ArmorStart Distributed Motor Controller with EtherNet/IP User Manual

ArmorStart Distributed Motor Controller with EtherNet/IP User Manual
User Manual
ArmorStart® Distributed Motor Controller with EtherNet/IP™
Catalog Numbers 280E, 281E, 284E
Important User Information
Because of the variety of uses for the products described in this publication, those responsible for the application and use of
this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and
use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.
The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for purposes of
example. Since there are many variables and requirements associated with any particular installation, Rockwell Automation
does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples
shown in this publication.
Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety
Guidelines for the Application, Installation and Maintenance of Solid State Controls (Publication SGI-1.1 available from your
local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/) describes some
important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference,
and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment
must satisfy themselves that each intended application of this equipment is acceptable.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from
the use or application of this equipment.
The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and
requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or
liability for actual use based on the examples and diagrams.
No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or
software described in this manual.
Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation,
Inc., is prohibited.
Throughout this manual, when necessary, we use notes to make you aware of safety considerations.
WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may
lead to personal injury or death, property damage, or economic loss.
ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or
economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.
SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage
may be present.
BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach
dangerous temperatures.
IMPORTANT
Identifies information that is critical for successful application and understanding of the product.
Trademark List
Allen-Bradley, ArmorConnect, ArmorStart, DeviceLogix, RSLogix 5000, RSNetWorx, StepLogic, RSLinx, On-Machine and ControlLogix are trademarks of Rockwell Automation, Inc.
Trademarks not belonging to Rockwell Automation are property of their respective companies.
European Communities (EC) Directive Compliance
If this product has the CE mark it is approved for installation within the European Union and EEA regions. It has been
designed and tested to meet the following directives.
Low Voltage and EMC Directives
This product is tested to meet Council Directive 2006/95/EC Low Voltage Directive and Council Directive
2004/108/EC Electromagnetic Compatibility (EMC) by applying the following standard(s):
• Bulletin 280E/281E: EN 60947-4-1 — Low-voltage switchgear and controlgear — Part 4-1: Contactors and motorstarters — Electromechanical contactors and motor-starters.
• Bulletin 284E: EN 61800-5-1 — Adjustable speed electronic power drive systems — Part 5-1: Safety requirements
— Electrical, thermal and energy.
• Bulletin 284E: EN 61800-3 — Adjustable speed electronic power drive systems — Part 3: EMC product standard
including specific test methods.
This product is intended for use in an industrial environment.
Table of Contents
European Communities (EC) Directive Compliance. . . . . . . . . . . . . . . . . . 3
Low Voltage and EMC Directives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 1
Product Overview
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Catalog Number Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Mode of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Bulletin 280E/281E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Full-Voltage Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Bulletin 284E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Sensorless Vector Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Description of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Embedded Switch Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Switched vs. Unswitched
Control Power Input/Output
(I/O) Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
EtherNet/IP™ Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Embedded Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
E-mail Notification Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
EtherNet/IP LED Status Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Control Module LED Status
and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Electronic Data Sheet (EDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Fault Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Protection Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Standard Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Gland Plate Entrance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Motor Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DeviceLogix™. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Factory-Installed Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Optional HOA Keypad Configuration (Bulletin 280E/281E only) 25
Optional HOA Selector Keypad with Jog Function
(Bulletin 284E only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Source Brake Contactor and Connector (Bulletin 284E only) . . . . 26
EMI Filter (Bulletin 284E only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Dynamic Brake Connector (Bulletin 284E only) . . . . . . . . . . . . . . . . 26
IP67 Dynamic Brake Resistor (Bulletin 284E only). . . . . . . . . . . . . . 26
Output Contactor (Bulletin 284E only) . . . . . . . . . . . . . . . . . . . . . . . . 27
Shielded Motor Cable (Bulletin 284E only). . . . . . . . . . . . . . . . . . . . . 27
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
5
Table of Contents
ArmorStart® EtherNet/
IP Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Notes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Chapter 2
Installation and Wiring
6
Receiving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Unpacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inspecting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Precautions for Bulletin 280E/281E Applications . . . . . . . . . . . . . . . . . . .
Precautions for Bulletin 284E Applications . . . . . . . . . . . . . . . . . . . . . . . . .
Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conduit Gland Entrance Bulletin 280E/281E . . . . . . . . . . . . . . . . . .
Conduit Gland Entrance Bulletin 284E . . . . . . . . . . . . . . . . . . . . . . . .
ArmorConnect® Gland Connectivity Bulletin 280E/281E . . . . . . .
ArmorConnect Gland Connectivity Bulletin 284E . . . . . . . . . . . . . .
Mount Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power, Control, Safety Monitor Inputs, and Ground Wiring . . . . .
Terminal Designations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control Power Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24V DC Control Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ArmorStart with
EtherNet/IP Internal Wiring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recommended Cord Grips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Supply Considerations for Bulletin 284E Units . . . . . . . . . . . . . . . . .
Ungrounded and High Resistive Distribution Systems . . . . . . . . . . .
Disconnecting MOVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Group Motor Installations for USA and Canada Markets . . . . . . . .
Wiring and Workmanship Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . .
Other System Design Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . .
Electromagnetic Compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Notes (Bulletin 284E only) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Grounding Safety Grounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Grounding PE or Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Grounding Motors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ArmorConnect Power Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ArmorConnect Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ArmorConnect Cable Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
31
31
31
31
32
32
32
33
33
34
35
36
37
37
37
37
38
38
39
40
43
43
43
44
45
45
46
46
46
47
47
47
48
48
48
48
50
52
Table of Contents
Branch Circuit Protection Requirements for ArmorConnect
Three-Phase Power Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ethernet and I/O Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Optional Locking Clip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
52
53
53
55
Chapter 3
Introduction to EtherNet/IP and
Device Level Ring Technology
Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction to EtherNet/IP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Linear Network Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Device Level Ring (DLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Number of Nodes on a
DLR Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ethernet Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ethernet Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EtherNet/IP General
Wiring Guideline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Requested Packet
Interval (RPI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57
59
61
62
62
64
64
64
65
65
Chapter 4
Product Commissioning
IP Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gateway Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subnet Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Configuring EtherNet/
IP Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Manually Configure the Network Address Switches . . . . . . . . . . . . .
Use the Rockwell Automation BootP/DHCP Utility . . . . . . . . . . . . . . .
Save the Relation List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DHCP IP Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using the Rockwell Automation Embedded
Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Network Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E-mail Notification Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Device Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
67
67
67
68
68
70
72
73
74
74
75
76
77
78
Chapter 5
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
7
Table of Contents
Adding an ArmorStart to RSLogix Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Connect and Configure ArmorStart with Add-On-Profile (AOP) . . . . 82
5000
Offline Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
General Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Connection Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Parameters Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Online Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Parameters Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Module Info Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Internet Protocol Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Port Configuration Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Network Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Auto-Generated Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Notes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Chapter 6
Optional HOA Keypad Operation
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Keypad Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Keypad and HOA Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Notes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
105
105
109
110
Chapter 7
Bulletin 280E/281E/284E
Programmable Parameters
8
Basic Setup Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ArmorStart EtherNet/IP Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bulletin 280E/281E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Basic Status Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Produced Assembly Config Group . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Starter Protection Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User I/O Configuration Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Miscellaneous Configuration Group. . . . . . . . . . . . . . . . . . . . . . . . . . .
Starter Display Group (Bulletin 280E/281E only) . . . . . . . . . . . . . .
Starter Setup Group (Bulletin 280E/281E only). . . . . . . . . . . . . . . .
Bulletin 284E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Basic Status Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Produced Assembly Config Group . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Starter Protection Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User I/O Configuration Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Miscellaneous Configuration Group. . . . . . . . . . . . . . . . . . . . . . . . . . .
Drive I/O Configuration Group (Bulletin 284E only) . . . . . . . . . .
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
111
111
113
113
113
113
113
122
123
125
129
130
132
133
133
143
144
147
150
152
Table of Contents
Drive Display Group (Bulletin 284E only). . . . . . . . . . . . . . . . . . . . .
Drive Setup Group (Bulletin 284E only) . . . . . . . . . . . . . . . . . . . . . .
Drive Advanced Setup Group (Bulletin 284E only). . . . . . . . . . . . .
Clear a Type 1 Fault and Restart the Drive. . . . . . . . . . . . . . . . . . . . .
Clear an Overvoltage, Undervoltage, or Heatsink OvrTmp Fault
without Restarting the Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How StepLogic Works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
StepLogic Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Linear List of Parameters
for Bulletin 280E/281E and Bulletin 284E . . . . . . . . . . . . . . . . . . . . . . . .
154
160
164
175
176
188
188
193
Chapter 8
How to Configure an Explicit
Message
Programming ControlLogix® Explicit Message . . . . . . . . . . . . . . . . . . . . .
Explicit Messaging with ControlLogix . . . . . . . . . . . . . . . . . . . . . . . .
Setting Up the MSG Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Formatting an Explicit Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Performing Explicit Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
203
203
203
203
205
Chapter 9
Diagnostics
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protection Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clear Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overload Trip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phase Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phase Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ground Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I/O Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Over Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phase Imbalance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Over Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A3 Power Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Communication Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Bus Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrically Erasable Programmable Read-Only Memory
EEPROM Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hardware Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
207
207
207
207
207
208
208
208
208
209
209
209
209
209
209
209
209
210
210
210
210
210
9
Table of Contents
Restart Retries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Miscellaneous Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EtherNet/IP LED Status Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control Module LED
Status and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control Module Fault
LED Indications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault 11 Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Resetting Device to
Factory Defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
210
210
211
212
213
215
216
Chapter 10
Troubleshooting
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bulletin 280E/281E Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bulletin 284E Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DB1 Faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation and Troubleshooting of the DB1 - Dynamic Brake . . .
DB1 Resistor Overtemperature Fault . . . . . . . . . . . . . . . . . . . . . . . . . .
DB1 Overcurrent Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DB1 Undercurrent Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DB1 Switch Fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DB1 Open Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DB1 VBus Link Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DB1 Comm Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DB1 Thermal Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Drive Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control Module Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Installation of Control Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Troubleshoot and General Solutions for Linear or DLR Networks. . .
Specific Issues on Your DLR or Linear Network. . . . . . . . . . . . . . . .
................................................................
223
224
224
224
225
225
226
226
226
227
227
228
228
228
229
233
233
235
235
238
Chapter 11
Specifications for EtherNet/IP
Bulletin 280E/281E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor Overload Trip Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contactor Life Load Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bulletin 284E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sensorless Vector Control (SVC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor Overload Trip Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 12
10
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
239
243
244
247
249
250
Table of Contents
Accessories
Industrial Ethernet Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
D Code Connectivity (M12) – 1585D . . . . . . . . . . . . . . . . . . . . . . . . 253
Sensor Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Sensor Wiring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Motor and Brake Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Sealing Caps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Dynamic Braking Resistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Sensorless Vector Control (SVC) Minimum Resistance and
Recommended Modules for Option DB . . . . . . . . . . . . . . . . . . . . . . . 259
Bulletin 284E Option (-DB) – IP20 Resistor . . . . . . . . . . . . . . . . . . 260
Sensorless Vector Control (SVC) Recommended Dynamic Brake
Modules for Option DB1 (IP67 Resistor) . . . . . . . . . . . . . . . . . . . . . 261
Appendix A
Applying More Than One
ArmorStart
Motor Controller in a Single
Branch Circuit
on Industrial Machinery
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
ArmorStart LT Product Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Multiple-Motor Branch Circuits and Motor Controllers Listed for Group
Installation – General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Maximum Fuse Ampere Rating According to 7.2.10.4(1) and 7.2.10.4(2)
267
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Complete Text 267
Explanatory Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Input and Output Conductors of Bulletin 290E and 291E Controllers (a)
275
Input and Output Conductors of Bulletin 294E Controllers (b) . . . . 275
Combined Load Conductors (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Appendix B
CIP Information
High Level Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Product Codes and Name Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CIP Explicit Connection Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EDS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CIP Object Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Identity Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x0001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Assembly Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I/O Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection Manager Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x0006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Class 1 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
277
277
277
278
278
279
279
281
281
282
285
285
286
11
Table of Contents
Exclusive Owner Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Listen Only Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Class 3 CIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Discrete Input Point Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x0008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Discrete Output Point Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x0009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x000F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter Group Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x0010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Discrete Input Group Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x001D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Discrete Output Group Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x001E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control Supervisor Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x0029 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overload Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x002C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Device Level Ring (DLR) Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x0047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Qos Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x0048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DPI Fault Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x0097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DPI Alarm Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x0098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interface Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x00B4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TCP/IP Interface Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x00F5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ethernet Link Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLASS CODE 0x00F6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
286
287
287
288
288
288
288
290
290
291
291
292
292
292
292
293
293
295
295
296
296
297
297
297
297
301
301
303
303
304
304
305
305
Appendix C
Using DeviceLogix
12
DeviceLogix Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DeviceLogix Programming Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Import and Export. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bulletin 284 - VFD Preset Speed Example . . . . . . . . . . . . . . . . . . . . . . . . .
Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DeviceLogix Ladder Editor Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ArmorStart 280 and 281 Status Bits . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bulletin 280 and 281 ArmorStart Fault Bits. . . . . . . . . . . . . . . . . . . .
Bulletin 280 and 281 ArmorStart Outputs . . . . . . . . . . . . . . . . . . . . .
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
308
308
314
314
320
320
320
321
322
Table of Contents
Bulletin 280 and 281 ArmorStart Produced Network Bits . . . . . .
Bulletin 284 ArmorStart Status Bits. . . . . . . . . . . . . . . . . . . . . . . . . . .
Bulletin 284 ArmorStart Fault Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bulletin 284 ArmorStart Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bulletin 284 ArmorStart Produced Network Bits . . . . . . . . . . . . . .
322
323
323
324
325
Appendix D
PID Setup
PID Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exclusive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trim Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PID Reference and Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PID Deadband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PID Preload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PID Limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PID Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Guidelines for Adjusting the PID Gains . . . . . . . . . . . . . . . . . . . . . . .
Notes:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
327
327
328
329
330
330
330
331
331
334
Appendix E
StepLogic, Basic Logic and Timer/ StepLogic Using Timed Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
StepLogic Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Counter Functions
StepLogic Using Basic Logic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Counter Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
StepLogic Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
336
338
338
339
Appendix F
Renewal Parts
Bulletin 280E/281E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control Module Renewal Part Product Selection. . . . . . . . . . . . . . .
Base Module Renewal Part Product Selection . . . . . . . . . . . . . . . . . .
Bulletin 284E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control Module Renewal Part Product Selection. . . . . . . . . . . . . . .
Base Module Renewal Part Product Selection . . . . . . . . . . . . . . . . . .
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
341
341
342
344
344
345
13
Table of Contents
14
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Chapter
1
Product Overview
Bulletin
280E/281E
Type
284E
EtherNet/IP™
Horsepower Range:
0.5…10 Hp (0.37…7.5 kW)
0.5…5 Hp (0.4…3.0 kW)
✓
—
—
✓
Starting Method:
Full-Voltage and Reversing
✓
—
Sensorless Vector Control
—
✓
Environmental Rating:
IP67/NEMA Type 4
✓
✓
Control Voltage:
24V DC
✓
✓
Operational Voltage Ratings:
200…480V AC
✓
—
380…480V AC
—
✓
Rated for Group Motor Installations
✓
✓
Local logic using DeviceLogix™
✓
✓
Four Inputs
✓
✓
Two Outputs
✓
✓
I/O Capability:
Network Communications:
EtherNet/IP™
LED Status Indication
✓
✓
✓
✓
Gland Plate Entry:
Conduit Entrance
✓
✓
ArmorConnect Power Media
✓
✓
Quick Disconnects (I/O, Communications, Motor
Connection, Three-Phase and Control Power
✓
✓
✓
✓
Extended Length Motor and Brake Cables
Factory Installed Options:
HOA Keypad
✓
✓
Source Brake Contactor
—
✓
Dynamic Brake Connector
—
✓
Output Contactor
—
✓
EMI Filter
—
✓
Shielded Motor Cable
—
✓
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
15
Chapter 1
Product Overview
Introduction
This chapter provides a brief overview of the features and functionality of the
ArmorStart® EtherNet/Industrial Protocol (IP) Distributed Motor Controllers,
Bulletin 280E, 281E, and 284E.
Description
The ArmorStart EtherNet/IP™ Distributed Motor Controllers are integrated,
pre-engineered, motor starting solutions. Bulletins 280E and 281E are used for
full-voltage and reversing applications, respectively. Bulletin 284E is used in
variable frequency applications where more precise motor control is needed. The
ArmorStart EtherNet/IP controller offers a robust IP67/UL Type 4/12
enclosure design, which is suitable for water wash down environments.
ArmorStart EtherNet/IP includes an embedded dual port switch that supports
device level ring (DLR) applications. It supports IEEE 1588 end-to-end
transparent clock. This allows synchronization within a distributed network of
devices. Transparent clocks in combination with enhanced or managed Ethernet
switches are able to adjust for network introduced timing delays and improve the
performance of motion applications.
The ArmorStart EtherNet/IP network address can be configured dynamically or
statically via the embedded Web Server. In addition, the controller’s IP address
can be manually set via three IP address switches found on the I/O section of the
device.
The controller’s embedded Web Server allows the user to check status,
diagnostics and perform simple device configuration using a standard web
browser. It also supports SMTP protocol which allows the user to configure the
device to send an alert e-mail of potential issues.
The ArmorStart Distributed Motor Controller is a modular “plug and play”
design that offers simplicity in wiring and installation. The quick disconnects for
the I/O, communications, and motor connections reduce the wiring time and
eliminate wiring errors. The controller offers, as standard, four configurable
(sink/source) DC inputs and two sourcing solid state outputs, to be used with
sensors and actuators respectively, for monitoring and controlling the application
process. The ArmorStart’s light-emitting diode (LED) status indication and
built-in diagnostics capabilities allow ease of maintenance and troubleshooting.
The optional Hand/Off/Auto (HOA) keypad configuration allows local start/
stop control.
An Add-on profile for ControlLogix® is available. Add-on profiles streamline the
programming and installation by eliminating the task of individually configuring
the device tags.
The copy and paste function allows easy configuration of multiple ArmorStarts
Controllers. RSLogix™ 5000 revision 17.01 or later is required to implement addon profile support.
16
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Product Overview
Chapter 1
The Armorstart controller and associated motor cable have been evaluated as a
system by UL and is suitable for group installation. Armorstart controllers
contain a UL listed disconnect which in many applications eliminates the need
for additional components.
Examples given in this section are for reference purposes. This basic explanation
should not be used for product selection because not all combinations will
produce a valid catalog number.
Catalog Number Explanation
Figure 1 - Catalog Number Explanation for 280E/281E
280
a
E – F
b
12Z – 10
c
d
e
a
Code
Description
280
281
Full Voltage Starter
Code
Reversing Starter
10
25
E
EtherNet/IP
c
Code
F
Enclosure Type
Description
g
h
h
Option 1
Short Circuit Protection
(Motor Circuit Protection)
Description
Code
3
10 A Rated Device
25 A Rated Device
b
Description
f
e
Bulletin Number
Code
C – CR – Option 1
3FR
Description
Hand/Off/Auto Selector Keypad
Hand/Off/Auto Selector Keypad with
Forward/Reverse
f
Overload Selection Current Range
Code
Description
A
0.24…1.2 A
B
0.5…2.5 A
C
1.1…5.5 A
D
3.2…16 A
IP67/ UL Type 4/12
g
d
Control and 3-Phase Power Connections/Motor Cable Connection
(CR: Conduit/Round Media) or (RR: Round/Round Media)
Description
Contactor Size/Control Voltage
24V DC
12Z
23Z
Code
Control Power
3-Phase Power
CR
blank
Conduit Entrance
Conduit Entrance
CR
W*
RR
blank
RR
W*
Conduit Entrance
Round Media (Male
Receptacle)
Round Media (Male
Receptacle)
Conduit Entrance
Round Media (Male
Receptacle)
Round Media (Male
Receptacle)
Motor Cable
3 m, unshielded cordset
male 90°
No cable
3 m, unshielded cordset
male 90°
No cable
* Refer to the Industrial Controls Catalog for extended motor cable lengths.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
17
Chapter 1
Product Overview
Figure 2 - Catalog Number Explanation for 284E
284 E – F
a
b
c
V D2P3 D – 10 – CR – Option 1 – Option 2 – Option 3
d
e
f
g
h
i
j
k
a
d
f
i
Bulletin Number
Torque Performance Mode
Control Voltage
Option 1
Code
Description
284
VFD Starter
Code
Description
Code
Description
V
Sensorless Vector Control
and Volts per Hertz
Z
24V DC
b
Code
Description
E
EtherNet/IP
Enclosure Type
Code
Description
F
Type 4 (IP67)
3
j
Short Circuit Protection (Motor
Circuit Protector)
Output Current
380…480V
Option 2
Code
Description
10
10 A Rated Device
DB
blank DB Brake Connector
D1P4
1.4 A, 0.4 kW, 0.5 Hp
25
25 A Rated Device
DB1
blank
D2P3
2.3 A, 0.75 kW, 1.0 Hp
Connectivity to IP67
DB Resistor
D4P0
4.0 A, 1.5 kW, 2.0 Hp
SB
blank
Source Brake
Contactor
D6P0
6.0 A, 2.2 kW, 3.0 Hp
SB
W
D7P6
7.6 A, 3.3 kW, 5.0 Hp
Option 3
Control and 3-Phase Power Connections / Motor Cable Connection
(CR: Conduit/Round Media) or (RR: Round/Round Media)
Description
Code
Control Power
3-Phase Power
Motor Cable
CR
blank
Conduit Entrance
Conduit Entrance
3 m, unshielded
cordset male 90°
CR
N
Conduit Entrance
Conduit Entrance
3 m, shielded
cordset male 90°
CR
W
Conduit Entrance
Conduit Entrance
No cable
RR
blank
Round Media
(Male Receptacle)
Round Media
(Male Receptacle)
3 m, unshielded
cordset male 90°
RR
N
Round Media
(Male Receptacle)
Round Media
(Male Receptacle)
3 m, shielded
cordset male 90°
Round Media
(Male Receptacle)
Round Media
(Male Receptacle)
No cable
RR
W
No cable
k
h
Operation
Description
Code
Description
Code
c
Description
Hand/Off/Auto Selector
Keypad with Jog Function
g
e
Communications
Code
Code
Description
EMI
EMI Filter
OC
Output Contactor
The ArmorStart Distributed Motor Controllers can operate three-phase squirrelcage induction motors as follows:
Bulletin 280E/281E: up to 10 Hp (7.4 kW) at 480V AC
Bulletin 284E: up to 5 Hp (3.0 kW) at 480V AC
ArmorStart EtherNet/IP Controllers accept 24V DC control voltage. The
control voltage will provide power to inputs (unswitched) and outputs
(switched). Unswitched control voltage is used to ensure no loss of sensor or
other field input status under normal operation.
18
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Product Overview
Mode of Operation
Chapter 1
Bulletin 280E/281E
Full-Voltage Start
This method is used in applications requiring across-the-line starting, in which
full inrush current and locked-rotor torque are realized. The ArmorStart Bulletin
280E offers full-voltage starting and the Bulletin 281E offers full-voltage starting
for reversing applications.
Figure 3 - Full-Voltage Start
100%
Percent
Voltage
Time (seconds)
Bulletin 284E
Sensorless Vector Control
Sensorless vector control provides exceptional speed regulation and very high
levels of torque across the entire speed range of the drive. Features include:
• Autotune feature allows the Motor Controller to adapt to individual
motor characteristics.
• Able to develop high torque over a wide speed range and adapts to
individual motor characteristics.
• Embedded Variable Frequency Drive (VFD) control includes the Timer,
Counter, Basic Logic and StepLogic® functions which can reduce hardware
design costs and simplify control schemes.
• Integral PID (proportional, integral, differential) functionality enhances
application flexibility.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
19
Chapter 1
Product Overview
Figure 4 - Sensorless Vector Control
Description of Features
Overload Protection
The ArmorStart Distributed Motor Controller incorporates, as standard,
electronic motor overload protection. This overload protection is accomplished
electronically with an I2t algorithm. The ArmorStart’s overload protection is
programmable via the communication network, providing the user with
flexibility.
The Bulletin 280E/281E overload trip class can be selected for class 10, 15, 20
protection. The Bulletin 284E overload trip class is Class 10 only. Ambient
insensitivity is inherent in the electronic design of the overload (refer to
Chapter 11 for the specification for overload trip curves).
Embedded Switch
Technology
ArmorStart EtherNet/IP includes embedded switch technology as standard.
Each ArmorStart EtherNet/IP will consume one Common Industrial Protocol
(CIP) connection. The ArmoStart will consume a Class 3 connection when
RSLogix 5000 software displays the AOP.
In general, for a DLR or linear network keep individual segments to 50 nodes
or less. In addition, it is important to reserve a minimum of 10% of available
bandwidth to allow for processing of explicit messages.
Common features are:
• Designed according to the ODVA specification for EtherNet/IP.
ODVA specification found at http://www.odva.org/
• Embedded switch technology is designed to enable end devices to form
linear and ring network topologies
• Supports Device Level Ring (DLR) protocol
20
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Product Overview
Chapter 1
• Supports IEEE 1588 transparent clock for CIP Motion™ and CIP Sync™
applications
• Supports the management of network traffic to ensure timely delivery of
critical data, that is, QoS and IGMP protocols are supported
Note: DLR ports cannot be used as two network interface cards (NICs)
connected to two different subnets.
Switched vs. Unswitched
Control Power Input/Output
(I/O) Connections
The voltage at terminals A1/A2 supplies power to the Armorstart outputs.
Removing this power or placing the Armorstart disconnect in the “OFF”
position will disable the outputs.
The unswitched power A3/A2 supplies power to the input and communication
module. This power is not affected by the state of the disconnect switch. This
ensures that anytime the controller can communicate, the state of the inputs
is correct.
Figure 5 - Input and Output Configuration
EtherNet/IP™ Ports
ArmorStart EtherNet/IP includes a dual port Ethernet switch that supports
10/100 Mbps It utilizes a sealed D-coded micro (M12) style Ethernet connector.
Dynamic Host Configuration Protocol (DHCP) is enabled as the factory
default. Before using your adapter in an EtherNet/IP network you may need
to configure an IP address or set the address statically.
ATTENTION: To avoid unintended operation, the adapter must be assigned a fixed IP
address. If a DHCP server is used, it must be configured to assign a fixed IP address for
your adapter.
Failure to observe this precaution may result in unintended machine motion or loss
of process control.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
21
Chapter 1
Product Overview
Embedded Web Server
The embedded web server allows the user to view information and configure the
ArmorStart via a web browser. The default Login is “Administrator”. There is no
password set by default.
IMPORTANT
Caution: The user should set the password to a unique value for authorized
personnel. If the Login and password are lost you will need to reset the device to
factory defaults via the Programmable Logic Controller (PLC). Note: The
configuration will be lost.
E-mail Notification Configuration
The embedded web server supports configuration of the Simple Mail Transfer
Protocol (SMTP). Once properly configured, the motor controller will e-mail
the user with specific fault/trip messages.
EtherNet/IP LED Status
Indication
Figure 6 - EtherNet/IP LED
EtherNet/IP LED status and diagnostics consists of four LEDs.
• Link Activity/Status LEDS
– Ethernet Link1 Activity/Status (Port 1) – LED Color: Bicolor
(Green/Yellow)
– Ethernet Link2 Activity/Status (Port 2) – LED Color: Bicolor
(Green/Yellow)
• “MOD” LED – Bicolor Red/Green represents the Ethernet Module status
• “NET” LED – Bicolor Red/Green represents the Ethernet Network status
Control Module LED Status
and Reset
Figure 7 - LED Status
Indication and Reset
The Control Module LED status and diagnostics consists of four status LEDs
and a Reset button.
• POWER LED
The LED is illuminated solid green when switched (+A1/A2) control
power is present and with the proper polarity.
22
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Product Overview
Chapter 1
• RUN LED
This LED is illuminated solid green when a start command and control
power are present.
• NETWORK LED
This bicolor (red/green) LED indicates the status of the internal
communication link.
• FAULT LED
This indicates a Controller Fault (trip) condition.
The “Reset Button” is a local trip reset.
Electronic Data Sheet (EDS)
EtherNet/IP devices have electronic data sheets (EDS). These are specially
formatted text files, as defined by the CIP™ Specifications, which represent the
object model of the device. EDS files contain details about the readable and
configurable parameters of the EtherNet/IP device. They also provide
information about the I/O connections the device supports and the content
of the associated data structures. EDS are used by EtherNet/IP device
configuration tools, such as RSNetWorx™ for EtherNet/IP, and data servers
such as RSLinx® Classic.
EDS files for all ArmorStart EtherNet/IP devices can also be uploaded directly
from the device via the web server interface. Rockwell Automation product EDS
files are also available on the internet at: http://www.ab.com/networks/eds.
Fault Diagnostics
Fault diagnostics capabilities built in the ArmorStart Distributed Motor
Controller are designed to help you pinpoint a problem for easy troubleshooting
and quick re-starting.
Protection Faults
Protection Faults are generated when potentially dangerous or damaging
conditions are detected. Protection Faults are also known as “Trips.”
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
23
Chapter 1
Product Overview
Table 1 - Protection Faults
Bulletin 280E/281E Trip Status
Bulletin 284E Trip Status
PowerFlex 40 Fault Codes
Short Circuit
Short Circuit
—
Overload
Overload
(Drive Codes 7 and 64)
Phase Loss
Phase Short
(Drive Codes 38…43)
Reserved
Ground Fault
(Drive Code 13)
Reserved
Stall
(Drive Code 6)
Control Pwr Loss
Control Pwr Loss
—
Input Fault
Input Fault
—
Over Temperature
Over Temperature
—
Phase Imbalance
Over Current
(Drive Codes 12 and 63)
A3, Unswitched Power Loss
A3, Unswitched Power Loss
—
Reserved
Internal Comm
(Drive Code 81)
Reserved
DC Bus Fault
(Drive Codes 3, 4 and 5)
EEprom
EEprom
(Drive Code 100)
Hdw Flt
Hdw Flt
(Drive Codes 70 and 122)
Reserved
Restart Retries
(Drive Code 33)
Reserved
Misc. Fault
(Drive Codes 2, 8, 29, 48 and 80)
Parameter Group “Start Protection,” Parameter 24 “PrFault Enable” is used to
enable and disable the above protection faults. Refer to Parameter 61
“LastPR Fault” for additional details of the last protection fault.
Standard Features
Inputs
The EtherNet/IP version includes four 24V DC inputs that are single keyed (two
inputs per connector) sourced from A3/A2 control power. The inputs use two
M12 Connectors. Each input has an LED status indication. They are
configurable as sinking or sourcing.
Outputs
The EtherNet/IP version includes two self-protected solid state outputs that are
single keyed (one per connector), sourced from A1/A2 control power. Outputs
are sourcing type with a maximum current per output point of 0.5 A DC. The
outputs use one M12 connectors per output, each having LED status indication.
24
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Product Overview
Chapter 1
Gland Plate Entrance
The ArmorStart product offers two different methods of connecting incoming
three-phase and control power to the device. One method offered is the
traditional conduit entrance with a 3/4 in. and a 1 in. conduit hole opening. The
second method offers connectivity to the ArmorConnect® power media. Factoryinstalled receptacles are provided for connectivity to both three-phase and
control power media.
Motor Cable
With every ArmorStart Distributed Motor Controller, a 3-meter unshielded
4-conductor cordset is provided with each unit as standard. If the optional
Electromagnetic Interference (EMI) Filter is selected for Bulletin 284E units, a
shielded 4-conductor cordset is provided with each unit as standard.
DeviceLogix™
DeviceLogix is a stand-alone Boolean program that resides within the
ArmorStart Distributed Motor Controller. DeviceLogix is programmed locally
using the Add-On Profile and implements Boolean math operations, such as,
AND, OR, NOT, Timers, Counters, and Latches. DeviceLogix can run as a
stand-alone application, independent of the network. However, 24V DC via A3
unswitched control power, must be maintained.
Factory-Installed Options
Optional HOA Keypad Configuration (Bulletin 280E/281E only)
The ArmorStart offers two optional factory-installed Hand/Off/Auto (HOA)
configurations: Standard and Forward/Reverse HOA.
Figure 8 - Optional HOA Configuration (Bulletin 280E left, 281E right)
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
25
Chapter 1
Product Overview
Optional HOA Selector Keypad with Jog Function
(Bulletin 284E only)
The HOA Selector Keypad with Jog Function allows for local start/stop control
with capabilities to jog in forward/reverse motor directions.
Figure 9 - Optional HOA with Jog Function Configuration
Source Brake Contactor and Connector (Bulletin 284E only)
An internal contactor is used to switch the electromechanical motor brake On/
Off. The motor brake contactor is powered from the main power circuit. The
configuration of the R1 relay controls the function of the brake. A customer
accessible 2.5 A fuse is provided to protect the brake cable. Included is a 3-meter
3-pin cordset for connection to the motor brake as standard.
EMI Filter (Bulletin 284E only)
The EMI filter is required to be CE compliant. When selected, a 3-meter
shielded 4-conductor motor cordset is provided as standard. This is only available
with sensorless vector control.
Dynamic Brake Connector (Bulletin 284E only)
The user selectable DB Option includes a 3-meter, 3-pin cordset for connection
to a IP20 dynamic brake module. See Chapter 11 for available dynamic brake
modules.
Note: The IP67 Dynamic Brake Resistor cannot be used with the -DB
factory-installed option.
IP67 Dynamic Brake Resistor (Bulletin 284E only)
The IP67 Dynamic Brake Resistor design offers simplicity in wiring and
installation. The user selectable DB1 option provides the quick connector and an
26
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Product Overview
Chapter 1
internal resistor monitoring circuit board. The cable length available is 0.5 m and
1.0 m. The IP67 Dynamic Brake is separately ordered. See Chapter 11 for
available IP67 Dynamic Brake Resistors.
Note: The IP67 Dynamic Brake Resistor is used only with the -DB1
factory-installed option. Only the specified IP67 Dynamic Brake resistor
can be used based on the VFD horsepower. Connecting resistors other than those
specified will result in a DB1 fault.
Output Contactor (Bulletin 284E only)
An internal contactor is sourced from the 24V DC (A1/A2) control voltage
to isolate the load side of the Bulletin 284E ArmorStart Distributed Motor
Controller. When control power is applied to A1/A2, the output contactor will
close. When control power is removed, the output contactor will open. There is
no other switching element that allows alternate control of the output contactor.
A sequenced stop involving the output contactor cannot be performed.
Shielded Motor Cable (Bulletin 284E only)
If the EMI Filter is selected, a 3-meter shielded 4-conductor cordset is provided
as standard.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
27
Chapter 1
Product Overview
ArmorStart® EtherNet/
IP Features
Figure 10 - Bulletin 280E/281E ArmorStart with EtherNet/IP™
Communication Protocol
Local Disconnect
LED Status
Indication and Reset
Control Module
IP Address Notation Area
2 Outputs (Micro/M12)
Hand-Off-Auto Keypad
4 Inputs (Micro/M12)
IP Address Switches
Motor Connection
Ethernet Ports (DLR)
Figure 11 - Bulletin 284E ArmorStart with EtherNet/IP Communication Protocol
Local Disconnect
LED Status
Indication and Reset
IP Address Notation Area
Control Module
2 Outputs (Micro/M12)
Hand-Off-Auto Keypad
4 Inputs (Micro/M12)
Source Brake Connection
IP Address Switches
Motor Connection
Ethernet Ports (DLR)
28
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Product Overview
Chapter 1
Notes:
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
29
Chapter 1
30
Product Overview
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Chapter
2
Installation and Wiring
Receiving
It is the responsibility of the user to thoroughly inspect the equipment before
accepting the shipment from the freight company. Check the item(s) received
against the purchase order. If any items are damaged, it is the responsibility of the
user not to accept delivery until the freight agent has noted the damage on the
freight bill. Should any concealed damage be found during unpacking, it is again
the responsibility of the user to notify the freight agent. The shipping container
must be left intact and the freight agent should be requested to make a visual
inspection of the equipment.
Unpacking
Remove all packing material, wedges, or braces from within and around the
Armorstart distributed motor controller. Remove all packing material from the
device(s). Check the contents of the package. Contact your local Allen-Bradley
representative if any items are missing.
IMPORTANT
Before the installation and start-up of the drive, a general inspection of mechanical
integrity (i.e. loose parts, wires, connections, packing materials, etc.) must be made.
Inspecting
After unpacking, check the item(s) nameplate catalog number(s) against the
purchase order. See Chapter 1 for an explanation of the catalog numbering system
which will aid in nameplate interpretation.
Storing
The controller should remain in its shipping container prior to installation. If the
equipment is not to be used for a period of time, it must be stored according to
the following instructions in order to maintain warranty coverage.
• Store in a clean, dry location.
• Store within an ambient temperature range of –25°C…+85°C
(–13°F…+185°F).
• Store within a relative humidity range of 0…95%, noncondensing.
• Do not store equipment where it could be exposed to a corrosive
atmosphere.
• Do not store equipment in a construction area.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
31
Chapter 2
Installation and Wiring
General Precautions
In addition to the precautions listed throughout this manual, the following
statements, which are general to the system, must be read and understood.
ATTENTION: The controller contains ESD (electrostatic discharge) sensitive
parts and assemblies. Static control precautions are required when installing,
testing, servicing, or repairing the assembly. Component damage may result
if ESD control procedures are not followed. If you are not familiar with static
control procedures, refer to Publication 8000-4.5.2, Guarding against
Electrostatic Discharge, or any other applicable ESD protection handbooks.
ATTENTION: An incorrectly applied or installed controller can damage
components or reduce product life. Wiring or application errors, such as
undersizing the motor, incorrect or inadequate AC supply, or excessive
ambient temperatures, may result in malfunction of the system.
ATTENTION: Only personnel familiar with the controller and associated
machinery should plan or implement the installation, startup, and
subsequent maintenance of the system. Failure to do this may result in
personal injury and/or equipment damage.
Precautions for Bulletin
280E/281E Applications
Precautions for Bulletin 284E
Applications
ATTENTION: To prevent electrical shock, open the disconnect switch prior to
connecting and disconnecting cables. Risk of shock – environment rating
may not be maintained with open receptacles.
WARNING: The drive contains high voltage capacitors which take time to
discharge after removal of mains supply. Before working on a drive, ensure
isolation of mains supply from line inputs (R, S, T [L1, L2, L3]). Wait three
minutes for capacitors to discharge to safe voltage levels. Failure to do so may
result in personal injury or death. Darkened display LEDs are not an indication
that capacitors have discharged to safe voltage levels. Risk of shock –
environment rating may not be maintained with open receptacles.
ATTENTION: Only qualified personnel familiar with adjustable frequency AC
drives and associated machinery should plan or implement the installation,
startup, and subsequent maintenance of the system. Failure to do this may
result in personal injury and/or equipment damage.
32
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Installation and Wiring
Chapter 2
Dimensions are shown in millimeters (inches). Dimensions are not intended to
be used for manufacturing purposes. All dimensions are subject to change.
Dimensions
Conduit Gland Entrance Bulletin 280E/281E
Figure 12 - Dimensions for Bulletin 280E/281E
351
[13.82 ]
290
[11.42 ]
189
[7]
268
[10.55]
287,5
[11.32 ]
6,8
[.27 ]
150
[6 ]
3,02
[ .12 ]
MOTOR CONNECTION 185 [7.3] M22 CORDSET
MOTOR CONN ECTION 243 [9.57] M35 CORDSET
373
[14.69 ]
11
[ .43 ]
195
[7.68 ]
67,9
[3]
1 in. CONDUIT OPENING
39
[2]
47
[1.85 ]
0.75 in. CONDUIT OPENING
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
33
Chapter 2
Installation and Wiring
Conduit Gland Entrance Bulletin 284E
Figure 13 - Dimensions for Bulletin 284E
2HP or less 420.38 [16.55]
3HP or greater 444.38 [17.50]
290
[11.42]
236
[9]
268
[10.55]
287,5
[11.32 ]
3,02
[.12 ]
6,8
[.27 ]
MOTO R CONNECTION 266.9 [10.51]
373
[14.69]
11
[.43 ]
195
[7.68 ]
67,9
[3 ]
1 in. CONDUIT OPENING
39
[2 ]
34
47
[1.85 ]
0.75 in. CONDUIT OPENING
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Installation and Wiring
Chapter 2
ArmorConnect® Gland Connectivity Bulletin 280E/281E
Figure 14 - Dimensions for Bulletin 280E/281E
3 Hp and less @ 480V AC
10 Hp @ 480V AC
351
[13.82]
290
[11.42]
351
[13.82]
290
[11.42]
268
[10.55 ]
268
287,5
[10.55] [11.32 ]
203.2
[8]
CABLE
KEEP OUT
6,8
[.27 ]
10 A Short Circuit
Protection (M22)
77,6
[3]
203.2
[8]
CABLE
KEEP OUT
287,5
[11.32]
6,8
[.27 ]
25 A Short Circuit
Protection (M35)
77,6
[3 ]
60,6
[2 ]
25,5
[1 ]
60,6
[2 ]
68
[2.68 ]
25,5
[1 ]
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
68
[2.68 ]
35
Chapter 2
Installation and Wiring
ArmorConnect Gland Connectivity Bulletin 284E
Figure 15 - Dimensions for Bulletin 284E
2 Hp or less at 480V
290
[11.42]
3 Hp or greater at 480V
419,53
[16.52]
290
[11.42]
444,38
[17.50]
268
[10.55]
287,5
268
[10.55] [11.32]
6,8
[.27 ]
25 A Short Circuit
Protection (M35)
77,6
[3 ]
60,6
[2 ]
60,6
[2]
25,5
[1]
36
6,8
[.27 ]
10 A Short Circuit
Protection (M22)
77,6
[3]
68
[2.68 ]
30,4
[1 ]
25,5
[1 ]
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
68
[2.68 ]
287,5
[11.32 ]
Installation and Wiring
Mount Orientation
The recommended mounting orientation of ArmorStart EtherNet/IP is the
vertical configuration. This is especially important for the Bulletin 284. This
ensures proper air flow over the heat sink. Improper mounting or debris build up
will reduce air flow and increased internal temperatures. This may reduce the
overall life of the product. For alternate mounting contact your local sales
representative.
IMPORTANT
Operation
Chapter 2
For proper heat dissipation and product operation, mount in the vertical orientation
as shown.
The ArmorStart Distributed Motor Controllers can operate three-phase
squirrel-cage induction motors as follows:
Bulletin 280E/281E: 0.24…16 A; 200V AC, 230V AC, 460V AC; 50/60 Hz.
Bulletin 284E: up to 5 Hp (3.0 kW) @ 480V AC
The ArmorStart EtherNet/IP Distributed Motor Controller will accept a control
power input of 24V DC.
Wiring
Power, Control, Safety Monitor Inputs, and Ground Wiring
Table 2 provides the power, control, and ground wire capacity and the tightening
torque requirements. The power, control, ground, and safety monitor terminals
will accept a maximum of two wires per terminal.
Table 2 - Power, Control, Safety Monitor Inputs, Ground Wire Size, and Torque Specifications
Terminals
Wire Size
Torque
Wire Strip Length
Power
and
Ground
Primary/Secondary
Terminal:
1.5…4.0 mm2
(#16 …#10 American Wire
Gage (AWG))
Primary Terminal:
10.8 lb-in.
(1.2 N•m)
Secondary Terminal:
4.5 lb-in.
(0.5 N•m)
0.35 in. (9 mm)
Control Inputs
1.0 mm2…4.0 mm2
(#18…#10 AWG)
6.2 lb-in.
(0.7 N•m)
0.35 in. (9 mm)
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
37
Chapter 2
Installation and Wiring
Terminal Designations
As shown in Figure 16, the ArmorStart Distributed Motor Controller contains
terminals for power, control, and ground wiring. Access can be gained by
removing the terminal access cover plate.
Figure 16 - ArmorStart Power and Control Terminal Connections
(applies to Bulletin 280E/281E and Bulletin 284E)
Detail A
See Detail A
Table 3 - Power, Control and Ground Terminal Designations
Control Power Wiring
38
Terminal Designations
No. of Poles
Description
A1 (+)
2
Control Power Input
A2 (–)
2
Control Power Common
A3 (+)
2
Unswitched 24V Control
PE
2
Ground
1/L1
2
Line Power Phase A
3/L3
2
Line Power Phase B
5/L5
2
Line Power Phase C
ArmorStart EtherNet/IP utilizes 24V DC control power for communications
and I/O. The control power terminal connections are labeled A1, A2, and A3.
Switched power will supply the outputs. Unswitched power will supply logic
power and sensor inputs.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Installation and Wiring
Chapter 2
24V DC Control Power
• 24V DC (–15%, +10%)
• A1 = Switched +V
• A2 = Common for both switched and unswitched (–V)
• A3 = Unswitched +V
Input and Output Characteristics
• 5-pin female connectors (M12)
• 4 fixed inputs (two per connector) – software selectable sink or source
• 2 sourcing outputs DC (solid-state) – (one per connector)
Input and Output Power Connection
• Sensor Power will be sourced from +24V supplied from A3(+) and A2(–).
• Output power will be sourced from +24V supplied from A1(+) and A2(–).
• Max. current per output point is 0.5 A and is not to exceed 1.0 A total
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
39
Chapter 2
Installation and Wiring
ArmorStart with
EtherNet/IP Internal Wiring
Figure 17 - ArmorStart Ethernet Bulletin 280E with HOA Diagram
140M
L1
L2
L3
Motor
AS Logic
Control
Power
Sense
140M
Off/Tripped
On
7A
Class CC
F
AS Logic
Control
Current supplied by
control power due to the
power supply voltage
being greater than A3
voltage
26V
2.5A
Class CC
2A SC Protected
Port 2
Output A
Note: This power supply is not
present in the Status Only versions.
24V
A1
A2
Port 1
140M Trip
Input 10mA @ 24V DC
140M Status
1 Ampere
Total
FA
Reversed bias
under normal
operation
2A SC Protected
Ethernet
Logic
Output B
11 25V DC
+24V DC Status
Input 10mA @ 24V DC
Input 10mA @ 24V DC
Not Used
Input 10mA @ 24V DC
24V DC
A3
11 25V DC
PTC
300mA Max
Current supplied from A3 when
A1 control power is lost
Input 3
Input 2
Input 1
Input 0
Short
Detect
4 Inputs
50mA Max/input depends
on sensor attached to input
40
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
5V DC
+5V DC
AS Logic Circuits
Installation and Wiring
Chapter 2
Figure 18 - ArmorStart Ethernet Bulletin 281E with HOA Diagram
ArmorStart Ethernet REV with HOA Diagram
Reverser
140M
L1
L2
L3
Motor
AS Logic
Control
Power
Sense
Off/Tripped
140M
7A
Class CC
On
F
FB
AS Logic
Control
2.5A
Class CC
2A SC Protected
Note: This power supply is not
present in the Status Only versions.
Current supplied by
control power due to the
power supply voltage
being greater than A3
voltage
26V
Output A
AS Logic
Control
24V
A1
A2
Port 2
Port 1
R
RB
140M Trip
Input 10mA @ 24V DC
140M Status
1 Ampere
Total
FA
Reversed bias
under normal
operation
2A SC Protected
Ethernet
Logic
Output B
11 25V DC
+24V DC Status
Input 10mA @ 24V DC
Input 10mA @ 24V DC
Not Used
Input 10mA @ 24V DC
24V DC
A3
+5V DC
11 25Vdc
PTC
300mA Max
Current supplied from A3 when
A1 control power is lost
5Vdc
AS Logic Circuits
Input 3
Input 2
Input 1
Input 0
Short
Detect
4 Inputs
50mA Max/input depends
on sensor attached to input
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
41
Chapter 2
Installation and Wiring
Figure 19 - ArmorStart Ethernet Bulletin 284E Drive Diagram
Output Contactor
Option
Sensorless Vector Control
140M
L1
L2
L3
Filter
Option
L1
L2
L3
T1
T2
T3
BR+ BR-
Source Brake
Option
R1
R2
Fan
Off/Tripped
A1
A2
7A
Class CC
1 Ampere
Total
Current supplied by
control power due to the
power supply voltage
being greater than A3
voltage
26V
O
Output
Contactor
Output A
R1
PF40
R2
04
13
15
08
07
16
17
09
18
RJ-45
19
R3
Note: This switch is controlled
by the Control Power Logic
sense. If control power is
present, switch is closed.
Prevents drive from running
when there is no power for the
fan
140M Trip
Input 10mA @ 24V DC
140M Status
Source Brake
Option
2A SC Protected
06
05
14
B
Input 10mA @ 24V DC
Brake CNTR Status
Reversed bias
under normal
operation
Output B
11 25V DC
+24V DC Status
Input 10mA @ 24V DC
Output CNTR Status
1
Input 10mA @ 24V DC
1 - Output CNTR Status not
available when SM option specified
24V DC
11 25V DC
A3
Port 1
4 Inputs
50mA Max/input depends
on sensor attached to input
+5V DC
Port 2
Current supplied by
A3 when A1 control
power is lost
Input 3
Input 2
300mA Max
Input 1
Input 0
PTC
42
03
12
24V DC
2A SC Protected
2.5A
Class CC
11
Dynamic Brake
Connector
Option
140M
On
02
01
3A
Class CC
AS Logic
Control
Power
Sense
Motor
5V DC
Ethernet
Logic
Short
Detect
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
AS Logic
Circuits
Installation and Wiring
Chapter 2
Recommended Cord Grips
Figure 20 - Cord grips for ArmorStart Devices with 10 A Short Circuit Protection Rating
3/4 in. Lock Nut
1 in. Lock Nut
Thomas & Betts Cord Grip
Cat. No. 2931NM
3/4 in. Stain Relief Cord Connector
Cable Range: 0.31…0.56 in.
Used with Control Power Media
Cordset - Example:
Thomas & Betts Cord Grip
Cat. No. 2940NM
1 in. Stain Relief Cord Connector
Cable Range: 0.31…0.56 in.
Used with Three-Phase Power
Media Cordset - Example:
Cat. No. 889N-M65GF-M2
Cat. No. 280-PWR22G-M1
Figure 21 - Cord grips for ArmorStart Devices with 25 A Short Circuit Protection Rating
3/4 in. Lock Nut
1 in. Lock Nut
Thomas & Betts Cord Grip
Cat. No. 2931NM
3/4 in. Stain Relief Cord Connector
Cable Range: 0.31…0.56 in.
Used with Control Power Media
Cordset - Example:
Thomas & Betts Cord Grip
Cat. No. 2942NM
1 in. Stain Relief Cord Connector
Cable Range: 0.70…0.95 in.
Used with Three-Phase Power
Media Cordset - Example:
Cat. No. 889N-M65GF-M2
Cat. No. 280-PWR35G-M1
AC Supply Considerations for Ungrounded and High Resistive Distribution Systems
Bulletin 284E Units
ATTENTION: The Bulletin 284E contains protective Metal Oxide Varistors
(MOVs) that are referenced to a ground. These devices should be disconnected
if the Bulletin 284E is installed on an ungrounded and high resistive
distribution system.
ATTENTION: Do not remove this jumper, shown in Figure 23, if the unit is
equipped with an EMI filter installed.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
43
Chapter 2
Installation and Wiring
Disconnecting MOVs
To prevent drive damage, the MOVs connected to ground must be disconnected
if the drive is installed on an ungrounded and high resistive distribution system
where the line-to-ground voltages on any phase could exceed 125% of the
nominal line-to-line voltage. To disconnect the MOVs, remove the jumper shown
in Figure 23, Bulletin 284E Jumper Removal.
1. Before installing the Bulletin 284E, loosen four mounting screws.
2. Unplug control module from the base unit by pulling forward.
Figure 22 - Bulletin 284E Removal of Control Module
Figure 23 - Bulletin 284E Jumper Removal
Remove Jumper
44
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Installation and Wiring
Chapter 2
Group Motor Installations for USA and Canada Markets
The ArmorStart Distributed Motor controllers are listed for use with each other
in group installations per NFPA 79, Electrical Standard for Industrial Machinery.
When applied according to the group motor installation requirements, two or
more motors, of any rating or controller type, are permitted on a single branch
circuit. Group Motor Installation has been successfully used for many years in the
USA and Canada.
Note: For additional information regarding group motor installations with the
ArmorStart Distributed Motor Controller, see Appendix A.
Wiring and Workmanship Guidelines
In addition to conduit and seal-tite raceway, it is acceptable to utilize cable that is
dual rated Tray Cable Exposed Runs (TC-ER) and Cord, STOOW, for power
and control wiring on ArmorStart installations. In the USA and Canada
installations, the following guidance is outlined by the National Electrical Code
(NEC) and National Fire Protection Association (NFPA) 79.
In industrial establishments where the conditions of maintenance and
supervision ensure that only qualified persons service the installation, and where
the exposed cable is continuously supported and protected against physical
damage using mechanical protection, such as struts, angles, or channels, Type TC
tray cable that complies with the crush and impact requirements of Type MC
(Metal Clad) cable and is identified for such use with the marking Type TC-ER
(Exposed Run)* shall be permitted between a cable tray and the utilization
equipment or device as open wiring. The cable shall be secured at intervals not
exceeding 1.8 m (6 ft) and installed in a “good workman-like” manner.
Equipment grounding for the utilization equipment shall be provided by an
equipment grounding conductor within the cable.
*Historically cable meeting these crush and impact requirements were designated
and marked “Open Wiring”. Cable so marked is equivalent to the present Type
TC-ER and can be used.
While the ArmorStart is intended for installation in factory floor environments
of industrial establishments, the following must be taken into consideration when
locating the ArmorStart in the application:
• Cables, including those for control voltage including 24V DC and
communications, are not to be exposed to an operator or building traffic
on a continuous basis.
• Location of the ArmorStart to minimize exposure to continual traffic is
recommended. If location to minimize traffic flow is unavoidable, other
barriers to minimize inadvertent exposure to the cabling should be
considered.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
45
Chapter 2
Installation and Wiring
• Routing cables should be done in such a manner to minimize inadvertent
exposure and/or damage.
• Additionally, if conduit or other raceways are not used, it is recommended
that strain relief fittings be utilized when installing the cables for the
control and power wiring through the conduit openings.
The working space around the ArmorStart may be minimized as the ArmorStart
does not require examination, adjustment, servicing or maintenance while
energized. In lieu of this service, the ArmorStart is meant to be unplugged and
replaced after proper lockout/tag-out procedures have been employed.
The Hand-Off-Auto (HOA) is a factory-installed option that the user may select.
The HOA keypad may require the ArmorStart to be selected and installed as
follows if the application requires frequent use of the hand operated interface by
the equipment operator:
1. They are not less than 0.6 m (2 ft) above the servicing level and are within
easy reach of the normal working position of the operator.
2. The operator is not placed in a hazardous situation when operating them.
3. The possibility of inadvertent operation is minimized.
If the operated interface is used in industrial establishments where the conditions
of maintenance and supervision ensure that only qualified persons operate and
service the ArmorStart's operator interface, and the installation is located so that
inadvertent operation is minimized, then other installation locations with
acceptable access can be provided.
Other System Design Considerations
The user should keep 3-phase power cabling at least 6 in. away from the
EtherNet/IP network to avoid noise issues. EtherNet/IP is an unpowered
network therefore if device status is important when the disconnect is in the OFF
position, the A3 terminal must have an unswitched power source.
Electromagnetic
Compatibility (EMC)
The following guidelines are provided for EMC installation compliance.
General Notes (Bulletin 284E only)
• The motor Cable should be kept as short as possible in order to avoid
electromagnetic emission as well as capacitive currents.
• Conformity of the drive with CE EMC requirements does not guarantee
an entire machine installation complies with CE EMC requirements.
Many factors can influence total machine/installation compliance.
46
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Installation and Wiring
Chapter 2
• Using an EMI filter, with any drive rating, may result in relatively high
ground leakage currents. Therefore, the filter must only be used in
installations that are solidly grounded (bonded) to the building power
distribution ground. Grounding must not rely on flexible cables and
should not include any form of plug or socket that would permit
inadvertent disconnection. Some local codes may require redundant
ground connections. The integrity of all connections should be
periodically checked.
Wiring
Wire in an industrial control application can be divided into three groups: power,
control, and signal. The following recommendations for physical separation
between these groups is provided to reduce the coupling effect:
• Minimum spacing between different wire groups in the same tray should
be 6 in. (16 cm).
• Wire runs outside an enclosure should be run in conduit or have shielding/
armor with equivalent attenuation.
• Different wire groups should be run in separate conduits.
• Minimum spacing between conduits containing different wire groups
should be 3 in. (8 cm).
Grounding
An effectively grounded product is one that is “intentionally connected to earth
through a ground connection or connections of sufficiently low impedance and
having sufficient current-carrying capacity to prevent the buildup of voltages
which may result in undue hazard to connected equipment or to persons” (as
defined by the US National Electric Code NFPA70, Article 100B). Grounding
is done for two basic reasons: safety (defined above) and noise containment or
reduction. While the safety ground scheme and the noise current return circuit
may sometimes share the same path and components, they should be considered
different circuits with different requirements.
Grounding Safety Grounds
The object of safety grounding is to ensure that all metalwork is at the same
ground (or Earth) potential at power frequencies. Impedance between the drive
and the building scheme ground must conform to the requirements of national
and local industrial safety regulations or electrical codes. These will vary based
on country, type of distribution system and other factors. Periodically check the
integrity of all ground connections.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
47
Chapter 2
Installation and Wiring
General safety dictates that all metal parts are connected to earth with separate
copper wire or wires of the appropriate gauge. Most equipment has specific
provisions to connect a safety ground or PE (protective earth) directly to it.
Grounding PE or Ground
The safety ground - PE must be connected to earth ground. This point must
be connected to adjacent building steel (girder, joist), a floor ground rod, bus bar
or building ground grid. Grounding points must comply with national and local
industrial safety regulations or electrical codes. Some codes may require
redundant ground paths and periodic examination of connection integrity.
IMPORTANT
To avoid electrolytic corrosion on the external earth terminal, avoid spraying
moisture directly on the terminal. When used in washdown environments
apply a sealant or other corrosion inhibitor on the external ground terminal
to minimize any negative effects of galvanic or Electro-chemical corrosion.
Ground connections should be inspected on a regular basis.
Grounding Motors
The motor frame or stator core must be connected directly to the PE connection
with a separate ground conductor. It is recommended that each motor frame be
grounded to building steel at the motor.
ArmorConnect Power Media
Description
The ArmorConnect power media offers both three-phase and control power
cable cord set systems including patchcords, receptacles, tees, reducers and
accessories to be utilized with the ArmorStart Distributed Motor Controller.
These cable system components allow quick connection of ArmorStart
Distributed Motor Controllers, reducing installation time. They provide for
repeatable, reliable connection of the three-phase and control power to the
ArmorStart Distributed Motor Controller and motor by providing a plug-andplay environment that also avoids system mis-wiring. When specifying power
media for use with the ArmorStart Distributed Motor Controllers (Bulletin
280E/281E and Bulletin 284E) use only the Bulletin 280E ArmorConnect
power media.
Refer to the On-Machine Selection Catalog for ordering details. The following
shows example configurations for power, control, and communication media.
48
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Installation and Wiring
Chapter 2
Figure 24 - Ethernet Media System Overview
Connections:
➊
➋
➌
➍
➎
➏
➐
➑
➒
➓
CAT5e Bulkhead Connector and Receptacle – Example Cat.No. 1585A-DD4JD
CAT5e Patchcord, IP67, M12 D-Code, Male Straight, Male Right Angle – Example Cat.No. 1585D-M4TBDE-*
CAT5e, Patch Cable, IP20, RJ45 Male to RJ45 Male – Example Cat.No. 1585J-M4TB-*
Three-Phase Power Receptacles Female receptacles are a panel mount connector with flying leads – Example Cat. No. 280-M35F-M1
Three-Phase Power Trunk- Patchcord cable with integral female or male connector on each end –
Example Cat. No. 280-PWR35A-M*
Three-Phase Drop Cable- Patchcord cable with integral female or male connector on each end –
Example Cat. No. 280-PWR22A-M*
Three-Phase Power Tees and Reducer –
Tee connects to a single drop line to trunk with quick change connectors – Cat. No. 280-T35
Reducing Tee connects to a single drop line (Mini) to trunk (Quick change) connector – Cat. No. 280-RT35
Reducer connects from quick change male connector to mini female connector – Cat. No. 280-RA35
Control Power Receptacles - Female receptacles are a panel mount connector with flying leads –
Cat. No. 888N-D65AF1-*
Control Power Media Patchcords – Patchcord cable with integral female or male connector on each end –
Example Cat. No. 889N-F65GFNM-*
Control Power Tees - The E-stop In Tee (Cat. No. 898N-653ST-NKF) is used to connect to the Bulletin 800F OnMachine E-Stop station using a control power media patchcord. The E-stop Out tee (Cat. No. 898N-653ESNKF) is used with cordset or patchcord to connect to the ArmorStart Distributed Motor Controller.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
49
Chapter 2
Installation and Wiring
ArmorConnect Connections
Figure 25 - ArmorConnect Receptacles
10 A Short Circuit Protection Rating
Control Power Receptacle
25 A Short Circuit Protection Rating
Control Power Receptacle
Three-Phase Power Receptacle
Three-Phase Power Receptacle
Factory-installed ArmorConnect gland plate connections
Figure 26 - ArmorConnect Connections
Table 4 - ArmorConnect Gland Plate Conductor Color Code
50
Terminal Designations
Description
Color Code
A1 (+)
Control Power Input
Blue
A2 (–)
Control Power Common
Black
A3 (+)
Unswitched Control Power
Red
PE
Ground
Green/Yellow
1/L1
Line Power – Phase A
Black
2/L2
Line Power – Phase B
White
3/L3
Line Power – Phase C
Red
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Installation and Wiring
Chapter 2
Figure 27 - On-Machine Stop Stations
Table 1 Product Selection
Enclosure Type
Plastic
Metal
Quick Connect
Knockout Type
Operator
Mini Receptacle
Metric
Twist to Release
Illumination
Voltage
24V AC/DC
24V AC/DC
Contact
Configuration
1 N.C./1 N.O.
Cat. No.
800F-1YMQ4
800F-1MYMQ4
Figure 28 - Stop Circuit for EtherNet/IP Version
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
51
Chapter 2
Installation and Wiring
ArmorConnect Cable Ratings
The ArmorConnect Power Media cables are rated per UL Type TC
600V 90°C Dry 75°C Wet, Exposed Run (ER) or MTW 600V 90°C or
STOOW 105°C 600V - Canadian Standards Association (CSA) STOOW 600V
FT2. For additional information regarding ArmorConnect Power Media refer to
the Industrial Controls Catalog.
Branch Circuit Protection Requirements for ArmorConnect
Three-Phase Power Media
When using ArmorConnect Three-Phase Power Media, fuses or circuit breakers
can be used for the motor branch circuit protective device, for the group motor
installations.
For 25 A rated ArmorConnect cable for trunk and taps:
Circuit Breaker: Suitable for use on a circuit capable of delivering not more than
65 000 RMS symmetrical amperes at 480V AC maximum when protected by
Bulletin 140U-H frame circuit breaker, not rated more than 480V, 100 A and a
maximum interrupting of 65 000 RMS symmetrical amperes Short Circuit
Current Rating (SCCR).
Fusing: Suitable for use on a circuit capable of delivering not more than 65 000
RMS symmetrical amperes (SCCR) at 600V AC maximum when protected by
CC, J, and T class fuses.
For 10 A and 15 A rated ArmorConnect taps:
Circuit Breaker: Suitable for use on a circuit capable of delivering not more than
45 000 RMS symmetrical amperes at 480Y/277V AC maximum when protected
by Cat. No. 140U-D6D3-C30 circuit breaker, not rated more than 480V, 30 A,
having an interrupting rating not less than 45 000 RMS symmetrical amperes,
480Y/277V AC maximum.
WARNING: The total circuit impedance including each cable assembly's own
impedance, must be low enough to ensure any short-circuit or ground fault current that
can flow through any assembly, will be large enough to operate the magnetic trip of the
Cat. No. 140U-D63-C* circuit breaker. Refer to your local electrical code for acceptable
practices for this evaluation.
Fusing: Suitable for use on a circuit capable of delivering not more than 65 000
RMS symmetrical amperes (SCCR) at 600V AC maximum when protected by
CC, J, and T class fuses, rated 40 A non-time delay or 20 A time delay.
52
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Installation and Wiring
Ethernet and I/O Connections
Chapter 2
ArmorStart EtherNet/IP utilizes a sealed D-coded M12 (micro) style
Ethernet connector.
Figure 29 - Ethernet/IP Connector
M12 Female Ethernet Connector
(view into connector)
Pin 1 - Tx+
Pin 2 - Rx+
Pin 3 - Tx–
Pin 4 - Rx–
Figure 30 - I/O Receptacle Input Pin Out (M12)
Pin 1 - +24V (A3 pwr)
Pin 2 - Input 0
Pin 3 - Common
Pin 4 - Input 1
Pin 5 - NC (no connection)
Figure 31 - I/O Receptacle Output Pin Out (M12)
Pin 1 - NC (no connection)
Pin 2 - NC (no connection)
Pin 3 - Common
Pin 4 - Output +24V DC (A1 pwr)
Pin 5 - NC (no connection)
Power Connections
Figure 32 - External Connections for Motor Connector – Bulletin 284E - 5 Hp and
Bulletin 280E/281E - 3 Hp or less (M22) at 480V AC
Pin 1 - T1 (black)
Pin 2 - T2 (white)
Pin 3 - T3 (red)
Pin 4 - Ground (green/yellow)
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
53
Chapter 2
Installation and Wiring
Figure 33 - External Connections for Motor Connector – Bulletin 280E/281E - 10 Hp (M35)
at 480V AC
Pin 1 - T1 (black)
Pin 2 - Ground (green/yellow)
Pin 3 - T3 (red)
Pin 4 - T2 (white)
Figure 34 - External Connections for Brake Contactor Connector (M25)
Pin 1 - L1 (black)
Pin 2 - Ground (green/yellow)
Pin 3 - L2 (white)
Figure 35 - External Connections for Dynamic Brake Connection (M22)
Pin 1 - Ground (green/yellow)
Pin 2 - BR+ (black)
Pin 3 - BR– (white)
Figure 36 - Incoming Control Power (M22) – 24V DC Only
Pin 1 - +24V DC unswitched (A3/red)
Pin 2 - Common (A2/black)
Pin 3 - PE (green)
Pin 4 - Not used (blank)
Pin 5 - +24V DC switched (A1/blue)
Pin 6 - Not used (white)
54
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Installation and Wiring
Chapter 2
Figure 37 - Incoming Three-Phase Power for 10 A Short Circuit Protection (M22)
Pin 1 - L1 (black)
Pin 2 - L2 (white)
Pin 3 - L3 (red)
Pin 4 - Ground (green/yellow)
Figure 38 - Incoming Three-Phase Power for 25 A Short Circuit Protection (M35)
Pin 1 - L1 (black)
Pin 2 - Ground (green/yellow)
Pin 3 - L3 (red)
Pin 4 - L2 (white)
Optional Locking Clip
The clam shell design clips over the ArmorStart motor connector and motor
cable to limit customer access from disconnecting the motor cable on the
ArmorStart Distributed Motor Controller. The locking clip is an optional device
that can be used, if desired. A locking clip is not available for the M25 Source
Brake connection.
Figure 39 - Bulletin 280E/281E Installation of Locking Clip
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
55
Chapter 2
Installation and Wiring
Figure 40 - Bulletin 284E Installation of Locking Clip
56
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Chapter
3
Introduction to EtherNet/IP and
Device Level Ring Technology
Terminology
Refer to the table for the meaning of common terms.
This Term
Means
Consumer
A destination device in the CIP™ networking model. See CIP.
CSMA/CD
Carrier sense multiple access/collision detection is the access method used in
Ethernet. When a device wants to gain access to the network, it checks to see if
the network is quiet (senses the carrier). If it is not, it waits a random amount of
time before retrying. If the network is quiet and two devices access the line at
exactly the same time, their signals collide. When the collision is detected, they
both back off and each waits a random amount of time before retrying.
Determinism
The ability to predict when information will be delivered. Important in timecritical applications.
DHCP
The dynamic host configuration protocol is an Internet protocol, similar to BootP,
for automating the configuration of computers that use TCP/IP. DHCP can be
used to automatically assign IP addresses, to deliver IP stack configuration
parameters, such as the subnet mask and default router, and to provide other
configuration information, such as the addresses for printer, time, and news
servers.
DNS
The domain name system is a hierarchical, distributed method of organizing the
name space of the Internet. The DNS administratively groups hosts into a
hierarchy of authority that allows addressing and other information to be
widely distributed and maintained. A big advantage to the DNS is that using it
eliminates dependence on a centrally-maintained file that maps host names to
addresses.
Ethernet
A physical layer standard using carrier sense multiple access with collision
detection (CSMA/CD) methods.
EtherNet/IP
Ethernet industrial protocol applies a common industrial protocol (CIP) over
Ethernet by encapsulating messages in TCP/UDP/IP.
Ethernet network
A local area network designed for the high-speed exchange of information
between computers and related devices.
Explicit messaging
Non-time critical messaging used for device configuration and data collection,
such as downloading programs or peer-to-peer messaging between two PLC
units.
Full duplex
A mode of communication that allows a device to send and receive information
at the same time, effectively doubling the bandwidth.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
57
Chapter 3
Introduction to EtherNet/IP and Device Level Ring Technology
This Term
Means
Fully qualified
domain name
A fully qualified domain name (FQDN) is a domain name that includes all higher
level domains relevant to the entity named. If you think of the DNS as a treestructure with each node having its own label, a fully qualified domain name for
a specific node would be its label followed by the labels of all the other nodes
between it and the root of the tree. For example, for a host, a FQDN would
include the string that identifies the particular host, plus all domains of which
the host is a part, up to and including the top-level domain (the root domain is
always null). For example, PARIS.NISC.SRI.COM is a fully qualified domain name
for the host at 192.33.33.109.
Gateway
A module or set of modules that allows communications between nodes on
dissimilar networks.
Hardware address
Each Ethernet device has a unique hardware address (sometimes
called a MAC address) that is 48 bits. The address appears as six
digits separated by colons (such as, xx:xx:xx:xx:xx:xx). Each digit has
a value between 0 and 255 (0x00 to 0xFF). This address is assigned
in the hardware and cannot be changed. The hardware address is
required to identify the device if you are using a BOOTP utility.
Host name
The host name is the unique name for a computer within its domain. It's always
the first element of a full name, and, with its domain and top-level domain
suffix, creates the unique name of that computer on the Internet. For example,
let's say a trading website is www.trading.com. The host name is www, which is
not unique on the web, but is unique within the trading domain.
The host name can also refer to the fully qualified domain name (FQDN), or in
this example, www.trading.com. Both naming methods seem to be used
interchangeably in various documents. For the purposes of this document, the
host name will refer to the FQDN, or as in this example, www.trading.com.
58
Hub
A central connecting device that joins devices together in a star configuration.
Hubs are generally not suitable for use in I/O control systems, since they are
time-critical applications that cannot tolerate lost packets.
Implicit messaging
Real-time messaging of I/O data.
IP
Internet protocol that provides the routing mechanism for messages. All
messages contain not only the address of the destination station, but the
address of a destination network, which allows messages to be sent to multiple
networks within an organization or around the world.
IP address
A 32-bit identification number for each node on an Internet Protocol network.
These addresses are represented as four sets of 8-bit numbers (numbers from 0
to 255), with decimals between them. Each node on the network must have a
unique IP address.
Latency
The time between initiating a request for data and the beginning of the actual
data transfer.
Multicast
In the CIP producer/consumer model, one producer multicasts (broadcasts) the
data once to all the consumers.
Producer
The source of information in the CIP networking model. See CIP.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Introduction to EtherNet/IP and Device Level Ring Technology
Introduction to EtherNet/IP
Chapter 3
This Term
Means
Subnet mask
An extension of the IP address that allows a site to use a single net ID for
multiple networks.
Switch
A network device that cross connects devices or network segments. A switch
provides each sender/receiver the full network bandwidth (2x in full duplex
mode), reduces collisions, and increases determinism.
TCP
The transport control protocol is a more reliable but slower transport protocol
than UDP. It is used for explicit (not time critical) messaging in EtherNet/IP.
Automation architectures must provide users with three primary services:
• Control services involve the exchange of time-critical data between
controlling devices and I/O devices.
• Networks must provide users configuration capabilities to set up and
maintain their automation systems.
• Automation architecture must allow for collection of data.
EtherNet/IP, provides installation flexibility and leverages commercially available
industrial infrastructure products. It is also compatible with other
communication standards, such as Hypertext Transfer Protocol (HTTP), Simple
Networks Management Protocol (SNMP), and Dynamic Host Configuration
(DHCP).
EtherNet/IP is a CIP adaptation of TCP/IP that fully utilizes the IEEE standard.
The relationship between the TCP/IP and CIP to form EtherNet/IP is shown in
the ISO/OSI 7-layer model is shown in Figure 41. The OSI model is an ISO
standard for network communications that define all functions from a physical
layer to the protocol.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
59
Chapter 3
Introduction to EtherNet/IP and Device Level Ring Technology
Figure 41 - OSI Model for ISO Standard for Network Communications
This approach provides real time technology into the Ethernet domain. With the
network extensions of CIP Safety™, CIP Sync™ and CIP Motion™, CIP networks
allow for safety communication, time synchronization, and simple to high
performance motion all over the same EtherNet/IP network.
60
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Introduction to EtherNet/IP and Device Level Ring Technology
Linear Network Introduction
Chapter 3
A linear network is a collection of devices that are daisy-chained together.
Figure 42 - Linear Network Collection of Devices
In this topology a communication issue in the media or device will prevent nodes
downstream from communicating.
Figure 43 - Communication Issue in the Media or Device Line
The EtherNet/IP embedded switch technology allows this topology to be
implemented at the device level. No additional switches are required.
These are the primary advantages of a linear network:
• The network simplifies installation and reduces wiring and installation
costs.
• The network requires no special software configuration.
• Embedded switch products offer improved CIP Sync application
performance on linear networks.
The primary disadvantage of a linear network is that any break of the cable
disconnects all devices downstream from the break from the rest of the network.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
61
Chapter 3
Introduction to EtherNet/IP and Device Level Ring Technology
IMPORTANT
Products with EtherNet/IP embedded switch technology have two ports to connect to
a linear or DLR network in a single subnet.
You cannot use these ports as two Network Interface Cards (NICs) connected to two
different subnets.
Device Level Ring (DLR)
Introduction
A DLR protocol defines a set of behaviors, refer to Figure 44. A ring supervisor
keeps packets of information from circulating infinitely around the ring by
blocking one of the ports. A beacon frame constantly is detected on both ring
supervisor ports. If a beacon frame is not detected the supervisor detects the
physical layer issue and reconfigures the network to a linear topology without the
loss of any node communication or data. Once repaired the ring supervisor
reconfigures back to ring mode.
Figure 44 - DLR Protocol
.
As shown in Figure 45, when a physical layer failure is detected the adjacent
nodes to the fault generate a link status message that the ring supervisor
acknowledges. The ring supervisor unblocks the port to allow communication.
The neighboring nodes to the fault identify the fault and reconfigure themselves
to support a linear topology. Now, both the ring supervisor and nodes are
configured to support a linear topology.
62
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Introduction to EtherNet/IP and Device Level Ring Technology
Chapter 3
Figure 45 - Physical Layer Failure is Detected
When the physical layer fault is corrected the supervisor will “hear” the beacon
frame again on both ports. Once this is detected the ring supervisor re-establishes
and configures the ring topology. All the neighboring nodes detect this and
reconfigure themselves back to ring. A DLR network is a single-fault tolerant
network intended for the interconnection of automation devices.
At least one ring supervisor must be configured before a ring is formed.
IMPORTANT
Any nodes that do not support DLR should not be directly connected to the ring.
The node should be connected to the ring through a switch that supports DLR.
The advantages of the DLR network include:
• simple installation
• resilience to a single point of failure on the network
• fast recovery time when a single fault occurs on the network
The primary disadvantage of the DLR topology is the additional effort required
to set up and use the network as compared to a linear or star network.
IMPORTANT
Products with EtherNet/IP embedded switch technology have two ports to connect to
a linear or DLR network in a single subnet.
You cannot use these ports as two Network Interface Cards (NICs) connected to two
different subnets.
IMPORTANT
ArmorStart EtherNet/IP is cannot be configured as a ring supervisor.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
63
Chapter 3
Introduction to EtherNet/IP and Device Level Ring Technology
Number of Nodes on a
DLR Network
Rockwell Automation recommends that you use no more than 50 nodes on a
single DLR or linear network. If your application requires more than 50 nodes,
we recommend that you segment the nodes into separate, but linked, DLR
networks.
With smaller networks:
• there is better management of traffic on the network.
• the networks are easier to maintain.
• there is a lower likelihood of multiple faults.
Additionally, on a DLR network with more than 50 nodes, network recovery
times from faults are higher. For DLR networks with 50 or less nodes, ring
recovery time is less than 3 ms.
Ethernet Switches
Ethernet managed switches are key components that provide determinism and
the required throughput to achieve automation needs. Switches are able to
manage network traffic which reduces unnecessary delays or band width needs. A
properly designed EtherNet/IP infrastructure that implement segregation via
managed switch technology achieves a more reliable and secure network.
Ethernet Media
Today, unshield twisted pair (UTP) wiring is the standard in most applications
and allows for greatest flexibility and ease of installation and maintenance.
Category 5e (e-enhanced) cable is specifically designed to meet today’s
automation needs.
Standard RJ-45 connectors are not designed for industrial environments. For
outside the panel, IP67 connectors are required for EtherNet/IP.
Figure 46 - Network Media - Ethernet M12 D-Code Media
64
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Introduction to EtherNet/IP and Device Level Ring Technology
EtherNet/IP General
Wiring Guideline
Chapter 3
Ethernet is found in automation equipment, panels, and components. There are a
few guidelines, that if followed, will reduce the number of issues an EtherNet/IP
application may experience.
• Many EtherNet/IP applications will share the same space with power
conductors. If the Ethernet media must cross power conductors, do so at
right angles. This will reduce the coupling effect and reduce the potential
for communication noise.
• Where possible, route the Ethernet/IP media five feet or more from high
voltage sources (for example, lights, ballasts, motors, …) or sources of radio
frequency, such as variable frequency drives.
• Ensure that the application or equipment follows industry acceptable
grounding practices.
• Maintain media lengths between nodes to less than 100 m (328 ft). In
today’s environment it may be challenging to maintain these guidelines,
however these will reduce potential application issues.
Requested Packet
Interval (RPI)
The RPI is the update rate specified for a particular piece of data on the network.
This value specifies how often to produce the data for that device. For example, if
you specify an RPI of 50 ms, it means that every 50 ms the device should send
data to the controller or the controller should send data to the device. Use RPIs
only for devices that exchange data.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
65
Chapter 3
Introduction to EtherNet/IP and Device Level Ring Technology
Notes:
66
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Chapter
4
Product Commissioning
The IP address identifies each node on the IP network (or system of connected
networks). Each TCP/IP node on a network must have a unique IP address.
IP Address
The IP address is 32 bits long and has a net ID part and Host ID part. Networks
are classified A, B, C, (or other). The class of the network determines how an IP
address is formatted.
Figure 47 - IP Address on the IP Network
78
Class A
0
0
Class B
0
10
Class C
0
110
31
Host ID
Net ID
15 16
31
Host ID
Net ID
23 24
31
Net ID
Host ID
You can distinguish the class of the IP address from the first integer in its
dotted-decimal IP address as follows:
Range of first integer
Class
Range of first integer
Class
0…127
A
192…223
C
128…191
B
224…255
other
Each node on the same physical network must have an IP address of the same
class and must have the same net ID. Each node on the same network must have a
different Host ID thus giving it a unique IP address.
Gateway Address
The Gateway Address is the default address of a network. It provides a single
domain name and point of entry to the site. Gateways connect individual physical
networks into a system of networks.
Subnet Mask
The subnet mask is used for splitting IP networks into a series of subgroups, or
subnets. The mask is a binary pattern that is matched up with the IP address to
turn part of the Host ID address field into a field for subnets.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
67
Chapter 4
Product Commissioning
Configuring EtherNet/
IP Address
Before using the ArmorStart you may need to configure an IP address, subnet
mask, and optional Gateway address. The rotary network address switches found
on the I/O section of the ArmorStart are set to 999 and DHCP is enabled as the
factory default. The ArmorStart reads these switches first to determine if the
switches are set to a valid IP address between 1…254. When switches are set to a
valid number the IP address will be 192.168.1._ _ _ [switch setting].
The IP address can also be set using DHCP.
• If DHCP is preferred, use Rockwell Automation BootP/DHCP utility,
version 2.3 or later, that ships with RSLogix™ 5000 or RSLinx software.
• Or use a third party DHCP server.
This document assumes the user has set the IP address to 192.168.1.1. The user
can change this IP address to any address either statically or dynamically.
ATTENTION: To avoid unintended operation, the adapter must be assigned a
fixed IP address. If a DHCP server is used, it must be configured to assign a fixed
IP address for your adapter.
Failure to observe this precaution may result in unintended machine motion or
loss of process control.
Manually Configure the Network Address Switches
Remove the protective caps from the rotary switches. Set the network address by
adjusting the three switches on the front of the I/O module.
Figure 48 - Switches on the I/O Module
Writable surface for IP address
Protective IP67 Caps
68
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Product Commissioning
Chapter 4
Figure 49 - Network Address Example
X10
X100
This example shows the
IP address set to 163.
2
8
6
X1
0
0
4
0
2
8
6
4
2
8
6
4
Valid IP address switch settings range from 001 to 254. When the switches are set
to a valid number, the adapter’s IP address will be 192.168.1.xxx (where xxx
represents the number set on the switches). The adapter’s subnet mask will be
255.255.255.0 and the gateway address is set to 0.0.0.0. A power cycle is required
for any new IP address to take effect.
Note: The upper three octets are fixed. DHCP or the embedded webserver must
be used to configure the IP address to a value other than 192.168.1.xxx.
If the switches are set to an invalid number (such as 000 or a value greater than
254), the adapter will check to see if DHCP is enabled. If DHCP is enabled, the
adapter requests an address from a DHCP server. If DHCP is not enabled, the
adapter will use the IP address (along with other TCP configurable parameters)
stored in non-volatile memory.
IMPORTANT
Refer to Figure 50, the ArmorStart is shipped with the control module rotary
switches set to a value of 99. DO NOT modify this setting. If these are changed
and the unit stops responding, the switches will need to be manually set to node
address 63 and power cycled.
Figure 50 - Rotary Switch on Control Module
Factory Setting 99
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
69
Chapter 4
Product Commissioning
Use the Rockwell Automation
BootP/DHCP Utility
The Rockwell Automation BootP/DHCP utility is a stand alone program that
incorporates the functionality of standard BootP/DHCP software with a user
friendly graphical interface. It is located in the Utils directory on the
RSLogix 5000 installation CD. The ArmorStart EtherNet/IP adapter must have
DHCP enabled (factory default) to use the utility.
To configure your adapter using the BootP/DHCP utility, perform the following
steps:
1. Run the BootP/DHCP software.
In the BootP/DHCP Request History panel you will see the hardware
addresses of the devices issuing BootP/DHCP requests.
Figure 51 - BootP/DHCP Request History Panel
2. Double-click the hardware address of the device you want to configure.
You will see the New Entry dialog with the device’s Ethernet Address
(MAC).
Figure 52 - New Entry Dialog Box
70
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Product Commissioning
Chapter 4
3. Enter the IP Address you want to assign to the device, and click OK.
The device is added to the Relation List, displaying the Ethernet Address
(MAC) and corresponding IP Address, Hostname, and Description (if
applicable).
Figure 53 - Relation List
When the address displays in the IP Address column in the Request
History section, it signifies that the IP address assignment has been made.
4. To assign this configuration to the device, highlight the device in the
Relation List panel, and click the Disable BOOTP/DHCP button.
When power is cycled to the device, it uses the configuration you assigned
and does not issue a DHCP request.
5. To enable DHCP for a device with DHCP disabled, highlight the device
in the Relation List, and click the Enable DHCP button.
You must have an entry for the device in the Relation List panel to
re-enable DHCP.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
71
Chapter 4
Product Commissioning
Figure 54 - Enable DHCP Button
Save the Relation List
You can save the Relation List to use later. To save the Relation List perform the
following steps:
1. Select Save As... from the File menu.
Figure 55 - Save the Relation List
You will see the Save As Dialog.
72
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Product Commissioning
Chapter 4
Figure 56 - Save As Dialog Box
2. Select the folder you want to Save in.
3. Enter a File name for the Relation List (for example, Control System
Configuration), and click Save.
You can leave the Save as type at the default setting: Bootp
You can then open the file containing the Relation List at a later session.
DHCP IP Support
DHCP (Dynamic Host Configuration Protocol) software automatically assigns
IP addresses to client stations logging onto a TCP/IP network.
When DHCP is enabled (factory default Enabled), the unit will request its
network configuration from a DHCP/BOOTP server. Any configuration
received from a DHCP server will be stored in non-volatile memory.
ArmorStart EtherNet/IP will remember the last successful address if DHCP is
enabled. The unit will try to obtain the same IP address from the DHCP server.
If the server is not present (e.g., server fails to power up), the unit will use the IP
address it previously received from the server. The DHCP timeout = 30 s.
Be cautious about using DHCP software to configure your adapter. A DHCP
server typically assigns a finite lease time to the offered IP address. When fifty
percent of the leased time has expired, the ArmorStart Ethernet adapter attempts
to renew its IP address with the DHCP server. The possibility exists that the
adapter will be assigned a different IP address, which would cause the adapter to
cease communicating with the controller.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
73
Chapter 4
Product Commissioning
Using the Rockwell
Automation Embedded
Web Server
Internal Web Server
ArmorStart Ethernet/IP internal web server allows you to view information and
configure the ArmorStart via a web browser. The embedded web server is used to
access configuration and status data. Security in the form of an administrative
password can be set. The default Login is Administrator. There is no password
set by default.
IMPORTANT
Caution: The user should set the password to a unique value for authorized
personnel.
If the login and password are lost you will need to reset the device to the factory
defaults, which results in losing its configuration.
To access the internal web browser, open your computers internet browser and
enter the IP address of the desired ArmorStart (for example, 192.168.1.1).
Note: 192.168.1.1 is NOT the factory default IP address as DHCP is enabled
by default.
Figure 57 - Internal Web Browser
From here you are able to view parameter settings, device status, and diagnostics
from multiple tab views.
74
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Product Commissioning
Chapter 4
Figure 58 - Multiple Tab Views
Network Configuration
To access the network configuration you will need to login to the Administrative
Setting. The factory default Login is Administrator. The factory default
password is not used. The user should change the password to ensure
unauthorized personnel do not access and modify the device configuration.
Figure 59 - Network Configurations
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
75
Chapter 4
Product Commissioning
From this screen you can change the Ethernet Configuration. For example
in the above image the default IP address was changed from 192.168.1.1 to
10.10.10.101. To access the webpage after a power cycle, the new address must
be used.
Parameter Configuration
ArmorStart Ethernet/IP embedded web server provides the user the ability
to view and modify the device configuration without having to access
RSLogix 5000. To view the device configuration from the web server, select the
Parameters folder. For the parameter configuration, the user will login through
the Administrative Settings, or when prompted.
Figure 60 - Starter Setup
In the figure above the Starter Setup parameters are viewed. The user can view
all parameters from this screen. To modify a parameter the user will click the
“Edit” button.
Figure 61 - Enter Network Password
The user will be prompted to enter the default User Name (Administrator).
There is no password set by default. The user is expected to change the User
Name (Login) and Password to avoid unauthorized access to the device
configuration.
76
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Product Commissioning
Chapter 4
Figure 62 - Overload Class Settings
The above screen shows an example of changing the Overload Class setting to 15.
Once all changes are made select Apply.
E-mail Notification Configuration
ArmorStart Ethernet/IP internal web server will support the e-mailing of
warning and trip messages via Simple Mail Transfer Protocol (SMTP). The
configuration parameters for the SMTP Server’s IP address, user login, and port
number are configurable through the Administrative Settings page of the internal
web server. The user will configure the device name, device description, and
device trip type.
Figure 63 - E-mail Notification Configuration
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
77
Chapter 4
Product Commissioning
E-mail triggers:
•
•
•
•
when a trip occurs
when a trip is cleared
when a warning occurs
when a warning is cleared
Note: “Cleared Event” e-mails will only be sent when all events have been cleared
and if a trip event e-mail has previously been sent. For example, if the device is
configured to send e-mails when a phase loss trip and an overload trip is detected,
no e-mail will be sent when both the overload and the phase loss is cleared.
The following is an example trip e-mail:
Subject:
ArmorStart 281E, 0.5…2.5 A, 24V DC has detected a trip.
Body:
Trip Type:
Overload
Trip Info:
Load has drawn excessive current based on the trip
class selected.
Device Name:
ArmorStart 281E, 0.5…2.5 A, 24V DC
(From Identity Object)
Device Description: Lift conveyor on-machine motor starter
(From E-mail Config web page)
Device Connections
78
Device Location:
Customer Plant
(From E-mail Config web page)
Contact Info:
Joe Schmo
(From E-mail Config web page)
[email protected]
The device will support both scheduled (Class 1) and unscheduled (Class 3 &
UCMM) CIP connections. A maximum of two Class 1 CIP connections (one
exclusive owner and one listen only) are supported, one per PLC. Six Class 3 CIP
connections are supported.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Chapter
5
Adding an ArmorStart to RSLogix 5000
Setup
This section will show you how to add an ArmorStart Add-On-Profile (AOP) to
RSLogix 5000. It is assumed that you have downloaded and installed the AOP so
that the RSLogix 5000 software can fully support the ArmorStart Ethernet/IP.
The AOP can be downloaded from: http://support.rockwellautomation.com/
controlflash/LogixProfiler.asp.
1. Open RSLogix 5000 by double-clicking on the icon on your desktop.
2. Select File>New to create a new project.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
79
Chapter 5
Adding an ArmorStart to RSLogix 5000
3. Enter the name of the project and select your controller from the Type
drop down menu. For this example, a Cat. No. 1769-L35E and software
revision 19 will be used. Then click OK.
4. To add a new module to the tree, right-click on
Ethernet and select
New Module. This allows you to add a new ArmorStart to the Logix
Project.
80
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Adding an ArmorStart to RSLogix 5000
Chapter 5
5. Select the ArmorStart in your application and click OK.
6. The AOP is shown below. Enter a Name for this ArmorStart and an
Ethernet address. For this example, the Private Network setting will be
used. This should be set to match the IP address switch setting on the
ArmorStart. Then press OK.
Note: Refer to Configuring EtherNet/ IP Address in Chapter 4 to set an
IP address on the device.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
81
Chapter 5
Adding an ArmorStart to RSLogix 5000
Connect and Configure
ArmorStart with Add-OnProfile (AOP)
This section will show the AOP tabs and how they can be used to connect, obtain
status, and configure the ArmorStart. Before the walkthrough is started, the
RSLogix 5000 software should be open and an AOP displayed as shown below.
The screenshot above displays that the AOP has seven tabs that can be used to
configure and/or monitor your ArmorStart. The following lists the tabs and
whether or not they are editable with the controller when OFFLINE, ONLINE,
or both:
•
•
•
•
General – OFFLINE
Connection – OFFLINE
Module Info – ONLINE
Parameters – OFFLINE/ONLINE
Internet Protocol – ONLINE
• Port Configuration – ONLINE
• Network – ONLINE
The last five tabs in the list will not display information until the ONLINE
connection has been established with the ArmorStart. The General, Connection,
and Parameters tabs will be discussed first because they are used to define
OFFLINE settings so that connection with the ArmorStart can be established.
82
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Adding an ArmorStart to RSLogix 5000
Offline Connection
Chapter 5
General Tab
Click on the General tab to display the following:
This tab allows you to name your module, which should be descriptive and
representative of the module. The IP Address of the module must also be input so
that communication can be established. The IP Address should be the one
defined using the BootP/DHCP Server, the Rotary Network Address Switches
or the ArmorStart internal web server.
For the majority of cases, the Host Name and Module Definition section of this
tab do not require any adjustment. Changes to either of these should only be
made if you are familiar with the functionality of each of these sections.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
83
Chapter 5
Adding an ArmorStart to RSLogix 5000
Connection Tab
Click on the Connection tab to display the following:
The Request Packet Interval (RPI) indicates the maximum frequency at which
data will be received. It is possible that data could come more quickly than the
time interval assigned in the RPI. In the majority of cases, the default 20 ms
should be the optimal setting. If you check the Inhibit Module option,
connection to controller tags will be broken. The Major Fault on Controller if
Connection Fails While in Run Mode option should be checked to ensure that
the controller processes the connection fault with the ArmorStart. The Use
Unicast Connection over EtherNet/IP is checked to use the Unicast mode
instead of the EtherNet/IP mode. This appears only for modules using
RSLogix 5000 software version 18 or later which supports Unicast.
84
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Adding an ArmorStart to RSLogix 5000
Chapter 5
Parameters Tab
Click on the Parameters tab to display the following:
The parameters are divided into groups based on the type of ArmorStart. By
clicking in the Group drop down menu you can choose which parameter group is
displayed. When the Parameters tab is selected, the tab defaults to the Drive
Setup (Bulletin 284E) or Starter Setup (Bulletin 280E) groups depending on the
ArmorStart. These Setup groups are the minimum required parameters to get the
ArmorStart running.
After this parameter group has been set, the next time that the Parameters tab is
opened, all of the parameters will be shown and the tab will no longer default to
the setup groups.
Online Connection
Now that the offline connection settings have been set, connect to the
ArmorStart and review the last five AOP tabs.
Note: If you are using a Cat. No. 1756-ENBT Ethernet module to communicate with
the PLC, verify that you have updated the module’s firmware to Revision 6.001 or
later. The latest firmware can be found at http://support.rockwellautomation.com/
controlflash/.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
85
Chapter 5
Adding an ArmorStart to RSLogix 5000
1. If a controller path is not set in the field shown below, you must first set a
path before going online with the controller. Click on the
button shown below.
2. Expand and browse the AB_ETHIP-1, Ethernet driver.
3. Select the Controller path. Then click Go Online.
86
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
RSwho
Adding an ArmorStart to RSLogix 5000
Chapter 5
4. The following will appear and for this example, click on Download to
connect to the controller.
5. If a download confirmation dialog box appears, click Download again.
6. Click Yes to bring the controller back to Remote Run.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
87
Chapter 5
Adding an ArmorStart to RSLogix 5000
7. The controller should now be online. If at any point you go offline and a
path is selected, you can also go online by clicking the Offline drop down
in the upper left corner of the screen. Click on Go Online to connect to
the ArmorStart, as shown below.
Note: If a yellow triangle appears next to the ArmorStart Icon in the
Controller Organizer Tree as shown below, it means that the connection is
faulted. The problem must be fixed before you can connect to the
ArmorStart. The next steps assume that the connection was successful.
88
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Adding an ArmorStart to RSLogix 5000
Chapter 5
Parameters Tab
Return to the Parameters tab again once the AOP is opened by selecting the
ArmorStart in the project tree. Notice that when clicking in the Parameters tab,
an ArmorStart Correlation pop-up window is displayed, as shown below.
This indicates that the AOP is comparing the parameter data entered offline vs.
the parameter data stored in the ArmorStart. If any discrepancies are found
between the parameters in the AOP and the parameters in the ArmorStart, a
window will pop-up, as shown below, asking you to decide which parameters you
want to keep.
If you want to keep the parameters in the AOP, select Download. If you want to
keep the parameters in the ArmorStart, select Upload. Otherwise, select Cancel.
Clicking Cancel will lock the user out of viewing the values. If you are connected
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
89
Chapter 5
Adding an ArmorStart to RSLogix 5000
to a new ArmorStart and you just created the ArmorStart object and have not
made any changes in the parameters, the ArmorStart correlation should not find
any discrepancy.
Note: If you make any changes to the parameters offline, they will not be
downloaded to the ArmorStart when the connection is made (going Online). For
the Offline changes to take effect you must go to the Parameters tab. Once you
click the Parameters tab, ArmorStart correlation will take place and then the
changes can be downloaded to the ArmorStart.
Module Info Tab
Click on the Module Info tab to display the following:
This tab will display general identification information, as well as status
information about the ArmorStart. It is important to note that the information
displayed in this tab will not be constantly updated. After you click on the
Module Info tab, the AOP queries the ArmorStart once for the information
displayed in this tab and does not query the ArmorStart for the values again. If
after the initial query the status of the ArmorStart changes, for example a fault
occurs, the change in the status will not be automatically updated. The Refresh
button must be pressed to request the AOP for another ArmorStart query.
Note: A connection status (offline, online, downloading or uploading) is
provided at the bottom left of the tab window. The connection status appears in
all the tabs.
90
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Adding an ArmorStart to RSLogix 5000
Chapter 5
Internet Protocol Tab
Click on the Internet Protocol tab to display the following:
If the IP address was set up using the Rotary Network Address Switches, default
settings for the IP would already be established and you will not be able to make
any changes in this tab. In most cases, you would not need to make any changes in
this tab and it will only display the current IP Settings Configuration.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
91
Chapter 5
Adding an ArmorStart to RSLogix 5000
Port Configuration Tab
Click on the Port Configuration tab to display the following:
This tab is used to enable or disable a physical port in the module. The ports will
normally be in Auto Negotiate mode, which in general, is the recommended
setting. Otherwise, you have to physically set the Speed or Duplex selection in
this tab. It is important to note that although there are two physical ports, they
act as one. Therefore, when you press either of the Port Diagnostic buttons,
information coming from both of the physical ports will be displayed.
92
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Adding an ArmorStart to RSLogix 5000
Chapter 5
Network Tab
Click on this tab to display the following:
This tab displays information about the network configuration, such as the type
of topology (linear or device level ring).
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
93
Chapter 5
Adding an ArmorStart to RSLogix 5000
Auto-Generated Tags
After you install and configure the AOP, the controller tags are generated. The
tags names are descriptive and automatically generated. This greatly simplifies
programming. The figure below shows an example of the auto-generated tags
for ArmorStart.
The following tables provide more clarification regarding the Produce and
Consume assemblies and how they correlate with the auto-generated names.
Using an AOP the data in the Consumed and Produced Assemblies are
automatically created as descriptive tag names. To drive this point home
we've highlighted a few of the commands to demonstrate the AOP tag
alignment to the Consumed and Produced Assemblies in the following tables.
94
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Adding an ArmorStart to RSLogix 5000
Chapter 5
Table 5 - Default Consume Assembly for Bulletin 284E
Instance 166 Consumed Inverter Type Starter with Network Inputs
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
Out B
Out A
—
JogReverse
JogForward
ResetFault
RunReverse
RunForward
1
DriveInput4
DriveInput3
DriveInput2
DriveInput1
DecelCtrl_1
DecelCtrl_0
AccelCtrl_1
AccelCtrl_0
2
FreqCommand (Low) (xxx.x Hz)
3
FreqCommand (High) (xxx.x Hz)
4
Pt07DeviceIn
Pt06DeviceIn
Pt05DeviceIn
Pt04DeviceIn
Pt03DeviceIn
Pt02DeviceIn
Pt01DeviceIn
Pt00DeviceIn
5
Pt15DeviceIn
Pt14DeviceIn
Pt13DeviceIn
Pt12DeviceIn
Pt11DeviceIn
Pt10DeviceIn
Pt9DeviceIn
Pt8DeviceIn
Table 6 - Bulletin 284E Consume Assembly Command Tags
Controller Output/ Command Tags
Controller Name
Name
Logix Tag Name
AS_DEMO
RunForward
AS_DEMO:O.RunForward
AS_DEMO
RunReverse
AS_DEMO:O.RunReverse
AS_DEMO
ResetFault
AS_DEMO:O.ResetFault
AS_DEMO
JogForward
AS_DEMO:O.JogForward
AS_DEMO
JogReverse
AS_DEMO:O.JogReverse
AS_DEMO
OutA
AS_DEMO:O.OutA
AS_DEMO
OutB
AS_DEMO:O.OutB
AS_DEMO
AccelCtrl_0
AS_DEMO:O.AccelCtrl_0
AS_DEMO
AccelCtrl_1
AS_DEMO:O.AccelCtrl_1
AS_DEMO
DecelCtrl_0
AS_DEMO:O.DecelCtrl_0
AS_DEMO
DecelCtrl_1
AS_DEMO:O.DecelCtrl_1
AS_DEMO
DriveInput1
AS_DEMO:O.DriveInput1
AS_DEMO
DriveInput2
AS_DEMO:O.DriveInput2
AS_DEMO
DriveInput3
AS_DEMO:O.DriveInput3
AS_DEMO
DriveInput4
AS_DEMO:O.DriveInput4
AS_DEMO
FreqCommand
AS_DEMO:O.FreqCommand
AS_DEMO
Pt00DeviceIn
AS_DEMO:O.Pt00DeviceIn
AS_DEMO
Pt01DeviceIn
AS_DEMO:O.Pt01DeviceIn
AS_DEMO
Pt02DeviceIn
AS_DEMO:O.Pt02DeviceIn
AS_DEMO
Pt03DeviceIn
AS_DEMO:O.Pt03DeviceIn
AS_DEMO
Pt04DeviceIn
AS_DEMO:O.Pt04DeviceIn
AS_DEMO
Pt05DeviceIn
AS_DEMO:O.Pt05DeviceIn
AS_DEMO
Pt06DeviceIn
AS_DEMO:O.Pt06DeviceIn
AS_DEMO
Pt07DeviceIn
AS_DEMO:O.Pt07DeviceIn
AS_DEMO
Pt08DeviceIn
AS_DEMO:O.Pt08DeviceIn
AS_DEMO
Pt09DeviceIn
AS_DEMO:O.Pt09DeviceIn
AS_DEMO
Pt10DeviceIn
AS_DEMO:O.Pt10DeviceIn
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
95
Chapter 5
Adding an ArmorStart to RSLogix 5000
Controller Output/ Command Tags
Controller Name
Name
Logix Tag Name
AS_DEMO
Pt11DeviceIn
AS_DEMO:O.Pt11DeviceIn
AS_DEMO
Pt12DeviceIn
AS_DEMO:O.Pt12DeviceIn
AS_DEMO
Pt13DeviceIn
AS_DEMO:O.Pt13DeviceIn
AS_DEMO
Pt14DeviceIn
AS_DEMO:O.Pt14DeviceIn
Table 7 - Default Produce Assembly for Bulletin 284E
Produce Assembly - Instance 151 “Drive Status” - Bulletin284E Starters
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
0
Reserved - {name}:I.Fault
1
Reserved - {name}:I.Fault
2
Reserved - {name}:I.Fault
3
Reserved - {name}:I.Fault
Bit 2
Bit 1
Bit 0
4
AtReference
Network
ReferenceStatus
NetControlStatus
Ready
RunningReverse
RunningForward
WarningPresent
TripPresent
5
Output
ContactorStatus
Brake
ContactorStatus
DisconnectClosed
Hand
In3
In2
In1
In0
6
OutputFrequency (Low) (xxx.x Hz)
7
OutputFrequency (High) (xxx.x Hz)
8
Pt07DeviceOut
Pt06DeviceOut
Pt05DeviceOut
Pt04DeviceOut
Pt03DeviceOut
Pt02DeviceOut
Pt01DeviceOut
Pt00DeviceOut
9
LogicEnable
Pt14DeviceOut
Pt13DeviceOut
Pt12DeviceOut
Pt11DeviceOut
P10DeviceOut
Pt09DeviceOut
Pt08DeviceOut
10
Value of the parameter pointed to by "Parameter 13 Prod Assy Word 0" (low byte)" - Int00DeviceOut
11
Value of the parameter pointed to by "Parameter 13 Prod Assy Word 0" (high byte)" - Int00DeviceOut
12
Value of the parameter pointed to by "Parameter 14 Prod Assy Word 1" (low byte)" - Int01DeviceOut
13
Value of the parameter pointed to by "Parameter 14 Prod Assy Word 1" (high byte)" - Int01DeviceOut
14
Value of the parameter pointed to by "Parameter 15 Prod Assy Word 2" (low byte)" - Int02DeviceOut
15
Value of the parameter pointed to by "Parameter 15 Prod Assy Word 2" (high byte)" - Int02DeviceOut
16
Value of the parameter pointed to by "Parameter 16 Prod Assy Word 3" (low byte)" - Int03DeviceOut
17
Value of the parameter pointed to by "Parameter 16 Prod Assy Word 3" (high byte)" - Int03DeviceOut
Table 8 - Bulletin 284E Produced Assembly Status Tags
Controller Input/ Status Tags
96
Controller Name
Name
Logix Tag Name
AS_DEMO
Fault
AS_DEMO:I.Fault
AS_DEMO
TripPresent
AS_DEMO:I.TripPresent
AS_DEMO
WarningPresent
AS_DEMO:I.WarningPresent
AS_DEMO
RunningForward
AS_DEMO:I.RunningForward
AS_DEMO
RunningReverse
AS_DEMO:I.RunningReverse
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Adding an ArmorStart to RSLogix 5000
Chapter 5
Controller Input/ Status Tags
Controller Name
Name
Logix Tag Name
AS_DEMO
Ready
AS_DEMO:I.Ready
AS_DEMO
NetworkControlStatus
AS_DEMO:I.NetworkControlStatus
AS_DEMO
NetworkReferenceStatus
AS_DEMO:I.NetworkReferenceStatus
AS_DEMO
AtReference
AS_DEMO:I.AtReference
AS_DEMO
In0
AS_DEMO:I.In0
AS_DEMO
In1
AS_DEMO:I.In1
AS_DEMO
In2
AS_DEMO:I.In2
AS_DEMO
In3
AS_DEMO:I.In3
AS_DEMO
Hand
AS_DEMO:I.Hand
AS_DEMO
DisconnectClosed
AS_DEMO:I.DisconnectClosed
AS_DEMO
BrakeContactorStatus
AS_DEMO:I.BrakeContactorStatus
AS_DEMO
OutputContactorStatus
AS_DEMO:I.OutputContactorStatus
AS_DEMO
OutputFrequency
AS_DEMO:I.OutputFrequency
AS_DEMO
Pt00DeviceOut
AS_DEMO:I.Pt00DeviceOut
AS_DEMO
Pt01DeviceOut
AS_DEMO:I.Pt01DeviceOut
AS_DEMO
Pt02DeviceOut
AS_DEMO:I.Pt02DeviceOut
AS_DEMO
Pt03DeviceOut
AS_DEMO:I.Pt03DeviceOut
AS_DEMO
Pt04DeviceOut
AS_DEMO:I.Pt04DeviceOut
AS_DEMO
Pt05DeviceOut
AS_DEMO:I.Pt05DeviceOut
AS_DEMO
Pt06DeviceOut
AS_DEMO:I.Pt06DeviceOut
AS_DEMO
Pt07DeviceOut
AS_DEMO:I.Pt07DeviceOut
AS_DEMO
Pt08DeviceOut
AS_DEMO:I.Pt08DeviceOut
AS_DEMO
Pt09DeviceOut
AS_DEMO:I.Pt09DeviceOut
AS_DEMO
Pt10DeviceOut
AS_DEMO:I.Pt10DeviceOut
AS_DEMO
Pt11DeviceOut
AS_DEMO:I.Pt11DeviceOut
AS_DEMO
Pt12DeviceOut
AS_DEMO:I.Pt12DeviceOut
AS_DEMO
Pt13DeviceOut
AS_DEMO:I.Pt13DeviceOut
AS_DEMO
Pt14DeviceOut
AS_DEMO:I.Pt14DeviceOut
AS_DEMO
LogicEnabled
AS_DEMO:I.LogicEnabled
AS_DEMO
Int00DeviceOut
AS_DEMO:I.Int00DeviceOut
AS_DEMO
Int01DeviceOut
AS_DEMO:I.Int01DeviceOut
AS_DEMO
Int02DeviceOut
AS_DEMO:I.Int02DeviceOut
AS_DEMO
Int03DeviceOut
AS_DEMO:I.Int03DeviceOut
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
97
Chapter 5
Adding an ArmorStart to RSLogix 5000
Table 9 - Bulletin 284E Consume Assembly/Command Tag Explanation
98
Controller Output/ Command Tags
Tag Description/Use
RunForward
Command VFD forward
RunReverse
Command VFD reverse
ResetFault
Fault reset
JogForward
Command Jog forward per internal frequency
JogReverse
Command Jog reverse per internal frequency
OutA
Output A
OutB
Output B
AccelCtrl_0
VFD acceleration ramp 1
AccelCtrl_1
VFD acceleration ramp 2
DecelCtrl_0
VFD deceleration ramp 1
DecelCtrl_1
VFD deceleration ramp 2
DriveInput1
VFD Digit Input 1
DriveInput2
VFD Digit Input 2
DriveInput3
VFD Digit Input 3
DriveInput4
VFD Digit Input 4
FreqCommand
Logix commanded frequency
Pt00DeviceIn
Network input to DeviceLogix engine
Pt01DeviceIn
Network input to DeviceLogix engine
Pt02DeviceIn
Network input to DeviceLogix engine
Pt03DeviceIn
Network input to DeviceLogix engine
Pt04DeviceIn
Network input to DeviceLogix engine
Pt05DeviceIn
Network input to DeviceLogix engine
Pt06DeviceIn
Network input to DeviceLogix engine
Pt07DeviceIn
Network input to DeviceLogix engine
Pt08DeviceIn
Network input to DeviceLogix engine
Pt09DeviceIn
Network input to DeviceLogix engine
Pt10DeviceIn
Network input to DeviceLogix engine
Pt11DeviceIn
Network input to DeviceLogix engine
Pt12DeviceIn
Network input to DeviceLogix engine
Pt13DeviceIn
Network input to DeviceLogix engine
Pt14DeviceIn
Network input to DeviceLogix engine
Pt15DeviceIn
Network input to DeviceLogix engine
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Adding an ArmorStart to RSLogix 5000
Chapter 5
Table 10 - Bulletin 284E Produced Assembly/Status Tag Explanation
Controller Input/ Status Tags Tag Description/Use
Fault
Communication Fault between PLC and Device (all 1's = Fault, all 0's = Normal)
TripPresent
Fault exisits with unit
WarningPresent
Warning of potential fault
RunningForward
Motor commanded to run forward
RunningReverse
Motor commanded to run reverse
Ready
Control Power and 3-phase present
NetworkControlStatus
Start and Stop command comes from network (PLC or Connected Explicit Messaging)
NetworkReferenceStatus
Speed reference comes from the network (not DeviceLogix)
AtReference
At commanded speed reference
In0
Input 0
In1
Input 1
In2
Input 2
In3
Input 3
Hand
HOA is in Auto mode
DisconnectClosed
Disconnect is closed
BrakeContactorStatus
Source brake contactor status (1=close, 0=open)
OutputContactorStatus
Ouput contactor status (1=close, 0=open)
OutputFrequency
VFD frequency
Pt00DeviceOut
DeviceLogix network output status
Pt01DeviceOut
DeviceLogix network output status
Pt02DeviceOut
DeviceLogix network output status
Pt03DeviceOut
DeviceLogix network output status
Pt04DeviceOut
DeviceLogix network output status
Pt05DeviceOut
DeviceLogix network output status
Pt06DeviceOut
DeviceLogix network output status
Pt07DeviceOut
DeviceLogix network output status
Pt08DeviceOut
DeviceLogix network output status
Pt09DeviceOut
DeviceLogix network output status
Pt10DeviceOut
DeviceLogix network output status
Pt11DeviceOut
DeviceLogix network output status
Pt12DeviceOut
DeviceLogix network output status
Pt13DeviceOut
DeviceLogix network output status
Pt14DeviceOut
DeviceLogix network output status
LogicEnabled
DeviceLogix is enabled
Int00DeviceOut
Data reference by Parameter 13
Int01DeviceOut
Data reference by Parameter 14
Int02DeviceOut
Data reference by Parameter 15
Int03DeviceOut
Data reference by Parameter 16
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
99
Chapter 5
Adding an ArmorStart to RSLogix 5000
Table 11 - Default Consume Assembly for Bulletin 280E/281E
Instance 162 Default Consumed DOL and Reversing Starter
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
OutB
OutA
—
—
—
ResetFault
RunReverse
RunForward
1
Pt07DeviceIn
Pt06DeviceIn
Pt05DeviceIn
Pt04DeviceIn
Pt03DeviceIn
Pt02DeviceIn
Pt01DeviceIn
Pt00DeviceIn
2
Pt15DeviceIn
Pt14DeviceIn
Pt13DeviceIn
Pt12DeviceIn
Pt11DeviceIn
Pt10DeviceIn
Pt09DeviceIn
Pt08DeviceIn
Table 12 - Bulletin 280E/281E Controller Output/Command Tags
Controller Name
Name
Logix Tag Name
DEMO_REV
RunForward
DEMO_REV:O.RunForward
DEMO_REV
RunReverse
DEMO_REV:O.RunReverse
DEMO_REV
ResetFault
DEMO_REV:O.ResetFault
DEMO_REV
OutA
DEMO_REV:O.OutA
DEMO_REV
OutB
DEMO_REV:O.OutB
DEMO_REV
Pt00DeviceIn
DEMO_REV:O.Pt00DeviceIn
DEMO_REV
Pt01DeviceIn
DEMO_REV:O.Pt01DeviceIn
DEMO_REV
Pt02DeviceIn
DEMO_REV:O.Pt02DeviceIn
DEMO_REV
Pt03DeviceIn
DEMO_REV:O.Pt03DeviceIn
DEMO_REV
Pt04DeviceIn
DEMO_REV:O.Pt04DeviceIn
DEMO_REV
Pt05DeviceIn
DEMO_REV:O.Pt05DeviceIn
DEMO_REV
Pt06DeviceIn
DEMO_REV:O.Pt06DeviceIn
DEMO_REV
Pt07DeviceIn
DEMO_REV:O.Pt07DeviceIn
DEMO_REV
Pt08DeviceIn
DEMO_REV:O.Pt08DeviceIn
DEMO_REV
Pt09DeviceIn
DEMO_REV:O.Pt09DeviceIn
DEMO_REV
Pt10DeviceIn
DEMO_REV:O.Pt10DeviceIn
DEMO_REV
Pt11DeviceIn
DEMO_REV:O.Pt11DeviceIn
DEMO_REV
Pt12DeviceIn
DEMO_REV:O.Pt12DeviceIn
DEMO_REV
Pt13DeviceIn
DEMO_REV:O.Pt13DeviceIn
DEMO_REV
Pt14DeviceIn
DEMO_REV:O.Pt14DeviceIn
DEMO_REV
Pt15DeviceIn
DEMO_REV:O.Pt15DeviceIn
Table 13 Instance 150 "Starter Stat" - Default Status Assembly for Bulletin 280E/281E Starters
Byte
Bit 6
Bit 5
Bit 4
Bit 3
0
Reserved - {name}:I.Fault
1
Reserved - {name}:I.Fault
2
Reserved - {name}:I.Fault
3
Reserved - {name}:I.Fault
Byte
100
Bit 7
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Bit 2
Bit 1
Bit 0
Bit 2
Bit 1
Bit 0
Adding an ArmorStart to RSLogix 5000
Chapter 5
Instance 150 "Starter Stat" - Default Status Assembly for Bulletin 280E/281E Starters
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
4
—
—
—
Ready
RunningReverse
RunningForward
WarningPresent
TripPresent
5
—
—
DisconnectClosed
Hand
In3
In2
In1
In0
6
Pt07DeviceOut
Pt06DeviceOut
Pt05DeviceOut
Pt04DeviceOut
Pt03DeviceOut
Pt02DeviceOut
Pt01DeviceOut
Pt00DeviceOut
7
LogicEnable
Pt14DeviceOut
Pt13DeviceOut
Pt12DeviceOut
Pt11DeviceOut
Pt10DeviceOut
Pt09DeviceOut
Pt08DeviceOut
8
Value of the parameter pointed to by "Parameter 13 Prod Assy Word 0" (low byte)" - ProducedWord0Param
9
Value of the parameter pointed to by "Parameter 13 Prod Assy Word 0" (high byte)" - ProducedWord0Param
10
Value of the parameter pointed to by "Parameter 14 Prod Assy Word 1" (low byte)" - ProducedWord1Param
11
Value of the parameter pointed to by "Parameter 14 Prod Assy Word 1" (high byte)" - ProducedWord1Param
12
Value of the parameter pointed to by "Parameter 15 Prod Assy Word 2" (low byte)" - ProducedWord2Param
13
Value of the parameter pointed to by "Parameter 15 Prod Assy Word 2" (high byte)" - ProducedWord2Param
14
Value of the parameter pointed to by "Parameter 16 Prod Assy Word 3" (low byte)" - ProducedWord3Param
15
Value of the parameter pointed to by "Parameter 16 Prod Assy Word 3" (high byte)" - ProducedWord3Param
Table 14 - Bulletin 280E/281E Controller Input/ Status Tags
Controller Name
Name
Logix Tag Name
DEMO_REV
Fault
DEMO_REV:I.Fault
DEMO_REV
TripPresent
DEMO_REV:I.TripPresent
DEMO_REV
WarningPresent
DEMO_REV:I.WarningPresent
DEMO_REV
RunningForward
DEMO_REV:I.RunningForward
DEMO_REV
RunningReverse
DEMO_REV:I.RunningReverse
DEMO_REV
Ready
DEMO_REV:I.Ready
DEMO_REV
In0
DEMO_REV:I.In0
DEMO_REV
In1
DEMO_REV:I.In1
DEMO_REV
In2
DEMO_REV:I.In2
DEMO_REV
In3
DEMO_REV:I.In3
DEMO_REV
Hand
DEMO_REV:I.Hand
DEMO_REV
DisconnectClosed
DEMO_REV:I.DisconnectClosed
DEMO_REV
Pt00DeviceOut
DEMO_REV:I.Pt00DeviceOut
DEMO_REV
Pt01DeviceOut
DEMO_REV:I.Pt01DeviceOut
DEMO_REV
Pt02DeviceOut
DEMO_REV:I.Pt02DeviceOut
DEMO_REV
Pt03DeviceOut
DEMO_REV:I.Pt03DeviceOut
DEMO_REV
Pt04DeviceOut
DEMO_REV:I.Pt04DeviceOut
DEMO_REV
Pt05DeviceOut
DEMO_REV:I.Pt05DeviceOut
DEMO_REV
Pt06DeviceOut
DEMO_REV:I.Pt06DeviceOut
DEMO_REV
Pt07DeviceOut
DEMO_REV:I.Pt07DeviceOut
DEMO_REV
Pt08DeviceOut
DEMO_REV:I.Pt08DeviceOut
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
101
Chapter 5
Adding an ArmorStart to RSLogix 5000
Controller Name
Name
Logix Tag Name
DEMO_REV
Pt09DeviceOut
DEMO_REV:I.Pt09DeviceOut
DEMO_REV
Pt10DeviceOut
DEMO_REV:I.Pt10DeviceOut
DEMO_REV
Pt11DeviceOut
DEMO_REV:I.Pt11DeviceOut
DEMO_REV
Pt12DeviceOut
DEMO_REV:I.Pt12DeviceOut
DEMO_REV
Pt13DeviceOut
DEMO_REV:I.Pt13DeviceOut
DEMO_REV
Pt14DeviceOut
DEMO_REV:I.Pt14DeviceOut
DEMO_REV
LogicEnabled
DEMO_REV:I.LogicEnabled
DEMO_REV
ProducedWord0Param
DEMO_REV:I.ProducedWord0Param
DEMO_REV
ProducedWord1Param
DEMO_REV:I.ProducedWord1Param
DEMO_REV
ProducedWord2Param
DEMO_REV:I.ProducedWord2Param
DEMO_REV
ProducedWord3Param
DEMO_REV:I.ProducedWord3Param
Table 15 - Bulletin 280E/281E Consume Assembly Command Tag Explanation
102
Controller Output/ Command Tags
Tag Description/Use
RunForward
Command VFD forward
RunReverse
Command VFD reverse
ResetFault
Fault reset
OutA
OutputA
OutB
OutputB
Pt00DeviceIn
Network input to DeviceLogix engine
Pt01DeviceIn
Network input to DeviceLogix engine
Pt02DeviceIn
Network input to DeviceLogix engine
Pt03DeviceIn
Network input to DeviceLogix engine
Pt04DeviceIn
Network input to DeviceLogix engine
Pt05DeviceIn
Network input to DeviceLogix engine
Pt06DeviceIn
Network input to DeviceLogix engine
Pt07DeviceIn
Network input to DeviceLogix engine
Pt08DeviceIn
Network input to DeviceLogix engine
Pt09DeviceIn
Network input to DeviceLogix engine
Pt10DeviceIn
Network input to DeviceLogix engine
Pt11DeviceIn
Network input to DeviceLogix engine
Pt12DeviceIn
Network input to DeviceLogix engine
Pt13DeviceIn
Network input to DeviceLogix engine
Pt14DeviceIn
Network input to DeviceLogix engine
Pt15DeviceIn
Network input to DeviceLogix engine
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Adding an ArmorStart to RSLogix 5000
Chapter 5
Table 16 - Bulletin 280E/281E Produced Assembly Status Tag Explanation
Controller Input/Status Tags
Fault
TripPresent
Tag Description/Use
Communication Fault between PLC and Device (all 1's =
Fault, all 0's = Normal)
Fault exisits with unit
WarningPresent
Warning of potential fault
RunningForward
Motor commanded to run forward
RunningReverse
Motor commanded to run reverse
Ready
Control Power and 3-phase present
In0
Input 0
In1
Input 1
In2
Input 2
In3
Input 3
Hand
HOA is in Auto mode
DisconnectClosed
Disconnect is closed
Pt00DeviceOut
DeviceLogix network output status
Pt01DeviceOut
DeviceLogix network output status
Pt02DeviceOut
DeviceLogix network output status
Pt03DeviceOut
DeviceLogix network output status
Pt04DeviceOut
DeviceLogix network output status
Pt05DeviceOut
DeviceLogix network output status
Pt06DeviceOut
DeviceLogix network output status
Pt07DeviceOut
DeviceLogix network output status
Pt08DeviceOut
DeviceLogix network output status
Pt09DeviceOut
DeviceLogix network output status
Pt10DeviceOut
DeviceLogix network output status
Pt11DeviceOut
DeviceLogix network output status
Pt12DeviceOut
DeviceLogix network output status
Pt13DeviceOut
DeviceLogix network output status
Pt14DeviceOut
DeviceLogix network output status
LogicEnabled
DeviceLogix is enabled
ProducedWord0Param
Data reference by Parameter 13
ProducedWord1Param
Data reference by Parameter 14
ProducedWord2Param
Data reference by Parameter 15
ProducedWord3Param
Data reference by Parameter 16
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
103
Chapter 5
Adding an ArmorStart to RSLogix 5000
Notes:
104
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Chapter
6
Optional HOA Keypad Operation
Introduction
This chapter provides a basic understanding of the programming of the factoryinstalled optional built-in Hand/Off/Auto (HOA) keypad. The HOA keypad
can be programmed for maintained or momentary operation.
Figure 64 - Optional HOA Keypads
Available on Bulletin 280E
Keypad Description
Available on Bulletin 281E
Available on Bulletin 284E
The keys found on the optional HOA keypads are described below:
Table 17 - HOA Keypad – Key Description
HAND
The Hand key will initiate starter operation
AUTO
The Auto key allows for Start/Stop control via the communications
network
OFF
If the starter is running, pressing the OFF key will cause the starter to stop.
REV
The REV key selects reverse direction of the motor
FWD
The FWD key selects forward direction of the motor
DIR Arrow
The Dir arrow selects the direction of the motor, either forward or reverse.
JOG
When pressed, JOG will be initiated if no other control devices are sending
a stop command. Releasing the key will cause the drive to stop, using
selected stop mode.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
105
Chapter 6
Optional HOA Keypad Operation
Figure 65 - Bulletin 280E/281E Hand -Off-Auto Selector Keypad
The following state transition matrix summarizes the HOA Keypad when
Parameter 45 “Keypad Mode” is set to 1=momentary.
.
HAND STOP
HAND FWD
AUTO
Command motor OFF and
transition to “AUTO”
Ignore
Ignore
Command motor ON and
transition to “HAND FWD”
Ignore
Ignore
Ignore
Command motor OFF and
transition to “HAND STOP”
Command motor OFF and
transition to “HAND STOP”
The following state transition matrix summarizes the HOA Keypad
when Parameter 45 “Keypad Mode” is set to 0=maintained.
.
NO KEY PRESSED
HAND STOP
HAND FWD
AUTO
Ignore
Command motor OFF and
transition to “HAND STOP”
Ignore
Command motor OFF and
transition to “AUTO”
Ignore
Ignore
Command motor ON and
transition to “HAND FWD”
Ignore
Ignore
Ignore
Command motor OFF and
transition to “HAND STOP”
Command motor OFF and
transition to “HAND STOP”
Figure 66 - Bulletin 281E Hand-Off-Auto Selector Keypad with
Forward/Reverse Function
106
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Optional HOA Keypad Operation
Chapter 6
The following state transition matrix summarizes the HOA behavior when
Parameter 45 “Keypad Mode” is set to 1=momentary.
HAND STOP
HAND FWD
HAND REV
AUTO
Set FWD LED
Ignore
Ignore
Set FWD LED
Set REV LED
Ignore
Ignore
Set REV LED
Command motor OFF and transition to
“AUTO”
Ignore
Ignore
Ignore
If (FWD LED) transition to
“HAND FWD”
If (REV LED)
transition to “HAND REV”
Ignore
Ignore
Ignore
Ignore
Command motor OFF and transition to
“HAND STOP”
Command motor OFF and transition to
“HAND STOP”
Command motor OFF and transition to
“HAND STOP”
The following state transition matrix summarizes the HOA behavior when
Parameter 45 “Keypad Mode” is set to 0=maintained.
NO KEY
PRESSED
HAND STOP
HAND FWD
HAND REV
AUTO
Ignore
Command motor OFF and transition to
“HAND STOP”
Command motor OFF and transition to
“HAND STOP”
Ignore
Set FWD LED
Ignore
Ignore
Set FWD LED
Set REV LED
Ignore
Ignore
Set REV LED
Command motor OFF and transition to
“AUTO”
Ignore
Ignore
Ignore
If (FWD LED) transition to
“HAND FWD”
If (REV LED)
transition to “HAND REV”
Ignore
Ignore
Ignore
Ignore
Command motor OFF and transition to
“HAND STOP”
Command motor OFF and transition to
“HAND STOP”
Command motor OFF and transition to
“HAND STOP”
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
107
Chapter 6
Optional HOA Keypad Operation
Figure 67 - Bulletin 284E Hand-Off-Auto Selector Keypad with JOG and
Direction Arrow Functions
The following state transition matrix summarizes the Jog/HOA behavior when
Parameter 45 “Keypad Mode” is set to 1 = momentary.
No Key Pressed
108
HAND STOP
HAND FWD
HAND REV
JOG FWD
JOG REV
AUTO
If (FWD LED) Set REV LED
Else If (REV LED) Set FWD LED
If (FWD LED)
Set REV LED
Else If (REV LED)
Set FWD LED
If (FWD LED)
Set REV LED
Else If (REV LED)
Set FWD LED
Ignore
Ignore
Ignore
If (FWD LED) transition to JOG FWD
If (REV LED) transition to JOG REV
Ignore
Ignore
Ignore
Ignore
Ignore
Command motor OFF and transition to AUTO
Ignore
Ignore
Ignore
Ignore
Ignore
If (FWD LED) transition to
HAND FWD
Else If (REV LED) transition to
HAND REV
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Command motor
OFF and transition
to HAND STOP
Command motor
OFF and transition
to HAND STOP
Ignore
Ignore
Command motor
OFF and transition
to HAND STOP
Command motor
OFF and transition
to HAND STOP
Command motor
OFF and transition
to HAND STOP
Command motor
OFF and transition
to HAND STOP
Command motor
OFF and transition
to HAND STOP
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Optional HOA Keypad Operation
Chapter 6
The following state transition matrix summarizes the Jog/HOA behavior when
Parameter 45 “Keypad Mode” is set to 0 = maintained.
No Key Pressed
HAND STOP
HAND FWD
HAND REV
JOG FWD
JOG REV
AUTO
Ignore
Command motor
OFF and transition
to HAND STOP
Command motor
OFF and transition
to HAND STOP
Command motor
OFF and transition
to HAND STOP
Command motor
OFF and transition
to HAND STOP
Ignore
If (FWD LED) Set REV LED
Else If (REV LED) Set FWD LED
Ignore
Ignore
Ignore
Ignore
Ignore
If (FWD LED) transition to JOG FWD
If (REV LED) Transition to JOG REV
Ignore
Ignore
Ignore
Ignore
Ignore
Command motor OFF and Transition
to AUTO
Ignore
Ignore
Ignore
Ignore
Ignore
If (FWD LED) transition to
HAND FWD
If (REV LED) transition to HAND REV
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Command motor
OFF and transition
to HAND STOP
Command motor
OFF and transition
to HAND STOP
Command motor
OFF and transition
to HAND STOP
Command motor
OFF and transition
to HAND STOP
Command motor
OFF and transition
to HAND STOP
Note: In nearly all instances, if the processor detects multiple buttons are pressed
at the same time, the software interprets this as a “no button pressed” condition.
The only exception to this rule is if multiple buttons are pressed and one of them
is the “OFF” button. If the “OFF” button is pressed in combination with any
combination of other buttons, the processor will interpret this the same as if the
“OFF” button were pressed by itself.
Keypad and HOA Disable
Parameter 46 “Keypad Disable”, disables the “HAND”, “FWD”, “REV” and “Jog”
buttons on the HOA keypad. The “OFF” and “AUTO” buttons are always
enabled, even if Parameter 46 is set to “1=Disable”.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
109
Chapter 6
Optional HOA Keypad Operation
Notes:
110
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Chapter
7
Bulletin 280E/281E/284E
Programmable Parameters
Basic Setup Parameters
To configure the basic ArmorStart functionality refer to Table 18 below. These
are the minimum setup configurations required for Bulletin 280E/281E or
Bulletin 284E. There are additional capabilities and motor protection that are
not enabled or left at their default values.
Table 18 - Quick Parameter Setup
Bulletin 280E/281E
Bulletin 284E
131 Motor NP Volts
132 Motor NP Hertz
133 Motor OL Current
134 Minimum Freq
135 Maximum Freq
137 Stop Mode
138 Speed Reference
139 Accel Time 1
140 Decel Time 1
106 FLA Setting
107 Overload Class
108 OL Reset Level
Parameter Groups
Bulletin 284E
Units Only
Common to Bulletin 280E/281E and Bulletin 284E Units
Basic Status
1 Hdw Inputs
2 DeviceIn Data
3 DeviceOut Data
4 Trip Status
5 Starter Status
6 InternalLinkStat
7 Starter Command
22 Breaker Type
56 Base Enclosure
57 Base Options
58 Wiring Options
59 Starter Enclosure
60 Starter Options
61 Last Pr Fault
62 Warning Status
63 Base Trip
Produced Assembly
Config Group
13 Int00DeviceOut Cfg
14 Int01DeviceOut Cfg
15 Int02DeviceOut Cfg
16 Int03DeviceOut Cfg
Starter Protection
23 Pr FltResetMode
24 Pr Fault Enable
25 Pr Fault Reset
26 Str Net FltState
27 Str Net FltValue
28 Str Net IdlState
29 Str Net IdlValue
User I/O Config
30 Anti-bounce On Delay
31 Anti-bounce OFF Delay
32 In Sink/Source
33 OutA Pr FltState
34 OutA Pr FltValue
35 OutA Net FltState
36 OutA Net FltValue
37 OutA Net IdlState
38 OutA Net IdlValue
39 OutB Pr FltState
40 OutB Pr FltValue
41 OutB Net FltState
42 OutB Net FltValue
43 OutB Net IdlState
44 OutB Net IdlValue
Miscellaneous Config
8 Network Override
9 Comm Override
45 Keypad Mode
46 Keypad Disable
47 Set To Defaults
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Drive I/O Config
48 Drive Control
49 DrvIn Pr FltState
50 DrvIn Pr FltValue
51 DrvIn Net FltState
52 DrvIn Net FltValue
53 DrvIn Net IdlState
54 DrvIn Net IdlValue
55 High Speed Enable
111
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Bulletin280E/281E
Units Only
Starter Display
101 Phase A Current
102 Phase B Current
103 Phase C Current
104 Average Current
105 Therm Utilized
Starter Setup
106 FLA Setting
107 Overload Class
108 OL Reset Level
112
Bulletin 284E Units Only
Drive Display
Drive Setup
101 Output Freq
102 Commanded Freq
103 Output Current
104 Output Voltage
105 DC Bus Voltage
106 Drive Status
107 Fault 1 Code
108 Fault 2 Code
109 Fault 3 Code
110 Process Display
112 Control Source
113 Contrl In Status
114 Dig In Status
115 Comm Status
116 Control SW Ver
117 Drive Type
118 Elapsed Run Time
119 Testpoint Data
122 Output Power
123 Output Power Fctr
124 Drive Temp
125 Counter Status
126 Timer Status
128 StpLogic Status
129 Torque Current
131 Motor NP Volts
132 Motor NP Hertz
133 Motor OL Current
134 Minimum Freq
135 Maximum Freq
136 Start Source
137 Stop Mode
138 Speed Reference
139 Accel Time 1
140 Decel Time 1
141 Reset To Defaults
143 Motor OL Ret
Drive Advanced Setup
151 Digital In 1 Sel
152 Digital In 2 Sel
153 Digital In 3 Sel
154 Digital In 4 Sel
155 Relay Out Sel
156 Relay Out Level
167 Accel Time 2
168 Decel Time 2
169 Internal Freq
170 Preset Freq 0
171 Preset Freq 1
172 Preset Freq 2
173 Preset Freq 3
174 Preset Freq 4
175 Preset Freq 5
176 Preset Freq 6
177 Preset Freq 7
178 Jog Frequency
179 Jog Accel/Decel
180 DC Brake Time
181 DC Brake Level
182 DB Resistor Sel
183 S Curve %
184 Boost Select
185 Start Boost
186 Brake Voltage
187 Brake Frequency
188 Maximum Voltage
189 Current Limit 1
190 Motor OL Select
191 PWM Frequency
192 Auto Rstrt Tries
193 Auto Rstrt Delay
194 Start At PowerUp
195 Reverse Disable
196 Flying Start En
197 Compensation
198 SW Current Trip
199 Process Factor
200 Fault Clear
201 Program Lock
202 Testpoint Sel
205 Comm Loss Action
206 Comm Loss Time
214 Slip Hertz @ FLA
215 Process Time Lo
216 Process Time Hi
217 Bus Reg Mode
218 Current Limit 2
219 Skip Frequency
220 Skip Freq Band
221 Stall Fault Time
224 Var PWM Disable
225 Torque Perf Mode
226 Motor NP FLA
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
227 Autotune
228 IR Voltage Drop
229 Flux Current Ref
230 PID Trim Hi
231 PID Trim Lo
232 PID Ref Sel
233 PID Feedback Sel
234 PID Prop Gain
235 PID Integ Time
236 PID Diff Rate
237 PID Setpoint
238 PID Deadband
239 PID Preload
240 StpLogic 0
241 StpLogic 1
242 StpLogic 2
243 StpLogic 3
244 StpLogic 4
245 StpLogic 5
246 StpLogic 6
247 StpLogic 7
250 StpLogic Time 0
251 StpLogic Time 1
252 StpLogic Time 2
253 StpLogic Time 3
254 StpLogic Time 4
255 StpLogic Time 5
256 StpLogic Time 6
257 StpLogic Time 7
260 EM Brk OFF Delay
261 EM Brk On Delay
262 MOP Reset Sel
263 DB Threshold
264 Comm Write Mode
267 PID Invert Error
Bulletin 280E/281E/284E Programmable Parameters
ArmorStart EtherNet/IP
Parameters
Chapter 7
Introduction
This chapter describes each programmable parameter and its function.
Parameter Programming
Each Distributed Motor Controller type will have a common set of parameters
followed by a set of parameters that pertain to the individual starter type.
Parameters 1…100 are common to all ArmorStarts
IMPORTANT
Bulletin 280E/281E
Parameter setting changes take effect immediately unless otherwise noted in the
parameter listing. These changes maybe immediate even during the "running" status.
Basic Status Group
Hdw Inputs
This parameter provides status of
hardware inputs.
Parameter Number
1
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
15
Default Value
0
Bit
Function
3
2
1
0
—
—
—
X
In0
—
—
X
—
In1
—
X
—
—
In2
X
—
—
—
In3
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
113
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
DeviceIn Data
This parameter provides status of
network device inputs.
Parameter Number
2
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
65535
Default Value
0
Bit
15
114
14
13
12
11
10
9
8
7
6
4
3
2
Function
1
0
— — — — — — — — — — — — — — —
X
Pt00DeviceIn
— — — — — — — — — — — — — —
X
—
Pt01DeviceIn
— — — — — — — — — — — — —
X
— —
Pt02DeviceIn
— — — — — — — — — — — —
X
— — —
Pt03DeviceIn
— — — — — — — — — — —
X
— — — —
Pt04DeviceIn
— — — — — — — — — —
X
— — — — —
Pt05DeviceIn
— — — — — — — — —
X
— — — — — —
Pt06DeviceIn
— — — — — — — —
X
— — — — — — —
Pt07DeviceIn
— — — — — — —
X
— — — — — — — —
Pt08DeviceIn
— — — — — —
X
— — — — — — — — —
Pt09DeviceIn
— — — — —
X
— — — — — — — — — —
Pt10DeviceIn
— — — —
X
— — — — — — — — — — —
Pt11DeviceIn
— — —
X
— — — — — — — — — — — —
Pt12DeviceIn
— —
X
— — — — — — — — — — — — —
Pt13DeviceIn
—
X
— — — — — — — — — — — — — —
Pt14DeviceIn
X
— — — — — — — — — — — — — — —
Pt15DeviceIn
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
5
Bulletin 280E/281E/284E Programmable Parameters
DeviceOut Data
This parameter provides status of
network device outputs.
Parameter Number
3
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
32767
Default Value
0
Bit
15
0
— — — — — — — — — — — — — — —
X
Pt00DeviceOut
— — — — — — — — — — — — — —
X
—
Pt01DeviceOut
— — — — — — — — — — — — —
X
— —
Pt02DeviceOut
— — — — — — — — — — — —
X
— — —
Pt03DeviceOut
— — — — — — — — — — —
X
— — — —
Pt04DeviceOut
— — — — — — — — — —
X
— — — — —
Pt05DeviceOut
— — — — — — — — —
X
— — — — — —
Pt06DeviceOut
— — — — — — — —
X
— — — — — — —
Pt07DeviceOut
— — — — — — —
X
— — — — — — — —
Pt08DeviceOut
— — — — — —
X
— — — — — — — — —
Pt09DeviceOut
— — — — —
X
— — — — — — — — — —
Pt10DeviceOut
— — — —
X
— — — — — — — — — — —
Pt11DeviceOut
— — —
X
— — — — — — — — — — — —
Pt12DeviceOut
— —
X
— — — — — — — — — — — — —
Pt13DeviceOut
—
— — — — — — — — — — — — — —
Pt14DeviceOut
X
13
12
11
10
9
8
7
6
5
4
3
2
Function
1
X
14
Chapter 7
— — — — — — — — — — — — — — —
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Reserved
115
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Trip Status
Parameter Number
4
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
16383
Default Value
0
This parameter provides trip
identification.
Bit
15
116
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Function
— — — — — — — — — — — — — — —
X
Short Circuit
— — — — — — — — — — — — — —
X
—
Overload
— — — — — — — — — — — — —
X
— —
Phase Loss
— — — — — — — — — — — —
X
— — —
Reserved
— — — — — — — — — — —
X
— — — —
Reserved
— — — — — — — — — —
X
— — — — —
— — — — — — — — —
X
— — — — — —
— — — — — — — —
X
— — — — — — —
Over Temperature
— — — — — — —
X
— — — — — — — —
Phase Imbalance
— — — — — —
X
— — — — — — — — —
— — — — —
X
— — — — — — — — — —
Reserved
— — — —
X
— — — — — — — — — — —
Reserved
— — —
X
— — — — — — — — — — — —
EEprom
— —
X
— — — — — — — — — — — — —
HW Fault
X
— — — — — — — — — — — — — —
Reserved
X
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Control Power
I/O Fault
A3 Power Loss
Bulletin 280E/281E/284E Programmable Parameters
Starter Status
Parameter Number
5
This parameter provides the status of
the starter.
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
16383
Default Value
0
Bit
15
14
12
11
10
9
8
7
6
5
0
— — — — — — — — — — — — — — —
X
TripPresent
— — — — — — — — — — — — — —
X
—
WarningPresent
— — — — — — — — — — — — —
X
— —
RunningForward
— — — — — — — — — — — —
X
— — —
RunningReverse
— — — — — — — — — — —
X
— — — —
— — — — — — — — — —
X
— — — — —
— — — — — — — — —
X
— — — — — —
— — — — — — — —
X
— — — — — — —
— — — — — — —
X
— — — — — — — —
Reserved
— — — — — —
X
— — — — — — — — —
Reserved
— — — — —
X
— — — — — — — — — —
Reserved
— — — —
X
— — — — — — — — — — —
— — —
X
— — — — — — — — — — — —
— —
X
— — — — — — — — — — — — —
X
— — — — — — — — — — — — — —
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
4
3
2
Function
1
X
13
Chapter 7
Ready
Net Ctl Status
Reserved
At Reference
Keypad Hand Mode
HOA Status
DisconnectClosed
Reserved
117
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
InternalLinkStat
Parameter Number
6
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
31
Default Value
0
Status of the internal network
connections.
Bit
15 14 13 12 11 10
9
8
Function:
7
6
5
4
2
1
0
— — — — — — — — — — — — — — —
X
Explicit Connection
— — — — — — — — — — — — — —
X
—
I/O Connection
— — — — — — — — — — — — —
X
— —
— — — — — — — — — — — —
X
— — —
I/O Fault
— — — — — — — — — — —
X
— — — —
I/O Idle
X
— — — — —
Reserved
X
X
X
X
X
X
X
X
Starter Command
X
X
Explicit Fault
Parameter Number
The parameter provides the status of
the starter command.
7
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
255
Default Value
0
Bit
118
3
Function:
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
X
Run Fwd
—
—
—
—
—
—
X
—
Run Rev
—
—
—
—
—
X
—
—
Fault Reset
—
—
—
—
X
—
—
—
Reserved
—
—
—
X
—
—
—
—
Reserved
—
—
X
—
—
—
—
—
Reserved
—
X
—
—
—
—
—
—
OutA
X
—
—
—
—
—
—
—
OutB
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Breaker Type
Parameter Number
22
This parameter identifies the Bulletin
140M used in this product.
0 = 140M-D8N-C10
1 = 140M-D8N-C25
Access Rule
GET/SET
Data Type
BOOL
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
56
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
1
Default Value
1
Parameter Number
57
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
517
Default Value
0
Parameter Number
58
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
4
Default Value
0
Base Enclosure
Indicates the ArmorStart Base unit
enclosure rating.
Bit 0 = IP67
Bit 1 = Reserved
Bit 2…15 = Reserved
Base Options
Indicates the options for the
ArmorStart Base unit.
Bit 0 = Output Fuse
Bit 1 = Reserved
Bit 2 = CP Fuse Detect
Bits 3…7 = Reserved
Bit 8 = 10A Base
Bit 9 = 25A Base
Bit 10…15 = Reserved
Wiring Options
Bit 0 = Conduit
Bit 1 = Round Media
Bit 2 = 28xG Gland
Bits 3…15 = Reserved
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Chapter 7
119
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Starter Enclosure
Bit 0 = IP67
Bit 1 = Reserved
Bit 2 = Sil3/Cat4
Bit 3…15 = Reserved
Starter Options
Bit 0 = Full Keypad
Bit 1 = Reserved
Bit 2 = Source Brake
Bit 3 = Reserved
Bit 4 = Reserved
Bit 5 = Reserved
Bit 6 = Reserved
Bit 7 = Reserved
Bit 8 = Reserved
Bit 9…15 = Reserved
Parameter Number
59
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
4
Default Value
1
Parameter Number
60
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
66535
Default Value
0
Parameter Number
61
Access Rule
GET
Data Type
UINT
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
100
Default Value
0
Last PR Fault
0 = None
1 = Hardware Short Circuit
2 = Software Short Circuit
3 = Motor Overload
4 = Reserved
5 = Phase Loss
6…12 = Reserved
13 = Control Power Loss
14 = Control Power Fuse
15 = I/O Short
16 = Output Fuse
17 = Overtemp
18 = Reserved
19 = Phase Imbalance
20 = Reserved
21 = A3 Power Loss
22 = Internal Comm
23…26 = Reserved
27 = MCB EEPROM
28 = Base EEPROM
29 = Reserved
30 = Wrong Base
31 = Wrong CTs
32…100 = Reserved
120
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Warning Status
Parameter Number
62
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
65535
Default Value
0
This parameter warns the user of a
condition, without faulting.
Bit
15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
Chapter 7
Warning
— — — — — — — — — — — — — — —
X
Reserved
— — — — — — — — — — — — — —
X
—
Reserved
— — — — — — — — — — — — —
X
— —
Phase Loss
— — — — — — — — — — — —
X
— — —
Reserved
— — — — — — — — — — —
X
— — — —
Reserved
— — — — — — — — — —
X
— — — — —
Control Power
— — — — — — — — —
X
— — — — — —
I/O Warning
— — — — — — — —
X
— — — — — — —
— — — — — — —
X
— — — — — — — —
— — — — — —
X
— — — — — — — — —
— — — — —
X
— — — — — — — — — —
Reserved
— — — —
X
— — — — — — — — — — —
Reserved
— — —
X
— — — — — — — — — — — —
Reserved
— —
X
— — — — — — — — — — — — —
Hardware
X
— — — — — — — — — — — — — —
Reserved
X
Reserved
Phase Imbalance
A3 Power Loss
Base Trip
Parameter Number
63
The parameter determines the status
of the Base Module Trip Status.
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
65535
Default Value
0
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
121
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Bit
15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
Warning
0
— — — — — — — — — — — — — — —
X
EEPROM Fault
— — — — — — — — — — — — — —
X
—
Internal Comm
— — — — — — — — — — — — —
X
— —
Hardware Fault
— — — — — — — — — — — —
X
— — —
Control Module
X
— — — —
X
X
X
X
X
X
X
X
X
X
X
Reserved
Produced Assembly Config Group
122
Int00DeviceOut Cfg
Parameter Number
13
This parameter is used to specify
Int00DeviceOut of produced assembly
150 or 151.
Access Rule
GET/SET
Data Type
USINT
Group
Produced Assembly Config
Units
—
Minimum Value
0
Maximum Value
108
Default Value
1
Int01DeviceOut Cfg
Parameter Number
14
This parameter is used to specify
Int01DeviceOut of produced assembly
150 or 151.
Access Rule
GET/SET
Data Type
USINT
Group
Produced Assembly Config
Units
—
Minimum Value
0
Maximum Value
108
Default Value
4
Int02DeviceOut Cfg
Parameter Number
15
This parameter is used to specify
Int02DeviceOut of produced assembly
150 or 151.
Access Rule
GET/SET
Data Type
USINT
Group
Produced Assembly Config
Units
—
Minimum Value
0
Maximum Value
108
Default Value
5
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Int03DeviceOut Cfg
Parameter Number
16
This parameter is used to specify
Int03DeviceOut of produced assembly
150 or 151.
Access Rule
GET/SET
Data Type
USINT
Group
Produced Assembly Config
Units
—
Minimum Value
0
Maximum Value
108
Default Value
6
Parameter Number
23
Access Rule
GET/SET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Pr Fault Enable
Parameter Number
24
This parameter enables the Protection
Fault by setting the bit
to 1.
Access Rule
GET/SET
Data Type
WORD
Group
Starter Protection
Units
—
Minimum Value
12419
Maximum Value
13287
Default Value
12419
Starter Protection Group
Pr FltReset Mode
This parameter configures the
Protection Fault reset mode.
0 = Manual
1 = Automatic
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
123
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Bit
13
12
11
10
9
8
7
6
5
4
3
2
0
— — — — — — — — — — — — —
X
Short Circuit
—
Overload
— —
Phase Loss
— — —
Reserved
— — — —
Reserved
— — — — — — — — — — — —
— — — — — — — — — — —
— — — — — — — — — —
— — — — — — — — —
— — — — — — — —
— — — — — — —
— — — — — —
— — — — —
— — — —
— — —
—
X
— — — — —
— — — — — —
Control Power
I/O Fault
— — — — — — —
Over Temperature
— — — — — — — —
Phase Imbalance
— — — — — — — — —
A3 Power Loss
Reserved
— — — — — — — — — — —
Reserved
— — — — — — — — — — — —
EEprom
— — — — — — — — — — — — —
HW Fault
X
X
X
X
X
X
X
X
X
X
X
X
— — — — — — — — — —
— —
Pr Fault Reset
Parameter Number
25
Access Rule
GET/SET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Str Net FltState
Parameter Number
26
This parameter in conjunction with
Parameter 27 (Str Net FltValue)
defines how the starter will respond
when a fault occurs as determined by
Parameter 27. Allows Starter to hold
last state or go to FltValue on
NetFaults.
0 = Goto Fault Value
1 = Hold Last State
Access Rule
GET/SET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
This parameter resets the Protection
Fault on a transition of
0 > 1.
124
Function
1
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Str Net FltValue
Parameter Number
27
This parameter determines how the
starter will be commanded in the
event of a fault. State the Starter will
go to on a Net Flt if Parameter 26 (Str
Net FltState) = 0 (Goto Fault Value).
0 = OFF
1 = ON
Access Rule
GET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Str Net IdlState
Parameter Number
28
This parameter in conjunction with
Parameter 29 (Str Net IdlValue)
defines how the starter will respond
when a network is idle as determined
by Parameter 29.
0 = Goto Idle Value
1 = Hold Last State
Access Rule
GET/SET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Str Net IdlValue
Parameter Number
29
This parameter determines the state
that starter assumes when the
network is idle and Parameter 28 (Str
Net IdlState) is set to “0”.
0 = OFF
1 = ON
Access Rule
GET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Anti-bounce On Delay
Parameter Number
30
This parameter allows the installer to
program a time duration before an
input is reported “ON” (Anti-bounce).
Access Rule
GET/SET
Data Type
UINT
Group
User I/O Config.
Units
ms
Minimum Value
0
Maximum Value
65
Default Value
0
User I/O Configuration Group
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
125
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Anti-bounce OFF Delay
Parameter Number
31
This parameter allows the installer to
program a time duration before an
input is reported “OFF” (Anti-bounce).
Access Rule
GET/SET
Data Type
UINT
Group
User I/O Config.
Units
ms
Minimum Value
0
Maximum Value
65
Default Value
0
In Sink/Source
Parameter Number
32
This parameter allows the installer to
program the inputs to be sink or
source.
0 = Sink
1 = Source
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutA Pr FltState
Parameter Number
33
This parameter in conjunction with
Parameter 34 (OutA Pr FltValue)
defines how Output A will respond
when a protection trip occurs.
0 = Goto Pr FltValue
1 = Ignore Pr Flt
When set to “1”, Output A continues to
operate as command via the network.
When set to “0”, Output A will open or
close as determined by setting in
Parameter 34.
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
34
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutA Pr FltValue
This parameter determines the state
the Output A assumes when a trip
occurs and Parameter 33 (OutA Pr
FltState) is set to “0”.
0 = Open
1 = Close
126
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
OutA Net FltState
Parameter Number
35
This parameter in conjunction with
Parameter 36 (OutA Net FltValue)
defines how Output A will respond
when a network fault occurs.
0 = Goto Net FltValue
1 = Hold Last State
When set to “1”, Output A will hold
state prior to trip occurrence. When set
to “0”, Output A will open or close as
determined by setting in Parameter
36.
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
36
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutA Net IdlState
Parameter Number
37
This parameter in conjunction with
Parameter 38 (OutA Net IdlValue)
defines how Output A will respond
when the network is idle.
0 = Goto Net IdlValue
1 = Hold Last State
When set to “0”, Output A will open or
close as determined by the setting in
Parameter 38.
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
38
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutA Net FltValue
This parameter determines the state
that Output A assumes when a
network fault occurs and Parameter
35 (OutA Net FltState) is set to “0”.
0 = Open
1 = Close
OutA Net IdlValue
This parameter determines the state
that Output A assumes when the
network is idle and Parameter 37
(OutA Net IdlState) is set to “0”.
0 = Open
1 = Close
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Chapter 7
127
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
OutB Pr FltState
Parameter Number
39
This parameter in conjunction with
Parameter 40 (OutB Pr FltValue)
defines how Output B will respond
when a protection trip occurs.
0 = Goto PrFlt Value
1 = Ignore PrFlt
When set to “1”, Output B continues to
operate as command via the network.
When set to “0”, Output B will open or
close as determined by setting in
Parameter 40.
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutB Pr FltValue
Parameter Number
40
This parameter determines the state
the Out B assumes when a protection
trip occurs and Parameter 39 (OutB Pr
FltState) is set to “0”.
0 = Open
1 = Close
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutB Net FltState
Parameter Number
41
This parameter in conjunction with
Parameter 42 (OutB Net FltValue)
defines how Output B will respond
when a network fault occurs.
0 = Goto Idle Value
1 = Hold Last State
When set to “1”, Output B will hold
state prior to trip occurrence. When
set to “0”, Output B will open or close
as determined by setting in Parameter
42.
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
42
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutB Net FltValue
This parameter determines the state
that Output B assumes when a
network fault occurs and Parameter
41 (OutB Net FltState) is set to “0”.
0 = Open
1 = Close
128
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
OutB Net IdlState
Parameter Number
43
This parameter in conjunction with
Parameter 44 (OutB Net IdlValue)
defines how Output B will respond
when the network is idle.
0 = Goto PrFlt Value
1 = Ignore PrFlt
When set to “0”, Output B will open or
close as determined by the setting in
Parameter 44.
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
44
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutB Net IdlValue
This parameter determines the state
that Output B assumes when the
network is idle and Parameter 43
(OutB Net IdlState) is set to “0”.
0 = Open
1 = Close
Chapter 7
Miscellaneous Configuration Group
Network Override
Parameter Number
8
Access Rule
GET/SET
Data Type
BOOL
Group
Misc. Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Comm Override
Parameter Number
9
This parameter allows for local logic to
override the absence of an I/O
connection.
0 = Disable
1 = Enable
Access Rule
GET/SET
Data Type
BOOL
Group
Misc. Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
This parameter allows for the local
logic to override a Network fault.
0 = Disable
1 = Enable
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
129
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Keypad Mode
Parameter Number
45
Access Rule
GET/SET
Data Type
BOOL
Group
Misc. Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
46
Access Rule
GET/SET
Data Type
BOOL
Group
Misc. Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Set to Defaults
Parameter Number
47
This parameter if set to “1” will set the
device to the factory defaults (but will
not cause the ArmorStart to reboot).
0 = No Operation
1 = Set to Defaults
Access Rule
GET/SET
Data Type
BOOL
Group
Misc. Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
This parameter selects if the keypad
operation is maintained or
momentary.
0 = Maintained
1 = Momentary
Keypad Disable
This parameter disables all keypad
function except for the “OFF” and
“RESET” buttons.
0 = Not Disabled
1 = Disabled
Starter Display Group (Bulletin 280E/281E only)
130
Phase A Current
Parameter Number
101
This parameter provides the current of
Phase A measured n increments of
1/10th of an ampere.
Access Rule
GET/SET
Data Type
INT
Group
Starter Display
Units
xx.x Amps
Minimum Value
0
Maximum Value
32767
Default Value
0
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Phase B Current
Parameter Number
102
This parameter provides the current of
Phase B measured in increments of
1/10th of an ampere.
Access Rule
GET/SET
Data Type
INT
Group
Starter Display
Units
xx.x Amps
Minimum Value
0
Maximum Value
32767
Default Value
0
Phase C Current
Parameter Number
103
This parameter provides the current of
Phase C measured in increments of
1/10th of an ampere.
Access Rule
GET/SET
Data Type
INT
Group
Starter Display
Units
xx.x Amps
Minimum Value
0
Maximum Value
32767
Default Value
0
Parameter Number
104
Access Rule
GET/SET
Data Type
INT
Group
Starter Display
Units
xx.x Amps
Minimum Value
0
Maximum Value
32767
Default Value
0
Parameter Number
105
Access Rule
GET/SET
Data Type
USINT
Group
Starter Display
Units
% FLA
Minimum Value
0
Maximum Value
100
Default Value
0
Average Current
This parameter provides the average
current measured in increments of
1/10th of an ampere.
Therm Utilized
This parameter displays the
% Thermal Capacity used.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Chapter 7
131
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Starter Setup Group (Bulletin 280E/281E only)
FLA Setting
Parameter Number
106
The motor’s full load current rating is
programmed in this parameter.
Access Rule
GET/SET
Data Type
INT
Group
Starter Setup
Units
xx.x Amps
Minimum Value
See Table 19.
Maximum Value
See Table 19.
Default Value
See Table 19.
Table 19 - FLA Setting Ranges and Default Values (with indicated setting precision)
FLA Current Range (A)
132
Default Value
Minimum Value
Maximum Value
0.24
1.2
0.24
0.5
2.5
0.5
1.1
5.5
1.1
3.2
16.0
3.2
Overload Class
Parameter Number
107
This parameter allows the installer to
select the overload class.
1 = Overload Class 10
2 = Overload Class 15
3 = Overload Class 20
Access Rule
GET/SET
Data Type
USINT
Group
Starter Setup
Units
xx.x Amps
Minimum Value
1
Maximum Value
3
Default Value
1
OL Reset Level
Parameter Number
108
This parameter allows the installer
select the % Thermal Capacity which
an overload can be cleared.
Access Rule
GET/SET
Data Type
USINT
Group
Starter Setup
Units
% FLA
Minimum Value
0
Maximum Value
100
Default Value
75
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Bulletin 284E
Chapter 7
Basic Status Group
Hdw Inputs
This parameter provides status of
hardware inputs.
Parameter Number
1
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
15
Default Value
0
Bit
Function
3
2
1
0
—
—
—
X
In0
—
—
X
—
In1
—
X
—
—
In2
X
—
—
—
In3
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
133
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
DeviceIn Data
This parameter provides status of
network device inputs.
Parameter Number
2
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
65535
Default Value
0
Bit
15
134
14
13
12
11
10
9
8
7
6
4
3
2
Function
1
0
— — — — — — — — — — — — — — —
X
Pt00DeviceIn
— — — — — — — — — — — — — —
X
—
Pt01DeviceIn
— — — — — — — — — — — — —
X
— —
Pt02DeviceIn
— — — — — — — — — — — —
X
— — —
Pt03DeviceIn
— — — — — — — — — — —
X
— — — —
Pt04DeviceIn
— — — — — — — — — —
X
— — — — —
Pt05DeviceIn
— — — — — — — — —
X
— — — — — —
Pt06DeviceIn
— — — — — — — —
X
— — — — — — —
Pt07DeviceIn
— — — — — — —
X
— — — — — — — —
Pt08DeviceIn
— — — — — —
X
— — — — — — — — —
Pt09DeviceIn
— — — — —
X
— — — — — — — — — —
Pt10DeviceIn
— — — —
X
— — — — — — — — — — —
Pt11DeviceIn
— — —
X
— — — — — — — — — — — —
Pt12DeviceIn
— —
X
— — — — — — — — — — — — —
Pt13DeviceIn
—
X
— — — — — — — — — — — — — —
Pt14DeviceIn
X
— — — — — — — — — — — — — — —
Pt15DeviceIn
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
5
Bulletin 280E/281E/284E Programmable Parameters
DeviceOut Data
This parameter provides status of
network device outputs.
Parameter Number
3
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
32767
Default Value
0
Bit
15
0
— — — — — — — — — — — — — — —
X
Pt00DeviceOut
— — — — — — — — — — — — — —
X
—
Pt01DeviceOut
— — — — — — — — — — — — —
X
— —
Pt02DeviceOut
— — — — — — — — — — — —
X
— — —
Pt03DeviceOut
— — — — — — — — — — —
X
— — — —
Pt04DeviceOut
— — — — — — — — — —
X
— — — — —
Pt05DeviceOut
— — — — — — — — —
X
— — — — — —
Pt06DeviceOut
— — — — — — — —
X
— — — — — — —
Pt07DeviceOut
— — — — — — —
X
— — — — — — — —
Pt08DeviceOut
— — — — — —
X
— — — — — — — — —
Pt09DeviceOut
— — — — —
X
— — — — — — — — — —
Pt10DeviceOut
— — — —
X
— — — — — — — — — — —
Pt11DeviceOut
— — —
X
— — — — — — — — — — — —
Pt12DeviceOut
— —
X
— — — — — — — — — — — — —
Pt13DeviceOut
—
— — — — — — — — — — — — — —
Pt14DeviceOut
X
13
12
11
10
9
8
7
6
5
4
3
2
Function
1
X
14
Chapter 7
— — — — — — — — — — — — — — —
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Reserved
135
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Trip Status
Parameter Number
4
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
65535
Default Value
0
This parameter provides trip
identification.
Bit
15 14 13
12
11 10
9
8
7
6
5
4
3
0
— — — — — — — — — — — — — — —
X
Short Circuit
— — — — — — — — — — — — — —
—
Overload
X
X
— —
Phase Short
— — —
Ground Fault
— — — — — — — — — — — —
X
— — — — — — — — — — —
X
— — — —
— — — — — — — — — —
— — — — —
— — — — — — — — —
X
X
— — — — — —
Control Power
I/O Fault
X
— — — — — — —
X
— — — — — — — —
Over Current
— — — — — —
— — — — — — — — —
A3 Power Loss
— — — — — — — — — —
Internal Comm
X
X
— — — — — — —
Stall
— — — — — — — —
— — — — —
X
— — —
X
— — — — — — — — — — — —
EEprom
— —
— — — — — — — — — — — — —
HW Fault
X
X
X
— — — — — — — — — — —
Over Temperature
— — — —
—
136
Function
1
— — — — — — — — — — — — —
2
— — — — — — — — — — — — — —
— — — — — — — — — — — — — — —
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
DC Bus Fault
Restart Retries
Misc. Fault
Bulletin 280E/281E/284E Programmable Parameters
Starter Status
Parameter Number
5
This parameter provides the status of
the starter.
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
65535
Default Value
0
Bit
15
14 13 12 11
10
9
8
7
6
5
4
3
2
Chapter 7
Function
1
0
— — — — — — — — — — — — — — —
X
TripPresent
— — — — — — — — — — — — — —
X
—
WarningPresent
— — — — — — — — — — — — —
X
— —
RunningForward
— — — — — — — — — — — —
— — —
RunningReverse
— — — — — — — — — — —
X
X
— — — —
Ready
— — — — — — — — — —
X
— — — — —
Net Ctl Status
— — — — — — — — —
X
— — — — — —
Net Ref Status
— — — — — — — —
— — — — — — —
At Reference
— — — — — — —
X
X
— — — — — — — —
DrvOpto1
— — — — — —
X
— — — — — — — — —
DrvOpto2
— — — — —
— — — — — — — — — —
Keypad Jog
— — — — — — — — — — —
Keypad Hand
— — — —
— — —
X
X
X
— — — — — — — — — — — —
— —
X
—
— — — — — — — — — — — — — —
Contactor 2 ➊
— — — — — — — — — — — — — — —
Contactor 2 ➋
X
X
— — — — — — — — — — — — —
HOA Status
Disconnect Closed
➊ Refers to source brake contactor status
➋ Refers to output contactor status
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
137
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
InternalLinkStat
Parameter Number
6
This parameter provides status of the
internal network connections.
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
31
Default Value
0
Bit
15 14 13 12 11 10
9
8
Function:
7
6
5
4
2
1
0
— — — — — — — — — — — — — — —
X
Explicit Connection
— — — — — — — — — — — — — —
X
—
I/O Connection
— — — — — — — — — — — — —
X
— —
— — — — — — — — — — — —
X
— — —
I/O Fault
— — — — — — — — — — —
X
— — — —
I/O Idle
X
— — — — —
Reserved
X
X
X
X
X
X
X
X
Starter Command
The parameter provides the status of
the starter command.
X
X
Explicit Fault
Parameter Number
7
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
255
Default Value
0
Bit
138
3
Function:
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
X
Run Fwd
—
—
—
—
—
—
X
—
Run Rev
—
—
—
—
—
X
—
—
Fault Reset
—
—
—
—
X
—
—
—
Jog Fwd
—
—
—
X
—
—
—
—
Jog Rev
—
—
X
—
—
—
—
—
Reserved
—
X
—
—
—
—
—
—
OutA
X
—
—
—
—
—
—
—
OutB
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Breaker Type
Parameter Number
22
This parameter identifies the Bulletin
140M used in this product.
0 = 140M-D8N-C10
1 = 140M-D8N-C25
Access Rule
GET
Data Type
BOOL
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
1
Default Value
—
Parameter Number
56
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
—
Default Value
0
Parameter Number
57
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
—
Default Value
0
Parameter Number
58
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
—
Default Value
0
Base Enclosure
Indicates the ArmorStart Base unit
enclosure rating.
Bit 0 = IP67
Bit 1 = Nema 4X
Bit 2…15 = Reserved
Base Options
Indicates the options for the
ArmorStart Base unit.
Bit 0 = Output Fuse
Bit 1 = Reserved
Bit 2 = CP Fuse Detect
Bits 3…7 = Reserved
Bit 8 = 10A Base
Bit 9 = 25A Base
Bit 10…15 = Reserved
Wiring Options
Bit 0 = Conduit
Bit 1 = Round Media
Bit 2 = 28xG Gland
Bits 3…15 = Reserved
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Chapter 7
139
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Starter Enclosure
Bit 0 = IP67
Bit 1 = Reserved
Bit 2 = Sil3/Cat4
Bit 3…15 = Reserved
Starter Options
Bit 0 = Full Keypad
Bit 1 = Reserved
Bit 2 = Source Brake
Bit 3 = Reserved
Bit 4 = Dynamic Brake
Bit 5 = Output Contactor
Bit 6 = EMI Filter
Bit 7 = Reserved
Bit 8 = Fused DynBrake
Bit 9…15 = Reserved
140
Parameter Number
59
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
—
Default Value
0
Parameter Number
60
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
66535
Default Value
0
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Last PR Fault
1 = Hdw Short Ckt
2 = Reserved
3 = Motor Overload (PF Fault Code 7)
4 = Drive Overload (PF Fault Code 64)
5 = Phase U to Gnd (PF Fault Code 38)
6 = Phase V to Gnd (PF Fault Code 39)
7 = Phase W to Gnd (PF Fault Code 40)
8 = Phase UV Short (PF4 Fault Code 41)
9 = Phase UW Short (PF Fault Code 42)
10 = Phase VW Short (PF Fault Code 43)
11 = Ground Fault (PF Fault Code 13)
12 = Stall (PF Fault Code 6)
13 = Control Pwr Loss
14 = Control Pwr Fuse
15 = Input Short
16 = Output Fuse
17 = Over Temp
18 = Heatsink OvrTmp (PF Fault Code 8)
19 = HW OverCurrent (PF Fault Code 12)
20 = SW OverCurrent (PF Fault Code 63)
21 = A3 Power Loss
22 = Internal Comm
23 = Drive Comm Loss (PF Fault Code 81)
24 = Power Loss (PF Fault Code 3)
25 = Under Voltage (PF Fault Code 4)
26 = Over Voltage (PF Fault Code 5)
27 = MCB EEPROM
28 = Base EEPROM
29 = Drive EEPROM (PF Fault Code 100)
30 = Wrong Base
31 = Fan RPM
32 = Power Unit (PF Fault Code 70)
33 = Drive I/O Brd (PF Fault Code 122)
34 = Restart Retries (PF Fault Code 33)
35 = Drive Aux In Flt (PF Fault Code 2)
36 = Analog Input (PF Fault Code 29)
37 = Drv Param Reset (PF Fault Code 48)
38 = SCV Autotune (PF Fault Code 80)
39 = Source Brake
40 = Reserved
41 = DB1 Comm
42 = DB1 Fault
43 = DB Switch Short
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Parameter Number
61
Access Rule
GET
Data Type
UINT
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
43
Default Value
0
141
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Warning Status
Parameter Number
62
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
65535
Default Value
0
This parameter warns the user of a
condition, without faulting.
Bit
15 14 13 12 11 10
142
9
8
7
6
5
4
3
2
1
0
Warning
— — — — — — — — — — — — — — —
X
Reserved
— — — — — — — — — — — — — —
X
—
Reserved
— — — — — — — — — — — — —
X
— —
Phase Loss
— — — — — — — — — — — —
X
— — —
Reserved
— — — — — — — — — — —
X
— — — —
Reserved
— — — — — — — — — —
X
— — — — —
Control Power
— — — — — — — — —
X
— — — — — —
I/O Warning
— — — — — — — —
X
— — — — — — —
— — — — — — —
X
— — — — — — — —
— — — — — —
X
— — — — — — — — —
— — — — —
X
— — — — — — — — — —
Reserved
— — — —
X
— — — — — — — — — — —
Reserved
— — —
X
— — — — — — — — — — — —
Reserved
— —
X
— — — — — — — — — — — — —
Hardware
—
X
— — — — — — — — — — — — — —
Reserved
X
— — — — — — — — — — — — — — —
Reserved
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Reserved
Phase Imbalance
A3 Power Loss
Bulletin 280E/281E/284E Programmable Parameters
Base Trip
Parameter Number
63
Access Rule
GET
Data Type
WORD
Group
Basic Status
Units
—
Minimum Value
0
Maximum Value
65535
Default Value
0
The parameter provides the Base
Module Trip Status.
Bit
15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
Chapter 7
Warning
0
— — — — — — — — — — — — — — —
X
EEPROM Fault
— — — — — — — — — — — — — —
X
—
Internal Comm
— — — — — — — — — — — — —
X
— —
Hardware Fault
— — — — — — — — — — — —
X
— — —
Control Module
X
— — — —
X
X
X
X
X
X
X
X
X
X
X
Reserved
Produced Assembly Config Group
Int00DeviceOut Cfg
Parameter Number
13
This parameter is used to specify
Int00DeviceOut of produced assembly
150 or 151.
Access Rule
GET/SET
Data Type
USINT
Group
Produced Assembly Config
Units
—
Minimum Value
0
Maximum Value
263
Default Value
1
Int01DeviceOut Cfg
Parameter Number
14
This parameter is used to specify
Int01DeviceOut of produced assembly
150 or 151.
Access Rule
GET/SET
Data Type
USINT
Group
Produced Assembly Config
Units
—
Minimum Value
0
Maximum Value
263
Default Value
4
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
143
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Int02DeviceOut Cfg
Parameter Number
15
This parameter is used to specify
Int02DeviceOut of produced assembly
150 or 151.
Access Rule
GET/SET
Data Type
USINT
Group
Produced Assembly Config
Units
—
Minimum Value
0
Maximum Value
263
Default Value
5
Int03DeviceOut Cfg
Parameter Number
16
This parameter is used to specify
Int03DeviceOut of produced assembly
150 or 151.
Access Rule
GET/SET
Data Type
USINT
Group
Produced Assembly Config
Units
—
Minimum Value
0
Maximum Value
263
Default Value
6
Pr FltResetMode
Parameter Number
23
This parameter is the Protection Fault
reset mode.
0 = Manual
1 = Automatic
Access Rule
GET/SET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Starter Protection Group
144
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Pr Fault Enable
Parameter Number
24
This parameter enables the Protection
Fault by setting the bit
to 1.
Access Rule
GET/SET
Data Type
WORD
Group
Starter Protection
Units
—
Minimum Value
64927
Maximum Value
65535
Default Value
64927
Bit
15
14
13
12
11
10
9
0
— — — — — — — — — — — — — — —
X
Short Circuit
— — — — — — — — — — — — — —
X
—
Overload
— — — — — — — — — — — — —
X
— —
Phase Loss
— — — — — — — — — — — —
X
— — —
— — — — — — — — — — —
X
— — — —
— — — — — — — — — —
X
— — — — —
— — — — — — — — —
X
— — — — — —
— — — — — — — —
X
— — — — — — —
— — — — — — —
X
— — — — — — — —
— — — — — —
X
— — — — — — — — —
A3 Power Loss
— — — — —
X
— — — — — — — — — —
Internal Comm
— — — —
X
— — — — — — — — — — —
— — —
X
— — — — — — — — — — — —
EEprom
— —
X
— — — — — — — — — — — — —
HW Fault
—
X
— — — — — — — — — — — — — —
X
— — — — — — — — — — — — — — —
This parameter resets the Protection
Fault on a transition of
0 > 1.
7
6
5
4
3
2
Function
1
Pr Fault Reset
8
Ground Fault
Stall
Control Power
I/O Fault
Over Temperature
Over Current
DC Bus Fault
Restart Retries
Misc. Fault
Parameter Number
25
Access Rule
GET/SET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
145
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Str Net FltState
Parameter Number
26
This parameter in conjunction with
Parameter 27 (Str Net FltValue)
defines how the starter will respond
when a fault occurs as determined by
Parameter 27.
0 = Goto Fault Value
1 = Hold Last State
Allows Starter to hold last state or go
to FltValue on NetFaults.
Access Rule
GET/SET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
27
Access Rule
GET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Str Net IdlState
Parameter Number
28
This parameter in conjunction with
Parameter 29 (Str Net IdlValue)
defines how the starter will respond
when a network is idle as determined
by Parameter 29.
0 = Goto Idle Value
1 = Hold Last State
Access Rule
GET/SET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Str Net IdlValue
Parameter Number
29
This parameter determines the state
that starter assumes when the
network is idle and Parameter 28 (Str
Net IdlState) is set to “0”.
0 = OFF
1 = ON
Access Rule
GET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Str Net FltValue
This parameter determines how the
starter will be commanded in the
event of a fault. State the Starter
will go to on a Net Flt if Parameter
26 (Str Net FltState) = 0 (Goto Fault
Value).
0 = OFF
1 = ON
146
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
User I/O Configuration Group
Anti-bounce On Delay
Parameter Number
30
This parameter allows the installer to
program a time duration before being
reported “ON” (Anti-bouce).
Access Rule
GET/SET
Data Type
UINT
Group
User I/O Config.
Units
ms
Minimum Value
0
Maximum Value
65
Default Value
0
Anti-bounce OFF Delay
Parameter Number
31
This parameter allows the installer to
program a time duration before being
reported “OFF” (Anti-bouce).
Access Rule
GET/SET
Data Type
UINT
Group
User I/O Config.
Units
ms
Minimum Value
0
Maximum Value
65
Default Value
0
In Sink/Source
Parameter Number
32
This parameter allows the installer to
program the inputs to be sink or
source.
0 = Sink
1 = Source
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutA Pr FltState
Parameter Number
33
This parameter in conjunction with
Parameter 34 (OutA Pr FltValue)
defines how Output A will respond
when a trip occurs.
0 = Goto PrFlt Value
1 = Ignore PrFlt
When set to “1”, Output A continues to
operate as command via the network.
When set to “0”, Output A will open or
close as determined by the setting in
Parameter 34.
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
147
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Parameter Number
34
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutA Net FltState
Parameter Number
35
This parameter in conjunction with
Parameter 36 (OutA Net FltValue)
defines how Output A will respond
when a network fault occurs.
0 = Goto Net FltValue
1 = Hold Last State
When set to “1”, Output A will hold
state prior to trip occurrence. When set
to “0”, Output A will open or close as
determined by the setting in
Parameter 36.
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
36
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutA Net IdlState
Parameter Number
37
This parameter in conjunction with
Parameter 38 (OutA Net IdlValue)
defines how Output A will respond
when the network is idle.
0 = Goto Net IdlValue
1 = Hold Last State
When set to “0”, Output A will open or
close as determined by the setting in
Parameter 38.
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutA Pr FltValue
This parameter determines the state
the Output A assumes when a trip
occurs and Parameter 33 (OutA Pr
FltState) is set to “0”.
0 = Open
1 = Close
OutA Net FltValue
This parameter determines the state
that Output A assumes when a
network fault occurs and Parameter
35 (OutA Net FltState) is set to “0”.
0 = Open
1 = Close
148
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Parameter Number
38
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutB Pr FltState
Parameter Number
39
This parameter in conjunction with
Parameter 40 (OutB Pr FltValue)
defines how Output B will respond
when a protection trip occurs.
0 = Goto PrFlt Value
1 = Ignore PrFlt
When set to “1”, Output B continues to
operate as command via the network.
When set to “0”, Output B will open or
close as determined by setting in
Parameter 40.
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutB Pr FltValue
Parameter Number
40
This parameter determines the state
the Out B assumes when a protection
trip occurs and Parameter 39 (OutB Pr
FltState) is set to “0”.
0 = Open
1 = Close
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutB Net FltState
Parameter Number
41
This parameter in conjunction with
Parameter 42 (OutB Net FltValue)
defines how Output B will respond
when a network fault occurs.
0 = Goto Idle Value
1 = Hold Last State
When set to “1”, Output B will hold
state prior to trip occurrence. When
set to “0”, Output B will open or close
as determined by setting in Parameter
42.
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutA Net IdlValue
This parameter determines the state
that Output A assumes when the
network is idle and Parameter 37
(OutA Net IdlState) is set to “0”.
0 = Open
1 = Close
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Chapter 7
149
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
OutB Net FltValue
Parameter Number
42
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
OutB Net IdlState
Parameter Number
43
This parameter in conjunction with
Parameter 44 (OutB Net IdlValue)
defines how Output B will respond
when the network is idle.
0 = Goto PrFlt Value
1 = Ignore PrFlt
When set to “0”, Output B will open or
close as determined by the setting in
Parameter 44.
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
44
Access Rule
GET/SET
Data Type
BOOL
Group
User I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
This parameter determines the state
that Output B assumes when a
network fault occurs and Parameter
41 (OutB Net FltState) is set to “0”.
0 = Open
1 = Close
OutB Net IdlValue
This parameter determines the state
that Output B assumes when the
network is idle and Parameter 43
(OutB Net IdlState) is set to “0”.
0 = Open
1 = Close
Miscellaneous Configuration Group
Network Override
This parameter allows for the local
logic to override a Network fault.
0 = Disable
1 = Enable
150
Parameter Number
8
Access Rule
GET/SET
Data Type
BOOL
Group
Misc. Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Comm Override
Parameter Number
9
This parameter allows for local logic to
override the absence of an I/O
connection.
0 = Disable
1 = Enable
Access Rule
GET/SET
Data Type
BOOL
Group
Misc. Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
45
Access Rule
GET/SET
Data Type
BOOL
Group
Misc. Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
46
Access Rule
GET/SET
Data Type
BOOL
Group
Misc. Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Set to Defaults
Parameter Number
47
This parameter if set to “1” will set the
device to the factory defaults (but will
not cause the ArmorStart to reboot).
0 = No Operation
1 = Set to Defaults
Access Rule
GET/SET
Data Type
BOOL
Group
Misc. Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Keypad Mode
This parameter selects if the keypad
operation is maintained or
momentary.
0 = Maintained
1 = Momentary
Keypad Disable
This parameter disables all keypad
function except for the “OFF” and
“RESET” buttons.
0 = Not Disabled
1 = Disabled
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Chapter 7
151
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Drive I/O Configuration Group (Bulletin 284E only)
Drive Control
Parameter Number
48
This parameter provides the status of
drive parameters.
Access Rule
GET
Data Type
WORD
Group
Drive I/O Config.
Units
—
Minimum Value
0
Maximum Value
4095
Default Value
0
Bit
152
Function
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
—
—
—
X
Accel 1 En
—
—
—
—
—
—
—
—
—
—
X
—
Accel 2 En
—
—
—
—
—
—
—
—
—
X
—
—
Decel 1 En
—
—
—
—
—
—
—
—
X
—
—
—
Decel 2 En
—
—
—
—
—
—
—
X
—
—
—
—
Freq Sel 0
—
—
—
—
—
—
X
—
—
—
—
—
Freq Sel 1
—
—
—
—
—
X
—
—
—
—
—
—
Freq Sel 2
—
—
—
—
X
—
—
—
—
—
—
—
Reserved
—
—
—
X
—
—
—
—
—
—
—
—
Drv In 1
—
—
X
—
—
—
—
—
—
—
—
—
Drv In 2
—
X
—
—
—
—
—
—
—
—
—
—
Drv In 3
X
—
—
—
—
—
—
—
—
—
—
—
Drv In 4
DrvIn Pr FltState
Parameter Number
49
This parameter, in conjunction with
Parameter 50 (DrvIn Pr FltValue),
defines how the Drive Digital
Inputs 1…4 will respond when a
protection trip occurs. When set to “1”,
Drive Digital Inputs 1…4 continue to
operate as command via the network.
When set to “0”, Drive Digital Inputs
1…4 will open or close as
determined by setting in Parameter
50.
0 = Go to PrFlt Value
1 = Ignore PrFlt
Access Rule
GET/SET
Data Type
BOOL
Group
Drive I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
DrvIn Pr FltValue
Parameter Number
50
This parameter determines the state
of Drive Digital Inputs 1…4, assumes
when a trip occurs and Parameter 49
(DrvIn Pr FltState) is set to “0”.
0 = Open
1 = Close
Access Rule
GET/SET
Data Type
BOOL
Group
Drive I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
DrvIn Net FltState
Parameter Number
51
This parameter, in conjunction with
Parameter 52 (DrvIn Net FItValue),
defines how the Drive Digital
Inputs 1…4 will respond when a
network fault occurs. When set to “1”,
Drive Digital Inputs 1…4 hold to last
state occurs. When set to “0”, will go
to DrvIn Net FltValue as determined
by Parameter 52.
0 = Go to Fault Value
1 = Hold Last State
Access Rule
GET/SET
Data Type
BOOL
Group
Drive I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
52
Access Rule
GET/SET
Data Type
BOOL
Group
Drive I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
DrvIn Net IdlState
Parameter Number
53
This parameter, in conjunction with
Parameter 54 (DrvIn Net IdlValue),
defines how the Drive Digital Inputs
1…4 will respond when a network is
idle. When set to “1”, hold to last state
occurs. When set to “0”, will go to
DrvIn Net IdlState as determined by
Parameter 54.
0 = Go to Fault Value
1 = Hold Last State
Access Rule
GET/SET
Data Type
BOOL
Group
Drive I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
DrvIn Net FItValue
This parameter determines the state
of Drive Digital Inputs 1…4 when a
network fault occurs and Parameter
51 (DrvIn Net FltState) is set to “0”.
0 = OFF
1 = ON
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Chapter 7
153
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
DrvIn Net IdlValue
Parameter Number
54
This parameter determines the state
that Drive Digital Inputs 1…4 assume
when the network is idle and
Parameter 53 (DrvIn Net IdlState) is
set to “0”.
0 = OFF
1 = ON
Access Rule
GET/SET
Data Type
BOOL
Group
Drive I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
55
Access Rule
GET/SET
Data Type
BOOL
Group
Drive I/O Config.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
High Speed Enable
Enable High Speed Inverter control
thru the terminal block.
0 = Disabled
1 = Enabled
Drive Display Group (Bulletin 284E only)
Output Freq
Output frequency present at T1, T2,
T3.
Commanded Freq
Value of the active frequency
command. Displays the commanded
frequency even if the drive is not
running.
154
Parameter Number
101
Related Parameters
102, 110, 134, 135, 138
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
0.1 Hz
Minimum Value
0.0
Maximum Value
400.0 Hz
Default Value
Read Only
Parameter Number
102
Related Parameters
101, 113, 134, 135, 138
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
0.1 Hz
Minimum Value
0.0
Maximum Value
400.0 Hz
Default Value
Read Only
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Output Current
Chapter 7
Parameter Number
103
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
0.01
Minimum Value
0.00
Maximum Value
Drive rated amps x 2
Default Value
Read Only
Output Voltage
Parameter Number
104
Output Voltage present at T1, T2, T3.
Related Parameters
131, 184, 188
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
1V AC
Minimum Value
0
Maximum Value
480V
Default Value
Read Only
Parameter Number
105
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
1V DC
Output Current present at T1, T2, T3.
DC Bus Voltage
Present DC Bus voltage level
Minimum Value
Maximum Value
Drive Status
Present operating condition of the
drive
Bit 0 = Running
Bit 1 = Forward
Bit 2 = Accelerating
Bit 3 = Decelerating
Based on Drive Rating
Default Value
Read Only
Parameter Number
106
Related Parameter
195
Access Rule
GET
Data Type
Byte
Group
Drive Display
Units
—
Minimum Value
0
Maximum Value
1
Default Value
Read Only
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
155
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Fault 1 Code
Parameter Number
107
A code that represents the drive fault.
The code will appear in this parameter
as the most recent fault that has
occurred. (Refer to Internal Drive
Faults in Chapter 10 for more
information).
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
—
Minimum Value
F2
Maximum Value
F122
Default Value
Read Only
Fault 2 Code
Parameter Number
108
A code that represents a drive fault.
The code will appear in this parameter
as the second most recent fault that
has occurred.
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
—
Minimum Value
F2
Maximum Value
F122
Default Value
Read Only
Fault 3 Code
Parameter Number
109
A code that represents a drive fault.
The code will appear in this parameter
as the third most recent fault that has
occurred.
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
—
Minimum Value
F2
Maximum Value
F122
Default Value
Read Only
Parameter Number
110
Related Parameter
101. 199
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
—
Minimum Value
0.00
Maximum Value
9999
Default Value
Read Only
Process Display
The output frequency scaled by the
process factor (Parameter 199).
156
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Control Source
Chapter 7
Parameter Number
112
Related Parameters
136, 138, 151…154 (Digital In x
Sel) must be set to Option 4, 169,
170…177 (Preset Freq x),
240…247 (StpLogic x)
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
1
Minimum Value
0
Maximum Value
9
Default Value
Read Only
Contrl In Status
Parameter Number
113
Status of control inputs. These can be
used in DeviceLogix.
Bit 0 = Start/Run FWD Input
Bit 1 = Direction/Run REV Input
Bit 2 = Stop Input
Bit 3 = Dynamic Brake Transistor On
Related Parameter
102, 134, 135
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
1
Minimum Value
0
Maximum Value
1
Default Value
Read Only
Parameter Number
114
Related Parameter
151…154
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
1
Minimum Value
0
Maximum Value
1
Default Value
Read Only
Displays the source of the Start
Command and Speed Reference.
2 = 2-wire
3 = 2-wire Level Sensitive
4 = 2-wire High Speed
5 = RS485 (DSI) Port
9 = Jog
Valid Speed Commands for the
Bulletin 284E ArmorStart are the
following:
1 = Internal Frequency
4 = Preset Freq x
5 = Comm Port (RS485 (DSI))
6 = StepLogic Control
9 = Jog Freq
Dig In Status
Status of the control terminal block
digital inputs:
Bit 0 = Digital In 1 Sel
Bit 1 = Digital In 2 Sel
Bit 2 = Digital In 3 Sel
Bit 3 = Digital In 4 Sel
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
157
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Comm Status
Parameter Number
115
Related Parameter
205, 206
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
1
Minimum Value
0
Maximum Value
1
Default Value
Read Only
Parameter Number
116
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
0.01
Minimum Value
1.00
Maximum Value
99.99
Default Value
Read Only
Parameter Number
117
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
1
Minimum Value
1001
Maximum Value
9999
Default Value
Read Only
Elapsed Run Time
Parameter Number
118
Accumulated time drive is outputting
power. Time is displayed in 10 hour
increments.
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
1 = 10 hrs
Minimum Value
0
Maximum Value
9999
Default Value
Read Only
Status of communications ports:
Bit 0 = Receiving Data
Bit 1 = Transmitting Data
Bit 2 = RS485
Bit 3 = Communication Error
Control SW Ver
Main Control Board software version
for AC Drive.
Drive Type
Used by Rockwell Automation field
service personnel.
158
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Output Power
The output power present at T1, T2,
and T3.
Parameter Number
122
Access Rule
GET
Data Type
UINT
Group
Units
Chapter 7
Drive Display
Minimum Value
0.00
Maximum Value
Drive rated power X 2
Default Value
Read Only
Parameter Number
123
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
0.1°
Minimum Value
0.0°
Maximum Value
180.0°
Default Value
Read Only
Drive Temp
Parameter Number
124
Present operating temperature of the
drive power section.
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
1 °C
Minimum Value
0
Maximum Value
120
Default Value
Read Only
Counter Status
Parameter Number
125
The current value of the counter when
counter is enabled.
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
1
Minimum Value
0
Maximum Value
9999
Default Value
Read Only
Output Power Fctr
The angle in electrical degrees
between motor voltage and current.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
159
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Timer Status
Parameter Number
126
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
0.1 sec
Minimum Value
0
Maximum Value
9999
Default Value
Read Only
StpLogic Status
Parameter Number
128
When Parameter 138 (Speed
Reference) is set to "6" (StpLogic), this
parameter will display the current
step of StepLogic as defined by
Parameters 240…247 (StpLogic X).
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
1
Minimum Value
0
Maximum Value
8
Default Value
Read Only
Torque Current
Parameter Number
129
The current value of the motor torque
current.
Access Rule
GET
Data Type
UINT
Group
Drive Display
Units
0.01
Minimum Value
0.00
Maximum Value
Drive Rated Amps x 2
Default Value
Read Only
The current value of the timer when
timer is enabled.
Drive Setup Group (Bulletin 284E only)
Motor NP Volts
O
Stop drive before changing this
parameter.
Set to the motor nameplate rated
volts.
160
Parameter Number
131
Related Parameters
104, 184, 185…187
Access Rule
GET/SET
Data Type
UINT
Group
Drive Setup
Units
1V AC
Minimum Value
20
Maximum Value
480V
Default Value
Based on Drive Rating
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Motor NP Hertz
O
Stop drive before changing this
parameter.
Set to the motor nameplate rated
frequency.
Motor OL Current
Set to the maximum allowable
current. The drive fault on an F7
Motor Over load if the value of this
parameter is exceeded by 150%
for 60 s.
Minimum Freq
Sets the lowest frequency the drive
will output continuously.
Chapter 7
Parameter Number
132
Related Parameters
184, 185…187, and 190
Access Rule
GET/SET
Data Type
UINT
Group
Drive Setup
Units
1 Hz
Minimum Value
15
Maximum Value
400
Default Value
60 Hz
Parameter Number
133
Related Parameter
155, 189, 190, 198, 214, 218,
260…261
Access Rule
GET/SET
Data Type
UINT
Group
Drive Setup
Units
0.1 A
Minimum Value
0.0
Maximum Value
Drive rated amps x 2
Default Value
Based on Drive Rating
Parameter Number
134
Related Parameter
101, 102, 113, 135, 185…187,
260, 261
Access Rule
GET/SET
Data Type
UINT
Group
Drive Setup
Units
0.1 Hz
Minimum Value
0.0
Maximum Value
400
Default Value
0.0
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
161
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Maximum Freq
Parameter Number
135
Stop drive before changing this
parameter.
Sets the highest frequency the drive
will output continuously.
Related Parameter
101, 102, 113, 134, 135, 178,
185…187
Access Rule
GET/SET
Data Type
UINT
Group
Drive Setup
Units
0.1 Hz
Minimum Value
0.0
Maximum Value
400
Default Value
60.0
Parameter Number
136
Related Parameters
112 and 137
Access Rule
GET/SET
Data Type
UINT
Group
Drive Setup
Units
—
Minimum Value
0
Maximum Value
5
Default Value
5
Parameter Number
137
Related Parameters
136, 180…182, 205, 260, 261
Access Rule
GET/SET
Data Type
UINT
Group
Drive Setup
Units
—
Minimum Value
0
Maximum Value
9
Default Value
9
O
Start Source
O
Stop drive before changing this
parameter.
Sets the control scheme used to start
the Bulletin 284E ArmorStart.
2 = 2-Wire
3 = 2-Wire Level Sensitive
4 = 2-Wire High Speed
5 = Comm Port (RS485 (DSI))
Stop Mode
Valid Stop Mode for the Bulletin 284E ArmorStart are the following:
0 = Ramp, CF Ramp to Stop. Stop command clears active fault.
1 = Coast, CF Coast to Stop. Stop command clears active fault.
2 = DC Brake,CF DC Injection Braking Stop. Stop command clears active fault.
3 = DCBrkAuto, CF DC injection Braking with Auto Shutoff.
Standard DC Injection Braking for value set in Parameter 180 (DC Brake Time) or
Drive shuts off if the drive detects that the motor is stopped. Stop command clears
active fault.
4 = Ramp, Ramp to Stop
5 = Coast, Coast to Stop
6 = DC Brake, DC Injection Braking Stop
7 = DC BrakeAuto, DC Injection Stop with Auto Shutoff
Standard DC Injection Braking for value set in Parameter 180 (DC Brake Time)
or
Drive shuts off if current limit is exceeded.
8 = Ramp + EM B, CF Ramp to Stop with EM Brake Control. Stop command clears
active fault.
9 = Ramp + EM Brk Ramp to Stop with EM Brake Control.
162
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Speed Reference
Valid Speed References for the
Bulletin 284E ArmorStart are the
following:
1 = Internal Freq
2 = Reserved
4 = Preset Freq
5 = Comm Port
6 = StpLogic
9 = Jog Freq
Accel Time 1
Sets the rate of acceleration for all
speed increases.
Maximum
Freq- = Accel Rate
------------------------------------Accel Time
Decel Time 1
Sets the rate of deceleration for all
speed decreases.
Maximum
Freq- = Decel Rate
------------------------------------Decel Time
Chapter 7
Parameter Number
138
Related Parameters
101, 102, 112, 139, 140,
151…154, 169, 170…177, 232,
240…247, and 250…257
Access Rule
GET/SET
Data Type
UINT
Group
Drive Setup
Units
—
Minimum Value
0
Maximum Value
7
Default Value
5
Parameter Number
139
Related Parameters
138, 140, 151…154, 167,
170…177, and 240…247
Access Rule
GET/SET
Data Type
UINT
Group
Drive Setup
Units
0.1 sec
Minimum Value
0.0 sec
Maximum Value
600.0 sec
Default Value
10.0 sec
Parameter Number
140
Related Parameters
138, 139, 151…154, 168,
170…177, and 240…247
Access Rule
GET/SET
Data Type
UINT
Group
Drive Setup
Units
0.1 sec
Minimum Value
0.1 sec
Maximum Value
600.0 sec
Default Value
10.0 sec
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
163
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Reset To Defaults
Parameter Number
141
Access Rule
GET/SET
Data Type
BOOL
Group
Drive Setup
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Motor OL Ret
Parameter Number
143
Enables/disables the Motor overload
Retention function. When Enabled,
the value held in the motor overload
counter is saved at power-down and
restored at power-up. A change to this
parameter setting resets the counter.
0 = Disabled (Default)
1 = Enabled
Access Rule
GET/SET
Data Type
BOOL
Group
Drive Setup
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
O
Stop drive before changing this
parameter.
Resets all parameter values to factory
defaults.
0 = Ready/Idle (Default)
1 = Factory Rset
Drive Advanced Setup Group (Bulletin 284E only)
Digital In 1 SEL (151)
Digital In 2 SEL (152)
Digital In 3 SEL (153)
Digital In 4 SEL (154)
O
Stop drive before changing this
parameter.
Selects the function for the digital
inputs.
Parameter Number
151…154
Related Parameters
112, 114, 138…140, 167, 168,
170…179, 240…247
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
Minimum Value
Maximum Value
Default Value
164
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
See Table 20 for details.
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Table 20 - Digital Input Options
Option
Name
Description
0
Not Used
Terminal has no function but can be read over network communication via Parameter 114 (Dig In Status).
1
Acc2 & Dec2
• When active, Parameter 167 (Accel Time 2) and Parameter 168 (Decel Time 2) are used for all ramp rates except Jog.
• Can only be tied to one input.
• When input is present, drive accelerates according to the value set in Parameter 179 (Jog Accel/Decel) and ramps to the value set in
Parameter 178 (Jog Frequency).
• When the input is removed, drive ramps to a stop according to the value set in Parameter 179 (Jog Accel/Decel).
• A valid Start command will override this input.
2
Jog
3
Aux Fault
4
Preset Freq
(Parameters 151 and
152 Default)
5
Local (Parameter 153
Default)
6
Comm Port
This option is the default setting.
7
Clear Fault
When active, clears active fault.
8
RampStop,CF
Causes drive to immediately ramp to stop regardless of how Parameter 137 (Stop Mode) is set.
9
CoastStop,CF
Causes drive to immediately ramp to stop regardless of how Parameter 137 (Stop Mode) is set.
10
DCInjStop,CF
Causes drive to immediately begin a DC Injection stop regardless of how Parameter 137 (Stop Mode) is set.
11
Jog Forward
(Parameter 154
Default)
Drive accelerates to Parameter 178 (Jog Frequency) according to Parameter 179 (Jog Accel/Decel) and ramps to stop when input becomes
inactive. A valid start will override this command.
12
Jog Reverse
Drive accelerates to Parameter 178 (Jog Frequency) according to Parameter 179 (Jog Accel/Decel) and ramps to stop when input becomes
inactive. A valid start will override this command.
13
10V In Ctrl
Option not valid for Bulletin 284E ArmorStart.
14
20MA In Ctrl
Option not valid for Bulletin 284E ArmorStart.
15
PID Disable
16
MOP Up
Increases the value of Parameter 169 (Internal Freq) at a rate 2 Hz per second. Default of Parameter 169 is 60 Hz.
17
MOP Down
Decreases the value of Parameter 169 (Internal Freq) at a rate 2 Hz per second. Default of Parameter 169 is 60 Hz.
18
Timer Start
Clears and starts the timer function. May be used to control the relay
19
Counter In
Starts the counter function. May be used to control the relay.
20
Reset Timer
Clears the active timer.
21
Reset Countr
Clears the active counter.
22
Rset Tim & Cnt
Clear active timer and counter.
23
Logic In1
Logic Function input number 1. May be used to control the relay (see Parameter 155, Options 11…14). May be used in conjunction with
StepLogic Parameters 240…247 (StpLogic X).
24
Logic In2
Logic Function input number 2. May be used to control the relay (see Parameter 155, Options 11…14). May be used in conjunction with
StepLogic Parameters 240…247 (StpLogic X).
25
Current Lmt2
26
Anlg Invert
27 ➊
Em Brk Rise
When enable, an F2, Auxiliary Input fault will occur when the input is removed.
Refer to Parameters 170…173 and 174…177.
Option not valid for Bulletin 284E ArmorStart.
Disabled PID function. Drive uses the next valid non-PID speed reference.
When active, Parameter 218 (Current Limit 2) determines the drive current limit level.
Option not valid for Bulletin 284E ArmorStart.
If EM Brake function enabled, this input releases the brake.
➊ Provides programmable control of Em Brk via digital input (1...4)
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
165
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Relay Out Sel
Sets the condition that changes the
state of the output relay contacts.
Parameter Number
155
Related Parameters
133, 156, 192, 240…247,
250…257, 260, 261
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
22
Default Value
22
Table 21 - Options for the Output Relay Contacts
166
Options
Name
Description
0
Ready/Fault (Default)
Relay changes state when power is applied. This indicates the drive is ready for operation. Relay returns drive to shelf state when power is
removed or a fault occurs.
1
At Frequency
Drive reached commanded frequency.
2
MotorRunning
Motor is receiving power from drive.
3
Reverse
4
Motor Overld
5
Ramp Reg
Ramp regulator is modifying the programmed accel/decal times to avoid overcurrent or overvoltage fault from occurring.
6
Above Freq
Drive exceeds the frequency (Hz) value set in Parameter 156 (Relay Out Level) Use Parameter 156 to set threshold.
7
Above Cur
Drive exceeds the current (% Amps) value set in Parameter 156 (Relay Out Level) Use Parameter 156 to set threshold.
8
Above DCVolt
9
Retries Exst
10
Above Anlg V
11
Logic In 1
An input is programmed as Logic In 1 and is active.
12
Logic In 2
An input is programmed as Logic In 2 and is active.
13
Logic In 1 & 2
Both Logic inputs are programmed and active.
14
Logic In 1 or 2
One or both Logic inputs are programmed and one or both is active.
15
StpLogic Out
Drive enters StepLogic step with Digit 3 of Command Word (Parameters 240…247).
16
Timer Out
17
Counter Out
Counter has reached value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold.
18
Above PF Ang
Power factor angle has exceeded the value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold.
19
Anlg In Loss
Option not valid for Bulletin 284E ArmorStart.
20
ParamControl
Enables the output to be controlled over the network communications by writing to Parameter 156 (Relay Out Level) (0 = OFF, 1 = ON).
21
NonRec Fault
Value set in Parameter 192 (Auto Rstrt Tries) is exceeded.
22
EM Brk Cntrl
EM Brake is energized. Program Parameter 260 (EM Brk OFF Delay) and Parameter 261 (EM Brk On Delay) for desired action.
23
Above Fcmd
The Current Command Frequency exceeds the value set in Parameter 156 (Relay Out Level).
24
Msg Control
With Drive FRN4.01 or later, this option enables the output to be controlled over the network communication.
Drive is commanded to run in reverse direction.
Motor overload condition exists.
Drive exceeds the DC bus voltage value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold.
Value set in Parameter 192 (Auto Rstrt Tries) is exceeded.
Option not valid for Bulletin 284E ArmorStart.
Timer has reached value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Relay Out Level
Parameter Number
156
Sets the trip point for the digital output relay if the value of Parameter
155 (Relay Out Sel) is 6, 7, 8, 10, 16, 17, 18, or 20.
Related Parameters
155
Access Rule
GET/SET
Data Type
UINT
Chapter 7
Parameters 155 Setting
Parameter 156 Min./Max.
6
0/400 Hz
7
0/180%
8
0/815V
Group
Drive Advanced Setup
10
0/100%
Units
0.1
16
0.1/9999 sec
17
1/9999 counts
Minimum Value
0.0
18
1/180°
Maximum Value
9999
20
0/1
Default Value
0.0
Parameter Number
167
Related Parameters
139, 151…154, 170…177,
240…247
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 sec
Minimum Value
0.0
Maximum Value
600.0
Default Value
20.0
Parameter Number
168
Related Parameters
140, 151…154, 170…177,
240…247
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 sec
Minimum Value
0.0
Maximum Value
600.0
Default Value
20.0
Accel Time 2
When active, sets the rate of acceleration for all speed increases except for jog.
Maximum
Freq- = Accel Rate
------------------------------------Accel Time
Parameter 135
(Maximum Freq)
0
Acc
eler
atio
n
n
atio
eler
Dec
Speed
Param.
0 139 or
167
(Accel
Time x)
Time
Param.
140 or
168
(Decel
Time x)
Decel Time 2
When active, sets the rate of deceleration for all speed decreases except for jog.
Maximum
Freq- = Decel Rate
------------------------------------Decel Time
Parameter 135
(Maximum Freq)
0
Acc
eler
atio
n
n
atio
eler
D ec
Speed
Param.
0 139 or
167
(Accel
Time x)
Time
Param.
140 or
168
(Decel
Time x)
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
167
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Internal Freq
Parameter Number
169
Provide the frequency command to
drive when Parameter 138 (Speed
Reference) is set to “1” (Internal Freq).
When enabled, this parameter will
change the frequency command in
real time.
Related Parameters
138
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 Hz
Minimum Value
0.0
Maximum Value
400.0
Default Value
60.0
Parameter Number
170…173, 174…177
Related Parameters
138…140, 151…154, 167, 168,
240…247, 250…257
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 Hz
Minimum Value
0.0
Maximum Value
400.0
Default Value
See Table 22
170 (Preset Freq 0) ➊
171 (Preset Freq 1)
172 (Preset Freq 2)
173 (Preset Freq 3)
174 (Preset Freq 4)
175 (Preset Freq 5)
176 (Preset Freq 6)
177 (Preset Freq 7)
.
Table 22 - Parameters 170…177 Preset Freq Options
Values
170 Default ➊
0.0 Hz
Provides a fixed frequency command value
when Parameters 151…154 (Digital In x
Sel) is set to Option 4 (Preset Frequencies).
171 Default
5.0 Hz
172 Default
10.0 Hz
173 Default
20.0 Hz
174 Default
30.0 Hz
175 Default
40.0 Hz
176 Default
50.0 Hz
177 Default
60.0 Hz
Min./Max.
0.0/400.0 Hz
Display
0.1 Hz
Input State of Digital In 1 (I/
O Terminal 05 when
Parameter 151 = 4)
Input State of Digital In 2 (I/
O Terminal 06 when
Parameter 152 = 4)
Input State of Digital In 3 (I/
O Terminal 07 when
Parameter 153 = 4)
Frequency
Source
Accel/Decel
Parameter
Used ➋
0
0
0
170 (Preset Freq 0)
(Accel Time 1)/(Decel Time 1)
1
0
0
171 (Preset Freq 1)
(Accel Time 1)/(Decel Time 1)
0
1
0
172 (Preset Freq 2)
(Accel Time 2)/(Decel Time 2)
1
1
0
173 (Preset Freq 3)
(Accel Time 2)/(Decel Time 2)
0
0
1
174 (Preset Freq 4)
(Accel Time 3)/(Decel Time 3)
168
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Input State of Digital In 1 (I/
O Terminal 05 when
Parameter 151 = 4)
Input State of Digital In 2 (I/
O Terminal 06 when
Parameter 152 = 4)
Input State of Digital In 3 (I/
O Terminal 07 when
Parameter 153 = 4)
Frequency
Source
Accel/Decel
Parameter
Used ➋
1
0
1
175 (Preset Freq 5)
(Accel Time 3)/(Decel Time 3)
0
1
1
176 (Preset Freq 6)
(Accel Time 4)/(Decel Time 4)
1
1
1
177 (Preset Freq 7)
(Accel Time 4)/(Decel Time 4)
➋When a Digital Input is set to "Accel 2 & Decel 2", and the input is active, that input overrides the settings in this table.
Jog Frequency
Parameter Number
178
Related Parameters
135, 151…154, 179
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 Hz
Minimum Value
0.0
Maximum Value
400.0
Default Value
10.0
Jog Accel/Decel
Parameter Number
179
Sets the acceleration and deceleration
time when a jog command is issued.
Related Parameters
151…154, 178
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 sec
Minimum Value
0.1
Maximum Value
600.0
Default Value
10.0
DC Brake Time
Parameter Number
180
Sets the length of time that DC brake
current is injected into the motor.
Refer to Parameter 181 (DC Brake
Level).
Related Parameters
137, 181
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 sec
Minimum Value
0.0
Maximum Value
99.9
(Setting of 99.9 = Continuous)
Default Value
0.0
Sets the output frequency when the
jog command is issued.
➊To activate 170 (Preset Freq 0) set 138 (Speed Reference) to "4" (Preset Freq).
➋When a Digital Input is set to "Accel 2 & Decel 2", and the input is active, that input overrides the settings in this table.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
169
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
DC Brake Level
Parameter Number
181
Defines the maximum DC brake
current, in amps, applied to the motor
when Parameter 137 (Stop Mode) is
set to either "Ramp" or "DC Brake".
Related Parameters
137, 180
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 A
Minimum Value
0.0
Maximum Value
Drive rated amps X 1.8
Default Value
Drive rated amps X 0.05
ATTENTION:
DC Injection Braking Mode
Ramp-to-Stop Mode
ge
[DC Brake Time]
ed
}
[DC Brake Time]
Speed
}
ta
Volts Speed
Vo
l
Spe
}
Volts Speed
Voltage
[DC Brake Level]
}
[DC Brake Level]
Time
Time
Stop Command
Stop Command
• If a hazard of injury due to movement of equipment or material exists, an auxiliary
mechanical braking device must be used.
• This feature should not be used with synchronous or permanent magnet motors.
Motors may be demagnetized during braking.
DB Resistor Sel
Stop drive before changing this parameter.
Enables/disables external dynamic braking.
Setting
182
Related Parameters
137
Access Rule
GET/SET
Data Type
UINT
0
Disabled
Group
Drive Advanced Setup
1
Normal RA Res (5% Duty Cycle)
Units
1
2
No Protection (100% Duty Cycle)
Minimum Value
0
x% Duty Cycle Limited (3…99% of Duty Cycle)
Maximum Value
99
Default Value
0
3…99
170
Min./Max.
Parameter Number
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
S Curve %
Parameter Number
183
Sets the percentage of acceleration or
deceleration time that is applied to
ramp as S Curve. Time is added, half at
the beginning and half at the end of
the ramp.
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
1%
Minimum Value
0
Maximum Value
100
Default Value
0% disabled
Figure 68 - S Curve
Example:
Accel Time = 10 Seconds
S Curve Setting = 50%
S Curve Time = 10 x 0.5 = 5 Seconds
Total Time = 10 + 5 = 15 Seconds
50% S Curve
Target
Target 2
1/2 S Curve Time
2.5 Seconds
Accel Time
10 Seconds
1/2 S Curve Time
2.5 Seconds
Total Time to Accelerate = Accel Time + S Curve Time
Boost Select
Parameter Number
184
Sets the boost voltage (% of
Parameter 131 (Motor NP Volts)) and
redefines the Volts per Hz curve.
Active when Parameter 225 (Torque
Perf Mode) = 0 (V/Hz). Drive may add
additional voltage unless Option 5 is
selected.
Related Parameters
104, 131, 132, 185…187, 225
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
14
Default Value
8
See Table 23 for details.
Table 23 - Boost Select Options
Options
Description
0
Custom V/Hz
1
30.0, VT
2
35.0, VT
3
40.0, VT
4
45.0, VT
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Variable Torque
(Typical fan/pump curves)
171
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Table 23 - Boost Select Options
Options
Description
5
0.0 no IR
6
0.0
7
2.5, CT (default for 5 Hp/4.0 kW Drive)
8
5.0, CT (default)
9
7.5, CT
10
10.0, CT
11
12.5, CT
12
15.0, CT
13
17.5, CT
14
20.0, CT
Constant Torque
Figure 69 - Boost Select
1/2 [Motor NP Volts]
50
1/2
[Motor NP Hertz]
% P131 [Motor NP Volts]
100
Settings
5-14
0
172
4
3
2
1
50
% P132 [Motor NP Hertz]
100
Start Boost
Parameter Number
185
Sets the boost voltage (% of
Parameter 131 (Motor NP Volts)) and
redefines the Volts per Hz curve when
Parameter 184 (Boost Select) = 0
(Custom V/Hz) and Parameter 225
(Torque Perf Mode) = 0 (V/Hz)
Related Parameters
131, 132, 134, 135, 184,
186…188, 225
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
1.1%
Minimum Value
0.0%
Maximum Value
25.0%
Default Value
2.5%
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Figure 70 - Start Boost
Parameter 188 (Maximum Voltage)
Parameter 186
(Start Boost)
Parameter 186 (Break Voltage)
Voltage
Parameter 131 (Motor NP Volts)
Parameter 187 (Break Frequency)
Parameter 134 (Minimum Freq)
Parameter 132 (Motor NP Hertz)
Frequency
Parameter 135 (Maximum Freq)
Brake Voltage
Parameter Number
186
Sets the frequency where brake
voltage is applied when Parameter
184 (Boost Select) = 0 (Custom
V/Hz) and Parameter 225 (Torque Perf
Mode) = 0 (V/Hz).
Related Parameters
131, 132, 134, 135, 184, 185, 187,
188, 225
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
1.1%
Minimum Value
0.0%
Maximum Value
100.0%
Default Value
25.0%
Brake Frequency
Parameter Number
187
Sets the frequency where brake
frequency is applied when Parameter
184 (Boost Select) = 0 (Custom V/Hz)
and Parameter 225 (Torque Perf
Mode) = 0 (V/Hz).
Related Parameters
131, 132, 134, 135, 184, 185, 186,
188, 225
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 Hz
Minimum Value
0.0 Hz
Maximum Value
400.0 Hz
Default Value
15.0 Hz
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
173
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Maximum Voltage
Parameter Number
188
Sets the highest voltage the drive will
output.
Related Parameters
104, 185, 186, 187
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
1V AC
Minimum Value
20V AC
Maximum Value
Drive Rated Volts
Default Value
Drive Rated Volts
Parameter Number
189
Related Parameters
133, 218
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 A
Minimum Value
0.1 A
Maximum Value
Drive rated amps X 1.8
Default Value
Drive rated amps X 1.5
Parameter Number
190
Related Parameters
132, 133
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
1
Minimum Value
0
Maximum Value
2
Default Value
0
Current Limit 1
Maximum output current allowed
before current limiting occurs
Motor OL Select
Drive provides Class 10 motor
overload protection. Settings 0…2,
select the derating factor for I2t
overload function.
0 = No Derate
1 = Min. Derate
2 = Max. Derate
Figure 71 - Overload Trip Curves
174
Min Derate
80
60
40
20
0
0 25 50 75 100 125 150 175 200
% of P132 [Motor NP Hertz]
100
80
60
40
20
0
Max Derate
% of P133 Motor OL Current
% of P133 Motor OL Current
% of P133 Motor OL Current
No Derate
100
0 25 50 75 100 125 150 175 200
% of P132 [Motor NP Hertz]
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
100
80
60
40
20
0
0 25 50 75 100 125 150 175 200
% of P132 [Motor NP Hertz]
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
PWM Frequency
Parameter Number
191
Sets the carrier frequency the PWM
output waveform. The Figure 72
provides derating guidelines based on
the PWM frequency setting.
Related Parameters
224
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.l Hz
Minimum Value
2.0 Hz
Maximum Value
16.0 Hz
Default Value
4.0 Hz
% Output Current (A)
Figure 72 - Derating Guidelines Based on the PWM Frequency Setting
100
96
92
88
84
80
76
72
68
64
60
56
52
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Carrier Frequency (kHz)
Auto Rstrt Tries
Parameter Number
192
Set the maximum number of times
the drive attempts to reset a fault and
restart.
Related Parameter
155, 193
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
1
Minimum Value
0
Maximum Value
9
Default Value
0
Clear a Type 1 Fault and Restart the Drive
1. Set Parameter 192 (Auto Rstrt Tries) to a value other than 0.
2. Set Parameter 193 (Auto Rstrt Delay) to a value other than 0.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
175
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Clear an Overvoltage, Undervoltage, or Heatsink OvrTmp Fault
without Restarting the Drive
1. Set Parameter 192 (Auto Rstrt Tries) to a value other than 0.
2. Set Parameter 193 (Auto Rstrt Delay) to 0.
ATTENTION: Equipment damage and/or personal injury may result if this parameter is
used in an inappropriate application. Do not use this function without considering
applicable local, national, and international codes, standards, regulations, or industry
guidelines.
Auto Rstrt Delay
Parameter Number
193
Sets time between restart attempts
when Parameter 192 (Auto Rstrt Tries)
is set to a value other than zero.
Related Parameters
192
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 sec
Minimum Value
0.0
Maximum Value
300.0 sec
Default Value
1.0 sec
Start at PowerUp
Parameter Number
194
Stop drive before changing this parameter.
Enables/disables a feature that allows a Start or Run command to automatically cause the
drive to resume running at command speed after the drive input is restored. Requires a
digital input configured Run or Start and a valid start contact.
This parameter will not function if Parameter 136 (Start Source) is set to Option 4,
(2-W High Speed).
0 = Disabled
1 = Enabled
Related Parameters
192
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
ATTENTION: Equipment damage and/or personal injury may result
if this parameter is used in an inappropriate application. Do not use
this function without considering applicable local, national, and
international codes, standards, regulations, or industry guidelines.
176
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Reverse Disable
Chapter 7
Parameter Number
195
Related Parameters
106
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Flying Start En
Parameter Number
196
Sets the condition that allows the
drive to reconnect to a spinning motor
at actual RPM.
0 = Disabled
1 = Enabled
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
197
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
3
Default Value
1
Stop drive before changing this
parameter.
Enables/disables the function that
allows the direction of the motor
rotation to be changed. The reverse
command may come from a digital
command or serial command. All
reverse inputs including two-wire Run
Reverse will be ignored with reverse
disabled.
0 = Disabled
1 = Enabled
Compensation
Enables/disables correction options
that may improve problems with
motor instability,
0 = Disabled
1 = Electrical (Default)
Some drive/motor combinations have
inherent instabilities which are
exhibited as non-sinusoidal motor
currents. This setting attempts to
correct this condition
2 = Mechanical
Some motor/load combinations have
mechanical resonances which can be
excited by the drive current regulator.
This setting slows down the current
regulator response and attempts to
correct this condition.
3 = Both
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
177
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
SW Current Trip
Parameter Number
198
Related Parameters
133
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 A
Minimum Value
0.0
Maximum Value
Drive rated amps x 2
Default Value
0.0 (Disabled)
Process Factor
Parameter Number
199
Scales the output frequency value
displayed by Parameter 110 (Process
Display).
Output Freq x Process Factor = Process
Display
Related Parameters
110
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1
Minimum Value
0.1
Maximum Value
999.9
Default Value
30.0
Parameter Number
200
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
2
Default Value
0
Parameter Number
201
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Enables/disables a software
instantaneous (within 100 ms)
current trip.
Fault Clear
Stop drive before changing this
parameter.
Resets a fault and clears the fault
queue. Used primarily to clear a fault
over network communications.
0 = Ready/Idle (Default)
1 = Reset Fault
2 = Clear Buffer (Parameters
107…109 (Fault x Code))
Program Lock
Protects parameters against change
by unauthorized personnel.
0 = Unlocked
1 = Locked
178
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Testpoint Sel
Chapter 7
Parameter Number
202
Related Parameters
119
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
1 Hex
Minimum Value
0
Maximum Value
FFFF
Default Value
400
Parameter Number
203
This parameter is not available for
use with the ArmorStart Distributed
Motor Controller.
Parameter Number
204
Comm Loss Action
Parameter Number
205
Selects the drive’s response to a loss of
the communication connection or
excessive communication errors.
0 = Fault (Default)
Drive will fault on an F81 Comm Loss
and coast to stop
1 = Coast Stop
Stops drive via coast to stop
2 = Stop
Stops via Parameter 137 (Stop Mode)
setting
3 = Continue Last
Drive continues operating at
communication commanded speed
saved in RAM.
Related Parameters
115, 137, 206
Access Rule
GET/SET
Data Type
UINT
Group
Advanced Program Group
Units
—
Minimum Value
0
Maximum Value
3
Default Value
0
Used by Rockwell Automation field
service personnel.
Comm Data Rate
This parameter is not available for
use with the ArmorStart Distributed
Motor Controller.
CommNode Addr
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
179
Chapter 7
180
Bulletin 280E/281E/284E Programmable Parameters
Comm Loss Time
Parameter Number
206
Sets the time that the drive remain in
communication loss before
implanting the option selected in
Parameter 205 (Comm Loss Action).
Related Parameters
115, 205
Access Rule
GET/SET
Data Type
UINT
Group
Advanced Program Group
Units
0.1 sec
Minimum Value
0.1 sec
Maximum Value
60.0 sec
Default Value
15.0 sec
Slip Hertz @ FLA
Parameter Number
214
Compensates for the inherent slip in
an induction motor. This frequency is
added to the commanded output
frequency based on motor current.
Related Parameters
133
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 Hz
Minimum Value
0.0 Hz
Maximum Value
10.0 Hz
Default Value
2.0 Hz
Process Time Lo
Parameter Number
215
Scales the time value when the drive
is running at Parameter 134
(Minimum Freq). When set to a value
other than zero, Parameter 110
(Process Display) indicates the
duration of the process.
Related Parameters
110, 134
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
Hz
Minimum Value
0.00
Maximum Value
99.99
Default Value
0.00
Process Time Hi
Parameter Number
216
Scales the time value when the drive
is running at Parameter 135
(Maximum Freq). When set to a value
other than zero, Parameter 110
(Process Display) indicates the
duration of the process.
Related Parameters
110, 135
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
Hz
Minimum Value
0.0
Maximum Value
99.99
Default Value
0.00
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Bus Reg Mode
Parameter Number
217
Enables the bus regulator.
0 = Disable
1 = Enabled
Related Parameters
—
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
1
Default Value
1
Current Limit 2
Parameter Number
218
Maximum output current allowed
before current limiting occurs. This
parameter is only active if Parameters
151…154 (Digital In x Sel) is set to
Option 25 (Current Lmt2) and is
active.
Related Parameters
133, 151…154, 189
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 A
Minimum Value
0.0 A
Maximum Value
Drive rated amps x 1.8
Default Value
Drive rated amps x 1.5
Skip Frequency
Parameter Number
219
Sets the frequency at which the drive
will not operate.
Related Parameters
220
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 Hz
Minimum Value
0.0
Maximum Value
400.0 Hz
Default Value
0.0 Hz
Skip Freq Band
Parameter Number
220
Determines the band width around
Parameter 219 (Skip Frequency).
Parameter 220 (Skip Freq Band) is
split applying 1/2 above and 1/2
below the actual skip frequency. A
setting of 0.0 disables this parameter.
Related Parameters
219
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 Hz
Minimum Value
0.0 Hz
Maximum Value
30.0 Hz
Default Value
0.0 Hz
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
181
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Figure 73 - Skip Frequency Band
Frequency
Command
Frequency
Drive Output
Frequency
2x Skip
Frequency Band
Skip Frequency
Time
Stall Fault Time
Sets for the fault time that the drive
will remain in stall mode before a
fault is issued.
0 = 60 sec (Default)
1 = 120 sec
2 = 240 sec
3 = 360 sec
4 = 480 sec
5 = Flt Disabled
Var PWM Disable
Stop drive before changing this
parameter.
Enables/disables a feature that varies
the carrier frequency for the PWM
output waveform defined by
Parameter 191 (PWM Frequency).
0 = Enabled
1 = Disabled
Disabling this feature when low
frequency condition exists may result
in IGBT stress and nuisance tripping.
Torque Perf Mode
Stop drive before changing this
parameter.
Enables/disables sensorless vector
control operation.
0 = V/Hz
1 = Sensrls Vect
182
Parameter Number
221
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
5
Default Value
0
Parameter Number
224
Related Parameters
191
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
225
Related Parameters
184…187, 227
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
1
Default Value
1
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Motor NP FLA
Parameter Number
226
Set to the motor nameplate full load
amps.
Related Parameters
227
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 A
Minimum Value
0.1
Maximum Value
Drive rated amps x 2
Default Value
Drive rated amps
Parameter Number
227
Related Parameters
225, 226, 228, 229
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
3
Default Value
0
Autotune
Stop drive before changing this parameter.
Provides an automatic method for setting Parameter 228 (IR Voltage Drop) and Parameter
229 (Flux Current Ref), which affect sensorless vector performance. Parameter 226 (Motor
NP FLA) must be set to the motor nameplate full load amps before running the Autotune
procedure.
0 = Ready/Idle (Default)
1 = Static Tune
2 = Rotate Tune
Ready (0) – Parameter returns to this setting following a Static Tune or Rotate Tune.
Static Tune (1) – A temporary command that initiates a non-rotational motor stator
resistance test for the best possible automatic setting of Parameter 228 (IR Voltage Drop). A
start command is required following initiation of this setting. The parameter returns to
Ready (0) following the test, at which time another start transition is required to operate
the drive in normal mode. Used when motor cannot be uncoupled from the load.
Rotate Tune (2) – A temporary command that initiates a Static Tune followed by a
rotational test for the best possible automatic setting of Parameter 229 (Flux Current Ref). A
start command is required following initiation of this setting. The parameter returns to
Ready (0) following the test, at which time another start transition is required to operate
the drive in normal mode.
IMPORTANT
Used when motor is uncoupled from the load. Results may not be valid if a load is
coupled to the motor during this procedure.
ATTENTION: Rotation of the motor in an undesired direction can occur during this
procedure. To guard against possible injury and/or equipment damage, it is
recommended that the motor be disconnected from the load before proceeding.
If the Autotune routine fails, an F80 SVC Autotune fault is displayed.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
183
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
IR Voltage Drop
Parameter Number
228
Related Parameters
227
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1V AC
Minimum Value
0.0
Maximum Value
230
Default Value
Based on Drive Rating
Parameter Number
229
Related Parameter
227
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.01 A
Minimum Value
0.00
Maximum Value
Motor NP Volts
Default Value
Based on Drive Rating
PID Trim Hi
Parameter Number
230
Sets the maximum positive value that
is added to a PID reference when PID
trim is used.
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1
Minimum Value
0.0
Maximum Value
400.0
Default Value
60.0
PID Trim Lo
Parameter Number
231
Sets the minimum positive value that
is added to a PID reference when PID
trim is used.
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1
Minimum Value
0.0
Maximum Value
400.0
Default Value
0.1
Value of volts dropped across the
resistance of the motor stator.
Flux Current Ref
Value of amps for full motor flux.
184
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
PID Ref Sel
Chapter 7
Parameter Number
232
Related Parameters
138
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
9
Default Value
0
Parameter Number
233
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
2
Default Value
0
PID Prop Gain
Parameter Number
234
Sets the value for the PID proportional
component when the PID mode is
enabled by Parameter 232 (PID Ref
Sel).
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.01
Minimum Value
0.00
Maximum Value
99.99
Default Value
0.01
Parameter Number
235
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 sec
Minimum Value
0.0 sec
Maximum Value
999.9 sec
Default Value
0.1 sec
Stop drive before changing this
parameter.
Enables/disables PID mode and
selects the source of the PID reference.
Valid PID Ref Select for the Bulletin
284E ArmorStart are the following:
0 = PID Disable
1 = PID Setpoint
4 = Comm Port
5 = Setpnt Trim
8 = Comm Trim
PID Feedback Sel
Valid PID Feedback Sel command for
the Bulletin 284E ArmorStart is the
following;
2 = Comm Port
PID Integ Time
Sets the value for the PID integral
component when the PID mode is
enabled by Parameter 232 (PID Ref
Sel).
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
185
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
PID Diff Rate
Parameter Number
236
Sets the value for the PID differential
component when the PID mode is
enabled by Parameter 232 (PID Rel
Sel).
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.01 (1/sec)
Minimum Value
0.00 (1/sec)
Maximum Value
99.99 (1/sec)
Default Value
0.01 (1/sec)
PID Setpoint
Parameter Number
237
Provides an internal fixed value for
process setpoint when the PID mode
is enabled by Parameter 232 (PID Ref
Sel).
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1%
Minimum Value
0.0%
Maximum Value
10.0%
Default Value
0.0%
PID Deadband
Parameter Number
238
Sets the lower limit of the PID output.
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1%
Minimum Value
0.0%
Maximum Value
10.0%
Default Value
0.0%
Parameter Number
239
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.0 Hz
Minimum Value
0.0 Hz
Maximum Value
400.0 Hz
Default Value
0.0 Hz
PID Preload
Sets the value used to preload the
integral component on start or
enable.
186
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
StpLogic 0 (240) (see Table 25)
StpLogic 1 (241) (see Table 25)
StpLogic 2 (242) (see Table 26)
StpLogic 3 (243) (see Table 27)
StpLogic 4 (244)
StpLogic 5 (245)
StpLogic 6 (246)
StpLogic 7 (247)
Parameter Number
240…247
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0001
Stop drive before changing this parameter.
Maximum Value
baFF
Default Value
00F1
Parameters 240…247 are only active if Parameter 138 (Speed Reference) is set
to “6” (StpLogic).
These parameters can be used to create a custom profile of frequency commands.
Each step can be based on time, status of a Logic input, or a combination of time
and the status of a Logic input.
Digits 0…3 for each (StpLogic x) parameter must be programmed according
to the desired profile. Refer to Tables 25, 26 and 27.
A Logic input is established by setting a digital input, Parameters 151…154
(Digital In x Sel), to 23 (Logic In1) and/or 24 (Logic In2).
A time interval between steps can be programmed using Parameters 250…257
(StpLogic Time x). See Table 24 for related parameters.
The speed for any step is programmed using Parameters 170…177 (Preset Freq x).
Table 24 - Parameters 240…257
StepLogic Parameter (Active
when
138 = 6 (StpLogic))
Related Preset Frequency
Parameter (Can be
activated independent of
StepLogic Parameters)
Related StepLogic Time Parameter
(Active when 240…247 Digit 0 or 1
are
set to 1, b, C, d, or E)
240 (StpLogic 0)
170 (Preset Freq 0)
250 (StpLogic Time 0)
241 (StpLogic 1)
171 (Preset Freq 1)
251 (StpLogic Time 1)
242 (StpLogic 2)
172 (Preset Freq 2)
252 (StpLogic Time 2)
243 (StpLogic 3)
173 (Preset Freq 3)
253 (StpLogic Time 3)
244 (StpLogic 4)
174 (Preset Freq 4)
254 (StpLogic Time 4)
245 (StpLogic 5)
175 (Preset Freq 5)
255 (StpLogic Time 5)
246 (StpLogic 6)
176 (Preset Freq 6)
256 (StpLogic Time 6)
247 (StpLogic 7)
177 (Preset Freq 7)
257 (StpLogic Time 7)
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
187
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
How StepLogic Works
The StepLogic sequence begins with a valid start command. A normal sequence
always begins with 240 (StpLogic 0).
Digit 0: Logic For Next Step — This digit defines the logic for the next step, as
defined in Table 13. When the condition is met the program advances to the next
step, Step 0 follows Step 7. For example, Digit 0 is set 3. program advances to next
step if Parameters 151…154 (Digital In x Sel), is set to Option 24 (Logic In2) and
becomes active.
Digit 1: Logic to Jump to a Different Step — For all settings other than F, when
the condition is met, the program overrides Digit 0 and jumps to the step defined
by Digit 2.
Digit 2: Different Step to Jump — When the condition for Digit 1 is met, the
Digit 2 setting determines the next step or to end the program, refer to Table 26.
Digit 3: Step Settings — This digit defines what accel/decel profile the speed
command will follow and the direction of the command for the current step. In
addition, if a relay (Parameter 155) is set to Option 15 (StpLogic Out), this
parameter can control the status of that output.
Any StepLogic parameter can be programmed to control a relay, but you cannot
control different outputs based on the condition of different StepLogic
commands.
StepLogic Settings
The logic for each function is determined by the four digits for each StepLogic
parameter. The following is a listing of the available settings for each digit. Refer
to Appendix E for details.
Table 25 - Digit 0 and Digit 1 Settings
188
0
Skip Step (Jump Immediately)
1
Step Based on (StpLogic Time x)
2
Step if Logic In1 is Active
3
Step if Logic In2 is Active
4
Step if Logic In1 is Not Active
5
Step if Logic In2 is Not Active
6
Stop if either Logic In1 and Logic In2 is Active
7
Stop if both Logic In1 and Logic In2 is Active
8
Stop if neither Logic In1 and Logic In2 is Active
9
Step if Logic In1 is Active and Logic In2 is Not Active
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Table 25 - Digit 0 and Digit 1 Settings
A
Step if Logic In2 is Active and Logic In1 is Not Active
b
Step after (StpLogic Time x) and Logic In1 is Active
C
Step after (StpLogic Time x) and Logic In2 is Active
d
Step after (StpLogic Time x) and Logic In1 is Not Active
E
Step after (StpLogic Time x) and Logic In2 is Not Active
F
Do Not Stop/Ignore Digit 2 Settings
Table 26 - Digit 2 Settings
0
Jump to Step 0
1
Jump to Step 1
2
Jump to Step 2
3
Jump to Step 3
4
Jump to Step 4
5
Jump to Step 5
6
Jump to Step 6
7
Jump to Step 7
8
End Program (Normal Stop)
9
End Program (Coast to Stop)
A
End Program and Fault (F2)
Table 27 - Digit 3 Settings
Required
Setting
Accel/Decel Parameter
Used
StepLogic
Output State
Commanded Direction
0
Accel/Decel 1
OFF
FWD
1
Accel/Decel 1
OFF
REV
2
Accel/Decel 1
OFF
No Output
3
Accel/Decel 1
ON
FWD
4
Accel/Decel 1
ON
REV
5
Accel/Decel 1
ON
No Output
6
Accel/Decel 2
OFF
FWD
7
Accel/Decel 2
OFF
REV
8
Accel/Decel 2
OFF
No Output
9
Accel/Decel 2
ON
FWD
A
Accel/Decel 2
ON
REV
b
Accel/Decel 2
ON
No Output
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
189
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
StpLogic Time 0 (250)
StpLogic Time 1 (251)
StpLogic Time 2 (252)
StpLogic Time 3 (253)
StpLogic Time 4 (254)
StpLogic Time 5 (255)
StpLogic Time 6 (256)
StpLogic Time 7 (257)
Parameter Number
250…257
Related Parameters
138, 155, 171…177, 240…247
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
0.1 sec
Minimum Value
0.0 sec
Maximum Value
999.9 sec
Default Value
30.0 sec
EM Brk OFF Delay
Parameter Number
260
Sets the time the drive will remain at
minimum frequency before ramping
to the commanded frequency and
energizing the brake coil relay when
Parameter 137 (Stop Mode) is set to
Option 8 or 9.
Related Parameters
134, 137
Access Rule
GET/SET
Data Type
UNIT
Group
Drive Advanced Setup
Units
0.01 sec
Minimum Value
0.01 sec
Maximum Value
10 sec
Default Value
0.0 sec
Sets the time to remain in each step if
the corresponding Parameter 138
(Speed Reference) is set to “6”
(StpLogic), Parameter 240-247
(StpLogic x), digits 0…3 set to b, C, d
or E (Step after (StpLogic Time x).
Figure 74 - EM Brk OFF Delay
Frequency
261 [EM Brk On Delay]
pA
cce
l
Ram
pD
Ram
260 [EM Brk Off Delay]
ece
l
Minimum Freq
Start
Commanded
190
EM Brk
Energized (Off)
Time
Stop
Commanded
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
EM Brk
De-Energized (On)
Drive Stops
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
EM Brk On Delay
Parameter Number
261
Sets the time the drive will remain at
minimum frequency before stopping
and de-energizing the brake coil relay
when Parameter 137 (Stop Mode) is
set to Option 8 or 9.
Related Parameters
134, 137
Access Rule
GET/SET
Data Type
UNIT
Group
Drive Advanced Setup
Units
0.01 sec
Minimum Value
0.01 sec
Maximum Value
10.00 sec
Default Value
0.0 sec
MOP Reset Sel
Parameter Number
262
Sets the drive to save the current MOP
Reference command.
0 = Zero MOP Ref
This option clamps Parameter 169
(Internal Freq) at 0.0 Hz when drive is
not running.
1 = Save MOP Ref (Default)
Reference is saved in Parameter 169
(Internal Freq).
Related Parameters
169
Access Rule
Get/Set
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
1
Default Value
1
DB Threshold
Parameter Number
263
Sets the DC bus Voltage Threshold for
Dynamic Brake operation. If the DC
bus voltage falls below the value set
in this parameter, the Dynamic Brake
will not turn on. Lower values will
make the Dynamic Braking function
more responsive, but may result in
nuisance Dynamic Brake activation.
Access Rule
GET/SET
Data Type
UINT
Group
Drive Advanced Setup
Units
—
Minimum Value
0.0%
Maximum Value
110.0%
Default Value
100%
ATTENTION: Equipment damage may result if this parameter is set to a value that
causes the dynamic braking resistor to dissipate excessive power. Parameter settings
less than 100% should be carefully evaluated to ensure that the dynamic brake
resistor’s wattage rating is not exceeded. In general, values less than 90% are not
needed. This parameter’s setting is especially important if Parameter 182 (DB Resistor
Sel) is set to “2” (No Protection).
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
191
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Comm Write Mode
Parameter Number
264
Determines whether parameter
changes made over communication
port are saved and stored in NonVolatile Storage (NVS) or RAM only. If
they are stored in RAM, the values will
be lost at power-down.
0 = Save (Default)
1 = RAM Only
Access Rule
GET/SET
Data Type
BOOL
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
ATTENTION: Risk of equipment damage exists. If a controller is programmed to write
parameter data to Non-Volatile Storage (NVS) frequently, the NVS will quickly exceed its
life cycle and cause the drive to malfunction. Do not create a program that frequently
uses configurable outputs to write parameter data to NVS unless Parameter 264 (Comm
Write Mode) is set to Option 1.
192
PID Invert Error
Parameter Number
267
When set to “Inverted”, changes the
sign of the PID error. This causes an
increase in the drive output frequency
with PID Feedback greater than PID
Setpoint, and a decrease in drive
output frequency with PID Feedback
less than PID Setpoint.
0 = Not Inverted (Default)
1 = Inverted
Access Rule
GET/SET
Data Type
BOOL
Group
Drive Advanced Setup
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Linear List of Parameters
for Bulletin 280E/281E and
Bulletin 284E
Table 28 - ArmorStart Common Parameters
Parameter
Number
Parameter Name
1
Hdw Inputs
2
Description
Factory Default
Group
Controller
This parameter provides status of hardware inputs.
0
Basic Status
Common
Network Inputs
This parameter provides status of network inputs.
0
Basic Status
Common
3
Network Outputs
This parameter provides status of network outputs.
0
Basic Status
Common
4
Trip Status
This parameter provides trip identification.
0
Basic Status
Common
5
Starter Status
This parameter provides the status of the starter.
0
Basic Status
Common
6
InternalLinkStat
Status of the internal network connections.
0
Basic Status
Common
7
Starter Command
The parameter provides the status of the starter
command.
0
Basic Status
Common
8
Network Override
This parameter allows for the local logic to override a
Network fault.
0
Misc. Configuration
Common
9
Comm Override
This parameter allows for local logic to override a
absence of an I/O connection.
0
Misc. Configuration
Common
10
Reserved
—
—
Network Configuration
Common
11
Reserved
—
—
Network Configuration
Common
12
Reserved
—
—
Network Configuration
Common
13
Prod Assy Word 0
This parameter is used to build bytes 0…1 for
produced assembly 150 or 151.
0
Network Configuration
Common
14
Prod Assy Word 1
This parameter is used to build bytes 2…3 for
produced assembly 150 or 151.
0
Network Configuration
Common
15
Prod Assy Word 2
This parameter is used to build bytes 4…5 for
produced assembly 150 or 151.
0
Network Configuration
Common
16
Prod Assy Word 3
This parameter is used to build bytes 6…7 for
produced assembly 150 or 151.
0
Network Configuration
Common
17
Reserved
—
—
Basic Status
Common
18
Reserved
—
—
Basic Status
Common
19
Reserved
—
—
Network Configuration
Common
20
Reserved
—
—
Network Configuration
Common
21
Reserved
—
—
Network Configuration
Common
22
Breaker Type
This parameter identifies the Bulletin 140M used in this
product.
0=
140M-D8N-C10
Basic Status
Common
23
Pr FltReset Mode
0 = Manual
Starter Protection
Common
24
Pr Fault Enable
This parameter enables the Protection Fault by setting
the bit to 1.
12419
Starter Protection
Common
25
Pr Fault Reset
This parameter resets the Protection Fault on a
transition 0 > 1.
0
Starter Protection
Common
This parameter configures the Protection Fault reset
mode.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
193
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Table 28 - ArmorStart Common Parameters
Parameter
Number
Parameter Name
26
Str Net FltState
This parameter in conjunction with Parameter 27 (Str
Net FltValue) defines how the starter will respond
when a fault occurs as determined by Parameter 27.
27
Str Net FltValue
This parameter determines how the starter will be
commanded in the event of a fault.
28
Str Net IdlState
29
194
Description
Factory Default
Group
Controller
0=
Goto Fault Value
Starter Protection
Common
0 = OFF
Starter Protection
Common
This parameter determines response when Idle fault
occurs.
0=
Goto Fault Value
Starter Protection
Common
Str Net IdlValue
This parameter determines the state that starter
assumes when the network is idle and Parameter 28
(Str Net IdlState) is set to “Goto Fault Value”.
0 = OFF
Starter Protection
Common
30
Off-to-On Delay
This parameter allows the installer to program a time
duration before being reported ON.
0
User I/O Configuration
Common
31
On-to-Off Delay
This parameter allows the installer to program a time
duration before being reported OFF.
0
User I/O Configuration
Common
32
In Sink/Source
This parameter allows the installer to program the
inputs to be sink or source.
0 = Sink
User I/O Configuration
Common
33
OutA Pr FltState
This parameter in conjunction with Parameter 34 (OutA
Pr FltValue) defines how Output A will respond when a
trip occurs.
0=
Goto PrFlt Value
User I/O Configuration
Common
34
OutA Pr FltValue
This parameter determines the state the Output A.
0 = Open
User I/O Configuration
Common
35
OutA Net FltState
This parameter in conjunction with Parameter 36 (OutA
Net FltValue) defines how Output A will respond.
0=
Goto Fault Value
User I/O Configuration
Common
36
OutA Net FltValue
This parameter determines the state that Output.
0 = Open
User I/O Configuration
Common
37
OutA Net IdlState
This parameter in conjunction with Parameter 38 (OutA
Net IdlValue) defines how Output A will respond when
the network is idle.
0=
Goto Idle Value
User I/O Configuration
Common
38
OutA Net IdlValue
This parameter determines the state that Output A
assumes when the network is idle and Parameter 37
(OutA Net IdlState) is set to “0”.
0 = Open
User I/O Configuration
Common
39
OutB Pr FltState
This parameter in conjunction with Parameter 40 (OutB
Pr FltValue) defines how Output B will respond when a
protection trip occurs.
0=
Goto PrFlt Value
User I/O Configuration
Common
40
OutB Pr FltValue
This parameter determines the state the Out B assumes
when a protection trip occurs and Parameter 39 (OutB
Pr FltState) is set to “0”.
0 = Open
User I/O Configuration
Common
41
OutB Net FltState
This parameter in conjunction with Parameter 42 (OutB
Net FltValue) defines how Output B will respond when
a network fault occurs.
0=
Goto Idle Value
User I/O Configuration
Common
42
OutB Net FltValue
This parameter determines the state that Output B
assumes when a network fault occurs and Parameter
41 (OutB Net FltState) is set to “0”.
0 = Open
User I/O Configuration
Common
43
OutB Net IdlState
This parameter in conjunction with Parameter 44 (OutB
Net IdlValue) defines how Output B will respond when
the network is idle.
0=
Goto PrFlt Value
User I/O Configuration
Common
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Table 28 - ArmorStart Common Parameters
Parameter
Number
Parameter Name
44
OutB Net IdlValue
45
Keypad Mode
46
Description
Factory Default
Group
Controller
0 = Open
User I/O Configuration
Common
This parameter selects if the keypad operation is
maintained or momentary.
0 = Maintained
Misc. Configuration
Common
Keypad Disable
This parameter disables all keypad function except for
the OFF and RESET buttons.
0 = Not Disabled
Misc. Configuration
Common
47
Set To Defaults
This parameter if set to 1 will set the device to the
factory defaults.
0 = No Operation
Misc. Configuration
Common
48
Drive Control
This parameter provides the status of drive parameters.
0
Drive I/O Configuration
284E
49
DrvIn Pr FltState
This parameter, in conjunction with Parameter 50
(DrvIn Pr FltValue), defines how the Drive Digital Inputs
1…4 will respond when a protection trip occurs.
0=
Go to PrFlt Value
Drive I/O Configuration
284E
50
DrvIn Pr FltValue
This parameter determines the state of Drive Digital
Inputs 1…4, assumes when a trip occurs.
0 = Open
Drive I/O Configuration
284E
51
DrvIn Net FltState
This parameter, in conjunction with Parameter 52
(DrvIn Net FltValue), defines how the Drive Digital
Inputs 1…4 will respond when a network fault occurs.
0=
Go to Fault Value
Drive I/O Configuration
284E
52
DrvIn Net FltValue
This parameter determines the state of Drive Digital
Inputs 1…4 when a network fault occurs and
Parameter 51 (DrvIn Net FltState) is set to “0”.
0 = OFF
Drive I/O Configuration
284E
53
DrvIn Net FItState
This parameter, in conjunction with Parameter 54
(DrvIn Net FItValue), defines how the Drive Digital
Inputs 1…4 will respond when a DeviceNet™ network
is idle.
0=
Go to Fault Value
Drive I/O Configuration
284E
54
DrvIn Net FItValue
This parameter determines the state that Drive Digital
Inputs 1…4 assume when the network is idle and
Parameter 53 (DrvIn Net FItState) is set to “0”.
0 = OFF
Drive I/O Configuration
284E
55
High Speed Enaable
This parameter enable High Speed Inverter control thru
the terminal block.
0 = Disabled
Drive I/O Configuration
284E
56
Base Enclosure
Indicates the ArmorStart Base unit enclosure rating.
1
Basic Status
Common
57
Base Options
Indicates the options for the ArmorStart Base unit.
0
Basic Status
Common
58
Wiring Options
This parameter provides the Wiring Options.
0
Basic Status
Common
59
Starter Enclosure
This parameter provides the Starter Enclosure.
1
Basic Status
Common
60
Starter Options
This parameter provides the Starter Options.
0
Basic Status
Common
61
Last PR Fault
0 = None
Basic Status
Common
62
Warning Status
This parameter provides the Warning Status.
0
Basic Status
Common
63
Base Trip
This parameter provides the Base Module Trip Status.
0
Basic Status
Common
101
Phase A Current
This parameter provides the current of Phase A.
0
Starter Display
DOL
102
Phase B Current
This parameter provides the current of Phase B.
0
Starter Display
DOL
103
Phase C Current
This parameter provides the current of Phase C.
0
Starter Display
DOL
104
Average Current
This parameter provides the average current.
0
Starter Display
DOL
This parameter determines the state that Output B
assumes when the network is idle and Parameter 43
(OutB Net IdlState) is set to “0”.
This parameter provides the Last PR Fault.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
195
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Table 28 - ArmorStart Common Parameters
Parameter
Number
Parameter Name
Description
Factory Default
Group
Controller
105
Therm Utilized
This parameter displays the % Thermal Capacity used.
0
Starter Display
DOL
106
FLA Setting
See Table 19.
Starter Setup
DOL
107
Overload Class
Selects the overload class.
1=
Overload Class 10
Starter Setup
DOL
108
OL Reset Level
Selects the % Thermal Capacity which an overload can
be cleared.
75
Starter Setup
DOL
101
Output Freq
Output frequency present at T1, T2 & T3 (U, V & W)
Read Only
Drive Display
284E
102
Commanded Freq
Value of the active frequency command
Read Only
Drive Display
284E
103
Output Current
Output current present at T1, T2 & T3 (U, V & W)
Read Only
Drive Display
284E
104
Output Voltage
Output voltage present at T1, T2 & T3 (U, V & W)
Read Only
Drive Display
284E
105
DC Bus Voltage
Present DC bus voltage level
Read Only
Drive Display
284E
106
Drive Status
Present operating condition of the drive.
Read Only
Drive Display
284E
107…109
Fault x Code
A code that represents a drive fault.
Read Only
Drive Display
284E
110
Process Display
The output frequency scaled by Parameter 199 (Process
Factor).
Read Only
Drive Display
284E
112
Control Source
Displays the source of the Start Command and Speed
Reference.
5=
RS485 (DSI) Port
Drive Display
284E
113
Option not valid for Bulletin 284E ArmorStart.
114
Dig In Status
Status of the control terminal block digital inputs.
0
Drive Display
284E
115
Comm Status
Status of the communications ports
0
Drive Display
284E
116
Control SW Ver
Main Control Board software version for AC Drive.
Read Only
Drive Display
284E
117
Drive Type
Used by Rockwell Automation field service personnel.
Read Only
Drive Display
284E
118
Elapsed Run Time
Accumulated time drive is outputting power.
Read Only
Drive Display
284E
119
Testpoint Data
The present value of the function selected in Parameter
202 (Testpoint Sel).
Read Only
Drive Display
284E
120
Option not valid for Bulletin 284E ArmorStart.
121
Option not valid for Bulletin 284E ArmorStart.
Output power present at T1, T2 & T3 (U, V & W).
Read Only
Drive Display
284E
The angle in electrical degrees between motor voltage
and motor current.
Read Only
Drive Display
284E
Drive Temp
Present operating temperature of the drive power
section.
Read Only
Drive Display
284E
125
Counter Status
The current value of the counter when counter is
enabled.
Read Only
Drive Display
284E
126
Timer Status
The current value of the timer when timer is enabled.
Read Only
Drive Display
284E
StpLogic Status
When Parameter 138 (Speed Reference) is set to "6"
(StpLogic), this parameter will display the current
StepLogic profile as defined by Parameters 240-247
(StpLogic x).
Read Only
Drive Display
284E
122
Output Power
123
Output Power Fctr
124
128
196
The motor’s full load current rating
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Table 28 - ArmorStart Common Parameters
Parameter
Number
Parameter Name
Description
Factory Default
Group
Controller
129
Torque Current
Displays the current value of the motor torque current
as measured by the drive.
Read Only
Drive Display
284E
131
Motor NP Volts
Set to the motor name plate rated volts.
Based on Drive Rating
Drive Setup
284E
132
Motor NP Hertz
Set to the motor nameplate rated frequency.
60 Hz
Drive Setup
284E
133
Motor OL Current
Set to the maximum allowable current.
Based on Drive Rating
Drive Setup
284E
134
Minimum Freq
Sets the lowest frequency the drive will output
continuously.
0.0 Hz
Drive Setup
284E
135
Maximum Freq
Sets the highest frequency the drive will output
continuously.
60 Hz
Drive Setup
284E
136
Start Source
Sets the control scheme used to start the Bulletin 284E
ArmorStart.
5 = Comm Port
(RS485 (DSI))
Drive Setup
284E
137
Stop Mode
Sets the Valid Stop Mode for the Bulletin 284E
ArmorStart.
9=
Ramp + EM Brk
Drive Setup
284E
138
Speed Reference
Sets the Valid Speed References for the Bulletin 284E
ArmorStart.
5 = Comm Port
Drive Setup
284E
139
Accel Time 1
Sets the rate of acceleration for all speed increases.
10.0 Secs
Drive Setup
284E
140
Decel Time 1
Sets the rate of deceleration for all speed decreases.
10.0 Secs
Drive Setup
284E
141
Reset To Defaults
0 = Ready/Idle
Drive Setup
284E
Drive Setup
284E
142
143
Used to reset drive to factory default settings
Option not valid for Bulletin 284E ArmorStart.
Motor OL Ret
Enables/Disables the Motor Overload Retention
function.
0 = Disabled
Table 29 - Parameter Descriptions
Parameter
Number
Parameter
Name
151…154
Digital In 1 Sel
Digital In 2 Sel
Digital In 3 Sel
Digital In 4 Sel
Selects the function for the digital inputs.
155
Relay Out Sel
Sets the condition that changes the state of the output
relay contacts.
156
Relay Out Level
158
Reserved
159
Description
Factory Default
Group
See Table 20.
Drive Advanced Setup
0 = Ready/Fault
See Table 21.
Drive Advanced Setup
0.0
Drive Advanced Setup
—
—
Drive Advanced Setup
Reserved
—
—
Drive Advanced Setup
161
Reserved
—
—
Drive Advanced Setup
162
Reserved
—
—
Drive Advanced Setup
164
Reserved
—
—
Drive Advanced Setup
Sets the trip point for the digital output relay if the value of
Parameter 155 (Relay Out Sel) is 6, 7, 8, 10, 16, 17, 18, or 20.
165
Option not valid for Bulletin 284E ArmorStart.
166
Option not valid for Bulletin 284E ArmorStart.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
197
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Table 29 - Parameter Descriptions
Parameter
Number
Parameter
Name
167
Accel Time 2
168
Factory Default
Group
When active, sets the rate of acceleration for all speed increases
except for jog.
20.0 Secs
Drive Advanced Setup
Decel Time 2
When active, sets the rate of deceleration for all speed decreases
except for jog.
20.0 Secs
Drive Advanced Setup
169
Internal Freq
Provide the frequency command to drive when Parameter 138
(Speed Reference) is set to “1” (Internal Freq).
60.0 Hz
Drive Advanced Setup
170…177
Preset Freq 0
Preset Freq 1
Preset Freq 2
Preset Freq 3
Preset Freq 4
Preset Freq 5
Preset Freq 6
Preset Freq 7
Provides a fixed frequency command value when Parameters
151…154 (Digital In x Sel) is set to Option 4 (Preset
Frequencies).
See Table 22.
Drive Advanced Setup
178
Jog Frequency
Sets the output frequency when the jog command is issued.
10.0 Hz
Drive Advanced Setup
179
Jog Accel/Decel
Sets the acceleration and deceleration time when a jog command
is issued.
10.0 Secs
Drive Advanced Setup
180
DC Brake Time
Sets the length of time that DC brake current is injected into the
motor. Refer to Parameter 181 (DC Brake Level).
0.0 Secs
Drive Advanced Setup
181
DC Brake Level
Defines the maximum DC brake current, in amps, applied to the
motor when Parameter 137 (Stop Mode) is set to either Ramp or
DC Brake.
Drive Rated Amps x
0.05
Drive Advanced Setup
182
DB Resistor Sel
Used to set percent duty cycle for external dynamic braking.
0 = Disabled
Drive Advanced Setup
183
S Curve %
Sets the percentage of acceleration or deceleration time that is
applied to ramp as S Curve. Time is added, half at the beginning
and half at the end of the ramp.
0% (Disabled)
Drive Advanced Setup
Boost Select
Sets the boost voltage (% of Parameter 131 (Motor NP Volts))
and redefines the Volts per Hz curve. Active when Parameter 225
(Torque Perf Mode) = 0 (V/Hz). Drive may add additional voltage
unless Option 5 is selected.
8 = 5.0 (2.5 for 5 Hp
drives)
Drive Advanced Setup
185
Start Boost
Sets the boost voltage (% of Parameter 131 (Motor NP Volts))
and redefines the Volts per Hz curve when Parameter 184 (Boost
Select) = 0 (Custom V/Hz) and Parameter 225 (Torque Perf Mode)
= 0 (V/Hz).
2.5%
Drive Advanced Setup
186
Brake Voltage
Sets the frequency where brake voltage is applied when
Parameter 184 (Boost Select) = 0 (Custom V/Hz) and Parameter
225 (Torque Perf Mode) = 0 (V/Hz).
25.0%
Drive Advanced Setup
187
Brake Frequency
Sets the frequency where brake frequency is applied when
Parameter 184 (Boost Select) = 0 (Custom V/Hz) and Parameter
225 (Torque Perf Mode) = 0 (V/Hz).
15.0 Hz
Drive Advanced Setup
188
Maximum Voltage
Sets the highest voltage the drive will output.
Drive Rated Volts
Drive Advanced Setup
189
Current Limit 1
Maximum output current allowed before current limiting occurs.
Drive Rated Amps x
1.5
Drive Advanced Setup
190
Motor OL Select
Drive provides Class 10 motor overload protection. Setting 0…2
select the derating factor for I2t overload function.
0 = No Derate
Drive Advanced Setup
184
198
Description
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Table 29 - Parameter Descriptions
Parameter
Number
Parameter
Name
191
PWM Frequency
Sets the carrier frequency the PWM output waveform.
Figure 72 provides derating guidelines based on the PWM
frequency setting.
192
Auto Rstrt Tries
193
Description
Factory Default
Group
4.0 Hz
Drive Advanced Setup
Set the maximum number of times the drive attempts to reset a
fault and restart.
0
Drive Advanced Setup
Auto Rstrt Delay
Sets time between restart attempts when Parameter 192 (Auto
Rstrt Tries) is set to a value other than zero.
1.0 Secs
Drive Advanced Setup
194
Start At PowerUp
Enables/disables a feature that allows a Start or Run command to
automatically cause the drive to resume running at command
speed after the drive input is restored.
0 = Disabled
Drive Advanced Setup
195
Reverse Disable
Enables/disables the function that allows the direction of the
motor rotation to be changed.
0 = Disabled
Drive Advanced Setup
196
Flying Start En
Sets the condition that allows the drive to reconnect to a spinning
motor at actual RPM.
0 = Disabled
Drive Advanced Setup
197
Compensation
Enables/disables correction options that may improve problems
with motor instability.
1 = Electrical
Drive Advanced Setup
198
SW Current Trip
Enables/disables a software instantaneous (within 100 ms)
current trip.
0.0 (Disabled)
Drive Advanced Setup
199
Process Factor
Scales the output frequency value displayed by Parameter 110
(Process Display).
30.0
Drive Advanced Setup
200
Fault Clear
Resets a fault and clears the fault queue.
0 = Ready/Idle
Drive Advanced Setup
201
Program Lock
Protects parameters against change by unauthorized personnel.
0 = Unlocked
Drive Advanced Setup
202
Testpoint Sel
Used by Rockwell Automation field service personnel.
400
Drive Advanced Setup
203
Option not valid for Bulletin 284E ArmorStart.
204
Option not valid for Bulletin 284E ArmorStart.
205
Comm Loss Action
Selects the drive’s response to a loss of the communication
connection or excessive communication errors.
0 = Fault
Drive Advanced Setup
206
Comm Loss Time
Sets the time that the drive remain in communication loss before
implanting the option selected in Parameter 205 (Comm Loss
Action).
15.0 Secs
Drive Advanced Setup
2.0 Hz
Drive Advanced Setup
207
Option not valid for Bulletin 284E ArmorStart.
208
Option not valid for Bulletin 284E ArmorStart.
209
Option not valid for Bulletin 284E ArmorStart.
210
Option not valid for Bulletin 284E ArmorStart.
211
Option not valid for Bulletin 284E ArmorStart.
212
Option not valid for Bulletin 284E ArmorStart.
213
Option not valid for Bulletin 284E ArmorStart.
214
Slip Hertz @ FLA
Compensates for the inherent slip in an induction motor. This
frequency is added to the commanded output frequency based
on motor current.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
199
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Table 29 - Parameter Descriptions
Parameter
Number
Parameter
Name
Description
Factory Default
Group
215
Process Time Lo
Scales the time value when the drive is running at Parameter 134
(Minimum Freq). When set to a value other than zero, Parameter
110 (Process Display) indicates the duration of the process.
0.00
Drive Advanced Setup
216
Process Time Hi
Scales the time value when the drive is running at Parameter 135
(Maximum Freq). When set to a value other than zero, Parameter
110 (Process Display) indicates the duration of the process.
0.00
Drive Advanced Setup
217
Bus Reg Mode
Enables the bus regulator.
1 = Enabled
Drive Advanced Setup
218
Current Limit 2
Maximum output current allowed before current limiting occurs.
Drive Rated
Amps x 1.5
Drive Advanced Setup
219
Skip Frequency
Sets the frequency at which the drive will not operate.
0.0 Hz
Drive Advanced Setup
220
Skip Freq Band
Determines the brand width around Parameter 219 (Skip
Frequency). Parameter 220 (Skip Freq Band) is split applying 1/2
above and 1/2 below the actual skip frequency.
0.0 Hz
Drive Advanced Setup
221
Stall Fault Time
Sets for the fault time that the drive will remain in stall mode
before a fault is issued.
0 = 60 Seconds
Drive Advanced Setup
0 = Enabled
Drive Advanced Setup
200
222
Option not valid for Bulletin 284E ArmorStart.
223
Option not valid for Bulletin 284E ArmorStart.
224
Var PWM Disable
Enables/disables a feature that varies the carrier frequency for
the PWM output waveform defined by Parameter 191 (PWM
Frequency).
225
Torque Perf Mode
Enables/disables sensorless vector control operation.
1 = Sensrls Vect
Drive Advanced Setup
226
Motor NP FLA
Set to the motor nameplate full load amps.
Drive Rated Amps
Drive Advanced Setup
227
Autotune
Provides an automatic method for setting Parameter 228
(IR Voltage Drop) and Parameter 229 (Flux Current Ref), which
affect sensorless vector performance.
0 = Ready/Idle
Drive Advanced Setup
228
IR Voltage Drop
Value of volts dropped across the resistance of the motor stator.
Based on Drive
Rating
Drive Advanced Setup
229
Flux Current Ref
Value of amps for full motor flux.
Based on Drive
Rating
Drive Advanced Setup
230
PID Trim Hi
Sets the maximum positive value that is added to a PID reference
when PID trim is used.
60.0
Drive Advanced Setup
231
PID Trim Lo
Sets the minimum positive value that is added to a PID reference
when PID trim is used.
0.1
Drive Advanced Setup
232
PID Ref Sel
Enables/disables PID mode and selects the source of the PID
reference.
0 = PID Disabled
Drive Advanced Setup
233
PID Feedback Sel
Valid PID Feedback Sel command for the Bulletin 284E
ArmorStart.
0 = 0-10V Input
Drive Advanced Setup
234
PID Prop Gain
Sets the value for the PID proportional component when the PID
mode is enabled by Parameter 232 (PID Ref Sel).
0.01
Drive Advanced Setup
235
PID Integ Time
Sets the value for the PID integral component when the PID mode
is enabled by Parameter 232 (PID Ref Sel).
0.1 Secs
Drive Advanced Setup
236
PID Diff Rate
0.01 (1/Secs)
Drive Advanced Setup
Sets the value for the PID differential component when the PID
mode is enabled by Parameter 232 (PID Rel Sel).
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Bulletin 280E/281E/284E Programmable Parameters
Chapter 7
Table 29 - Parameter Descriptions
Parameter
Number
Parameter
Name
Description
Factory Default
Group
237
PID Setpoint
Provides an internal fixed value for process setpoint when the PID
mode is enabled by Parameter 232 (PID Ref Sel).
0.0%
Drive Advanced Setup
238
PID Deadband
Sets the lower limit of the PID output.
0.0%
Drive Advanced Setup
239
PID Preload
Sets the value used to preload the integral component on start or
enable.
0.0 Hz
Drive Advanced Setup
240…247
StpLogic 0…7
These parameters can be used to create a custom profile of
frequency commands.
00F1
Drive Advanced Setup
Sets the time to remain in each step if the corresponding
Parameter 138 (Speed Reference) is set to "6" (StpLogic),
Parameter 240-247 (StpLogic x), digits 0…3 set to b, C, d or E
(Step after (StpLogic Time x).
30.0 Secs
Drive Advanced Setup
250…257
StpLogic Time 0…7
260
EM Brk OFF Delay
Sets the time the drive will remain at minimum frequency before
ramping to the commanded frequency and energizing the brake
coil relay when Parameter 137 (Stop Mode) is set to Option 8 or 9.
0.0 Secs
Drive Advanced Setup
261
EM Brk On Delay
Sets the time the drive will remain at minimum frequency before
stopping and de-energizing the brake coil relay when Parameter
137 (Stop Mode) is set to Option 8 or 9.
0.0 Secs
Drive Advanced Setup
262
MOP Reset Sel
Sets the drive to save the current MOP Reference command.
1 = Save MOP Ref
Drive Advanced Setup
263
DB Threshold
Sets the DC bus Voltage Threshold for Dynamic Brake operation.
100%
Drive Advanced Setup
264
Comm Write Mode
Determines whether parameter changes made over the
communication port are saved and stored in Non-Volatile Storage
(NVS) or RAM only.
0 = Save
Drive Advanced Setup
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
201
Chapter 7
Bulletin 280E/281E/284E Programmable Parameters
Notes:
202
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Chapter
8
How to Configure an Explicit Message
Programming ControlLogix® Explicit Messaging with ControlLogix
Explicit Message
In the ControlLogix platform, explicit messaging can be done easily from within
a logic program. The request and response is configured within the MSG
function. The MSG function can be found in the Input/Output tab of
RSLogix 5000.
Setting Up the MSG Instruction
A tag name must be given to the MSG function before the rest of the information
can be defined. In this example a tag was created with the name explicit_mess.
After the instruction has been named, click on the gray box
to define the rest
of the instruction.
Figure 75 - MSG Function Found in the Input/Output Tab
Formatting an Explicit
Message
ControlLogix scanners and bridges accommodate both downloading Explicit
Message Requests and uploading Explicit Message Responses. The message
format is shown in Figure 76.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
203
Chapter 8
How to Configure an Explicit Message
Figure 76 - ControlLogix Message Format in RSLogix 5000
Box
204
Description
➊
Message Type
The message type is usually CIP Generic.
➋
Service Type
The service type indicates the service (for example, Get Attribute Single or Set Attribute Single) that you
want to perform.
➌
Service Code
The service code is the code for the requested EtherNet/IP service. This value changes based on the Service
Type that has been selected. In most cases, this is a read-only box.
If you select “Custom” in the Service Type box, then you need to specify a service code in this box (for
example, 4B for a Get Attributes Scattered service or 4C for a Set Attributes Scattered service).
➍
Class
The class is an EtherNet/IP class.
➎
Instance
The instance is an instance (or object) of an EtherNet/IP class.
➏
Attribute
The attribute is a class or instance attribute.
➐
Source Element
This box contains the name of the tag for any service data to be sent from the scanner or bridge to the
module and drive.
➑
Source Length
This box contains the number of bytes of service data to be sent in the message.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
How to Configure an Explicit Message
Box
Chapter 8
Description
➒
Destination
This box contains the name of the tag that will receive service response data from the module and drive.
➓
Path
The path is the route that the message will follow.
Note: Click Browse to find the path or type in the name of a module that you previously mapped.
Name
The name for the message.
Performing Explicit
Messages
IMPORTANT
There are five basic events in the Explicit Messaging process defined below. The details
of each step will vary depending on the controller. Refer to the documentation for your
controller.
Figure 77 - Explicit Message Process
Box
Description
➊
Format the required data and set up the ladder logic program to send an Explicit Message Request to the
scanner or bridge module (download).
➋
The scanner or bridge module transmits the Explicit Message Request to the slave device over the
EtherNet/IP network.
➌
The slave device transmits the Explicit Message Response back to the scanner. The data is stored in the
scanner buffer.
➍
The controller retrieves the Explicit Message Response from the scanner’s buffer (upload).
➎
The Explicit Message is complete.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
205
Chapter 8
How to Configure an Explicit Message
The MSG (message) instruction handles all explicit messaging initiated by a
Logix Controller program.
It will automatically create and manage TCP connections and CIP encapsulation
sessions. The user has no direct influence on this process.
Figure 78 - Example — Message Configuration Tab
The Class, Instance, and Attribute define the actual information being requested.
Additional configurations of these parameters can be found in the CIP
Appendix.
206
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Chapter
9
Diagnostics
Overview
This chapter describes the fault diagnostics of the ArmorStart® Distributed
Motor Controller and the conditions that cause various faults to occur.
Protection Programming
Many of the protective features available with the ArmorStart Distributed Motor
Controller can be enabled and adjusted through the programming parameters
provided. For further details on programming, refer to Chapter 7, Bulletin 280E/
281E/284E Programmable Parameters.
Fault Display
The ArmorStart Distributed Motor Controller comes equipped with a built-in
LED status indication which provides four status LEDs and a Reset button.
Figure 79 - LED Status Indication and Reset
Clear Fault
You may clear a fault using the following methods:
• Remotely via network communications
• A remote reset will be attempted upon detection of a rising edge (0 to 1
transition) of the “Fault Reset” bit in the various I/O assemblies. A remote
reset will also be attempted upon detection of the rising edge of the “Fault
Reset” parameter.
• Locally via the “Reset” button on the LED Status indication keypad.
Fault Codes
Table 30 provides a reference of the Fault LED indications for Bulletin 280E/
281E and Bulletin 284E Distributed Motor Controllers.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
207
Chapter 9
Diagnostics
Table 30 - Fault Indication
Blink Pattern
Fault Definitions
Fault Types
Bulletin 280E/281E
Bulletin 284E
1
Short Circuit
Short Circuit
2
Overload Trip
Overload Trip
3
Phase Loss
Phase Short
4
Reserved
Ground Fault
5
Reserved
Stall
6
Control Power
Control Power
7
I/O Fault
I/O Fault
8
Over Temperature
Over Temperature
9
Phase Imbalance
Over Current
10
A3 Power Loss
A3 Power Loss
11
Reserved
Internal Communications
12
Reserved
DC Bus Fault
13
EEPROM Fault
EEPROM Fault
14
Hardware Fault
Hardware Fault
15
Reserved
Restart Retries
16
Reserved
Misc. Fault
Short Circuit
Short Circuit indicates that the Bulletin 140M motor protector has tripped, or
that the internal wiring protection algorithm has detected an unsafe current
surge. This fault cannot be disabled.
Overload Trip
The load has drawn excessive current and based on the overload trip class
selected, the device has tripped. This fault cannot be disabled.
Phase Loss
Indicates a missing supply phase. This fault can be disabled and is disabled by
default.
208
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Diagnostics
Chapter 9
Phase Short
Indicates the drive has detected a phase short. This fault cannot be disabled.
Ground Fault
Indicates the drive has detected a ground fault. This fault cannot be disabled.
Stall
Indicates the drive has detected a stall condition, indicating the motor has not
reached full speed. This fault cannot be disabled.
Control Power
Indicates a loss of control power voltage or a blown control power circuit. This
fault can be disabled and is disabled by default.
I/O Fault
This error can indicate a shorted sensor, shorted input device, or input wiring
mistakes. It can also indicate a blown output fuse. This fault can be disabled and is
disabled by default.
Over Temperature
Indicates that the operating temperature has been exceeded. This fault cannot be
disabled.
Phase Imbalance
Indicates an imbalance supply voltage. This fault can be disabled and is disabled
by default.
Over Current
Indicates the drive has detected an over current fault. This fault cannot be
disabled.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
209
Chapter 9
Diagnostics
A3 Power Loss
Power has been lost or has dropped below the 12V threshold. This fault can be
disabled and is disabled by default.
Internal Communication Fault
Indicates an internal communication fault has been detected. This fault cannot
be disabled.
DC Bus Fault
Indicates the drive has detected a DC Bus Fault. This fault cannot be disabled.
Electrically Erasable Programmable Read-Only Memory
EEPROM Fault
This is a major fault, which renders the ArmorStart inoperable. This fault cannot
be disabled.
Hardware Fault
Indicates incorrect base/starter assembly or other hardware fault. This fault
cannot be disabled.
Restart Retries
This fault is generated when the drive detects that the auto retries count has been
exceeded. This fault cannot be disabled.
Miscellaneous Faults
• For Bulletin 284E units, this fault is actually the logical of several drive
faults not specifically enumerated.
• This fault cannot be disabled.
210
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Diagnostics
EtherNet/IP LED Status
Indication
Figure 80 - EtherNet/IP LED
Chapter 9
EtherNet/IP LED status and diagnostics consists of four LEDs.
• Link Activity/Status LEDS
– Link1 Activity/Status (Port 1) – LED Color: Bicolor (Green/Yellow).
refer to Table 31
– Link2 Activity/Status (Port 2) – LED Color: Bicolor (Green/Yellow).
refer to Table 31
• “MOD” LED – Bicolor Red/Green represents the Ethernet Module
status, refer to Table 32
• “NET” LED – Bicolor Red/Green represents the Ethernet Network
status, refer to Table 34
Table 31 - Link 1 or Link 2 Port Activity/Status
Link 1 or 2 Status LED
Description
Recommended Action
OFF
No link established
Verify network cabling, and correct, as needed.
Green
Link established at 100 Mbps
None
Flashing green
Transmit or receive activity present at 100 Mbps
None
Yellow
Link established at 10 Mbps
None
Flashing yellow
Transmit or receive activity present at 10 Mbps
None
Table 32 - Module Status Indicator
MOD Status LED
Summary
Requirement
Steady OFF
No power
If no power is supplied to the device, the module status indicator shall be steady OFF.
Steady Green
Device operational
If the device is operating correctly, the module status indicator shall be steady green.
Flashing Green
Standby
If the device has not been configured, the module status indicator shall be flashing
green.
Flashing Red
Minor fault
If the device has detected a recoverable minor fault, the module status indicator shall
be flashing red.
Note: An incorrect or inconsistent configuration would be considered a minor fault.
Steady Red
Major fault
If the device has detected a non-recoverable major fault, refer to Table 33.
Flashing Green/Red
Self-test
While the device is performing its power up testing, the module status indicator shall
be flashing green/red.
Refer to Parameter 63 “Base Trip” for the Base Module Trip Status.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
211
Chapter 9
Diagnostics
Table 33 - “Steady Red” MOD LED Status (Refer to Table 32.)
Fault Type
Description
0
EEPROM Fault
Non-volatile memory value out of range for a local parameter, or a write failure detected. This fault is also reflected by
a solid red MOD status LED.
1
Internal Comm2
The Internal communication connection has timed out. This fault is also reflected by a flashing red MOD status LED.
2
Hardware Fault
Internal diagnostics checks failed. This fault is also reflected by a solid red MOD status LED.
3
Control Module
An illegal or unsupported Control Module product code or revision has been detected. Also reported if no Control
Module is detected on power up. This fault is also reflected by a solid red MOD status LED.
Reserved
Reserved
4…15
Table 34 - Network Status Indicator
Indicator State
Summary
Requirement
Steady OFF
Not powered, no IP address
If the device does not have an IP address (or is powered OFF), the network status
indicator shall be steady OFF.
Flashing Green
No connections
If the device has no established connections, but has obtained an IP address, the
network status indicator shall be flashing green.
Steady Green
Connected
If the device has at least one established connection (even to the Message Router),
the network status indicator shall be steady green.
Flashing Red
Connection timeout
If one or more of the connections in which this device is the target has timed out,
the network status indicator shall be flashing red. This shall be left if only all timed
out connections are reestablished or if the device is reset.
Steady Red
Duplicate IP
If the device has detected that the IP addtress is already in use, the network status
indicator shal be steady red.
Flashing Red/Green
Self-test
While the device is performing its power up testing, the network status indicator
shall be flashing green/red.
Control Module LED
Status and Reset
Figure 81 - LED Status
Indication and Reset
The Control Module LED status and diagnostics consists of four status LEDs
and a Reset button. The following is a brief explanation of the operation of each
LED found on the Control Module.
Table 35 - Control Module LED Status Indication
LED
Definition
Power
This LED will be illuminated solid green when
switched control power is present and with the
proper polarity.
Ensure 24V DC is present on A1 and A2. Check if the
local disconnect is in the OFF position.
Run
This LED will be illuminated solid green when a
start command and control power is present.
Ensure 24V DC is present on A1 and A3. Check if the
user is properly commanding to RUN via Instance
162 or 166.
Network
This bicolor LED is used to indicate the status of the
internal network connection.
See Table 34, Network Status Indicator table above
for additional information.
Fault
This LED is used to indicate the fault status of the
ArmorStart. When the unit is faulted, the unit will
respond with a specific blink pattern to identify the
fault.
See Table 36 and Table 37 below for additional
information.
The “Reset Button” is a local trip reset.
212
Recommended Action
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Diagnostics
Chapter 9
Control Module Fault
LED Indications
Table 36 - Fault LED Indicators for Bulletin 280E/281E
Blink
Pattern
AutoResettable
Bulletin 280E/281E Trip
Status
1
No
Short Circuit
The circuit breaker (140M) has tripped.
Determine cause of trip. Try to reset the circuit breaker
using the disconnect handle. If the conditions continue,
check power wiring or replace based module. This cannot
be disabled.
2
Yes
Overload
The load has drawn excessive current and based on the
trip class selected, the device has tripped.
Verify that the load is operating correctly and the
ArmorStart is properly set-up. the fault cannot be
disabled.
3
Yes
Phase Loss
The ArmorStart has detected a missing phase.
Verify that 3-phase voltage is present at the line side
connections. This fault can be disabled and is disabled by
default.
4
—
Reserved
Not Used
—
5
—
Reserved
Not Used
—
6
Yes
Control Pwr Loss (Switched
Power)
The ArmorStart has detected a loss of the control power
voltage.
Check control voltage, wiring, and proper polarity (A1/A2
terminal). Also, check and replace the control voltage
fuse, if necessary. This fault can be disabled and is
disabled by default.
7
Yes
Input Fault
This error indicates a shorted sensor, shorted input
device, wiring input mistakes, or a blown output fuse.
Correct, isolated or remove wiring error prior to
restarting the system. This fault can be disabled and is
disabled by default.
8
Yes
Over Temperature
This fault is generated when the operating temperature
has been exceeded. This fault cannot be disabled.
Check for blocked or dirty heat sink fins. Verify that
ambient temperature has not exceeded 40 °C (104 °F). 1.
Clear the fault or cycle power to the drive.
9
Yes
Phase Imbalance
The ArmorStart has detected a voltage imbalance.
Check the power system and correct if necessary. This
fault can be disabled and is disabled by default.
10
Yes
Control Power (24V DC) Lost
(Unswitched Power)
The 24V DC power supply is below tolerance threshold.
Check the state of the network power supply (A3/A1
terminal) and look for media problems. This fault can be
disabled and is disabled by default.
11
—
Reserved
Not Used
—
12
—
Reserved
Not Used
—
13
No
EEprom
This is a major fault, which renders the ArmorStart
inoperable. Possible causes of this fault are transients
induced during EEprom storage routines.
If the fault was initiated by a transient, power cycling
should clear the problem, otherwise replacement of the
ArmorStart may be required. This fault cannot be
disabled.
14
No
Hdw Flt
This fault indicates that a serious hardware problem
exists.
Check for a base/starter module mismatch. If no
mismatch exists, the ArmorStart may need to be
replaced. (Hdw Flt is the factory-enabled default
setting.) This fault cannot be disabled.
15
—
Reserved
Not Used
—
16
—
Reserved
Not Used
—
Description
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Action
213
Chapter 9
Diagnostics
Table 37 - Fault LED Indicators for 284E
Bit/Blink
Pattern
AutoResettable
1
No
2
214
284E Trip Status
Description
Action
Short Circuit
The circuit breaker (140M) has tripped.
Determine cause of trip. Try to reset the circuit breaker
using the disconnect handle. If the conditions continue,
check power wiring or replace based module. This cannot
be disabled.
Drive
Controlled
Overload
(Drive Codes 7 and 64)
An excessive motor load exists
1. Reduce load so drive output current does not exceed
the current set by Parameter 133 (Motor OL Current).
2. Verify Parameter 184 (Boost Select) setting.
3. Drive rating of 150% for 1 minute.
4. Reduce load or extend Accel Time two hundred
percent or when 3 seconds has been exceeded.
3
Drive
Controlled
Phase Short
(Drive Codes 38…43)
1. Phase U, V, or W to Gnd. A phase to ground fault has
been detected between the drive and motor in this
phase.
2. Phase UV, UW, or VW Short. Excessive current has been
detected between these two output terminals.
Check the wiring between the drive and motor. Check
motor for grounded phase. Check the motor and drive
output terminal wiring for a shorted condition. Replace
drive if fault cannot be cleared.
4
Drive
Controlled
Ground Fault
(Drive Code 13)
A current path to earth ground has been detected at one
or more of the drive output terminals.
Check the motor and external wiring to the drive output
terminals for a grounded condition.
5
Drive
Controlled
Stall
(Drive Code 6)
Drive is unable to accelerate motor.
Increase Parameters 139…167 (Accel Time x) or reduce
load so drive output current does not exceed the current
set by Parameter 189 (Current Limit 1).
6
Parameter 23
(PrFlt Reset
Mode)
Control Pwr Loss (Switched
Power)
The ArmorStart has detected a loss of the control power
voltage.
Check control voltage, wiring, and proper polarity (A1/A2
terminal). Also, check and replace the control voltage
fuse, if necessary. This fault can be disabled and is
disabled by default.
7
Parameter 23
(PrFlt Reset
Mode)
Input Fault
This error indicates a shorted sensor, shorted input
device, wiring input mistakes, or a blown output fuse.
If this fault occurs, the offending problem should be
isolated or removed prior to restarting the system. This
fault can be disabled and is disabled by default.
8
Parameter 23
(PrFlt Reset
Mode)
Over Temperature
This fault is generated when the operating temperature
has been exceeded. This fault cannot be disabled.
Check for blocked or dirty heat sink fins. Verify that
ambient temperature has not exceeded 40 °C (104 °F).
1. Clear the fault or cycle power to the drive.
9
Drive
Controlled
Over Current
(Drive Codes 12 and 63)
The drive output current has exceeded the hardware
current limit.
Check programming. Check for excess load, improper
Parameter 184 (Boost Select) setting. DC brake volts set
too high or other causes of excess current. Parameter 198
(SW Current Trip) has been exceeded, check load
requirements and Parameter 198 setting.
10
Parameter 23
(PrFlt Reset
Mode)
Control Power (24V DC) Lost
(Unswitched Power)
The 24V DC power supply is below tolerance threshold.
Check the state of the network power supply (A3/A1
terminal) and look for media problems. This fault can be
disabled and is disabled by default.
11
No
Internal Comm
(Refer to Parameter 61 for
details on this fault. F81 is a
VFD fault. This could also
happen if control power is
lost.)
Communication with either the control module (VFD) or
Control module has stopped.
Refer to section Fault 11 Detail. If the problem persists
replace the unit.
12
Drive
Controlled
DC Bus Fault
(Drive Codes Reference 3, 4
and 5)
Power Loss - DC bus voltage remained below 85% of
nominal. UnderVoltage - DC but voltage fell below the
minimum value. OverVoltage - DC bus voltage exceeded
maximum value.
Monitor the incoming AC line for low voltage or line
power interruption. Check the input fuses. Monitor the
AC line for high line voltage or transient conditions. Bus
overvoltage can also be caused by motor regeneration.
Extend the decel time or install dynamic brake option.
13
No
EEprom
(PF Drive Code Reference
100)
The checksum read from the board does not match the
checksum calculated.
Set Parameter 141 (Reset to Defaults) to Option 1 “Reset
Defaults”.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Diagnostics
Chapter 9
Table 37 - Fault LED Indicators for 284E
Bit/Blink
Pattern
AutoResettable
14
No
Hdw Flt (PF Drive Codes
Reference 70 and 122)
Failure has been detected in the drive power section or
drive control and I/O section.
1. Cycle power.
2. Replace drive if fault cannot be cleared.
15
Drive
Controlled
Restart Retries (PF Drive
Code Reference 33)
Drive unsuccessfully attempted to reset a fault and
resume running for the programmed number of
Parameter 192 (Auto Rstrt Tries).
Correct the cause of the fault and manually clear.
16
Drive
Controlled
Misc. Fault (PF Drive Code
Reference 2, 8, 29, 48 and
80)
Heatsink temperature exceeds a predefined value. The
drive was commanded to write default values to EEprom.
The autotune function was either cancelled by the user or
failed. If DB1 option installed refer to P61 for additional
diagnostics.
Check for blocked or dirty heat sink fins. Verify that
ambient temperature has not exceeded 40 °C (104 °F)
and mounted properly.
1. Clear the fault or cycle power to the drive.
2. Program the drive parameters as needed. Restart
procedure.
3. Check for DB1 fault
Fault 11 Detail
284E Trip Status
Description
Action
Parameter 61 provides a more granular description of the faults that occur.
• An F11 protection fault indicates that the internal communication has
stopped
• There is a 10 second delay before an F11 Internal Comm. fault is present
• Common causes of an Internal Comm. fault:
– The local ArmorStart Disconnect switch is in the OFF position.
– 3-Phase line power feeding the ArmorStart is not connected or is
turned OFF.
– Switched Control Power is not connected or is turned OFF.
– Poor power quality (Brown Out)
• First things to check:
– Verify that the local disconnect is in the ON position.
– Verify that the unit has 3-Phase Line Voltage present and it is within
specified tolerances.
– Verify that the ArmorStart unit has Control Voltage present and it is
within specified tolerances.
– Attempt to clear the fault by pressing the local reset or sending the
ArmorStart a network reset.
– Cycle power to the ArmorStart unit and try to clear the fault again.
• If an Internal Comm. fault persists, refer to Parameter 61 – LastPR Fault
for additional details on the last protection fault. Refer to the following
table for troubleshooting information based on what Parameter 61 returns.
Also refer to Parameters 107…109 to get the VFD fault code that can be
referenced below.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
215
Chapter 9
Diagnostics
Parameter 61 Fault Code
Description
Recommended Action
13 = Control Power Loss
Control power was lost or dipped below the lower
threshold long enough to cause the Internal Comm. fault.
• Check that control power is turned on and within specified tolerances.
• Check the Control Power fuse, replace if necessary.
• Press the local reset or send the unit a network reset once control power
is restored.
14 = Control Power Fuse
The control power fuse has blown and the control power
circuit no longer is a closed circuit.
• Additional investigation as to why the fuse blew is needed. Take
corrective action accordingly.
• Replace the fuse and reset the ArmorStart either locally or over the
network.
21 = A3 Power Loss
Unswitched (A3/A2) control power was lost or dipped
below the lower threshold long enough to cause the
Internal Comm. fault.
• DeviceNet power loss
• Check that the A3 or DNet power terminal does not have any loose
connections.
• Press the local reset or send the unit a network reset once the
unswitched control power is restored
22 = Internal Comm
24 = Power Loss (3-Phase)
25 = Under Voltage (3-Phase)
• The ArmorStart's MCB lost communications with the
VFD. This is most likely due to a loss of 3-phase power.
• PF Fault Code 3 or 4
•
•
•
•
23 = Drive Comm Loss (PF Fault Code 81)
The PowerFlex VFD lost communications with the MCB.
This is most likely due to a loss of control power or
network power.
• Check that control power and the network power are both present.
• Press the local reset or send the unit a network reset.
28 = Base EEPROM
The MCB can't read the base module's EEPROM or isn't
communicating correctly with the base module. In the
EtherNet/IP units, Parameter 63 – Base Trip provides
more detail as to why the base module may not be
communicating properly with the control module
• Cycle power to the ArmorStart unit.
• Ensure that the control module is seated correctly in the base module
• Check the connector on the control module for bent or broken pins
41 = DB1 Comm
The MCB has lost communications with the Dynamic
Brake (DB1) board or the EEPROM on the DB1 board may
be corrupt.
• Press the local reset or send the unit a network reset
• Cycle power to the ArmorStart unit.
Resetting Device to
Factory Defaults
Check that the local disconnect is in the ON position.
Check for a power quality issue, take appropriate corrective actions.
Check that 3-phase power is present.
Press the local reset or send the unit anetwork reset
To factory reset the base and control module refer to parameter 47 “Set to
Defaults”. To reset only the VFD in the control module for Bulletin 284 refer to
Parameter 141 “Reset To Defaults”. Both these resets are limited and do not put
the product completely in the “out of box” configuration. The Type 1 Reset will
perform a full product reset to the “out of box” status.
SERVICE CODE 0X05
Class Code 0x0001
INSTANCE 1
Data (USINT) 1
You will need to perform a Type 1 Reset in the event that the login and password
for the product is lost and forgotten.
WARNING: A Type 1 Reset will cause all parameters and web page login to revert to
their factory defaults. No user date will be saved.
WARNING: A Type 1 Reset should only be executed when necessary or when the login
and password must be cleared and set to the factory default setting.
216
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Diagnostics
Chapter 9
In the following example, the user will utilize Rockwell Automation
RSLogix 5000 PLC programming software to create a Type 1 Reset. Other tools
can be used, provided the class, instance, and attribute values can be sent to the
product’s identify object.
1. Within RSLogix 5000, select File > New to create a new project. Ensure
the project is offline.
2. If an Add-On-Profile (AOP) window is open, click the Cancel button to
close it at the bottom of the AOP screen.
3. Close any internet browser windows, including Internet Explorer that are
being used to view the ArmorStart web browser.
IMPORTANT
For those using an Internet Browser with multiple tabs open, you will need to close the
entire browser window, not just the tab within the ArmorStart browser.
4. Unplug any inputs and outputs that are connected to the ArmorStart unit.
WARNING: A Type 1 Reset cannot be done if there is an I/O device plugged into the
product port. This may cause an unsafe state to occur in the ArmorStart or the
environment around the ArmorStart.
5. Create a new Controller Tag of data type DINT and assign it a value of 1.
a. Double click on Controller Tags in the Controller Organizer.
b. Select the Edit Tags tab at the bottom of the tag list screen.
c. Create another new tag, the example used below is named Data1.
d. Assign Data1 a value of 1 by clicking on the Monitor Tags tab and enter
a 1 in the Value field.
e. Create a tag for reset input.
1. Double click on Program Tags in the Controller Organizer
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
217
Chapter 9
Diagnostics
2. Select the Edit Tags tab at the bottom of the screen and create a
tag named Reset of the type BOOL (Boolean).
6. Create a rung in ladder logic for executing the Type 1 Reset.
a. Add an XIC Input and assign it the BOOL tag Reset.
b. Add a Message (MSG) instruction that will be used to execute the
reset. The message instruction can be found in the Input/Output
instruction set tab.
c. The completed rung should look like the one below.
7. Configure the message instruction:
a. Begin by double clicking on the tag name field and entering AS_Reset.
b. Right click on the tag name AS_Reset and select New “AS_Reset”.
218
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Diagnostics
Chapter 9
c. Verify the tag data type and options with the figure below and
click OK.
d. Bring up the Configuration Dialog screen by clicking the box next to
the tag name AS_Reset.
e. Select CIP Generic from the Message Type drop-down menu and
Custom from the Service Type drop-down menu.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
219
Chapter 9
Diagnostics
f. Click on the Source Element drop-down box and select the Data1 tag
that was created earlier and press Enter.
g. Enter 5 for the Service Code, 1 for the Class, and 1 for the Instance.
Leave the Attribute value at 0. Once you have added these values, the
Service Type should automatically change to Device Reset.
220
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Diagnostics
Chapter 9
h. Click on the Communication tab at the top of the window. Click on
the Browse button, select the ArmorStart that is in your project, and
click OK. This selects the ArmorStart as the device you are going to
send the reset message to.
i. You do not need to configure anything in the Tag tab. Click Apply and
then OK.
8. Save your project. Download the project to the PLC and go Online.
9. Inhibit the ArmorStart using the AOP:
a. Once online, open the ArmorStart's AOP and click on the Connection
tab. Select Inhibit Module from the options.
b. Click Apply, the following screen should pop-up. Click Yes. Then click
OK to close out the AOP.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
221
Chapter 9
Diagnostics
c. You should see the yellow inhibit symbol next to the ArmorStart in the
I/O Configuration tree showing that the module is inhibited.
10. Execute the instruction by toggling the Reset input that was created
earlier.
a. Energize the bit by left mouse clicking on the input and pushing
CTRL+T. De-energize the bit with CTRL+T again.
b. You should see the status LEDs on the ArmorStart display the Reset
and Power Cycle sequence. You should also see the Done (DN) bit of
the message turn green indicating that the reset was successful.
11. Verify the reset worked by bringing the ArmorStart's web browser back up
and verifying that the User Name is Administrator and that there is no set
password.
12. Uninhibit the ArmorStart module through the AOP and plug any I/O
connections back into the ArmorStart.
222
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Chapter
10
Troubleshooting
Introduction
The purpose of this chapter is to assist in troubleshooting the ArmorStart®
Distributed Motor Controller using the LED status display and diagnostic
parameters.
ATTENTION: Servicing energized industrial control equipment can be hazardous.
Electrical shock, burns or unintentional actuation of controlled industrial equipment
may cause death or serious injury. For safety of maintenance personnel as well as others
who might be exposed to electrical hazards associated with maintenance activities,
follow the local safety related work practices (for example, the NFPA70E, Part II in the
United States). Maintenance personnel must be trained in the safety practices,
procedures, and requirements that pertain to their respective job assignments.
ATTENTION: Do not attempt to defeat or override fault circuits. The cause of the fault
indication must be determined and corrected before attempting operation. Failure to
correct a control system of mechanical malfunction may result in personal injury and /
or equipment damage due to uncontrolled machine system operation.
ATTENTION: The drive contains high voltage capacitors that take time to discharge
after removal of mains supply. Before working on drive, ensure isolation of mains
supply from line inputs (R, S, T, [L1, L2, L3]). Wait three minutes for capacitors to
discharge to safe voltage levels. Failure to do so may result in personal injury or death.
Darkened display LEDs is not an indication that capacitors have discharged to safe
voltage levels.
ATTENTION: Only qualified personnel familiar with adjustable frequency AC drives and
associated machinery should plan or implement the installation, startup, and
subsequent maintenance of the system. Failure to comply may result in personal injury
and/or equipment damage.
ATTENTION: This drive contains electrostatic discharge (ESD) – sensitive parts and
assemblies. Static control precautions are required when installing, testing, servicing,
or repairing this assembly. Component damage may result if ESD control procedures
are not followed. If you are not familiar with static control procedures, refer
to Allen-Bradley Publication 8000-4.5.2, Guarding against Electrostatic Damage,
or any other applicable ESD protection handbook.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
223
Chapter 10
Troubleshooting
ATTENTION: An incorrectly applied or installed drive can result in component damage
or a reduction in product life. Wiring or application errors, such as undersizing of the
motor, incorrect or inadequate AC supply, or excessive ambient temperatures may result
in malfunction of the system.
Bulletin 280E/281E
Troubleshooting
The following flowchart for Bulletin 280E/281E units is provided to aid in quick
troubleshooting.
Figure 82 - Bulletin 280E/281E Control Module LED Status
Yes
Faulted Display
No
Bulletin 284E
Troubleshooting
224
Fault
LED
Network
LED
Motor will not
Start
See
Table 30
See
Table 34
See
Table 40
Fault Definitions
Some of the Bulletin 284E ArmorStart Distributed Motor Controller faults are
detected by the internal hardware of the ArmorStart, while others are detected by
the internal drive. For internal drive faults, the internal hardware of the
ArmorStart simply polls the drive for the existence of faults and reports the fault
state. No fault latching is done by the internal hardware of the ArmorStart for
these faults. The PrFlt ResetMode parameter (Parameter 23) determines the
Auto Resettability of only the faults that are detected on the main control board.
The Auto Resettability of the faults that are detected in the internal drive is
controlled by internal drive parameters, refer to Table 38. The following
flowchart for Bulletin 284E units is provided to aid in quick troubleshooting.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Troubleshooting
Chapter 10
Figure 83 - Bulletin 284E Control Module LED Status
Faulted Display
Yes
No
Define Nature of
the Problem
Fault
LED
Network
LED
Motor will not
start
See
Table 37
See
Table 34
See
Table 40
Actions
DB1 Faults
Operation and Troubleshooting of the DB1 - Dynamic Brake
Eight types of DB1 faults are detected and reported in Parameter 61 as either a
“DB1 Flt”, “DB1 Comm Fault” or DB1 Switch Short”. DB1 faults are also
reported in Attribute 158 “DB1 Fault” of the Control Supervisor Object (Class
Code: 29 Hex). See Appendix B for Control Supervisor information.
If the ArmorStart Fault LED blinks 11x's check parameter 61. If value is 41,
check the following:
• DB1 Comm Fault
If the ArmorStart Fault LED blinks 16x's check parameter 61. If value is 42,
check the following:
• DB1 Resistor Overtemperature Fault
• DB1 Overcurrent Fault
• DB1 Undercurrent Fault
• DB1 Open Fault
• DB1 VBus Link Fault
If the ArmorStart Fault LED blinks 16x's check parameter 61. If value is 43,
check the following:
• DB1 Switch Fault
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
225
Chapter 10
Troubleshooting
The DB1 option provides the following warning:
• DB1 Thermal Warning
DB1 Resistor Overtemperature Fault
Control Supervisor Object “DB1 Fault” Attribute Bit 0.
The DB1 measures current continuously, and models resistor body temperature
based on measured current and resistor model parameters. The DB1 not only
calculates the present resistor body temperature, but also predicts the future
resistor body temperature. The resistor overtemperature level is based on the
predicted future resistor body temperature, not on the present resistor body
temperature. This fault is disabled when Parameter 182 (DB1 Resistor Sel) is
“Disabled”.
Troubleshooting – DB1 Resistor body temperature is too hot. Allow resistor
to cool.
DB1 Overcurrent Fault
Control Supervisor Object “DB1 Fault” Attribute Bit 1.
The DB1 compares each current measurement against the Max Current Level. If
5 consecutive samples are above the Max Current Level, then a fault is recorded.
This fault is intended to notify the user if the DB1 resistance is lower than
expected. This fault is disabled when Parameter 182 (DB1 Resistor Sel) is
“Disabled”.
Troubleshooting – DB1 monitor has measured a DB1 current higher than
expected. Turn off all power to unit. Allow at least 3 minutes for capacitors to
discharge. Disconnect DB1 resistor from ArmorStart control module. Caution:
DB1 resistor may still be hot. Measure DB1 resistor value at the connector with
an ohmmeter. Refer to the specification for minimum DB1 resistor values. If DB1
resistance value is within limits, replace control module. If not, replace DB1
resistor.
DB1 Undercurrent Fault
Control Supervisor Object “DB1 Fault” Attribute Bit 2.
The DB1 compares each current measurement against the Min Current Level.
The Min Current Level = Min DB1 Voltage Level/Max DB1 Resistance. If 5
consecutive samples are below the Min Current Level and the DB1 is ON, then a
fault is recorded. This fault is intended to notify the user if the DB1 resistance is
226
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Troubleshooting
Chapter 10
higher than expected. This fault is disabled when Parameter 182 (DB1 Resistor
Sel) is “Disabled”.
Troubleshooting – DB1 monitor has measured a DB1 current lower than
expected. Turn off all power to unit. Allow at least 3 minutes for capacitors to
discharge. Disconnect DB1 resistor from ArmorStart control module. Caution:
DB1 resistor may still be hot. Measure DB1 resistor value at the connector
with an ohmmeter. Refer to the specification for minimum DB1 resistor values.
If DB1 resistance value is within limits, replace control module. If not, replace
DB1 resistor.
DB1 Switch Fault
Control Supervisor Object “DB1 Fault” Attribute Bit 3.
A DB1 Switch fault is issued when continuous DB1 resistor current is detected
when the Drive Bus Voltage level is less than the DB1 Voltage Level. If 5
consecutive samples of Drive Bus Voltage less than DB1 Level is detected along
with continuous DB1 resistor current flow, then a shorted DB1 IGBT fault
(DB1 Switch) is recorded.
It is the user’s responsibility to provide an input power contactor to each
ArmorStart with a drive. The user must write logic to control (open) the input
contactor to the ArmorStart in the event of a DB1 Switch Fault. The Instruction
Literature provides information on how to connect the input contactor, and how
to implement the logic.
Troubleshooting – Attempt to reset the fault by removing all power to the unit
and restarting. If the fault persists, replace control module.
DB1 Open Fault
Control Supervisor Object “DB1 Fault” Attribute Bit 4.
A DB1 Open fault is issued when Bus Voltage is greater than the DB1 Voltage
Level, and no DB1 resistor current has been detected. If 5 consecutive samples
of Drive Bus Voltage greater than the DB1 Level is detected along with no DB1
resistor current flow, then an open DB1 fault is recorded. This fault is intended
to notify the customer of an open DB1 resistor, or open wire. The fault is disabled
when the DB1 Resistor Sel, Parameter (182) is “Disabled”.
Troubleshooting – DB1 monitor expected to see current flow and measured
none. Likely cause is an open DB1 resistor, loose DB1 resistor connector, or open
wire in DB1 cable. Check DB1 cable connector for tightness. If problem persists,
remove DB1 resistor cable connector from unit and check DB1 resistance. If
DB1 resistor is open, replace DB1 resistor. Otherwise replace control module.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
227
Chapter 10
Troubleshooting
DB1 VBus Link Fault
Control Supervisor Object “DB1 Fault” Attribute Bit 6.
For proper operation, the DB1 monitors parameters from the Drive internally
inside the ArmorStart. If the internal communications to the drive is lost, then
this fault is issued. Since the DB1 can no longer provide resistor protection, the
user must implement logic to open the input contactor.
Troubleshooting – Make sure that 3-phase line power and control power is
applied to unit. Attempt to reset fault. If fault persists, replace control module.
DB1 Comm Fault
Control Supervisor Object “DB1 Fault” Attribute Bit 8.
The communications link is monitored continuously. If the DB1 stops
responding, then the MCB issues this fault. Since the DB1 can no longer provide
resistor protection, the user must implement logic to open the input contactor.
Troubleshooting – Replace control module.
DB1 Thermal Warning
Control Supervisor Object “DB1 Status” Attribute Bit 1.
A DB1 Thermal Warning is issued if the predicted future resistor body
temperature is greater than the Max DB1 resistor temperature x DB1 Thermal
Warning Percent.
Troubleshooting – None. DB1 resistor thermal value has exceeded the preset
threshold of 90% of thermal value.
228
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Troubleshooting
Chapter 10
Internal Drive Faults
A fault is a condition that stops the drive. There are two fault types.
Table 38 - Internal Drive Faults
Type
Description
1
Auto-Reset/Run
When this type of fault occurs, Parameter 192 (Auto Rstrt Tries) and related Parameter(s): 155 (Relay Out
Sel), 193 (Auto Rstrt Delay) are set to a value greater than 0, a user-configurable timer, Parameter 193 (Auto
Rstrt Delay) and related Parameter: 192 (Auto Rstrt Tries), begins. When the timer reaches zero, the drive
attempts to automatically reset the fault. If the condition that caused the fault is no longer present, the fault
will be reset and the drive will be restarted
2
Non-Resettable
This type of fault may require drive or motor repair, or is caused by wiring or programing errors. The cause of
the fault must be corrected before the fault can be cleared.
Automatically Clearing Faults (Option/Step)
Clear a Type 1 Fault and Restart the Drive:
1. Set Parameter 192 (Auto Rstrt Tries) to a value other than 0.
2. Set Parameter 193 (Auto Rstrt Delay) to a value other than 0.
Clear an Overvoltage, Undervoltage or Heatsink OvrTmp Fault without
Restarting the Drive:
1. Set Parameter 192 (Auto Rstrt Tries) to a value other than 0.
2. Set Parameter 193 (Auto Rstrt Delay) to 0.
Auto Restart (Reset/Run)
The Auto Restart feature provides the ability for the drive to automatically
perform a fault reset followed by a start attempt without user or application
intervention. This allows remote or unattended operation. Only certain faults are
allowed to be reset. Certain faults (Type 2) that indicate possible drive
component malfunction are not resettable. Caution should be used when
enabling this feature, since the drive will attempt to issue its own start command
based on user selected programming.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
229
Chapter 10
Troubleshooting
The following table describes Bulletin 284E Faults as seen in Parameters 107,
108, and 109 (Fault 1, 2 or 3).
Table 39 - Bulletin 284E Faults – Parameters 107, 108, and 109 (Fault 1, 2 or 3)
No.
Fault
Type
➊
F2
Auxiliary Input
1
Auxiliary input interlock is open.
4. Check remote wiring.
5. Verify communications.
F3
Power Loss
2
DC bus voltage remained below 85% of
nominal.
6. Monitor the incoming AC line for low voltage or line power interruption.
7. Check input fuses.
F4
UnderVoltage
1
DC bus voltage fell below the minimum
value.
8. Monitor the incoming AC line for low voltage or line power interruption.
F5
OverVoltage
1
DC bus voltage exceeded maximum
value.
9. Monitor the AC line for high line voltage or transient conditions. Bus overvoltage can also
be caused by motor regeneration. Extend the decel time or install dynamic brake option.
F6
Motor Stalled
1
Drive is unable to accelerate motor.
10. Increase Parameters 139 or 167 (Accel Time x) or reduce load so drive output current does
not exceed the current set by Parameter 189 (Current Limit 1).
F7
Motor Overload
1
Internal electronic overload trip
11. An excessive motor load exists. Reduce load so drive output current does not exceed the
current set by Parameter 133 (Motor OL Current).
12. Verify Parameter 184 (Boost Select) setting
F8
Heatsink OvrTmp
1
Heatsink temperature exceeds a
predefined value.
13. Check for blocked or dirty heat sink fins. Verify that ambient temperature has not
exceeded 40°C.
14. Replace internal fan.
F12
HW OverCurrent
2
The drive output current has exceeded
the hardware current limit.
15. Check programming. Check for excess load, improper programming of Parameter 184
(Boost Select), DC brake volts set too high, or other causes of excess current.
F13
Ground Fault
2
A current path to earth ground has been
detected at one or more of the drive
output terminals.
16. Check the motor and external wiring to the drive output terminals for a grounded
condition.
F33
Auto Rstrt Tries
Drive unsuccessfully attempted to reset a
fault and resume running for the
programmed number of Parameter 192
(Auto Rstrt Tries).
17. Correct the cause of the fault and manually clear.
F38
F39
F40
Phase U to Gnd
Phase V to Gnd
Phase W to Gnd
2
A phase to ground fault has been
detected between the drive and motor in
this phase.
18. Check the wiring between the drive and motor.
19. Check motor for grounded phase.
20. Replace starter module if fault cannot be cleared.
F41
F42
F43
Phase UV Short
Phase UW Short
Phase VW Short
2
Excessive current has been detected
between these two output terminals.
21. Check the motor and drive output terminal wiring for a shorted condition.
22. Replace starter module if fault cannot be cleared.
F48
Params Defaulted
2
The drive was commanded to write
default values to EEPROM.
23. Clear the fault or cycle power to the drive.
24. Program the drive parameters as needed.
F63
SW OverCurrent
2
Programmed Parameter 198 (SW Current
Trip) has been exceeded.
25. Check load requirements and Parameter 198 (SW Current Trip) setting.
F64
Drive Overload
2
Drive rating of 150% for 1 min. or 200%
for 3 sec. has been exceeded.
26. Reduce load or extend Accel Time.
F70
Power Unit
2
Failure has been detected in the drive
power section.
27. Cycle power.
28. Replace starter module if fault cannot be cleared.
F80
SVC Autotune
The autotune function was either
cancelled by the user or failed.
29. Restart procedure.
230
Description
Action
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Troubleshooting
Chapter 10
Table 39 - Bulletin 284E Faults – Parameters 107, 108, and 109 (Fault 1, 2 or 3)
No.
Fault
Type
➊
F81
Comm Loss
2
RS485 (DSI) port stopped
communicating.
30. Turn off using Parameter 205 (Comm Loss Action).
31. Replace starter module if fault cannot be cleared.
F100
Parameter
Checksum
2
The checksum read from the board does
not match the checksum calculated.
32. Set Parameter 141 (Reset To Defaults) to Option 1 (Reset Defaults).
F122
I/O Board Fail
2
Failure has been detected in the drive
control and I/O section.
33. Cycle power.
34. Replace starter module if fault cannot be cleared.
Description
Action
➊ See Table 38 for Type description.
Table 40 - Motor Does Not Start
Cause(s)
Indication
Corrective Action
No output voltage to the motor.
None
Check the power circuit.
• Check the supply voltage.
• Check all fuses and disconnects
Check the motor.
• Verify that the motor is connected properly.
• Verify that I/O Terminal 01 is active.
• Verify that Parameter 136 (Start Source) matches your configuration.
• Verify that Parameter 195 (Reverse Disable) is not prohibiting movement.
Drive is Faulted
Flashing red status light
Clear fault.
• Press Stop
• Cycle power
• Set Parameter 200 (Fault Clear) to Option 1 (Clear Faults).
• Cycle digital input is Parameters 151…154 (Digital In x Sel) is set to Option 7, (Clear
Faults).
Table 41 - Drive Does Not Respond to Changes in Speed Command
Cause(s)
Indication
Corrective Action
No value is coming form the
source of the command.
The drive Run indicator is lit
and output is 0 Hz.
• Check Parameter 112 (Control Source) for correct source.
• If the source is an analog input, check wiring and use a meter to check for presence of
signal.
• Check Parameter 102 (Commanded Freq) to verify correct command.
Incorrect reference source is
being selected via remote device
or digital inputs.
None
• Check Parameter 112 (Control Source) for correct source.
• Check Parameter 114 (Dig In Status) to see if inputs are selecting an alternate source. Verify
settings for Parameters 151…154 (Digital In x Sel).
• Check Parameter 138 (Speed Reference) for the source of the speed reference. Reprogram
as necessary.
Table 42 - Motor and/or Drive Will Not Accelerate to Commanded Speed
Cause(s)
Indication
Corrective Action
Acceleration time is excessive.
None
Reprogram Parameter 139 (Accel Time 1) or Parameter 167 (Accel Time 2).
Excess load or short acceleration
times force the drive into current
limit, slowing, or stopping
acceleration.
None
• Compare Parameter 103 (Output Current) with Parameter 189 (Current Limit1).
• Remove excess load or reprogram Parameter 139 (Accel Time 1) or Parameter 167 (Accel
Time 2).
• Check for improper setting of Parameter 184 (Boost Select).
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
231
Chapter 10
Troubleshooting
Table 42 - Motor and/or Drive Will Not Accelerate to Commanded Speed
Cause(s)
Indication
Corrective Action
Speed command source or value
is not as expected.
None
• Verify Parameter 102 (Commanded Freq).
• Check Parameter 112 (Control Source) for the proper Speed Command.
Programming is preventing the
drive output from exceeding
limiting values.
None
Check Parameter 135 (Maximum Freq) to insure that speed is not limited by programming.
Torque performance does not
match motor characteristics.
None
• Set motor nameplate full load amps in Parameter 226 (Motor NP FLA).
• Use Parameter 227 (Autotune) to perform Static Tune or Rotate Tune procedure.
• Set Parameter 225 (Torque Perf Mode) to Option 0 (V/Hz).
Table 43 - Motor Operation is Unstable
Cause(s)
Motor data was incorrectly
entered.
Indication
None
Corrective Action
1. Correctly enter motor nameplate data into Parameters 131, 132, and 133.
2. Enable Parameter 197 (Compensation).
3. Use Parameter 184 (Boost Select) to reduce boost level.
Table 44 - Drive Will Not Reverse Motor Direction
Cause(s)
Indication
Corrective Action
Digital input is not selected for
reversing control.
None
Check Parameters 151…154 (Digital In x Sel). Choose correct input and program
for reversing mode.
Motor wiring is improperly
phased for reverse.
None
Switch two motor leads.
Reverse is disabled.
None
Check Parameter 195 (Reverse Disable).
Table 45 - Drive Does Not Power Up
Cause(s)
232
Indication
Corrective Action
No input power to drive.
None
Check the power circuit.
• Check the supply voltage.
• Check all fuses and disconnects.
Jumper between I/O Terminals P2
and P1 not installed and/or DC
Bus Inductor not connected.
None
Install jumper or connect DC Bus Inductor.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Troubleshooting
Chapter 10
Control Module Removal
ATTENTION: To avoid shock hazard, disconnect main power before working on the
controller, motor, or control devices.
1. Disconnect power by going to the control module and turning OFF the
At-Motor disconnect and performing lockout-tagout per your company
policy.
2. Remove motor cable.
3. Loosen the four mounting screws.
4. Unplug the Control module from the base by pulling forward.
Installation of Control Module
5. Install control module.
6. Tighten four mounting screws.
7. Install motor cable.
Figure 84 - Control Module Replacement
1
4
Motor Cable
2
3
5
7
Note: DeviceNet™ base module is shown.
6
30 lb•in./
3.39 N•m
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
233
Chapter 10
Troubleshooting
Figure 85 - Control Voltage and Output Fuse Replacement
Output Fuse
Cat. No. 25176-155-03
Control Voltage Fuse
Cat. No. 25172-260-17
Figure 86 - Source Brake Fuse Replacement (Bulletin 284E only)
Source Control Brake Fuses
Cat. No. W25172-260-12
234
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Troubleshooting
Troubleshoot and General
Solutions for Linear or DLR
Networks
Chapter 10
Before you attempt to correct specific faults on your linear or DLR network, we
recommend that you first take the following actions when a fault appears.
• For a DLR network:
– verify that you have configured at least one node as a supervisor on the
network and that Network Topology = Ring.
– verify that all cables on the network are securely connected to each
device.
– verify that all devices that require an IP address have one assigned
correctly.
– check the Network Status field on the active supervisor node’s status
page to determine the fault type.
• For a linear network:
– verify that none of the nodes are configured as a supervisor on
the network and that Network Topology = Linear.
– If any nodes on a linear network are configured as a supervisor, it may
impact communication to other devices connected to the network.
– verify that all cables on the network are securely connected to each
device.
– verify that all devices that require an IP address have one assigned
correctly.
If the fault is not cleared once you have completed the actions listed above, use
the tables in the rest of this chapter to troubleshoot issues specific to a DLR
network or a linear network.
Specific Issues on Your DLR or Linear Network
Use the following table to troubleshoot possible specific issues on your DLR or
linear network that are not solved by the actions described above.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
235
Chapter 10
Troubleshooting
Table 46 - Troubleshoot DLR or Linear Network
Issue
Description
Solution
A link on the DLR network may be broken:
• Intentionally, for example, because you are adding or deleting nodes but have not made all physical
connections to restore the set up of the network with/without
the node.
• Unintentionally, for example, because a cable is broken or a device malfunctions.
When this fault occurs, the adjacent nodes to the faulted part of the network are displayed in the Ring
Fault group and the Network Status field = Ring Fault.
The screen shot below shows the Ring Fault section with IP addresses appearing for the last active
nodes. The faulted node is between nodes 10.88.80.115 and 10.88.80.208. If the IP address of either
node is not available, the software will display the node’s MAC ID.
Determine where the fault condition exists and
correct it.
You may need to click the Refresh Communication
link to update the Ring Fault information to
determine where the fault condition exists.
Figure 87 - Ring Fault Section
Supervisor Reports Once the fault is corrected, the ring is automatically restored, and the Network Status field returns to
a Ring Fault
Normal.
236
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Troubleshooting
Chapter 10
Table 46 - Troubleshoot DLR or Linear Network
Issue
Description
Solution
When a Rapid Ring Fault occurs, the following events occur:
• The active supervisor will block traffic on port 2, resulting in possible network segmentation, that is,
some nodes may become unreachable.
• The Link 2 status indicator on the active supervisor is off.
• As soon as the fault occurs, for both RSLogix 5000 programming software and RSLinx communication
software, the Status field = Rapid Fault/Restore Cycles.
Multiple possible solutions exist.
• For the disconnections and reconnections
issue, no solution is required.
Clear the fault when you have reconnected the
device to the network permanently.
• For the duplex mismatch issue, reconfigure the
duplex parameters to make sure they match
between the devices.
• For the electromagnetic noise issue, determine
where the noise exists and eliminate it or use a
protective shield in that location.
• For the unstable connections issue, determine
where they exist on the network and correct
them.
• Check the media counters for all devices on the
network. The device with the highest media
counter count is most likely causing the Rapid
Ring Fault.
• Remove devices from the network one by one.
When you see the Rapid Ring Fault disappear
after a device is removed, that device is
causing the fault.
• Finally, your Beacon Interval or Timeout
configuration may not be appropriate for your
network.
However, if you think you need to change
these values, we recommend that you call
Rockwell Automation technical support.
Once the fault is fixed, click Clear Fault.
Figure 88 - Rapid Fault/Restore Cycles Status
Rapid Ring Fault
Any of the following may cause a Rapid Ring Fault:
• 5 intentional disconnections/reconnections of a node from the network within 30 s
• A duplex mismatch between two connected devices
• Electromagnetic noise on the network
• Unstable physical connections, such as intermittent connectors
Given the nature of a Rapid Ring Fault, the Last Active Node information may not be accurate when a
Rapid Ring Fault condition is present
Partial Fault
Condition
A partial network fault occurs when traffic is lost in only one direction on the network because a ring
member is not forwarding beacons in both directions for some reason, such as because of a component
failure.
The active ring supervisor detects a partial fault by monitoring the loss of Beacon frames on one port
and the fault location appears in the Ring Fault section of the Network tab.
When a partial fault is detected, the active ring supervisor blocks traffic on one port. At this point, the
ring is segmented due to the partial fault condition. The nodes adjacent to the faulted part of the
network are displayed in the Ring Fault group with either IP addresses or MAC ID’s for each node
displayed.
When this fault occurs the Network Status field = Partial Fault Condition.
Once the fault is corrected, it automatically clears, and the Network Status field returns to Normal.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Determine where the fault condition exists and
correct it.
237
Chapter 10
Troubleshooting
Table 46 - Troubleshoot DLR or Linear Network
Issue
Description
The media counters screen displays the number of physical layer errors or collisions. The screen below
indicates where to check for errors encountered. Error levels are displayed depending on what caused
the error. For example, an Alignment Error is displayed in the Alignment Error field.
Figure 89 - Media Counter Screen
Media Counter
Errors or Collisions
238
On a DLR network, it is not uncommon to see low levels of media counter errors. For example, if the
network breaks, a low level of media counter errors appear. With a low level of media counter errors, the
value typically does not continuously increase and often clears.
A high level of media counter errors typically continues to increase and does not clear. For example,
there is a mismatch of speed between two linked nodes, a high level of media counter errors appears,
steadily increasing and not clearing.
To access the RSLinx screen above, browse the network, right-click on the device, select Module
Properties and click the Port Diagnostics tab.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Solution
Some example solutions include:
• Check for a mismatch of speed and/or duplex
between two linked nodes.
• Verify that all cables on the network are
securely connected to each device.
• Check for electromagnetic noise on the
network. If you find it, eliminate it or use a
protective shield in that location.
Chapter
11
Specifications for EtherNet/IP
Bulletin 280E/281E
Electrical Ratings
Rated Operation Voltage
Rate Insulation Voltage
Rated Impulsed Voltage
Dielectric Withstand
Operating Frequency
Power Circuit
Utilization Category
Protection Against Shock
Rated Operating Current Max.
Control Circuit
Short Circuit
Protection
Rated Operation Voltage
Rate Insulation Voltage
Rated Impulsed Voltage
Dielectric Withstand
Overvoltage Category
Operating Frequency
Short Circuit Protection Device
(SCPD) Performance Type 1
SCPD List
UL/NEMA
IEC
200…575V
200…575V
600V
600V
6 kV
6 kV
2200V AC
2500V AC
50/60 Hz
50/60 Hz
N/A
AC-3
N/A
IP2X
280_-____-10A-* ➊
1.2 A
280_-____-10B-* ➊
2.5 A
280_-____-10C-* ➊
5.5 A
280_-____-25D-* ➊
16 A
24V DC (+10%, –15%) A2 (should be grounded at voltage source)
250V
250V
—
4kV
1500V AC
2000V AC
—
III
50/60 Hz
—
Current Rating
Voltage
480Y/277V
480Y/480V
600Y/347V
0.24…1.2 A
0.5…2.5 A
65 kA
65 kA
30 kA
Sym. Amps rms
1.1…5.5 A
3.2…16 A
30 kA
30 kA
30 kA
Size per NFPA 70 (NEC) or NFPA 79 for Group Motor Applications
600V
30 kA
30 kA
➊See Contactor Life Load Curves on page 244
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
239
Chapter 11
Specifications for EtherNet/IP
UL/NEMA
Environmental
Operating Temperature Range
Storage and Transportation
Temperature Range
Altitude
Humidity
Pollution Degree
Enclosure Ratings
Approximate Shipping Weight
IEC
–20…40 °C (–4…104 °F)
–25….85 °C (–13…185 °F)
1000 m
5…95% (on-condensing)
3
NEMA 4/12
IP67
18.1 kg (40 lbs)
Resistance to Shock
Operational
Non-Operational
Operational
Non-Operational
Wire Size
Mechanical
Tightening Torque
Wire Strip Length
WireSize
Tightening Torque
Wire Strip Length
Disconnect Lock Out
CatNo 100280/1_-_12*
280/1_-_23*
Contactor Mechanical Life
Conducted Radio Frequency Emissions
Radiated Emissions
Electrostatic Discharge
Other Rating
Radio Frequency Electromagnetic Field
Fast Transient
Surge Transient
Overload Current Range
Other Rating
Trip Classes ➊
Trip Rating
Number of poles
15 G
30 G
Resistance to Vibration
1 G, 0.15 mm (0.006 in.) Displacement
2.5 G, 0.38 mm (0.015 in.) Displacement
Power and Ground Terminals
Primary/Secondary Terminal:
Primary/Secondary Terminal:
#16…#10 AWG
1.0…4.0 mm2
Primary Terminal: 10.8 lb·in.
Primary Terminal: 1.2 N·m
Secondary Terminal: 4.5 lb·in.
Secondary Terminal: 0.5 N·m
0.35 in. (9 mm)
Control Terminals
#18…#10 AWG
1.0…4.0 mm2
6.2 lb·in.
0.7 N·m
0.35 in. (9 mm)
Maximum of 5/16 in. (8 mm) lock shackle or hasp. The hasp should not exceed
5/16 in. (8 mm) when closed, or damage will occur to disconnect guard.
Ops
C12
C23
Mil
13
—
Mil
—
13
EMC Emission Levels
10V rms Communications Cables
10V rms (PE)
150 kHz…80 MHz
Class A
EMC Immunity Levels
4 kV contact and 8 kV Air
10V/m, 80 MHz…1 GHz
3V/m, 1.4 GHz…2 GHz
1V/m, 2.0 GHz …2.7 GHz
2 kV (Power)
2 kV (PE)
1 kV (Communications and Control)
1 kV (12) L-L, 2 kV (2) L-N (Earth)
280_-____-10A-*
0.24…1.2 A
280_-____-10B-*
0.5…2.5 A
280_-____-10C-*
1.1…5.5 A
280_-____-25D-*
3.2…16 A
10, 15, 20
120% of Full Load current (FLC) Setting
3
➊Refer to Motor Overload Trip Curves on page 243
240
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Specifications for EtherNet/IP
UL/NEMA
Chapter 11
IEC
UL 508
CSA C22.2, No. 14
EN/IEC 60947-4
EN/IEC 60947-4-1
CE Marked per Low Voltage 2006/95/EC
EMC Directive 2004/108/EC
CCC
ODVA for EtherNet/IP
cULus (File No. E3125, Guides NLDX, NLDX7)
Standards Compliance
Certifications
EtherNet/IP Version – Control and I/O Power Requirements
A1/A2 ➊
Units
A3/A2 ➋
A1/A2 ➊
W/O HOA
A3/A2 ➋
A3/A2 ➌
W/ HOA
Control Voltage
Volts
24V DC
Module Inrush
Amps
0.92
0.30
1.09
0.125
0.295
Module Steady
Amps
0.06
0.30
0.23
0.125
0.295
Total Control Power (Pick Up)
Watts
22.08
7.20
26.16
3.00
7.08
Total Control Power (Running)
Watts
1.44
7.20
5.52
3.00
7.08
➊ Add power requirements for outputs (1 A max.) to A1/A2.
➋ Add power requirements for inputs (200 mA max.) to A3/A2.
➌ If A1 power is disconnected.
UL/NEMA
Rated Operation Voltage
Input On-State Voltage Range
24V DC
10…26V DC
3.0 mA @ 10V DC
7.2 mA @ 24V DC
0…5V DC
<1.5 mA
Input On-State Current
Input Off-State Voltage Range
Input Off-State Current
Input Ratings – Sourced from
Control Circuit
(A3/A2)
Off to On
On to Off
Input Compatibility
Number of Inputs
Voltage Status Only
Current Available
IEC
Input Filter – Software Selectable
Settable from 0…64 ms in 1 ms increments
Settable from 0…64 ms in 1 ms increments
N/A
IEC 1+
4
Sensor Source
11…26.4V DC from DeviceNet
50 mA max. per input, 200 mA total
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
241
Chapter 11
Specifications for EtherNet/IP
UL/NEMA
Output Ratings – Sourced
from Control Circuit (A1/A2)
Device Level Ring (DLR)
Ethernet Port
Web Server
Device Connections
242
Rated Operation Voltage
Rate Insulation Voltage
Dielectric Withstand
Operating Frequency
Type of Current
Conventional Thermal Current Ith
Peak Output Current
Type of Contacts
Number of Contacts
Load Types
Surge Suppression
Thermo-Protection
Maximum Cycle Rate
Maximum Blocking Voltage
Maximum On-State Voltage @
Maximum Output
Maximum Off-State Leakage Current
IEC
26.4V DC
250V
1500V AC (UL)
2000V AC (IEC)
Solid state sourcing output
24V DC
0.5 A each, 1 A max. combined
Current limited 2-8 amps (5 amps nominal) @ 24V DC
Normally open (N.O.)
2
Resistive or light inductive
Integrated diode, clamps @ 35V DC
Integrated short circuit and over current protection
30 operations/minute capacitive and inductive loads
35V DC
1.5V DC
10 μA
Beacon-based performance including IEEE 1588 end to end transparent clock
Fault Recovery
Ring recovery time is less than 3 ms for a 50 node network
EtherNet Receptacles
2 D-coded, 4-pin female M12 connectors
Ports
Embedded switch with 2 ports
IP Address
DHCP enabled by default
DHCP Timeout
30 s
Communication Rate
10/100 Mbs with auto negotiate half duplex and full duplex
• Transported over both TCP and UDP
Data
• Min. of 500 I/O packets/second (pps)
• Supports up to 150 concurrent TCP sockets
Embedded web server
Security
Login and password configurable
E-mail
Support Simple Mail Transfer Protocol (SMTP)
Configuration
Status, diagnostics, and configuration tabs
Supports scheduled (Class 1) and unscheduled (Class 3 & UCMM) connections
6 - Class 3 connections are supported simultaneously
Supports up to 2 Class 1 CIP connections [Exclusive owner (data) or listen-only]. One connection per PLC.
Listen only connection requires a data connection to be established.
Class 1 Connection API: 2…3200 ms, Class 3 Connection API: 100…10 000 ms
20 ms default (2 ms minimum)
3 concurrent Encapsulation sessions
TCP port supports 5 concurrent incoming connections
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Specifications for EtherNet/IP
Chapter 11
Motor Overload Trip Curves
Figure 90 - Bulletin 280E/281E Overload Trip Curves
ClassClass
10 Overload
Curves
10
Class 15
Overload
Class
15 Curves
10000
1000
Cold
100
Hot
10
1
Approximate Trip Time (sec)
Approximate Trip Time (sec)
10000
Cold
100
Hot
1
0
100
200
300
400
500
600
700
0
Multiples
% of Full Load Current
100
200
300
400
500
600
700
of Full Load Current
Multiples%for
Class 20 Overload Curves
Class 20
Approximate Trip Time (sec)
10000
Cold
100
Hot
1
0
100
200
300
400
500
600
700
% of
Multiples
of Full Load Current
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
243
Chapter 11
Specifications for EtherNet/IP
Contactor Life Load Curves
280/1_-_12* = 100-C12*
280/1_-_23* = 100-C23*
Life Load Curves:
AC-3 Switching of squirrel-cage motors while starting
Ue = 230…400…460V
AC-4 Switching of squirrel-cage motors
Ue = 400…460V
244
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Specifications for EtherNet/IP
Chapter 11
AC-3 & AC-4 10% AC-4 Mixed operation of squirrel-cage motors
Ue = 400…460V
Maximum Operating Rates:
AC-3 Switching of squirrel-cage motors while starting
Ue = 230…460V, Relative operating time 40%, Starting time tA = 0.25 s
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
245
Chapter 11
Specifications for EtherNet/IP
AC-4 Inching of squirrel-cage motors
Ue = 230…460V, Starting time tA = 0.25 s
246
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Specifications for EtherNet/IP
Chapter 11
Bulletin 284E
Electrical Ratings
Rated Operation Voltage
Rate Insulation Voltage
Rated Impulsed Voltage
Power Circuit
Dielectric Withstand
Operating Frequency
Utilization Category
Protection Against Shock
Rated Operation Voltage
Rate Insulation Voltage
Rated
Impulsed Voltage
Control
Circuit
Dielectric Withstand
Overvoltage Category
Operating Frequency
Short Circuit
Protection
SCPD Performance Type 1
Current Rating
10 A
25 A
SCPD List
UL/NEMA
IEC
200…575V
200…500V
600V
600 V
6 kV
6 kV
2200V AC
2500V AC
50/60 Hz
50/60 Hz
N/A
AC-3
N/A
IP2X
24V DC (+10%, –15%) A2 (should be grounded at voltage source)
250V
250V
—
4 kV
1500V AC
2000V AC
—
III
50/60 Hz
50/60 Hz
Voltage
480Y/277V
480Y/480V
600Y/347V
65 kA
65 kA
30 kA
Sym. Amps rms
30 kA
30 kA
30 kA
Size per NFPA 70 (NEC) or NFPA 79 for Group Motor Applications
UL/NEMA
Environmental
Operating Temperature Range
Storage and Transportation
Temperature Range
Altitude
Humidity
Pollution Degree
Enclosure Ratings
Approximate Shipping Weight
600V
30 kA
30 kA
IEC
–20…40°C (–4…104°F)
–25….85°C (–13…185°F)
1000 m
5…95% (on-condensing)
3
NEMA 4/12
IP67
13.6 kg (30 lb)
Resistance to Shock
Operational
Non-Operational
Operational
Non-Operational
Wire Size
Mechanical
Tightening Torque
Wire Strip Length
WireSize
Tightening Torque
Wire Strip Length
Disconnect Lock Out
15 G
30 G
Resistance to Vibration
1 G, 0.15 mm (0.006 in.) Displacement
2.5 G, 0.38 mm (0.015 in.) Displacement
Power and Ground Terminals
Primary/Secondary Terminal:
Primary/Secondary Terminal:
#16…#10 AWG
1.0…4.0 mm2
Primary Terminal: 10.8 lb·in.
Primary Terminal: 1.2 N·m
Secondary Terminal: 4.5 lb·in.
Secondary Terminal: 0.5 N·m
0.35 in. (9 mm)
Control and Safety Monitor Inputs
#18…#10 AWG
1.0…4.0 mm2
6.2 lb·in.
0.7 N·m
0.35 in. (9 mm)
Maximum of 5/16 in. (8 mm) lock shackle or hasp. The hasp should not exceed
5/16 in. (8 mm) when closed, or damage will occur to disconnect guard.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
247
Chapter 11
Specifications for EtherNet/IP
UL/NEMA
EMC Emission Levels
10V rms Communications Cables
10V rms (PE)
150 kHz…80 MHz
Class A
EMC Immunity Levels
4 kV contact and 8 kV Air
10V/m, 80 KHz…1 GHz
3V/m, 1.4 GHz…2 GHz
1V/m, 2.0 GHz …2.7 GHz
2 kV (Power)
2 kV (PE)
1 kV (Communications and Control)
1 kV (12) L-L, 2 kV (2) L-N (Earth)
Conducted Radio Frequency Emissions
Radiated Emissions
Electrostatic Discharge
Other Rating
Radio Frequency Electromagnetic Field
Fast Transient
Surge Transient
UL/NEMA
IEC
UL 508C
CSA C22.2, No. 14
EN50178
EN61800-3
EN/IEC 60947-4-2
CE Marked per Low Voltage 2006/95/EC
EMC Directive 2004/108/EC
CCC
ODVA for EtherNet/IP
cULus (File No. E207834,
Guide NMMS, NMMS7)
Standards Compliance
Certifications
EtherNet/IP Version – Control and I/O Power Requirements
Units
A1/A2 ➊
Control Voltage
Volts
Current
Amps
0.375
Total Control Power (no options)
Watts
9
Total Control Power (with Dynamic Brake or Output Contactor option)
Watts
12
Total Control Power (with Dynamic Brake and Output Contactor option)
Watts
15
A3/A2 ➋
24V DC
0.125
3
3
3
➊ Add power requirements for outputs (1 A max.) to A1/A2.
➋ Add power requirements for inputs (200 mA max.) to A3/A2.
➌ If A1 power is disconnected.
Drive Characteristics
Maximum (kW) Hp Rating/Input Voltage
Overload Capacity
Preset Speeds
Carrier Frequency
248
IEC
Sensorless Vector Control
5 Hp (3.3 kW)/480V AC
150% for 60 s
200% for 3 s
8
2…16 kHz
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
A3/A2 ➌
0.35
8.4
8.4
8.4
Specifications for EtherNet/IP
Drive Characteristics
Skip Frequency
StepLogic Functionality
Timer/Counter Functions
Line Voltage [V]
Frequency
[Hz]
380
50
460
60
Chapter 11
Sensorless Vector Control
✓
✓
✓
Drive Ratings – VFD Output Current vs. Input Current
Output Current [A]
Sensorless Vector
3-Phase kW
3-Phase Hp
Rating
Rating
Control
0.4
—
1.4
0.75
—
2.3
1.5
—
4.0
2.2
—
6.0
3.0
—
7.6
—
0.5
1.4
—
1
2.3
—
2
4.0
—
3
6.0
—
5
7.6
Input Current [A]
Sensorless Vector
Control
2.15
3.80
6.40
9.00
12.40
1.85
3.45
5.57
8.20
12.5
PowerFlex 40
Output Frequency
Efficiency
0…400 Hz (Programmable)
97.5% (Typical)
Sensorless Vector Control (SVC)
Motor Protection
Overcurrent
Over Voltage
Under Voltage
Faultless Power Ride Through
Carrier Frequency
Frequency Accuracy – Digital Input
Speed Regulation – Open Loop with Slip Compensation
Stop Modes
Protective Specifications – Sensorless Vector Control
I2t overload protection – 150% for 60 seconds, 200% for 3 seconds (provides Class 10 protection)
200% hardware limit, 300% instantaneous fault
200…240V AC Input – Trip occurs @ 405V DC bus voltage (equivalent to 290V AC incoming line)
380…460V AC Input – Trip occurs @ 810V DC bus voltage (equivalent to 575V AC incoming line)
460…600V AC Input – Trip occurs @ 1005V DC bus voltage (equivalent to 711V AC incoming line)
200…240V AC Input – Trip occurs @ 210V DC bus voltage (equivalent to 150V AC incoming line)
380…480V AC Input – Trip occurs @ 390V DC bus voltage (equivalent to 275V AC incoming line)
460…600V AC Input – If 600V rated trip occurs @ 487V DC bus voltage (344V AC incoming line);
If 480V rated trip occurs @ 390V DC bus voltage (275V AC incoming line)
100 milliseconds
Control Specifications – Sensorless Vector Control
2…16 kHz. Drive rating based on 4 kHz.
Within ±0.05% of set output frequency.
±1% of base speed across a 60:1 speed range
Multiple programmable stop modes including – Ramp, Coast, DC-Brake, Ramp-to-Hold and S Curve.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
249
Chapter 11
Specifications for EtherNet/IP
Control Specifications – Sensorless Vector Control
Two independently programmable accel and decel times. Each time may be programmed from 0…600 s in 0.1 s
increments.
150% Overload capability for up to 1 m
200% Overload capability for up to 3 s
Class 10 protection with speed sensitive response
Accel/Decel
Intermittent Overload
Electronic Motor Overload Protection
Minimum DB Resistance
Drive Rating
[kW]
0.4
0.75
1.5
2.2
4.0
Input Voltage
480V, 50/60 Hz,
Three-Phase
Minimum DB Resistance
[Ω]
97
97
97
97
77
[Hp]
0.5
1
2
3
5
Motor Overload Trip Curves
Motor OL Current parameter provides class 10 overload protection. Ambient
insensitivity is inherent in the electronic design of the overload.
Figure 91 - 284E Overload Trip Curves
250
Min Derate
80
60
40
20
0
0 25 50 75 100 125 150 175 200
% of P132 [Motor NP Hertz]
100
80
60
40
20
0
Max Derate
% of P133 Motor OL Current
% of P133 Motor OL Current
% of P133 Motor OL Current
No Derate
100
0 25 50 75 100 125 150 175 200
% of P132 [Motor NP Hertz]
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
100
80
60
40
20
0
0 25 50 75 100 125 150 175 200
% of P132 [Motor NP Hertz]
Specifications for EtherNet/IP
UL/NEMA
Rated Operation Voltage
Input On-State Voltage Range
Input On-State Current
Input Off-State Voltage Range
Input Off-State Current
Input Ratings – Sourced
from Control
Circuit (A3/A2)
Output Ratings – Sourced
from Control Circuit (A1/
A2)
Device Level Ring (DLR)
Ethernet Port
Off to On
On to Off
Input Compatibility
Number of Inputs
Voltage Status Only
Current Available
Rated Operation Voltage
Rate Insulation Voltage
Dielectric Withstand
Type of Control Circuit
Type of Current
Conventional Thermal Current Ith
Peak Output Current
Type of Contacts
Number of Contacts
Load Types
Surge Suppression
Thermo-Protection
Maximum Cycle Rate
Maximum Blocking Voltage
Maximum On-State Voltage @
Maximum Output
Maximum Off-State Leakage Current
Fault Recovery
Ports
IP Address
DHCP Timeout
Communication Rate
Data
Web Server
Security
E-mail
Configuration
Chapter 11
IEC
24V DC
10…26V DC
3.0 mA @ 10V DC
7.2 mA @ 24V DC
0…5V DC
<1.5 mA
Input Filter – Software Selectable
Settable from 0…64 ms in 1 ms increments
Settable from 0…64 ms in 1 ms increments
N/A
IEC 1+
4
Sensor Source
11…26.4V DC from DeviceNet
50 mA max. per input, 200 mA total
26.4V DC
250V
1500V AC (UL)
2000V AC (IEC)
Solid state sourcing output
24V DC
0.5 A each, 1 A max. combined
Current limited 2-8 amps (5 amps nominal) @ 24V DC
Normally open (N.O.)
2
Resistive or light inductive
Integrated diode, clamps @ 35V DC
Integrated short circuit and over current protection
30 operations/minute capacitive and inductive loads
35V DC
1.5V DC
10 μA
Beacon-based performance including IEEE 1588 end to end transparent clock
Ring recovery time is less than 3 ms for a 50 node network
2 D-coded, 4-pin female M12 connectors
Embedded switch with 2 ports
DHCP enabled by default
30 s
10/100 Mbs with auto negotiate half duplex and full duplex
•Transported over both TCP and UDP
• Min. of 500 I/O packets/second (pps)
• Supports up to 150 concurrent TCP sockets
Embedded web server
Login and password configurable
Support Simple Mail Transfer Protocol (SMTP)
Status, diagnostics, and configuration tabs
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
251
Chapter 11
Specifications for EtherNet/IP
Device Connections
252
UL/NEMA
IEC
Supports scheduled (Class 1) and unscheduled (Class 3 & UCMM) connections
6 - Class 3 connections are supported simultaneously
Supports up to 2 Class 1 CIP connections [Exclusive owner (data) or listen-only]. One connection per PLC.
Listen only connection requires a data connection to be established.
Class 1 Connection API: 2…3200 ms
Class 3 Connection API: 100…10 000 ms
20 ms default (2 ms minimum)
3 concurrent Encapsulation sessions
TCP port supports 5 concurrent incoming connections
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Chapter
12
Accessories
Industrial Ethernet Media
D Code Connectivity (M12) – 1585D
Patchcords and Cordsets IP67
M12 D Code
Connector Type
Cat. No.
Unshielded
Male Straight
to
Male Straight
1585D-M4TBDM- ➊
Male Straight
to
Male Right Angle
1585D-M4TBDE- ➊
Male Right Angle
to
Male Right Angle
1585D-E4TBDE- ➊
Male Straight
to
Female Straight
1585D-M4TBDF- ➊
➊ Available in 0.3, 0.6, 1, 2, 5, 10, 15, and increments of 5 meters up to 75 meters.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
253
Chapter 12
Accessories
Patchcords and Cordsets IP20 to IP67
Front Mount Receptacle
Transition Cable
➊
Connector Type
Cat. No.
Unshielded
Female Front Mount
to
RJ45
1585D-D4TBJM- ➊
Connector Type
Unshielded
Male Straight
to
RJ45
1585D-M4TBJM- ➊
Available in 0.3, 0.6, 1, 2, 5, 10, 15, and increments of 5 meters up to 75 meters.
Note: Refer to www.ab.com/networks/media/ethernet to learn more about
Industrial Ethernet Media.
M12 to RJ45 Bulkhead Adapter – 1585A
Description
• Transition from IP20 environment to IP67 environment
• In-cabinet connectivity with RJ45 connector providing On-Machine solution with M12 D Code
connector
• Differential 100 ohm terminators used for unused pairs
• Cat 5e
254
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Cat. No.
1585A-DD4JD
Accessories
Chapter 12
Sensor Media
Description
Description
I/O Connection
DC Micro
Patchcord
Pin Count
Input/Output
EtherNet/IP
Communications
Connector
Cat. No.
Straight Female
Straight Male
889D-F4ACDM- ➊
Straight Female
Right Angle Male
889D-F4ACDE- ➊
Straight Female
879D-F4ACDM- ➊
Right Angle Female
879D-R4ACM- ➊
4-Pin
DC Micro VCable
Input
➊ Replace symbol with desired length in meters (for example, Cat. No. 889D-F4ACDM-1 for a 1 m cable). Standard cable lengths: 1
m, 2 m, 5 m, and 10 m.
Sensor Wiring
Pin 1: +24V (A3 or DNET)
Pin 2: Input 0
Pin 3: Common
Pin 4: Input 1
Pin 5: NC (No Connection)
Sensor Wiring
1
2
3
4
Brown
)
White
)
) Black
Blue
)
+
−
Female Input
ArmorStart
Connection
Sensor Male
Connection
Quick-Disconnect
Motor and Brake Cables
Description
Rating
Length m (ft)
Cat. No.
3 (9.8)
280-MTR22-M3
6 (19.6)
280-MTR22-M6
10 (32.8)
280-MTR22-M10
14 (45.9)
280-MTR22-M14
20 (65.6)
280-MTR22-M20
Motor Cable Cordsets
90° M22 Motor Cordset
IP67/NEMA Type 4
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
255
Chapter 12
Accessories
Description
90° M35 Motor Cordset
Rating
Length m (ft)
Cat. No.
3 (9.8)
280-MTR35-M3
6 (19.6)
280-MTR35-M6
10 (32.8)
280-MTR35-M10
14 (45.9)
280-MTR35-M14
20 (65.6)
280-MTR35-M20
3 (9.8)
280-MTRF22-M3
6 (19.6)
280-MTRF22-M6
8 (26.2)
280-MTRF22-M8
10 (32.8)
280-MTRF22-M10
14 (45.9)
280-MTRF22-M14
20 (65.6)
280-MTRF22-M20
3 (9.8)
284-MTRS22-M3
6 (19.6)
284-MTRS22-M6
14 (45.9)
284-MTRS22-M14
6 (19.6)
285-BRC25-M6
14 (45.9)
285-BRC25-M14
3 (9.8)
285-BRCF25-M3
6 (19.6)
285-BRCF25-M6
10 (32.8)
285-BRCF25-M10
14 (45.9)
285-BRCF25-M14
20 (65.6)
285-BRCF25-M20
3 (9.8)
285-DBK22-M3
1 (3.3)
280-MTR22-M1D
3 (9.8)
280-MTR22-M3D
1 (3.3)
280-MTR35-M1D
3 (9.8)
280-MTR35-M3D
1 (3.3)
284-MTRS22-M1D
3 (9.8)
284-MTRS22-M3D
IP67/NEMA Type 4
Motor Cable Cordsets, High Flex
90° M22 Motor Cordset
IP67/NEMA Type 4
Motor Cable Cordsets, Shielded VFD Motor Cable Cordsets, Shielded (VFD)
90° M22 Motor Cordset
IP67/NEMA Type 4
Motor Cable Cordsets, Extended Source/Control Brake
90° M25 Source Brake Cable
IP67/NEMA Type 4
Extended Source/Control Brake Cable Cordsets, High Flex
90° M25 Source Brake Cable
IP67/NEMA Type 4
Dynamic Brake Cable
M22 Dynamic Brake Cable
(DB Option)
IP67/NEMA Type 4
Motor Cable Patchcords
90° Male/Straight Female M22
IP67/NEMA Type 4
90° Male/Straight Female M35
IP67/NEMA Type 4
Motor Cable Patchcords, Shielded (VFD)
90° Male/Straight Female M22
256
IP67/NEMA Type 4
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Accessories
Chapter 12
Sealing Caps
EtherNet/IP
Description
Input
Output
1485A-M12
1485A-M12
Motor Connector Aluminum Sealing Cap
(M22) for 10A protection*
—
1485A-C1
Motor Connector Aluminum Sealing Cap
(M35) for 25A protection
—
889A-QMCAP
Dynamic Brake Connector (M22)
—
1485A-C1
Source/Control Brake Cap (M25)
—
Contact Local Sales
Office
Plastic Sealing Cap (M12) ➊
➊ To achieve IP67 rating, sealing caps must be installed on all unused I/O connections.
Other
Description
Cat. No.
Locking Tag
Padlock attachment to the lockable handles
Up to three padlocks 4…8 mm (5/16 in.) shackle
140M-C-M3
Replacement At-Motor Handle
Kit include (1) handle, (1) guard, and (3) screws
280-DISHDL
Replacement Fan for 284 Control Module
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
284-FAN
257
Chapter 12
Accessories
Description
Thomas & Betts
Part No.
Recommended Cord Grips
258
Thomas & Betts Cord Grip
Cord grips for ArmorStart devices with 10 A short circuit protection rating
1 in. Stain Relief Cord Connector, 1 in. Lock Nut
Cable Range: 0.31…0.56 in.
Used with Control Power Media
Cordset – Example: Cat. No. 889N-M65GF-M2
2931NM
Thomas & Betts Cord Grip
Cord grips for ArmorStart devices with 10 A short circuit protection rating
3/4 in. Stain Relief Cord Connector, 3/4 in. Lock Nut
Cable Range: 0.31…0.56 in.
Used with Three-Phase Power
Media Cordset – Example: Cat. No. 280-PWR22G-M1
2940NM
Thomas & Betts Cord Grip
Cord grips for ArmorStart devices with 25 A short circuit protection rating
1 in. Stain Relief Cord Connector, 1 in. Lock Nut
Cable Range: 0.31…0.56 in.
Used with Control Power Media
Cordset – Example: Cat. No. 889N-M65GF-M2
2931NM
Thomas & Betts Cord Grip
Cord grips for ArmorStart devices with 25 A short circuit protection rating
3/4 in. Stain Relief Cord Connector, 3/4 in. Lock Nut
Cable Range: 0.31…0.56 in.
Used with Three-Phase Power
Media Cordset – Example: Cat. No. 280-PWR22G-M1
2942NM
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Accessories
Dynamic Braking Resistors
Chapter 12
Sensorless Vector Control (SVC) Minimum Resistance and
Recommended Modules for Option DB
Table 47 - Dynamic Brake Specification for Option DB (IP20 Resistor)
Drive and
Motor Size kW
(Hp)
Cat. No. ➊
Application Type 1
Resistance
Ohms ±5%
Continuous
Power kW
Max Energy
kJ
Max Braking
Torque % of
Motor
Braking Torque
% of Motor
Application Type 2
Duty Cycle %
Braking Torque
% of Motor
Duty Cycle %
380…480 Volt AC Input Drives
0.37 (0.5)
AK-R2-360P500
360
0.086
17
305%
100%
47%
150%
31%
0.75 (1)
AK-R2-360P500
360
0.086
17
220%
100%
23%
150%
15%
1.5 (2)
AK-R2-360P500
360
0.086
17
110%
100%
12%
110%
11%
2.2 (3)
AK-R2-120P1K2
120
0.26
52
197%
100%
24%
150%
16%
4 (5)
AK-R2-120P1K2
120
0.26
52
124%
100%
13%
124%
10%
Note 1: Always check resistor ohmic value against minimum resistance for drive
being used.
Note 2: Duty cycle listed is based on full speed to zero speed deceleration.
For constant regen at full speed, duty cycle capability is half of what is listed.
Application Type 1 represents maximum capability up to 100% braking torque
where possible.
Application Type 2 represents more than 100% braking torque where possible, up
to a maximum of 150%.
Note 3: Dynamic brake modules have an IP20 rating.
ATTENTION: Resistor temperature may exceed 200°C.
ATTENTION: AC drives do not offer protection for externally mounted brake resistors,
especially in the case of brake IGBT failure. A risk of fire exists if external braking
resistors are not protected. External resistor packages must be protected from over
temperature or the protective circuit shown, or equivalent, must be supplied.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
259
Chapter 12
Accessories
Bulletin 284E Option (-DB) – IP20 Resistor
Installation Dimensions
Cat. No.
Weight
AK-R2-091P500, AK-R2-047P500, AK-R2-360P500
1.1 (2.5)
AK-R2-030P1K2, AK-R2-120P1K2
2.7 (8)
Dimensions are in millimeters (inches) and weights are in kilograms (pounds).
Figure 92 - Bulletin 284E Dimensions
Frame A
Frame B
30.0
(1.18) 60.0
(2.36)
31.0
(1.22)
59.0
(2.32)
C
US
C
US
17.0
(0.67)
61.0
(2.40)
335.0
(13.19)
386.0
(15.20)
405.0
(15.94)
AUTOMATION
ROCKWELL
316.0
(12.44)
ROCKWELL
AUTOMATION
SURFACES MAY BE
Thermostat
13.0
(0.51)
AK-R2-091P500
AK-R2-047P500
AK-R2-360P500
260
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
AK-R2-030P1K2
AK-R2-120P1K2
Accessories
Chapter 12
Recommended thermostat control wiring to prevent dynamic brake overheating.
Figure 93 - Thermostat Control Wiring
R (L1)
3-Phase
Power
S (L2)
T (L3)
(M)
Contactor
Power Off
Power On
M
M
Power Source
DB Resistor Thermostat
Sensorless Vector Control (SVC) Recommended Dynamic Brake
Modules for Option DB1 (IP67 Resistor)
Application Type 1
Drive and
Motor Size
kW
Cat. No. ➊
Application Type 2
Resistance
Ohms ± 5%
Continuous
Power kW
Max Energy
kJ
Max Braking
Torque % of
Motor
Braking
Torque % of
Motor
Duty
Cycle %
Braking
Torque % of
Motor
Duty
Cycle %
380…480 Volt AC Input Drives
0.37 (0.5)
284R-360P500-M*
360
0.086
17
305%
100%
47%
150%
31%
0.75 (1)
284R-360P500-M*
360
0.086
17
220%
100%
23%
150%
15%
1.5 (2)
284R-360P500-M*
360
0.086
17
110%
100%
12%
110%
11%
2.2 (3)
284R-120P1K2-M*
120
0.26
52
197%
100%
24%
150%
16%
4 (5)
284R-120P1K2-M*
120
0.26
52
124%
100%
13%
124%
10%
➊ Drive rating and DB part numbers are not interchangeable. Only use specified resistor. Customer is responsible to evaluate if
performance meets application requirement.
Note: Duty Cycle listed is based on full speed to zero speed deceleration. For
constant regen at full speed, duty cycle capability is half of what is listed.
Application Type 1 represents maximum capability up to 100% braking torque
where possible.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
261
Chapter 12
Accessories
Application Type 2 represents more than 100% braking torque where possible, up
to a maximum of 150%.
Installation Dimensions
Figure 94 - Bulletin 284 Dynamic Brake Module
A
H
B
C
D
J
E
F
Cat. No.
A
mm (in.)
284R-091P500
284R-120P1K2
284R-120P1K2
89 ± 3
(3.5 ± 0.12)
B
mm (in.)
215 ± 5
(8.46 ± 0.2)
420 ± 5
(16.54 ± 0.2)
C
mm (in.)
M05 = 0.5 m
M1 = 1 m ➊
D
mm (in.)
235 ± 5
(9.25 ± 0.2)
440 ± 5
(17.32 ± 0.2)
G
E
mm (in.)
F
mm (in.)
G
mm (in.)
H
mm (in.)
J
mm (in.)
60 ± 2
(2.36 ± 0.08)
127
(5)
12.54
(0.49)
60 ± 2
(2.36 ± 0.08)
50 ± 1.5
(1.97 ± 0.06)
➊ Length is user-selectable based on the suffix added to the catalog number. For a length of 500±10mm, add
-M05 to the end of the catalog number. For a length of 1000±10mm, add -M1 to the end of the catalog number.
Note: The customer must protect the resistor in the event of a shorted switch in
the VFD. This is done via PLC control. An example ControlLogix program can
be downloaded from http://samplecode.rockwellautomation.com
262
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Appendix
A
Applying More Than One ArmorStart
Motor Controller in a Single Branch Circuit
on Industrial Machinery
Introduction
Each ArmorStart motor controller is listed for group installation. This appendix
explains how to use this listing to apply ArmorStart motor controllers in
multiple-motor branch circuits according to 7.2.10.4(1) and 7.2.10.4(2) of
NFPA 79, Electrical Standard for Industrial Machinery.
From the perspective of the ArmorStart product family, being listed for group
installation means one set of fuses or one circuit breaker may protect a branch
circuit that has two or more of these motor controllers connected to it. This
appendix refers to this type of branch circuit as a multiple-motor branch circuit.
The circuit topology shown in Figure 95, is one configuration, but not the only
possible configuration, of a multiple-motor branch circuit. In these circuits, a
single set of fuses (or a single circuit breaker) protects multiple motors, their
controllers and the circuit conductors. The motors may be any mixture
of power ratings and the controllers may be any mixture of motor controller
technologies (magnetic motor controllers and variable-frequency AC drive
controllers).
This appendix addresses only NFPA 79 applications. This is not because these
products are only suitable for industrial machinery, but because industrial
machinery is their primary market. In fact, while all versions of the ArmorStart
products may be applied on industrial machinery, the versions that have the
Conduit Entrance Gland Plate Option may also be used in applications governed
by NFPA 70, National Electrical Code (NEC), (see “ArmorStart Product
Family”).
In the 2012 Edition of NFPA 79, motor controllers that are listed for group
installation may be installed in multiple-motor branch circuits according to either
of two alternative sets of requirements. The first is found in 7.2.10.4(2), the
second in 7.2.10.4(3). The requirements of 7.2.10.4(3) are similar to those in
430.53(C) of NFPA 70, while the requirements of 7.2.10.4(2) are found only in
NFPA 79. This appendix explains the requirements of 7.2.10.4(2), rather than
those of 7.2.10.4(3), because this is the simpler method to use when applying the
ArmorStart family of motor controllers.
The user must determine the requirements – NFPA 79 or NFPA 70 – to use for
the application. When making this determination, it is necessary to understand
the ArmorStart LT product characteristics and useful to understand the
definition of industrial machinery. The section of this appendix, “ArmorStart
Product Family”, specifies whether a motor controller is suitable for installation
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
263
Appendix A
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
according to NFPA 79 or NFPA 70 (or both). The definition of industrial
machinery is found in 3.3.56 of NFPA 79 and 670.2 of Article 670, Industrial
Machinery, in NFPA 70.
These conventions are used throughout this appendix. First, although all of the
equipment is connected to a three-phase electrical supply, all of the figures are
shown as one-line diagrams. Second, although all of the ArmorStart LT motor
controllers are listed for group installation with both fuses and a specific family of
inverse time circuit breakers, this appendix considers only fuses. This is done to
avoid repetitive explanations with minor, but necessary qualifications, for circuit
breakers. Generally, the principles for selecting the fuses also apply to selecting
inverse time circuit breakers. Third, all references, unless indicated otherwise, are
to NFPA 79 – 2012.
Note: The following example uses ArmorStart LT. This provides a more
comprehensive example,
Figure 95 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit
Electrical Supply
Disconnecting
Means
Final
Overcurrent
Device
Single Set of Fuses
NFPA 79, 3.3.10 Branch Circuit. The Circuit
Conductors Between the Final Overcurrent Device
Protecting the Circuit and the Outlet(s). [70:100]
Any Mixture of Motor Controller
Technologies
½ HP
Bulletin 294
2 HP
Bulletin 294
5 HP
Bulletin 291
5 HP
Bulletin 290
1 HP
Bulletin 294
Overload
Class 10
Overload
Class 10
Overload
Class 10/15/20
Overload
Class 10/15/20
Overload
Class 10
Nameplate*
Nameplate*
Nameplate*
Nameplate*
2 Hp
5 Hp
Nameplate*
* Each Controller is Listed for Group
Installation with Specified Maximum
Protection
1/2 Hp
5 Hp
1 Hp
Two or More Motors with any
Mixture or Power Ratings
ArmorStart LT Product Family
This section contains a brief description of the attributes of the ArmorStart LT
motor controllers that are relevant to applying them in multiple-motor branch
circuits.
The term motor controller refers to the device that stops and starts the motor.
The ArmorStart LT product family consists of two types of motor controllers.
The Bulletin 290 and 291 controllers are magnetic motor controllers that use an
electromechanical contactor to stop and start the motor. The Bulletin 294 motor
264
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
Appendix A
controllers use a variable-frequency AC drive to stop, start and vary the speed of
the motor. This appendix refers to the Bulletin 290, 291 and 294 products as
either motor controllers or just controllers.
Each ArmorStart LT motor controller incorporates an integrated overload relay
and motor disconnecting means. The Underwriters Laboratories’ (UL) listing for
each motor controller confirms that the motor controller – including its integral
overload relay and motor disconnecting means — is suitable for motor group
installation.
The suitability of each ArmorStart LT motor controller for installation according
to either NFPA 79 or NFPA 70 depends on the means of connecting the power
circuit wiring. All of the controllers are suitable for installation in multiple-motor
branch circuits on industrial machinery according to 7.2.10.4 of NFPA 79. The
controllers that have the Conduit Entrance Gland Plate Option are also suitable
for installation in multiple-motor branch circuits according to 430.53(C) and
430.53(D) of NFPA 70 (NEC). The controllers that have the Power Media
Gland Plate Option are suitable for installation only on industrial machinery.
These versions are limited to industrial machinery because the UL listing for the
power media connectors themselves and their matching cable assemblies covers
installation only on industrial machinery.
Multiple-Motor Branch
Circuits and Motor
Controllers Listed for Group
Installation – General
Multiple-motor branch circuits, like that shown in Figure 95, have this
fundamental tradeoff: protecting more than one controller with a single set
of fuses requires more electrical and mechanical robustness in each controller.
In exchange for eliminating the cost and space necessary for a dedicated set of
fuses in front of each controller, the construction of each controller itself must be
more robust. For the circuit configuration shown in Figure 95 to be practical,
the ampere rating of the fuse must be large enough to operate all of the motors,
without opening, under normal starting and running conditions. This rating
of fuse must be larger than the rating permitted to protect a circuit that supplies
only a single motor and its controller. In general, as the rating of the fuse
increases, so does the magnitude of fault currents that flow until the fuse opens.
This higher magnitude of fault current results in more damage to the controller.
Therefore, the additional controller robustness is necessary to withstand these
higher fault currents, without controller damage, that could result in a shock
or fire hazard.
Consequently, to the controller, being listed for group installation mostly means
the UL testing is performed with fuses that have this practical, and higher,
ampere rating. This testing verifies that it is safe to apply this controller in a
multiple-motor branch circuit, provided the fuse is of the same class and does
not have a rating exceeding that marked on the controller.
The example in Figure 96, illustrates this increase in the maximum ampere rating
of fuse that is permitted to protect a controller. This example compares the rating
of the fuse used in the UL testing of two variable-frequency AC drive-based
motor controllers. Both controllers have a rated power of ½ horsepower and a
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
265
Appendix A
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
rated output current of 1.5 amperes. The controller shown on the left is intended
for installation in individual-motor branch circuits. The controller shown on the
right is the ArmorStart LT Bulletin 294 controller that must be listed for group
installation to be installed, as intended, in multiple-motor branch circuits. For
this example, assume all testing is done with fuses of the same class.
The UL investigation of both controllers is done according to UL 508C, Power
Conversion Equipment. The controllers are connected to the test supply through
the three-phase conductors and equipment grounding conductor and then
covered with cotton in areas that are likely to vent hot gases and sparks during
the tests. During the test, electrical faults are impressed on the output of, and
internal to, these variable-frequency AC drive-based controllers. Increasing the
ampere rating of the fuses increases the magnitude of the fault currents that flow
through, and damage, the controller before the fuses open. Afterwards, the
damage to the controller is evaluated to determine whether a potential shock or
fire hazard exists when protected by fuses having this ampere rating. One
criterion of the evaluation is the examination of the equipment grounding
conductor that must not open during the test as this could leave exposed
conductive parts in an energized state (shock hazard). Another criterion is that
the cotton must not ignite as this indicates the expulsion from the controller
of hot gases or molten metal fragments (fire hazard).
Referring to the controller on the left, UL 508C permits the individual-motor
testing to be performed with the maximum rating of fuse that can be used to
protect an individual-motor branch circuit. According to both NFPA 70 and
NFPA 79, this is 400 percent of the full-load current rating of the largest motor
that the controller can supply. In UL 508C, this is taken to be 400 percent of the
rated output current of the controller, or 6 amperes.
Referring to the controller on the right, UL 508C permits the group installation
testing to be performed with the maximum rating of fuse that can be used to
protect a multiple-motor branch circuit. According to both NFPA 70
(430.53(C)) and NFPA 79 (7.2.10.4(3)), this is 250 amperes. This value, derived
from the installation requirements of 430.53(C) and 430.53(D) of NFPA 70, is
determined by the largest size of power conductor that the ArmorStart LT
controller can accept, 10 AWG. Because the UL 508C test covers all possibilities
in NFPA 70 and NFPA 79, it permits the maximum value of 250 amperes. This
covers 7.2.10.4(2), which permits only 100 amperes. However, in this case, the
manufacturer, Rockwell Automation, chose to test and mark with the lower value
of 45 amperes. This value was chosen as the tradeoff between the maximum
number and type of controllers in the branch circuit – limited by the maximum
fuse rating - and the electrical and mechanical robustness engineered into each
controller.
Therefore, to make its use in the multiple-motor branch circuit of Figure 95
practical, the ½ horsepower Bulletin 294 controller was engineered to be robust
enough to safely contain the damage when protected by a fuse having a rating
of 45 amperes, rather than just 6 amperes.
266
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
Appendix A
Figure 96 - UL508C Variable-Frequency AC Drive Motor Controller Evaluation
Short-Circuit Test Circuit
Short-Circuit Test Circuit
UL 508C –
test with 6
ampere max
½ HP Motor
Controller
Rated Output
Current = 1.5 A
6A fuse max
Max = 400% * Rated Output Current
= 400% * 1.5 A = 6 A
Manufacturer’s choice Reduce rating for test
to 45 A
Max rating for 10 AWG
= 250 A
Max permitted
rating for test
fuse based on
Rated Output
Current
Max permitted rating
for test fuse based
on maximum size
of power conductors
Maximum
conductor size
= 10 AWG
Bulletin 294
½ HP Motor
Controller
Suitable for
motor group
installation
Rated Output
Current = 1.5 A
45 A fuse max
Maximum
conductor size
= 10 AWG
Motor
Maximum Fuse Ampere
Rating According to
7.2.10.4(1) and 7.2.10.4(2)
Motor
This section uses Figure 97 to explain the requirements from 7.2.10.4(1) and
7.2.10.4(2) that are relevant to, and permit, the multiple-motor branch circuit
of Figure 95.
The following is the complete text of 7.2.10.4(1) and 7.2.10.4(2) and an
abbreviated version of Table 48 from the 2012 Edition of NFPA 79. The table
is abbreviated to cover the size of conductors that are generally relevant to the
ArmorStart LT motor controllers.
Complete Text
“7.2.10.4 Two or more motors or one or more motor(s) and other load(s), and
their control equipment shall be permitted to be connected to a single branch
circuit where short-circuit and ground-fault protection is provided by a single
inverse time circuit breaker or a single set of fuses, provided the following
conditions under (1) and either (2) or (3) are met:
(1) Each motor controller and overload device is either listed for group
installation with specified maximum branch-circuit protection or selected such
that the ampere rating of the motor branch short-circuit and ground-fault
protective device does not exceed that permitted by 7.2.10.1 for that individual
motor controller or overload device and corresponding motor load.
(2) The rating or setting of the branch short-circuit and ground-fault
protection device does not exceed the values in Table 48 for the smallest
conductor in the circuit.”
(3) …(not considered in this appendix)
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
267
Appendix A
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
Table 48 - Abbreviated Table 7.2.10.4
Table 7.2.10.4 Relationship Between Conductor Size and Maximum Rating or Setting of Short-Circuit
Protective Device for Power Circuits Group Installations
Conductor Size (AWG)
Maximum Rating
Fuse or Inverse Time*
Circuit Breaker
(amperes)
…
…
…
…
14
60
12
80
10
100
8
150
6
200
…
…
The following text and Figure 97 provide an explanation of 7.2.10.4(1)
and (2). In the following, the text not relevant to Figure 95 is replaced
by ellipsis points (…). Then each individual requirement is underlined and
followed by an underlined letter in parentheses. This underlined letter in the
following text corresponds to the letter in Figure 97.
“7.2.10.4 Two or more motors (a)…and their control equipment (b) shall be
permitted to be connected to a single branch circuit (c) where short-circuit and
ground-fault protection is provided by a single inverse time circuit breaker or a
single set of fuses (d), provided the following conditions under (1) and…(2)…
are met:
(1) Each motor controller and overload device is… listed for group installation
with specified maximum branch-circuit protection (e) …
(2) The rating or setting of the branch short-circuit and ground-fault protection
device does not exceed the values in Table 7.2.10.4 for the smallest conductor
in the circuit.” (f )
Summarizing the requirements relevant to Figure 95: 7.2.10.4(1) and 7.2.10.4(2)
permit two or more ArmorStart LT motor controllers to be installed in a single
branch circuit provided (1) all the motor controllers are listed for group
installation, (2) the fuse does not exceed the maximum rating that Table 48
permits to protect the smallest conductor and (3) the fuse complies with the
maximum fuse ratings of all of the controllers.
268
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
Appendix A
Figure 97 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit
single set
d “...a
of fuses…”
“The rating or setting of the branch short-circuit
and ground-fault protection device does
not exceed the values in Table 7.2.10.4
for the smallest conductor in the circuit.”
f
Branch circuit (shown as dotted lines) –
all of the conductors on the load side
of the single set of fuses
c “...shall be permitted to be connected to a single branch circuit…”
“Suitable for Motor Group Installation”
e
“Each motor controller
and overload device is ...
listed for group
installation with specified
maximum branch-circuit
protection…”
Max. Ratings
Sym. Amps RMS
Fuse
5 KA 10 KA
45A 45A*
* Type CC, J and T fuses only
e
Markings that satisfy
7.2.10.4(1)
b
a
½ HP
Bulletin 294
Overload
Class 10
2 HP
Bulletin 294
Overload
Class 10
5 HP
Bulletin 291
Overload
Class 10/15/20
5 HP
Bulletin 290
Overload
Class 10/15/20
1 HP
Bulletin 294
Overload
Class 10
Nameplate*
Nameplate*
Nameplate*
Nameplate*
Nameplate*
1/2 HP
FLC =
1.1 A**
2 HP
FLC =
3.4 A**
5 HP
FLC =
7.6 A**
“... and their control
equipment … ”
5 HP
FLC =
7.6 A**
1 HP
FLC =
2.1 A**
“Two or more motors ...”
* Each controller is listed for group installation with the same specified maximum protection
Explanatory Example
The example addresses the overcurrent protection of the conductors, controllers
and motors. Protection for three overcurrent conditions is considered: motor
running overloads, short-circuit (line-to-line) faults, and ground-faults (line-toground). The short-circuit fault and ground-fault protection is governed by
7.2.10.4(1) and 7.2.10.4(2) and explained in Requirements 1,2 and 3 and
Figure 98. The overload protection,explained in Requirement 4, is governed by
7.3.1 and 7.3.1.1. Overload coordination depends on each conductor having the
minimum ampacity given by 12.5.3 and 12.5.4. The method for determining this
minimum ampacity is explained in Requirement 5 and Figure 99.
The example branch circuit is shown in Figure 98 and Figure 99. The circuit
topology consists of a set of 10 AWG conductors that supply multiple sets of 14
AWG conductors. Each set of 14 AWG conductors supply a controller and
motor. These conductor sizes are chosen to be the smallest conductors that have
sufficient ampacity, without derating, for the loads each must carry. All of the
wiring is customer-supplied, rather than the ArmorConnect Power Media,
because all controllers have the Conduit Entrance Gland Plate Option. Fuses
protect the branch circuit.
The example addresses five basic requirements that the motor controllers, fuses
and conductors must satisfy. The letters in the circles on Figure 98 and Figure 99
are referenced in the explanations as letters in parentheses. Ellipses points (…)
are used to replace NFPA 79 text that is not applicable to the multiple-motor
branch circuit shown in Figure 98 and Figure 99. Unless indicated, all text is
from NFPA 79.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
269
Appendix A
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
Figure 98 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit —
Conductor and Controller Protection
Electrical Supply 480Y/277V
Available Fault Current
Sym. Amps RMS 9 KA
Disconnecting
Means
a
Fuses
45 A Max,
CC, J or T
Branch short-circuit
and ground-fault
protection device
d
Combined Load Conductors
10 AWG
Controller
ratings
further
restrict the
fuse
AWG
14
12
10
8
-
Max
Fuse
(A)
60
80
100
150
-
Conductor
protection 60 A max,
any class
Conductor
protection
c
Determine
fuse class
and max
rating for
conductor
protection
7.2.10.4(2) “smallest
conductor in
the circuit”
= 14 AWG
14 AWG
14 AWG
14 AWG
5 HP
Bulletin 291
Overload
Class 10/15/20
5 HP
Bulletin 290
Overload
Class 10/15/20
1 HP
Bulletin 294
Overload
Class 10
Nameplate*
Nameplate*
Nameplate*
Nameplate*
Nameplate*
14 AWG
b
Table 7.2.10.4
2 HP
Bulletin 294
Overload
Class 10
14 AWG
Compare to
controller max
fuse ratings
d
½ HP
Bulletin 294
Overload
Class 10
14 AWG
a
14 AWG
5 KA 10 KA
45A 45A*
* Type CC, J and T fuses only
14 AWG
Max. Ratings
Sym. Amps RMS
Fuse
14 AWG
14 AWG
“Suitable for Motor Group Installation”
“Smallest
conductor”
1/2 HP
FLC =
1.1 A**
2 HP
FLC =
3.4 A**
5 HP
FLC =
7.6 A**
5 HP
FLC =
7.6 A**
1 HP
FLC =
2.1 A**
* Each controller is suitable for group installation with the same maximum ratings of fuse.
** Table 430.250 of NFPA 70-2011
Figure 99 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit Minimum
Conductor Ampacity
Electrical Supply
Minimum Required Ampacity (MRA)
MRA = 1.25 * Max {controller input currents} + Sum {remaining controller input currents}
Controller input currents = {I1,I2,I3,I4,I5}
Max controller input current = I3 = I4, choose I3 as Max (either is ok)
MRA = 1.25 * I3 + (I1 + I2 + I4 + I5}
= 1.25 * 7.6 A + (1.8 A + 5.5 A + 7.6 A + 3.0 A) = 27.4 A
Combined Load Conductors
Min Amp. =
125% * 1.1A
2 HP
Bulletin
294
Min Amp. =
125% * 3.4 A
1/2 HP
FLC =
1.1 A**
2 HP
FLC =
3.4 A**
3.4 A
Min Amp. =
125% * 7.6 A
7.6 A
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
I5 =
3.0 A
1 HP
Bulletin
294
7.6 A
Min Amp. =
125% * 7.6 A
b
5 HP
FLC =
7.6 A**
** Table 430.250 of NFPA 70-2011
270
14 AWG
I4 =
7.6 A
Min Amp. =
125% * 3.0 A
5 HP
Bulletin
290
a
5 HP
FLC =
7.6 A**
10 AWG
b
14 AWG
5 HP
Bulletin
291
14 AWG
1.1 A
a
I3 =
7.6 A
Min Amp. =
125% * 7.6 A
14 AWG
I2 =
5.5 A
14 AWG
14 AWG
½ HP
Bulletin
294
Min Amp. =
125% * 7.6 A
14 AWG
I1 =
1.8 A
14 AWG
Min Amp. =
125% * 5.5 A
14 AWG
Min Amp. =
125% * 1.8 A
14 AWG
c
Min Amp. =
125% * 2.1 A
1 HP
FLC =
2.1 A**
2.1 A
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
Appendix A
1. Requirement One: Controller Ratings — The motor controllers and
overload relays must be listed for group installation with specified maximum
branch-circuit protection.
Text: “7.2.10.4(1) Each motor controller and overload device is… listed for group
installation with specified maximum branch-circuit protection…”
Analysis: To apply the ArmorStart LT motor controllers in the multiple-motor
branch circuit shown in Figure 98, 7.2.10.4(1) must be satisfied; each controller
must be listed for group installation with specified maximum branch-circuit
protection. The UL listing for each ArmorStart LT motor controller confirms
that it – including its integral overload relay and motor disconnecting means — is
suitable for motor group installation with specified fuses, satisfying 7.2.10.4(1).
The Bulletin 290E and 291E controllers are listed for group installation
according to UL 508, Industrial Control Equipment. The Bulletin 294E
controllers are listed for group installation according to UL 508C, Power
Conversion Equipment.
Referring to Figure 99 (a) indicates the markings on the nameplate that satisfy
7.2.10.4(1). The marking “Suitable for Motor Group Installation” satisfies the
requirement to be listed for group installation. The ratings located beneath the
description “Max. Ratings” are the specified maximum branch circuit protection.
The (a) beside the fuse(s) indicates that the maximum protection specified on the
nameplate applies to these fuse(s).
2. Requirement Two: Conductor Short-circuit and Ground-Fault
Protection — The fuse must protect the conductors for short-circuit faults
and ground faults.
Text: “7.2.10.4(2) The rating or setting of the branch short-circuit and groundfault protection device does not exceed the values in Table 48 for the smallest
conductor in the circuit.”
Analysis: Referring to Figure 98, 7.2.10.4(2) must be satisfied. The fuse, as
indicated by the description in Figure 98 (a), is the branch short-circuit and
ground-fault protection device. The word circuit means the branch circuit.
The conductors of the branch circuit start at the load side of the fuses and end
at the input to the motor, including the conductors between the motor
controllers and the motor. The smallest conductor in the circuit is any one
of the 14 AWG conductors that supply each controller and motor. The note
at (b) indicates the conductor protection is based on the smallest conductor,
14 AWG. Referring to Table 48 a 14 AWG conductor may be used in a circuit
that is protected by a fuse of any class having a rating of 60 amperes or less (c).
Therefore, selecting a fuse of any class with a maximum rating of 60 amperes
satisfies the conductor protection requirement of 7.2.10.4(2).
Supplementary Note 1: The value specified in Table 48 is the maximum rating
of fuse that 7.2.10.4(2) permits to protect that size of conductor. The rating of
the fuse may be set to the maximum value given by Table 48 for the smallest
conductor without further justification. However, if any controller, or other
component, has a maximum rating of fuse that is less than the Table 48 value, the
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
271
Appendix A
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
maximum rating of the fuse protecting the branch circuit must be reduced to the
lower value so that all components are applied according to their ratings. For
example, as shown in Requirement Three, a lower value may be necessary to
protect the motor controller within its ratings because its specified maximum
protection is less than the rating that Table 48 permits for the smallest circuit
conductor. Another reason to use a lower rating of fuse is to provide more
conservative conductor and controller protection. However, in all cases it is
important to ensure the ampere rating is sufficient to start and operate the motors
without nuisance opening of the fuse(s).
Supplementary Note 2: The note at (b) points to the conductor on the output
of the ½ Hp Bulletin 294E controller in order to emphasize that the smallest
conductor in the circuit includes the conductors between each controller and
motor. This includes the output of the variable-frequency AC drive-based
Bulletin 294E controllers; even though these drives have electronic short-circuit
protection. According to NFPA 79, the fuse, and not the drive’s electronic shortcircuit protection, provides the short-circuit fault and ground-fault protection
for these output conductors.
Supplementary Note 3: Generally, connecting a smaller conductor to a larger
conductor requires the installation of fuses at the connection. This connection
may be made without this fuse, in some cases, through the use of a tap rule that
indirectly protects the smaller conductor by limiting two things: the ratio of the
ampacity of the larger conductor to the ampacity of the smaller conductor and
the maximum length of the smaller conductor (see, for example, 7.2.8.2). When
applying 7.2.10.4(2), such a tap rule is neither applicable nor necessary. In
Figure 98, the smaller 14 AWG conductors may be connected to combined load
conductors of any size because 7.2.10.4 does not indirectly protect the smaller
conductor by limiting the ratio of the larger to smaller conductor ampacities and
the conductor length. Instead, Table 48 protects the smallest conductor directly
by specifying the maximum rating of fuse that may protect a branch circuit that
contains a conductor of that size.
3. Requirement Three: Controller Short-Circuit and Ground-Fault
Protection — Each motor controller must be protected according to its own
ratings, that is, applied in accordance with its listing.
Text: “(1) Each motor controller and overload device is… listed for group
installation with specified maximum branch-circuit protection…”
Analysis: See (d) in Figure 98. The characteristics of the fuse(s) permitted to
protect the conductors (see Requirement 2) must now be compared to those in
the controller’s ratings. To comply with the listing of each motor controller and
overload relay, the fuse(s) must comply with the maximum branch-circuit
protection specified in the controller markings. Therefore, the fuse(s) must be
of a class marked on all of the controllers and the rating of the fuse(s) must not
exceed the rating marked on any of the controllers. The markings of each
controller specify that a fuse having a maximum rating of 45 A may protect the
motor controller. When connecting to an electrical supply having an available
fault current of 5000 amperes or less, the class of the fuse is not specified and may
be any class. When connecting to an electrical supply having an available fault
272
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
Appendix A
current between 5000 and 10000 amperes, the class of the fuse must be CC, J
or T. Since the electrical supply has an available fault current of 9000 amperes,
selecting a Class CC, J or T fuse with a rating of 45 A or less ensures each motor
controller is applied within its own ratings.
Supplementary Note 1: The rating of the fuse must not exceed the rating
permitted by 7.2.10.4(2) to protect the smallest conductor in the circuit.
Selecting a Class CC, J or T fuse with a rating of 45 amperes, being less than 60
amperes, also protects the conductors (see Requirement 2). Although the
ArmorStart LT products presently have a maximum fuse rating of 45 A, future
controllers may have maximum fuse ratings that exceed 60 A. In this case, the
maximum rating of fuse is limited by the rating to protect the 14 AWG
conductors, 60 A. The maximum rating permitted for the controller, 45 A,
is a maximum rating and can be reduced, for more conservative protection,
provided nuisance opening of the fuses do not occur.
Supplementary Note 2: In this appendix, a fuse having a rating of any class
means a fuse having the let-through characteristics of an Class RK-5 fuse. Class
RK-5 fuses are assumed to have the maximum let-through of any class of fuse. For
this reason, the ArmorStart LT motor controllers that are marked for use with
fuses, without a restriction to a particular class, have been tested with and are
intended to be used with fuses having a class of RK-5. Of course, fuses of a class
that have lower let-throughs than Class RK-5, such as Class CC, J or T, are also
acceptable. A fuse having a rating of any class also restricts the fuse to those that
have been evaluated for use as branch-circuit protection devices. This means that
semiconductor fuses, used to protect power electronic equipment, or
supplemental fuses cannot be used to protect the multiple-motor branch circuit.
Supplementary Note 3: There are four complementary ratings relevant to the
“specified maximum branch-circuit protection” of 7.2.10.4(1). They are: the fuse
class, the maximum fuse rating, the voltage rating and connection of the source
(480Y/277 V), and the available fault current of the source. Applying the
controllers according to these four ratings means that a fault on the output of all
the controllers, and internal faults for Bulletin 294 controllers, will not result in a
shock or fire hazard.
Supplementary Note 4: In this example, the assumption is made that the
available fault current at the controller is that of the source on the line side
of the fuses. Although it is true that the wiring impedance between the fuses
and the first controller reduce the fault current available at the controllers, this
reduction is neglected by assuming the first controller, the ½ horsepower
Bulletin 294 controller, is very close to the fuses.
4. Requirement Four: Overload Protection — The motors, conductors and
controllers must be protected against motor overload conditions.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
273
Appendix A
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
Text:
“7.3.1 General. Overload devices shall be provided to protect each motor, motor
controller, and branch-circuit conductor against excessive heating due to motor
overloads or failure to start.”
“7.3.1.1 Motors. Motor overload protection shall be provided in accordance with
Article 430, Part III, of NFPA 70.”
Analysis: Each ArmorStart LT motor controller incorporates an integral
overload relay. This overload function must be set in accordance with Article 430,
Part III of NFPA 70. Selecting the ampacity of the circuit conductors
appropriately (see Requirement 5) ensures the overload relays, when set
according to 7.3.1.1, will protect the conductors against overheating due
to motor overloads.
Supplementary Note: Each individual controller overload relay directly protects
the conductors connected to the input and output of that controller and the
motor that the controller supplies. The combined load conductor is protected by
the tripping of one or more of the controller overload relays, which remove(s) the
overloaded motor(s) before the combined load conductor overheats.
5. Requirement: Conductor Ampacity —The minimum ampacity
of conductors.
Text:
“12.5.3 Motor circuit conductors supplying a single motor shall have an ampacity
not less than 125 percent of the motor full-load current rating.”
“12.5.4 Combined load conductors shall have an ampacity not less than … 125
percent of the full-load current rating of the highest rated motor plus the sum of
the full-load current ratings of all other connected motors…”
Analysis: Referring to Figure 99, (a), (b) and (c) explain the method for
calculating the minimum required conductor ampacity for each of these
conductors: input and output conductors of Bulletin 290E and 291E controllers
(a), input and output conductors of Bulletin 294E controllers (b) and combined
load conductors that supply Bulletin 290E, 291E and 294E controllers (c). The
currents I1 through I5 are the input currents to the controllers. For the Bulletin
290E and 291E controllers, these are the same as the output motor currents. For
the Bulletin 294E controllers, these currents are the rated input currents.
The example does not address conditions of use such as an ambient temperature
exceeding 30 °C or more than three current-carrying conductors in a cable or
raceway. In a particular application, these conditions of use may require derating
of the ampacity given in Table 12.5.1. This example assumes that, under the
conditions of use, both conductors have sufficient ampacity for the application.
This means the 14 AWG conductors have an ampacity of no less than
9.5 A and the 10 AWG conductors have an ampacity of no less than
27.4 A.
274
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
Input and Output Conductors
of Bulletin 290E and 291E
Controllers (a)
Appendix A
For Bulletin 290E and 291E controllers, which use an electromechanical
contactor to control the motor, the input current, like the output current, is just
the current to the motor. Therefore, the minimum conductor ampacity for both
input and output conductors is 125 percent of the motor full-load current rating,
as specified in the text of 12.5.3 (a).
Referring to Figure 99, the full-load current rating of a three-phase, 460 V, 5 Hp
induction motor is 7.6 amperes. Using this value, both the input and output
conductors must have an ampacity that is not less than 125% of 7.6 A or 9.5 A.
Input and Output Conductors
of Bulletin 294E Controllers
(b)
The Bulletin 294E controllers use a variable-frequency AC drive to control the
motor. These drives use a power conversion method that generates input currents
that are larger than the output currents. The input currents are larger because,
unlike the output currents to the motor, they are not sinusoidal. Consequently,
when determining the minimum ampacity of the input conductors, the
requirement of 12.5.3 must be based on the rated input current of the controller,
rather than the full-load current rating of the motor. Therefore, the minimum
ampacity of the input conductors must be 125% of the controller rated input
current, while that of the output conductors must be 125% of the motor full-load
current rating.
Referring to Figure 99, the 1 Hp Bulletin 294E controller has a rated input
current of 3.0 amperes. Using the rated input current, the conductors from the
combined load conductors to the controllers must have an ampacity of 125%
of 3.0 A or 3.75 A. The output conductors must have an ampacity of 125% of
2.1 A or 2.6 A.
Combined Load Conductors
(c)
The requirement for the minimum ampacity of the combined load conductors
is given by 12.5.4. When the combined load conductors supply one or more
Bulletin 294E controllers, the minimum ampacity calculation of 12.5.4 must
be made by substituting the rated input current of the Bulletin 294E controllers
for the full-load current rating of the motors that these controllers supply.
In Figure 99, the currents I1, I2, I3, I4 and I5 are the input currents to each
controller. I3 and I4 are the full-load current ratings of the 5 Hp motors. I1, I2
and I5 are the rated input currents of the Bulletin 294E controllers. Referring to
the explanatory text (c) in Figure 99, the method for calculating the minimum
ampacity of the combined load conductors follows: first, multiply the largest
input current to any controller – Bulletin 290E, 291E or 294E - by 125%. In this
case, the input currents to the Bulletin 290E and 291E controllers, I3 and I4, are
the largest, 7.6 A. Because they are the same, either can be used. Choose I3 to
calculate 125% of the maximum. 125% of 7.6 A is 9.5 A. Second, sum the
remaining input currents (I1, I2, I4, I5) for a total of 17.9 A. Third, add the result
from the first step to the result from the second for a total of 27.4 A. Finally, the
minimum ampacity of the combined load conductors is 27.4 A.
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
275
Appendix A
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
Supplementary Note 1: The input currents to the Bulletin 294E motor
controllers are larger than the output currents to the motor because the input
currents contain harmonics resulting from the power conversion process.
This harmonic content and the magnitude of the resulting non-sinusoidal input
currents depend on the impedance of the electrical supply. The value specified
for the rated input current is the maximum value over the range of possible supply
impedances. For this reason, the magnitude of current measured on a particular
electrical system may be less than the specified value.
276
Rockwell Automation Publication 280E-UM001B-EN-P - July 2012
Appendix
B
CIP Information
High Level Product
Description
The ArmorStart EtherNet/IP is an extension of the ArmorStart DeviceNet.
Three product types offered:
Bulletin Number
Distributed Starter Type
280E
DOL
281E
Reversing
284E
Inverter
Product Codes and Name Strings
The following table lists the product codes and name strings that will be added
to the ArmorStart product family for EtherNet/IP.
CIP Explicit Connection
Behavior
Product Code
(hex)
Product Code
(decimal)
Identity Object Name String
0x91
145
ArmorStart Bulletin 280E 0.5…2.5 A 24V DC
0x92
146
ArmorStart Bulletin 280E 1.1…5.5 A 24V DC
0x93
147
ArmorStart Bulletin 280E 3.2…16 A 24V DC
0x9A
154
ArmorStart Bulletin 280E 0.3…1.5 A 24V DC
0xD1
209
ArmorStart Bulletin 281E 0.5…2.5 A 24V DC
0xD2
210
ArmorStart Bulletin 281E 1.1…5.5 A 24V DC
0xD3
211
ArmorStart Bulletin 281E 3.2…16 A 24V DC
0xDA
218
ArmorStart Bulletin 281E 0.3…1.5 A 24V DC
0x172
370
ArmorStart Bulletin 284E PF40 480V 0.5 Hp
0x174
372
ArmorStart Bulletin 284E PF40 480V 1 Hp
0x176
374
ArmorStart Bulletin 284E PF40 480V 2 Hp
0x177
375
ArmorStart Bulletin 284E PF40 480V 3 Hp
0x178
376
ArmorStart Bulletin 284E PF40 480V 5 Hp
The ArmorStart allows run, jog and user outputs to be driven by connected
explicit messages when no I/O connection exists, or when a I/O connection
exists in the idle state, a single EtherNet/IP Class 3 explicit connection will be
allowed to send “explicit control” messages via an “Active Explicit” connection.
An EtherNet/IP Class 3 explicit connection becomes the “explicit control”
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
277
Appendix B
CIP Information
connection when it becomes the first EtherNet/IP Class 3 explicit connection to
send a “set” service to one of the following:
• The “value” attribute of any DOP instance (class code 0x09).
• The “data” attribute of any output (consumed) Assembly instance (class
code 0x04).
• Attribute 3 or 4 of the Control Supervisor Object (class code 0x29).
EDS Files
Most of the information contained in the EDS (Electronic Data Sheet) files for
the ArmorStart EtherNet/IP product line will be able to be extracted via the
network.
CIP Object Requirements
The following CIP objects will be covered in the following subsections.
Class
Object
0x0001
Identity Object
0x0004
Assembly Object
0x0006
Connection Manager Object
0x0008
Discrete Input Point Object
0x0009
Discrete Output Point Object
0x000F
Parameter Object
0x0010
Parameter Group Object
0x001D
Discrete Input Group Object
0x001E
Discrete Output Group Object
0x0029
Control Supervisor Object
0x002C
Overload Object
0x0047
Device Level Ring Object
0x0048
QoS Object
0x0097
DPI Fault Object
0x0098
DPI Alarm Object
0x00B4
Interface Object
0x00F5
TCP/IP Interface Object
0x00F6
Ethernet Link Object
For convenience, all objects that are accessible via the EtherNet/IP port
are included.
278
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
CIP Information
Appendix B
CLASS CODE 0x0001
Identity Object
The following class attributes are supported for the Identity Object:
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
1
2
Get
Max Instance
UINT
9
Up to nine instances (Instance 1…9) of the Identity Object will be supported.
The following table shows what each instance will represent, and what the
revision attribute will report:
Instance
Name
Revision Attribute
1
EtherNet/IP Module
The firmware rev of the EtherNet/IP board main firmware.
2
EtherNet/IP Boot
The firmware rev of the EtherNet/IP board boot firmware.
3
FPGA
The rev of the FPGA program
A coded revision reflecting the revision attribute of the other various identity object
instances (excluding boot code). Major revisions are coded as: 0SSSMMMM
• 0 = reserved by DeviceNet
• SSS = Revision of Soft-start or inverter. Initial release = 0; We will be limited
to support for 8 major revisions.
• MMMM = Revision of Main ArmorStart board. Initial release = 1; We will be
limited to support for 15 major revisions.
4
Control Module
5
Main Control Board
Operating System
6
Main Control Board Boot Code
7
The Internal PF 40 Inverter
8➊
MCB IIC Daughter Board
The firmware rev of the MCB IIC Daughter Board
9➊
BASE IIC Daughter Board
The firmware rev of the Base IIC Daughter Board
The firmware rev of the Main ArmorStart board OS stored in flash memory.
The firmware rev of the Main ArmorStart board boot code stored in flash memory.
The firmware rev of the Inverter as read from the RS485 connection.
➊ These instance numbers will assume the next available instance base on the unit configuration. (If the unit is a DOL (No Drive) and
there is a MCB Daughter board present it’s instance number will be 7.)
IMPORTANT
Attempts access Attribute 10 of all DeviceNet Main Control Board instances will be
blocked. If Attribute 10 (Heartbeat Interval) is accessed, an “Attribute Not Supported”
error will be generated.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
279
Appendix B
CIP Information
Instance 1 of the Identity Object will contain the following attributes:
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Vendor
UINT
1
2
Get
Device Type
UINT
22
3
Get
Product Code
UINT
Starter Rating specific
4
Get
Revision
Major Revision
Minor Revision
Structure of:
USINT
USINT
See table above.
5
Get
Status
WORD
Bit 0…0 = Not Owned; 1 = Owned by Master
Bit 2…0 = Factory Defaulted; 1 = Configured
Bit 8 - Minor Recoverable fault
Bit 9 - Minor Unrecoverable fault
Bit 10 - Major Recoverable fault
Bit 11 - Major Unrecoverable fault
6
Get
Serial Number
UDINT
Unique number for each device
7
Get
Product Name
String Length
ASCII String
Structure of:
USINT
STRING
Product Code specific
8
Get
State
USINT
Returns the value "3 = Operational"
9
Get
Configuration
Consistency Value
UINT
"Module FRS"
102 ➊
Get
Build Number
UDINT
Build number of EtherNet/IP Module firmware.
➊ Instance 1 only
The following common services will be implemented for Instance 1. Service
requests to other instances are serviced through the bridge.
Implemented for:
Service Code
Class
Instance
Service Name
0x01
Yes
Yes
Get_Attributes_All
0x05
No
Yes
Reset
0x0E
Yes
Yes
Get_Attributes_Single
The Type 0 and 1 reset service types will reset the Control Module. The
EtherNet/IP module will perform the Type 0 or 1 reset on itself.
280
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
CIP Information
Appendix B
CLASS CODE 0x0004
Assembly Object
The following class attributes are supported for the Assembly Object:
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
1
The following static Assembly instance attributes will be supported for each
Assembly instance.
Attribute ID
Access Rule
Name
1
Get
Number of Members in Member List
UINT
Member List
Array of STRUCT
Array of CIP paths
Member Data Description
UINT
Size of Member Data in bits
Member Path Size
UINT
Size of Member EPATA in bytes
Member Path
Packed
EPATH
Logically encoded member name
2
Get
Data Type
Value
—
3
Conditional
Data
Array of BYTE
4
Get
Size
UINT
100
Get
Name String
STRING
—
Number of bytes in attribute 3
—
The following services will be implemented for the Assembly Object.
Implemented for:
Service Code
Class
Instance
Service Name
0x0E
Yes
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
0x18
No
Yes
Get_Member
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
281
Appendix B
CIP Information
I/O Assemblies
The following table summarizes the Assembly instances that are supported in the
ArmrorStart EtherNet/IP Product:
Instance
Type
Description
3
Consumed
Required ODVA Consumed Instance
52
Produced
Required ODVA Produced Instance
150
Produced
Default Bulletin 280E/281E Produced Assembly
151 ➊
Produced
Default Bulletin 284E Produced Assembly
162
Consumed
Default Consumed Instance for DOL and Reversing Starters
166 ➊
Consumed
Default Consumed Instance for Inverter type Starters
191
Consumed
Empty assembly for Input Only I/O Connection
192
Consumed
Empty assembly for Listen Only I/O Connection
➊ These assemblies are selectable on Inverter Type ArmorStart units only.
Instances 3 and 52 are required by the ODVA Motor Starter Profile. When used
as an EtherNet/IP Class 1 connection point, the I/O data attribute is simply
passed through the bridge.
Instance 3
This is the required output (consumed) assembly.
Instance 3 ODVA Starter
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
—
—
—
—
—
—
—
Run Fwd
Instance 52
This is the required input (produced) assembly.
Instance 52 ODVA Starter
282
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
—
—
—
—
—
—
Running
—
Fault
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
CIP Information
Appendix B
Instance 150
This is the default input (produced) assembly for Bulletin 280E/281E starters.
Instance 150 "Starter Stat" - Default Status Assembly for Bulletin 280E/281E Starters
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
0
Reserved (AOP Tag name: {name}:I.Fault)
1
Reserved (AOP Tag name: {name}:I.Fault)
2
Reserved (AOP Tag name: {name}:I.Fault)
3
Reserved (AOP Tag name: {name}:I.Fault)
Bit 2
Bit 1
Bit 0
4
—
—
—
Ready
RunningReverse
RunningForward
WarningPresent
TripPresent
5
—
—
DisconnectClosed
Hand
In3
In2
In1
In0
6
Pt07DeviceOut
Pt06DeviceOut
Pt05DeviceOut
Pt04DeviceOut
Pt03DeviceOut
Pt02DeviceOut
Pt01DeviceOut
Pt00DeviceOut
7
Logic Enable
Pt14DeviceOut
Pt13DeviceOut
Pt12DeviceOut
Pt11DeviceOut
Pt10DeviceOut
Pt09DeviceOut
Pt08DeviceOut
8
Value of the parameter pointed to by “Parameter Int00DeviceOut Cfg” (low byte) - ProducedWord0Param
9
Value of the parameter pointed to by “Parameter Int00DeviceOut Cfg” (high byte) - ProducedWord0Param
10
Value of the parameter pointed to by “Parameter Int01DeviceOut Cfg” (low byte) - ProducedWord1Param
11
Value of the parameter pointed to by “Parameter Int01DeviceOut Cfg” (high byte) - ProducedWord1Param
12
Value of the parameter pointed to by “Parameter Int02DeviceOut Cfg” (low byte) - ProducedWord2Param
13
Value of the parameter pointed to by “Parameter Int02DeviceOut Cfg” (high byte) - ProducedWord2Param
14
Value of the parameter pointed to by “Parameter Int03DeviceOut Cfg” (low byte) - ProducedWord3Param
15
Value of the parameter pointed to by “Parameter Int03DeviceOut Cfg” (high byte) - ProducedWord3Param
Note: Byte 0 - 3 refers to PLC communication status. All 1s (bit high) indicates a
connection fault (communication fault) exists or all 0s (bit low) connection
is normal.
Instance 151
This is the default input (produced) assembly for Inverter Type Distributed
Starters.
Produce Assembly - Instance 151 “Drive Status” - 284E Starters
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
0
Reserved - {name}:I.Fault
1
Reserved - {name}:I.Fault
2
Reserved - {name}:I.Fault
3
Reserved - {name}:I.Fault
Bit 2
Bit 1
Bit 0
4
AtReference
Network
ReferenceStatus
NetControlStatus
Ready
RunningReverse
RunningForward
WarningPresent
TripPresent
5
OutputContactor
Status
BrakeContactor
Status
DisconnectClosed
Hand
In3
In2
In1
In0
6
OutputFrequency (Low) (xxx.x Hz)
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
283
Appendix B
CIP Information
Produce Assembly - Instance 151 “Drive Status” - 284E Starters
Byte
Bit 7
Bit 6
Bit 5
7
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
OutputFrequency (High) (xxx.x Hz)
8
Pt07DeviceOut
Pt06DeviceOut
Pt05DeviceOut
Pt04DeviceOut
Pt03DeviceOut
Pt02DeviceOut
Pt01DeviceOut
Pt00DeviceOut
9
LogicEnable
Pt14DeviceOut
Pt14DeviceOut
Pt13DeviceOut
Pt11DeviceOut
P10DeviceOut
Pt09DeviceOut
Pt08DeviceOut
10
Value of the parameter pointed to by “Parameter 13 Prod Assy Word 0" (low byte)” - Int00DeviceOut
11
Value of the parameter pointed to by “Parameter 13 Prod Assy Word 0" (high byte)” - Int00DeviceOut
12
Value of the parameter pointed to by “Parameter 14 Prod Assy Word 1" (low byte)” - Int01DeviceOut
13
Value of the parameter pointed to by “Parameter 14 Prod Assy Word 1" (high byte)” - Int01DeviceOut
14
Value of the parameter pointed to by “Parameter 15 Prod Assy Word 2" (low byte)” - Int02DeviceOut
15
Value of the parameter pointed to by “Parameter 15 Prod Assy Word 2" (high byte)” - Int02DeviceOut
16
Value of the parameter pointed to by “Parameter 16 Prod Assy Word 3" (low byte)” - Int03DeviceOut
17
Value of the parameter pointed to by “Parameter 16 Prod Assy Word 3" (high byte)” - Int03DeviceOut
Note: Byte 0 - 3 refers to PLC communication status. All 1s (bit high) indicates a
connection fault (communication fault) exists or all 0s (bit low) connection
is normal.
** Contactor
Reference
Contactor 1
Source Brake Contactor status
Contactor 2
Output Contactor status
Instance 162
This is the standard output (consumed) assembly with
Network Inputs.
Instance 162 Default Consumed DOL and Reversing Starter
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
OutB
OutA
—
—
—
ResetFault
RunReverse
RunForward
1
Pt07DeviceIn
Pt06DeviceIn
Pt05DeviceIn
Pt04DeviceIn
Pt03DeviceIn
Pt02DeviceIn
Pt01DeviceIn
Pt00DeviceIn
2
Pt15DeviceIn
Pt14DeviceIn
Pt13DeviceIn
Pt12DeviceIn
Pt11DeviceIn
Pt10DeviceIn
Pt09DeviceIn
Pt08DeviceIn
Instance 166
This is the standard output (consumed) assembly for Inverter Type Distributed
Starters with network inputs.
284
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
CIP Information
Appendix B
Instance 166 Consumed Inverter Type Starter with Network Inputs
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
Out B
Out A
—
JogReverse
JogForward
ResetFault
RunReverse
RunForward
1
DriveInput4
DriveInput3
DriveInput2
DriveInput1
DecelCtrl_1
DecelCtrl_0
AccelCtrl_1
AccelCtrl_0
2
FreqCommand (Low) (xxx.x Hz)
3
FreqCommand (High) (xxx.x Hz)
4
Pt07DeviceIn
Pt06DeviceIn
Pt05DeviceIn
Pt04DeviceIn
Pt03DeviceIn
Pt02DeviceIn
Pt01DeviceIn
Pt00DeviceIn
5
Pt15DeviceIn
Pt14DeviceIn
Pt13DeviceIn
Pt12DeviceIn
Pt11DeviceIn
Pt10DeviceIn
Pt9DeviceIn
Pt8DeviceIn
Connection Manager Object
CLASS CODE 0x0006
The following class attributes will be supported for the Connection Manager
Object.
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
1
2
Get
Max Instance
UINT
—
3
Get
Number of Instances
UINT
—
4
Get
Optional Attribute List
Array of UINT
—
6
Get
Max Number Class Attribs
UINT
—
Two Class 1 connections for I/O transfer will be supported.
Six Class 3 explicit connections will be supported.
The following instance attributes will be supported:
Attribute ID
Access Rule
Name
Data Type
Value
1
Get/Set
Open Requests
UINT
Number of Forward Open service requests received.
2
Get/Set
Open Format Rejects
UINT
Number of Forward Open service requests which were
rejected due to bad format.
3
Get/Set
Open Resource Rejects
UINT
Number of Forward Open service requests which were
rejected due to lack of resources.
4
Get/Set
Open Other Rejects
UINT
Number of Forward Open service requests which were
rejected for reasons other than bad format or lack of
resources.
5
Get/Set
Close Requests
UINT
Number of Forward Close service requests received.
6
Get/Set
Close Format Requests
UINT
Number of Forward Close service requests which were
rejected due to bad format.
7
Get/Set
Close Other Requests
UINT
Number of Forward Close service requests which were
rejected for reasons other than bad format.
8
Get/Set
Connection Timeouts
UINT
Total number of connection timeouts that have occurred in
connections controlled by this Connection Manager
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
285
Appendix B
CIP Information
The following services will be implemented for the Connection Manager Object.
Implemented for:
Service Code
Class
Instance
Service Name
0E hex
Yes
Yes
Get_Attribute_Single
4E hex
No
Yes
Forward_Close
54 hex
No
Yes
Forward_Open
Class 1 Connections
Class 1 connections are used to transfer I/O data, and can be established to the
assembly object instances. Each Class 1 connection establishes two data
transports, one consuming and one producing. The heartbeat instances are used
for connections that shall access only inputs. Class 1 uses UDP transport.
• Total numbers of supported Class 1 connections equals 2 (total for:
exclusive owner + input only + listen only)
• Supported Actual Packet Interval (API): 2…3200 ms (Note that the
minimum API can be higher if processor resources become a problem)
• T->O (Target to Originator) Connection type: point-to-point, multicast
• O->T (Originator to Target) Connection type: point-to-point
• Supported trigger type: cyclic, change-of-state
The producing instance can be assigned to multiple transports, using any
combination of multicast and point-to-point connection types.
Only one Exclusive-owner connection will be supported at each time. If there’s
already an Exclusive-owner connection established and an originator tries to
establish a new Exclusive-owner connection an “Ownership conflict” (general
status = 0x01, extended status = 0x0106) error code will be returned.
For a connection to be established the requested data sizes must be an exact
match of the connections points that the connection tries to connect to. If the
requested and actual sizes don’t match, an “Invalid connection size” (general
status = 0x01, extended status = 0x0109) error code will be returned.
Exclusive Owner Connection
This connection type is used for controlling the outputs of the module and shall
not be dependent on any other condition. Only one exclusive owner connection
can be opened against the module.
If an exclusive owner connection is already opened “Connection in use” (general
status = 0x01, extend status = 0x0100) shall be returned an error code.
286
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
CIP Information
Appendix B
• Connection point O -> T shall be Assembly object, Instance 3, 162
or 166 (162 for product codes <= 0x100 only, 166 for product codes
> 0x100 only).
• Connection point T -> O shall be Assembly object, Instance 52, 150
or 151 (150 for product codes <= 0x100 only, 151 for product codes
> 0x100 only).
Listen Only Connection
This connection is dependent on another connection to exist. If that connection
(exclusive owner or input only) is closed, the listen only connection shall be
closed as well.
It is recommended that the originator sets the data size in the Forward_Open
be zero.
• Number of supported listen only connections equals two (shared with
exclusive owner and listen only connection).
• Connection point O -> T shall be Assembly object, Instance 192 (Listen
only heartbeat)
• Connection point T -> O shall be Assembly object, Instance 52, 150
or 151 (150 for product codes <= 0x100 only, 151 for product codes
> 0x100 only)
Class 3 CIP Connections
Class 3 CIP connections are used to establish connections to the message router.
The connection is used for explicit messaging. Class 3 CIP connections use TCP
connections.
• Three concurrent encapsulation sessions will be supported
• Six concurrent Class 3 CIP connections will be supported
• More than one Class 3 CIP connection per encapsulation session will
be supported
• Supported Actual Packet Interval (API): 100…10000 ms
• T->O Connection type: point-to-point
• O->T Connection type: point-to-point
• Supported trigger type: application
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
287
Appendix B
CIP Information
Discrete Input Point Object
CLASS CODE 0x0008
The following class attributes are currently supported for the Discrete Input
Point Object:
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
2
2
Get
Max Instance
UINT
4
Four instances of the Discrete Input Point Object are supported. All instances
contain the following attributes.
Attribute ID
Access Rule
Name
Data Type
Value
3
Get
Value
BOOL
0 = OFF, 1 = ON
115
Get/Set
Force Enable
BOOL
0 = Disable, 1 = Enable
116
Get/Set
Force Value
BOOL
0 = OFF, 1 = ON
The following common services will be implemented for the Discrete Input Point
Object.
Implemented for:
Service Code
Class
Instance
Service Name
0x0E
Yes
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
Discrete Output Point Object CLASS CODE 0x0009
The following class attributes are supported.
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
1
2
Get
Max Instance
UINT
4 or 10
Four instances of the Discrete Output Point Object are supported for DOL/
Reverser units. Ten instances are supported for Drive units. The following table
summarizes the DOP instances.
288
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
CIP Information
Appendix B
Instance
Name
Alternate Mapping
Description
1
Run Fwd Output
0029-01-03
Run Forward output. For all starter types, this output is hard wired from the
ArmorStart CPU to the actuator.
2
Run Rev Output
0029-01-04
Run Reverse output. For all starter types, this output is hard wired from the
ArmorStart CPU to the actuator.
3
User Output 1
None
4
User Output 2
None
5
Drive Input 1
None
6
Drive Input 2
None
7
Drive Input 3
None
8
Drive Input 4
None
9
Drive Jog Fwd
None
10
Drive Jog Rev
None
These are the two ArmorStart user outputs for all starter types.
These four instances exist for Inverter units only. They are drive the outputs on
the main control board that are connected to Drive Inputs 1…4.
This instances exists for Inverter units only.
All instances contain the following attributes.
Attribute ID
Access Rule
Name
Data Type
Value
3
Get
Value
BOOL
0 = OFF, 1 = ON
5
Get/Set
Fault Action
BOOL
0 = Fault Value attribute, 1 = Hold Last State
6
Get/Set
Fault Value
BOOL
0 = OFF, 1 = ON
7
Get/Set
Idle Action
BOOL
0 = Fault Value attribute, 1 = Hold Last State
8
Get/Set
Idle Value
BOOL
0 = OFF, 1 = ON
113
Get/Set ➊
Pr Fault Action
BOOL
0 = Pr Fault Value attribute, 1 = Ignore
114
Get/Set ➊
Pr Fault Value
BOOL
0 = OFF, 1 = ON
115
Get/Set
Force Enable
BOOL
0 = Disable, 1 = Enable
116
Get/Set
Force Value
BOOL
0 = OFF, 1 = ON
117
Get/Set
Input Binding
STRUCT:
USINT
Array of USINT
Size of Appendix I encoded path
Appendix I encoded path
NULL path means Attribute 3 drives the output.
Otherwise, this is a path to a bit in the Bit Table.
➊ For DOP Instances 1, 2, 9 and 10, Attributes 113 and 114 have “Get” only access, and their values are always 0.
The following common services are implemented for the Discrete Output Point
Object.
Implemented for:
Service Code
Class
Instance
Service Name
0x0E
Yes
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
289
Appendix B
CIP Information
CLASS CODE 0x000F
Parameter Object
The following class attributes will be supported for the Parameter Object.
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
—
2
Get
Max Instance
UINT
—
8
Get
Parameter Class Descriptor
WORD
—
The number of instances of the parameter object will depend upon the type of
Control Module that the EtherNet/IP board is connected to.
The following instance attributes will be implemented for all parameter
attributes.
290
Attribute ID
Access Rule
Name
1
Get/Set
Value
2
Get
Link Path Size
3
Get
4
Data Type
Value
Specified in Descriptor
—
USINT
—
Link Path
Array of:
BYTE
EPATH
—
Get
Descriptor
WORD
—
5
Get
Data Type
EPATH
—
6
Get
Data Size
USINT
—
7
Get
Parameter Name String
SHORT_STRING
—
8
Get
Units String
SHORT_STRING
—
9
Get
Help String
SHORT_STRING
—
10
Get
Minimum Value
Specified in Descriptor
—
11
Get
Maximum Value
Specified in Descriptor
—
12
Get
Default Value
Specified in Descriptor
—
13
Get
Scaling Multiplier
UINT
—
14
Get
Scaling Devisor
UINT
—
15
Get
Scaling Base
UINT
—
16
Get
Scaling Offset
INT
—
17
Get
Multiplier Link
UINT
—
18
Get
Divisor Link
UINT
—
19
Get
Base Link
UINT
—
20
Get
Offset Link
UINT
—
21
Get
Decimal Precision
USINT
—
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
CIP Information
Appendix B
The following services will be implemented for the Parameter Object.
Implemented for:
Parameter Group Object
Service Code
Class
Instance
Service Name
0x01
No
Yes
Get_Attribute_All
0x0E
Yes
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
0x4b
No
Yes
Get_Enum_String
CLASS CODE 0x0010
The following class attributes will be supported for the Parameter Object.
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
—
2
Get
Max Instance
UINT
—
The following instance attributes will be supported for all parameter group
instances.
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Group Name String
SHORT_STRING
—
2
Get
Number of Members
UINT
—
3
Get
1st Parameter
UINT
—
4
Get
2nd Parameter
UINT
—
n
Get
Nth Parameter
UINT
—
The following common services will be implemented for the Parameter Group
Object.
Implemented for:
Service Code
Class
Instance
Service Name
0x01
Yes
Yes
Get_Attribute_All
0x0E
Yes
Yes
Get_Attribute_Single
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
291
Appendix B
CIP Information
Discrete Input Group Object
CLASS CODE 0x001D
No class attributes will be supported for the Discrete Input Group Object.
A single instance of the Discrete Input Group Object is supported and contains
the following instance attributes.
Attribute ID
Access Rule
Name
Data Type
Value
3
Get
Number of Instances
USINT
4
4
Get
Binding
Array of UINT
List of DIP Instances
6
Get/Set
Off_On_Delay
UINT
—
7
Get/Set
Off_On_Delay
UINT
—
The following common services will be implemented for the Discrete Input
Group Object.
Implemented for:
Service Code
Class
Instance
Service Name
0x0E
No
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
Discrete Output Group Object CLASS CODE 0x001E
No class attributes will be supported for the Discrete Output Group Object.
Instance 1 exists for all ArmorStart units. Instance 2 exists for drive units only.
Instances 1 contains the following instance attributes.
292
Attribute ID
Access Rule
Name
Data Type
Value
3
Get
Number of Instances
USINT
4
Get
Binding
Array of UINT
6
Get/Set
Command
BOOL
0 = Idle, 1 = Run
104
Get/Set
Network Status Overrride
BOOL
0 = No Override (go to safe state)
1 = Override (run local logic)
105
Get/Set
Comm Status Overrride
BOOL
0 = No Override (go to safe state)
1 = Override (run local logic)
4 for DOL/Soft Starter 10 for Inverters
List of DOP Instances
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
CIP Information
Appendix B
Instance 2 contains the following instance attributes.
Attribute ID
Access Rule
Name
Data Type
Value
3
Get
Number of Instances
USINT
4
Get
Binding
Array of UINT
7
Get/Set
Fault Action
BOOL
0 = Fault Value Attribute, 1 = Hold Last State
8
Get/Set
Fault Value
BOOL
0 = OFF, 1 = On
9
Get/Set
Idle Action
BOOL
0 = Idle Value Attribute, 1 = Hold Last State
10
Get/Set
Idle Value
BOOL
0 = OFF, 1 = On
113
Get/Set
Pr Fault Action
BOOL
0 = Pr Fault Value Attribute, 1 = Ignore
114
Get/Set
Pr Fault Value
BOOL
0 = OFF, 1 = On
4
5, 6, 7, 8
The following common services are implemented for the Discrete Output Group
Object.
Implemented for:
Control Supervisor Object
Service Code
Class
Instance
Service Name
0x0E
No
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
CLASS CODE 0x0029
No class attributes are supported.
A single instance (Instance 1) of the Control Supervisor Object is supported and
contains the following instance attributes.
Attribute ID
Access Rule
Name
Data Type
Value
3
Get/Set
Run 1
BOOL
These Run outputs also map to DOP
Instances 1 and 2
4➊
Get/Set
Run 2
BOOL
—
7
Get
Running 1
BOOL
—
8➊
Get
Running 2
BOOL
—
9
Get
Ready
BOOL
—
10
Get
Tripped
BOOL
—
12
Get/Set
Fault Reset
BOOL
0->1 = Trip Reset
100
Get/Set
Keypad Mode
BOOL
0 = Maintained, 1 = Momentary
101
Get/Set
Keypad Disable
BOOL
0 = Not Disabled, 1= Disabled
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
293
Appendix B
CIP Information
Attribute ID
294
Access Rule
Name
Data Type
Value
115
Get
Warning Status
WORD
Bits 0…1 = Reserved
Bit 2 = PL Warning (does not apply for Ethernet version)
Bit 3 = Reserved
Bit 4 = PR Warning (does not apply for Ethernet version)
Bit 5 = CP Warning
Bit 6 = I/O Warning
Bit 7 = Reserved
Bit 8 = PI Warning (does not apply for Ethernet version)
Bit 9 = DN Warning
Bits 10…12 = Reserved
Bit 13 = HW Warning
Bits 14…15 = Reserved
124
Get/Set
Trip Enable
WORD
Bit enumerated trip enable word
130
Get/Set
Trip Reset Mode
BOOL
0 = Manual, 1 = Auto
131
Get/Set
Trip Reset Level
USINT
0 = 100%, Default = 75
150 ➋
Get/Set
High Speed Ena
BOOL
0 = Disable, 1 = Enable
151
Get
Base Enclosure
WORD
Bit 0 = IP67
Bit 1 = NEMA 4x
Bits 2…15 Reserved
152
Get
Base Options
WORD
Bit 0 = Output Fuse
Bit 1 = Safety Monitor
Bit 2 = CP Fuse Detect
Bits 3…7 = Reserved
Bit 8 = 10A Base
Bit 9 = 25A Base
Bit 10…15 = Reserved
153
Get
Wiring Options
WORD
Bit 0 = Conduit
Bit 1 = Round Media
Bits 2…15 = Reserved
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
CIP Information
Attribute ID
Access Rule
Name
Data Type
154
Get
Starter Enclosure
WORD
Bit 0 = IP67
Bit 1 = NEMA 4x
Bits 2…15 Reserved
Bit 0 = Full Keypad
Bit 1 = Safety Monitor
Bit 2 = Source Brake
Bit 3 = CP Brake
Bit 4 = Dynamic Brake
Bit 5 = Output Contactor
Bit 6 = EMI Filter
Bit 7 = 0…10V Analog In
Bits 8…15 = Reserved
155
Get
Starter Options
WORD
156
Get
Last Pr Trip
UINT
157 ➋
158 ➋
Get
Get
DB Status
DB Fault
Appendix B
Value
—
WORD
Bit 0 = DB Faulted
Bit 1 = DB Overtemp Warning
Bit 2 = DB On
Bit 3 = DB Flt Reset Inhibit
Bits 4…15 = Reserved
WORD
Bit 0 = DB Overtemp
Bit 1 = DB OverCurrent
Bit 2 = DB UnderCurrent
Bit 3 = DB Shorted Switch
Bit 4 = DB Open
Bit 5 = Reserved
Bit 6 = DB Bus Voltage Link Open
Bit 7 = Reserved
Bit 8 = DB Comms
Bits 9…15 = Reserved
➊ Reversing Starters and Inverter Starters only.
➋ Inverter Starters only
The following common services are implemented for the Control Supervisor
Object.
Implemented for:
Overload Object
Service Code
Class
Instance
Service Name
0x0E
No
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
CLASS CODE 0x002C
No class attributes will be supported for the Overload Object.
A single instance (Instance 1) of the Overload Object is supported for DOL and
Reversing Starters. Instance 1 contains the following instance attributes.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
295
Appendix B
CIP Information
Attribute ID
Access Rule
Name
Data Type
Value
3
Get/Set
FLA Setting
BOOL
xxx.x amps
4
Get/Set
Trip Class
USINT
—
5
Get
Average Current
INT
xxx.x amps
7
Get
% Thermal Utilized
USINT
xxx% FLA
8
Get
Current L1
INT
9
Get
Current L2
INT
10
Get
Current L3
INT
190
Get/Set
FLA Setting Times 10
BOOL
xxx.xx amps
192
Get
Average Current Times 10
UINT
xxx.xx amps
193
Get
Current L1 Times 10
UINT
194
Get
Current L2 Times 10
UINT
195
Get
Current L3 Times 10
UINT
xxx.x amps
xxx.xx amps
The following common services are implemented for the Overload Object.
Implemented for:
Device Level Ring (DLR)
Object
Service Code
Class
Instance
Service Name
0x0E
No
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
CLASS CODE 0x0047
The following class attributes will be supported for the DLR Object.
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
2
A single instance (Instance 1) will be supported with the following instance attributes.
296
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Network Topology
USINT
0 = Linear, 1 = Ring
2
Get
Network Status
USINT
0 = Normal
1 = Ring Fault
2 = Unexpected Loop Detect
3 = Partial Network Fault
4 = Rapid Fault/Restore Cycle
10
Get
Active Supervisor Address
Struct of
UDINT
Array of 6
USINT
Ring Supervisor
12
Get
Capability Flags
DWORD
0x00000002
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
CIP Information
Appendix B
The following common services will be implemented for the DLR Object.
Implemented for:
Qos Object
Service Code
Class
Instance
Service Name
0x01
Yes
Yes
Get_Attribute_All
0x0E
Yes
Yes
Set_Attribute_Single
CLASS CODE 0x0048
The following class attributes will be supported for the QoS Object.
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
1
A single instance (Instance 1) will be supported and it contains the following
instance attributes.
Attribute ID
Access Rule
Name
Data Type
Value
1
Set
802 1Q Tag Enable
USINT
0 = Disable (Default)
1 - Enable
4
Set
DSCP Urgent
USINT
Default = 55
5
Set
DSCP Scheduled
USINT
Default = 47
6
Set
DSCP High
USINT
Default = 43
7
Set
DSCP Low
USINT
Default = 31
8
Set
DSCP Explicit
USINT
Default = 27
The following common services will be implemented for the QoS Object.
Implemented for:
DPI Fault Object
Service Code
Class
Instance
Service Name
0x0E
Yes
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
CLASS CODE 0x0097
The DPI Fault Object is implemented in the DeviceNet Main Control Board.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
297
Appendix B
CIP Information
The following class attributes are supported:
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Class Revision
UINT
1
2
Get
Number of Instances
UINT
4
3
Get
Fault Cmd Write
USINT
0 = NOP, 1 = Clear Fault, 2 = Clear Flt Queue
4
Get
Fault Instance Read
UINT
The instance of the Fault Queue Entry containing
information about the Fault that tripped the Device.
6
Get
Number of Recorded Faults
UINT
The number of Faults recorded in the Fault Queue.
Four instances of the DPI Fault Object are supported. The have the following
instance attributes:
Attribute ID
Access Rule
Name
Data Type
Value
0
Get
Full/All Info
Struct of:
—
—
Fault Code
UINT
—
—
Fault Source
Struct of:
—
—
DPI Port Number
USINT
0
—
—
Device Object Instance
USINT
0x2c
—
—
B Fault Text
BYTE[16]
See table below.
—
—
Fault Time Stamp
Struct of:
—
—
—
Timer Value
ULDINT
—
—
—
Timer Description
WORD
—
—
—
Help Object Instance
USINT
—
—
—
Fault Data
1
Get
Basic Info
Struct of:
—
—
Fault Code
UINT
—
—
Fault Source
Struct of:
—
—
DPI Port Number
USINT
0
—
—
Device Object Instance
USINT
0x2C
—
—
Fault Time Stamp
Struct of:
—
—
—
Timer Value
ULINT
—
—
—
Timer Description
WORD
—
3
Get
—
See table below.
—
—
Help Text
—
See table below.
—
STRING
See table below.
The following services are supported:
Implemented for:
298
Service Code
Class
Instance
Service Name
0x0E
Yes
Yes
Get_Attribute_Single
0x10
Yes
No
Set_Attribute_Single
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
CIP Information
Appendix B
The table below lists Fault Codes, Fault Text, and Fault Help Strings for DOL
and Reversers.
Table 49 - Bulletin 280E/281E
Fault Code
Fault Text
Help Text
1
Hdw Short Ckt
The built in 140M Circuit Breaker has tripped.
2
Sfw Short Ckt
The wire protection algorithm detected an unsafe current surge.
3
Motor Overload
4
Fault 4
5
Phase Loss
6
Fault 6
—
7
Fault 7
—
8
Fault 8
—
9
Fault 9
—
10
Fault 10
—
11
Fault 11
—
12
Fault 12
—
13
Control Pwr Loss
Indicates the loss of control power. This fault can be disabled.
14
Control Pwr Fuse
The Control Power Fuse has blown. Remove power and replace fuse.
15
Input Short
Flags a shorted sensor, input device, or input wiring mistake.
16
Output Fuse
The Output Fuse has blown. Remove all power and replace the fuse.
17
Over Temp
Indicates the operating temperature has been exceeded.
18
Fault 18
19
Phase Imbalance
20
Fault 20
21
A3 Power Loss
Unswitched (A3) Power was lost or dipped below the 12V DC threshold.
22
Internal Comm
Communication with an internal component has been lost.
23
Fault 23
—
24
Fault 24
—
25
Fault 25
—
26
Fault 26
—
27
MCB EEPROM
This is a major fault which renders the ArmorStart inoperable.
28
Base EEPROM
This is a major fault which renders the ArmorStart inoperable.
29
Fault 29
30
Wrong Base
The ArmorStart controller is connected to the wrong base type.
31
Wrong CTs
This is a major fault which renders the ArmorStart inoperable.
32
Fault 32
—
33
Fault 33
—
34
Fault 34
—
35
Fault 35
—
Load has drawn excessive current based on trip class selected.
—
Indicates missing supply phase. This fault can be disabled.
—
Indicates an imbalanced supply voltage.
—
—
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
299
Appendix B
CIP Information
Table 49 - Bulletin 280E/281E
Fault Code
Fault Text
Help Text
36
Fault 36
—
37
Fault 37
—
38
Fault 38
—
39
Fault 39
—
40
Unknown Fault
—
41
Fault 41
—
42
Fault 42
—
43
Fault 43
—
44
Fault 44
—
45
Fault 45
—
The table below lists Fault Codes, Fault Text, and Fault Help Strings for VFD
units.
Table 50 Bulletin 284E
300
Fault Code
Fault Text
Help Text
1
Hdw Short Ckt
2
Fault 2
3
Motor Overload
The Load has drawn excessive current.
4
Drive Overload
150% load for 1 min. or 200% load for 3 sec. exceeded
5
Phase U to Gnd
A Phase U to Ground fault detected between drive and motor.
6
Phase V to Gnd
A Phase V to Ground fault detected between drive and motor.
7
Phase W to Gnd
A Phase W to Ground fault detected between drive and motor.
8
Phase UV Short
Excessive current detected between phases U and V.
9
Phase UW Short
Excessive current detected between phases U and W.
10
Phase VW Short
Excessive current detected between phases V and W.
11
Ground Fault
12
Stall
13
Control Pwr Loss
Indicates the loss of control power. This fault can be disabled.
14
Control Pwr Fuse
The Control Power Fuse has blown. Remove power and replace fuse.
15
Input Short
Flags a shorted sensor, input device, or input wiring mistake.
16
Output Fuse
The Output Fuse has blown. Remove all power and replace the fuse.
17
Over Temp
Indicates the operating temperature has been exceeded.
18
Heatsink OvrTmp
The Heatsink temperature exceeds a predefined value.
19
HW OverCurrent
The drive output current has exceeded the hardware limit.
20
SW OverCurrent
Programmed parameter 198 (SW Current Trip) has been exceeded.
21
A3 Power Loss
Unswitched (A3) Power was lost or dipped below the 12V DC threshold.
22
Internal Comm
Communication with the internal Power Flex drive has been lost.
23
Drive Comm Loss
The built in 140M Circuit Breaker has tripped.
—
A current path to earth ground at one or more output terminals.
The drive is unable to accelerate the motor.
The RS485 port on the internal Power Flex stopped communicating.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
CIP Information
Appendix B
Table 50 Bulletin 284E
Fault Code
Fault Text
Help Text
24
Power Loss
25
Under Voltage
DC Bus Voltage fell below the minimum value.
26
Over Voltage
DC Bus Voltage exceeded the maximum value.
27
MCB EEPROM
This is a major fault which renders the ArmorStart inoperable.
28
Base EEPROM
This is a major fault which renders the ArmorStart inoperable.
29
Drive EEPROM
The drive EEPROM checksum checks have failed.
30
Wrong Base
31
Fan RMP
32
Power Unit
A major failure has been detected in the drive power section.
33
Drive I/O Brd
A failure has been detected in the drive control and I/O section.
34
Restart Retries
Automatic fault reset and run retries exceeded.
35
Drive Aux In Flt
The drive auxiliary input interlock is open inside the ArmorStart.
36
Analog Input
37
Drv Param Reset
38
SCV Autotune
The drive automatic tuning function was either aborted or failed.
39
Source Brake
The source brake fuse has blown. Remove power and replace fuse.
40
Unknown Fault
41
DB1 Comm
Communication with an internal DB1 board has been lost.
42
DB1 Fault
A fault has been detected with the operation of the Dynamic Brake.
43
DB Switch Short
44
Fault 44
45 ➊
Incompatible COMM
Device
Drive DC Bus Voltage remained below 85% of nominal bus voltage.
The ArmorStart controller is connected to the wrong base type.
The internal cooling fan is not running properly.
(PF Fault Code 29)
Internal Drive Parameters (Parameters > 100) have been defaulted.
—
The Dynamic Brake switch is shorted.
—
The Software revision of the Drive is not compatible with the ArmorStart.
➊ The Fault text for this error is not return by the device, and is only reported as “Fault 45”.
DPI Alarm Object
CLASS CODE 0x0098
The following class attributes will be supported:
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Class Revision
UINT
1
2
Get
Number of Instances
UINT
1
3
Set
Alarm Cmd Write
USINT
0=NOP, 1=Clear Fault, 2=Clear Flt Queue
74
Get
Alarm Instance Read
UINT
The instance of the Fault Queue Entry containing information
about the Fault that tripped the Device.
6
Get
Number of Recorded Faults
UINT
The number of Faults recorded in the Fault Queue.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
301
Appendix B
CIP Information
A single instance of the DPI Alarm Object will be supported with the following
instance attributes.
Attribute ID
Access Rule
Name
Data Type
Value
0
Get
Full/All Info
Struct of:
—
—
—
Alarm Code
UINT
—
—
—
Alarm Source
Struct of:
—
—
—
DPI Port Number
USINT
—
—
—
Device Object Instance
USINT
—
—
—
Alarm Text
STRING
—
—
—
Alarm Time Stamp
Struct of:
—
—
—
Timer Value
ULINT
—
—
—
Timer Descriptor
WORD
—
—
—
Help Object Instance
USINT
—
—
—
Alarm Data
1
Get
Basic Info
Struct of:
—
—
—
Alarm Code
UINT
—
—
—
Alarm Source
Struct of:
—
—
—
DPI Port Number
USINT
—
—
—
Device Object Instance
USINT
—
—
—
Alarm Time Stamp
Struct of:
—
—
—
Timer Value
ULINT
—
—
—
Timer Descriptor
WORD
—
3
Get
STRING
—
—
Help Text
—
The following services are supported.
Implemented for:
Service Code
Class
Instance
Service Name
0x0E
Yes
Yes
Get_Attribute_Single
0x10
Yes
No
Set_Attribute_Single
The table below lists Warning Codes, Warning Text, and Warning Help Strings
that do not match the fault text.
302
Fault Code
Fault Text
101
IP67/4X Mismatch
102
DB Terminal
Help Text
The Base enclosure type does not match the Control Module
enclosure type.
A warning has been detected with the operation of the Dynamic Brake.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
CIP Information
Appendix B
CLASS CODE 0x00B4
Interface Object
The following class attribute are supported.
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
1 for DOL
2 for Inverters
A single instance (Instance 1) of the Interface Object is supported with the
following instance attributes.
Attribute ID
Access Rule
Name
Data Type
Min/Max
Default
Description
7
Get/Set
Prod Assy Word 0
USINT (rev 1)
UINT (rev 2)
—
1
Defines Word 0 of Assy 120
8
Get/Set
Prod Assy Word 1
USINT (rev 1)
UINT (rev 2)
—
5
Defines Word 1 of Assy 120
9
Get/Set
Prod Assy Word 2
USINT (rev 1)
UINT (rev 2)
—
6
Defines Word 2 of Assy 120
10
Get/Set
Prod Assy Word 3
USINT (rev 1)
UINT (rev 2)
—
7
Defines Word 3 of Assy 120
13
Get/Set
Starter COS Mask
WORD
0 - 0xFFFF
0xFFFF
15
Get/Set
Autobaud Enable
BOOL
0-1
1
16
Get/Set
Consumed Assy
USINT
0 to 185
160 (drive 164)
3, 160, 162, 182, 187 (also for drives 164, 166, 170 and
188)
17
Get/Set
Produced Assy
USINT
100 to 187
161 (drive 165)
52, 120, 161, 163, 181…187 (also for drives 165, 167
and 171) 189, 190
19
Get/Set
Set To Defaults
BOOL
0 to 1
0
23
Get
I/O Produced Size
—
0 t0 20
—
—
24
Get
I/O Consumed Size
USINT
0 to 16
—
—
30
Get
DNet Voltage
UINT
—
—
50
Get/Set
PNB COS Mask
WORD
0 to 0x00FF
0
Change of state mask for PNBs
64
Get/Set
Unlock Identity
USINT
—
0
Multiple Identity Object instances are unlocked when
this attribute is set to the value 0x99.
Change of state mask for starter bits
1= enabled, 0 = disabled
0 = No action, 1 = Reset
DeviceNet Voltage
The following common services are implemented for the Interface Object.
Implemented for:
Service Code
Class
Instance
Service Name
0x0E
No
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
303
Appendix B
CIP Information
TCP/IP Interface Object
CLASS CODE 0x00F5
The following class attributes will be supported.
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
1
One instance of the TCP/IP Interface Object will be supported with the
following instance attributes.
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Status
DWORD
2
Get
Configuration Capability
DWORD
0x00000014
3
Get/Set
Configuration Control
DWORD
0 = Configuration from NVS
2 = Configuration from DHCP
4
Get
Physical Link Object
Struct of
UINT
Padded EPATH
2 words
NULL Enet Link Object Instance
IP Address
Network Mask
Gateway Address
Primary DNS
Secondary DNS
Default Domain Name for not fully qualified host names
—
5
Get/Set
Interface Configuration
Struct of
UDINT
UDINT
UDINT
UDINT
UDINT
STRING
6
Get/Set
Host Name
STRING
8
Get/Set
TTL Value
USINT
Time to Live value for EtherNet/IP multicast packets
Struct of
USINT
USINT
UINT
UDINT
Allocation Control
Reserved
Number of multicast addresses to allocate (1…4)
Multicast starting address.
9
Get/Set
Multicast Config
—
The following common services will be implemented for the TCP/IP Interface
Object.
Implemented for:
Service Code
304
Class
Instance
Service Name
No
Yes
Get_Attribute_All
0x0E
Yes
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
CIP Information
Ethernet Link Object
Appendix B
CLASS CODE 0x00F6
The following class attributes will be supported.
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
3
2
Get
Max Instance
UINT
2
3
Get
Number of Instances
UINT
2
One instance of the Ethernet Link Object will be supported with the following
instance attributes.
Attribute ID
Access Rule
Name
1
Get
Interface Speed
UDINT
10 or 100 Mbit/Sec
2
Get
Interface Flags
DWORD
See ENet/IP Spec
3
Get
Physical Address
ARRAY of 6 USINTs
MAC Address
Interface Counters
Struct of:
In Octets
In Ucast packets
In NUcast packets
In Discards
In Errors
In Unknown Protos
Out Octets
Out Ucast packets
Out NUcast packets
Out Discards
Out Errors
—
—
4
Get
Data Type
Value
5
Get
Media Counters
Struct of:
Alignment Errors
FCS Errors
Single Collisions
SQE Test Errors
Deferred Transmits
Late Collisions
Excessive Collisions
MAC Transmit Errors
Carrier Sense Errors
Frame Too Long
MAC Receive Errors
6
Get/Set
Interface Control
Struct of:
Control Bits
Forced Interface Speed
—
7
Get
Interface Type
USINT
—
8
Get
Interface State
USINT
—
9
Get/Set
Admin State
USINT
—
10
Get
Interface Label
SHORT_STRING
Instance 1: Port 1
Instance 2: Port 2
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
305
Appendix B
CIP Information
The following common services will be implemented for the Ethernet Link
Object.
Implemented for:
306
Service Code
Class
Instance
Service Name
0x01
No
Yes
Get_Attribute_All
0x0E
Yes
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Appendix
C
Using DeviceLogix
DeviceLogix is a stand-alone Boolean program that resides within the
ArmorStart®. The program is embedded in the product software so that there is
no additional module required to use this technology. To program DeviceLogix
you will need the latest AOP for ArmorStart EtherNet/IP for Control Logix or
other Logix family PLCs.
In addition to the actual programming, DeviceLogix can be configured to
operate under specific situations. It is important to note that the DeviceLogix
program will only run if the logic has been enabled. This can be done within the
“Logic Editor.” The operation configuration is accomplished by setting the
“Network Override” and “Communication Override” parameters. The following
information describes the varying levels of operation:
• If both overrides are disabled and the logic is enabled, the ONLY time
DeviceLogix will run is if there is an active I/O connection with a master,
i.e. the master is in Run mode. At all other times, DeviceLogix will be
running the logic, but will NOT control the state of the outputs.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
307
Appendix C
Using DeviceLogix
• If the Network Override is enabled and the logic is enabled then
DeviceLogix controls the state of the outputs when the PLC is in Run
mode and if a network fault such as Duplicate MAC ID or module Bus off
condition occurs.
• If the Communications Override is enabled and the logic is enabled, the
device does not need any I/O connection to run the logic. As long as there
is control power and a DeviceNet power source connected to the device,
the logic will control the state of the outputs.
DeviceLogix Programming
DeviceLogix has many applications and the implementation is typically only
limited to the imagination of the programmer. Keep in mind that the application
of DeviceLogix is only designed to handle simple logic routines.
DeviceLogix is programmed using simple Boolean math operators such as AND,
OR, NOT, timers, counters, and latches. Decision making is done by combining
these Boolean operations with any of the available I/O. The inputs and outputs
used to interface with the logic can come from the network or from the device
hardware. Hardware I/O is the physical Inputs and Outputs located on the device
such as push buttons and pilot lights that are connected to the ArmorStart.
There are many reasons to use the DeviceLogix functionality, but some of the
most common are listed below:
• Increased system reliability
• Fast update times (1 - 2 ms possible)
• Improved diagnostics and reduced troubleshooting
• Operation independent of PLC or network status
• Continue to run process in the event of network interruptions
• Critical operations can be safely shutdown through local logic
DeviceLogix Programming
Example
The following example will show how to program a simple logic routine to
interface the ArmorStart EtherNet I/P with a remote hard-wired startstop
station. In this case the I/O is wired as shown in Table 51.
Table 51 - Hardware Bit Assignments and Description for the ArmorStart
Input Table
308
Output Table
Bit
Description
Bit
Description
In 0
Start Button
Run Forward
Contactor Coil
In 1
Stop Button
N/A
N/A
In 2
N/A
—
—
In 3
N/A
—
—
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Using DeviceLogix
IMPORTANT
Appendix C
Before programming logic, it is important to decide on the conditions under which the
logic will run. As defined earlier, the conditions can be defined by setting parameter 8
(Network Override) and parameter 9 (Comm. Override) to the desired value.
1. While in the AOP, click on the DeviceLogix tab. Click the Launch Editor
button.
2. Select Function Block or Ladder editor. Note that once selected you are
not able to switch back without recreating the logic.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
309
Appendix C
Using DeviceLogix
3. Refer to the tool bar at the top of the DeviceLogix editor window, click the
Move/Logical group and select the RSTD (Latch Reset). Move it to the
work space and click to drop it.
4. From the toolbar, Click on the “Bit Input” button and select In 0 from the
Hardware Boolean tree. This is the remote start button based on the
example I/O table.
5. Place the input to the left of the reset function. To drop the input on the
page, left click on the desired position.
6. Place the mouse cursor over the tip of In 0. The tip will turn green. Click
on the tip when it turns green.
310
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Using DeviceLogix
Appendix C
7. Move the mouse cursor toward the Set input of the reset function. A line
will follow the cursor. When a connection can be made, the tip of the RSL
function will also turn green. Click the on Input and the line will be drawn
from In 0 to the Set Input of the reset function.
Note: If this was not a valid connection, one of the pin tips would have turned
red rather than green. Left double clicking on the unused portion of the grid or
pressing the “Esc” key at any time will cancel the connection process.
8. From the toolbar, Click on the “Bit Input” button and select In 1 from the
pull-down menu. This is the remote stop button based on the example I/O
table.
9. Place the input to the left of the reset function.
10. Connect the input to the reset input of the reset function.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
311
Appendix C
Using DeviceLogix
11. From the toolbar, Click on the “Bit Output” button and select “Run
Forward” from the hardware boolean tree. Run Forward is the relay
controlling the coil of the contactor.
12. Move the cursor into the grid and place the Output to the right of the reset
function block.
13. Connect the output of the reset function block to Run Forward.
14. Click on the “Verify” button located in the toolbar or select “Logic Verify”
from the “Tools” pull-down menu.
312
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Using DeviceLogix
Appendix C
15. Click file close. The program is not saved automatically. Fill in the
information on following window and accept changes. This saves the
program but has not been downloaded in the product.
16. The last step is to enable the logic via the drop down.
17. Click OK. To download the DeviceLogix program you must go on-line
with the PLC and allow the download. Ensure that the PLC is in the
Program position. If in any other position, the download will not occur
and an error will be generated.
18. The ArmorStart is now programmed and the logic is Active.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
313
Appendix C
Using DeviceLogix
Import and Export
The ArmorStart EtherNet/IP AOP provides users an import or export function.
The export function allows the DeviceLogix program to be saved to a file. This
file can then be imported into a similar product of same function regardless of
horsepower. Importing of DeviceLogix between unlike products is not allowed,
e.g. Bulletin 284E and Bulletin 280E.
Bulletin 284 - VFD Preset
Speed Example
DeviceLogix can be used to select one of multiple preset frequencies
cooperatively with the PLC or independently based on user input. This can be
done using the four digit inputs or the frequency control bits in DeviceLogix.
The digital inputs provide the user the most flexibility, but can be more complex
to configure. If a preset speed is needed, the simpler approach is to use frequency
control found in the produced network bits of DeviceLogix. If you prefer not
to apply DeviceLogix for preset speeds, then implement the digit inputs to select
preset speed via Instance 166 found in Chapter 5. The following example will
demonstrate the use of frequency control bits in DeviceLogix
Frequency control (Freq Cntl) bits allow a maximum of 4 Preset Speeds, each
preset has a predefined accel or decel reference. If more are required then digital
inputs must be configured and properly used. The example will focus on
Frequency Control 2,1,0 in the Produced Network Bit Table 52. Note that there
are other capabilities shown in the table that are not reviewed in this example.
Figure 100 below shows all of the available network outputs supported by
Bulletin 284.Referring to Table 52 the preset frequencies are defined in
parameter 170,171,172 and 173 of Bulletin 284. Also note the truth table that
selects each of those frequencies. For example if Freq Cntl bit 2=1, 1=1, and 0=0
then the controller frequency is based on Parameter 172 (Preset Freq 2).
314
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Using DeviceLogix
Appendix C
Figure 100 - Bulletin 284E Produced Network Bits in DeviceLogix Output
Table 52 -
Refer to table 22 - Parameters 170…177 Preset Freq Options for predefined
accel and decel
Accel2
Accel1
Description
0
0
No Command
0
1
Accel 1 Enable
1
0
Accel 2 Enable
1
1
Hold Accel Rate Selected
Decel 2
Decel 1
0
0
No Command
0
1
Decel 1 Enable
1
0
Decel 2 Enable
1
1
Hold Decel Rate Selected
Freq Ctrl 2
Freq Ctrl 1
Freq Ctrl 0
0
0
0
No Command
0
0
1
Freq Source = P136 (Start Source)
0
1
0
Freq Source = P169 (Internal Freq)
0
1
1
Freq Source = Comms
1
0
0
P170 (Preset Freq 0) (Accel/Decel 1)
1
0
1
P171 (Preset Freq 1) (Accel/Decel 1)
1
1
0
P172 (Preset Freq 2) (Accel/Decel 2)
1
1
1
P173 (Preset Freq 3) (Accel/Decel 2)
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
315
Appendix C
Using DeviceLogix
Using parameters 170-173, set them to 0,10,30, and 60 respectively. Figure 101
shows the preset frequencies 0-3.
Figure 101 - P170-173 Preset Frequency Settings
In this example DeviceLogix will receive data from the PLC program. The
communication and network overrides are disabled as shown below. Refer
to Appendix C for details when using the override function.
Figure 102 shows the DeviceLogix program. This allows the user to select one
of three predefined frequencies based on two network bits.
316
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Using DeviceLogix
Appendix C
Figure 102 - DeviceLogix Program
Once you exit the DeviceLogix editor, ensure that the logic is “Enabled”
otherwise the preset frequency control will not operate. Refer to Figure 103.
Figure 103 -
This simple PLC program is used to select one of three preset speeds, speed 1, 2,
or 3. For the purpose of this example speed 1, 2, & 3 are BOOL bits but they can
be any valid input. Notice that there is an interlock for speed 1 and speed 2 to
ensure they do not trigger at the same time. This would accidently cause speed 3
to run.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
317
Appendix C
Using DeviceLogix
Download the finished program file to the PLC. In order for the parameters and
DeviceLogix program to update in the device, ensure the PLC is in program
mode, and open the AOP for the Bulletin 284E.
Select the Parameters and DeviceLogic tab. This will force a correlation between
the program file and the device. If a difference exists either upload from the device
or download from the project to the device. In this example you will want to
download.
Figure 104 is an example of the parameter correlation when a difference occurs
between the project and the device.
Figure 104 -
Figure 105 is an example of the DeviceLogix correlation when a difference occurs
between the project and the device.
318
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Using DeviceLogix
Appendix C
Figure 105 - DeviceLogix Correlation
Please note the caution statement prior to download.
After the DeviceLogix correlation is successful the following window will display.
After both correlations are complete place the PLC in run mode and test the
program by exercising speed 1, 2, and 3 bits.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
319
Appendix C
Using DeviceLogix
IMPORTANT
To download a new DeviceLogix program, connect to the PLC and stay in program
mode. There can be no active I/O connections to the device or the download will fail.
Open the AOP and select the DeviceLogix tab to start the correlation process. If a
difference exists then an upload or download is necessary.
Operation
When bit Speed_1 is ON then the Bulletin 284E will accelerate to 10 Hz or
decelerate using accel/decel Time 2
When bit Speed_2 is ON then the Bulletin 284E will accelerate to 30 Hz or
decelerate using accel/decel Time 2
DeviceLogix Ladder Editor
Example
ArmorStart EtherNet/IP supports DeviceLogix in a ladder programming
environment. When using the ladder editor additional explanation is needed
with regard to naming conventions. Fault bits such as “Overload Trip” are tagged
“FB0, FB1, FB2, etc. Status bits such as “Running Fwd” are tagged SB0, SB1, SB2,
etc. Outputs such as “Run Reverse” are tagged DOP0, DOP1 etc. Produced
Network Bits such as “Fault Reset” are tagged PNB0, PNB1, etc.
This document will help users interpret the naming conventions.
ArmorStart 280 and 281 Status Bits
The screen capture below shows how to choose status bits in the ladder editor.
320
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Using DeviceLogix
Appendix C
The following table contains the status bit definitions for ArmorStart 280D and
281D units:
Status Bit Declaration
0 = Tripped
1 = Running Fwd
2 = Running Rev
3 = Ready
4 = Net Ctl Status
5 = At Reference
6 = Keypad Hand
7 = HOA Status
8 = 140M On
9 = Explicit Msg Cnxn Exists
10 = IO Cnxn Exists
11 = Explicit Cnxn Fault
12 = IO Cnxn Fault
13 = IO Cnxn Idle
14 = Current Flowing
15 = Keypad Hand Direction
Bulletin 280 and 281 ArmorStart Fault Bits
The screen capture below shows how to choose fault bits in the ladder editor.
The following table contains the fault bit definitions for Bulletin 280D and
281D ArmorStart units:
Fault Bit Declaration
0 = Short Circuit
1 = Overload
2 = Phase Loss
3 = Control Power
4 = IO Fault
5 = Over Temp
6 = Phase Imbalance
7 = DNet Power Loss
8 = EEprom
9 = HW Flt
10 = PL Warning
11 = CP Warning
12 = IO Warning
13 = Phase Imbal Warn
14 = DN Warning
15 = HW Warning
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
321
Appendix C
Using DeviceLogix
Bulletin 280 and 281 ArmorStart Outputs
The screen capture below shows how to choose outputs in the ladder editor.
The Bulletin 280 and 281 have the following bit definitions:
0 = Run Forward
1 = Run Reverse
2 = User Output A
3 = User Output B
Bulletin 280 and 281 ArmorStart Produced Network Bits
The screen capture below shows how to choose Produced Network Bits in the ladder editor.
The following table contains the produced network bit definitions for Bulletin
280 and 281 ArmorStart units
Produce Network bit declaration
0 = Net Output 0
1 = Net Output 1
2 = Net Output 2
3 = Net Output 3
4 = Net Output 4
5 = Net Output 5
6 = Net Output 6
7 = Net Output 7
8 = Net Output 8
9 = Net Output 9
10 = Net Output 10
11 = Net Output 11
12 = Net Output 12
13 = Net Output 13
14 = Net Output 14
15 = Fault Reset
16 = Motion Disable
17 = Keypad Disable
322
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Using DeviceLogix
Appendix C
Bulletin 284 ArmorStart Status Bits
The following table contains the status bit definitions for ArmorStart 284
Status bit declaration
0 = Tripped
1 = Warning
2 = Running Fwd
3 = Running Rev
4 = Ready
5 = Net Ctl Status
6 = Net Ref Status
7 = At Reference
8 = Drive Opto 1
9 = Drive Opto 2
10 = Keypad Jog
11= Keypad Hand
12 = HOA Status
13 = 140M On
14 = Contactor 1
15 = Contactor 2
16 = Explicit Msg Cnxn Exists
17 = IO Cnxn Exists
18 = Explicit Cnxn Fault
19 = IO Cnxn Fau
20 = IO Cnxn Idle
21 = Keypad Hand Direction
Bulletin 284 ArmorStart Fault Bits
The screen capture below shows how to choose Fault Bits in the ladder editor.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
323
Appendix C
Using DeviceLogix
The following table contains the fault bit definitions for ArmorStart 284
Fault bit declaration
0 = Short Circuit
1 = Overload
2 = Phase Short
3 = Ground Fault
4 = Stall
5 = Control Power
6 = IO Fault
7 = Over Temp
8 = Phase Over Current
9 = DNet Power Loss
10 = Internal Comm
11 = DC Bus Fault
12 = EEprom
13 = HW Flt
14 = Reset Retries
15 = Misc. Fault
16 = CP Warning
17 = IO Warning
18 = DN Warning
19 = HW Warning
Bulletin 284 ArmorStart Outputs
The screen capture below shows how to choose outputs in the ladder editor.
The Bulletin 284 bit definitions:
0 = Run Forward
1 = Run Reverse (Reserved)
2 = User Output A
3 = User Output B
4 = Drive Digital In 1
5 = Drive Digital In 2
6 = Drive Digital In 3
7 = Drive Digital In 4
8 = Jog Forward
9 = Jog Reverse
324
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Using DeviceLogix
Appendix C
Bulletin 284 ArmorStart Produced Network Bits
The screen capture below shows how to choose Produced Network Bits in the
ladder editor.
The following table contains the produced network bit definitions for Bulletin
284 ArmorStart units
0
Produce network bit declaration
0 = Net Output 0
1 = Net Output 1
2 = Net Output 2
3 = Net Output 3
4 = Net Output 4
5 = Net Output 5
6 = Net Output 6
7 = Net Output 7
8 = Net Output 8
9 = Net Output 9
10 = Net Output 10
11 = Net Output 11
12 = Net Output 12
13 = Net Output 13
14 = Net Output 14
15 = Fault Reset
16 = Accel 1
17 = Accel 2
18 = Decel 1
19 = Decel 2
20 = Freq Select 1
21 = Freq Select 2
22 = Freq Select 3
23 = Motion Disable
24 = Keypad Disable
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
325
Appendix C
Using DeviceLogix
Notes:
326
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Appendix
D
PID Setup
PID Loop
The Bulletin 284E ArmorStart® Distributed Motor with sensorless vector control
has a built-in PID (proportional, integral, differential) control loop. The PID
loop is used to maintain a process feedback (such as pressure, flow, or tension) at a
desired set point. The PID loop works by subtracting the PID feedback from a
reference and generating an error value. The PID loop reacts to the error, based
on the PID Gains, and outputs a frequency to try to reduce the error value to 0.
To enable the PID loop, Parameter 232 (PID Ref Sel) must be set to an option
other than Option 0 (PID Disabled).
Exclusive Control and Trim Control are two basic configurations where the PID
loop may be used.
Exclusive Control
In Exclusive Control, the Speed Reference becomes 0, and the PID Output
becomes the entire Freq Command. Exclusive Control is used when
Parameter 232 (PID Ref Sel) is set to Option 1, 2, 3, or 4. This configuration
does not require a master reference, only a desired set point, such as a flow rate for
a pump.
PID Loop
PID Ref
+
PID Fdbk
–
PID
Error
PID Prop Gain
+
PID Integ Time
+
PID
Output
Accel/Decel
Ramp
Freq
Command
+
PID Diff Rate
PID Enabled
Example
• In a pumping application, the PID Reference equals the Desired System
Pressure set point.
• The Pressure Transducer signal provides PID Feedback to the drive.
Fluctuations in actual system pressure, due to changes in flow, result in a
PID Error value.
• The drive output frequency increases or decreases to vary motor shaft
speed to correct for the PID Error value.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
327
Appendix D PID Setup
• The Desired System Pressure set point is maintained as valves in the system
are opened and closed causing changes in flow.
• When the PID Control Loop is disabled, the Commanded Speed is the
Ramped Speed Reference.
PID Feedback =
Pressure Transducer Signal
Pump
PID Reference =
Desired System Pressure
Trim Control
In Trim Control, the PID Output is added to the Speed Reference. In Trim
mode, the output of the PID loop bypasses the accel/decel ramp as shown. Trim
Control is used when Parameter 232 (PID Ref Sel) is set to Option 5, 6, 7, or 8.
Speed Ref
PID Loop
PID Ref
+
PID Fdbk
–
PID
Error
Accel/Decel
Ramp
PID Prop Gain
+
PID Integ Time
+
PID
Output
+
+
Output
Freq
+
PID Diff Rate
PID Enabled
Example
• In a winder application, the PID Reference equals the Equilibrium set
point.
• The Dancer Pot signal provides PID Feedback to the drive. Fluctuations in
tension result in a PID Error value.
• The Master Speed Reference sets the wind/unwind speed.
• As tension increases or decreases during winding, the Speed Reference
is trimmed to compensate. Tension is maintained near the Equilibrium
set point.
328
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
PID Setup
Appendix D
0 Volts
PID Reference =
Equilibrium Set Point
PID Feedback =
Dancer Pot Signal
10 Volts
Speed Reference
PID Reference and Feedback
Parameter 232 (PID Ref Sel) is used to enable/disable the PID mode. Select
Option 0 (PID Disabled) to disable or Option 1 to select the source of the PID
Reference. If Parameter 232 (PID Ref Sel) is not set to 0 (PID Disabled), the PID
can still be disabled by selecting the programmable Digital Input options
(Parameters 151…154) such as Jog, Local, or PID Disable.
Options
Description
0
PID Disabled
Disables the PID loop (default setting)
1
PID Setpoint
Selects Exclusive Control. Parameter 237 (PID Setpoint) will be used to set the value of the PID
Reference
4
Comm Port
Selects Exclusive Control. The reference word from a communication network DeviceNet™
becomes the PID Reference. The value sent over the network is scaled so that Parameter 135
(Maximum Freq) x 10 = 100% reference. For example, with (Maximum Freq) = 60 Hz, a value
of 600 sent over the network would represent 100% reference.
5
Setpnt, Trim
Selects Trim Control. Parameter 237 (PID Setpoint) will be used to set the value of the PID
Reference.
8
Comm, Trim
Selects Trim Control. The reference word from a communication network DeviceNet becomes
the PID Reference. The value sent over the network is scaled so that Parameter 135
(Maximum Freq) x 10 = 100% reference. For example, with (Maximum Freq) = 60 Hz, a value
of 600 sent over the network would represent 100% reference.
Parameter 233 (PID Feedback Sel) is used to select the source of the PID
feedback.
Option
Description
2
Comm Port
The Consumed Assembly (Instance 164 – Default Consumed Inverter Type Distributed Motor
Controller) from a communication network which becomes the PID Feedback. The value sent
over the network is scaled so that Parameter 135 (Maximum Freq) x 10 = 100% Feedback. For
example, with (Maximum Freq) = 60 Hz, a value of 600 sent over the network would
represent 100% Feedback.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
329
Appendix D PID Setup
PID Deadband
Parameter 238 (PID Deadband) is used to set a range, in percent, of the PID
Reference that the drive will ignore.
Example
• (PID Deadband) is set to 5.0
• The PID Reference is 25.0%
• The PID Regulator will not act on a PID Error that falls between 20.0 and
30.0%
PID Preload
The value set in Parameter 239 (PID Preload), in Hertz, will be pre-loaded into
the integral component of the PID at any start or enable. This will cause the
drive’s frequency command to initially jump to that preload frequency, and the
PID loop starts regulating from there.
PID Enabled
PID Output
PID Pre-load Value
Freq Cmd
PID Pre-load Value > 0
PID Limits
Parameter 230 (PID Trim Hi) and Parameter 231 (PID Trim Lo) are used to
limit the PID output and are only used in trim mode. (PID Trim Hi) sets the
maximum frequency for the PID output in trim mode. (PID Trim Lo) sets the
reverse frequency limit for the PID output in trim mode. Note that when the
PID reaches the Hi or Lo limit, the PID regulator stops integrating so that
windup does not occur.
330
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
PID Setup
Appendix D
PID Gains
The proportional, integral, and differential gains make up the PID regulator.
• Parameter 234 (PID Prop Gain)
The proportional gain (unitless) affects how the regulator reacts to the
magnitude of the error. The proportional component of the PID regulator
outputs a speed command proportional to the PID error. For example, a
proportional gain of 1 would output 100% of maximum frequency when
the PID error is 100% of the analog input range. A larger value for (PID
Prop Gain) makes the proportional component more responsive, and a
smaller value makes it less responsive. Setting (PID Prop Gain) to 0.00
disables the proportional component of the PID loop.
• Parameter 235 (PID Integ Time)
The integral gain (units of seconds) affects how the regulator reacts to
error over time and is used to get rid of steady state error. For example, with
an integral gain of 2 seconds, the output of the integral gain component
would integrate up to 100% of maximum frequency when the PID error is
100% for 2 seconds. A larger value for (PID Integ Time) makes the integral
component less responsive, and a smaller value makes it more responsive.
Setting (PID Integ Time) to 0 disables the integral component of the PID
loop.
• Parameter 236 (PID Diff Rate)
The Differential gain (units of 1/seconds) affects the rate of change of the
PID output. The differential gain is multiplied by the difference between
the previous error and current error. Thus, with a large error the D has a
large effect and with a small error the D has less of an effect. This
parameter is scaled so that when it is set to 1.00, the process response is
0.1% of (Maximum Freq) when the process error is changing at 1%/
second. A larger value for (PID Diff Rate) makes the differential term have
more of an effect and a small value makes it have less of an effect. In many
applications, the D gain is not needed. Setting (PID Diff Rate) to 0.00
(factory default) disables the differential component of the PID loop.
Guidelines for Adjusting the PID Gains
1. Adjust the proportional gain. During this step it may be desirable to
disable the integral gain and differential gain by setting them to 0. After a
step change in the PID Feedback:
• If the response is too slow increase Parameter 234 (PID Prop Gain).
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
331
Appendix D PID Setup
• If the response is too quick and/or unstable (see Figure 106), decrease
Parameter 234 (PID Prop Gain).
• Typically, Parameter 234 (PID Prop Gain) is set to some value below
the point where the PID begins to go unstable.
2. Adjust the integral gain (leave the proportional gain set as in Step 1). After
a step change in the PID Feedback:
• If the response is too slow (see Figure 107), or the PID Feedback does
not become equal to the PID Reference, decrease Parameter 235 (PID
Integ Time).
• If there is a lot of oscillation in the PID Feedback before settling out
(see Figure 108), increase Parameter 235 (PID Integ Time).
3. At this point, the differential gain may not be needed. However, if after
determining the values for Parameter 234 (PID Prop Gain) and Parameter
235 (PID Integ Time):
• Response is still slow after a step change, increase Parameter 236 (PID
Diff Rate).
• Response is still unstable, decrease Parameter 236 (PID Diff Rate).
The following figures show some typical responses of the PID loop at different
points during adjustment of the PID Gains.
Figure 106 - Response is Unstable
PID Reference
PID Feedback
Time
Figure 107 - Slow Response – Over-Damped
PID Reference
PID Feedback
Time
332
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
PID Setup
Appendix D
Figure 108 - Oscillation – Under-Damped
PID Reference
PID Feedback
Time
Figure 109 - Good Response – Critically Damped
PID Reference
PID Feedback
Time
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
333
Appendix D PID Setup
Notes:
334
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Appendix
E
StepLogic, Basic Logic and Timer/
Counter Functions
Four Bulletin 284E ArmorStart® logic functions provide the capability to
program simple logic functions without a separate controller.
• StepLogic Function
Steps through up to eight preset speeds based on programmed logic.
Programmed logic can include conditions that need to be met from digital
inputs programmed as Logic In1 and Logic In2 before stepping from one
preset speed to the next. A timer is available for each of the eight steps and
is used to program a time delay before stepping from one preset speed to
the next. The status of a digital output can also be controlled based on the
step being executed.
• Basic Logic Function
Up to two digital inputs can be programmed as Logic In1 and/or Logic
In2. A digital output can be programmed to change state based on the
condition of one or both inputs based on basic logic functions such as
AND, OR, NOR. The basic logic functions can be used with or without
StepLogic.
• Timer Function
A digital input can be programmed for Timer Start. A digital output can
be programmed as a Timer Out with an output level programmed to the
desired time. When the timer reaches the time programmed into the
output level the output will change state. The timer can be reset via a
digital input programmed as Reset Timer.
• Counter Function
A digital input can be programmed for Counter In. A digital output can be
programmed as Counter Out with an output level programmed to the
desired number of counts. When the counter reaches the count
programmed into the output level the output will change state. The
counter can be reset via a digital input programmed as Reset Counter.
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
335
Appendix E StepLogic, Basic Logic and Timer/ Counter Functions
StepLogic Using Timed Steps
To activate this function, set Parameter 138 (Speed Reference) to Option 6
(StpLogic). Three parameters are used to configure the logic, speed reference, and
time for each step.
• Logic is defined using Parameters 240…247 (StpLogic x)
• Preset Speeds are set with Parameters 170…177 (Preset Freq x)
• Time of operation for each step is set with Parameters 250…257 (StpLogic
Time x)
The direction of motor rotation can be forward or reverse.
Figure 110 - Using Timed Steps
Step 0
Step 1
Step 2
Step 3 Step 4 Step 5 Step 6
Step 7
Forward
0
Reverse
Time
StepLogic Sequence
• Sequence begins with a valid start command
• A normal sequence begins with Step 0 and transitions to the next step
when the corresponding StepLogic time has expired
• Step 7 is followed by Step 0
• Sequence repeats until a stop is issued or a fault condition occurs
StepLogic Using Basic Logic
Functions
336
Digital input and digital output parameters can be configured to use logic to
transition to the next step. Logic In1 and Logic In2 are defined by programming
Parameters 151…154 (Digital In x Sel) to Option 23 (Logic In1) or Option 24
(Logic In2).
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
StepLogic, Basic Logic and Timer/ Counter Functions
Appendix E
Example
• Run at Step 0
• Transition to Step 1 when Logic In1 is true
Logic senses the edge of Logic In1 when it transitions from OFF to ON.
Logic In1 is not required to remain ON.
• Transition to Step 2 when both Logic In1 and Logic In2 are true
The drive senses the level of both Logic In1 and Logic In2 and transitions
to Step 2 when both are ON.
• Transition to Step 3 when Logic In2 returns to a false or OFF state
Inputs are not required to remain in the On condition except under the
logic conditions used for the transition from Step 2 to Step 3.
Figure 111 - Logic Transitioning to the Next Step
Start
Step 0
Step 1
Step 2
Step 3
Frequency
Logic In1
Logic In2
Time
The step time value and the basic logic may be used together to satisfy machine
conditions. For instance, the step may need to run for a minimum time period
and then use the basic logic to trigger a transition to the next step.
Figure 112 - Step Running for a Minimum Time Period
Start
Step 0
Step 1
Frequency
Logic In1
Logic In2
Time
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
337
Appendix E StepLogic, Basic Logic and Timer/ Counter Functions
Timer Function
Digital inputs and outputs control the timer function and are configured with
Parameters 151…154 (Digital In x Sel) set to Option 18 (Timer Start) and
Option 20 (Reset Timer).
Digital outputs (relay) define a preset level and indicate when the level is reached.
Level Parameter 156 (Relay Out Level) is used to set the desired time in seconds.
Parameter 155 (Relay Out Sel) is set to Option 16 (Timer Out) and causes the
output to change state when the preset level is reached.
Counter Function
Digital inputs and outputs control the counter function and are configured with
Parameters 151…154 (Digital In x Sel) set to Option 19 (Counter In) and
Option 21 (Reset Counter).
Digital outputs (relay) define a preset level and indicate when the level is reached.
Level Parameters 156 (Relay Out Level) is used to set the desired count value.
Parameter 155 (Relay Out Sel) is set to Option 17 (Counter Out) which causes
the output to change state when the level is reached.
Example
• A photo eye is used to count packages on a conveyor line
• An accumulator holds the packages until five are collected
• A diverter arm redirects the group of five packages to a bundling area
• The diverter arm returns to its original position and triggers a limit switch
that resets the counter
• parameters are set to the following options:
– Parameter 151 (Digital In 1 Sel) set to Option 19 to select (Counter In)
– Parameter 152 (Digital In 2 Sel) set to Option 21 to select (Reset
Counter)
– Parameter 155 (Relay Out Sel) set to Option 17 to select (Counter
Out)
– Parameter 156 (Relay Out Level) set to 5.0 (counts)
338
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
StepLogic, Basic Logic and Timer/ Counter Functions
StepLogic Parameters
Appendix E
Digits 0…3 for each (StpLogic x) parameter must be programmed according to
the desired profile.
Digit 0
Digit 1
Digit 2
Digit 3
1
F
0
0
Table 53 - Digit 0 and Digit 1 Settings
Setting
Description
Logic
0
Skip Step (jump immediately).
SKIP
1
Step based on the time programmed in the respective (StpLogic Time x) parameter.
TIMED
2
Step if Logic In1 is active (logically true).
TRUE
3
Step if Logic In2 is active (logically true).
TRUE
4
Step if Logic In1 is not active (logically false).
FALSE
5
Step if Logic In2 is not active (logically false).
FALSE
6
Step if either Logic In1 or Logic In2 is active (logically true).
OR
7
Step if both Logic In1 and Logic In2 is active (logically true).
AND
8
Step if neither Logic In1 or Logic In2 is active (logically true).
NOR
9
Step if Logic In1 is active (logically true) and Logic In2 is not active (logically false).
XOR
A
Step if Logic In2 is active (logically true) and Logic In1 is not active (logically false).
XOR
b
Step after (StpLogic Time x) and Logic In1 is active (logically true).
TIMED AND
C
Step after (StpLogic Time x) and Logic In2 is active (logically true).
TIMED AND
d
Step after (StpLogic Time x) and Logic In1 is not active (logically false).
TIMED OR
E
Step after (StpLogic Time x) and Logic In2 is not active (logically false).
TIMED OR
F
Do not step OR no jump to, so use Digit 0 logic.
IGNORE
Table 54 - Digit 2 Settings
Setting
Logic
0
Jump to Step 0
1
Jump to Step 1
2
Jump to Step 2
3
Jump to Step 3
4
Jump to Step 4
5
Jump to Step 5
6
Jump to Step 6
7
Jump to Step 7
8
End Program (Normal Stop)
9
End Program (Coast to Stop)
A
End Program and Fault (F2)
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
339
Appendix E StepLogic, Basic Logic and Timer/ Counter Functions
Table 55 - Digit 3 Settings
340
Setting
Accel/Decel
Parameters Used
StepLogic
Output State
Commanded Direction
0
1
OFF
FWD
1
1
OFF
REV
2
1
OFF
No Output
3
1
ON
FWD
4
1
ON
REV
5
1
ON
No Output
6
2
OFF
FWD
7
2
OFF
REV
8
2
OFF
No Output
9
2
ON
FWD
A
2
ON
REV
b
2
ON
No Output
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Appendix
F
Renewal Parts
Bulletin 280E/281E
Control Module Renewal Part Product Selection
Figure 113 - Bulletin 280E/281E Control Module Renewal Part Catalog Structure
280 E – F 12Z – N B – R
– Option 1
Bulletin Number
Bulletin 280 Full Voltage Starter
Bulletin 281 Reversing Starter
Option 1
3 Hand-Off-Auto Selector Keypad
3FR Hand-Off-Auto Selector Keypad
Communications
E EtherNet/IP
Motor Connection
R Round
Enclosure Type
F Type 4 (IP67)
Overload Selection
Current Range
A 0.24…1.2
B 0.5…2.5 A
C 1.1…5.5 A
D 3.2…16 A
Contactor Size/Control Voltage
24V DC
Control Module
N Control Module Only
12Z
23Z
Table 56 - Full Voltage Starters – IP67/NEMA Type 4
kW
Cat. No.
Hp
Current Rating
(A)
230V AC
50 Hz
400V AC
50 Hz
200V AC
60 Hz
230V AC
60 Hz
460V AC
60 Hz
575V AC
60 Hz
24V DC
0.24…1.2
0.18
0.37
—
—
0.5
0.5
280E-F12Z-NA-R
0.5…2.5
0.37
0.75
0.5
0.5
1
1.5
280E-F12Z-NB-R
1.1…5.5
1.1
2.2
1
1
3
3
280E-F12Z-NC-R
3.2…16
4
7.5
3
5
10
10
280E-F23Z-ND-R
Table 57 - Reversing Starters – IP67/NEMA Type 4
kW
Cat. No.
Hp
Current Rating
(A)
230V AC
50 Hz
400V AC
50 Hz
200V AC
60 Hz
230V AC
60 Hz
460V AC
60 Hz
575V AC
60 Hz
24V DC
0.24…1.2
0.18
0.37
—
—
0.5
0.5
281E-F12Z-NA-R
0.5…2.5
0.37
0.75
0.5
0.5
1
1.5
281E-F12Z-NB-R
1.1…5.5
1.1
2.2
1
1
3
3
281E-F12Z-NC-R
3.2…16
4
7.5
3
5
10
10
281E-F23Z-ND-R
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
341
Appendix F
Renewal Parts
Base Module Renewal Part Product Selection
Figure 114 - Bulletin 280E Base Module Renewal Part Catalog Structure
280 E – F N
– 10 – C
Bulletin Number
Bulletin 280 Starter
Communications
E EtherNet/IP
Line Connection
C Conduit Entrance
R ArmorConnect™ Power Media
Enclosure Type
F Type 4 (IP67)
Short Circuit Protection (Bul. 140M)
10 10 A Rated Device
25 25 A Rated Device
N Base Only
No Control Module
Table 58 - Bulletin 280E Full Voltage Starters and Bulletin 281E Reversing Starters –
IP67/NEMA Type 4
kW
Current Rating
(A)
230V AC
50 Hz
Hp
400V AC
50 Hz
200V AC
60 Hz
230V AC
60 Hz
460V AC
60 Hz
575V AC
60 Hz
Cat. No.
0.24…1.2
0.18
0.37
—
—
0.5
0.5
280E-FN-10-C
0.5…2.5
0.37
0.75
0.5
0.5
1
1.5
280E-FN-10-C
1.1…5.5
1.1
2.2
1
1
3
3
280E-FN-10-C
3.2…16
4
7.5
3
5
10
10
280E-FN-25-C
Table 59 - Bulletin 280E Full Voltage Starters and Bulletin 281E Reversing Starters –
IP67/NEMA Type 4, with ArmorConnect Connectivity
kW
Hp
Current Rating
(A)
230V AC
50 Hz
400V AC
50 Hz
200V AC
60 Hz
230V AC
60 Hz
460V AC
60 Hz
575V AC
60 Hz
Cat. No.
0.24…1.2
0.18
0.37
—
—
0.5
0.5
280E-FN-10-R
0.5…2.5
0.37
0.75
0.5
0.5
1
1.5
280E-FN-10-R
1.1…5.5
1.1
2.2
1
1
3
3
280E-FN-10-R
3.2…16
4
7.5
3
5
10
10
280E-FN-25-R
Table 60 - Internal Fuses
342
Description
Current Rating
Cat. No.
Control Voltage Fuse
7A
W25172-260-17
Output Fuse
2.5 A
W25176-155-03
Source Brake Fuse
3.0 A
W25172-260-12
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Renewal Parts
Appendix F
Table 61 - Motor Cables
Description
Cable Rating
90° M22 Motor Cordset
IP67/NEMA Type 4
Motor Cable Cordsets
90° M35 Motor Cordset
Motor Cable Cordsets,
High Flex
90° M22 Motor Cordset
90° Male/Straight Female M22
IP67/NEMA Type 4
Cat. No.
3 (9.8)
280-MTR22-M3
6 (19.6)
280-MTR22-M6
10 (32.8)
280-MTR22-M10
14 (45.9)
280-MTR22-M14
20 (65.6)
280-MTR22-M20
3 (9.8)
280-MTR35-M3
6 (19.6)
280-MTR35-M6
10 (32.8)
280-MTR35-M10
14 (45.9)
280-MTR35-M14
20 (65.6)
280-MTR35-M20
3 (9.8)
280-MTRF22-M3
6 (19.6)
280-MTRF22-M6
8 (26.2)
280-MTRF22-M8
10 (32.8)
280-MTRF22-M10
14 (45.9)
280-MTRF22-M14
20 (65.6)
280-MTRF22-M20
1 (3.3)
280-MTR22-M1D
3 (9.8)
280-MTR22-M3D
1 (3.3)
280-MTR35-M1D
3 (9.8)
280-MTR35-M3D
IP67/NEMA Type 4
IP67/NEMA Type 4
Motor Cable Patchcords
90° Male/Straight Female M35
Length
m (ft)
IP67/NEMA Type 4
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
343
Appendix F
Renewal Parts
Control Module Renewal Part Product Selection
Bulletin 284E
Figure 115 - Bulletin 284E Control Module Renewal Part Catalog Structure
E – F V D2P3
284
Z
– N
– R
– Option 1
– Option 2
– Option 3
Bulletin
Number
Option 3
EMI EMI Filter
OC Output Contactor
Communications
E EtherNet/IP
Enclosure Type
F Type 4 (IP67)
Torque Performance Mode
V Sensorless Vector Control
Volts per Hz
Option 2
DB DB Brake Connector
DB1 DB Brake Connector for
IP67 Dynamic Brake
Resistor
SB Source Brake Connector
Control Module
N Control Module Only
Control Voltage
Z 24V DC
Option 1
3 Hand-Off-Auto Selector
Keypad with Jog Function
Blank Status Only
Output Current
Motor Media Type
R Round
Table 62 - Bulletin 284E Control Module with
Sensorless Vector Control,
IP67/NEMA 4
Input Voltage
380…480V
50/60 Hz
3-Phase
344
kW
Hp
24 V DC
Control Voltage
0.4
0.5
284E-FVD1P4Z-N-R
0.75
1.0
284E-FVD2P3Z-N-R
1.5
2.0
284E-FVD4P0Z-N -R
2.2
3.0
284E-FVD6P0Z-N-R
3.0
5.0
284E-FVD7P6Z-N-R
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Renewal Parts
Appendix F
Base Module Renewal Part Product Selection
Figure 116 - Bulletin 284E Base Module Renewal Part Catalog Structure
284 E – F N – 10 – C
Bulletin
Number
Communications
E EtherNet/IP
Line Media
C Conduit
R ArmorConnect™ Power Media
Enclosure Type
F Type 4 (IP67)
Short-Circuit Protection
Bulletin 140 Current Rating (A)
10 10 A Rated Device
25 25 A Rated Device
Base
N Base Only — no starter
Table 63 - Bulletin 284E Base Module Renewal
Part, IP67/NEMA 4, With Conduit Entrance
Input Voltage
kW
Hp
24 V DC
Control Voltage
380…480V
50/60 Hz
3-Phase
0.4…2.2
0.5…3.0
280E-FN-10-C
3.0
5.0
280E-FN-25-C
380…480V
50/60 Hz
3-Phase
0.4…2.2
0.5…3.0
280E-FN-10-R
3.0
5.0
280E-FN-25-R
Table 64 - Dynamic Brake Cable
Description
Cable Rating
Length m (ft)
Cat. No.
M22 Dynamic Brake Cable (DB Option)
IP67/NEMA Type 4
3 (9.8)
285-DBK22-M3
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
345
Appendix F
Renewal Parts
Table 65 - Motor Cables
Description
Cable Rating
90° M22 Motor Cordset
IP67/NEMA Type 4
Motor Cable Cordsets
90° M35 Motor Cordset
Motor Cable Cordsets, High Flex
Motor Cable Cordsets,
Shielded (VFD)
Extended Source/
Control Brake
Cable Cordsets
Extended Source/
Control Brake
Cable Cordsets, High Flex
90° M22 Motor Cordset
90° M22 Motor Cordset
90° M25 Source Brake Cable
90° M25 Source Brake Cable
IP67/NEMA Type 4
Length
m (ft)
Cat. No.
3 (9.8)
280-MTRM22-M3
6 (19.6)
280-MTR22-M6
10 (32.8)
280-MTR22-M10
14 (45.9)
280-MTR22-M14
20 (65.6)
280-MTR22-M20
3 (9.8)
280-MTR35-M3
6 (19.6)
280-MTR35-M6
10 (32.8)
280-MTR35-M10
14 (45.9)
280-MTR35-M14
20 (65.6)
280-MTR35-M20
3 (9.8)
280-MTRF22-M3
6 (19.6)
280-MTRF22-M6
8 (26.2)
280-MTRF22-M8
10 (32.8)
280-MTRF22-M10
14 (45.9)
280-MTRF22-M14
20 (65.6)
280-MTRF22-M20
3 (9.8)
284-MTRS22-M3
6 (19.6)
284-MTRS22-M6
14 (45.9)
284-MTRS22-M14
6 (19.6)
285-BRC25-M6
14 (45.9)
285-BRC25-M14
3 (9.8)
285-BRCF25-M3
6 (19.6)
285-BRCF25-M6
10 (32.8)
285-BRCF25-M10
14 (45.9)
285-BRCF25-M14
20 (65.6)
285-BRCF25-M20
1 (3.3)
280-MTR22-M1D
3 (9.8)
280-MTR22-M3D
1 (3.3)
280-MTR35-M1D
3 (9.8)
280-MTR35-M3D
1 (3.3)
284-MTRS22-M1D
3 (9.8)
284-MTRS22-M3D
IP67/NEMA Type 4
IP67/NEMA Type 4
IP67/NEMA Type 4
IP67/NEMA Type 4
90° Male/
Straight Female M22
IP67/NEMA Type 4
90° Male/
Straight Female M35
IP67/NEMA Type 4
90° Male/
Straight Female M22
IP67/NEMA Type 4
Motor Cable Patchcords
Motor Cable Patchcords
Shielded (VFD)
Internal Replacement Fan
346
284-FAN
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012
Rockwell Automation Support
Rockwell Automation provides technical information on the Web to assist you in using its products.
At http://www.rockwellautomation.com/support/, you can find technical manuals, a knowledge base of FAQs, technical and
application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the
best use of these tools.
For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer TechConnectSM
support programs. For more information, contact your local distributor or Rockwell Automation representative,
or visit http://www.rockwellautomation.com/support/.
Installation Assistance
If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual.
You can contact Customer Support for initial help in getting your product up and running.
United States or Canada
1.440.646.3434
Outside United States or Canada
Use the Worldwide Locator at http://www.rockwellautomation.com/support/americas/phone_en.html, or contact your local Rockwell
Automation representative.
New Product Satisfaction Return
Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility.
However, if your product is not functioning and needs to be returned, follow these procedures.
United States
Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your
distributor to complete the return process.
Outside United States
Please contact your local Rockwell Automation representative for the return procedure.
Documentation Feedback
Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document,
complete this form, publication RA-DU002, available at http://www.rockwellautomation.com/literature/.
Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400
Rockwell Automation Publication 280E-UM001B-EN-P – July 2012 348
Supersedes Publication 280E-UM001A-EN-P — January 2011
Copyright © 2012 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement