Electrochemical Impedance Spectroscopy - ZAHNER

Electrochemical Impedance Spectroscopy - ZAHNER
Electrochemical Impedance Spectroscopy
© Zahner 06/2015
EIS
-2-
EIS
-3-
1. Introduction _______________________________ 6
2. EIS Main Page _____________________________ 7
2.1 File Operations ..............................................................................8
2.1.1 Open .......................................................................................................... 8
2.1.2 Save ........................................................................................................... 8
2.2 Display Spectrum ..........................................................................9
2.3 Impedance Spectra Analysis........................................................9
2.4 Signal Acquisition .........................................................................9
3. Cell Connections __________________________ 10
3.1 Connected Probes.......................................................................13
3.1.1 U-Buffer ................................................................................................... 13
3.1.2 HiZ-Probe (Option) ................................................................................. 15
3.1.3 CVB120 (Option) ..................................................................................... 17
3.1.4 fF-Probe (Option).................................................................................... 18
3.1.5 FRA-Probe (Option)................................................................................ 19
3.2 Electrode Schemes .....................................................................20
3.2.1 Two Electrodes ....................................................................................... 20
3.2.2 Three Electrodes .................................................................................... 21
3.2.3 Four Electrodes ...................................................................................... 22
3.3 LoZ Cable Set (Option) ...............................................................23
4. Control Potentiostat _______________________ 24
4.1 Potentiostatic Mode ....................................................................25
4.2 Galvanostatic Mode ....................................................................28
4.3 Pseudo-Galvanostatic Mode ......................................................29
4.4 Rest Potential Mode ....................................................................30
4.5 DC/AC Settings............................................................................31
4.6 Instrument Displays ....................................................................33
4.7 Graphic Realtime AC Displays...................................................35
5. EIS Setup ________________________________ 36
5.1 Global Current Limit....................................................................36
5.2 Default on-line display ................................................................37
EIS
-4-
5.3 DC-Mode Parameters ..................................................................37
5.4 AC-Mode Parameters ..................................................................40
6. Calibration _______________________________ 44
7. EIS Measurement _________________________ 45
7.1 Frequency Scan Strategy ...........................................................46
7.1.1 Single Sine .............................................................................................. 46
7.1.2 Intelligent Multi Sine (iMS)..................................................................... 46
7.1.3 Frequency Table ..................................................................................... 47
7.2 Sweep Mode.................................................................................47
7.3 Steps per Decade ........................................................................48
7.4 Measure Periods..........................................................................48
7.5 Runtime ........................................................................................48
7.6 Start Recording ...........................................................................48
7.7 Quick Guide .................................................................................49
7.8 Recording Page ...........................................................................50
7.9 Display Spectrum ........................................................................52
7.9.1 Crosshair Mode ...................................................................................... 53
7.9.2 Save Measurement ................................................................................. 53
7.9.3 Export ASCII List .................................................................................... 54
7.9.4 Export Drawing ....................................................................................... 54
7.9.5 Hardcopy................................................................................................. 55
7.9.6 Import ASCII List .................................................................................... 55
7.9.7 Select Diagram ....................................................................................... 56
7.10 Advanced Features ...................................................................57
7.10.1 Online Error Determination ................................................................. 58
7.10.2 Automatic Drift Compensation............................................................ 59
7.10.3 Z-HIT ...................................................................................................... 60
8. Series Measurement _______________________ 62
8.1 Scan Mode ...................................................................................63
8.1.1 Linear Scan ............................................................................................. 63
8.1.2 Linear scan over time............................................................................. 63
8.1.3 Linear scan over potential/current........................................................ 63
8.1.4 Linear scans controlled by analogue I/O-channels ............................. 64
8.1.5 Setpoint List............................................................................................ 64
8.1.6 Manually .................................................................................................. 64
EIS
-5-
8.2 Scan Variable or Device..............................................................65
8.2.1 Internal signals ....................................................................................... 65
8.2.2 External signals ...................................................................................... 65
8.2.3 Channels ................................................................................................. 66
8.2.4 File name................................................................................................. 67
8.2.5 Start series measurement...................................................................... 67
9. Appendix ________________________________ 68
EIS
-6-
1. Introduction
The measurement program EIS (Electrochemical Impedance Spectroscopy) offers all tools for the
investigation of impedance in surface engineering, electrochemical power generation, corrosion
research, catalysis or even in basic electrochemical research. At the same time, EIS provides some
global setting pages useful also for other measuring methods.
As you may have already noticed, the Zennium hardware has got only a few knobs (mainly for
emergency purpose). The entire system is controlled by software. This makes working with the IM
system very easy and comfortable. No confusing knobs, no manual switch settings, etc. In addition,
software controlled functions (in contrast to hardware knobs) can be automated. E.g. ranging,
calibration and measurements will be carried out automatically. All this contributes to the high
accuracy, the reliability and the easy handling of the IM systems.
The Series Measurement feature of EIS lets you record impedance spectra in dependence of one
additional quantity measured by the system through extra analogue or digital inputs (via optional
hardware plug-ins or via network virtual instruments). Also inherent and internal quantities like time,
potential or controlled current can be taken to control recording.
Due to its graphics-based user-interface EIS is easy to handle. All settings are guided by dialogues,
control routines will check inputs for range violations. During measurement, EIS provides you with an
online-display with a selectable graph (Bode, Nyquist, etc.), time domain displays for U and I as well
as FFT spectrum displays for U and I. With these you will have a complete visual control of the
measurement and you are able to detect disturbances directly.
After completion of a measurement, EIS offers a variety of ways to store, export, process and treat the
data in a very flexible manner. Spectra may be stored together with their complete history as binary
data, allowing a reliable way to reproduce measurements: simply opening a former measurement file
will re-configure the instrument according to the prior measurement conditions. For an immediate
analysis, the measured spectra may be transferred directly to the simulation & fitting program SIM, in
parallel to the storage.
Data may be exported as plain ASCII text lists, as high-quality vector graphics (Windows®-EMF), or
as screenshot-bitmap. The export path may be chosen via the Windows®-clipboard, via data file
storage, re-directed for printer output or paste into the internal processing software ZEdit and CAD for
further text- and/or graphical editing purposes.
EIS
-7-
2. EIS Main Page
Click on the
icon on the Main Menu page to open the EIS main page.
go to SIM
load/save EIS data files
set additional EIS
parameters
select diagram type
display resident EIS
data as graphics
set recording
scan strategy
set recording
parameters
define and run
a series
measurement
set additional
measurement
channels
set U and I
parameters
start recording
The EIS main page is the central page for measuring Electrochemical Impedance Spectra. Here you
also set the recording parameters such as Sweep Mode, Frequency Range, Steps per Decade,
Measure Periods and from here you have access to different sub-pages such as Series Measurement,
Control Potentiostat or Display Spectrum.
When preparing an EIS measurement proceed in the following order:
-
connect the cell
check the cell connections
check the object
set up a measurement
record and save an EIS spectrum
check and document the results
EIS
-8-
2.1 File Operations
2.1.1 Open
This function allows you to load/save EIS data from/to the hard disk of
your PC. Click on the icon and decide in the sub-menu, whether you
want to open previously stored EIS data or save actual EIS data.
If there are no data in memory, this sub-menu is skipped.
After your decide to Open, a file browser will open displaying only EIS
data files (file extension .ism).
Select a path and a file and click on the LOAD button to load the file to
the Thales software. Click on the Display Spectrum icon on the EIS
main page to display the data in a graphical form.
The next box shows the measurement parameters of the loaded data.
Click on it if you want to close it.
NOTE: Opening a file will switch off the potentiostat and configures
the potentiostat according to the loaded measurement-settings
automatically. Loading a measurement file is an easy way to
perform a new measurement with previously used settings.
2.1.2 Save
If there are data in memory, usually after an EIS spectrum
measurement, you may want for Save them on hard disk for storage.
A description box opens where you may input your measurement
parameters and comments. Some lines will be filled automatically by the
software (e.g. potential, current and measuring time) others are free for
the user to fill and are not used for any calculation. The last three lines
are reserved for series recording information. In a series EIS run they
will be filled automatically. You may use these lines to define spectra for
series analysis even if they were created as single measurements.
button in the upper right corner
Accept the inputs by clicking on the
or reject the inputs by clicking on the
button. Click on the
button to
call the calculator.
In the following browser navigate to the desired path,
Input a file name and
Click on the
button to save the data.
Click on the
button to cancel the saving.
EIS
-9-
2.2 Display Spectrum
Click on this icon to display the spectrum resident in memory. This may
be measured or loaded data. The functions available in the Display
Spectrum page are described later in this chapter.
Click on this icon if you want to change the type of the diagram.
Select the type of the diagram type to be displayed here. The diagram
types are described in detail later in this chapter.
2.3 Impedance Spectra Analysis
Clicking on this icon will lead you directly to the SIM page where you can
create equivalent circuits and fit the model to the measured data. The
impedance data resident in the EIS memory have to be stored as data
file before it can be read within the SIM software partition. For more
information about SIM refer to the chapter SIM of this manual.
2.4 Signal Acquisition
The Signal Acquisition pages Setup and Acquisition let you configure
and activate additional channels to be recorded or output along with the
EIS spectrum. To do this, optional hardware (TEMP/U, DIO, DA-4, FE42, etc.) or software drivers for virtual NET instruments are needed. The
same pages are accessible from the Thales main menu. The Signal
Acquisition pages are described in detail in a separate chapter of this
manual.
EIS
- 10 -
3. Cell Connections
The first thing to do is connecting the electrochemical cell and/or the measuring object to the front
terminals of the Zennium.
For standard impedance object (1 Ohm to 100 MΩ) use one of the BNC cable sets shipped with the
system. Keep in mind: the shorter the cables the better the quality of the measurement.
For high impedance objects (100 MΩ and higher) we recommend to use the optional HiZ probe. Its
use can make sense also in lower impedance ranges if the artefacts caused by non-perfect reference
electrodes are too prominent. In addition, you should use a Faraday Cage for shielding your cell and
the cell cables when measuring high impedances. The Faraday Cage has to be grounded at the
Ground connector to the backside of the Zennium.
For low impedance objects (less than 1 Ω) we recommend to use the optional LoZ-cable set. These
are twisted-pair cables which reduce the mutual inductance which is prominent in low-impedance
measurements noticeably.
The shields of the Zennium BNC-connectors and the Lemosa plugs are actively driven ! This
minimizes the influence of the stray capacity of the cables.
!
Do not connect the Zennium shield to ground or to the cell!
Do not short-cut the Zennium shields!
Before connecting your cell to the front terminals, go to the Control Potentiostat page (click on the
button with the same name in the EIS Main page) and make sure that the potentiostat is off.
Then go to the page Check Cell Connections (click on the button with the same name in the Control
Potentiostat page). Here you are able to select your connection scheme. You are guided step-by step
through the connection sequence now.
EIS
- 11 Exit Check Cell Connections.
Shows the selected device. Change
device on Control Potentiostat page.
Choose plugged probe set.
(FRA-Probe is only available with FRA
software module)
Set controlled voltage, if a buffer or an
external potentiostat is selected.
Choose electrode connection scheme.
!
Connect all the four terminals to the cell.
Connect each of the four cell cables to the terminal with the same color, only.
Connect always in the sequences:
1. Test electrode power (black)
2. Test electrode sense (blue)
3. Reference electrode (green)
4. Counter electrode
(red)
If you do not, the system and/or your object may get damaged.
The U-buffer shipped with the Zennium systems can be used to
extend the voltage range of the system up to ±10 V. Another
important function of the U-buffer is to de-couple the cable load of
the connection lines from potentially high impedance reference
electrodes. Use the U-buffer, if your reference electrode system
impedance exceeds some KΩ. The U-buffer is connected to the
Lemosa terminal Probe E. Then, connect the Reference Electrode
and the Test Electrode Sense to the U-buffer instead of to the BNC
terminals.
Both, HiZ probe or the LoZ-cable set are to be plugged to the Lemosa
terminals (Probe I and Probe E) on the IM front panel. All the four
electrodes are connected to the HiZ probe and the LoZ-cable set,
respectively.
!
When using the Lemosa terminals the BNC terminals must
be left unconnected!
After you made your choice, click the middle mouse button or press the Esc key to return to the
Control Potentiostat page.
EIS
- 12 -
If you did select an electrode setup with a reference electrode (three- or four-electrodes) you are now
asked for the reference electrode potential. The most common electrode types are listed and the
correct potential is automatically used when selecting one of these types.
If your type of reference electrode is not listed, or if you prefer to refer your data to the physical
potential, you may use the entry User Defined Reference. In that case you have to enter the individual
. Enter zero, if you refer to the physical
reference electrode potential (in V) after clicking on
potential reference.
Clicking on
will lead you back to the Control Potentiostat page.
!
Always connect all the four terminals to the cell, even if you use a 2-electrode set-up.
The potentiostat will be switched off automatically as soon as you change any Check
Cell Connection setting.
!
Before switching on the potentiostat make sure that cell and potentiostat are wired
correctly. A missing sense connection - either reference electrode or working
electrode sense - may result in uncontrolled currents and floating potentials. Thus
the cell or the potentiostat may be damaged.
EIS
- 13 -
3.1 Connected Probes
3.1.1 U-Buffer
The U-Buffer is shipped with the Zennium systems by standard. It is used to decouple high source
resistance reference electrodes from the cable load, or when an extended voltage range of up to +-10
V is needed. If you are dealing with high-impedance objects, do not use the U-Buffer. It is not
calibrated to the IM-system individually. For those applications use the optional HiZ-Probe set instead.
It is calibrated to each IM-system individually and is therefore able to provide optimal accuracy.
!
RE and WE sense BNC connectors on the ZENNIUM front panel have to be left
unconnected.
With U-Buffer the Zennium has the following input specifications:
Input resistance
: > 100 GΩ
input capacitance
: < 30 pF (compensated to 0 ± 5pF due to software calibration)
to electrochemical cell
to Zennium
ground
to Probe E
connector of
Zennium
test electrode sense
reference electrode
gain switch
EIS
- 14 -
The U-Buffer amplifier may be used in the two-, three- and four-electrode
arrangements if the voltage range of the potentiostat has to be increased to
up to ± 10V. The U-Buffer has to be connected to the Probe E Lemosa
connector on the front panel of the Zennium.
Don’t connect the U-Buffer to the Probe E Lemosa connector of an external
potentiostat (PP, XPOT, EL). These devices are equipped with an internal
buffer available by setting the buffer gain factor in the Check Cell
Connections page.
!
The setting of the gain switch of the U-Buffer cannot be detected automatically by the
Thales software. Make sure that the correct gain factor (1 or 0.4) is set corresponding
to the controlled voltage menu of the Check Cell Connections page.
For details of the buffer function please refer to the appendix.
EIS
- 15 -
3.1.2 HiZ-Probe (Option)
The HiZ Probe Set is an option which should be used when measuring on objects with an impedance
>100 MΩ or if you encounter disturbances with high impedance objects. The HiZ Probe Set is
calibrated together with the IM system it is used with. Therefore, it is not recommended to change HiZ
probes, to mix the two amplifier boxes or to use a HiZ probe with a system it is not calibrated for. To
reach the high accuracy the HiZ probe provides, you have to copy the HiZ calibration data (calfacj.bin)
to the hard drive as described in the HiZ probe manual appendix.
HiZ Probe Potential
HiZ Probe Current
to electrochemical cell
to Zennium
test electrode
to Probe I
connector of
M6/6eX
counter electrode
ground
to Probe E
connector of
Zennium
test electrode sense
reference electrode
gain switch
EIS
- 16 -
The HiZ Probe Set is to be connected to the Lemosa terminals Probe I
and Probe E on the front panel of the Zennium.
High Impedance Probe Current
High Impedance Probe Potential
Probe I
Probe E
For detailed information about installation and handling of the HiZ Probe Set please refer to the HiZ
Probe manual appendix shipped with the HiZ Probe.
The HIZ-U-Buffer has to be connected to the Probe E Lemosa connector on the front panel of the
Zennium and the HiZ I Probe has to be connected to the Probe I Lemosa connector. It is calibrated to
each IM-system individually and therefore can provide optimal accuracy.
!
All BNC connectors on the ZENNIUM front panel have to be left unconnected.
With HiZ-Probe the Zennium has the following input specifications:
Input resistance
: > 1000 TΩ typical
input capacitance
: < 5 pF (compensated to 0 ± 1pF due to software calibration)
!
Before switching on the potentiostat make sure that cell and potentiostat are wired
correctly. A missing sense connection - either reference electrode or test electrode
sense - may result in uncontrolled currents and floating potentials. Thus, the cell or
the potentiostat may be damaged.
For details please refer to the appendix.
EIS
- 17 -
3.1.3 CVB120 (Option)
The CVB120 compliance voltage booster is used to extend the controlled voltage of the Zennium up to
100V and the compliance voltage up to 120V. The CVB120 has to be connected to the Probe E and
Probe I Lemosa connector on the front panel of the Zennium.
!
All BNC connectors on the ZENNIUM front panel have to be left unconnected.
!
Before switching on the potentiostat make sure that cell and potentiostat are wired
correctly. A missing sense connection - either reference electrode or test electrode
sense - may result in uncontrolled currents and floating potentials. Thus, the cell or
the potentiostat may be damaged.
EIS
- 18 -
3.1.4 fF-Probe (Option)
The femto-Farad Probe works as a front-end to the IM6/Zennium-potentiostat. Apart from its limited
current capability, all basic functionalities of the Thales software are supported. In particular
impedance spectroscopy can be applied. Due to the fact, that the primary measurement magnitude is
the complex impedance, besides the sample capacity, resistive and DC contributions can be
determined as well.
The femto-Farad Probe has to be connected to the Probe E and Probe I Lemosa connector on the
front panel of the Zennium.
For further information please refer to the femto-Farad Probe manual.
!
All BNC connectors on the ZENNIUM front panel have to be left unconnected.
EIS
- 19 -
3.1.5 FRA-Probe (Option)
3rd party devices (electronic loads) can be interfaced from Thales with the FRA-Probe. The FRAProbe is not available for the EIS software package. Therefore the radio button is deactivated.
To use the FRA-Probe start FRA software package from the Thales main menu. For further
information please refer to the FRA-Probe manual.
!
All BNC connectors on the ZENNIUM front panel have to be left unconnected.
EIS
- 20 -
3.2 Electrode Schemes
3.2.1 Two Electrodes
The two pole scheme may be understood as the standard Kelvin arrangement known from precision
current measurements. The current lines as the potential sensing lines will be connected to the
corresponding electrodes of the cell. In electrochemistry the two pole scheme allows the measurement
of the full cell's impedance.
Connect the electrodes as follows:
1.
2.
3.
4.
Zennium
working electrode power
HIZ-I-buffer test electrode
working electrode sense
U-Buffer - TEs
reference electrode
U-Buffer - RE
counter electrode
HIZ-I-buffer counter electrode
CELL
working electrode
working electrode
counter electrode
counter electrode
In the two-electrode arrangement the Zennium has the following input specifications:
Input resistance
: > 50 GΩ
input capacitance
: < 50 pF (compensated to 0 ± 5pF due to software calibration)
!
Before switching on the potentiostat make sure that cell and potentiostat are wired
correctly. A missing sense connection - either reference electrode or test electrode
sense - may result in uncontrolled currents and floating potentials. Thus the cell or
the potentiostat may be damaged.
EIS
- 21 -
3.2.2 Three Electrodes
The three electrode scheme will be used in the traditional potentiostatic arrangement of a half cell. In
order to obtain a high-accuracy measurement of the absolute potential a reference electrode must be
used. This electrode is to be connected to the reference electrode input of the potentiostat. The straycapacitance of the cable has to be as small as possible. Use the IM cable set for best results. Try to
avoid a twisting of the wires of the reference electrode and the counter electrode. If possible keep a
large distance between these two cables.
Connect the electrodes in the following sequence:
1.
2.
3.
4.
Zennium
working electrode power
HIZ-I-buffer test electrode
working electrode sense
U-Buffer - TEs
reference electrode
U-Buffer - RE
counter electrode
HIZ-I-buffer counter electrode
CELL
working electrode
working electrode
reference electrode
counter electrode
In the two-electrode arrangement the Zennium has the following input specifications:
Input resistance
: > 50 GΩ
input capacitance
: < 30 pF (compensated to 0 ± 5pF due to software calibration)
!
Before switching on the potentiostat make sure that cell and potentiostat are wired
correctly. A missing sense connection - either reference electrode or test electrode
sense - may result in uncontrolled currents and floating potentials. Thus the cell or
the potentiostat may be damaged.
EIS
- 22 -
3.2.3 Four Electrodes
The four electrode arrangement must be chosen when using a second reference electrode as test
electrode sense. An application of the four electrode arrangement are measurements on symmetric
cells. e.g. for arrangements with diaphragms. Both reference electrodes should be connected to the
corresponding input of the potentiostat with cables of as little straw capacitance as possible. Use the
IM cable set for best results. Try to avoid a twisting of the wires of the reference electrodes and the
cables of the working/counter electrodes. If possible keep a large distance between these cables.
Connect the electrodes in the following sequence:
1.
2.
3.
4.
Zennium
working electrode power
HIZ-I-buffer test electrode
working electrode sense
U-Buffer - TEs
reference electrode
U-Buffer - RE
counter electrode
HIZ-I-buffer counter electrode
CELL
working electrode
working electrode sense
reference electrode
counter electrode
In the four-electrode arrangement the Zennium has the following input specifications:
Input resistance
: > 100 GΩ
input capacitance
: < 50 pF (compensated to 0 ± 5pF due to software calibration)
!
Before switching on the potentiostat make sure that cell and potentiostat are wired
correctly. A missing sense connection - either reference electrode or test electrode
sense - may result in uncontrolled currents and floating potentials. Thus, the cell or
the potentiostat may be damaged.
!
Shielded cables will increase the parasitic capacitance but decrease the coupling
capacitance. The best way to suppress both types of disturbances is to maximize the
distances especially to the counter electrode and to shield the whole measuring
arrangement, e.g. with a Faraday cage.
For details please refer to the appendix.
EIS
- 23 -
3.3 LoZ Cable Set (Option)
For low impedance objects (<1 Ω) we recommend to use the optional LoZ-cable set. These are
twisted-pair cables which reduce the mutual inductance prominent in low-impedance measurements.
For twisted-pair cables the probe connectors are used instead of the BNC-connectors (Probe I and
Probe E) because twisting of the cables can start directly at the output jacks. Each straight (untwisted)
piece of wire of some centimetres in length is long enough to produce a strong magnetic field
interfering with the sense signals. Furthermore, the internal circuits of the Probe I and Probe E outlets
are optimised for that purpose.
black cable
test electrode power
red cable
counter electrode
green cable
reference electrode
blue cable
test electrode sense
For the pin-out of the Probe I and Probe E connectors please refer to the appendix.
EIS
- 24 -
4. Control Potentiostat
Back to the Control Potentiostat page you may notice a particular DC potential in the DC Voltage
display. This is the rest potential of your test object. If characters like ‘± #.###’ are displayed, the
potential exceeds the limits of the potentiostat which may arise from an improper connection of your
test object.
The Control Potentiostat page is very useful for testing your external measurement setup, such as
cabling, cell, electrodes, connections to the object, etc. Here you may apply different combinations of
AC and DC voltages and currents at frequencies of interest. You may have a (first) look at the
measurement values and signals at the selected frequency. Furthermore, the AC- and DC-parameters
DC voltage/current, AC amplitude and potentiostat mode (potentiostatic or galvanostatic) are to be
defined here for an EIS measurement to follow. And – very important – the potentiostat is switched on
and off here. Please note, that the potentiostat is switched off automatically, when the potentiostat
mode is changed.
POT switch
set POT mode
select POT device
close button
set DC voltage
or DC current
global measuring
settings
DC voltage
display
go to
page
Calibration
DC current
display
set AC display type
set frequency
go to Check Cell
Connections
set AC amplitude
AC voltage display
set average
count
voltage spectrum
AC current display
current spectrum
AC display 1
AC display 2
EIS
- 25 -
4.1 Potentiostatic Mode
potentiostatic mode
potentiostat on
DC voltage setting
pot mode indicator
measured voltage
measured current
optionally put in an
AC voltage amplitude
The operation mode of the potentiostat/galvanostat of the Zennium and of external potentiostats is
selected in the Control Potentiostat page. Click on the POTENTIOSTAT dot to select potentiostatic mode.
An asterisk at the DC VOLTAGE instrument indicates the potentiostatic mode setting in ON state. In
potentiostatic mode the DC-voltage is set in the VOLTAGE input box. It is the controlled and stabilized
quantity. In consequence, the measured signal is the current.
The potentiostatic mode of operation is recommended for most AC-impedance measurements, due to
its extreme wide dynamic range and un-problematic perturbation amplitude control.
Switching on the potentiostat in potentiostatic mode will cause the software doing the following:
- The defined DC-voltage is applied to the measured object (within the limits of the POT)
- DC-voltage and DC-current are measured and displayed
- The DC-voltage is regulated and fixed, the DC-current depends on the test object
- If an AC-amplitude is defined it is superimposed to the DC-voltage, and
o The AC data are calculated from the AC-voltage and AC-current and displayed.
o The AC-signals are displayed in the scopes (time domain and frequency domain
(FFT)).
NOTE 1:
Active measurements rely on the principle, that a measuring instrument is able to vary certain physical
conditions at an object under test in a well defined manner. In case of EIS, a certain test AC
modulation (sinus perturbation) is superimposed to the stationary DC conditions. A hardware feedback
loop (potentiostatic or galvanostatic feedback) shall ensure, that the test signal is correctly
established. In order to judge the reliability of the results, the system checks, if the set value of the test
signal really matches the measured amplitude within certain limits. If the tolerance band is violated,
the system assumes an error condition present in the environment of the external setup. In any such
case you will obtain an error message during your impedance measurement: ‘Potentiostatic loop
interrupted’.
In practice, a lot of situations may occur, where the instrument is unable to establish a test signal of
sufficient magnitude. Here is the list of the most probable reasons:
• The cables (power as well as reference and/or test electrode sense) are not connected
properly to your test object.
EIS
•
•
•
•
•
•
•
•
- 26 -
The DC current is exceeding the specified current limit of the workstation.
The DC voltage at the object is exceeding the specified voltage limit of the workstation.
The inner resistance of the counter electrode(s) in a three or four electrode cell is too high.
The Haber-Luggin capillary in a three or four electrode cell is too close to the working
electrode (shading effect).
The reference electrode or the Haber-Luggin capillary in a three or four electrode cell has a
too high inner resistance (mostly caused by an electrolyte column interruption due to gas
bubbles).
The cables are too long for a low impedance test object.
Each three or four electrode cell arrangement has a characteristic maximum frequency limit,
due to parasitic properties of cables, shields and, most important, reference electrodes. An
attempt to measure EIS at a frequency beyond this limit will prompt this message, too.
Generally in any measurement technique, ‘wanted’ measurement signals have to compete
with ‘unwanted’ signals (noise) present in the set-up under test. If noise pick-up from the
environment exceeds the useful signals to a certain degree they may overload the signal
acquisition paths and again the above error message may occur.
Most of the above mentioned error conditions can be easily avoided by carefully designed cell set-up,
wiring and shielding precautions. Please refer to the corresponding hints in the article attached in the
manual folder of the Thales installation c:\thales\manuals\Introduction to Electrochemical
Instrumentation.
It is an extract from:
Analytical Methods in CORROSION SCIENCE AND ENGINEERING, Edited by Phillippe Marcuse,
Florian Mansfeld, CRC Press, Taylor & Francis Group, 2006.
ISBN-13: 978-0-8247-5952-0
ISBN-10: 0-8247-5952-4
NOTE 2:
The hardware feedback loop mentioned in note 1 implies the principle possibility for parasitic
oscillations eventually occurring between the potentiostat (which acts as a power operational amplifier)
and the cell (which acts as an external feedback path). The system tests the stability of the loop. If
oscillations are detected, the loop bandwidth is automatically reduced, until stability is achieved. If the
operator attempts to measure EIS at frequencies significantly beyond this bandwidth, the error
message ‘Potentiostatic loop not stable’ will be displayed.
Mostly, a cell set-up not appropriate to dynamic measurement requirements is the reason for this error
condition. In the above mentioned article you will also find hints how to design an optimal cell set-up
and how to avoid such problems.
NOTE 3:
The system tries to assist the operator in many situations. If settings are incomplete or insufficient to
perform an action wanted, depending on security considerations, in some cases the user may be
informed by messages. In other cases the action may be continued by an automatic introduction of
missing settings. Generally, settings done manually by the operator in the Control Potentiostat page
are taken as obligatory. Missing settings may cause error messages, for instance a missing AC
amplitude setting will lead to the message
EIS
- 27 -
or initiate a default routine. The state of the potentiostat (on/off) prior to a measurement routine is of
particular interest for this behavior. The EIS routines of Thales generally apply: The state prior to an
EIS spectrum will be kept or established again after the spectrum run. (The same philosophy is taken
by Thales for all the other measurement methods which use the potentiostat definitely in the on-state
to be performed, like in CV or I/E. It makes no sense to meet this strategy in all cases, for instance in
measurement tasks which may use mixed modes (on or off) like done in POL or PVI.). As an example
for the strategy of assisting through default values consider the following: if an operator connects a cell
for the first time after starting the instrument, no setting for the potentiostat set voltage is present and
the corresponding input field is empty:
At the moment the operator switches on the potentiostat without filling in the set-value field, for
security reasons the actually measured OCP is taken as set-value and then the potentiostat is
switched on:
Note, that from the moment, a set-value is present, this value is taken as obligatory when switching off
or on again manually, even, if the OCP changes during an off-state.
This situation differs from the following sequence, where the instrument has to switch on the
potentiostat automatically. Consider, you leave the control-potentiostat page with AC set value
established, but the potentiostat is still switched off. Then Thales will overwrite an eventually present
DC-voltage set-value by the actually measured OCP, switch on and perform the spectrum. After the
spectrum is completed, the potentiostat is switched off again. This implies, if you want to perform a
spectrum at a dedicated DC-set-voltage different from the OCP, you have to switch on the potentiostat
prior to the measurement. In this case, the state of the potentiostat will be on also after the spectrum is
completed.
The strategy to handle the on/off-state is continued in the more complex procedures: if you want to
perform for instance an impedance spectra series vs. DC-set-voltage, the individual spectra have to
be recorded at certain DC-set-voltages. Depending on the starting state, the system will keep the onstate between the spectra and after completion of the whole series, or it will switch off after each
spectrum and after completion of the whole series. In the latter case before each spectrum a ramp is
automatically introduced, starting from the actually OPC and ending at the dedicated DC-set-voltage.
This strategy is also used for CV and I/E scans.
EIS
- 28 -
4.2 Galvanostatic Mode
galvanostatic mode
galvanostat on
DC current setting
measured voltage
gal mode indicator
measured current
optionally put in an
AC current amplitude
(the value must be followed by A !)
Click on the GALVANOSTAT dot to select galvanostatic mode. An asterisk at the DC CURRENT instrument
indicates the galvanostatic mode setting. In galvanostatic mode the DC-current is set in the CURRENT
input box. It is the controlled and stabilized quantity. In consequence, the measured signal is the
voltage.
While for most research objects potentiostatic mode for EIS should be preferred, galvanostatic mode
may have certain advantages for batteries and fuel cells for instance. They are better characterised by
a steady state current than by a potential, because the corresponding voltage may change
significantly during charging/discharging or changes in the support process control. In this case
galvanostatic mode of operation should be preferred.
Switching on the potentiostat in galvanostatic mode will cause the software doing the following:
- The defined DC-current is applied to the measured object (within the limits of the POT)
- DC-voltage and DC-current are measured and displayed
- The DC-current is controlled and fixed, the DC-voltage depends on the test object
- If an AC-amplitude is defined it is superimposed to the DC-current, and
o The AC data are calculated from the AC-voltage and AC-current
o The AC-signals are displayed in the scopes (time domain and frequency domain
(FFT)).
NOTE:
For the galvanostatic mode similar considerations regarding possible error conditions are valid as for
the potentiostatic mode. Besides this, galvanostatic mode does not exhibit the excessive wide
dynamic range for the measured impedance available in potentiostatic mode with up to 12 orders of
magnitude in current sensitivity ranging. In galvanostatic mode the current range is fixed by the sum of
the DC set current and the current amplitude. Galvanostatic mode is only appropriate for systems with
a relative small impedance change over frequency.
The fixed current amplitude may also cause problems regarding the violation of the linearity rule valid
for all impedance technique: often electrochemical systems exhibit much higher impedance at lower
frequencies. In this case the resulting AC-voltage amplitude may overload the system under test.
EIS
- 29 -
4.3 Pseudo-Galvanostatic Mode
galvanostatic mode
galvanostat on
DC current setting
pseudo gal mode
indicators
measured voltage
measured current
input an AC voltage amplitude
(the value must be followed by V !)
In pseudo-galvanostatic mode the DC current and the AC voltage amplitude are set. DC current
control is recommended in investigations of drifting systems, similar to the considerations for true
galvanostatic mode. Consider a fuel cell in a test stand. Test measurements of fuel cells will be done
by the variation of many parameters like temperature, gas-pressure, etc. The variation of those
parameters may cause a significant drift of the potential at a characteristic current. This will cause a
dramatic drift of the flowing DC-current due to the steep I/E-characteristic of the system if true
potentiostatic mode is used. By feedback on other parameters of the system the equilibrium may be
distorted significantly. Therefore, a controlled DC current is better suited for those measurements.
In pseudo-galvanostatic mode the DC loop is controlled by software while the hardware is kept in
potentiostatic mode. Set point value is the defined DC-current, which is regulated by controlling the
DC-potential. During the measurement of an impedance sample the DC-potential is fixed to the last
measured value and then the AC potential is superimposed. When the sample is finished, control is
returned to the software current control loop. One of the following situations is found:
1. The measured current lies within the stability criteria. In this case the program immediately
continues with the EIS measurement.
2. The measured current is out of the tolerance band. The potential will be regulated by the software
to meet the current set point again. The EIS measurement will be continued as soon as the steady
state is reached again or the maximum delay time has run down.
3. The measured current runs out of a tolerance band being defined by the limits
I upper = 2 ⋅ I set
and I lower =
I set
.
2
The controller will change to hardware galvanostatic mode of operation and by applying the DC
potential measure found as DC-set-voltage a new starting potential for the stabilizing loop will be
obtained. This shall ensure fast regulation response in the case of higher deviations.
The set DC-current will be regulated by control of the DC-potential due to the defined current range
and criteria of stability being defined in the global measurement presets submenu.
EIS
- 30 -
4.4 Rest Potential Mode
potentiostatic mode
potentiostat on
DC voltage setting
no indicators
rest potential
measured current
Input a “?” in DC voltage input box
input an AC voltage amplitude
The 'rest potential' mode is used for measurements in which no DC-current must flow, even if the
measured system is not very stable. To select the rest potential mode switch to the position
POTENTIOSTAT, and input a question mark “?” in the DC VOLTAGE input box while the potentiostat is
already in the on state. These settings will activate the rest potential measuring routine.
Please note the difference between the rest potential mode and setting the DC voltage to zero:
Rest potential mode -> potentiostat applies the measured rest potential, no current is flowing
DC potential = 0 V
-> DC potential is fixed to 0 V by the potentiostat, excessive current may flow
in active systems like batteries.
The rest potential mode is mostly recommended for the investigations of systems of slowly changing
state. Consider a corroding electrode, where the system's DC-parameters are changing slightly.
Impedance measurements at the rest potential will be done by the following strategy: The potentiostat
will be switched on applying the last rest potential having been measured.
If the DC-current is within the limits defined in the EIS Setup page the AC-measurement will start.
After each measured frequency the DC-current will be measured. If the DC-current is within the limits
the measurement will be continued. If the DC-current is out of range the AC-measurement is stopped
and the rest potential is measured anew. The new rest potential is applied and the measurement is
continued. The stability as the controlled range of the zero current is defined in the
DC-mode Stability criteria in the EIS Setup (see chapter EIS Setup).
NOTE:
Pseudo-galvanostatic as well as pseudo-rest-potential mode have certain limitations due to the fact,
that software control relies on a minimum stability of the systems under test. Rapidly changing
systems cannot be evaluated successfully by this techniques. On the other hand, the same
prerequisites are necessary for all kinds on impedance measurements.
EIS
- 31 -
4.5 DC/AC Settings
Graph Box
Parameter
DC voltage (potentiostatic
mode)
Unit Range IM6
Range Zennium
Range Zennium-E
V
A
± 4 V (standard)
±10 V (extended)
? = free
ext = external source
±3 A
± 4 V (standard)
±10 V (extended)
? = free
ext = external source
±2.5 A
± 4 V (standard)
±10 V (extended)
? = free
ext = external source
±2 A
Hz
10 mHz – 8 MHz
10 mHz – 4 MHz
10 mHz – 2 MHz
1 mV – 1 V (pot, pgal)
1 pA – 2 A (gal)
0 = AC amplitude off
1 mV – 1 V (pot, pgal)
1 pA – 2 A (gal)
0 = AC amplitude off
1 mV – 1 V (pot, pgal)
1 pA – 2 A (gal)
0 = AC amplitude off
1 - 1000
1 - 1000
1 - 1000
Depending on the # of
devices connected
Depending on the # of
devices connected
Depending on the # of
devices connected
or
DC current (galvanostatic &
pseudo-galvanostatic mode)
Frequency used for test
measurement
AC amplitude:
Voltage in potentiostatic &
V
pseudo-galvanostatic mode,
Current in galvanostatic
A
mode
Count of averaging cycles
used for each frequency
sample in Testsampling and #
C/E. This value is overwritten
in EIS spectra
POT-device to be active for
test measurement
#
For the DC-voltage setting you may use one of the following inputs:
value
Set a fixed DC-potential. For all measurements this DC-potential will be applied.
?
With the ? character you activate the free running mode. The DC-potential will be
regulated so that the DC-current is zero. In this mode the DC-voltage displays shows
the OCP (open circuit potential).
Like usual in the Thales environment, all input-boxes accept not only pure values but also the
following technical multiplier prefixes (engineer’s units):
prefix
a
f
p
n
u
m
k, K
M
G
T
E
P
meaning
atto
femto
pico
nano
mikro
milli
Kilo
Mega
Giga
Tera
Exa
Peta
multiplier
10-18
10-15
10-12
10-9
1/1000000
1/1000
1.000
1.000.000
109
1012
1015
1018
You need not input the unit (V, Hz, A, etc.). This is done by the software automatically (exception:
amplitude in pseudo-galvanostatic (V) and galvanostatic (A) mode).
Examples:
0.1
= 100m
1000 =
1k
1000u =
1m
=
=
=
1e-1
1K
= 1e3
0.001 = 1e-3
EIS
- 32 -
For the determination of the impedance it is generally recommended to average a certain number of
sinus signal periods for each frequency sample. Basically, a single sine corresponds with a “dirty”
(non-monochromatic) spectrum of the test signal. The test signal spectrum gets the cleaner, the more
sinus periods are averaged. Besides this, the signal-to-noise ratio increases with the average count.
The COUNT parameter defines the number of cycles to be integrated in each measurement point. The
higher the count the smoother the signals in the time-domain display and the higher the measuring
time and accuracy. A good indicator of the signal being close to a sine wave is the SPECTRUM display.
A pure sine wave shows only one line. Additional lines indicate noise and harmonics and with this a
distortion of the sine wave signal. Please refer again to the attached article in
c:\thales\manuals\Introduction to Electrochemical Instrumentation.pdf for detailed information.
COUNT
=1
COUNT
=2
COUNT
= 10
In case you are working with one or more external potentiostats or with a RMux card select the
DEVICE number (channel number of EPC40 or of the RMux) you would like to be active (0 = internal IM
POT). After the input the IM is detecting the type of the device. The device name (PP200, PP210,
PP240, EL300, EL101, NProbe, etc.) will be displayed in the DEVICE box, then.
EPC40#1
EPC40#2
EPC40#3
EPC40#4
DEVICE#1
DEVICE#5
DEVICE#9
DEVICE#13
DEVICE#2
DEVICE#6
DEVICE#10
DEVICE#14
DEVICE#3
DEVICE#7
DEVICE#11
DEVICE#15
DEVICE#4
DEVICE#8
DEVICE#12
DEVICE#16
After all parameters are set you may switch on the potentiostat by clicking on the ON button:
EIS
- 33 -
4.6 Instrument Displays
Now the DC instrument displays are showing the measured values for DC voltage and DC current.
The DC voltage is measured between reference electrode and test electrode sense. In
electrochemical diction, the reference potential is virtually zero.
The DC current displayed is the current flowing from the counter electrode to the test electrode
power. In electrochemical diction “positive” means anodic, “negative” means cathodic with respect to
the test electrode.
A red asterisk indicates which of the two quantities (voltage or current) is controlled by the
potentiostat/galvanostat (example: galvanostatic mode). The other quantity is measured.
The AC instrument displays can only work if an AC Amplitude is set. They may be configured for
displaying the quantities needed with the AC Display Selector.
EIS
- 34 -
The following display types are available:
Setting Display 1
Impedance modulus value
|Z|, Φ
Z’, Z’’
Y’, Y’’
R // C
R-C
R-L
L, Q
Unit
Ω
Phase angle between AC voltage and
AC current
°
Real part of the impedance
Ω
Imaginary part of the impedance
Ω
Real part of the admittance
Ω-1
Imaginary part of the admittance
Ω-1
Resistance (in parallel to capacitance)
Ω
Capacitance (in parallel to resistance)
Farad
Resistance (in series to capacitance)
Ω
Capacitance (in series to resistance)
Farad
Resistance (in series to inductance)
Ω
Inductivity (in series to resistance)
Inductivity, Quality factor
Henry
Henry
Instrument displays
EIS
- 35 -
4.7 Graphic Realtime AC Displays
Besides the four instruments, four graphic realtime displays are showing the AC voltage and the AC
current signals in the time domain (waveform) and in the frequency domain (spectrum).
AC voltage time domain
AC voltage frequency domain
AC current time domain
AC current frequency domain
These displays are very useful for detecting disturbances of the measurement signals very easily. The
AC voltage at the output of the IM instrument (test electrode and counter electrode) is a pure singlefrequency sine signal. This should be shown in the AC Voltage Time Domain display. This single
frequency should also dominate in the AC Voltage Frequency Domain display. There may be small
side lines, but best is when there is only one line of the frequency selected. Accordingly, the AC
current should be as close as possible to a single-frequency sine form and the frequency display
should show only one line or only small side lines.
If you encounter disturbances in these signals, make sure that for high-impedance measurements you
have a good shielding of your object/cell. The shielding has to be grounded at the GND banana
connector at the backside of the Zennium device. Remember that the shield of the cell cables must
not be connected to GND! For very high impedances use the optional HiZ Probe Set which you
position as close as possible to the object/cell. For low-impedance measurements use cables as short
as possible. For very low impedances use the LoZ Cable Set (option) which also should be as short as
possible.
!
The Electrochemical Workstation Zennium is working on the basis of the most
accurate strategy: A monochromatic excitation in combination with a multispectral
response analysis. This enables outstanding features like realtime drift correction
and a realtime estimation of the accuracy. All these features are described in detail in
the chapter 7.10 Advanced Features.
EIS
- 36 -
5. EIS Setup
Clicking on the Hippo icon
in the Control Potentiostat page leads you to the EIS Setup page
where more specific setting for the impedance measurement can be edited. You can reach this page
also from the EIS Main page by clicking on the same Hippo icon.
save Setup settings
general
current
limit for automatic
procedures
select
realtime
display type
additional DC
mode parameters
Additional
AC
mode and control
parameters
DC settings
AC settings
5.1 Global Current Limit
Click on the “current limit” button in order to set a current limit for the IM device [A],
valid in DC- and combined AC-DC techniques. If these limits are violated, the
measurement may be stopped and an error message is displayed. Depending on
the method running, the current limit event may also cause inversing of scanning
procedures or a procedure restart. Set the current limit to a value lower than the
“damaging” current. The software will not allow to trespass this current in automatic
DC- and combined AC-DC procedures. Cathodic and anodic current can be
defined separately.
Please note that the current limit control is NOT ACTIVE in Control Potentiostat
and pure AC measurements.
For the IM6 the maximum current is ±3 A, for the Zennium it is ±2.5 A and for the
Zennium-E it is ±2 A.
EIS
- 37 -
5.2 Default on-line display
Click on one of these icons in order to select the curve type you like to be displayed by default in the
EIS Measurement Page.
real-time auto-scaling on/off
Complex dielectric constant
Complex modulus
Real & imaginary part of the admittance vs. frequency
Real & imaginary part of the impedance vs. frequency
Nyquist plot
Bode plot
5.3 DC-Mode Parameters
Defines the minimum time (s) the system has to wait for steady state
conditions before starting a measurement. The minimum delay time
will be held, even if other stability criteria have already been fulfilled.
Defines the maximum time (s) the system has to wait for steady state
conditions. After the maximum delay time the program will continue
to measure, even if other criteria of stability have not yet been met. If
you encounter stability problems this value has to be set to
appropriate conditions.
Defines the absolute current drift tolerated for steady state conditions
dI absolute =
I (t ) − I (t − dt )
dt
The absolute drift tolerance is given in units of A/sec, useful in the
regime of small currents with potentially changing sign.
Defines the relative current drift (difference of two successive current
points) tolerated for steady state conditions.
dI absolute =
I (t ) − I (t − dt ) 1
⋅
I (t. − dt )
dt
The relative current drift tolerance is given in units of 1/sec. It is
useful in the regime of higher currents, when the absolute drift
tolerance is no adequate measure for stability.
EIS
- 38 -
Steady state control
Changing the applied potential or current to a system, mostly causes a distortion of the equilibrium.
Before taking the next sample the system should become stationary again. Stationarity must
especially be considered for the following measurement methods:
a) Steady state current density over potential measurements (I/E)
Steady state current potential curves are measured with respect to user-defined criteria of stability.
Changing the potential at a conducting system will usually disturb the stationarity of the flowing
current. Due to the system's properties the current response to a dE-pulse may be dramatic - e.g.
charging or discharging processes may be initiated. Thus, current stationarity should be ensured
before a new I(E) sample will be measured.
b) Capacity Recording (C/E)
Measuring the capacity over the potential demands special care on the stationarity of the studied
system. Stationarity will be controlled automatically by the program as changes of the potential will
disturb the current equilibrium. Depending on the selected potential resolution the applied voltage may
be changed in intervals. Due to the dE/dt the system will respond by current response signals. Before
measuring a new C(E) sample, current stationarity should be ensured.
c) Impedance Spectra Series Measurements
Impedance series measurements demand some settling time after the new regulation variable has
been applied. Changes of the control parameter will generally cause some kind of perturbation of the
system's steady state. Defining the stabilisation delay sufficiently high will offer new stability of the
system before measuring the next impedance spectrum. Depending on the regulating variable steady
state parameters of both - DC-mode and AC-mode - may become relevant. The delay for series
measurements are defined in the Series Measurement page.
More DC-mode settings can be found by clicking on the
allowing you to define the following parameters:
Parameter
Start phase slew rate V/s
Range
1m-1
Default
1e-2
break on overload factor
1 - 10
2
button. An input box will open
Description
Starting ramp phases are introduced automatically, if
a method needs potentiostatic control, but the initial
state of the potentiostat was off. The start phase
slew rate defines the ramp speed. Note: The ramp
phase is subject of the global current limit !.
In I/E-DC scans (and also in starting ramp phases)
the global current limit may be overdriven within the
settling time in a defined way: the break on overload
factor defines, how much overload beyond the
global current limit is tolerated during settling.
EIS
MIE range delay (s)
0 - 10
1
temp. protocol source
0, 1
1
PMUX installed
0; 1
0
FRA voltage-in
[V_cell/V_acq]
-1000 1000
1
FRA voltage-out
[V_cell/V_ctrl]
-1000 1000
1
FRA min.voltage
[V_cell]
-1000 0
-100
FRA max.voltage
[V_cell]
0 - 1000
0
FRA current-in
[A_cell/V_acq]
-1000 1000
-1
FRA current-out
[A_cell/V_ctrl]
-1000 1000
-1
FRA min-current
[A_cell]
-1000 0
0
FRA max-current
[A_cell]
0 - 1000
100
- 39 -
In Multicell-I/E an auto-range triggering may be
delayed intentionally to prevent excessive ranging
events when testing noisy systems.
In procedures under temperature control (for
instance EIS spectra series vs. set temperature)
there are two choices for the automatic entry of the
temperature into the protocol box: 0 means, that the
temperature claimed by the controller (usually close
to the set-value) is recorded. 1 means, that the
temperature from another sensor (usually the real
temperature), provided in the signal acquisition VI
#0, is recorded.
When a RMUX relay scanner is installed, the global
current limit is bound to max. ± 0.5A due to the
smaller current capability of the RMUX card
channels. When the RMUX is back-upped by the
external PMUX, this limitation can be skipped.
If a FRA module (option) for interfacing an external
third-party load is connected, you must set the factor
for cell voltage corresponding to a signal input of 1V.
If a FRA module (option) for interfacing an external
third-party load is connected, you must set the factor
for cell voltage corresponding to a signal output of
1V. (potentiostatic mode)
If a FRA module (option) for interfacing an external
third-party load is connected, you must set the
minimum voltage of the external device.
If a FRA module (option) for interfacing an external
third-party load is connected, you must set the
maximum voltage of the external device.
If a FRA module (option) for interfacing an external
third-party load is connected, you must set the factor
for cell current corresponding to a signal input of 1V.
If a FRA module (option) for interfacing an external
third-party load is connected, you must set the factor
for cell current corresponding to a signal output of
1V. (galvanostatic mode)
If a FRA module (option) for interfacing an external
third-party load is connected, you must set the
minimum current of the external device.
If a FRA module (option) for interfacing an external
third-party load is connected, you must set the
maximum current of the external device.
EIS
- 40 -
5.4 AC-Mode Parameters
AC-mode steady state control is used for C/E-measurement and for impedance spectra series
measurements if the control parameter is the DC-current. Further on, the stability of the rest potential
and in the pseudo galvanostatic mode AC stability control will be used. The control parameters are:
Defines the maximum time (s) the system has to wait for steady state
conditions. After the maximum delay time has expired the program
continues with the measurement, even if other criteria of stability
have not yet been reached. This delay time should be increased for
more stringent steady state control.
Maximum drift of the rest potential to be considered as sufficient
steady state. This parameter is used if a measurement will be
performed under control of the rest potential. This tolerance is
defined by
dE drift =
E (t ) − E (t − dt )
dt
The rest potential drift tolerance is given in units of V/sec.
Defines the absolute current drift tolerated band for sufficient steady
state conditions. I min = I set − I tol ; I max = I set + I tol
The absolute tolerance is given in units of A.
Defines the relative current drift (deviation between current
measurements in a time interval of 1s) tolerated for sufficient steady
state conditions.
dI arelative =
I (t ) − I (t − dt )
I (t. − dt )
More AC-mode settings can be found by clicking on the
allowing you to define the following parameters:
button. An input box will open
EIS
- 41 -
Parameter
Range
Def. Description
line frequency/Hz
50; 60
[Hz]
Z-output flag
0; 1
0 If set to “1” this parameter disables the breaking of a
measurement after detecting noise in the measurement
signal.
If set to “0” (default) in case of noise the error message
Potentiostatic Loop Interrupted is displayed and the
measurement is stopped.
minimum damping
0-4
0 Reduce bandwidth of potentiostat. 0 is maximal, 4 is minimal
bandwidth.
amplitude ranging
0; 1
0 If enabled the AC amplitude is automatically increased if too
less perturbation response signal is detected.
gain ranging
0; 1
0 The automatic gain ranging can be enabled (1) or disabled
(0).
50 Mains line frequency (country-specific). This parameter is
used to set a notch filter against mains line interference.
minimal
index
shunt 0 - 11
0 Allows to select a minimum shunt resistance for current
measurement and with this a maximum current (low
impedance) measurement range. The shunt resistance tables
are listed in the appendix. This will encounter also a
hardware current limit.
maximal
index
shunt 0 - 11
11 Allows to select a maximum shunt resistance for current
measurement and with this a maximum current sensitivity
(high impedance) range. The shunt resistance tables are
listed in the appendix.
shunt capacity
0 - +2n
0 Software compensation of the shunt (counter electrode) input
capacitance [F] of the potentiostat. It must be set to
approximately 50pF/m, if a shielded counter electrode cable
is used. It is strongly recommended to avoid shielded counter
electrode cables. Instead, a common Faraday cage for
instrument and cell should be preferred.
Phase Bottom / Deg
0 Phase Scaling start for Bode representation of EIS spectra
Top / Deg
90 Phase Scaling end for Bode representation of EIS spectra
logfile entry
0–7
0 If logfile entry is set, impedance measurements are
EIS
0
1
2
3
4; 6
5; 7
- 42 -
accompanied by automatic logging of additional information
in a log-file for diagnostic purposes, optionally visualized in
the Z-Trace window.
Logging option deactivated
Impedance ranges and intermediate results are logged for
diagnostic purposes
Harmonic content of harmonics 2 to 10 of the actual
impedance sample response are stored together with
frequency and date time information (amplitudes are
normalized to the fundamental), see the format below.
Combination of 1 and 2
Enhanced THD information consists of harmonic content (2),
exitation harmonics and response harmonics. The
corresponding noise distortions are only calculated for
frequency points below 66 Hz! (see the ASCII data format
below)
Visualized in the Z-Trace window and appended as THD
tables to the ASCII formated EIS data file. This files can be
created automatically with the Autolist function (see bottom of
this table).
Combination of 1 and 4
DC protocol in AC
0; 1
0 If DC protocol in AC is enabled (1), DC parameters are
measured at each frequency point and logged as additional
data rows to the measurement file.
LF drift
compensation
0; 1
1 LF drift compensation is enabled (1) by default to use
automatic drift compensation in the low frequency range (<2
Hz). Disable LF drift compensation only for demonstration
(not recommended)
Autolist txt=1;
csv=2
0-2
0 Select Autolist to save binary and ASCII data files
automatically (same folder and filename).
EIS data is only saved in binary format *.ism
EIS data is saved in binary format *.ism and ASCII formated
text file *.txt
EIS data is saved in binary format *.ism and ASCII character
separated value file *.csv
0
1
2
Please refer to the appendix for a list of the shunt resistors used in the Zennium and in the external
potentiostats.
The harmonic contend data protocol is created, when logfile entry is set to the value 2, see above.
The harmonics are pre-processed in a way, that they can be used directly for second harmonic
analysis or for harmonic distortion analysis. One line is created for every impedance sample, starting
with a time stamp of the format YYMMDDHHMMSS (Year, Month, Day, Hour, Minute, Second) and
followed by the measuring frequency in Hz. Then a list of nine harmonics in ascending order follows.
The order one (fundamental) could be omitted, because the harmonic amplitudes are already
normalized to a value of one for the fundamental. The data set is always calculated from the response
function. This means, that in potentiostatic mode the list of current harmonics is created, in
galvanostatic mode it is the list of voltage harmonics. The harmonic contend, eventually present
already in the force function (usually close to zero) is already compensated in the response function. If
the absolute value of the response fundamental is needed, one can calculate it from the force
amplitude and the actual impedance modulus by:
Ar1 =
Af
Z
in potentiostatic mode, Ar1 = A f ⋅ Z in galvanostatic mode.
EIS
- 43 -
Example: Autosave ASCII EIS data with enhanced THD information (logfile entry = 4-7; Autolist = 1)
File.......:
- JUN,25.2015
System.....:
Potential..:
Current....:
Temperature:
Time.......:
Comment....:
0.000V
-1.7438mA
-0.8+-0.0C
14:05:26 - 14:06:42
(area/cm^2):
Impedance samples
Lines:
18
Columns: 5
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Frequency/Hz
1.0000e+02
7.9621e+01
6.3246e+01
5.0238e+01
3.9905e+01
3.1698e+01
2.5179e+01
2.0000e+01
1.5887e+01
1.2619e+01
1.0024e+01
7.9621e+00
6.3246e+00
5.0238e+00
3.9905e+00
3.1698e+00
2.5179e+00
2.0000e+00
impedance/Ohm
1.3580e-04
1.3637e-04
1.3432e-04
1.3308e-04
1.3358e-04
1.3390e-04
1.3524e-04
1.3231e-04
1.3193e-04
1.3331e-04
1.3229e-04
1.3345e-04
1.3161e-04
1.3187e-04
1.3142e-04
1.3347e-04
1.3261e-04
1.3265e-04
Phase/deg
13.31
11.71
9.32
7.27
5.09
4.14
4.09
2.90
1.83
2.10
1.31
0.96
0.45
1.02
0.20
0.81
-0.05
0.90
Significance
0.992
0.995
0.994
0.999
0.998
0.994
0.998
0.997
0.999
0.998
0.999
0.996
0.999
0.999
0.995
0.996
0.994
0.999
Time/s
0.0
2.5
4.2
6.0
7.9
9.9
12.1
14.4
17.0
19.9
23.1
26.8
31.5
36.4
42.1
48.8
56.6
65.9
THD-data:
data: normalized
data: normalized
data: normalized
data: normalized
data: normalized
data: normalized
data: normalized
data: normalized
data: normalized
data: normalized
data: normalized
data: normalized
data: normalized
data: normalized
data: normalized
data: normalized
data: normalized
data: normalized
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
1.0e+2
7.96e+1
6.32e+1
5.02e+1
3.99e+1
3.17e+1
2.52e+1
2.0e+1
1.59e+1
1.26e+1
1.0e+1
7.96e+0
6.32e+0
5.02e+0
3.99e+0
3.17e+0
2.52e+0
2.0e+0
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
1.56e-2
8.58e-3
1.23e-2
9.6e-4
4.94e-3
1.5e-2
3.94e-3
5.87e-3
1.48e-3
2.99e-3
8.76e-4
5.19e-3
1.36e-3
4.25e-4
9.58e-3
7.01e-3
1.34e-2
1.48e-3
1.12e-2
9.73e-3
6.09e-3
1.9e-3
2.86e-3
3.16e-3
4.32e-3
2.18e-3
1.06e-3
5.2e-3
6.08e-3
1.04e-2
2.5e-3
2.1e-3
7.1e-3
9.75e-3
5.12e-3
1.87e-3
5.82e-3
8.68e-3
4.19e-3
5.37e-3
3.1e-3
9.96e-3
3.66e-3
2.27e-3
7.16e-3
7.46e-3
7.01e-4
6.38e-3
2.27e-3
2.19e-3
5.04e-3
1.72e-3
3.54e-3
6.9e-3
7.57e-3
5.58e-3
1.16e-3
2.4e-3
2.05e-3
3.92e-3
7.25e-3
1.02e-2
4.22e-3
2.2e-3
4.24e-3
8.05e-3
5.66e-3
2.06e-3
2.85e-3
3.66e-3
1.57e-3
1.62e-3
9.78e-4
3.33e-3
6.66e-3
1.29e-3
2.64e-3
4.04e-3
4.23e-3
3.66e-3
2.09e-3
5.28e-3
1.21e-3
4.56e-3
3.63e-3
3.07e-3
2.59e-3
6.22e-3
4.42e-3
5.08e-3
4.86e-3
8.73e-4
2.77e-3
8.08e-4
2.27e-5
3.78e-3
2.54e-3
3.03e-3
4.11e-3
1.88e-3
2.78e-3
5.55e-3
2.93e-3
7.24e-4
2.1e-3
3.15e-3
2.43e-3
1.7e-3
1.52e-3
4.6e-3
8.92e-4
7.18e-4
6.24e-3
2.55e-3
1.64e-3
3.25e-3
1.34e-3
4.17e-3
2.3e-3
1.68e-3
7.18e-4
2.92e-3
2.34e-3
1.25e-3
6.8e-4
4.89e-3
3.9e-3
4.48e-3
1.27e-3
3.14e-3
3.0e-3
6.75e-4
3.18e-3
1.24e-3
3.36e-3
3.08e-3
2.56e-3
2.61e-3
4.86e-3
2.62e-3
2.97e-3
1.13e-3
2.3e-3
3.33e-3
3.49e-3
2.58e-3
1.76e-3
3.01e-3
3.74e-3
3.03e-3
4.51e-4
3.24e-3
4.69e-3
1.82e-3
5.06e-3
2.75e-3
1.85e-3
3.14e-3
1.42e-3
6.34e-4
2.21e-3
1.5e-3
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
1.07e-1
1.2e-1
1.09e-1
1.37e-1
1.14e-1
1.86e-1
1.08e-1
4.15e-2
1.37e-3
2.07e-2
8.31e-4
5.98e-4
1.5e-3
6.75e-4
6.51e-4
2.32e-1
2.89e-2
6.82e-4
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
excit
excit
excit
excit
excit
excit
excit
excit
excit
excit
excit
excit
excit
excit
excit
excit
excit
excit
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
1.0e+2
7.96e+1
6.32e+1
5.02e+1
3.99e+1
3.17e+1
2.52e+1
2.0e+1
1.59e+1
1.26e+1
1.0e+1
7.96e+0
6.32e+0
5.02e+0
3.99e+0
3.17e+0
2.52e+0
2.0e+0
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
1.56e-3
1.54e-3
1.64e-3
1.67e-3
1.65e-3
1.68e-3
1.65e-3
1.59e-3
1.61e-3
1.63e-3
1.63e-3
1.69e-3
1.02e-3
1.22e-3
1.31e-3
1.35e-3
1.4e-3
1.49e-3
5.22e-4
6.89e-4
7.47e-4
7.88e-4
8.48e-4
9.11e-4
5.93e-4
7.24e-4
8.32e-4
7.98e-4
8.7e-4
9.4e-4
1.62e-3
1.44e-3
1.3e-3
1.12e-3
1.13e-3
1.14e-3
2.62e-5
3.75e-5
4.36e-5
5.61e-5
8.26e-5
5.16e-5
6.51e-5
4.39e-5
6.39e-5
3.77e-5
4.54e-5
2.97e-5
2.15e-4
2.14e-4
1.83e-4
1.51e-4
1.31e-4
1.21e-4
2.94e-4
3.26e-4
3.81e-4
3.79e-4
4.44e-4
4.98e-4
2.37e-4
3.51e-4
3.84e-4
3.46e-4
4.33e-4
4.56e-4
6.53e-4
5.45e-4
4.1e-4
2.31e-4
2.18e-4
2.34e-4
3.34e-5
2.54e-5
3.37e-5
4.25e-5
8.62e-6
2.51e-5
3.48e-5
2.87e-5
3.31e-5
3.28e-5
3.84e-6
3.08e-5
5.68e-5
4.65e-5
4.03e-5
1.35e-5
1.83e-5
2.7e-5
5.55e-5
7.86e-5
1.31e-4
1.12e-4
1.42e-4
1.86e-4
7.22e-5
9.32e-5
9.89e-5
1.11e-4
1.25e-4
1.63e-4
2.63e-4
2.27e-4
1.96e-4
1.02e-4
9.5e-5
1.01e-4
2.29e-5
3.05e-5
2.19e-5
1.77e-5
2.63e-5
4.37e-5
1.05e-5
3.63e-5
1.88e-5
2.17e-5
2.16e-5
3.43e-5
2.61e-5
3.14e-5
2.13e-5
7.45e-6
1.82e-5
1.77e-5
2.44e-5
1.94e-5
3.36e-5
3.63e-5
3.58e-5
5.27e-5
2.68e-5
3.27e-5
2.8e-5
2.47e-5
5.11e-5
5.04e-5
1.15e-4
1.26e-4
1.21e-4
5.61e-5
5.82e-5
5.27e-5
7.35e-6
2.76e-5
2.48e-5
2.4e-5
4.84e-5
2.87e-5
1.53e-5
7.37e-6
5.15e-5
1.78e-5
8.12e-5
4.92e-5
1.62e-5
2.86e-5
3.96e-5
2.33e-5
3.28e-5
4.07e-5
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
3.99e-5
3.68e-5
3.37e-5
2.48e-5
3.51e-5
2.18e-5
2.5e-5
1.12e-5
5.5e-6
3.4e-6
2.06e-6
2.41e-6
4.21e-6
1.67e-6
1.43e-6
2.01e-6
1.99e-6
1.4e-6
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
frq:
1.0e+2
7.96e+1
6.32e+1
5.02e+1
3.99e+1
3.17e+1
2.52e+1
2.0e+1
1.59e+1
1.26e+1
1.0e+1
7.96e+0
6.32e+0
5.02e+0
3.99e+0
3.17e+0
2.52e+0
2.0e+0
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
harm:
1.71e-2
1.01e-2
1.39e-2
2.63e-3
6.58e-3
1.66e-2
5.59e-3
7.46e-3
3.09e-3
4.62e-3
2.5e-3
6.88e-3
2.39e-3
7.92e-4
1.09e-2
8.36e-3
1.48e-2
2.97e-3
1.17e-2
1.04e-2
6.83e-3
2.69e-3
3.71e-3
4.07e-3
4.92e-3
2.9e-3
1.9e-3
6.0e-3
6.95e-3
1.14e-2
4.12e-3
3.54e-3
8.41e-3
1.09e-2
6.25e-3
3.01e-3
5.85e-3
8.71e-3
4.23e-3
5.43e-3
3.18e-3
1.0e-2
3.72e-3
2.32e-3
7.22e-3
7.49e-3
7.47e-4
6.41e-3
2.48e-3
2.4e-3
5.23e-3
1.87e-3
3.67e-3
7.02e-3
7.87e-3
5.91e-3
1.54e-3
2.78e-3
2.49e-3
4.42e-3
7.48e-3
1.05e-2
4.61e-3
2.55e-3
4.68e-3
8.51e-3
6.32e-3
2.61e-3
3.26e-3
3.89e-3
1.78e-3
1.86e-3
1.01e-3
3.36e-3
6.69e-3
1.33e-3
2.65e-3
4.07e-3
4.26e-3
3.69e-3
2.13e-3
5.32e-3
1.22e-3
4.59e-3
3.69e-3
3.12e-3
2.63e-3
6.24e-3
4.43e-3
5.11e-3
4.92e-3
9.52e-4
2.9e-3
9.2e-4
1.19e-4
3.96e-3
2.61e-3
3.13e-3
4.21e-3
1.99e-3
2.9e-3
5.71e-3
3.19e-3
9.51e-4
2.29e-3
3.25e-3
2.53e-3
1.8e-3
1.54e-3
4.63e-3
9.14e-4
7.36e-4
6.27e-3
2.59e-3
1.66e-3
3.28e-3
1.36e-3
4.19e-3
2.32e-3
1.72e-3
7.44e-4
2.95e-3
2.36e-3
1.26e-3
6.98e-4
4.91e-3
3.92e-3
4.5e-3
1.31e-3
3.18e-3
3.04e-3
7.28e-4
3.2e-3
1.28e-3
3.39e-3
3.11e-3
2.61e-3
2.66e-3
4.97e-3
2.75e-3
3.09e-3
1.18e-3
2.36e-3
3.38e-3
3.49e-3
2.61e-3
1.78e-3
3.03e-3
3.79e-3
3.05e-3
4.66e-4
3.25e-3
4.74e-3
1.83e-3
5.14e-3
2.8e-3
1.87e-3
3.17e-3
1.46e-3
6.57e-4
2.24e-3
1.54e-3
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
noise:
1.07e-1
1.2e-1
1.09e-1
1.37e-1
1.14e-1
1.86e-1
1.08e-1
4.15e-2
1.37e-3
2.07e-2
8.31e-4
5.98e-4
1.5e-3
6.75e-4
6.51e-4
2.32e-1
2.89e-2
6.82e-4
!
Noise distortion is only calculated for frequency points below 66 Hz.
For higher frequencies the noise values are not applicable.
EIS
- 44 -
6. Calibration
The basic calibration of the Zennium systems can only be done at Zahner company because highprecision resistors, high-precision instruments and a special software are needed. The result of this
basic calibration are the calibration files shipped with the IM instruments on a separate disk. For a
maximum accuracy of the IM system it is needed to copy the calibration data to the hard drive of your
IM computer as described in chapter Installation & Getting Started of this manual.
Automatic Calibration
Always after a cold-start of an IM system, a single calibration cycle is performed automatically as soon
as you enter a measurement module of the Thales software. You can realize this procedure by the
clicking of relays on start up. This type of calibration is done using internal precision resistors. The cell
is disconnected from the electronics during this procedure. It is needed for re-adjusting the offset and
the gain factors of the AD-converters, amplifiers i.e. and it is accompanied by a system hardware selftest.
Manual Calibration
In addition, different types of calibration can be performed also manually by the user by
clicking on the “Calibration” icon. In the simplest case the initial start up calibration is repeated.
Pressing the p -key on the keyboard at the beginning of the calibration causes the software to enter
additional diagnostics and copy the diagnostic- and calibration results to the internal Text Editor ZEdit.
Pressing the s -key on the keyboard at the beginning of the calibration causes the software to enter
a more time consuming routine (several minutes) which covers also AC calibration. The new
calibration data will be saved after the calibration is finished. Please keep in mind that the old
calibration data are overwritten in this case. This calibration is also performed if the system cannot find
a valid set of calibration data in the PC storage.
A manual recalibration of the spectrometer should be done under one of the following circumstances:
1. The machine has been started at a very low ambient temperature of the laboratory. In this case
some of the potentiostat’s and of the amplifier’s components might show some kind of temperature
drift. Wait for about a quarter of an hour and recalibrate the spectrometer.
2. The machine will be run continuously over days and weeks. Under these circumstances time
dependent drifts may occur. Thus, before starting a new series of measurements or at the beginning
of a new laboratory day execute a recalibration.
The automatic and the manual calibration routines are able to detect hardware failures if the
calibration parameters trespass a defined tolerance range. If a hardware failure is observed you are
asked to enter the Text Editor Zedit. There you find a list of the most important calibration parameters.
Copy the list and send it to the ZAHNER service centre in Kronach, Germany, directly (email:
[email protected]). More detailed information can be found in the chapter “diagnostics and trouble
shooting”.
EIS
- 45 -
7. EIS Measurement
Doing EIS measurements means to do a set of single impedance measurements at different AC
frequencies. The Thales software sweeps through a frequency range in defined steps and in a defined
direction (from high to low frequencies and/or vice versa). The impedance data at each step are
recorded. Usually, during the measurement sweep, the DC voltage or the DC current are held
constant at a defined level by the potentiostat/galvanostat. Differing from that, measurements done in
the “pseudo open circuit mode”, the DC voltage set value depends on the actual OCP of the sample
under test.
A basic prerequisite of EIS is that the sample is sufficiently stable during the recording time of the
spectrum. Otherwise, the frequency sample points of a measurement scan will not fit to each other,
because they belong to different states of the tested system. How to detect and treat time drift and
other instabilities is described later. In the single sine mode at least one full period of the actual
frequency will be applied without recording. This “pre-wave” is used to control the auto-ranging and
helps to get the system settled before the impedance point is recorded by the following cycles. It is
recommended to use more than one measure periods. Following the pre-wave, this number of
periods is measured and averaged. The result is displayed, then stored in the RAM memory of the
instrument and the software goes to the next point. Because period-time increases with decreasing
frequency, the time required for measuring one point increases in the same way. E.g. one period of a
1 mHz sine wave takes 1000 s = 16.7 minutes. Together with the pre-wave, a 1mHz sample runs for
at least half an hour.
The user should be aware, that from physics there is a close relationship between information density
on the one hand and invested measurement time on the other hand – simply spoken: the shorter the
measurement time the less is the measurement accuracy.
One should consider this, when setting frequency scan parameters or when deciding for a certain
frequency scan strategy.
A couple of the recording parameters effective as well for an EIS spectrum are set on the Control
Potentiostat page. These are:
- DC set voltage/current
- Potentiostat feedback control mode
- Potentiostat on/off state on start
- AC perturbation amplitude
- Active potentiostat device #
All these parameters were already discussed earlier.
The spectra recording parameters are set on EIS main page.
EIS
- 46 -
7.1 Frequency Scan Strategy
The frequency scan strategy decides, which measurement accuracy can be achieved for which
expenditure of time:
7.1.1 Single Sine
In the single sine mode, the maximum accuracy of the
impedance data is achieved. The single sine mode is
therefore the recommended scan strategy for high
quality impedance spectra. The Zahner measurement
principle of “monochromatic excitation combined with
polychromatic analysis” uses the fundamental wave for
the impedance analysis, while using the harmonic
content for an accurate error estimation.
When selecting the single sine scan strategy, all
frequency scan parameters can be adjusted freely, what
is explained in detail in the following chapters.
It is recommended to set the minimum periods count to
2 or higher at the low frequency limit. This enables the
outstanding proprietary features of Thales like real time
drift correction and real time measurement accuracy
estimation covering the complete frequency scan.
These features are described in detail in the chapter
7.10 Advanced Features.
7.1.2 Intelligent Multi Sine (iMS)
The iMS (intelligent multi sine) feature applies an
optimized excitation signal combining a set of sine
waves with different frequencies, thus minimizing the
accuracy disadvantages of this method significantly.
Depending of the settings, iMS can reduce the
measurement time by a factor of about two to three.
iMS is available from a frequency limit of 100mHz and
below. The affected frequency range is from lower limit
to a 20 times higher frequency.
Due to optimized amplitude processing and
oversampling Zahners unique features like real-time
drift compensation and error calculation are available in
a restricted version also for iMS providing an excellent
quality compared to standard multisine. These features
are described in detail in the chapter 7.10 Advanced
Features.
Measure period count effect on the quality of iMS:
2
1
measure period
≥3
available from lower
≤ 100m ≤ 66m ≤ 33m
frequency limit [Hz]
real-time drift
fully
fully
none
compensation
error calculation
fully
partially partially
EIS
- 47 -
7.1.3 Frequency Table
Special measurement tasks may require direct control
of the measurement frequencies and periods. For this
you can simply load a user defined set of
frequency/periods values (separated by white spaces).
for example:
2500
5.76e+2
74.5
13
1.15e-2
100
20
5
2
1
7.2 Sweep Mode
A recommended method is to start at a middle frequency (i.e. 1 kHz), sweep up to the highest
frequency and turn around to sweep down to the lowest frequency of the defined range.
Consequently, time-drift effects and noise can be easily identified if the samples from the scanning
downwards do not match with the samples from scanning upwards. In this case, the spectrum can be
stopped manually, before too much time is lost for a non-significant measurement.
Generally, the software averages the data recorded upward and downward at the same frequency.
This offers the possibility to compensate the influence of time-drift to a certain degree, as long as the
drift is not too excessive. Therefore, an also useful method to compensate a moderate time-drift is, to
start at the highest frequency, sweep down to the lowest frequency, turn around and sweep to the
highest frequency again. This way the complete scan is averaged.
Starting at low frequencies is not recommended in general, because this proceeding is in-efficient
regarding settling time minimization.
Here you decide whether first the sweep runs upwards and then
downwards or vice versa.
start sets the frequency were the sweep will start.
upper limit sets the highest frequency of the sweep.
lower limit sets the lowest frequency of the sweep.
The frequency sweep and the measurement points are displayed graphically for an overview.
Frequency ranges:
upper limit ≥ start ≥ lower limit
upper system limit (IM6: 8 MHz, Zennium: 4 MHz, Zennium-E: 2 MHz) ≥ upper limit > lower limit
upper limit > lower limit ≥ 10 µHz
If you do not want a part of the frequency region to be covered twice, set the start frequency equal to
the upper limit and select the second sweep mode. Then the system sweeps from the upper limit to
the lower limit. If you really want to sweep from the lower limit to the upper limit, set the start
frequency equal to the lower limit and select the first sweep mode.
EIS
- 48 -
7.3 Steps per Decade
This parameter defines how much measurement points are to be
recorded in each decade of the frequency range. You may set a
different number of points per decade for the frequency region below
66 Hz (at lower limit) and above 66 Hz. The default setting is 4
points per decade below and 10 points per decade above 66 Hz.
What is the reason for the splitting at 66Hz? Below 66Hz the measuring time will become dominant,
while it is nearly constant within a decade above 66Hz where the time for data treatment is dominant.
Thus, splitting into two regions offers the possibility to optimise the two factors resolution over
measuring time and accuracy over measuring time.
7.4 Measure Periods
This parameter defines how many sine cycles are to be averaged for
one measurement point. The function is identical to the parameter
Count in the Control Potentiostat page and overwrites it in the
case of an EIS measurement. Like with the Steps per Decade you
are free to set the values independently for frequencies below and
above 66 Hz.
!
It is recommended to set the minimum periods count to 2 or higher at the low
frequency limit. This enables the outstanding proprietary features of Thales like real
time drift correction and real time measurement accuracy estimation covering the
complete frequency scan. These features are described in detail in the chapter 7.10
Advanced Features.
7.5 Runtime
The runtime box gives you an estimation of the time the
measurement will take. Depending on the measurement object
deviations of the real runtime may occur.
7.6 Start Recording
Now you may start the measurement by click on the start recording
button.
If you forgot to set an AC amplitude, it is not possible to carry out an EIS measurement. The system
will display the following message box …
… and will jump to the Control Potentiostat page where you can enter these settings.
EIS
- 49 -
7.7 Quick Guide
Here again in a short form the recommended steps for setting up an EIS spectrum. Follow
this scheme, if you deal with a new object for the first time:
step function
page
1. Be sure, the potentiostat is switched off.
Control Potentiostat
2. Switch off the AC amplitude.
Control Potentiostat
3. Select the connection scheme you are working with.
Check
Connections
Cell
4. Connect your cell / sample to the instrument.
5. Check whether the OCP is in the range you suggested.
Control Potentiostat
If the DC Set Voltage field is still empty, proceed.
5. Otherwise use the OCP read out as set voltage. Be careful Control Potentiostat
regarding the OCP sign and magnitude!
7.
Switch on the potentiostat and check whether the current is in the
Control Potentiostat
expected range minimal.
8. Set the DC potential, if you intend to leave the OCP conditions.
Control Potentiostat
9. Set the AC amplitude.
Control Potentiostat
10. Check by the values displayed if the EIS measurement is o.k.
Control Potentiostat
If you want to change the spectral default values:
11. Change the sweep mode.
EIS main page
12. Change the start frequency and the upper and lower limit.
EIS main page
13. Change the steps per decade for below and above 66 Hz.
EIS main page
14. Change the measure periods for below and above 66 Hz.
EIS main page
15. Check the duration of the EIS recording.
EIS main page
16. Start the recording.
EIS main page
Because of all control parameters adjusted differently can be stored as default, in the case of
repetitive measurements or measurements on well known objects, you may start with step 1 and
directly go to step 16.
EIS
- 50 -
7.8 Recording Page
During recording, the EIS Recording page will be displayed:
Realtime displays
Time domain
Frequency domain
Voltage
Current
Voltage
Current
Estimated duration
of the measurement
Numerical displays:
Impedance modulus
Realtime
Data Display
Phase angle
Frequency
DC Voltage
DC Current
Break button
During an EIS spectrum is being recorded you have a lot of real-time displays which provide a perfect
overview of all important measurement parameters and data. Graphical and numerical displays let you
decide any time whether the measurement is o.k. or whether it is bad (e.g. disturbed or not stable).
You may break the measurement any time by clicking on the
button. The software will complete
the recent measurement point and then break the measurement. In that case the measurement
cannot be continued. If you only want to pause the measurement, simply place the cursor on top of
the STOP icon. You may continue by removing the cursor to a different area.
Same as in the Control Potentiostat page, four real-time displays are showing the AC voltage and
the current signals in the time domain (waveform) and in the frequency domain (spectrum).
These displays are very useful for detecting disturbances of the measurement signals very easily. The
AC voltage at the output of the instrument (test electrode and counter electrode) is a pure singlefrequency sine signal. This should be shown in the AC VOLTAGE TIME DOMAIN display. This single
frequency should also be dominating in the AC Voltage Frequency Domain display. There may be
small side lines, but best is having only one line at the frequency selected. Accordingly, the AC current
should be as close as possible to a single-frequency sine form and the frequency display should show
only one line or only small side lines.
If you encounter disturbances in the signals, make sure that for high-impedance measurements you
have a good shielding of your object/cell. The shielding has to be grounded at the GND banana
EIS
- 51 -
connector at the backside of the Zennium device. For very high impedances use the optional HiZ
Probe Set which you position as close to the object/cell as possible. For low-impedance
measurements use cables as short as possible. For very low impedances use the LoZ Cable Set
(option) which also should be as short as possible.
!
The real time EIS display is used also in applications, where the object of the transfer
function is not a two-pole impedance, i.e. in CIMPS or MPTF measurement
(discussed in individual manuals). In that cases the meaning as well as the labelling
of the displays are different and will be adapted concerning the different method.
!
The Zahner Electrochemical Workstations are working on the base of the most
accurate strategy: A monochromatic excitation is used in combination with a multispectral response analysis. This enables outstanding features like real-time drift
correction and a real-time estimation of the accuracy. All these features are
described in detail in the chapter 7.10 Advanced Features.
Besides, you have an overview of the recent
measurement data in numerical displays:
Impedance modulus, phase angle, frequency, DC
voltage and DC current of the recent measurement
point are displayed.
Please note, that the display is supplemented by
the additional channels defined for recording in the
data acquisition page, if the logging option is
active. In this case, the shape of the displays is
changed to smaller characters. For details please
refer to the Data Acquisition & Control manual.
In the real-time graph the measured data are displayed in the form you defined in the EIS-Setup page
with Default on-line Display. Our example shows a Bode-Plot.
If you selected the start frequency not equal to the lower or upper limit, a part of the EIS spectrum is
measured twice. If the upward and the downward curves in this area match you did not have a time
effect (sample stable). If both curves differ, the sample is not stable over time.
EIS
- 52 -
Please keep in mind that the lower the frequency the longer the measurement time. Measuring e.g.
one point at 1 mHz with a count of 4 periods per point takes more than one hour. So, it is advisable to
measure only down to the frequencies you really need.
Prior to an impedance measurement the impedance range to be covered is estimated by the software.
During the measurement, however, measured data may leave the estimated range. If the auto
rescale option is enabled the graph scaling is updated each time the data are running out of the limits.
7.9 Display Spectrum
As soon as the recording of the EIS spectrum is completed, the display will change to the following
screen:
Data file name (if already stored)
Tool Bar
Save measurement
& settings
Export plain data in
ASCII text
Graphical display
Export high-Q vector
graphics (EMF)
Export/print graphics
as bitmap hardcopy
Import ASCII data
Select diagram type
Here you may
- analyse the curve using a pair of cursors
- save the measurement data
- export the data as an ASCII list
- transfer the graph to the Thales CAD software
- export or send the graphics to a printer
- select a different diagram type
- import a list of ASCII data.
EIS
- 53 -
7.9.1 Crosshair Mode
For analysing the curves with a crosshair simply click on the graph. Two cursors will appear, each
following the curse of one curve (e.g. impedance and phase). The crosshair values are displayed at
the right hand side of the spectrum window (e.g. impedance, phase, frequency).
Click
⇒
The cursors will follow the movements of the mouse and the cursor left/right buttons of the keyboard.
To leave the crosshair mode click the middle mouse button or press the ESC key on the keyboard.
7.9.2 Save Measurement
Save the
recorded data + the measurement parameters + the comments
to the hard disk and return to the EIS page.
Save the
recorded data + the measurement parameters + the comments
to hard disk and pass them directly to the SIM software for analysis. You
will end up in the SIM page.
When clicking on either of the buttons a description box opens where
you may input your measurement parameters and comments. Some
lines will be filled automatically by the software (e.g. potential, current
and measuring time) others are free for the user to fill. User parameters
are not used by the software for any calculation. They are for the user’s
information only.
button in the upper right corner
Accept the inputs by clicking on the
or reject the inputs by clicking on the
button. Click on the
button to
call the calculator.
In the following browser navigate to the desired path,
input a file name and
button to save the data or
click on the
click on the
button to cancel the saving.
EIS
- 54 -
7.9.3 Export ASCII List
Copies the content of the measurement data of the
recorded impedance spectrum as an ASCII text into
the Windows® clipboard.
Saves the measurement data of the recorded
impedance spectrum as an ASCII text file. Select a
path and a file name in the browser window.
Exported ASCII lists have the file-extension .txt !
Passes the ASCII list to the Thales text editor ZEdit
e.g. for editing the data. You will end up in the text
editor main menu. If you already have some text in
ZEdit, you may want to append the ASCII list to the
existing text. Chose append list in that case.
7.9.4 Export Drawing
Copies the graphics to the Windows® clipboard. From
there you may paste it to any Windows program
which is able to paste graphics from the clipboard
(Word, PowerPoint, Draw, etc.).
Copies the graph to the Thales CAD software directly.
If the CAD graphic board is empty the graph is
positioned in the middle of the board. If there already
is a graphic loaded, you are asked where to place the
new graphics relative to the resident one. Only in that
case the box shown to the left will appear.
Saves the graphics to the hard drive in the EMF
format. Select a path and a file name in the browser
window. You may load the graphics from there to any
Windows software which is able to handle EMF files.
Click on the save button to save the graphics. Click
on the exit button to cancel the operation.
EIS
- 55 -
7.9.5 Hardcopy
Clicking on the hardcopy icon creates the
hardcopy version of the graph on the screen and
gives you the following options:
output : sends the graphics to the device selected
under settings.
form feed : sends a form feed to the printer
settings : toggles through the following options
big (landscape): sends a A4 format graphics to
the printer
small (portrait): sends an A5 format graphics to
the printer
to clipboard : sends the graphics to the
Windows clipboard
save as file
: allows you to save the graphics
to the hard disk as an EMF file
Select a path and a
file name in the
browser box and click
on the save button to
save the data. Click
on the exit button to
cancel the operation.
7.9.6 Import ASCII List
This option imports a list of ASCII data from ZEdit. Before you can use
this function you have to open an ASCII list of the data to be converted
into ZEdit, then you can import it to the EIS program for analysis by a
click on this button. You may enter ZEdit either by using the pull-downmenu on the left side of the task bar or from the Thales Shell -> UTIL ->
text editor. The import function is able to convert other formats (i.e. of
EG&G and Solartron) to the Zahner EIS format. Some formats (of
course the Zahner-format) are detected and translated automatically by
special key-words of the file header. So, do not remove or modify the
header prior to the conversion. Other data file formats can be imported
by setting a header line according to the columns on top of the data list,
containing the keywords frequency, impedance, admittance, phase, phase, real_part, imaginary_part, significance, time or by using the
ALEX module of the Thales software.
You also may wish to modify your measurement data (e.g. eliminate
distorted points around 50 Hz) manually. Do this by exporting, editing (in
ZEdit) and re-importing the data.
A quick guide for loading an ASCII data file to ZEdit (for more detailed
information please refer to the chapter ZEdit in this manual):
EIS
- 56 -
7.9.7 Select Diagram
Select from this selector box one of the curve types to be displayed:
Bode
Nyquist
Complex Impedance
Complex Admittance
Complex Modulo
Complex ε
Click on the
the operation.
: Bode-Plot (impedance modulus & phase angle)
: Nyquist-Plot
: real & imaginary part of impedance
: real & imaginary part of admittance
: complex modulo
: complex dielectric constant
button to accept your choice. Click on the
button to cancel
Bode
If you selected Bode you have to input the phase scaling.
phase bottom/deg
: lower end of the phase scale. Add the keyword (abs)
in brackets to force absolute value display of the
phase angle.
top/deg
: upper end of the phase scale
Complex Modulo
Complex ε
If you selected Complex modulo you have to input the reference capacity in
Farad.
If you selected Complex ε you have to input the reference capacity in Farad.
EIS
- 57 -
7.10 Advanced Features
It is a serious intention of Zahner to provide the user with the best quality measurement data and the
best analysis tools ever possible. In the four decades history of Zahner’s experience in EIS many
outstanding features were developed. The user is encouraged to compare carefully the measurement
quality of the data acquired with Zahner instruments with the results from competitors and the features
of for instance the EIS simulation and fitting program regarding robustness, speed, significance and
versatility.
Here a short discussion will follow about some features affecting the EIS measurement data quality.
EIS
- 58 -
7.10.1 Online Error Determination
The primary intention for the application of EIS is to find out the precise numerical values of some
magnitudes of interest, like the physical and kinetic parameters of the system under test. Therefore,
the entire process of measurement, interpretation and analysis of EIS data usually aims towards the
achievement of a set of those characteristic parameters.
The principle error structure of EIS data is thoroughly treated in the literature. However, a consistent
error treatment, beginning with the experimental data and rating the error propagation through the
typical simulation and fitting procedure in order to find out the individual uncertainty of an evaluated
parameter, has an important prerequisite: a reasonable uncertainty estimation of the initial EIS
measurement data must be available.
The simple strategy to measure the data at certain frequencies for several times and calculate the
uncertainty from the scatter has severe disadvantages: a latter error reduction by calculating the mean
values scales only with the square root of the time invested, while a continuous coherent data
acquisition would have reduced the error proportionally with time. Besides, coherent data acquisition
often can suppress deviations perfectly, even if the individual time slot samples would exhibit large
scatter – a too pessimistic error estimation from this simple procedure is the consequence.
Zahner developed an alternative way based on FFT harmonic analysis, which is able to provide
uncertainty estimation for every individual frequency sample. The procedure uses the fact, that under
monochromatic (sinusoidal) excitation of a system, the harmonic distortion of the response signal can
be used as a measure for the uncertainty. A special weighting function, which takes into account the
inter-correlation of the harmonics, delivers very realistic error estimation. In the reference the principle
of this “weighted harmonics autocorrelation WHA” algorithm as well as the results of EIS control
experiments is discussed. It is shown, that the consideration of the measurement data uncertainty
predicted by the WHA within the data processing of the CNLS fitting procedure leads to reasonable
results for an error estimation of the final parameters of interest enables the impedance user to
perform a Consistent Uncertainty Estimation of his physical parameters evaluated by EIS. Online Error
Determination records automatically reasonable uncertainty estimation of the initial EIS measurement
data based on weighted harmonics autocorrelation. Due to this a complete and consistent error
treatment from the measurement to the final analysis can be performed.
Refer to:
Impedance Contributions Online 6 (2008) P4-1 – P4-13
http://accessimpedance.eu/images/stories/ICO6_P4.pdf
EIS
- 59 -
7.10.2 Automatic Drift Compensation
Let us lead our attention to the problem of measuring time. Strictly speaking, electrical impedance is
only defined for stationary systems. Nevertheless, EIS has also to be applied to systems that are not
perfectly stable.
Depending on the grade of non-stationarity, during the recording time of a complete
I-signal
spectrum significant changes of the system under test may occur. In consequence,
the spectrum belongs to different states of the system and is therefore addressed
as “non-causal”. How to treat such spectra is discussed closer in the next chapter.
At sufficient non-stationariy it is even possible for the drift to be large enough for a
noticeable change in the stationary component during the determination of one
sample in the lower frequency range.
averaging
Assuming that periodic methods are being used, this drift can be determined during
the spectral measurement, and to be compensated for through calculation. This
procedure is addressed here as "online drift compensation" and sketched in the
figure on the left. On top of the diagram an EIS response signal, interfered by
noise, harmonic distortion and drift is symbolized (“I-signal”). By means of the
Zahner high over-sampling averaging technique, noise is reduced by consecutive
drift correction
acquisition of several periods, shown in the next part of the diagram (“averaging”).
From the mean DC value of the consecutive cycles a drift function, leading to a
non-periodic share can be determined and subtracted from the averaged data
(“drift correction”). Finally, the Discrete Fourier Transformation (“DFT”) can isolate
the “wanted” system response (the fundamental) from the “unwanted” (the
harmonic contend).
DFT
The Zahner Drift Compensation reduces the impact of steady state violations
already during the measurement in the high precision single sine mode. It will be
applied automatically at frequencies below 1 Hz. In the iMS mode the Automatic
Drift Compensation cannot be calculated from consecutive periods due to the “one
shot principle”, but in a Zahner proprietary way from the response of the
fundamental. Due to that, the fundamental should not be excited, if compensation
is wanted. This limits iMS including drift compensation to a lowest frequency of the
double of the inverse of the shot time.
Z =U/I
DFT
drift correction
averaging
U-signal
Refer to:
Validation and Evaluation of Electrochemical Impedance Spectra of Systems with States
that Change with Time
C. A. Schiller, F. Richter, E. Gülzow 3, N. Wagner
J. Phys. Chem. Chem. Phys. 3 (2001) 374
Relaxation Impedance as a Model for the Deactivation Mechanism of Fuel Cells due to
Carbon Monoxide Poisoning
C. A. Schiller, F. Richter, E. Gülzow, N. Wagner
J. Phys. Chem. Chem. Phys. 3 (2001) 2113
EIS
- 60 -
7.10.3 Z-HIT
Impedance spectra from changing systems are difficult to interpret. Time effects can, however, very
easily be detected in EIS data. A normal electrochemical impedance spectrum corresponds, as a rule,
to the spectrum of an ideal two-pole, and does not have any discontinuities, strong resonances or
jumps. For the Bode diagram of such spectra, the logarithmic Hilbert transformation for impedance
two-poles, Z-HIT, predicts that the impedance modulus course, H, can be determined to a good
approximation from the course of the phase angle, ϕ (Eq. “ZHIT”).
ln H (ω 0 ) ≈ const. +
2
ω0
ϕ (ω ) d ln ω + γ ⋅
π ω∫
s
dϕ (ω 0 )
d ln ω
(Z-HIT)
The integral of ϕ over the logarithm of the frequency, ω, is formed for this purpose. The additional
correction provided by a fraction, γ, of the derivative of ϕ provides a high precision in the
approximation.
If the impedance modulus course calculated in this way does not agree well with the impedance curve
determined experimentally, differences in the low frequency region of the spectrum suggest temporal
drift, whereas those in the high-frequency regions indicate interference resulting from mutual
inductance.
There is a whole family of
methods based on the so
|Z|/ Ω
ϕ/0
called
Kramers-Kronig
-90
measure
Steel Fe38 Mn6
relations with the intention to
0.1m NaCl, CO2
detect distortions in EIS data.
-0.492 V vs SHE
-60
Z-HIT is distinguished by
-13 µ A
60o C
simplicity: even without any
run time: 120m
100
ZHIT
mathematical
treatment
–
simply by taking a close look at
-30
the Bode diagram – one is able
to detect distortions of the
proper shape of an impedance
0
spectrum by comparing sign
10
and magnitude of the phase
phase ≈ 0
angle with the gradient of the
30
impedance modulus course.
Looking
on
a
correctly
100m
10
1K
100K
measured Bode-diagram in
f / Hz
one observes, that a phaseangle,
tending
to
zero,
Figure: Impedance spectrum of a non-stationary, corroding electrode in the Bode
corresponds to an impedance
representation. The visual inspection unveils a violation of the ZHIT-rule moving to
low frequencies: Impedance- and phase-course should depend approximately like
modulus gradient, tending to
a mathematical function and its first derivative, but the measured impedance
zero at this frequencies. The
modulus rises significantly, while the phase angle tends to zero.
negative maximum of the
The result of a precise calculation of the expected impedance course from the
phase
angle
in
turn
phase course after Eq. “ZHIT” is displayed as a solid curve.
corresponds to the negative
maximum gradient of the
impedance at the inflection point – very close to the relationship between a mathematical function and
its first derivative.
Differing from that, the impedance modulus course of a non-stationary (corroding) electrode in the
figure on top exhibits a divergence at low frequencies: while the average phase angle is near zero, the
gradient of the measured impedance (rhomb symbols) is clearly negative. The solid line in the
diagram, calculated from the phase angle after Eq. “ZHIT”, indicates the (correct) impedance course to
be expected in the absence of any interference.
EIS measurements should be examined for signs of time effects – most easily by visually
inspection based on the Thales Z-HIT. These effects, along with parasitic effects associated
with the cell being measured and the cables are the main causes of incorrect measurements.
Our intelligent software can minimise the coarsest effects of drift during the measurement and
it supports subsequent correction by means of the interpolation of spectral series vs. time.
EIS
- 61 -
Refer to:
The Evaluation of Electrochemical Impedance Spectra Using a Modified Logarithmic Hilbert
Transform
W. Ehm, H. Göhr, R. Kaus, B. Röseler, C.A.Schiller
Acta Chim. Hung. 137 (2000) 145
Z-HIT – a Simple Relation Between Impedance Modulus and Phase Angle, Providing a New Way to
the Validation of Electrochemical Impedance Spectra
W. Ehm, R. Kaus, C. A. Schiller, W. Strunz, New Trends in Electrochemical Impedance Spectroscopy
and Electrochemical Noise Analysis, ed. F. Mansfeld, F. Huet, O. R. Mattos, Electrochemical Society
Inc., Pennington, NJ, 2001, vol. 2000-24, 1
Validation and Evaluation of Electrochemical Impedance Spectra of Systems with States that
Change with Time
C. A. Schiller, F. Richter, E. Gülzow 3, N. Wagner
J. Phys. Chem. Chem. Phys. 3 (2001) 374
Relaxation Impedance as a Model for the Deactivation Mechanism of Fuel Cells due to Carbon
Monoxide Poisoning
C. A. Schiller, F. Richter, E. Gülzow, N. Wagner
J. Phys. Chem. Chem. Phys. 3 (2001) 2113
Electrochemical power sources – Fuel cell
N. Wagner, in Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd Edition, Edited by
Evgenij Barsoukov and J. Ross Macdonald, John Wiley & Sons, Inc., ISBN: 0-471-64749-7 (2005)
pp.497-537
Handbook of PEM Fuel Cell Durability
N. Wagner, Volume 2: PEM Fuel Cell Diagnostic Tools, Chapter 3: Electrochemical Impedance
Spectroscopy (EIS), Eds. H. Wang, X.-Z. Yuan and H. Li, CRC Press, Taylor & Francis Group,
London, UK, ISBN: 078-1-4398-3919-5 (2011) pp. 37-70.
Minimal Measurement Time in Electrochemical Impedance Identification
R. H. Milocco,
Electrochim. Acta 39, 10 (1994) 1433-1439.
EIS
- 62 -
8. Series Measurement
The Series Measurement feature allows you to record up to 100 impedance spectra in dependence of
an additional quantity, such as time, temperature, potential, current, etc. In addition, you may scan
through a number of cells. All spectra of one series have the same EIS recording parameters
(frequency range, resolution, AC amplitude, etc.) which are set in the same way a single spectrum is
recorded (see chapters above). They are saved automatically to hard disk using the defined file name
which is extended by the number of the spectrum in the series (e.g. series00, series01 … series99).
The spectra may be analysed individually or in the series analysis mode of the SIM.
Series EIS measurements allow to investigate an object under changing conditions. The conditions
must change slowly, so that a steady state is established to a certain degree within an impedance
spectrum. An example for an application is the recording of spectra over time during charging or
discharging a battery. Another example is the investigation of capacitor diodes over the potential or
annealing studies by measurements over the temperature. Control parameter may be an internally
available value (time, potential, current) or an external value (temperature, pH-value, pressure, etc.).
For recording some of these parameters you need optional hardware and/or software drivers for
Thales Network Virtual Instruments. E.g. for series measurements dependent on temperature you
need a TEMP/U card plug-in or an Eurotherm 2404 temperature controller connected via network. To
be able to scan through a number of cells you need an RMux card or a PMux module or your IMinstrument must be extended to a cluster through an EPC42 card by additional slave potentiostats
(PP-series, XPot, NProbe…).
By clicking on this icon you get to the
Series Measurement page.
File operations
Scan Mode
Start button
Scanning Variable or
Device
EIS
- 63 -
8.1 Scan Mode
The Scan Mode settings define how to scan through the quantity selected in the Variable
Parameters box (time, potential, current, external quantities). Linear Scan lets you go through a
range of the quantity in equidistant steps. Setpoint List lets you input a list of up to 100 points of
measurement. In the setting Manually you may change the conditions and start each measurement
manually. If the Variable potential is selected each step is reached by a ramp protecting the sample
from steep voltage transitions. The ramp speed and current limits are set in the global measurement
set-up page .
8.1.1 Linear Scan
In Linear Scan Mode you scan through a range of the
defined quantity in equidistant steps (linear).
Start value
End value
Step width
Delay / s
: Value where the scan has to start
: Value where the scan is finished
: Interval in which the measurements have to be carried out
: Delay between reaching a scan-point and starting the measurement (settling time)
8.1.2 Linear scan over time
start time
Absolute time of the computer clock. The start time is set in units of hours,
minutes and seconds. During definition of the time parameters the actual time is
displayed in the input box.
duration
Starting at the start time the program will start impedance measurements until
the total measurement time of duration has expired. The duration is set in units
of hours, minutes and seconds.
delay
Delay time defines the time difference of the starting times of two successive
impedance measurements.
!
Set the delay time higher than the estimated measurement time shown on the
Recording Parameters page. If measurements take longer than the delay time the
equidistance of the spectra can not be guaranteed or less spectra will be measured.
8.1.3 Linear scan over potential/current
start value
Sets the potential or current at which the series measurement has to start.
Potential and current will be given in units of V and A, respectively.
end value
Destination potential or current at which the series measurement is stopped.
step width
Step width of potential or current between two successive measurements.
Setting the start value higher than the end value will require the input of a
negative step width.
delay
After the new value of potential or current is reached the program waits for this
number of seconds to ensure steady state conditions at the object.
!
The delay time should not been defined too short because changes in potential and
current may cause distortions of equilibrium. Allow the system to settle before
continuing with measurements.
The effect of the series control by DC-set-voltage or DC-set-current is related to the
actual working mode of the potentiostat:
Use DC-voltage only in potentiostatic mode.
Use DC-current only in galvanostatic- or pseudo-galvanostatic mode.
EIS
- 64 -
8.1.4 Linear scans controlled by analogue I/O-channels
Linear scans using additional analogue i/o-channels are working in a similar way as linear scans over
potential or current do. The range parameters and the step width are given in the physical units
defined for the corresponding channel on the Data Acquisition Setup page. The physical unit set
there is displayed at the top of the appearing input box.
start value
Sets the value at which the series measurement has to start. Potential and current
will be given in units of V and A, respectively.
end value
Destination value at which the series measurement is stopped.
step width
Step width between two successive measurements. Setting the start value higher
than the end value will require the input of a negative step width.
delay
After the new value is reached the program waits for this number of seconds to
ensure steady state conditions at the object.
!
The delay time should be defined sufficiently high to offer the system some time to
get settled.
8.1.5 Setpoint List
This mode lets you define a list of points at which the
system has to measure. The list has not to be linear or
steady.
In the first input box you define a delay time valid
between the individual spectra for settling. After reaching
a set point, the software waits for the duration of the
delay time before the measurement is started.
In the second box you may input the set points in the
quality of the scan parameter set in the Variable
Parameters box.
Up to 99 set points can be defined but only 12 points are
displayed in the box. You can scroll through the list using
the cursor keys or the RETURN key of your keyboard.
The transition between two points always is a linear
ramp.
8.1.6 Manually
This mode lets you trigger the measurements of the
scan manually. This brings the advantage to have a look
at the last spectrum measured before starting the
recording of the next spectrum. The example shows time
as the scanning parameter. You now may input the next
time a measurement should be started. Similar to time
you also may use other control variables for manual
triggering (e.g. potential, current, temperature, etc.)
!
You may convert a series of single measurements into a series measurement by
renaming the last two characters of the file names into a series of numbers. To
ensure the advanced series analysis features of SIM, you should edit the last three
lines of an individual EIS spectrum’s comment page in a way, that a consistent
description of the series quantity name, dimension and value appears.
EIS
- 65 -
8.2 Scan Variable or Device
In this section you set the parameters of the scan variable. This may be an internal signal (time,
potential, current), an external signal (analog input, analog output, interface control channel) or a
number of RMux/PMux channels. For using external signals you may need an optional hardware such
as TEMP/U, FE42, DA4, etc or NET-VIs. Thales is able to communicate via TCP/IP with external
measurement and control units (NET-VIs) connected to any computer in the network. Zahner can
support Net VI technology to the instrument you apply. The only requirement is a RS232 interface able
instrument. Refer to Signal Acquisition Manual for configuring NET-VIs.
8.2.1 Internal signals
A series of spectra will be recorded over a certain interval of time, allowing
studies of time dependent processes.
A series of spectra will be recorded in dependence of the DC potential, allowing
studies of potential dependent processes.
A series of spectra will be recorded in dependence of the DC current, allowing
studies of processes dependent on the current density.
8.2.2 External signals
Select the NET-VI (with I/O ability) of
variable parameter (only if more than one
NET-VI is registered to the Thales
software).
Set trigger conditions:
tolerance window for parameter
settling time to determine overshoots or
ensure steady state
Four analogue outputs are provided by an optional DA4 DA-converter module
and NET-VIs with input channel. These channels can be calibrated and
correlated to any quantity to be controlled in the Signal Acquisition Setup
page:
EIS
- 66 -
Additional analogue input channels are provided by the optional modules
FE42, TEMP/U and NET-VIs with output channels. In the Signal Acquisition
Setup page the inputs can be calibrated and linked to one of the 'digital
instrument displays' of the Signal Acquisition & Output Control page:
Generally, Thales is able to communicate via TCP/IP with external
measurement and control units (NET-VIs) connected to any computer in the
network. Besides this, an Eurotherm 2404CG, which is able to control the
temperature of an oven, may be connected directly to the COM port of the PC
controlling the IM instrument. This opens a cheap way to perform series
measurements over controlled temperature.
8.2.3 Channels
Using an optional RMux card, an optional PMux-S device or a number of
external potentiostats of the PP- or EL-series you may perform series
measurements scanning through a number of cells (channels). Clicking on the
Loop Multiple Cells icon opens the Multicell Setup box on the right hand side
of the page.
The Multicell Setup lets you define:
The cannels of a RMux or a PMux-S to be selected and recorded
The external potentiostats (PP or EL) to be selected and recorded
The selected channel (device) is displayed
Click here to call the Control Potentiostat page in
order to set up the selected channel / device
Click here to input the description of the selected
cell.
Click here if you want to copy the control and protocol parameters of the
selected cell to all active cells.
EIS
- 67 -
8.2.4 File name
To select a folder click on File Ops. The file manager opens and
lets you navigate through the drives.
To input a file name click on the button Inputs. Enter the file name
you want to be used for the complete series of spectra. Each single
spectrum is saved individually so that you may analyse it
individually or in the context of the complete series.
The file name of each spectrum is complemented by a two-digit
number which specifies the number of the spectrum in the series. If
any of the file names to be created already exist, an error message
will be displayed and you have to put in a different file name.
In the Description box you may input a complete description of
your experiment in 13 lines. The most important parameters are
already named, the rest you may input under Comment.
Some of the parameters are entered by the software automatically
(potential, current, etc.). Please note, that the last three lines are
reserved for the entries generated by the series run.
8.2.5 Start series measurement
Click on the GO button to start the series
measurement.
An AC-excitation amplitude should have
been set. If this setting is missing, the
program will jump to the Potentiostatic
Control Page to let you do this setting. After
correction and leaving the Potentiostatic
Control Page the series will be started.
You will be informed during the series
measurement
prior
to
each
single
measurement of the following parameters:
-
number of the next spectrum
starting value of previous spectrum
starting value of next spectrum
actual series parameter value
In the example time is taken as control
variable.
By this info box you are informed about the
ending of the series measurements and
whether any error occurred during the
measurements.
EIS
- 68 -
9. Appendix
Typical cell connection
Attention ! Frontpanel-connectors are active shielded !
Do not short ! Do not connect these shields to ground or cell !
Potentiostatic three-electrode connection mode with potential-sense buffer amplifier
tripot, faraday cage, etc.
connect close to cell
Frontpanel-connectors
are activ shielded.
Do not short !
Do not connect these
shields to ground or cell !
probe I
counter
electrode
Working
probe E
reference
electrode
Gain
switch
power
sense
x 0.4
x 1.0
Shield
Reference
connect close to cell
test
electrode
to 'GND'
Tripot, Faraday cage, etc. should be connected
to the 'GND'-terminal
on the backplane of the spectrometer
Appendix 1: Detailed connection scheme for 3 electrodes with buffer
scheme 5
Connect:
R i > 100 GOhm
C i<
30 pF
Impedance measurementunit
probe
I
counter
electrode
probe E
reference
electrode
power
ZAHNER elektrik
IM6
sense
test
electrode
IM6
IM6
Appendix 2: Detailed connection scheme for 4 electrodes without buffer
EIS
scheme 6
- 69 Connect:
R i > 100 GOhm
C i<
Impedance measurementunit
probe
30 pF
I
counter
electrode
probe E
reference
electrode
power
ZAHNER elektrik
IM6
sense
test
electrode
IM6
C i < 5 pF
R i > 100 GOhm
IM6
Appendix 3: Detailed connection scheme for 4 electrodes with buffer
Potentiostat
Counter Electrode
Output
Reference
electrode
AC-signal
∼
Buffer
R
CE
Measurand
DC-potential
Working Electrode
Output
Appendix 4: Buffer block diagram
EIS
- 70 -
probe I
counter
electrode
1
2
Z
3
4
twisted pair
or twisted double pair
7
8
6
Current
Output
5
test
electrode
power
probe E
twisted pair
reference
electrode
test
electrode
sense
1
2
6
3
Potential
5
7
Input
4
connectors seen from the
front of the control panel
Appendix 5: Pin-out of the Probe I and Porbe E connectors
NOTE! Only IM6/6ex
probe I
counter
electrode
1
2
Z
3
4
twisted pair
or twisted double pair
7
8
6
Current
Output
5
test
electrode
power
probe E
twisted pair
reference
electrode
test
electrode
sense
1
2
6
3
Potential
5
7
Input
4
connectors seen from the
front of the control panel
Appendix 6: Pin-out of the Probe I and Porbe E connectors
NOTE! Only ZENNIUM
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement