Cisco IE 4010 16S12P, 4S24P network switch Hardware Installation Guide
Cisco IE 4010 16S12P and IE 4010 4S24P are industrial-grade network switches, designed for harsh environments. They offer a combination of reliability, security, and manageability, making them suitable for applications like process manufacturing, utility substations, and intelligent transportation systems.
advertisement
Assistant Bot
Need help? Our chatbot has already read the manual and is ready to assist you. Feel free to ask any questions about the device, but providing details will make the conversation more productive.
Cisco IE 4010 Switch Hardware Installation
Guide
First Published:
September 2016
Last Updated:
September 2016
Cisco Systems, Inc.
www.cisco.com
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE
WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE
ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL
RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.
THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE INCORPORATED HEREIN BY
THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR
CISCO REPRESENTATIVE FOR A COPY.
The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense.
The following information is for FCC compliance of Class B devices: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If the equipment causes interference to radio or television reception, which can be determined by turning the equipment off and on, users are encouraged to try to correct the interference by using one or more of the following measures:
■
Reorient or relocate the receiving antenna.
■
Increase the separation between the equipment and receiver.
■
Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
■
Consult the dealer or an experienced radio/TV technician for help.
Modifications to this product not authorized by Cisco could void the FCC approval and negate your authority to operate the product.
The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California,
Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981,
Regents of the University of California.
NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE
PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.
IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL
DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR
INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
All printed copies and duplicate soft copies are considered un-Controlled copies and the original on-line version should be referred to for latest version.
Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices .
© 2016 Cisco Systems, Inc. All rights reserved.
ii
Preface
Audience
This guide is for the networking or computer technician responsible for installing Cisco IE 4010 series switches. We assume that you are familiar with the concepts and terminology of Ethernet and local area networking.
Purpose
This guide documents the hardware features of the Cisco IE 4010 switches. It describes the physical and performance characteristics of each switch, explains how to install a switch, and provides troubleshooting information.
This guide does not describe system messages that you might receive or how to configure your switch. For more information, see the Cisco IE4010 documentation at http://www.cisco.com/c/en/us/support/switches/industrial-ethernet-4010-series-switches/tsd-products-support-ser ies-home.html
For information about the standard Cisco IOS commands, see http://www.cisco.com/cisco/web/psa/configure.html?mode=prod&level0=268438303
Conventions
This document uses the following conventions and symbols for notes, cautions, and warnings.
Note:
Means reader take note. Notes contain helpful suggestions or references to materials not contained in this manual.
Caution: Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data.
Warning: This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device. Statement 1071
The safety warnings for this product are translated into several languages in the Cisco IE 4010 Switch Product Document
of Compliance that ships with the product. The EMC regulatory statements are also included in that guide.
Related Publications
Before installing, configuring, or upgrading the switch, see the release notes on Cisco.com for the latest information.
These documents provide complete information about the switch and are available on Cisco.com:
Regulatory Compliance and Safety Information for the Cisco IE 4010 Switch
Release Notes for the Cisco IE 4010 Switch
Cisco Systems, Inc.
www.cisco.com
iii
Obtaining Documentation, Obtaining Support, and Security Guidelines
Cisco IE 4010 Switch Software Configuration Guide
Device Manager Online help (available on the switch)
These compatibility matrix documents are available from this Cisco.com site: http://www.cisco.com/en/US/products/hw/modules/ps5455/products_device_support_tables_list.html
Cisco Gigabit Ethernet Transceiver Modules Compatibility Matrix (not orderable but available on Cisco.com)
Cisco Small Form-Factor Pluggable Modules Compatibility Matrix (not orderable but available on Cisco.com)
Obtaining Documentation, Obtaining Support, and Security
Guidelines
For information on obtaining documentation, obtaining support, providing documentation feedback, security guidelines, and also recommended aliases and general Cisco documents, see the monthly What’s New in Cisco Product
Documentation, which also lists all new and revised Cisco technical documentation, at: http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html
iv
Product Overview
The Cisco IE 4010 switch provides a rugged and secure switching infrastructure for harsh environments. It is suitable for industrial Ethernet applications, including process manufacturing, utility substations, intelligent transportation systems
(ITSs), rail transportation, and other similar deployments.
In industrial environments, you can connect the switch to any Ethernet-enabled industrial communication devices, including programmable logic controllers (PLCs), human-machine interfaces (HMIs), drives, sensors, and input and output (IO) devices.
In utility substations the switch can connect to devices such as Intelligent Electronic Devices (IEDs), distributed controllers, substation routers, Cisco IP Phones, Cisco Wireless Access Points, and other network devices such as redundant substation switches.
For detailed specifications, see the IE 4010 Data Sheet .
Switch Models
Table 1 Switch Models
Model
IE-4010-16S12P
Total
Ports
28
Uplinks
4 SFP
(100MB/
1G)
SFP Fiber
Ports
12
(100/1000
M)
Copper
10/100/1000
PoE/PoE+
Ports
1
12
(10/100/100
0M)
Default
Software
License
LAN
Base
2
Power Supplies
Support for 2 field-replaceable, redundant AC or DC power supplies.
IE-4010-4S24P 28 4 SFP
(100MB/
1G)
24
(10/100/100
0M)
LAN Base
For detailed specifications, see
.
Support for 2 field-replaceable, redundant AC or DC power supplies.
For detailed specifications, see the
.
1.
All copper Gigabit Ethernet interfaces support speed negotiation to 10/100/1000 mbps and duplex negotiation.Ethernet 4010 Series.
2.
Can be upgraded to IP Services at a fee. IP Services License Product Numbers are the following: L-IE4000-RTU= (Electronic SW
License for IE4000 Switches)
Cisco Systems, Inc.
www.cisco.com
1
Product Overview
Cable Side
Cable Side
Figure 1 Cisco IE-5000-16S12P Cable-Side View
1 LEDs
2 Express Setup button
3 Twelve 10/100/1000 PoE/PoE+ Ports (Downlinks) 8
6
7
4 Alarm port
5 USB (mini-Type B) console port
9
10
Power-input terminal
Flash memory card slot
Display mode button
Twelve 100/1000 SFP Ports
Console port
LEDs
For detailed information about LEDs see
.
10/100/1000 PoE/PoE+ Ports (Downlinks)
You can set the 10/100/1000 ports on the switch to operate in any combination of half duplex, full duplex, or 10 or 100
Mb/s. You can set the ports for speed and duplex autonegotiation. The default setting is autonegotiate.
When set for autonegotiation, the switch determines the speed and duplex settings of the attached device and advertises its own capabilities. If the connected device also supports autonegotiation, the switch negotiates the best connection
(the fastest line speed that both devices support and full-duplex transmission if the attached device supports it) and configures itself accordingly. In all cases, the attached device must be within 328 feet (100 meters).
Warning: Voltages that present a shock hazard may exist on Power over Ethernet (PoE) circuits if interconnections are made using uninsulated exposed metal contacts, conductors, or terminals. Avoid using such interconnection methods, unless the exposed metal parts are located within a restricted access location and users and service people who are authorized within the restricted access location are made aware of the hazard. A restricted access area can be accessed only through the use of a special tool, lock and key or other means of security. Statement
1072
The 10/100/1000 PoE ports on the Cisco IE-4010 switches provide PoE support for devices that are compliant with IEEE
802.3af/802.3at. The Cisco prestandard PoE is also supported for Cisco IP Phones and Cisco Aironet Access Points. The
PoE ports on the switch deliver up to 30 W of PoE+ power. All twelve ports are PoE ports and can be assigned a port priority.
2
Product Overview
Cable Side
When both power-supply modules are installed, the system has enough power to support all twelve ports as PoE ports.
The maximum available PoE power is 200W.
With one power module installed, the maximum available PoE power is 80W. In case one power-supply modules fails, the power to the low priority PoE ports is dropped, while power to the high priority PoE ports remains uninterrupted.
On a per-port basis, you control whether or not a port automatically provides power when an IP phone or an access point is connected.
The 10/100/1000 PoE ports use RJ-45 connectors with Ethernet pinouts. The maximum cable length is 328 feet (100 meters). The 100BASE-TX and 1000BASE-T traffic requires CA5, CAT5e, or CAT6 unshielded twisted pair (UTP) cable.
The 10BASE-T traffic can use CAT3 or CAT4 UTP cable.
For information about configuring and monitoring PoE ports, see the switch software configuration guide on Cisco.com.
For information about port connections and port specifications, see
Connecting Devices to the Ethernet Ports, page 30 .
Note:
The output of the PoE circuit has been evaluated as a Limited Power Source (LPS) per IEC 60950-1.
Alarm Ports
The switch has four alarm inputs and one alarm output.
Alarm Input
The alarm input is a dry-contact alarm port. You can connect up to four alarm inputs from devices, such as a door, a temperature gauge, or a fire alarm, to the alarm port. You can use the CLI to set the alarm severity to minor, or major. An alarm generates a system message and turns on an LED. See the
for the LED descriptions.
Alarm Output
The alarm output can be configured as a major alarm. Output alarms often control an external alarm, such as a bell or a light. To connect an external alarm device to the relay, you connect two relay contact wires to complete the electrical
circuit. See for information on the alarm pinouts. see the Alarm Port, page 54
.
Mini USB Port
Note:
The 5-pin mini-Type B connectors resemble the 4-pin mini-Type B connectors. They are not compatible. Use only the 5-pin mini-Type B.
Figure 2 USB Mini-Type B Port
The configurable inactivity timeout reactivates the RJ-45 console port if the USB console port is activated, but no input activity occurs on it for a specified time period. When the USB console port deactivates due to a timeout, you can restore its operation by disconnecting and reconnecting the USB cable. For information on using the CLI to configure the USB console interface, see the switch software guide.
3
Product Overview
Cable Side
SD Flash Memory Card
The switch supports a flash memory card that makes it possible to replace a failed switch without reconfiguring the new switch. The slot for the flash memory card is on the front of the switch. The flash card is hot swappable and can be accessed on the front panel in non hazardous locations only. A cover protects the flash card and holds the card firmly in place. The cover is hinged and closed with a captive screw. This prevents the card from coming loose and protects against shock and vibration.
For more information on inserting and removing the flash memory card, see
Display Mode Button
For detailed functionality see Display Mode Button, page 8 .
Power-Input Terminal
The power-input terminal provides screw terminals for the AC and DC power connections. The switch can operate with one or two power supplies. If one of the power sources fail, the other continues to power the switch. See
Installation, page 33 for information.
Figure 3 Power-Input Terminal
100/1000 SFP Ports
The switch Ethernet SFP modules provide connections to other devices. These field-replaceable transceiver modules provide the interfaces. The IE 4010 supports both FE and GE optics. SFP modules have local connectors (LCs) for fiber-optic connections or RJ-45 connectors for copper connections.
For the most up-to-date list of supported SFP models, see the IE 4010 Data Sheet .
. For more information about SFP/SFP+ modules and cables, see Transceiver Modules .
Console Ports
You can connect the switch to a PC running Microsoft Windows or to a terminal server through either the RJ-45 console port or the USB console port.
RJ-45 console port. The RJ-45 connection uses an RJ-45-to-DB-9 female cable.
USB mini-Type B console port (5-pin connector). The USB connection uses a USB Type A-to-5-pin mini-Type B cable.
4
Product Overview
Cable Side
The USB console interface speeds are the same as the RJ-45 console interface speeds.
To use the USB console port, you must install the Cisco Windows USB device driver on the device that is connected to
Vista, 7, 8, and 10 USB Device Driver, page 64 for more information.
With the Cisco Windows USB device driver, connecting and disconnecting the USB cable from the console port does not affect Windows HyperTerminal operations. Mac OS X or Linux require no special drivers.
LEDs
You can use the switch system and port LEDs to monitor switch activity and performance.
5
Product Overview
Cable Side
Switch Panel LEDs
Figure 4 Switch LEDs (Cable Side)
6
7
4
5
1
2
3
Port Status LEDs 1-28
Express Setup button
SYS (system)
USB (mini-USB console)
SD (SD flash memory card)
Alarm Status (1 to 4 and Output).
PSU1 and 2 (power supply 1 and 2)
11
12
13
14
8
9
10
Port speed status
Port duplex status
Redundancy status
Synchronous Ethernet status
PoE
Display mode switch
SD card slot cover
Port LEDs
Each Ethernet port has a port LED. These port LEDs, display information about the individual ports. The port mode
port modes and meanings.
To select or change a mode, press the Mode button until the desired mode is highlighted. The Mode LED will turn ON solid green when a mode is selected and turn OFF when timeout (5 seconds) or a different mode is selected. When you
port LED colors in different port modes.
6
Product Overview
Cable Side
Table 2
Mode LED
All Off
SPEED
DUPLX
REDUN
SYNCE
PoE
Port Mode LEDs
Port Mode
Port status
Port speed
Port duplex mode
Redundancy status
Synchronous Ethernet status
PoE+ port power
Description
The port status. This is the default mode.
The port operating speed: 10, 100, 1000 mbps or 10 Gbps.
The port duplex mode: full duplex or half duplex.
Parallel Redundancy Protocol (PRP) status.
Not supported by software yet. Mode button skips this LED.
The PoE+ port status.
Table 3 Meaning of Switch LED Colors in Different Modes
Port Mode LED
All Off
Port LED Color
Off
Green
Blinking green
Alternating green-amber
Amber
Meaning
No link, or port was administratively shut down.
Link present, no activity.
Activity. Port is sending or receiving data.
Link fault. Error frames can affect connectivity, and errors such as excessive collisions, CRC errors, and alignment and jabber errors are monitored for a link-fault indication.
Port is blocked by Spanning Tree Protocol (STP) and is not forwarding data.
SPEED
DUPLX
(duplex)
REDUN
SYNCE
After a port is reconfigured, the port LED can be amber for up to 30 seconds as
STP checks the switch for possible loops.
10/100/1000/SFP ports
Downlink Ports
Off
Amber
Green
Port is not operating.
Port is operating at 10 Mb/s.
Port is operating at 100 Mb/s.
Port is operating at 1000 Mb/s.
Flashing green
Uplinks Ports
Green
Off
Port is operating at 1000 Mb/s.
Port is not operating.
Amber
Green
Port is operating in half duplex.
Port is operating in full duplex.
Green One or more redundancy protocols are configured and active (for example, HSR,
DLR, PRP, etc.)
One or more redundancy protocols are indicating a redundancy fault.
Blinking amber
Fast blinking green The port LEDs are showing ports that are participating in a redundancy protocol and the redundancy fault status of that port.
Off
7
Product Overview
Cable Side
Table 3 Meaning of Switch LED Colors in Different Modes (continued)
Port Mode LED
PoE/PoE+
Port LED Color
Off
Meaning
PoE/PoE+ is off.
Green
Alternating green and amber
Blinking amber
If the powered device is receiving power from an AC power source, the port LED is off even if the device is connected to the switch port.
PoE/PoE+ is on and all ports function correctly. The port LED is green when the switch port is providing power.
PoE/PoE+ is on but one of the low priority ports power is disconnected or failed.
Amber
PoE/PoE+ is on but one of the high priority ports power is disconnected or failed.
PoE+ faults occur when noncompliant cabling or powered devices are connected to a PoE+ port. Use only standard-compliant cabling to connect Cisco prestandard
IP Phones and wireless access points or IEEE 802.3af/at-compliant devices to
PoE+ ports. You must remove from the network any cable or device that causes a
PoE+ fault.
PoE/PoE+ is on with failures.
PoE+ is enabled by default.
Display Mode Button
The Display Mode Button allows you to choose the mode you want displayed by the port LEDs (items 1-3 in
switch, the mode indicator moves from SPEED, DUPLX, REDUN, SYNCE, and PoE respectively.
Power-Supply Module LEDs
The switch power-supply module LEDs are labeled PSU1 and PSU2 (on the switch) and PSU OK (on the power-supply module). They show whether power-supply modules 1 and 2 are receiving power.
Table 4 Power Supply Module LEDs
Color
Off
Green
Red
Blinking red
System Status
Power-supply module (1 or 2) is not installed.
Valid input is present, and the output is within the operating range.
Valid input is present, and the output is outside the operating range or is not present.
Power-supply module (1 or 2) is installed but valid input is not present.
8
Product Overview
Cable Side
Alarm LEDs
Table 5 Alarm LEDs
Color
1-4 Input Alarms
Green
Red
Blinking red
Output Alarm
Green
Red
System Status
Alarm not present
Minor alarm present
Major alarm present
Alarm not present
Alarm condition present
SD Flash Memory Card LED
Table 6 SD Flash Card LED
Color
Fast blinking amber
Slow blinking amber
Green
Blinking green
System Status
Unsupported SD flash memory card is detected.
SD flash memory card is not present.
SD flash memory card is functioning.
SD flash memory card transfer in progress.
USB LED
The USB LED indicates the console port is in use.
If you connect a cable to the console port, the switch automatically uses that port for console communication. If you connect two console cables, the USB console port has priority.
Table 7 USB LED
LED
USB console port
Color
Green
Off
Description
USB console port selected
RS232 Console selected
9
Product Overview
Power-Supply Side
System LED
Table 8 System LED
Color
Off
Blinking green
Green
Red
System Status
System is not powered on.
Power-On Self-Test (POST) is in progress.
System is operating normally.
System is receiving power but is not functioning properly.
Power-Supply Side
The power-supply side has the LED panel and two power-supply slots for the removable power supplies.
Figure 5 Switch with Both Power-Supply Modules
1 Power Supply slot 1
3 LED panel
1 2 3
2 Power Supply slot 2
10
Product Overview
Power-Supply Side
Power-Supply Side LEDs (Similar to
Figure 4Switch LEDs (Cable Side), page 6 )
Figure 6 Switch LEDs
1-28
SYS
USB
SD
Alarms
1-4 and
OUT
PSU 1-2
Port (Ethernet and SFP respectively)
Status LEDs
System Status
Mini-USB console port status
SD flash memory card status
Alarm ports and Alarm Output status
Power supply 1and 2 status
SPEED
DUPLX
REDUN
SYNCE
PoE
Port speed status
Port duplex status
Redundancy status
Synchronous Ethernet status
PoE
DISPLAY
MODE
Display Mode button
For more information about these LEDs, see
Power Supply Features
The switch has two slots for power-supply modules:
PWR-RGD-LOW-DC-H: low-voltage DC
PWR-RGD-AC-DC-H: high-voltage AC or DC
Note:
For detailed specifications, see the IE 4010 Data Sheet .
11
Product Overview
Management Options
Caution: Only the -H version power supplies are certified safe for hazardous environments.
The switch supports these power-supply module combinations:
Single low-voltage DC
Single high-voltage AC or DC
Two high-voltage AC or DC
Two low-voltage DC
One high-voltage AC or DC and one low-voltage DC
For information on installing the power-supply modules, see
Power Supply Installation, page 33 .
See
Power-Supply Module LEDs, page 8 for information on the power supply LEDs.
Management Options
Cisco IOS CLI
You can configure and monitor the switch from the CLI. Connect your management station to the switch console port or use Telnet from a remote management station. See the switch command reference on Cisco.com for information.
SNMP network management
You can manage switches from a Simple Network Management Protocol (SNMP)-compatible management station.
The switch supports a comprehensive set of Management Information Base (MIB) extensions and four Remote
Monitoring (RMON) groups. See the switch software configuration guide on Cisco.com and the documentation that came with your SNMP application for information.
Device Manager
You can use Device Manager, which is in the switch memory, to manage individual and standalone switches. This web interface offers quick configuration and monitoring. You can access Device Manager from anywhere in your network through a web browser. For more information, see the Device Manager online help.
Prime Infrastructure
Cisco Prime Infrastructure simplifies the management of wireless and wired networks. It offers Day 0 and 1 provisioning, as well as Day N assurance from the branch to the data center. We call it One Management. With this single view and point of control, you can reap the benefits of One Management across both network and compute.
Network Configurations
See the switch software configuration guide on Cisco.com for an explanation of network configuration concepts. The software configuration guide also provides network configuration examples for creating dedicated network segments that are interconnected through Ethernet connections.
12
Switch Installation
Read the topics and perform the procedures in this order:
Installation Guidelines, page 14
Verifying Switch Operation, page 14
Installing the Switch, page 15
Installing and Removing SFP Modules, page 26
Replacing the SD Flash Memory Card, page 30
Connecting Devices to the Ethernet Ports, page 31
Warnings
These warnings are translated into several languages in the Regulatory Compliance and Safety Information for the Cisco
IE 4010 Switch document.
These warning statements apply to all the switches:
Warning: Before working on equipment that is connected to power lines, remove jewelry (including rings, necklaces, and watches). Metal objects will heat up when connected to power and ground and can cause serious burns or weld the metal object to the terminals. Statement 43
Warning: Read the installation instructions before you connect the system to its power source. Statement 1004
Warning: This unit is intended for installation in restricted access areas. A restricted access area can be accessed only through the use of a special tool, lock and key, or other means of security. Statement 1017
Warning: This equipment must be grounded. Never defeat the ground conductor or operate the equipment in the absence of a suitably installed ground conductor. Contact the appropriate electrical inspection authority or an electrician if you are uncertain that suitable grounding is available. Statement 1024
Warning: This unit might have more than one power supply connection. All connections must be removed to de-energize the unit. Statement 1028
Warning: Only trained and qualified personnel should be allowed to install, replace, or service this equipment. Statement
1030
Warning: Ultimate disposal of this product should be handled according to all national laws and regulations.
Statement 1040
Warning: For connections outside the building where the equipment is installed, the following ports must be connected through an approved network termination unit with integral circuit protection.
10/100/1000 Ethernet Statement 1044
Cisco Systems, Inc.
www.cisco.com
13
Switch Installation
Installation Guidelines
Warning: To prevent the system from overheating, do not operate it in an area that exceeds the maximum recommended ambient temperature of:
140°F (60°C) Statement 1047
Note:
Operating temperatures exceeding 60C are not covered by the product safety certifications and approvals.
However, the switch can function in the installations under the environmental conditions listed
Switch Specifications, page 70
.
Warning: Installation of the equipment must comply with local and national electrical codes. Statement 1074
Note:
For U.S. installations, refer to national electrical code ANSI/NFPA 70.
Warning: To prevent airflow restriction, allow clearance around the ventilation openings to be at least:
1.75 in. (4.4 cm). Statement 1076
Warning: Avoid using or servicing any equipment that has outdoor connections during an electrical storm. There may be a risk of electric shock from lightning. Statement 1088
Installation Guidelines
Before installing the switch, verify that these guidelines are met:
Cabling is away from sources of electrical noise, such as radios, power lines, and fluorescent lighting fixtures. Make sure that the cabling is away from other devices that might damage the cables.
Operating environment is within the ranges listed in
Technical Specifications, page 69 .
Relative humidity around the switch does not exceed 95 percent (non-condensing).
Altitude at the installation site is not higher than 13,800 feet.
For 10/100/1000 fixed ports, cable lengths from the switch to connected devices are not more than 328 feet (100 meters).
For more information about SFP/SFP+ modules and cables, see Transceiver Modules .
Airflow around the switch and through the vents is unrestricted. To prevent overheating, the switch must meet the minimum clearance of 1.75 inches (4.4 cm) at the top and bottom.
Note:
If the switch is installed in a closed or multirack assembly, the temperature around it might be greater than normal room temperature. Ensure that the internal temperature does not exceed the maximum ambient temperature specifications for the switch.
Verifying Switch Operation
Before installing the switch in a rack or on a wall, you should power the switch and verify that the switch passes the power-on self-test (POST).
To wire the switch to the power source, see
Power-Supply Module Installation, page 35 .
When the switch begins POST, the SYS LED blinks green, and the other LEDs stay green. When the switch passes POST, the SYS LED turns green. The other LEDs turn off and return to their operating status. If the switch fails POST, the SYS
LED is amber.
Note:
Contact Cisco Systems immediately if your switch fails POST.
After a successful POST, disconnect the power from the switch. For more information, see
Wiring the Power Source, page 39
. See the Installing the Switch, page 15
to install the switch in a rack or on a wall.
14
Switch Installation
Installing the Switch
Installing the Switch
Rack-Mounting
To rack-mount the switch, select the rack size and follow the steps in these sections:
Attaching Brackets for 19-Inch Racks, page 15
Attaching Brackets for 19-Inch Racks for IP-30 Compliance (Optional), page 17
Attaching Brackets for 23-Inch Racks, page 20
Attaching Brackets for ETSI Racks, page 21
Rack-Mounting the Switch, page 21
.
Warning: To prevent bodily injury when mounting or servicing this unit in a rack, you must take special precautions to ensure that the system remains stable. The following guidelines are provided to ensure your safety:
This unit should be mounted at the bottom of the rack if it is the only unit in the rack.
When mounting this unit in a partially filled rack, load the rack from the bottom to the top with the heaviest component at the bottom of the rack.
If the rack is provided with stabilizing devices, install the stabilizers before mounting or servicing the unit in the rack.
Statement 1006
Warning: For mounting railway-application equipment and for EN50155 standard compliance, the switch must be installed only in a rack mid-mounting position. If you install the switch in a front rack-mounting (cable side or power supply side) position or in a wall-mounting position, a mechanical failure can occur that results in the switch becoming detached from the rack. Statement 403
Attaching Brackets for 19-Inch Racks
The following illustrations show how to attach brackets to the switches.
15
Switch Installation
Installing the Switch
Figure 7 Attaching Brackets for 19-Inch Racks (Front bracket)
Figure 8 Attaching Brackets for 19-Inch Racks (Mid Mount)
16
Switch Installation
Installing the Switch
Figure 9 Attaching Brackets for 19-Inch Racks (Rear Mount)
Attaching Brackets for 19-Inch Racks for IP-30 Compliance (Optional)
Before installing the mounting brackets, you need to install the rubber plugs in the unused mounting holes.
17
Switch Installation
Installing the Switch
Figure 10 Inserting the Rubber Plug
2
1
3
1 Rubber plug
2 Switch
3 Screwdriver
1.
Identify your bracket mounting position. See Attaching Brackets for 19-Inch Racks, page 15
.
2.
3.
Use a screwdriver or pen to completely push in the rubber plugs. See
.
4.
Install the brackets on both sides of the switch. See
Attaching Brackets for 19-Inch Racks, page 15
Brackets for 19-Inch Racks for IP-30 Compliance (Optional), page 17
.
18
Switch Installation
Installing the Switch
Figure 11 Plug locations by position
Note:
For IP-30 compliance: If you use 23-inch brackets or ETSI brackets, you can insert the rubber plugs in the same holes as shown in
before installing the brackets.
19
Switch Installation
Installing the Switch
Attaching Brackets for 23-Inch Racks
If 23-inch brackets (RM-RGD-23IN=) are required, follow steps in Figure 12 on page 20
for installation.
Note:
23-inch and ETSI brackets should not be used in high vibration environments, including any railway application
(EN50155).
Note:
For IP-30 compliance: If you use 23-inch brackets or ETSI brackets, you can insert the rubber plugs in the same holes as shown in
Figure 11 on page 19 before installing the brackets.
Figure 12 Attaching 23-Inch Brackets
Note:
For IP-30 compliance: If you use 23-inch brackets, you can insert the rubber plugs in the same holes as shown in
Figure 11 on page 19 before installing the brackets.
20
Switch Installation
Installing the Switch
Attaching Brackets for ETSI Racks
Figure 13 Attaching Brackets (RM-RGD-ETSI=) for ETSI Racks
C isco CG S 25
20
2
1
1
2
3
1
3 Power-supply-side mounting position 1 Phillips flat-head screws
2 Cable-side-mounting position
Note:
23-inch and ETSI brackets should not be used in high vibration environments, including any railway application
(EN50155).
Note:
For IP-30 compliance: If you use ETSI brackets, you can insert the rubber plugs in the same holes as shown in
before installing the brackets.
Rack-Mounting the Switch
.
21
Switch Installation
Installing the Switch
Figure 14 Rack-Mounting
After the switch is mounted in the rack:
1.
Wire the switch to a power source. See Wiring the Power Source, page 39 .
2.
Connect the ports. See Connecting Devices to the Ethernet Ports, page 31
.
3.
Attach the cable guide to prevent the cables from obscuring the LED panels on the devices in the rack. Use the supplied black screw to attach the cable guide to the left or right bracket.
For configuration instructions about the CLI setup program, go to
Configuring the Switch with the CLI Setup Program, page 57
.
Wall-Mounting
To wall-mount the switch, follow the steps in these sections:
Attaching Brackets for IP-30 Compliance (Optional), page 24
Wall-Mounting the Switch, page 24
Warning: Read the wall-mounting instructions carefully before beginning installation. Failure to use the correct hardware or to follow the correct procedures could result in a hazardous situation to people and damage to the system. Statement 378
Warning: For mounting railway-application equipment and for EN50155 standard compliance, the switch must be installed only in a rack mid-mounting position. If you install the switch in a front rack-mounting (cable side or power supply side) position or in a wall-mounting position, a mechanical failure can occur that results in the switch becoming detached from the rack. Statement 403
If the switch is wall-mounted in an enclosure, follow these minimum clearances:
Sides of switch (facing up and facing down): 3.75 in. (9.52 cm)
Port side 3.0 in. (7.62 cm)
Power supply side: 5.25 in. (13.33 cm)
Cover side (not facing wall): 1.75 in. (4.44 cm)
22
Switch Installation
Installing the Switch
Base side (facing wall): 0 in. (0 cm)
Attaching Brackets
Figure 15 Attaching 19-inch Rack Brackets
1
1 Phillips truss-head screws
23
Switch Installation
Installing the Switch
Attaching Brackets for IP-30 Compliance (Optional)
1.
2.
Use a screwdriver or pen to completely push in the rubber plugs. See
.
3.
Install the brackets on both sides of the switch. See
Attaching Brackets for 19-Inch Racks, page 15
.
Wall-Mounting the Switch
For the best support of the switch and cables, ensure that the switch is attached securely to wall studs or to a firmly attached plywood mounting backboard.
Orientation should exactly match the figure below, with power terminal down, the LEDs up, and the venting and Cisco
.
24
Switch Installation
Installing the Switch
Figure 16 Wall-Mounting
1
1 User-supplied screws
After the Switch is Mounted on the Wall
Wire the switch to a power source. See
Wiring the Power Source, page 39
.
.
Connect the switch ports. See the Connecting Devices to the Ethernet Ports, page 31 .
25
Switch Installation
Installing and Removing SFP Modules
Installing and Removing SFP Modules
This section presents procedures to install and remove fiber-optic and 1000BASE-T SFP transceiver modules.
Installing SFP Modules
These sections describe how to install and remove SFP modules. SFP modules are inserted into SFP module slots on the front of the switch. Field-replaceable SFP modules provide the uplink interfaces, send (TX) and receive (RX).
You can use any combination of rugged SFP modules. Each SFP module must be of the same type as the SFP module on the other end of the cable, and the cable must not exceed the stipulated cable length for reliable communications.
For more information about SFP modules, see Cisco Transceiver Modules .
Caution: Depending on the SFP module you use, the operating temperature limits may be effected. Choose an SFP module appropriate to the installed environment.
Caution: To prevent electrostatic-discharge (ESD) damage, follow standard board and component handling procedures.
Warning: Do not insert and remove SFP modules while power is on; an electrical arc can occur. This could cause an explosion in hazardous location installations. Be sure that power is removed or the area is nonhazardous before proceeding. Statement 1087
Note:
Removing and installing an SFP module can shorten its useful life. Do not remove and insert any module more often than is absolutely necessary.
Caution: Do not install or remove the LC SFP module with fiber-optic cables attached because of potential damage to the cables, the cable connector, or the optical interfaces in the SFP module. Disconnect all cables before removing or installing an SFP module.
Removing and installing an SFP module can shorten its useful life. Do not remove and insert SFP modules more often than is absolutely necessary.
Installing Fiber Optic SFP Modules
Warning: Class 1 laser product. Statement 1008
To install and cable an optical SFP transceiver uplink port:
1.
Attach an ESD-preventive wrist strap to your wrist and to a bare metal surface.
2.
Find the send (TX) and receive (RX) markings on the module top.
On some SFP modules, the send and receive (TX and RX) markings might be replaced by arrows that show the direction of the connection, either send or receive (TX or RX).
3.
If the module has a bale-clasp latch, move it to the open, unlocked position.
4.
Align the module in front of the slot opening, and push until you feel the connector snap into place.
5.
If the module has a bale-clasp latch, close it.
6.
For fiber-optic SFP modules, remove the dust plugs and save.
7.
Connect the SFP cables.
26
Switch Installation
Installing and Removing SFP Modules
Figure 17 Installing an SFP Module
C isco IE 3010
Caution: Do not remove the dust plugs from the fiber-optic SFP module port or the rubber caps from the fiber-optic cable until you are ready to connect the cable. The plugs and caps protect the SFP module ports and cables from contamination and ambient light.
Installing 100/1000BASE-T SFP Modules
Table 9
Model Number
GLC-T
GLC-TE
100/1000BASE-T SFP Modules
Downlink Support
10/100/1000
10/100/1000
Uplink Support
10/100/1000
10/100/1000
The 100/1000BASE-T (copper) SFP transceiver, see
Figure 18 on page 28 , has a bale-clasp locking mechanism that
secures the transceiver in the module socket. The SFP network interface is an RJ-45 connector.
27
Switch Installation
Installing and Removing SFP Modules
Figure 18 1000BASE-T SFP Transceiver
1
2
3
1 RJ-45 connector
2 Bale-clasp latching mechanism in the closed (locked) position.
3 Bale-clasp latching mechanism in the open (unlocked) position.
Caution: To comply with GR-1089 intrabuilding lightning immunity requirements, you must use grounded, shielded, twisted-pair, CAT5 cabling.
Note:
When connecting to a 100/1000BASE-T-compatible server, workstation, or router, use four twisted-pair, straight-through CAT5 cabling for the SFP transceiver port. When connecting to a 100/1000BASE-T-compatible switch or repeater, use four twisted-pair, crossover CAT5 cabling.
To install a 100/1000BASE-T SFP transceiver:
1.
Attach an ESD-preventive wrist strap to your wrist and to the ESD ground connector on the chassis or to a properly grounded bare metal surface.
Caution: To avoid ESD damage, handle the SFP by its sides; do not touch the connector pins.
2.
Remove the SFP module from its protective packaging.
3.
Check the markings on the SFP transceiver to verify that you have the correct model for your network.
4.
Position the SFP transceiver in front of the port socket opening.
Note:
Different Cisco devices have different SFP transceiver socket configurations. Your Cisco device might require that the SFP transceiver be installed with the bale-clasp either in a latch-up or a latch-down orientation. Verify that you have the SFP transceiver oriented correctly when you position it in front of the port socket.
5.
With the bale-clasp closed (locked), slide the SFP transceiver into the socket until you feel it snap in place in the
6.
Connect the network interface cable RJ-45 plug to the SFP RJ-45 connector.
7.
Observe the port status LED:
—
Green indicates that the SFP transceiver and the target device established a link.
—
Amber indicates that the port is discovering the network topology and searching for loops. This process takes about 30 seconds, and then the LED turns green.
—
Off indicates that the target device might not be turned on, there might be a cable problem, or there might be
cabling problems.
28
Switch Installation
Installing and Removing SFP Modules
Connecting to SFP Modules
This section describes how to connect to a fiber-optic or 1000BASE-T SFP port. For instructions on how to install or remove an SFP module, see
Connecting Devices to the Ethernet Ports, page 31
.
Warning: Class 1 laser product. Statement 1008
Warning: Do not connect or disconnect cables to the ports while power is applied to the switch or any device on the network because an electrical arc can occur. This could cause an explosion in hazardous location installations.
Be sure that power is removed from the switch and cannot be accidentally be turned on, or verify that the area is nonhazardous before proceeding. Statement 1070
Caution: Do not remove the rubber plugs from the SFP module port or the rubber caps from the fiber-optic cable until you are ready to connect the cable. The plugs and caps protect the SFP module ports and cables from contamination and ambient light.
Before connecting to the SFP module, be sure that you understand the port and cabling guidelines in
. See Cable and Connectors, page 53
for information about the LC on the SFP module.
Caution: To prevent ESD damage, follow standard board and component handling procedures.
Connecting to a Fiber Optic SFP Module
To connect a fiber-optic cable to an SFP module:
1.
Remove the rubber plugs from the module port and fiber-optic cable, and store them for future use.
2.
Insert one end of the fiber-optic cable into the SFP module port.
3.
Insert the other cable end into a fiber-optic receptacle on a target device.
4.
Observe the port status LED:
—
The LED turns green when the switch and the target device have an established link.
—
The LED turns amber while the STP discovers the network topology and searches for loops. This process takes about 30 seconds, and then the port LED turns green.
—
If the LED is off, the target device might not be turned on, there might be a cable problem, or there might be a
problems.
5.
If necessary, reconfigure and restart the switch or the target device.
Connecting to a 1000BASE-T SFP Module
To connect a CAT5 cable to a 1000BASE-T SFP module:
Caution: To prevent ESD damage, follow standard board and component handling procedures.
1.
When connecting to servers, workstations, and routers, insert a four twisted-pair, straight-through cable in the
RJ-45 connector. When connecting to switches or repeaters, insert a four twisted-pair, crossover cable.
Note:
When connecting to a 1000BASE-T device, use a four twisted-pair CAT5 cable.
29
Switch Installation
Replacing the SD Flash Memory Card
2.
Insert the other cable end in an RJ-45 connector on a target device.
3.
Observe the port status LED.
—
The LED turns green when the switch and the target device have an established link.
—
The LED turns amber while the STP discovers the network topology and searches for loops. This process takes about 30 seconds, and then the port LED turns green.
—
If the LED is off, the target device might not be turned on, there might be a cable problem, or there might be problem with the adapter installed in the target device. See
for solutions to cabling problems.
4.
If necessary, reconfigure and restart the switch or target device.
Removing SFP Modules
1.
Attach an ESD-preventive wrist strap to your wrist and to a bare metal surface.
2.
Disconnect the cable from the SFP module. For reattachment, note which cable connector plug is send (TX) and which is receive (RX).
3.
Insert a dust plug into the optical ports of the SFP module.
4.
If the module has a bale-clasp latch, pull the bale out and down to eject it. If the latch is obstructed and you cannot use your finger, use a small, flat-blade screwdriver or other long, narrow instrument.
5.
Grasp the SFP module, and carefully remove it from the slot.
6.
Place the module in an antistatic bag or other protective environment.
Figure 19 Removing a Bale-Clasp Latch SFP Module
1
1 Bale clasp
Replacing the SD Flash Memory Card
1.
Locate the flash memory card slot on the cable-side of the switch.
2.
Loosen the captive thumb screw. (Be careful not to cross-thread or over-tighten the thumb screw.)
30
Switch Installation
Connecting Devices to the Ethernet Ports
3.
Pull the cover open, and pull the cover tab from the hinge.
4.
Gently push the flash memory card to eject it. Place it in an anti-static bag to protect it from static discharge.
5.
Push the replacement card into the slot, and press it firmly in place. The card is keyed so that you cannot insert it the wrong way.
6.
Place the flash card slot cover tabs into the hinge.
7.
Close the cover, and hand-tighten the screw.
Connecting Devices to the Ethernet Ports
The Ethernet ports use standard RJ-45 connectors with Ethernet pinouts. The maximum cable length is 328 feet (100 meters). The 100BASE-TX and 1000BASE-T traffic requires Category 5, Category 5e, or Category 6 UTP cable. The
10BASE-T traffic uses Category 3 or Category 4 cable.
The autonegotiation feature is enabled by default on the switch. At this setting, the switch ports configure themselves to operate at the speed of the attached device. If the device does not support autonegotiation, you can set the switch port speed and duplex parameters. To maximize performance, either let the ports autonegotiate both speed and duplex, or set the port speed and duplex parameters on both ends of the connection.
For simplified cabling, the automatic medium-dependent interface crossover (auto-MDIX) feature is enabled by default.
With auto-MDIX enabled, the switch detects the required cable type for copper Ethernet connections and configures the interface accordingly. Therefore, you can use either a crossover or a straight-through cable for connections to a Ethernet port, regardless of the type of connected device.
See the switch software configuration guide or the switch command reference on Cisco.com for more information about autonegotiation and auto-MDIX.
If auto-MDIX is disabled, use the guidelines in
to select the cable for connecting the
Ethernet ports to other devices.
When using PoE/PoE+, those ports have the same autonegotiation settings and cabling requirements as those in the
Connecting Devices to the Ethernet Ports, page 31 . These ports provide PoE power.
See Cable and Connectors, page 53
for information on the cables and connectors.
The ports provide PoE/PoE+ support for devices compliant with IEEE 802.3af/at and also provide Cisco prestandard
PoE/PoE+ support for Cisco IP Phones and Cisco Aironet Access Points.
On a per-port basis, you can control whether or not a port automatically provides power to a connected IP phone or an access point.
To access an advanced PoE planning tool, use the Cisco Power Calculator on Cisco.com: http://tools.cisco.com/cpc/launch.jsp
You can use this application to calculate the power supply requirements for a specific PoE/PoE+ configuration. The results show output current, output power, and heat dissipation.
Warning: Voltages that present a shock hazard may exist on Power over Ethernet (PoE) circuits if interconnections are made using uninsulated exposed metal contacts, conductors, or terminals. Avoid using such interconnection methods, unless the exposed metal parts are located within a restricted access location and users and service people who are authorized within the restricted access location are made aware of the hazard. A restricted access area can be accessed only through the use of a special tool, lock and key or other means of security. Statement
1072
31
Switch Installation
Where to Go Next
Caution: Category 5e and Category 6 cables can store high levels of static electricity. Always ground the cables to a suitable and safe earth ground before connecting them to the switch or other devices.
Where to Go Next
to change the switch settings.
32
Power Supply Installation
This chapter describes how to remove and install a new or replacement power supply. Your switch ships with at least one installed power-supply module (AC or DC, depending on your order).
The power-supply modules are field-replaceable units (FRUs) and are hot-swappable when deployed in non-hazardous locations.
For translations of the safety warnings in this chapter, see the Regulatory Compliance and Safety Information for the
Cisco IE 4010 Switch on Cisco.com.
Installation Guidelines, page 35
Installing the Power-Supply Module in the Switch, page 37
Wiring the Power Source, page 39
Removing the Power-Supply Module, page 44
Cisco Systems, Inc.
www.cisco.com
33
Power Supply Installation
Power-Supply Modules
Power-Supply Modules
Table 10 Power Supply Modules
Model
PWR-RGD-LOW-DC-H
PWR-RGD-AC-DC-H
Description
Low-voltage DC. For detailed specifications, see the IE 4010 Data Sheet
High-voltage AC or DC. For detailed specifications, see the
.
IE 4010 Data Sheet .
Figure 20 PWR-RGD-AC-DC-H Power-Supply Module
1
2
3
1
2
Power-supply module
PSU OK LED
Figure 21 PWR-RGD-LOW-DC-H Power-Supply Module
1
3 Captive screw
2
3
1
2
Power-supply module
PSU OK LED
3 Captive screw
Note:
Power Supplies with the -H suffix are required for hazardous environment installations. Non hazardous environments may use either -H or non -H supplies.
For a description of the PSU OK LEDs, see the
Power-Supply Module LEDs, page 8 .
34
Power Supply Installation
Power-Supply Module Installation
Power-Supply Module Installation
Installation Guidelines, page 35
Installing a Power-Supply Module, page 35
Wiring the Power Source, page 39
Removing the Power-Supply Module, page 44
Installation Guidelines
Observe these guidelines when removing or installing a power-supply module:
A power-supply module that is only partially connected to the switch disrupts the system operation.
Warning: Blank faceplates and cover panels serve three important functions: they prevent exposure to hazardous voltages and currents inside the chassis; they contain electromagnetic interference (EMI) that might disrupt other equipment; and they direct the flow of cooling air through the chassis. Do not operate the system unless all cards, faceplates, front covers, and rear covers are in place.
Statement 1029
Warning: Do not reach into a vacant slot while installing or removing a module. Exposed circuitry is an energy hazard. Statement 206
Warning: Only trained and qualified personnel should be allowed to install, replace, or service this equipment.
Statement 1030
Warning: Avoid using or servicing any equipment that has outdoor connections during an electrical storm. There may be a risk of electric shock from lightning. Statement 1088
Installing a Power-Supply Module
This procedure is for installing a power-supply module in the PSU1 or PSU2 slot.
Warning: The covers are an integral part of the safety design of the product. Do not operate the unit without the covers installed. Statement 1077
Warning: This unit might have more than one power supply connection. All connections must be removed to de-energize the unit. Statement 1028
Caution: Equipment installation must comply with local and national electrical codes.
Equipment That You Need
Torque driver(s) capable of 5 to 35 in-lbs
Ring, spade, or flanged spade terminal (terminals should be insulated)
—
Ring terminal (such as Tyco part number 2-34158-1 for 16–14 AWG or 2-34852-1 for 12–10 AWG wire)
—
Spade terminal (such as Tyco part number 54367-2 for 16–14 AWG wire)
—
Flanged spade terminal (such as Tyco part number 2-324165-1 for 16–14 AWG wire or 1-324581-1 for 12–10
AWG wire)
Use the 16-14 AWG wire and appropriate terminals for the AC or high-voltage DC power supply
35
Power Supply Installation
Power-Supply Module Installation
Use the12-10 AWG wire and appropriate terminals for the low-voltage DC power supply
Crimping tool (such as Thomas & Bett part number WT2000, ERG-2001)
6-gauge copper ground wire
12-AWG wire (minimum) for the low-voltage power-supply module and 16-AWG (minimum) wire for the high-voltage power-supply module
For power source connections, use wires rated for at least 194°F (90°C).
UL- and CSA-rated style 1007 or 1569 twisted-pair copper wire
Wire-stripping tools for stripping 6-, 10-, 12-, 14-, and 16-gauge wires.
Number-2 Phillips screwdriver
Flat-blade screwdriver
Obtain these necessary tools and equipment:
Ratcheting torque screwdriver with a number-2 and a number-1 Phillips head that exerts up to 15 pound-force inches (lbf-in.) or 240 ounce-force inches (ozf-in.) of pressure.
Panduit crimping tool with optional controlled-cycle mechanism (model CT-720, CT-920, CT-920CH, CT-930, or
CT-940CH).
Wire-stripping tools.
12-gauge copper ground wire (insulated or noninsulated) when using the single-ground connection.
6-gauge copper ground wire (insulated or noninsulated) when using the dual-ground connection.
For the dual ground connection, also use the supplied dual-hole lug from the accessory kit.
Four leads of 16-gauge copper wire.
Grounding the Switch
Follow the grounding procedures at your site and observe these warnings:
Warning: This equipment must be grounded. Never defeat the ground conductor or operate the equipment in the absence of a suitably installed ground conductor. Contact the appropriate electrical inspection authority or an electrician if you are uncertain that suitable grounding is available. Statement 1024
Warning: When installing or replacing the unit, the ground connection must always be made first and disconnected last. Statement 1046
Caution: Follow the grounding procedure instructions, and use an appropriately Listed or certified lug (included with the switch) for number-6 AWG wire and 10-32 ground-lug screws.
Note:
You can use the grounding lug to attach a wrist strap for ESD protection during servicing.
Follow these steps to install a dual-hole lug on the switch. Be sure to follow any grounding requirements at your site.
1.
Use a Phillips screwdriver or a ratcheting torque screwdriver with a Phillips head to remove the ground screw from the cable side of the switch. You need the screw in Step 4.
2.
Strip the 6-gauge ground wire to 0.5 inch (12.7 mm) ± 0.02 inch (0.5 mm). See
. Stripping more than the recommended amount of wire can leave exposed wire from the connector.
36
Power Supply Installation
Power-Supply Module Installation
Figure 22 Stripping the Ground Wire
0.5 in. (12.7 mm) ± 0.02 in. (0.5 mm)
Wire lead
Insulation
3.
).
Figure 23 Crimping the Terminal Lug
4.
Slide the ground screw from Step 1 through the terminal lug. Insert the ground screws into the opening on the cable side.
Figure 24 Attaching the Terminal Lug
Cisco IE 3010
1 Dual-hole terminal lug
5.
Use a ratcheting torque screwdriver to tighten the ground screws to 30 in-lb (± 2 in-lb).
6.
Attach the other end of the ground wire to an appropriate ground.
Installing the Power-Supply Module in the Switch
1.
Ensure that the power is off at the AC or DC circuits.
37
Power Supply Installation
Power-Supply Module Installation
Locate the circuit breakers, turn them OFF, and lock out the circuit.
Warning: If the power is not off at the AC or DC circuit breaker, do not touch the power-input terminal.
2.
Use a Phillips screwdriver to loosen the two captive screws of the blank power-supply module and gently pull it out.
See
and
.
Figure 25 Loosen the Screws on the Power Supply Blank
C isco IE 3010
Sw itch Series
Figure 26 Remove the Power Supply Blank
C isco C onne cted G rid
Series
3.
Insert the power-supply module into the slot, and gently push it in. See Figure 27 on page 39 .
Note:
Ensure that the power supply module is flush with the switch.
Installing the DC Power Supply in the Switch
To remove and install a DC-powered power supply module, follow these steps:
1.
Turn off power at the DC circuits. To ensure that power is removed from the DC circuits, locate the circuit breakers for the DC circuits, switch the circuit breakers to the OFF position, and tape the circuit-breaker switches in the OFF position.
2.
Use a number-2 Phillips screwdriver to remove the plastic safety cover from the power supply terminal blocks.
3.
Use a number-1 Phillips screwdriver to remove the DC-input power wires from the power terminals.
Use a Phillips screwdriver to loosen the two captive screws at the lower edge that secure the power supply module to
the switch chassis ( Figure 27 on page 39
).
4.
Remove the power supply module from the power slot by pulling on the extraction handle.
5.
Insert the new power supply into the power supply slot, and gently apply pressure while pushing the module into the
38
Power Supply Installation
Power-Supply Module Installation
Figure 27 Insert the Power-Supply Module
6.
Use a ratcheting torque screwdriver to torque each screw to 8–10 in-lb.
Wiring the Power Source
Before you wire the power source, review these warnings:
Warning: This product relies on the building’s installation for short-circuit (overcurrent) protection. Ensure that the protective device is rated not greater than:
AC: 20 A, DC: 15 A Statement 1005
Warning: A readily accessible two-poled disconnect device must be incorporated in the fixed wiring.
Statement 1022
Warning: Only trained and qualified personnel should be allowed to install or replace this equipment.
Statement 1030
Warning: Hazardous voltage or energy may be present on power terminals. Always replace cover when terminals are not in service. Be sure uninsulated conductors are not accessible when cover is in place. Statement 1086
1.
Ensure that the power is off at the AC or DC circuits.
Locate the circuit breakers, turn them OFF, and lock out the circuit.
Warning: If the power is not off at the AC or DC circuit breaker, do not touch the power-input terminal.
2.
Use a Phillips screwdriver to loosen the captive screw on the power-input terminal, and open the cover.
39
Power Supply Installation
Power-Supply Module Installation
Figure 28 Opening the Power-Input Terminal Cover
Cisco CGS 2520
100-240V
~, 50-60Hz, 2A
100-240V
~, 50-60Hz, 2A
5
2A
5
2A
10A
10A
The terminal screws labels are on the power-input terminal cover. See Figure 29 on page 41
.
40
Power Supply Installation
Power-Supply Module Installation
Figure 29 Power-Input Terminal
100-240V~, 50-60Hz, 2A
100-240V~, 50-60Hz, 2A
1
3
2
4
8
10
9
11
5
5 2A 5 2A
12
6
10A
7 13
10A
14
1 Line connection for high-voltage AC (PSU1)
2 Neutral connection for high-voltage AC (PSU1)
3 Positive connection for high-voltage DC (PSU1)
4 Negative connection for high-voltage DC (PSU1)
5 PSU1 (power-supply module 1)
6 Positive connection for low-voltage DC (PSU1)
7 Negative connection for low-voltage DC (PSU1)
8
9
Line connection for high-voltage AC (for PSU2)
Neutral connection for high-voltage AC (PSU2)
10 Positive connection for high-voltage DC (PSU2)
11 Negative connection for high-voltage DC (PSU2)
12 PSU2 (power-supply module 2)
13 Positive connection for low-voltage DC (PSU2)
14 Negative connection for low-voltage DC (PSU2)
Note:
The power-supply module 1 connection is labeled PSU1, and the power-supply module 2 connection is labeled
PSU2. Make sure that you connect the wires to the correct terminal screws.
3.
Use twisted-pair copper wire (12- to 18-AWG) to connect from the power-input terminal to the power source.
4.
Strip each of the two wires to 0.25 inch (6.3 mm) ± 0.02 inch (0.5 mm).
Note:
Do not strip more than 0.27 inch (6.8 mm) of insulation from the wire. Stripping more than the recommended amount of wire can leave exposed wire from the connector after installation.
Figure 30 Stripping the Input Power Source Wire
0.25 in. (6.3 mm) ± 0.02 in. (0.5 mm)
5.
Insert the wire into a spade terminal, and crimp it to the wire.
You can also use a ring or flanged spade terminal as listed in
Equipment That You Need, page 35 .
41
Power Supply Installation
Power-Supply Module Installation
Figure 31 Crimping the Spade Terminal Lug
6.
Loosen the terminal screw, and slide the terminal under the screw and washer. See
.
Note:
Use the appropriate terminal screws based on power supply type: high-voltage (AC or DC) or low-voltage
(DC).
7.
Make the power connection:
AC Power Connection
Connect the line wire into the terminal screw labeled L and the neutral wire into the terminal screw labeled N to complete the AC connection.
Figure 32 Connecting the Wires to the High-Voltage AC Power (PSU1) z, 2.2A
100-240V~, 50-60H z, 2.2A
100-240V~, 50-60H
DC Power Connection
Connect the positive wire into the terminal screw labeled “+”, and the negative wire into the terminal screw labeled
“–”.
42
Power Supply Installation
Power-Supply Module Installation
Low-voltage DC Power-Supply Module
Connect the wires to the terminals labeled Lo.
High-voltage DC Power-Supply Module
Connect the wires to the terminals labeled Hi.
Note:
Ensure that you cannot see any wire lead. Only wire with insulation should extend from the terminal screw.
Figure 33 Connecting the Wires to the Low-Voltage DC Power (PSU2)
8.
Torque the captive screws (above the wires) to 8.5 in-lb (± 0.5 in-lb).
9.
Complete the power connection:
AC Power Connection
Connect the other end of the line wire (the one connected to L) to the line terminal on the AC-power source, and connect the other end of the neutral wire (the one connected to N) to the neutral terminal on the AC power source.
DC Power Connection
Connect the other end of the positive wire (the one connected to “+”) to the positive terminal on the DC-power source, and connect the other end of the negative wire (the one connected to “–”) to the negative terminal on the
DC power source.
Note:
Ensure that you cannot see any wire lead. Only wire with insulation should extend from the terminal screw.
If you have two power supplies, repeat steps 1 through 10.
10.
Close the power-input terminal cover.
11.
Use a ratcheting torque screwdriver to torque the screw to 7 in-lb (± 1 in-lb).
12.
Turn on the power at the AC or DC circuit.
13.
Verify that the PSU1 or PSU2 LED on the switch and PSU OK LED on the power-supply module are green.
See the switch software guide for information on how to configure the power supply settings.
43
Power Supply Installation
Removing the Power-Supply Module
Removing the Power-Supply Module
The power-supply modules are hot-swappable. By removing the power-supply modules, you can power off the switch without disconnecting the wiring from the power-input terminal.
1.
Ensure that the power is off at the AC or DC circuits.
Locate the circuit breakers, turn them OFF, and lock out the circuit.
Warning: If the power is not off at the AC or DC circuit breaker, do not touch the power-input terminal.
2.
Verify that the PSU LED and PSU OK LED is blinking red or is off.
3.
Use a Phillips screwdriver to loosen the captive screws that secure the power-supply module to the switch. See
Warning: Hot surface. Statement 1079
Figure 34 Removing the Screws
C isco IE 3010
Sw itch Series
4.
Remove the power-supply module from the power slot. The power-supply module might be hot. See
.
5.
Install a new power-supply module or a blank cover.
Figure 35 Removing the Power-Supply Module
C isco IE 3010
Sw itch Series
Caution: To prevent exposure to hazardous voltages and to contain electromagnetic interference (EMI), either a power-supply module or a blank cover must be in each power-supply module slot at all times.
44
Troubleshooting
This chapter provides these topics for troubleshooting problems:
How to Recover Passwords, page 48
Finding the Switch Serial Number, page 48
Diagnosing Problems
The switch LEDs provide troubleshooting information about the switch. They show boot errors, port-connectivity problems, and overall switch performance. You can also get statistics from Device Manager, the CLI, or an SNMP workstation.
Switch Boot Fast
Note:
Contact your Cisco TAC representative if your switch does not successfully boot.
Note:
You can disable boot fast and run POST by using the Cisco IOS CLI.
Switch LEDs
and their meanings.
Switch Connections
Bad or Damaged Cable
Always examine the cable for marginal damage or failure. A cable might be just good enough to connect at the physical layer, but it could corrupt packets as a result of subtle damage to the wiring or connectors. You can identify this problem because the port has many packet errors or it constantly flaps (loses and regains link).
Exchange the copper or fiber-optic cable with a known good cable.
Look for broken or missing pins on cable connectors.
Rule out any bad patch panel connections or media converters between the source and the destination. If possible, bypass the patch panel, or eliminate media converters (fiber-optic-to-copper).
Try the cable in another port to see if the problem follows the cable.
Ethernet and Fiber-Optic Cables
Make sure that you have the correct cable:
Cisco Systems, Inc.
www.cisco.com
45
Troubleshooting
Diagnosing Problems
For Ethernet, use Category 3 or better copper cable for 10 Mb/s UTP connections. Use either Category 5, Category
5e, or Category 6 UTP for 10/100/1000 Mb/s, and PoE connections.
Verify that you have the correct fiber-optic cable for the distance and port type. Make sure that the connected device ports match and use the same type encoding, optical frequency, and fiber type.
Determine if a copper crossover cable was used when a straight-through was required or the reverse. Enable auto-MDIX on the switch, or replace the cable.
Link Status
Verify that both sides have a link. A broken wire or a shutdown port can cause one side to show a link even though the other side does not have a link.
A port LED that is on does not guarantee that the cable is functional. It might have encountered physical stress, causing it to function at a marginal level. If the port LED does not turn on:
Connect the cable from the switch to a known good device.
Make sure that both ends of the cable are connected to the correct ports.
Verify that both devices have power.
Verify that you are using the correct cable type. See Cable and Connectors, page 53
for information.
Look for loose connections. Sometimes a cable appears to be seated but is not. Disconnect the cable, and then reconnect it.
10/100/1000 Port Connections
If a port appears to malfunction:
Verify the status of all ports by checking the LEDs. For more information, see
.
Use the show interfaces command to see if the port is error-disabled, disabled, or shut down. Reenable the port if necessary.
Verify the cable type. See Cable and Connectors, page 53
.
SFP Module
Use only Cisco SFP modules. Each Cisco module has an internal serial EEPROM that is encoded with security information.
This encoding verifies that the module meets the requirements for the switch.
Inspect the SFP module. Exchange the suspect module with a known good module.
Verify that the module is supported on this platform. (The switch release notes on Cisco.com list the SFP modules that the switch supports.)
Use the show interfaces command to see if the port or module is error-disabled, disabled, or shutdown. Reenable the port if needed.
Make sure that all fiber-optic connections are clean and securely connected.
Interface Settings
Verify that the interface is not disabled or powered off. If an interface is manually shut down on either side of the link, it does not come up until you reenable the interface. Use the show interfaces command to see if the interface is error-disabled, disabled, or shut down on either side of the connection. If needed, reenable the interface.
46
Troubleshooting
Diagnosing Problems
Ping End Device
Ping from the directly connected switch first, and then work your way back port by port, interface by interface, trunk by trunk, until you find the source of the connectivity issue. Make sure that each switch can identify the end device MAC address in its Content-Addressable Memory (CAM) table.
Spanning Tree Loops
STP loops can cause serious performance issues that look like port or interface problems.
A unidirectional link can cause loops. It occurs when the traffic sent by the switch is received by the neighbor, but the traffic from the neighbor is not received by the switch. A broken cable, other cabling problems, or a port issue can cause this one-way communication.
You can enable UniDirectional Link Detection (UDLD) on the switch to help identify unidirectional link problems. For information about enabling UDLD on the switch, see the “Understanding UDLD” section in the switch software configuration guide on Cisco.com.
Switch Performance
Speed, Duplex, and Autonegotiation
Port statistics that show a large number of alignment errors, frame check sequence (FCS), or late-collisions errors, might mean a speed or duplex mismatch.
A common issue occurs when duplex and speed settings are mismatched between two switches, between a switch and a router, or between the switch and a workstation or server. Mismatches can happen when manually setting the speed and duplex or from autonegotiation issues between the two devices.
To maximize switch performance and to ensure a link, follow one of these guidelines when changing the duplex or the speed settings.
Let both ports autonegotiate both speed and duplex.
Manually set the speed and duplex parameters for the interfaces on both ends of the connection.
If a remote device does not autonegotiate, use the same duplex settings on the two ports. The speed parameter adjusts itself even if the connected port does not autonegotiate.
Autonegotiation and Network Interface Cards
Problems sometimes occur between the switch and third-party network interface cards (NICs). By default, the switch ports and interfaces autonegotiate. Laptops or other devices are commonly set to autonegotiate, yet sometimes issues occur.
To troubleshoot autonegotiation problems, try manually setting both sides of the connection. If this does not solve the problem, there could be a problem with the firmware or software on the NIC. You can resolve this by upgrading the NIC driver to the latest version.
Cabling Distance
If the port statistics show excessive FCS, late-collision, or alignment errors, verify that the cable distance from the switch
to the connected device meets the recommended guidelines. See the Cable and Connectors, page 53
.
47
Troubleshooting
Resetting the Switch
Resetting the Switch
These are reasons why you might want to reset the switch to the factory default settings:
You installed the switch in your network and cannot connect to it because you assigned the wrong IP address.
You want to reset the password on the switch.
Note:
Resetting the switch deletes the configuration and reboots the switch.
Caution: If you press the Express Setup button when you power on, the automatic boot sequence stops, and the switch enters bootloader mode.
To reset the switch:
1.
Press and hold the Express Setup button (recessed behind a small hole in the faceplate) for about 10 seconds with a paper clip or similar object. The switch reboots. The system LED turns green after the switch completes rebooting.
2.
Press the Express Setup button again for 3 seconds. A switch 10/100/1000 Ethernet port blinks green.
The switch now behaves like an unconfigured switch. You can configure the switch by using the CLI setup procedure described in
Configuring the Switch with the CLI Setup Program, page 57
How to Recover Passwords
Password recovery is a feature that a system administrator can enable or disable. If password recovery is disabled, the only way to recover from a lost or forgotten password is to clear the switch configuration entirely. For this procedure, see
the How to Recover Passwords, page 48
.
The Cisco IE 4010 Switch Software Configuration Guide provides details about enabling and disabling the password recovery feature and the procedure for recovering passwords.
Finding the Switch Serial Number
If you contact Cisco Technical Assistance, you need to know the serial number of your switch. The serial number is on the top of the switch. You can also use the show version command to obtain the switch serial number.
48
Hazardous Location Installation Information
This appendix provides hazardous location installation information for the Cisco IE 4010 Switchs.
Hazardous Area Installation Warnings
Caution: When installed in a Class I. Div/Zone 2 hazardous location environment, this equipment must be installed in a min. IP54, ATEX certified enclosure.
Caution: Airflow around the switch must be unrestricted. To prevent the switch from overheating, there must be the following minimum clearances:
- Top and bottom: 2.0 in. (50.8 mm)
- Sides: 2.0 in. (50.8 mm)
- Front: 2.0 in. (50.8 mm)
Contact your Cisco Technical Assistance Centre (TAC) if tighter spacings are required.
Caution: When installed in a Class I. Div/Zone 2 hazardous location environment. this equipment must be installed in a pollution degree 2 environment per IEC 60664-1)
Caution: This equipment is suitable for use in Class I. Division 2 . Groups A, B . C. D. or only nonhazardous locations.
Caution: Do not install or remove SFP modules when an explosive atmosphere may be present.
Caution: Do not install or remove power supplies when an explosive atmosphere may be present.
Caution: Do not use the USB Console Service Port when an explosive atmosphere may be present.
Warning: Exposure to some chemicals could degrade the sealing properties of materials used in the sealed relay device. Statement 381
Warning: This unit is intended for installation in restricted access areas. A restricted access area can be accessed only through the use of a special tool, lock and key, or other means of security. Statement 1017
Warning: To prevent the system from overheating, do not operate it in an area that exceeds the maximum recommended ambient temperature of :
140°F (60°C) Statement 1047
Warning: When you connect or disconnect the power and/or alarm connector with power applied, an electrical arc can occur. This could cause an explosion in hazardous area installations. Be sure that all power is removed from the switch and any other circuits. Be sure that power cannot be accidentally turned on or verify that the area is nonhazardous before proceeding. Statement 1058
Warning: In switch installations in a hazardous location, the DC power source could be located away from the vicinity of the switch. Before performing any of the following procedures, locate the DC circuit to ensure that the power is removed and cannot be turned on accidentally, or verify that the area is nonhazardous before proceeding.
Statement 1059
Warning: This equipment is supplied as “open type” equipment. It must be mounted within an enclosure that is suitably designed for those specific environmental conditions that will be present and appropriately designed to prevent personal injury resulting from accessibility to live parts. The interior of the enclosure must be accessible only by the use of a tool.
The enclosure must meet IP 54 or NEMA type 4 minimum enclosure rating standards. Statement 1063
Cisco Systems, Inc.
www.cisco.com
49
Hazardous Location Installation Information
Hazardous Area Installation Warnings
Warning: Use twisted-pair supply wires suitable for 86°F (30°C) above surrounding ambient temperature outside the enclosure. Statement 1067
Warning: When used in a Class I, Division 2, hazardous location, this equipment must be mounted in a suitable enclosure with a proper wiring method that complies with the governing electrical codes. Statement 1069
Warning: Explosion Hazard—The area must be known to be nonhazardous before installing, servicing, or replacing the unit. Statement 1082
Note:
This equipment has been tested by UL for the explosion, fire, shock and casualty hazards required by the applicable hazardous locations standards. UL certification does not cover the performance or reliability of any GPS hardware, GPS operating software, or other GPS-related aspects of equipment covered under this category.
Accordingly, UL makes no representations, warranties or certifications regarding the performance or reliability of any
GPS-related functions of equipment covered under this category.
North American Hazardous Location Approval
The following information applies when operating this equipment in hazardous locations:
English:
Français:
Products marked "Class I, Div 2, GP A, B, C, D" are suitable for use in Class I Division 2 Groups A,
B, C, D, Hazardous Locations and nonhazardous locations only. Each product is supplied with markings on the rating nameplate indicating the hazardous location temperature code. When combining products within a system, the most adverse temperature code (lowest "T" number) may be used to help determine the overall temperature code of the system. Combinations of equipment in your system are subject to investigation by the local Authority Having Jurisdiction at the time of installation.
Informations sur l'utilisation de cet équipement en environnements dangereux:
Les produits marqués "Class I, Div 2, GP A, B, C, D" ne conviennent qu'à une utilisation en environnements de Classe I Division 2 Groupes A, B, C, D dangereux et non dangereux. Chaque produit est livré avec des marquages sur sa plaque d'identification qui indiquent le code de température pour les environnements dangereux. Lorsque plusieurs produits sont combinés dans un système, le code de température le plus défavorable (code de température le plus faible) peut
être utilisé pour déterminer le code de température global du système. Les combinaisons d'équipements dans le système sont sujettes à inspection par les autorités locales qualifiées au moment de l'installation.
EMC Environmental Conditions for Products Installed in the European Union
This section applies to products to be installed in the European Union.
The equipment is intended to operate under the following environmental conditions with respect to EMC:
A separate defined location under the user’s control.
Earthing and bonding shall meet the requirements of ETS 300 253 or CCITT K27.
AC-power distribution shall be one of the following types, where applicable: TN-S and TN-C as defined in IEC
364-3.
In addition, if equipment is operated in a domestic environment, interference could occur.
50
Hazardous Location Installation Information
Hazardous Locations Standards
Hazardous Locations Standards
The following standards were used for the hazardous locations approvals and certifications:
ANSI/ASA 12.12.01-2013
CAN/CSA C22.2 No. 60079-0-11 Ed. 2
CAN/CSA C22.2 No. 60079-15-12 Ed. 1
CSA C22.2 No. 213-M1987
EN 60079-0:2012+A11:2013
EN 60079-15:2010
IEC 60079-0 6th Edition
IEC 60079-15 4th Edition
UL 60079-0, 5th Ed, 2009-10-21
UL 60079-15, 3rd Ed, 2009-7-17
The following hazardous locations strings are provided on the access point:
Class 1, Div 2, Groups A B C D
Class 1, Zone 2, Ex nA nC IIC T4 Gc X
II 3 G, Ex nA nC IIC T4 Gc
Les normes suivantes ont été appliquées pour les approbations et les certifications dans le cadre d'environnements dangereux :
ANSI/ASA 12.12.01-2013
CAN/CSA C22.2 n° 60079-0-11 Éd. 2
CAN/CSA C22.2 n° 60079-15-12 Éd. 1
CSA C22.2 n° 213-M1987
EN 60079-0:2012+A11:2013
EN 60079-15:2010
IEC 60079-0, 6e édition
IEC 60079-15, 4e édition
UL 60079-0, 5e éd., 21-10-2009
UL 60079-15, 3e éd., 17-07-2009
Les marques d'homologation relatives aux environnements dangereux suivantes sont apposées sur le point d'accès :
Classe 1, Div 2, Groupes A B C D
Classe 1, Zone 2, Ex nA nC IIC T4 Gc X
II 3 G, Ex nA nC IIC T4 Gc
DEMKO 14 ATEX 1435X
Class 1, Zone 2, AEx nA nC IIC T4 Gc
DEMKO 14 ATEX 1435X
Classe 1, Zone 2, AEx nA nC IIC T4 Gc
51
Hazardous Location Installation Information
Hazardous Locations Standards
52
Cable and Connectors
Connector Specifications, page 53
Connector Specifications
SFP Module Connectors, page 53
10/100/1000 Ports
Figure 36 10/100/1000 Port Pinouts
Pin Label
7
8
5
6
3
4
1
2
TP0+
TP0-
TP1+
TP2+
TP2-
TP1-
TP3+
TP3-
Connector pins 1, 2, 3, and 6 are used for PoE.
1 2 3 4 5 6 7 8
SFP Module Connectors
shows a LC style connector that is used with the SFP Module slots. It is a fiber-optic cable connector.
Cisco Systems, Inc.
www.cisco.com
53
Cable and Connectors
Connector Specifications
Figure 37 Fiber-Optic SFP Module LC Connector
Warning: Invisible laser radiation may be emitted from disconnected fibers or connectors. Do not stare into beams or view directly with optical instruments. Statement 1051
Console Port
The switch has two console ports: a USB 5-pin mini-Type B port (see Figure 38 on page 54
) and an RJ-45 (RS-232) console port.
Figure 38 USB Mini-Type B Port
The USB console port uses a USB Type A to 5-pin mini-Type B cable, shown in
. The USB Type
A-to-USB mini-Type B cable is not supplied. You can order an accessory kit that contains this cable.
Note:
When running Linux, access the USB Console using Minicom instead of Screen.
Figure 39 USB Type A-to-USB 5-Pin Mini-Type B Cable
The RJ-45 console port uses an 8-pin RJ-45 connector . An RJ-45-to-DB-9 adapter cable is used to connect the console port of the switch to a console PC. You need to provide a RJ-45-to-DB-25 female DTE adapter if you want to connect the switch console port to a terminal. You can order a kit (part number ACS-DSBUASYN=) containing that adapter. For console port and adapter pinout information, see
.
Alarm Port
The alarm port uses an RJ-45 connector. See
for more information. For information on alarm
ratings, see the Alarm Ratings, page 72
.
54
Cable and Connectors
Cables and Adapters
Figure 40 Alarm Port Details
Cables and Adapters
Console Port Adapter Pinouts, page 55
SFP Module Cables
Each port must match the wave-length specifications on each end of the cable, and for reliable communications, the cable must not exceed the allowable length.
For more information about SFP/SFP+ modules and cables, see Transceiver Modules .
Console Port Adapter Pinouts
The console port uses an 8-pin RJ-45 connector. If you did not order a console cable, you need to provide an
RJ-45-to-DB-9 adapter cable to connect the switch console port to a PC console port. You need to provide an
RJ-45-to-DB-25 female DTE adapter if you want to connect the switch console port to a terminal. You can order an adapter (part number ACS-DSBUASYN=).
lists the pinouts for the console port, the RJ-45-to-DB-9 adapter cable, and the console device.
55
Cable and Connectors
Cables and Adapters
Table 11 Console Port Adapter Pinouts (RJ-45-to-DB-9)
Switch Console
Port (DTE)
Signal
RTS
DTR
TxD
GND
RxD
DSR
CTS
RJ-45-to-DB-9
Terminal Adapter
DB-9 Pin
8
6
2
5
3
4
7
Console
Device
Signal
CTS
DSR
RxD
GND
TxD
DTR
RTS
Note:
The RJ-45-to-DB-25 female DTE adapter is not supplied with the switch. You can order this adapter from Cisco
(part number ACS-DSBUASYN=).
Table 12 Console Port Adapter Pinouts (RJ-45-to-DB-25)
Switch
Console
Port (DTE)
Signal
RTS
DTR
TxD
GND
RxD
DSR
CTS
RJ-45-to-DB-25
Adapter
DB-25 Pin
5
6
3
7
2
20
4
Console
Device
Signal
CTS
DSR
RxD
GND
TxD
DTR
RTS
56
Configuring the Switch with the CLI Setup
Program
This appendix provides a command-line interface (CLI) setup procedure for a standalone switch. Before connecting the
switch to a power source, review the safety warnings in Warnings, page 13
and
Installation Guidelines, page 35
Accessing the CLI Through Express Setup
When you first set up the switch, you should use Express Setup to enter the initial IP information. This process enables the switch to connect to local routers and the Internet. You can then access the switch through the IP address for additional configuration.
Required Equipment
You need this equipment to set up the switch:
Computer with Windows 2000/Vista/2003/XP/Window7/Mac.
A Web browser (IE, Firefox) with JavaScript enabled.
A straight-through or crossover Category 5 Ethernet cable to connect your computer to the switch port.
Do not use the RS232 serial console port for express setup.
A small paper clip to reach to button.
Note:
Before running Express Setup, disable any pop-up blockers or proxy settings on your browser and any wireless client running on your computer.
Express Setup Procedure
To run Express Setup:
1.
Make sure that nothing is connected to the switch.
2.
Ensure the switch is in default factory mode.
Skip to next step if freshly out of the box.
a.
If not freshly out of the package, use a paper clip to reset the switch for 10 seconds until the SYS LED light turns red ; then release the paper clip.
Switch will automatically reboot once the SYS led goes red.
3.
Ensure no data port is connected to the switch.
Note
: During Express Setup, the switch acts as a DHCP server.
Cisco Systems, Inc.
www.cisco.com
57
Configuring the Switch with the CLI Setup Program
Accessing the CLI Through Express Setup
—
You can add a serial console cable to monitor the booting sequence. Do not hit [return key] on console screen.
—
Ensure the computer connected to switch is configured with DHCP.
4.
Web Browser: disable pop-up blockers and proxy settings.
5.
Connect power to the switch.
See the wiring instructions in Grounding the Switch, page 36
and
Wiring the Power Source, page 39
.
6.
Power on or reset the switch.
Use LEDs to monitor boot progress:
—
Sys blinking: bootloader
—
Sysl Blank: POST
—
Sys solid: exit post, IOS initializing
—
Sys and alarm LEDs green: IOS init done
—
~90 – 100 seconds after power on
—
EXP blinking: ready for express setup process
7.
Insert paper clip into express setup button (see Figure 4 on page 6 ) for 1-2 seconds.
When released, port Gig1/1 LED starts flashing green.
8.
Connect computer to port Gig1/1.
LED continues to blink.
9.
After computer has IP address (169.254.0.2), point browser to http://169.254.0.1.
10.
Leave the username blank and enter the default password, cisco.
Note:
The switch ignores text in the username field. The Express Setup window appears.
Troubleshooting: If the Express Setup window does not appear, make sure that any pop-up blockers or proxy settings on your browser are disabled and that any wireless client is disabled on your computer.
Note:
The screen capture below shows an IE 4000 series switch, but the functionality is identical for the IE 4010.
58
Configuring the Switch with the CLI Setup Program
Accessing the CLI Through Express Setup
11.
Enter all entries in English letters and Arabic numbers.
In the Network Settings (Required for Static IP):
—
IP Address: Enter a valid IP address for the switch.
You can later use the IP address to access the switch through Device Manager.
—
Switch Username and Password: Enter a password. The password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, allows embedded spaces, but does not allow spaces at the beginning or end. In the Confirm Password field, enter the password again.
Note:
You must change the password from the default password, cisco.
—
Default Gateway: Enter the IP address of the router.
12.
Enter the Control Industrial Protocol (CIP) VLAN settings (optional):
—
CIP VLAN: Enter the VLAN on which CIP will be enabled. The CIP VLAN can be the same as the management
VLAN, or you can isolate CIP traffic on another VLAN that is already configured on the switch. The default CIP
VLAN is VLAN 1. Only one VLAN on a switch can have CIP enabled.
—
IP Address: Enter the IP address for the CIP VLAN. If the CIP VLAN is different from the management VLAN, you must specify an IP address for the CIP VLAN. Make sure that the IP address that you assign to the switch is not being used by another device in your network.
—
Subnet Mask: Select a mask from the drop-down list.
For more information about the CIP VLAN settings, click Help on the tool-bar.
13.
Optional Settings:
You can enter the optional information now, or enter it later by using Device Manager. For more information about the Express Setup fields, see the on-line help for the Express Setup window.
Click Submit to save your changes and to complete the initial setup.
59
Configuring the Switch with the CLI Setup Program
Accessing the CLI Through Express Setup
For more information about the optional settings, click Help on the tool-bar.
After you click Submit, these events occur:
—
The switch is configured and exits Express Setup mode.
—
The browser displays a warning message and tries to connect with the earlier switch IP address.
—
Typically, connectivity between the computer and the switch is lost because the configured switch IP address is in a different subnet from the IP address on the computer.
14.
Turn off DC power at the source, disconnect all cables to the switch, and install the switch in your network. See
Management Options, page 12 for information about configuring and managing the switch.
15.
If you changed the static IP address on your computer in Step 1, change it to the previously configured static IP address.
Note:
The screen capture below shows an IE 4000 series switch, but the functionality is identical for the IE 4010.
16.
You can now manage the switch by using the Cisco Network Assistant, Device Manager, or both. See
Options, page 12 for information about configuring and managing the switch.
You can display Device Manager by following these steps:
a.
Start a web browser on your computer.
b.
Enter the switch IP address, username, and password in the web browser, and press Enter. The Device
Manager page appears.
Troubleshooting:
If the Device Manager page does not appear:
60
Configuring the Switch with the CLI Setup Program
Accessing the CLI Through the Console Port
—
Confirm that the port LED for the switch port connected to your network is green.
—
Confirm that the computer that you are using to access the switch has network connectivity by connecting it to a well known web server in your network. If there is no network connection, troubleshoot the network settings on the computer.
—
Make sure that the switch IP address in the browser is correct.
—
If the switch IP address in the browser is correct, the switch port LED is green, and the computer has network connectivity, continue troubleshooting by reconnecting the computer to the switch. Configure a static IP address on the computer that is in the same subnet as the switch IP address.
When the LED on the switch port connected to the computer is green, reenter the switch IP address in a web browser to display the Device Manager. When Device Manager appears, you can continue with the switch configuration.
Accessing the CLI Through the Console Port
You can enter Cisco IOS commands and parameters through the CLI. Use one of these options to access the CLI:
RJ-45 Console Port
1.
Connect the RJ-45-to-DB-9 adapter cable to the 9-pin serial port on the PC. Connect the other end of the cable to the switch console port.
2.
Start the terminal-emulation program on the PC or the terminal. The program, frequently a PC application such as
HyperTerminal or ProcommPlus, makes communication between the switch and your PC or terminal possible.
61
Configuring the Switch with the CLI Setup Program
Accessing the CLI Through the Console Port
Figure 41 Connecting the Console Cable
1
2
C isco IE 3010
1
1 RJ-45 console port 2 Console cable (RJ-45-to-DB-9 adapter cable)
3.
Configure the baud rate and character format of the PC or terminal to match the console port characteristics:
—
9600 baud
—
8 data bits
—
1 stop bit
—
No parity
—
None (flow control)
4.
Connect power to the switch as described in
Wiring the Power Source, page 39
.
5.
The PC or terminal displays the bootloader sequence. Press Enter to display the setup prompt. Follow the steps in
the Completing the Setup Program, page 65
.
USB Console Port
1.
If you are connecting the switch USB console port to a Windows-based PC for the first time, install a USB driver. See
Installing the Cisco Microsoft Windows XP, 2000, Vista, 7, 8, and 10 USB Device Driver, page 64
for more information.
62
Configuring the Switch with the CLI Setup Program
Accessing the CLI Through the Console Port
Figure 42 Connecting the USB Console Cable
1
2
C isco IE 3010
1
2
3
1
2
USB console port
USB cable
3 USB port on the PC
2.
Connect an USB cable to the PC USB port, and connect the other end of the cable to the switch mini-B
(5-pin-connector) USB console port. See
3.
To identify the COM port assigned to the USB console port:
a.
Choose Start > Control Panel > Systems
b.
Click the Hardware tab and choose Device Manager.
c.
Expand the Ports section.
The assigned COM port appears in parenthesis at the end of the line with this entry: Cisco USB System Management
Console.
4.
Start the terminal-emulation program on the PC or the terminal.
The program, frequently a PC application such as HyperTerminal or ProcommPlus, makes communication possible between the switch and your PC or terminal.
5.
Configure the COM port.
6.
Configure the baud rate and character format of the PC or terminal to match the console port characteristics:
—
9600 baud
—
8 data bits
63
Configuring the Switch with the CLI Setup Program
Accessing the CLI Through the Console Port
—
1 stop bit
—
No parity
—
None (flow control)
7.
Connect power to the switch as described in
Wiring the Power Source, page 39
The PC or terminal displays the bootloader sequence.
8.
Press Enter to display the setup prompt.
9.
Follow the steps in the Completing the Setup Program, page 65 .
Installing the Cisco Microsoft Windows XP, 2000, Vista, 7, 8, and 10 USB Device
Driver
A USB device driver must be installed the first time a Microsoft Windows-based PC is connected to the USB console port on the switch. Use this procedure to install the USB driver on Windows XP, Windows 2000, Windows Vista,
Windows 7, Windows 8, and Windows 10.
1.
Obtain the file Cisco_usbconsole_driver_3_1.zip from the Cisco.com website https://software.cisco.com/download/release.html?mdfid=282979369&softwareid=282855122&release=3.1
The file details are as follows:
—
Description: Cisco_usbconsole_driver_3_1.zip
—
Release: 3.1
—
Release Date: 27/Nov/2014
—
File Name: Cisco_usbconsole_driver_3_1.zip
—
Size: 14.35 MB (15045453 bytes)
—
MD5 Checksum: eff2e955edcdc70209e6f9c8f6bd59cd
2.
Unzip the file and install the corresponding exe file.
3.
Navigate to the Device Manager window by performing a search in WIndows for Device Manager and opening it.
4.
Connect the USB cable from the Windows PC to the Cisco switch.
5.
From the Device Manager page, expand Ports (COM & LPT). Select USB Serial Port. Right-click and select Update
Driver Software ...
6.
In the Update Driver Software window, select Browse my computer for driver software. Then choose Let me pick
from a list of device drivers on my computer and click Next.
7.
Enable Show compatible hardware and choose Cisco Serial as the model. Click Next.
After the update is completed, Windows displays Windows has successfully updated your driver software.
8.
Click Close.
Uninstalling the Cisco Microsoft Windows XP, 2000, Vista, 7, 8, and 10 USB Driver
Note:
Disconnect the switch console terminal before uninstalling the driver.
1.
Run setup.exe for Windows 32-bit or setup(x64).exe for Windows-64bit.
64
Configuring the Switch with the CLI Setup Program
Entering the Initial Configuration Information
2.
Click Next.
3.
When the InstallShield Wizard for Cisco Virtual Com appears, click Next.
4.
When the Program Maintenance window appears, select the Remove radio button.
5.
Click Next.
6.
When the Remove the Program window appears, click Remove.
If a User Account Control warning appears, click Allow - I trust this program to proceed.
7.
When the InstallShield Wizard Completed window appears, click Finish.
Entering the Initial Configuration Information
To set up the switch, you need to complete the setup program, which runs automatically after the switch powers on. You must assign an IP address and other configuration information necessary for the switch to communicate with the local routers and the Internet.
IP Settings
You need this information:
Switch IP address
Subnet mask (IP netmask)
Default gateway (router)
Enable secret password
Enable password
Telnet password
Completing the Setup Program
Follow these steps to complete the setup program and to create an initial configuration for the switch:
1.
Enter Yes at these two prompts.
Would you like to enter the initial configuration dialog? [yes/no]: yes
At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '[]'.
Basic management setup configures only enough connectivity for management of the system, extended setup will ask you to configure each interface on the system.
Would you like to enter basic management setup? [yes/no]: yes
2.
Enter a host name for the switch, and press Return.
65
Configuring the Switch with the CLI Setup Program
Entering the Initial Configuration Information
On a command switch, the host name is limited to 28 characters and on a member switch to 31 characters. Do not use
-n, where n is a number, as the last character in a host name for any switch.
Enter host name [Switch]: host_name
3.
Enter an enable secret password, and press Return.
The password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, allows spaces, but ignores leading spaces. The secret password is encrypted, and the enable password is in plain text.
Enter enable secret: secret_password
4.
Enter an enable password, and press Return.
Enter enable password: enable_password
5.
Enter a virtual terminal (Telnet) password, and press Return.
The password can be from 1 to 25 alphanumeric characters, is case sensitive, allows spaces, but ignores leading spaces.
Enter virtual terminal password: terminal-password
6.
(Optional) Configure Simple Network Management Protocol (SNMP) by responding to the prompts. You can also configure SNMP later through the CLI. To configure SNMP later, enter no.
Configure SNMP Network Management? [no]: no
7.
Enter the interface name (physical interface or VLAN name) of the interface that connects to the management network, and press Return. For this release, always use vlan1 as that interface.
Enter interface name used to connect to the management network from the above interface summary: vlan1
8.
Configure the interface by entering the switch IP address and subnet mask and pressing Return. The IP address and subnet masks shown below are examples.
Configuring interface vlan1:
Configure IP on this interface? [yes]: yes
IP address for this interface: 10.4.120.106
Subnet mask for this interface [255.0.0.0]: 255.0.0.0
9.
Enter Y to configure the switch as the cluster command switch. Enter N to configure it as a member switch or as a standalone switch.
If you enter N, you can configure the switch as a command switch later through the CLI. To configure it later, enter no.
Would you like to enable as a cluster command switch? [yes/no]: no
You have completed the initial configuration of the switch, and the switch displays its configuration. This is an example of the configuration output:
The following configuration command script was created: hostname switch1 enable secret 5 $1$Ulq8$DlA/OiaEbl90WcBPd9cOn1 enable password enable_password line vty 0 15 password terminal-password no snmp-server
!
no ip routing
!
interface Vlan1 no shutdown
66
Configuring the Switch with the CLI Setup Program
Entering the Initial Configuration Information ip address 10.4.120.106 255.0.0.0
!
interface FastEthernet1/0/1
!
interface FastEthernet1/0/2 interface FastEthernet1/0/3
!
...<output abbreviated> end
10.
These choices appear:
[0] Go to the IOS command prompt without saving this config.
[1] Return back to the setup without saving this config.
[2] Save this configuration to nvram and exit.
If you want to save the configuration and use it the next time the switch reboots, select option 2 to save it in NVRAM.
Enter your selection [2]:2
Make your selection, and press Return.
After you complete the setup program, the switch can run the default configuration that you created. To change this configuration or to perform other management tasks, enter commands at the
Switch>
prompt.
67
Configuring the Switch with the CLI Setup Program
Entering the Initial Configuration Information
68
Technical Specifications
Switch Specifications, page 70
Power-Supply Module Specifications, page 71
Cisco Systems, Inc.
www.cisco.com
69
Technical Specifications
Switch Specifications
Switch Specifications
Table 13 Cisco IE 4010 Switch Specifications
Environmental Ranges
Operating temperature
1
-40°C to +74°C
-40°C to +75°C (Vented Enclosure Operating- 40 LFM Air Flow)
-40°C to +60°C (Sealed Enclosure Operating- 0 LFM Air Flow)
-34°C to +75°C (Fan or Blower equipped Enclosure Operating- 200
LFM Air Flow)
Storage temperature
Relative humidity
Operating altitude
Storage altitude
Thermal spacing
Operational shock
Non-Operational Shock
Physical Specifications
Weight
-40°C to +85°C (IEC 60068-2-2 Environmental Type Tested to
+85°C for 16 hours)
2
–40 to 185°F (–40 to 85°C)
5 to 95% (noncondensing)
Up to 13,800 ft (3049 m)
Up to 15,000 ft (4570 m)
1.75 in. (4.4 cm)
50G at 11ms, half sine and 200G ar 2.11ms, half sine.
65-80G at 9ms, Trapezoidal
Without power supply: IE-4010-4S24P; 12.1 lbs (5.46 kg,
IE-4010-16S12P: 12.7 lbs (5.78 kg)
PWR-RGD-AC-DC-H:2.55 lb (1.16 kg)
Dimensions (H x W x D)
PWR-RGD-LOW-DC-H:2.5 lb (1.13 kg)
1.75 x 17.5 x 15.0 in. (4.45 x 44.5 x 38.1 cm)
1.
Operating temperatures exceeding 60
°
C are not covered by the product safety certifications and approvals. However, the switch can function in the installations under the environmental conditions listed.
2.
The maximum operating temperature of the switch varies depending on the type of SFP module that you use.
70
Technical Specifications
Power-Supply Module Specifications
Table 14 Cisco IE 4010 Switch Power Requirements
Power Requirements
Nominal input voltage
Absolute maximum (short term) input voltage
PWR-RGD-AC-DC-H:
100 to 240 VAC, 50 to 60 Hz
100 to 250 VDC
PWR-RGD-LOW-DC-H:
24 to 60 VDC
PWR-RGD-AC-DC-H:
85 to 265 VAC, 47 to 63 Hz
88 to 300 VDC
Maximum PoE power available to Powered Devices (PD), with one power supply module installed
Maximum PoE power available to Powered Devices (PD), with two power supply modules installed
PWR-RGD-LOW-DC-H:
18 to 75 VDC
80W
200W
Table 15 Cisco IE 4010 Switch Power Consumption
FRU Configuration FRU Mode
Redundant
Max Power at 60C
IE-4010-4S24P
Watts BTU/hr
65 222
IE-4010-16S12P
Watts BTU/hr
70 239 IE-4010-4S24P with 2xDC power supplies, PoE not enabled
IE-4010-4S24P with 2xAC power supplies, PoE not enabled
IE-4010-4S24P with 1xDC power supply, PoE not enabled
IE-4010-4S24P with 1xAC power supply, PoE not enabled
IE-4010-4S24P with 2xDC power supplies, PoE enabled
IE-4010-4S24P with 2xAC power supplies, PoE enabled
Redundant
-NA-
-NA-
Load Shared
Load Shared
65
61
61
290
290
222
208
208
989
989
70
65
65
300
300
239
222
222
1024
1024
Power-Supply Module Specifications
71
Technical Specifications
Alarm Ratings
Table 16 Power Supply Module Specifications
Physical Specifications
Weight
PWR-RGD-AC-DC-H
PWR-RGD-LOW-DC-H
Dimensions (H x W x D)
PWR-RGD-AC-DC-H and PWR-RGD-LOW-DC-H
2.55 lb (1.15 kg)
2.5 lb (1.13 kg)
1.58 x 7 x 5 in. (4 x 17.8 x 12.7 cm) (without mounting flanges)
1.58 x 8.15 x 5 in. (4 x 20.7 x 12.7 cm) (with mounting flanges)
Alarm Ratings
Table 17 Alarm Input and Output Ratings
Alarm Ratings
Alarm input electrical specification
Alarm output electrical specification
No external voltage needed to activate alarm inputs. The open circuit voltage between any Alarm input (1 to 4) and Alarm input Common is 5VDC and the loop current is 2 mA max per input.
30VDC @ 1A, 48VDC @ 0.5A
72
advertisement
Key Features
- Rugged design for harsh environments
- PoE/PoE+ support for powering devices
- Redundant power supply options
- Secure switching infrastructure
- SFP uplink ports for fiber connectivity
Frequently Answers and Questions
What are the key features offered by these network switches?
How many ports does each switch model have?
What are the supported power supply options?
What are the management options available for these switches?
Related manuals
advertisement
Table of contents
- 3 Preface
- 3 Audience
- 3 Purpose
- 3 Conventions
- 3 Related Publications
- 4 Obtaining Documentation, Obtaining Support, and Security Guidelines
- 5 Product Overview
- 5 Switch Models
- 6 Cable Side
- 6 LEDs
- 6 10/100/1000 PoE/PoE+ Ports (Downlinks)
- 7 Alarm Ports
- 7 Mini USB Port
- 8 SD Flash Memory Card
- 8 Display Mode Button
- 8 Power-Input Terminal
- 8 100/1000 SFP Ports
- 8 Console Ports
- 9 LEDs
- 10 Switch Panel LEDs
- 10 Port LEDs
- 12 Display Mode Button
- 12 Power-Supply Module LEDs
- 13 Alarm LEDs
- 13 SD Flash Memory Card LED
- 13 USB LED
- 14 System LED
- 14 Power-Supply Side
- 15 Power-Supply Side LEDs (Similar to Figure 4Switch LEDs (Cable Side), page 6)
- 15 Power Supply Features
- 16 Management Options
- 16 Network Configurations
- 17 Switch Installation
- 17 Warnings
- 18 Installation Guidelines
- 18 Verifying Switch Operation
- 19 Installing the Switch
- 19 Rack-Mounting
- 19 Attaching Brackets for 19-Inch Racks
- 21 Attaching Brackets for 19-Inch Racks for IP-30 Compliance (Optional)
- 24 Attaching Brackets for 23-Inch Racks
- 25 Attaching Brackets for ETSI Racks
- 25 Rack-Mounting the Switch
- 26 Wall-Mounting
- 27 Attaching Brackets
- 28 Attaching Brackets for IP-30 Compliance (Optional)
- 28 Wall-Mounting the Switch
- 30 Installing and Removing SFP Modules
- 30 Installing SFP Modules
- 30 Installing Fiber Optic SFP Modules
- 33 Connecting to SFP Modules
- 33 Connecting to a Fiber Optic SFP Module
- 33 Connecting to a 1000BASE-T SFP Module
- 34 Removing SFP Modules
- 34 Replacing the SD Flash Memory Card
- 35 Connecting Devices to the Ethernet Ports
- 36 Where to Go Next
- 37 Power Supply Installation
- 38 Power-Supply Modules
- 39 Power-Supply Module Installation
- 39 Installation Guidelines
- 39 Installing a Power-Supply Module
- 39 Equipment That You Need
- 40 Grounding the Switch
- 41 Installing the Power-Supply Module in the Switch
- 42 Installing the DC Power Supply in the Switch
- 43 Wiring the Power Source
- 48 Removing the Power-Supply Module
- 49 Troubleshooting
- 49 Diagnosing Problems
- 49 Switch Boot Fast
- 49 Switch LEDs
- 49 Switch Connections
- 49 Bad or Damaged Cable
- 49 Ethernet and Fiber-Optic Cables
- 50 Link Status
- 50 10/100/1000 Port Connections
- 50 SFP Module
- 50 Interface Settings
- 51 Ping End Device
- 51 Spanning Tree Loops
- 51 Switch Performance
- 51 Speed, Duplex, and Autonegotiation
- 51 Autonegotiation and Network Interface Cards
- 51 Cabling Distance
- 52 Resetting the Switch
- 52 How to Recover Passwords
- 52 Finding the Switch Serial Number
- 53 Hazardous Location Installation Information
- 53 Hazardous Area Installation Warnings
- 54 North American Hazardous Location Approval
- 54 EMC Environmental Conditions for Products Installed in the European Union
- 55 Hazardous Locations Standards
- 57 Cable and Connectors
- 57 Connector Specifications
- 57 10/100/1000 Ports
- 57 SFP Module Connectors
- 58 Console Port
- 58 Alarm Port
- 59 Cables and Adapters
- 59 SFP Module Cables
- 59 Console Port Adapter Pinouts
- 61 Configuring the Switch with the CLI Setup Program
- 61 Accessing the CLI Through Express Setup
- 61 Required Equipment
- 61 Express Setup Procedure
- 65 Accessing the CLI Through the Console Port
- 65 RJ-45 Console Port
- 66 USB Console Port
- 68 Installing the Cisco Microsoft Windows XP, 2000, Vista, 7, 8, and 10 USB Device Driver
- 68 Uninstalling the Cisco Microsoft Windows XP, 2000, Vista, 7, 8, and 10 USB Driver
- 69 Entering the Initial Configuration Information
- 69 IP Settings
- 69 Completing the Setup Program
- 73 Technical Specifications
- 74 Switch Specifications
- 75 Power-Supply Module Specifications
- 76 Alarm Ratings