3A1705J - Reactor E-30i and E-XP2i, Operation, English

3A1705J - Reactor E-30i and E-XP2i, Operation, English
Operation
Reactor® E-30i and E-XP2i
3A1705J
EN
Electric, Heated, Integrated Plural Component Proportioning System With Integrated Generator. For
spraying polyurethane foam and polyurea coatings. For professional use only. Not approved for use in
explosive atmospheres or hazardous locations.
Important Safety Instructions
Read all warnings and instructions in this manual. Save these
instructions.
PROVEN QUALITY. LEADING TECHNOLOGY.
Contents
Warnings ............................................................. 3
Important Two-Component Material
Information ............................................. 7
Proportioner Models ............................................. 9
Systems............................................................. 10
Accessories........................................................ 11
Supplied Manuals ............................................... 12
Related Manuals ................................................ 12
Typical Installation, with circulation ...................... 13
Typical Installation, without circulation.................. 14
Component Identification..................................... 15
Generator .................................................... 17
Proportioner Control Panel ........................... 18
Air Compressor............................................ 18
Advanced Display Module (ADM).................. 19
Motor Control Module (MCM)........................ 23
Engine Control Module ................................. 24
Load Center ................................................ 25
Temperature Control Modules....................... 26
Circuit Breakers ........................................... 28
Overview............................................................ 30
Setup................................................................. 33
Locate Reactor ............................................ 33
Trailer Setup Guidelines ............................... 35
Install Wall (optional) .................................... 36
Connect Battery ........................................... 38
Add Fuel ..................................................... 38
General Equipment Guidelines ..................... 38
Electrical Connections .................................. 39
Connect Feed Pumps................................... 39
Breathing Air................................................ 39
Connect Pressure Relief Lines ...................... 40
Install Fluid Temperature Sensor .................. 40
Connect Heated Hose .................................. 40
Close gun fluid manifold valves A and
B ................................................... 41
Connect Whip Hose to Gun Or Gun Fluid
Manifold ......................................... 41
Pressure Check Hose .................................. 41
Connect Remote Display Module .................. 41
Grounding ................................................... 41
Supply Wet Cups With Throat Seal Liquid
(TSL) ............................................. 42
Advanced Display Module (ADM)
Operation.............................................. 43
2
Advanced Setup Screens ............................. 46
System........................................................ 47
Recipes....................................................... 47
Run Mode ................................................... 48
Startup............................................................... 55
Temporary Manual Hose Temperature
Control ................................................. 58
Fluid Circulation.................................................. 59
Circulation Through Reactor ......................... 59
Circulation Through Gun Manifold ................. 60
Jog Mode ........................................................... 60
Spraying ............................................................ 61
Spray Adjustments ....................................... 62
Shutdown........................................................... 63
Pressure Relief Procedure .................................. 64
Flushing ............................................................. 65
Maintenance ...................................................... 66
Preventative Maintenance Schedule ............. 66
Proportioner Maintenance ............................ 66
Engine Maintenance .................................... 67
Fuel Tank .................................................... 67
Flush Inlet Strainer Screen ........................... 67
Pump Lubrication System ............................. 68
Drain Coolant .............................................. 69
Refill Proportioner Coolant Loop ................... 70
Refill Engine Coolant Loop ........................... 72
Coolant Specifications .................................. 72
Errors ................................................................ 73
View Errors.................................................. 73
Troubleshoot Errors ..................................... 73
Troubleshooting.................................................. 74
Error Codes and Troubleshooting.................. 74
USB Data........................................................... 89
USB Logs .................................................... 89
System Configuration Settings ...................... 90
Download Procedure.................................... 91
Custom Language File ................................. 91
Upload Procedure ........................................ 92
Appendix A: Engine Control Module..................... 93
Dimensions ........................................................ 96
Performance Charts............................................ 99
Technical Specifications.................................... 102
Graco Standard Warranty.................................. 106
3A1705J
Warnings
Warnings
The following warnings are for the setup, use, grounding, maintenance and repair of this equipment. The
exclamation point symbol alerts you to a general warning and the hazard symbol refers to procedure-specific
risks. When these symbols appear in the body of this manual refer back to these Warnings. Product-specific
hazard symbols and warnings not covered in this section may appear throughout the body of this manual
where applicable.
WARNING
ELECTRIC SHOCK HAZARD
This equipment must be grounded. Improper grounding, setup, or usage of the system can
cause electric shock.
• Turn off and disconnect power at main switch before disconnecting any cables and before
servicing equipment.
• Connect only to grounded power source.
• All electrical wiring must be done by a qualified electrician and comply with all local codes
and regulations.
TOXIC FLUID OR FUMES
Toxic fluids or fumes can cause serious injury or death if splashed in the eyes or on skin,
inhaled, or swallowed.
• Read MSDSs to know the specific hazards of the fluids you are using.
• Store hazardous fluid in approved containers, and dispose of it according to applicable
guidelines.
CARBON MONOXIDE HAZARD
Exhaust contains poisonous carbon monoxide, which is colorless and odorless. Breathing
carbon monoxide can cause death.
• Do not operate in an enclosed area.
PERSONAL PROTECTIVE EQUIPMENT
You must wear appropriate protective equipment when operating, servicing, or when in the
operating area of the equipment to help protect you from serious injury, including eye injury,
hearing loss, inhalation of toxic fumes, and burns. This equipment includes but is not limited to:
• Protective eyewear, and hearing protection.
• Respirators, protective clothing, and gloves as recommended by the fluid and solvent
manufacturer.
3A1705J
3
Warnings
SKIN INJECTION HAZARD
WARNING
High-pressure fluid from dispensing device, hose leaks, or ruptured components will pierce
skin. This may look like just a cut, but it is a serious injury that can result in amputation. Get
immediate surgical treatment.
Engage trigger lock when not dispensing.
Do not point dispensing device at anyone or at any part of the body.
Do not put your hand over the fluid outlet.
Do not stop or deflect leaks with your hand, body, glove, or rag.
Follow the Pressure Relief Procedure when you stop dispensing and before cleaning,
checking, or servicing equipment.
• Tighten all fluid connections before operating the equipment.
• Check hoses and couplings daily. Replace worn or damaged parts immediately.
•
•
•
•
•
FIRE AND EXPLOSION HAZARD
Flammable fumes, such as solvent and paint fumes, in work area can ignite or explode. To help
prevent fire and explosion:
• Use equipment only in well ventilated area.
• Do not fill fuel tank while engine is running or hot; shut off engine and let it cool. Fuel is
flammable and can ignite or explode if spilled on hot surface.
• Eliminate all ignition sources; such as pilot lights, cigarettes, portable electric lamps, and
plastic drop cloths (potential static arc).
• Keep work area free of debris, including solvent, rags and gasoline.
• Do not plug or unplug power cords, or turn light switches on or off when flammable fumes
are present.
• Ground all equipment in the work area. See Grounding instructions.
• Use only grounded hoses.
• Hold gun firmly to side of grounded pail when triggering into pail.
• If there is static sparking or you feel a shock, stop operation immediately. Do not use
equipment until you identify and correct the problem.
• Keep a working fire extinguisher in the work area.
THERMAL EXPANSION HAZARD
Fluids subjected to heat in confined spaces, including hoses, can create a rapid rise in pressure
due to the thermal expansion. Over-pressurization can result in equipment rupture and serious
injury.
• Open a valve to relieve the fluid expansion during heating.
• Replace hoses proactively at regular intervals based on your operating conditions.
4
3A1705J
Warnings
WARNING
PRESSURIZED ALUMINUM HAZARD
Use of fluids that are incompatible with aluminum in pressurized equipment can cause serious
chemical reaction and equipment rupture. Failure to follow this warning can result in death,
serious injury, or property damage.
• Do not use 1,1,1-trichloroethane, methylene chloride, other halogenated hydrocarbon
solvents or fluids containing such solvents.
• Many other fluids may contain chemicals that can react with aluminum. Contact your material
supplier for compatibility.
PLASTIC PARTS CLEANING SOLVENT HAZARD
Many solvents can degrade plastic parts and cause them to fail, which could cause serious
injury or property damage.
• Use only compatible water-based solvents to clean plastic structural or pressure-containing
parts.
• See Technical Data in this and all other equipment instruction manuals. Read fluid and
solvent manufacturer’s MSDSs and recommendations.
EQUIPMENT MISUSE HAZARD
Misuse can cause death or serious injury.
• Do not operate the unit when fatigued or under the influence of drugs or alcohol.
• Do not exceed the maximum working pressure or temperature rating of the lowest rated
system component. See Technical Data in all equipment manuals.
• Use fluids and solvents that are compatible with equipment wetted parts. See Technical Data
in all equipment manuals. Read fluid and solvent manufacturer’s warnings. For complete
information about your material, request MSDS from distributor or retailer.
• Do not leave the work area while equipment is energized or under pressure. Turn off all
equipment and follow the Pressure Relief Procedure when equipment is not in use.
• Check equipment daily. Repair or replace worn or damaged parts immediately with genuine
manufacturer’s replacement parts only.
• Do not alter or modify equipment.
• Use equipment only for its intended purpose. Call your distributor for information.
• Route hoses and cables away from traffic areas, sharp edges, moving parts, and hot surfaces.
• Do not kink or over bend hoses or use hoses to pull equipment.
• Keep children and animals away from work area.
• Comply with all applicable safety regulations.
3A1705J
5
Warnings
BATTERY HAZARD
WARNING
The battery may leak, explode, cause burns, or cause an explosion if mishandled.
• Only use the battery type specified for use with the equipment. See Technical Data.
• Battery maintenance must only be performed or supervised by personnel knowledgeable of
batteries and the required precautions. Keep unauthorized personnel away from battery.
• When replacing the battery, use the same lead-acid automotive battery, with 800 CCA
minimum, specified for use with the equipment. See Technical Data.
• Do not dispose of battery in fire. The battery is capable of exploding.
• Follow local ordinances and/or regulations for disposal.
• Do not open or mutilate the battery. Released electrolyte has been known to be harmful to
the skin and eyes and to be toxic.
• Remove watches, rings, or other metal objects.
• Only use tools with insulated handles. Do not lay tools or metal parts on top of battery.
MOVING PARTS HAZARD
Moving parts can pinch, cut or amputate fingers and other body parts.
• Keep clear of moving parts.
• Do not operate equipment with protective guards or covers removed.
• Pressurized equipment can start without warning. Before checking, moving, or servicing
equipment, follow the Pressure Relief Procedure and disconnect all power sources.
ENTAGLEMENT HAZARD
Rotating parts can cause serious injury.
•
•
•
•
Keep clear of moving parts.
Do not operate equipment with protective guards or covers removed.
Do not wear loose clothing, jewelry or long hair while operating equipment.
Equipment can start without warning. Before checking, moving, or servicing equipment,
follow the Pressure Relief Procedure and disconnect all power sources.
BURN HAZARD
Equipment surfaces and fluid that’s heated can become very hot during operation. To avoid
severe burns:
• Do not touch hot fluid or equipment.
6
3A1705J
Important Two-Component Material Information
Important Two-Component Material Information
Isocyanate Conditions
Spraying or dispensing materials containing
isocyanates creates potentially harmful mists,
vapors, and atomized particulates.
Read material manufacturer’s warnings and
material MSDS to know specific hazards and
precautions related to isocyanates.
Prevent inhalation of isocyanate mists, vapors,
and atomized particulates by providing sufficient
ventilation in the work area. If sufficient ventilation
is not available, a supplied-air respirator is required
for everyone in the work area.
To prevent contact with isocyanates, appropriate
personal protective equipment, including
chemically impermeable gloves, boots, aprons,
and goggles, is also required for everyone in the
work area.
Material Self-Ignition
Some materials may become self-igniting if applied
too thickly. Read material manufacturer’s warnings
and material MSDS.
Keep Components A and B Separate
Moisture Sensitivity of Isocyanates
Cross-contamination can result in cured
material in fluid lines which could cause serious
injury or damage equipment. To prevent
cross-contamination of the equipment’s wetted
parts, never interchange component A (isocyanate)
and component B (resin) parts.
Isocyanates (ISO) are catalysts used in two
component foam and polyurea coatings. ISO will
react with moisture (such as humidity) to form small,
hard, abrasive crystals, which become suspended in
the fluid. Eventually a film will form on the surface
and the ISO will begin to gel, increasing in viscosity. If
used, this partially cured ISO will reduce performance
and the life of all wetted parts.
The amount of film formation and rate of crystallization
varies depending on the blend of ISO, the humidity,
and the temperature.
To prevent exposing ISO to moisture:
• Always use a sealed container with a desiccant
dryer in the vent, or a nitrogen atmosphere. Never
store ISO in an open container.
• Keep the ISO lube pump reservoir (if installed) filled
with appropriate lubricant. The lubricant creates a
barrier between the ISO and the atmosphere.
• Use only moisture-proof hoses compatible with
ISO.
• Never use reclaimed solvents, which may contain
moisture. Always keep solvent containers closed
when not in use.
• Always lubricate threaded parts with ISO pump oil
or grease when reassembling.
Cross-contamination can result in cured
material in fluid lines which could cause serious
injury or damage equipment. To prevent
cross-contamination of the equipment’s wetted
parts, never interchange component A (isocyanate)
and component B (resin) parts.
3A1705J
7
Important Two-Component Material Information
Foam Resins with 245 fa Blowing
Agents
Some foam blowing agents will froth at temperatures
above 90°F (33°C) when not under pressure,
especially if agitated. To reduce frothing, minimize
preheating in a circulation system.
Changing Materials
Changing the material types used in your equipment
requires special attention to avoid equipment damage
and downtime.
• When changing materials, flush the equipment
multiple times to ensure it is thoroughly clean.
• Always clean the fluid inlet strainers after flushing.
• Check with your material manufacturer for chemical
compatibility.
• When changing between epoxies and urethanes
or polyureas, disassemble and clean all fluid
components and change hoses. Epoxies often
have amines on the B (hardener) side. Polyureas
often have amines on the B (resin) side.
8
3A1705J
Proportioner Models
Proportioner Models
E-30i Series
Part
Available
Auxiliary
Current at
240 V, 60
Hz*
259079
50 Amps
259080
32 Amps
259089 
30 Amps
259090 
12 Amps
Voltage
(phase)
Total
System
Load †
(Watts)
Max Flow
ApproxiRate lb/min mate Out(kg/min)
put per Cycle (A+B)
gal. (liter)
240 V (1)
7,700
30 (13.5)
240 V (1)
11,700
30 (13.5)

240 V (1)
7,700
30 (13.5)

240 V (1)
16,700
30 (13.5)
Voltage
(phase)
Total
System
Load †
(Watts)
Max Flow
Rate gpm
(lpm)
240 V (1)
11,700
2.0 (7.6)
240 V (1)
16,700
2.0 (7.6)
Includes:
Booster
Heat
(4000
Watts)
Air
Compressor
(5000 Watts)


0.0272
(0.1034)
0.0272
(0.1034)
0.0272
(0.1034)
0.0272
(0.1034)
Maximum
Fluid
Working
Pressure
psi (MPa,
bar)
2000 (13.8,
138)
2000 (13.8,
138)
2000 (13.8,
138)
2000 (13.8,
138)
Approximate Output
per Cycle
(A+B) gal.
(liter)
Maximum
Fluid
Working
Pressure psi
(MPa, bar)
0.0203
(0.0771)
0.0203
(0.0771)
3500 (24.1,
241)
3500 (24.1,
241)
E-XP2i Series
Part
Available
Auxiliary
Current at
240 V, 60
Hz*
Includes:
259081
32 Amps

259091 
12 Amps

Booster
Heat
(4000
Watts)
Air
Compressor
(5000 Watts)


Total system watts used by system, based on maximum heated hose length of 310 ft (94.5 m) for
each unit.
*
Full load amps available for auxiliary equipment when all bare-system components are operating
at maximum capabilities. Available auxiliary current is based on 310 ft (94.5 m) of heated hose.
An additional 3.0 amps of auxiliary current is available for each 50 ft (15.2 m) section of heated
hose that is not used.

Available auxiliary current will be less when the engine is de-rated for site altitude. Reduce the
Available Auxiliary Current in the chart by 2.5 Amps per 1000 ft (300 m) elevation increments. If the
available auxiliary current is less than zero, the system configuration may not support the full load
at that altitude.

Includes Complete Air Compressor Kit 24K335.
Refer to Circuit Breaker Configuration Options, page 29.
See Approvals, page 10.
3A1705J
9
Systems
Approvals
Model
Approvals:
259079
Conforms to ANSI/UL Std. 73 Certified to CAN/CSA Std. C22.2 No. 68
259080
259081
Conforms to ANSI/UL Std. 499 Certified to CAN/CSA Std. C22.2 No. 88
Systems
Maximum
Fluid Working
Pressure psi
(MPa, bar)
Heated Hose
Gun
50 ft (15 m) 10 ft (3 m)
Model
AP9079 2000 (13.8, 138) 259079
24K240
246050
Fusion™ AP 246101
AP9080 2000 (13.8, 138) 259080
24K240
246050
Fusion™ AP 246101
AP9081 3500 (24.1, 241) 259081
24K241
246055
Fusion™ AP 246100
Part
Proportioner
Remote
Display
Module Kit
Part
AP9179 2000 (13.8, 138) 259079
✓
24K394
246050
Fusion™ AP 246101
AP9180 2000 (13.8, 138) 259080
✓
24K394
246050
Fusion™ AP 246101
AP9181 3500 (24.1, 241) 259081
✓
24K395
246055
Fusion™ AP 246100
CS9079 2000 (13.8, 138) 259079
24K240
246050
Fusion™ CS CS0101
CS9080 2000 (13.8, 138) 259080
24K240
246050
Fusion™ CS CS0101
CS9081 3500 (24.1, 241) 259081
24K241
246055
Fusion™ CS CS0000
CS9179 2000 (13.8, 138) 259079
✓
24K394
246050
Fusion™ CS CS0101
CS9180 2000 (13.8, 138) 259080
✓
24K394
246050
Fusion™ CS CS0101
CS9181 3500 (24.1, 241) 259081
✓
24K395
246055
Fusion™ CS CS0000
P29079
2000 (13.8, 138) 259079
24K240
246050
Probler® P2
GCP2R1
P29080
2000 (13.8, 138) 259080
24K240
246050
Probler® P2
GCP2R1
P29081
3500 (24.1, 241) 259081
24K241
246055
Probler® P2
GCP2R0
P29179
2000 (13.8, 138) 259079
✓
24K394
246050
Probler® P2
GCP2R1
P29180
2000 (13.8, 138) 259080
✓
24K394
246050
Probler® P2
GCP2R1
P29181
3500 (24.1, 241) 259081
✓
24K395
246055
Probler® P2
GCP2R0
10
3A1705J
Accessories
Systems with Air Compressor
Part
Maximum
Fluid Working
Pressure psi
(MPa, bar)
Proportioner
Remote
Air
Display
Compressor
Module Kit
Heated Hose
Gun
50 ft
(15 m)
10 ft
(3 m)
Model
Part
AP9089 2000 (13.8, 138) 259089
✓
24K240
246050
Fusion™ AP 246101
AP9090 2000 (13.8, 138) 259090
✓
24K240
246050
Fusion™ AP 246101
AP9091 3500 (24.1, 241) 259091
✓
24K241
246055
Fusion™ AP 246100
AP9189 2000 (13.8, 138) 259089
✓
✓
24K394
246050
Fusion™ AP 246101
AP9190 2000 (13.8, 138) 259090
✓
✓
24K394
246050
Fusion™ AP 246101
AP9191 3500 (24.1, 241) 259091
✓
✓
24K395
246055
Fusion™ AP 246100
CS9089 2000 (13.8, 138) 259089
✓
24K240
246050
Fusion™ CS CS0101
CS9090 2000 (13.8, 138) 259090
✓
24K240
246050
Fusion™ CS CS0101
CS9091 3500 (24.1, 241) 259091
✓
24K241
246055
Fusion™ CS CS0000
CS9189 2000 (13.8, 138) 259089
✓
✓
24K394
246050
Fusion™ CS CS0101
CS9190 2000 (13.8, 138) 259090
✓
✓
24K394
246050
Fusion™ CS CS0101
CS9191 3500 (24.1, 241) 259091
✓
✓
24K395
246055
Fusion™ CS CS0000
P29089
2000 (13.8, 138) 259089
✓
24K240
246050
Probler® P2 GCP2R1
P29090
2000 (13.8, 138) 259090
✓
24K240
246050
Probler® P2 GCP2R1
P29091
3500 (24.1, 241) 259091
✓
24K241
246055
Probler® P2 GCP2R0
P29189
2000 (13.8, 138) 259089
✓
✓
24K394
246050
Probler® P2 GCP2R1
P29190
2000 (13.8, 138) 259090
✓
✓
24K394
246050
Probler® P2 GCP2R1
P29191
3500 (24.1, 241) 259091
✓
✓
24K395
246055
Probler® P2 GCP2R0
Accessories
Kit Number
Description
Kit Number
Description
24N449
50 ft (15 m) CAN cable (for remote
display module)
15V551
ADM Protective Covers (10 pack)
24K207
Fluid Temperature Sensor (FTS)
with RTD
15M483
Remote Display Module Protective
Covers (10 pack)
24K338
Remote Display Module Kit
24K334
Feed Pump Shutdown Kit
24K335
Complete Air Compressor Kit
24K333
Fuel Line and Cable Extension Kit
125970
Air Compressor (without air supply
tank)
24K337
Light Tower Kit
24M174
Drum Level Sticks
24M490
Air Compressor (mounted 30 gallon
tank)
24L911
Pallet Support Kit
121006
24M125
Air Tank (12 gallons, 113.5 liters)
150 ft (45 m) cable (for remote
display module)
24M178
Air Dryer (desiccant)
24N365
24M258
Compressor Rack (frame only)
RTD Test Cables (to aide resistance
measurements)
24K336
Hose Rack
3A1705J
11
Supplied Manuals
Supplied Manuals
Related Manuals
The following manuals are shipped with the Reactor.
Refer to these manuals for detailed equipment
information.
The following manuals are for accessories used with
the Reactor.
Manuals are also available at www.graco.com.
Manual
Description
3A1705
Reactor E-30i and E-XP2i,
Operation
Reactor E-30i and E-XP2i, Startup
Instructions
Reactor E-30i and E-XP2i,
Shutdown Instructions
Perkins® Engine, Repair-Parts
16K761
16K913
SEBU8311–
02
–
Access at www.perkins.com. Go
to Service and Support/manuals.
Select engine family and type code
“GN”.
Contact Perkins for engine warranty
and service.
Mecc Alte Self-Regulating Alternator
Series NPE, Repair-Parts
Access at www.meccalte.com.
Select “meccalte” logo / Download
/ Instruction Manuals. Select NPE
instruction manual on page 5. Go to
Support and enter serial number for
Parts List and Help Videos.
F3231, ver
16
12
Contact Mecc Alte for warranty and
service.
Champion Air Compressor,
Operation/Maintenance & Parts list.
For warranty and service call
Gardner-Denver Customer Serivce
(866) 276–3440 or Champion (815)
875–3321.
Manuals are available at www.graco.com
Component manuals in English:
System Manuals
3A1706
Reactor E-30i and E-XP2i,
Repair-Parts
Displacement Pump Manual
309577
Electric Reactor Displacement Pump,
Repair-Parts
Feed System Manuals
309572
Heated Hose, Instructions-Parts
309852
Circulation and Return Tube Kit,
Instructions-Parts
Feed Pump Kits, Instructions-Parts
309815
309827
Feed Pump Air Supply Kit,
Instructions-Parts
Spray Gun Manuals
309550
Fusion ™ AP Gun
312666
Fusion ™ CS Gun
313213
Probler P2 Gun
Accessory Manuals
3A1902
Compressor Rack, Instructions-Parts
3A1903
Hose Rack, Instructions-Parts
3A1904
Fuel Tank/Battery Move Kit,
Instructions-Parts
Feed Pump Shutdown Kit,
Instructions-Parts
Light Tower Kit, Instructions-Parts
3A1905
3A1906
3A1907
3A2574
Remote Display Module,
Instructions-Parts
Pallet Support Kit, Instructions-Parts
3A1705J
Typical Installation, with circulation
Typical Installation, with circulation
K
M
H
G
R
J
L
R
J
M
K
A
G
D
S
E
P
F
C*
B
Figure 1
* Shown exposed for clarity. Wrap with tape during operation.
A
Reactor Proportioner
J
Fluid Supply Lines
B
Heated Hose
K
Feed Pumps
C
Fluid Temperature Sensor (FTS)
L
Agitator
D
Heated Whip Hose
M
Desiccant Dryer
E
Fusion Spray Gun
P
Gun Fluid Manifold (part of gun)
F
Gun Air Supply Hose
R
Recirculation Lines
G
Feed Pump Air Supply Lines
S
Remote Display Module (optional)
H
Agitator Air Supply Line
3A1705J
13
Typical Installation, without circulation
Typical Installation, without circulation
K
H
G
L
J
J
M
K
A
G
F
N
D
E
N
S
P
C*
B
Figure 2
* Shown exposed for clarity. Wrap with tape during operation.
A
Reactor Proportioner
J
Fluid Supply Lines
B
Heated Hose
K
Feed Pumps
C
Fluid Temperature Sensor (FTS)
L
Agitator
D
Heated Whip Hose
M
Desiccant Dryer
E
Fusion Spray Gun
N
Bleed Lines
F
Gun Air Supply Hose
P
Gun Fluid Manifold (part of gun)
G
Feed Pump Air Supply Lines
S
Remote Display Module Kit (optional)
H
Agitator Air Supply Line
14
3A1705J
Component Identification
Component Identification
GA GB
PC
SB
FB
BB
SA
GG
HB
FA
HC
HA
SC
BA
DG
(FM)
EM
PA
PB
PT
MP
DB
Front View
Figure 3
HC
Heated Hose Electrical Connectors
MP
Main Power Switch
PA
Component A Pump
PB
BA
Component A Pressure Relief Outlet
BB
Component B Pressure Relief Outlet
DG
Drive Gear Housing
DB
Electrical Enclosure
PC
Component B Pump (behind Electrical
Enclosure)
Proportioner Control Panel, page 18
EM
Electric Motor
PT
Pallet
FA
Component A Fluid Manifold Inlet
SA
FB
Component B Fluid Manifold Inlet
FM
Reactor Fluid Manifold
GA
Component A Pressure Gauge
SC
Component A PRESSURE
RELIEF/SPRAY Valve
Component B PRESSURE
RELIEF/SPRAY Valve
Fluid Temperature Sensor (FTS) Cable
GB
Component B Pressure Gauge
TA
GG
Generator, page 17
HA
Component A Hose Connection
HB
Component B Hose Connection
3A1705J
SB
TB
Component A Pressure Transducer
(behind gauge GA)
Component B Pressure Transducer
(behind gauge GB)
15
Component Identification
MM
FF
LM
FF
FH
HM
SG
EC
FV
LR
VC
CP
VB
HE
Back View
Figure 4
CP
Circulation Pump
EC
Electrical Cord Strain Relief
FF
Y-strainer (includes pressure gauge and
temperature gauge)
Booster Fluid Heater (not included with all
models)
Fluid Inlet Valve (A side shown)
FH
FV
HE
HM
16
Heat Exchangers (heat exchanger coolant
loop)
High Power Temperature Control Module
(HPTCM) Cable Connections, page 26
VA
LM
HE
LR
Low Power Module (LPTCM) Cable
Connections, page 26 (not included with
all models)
ISO Pump Lubricant Reservoir
MM
Motor Control Module (MCM), page 23
SG
Sight Glass
VA
Component A Control Valve
VB
Component B Control Valve
VC
Bypass Control Valve
3A1705J
Component Identification
Generator
HB
FH
RF ER
EX
RC
HF
HE
EB
TR
ST
GD
OL
FS
FT
WS
EE
EA
OD
AF
FJ
GL
FD
FP
ED
BE
DF
OF
OS
Figure 5
AF
Air Filter
BE
Battery (not supplied)
DF
Diesel Fuel Filter
EA
12V Charge Alternator
EB
Engine Coolant Expansion Bottle
EE
Engine
ED
Engine Oil Dipstick
ER
Radiator
EX
Exhaust
FD
Fuel Shutoff Solenoid
FH
Filter Housing
FJ
Fuel Injector
FP
Fuel Pump
FS
Diesel Fuel Fill Cap
3A1705J
FT
Diesel Fuel Tank
GD
Generator Power Distribution Box
GL
Glow Plugs
HB
Heat Exchanger Coolant Expansion Bottle
HE
Heat Exchanger
HF
Heat Exchanger Coolant Fill Bottle
OD
Oil Drain
OF
Oil Filter
OL
Oil Fill
OS
Oil Pressure Switch
RC
Engine Coolant Radiator Cap
RF
Radiator Fan
ST
Starter
TR
Coolant Temperature Sensor
WS
Over-Temperature Switch
17
Component Identification
Proportioner Control Panel
PN
PE
PP
PR
PD
PD
Advanced Display Module (ADM), page 19
PE
Engine Control Module, page 24
PF*
Component A Feed Pump Air Outlet
PG*
Component B Feed Pump Air Outlet
PH*
Agitator Air Outlet
PJ*
Gun Air Outlet
PK
Component A Feed Pump Air Regulator
PH*
PL
PJ*
PM
Component B Feed Pump and Agitator Air
Regulator
Gun Air Regulator
PN
Component A Feed Pump Pressure Gauge
PP
PR
Component B Feed Pump and Agitator
Pressure Gauge
Gun Pressure Gauge
*
Not for breathing air use.
CA
Air Compressor
CB
Power Box
CC
12 Gallon Tank
CD
Air Outlet
CE
Desiccant Dryer Assembly
PF*
PG*
PK
PL
PM
ti17151a
Figure 6
Air Compressor
Select models are supplied with an air compressor.
To order as an accessory, see Accessories, page 11.
CF
Desiccant Dryer Air Outlet
CG
Power Cable
CH
Water Auto Drain Valve
CJ
Air Tank Pressure Gauge
CK
Main Shutoff Valve
CL
Dryer Inlet Valve
CM
Water Auto Drain Air Valve
CN
Water Manual Drain Valve
Figure 7
18
3A1705J
Component Identification
Advanced Display Module (ADM)
NOTICE
To prevent damage to the softkey buttons, do not
press buttons with sharp objects such as pens,
plastic cards, or fingernails.
B
C
A
D
D
E
F
H
G
Component Identification — Front
Figure 8
Call
out
A
B
C
D
3A1705J
Button
Function
Power
On/Off
System
Status
Indicator
Light
Stop
Powers system on and off.
Soft Keys
Displays system status.
Stops all system processes.
Is not a safety or emergency
stop.
Selects the specific screen
or operation shown on the
display directly next to each
key.
Call
out
E
Button
Function
Cancel
F
Enter
G
Lock/Setup
H
Navigation
Cancels a selection or
number entry in progress.
Acknowledges a value
change or makes a selection.
Toggles between run and
setup screens. If setup
screens are password
protected, button toggles
between run and password
entry screens.
Navigates within a screen or
to a new screen.
19
Component Identification
CJ
CS
CK
CL
CM
CR
CP
Component Identification — Back
Figure 9
CN
USB Module Status LEDs (CL)
Conditions
CJ
Flat Panel Mount (VESA 100)
CK
Model and Serial Number
Green Flashing - Data recording in progress
CL
USB Port and Status LEDs
CM
CAN Cable Connection
Yellow Solid - Downloading information to USB
CN
Module Status LEDs
CP
Accessory Cable Connection
CR
Token Access Cover
CS
Battery Access Cover
Green and Yellow Flashing - ADM is busy, USB
cannot transfer information when in this mode
Module Status LEDs (CN) Conditions
Green Solid - Power applied to module
System Status Indicator (B)
Conditions
Green Solid — Run Mode, System On
Green Flashing - Setup Mode, System On
Yellow Solid - Active Communication
Red Steady Flashing - Software upload from token
in progress
Red Random Flashing or Solid - Module error exists
Yellow Solid - Run Mode, System Off
Yellow Flashing - Setup Mode, System Off
20
3A1705J
Component Identification
ADM Display Details
Alarm/Deviation
Power Up Screen
The current system error is displayed in the middle of
the menu bar. There are four possibilities:
The following screen appears when the ADM is
powered up. It remains on while the ADM runs through
initialization and establishes communication with other
modules in the system.
Icon
No Icon
Function
No information or no error has occurred
Advisory
Deviation
Alarm
Status
The current system status is displayed at the lower right
of the menu bar.
Soft Keys
Menu Bar
The menu bar appears at the top of each screen. (The
following image is only an example.)
Date and Time
The date and time are always displayed in one of the
following formats. The time is always displayed as a
24-hour clock.
• DD/MM/YY HH:MM
• YY/MM/DD HH:MM
• MM/DD/YY HH:MM
Arrows
The left and right arrows indicate screen navigation.
Screen Menu
The screen menu indicates the currently active screen,
which is highlighted. It also indicates the associated
screens that are available by scrolling left and right.
System Mode
The current system mode is displayed at the lower left
of the menu bar.
3A1705J
Icons next to the soft keys indicate which mode or
action is associated with each soft key. Soft keys that
do not have an icon next to them are not active in the
current screen.
NOTICE
To prevent damage to the soft key buttons, do not
press buttons with sharp objects such as pens, plastic
cards, or fingernails.
Jump In/Jump Out
In screens that have editable fields, press
to access
the fields and make changes. When changes are
complete press again to exit edit mode.
Navigation within Screens
Press
to open drop-down menus on Setup screens.
Press
to enter changes or make a selection.
Press
to navigate to new screens and to
navigate left and right within a screen. Press
select digits to change within a field.
Press
to
to navigate to new screens and to navigate
up and down within a screen. Also press
to
move between fields within a drop-down menu, and to
increment or decrement numbers within a field.
21
Component Identification
Icons
Icons
Icon
Softkeys
Function
Component A
Component B
Icon
Function
Start Proportioner
Start and Stop Proportioner in Jog Mode
Stop Proportioner
Estimated Supply Material
Turn on specified heat zone.
Hose Temperature
Park component A pump
Jog Mode Speed
Enter Jog Mode. See Jog Mode, page 60
Engine Coolant Temperature
Reset Cycle Counter
(press and hold)
Pressure
Select Recipe
Cycle Counter (press and
hold)
Search
Advisory.
See Errors, page 51 for more
information.
Move Cursor Left One Character
Move Cursor Right One Character
Deviation.
See Errors, page 51 for more
information
Toggle between upper-case, lower-case, and
numbers and special characters.
Alarm.
See Errors, page 51 for more
information
Cancel
Backspace
Clear
Troubleshoot Selected Error
Increase value
Decrease value
Next screen
Previous screen
Return to first screen
22
3A1705J
Component Identification
Motor Control Module (MCM)
MB
MA
6
7
3
9
2
1B
10
11
1A
MC
12
8
13
5
Motor Control Module
Figure 10
MA
Token and Rotary Switch Access Cover
MB
Module Status LEDs see Module Status
LEDs (CN) Conditions, page 20
Warning Label
MC
1A,
1B
2
CAN Communication Connections
7
8
Optional Accessory Connection: Feed
Pump Shut Down Kit
Pressure Transducer B (Blue) side
9
Pressure Transducer A (Red) side
10
11
Motor Brush Wear and Over-Temperature
Sensor Connection
Not used
12
MCM Power Input Connection
13
Motor Power Connection
MCM Rotary Switch Positions
5
Heat Exchanger Control Vave Output (to
load center)
Two-way Splitter to A and B Heat
Exchanger Temperature Sensors
Engine Coolant Temperature Sensor
6
Pump Cycle Switch
1=E-XP2i
3
3A1705J
0=E-30i
23
Component Identification
Engine Control Module
NOTICE
To prevent damage to the softkey buttons, do not
press buttons with sharp objects such as pens,
plastic cards, or fingernails.
Icon
Description
Function
On
Start Engine
Auto
Auto mode (not
used)
Off
Stop all system
processes. Is
not a safety or
emergency stop.
Scroll
Scroll through the
instruments or
recorded events
on the currently
displayed page
Page Select
Toggle between
the information
page and the error
log page
Error Lamp
Indicates error
is present on
generator
For more information about the engine control module,
see Appendix A: Engine Control Module, page 93.
Figure 11
Engine Control Module
24
3A1705J
Component Identification
Load Center
LED
Related
Component
Color
D1
Fuel Shutoff
Solenoid (FS)
Green
D2
Starter (ST)
Red
D3
D4
F3
Radiator Fan Fuse
F4
Load Center Power Fuse
K1
Fuel Relay
K2
Starter Relay
K3
Glow Plug Relay
K4
Radiator Fan Relay
MV
Manual Valve Switch
3A1705J
Glow Plugs
(GL)
Radiator Fan
(RF)
Green
Green
D10
A Coolant Valve
Red
D12
B Coolant Valve
Blue
D14
Bypass Coolant
Valve
Green
D23
Manual Valve
Switch (MV)
Red
ON-State
Description
Fuel shutoff
solenoid on the
engine is open.
Starter is
cranking.
Glow plugs are
heating.
Radiator fan is
on.
A-side (red)
coolant valve is
open.
B-side (blue)
coolant valve is
open.
Bypass coolant
valve is open.
Manual valve
switch is in the
ON position.
25
Component Identification
Temperature Control Modules
Located inside the Electrical Enclosure (DB).
High Power Temperature Control Module
(HPTCM) Cable Connections
Low Power Module (LPTCM) Cable
Connections
Only used with E-XP2i and E-30i models with booster
heat.
1
2
2
1
3
3
Figure 12
7
Figure 14
8
7
5
5
8
4
9
6
Figure 13
1
Not used
2
3
Fluid Temperature Sensor (FTS)
Connection
Output Power Connection
4
Contactor Control Connection
5
4
6
Figure 15
1
Over-Temperature Switch Connection
2
3
Booster Heat Temperature Sensor
Connection
Output Power Connection
Input Power Connection
4
Not used
6
CAN Communications Connections
5
Input Power Connection
7
Rotary Switch, Token Access
6
CAN Communications Connections
8
Module Status LEDs (see
Advanced Display Module (ADM), page 19,
(CN) for conditions
7
Rotary Switch, Token Access
8
Module Status LEDs (see
Advanced Display Module (ADM), page 19,
(CN) for conditions
Base
9
26
3A1705J
Component Identification
Adjust Rotary Switch
The rotary switch setting indicates which zone the
temperature control module will control in the system.
The HPTCM uses an 8-position rotary switch. The
LPTCM uses a 16-position rotary switch.
Set the rotary switch (S) to the specific selection
according to the settings listed in the following tables.
HPTCM A and B Rotary Switch Settings
Setting
Zone
0
Heated Hose
1
Not Used
2
Not Used
3
Not Used
4
Not Used
5
Not Used
6
Not Used
7
Not Used
S LPTCM A and B Rotary Switch Settings
HPTCM Rotary Switch Location
Figure 16
S
LPTCM Rotary Switch Location
Figure 17
3A1705J
Setting
Zone
0
Not Used
1
Not Used
2
Not Used
3
Not Used
4
Not Used
5
Not Used
6
Not Used
7
Not Used
8
Not Used
9
Not Used
A
Booster Heat A
B
Booster Heat B
C
Not Used
D
Not Used
E
Not Used
F
Not Used
27
Component Identification
Circuit Breakers
Ref.
Size
Component
CB01
30 A
High Power Temperature
Control Module (HPTCM)
CB02
20 A
Motor Control Module
(MCM)
CB03
5A
Two Motor Fans, Cabinet
Fan, Power Supply, and
Coolant Circulation Pump
CB04*
30 A
Auxiliary Power (Air
Compressor)
CB05*
10 A
Auxiliary Power
CB06*
20 A
Auxiliary Power
CB08
CB07
CB06
CB05
CB04
CB03
CT01
CB02
CB01
CB07
15 A
E-XP2i and E-30i With
Heat: Low Power
Temperature Control
Module (LPTCM) A
E-30i: Auxiliary
Circuit Breakers Inside Electrical Enclosure (DB)
Figure 18
CB08
15 A
E-30i: Auxiliary
Note
Not all wires are shown.
E-XP2i and E-30i With
Heat: Low Power
Temperature Control
Module (LPTCM) B
* See Circuit Breaker Configuration Options, page 29.
CB20
Circuit Breakers Inside Proportioner Cabinet
Figure 19
28
Ref.
Size
Component
CB20
50 A
Heated Hose
3A1705J
Component Identification
CB04 be substituted to accommodate larger loads
or a sub-panel. The total auxiliary equipment
loads added to the configuration must be limited
to the system’s available auxiliary current. See
Proportioner Models, page 9, for available auxiliary
current at 240V, 60Hz.
See the Reactor repair manual for optional circuit
breakers and their current ratings. Circuit breakers
used must meet UL489 specifications.
CB10
Auxiliary Wiring Diagram Options.
Circuit Breakers Inside Alternator Assembly
Figure 20
Ref.
Size
Component
CB10
90 A
120/240V Alternator
Circuit Breaker Configuration Options
The generator supplies power in a 3-wire,
single-phase, mid-point neutral wiring configuration.
For 240 VAC loads, wire the load across the output
terminals of the circuit breaker. For 120 VAC loads,
wire the load between the neutral terminal blocks
next to the three pole main power switch (CT01)
to one pole of the circuit breaker. See electrical
diagrams in Reactor repair manual.
Disable LPTCMs For Booster Heat
Both LPTCMs for booster heat must be disabled to
allow use of power for additional auxiliary power.
1. Follow Shutdown instructions. See
Shutdown, page 63.
Improper configuration can result in electric shock.
All changes from the recommended circuit breaker
configuration must meet all National, State,
and Local safety and electrical codes. Consult
a qualified electrician before attempting any
changes. See page 27 and 28 for correct circuit
breaker configuration.
The Electrical Enclosure (DB) circuit breaker
configuration described in the tables on the previous
page is the recommended configuration.
2. Refer to Disable Optional Booster Heater Wiring
Diagram in the Reactor repair manual.
To replace or repair a circuit breaker, use the
following steps:
1. Follow Shutdown instructions. See
Shutdown, page 63.
2. Refer to circuit breaker identification table and
electrical diagrams in Reactor repair manual.
Sub-Panel Options
3. Loosen four screws connecting wires and bus
bar to circuit breaker that will be replaced.
Disconnect wires.
Some customer changes are acceptable to
accommodate larger loads from auxiliary equipment
or a sub-panel. It is suggested that circuit breakers
4. Pull locking tab out 1/4 in. (6mm) and pull circuit
breaker away from the din rail. Install new circuit
breaker. Insert wires and tighten down all screws.
3A1705J
29
Overview
Overview
The system uses two coolant loops to use heat
released from the engine to heat the A and B
component material to the target temperatures
defined on the ADM (PD).
exchanger (HE), radiator (ER), and back to the
engine. Coolant in the proportioner coolant loop
(black) captures heat from the engine coolant loop
inside the heat exchanger (HE) near the radiator.
The engine coolant loop (gray) circulates heated
coolant from the engine (EE), through the heat
Engine Coolant Loop and Proportioner Coolant Loop
Figure 21
30
3A1705J
Overview
The proportioner coolant loop circulates coolant
through secondary heat exchangers (HE) located
on the back of the proportioner to heat the A
and B component material before the material is
pressurized in the proportioner pumps (PA, PB). After
the A and B material has been heated in the heat
exchangers, the material enters the fluid manifold
(FM) and heated hose.
For models with a booster heater, the A and B
material enters the booster heater after the material
is pressurized in the proportioning pumps to heat the
material higher than 140°F (60°C).
PA
FM
PB
HE
A and B Component Material Flow
Figure 22
3A1705J
31
Overview
Coolant only flows through the secondary heat
exchangers when the heat exchanger control valves
(VA, VB) are open and the A and B component
temperatures are below the target temperatures set
on the ADM. See Fig. 24.
When the control valves (VA, VB) close, the A
and B material has reached target temperature.
Coolant flows through the bypass control valve (VC),
circulation pump (CP), sight glass (SG), proportioner
coolant fill bottle (HF), and back to the heat exchanger
in the engine coolant loop. See Fig. 23
CP
CP
SG
VC
SG
HE
VB HE
VA
Proportioner Coolant Loop — A and B Valves Open
(heating material)
Figure 24
VC
HE
VB
HE
VA
Proportioner Coolant Loop — A and B Valves Closed
(not heating material)
Figure 23
32
3A1705J
Setup
Setup
d. Connect air line (A2) between proportioner
air inlet to air dryer outlet.
NOTICE
Proper system setup, startup, and shutdown
procedures are critical to electrical equipment
reliability. The following procedures ensure steady
voltage. Failure to follow these procedures will
cause voltage fluctuations that can damage
electrical equipment and void the warranty.
NOTICE
Do not remove or separate the proportioner, engine
assembly, or power distribution box from the pallet.
Failure to leave the component mounting intact will
cause heating efficiency degradation, and potential
unsafe wiring and grounding.
Locate Reactor
If system was not ordered with the air compressor,
go to step 2.
1. For systems with an air compressor, install the
air tank bracket assembly and connect air lines.
For systems without an air compressor, order air
compressor kit 24K335. See manual 3A1902 for
complete installation instructions.
NOTICE
Only use air compressors with a
continuous run head unloader. Repeated
compressor motor startups will cause
errors and shutdown the system. See
Technical Specifications, page 102 for
recommended air compressors and
requirements. Other models may be used, but
motor must not stop and start during operation.
a. Use at least two people to install the air
tank assembly (AT). Secure to frame with
supplied screws (AS) and nuts (AN). See
illustration on next page.
b. Remove u-bolt holding desiccant container
and add all desiccant pellets (shipped
separately). Replace u-bolt securely. See
manual 309921.
c.
Connect air line (A1) between compressor
and air tank inlet.
3A1705J
e. Connect pilot air lines (A3 and A4) between
the air compressor and air tank.
f.
Secure water drain lines (A5 and A6) to the
frame and drain outlets.
2. Install hose rack, if ordered. See manual 3A1903
for detailed instructions.
3. Locate Reactor on a level surface that is
nonporous and diesel resistant, such as diamond
plate. See Dimensions, page 96, for clearance
and mounting hole dimensions.
Note
Leave at least 1 ft. (0.3m) distance from
the engine side of the pallet to any wall
for engine maintenance access. See
Fig. 27, page 37.
4. Do not expose Reactor to rain or below 20°F
(-7°C).
NOTICE
To ensure the heat exchanger control valves
open and close properly, do not store Reactor
below 20°F (-7°C).
5. If a wall will be installed between the
proportioner and generator, remove
the fuel tank and battery bracket. See
Trailer Setup Guidelines, page 35 for instructions.
6. To mount in a trailer, use forklift to move Reactor
by inserting the forks through the Reactor pallet
frame. It is recommended to lift from the engine
side. Bolt pallet directly to trailer frame.
Note
Use Pallet Support Kit 24L911 (rollers not
included) to relocate pallet to mounting
location when forks are unavailable. See
kit manual for instructions.
NOTICE
Keep the vent holes in the bottom of the
proportioner cabinet open. Make sure there is
unobstructed incoming air for the cooling fan at the
top of the proportioner cabinet that blows air up into
the electric motor. Failure to provide unobstructed
incoming air can cause the motor to overheat.
33
Setup
A2
A4
A3
A1
AT
AN
A4
AS
A2
A6
A5
34
3A1705J
Setup
Trailer Setup Guidelines
2. Provide radiator exhaust for Reactor. Use a 400
in.2 (258,064 mm2) minimum louver.
3. Provide air duct to connect radiator exhaust to
louver.
Route exhaust system away from combustible
materials to prevent materials from igniting or gas
recirculation into a wall, ceiling, or a concealed
space. Provide exhaust system guards to prevent
burns.
NOTICE
4. Provide a 400 in.2 ( 258,064 mm2) minimum fresh
air intake louver near the generator.
5. Remove red exhaust cap.
6. Provide a minimum 2 in. (50.8 mm) diameter
engine exhaust outlet with flexible pipe element.
Provide rain cap, or equivalent routing, to prevent
moisture from entering the metal exhaust pipe.
Provide recommended size louvers. Failure to do
so can damage the engine and void the engine
warranty.
Exhaust pipes that pass through flammable ceilings
must be guarded by vented metal thimbles that
extend at least 9 in. (228.6 mm) below and above
the roof and are at least 6 in. (152.4 mm) in diameter
larger than the exhaust pipe.
Exhaust pipes that pass through flammable walls
must be guarded by either:
• Metal ventilated thimble at least 12 in. (305 mm)
larger than the diameter of the exhaust pipe.
• Metal or other approved fireproofing materials
that provides at least 8 in. (203 mm) of insulation
between the exhaust pipe and flammable material.
Exhaust pipes not covered above must have at least
9 in. (228.6 mm) of clearance from the outside of the
exhaust pipe to adjacent flammable materials.
Radiator Exhaust and Air Intake Louvers
Figure 25
1. Provide sufficient lighting to safely operate and
maintain system equipment.
3A1705J
35
Setup
Install Wall (optional)
Install a wall between the proportioner and generator
to:
• Temperature condition the trailer space where
chemical is stored. Check with chemical
manufacturer for chemical storage temperatures.
• Reduce noise for the operator while the Reactor
is running.
The supplied fuel lines and battery cable may need
to be replaced if a wall is installed between the
proportioner and generator. Purchase the Fuel Line
and Battery Cable Extension Kit 24K333.
1. If necessary drain coolant from system. See
Drain Coolant, page 69. Coolant lines do not
need to be disconnected to install a wall.
Note
Battery must be connected to starter to
drain coolant from system.
2. Remove screws and battery bracket from the
pallet.
3. Remove fuel tank from the pallet.
a. Remove the mounting screws, supports, and
spacers.
b. Disconnect inlet and outlet fuel lines from the
fuel tank.
c.
Use two people to lift fuel tank off of the pallet
and place where the fuel fill spout is easily
accessible.
Note
Do not mount fuel tank in front of
the generator air intake or where it
will limit opening and access to the
electrical enclosure (DB).
4. Install wall (IW) where the fuel tank was located.
Ensure there is at least 1.25 in. (31.75 mm)
between the wall, exhaust muffler, and MCM.
See Fig. 27, page 37.
Note
To prevent an air pocket from forming
inside the coolant lines between the
proportioner and generator, ensure
there is a constant rise in elevation if
the coolant lines are adjusted. Failure
to have a constant rise in elevation
will reduce heating efficiency. See
Fig. 28, page 37.
5. Reconnect inlet and outlet fuel lines.
6. Install spacers, supports, and screws through
the fuel tank and tighten to the floor. Torque to
40 ft-lbs (54 N•m).
7. Place battery bracket over fuel tank or near the
Reactor. Remove existing battery cables from
engine and replace with the cables provided from
the fuel line and battery cable extension kit.
8. Install mounting bolts through battery bracket and
tighten to the floor. Torque to 40 ft-lbs (54 N•m).
Note
Remove Battery Bracket and Fuel Tank
Figure 26
36
Pads under the battery bracket help
stabilize the fuel tank during operation.
3A1705J
Setup
Top View With Wall
Figure 27
Side View With Wall
Figure 28
3A1705J
37
Setup
Connect Battery
3. Cover battery terminals with plastic caps (PC)
attached to supplied battery cables.
4. Verify battery was connected properly by
Improper battery installation or maintenance
may result in electric shock, chemical burns,
or explosion. Battery maintenance must only
be performed or supervised by personnel
knowledgeable of batteries and the required
precautions. Keep unauthorized personnel away
from batteries.
See Technical Specifications, page 102 for battery
requirements and recommended battery size.
1. Secure battery (not supplied) to bracket with
strap.
PC
pressing OFF
on the engine control module
(PE) to “wake up” the controller screen. Do not
attempt to start the engine until all Setup steps
are complete. See Repair manual if engine
control module doesn’t light up.
Add Fuel
1. Remove fuel cap (FS) and fill fuel tank with no
more than 20 gallons (75 liters) of diesel fuel.
Replace cap. See Perkins engine manual for
approved diesel fuels.
2. Squeeze prime bulb (P) to prime engine. Press
the prime bulb repeatedly until fuel begins to
return to the fuel tank.
FS
Figure 29
2. Connect battery cable from the engine starter
(ST) and chassis to the battery. Connect the
black cable to battery negative (-) and the red
cable to battery positive (+).
NOTICE
Always connect the red battery cable to battery
positive (+) and the black battery cable to the
battery negative (-). Failure to properly connect
the battery cable to the battery will damage the
fusible link when the engine control module is
turned ON. Do not bypass the fusible link when
damaged. The fusible link prevents damage
to other system components. See the system
repair manual for repair instructions.
P
Figure 31
General Equipment Guidelines
Maintain and inspect the generator, air compressor,
and other equipment per the manufacturer
recommendations to avoid an unexpected shutdown.
Unexpected equipment shutdown will cause voltage
fluctuations that can damage electrical equipment.
Figure 30
38
3A1705J
Setup
Electrical Connections
PG
PF
Connect air compressor, breathing air, and auxiliary
power electrical connections to the specified circuit
breakers. See Circuit Breakers, page 28.
1. Remove one or more knock-outs on side
of electrical enclosure, as required, and
route wires through for air compressor,
breathing air, and auxiliary equipment. See
Circuit Breaker Configuration Options, page 29,
for more information.
PH
PJ
Connect Feed Pumps
Ref
Air Outlet
1. Install feed pumps (K) in component
A and B supply drums. See
Typical Installation, with circulation, page 13 and
Typical Installation, without circulation, page 14.
PF
A Pump
PG
B Pump
PH
Agitator
PJ
Gun
2. Seal component A drum and use desiccant dryer
(M) in vent.
3. Install agitator (L) in component B drum, if
necessary.
4. Connect supply hoses from feed pumps to the
component A and component B material inlets
on the system. Ensure A and B inlet valves are
closed.
Note
Agitator air supply (PH) includes a small
internal restriction orifice to limit the air
flow to minimize air compressor load.
Maximum supplied air flow is 2.0 scfm
(0.1 m3/min) at 100 psi (0.7 MPa, 7 bar).
Designed for use with Twistork agitator
224854. Do not use the agitator air outlet
(PH) for any other component.
Breathing Air
Note
Supply hoses from feed pumps should
be 3/4 in. (199 mm) ID.
5. Connect air lines to proportioner. Ensure
components are properly connected to correct
location.
3A1705J
Breathing the air from the compressed air supply
can cause serious injury if inhaled.
• Only use an independent and approved
breathing air system with adequate air flow to
provide clean breathable air.
39
Setup
Connect Pressure Relief Lines
coded: red for component A (ISO), blue for
component B (RES). Fittings are sized to prevent
connection errors.
Note
Do not operate Reactor without all covers and
shrouds in place.
1. Recommended: Connect high pressure
hose (R) to relief fittings (BA, BB) of both
PRESSURE RELIEF/SPRAY valves. Route
hose back to component A and B drums. See
Typical Installation, with circulation, page 13.
2. Alternately: Secure supplied bleed tubes (N)
in grounded, sealed waste containers (H). See
Typical Installation, without circulation, page 14.
Install Fluid Temperature Sensor
Manifold hose adapters (HA, HB) allow
use of 1/4 in. and 3/8 in. ID fluid hoses.
To use 1/2 in. (13 mm) ID fluid hoses,
remove adapters from fluid manifold and
install as needed to connect whip hose.
FM
HA
A
HB
SC
B
C
V
The Fluid Temperature Sensor (FTS) is supplied.
Install FTS between main hose and whip hose. See
Heated Hose manual for instructions.
Figure 32
Connect Heated Hose
See Heated Hose manual for detailed instructions on
connecting heated hoses.
Note
The FTS (C) and whip hose (D) must be used
with heated hose. Hose length, including
whip hose, must be 60 ft (18.3 m) minimum.
NOTICE
4. Connect cables (C). Connect electrical
connectors (V). Be sure cables have slack
when hose bends. Wrap cable and electrical
connections with electrical tape.
5. Connect quick-disconnect pin fitting to 4 ft air
hose, shipped loose. Connect other hose end to
the gun air hose in the heated hose bundle. Push
pin fitting into the lowest air panel outlet (PJ).
Apply grease on all system and hose fluid fittings.
This lubricates the threads and prevents material
from hardening on the threads.
1. Turn main power switch OFF
.
2. Assemble heated hose sections, FTS, and whip
hose.
3. Connect A and B hoses to A and B outlets on
Reactor fluid manifold (FM). Hoses are color
40
Figure 33
3A1705J
Setup
Close gun fluid manifold valves A and
B
or vehicle chassis or, if stationary, to true earth
ground. Remove bolt and braided cable from
pallet. Install grounding cable terminated with a
ring terminal (cable and terminal not supplied)
under braided cable. Reinstall bolt and torque
to minimum 25 ft-lbs (34 N∙m). An alternate
grounding location is to the ground bar (CB02) in
the electrical enclosure. Follow all National, State,
and Local safety and fire codes.
Connect Whip Hose to Gun Or Gun
Fluid Manifold
See hose manual for proper connections.
Pressure Check Hose
See hose manual. Pressure check for leaks. If
no leaks, wrap hose and electrical connections to
protect from damage.
Connect Remote Display Module
See Remote Display Module kit manual for
installation instructions.
Grounding
• Spray gun: connect whip hose ground wire to FTS.
See Install Fluid Temperature Sensor, page 40.
Do not disconnect ground wire or spray without
whip hose.
• Fluid supply containers: follow your local code.
• Object being sprayed: follow your local code.
The equipment must be grounded to reduce the
risk of static sparking and electric shock. Electric
or static sparking can cause fumes to ignite or
explode. Improper grounding can cause electric
shock. Grounding provides an escape wire for the
electric current.
• Reactor System: System must be grounded with
an appropriately sized conductor to the trailer
3A1705J
• Solvent pails used when flushing: follow your local
code. Use only metal pails, which are conductive,
placed on a grounded surface. Do not place pail
on a nonconductive surface, such as paper or
cardboard, which interrupts grounding continuity.
• To maintain grounding continuity when flushing or
relieving pressure, hold a metal part of spray gun
firmly to the side of a grounded metal pail, then
trigger gun.
41
Setup
Supply Wet Cups With Throat Seal
Liquid (TSL)
• Component B (Resin) Pump: Check felt washers
in packing nut/wet-cup (S) daily. Keep saturated
with Graco Throat Seal Liquid (TSL), Part No.
206995, to prevent material from hardening on
displacement rod. Replace felt washers when worn
or contaminated with hardened material.
Pump rod and connecting rod move during
operation. Moving parts can cause serious injury
such as pinching or amputation. Keep hands and
fingers away from wet-cup during operation.
To prevent the pump from moving, turn the main
power switch OFF.
• Component A (ISO) Pump: Keep reservoir (R) filled
with Graco Throat Seal Liquid (TSL), Part 206995.
Wet-cup piston circulates TSL through wet-cup, to
carry away isocyanate film on displacement rod.
S
Component B Pump
Figure 35
R
Component A Pump
Figure 34
42
3A1705J
Advanced Display Module (ADM) Operation
Advanced Display Module (ADM) Operation
When main power is turned on by turning the main
power switch (MP) to the ON position, the splash
screen will be displayed until communication and
initialization is complete.
Perform the following tasks to fully setup your system.
1. Select pressure for the Pressure Imbalance
Alarm to activate. See System Screen , page 47.
2. Enter, enable, or disable recipes. See
Recipes Screen, page 47.
Then the power key icon screen will display until the
is pressed for the
ADM power on/off button (A)
first time after system power-up.
To begin using the ADM, the machine must be active.
To verify the machine is active, verify that the System
Status Indicator Light (B) is illuminated green, see
Advanced Display Module (ADM), page 19. If the
System Status Indicator Light is not green, press
the ADM Power On/Off (A) button
. The System
Status Indicator Light will illuminate yellow if the
machine is disabled.
3. Set general system settings. See
Advanced Screen 1 — General, page 46.
4. Set units of measure. See
Advanced Screen 2 — Units, page 46.
5. Set USB settings. See
Advanced Screen 3— USB, page 46.
6. Set target temperatures and pressure. See
Targets, page 50.
7. Set component A and component B supply
levels. See Maintenance, page 51.
8. Ensure engine is at operating temperature on the
home screen.
3A1705J
43
Advanced Display Module (ADM) Operation
Setup Mode
The ADM will start in the Run screens at the Home screen. From the Run screens, press
to
access the Setup screens. The system defaults with no password, entered as 0000. Enter the
current password then press
. Press
Setup Screens Navigation Diagram, page 45.
to navigate through the Setup Mode screens. See
Set Password
Set a password to allow Setup screen access, see Advanced Screen 1 – General, page 46. Enter any number
from 0001 to 9999. To remove the password, enter the current password in the Advanced Screen – General
screen and change the password to 0000.
From the Setup screens, press
44
to return to the Run screens.
3A1705J
Advanced Display Module (ADM) Operation
Setup Screens Navigation Diagram
Figure 36
3A1705J
45
Advanced Display Module (ADM) Operation
Advanced Setup Screens
Advanced setup screens enable users to set units, adjust values, set formats, and view software information
for each component. Press
Advanced setup screen, press
to scroll through the Advanced setup screens, Once in the desired
to access the fields and make changes. When changes are complete press
to exit edit mode.
Note
Users must be out of edit mode to scroll
through the Advanced setup screens.
Advanced Screen 1 — General
Advanced Screen 3 — USB
Use this screen to disable USB downloads/uploads,
disable USB log errors, enter the maximum number
of days to download data, and how frequently USB
logs are recorded. See USB Data, page 89.
Use this screen to set the language, date format,
current date, time, setup screens password (0000 –
for none) or (0001 to 9999), screen saver delay, and
enable or disable silent mode.
Advanced Screen 2 — Units
Use this screen to set the temperature units, pressure
units, volume units, and cycle units (pump cycles or
volume).
46
Advanced Screen 4— Software
This screen displays the software part number and
software version for the Advanced Display Module,
Motor Control Module, High Power Temperature
Control Module, Low Power Temperature Control
Modules, and USB Configuration.
3A1705J
Advanced Display Module (ADM) Operation
System
Add Recipe
Use this screen to set the activation pressure for the
Pressure Imbalance Alarm and Advisory, enable or
disable diagnostic screens, enable drum alarms, set
the maximum drum volume, enable drum alarms,
and set low material alarm level.
1. Press
Recipes
Use this screen to add recipes, view saved recipes,
and enable or disable saved recipes. Enabled
recipes can be selected at the Home Run Screen. 24
recipes can displayed on the three recipe screens.
recipe field. Press
to select a
to enter a recipe name
(maximum 16 characters). Press
old recipe name.
2. Use
to clear the
to highlight the next field and use the
number pad to enter a value. Press
to save.
Enable or Disable Recipes
and then use
to select the
1. Press
recipe that needs to be enabled or disabled.
2. Use
Press
3A1705J
and then use
to highlight the enabled check box.
to enable or disable the recipe.
47
Advanced Display Module (ADM) Operation
Run Mode
The ADM will start in the Run screens at the “Home” screen. Press
screens. See Run Screens Navigation Diagram, page 44.
to navigate through the Run Mode
From the Run screens, press
to access the Setup screens.
48
3A1705J
Advanced Display Module (ADM) Operation
Run Screens Navigation Diagram
Figure 37
3A1705J
49
Advanced Display Module (ADM) Operation
Home — System Off
Home — System With Error
This is the home screen when the system is off.
This screen displays actual temperatures, actual
pressures at the fluid manifold, jog speed, coolant
temperature, and number of cycles.
Active errors are shown in the status bar. The error
code, alarm bell, and description of the error will
scroll in the status bar.
1. Press
to acknowledge the error.
2. See for corrective action.
Targets
Use this screen to define the setpoints for the
A Component Temperature, B Component
Temperature, heated hose temperature, and
pressure.
Home — System Active
When the system is active, the home screen displays
actual temperature for heat zones, actual pressures
at the fluid manifold, coolant temperature, jog speed,
the number of cycles, along with all associated
control soft keys.
Use this screen to turn on heat zones, view
coolant temperature, start the proportioner, stop the
proportioner, park the component A pump, enter jog
mode, and clear cycles.
50
Maximum A and B temperature for systems without
booster heat: 140°F (60°C)
Maximum A and B temperature for systems with
booster heat: 180°F (82°C)
Maximum heated hose temperature: 10°F (5°C)
above the highest A or B temperature setpoint or
180°F (82°C).
Note
If the remote display module kit is used,
these setpoints can be modified at the gun.
3A1705J
Advanced Display Module (ADM) Operation
Maintenance
Events
Use this screen to view daily and lifetime cycles or
gallons that have been pumped and gallons or liters
remaining in the drums.
This screen shows the date, time, event code, and
description of all events that have occurred on
the system. There are 10 pages, each holding 10
events. The 100 most recent events are shown. See
System Events
for event code descriptions.
See Error Codes and Troubleshooting, page 74 for
error code descriptions.
The lifetime value is the number of pump cycles or
gallons since the first time the ADM was turned on.
The daily value automatically resets at midnight.
The manual value is the counter that can be manually
reset. Press
and hold to reset manual counter.
All events and errors listed on this screen can be
downloaded on a USB flash drive. To download logs,
see Download Procedure, page 91.
Cycles
This screen shows daily cycles and gallons that have
been sprayed for the day.
All information listed on this screen can be
downloaded on a USB flash drive.
Errors
This screen shows the date, time, error code, and
description of all errors that have occurred on the
system.
All errors listed on this screen can be downloaded on
a USB flash drive.
3A1705J
51
Advanced Display Module (ADM) Operation
Diagnostic
Use this screen to view information for all system
components.
• Booster B Chemical
• Booster A PCB — temperature control module
temperature
• Booster B PCB — temperature control module
temperature
• Hose PCB — temperature control module
temperature
• Coolant Outlet
Amps
• Booster A Current
• Booster B Current
• Hose Current
Volts
• MCM Bus
• Incoming Hose Voltage (240V)
The following information is displayed:
Temperature
• Hx A Chem: Heat Exchanger A Chemical
• Hx B Chem: Heat Exchanger B Chemical
• Hose Chemical
• Booster A Chemical
52
Pressure
• Pressure A — chemical
• Pressure B — chemical
Cycles
• CPM — cycles per minute
• Total Cycles
3A1705J
Advanced Display Module (ADM) Operation
Troubleshooting
Recipes
This screen displays the last ten errors that
occurred on the system. Use the up and down
Use this screen to select an enabled recipe. Use the
up and down arrows to highlight a recipe and press
arrows to select an errors and press
to view
troubleshooting information for the selected error.
to load. The currently loaded recipe is outlined
by a green box.
Press
to access troubleshooting screen for an
error code that is not listed on this screen. See
Error Codes and Troubleshooting, page 74, for more
information on error codes.
3A1705J
Note
This screen will not display if there are not
any enabled recipes. To enable or disable
recipes, see Recipes Setup Screen, page 47.
53
Advanced Display Module (ADM) Operation
System Events
Use the table below to find a description for all system events. All events are logged in the USB log files.
Description
Event Code
54
E
A
C
X
Recipe Selected
E
A
D
A
Heat On A
E
A
D
B
Heat On B
E
A
D
H
E
A
P
X
Heat On Hose
Pump On
E
A
R
X
Jog On
E
A
U
X
E
B
0
X
USB Drive Inserted
ADM Red Stop Button Pressed
E
B
D
A
Heat Off A
E
B
D
B
Heat Off B
E
B
D
H
E
B
P
X
Heat Off Hose
Pump Off
E
B
R
X
Jog Off
E
B
U
X
E
C
0
X
USB Drive Removed
Setup Value Changed
E
C
D
A
A Temperature Setpoint Changed
E
C
D
B
B Temperature Setpoint Changed
E
C
D
H
Hose Temperature Setpoint Changed
E
C
D
P
Pressure Setpoint Changed
E
C
D
X
Recipe Changed
E
L
0
X
System Power On
E
M
0
X
System Power Off
E
P
0
X
Pump Parked
E
Q
U
1
System Settings Downloaded
E
Q
U
2
System Settings Uploaded
E
Q
U
3
Custom Language Downloaded
E
Q
U
4
Custom Language Uploaded
E
Q
U
5
Logs Downloaded
E
R
0
X
User Counter Reset
E
V
U
X
USB Disabled
3A1705J
Startup
Startup
To prevent serious injury, only operate Reactor
with all covers and shrouds in place.
6. Start the generator.
NOTICE
Proper system setup, startup, and shutdown
procedures are critical to electrical equipment
reliability. The following procedures ensure steady
voltage. Failure to follow these procedures will
cause voltage fluctuations that can damage
electrical equipment and void the warranty.
Note
1. Check generator fuel level.
Running out of fuel will cause voltage fluctuations
that can damage electrical equipment.
2. Check coolant levels.
Inspect the level of coolant inside the engine
coolant expansion bottle (EB) and heat
exchanger coolant expansion bottle (HB).
HO
T
CO
LD
twice on the engine
Press start button
control module. The controller will automatically
sequence glow plug warming and crank
operations. Allow engine to reach full operating
speed.
Engine will not start if main power switch
is in the on position.
Note
If the engine control module screen
does not light up after the start button is
pressed, see the system repair manual.
7. Turn main power switch ON.
T
HO
LD
CO
3. Check fluid inlet screens.
When the system is powered up by turning the
main power switch (MP) to the ON position, the
splash screen will display until communication
and initialization is complete.
Before daily startup, ensure that the
fluid inlet screens are clean. See
Flush Inlet Strainer Screen, page 67
4. Check ISO lubrication reservoir.
Check level and condition of ISO lube daily. See
Pump Lubrication System, page 68.
5. Confirm main power switch is OFF before starting
generator.
3A1705J
55
Startup
8. Check coolant color.
Use a flashlight to inspect the color of the coolant
through sight glass (SG). The mesh filter should
be visible inside the sight glass and the coolant
should be green. If there are a lot of air bubbles,
then the coolant level may be low. If the coolant
is a milky color, then that indicates A or B material
has likely leaked inside a heat exchanger and
that the coolant needs to be drained.
c.
Open the desiccant dryer inlet valve (CL),
water drain valve (CM), and the main air
shutoff valve (CK).
10. During initial startup, ensure all three air
regulators are turned fully counterclockwise.
• To add more coolant, see
Refill Proportioner Coolant Loop, page 70 and
Refill Engine Coolant Loop, page 72.
• To drain the coolant system, see
Drain Coolant, page 69.
9. Switch on the air compressor, air dryer, breathing
air, and other accessories.
Complete the following steps for systems with a
supplied air compressor.
a. Before startup, close the main air shutoff
valve (CK), desiccant air dryer inlet valve
(CL), and water drain valve (CM) whenever
the pressure in the air supply tank has been
relieved.
11. Open the main air shutoff valve.
12. Slowly increase the air pressure regulator
settings.
13. Load fluid with feed pumps.
a. Check that all Setup steps are complete.
See Setup, page 33.
Main Air Shutoff Valve (CK)
b. If an agitator is used, open the agitator’s air
inlet valve.
c.
If you need to circulate fluid through the
system to preheat the drum supply, see
Circulation Through Reactor, page 59If
you need to circulate material through
the heat hose to the gun manifold, see
Circulation Through Gun Manifold, page 60.
d. Turn both PRESSURE RELIEF/SPRAY
valves (SA, SB) to SPRAY
.
GA
SA
b. Press start on the air compressor power box
(CB). Wait until the pressure gauge (CJ) on
the air supply tank reaches 30 psi.
56
GB
SB
e. Adjust A and B feed pump air regulators to
desired air pressure, on front of proportioner,
to start the feed pumps. Do not exceed 130
psi (0.2 MPa, 2 bar) to the A and B feed
pumps.
3A1705J
Startup
f.
Open fluid inlet valves (FV). Check for leaks.
This equipment is used with heated fluid which
can cause equipment surfaces to become very
hot. To avoid severe burns:
• Do not touch hot fluid or equipment.
• Do not turn on hose heat without fluid in
hoses.
Do not mix components A and B during
startup. Always provide two grounded
waste containers to keep component A
and component B fluids separate.
g. Hold gun fluid manifold over two grounded
waste containers. Open fluid valves A and B
until clean, air-free fluid comes from valves.
Close valves.
The Fusion AP gun manifold is shown.
14. Setup ADM. Advanced Display Module (ADM)
Operation, page 43.
15. Press
• Allow equipment to cool completely before
touching it.
• Wear gloves if fluid temperature exceeds
110°F (43°C).
Thermal expansion can cause
overpressurization, resulting in equipment
rupture and serious injury, including fluid
injection. Do not pressurize system when
preheating hose.
16. Wait for the engine to reach operating
temperature and the hose to reach setpoint
temperature. The engine has reached operating
temperature when the black arrow is under the
green area of the temperature bar. The radiator
fan will turn on when operating temperature is
reached.
to turn on hose heat zone.
17. Wait for the hose to reach set point temperature
or a hose overpressure condition may occur due
to thermal expansion.
18. Press
3A1705J
to turn on A and B heat zones.
57
Temporary Manual Hose Temperature Control
Temporary Manual Hose
Temperature Control
2. Insert the RTD sensor probe between the two
hoses where the scuff guard ends.
If T6DH error code appears from a break in the
hose RTD cable or FTS sensor, follow the steps for
temporary manual hose temperature control. Repair
or replace the hose RTD cable or FTS as soon as
job is finished.
1. Connect the spare RTD (15V837), shipped with
the system, to the Fluid Temperature Sensor
(FTS) cables (SC) at the Reactor Fluid Manifold
(FM).
3. Lower the hose temperature setpoint on the
system ADM screen by (20°F (-6°C). Push probe
into the hose bundle at least 3 in. (76 mm).
4. Do not leave the RTD tip probe exposed to air or
a hose overtemperature condition may occur.
NOTICE
To prevent overheating material and damaging
the hoses, do not leave the spare RTD between
the two hoses after the job is complete.
5. Repair or replace the hose RTD cable or FTS as
soon as the job is finished.
A
SC
B
15V837
58
3A1705J
Fluid Circulation
Fluid Circulation
Circulation Through Reactor
NOTICE
3. Set PRESSURE RELIEF/SPRAY valves (SA,
SB) to PRESSURE RELIEF/CIRCULATION
GA
Do not circulate fluid containing a blowing agent
without consulting with your material supplier
regarding fluid temperature limits.
.
GB
SA
SB
To circulate through gun manifold and preheat hose,
see Circulation Through Gun Manifold, page 60.
1. Follow Startup, page 55.
4. Set temperature targets. See Targets, page 50.
To avoid injection injury and splashing, do not
install shutoffs downstream of the PRESSURE
RELIEF/SPRAY valve outlets (BA, BB). The
valves function as overpressure relief valves
when set to SPRAY
. Lines must be
open so valves can automatically relieve
pressure when machine is operating.
2. See Typical Installation, with circulation, page 13.
Route circulation lines back to respective
component A or B supply drum. Use
hoses rated at the maximum working
pressure of this equipment. See
Technical Specifications, page 102.
5. Press
to circulate fluid in jog mode until
A and B temperatures reach targets. See
Jog Mode, page 60 for more information about
jog mode.
6. Press
to turn on the hose heat zone.
7. Turn on the A and B heat zones. Wait until the
fluid inlet valve temperature gauges (FV) reach
the minimum chemical temperature from the
supply drums.
8. Exit jog mode.
9. Set PRESSURE RELIEF/SPRAY valves (SA,
SB) to SPRAY
GA
SA
3A1705J
.
GB
SB
59
Jog Mode
Circulation Through Gun Manifold
3. Follow procedures from Startup, page 55.
NOTICE
Do not circulate fluid containing a blowing agent
without consulting with your material supplier
regarding fluid temperature limits.
Circulating fluid through the gun manifold allows
rapid preheating of the hose.
1. Install gun fluid manifold (P) on accessory
circulation kit (CK). Connect high pressure
circulation lines (R) to circulation manifold.
4. Turn main power switch on
.
5. Set temperature targets. See Targets, page 50.
to circulate fluid in jog mode until
6. Press
A and B temperatures reach targets. See
Jog Mode, page 60 for more information about
jog mode.
Jog Mode
Jog mode has two purposes:
• It can speed fluid heating during circulation.
P
• It can ease system flushing and priming.
CK
1. Turn main power switch on
2. Press circulate
R
to enter jog mode.
3. Press up or down
(J1 through J20).
The Fusion AP gun manifold is shown.
CK
Gun
Manual
246362
Fusion AP
309818
256566
Fusion CS
313058
2. Route circulation lines back to respective
component A or B supply drum. Use
hoses rated at the maximum working
pressure of this equipment. See
Technical Specifications, page 102.
60
.
to change jog speed
Note
Jog speeds correlate to 3-30% of motor
power, but will not operate over 700 psi
(4.9 MPa, 49 bar) for either A or B.
4. Press
5.
to start motor.
To stop the motor and exit jog mode press
or
.
3A1705J
Spraying
Spraying
4. Adjust the gun air regulator on the proportioner
control panel to desired gun air pressure. Do not
exceed 130 psi (0.2 MPa, 2 bar).
The Fusion AP gun is shown.
1. Engage gun piston safety lock.
5. Set PRESSURE RELIEF/SPRAY valves (SA,
SB) to SPRAY
.
GB
GA
SB
SA
2. Close gun fluid inlet valves A and B.
6. Check that heat zones are on and temperatures
are on target, see Home screen, page 50
7. Verify that the engine temperature is at least up
to the minimum operation temperature range.
The fan will start running when the engine has
reached maximum temperature.
8. Press
3. Attach gun fluid manifold. Connect gun air line.
Open air line valve.
to start motor and pumps.
9. Check fluid pressure and adjust as necessary.
10. Check fluid pressure gauges (GA, GB) to
ensure proper pressure balance. If imbalanced,
reduce pressure of higher component by
slightly turning PRESSURE RELIEF/SPRAY
valve for that component toward PRESSURE
RELIEF/CIRCULATION
balanced pressures.
GA
SA
until gauges show
GB
SB
11. Instructions continue on next page.
3A1705J
61
Spraying
12. Open gun fluid inlet valves A and B.
15. Equipment is ready to spray.
Spray Adjustments
Flow rate, atomization, and amount of overspray are
affected by four variables.
Note
On impingement guns, never open
fluid manifold valves or trigger gun if
pressures are imbalanced.
13. Disengage gun piston safety lock.
• Fluid pressure setting. Too little pressure results
in an uneven pattern, coarse droplet size, low
flow, and poor mixing. Too much pressure results
in excessive overspray, high flow rates, difficult
control, and excessive wear.
• Fluid temperature. Similar effects to fluid pressure
setting. The A and B temperatures can be offset to
help balance the fluid pressure.
• Mix chamber size. Choice of mix chamber is based
on desired flow rate and fluid viscosity.
14. Test spray onto cardboard. Adjust pressure and
temperature to get desired results.
62
• Clean-off air adjustment. Too little clean-off air
results in droplets building up on the front of the
nozzle, and no pattern containment to control
overspray. Too much clean-off air results in
air-assisted atomization and excessive overspray.
3A1705J
Shutdown
Shutdown
NOTICE
8. Turn main power switch OFF.
Proper system setup, startup, and shutdown
procedures are critical to electrical equipment
reliability. The following procedures ensure steady
voltage. Failure to follow these procedures will
cause voltage fluctuations that can damage
electrical equipment and void the warranty.
1. Press
to stop the pumps.
2. Turn off heat zones.
3. Relieve pressure. See
Pressure Relief Procedure, page 64.
4. Press
to park the Component A Pump.
5. Press
to deactivate the system.
6. Turn off the air compressor, air dryer, and
breathing air.
7. Close the main air shutoff valve.
To prevent electric shock do not remove any
shrouds or open the electrical enclosure door.
240 V is still present in the system until the
engine has stopped.
9. Allow engine dwell time.
NOTICE
Allow engine dwell time, per manufacturer
recommendations, prior to shutdown. Dwell
time will help engine cool down after running at
operating temperature for any period of time.
10. Press
on the engine control module.
11. Open air compressor bleed valve to relieve
pressure and remove water from tank.
12. Close all fluid supply valves.
3A1705J
63
Pressure Relief Procedure
Pressure Relief Procedure
4. Route fluid to waste containers or supply tanks.
Turn PRESSURE RELIEF/SPRAY valves (SA,
SB) to PRESSURE RELIEF/CIRCULATION
This equipment stays pressurized until pressure
is manually relieved. To help prevent serious
injury from pressurized fluid, such as skin injection,
splashing fluid and moving parts, follow the
Pressure Relief Procedure when you stop spraying
and before cleaning, checking, or servicing
equipment.
. Ensure gauges drop to 0.
GA
GB
SA
SB
The Fusion AP gun is shown.
1. Relieve pressure in gun and perform gun
shutdown procedure. See gun manual.
5. Engage gun piston safety lock.
2. Close gun fluid inlet valves A and B.
6. Disconnect gun air line and remove gun fluid
manifold.
3. Shut off feed pumps and agitator, if used.
64
3A1705J
Flushing
Flushing
• To flush feed hoses, pumps, and heaters
separately from heated hoses, set PRESSURE
RELIEF/SPRAY valves (SA, SB) to PRESSURE
To prevent fire and explosion, flush equipment only
in a well-ventilated area. Do not spray flammable
fluids. Do not turn on heaters while flushing with
flammable solvents.
. Flush through bleed
RELIEF/CIRCULATION
lines (N).
GA
SA
GB
SB
• Flush out old fluid with new fluid, or flush out old
fluid with a compatible solvent before introducing
new fluid.
• Use the lowest possible pressure when flushing.
• All wetted parts are compatible with common
solvents. Use only moisture-free solvents.
• To flush entire system, circulate through gun fluid
manifold (with manifold removed from gun).
• To prevent moisture from reacting with isocyanate,
always leave the system filled with a moisture-free
plasticizer or oil. Do not use water. Never
leave the system dry. See Important TwoComponent Material Information, page 7.
3A1705J
65
Maintenance
Maintenance
ISO Lubricant Level
Prior to performing any maintenance procedures,
follow Pressure Relief Procedure, page 64.
Preventative Maintenance Schedule
The operating conditions of your particular system
determine how often maintenance is required.
Establish a preventive maintenance schedule by
recording when and what kind of maintenance is
needed, and then determine a regular schedule for
checking your system.
Proportioner Maintenance
Wet Cup
Check the wet cup daily. Keep it 2/3 full with Graco
Throat Seal Liquid (TSL®) or compatible solvent. Do
not overtighten packing nut/wet cup.
Fluid Inlet Strainer Screens
Inspect fluid inlet strainer screens daily, see
Flush Inlet Strainer Screen, page 67.
Coolant Filter
Inspect ISO lubricant level and condition
daily. Refill or replace as needed. See
Pump Lubrication System, page 68.
Wiring Connections
Tighten all screw-type wiring connections in the
Electrical Enclosure (DB), Reactor cabinet, and air
compressor control box (if supplied) monthly.
Compressor Tank Water Drain
Open the manual water drain valve weekly. See
valve location on page 34. Open only when air
pressure is less than 25 psi.
Dust Protection
Use clean, dry, oil-free compressed air to prevent
dust buildup on control modules, control boards,
fans, and motor (under shield).
Coolant Levels
Check coolant level inside both overflow tanks daily.
Flush and refill the coolant on both the engine and
heat exchanger coolant loop once a year. See
Refill Proportioner Coolant Loop, page 70. See
Refill Engine Coolant Loop, page 72.
Inspect filter in coolant sight glass with a flashlight,
as a back light, weekly. Replace filter semi-annually.
See Repair manual.
Grease Circulation Valves
Grease circulation valves (SA, SB) with Fusion
grease (117773) weekly.
66
3A1705J
Maintenance
Engine Maintenance
Note
The engine instructions that accompany your
unit detail specific procedures for maintenance of
the engine. Following the engine manufacturer’s
recommendations will extend engine work life.
Clean the A-side screen only during
daily startup. This minimizes moisture
contamination by immediately flushing
out any isocyanate residue at the start of
dispensing operations.
Daily
• Cooling System Coolant Level — Check
• Engine Air Cleaner Service Indicator — Inspect
• Engine Oil Level — Check
Every 500 Service Hours or 1 Year
• Engine Air Cleaner Element (Dual Element) —
Clean/Replace
• Engine Oil and Filter — Change
• Fuel System Filter — Replace
• Battery Voltage — Check. See
Appendix A: Engine Control Module, page 93.
Contact an Authorized Perkins Dealer or Distributor
for replacement filter elements. Refer to Perkins
engine part number GN66141N for compatible parts.
Fuel Tank
1. Close the fluid inlet valve at the pump inlet and
shut off the appropriate feed pump. This prevents
material from being pumped while cleaning the
screen.
2. Place a container under the strainer base to catch
drain off when removing the strainer plug (C).
3. Remove the screen (A) from the strainer
manifold. Thoroughly flush the screen with
compatible solvent and shake it dry. Inspect the
screen. No more than 25% of the mesh should
be restricted. If more than 25% of the mesh is
blocked, replace the screen. Inspect the gasket
(B) and replace as required.
4. Ensure the pipe plug (D) is screwed into the
strainer plug (C). Install the strainer plug with the
screen (A) and gasket (B) in place and tighten.
Do not overtighten. Let the gasket make the seal.
5. Open the fluid inlet valve, ensure that there are
no leaks, and wipe the equipment clean. Proceed
with operation.
Fuel quality is critical to the performance and to the
service life of the engine. Water in the fuel tank
can cause excessive wear to the fuel system. See
the supplied Perkins engine manual for fuel tank
maintenance recommendations.
Flush Inlet Strainer Screen
A
B
C
D
The inlet strainers filter out particles that can plug the
pump inlet check valves. Inspect the screens daily as
part of the startup routine, and clean as required.
Figure 38
Isocyanate can crystallize from moisture
contamination or from freezing. If the chemicals used
are clean and proper storage, transfer, and operating
procedures are followed, there should be minimal
contamination of the A-side screen.
3A1705J
67
Maintenance
Pump Lubrication System
4. When the reservoir is flushed clean, fill with fresh
lubricant.
Check the condition of the ISO pump lubricant daily.
Change the lubricant if it becomes a gel, its color
darkens, or it becomes diluted with isocyanate.
5. Thread the reservoir onto the cap assembly and
place it in the bracket.
Gel formation is due to moisture absorption by the
pump lubricant. The interval between changes
depends on the environment in which the equipment
is operating. The pump lubrication system minimizes
exposure to moisture, but some contamination is still
possible.
6. The lubrication system is ready for operation. No
priming is required.
Lubricant discoloration is due to continual seepage of
small amounts of isocyanate past the pump packings
during operation. If the packings are operating
properly, lubricant replacement due to discoloration
should not be necessary more often than every 3 or
4 weeks.
To change pump lubricant:
1. Follow Pressure Relief Procedure, page 64.
2. Lift the lubricant reservoir (R) out of the bracket
and remove the container from the cap. Holding
the cap over a suitable container, remove the
check valve and allow the lubricant to drain.
Reattach the check valve to the inlet hose.
3. Drain the reservoir and flush it with clean
lubricant.
68
R
Pump Lubrication System
Figure 39
3A1705J
Maintenance
Drain Coolant
b. Place the other end of the drain tube in a
waste container. Open the drain valve. Drain
coolant until coolant is no longer visible in
the sight glass.
To avoid burns, do not perform maintenance on
the coolant system until the coolant system has
reached ambient temperature.
Drain coolant from the engine and proportioner
coolant loops once a year or if the coolant lines need
to be disconnected, in order to install a wall between
the generator and proportioner.
1. Perform Shutdown, page 63.
2. Remove the cabinet door from the front of the
proportioner.
3. Turn on manual valve switch (MV), located on
the load center (LC), to manually open the A
and B heat exchanger control valves and bypass
control valve.
Note
Proportioner Coolant Loop Drain Valve
Figure 41
c.
To refill coolant loop, see
Refill Proportioner Coolant Loop, page 70.
5. To drain proportioner coolant loop from filter
housing. Only available on Series B systems.
a. Remove the proportioner coolant loop fill
bottle cap (HF).
The battery must be connected to
operate valves. The load center (LC)
LEDs will stay on when the manual valve
switch (MV) is in the ON position.
LC
HF
MV
H
T
Figure 40
LED Component
LED Color
Manual valve switch (MV)
Red
A Side Control Valve
Red
B Side Control Valve
Blue
Bypass Valve
Green
4. To drain proportioner coolant loop:
a. Remove the proportioner coolant loop fill
bottle (HF) cap.
3A1705J
D
Filter Housing Drain Valve (D)
Figure 42
b. Place the other end of the filter housing drain
tube (T) in a waste container. Open the drain
valve (D).
c.
To refill coolant loop, see
Refill Engine Coolant Loop, page 72.
69
Maintenance
6. To drain engine coolant loop:
a. Remove the engine coolant loop (RC) cap.
b. Remove engine guards as shown. Let the
guards rest on the engine to access the drain
valve.
Only use coolant solutions that are compatible with
the system. See Coolant Specifications, page 72.
1. Before refilling coolant loop, perform steps 1–3
from Drain Coolant, page 69. Drain coolant loop
if necessary.
NOTICE
Do not refill with drained coolant. Use only
fresh, new coolant to avoid contaminants.
NOTICE
Do not use any “stop leak” additives to prevent
plugged filters and small orifices.
NOTICE
Do not interchange the two caps between
the radiator and coolant bottle. The caps
have different pressure ratings that affect the
overflow.
Engine Coolant Loop Drain Valve
Figure 43
c.
Place a waste container under the drain
valve. Open the drain valve and drain
coolant.
d. To refill coolant loop, see
Refill Engine Coolant Loop, page 72.
2. Remove the caps from the metal proportioner
coolant loop fill bottle (HF) and expansion
bottle (HB). Fill the proportioner coolant loop fill
bottle (HF) to the top and add more coolant to
expansion bottle (HB) until the coolant is at the
cold fill line. See Coolant Specifications, page 72.
RC
HB
HF
EB
e. Replace engine shrouds. Torque screws to
25 ft-lbs (33.8 N∙m)
Refill Proportioner Coolant Loop
Note
Air needs to be purged from the proportioner
coolant loop when it is filled with new coolant
or when air enters the coolant system. It
takes about one full warm-up and cool-down
cycle to purge air from coolant.
Coolant System Bottles
Figure 44
To avoid burns, do not perform maintenance on
the coolant system until the coolant system has
reached ambient temperature.
70
3A1705J
Maintenance
3. Replace cap. Tighten past the “safety” latch
position.
4. Press start button
control module.
twice on the engine
5. Turn main power switch on.
9. Press
to stop the generator.
10. After the coolant system temperature lowers to
ambient temperature, refill or add coolant to the
expansion bottle (HB) cold level indicator line.
11. Turn off manual valve switch (MV) to close the A
and B heat exchanger control valves (VA, VB)
and bypass control valve (VC).
Note
6. Inspect coolant flow in sight glass (SG) for
bubbles and to verify that the coolant is flowing.
7. Inspect coolant loops for leaking fittings or valves.
8. The coolant has reached operating temperature
when the radiator fan turns on. When the fan
turns on, turn the main power switch OFF.
3A1705J
When the manual valve switch (MV)
is in the OFF position, the load center
(LC) LEDs only turn on when the system
opens the valves.
12. If necessary, refill or add coolant to the expansion
bottle (HB) cold level indicator line. See Fig. 42.
71
Maintenance
Refill Engine Coolant Loop
Refill the engine coolant loop when the coolant is
below the cold level line at ambient temperature.
To avoid burns, do not perform maintenance on
the coolant system until the coolant system has
reached ambient temperature.
Only use coolant solutions that are compatible with
the system. See Coolant Specifications, page 72.
NOTICE
Do not refill with drained coolant. Use only fresh,
new coolant to avoid contaminants.
NOTICE
Do not use any “stop leak” additives to prevent
plugged filters and small orifices.
NOTICE
Do not interchange the two caps between the
radiator and coolant bottle. The caps have different
pressure ratings that affect the overflow.
1. Perform Shutdown, page 63.
2. Remove the engine radiator coolant cap
(RC) and fill until the coolant reaches the
bottom of the neck. Replace cap. See
Coolant Specifications, page 72.
3. Remove the cap from the engine coolant loop
bottle (EB) and fill until the coolant is at the hot
level. Replace cap.
4. Press start button
control module.
twice on the engine
6. Inspect coolant loops for leaking fittings or valves.
7. The coolant has reached operating temperature
when the radiator fan turns on. When the fan
turns on, turn the main power switch OFF.
8. Press
to stop the generator.
9. Add more coolant to expansion bottle (EB)
after the coolant system temperature lowers to
ambient temperature. Repeat until coolant level
stays at cold level when at ambient temperature.
It may take a few cycles to remove all air out of
coolant system.
Coolant Specifications
NOTICE
Do not refill with straight water or tap water.
Changing the 50% mix ratio use of tap water will
allow fittings to rust.
Only refill the coolant loops with a solution of 50%
distilled or soft water and 50% green ethylene glycol
antifreeze with a corrosion inhibitor. Do not use
common tap water; it contains chlorides and minerals
which form scale on the coolant system walls. Do not
use any stop leak products. The additives in these
products will clog the heat exchanger and fluid valves,
decreasing system performance. Use only antifreeze
that meets specification ASTM D3306–89, BS658, or
AS 2108. A pre-diluted mix is recommended, such
as PEAK Ready Use 50/50 Pre-Diluted.
5. Turn main power switch ON.
72
3A1705J
Errors
Errors
1. Press the soft key for help with the active error.
View Errors
When an error occurs the error information
screen displays the active error code and
description. To diagnose the active error, see
Troubleshoot Errors, page 73.
The error code, alarm bell, and active errors will scroll
in the status bar. For a list of the ten most recent
errors see Troubleshooting, page 74.
Note
There are three types of errors that can occur. Errors
are indicated on the display as well as by the light
tower (optional).
. This condition indicates
Alarms are indicated by
a parameter critical to the process has reached a
level requiring the system to stop. The alarm needs
to be addressed immediately.
or
to return to the
Press
previously displayed screen.
2. Press
to select one of following conditions
that are present in the system until you are able
to diagnose the error. Press
previous screen.
to return to the
Deviations are indicated by
. This condition
indicates a parameter critical to the process has
reached a level requiring attention, but not sufficient
enough to stop the system at this time.
Advisories are indicated by
. This condition
indicates a parameter that is not immediately critical
to the process. The advisory needs attention to
prevent more serious issues in the future.
Troubleshoot Errors
See Error Codes and Troubleshooting, page 74 for
causes and solutions to each error code.
To troubleshoot the error:
3A1705J
3. Select conditions that are present in the system
until a cause has been identified. Press
to
go the troubleshooting screen that displays the
ten most recent errors.
73
Troubleshooting
Troubleshooting
See Error Codes and Troubleshooting for error
codes, possible causes, and solutions.
Note
See Errors, page 73 for information about errors that
can occur on the system.
See Troubleshooting, page 53 for the ten most
recent errors that have occurred on the system. See
Troubleshoot Errors, page 73 to diagnose errors on
the ADM that have occurred on the system.
Error codes are stored in the error log and
displayed on the Error and Troubleshooting
screens on the ADM.
Error Codes and Troubleshooting
See Reactor repair manual for non-error based
troubleshooting.
Error
Error
Type
Name
Cause
Solution
Code
A1NM
Location
MCM
ALARM
No Motor
Current
Loose or bad motor or
wire connection.
Check for tight motor
wire termination in green
connector. If loose,
contact Graco distributor
for rework instructions.
Check for tight motor
brush wire terminal screw.
See system repair manual.
Check motor brushes and
replace if needed.
Replace MCM. See
system repair manual.
Motor brushes
completely worn down.
Bad MCM.
74
3A1705J
Troubleshooting
Error
Error
Type
Name
Cause
Solution
Code
A4CH
Location
Hose
ALARM
High Relay
Current Hose
Wiring problem.
Check wiring between
HPTCM and contactor.
Look for shorted wire
between HPTCM and
contactor terminals A1
and A2.
Measure resistance
between A1 and A2
terminals. The resistance
should be about 289Ω.
If contactor is measuring
less than 100Ω, then the
contactor is shorted and
should be replaced.
If problem continues
replace MCM. See system
repair manual.
Check wiring for touching
wires.
Shorted contactor.
A4CM
MCM
ALARM
High MCM
Current
A4DA
Boost A
ALARM
A4DB
Boost B
High Heater
Current
MCM is drawing too
much current from the
system.
Short circuit in booster
heater wiring.
Bad heater.
A4DH
3A1705J
Hose
ALARM
High Heater
Current
Short circuit in hose
wiring.
Measure resistance of
heater(s), replace if
needed. See system
repair manual.
Check continuity of
transformer windings,
normal reading are about
0.2Ω on both primary and
secondary. If reading is
0Ω replace transformer.
Check for shorts between
the primary winding and
the support frame of the
transformer.
75
Troubleshooting
Error
Error
Type
Name
Cause
Solution
Code
A4NM
Location
MCM
ALARM
High Motor
Current
Short circuit of motor
wiring.
Check wiring to the motor
to ensure no bare wires
are touching and that
no wires are shorted to
ground.
Replace motor. See
system repair manual.
Repair or replace chemical
pump. See system repair
manual.
Replace Module. See
system repair manual.
Replace Module. See
System Repair manual.
Motor will not rotate.
Chemical pump is stuck
A7CH
Hose
ALARM
A7DA
Boost A
ALARM
A7DB
Boost B
A7DH
Hose
ALARM
Unexpected
Relay Current
Unexpected
Heater Current
Shorted HPTCM.
Unexpected
Heater Current
Turned off main power
switch with heaters and
motor ON.
Shorted LPTCM.
Turned on hose circuit
breaker with hose heat
on.
Failed to power off after
loading software.
Shorted HPTCM.
A8DA
Boost A
A8DB
Boost B
A8DH
Hose
76
ALARM
No Heater
Current
Tripped circuit breaker.
Loose/broken
connection.
Turn off heat and motor
power at ADM before
turning off the main power
switch.
Turn on circuit breaker
with hose heat off.
Power off after software
downloaded.
Replace Module. See
system repair manual.
Visually check circuit
breaker for a tripped
condition.
Check heater wiring for
loose wires.
3A1705J
Troubleshooting
Error
Error
Type
Name
Cause
Solution
Code
CACA
Location
Boost A
ALARM
CACB
Boost B
Communication
Error
Module does not have
software or dial is set
to wrong position.
CACH
Hose
CACM
MCM
CACP
Remote
Display
Module
Insert a system token
into the missing GCA
module and cycle the
power. Wait until the red
light on the module stops
flashing before removing
the token. Verify the dial
on the module is in the
correct position: 0 for
hose, A for boost A, B for
boost B
No 24 VDC supply to
module.
Loose or broken CAN
cable.
Bad module
MCM switch: 0 for E-30i,
1 for E-XP2i
Green light on each
module should be lit. If
green light is not lit, check
to make sure each CAN
cable connection is tight.
Verify the power supply
is outputting 24 VDC. If
not, replace power supply.
See system repair manual.
Check the CAN cables
running between GCA
modules and tighten if
needed. If the problem still
persists move each cable
around the connector and
watch the flashing yellow
light on the GCA modules.
If the lights stops replace
the CAN cable.
(CACA or CACB) Replace
LPTCM.
(CACH) Replace HPTCM.
(CACM) Replace MCM.
See system repair manual
for instructions to replace
modules.
(CACP) Replace Remote
Display Module. See
Remote Display Module
manual for instructions.
3A1705J
77
Troubleshooting
Error
Error
Type
Name
Cause
Solution
Code
DADX
Location
MCM
ALARM
Pump Runaway
Flow rate is too large
DE0X
MCM
ALARM
Pump Cycle
Switch Fault
Faulty or missing cycle
switch.
F9DX
MCM
ALARM
Pressure Flow
Cutback
Mix chamber is too
large for the set
pressure.
H1MH
Hose
ALARM
Low Line
Frequency
Line frequency is below
55 Hz.
H4MH
Hose
ALARM
High Line
Frequency
Line frequency is above
65 Hz.
K8NM
MCM
ALARM
Locked Rotor
Locked rotor.
Mix chamber too large for
system selected. Use mix
chamber rated for system.
Ensure the system has
chemical and the feed
pumps are operating
correctly.
No material in pumps.
Verify pumps are
supplying chemical. If
necessary, replace or refill
drums.
Inlet ball valves are closed.
Open ball valves.
Check wiring between
cycle switch and MCM
port 6.
Reference the pressure
flow curves and select a
tip size that is the correct
size for the set pressure.
See Performance Charts,
page 99.
Check frequency. If
out of tolerance, see
supplied 120/240V
alternator manual for
repair instructions.
Check frequency. If
out of tolerance, see
supplied 120/240V
alternator manual for
repair instructions.
Replace motor. See
system repair manual.
Repair or replace pump.
See system repair manual.
Fill tanks with material.
L1AX
L1BX
78
ADM
ALARM
Low Chemical
Level A
Low Chemical
Level B
Chemical pump is
stuck.
Tanks low on material.
3A1705J
Troubleshooting
Error
Error
Type
Name
Cause
Solution
Code
MBN0
Location
MCM
ADVISORY
Motor Brush
Wear
Replace Brushes. See
system repair manual.
USB
ADVISORY
USB Log Full
MCM
ALARM
Over Pressure A
Brushes have worn
down and need
replacing.
USB logs have reached
a level were data loss
will occur if logs are not
downloaded.
System pressurized
before allowing heat to
reach setpoint.
MMUX
P4AX
P4BX
Over Pressure B
Bad pressure
transducer.
E-XP2i system
configured as E-30i.
P6AX
P6BX
MCM
ALARM
Pressure
Transducer
Fault A
Pressure
Transducer
Fault B
3A1705J
Loose/bad connection.
Bad sensor.
Use a USB drive and
download all logs.
Turn on the heat and allow
the hose to reach the
setpoint before turning on
the pumps.
Verify the ADM pressure
reading the analog gauges
at the manifold. Replace
transducers if they do not
match. See system repair
manual.
Ensure rotary switch on
MCM is set to position 0
for E-30i.
Check to ensure the
pressure transducer is
properly installed and
all wires are properly
connected.
Check if the error
follows the transducer.
Disconnect transducer
cable from #8 and #9
connectors on MCM.
Reverse A and B
connections and check
if the error follows. If
the error follows the
transducer, replace the
pressure transducer. See
system repair manual. If
the error does not follow,
replace MCM. See system
repair manual.
79
Troubleshooting
Error
Error
Type
Name
Code
P7AX
Position
MCM
ALARM
Pressure
Pressure difference
Imbalance A High between A and B material
(P7AX)
is greater than the
defined value.
Pressure
Pressure imbalance is
Imbalance B High
defined too low.
(P7BX)
P7BX
Cause
Out of material.
P0AX
P0BX
T1DE
80
Ensure the material flow is
equally restricted on both
material lines.
Ensure that the pressure
imbalance value, on the
System Setup screen, is at
an acceptable maximum
pressure to prevent
unnecessary alarms and
abort dispenses.
Fill tanks with material.
Fluid leaking from heater Check if heater
inlet rupture disk.
and PRESSURE
RELIEF/SPRAY valve
(SA or SB) are plugged.
Clear. Replace rupture disk.
Do not replace with a pipe
plug.
Feed system defective. Check feed pump and hoses
for blockage. Check that the
feed pumps have the correct
air pressure.
See P7AX.
ADVISORY Pressure
Imbalance A High
See P7BX.
MCM
ADVISORY Pressure
Imbalance B High
Engine
ALARM
Low Temperature Radiator fan will not stop.
Heat
Coolant Outlet
Exchanger
Engine thermostat is
stuck closed.
MCM
Solution
Replace fan relay. See
system repair manual.
Replace thermostat. See
Perkins dealer.
3A1705J
Troubleshooting
Error
Error
Code
T2AE
Position
Heat
DEVIATION Low Temperature Recirculating material
Exchanger
Hx A
to heat with drum feed
pumps only.
Low Temperature
Coolant circulation pump
Hx B
not working.
T2BE
Type
Name
Cause
Solution
Recirculate material
using Jog mode for heat
exchanger heating.
Check for 240 VAC on
pump. If there is the correct
voltage, replace circulation
pump. See system repair
manual.
Air lock in circulation
Check for coolant flow in
pump.
sight glass.
Loose or incorrect wiring See wiring schematics, in
connections.
the system repair manual,
and verify coolant valve
connections. Check coolant
valve harness and verify
voltage is 11–13 volts at
coolant valve connectors.
Turn on the manual valve
No voltage to coil of
switch (MV), on the load
valve.
center (PE), to manually turn
on the solenoids and see if
the temperature rises. If not,
check voltage output on J6
connector on the load center
and ensure the LEDS are
on. See load center wiring
in system repair manual.
Follow Load Center
Diagnostics instructions
in system repair manual. If
necessary, replace the load
center board.
If voltage is present,
measure the resistance
of the coil, it should be
approximately 12.5 Ω, if coil
is open replace coil.
If voltage is present, test
the coil with screwdriver.
The screwdriver should
magnetically stick inside
the coil. If screwdriver
sticks, then the coil is
good. Replace the plunger
on valve or replace the
complete valve assembly.
See system repair manual.
3A1705J
81
Troubleshooting
Error
Error
Type
Name
Code
T2DA
Position
Boost A
ALARM
Low Chemical
Temperature
T2DB
T2DH
T2DE
T3NM
T4AE
T4BE
82
Cause
Solution
Flow is too high at current Use a smaller mix chamber
setpoint.
that is rated for the unit in
Boost B
use.
Bad heater(s)
Confirm resistance of heater
is 23–26.5 ohms. Replace if
OL/open loop.
Hose
ALARM
Recirculate heated chemical
Low Chemical
Cold chemical in
back to drum in cold
Temperature
unheated portion of
system passed hose FTS conditions before startup.
at startup.
Heat
ADVISORY Low Temperature Radiator fan will not stop. Replace fan relay. See
Exchanger
Coolant Outlet
system repair manual.
Engine thermostat is
Replace thermostat. See
stuck open.
Perkins distributor to
replace.
Run the system at a
Motor is operating
MCM
ADVISORY High Motor
lower duty cycle or with a
outside of pressure
Temperature
flow curve. The system smaller mix chamber. See
Performance Charts, page
is running at a lower
99.
setpoint to preserve
motor life.
ALARM
Heat
High Chemical
Manual valve switch (MV) Open cabinet cover and turn
Exchanger
Temperature Hx A on load center board is in switch to the OFF position.
(T4AE)
the ON position.
A or B side control valve Disconnect connector
High Chemical
solenoid is stuck in the from valve solenoid coil.
Temperature Hx B
If temperature does not
open position. Debris
(T4BE)
decrease, rebuild solenoid.
in valve diaphragm
or plunger preventing
spring-loaded closed
function.
See Load Center
Short on load center
board. If the blue and red Diagnostics in the system
repair manual.
LEDs are on while the
heat is off, then the load
center board is bad.
(T4BE only) J6 connector Reconnect J6 connector
on load center in centered
on load center “Heat
location.
Valves” location is not
centered.
A and B heat
See System Repair Manual
exchanger RTD cables for correct connection.
cross-connected to
splitter cable.
3A1705J
Troubleshooting
Error
Error
Type
Name
Code
T4CA
Position
Boost A
ALARM
T4CB
Boost B
T4CH
Hose
T4CM
MCM
ALARM
T4DA
Boost A
ALARM
T4DB
Boost B
T4DE
Heat
ALARM
Exchanger
Cooling fan not operating. If fan is not working check
wiring between CB03 and
fan. If wiring is good, replace
fan.
(T4CH) HPTCM
Overheated module.
Turn controller off. Wait
Over Temperature
a few minutes. If the
condition does not clear or
regenerates consistently,
replace module.
High ambient
Ensure ambient temperature
High MCM
temperature.
is below 120°F(48°C) before
Temperature
using the system.
Overheated control
Stop the pumps. Wait
module.
a few minutes. If the
condition does not clear or
regenerates consistently,
replace MCM. See System
Repair manual.
Bad RTD or bad RTD
High Chemical
Swap A and B heater volex
placement against heater cables and RTD cables and
Temperature
rod.
see if issue follows. If so,
replace RTD.
Bad Low Power
Swap the A and B LPTCMs
Temperature Control
and see if the issue follows
Module.
the module. If so replace
LPTCM. See system repair
manual.
High Temperature Broken Fan.
Check fan relay (K4) and
Coolant Outlet
fuse (30 Amp ATO “F3”) on
load center board. Replace
if needed.
Plugged radiator.
Replace if needed.
Cause
(T4CA or T4CB)
LPTCM Over
Temperature
High ambient
temperature.
3A1705J
Solution
Ensure ambient temperature
is below 120°F(48°C) before
using the system.
83
Troubleshooting
Error
Error
Type
Name
Cause
Solution
Code
T4DH
Position
Hose
ALARM
High Chemical
Temperature
Hose portion exposed
to an excessive heat
source, like hot sun or
coiled hose, can pass
fluid more than 27°F
(15°C) over temperature
setting to the FTS.
Bad High Power
Temperature Control
Module.
Cooling fans are not
operating properly.
Shade exposed hose from
hot sun or expose FTS to
same environment when
at rest. Uncoil entire hose
before heating to avoid
self-heating.
T4NM
MCM
ALARM
High Motor
Temperature
Replace HPTCM. See
system repair manual.
Ensure ambient temperature
is less than 120°F(48°C).
Check to see that the fans
are moving. Measure
voltage to fans. There
should be 240 VAC. If no
voltage is measured, check
wiring between fan and
circuit breaker CB03.
If the fans have voltage but
are not moving, replace fan.
Bad electric motor.
84
Use an air hose to blow out
around the fan housings and
remove any built-up debris.
Replace electric motor. See
System Repair manual.
3A1705J
Troubleshooting
Error
Error
Code
T6AE
T6DA
Position
ALARM
Heat
Exchanger
A
Heat
Exchanger
B
Boost A
T6DB
Boost B
T6DE
Engine
Heat
Exchanger
Hose
ALARM
T6BE
T6DH
Type
Name
Cause
Solution
RTD Fault
Broken or loose RTD
cable or connection.
Check all wiring and
connection to RTD.
Bad RTD.
Switch the RTD with another
and see if the error message
follows the RTD. Replace
RTD if the error follows the
RTD. See system repair
manual for instructions.
RTD Cable or FTS Broken RTD cable in
hose or bad FTS.
Fault
Expose each hose RTD
connection to check
and retighten any loose
connector. Measure
hose RTD cable and
FTS continuity. See system
repair manual. Order
RTD Test Kit 24N365 for
measurement.
See Temporary Manual
Hose Temperature Control,
page 58, to finish job until
repair can be completed.
3A1705J
85
Troubleshooting
Error
Error
Code
Position
T8AE
Heat
Exchanger
T8BE
Type
Name
ALARM
Temperature Not
Low chemical supply
Rising Hx A (T8AE) temperature.
Temperature Not
Rising Hx B (T8BE)
Cause
System stored below
20°F(-7°C) causing slow
control valve operation.
Plugged filter in sight glass.
Indicated by consistent
low A and B temperature
alarms.
Coolant debris stuck in
valve pilot hole or passages.
No coolant flow
Solution
Recirculate heated chemical
back to drum in cold conditions
before spraying. Chemical
below 32°F(0°C) at startup.
Ensure ambient temperature is
above 20°F(-7°C).
Clean or replace filter. See
system repair manual.
Inspect and clean control valve.
Repair or replace if necessary.
See system repair manual.
Check coolant level. Check for
coolant flow in sight glass.
Ensure that the circulation
pump has 240 VAC. If not,
replace the circulation pump.
See system repair manual.
(T8AE only) J6 connector on Reconnect J6 connector on
load center “Heat Valves” load center in centered location.
location is not centered.
Bad valve solenoid coil.
Turn on the manual valve
switch (MV), on the load center,
and see if the valve solenoid
shifts. For coolant valve LED
identification, see system repair
manual. If solenoid does not
shift, replace solenoid coil. See
system repair manual.
Valve solenoid not getting Verify 12 VDC signal is at the
12 VDC electrical signal.
valve solenoid coil connector.
All three valves are normally
closed with power removed.
See system repair manual
for valve wiring harness
identification diagram.
Bad load center.
Red, blue, and green LEDs
should light up on load center
board. If not, replace load
center. See system repair
manual.
A and B heat
See System Repair Manual for
exchanger RTD cables
correct connection.
cross-connected to splitter
cable.
86
3A1705J
Troubleshooting
Error
Error
Type
Name
Code
T8DA
Position
Boost A
ALARM
T8DB
Boost B
T8DH
Hose
ALARM
V1CM
MCM
ALARM
V1MH
Hose
ALARM
Measure resistance, 23 – 26
Ω, of heater rod, replace if
reading open.
Low chemical supply
Recirculate heated chemical
temperature.
back to drum in cold
conditions before spraying
chemical below 32°F(0°C)
at startup. Use Jog Mode for
heat exchanger heating.
Bad heated hose.
Measure hose resistance,
replace if reading open.
Temperature Not Started spraying before Wait until operating
Rising
engine and hose reached temperatures have been
reached on engine and hose
operating temperature.
before spraying.
Low chemical supply
Recirculate heated chemical
temperature.
back to drum in cold
conditions before spraying.
Chemical below 32°F(0°C)
at startup.
Visually check circuit
Bus Under
Tripped MCM circuit
breaker for a tripped
Voltage
breaker (CB02).
condition. If Diagnostic
screen is enabled, MCM
Bus 14 V indicates normal
voltage and 1 V indicates
failed MCM.
Low Line Voltage Loose or bad connection. Check wiring for loose wires.
Temperature Not
Rising
Cause
Solution
Bad heater rod (boost).
Low generator line
voltage
V4CM
MCM
ALARM
V4MH
Hose
ALARM
WBNM MCM
ALARM
3A1705J
Measure voltage across
main power switch (CT01).
Voltage should measure
between 190 and 264 VAC.
High auxiliary inrush
Ensure compressor or
current.
air dryer are setup to be
continuous run and sized
according to manual.
Incoming
line
voltage
is
Measure voltage across
Bus Overvoltage
too
high.
main power switch (CT01).
High Line Voltage
Voltage should measure
between 190 and 264 VAC.
If voltage is too high, see
supplied alternator manual
for generator specifications
and repair.
Bad connection between Check connection and
Motor Sensor
MCM (Port 10) and brush cables.
Fault
wear/over temperature
board.
Bad brush wear/over
Replace Motor. See system
temperature board.
repair manual.
87
Troubleshooting
Error
Type
Name
Code Position
WMCE MCM
ALARM
WSCX ADM
ADVISORY
WSUX USB
ADVISORY
WXUD ADM
ADVISORY
WXUU ADM
ADVISORY
WX00
ALARM
Load Center Fault Bad Connection between Check connection and
MCM (Port 2) and load cables.
center board.
Bad load center.
Replace load center. See
System Repair manual.
Invalid CAN
Duplicate node on CAN Verify LPTCM are set to A
Configuration
network.
and B.
USB Invalid
A valid configuration file Insert a system token into
the ADM and cycle the
Configuration
can't be found for the
power. Wait until the lights
USB.
on USB port stop flashing
before removing the token.
Bad ADM.
Replace ADM. See System
Repair manual.
USB Download
Log download failed.
Backup and reformat the
Error
USB drive. Retry download.
USB Upload Error Custom language file
Perform normal USB
failed to upload
download and use the new
disptext.txt file to upload the
custom language.
External Input
The alarm external input An active alarm is being
has been driven low.
generated by the external
trigger. If the external alarm
is not configured check for a
short in the wiring going to
MCM port 7, pins 1 and 3.
88
Error
MCM
Cause
Solution
3A1705J
USB Data
USB Data
USB Logs
Event codes include both error codes (alarms,
deviations, and advisories) and record only events.
Note
Actions Taken includes setting and clearing event
conditions by the system, and acknowledging error
conditions by the user.
The ADM can read/write to FAT (File
Allocation Table) storage devices. NTFS,
used by 32 GB or greater storage devices,
is not supported.
During operation, the ADM stores system and
performance related information to memory in the
form of log files. The ADM maintains four log files:
• Event Log
• Job Log
• Daily Log
• System Software Log
• Blackbox Log
Follow Download Procedure, page 91, to retrieve
log files.
Each time a USB flash drive is inserted into the ADM
USB port, a new folder named DATAxxxx is created.
The number at the end of the folder name increases
each time a USB flash drive is inserted and data is
downloaded or uploaded.
Event Log
Job Log
The job log file name is 2–JOB.CSV and is stored
in the DATAxxxx folder.
The job log maintains a record of data points
based on the USB Log Frequency defined
in the Setup screens. The ADM stores the
last 415,413 data points for download. See
Setup - Advanced Screen 3 — USB, page 46, for
information on setting the Download Depth and USB
Log Frequency.
• Data point date
• Data point time
• A side heat exchanger temperature
• A side boost heater temperature
• B side heat exchanger temperature
• B side boost heater temperature
• Hose temperature
The event log file name is 1–EVENT.CSV and is
stored in the DATAxxxx folder.
• Engine coolant temperature
The event log maintains a record of the last 49,182
events and errors. Each event record contains:
• B side temperature setpoint
• A side temperature setpoint
• Date of event code
• Hose temperature setpoint
• Time of event code
• A side pressure
• Event code
• B side pressure
• Event type
• Pressure setpoint
• Action taken
• System lifetime pump cycle counts
• Event Description
• Pressure, volume, and temperature units
3A1705J
89
USB Data
Daily Log
Blackbox Log File
The daily log file name is 3–DAILY.CSV and is stored
in the DATAxxxx folder.
The black box file name is 5–BLACKB.CSV and is
stored in the DATAxxxx folder.
The daily log maintains a record of the total cycle
and volume sprayed on any day that the system is
powered up. The volume units will be the same units
that were used in the Job Log.
The Blackbox log maintains a record of how the
system runs and the features that are used. This log
will help Graco troubleshoot system errors.
The following data is stored in this file:
System Configuration Settings
• Date that material was sprayed
• Time — unused column
• Total pump cycle count for day
• Total volume sprayed for day
System Software Log
The system software file name is 4–SYSTEM.CSV
and is stored in the DATAxxxx folder.
The system software log lists the following:
The system configuration settings file name is
SETTINGS.TXT and is stored in the DOWNLOAD
folder.
A system configuration settings file automatically
downloads each time a USB flash drive is inserted
into the ADM. Use this file to back up system
settings for future recovery or to easily replicate
settings across multiple systems. Refer to the
Upload Procedure, page 92 for instructions on how
to use this file.
• Date log was created
• Time log was created
• Component name
• Software version loaded on the above component
90
3A1705J
USB Data
Download Procedure
Note
System configuration setting files and custom
language files can be modified if the files
are in the UPLOAD folder of the USB flash
drive. See System Configuration Settings
File, Custom Language File, and Upload
Procedure sections.
Note
If needed, set the number of days to
download on the Advanced Setup Screen
3–USB in the ADM. USB log frequency can
only be changed before logging occurs.
1. Insert USB flash drive into USB port.
2. The menu bar and USB indicator lights “USB
Busy” to indicate that the USB is downloading
files. USB activity is complete when the “USB
Busy” screen prompt disappears or the flash
drive LED stops flashing.
Note
Normal system spraying can continue
while download is in progress.
3. Remove USB flash drive from USB port.
4. Insert USB flash drive into USB port of computer.
5. The USB flash drive window automatically opens.
If it does not, open USB flash drive from within
Windows® Explorer.
6. Open GRACO folder.
7. Open the system folder. If downloading data
from more than one system, there will be more
than one folder. Each folder is labeled with the
corresponding serial number of the ADM (The
serial number is on the back of the ADM.)
9. Open DATAxxxx folder.
10. Open DATAxxxx folder labeled with the highest
number. The highest number indicates the most
recent data download.
11. Open log file. Log files open in Microsoft® Excel
by default as long as the program is installed.
However, they can also be opened in any text
editor or Microsoft® Word.
Note
All USB logs are saved in Unicode
(UTF-16) format. If opening the log
file in Microsoft Word, select Unicode
encoding.
Custom Language File
The custom language file name is DISPTEXT.TXT
and is stored in the DOWNLOAD folder.
A custom language file automatically downloads
each time a USB flash drive is inserted into the ADM.
If desired, use this file to create a user-defined set of
custom language strings to be displayed within the
ADM.
The system is able to display the following Unicode
characters. For characters outside of this set,
the system will display the Unicode replacement
character, which appears as a white question mark
inside of a black diamond.
• U+0020 - U+007E (Basic Latin)
• U+00A1 - U+00FF (Latin-1 Supplement)
• U+0100 - U+017F (Latin Extended-A)
• U+0386 - U+03CE (Greek)
• U+0400 - U+045F (Cyrillic)
8. Open DOWNLOAD folder.
3A1705J
91
USB Data
Create Custom Language Strings
The custom language file is a tab-delimited text file
that contains two columns. The first column consists
of a list of strings in the language selected at the
time of download. The second column can be used
to enter the custom language strings. If a custom
language was previously installed, this column
contains the custom strings. Otherwise the second
column is blank.
Modify the second column of the custom language file
as needed and the follow Upload Procedure, page 92 ,
to install the file.
The format of the custom language file is critical.
The following rules must be followed in order for the
installation process to succeed.
• Define a custom string for each row in the second
column.
Note
If the custom language file is used, you
must define a custom string for each
entry in the DISPTEXT.TXT file. Blank
second-column fields will be displayed
blank on the ADM.
• The file name must be DISPTEXT.TXT.
• The file format must be a tab-delimited text file
using Unicode (UTF-16) character representation.
• The file must contain only two columns, with
columns separated by a single tab character.
• Do not add or remove rows to the file.
• Do not change the order of the rows.
1. If necessary, follow the Download Procedure to
automatically generate the proper folder structure
on the USB flash drive.
2. Insert USB flash drive into USB port of computer.
3. The USB flash drive window automatically opens.
If it does not, open USB flash drive from within
Windows Explorer.
4. Open GRACO folder.
5. Open the system folder. If working with more
than one system, there will be more than one
folder within the GRACO folder. Each folder is
labeled with the corresponding serial number of
the ADM. (The serial number is on the back of
the module.)
6. If installing the system configuration settings
file, place SETTINGS.TXT file into the UPLOAD
folder.
7. If installing the custom language file, place
DISPTEXT.TXT file into the UPLOAD folder.
8. Remove USB flash drive from the computer.
9. Install USB flash drive into the ADM USB port.
10. The menu bar and USB indicator lights indicate
that the USB is downloading files. Wait for USB
activity to complete.
11. Remove USB flash drive from USB port.
Note
If the custom language file was installed,
users can now select the new language
from the Language drop-down menu in
Advanced Screen 1 — General, page 46.
Upload Procedure
Use this procedure to install a system configuration
file and/or a custom language file.
92
3A1705J
Appendix A: Engine Control Module
Appendix A: Engine Control Module
Run Screens
There are seven run screens on the engine control module:
• Line-to-neutral voltage
• Line-to-line voltage
• Frequency
• Engine Speed
• Engine lifetime counter
• Battery voltage
Press
to scroll through the run screens. Press
to enter the Information screens.
Run Screen Layout
Inst
Icon
Instrumentation
Units
Alarm
Icon
Mode
Icon
Information Screens
From the Run Screen, press
generator events.
Press
to enter the information screens. Press
to scroll through the last five
to return to the Run Screens.
Information Screen Layout
Event
#
3A1705J
Time of Event (Engine
Run Hours)
Units
Alarm
Icon
Mode
Icon
93
Appendix A: Engine Control Module
Mode Icons
An icon is displayed in the mode icon area of the display to indicate what mode the unit is currently in.
Icon
Description
Details
Stopped
Engine is at rest and the unit is in stop mode.
Auto
Engine is at rest and the unit is in auto mode.
Manual
Engine is at rest and the unit is in manual run mode.
Timer animation
Engine is starting up.
Running animation
Engine is running.
Instrumentation Icons
A small icon is displayed in the instrumentation icon area to indicate what value is currently being displayed.
Icon
94
Description
Details
Generator
Generator voltage and frequency screen
Engine Speed
Engine speed screen
Engine Lifetime
Counter
Hours run
Event Log
Event is being displayed.
Unit Time
Unused feature
3A1705J
Appendix A: Engine Control Module
Alarms
There are two types of alarms that can occur on the system. Alarms are indicated by an icon the Run and
Information screens.
Warning
When present on system, a warning alarm will not stop the generator.
Icon
Description
Details
Battery High Voltage
The DC Supply has risen above the high volts setting level for the
duration of the high battery volts timer.
Battery Low Voltage
The DC Supply has fallen below the low volts setting level for the
duration of the low battery volts timer.
Fail To Stop
The module detected a condition that indicates that the engine is
running when it has been instructed to stop.
Flexible Sensor
The flexible sensor warning alarm has been triggered.
Shutdown
When present on system, a shutdown alarm will stop the generator. Clear the alarm and remove the fault.
Then press the stop button to reset the module. See the information screen to see the latest alarm.
Icon
3A1705J
Description
Details
Fail To Start
The engine has not fired after the preset number of start attempts.
Generator High Voltage
Shutdown
The generator output voltage has risen above the preset level.
Generator Low Voltage
Shutdown
The generator output voltage has fallen below the preset level.
High Coolant Temperature
Shutdown
The module detects that the engine coolant temperature has
exceeded the high engine temperature shutdown setting after the
Safety On timer has expired.
Low Oil Pressure Shutdown
The engine oil pressure has fallen below the low oil pressure trip
setting level after the Safety On timer has expired.
Over Frequency Shutdown
The generator output frequency has risen above the preset level.
Under Frequency Shutdown
The generator output frequency has fallen below the preset level.
95
Dimensions
Dimensions
Top View
Figure 45
Side View
Figure 46
96
3A1705J
Dimensions
Top View: System with Compressor and Hose Rack
Accessories
Figure 47
Side View: System with Compressor and Hose Rack
Accessories
Figure 49
Front View
Figure 48
3A1705J
97
Dimensions
Pallet Mounting Dimensions
Figure 50
98
3A1705J
Performance Charts
Performance Charts
Use these charts to help identify the proportioner that will work most efficiently with each mix chamber. Flow
rates are based on a material viscosity of 60 cps.
Proportioners For Foam
2000
(138)
AR4242
(01)
AR5252
(02)
1500
(103)
PRESSURE
psi (bar)
AR6060
(03)
1000
(69)
AR7070
(04)
E-30i
500
(34) 0
5
(2.3)
10
(4.5)
15
(6.8)
20
(9.1)
25
30
(11.3)
(13.6)
35
(15.9)
40
(18.1)
FLOW lbs/min (kg/min)
Proportioners For Coatings
Table 1 Fusion Air Purge, Round Pattern
3500
(241)
3000
(207)
2500
PRESSURE
psi (bar)
E-XP2i
AR2020
(000)
(172)
AR2929
(00)
2000
(138)
1500
(103)
AR4242
(01)
1000
(69)
500
(34) 0
0.5
(1.9)
1.0
(3.8)
1.5
(5.7)
2.0
(7.6)
FLOW gal./min (kg/min)
3A1705J
99
Performance Charts
Table 2 Fusion Air Purge, Flat Pattern
3500
(241, 24.1)
3000
(207, 20.7)
AF2929
(FTXX38 TIP)
2500
(174, 17.4)
PRESSURE
psi (bar)
AF2020
(FTXX24 TIP)
2000
(138, 13.8)
E-XP2i
AF4242
(FTXX38 TIP)
1500
(103, 10.3)
AF5252
(FTXX48 TIP)
1000
(69, 6.9)
500
(35, 3.5)
0
0.5
1.0
(1.9)
1.5
(3.8)
(5.7)
2.0
(7.6)
FLOW gal./min (kg/min)
Table 3 Fusion Mechanical Purge, Round Pattern
3500
(241, 24.1)
E-XP2i
3000
(207, 20.7)
XR2323
(RTM040)
2500
(174, 17.4)
PRESSURE
psi (bar)
XR2929
(RTM040)
2000
(138, 13.8)
MR3535
(RTM040)
1500
(103, 10.3)
XR3535
(RTM055)
1000
(69, 6.9)
MR4747
(RTM055)
XR4747
(RTM055)
500
(35, 3.5)
0
0.5
(1.9)
1
(3.8)
1.5
(5.7)
2.0
(7.6)
FLOW gal./min (kg/min)
100
3A1705J
Performance Charts
Table 4 Fusion Mechanical Purge, Flat Pattern
3500
(241, 24.1)
XF2323
(FTM424)
XF1313
(FTM424)
3000
(207, 20.7)
MF2929
(FTM424)
2500
(174, 17.4)
PRESSURE
psi (bar)
MF1818
(FTM424)
2000
(138, 13.8)
XF1818
(FTM424)
1500
MF4747
(FTM638)
XF2929
(FTM424)
(103, 10.3)
XF5757
(FTM638)
XF3535
(FTM638)
1000
(69, 6.9)
E-XP2i
MF5757
(FTM638)
MF3535
(FTM638)
500
(35, 3.5)
0
0.2
(0.7)
0.4
(1.5)
0.6
(2.3)
0.8
(3.0)
1
(3.8)
1.2
(4.5)
1.4
(5.3)
1.6
(6.0)
1.8
(6.8)
2.0
(7.6)
FLOW gal./min (kg/min)
3A1705J
101
Technical Specifications
Technical Specifications
E-30i Models
U.S.
Metric
2000 psi
14 MPa, 140 bar
E-30i
140°F
60°C
E-30i with booster heater
180°F
82°C
30 lb/min
13.5 kg/min
310 ft
94 m
0.0272 gal.
0.1034 liter
20° to 120°F
-7° to 49°C
Maximum Fluid Working Pressure
Pressure
Maximum Fluid Temperature
Maximum Output
Output
Maximum Heated Hose Length
Length
Output per Cycle
A and B
Operating Ambient Temperature Range
Temperature
Auxiliary Power Available
Voltage
120 Vac or 240 Vac, 60 Hz
Engine
Model
Perkins 404–22G, 2.2 L, 29 HP
Alternator
Model
Mecc Alte 22 kW, 240 V, 1 PH, 60 Hz, pancake style
Battery Requirements
12 Vdc
Voltage
Minimum Cold Cranking Amps
800 CCA
Connection Type
Post Style
Recommended Battery Size
34
BC Group Number
Length
10.25 in.
260 mm
Width
6.81 in.
173 mm
Height
7.88 in.
200 mm
Booster Heater Power
E-30i
E-30i with booster heat
102
None
4000 Watts
3A1705J
Technical Specifications
Recommended Air Compressors
Champion® BR-5, Base Mount
Specifications
5 HP, 240 V, 1 Phase, 60 Hz, 21 cfm
Required Features
Belt guard aftercooler
Pilot valve unloader
Quincy QP–5–5B, Base Mount
Specifications
5 HP, 240 V, 1 Phase, 60 Hz, 17.2 cfm
Required Features
Belt guard aftercooler
Pilot valve unloader
Champion® HR5-3, 30 Gallon Tank Mount
Specifications
5 HP, 240 V, 1 Phase, 60 Hz, 21 cfm
Required Features
Pilot valve unloader
Noise
91.0 dBA
Sound Pressure measured from
3.1 ft (1 m), at 1500 psi (10 MPa,
103 bar), 2 gpm (7.6 lpm)
Fluid Inlets
Component A (ISO) and
Component B (RES)
3/4 NPT(f) with 3/4 NPSM(f) union
Fluid Outlets
Component A (ISO)
#8 (1/2 in.) JIC, with #5 (5/16 in.) JIC adapter
Component B (RES)
#10 (5/8 in.) JIC, with #6 (3/8 in.) JIC adapter
Fluid Circulation Ports
Size
Maximum Pressure
1/4 NPSM(m), with plastic tubing
250 psi
1.75 MPa, 17.5 bar
E-30i
1750 lb
794 kg
E-30i with booster heat
1800 lb
816 kg
E–30i with compressor
2250 lb
1020 kg
E–30i with booster heat and
compressor
2300 lb
1043 kg
Weight
Wetted Parts
Material
3A1705J
Aluminum, stainless steel, zinc plated carbon steel, brass,
carbide, chrome, chemically resistant o-rings, PTFE, ultra-high
molecular weight polyethylene
103
Technical Specifications
E-XP2i Models
U.S.
Metric
3500 psi
24.1 MPa, 241 bar
180°F
82°C
2 gpm
7.6 lpm
310 ft
94 m
0.0203 gal.
0.0771 liter
20° to 120°F
-7° to 49°C
Maximum Fluid Working Pressure
Pressure
Maximum Fluid Temperature
E-XP2i
Maximum Output
Output
Maximum Heated Hose Length
Length
Output per Cycle
A and B
Operating Ambient Temperature Range
Temperature
Auxiliary Power Available
120 Vac or 240 Vac, 60 Hz
Voltage
Engine
Model
Perkins 404–22G, 2.2 L, 29 HP
Alternator
Model
Mecc Alte 22 kW, 240 V, 1 PH, 60 Hz, pancake style
Battery Requirements
Voltage
12 Vdc
Minimum Cold Cranking Amps
800 CCA
Connection Type
Post Style
Recommended Battery Size
34
BC Group Number
Length
10.25 in.
260 mm
Width
6.81 in.
173 mm
Height
7.88 in.
200 mm
Booster Heater Power
Wattage
104
4000 Watts
3A1705J
Technical Specifications
Recommended Air Compressors
Champion® BR-5, Base Mount
Specifications
5 HP, 240 V, 1 Phase, 60 Hz, 21 cfm
Required Features
Belt guard aftercooler
Pilot valve unloader
Quincy QP–5–5B, Base Mount
Specifications
5 HP, 240 V, 1 Phase, 60 Hz, 17.2 cfm
Required Features
Belt guard aftercooler
Pilot valve unloader
Champion® HR5-3, 30 Gallon Tank Mount
Specifications
5 HP, 240 V, 1 Phase, 60 Hz, 21 cfm
Required Features
Pilot valve unloader
Noise
91.0 dBA
Sound Pressure measured from
3.1 ft (1 m), at 2000 psi (14 MPa,
138 bar), 1.0 gpm (3.8 lpm)
Fluid Inlets
Component A (ISO) and
Component B (RES)
3/4 NPT(f) with 3/4 NPSM(f) union
Fluid Outlets
Component A (ISO)
#8 (1/2 in.) JIC, with #5 (5/16 in.) JIC adapter
Component B (RES)
#10 (5/8 in.) JIC, with #6 (3/8 in.) JIC adapter
Fluid Circulation Ports
Size
Maximum Pressure
1/4 NPSM(m), with plastic tubing
250 psi
1.75 MPa, 17.5 bar
E-XP2i
1800 lb
816 kg
E-XP2i with compressor
2500 lb
1043 kg
Weight
Wetted Parts
Material
3A1705J
Aluminum, stainless steel, zinc plated carbon steel, brass,
carbide, chrome, chemically resistant o-rings, PTFE, ultra-high
molecular weight polyethylene
105
Graco Standard Warranty
Graco warrants all equipment referenced in this document which is manufactured by Graco and bearing its name
to be free from defects in material and workmanship on the date of sale to the original purchaser for use. With
the exception of any special, extended, or limited warranty published by Graco, Graco will, for a period of twelve
months from the date of sale, repair or replace any part of the equipment determined by Graco to be defective.
This warranty applies only when the equipment is installed, operated and maintained in accordance with Graco’s
written recommendations.
This warranty does not cover, and Graco shall not be liable for general wear and tear, or any malfunction, damage
or wear caused by faulty installation, misapplication, abrasion, corrosion, inadequate or improper maintenance,
negligence, accident, tampering, or substitution of non-Graco component parts. Nor shall Graco be liable for
malfunction, damage or wear caused by the incompatibility of Graco equipment with structures, accessories,
equipment or materials not supplied by Graco, or the improper design, manufacture, installation, operation or
maintenance of structures, accessories, equipment or materials not supplied by Graco.
This warranty is conditioned upon the prepaid return of the equipment claimed to be defective to an authorized
Graco distributor for verification of the claimed defect. If the claimed defect is verified, Graco will repair or replace
free of charge any defective parts. The equipment will be returned to the original purchaser transportation prepaid.
If inspection of the equipment does not disclose any defect in material or workmanship, repairs will be made at a
reasonable charge, which charges may include the costs of parts, labor, and transportation.
THIS WARRANTY IS EXCLUSIVE, AND IS IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE.
Graco’s sole obligation and buyer’s sole remedy for any breach of warranty shall be as set forth above. The buyer
agrees that no other remedy (including, but not limited to, incidental or consequential damages for lost profits, lost
sales, injury to person or property, or any other incidental or consequential loss) shall be available. Any action for
breach of warranty must be brought within two (2) years of the date of sale.
GRACO MAKES NO WARRANTY, AND DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, IN CONNECTION WITH ACCESSORIES, EQUIPMENT, MATERIALS
OR COMPONENTS SOLD BUT NOT MANUFACTURED BY GRACO. These items sold, but not manufactured by
Graco (such as electric motors, switches, hose, etc.), are subject to the warranty, if any, of their manufacturer.
Graco will provide purchaser with reasonable assistance in making any claim for breach of these warranties.
In no event will Graco be liable for indirect, incidental, special or consequential damages resulting from Graco
supplying equipment hereunder, or the furnishing, performance, or use of any products or other goods sold hereto,
whether due to a breach of contract, breach of warranty, the negligence of Graco, or otherwise.
FOR GRACO CANADA CUSTOMERS
The Parties acknowledge that they have required that the present document, as well as all documents, notices
and legal proceedings entered into, given or instituted pursuant hereto or relating directly or indirectly hereto, be
drawn up in English. Les parties reconnaissent avoir convenu que la rédaction du présente document sera en
Anglais, ainsi que tous documents, avis et procédures judiciaires exécutés, donnés ou intentés, à la suite de ou en
rapport, directement ou indirectement, avec les procédures concernées.
Graco Information
For the latest information about Graco products, visit www.graco.com.
To place an order, contact your Graco Distributor or call to identify the nearest distributor.
Phone: 612-623-6921 or Toll Free: 1-800-328-0211 Fax: 612-378-3505
All written and visual data contained in this document reflects the latest product information available at the time of publication.
Graco reserves the right to make changes at any time without notice.
For patent information, see www.graco.com/patents.
Original Instructions. This manual contains English. MM 3A1705
Graco Headquarters: Minneapolis
International Offices: Belgium, China, Japan, Korea
GRACO INC. AND SUBSIDIARIES • P.O. BOX 1441 • MINNEAPOLIS MN 55440-1441 • USA
Copyright 2011, Graco Inc. All Graco manufacturing locations are registered to ISO 9001.
www.graco.com
Revised September 2013
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement