have been connected
with the incorrect phase sequence.
A/D accuracy checking
An analog reference voltage is input to a prescribed channel in the analog-to-digital (A/D)
converter, and it is checked that the data after A/D conversion is within a prescribed range, and
that the A/D conversion characteristics are correct.
Memory monitoring
Memory is monitored as follows, depending on the type of memory, and checks are performed to
verify that memory circuits are healthy:
• Random access memory monitoring:
Writes/reads prescribed data and checks the storage function.
• Program memory monitoring: Checks the checksum value of the written data.
• Setting value monitoring:
Checks discrepancies between the setting values stored in
duplicate.
⎯ 44 ⎯
6 F 2 S 0 9 0 4
Watchdog Timer
A hardware timer that is cleared periodically by the software is provided, which checks that the
software is running normally.
DC Supply Monitoring
The secondary voltage level of the built-in DC/DC converter is monitored, and is checked to see
that the DC voltage is within a prescribed range.
3.3.3
Trip Circuit Supervision
The circuit breaker tripping control circuit can be monitored by a binary input. Figure 3.3.1 shows
a typical scheme. A binary input BIn is assigned to No.1632:TC_FAIL signal by PLC. When the
trip circuit is complete, a small current flows through the binary input and the trip circuit. Then
logic signal of the binary input circuit BIn is "1".
If the trip supply is lost or if a connection becomes an open circuit, then the binary input resets and
the BIn output is "0". A trip circuit fail alarm TCSV is output when the BIn output is "0".
If the trip circuit failure is detected, then “ALARM” LED is lit and “Err: TC” is displayed in LCD
message.
The monitoring is enabled by setting the scheme switch [TCSPEN] to "ON".
(+)
Trip circuit supervision
BIn
Trip
output
1632 TC_FAIL
CB CLOSE
[TCSPEN]
+
CB trip coil
Figure 3.3.1
3.3.4
t
1
0
&
1270
TCSV
0.4s
≥1
"ON"
Trip Circuit Supervision Scheme Logic
Circuit Breaker Monitoring
The relay provides the following circuit breaker monitoring functions.
Circuit Breaker State Monitoring
Circuit breaker state monitoring is provided for checking the health of circuit breaker (CB). If two
binary inputs are programmed to the functions ‘CB_N/O_CONT’ and ‘CB_N/C_CONT’, then the
CB state monitoring function becomes active. In normal circumstances these inputs are in opposite
states. Figure 3.3.2 shows the scheme logic. If both show the same state during five seconds, then
a CB state alarm CBSV operates and “Err:CB” and “CB err” are displayed in LCD message and
event record message respectively.
The monitoring can be enabled or disabled by setting the scheme switch [CBSMEN].
Normally open and normally closed contacts of the CB are connected to binary inputs BIm and
BIn respectively, and functions of BIm and BIn are assigned to “CB_N/O_CONT” and
“CB_N/C_CONT” by PLC.
⎯ 45 ⎯
6 F 2 S 0 9 0 4
1633 CB_N/O_CONT
=1
1
t
0
&
1271
CBSV
5.0s
1634 CB_N/C_CONT
[CBSMEN]
+
"ON"
Figure 3.3.2 CB State Monitoring Scheme Logic
Circuit Breaker Condition Monitoring
Periodic maintenance of CB is required for checking of the trip circuit, the operation mechanism
and the interrupting capability. Generally, maintenance is based on a time interval or a number of
fault current interruptions.
The following CB condition monitoring functions are provided to determine the time for
maintenance of CB:
• Trip is counted for maintenance of the trip circuit and CB operation mechanism. The trip
counter increments the number of tripping operations performed. An alarm is issued and
informs user of time for maintenance when the count exceeds a user-defined setting TCALM.
The trip count alarm can be enabled or disabled by setting the scheme switch [TCAEN].
The counter can be initiated by PLC signals TP_COUNT and TP_COUNT-∗. The default
setting is the TP_COUNT is assigned to the GEN_TRIP signal.
The maintenance program should comply with the switchgear manufacturer’s instructions.
3.3.4
PLC Data and IEC61850 Mapping Data Monitoring
If there is a failure in PLC data or IEC61850 mapping data, the function may be prevented.
Therefore, PLC data and IEC61850 mapping data are monitored and the respective alarms "PLC
stop" and "MAP stop" are issued if a failure is detected.
3.3.5
IEC61850 Communication Monitoring
The sending and receiving functions on the Ethernet LAN communication are monitored. The
receiving function is executed by checking GOOSE message receiving status, and the sending
function is executed by checking a “Ping” response to the other party. If a failure is detected, an
alarm of "GOOSE stop" or "Ping err" is issued.
These functions are disabled by setting the scheme switches [GSECHK] and [PINGCHK].
3.3.6
Failure Alarms
When a failure is detected by the automatic supervision, it is followed with an LCD message, LED
indication, external alarm and event recording. Table 3.3.1 summarizes the supervision items and
alarms.
The LCD messages are shown on the "Auto-supervision" screen, which is displayed automatically
when a failure is detected or displayed by pressing the VIEW key. The event record messages
are shown on the "Event record" screen by opening the "Record" sub-menu.
The alarms are retained until the failure is recovered.
The alarms can be disabled collectively by setting the scheme switch [AMF] to "OFF". The AC
input imbalance monitoring alarms can be disabled collectively by setting the scheme switches
⎯ 46 ⎯
6 F 2 S 0 9 0 4
[CTSVEN], [V0SVEN] and [V2SVEN] to "OFF". The setting is used to block unnecessary alarms
during commissioning, test or maintenance.
When the Watchdog Timer detects that the software is not running normally, LCD display and
event recording of the failure may not function normally.
Table 3.3.1 Supervision Items and Alarms
Supervision Item
LCD Message
LED
"IN
SERVICE"
LED
"ALARM"
External
alarm
Alarm record Message
AC input imbalance
monitoring
Err:V0,
Err:V2 (1)
On/Off (2)
On
(4)
V0 err, V2 err,
Relay fail or Relay fail-A (2)
A/D accuracy check
Err:A/D
Off
On
(4)
Relay fail
Memory monitoring
Err:SUM, Err:RAM,
Err:BRAM, Err:EEP
Off
On
(4)
Relay fail
----
Off
On
(4)
----
DC supply monitoring
Err:DC
Off
(3)
Off
Relay fail-A
Trip circuit supervision
Err:TC
On
On
Off
TC err, Relay fail-A
CB state monitoring
Err:CB
On
On
Off
CB err, Relay fail-A
ALM:TP COUNT
On
On
Off
TP COUNT ALM,
Relay fail-A
PLC data or IEC61850
mapping data monitoring
Err: PLC, Err: MAP
On
On
(4)
Relay fail-A
GOOSE message check
Err: GOOSE
On
On
(4)
Relay fail-A
Err: Ping
On
On
(4)
Relay fail-A
Watchdog Timer
CB condition monitoring
Trip count alarm
Ping response check
(1): Various messages are provided as expressed with "Err:---" in the table in Section 6.7.2.
(2): The LED is on when the scheme switch [V0SVEN] or [V2SVEN] is set to "ALM" and off when
set to "ALM & BLK" (refer to Section 3.3.6). The message "Relay fail-A" is recorded when the
scheme switch [SVCNT] is set to "ALM".
(3): Whether the LED is lit or not depends on the degree of the voltage drop.
(4): The binary output relay "FAIL" operates.
The failure alarm and the relationship between the LCD message and the location of the failure is
shown in Table 6.7.1 in Section 6.7.2.
3.3.7
Trip Blocking
When a failure is detected by the following supervision items, the trip function is blocked as long
as the failure exists, and is restored when the failure is removed.
• A/D accuracy check
• Memory monitoring
• Watchdog Timer
When a fault is detected by the AC input imbalance monitoring, the scheme switches [V0SVEN]
and [V2SVEN] setting can be used to determine if both tripping is blocked and an alarm is output,
or if only an alarm is output.
⎯ 47 ⎯
6 F 2 S 0 9 0 4
3.3.8
Setting
The setting element necessary for the automatic supervision and its setting range are shown in the
table below.
Element
[V0SVEN]
[V2SVEN]
[TCSPEN]
[CBSMEN]
Range
Off/ALM&BLK/ALM
Off/ALM&BLK/ALM
Off/On
Off/On
[TCAEN]
OFF/ON
TCALM
1 - 10000
Step
1
⎯ 48 ⎯
Default
ALM
ALM
Off
Off
Remarks
AC input imbalance monitoring (Vo)
AC input imbalance monitoring (V2)
Trip circuit supervision
CB condition supervision
OFF
Trip count alarm
10000
Trip count alarm threshold setting
6 F 2 S 0 9 0 4
3.4
Recording Function
The GRD130 is provided with the following recording functions:
Fault recording
Event recording
Disturbance recording
Counters
These records are displayed on the LCD screen of the relay front panel or on the local or remote
PC.
3.4.1
Fault Recording
Fault recording is started by a tripping command of the GRD130 and the following items are
recorded for one fault:
Date and time
Trip mode
Operating phase
Power system quantities
User configurable initiation
User can configure four fault record triggers (Signal No.:2624 to 2627) by PLC. Any of input
signals as shown in Appendix B is assigned to these fault record trigger signals.
Up to the 8 most-recent faults are stored as fault records. If a new fault occurs when 8 faults have
been stored, the record of the oldest fault is deleted and the record of the latest fault is then stored.
Date and time occurrence
This is the time at which a tripping command has been initiated. The time resolution is 1 ms using
the relay internal clock.
Trip mode
This shows the protection scheme such as OV1, UV1 etc. that output the tripping command.
Operating phase
This is the phase to which a tripping command is output.
Power system quantities
The following power system quantities in pre-faults and post-faults are recorded.
-
Magnitude and phase angle of phase voltage (Va, Vb, Vc)
-
Magnitude and phase angle of phase-to-phase voltage (Vab, Vbc, Vca)
-
Magnitude and phase angle of symmetrical component voltage (V1, V2, V0)
-
Magnitude and phase angle of zero sequence voltage which is measured directly in the form of
the system residual voltage or of reference voltage for synchronism check (Ves)
-
Frequency (f)
⎯ 49 ⎯
6 F 2 S 0 9 0 4
3.4.2
Event Recording
The events shown are recorded with a 1 ms resolution time-tag when the status changes. Up to
1024 records can be stored. If an additional event occurs when 1024 records have been stored, the
oldest event record is deleted and the latest event record is then stored.
The user can set a maximum of 128 recording items, and their status change mode. The event
items can be assigned to a signal number in the signal list. The status change mode is set to “On”
(only recording On transitions) or “On/Off”(recording both On and Off transitions) mode by
setting. The “On/Off” mode events are specified by “Bi-trigger events” setting. If the “Bi-trigger
events” is set to “100”, No.1 to 100 events are “On/Off” mode and No.101 to 128 events are “On”
mode.
The name of an event can be set by RSM100. Maximum 22 characters can be set, but the LCD
displays only 11 characters. Therefore, it is recommended the maximum 11 characters are set. The
set name can be viewed on the Set.(view) screen.
The elements necessary for event recording and their setting ranges are shown in the table below.
The default setting of event record is shown in Appendix G.
3.4.3
Element
Range
Step
Default
Remarks
BITRN
0 - 128
1
100
Number of bi-trigger(on/off) events
EV1 – EV128
0 - 3071
Assign the signal number
Disturbance Recording
Disturbance recording is started when the overvoltage or undervoltage starter element operates or
a tripping command is initiated. Further, disturbance recording is started when a start command by
the PLC is initiated. The user can configure four disturbance record triggers (Signal No.:2632 to
2635) by PLC.
The records include maximum 8 analogue signals as shown in Table 3.4.1, 32 binary signals and
the dates and times at which recording started. Any binary signal shown in Appendix C can be
assigned by the binary signal setting of disturbance record.
Table 3.4.1 Analog Signals for Disturbance Recording
Model
APPL setting
Analog signals
Model 210
Model 410
1PP
1PN
2PP
3PN
3PP
2PP
Vph
Vph
Vab
Va
Vab
Vab
Ves
Ves
Vbc
Vb
Vbc
Vbc
Vc
Vca
Ves
Ves
Ves
The LCD display only shows the dates and times of disturbance records stored. Details can be
displayed on a PC. For how to obtain disturbance records on the PC, see the PC software
instruction manual.
The pre-fault recording time is fixed at 0.3s and post-fault recording time can be set between 0.1
and 5.0s.
The number of records stored depends on the post-fault recording time. The approximate
relationship between the post-fault recording time and the number of records stored is shown in
Table 3.4.2.
⎯ 50 ⎯
6 F 2 S 0 9 0 4
Note: If the recording time setting is changed, the records stored so far are deleted.
Table 3.4.2 Post Fault Recording Time and Number of Disturbance Records Stored
Recording time
0.1s
1.0s
2.0s
3.0s
3.5s
4.0s
4.5s
5.0s
50Hz
40
15
8
6
5
4
4
3
60Hz
40
13
7
5
4
4
3
3
Settings
The elements necessary for initiating a disturbance recording and their setting ranges are shown in
the table below.
Element
Range
Step
Default
Remarks
Time
0.1-5.0 s
0.1 s
2.0
Post-fault recording time
OV
10.0-200.0 V
0.1 V
120.0 V
Overvoltage detection
UV
1.0-130.0 V
0.1 V
60.0 V
Undervoltage detection
ZOV
1.0-130.0 V
0.1 V
20.0 V
Zero sequence overvoltage detection
NOV
1.0-130.0 V
0.1 V
20.0 V
Negative sequence overvoltage detection
Starting the disturbance recording by a tripping command or the starter element listed above is
enabled or disabled by setting the following scheme switches.
Element
Range
[Trip]
Step
Default
Remarks
OFF/ON
ON
Start by tripping command
[OV]
OFF/ON
ON
Start by OV operation
[UV]
OFF/ON
ON
Start by UV operation
[ZOV]
OFF/ON
ON
Start by ZOV operation
[NOV]
OFF/ON
ON
Start by NOV operation
⎯ 51 ⎯
6 F 2 S 0 9 0 4
3.5
Metering Function
The GRD130 measures current and demand values of phase and phase-to-phase voltages, residual
voltage, symmetrical component voltages, and frequency. The measurement data shown below is
displayed on the LCD of the relay front panel or on the local or remote PC.
Current: The following quantities are measured and updated every second.
-
Magnitude and phase angle of phase voltage (Va, Vb, Vc)
-
Magnitude and phase angle of phase-to-phase voltage (Vab, Vbc, Vca)
-
Magnitude and phase angle of zero sequence voltage which is measured directly in the form of
the system residual voltage, or of reference voltage for synchronism check (Ves)
-
Magnitude and phase angle of symmetrical component voltage (V1, V2, V0)
-
Frequency (f)
Demand
-
Maximum and minimum of phase voltage (Va, Vb, Vc: max, min)
-
Maximum and minimum of zero sequence voltage (V0: max, min)
-
Maximum and minimum of the system residual voltage or the reference voltage for
synchronism check (Ves: max, min)
-
Maximum and minimum of frequency (f: max, min)
The above system quantities are displayed in values on the primary side or on the secondary side
as determined by a setting. To display accurate values, it is necessary to set the CT ratio as well.
For the setting method, see "Setting the metering" in 4.2.6.6 and "Setting the parameter" in 4.2.6.7.
In the case of the maximum and minimum values display above, the measured quantity is averaged
over a rolling 15 minute time window, and the maximum and minimum recorded average values
are shown on the display screen.
The displayed quantities depend on [APPLVT] and [APPLVES] settings and relay model as
shown in Table 3.5.1. Input voltage greater than 0.06V at the secondary side are required for the
measurement.
Phase angles above are expressed taking the positive sequence voltage as a reference phase angle,
where leading phase angles are expressed as positive, (+).
Table 3.5.1
Model
APPL
Setting
Va
Vb
Vc
Vph
Ves
Vab
Vbc
Vca
V1
V2
V0
f
1PP
210
APPL
1PN
9
9
9
9
Displayed Quantity
2PP
9
9
9
9
9
9
9
9
⎯ 52 ⎯
3PN
9
9
9
9
9
9
9
9
9
9
9
410
APPL
3PP
2PP
9
9
9
9
9
9
9
9
9
9
9
9
9
6 F 2 S 0 9 0 4
4. User Interface
4.1
Outline of User Interface
The user can access the relay from the front or rear panel.
Local communication with the relay is also possible using a personal computer (PC) via an
RS232C port. Furthermore, remote communication is also possible using RSM (Relay Setting and
Monitoring), IEC61850 communication or IEC60870-5-103 communication via Ethernet LAN
port or RS485 port.
This section describes the front panel configuration and the basic configuration of the menu tree of
the local human machine communication ports and HMI (Human Machine Interface).
4.1.1
Front Panel
As shown in Figure 3.1.3, the front panel is provided with a liquid crystal display (LCD), light
emitting diodes (LED), operation keys, and RS-232C connector.
LCD
The LCD screen, provided with a 2-line, 16-character display and back-light, provides the user
with information such as records, statuses and settings. The LCD screen is normally unlit, but
pressing the VIEW key will display the digest screen and pressing any key other than VIEW
and RESET will display the menu screen.
These screens are turned off by pressing the RESET key or END key. If any display is left for 5
minutes or longer without operation, the back-light will go off.
LED
There are 9 LED displays. The signal labels and LED colors are defined as follows:
Label
Color
Remarks
IN SERVICE
Green
Lit when the relay is in service and flickered when the relay is in “Test” menu.
TRIP
ALARM
(LED1)
(LED2)
(LED3)
(LED4)
(LED5)
(LED6)
Red
Red
Yellow
Yellow
Yellow
Yellow
Yellow
Yellow
Lit when a trip command is issued.
Lit when a failure is detected.
Configurable LED to assign signals with or without latch when relay operates.
Configurable LED to assign signals with or without latch when relay operates.
Configurable LED to assign signals with or without latch when relay operates.
Configurable LED to assign signals with or without latch when relay operates.
Configurable LED to assign signals with or without latch when relay operates.
Configurable LED to assign signals with or without latch when relay operates.
LED1 to LED6 are configurable. For the setting, see Section 4.2.6.10.
The TRIP LED lights up once the relay is operating and remains lit even after the trip command
goes off. The TRIP LED can be turned off by pressing the RESET key. Other LEDs are lit as
long as a signal is present and the RESET key is invalid while the signal is being maintained.
⎯ 53 ⎯
6 F 2 S 0 9 0 4
Operation keys
The operation keys are used to display records, status, and set values on the LCD, as well as to
input or change set values. The function of each operation key is as follows:
c
,
,
,
: Used to move between lines displayed on a screen and to enter numerical
values and text strings.
d CANCEL :
Used to cancel entries and return to the upper screen.
e END :
Used to end the entering operation, return to the upper screen or turn off the
display.
f ENTER :
Used to store or establish entries.
VIEW and RESET keys
Pressing VIEW key displays digest screens such as "Metering", "Latest fault",
"Auto-supervision", "Alarm display" and "Indication".
Pressing RESET key turns off the display.
Monitoring jacks
The two monitoring jacks A and B and their respective LEDs can be used when the test mode is
selected on the LCD screen. By selecting the signal to be observed from the "Signal List" and
setting it on the screen, the signal can be displayed on LED A or LED B, or transmitted to an
oscilloscope via a monitoring jack.
RS232C connector
The RS232C connector is a 9-way D-type connector for serial RS232C connection with a local
personal computer.
⎯ 54 ⎯
6 F 2 S 0 9 0 4
4.1.2
Communication Ports
The following two interfaces are mounted as communication ports:
• RS232C port
• RS485, Fibre optic or Ethernet LAN port for serial communication
• IRIG-B port
RS232C port
This connector is a standard 9-way D-type connector for serial port RS232C transmission and is
mounted on the front panel. By connecting a personal computer to this connector, setting
operation and display functions can be performed. (See Figure 3.1.3.)
RS485, Fibre optic or Ethernet LAN port
The RS485 port or the fibre optic port is connected to the IEC60870-5-103 communication via
BCU/RTU (Bay Control Unit / Remote Terminal Unit) to connect between relays and to construct
a network communication system. (See Figure 4.4.1 in Section 4.4.) The RS485 port is a screw
terminal and the fibre optic port is the ST connector.
Ethernet LAN port is connected to the substation automation system via Ethernet communication
networks using IEC 61850 protocol. This port can also be connected to the RSM. 100Base-TX
(T1: RJ-45 connector) or 100Base-FX (F1: SC connector) for Ethernet LAN is provided on the
back of the relay as shown in Figure 4.1.1.
IRIG-B port
The IRIG-B port collects serial IRIG-B format data from the external clock to synchronize the
relay calendar clock. The IRIG-B port is isolated from the external circuit by a photo-coupler.
This port is on the back of the relay, as shown in Figure 4.1.1.
RS485 connection
terminal
TB3
TB1
Fibre Optic
(ST)
IRIG-B
TB2
OPT
T
TB1
R
TB3
IRIG-B
TB2
T1
F1
R
T
E
E
Rear view
(a) RS485 + 100BASE-TX
Rear view
(b) Fibre optic port + 100BASE-FX
Figure 4.1.1 Location of Communication Port
⎯ 55 ⎯
6 F 2 S 0 9 0 4
4.2
Operation of the User Interface
The user can access such functions as recording, measurement, relay setting and testing with the
LCD display and operation keys.
Note: LCD screens depend on the relay model and the scheme switch setting. Therefore,
LCD screens described in this section are samples of typical model.
4.2.1
LCD and LED Displays
Displays during normal operation
When the GRD130 is operating normally, the green "IN SERVICE" LED is lit and the LCD is off.
Press the VIEW key when the LCD is off to display the digest screens which are "Indication",
"Metering1", "Metering2", "Metering3", "Metering4", "Metering5", …., "Latest fault",
"Auto-supervision" and "Alarm Display" screens in turn. "Latest fault", "Auto-supervision" and
"Alarm Display" screens are displayed only when there is some data. The following are the digest
screens and can be displayed without entering the menu screens.
Indication
I N D 1 [ 0 0 0 0
I N D 2 [ 0 0 0 1
0 0 0 0 ]
0 0 0 0 ]
Metering 1
V a
∗ ∗ ∗ . ∗ ∗ k V
∗ ∗ ∗ . ∗ °
Available for model 410.
V b
∗ ∗ ∗ . ∗ ∗ k V
∗ ∗ ∗ . ∗ °
Available for model 410.
V c
∗ ∗ ∗ . ∗ ∗ k V
∗ ∗ ∗ . ∗ °
Available for model 410.
V p h
∗ ∗ ∗ . ∗ ∗ k V
∗ ∗ ∗ . ∗ °
Available for model 210.
V e s
∗ ∗ ∗ . ∗ ∗ k V
∗ ∗ ∗ . ∗ °
Not available for APPLVT=2PP in model 210.
V a b
∗ ∗ ∗ . ∗ ∗ k V
∗ ∗ ∗ . ∗ °
V b c
∗ ∗ ∗ . ∗ ∗ k V
∗ ∗ ∗ . ∗ °
V c a
∗ ∗ ∗ . ∗ ∗ k V
∗ ∗ ∗ . ∗ °
Metering 2
Metering 3
Metering 4
Metering 5
Metering 6
Metering 7
Metering 8
Metering 9
⎯ 56 ⎯
Available for model 410.
6 F 2 S 0 9 0 4
V 1
∗ ∗ ∗ . ∗ ∗ k V
∗ ∗ ∗ . ∗ °
Available for model 410.
V 2
∗ ∗ ∗ . ∗ ∗ k V
∗ ∗ ∗ . ∗ °
Available for model 410.
V 0
∗ ∗ ∗ . ∗ ∗ k V
∗ ∗ ∗ . ∗ °
Available for model 410.
Metering 10
Metering 11
Metering 12
∗ ∗ . ∗ ∗ H z
ff
To clear the latched indications (LEDs, LCD screen of Latest fault), press RESET key for 3
seconds or more.
For any display, the back-light is automatically turned off after five minutes.
Indication
This screen shows the status of elements assigned as a virtual LED.
I N D 1 [ 0 0 0 0
I N D 2 [ 0 0 0 1
0 0 0 0 ]
0 0 0 0 ]
Status of element,
Elements depend on user setting. 1: Operate, 0: Not operate (Reset)
Displays in tripping
Latest fault
P h a s e
O C 1
A B C E
: Faulted phases. Not displayed for model 110
: Tripping element
If a fault occurs and a tripping command is output when the LCD is off, the red "TRIP" LED and
other configurable LED if signals assigned to trigger by tripping
Press the VIEW key to scroll the LCD screen to read the rest of messages.
Press the RESET key to turn off the LEDs and LCD display.
Notes:
1) When configurable LEDs (LED1 through LED6) are assigned to latch signals by trigger of
tripping, press the RESET key more than 3s until the LCD screens relight. Confirm turning off
the configurable LEDs. Refer to Table 4.2.1 Step 1.
2) Then, press the RESET key again on the "Latest fault" screen in short period, confirm turning
off the "TRIP" LED. Refer to Table 4.2.1 Step 2.
3) When only the "TRIP" LED is go off by pressing the RESET key in short period, press the
RESET key again to reset remained LEDs in the manner 1) on the "Latest fault" screen or other
digest screens. LED1 through LED6 will remain lit in case the assigned signals are still active
state.
⎯ 57 ⎯
6 F 2 S 0 9 0 4
Table 4.2.1 Turning off latch LED operation
LED lighting status
Operation
Step 1
"TRIP" LED
Press the RESET key more than 3s on
the "Latest fault" screen
continue to lit
Step 2
Configurable LED
(LED1 – LED6)
turn off
Then, press the RESET key in short
period on the "Latest fault" screen
turn off
When any of the menu screens is displayed, the VIEW and RESET keys do not function.
To return from menu screen to the digest "Latest fault" screen, do the following:
• Return to the top screen of the menu by repeatedly pressing the END key.
• Press the END key to turn off the LCD.
• Press the VIEW key to display the digest "Latest fault" screen.
Auto-supervision
E r r : R OM , A / D
If the automatic supervision function detects a failure while the LCD is off, the
"Auto-supervision" screen is displayed automatically, showing the location of the failure, and the
"ALARM" LED lights.
Press the VIEW key to display other digest screens in turn including the "Metering" and "Latest
fault" screens.
Press the RESET key to turn off the LEDs and LCD display. However, if the failure continues,
the "ALARM" LED remains lit.
After recovery from a failure, the "ALARM" LED and "Auto-supervision" display turn off
automatically.
If a failure is detected while any of the screens is displayed, the current screen remains displayed
and the "ALARM" LED lights.
Notes:
1) When configurable LEDs (LED1 through LED6) are assigned to latch signals by issuing an
alarm, press the RESET key more than 3s until all LEDs reset except "IN SERVICE" LED.
2) When configurable LED is still lit by pressing RESET key in short period, press RESET key
again to reset remained LED in the above manner.
3) LED1 through LED6 will remain lit in case the assigned signals are still active state.
While any of the menu screens is displayed, the VIEW and RESET keys do not function. To
⎯ 58 ⎯
6 F 2 S 0 9 0 4
return to the digest "Auto-supervision" screen, do the following:
• Return to the top screen of the menu by repeatedly pressing the END key.
• Press the END key to turn off the LCD.
• Press the VIEW key to display the digest screen.
Alarm Display
Alarm Display (ALM1 to ALM4)
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
: A L M 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
The four alarm screens can be provided, and their text messages are defined by user. (For setting,
see Section 4.2.6.8) These alarms are raised by associated binary inputs.
Press the VIEW key to display other digest screens in turn including the "Metering" and "Latest
fault" screens.
To clear the Alarm Display, press RESET key. The clearing is available after displaying up to
ALM4.
4.2.2
Relay Menu
Figure 4.2.1 shows the menu hierarchy in the GRD130. The menu has five sub-menus, "Record",
"Status", "Set. (view)", "Set. (change)", and "Test". For details of the menu hierarchy, see
Appendix E.
⎯ 59 ⎯
6 F 2 S 0 9 0 4
Menu
Record
F. record
E. record
D. record
Counter
Status
Metering
Binary I/O
Relay element
Time sync.
Clock adjust.
LCD contrast
Set. (view)
Version
Description
Comms
Record
Status
Protection
Binary I/P
Binary O/P
LED
Set. (change)
Password
Description
Comms
Record
Status
Protection
Binary I/P
Binary O/P
LED
Test
Switch
Binary O/P
Figure 4.2.1 Relay Menu
⎯ 60 ⎯
6 F 2 S 0 9 0 4
Record
In the "Record" menu, the fault records event records, disturbance records and counts such as trip
count.
Status
The "Status" menu displays the power system quantities, binary input and output status, relay
measuring element status, signal source for time synchronisation (BI, RSM, IEC60870-5-103 or
SNTP), clock adjustment and LCD contrast.
Set. (view)
The "Set. (view)" menu displays the relay version, plant name and the current settings of relay
address, IP address and RS232C baud rate in communication, record, status, protection,
configurable binary inputs, configurable binary outputs and configurable LEDs.
Set. (change)
The "Set. (change)" menu is used to set or change the settings of password, plant name, relay
address, IP address and RS232C baud rate in communication, record, status, protection,
configurable binary inputs, configurable binary outputs and configurable LEDs.
Since this is an important menu and is used to set or change settings related to relay tripping, it has
password security protection.
Test
The "Test" menu is used to set testing switches and to forcibly operate binary output relays.
The "Test" menu also has password security protection.
When the LCD is off, press any key other than the VIEW and RESET keys to display the top
"MENU" screen and then proceed to the relay menus.
•
•
•
•
•
R
S
S
S
T
e
t
e
e
e
M
c
a
t
t
s
E N U
o r d
t u s
.
( v i e w )
.
( c h a n g e )
t
To display the "MENU" screen when the digest screen is displayed, press the RESET key to turn
off the LCD, then press any key other than the VIEW and RESET keys.
Press the END key when the top screen is displayed to turn off the LCD.
An example of the sub-menu screen is shown below. The top line shows the hierarchical layer.
The last item is not displayed for all the screens. " " or " " displayed on the far right shows that
lower or upper lines exist.
To move the cursor downward or upward for setting or for viewing other lines not displayed on the
and
keys.
window, use the
/ 5
T r i p
s w
• S c h e m e
• P r o t . e l e m e n t
⎯ 61 ⎯
6 F 2 S 0 9 0 4
To return to the higher screen or move from the right side screen to the left side screen in Appendix
E, press the END key.
The CANCEL key can also be used to return to the higher screen but it must be used carefully
because it may cancel entries made so far.
To move between screens of the same hierarchical depth, first return to the higher screen and then
move to the lower screen.
4.2.3
Displaying Records
The sub-menu of "Record" is used to display fault records, event records, disturbance records and
counts such as trip count.
4.2.3.1 Displaying Fault Records
To display fault records, do the following:
• Open the top "MENU" screen by pressing any keys other than the VIEW and RESET keys.
• Select "Record" to display the "Record" sub-menu.
/
•
•
•
•
1
F
E
D
C
.
.
.
o
R
r
r
r
u
e
e
e
e
n
c
c
c
c
t
o
o
o
o
e
r
r
r
r
r
d
d
d
d
• Select "F. record" to display the "F. record" screen.
/ 2
F . r e c o r d
• D i s p l a y
• C l e a r
• Select "Display" to display the dates and times of fault records stored in the relay from the top
in new-to-old sequence.
/ 3
F . r e c o r d
# 1
1
1
2
1
0
1
2
0
# 2
# 3
# 4
6
8
0
5
4
1
8
7
/
:
/
:
/
:
/
:
J
1
M
2
F
5
J
3
u
3
a
9
e
4
a
0
l
:
y
:
b
:
n
:
/
5
/
2
/
5
/
1
2
7
2
2
2
3
2
8
0
.
0
.
0
.
0
.
0
0
0
1
0
2
0
4
1
3
1
0
1
9
1
1
1
1
9
2
• Move the cursor to the fault record line to be displayed using the
ENTER key to display the details of the fault record.
⎯ 62 ⎯
and
keys and press the
6 F 2 S 0 9 0 4
/
0
1
O
P
P
V
4
1
8
V
h
r
a
/
:
1
a
e
V b
V c
V e s
V a b
V b c
V c a
V 1
V 2
V 0
f
d f
F a u
V a
V b
V c
V e s
V a b
V b c
V c a
V 0
V 1
V 2
f
d f
F . r e c o r d
# 1
J a n / 2 0 0 2
1 3 : 5 7 . 0 3 1
Trip element
s e
A B
f a u l t
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ .
− ∗ ∗ . ∗
l t
v a l
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ ∗ .
∗ ∗ ∗
∗ ∗ .
− ∗ ∗ . ∗
B
v
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
∗
u
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
∗
C
a
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
H
e
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
H
C A
l u e s
k V
°
k V
°
k V
°
k V
°
k V
°
k V
°
k V
°
k V
°
k V
°
k V
°
H z
z / s
s
k V
°
k V
°
k V
°
k V
°
k V
°
k V
°
k V
°
k V
°
k V
°
k V
°
H z
z / s
See Table 3.5.1 for the indicated quantities.
Note: Phase angles above are expressed taking that of positive sequence voltage (V1) as a reference phase
angle. When the V1 is not available, phase angles are not displayed.
Frequency above is displayed as "0Hz" when only residual voltage (zero sequence voltage) is input
to the relay
⎯ 63 ⎯
6 F 2 S 0 9 0 4
The lines which are not displayed in the window can be displayed by pressing the
and
keys.
To clear all the fault records, do the following:
• Open the "Record" sub-menu.
• Select "F. record" to display the "F. record" screen.
• Select "Clear" to display the following confirmation screen.
C l e a r
E N D = Y
r e c o r d s ?
C A N C E L = N
• Press the END (= Y) key to clear all the fault records stored in non-volatile memory.
If all fault records have been cleared, the "Latest fault" screen of the digest screens is not
displayed.
4.2.3.2 Displaying Event Records
To display event records, do the following:
• Open the top "MENU" screen by pressing any keys other than the VIEW and RESET keys.
• Select "Record" to display the "Record" sub-menu.
• Select "E. record" to display the "E. record" screen.
/ 2
E . r e c o r d
• D i s p l a y
• C l e a r
• Select "Display" to display the events with date from the top in new-to-old sequence.
/ 3
1
O
1
O
1
R
6
V
6
V
6
l
E . r e c o r d
/
1
/
1
/
y
O
O
O
.
c t / 2 0
A
t r i
c t / 2 0
A
c t / 2 0
c h a n
The time is displayed by pressing the
/ 3
1
O
1
O
1
R
Press the
8
V
8
V
8
l
0 9
p
0 9
O n
O n
0 9
g e
key.
E . r e c o r d
:
1
:
1
:
y
1
1
1
.
3 : 5 8 . 2
A
t r i p
3 : 5 8 . 0
A
t r i p
3 : 5 7 . 7
c h a n g
5 5
O n
2 8
O n
7 3
e
key to return the screen with date.
The lines which are not displayed in the window can be displayed by pressing the
To clear all the event records, do the following:
• Open the "Record" sub-menu.
• Select "E. record" to display the "E. record" screen.
⎯ 64 ⎯
and
keys.
6 F 2 S 0 9 0 4
• Select "Clear" to display the following confirmation screen.
C l e a r
E N D = Y
r e c o r d s ?
C A N C E L = N
• Press the END (= Y) key to clear all the event records stored in non-volatile memory.
4.2.3.3 Displaying Disturbance Records
Details of disturbance records can be displayed on the PC screen only (*); the LCD displays only
the recorded date and time for all disturbances stored in the relay. They are displayed in the
following sequence.
(*) For the display on the PC screen, refer to RSM100 manual.
• Open the top "MENU" screen by pressing any keys other than the VIEW and RESET keys.
• Select "Record" to display the "Record" sub-menu.
• Select "D. record" to display the "D. record" screen.
/ 2
D . r e c o r d
• D i s p l a y
• C l e a r
• Select "Display" to display the date and time of the disturbance records from the top in
new-to-old sequence.
/ 3
D . r e c o r d
# 1
1
1
2
1
0
1
2
0
# 2
# 3
# 4
6
8
0
5
4
1
8
7
/
:
/
:
/
:
/
:
O
1
S
2
J
5
F
3
c
3
e
9
u
4
e
0
t
:
p
:
l
:
b
:
/
5
/
2
/
5
/
1
2
7
2
2
2
3
2
8
0
.
0
.
0
.
0
.
0
4
0
3
0
4
0
8
9
0
9
8
9
4
9
7
1
8
4
6
The lines which are not displayed in the window can be displayed by pressing the
and
keys.
To clear all the disturbance records, do the following:
• Open the "Record" sub-menu.
• Select "D. record" to display the "D. record" screen.
• Select "Clear" to display the following confirmation screen.
C l e a r
E N D = Y
r e c o r d s ?
C A N C E L = N
• Press the END (= Y) key to clear all the disturbance records stored in non-volatile memory.
4.2.3.4 Displaying Counter
• Open the top "MENU" screen by pressing any keys other than the VIEW and RESET keys.
• Select "Record" to display the "Record" sub-menu.
• Select "Counter" to display the "Counter" screen.
⎯ 65 ⎯
6 F 2 S 0 9 0 4
/ 2
C o u n t e r
• D i s p l a y
T r i p s
• C l e a r
T r i p s
A
(*)
• C l e a r
T r i p s
B
(*)
• C l e a r
T r i p s
C
(*)
• C l e a r
(*) Note: These settings are only available when single phase External Trip BI functions
are used. In this case, the main "Clear Trips" option is not available.
• Select "Display" to display the counts stored in the relay.
/ 3
C o u n t e r
T r i p s
∗ ∗ ∗ ∗ ∗
T r i p s A
(*)
∗ ∗ ∗ ∗ ∗
T r i p s B
(*)
∗ ∗ ∗ ∗ ∗
T r i p s C
(*)
∗ ∗ ∗ ∗ ∗
(*) Note: These settings are only available when single phase External Trip BI functions
are used. In this case, the main "Trips" option is not available.
The lines which are not displayed in the window can be displayed by pressing the
and
keys.
To clear each count, do the following:
• Open the "Record" sub-menu.
• Select "Counter" to display the "Counter" screen.
• Select "Clear Trips" to display the following confirmation screen.
C l e a r
E N D = Y
T r i p s ?
C A N C E L = N
• Select "Clear Trips A" to display the following confirmation screen.
C l e a r
E N D = Y
T r i p s
A ?
C A N C E L = N
• Select "Clear Trips B" to display the following confirmation screen.
C l e a r
E N D = Y
T r i p s
B ?
C A N C E L = N
• Select "Clear Trips C" to display the following confirmation screen.
C l e a r
E N D = Y
T r i p s
C ?
C A N C E L = N
• Press the END (= Y) key to clear the count stored in non-volatile memory.
4.2.4
Displaying the Status
From the sub-menu of "Status", the following status condition can be displayed on the LCD:
Metering data of the protected line, apparatus, etc.
Status of binary inputs and outputs
Status of measuring elements output
Status of time synchronisation source
Status of clock adjustment
⎯ 66 ⎯
6 F 2 S 0 9 0 4
Status of LCD contrast
The data are updated every second.
4.2.4.1 Displaying Metering Data
To display metering data on the LCD, do the following:
• Select "Status" on the top "MENU" screen to display the "Status" screen.
/
•
•
•
•
•
•
1
M
B
R
T
C
L
e
i
e
i
l
C
S
t
n
l
m
o
D
t
e
a
a
e
c
a t u s
r i n g
r y
I /
y
e l e
s y n
k
a d j
c o n t r
O
m
c
u
a
e n t
.
s t .
s t
• Select "Metering" to display the "Metering" screen.
/ 2
M e t e r i n g
• M e t e r i n g
• D e m a n d
• Select "Current" to display the current power system quantities on the "Metering" screen.
<Model 210>
/ 3
M e t e r
V p h
∗ ∗
V e s
∗ ∗
∗
V a b
∗ ∗
∗
V b c
∗ ∗
∗
V 1
∗ ∗
∗
V 2
∗ ∗
∗
f
∗
i
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
n
.
.
∗
.
∗
.
∗
.
∗
.
∗
.
g
∗
∗
.
∗
.
∗
.
∗
.
∗
.
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
k
k
°
k
°
k
°
k
°
k
°
H
V
V
M e t e r i
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
n
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
g
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
k
°
k
°
k
°
k
°
k
°
k
°
k
°
k
V
V
V
V
V
z
<Model 410>
/ 3
V a
V b
V c
V e s
V a b
V b c
V c a
V 1
⎯ 67 ⎯
V
V
V
V
V
V
V
6 F 2 S 0 9 0 4
∗
∗ ∗
∗
∗ ∗
∗
∗
V 2
V 0
f
∗
∗
∗
∗
∗
∗
∗
.
∗
.
∗
.
.
∗
.
∗
.
∗
∗
∗
∗
∗
∗
∗
°
k V
°
k V
°
H z
Note: Phase angles above are expressed taking that of positive sequence voltage (V1) as a reference phase
angle. When the V1 is not available, phase angles are not displayed.
Frequency above is displayed as "0Hz" when only residual voltage (zero sequence voltage) is input
to the relay
• Select "Demand" to display the current demand on the "Metering" screen.
<Model 210>
/
V
V
V
V
V
V
V
V
f
f
3
p
p
e
e
a
a
b
b
m
m
h
h
s
s
b
b
c
c
a
i
D
m
m
m
m
m
m
m
m
x
n
e
a
i
a
i
a
i
a
i
m a n d
x
∗ ∗ ∗ . ∗ ∗ k V
n
∗ ∗ ∗ . ∗ ∗ k V
x
∗ ∗ ∗ . ∗ ∗ k V
n
∗ ∗ ∗ . ∗ ∗ k V
x
∗ ∗ ∗ . ∗ ∗ k V
n
∗ ∗ ∗ . ∗ ∗ k V
x
∗ ∗ ∗ . ∗ ∗ k V
n
∗ ∗ ∗ . ∗ ∗ k V
∗ ∗ . ∗ ∗ H z
∗ ∗ . ∗ ∗ H z
/
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
f
f
3
a
a
b
b
c
c
e
e
a
a
b
b
c
c
0
0
m
m
m
m
m
m
m
m
s
s
b
b
c
c
a
a
m
m
a
i
D
a
i
a
i
a
i
m
m
m
m
m
m
m
m
a
i
x
n
e
x
n
x
n
x
n
a
i
a
i
a
i
a
i
x
n
m a n
∗
∗
∗
∗
∗
∗
x
∗
n
∗
x
∗
n
∗
x
∗
n
∗
x
∗
n
∗
∗
∗
<Model 410>
d
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
H
H
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
z
z
To clear all max data, do the following:
• Press the RESET key on any max demand screen (primary or secondary) to display the
following confirmation screen.
C l e a r
E N D = Y
m a x ?
C A N C E L = N
• Press the END (= Y) key to clear all max data stored in non-volatile memory.
⎯ 68 ⎯
6 F 2 S 0 9 0 4
4.2.4.2 Displaying the Status of Binary Inputs and Outputs
To display the binary input and output status, do the following:
• Select "Status" on the top "MENU" screen to display the "Status" screen.
• Select "Binary I/O" to display the binary input and output status.
/ 2
I P
O P
B i n a r y
I / O
0 0 0 0 ]
[ 0 0 0 0
0 0 0 0 ]
[ 0 0 0 0
The display format is shown below.
[„
„
„
„
„
„
„
„]
Input (IP)
BI1
BI2
BI3
BI4
BI5
BI6
BI7
BI8
Output (OP)
BO1
BO2
BO3
BO4
BO5
BO6
BO7
FAIL
Line 1 shows the binary input status. BI1 to BI8 correspond to each binary input signal. For the
binary input signal, see Appendix H. The status is expressed with logical level "1" or "0" at the
photo-coupler output circuit.
Line 2 shows the binary output status. All binary outputs BO1 to BO7 are configurable. The status
of these outputs is expressed with logical level "1" or "0" at the input circuit of the output relay
driver. That is, the output relay is energised when the status is "1".
and
To display all the lines, press the
keys.
4.2.4.3 Displaying the Status of Measuring Elements
To display the status of measuring elements on the LCD, do the following:
• Select "Status" on the top "MENU" screen to display the "Status" screen.
• Select 3 "Ry element" to display the status of the relay elements.
/
O
O
U
U
Z
N
F
S
2
V
V
V
V
O
O
R
Y
#
#
#
#
V
V
Q
N
R
1
2
1
2
y
[
[
[
[
[
[
[
[
0
0
0
0
0
0
0
0
e
0
0
0
0
0
0
0
l e m e n t
0 0 0 0 0 0 0 ]
0
]
0 0 0 0 0 0 0 ]
0
]
]
]
0 0
]
]
The displayed elements depend on relay model. (See Table 1.1.1 in Section 1.)
The operation status of phase and residual overcurrent elements are shown as below.
OV#1
OV#2
UV#1
UV#2
ZOV
NOV
FRQ
SYN
[„
OV1-A
OV4-A
UV1-A
UV4-A
ZOV1
NOV1
FRQ1
SYN
„
OV1-B
OV4-B
UV1-B
UV4-B
ZOV2
NOV2
FRQ2
„
OV1-C
OV4-C
UV1-C
UV4-C
„
OV2-A
„
OV2-B
„
OV2-C
„
OV3-A
„
OV3-B
UV2-A
UV2-B
UV2-C
UV3-A
UV3-B
FRQ3
FRQ4
⎯ 69 ⎯
„]
OV3-C OV elements
OV elements
UV3-C UV elements
UV elements
ZOV elements
NOV elements
FRQ elements
SYN elements
6 F 2 S 0 9 0 4
The status of each element is expressed with logical level "1" or "0". Status "1" means the element
is in operation.
4.2.4.4 Displaying the Status of the Time Synchronisation Source
The internal clock of the GRD130 can be synchronised with external clocks such as the binary
input signal clock, IEC60870-5-103 or SNTP server. To display on the LCD whether these clocks
are active (=Act.) or inactive (=Inact.) and which clock the relay is synchronised with, do the
following:
• Select "Status" on the top "MENU" screen to display the "Status" screen.
• Select "Time sync." to display the status of time synchronisation sources.
/ 2
B
I
I
∗ S
I
R
E
N
T i m e
:
A
I G : I n
C
: I n
T P : A c
s
c
a
a
t
y
t
c
c
.
n c .
.
t
.
t
.
( S r v 1 )
The asterisk on the far left shows that the internal clock is synchronised with the marked source
clock. If the marked source clock is inactive, the internal clock runs locally.
Note: If the Binary input signal has not been detected for one hour or more after the last detection, the
status becomes "inactive".
For details of the setting time synchronisation, see Section 4.2.6.6.
4.2.4.5 Clock Adjustment
To adjust the clock when the internal clock is running locally, do the following:
• Select "Status" on the top "MENU" screen to display the "Status" screen.
• Select "Clock adjust." to display the setting screen.
/ 2
M i
H o
D a
M o
Y e
1 2 / N o v / 2 0 0 1
2 2 : 5 6 : 1 9
L o c
n u t e
5 6
_
u r
2 2
y
1 2
n t h
1 1
a r
2 0 0 9
Loc:Local, BI:BI, IRI:IRIG-B, IEC:IEC103, SNT:SNTP
Line 1 and 2 show the current date and time. The time can be adjusted only when the clock is
running locally. When [BI], [IRI], [IEC], [SNT] or [RSM] is active, the adjustment is invalid.
• Enter a numerical value for each item and press the ENTER key. For details to enter a
numerical value, see 4.2.6.1.
• Press the END key to adjust the internal clock to the set hours without fractions and return to
the previous screen.
If a date which does not exist in the calendar is set and END is pressed, "**** Error ****" is
displayed on the top line and the adjustment is discarded. Return to the normal screen by pressing
⎯ 70 ⎯
6 F 2 S 0 9 0 4
the CANCEL key and adjust again.
4.2.4.6 LCD Contrast
To adjust the contrast of LCD screen, do the following:
• Select "Status" on the top "MENU" screen to display the "Status" screen.
• Select "LCD contrast" to display the setting screen.
/ 2
L C D
c o n t r a s t
• Press the or key to adjust the contrast. The characters on the screen become thin by
pressing the key and deep by pressing the key.
4.2.5
Viewing the Settings
The sub-menu "Set. (view)" is used to view the settings made using the sub-menu "Set. (change)".
The following items are displayed:
Relay version
Description
Communication (Relay address, IP address and baud rate in the RSM or IEC60870-5-103)
Record setting
Status setting
Protection setting
Binary input setting
Binary output setting
LED setting
Enter an item on the LCD to display each item as described in the previous sections.
4.2.5.1 Relay Version
To view the relay version, do the following.
• Press the "Set.(view)" on the main menu.
/
•
•
•
•
•
•
•
•
•
1
V
D
C
R
S
P
B
B
L
e
e
o
e
t
r
i
i
E
S
r
s
m
c
a
o
n
n
D
e
s
c
m
o
t
t
a
a
t
i
r
s
r
u
e
r
r
. ( v i e w )
o n
i p t i o n
d
s
c t i o n
y
I / P
y
O / P
• Press the "Version" on the "Set.(view)" menu.
/ 2
V e r s i o n
t y p e
• R e l a y
⎯ 71 ⎯
6 F 2 S 0 9 0 4
N o .
• S e r i a l
• S o f t w a r e
• Select "Relay type" to display the relay type form and model number.
G R D 1 3 0 - 4 1 0 D - 1 0
- A 0
• Select "Serial number" to display the relay manufacturing number.
• Select "Software" to display the relay software type form and version.
s o f t w a r e
• M a i n
G S P D M 1 - 0 3 - ∗
• I
G
• P
P
(
• I
I
(
• I
X
(
• G
Y
(
E
∗
L
G
∗
E
G
∗
E
G
∗
O
G
∗
C
∗
C
R
∗
C
R
∗
C
R
∗
O
R
∗
6 1 8
∗ ∗ ∗
d a
D 1 3
∗ ∗ ∗
1 0 3
D 1 3
∗ ∗ ∗
6 1 8
D 1 3
∗ ∗ ∗
S E
Z 1 0
∗ ∗ ∗
5
t
0
∗
0
∗
5
0
∗
s
0
∗
0
∗
a
D
∗
d
D
∗
0
D
∗
u
D
∗
e n g .
∗ - ∗
∗
∗
a
∗
∗
∗
∗
b
∗
∗
∗
)
t
∗
)
d
∗
)
s
∗
)
∗ ∗
a
∗ ∗
a t a
∗ ∗
c .
∗ ∗
4.2.5.2 Settings
The "Description", "Comms", "Record", "Status", "Protection", "Binary I/P", "Binary O/P" and
"LED" screens display the current settings input using the "Set. (change)" sub-menu.
4.2.6
Changing the Settings
The "Set. (change)" sub-menu is used to make or change settings for the following items:
Password
Description
Communication (Relay address, IP address and baud rate in the RSM or IEC60870-5-103)
Recording setting
Status setting
Protection setting
Binary input setting
Binary output setting
LED setting
All of the above settings except the password can be seen using the "Set. (view)" sub-menu.
CAUTION
Care should be taken when modifying settings for "active group",
Modification of settings :
"scheme switch" and "protection element" in the "Protection" menu. Dependencies exist between
⎯ 72 ⎯
6 F 2 S 0 9 0 4
the settings in the various menus, with settings in one menu becoming active (or inactive)
depending on the selection made in another menu. Therefore, it is recommended that all necessary
settings changes be made while the circuit breaker tripping circuit is disconnected.
Alternatively, if it is necessary to make settings changes with the tripping circuit active, then it is
recommended to enter the new settings into a different settings group, and then change the "active
group" setting, thus ensuring that all new settings become valid simultaneously.
4.2.6.1 Setting Method
There are three setting methods as follows:
- To enter a selected item
- To enter a text string
- To enter numerical values
To enter a selected item
If a screen as shown below is displayed, perform setting as follows.
The cursor can be moved to upper or lower lines within the screen by pressing the
If setting (change) is not required, skip the line with the
and
keys.
/
•
•
•
•
•
•
•
•
•
1
P
D
C
R
S
P
B
B
L
a
e
o
e
t
r
i
i
E
S
s
s
m
c
a
o
n
n
D
e
s
c
m
o
t
t
a
a
t
w
r
s
r
u
e
r
r
and
keys.
. ( c h a n g e)
o r d
i p t i o n
d
s
c t i o n
y
I / P
y
O / P
• Move the cursor to a setting item.
• Press the ENTER key.
To enter a text string
Texts strings are entered under "Plant name" or "Description" screen.
/ 2
D e s c r i p t i o n
n a m e
• P l a n t
• D e s c r i p t i o n
To select a character, use keys , , and to move blinking cursor down, up, left and right. "
→ " and " ← " on each of lines 4, 8 and 10 indicate a space and backspace, respectively. A
maximum of 22 characters can be entered.
_
A
H
O
V
a
h
o
v
⎯ 73 ⎯
B
I
P
W
b
i
p
w
C
J
Q
X
c
j
q
x
D
K
R
Y
d
k
r
y
E
L
S
Z
e
l
s
z
F G
M N
T U
←→
f g
m n
t u
←→
6 F 2 S 0 9 0 4
0
7
(
}
>
‘
1
8
)
∗
!
:
2
9
[
/
“
;
3 4 5 6
←→
] @_ {
+ − < =
# $ %&
, . ˆ `
• Set the cursor position in the bracket by selecting "→" or "←" and pressing the ENTER key.
• Move the blinking cursor to a selecting character.
• Press the ENTER key to enter the blinking character at the cursor position in the brackets.
• Press the END key to confirm the entry and return to the upper screen.
To correct the entered character, do either of the following:
• Discard the character by selecting "←" and pressing the ENTER key and enter the new
character.
• Discard the whole entry by pressing the CANCEL key and restart the entry from the first.
To enter numerical values
When the screen shown below is displayed, perform setting as follows:
The number to the left of the cursor shows the current setting or default setting set at shipment. The
and
keys. If
cursor can be moved to upper or lower lines within the screen by pressing the
setting (change) is not required, skip the line with the
and
keys.
/ 4
T i m e / s t a r t e r
T i m
2
O V
1 2
U V
6
Z O V
2
N O V
2
e
. 0
s
_
V
0 . 0
V
0 . 0
V
0 . 0
V
0 . 0
• Move the cursor to a setting line.
• Press the
key.
or
key to set a desired value. The value is up or down by pressing the
or
• Press the ENTER key to enter the value.
• After completing the setting on the screen, press the END key to return to the upper screen.
To correct the entered numerical value, do the following.
• If it is before pressing the ENTER key, press the CANCEL key and enter the new
numerical value.
• If it is after pressing the ENTER key, move the cursor to the correcting line by pressing the
and
keys and enter the new numerical value.
⎯ 74 ⎯
6 F 2 S 0 9 0 4
Note: If the CANCEL key is pressed after any entry is confirmed by pressing the ENTER key, all
the entries made so far on the screen concerned are canceled and screen returns to the upper
one.
To complete the setting
Enter after making entries on each setting screen by pressing the ENTER key, the new settings
are not yet used for operation, though stored in the memory. To validate the new settings, take the
following steps.
• Press the END key to return to the upper screen. Repeat this until the confirmation screen
shown below is displayed. The confirmation screen is displayed just before returning to the
"Set. (change)" sub-menu.
C h a n g e
s e t t i n g s ?
E N T E R = Y
C A N C E L = N
• When the screen is displayed, press the ENTER key to start operation using the new settings,
or press the CANCEL key to correct or cancel entries. In the latter case, the screen turns back
to the setting screen to enable re-entries. Press the CANCEL key to cancel entries made so far
and to turn to the "Set. (change)" sub-menu.
4.2.6.2
Password
For the sake of security of Setting changes and Testing, password protection can be set as follows:
• Select "Set. (change)" on the main "MENU" screen to display the "Setting change" screen.
• Select "Password" to display the "Password" screen.
/ 2
P a s s w o r d
• S e t t i n g
• T e s t
• Select "Setting" to set the password for the setting change.
• Enter a 4-digit number within the brackets after "Input" and press the ENTER key.
I n p u t
[ _
1 2 3 4 5 6 7 8 9 0 ←
]
• For confirmation, enter the same 4-digit number in the brackets after "Retype".
R e t y p e
[ _
1 2 3 4 5 6 7 8 9 0 ←
]
• Press the END key to display the confirmation screen. If the retyped number is different from
that first entered, the following message is displayed on the bottom of the "Password" screen
before returning to the upper screen.
"Unmatch passwd!"
Re-entry is then requested.
• Select "Test" to set the password for the test.
Set the password the same manner as that of the "Setting" above.
⎯ 75 ⎯
6 F 2 S 0 9 0 4
Password trap
After the password has been set, the password must be entered in order to enter the setting change
screens.
If "Set. (change)" or "Test" is entered on the top "MENU" screen, the password trap screen
"Password" is displayed. If the password is not entered correctly, it is not possible to move to the
"Setting (change)" or "Test" sub-menu screens.
P a s s w o r d
[ _
1 2 3 4 5 6 7 8 9 0 ←
]
Canceling or changing the password
To cancel the password protection, enter "0000" in the two brackets on the "Password" screen. The
"Set. (change)" screen is then displayed without having to enter a password.
The password can be changed by entering a new 4-digit number on the "Password" screen in the
same way as the first password setting.
If you forget the password
Press CANCEL and RESET keys together for one second on the top "MENU" screen. The
screen goes off, and the password protection of the GRD130 is canceled. Set the password again.
4.2.6.3 Plant Name
To enter the plant name and other data, do the following. These data are attached to records.
• Select "Set. (change)" on the main "MENU" screen to display the " Set. (change)" screen.
• Select "Description" to display the "Description" screen.
/ 2
D e s c r i p t i o n
n a m e
• P l a n t
•
•
•
•
•
D
A
A
A
A
e
l
l
l
l
s
a
a
a
a
c
r
r
r
r
r
m
m
m
m
i p t i o n
1
T e x t
2
T e x t
3
T e x t
4
T e x t
• To enter the plant name, select "Plant name" on the "Description" screen.
• To enter special items, select "Description" on the "Description" screen.
• To enter the name for Alarm∗, select "Alarm∗" on the "Description" screen.
_
A
H
O
V
a
h
o
v
0
7
(
}
⎯ 76 ⎯
B
I
P
W
b
i
p
w
1
8
)
∗
C
J
Q
X
c
j
q
x
2
9
[
/
D
K
R
Y
d
k
r
y
3
E
L
S
Z
e
l
s
z
4
F G
M N
T U
←→
f g
m n
t u
←→
5 6
←→
] @_ {
+ − < =
6 F 2 S 0 9 0 4
> ! “ # $ %&
‘ : ; , . ˆ `
• Enter the text string (up to 22 characters) according to the text setting method.
4.2.6.4 Communication
If the relay is linked with RSM (relay setting and monitoring system) or IEC60870-5-103
communication or Ethernet LAN, the relay address must be set. Do this as follows:
• Select "Set. (change)" on the main "MENU" screen to display the "Set. (change)" screen.
• Select "Comms" to display the "Comms" screen.
/ 2
C o m m s
.
• A d d r . / P a r a m .
• S w i t c h
• Select "Addr./Param." on the "Comms" screen to enter the relay address number.
/ 3
A d d r . / P a r a m
I E C
2
_
S Y A D J
0
I P 1 1
I P 1 1
I P 1 I P 1 1
S M 1 2
S M 1 2
S M 1 2
S M 1 -
1
9
2
6
3
1
4
7
1
5
2
5
3
5
4
2
8
9
2
5
5
5
0
1
9 2
2
6 8
3
1 9
1 - 4
1
:
:
4 - 1
0
4 - 2
0
4 - 3
0
4 - 4
0
G W1 1
G W1 1
G W1 G W
S I
S I
S I
S I
⎯ 77 ⎯
6 F 2 S 0 9 0 4
S M O D E
0
D E A D T
1 2 0
G O I N T
6 0
P G 1 - 1
0
P G 1 - 2
0
P G 1 - 3
0
P G 1 - 4
0
P G 2 - 1
0
P G 2 - 2
0
P G 2 - 3
0
P G 2 - 4
0
•
m i n
s
Enter the address number on "IEC" column for IEC60870-5-103 and the compensation value
on "SYADJ" column for adjustment of time synchronization of protocol used (−: lags the time,
+: leads the time).
Enter IP address for IP1-1 to IP1-4, Subnet mask for SM1-1 to SM1-4, Default gateway for
GW1-1 to GW1-4, and SNTP server address for SI1-1 to SI4-4. Four SNTP servers are
available.
Enter "0" or "1" on "SMODE" column to set the standard time synchronized mode for SNTP
server. Using low accuracy level of time server, synchronized compensation to maintain
synchronization accuracy may not be done automatically. Therefore enter "1", and
synchronized compensation is done forcibly. The default setting is "0".
Enter the time on "GOINT" to set the maximum GOOSE message publishing term if GOOSE
message receive checked. Enter the time on "DEADT" to set the Keep Alive time.
Enter the IP address of the device for PG1-1 to PG1-4 if Ping response is checked.
IP address: ∗∗∗, ∗∗∗, ∗∗∗, ∗∗∗
IP1-1 IP1-2 IP1-3 IP1-4
SM1-1 to SM1-4, GW1-1 to GW1-4, SI1-1 to SI4-4, PG1-1 to PG1-4: same as above.
• Press the ENTER key.
CAUTION: Do not overlap the relay address number.
• Select "Switch" on the "Comms" screen to select the protocol and transmission speed (baud
rate), etc., of the RSM or IEC60870-5-103 or IEC61850.
/ 3
2
9
I
9
I
N
8
N
3
.
E
.
E
o
5
o
S w i t c h
2
6
C
6
C
r
0
r
C
/
B
/
B
m
B
m
1
R
1
L
a
L
a
.
0
9 . 2 / 5 7 . 6
1
9 . 2
K
0
l / B l o c k e d
K
0
l / B l o c k e d
⎯ 78 ⎯
6 F 2 S 0 9 0 4
8
O
T
O
G
O
P
O
5
f
S
f
S
f
I
f
0
f
T
f
E
f
N
f
A
/
M
/
C
/
G
/
U
O
O
O
H
O
C
O
T
n
D
n
K
n
H K
n
0
0
• Select the number and press the ENTER key.
<232C>
This line is to select the RS-232C baud rate when the RSM system applied.
Note: default setting of the 232C is 9.6kbps. The 57.6kbps setting, if possible, is recommended to
serve user for comfortable operation. The setting of RSM100 is also set to the same baud rate.
<IECBR>
This line is to select the baud rate when the IEC60870-5-103 system applied.
<IECBLK>
Select 2 (=Blocked) to block the monitor direction for IEC60870-5-103 communication.
<850BLK>
Select 2 (=Blocked) to block the monitor direction for IEC61850 communication.
<850AUT>
With IEC61850 communication, GRD130 provides access restriction which permits a client
access only if an authentication parameter matches with a valid parameter (password). The
password is a 4-digit number shared with RSM100.
Select 1 (=On) to use the authentication function.
<TSTMOD>
Select 1 (=On) to set the test mode in IEC61850 communication.
<GSECHK>
This function is to alarm if any one of the GOOSE messages written in a GOOSE subscribe file
cannot be received.
Select 1 (=On) to execute a GOOSE receive check for IEC61850 communication.
<PINGCHK>
This function is to check the health of the network by regularly sending a ‘Ping’ to IP address
which is set on PG∗-∗.
Select 1 (=On) to execute a ‘Ping’ response check.
4.2.6.5 Setting the Recording function
To set the recording function as described in Section 4.2.3, do the following:
⎯ 79 ⎯
6 F 2 S 0 9 0 4
• Select "Set. (change)" on the main "MENU" screen to display the "Set. (change)" screen.
• Select "Record" to display the "Record " screen.
/ 2
R e c o r d
• E . r e c o r d
• D . r e c o r d
• C o u n t e r
Setting the event recording
• Select "E. record" to display the "E. record" screen.
/ 3
E . r e c o r d
B I T R
1
E V 1
3 0
E V 2
3 0
E V 3
3 0
:
:
E V 1 2
3 1
E V 1 2
3 1
N
0 0
_
0 1
_
0 2
_
0 3
_
7
2 7
8
2 8
_
_
<BITRN>
Enter the number of event to record the status change both to "On" and "Off". If 20 is entered, both
status change is recorded for EV1 to EV20 events and only the status change to "On" is recorded
for EV21 to EV128 events.
<EV∗>
Enter the signal number in Appendix C to record as the event. It is recommended that this setting
can be performed by RSM100 because the signal name cannot be entered by LCD screen. (Refer
to Section 3.4.2.)
Setting the disturbance recording
• Select "D. record" to display the "D. record" screen.
/
•
•
•
3
D .
T i m e
S c h e
B i n a
r
/
m
r
e c o r d
s t a r t e r
e
s w
y
s i g .
• Select "Time/starter" to display the "Time/starter" screen.
/ 4
T i m e / s t a r t e r
T i m
2
O V
1 2
U V
6
e
. 0
s
_
V
0 . 0
V
0 . 0
⎯ 80 ⎯
6 F 2 S 0 9 0 4
Z O V
2 0 . 0
N O V
2 0 . 0
V
V
• Enter the recording time and starter element settings.
To set each starter to use or not to use, do the following:
• Select "Scheme sw" on the "D. record" screen to display the "Scheme sw" screen.
/ 4
T
O
O
O
U
O
Z
O
N
O
r
f
V
f
V
f
O
f
O
f
S c h e m e
i p
f / O n
s w
1
_
1
f / O n
1
f / O n
V
f / O n
V
f / O n
1
1
• Enter 1 to use as a starter. If not to be used as a starter, enter 0.
To set each signal number to record binary signals, do the following:
• Select "Binary sig." on the "D. record" screen to display the "Binary sig." screen.
/ 4
B i n a r y
S I G
3
S I G
3
S I G
3
1
0 0 1
2
0 0 2
3
0 0 3
s i g .
_
S I G 3 2
3 0 3 2
• Enter the signal number to record binary signals in Appendix C.
Setting the counter
• Select "Counter" to display the "Counter" screen.
/ 3
C o u n t e r
s w
• S c h e m e
• A l a r m s e t
To set each counter to use or not to use, do the following:
• Select "Scheme sw" on the "Counter" screen to display the "Scheme sw" screen.
/ 4
T
O
T
O
C
f
C
f
S c h e m e
S
f
A
f
P
/
E
/
s w
E N
0
_
O n / O p t - O n
N
0
O n
⎯ 81 ⎯
6 F 2 S 0 9 0 4
• Enter 1 to use as a counter. If not to be used as a counter, enter 0.
To set threshold setting, do the following:
• Select "Alarm set" on the "Counter" screen to display the "Alarm set" screen.
/ 4
A l a r m
T C A L M
1 0 0 0 0
s e t
_
• Enter the threshold settings.
4.2.6.6 Status
To set the status display described in Section 4.2.4, do the following:
Select "Status" on the "Set. (change)" sub-menu to display the "Status" screen.
/
•
•
•
2
S t a t u s
M e t e r i n g
T i m e
s y n c .
T i m e
z o n e
Setting the metering
• Select "Metering" to display the "Metering" screen.
/ 3
M e t e r i n g
D i s p l a y
0
_
P r i m . / S e c o n d .
• Enter 0 or 1 or 2 for Display.
Enter 0(=Prim.) to display the primary side voltage in kilo-volts(kV).
Enter 1(=Second.) to display the secondary side current.
Setting the time synchronisation
The calendar clock can run locally or be synchronised with the binary input signal, RSM clock, or
by an IEC60870-5-103. This is selected by setting as follows.
• Select "Time sync" to display the "Time sync" screen.
/ 3
T i m e
s y n c .
T i m e
s y n c
0
_
O f / B I / I R I / I E C / S N
• Enter 0, 1, 2 or 3 and press the ENTER key.
Enter 0(=of) not to be synchronised with any external signals.
Enter 1(=BI) to be synchronised with the binary input signal.
Enter 2(=IRI) to be synchronised with IRIG-B time signal.
Enter 3(=IEC) to be synchronised with IEC60870-5-103.
Enter 4(=SN) to be synchronised with SNTP.
Note: When selecting BI, IRIG-B, IEC60870-5-103 or SNTP, check that they are active on the
⎯ 82 ⎯
6 F 2 S 0 9 0 4
"Status" screen in "Status" sub-menu.
If BI is selected, the BI command trigger setting should be “None” because event records will
become full soon. (See Section 4.2.6.5.)
If it is set to an inactive BI, IRIG-B, IEC60870-5-103 or SNTP, the calendar clock runs locally.
Setting the time zone
When the calendar clock is synchronized with the IRIG-B time standard, it is possible to transform
GMT to the local time.
• Select "Time zone" to display the "Time zone" screen.
/ 3
T i m e
z o n e
G M T
h r s
+ 9
_
G M T m
M i n
+ 0
• Enter the difference between GMT and local time. Enter numerical values to GMT (hrs) and
GMTm (min), and press the ENTER key.
4.2.6.7 Protection
The GRD130 can have 8 setting groups for protection in order to accommodate changes in the
operation of the power system, one setting group is assigned active. To set the protection, do the
following:
• Select "Protection" on the "Set. (change)" screen to display the "Protection" screen.
/
•
•
•
2
P r o t e
C h a n g e
C h a n g e
C o p y
g p
c t i o n
a c t . g p .
s e t .
.
Changing the active group
• Select "Change act. gp." to display the "Change act. gp." screen.
/ 3
C h a n g e
a c t .
g p .
A c t i v e
g p .
1
_
• Enter the group number and press the ENTER key.
Changing the settings
Almost all the setting items have default values that are set when the product is shipped. For the
default values, see Appendix H. To change the settings, do the following:
• Select "Change set." to display the "Act gp.= *" screen.
/
•
•
•
•
•
•
•
3
C
G
G
G
G
G
G
o
r
r
r
r
r
r
A
m
o
o
o
o
o
o
c
m
u
u
u
u
u
u
t
o
p
p
p
p
p
p
g p . = ∗
n
1
2
3
4
5
6
⎯ 83 ⎯
6 F 2 S 0 9 0 4
• G r o u p 7
• G r o u p 8
Changing the Common settings
• Select "Common" to set the voltage input state and input imbalance monitoring and press the
ENTER key.
<Model 210>
/ 4
A
1
A
O
V
O
A
O
P
P
P
f
2
f
O
f
C o m m o n
P
P
P
f
S
f
L
f
L
/
L
/
V
/
E
/
1
1
V
V
E
A
D
O
P
E
e
N
L
_
N / 2 P P
S
/ V s
2
M & B L K / A L M
1
n
<Model 4210>
/ 4
A
3
A
O
V
O
V
O
A
O
P
P
P
f
0
f
2
f
O
f
C o m m o n
P
N
P
f
S
f
S
f
L
f
L
/
L
/
V
/
V
/
E
/
1
3
V
V
E
A
E
A
D
O
P
E
e
N
L
N
L
_
P / 2 P P
S
/ V s
2
M & B L K / A L M
2
M & B L K / A L M
1
n
<APPL>
• Enter 0(=1PP or 3PN), 1(=1PN or 3PP), or 2(=2PP) to set the voltage input state and press the
ENTER key.
<APPLVES>
• Enter 0(=Off: not used), 1(=Ve: used zero-sequence voltage is input directly) or 2(=Vs: used
voltage for synchronism check) and press the ENTER key.
<AOLED>
This switch is used to control the “TRIP” LED lighting when an alarm element outputs.
• Enter 1 (=On) to light the “TRIP” LED when an alarm element outputs, and press the ENTER
key. If not, enter 0 (=Off) and press the ENTER key.
< V0SVEN, V2SVEN>
To set AC input imbalance supervision enable, do the following.
• Enter 0(=Off) or 1(=ALM&BLK) or 2(=ALM) by pressing the
ENTER key.
⎯ 84 ⎯
or
key and press the
6 F 2 S 0 9 0 4
Changing the Group settings
• Select the "Group∗" on the "Act gp.= *" screen to change the settings and press the ENTER
key.
/ 4
G r o u p ∗
• P a r a m e t e r
• T r i p
Setting the parameter
Enter the line name, the CT/VT ratio and the fault locator as follows:
• Select "Parameter" on the "Group ∗" screen to display the "Parameter" screen.
/ 5
P a r a m e t e r
n a m e
• L i n e
r a t i o
• V T
• Select "Line name" to display the "Line name" screen.
• Enter the line name as a text string and press the EN D key.
• Select "VT ratio" to display the "VT ratio" screen.
/ 6
V T
r a t i o
P V T
1 0 0
V E S V T
1 0 0
for Ve or Vs
• Enter the VT ratio and press the ENTER key.
Setting the trip function
To set the scheme switches and protection elements, do the following.
• Select "Trip" on the "Group ∗" screen to display the "Trip" screen.
/ 5
T r i p
s w
• S c h e m e
e l e m e n t
• P r o t .
Setting the scheme switch
• Select "Scheme sw" on the "Trip" screen to display the "Scheme sw" screen.
/
•
•
•
•
•
•
6
O
U
Z
N
F
S
S c h e m e
V
V
O
O
R
Y
s w
V
V
Q
N
Setting the OV protection
The settings for the OV protection are as follows:
• Select "OV" on the "Scheme sw" screen to display the "OV" screen.
/ 7
O V
⎯ 85 ⎯
6 F 2 S 0 9 0 4
O
O
O
O
O
O
O
O
V
f
V
f
V
f
V
f
1
f
2
f
3
f
4
f
E
/
E
/
E
/
E
/
N
D
N
D
N
O
N
O
0
_
T / I D M T / C
0
T / I D M T / C
0
n
0
n
<OV1EN>, <OV2EN>
To set the OV1 and OV2 delay type, do the following.
• Enter 1 (=DT) or 2 (=IDMT) or 3 (=C: configurable curve) and press the ENTER key. If
disabling the OV1 or OV2, enter 0 (=Off) and press the ENTER key.
<OV3EN>, <OV4EN>
• Enter 1 (=On) to enable the OV3 or OV4, and press the ENTER key. If disabling the OV3 or
OV4, enter 0 (=Off) and press the ENTER key.
• After setting, press the END key to display the following confirmation screen.
C h a n g e
s e t t i n g s ?
E N T E R = Y
C A N C E L = N
• Press the ENTER (= Y) key to change settings and return to the "Scheme sw" screen.
Setting the UV protection
The settings for the UV protection are as follows:
• Select "UV" on the "Scheme sw" screen to display the "UV" screen.
/ 7
U
O
U
O
U
O
U
O
V
O
V
f
V
f
V
f
V
f
B
f
U V
1
f
2
f
3
f
4
f
L
f
E
/
E
/
E
/
E
/
K
/
N
D
N
D
N
O
N
O
E
O
1
_
T / I D M T / C
1
T / I D M T / C
0
n
0
n
N
0
n
<UV1EN>, <UV2EN>
To set the UV1 and UV2 delay type, do the following.
• Enter 1 (=DT) or 2 (=IDMT) or 3 (=C: configurable curve) and press the ENTER key. If
disabling the UV1 or UV2, enter 0 (=Off) and press the ENTER key.
<UV3EN>, <UV4EN>
• Enter 1 (=On) to enable the UV3 or UV4, and press the ENTER key. If disabling the UV3 or
UV4, enter 0 (=Off) and press the ENTER key.
⎯ 86 ⎯
6 F 2 S 0 9 0 4
• After setting, press the END key to display the following confirmation screen.
C h a n g e
s e t t i n g s ?
E N T E R = Y
C A N C E L = N
• Press the ENTER (= Y) key to change settings and return to the "Scheme sw" screen.
<VBLKEN>
• Enter 1 (=On) to enable the UV blocking and press the ENTER key. If disabling the UV
blocking, enter 0 (=Off) and press the ENTER key.
Setting the ZOV protection
The settings for the ZOV protection are as follows:
• Select "ZOV" on the "Scheme sw" screen to display the "ZOV" screen.
/ 7
Z
O
Z
O
O
f
O
f
Z O V
V
f
V
f
1
/
2
/
E
D
E
D
N
1
_
T / I D M T / C
N
0
T / I D M T / C
<ZOV1EN>, <ZOV2EN>
To set the ZOV1 and ZOV2 delay type, do the following.
• Enter 1 (=DT) or 2 (=IDMT) or 3 (=C: configurable curve) and press the ENTER key. If
disabling the ZOV1 or ZOV2, enter 0(=Off) and press the ENTER key.
• After setting, press the END key to display the following confirmation screen.
C h a n g e
s e t t i n g s ?
E N T E R = Y
C A N C E L = N
• Press the ENTER (= Y) key to change settings and return to the "Scheme sw" screen.
Setting the NOV protection
The settings for the NOV protection are as follows:
• Select "NOV" on the "Scheme sw" screen to display the "NOV" screen.
/ 7
N
O
N
O
O
f
O
f
N O V
V
f
V
f
1
/
2
/
E
D
E
D
N
1
_
T / I D M T / C
N
0
T / I D M T / C
<NOV1EN>, <NOV2EN>
To set the NOV1 and NOV2 delay type, do the following.
• Enter 1 (=DT) or 2 (=IDMT) or 3 (=C: configurable curve) and press the ENTER key. If
disabling the NOV1 or NOV2, enter 0(=Off) and press the ENTER key.
• After setting, press the END key to display the following confirmation screen.
⎯ 87 ⎯
6 F 2 S 0 9 0 4
C h a n g e
s e t t i n g s ?
E N T E R = Y
C A N C E L = N
• Press the ENTER (= Y) key to change settings and return to the "Scheme sw" screen.
Setting the FRQ protection
The settings for the FRQ (over/under frequency) protection are as follows:
• Select "FRQ" on the "Scheme sw" screen to display the "FRQ" screen.
/ 7
F
O
F
O
F
O
F
O
D
O
D
O
D
O
D
O
R
f
R
f
R
f
R
f
F
f
F
f
F
f
F
f
F R Q
Q
f
Q
f
Q
f
Q
f
R
f
R
f
R
f
R
f
1
/
2
/
3
/
4
/
Q
/
Q
/
Q
/
Q
/
E
O
E
O
E
O
E
O
1
R
2
R
3
R
4
R
N
F
N
F
N
F
N
F
E
/
E
/
E
/
E
/
0
_
/ U F
0
/ U F
0
/ U F
0
/ U F
N
D
N
D
N
D
N
D
0
0
0
0
<FRQ∗EN>
To set the FRQ∗ scheme enable, do the following.
• Enter 1(=OF, overfrequency) or 2(=UF, underfrequency) and press the ENTER key. If
disabling the FRQ∗, enter 0(=Off) and press the ENTER key.
<DFRQ∗EN>
To set the FRQ∗ scheme enable, do the following.
• Enter 1(=R, frequency rise rate) or 2(=UF, frequency decay rate) and press the ENTER key.
If disabling the FRQ∗, enter 0(=Off) and press the ENTER key.
Setting the SYN function
The settings for the SYN function are as follows:
• Select "SYN" on the "Scheme sw" screen to display the "SYN" screen.
/ 7
V
O
D
O
V
A
V
C
f
f
f
T
/
T
S Y N
H
f
E
f
P
B
-
K
/
N
/
H
/
R
0
L D / D L / D D / S
0
O n
S E L
0
C
A T E
0
⎯ 88 ⎯
6 F 2 S 0 9 0 4
P
V
P
3
B
H
E
H
P
u
S
H
s
G
G
/
/
R
/
V
L
P
A
P
T
i
H - P H
T E
H - P H
0
0
n e
<VCHK>
• Enter 0 or 1 or 2 or 3 or 4 and press the ENTER key.
Enter 0 (= Off) to perform the reclose without voltage and synchronism check.
Enter 1 (= LD) to perform the reclose under "live bus and dead line" condition or with
synchronism check.
Enter 2 (= DL) to perform the reclose under "dead bus and live line" condition or with
synchronism check.
Enter 3 (= DD) to perform the reclose under "dead bus and dead line" condition.
Enter 4 (= S) to perform the reclose with synchronism check.
<DfEN>
• Enter 0 or 1 and press the ENTER key.
Enter 0 (= Off) not to use the Δf checking function.
Enter 1 (= On) to use the Δf checking function.
<VTPHSEL>
• Enter 0 or 1 or 2 and press the ENTER key.
Enter 0 (= A) not to use A-phase voltage for voltage and synchronism check.
Enter 1 (= B) to use B-phase voltage.
Enter 2 (= C) to use C-phase voltage.
<VT-RATE>
• Enter 0 or 1 and press the ENTER key.
Enter 0 (= PH-G) if the VT rating of the selected above is a phase-to-earth voltage.
Enter 1 (= PH-PH) if the VT rating of the selected above is a phase-to-phase voltage.
<VES-RATE>
• Enter 0 or 1 and press the ENTER key.
Enter 0 (= PH-G) if the VT rating of the selected above is a phase-to-earth voltage.
Enter 1 (= PH-PH) if the VT rating of the selected above is a phase-to-phase voltage.
<3PH-VT>
• Enter 0 or 1 and press the ENTER key.
Enter 0 (= Bus) if three-phase voltage is applied to the bus side.
Enter 1 (= Line) if three-phase voltage is applied to the line side..
⎯ 89 ⎯
6 F 2 S 0 9 0 4
Setting the protection elements
To set the protection elements, do the following.
• Select "Prot. element" on the "Trip" screen to display the "Prot. element" screen.
/
•
•
•
•
•
•
6
O
U
Z
N
F
S
P r o t . e l e m e n t
V
V
O
O
R
Y
V
V
Q
N
Setting the OV elements
• Select "OV" on the "Prot. element" screen to display the "OV" screen.
/ 7
O V
O V 1
1 2 0
T O V 1
1 .
T O V 1
1 .
T O V 1
0
O V 1 D
. 0
0
M
0
R
.
P
9
O V 2
1 4 0 .
:
:
O V 2 D P
9
O V 3
2 4 0 .
T O V 3
1 . 0
O V 3 D P
9
O V 4
1 4 0 .
T O V 4
1 . 0
O V 4 D P
9
O V 1 - k
1 . 0
O V 1 - α
1 . 0
O V 1 - C
0 . 0 0
O V 2 - k
1 . 0
O V 2 - α
1 . 0
O V 2 - C
V
OV1 Threshold setting.
s
OV1 Definite time delay.
_
0
OV1 Inverse time multiplier setting.
0
0
R
5
s
OV1 Definite time reset delay.
%
OV1 DO/PU ratio
V
OV2 Threshold setting.
%
OV2 DO/PU ratio
V
OV3 Threshold setting.
s
OV3 Definite time delay.
%
OV3 DO/PU ratio
V
OV4 Threshold setting.
s
OV4 Definite time delay.
%
OV4 DO/PU ratio
0
R
5
0
0
R
5
0
0
R
5
OV1 User configurable IDMT curve setting
0
ditto
0
ditto
0
OV2 User configurable IDMT curve setting
0
ditto
0
ditto
⎯ 90 ⎯
6 F 2 S 0 9 0 4
0 . 0 0 0
• Enter the numerical value and press the ENTER key.
• After setting, press the END key to display the following confirmation screen.
C h a n g e
s e t t i n g s ?
E N T E R = Y
C A N C E L = N
• Press the ENTER (= Y) key to change settings and return to the "Prot. element" screen.
Setting the UV elements
• Select "UV" on the "Prot. element" screen to display the "UV" screen.
/ 7
U V 1
6
T U V
1
T U V
1
T U V
U V 2
4
T U V
1
T U V
U V 3
4
T U V
1
U V 4
4
T U V
1
V B L
1
U V 1
1
U V 1
1
U V 1
0 .
U V 2
1
U V 2
1
U V 2
0 .
U V
0
1
.
1
.
1
0
0
2
.
2
0
. 0
0 0
M
0 0
R
. 0
UV1 Threshold setting.
s
UV1 Definite time delay.
UV1 Inverse time multiplier setting.
s
UV1 Definite time reset delay.
V
UV2 Threshold setting.
s
UV2 Definite time setting.
s
UV2 Definite time reset delay.
V
UV3 Threshold setting.
s
UV3 Definite time setting.
V
UV4 Threshold setting.
s
UV4 Definite time setting.
V
UV Blocking threshold
. 0
0 0
R
. 0
0 . 0
3
. 0 0
0
4
.
K
0
.
.
0
.
.
0
V
_
. 0
0 0
.
k
0
α
0
C
0
k
0
α
0
C
0
0
UV1 User configurable IDMT curve setting
0
ditto
0
ditto
0
UV2 User configurable IDMT curve setting
0
ditto
0
ditto
0
• Enter the numerical value and press the ENTER key.
• After setting, press the END key to display the following confirmation screen.
C h a n g e
s e t t i n g s ?
⎯ 91 ⎯
6 F 2 S 0 9 0 4
E N T E R = Y
C A N C E L = N
• Press the ENTER (= Y) key to change settings and return to the "Prot. element" screen.
Setting the ZOV elements
• Select "ZOV" on the "Prot. element" screen to display the "ZOV" screen.
/ 7
Z O V
Z O V
2
T Z O
1
T Z O
1
T Z O
1
0
V
.
V
.
V
0
2
0
V
.
V
.
V
0
1
.
1
.
1
0
2
.
2
.
2
0
Z O V
4
T Z O
1
T Z O
1
T Z O
Z O V
1
Z O V
1
Z O V
0 .
Z O V
1
Z O V
1
Z O V
0 .
.
1
0
1
0
1
.
.
2
0
2
0
2
.
0
0
0
0
0
0
0
V
ZOV1 Threshold setting.
s
ZOV1 Definite time setting.
_
0
M
0
R
0
ZOV1 Inverse time multiplier setting.
s
ZOV1 Definite time reset delay.
V
ZOV2 Threshold setting.
s
ZOV2 Definite time setting.
0
0
M
0
R
0
k
0
α
0
C
0
k
0
α
0
C
0
ZOV2 Inverse time multiplier setting.
s
ZOV2 Definite time reset delay.
ZOV1 User configurable IDMT curve setting
ditto
ditto
ZOV2 User configurable IDMT curve setting
ditto
ditto
• Enter the numerical value and press the ENTER key.
• After setting, press the END key to display the following confirmation screen.
C h a n g e
s e t t i n g s ?
E N T E R = Y
C A N C E L = N
• Press the ENTER (= Y) key to change settings and return to the "Prot. element" screen.
Setting the NOV protection elements
• Select "NOV" on the "Prot. element" screen to display the "NOV" screen.
/ 7
N O V
N O V
2
T N O
1
T N O
1
0
V
.
V
. 0
1
0 0
1 M
V
NOV1 Threshold setting.
s
NOV1 Definite time setting.
_
NOV1 Inverse time multiplier setting.
⎯ 92 ⎯
6 F 2 S 0 9 0 4
1 . 0
T N O V 1
0 .
N O V 2
4 0 .
T N O V 2
1 . 0
T N O V 2
1 . 0
T N O V 2
0 .
N O V 1 1 . 0
N O V 1 1 . 0
N O V 1 0 . 0 0
N O V 2 1 . 0
N O V 2 1 . 0
N O V 2 0 . 0 0
0
R
0
s
NOV1 Definite time reset delay.
V
NOV2 Threshold setting.
s
NOV2 Definite time setting.
0
0
M
0
R
0
k
0
α
0
C
0
k
0
α
0
C
0
NOV2 Inverse time multiplier setting.
s
NOV2 Definite time reset delay.
NOV1 User configurable IDMT curve setting
ditto
ditto
NOV2 User configurable IDMT curve setting
ditto
ditto
• Enter the numerical value and press the ENTER key.
• After setting, press the END key to display the following confirmation screen.
C h a n g e
s e t t i n g s ?
E N T E R = Y
C A N C E L = N
• Press the ENTER (= Y) key to change settings and return to the "Prot. element" screen.
Setting the FRQ elements
• Select "FRQ" on the "Prot. element" screen to display the "FRQ" screen.
/ 7
F R Q
F R Q 1
− 1 . 0
T F R Q 1
1 . 0
F R Q 2
− 1 . 0
T F R Q 2
1 . 0
F R Q 3
− 1 . 0
T F R Q 3
1 . 0
F R Q 4
− 1 . 0
T F R Q 4
1 . 0
F V B L K
4 0 .
D F R Q 1
0 .
H z
0
_
0
H z
0
0
H z
0
0
H z
0
_
0
V
0
H z s
5
⎯ 93 ⎯
UV Blocking threshold
6 F 2 S 0 9 0 4
D F R Q
0
D F R Q
0
D F R Q
0
2
. 5
3
. 5
4
. 5
H z s
H z s
H z s
• Enter the numerical value and press the ENTER key.
• After setting, press the END key to display the following confirmation screen.
C h a n g e
s e t t i n g s ?
E N T E R = Y
C A N C E L = N
• Press the ENTER (= Y) key to change settings and return to the "Prot. element" screen.
Setting SYN function
• Select "SYN" on the "Prot. element" screen to display the "SYN" screen.
/ 7
S Y N
O V B
V
5 1
U V B
V
1 3
O V L
V
5 1
U V L
S Y N U
S Y N O
S Y N D
1
S Y N θ
S Y
T S
T L
T D
T D
O C
E F
S E
0
V
1
V
8
V
5
V
5
3
V
3
V
1
V
0
d e g
3 0
N D f
1 . 0 0
Y N
1 . 0 0
B D L
0 . 0 5
B L L
0 . 0 5
B D L
0 . 0 5
- C O
1 . 0 0
- C O
0 . 3 0
- C O
. 0 1 0
H z
s
s
s
s
A
A
A
• Enter the numerical value and press the ENTER key.
⎯ 94 ⎯
6 F 2 S 0 9 0 4
• After setting, press the END key to display the following confirmation screen.
C h a n g e
s e t t i n g s ?
E N T E R = Y
C A N C E L = N
• Press the ENTER (=Y) key to change settings and return to the "ARC" screen.
Setting group copy
To copy the settings of one group and overwrite them to another group, do the following:
• Select "Copy gp." on the "Protection" screen to display the "Copy A to B" screen.
/ 3
C o p y
A
t o
B
A
B
_
• Enter the group number to be copied in line A and press the ENTER key.
• Enter the group number to be overwritten by the copy in line B and press the ENTER key.
4.2.6.8 Binary Input
The logic level of binary input signals can be inverted by setting before entering the scheme logic.
Inversion is used when the input contact cannot meet the requirements described in Table 3.2.2.
• Select "Binary I/P" on the "Set. (change)" sub-menu to display the "Binary I/P" screen.
/
.
.
.
.
.
.
.
.
2
B
B
B
B
B
B
B
B
I
I
I
I
I
I
I
I
B i n a r y
1
2
3
4
5
6
7
8
I / P
Selection of Binary Input
• Select the input number (BI number) on the "Binary I/P" screen.
After setting, press the ENTER key to display the "BI∗" screen.
/ 3
B I ∗
• T i m e r s
• F u n c t i o n s
Setting timers
• Select "Timers" on the "BI" screen to display the "Timers" screen.
/ 4
T i m e r s
P U D
0 . 0 0
D O D
0 . 0 0
s
Pick-up delay setting
s
Drop-off delay setting
_
• Enter the numerical value and press the ENTER key.
⎯ 95 ⎯
6 F 2 S 0 9 0 4
• After setting, press the END key to return to the "BI∗" screen.
Setting Functions
• Select "Functions" on the "BI" screen to display the "Functions" screen.
/ 4
F u n c t i o n s
S N S
N o r m / I n v
1
_
• To set the Binary Input Sense, enter 0(=Normal) or 1(=Inverted) and press the ENTER key.
• After setting, press the END key to return to the "BI∗" screen.
4.2.6.9
Binary Output
All the binary outputs of the GRD130 except the relay failure signal are user-configurable. It is
possible to assign one signal or up to four ANDing or ORing signals to one output relay. Available
signals are listed in Appendix C.
It is also possible to attach Instantaneous or delayed or latched reset timing to these signals.
Appendix H shows the factory default settings.
CAUTION
When having changed the binary output settings, release the latch state on a digest screen by
pressing the RESET key for more than 3 seconds.
To configure the binary output signals, do the following:
Selection of output relay
•
Select "Binary O/P" on the "Set. (change)" screen to display the "Binary O/P" screen.
/
•
•
•
•
•
•
•
2
B
B
B
B
B
B
B
O
O
O
O
O
O
O
B i n a r y
1
2
3
4
5
6
7
O / P
Note: The setting is required for all the binary outputs. If any of the binary outputs are not used, enter
0 to logic gates #1 to #6 in assigning signals.
• Select the output relay number (BO number) and press the ENTER key to display the "BO∗"
screen.
/ 3
B O ∗
• L o g i c / R e s e t
• F u n c t i o n s
Setting the logic gate type and timer
• Select "Logic/Reset" to display the "Logic/Reset" screen.
/ 4
L o g i c / R e s e t
⎯ 96 ⎯
6 F 2 S 0 9 0 4
L
O
R
I
o
R
e
n
g
/
s
s
i
A
e
/
c
0
_
N D
t
0
D l / D w / L a t
• Enter 0(=OR) or 1(=AND) to use an OR gate or AND gate and press the ENTER key.
• Enter 0(=Instantaneous) or 1(=Delayed) or 2(=Dwell) or 3(=Latched) to select the reset timing
and press the ENTER key.
• Press the END key to return to the "BO∗" screen.
Note: To release the latch state, push the [RESET] key for more than 3 seconds.
Assigning signals
• Select "Functions" on the "BO∗" screen to display the "Functions" screen.
/ 4
I n
I n
I n
I n
I n
I n
T B
F u n c t i o n s
#
1 0
#
1 0
#
1 0
#
1 0
#
1 0
#
1 0
O
0 .
1
0
2
0
3
0
4
0
5
0
6
0
0
_
1
2
3
4
5
s
2 0
• Assign signals to gates (In #1 to #6) by entering the number corresponding to each signal
referring to Appendix C. Do not assign the signal numbers 471 to 477 (signal names: "BO1
OP" to "BO7 OP"). And set the delay time of timer TBO.
Note: If signals are not assigned to all the gates #1 to #6, enter 0 for the unassigned gate(s).
Repeat this process for the outputs to be configured.
4.2.6.10 LEDs
Six LEDs of the GRD130 are user-configurable. A configurable LED can be programmed to
indicate the OR combination of a maximum of 4 elements, the individual statuses of which can be
viewed on the LED screen as “Virtual LEDs.” The signals listed in Appendix C can be assigned to
each LED as follows.
CAUTION
When having changed the LED settings, must release the latch state on a digest screen by
pressing the RESET key for more than 3 seconds.
Selection of LEDs
• Select "LED" on the "Set. (change)" screen to display the "LED" screen.
⎯ 97 ⎯
6 F 2 S 0 9 0 4
/ 2
L E D
• L E D
• V i r t u a l
L E D
Selection of real LEDs
• Select "LED" on the "/2 LED" screen to display the "/3 LED" screen.
/
•
•
•
•
•
•
3
L
L
L
L
L
L
E
E
E
E
E
E
L
D
D
D
D
D
D
E D
1
2
3
4
5
6
• Select the LED number and press the ENTER key to display the "LED∗" screen.
/ 4
L E D ∗
• L o g i c / R e s e t
• F u n c t i o n s
Setting the logic gate type and reset type
• Select "Logic/Reset" to display the "Logic/Reset" screen.
/ 5
L
O
R
I
o
R
e
n
L o g i c / R e s e t
g
/
s
s
i
A
e
t
c
N D
t
/ L a t c h
0
_
0
• Enter 0(=OR) or 1(=AND) to use an OR gate or AND gate and press the ENTER key.
• Enter 0(=Instantaneous) or 1(=Latched) to select the reset timing and press the ENTER key.
• Press the END key to return to the "LED∗" screen.
Note: To release the latch state, refer to Section 4.2.1.
Assigning signals
• Select "Functions" on the "LED∗" screen to display the "Functions" screen.
/ 5
I n
F u n c t i o n s
#
1 0
I n
#
1 0
I n
#
1 0
I n
#
1 0
1
0
2
0
3
0
4
0
0
_
1
2
3
• Assign signals to gates (In #1 to #4) by entering the number corresponding to each signal
referring to Appendix C.
Note: If signals are not assigned to all the gates #1 to #4, enter 0 for the unassigned gate(s).
⎯ 98 ⎯
6 F 2 S 0 9 0 4
• Press the END key to return to the "LED∗" screen.
Repeat this process for the outputs to be configured.
Selection of virtual LEDs
• Select "Virtual LED" on the "/2 LED" screen to display the "Virtual LED" screen.
/ 3
V i r t u a l
• I N D 1
• I N D 2
L E D
• Select the IND number and press the ENTER key to display the "IND∗" screen.
/ 4
I N D ∗
• R e s e t
• F u n c t i o n s
Setting the reset timing
• Select "Reset" to display the "Reset" screen.
/ 5
R e s e t
R e s e t
I n s t / L a t c h
0
_
• Enter 0(=Instantaneous) or 1(=Latched) to select the reset timing and press the ENTER key.
• Press the END key to return to the "IND∗" screen.
Note: To release the latch state, push the [RESET] key for more than 3 seconds.
Assigning signals
• Select "Functions" on the "IND∗" screen to display the "Functions" screen.
/ 5
F u n c t i o n s
B I T
1
B I T
1
1
0 0 0
2
0 0 1
_
B I T 8
1 0 0 7
• Assign signals to bits (1 to 8) by entering the number corresponding to each signal referring to
Appendix C.
Note: If signals are not assigned to all the bits 1 to 8, enter 0 for the unassigned bit(s).
• Press the END key to return to the "IND∗" screen.
Repeat this process for the outputs to be configured.
4.2.7
Testing
The sub-menu "Test" provides such functions as disabling the automatic monitoring function and
forced operation of binary outputs. The password, if set, must be entered in order to enter the test
screens because the "Test" menu has password security protection. (See the section 4.2.6.2.) If the
⎯ 99 ⎯
6 F 2 S 0 9 0 4
password trap ser, enter the password in the following screen.
P a s s w o r d
[ _
1 2 3 4 5 6 7 8 9 0 ←
]
Note: When operating the "Test" menu, the "IN SERVICE" LED is flickering. But if an alarm occurs
during the test, the flickering stops. The "IN SERVICE" LED flickers only in a lighting state.
4.2.7.1 Scheme Switch
The automatic monitor function (A.M.F.) can be disabled by setting the switch [A.M.F] to "OFF".
Disabling the A.M.F. inhibits trip blocking even in the event of a failure in the items being
monitored by this function. It also prevents failures from being displayed on the "ALARM" LED
and LCD described in Section 4.2.1. No events related to A.M.F. are recorded, either.
Disabling A.M.F. is useful for blocking the output of unnecessary alarms during testing.
• Select "Test" on the top "MENU" screen to display the "Test" screen.
/
•
•
•
1
T e
S w i t
B i n a
L o g i
s t
c h
r y
O / P
c
c i r c u i t
• Select "Switch" to display the "Switch" screen.
/ 2
A
O
U
O
I
O
.
f
V
f
E
f
S w i t c h
M
f
T
f
C
f
.
/
S
/
T
/
F
O
T
O
S
O
.
n
1
_
0
n
T
n
0
• Enter 0(=Off) to disable the A.M.F. and press the ENTER key.
• Enter 1(=On) for UVTST to disable the UV block when testing UV elements and press the
ENTER key.
• Enter 1(=On) for IECTST to transmit ‘test mode’ to the control system by IEC60870-5-103
communication when testing the local relay, and press the ENTER key.
• Press the END key to return to the "Test" screen.
4.2.7.2 Binary Output Relay
It is possible to forcibly operate all binary output relays for checking connections with the external
devices. Forced operation can be performed on one or more binary outputs at a time.
• Select "Binary O/P" on the "Test" screen to display the "Binary O/P" screen. Then the LCD
displays the name of the output relay.
/ 2
B
D
B
D
O
i
O
i
B i n a r y
O / P
1
s a b l e / E n a
2
s a b l e / E n a
⎯ 100 ⎯
0
_
b l e
0
_
b l e
6 F 2 S 0 9 0 4
B
D
B
D
B
D
B
D
B
D
F
D
O
i
O
i
O
i
O
i
O
i
A
i
3
s
4
s
5
s
6
s
7
s
I
s
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
L
0
a b l e / E n a b
_
l e
_
l e
_
l e
_
l e
_
l e
_
l e
• Enter 1(=Enable) and press the ENTER key to operate the output relays forcibly.
• After completing the entries, press the END key. Then the LCD displays the screen shown
below.
O p e r a t e ?
E N T E R = Y
C A N C E L = N
• Keep pressing the ENTER key to operate the assigned output relays.
• Release pressing the ENTER key to reset the operation.
• Press the CANCEL key to return to the upper "Binary O/P" screen.
4.2.7.3 Logic Circuit
It is possible to observe the binary signal level on the signals listed in Appendix C with monitoring
jacks A and B.
• Select "Logic circuit" on the "Test" screen to display the "Logic circuit" screen.
/ 2
L o g i c
c i r c u i t
T e r m A
1
_
T e r m B
1 0 0 1
_
• Enter a signal number to be observed at monitoring jack A and press the ENTER key.
• Enter the other signal number to be observed at monitoring jack B and press the ENTER key.
After completing the setting, the signals can be observed by the binary logic level at monitoring
jacks A and B or by the LEDs above the jacks.
On screens other than the above screen, observation with the monitoring jacks is disabled.
⎯ 101 ⎯
6 F 2 S 0 9 0 4
4.3
Personal Computer Interface
The relay can be operated from a personal computer using an RS232C port on the front panel.
On the personal computer, the following analysis and display of the fault currents are available in
addition to the items available on the LCD screen.
• Display of current and voltage waveforms:
Oscillograph display
• Symmetrical component analysis:
On arbitrary time span
• Harmonic analysis:
On arbitrary time span
• Frequency analysis:
On arbitrary time span
For the details, see the separate instruction manual "PC INTERFACE RSM100".
4.4
Relay Setting and Monitoring System
The Relay Setting and Monitoring (RSM) system is a system that retrieves and analyses the data
on power system quantities, fault and event records and views or changes settings in individual
relays via Ethernet LAN networks using a remote PC as shown in Figure 4.4.1.
TCP/IP
(LAN cable)
Figure 4.4.1
HUB
Relay Setting and Monitoring System
⎯ 102 ⎯
6 F 2 S 0 9 0 4
4.5
IEC 60870-5-103 Interface
The GRD130 supports the IEC60870-5-103 communication protocol. This protocol is mainly
used when the relay communicates with a control system and is used to transfer the following
measurand and status data from the relay to the control system. (For details, see Appendix M.)
• Measurand data: voltage, frequency
• Status data:
events, fault indications, etc.
The protocol can be used through the RS485 port or the Fibre optic port on the relay rear panel.
The relay supports two baud-rates 9.6kbps and 19.2kbps, and supports two normalizing factors 1.2
and 2.4 for measurand. These are selected by setting. See Section 4.2.6.4.
The data transfer from the relay can be blocked by the setting.
For the settings, see the Section 4.2.6.
4.6
IEC 61850 Communication
GRD130 can also support data communication according to the IEC 61850 standard. Station bus
communication as specified in IEC 61850-8-1 facilitates integration of the relays within
substation control and automation systems via Ethernet LAN.
Figure 4.6.1 shows an example of a substation automation system using Ethernet-based IEC
61850 communication.
Figure 4.6.1 IEC 61850 Communication Network
⎯ 103 ⎯
6 F 2 S 0 9 0 4
4.7
Clock Function
The clock function (Calendar clock) is used for time-tagging for the following purposes:
• Event records
• Disturbance records
• Fault records
The calendar clock can run locally or be synchronised with an external clock such as the binary
time standard input signal, RSM clock, IEC60870-5-103 or SNTP for IEC61850 etc. This can be
selected by setting (see 4.2.6.6.).
The “clock synchronise” function synchronises the relay internal clock to the BI (connected to
PLC input No.2576 SYNC_CLOCK) by the following method. Since the BI signal is an “ON” or
“OFF” signal which cannot express year-month-day and hour-minute-second etc, synchronising is
achieved by setting the number of milliseconds to zero. This method will give accurate timing if
the synchronising BI signal is input every second.
Synchronisation is triggered by an “OFF” to “ON” (rising edge) transition of the BI signal. When
the trigger is detected, the millisecond value of the internal clock is checked, and if the value is
between 0~500ms then it is rounded down. If it is between 500~999ms then it is rounded up (ie the
number of seconds is incremented).
n sec
(n+1) sec
500ms
corrected to (n+1) sec
corrected to n sec
t
When the relays are connected with the RSM system as shown in Figure 4.4.1 and selected "RSM"
in the time synchronisation setting, the calendar clock of each relay is synchronised with the RSM
clock. If the RSM clock is synchronised with the external time standard, then all the relay clocks
are synchronised with the external time standard.
⎯ 104 ⎯
6 F 2 S 0 9 0 4
5. Installation
5.1
Receipt of Relays
When relays are received, carry out the acceptance inspection immediately. In particular, check
for damage during transportation, and if any is found, contact the vendor.
Always store the relays in a clean, dry environment.
5.2
Relay Mounting
A flush mounting relay is included. Appendix F shows the case outline.
For details of relay withdrawal and insertion, see Section 6.7.3.
5.3
Electrostatic Discharge
CAUTION
Do not take out the relay unit outside the relay case since electronic components on the modules
are very sensitive to electrostatic discharge. If it is absolutely essential to take the modules out of
the case, do not touch the electronic components and terminals with your bare hands.
Additionally, always put the module in a conductive anti-static bag when storing it.
5.4
Handling Precautions
A person's normal movements can easily generate electrostatic potentials of several thousand
volts. Discharge of these voltages into semiconductor devices when handling electronic circuits
can cause serious damage. This damage often may not be immediately apparent, but the reliability
of the circuit will have been reduced.
The electronic circuits are completely safe from electrostatic discharge when housed in the case.
Do not expose them to risk of damage by withdrawing the relay unit unnecessarily.
The relay unit incorporates the highest practical protection for its semiconductor devices.
However, if it becomes necessary to withdraw the relay unit, precautions should be taken to
preserve the high reliability and long life for which the equipment has been designed and
manufactured.
CAUTION
• Before removing the relay unit, ensure that you are at the same electrostatic potential as the
equipment by touching the case.
• Use the handle to draw out the relay unit. Avoid touching the electronic components,
printed circuit board or connectors.
• Do not pass the relay unit to another person without first ensuring you are both at the same
electrostatic potential. Shaking hands achieves equipotential.
• Place the relay unit on an anti-static surface, or on a conducting surface which is at the same
potential as yourself.
• Do not place the relay unit in polystyrene trays.
⎯ 105 ⎯
6 F 2 S 0 9 0 4
It is strongly recommended that detailed investigations on electronic circuitry should be carried
out in a Special Handling Area.
5.5
External Connections
External connections for each relay model are shown in Appendix G.
⎯ 106 ⎯
6 F 2 S 0 9 0 4
6. Commissioning and Maintenance
6.1
Outline of Commissioning Tests
The GRD130 is fully numerical and the hardware is continuously monitored.
Commissioning tests can be kept to a minimum and need only include hardware tests and the
conjunctive tests. The function tests are at the user’s discretion.
In these tests, user interfaces on the front panel of the relay or local PC can be fully applied.
Test personnel must be familiar with general relay testing practices and safety precautions to avoid
personal injuries or equipment damage.
Hardware tests
These tests are performed for the following hardware to ensure that there is no hardware defect.
Defects of hardware circuits other than the following can be detected by monitoring which circuits
function when the DC power is supplied.
User interfaces
Binary input circuits and output circuits
AC input circuits
Function tests
These tests are performed for the following functions that are fully software-based.
Measuring elements
Metering and recording
Conjunctive tests
The tests are performed after the relay is connected with the primary equipment and other external
equipment.
The following tests are included:
On load test: phase sequence check and polarity check
Tripping circuit test
Reclosing circuit test
⎯ 107 ⎯
6 F 2 S 0 9 0 4
6.2
Cautions
6.2.1
Safety Precautions
CAUTION
• The relay rack is provided with an earthing terminal.
Before starting the work, always make sure the relay rack is earthed.
• When connecting the cable to the back of the relay, firmly fix it to the terminal block and attach
the cover provided on top of it.
• Before checking the interior of the relay, be sure to turn off the power.
Failure to observe any of the precautions above may cause electric shock or malfunction.
6.2.2
Precautions for Testing
CAUTION
• While the power is on, do not draw out/insert the relay unit.
• Before turning on the power, check the following:
- Make sure the polarity and voltage of the power supply are correct.
- Make sure the VT circuit is not short-circuited.
• Be careful that the relay is not damaged due to an overcurrent or overvoltage.
• If settings are changed for testing, remember to reset them to the original settings.
Failure to observe any of the precautions above may cause damage or malfunction of the relay.
⎯ 108 ⎯
6 F 2 S 0 9 0 4
6.3
Preparations
Test equipment
The following test equipment is required for the commissioning tests.
1 Single-phase voltage source
1 Three-phase voltage source
1 DC power supply
3 Phase angle meter
3 AC ammeter
3 AC voltmeter
1 Time counter, precision timer
1 PC (not essential)
Relay settings
Before starting the tests, it must be specified whether the tests will use the user’s settings or the
default settings.
For the default settings, see the Appendix H Relay Setting Sheet.
Visual inspection
After unpacking the product, check for any damage to the relay case. If there is any damage, the
internal module might also have been affected. Contact the vendor.
Relay ratings
Check that the items described on the nameplate on the front of the relay conform to the user’s
specification. The items are: relay type and model, AC current and frequency ratings, and
auxiliary DC supply voltage rating.
Local PC
When using a local PC, connect it with the relay via the RS232C port on the front of the relay.
RSM100 software is required to run the PC.
For details, see separate volume "PC INTERFACE RSM100".
⎯ 109 ⎯
6 F 2 S 0 9 0 4
6.4
Hardware Tests
The tests can be performed without external wiring, but a DC power supply and AC current and
voltage sources are required.
6.4.1
User Interfaces
This test ensures that the LCD, LEDs and keys function correctly.
LCD display
• Apply the rated DC voltage and check that the LCD is off.
Note: If there is a failure, the LCD will display the "Err: " screen when the DC voltage is applied.
• Press the RESET key for one second or more and check that black dots appear on the whole
screen.
LED display
• Apply the rated DC voltage and check that the "IN SERVICE" LED is lit in green.
• Press the RESET key for one second or more and check that remaining five LEDs are lit in
red or yellow. (Programmable LEDs are yellow.)
VIEW and RESET keys
• Press the VIEW key when the LCD is off and check that the "Virtual LED" and "Metering"
screens are sequentially displayed on the LCD.
• Press the RESET key and check that the LCD turns off.
Other operation keys
• Press any key when the LCD is off and check that the LCD displays the "MENU" screen. Press
the END key to turn off the LCD.
• Repeat this for all keys.
6.4.2
Binary Input Circuit
The testing circuit is shown in Figure 6.4.1.
⎯ 110 ⎯
6 F 2 S 0 9 0 4
GRD130
TB2
- A1
- B1
- A8
DC
power
supply
+
- B8
TB2 -A9
−
- B9
BI1
BI2
BI3
BI4
BI5
BI6
BI7
BI8
E
Figure 6.4.1 Testing Binary Input Circuit
• Display the "Binary I/O" screen from the "Status" sub-menu.
/ 2
I P
O P
B i n a r y
I / O
0 0 0 0 ]
[ 0 0 0 0
0 0 0 0 ]
[ 0 0 0 0
• Apply the rated DC voltage to terminal A1-B1, A2-B2, ..., A8-B8 of terminal block TB2.
Check that the status display corresponding to the input signal (IP) changes from 0 to 1. (For
details of the binary input status display, see Section 4.2.4.2.)
The user will be able to perform this test for one terminal to another or for all the terminals at once.
6.4.3
Binary Output Circuit
This test can be performed by using the "Test" sub-menu and forcibly operating the relay drivers
and output relays. Operation of the output contacts is monitored at the output terminal. The output
contact and corresponding terminal number are shown in Appendix G.
• Select "Binary O/P" on the "Test" screen to display the "Binary O/P" screen. The LCD displays
the name of the output relay.
/ 2
B
D
B
D
B
D
B
D
B
D
B
D
B
D
F
D
O
i
O
i
O
i
O
i
O
i
O
i
O
i
A
i
B i n a r y
1
s
2
s
3
s
4
s
5
s
6
s
7
s
I
s
O / P
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
L
0
a b l e / E n a b
⎯ 111 ⎯
_
l e
_
l e
_
l e
_
l e
_
l e
_
l e
_
l e
_
l e
6 F 2 S 0 9 0 4
• Enter 1 and press the ENTER key.
• After completing the entries, press the END key. The LCD will display the screen shown
below. If 1 is entered for all the output relays, the following forcible operation can be
performed collectively.
O p e r a t e ?
E N T E R = Y
C A N C E L = N
• Keep pressing the ENTER key to operate the output relays forcibly.
• Check that the output contacts operate at the terminal.
• Stop pressing the ENTER key to reset the operation
6.4.4
AC Input Circuits
This test can be performed by applying the checking currents to the AC input circuits and
verifying that the values applied coincide with the values displayed on the LCD screen.
The testing circuit is shown in Figure 6.4.2.
GRD130
V
TB1 -1
Single-phase
voltage
source
-2
-3
-4
DC
power
supply
+
TB2 -A9
−
-B9
E
(a) Testing Circuit for Model 210
GRD130
V
TB1
-1
-2
Three-phase
voltage
source
-3
-4
VB
-5
VC
-6
V
-7
Single-phase
voltage
source
DC
power
supply
VA
-8
+
TB2 -A9
−
-B9
E
(b) Testing Circuit for Model 410
Figure 6.4.2 Testing AC Input Circuit
To check the metering data on the "Metering" screen, do the followings.
⎯ 112 ⎯
6 F 2 S 0 9 0 4
"Set. (view)" sub-menu → "Status" screen → "Metering" screen
If the setting is 0 ( = Primary), change the setting to 1 (Secondary) in the "Set. (change)"
sub-menu.
"Set. (change)" sub-menu → "Status" screen → "Metering" screen
Remember to reset it to the initial setting after the test is finished.
• Open the "Metering" screen in the "Status" sub-menu.
"Status" sub-menu → "Metering" screen
• Apply AC currents and check that the displayed values are within ±5% of the input values.
⎯ 113 ⎯
6 F 2 S 0 9 0 4
6.5 Function Test
CAUTION
The function test may cause the output relays to operate including the tripping output relays.
Therefore, the test must be performed with tripping circuits disconnected.
6.5.1
Measuring Element
Measuring element characteristics are realized by software, so it is possible to verify the overall
characteristics by checking representative points.
Operation of the element under test is observed by the binary output signal at monitoring jacks A
or B or by the LED indications above the jacks. In any case, the signal number corresponding to
each element output must be set on the "Logic circuit" screen of the "Test" sub-menu.
/ 2
L o g i c
c i r c u i t
T e r m A
1
_
T e r m B
4 8
_
When a signal number is entered for the Term A line, the signal is observed at monitoring jack A
and when entered for the Term B line, it is observed at monitoring jack B.
Note:
The voltage level at the monitoring jacks is +5V for logic level "1" and less than 0.1V for
logic level "0".
CAUTION
• Use test equipment with more than 1 kΩ of internal impedance when observing the output
signal at the monitoring jacks.
• Do not apply an external voltage to the monitoring jacks.
• Do not leave the A or B terminal shorted to 0V terminal for a long time.
In case of a three-phase element, it is sufficient to test for a representative phase. The A-phase
element is selected hereafter. Further, the [APPLCT] and [APPLVES] settings are selected “3P”
and “3PV”.
Note: Operating time test of measuring relay elements at monitoring jack A or B is not
including the operation of binary output. Whole the operating time test, if required,
should be measured at a binary output relay.
⎯ 114 ⎯
6 F 2 S 0 9 0 4
6.5.1.1
Overvoltage and undervoltage elements
The testing circuit is shown in Figure 6.5.1.
GRD130
+
Variable-
V
TB2
−
Voltage source
DC
powe
supply
-(*)
-(*)
+
TB2 -A9
−
-B9
Monitoring
jack
A
0V
E
+
DC
voltmeter
0V
(∗): Connect the terminal number corresponding to the testing element. Refer to Table 3.2.1.
Figure 6.5.1 Operating Value Test Circuit
The output signal of testing element is assigned to the monitoring jack A.
Overvoltage and undervoltage elements and their output signal number are listed below.
Element
OV11
OV2-1
OV3-1
OV4-1
UV1-1
UV2-1
UV3-1
UV4-1
ZOV1
ZOV2
Signal No.
51
54
57
518
60
63
66
528
93
94
• Enter the signal number to observe the operation at the monitoring jack A as shown in
Section 6.5.1.
Operating value test of OV1, OV2, OV3, OV4, ZOV1, ZOV2
• Apply a rated voltage as shown in Figure 6.5.1.
• Increase the voltage and measure the value at which the element operates. Check that the
measured value is within ± 5% of the setting.
Operating value test of UV1, UV2, UV3, UV4
• Apply a rated voltage and frequency as shown Figure 6.5.1.
• Decrease the voltage and measure the value at which the element operates. Check that the
measured value is within ± 5% of the setting.
Operating time check of OV1, UV1, ZOV1 IDMT curves
• Change the voltage from the rated voltage to the test voltage quickly and measure the
operating time.
⎯ 115 ⎯
6 F 2 S 0 9 0 4
• Calculate the theoretical operating time using the characteristic equations shown in Section
2.1.1 and 2.1.2. Check the measured operating time.
6.5.1.2
Negative sequence overvoltage element NOV1 and NOV2
The testing circuit is shown in Figure 6.5.2.
GRD130
Va
Three-phase
Voltage
source
V
TB2 -A1
Vb
-B1
Vc
-A2
VN
-B2
Monitoring
jack
DC
power
supply
+
TB2 -A9
−
-B9
A
0V
E
DC
voltmeter
+
0V
Figure 6.5.2 Testing NOV elements
The output signal of testing element is assigned to the monitoring jack A.
The output signal numbers of the elements are as follows:
Element
Signal No.
NOV1
95
NOV2
96
• Enter the signal number to observe the operation at the monitoring jack A as shown in
Section 6.5.1.
• Apply the three-phase balance voltage and the operating voltage value is checked by
increasing the magnitude of the voltage applied.
Check that the measured value is within 5% of the setting value.
Operating time check of NOV1 IDMT curve
• Change the voltage from the rated voltage to the test voltage quickly and measure the
operating time.
• Calculate the theoretical operating time using the characteristic equations shown in Section
2.1.4. Check the measured operating time.
⎯ 116 ⎯
6 F 2 S 0 9 0 4
6.5.1.3
Frequency Elements
The testing circuit is shown in Figure 6.5.3.
GRD130
+
VariableFrequency /
−
Voltage source
DC
power
supply
V
f
TB2
-A1
-B2
+
TB2 -A9
−
-B9
Monitoring
jack
A
0V
E
DC
voltmeter
+
−
Figure 6.5.3 Operating Value Test Circuit
The output signal of testing element is assigned to the monitoring jack A.
Frequency elements and their output signal number are listed below.
Element
Signal No.
FRQ1
FRQ2
FRQ3
FRQ4
FRQBLK
218
219
220
221
222
Overfrequency or underfrequency elements FRQ1 to FRQ4
• Enter the signal number to observe the operation at the monitoring jack A as shown in
Section 6.5.1.
• Apply a rated voltage and frequency as shown in Figure 6.5.3.
In case of overfrequency characteristic,
• Increase the frequency and measure the value at which the element operates. Check that the
measured value is within ± 0.005Hz of the setting.
In case of underfrequency characteristics,
• Decrease the frequency and measure the value at which the element operates. Check that
the measured value is within ± 0.005Hz of the setting.
Undervoltage block test, FRQBLK
• Apply a rated voltage and change the magnitude of frequency to operate an element.
• Keep the frequency that the element is operating, and change the magnitude of the voltage
applied from the rated voltage to less than FRQBLK setting voltage. And then, check that
the element resets.
6.5.1.4 Voltage and Synchronism Check Elements
The testing circuit is shown in Figure 6.5.4.
⎯ 117 ⎯
6 F 2 S 0 9 0 4
GRD130
+
Single-phase
voltage
−
source
+
Single-phase
voltage
−
source
f
V
TB2 -A1
-B2
V
f
-A3
-B3
VL
VB
Monitoring
jack
A
0V
φ
DC
power
supply
+
TB2 -A9
−
-B9
E
DC
voltmeter
+
−
Figure 6.5.4 Operating Voltage Value Test Circuit
Voltage and synchronism check elements and their output signal number are listed below.
Element
Signal No.
OVB
534
UVB
536
OVL
533
UVL
535
SYN
532
Voltage check element OVB, UVB, OVL
• Select "Logic circuit" on the "Test" sub-menu screen to display the "Logic circuit" screen.
• Enter a signal number for the Term A line to observe at monitoring jack A and press the
ENTER key.
• Apply a rated voltage as shown in Figure 6.5.4.
OVB and UVB :
• Adjust the magnitude of the voltage applied to terminal TB2-A3 and -B3 and measure the
value at which the element operates. Check that the measured value is within ± 5% of the
setting.
OVL and UVL :
• Adjust the magnitude of the voltage applied to terminal TB-A1 and –B2 and measure the
value at which the element operates. Check that the measured value is within ± 5% of the
setting.
Synchronism check element SYN
• Select "Logic circuit" on the "Test" sub-menu screen to display the "Logic circuit" screen.
⎯ 118 ⎯
6 F 2 S 0 9 0 4
• Enter a signal number 532 for the TermA line to observe at monitoring jack A and press the
ENTER key.
• Apply rated voltages VB and VL as shown Figure 6.5.4.
Voltage check:
• Set the [DfEN] to "OFF", and set the voltage to any value over the SYNOV setting. (The
default setting of SYNOV is 51 V.)
Whilst keeping VL in-phase with VB, increase the single-phase voltage VL from zero volts.
Measure the voltage at which the element operates. Check that the measured voltage is
within ± 5% of the SYNUV setting.
• Further increase VL and measure the voltage at that the element resets. Check that the
measured voltage is within ±5% of the SYNOV setting.
• To check the SYNDV detector, set the VB to a fixed value and increase the VL from zero
volts. Measure the voltage at which the element operates. Check that | VL − VB| is within ±
5% of the SYNDV setting.
Phase angle check:
• Set the [DfEN] to "OFF", and set VB and VL to any value between the SYNOV and
SYNUV settings keeping VB in-phase with VL. Then the SYN element operates.
• Shift the angle of VL from that of VB, and measure the angle at which the element resets.
• Check that the measured angle is within ±5° of the SYNθ setting. (The default setting of
SYNθ is 30°.)
• Change VB and VL, and repeat the above.
Frequency difference check:
• Set the [DfEN] to "ON", and set VB and VL to a rated voltage and rated frequency. Then
the SYN element operates.
• Shift the frequency of VL and measure the frequency at which the element resets.
• Check that |(frequency of VL) − (frequency of VB)| is within ±5% of the SYNDf setting.
(The default setting of SYNDf is 1.00Hz.)
⎯ 119 ⎯
6 F 2 S 0 9 0 4
6.5.2
Protection Scheme
In the protection scheme tests, a dynamic test set is required to simulate power system pre-fault,
fault and post-fault conditions.
Tripping is observed with the tripping command output relays after a simulated fault occurs.
6.5.3
Metering and Recording
The metering function can be checked while testing the AC input circuit. See Section 6.4.4.
Fault recording can be checked while testing the protection schemes. Open the "Fault record"
screen and check that the descriptions are correct for the fault concerned.
Recording events are listed in Appendix D. There are internal events and external events by binary
input commands. Event recording on the external event can be checked by changing the status of
binary input command signals. Change the status in the same way as the binary input circuit test
(see Section 6.4.2) and check that the description displayed on the "Event record" screen is
correct. Some of the internal events can be checked in the protection scheme tests.
Disturbance recording can be checked while testing the protection schemes. The LCD display
only shows the date and time when a disturbance is recorded. Open the "Disturbance record"
screen and check that the descriptions are correct.
Details can be displayed on the PC. Check that the descriptions on the PC are correct. For details
on how to obtain disturbance records on the PC, see the RSM100 Manual.
⎯ 120 ⎯
6 F 2 S 0 9 0 4
6.6
Conjunctive Tests
6.6.1
On Load Test
To check the polarity of the current and voltage transformers, check the load current, system
voltage and their phase angle with the metering displays on the LCD screen.
• Open the "Auto-supervision" screen check that no message appears.
• Open the following "Metering" screen from the "Status" sub-menu to check the above.
/ 3
V a
V b
V c
V e s
V a b
V b c
V c a
V 1
V 2
V 0
f
Note:
6.6.2
M e t e r i
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗
n
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
g
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
.
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
k
°
k
°
k
°
k
°
k
°
k
°
k
°
k
°
k
°
k
°
H
V
V
V
V
V
V
V
V
V
V
z
The magnitude of current can be set in values on the primary side or on the secondary side by
the setting. (The default setting is the secondary side.)
Tripping and Reclosing Circuit Test
The tripping circuit including the circuit breaker is checked by forcibly operating the output relay
and monitoring the circuit breaker to confirm that it is tripped. Forcible operation of the output
relay is performed on the "Binary O/P " screen of the "Test" sub-menu as described in Section
6.4.3.
Tripping circuit
• Set the breaker to be closed.
• Select "Binary O/P" on the "Test" sub-menu screen to display the "Binary O/P" screen.
/ 2
B
D
B
D
B
D
B
O
i
O
i
O
i
O
B i n a r y
O / P
1
0
_
s a b l e / E n a b l e
2
0
_
s a b l e / E n a b l e
3
0
_
s a b l e / E n a b l e
4
0
_
⎯ 121 ⎯
6 F 2 S 0 9 0 4
D
B
D
B
D
B
D
F
D
i
O
i
O
i
O
i
A
i
s
5
s
6
s
7
s
I
s
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
L
0
a b l e / E n a b
l e
_
l e
_
l e
_
l e
_
l e
• Enter 1 for BO1 and press the ENTER key.
• Press the END key. Then the LCD displays the screen shown below.
O p e r a t e ?
E N T E R = Y
C A N C E L = N
• Keep pressing the ENTER key to operate the output relay BO1 and check that the A-phase
breaker is tripped.
• Stop pressing the ENTER key to reset the operation.
• Repeat the above for BOs.
⎯ 122 ⎯
6 F 2 S 0 9 0 4
6.7
Maintenance
6.7.1
Regular Testing
The relay is almost completely self-supervised. The circuits that can not be supervised are binary
input and output circuits and human interfaces.
Therefore, regular testing is minimised to checking the unsupervised circuits. The test procedures
are the same as described in Sections 6.4.1, 6.4.2 and 6.4.3.
6.7.2
Failure Tracing and Repair
Failures will be detected by automatic supervision or regular testing.
When a failure is detected by supervision, a remote alarm is issued with the binary output relay of
FAIL and the failure is indicated on the front panel with LED indicators or LCD display. It is also
recorded in the event record.
Failures detected by supervision are traced by checking the "Err: " screen on the LCD. Table 6.7.1
shows LCD messages and failure locations.
The locations marked with (1) have a higher probability than locations marked with (2).
Table 6.7.1 LCD Message and Failure Location
Message
Relay Unit
Err: SUM
Err: ROM
Err: RAM
Err: CPU
Err: Invalid
Err: NMI
Err: BRAM
Err: EEP
Err: A/D
Err: SP
Err: DC
Err: TC
×(Flash memory)
×(ROM data)
×(SRAM)
×(CPU)
×
×
×(Backup RAM)
×(EEPROM)
×(A/D converter)
×(Sampling)
×(DC power supply circuit)
×(Tripping circuit)(1)
Err: V0, Err: V2
× (AC input circuit)(1)
Err: CB
× (Circuit breaker)(1)
Failure location
CB or
AC cable
cable
PLC, IEC61850 data
× (2)
× (2)
× (2)
Err: PLC
×(PLC data)
Err: MAP
×(IEC61850 mapping data)
Err: RTC
×(SNTP setting)
Err: LAN
×(Ethernet LAN)
Err: GOOSE
×(GOOSE subscribe)
Err: Ping
×(Ping response)
( ): Probable failure location in the relay unit including its peripheral circuits.
If no message is shown on the LCD, this means that the failure location is either in the DC power
supply circuit or in the microprocessors. If the "ALARM" LED is off, the failure is in the DC
power supply circuit. If the LED is lit, the failure is in the microprocessors. Replace the relay unit
in both cases after checking if the correct DC voltage is applied to the relay.
⎯ 123 ⎯
6 F 2 S 0 9 0 4
If a failure is detected by automatic supervision or regular testing, replace the failed relay unit.
Note: When a failure or an abnormality is detected during the regular test, confirm the following
first:
- Test circuit connections are correct.
- Modules are securely inserted in position.
- Correct DC power voltage is applied.
- Correct AC inputs are applied.
- Test procedures comply with those stated in the manual.
6.7.3
Replacing Failed Relay Unit
If the failure is identified to be in the relay unit and the user has a spare relay unit, the user can
recover the protection by replacing the failed relay unit.
Repair at the site should be limited to relay unit replacement. Maintenance at the component level
is not recommended.
Check that the replacement relay unit has an identical Model Number and relay version (software
type form) as the removed relay.
The Model Number is indicated on the front of the relay. For the relay version, see Section 4.2.5.1.
Replacing the relay unit
CAUTION
After replacing the relay unit, check the settings.
The procedure of relay withdrawal and insertion is as follows:
• Switch off the DC power supply.
WARNING Hazardous voltage may remain in the DC circuit just after switching off the
DC power supply. It takes about 30 seconds for the voltage to discharge.
•
•
•
•
•
Disconnect the trip outputs.
Short-circuit all AC current inputs. Open all AC voltage inputs.
Unscrew the relay front cover.
Unscrew the binding screw on the handle.
To remove the relay unit from its case, pull up the handle and pull the handle towards you. (See
Figure 6.7.1.)
• Insert the (spare) relay unit in the reverse procedure.
CAUTION
To avoid risk of damage:
• Keep the handle up when inserting the relay unit into the case.
• Do not catch the handle when carrying the relay unit.
• Check that the relay unit and its case have the identical Model Number
when inserting the relay unit.
⎯ 124 ⎯
6 F 2 S 0 9 0 4
A
IN SERVICE
VIEW
TRIP
ALARM
IN SERVICE
VIEW
TRIP
ALARM
RESET
RESET
B
0V CAN ENTER
CEL
A
B
END
0V CAN ENTER
CEL
END
Handle
Pull up handle
Bind screw
Figure 6.7.1 Handle of Relay Unit
6.7.4
Resumption of Service
After replacing the failed relay unit or repairing failed external circuits, take the following
procedures to restore the relay to the service.
• Switch on the DC power supply and confirm that the "IN SERVICE" green LED is lit and the
"ALARM" red LED is not lit.
• Supply the AC inputs and reconnect the trip outputs.
6.7.5
Storage
The spare relay should be stored in a dry and clean room. Based on IEC Standard 60255-6 the
storage temperature should be −25°C to +70°C, but the temperature of 0°C to +40°C is
recommended for long-term storage.
⎯ 125 ⎯
6 F 2 S 0 9 0 4
7. Putting Relay into Service
The following procedure must be adhered to when putting the relay into service after finishing the
commissioning tests or maintenance tests.
• Check that all the external connections are correct.
• Check the settings of all measuring elements, timers, scheme switches, recordings and clock
are correct.
In particular, when settings are changed temporarily for testing, be sure to restore them.
• Clear any unnecessary records on faults, alarms, events, disturbances and counters which are
recorded during the tests.
• Press the VIEW key and check that no failure message is displayed on the "Alarm view"
screen.
• Check that the green "IN SERVICE" LED is lit and no other LEDs are lit on the front panel.
⎯ 126 ⎯
6 F 2 S 0 9 0 4
Appendix A
Signal List
⎯ 127 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
SIGNAL NAME
0
CONSTANT_0
1
CONSTANT_1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 OV1-1_INST
40 OV1-2_INST
41 OV1-3_INST
42
43
44
45 OV2-1_INST
46 OV2-2_INST
47 OV2-3_INST
48
49
50
51 OV1-1
52 OV1-2
53 OV1-3
54 OV2-1
55 OV2-2
56 OV2-3
57 OV3-1
58 OV3-2
59 OV3-3
60 UV1-1
61 UV1-2
62 UV1-3
63 UV2-1
64 UV2-2
65 UV2-3
66 UV3-1
67 UV3-2
68 UV3-3
69
70
Contents
constant 0
constant 1
OV1-1 relay element start
OV1-2 relay element start
OV1-3 relay element start
OV2-1 relay element start
OV2-2 relay element start
OV2-3 relay element start
OV1-1 relay element output
OV1-2 relay element output
OV1-3 relay element output
OV2-1 relay element output
OV2-2 relay element output
OV2-3 relay element output
OV3-1 relay element output
OV3-2 relay element output
OV3-3 relay element output
UV1-1 relay element output
UV1-2 relay element output
UV1-3 relay element output
UV2-1 relay element output
UV2-2 relay element output
UV2-3 relay element output
UV3-1 relay element output
UV3-2 relay element output
UV3-3 relay element output
⎯ 128 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
SIG NAL NAM E
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
ZO V 1
94
ZO V 2
95
NO V1
96
NO V2
97
UVBLK
98
99
100
101 OV 1_TRIP
102 OV 1-1_TRIP
103 OV 1-2_TRIP
104 OV 1-3_TRIP
105
106
107
108 OV 2_TRIP
109 OV 2-1_TRIP
110 OV 2-2_TRIP
111 OV 2-3_TRIP
112
113
114
115 OV 3_TRIP
116 OV 3-1_TRIP
117 OV 3-2_TRIP
118 OV 3-3_TRIP
119
120
121
122 UV1_TRIP
123 UV1-1_ TR IP
124 UV1-2_ TR IP
125 UV1-3_ TR IP
126
127
128
129 UV2_TRIP
130 UV2-1_ TR IP
131 UV2-2_ TR IP
132 UV2-3_ TR IP
133
134
135
136 UV3_TRIP
137 UV3-1_ TR IP
138 UV3-2_ TR IP
139 UV3-3_ TR IP
140
Contents
ZO V1 relay element ouput
ZO V2 relay element ouput
NO V1 relay elem ent ouput
NO V2 relay elem ent ouput
UV block ed e lement oper ating
O V1
O V1
O V1
O V1
tr ip
tr ip
tr ip
tr ip
c ommand
c ommand(P hase- 1)
c ommand(P hase- 2)
c ommand(P hase- 3)
O V2
O V2
O V2
O V2
tr ip
tr ip
tr ip
tr ip
c ommand
c ommand(P hase- 1)
c ommand(P hase- 2)
c ommand(P hase- 3)
O V3
O V3
O V3
O V3
tr ip
tr ip
tr ip
tr ip
c ommand
c ommand(P hase- 1)
c ommand(P hase- 2)
c ommand(P hase- 3)
UV1
UV1
UV1
UV1
trip
trip
trip
trip
command
command( Phas e-1)
command( Phas e-2)
command( Phas e-3)
UV2
UV2
UV2
UV2
trip
trip
trip
trip
command
command( Phas e-1)
command( Phas e-2)
command( Phas e-3)
UV3
UV3
UV3
UV3
trip
trip
trip
trip
command
command( Phas e-1)
command( Phas e-2)
command( Phas e-3)
⎯ 129 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
SIG NAL N AM E
141
142
143 ZO V 1_T RIP
144 ZO V 2_ALA R M
145 N O V1_T RIP
146 N O V2_ALA R M
147
148
149
150
151
152
153
154
155
156
157 U V1-1_ IN S T
158 U V1-2_ IN S T
159 U V1-3_ IN S T
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177 U V2-1_ IN S T
178 U V2-2_ IN S T
179 U V2-3_ IN S T
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197 ZO V 1_IN S T
198 ZO V 2_IN S T
199 N O V1_IN ST
200 N O V2_IN ST
201
202
203
204
205
206
207
208
209
210
Contents
Z O V1
Z O V2
NO V1
NO V2
trip co mmand
alarm comman d
tr ip c ommand
alarm com mand
UV1- 1 r elay element s tar t
UV1- 2 r elay element s tar t
UV1- 3 r elay element s tar t
UV2- 1 r elay element s tar t
UV2- 2 r elay element s tar t
UV2- 3 r elay element s tar t
Z O V1
Z O V2
NO V1
NO V2
relay
relay
relay
relay
element star t
element star t
elem ent start
elem ent start
⎯ 130 ⎯
6 F 2 S 0 9 0 4
PLC input
N o.
SIGN AL N AM E
C ontents
211
212
213
214
215
216
217
218
FR Q1
FR Q1 relay element ouput
219
FR Q2
FR Q2 relay element ouput
220
FR Q3
FR Q3 relay element ouput
221
FR Q4
FR Q4 relay element ouput
222
FR QBLK
FR Q blocked element operating
225
D FR Q1
D FR Q1 relay element ouput
226
D FR Q2
D FR Q2 relay element ouput
227
D FR Q3
D FR Q3 relay element ouput
228
D FR Q4
D FR Q4 relay element ouput
ZOV_D IST
N OV_D IST
OV-1_D IST
OV-2_D IST
OV-3_D IST
U V-1_D IST
U V-2_D IST
U V-3_D IST
ZOV relay for disturbance record
N OV relay for disturbance record
OV-1 relay for disturbance record
OV-2 relay for disturbance record
OV-3 relay for disturbance record
U V-1 relay for disturbance record
U V-2 relay for disturbance record
U V-3 relay for disturbance record
223
224
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
⎯ 131 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
SIGNAL NAME
Contents
⎯ 132 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
SIGNAL NAME
Contents
FRQ_TRIP
FRQ1_TRIP
FRQ2_TRIP
FRQ3_TRIP
FRQ4_TRIP
DFRQ1_TRIP
DFRQ2_TRIP
DFRQ3_TRIP
DFRQ4_TRIP
FRQ trip command
FRQ1 trip command
FRQ2 trip command
FRQ3 trip command
FRQ4 trip command
DFRQ1 trip command
DFRQ2 trip command
DFRQ3 trip command
DFRQ4 trip command
GEN.TRIP
GEN.TRIP-1
GEN.TRIP-2
GEN.TRIP-3
GEN.TRIP-N
General
General
General
General
General
trip command
trip command (1 Phase)
trip command (2 Phase)
trip command (3 Phase)
trip command (N Phase)
GEN.ALARM
GEN.ALARM-1
GEN.ALARM-2
GEN.ALARM-3
GEN.ALARM-N
General
General
General
General
General
alarm command
alarm command (1 Phase)
alarm command (2 Phase)
alarm command (3 Phase)
alarm command (N Phase)
VCHK
VCHK_SYN
VCHK_LBDL
VCHK_DBLL
VCHK_DBDL
Voltage check for ARC
ditto
ditto
ditto
ditto
⎯ 133 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
SIGNAL NAME
Contents
OV4_ALARM
OV4-1_ALARM
OV4-2_ALARM
OV4-3_ALARM
OV4 alarm command
OV4 alarm command(Phase-1)
OV4 alarm command(Phase-2)
OV4 alarm command(Phase-3)
UV4_ALARM
UV4-1_ALARM
UV4-2_ALARM
UV4-3_ALARM
UV4 alarm command
UV4 alarm command(Phase-1)
UV4 alarm command(Phase-2)
UV4 alarm command(Phase-3)
OV1-OR
OV2-OR
OV3-OR
OV4-OR
OV1_INST-OR
OV2_INST-OR
UV1-OR
UV2-OR
UV3-OR
UV4-OR
UV1_INST-OR
UV2_INST-OR
OV1 relay (3PHASE OR)
OV2 relay (3PHASE OR)
OV3 relay (3PHASE OR)
OV4 relay (3PHASE OR)
OV1_INST relay (3PHASE OR)
OV2_INST relay (3PHASE OR)
UV1 relay (3PHASE OR)
UV2 relay (3PHASE OR)
UV3 relay (3PHASE OR)
UV4 relay (3PHASE OR)
UV1_INST relay (3PHASE OR)
UV2_INST relay (3PHASE OR)
BO1_OP
BO2_OP
BO3_OP
BO4_OP
BO5_OP
BO6_OP
BO7_OP
Binary output 1
Binary output 2
Binary output 3
Binary output 4
Binary output 5
Binary output 6
Binary output 7
⎯ 134 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
SIGNAL NAME
Contents
OV4-1
OV4-2
OV4-3
OV4-1 relay element output
OV4-2 relay element output
OV4-3 relay element output
UV4-1
UV4-2
UV4-3
UV4-1 relay element output
UV4-2 relay element output
UV4-3 relay element output
SYN
OVL
OVB
UVL
UVB
Voltage check relay for ARC
ditto
ditto
ditto
ditto
OV1-1_RST
OV1-2_RST
OV1-3_RST
OV2-1_RST
OV2-2_RST
OV2-3_RST
UV1-1_RST
UV1-2_RST
UV1-3_RST
UV2-1_RST
UV2-2_RST
OV1 relay element definite time reset
ditto
ditto
OV2 relay element definite time reset
ditto
ditto
UV1 relay element definite time reset
ditto
ditto
UV2 relay element definite time reset
ditto
⎯ 135 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
SIGNAL NAME
UV2-3_RST
ZOV1_RST
ZOV2_RST
NOV1_RST
NOV2_RST
UVBLK-1
UVBLK-2
UVBLK-3
Contents
ditto
ZOV1 relay element definite time reset
ZOV2 relay element definite time reset
NOV1 relay element definite time reset
NOV2 relay element definite time reset
UV blocked element operating
ditto
ditto
⎯ 136 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
SIGNAL NAME
Contents
⎯ 137 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
SIGNAL NAME
BI1_COMMAND
BI2_COMMAND
BI3_COMMAND
Contents
Binary input sig nal BI1
Binary input sig nal BI2
Binary input sig nal BI3
⎯ 138 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
SIGNAL NAME
BI4_COMMAND
BI5_COMMAND
BI6_COMMAND
BI7_COMMAND
BI8_COMMAND
Contents
Binary input signal
Binary input signal
Binary input signal
Binary input signal
Binary input signal
PICKUP_L1
PICKUP_L2
PICKUP_L3
PICKUP_N
A phase element pick-up for IEC103
B phase element pick-up for IEC103
C phase element pick-up for IEC103
Earth fault element pick-up for IEC103
BI4
BI5
BI6
BI7
BI8
⎯ 139 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
SIGNAL NAME
Contents
⎯ 140 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
SIGNAL NAME
Contents
⎯ 141 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
SIGNAL NAME
FAULT_PHA_1
FAULT_PHA_2
FAULT_PHA_3
FAULT_PHA_N
Contents
fault_phase_1
fault_phase_2
fault_phase_3
fault_phase_N
⎯ 142 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
SIGNAL NAME
Contents
⎯ 143 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
SIGNAL NAME
Contents
⎯ 144 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
SIGNAL NAME
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241 IEC_MDBLK
1242 IEC_TESTMODE
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
GROUP1_ACTIVE
GROUP2_ACTIVE
GROUP3_ACTIVE
GROUP4_ACTIVE
GROUP5_ACTIVE
GROUP6_ACTIVE
GROUP7_ACTIVE
GROUP8_ACTIVE
RLY_FAIL
RLY_OP_BLK
AMF_OFF
Contents
monitor direction blocked
IEC61870-5-103 testmode
g roup1 active
g roup2 active
g roup3 active
g roup4 active
g roup5 active
g roup6 active
g roup7 active
g roup8 active
RELAY FAILURE
RELAY OUTPUT BLOCK
SV BLOCK
RELAY_FAIL-A
⎯ 145 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
SIGNAL NAME
1261 TRIP-H
1262
1263
1264 V0_ERR_UF
1265 V2_ERR_UF
1266
1267
1268 V0_ERR
1269 V2_ERR
1270 TCSV
1271
1272 TC_ALARM
1273
1274
1275
1276
1277
1278
1279 GEN_PICKUP
1280
1281
1282
1283
1284 BI1_COM_UF
1285 BI2_COM_UF
1286 BI3_COM_UF
1287 BI4_COM_UF
1288 BI5_COM_UF
1289 BI6_COM_UF
1290 BI7_COM_UF
1291 BI8_COM_UF
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328 GOOSE_IN_Q1
1329 GOOSE_IN_Q2
1330 GOOSE_IN_Q3
Contents
Trip signal hold
V0 error(unfiltered)
V2 error(unfiltered)
V0 error
V2 error
Trip circuit supervision failure
Trip counter alarm
General start/pick-up
Binary input sig nal
Binary input sig nal
Binary input sig nal
Binary input sig nal
Binary input sig nal
Binary input sig nal
Binary input sig nal
Binary input sig nal
BI1 (unfiltered)
BI2 (unfiltered)
BI3 (unfiltered)
BI4 (unfiltered)
BI5 (unfiltered)
BI6 (unfiltered)
BI7 (unfiltered)
BI8 (unfiltered)
Goose Input Quality #1
Goose Input Quality #2
Goose Input Quality #3
⎯ 146 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
SIGNAL NAME
1331 GOOSE_IN_Q4
1332 GOOSE_IN_Q5
1333 GOOSE_IN_Q6
1334 GOOSE_IN_Q7
1335 GOOSE_IN_Q8
1336 GOOSE_IN_Q9
1337 GOOSE_IN_Q10
1338 GOOSE_IN_Q11
1339 GOOSE_IN_Q12
1340 GOOSE_IN_Q13
1341 GOOSE_IN_Q14
1342 GOOSE_IN_Q15
1343 GOOSE_IN_Q16
1344 GOOSE_IN_Q17
1345 GOOSE_IN_Q18
1346 GOOSE_IN_Q19
1347 GOOSE_IN_Q20
1348 GOOSE_IN_Q21
1349 GOOSE_IN_Q22
1350 GOOSE_IN_Q23
1351 GOOSE_IN_Q24
1352 GOOSE_IN_Q25
1353 GOOSE_IN_Q26
1354 GOOSE_IN_Q27
1355 GOOSE_IN_Q28
1356 GOOSE_IN_Q29
1357 GOOSE_IN_Q30
1358 GOOSE_IN_Q31
1359 GOOSE_IN_Q32
1360 GOOSE_IN_1
1361 GOOSE_IN_2
1362 GOOSE_IN_3
1363 GOOSE_IN_4
1364 GOOSE_IN_5
1365 GOOSE_IN_6
1366 GOOSE_IN_7
1367 GOOSE_IN_8
1368 GOOSE_IN_9
1369 GOOSE_IN_10
1370 GOOSE_IN_11
1371 GOOSE_IN_12
1372 GOOSE_IN_13
1373 GOOSE_IN_14
1374 GOOSE_IN_15
1375 GOOSE_IN_16
1376 GOOSE_IN_17
1377 GOOSE_IN_18
1378 GOOSE_IN_19
1379 GOOSE_IN_20
1380 GOOSE_IN_21
1381 GOOSE_IN_22
1382 GOOSE_IN_23
1383 GOOSE_IN_24
1384 GOOSE_IN_25
1385 GOOSE_IN_26
1386 GOOSE_IN_27
1387 GOOSE_IN_28
1388 GOOSE_IN_29
1389 GOOSE_IN_30
1390 GOOSE_IN_31
1391 GOOSE_IN_32
1392
1393
1394
1395
1396
1397
1398
1399
1400
Contents
Goose Input Quality #4
Goose Input Quality #5
Goose Input Quality #6
Goose Input Quality #7
Goose Input Quality #8
Goose Input Quality #9
Goose Input Quality #10
Goose Input Quality #11
Goose Input Quality #12
Goose Input Quality #13
Goose Input Quality #14
Goose Input Quality #15
Goose Input Quality #16
Goose Input Quality #17
Goose Input Quality #18
Goose Input Quality #19
Goose Input Quality #20
Goose Input Quality #21
Goose Input Quality #22
Goose Input Quality #23
Goose Input Quality #24
Goose Input Quality #25
Goose Input Quality #26
Goose Input Quality #27
Goose Input Quality #28
Goose Input Quality #29
Goose Input Quality #30
Goose Input Quality #31
Goose Input Quality #32
Goose Input #1
Goose Input #2
Goose Input #3
Goose Input #4
Goose Input #5
Goose Input #6
Goose Input #7
Goose Input #8
Goose Input #9
Goose Input #10
Goose Input #11
Goose Input #12
Goose Input #13
Goose Input #14
Goose Input #15
Goose Input #16
Goose Input #17
Goose Input #18
Goose Input #19
Goose Input #20
Goose Input #21
Goose Input #22
Goose Input #23
Goose Input #24
Goose Input #25
Goose Input #26
Goose Input #27
Goose Input #28
Goose Input #29
Goose Input #30
Goose Input #31
Goose Input #32
⎯ 147 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
SIGNAL NAME
1401 LOCAL_OP_ACT
1402 REMOTE_OP_ACT
1403 NORM_LED_ON
1404 ALM_LED_ON
1405 TRIP_LED_ON
1406 TEST_LED_ON
1407
1408 PRG_LED_RESET
1409 LED_RESET
1410
1411
1412
1413 PROT_COM_ON
1414 PRG_LED1_ON
1415 PRG_LED2_ON
1416 PRG_LED3_ON
1417 PRG_LED4_ON
1418 PRG_LED5_ON
1419 PRG_LED6_ON
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430 LCD_IND.
1431 LCD_IND1.
1432 LCD_IND2.
1433
1434
1435 F.Record_CLR
1436 E.Record_CLR
1437 D.Record_CLR
1438 Data_Lost
1439 TP_COUNT_CLR
1440
1441
1442 DEMAND_CLR
1443
1444
1445 PLC_data_CHG
1446 IEC103_data_CHG
1447 IEC850_data_CHG
1448 Sys.set_chang e
1449 Rly.set_change
1450 Grp.set_change
1451
1452
1453
1454
1455
1456 KEY-VIEW
1457 KEY-RESET
1458 KEY-ENTER
1459 KEY-END
1460 KEY-CANCEL
1461
1462
1463
1464
1465 DC_supply_err
1466 RTC_err
1467 PCI_err
1468 GOOSE_stop
1469 Ping_err
1470 PLC_err
Contents
local operation active
remote operation active
IN-SERVICE LED ON
ALARM LED ON
TRIP LED ON
TEST LED ON
Latched programmable LED RESET
TRIP LED RESET
IEC103 communication command
PROGRAMMABLE LED1 ON
PROGRAMMABLE LED2 ON
PROGRAMMABLE LED3 ON
PROGRAMMABLE LED4 ON
PROGRAMMABLE LED5 ON
PROGRAMMABLE LED6 ON
PROGRAMMABLE LED7 ON (reserved)
PROGRAMMABLE LED8 ON (reserved)
PROGRAMMABLE LED9 ON (reserved)
PROGRAMMABLE LED10 ON (reserved)
PROGRAMMABLE LED11 ON (reserved)
PROGRAMMABLE LED12 ON (reserved)
PROGRAMMABLE LED13 ON (reserved)
PROGRAMMABLE LED14 ON (reserved)
PROGRAMMABLE LED15 ON (reserved)
PROGRAMMABLE LED16 ON (reserved)
VirLCD indication(Virtual LED) command
LCD indication1(Virtual LED) command
LCD indication2(Virtual LED) command
Fault record clear
Event record clear
Disturbance record clear
Data clear by BU-RAM memory monitoring error
Trip counter cleared
Demand cleared
PLC data change
IEC-103 data chang e
IEC-850 data chang e
System setting change
Relay setting chang e
Group setting change
VIEW key status (1:pressed)
RESET key status (2:pressed)
ENTER key status (3:pressed)
END key status (4:pressed)
CANCEL key status (5:pressed)
DC supply error
RTC stopped
PCI bus error
GOOSE stopped
Ping no anwer
PLC stopeed
⎯ 148 ⎯
6 F 2 S 0 9 0 4
PLC input
No.
SIGNAL NAM E
1471 61850_err
1472 SUM_e rr
1473 ROM_RAM _err
1474 SRAM _err
1475 BU_RAM_err
1476
1477 EEPROM_err
1478
1479 A/D _err
1480 CPU_err
1481 Invalid
1482 NMI
1483 Sampling_ err
1484 DIO_err
1485 LAN_err
1486 LCD_err
1487 ROM_data_err
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
Contents
61850 stopped
Program ROM checksum error
Rom - Ram m ismatch error
SRAM memory moni torin g error
BU-RAM memory monito ring error
EEPROM memory monitoring error
A/D a ccuracy checking error
Program erro r
In valid error
NMI
Samp ling error
DIO card connection error
LAN error
LCD panel connection error
8M Romdata error
⎯ 149 ⎯
6 F 2 S 0 9 0 4
PLC output
N o.
SIGN AL N AM E
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576 D FR Q1_BLOC K
1577 D FR Q2_BLOC K
1578 D FR Q3_BLOC K
1579 D FR Q4_BLOC K
1580
1581
1582
1583
1584 OV1_BLOC K
1585 OV2_BLOC K
1586 OV3_BLOC K
1587 OV4_BLOC K
1588 U V1_BLOC K
C ontents
D FR Q trip block command
ditto
ditto
ditto
OV trip block command
ditto
ditto
ditto
U V trip block command
1589
1590
1591
1592
1593
1594
1595
U V2_BLOC K
U V3_BLOC K
U V4_BLOC K
ZOV1_BLOC K
ZOV2_BLOC K
ditto
ditto
ditto
ZOV trip block command
ditto
1596
1597
1598
1599
1600
1601
1602
N OV1_BLOC K
N OV2_BLOC K
N OV trip block command
ditto
FR Q1_BLOC K
FR Q2_BLOC K
FR Q3_BLOC K
FR Q trip block command
ditto
ditto
1603
1604
1605
FR Q4_BLOC K
ditto
⎯ 150 ⎯
6 F 2 S 0 9 0 4
PLC output
N o.
1606
1607
1608
S IG N A L N A M E
C ontents
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
E X T _T R IP- 1
E xter nal tr ip c ommamd ( 1 P has e)
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
E X T _T R IP- 2
E X T _T R IP- 3
E X T _T R IP
T C _F A IL
E xter nal tr ip c ommamd ( 2 P has e)
E xter nal tr ip c ommamd ( 3 P has e)
E xter nal tr ip c ommamd
T r ip c ir c uit F ail A lar m c ommam d
1639
IN D .R E S ET
Indic ation r es et c ommand
1664
T P _C O U N T - 1
T r ip c ounter c ount up c ommand
1665
T P _C O U N T - 2
ditto
1666
T P _C O U N T - 3
ditto
1667
T P _C O U N T
ditto
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1668
1669
1670
1671
1672
1673
1674
1675
⎯ 151 ⎯
6 F 2 S 0 9 0 4
P LC output
N o.
S IG N A L N A M E
1676
C ontents
1677
1678
1679
1680
F R Q _S 1_T R IP
F r eq uenc y s c hem e tr i p c om m and ( S tag e1)
1681
F R Q _S 2_T R IP
F r eq uenc y s c hem e tr i p c om m and ( S tag e2)
1682
F R Q _S 3_T R IP
F r eq uenc y s c hem e tr i p c om m and ( S tag e3)
1683
F R Q _S 4_T R IP
F r eq uenc y s c hem e tr i p c om m and ( S tag e4)
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
:
:
2550
⎯ 152 ⎯
6 F 2 S 0 9 0 4
PLC output
N o.
SIG N AL N AM E
2551
2552
2553
C ontents
2554
2555
2556
2557
2558
2559
2560
2561
2562
D ISP.ALAR M 1
D ISP.ALAR M 2
D ISP.ALAR M 3
Indicate the alar m display
ditto
ditto
2563
2564
2565
D ISP.ALAR M 4
ditto
SYN C _C LO C K
Synchr onise c lock c ommamd
ALAR M _LED _SET
Alar m LED set
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
⎯ 153 ⎯
6 F 2 S 0 9 0 4
PLC output
N o.
2621
2622
SIG N AL N AM E
C ontents
2623
2624
F .R EC O R D 1
2625
F .R EC O R D 2
F ault r ec or d s tor ed command 1
2
2626
2627
F .R EC O R D 3
F .R EC O R D 4
3
4
2628
2629
2630
2631
2632
2633
D .R EC O R D 1
D .R EC O R D 2
D is tur bance r ecor d stor ed command 1
2
2634
D .R EC O R D 3
3
2635
D .R EC O R D 4
4
2636
2637
2638
2639
2640
SET .G R O U P1
2641
SET .G R O U P2
Ac tive setting g r oup chang ed c ommand ( C hang e to g r oup1)
2
2642
2643
SET .G R O U P3
SET .G R O U P4
3
4
2644
SET .G R O U P5
5
2645
SET .G R O U P6
6
2646
SET .G R O U P7
7
2647
2648
SET .G R O U P8
8
2649
2650
2651
2652
2653
2654
2655
2656
C O N _T PM D 1
U s er config ur able tr ip mode in fault r ecor d
2657
2658
C O N _T PM D 2
C O N _T PM D 3
ditto
ditto
2659
C O N _T PM D 4
ditto
2660
C O N _T PM D 5
ditto
2661
C O N _T PM D 6
ditto
2662
2663
C O N _T PM D 7
C O N _T PM D 8
ditto
ditto
PR O T _C O M _R EC V
pr otec tion inac tivate c ommand r eceived
T PLED _R ST _R C V
T R IP LED R ESET c ommand r eceived
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
⎯ 154 ⎯
6 F 2 S 0 9 0 4
PLC output
N o.
SIG N AL N AM E
2691
2692
2693
2694
C ontents
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
⎯ 155 ⎯
6 F 2 S 0 9 0 4
PLC output
N o.
SIG N AL N AM E
2761
2762
C ontents
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
T EM P001
T EM P002
2818
2819
T EM P003
T EM P004
2820
2821
2822
T EM P005
T EM P006
T EM P007
2823
2824
T EM P008
T EM P009
2825
2826
2827
T EM P010
T EM P011
T EM P012
2828
2829
T EM P013
T EM P014
2830
T EM P015
⎯ 156 ⎯
6 F 2 S 0 9 0 4
PLC output
N o.
SIG N AL N AM E
2831 T EM P016
2832 T EM P017
2833 T EM P018
2834 T EM P019
2835
2836
2837
2838
T EM P020
T EM P021
T EM P022
T EM P023
2839
2840
2841
2842
T EM P024
T EM P025
T EM P026
T EM P027
2843
2844
2845
2846
T EM P028
T EM P029
T EM P030
T EM P031
2847
2848
2849
2850
T EM P032
T EM P033
T EM P034
T EM P035
2851
2852
2853
2854
T EM P036
T EM P037
T EM P038
T EM P039
2855
2856
2857
2858
T EM P040
T EM P041
T EM P042
T EM P043
2859
2860
2861
2862
T EM P044
T EM P045
T EM P046
T EM P047
2863
2864
2865
2866
T EM P048
T EM P049
T EM P050
T EM P051
2867
2868
2869
2870
T EM P052
T EM P053
T EM P054
T EM P055
2871
2872
2873
2874
T EM P056
T EM P057
T EM P058
T EM P059
2875
2876
2877
2878
T EM P060
T EM P061
T EM P062
T EM P063
2879
2880
2881
2882
T EM P064
T EM P065
T EM P066
T EM P067
2883
2884
2885
2886
T EM P068
T EM P069
T EM P070
T EM P071
2887
2888
2889
2890
T EM P072
T EM P073
T EM P074
T EM P075
2891
2892
2893
2894
T EM P076
T EM P077
T EM P078
T EM P079
2895
2896
2897
2898
T EM P080
T EM P081
T EM P082
T EM P083
2899
2900
T EM P084
T EM P085
C ontents
⎯ 157 ⎯
6 F 2 S 0 9 0 4
PLC output
N o.
2901
SIG N AL N AM E
T EM P086
2902
2903
T EM P087
T EM P088
2904
2905
T EM P089
T EM P090
2906
2907
T EM P091
T EM P092
2908
T EM P093
2909
2910
T EM P094
T EM P095
2911
2912
T EM P096
T EM P097
2913
2914
T EM P098
T EM P099
2915
2916
T EM P100
T EM P101
2917
T EM P102
2918
2919
T EM P103
T EM P104
2920
2921
T EM P105
T EM P106
2922
2923
T EM P107
T EM P108
2924
2925
T EM P109
T EM P110
2926
T EM P111
2927
2928
T EM P112
T EM P113
2929
2930
T EM P114
T EM P115
2931
2932
T EM P116
T EM P117
2933
2934
T EM P118
T EM P119
2935
T EM P120
2936
2937
T EM P121
T EM P122
2938
2939
T EM P123
T EM P124
2940
2941
T EM P125
T EM P126
2942
2943
T EM P127
T EM P128
2944
T EM P129
2945
2946
T EM P130
T EM P131
2947
2948
T EM P132
T EM P133
2949
2950
T EM P134
T EM P135
2951
2952
T EM P136
T EM P137
2953
T EM P138
2954
2955
T EM P139
T EM P140
2956
2957
T EM P141
T EM P142
2958
2959
T EM P143
T EM P144
2960
2961
T EM P145
T EM P146
2962
T EM P147
2963
2964
T EM P148
T EM P149
2965
2966
T EM P150
T EM P151
2967
2968
T EM P152
T EM P153
2969
2970
T EM P154
T EM P155
C ontents
⎯ 158 ⎯
6 F 2 S 0 9 0 4
PLC output
N o.
SIG N AL N AM E
2971 T EM P156
2972 T EM P157
2973 T EM P158
2974
2975
2976
2977
T EM P159
T EM P160
T EM P161
T EM P162
2978
2979
2980
T EM P163
T EM P164
T EM P165
2981
2982
2983
T EM P166
T EM P167
T EM P168
2984
2985
2986
T EM P169
T EM P170
T EM P171
2987
2988
2989
2990
T EM P172
T EM P173
T EM P174
T EM P175
2991
2992
2993
T EM P176
T EM P177
T EM P178
2994
2995
2996
T EM P179
T EM P180
T EM P181
2997
2998
2999
T EM P182
T EM P183
T EM P184
3000
3001
3002
3003
T EM P185
T EM P186
T EM P187
T EM P188
3004
3005
3006
T EM P189
T EM P190
T EM P191
3007
3008
3009
T EM P192
T EM P193
T EM P194
3010
3011
3012
3013
T EM P195
T EM P196
T EM P197
T EM P198
3014
3015
3016
T EM P199
T EM P200
T EM P201
3017
3018
3019
T EM P202
T EM P203
T EM P204
3020
3021
3022
T EM P205
T EM P206
T EM P207
3023
3024
3025
3026
T EM P208
T EM P209
T EM P210
T EM P211
3027
3028
3029
T EM P212
T EM P213
T EM P214
3030
3031
3032
T EM P215
T EM P216
T EM P217
3033
3034
3035
T EM P218
T EM P219
T EM P220
3036
3037
3038
3039
T EM P221
T EM P222
T EM P223
T EM P224
3040
T EM P225
C ontents
⎯ 159 ⎯
6 F 2 S 0 9 0 4
PLC output
N o.
SIG N AL N AM E
3041 TE MP2 26
3042 TE MP2 27
3043 TE MP2 28
3044 TE MP2 29
3045 TE MP2 30
3046 TE MP2 31
3047 TE MP2 32
3048 TE MP2 33
3049 TE MP2 34
3050 TE MP2 35
3051 TE MP2 36
3052 TE MP2 37
3053 TE MP2 38
3054 TE MP2 39
3055 TE MP2 40
3056 TE MP2 41
3057 TE MP2 42
3058 TE MP2 43
3059 TE MP2 44
3060 TE MP2 45
3061 TE MP2 46
3062 TE MP2 47
3063 TE MP2 48
3064 TE MP2 49
3065 TE MP2 50
3066 TE MP2 51
3067 TE MP2 52
3068 TE MP2 53
3069 TE MP2 54
3070 TE MP2 55
3071 TE MP2 56
C ontents
⎯ 160 ⎯
6 F 2 S 0 9 0 4
For IEC61850
Measure Table
NO
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
SIGNAL NAME
Va_mag
Vb_mag
Vc_mag
Va_ang
Vb_ang
Vc_ang
Ves_mag
Ves_ang
Vab_mag
Vbc_mag
Vca_mag
Vab_ang
Vbc_ang
Vca_ang
V1_mag
V2_mag
V0_mag
V1_ang
V2_ang
V0_ang
Freq
CONTENTS
Va magnitude
Vb magnitude
Vc magnitude
Va angle
Vb angle
Vc angle
Ves magnitude
Ves angle
Vab magnitude
Vbc magnitude
Vca magnitude
Vab angle
Vbc angle
Vca angle
V1 magnitude
V2 magnitude
V0 magnitude
V1 angle
V2 angle
V0 angle
Frequency
⎯ 161 ⎯
6 F 2 S 0 9 0 4
Setting Table
NO
NO
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
SIGNAL NAME
SIGNAL NAME
CONTENTS
61
GROUP_NO
ACT_GROUP
EDIT_GROUP
CHG_GROUP
number of groups
active group number
edit group number
change active group
62
CONTENTS
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90 1A2_5A1
1A:2 5A:1
91 1A1_5A2
1A:1 5A:2
92 1A1_5A0
1A:1 5A:0
93 1A0_5A1
1A:0 5A:1
94 1A3_5A2
1A:3 5A:2
95
96
97
98
99
100 SoftType
Software type
101 MappingName
Mapping info
102 Vendor
venfor name
103
104
105
106
107
108
109
110 Const0
Always 0
111 Const1
Always 1
112 Const2
Always 2
113 Const3
Always 3
114
115
116
117
118
119
⎯ 162 ⎯
6 F 2 S 0 9 0 4
Status Table
NO
SIGNAL NAME
0 GOOSE_V_001
1 GOOSE_V_002
2 GOOSE_V_003
CONTENTS
GOOSE_Value_001
GOOSE_Value_002
GOOSE_Value_003
3
4
5
6
7
8
GOOSE_V_004
GOOSE_V_005
GOOSE_V_006
GOOSE_V_007
GOOSE_V_008
GOOSE_V_009
GOOSE_Value_004
GOOSE_Value_005
GOOSE_Value_006
GOOSE_Value_007
GOOSE_Value_008
GOOSE_Value_009
9
10
11
12
13
14
GOOSE_V_010
GOOSE_V_011
GOOSE_V_012
GOOSE_V_013
GOOSE_V_014
GOOSE_V_015
GOOSE_Value_010
GOOSE_Value_011
GOOSE_Value_012
GOOSE_Value_013
GOOSE_Value_014
GOOSE_Value_015
15
16
17
18
19
20
GOOSE_V_016
GOOSE_V_017
GOOSE_V_018
GOOSE_V_019
GOOSE_V_020
GOOSE_V_021
GOOSE_Value_016
GOOSE_Value_017
GOOSE_Value_018
GOOSE_Value_019
GOOSE_Value_020
GOOSE_Value_021
21
22
23
24
25
26
GOOSE_V_022
GOOSE_V_023
GOOSE_V_024
GOOSE_V_025
GOOSE_V_026
GOOSE_V_027
GOOSE_Value_022
GOOSE_Value_023
GOOSE_Value_024
GOOSE_Value_025
GOOSE_Value_026
GOOSE_Value_027
27
28
29
30
31
32
GOOSE_V_028
GOOSE_V_029
GOOSE_V_030
GOOSE_V_031
GOOSE_V_032
GOOSE_V_033
GOOSE_Value_028
GOOSE_Value_029
GOOSE_Value_030
GOOSE_Value_031
GOOSE_Value_032
GOOSE_Value_033
33
34
35
36
37
38
GOOSE_V_034
GOOSE_V_035
GOOSE_V_036
GOOSE_V_037
GOOSE_V_038
GOOSE_V_039
GOOSE_Value_034
GOOSE_Value_035
GOOSE_Value_036
GOOSE_Value_037
GOOSE_Value_038
GOOSE_Value_039
39
40
41
42
43
44
GOOSE_V_040
GOOSE_V_041
GOOSE_V_042
GOOSE_V_043
GOOSE_V_044
GOOSE_V_045
GOOSE_Value_040
GOOSE_Value_041
GOOSE_Value_042
GOOSE_Value_043
GOOSE_Value_044
GOOSE_Value_045
45
46
47
48
49
50
GOOSE_V_046
GOOSE_V_047
GOOSE_V_048
GOOSE_V_049
GOOSE_V_050
GOOSE_V_051
GOOSE_Value_046
GOOSE_Value_047
GOOSE_Value_048
GOOSE_Value_049
GOOSE_Value_050
GOOSE_Value_051
NO
⎯ 163 ⎯
SIGNAL NAME
51 GOOSE_V_052
CONTENTS
GOOSE_Value_052
52 GOOSE_V_053
53 GOOSE_V_054
54 GOOSE_V_055
GOOSE_Value_053
GOOSE_Value_054
GOOSE_Value_055
55 GOOSE_V_056
56 GOOSE_V_057
GOOSE_Value_056
GOOSE_Value_057
57 GOOSE_V_058
58 GOOSE_V_059
59 GOOSE_V_060
GOOSE_Value_058
GOOSE_Value_059
GOOSE_Value_060
60 GOOSE_V_061
61 GOOSE_V_062
62 GOOSE_V_063
GOOSE_Value_061
GOOSE_Value_062
GOOSE_Value_063
63 GOOSE_V_064
64 GOOSE_V_065
GOOSE_Value_064
GOOSE_Value_065
65 GOOSE_V_066
66 GOOSE_V_067
67 GOOSE_V_068
GOOSE_Value_066
GOOSE_Value_067
GOOSE_Value_068
68 GOOSE_V_069
69 GOOSE_V_070
70 GOOSE_V_071
GOOSE_Value_069
GOOSE_Value_070
GOOSE_Value_071
71 GOOSE_V_072
72 GOOSE_V_073
GOOSE_Value_072
GOOSE_Value_073
73 GOOSE_V_074
74 GOOSE_V_075
75 GOOSE_V_076
GOOSE_Value_074
GOOSE_Value_075
GOOSE_Value_076
76 GOOSE_V_077
77 GOOSE_V_078
78 GOOSE_V_079
GOOSE_Value_077
GOOSE_Value_078
GOOSE_Value_079
79 GOOSE_V_080
80 GOOSE_V_081
GOOSE_Value_080
GOOSE_Value_081
81 GOOSE_V_082
82 GOOSE_V_083
83 GOOSE_V_084
GOOSE_Value_082
GOOSE_Value_083
GOOSE_Value_084
84 GOOSE_V_085
85 GOOSE_V_086
GOOSE_Value_085
GOOSE_Value_086
86 GOOSE_V_087
87 GOOSE_V_088
88 GOOSE_V_089
GOOSE_Value_087
GOOSE_Value_088
GOOSE_Value_089
89 GOOSE_V_090
90 GOOSE_V_091
91 GOOSE_V_092
GOOSE_Value_090
GOOSE_Value_091
GOOSE_Value_092
92 GOOSE_V_093
93 GOOSE_V_094
GOOSE_Value_093
GOOSE_Value_094
94 GOOSE_V_095
95 GOOSE_V_096
96 GOOSE_V_097
GOOSE_Value_095
GOOSE_Value_096
GOOSE_Value_097
97 GOOSE_V_098
98 GOOSE_V_099
99 GOOSE_V_100
GOOSE_Value_098
GOOSE_Value_099
GOOSE_Value_100
100 GOOSE_V_101
101 GOOSE_V_102
GOOSE_Value_101
GOOSE_Value_102
6 F 2 S 0 9 0 4
NO
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
SIGNAL NAME
GOOSE_V_102
GOOSE_V_103
GOOSE_V_104
GOOSE_V_105
GOOSE_V_106
GOOSE_V_107
GOOSE_V_108
GOOSE_V_109
GOOSE_V_110
GOOSE_V_111
GOOSE_V_112
GOOSE_V_113
GOOSE_V_114
GOOSE_V_115
GOOSE_V_116
GOOSE_V_117
GOOSE_V_118
GOOSE_V_119
GOOSE_V_120
GOOSE_V_121
GOOSE_V_122
GOOSE_V_123
GOOSE_V_124
GOOSE_V_125
GOOSE_V_126
GOOSE_V_127
GOOSE_V_128
XCBR_POS0
CONTENTS
GOOSE_Value_102
GOOSE_Value_103
GOOSE_Value_104
GOOSE_Value_105
GOOSE_Value_106
GOOSE_Value_107
GOOSE_Value_108
GOOSE_Value_109
GOOSE_Value_110
GOOSE_Value_111
GOOSE_Value_112
GOOSE_Value_113
GOOSE_Value_114
GOOSE_Value_115
GOOSE_Value_116
GOOSE_Value_117
GOOSE_Value_118
GOOSE_Value_119
GOOSE_Value_120
GOOSE_Value_121
GOOSE_Value_122
GOOSE_Value_123
GOOSE_Value_124
GOOSE_Value_125
GOOSE_Value_126
GOOSE_Value_127
GOOSE_Value_128
XCBR_POS0
NO
SIGNAL NAME
CONTENTS
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
LEDRST_EXEC LEDRST_EXEC
RREC1
RREC1
176 DIRMODE_OC1
177 DIRMODE_OC2
DIRMODE_OC1
DIRMODE_OC2
178 DIRMODE_OC3
DIRMODE_OC3
179 DIRMODE_OC4
180 DIRMODE_EF1
DIRMODE_OC4
DIRMODE_EF1
181 DIRMODE_EF2
182 DIRMODE_EF3
DIRMODE_EF2
DIRMODE_EF3
183 DIRMODE_EF4
184 DIRMODE_SEF1
DIRMODE_EF4
DIRMODE_SEF1
185 DIRMODE_SEF2
186 DIRMODE_SEF3
DIRMODE_SEF2
DIRMODE_SEF3
187 DIRMODE_SEF4
DIRMODE_SEF4
188 DIRMODE_NOC1 DIRMODE_NOC1
189 DIRMODE_NOC2 DIRMODE_NOC2
XCBR_OPCNT0 XCBR_OPCNT0
190
191
192
193
194
195
196
197
198
HEALTH
199
200 MOD_001
HEALTH
⎯ 164 ⎯
IEC-MODE_001
6 F 2 S 0 9 0 4
NO
SIGNAL NAME
CONTENTS
NO
SIGNAL NAME
CONTENTS
251 MOD_052
252 MOD_053
IEC-MODE_052
IEC-MODE_053
253 MOD_054
254 MOD_055
IEC-MODE_054
IEC-MODE_055
255 MOD_056
IEC-MODE_056
IEC-MODE_008
256 MOD_057
257 MOD_058
IEC-MODE_057
IEC-MODE_058
208 MOD_009
IEC-MODE_009
258 MOD_059
IEC-MODE_059
209 MOD_010
IEC-MODE_010
210 MOD_011
IEC-MODE_011
259 MOD_060
260 MOD_061
IEC-MODE_060
IEC-MODE_061
211 MOD_012
IEC-MODE_012
212 MOD_013
IEC-MODE_013
261 MOD_062
262 MOD_063
IEC-MODE_062
IEC-MODE_063
213 MOD_014
IEC-MODE_014
263 MOD_064
IEC-MODE_064
214 MOD_015
IEC-MODE_015
215 MOD_016
IEC-MODE_016
264 MOD_065
265 MOD_066
IEC-MODE_065
IEC-MODE_066
216 MOD_017
IEC-MODE_017
266 MOD_067
IEC-MODE_067
217 MOD_018
IEC-MODE_018
218 MOD_019
IEC-MODE_019
267 MOD_068
268 MOD_069
IEC-MODE_068
IEC-MODE_069
219 MOD_020
IEC-MODE_020
220 MOD_021
221 MOD_022
IEC-MODE_021
IEC-MODE_022
269 MOD_070
270 MOD_071
IEC-MODE_070
IEC-MODE_071
271 MOD_072
IEC-MODE_072
222 MOD_023
IEC-MODE_023
223 MOD_024
IEC-MODE_024
272 MOD_073
273 MOD_074
IEC-MODE_073
IEC-MODE_074
224 MOD_025
IEC-MODE_025
225 MOD_026
IEC-MODE_026
274 MOD_075
275 MOD_076
IEC-MODE_075
IEC-MODE_076
226 MOD_027
IEC-MODE_027
276 MOD_077
IEC-MODE_077
227 MOD_028
IEC-MODE_028
228 MOD_029
IEC-MODE_029
277 MOD_078
278 MOD_079
IEC-MODE_078
IEC-MODE_079
229 MOD_030
IEC-MODE_030
279 MOD_080
IEC-MODE_080
230 MOD_031
IEC-MODE_031
231 MOD_032
IEC-MODE_032
280 MOD_081
281 MOD_082
IEC-MODE_081
IEC-MODE_082
232 MOD_033
IEC-MODE_033
233 MOD_034
IEC-MODE_034
282 MOD_083
283 MOD_084
IEC-MODE_083
IEC-MODE_084
234 MOD_035
IEC-MODE_035
284 MOD_085
IEC-MODE_085
235 MOD_036
IEC-MODE_036
236 MOD_037
237 MOD_038
IEC-MODE_037
IEC-MODE_038
285 MOD_086
286 MOD_087
IEC-MODE_086
IEC-MODE_087
287 MOD_088
IEC-MODE_088
238 MOD_039
IEC-MODE_039
239 MOD_040
IEC-MODE_040
288 MOD_089
289 MOD_090
IEC-MODE_089
IEC-MODE_090
240 MOD_041
IEC-MODE_041
241 MOD_042
IEC-MODE_042
290 MOD_091
291 MOD_092
IEC-MODE_091
IEC-MODE_092
242 MOD_043
IEC-MODE_043
292 MOD_093
IEC-MODE_093
243 MOD_044
IEC-MODE_044
244 MOD_045
IEC-MODE_045
293 MOD_094
294 MOD_095
IEC-MODE_094
IEC-MODE_095
245 MOD_046
IEC-MODE_046
246 MOD_047
IEC-MODE_047
295 MOD_096
296 MOD_097
IEC-MODE_096
IEC-MODE_097
247 MOD_048
IEC-MODE_048
297 MOD_098
IEC-MODE_098
248 MOD_049
IEC-MODE_049
249 MOD_050
IEC-MODE_050
298 MOD_099
299 MOD_100
IEC-MODE_099
IEC-MODE_100
250 MOD_051
IEC-MODE_051
300 BEH_001
IEC-Behavier_001
201 MOD_002
IEC-MODE_002
202 MOD_003
IEC-MODE_003
203 MOD_004
IEC-MODE_004
204 MOD_005
IEC-MODE_005
205 MOD_006
206 MOD_007
IEC-MODE_006
IEC-MODE_007
207 MOD_008
⎯ 165 ⎯
6 F 2 S 0 9 0 4
NO
SIGNAL NAME
301 BEH_002
CONTENTS
IEC-Behavier_002
302
303
304
305
306
307
308
309
310
311
312
313
BEH_003
BEH_004
BEH_005
BEH_006
BEH_007
BEH_008
BEH_009
BEH_010
BEH_011
BEH_012
BEH_013
BEH_014
IEC-Behavier_003
IEC-Behavier_004
IEC-Behavier_005
IEC-Behavier_006
IEC-Behavier_007
IEC-Behavier_008
IEC-Behavier_009
IEC-Behavier_010
IEC-Behavier_011
IEC-Behavier_012
IEC-Behavier_013
IEC-Behavier_014
314
315
316
317
318
319
320
321
322
323
324
BEH_015
BEH_016
BEH_017
BEH_018
BEH_019
BEH_020
BEH_021
BEH_022
BEH_023
BEH_024
BEH_025
IEC-Behavier_015
IEC-Behavier_016
IEC-Behavier_017
IEC-Behavier_018
IEC-Behavier_019
IEC-Behavier_020
IEC-Behavier_021
IEC-Behavier_022
IEC-Behavier_023
IEC-Behavier_024
IEC-Behavier_025
325
326
327
328
329
330
331
332
333
334
335
336
BEH_026
BEH_027
BEH_028
BEH_029
BEH_030
BEH_031
BEH_032
BEH_033
BEH_034
BEH_035
BEH_036
BEH_037
IEC-Behavier_026
IEC-Behavier_027
IEC-Behavier_028
IEC-Behavier_029
IEC-Behavier_030
IEC-Behavier_031
IEC-Behavier_032
IEC-Behavier_033
IEC-Behavier_034
IEC-Behavier_035
IEC-Behavier_036
IEC-Behavier_037
337
338
339
340
341
342
343
344
345
346
347
348
BEH_038
BEH_039
BEH_040
BEH_041
BEH_042
BEH_043
BEH_044
BEH_045
BEH_046
BEH_047
BEH_048
BEH_049
IEC-Behavier_038
IEC-Behavier_039
IEC-Behavier_040
IEC-Behavier_041
IEC-Behavier_042
IEC-Behavier_043
IEC-Behavier_044
IEC-Behavier_045
IEC-Behavier_046
IEC-Behavier_047
IEC-Behavier_048
IEC-Behavier_049
349 BEH_050
350 BEH_051
IEC-Behavier_050
IEC-Behavier_051
NO
SIGNAL NAME
CONTENTS
351 BEH_052
IEC-Behavier_052
352 BEH_053
353 BEH_054
IEC-Behavier_053
IEC-Behavier_054
354 BEH_055
355 BEH_056
IEC-Behavier_055
IEC-Behavier_056
356 BEH_057
IEC-Behavier_057
357 BEH_058
358 BEH_059
IEC-Behavier_058
IEC-Behavier_059
359 BEH_060
IEC-Behavier_060
360 BEH_061
361 BEH_062
IEC-Behavier_061
IEC-Behavier_062
362 BEH_063
IEC-Behavier_063
363 BEH_064
364 BEH_065
IEC-Behavier_064
IEC-Behavier_065
365 BEH_066
366 BEH_067
IEC-Behavier_066
IEC-Behavier_067
367 BEH_068
IEC-Behavier_068
368 BEH_069
369 BEH_070
IEC-Behavier_069
IEC-Behavier_070
370 BEH_071
IEC-Behavier_071
371 BEH_072
372 BEH_073
IEC-Behavier_072
IEC-Behavier_073
373 BEH_074
IEC-Behavier_074
374 BEH_075
375 BEH_076
IEC-Behavier_075
IEC-Behavier_076
376 BEH_077
377 BEH_078
IEC-Behavier_077
IEC-Behavier_078
378 BEH_079
IEC-Behavier_079
379 BEH_080
380 BEH_081
IEC-Behavier_080
IEC-Behavier_081
381 BEH_082
IEC-Behavier_082
382 BEH_083
383 BEH_084
IEC-Behavier_083
IEC-Behavier_084
384 BEH_085
IEC-Behavier_085
385 BEH_086
386 BEH_087
IEC-Behavier_086
IEC-Behavier_087
387 BEH_088
388 BEH_089
IEC-Behavier_088
IEC-Behavier_089
389 BEH_090
IEC-Behavier_090
390 BEH_091
391 BEH_092
IEC-Behavier_091
IEC-Behavier_092
392 BEH_093
IEC-Behavier_093
393 BEH_094
394 BEH_095
IEC-Behavier_094
IEC-Behavier_095
395 BEH_096
IEC-Behavier_096
396 BEH_097
397 BEH_098
IEC-Behavier_097
IEC-Behavier_098
398 BEH_099
399 BEH_100
IEC-Behavier_099
IEC-Behavier_100
400 Const0
Const0
⎯ 166 ⎯
6 F 2 S 0 9 0 4
NO
SIGNAL NAME
CONTENTS
401 Const1
402 Const2
Const1
Const2
403 Const3
Const3
404 Const4
Const4
405 Const5
Const5
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
NO
SIGNAL NAME
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
450
⎯ 167 ⎯
CONTENTS
6 F 2 S 0 9 0 4
Control Table
NO
SIGNAL NAME
0 LEDRST_SIG
CONTENTS
LED Reset
1 LEDRST_ORCAT
Control - LED Reset Originator category
2 LEDRST_ORID
Control - LED Reset Originator category
3 LEDRST_ORCAT_ST
Status - LED Rst Originator category
4 LEDRST_ORID_ST
Status - LED Rst Originator category
5 RESERVE
Reserve
6 RESERVE
Reserve
7 RESERVE
Reserve
8 RESERVE
Reserve
9 RESERVE
Reserve
10 MOD_CHECK
MOD_CHECK
11 MOD_CTLNUM
MOD_CTLNUM
12 MOD_CTLVAL
MOD_CTLVAL
13 MOD_ORCAT
MOD_ORCAT
14 MOD_ORIDENT
15 MOD_TEST
MOD_ORIDENT
MOD_TEST
16 MOD_CTLMDL
MOD_CTLMDL
17 MOD_ST_ORCAT
MOD_ST_ORCAT
18 MOD_ST_ORIDENT
MOD_ST_ORIDENT
19 MOD_SELECT
MOD_SELECT
20 MOD_SBOTIMEOUT
MOD_SBOTIMEOUT
21 MOD_SBOCLASS
MOD_SBOCLASS
⎯ 168 ⎯
6 F 2 S 0 9 0 4
Appendix B
Event Record Items
⎯ 169 ⎯
6 F 2 S 0 9 0 4
Event record
Default setting
No.
Name
Range
Unit
Contents
Signal No.
Signal name
Model
210D
Type
410D
1
EV1
0 - 3071
--
Event record signal
768
BI1 command
x
On/Off
2
EV2
0 - 3071
--
ditto
769
BI2 command
x
On/Off
3
EV3
0 - 3071
--
ditto
770
BI3 command
x
On/Off
4
EV4
0 - 3071
--
ditto
771
BI4 command
x
On/Off
5
EV5
0 - 3071
--
ditto
772
BI5 command
x
On/Off
6
EV6
0 - 3071
--
ditto
773
BI6 command
x
On/Off
7
EV7
0 - 3071
--
ditto
774
BI7 command
x
On/Off
8
EV8
0 - 3071
--
ditto
775
BI8 command
x
On/Off
9
EV9
0 - 3071
--
ditto
1639
Ind reset
x
On/Off
10
EV10
0 - 3071
--
ditto
371
GEN trip
x
On/Off
11
EV11
0 - 3071
--
ditto
380
GEN alarm
x
On/Off
12
EV12
0 - 3071
--
ditto
355
FRQ trip
x
On/Off
13
EV13
0 - 3071
--
ditto
0
On/Off
14
EV14
0 - 3071
--
ditto
0
On/Off
15
EV15
0 - 3071
--
ditto
0
On/Off
16
EV16
0 - 3071
--
ditto
0
On/Off
17
EV17
0 - 3071
--
ditto
0
On/Off
18
EV18
0 - 3071
--
ditto
0
On/Off
19
EV19
0 - 3071
--
ditto
0
On/Off
20
EV20
0 - 3071
--
ditto
0
On/Off
21
EV21
0 - 3071
--
ditto
0
On/Off
22
EV22
0 - 3071
--
ditto
0
On/Off
23
EV23
0 - 3071
--
ditto
0
24
EV24
0 - 3071
--
ditto
1251
25
EV25
0 - 3071
--
ditto
0
26
EV26
0 - 3071
--
ditto
1268
V0 err
27
EV27
0 - 3071
--
ditto
1269
V2 err
x
On/Off
28
EV28
0 - 3071
--
ditto
1270
TCSV
x
On/Off
29
EV29
0 - 3071
--
ditto
0
On/Off
30
EV30
0 - 3071
--
ditto
0
On/Off
31
EV31
0 - 3071
--
ditto
0
On/Off
32
EV32
0 - 3071
--
ditto
0
On/Off
33
EV33
0 - 3071
--
ditto
0
On/Off
34
EV34
0 - 3071
--
ditto
0
On/Off
35
EV35
0 - 3071
--
ditto
0
On/Off
36
EV36
0 - 3071
--
ditto
0
On/Off
37
EV37
0 - 3071
--
ditto
0
On/Off
38
EV38
0 - 3071
--
ditto
0
On/Off
39
EV39
0 - 3071
--
ditto
0
On/Off
40
EV40
0 - 3071
--
ditto
0
On/Off
41
EV41
0 - 3071
--
ditto
0
On/Off
42
EV42
0 - 3071
--
ditto
0
On/Off
43
EV43
0 - 3071
--
ditto
0
On/Off
44
EV44
0 - 3071
--
ditto
0
On/Off
45
EV45
0 - 3071
--
ditto
0
On/Off
46
EV46
0 - 3071
--
ditto
0
On/Off
47
EV47
0 - 3071
--
ditto
0
On/Off
48
EV48
0 - 3071
--
ditto
0
49
EV49
0 - 3071
--
ditto
1258
Ry fail-A
x
On/Off
50
EV50
0 - 3071
--
ditto
1438
Data lost
x
On/Off
51
EV51
0 - 3071
--
ditto
0
On/Off
52
EV52
0 - 3071
--
ditto
0
On/Off
53
EV53
0 - 3071
--
ditto
0
On/Off
54
EV54
0 - 3071
--
ditto
0
On/Off
55
EV55
0 - 3071
--
ditto
0
On/Off
56
EV56
0 - 3071
--
ditto
0
On/Off
57
EV57
0 - 3071
--
ditto
0
On/Off
58
EV58
0 - 3071
--
ditto
0
On/Off
59
EV59
0 - 3071
--
ditto
0
On/Off
60
EV60
0 - 3071
--
ditto
0
On/Off
61
EV61
0 - 3071
--
ditto
0
On/Off
62
EV62
0 - 3071
--
ditto
0
On/Off
63
EV63
0 - 3071
--
ditto
0
On/Off
64
EV64
0 - 3071
--
ditto
0
On/Off
⎯ 170 ⎯
On/Off
Relay fail
x
On/Off
On/Off
x
On/Off
On/Off
6 F 2 S 0 9 0 4
Event record
Default setting
No.
Name
Range
Unit
Contents
Signal No.
Signal name
Model
210D
Type
410D
65
EV65
0 - 3071
--
ditto
0
On/Off
66
EV66
0 - 3071
--
ditto
0
On/Off
67
EV67
0 - 3071
--
ditto
0
On/Off
68
EV68
0 - 3071
--
ditto
0
On/Off
69
EV69
0 - 3071
--
ditto
0
On/Off
70
EV70
0 - 3071
--
ditto
0
On/Off
71
EV71
0 - 3071
--
ditto
0
On/Off
72
EV72
0 - 3071
--
ditto
0
On/Off
73
EV73
0 - 3071
--
ditto
0
On/Off
74
EV74
0 - 3071
--
ditto
0
On/Off
75
EV75
0 - 3071
--
ditto
0
On/Off
76
EV76
0 - 3071
--
ditto
0
On/Off
77
EV77
0 - 3071
--
ditto
0
On/Off
78
EV78
0 - 3071
--
ditto
0
On/Off
79
EV79
0 - 3071
--
ditto
0
On/Off
80
EV80
0 - 3071
--
ditto
0
On/Off
81
EV81
0 - 3071
--
ditto
0
On/Off
82
EV82
0 - 3071
--
ditto
0
On/Off
83
EV83
0 - 3071
--
ditto
0
On/Off
84
EV84
0 - 3071
--
ditto
0
On/Off
85
EV85
0 - 3071
--
ditto
0
On/Off
86
EV86
0 - 3071
--
ditto
0
On/Off
87
EV87
0 - 3071
--
ditto
0
On/Off
88
EV88
0 - 3071
--
ditto
0
89
EV89
0 - 3071
--
ditto
471
BO1 operate
x
On/Off
90
EV90
0 - 3071
--
ditto
472
BO2 operate
x
On/Off
91
EV91
0 - 3071
--
ditto
473
BO3 operate
x
On/Off
92
EV92
0 - 3071
--
ditto
474
BO4 operate
x
On/Off
93
EV93
0 - 3071
--
ditto
475
BO5 operate
x
On/Off
94
EV94
0 - 3071
--
ditto
476
BO6 operate
x
On/Off
95
EV95
0 - 3071
--
ditto
477
BO7 operate
x
On/Off
96
EV96
0 - 3071
--
ditto
0
On/Off
97
EV97
0 - 3071
--
ditto
0
On/Off
98
EV98
0 - 3071
--
ditto
0
On/Off
99
EV99
0 - 3071
--
ditto
0
On/Off
100
EV100
0 - 3071
--
ditto
0
On/Off
101
EV101
0 - 3071
--
ditto
2640
SET.GROUP1
x
On
102
EV102
0 - 3071
--
ditto
2641
SET.GROUP2
x
On
103
EV103
0 - 3071
--
ditto
2642
SET.GROUP3
x
On
104
EV104
0 - 3071
--
ditto
2643
SET.GROUP4
x
On
105
EV105
0 - 3071
--
ditto
2644
SET.GROUP5
x
On
106
EV106
0 - 3071
--
ditto
2645
SET.GROUP6
x
On
107
EV107
0 - 3071
--
ditto
2646
SET.GROUP7
x
On
108
EV108
0 - 3071
--
ditto
2647
SET.GROUP8
x
On
109
EV109
0 - 3071
--
ditto
1448
Sys. change
x
On
110
EV110
0 - 3071
--
ditto
1449
Rly. change
x
On
111
EV111
0 - 3071
--
ditto
1450
Grp. change
x
On
112
EV112
0 - 3071
--
ditto
0
113
EV113
0 - 3071
--
ditto
1272
TC alarm
x
On
114
EV114
0 - 3071
--
ditto
0
On
115
EV115
0 - 3071
--
ditto
0
On
116
EV116
0 - 3071
--
ditto
0
On
117
EV117
0 - 3071
--
ditto
0
On
118
EV118
0 - 3071
--
ditto
0
119
EV119
0 - 3071
--
ditto
1445
120
EV120
0 - 3071
--
ditto
0
121
EV121
0 - 3071
--
ditto
122
EV122
0 - 3071
--
123
EV123
0 - 3071
--
124
EV124
0 - 3071
125
EV125
0 - 3071
126
EV126
127
128
On/Off
On
On
PLC data CHG
x
On
1409
LED RST
x
On
ditto
1435
F.record_CLR
x
On
ditto
1436
E.record_CLR
x
On
--
ditto
1437
D.record_CLR
x
On
--
ditto
1439
TP_COUNT_CLR
x
On
0 - 3071
--
ditto
0
EV127
0 - 3071
--
ditto
0
EV128
0 - 3071
--
ditto
1442
⎯ 171 ⎯
On
On
On
DEMAND_CLR
x
On
6 F 2 S 0 9 0 4
⎯ 172 ⎯
6 F 2 S 0 9 0 4
Appendix C
Binary Output Default Setting List
⎯ 173 ⎯
6 F 2 S 0 9 0 4
BO1
BO2
BO3
BO4
BO5
BO6
BO7
Setting
Device
Name
Range
Logic
Reset
OR - AND
Ins - Dl - Dw - Lat
-
In #1
0 - 3071
In #2
In #3
0 - 3071
0 - 3071
-
-
In #4
0 - 3071
In #5
0 - 3071
In #6
TBO
Default Setting
Unit
-
Contents
210
410
Setting
Signal Name
Setting
Signal Name
Logic gate
Reset application
OR
Dl
---
OR
Dl
---
Output signal
371
GEN.TRIP
371
GEN.TRIP
ditto
ditto
0
0
0
0
-
-
ditto
0
0
ditto
0
0
0 - 3071
0.00 - 10.00
-
s
ditto
Dl/Dw timer
0
0.20
--
0
0.20
Logic
OR - AND
Logic gate
OR
--
OR
--
Reset
In #1
Ins - Dl - Dw - Lat
0 - 3071
-
-
Reset application
Output signal
Dl
371
-GEN.TRIP
Dl
371
-GEN.TRIP
In #2
0 - 3071
In #3
0 - 3071
In #4
In #5
-
-
--
-
-
ditto
0
0
ditto
0
0
0 - 3071
0 - 3071
-
ditto
ditto
0
0
0
0
In #6
0 - 3071
0.00 - 10.00
-
s
ditto
TBO
Dl/Dw timer
0.20
--
0.20
--
Logic
Reset
OR - AND
Ins - Dl - Dw - Lat
-
Logic gate
Reset application
OR
Dl
---
OR
Dl
---
In #1
0 - 3071
Output signal
371
GEN.TRIP
371
GEN.TRIP
In #2
In #3
0 - 3071
0 - 3071
-
In #4
0 - 3071
In #5
0 - 3071
In #6
TBO
-
-
-
0
0
ditto
ditto
0
0
0
0
-
-
ditto
0
0
ditto
0
0
0 - 3071
0.00 - 10.00
-
s
ditto
Dl/Dw timer
0
0.20
--
0
0.20
Logic
OR - AND
-
Logic gate
OR
--
OR
--
Reset
In #1
Ins - Dl - Dw - Lat
0 - 3071
-
Reset application
Output signal
Dl
0
--
Dl
0
--
In #2
0 - 3071
0
0
0 - 3071
-
-
ditto
In #3
ditto
0
0
In #4
In #5
0 - 3071
0 - 3071
-
ditto
ditto
0
0
0
0
In #6
0 - 3071
TBO
Logic
0.00 - 10.00
OR - AND
-
s
Reset
Ins - Dl - Dw - Lat
In #1
0 - 3071
In #2
In #3
-
-
-
-
ditto
Dl/Dw timer
Logic gate
0
0
0.20
OR
---
0.20
OR
---
--
Dl
--
-
-
Reset application
Dl
Output signal
0
0
0 - 3071
0 - 3071
-
ditto
ditto
0
0
0
0
In #4
0 - 3071
0
0
0 - 3071
0 - 3071
-
-
ditto
In #5
In #6
ditto
ditto
0
0
0
0
-
--
TBO
0.00 - 10.00
-
s
Dl/Dw timer
0.20
--
0.20
Logic
OR - AND
-
Logic gate
OR
--
OR
--
Reset
In #1
Ins - Dl - Dw - Lat
0 - 3071
-
Reset application
Output signal
Dl
122
-UV1_TRIP
Dl
122
-UV1_TRIP
In #2
0 - 3071
0
0
0 - 3071
-
-
ditto
In #3
ditto
0
0
In #4
In #5
0 - 3071
0 - 3071
-
ditto
ditto
0
0
0
0
In #6
0 - 3071
TBO
Logic
0.00 - 10.00
OR - AND
Reset
Ins - Dl - Dw - Lat
In #1
0 - 3071
In #2
In #3
0 - 3071
0 - 3071
In #4
0 - 3071
In #5
In #6
0 - 3071
0 - 3071
TBO
0.00 - 10.00
-
-
-
s
-
ditto
Dl/Dw timer
Logic gate
0
0.20
OR
0
---
0.20
OR
-
-
Reset application
-
ditto
ditto
0
0
0
0
ditto
0
0
ditto
ditto
0
0
0
0
-
-
-
-
s
Output signal
Dl/Dw timer
⎯ 174 ⎯
--
---
Dl
--
Dl
--
143
ZOV1_TRIP
143
ZOV1_TRIP
0.20
--
0.20
--
6 F 2 S 0 9 0 4
Appendix D
Details of Relay Menu and
LCD & Button Operation
⎯ 175 ⎯
6 F 2 S 0 9 0 4
MENU
xRecord
xStatus
xSet. (view)
xSet. (change)
xTest
/1 Record
xF. record
xE. record
xD. record
xCounter
/2 F.record
xDisplay
/3 F.record
xClear
#1 16/Jul/2002
18:13:57.031
Refer to Section
4.2.3.1.
Clear records?
END=Y CANCEL=N
/2 E.record
xDisplay
/3 E.record
xClear
16/Jul/2002
OV1 trip On
Refer to Section
4.2.3.2.
Clear records?
END=Y CANCEL=N
/2 D.record
xDisplay
/3 D.record
xClear
#1 16/Jul/2002
18:13:57.401
Refer to Section
4.2.3.3.
Clear records?
END=Y CANCEL=N
a-1 b-1
⎯ 176 ⎯
/4 F.record #1
16/Jul/2002
6 F 2 S 0 9 0 4
a-1 b-1
/2 Counter
xDisplay
/3 Counter
Trips ******
xClear
xClear
xClear
xClear
TripsA ******
TripsB ******
TripsC ******
Trips
Trips A
Trips B
Trips C
Refer to Section
4.2.3.4.
Clear Trips?
END=Y CANCEL=N
Clear Trips A?
END=Y CANCEL=N
Clear Trips B?
END=Y CANCEL=N
Clear Trips C?
END=Y CANCEL=N
a-1
⎯ 177 ⎯
6 F 2 S 0 9 0 4
a-1
/1 Status
xMetering
xBinary I/O
xRelay element
xTime sync.
xClock adjust.
xLCD contrast
Refer to Section 4.2.4.
/2 Metering
xMetering
xDemand
/2 Binary I/O
IP [0000 0000]
/2 Ry element
OV#1[000000000]
/2 Time sync.
*BI: Act.
/2 12/Nov/2002
22:56:19 [L]
/2 LCD contrast
/1 Set. (view)
xVersion
xDescription
xComms
xRecord
xStatus
xProtection
xBinary I/P
xBinary O/P
xLED
/2 Version
xRelay type
xSerial No.
xSoftware
/2 Description
xPlant name
Refer to Section 4.2.5
GRD130-210D-10
-A0
∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗
GSPDM1-03-*
xDescription
/2 Comms
xAddr./Param.
xSwitch
/3 Addr./Param.
IEC
2
/3 Switch
a-1, b-1
⎯ 178 ⎯
/3 Metering
Va
**.** kV
/3 Demand
Vamax
**.** kV
6 F 2 S 0 9 0 4
a-1
b-1
/2 Record
xE.record
xD.record
xCounter
/4 Signal No.
BITRN
100
/3 E.record
xSignal No.
/4 Event name
xEvent name
/3 D.record
xTime/starter
xScheme sw
xBinary sig.
xSignal name
/4 Time/starter
Time
2.0s
/4 Scheme sw
/4 Binary sig.
SIG1
∗∗∗
/4 Signal name
/3 Counter
xScheme sw
/4 Scheme sw
xAlarm set
/2 Status
xMetering
xTime sync.
xTime zone
/2 Act. gp. =*
xCommon
/3 Metering
/3 Time sync.
/3 Time zone
GMT
+9hrs
xGroup1
:
xGroup8
/3 Common
/3 Group1
xParameter
xTrip
a-1
b-1
c-1
d-1
⎯ 179 ⎯
/4 Alarm set
TCALM 10000
6 F 2 S 0 9 0 4
a-1
b-1
c-1
d-1
/4 Parameter
xLine name
xVT ratio
∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗
/5 VT ratio
PVT
100
VESVT
100
/4 Trip
xScheme sw
/5 Scheme sw
xOV
xProt. element
xUV
xZOV
xNOV
xFRQ
xSYN
/6 OV
/6 UV
/6 ZOV
/6 NOV
/6 FRQ
/6 SYN
/3 Group2
xParameter
/3 Group8
xParameter
/2 Binary I/P
xTimers
/5 Prot.element
xOV
xUV
xZOV
xNOV
xFRQ
xSYN
/4 Timers
/6 OV
/6 UV
/6 ZOV
/6 NOV
xFunctions
/4 Functions
/6 FRQ
/6 SYN
a-1
b-1
⎯ 180 ⎯
6 F 2 S 0 9 0 4
a-1 b-1
/2 Binary O/P
BO1 AND, D
1000, 1001, 1002,
1003, 1004, 1005
BO2 AND, DL
∗∗∗∗, ∗∗∗∗, ∗∗∗∗
:
BO7 OR, L
∗∗∗∗, ∗∗∗∗, ∗∗∗∗
BO1TBO 0.20s
:
BO7TBO 0.20s
/2 LED
xLED
/3 LED
xVirtual LED
/3 Virtual LED
xIND1
/1 Set.(change)
xPassword
xDescription
xComms
xRecord
xStatus
xProtection
xBinary I/P
xBinary O/P
xLED
/4 IND2
BIT1
I,O
: Password trap
Password [_ ]
1234567890←
: Confirmation trap
Change settings?
ENTER=Y CANCEL=N
Input
[_ ]
1234567890←
xTest
Refer to Section 4.2.6.2.
xDescription
xAlarm1 Text
:
xAlarm4 Text
I,O
xIND2
/2 Password
xSetting
/2 Description
xPlant name
/4 IND1
BIT1
_
ABCDEFG
_
ABCDEFG
a-1 b-2
⎯ 181 ⎯
Retype
[_ ]
1234567890←
6 F 2 S 0 9 0 4
a-1 b-2
/3 Addr./Param.
/2 Comms
xAddr./Param.
/3 Switch
xSwitch
/2 Record
xE.record
/3 E.record
xD.record
xCounter
xBITRN
100 _
:
Refer to Section
4.2.6.5.
/3 D.record
xTime/starter
xScheme sw
xBinary sig.
/3 Counter
xScheme sw
xAlarm set
/2 Status
xMetering
xTime sync.
Refer to Section
4.2.6.6.
/3 Metering
/3 Time sync.
/2 Protection
xChange act. gp.
xChange set.
xCopy gp.
Refer to Section
4.2.6.7.
/3 Change act.
gp.
/3 Act gp.=1
xCommon
xGroup1
:
xGroup8
a-1 b-2 c-2
d-2
⎯ 182 ⎯
/4 Time/starter
/4 Scheme sw
/4 Binary sig.
/4 Scheme sw
/4 Alarm set
6 F 2 S 0 9 0 4
a-1 b-2
c-2 d-2
/4 Common
/4 Group1
xParameter
xTrip
/5 Parameter
xLine name
xVT ratio
/5 Trip
xScheme sw
xProt.element
/7 OV
_
ABCDEFG
/6 VT ratio
/7 UV
/6 Scheme sw
xOV
/7 ZOV
xUV
xZOV
xNOV
xFRQ
xSYN
/7 NOV
/7 FRQ
/7 SYN
/6 Prot.element
xOV
xUV
xZOV
xNOV
xFRQ
xSYN
/7 OV
/7 UV
/7 ZOV
/7 NOV
/4 Group2
xParameter
/7 FRQ
/4 Group8
xParameter
/7 SYN
a-1, b-2
c-2
⎯ 183 ⎯
6 F 2 S 0 9 0 4
a-1 b-2 c-2
/3 Copy A to B
A
_
B
_
/2 Binary I/P
xBI1
/3 BI1
xTimers
xBI2
xBI3
xBI4
xBI5
xBI6
xBI7
xBI8
xFunctions
/4 Timers
/4 Functions
/3 BI8
xTimers
xFunctions
Refer to Section
4.2.6.8.
/2 Binary O/P
xBO1
/3 BO1
xLogic/Reset
xFunctions
xBO7
Refer to Section
4.2.6.9.
/4 Logic/Reset
/4 Functions
/3 BO7
xLogic/Reset
xFunctions
/2 LED
xLED
xVirtual LED
/3 LED
xLED1
Refer to Section
4.2.6.10.
/4 LED1
xLogic/Reset
xFunctions
xLED6
/4 LED6
xLogic/Reset
xFunctions
a-1
c-3
⎯ 184 ⎯
/5 Logic/Reset
/5 Functions
6 F 2 S 0 9 0 4
a-1
c-3
/3 Virtual LED
xIND1
/4 IND1
xReset
xIND2
xFunctions
/5 Reset
/5 Functions
/4 IND2
xReset
xFunctions
/1 Test
xSwitch
/2 Switch
xBinary O/P
xLogic circuit
A.M.F.
Off/On
UVTST
Off/On
IECTST
Off/On
Refer to Section 4.2.7.
: Password trap
Password [_ ]
1234567890←
1 _
0
0
/2 Binary O/P
BO1
0 _
Disable/Enable
FAIL
0
Disable/Enable
/2 Logic
circuit
TermA
1
TermB
1001
_
_
⎯ 185 ⎯
Operate?
ENTER=Y CANCEL=N
6 F 2 S 0 9 0 4
LCD AND BUTTON OPERATION INSTRUCTION
MANUAL
MODE
1. PRESS ARROW KEY TO MOVE TO EACH DISPLAYED
ITEMS
NORMAL
(DISPLAY OFF)
VIEW
PRESS ANY
BUTTON
EXCEPT FOR
"VIEW" AND
"RESET"
2. PRESS "END" KEY TO BACK TO PREVIOUS SCREEN
1=RECORD
MENU
( DISPLAY ON )
1=FAULT RECORD
2=EVENT RECORD
3=DISTURBANCE RECORD
METERING 1
( DISPLAY ON )
4=COUNTER
2=STATUS
VIEW
RESET
1=METERING
2=BINARY INPUT&OUPUT
METERING 5
( DISPLAY ON )
VIEW
AUTOMODE 1
3=RELAY ELELMENT
TRIP OUTPUT
ISSUED !
5=CLOCK ADJUSTMENT
4=TIME SYNC SOURCE
RESET
TRIP
( LED ON )
3=SETTING
(VIEW)
1=RELAY VERSION
LATEST FAULT *
( DISPLAY ON )
2=DESCRIPTION
AUTOMODE 2
3=COMMUNICATION
4=RECORD
RELAY
FAILED !
VIEW
5=STATUS
RESET
ALARM
( LED ON )
6=PROTECTION
7=BINARY INPUT
8=BINARY OUTPUT
AUTO SUPERVISON *
( DISPLAY ON )
9=LED
*. "LATEST FAULT" AND "AUTO
SUPERVISION" SCREEN IS
DISPLAYED ONLY IF DATA
IS STORED
VIEW
RESET
4=SETTING
(CHANGE)
Same as SETTING (VIEW) menu
5=TEST
1=SWITCH
2=BINARY OUTPUT
⎯ 186 ⎯
6 F 2 S 0 9 0 4
Appendix E
Case Outline
⎯ 187 ⎯
6 F 2 S 0 9 0 4
I N SERVICE
RESET
A
B
258
VI EW
T RIP
ALARM
0V CAN
CEL ENTER
END
15.6
104
185.2
32
Side view
Front view
4 holes-φ5.5
4 holes-φ4.5
OPT
T
TB1
TB3
TB1
TB2
R
TB3
F1
R
T
E
E
Rear view for
Fibre optic port + 100BASE-FX
Rear view for
RS485 + 100BASE-TX
56
102
Panel cut-out
TB3
TB1
1
3
5
7
A1
A1
2
4
6
8
TB2
B1
B1
Terminal
Application
TB3: A1 – A3
RS485 I/F
TB3: B1 – B2
IRIG-B
OPT
Fibre optic for IEC 60870-5-103
T1
100BASE-TX
F1
100BASE-FX
TB1,TB2,TB3: Screw terminal (M3.5 Ring)
T1: RJ45
A10
OPT: ST connector
B10
F1: SC connector
A18
B18
Terminal block
Case Outline
⎯ 188 ⎯
24 9
T1
239
TB2
6 F 2 S 0 9 0 4
Appendix F
Typical External Connection
⎯ 189 ⎯
6 F 2 S 0 9 0 4
GRD130 - 210 (1PN setting)
TB3B4
A B C
A4
A5
B5
BO1
TB11
2
VY
3
4
VN
BO2
A7
B7
A6
B6
BO3
B8
A8
A9
B9
FRAME EARTH
(P)
BI1
COMMAND
BI2
COMMAND
BI3
COMMAND
BI4
COMMAND
BI5
COMMAND
BI6
COMMAND
BI7
COMMAND
BI8
COMMAND
TB2A1
B1
A2
B2
A3
B3
A4
B4
A5
B5
A6
B6
A7
B7
A8
B8
BI1
A10
B10
A11
B11
BO4
BI2
BI3
A13
BI4
B13
A12
B12
BO5
BI5
A14
BI6
B14
A15
B15
BO6
BI7
A16
BI8
BO7
B16
FAIL
A17
A18
B18
(N)
B17
RELAY FAIL.
≥1
COM-A
DD FAIL.
DC
SUPPLY
(+)
TB2- A9
+5Vdc
B9
(-)
DC-DC
0V
A10
A1
COM-B
RS485 I/F for IEC60870-5-103 - option (Sheathed cable)
A3
COM-0V
OPT
B10
(∗)
TB3-A2
T
R
Opt. I/F for IEC60870-5-103 (option)
FRAME EARTH
E
TX
CASE EARTH
FX
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-TX:option)
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-FX:option)
TB3-B2
B1
IRIG-B
(∗)This connection is connected by short bar before shipment.
Typical External Connection
⎯ 190 ⎯
6 F 2 S 0 9 0 4
GRD130 - 210 (1PP setting)
TB3B4
A B C
A4
A5
B5
BO1
TB11
2
VΔ
3
4
VN
A7
B7
A6
B6
BO2
FRAME EARTH
B8
(P)
BI1
COMMAND
BI2
COMMAND
BI3
COMMAND
BI4
COMMAND
BI5
COMMAND
BI6
COMMAND
BI7
COMMAND
BI8
COMMAND
A8
A9
B9
BO3
TB2A1
B1
A2
B2
A3
B3
A4
B4
A5
B5
A6
B6
A7
B7
A8
B8
BI1
A10
B10
A11
B11
BO4
BI2
BI3
A13
BI4
B13
A12
B12
BO5
BI5
A14
BI6
B14
A15
B15
BO6
BI7
A16
BI8
BO7
B16
FAIL
A17
A18
B18
(N)
B17
RELAY FAIL.
≥1
DD FAIL.
DC
SUPPLY
(+)
COM-A
TB2- A9
+5Vdc
B9
(-)
DC-DC
0V
B10
FRAME EARTH
E
A1
COM-B
RS485 I/F for IEC60870-5-103 - option (Sheathed cable)
A3
COM-0V
A10
(∗)
TB3-A2
CASE EARTH
OPT
T
R
TX
FX
Opt. I/F for IEC60870-5-103 (option)
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-TX:option)
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-FX:option)
TB3-B2
B1
IRIG-B
(∗)This connection is connected by short bar before shipment.
Typical External Connection
⎯ 191 ⎯
6 F 2 S 0 9 0 4
GRD130 - 210 (2PP setting)
TB3B4
A B C
A4
A5
B5
BO1
TB11
2
VAB
3
4
VBC
BO2
A7
B7
A6
B6
BO3
B8
A8
A9
B9
FRAME EARTH
(P)
BI1
COMMAND
BI2
COMMAND
BI3
COMMAND
BI4
COMMAND
BI5
COMMAND
BI6
COMMAND
BI7
COMMAND
BI8
COMMAND
TB2A1
B1
A2
B2
A3
B3
A4
B4
A5
B5
A6
B6
A7
B7
A8
B8
BI1
A10
B10
A11
B11
BO4
BI2
BI3
A13
BI4
B13
A12
B12
BO5
BI5
A14
BI6
B14
A15
B15
BO6
BI7
A16
BI8
BO7
B16
FAIL
A17
A18
B18
(N)
B17
RELAY FAIL.
≥1
COM-A
DD FAIL.
DC
SUPPLY
(+)
TB2- A9
+5Vdc
B9
(-)
DC-DC
TB3-A2
A1
COM-B
RS485 I/F for IEC60870-5-103 - option (Sheathed cable)
0V
A3
COM-0V
A10
OPT
B10
(∗)
FRAME EARTH
E
T
R
TX
CASE EARTH
FX
Opt. I/F for IEC60870-5-103 (option)
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-TX:option)
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-FX:option)
TB3-B2
B1
IRIG-B
(∗)This connection is connected by short bar before shipment.
Typical External Connection
⎯ 192 ⎯
6 F 2 S 0 9 0 4
GRD130 - 410 (3PN setting)
TB3B4
TB11
2
3
4
5
6
7
8
A B C
A4
A5
B5
BO1
VA
VB
VC
BO2
A7
B7
A6
B6
BO3
B8
A8
A9
B9
VN
FRAME EARTH
(P)
BI1
COMMAND
BI2
COMMAND
BI3
COMMAND
BI4
COMMAND
BI5
COMMAND
BI6
COMMAND
BI7
COMMAND
BI8
COMMAND
TB2A1
B1
A2
B2
A3
B3
A4
B4
A5
B5
A6
B6
A7
B7
A8
B8
BI1
A10
B10
A11
B11
BO4
BI2
BI3
A13
BI4
B13
A12
B12
BO5
BI5
A14
BI6
B14
A15
B15
BO6
BI7
A16
BI8
BO7
B16
FAIL
A17
A18
B18
(N)
B17
RELAY FAIL.
≥1
DD FAIL.
DC
SUPPLY
(+)
COM-A
TB2- A9
B9
(-)
DC-DC
0V
B10
FRAME EARTH
E
A1
COM-B
RS485 I/F for IEC60870-5-103 - option (Sheathed cable)
A3
COM-0V
A10
(∗)
TB3-A2
+5Vdc
OPT
CASE EARTH
T
R
TX
FX
Opt. I/F for IEC60870-5-103 (option)
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-TX:option)
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-FX:option)
TB3-B2
B1
IRIG-B
(∗)This connection is connected by short bar before shipment.
Typical External Connection
⎯ 193 ⎯
6 F 2 S 0 9 0 4
GRD130 - 410 (3PP setting)
A B C
TB3B4
TB11
2
3
4
5
6
7
8
A4
A5
B5
BO1
VAB
VBC
VCA
BO2
A7
B7
A6
B6
BO3
B8
A8
A9
B9
VN
FRAME EARTH
(P)
BI1
COMMAND
BI2
COMMAND
BI3
COMMAND
BI4
COMMAND
BI5
COMMAND
BI6
COMMAND
BI7
COMMAND
BI8
COMMAND
TB2A1
B1
A2
B2
A3
B3
A4
B4
A5
B5
A6
B6
A7
B7
A8
B8
BI1
A10
B10
A11
B11
BO4
BI2
BI3
A13
BI4
B13
A12
B12
BO5
BI5
A14
BI6
B14
A15
B15
BO6
BI7
A16
BI8
BO7
B16
FAIL
A17
A18
B18
(N)
B17
RELAY FAIL.
≥1
DD FAIL.
DC
SUPPLY
(+)
COM-A
TB2- A9
B9
(-)
DC-DC
0V
B10
FRAME EARTH
E
A1
COM-B
RS485 I/F for IEC60870-5-103 - option (Sheathed cable)
A3
COM-0V
A10
(∗)
TB3-A2
+5Vdc
OPT
CASE EARTH
T
R
TX
FX
Opt. I/F for IEC60870-5-103 (option)
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-TX:option)
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-FX:option)
TB3-B2
B1
IRIG-B
(∗)This connection is connected by short bar before shipment.
Typical External Connection
⎯ 194 ⎯
6 F 2 S 0 9 0 4
GRD130 - 410 (2PP setting)
A B C
TB3B4
TB11
2
3
4
5
6
7
8
A4
A5
B5
BO1
VAB
VBC
VCA
BO2
A7
B7
A6
B6
BO3
B8
A8
A9
B9
VN
FRAME EARTH
(P)
BI1
COMMAND
BI2
COMMAND
BI3
COMMAND
BI4
COMMAND
BI5
COMMAND
BI6
COMMAND
BI7
COMMAND
BI8
COMMAND
TB2A1
B1
A2
B2
A3
B3
A4
B4
A5
B5
A6
B6
A7
B7
A8
B8
BI1
A10
B10
A11
B11
BO4
BI2
BI3
A13
BI4
B13
A12
B12
BO5
BI5
A14
BI6
B14
A15
B15
BO6
BI7
A16
BI8
BO7
B16
FAIL
A17
A18
B18
(N)
B17
RELAY FAIL.
≥1
COM-A
DD FAIL.
DC
SUPPLY
(+)
TB2- A9
+5Vdc
B9
(-)
DC-DC
TB3-A2
A1
COM-B
RS485 I/F for IEC60870-5-103 - option (Sheathed cable)
0V
A3
COM-0V
A10
OPT
B10
(∗)
FRAME EARTH
E
T
R
TX
CASE EARTH
FX
Opt. I/F for IEC60870-5-103 (option)
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-TX:option)
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-FX:option)
TB3-B2
B1
IRIG-B
(∗)This connection is connected by short bar before shipment.
Typical External Connection
⎯ 195 ⎯
6 F 2 S 0 9 0 4
⎯ 196 ⎯
6 F 2 S 0 9 0 4
Appendix G
Relay Setting Sheet
1. Relay Identification
2. Line parameter
3. Contacts setting
4. Relay setting sheet
⎯ 197 ⎯
6 F 2 S 0 9 0 4
1. Relay Identification
Date:
Relay type
Serial Number
Frequency
AC voltage
DC supply voltage
Password
Active setting group
2. Line parameter
VT ratio
PVT:
RVT:
3. Contacts setting
TB3
Terminal A5(B5)-B4, A4
Terminal A6(B6)-A7, B7
Terminal A9(B9)-B8, A8
Terminal A11(B11)-A10, B10
Terminal A12(B12)-A13, B13
Terminal A15(B15)-A14, B14
Terminal B16-A16
⎯ 198 ⎯
6 F 2 S 0 9 0 4
4. Relay setting sheet
№
Setting Device Name
1
Active group
2
APPL
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
APPLVES
V0SVEN
V2SVEN
AOLED
Line name
PVT
VESVT
OV
OV1EN
OV2EN
OV3EN
OV4EN
UV
UV1EN
UV2EN
UV3EN
UV4EN
VBLKEN
ZOV
ZOV1EN
ZOV2EN
NOV
NOV1EN
NOV2EN
FRQ
FRQ1EN
FRQ2EN
FRQ3EN
FRQ4EN
DFRQ
DFRQ1EN
DFRQ2EN
DFRQ3EN
DFRQ4EN
OV
OV1
TOV1
TOV1M
TOV1R
OV1DPR
OV2
TOV2
TOV2M
TOV2R
OV2DPR
OV3
TOV3
OV3DPR
OV4
TOV4
OV4DPR
OV1-k
OV1-α
OV1-C
OV2-k
OV2-α
OV2-C
UV
UV1
TUV1
TUV1M
TUV1R
UV2
TUV2
TUV2M
TUV2R
UV3
TUV3
UV4
TUV4
VBLK
UV1-k
UV1-α
UV1-C
UV2-k
UV2-α
UV2-C
Range
1-8
1PP - 1PN - 2PP
3PN - 3PP - 2PP
Off - Ve - Vs
Off - ALM&BLK - ALM
Off - ALM&BLK - ALM
Off - On
Specified by user
1 - 20000
1 - 20000
Off - DT - IDMT - C
Off - DT - IDMT - C
Off - On
Off - On
Off - DT - IDMT - C
Off - DT - IDMT - C
Off - On
Off - On
Off - On
Off - DT - IDMT - C
Off - DT - IDMT - C
Off - DT - IDMT - C
Off - DT - IDMT - C
Off - OF - UF
Off - OF - UF
Off - OF - UF
Off - OF - UF
Off - R - D
Off - R - D
Off - R - D
Off - R - D
10.0 - 200.0
0.00 - 300.00
0.05 - 100.00
0.0 - 300.0
10 - 98
10.0 - 200.0
0.00 - 300.00
0.05 - 100.00
0.0 - 300.0
10 - 98
10.0 - 200.0
0.00 - 300.00
10 - 98
10.0 - 200.0
0.00 - 300.00
10 - 98
0.00 - 300.00
0.00 - 5.00
0.000 - 5.000
0.00 - 300.00
0.00 - 5.00
0.000 - 5.000
5.0 - 130.0
0.00 - 300.00
0.05 - 100.00
0.0 - 300.0
5.0 - 130.0
0.00 - 300.00
0.05 - 100.00
0.0 - 300.0
5.0 - 130.0
0.00 - 300.00
5.0 - 130.0
0.00 - 300.00
5.0 - 20.0
0.00 - 300.00
0.00 - 5.00
0.000 - 5.000
0.00 - 300.00
0.00 - 5.00
0.000 - 5.000
Units
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V
s
-
s
%
V
s
-
s
%
V
s
%
V
s
%
-
-
-
-
-
-
V
s
-
s
V
s
-
s
V
s
V
s
V
-
-
-
-
-
-
Contents
Active setting group
Application setting of VT(200)
Application setting of VT(400)
Application setting of VT-Ves
ditto
ditto
TRIP LED lighting control at alarm output
Line name
Phase VT ratio
Ve's VT ratio
OV1 Enable
OV2 Enable
OV3 Enable
OV4 Enable
UV1 Enable
UV2 Enable
UV3 Enable
UV4 Enable
UV Block Enable
ZOV1 Enable
ZOV2 Enable
NOV1 Enable
NOV2 Enable
FRQ1 Enable
FRQ2 Enable
FRQ3 Enable
FRQ4 Enable
DFRQ1 Enable
DFRQ2 Enable
DFRQ3 Enable
DFRQ4 Enable
OV1 Threshold setting
OV1 Definite time setting
OV1 Time multiplier setting
OV1 Definite time reset delay
OV1 DO/PU ratio
OV2 Threshold setting
OV2 Definite time setting
OV2 Time multiplier setting
OV2 Definite time reset delay
OV2 DO/PU ratio
OV3 Threshold setting
OV3 Definite time setting
OV3 DO/PU ratio
OV4 Threshold setting
OV4 Definite time setting
OV4 DO/PU ratio
Configurable IDMT Curve setting of OV1
ditto
ditto
Configurable IDMT Curve setting of OV2
ditto
ditto
UV1 Threshold setting
UV1 Definite time setting
UV1 Time multiplier setting
UV1 Definite time reset delay
UV2 Threshold setting
UV2 Definite time setting
UV2 Time multiplier setting
UV2 Definite time reset delay
UV3 Threshold setting
UV3 Definite time setting
UV4 Threshold setting
UV4 Definite time setting
UV Blocking threshold
Configurable IDMT Curve setting of UV1
ditto
ditto
Configurable IDMT Curve setting of UV2
ditto
ditto
⎯ 199 ⎯
Default Setting of Relay Series
Model
210
410
1
1PP
--3PN
Ve
-ALM
Off
ALM
On
no-name
100
100
Off
Off
Off
Off
DT
Off
Off
Off
Off
DT
Off
Off
Off
Off
Off
Off
Off
Off
Off
Off
Off
120.0
1.00
1.00
0.0
95
140.0
1.00
1.00
0.0
95
140.0
1.00
95
140.0
1.00
95
1.00
1.00
0.000
1.00
1.00
0.000
60.0
1.00
1.00
0.0
40.0
1.00
1.00
0.0
40.0
1.00
40.0
1.00
10.0
1.00
1.00
0.000
1.00
1.00
0.000
User setting
6 F 2 S 0 9 0 4
№
Setting Device Name
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
ZOV
NOV
FRQ
DFRQ
SYN
BI1
BI2
BI3
BI4
ZOV1
TZOV1
TZOV1M
TZOV1R
ZOV2
TZOV2
TZOV2M
TZOV2R
ZOV1-k
ZOV1-α
ZOV1-C
ZOV2-k
ZOV2-α
ZOV2-C
NOV1
TNOV1
TNOV1M
TNOV1R
NOV2
TNOV2
TNOV2M
TNOV2R
NOV1-k
NOV1-α
NOV1-C
NOV2-k
NOV2-α
NOV2-C
FRQ1
TFRQ1
FRQ2
TFRQ2
FRQ3
TFRQ3
FRQ4
TFRQ4
FVBLK
DFRQ1
DFRQ2
DFRQ3
DFRQ4
VCHK
DfEN
VTPHSEL
VT-RATE
VES-RATE
3PH-VT
OVB
UVB
OVL
UVL
SYNUV
SYNOV
SYNDV
SYNθ
SYNDf
TSYN
TLBDL
TDBLL
TDBDL
PUD
DOD
SNS
PUD
DOD
SNS
PUD
DOD
SNS
PUD
DOD
SNS
Range
1.0 - 160.0
0.00 - 300.00
0.05 - 100.00
0.0 - 300.0
1.0 - 160.0
0.00 - 300.00
0.05 - 100.00
0.0 - 300.0
0.00 - 300.00
0.00 - 5.00
0.000 - 5.000
0.00 - 300.00
0.00 - 5.00
0.000 - 5.000
1.0 - 160.0
0.00 - 300.00
0.05 - 100.00
0.0 - 300.0
1.0 - 160.0
0.00 - 300.00
0.05 - 100.00
0.0 - 300.0
0.00 - 300.00
0.00 - 5.00
0.000 - 5.000
0.00 - 300.00
0.00 - 5.00
0.000 - 5.000
-10.00 - 10.00
0.00 - 300.00
-10.00 - 10.00
0.00 - 300.00
-10.00 - 10.00
0.00 - 300.00
-10.00 - 10.00
0.00 - 300.00
40.0 - 100.0
0.1 - 15.0
0.1 - 15.0
0.1 - 15.0
0.1 - 15.0
Off - LD - DL - DD - S
Off - On
A-B-C
PH-G - PH-PH
PH-G - PH-PH
Bus - Line
10 - 150
10 - 150
10 - 150
10 - 150
10 - 150
10 - 150
0 - 150
5 - 75
0.01 - 2.00
0.01 - 10.00
0.01 - 10.00
0.01 - 10.00
0.01 - 10.00
0.00 - 300.00
0.00 - 300.00
Norm - Inv
0.00 - 300.00
0.00 - 300.00
Norm - Inv
0.00 - 300.00
0.00 - 300.00
Norm - Inv
0.00 - 300.00
0.00 - 300.00
Norm - Inv
Units
V
s
-
s
V
s
-
s
-
-
-
-
-
-
V
s
-
s
V
s
-
s
-
-
-
-
-
-
Hz
s
Hz
s
Hz
s
Hz
s
V
Hzs
Hzs
Hzs
Hzs
-
-
-
-
-
-
V
V
V
V
V
V
V
deg
Hz
s
s
s
s
s
s
-
s
s
-
s
s
-
s
s
-
Contents
ZOV1 Threshold setting
ZOV1 Definite time setting
ZOV1 Time multiplier setting
ZOV1 Definite time reset delay
ZOV2 Threshold setting
ZOV2 Definite time setting
ZOV2 Time multiplier setting
ZOV2 Definite time reset delay
Configurable IDMT Curve setting of ZOV1
ditto
ditto
Configurable IDMT Curve setting of ZOV2
ditto
ditto
NOV1 Threshold setting
NOV1 Definite time setting
NOV1 Time multiplier setting
NOV1 Definite time reset delay
NOV2 Threshold setting
NOV2 Definite time setting
NOV2 Time multiplier setting
NOV2 Definite time reset delay
Configurable IDMT Curve setting of NOV1
ditto
ditto
Configurable IDMT Curve setting of NOV2
ditto
ditto
FRQ1 Threshold setting
FRQ1 Definite time setting
FRQ2 Threshold setting
FRQ2 Definite time setting
FRQ3 Threshold setting
FRQ3 Definite time setting
FRQ4 Threshold setting
FRQ4 Definite time setting
UV Blocking threshold
DFRQ1 Threshold setting.
DFRQ2 Threshold setting.
DFRQ3 Threshold setting.
DFRQ4 Threshold setting.
Autoreclosing volatge check
Frequency difference checking enable
VT phase selection
VT rating
VES rating
3ph. VT location
OV element of bus-voltage check
UV element of bus-voltage check
OV element of line-voltage check
UV element of line-voltage check
UV element of Synchro. check
OV element of Synchro. check
Voltage difference for SYN
Synchro. check (ph. diff.)
Frequency difference checking for SYN
Synchronism check timer (Live-bus & Live-line)
Voltage check timer (Live-bus & Dead-line)
Voltage check timer (Dead-bus & Live-line)
Voltage check timer (Dead-bus & Dead-line)
Binary Input Pick-up delay
Binary Input Drop-off delay
Binary Input Sense
Binary Input Pick-up delay
Binary Input Drop-off delay
Binary Input Sense
Binary Input Pick-up delay
Binary Input Drop-off delay
Binary Input Sense
Binary Input Pick-up delay
Binary Input Drop-off delay
Binary Input Sense
⎯ 200 ⎯
Default Setting of Relay Series
Model
210
410
20.0
1.00
1.00
0.0
40.0
1.00
1.00
0.0
1.00
1.00
0.000
1.00
1.00
0.000
20.0
1.00
1.00
0.0
40.0
1.00
1.00
0.0
1.00
1.00
0.000
1.00
1.00
0.000
-1.00
1.00
-1.00
1.00
-1.00
1.00
-1.00
1.00
40.0
0.5
0.5
0.5
0.5
Off
Off
A
PH-G
PH-G
Line
51
13
51
13
83
51
150
30
1.00
1.00
0.05
0.05
0.05
0.00
0.00
Norm
0.00
0.00
Norm
0.00
0.00
Norm
0.00
0.00
Norm
User setting
6 F 2 S 0 9 0 4
№
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
Setting Device Name
BI5
PUD
DOD
SNS
BI6
PUD
DOD
SNS
BI7
PUD
DOD
SNS
BI8
PUD
DOD
SNS
LED1
Logic
Reset
In #1
In #2
In #3
In #4
LED2
Logic
Reset
In #1
In #2
In #3
In #4
LED3
Logic
Reset
In #1
In #2
In #3
In #4
LED4
Logic
Reset
In #1
In #2
In #3
In #4
LED5
Logic
Reset
In #1
In #2
In #3
In #4
LED6
Logic
Reset
In #1
In #2
In #3
In #4
IND1
Reset
BIT1
BIT2
BIT3
BIT4
BIT5
BIT6
BIT7
BIT8
IND2
Reset
BIT1
BIT2
BIT3
BIT4
BIT5
BIT6
BIT7
BIT8
Plant name
Description
Alarm1 Text
Alarm2 Text
Alarm3 Text
Alarm4 Text
Range
0.00 - 300.00
0.00 - 300.00
Norm - Inv
0.00 - 300.00
0.00 - 300.00
Norm - Inv
0.00 - 300.00
0.00 - 300.00
Norm - Inv
0.00 - 300.00
0.00 - 300.00
Norm - Inv
OR - AND
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
OR - AND
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
OR - AND
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
OR - AND
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
OR - AND
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
OR - AND
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
Specified by user
ditto
Specified by user
Specified by user
Specified by user
Specified by user
Units
s
s
-
s
s
-
s
s
-
s
s
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Contents
Binary Input Pick-up delay
Binary Input Drop-off delay
Binary Input Sense
Binary Input Pick-up delay
Binary Input Drop-off delay
Binary Input Sense
Binary Input Pick-up delay
Binary Input Drop-off delay
Binary Input Sense
Binary Input Pick-up delay
Binary Input Drop-off delay
Binary Input Sense
LED1 Logic Gate Type
LED1 Reset operation
LED1 Functions
ditto
ditto
ditto
LED2 Logic Gate Type
LED2 Reset operation
LED2 Functions
ditto
ditto
ditto
LED3 Logic Gate Type
LED3 Reset operation
LED3 Functions
ditto
ditto
ditto
LED4 Logic Gate Type
LED4 Reset operation
LED4 Functions
ditto
ditto
ditto
LED5 Logic Gate Type
LED5 Reset operation
LED5 Functions
ditto
ditto
ditto
LED6 Logic Gate Type
LED6 Reset operation
LED6 Functions
ditto
ditto
ditto
Virtual LED1 Reset operation
Virtual LED1 Functions
ditto
ditto
ditto
ditto
ditto
ditto
ditto
Virtual LED2 Reset operation
Virtual LED2 Functions
ditto
ditto
ditto
ditto
ditto
ditto
ditto
Plant name
Memorandum for user
Alarm1 Text
Alarm2 Text
Alarm3 Text
Alarm4 Text
⎯ 201 ⎯
Default Setting of Relay Series
Model
210
410
0.00
0.00
Norm
0.00
0.00
Norm
0.00
0.00
Norm
0.00
0.00
Norm
OR
Inst
0
0
0
0
OR
Inst
0
0
0
0
OR
Inst
0
0
0
0
OR
Inst
0
0
0
0
OR
Inst
0
0
0
0
OR
Inst
0
0
0
0
Inst
0
0
0
0
0
0
0
0
Inst
0
0
0
0
0
0
0
0
no-name
no-data
ALARM1
ALARM2
ALARM3
ALARM4
User setting
6 F 2 S 0 9 0 4
№
Setting Device Name
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
IEC
SYADJ
IP1-1
IP1-2
IP1-3
IP1-4
SM1-1
SM1-2
SM1-3
SM1-4
GW1-1
GW1-2
GW1-3
GW1-4
IP2-1
IP2-2
IP2-3
IP2-4
SM2-1
SM2-2
SM2-3
SM2-4
GW2-1
GW2-2
GW2-3
GW2-4
SI1-1
SI1-2
SI1-3
SI1-4
SI2-1
SI2-2
SI2-3
SI2-4
SI3-1
SI3-2
SI3-3
SI3-4
SI4-1
SI4-2
SI4-3
SI4-4
SMODE
DEADT
GOINT
PG1-1
PG1-2
PG1-3
PG1-4
PG2-1
PG2-2
PG2-3
PG2-4
232C
IECBR
IECBLK
850BLK
850AUT
TSTMOD
GSECHK
PINGCHK
BITRN
Time
OV
UV
ZOV
NOV
TRIP
OV
UV
ZOV
NOV
Range
0 - 254
-9999 - 9999
0 - 254
0 - 254
0 - 254
0 - 254
0 - 255
0 - 255
0 - 255
0 - 255
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 255
0 - 255
0 - 255
0 - 255
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0- 1
1 - 120
1 - 60
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
9.6 - 19.2 - 57.6
9.6 - 19.2
Normal - Blocked
Normal - Blocked
Off - On
Off - On
Off - On
Off - On
0 - 128
0.1 - 5.0
10.0 - 200.0
1.0 - 130.0
1.0 - 160.0
1.0 - 160.0
Off - On
Off - On
Off - On
Off - On
Off - On
Units
-
ms
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
min
s
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
s
V
V
V
V
-
-
-
-
-
Contents
Station address for IEC103
Time sync. Compensation
CH1 IP address
CH1 Subnet mask
CH1 Gateway
IP Address of CH#2
Subnet Mask of CH#2
Gateway Address of CH#2
SNTP Server1 Address
SNTP Server2 Address
SNTP Server3 Address
SNTP Server4 Address
TCP KeepAlive Time
Ping check addrs port#1
Ping check addrs port#2
RS-232C baud rate
IEC103 baud rate
Monitor direction blocked
IEC61850 Block
IEC61850 Authorize
IEC61850 Test mode
GOOSE receive check
Ping check
Number of bi-trigger (on/off) events
Disturbance record
ditto
ditto
ditto
ditto
Disturbance record trigger use or not
ditto
ditto
ditto
ditto
⎯ 202 ⎯
Default Setting of Relay Series
Model
210
410
2
0
192
168
19
172
255
255
255
0
192
168
19
1
192
168
19
173
255
255
255
0
192
168
19
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
120
60
0
0
0
0
0
0
0
0
9.6
19.2
Normal
Normal
Off
Off
Off
Off
100
2.0
120.0
60.0
20.0
20.0
On
On
On
On
On
User setting
6 F 2 S 0 9 0 4
№
Setting Device Name
Range
Def ault Setting of Relay Series
Units
Contents
410
288
TCSPEN
Of f - On
-
289
290
TCAEN
TCALM
Of f - On
1 - 10000
-
-
Trip Circuit Supervision Enable
Trip CounterAlarm Enable
Trip Count Alarm Threshold
Of f
10000
Prim.
291
Display
Prim. - Second.
-
Metering
292
293
294
Time sync
GMT
GMTm
Of - BI - IRI - IEC - SN
-12 - +12
-59 - +59
-
hrs
min
Time sync.
Time
Time
⎯ 203 ⎯
User setting
Model
210
Of f
Of
0
0
6 F 2 S 0 9 0 4
5. PLC default setting
Output
№
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Up
Signal
DFRQ1_BLOCK
DFRQ2_BLOCK
DFRQ3_BLOCK
DFRQ4_BLOCK
OV1_BLOCK
OV2_BLOCK
OV3_BLOCK
OV4_BLOCK
UV1_BLOCK
UV2_BLOCK
UV3_BLOCK
UV4_BLOCK
ZOV1_BLOCK
ZOV2_BLOCK
NOV1_BLOCK
NOV2_BLOCK
FRQ1_BLOCK
FRQ2_BLOCK
FRQ3_BLOCK
FRQ4_BLOCK
⎯ 204 ⎯
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Up
Signal
--
Timer
Off
On One
Delay Delay Shot
Time Value
None
EXT_TRIP-A
EXT_TRIP-B
EXT_TRIP-C
EXT_TRIP
TC_FAIL
CB_N/O_CONT
CB_N/C_CONT
X
X
[769]BI2_COMMAND
[1]CONSTANT_1
X
X
IND.RESET
X
[768]BI1_COMMAND
X
TP_COUNT-A
TP_COUNT-B
TP_COUNT-C
TP_COUNT
X
[371]GEN.TRIP
X
FRQ_S1_TRIP
FRQ_S2_TRIP
FRQ_S3_TRIP
FRQ_S4_TRIP
⎯ 205 ⎯
6 F 2 S 0 9 0 4
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Back
Norm
Up
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
⎯ 206 ⎯
Flip Flop
Release
Signal
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Back
Norm
Up
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
⎯ 207 ⎯
Flip Flop
Release
Signal
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Back
Norm
Up
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
⎯ 208 ⎯
Flip Flop
Release
Signal
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Up
Signal
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
⎯ 209 ⎯
Timer
On One
Off
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Up
Signal
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
⎯ 210 ⎯
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Back
Norm
Up
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
⎯ 211 ⎯
Flip Flop
Release
Signal
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Back
Norm
Up
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
⎯ 212 ⎯
Flip Flop
Release
Signal
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Up
Signal
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
⎯ 213 ⎯
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Up
Signal
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
⎯ 214 ⎯
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Up
Signal
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
⎯ 215 ⎯
Off
On
Delay Delay
Timer
One
Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Back
Norm
Up
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
⎯ 216 ⎯
Flip Flop
Release
Signal
Timer
Off
On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 4
Output
№
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Up
Signal
DISP.ALARM1
DISP.ALARM2
DISP.ALARM3
DISP.ALARM4
SYNC_CLOCK
⎯ 217 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 4
Output
№
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Back
Norm
Up
ALARM_LED_SET
F.RECORD1
F.RECORD2
F.RECORD3
F.RECORD4
D.RECORD1
D.RECORD2
D.RECORD3
D.RECORD4
SET.GROUP1
SET.GROUP2
SET.GROUP3
SET.GROUP4
SET.GROUP5
SET.GROUP6
SET.GROUP7
SET.GROUP8
CON_TPMD1
CON_TPMD2
CON_TPMD3
CON_TPMD4
CON_TPMD5
⎯ 218 ⎯
Flip Flop
Release
Signal
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Up
Signal
CON_TPMD6
CON_TPMD7
CON_TPMD8
ARC_COM_RECV
PROT_COM_RECV
TPLED_RST_RCV
⎯ 219 ⎯
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Back
Norm
Up
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
⎯ 220 ⎯
Flip Flop
Release
Signal
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Back
Norm
Up
TEMP001
TEMP002
TEMP003
TEMP004
TEMP005
TEMP006
TEMP007
TEMP008
TEMP009
TEMP010
TEMP011
TEMP012
TEMP013
TEMP014
TEMP015
TEMP016
TEMP017
TEMP018
TEMP019
TEMP020
TEMP021
TEMP022
TEMP023
TEMP024
TEMP025
TEMP026
TEMP027
TEMP028
TEMP029
TEMP030
TEMP031
TEMP032
TEMP033
TEMP034
TEMP035
TEMP036
TEMP037
TEMP038
TEMP039
TEMP040
TEMP041
TEMP042
TEMP043
TEMP044
TEMP045
TEMP046
TEMP047
TEMP048
TEMP049
TEMP050
TEMP051
TEMP052
TEMP053
TEMP054
TEMP055
TEMP056
TEMP057
TEMP058
TEMP059
TEMP060
TEMP061
TEMP062
TEMP063
TEMP064
TEMP065
TEMP066
TEMP067
TEMP068
TEMP069
TEMP070
⎯ 221 ⎯
Flip Flop
Release
Signal
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Back
Norm
Up
TEMP071
TEMP072
TEMP073
TEMP074
TEMP075
TEMP076
TEMP077
TEMP078
TEMP079
TEMP080
TEMP081
TEMP082
TEMP083
TEMP084
TEMP085
TEMP086
TEMP087
TEMP088
TEMP089
TEMP090
TEMP091
TEMP092
TEMP093
TEMP094
TEMP095
TEMP096
TEMP097
TEMP098
TEMP099
TEMP100
TEMP101
TEMP102
TEMP103
TEMP104
TEMP105
TEMP106
TEMP107
TEMP108
TEMP109
TEMP110
TEMP111
TEMP112
TEMP113
TEMP114
TEMP115
TEMP116
TEMP117
TEMP118
TEMP119
TEMP120
TEMP121
TEMP122
TEMP123
TEMP124
TEMP125
TEMP126
TEMP127
TEMP128
TEMP129
TEMP130
TEMP131
TEMP132
TEMP133
TEMP134
TEMP135
TEMP136
TEMP137
TEMP138
TEMP139
TEMP140
TEMP141
TEMP142
TEMP143
TEMP144
TEMP145
⎯ 222 ⎯
Flip Flop
Release
Signal
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
TEMP146
TEMP147
TEMP148
TEMP149
TEMP150
TEMP151
TEMP152
TEMP153
TEMP154
TEMP155
TEMP156
TEMP157
TEMP158
TEMP159
TEMP160
TEMP161
TEMP162
TEMP163
TEMP164
TEMP165
TEMP166
TEMP167
TEMP168
TEMP169
TEMP170
TEMP171
TEMP172
TEMP173
TEMP174
TEMP175
TEMP176
TEMP177
TEMP178
TEMP179
TEMP180
TEMP181
TEMP182
TEMP183
TEMP184
TEMP185
TEMP186
TEMP187
TEMP188
TEMP189
TEMP190
TEMP191
TEMP192
TEMP193
TEMP194
TEMP195
TEMP196
TEMP197
TEMP198
TEMP199
TEMP200
TEMP201
TEMP202
TEMP203
TEMP204
TEMP205
TEMP206
TEMP207
TEMP208
TEMP209
TEMP210
TEMP211
TEMP212
TEMP213
TEMP214
TEMP215
TEMP216
TEMP217
TEMP218
TEMP219
TEMP220
⎯ 223 ⎯
Timer
Off
On One
Delay Delay Shot
Time Value
None
6 F 2 S 0 9 0 4
Output
№
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Back
Norm
Up
TEMP221
TEMP222
TEMP223
TEMP224
TEMP225
TEMP226
TEMP227
TEMP228
TEMP229
TEMP230
TEMP231
TEMP232
TEMP233
TEMP234
TEMP235
TEMP236
TEMP237
TEMP238
TEMP239
TEMP240
TEMP241
TEMP242
TEMP243
TEMP244
TEMP245
TEMP246
TEMP247
TEMP248
TEMP249
TEMP250
TEMP251
TEMP252
TEMP253
TEMP254
TEMP255
TEMP256
⎯ 224 ⎯
Flip Flop
Release
Signal
Timer
On One
Off
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 4
6. Disturbance record setting
Disturbance record default setting
Name
Range
Signal Name
SIG1
SIG2
SIG3
SIG4
SIG5
SIG6
SIG7
SIG8
SIG9
SIG10
SIG11
SIG12
SIG13
SIG14
SIG15
SIG16
SIG17
SIG18
SIG19
SIG20
SIG21
SIG22
SIG23
SIG24
SIG25
SIG26
SIG27
SIG28
SIG29
SIG30
SIG31
SIG32
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
Signal name1
Signal name2
Signal name3
Signal name4
Signal name5
Signal name6
Signal name7
Signal name8
Signal name9
Signal name10
Signal name11
Signal name12
Signal name13
Signal name14
Signal name15
Signal name16
Signal name17
Signal name18
Signal name19
Signal name20
Signal name21
Signal name22
Signal name23
Signal name24
Signal name25
Signal name26
Signal name27
Signal name28
Signal name29
Signal name30
Signal name31
Signal name32
User setting of Virtual LED
1
2
IND1
[
IND2
3
Signal
Signal No.
0
0
0
0
0
0
0
0
60
61
62
122
93
143
0
371
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
Model
Signal Name
NA
NA
NA
NA
NA
NA
NA
NA
UV1-1
UV1-2
UV1-3
UV1 TRIP
ZOV1
ZOV1 TRIP
NA
GEN.TRIP
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
210
5
6
410
--------x
x
x
x
x
x
-x
-----------------
7
8
]
[
]
⎯ 225 ⎯
6 F 2 S 0 9 0 4
⎯ 226 ⎯
6 F 2 S 0 9 0 4
Appendix H
Commissioning Test Sheet (sample)
1. Relay identification
2. Preliminary check
3. Hardware check
3.1 User interface check
3.2 Binary input/binary output circuit check
3.3 AC input circuit check
4. Function test
4.1 Overvoltage and undervoltage elements test
4.2 Negative sequence overvoltage elements test
5. Protection scheme test
6. Metering and recording check
⎯ 227 ⎯
6 F 2 S 0 9 0 4
1.
Relay identification
Type
Serial number
Model
System frequency
Station
Date
Circuit
Engineer
Protection scheme
Witness
Active settings group number
2.
Preliminary check
Ratings
DC power supply
Wiring
Calendar and clock
3.
Hardware check
3.1 User interface check
3.2 Binary input/binary output circuit check
Binary input circuit
Binary output circuit
3.3 AC input circuit check
⎯ 228 ⎯
6 F 2 S 0 9 0 4
4.
Function test
4.1 Overvoltage and undervoltage elements test
(1) Operating value test
Element
Voltage setting
Measured voltage
OV1
OV2
OV3
UV1
UV2
UV3
ZOV1
ZOV2
(2) Operating time test (IDMT)
Element
Multiplier setting
Changed voltage
× Voltage setting
OV1
× Voltage setting
× Voltage setting
× Voltage setting
OV2
× Voltage setting
× Voltage setting
× Voltage setting
UV1
× Voltage setting
× Voltage setting
× Voltage setting
UV2
× Voltage setting
× Voltage setting
× Voltage setting
ZOV1
× Voltage setting
× Voltage setting
× Voltage setting
ZOV2
× Voltage setting
× Voltage setting
⎯ 229 ⎯
Measured time
6 F 2 S 0 9 0 4
4.2 Negative overvoltage elements test
(1) Operating value test
Element
Voltage setting
Measured voltage
NOV1
NOV2
(2) Operating time test (IDMT)
Element
Multiplier setting
Changed voltage
Measured time
× Voltage setting
NOV1
× Voltage setting
× Voltage setting
× Voltage setting
NOV2
× Voltage setting
× Voltage setting
4.3 Frequency elements test
Element
Frequency setting
FRQ1
FRQ2
FRQ3
FRQ4
5.
Protection scheme test
6.
Metering and recording check
⎯ 230 ⎯
Measured frequency
6 F 2 S 0 9 0 4
Appendix I
Return Repair Form
⎯ 231 ⎯
6 F 2 S 0 9 0 4
RETURN / REPAIR FORM
Please fill in this form and return it to TOSHIBA CORPORATION with the GRD130 to be
repaired.
TOSHIBA CORPORATION Fuchu Operations – Industrial and Power Systems & Services
1, Toshiba-cho, Fuchu-shi, Tokyo, Japan
For: Power Systems Protection & Control Department
Quality Assurance Section
Type: GRD130
(Example: Type:
Model:
GRD130
Model:
210D
)
Product No.:
Serial No.:
Date:
1.
Reason for returning the relay
† mal-function
† does not operate
† increased error
† investigation
† others
2.
Fault records, event records or disturbance records stored in the relay and relay settings are
very helpful information to investigate the incident.
Please provide relevant information regarding the incident on floppy disk, or fill in the
attached fault record sheet and relay setting sheet.
⎯ 232 ⎯
6 F 2 S 0 9 0 4
Fault Record
Date/Month/Year
/
:
Time
/
:
.
(Example: 04/ Jul./ 2002
15:09:58.442)
Faulty phase:
Prefault values
Van:
Vbn:
Vcn:
Vab:
Vbc:
Vca:
Vph:
V0:
V1:
V2:
f:
V
V
V
V
V
V
V
V
V
V
Hz
Fault values
Van:
Vbn:
Vcn:
Vab:
Vbc:
Vca:
Vph:
V0:
V1:
V2:
f:
V
V
V
V
V
V
V
V
V
V
Hz
⎯ 233 ⎯
/
6 F 2 S 0 9 0 4
3.
What was the message on the LCD display at the time of the incident?
4.
Describe the details of the incident:
5.
Date incident occurred
Day/Month/Year:
/
/
(Example: 10/Dec/2002)
6.
Give any comments about the GRD130, including the documents:
⎯ 234 ⎯
/
6 F 2 S 0 9 0 4
Customer
Name:
Company Name:
Address:
Telephone No.:
Facsimile No.:
Signature:
⎯ 235 ⎯
6 F 2 S 0 9 0 4
⎯ 236 ⎯
6 F 2 S 0 9 0 4
Appendix J
Technical Data
⎯ 237 ⎯
6 F 2 S 0 9 0 4
TECHNICAL DATA
Ratings
AC voltage Vn:
100V to 120 V
Frequency:
50Hz or 60Hz
DC auxiliary supply:
110/125Vdc (Operative range: 88 - 150Vdc)
220/250Vdc (Operative range: 176 - 300Vdc)
48/54/60Vdc (Operative range: 38.4 - 72Vdc)
24/30Vdc (Operative range: 19.2 - 36Vdc)
Superimposed AC ripple on DC supply:
maximum 12%
DC supply interruption:
maximum 50ms at 110V
Binary input circuit DC voltage:
110/125Vdc (Operative range: 88 - 150Vdc)
220/250Vdc (Operative range: 176 - 300Vdc)
48/54/60Vdc (Operative range: 38.4 - 72Vdc)
24/30Vdc (Operative range: 19.2 - 36Vdc)
Overload Ratings
AC voltage inputs:
2 times rated voltage continuous
Burden
AC voltage inputs:
≤ 0.1VA (at rated voltage)
DC power supply:
≤ 10W (quiescent)
≤ 15W (maximum)
Binary input circuit:
≤ 0.5W per input at 110Vdc
Overvoltage Protection
1st, 2nd Overvoltage thresholds:
OFF, 10.0 – 200.0V in 0.1V steps
Delay type (1st threshold only):
DTL, IDMTL(complied with IEC 6055-127)
IDMTL Time Multiplier Setting TMS:
0.05 – 100.00 in 0.01 steps
DTL delay:
0.00 – 300.00s in 0.01s steps
DO/PU ratio
10 – 98% in 1% steps
Reset Delay (1st threshold only):
0.0 – 300.0s in 0.1s steps
Undervoltage Protection
1st, 2nd Undervoltage thresholds:
OFF, 5.0 – 130.0V in 0.1V steps
Delay type (1st threshold only):
DTL, IDMTL(complied with IEC 6055-127)
IDMTL Time Multiplier Setting TMS:
0.05 – 100.00 in 0.01 steps
DTL delay:
0.00 – 300.00s in 0.01s steps
st
Reset Delay (1 threshold only):
0.0 – 300.0s in 0.1s steps
Undervoltage Block
5.0 – 20.0Vin 0.1V steps
Zero Phase Sequence Overvoltage Protection (ZOV)
1st, 2nd ZOV Overvoltage thresholds:
OFF, 1.0 – 130.0V in 0.1V steps
Delay type (1st threshold only):
DTL, IDMTL(complied with IEC 6055-127)
IDMTL Time Multiplier Setting TMS:
0.05 – 100.00 in 0.01 steps
DTL delay:
0.00 – 300.00s in 0.01s steps
st
Reset Delay (1 threshold only):
0.0 – 300.0s in 0.1s steps
Negative Phase Sequence Overvoltage Protection (NOV)
1st, 2nd NOV Overvoltage thresholds:
st
OFF, 1.0 – 130.0V in 0.1V steps
Delay type (1 threshold only):
DTL, IDMTL(complied with IEC 6055-127)
IDMTL Time Multiplier Setting TMS:
0.05 – 100.00 in 0.01 steps
DTL delay:
0.00 – 300.00s in 0.01s steps
Reset Delay (1st threshold only):
0.0 – 300.0s in 0.1s steps
⎯ 238 ⎯
6 F 2 S 0 9 0 4
Under/Over Frequency Protection
1st - 4th under/overfrequency threshold
(Fnom − 10.00Hz) – (Fnom + 10.00Hz) in 0.01Hz steps
Fnom: nominal frequency
DTL delay:
0.00 – 300.00s in 0.01s steps
Frequency UV Block
40.0 – 100.0V in 0.1V steps
Voltage and Synchronizm Check
Synchronism check angle (θS)
5 to 75° in 1° steps
UV element (SYUV)
10 to 150V in 1V steps
OV element (SYOV)
Voltage difference check (ΔV)
0 to 150V in 1V steps
10 to 150V in 1V steps
Busbar or line dead check (VB)
10 to 150V in 1V steps
Busbar or line live check (VL)
Frequency difference check (Δf)
10 to 150V in 1V steps
0.01 to 2.00Hz in 0.01 steps
Synchronism check time (TSYN)
0.01 to 10.00s in 0.01s steps
Voltage check time
0.01 to 10.00s in 0.01s steps
Accuracy
Overvoltage Pick-ups:
Undervoltage Pick-ups:
100% of setting ± 5%
100% of setting ± 5%
Inverse Time Delays:
± 5% or 30ms (1.5 to 30 times setting)
Definite Time Delays:
± 1% or 10ms
Front Communication port - local PC (RS232)
Connection:
Point to point
Cable type:
Multi-core (straight)
Cable length:
15m (max.)
Connector:
RS232C 9-way D-type female
Rear Communication port - remote PC
RS485 I/F for IEC60870-5-103:
Connection
Cable type
Cable length
Connection
Isolation
Transmission rate
Fibre optic I/F for IEC60870-5-103:
Cable type
Connector
Transmission rate
Ethernet LAN I/F for IEC61850 or RSM100:
Time synchronization port
IRIG Time Code
Input impedance
Input voltage range
Connection
Multidrop (max. 32 relays)
Twisted pair cable with shield
1200m (max.)
Screw terminals
1kVac for 1 min.
9.6, 19.2kbps
Graded-index multi-mode 50/125 or 62.5/125μm fibre
ST
9.6, 19.2kbps
100BASE-TX: RJ-45 connector
100BASE-FX: SC connector
IRIG-B122
4k-ohm
4Vp-p to 10Vp-p
Screw type
⎯ 239 ⎯
6 F 2 S 0 9 0 4
Binary Inputs
Operating voltage
Typical 74Vdc(min. 70Vdc) for 110V/125Vdc rating
Typical 138Vdc(min. 125Vdc) for 220V/250Vdc rating
Typical 31Vdc(min. 28Vdc) for 48V/54V/60Vdc rating
Typical 15Vdc (min. 13Vdc) for 24/30Vdc rating
Binary Outputs
Number
8
Ratings:
Make and carry: 4A continuously
Make and carry: 20A, 220Vdc for 0.5s (L/R≥5ms)
Break: 0.1A, 220Vdc (L/R=40ms) or 0.2A, 110Vdc
Durability:
Loaded contact: 10000 operations
Unloaded contact: 100000 operations
Mechanical design
Weight
Case colour
4.5kg
Munsell No. 10YR8/1
Installation
Flush mounting
⎯ 240 ⎯
6 F 2 S 0 9 0 4
ENVIRONMENTAL PERFORMANCE
Test
Standards
Details
Atmospheric Environment
Temperature
IEC60068-2-1/2
Operating range: -10°C to +55°C.
Storage / Transit: -25°C to +70°C.
Humidity
IEC60068-2-3
56 days at 40°C and 93% relative humidity.
Enclosure Protection
IEC60529
IP51
Mechanical Environment
Vibration
IEC60255-21-1
Response - Class 1
Endurance - Class 1
Shock and Bump
IEC60255-21-2
Shock Response Class 1
Shock Withstand Class 1
Bump Class 1
Seismic
IEC60255-21-3
Class 1
Dielectric Withstand
IEC60255-5
2kVrms for 1 minute between all terminals and earth.
2kVrms for 1 minute between independent circuits.
1kVrms for 1 minute across normally open contacts.
High Voltage Impulse
IEC60255-5
Three positive and three negative impulses of 5kV(peak),
1.2/50μs, 0.5J between all terminals and between all
terminals and earth.
Electrical Environment
Electromagnetic Environment
High Frequency
Disturbance / Damped
Oscillatory Wave
IEC60255-22-1 Class 3,
IEC61000-4-12 / EN61000-4-12
1MHz 2.5kV applied to all ports in common mode.
1MHz 1.0kV applied to all ports in differential mode.
Electrostatic
Discharge
IEC60255-22-2 Class 4,
IEC61000-4-2 / EN61000-4-2
8kV contact discharge, 15kV air discharge.
Radiated RF
Electromagnetic
Disturbance
IEC60255-22-3 Class 3,
IEC61000-4-3 / EN61000-4-3
Field strength 10V/m for frequency sweeps of 80MHz to
1GHz and 1.4GHz to 4.0GHz. Additional spot tests at 80,
160, 380, 450, 900, 1860 and 2150MHz.
Fast Transient
Disturbance
IEC60255-22-4, IEC61000-4-4 /
EN61000-4-4
4kV, 5k/100kHz, 5/50ns
2kV, 5k/100kHz, 5/50ns applied to com ports (RS485, etc.)
Surge Immunity
IEC60255-22-5,
IEC61000-4-5 / EN61000-4-5
1.2/50μs surge in common/differential modes:
Conducted RF
Electromagnetic
Disturbance
IEC60255-22-6 Class 3,
IEC61000-4-6 / EN61000-4-6
10Vrms applied over frequency range 150kHz to 100MHz.
Additional spot tests at 27 and 68MHz.
Power Frequency
Disturbance
IEC60255-22-7, IEC61000-4-16
/ EN61000-4-16
300V 50Hz for 10s applied to ports in common mode.
150V 50Hz for 10s applied to ports in differential mode.
Not applicable to AC inputs.
Conducted and
Radiated Emissions
IEC60255-25 Class A,
EN55022 Class A,
IEC61000-6-4 / EN61000-6-4
Conducted emissions:
0.15 to 0.50MHz: <79dB (peak) or <66dB (mean)
0.50 to 30MHz: <73dB (peak) or <60dB (mean)
Radiated emissions (at 10m):
30 to 230MHz: <40dB
230 to 1000MHz: <47dB
HV ports: 2kV/1kV
PSU and I/O ports: 2kV/1kV
RS485 port: 1kV/ -
⎯ 241 ⎯
6 F 2 S 0 9 0 4
European Commission Directives
89/336/EEC
Compliance with the European Commission
Electromagnetic Compatibility Directive is
demonstrated according to EN 61000-6-2 and
EN 61000-6-4.
73/23/EEC
Compliance with the European Commission Low
Voltage Directive is demonstrated according to
EN 50178 and EN 60255-5.
⎯ 242 ⎯
6 F 2 S 0 9 0 4
Appendix K
Symbols Used in Scheme Logic
⎯ 243 ⎯
6 F 2 S 0 9 0 4
Symbols used in the scheme logic and their meanings are as follows:
Signal names
Marked with
: Measuring element output signal
Marked with
: Binary signal input from or output to the external equipment
Marked with [
]
Marked with "
"
Unmarked
:
Scheme switch
:
Scheme switch position
: Internal scheme logic signal
AND gates
A
B
A
1
B
C
1
1
Other cases
Output
1
0
A
1
B
C
1
0
Other cases
Output
1
0
A
1
B
C
0
0
Other cases
Output
1
0
&
Output
&
Output
&
Output
≥1
Output
A
0
B
C
0
0
Other cases
Output
0
1
≥1
Output
A
0
B
C
0
1
Other cases
Output
0
1
≥1
Output
A
0
B
C
1
1
Other cases
Output
0
1
C
A
B
C
A
B
C
OR gates
A
B
C
A
B
C
A
B
C
⎯ 244 ⎯
6 F 2 S 0 9 0 4
Signal inversion
A
1
A
0
1
Output
Output
1
0
Timer
t
Delayed pick-up timer with fixed setting
0
XXX:
Set time
XXX
0
Delayed drop-off timer with fixed setting
t
XXX:
Set time
XXX
t
Delayed pick-up timer with variable setting
0
XXX - YYY: Setting range
XXX - YYY
0
Delayed drop-off timer with variable setting
t
XXX - YYY: Setting range
XXX - YYY
One-shot timer
A
A
Output
Output
XXX - YYY
XXX - YYY: Setting range
Flip-flop
S
0
1
0
1
S
F/F
Output
R
R
0
0
1
1
Output
No change
1
0
0
Scheme switch
A
Output
ON
+
Output
ON
⎯ 245 ⎯
A
Switch
1
ON
Other cases
Switch
ON
OFF
Output
1
0
Output
1
0
6 F 2 S 0 9 0 4
⎯ 246 ⎯
6 F 2 S 0 9 0 4
Appendix L
IEC60870-5-103: Interoperability
⎯ 247 ⎯
6 F 2 S 0 9 0 4
IEC60870-5-103 Configurator
IEC103 configurator software is included in a same CD as RSM100, and can be installed
easily as follows:
Installation of IEC103 Configurator
Insert the CD-ROM (RSM100) into a CDROM drive to install this software on a PC.
Double click the “Setup.exe” of the folder “¥IEC103Conf” under the root directory, and
operate it according to the message.
When installation has been completed, the IEC103 Configurator will be registered in the start
menu.
Starting IEC103 Configurator
Click [Start]→[Programs]→[IEC103 Configurator]→[IECConf] to the IEC103 Configurator
software.
Note: The instruction manual of IEC103 Configurator can be viewed by clicking
[Help]→[Manual] on IEC103 Configurator.
Requirements for IEC60870-5-103 master station
Polling cycle: 150ms or more
Timeout time (time till re-sending the request frame to relay): 100ms or more
IEC103 master
GR relay
Data request
Polling cycle:
150ms or more
Response frame
Data request
Response frame
IEC60870-5-103: Interoperability
1. Physical Layer
1.1 Electrical interface: EIA RS-485
Number of loads, 32 for one protection equipment
1.2 Optical interface
Glass fibre (option)
ST type connector (option)
1.3 Transmission speed
User setting: 9600 or 19200 bit/s
2. Application Layer
COMMON ADDRESS of ASDU
One COMMON ADDRESS OF ASDU (identical with station address)
⎯ 248 ⎯
6 F 2 S 0 9 0 4
3. List of Information
The following items can be customized with the original software tool “IEC103 configurator”.
(For details, refer to “IEC103 configurator” manual No.6F2S0839.)
-
Items for “Time-tagged message”: Type ID(1/2), INF, FUN, Transmission
condition(Signal number), COT
-
Items for “Time-tagged measurands”: INF, FUN, Transmission condition(Signal number),
COT, Type of measurand quantities
-
Items for “General command”: INF, FUN, Control condition(Signal number)
-
Items for “Measurands”: Type ID(3/9), INF, FUN, Number of measurand, Type of
measurand quantities
-
Common setting
• Transmission cycle of Measurand frame
• FUN of System function
• Test mode, etc.
CAUTION: To be effective the setting data written via the RS232C, turn off the DC
supply of the relay and turn on again.
3. 1 IEC60870-5-103 Interface
3.1.1 Spontaneous events
The events created by the relay will be sent using Function type (FUN) / Information numbers
(INF) to the IEC60870-5-103 master station.
3.1.2 General interrogation
The GI request can be used to read the status of the relay, the Function types and Information
numbers that will be returned during the GI cycle are shown in the table below.
For details, refer to the standard IEC60870-5-103 section 7.4.3.
3.1.3 Cyclic measurements
The relay will produce measured values using Type ID=3 or 9 on a cyclical basis, this can be
read from the relay using a Class 2 poll. The rate at which the relay produces new measured
values can be customized.
3.1.4 Commands
The supported commands can be customized. The relay will respond to non-supported
commands with a cause of transmission (COT) of negative acknowledgement of a command.
For details, refer to the standard IEC60870-5-103 section 7.4.4.
3.1.5 Test mode
In test mode, both spontaneous messages and polled measured values, intended for processing
in the control system, are designated by means of the CAUSE OF TRANSMISSION ‘test
mode’. This means that CAUSE OF TRANSMISSION = 7 ‘test mode’ is used for messages
normally transmitted with COT=1 (spontaneous) or COT=2 (cyclic).
For details, refer to the standard IEC60870-5-103 section 7.4.5.
3.1.6 Blocking of monitor direction
If the blocking of the monitor direction is activated in the protection equipment, all indications
and measurands are no longer transmitted.
For details, refer to the standard IEC60870-5-103 section 7.4.6.
⎯ 249 ⎯
6 F 2 S 0 9 0 4
3.2 List of Information
The followings are the default settings.
IEC103 Configurator Default setting
INF
Description
Contents
GI
Type
COT
FUN
ID
DPI
Signal No. OFF
ON
Standard Information numbers in monitor direction
System Function
0
End of General Interrogation
Transmission completion of GI items.
--
8
10
255
--
--
--
0
Time Synchronization
Time Synchronization ACK.
--
6
8
255
--
--
--
2
Reset FCB
Reset FCB(toggle bit) ACK
--
5
3
215
--
--
--
3
Reset CU
Reset CU ACK
--
5
4
215
--
--
--
4
Start/Restart
Relay start/restart
--
5
5
215
--
--
--
5
Pow er On
Relay pow er on.
Not supported
16 Auto-recloser active
If it is possible to use auto-recloser, this item is set
active, if impossible, inactive.
Not supported
17 Teleprotection active
If protection using telecommunication is available, this
item is set to active. If not, set to inactive.
Not supported
18 Protection active
If the protection is available, this item is set to active. If
not, set to inactive.
GI
1
1, 7, 12
215
1413
1
2
19 LED reset
Reset of latched LEDs
--
1
1, 7, 11, 12
215
1409
--
2
20 Monitor direction blocked
Block the 103 transmission from a relay to control
system. IECBLK: "Blocked" settimg.
GI
1
11
215
1241
1
2
21 Test mode
Transmission of testmode situation froma relay to
control system. IECTST "ON" setting.
GI
1
11
215
1242
1
2
22 Local parameter Setting
When a setting change has done at the local, the
event is sent to control system.
23 Characteristic1
Setting group 1 active
GI
1
1, 7, 11, 12
215
1243
1
2
24 Characteristic2
Setting group 2 active
GI
1
1, 7, 11, 12
215
1244
1
2
25 Characteristic3
Setting group 3 active
GI
1
1, 7, 11, 12
215
1245
1
2
26 Characteristic4
Setting group 4 active
GI
1
1, 7, 11, 12
215
1246
1
2
27 Auxiliary input1
Binary input 1
No set
28 Auxiliary input2
Binary input 2
No set
29 Auxiliary input3
Binary input 3
No set
30 Auxiliary input4
Binary input 4
No set
Status Indications
Not supported
Supervision Indications
32 Measurand supervision I
Zero sequence current supervision
33 Measurand supervision V
Zero sequence voltage supervision
GI
1
1, 7
Not supported
215
1268
1
2
35 Phase sequence supervision
Negative sequence voltage supevision
GI
1
1, 7
215
1269
1
2
36 Trip circuit supervision
Output circuit supervision
GI
1
1, 7
215
1270
1
2
37 I>>backup operation
Not supported
38 VT fuse failure
VT failure
Not supported
39 Teleprotection disturbed
CF(Communication system Fail) supervision
Not supported
46 Group w arning
Only alarming
GI
1
1, 7
215
1258
1
2
47 Group alarm
Trip blocking and alarming
GI
1
1, 7
215
1252
1
2
Earth Fault Indications
48 Earth Fault L1
A phase earth fault
Not supported
49 Earth Fault L2
B phase earth fault
Not supported
50 Earth Fault L3
C phase earth fault
Not supported
51 Earth Fault Fw d
Earth fault forw ard
Not supported
52 Earth Fault Rev
Earth fault reverse
Not supported
⎯ 250 ⎯
6 F 2 S 0 9 0 4
IEC103 Configurator Default setting
INF
Description
Contents
GI
Type
COT
FUN
ID
DPI
Signal NO. OFF
ON
Fault Indications
64
Start/pick-up L1
A phase, A-B phase or C-A phase element pick-up
GI
2
1, 7
215
805
1
65
Start/pick-up L2
B phase, A-B phase or B-C phase element pick-up
GI
2
1, 7
215
806
1
2
2
66
Start/pick-up L3
C phase, B-C phase or C-A phase element pick-up
GI
2
1, 7
215
807
1
2
2
67
Start/pick-up N
Earth fault element pick-up
GI
2
1, 7
215
808
1
68
General trip
Any trip
--
2
1, 7
215
371
--
2
69
Trip L1
A phase, A-B phase or C-A phase trip
--
2
1, 7
215
372
--
2
70
Trip L2
B phase, A-B phase or B-C phase trip
--
2
1, 7
215
373
--
2
71
Trip L3
C phase, B-C phase or C-A phase trip
--
2
1, 7
215
374
--
2
1279
1
2
72
Trip I>>(back-up)
Back up trip
73
Fault location X In ohms
Fault location
Not supported
Not supported
74
Fault forw ard/line
Forw ard fault
Not supported
75
Fault reverse/Busbar
Reverse fault
Not supported
76
Teleprotection Signal transmitted Carrier signal sending
Not supported
77
Teleprotection Signal received
Carrier signal receiving
Not supported
78
Zone1
Zone 1 trip
Not supported
79
Zone2
Zone 2 trip
Not supported
80
Zone3
Zone 3 trip
Not supported
81
Zone4
Zone 4 trip
Not supported
82
Zone5
Zone 5 trip
Not supported
83
Zone6
Zone 6 trip
84
General Start/Pick-up
Any elements pick-up
85
Breaker Failure
CBF trip or CBF retrip
86
Trip measuring system L1
Not supported
87
Trip measuring system L2
Not supported
88
Trip measuring system L3
Not supported
89
Trip measuring system E
90
Trip I>
91
Trip I>>
Definite time OC trip
Not supported
92
Trip IN>
Inverse time earth fault OC trip
Not supported
93
Trip IN>>
Definite time earth fault OC trip
Not supported
CB close command output
Not supported
Autoreclose block
Not supported
Not supported
GI
2
1, 7
215
Not supported
Not supported
Inverse time OC trip
Not supported
Autoreclose indications
128
CB 'ON' by Autoreclose
129
CB 'ON' by long-time
Autoreclose
130
Autoreclose Blocked
Not supported
⎯ 251 ⎯
6 F 2 S 0 9 0 4
IEC103 configurator Default setting
INF
Description
Contents
GI
Type
ID
COT
FUN
Max. No.
Measurands
144
Measurand I
<meaurand I>
145
Measurand I,V
Vab <meaurand I>
--
3
No
2, 7
215
2
0
146
Measurand I,V,P,Q
Vab <meaurand I>
--
3
2, 7
215
4
147
Measurand IN,VEN
Ve <meaurand I>
--
3
2, 7
215
2
148
Measurand IL1,2,3, VL1,2,3,
P,Q,f
Ia, Ib, Ic, Va, Vb, Vc, P, Q, f measurand <meaurand II>
--
9
2, 7
215
9
Generic Function
240
Read Headings
Not supported
241
Read attributes of all entries of
a group
Not supported
243
Read directory of entry
Not supported
244
Real attribute of entry
Not supported
245
End of GGI
Not supported
249
Write entry w ith confirm
Not supported
250
Write entry w ith execute
Not supported
251
Write entry aborted
Not supported
Note (∗2): depends on relay model as follows:
Type ID=3.1
(INF=144)
IL2
Model and [APPL]
setting
Model 210
Model 410
Type ID=3.2
Type ID=3.3
Type ID=3.4
(INF=145)
(INF=146)
(INF=147)
IL2
VL1-VL2
IL2
VL1-VL2 3-phase P 3-phase Q
IN
0
0
0
0
Vph-ph
Vab
0
0
Vph-ph
Vab
-
-
IL1
IL2
0
0
0
0
IL3
VL1
VL2
VL3
0
0
Vph-n
Van
0
Vbn
0
Vcn
setting
Model 210
Model 410
Above values are normalized by IECNF∗.
Details of MEA settings in IEC103 configurator
MEA
Tbl
0
0
VEN
Ve
Ve
Type ID=9
(INF=148)
Model and [APPL]
INF
-
-
Offset
Data type
Limit
Coeff
Lower
Upper
145
Vab
1
24
long
0
4096
1.8618
146
Vab
1
24
long
0
4096
1.8618
147
Ve
1
144
long
0
4096
3.2252
148
Va
1
0
long
0
4096
3.2252
Vb
1
8
long
0
4096
3.2252
Vc
1
16
long
0
4096
3.2252
f
1
184
long
0
4096
0.68267
⎯ 252 ⎯
3-phase P 3-phase Q
0
0
0
0
f
f
f
6 F 2 S 0 9 0 4
IEC103 Configurator Default setting
INF
Description
Contents
Control
Type ID
direction
COT
FUN
Selection of standard information numbers in control direction
System functions
0
Initiation of general interrogation
--
7
9
255
0
Time synchronization
--
6
8
255
General commands
16
Auto-recloser on/off
17
Teleprotection on/off
Not supported
18
Protection on/off
(*1)
19
LED reset
23
Activate characteristic 1
24
ON/OFF
20
20
215
ON/OFF
20
20
215
Reset indication of latched LEDs.
ON
20
20
215
Setting Group 1
ON
20
20
215
Activate characteristic 2
Setting Group 2
ON
20
20
215
25
Activate characteristic 3
Setting Group 3
ON
20
20
215
26
Activate characteristic 4
Setting Group 4
ON
20
20
215
Generic functions
Read headings of all defined
240
groups
Not supported
241
Read values or attributes of all
entries of one group
Not supported
243
Read directory of a single entry
Not supported
244
Read values or attributes of a
single entry
Not supported
245
General Interrogation of generic
data
Not supported
248
Write entry
Not supported
249
Write entry w ith confirmation
Not supported
250
Write entry w ith execution
Not supported
(∗1) Note: While the relay receives the "Protection off" command, "IN SERVICE LED" is off.
Details of Command settings in IEC103 configurator
DCO
INF
Sig off
Sig on
16
2684
2684
17
2685
2685
18
2686
2686
19
0
2688
200
23
0
2640
1000
24
0
2641
1000
25
0
2642
1000
26
0
2643
1000
Rev
✓
✓
✓
Valid time
0
0
0
✓: signal reverse
⎯ 253 ⎯
6 F 2 S 0 9 0 4
Description
Contents
GRD140 supported
Basic application functions
Test mode
Yes
Blocking of monitor direction
Yes
Disturbance data
No
Generic services
No
Private data
Yes
Miscellaneous
Max. MVAL = rated value
times
Measurand
Current L1
Ia
Configurable
Current L2
Ib
Configurable
Current L3
Ic
Configurable
Voltage L1-E
Va
Configurable
Voltage L2-E
Vb
Configurable
Voltage L3-E
Vc
Configurable
Active pow er P
P
Configurable
Reactive pow er Q
Q
Configurable
Frequency f
f
Configurable
Voltage L1 - L2
Vab
No set
Details of Common settings in IEC103 configurator
- Setting file’s remark:
IGRD130DA001
- Remote operation valid time [ms]:
4000
- Local operation valid time [ms]:
4000
- Measurand period [s]:
2
- Function type of System functions: 215
- Signal No. of Test mode:
1242
- Signal No. for Real time and Fault number: 1279
⎯ 254 ⎯
Comment
6 F 2 S 0 9 0 4
[Legend]
GI: General Interrogation (refer to IEC60870-5-103 section 7.4.3)
Type ID: Type Identification (refer to IEC60870-5-103 section 7.2.1)
1 : time-tagged message
2 : time-tagged message with relative time
3 : measurands I
4 : time-tagged measurands with relative time
5 : identification
6 : time synchronization
8 : general interrogation termination
9 : measurands II
10: generic data
11: generic identification
20: general command
23: list of recorded disturbances
26: ready for transmission for disturbance data
27: ready for transmission of a channel
28: ready for transmission of tags
29: transmission of tags
30: transmission of disturbance values
31: end of transmission
COT: Cause of Transmission (refer to IEC60870-5-103 section 7.2.3)
1: spontaneous
2: cyclic
3: reset frame count bit (FCB)
4: reset communication unit (CU)
5: start / restart
6: power on
7: test mode
8: time synchronization
9: general interrogation
10: termination of general interrogation
11: local operation
12: remote operation
20: positive acknowledgement of command
21: negative acknowledgement of command
31: transmission of disturbance data
40: positive acknowledgement of generic write command
41: negative acknowledgement of generic write command
42: valid data response to generic read command
43: invalid data response to generic read command
44: generic write confirmation
FUN: Function type (refer to IEC60870-5-103 section 7.2.5.1)
DPI: Double-point Information (refer to IEC60870-5-103 section 7.2.6.5)
DCO: Double Command (refer to IEC60870-5-103 section 7.2.6.4)
⎯ 255 ⎯
6 F 2 S 0 9 0 4
IEC103 setting data is recommended to be saved as follows:
(1) Naming for IEC103setting data
The file extension of IEC103 setting data is “.csv”. The version name is recommended to be
provided with a revision number in order to be changed in future as follows:
First draft:
∗∗∗∗∗∗_01.csv
Second draft:
∗∗∗∗∗∗_02.csv
Third draft:
∗∗∗∗∗∗_03.csv
Revision number
The name “∗∗∗∗∗∗” is recommended to be able to discriminate the relay type such as GRZ100
or GRL100, etc. The setting files remark field of IEC103 is able to enter up to 12 one-byte
characters. It is utilized for control of IEC103 setting data.
(2) Saving theIEC103 setting data
The IEC103 setting data is recommended to be saved in external media such as FD (floppy
disk) or CD-R, not to remain in the folder.
⎯ 256 ⎯
6 F 2 S 0 9 0 4
Troubleshooting
No.
1
Phenomena
Communication
trouble (IEC103
communication is
not available.)
Supposed causes
Address setting is incorrect.
Transmission baud rate setting is
incorrect.
Start bit, stop bit and parity settings of
data that BCU transmits to relay is
incorrect.
RS485
or
optical
interconnection is incorrect.
2
3
HMI does not
display IEC103
event on the SAS
side.
cable
The setting of converter is incorrect.
(RS485/optic conversion is executed
with the transmission channel, etc.)
The relationship between logical “0/1”
of the signal and Sig.on/off is
incorrect. (In the event of using
optical cable)
Terminal resistor is not offered.
(Especially when RS485 cable is
long.)
Relay cannot receive the requirement
frame from BCU.
(The timing coordination of sending
and receiving switch control is
irregular
in
half-duplex
communication.)
The requirement frame from BCU and
the reply frame from relay contend.
(The sending and receiving timing
coordination is irregular in half-duplex
communication.)
The relevant event sending condition
is not valid.
Check / Confirmation
Procedure
Match address setting between BCU and relay.
Avoid duplication of address with other relay.
Match transmission baud rate setting between
BCU and relay.
Go over the following settings by BCU. Relay
setting is fixed as following settings.
- Start bit: 1bit
- Stop bit: 1bit
- Parity setting: even
Cable
- Check the connection port.
- Check the interconnection of RS485 A/B/COM
- Check the send and received interconnection of
optical cable.
Converter In the event of using G1IF2, change the DIPSW
setting in reference to INSTRUCTION MANUAL
(6F2S0794).
BCU
Check the following;
Logical0 : Sig.on
Logical1:Sig.off
Object
BCU
RY
BCU
RY
BCU
cable
Impose terminal resistor (150[ohms]) to both
ends of RS 485 cable.
BCU
Check to secure the margin more than 15ms
between receiving the reply frame from the relay
and transmitting the next requirement frame on
BCU.
BCU
Check to set the time-out of reply frame from the
relay.
ting: more than 100ms (acceptable value of
response time 50ms plus margin)
RY
The relevant event Information
Number (INF) and/or Function Type
(FUN) may be different between the
relay and SAS.
The relay is not initialised after writing
IEC103 configurator setting.
RY
SAS
It changes to the block mode.
BCU does not transmit the frame of
time synchronisation.
The settling of time synchronisation
source is set to other than IEC.
(Note) BCU: Bay control unit, RY: Relay
RY
BCU
Time can be
synchronised
with
IEC103
communication.
RY
RY
⎯ 257 ⎯
Change the event sending condition (signal
number) of IEC103 configurator if there is a
setting error. When the setting is correct, check
the signal condition by programmable LED, etc.
Match the relevant event Information Number
(INF) or Function Type (FUN) between the relay
and SAS.
Check the sum value of IEC103 setting data from
the LCD screen. When differing from the sum
value on IEC103 configurator, initialise the relay.
Change the IECBR settling to Normal.
Transmit the frame of time synchronisation.
Change the settling of time synchronisation
source to IEC.
6 F 2 S 0 9 0 4
⎯ 258 ⎯
6 F 2 S 0 9 0 4
Appendix M
IEC61850: MICS & PICS
⎯ 259 ⎯
6 F 2 S 0 9 0 4
The GRD130 relay supports IEC 61850 logical nodes and common data classes as indicated in the following
tables.
Logical nodes in IEC 61850-7-4
Logical Nodes
GRD130
L: System Logical Nodes
LPHD
Yes
Common Logical Node
Yes
LLN0
Yes
P: Logical Nodes for Protection functions
PDIF
--PDIR
--PDIS
--PDOP
--PDUP
--PFRC
Yes
PHAR
--PHIZ
--PIOC
--PMRI
--PMSS
--POPE
--PPAM
--PSCH
--PSDE
--PTEF
--PTOC
--PTOF
Yes
PTOV
Yes
PTRC
Yes
PTTR
--PTUC
--PTUV
Yes
PUPF
--PTUF
Yes
PVOC
--PVPH
--PZSU
--R: Logical Nodes for protection related functions
RDRE
--RADR
--RBDR
--RDRS
--RBRF
--RDIR
--RFLO
--RPSB
--RREC
--RSYN
Yes
C: Logical Nodes for Control
CALH
--CCGR
--CILO
--CPOW
--CSWI
--G: Logical Nodes for Generic references
GAPC
--GGIO
Yes
Nodes
GRD130
GGIO_GOOSE
Yes
GSAL
--I: Logical Nodes for Interfacing and archiving
IARC
--IHMI
--ITCI
--ITMI
--A: Logical Nodes for Automatic control
ANCR
--ARCO
--ATCC
--AVCO
--M: Logical Nodes for Metering and measurement
MDIF
--MHAI
--MHAN
--MMTR
--MMXN
--MMXU
Yes
MSQI
Yes
MSTA
--S: Logical Nodes for Sensors and monitoring
SARC
--SIMG
--SIML
--SPDC
--X: Logical Nodes for Switchgear
XCBR
Yes
XSWI
--T: Logical Nodes for Instrument transformers
TCTR
--TVTR
--Y: Logical Nodes for Power transformers
YEFN
--YLTC
--YPSH
--YPTR
--Z: Logical Nodes for Further power system
equipment
ZAXN
--ZBAT
--ZCAB
--ZCAP
--ZCON
--ZGEN
--ZGIL
--ZLIN
--ZMOT
--ZREA
--ZRRC
--ZSAR
--ZTCF
--ZTCR
---
⎯ 260 ⎯
6 F 2 S 0 9 0 4
Common data classes in IEC61850-7-3
Common data classes
Status information
SPS
DPS
INS
ACT
ACT_ABC
ACD
ACD_ABC
SEC
BCR
Measured information
MV
CMV
SAV
WYE
WYE_ABCN
DEL
SEQ
HMV
HWYE
HDEL
Controllable status information
SPC
DPC
INC
BSC
ISC
Controllable analogue information
APC
Status settings
SPG
ING
Analogue settings
ASG
CURVE
Description information
DPL
LPL
CSD
GRD130
Yes
--Yes
Yes
Yes
Yes
Yes
----Yes
Yes
--Yes
Yes
Yes
Yes
------Yes
Yes
Yes
--------Yes
Yes
--Yes
Yes
---
⎯ 261 ⎯
6 F 2 S 0 9 0 4
LPHD class
Attribute Name
LNName
Data
PhyName
PhyHealth
OutOv
Proxy
InOv
NumPwrUp
WrmStr
WacTrg
PwrUp
PwrDn
PwrSupAlm
RsStat
Attr. Type Explanation
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
DPL
INS
SPS
SPS
SPS
INS
INS
INS
SPS
SPS
SPS
SPC
Physical device name plate
Physical device health
Output communications buffer overflow
Indicates if this LN is a proxy
Input communications buffer overflow
Number of Power ups
Number of Warm Starts
Number of watchdog device resets detected
Power Up detected
Power Down detected
External power supply alarm
Reset device statistics
Common Logical Node class
Attribute Name Attr. Type Explanation
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Mandatory Logical Node Information (Shall be inherited by ALL LN but LPHD)
Mod
INC
Mode
Beh
INS
Behaviour
Health
INS
Health
NamPlt
LPL
Name plate
Optional Logical Node Information
Loc
SPS
Local operation
EEHealth
INS
External equipment health
EEName
DPL
External equipment name plate
OpCntRs
INC
Operation counter resetable
OpCnt
INS
Operation counter
OpTmh
INS
Operation time
Data Sets (see IEC 61850-7-2)
Inherited and ٛ pecialized from Logical Node class (see IEC 61850-7-2)
Control Blocks (see IEC 61850-7-2)
Inherited and ٛ pecialized from Logical Node class (see IEC 61850-7-2)
Services (see IEC 61850-7-2)
Inherited and ٛ pecialized from Logical Node class (see IEC 61850-7-2)
LLN0 class
Attribute Name Attr. Type Explanation
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
T M/O GRD130
T
SPS
INS
Local operation for complete logical device
Operation time
SPC
SPC
Run Diagnostics
LED reset
M
M
M
M
Y
Y
Y
Y
O
O
O
O
O
O
N
N
N
N
N
N
T M/O GRD130
T
⎯ 262 ⎯
Y
Y
N
Y
N
N
N
N
N
N
N
N
T M/O GRD130
LN shall inherit all Mandatory Data from Common Logical Node Class
Loc
OpTmh
Controls
Diag
LEDRs
M
M
O
M
O
O
O
O
O
O
O
O
M
O
O
Y
N
O
O
Y
Y
6 F 2 S 0 9 0 4
PFRC class
Attribute Name Attr. Type Explanation
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
T
LN shall inherit all Mandatory Data from Common Logical Node Class
OpCntRs
INC
Status Information
Str
ACD
Op
ACT
BlkV
SPS
Settings
StrVal
ASG
BlkVal
ASG
OpDlTmms
ING
RsDlTmms
ING
Resetable operation counter
Start
Operate
Blocked because of voltage
T
Start Value df/dt
Voltage Block Value
Operate Delay Time
Reset Delay Time
PTOF class
Attribute Name Attr. Type Explanation
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
T
LN shall inherit all Mandatory Data from Common Logical Node Class
OpCntRs
INC
Status Information
Str
ACD
Op
ACT
BlkV
SPS
Settings
StrVal
ASG
BlkVal
ASG
OpDITmms
ING
RsDITmms
ING
Resetable operation counter
Start
Operate
Blocked because of voltage
T
Start Value (frequency)
Voltage Block Value
Operate Delay Time
Reset Delay Time
PTOV class
Attribute Name Attr. Type Explanation
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
T
LN shall inherit all Mandatory Data from Common Logical Node Class
OpCntRs
INC
Status Information
Str
ACD_ABC
Op
ACT_ABC
TmVSt
CSD
Settings
TmVCrv
CURVE
StrVal
ASG
TmMult
ASG
MinOpTmms
ING
MaxOpTmms
ING
OpDlTmms
ING
RsDlTmms
ING
Resetable operation counter
Start
Operate
Active curve characteristic
Operating Curve Type
Start Value
Time Dial Multiplier
Minimum Operate Time
Maximum Operate Time
Operate Delay Time
Reset Delay Time
PTRC class
⎯ 263 ⎯
T
M/O GRD130
M
O
N
M
M
O
Y
Y
Y
O
O
O
O
Y
Y
N
N
M/O GRD130
M
O
N
M
M
O
Y
Y
Y
O
O
O
O
Y
Y
Y
N
M/O GRD130
M
O
N
M
O
O
Y
Y
N
O
O
O
O
O
O
O
N
Y
N
N
N
Y
N
6 F 2 S 0 9 0 4
Attribute Name Attr. Type Explanation
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
T
LN shall inherit all Mandatory Data from Common Logical Node Class
OpCntRs
INC
Resetable operation counter
Status Information
Tr
ACT_ABC Trip
Op
ACT
Operate (combination of subscribed Op from protection functions)
Str
ACD
Sum of all starts of all connected Logical Nodes
Settings
TrMod
ING
Trip Mode
TrPlsTmms
ING
Trip Pulse Time
Condition C: At least one of the two status information (Tr, Op) shall be used.
PTUV class
Attribute Name Attr. Type Explanation
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
T
LN shall inherit all Mandatory Data from Common Logical Node Class
OpCntRs
INC
Status Information
Str
ACD_ABC
Op
ACT_ABC
TmVSt
CSD
Settings
TmVCrv
CURVE
StrVal
ASG
TmMult
ASG
MinOpTmms
ING
MaxOpTmms
ING
OpDlTmms
ING
RsDlTmms
ING
Resetable operation counter
Start
Operate
Active curve characteristic
T
Operating Curve Type
Start Value
Time Dial Multiplier
Minimum Operate Time
Maximum Operate Time
Operate Delay Time
Reset Delay Time
PTUF class
Attribute Name Attr. Type Explanation
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
T
LN shall inherit all Mandatory Data from Common Logical Node Class
OpCntRs
INC
Status Information
Str
ACD
Op
ACT
BlkV
SPS
Settings
StrVal
ASG
BlkVal
ASG
OpDlTmms
ING
RsDlTmms
ING
Resetable operation counter
Start
Operate
Blocked because of voltage
Start Value (frequency)
Voltage Block Value
Operate Delay Time
Reset Delay Time
GGIO class
⎯ 264 ⎯
T
M/O GRD130
M
O
N
C
C
O
Y
N
N
O
O
N
N
M/O GRD130
M
O
N
M
M
O
Y
Y
N
O
O
O
O
O
O
O
N
Y
N
N
N
Y
N
M/O GRD130
M
O
N
M
M
O
Y
Y
Y
O
O
O
O
Y
Y
Y
N
6 F 2 S 0 9 0 4
Attribute Name Attr. Type Explanation
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
LN shall inherit all Mandatory Data from Common Logical Node Class
EEHealth
INS
EEName
DPL
Loc
SPS
OpCntRs
INC
Measured values
AnIn
MV
Controls
SPCSO
SPC
DPCSO
DPC
ISCSO
INC
Status Information
IntIn
INS
Alm
SPS
Ind1
SPS
Ind2
SPS
Ind3
SPS
Ind4
SPS
Ind5
SPS
Ind6
SPS
Ind7
SPS
Ind8
SPS
Ind9
SPS
Ind10
SPS
Ind64
SPS
T
M/O GRD130
External equipment health (external sensor)
External equipment name plate
Local operation
Resetable operation counter
M
O
O
O
O
N
N
N
N
Analogue input
O
N
Single point controllable status output
Double point controllable status output
Integer status controllable status output
O
O
O
N
N
N
Integer status input
General single alarm
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
:
:
:
General indication (binary input)
O
O
O
O
O
O
O
O
O
O
O
O
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
O
Y
⎯ 265 ⎯
6 F 2 S 0 9 0 4
GGIO_GOOSE class
Attribute Name Attr. Type Explanation
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
LN shall inherit all Mandatory Data from Common Logical Node Class
EEHealth
INS
EEName
DPL
Loc
SPS
OpCntRs
INC
Measured values
AnIn
MV
Controls
SPCSO
SPC
DPCSO
DPC
ISCSO
INC
Status Information
IntIn
INS
Alm
SPS
Ind1
SPS
Ind2
SPS
Ind3
SPS
Ind4
SPS
Ind5
SPS
Ind6
SPS
Ind7
SPS
Ind8
SPS
Ind9
SPS
Ind10
SPS
Ind11
SPS
Ind12
SPS
Ind13
SPS
Ind14
SPS
Ind15
SPS
Ind16
SPS
T
M/O GRD130
External equipment health (external sensor)
External equipment name plate
Local operation
Resetable operation counter
M
O
O
O
O
N
N
N
N
Analogue input
O
N
Single point controllable status output
Double point controllable status output
Integer status controllable status output
O
O
O
N
N
N
Integer status input
General single alarm
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
General indication (binary input)
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
⎯ 266 ⎯
6 F 2 S 0 9 0 4
MMXU class
Attribute Name Attr. Type Explanation
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
T
LN shall inherit all Mandatory Data from Common Logical Node Class
EEHealth
Measured values
TotW
TotVAr
TotVA
TotPF
Hz
PPV
PhV
A
W
VAr
VA
PF
Z
INS
External equipment health (external sensor)
MV
MV
MV
MV
MV
DEL
Total Active Power (Total P)
Total Reactive Power (Total Q)
Total Apparent Power (Total S)
Average Power factor (Total PF)
Frequency
Phase to phase voltages (VL1VL2, …)
WYE_ABCN Phase to ground voltages (VL1ER, …)
WYE_ABCN Phase currents (IL1, IL2, IL3)
WYE
Phase active power (P)
WYE
Phase reactive power (Q)
WYE
Phase apparent power (S)
WYE
Phase power factor
WYE
Phase Impedance
MSQI class
Attribute Name Attr. Type Explanation
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
LN shall inherit all Mandatory Data from Common Logical Node Class
EEHealth
INS
External equipment health (external sensor)
EEName
DPL
External equipment name plate
Measured values
SeqA
SEQ
Positive, Negative and Zero Sequence Current
SeqV
SEQ
Positive, Negative and Zero Sequence Voltage
DQ0Seq
SEQ
DQ0 Sequence
ImbA
WYE
Imbalance current
ImbNgA
MV
Imbalance negative sequence current
ImbNgV
MV
Imbalance negative sequence voltage
ImbPPV
DEL
Imbalance phase-phase voltage
ImbV
WYE
Imbalance voltage
ImbZroA
MV
Imbalance zero sequence current
ImbZroV
MV
Imbalance zero sequence voltage
MaxImbA
MV
Maximum imbalance current
MaxImbPPV
MV
Maximum imbalance phase-phase voltage
MaxImbV
MV
Maximum imbalance voltage
Condition C: At least one of either data shall be used.
⎯ 267 ⎯
T
M/O GRD130
M
O
N
O
O
O
O
O
O
O
O
O
O
O
O
O
N
N
N
N
Y
Y
Y
N
N
N
N
N
N
M/O GRD130
M
O
O
N
N
C
C
O
O
O
O
O
O
O
O
O
O
O
N
Y
N
N
N
N
N
N
N
N
N
N
N
6 F 2 S 0 9 0 4
SPS class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
status
stVal
BOOLEAN
ST dchg
TRUE | FALSE
q
Quality
ST qchg
t
TimeStamp
ST
substitution
subEna
BOOLEAN
SV
subVal
BOOLEAN
SV
TRUE | FALSE
subQ
Quality
SV
subID
VISIBLE STRING64
SV
configuration, description and extension
d
VISIBLE STRING255
DC
Text
dU
UNICODE STRING255
DC
cdcNs
VISIBLE STRING255
EX
cdcName
VISIBLE STRING255
EX
dataNs
VISIBLE STRING255
EX
Services
As defined in Table 13
INS class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
status
stVal
INT32
ST dchg
q
Quality
ST qchg
t
TimeStamp
ST
Substitution
subEna
BOOLEAN
SV
subVal
INT32
SV
subQ
Quality
SV
subID
VISIBLE STRING64
SV
configuration, description and extension
d
VISIBLE STRING255
DC
Text
dU
UNICODE STRING255
DC
cdcNs
VISIBLE STRING255
EX
cdcName
VISIBLE STRING255
EX
dataNs
VISIBLE STRING255
EX
Services
As defined in Table 13
(*1): “ENUM” type is also used.
⎯ 268 ⎯
M/O/C
GRD130
M
M
M
Y
Y
Y
PICS_SUBST
PICS_SUBST
PICS_SUBST
PICS_SUBST
N
N
N
N
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
N
M/O/C
GRD130
M
M
M
Y(*1)
Y
Y
PICS_SUBST
PICS_SUBST
PICS_SUBST
PICS_SUBST
N
N
N
N
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
N
6 F 2 S 0 9 0 4
ACT class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
status
general
BOOLEAN
ST dchg
phsA
BOOLEAN
ST dchg
phsB
BOOLEAN
ST dchg
phsC
BOOLEAN
ST dchg
neut
BOOLEAN
ST dchg
q
Quality
ST qchg
t
TimeStamp
ST
configuration, description and extension
operTm
TimeStamp
CF
d
VISIBLE STRING255
DC
Text
dU
UNICODE STRING255
DC
cdcNs
VISIBLE STRING255
EX
cdcName
VISIBLE STRING255
EX
dataNs
VISIBLE STRING255
EX
Services
As defined in Table 13
ACT_ABC class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
status
general
BOOLEAN
ST dchg
phsA
BOOLEAN
ST dchg
phsB
BOOLEAN
ST dchg
phsC
BOOLEAN
ST dchg
neut
BOOLEAN
ST dchg
q
Quality
ST qchg
t
TimeStamp
ST
configuration, description and extension
operTm
TimeStamp
CF
d
VISIBLE STRING255
DC
Text
dU
UNICODE STRING255
DC
cdcNs
VISIBLE STRING255
EX
cdcName
VISIBLE STRING255
EX
dataNs
VISIBLE STRING255
EX
Services
As defined in Table 13
⎯ 269 ⎯
M/O/C
GRD130
M
O
O
O
O
M
M
Y
N
N
N
N
Y
Y
O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
N
N
M/O/C
GRD130
M
O
O
O
O
M
M
Y
Y
Y
Y
N
Y
Y
O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
N
N
6 F 2 S 0 9 0 4
ACD class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRD130
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
status
general
BOOLEAN
ST dchg
M
Y
unknown | forward | backward | both
dirGeneral
ENUMERATED
ST dchg
M
Y
phsA
BOOLEAN
ST dchg
GC_2 (1)
N
unknown | forward | backward
dirPhsA
ENUMERATED
ST dchg
GC_2 (1)
N
phsB
BOOLEAN
ST dchg
GC_2 (2)
N
unknown | forward | backward
dirPhsB
ENUMERATED
ST dchg
GC_2 (2)
N
phsC
BOOLEAN
ST dchg
GC_2 (3)
N
unknown | forward | backward
dirPhsC
ENUMERATED
ST dchg
GC_2 (3)
N
neut
BOOLEAN
ST dchg
GC_2 (4)
N
unknown | forward | backward
dirNeut
ENUMERATED
ST dchg
GC_2 (4)
N
q
Quality
ST qchg
M
Y
t
TimeStamp
ST
M
Y
configuration, description and extension
d
VISIBLE STRING255
DC
Text
O
N
dU
UNICODE STRING255
DC
O
N
cdcNs
VISIBLE STRING255
EX
AC_DLNDA_M
N
cdcName
VISIBLE STRING255
EX
AC_DLNDA_M
N
dataNs
VISIBLE STRING255
EX
AC_DLN_M
N
Services
As defined in Table 13
ACD_ABC class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRD130
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
status
general
BOOLEAN
ST dchg
M
Y
unknown | forward | backward | both
dirGeneral
ENUMERATED
ST dchg
M
Y
phsA
BOOLEAN
ST dchg
GC_2 (1)
Y
unknown | forward | backward
dirPhsA
ENUMERATED
ST dchg
GC_2 (1)
Y
phsB
BOOLEAN
ST dchg
GC_2 (2)
Y
unknown | forward | backward
dirPhsB
ENUMERATED
ST dchg
GC_2 (2)
Y
phsC
BOOLEAN
ST dchg
GC_2 (3)
Y
unknown | forward | backward
dirPhsC
ENUMERATED
ST dchg
GC_2 (3)
Y
neut
BOOLEAN
ST dchg
GC_2 (4)
N
unknown | forward | backward
dirNeut
ENUMERATED
ST dchg
GC_2 (4)
N
q
Quality
ST qchg
M
Y
t
TimeStamp
ST
M
Y
configuration, description and extension
d
VISIBLE STRING255
DC
Text
O
N
dU
UNICODE STRING255
DC
O
N
cdcNs
VISIBLE STRING255
EX
AC_DLNDA_M
N
cdcName
VISIBLE STRING255
EX
AC_DLNDA_M
N
dataNs
VISIBLE STRING255
EX
AC_DLN_M
N
Services
As defined in Table 13
⎯ 270 ⎯
6 F 2 S 0 9 0 4
MV class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRD130
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
measured values
instMag
AnalogueValue
MX
O
N
mag
AnalogueValue
MX dchg
M
Y
normal | high | low | high-high | low-low |…
range
ENUMERATED
MX dchg
O
N
q
Quality
MX qchg
M
Y
t
TimeStamp
MX
M
Y
substitution
subEna
BOOLEAN
SV
PICS_SUBST
N
subVal
AnalogueValue
SV
PICS_SUBST
N
subQ
Quality
SV
PICS_SUBST
N
subID
VISIBLE STRING64
SV
PICS_SUBST
N
configuration, description and extension
units
Unit
CF
see Annex A
O
Y
db
INT32U
CF
0 … 100 000
O
N
zeroDb
INT32U
CF
0 … 100 000
O
N
sVC
ScaledValueConfig
CF
AC_SCAV
N
rangeC
RangeConfig
CF
GC_CON
N
smpRate
INT32U
CF
O
N
d
VISIBLE STRING255
DC
Text
O
N
dU
UNICODE STRING255
DC
O
N
cdcNs
VISIBLE STRING255
EX
AC_DLNDA_M
N
cdcName
VISIBLE STRING255
EX
AC_DLNDA_M
N
dataNs
VISIBLE STRING255
EX
AC_DLN_M
N
Services
As defined in Table 21
⎯ 271 ⎯
6 F 2 S 0 9 0 4
CMV class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRD130
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
measured values
instCVal
Vector
MX
O
N
cVal
Vector
MX dchg
M
Y
normal | high | low | high-high | low-low |…
range
ENUMERATED
MX dchg
O
N
q
Quality
MX qchg
M
Y
t
TimeStamp
MX
M
Y
substitution
subEna
BOOLEAN
SV
PICS_SUBST
N
subVal
Vector
SV
PICS_SUBST
N
subQ
Quality
SV
PICS_SUBST
N
subID
VISIBLE STRING64
SV
PICS_SUBST
N
configuration, description and extension
units
Unit
CF
see Annex A
O
Y
db
INT32U
CF
0 … 100 000
O
N
zeroDb
INT32U
CF
0 … 100 000
O
N
rangeC
RangeConfig
CF
GC_CON
N
magSVC
ScaledValueConfig
CF
AC_SCAV
N
angSVC
ScaledValueConfig
CF
AC_SCAV
N
angRef
ENUMERATED
CF
V | A | other …
O
N
smpRate
INT32U
CF
O
N
d
VISIBLE STRING255
DC
Text
O
N
dU
UNICODE STRING255
DC
O
N
cdcNs
VISIBLE STRING255
EX
AC_DLNDA_M
N
cdcName
VISIBLE STRING255
EX
AC_DLNDA_M
N
dataNs
VISIBLE STRING255
EX
AC_DLN_M
N
Services
As defined in Table 21
⎯ 272 ⎯
6 F 2 S 0 9 0 4
WYE class
Attribute
Name
DataName
Data
phsA
phsB
phsC
neut
net
res
DataAttribute
angRef
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRD130
GC_1
GC_1
GC_1
GC_1
GC_1
GC_1
Y
Y
Y
N
N
N
O
N
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
N
M/O/C
GRD130
GC_1
GC_1
GC_1
GC_1
GC_1
GC_1
Y
Y
Y
Y
N
N
O
N
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
N
Inherited from Data Class (see IEC 61850-7-2)
CMV
CMV
CMV
CMV
CMV
CMV
ENUMERATED
configuration, description and extension
Va | Vb | Vc | Aa | Ab | Ac | Vab | Vbc | Vca |
CF
Vother | Aother
d
VISIBLE STRING255
dU
UNICODE STRING255
cdcNs
VISIBLE STRING255
cdcName
VISIBLE STRING255
dataNs
VISIBLE STRING255
Services
As defined in Table 21
DC
DC
EX
EX
EX
Text
WYE_ABCN class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
Data
phsA
CMV
phsB
CMV
phsC
CMV
neut
CMV
net
CMV
res
CMV
DataAttribute
configuration, description and extension
Va | Vb | Vc | Aa | Ab | Ac | Vab | Vbc | Vca |
angRef
ENUMERATED
CF
Vother | Aother
d
VISIBLE STRING255
dU
UNICODE STRING255
cdcNs
VISIBLE STRING255
cdcName
VISIBLE STRING255
dataNs
VISIBLE STRING255
Services
As defined in Table 21
DC
DC
EX
EX
EX
Text
⎯ 273 ⎯
6 F 2 S 0 9 0 4
DEL class
Attribute
Name
DataName
Data
phsAB
phsBC
phsCA
DataAttribute
angRef
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRD130
GC_1
GC_1
GC_1
Y
Y
Y
Inherited from Data Class (see IEC 61850-7-2)
CMV
CMV
CMV
configuration, description and extension
CF
Va | Vb | Vc | Aa | Ab | Ac | Vab |
O
Vbc | Vca | Vother | Aother
VISIBLE STRING255
DC
Text
O
UNICODE STRING255
DC
O
VISIBLE STRING255
EX
AC_DLNDA_M
VISIBLE STRING255
EX
AC_DLNDA_M
VISIBLE STRING255
EX
AC_DLN_M
ENUMERATED
d
dU
cdcNs
cdcName
dataNs
Services
As defined in Table 21
SEQ class
Attribute
Name
DataName
Data
c1
c2
c3
DataAttribute
seqT
Attribute Type
FC
TrgOp
Value/Value Range
N
N
N
N
N
N
M/O/C
GRD130
M
M
M
Y
Y
Y
M
Y
O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
N
N
Inherited from Data Class (see IEC 61850-7-2)
CMV
CMV
CMV
measured attributes
MX
pos-neg-zero | dir-quad-zero
configuration, description and extension
ENUMERATED
CF
A|B|C|…
VISIBLE STRING255
DC
Text
UNICODE STRING255
DC
VISIBLE STRING255
EX
VISIBLE STRING255
EX
VISIBLE STRING255
EX
ENUMERATED
phsRef
d
dU
cdcNs
cdcName
dataNs
Services
As defined in Table 21
⎯ 274 ⎯
6 F 2 S 0 9 0 4
SPC class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
control and status
ctlVal
BOOLEAN
CO
off (FALSE) | on (TRUE)
operTm
TimeStamp
CO
origin
Originator_RO
CO, ST
ctlNum
INT8U_RO
CO, ST
0..255
SBO
VISIBLE STRING65
CO
SBOw
SBOW
CO
Oper
Oper
CO
Cancel
Cancel
CO
stVal
q
t
stSeld
subEna
subVal
subQ
subID
BOOLEAN
Quality
TimeStamp
BOOLEAN
ST
ST
ST
ST
dchg
qchg
FALSE | TRUE
dchg
substitution
SV
SV
FALSE | TRUE
SV
SV
configuration, description and extension
PulseConfig
CF
CtlModels
CF
INT32U
CF
SboClasses
CF
VISIBLE STRING255
DC
Text
UNICODE STRING255
DC
VISIBLE STRING255
EX
VISIBLE STRING255
EX
VISIBLE STRING255
EX
BOOLEAN
BOOLEAN
Quality
VISIBLE STRING64
pulseConfig
CtlModel
sboTimeout
sboClass
d
dU
cdcNs
cdcName
dataNs
Services
As defined in Table 31
⎯ 275 ⎯
M/O/C
GRD130
AC_CO_M
AC_CO_O
AC_CO_O
AC_CO_O
N
N
Y
N
N
N
Y
N
AC_CO_SBO_N_M
AC_CO_SBOW_E_M
AC_CO _M
AC_CO_SBO_N_M
and
AC_CO_SBOW_E_M
and
AC_CO_TA_E_M
AC_ST
AC_ST
AC_ST
AC_CO_O
Y
Y
Y
N
PICS_SUBST
PICS_SUBST
PICS_SUBST
PICS_SUBST
N
N
N
N
AC_CO_O
M
AC_CO_O
AC_CO_O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
Y
N
N
N
N
N
N
N
6 F 2 S 0 9 0 4
DPC class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRD130
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
control and status
ctlVal
BOOLEAN
CO
off (FALSE) | on (TRUE)
AC_CO_M
N
operTm
TimeStamp
CO
AC_CO_O
N
origin
Originator
CO, ST
AC_CO_O
N
ctlNum
INT8U
CO, ST
0..255
AC_CO_O
N
stVal
CODED ENUM
ST dchg
intermediate-state | off | on |
M
Y
bad-state
q
Quality
ST qchg
M
Y
t
TimeStamp
ST
M
Y
stSeld
BOOLEAN
ST dchg
AC_CO_O
N
substitution
subEna
BOOLEAN
SV
PICS_SUBST
N
subVal
CODED ENUM
SV
intermediate-state | off | on | PICS_SUBST
N
bad-state
subQ
Quality
SV
PICS_SUBST
N
subID
VISIBLE STRING64
SV
PICS_SUBST
N
configuration, description and extension
pulseConfig
PulseConfig
CF
AC_CO_O
N
ctlModel
CtlModels
CF
M
Y
sboTimeout
INT32U
CF
AC_CO_O
N
sboClass
SboClasses
CF
AC_CO_O
N
d
VISIBLE STRING255
DC
Text
O
N
dU
UNICODE STRING255
DC
O
N
cdcNs
VISIBLE STRING255
EX
AC_DLNDA_M
N
cdcName
VISIBLE STRING255
EX
AC_DLNDA_M
N
dataNs
VISIBLE STRING255
EX
AC_DLN_M
N
Services
As defined in Table 31
⎯ 276 ⎯
6 F 2 S 0 9 0 4
INC class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
control and status
ctlVal
INT32
CO
operTm
TimeStamp
CO
origin
Originator
CO, ST
ctlNum
INT8U
CO, ST
0..255
SBO
VISIBLE STRING65
CO
SBOw
SBOW
CO
Oper
Oper
CO
Cancel
Cancel
CO
stVal
Q
T
stSeld
subEna
subVal
subQ
subID
INT32
Quality
TimeStamp
BOOLEAN
ST
ST
ST
ST
dchg
qchg
dchg
substitution
SV
SV
FALSE | TRUE
SV
SV
configuration, description and extension
CtlModels
CF
INT32U
CF
SboClasses
CF
INT32
CF
INT32
CF
INT32U
CF
1 … (maxVal – minVal)
VISIBLE STRING255
DC
Text
UNICODE STRING255
DC
VISIBLE STRING255
EX
VISIBLE STRING255
EX
VISIBLE STRING255
EX
BOOLEAN
INT32
Quality
VISIBLE STRING64
CtlModel
sboTimeout
sboClass
minVal
maxVal
stepSize
D
dU
cdcNs
cdcName
dataNs
Services
As defined in Table 31
⎯ 277 ⎯
M/O/C
GRD130
AC_CO_M
AC_CO_O
AC_CO_O
AC_CO_O
N
N
N
N
N
N
N
N
AC_CO_SBO_N_M
AC_CO_SBOW_E_M
AC_CO _M
AC_CO_SBO_N_M
and
AC_CO_SBOW_E_M
and
AC_CO_TA_E_M
M
M
M
AC_CO_O
Y
Y
Y
N
PICS_SUBST
PICS_SUBST
PICS_SUBST
PICS_SUBST
N
N
N
N
M
AC_CO_O
AC_CO_O
O
O
O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
Y
N
N
N
N
N
N
N
N
N
N
6 F 2 S 0 9 0 4
ING class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
setting
setVal
INT32
SP
setVal
INT32
SG, SE
configuration, description and extension
minVal
INT32
CF
maxVal
INT32
CF
stepSize
INT32U
CF
1 … (maxVal – minVal)
d
VISIBLE STRING255
DC
Text
dU
UNICODE STRING255
DC
cdcNs
VISIBLE STRING255
EX
cdcName
VISIBLE STRING255
EX
dataNs
VISIBLE STRING255
EX
Services
As defined in Table 39
(*3): “ENUM” type is also used.
ASG class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
setting
setMag
AnalogueValue
SP
setMag
AnalogueValue
SG, SE
configuration, description and extension
units
Unit
CF
see Annex A
sVC
ScaledValueConfig
CF
minVal
AnalogueValue
CF
maxVal
AnalogueValue
CF
stepSize
AnalogueValue
CF
1 … (maxVal – minVal)
d
VISIBLE STRING255
DC
Text
dU
UNICODE STRING255
DC
cdcNs
VISIBLE STRING255
EX
cdcName
VISIBLE STRING255
EX
dataNs
VISIBLE STRING255
EX
Services
As defined in Table 42
⎯ 278 ⎯
M/O/C
GRD130
AC_NSG_M
AC_SG_M
Y(*3)
N
O
O
O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
N
N
N
N
M/O/C
GRD130
AC_NSG_M
AC_SG_M
Y
N
O
AC_SCAV
O
O
O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
Y
Y
N
N
N
N
N
N
N
N
6 F 2 S 0 9 0 4
DPL class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
configuration, description and extension
vendor
VISIBLE STRING255
DC
hwRev
VISIBLE STRING255
DC
swRev
VISIBLE STRING255
DC
serNum
VISIBLE STRING255
DC
model
VISIBLE STRING255
DC
location
VISIBLE STRING255
DC
cdcNs
VISIBLE STRING255
EX
cdcName
VISIBLE STRING255
EX
dataNs
VISIBLE STRING255
EX
Services
As defined in Table 45
LPL class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
configuration, description and extension
vendor
VISIBLE STRING255
DC
swRev
VISIBLE STRING255
DC
d
VISIBLE STRING255
DC
dU
UNICODE STRING255
DC
configRev
VISIBLE STRING255
DC
shall be included in LLN0 only;
ldNs
VISIBLE STRING255
EX
M/O/C
GRD130
M
O
O
O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
Y
N
Y
N
Y
N
N
N
N
M/O/C
GRD130
M
M
M
O
AC_LN0_M
AC_LN0_EX
Y
Y
Y
N
Y
N
AC_DLD_M
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
for example "IEC 61850-7-4:2003"
lnNs
VISIBLE STRING255
cdcNs
VISIBLE STRING255
cdcName
VISIBLE STRING255
dataNs
VISIBLE STRING255
Services
As defined in Table 45
EX
EX
EX
EX
⎯ 279 ⎯
6 F 2 S 0 9 0 4
PICS:
Client/
subscriber
Server/
publisher
GRD130
-
c1
Y
c1
-
-
Client-server roles
B11
Server side (of TWO-PARTYAPPLICATION-ASSOCIATION)
B12
Client side of (TWO-PARTYAPPLICATION-ASSOCIATION)
SCSMs supported
B21
SCSM: IEC61850-8-1 used
B22
SCSM: IEC61850-9-1 used
B23
SCSM: IEC61850-9-2 used
B24
SCSM: other
Generic substation event model (GSE)
B31
Publisher side
B32
Subscriber side
Transmission of sampled value model (SVC)
B41
Publisher side
B42
Subscriber side
Y
N
N
-
If Server side (B11) supported
M1
Logical device
M2
Logical node
M3
Data
M4
Data set
M5
Substitution
M6
Setting group control
Reporting
M7
Buffered report control
M7-1
sequence-number
M7-2
report-time-stamp
M7-3
reason-for-inclusion
M7-4
data-set-name
M7-5
data-reference
M7-6
buffer-overflow
M7-7
entryID
M7-8
BufTm
M7-9
IntgPd
M7-10
GI
Unbuffered report control
M8-1
sequence-number
M8-2
report-time-stamp
M8-3
reason-for-inclusion
M8-4
data-set-name
M8-5
data-reference
M8-6
BufTm
M8-7
IntgPd
M8-8
GI
Logging
M9
Log control
M9-1
IntgPd
M10
Log
M11
Control
If GSE (B31/B32) is supported
GOOSE
M12-1
entryID
⎯ 280 ⎯
O
O
-
Y
Y
O
O
-
N
N
c2
c3
c4
c5
O
O
c2
c3
c4
c5
O
O
Y
Y
Y
Y
N
Y
O
O
O
O
O
O
O
O
O
M
O
M
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
Y
O
O
Y
Remarks
6 F 2 S 0 9 0 4
M12-2
DataRefInc
M13
GSSE
If SVC (B41/B42) is supported
M14
Multicast SVC
M15
Unicast SVC
M16
Time
M17
File Transfer
Server
S1
ServerDirectory
Application association
S2
Associate
S3
Abort
S4
Release
Logical device
S5
LogicalDeviceDirectory
Logical node
S6
LogicalNodeDirectory
S7
GetAllDataValues
Data
S8
GetDataValues
S9
SetDataValues
S10
GetDataDirectory
S11
GetDataDefinition
Data set
S12
GetDataSetValues
S13
SetDataSetValues
S14
CreateDataSet
S15
DeleteDataSet
S16
GetDataSetDirectory
Substitution
S17
SetDataValues
Setting group control
S18
SelectActiveSG
S19
SelectEditSG
S20
SetSGValues
S21
ConfirmEditSGValues
S22
GetSGValues
S23
GetSGCBValues
Reporting
Buffered report control block (BRCB)
S24
Report
S24-1
data-change (dchg)
S24-2
quality-change (qchg)
S24-3
data-update (dupd)
S25
GetBRCBValues
S26
SetBRCBValues
Unbuffered report control block (BRCB)
S27
Report
S27-1
data-change (dchg)
S27-2
quality-change (qchg)
S27-3
data-update (dupd)
S28
GetURCBValues
S29
SetURCBValues
Logging
Log control block
S30
GetLCBValues
⎯ 281 ⎯
O
O
N
O
O
M
O
O
O
M
O
N
N
Y
Y
M
Y
M
M
M
M
M
M
Y
Y
Y
M
M
Y
M
O
M
M
Y
Y
M
O
O
O
M
O
M
M
Y
N
Y
Y
O
O
O
O
O
M
O
O
O
O
Y
N
N
N
Y
M
M
N
O
O
O
O
O
O
O
O
O
O
O
O
Y
N
N
N
N
Y
c6
c6
c6
c6
c6
c6
Y
Y
Y
N
Y
Y
c6
c6
c6
c6
c6
c6
Y
Y
Y
N
Y
Y
M
M
N
6 F 2 S 0 9 0 4
S31
SetLCBValues
O
M
N
Log
S32
QueryLogByTime
c7
M
N
S33
QueryLogAfter
c7
M
N
S34
GetLogStatusValues
M
M
N
Generic substation event model (GSE)
GOOSE-CONTROL-BLOCK
S35
SendGOOSEMessage
c8
c8
Y
S36
GetGoReference
O
c9
N
S37
GetGOOSEElementNumber
O
c9
N
S38
GetGoCBValues
O
O
Y
S39
SetGoCBValues
O
O
Y
GSSE-CONTROL-BLOCK
S40
SendGSSEMessage
c8
c8
N
S41
GetGsReference
O
c9
N
S42
GetGSSEElementNumber
O
c9
N
S43
GetGsCBValues
O
O
N
S44
SetGsCBValues
O
O
N
Transmission of sampled value model (SVC)
Multicast SVC
S45
SendMSVMessage
c10
c10
N
S46
GetMSVCBValues
O
O
N
S47
SetMSVCBValues
O
O
N
Unicast SVC
S48
SendUSVMessage
c10
c10
N
S49
GetUSVCBValues
O
O
N
S50
SetUSVCBValues
O
O
N
Control
S51
Select
M
O
N
S52
SelectWithValue
M
O
Y
S53
Cancel
O
O
Y
S54
Operate
M
M
Y
S55
CommandTermination
M
O
Y
S56
TimeActivatedOperate
O
O
N
File Transfer
S57
GetFile
O
M
Y
S58
SetFile
O
O
N
S59
DeleteFile
O
O
N
S60
GetFileAttributeValues
O
O
Y
Time
T1
Time resolution of internal clock
1ms
T2
Time accuracy of internal clock
1ms
T1
T3
Supported TimeStamp resolution
1ms
M – Mandatory
O – Optional
c1 – shall be ‘M’ if support for LOGICAL-DEVICE model has been declared.
c2 – shall be ‘M’ if support for LOGICAL-NODE model has been declared.
c3 – shall be ‘M’ if support for DATA model has been declared.
c4 – shall be ‘M’ if support for DATA-SET, Substitution, Report, Log Control, or Time model has been
declared.
c5 – shall be ‘M’ if support for Report, GSE, or SV models has been declared.
c6 – shall declare support for at least one (BRCB or URCB)
c7 – shall declare support for at least one (QueryLogByTime or QueryLogAfter).
c8 – shall declare support for at least one (SendGOOSEMessage or SendGSSEMessage)
c9 – shall declare support if TWO-PARTY association is available.
c10 – shall declare support for at least one (SendMSVMessage or SendUSVMessage).
⎯ 282 ⎯
6 F 2 S 0 9 0 4
A-Profile Profile Description
shortcut
A1
Client/server A-Profile
A2
GOOSE/GSE
management A-Profile
A3
GSSE A-Profile
A4
TimeSync A-Profile
c1
c2
c3
c4
c3
c4
c3
c4
GRD130 Remarks
Y
Y
N
Y
Shall be ‘m’ if support for any service specified in Table 2 are declared within the ACSI basic conformance statement.
Shall be ‘m’ if support for any service specified in Table 6 are declared within the ACSI basic conformance statement.
Shall be ‘m’ if support for any service specified in Table 9 are declared within the ACSI basic conformance statement.
Support for at least one other A-Profile shall be declared (e.g. in A1-A3) in order to claim conformance to IEC
61850-8-1.
A-Profile
shortcut
T1
T2
T3
T4
T5
c1
c2
c3
c4
PICS for A-Profile support
Client
Server
F/S
F/S
c1
c1
c2
c2
Profile Description
TCP/IP T-Profile
OSI T-Profile
GOOSE/GSE T-Profile
GSSE T-Profile
TimeSync T-Profile
PICS for T-Profile support
Client
Server
F/S
F/S
c1
c1
c2
c2
c3
c3
c4
c4
o
o
Shall be ‘m’ if support for A1 is declared. Otherwise, shall be 'i'.
Shall be ‘o’ if support for A1 is declared. Otherwise, shall be 'i'.
Shall be ‘m’ if support for A2 is declared. Otherwise, shall be 'i'.
Shall be ‘m’ if support for A3 is declared. Otherwise, shall be 'i'.
⎯ 283 ⎯
GRD130 Remarks
Y
N
Y
N
Y
6 F 2 S 0 9 0 4
InitiateRequest
MMS InitiateRequest general parameters
Client-CR
Base F/S Value/range Base
InitiateRequest
localDetailCalling
proposedMaxServOutstandingCalling
proposedMaxServOustandingCalled
initRequestDetail
m
m
m
m
m
m
m
m
InitiateRequestDetail
proposedVersionNumber
m
proposedParameterCBB
m
servicesSupportedCalling
m
additionalSupportedCalling
c1
additionalCbbSupportedCalling
c1
privilegeClassIdentityCalling
c1
c1 Conditional upon Parameter CBB CSPI
m
m
m
x
x
x
InitiateRequest
1 or greater
1 or greater
shall be 2.1
m
m
m
m
m
m
m
m
m
m
m
c1
c1
c1
m
m
m
x
x
x
MMS InitiateResponse general parameters
Client-CR
Base F/S Value/range Base
InitiateResponse
localDetailCalled
negotiatedMaxServOutstandingCalling
negotiatedMaxServOustandingCalled
initResponseDetail
m
m
m
m
m
m
m
m
InitiateResponseDetail
negotiatedVersionNumber
m
negotiatedParameterCBB
m
servicesSupportedCalled
m
additionalSupportedCalled
c1
additionalCbbSupportedCalled
c1
privilegeClassIdentityCalled
c1
c1 Conditional upon Parameter CBB CSPI
m
m
m
x
x
x
1 or greater
1 or greater
shall be 2.1
⎯ 284 ⎯
Server-CR
F/S Value/range
1 or greater
1 or greater
shall be 2.1
Server-CR
F/S Value/range
m
m
m
m
m
m
m
m
m
m
m
c1
c1
c1
m
m
m
x
x
x
1 or greater
1 or greater
shall be 2.1
GRD
130
Y
Y
Y
Y
Y
Y
Y
N
N
N
GRD
130
Y
Y
Y
Y
Y
Y
Y
N
N
N
6 F 2 S 0 9 0 4
MMS service supported conformance table
Client-CR
MMS service supported CBB
Base F/S Value/range Base
status
o
o
o
getNameList
o
o
o
identify
o
o
m
rename
o
o
o
read
o
o
o
write
o
o
o
getVariableAccessAttributes
o
o
o
defineNamedVariable
o
o
o
defineScatteredAccess
o
i
o
getScatteredAccessAttributes
o
i
o
deleteVariableAccess
o
o
o
defineNamedVariableList
o
o
o
getNamedVariableListAttributes
o
o
o
deleteNamedVariableList
o
o
o
defineNamedType
o
i
o
getNamedTypeAttributes
o
i
o
deleteNamedType
o
i
o
input
o
i
o
output
o
i
o
takeControl
o
i
o
relinquishControl
o
i
o
defineSemaphore
o
i
o
deleteSemaphore
o
i
o
reportPoolSemaphoreStatus
o
i
o
reportSemaphoreStatus
o
i
o
initiateDownloadSequence
o
i
o
downloadSegment
o
i
o
terminateDownloadSequence
o
i
o
initiateUploadSequence
o
i
o
uploadSegment
o
i
o
terminateUploadSequence
o
i
o
requestDomainDownload
o
i
o
requestDomainUpload
o
i
o
loadDomainContent
o
i
o
storeDomainContent
o
i
o
deleteDomain
o
i
o
getDomainAttributes
o
o
o
createProgramInvocation
o
i
o
⎯ 285 ⎯
Server-CR
F/S Value/range
m
c1
m
o
c2
c3
c4
o
i
i
o
o
c5
c6
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
c14
i
GRD
130
Y
Y
Y
N
Y
Y
Y
N
N
N
N
N
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
N
6 F 2 S 0 9 0 4
MMS service supported CBB
deleteProgramInvocation
start
stop
resume
reset
kill
getProgramInvocationAttributes
obtainFile
defineEventCondition
deleteEventCondition
getEventConditionAttributes
reportEventConditionStatus
alterEventConditionMonitoring
triggerEvent
defineEventAction
deleteEventAction
alterEventEnrollment
reportEventEnrollmentStatus
getEventEnrollmentAttributes
acknowledgeEventNotification
getAlarmSummary
getAlarmEnrollmentSummary
readJournal
writeJournal
initializeJournal
reportJournalStatus
createJournal
deleteJournal
fileOpen
fileRead
fileClose
fileRename
fileDelete
fileDirectory
unsolicitedStatus
informationReport
eventNotification
attachToEventCondition
attachToSemaphore
conclude
cancel
getDataExchangeAttributes
exchangeData
Base
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
m
o
o
o
Client-CR
F/S Value/range
i
i
i
i
i
i
i
c9
i
i
i
i
i
i
i
i
i
i
i
i
i
i
c13
o
o
i
i
i
c8
c8
c8
i
c9
c11
i
c7
i
i
i
m
o
c10
c10
⎯ 286 ⎯
Base
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
m
o
o
o
Server-CR
F/S Value/range
i
i
i
i
i
i
i
c9
i
i
i
i
i
i
i
i
i
i
i
i
i
i
c13
o
c12
i
i
i
c8
c8
c8
i
c9
c11
i
c7
i
i
i
m
m
c10
c10
GRD
130
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
N
N
Y
N
Y
N
N
N
N
N
N
N
6 F 2 S 0 9 0 4
MMS service supported CBB
defineAccessControlList
getAccessControlListAttributes
reportAccessControlledObjects
deleteAccessControlList
alterAccessControl
reconfigureProgramInvocation
Base
o
o
o
o
o
o
Client-CR
F/S Value/range
c10
c10
c10
c10
c10
c10
Base
o
o
o
o
o
o
Server-CR
F/S Value/range
c10
c10
c10
c10
c10
c10
GRD
130
N
N
N
N
N
N
c1 Shall be ‘m’ if logical device or logical node model support is declared in ACSI basic conformance statement.
c2 Shall be ‘m’ if logical node model support is declared in ACSI basic conformance statement or if support for the MMS
write service is declared.
c3 Shall be ‘m’ if ACSI support for SetDataValues service is declared or implied.
c4 Shall be ‘m’ if logical node model support is declared in ACSI basic conformance statement.
c5 Shall be ‘m’ if data set support is declared in the ACSI basic conformance statement.
c6 Shall be ‘m’ if support for defineNamedVariableList is declared.
c7 Shall be 'm' if support for ACSI Report or ACSI command termination is declared.
c8 Shall be 'm' if support for ACSI GetFile is declared.
c9 Shall be 'm' if support for ACSI SetFile is declared.
c10 Shall not be present since MMS minor version is declared to be 1.
c11 Shall be 'm' if support for ACSI GetFileAttributeValues is declared.
c12 Shall be 'm' if support for the ACSI log model is declared.
c13 Shall be 'm' if support for the ACSI QueryLogByTime or QueryLogAfter is declared.
c14 Shall be 'm' if support for the ACSI logical device model is declared.
MMS parameter CBB
STR1
STR2
NEST
VNAM
VADR
VALT
bit
TPY
VLIS
bit
bit
CEI
ACO
SEM
CSR
CSNC
CSPLC
CSPI
c1
c2
c3
c4
MMS Parameter CBB
Client-CR
Base F/S Value/range
o
o
o
o
1
1 or
gre
ater
o
o
o
o
o
o
x
x
o
o
o
c1
x
x
x
x
o
i
o
c4
o
c4
o
c4
o
c4
o
c4
o
c4
Base
o
o
1
Server-CR
F/S Value/range
c1
o
c2
o
o
o
x
o
o
x
x
o
o
o
o
o
o
o
Shall be ‘m’ if ACSI logical node model support declared.
Shall be five(5) or greater if ACSI logical node model support is declared.
Shall be ‘m’ if ACSI data set, reporting, GOOSE, or logging model support is declared.
Shall not be present. Receiving implementations shall assume not supported.
⎯ 287 ⎯
c1
o
c1
x
o
c3
x
x
i
c4
c4
c4
c4
c4
c4
GRD
130
Y
N
Y(10)
Y
N
Y
N
N
Y
N
N
N
N
N
N
N
N
N
6 F 2 S 0 9 0 4
GetNameList conformance statement
Client-CR
Base F/S Value/range Base
GetNameList
Request
ObjectClass
ObjectScope
DomainName
ContinueAfter
Response+
List Of Identifier
MoreFollows
ResponseError Type
Server-CR
F/S Value/range
GRD
130
m
m
o
o
m
m
o
m
m
m
m
m
m
m
m
m
Y
Y
Y
Y
m
m
m
m
m
m
m
m
Y
Y
m
m
m
m
Y
NOTE Object class ‘vmd' (formerly VMDSpecific in MMS V1.0) shall not appear. If a request contains this ObjectClass, an
MMS Reject shall be issued.
AlternateAccessSelection conformance statement
Not applicable.
VariableAccessSpecification conformance statement
Client-CR
Server-CR
VariableAccessSpecification
Base F/S Value/range Base F/S Value/range
listOfVariable
o
o
o
c1
variableSpecification
o
o
o
c1
alternateAccess
o
o
o
c1
variableListName
o
o
o
c2
GRD
130
Y
Y
Y
Y
c1 Shall be ‘m’ if ACSI support for Logical Node Model is declared.
c2 Shall be ‘m’ if ACSI support for ACSI DataSets, reporting, or logging is declared.
VariableSpecification conformance statement
Client-CR
VariableSpecification
Base F/S Value/range Base
name
o
o
o
address
o
o
o
variableDescription
o
o
o
scatteredAccessDescription
o
x
o
invalidated
o
x
o
Read
Request
specificationWithResult
variableAccessSpecification
Response
variableAccessSpecification
listOfAccessResult
Read conformance statement
Client-CR
Base F/S Value/range
Base
Server-CR
F/S Value/range
m
i
i
x
x
GRD
130
Y
N
N
N
N
Server-CR
F/S Value/range
GRD
130
o
m
o
m
o
m
m
m
Y
Y
o
m
o
m
o
m
m
m
Y
Y
⎯ 288 ⎯
6 F 2 S 0 9 0 4
Write conformance statement
Client-CR
Base F/S Value/range
Write
Request
variableAccessSpecification
listOfData
Response
failure
success
Base
GRD
130
m
m
m
m
m
m
m
m
Y
Y
m
m
m
m
m
m
m
m
Y
Y
InformationReport conformance statement
Client-CR
InformationReport
Base F/S Value/range Base
Request
variableAccessSpecification
listOfAccessResult
Server-CR
F/S Value/range
m
m
m
m
m
m
Server-CR
F/S Value/range
m
m
GetVariableAccessAttributes conformance statement
Client-CR
Server-CR
GetVariableAccessAttributes
Base F/S Value/range Base F/S Value/range
Request
name
o
o
m
m
address
o
o
m
x
Response
mmsDeletable
m
m
m
m
address
o
x
o
x
typeSpecification
m
m
m
m
GRD
130
Y
Y
GRD
130
Y
N
Y
N
Y
DefineNamedVariableList conformance statement
Not applicable.
GetNamedVariableListAttributes conformance statement
Client-CR
Server-CR
GetNamedVariableListAttributes
Base F/S Value/range Base F/S Value/range
Request
ObjectName
m
m
m
m
Response
mmsDeletable
m
m
m
m
listOfVariable
m
m
m
m
variableSpecification
m
m
m
m
alternateAccess
o
m
o
i
DeleteNamedVariableList conformance statement
Not applicable.
⎯ 289 ⎯
GRD
130
Y
Y
Y
Y
N
6 F 2 S 0 9 0 4
ReadJournal conformance statement
Not applicable.
JournalEntry conformance statement
Not applicable.
InitializeJournal conformance statement
Not applicable.
FileDirectory
Request
filespecification
continueAfter
Response+
listOfDirectoryEntry
MoreFollows
FileOpen
Request
filename
initialPosition
Response+
frsmID
fileAttributes
FileRead
Request
frsmID
Response+
fileData
MoreFollows
FileDirectory conformance statement
Client-CR
Base F/S Value/range Base
Server-CR
F/S Value/range
GRD
130
o
o
o
o
m
m
m
m
Y
Y
m
m
m
m
m
m
m
m
Y
Y
FileOpen conformance statement
Client-CR
Base F/S Value/range Base
Server-CR
F/S Value/range
GRD
130
m
o
m
o
m
m
m
m
Y
Y
m
m
m
m
m
m
m
m
Y
Y
FileRead conformance statement
Client-CR
Base F/S Value/range Base
Server-CR
F/S Value/range
GRD
130
m
m
m
m
Y
m
m
m
m
m
m
m
m
Y
Y
⎯ 290 ⎯
6 F 2 S 0 9 0 4
FileClose
Request
frsmID
Response+
GOOSE Services
SendGOOSEMessage
GetGoReference
GetGOOSEElementNumber
GetGoCBValues
SetGoCBValues
GSENotSupported
GOOSE Control Block (GoCB)
FileClose conformance statement
Client-CR
Base F/S Value/range Base
m
m
m
m
GOOSE conformance statement
Subscriber
Publisher
c1
c1
m
m
o
c3
o
c4
o
o
o
o
c2
c5
o
o
m
m
Server-CR
F/S Value/range
m
m
Value/comment
Y
Y
GRD130
Y
Y
N
N
Y
Y
N
Y
c1 Shall be ‘m’ if support is declared within ACSI basic conformance statement.
c2 Shall be ‘m’ if ACSI basic conformance support for either GetGoReference or GetGOOSEElementNumber is
declared.
c3 Shall be ‘m’ if support for ACSI basic conformance of GetGoReference is declared.
c4 Shall be ‘m’ if support for ACSI basic conformance of GetGOOSEElementNumber.
c5 Shall be ‘m’ if no support for ACSI basic conformance of GetGOOSEElementNumber is declared.
GSSE conformance statement
Not applicable.
⎯ 291 ⎯
GRD
130
6 F 2 S 0 9 0 4
Appendix N
Ordering
⎯ 292 ⎯
6 F 2 S 0 9 0 4
Ordering
GRD130
Type:
Voltage Relay
GRD130
Model:
-Model 210: Two pole
210
-Model 410: Four pole
410
Ratings:
1
2
5
6
A
B
E
F
50Hz, 110/125Vdc
60Hz, 110/125Vdc
50Hz, 220/250Vdc
60Hz, 220/250Vdc
50Hz, 48/54/60Vdc
60Hz, 48/54/60Vdc
50Hz, 24/30Vdc
60Hz, 24/30Vdc
Communications:
For IEC60870-5-103
RS485
RS485
Fibre optic
Fibre optic
For IEC61850 / RSM100
100BASE-TX
100BASE-FX
100BASE-TX
100BASE-FX
A
B
D
E
Miscellaneous:
None
0
⎯ 293 ⎯
D
0
6 F 2 S 0 9 0 4
Version-up Records
Version
No.
Date
0.0
1.0
Sep. 2, 2010
Sep. 6, 2010
1.1
Oct.27, 2011
Revised Section
-2.1.1
2.1.2
2.1.3
2.1.4
6.5.1.1, 6.5.1.2
Appendices
1.
2.2
2.4
3.2
3.3.6
Contents
First issue
Modified Figures 2.1.3, 2.1.4 and 2.1.5. (Signal No.)
Modified Figures 2.1.9, 2.1.10 and 2.1.11. (Signal No.)
Modified Figure 2.1.16 and 2.1.17. (Signal No.)
Modified Figure 2.1.19 and 2.1.20. (Signal No.)
Modified Signal No.
Modified Appendix G.
Modified descriptions
⎯ 294 ⎯
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising