ArmorStart Distributed Motor Controller with EtherNet/IP User Manual

ArmorStart Distributed Motor Controller with EtherNet/IP User Manual

User Manual

ArmorStart

®

Distributed Motor Controller with EtherNet/IP™

Catalog Numbers 280E, 281E, 284E

Important User Information

Because of the variety of uses for the products described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for purposes of example. Since there are many variables and requirements associated with any particular installation, Rockwell Automation does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication.

Solid-state equipment has operational characteristics differing from those of electromechanical equipment.

Safety

Guidelines for the Application, Installation and Maintenance of Solid State Controls (Publication SGI-1.1

available from your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/ ) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation,

Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

IMPORTANT

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

Identifies information that is critical for successful application and understanding of the product.

Trademark List

Allen-Bradley, ArmorConnect, ArmorStart, DeviceLogix, RSLogix 5000, RSNetWorx, StepLogic, RSLinx, On-Machine and ControlLogix are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

European Communities (EC) Directive Compliance

If this product has the CE mark it is approved for installation within the European Union and EEA regions. It has been designed and tested to meet the following directives.

Low Voltage and EMC Directives

This product is tested to meet Council Directive 2006/95/EC Low Voltage Directive and Council Directive

2004/108/EC Electromagnetic Compatibility (EMC) by applying the following standard(s):

Bulletin 280E/281E: EN 60947-4-1 — Low-voltage switchgear and controlgear — Part 4-1: Contactors and motorstarters — Electromechanical contactors and motor-starters.

Bulletin 284E: EN 61800-5-1 — Adjustable speed electronic power drive systems — Part 5-1: Safety requirements

— Electrical, thermal and energy.

Bulletin 284E: EN 61800-3 — Adjustable speed electronic power drive systems — Part 3: EMC product standard including specific test methods.

This product is intended for use in an industrial environment.

Product Overview

Table of Contents

European Communities (EC) Directive Compliance. . . . . . . . . . . . . . . . . . 3

Low Voltage and EMC Directives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 1

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Catalog Number Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Mode of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Bulletin 280E/281E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Full-Voltage Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Bulletin 284E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Sensorless Vector Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Description of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Embedded Switch Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Switched vs. Unswitched

Control Power Input/Output

(I/O) Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

EtherNet/IP™ Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Embedded Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

E-mail Notification Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

EtherNet/IP LED Status Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Control Module LED Status and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Electronic Data Sheet (EDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Fault Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Protection Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Standard Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Gland Plate Entrance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Motor Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

DeviceLogix™. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Factory-Installed Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Optional HOA Keypad Configuration (Bulletin 280E/281E only) 25

Optional HOA Selector Keypad with Jog Function

(Bulletin 284E only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Source Brake Contactor and Connector (Bulletin 284E only) . . . . 26

EMI Filter (Bulletin 284E only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Dynamic Brake Connector (Bulletin 284E only) . . . . . . . . . . . . . . . . 26

IP67 Dynamic Brake Resistor (Bulletin 284E only). . . . . . . . . . . . . . 26

Output Contactor (Bulletin 284E only) . . . . . . . . . . . . . . . . . . . . . . . . 27

Shielded Motor Cable (Bulletin 284E only). . . . . . . . . . . . . . . . . . . . . 27

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

5

Table of Contents

6

Installation and Wiring

ArmorStart® EtherNet/

IP Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Notes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 2

Receiving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Unpacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Inspecting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Storing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

General Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Precautions for Bulletin 280E/281E Applications . . . . . . . . . . . . . . . . . . . 32

Precautions for Bulletin 284E Applications . . . . . . . . . . . . . . . . . . . . . . . . . 32

Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Conduit Gland Entrance Bulletin 280E/281E . . . . . . . . . . . . . . . . . . 33

Conduit Gland Entrance Bulletin 284E . . . . . . . . . . . . . . . . . . . . . . . . 34

ArmorConnect® Gland Connectivity Bulletin 280E/281E . . . . . . . 35

ArmorConnect Gland Connectivity Bulletin 284E . . . . . . . . . . . . . . 36

Mount Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Power, Control, Safety Monitor Inputs, and Ground Wiring . . . . . 37

Terminal Designations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Control Power Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

24V DC Control Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ArmorStart with

EtherNet/IP Internal Wiring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Recommended Cord Grips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

AC Supply Considerations for Bulletin 284E Units . . . . . . . . . . . . . . . . . 43

Ungrounded and High Resistive Distribution Systems . . . . . . . . . . . 43

Disconnecting MOVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Group Motor Installations for USA and Canada Markets . . . . . . . . 45

Wiring and Workmanship Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Other System Design Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Electromagnetic Compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

General Notes (Bulletin 284E only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Grounding Safety Grounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Grounding PE or Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Grounding Motors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ArmorConnect Power Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ArmorConnect Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ArmorConnect Cable Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Table of Contents

Introduction to EtherNet/IP and

Device Level Ring Technology

Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Introduction to EtherNet/IP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Linear Network Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Device Level Ring (DLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Number of Nodes on a

DLR Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Ethernet Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Ethernet Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

EtherNet/IP General

Wiring Guideline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Requested Packet

Interval (RPI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 4

Product Commissioning

Branch Circuit Protection Requirements for ArmorConnect

Three-Phase Power Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Ethernet and I/O Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Power Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Optional Locking Clip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 3

IP Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Gateway Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Subnet Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Configuring EtherNet/

IP Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Manually Configure the Network Address Switches . . . . . . . . . . . . . 68

Use the Rockwell Automation BootP/DHCP Utility . . . . . . . . . . . . . . . 70

Save the Relation List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

DHCP IP Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Using the Rockwell Automation Embedded

Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Internal Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Network Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Parameter Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

E-mail Notification Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Device Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 5

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

7

Table of Contents

8

Adding an ArmorStart to RSLogix

5000

Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Connect and Configure ArmorStart with Add-On-Profile (AOP) . . . . 82

Offline Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

General Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Connection Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Parameters Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Online Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Parameters Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Module Info Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Internet Protocol Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Port Configuration Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Network Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Auto-Generated Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Notes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Chapter 6

Optional HOA Keypad Operation

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Keypad Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Keypad and HOA Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Notes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Chapter 7

Bulletin 280E/281E/284E

Programmable Parameters

Basic Setup Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Parameter Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

ArmorStart EtherNet/IP Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Parameter Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bulletin 280E/281E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Basic Status Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Produced Assembly Config Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Starter Protection Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

User I/O Configuration Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Miscellaneous Configuration Group. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Starter Display Group (Bulletin 280E/281E only) . . . . . . . . . . . . . . 130

Starter Setup Group (Bulletin 280E/281E only). . . . . . . . . . . . . . . . 132

Bulletin 284E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Basic Status Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Produced Assembly Config Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Starter Protection Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

User I/O Configuration Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Miscellaneous Configuration Group. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Drive I/O Configuration Group (Bulletin 284E only) . . . . . . . . . . 152

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

How to Configure an Explicit

Message

Diagnostics

Table of Contents

Drive Display Group (Bulletin 284E only). . . . . . . . . . . . . . . . . . . . . 154

Drive Setup Group (Bulletin 284E only) . . . . . . . . . . . . . . . . . . . . . . 160

Drive Advanced Setup Group (Bulletin 284E only). . . . . . . . . . . . . 164

Clear a Type 1 Fault and Restart the Drive. . . . . . . . . . . . . . . . . . . . . 175

Clear an Overvoltage, Undervoltage, or Heatsink OvrTmp Fault without Restarting the Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

How StepLogic Works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

StepLogic Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Linear List of Parameters for Bulletin 280E/281E and Bulletin 284E . . . . . . . . . . . . . . . . . . . . . . . . 193

Chapter 8

Programming ControlLogix® Explicit Message . . . . . . . . . . . . . . . . . . . . . 203

Explicit Messaging with ControlLogix . . . . . . . . . . . . . . . . . . . . . . . . 203

Setting Up the MSG Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Formatting an Explicit Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Performing Explicit Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Chapter 9

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Protection Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Fault Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Clear Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Fault Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Fault Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Short Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Overload Trip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Phase Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Phase Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Ground Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Control Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

I/O Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Over Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Phase Imbalance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Over Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A3 Power Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Internal Communication Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

DC Bus Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Electrically Erasable Programmable Read-Only Memory

EEPROM Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Hardware Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

9

Table of Contents

Troubleshooting

Specifications for EtherNet/IP

10

Restart Retries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Miscellaneous Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

EtherNet/IP LED Status Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Control Module LED

Status and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Control Module Fault

LED Indications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Fault 11 Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Resetting Device to

Factory Defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Chapter 10

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Bulletin 280E/281E Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Bulletin 284E Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Fault Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

DB1 Faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Operation and Troubleshooting of the DB1 - Dynamic Brake . . . 225

DB1 Resistor Overtemperature Fault . . . . . . . . . . . . . . . . . . . . . . . . . . 226

DB1 Overcurrent Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

DB1 Undercurrent Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

DB1 Switch Fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

DB1 Open Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

DB1 VBus Link Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

DB1 Comm Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

DB1 Thermal Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Internal Drive Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Control Module Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Installation of Control Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Troubleshoot and General Solutions for Linear or DLR Networks. . . 235

Specific Issues on Your DLR or Linear Network. . . . . . . . . . . . . . . . 235

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Chapter 11

Bulletin 280E/281E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Motor Overload Trip Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Contactor Life Load Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Bulletin 284E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Sensorless Vector Control (SVC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Motor Overload Trip Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Chapter 12

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Table of Contents

Accessories

Applying More Than One

ArmorStart

Motor Controller in a Single

Branch Circuit on Industrial Machinery

CIP Information

Industrial Ethernet Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

D Code Connectivity (M12) – 1585D . . . . . . . . . . . . . . . . . . . . . . . . 253

Sensor Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Sensor Wiring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Motor and Brake Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Sealing Caps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Dynamic Braking Resistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Sensorless Vector Control (SVC) Minimum Resistance and

Recommended Modules for Option DB . . . . . . . . . . . . . . . . . . . . . . . 259

Bulletin 284E Option (-DB) – IP20 Resistor . . . . . . . . . . . . . . . . . . 260

Sensorless Vector Control (SVC) Recommended Dynamic Brake

Modules for Option DB1 (IP67 Resistor) . . . . . . . . . . . . . . . . . . . . . 261

Appendix A

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

ArmorStart LT Product Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Multiple-Motor Branch Circuits and Motor Controllers Listed for Group

Installation – General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Maximum Fuse Ampere Rating According to 7.2.10.4(1) and 7.2.10.4(2)

267

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Complete Text 267

Explanatory Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Input and Output Conductors of Bulletin 290E and 291E Controllers (a)

275

Input and Output Conductors of Bulletin 294E Controllers (b) . . . . 275

Combined Load Conductors (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Appendix B

High Level Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Product Codes and Name Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

CIP Explicit Connection Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

EDS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

CIP Object Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Identity Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

CLASS CODE 0x0001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Assembly Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

CLASS CODE 0x0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

I/O Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Connection Manager Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

CLASS CODE 0x0006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Class 1 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

11

Table of Contents

Using DeviceLogix

12

Exclusive Owner Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Listen Only Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Class 3 CIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Discrete Input Point Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

CLASS CODE 0x0008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Discrete Output Point Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

CLASS CODE 0x0009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Parameter Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

CLASS CODE 0x000F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Parameter Group Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

CLASS CODE 0x0010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Discrete Input Group Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

CLASS CODE 0x001D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Discrete Output Group Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

CLASS CODE 0x001E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Control Supervisor Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

CLASS CODE 0x0029 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Overload Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

CLASS CODE 0x002C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Device Level Ring (DLR) Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

CLASS CODE 0x0047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Qos Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

CLASS CODE 0x0048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

DPI Fault Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

CLASS CODE 0x0097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

DPI Alarm Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

CLASS CODE 0x0098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Interface Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

CLASS CODE 0x00B4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

TCP/IP Interface Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

CLASS CODE 0x00F5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Ethernet Link Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

CLASS CODE 0x00F6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Appendix C

DeviceLogix Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

DeviceLogix Programming Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Import and Export. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Bulletin 284 - VFD Preset Speed Example . . . . . . . . . . . . . . . . . . . . . . . . . 314

Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

DeviceLogix Ladder Editor Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

ArmorStart 280 and 281 Status Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Bulletin 280 and 281 ArmorStart Fault Bits. . . . . . . . . . . . . . . . . . . . 321

Bulletin 280 and 281 ArmorStart Outputs . . . . . . . . . . . . . . . . . . . . . 322

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Table of Contents

Bulletin 280 and 281 ArmorStart Produced Network Bits . . . . . . 322

Bulletin 284 ArmorStart Status Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Bulletin 284 ArmorStart Fault Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Bulletin 284 ArmorStart Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Bulletin 284 ArmorStart Produced Network Bits . . . . . . . . . . . . . . 325

Appendix D

PID Setup

StepLogic, Basic Logic and Timer/

Counter Functions

StepLogic Using Timed Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

StepLogic Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

StepLogic Using Basic Logic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Timer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Counter Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

StepLogic Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Appendix F

Renewal Parts

PID Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Exclusive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Trim Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

PID Reference and Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

PID Deadband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

PID Preload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

PID Limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

PID Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Guidelines for Adjusting the PID Gains . . . . . . . . . . . . . . . . . . . . . . . 331

Notes:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

Appendix E

Bulletin 280E/281E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Control Module Renewal Part Product Selection. . . . . . . . . . . . . . . 341

Base Module Renewal Part Product Selection . . . . . . . . . . . . . . . . . . 342

Bulletin 284E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Control Module Renewal Part Product Selection. . . . . . . . . . . . . . . 344

Base Module Renewal Part Product Selection . . . . . . . . . . . . . . . . . . 345

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

13

Table of Contents

14

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Chapter

1

Product Overview

Bulletin

Type

0.5…10 Hp (0.37…7.5 kW)

0.5…5 Hp (0.4…3.0 kW)

Full-Voltage and Reversing

Sensorless Vector Control

IP67/NEMA Type 4

24V DC

200…480V AC

380…480V AC

Rated for Group Motor Installations

Local logic using DeviceLogix™

I/O Capability:

Four Inputs

Two Outputs

EtherNet/IP™

LED Status Indication

Conduit Entrance

ArmorConnect Power Media

Quick Disconnects (I/O, Communications, Motor

Connection, Three-Phase and Control Power

Extended Length Motor and Brake Cables

HOA Keypad

Source Brake Contactor

Dynamic Brake Connector

Output Contactor

EMI Filter

Shielded Motor Cable

280E/281E

Horsepower Range:

Starting Method:

Environmental Rating:

Control Voltage:

Operational Voltage Ratings:

Network Communications:

Gland Plate Entry:

Factory Installed Options:

EtherNet/IP™

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

284E

15

Chapter 1 Product Overview

Introduction

Description

16

This chapter provides a brief overview of the features and functionality of the

ArmorStart

®

EtherNet/Industrial Protocol (IP) Distributed Motor Controllers,

Bulletin 280E, 281E, and 284E.

The ArmorStart EtherNet/IP™ Distributed Motor Controllers are integrated, pre-engineered, motor starting solutions. Bulletins 280E and 281E are used for full-voltage and reversing applications, respectively. Bulletin 284E is used in variable frequency applications where more precise motor control is needed. The

ArmorStart EtherNet/IP controller offers a robust IP67/UL Type 4/12 enclosure design, which is suitable for water wash down environments.

ArmorStart EtherNet/IP includes an embedded dual port switch that supports device level ring (DLR) applications. It supports IEEE 1588 end-to-end transparent clock. This allows synchronization within a distributed network of devices. Transparent clocks in combination with enhanced or managed Ethernet switches are able to adjust for network introduced timing delays and improve the performance of motion applications.

The ArmorStart EtherNet/IP network address can be configured dynamically or statically via the embedded Web Server. In addition, the controller’s IP address can be manually set via three IP address switches found on the I/O section of the device.

The controller’s embedded Web Server allows the user to check status, diagnostics and perform simple device configuration using a standard web browser. It also supports SMTP protocol which allows the user to configure the device to send an alert e-mail of potential issues.

The ArmorStart Distributed Motor Controller is a modular “plug and play” design that offers simplicity in wiring and installation. The quick disconnects for the I/O, communications, and motor connections reduce the wiring time and eliminate wiring errors. The controller offers, as standard, four configurable

(sink/source) DC inputs and two sourcing solid state outputs, to be used with sensors and actuators respectively, for monitoring and controlling the application process. The ArmorStart’s light-emitting diode (LED) status indication and built-in diagnostics capabilities allow ease of maintenance and troubleshooting.

The optional Hand/Off/Auto (HOA) keypad configuration allows local start/ stop control.

An Add-on profile for ControlLogix® is available. Add-on profiles streamline the programming and installation by eliminating the task of individually configuring the device tags.

The copy and paste function allows easy configuration of multiple ArmorStarts

Controllers. RSLogix™ 5000 revision 17.01 or later is required to implement addon profile support.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Product Overview Chapter 1

The Armorstart controller and associated motor cable have been evaluated as a system by UL and is suitable for group installation. Armorstart controllers contain a UL listed disconnect which in many applications eliminates the need for additional components.

Catalog Number Explanation

Examples given in this section are for reference purposes. This basic explanation should not be used for product selection because not all combinations will produce a valid catalog number.

Figure 1 - Catalog Number Explanation for 280E/281E

Code

280

281

Code

E

Code

F

280

a a

Bulletin Number

Description

Full Voltage Starter

Reversing Starter

b

E

b

– F

c

Code

10

25

12Z – 10

d e

C – CR – Option 1

f g h e

Short Circuit Protection

(Motor Circuit Protection)

Description

10 A Rated Device

25 A Rated Device

h

Option 1

Code

3

3FR

Hand/Off/Auto Selector Keypad

Hand/Off/Auto Selector Keypad with

Forward/Reverse

Description

EtherNet/IP

c

Enclosure Type

Description

IP67/ UL Type 4/12

f

Code

Overload Selection Current Range

Description

A

B

C

0.24…1.2 A

0.5…2.5 A

1.1…5.5 A

D 3.2…16 A

d

Contactor Size/Control Voltage

24V DC

12Z

23Z CR

CR

RR

RR

Code blank

W* blank

W*

g

Control and 3-Phase Power Connections/Motor Cable Connection

(CR: Conduit/Round Media) or (RR: Round/Round Media)

Control Power

Description

3-Phase Power

Conduit Entrance Conduit Entrance

Motor Cable

3 m, unshielded cordset male 90°

Conduit Entrance

Round Media (Male

Receptacle)

Round Media (Male

Receptacle)

Conduit Entrance

Round Media (Male

Receptacle)

Round Media (Male

Receptacle)

No cable

3 m, unshielded cordset male 90°

No cable

* Refer to the Industrial Controls Catalog for extended motor cable lengths.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

17

Chapter 1 Product Overview

Figure 2 - Catalog Number Explanation for 284E

284 E – F V D2P3 D – 10 – CR – Option 1 – Option 2 – Option 3

a b c d e f g h i j k

Code

284

a

Bulletin Number

Description

VFD Starter

d

Torque Performance Mode

Code Description

V

Sensorless Vector Control and Volts per Hertz

Code

Z

f

Control Voltage

Description

24V DC

Code

3

i

Option 1

Description

Hand/Off/Auto Selector

Keypad with Jog Function

Code

E

b

Communications

Description

EtherNet/IP

Code

F

c

Enclosure Type

Description

Type 4 (IP67)

Code

D1P4

D2P3

D4P0

D6P0

D7P6

e

Output Current

380…480V

Description

1.4 A, 0.4 kW, 0.5 Hp

2.3 A, 0.75 kW, 1.0 Hp

4.0 A, 1.5 kW, 2.0 Hp

6.0 A, 2.2 kW, 3.0 Hp

7.6 A, 3.3 kW, 5.0 Hp

g

Short Circuit Protection (Motor

Circuit Protector)

Code Description

10

25

10 A Rated Device

25 A Rated Device

j

Code

Option 2

Description

DB blank DB Brake Connector

DB1

SB

SB blank blank

W

Connectivity to IP67

DB Resistor

Source Brake

Contactor

No cable

Code

EMI

OC

k

Option 3

Description

EMI Filter

Output Contactor

h

Control and 3-Phase Power Connections / Motor Cable Connection

(CR: Conduit/Round Media) or (RR: Round/Round Media)

Code

Control Power

Description

3-Phase Power

CR blank Conduit Entrance Conduit Entrance

Motor Cable

3 m, unshielded cordset male 90°

CR

CR

RR

RR

RR

N

W blank

N

W

Conduit Entrance

Round Media

(Male Receptacle)

Round Media

(Male Receptacle)

Round Media

(Male Receptacle)

Conduit Entrance

Conduit Entrance Conduit Entrance

Round Media

(Male Receptacle)

Round Media

(Male Receptacle)

Round Media

(Male Receptacle)

3 m, shielded cordset male 90°

No cable

3 m, unshielded cordset male 90°

3 m, shielded cordset male 90°

No cable

Operation

The ArmorStart Distributed Motor Controllers can operate three-phase squirrelcage induction motors as follows:

Bulletin 280E/281E: up to 10 Hp (7.4 kW) at 480V AC

Bulletin 284E: up to 5 Hp (3.0 kW) at 480V AC

ArmorStart EtherNet/IP Controllers accept 24V DC control voltage. The control voltage will provide power to inputs (unswitched) and outputs

(switched). Unswitched control voltage is used to ensure no loss of sensor or other field input status under normal operation.

18

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Mode of Operation

Product Overview Chapter 1

Bulletin 280E/281E

Full-Voltage Start

This method is used in applications requiring across-the-line starting, in which full inrush current and locked-rotor torque are realized. The ArmorStart Bulletin

280E offers full-voltage starting and the Bulletin 281E offers full-voltage starting for reversing applications.

Figure 3 - Full-Voltage Start

100%

Percent

Voltage

Time (seconds)

Bulletin 284E

Sensorless Vector Control

Sensorless vector control provides exceptional speed regulation and very high levels of torque across the entire speed range of the drive. Features include:

• Autotune feature allows the Motor Controller to adapt to individual motor characteristics.

• Able to develop high torque over a wide speed range and adapts to individual motor characteristics.

• Embedded Variable Frequency Drive (VFD) control includes the Timer,

Counter, Basic Logic and StepLogic® functions which can reduce hardware design costs and simplify control schemes.

• Integral PID (proportional, integral, differential) functionality enhances application flexibility.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

19

Chapter 1 Product Overview

Figure 4 - Sensorless Vector Control

Description of Features

Embedded Switch

Technology

20

Overload Protection

The ArmorStart Distributed Motor Controller incorporates, as standard, electronic motor overload protection. This overload protection is accomplished electronically with an

I

2 t algorithm. The ArmorStart’s overload protection is programmable via the communication network, providing the user with flexibility.

The Bulletin 280E/281E overload trip class can be selected for class 10, 15, 20 protection. The Bulletin 284E overload trip class is Class 10 only. Ambient insensitivity is inherent in the electronic design of the overload (refer to

Chapter 11 for the specification for overload trip curves).

ArmorStart EtherNet/IP includes embedded switch technology as standard.

Each ArmorStart EtherNet/IP will consume one Common Industrial Protocol

(CIP) connection. The ArmoStart will consume a Class 3 connection when

RSLogix 5000 software displays the AOP.

In general, for a DLR or linear network keep individual segments to 50 nodes or less. In addition, it is important to reserve a minimum of 10% of available bandwidth to allow for processing of explicit messages.

Common features are:

• Designed according to the ODVA specification for EtherNet/IP.

ODVA specification found at http://www.odva.org/

• Embedded switch technology is designed to enable end devices to form linear and ring network topologies

• Supports Device Level Ring (DLR) protocol

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Product Overview Chapter 1

• Supports IEEE 1588 transparent clock for CIP Motion™ and CIP Sync™ applications

• Supports the management of network traffic to ensure timely delivery of critical data, that is, QoS and IGMP protocols are supported

Note:

DLR ports cannot be used as two network interface cards (NICs) connected to two different subnets.

Switched vs. Unswitched

Control Power Input/Output

(I/O) Connections

The voltage at terminals A1/A2 supplies power to the Armorstart outputs.

Removing this power or placing the Armorstart disconnect in the “OFF” position will disable the outputs.

The unswitched power A3/A2 supplies power to the input and communication module. This power is not affected by the state of the disconnect switch. This ensures that anytime the controller can communicate, the state of the inputs is correct.

Figure 5 - Input and Output Configuration

EtherNet/IP™ Ports

ArmorStart EtherNet/IP includes a dual port Ethernet switch that supports

10/100 Mbps It utilizes a sealed D-coded micro (M12) style Ethernet connector.

Dynamic Host Configuration Protocol (DHCP) is enabled as the factory default. Before using your adapter in an EtherNet/IP network you may need to configure an IP address or set the address statically.

ATTENTION: To avoid unintended operation, the adapter must be assigned a fixed IP address. If a DHCP server is used, it must be configured to assign a fixed IP address for your adapter.

Failure to observe this precaution may result in unintended machine motion or loss of process control.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

21

Chapter 1 Product Overview

Embedded Web Server

The embedded web server allows the user to view information and configure the

ArmorStart via a web browser. The default Login is “Administrator”. There is no

password set by default.

IMPORTANT

Caution: The user should set the password to a unique value for authorized personnel. If the Login and password are lost you will need to reset the device to factory defaults via the Programmable Logic Controller (PLC). Note: The configuration will be lost.

E-mail Notification Configuration

The embedded web server supports configuration of the Simple Mail Transfer

Protocol (SMTP). Once properly configured, the motor controller will e-mail the user with specific fault/trip messages.

EtherNet/IP LED Status

Indication

Figure 6 - EtherNet/IP LED

EtherNet/IP LED status and diagnostics consists of four LEDs.

• Link Activity/Status LEDS

– Ethernet Link1 Activity/Status (Port 1) – LED Color: Bicolor

(Green/Yellow)

– Ethernet Link2 Activity/Status (Port 2) – LED Color: Bicolor

(Green/Yellow)

• “MOD” LED – Bicolor Red/Green represents the Ethernet Module status

• “NET” LED – Bicolor Red/Green represents the Ethernet Network status

Control Module LED Status and Reset

Figure 7 - LED Status

Indication and Reset

The Control Module LED status and diagnostics consists of four status LEDs and a Reset button.

• POWER LED

The LED is illuminated solid green when switched (+A1/A2) control power is present and with the proper polarity.

22

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Product Overview Chapter 1

• RUN LED

This LED is illuminated solid green when a start command and control power are present.

• NETWORK LED

This bicolor (red/green) LED indicates the status of the internal communication link.

• FAULT LED

This indicates a Controller Fault (trip) condition.

The “Reset Button” is a local trip reset.

Electronic Data Sheet (EDS)

EtherNet/IP devices have electronic data sheets (EDS). These are specially formatted text files, as defined by the CIP™ Specifications, which represent the object model of the device. EDS files contain details about the readable and configurable parameters of the EtherNet/IP device. They also provide information about the I/O connections the device supports and the content of the associated data structures. EDS are used by EtherNet/IP device configuration tools, such as RSNetWorx™ for EtherNet/IP, and data servers such as RSLinx® Classic.

EDS files for all ArmorStart EtherNet/IP devices can also be uploaded directly from the device via the web server interface. Rockwell Automation product EDS files are also available on the internet at: http://www.ab.com/networks/eds.

Fault Diagnostics

Fault diagnostics capabilities built in the ArmorStart Distributed Motor

Controller are designed to help you pinpoint a problem for easy troubleshooting and quick re-starting.

Protection Faults

Protection Faults are generated when potentially dangerous or damaging conditions are detected. Protection Faults are also known as “Trips.”

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

23

Chapter 1 Product Overview

Standard Features

Table 1 - Protection Faults

Bulletin 280E/281E Trip Status

Short Circuit

Overload

Phase Loss

Reserved

Reserved

Control Pwr Loss

Input Fault

Over Temperature

Phase Imbalance

A3, Unswitched Power Loss

Reserved

Reserved

EEprom

Hdw Flt

Reserved

Reserved

Bulletin 284E Trip Status

Short Circuit

Overload

Phase Short

Ground Fault

Stall

Control Pwr Loss

Input Fault

Over Temperature

Over Current

A3, Unswitched Power Loss

Internal Comm

DC Bus Fault

EEprom

Hdw Flt

Restart Retries

Misc. Fault

PowerFlex 40 Fault Codes

(Drive Codes 7 and 64)

(Drive Codes 38…43)

(Drive Code 13)

(Drive Code 6)

(Drive Codes 12 and 63)

(Drive Code 81)

(Drive Codes 3, 4 and 5)

(Drive Code 100)

(Drive Codes 70 and 122)

(Drive Code 33)

(Drive Codes 2, 8, 29, 48 and 80)

Parameter Group “Start Protection,” Parameter 24 “PrFault Enable” is used to enable and disable the above protection faults. Refer to Parameter 61

“LastPR Fault” for additional details of the last protection fault.

Inputs

The EtherNet/IP version includes four 24V DC inputs that are single keyed (two inputs per connector) sourced from A3/A2 control power. The inputs use two

M12 Connectors. Each input has an LED status indication. They are configurable as sinking or sourcing.

Outputs

The EtherNet/IP version includes two self-protected solid state outputs that are single keyed (one per connector), sourced from A1/A2 control power. Outputs are sourcing type with a maximum current per output point of 0.5 A DC. The outputs use one M12 connectors per output, each having LED status indication.

24

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Product Overview Chapter 1

Gland Plate Entrance

The ArmorStart product offers two different methods of connecting incoming three-phase and control power to the device. One method offered is the traditional conduit entrance with a 3/4 in. and a 1 in. conduit hole opening. The second method offers connectivity to the ArmorConnect® power media. Factoryinstalled receptacles are provided for connectivity to both three-phase and control power media.

Motor Cable

With every ArmorStart Distributed Motor Controller, a 3-meter unshielded

4-conductor cordset is provided with each unit as standard. If the optional

Electromagnetic Interference (EMI) Filter is selected for Bulletin 284E units, a shielded 4-conductor cordset is provided with each unit as standard.

DeviceLogix™

DeviceLogix is a stand-alone Boolean program that resides within the

ArmorStart Distributed Motor Controller. DeviceLogix is programmed locally using the Add-On Profile and implements Boolean math operations, such as,

AND, OR, NOT, Timers, Counters, and Latches. DeviceLogix can run as a stand-alone application, independent of the network. However, 24V DC via A3 unswitched control power, must be maintained.

Factory-Installed Options

Optional HOA Keypad Configuration (Bulletin 280E/281E only)

The ArmorStart offers two optional factory-installed Hand/Off/Auto (HOA) configurations: Standard and Forward/Reverse HOA.

Figure 8 - Optional HOA Configuration (Bulletin 280E left, 281E right)

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

25

Chapter 1 Product Overview

Optional HOA Selector Keypad with Jog Function

(Bulletin 284E only)

The HOA Selector Keypad with Jog Function allows for local start/stop control with capabilities to jog in forward/reverse motor directions.

Figure 9 - Optional HOA with Jog Function Configuration

26

Source Brake Contactor and Connector (Bulletin 284E only)

An internal contactor is used to switch the electromechanical motor brake On/

Off. The motor brake contactor is powered from the main power circuit. The configuration of the R1 relay controls the function of the brake. A customer accessible 2.5 A fuse is provided to protect the brake cable. Included is a 3-meter

3-pin cordset for connection to the motor brake as standard.

EMI Filter (Bulletin 284E only)

The EMI filter is required to be CE compliant. When selected, a 3-meter shielded 4-conductor motor cordset is provided as standard. This is only available with sensorless vector control.

Dynamic Brake Connector (Bulletin 284E only)

The user selectable DB Option includes a 3-meter, 3-pin cordset for connection to a IP20 dynamic brake module. See

Chapter 11 for available dynamic brake

modules.

Note:

The IP67 Dynamic Brake Resistor cannot be used with the -DB factory-installed option.

IP67 Dynamic Brake Resistor (Bulletin 284E only)

The IP67 Dynamic Brake Resistor design offers simplicity in wiring and installation. The user selectable DB1 option provides the quick connector and an

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Product Overview Chapter 1 internal resistor monitoring circuit board. The cable length available is 0.5 m and

1.0 m. The IP67 Dynamic Brake is separately ordered. See Chapter 11

for available IP67 Dynamic Brake Resistors.

Note:

The IP67 Dynamic Brake Resistor is used only with the -DB1 factory-installed option. Only the specified IP67 Dynamic Brake resistor can be used based on the VFD horsepower. Connecting resistors other than those specified will result in a DB1 fault.

Output Contactor (Bulletin 284E only)

An internal contactor is sourced from the 24V DC (A1/A2) control voltage to isolate the load side of the Bulletin 284E ArmorStart Distributed Motor

Controller. When control power is applied to A1/A2, the output contactor will close. When control power is removed, the output contactor will open. There is no other switching element that allows alternate control of the output contactor.

A sequenced stop involving the output contactor cannot be performed.

Shielded Motor Cable (Bulletin 284E only)

If the EMI Filter is selected, a 3-meter shielded 4-conductor cordset is provided as standard.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

27

Chapter 1 Product Overview

ArmorStart

®

EtherNet/

IP Features

Local Disconnect

IP Address Notation Area

2 Outputs (Micro/M12)

4 Inputs (Micro/M12)

IP Address Switches

Ethernet Ports (DLR)

Figure 10 - Bulletin 280E/281E ArmorStart with EtherNet/IP™

Communication Protocol

LED Status

Indication and Reset

Control Module

Hand-Off-Auto Keypad

Motor Connection

Local Disconnect

IP Address Notation Area

2 Outputs (Micro/M12)

4 Inputs (Micro/M12)

IP Address Switches

Ethernet Ports (DLR)

Figure 11 - Bulletin 284E ArmorStart with EtherNet/IP Communication Protocol

LED Status

Indication and Reset

Control Module

Hand-Off-Auto Keypad

Source Brake Connection

Motor Connection

28

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Notes:

Product Overview Chapter 1

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

29

Chapter 1 Product Overview

30

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Receiving

Unpacking

Inspecting

Storing

Chapter

2

Installation and Wiring

It is the responsibility of the user to thoroughly inspect the equipment before accepting the shipment from the freight company. Check the item(s) received against the purchase order. If any items are damaged, it is the responsibility of the user not to accept delivery until the freight agent has noted the damage on the freight bill. Should any concealed damage be found during unpacking, it is again the responsibility of the user to notify the freight agent. The shipping container must be left intact and the freight agent should be requested to make a visual inspection of the equipment.

Remove all packing material, wedges, or braces from within and around the

Armorstart distributed motor controller. Remove all packing material from the device(s). Check the contents of the package. Contact your local Allen-Bradley representative if any items are missing.

IMPORTANT

Before the installation and start-up of the drive, a general inspection of mechanical integrity (i.e. loose parts, wires, connections, packing materials, etc.) must be made.

After unpacking, check the item(s) nameplate catalog number(s) against the purchase order. See Chapter 1 for an explanation of the catalog numbering system which will aid in nameplate interpretation.

The controller should remain in its shipping container prior to installation. If the equipment is not to be used for a period of time, it must be stored according to the following instructions in order to maintain warranty coverage.

• Store in a clean, dry location.

• Store within an ambient temperature range of –25°C…+85°C

(–13°F…+185°F).

• Store within a relative humidity range of 0…95%, noncondensing.

• Do not store equipment where it could be exposed to a corrosive atmosphere.

• Do not store equipment in a construction area.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

31

Chapter 2 Installation and Wiring

General Precautions

Precautions for Bulletin

280E/281E Applications

Precautions for Bulletin 284E

Applications

In addition to the precautions listed throughout this manual, the following statements, which are general to the system, must be read and understood.

ATTENTION: The controller contains ESD (electrostatic discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing, or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, refer to Publication 8000-4.5.2

, Guarding against

Electrostatic Discharge, or any other applicable ESD protection handbooks.

ATTENTION: An incorrectly applied or installed controller can damage components or reduce product life. Wiring or application errors, such as undersizing the motor, incorrect or inadequate AC supply, or excessive ambient temperatures, may result in malfunction of the system.

ATTENTION: Only personnel familiar with the controller and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to do this may result in personal injury and/or equipment damage.

ATTENTION: To prevent electrical shock, open the disconnect switch prior to connecting and disconnecting cables. Risk of shock – environment rating may not be maintained with open receptacles.

WARNING: The drive contains high voltage capacitors which take time to discharge after removal of mains supply. Before working on a drive, ensure isolation of mains supply from line inputs (R, S, T [L1, L2, L3]). Wait three minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels. Risk of shock – environment rating may not be maintained with open receptacles.

ATTENTION: Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to do this may result in personal injury and/or equipment damage.

32

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Dimensions

[

290

11.42

[

]

351

13.82

]

Installation and Wiring Chapter 2

Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change.

Conduit Gland Entrance Bulletin 280E/281E

Figure 12 - Dimensions for Bulletin 280E/281E

189

[ ]

[

268

10.55

]

[

287,5

11.32

]

6,8

[ ]

150

[ ]

MOT OR CONNECTION 185 [7.3] M22 CORDSET

MOTOR CONN ECTION 243 [9.57] M35 CORDSET

[

373

14.69

]

[

3,02

.12

]

[

11

.43

]

[

195

7.68

]

67,9

[ ]

39

[ ] [

47

1.85

]

1 in. CONDUIT OPENING

0.75 in. CONDUIT OPENING

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

33

Chapter 2 Installation and Wiring

2HP or less 420.38 [16.55]

3HP or greater 444.38 [17.50]

[

290

11.42

]

Conduit Gland Entrance Bulletin 284E

Figure 13 - Dimensions for Bulletin 284E

236

[ ]

[

268

10.55

]

[

287,5

11.32

]

6,8

[ ]

MOTO R CONNECTION 266.9 [10.51]

[

373

14.69

]

3,02

[ ]

11

[ ]

[

195

7.68

]

67,9

[ ]

39

[ ] [

47

1.85

]

1 in. CONDUIT OPENING

0.75 in. CONDUIT OPENING

34

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

203.2

[8]

CABLE

KEEP OUT

6,8

[ ]

Installation and Wiring Chapter 2

3 Hp and less @ 480V AC

[

351

13.82

]

[

290

11.42

]

ArmorConnect

®

Gland Connectivity Bulletin 280E/281E

Figure 14 - Dimensions for Bulletin 280E/281E

10 Hp @ 480V AC

[

351

13.82

]

[

290

11.42

]

[

268

10.55

]

[

287,5

11.32

]

[

268

10.55

]

[

287,5

11.32

]

203.2

[8]

CABLE

KEEP OUT

6,8

[ ]

10 A Short Circuit

Protection (M22)

25 A Short Circuit

Protection (M35)

77,6

[ ]

60,6

[ ]

25,5

[ ]

[

68

]

77,6

[ ]

60,6

[ ]

25,5

[ ] [

68

2.68

]

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

35

Chapter 2 Installation and Wiring

2 Hp or less at 480V

[

290

11.42

]

[

419,53

16.52

]

ArmorConnect Gland Connectivity Bulletin 284E

Figure 15 - Dimensions for Bulletin 284E

3 Hp or greater at 480V

[

290

11.42

]

[

444,38

17.50

]

30,4

1[]

[

268

10.55

]

[

287,5

11.32

]

[

268

10.55

]

[

287,5

11.32

]

6,8

[ ]

10 A Short Circuit

Protection (M22)

6,8

[ ]

25 A Short Circuit

Protection (M35)

77,6

3[]

60,6

2[]

25,5

1[] [

68

2.68

]

77,6

3[]

60,6

2[]

25,5

1[] [

68

2.68

]

36

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Mount Orientation

Installation and Wiring Chapter 2

The recommended mounting orientation of ArmorStart EtherNet/IP is the vertical configuration. This is especially important for the Bulletin 284. This ensures proper air flow over the heat sink. Improper mounting or debris build up will reduce air flow and increased internal temperatures. This may reduce the overall life of the product. For alternate mounting contact your local sales representative.

Operation

Wiring

IMPORTANT

For proper heat dissipation and product operation, mount in the vertical orientation as shown.

The ArmorStart Distributed Motor Controllers can operate three-phase squirrel-cage induction motors as follows:

Bulletin 280E/281E: 0.24…16 A; 200V AC, 230V AC, 460V AC; 50/60 Hz.

Bulletin 284E: up to 5 Hp (3.0 kW) @ 480V AC

The ArmorStart EtherNet/IP Distributed Motor Controller will accept a control power input of 24V DC.

Power, Control, Safety Monitor Inputs, and Ground Wiring

Table 2 provides the power, control, and ground wire capacity and the tightening

torque requirements. The power, control, ground, and safety monitor terminals will accept a maximum of two wires per terminal.

Table 2 - Power, Control, Safety Monitor Inputs, Ground Wire Size, and Torque Specifications

Terminals Wire Size Wire Strip Length

Power and

Ground

Control Inputs

Primary/Secondary

Terminal:

1.5…4.0 mm

2

(#16 …#10 American Wire

Gage (AWG))

1.0 mm

2

…4.0 mm

(#18…#10 AWG)

2

Torque

Primary Terminal:

10.8 lb-in.

(1.2 N•m)

Secondary Terminal:

4.5 lb-in.

(0.5 N•m)

6.2 lb-in.

(0.7 N•m)

0.35 in. (9 mm)

0.35 in. (9 mm)

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

37

Chapter 2 Installation and Wiring

Terminal Designations

As shown in Figure 16, the ArmorStart Distributed Motor Controller contains

terminals for power, control, and ground wiring. Access can be gained by removing the terminal access cover plate.

Figure 16 - ArmorStart Power and Control Terminal Connections

(applies to Bulletin 280E/281E and Bulletin 284E)

See Detail A Detail A

Control Power Wiring

Table 3 - Power, Control and Ground Terminal Designations

Terminal Designations

A1 (+)

A2 (–)

A3 (+)

PE

1/L1

3/L3

5/L5

No. of Poles

2

2

2

2

2

2

2

Description

Control Power Input

Control Power Common

Unswitched 24V Control

Ground

Line Power Phase A

Line Power Phase B

Line Power Phase C

ArmorStart EtherNet/IP utilizes 24V DC control power for communications and I/O. The control power terminal connections are labeled A1, A2, and A3.

Switched power will supply the outputs. Unswitched power will supply logic power and sensor inputs.

38

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Installation and Wiring Chapter 2

24V DC Control Power

• 24V DC (–15%, +10%)

• A1 = Switched +V

• A2 = Common for both switched and unswitched (–V)

• A3 = Unswitched +V

Input and Output Characteristics

• 5-pin female connectors (M12)

• 4 fixed inputs (two per connector) – software selectable sink or source

• 2 sourcing outputs DC (solid-state) – (one per connector)

Input and Output Power Connection

• Sensor Power will be sourced from +24V supplied from A3(+) and A2(–).

• Output power will be sourced from +24V supplied from A1(+) and A2(–).

• Max. current per output point is 0.5 A and is not to exceed 1.0 A total

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

39

Chapter 2 Installation and Wiring

ArmorStart with

EtherNet/IP Internal Wiring

Figure 17 - ArmorStart Ethernet Bulletin 280E with HOA Diagram

140M

L1

L2

L3

AS Logic

Control

Power

Sense

AS Logic

Control

F

A1

A2

2A SC Protected

Output A

1 Ampere

Total

Output B

2A SC Protected

A3

PTC

Off/Tripped

140M

On

7A

Class CC

Port 2

2.5A

Class CC

300mA Max

Ethernet

Logic

Short

Detect

Port 1

24V

26V

Note: This power supply is not present in the Status Only versions.

Reversed bias under normal operation

Current supplied by control power due to the power supply voltage being greater than A3 voltage

Current supplied from A3 when

A1 control power is lost

11 -

25V DC

+24V DC Status

24V DC

11 -

25V DC

+5V DC

5V DC

140M Trip

140M Status

F

A

Not Used

Input 10mA @ 24V DC

Input 10mA @ 24V DC

Input 10mA @ 24V DC

Input 10mA @ 24V DC

AS Logic Circuits

Motor

4 Inputs

50mA Max/input depends on sensor attached to input

40

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Installation and Wiring Chapter 2

Figure 18 - ArmorStart Ethernet Bulletin 281E with HOA Diagram

ArmorStart Ethernet REV with HOA Diagram

Reverser

140M

L1

L2

L3

A1

A2

2A SC Protected

Output A

1 Ampere

Total

Output B

2A SC Protected

A3

AS Logic

Control

Power

Sense

R

B

F

F

B

R

AS Logic

Control

AS Logic

Control

PTC

Off/Tripped

140M

On

7A

Class CC

Port 1

2.5A

Class CC

300mA Max

Ethernet

Logic

Short

Detect

Port 2

24V

26V

Reversed bias under normal operation

Note: This power supply is not present in the Status Only versions.

Current supplied by control power due to the power supply voltage being greater than A3 voltage

Current supplied from A3 when

A1 control power is lost

11 -

25V DC

+24V DC Status

24V DC

11 -

25Vdc

+5V DC

5Vdc

140M Trip

140M Status

F

A

Not Used

Input 10mA @ 24V DC

Input 10mA @ 24V DC

Input 10mA @ 24V DC

Input 10mA @ 24V DC

AS Logic Circuits

Motor

4 Inputs

50mA Max/input depends on sensor attached to input

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

41

Chapter 2 Installation and Wiring

L1

L2

L3

AS Logic

Control

Power

Sense

Figure 19 - ArmorStart Ethernet Bulletin 284E Drive Diagram

140M

3A

Class CC

Source Brake

Option

L1

L2

L3

R1 R2 R3

BR+ BR-

Sensorless Vector Control

01 02 03 04 05 06 07 08 09

11 12 13 14 15 16 17 18 19

T1

T2

T3

RJ-45

Output Contactor

Option

Motor

A1

A2

Output A

1 Ampere

Total

Output B

Fan

Off/Tripped

140M

On 7A

Class CC

2A SC Protected

2A SC Protected

2.5A

Class CC

O

Output

Contactor

R1

R2

PF40

B

Source Brake

Option

24V DC

26V

Reversed bias under normal operation

A3

PTC

300mA Max

Port 1 Port 2

Current supplied by control power due to the power supply voltage being greater than A3 voltage

Current supplied by

A3 when A1 control power is lost

Dynamic Brake

Connector

Option

Note: This switch is controlled by the Control Power Logic sense. If control power is present, switch is closed.

Prevents drive from running when there is no power for the fan

11 -

25V DC

+24V DC Status

24V DC

11 -

25V DC

+5V DC

5V DC

Ethernet

Logic

Short

Detect 4 Inputs

50mA Max/input depends on sensor attached to input

140M Trip

140M Status

Brake CNTR Status

Output CNTR Status

1

1 - Output CNTR Status not available when SM option specified

Input 10mA @ 24V DC

Input 10mA @ 24V DC

Input 10mA @ 24V DC

Input 10mA @ 24V DC

AS Logic

Circuits

42

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Installation and Wiring Chapter 2

Recommended Cord Grips

Figure 20 - Cord grips for ArmorStart Devices with 10 A Short Circuit Protection Rating

3/4 in. Lock Nut

Thomas & Betts Cord Grip

Cat. No. 2931NM

3/4 in. Stain Relief Cord Connector

Cable Range: 0.31…0.56 in.

Used with Control Power Media

Cordset - Example:

Cat. No. 889N-M65GF-M2

1 in. Lock Nut

Thomas & Betts Cord Grip

Cat. No. 2940NM

1 in. Stain Relief Cord Connector

Cable Range: 0.31…0.56 in.

Used with Three-Phase Power

Media Cordset - Example:

Cat. No. 280-PWR22G-M1

Figure 21 - Cord grips for ArmorStart Devices with 25 A Short Circuit Protection Rating

3/4 in. Lock Nut

Thomas & Betts Cord Grip

Cat. No. 2931NM

3/4 in. Stain Relief Cord Connector

Cable Range: 0.31…0.56 in.

Used with Control Power Media

Cordset - Example:

Cat. No. 889N-M65GF-M2

1 in. Lock Nut

Thomas & Betts Cord Grip

Cat. No. 2942NM

1 in. Stain Relief Cord Connector

Cable Range: 0.70…0.95 in.

Used with Three-Phase Power

Media Cordset - Example:

Cat. No. 280-PWR35G-M1

AC Supply Considerations for

Bulletin 284E Units

Ungrounded and High Resistive Distribution Systems

ATTENTION: The Bulletin 284E contains protective Metal Oxide Varistors

(MOVs) that are referenced to a ground. These devices should be disconnected if the Bulletin 284E is installed on an ungrounded and high resistive distribution system.

ATTENTION: Do not remove this jumper, shown in Figure 23, if the unit is

equipped with an EMI filter installed.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

43

Chapter 2 Installation and Wiring

Disconnecting MOVs

To prevent drive damage, the MOVs connected to ground must be disconnected if the drive is installed on an ungrounded and high resistive distribution system where the line-to-ground voltages on any phase could exceed 125% of the nominal line-to-line voltage. To disconnect the MOVs, remove the jumper shown

in Figure 23, Bulletin 284E Jumper Removal.

1.

Before installing the Bulletin 284E, loosen four mounting screws.

2.

Unplug control module from the base unit by pulling forward.

Figure 22 - Bulletin 284E Removal of Control Module

Figure 23 - Bulletin 284E Jumper Removal

Remove Jumper

44

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Installation and Wiring Chapter 2

Group Motor Installations for USA and Canada Markets

The ArmorStart Distributed Motor controllers are listed for use with each other in group installations per NFPA 79, Electrical Standard for Industrial Machinery.

When applied according to the group motor installation requirements, two or more motors, of any rating or controller type, are permitted on a single branch circuit. Group Motor Installation has been successfully used for many years in the

USA and Canada.

Note:

For additional information regarding group motor installations with the

ArmorStart Distributed Motor Controller, see Appendix A

.

Wiring and Workmanship Guidelines

In addition to conduit and seal-tite raceway, it is acceptable to utilize cable that is dual rated Tray Cable Exposed Runs (TC-ER) and Cord, STOOW, for power and control wiring on ArmorStart installations. In the USA and Canada installations, the following guidance is outlined by the National Electrical Code

(NEC) and National Fire Protection Association (NFPA) 79.

In industrial establishments where the conditions of maintenance and supervision ensure that only qualified persons service the installation, and where the exposed cable is continuously supported and protected against physical damage using mechanical protection, such as struts, angles, or channels, Type TC tray cable that complies with the crush and impact requirements of Type MC

(Metal Clad) cable and is identified for such use with the marking Type TC-ER

(Exposed Run)* shall be permitted between a cable tray and the utilization equipment or device as open wiring. The cable shall be secured at intervals not exceeding 1.8 m (6 ft) and installed in a “good workman-like” manner.

Equipment grounding for the utilization equipment shall be provided by an equipment grounding conductor within the cable.

*Historically cable meeting these crush and impact requirements were designated and marked “Open Wiring”. Cable so marked is equivalent to the present Type

TC-ER and can be used.

While the ArmorStart is intended for installation in factory floor environments of industrial establishments, the following must be taken into consideration when locating the ArmorStart in the application:

• Cables, including those for control voltage including 24V DC and communications, are not to be exposed to an operator or building traffic on a continuous basis.

• Location of the ArmorStart to minimize exposure to continual traffic is recommended. If location to minimize traffic flow is unavoidable, other barriers to minimize inadvertent exposure to the cabling should be considered.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

45

Chapter 2 Installation and Wiring

Electromagnetic

Compatibility (EMC)

46

• Routing cables should be done in such a manner to minimize inadvertent exposure and/or damage.

• Additionally, if conduit or other raceways are not used, it is recommended that strain relief fittings be utilized when installing the cables for the control and power wiring through the conduit openings.

The working space around the ArmorStart may be minimized as the ArmorStart does not require examination, adjustment, servicing or maintenance while energized. In lieu of this service, the ArmorStart is meant to be unplugged and replaced after proper lockout/tag-out procedures have been employed.

The Hand-Off-Auto (HOA) is a factory-installed option that the user may select.

The HOA keypad may require the ArmorStart to be selected and installed as follows if the application requires frequent use of the hand operated interface by the equipment operator:

1.

They are not less than 0.6 m (2 ft) above the servicing level and are within easy reach of the normal working position of the operator.

2.

The operator is not placed in a hazardous situation when operating them.

3.

The possibility of inadvertent operation is minimized.

If the operated interface is used in industrial establishments where the conditions of maintenance and supervision ensure that only qualified persons operate and service the ArmorStart's operator interface, and the installation is located so that inadvertent operation is minimized, then other installation locations with acceptable access can be provided.

Other System Design Considerations

The user should keep 3-phase power cabling at least 6 in. away from the

EtherNet/IP network to avoid noise issues. EtherNet/IP is an unpowered network therefore if device status is important when the disconnect is in the OFF position, the A3 terminal must have an unswitched power source.

The following guidelines are provided for EMC installation compliance.

General Notes (Bulletin 284E only)

• The motor Cable should be kept as short as possible in order to avoid electromagnetic emission as well as capacitive currents.

• Conformity of the drive with CE EMC requirements does not guarantee an entire machine installation complies with CE EMC requirements.

Many factors can influence total machine/installation compliance.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Grounding

Installation and Wiring Chapter 2

• Using an EMI filter, with any drive rating, may result in relatively high ground leakage currents. Therefore, the filter must only be used in installations that are solidly grounded (bonded) to the building power distribution ground. Grounding must not rely on flexible cables and should not include any form of plug or socket that would permit inadvertent disconnection. Some local codes may require redundant ground connections. The integrity of all connections should be periodically checked.

Wiring

Wire in an industrial control application can be divided into three groups: power, control, and signal. The following recommendations for physical separation between these groups is provided to reduce the coupling effect:

• Minimum spacing between different wire groups in the same tray should be 6 in. (16 cm).

• Wire runs outside an enclosure should be run in conduit or have shielding/ armor with equivalent attenuation.

• Different wire groups should be run in separate conduits.

• Minimum spacing between conduits containing different wire groups should be 3 in. (8 cm).

An effectively grounded product is one that is “intentionally

connected to earth through a ground connection or connections of sufficiently low impedance and having sufficient current-carrying capacity to prevent the buildup of voltages which may result in undue hazard to connected equipment or to persons” (as defined by the US National Electric Code NFPA70, Article 100B). Grounding is done for two basic reasons: safety (defined above) and noise containment or reduction. While the safety ground scheme and the noise current return circuit may sometimes share the same path and components, they should be considered different circuits with different requirements.

Grounding Safety Grounds

The object of safety grounding is to ensure that all metalwork is at the same ground (or Earth) potential at power frequencies. Impedance between the drive and the building scheme ground must conform to the requirements of national and local industrial safety regulations or electrical codes. These will vary based on country, type of distribution system and other factors. Periodically check the integrity of all ground connections.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

47

Chapter 2 Installation and Wiring

General safety dictates that all metal parts are connected to earth with separate copper wire or wires of the appropriate gauge. Most equipment has specific provisions to connect a safety ground or PE (protective earth) directly to it.

Grounding PE or Ground

The safety ground - PE must be connected to earth ground. This point must be connected to adjacent building steel (girder, joist), a floor ground rod, bus bar or building ground grid. Grounding points must comply with national and local industrial safety regulations or electrical codes. Some codes may require redundant ground paths and periodic examination of connection integrity.

IMPORTANT

To avoid electrolytic corrosion on the external earth terminal, avoid spraying moisture directly on the terminal. When used in washdown environments apply a sealant or other corrosion inhibitor on the external ground terminal to minimize any negative effects of galvanic or Electro-chemical corrosion.

Ground connections should be inspected on a regular basis.

Grounding Motors

The motor frame or stator core must be connected directly to the PE connection with a separate ground conductor. It is recommended that each motor frame be grounded to building steel at the motor.

ArmorConnect Power Media

Description

The ArmorConnect power media offers both three-phase and control power cable cord set systems including patchcords, receptacles, tees, reducers and accessories to be utilized with the ArmorStart Distributed Motor Controller.

These cable system components allow quick connection of ArmorStart

Distributed Motor Controllers, reducing installation time. They provide for repeatable, reliable connection of the three-phase and control power to the

ArmorStart Distributed Motor Controller and motor by providing a plug-andplay environment that also avoids system mis-wiring. When specifying power media for use with the ArmorStart Distributed Motor Controllers (Bulletin

280E/281E and Bulletin 284E) use only the Bulletin 280E ArmorConnect power media.

Refer to the On-Machine Selection Catalog for ordering details. The following shows example configurations for power, control, and communication media.

48

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Figure 24 - Ethernet Media System Overview

Installation and Wiring Chapter 2

Connections:

CAT5e Bulkhead Connector and Receptacle – Example Cat.No. 1585A-DD4JD

CAT5e Patchcord, IP67, M12 D-Code, Male Straight, Male Right Angle – Example Cat.No. 1585D-M4TBDE-*

CAT5e, Patch Cable, IP20, RJ45 Male to RJ45 Male – Example Cat.No. 1585J-M4TB-*

Three-Phase Power Receptacles -

Female receptacles are a panel mount connector with flying leads – Example Cat. No. 280-M35F-M1

Three-Phase Power Trunk- Patchcord cable with integral female or male connector on each end –

Example Cat. No. 280-PWR35A-M*

Three-Phase Drop Cable- Patchcord cable with integral female or male connector on each end –

Example Cat. No. 280-PWR22A-M*

Three-Phase Power Tees and Reducer –

Tee connects to a single drop line to trunk with quick change connectors – Cat. No. 280-T35

Reducing Tee connects to a single drop line (Mini) to trunk (Quick change) connector – Cat. No. 280-RT35

Reducer connects from quick change male connector to mini female connector – Cat. No. 280-RA35

Control Power Receptacles - Female receptacles are a panel mount connector with flying leads –

Cat. No. 888N-D65AF1-*

Control Power Media Patchcords – Patchcord cable with integral female or male connector on each end –

Example Cat. No. 889N-F65GFNM-*

Control Power Tees - The E-stop In Tee (Cat. No. 898N-653ST-NKF) is used to connect to the Bulletin 800F On-

Machine E-Stop station using a control power media patchcord. The E-stop Out tee (Cat. No. 898N-653ES-

NKF

) is used with cordset or patchcord to connect to the ArmorStart Distributed Motor Controller.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

49

Chapter 2 Installation and Wiring

ArmorConnect Connections

Figure 25 - ArmorConnect Receptacles

10 A Short Circuit Protection Rating 25 A Short Circuit Protection Rating

Control Power Receptacle

Three-Phase Power Receptacle

Control Power Receptacle

Three-Phase Power Receptacle

Factory-installed ArmorConnect gland plate connections

Figure 26 - ArmorConnect Connections

50

Table 4 - ArmorConnect Gland Plate Conductor Color Code

Terminal Designations

A1 (+)

A2 (–)

A3 (+)

PE

1/L1

2/L2

3/L3

Description

Control Power Input

Control Power Common

Unswitched Control Power

Ground

Line Power – Phase A

Line Power – Phase B

Line Power – Phase C

Color Code

Blue

Black

Red

Green/Yellow

Black

White

Red

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Figure 27 - On-Machine Stop Stations

Installation and Wiring Chapter 2

Enclosure Type

Plastic

Metal

Quick Connect

Mini Receptacle

Table 1 Product Selection

Knockout Type

Metric

Operator

Twist to Release

Illumination

Voltage

24V AC/DC

24V AC/DC

Contact

Configuration

1 N.C./1 N.O.

Cat. No.

800F-1YMQ4

800F-1MYMQ4

Figure 28 - Stop Circuit for EtherNet/IP Version

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

51

Chapter 2 Installation and Wiring

ArmorConnect Cable Ratings

The ArmorConnect Power Media cables are rated per UL Type TC

600V 90°C Dry 75°C Wet, Exposed Run (ER) or MTW 600V 90°C or

STOOW 105°C 600V - Canadian Standards Association (CSA) STOOW 600V

FT2. For additional information regarding ArmorConnect Power Media refer to the Industrial Controls Catalog.

Branch Circuit Protection Requirements for ArmorConnect

Three-Phase Power Media

When using ArmorConnect Three-Phase Power Media, fuses or circuit breakers can be used for the motor branch circuit protective device, for the group motor installations.

For 25 A rated ArmorConnect cable for trunk and taps:

Circuit Breaker:

Suitable for use on a circuit capable of delivering not more than

65 000 RMS symmetrical amperes at 480V AC maximum when protected by

Bulletin 140U-H frame circuit breaker, not rated more than 480V, 100 A and a maximum interrupting of 65 000 RMS symmetrical amperes Short Circuit

Current Rating (SCCR).

Fusing:

Suitable for use on a circuit capable of delivering not more than 65 000

RMS symmetrical amperes (SCCR) at 600V AC maximum when protected by

CC, J, and T class fuses.

For 10 A and 15 A rated ArmorConnect taps:

Circuit Breaker:

Suitable for use on a circuit capable of delivering not more than

45 000 RMS symmetrical amperes at 480Y/277V AC maximum when protected by Cat. No. 140U-D6D3-C30 circuit breaker, not rated more than 480V, 30 A, having an interrupting rating not less than 45 000 RMS symmetrical amperes,

480Y/277V AC maximum.

WARNING: The total circuit impedance including each cable assembly's own impedance, must be low enough to ensure any short-circuit or ground fault current that can flow through any assembly, will be large enough to operate the magnetic trip of the

Cat. No. 140U-D63-C* circuit breaker. Refer to your local electrical code for acceptable practices for this evaluation.

Fusing:

Suitable for use on a circuit capable of delivering not more than 65 000

RMS symmetrical amperes (SCCR) at 600V AC maximum when protected by

CC, J, and T class fuses, rated 40 A non-time delay or 20 A time delay.

52

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Installation and Wiring Chapter 2

Ethernet and I/O Connections

ArmorStart EtherNet/IP utilizes a sealed D-coded M12 (micro) style

Ethernet connector.

Figure 29 - Ethernet/IP Connector

M12 Female Ethernet Connector

(view into connector)

Pin 1 - Tx+

Pin 2 - Rx+

Pin 3 - Tx–

Pin 4 - Rx–

Figure 30 - I/O Receptacle Input Pin Out (M12)

Pin 1 - +24V (A3 pwr)

Pin 2 - Input 0

Pin 3 - Common

Pin 4 - Input 1

Pin 5 - NC (no connection)

Figure 31 - I/O Receptacle Output Pin Out (M12)

Pin 1 - NC (no connection)

Pin 2 - NC (no connection)

Pin 3 - Common

Pin 4 - Output +24V DC (A1 pwr)

Pin 5 - NC (no connection)

Power Connections

Figure 32 - External Connections for Motor Connector – Bulletin 284E - 5 Hp and

Bulletin 280E/281E - 3 Hp or less (M22) at 480V AC

Pin 1 - T1 (black)

Pin 2 - T2 (white)

Pin 3 - T3 (red)

Pin 4 - Ground (green/yellow)

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

53

Chapter 2 Installation and Wiring

Figure 33 - External Connections for Motor Connector – Bulletin 280E/281E - 10 Hp (M35) at 480V AC

Pin 1 - T1 (black)

Pin 2 - Ground (green/yellow)

Pin 3 - T3 (red)

Pin 4 - T2 (white)

Figure 34 - External Connections for Brake Contactor Connector (M25)

Pin 1 - L1 (black)

Pin 2 - Ground (green/yellow)

Pin 3 - L2 (white)

Figure 35 - External Connections for Dynamic Brake Connection (M22)

Pin 1 - Ground (green/yellow)

Pin 2 - BR+ (black)

Pin 3 - BR– (white)

Figure 36 - Incoming Control Power (M22) – 24V DC Only

Pin 1 - +24V DC unswitched (A3/red)

Pin 2 - Common (A2/black)

Pin 3 - PE (green)

Pin 4 - Not used (blank)

Pin 5 - +24V DC switched (A1/blue)

Pin 6 - Not used (white)

54

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Installation and Wiring Chapter 2

Figure 37 - Incoming Three-Phase Power for 10 A Short Circuit Protection (M22)

Pin 1 - L1 (black)

Pin 2 - L2 (white)

Pin 3 - L3 (red)

Pin 4 - Ground (green/yellow)

Figure 38 - Incoming Three-Phase Power for 25 A Short Circuit Protection (M35)

Pin 1 - L1 (black)

Pin 2 - Ground (green/yellow)

Pin 3 - L3 (red)

Pin 4 - L2 (white)

Optional Locking Clip

The clam shell design clips over the ArmorStart motor connector and motor cable to limit customer access from disconnecting the motor cable on the

ArmorStart Distributed Motor Controller. The locking clip is an optional device that can be used, if desired. A locking clip is not available for the M25 Source

Brake connection.

Figure 39 - Bulletin 280E/281E Installation of Locking Clip

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

55

Chapter 2 Installation and Wiring

Figure 40 - Bulletin 284E Installation of Locking Clip

56

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Terminology

Chapter

3

Introduction to EtherNet/IP and

Device Level Ring Technology

Refer to the table for the meaning of common terms.

This Term

Consumer

CSMA/CD

Determinism

DHCP

DNS

Ethernet

EtherNet/IP

Ethernet network

Explicit messaging

Full duplex

Means

A destination device in the CIP™ networking model. See CIP.

Carrier sense multiple access/collision detection is the access method used in

Ethernet. When a device wants to gain access to the network, it checks to see if the network is quiet (senses the carrier). If it is not, it waits a random amount of time before retrying. If the network is quiet and two devices access the line at exactly the same time, their signals collide. When the collision is detected, they both back off and each waits a random amount of time before retrying.

The ability to predict when information will be delivered. Important in timecritical applications.

The dynamic host configuration protocol is an Internet protocol, similar to BootP, for automating the configuration of computers that use TCP/IP. DHCP can be used to automatically assign IP addresses, to deliver IP stack configuration parameters, such as the subnet mask and default router, and to provide other configuration information, such as the addresses for printer, time, and news servers.

The domain name system is a hierarchical, distributed method of organizing the name space of the Internet. The DNS administratively groups hosts into a hierarchy of authority that allows addressing and other information to be widely distributed and maintained. A big advantage to the DNS is that using it eliminates dependence on a centrally-maintained file that maps host names to addresses.

A physical layer standard using carrier sense multiple access with collision detection (CSMA/CD) methods.

Ethernet industrial protocol applies a common industrial protocol (CIP) over

Ethernet by encapsulating messages in TCP/UDP/IP.

A local area network designed for the high-speed exchange of information between computers and related devices.

Non-time critical messaging used for device configuration and data collection, such as downloading programs or peer-to-peer messaging between two PLC units.

A mode of communication that allows a device to send and receive information at the same time, effectively doubling the bandwidth.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

57

Chapter 3 Introduction to EtherNet/IP and Device Level Ring Technology

This Term

Fully qualified domain name

Gateway

Hardware address

Host name

Hub

Implicit messaging

IP

IP address

Latency

Multicast

Producer

Means

A fully qualified domain name (FQDN) is a domain name that includes all higher level domains relevant to the entity named. If you think of the DNS as a treestructure with each node having its own label, a fully qualified domain name for a specific node would be its label followed by the labels of all the other nodes between it and the root of the tree. For example, for a host, a FQDN would include the string that identifies the particular host, plus all domains of which the host is a part, up to and including the top-level domain (the root domain is always null). For example, PARIS.NISC.SRI.COM is a fully qualified domain name for the host at 192.33.33.109.

A module or set of modules that allows communications between nodes on dissimilar networks.

Each Ethernet device has a unique hardware address (sometimes called a MAC address) that is 48 bits. The address appears as six digits separated by colons (such as, xx:xx:xx:xx:xx:xx). Each digit has a value between 0 and 255 (0x00 to 0xFF). This address is assigned in the hardware and cannot be changed. The hardware address is required to identify the device if you are using a BOOTP utility.

The host name is the unique name for a computer within its domain. It's always the first element of a full name, and, with its domain and top-level domain suffix, creates the unique name of that computer on the Internet. For example, let's say a trading website is www.trading.com. The host name is www, which is not unique on the web, but is unique within the trading domain.

The host name can also refer to the fully qualified domain name (FQDN), or in this example, www.trading.com. Both naming methods seem to be used interchangeably in various documents. For the purposes of this document, the host name will refer to the FQDN, or as in this example, www.trading.com.

A central connecting device that joins devices together in a star configuration.

Hubs are generally not suitable for use in I/O control systems, since they are time-critical applications that cannot tolerate lost packets.

Real-time messaging of I/O data.

Internet protocol that provides the routing mechanism for messages. All messages contain not only the address of the destination station, but the address of a destination network, which allows messages to be sent to multiple networks within an organization or around the world.

A 32-bit identification number for each node on an Internet Protocol network.

These addresses are represented as four sets of 8-bit numbers (numbers from 0 to 255), with decimals between them. Each node on the network must have a unique IP address.

The time between initiating a request for data and the beginning of the actual data transfer.

In the CIP producer/consumer model, one producer multicasts (broadcasts) the data once to all the consumers.

The source of information in the CIP networking model. See CIP.

58

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Introduction to EtherNet/IP and Device Level Ring Technology Chapter 3

This Term

Subnet mask

Switch

TCP

Means

An extension of the IP address that allows a site to use a single net ID for multiple networks.

A network device that cross connects devices or network segments. A switch provides each sender/receiver the full network bandwidth (2x in full duplex mode), reduces collisions, and increases determinism.

The transport control protocol is a more reliable but slower transport protocol than UDP. It is used for explicit (not time critical) messaging in EtherNet/IP.

Introduction to EtherNet/IP

Automation architectures must provide users with three primary services:

• Control services involve the exchange of time-critical data between controlling devices and I/O devices.

• Networks must provide users configuration capabilities to set up and maintain their automation systems.

• Automation architecture must allow for collection of data.

EtherNet/IP, provides installation flexibility and leverages commercially available industrial infrastructure products. It is also compatible with other communication standards, such as Hypertext Transfer Protocol (HTTP), Simple

Networks Management Protocol (SNMP), and Dynamic Host Configuration

(DHCP).

EtherNet/IP is a CIP adaptation of TCP/IP that fully utilizes the IEEE standard.

The relationship between the TCP/IP and CIP to form EtherNet/IP is shown in

the ISO/OSI 7-layer model is shown in Figure 41. The OSI model is an ISO

standard for network communications that define all functions from a physical layer to the protocol.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

59

Chapter 3 Introduction to EtherNet/IP and Device Level Ring Technology

Figure 41 - OSI Model for ISO Standard for Network Communications

This approach provides real time technology into the Ethernet domain. With the network extensions of CIP Safety™, CIP Sync™ and CIP Motion™, CIP networks allow for safety communication, time synchronization, and simple to high performance motion all over the same EtherNet/IP network.

60

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Introduction to EtherNet/IP and Device Level Ring Technology Chapter 3

Linear Network Introduction

A linear network is a collection of devices that are daisy-chained together.

Figure 42 - Linear Network Collection of Devices

In this topology a communication issue in the media or device will prevent nodes downstream from communicating.

Figure 43 - Communication Issue in the Media or Device Line

The EtherNet/IP embedded switch technology allows this topology to be implemented at the device level. No additional switches are required.

These are the primary advantages of a linear network:

• The network simplifies installation and reduces wiring and installation costs.

• The network requires no special software configuration.

• Embedded switch products offer improved CIP Sync application performance on linear networks.

The primary disadvantage of a linear network is that any break of the cable disconnects all devices downstream from the break from the rest of the network.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

61

Chapter 3 Introduction to EtherNet/IP and Device Level Ring Technology

IMPORTANT

Products with EtherNet/IP embedded switch technology have two ports to connect to a linear or DLR network in a single subnet.

You cannot use these ports as two Network Interface Cards (NICs) connected to two different subnets.

Device Level Ring (DLR)

Introduction

A DLR protocol defines a set of behaviors, refer to Figure 44. A ring supervisor

keeps packets of information from circulating infinitely around the ring by blocking one of the ports. A beacon frame constantly is detected on both ring supervisor ports. If a beacon frame is not detected the supervisor detects the physical layer issue and reconfigures the network to a linear topology without the loss of any node communication or data. Once repaired the ring supervisor reconfigures back to ring mode.

.

Figure 44 - DLR Protocol

62

As shown in Figure 45, when a physical layer failure is detected the adjacent

nodes to the fault generate a link status message that the ring supervisor acknowledges. The ring supervisor unblocks the port to allow communication.

The neighboring nodes to the fault identify the fault and reconfigure themselves to support a linear topology. Now, both the ring supervisor and nodes are configured to support a linear topology.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Introduction to EtherNet/IP and Device Level Ring Technology Chapter 3

Figure 45 - Physical Layer Failure is Detected

When the physical layer fault is corrected the supervisor will “hear” the beacon frame again on both ports. Once this is detected the ring supervisor re-establishes and configures the ring topology. All the neighboring nodes detect this and reconfigure themselves back to ring. A DLR network is a single-fault tolerant network intended for the interconnection of automation devices.

At least one ring supervisor must be configured before a ring is formed.

IMPORTANT

Any nodes that do not support DLR should not be directly connected to the ring.

The node should be connected to the ring through a switch that supports DLR.

The advantages of the DLR network include:

• simple installation

• resilience to a single point of failure on the network

• fast recovery time when a single fault occurs on the network

The primary disadvantage of the DLR topology is the additional effort required to set up and use the network as compared to a linear or star network.

IMPORTANT

Products with EtherNet/IP embedded switch technology have two ports to connect to a linear or DLR network in a single subnet.

You cannot use these ports as two Network Interface Cards (NICs) connected to two different subnets.

IMPORTANT

ArmorStart EtherNet/IP is cannot be configured as a ring supervisor.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

63

Chapter 3 Introduction to EtherNet/IP and Device Level Ring Technology

Number of Nodes on a

DLR Network

Ethernet Switches

Ethernet Media

Rockwell Automation recommends that you use no more than 50 nodes on a single DLR or linear network. If your application requires more than 50 nodes, we recommend that you segment the nodes into separate, but linked, DLR networks.

With smaller networks:

• there is better management of traffic on the network.

• the networks are easier to maintain.

• there is a lower likelihood of multiple faults.

Additionally, on a DLR network with more than 50 nodes, network recovery times from faults are higher. For DLR networks with 50 or less nodes, ring recovery time is less than 3 ms.

Ethernet managed switches are key components that provide determinism and the required throughput to achieve automation needs. Switches are able to manage network traffic which reduces unnecessary delays or band width needs. A properly designed EtherNet/IP infrastructure that implement segregation via managed switch technology achieves a more reliable and secure network.

Today, unshield twisted pair (UTP) wiring is the standard in most applications and allows for greatest flexibility and ease of installation and maintenance.

Category 5e (e-enhanced) cable is specifically designed to meet today’s automation needs.

Standard RJ-45 connectors are not designed for industrial environments. For outside the panel, IP67 connectors are required for EtherNet/IP.

Figure 46 - Network Media - Ethernet M12 D-Code Media

64

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

EtherNet/IP General

Wiring Guideline

Requested Packet

Interval (RPI)

Introduction to EtherNet/IP and Device Level Ring Technology Chapter 3

Ethernet is found in automation equipment, panels, and components. There are a few guidelines, that if followed, will reduce the number of issues an EtherNet/IP application may experience.

• Many EtherNet/IP applications will share the same space with power conductors. If the Ethernet media must cross power conductors, do so at right angles. This will reduce the coupling effect and reduce the potential for communication noise.

• Where possible, route the Ethernet/IP media five feet or more from high voltage sources (for example, lights, ballasts, motors, …) or sources of radio frequency, such as variable frequency drives.

• Ensure that the application or equipment follows industry acceptable grounding practices.

• Maintain media lengths between nodes to less than 100 m (328 ft). In today’s environment it may be challenging to maintain these guidelines, however these will reduce potential application issues.

The RPI is the update rate specified for a particular piece of data on the network.

This value specifies how often to produce the data for that device. For example, if you specify an RPI of 50 ms, it means that every 50 ms the device should send data to the controller or the controller should send data to the device. Use RPIs only for devices that exchange data.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

65

Chapter 3 Introduction to EtherNet/IP and Device Level Ring Technology

Notes:

66

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

IP Address

Chapter

4

Product Commissioning

Class A

Class B

Class C

The IP address identifies each node on the IP network (or system of connected networks). Each TCP/IP node on a network must have a unique IP address.

The IP address is 32 bits long and has a net ID part and Host ID part. Networks are classified A, B, C, (or other). The class of the network determines how an IP address is formatted.

Figure 47 - IP Address on the IP Network

0

0

0

1 0

0

1 1 0

Net ID

Net ID

7 8

Net ID

15

16

Host ID

Host ID

23

24

Host ID

31

31

31

You can distinguish the class of the IP address from the first integer in its dotted-decimal IP address as follows:

Range of first integer

0…127

128…191

Class

A

B

Range of first integer

192…223

224…255

Class

C other

Each node on the same physical network must have an IP address of the same class and must have the same net ID. Each node on the same network must have a different Host ID thus giving it a unique IP address.

Gateway Address

The Gateway Address is the default address of a network. It provides a single domain name and point of entry to the site. Gateways connect individual physical networks into a system of networks.

Subnet Mask

The subnet mask is used for splitting IP networks into a series of subgroups, or subnets. The mask is a binary pattern that is matched up with the IP address to turn part of the Host ID address field into a field for subnets.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

67

Chapter 4 Product Commissioning

Configuring EtherNet/

IP Address

Before using the ArmorStart you may need to configure an IP address, subnet mask, and optional Gateway address. The rotary network address switches found on the I/O section of the ArmorStart are set to 999 and DHCP is enabled as the factory default. The ArmorStart reads these switches first to determine if the switches are set to a valid IP address between 1…254. When switches are set to a valid number the IP address will be 192.168.1._ _ _ [switch setting].

The IP address can also be set using DHCP.

• If DHCP is preferred, use Rockwell Automation BootP/DHCP utility, version 2.3 or later, that ships with RSLogix™ 5000 or RSLinx software.

• Or use a third party DHCP server.

This document assumes the user has set the IP address to 192.168.1.1. The user can change this IP address to any address either statically or dynamically.

ATTENTION: To avoid unintended operation, the adapter must be assigned a fixed IP address. If a DHCP server is used, it must be configured to assign a fixed

IP address for your adapter.

Failure to observe this precaution may result in unintended machine motion or loss of process control.

Protective IP67 Caps

Manually Configure the Network Address Switches

Remove the protective caps from the rotary switches. Set the network address by adjusting the three switches on the front of the I/O module.

Figure 48 - Switches on the I/O Module

Writable surface for IP address

68

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Product Commissioning Chapter 4

Figure 49 - Network Address Example

This example shows the

IP address set to 163.

8

X100

0

6

4

2 8

X10

0

6

4

2

8

X1

0

6

4

2

Valid IP address switch settings range from 001 to 254. When the switches are set to a valid number, the adapter’s IP address will be 192.168.1.xxx (where xxx represents the number set on the switches). The adapter’s subnet mask will be

255.255.255.0 and the gateway address is set to 0.0.0.0. A power cycle is required for any new IP address to take effect.

Note:

The upper three octets are fixed. DHCP or the embedded webserver must be used to configure the IP address to a value other than 192.168.1.xxx.

If the switches are set to an invalid number (such as 000 or a value greater than

254), the adapter will check to see if DHCP is enabled. If DHCP is enabled, the adapter requests an address from a DHCP server. If DHCP is not enabled, the adapter will use the IP address (along with other TCP configurable parameters) stored in non-volatile memory.

IMPORTANT

Refer to Figure 50, the ArmorStart is shipped with the control module rotary

switches set to a value of 99. DO NOT modify this setting. If these are changed and the unit stops responding, the switches will need to be manually set to node address 63 and power cycled.

Figure 50 - Rotary Switch on Control Module

Factory Setting 99

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

69

Chapter 4 Product Commissioning

Use the Rockwell Automation

BootP/DHCP Utility

The Rockwell Automation BootP/DHCP utility is a stand alone program that incorporates the functionality of standard BootP/DHCP software with a user friendly graphical interface. It is located in the Utils directory on the

RSLogix 5000 installation CD. The ArmorStart EtherNet/IP adapter must have

DHCP enabled (factory default) to use the utility.

To configure your adapter using the BootP/DHCP utility, perform the following steps:

1.

Run the BootP/DHCP software.

In the BootP/DHCP Request History panel you will see the hardware addresses of the devices issuing BootP/DHCP requests.

Figure 51 - BootP/DHCP Request History Panel

2.

Double-click the hardware address of the device you want to configure.

You will see the New Entry dialog with the device’s Ethernet Address

(MAC).

Figure 52 - New Entry Dialog Box

70

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Product Commissioning Chapter 4

3.

Enter the IP Address you want to assign to the device, and click OK.

The device is added to the Relation List, displaying the Ethernet Address

(MAC) and corresponding IP Address, Hostname, and Description (if applicable).

Figure 53 - Relation List

When the address displays in the IP Address column in the Request

History section, it signifies that the IP address assignment has been made.

4.

To assign this configuration to the device, highlight the device in the

Relation List panel, and click the Disable BOOTP/DHCP button.

When power is cycled to the device, it uses the configuration you assigned and does not issue a DHCP request.

5.

To enable DHCP for a device with DHCP disabled, highlight the device in the Relation List, and click the Enable DHCP button.

You must have an entry for the device in the Relation List panel to re-enable DHCP.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

71

Chapter 4 Product Commissioning

Figure 54 - Enable DHCP Button

Save the Relation List

You can save the Relation List to use later. To save the Relation List perform the following steps:

1.

Select Save As... from the File menu.

Figure 55 - Save the Relation List

72

You will see the Save As Dialog.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Figure 56 - Save As Dialog Box

Product Commissioning Chapter 4

DHCP IP Support

2.

Select the folder you want to Save in.

3.

Enter a File name for the Relation List (for example, Control System

Configuration), and click Save.

You can leave the Save as type at the default setting: Bootp

You can then open the file containing the Relation List at a later session.

DHCP (Dynamic Host Configuration Protocol) software automatically assigns

IP addresses to client stations logging onto a TCP/IP network.

When DHCP is enabled (factory default Enabled), the unit will request its network configuration from a DHCP/BOOTP server. Any configuration received from a DHCP server will be stored in non-volatile memory.

ArmorStart EtherNet/IP will remember the last successful address if DHCP is enabled. The unit will try to obtain the same IP address from the DHCP server.

If the server is not present (e.g., server fails to power up), the unit will use the IP address it previously received from the server. The DHCP timeout = 30 s.

Be cautious about using DHCP software to configure your adapter. A DHCP server typically assigns a finite lease time to the offered IP address. When fifty percent of the leased time has expired, the ArmorStart Ethernet adapter attempts to renew its IP address with the DHCP server. The possibility exists that the adapter will be assigned a different IP address, which would cause the adapter to cease communicating with the controller.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

73

Chapter 4 Product Commissioning

Using the Rockwell

Automation Embedded

Web Server

Internal Web Server

ArmorStart Ethernet/IP internal web server allows you to view information and configure the ArmorStart via a web browser. The embedded web server is used to access configuration and status data. Security in the form of an administrative password can be set. The default Login is Administrator. There is no password

set by default.

IMPORTANT

Caution: The user should set the password to a unique value for authorized personnel.

If the login and password are lost you will need to reset the device to the factory defaults, which results in losing its configuration.

To access the internal web browser, open your computers internet browser and enter the IP address of the desired ArmorStart (for example, 192.168.1.1).

Note:

192.168.1.1 is NOT the factory default IP address as DHCP is enabled by default.

Figure 57 - Internal Web Browser

74

From here you are able to view parameter settings, device status, and diagnostics from multiple tab views.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Figure 58 - Multiple Tab Views

Product Commissioning Chapter 4

Network Configuration

To access the network configuration you will need to login to the Administrative

Setting. The factory default Login is Administrator. The factory default password is not used. The user should change the password to ensure unauthorized personnel do not access and modify the device configuration.

Figure 59 - Network Configurations

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

75

Chapter 4 Product Commissioning

From this screen you can change the Ethernet Configuration. For example in the above image the default IP address was changed from 192.168.1.1 to

10.10.10.101. To access the webpage after a power cycle, the new address must be used.

Parameter Configuration

ArmorStart Ethernet/IP embedded web server provides the user the ability to view and modify the device configuration without having to access

RSLogix 5000. To view the device configuration from the web server, select the

Parameters folder. For the parameter configuration, the user will login through the Administrative Settings, or when prompted.

Figure 60 - Starter Setup

76

In the figure above the Starter Setup parameters are viewed. The user can view all parameters from this screen. To modify a parameter the user will click the

“Edit” button.

Figure 61 - Enter Network Password

The user will be prompted to enter the default User Name (Administrator).

There is no password set by default. The user is expected to change the User

Name (Login) and Password to avoid unauthorized access to the device configuration.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Figure 62 - Overload Class Settings

Product Commissioning Chapter 4

The above screen shows an example of changing the Overload Class setting to 15.

Once all changes are made select Apply.

E-mail Notification Configuration

ArmorStart Ethernet/IP internal web server will support the e-mailing of warning and trip messages via Simple Mail Transfer Protocol (SMTP). The configuration parameters for the SMTP Server’s IP address, user login, and port number are configurable through the Administrative Settings page of the internal web server. The user will configure the device name, device description, and device trip type.

Figure 63 - E-mail Notification Configuration

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

77

Chapter 4 Product Commissioning

Device Connections

E-mail triggers:

• when a trip occurs

• when a trip is cleared

• when a warning occurs

• when a warning is cleared

Note:

“Cleared Event” e-mails will only be sent when all events have been cleared and if a trip event e-mail has previously been sent. For example, if the device is configured to send e-mails when a phase loss trip and an overload trip is detected, no e-mail will be sent when both the overload and the phase loss is cleared.

The following is an example trip e-mail:

Subject: ArmorStart 281E, 0.5

2.5 A, 24V DC has detected a trip.

Body:

Trip Type:

Trip Info:

Device Name:

Overload

Load has drawn excessive current based on the trip class selected.

ArmorStart 281E, 0.5

2.5 A, 24V DC

(From Identity Object)

Device Description: Lift conveyor on-machine motor starter

(From E-mail Config web page)

Device Location: Customer Plant

(From E-mail Config web page)

Contact Info: Joe Schmo

(From E-mail Config web page) [email protected]

The device will support both scheduled (Class 1) and unscheduled (Class 3 &

UCMM) CIP connections. A maximum of two Class 1 CIP connections (one exclusive owner and one listen only) are supported, one per PLC. Six Class 3 CIP connections are supported.

78

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Setup

Adding an ArmorStart to RSLogix 5000

Chapter

5

This section will show you how to add an ArmorStart Add-On-Profile (AOP) to

RSLogix 5000. It is assumed that you have downloaded and installed the AOP so that the RSLogix 5000 software can fully support the ArmorStart Ethernet/IP.

The AOP can be downloaded from: http://support.rockwellautomation.com/ controlflash/LogixProfiler.asp

.

1.

Open RSLogix 5000 by double-clicking on the icon on your desktop.

2.

Select File>New to create a new project.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

79

Chapter 5 Adding an ArmorStart to RSLogix 5000

3.

Enter the name of the project and select your controller from the Type drop down menu. For this example, a Cat. No. 1769-L35E and software revision 19 will be used. Then click OK.

4.

To add a new module to the tree, right-click on Ethernet and select

New Module. This allows you to add a new ArmorStart to the Logix

Project.

80

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Adding an ArmorStart to RSLogix 5000 Chapter 5

5.

Select the ArmorStart in your application and click OK.

6.

The AOP is shown below. Enter a Name for this ArmorStart and an

Ethernet address. For this example, the Private Network setting will be used. This should be set to match the IP address switch setting on the

ArmorStart. Then press OK.

Note:

Refer to Configuring EtherNet/ IP Address in Chapter 4 to set an

IP address on the device.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

81

Chapter 5 Adding an ArmorStart to RSLogix 5000

Connect and Configure

ArmorStart with Add-On-

Profile (AOP)

This section will show the AOP tabs and how they can be used to connect, obtain status, and configure the ArmorStart. Before the walkthrough is started, the

RSLogix 5000 software should be open and an AOP displayed as shown below.

82

The screenshot above displays that the AOP has seven tabs that can be used to configure and/or monitor your ArmorStart. The following lists the tabs and whether or not they are editable with the controller when OFFLINE, ONLINE, or both:

General – OFFLINE

Connection – OFFLINE

Module Info – ONLINE

Parameters – OFFLINE/ONLINE

Internet Protocol

– ONLINE

Port Configuration – ONLINE

Network – ONLINE

The last five tabs in the list will not display information until the ONLINE connection has been established with the ArmorStart. The General, Connection, and Parameters tabs will be discussed first because they are used to define

OFFLINE settings so that connection with the ArmorStart can be established.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Offline Connection

Adding an ArmorStart to RSLogix 5000 Chapter 5

General Tab

Click on the General tab to display the following:

This tab allows you to name your module, which should be descriptive and representative of the module. The IP Address of the module must also be input so that communication can be established. The IP Address should be the one defined using the BootP/DHCP Server, the Rotary Network Address Switches or the ArmorStart internal web server.

For the majority of cases, the Host Name and Module Definition section of this tab do not require any adjustment. Changes to either of these should only be made if you are familiar with the functionality of each of these sections.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

83

Chapter 5 Adding an ArmorStart to RSLogix 5000

Connection Tab

Click on the Connection tab to display the following:

The Request Packet Interval (RPI) indicates the maximum frequency at which data will be received. It is possible that data could come more quickly than the time interval assigned in the RPI. In the majority of cases, the default 20 ms should be the optimal setting. If you check the Inhibit Module option, connection to controller tags will be broken. The Major Fault on Controller if

Connection Fails While in Run Mode option should be checked to ensure that the controller processes the connection fault with the ArmorStart. The Use

Unicast Connection over EtherNet/IP is checked to use the Unicast mode instead of the EtherNet/IP mode. This appears only for modules using

RSLogix 5000 software version 18 or later which supports Unicast.

84

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Adding an ArmorStart to RSLogix 5000 Chapter 5

Parameters Tab

Click on the Parameters tab to display the following:

Online Connection

The parameters are divided into groups based on the type of ArmorStart. By clicking in the Group drop down menu you can choose which parameter group is displayed. When the Parameters tab is selected, the tab defaults to the Drive

Setup (Bulletin 284E) or Starter Setup (Bulletin 280E) groups depending on the

ArmorStart. These Setup groups are the minimum required parameters to get the

ArmorStart running.

After this parameter group has been set, the next time that the Parameters tab is opened, all of the parameters will be shown and the tab will no longer default to the setup groups.

Now that the offline connection settings have been set, connect to the

ArmorStart and review the last five AOP tabs.

Note:

If you are using a Cat. No. 1756-ENBT Ethernet module to communicate with the PLC, verify that you have updated the module’s firmware to Revision 6.001 or later. The latest firmware can be found at http://support.rockwellautomation.com/ controlflash/ .

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

85

Chapter 5 Adding an ArmorStart to RSLogix 5000

1.

If a controller path is not set in the field shown below, you must first set a path before going online with the controller. Click on the RSwho button shown below.

2.

Expand and browse the AB_ETHIP-1, Ethernet driver.

3.

Select the Controller path. Then click Go Online.

86

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Adding an ArmorStart to RSLogix 5000 Chapter 5

4.

The following will appear and for this example, click on Download to connect to the controller.

5.

If a download confirmation dialog box appears, click Download again.

6.

Click Yes to bring the controller back to Remote Run.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

87

Chapter 5 Adding an ArmorStart to RSLogix 5000

7.

The controller should now be online. If at any point you go offline and a path is selected, you can also go online by clicking the Offline drop down in the upper left corner of the screen. Click on Go Online to connect to the ArmorStart, as shown below.

Note:

If a yellow triangle appears next to the ArmorStart Icon in the

Controller Organizer Tree as shown below, it means that the connection is faulted. The problem must be fixed before you can connect to the

ArmorStart. The next steps assume that the connection was successful.

88

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Adding an ArmorStart to RSLogix 5000 Chapter 5

Parameters Tab

Return to the Parameters tab again once the AOP is opened by selecting the

ArmorStart in the project tree. Notice that when clicking in the Parameters tab, an ArmorStart Correlation pop-up window is displayed, as shown below.

This indicates that the AOP is comparing the parameter data entered offline vs. the parameter data stored in the ArmorStart. If any discrepancies are found between the parameters in the AOP and the parameters in the ArmorStart, a window will pop-up, as shown below, asking you to decide which parameters you want to keep.

If you want to keep the parameters in the AOP, select Download. If you want to keep the parameters in the ArmorStart, select Upload. Otherwise, select Cancel.

Clicking Cancel will lock the user out of viewing the values. If you are connected

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

89

Chapter 5 Adding an ArmorStart to RSLogix 5000 to a new ArmorStart and you just created the ArmorStart object and have not made any changes in the parameters, the ArmorStart correlation should not find any discrepancy.

Note:

If you make any changes to the parameters offline, they will not be downloaded to the ArmorStart when the connection is made (going Online). For the Offline changes to take effect you must go to the Parameters tab. Once you click the Parameters tab, ArmorStart correlation will take place and then the changes can be downloaded to the ArmorStart.

Module Info Tab

Click on the Module Info tab to display the following:

90

This tab will display general identification information, as well as status information about the ArmorStart. It is important to note that the information displayed in this tab will not be constantly updated. After you click on the

Module Info tab, the AOP queries the ArmorStart once for the information displayed in this tab and does not query the ArmorStart for the values again. If after the initial query the status of the ArmorStart changes, for example a fault occurs, the change in the status will not be automatically updated. The Refresh button must be pressed to request the AOP for another ArmorStart query.

Note:

A connection status (offline, online, downloading or uploading) is provided at the bottom left of the tab window. The connection status appears in all the tabs.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Adding an ArmorStart to RSLogix 5000 Chapter 5

Internet Protocol Tab

Click on the Internet Protocol tab to display the following:

If the IP address was set up using the Rotary Network Address Switches, default settings for the IP would already be established and you will not be able to make any changes in this tab. In most cases, you would not need to make any changes in this tab and it will only display the current IP Settings Configuration.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

91

Chapter 5 Adding an ArmorStart to RSLogix 5000

Port Configuration Tab

Click on the Port Configuration tab to display the following:

This tab is used to enable or disable a physical port in the module. The ports will normally be in Auto Negotiate mode, which in general, is the recommended setting. Otherwise, you have to physically set the Speed or Duplex selection in this tab. It is important to note that although there are two physical ports, they act as one. Therefore, when you press either of the Port Diagnostic buttons, information coming from both of the physical ports will be displayed.

92

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Network Tab

Click on this tab to display the following:

Adding an ArmorStart to RSLogix 5000 Chapter 5

This tab displays information about the network configuration, such as the type of topology (linear or device level ring).

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

93

Chapter 5 Adding an ArmorStart to RSLogix 5000

Auto-Generated Tags

After you install and configure the AOP, the controller tags are generated. The tags names are descriptive and automatically generated. This greatly simplifies programming. The figure below shows an example of the auto-generated tags for ArmorStart

.

94

The following tables provide more clarification regarding the Produce and

Consume assemblies and how they correlate with the auto-generated names.

Using an AOP the data in the Consumed and Produced Assemblies are automatically created as descriptive tag names. To drive this point home we've highlighted a few of the commands to demonstrate the AOP tag alignment to the Consumed and Produced Assemblies in the following tables.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Adding an ArmorStart to RSLogix 5000 Chapter 5

Table 5 - Default Consume Assembly for Bulletin 284E

Byte Bit 7

3

4

1 DriveInput4

2

5

Pt07DeviceIn

Pt15DeviceIn

Bit 6

DriveInput3

Instance 166 Consumed Inverter Type Starter with Network Inputs

Bit 5 Bit 4 Bit 3 Bit 2

DriveInput2

JogReverse

DriveInput1

JogForward

DecelCtrl_1

ResetFault

DecelCtrl_0

Pt06DeviceIn

Pt14DeviceIn

Pt05DeviceIn

Pt13DeviceIn

FreqCommand (Low) (xxx.x Hz)

FreqCommand (High) (xxx.x Hz)

Pt04DeviceIn

Pt12DeviceIn

Pt03DeviceIn

Pt11DeviceIn

Pt02DeviceIn

Pt10DeviceIn

Bit 1

RunReverse

AccelCtrl_1

Pt01DeviceIn

Pt9DeviceIn

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

Controller Name

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

Table 6 - Bulletin 284E Consume Assembly Command Tags

DriveInput4

FreqCommand

Pt00DeviceIn

Pt01DeviceIn

Pt02DeviceIn

Pt03DeviceIn

Pt04DeviceIn

Pt05DeviceIn

Pt06DeviceIn

Pt07DeviceIn

Pt08DeviceIn

Pt09DeviceIn

Pt10DeviceIn

OutB

AccelCtrl_0

AccelCtrl_1

DecelCtrl_0

DecelCtrl_1

DriveInput1

DriveInput2

DriveInput3

Name

Controller Output/ Command Tags

Logix Tag Name

RunForward

RunReverse

AS_DEMO:O.RunForward

AS_DEMO:O.RunReverse

ResetFault

JogForward

JogReverse

OutA

AS_DEMO:O.ResetFault

AS_DEMO:O.JogForward

AS_DEMO:O.JogReverse

AS_DEMO:O.OutA

AS_DEMO:O.OutB

AS_DEMO:O.AccelCtrl_0

AS_DEMO:O.AccelCtrl_1

AS_DEMO:O.DecelCtrl_0

AS_DEMO:O.DecelCtrl_1

AS_DEMO:O.DriveInput1

AS_DEMO:O.DriveInput2

AS_DEMO:O.DriveInput3

AS_DEMO:O.DriveInput4

AS_DEMO:O.FreqCommand

AS_DEMO:O.Pt00DeviceIn

AS_DEMO:O.Pt01DeviceIn

AS_DEMO:O.Pt02DeviceIn

AS_DEMO:O.Pt03DeviceIn

AS_DEMO:O.Pt04DeviceIn

AS_DEMO:O.Pt05DeviceIn

AS_DEMO:O.Pt06DeviceIn

AS_DEMO:O.Pt07DeviceIn

AS_DEMO:O.Pt08DeviceIn

AS_DEMO:O.Pt09DeviceIn

AS_DEMO:O.Pt10DeviceIn

Bit 0

RunForward

AccelCtrl_0

Pt00DeviceIn

Pt8DeviceIn

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

95

Chapter 5 Adding an ArmorStart to RSLogix 5000

Controller Name

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

Controller Output/ Command Tags

Name

Pt11DeviceIn

Logix Tag Name

AS_DEMO:O.Pt11DeviceIn

Pt12DeviceIn

Pt13DeviceIn

Pt14DeviceIn

AS_DEMO:O.Pt12DeviceIn

AS_DEMO:O.Pt13DeviceIn

AS_DEMO:O.Pt14DeviceIn

Table 7 - Default Produce Assembly for Bulletin 284E

12

13

10

11

8

9

6

7

14

15

16

17

Byte

2

3

0

1

4

5

Bit 7 Bit 6

Produce Assembly - Instance 151 “Drive Status” - Bulletin284E Starters

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Reserved - {name}:I.Fault

Reserved - {name}:I.Fault

Reserved - {name}:I.Fault

Reserved - {name}:I.Fault

AtReference

Output

ContactorStatus

Network

ReferenceStatus

Brake

ContactorStatus

NetControlStatus

DisconnectClosed

Ready

Hand

RunningReverse

In3

RunningForward

In2

WarningPresent

In1

Pt07DeviceOut Pt06DeviceOut

LogicEnable Pt14DeviceOut

Pt05DeviceOut

Pt13DeviceOut

OutputFrequency (Low) (xxx.x Hz)

OutputFrequency (High) (xxx.x Hz)

Pt04DeviceOut

Pt12DeviceOut

Pt03DeviceOut

Pt11DeviceOut

Pt02DeviceOut

P10DeviceOut

Pt01DeviceOut

Pt09DeviceOut

Value of the parameter pointed to by "Parameter 13 Prod Assy Word 0" (low byte)" - Int00DeviceOut

Value of the parameter pointed to by "Parameter 13 Prod Assy Word 0" (high byte)" - Int00DeviceOut

Value of the parameter pointed to by "Parameter 14 Prod Assy Word 1" (low byte)" - Int01DeviceOut

Value of the parameter pointed to by "Parameter 14 Prod Assy Word 1" (high byte)" - Int01DeviceOut

Value of the parameter pointed to by "Parameter 15 Prod Assy Word 2" (low byte)" - Int02DeviceOut

Value of the parameter pointed to by "Parameter 15 Prod Assy Word 2" (high byte)" - Int02DeviceOut

Value of the parameter pointed to by "Parameter 16 Prod Assy Word 3" (low byte)" - Int03DeviceOut

Value of the parameter pointed to by "Parameter 16 Prod Assy Word 3" (high byte)" - Int03DeviceOut

Bit 0

TripPresent

In0

Pt00DeviceOut

Pt08DeviceOut

Table 8 - Bulletin 284E Produced Assembly Status Tags

Controller Name

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

Name

Fault

TripPresent

Controller Input/ Status Tags

Logix Tag Name

AS_DEMO:I.Fault

AS_DEMO:I.TripPresent

WarningPresent

RunningForward

RunningReverse

AS_DEMO:I.WarningPresent

AS_DEMO:I.RunningForward

AS_DEMO:I.RunningReverse

96

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Adding an ArmorStart to RSLogix 5000 Chapter 5

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

Controller Name

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

AS_DEMO

Pt02DeviceOut

Pt03DeviceOut

Pt04DeviceOut

Pt05DeviceOut

Pt06DeviceOut

Pt07DeviceOut

Pt08DeviceOut

Pt09DeviceOut

Pt10DeviceOut

Pt11DeviceOut

Pt12DeviceOut

Pt13DeviceOut

Pt14DeviceOut

LogicEnabled

Int00DeviceOut

Int01DeviceOut

Int02DeviceOut

Int03DeviceOut

Controller Input/ Status Tags

Name

Ready

NetworkControlStatus

NetworkReferenceStatus

Logix Tag Name

AS_DEMO:I.Ready

AS_DEMO:I.NetworkControlStatus

AS_DEMO:I.NetworkReferenceStatus

AtReference

In0

In1

In2

AS_DEMO:I.AtReference

AS_DEMO:I.In0

AS_DEMO:I.In1

AS_DEMO:I.In2

In3

Hand

DisconnectClosed

BrakeContactorStatus

OutputContactorStatus

OutputFrequency

Pt00DeviceOut

Pt01DeviceOut

AS_DEMO:I.In3

AS_DEMO:I.Hand

AS_DEMO:I.DisconnectClosed

AS_DEMO:I.BrakeContactorStatus

AS_DEMO:I.OutputContactorStatus

AS_DEMO:I.OutputFrequency

AS_DEMO:I.Pt00DeviceOut

AS_DEMO:I.Pt01DeviceOut

AS_DEMO:I.Pt02DeviceOut

AS_DEMO:I.Pt03DeviceOut

AS_DEMO:I.Pt04DeviceOut

AS_DEMO:I.Pt05DeviceOut

AS_DEMO:I.Pt06DeviceOut

AS_DEMO:I.Pt07DeviceOut

AS_DEMO:I.Pt08DeviceOut

AS_DEMO:I.Pt09DeviceOut

AS_DEMO:I.Pt10DeviceOut

AS_DEMO:I.Pt11DeviceOut

AS_DEMO:I.Pt12DeviceOut

AS_DEMO:I.Pt13DeviceOut

AS_DEMO:I.Pt14DeviceOut

AS_DEMO:I.LogicEnabled

AS_DEMO:I.Int00DeviceOut

AS_DEMO:I.Int01DeviceOut

AS_DEMO:I.Int02DeviceOut

AS_DEMO:I.Int03DeviceOut

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

97

Chapter 5 Adding an ArmorStart to RSLogix 5000

Table 9 - Bulletin 284E Consume Assembly/Command Tag Explanation

FreqCommand

Pt00DeviceIn

Pt01DeviceIn

Pt02DeviceIn

Pt03DeviceIn

Pt04DeviceIn

Pt05DeviceIn

Pt06DeviceIn

Pt07DeviceIn

Pt08DeviceIn

Pt09DeviceIn

Pt10DeviceIn

Pt11DeviceIn

Pt12DeviceIn

Pt13DeviceIn

Pt14DeviceIn

Pt15DeviceIn

AccelCtrl_0

AccelCtrl_1

DecelCtrl_0

DecelCtrl_1

DriveInput1

DriveInput2

DriveInput3

DriveInput4

Controller Output/ Command Tags Tag Description/Use

RunForward Command VFD forward

RunReverse

ResetFault

Command VFD reverse

Fault reset

JogForward

JogReverse

OutA

OutB

Command Jog forward per internal frequency

Command Jog reverse per internal frequency

Output A

Output B

VFD acceleration ramp 1

VFD acceleration ramp 2

VFD deceleration ramp 1

VFD deceleration ramp 2

VFD Digit Input 1

VFD Digit Input 2

VFD Digit Input 3

VFD Digit Input 4

Logix commanded frequency

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

98

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Adding an ArmorStart to RSLogix 5000 Chapter 5

Table 10 - Bulletin 284E Produced Assembly/Status Tag Explanation

BrakeContactorStatus

OutputContactorStatus

OutputFrequency

Pt00DeviceOut

Pt01DeviceOut

Pt02DeviceOut

Pt03DeviceOut

Pt04DeviceOut

Pt05DeviceOut

Pt06DeviceOut

Pt07DeviceOut

Pt08DeviceOut

Pt09DeviceOut

Pt10DeviceOut

Pt11DeviceOut

Pt12DeviceOut

Controller Input/ Status Tags Tag Description/Use

Fault Communication Fault between PLC and Device (all 1's = Fault, all 0's = Normal)

TripPresent

WarningPresent

Fault exisits with unit

Warning of potential fault

RunningForward

RunningReverse

Ready

NetworkControlStatus

Motor commanded to run forward

Motor commanded to run reverse

Control Power and 3-phase present

Start and Stop command comes from network (PLC or Connected Explicit Messaging)

NetworkReferenceStatus

AtReference

In0

In1

In2

In3

Hand

DisconnectClosed

Speed reference comes from the network (not DeviceLogix)

At commanded speed reference

Input 0

Input 1

Input 2

Input 3

HOA is in Auto mode

Disconnect is closed

Pt13DeviceOut

Pt14DeviceOut

LogicEnabled

Int00DeviceOut

Int01DeviceOut

Int02DeviceOut

Int03DeviceOut

Source brake contactor status (1=close, 0=open)

Ouput contactor status (1=close, 0=open)

VFD frequency

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix is enabled

Data reference by Parameter 13

Data reference by Parameter 14

Data reference by Parameter 15

Data reference by Parameter 16

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

99

Chapter 5 Adding an ArmorStart to RSLogix 5000

Table 13 -

100

Byte

0

1

2

3

Byte

Table 11 - Default Consume Assembly for Bulletin 280E/281E

Byte

0

1

2

Instance 162 Default Consumed DOL and Reversing Starter

Bit 7

OutB

Bit 6

OutA

Bit 5

Bit 4

Bit 3

Bit 2

ResetFault

Bit 1

RunReverse

Bit 0

RunForward

Pt07DeviceIn Pt06DeviceIn Pt05DeviceIn Pt04DeviceIn Pt03DeviceIn Pt02DeviceIn Pt01DeviceIn Pt00DeviceIn

Pt15DeviceIn Pt14DeviceIn Pt13DeviceIn Pt12DeviceIn Pt11DeviceIn Pt10DeviceIn Pt09DeviceIn Pt08DeviceIn

Table 12 - Bulletin 280E/281E Controller Output/Command Tags

Controller Name

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

Name Logix Tag Name

RunForward DEMO_REV:O.RunForward

RunReverse DEMO_REV:O.RunReverse

ResetFault DEMO_REV:O.ResetFault

OutA DEMO_REV:O.OutA

OutB DEMO_REV:O.OutB

Pt00DeviceIn DEMO_REV:O.Pt00DeviceIn

Pt01DeviceIn DEMO_REV:O.Pt01DeviceIn

Pt02DeviceIn DEMO_REV:O.Pt02DeviceIn

Pt03DeviceIn DEMO_REV:O.Pt03DeviceIn

Pt04DeviceIn DEMO_REV:O.Pt04DeviceIn

Pt05DeviceIn DEMO_REV:O.Pt05DeviceIn

Pt06DeviceIn DEMO_REV:O.Pt06DeviceIn

Pt07DeviceIn DEMO_REV:O.Pt07DeviceIn

Pt08DeviceIn DEMO_REV:O.Pt08DeviceIn

Pt09DeviceIn DEMO_REV:O.Pt09DeviceIn

Pt10DeviceIn DEMO_REV:O.Pt10DeviceIn

Pt11DeviceIn DEMO_REV:O.Pt11DeviceIn

Pt12DeviceIn DEMO_REV:O.Pt12DeviceIn

Pt13DeviceIn DEMO_REV:O.Pt13DeviceIn

Pt14DeviceIn DEMO_REV:O.Pt14DeviceIn

Pt15DeviceIn DEMO_REV:O.Pt15DeviceIn

Bit 7

Bit 7

Instance 150 "Starter Stat" - Default Status Assembly for Bulletin 280E/281E Starters

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

Bit 6 Bit 5

Reserved - {name}:I.Fault

Reserved - {name}:I.Fault

Reserved - {name}:I.Fault

Reserved - {name}:I.Fault

Bit 4 Bit 3 Bit 2

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Bit 1

Bit 1

Bit 0

Bit 0

Adding an ArmorStart to RSLogix 5000 Chapter 5

13

14

15

11

12

9

10

Byte

4

7

8

5

6

Bit 7

Instance 150 "Starter Stat" - Default Status Assembly for Bulletin 280E/281E Starters

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

— — Ready RunningForward WarningPresent

Bit 0

TripPresent

Hand In3 In2 In1 In0

Pt07DeviceOut Pt06DeviceOut Pt05DeviceOut Pt04DeviceOut Pt03DeviceOut Pt02DeviceOut Pt01DeviceOut Pt00DeviceOut

LogicEnable Pt14DeviceOut Pt13DeviceOut Pt12DeviceOut Pt11DeviceOut Pt10DeviceOut Pt09DeviceOut Pt08DeviceOut

Value of the parameter pointed to by "Parameter 13 Prod Assy Word 0" (low byte)" - ProducedWord0Param

Value of the parameter pointed to by "Parameter 13 Prod Assy Word 0" (high byte)" - ProducedWord0Param

Value of the parameter pointed to by "Parameter 14 Prod Assy Word 1" (low byte)" - ProducedWord1Param

Value of the parameter pointed to by "Parameter 14 Prod Assy Word 1" (high byte)" - ProducedWord1Param

Value of the parameter pointed to by "Parameter 15 Prod Assy Word 2" (low byte)" - ProducedWord2Param

Value of the parameter pointed to by "Parameter 15 Prod Assy Word 2" (high byte)" - ProducedWord2Param

Value of the parameter pointed to by "Parameter 16 Prod Assy Word 3" (low byte)" - ProducedWord3Param

Value of the parameter pointed to by "Parameter 16 Prod Assy Word 3" (high byte)" - ProducedWord3Param

Table 14 - Bulletin 280E/281E Controller Input/ Status Tags

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

Controller Name

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

Name Logix Tag Name

Fault DEMO_REV:I.Fault

TripPresent DEMO_REV:I.TripPresent

WarningPresent DEMO_REV:I.WarningPresent

RunningForward DEMO_REV:I.RunningForward

RunningReverse DEMO_REV:I.RunningReverse

Ready DEMO_REV:I.Ready

In0 DEMO_REV:I.In0

In1 DEMO_REV:I.In1

In2 DEMO_REV:I.In2

In3 DEMO_REV:I.In3

Hand DEMO_REV:I.Hand

DisconnectClosed DEMO_REV:I.DisconnectClosed

Pt00DeviceOut DEMO_REV:I.Pt00DeviceOut

Pt01DeviceOut DEMO_REV:I.Pt01DeviceOut

Pt02DeviceOut DEMO_REV:I.Pt02DeviceOut

Pt03DeviceOut DEMO_REV:I.Pt03DeviceOut

Pt04DeviceOut DEMO_REV:I.Pt04DeviceOut

Pt05DeviceOut DEMO_REV:I.Pt05DeviceOut

Pt06DeviceOut DEMO_REV:I.Pt06DeviceOut

Pt07DeviceOut DEMO_REV:I.Pt07DeviceOut

Pt08DeviceOut DEMO_REV:I.Pt08DeviceOut

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

101

Chapter 5 Adding an ArmorStart to RSLogix 5000

Controller Name

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

DEMO_REV

Name Logix Tag Name

Pt09DeviceOut DEMO_REV:I.Pt09DeviceOut

Pt10DeviceOut DEMO_REV:I.Pt10DeviceOut

Pt11DeviceOut DEMO_REV:I.Pt11DeviceOut

Pt12DeviceOut DEMO_REV:I.Pt12DeviceOut

Pt13DeviceOut DEMO_REV:I.Pt13DeviceOut

Pt14DeviceOut DEMO_REV:I.Pt14DeviceOut

LogicEnabled DEMO_REV:I.LogicEnabled

ProducedWord0Param DEMO_REV:I.ProducedWord0Param

ProducedWord1Param DEMO_REV:I.ProducedWord1Param

ProducedWord2Param DEMO_REV:I.ProducedWord2Param

ProducedWord3Param DEMO_REV:I.ProducedWord3Param

Table 15 - Bulletin 280E/281E Consume Assembly

Command Tag Explanation

Controller Output/ Command Tags

RunForward

RunReverse

ResetFault

OutA

OutB

Pt00DeviceIn

Pt01DeviceIn

Pt02DeviceIn

Pt03DeviceIn

Pt04DeviceIn

Pt05DeviceIn

Pt06DeviceIn

Pt07DeviceIn

Pt08DeviceIn

Pt09DeviceIn

Pt10DeviceIn

Pt11DeviceIn

Pt12DeviceIn

Pt13DeviceIn

Pt14DeviceIn

Pt15DeviceIn

Tag Description/Use

Command VFD forward

Command VFD reverse

Fault reset

OutputA

OutputB

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

102

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Adding an ArmorStart to RSLogix 5000 Chapter 5

Pt05DeviceOut

Pt06DeviceOut

Pt07DeviceOut

Pt08DeviceOut

Pt09DeviceOut

Pt10DeviceOut

Pt11DeviceOut

Pt12DeviceOut

Pt13DeviceOut

Pt14DeviceOut

LogicEnabled

ProducedWord0Param

ProducedWord1Param

ProducedWord2Param

ProducedWord3Param

TripPresent

WarningPresent

RunningForward

RunningReverse

Ready

In0

In1

In2

In3

Hand

DisconnectClosed

Pt00DeviceOut

Pt01DeviceOut

Pt02DeviceOut

Pt03DeviceOut

Pt04DeviceOut

Table 16 - Bulletin 280E/281E Produced Assembly

Status Tag Explanation

Controller Input/Status Tags

Fault

Tag Description/Use

Communication Fault between PLC and Device (all 1's =

Fault, all 0's = Normal)

Fault exisits with unit

Warning of potential fault

Motor commanded to run forward

Motor commanded to run reverse

Control Power and 3-phase present

Input 0

Input 1

Input 2

Input 3

HOA is in Auto mode

Disconnect is closed

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix is enabled

Data reference by Parameter 13

Data reference by Parameter 14

Data reference by Parameter 15

Data reference by Parameter 16

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

103

Chapter 5 Adding an ArmorStart to RSLogix 5000

Notes:

104

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Introduction

Chapter

6

Optional HOA Keypad Operation

This chapter provides a basic understanding of the programming of the factory- installed optional built-in Hand/Off/Auto (HOA) keypad. The HOA keypad can be programmed for maintained or momentary operation.

Figure 64 - Optional HOA Keypads

Available on Bulletin 280E

Keypad Description

Available on Bulletin 281E

Available on Bulletin 284E

The keys found on the optional HOA keypads are described below:

Table 17 - HOA Keypad – Key Description

HAND

The Hand key will initiate starter operation

AUTO

The Auto key allows for Start/Stop control via the communications network

OFF

If the starter is running, pressing the OFF key will cause the starter to stop.

REV

The REV key selects reverse direction of the motor

FWD

The FWD key selects forward direction of the motor

DIR Arrow

The Dir arrow selects the direction of the motor, either forward or reverse.

JOG

When pressed, JOG will be initiated if no other control devices are sending a stop command. Releasing the key will cause the drive to stop, using selected stop mode.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

105

Chapter 6 Optional HOA Keypad Operation

Figure 65 - Bulletin 280E/281E Hand -Off-Auto Selector Keypad

.

The following state transition matrix summarizes the HOA Keypad when

Parameter 45 “Keypad Mode” is set to 1=momentary.

HAND FWD AUTO HAND STOP

Command motor OFF and transition to “AUTO”

Ignore Ignore

Command motor ON and transition to “HAND FWD”

Ignore Ignore

Ignore

Command motor OFF and transition to “HAND STOP”

Command motor OFF and transition to “HAND STOP”

.

The following state transition matrix summarizes the HOA Keypad when Parameter 45 “Keypad Mode” is set to 0=maintained.

NO KEY PRESSED

HAND STOP

Ignore

HAND FWD

Command motor OFF and transition to “HAND STOP”

AUTO

Ignore

Command motor OFF and transition to “AUTO”

Ignore Ignore

Command motor ON and transition to “HAND FWD”

Ignore Ignore

Ignore

Command motor OFF and transition to “HAND STOP”

Command motor OFF and transition to “HAND STOP”

Figure 66 - Bulletin 281E Hand-Off-Auto Selector Keypad with

Forward/Reverse Function

106

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Optional HOA Keypad Operation Chapter 6

HAND STOP

Set FWD LED

The following state transition matrix summarizes the HOA behavior when

Parameter 45 “Keypad Mode” is set to 1=momentary.

HAND FWD

Ignore

HAND REV

Ignore

AUTO

Set FWD LED

NO KEY

PRESSED

Set REV LED Ignore Ignore Set REV LED

Command motor OFF and transition to

“AUTO”

If (FWD LED) transition to

“HAND FWD”

If (REV LED) transition to “HAND REV”

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Command motor OFF and transition to

“HAND STOP”

Command motor OFF and transition to

“HAND STOP”

Command motor OFF and transition to

“HAND STOP”

HAND STOP

Ignore

Set FWD LED

The following state transition matrix summarizes the HOA behavior when

Parameter 45 “Keypad Mode” is set to 0=maintained.

HAND FWD

Command motor OFF and transition to

“HAND STOP”

HAND REV

Command motor OFF and transition to

“HAND STOP”

Ignore Ignore

AUTO

Ignore

Set FWD LED

Set REV LED Ignore Ignore Set REV LED

Command motor OFF and transition to

“AUTO”

If (FWD LED) transition to

“HAND FWD”

If (REV LED) transition to “HAND REV”

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Command motor OFF and transition to

“HAND STOP”

Command motor OFF and transition to

“HAND STOP”

Command motor OFF and transition to

“HAND STOP”

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

107

Chapter 6 Optional HOA Keypad Operation

Figure 67 - Bulletin 284E Hand-Off-Auto Selector Keypad with JOG and

Direction Arrow Functions

The following state transition matrix summarizes the Jog/HOA behavior when

Parameter 45 “Keypad Mode” is set to 1 = momentary.

HAND STOP

If (FWD LED) Set REV LED

Else If (REV LED) Set FWD LED

HAND FWD

If (FWD LED)

Set REV LED

Else If (REV LED)

Set FWD LED

Ignore

HAND REV

If (FWD LED)

Set REV LED

Else If (REV LED)

Set FWD LED

Ignore

JOG FWD

Ignore

JOG REV

Ignore

AUTO

Ignore

If (FWD LED) transition to JOG FWD

If (REV LED) transition to JOG REV

Ignore Ignore Ignore

No Key Pressed

Command motor OFF and transition to AUTO

If (FWD LED) transition to

HAND FWD

Else If (REV LED) transition to

HAND REV

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Command motor

OFF and transition to HAND STOP

Ignore

Command motor

OFF and transition to HAND STOP

Command motor

OFF and transition to HAND STOP

Command motor

OFF and transition to HAND STOP

Command motor

OFF and transition to HAND STOP

Command motor

OFF and transition to HAND STOP

Ignore

Command motor

OFF and transition to HAND STOP

108

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Keypad and HOA Disable

Optional HOA Keypad Operation Chapter 6

No Key Pressed

The following state transition matrix summarizes the Jog/HOA behavior when

Parameter 45 “Keypad Mode” is set to 0 = maintained.

HAND STOP

Ignore

HAND FWD

Command motor

OFF and transition to HAND STOP

HAND REV

Command motor

OFF and transition to HAND STOP

JOG FWD

Command motor

OFF and transition to HAND STOP

JOG REV

Command motor

OFF and transition to HAND STOP

Ignore Ignore Ignore Ignore

AUTO

Ignore

If (FWD LED) Set REV LED

Else If (REV LED) Set FWD LED

If (FWD LED) transition to JOG FWD

If (REV LED) Transition to JOG REV

Command motor OFF and Transition to AUTO

If (FWD LED) transition to

HAND FWD

If (REV LED) transition to HAND REV

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore Ignore Ignore Ignore Ignore

Command motor

OFF and transition to HAND STOP

Command motor

OFF and transition to HAND STOP

Command motor

OFF and transition to HAND STOP

Command motor

OFF and transition to HAND STOP

Command motor

OFF and transition to HAND STOP

Note:

In nearly all instances, if the processor detects multiple buttons are pressed at the same time, the software interprets this as a “no button pressed” condition.

The only exception to this rule is if multiple buttons are pressed and one of them is the “OFF” button. If the “OFF” button is pressed in combination with any combination of other buttons, the processor will interpret this the same as if the

“OFF” button were pressed by itself.

Parameter 46 “Keypad Disable”, disables the “HAND”, “FWD”, “REV” and “Jog” buttons on the HOA keypad. The “OFF” and “AUTO” buttons are always enabled, even if Parameter 46 is set to “1=Disable”.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

109

Chapter 6 Optional HOA Keypad Operation

Notes:

110

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Chapter

7

Bulletin 280E/281E/284E

Programmable Parameters

Basic Setup Parameters

To configure the basic ArmorStart functionality refer to Table 18 below. These are the minimum setup configurations required for Bulletin 280E/281E or

Bulletin 284E. There are additional capabilities and motor protection that are not enabled or left at their default values.

Table 18 - Quick Parameter Setup

Bulletin 280E/281E

106 FLA Setting

107 Overload Class

108 OL Reset Level

Bulletin 284E

131 Motor NP Volts

132 Motor NP Hertz

133 Motor OL Current

134 Minimum Freq

135 Maximum Freq

137 Stop Mode

138 Speed Reference

139 Accel Time 1

140 Decel Time 1

Parameter Groups

Basic Status

1 Hdw Inputs

2 DeviceIn Data

3 DeviceOut Data

4 Trip Status

5 Starter Status

6 InternalLinkStat

7 Starter Command

22 Breaker Type

56 Base Enclosure

57 Base Options

58 Wiring Options

59 Starter Enclosure

60 Starter Options

61 Last Pr Fault

62 Warning Status

63 Base Trip

Common to Bulletin 280E/281E and Bulletin 284E Units

Produced Assembly

Config Group

13 Int00DeviceOut Cfg

14 Int01DeviceOut Cfg

15 Int02DeviceOut Cfg

16 Int03DeviceOut Cfg

Starter Protection

23 Pr FltResetMode

24 Pr Fault Enable

25 Pr Fault Reset

26 Str Net FltState

27 Str Net FltValue

28 Str Net IdlState

29 Str Net IdlValue

User I/O Config

30 Anti-bounce On Delay

31 Anti-bounce OFF Delay

32 In Sink/Source

33 OutA Pr FltState

34 OutA Pr FltValue

35 OutA Net FltState

36 OutA Net FltValue

37 OutA Net IdlState

38 OutA Net IdlValue

39 OutB Pr FltState

40 OutB Pr FltValue

41 OutB Net FltState

42 OutB Net FltValue

43 OutB Net IdlState

44 OutB Net IdlValue

Bulletin 284E

Units Only

Miscellaneous Config

8 Network Override

9 Comm Override

45 Keypad Mode

46 Keypad Disable

47 Set To Defaults

Drive I/O Config

48 Drive Control

49 DrvIn Pr FltState

50 DrvIn Pr FltValue

51 DrvIn Net FltState

52 DrvIn Net FltValue

53 DrvIn Net IdlState

54 DrvIn Net IdlValue

55 High Speed Enable

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

111

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Bulletin280E/281E

Units Only

Starter Display

101 Phase A Current

102 Phase B Current

103 Phase C Current

104 Average Current

105 Therm Utilized

Starter Setup

106 FLA Setting

107 Overload Class

108 OL Reset Level

Drive Display

101 Output Freq

102 Commanded Freq

103 Output Current

104 Output Voltage

105 DC Bus Voltage

106 Drive Status

107 Fault 1 Code

108 Fault 2 Code

109 Fault 3 Code

110 Process Display

112 Control Source

113 Contrl In Status

114 Dig In Status

115 Comm Status

116 Control SW Ver

117 Drive Type

118 Elapsed Run Time

119 Testpoint Data

122 Output Power

123 Output Power Fctr

124 Drive Temp

125 Counter Status

126 Timer Status

128 StpLogic Status

129 Torque Current

Drive Setup

131 Motor NP Volts

132 Motor NP Hertz

133 Motor OL Current

134 Minimum Freq

135 Maximum Freq

136 Start Source

137 Stop Mode

138 Speed Reference

139 Accel Time 1

140 Decel Time 1

141 Reset To Defaults

143 Motor OL Ret

Bulletin 284E Units Only

Drive Advanced Setup

151 Digital In 1 Sel

152 Digital In 2 Sel

153 Digital In 3 Sel

154 Digital In 4 Sel

155 Relay Out Sel

156 Relay Out Level

167 Accel Time 2

168 Decel Time 2

169 Internal Freq

170 Preset Freq 0

171 Preset Freq 1

172 Preset Freq 2

173 Preset Freq 3

174 Preset Freq 4

175 Preset Freq 5

176 Preset Freq 6

177 Preset Freq 7

178 Jog Frequency

179 Jog Accel/Decel

180 DC Brake Time

181 DC Brake Level

182 DB Resistor Sel

183 S Curve %

184 Boost Select

185 Start Boost

186 Brake Voltage

187 Brake Frequency

188 Maximum Voltage

189 Current Limit 1

190 Motor OL Select

191 PWM Frequency

192 Auto Rstrt Tries

193 Auto Rstrt Delay

194 Start At PowerUp

195 Reverse Disable

196 Flying Start En

197 Compensation

198 SW Current Trip

199 Process Factor

200 Fault Clear

201 Program Lock

202 Testpoint Sel

205 Comm Loss Action

206 Comm Loss Time

214 Slip Hertz @ FLA

215 Process Time Lo

216 Process Time Hi

217 Bus Reg Mode

218 Current Limit 2

219 Skip Frequency

220 Skip Freq Band

221 Stall Fault Time

224 Var PWM Disable

225 Torque Perf Mode

226 Motor NP FLA

227 Autotune

228 IR Voltage Drop

229 Flux Current Ref

230 PID Trim Hi

231 PID Trim Lo

232 PID Ref Sel

233 PID Feedback Sel

234 PID Prop Gain

235 PID Integ Time

236 PID Diff Rate

237 PID Setpoint

238 PID Deadband

239 PID Preload

240 StpLogic 0

241 StpLogic 1

242 StpLogic 2

243 StpLogic 3

244 StpLogic 4

245 StpLogic 5

246 StpLogic 6

247 StpLogic 7

250 StpLogic Time 0

251 StpLogic Time 1

252 StpLogic Time 2

253 StpLogic Time 3

254 StpLogic Time 4

255 StpLogic Time 5

256 StpLogic Time 6

257 StpLogic Time 7

260 EM Brk OFF Delay

261 EM Brk On Delay

262 MOP Reset Sel

263 DB Threshold

264 Comm Write Mode

267 PID Invert Error

112

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

ArmorStart EtherNet/IP

Parameters

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Introduction

This chapter describes each programmable parameter and its function.

Parameter Programming

Each Distributed Motor Controller type will have a common set of parameters followed by a set of parameters that pertain to the individual starter type.

Parameters 1

100 are common to all ArmorStarts

IMPORTANT

Parameter setting changes take effect immediately unless otherwise noted in the parameter listing. These changes maybe immediate even during the "running" status.

Bulletin 280E/281E

Basic Status Group

Hdw Inputs

This parameter provides status of hardware inputs.

3

X

2

X

Bit

1

X

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

0

X

1

GET

WORD

Basic Status

0

15

0

Function

In0

In1

In2

In3

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

113

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

DeviceIn Data

This parameter provides status of network device inputs.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

2

GET

WORD

Basic Status

0

65535

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — — X

— — — — — — — — — — — — — — X —

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

— — — — — — — — — — — X — — — —

— — — — — — — — — — X — — — — —

— — — — — — — — — X — — — — — —

— — — — — — — — X — — — — — — —

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

— — — X — — — — — — — — — — — —

— — X — — — — — — — — — — — — —

— X — — — — — — — — — — — — — —

X — — — — — — — — — — — — — — —

Function

Pt00DeviceIn

Pt01DeviceIn

Pt02DeviceIn

Pt03DeviceIn

Pt04DeviceIn

Pt05DeviceIn

Pt06DeviceIn

Pt07DeviceIn

Pt08DeviceIn

Pt09DeviceIn

Pt10DeviceIn

Pt11DeviceIn

Pt12DeviceIn

Pt13DeviceIn

Pt14DeviceIn

Pt15DeviceIn

114

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

DeviceOut Data

This parameter provides status of network device outputs.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

3

GET

WORD

Basic Status

0

32767

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function

— — — — — — — — — — — — — — — X Pt00DeviceOut

— — — — — — — — — — — — — — X — Pt01DeviceOut

— — — — — — — — — — — — — X — — Pt02DeviceOut

— — — — — — — — — — — — X — — — Pt03DeviceOut

— — — — — — — — — — — X — — — — Pt04DeviceOut

— — — — — — — — — — X — — — — — Pt05DeviceOut

— — — — — — — — — X — — — — — — Pt06DeviceOut

— — — — — — — — X — — — — — — — Pt07DeviceOut

— — — — — — — X — — — — — — — — Pt08DeviceOut

— — — — — — X — — — — — — — — — Pt09DeviceOut

— — — — — X — — — — — — — — — — Pt10DeviceOut

— — — — X — — — — — — — — — — — Pt11DeviceOut

— — — X — — — — — — — — — — — — Pt12DeviceOut

— — X — — — — — — — — — — — — — Pt13DeviceOut

— X — — — — — — — — — — — — — — Pt14DeviceOut

X — — — — — — — — — — — — — — — Reserved

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

115

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Trip Status

This parameter provides trip identification.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

4

GET

WORD

Basic Status

0

16383

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — —

— — — — — — — — — — — — — —

— — — — — — — — — — —

— — — — — — — — — — X

X

X

X

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

— — — —

— — — — —

Function

Short Circuit

Overload

Phase Loss

Reserved

Reserved

Control Power

— — — — — — — — — X — — — — — — I/O Fault

— — — — — — — — X — — — — — — — Over Temperature

— — — — — — — X — — — — — — — — Phase Imbalance

— — — — — — X — — — — — — — — — A3 Power Loss

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

Reserved

Reserved

— — — X — — — — — — — — — — — —

— — X — — — — — — — — — — — — —

X X — — — — — — — — — — — — — —

EEprom

HW Fault

Reserved

116

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Starter Status

This parameter provides the status of the starter.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

5

GET

WORD

Basic Status

0

16383

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function

— — — — — — — — — — — — — — — X TripPresent

— — — — — — — — — — — — — — X — WarningPresent

— — — — — — — — — — — — — X — — RunningForward

— — — — — — — — — — — — X — — — RunningReverse

— — — — — — — — — — — X — — — —

— — — — — — — — — — X — — — — —

Ready

Net Ctl Status

— — — — — — — — — X — — — — — —

— — — — — — — — X — — — — — — —

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

Reserved

At Reference

Reserved

Reserved

— — — — — X — — — — — — — — — — Reserved

— — — — X — — — — — — — — — — — Keypad Hand Mode

— — — X — — — — — — — — — — — — HOA Status

— — X — — — — — — — — — — — — — DisconnectClosed

X X — — — — — — — — — — — — — — Reserved

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

117

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

InternalLinkStat

Status of the internal network connections.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

6

GET

WORD

Basic Status

0

31

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — — X

— — — — — — — — — — — — — — X —

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

— — — — — — — — — — — X — — — —

X X X X X X X X X X X — — — — —

Function:

Explicit Connection

I/O Connection

Explicit Fault

I/O Fault

I/O Idle

Reserved

Starter Command

The parameter provides the status of the starter command.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bit

7 6 5 4 3 2 1

— — — — — — —

X

X —

— —

0

X

— — — —

— — — X

— —

— X

X

X

X

— — — — — — —

Function:

Run Fwd

Run Rev

Fault Reset

Reserved

Reserved

Reserved

OutA

OutB

7

GET

WORD

Basic Status

0

255

0

118

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Breaker Type

This parameter identifies the Bulletin

140M used in this product.

0 = 140M-D8N-C10

1 = 140M-D8N-C25

Base Enclosure

Indicates the ArmorStart Base unit enclosure rating.

Bit 0 = IP67

Bit 1 = Reserved

Bit 2…15 = Reserved

Base Options

Indicates the options for the

ArmorStart Base unit.

Bit 0 = Output Fuse

Bit 1 = Reserved

Bit 2 = CP Fuse Detect

Bits 3…7 = Reserved

Bit 8 = 10A Base

Bit 9 = 25A Base

Bit 10…15 = Reserved

Wiring Options

Bit 0 = Conduit

Bit 1 = Round Media

Bit 2 = 28xG Gland

Bits 3…15 = Reserved

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

58

GET

WORD

Basic Status

4

0

0

57

GET

WORD

Basic Status

0

517

0

56

GET

WORD

Basic Status

1

1

0

22

GET/SET

BOOL

Basic Status

1

0

0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

119

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Starter Enclosure

Bit 0 = IP67

Bit 1 = Reserved

Bit 2 = Sil3/Cat4

Bit 3…15 = Reserved

Starter Options

Bit 0 = Full Keypad

Bit 1 = Reserved

Bit 2 = Source Brake

Bit 3 = Reserved

Bit 4 = Reserved

Bit 5 = Reserved

Bit 6 = Reserved

Bit 7 = Reserved

Bit 8 = Reserved

Bit 9…15 = Reserved

Last PR Fault

0 = None

1 = Hardware Short Circuit

2 = Software Short Circuit

3 = Motor Overload

4 = Reserved

5 = Phase Loss

6…12 = Reserved

13 = Control Power Loss

14 = Control Power Fuse

15 = I/O Short

16 = Output Fuse

17 = Overtemp

18 = Reserved

19 = Phase Imbalance

20 = Reserved

21 = A3 Power Loss

22 = Internal Comm

23…26 = Reserved

27 = MCB EEPROM

28 = Base EEPROM

29 = Reserved

30 = Wrong Base

31 = Wrong CTs

32…100 = Reserved

0

100

61

GET

UINT

Basic Status

0

60

GET

WORD

Basic Status

0

66535

0

59

GET

WORD

Basic Status

4

1

0

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

120

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Warning Status

This parameter warns the user of a condition, without faulting.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

62

GET

WORD

Basic Status

0

65535

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — — X

— — — — — — — — — — — — — — X —

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

— — — — — — — — — — — X — — — —

— — — — — — — — — — X — — — — —

— — — — — — — — — X — — — — — —

— — — — — — — — X — — — — — — —

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

— — — X — — — — — — — — — — — —

— — X — — — — — — — — — — — — —

X X — — — — — — — — — — — — — —

Warning

Reserved

Reserved

Phase Loss

Reserved

Reserved

Control Power

I/O Warning

Reserved

Phase Imbalance

A3 Power Loss

Reserved

Reserved

Reserved

Hardware

Reserved

Base Trip

The parameter determines the status of the Base Module Trip Status.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

63

GET

WORD

Basic Status

0

65535

0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

121

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — — X

— — — — — — — — — — — — — — X —

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

X X X X X X X X X X X X — — — —

Warning

EEPROM Fault

Internal Comm

Hardware Fault

Control Module

Reserved

Produced Assembly Config Group

Int00DeviceOut Cfg

This parameter is used to specify

Int00DeviceOut of produced assembly

150 or 151.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Int01DeviceOut Cfg

This parameter is used to specify

Int01DeviceOut of produced assembly

150 or 151.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Int02DeviceOut Cfg

This parameter is used to specify

Int02DeviceOut of produced assembly

150 or 151.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

13

GET/SET

USINT

Produced Assembly Config

0

108

1

14

GET/SET

USINT

Produced Assembly Config

0

108

4

15

GET/SET

USINT

Produced Assembly Config

0

108

5

122

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Int03DeviceOut Cfg

This parameter is used to specify

Int03DeviceOut of produced assembly

150 or 151.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Starter Protection Group

Pr FltReset Mode

This parameter configures the

Protection Fault reset mode.

0 = Manual

1 = Automatic

Pr Fault Enable

This parameter enables the Protection

Fault by setting the bit to 1.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

16

GET/SET

USINT

Produced Assembly Config

0

108

6

23

GET/SET

BOOL

Starter Protection

1

0

0

24

GET/SET

WORD

Starter Protection

12419

13287

12419

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

123

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Bit

13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — X

— — — — — — — — — — — — X —

— — — — — — — — — — — X — —

— — — — — — — — — — X — — —

— — — — — — — — — X — — — —

— — — — — — — — X — — — — —

— — — — — — — X — — — — — —

— — — — — — X — — — — — — —

— — — — — X — — — — — — — —

— — — — X — — — — — — — — —

— — — X — — — — — — — — — —

— — X — — — — — — — — — — —

— X — — — — — — — — — — — —

X — — — — — — — — — — — — —

Function

Short Circuit

Overload

Phase Loss

Reserved

Reserved

Control Power

I/O Fault

Over Temperature

Phase Imbalance

A3 Power Loss

Reserved

Reserved

EEprom

HW Fault

Pr Fault Reset

This parameter resets the Protection

Fault on a transition of

0 > 1.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

25

GET/SET

BOOL

Starter Protection

1

0

0

Str Net FltState

This parameter in conjunction with

Parameter 27 (Str Net FltValue) defines how the starter will respond when a fault occurs as determined by

Parameter 27. Allows Starter to hold last state or go to FltValue on

NetFaults.

0 = Goto Fault Value

1 = Hold Last State

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

26

GET/SET

BOOL

Starter Protection

1

0

0

124

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Str Net FltValue

This parameter determines how the starter will be commanded in the event of a fault. State the Starter will go to on a Net Flt if Parameter 26 (Str

Net FltState) = 0 (Goto Fault Value).

0 = OFF

1 = ON

Str Net IdlState

This parameter in conjunction with

Parameter 29 (Str Net IdlValue) defines how the starter will respond when a network is idle as determined by Parameter 29.

0 = Goto Idle Value

1 = Hold Last State

Str Net IdlValue

This parameter determines the state that starter assumes when the network is idle and Parameter 28 (Str

Net IdlState) is set to “0”.

0 = OFF

1 = ON

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

User I/O Configuration Group

Anti-bounce On Delay

This parameter allows the installer to program a time duration before an input is reported “ON” (Anti-bounce).

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

27

GET

BOOL

Starter Protection

1

0

0

28

GET/SET

BOOL

Starter Protection

1

0

0

29

GET

BOOL

Starter Protection

1

0

0

30

GET/SET

UINT

User I/O Config.

ms

0

65

0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

125

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Anti-bounce OFF Delay

This parameter allows the installer to program a time duration before an input is reported “OFF” (Anti-bounce).

In Sink/Source

This parameter allows the installer to program the inputs to be sink or source.

0 = Sink

1 = Source

OutA Pr FltState

This parameter in conjunction with

Parameter 34 (OutA Pr FltValue) defines how Output A will respond when a protection trip occurs.

0 = Goto Pr FltValue

1 = Ignore Pr Flt

When set to “1”, Output A continues to operate as command via the network.

When set to “0”, Output A will open or close as determined by setting in

Parameter 34.

OutA Pr FltValue

This parameter determines the state the Output A assumes when a trip occurs and Parameter 33 (OutA Pr

FltState) is set to “0”.

0 = Open

1 = Close

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

31

GET/SET

UINT

User I/O Config.

ms

0

65

0

32

GET/SET

BOOL

User I/O Config.

1

0

0

33

GET/SET

BOOL

User I/O Config.

1

0

0

34

GET/SET

BOOL

User I/O Config.

1

0

0

126

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

OutA Net FltState

This parameter in conjunction with

Parameter 36 (OutA Net FltValue) defines how Output A will respond when a network fault occurs.

0 = Goto Net FltValue

1 = Hold Last State

When set to “1”, Output A will hold state prior to trip occurrence. When set to “0”, Output A will open or close as determined by setting in Parameter

36.

OutA Net FltValue

This parameter determines the state that Output A assumes when a network fault occurs and Parameter

35 (OutA Net FltState) is set to “0”.

0 = Open

1 = Close

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

OutA Net IdlState

This parameter in conjunction with

Parameter 38 (OutA Net IdlValue) defines how Output A will respond when the network is idle.

0 = Goto Net IdlValue

1 = Hold Last State

When set to “0”, Output A will open or close as determined by the setting in

Parameter 38.

OutA Net IdlValue

This parameter determines the state that Output A assumes when the network is idle and Parameter 37

(OutA Net IdlState) is set to “0”.

0 = Open

1 = Close

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

35

GET/SET

BOOL

User I/O Config.

0

1

0

36

GET/SET

BOOL

User I/O Config.

1

0

0

37

GET/SET

BOOL

User I/O Config.

1

0

0

38

GET/SET

BOOL

User I/O Config.

1

0

0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

127

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

OutB Pr FltState

This parameter in conjunction with

Parameter 40 (OutB Pr FltValue) defines how Output B will respond when a protection trip occurs.

0 = Goto PrFlt Value

1 = Ignore PrFlt

When set to “1”, Output B continues to operate as command via the network.

When set to “0”, Output B will open or close as determined by setting in

Parameter 40.

OutB Pr FltValue

This parameter determines the state the Out B assumes when a protection trip occurs and Parameter 39 (OutB Pr

FltState) is set to “0”.

0 = Open

1 = Close

OutB Net FltState

This parameter in conjunction with

Parameter 42 (OutB Net FltValue) defines how Output B will respond when a network fault occurs.

0 = Goto Idle Value

1 = Hold Last State

When set to “1”, Output B will hold state prior to trip occurrence. When set to “0”, Output B will open or close as determined by setting in Parameter

42.

OutB Net FltValue

This parameter determines the state that Output B assumes when a network fault occurs and Parameter

41 (OutB Net FltState) is set to “0”.

0 = Open

1 = Close

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

39

GET/SET

BOOL

User I/O Config.

0

1

0

40

GET/SET

BOOL

User I/O Config.

1

0

0

41

GET/SET

BOOL

User I/O Config.

1

0

0

42

GET/SET

BOOL

User I/O Config.

1

0

0

128

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

OutB Net IdlState

This parameter in conjunction with

Parameter 44 (OutB Net IdlValue) defines how Output B will respond when the network is idle.

0 = Goto PrFlt Value

1 = Ignore PrFlt

When set to “0”, Output B will open or close as determined by the setting in

Parameter 44.

OutB Net IdlValue

This parameter determines the state that Output B assumes when the network is idle and Parameter 43

(OutB Net IdlState) is set to “0”.

0 = Open

1 = Close

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Miscellaneous Configuration Group

Network Override

This parameter allows for the local logic to override a Network fault.

0 = Disable

1 = Enable

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Comm Override

This parameter allows for local logic to override the absence of an I/O connection.

0 = Disable

1 = Enable

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

43

GET/SET

BOOL

User I/O Config.

1

0

0

44

GET/SET

BOOL

User I/O Config.

1

0

0

9

GET/SET

BOOL

Misc. Config.

1

0

0

8

GET/SET

BOOL

Misc. Config.

1

0

0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

129

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Keypad Mode

This parameter selects if the keypad operation is maintained or momentary.

0 = Maintained

1 = Momentary

Keypad Disable

This parameter disables all keypad function except for the “OFF” and

“RESET” buttons.

0 = Not Disabled

1 = Disabled

Set to Defaults

This parameter if set to “1” will set the device to the factory defaults (but will not cause the ArmorStart to reboot).

0 = No Operation

1 = Set to Defaults

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Starter Display Group (Bulletin 280E/281E only)

Phase A Current

This parameter provides the current of

Phase A measured n increments of

1/10 th

of an ampere.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

101

GET/SET

INT

Starter Display xx.x Amps

0

32767

0

46

GET/SET

BOOL

Misc. Config.

1

0

0

45

GET/SET

BOOL

Misc. Config.

1

0

0

47

GET/SET

BOOL

Misc. Config.

1

0

0

130

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Phase B Current

This parameter provides the current of

Phase B measured in increments of

1/10 th

of an ampere.

Phase C Current

This parameter provides the current of

Phase C measured in increments of

1/10 th

of an ampere.

Average Current

This parameter provides the average current measured in increments of

1/10 th

of an ampere.

Therm Utilized

This parameter displays the

% Thermal Capacity used.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

104

GET/SET

INT

Starter Display xx.x Amps

0

32767

0

105

GET/SET

USINT

Starter Display

% FLA

0

100

0

102

GET/SET

INT

Starter Display xx.x Amps

0

32767

0

103

GET/SET

INT

Starter Display xx.x Amps

0

32767

0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

131

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Starter Setup Group (Bulletin 280E/281E only)

FLA Setting

The motor’s full load current rating is programmed in this parameter.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

106

GET/SET

INT

Starter Setup xx.x Amps

See Table 19.

See Table 19.

See Table 19.

Table 19 - FLA Setting Ranges and Default Values (with indicated setting precision)

Minimum Value

FLA Current Range (A)

Maximum Value

0.24

0.5

1.2

2.5

1.1

3.2

5.5

16.0

Default Value

0.24

0.5

1.1

3.2

Overload Class

This parameter allows the installer to select the overload class.

1 = Overload Class 10

2 = Overload Class 15

3 = Overload Class 20

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

107

GET/SET

USINT

Starter Setup xx.x Amps

1

3

1

OL Reset Level

This parameter allows the installer select the % Thermal Capacity which an overload can be cleared.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

108

GET/SET

USINT

Starter Setup

% FLA

0

100

75

132

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 284E

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Basic Status Group

Hdw Inputs

This parameter provides status of hardware inputs.

3

X

2

X

Bit

1

X

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

0

X

1

GET

WORD

Basic Status

0

15

0

Function

In0

In1

In2

In3

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

133

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

DeviceIn Data

This parameter provides status of network device inputs.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

2

GET

WORD

Basic Status

0

65535

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — — X

— — — — — — — — — — — — — — X —

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

— — — — — — — — — — — X — — — —

— — — — — — — — — — X — — — — —

— — — — — — — — — X — — — — — —

— — — — — — — — X — — — — — — —

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

— — — X — — — — — — — — — — — —

— — X — — — — — — — — — — — — —

— X — — — — — — — — — — — — — —

X — — — — — — — — — — — — — — —

Function

Pt00DeviceIn

Pt01DeviceIn

Pt02DeviceIn

Pt03DeviceIn

Pt04DeviceIn

Pt05DeviceIn

Pt06DeviceIn

Pt07DeviceIn

Pt08DeviceIn

Pt09DeviceIn

Pt10DeviceIn

Pt11DeviceIn

Pt12DeviceIn

Pt13DeviceIn

Pt14DeviceIn

Pt15DeviceIn

134

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

DeviceOut Data

This parameter provides status of network device outputs.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

3

GET

WORD

Basic Status

0

32767

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function

— — — — — — — — — — — — — — — X Pt00DeviceOut

— — — — — — — — — — — — — — X — Pt01DeviceOut

— — — — — — — — — — — — — X — — Pt02DeviceOut

— — — — — — — — — — — — X — — — Pt03DeviceOut

— — — — — — — — — — — X — — — — Pt04DeviceOut

— — — — — — — — — — X — — — — — Pt05DeviceOut

— — — — — — — — — X — — — — — — Pt06DeviceOut

— — — — — — — — X — — — — — — — Pt07DeviceOut

— — — — — — — X — — — — — — — — Pt08DeviceOut

— — — — — — X — — — — — — — — — Pt09DeviceOut

— — — — — X — — — — — — — — — — Pt10DeviceOut

— — — — X — — — — — — — — — — — Pt11DeviceOut

— — — X — — — — — — — — — — — — Pt12DeviceOut

— — X — — — — — — — — — — — — — Pt13DeviceOut

— X — — — — — — — — — — — — — — Pt14DeviceOut

X — — — — — — — — — — — — — — — Reserved

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

135

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Trip Status

This parameter provides trip identification.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

4

GET

WORD

Basic Status

0

65535

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — —

— — — — — — — — — — — — — —

— — — — — — — — — — —

— — — — — — — — — — X

X

X

X

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

— — — —

— — — — —

Function

Short Circuit

Overload

Phase Short

Ground Fault

Stall

Control Power

— — — — — — — — — X — — — — — — I/O Fault

— — — — — — — — X — — — — — — — Over Temperature

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

Over Current

A3 Power Loss

Internal Comm

DC Bus Fault

— — — X — — — — — — — — — — — —

— — X — — — — — — — — — — — — —

— X — — — — — — — — — — — — — —

X — — — — — — — — — — — — — — —

EEprom

HW Fault

Restart Retries

Misc. Fault

136

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Starter Status

This parameter provides the status of the starter.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

5

GET

WORD

Basic Status

0

65535

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function

— — — — — — — — — — — — — — — X TripPresent

— — — — — — — — — — — — — — X — WarningPresent

— — — — — — — — — — — — — X — — RunningForward

— — — — — — — — — — — — X — — — RunningReverse

— — — — — — — — — — — X — — — —

— — — — — — — — — — X — — — — —

Ready

Net Ctl Status

— — — — — — — — — X — — — — — —

— — — — — — — — X — — — — — — —

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

Net Ref Status

At Reference

DrvOpto1

DrvOpto2

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

Keypad Jog

Keypad Hand

— — — X — — — — — — — — — — — — HOA Status

— — X — — — — — — — — — — — — — Disconnect Closed

— X — — — — — — — — — — — — — —

X — — — — — — — — — — — — — — —

Contactor 2 ➊

Contactor 2 ➋

➊ Refers to source brake contactor status

➋ Refers to output contactor status

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

137

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

InternalLinkStat

This parameter provides status of the internal network connections.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

6

GET

WORD

Basic Status

0

31

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — — X

— — — — — — — — — — — — — — X —

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

— — — — — — — — — — — X — — — —

X X X X X X X X X X X — — — — —

Function:

Explicit Connection

I/O Connection

Explicit Fault

I/O Fault

I/O Idle

Reserved

Starter Command

The parameter provides the status of the starter command.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

7

GET

WORD

Basic Status

0

255

0

Bit

7 6 5 4 3 2 1

— — — — — — —

X

X —

— —

0

X

— — — —

— — — X

— —

— X

X

X

X

— — — — — — —

Function:

Run Fwd

Run Rev

Fault Reset

Jog Fwd

Jog Rev

Reserved

OutA

OutB

138

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Breaker Type

This parameter identifies the Bulletin

140M used in this product.

0 = 140M-D8N-C10

1 = 140M-D8N-C25

Base Enclosure

Indicates the ArmorStart Base unit enclosure rating.

Bit 0 = IP67

Bit 1 = Nema 4X

Bit 2…15 = Reserved

Base Options

Indicates the options for the

ArmorStart Base unit.

Bit 0 = Output Fuse

Bit 1 = Reserved

Bit 2 = CP Fuse Detect

Bits 3…7 = Reserved

Bit 8 = 10A Base

Bit 9 = 25A Base

Bit 10…15 = Reserved

Wiring Options

Bit 0 = Conduit

Bit 1 = Round Media

Bit 2 = 28xG Gland

Bits 3…15 = Reserved

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

56

GET

WORD

Basic Status

0

0

22

GET

BOOL

Basic Status

0

1

57

GET

WORD

Basic Status

0

0

58

GET

WORD

Basic Status

0

0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

139

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Starter Enclosure

Bit 0 = IP67

Bit 1 = Reserved

Bit 2 = Sil3/Cat4

Bit 3…15 = Reserved

Starter Options

Bit 0 = Full Keypad

Bit 1 = Reserved

Bit 2 = Source Brake

Bit 3 = Reserved

Bit 4 = Dynamic Brake

Bit 5 = Output Contactor

Bit 6 = EMI Filter

Bit 7 = Reserved

Bit 8 = Fused DynBrake

Bit 9…15 = Reserved

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

60

GET

WORD

Basic Status

0

66535

0

59

GET

WORD

Basic Status

0

0

140

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Last PR Fault

1 = Hdw Short Ckt

2 = Reserved

3 = Motor Overload (PF Fault Code 7)

4 = Drive Overload (PF Fault Code 64)

5 = Phase U to Gnd (PF Fault Code 38)

6 = Phase V to Gnd (PF Fault Code 39)

7 = Phase W to Gnd (PF Fault Code 40)

8 = Phase UV Short (PF4 Fault Code 41)

9 = Phase UW Short (PF Fault Code 42)

10 = Phase VW Short (PF Fault Code 43)

11 = Ground Fault (PF Fault Code 13)

12 = Stall (PF Fault Code 6)

13 = Control Pwr Loss

14 = Control Pwr Fuse

15 = Input Short

16 = Output Fuse

17 = Over Temp

18 = Heatsink OvrTmp (PF Fault Code 8)

19 = HW OverCurrent (PF Fault Code 12)

20 = SW OverCurrent (PF Fault Code 63)

21 = A3 Power Loss

22 = Internal Comm

23 = Drive Comm Loss (PF Fault Code 81)

24 = Power Loss (PF Fault Code 3)

25 = Under Voltage (PF Fault Code 4)

26 = Over Voltage (PF Fault Code 5)

27 = MCB EEPROM

28 = Base EEPROM

29 = Drive EEPROM (PF Fault Code 100)

30 = Wrong Base

31 = Fan RPM

32 = Power Unit (PF Fault Code 70)

33 = Drive I/O Brd (PF Fault Code 122)

34 = Restart Retries (PF Fault Code 33)

35 = Drive Aux In Flt (PF Fault Code 2)

36 = Analog Input (PF Fault Code 29)

37 = Drv Param Reset (PF Fault Code 48)

38 = SCV Autotune (PF Fault Code 80)

39 = Source Brake

40 = Reserved

41 = DB1 Comm

42 = DB1 Fault

43 = DB Switch Short

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

61

GET

UINT

Basic Status

0

43

0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

141

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Warning Status

This parameter warns the user of a condition, without faulting.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

62

GET

WORD

Basic Status

0

65535

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — — X

— — — — — — — — — — — — — — X —

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

— — — — — — — — — — — X — — — —

— — — — — — — — — — X — — — — —

— — — — — — — — — X — — — — — —

— — — — — — — — X — — — — — — —

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

— — — X — — — — — — — — — — — —

— — X — — — — — — — — — — — — —

— X — — — — — — — — — — — — — —

X — — — — — — — — — — — — — — —

Warning

Reserved

Reserved

Phase Loss

Reserved

Reserved

Control Power

I/O Warning

Reserved

Phase Imbalance

A3 Power Loss

Reserved

Reserved

Reserved

Hardware

Reserved

Reserved

142

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Base Trip

The parameter provides the Base

Module Trip Status.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

63

GET

WORD

Basic Status

0

65535

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — — X

— — — — — — — — — — — — — — X —

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

X X X X X X X X X X X X — — — —

Warning

EEPROM Fault

Internal Comm

Hardware Fault

Control Module

Reserved

Produced Assembly Config Group

Int00DeviceOut Cfg

This parameter is used to specify

Int00DeviceOut of produced assembly

150 or 151.

Int01DeviceOut Cfg

This parameter is used to specify

Int01DeviceOut of produced assembly

150 or 151.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

13

GET/SET

USINT

Produced Assembly Config

0

263

1

14

GET/SET

USINT

Produced Assembly Config

0

263

4

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

143

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Int02DeviceOut Cfg

This parameter is used to specify

Int02DeviceOut of produced assembly

150 or 151.

Int03DeviceOut Cfg

This parameter is used to specify

Int03DeviceOut of produced assembly

150 or 151.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Starter Protection Group

Pr FltResetMode

This parameter is the Protection Fault reset mode.

0 = Manual

1 = Automatic

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

15

GET/SET

USINT

Produced Assembly Config

0

263

5

16

GET/SET

USINT

Produced Assembly Config

0

263

6

23

GET/SET

BOOL

Starter Protection

1

0

0

144

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Pr Fault Enable

This parameter enables the Protection

Fault by setting the bit to 1.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

24

GET/SET

WORD

Starter Protection

64927

65535

64927

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — —

— — — — — — — — — — — — — —

— — — — — — — — — — —

— — — — — — — — — — X

X

X

X

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

— — — —

— — — — —

Function

Short Circuit

Overload

Phase Loss

Ground Fault

Stall

Control Power

— — — — — — — — — X — — — — — — I/O Fault

— — — — — — — — X — — — — — — — Over Temperature

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

Over Current

A3 Power Loss

Internal Comm

DC Bus Fault

— — — X — — — — — — — — — — — —

— — X — — — — — — — — — — — — —

— X — — — — — — — — — — — — — —

X — — — — — — — — — — — — — — —

EEprom

HW Fault

Restart Retries

Misc. Fault

Pr Fault Reset

This parameter resets the Protection

Fault on a transition of

0 > 1.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

25

GET/SET

BOOL

Starter Protection

1

0

0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

145

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Str Net FltState

This parameter in conjunction with

Parameter 27 (Str Net FltValue) defines how the starter will respond when a fault occurs as determined by

Parameter 27.

0 = Goto Fault Value

1 = Hold Last State

Allows Starter to hold last state or go to FltValue on NetFaults.

Str Net FltValue

This parameter determines how the starter will be commanded in the event of a fault. State the Starter will go to on a Net Flt if Parameter

26 (Str Net FltState) = 0 (Goto Fault

Value).

0 = OFF

1 = ON

Str Net IdlState

This parameter in conjunction with

Parameter 29 (Str Net IdlValue) defines how the starter will respond when a network is idle as determined by Parameter 29.

0 = Goto Idle Value

1 = Hold Last State

Str Net IdlValue

This parameter determines the state that starter assumes when the network is idle and Parameter 28 (Str

Net IdlState) is set to “0”.

0 = OFF

1 = ON

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

28

GET/SET

BOOL

Starter Protection

1

0

0

29

GET

BOOL

Starter Protection

1

0

0

26

GET/SET

BOOL

Starter Protection

1

0

0

27

GET

BOOL

Starter Protection

1

0

0

146

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

User I/O Configuration Group

Anti-bounce On Delay

This parameter allows the installer to program a time duration before being reported “ON” (Anti-bouce).

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Anti-bounce OFF Delay

This parameter allows the installer to program a time duration before being reported “OFF” (Anti-bouce).

In Sink/Source

This parameter allows the installer to program the inputs to be sink or source.

0 = Sink

1 = Source

OutA Pr FltState

This parameter in conjunction with

Parameter 34 (OutA Pr FltValue) defines how Output A will respond when a trip occurs.

0 = Goto PrFlt Value

1 = Ignore PrFlt

When set to “1”, Output A continues to operate as command via the network.

When set to “0”, Output A will open or close as determined by the setting in

Parameter 34.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

30

GET/SET

UINT

User I/O Config.

ms

0

65

0

31

GET/SET

UINT

User I/O Config.

ms

0

65

0

32

GET/SET

BOOL

User I/O Config.

1

0

0

33

GET/SET

BOOL

User I/O Config.

0

1

0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

147

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

OutA Pr FltValue

This parameter determines the state the Output A assumes when a trip occurs and Parameter 33 (OutA Pr

FltState) is set to “0”.

0 = Open

1 = Close

OutA Net FltState

This parameter in conjunction with

Parameter 36 (OutA Net FltValue) defines how Output A will respond when a network fault occurs.

0 = Goto Net FltValue

1 = Hold Last State

When set to “1”, Output A will hold state prior to trip occurrence. When set to “0”, Output A will open or close as determined by the setting in

Parameter 36.

OutA Net FltValue

This parameter determines the state that Output A assumes when a network fault occurs and Parameter

35 (OutA Net FltState) is set to “0”.

0 = Open

1 = Close

OutA Net IdlState

This parameter in conjunction with

Parameter 38 (OutA Net IdlValue) defines how Output A will respond when the network is idle.

0 = Goto Net IdlValue

1 = Hold Last State

When set to “0”, Output A will open or close as determined by the setting in

Parameter 38.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

36

GET/SET

BOOL

User I/O Config.

1

0

0

37

GET/SET

BOOL

User I/O Config.

1

0

0

34

GET/SET

BOOL

User I/O Config.

1

0

0

35

GET/SET

BOOL

User I/O Config.

0

1

0

148

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

OutA Net IdlValue

This parameter determines the state that Output A assumes when the network is idle and Parameter 37

(OutA Net IdlState) is set to “0”.

0 = Open

1 = Close

OutB Pr FltState

This parameter in conjunction with

Parameter 40 (OutB Pr FltValue) defines how Output B will respond when a protection trip occurs.

0 = Goto PrFlt Value

1 = Ignore PrFlt

When set to “1”, Output B continues to operate as command via the network.

When set to “0”, Output B will open or close as determined by setting in

Parameter 40.

OutB Pr FltValue

This parameter determines the state the Out B assumes when a protection trip occurs and Parameter 39 (OutB Pr

FltState) is set to “0”.

0 = Open

1 = Close

OutB Net FltState

This parameter in conjunction with

Parameter 42 (OutB Net FltValue) defines how Output B will respond when a network fault occurs.

0 = Goto Idle Value

1 = Hold Last State

When set to “1”, Output B will hold state prior to trip occurrence. When set to “0”, Output B will open or close as determined by setting in Parameter

42.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

40

GET/SET

BOOL

User I/O Config.

1

0

0

41

GET/SET

BOOL

User I/O Config.

0

1

0

38

GET/SET

BOOL

User I/O Config.

1

0

0

39

GET/SET

BOOL

User I/O Config.

0

1

0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

149

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

OutB Net FltValue

This parameter determines the state that Output B assumes when a network fault occurs and Parameter

41 (OutB Net FltState) is set to “0”.

0 = Open

1 = Close

OutB Net IdlState

This parameter in conjunction with

Parameter 44 (OutB Net IdlValue) defines how Output B will respond when the network is idle.

0 = Goto PrFlt Value

1 = Ignore PrFlt

When set to “0”, Output B will open or close as determined by the setting in

Parameter 44.

OutB Net IdlValue

This parameter determines the state that Output B assumes when the network is idle and Parameter 43

(OutB Net IdlState) is set to “0”.

0 = Open

1 = Close

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Miscellaneous Configuration Group

Network Override

This parameter allows for the local logic to override a Network fault.

0 = Disable

1 = Enable

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

42

GET/SET

BOOL

User I/O Config.

1

0

0

43

GET/SET

BOOL

User I/O Config.

1

0

0

44

GET/SET

BOOL

User I/O Config.

1

0

0

8

GET/SET

BOOL

Misc. Config.

1

0

0

150

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Comm Override

This parameter allows for local logic to override the absence of an I/O connection.

0 = Disable

1 = Enable

Keypad Mode

This parameter selects if the keypad operation is maintained or momentary.

0 = Maintained

1 = Momentary

Keypad Disable

This parameter disables all keypad function except for the “OFF” and

“RESET” buttons.

0 = Not Disabled

1 = Disabled

Set to Defaults

This parameter if set to “1” will set the device to the factory defaults (but will not cause the ArmorStart to reboot).

0 = No Operation

1 = Set to Defaults

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

47

GET/SET

BOOL

Misc. Config.

1

0

0

46

GET/SET

BOOL

Misc. Config.

1

0

0

45

GET/SET

BOOL

Misc. Config.

1

0

0

9

GET/SET

BOOL

Misc. Config.

1

0

0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

151

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Drive I/O Configuration Group (Bulletin 284E only)

Drive Control

This parameter provides the status of drive parameters.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

48

GET

WORD

Drive I/O Config.

0

4095

0

Bit

11 10 9 8 7 6 5 4 3 2 1

— — — — — — — — — — —

X

X —

— —

0

X

— — — — — — — —

— — — — — — — X

— — — — — —

— — — — — X

X

X

— — — —

— — — X

— —

— X

X

X

X

— — — — — — — — — — —

Function

Accel 1 En

Accel 2 En

Decel 1 En

Decel 2 En

Freq Sel 0

Freq Sel 1

Freq Sel 2

Reserved

Drv In 1

Drv In 2

Drv In 3

Drv In 4

DrvIn Pr FltState

This parameter, in conjunction with

Parameter 50 (DrvIn Pr FltValue), defines how the Drive Digital

Inputs 1…4 will respond when a protection trip occurs. When set to “1”,

Drive Digital Inputs 1…4 continue to operate as command via the network.

When set to “0”, Drive Digital Inputs

1…4 will open or close as determined by setting in Parameter

50.

0 = Go to PrFlt Value

1 = Ignore PrFlt

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

49

GET/SET

BOOL

Drive I/O Config.

0

1

0

152

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

DrvIn Pr FltValue

This parameter determines the state of Drive Digital Inputs 1…4, assumes when a trip occurs and Parameter 49

(DrvIn Pr FltState) is set to “0”.

0 = Open

1 = Close

DrvIn Net FltState

This parameter, in conjunction with

Parameter 52 (DrvIn Net FItValue), defines how the Drive Digital

Inputs 1…4 will respond when a network fault occurs. When set to “1”,

Drive Digital Inputs 1…4 hold to last state occurs. When set to “0”, will go to DrvIn Net FltValue as determined by Parameter 52.

0 = Go to Fault Value

1 = Hold Last State

DrvIn Net FItValue

This parameter determines the state of Drive Digital Inputs 1…4 when a network fault occurs and Parameter

51 (DrvIn Net FltState) is set to “0”.

0 = OFF

1 = ON

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

DrvIn Net IdlState

This parameter, in conjunction with

Parameter 54 (DrvIn Net IdlValue), defines how the Drive Digital Inputs

1…4 will respond when a network is idle. When set to “1”, hold to last state occurs. When set to “0”, will go to

DrvIn Net IdlState as determined by

Parameter 54.

0 = Go to Fault Value

1 = Hold Last State

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

52

GET/SET

BOOL

Drive I/O Config.

1

0

0

53

GET/SET

BOOL

Drive I/O Config.

1

0

0

50

GET/SET

BOOL

Drive I/O Config.

1

0

0

51

GET/SET

BOOL

Drive I/O Config.

0

1

0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

153

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

154

DrvIn Net IdlValue

This parameter determines the state that Drive Digital Inputs 1…4 assume when the network is idle and

Parameter 53 (DrvIn Net IdlState) is set to “0”.

0 = OFF

1 = ON

High Speed Enable

Enable High Speed Inverter control thru the terminal block.

0 = Disabled

1 = Enabled

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Drive Display Group (Bulletin 284E only)

Output Freq

Output frequency present at T1, T2,

T3.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Commanded Freq

Value of the active frequency command. Displays the commanded frequency even if the drive is not running.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

101

102, 110, 134, 135, 138

GET

UINT

Drive Display

0.1 Hz

0.0

400.0 Hz

Read Only

102

101, 113, 134, 135, 138

GET

UINT

Drive Display

0.1 Hz

0.0

400.0 Hz

Read Only

54

GET/SET

BOOL

Drive I/O Config.

1

0

0

55

GET/SET

BOOL

Drive I/O Config.

1

0

0

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Output Current

Output Current present at T1, T2, T3.

Output Voltage

Output Voltage present at T1, T2, T3.

DC Bus Voltage

Present DC Bus voltage level

Drive Status

Present operating condition of the drive

Bit 0 = Running

Bit 1 = Forward

Bit 2 = Accelerating

Bit 3 = Decelerating

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

105

GET

UINT

Drive Display

1V DC

Based on Drive Rating

Read Only

106

195

GET

Byte

Drive Display

0

1

Read Only

103

GET

UINT

Drive Display

0.01

0.00

Drive rated amps x 2

Read Only

104

131, 184, 188

GET

UINT

Drive Display

1V AC

0

480V

Read Only

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

155

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Fault 1 Code

A code that represents the drive fault.

The code will appear in this parameter as the most recent fault that has occurred. (Refer to

Internal Drive

Faults

in Chapter 10 for more information).

Fault 2 Code

A code that represents a drive fault.

The code will appear in this parameter as the second most recent fault that has occurred.

Fault 3 Code

A code that represents a drive fault.

The code will appear in this parameter as the third most recent fault that has occurred.

Process Display

The output frequency scaled by the process factor (Parameter 199).

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

110

101. 199

GET

UINT

Drive Display

0.00

9999

Read Only

109

GET

UINT

Drive Display

F2

F122

Read Only

108

GET

UINT

Drive Display

F2

F122

Read Only

107

GET

UINT

Drive Display

F2

F122

Read Only

156

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Control Source

Displays the source of the Start

Command and Speed Reference.

2 = 2-wire

3 = 2-wire Level Sensitive

4 = 2-wire High Speed

5 = RS485 (DSI) Port

9 = Jog

Valid Speed Commands for the

Bulletin 284E ArmorStart are the following:

1 = Internal Frequency

4 = Preset Freq x

5 = Comm Port (RS485 (DSI))

6 = StepLogic Control

9 = Jog Freq

Contrl In Status

Status of control inputs. These can be used in DeviceLogix.

Bit 0 = Start/Run FWD Input

Bit 1 = Direction/Run REV Input

Bit 2 = Stop Input

Bit 3 = Dynamic Brake Transistor On

Dig In Status

Status of the control terminal block digital inputs:

Bit 0 = Digital In 1 Sel

Bit 1 = Digital In 2 Sel

Bit 2 = Digital In 3 Sel

Bit 3 = Digital In 4 Sel

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

112

136, 138, 151…154 (Digital In x

Sel) must be set to Option 4, 169,

170…177 (Preset Freq x),

240…247 (StpLogic x)

GET

UINT

Drive Display

1

0

9

Read Only

114

151…154

GET

UINT

Drive Display

1

0

1

Read Only

113

102, 134, 135

GET

UINT

Drive Display

1

0

1

Read Only

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

157

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Comm Status

Status of communications ports:

Bit 0 = Receiving Data

Bit 1 = Transmitting Data

Bit 2 = RS485

Bit 3 = Communication Error

Control SW Ver

Main Control Board software version for AC Drive.

Drive Type

Used by Rockwell Automation field service personnel.

Elapsed Run Time

Accumulated time drive is outputting power. Time is displayed in 10 hour increments.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

118

GET

UINT

Drive Display

1 = 10 hrs

0

9999

Read Only

117

GET

UINT

Drive Display

1

1001

9999

Read Only

116

GET

UINT

Drive Display

0.01

1.00

99.99

Read Only

115

205, 206

GET

UINT

Drive Display

1

0

1

Read Only

158

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Output Power

The output power present at T1, T2, and T3.

Output Power Fctr

The angle in electrical degrees between motor voltage and current.

Drive Temp

Present operating temperature of the drive power section.

Counter Status

The current value of the counter when counter is enabled.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

122

GET

UINT

Drive Display

0.00

Drive rated power X 2

Read Only

123

GET

UINT

Drive Display

0.1

°

0.0

°

180.0

°

Read Only

125

GET

UINT

Drive Display

1

0

9999

Read Only

124

GET

UINT

Drive Display

1

°C

0

120

Read Only

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

159

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

160

Timer Status

The current value of the timer when timer is enabled.

StpLogic Status

When Parameter 138 (Speed

Reference) is set to "6" (StpLogic), this parameter will display the current step of StepLogic as defined by

Parameters 240…247 (StpLogic X).

Torque Current

The current value of the motor torque current.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Drive Setup Group (Bulletin 284E only)

Motor NP Volts

O

Stop drive before changing this parameter.

Set to the motor nameplate rated volts.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

131

104, 184, 185…187

GET/SET

UINT

Drive Setup

1V AC

20

480V

Based on Drive Rating

128

GET

UINT

Drive Display

1

0

8

Read Only

126

GET

UINT

Drive Display

0.1 sec

0

9999

Read Only

129

GET

UINT

Drive Display

0.01

0.00

Drive Rated Amps x 2

Read Only

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Motor NP Hertz

O

Stop drive before changing this parameter.

Set to the motor nameplate rated frequency.

Motor OL Current

Set to the maximum allowable current. The drive fault on an F7

Motor Over load if the value of this parameter is exceeded by 150% for 60 s.

Minimum Freq

Sets the lowest frequency the drive will output continuously.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

132

184, 185…187, and 190

GET/SET

UINT

Drive Setup

1 Hz

15

400

60 Hz

133

155, 189, 190, 198, 214, 218,

260…261

GET/SET

UINT

Drive Setup

0.1 A

0.0

Drive rated amps x 2

Based on Drive Rating

134

101, 102, 113, 135, 185…187,

260, 261

GET/SET

UINT

Drive Setup

0.1 Hz

0.0

400

0.0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

161

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Maximum Freq

O

Stop drive before changing this parameter.

Sets the highest frequency the drive will output continuously.

Start Source

O

Stop drive before changing this parameter.

Sets the control scheme used to start the Bulletin 284E ArmorStart.

2 = 2-Wire

3 = 2-Wire Level Sensitive

4 = 2-Wire High Speed

5 = Comm Port (RS485 (DSI))

Stop Mode

Valid Stop Mode for the Bulletin 284E ArmorStart are the following:

0 = Ramp, CF Ramp to Stop. Stop command clears active fault.

1 = Coast, CF Coast to Stop. Stop command clears active fault.

2 = DC Brake,CF DC Injection Braking Stop. Stop command clears active fault.

3 = DCBrkAuto, CF DC injection Braking with Auto Shutoff.

Standard DC Injection Braking for value set in Parameter 180 (DC Brake Time) or

Drive shuts off if the drive detects that the motor is stopped. Stop command clears active fault.

4 = Ramp, Ramp to Stop

5 = Coast, Coast to Stop

6 = DC Brake, DC Injection Braking Stop

7 = DC BrakeAuto, DC Injection Stop with Auto Shutoff

Standard DC Injection Braking for value set in Parameter 180 (DC Brake Time) or

Drive shuts off if current limit is exceeded.

8 = Ramp + EM B, CF Ramp to Stop with EM Brake Control. Stop command clears active fault.

9 = Ramp + EM Brk Ramp to Stop with EM Brake Control.

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

135

101, 102, 113, 134, 135, 178,

185…187

GET/SET

UINT

Drive Setup

0.1 Hz

0.0

400

60.0

136

112 and 137

GET/SET

UINT

Drive Setup

0

5

5

137

136, 180…182, 205, 260, 261

GET/SET

UINT

Drive Setup

9

9

0

162

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Speed Reference

Valid Speed References for the

Bulletin 284E ArmorStart are the following:

1 = Internal Freq

2 = Reserved

4 = Preset Freq

5 = Comm Port

6 = StpLogic

9 = Jog Freq

Accel Time 1

Sets the rate of acceleration for all speed increases.

Maximum Freq

Accel Time

= Accel Rate

Decel Time 1

Sets the rate of deceleration for all speed decreases.

Maximum Freq

Decel Time

= Decel Rate

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

138

101, 102, 112, 139, 140,

151…154, 169, 170…177, 232,

240…247, and 250…257

GET/SET

UINT

Drive Setup

0

7

5

139

138, 140, 151…154, 167,

170…177, and 240…247

GET/SET

UINT

Drive Setup

0.1 sec

0.0 sec

600.0 sec

10.0 sec

140

138, 139, 151…154, 168,

170…177, and 240…247

GET/SET

UINT

Drive Setup

0.1 sec

0.1 sec

600.0 sec

10.0 sec

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

163

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Reset To Defaults

O

Stop drive before changing this parameter.

Resets all parameter values to factory defaults.

0 = Ready/Idle (Default)

1 = Factory Rset

Motor OL Ret

Enables/disables the Motor overload

Retention function. When Enabled, the value held in the motor overload counter is saved at power-down and restored at power-up. A change to this parameter setting resets the counter.

0 = Disabled (Default)

1 = Enabled

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

143

GET/SET

BOOL

Drive Setup

1

0

0

141

GET/SET

BOOL

Drive Setup

1

0

0

Drive Advanced Setup Group (Bulletin 284E only)

Digital In 1 SEL (151)

Digital In 2 SEL (152)

Digital In 3 SEL (153)

Digital In 4 SEL (154)

O

Stop drive before changing this parameter.

Selects the function for the digital inputs.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

151…154

112, 114, 138…140, 167, 168,

170…179, 240…247

GET/SET

UINT

Drive Advanced Setup

See Table 20 for details.

164

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Table 20 - Digital Input Options

Option

0

1

2

3

4

5

Name Description

Not Used

Terminal has no function but can be read over network communication via Parameter 114 (Dig In Status).

Acc2 & Dec2

Jog

When active, Parameter 167 (Accel Time 2) and Parameter 168 (Decel Time 2) are used for all ramp rates except Jog.

Can only be tied to one input.

When input is present, drive accelerates according to the value set in Parameter 179 (Jog Accel/Decel) and ramps to the value set in

Parameter 178 (Jog Frequency).

When the input is removed, drive ramps to a stop according to the value set in Parameter 179 (Jog Accel/Decel).

A valid Start command will override this input.

When enable, an F2, Auxiliary Input fault will occur when the input is removed.

Aux Fault

Preset Freq

(Parameters 151 and

152 Default)

Refer to Parameters 170…173 and 174…177.

Local (Parameter 153

Default)

Option not valid for Bulletin 284E ArmorStart.

6

7

8

9

10

11

Comm Port

Clear Fault

RampStop,CF

CoastStop,CF

DCInjStop,CF

Jog Forward

(Parameter 154

Default)

This option is the default setting.

When active, clears active fault.

Causes drive to immediately ramp to stop regardless of how Parameter 137 (Stop Mode) is set.

Causes drive to immediately ramp to stop regardless of how Parameter 137 (Stop Mode) is set.

Causes drive to immediately begin a DC Injection stop regardless of how Parameter 137 (Stop Mode) is set.

Drive accelerates to Parameter 178 (Jog Frequency) according to Parameter 179 (Jog Accel/Decel) and ramps to stop when input becomes inactive. A valid start will override this command.

12

19

20

17

18

21

22

15

16

13

14

23

24

Jog Reverse

10V In Ctrl

20MA In Ctrl

PID Disable

MOP Up

MOP Down

Timer Start

Counter In

Reset Timer

Reset Countr

Rset Tim & Cnt

Logic In1

Logic In2

Drive accelerates to Parameter 178 (Jog Frequency) according to Parameter 179 (Jog Accel/Decel) and ramps to stop when input becomes inactive. A valid start will override this command.

Option not valid for Bulletin 284E ArmorStart.

Option not valid for Bulletin 284E ArmorStart.

Disabled PID function. Drive uses the next valid non-PID speed reference.

Increases the value of Parameter 169 (Internal Freq) at a rate 2 Hz per second. Default of Parameter 169 is 60 Hz.

Decreases the value of Parameter 169 (Internal Freq) at a rate 2 Hz per second. Default of Parameter 169 is 60 Hz.

Clears and starts the timer function. May be used to control the relay

Starts the counter function. May be used to control the relay.

Clears the active timer.

Clears the active counter.

Clear active timer and counter.

Logic Function input number 1. May be used to control the relay (see Parameter 155, Options 11…14). May be used in conjunction with

StepLogic Parameters 240…247 (StpLogic X).

Logic Function input number 2. May be used to control the relay (see Parameter 155, Options 11…14). May be used in conjunction with

StepLogic Parameters 240…247 (StpLogic X).

25

26

Current Lmt2

Anlg Invert

When active, Parameter 218 (Current Limit 2) determines the drive current limit level.

Option not valid for Bulletin 284E ArmorStart.

27 ➊ Em Brk Rise If EM Brake function enabled, this input releases the brake.

➊ Provides programmable control of Em Brk via digital input (1...4)

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

165

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Options

0

15

16

13

14

11

12

9

10

7

8

5

6

3

4

1

2

23

24

21

22

19

20

17

18

Relay Out Sel

Sets the condition that changes the state of the output relay contacts.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

155

133, 156, 192, 240…247,

250…257, 260, 261

GET/SET

UINT

Drive Advanced Setup

0

22

22

Table 21 - Options for the Output Relay Contacts

At Frequency

MotorRunning

Reverse

Motor Overld

Ramp Reg

Above Freq

Above Cur

Above DCVolt

Retries Exst

Above Anlg V

Logic In 1

Logic In 2

Logic In 1 & 2

Logic In 1 or 2

StpLogic Out

Timer Out

Counter Out

Above PF Ang

Anlg In Loss

ParamControl

NonRec Fault

EM Brk Cntrl

Above Fcmd

Msg Control

Name

Ready/Fault (Default)

Description

Relay changes state when power is applied. This indicates the drive is ready for operation. Relay returns drive to shelf state when power is removed or a fault occurs.

Drive reached commanded frequency.

Motor is receiving power from drive.

Drive is commanded to run in reverse direction.

Motor overload condition exists.

Ramp regulator is modifying the programmed accel/decal times to avoid overcurrent or overvoltage fault from occurring.

Drive exceeds the frequency (Hz) value set in Parameter 156 (Relay Out Level) Use Parameter 156 to set threshold.

Drive exceeds the current (% Amps) value set in Parameter 156 (Relay Out Level) Use Parameter 156 to set threshold.

Drive exceeds the DC bus voltage value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold.

Value set in Parameter 192 (Auto Rstrt Tries) is exceeded.

Option not valid for Bulletin 284E ArmorStart.

An input is programmed as Logic In 1 and is active.

An input is programmed as Logic In 2 and is active.

Both Logic inputs are programmed and active.

One or both Logic inputs are programmed and one or both is active.

Drive enters StepLogic step with Digit 3 of Command Word (Parameters 240…247).

Timer has reached value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold.

Counter has reached value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold.

Power factor angle has exceeded the value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold.

Option not valid for Bulletin 284E ArmorStart.

Enables the output to be controlled over the network communications by writing to Parameter 156 (Relay Out Level) (0 = OFF, 1 = ON).

Value set in Parameter 192 (Auto Rstrt Tries) is exceeded.

EM Brake is energized. Program Parameter 260 (EM Brk OFF Delay) and Parameter 261 (EM Brk On Delay) for desired action.

The Current Command Frequency exceeds the value set in Parameter 156 (Relay Out Level).

With Drive FRN4.01 or later, this option enables the output to be controlled over the network communication.

166

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Relay Out Level

Sets the trip point for the digital output relay if the value of Parameter

155 (Relay Out Sel) is 6, 7, 8, 10, 16, 17, 18, or 20.

Parameters 155 Setting

6

7

8

17

18

10

16

20

Parameter 156 Min./Max.

0/400 Hz

0/180%

0/815V

0/100%

0.1/9999 sec

1/9999 counts

1/180

°

0/1

Accel Time 2

When active, sets the rate of acceleration for all speed increases except for jog.

Maximum Freq

Accel Time

= Accel Rate

Parameter 135

(Maximum Freq)

Dec eler ation

Speed

Ac celer ation

0

0

Param.

139 or

167

(Accel

Time x)

Time Param.

140 or

168

(Decel

Time x)

Decel Time 2

When active, sets the rate of deceleration for all speed decreases except for jog.

Maximum Freq

Decel Time

= Decel Rate

Parameter 135

(Maximum Freq)

Dec eler ation

Speed

Ac celer ation

0

0

Param.

139 or

167

(Accel

Time x)

Time Param.

140 or

168

(Decel

Time x)

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

156

155

GET/SET

UINT

Drive Advanced Setup

0.1

0.0

9999

0.0

167

139, 151…154, 170…177,

240…247

GET/SET

UINT

Drive Advanced Setup

0.1 sec

0.0

600.0

20.0

168

140, 151…154, 170…177,

240…247

GET/SET

UINT

Drive Advanced Setup

0.1 sec

0.0

600.0

20.0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

167

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

168

Internal Freq

Provide the frequency command to drive when Parameter 138 (Speed

Reference) is set to “1” (Internal Freq).

When enabled, this parameter will change the frequency command in real time.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

170 (Preset Freq 0)

171 (Preset Freq 1)

172 (Preset Freq 2)

173 (Preset Freq 3)

174 (Preset Freq 4)

175 (Preset Freq 5)

176 (Preset Freq 6)

177 (Preset Freq 7)

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

.

Table 22 - Parameters 170…177 Preset Freq Options

Values

Provides a fixed frequency command value when Parameters 151…154 (Digital In x

Sel) is set to Option 4 (Preset Frequencies).

170 Default ➊

171 Default

172 Default

173 Default

174 Default

175 Default

176 Default

177 Default

Min./Max.

Display

Input State of Digital In 1 (I/

O Terminal 05 when

Parameter 151 = 4)

0

1

0

1

0

Input State of Digital In 2 (I/

O Terminal 06 when

Parameter 152 = 4)

0

0

1

1

0

Input State of Digital In 3 (I/

O Terminal 07 when

Parameter 153 = 4)

0

0

0

0

1

Frequency

Source

170 (Preset Freq 0)

171 (Preset Freq 1)

172 (Preset Freq 2)

173 (Preset Freq 3)

174 (Preset Freq 4)

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

169

138

GET/SET

UINT

Drive Advanced Setup

0.1 Hz

0.0

400.0

60.0

170…173, 174…177

138…140, 151…154, 167, 168,

240…247, 250…257

GET/SET

UINT

Drive Advanced Setup

0.1 Hz

0.0

400.0

See Table 22

0.0 Hz

5.0 Hz

10.0 Hz

20.0 Hz

30.0 Hz

40.0 Hz

50.0 Hz

60.0 Hz

0.0/400.0 Hz

0.1 Hz

Accel/Decel

Parameter

Used

(Accel Time 1)/(Decel Time 1)

(Accel Time 1)/(Decel Time 1)

(Accel Time 2)/(Decel Time 2)

(Accel Time 2)/(Decel Time 2)

(Accel Time 3)/(Decel Time 3)

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Input State of Digital In 1 (I/

O Terminal 05 when

Parameter 151 = 4)

1

0

1

Input State of Digital In 2 (I/

O Terminal 06 when

Parameter 152 = 4)

0

1

1

Input State of Digital In 3 (I/

O Terminal 07 when

Parameter 153 = 4)

1

1

1

Frequency

Source

175 (Preset Freq 5)

176 (Preset Freq 6)

177 (Preset Freq 7)

Accel/Decel

Parameter

Used

(Accel Time 3)/(Decel Time 3)

(Accel Time 4)/(Decel Time 4)

(Accel Time 4)/(Decel Time 4)

➋When a Digital Input is set to "Accel 2 & Decel 2", and the input is active, that input overrides the settings in this table.

Jog Frequency

Sets the output frequency when the jog command is issued.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

178

135, 151…154, 179

GET/SET

UINT

Drive Advanced Setup

0.1 Hz

0.0

400.0

10.0

Jog Accel/Decel

Sets the acceleration and deceleration time when a jog command is issued.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

179

151…154, 178

GET/SET

UINT

Drive Advanced Setup

0.1 sec

0.1

600.0

10.0

DC Brake Time

Sets the length of time that DC brake current is injected into the motor.

Refer to Parameter 181 (DC Brake

Level).

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

180

137, 181

GET/SET

UINT

Drive Advanced Setup

0.1 sec

0.0

99.9

(Setting of 99.9 = Continuous)

0.0

➊To activate 170 (Preset Freq 0) set 138 (Speed Reference) to "4" (Preset Freq).

➋When a Digital Input is set to "Accel 2 & Decel 2", and the input is active, that input overrides the settings in this table.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

169

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

DC Brake Level

Defines the maximum DC brake current, in amps, applied to the motor when Parameter 137 (Stop Mode) is set to either "Ramp" or "DC Brake".

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

181

137, 180

GET/SET

UINT

Drive Advanced Setup

0.1 A

0.0

Drive rated amps X 1.8

Drive rated amps X 0.05

ATTENTION:

Ramp-to-Stop Mode DC Injection Braking Mode

Voltage

Stop Command

Voltage

Speed

Time

[DC Brake Time]

}

[DC Brake Level]

Speed

[DC Brake Time]

Stop Command

Time

}

[DC Brake Level]

If a hazard of injury due to movement of equipment or material exists, an auxiliary mechanical braking device must be used.

This feature should not be used with synchronous or permanent magnet motors.

Motors may be demagnetized during braking.

DB Resistor Sel

Stop drive before changing this parameter.

Enables/disables external dynamic braking.

Setting

0

1

2

3…99

Min./Max.

Disabled

Normal RA Res (5% Duty Cycle)

No Protection (100% Duty Cycle) x% Duty Cycle Limited (3…99% of Duty Cycle)

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

182

137

GET/SET

UINT

Drive Advanced Setup

1

0

99

0

170

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

S Curve %

Sets the percentage of acceleration or deceleration time that is applied to ramp as S Curve. Time is added, half at the beginning and half at the end of the ramp.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Figure 68 - S Curve

Example:

Accel Time = 10 Seconds

S Curve Setting = 50%

S Curve Time = 10 x 0.5 = 5 Seconds

Total Time = 10 + 5 = 15 Seconds

Target

Target 2

50% S Curve

183

GET/SET

UINT

Drive Advanced Setup

1%

0

100

0% disabled

1/2 S Curve Time

2.5 Seconds

Accel Time

10 Seconds

Total Time to Accelerate = Accel Time + S Curve Time

1/2 S Curve Time

2.5 Seconds

Boost Select

Sets the boost voltage (% of

Parameter 131 (Motor NP Volts)) and redefines the Volts per Hz curve.

Active when Parameter 225 (Torque

Perf Mode) = 0 (V/Hz). Drive may add additional voltage unless Option 5 is selected.

See Table 23 for details.

Table 23 - Boost Select Options

Options

0

1

2

3

4

Custom V/Hz

30.0, VT

35.0, VT

40.0, VT

45.0, VT

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Description

184

104, 131, 132, 185…187, 225

GET/SET

UINT

Drive Advanced Setup

0

14

8

Variable Torque

(Typical fan/pump curves)

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

171

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Table 23 - Boost Select Options

Options

5

6

9

10

7

8

13

14

11

12

Description

0.0 no IR

0.0

2.5, CT (default for 5 Hp/4.0 kW Drive)

5.0, CT (default)

7.5, CT

10.0, CT

12.5, CT

15.0, CT

17.5, CT

20.0, CT

Figure 69 - Boost Select

100

Constant Torque

50

1/2 [Motor NP Volts]

2

1

4

3

Settings

5-14

0 50

% P132 [Motor NP Hertz]

100

Start Boost

Sets the boost voltage (% of

Parameter 131 (Motor NP Volts)) and redefines the Volts per Hz curve when

Parameter 184 (Boost Select) = 0

(Custom V/Hz) and Parameter 225

(Torque Perf Mode) = 0 (V/Hz)

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

185

131, 132, 134, 135, 184,

186…188, 225

GET/SET

UINT

Drive Advanced Setup

1.1%

0.0%

25.0%

2.5%

172

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Figure 70 - Start Boost

Parameter 188 (Maximum Voltage)

Parameter 131 (Motor NP Volts)

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Parameter 187 (Break Frequency)

Parameter 134 (Minimum Freq) Frequency

Parameter 132 (Motor NP Hertz)

Parameter 135 (Maximum Freq)

Brake Voltage

Sets the frequency where brake voltage is applied when Parameter

184 (Boost Select) = 0 (Custom

V/Hz) and Parameter 225 (Torque Perf

Mode) = 0 (V/Hz).

Brake Frequency

Sets the frequency where brake frequency is applied when Parameter

184 (Boost Select) = 0 (Custom V/Hz) and Parameter 225 (Torque Perf

Mode) = 0 (V/Hz).

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

186

131, 132, 134, 135, 184, 185, 187,

188, 225

GET/SET

UINT

Drive Advanced Setup

1.1%

0.0%

100.0%

25.0%

187

131, 132, 134, 135, 184, 185, 186,

188, 225

GET/SET

UINT

Drive Advanced Setup

0.1 Hz

0.0 Hz

400.0 Hz

15.0 Hz

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

173

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Maximum Voltage

Sets the highest voltage the drive will output.

Current Limit 1

Maximum output current allowed before current limiting occurs

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Motor OL Select

Drive provides Class 10 motor overload protection. Settings 0…2, select the derating factor for I

2 t overload function.

0 = No Derate

1 = Min. Derate

2 = Max. Derate

No Derate

100

80

60

40

20

0

0 25 50 75 100 125 150 175 200

% of P132 [Motor NP Hertz]

Figure 71 - Overload Trip Curves

Min Derate

100

80

60

40

20

0

0 25 50 75 100 125 150 175 200

% of P132 [Motor NP Hertz]

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

190

132, 133

GET/SET

UINT

Drive Advanced Setup

1

0

2

0

Max Derate

100

80

60

40

20

0

0 25 50 75 100 125 150 175 200

% of P132 [Motor NP Hertz]

188

104, 185, 186, 187

GET/SET

UINT

Drive Advanced Setup

1V AC

20V AC

Drive Rated Volts

Drive Rated Volts

189

133, 218

GET/SET

UINT

Drive Advanced Setup

0.1 A

0.1 A

Drive rated amps X 1.8

Drive rated amps X 1.5

174

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

PWM Frequency

Sets the carrier frequency the PWM output waveform. The Figure 72 provides derating guidelines based on the PWM frequency setting.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Figure 72 - Derating Guidelines Based on the PWM Frequency Setting

100

96

92

88

84

80

76

72

68

64

60

56

52

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Carrier Frequency (kHz)

191

224

GET/SET

UINT

Drive Advanced Setup

0.l Hz

2.0 Hz

16.0 Hz

4.0 Hz

Auto Rstrt Tries

Set the maximum number of times the drive attempts to reset a fault and restart.

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

192

155, 193

GET/SET

UINT

Drive Advanced Setup

1

0

9

0

Clear a Type 1 Fault and Restart the Drive

1.

Set Parameter 192 (Auto Rstrt Tries) to a value other than 0.

2.

Set Parameter 193 (Auto Rstrt Delay) to a value other than 0.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

175

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Clear an Overvoltage, Undervoltage, or Heatsink OvrTmp Fault without Restarting the Drive

1.

Set Parameter 192 (Auto Rstrt Tries) to a value other than 0.

2.

Set Parameter 193 (Auto Rstrt Delay) to 0.

ATTENTION: Equipment damage and/or personal injury may result if this parameter is used in an inappropriate application. Do not use this function without considering applicable local, national, and international codes, standards, regulations, or industry guidelines.

Auto Rstrt Delay

Sets time between restart attempts when Parameter 192 (Auto Rstrt Tries) is set to a value other than zero.

Start at PowerUp

Stop drive before changing this parameter.

Enables/disables a feature that allows a Start or Run command to automatically cause the drive to resume running at command speed after the drive input is restored. Requires a digital input configured Run or Start and a valid start contact.

This parameter will not function if Parameter 136 (Start Source) is set to Option 4,

(2-W High Speed).

0 = Disabled

1 = Enabled

ATTENTION: Equipment damage and/or personal injury may result if this parameter is used in an inappropriate application. Do not use this function without considering applicable local, national, and international codes, standards, regulations, or industry guidelines.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

193

192

GET/SET

UINT

Drive Advanced Setup

0.1 sec

0.0

300.0 sec

1.0 sec

194

192

GET/SET

UINT

Drive Advanced Setup

0

1

0

176

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Reverse Disable

Stop drive before changing this parameter.

Enables/disables the function that allows the direction of the motor rotation to be changed. The reverse command may come from a digital command or serial command. All reverse inputs including two-wire Run

Reverse will be ignored with reverse disabled.

0 = Disabled

1 = Enabled

Flying Start En

Sets the condition that allows the drive to reconnect to a spinning motor at actual RPM.

0 = Disabled

1 = Enabled

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Compensation

Enables/disables correction options that may improve problems with motor instability,

0 = Disabled

1 = Electrical (Default)

Some drive/motor combinations have inherent instabilities which are exhibited as non-sinusoidal motor currents. This setting attempts to correct this condition

2 = Mechanical

Some motor/load combinations have mechanical resonances which can be excited by the drive current regulator.

This setting slows down the current regulator response and attempts to correct this condition.

3 = Both

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

195

106

GET/SET

UINT

Drive Advanced Setup

0

1

0

196

GET/SET

UINT

Drive Advanced Setup

1

0

0

197

GET/SET

UINT

Drive Advanced Setup

0

3

1

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

177

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

SW Current Trip

Enables/disables a software instantaneous (within 100 ms) current trip.

Process Factor

Scales the output frequency value displayed by Parameter 110 (Process

Display).

Output Freq x Process Factor = Process

Display

Fault Clear

Stop drive before changing this parameter.

Resets a fault and clears the fault queue. Used primarily to clear a fault over network communications.

0 = Ready/Idle (Default)

1 = Reset Fault

2 = Clear Buffer (Parameters

107…109 (Fault x Code))

Program Lock

Protects parameters against change by unauthorized personnel.

0 = Unlocked

1 = Locked

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

200

GET/SET

UINT

Drive Advanced Setup

2

0

0

201

GET/SET

UINT

Drive Advanced Setup

1

0

0

198

133

GET/SET

UINT

Drive Advanced Setup

0.1 A

0.0

Drive rated amps x 2

0.0 (Disabled)

199

110

GET/SET

UINT

Drive Advanced Setup

0.1

0.1

999.9

30.0

178

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Testpoint Sel

Used by Rockwell Automation field service personnel.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Comm Data Rate

This parameter is not available for use with the ArmorStart Distributed

Motor Controller.

CommNode Addr

This parameter is not available for use with the ArmorStart Distributed

Motor Controller.

Comm Loss Action

Selects the drive’s response to a loss of the communication connection or excessive communication errors.

0 = Fault (Default)

Drive will fault on an F81 Comm Loss and coast to stop

1 = Coast Stop

Stops drive via coast to stop

2 = Stop

Stops via Parameter 137 (Stop Mode) setting

3 = Continue Last

Drive continues operating at communication commanded speed saved in RAM.

Parameter Number

Parameter Number

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

202

119

GET/SET

UINT

Drive Advanced Setup

1 Hex

0

FFFF

400

203

204

205

115, 137, 206

GET/SET

UINT

Advanced Program Group

0

3

0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

179

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

180

Comm Loss Time

Sets the time that the drive remain in communication loss before implanting the option selected in

Parameter 205 (Comm Loss Action).

Slip Hertz @ FLA

Compensates for the inherent slip in an induction motor. This frequency is added to the commanded output frequency based on motor current.

Process Time Lo

Scales the time value when the drive is running at Parameter 134

(Minimum Freq). When set to a value other than zero, Parameter 110

(Process Display) indicates the duration of the process.

Process Time Hi

Scales the time value when the drive is running at Parameter 135

(Maximum Freq). When set to a value other than zero, Parameter 110

(Process Display) indicates the duration of the process.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

206

115, 205

GET/SET

UINT

Advanced Program Group

0.1 sec

0.1 sec

60.0 sec

15.0 sec

214

133

GET/SET

UINT

Drive Advanced Setup

0.1 Hz

0.0 Hz

10.0 Hz

2.0 Hz

215

110, 134

GET/SET

UINT

Drive Advanced Setup

Hz

0.00

99.99

0.00

216

110, 135

GET/SET

UINT

Drive Advanced Setup

Hz

0.0

99.99

0.00

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Bus Reg Mode

Enables the bus regulator.

0 = Disable

1 = Enabled

Current Limit 2

Maximum output current allowed before current limiting occurs. This parameter is only active if Parameters

151…154 (Digital In x Sel) is set to

Option 25 (Current Lmt2) and is active.

Skip Frequency

Sets the frequency at which the drive will not operate.

Skip Freq Band

Determines the band width around

Parameter 219 (Skip Frequency).

Parameter 220 (Skip Freq Band) is split applying 1/2 above and 1/2 below the actual skip frequency. A setting of 0.0 disables this parameter.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

217

GET/SET

UINT

Drive Advanced Setup

0

1

1

218

133, 151…154, 189

GET/SET

UINT

Drive Advanced Setup

0.1 A

0.0 A

Drive rated amps x 1.8

Drive rated amps x 1.5

219

220

GET/SET

UINT

Drive Advanced Setup

0.1 Hz

0.0

400.0 Hz

0.0 Hz

220

219

GET/SET

UINT

Drive Advanced Setup

0.1 Hz

0.0 Hz

30.0 Hz

0.0 Hz

181

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Figure 73 - Skip Frequency Band

Frequency

Command

Frequency

Drive Output

Frequency

Skip Frequency

182

2x Skip

Frequency Band

Time

Stall Fault Time

Sets for the fault time that the drive will remain in stall mode before a fault is issued.

0 = 60 sec (Default)

1 = 120 sec

2 = 240 sec

3 = 360 sec

4 = 480 sec

5 = Flt Disabled

Var PWM Disable

Stop drive before changing this parameter.

Enables/disables a feature that varies the carrier frequency for the PWM output waveform defined by

Parameter 191 (PWM Frequency).

0 = Enabled

1 = Disabled

Disabling this feature when low frequency condition exists may result in IGBT stress and nuisance tripping.

Torque Perf Mode

Stop drive before changing this parameter.

Enables/disables sensorless vector control operation.

0 = V/Hz

1 = Sensrls Vect

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

221

GET/SET

UINT

Drive Advanced Setup

0

5

0

224

191

GET/SET

UINT

Drive Advanced Setup

1

0

0

225

184…187, 227

GET/SET

UINT

Drive Advanced Setup

0

1

1

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Motor NP FLA

Set to the motor nameplate full load amps.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Autotune

Stop drive before changing this parameter.

Provides an automatic method for setting Parameter 228 (IR Voltage Drop) and Parameter

229 (Flux Current Ref), which affect sensorless vector performance. Parameter 226 (Motor

NP FLA) must be set to the motor nameplate full load amps before running the Autotune procedure.

0 = Ready/Idle (Default)

1 = Static Tune

2 = Rotate Tune

Ready (0) – Parameter returns to this setting following a Static Tune or Rotate Tune.

Static Tune (1) – A temporary command that initiates a non-rotational motor stator resistance test for the best possible automatic setting of Parameter 228 (IR Voltage Drop). A start command is required following initiation of this setting. The parameter returns to

Ready (0) following the test, at which time another start transition is required to operate the drive in normal mode. Used when motor cannot be uncoupled from the load.

Rotate Tune (2) – A temporary command that initiates a Static Tune followed by a rotational test for the best possible automatic setting of Parameter 229 (Flux Current Ref). A start command is required following initiation of this setting. The parameter returns to

Ready (0) following the test, at which time another start transition is required to operate the drive in normal mode.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

IMPORTANT

Used when motor is uncoupled from the load. Results may not be valid if a load is coupled to the motor during this procedure.

226

227

GET/SET

UINT

Drive Advanced Setup

0.1 A

0.1

Drive rated amps x 2

Drive rated amps

227

225, 226, 228, 229

GET/SET

UINT

Drive Advanced Setup

0

3

0

ATTENTION: Rotation of the motor in an undesired direction can occur during this procedure. To guard against possible injury and/or equipment damage, it is recommended that the motor be disconnected from the load before proceeding.

If the Autotune routine fails, an F80 SVC Autotune fault is displayed.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

183

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

IR Voltage Drop

Value of volts dropped across the resistance of the motor stator.

Flux Current Ref

Value of amps for full motor flux.

PID Trim Hi

Sets the maximum positive value that is added to a PID reference when PID trim is used.

PID Trim Lo

Sets the minimum positive value that is added to a PID reference when PID trim is used.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

228

227

GET/SET

UINT

Drive Advanced Setup

0.1V AC

0.0

230

Based on Drive Rating

229

227

GET/SET

UINT

Drive Advanced Setup

0.01 A

0.00

Motor NP Volts

Based on Drive Rating

230

GET/SET

UINT

Drive Advanced Setup

0.1

0.0

400.0

60.0

231

GET/SET

UINT

Drive Advanced Setup

0.1

0.0

400.0

0.1

184

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

PID Ref Sel

Stop drive before changing this parameter.

Enables/disables PID mode and selects the source of the PID reference.

Valid PID Ref Select for the Bulletin

284E ArmorStart are the following:

0 = PID Disable

1 = PID Setpoint

4 = Comm Port

5 = Setpnt Trim

8 = Comm Trim

PID Feedback Sel

Valid PID Feedback Sel command for the Bulletin 284E ArmorStart is the following;

2 = Comm Port

PID Prop Gain

Sets the value for the PID proportional component when the PID mode is enabled by Parameter 232 (PID Ref

Sel).

PID Integ Time

Sets the value for the PID integral component when the PID mode is enabled by Parameter 232 (PID Ref

Sel).

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

232

138

GET/SET

UINT

Drive Advanced Setup

0

9

0

233

GET/SET

UINT

Drive Advanced Setup

2

0

0

234

GET/SET

UINT

Drive Advanced Setup

0.01

0.00

99.99

0.01

235

GET/SET

UINT

Drive Advanced Setup

0.1 sec

0.0 sec

999.9 sec

0.1 sec

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

185

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

PID Diff Rate

Sets the value for the PID differential component when the PID mode is enabled by Parameter 232 (PID Rel

Sel).

PID Setpoint

Provides an internal fixed value for process setpoint when the PID mode is enabled by Parameter 232 (PID Ref

Sel).

PID Deadband

Sets the lower limit of the PID output.

PID Preload

Sets the value used to preload the integral component on start or enable.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

238

GET/SET

UINT

Drive Advanced Setup

0.1%

0.0%

10.0%

0.0%

239

GET/SET

UINT

Drive Advanced Setup

0.0 Hz

0.0 Hz

400.0 Hz

0.0 Hz

236

GET/SET

UINT

Drive Advanced Setup

0.01 (1/sec)

0.00 (1/sec)

99.99 (1/sec)

0.01 (1/sec)

237

GET/SET

UINT

Drive Advanced Setup

0.1%

0.0%

10.0%

0.0%

186

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

StpLogic 0 (240) (see Table 25)

StpLogic 1 (241) (see Table 25)

StpLogic 2 (242) (see Table 26)

StpLogic 3 (243) (see Table 27)

StpLogic 4 (244)

StpLogic 5 (245)

StpLogic 6 (246)

StpLogic 7 (247)

Stop drive before changing this parameter.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

240…247

GET/SET

UINT

Drive Advanced Setup

0001 baFF

00F1

Parameters 240…247 are only active if Parameter 138 (Speed Reference) is set to “6” (StpLogic).

These parameters can be used to create a custom profile of frequency commands.

Each step can be based on time, status of a Logic input, or a combination of time and the status of a Logic input.

Digits 0…3 for each (StpLogic x) parameter must be programmed according to the desired profile. Refer to Tables 25, 26 and 27.

A Logic input is established by setting a digital input, Parameters 151…154

(Digital In x Sel), to 23 (Logic In1) and/or 24 (Logic In2).

A time interval between steps can be programmed using Parameters 250…257

(StpLogic Time x). See Table 24 for related parameters.

The speed for any step is programmed using Parameters 170…177 (Preset Freq x).

Table 24 - Parameters 240…257

StepLogic Parameter (Active when

138 = 6 (StpLogic))

240 (StpLogic 0)

241 (StpLogic 1)

242 (StpLogic 2)

243 (StpLogic 3)

244 (StpLogic 4)

245 (StpLogic 5)

246 (StpLogic 6)

247 (StpLogic 7)

Related Preset Frequency

Parameter (Can be activated independent of

StepLogic Parameters)

170 (Preset Freq 0)

171 (Preset Freq 1)

172 (Preset Freq 2)

173 (Preset Freq 3)

174 (Preset Freq 4)

175 (Preset Freq 5)

176 (Preset Freq 6)

177 (Preset Freq 7)

Related StepLogic Time Parameter

(Active when 240…247 Digit 0 or 1 are set to 1, b, C, d, or E)

250 (StpLogic Time 0)

251 (StpLogic Time 1)

252 (StpLogic Time 2)

253 (StpLogic Time 3)

254 (StpLogic Time 4)

255 (StpLogic Time 5)

256 (StpLogic Time 6)

257 (StpLogic Time 7)

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

187

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

188

How StepLogic Works

The StepLogic sequence begins with a valid start command. A normal sequence always begins with 240 (StpLogic 0).

Digit 0: Logic For Next Step —

This digit defines the logic for the next step, as defined in Table 13. When the condition is met the program advances to the next step, Step 0 follows Step 7. For example, Digit 0 is set 3. program advances to next step if Parameters 151…154 (Digital In x Sel), is set to Option 24 (Logic In2) and becomes active.

Digit 1: Logic to Jump to a Different Step —

For all settings other than F, when the condition is met, the program overrides Digit 0 and jumps to the step defined by Digit 2.

Digit 2: Different Step to Jump —

When the condition for Digit 1 is met, the

Digit 2 setting determines the next step or to end the program, refer to Table 26.

Digit 3: Step Settings —

This digit defines what accel/decel profile the speed command will follow and the direction of the command for the current step. In addition, if a relay (Parameter 155) is set to Option 15 (StpLogic Out), this parameter can control the status of that output.

Any StepLogic parameter can be programmed to control a relay, but you cannot control different outputs based on the condition of different StepLogic commands.

StepLogic Settings

The logic for each function is determined by the four digits for each StepLogic parameter. The following is a listing of the available settings for each digit. Refer

to Appendix E for details.

Table 25 - Digit 0 and Digit 1 Settings

5

6

3

4

0

1

2

7

8

9

Skip Step (Jump Immediately)

Step Based on (StpLogic Time x)

Step if Logic In1 is Active

Step if Logic In2 is Active

Step if Logic In1 is Not Active

Step if Logic In2 is Not Active

Stop if either Logic In1 and Logic In2 is Active

Stop if both Logic In1 and Logic In2 is Active

Stop if neither Logic In1 and Logic In2 is Active

Step if Logic In1 is Active and Logic In2 is Not Active

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Table 25 - Digit 0 and Digit 1 Settings

C d

A b

E

F

Step if Logic In2 is Active and Logic In1 is Not Active

Step after (StpLogic Time x) and Logic In1 is Active

Step after (StpLogic Time x) and Logic In2 is Active

Step after (StpLogic Time x) and Logic In1 is Not Active

Step after (StpLogic Time x) and Logic In2 is Not Active

Do Not Stop/Ignore Digit 2 Settings

Table 26 - Digit 2 Settings

6

7

4

5

2

3

0

1

8

9

A

Jump to Step 0

Jump to Step 1

Jump to Step 2

Jump to Step 3

Jump to Step 4

Jump to Step 5

Jump to Step 6

Jump to Step 7

End Program (Normal Stop)

End Program (Coast to Stop)

End Program and Fault (F2)

Table 27 - Digit 3 Settings

8

9

6

7

A b

Required

Setting

0

1

4

5

2

3

Accel/Decel Parameter

Used

Accel/Decel 1

Accel/Decel 1

Accel/Decel 1

Accel/Decel 1

Accel/Decel 1

Accel/Decel 1

Accel/Decel 2

Accel/Decel 2

Accel/Decel 2

Accel/Decel 2

Accel/Decel 2

Accel/Decel 2

OFF

OFF

OFF

ON

ON

ON

StepLogic

Output State

OFF

OFF

OFF

ON

ON

ON

Commanded Direction

FWD

REV

No Output

FWD

REV

No Output

FWD

REV

No Output

FWD

REV

No Output

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

189

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

StpLogic Time 0 (250)

StpLogic Time 1 (251)

StpLogic Time 2 (252)

StpLogic Time 3 (253)

StpLogic Time 4 (254)

StpLogic Time 5 (255)

StpLogic Time 6 (256)

StpLogic Time 7 (257)

Sets the time to remain in each step if the corresponding Parameter 138

(Speed Reference) is set to “6”

(StpLogic), Parameter 240-247

(StpLogic x), digits 0…3 set to b, C, d or E (Step after (StpLogic Time x).

EM Brk OFF Delay

Sets the time the drive will remain at minimum frequency before ramping to the commanded frequency and energizing the brake coil relay when

Parameter 137 (Stop Mode) is set to

Option 8 or 9.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Figure 74 - EM Brk OFF Delay

Frequency

260 [EM Brk Off Delay]

Ramp A cc el

Minimum Freq

Start

Commanded

EM Brk

Energized (Off)

Time

Stop

Commanded

Ramp D ecel

261 [EM Brk On Delay]

EM Brk

De-Energized (On)

Drive Stops

250…257

138, 155, 171…177, 240…247

GET/SET

UINT

Drive Advanced Setup

0.1 sec

0.0 sec

999.9 sec

30.0 sec

260

134, 137

GET/SET

UNIT

Drive Advanced Setup

0.01 sec

0.01 sec

10 sec

0.0 sec

190

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

EM Brk On Delay

Sets the time the drive will remain at minimum frequency before stopping and de-energizing the brake coil relay when Parameter 137 (Stop Mode) is set to Option 8 or 9.

MOP Reset Sel

Sets the drive to save the current MOP

Reference command.

0 = Zero MOP Ref

This option clamps Parameter 169

(Internal Freq) at 0.0 Hz when drive is not running.

1 = Save MOP Ref (Default)

Reference is saved in Parameter 169

(Internal Freq).

DB Threshold

Sets the DC bus Voltage Threshold for

Dynamic Brake operation. If the DC bus voltage falls below the value set in this parameter, the Dynamic Brake will not turn on. Lower values will make the Dynamic Braking function more responsive, but may result in nuisance Dynamic Brake activation.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

261

134, 137

GET/SET

UNIT

Drive Advanced Setup

0.01 sec

0.01 sec

10.00 sec

0.0 sec

262

169

Get/Set

UINT

Drive Advanced Setup

0

1

1

263

GET/SET

UINT

Drive Advanced Setup

0.0%

110.0%

100%

ATTENTION: Equipment damage may result if this parameter is set to a value that causes the dynamic braking resistor to dissipate excessive power. Parameter settings less than 100% should be carefully evaluated to ensure that the dynamic brake resistor’s wattage rating is not exceeded. In general, values less than 90% are not needed. This parameter’s setting is especially important if Parameter 182 (DB Resistor

Sel) is set to “2” (No Protection).

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

191

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Comm Write Mode

Determines whether parameter changes made over communication port are saved and stored in Non-

Volatile Storage (NVS) or RAM only. If they are stored in RAM, the values will be lost at power-down.

0 = Save (Default)

1 = RAM Only

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

264

GET/SET

BOOL

Drive Advanced Setup

0

1

0

ATTENTION: Risk of equipment damage exists. If a controller is programmed to write parameter data to Non-Volatile Storage (NVS) frequently, the NVS will quickly exceed its life cycle and cause the drive to malfunction. Do not create a program that frequently uses configurable outputs to write parameter data to NVS unless Parameter 264 (Comm

Write Mode) is set to Option 1.

PID Invert Error

When set to “Inverted”, changes the sign of the PID error. This causes an increase in the drive output frequency with PID Feedback greater than PID

Setpoint, and a decrease in drive output frequency with PID Feedback less than PID Setpoint.

0 = Not Inverted (Default)

1 = Inverted

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

267

GET/SET

BOOL

Drive Advanced Setup

1

0

0

192

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Linear List of Parameters for Bulletin 280E/281E and

Bulletin 284E

Table 28 - ArmorStart Common Parameters

9

10

11

12

13

16

19

20

17

18

21

22

Parameter

Number

1

4

5

2

3

6

7

8

14

15

23

24

25

Parameter Name

Hdw Inputs

Network Inputs

Network Outputs

Trip Status

Starter Status

InternalLinkStat

Starter Command

Network Override

Description

This parameter provides status of hardware inputs.

This parameter provides status of network inputs.

This parameter provides status of network outputs.

This parameter provides trip identification.

This parameter provides the status of the starter.

Status of the internal network connections.

The parameter provides the status of the starter command.

This parameter allows for the local logic to override a

Network fault.

This parameter allows for local logic to override a absence of an I/O connection.

Comm Override

Reserved

Reserved

Reserved

Prod Assy Word 0

Prod Assy Word 1

Prod Assy Word 2

This parameter is used to build bytes 0…1 for produced assembly 150 or 151.

This parameter is used to build bytes 2…3 for produced assembly 150 or 151.

This parameter is used to build bytes 4…5 for produced assembly 150 or 151.

This parameter is used to build bytes 6…7 for produced assembly 150 or 151.

Prod Assy Word 3

Reserved

Reserved

Reserved

Reserved

Reserved

Breaker Type

Pr FltReset Mode

Pr Fault Enable

Pr Fault Reset

This parameter identifies the Bulletin 140M used in this product.

This parameter configures the Protection Fault reset mode.

This parameter enables the Protection Fault by setting the bit to 1.

This parameter resets the Protection Fault on a transition 0 > 1.

Factory Default

0

0

0

0

0

0

0

0

0

0

0

0

0

0 =

140M-D8N-C10

0 = Manual

12419

0

Group

Basic Status

Basic Status

Basic Status

Basic Status

Basic Status

Basic Status

Basic Status

Misc. Configuration

Misc. Configuration

Network Configuration

Network Configuration

Network Configuration

Network Configuration

Network Configuration

Network Configuration

Basic Status

Network Configuration

Network Configuration

Basic Status

Starter Protection

Starter Protection

Starter Protection

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Controller

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

193

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Table 28 - ArmorStart Common Parameters

Parameter

Number

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Parameter Name

Str Net FltState

Str Net FltValue

Str Net IdlState

Str Net IdlValue

Off-to-On Delay

On-to-Off Delay

In Sink/Source

OutA Pr FltState

OutA Pr FltValue

OutA Net FltState

OutA Net FltValue

OutA Net IdlState

OutA Net IdlValue

OutB Pr FltState

OutB Pr FltValue

OutB Net FltState

OutB Net FltValue

OutB Net IdlState

Description

This parameter in conjunction with Parameter 27 (Str

Net FltValue) defines how the starter will respond when a fault occurs as determined by Parameter 27.

This parameter determines how the starter will be commanded in the event of a fault.

This parameter determines response when Idle fault occurs.

This parameter determines the state that starter assumes when the network is idle and Parameter 28

(Str Net IdlState) is set to “Goto Fault Value”.

This parameter allows the installer to program a time duration before being reported ON.

This parameter allows the installer to program a time duration before being reported OFF.

This parameter allows the installer to program the inputs to be sink or source.

This parameter in conjunction with Parameter 34 (OutA

Pr FltValue) defines how Output A will respond when a trip occurs.

This parameter determines the state the Output A.

This parameter in conjunction with Parameter 36 (OutA

Net FltValue) defines how Output A will respond.

This parameter determines the state that Output.

This parameter in conjunction with Parameter 38 (OutA

Net IdlValue) defines how Output A will respond when the network is idle.

This parameter determines the state that Output A assumes when the network is idle and Parameter 37

(OutA Net IdlState) is set to “0”.

This parameter in conjunction with Parameter 40 (OutB

Pr FltValue) defines how Output B will respond when a protection trip occurs.

This parameter determines the state the Out B assumes when a protection trip occurs and Parameter 39 (OutB

Pr FltState) is set to “0”.

This parameter in conjunction with Parameter 42 (OutB

Net FltValue) defines how Output B will respond when a network fault occurs.

This parameter determines the state that Output B assumes when a network fault occurs and Parameter

41 (OutB Net FltState) is set to “0”.

This parameter in conjunction with Parameter 44 (OutB

Net IdlValue) defines how Output B will respond when the network is idle.

Factory Default

0 =

Goto Fault Value

0 = OFF

0 =

Goto Fault Value

0 = OFF

0

0

0 = Sink

0 =

Goto PrFlt Value

0 = Open

0 =

Goto Fault Value

0 = Open

0 =

Goto Idle Value

0 = Open

0 =

Goto PrFlt Value

0 = Open

0 =

Goto Idle Value

0 = Open

0 =

Goto PrFlt Value

Group

Starter Protection

Starter Protection

Starter Protection

Starter Protection

User I/O Configuration

User I/O Configuration

User I/O Configuration

User I/O Configuration

User I/O Configuration

User I/O Configuration

User I/O Configuration

User I/O Configuration

User I/O Configuration

User I/O Configuration

User I/O Configuration

User I/O Configuration

User I/O Configuration

User I/O Configuration

Controller

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

Common

194

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Table 28 - ArmorStart Common Parameters

55

61

62

59

60

56

57

58

63

101

102

103

104

Parameter

Number

44

45

46

47

48

49

50

51

52

53

54

Base Enclosure

Base Options

Wiring Options

Starter Enclosure

Starter Options

Last PR Fault

Warning Status

Base Trip

Phase A Current

Phase B Current

Phase C Current

Average Current

Parameter Name

OutB Net IdlValue

Keypad Mode

Keypad Disable

Set To Defaults

Drive Control

DrvIn Pr FltState

DrvIn Pr FltValue

DrvIn Net FltState

DrvIn Net FltValue

DrvIn Net FItState

DrvIn Net FItValue

High Speed Enaable

Description

This parameter determines the state that Output B assumes when the network is idle and Parameter 43

(OutB Net IdlState) is set to “0”.

This parameter selects if the keypad operation is maintained or momentary.

This parameter disables all keypad function except for the OFF and RESET buttons.

This parameter if set to 1 will set the device to the factory defaults.

This parameter provides the status of drive parameters.

This parameter, in conjunction with Parameter 50

(DrvIn Pr FltValue), defines how the Drive Digital Inputs

1…4 will respond when a protection trip occurs.

This parameter determines the state of Drive Digital

Inputs 1…4, assumes when a trip occurs.

This parameter, in conjunction with Parameter 52

(DrvIn Net FltValue), defines how the Drive Digital

Inputs 1…4 will respond when a network fault occurs.

This parameter determines the state of Drive Digital

Inputs 1…4 when a network fault occurs and

Parameter 51 (DrvIn Net FltState) is set to “0”.

This parameter, in conjunction with Parameter 54

(DrvIn Net FItValue), defines how the Drive Digital

Inputs 1…4 will respond when a DeviceNet™ network is idle.

This parameter determines the state that Drive Digital

Inputs 1…4 assume when the network is idle and

Parameter 53 (DrvIn Net FItState) is set to “0”.

This parameter enable High Speed Inverter control thru the terminal block.

Indicates the ArmorStart Base unit enclosure rating.

Indicates the options for the ArmorStart Base unit.

This parameter provides the Wiring Options.

This parameter provides the Starter Enclosure.

This parameter provides the Starter Options.

This parameter provides the Last PR Fault.

This parameter provides the Warning Status.

This parameter provides the Base Module Trip Status.

This parameter provides the current of Phase A.

This parameter provides the current of Phase B.

This parameter provides the current of Phase C.

This parameter provides the average current.

Factory Default

0 = Open

0 = Maintained

0 = Not Disabled

0 = No Operation

0

0 =

Go to PrFlt Value

0 = Open

0 =

Go to Fault Value

0 = OFF

0 =

Go to Fault Value

0 = OFF

0 = Disabled

1

0

0

1

0

0 = None

0

0

0

0

0

0

Group

User I/O Configuration

Misc. Configuration

Misc. Configuration

Misc. Configuration

Drive I/O Configuration

Drive I/O Configuration

Drive I/O Configuration

Drive I/O Configuration

Drive I/O Configuration

Drive I/O Configuration

Drive I/O Configuration

Drive I/O Configuration

Basic Status

Basic Status

Basic Status

Basic Status

Basic Status

Basic Status

Basic Status

Basic Status

Starter Display

Starter Display

Starter Display

Starter Display

Controller

Common

284E

284E

284E

284E

284E

284E

Common

Common

Common

Common

Common

Common

Common

Common

DOL

DOL

DOL

DOL

Common

Common

Common

284E

284E

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

195

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Table 28 - ArmorStart Common Parameters

108

101

102

103

104

105

106

107…109

110

112

113

114

115

116

117

118

119

120

121

122

123

Parameter

Number

105

106

107

124

125

126

128

Parameter Name

Therm Utilized

FLA Setting

Overload Class

OL Reset Level

Output Freq

Commanded Freq

Output Current

Output Voltage

DC Bus Voltage

Drive Status

Fault x Code

Process Display

Control Source

Dig In Status

Comm Status

Control SW Ver

Drive Type

Elapsed Run Time

Testpoint Data

Output Power

Output Power Fctr

Drive Temp

Counter Status

Timer Status

StpLogic Status

Description

This parameter displays the % Thermal Capacity used.

The motor’s full load current rating

Selects the overload class.

Factory Default

0

See Table 19.

1 =

Overload Class 10

Selects the % Thermal Capacity which an overload can be cleared.

Output frequency present at T1, T2 & T3 (U, V & W)

Value of the active frequency command

75

Read Only

Read Only

Output current present at T1, T2 & T3 (U, V & W)

Output voltage present at T1, T2 & T3 (U, V & W)

Present DC bus voltage level

Present operating condition of the drive.

Read Only

Read Only

Read Only

Read Only

A code that represents a drive fault.

The output frequency scaled by Parameter 199 (Process

Factor).

Read Only

Read Only

Displays the source of the Start Command and Speed

Reference.

5 =

RS485 (DSI) Port

Option not valid for Bulletin 284E ArmorStart.

Status of the control terminal block digital inputs.

0

Status of the communications ports

Main Control Board software version for AC Drive.

Used by Rockwell Automation field service personnel.

Accumulated time drive is outputting power.

The present value of the function selected in Parameter

202 (Testpoint Sel).

0

Read Only

Read Only

Read Only

Read Only

Option not valid for Bulletin 284E ArmorStart.

Option not valid for Bulletin 284E ArmorStart.

Output power present at T1, T2 & T3 (U, V & W).

The angle in electrical degrees between motor voltage and motor current.

Read Only

Read Only

Present operating temperature of the drive power section.

The current value of the counter when counter is enabled.

The current value of the timer when timer is enabled.

Read Only

Read Only

Read Only

When Parameter 138 (Speed Reference) is set to "6"

(StpLogic), this parameter will display the current

StepLogic profile as defined by Parameters 240-247

(StpLogic x).

Read Only

Drive Display

Drive Display

Drive Display

Drive Display

Drive Display

Drive Display

Controller

DOL

DOL

DOL

DOL

284E

284E

284E

284E

284E

284E

284E

284E

284E

284E

284E

284E

284E

284E

284E

Group

Starter Display

Starter Setup

Starter Setup

Starter Setup

Drive Display

Drive Display

Drive Display

Drive Display

Drive Display

Drive Display

Drive Display

Drive Display

Drive Display

Drive Display

Drive Display

Drive Display

Drive Display

Drive Display

Drive Display

284E

284E

284E

284E

284E

284E

196

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

155

156

158

159

161

162

164

165

166

Table 28 - ArmorStart Common Parameters

138

139

140

141

142

143

Parameter

Number

129

131

132

133

134

135

136

137

Parameter Name

Torque Current

Motor NP Volts

Motor NP Hertz

Motor OL Current

Minimum Freq

Maximum Freq

Start Source

Stop Mode

Speed Reference

Accel Time 1

Decel Time 1

Reset To Defaults

Motor OL Ret

Description

Displays the current value of the motor torque current as measured by the drive.

Set to the motor name plate rated volts.

Set to the motor nameplate rated frequency.

Set to the maximum allowable current.

Sets the lowest frequency the drive will output continuously.

Sets the highest frequency the drive will output continuously.

Sets the control scheme used to start the Bulletin 284E

ArmorStart.

Sets the Valid Stop Mode for the Bulletin 284E

ArmorStart.

Factory Default

Read Only

Based on Drive Rating

60 Hz

Based on Drive Rating

0.0 Hz

60 Hz

5 = Comm Port

(RS485 (DSI))

9 =

Ramp + EM Brk

Sets the Valid Speed References for the Bulletin 284E

ArmorStart.

Sets the rate of acceleration for all speed increases.

Sets the rate of deceleration for all speed decreases.

5 = Comm Port

10.0 Secs

10.0 Secs

Used to reset drive to factory default settings

0 = Ready/Idle

Option not valid for Bulletin 284E ArmorStart.

Enables/Disables the Motor Overload Retention function.

0 = Disabled

Parameter

Number

151…154

Parameter

Name

Digital In 1 Sel

Digital In 2 Sel

Digital In 3 Sel

Digital In 4 Sel

Relay Out Sel

Table 29 - Parameter Descriptions

Description

Selects the function for the digital inputs.

Relay Out Level

Reserved

Reserved

Reserved

Reserved

Reserved

Sets the condition that changes the state of the output relay contacts.

Sets the trip point for the digital output relay if the value of

Parameter 155 (Relay Out Sel) is 6, 7, 8, 10, 16, 17, 18, or 20.

Option not valid for Bulletin 284E ArmorStart.

Option not valid for Bulletin 284E ArmorStart.

Factory Default

See Table 20.

0 = Ready/Fault

See Table 21.

0.0

Group

Drive Display

Drive Setup

Drive Setup

Drive Setup

Drive Setup

Drive Setup

Drive Setup

Drive Setup

Drive Setup

Drive Setup

Drive Setup

Drive Setup

Drive Setup

Group

284E

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Controller

284E

284E

284E

284E

284E

284E

284E

284E

284E

284E

284E

284E

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

197

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

198

170…177

181

182

183

187

188

189

190

Parameter

Number

167

168

169

178

179

180

184

185

186

Table 29 - Parameter Descriptions

Parameter

Name

Accel Time 2

Decel Time 2

Description

When active, sets the rate of acceleration for all speed increases except for jog.

When active, sets the rate of deceleration for all speed decreases except for jog.

Provide the frequency command to drive when Parameter 138

(Speed Reference) is set to “1” (Internal Freq).

Factory Default

20.0 Secs

20.0 Secs

Internal Freq

Preset Freq 0

Preset Freq 1

Preset Freq 2

Preset Freq 3

Preset Freq 4

Preset Freq 5

Preset Freq 6

Preset Freq 7

Jog Frequency

Jog Accel/Decel

Provides a fixed frequency command value when Parameters

151…154 (Digital In x Sel) is set to Option 4 (Preset

Frequencies).

60.0 Hz

See Table 22.

DC Brake Time

DC Brake Level

DB Resistor Sel

S Curve %

Boost Select

Start Boost

Brake Voltage

Brake Frequency

Maximum Voltage

Current Limit 1

Motor OL Select

Sets the output frequency when the jog command is issued.

Sets the acceleration and deceleration time when a jog command is issued.

Sets the length of time that DC brake current is injected into the motor. Refer to Parameter 181 (DC Brake Level).

Defines the maximum DC brake current, in amps, applied to the motor when Parameter 137 (Stop Mode) is set to either Ramp or

DC Brake.

Used to set percent duty cycle for external dynamic braking.

Sets the percentage of acceleration or deceleration time that is applied to ramp as S Curve. Time is added, half at the beginning and half at the end of the ramp.

Sets the boost voltage (% of Parameter 131 (Motor NP Volts)) and redefines the Volts per Hz curve. Active when Parameter 225

(Torque Perf Mode) = 0 (V/Hz). Drive may add additional voltage unless Option 5 is selected.

Sets the boost voltage (% of Parameter 131 (Motor NP Volts)) and redefines the Volts per Hz curve when Parameter 184 (Boost

Select) = 0 (Custom V/Hz) and Parameter 225 (Torque Perf Mode)

= 0 (V/Hz).

Sets the frequency where brake voltage is applied when

Parameter 184 (Boost Select) = 0 (Custom V/Hz) and Parameter

225 (Torque Perf Mode) = 0 (V/Hz).

Sets the frequency where brake frequency is applied when

Parameter 184 (Boost Select) = 0 (Custom V/Hz) and Parameter

225 (Torque Perf Mode) = 0 (V/Hz).

Sets the highest voltage the drive will output.

10.0 Hz

10.0 Secs

0.0 Secs

Drive Rated Amps x

0.05

0 = Disabled

0% (Disabled)

8 = 5.0 (2.5 for 5 Hp drives)

2.5%

25.0%

15.0 Hz

Maximum output current allowed before current limiting occurs.

Drive Rated Volts

Drive Rated Amps x

1.5

Drive provides Class 10 motor overload protection. Setting 0…2 select the derating factor for I

2 t overload function.

0 = No Derate

Group

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

206

211

212

213

207

208

209

210

214

197

198

199

200

201

202

203

204

205

195

196

Parameter

Number

191

192

193

194

Table 29 - Parameter Descriptions

Parameter

Name

PWM Frequency

Auto Rstrt Tries

Auto Rstrt Delay

Start At PowerUp

Reverse Disable

Flying Start En

Compensation

SW Current Trip

Process Factor

Fault Clear

Program Lock

Testpoint Sel

Comm Loss Action

Comm Loss Time

Slip Hertz @ FLA

Description Factory Default

Sets the carrier frequency the PWM output waveform.

Figure 72 provides derating guidelines based on the PWM frequency setting.

Set the maximum number of times the drive attempts to reset a fault and restart.

Sets time between restart attempts when Parameter 192 (Auto

Rstrt Tries) is set to a value other than zero.

Enables/disables a feature that allows a Start or Run command to automatically cause the drive to resume running at command speed after the drive input is restored.

Enables/disables the function that allows the direction of the motor rotation to be changed.

Sets the condition that allows the drive to reconnect to a spinning motor at actual RPM.

Enables/disables correction options that may improve problems with motor instability.

Enables/disables a software instantaneous (within 100 ms) current trip.

Scales the output frequency value displayed by Parameter 110

(Process Display).

Resets a fault and clears the fault queue.

Protects parameters against change by unauthorized personnel.

Used by Rockwell Automation field service personnel.

Option not valid for Bulletin 284E ArmorStart.

Option not valid for Bulletin 284E ArmorStart.

Selects the drive’s response to a loss of the communication connection or excessive communication errors.

Sets the time that the drive remain in communication loss before implanting the option selected in Parameter 205 (Comm Loss

Action).

Option not valid for Bulletin 284E ArmorStart.

Option not valid for Bulletin 284E ArmorStart.

Option not valid for Bulletin 284E ArmorStart.

Option not valid for Bulletin 284E ArmorStart.

Option not valid for Bulletin 284E ArmorStart.

Option not valid for Bulletin 284E ArmorStart.

Option not valid for Bulletin 284E ArmorStart.

Compensates for the inherent slip in an induction motor. This frequency is added to the commanded output frequency based on motor current.

4.0 Hz

0

1.0 Secs

0 = Disabled

0 = Disabled

0 = Disabled

1 = Electrical

0.0 (Disabled)

30.0

0 = Ready/Idle

0 = Unlocked

400

0 = Fault

15.0 Secs

2.0 Hz

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Group

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

199

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

200

216

217

218

219

220

224

225

226

227

221

222

223

235

236

233

234

231

232

228

229

230

Parameter

Number

215

Table 29 - Parameter Descriptions

Parameter

Name

Process Time Lo

Process Time Hi

Bus Reg Mode

Current Limit 2

Skip Frequency

Skip Freq Band

Stall Fault Time

Var PWM Disable

Torque Perf Mode

Motor NP FLA

Autotune

IR Voltage Drop

Flux Current Ref

PID Trim Hi

PID Trim Lo

PID Ref Sel

PID Feedback Sel

PID Prop Gain

PID Integ Time

PID Diff Rate

Description Factory Default

Scales the time value when the drive is running at Parameter 134

(Minimum Freq). When set to a value other than zero, Parameter

110 (Process Display) indicates the duration of the process.

Scales the time value when the drive is running at Parameter 135

(Maximum Freq). When set to a value other than zero, Parameter

110 (Process Display) indicates the duration of the process.

Enables the bus regulator.

0.00

0.00

Maximum output current allowed before current limiting occurs.

1 = Enabled

Drive Rated

Amps x 1.5

0.0 Hz

Sets the frequency at which the drive will not operate.

Determines the brand width around Parameter 219 (Skip

Frequency). Parameter 220 (Skip Freq Band) is split applying 1/2 above and 1/2 below the actual skip frequency.

Sets for the fault time that the drive will remain in stall mode before a fault is issued.

Option not valid for Bulletin 284E ArmorStart.

Option not valid for Bulletin 284E ArmorStart.

Enables/disables a feature that varies the carrier frequency for the PWM output waveform defined by Parameter 191 (PWM

Frequency).

0.0 Hz

0 = 60 Seconds

0 = Enabled

Enables/disables sensorless vector control operation.

Set to the motor nameplate full load amps.

Provides an automatic method for setting Parameter 228

(IR Voltage Drop) and Parameter 229 (Flux Current Ref), which affect sensorless vector performance.

1 = Sensrls Vect

Drive Rated Amps

0 = Ready/Idle

Value of volts dropped across the resistance of the motor stator.

Value of amps for full motor flux.

Based on Drive

Rating

Based on Drive

Rating

Sets the maximum positive value that is added to a PID reference when PID trim is used.

Sets the minimum positive value that is added to a PID reference when PID trim is used.

Enables/disables PID mode and selects the source of the PID reference.

Valid PID Feedback Sel command for the Bulletin 284E

ArmorStart.

Sets the value for the PID proportional component when the PID mode is enabled by Parameter 232 (PID Ref Sel).

Sets the value for the PID integral component when the PID mode is enabled by Parameter 232 (PID Ref Sel).

Sets the value for the PID differential component when the PID mode is enabled by Parameter 232 (PID Rel Sel).

60.0

0.1

0 = PID Disabled

0 = 0-10V Input

0.01

0.1 Secs

0.01 (1/Secs)

Group

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Bulletin 280E/281E/284E Programmable Parameters Chapter 7

Parameter

Number

237

238

239

240…247

250…257

260

261

262

263

264

Table 29 - Parameter Descriptions

Parameter

Name

PID Setpoint

PID Deadband

PID Preload

StpLogic 0…7

StpLogic Time 0…7

EM Brk OFF Delay

EM Brk On Delay

MOP Reset Sel

DB Threshold

Comm Write Mode

Description

Provides an internal fixed value for process setpoint when the PID mode is enabled by Parameter 232 (PID Ref Sel).

Sets the lower limit of the PID output.

Sets the value used to preload the integral component on start or enable.

These parameters can be used to create a custom profile of frequency commands.

Sets the time to remain in each step if the corresponding

Parameter 138 (Speed Reference) is set to "6" (StpLogic),

Parameter 240-247 (StpLogic x), digits 0…3 set to b, C, d or E

(Step after (StpLogic Time x).

Sets the time the drive will remain at minimum frequency before ramping to the commanded frequency and energizing the brake coil relay when Parameter 137 (Stop Mode) is set to Option 8 or 9.

Sets the time the drive will remain at minimum frequency before stopping and de-energizing the brake coil relay when Parameter

137 (Stop Mode) is set to Option 8 or 9.

Sets the drive to save the current MOP Reference command.

Sets the DC bus Voltage Threshold for Dynamic Brake operation.

Determines whether parameter changes made over the communication port are saved and stored in Non-Volatile Storage

(NVS) or RAM only.

Factory Default

0.0%

0.0%

0.0 Hz

00F1

30.0 Secs

0.0 Secs

0.0 Secs

1 = Save MOP Ref

100%

0 = Save

Group

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Drive Advanced Setup

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

201

Chapter 7 Bulletin 280E/281E/284E Programmable Parameters

Notes:

202

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

How to Configure an Explicit Message

Chapter

8

Programming ControlLogix®

Explicit Message

Explicit Messaging with ControlLogix

In the ControlLogix platform, explicit messaging can be done easily from within a logic program. The request and response is configured within the MSG function. The MSG function can be found in the Input/Output tab of

RSLogix 5000.

Setting Up the MSG Instruction

A tag name must be given to the MSG function before the rest of the information can be defined. In this example a tag was created with the name explicit_mess.

After the instruction has been named, click on the gray box to define the rest of the instruction.

Figure 75 - MSG Function Found in the Input/Output Tab

Formatting an Explicit

Message

ControlLogix scanners and bridges accommodate both downloading Explicit

Message Requests and uploading Explicit Message Responses. The message

format is shown in Figure 76.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

203

Chapter 8 How to Configure an Explicit Message

Figure 76 - ControlLogix Message Format in RSLogix 5000

204

Box

Message Type

The message type is usually CIP Generic.

Description

Service Type

The service type indicates the service (for example, Get Attribute Single or Set Attribute Single) that you want to perform.

Service Code

The service code is the code for the requested EtherNet/IP service. This value changes based on the Service

Type that has been selected. In most cases, this is a read-only box.

If you select “Custom” in the Service Type box, then you need to specify a service code in this box (for example, 4B for a Get Attributes Scattered service or 4C for a Set Attributes Scattered service).

Class

The class is an EtherNet/IP class.

Instance

The instance is an instance (or object) of an EtherNet/IP class.

Attribute

The attribute is a class or instance attribute.

Source Element

This box contains the name of the tag for any service data to be sent from the scanner or bridge to the module and drive.

Source Length

This box contains the number of bytes of service data to be sent in the message.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

How to Configure an Explicit Message Chapter 8

Box Description

Destination

This box contains the name of the tag that will receive service response data from the module and drive.

Path

The path is the route that the message will follow.

Note: Click Browse to find the path or type in the name of a module that you previously mapped.

Name

The name for the message.

Performing Explicit

Messages

IMPORTANT

There are five basic events in the Explicit Messaging process defined below. The details of each step will vary depending on the controller. Refer to the documentation for your controller.

Figure 77 - Explicit Message Process

Box Description

Format the required data and set up the ladder logic program to send an Explicit Message Request to the scanner or bridge module (download).

The scanner or bridge module transmits the Explicit Message Request to the slave device over the

EtherNet/IP network.

The slave device transmits the Explicit Message Response back to the scanner. The data is stored in the scanner buffer.

The controller retrieves the Explicit Message Response from the scanner’s buffer (upload).

The Explicit Message is complete.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

205

Chapter 8 How to Configure an Explicit Message

The MSG (message) instruction handles all explicit messaging initiated by a

Logix Controller program.

It will automatically create and manage TCP connections and CIP encapsulation sessions. The user has no direct influence on this process.

Figure 78 - Example — Message Configuration Tab

The Class, Instance, and Attribute define the actual information being requested.

Additional configurations of these parameters can be found in the CIP

Appendix.

206

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Overview

Fault Display

Chapter

9

Diagnostics

This chapter describes the fault diagnostics of the ArmorStart® Distributed

Motor Controller and the conditions that cause various faults to occur.

Protection Programming

Many of the protective features available with the ArmorStart Distributed Motor

Controller can be enabled and adjusted through the programming parameters provided. For further details on programming, refer to

Chapter 7 , Bulletin 280E/

281E/284E Programmable Parameters.

The ArmorStart Distributed Motor Controller comes equipped with a built-in

LED status indication which provides four status LEDs and a Reset button.

Figure 79 - LED Status Indication and Reset

Clear Fault

Fault Codes

You may clear a fault using the following methods:

• Remotely via network communications

• A remote reset will be attempted upon detection of a rising edge (0 to 1 transition) of the “Fault Reset” bit in the various I/O assemblies. A remote reset will also be attempted upon detection of the rising edge of the “Fault

Reset” parameter.

• Locally via the “Reset” button on the LED Status indication keypad.

Table 30 provides a reference of the Fault LED indications for Bulletin 280E/

281E and Bulletin 284E Distributed Motor Controllers.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

207

Chapter 9 Diagnostics

Fault Definitions

208

Blink Pattern

15

16

13

14

11

12

9

10

7

8

5

6

3

4

1

2

Table 30 - Fault Indication

Bulletin 280E/281E

Short Circuit

Overload Trip

Phase Loss

Reserved

Reserved

Control Power

I/O Fault

Over Temperature

Phase Imbalance

A3 Power Loss

Reserved

Reserved

EEPROM Fault

Hardware Fault

Reserved

Reserved

Fault Types

Bulletin 284E

Short Circuit

Overload Trip

Phase Short

Ground Fault

Stall

Control Power

I/O Fault

Over Temperature

Over Current

A3 Power Loss

Internal Communications

DC Bus Fault

EEPROM Fault

Hardware Fault

Restart Retries

Misc. Fault

Short Circuit

Short Circuit indicates that the Bulletin 140M motor protector has tripped, or that the internal wiring protection algorithm has detected an unsafe current surge. This fault cannot be disabled.

Overload Trip

The load has drawn excessive current and based on the overload trip class selected, the device has tripped. This fault cannot be disabled.

Phase Loss

Indicates a missing supply phase. This fault can be disabled and is disabled by default.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Diagnostics Chapter 9

Phase Short

Indicates the drive has detected a phase short. This fault cannot be disabled.

Ground Fault

Indicates the drive has detected a ground fault. This fault cannot be disabled.

Stall

Indicates the drive has detected a stall condition, indicating the motor has not reached full speed. This fault cannot be disabled.

Control Power

Indicates a loss of control power voltage or a blown control power circuit. This fault can be disabled and is disabled by default.

I/O Fault

This error can indicate a shorted sensor, shorted input device, or input wiring mistakes

.

It can also indicate a blown output fuse. This fault can be disabled and is disabled by default.

Over Temperature

Indicates that the operating temperature has been exceeded. This fault cannot be disabled.

Phase Imbalance

Indicates an imbalance supply voltage. This fault can be disabled and is disabled by default.

Over Current

Indicates the drive has detected an over current fault. This fault cannot be disabled.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

209

Chapter 9 Diagnostics

210

A3 Power Loss

Power has been lost or has dropped below the 12V threshold

.

This fault can be disabled and is disabled by default.

Internal Communication Fault

Indicates an internal communication fault has been detected. This fault cannot be disabled.

DC Bus Fault

Indicates the drive has detected a DC Bus Fault. This fault cannot be disabled.

Electrically Erasable Programmable Read-Only Memory

EEPROM Fault

This is a major fault, which renders the ArmorStart inoperable. This fault cannot be disabled.

Hardware Fault

Indicates incorrect base/starter assembly or other hardware fault. This fault cannot be disabled.

Restart Retries

This fault is generated when the drive detects that the auto retries count has been exceeded. This fault cannot be disabled.

Miscellaneous Faults

• For Bulletin 284E units, this fault is actually the logical of several drive faults not specifically enumerated.

• This fault cannot be disabled.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Diagnostics Chapter 9

EtherNet/IP LED Status

Indication

Figure 80 - EtherNet/IP LED

EtherNet/IP LED status and diagnostics consists of four LEDs.

• Link Activity/Status LEDS

– Link1 Activity/Status (Port 1) – LED Color: Bicolor (Green/Yellow).

refer to Table 31

– Link2 Activity/Status (Port 2) – LED Color: Bicolor (Green/Yellow).

refer to Table 31

• “MOD” LED – Bicolor Red/Green represents the Ethernet Module

status, refer to Table 32

• “NET” LED – Bicolor Red/Green represents the Ethernet Network

status, refer to Table 34

Link 1 or 2 Status LED

OFF

Green

Flashing green

Yellow

Flashing yellow

Table 31 - Link 1 or Link 2 Port Activity/Status

Description

No link established

Link established at 100 Mbps

Transmit or receive activity present at 100 Mbps

Link established at 10 Mbps

Transmit or receive activity present at 10 Mbps

Recommended Action

Verify network cabling, and correct, as needed.

None

None

None

None

MOD Status LED

Steady OFF

Steady Green

Flashing Green

Flashing Red

Steady Red

Flashing Green/Red

Table 32 - Module Status Indicator

No power

Summary

Device operational

Standby

Minor fault

Major fault

Self-test

Requirement

If no power is supplied to the device, the module status indicator shall be steady OFF.

If the device is operating correctly, the module status indicator shall be steady green.

If the device has not been configured, the module status indicator shall be flashing green.

If the device has detected a recoverable minor fault, the module status indicator shall be flashing red.

Note: An incorrect or inconsistent configuration would be considered a minor fault.

If the device has detected a non-recoverable major fault, refer to Table 33.

While the device is performing its power up testing, the module status indicator shall be flashing green/red.

Refer to Parameter 63 “Base Trip” for the Base Module Trip Status.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

211

Chapter 9 Diagnostics

Control Module LED

Status and Reset

212

Figure 81 - LED Status

Indication and Reset

Table 33 - “Steady Red” MOD LED Status (Refer to Table 32.)

0

Fault Type

EEPROM Fault

Description

Non-volatile memory value out of range for a local parameter, or a write failure detected. This fault is also reflected by a solid red MOD status LED.

1

2

3

4…15

Internal Comm2 The Internal communication connection has timed out. This fault is also reflected by a flashing red MOD status LED.

Hardware Fault Internal diagnostics checks failed. This fault is also reflected by a solid red MOD status LED.

Control Module

Reserved

An illegal or unsupported Control Module product code or revision has been detected. Also reported if no Control

Module is detected on power up. This fault is also reflected by a solid red MOD status LED.

Reserved

Indicator State

Steady OFF

Flashing Green

Steady Green

Flashing Red

Steady Red

Flashing Red/Green

Table 34 - Network Status Indicator

Summary

Not powered, no IP address

No connections

Connected

Connection timeout

Duplicate IP

Self-test

Requirement

If the device does not have an IP address (or is powered OFF), the network status indicator shall be steady OFF.

If the device has no established connections, but has obtained an IP address, the network status indicator shall be flashing green.

If the device has at least one established connection (even to the Message Router), the network status indicator shall be steady green.

If one or more of the connections in which this device is the target has timed out, the network status indicator shall be flashing red. This shall be left if only all timed out connections are reestablished or if the device is reset.

If the device has detected that the IP addtress is already in use, the network status indicator shal be steady red.

While the device is performing its power up testing, the network status indicator shall be flashing green/red.

The Control Module LED status and diagnostics consists of four status LEDs and a Reset button. The following is a brief explanation of the operation of each

LED found on the Control Module.

Table 35 - Control Module LED Status Indication

LED

Power

Definition

This LED will be illuminated solid green when switched control power is present and with the proper polarity.

This LED will be illuminated solid green when a start command and control power is present.

Recommended Action

Ensure 24V DC is present on A1 and A2. Check if the local disconnect is in the OFF position.

Run

Network This bicolor LED is used to indicate the status of the internal network connection.

Fault This LED is used to indicate the fault status of the

ArmorStart. When the unit is faulted, the unit will respond with a specific blink pattern to identify the fault.

Ensure 24V DC is present on A1 and A3. Check if the user is properly commanding to RUN via Instance

162 or 166.

See Table 34, Network Status Indicator table above

for additional information.

See Table 36 and Table 37 below for additional

information.

The “Reset Button” is a local trip reset.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Diagnostics Chapter 9

Control Module Fault

LED Indications

Blink

Pattern

1

2

3

11

12

13

4

5

6

7

8

9

10

14

15

16

Table 36 - Fault LED Indicators for Bulletin 280E/281E

Auto-

Resettable

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Bulletin 280E/281E Trip

Short Circuit

Overload

Phase Loss

Reserved

Reserved

Input Fault

Status

Control Pwr Loss (Switched

Power)

Over Temperature

Phase Imbalance

Not Used

Not Used

The ArmorStart has detected a loss of the control power voltage.

Description

The circuit breaker (140M) has tripped.

The load has drawn excessive current and based on the trip class selected, the device has tripped.

The ArmorStart has detected a missing phase.

This error indicates a shorted sensor, shorted input device, wiring input mistakes, or a blown output fuse.

This fault is generated when the operating temperature has been exceeded. This fault cannot be disabled.

The ArmorStart has detected a voltage imbalance.

Action

Determine cause of trip. Try to reset the circuit breaker using the disconnect handle. If the conditions continue, check power wiring or replace based module. This cannot be disabled.

Verify that the load is operating correctly and the

ArmorStart is properly set-up. the fault cannot be disabled.

Verify that 3-phase voltage is present at the line side connections. This fault can be disabled and is disabled by default.

Check control voltage, wiring, and proper polarity (A1/A2 terminal). Also, check and replace the control voltage fuse, if necessary. This fault can be disabled and is disabled by default.

Correct, isolated or remove wiring error prior to restarting the system. This fault can be disabled and is disabled by default.

Check for blocked or dirty heat sink fins. Verify that ambient temperature has not exceeded 40 °C (104 °F). 1.

Clear the fault or cycle power to the drive.

Check the power system and correct if necessary. This fault can be disabled and is disabled by default.

Control Power (24V DC) Lost

(Unswitched Power)

The 24V DC power supply is below tolerance threshold.

Check the state of the network power supply (A3/A1 terminal) and look for media problems. This fault can be disabled and is disabled by default.

Reserved

Reserved

EEprom

Hdw Flt

Not Used

Not Used

This is a major fault, which renders the ArmorStart inoperable. Possible causes of this fault are transients induced during EEprom storage routines.

This fault indicates that a serious hardware problem exists.

If the fault was initiated by a transient, power cycling should clear the problem, otherwise replacement of the

ArmorStart may be required. This fault cannot be disabled.

Check for a base/starter module mismatch. If no mismatch exists, the ArmorStart may need to be replaced. (Hdw Flt is the factory-enabled default setting.) This fault cannot be disabled.

Reserved

Reserved

Not Used

Not Used

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

213

Chapter 9 Diagnostics

Bit/Blink

Pattern

1

2

3

4

5

6

7

8

9

10

11

12

13

Table 37 - Fault LED Indicators for 284E

Auto-

Resettable

No

Drive

Controlled

Drive

Controlled

Drive

Controlled

Drive

Controlled

Parameter 23

(PrFlt Reset

Mode)

Parameter 23

(PrFlt Reset

Mode)

Parameter 23

(PrFlt Reset

Mode)

Drive

Controlled

Parameter 23

(PrFlt Reset

Mode)

No

Drive

Controlled

No

284E Trip Status

Short Circuit

Overload

(Drive Codes 7 and 64)

Phase Short

(Drive Codes 38…43)

Ground Fault

(Drive Code 13)

Stall

(Drive Code 6)

Control Pwr Loss (Switched

Power)

Input Fault

Description

The circuit breaker (140M) has tripped.

An excessive motor load exists

Action

Determine cause of trip. Try to reset the circuit breaker using the disconnect handle. If the conditions continue, check power wiring or replace based module. This cannot be disabled.

1. Reduce load so drive output current does not exceed the current set by Parameter 133 (Motor OL Current).

2. Verify Parameter 184 (Boost Select) setting.

3. Drive rating of 150% for 1 minute.

4. Reduce load or extend Accel Time two hundred percent or when 3 seconds has been exceeded.

Check the wiring between the drive and motor. Check motor for grounded phase. Check the motor and drive output terminal wiring for a shorted condition. Replace drive if fault cannot be cleared.

1. Phase U, V, or W to Gnd. A phase to ground fault has been detected between the drive and motor in this phase.

2. Phase UV, UW, or VW Short. Excessive current has been detected between these two output terminals.

A current path to earth ground has been detected at one or more of the drive output terminals.

Drive is unable to accelerate motor.

The ArmorStart has detected a loss of the control power voltage.

This error indicates a shorted sensor, shorted input device, wiring input mistakes, or a blown output fuse.

Check the motor and external wiring to the drive output terminals for a grounded condition.

Increase Parameters 139…167 (Accel Time x) or reduce load so drive output current does not exceed the current set by Parameter 189 (Current Limit 1).

Check control voltage, wiring, and proper polarity (A1/A2 terminal). Also, check and replace the control voltage fuse, if necessary. This fault can be disabled and is disabled by default.

If this fault occurs, the offending problem should be isolated or removed prior to restarting the system. This fault can be disabled and is disabled by default.

Over Temperature

Over Current

(Drive Codes 12 and 63)

DC Bus Fault

(Drive Codes Reference 3, 4 and 5)

EEprom

(PF Drive Code Reference

100)

This fault is generated when the operating temperature has been exceeded. This fault cannot be disabled.

The drive output current has exceeded the hardware current limit.

Control Power (24V DC) Lost

(Unswitched Power)

The 24V DC power supply is below tolerance threshold.

Check the state of the network power supply (A3/A1 terminal) and look for media problems. This fault can be disabled and is disabled by default.

Internal Comm

(Refer to Parameter 61 for details on this fault. F81 is a

VFD fault. This could also happen if control power is lost.)

Communication with either the control module (VFD) or

Control module has stopped.

Refer to section Fault 11 Detail. If the problem persists replace the unit.

Power Loss - DC bus voltage remained below 85% of nominal. UnderVoltage - DC but voltage fell below the minimum value. OverVoltage - DC bus voltage exceeded maximum value.

The checksum read from the board does not match the checksum calculated.

Check for blocked or dirty heat sink fins. Verify that ambient temperature has not exceeded 40 °C (104 °F).

1. Clear the fault or cycle power to the drive.

Check programming. Check for excess load, improper

Parameter 184 (Boost Select) setting. DC brake volts set too high or other causes of excess current. Parameter 198

(SW Current Trip) has been exceeded, check load requirements and Parameter 198 setting.

Monitor the incoming AC line for low voltage or line power interruption. Check the input fuses. Monitor the

AC line for high line voltage or transient conditions. Bus overvoltage can also be caused by motor regeneration.

Extend the decel time or install dynamic brake option.

Set Parameter 141 (Reset to Defaults) to Option 1 “Reset

Defaults”.

214

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Diagnostics Chapter 9

Table 37 - Fault LED Indicators for 284E

Bit/Blink

Pattern

14

15

16

Auto-

Resettable

No

Drive

Controlled

284E Trip Status

Hdw Flt (PF Drive Codes

Reference 70 and 122)

Restart Retries (PF Drive

Code Reference 33)

Drive

Controlled

Misc. Fault (PF Drive Code

Reference 2, 8, 29, 48 and

80)

Description

Failure has been detected in the drive power section or drive control and I/O section.

Drive unsuccessfully attempted to reset a fault and resume running for the programmed number of

Parameter 192 (Auto Rstrt Tries).

Heatsink temperature exceeds a predefined value. The drive was commanded to write default values to EEprom.

The autotune function was either cancelled by the user or failed. If DB1 option installed refer to P61 for additional diagnostics.

Action

1. Cycle power.

2. Replace drive if fault cannot be cleared.

Correct the cause of the fault and manually clear.

Check for blocked or dirty heat sink fins. Verify that ambient temperature has not exceeded 40 °C (104 °F) and mounted properly.

1. Clear the fault or cycle power to the drive.

2. Program the drive parameters as needed. Restart procedure.

3. Check for DB1 fault

Fault 11 Detail

Parameter 61 provides a more granular description of the faults that occur.

• An F11 protection fault indicates that the internal communication has stopped

• There is a 10 second delay before an F11 Internal Comm. fault is present

• Common causes of an Internal Comm. fault:

– The local ArmorStart Disconnect switch is in the OFF position.

– 3-Phase line power feeding the ArmorStart is not connected or is turned OFF.

– Switched Control Power is not connected or is turned OFF.

– Poor power quality (Brown Out)

• First things to check:

– Verify that the local disconnect is in the ON position.

– Verify that the unit has 3-Phase Line Voltage present and it is within specified tolerances.

– Verify that the ArmorStart unit has Control Voltage present and it is within specified tolerances.

– Attempt to clear the fault by pressing the local reset or sending the

ArmorStart a network reset.

– Cycle power to the ArmorStart unit and try to clear the fault again.

• If an Internal Comm. fault persists, refer to Parameter 61 – LastPR Fault for additional details on the last protection fault. Refer to the following table for troubleshooting information based on what Parameter 61 returns.

Also refer to Parameters 107…109 to get the VFD fault code that can be referenced below.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

215

Chapter 9 Diagnostics

Parameter 61 Fault Code

13 = Control Power Loss

14 = Control Power Fuse

21 = A3 Power Loss

22 = Internal Comm

24 = Power Loss (3-Phase)

25 = Under Voltage (3-Phase)

Description

Control power was lost or dipped below the lower threshold long enough to cause the Internal Comm. fault.

The control power fuse has blown and the control power circuit no longer is a closed circuit.

Unswitched (A3/A2) control power was lost or dipped below the lower threshold long enough to cause the

Internal Comm. fault.

DeviceNet power loss

The ArmorStart's MCB lost communications with the

VFD. This is most likely due to a loss of 3-phase power.

PF Fault Code 3 or 4

Recommended Action

Check that control power is turned on and within specified tolerances.

Check the Control Power fuse, replace if necessary.

Press the local reset or send the unit a network reset once control power is restored.

Additional investigation as to why the fuse blew is needed. Take corrective action accordingly.

Replace the fuse and reset the ArmorStart either locally or over the network.

Check that the A3 or DNet power terminal does not have any loose connections.

Press the local reset or send the unit a network reset once the unswitched control power is restored

Check that the local disconnect is in the ON position.

Check for a power quality issue, take appropriate corrective actions.

Check that 3-phase power is present.

Press the local reset or send the unit anetwork reset

Check that control power and the network power are both present.

Press the local reset or send the unit a network reset.

23 = Drive Comm Loss (PF Fault Code 81) The PowerFlex VFD lost communications with the MCB.

This is most likely due to a loss of control power or network power.

28 = Base EEPROM The MCB can't read the base module's EEPROM or isn't communicating correctly with the base module. In the

EtherNet/IP units, Parameter 63 – Base Trip provides more detail as to why the base module may not be communicating properly with the control module

41 = DB1 Comm The MCB has lost communications with the Dynamic

Brake (DB1) board or the EEPROM on the DB1 board may be corrupt.

Cycle power to the ArmorStart unit.

Ensure that the control module is seated correctly in the base module

Check the connector on the control module for bent or broken pins

Press the local reset or send the unit a network reset

Cycle power to the ArmorStart unit.

Resetting Device to

Factory Defaults

To factory reset the base and control module refer to parameter 47 “Set to

Defaults”. To reset only the VFD in the control module for Bulletin 284 refer to

Parameter 141 “Reset To Defaults”. Both these resets are limited and do not put the product completely in the “out of box” configuration. The Type 1 Reset will perform a full product reset to the “out of box” status.

SERVICE CODE 0X05

Class Code 0x0001

INSTANCE 1

Data (USINT) 1

You will need to perform a Type 1 Reset in the event that the login and password for the product is lost and forgotten.

WARNING: A Type 1 Reset will cause all parameters and web page login to revert to their factory defaults. No user date will be saved.

WARNING: A Type 1 Reset should only be executed when necessary or when the login and password must be cleared and set to the factory default setting.

216

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Diagnostics Chapter 9

In the following example, the user will utilize Rockwell Automation

RSLogix 5000 PLC programming software to create a Type 1 Reset. Other tools can be used, provided the class, instance, and attribute values can be sent to the product’s identify object.

1.

Within RSLogix 5000, select File > New to create a new project. Ensure the project is offline.

2.

If an Add-On-Profile (AOP) window is open, click the Cancel button to close it at the bottom of the AOP screen.

3.

Close any internet browser windows, including Internet Explorer that are being used to view the ArmorStart web browser.

IMPORTANT

For those using an Internet Browser with multiple tabs open, you will need to close the entire browser window, not just the tab within the ArmorStart browser.

4.

Unplug any inputs and outputs that are connected to the ArmorStart unit.

WARNING: A Type 1 Reset cannot be done if there is an I/O device plugged into the product port. This may cause an unsafe state to occur in the ArmorStart or the environment around the ArmorStart.

5.

Create a new Controller Tag of data type DINT and assign it a value of 1.

a. Double click on Controller Tags in the Controller Organizer.

b. Select the Edit Tags tab at the bottom of the tag list screen.

c. Create another new tag, the example used below is named Data1. d. Assign Data1 a value of 1 by clicking on the Monitor Tags tab and enter a 1 in the Value field.

e. Create a tag for reset input.

1. Double click on Program Tags in the Controller Organizer

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

217

Chapter 9 Diagnostics

218

2. Select the Edit Tags tab at the bottom of the screen and create a tag named Reset of the type BOOL (Boolean).

6.

Create a rung in ladder logic for executing the Type 1 Reset. a. Add an XIC Input and assign it the BOOL tag Reset.

b. Add a Message (MSG) instruction that will be used to execute the reset. The message instruction can be found in the Input/Output instruction set tab.

c. The completed rung should look like the one below.

7.

Configure the message instruction: a. Begin by double clicking on the tag name field and entering AS_Reset. b. Right click on the tag name AS_Reset and select New “AS_Reset”.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Diagnostics Chapter 9 c. Verify the tag data type and options with the figure below and click OK.

d. Bring up the Configuration Dialog screen by clicking the box next to the tag name AS_Reset.

e. Select CIP Generic from the Message Type drop-down menu and

Custom

from the Service Type drop-down menu.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

219

Chapter 9 Diagnostics f. Click on the Source Element drop-down box and select the Data1 tag that was created earlier and press Enter.

g. Enter 5 for the Service Code, 1 for the Class, and 1 for the Instance.

Leave the Attribute value at 0. Once you have added these values, the

Service Type

should automatically change to Device Reset.

220

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Diagnostics Chapter 9 h. Click on the Communication tab at the top of the window. Click on the Browse button, select the ArmorStart that is in your project, and click OK. This selects the ArmorStart as the device you are going to send the reset message to.

i. You do not need to configure anything in the Tag tab. Click Apply and then OK.

8.

Save your project. Download the project to the PLC and go Online.

9.

Inhibit the ArmorStart using the AOP: a. Once online, open the ArmorStart's AOP and click on the Connection tab. Select Inhibit Module from the options. b. Click Apply, the following screen should pop-up. Click Yes. Then click

OK

to close out the AOP.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

221

Chapter 9 Diagnostics c. You should see the yellow inhibit symbol next to the ArmorStart in the

I/O Configuration tree showing that the module is inhibited.

10.

Execute the instruction by toggling the Reset input that was created earlier. a. Energize the bit by left mouse clicking on the input and pushing

CTRL+T

. De-energize the bit with CTRL+T again.

b. You should see the status LEDs on the ArmorStart display the Reset and Power Cycle sequence. You should also see the Done (DN) bit of the message turn green indicating that the reset was successful.

11.

Verify the reset worked by bringing the ArmorStart's web browser back up and verifying that the User Name is Administrator and that there is no set password.

12.

Uninhibit the ArmorStart module through the AOP and plug any I/O connections back into the ArmorStart.

222

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Introduction

Chapter

10

Troubleshooting

The purpose of this chapter is to assist in troubleshooting the ArmorStart®

Distributed Motor Controller using the LED status display and diagnostic parameters.

ATTENTION: Servicing energized industrial control equipment can be hazardous.

Electrical shock, burns or unintentional actuation of controlled industrial equipment may cause death or serious injury. For safety of maintenance personnel as well as others who might be exposed to electrical hazards associated with maintenance activities, follow the local safety related work practices (for example, the NFPA70E, Part II in the

United States). Maintenance personnel must be trained in the safety practices, procedures, and requirements that pertain to their respective job assignments.

ATTENTION: Do not attempt to defeat or override fault circuits. The cause of the fault indication must be determined and corrected before attempting operation. Failure to correct a control system of mechanical malfunction may result in personal injury and / or equipment damage due to uncontrolled machine system operation.

ATTENTION: The drive contains high voltage capacitors that take time to discharge after removal of mains supply. Before working on drive, ensure isolation of mains supply from line inputs (R, S, T, [L1, L2, L3]). Wait three minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death.

Darkened display LEDs is not an indication that capacitors have discharged to safe voltage levels.

ATTENTION: Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage.

ATTENTION: This drive contains electrostatic discharge (ESD) – sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing, or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, refer to Allen-Bradley Publication 8000-4.5.2

, Guarding against Electrostatic Damage, or any other applicable ESD protection handbook.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

223

Chapter 10 Troubleshooting

Bulletin 280E/281E

Troubleshooting

ATTENTION: An incorrectly applied or installed drive can result in component damage or a reduction in product life. Wiring or application errors, such as undersizing of the motor, incorrect or inadequate AC supply, or excessive ambient temperatures may result in malfunction of the system.

The following flowchart for Bulletin 280E/281E units is provided to aid in quick troubleshooting.

Figure 82 - Bulletin 280E/281E Control Module LED Status

Yes

Faulted Display

No

Bulletin 284E

Troubleshooting

Fault

LED

See

Table 30

Network

LED

See

Table 34

Motor will not

Start

See

Table 40

Fault Definitions

Some of the Bulletin 284E ArmorStart Distributed Motor Controller faults are detected by the internal hardware of the ArmorStart, while others are detected by the internal drive. For internal drive faults, the internal hardware of the

ArmorStart simply polls the drive for the existence of faults and reports the fault state. No fault latching is done by the internal hardware of the ArmorStart for these faults. The PrFlt ResetMode parameter (Parameter 23) determines the

Auto Resettability of only the faults that are detected on the main control board.

The Auto Resettability of the faults that are detected in the internal drive is

controlled by internal drive parameters, refer to Table 38 . The following

flowchart for Bulletin 284E units is provided to aid in quick troubleshooting.

224

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

DB1 Faults

Fault

LED

See

Table 37

Network

LED

See

Table 34

Figure 83 - Bulletin 284E Control Module LED Status

Yes

Faulted Display

No

Define Nature of the Problem

Motor will not start

See

Table 40

Actions

Troubleshooting Chapter 10

Operation and Troubleshooting of the DB1 - Dynamic Brake

Eight types of DB1 faults are detected and reported in Parameter 61 as either a

“DB1 Flt”, “DB1 Comm Fault” or DB1 Switch Short”. DB1 faults are also reported in Attribute 158 “DB1 Fault” of the Control Supervisor Object (Class

Code: 29 Hex). See

Appendix B

for Control Supervisor information.

If the ArmorStart Fault LED blinks 11x's check parameter 61. If value is 41, check the following:

• DB1 Comm Fault

If the ArmorStart Fault LED blinks 16x's check parameter 61. If value is 42, check the following:

• DB1 Resistor Overtemperature Fault

• DB1 Overcurrent Fault

• DB1 Undercurrent Fault

• DB1 Open Fault

• DB1 VBus Link Fault

If the ArmorStart Fault LED blinks 16x's check parameter 61. If value is 43, check the following:

• DB1 Switch Fault

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

225

Chapter 10 Troubleshooting

226

The DB1 option provides the following warning:

• DB1 Thermal Warning

DB1 Resistor Overtemperature Fault

Control Supervisor Object “DB1 Fault” Attribute Bit 0.

The DB1 measures current continuously, and models resistor body temperature based on measured current and resistor model parameters. The DB1 not only calculates the present resistor body temperature, but also predicts the future resistor body temperature. The resistor overtemperature level is based on the predicted future resistor body temperature, not on the present resistor body temperature. This fault is disabled when Parameter 182 (DB1 Resistor Sel) is

“Disabled”.

Troubleshooting

– DB1 Resistor body temperature is too hot. Allow resistor to cool.

DB1 Overcurrent Fault

Control Supervisor Object “DB1 Fault” Attribute Bit 1.

The DB1 compares each current measurement against the Max Current Level. If

5 consecutive samples are above the Max Current Level, then a fault is recorded.

This fault is intended to notify the user if the DB1 resistance is lower than expected. This fault is disabled when Parameter 182 (DB1 Resistor Sel) is

“Disabled”.

Troubleshooting

– DB1 monitor has measured a DB1 current higher than expected. Turn off all power to unit. Allow at least 3 minutes for capacitors to discharge. Disconnect DB1 resistor from ArmorStart control module. Caution:

DB1 resistor may still be hot.

Measure DB1 resistor value at the connector with an ohmmeter. Refer to the specification for minimum DB1 resistor values. If DB1 resistance value is within limits, replace control module. If not, replace DB1 resistor.

DB1 Undercurrent Fault

Control Supervisor Object “DB1 Fault” Attribute Bit 2.

The DB1 compares each current measurement against the Min Current Level.

The Min Current Level = Min DB1 Voltage Level/Max DB1 Resistance. If 5 consecutive samples are below the Min Current Level and the DB1 is ON, then a fault is recorded. This fault is intended to notify the user if the DB1 resistance is

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Troubleshooting Chapter 10 higher than expected. This fault is disabled when Parameter 182 (DB1 Resistor

Sel) is “Disabled”.

Troubleshooting

– DB1 monitor has measured a DB1 current lower than expected. Turn off all power to unit. Allow at least 3 minutes for capacitors to discharge. Disconnect DB1 resistor from ArmorStart control module. Caution:

DB1 resistor may still be hot.

Measure DB1 resistor value at the connector with an ohmmeter. Refer to the specification for minimum DB1 resistor values.

If DB1 resistance value is within limits, replace control module. If not, replace

DB1 resistor.

DB1 Switch Fault

Control Supervisor Object “DB1 Fault” Attribute Bit 3.

A DB1 Switch fault is issued when continuous DB1 resistor current is detected when the Drive Bus Voltage level is less than the DB1 Voltage Level. If 5 consecutive samples of Drive Bus Voltage less than DB1 Level is detected along with continuous DB1 resistor current flow, then a shorted DB1 IGBT fault

(DB1 Switch) is recorded.

It is the user’s responsibility to provide an input power contactor to each

ArmorStart with a drive. The user must write logic to control (open) the input contactor to the ArmorStart in the event of a DB1 Switch Fault. The Instruction

Literature provides information on how to connect the input contactor, and how to implement the logic.

Troubleshooting

– Attempt to reset the fault by removing all power to the unit and restarting. If the fault persists, replace control module.

DB1 Open Fault

Control Supervisor Object “DB1 Fault” Attribute Bit 4.

A DB1 Open fault is issued when Bus Voltage is greater than the DB1 Voltage

Level, and no DB1 resistor current has been detected. If 5 consecutive samples of Drive Bus Voltage greater than the DB1 Level is detected along with no DB1 resistor current flow, then an open DB1 fault is recorded. This fault is intended to notify the customer of an open DB1 resistor, or open wire. The fault is disabled when the DB1 Resistor Sel, Parameter (182) is “Disabled”.

Troubleshooting

– DB1 monitor expected to see current flow and measured none. Likely cause is an open DB1 resistor, loose DB1 resistor connector, or open wire in DB1 cable. Check DB1 cable connector for tightness. If problem persists, remove DB1 resistor cable connector from unit and check DB1 resistance. If

DB1 resistor is open, replace DB1 resistor. Otherwise replace control module.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

227

Chapter 10 Troubleshooting

DB1 VBus Link Fault

Control Supervisor Object “DB1 Fault” Attribute Bit 6.

For proper operation, the DB1 monitors parameters from the Drive internally inside the ArmorStart. If the internal communications to the drive is lost, then this fault is issued. Since the DB1 can no longer provide resistor protection, the user must implement logic to open the input contactor.

Troubleshooting

– Make sure that 3-phase line power and control power is applied to unit. Attempt to reset fault. If fault persists, replace control module.

DB1 Comm Fault

Control Supervisor Object “DB1 Fault” Attribute Bit 8.

The communications link is monitored continuously. If the DB1 stops responding, then the MCB issues this fault. Since the DB1 can no longer provide resistor protection, the user must implement logic to open the input contactor.

Troubleshooting

– Replace control module.

DB1 Thermal Warning

Control Supervisor Object “DB1 Status” Attribute Bit 1.

A DB1 Thermal Warning is issued if the predicted future resistor body temperature is greater than the Max DB1 resistor temperature x DB1 Thermal

Warning Percent.

Troubleshooting

– None. DB1 resistor thermal value has exceeded the preset threshold of 90% of thermal value.

228

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Troubleshooting Chapter 10

Internal Drive Faults

A fault is a condition that stops the drive. There are two fault types.

Table 38 - Internal Drive Faults

Type

1

2

Description

Auto-Reset/Run

When this type of fault occurs, Parameter 192 (Auto Rstrt Tries) and related Parameter(s): 155 (Relay Out

Sel), 193 (Auto Rstrt Delay) are set to a value greater than 0, a user-configurable timer, Parameter 193 (Auto

Rstrt Delay) and related Parameter: 192 (Auto Rstrt Tries), begins. When the timer reaches zero, the drive attempts to automatically reset the fault. If the condition that caused the fault is no longer present, the fault will be reset and the drive will be restarted

Non-Resettable

This type of fault may require drive or motor repair, or is caused by wiring or programing errors. The cause of the fault must be corrected before the fault can be cleared.

Automatically Clearing Faults (Option/Step)

Clear a Type 1 Fault and Restart the Drive:

1.

Set Parameter 192 (Auto Rstrt Tries) to a value other than 0.

2.

Set Parameter 193 (Auto Rstrt Delay) to a value other than 0.

Clear an Overvoltage, Undervoltage or Heatsink OvrTmp Fault without

Restarting the Drive:

1.

Set Parameter 192 (Auto Rstrt Tries) to a value other than 0.

2.

Set Parameter 193 (Auto Rstrt Delay) to 0.

Auto Restart (Reset/Run)

The Auto Restart feature provides the ability for the drive to automatically perform a fault reset followed by a start attempt without user or application intervention. This allows remote or unattended operation. Only certain faults are allowed to be reset. Certain faults (Type 2) that indicate possible drive component malfunction are not resettable. Caution should be used when enabling this feature, since the drive will attempt to issue its own start command based on user selected programming.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

229

Chapter 10 Troubleshooting

The following table describes Bulletin 284E Faults as seen in Parameters 107,

108, and 109 (Fault 1, 2 or 3).

No.

F2

F3

F4

F5

F6

F7

F8

F12

F13

F33

Fault

Auxiliary Input

Power Loss

UnderVoltage

OverVoltage

Motor Stalled

Motor Overload

Heatsink OvrTmp

HW OverCurrent

Ground Fault

Auto Rstrt Tries

F38

F39

F40

F41

F42

F43

Phase U to Gnd

Phase V to Gnd

Phase W to Gnd

Phase UV Short

Phase UW Short

Phase VW Short

F48 Params Defaulted

Table 39 - Bulletin 284E Faults – Parameters 107, 108, and 109 (Fault 1, 2 or 3)

Type

1

2

1

1

1

1

1

2

2

2

Description

Auxiliary input interlock is open.

DC bus voltage remained below 85% of nominal.

DC bus voltage fell below the minimum value.

DC bus voltage exceeded maximum value.

Drive is unable to accelerate motor.

Internal electronic overload trip

4.

Check remote wiring.

5.

Verify communications.

6.

7.

Check input fuses.

8.

Action

Monitor the incoming AC line for low voltage or line power interruption.

Monitor the incoming AC line for low voltage or line power interruption.

9.

Monitor the AC line for high line voltage or transient conditions. Bus overvoltage can also be caused by motor regeneration. Extend the decel time or install dynamic brake option.

10. Increase Parameters 139 or 167 (Accel Time x) or reduce load so drive output current does not exceed the current set by Parameter 189 (Current Limit 1).

11. An excessive motor load exists. Reduce load so drive output current does not exceed the current set by Parameter 133 (Motor OL Current).

12. Verify Parameter 184 (Boost Select) setting

Heatsink temperature exceeds a predefined value.

The drive output current has exceeded the hardware current limit.

A current path to earth ground has been detected at one or more of the drive output terminals.

13. Check for blocked or dirty heat sink fins. Verify that ambient temperature has not exceeded 40

°C.

14. Replace internal fan.

15. Check programming. Check for excess load, improper programming of Parameter 184

(Boost Select), DC brake volts set too high, or other causes of excess current.

16. Check the motor and external wiring to the drive output terminals for a grounded condition.

Drive unsuccessfully attempted to reset a fault and resume running for the programmed number of Parameter 192

(Auto Rstrt Tries).

17. Correct the cause of the fault and manually clear.

A phase to ground fault has been detected between the drive and motor in this phase .

18. Check the wiring between the drive and motor.

19. Check motor for grounded phase.

20. Replace starter module if fault cannot be cleared.

2 Excessive current has been detected between these two output terminals.

21. Check the motor and drive output terminal wiring for a shorted condition.

22. Replace starter module if fault cannot be cleared.

2

F63

F64

F70

F80

SW OverCurrent

Drive Overload

Power Unit

SVC Autotune

2

2

2

The drive was commanded to write default values to EEPROM.

23. Clear the fault or cycle power to the drive.

24. Program the drive parameters as needed.

Programmed Parameter 198 (SW Current

Trip) has been exceeded.

25. Check load requirements and Parameter 198 (SW Current Trip) setting.

26. Reduce load or extend Accel Time.

Drive rating of 150% for 1 min. or 200% for 3 sec. has been exceeded.

Failure has been detected in the drive power section.

The autotune function was either cancelled by the user or failed.

27. Cycle power.

28. Replace starter module if fault cannot be cleared.

29. Restart procedure.

230

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Troubleshooting Chapter 10

No.

F81

F100

F122

Fault

Comm Loss

Parameter

Checksum

I/O Board Fail

Table 39 - Bulletin 284E Faults – Parameters 107, 108, and 109 (Fault 1, 2 or 3)

Type

2

2

Description

RS485 (DSI) port stopped communicating.

The checksum read from the board does not match the checksum calculated.

2

Action

30. Turn off using Parameter 205 (Comm Loss Action).

31. Replace starter module if fault cannot be cleared.

32. Set Parameter 141 (Reset To Defaults) to Option 1 (Reset Defaults).

Failure has been detected in the drive control and I/O section.

33. Cycle power.

34. Replace starter module if fault cannot be cleared.

➊ See

Table 38 for Type description.

Drive is Faulted

Table 40 - Motor Does Not Start

Cause(s)

No output voltage to the motor.

None

Indication

Flashing red status light

Corrective Action

Check the power circuit.

Check the supply voltage.

Check all fuses and disconnects

Check the motor.

Verify that the motor is connected properly.

Verify that I/O Terminal 01 is active.

Verify that Parameter 136 (Start Source) matches your configuration.

Verify that Parameter 195 (Reverse Disable) is not prohibiting movement.

Clear fault.

Press Stop

Cycle power

Set Parameter 200 (Fault Clear) to Option 1 (Clear Faults).

Cycle digital input is Parameters 151…154 (Digital In x Sel) is set to Option 7, (Clear

Faults).

Table 41 - Drive Does Not Respond to Changes in Speed Command

Cause(s)

No value is coming form the source of the command.

Indication

The drive Run indicator is lit and output is 0 Hz.

Incorrect reference source is being selected via remote device or digital inputs.

None

Corrective Action

Check Parameter 112 (Control Source) for correct source.

If the source is an analog input, check wiring and use a meter to check for presence of signal.

Check Parameter 102 (Commanded Freq) to verify correct command.

Check Parameter 112 (Control Source) for correct source.

Check Parameter 114 (Dig In Status) to see if inputs are selecting an alternate source. Verify settings for Parameters 151…154 (Digital In x Sel).

Check Parameter 138 (Speed Reference) for the source of the speed reference. Reprogram as necessary.

Table 42 - Motor and/or Drive Will Not Accelerate to Commanded Speed

Cause(s)

Acceleration time is excessive.

Excess load or short acceleration times force the drive into current limit, slowing, or stopping acceleration.

None

None

Indication Corrective Action

Reprogram Parameter 139 (Accel Time 1) or Parameter 167 (Accel Time 2).

Compare Parameter 103 (Output Current) with Parameter 189 (Current Limit1).

Remove excess load or reprogram Parameter 139 (Accel Time 1) or Parameter 167 (Accel

Time 2).

Check for improper setting of Parameter 184 (Boost Select).

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

231

Chapter 10 Troubleshooting

Table 42 - Motor and/or Drive Will Not Accelerate to Commanded Speed

Cause(s)

Speed command source or value is not as expected.

Programming is preventing the drive output from exceeding limiting values.

Torque performance does not match motor characteristics.

None

None

None

Indication Corrective Action

Verify Parameter 102 (Commanded Freq).

Check Parameter 112 (Control Source) for the proper Speed Command.

Check Parameter 135 (Maximum Freq) to insure that speed is not limited by programming.

Set motor nameplate full load amps in Parameter 226 (Motor NP FLA).

Use Parameter 227 (Autotune) to perform Static Tune or Rotate Tune procedure.

Set Parameter 225 (Torque Perf Mode) to Option 0 (V/Hz).

Cause(s)

Motor data was incorrectly entered.

None

Table 43 - Motor Operation is Unstable

Indication Corrective Action

1. Correctly enter motor nameplate data into Parameters 131, 132, and 133.

2. Enable Parameter 197 (Compensation).

3. Use Parameter 184 (Boost Select) to reduce boost level.

Cause(s)

Digital input is not selected for reversing control.

Motor wiring is improperly phased for reverse.

Reverse is disabled.

None

None

None

Table 44 - Drive Will Not Reverse Motor Direction

Indication Corrective Action

Check Parameters 151…154 (Digital In x Sel). Choose correct input and program for reversing mode.

Switch two motor leads.

Check Parameter 195 (Reverse Disable).

Cause(s)

No input power to drive.

None

Jumper between I/O Terminals P2 and P1 not installed and/or DC

Bus Inductor not connected.

None

Table 45 - Drive Does Not Power Up

Indication Corrective Action

Check the power circuit.

Check the supply voltage.

Check all fuses and disconnects.

Install jumper or connect DC Bus Inductor.

232

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Troubleshooting Chapter 10

Control Module Removal

ATTENTION: To avoid shock hazard, disconnect main power before working on the controller, motor, or control devices.

1.

Disconnect power by going to the control module and turning OFF the

At-Motor disconnect and performing lockout-tagout per your company policy.

2.

Remove motor cable.

3.

Loosen the four mounting screws.

4.

Unplug the Control module from the base by pulling forward.

Installation of Control Module

5.

Install control module.

6.

Tighten four mounting screws.

7.

Install motor cable.

Figure 84 - Control Module Replacement

1

Motor Cable

2

3

4

Note: DeviceNet™ base module is shown.

5

30 lb•in./

3.39 N•m

6

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

7

233

Chapter 10 Troubleshooting

Figure 85 - Control Voltage and Output Fuse Replacement

Output Fuse

Cat. No. 25176-155-03

Figure 86 - Source Brake Fuse Replacement (Bulletin 284E only)

Control Voltage Fuse

Cat. No. 25172-260-17

234

Source Control Brake Fuses

Cat. No. W25172-260-12

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Troubleshooting Chapter 10

Troubleshoot and General

Solutions for Linear or DLR

Networks

Before you attempt to correct specific faults on your linear or DLR network, we recommend that you first take the following actions when a fault appears.

For a DLR network:

– verify that you have configured at least one node as a supervisor on the network and that Network Topology = Ring.

– verify that all cables on the network are securely connected to each device.

– verify that all devices that require an IP address have one assigned correctly.

– check the Network Status field on the active supervisor node’s status page to determine the fault type.

For a linear network:

– verify that none of the nodes are configured as a supervisor on the network and that Network Topology = Linear.

– If any nodes on a linear network are configured as a supervisor, it may impact communication to other devices connected to the network.

– verify that all cables on the network are securely connected to each device.

– verify that all devices that require an IP address have one assigned correctly.

If the fault is not cleared once you have completed the actions listed above, use the tables in the rest of this chapter to troubleshoot issues specific to a DLR network or a linear network.

Specific Issues on Your DLR or Linear Network

Use the following table to troubleshoot possible specific issues on your DLR or linear network that are not solved by the actions described above.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

235

Chapter 10 Troubleshooting

Issue

Table 46 - Troubleshoot DLR or Linear Network

Description Solution

A link on the DLR network may be broken:

Intentionally, for example, because you are adding or deleting nodes but have not made all physical connections to restore the set up of the network with/without the node.

Unintentionally, for example, because a cable is broken or a device malfunctions.

When this fault occurs, the adjacent nodes to the faulted part of the network are displayed in the Ring

Fault group and the Network Status field = Ring Fault.

The screen shot below shows the Ring Fault section with IP addresses appearing for the last active nodes. The faulted node is between nodes 10.88.80.115 and 10.88.80.208. If the IP address of either node is not available, the software will display the node’s MAC ID.

Determine where the fault condition exists and correct it.

You may need to click the Refresh Communication link to update the Ring Fault information to determine where the fault condition exists.

Figure 87 - Ring Fault Section

Supervisor Reports a Ring Fault

Once the fault is corrected, the ring is automatically restored, and the Network Status field returns to

Normal.

236

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Troubleshooting Chapter 10

Issue

Rapid Ring Fault

Partial Fault

Condition

Table 46 - Troubleshoot DLR or Linear Network

Description Solution

When a Rapid Ring Fault occurs, the following events occur:

The active supervisor will block traffic on port 2, resulting in possible network segmentation, that is, some nodes may become unreachable.

The Link 2 status indicator on the active supervisor is off.

As soon as the fault occurs, for both RSLogix 5000 programming software and RSLinx communication software, the Status field = Rapid Fault/Restore Cycles.

Figure 88 - Rapid Fault/Restore Cycles Status

Any of the following may cause a Rapid Ring Fault:

5 intentional disconnections/reconnections of a node from the network within 30 s

A duplex mismatch between two connected devices

Electromagnetic noise on the network

Unstable physical connections, such as intermittent connectors

Given the nature of a Rapid Ring Fault, the Last Active Node information may not be accurate when a

Rapid Ring Fault condition is present

A partial network fault occurs when traffic is lost in only one direction on the network because a ring member is not forwarding beacons in both directions for some reason, such as because of a component failure.

The active ring supervisor detects a partial fault by monitoring the loss of Beacon frames on one port and the fault location appears in the Ring Fault section of the Network tab.

When a partial fault is detected, the active ring supervisor blocks traffic on one port. At this point, the ring is segmented due to the partial fault condition. The nodes adjacent to the faulted part of the network are displayed in the Ring Fault group with either IP addresses or MAC ID’s for each node displayed.

When this fault occurs the Network Status field = Partial Fault Condition.

Once the fault is corrected, it automatically clears, and the Network Status field returns to Normal.

Multiple possible solutions exist.

For the disconnections and reconnections issue, no solution is required.

Clear the fault when you have reconnected the device to the network permanently.

For the duplex mismatch issue, reconfigure the duplex parameters to make sure they match between the devices.

For the electromagnetic noise issue, determine where the noise exists and eliminate it or use a protective shield in that location.

For the unstable connections issue, determine where they exist on the network and correct them.

Check the media counters for all devices on the network. The device with the highest media counter count is most likely causing the Rapid

Ring Fault.

Remove devices from the network one by one.

When you see the Rapid Ring Fault disappear after a device is removed, that device is causing the fault.

Finally, your Beacon Interval or Timeout configuration may not be appropriate for your network.

However, if you think you need to change these values, we recommend that you call

Rockwell Automation technical support.

Once the fault is fixed, click Clear Fault.

Determine where the fault condition exists and correct it.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

237

Chapter 10 Troubleshooting

Issue

Table 46 - Troubleshoot DLR or Linear Network

Description

The media counters screen displays the number of physical layer errors or collisions. The screen below indicates where to check for errors encountered. Error levels are displayed depending on what caused the error. For example, an Alignment Error is displayed in the Alignment Error field.

Figure 89 - Media Counter Screen

Solution

Some example solutions include:

Check for a mismatch of speed and/or duplex between two linked nodes.

Verify that all cables on the network are securely connected to each device.

Check for electromagnetic noise on the network. If you find it, eliminate it or use a protective shield in that location.

Media Counter

Errors or Collisions

On a DLR network, it is not uncommon to see low levels of media counter errors. For example, if the network breaks, a low level of media counter errors appear. With a low level of media counter errors, the value typically does not continuously increase and often clears.

A high level of media counter errors typically continues to increase and does not clear. For example, there is a mismatch of speed between two linked nodes, a high level of media counter errors appears, steadily increasing and not clearing.

To access the RSLinx screen above, browse the network, right-click on the device, select Module

Properties and click the Port Diagnostics tab.

238

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Chapter

11

Specifications for EtherNet/IP

Bulletin 280E/281E

Power Circuit

Control Circuit

Short Circuit

Protection

Electrical Ratings

Rated Operation Voltage

Rate Insulation Voltage

Rated Impulsed Voltage

Dielectric Withstand

Operating Frequency

Utilization Category

Protection Against Shock

Rated Operating Current Max.

Rated Operation Voltage

Rate Insulation Voltage

Rated Impulsed Voltage

Dielectric Withstand

Overvoltage Category

Operating Frequency

Short Circuit Protection Device

(SCPD) Performance Type 1

SCPD List

➊See

Contactor Life Load Curves on page 244

UL/NEMA

200…575V

600V

6 kV

2200V AC

50/60 Hz

N/A

N/A

480Y/277V 480Y/480V

IEC

200…575V

600V

6 kV

2500V AC

50/60 Hz

AC-3

IP2X

280_-____-10A-* ➊

280_-____-10B-* ➊

280_-____-10C-* ➊

280_-____-25D-* ➊

1.2 A

2.5 A

5.5 A

16 A

24V DC (+10%, –15%) A2 (should be grounded at voltage source)

250V 250V

1500V AC

4kV

2000V AC

50/60 Hz

Voltage

III

600Y/347V Current Rating

0.24…1.2 A

0.5…2.5 A

1.1…5.5 A

3.2…16 A

Sym. Amps rms

65 kA

30 kA

65 kA

30 kA

30 kA

30 kA

Size per NFPA 70 (NEC) or NFPA 79 for Group Motor Applications

600V

30 kA

30 kA

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

239

Chapter 11 Specifications for EtherNet/IP

Environmental

Operating Temperature Range

Storage and Transportation

Temperature Range

Altitude

Humidity

Pollution Degree

Enclosure Ratings

Approximate Shipping Weight

UL/NEMA

NEMA 4/12

Resistance to Shock

–20…40 °C (–4…104 °F)

–25….85 °C (–13…185 °F)

1000 m

5…95% (on-condensing)

3

18.1 kg (40 lbs)

IEC

IP67

Mechanical

Contactor Mechanical Life

Other Rating

Other Rating

Operational

Non-Operational

Wire Size

Tightening Torque

Wire Strip Length

WireSize

Tightening Torque

Wire Strip Length

Disconnect Lock Out

Resistance to Vibration

1 G, 0.15 mm (0.006 in.) Displacement

2.5 G, 0.38 mm (0.015 in.) Displacement

Power and Ground Terminals

Primary/Secondary Terminal:

#16…#10 AWG

Primary Terminal: 10.8 lb·in.

Secondary Terminal: 4.5 lb·in.

Primary/Secondary Terminal:

1.0…4.0 mm2

Primary Terminal: 1.2 N·m

Secondary Terminal: 0.5 N·m

0.35 in. (9 mm)

Control Terminals

#18…#10 AWG

6.2 lb·in.

1.0…4.0 mm2

0.7 N·m

0.35 in. (9 mm)

Maximum of 5/16 in. (8 mm) lock shackle or hasp. The hasp should not exceed

5/16 in. (8 mm) when closed, or damage will occur to disconnect guard.

C23

13

CatNo 100Ops

280/1_-_12* Mil

C12

13

280/1_-_23* Mil

EMC Emission Levels

Conducted Radio Frequency Emissions

Radiated Emissions

Electrostatic Discharge

10V rms Communications Cables

10V rms (PE)

150 kHz…80 MHz

Class A

EMC Immunity Levels

4 kV contact and 8 kV Air

Radio Frequency Electromagnetic Field

Fast Transient

Surge Transient

Overload Current Range

Trip Classes ➊

Trip Rating

Number of poles

280_-____-10A-*

280_-____-10B-*

280_-____-10C-*

280_-____-25D-*

10V/m, 80 MHz…1 GHz

3V/m, 1.4 GHz…2 GHz

1V/m, 2.0 GHz …2.7 GHz

2 kV (Power)

2 kV (PE)

1 kV (Communications and Control)

1 kV (12) L-L, 2 kV (2) L-N (Earth)

0.24…1.2 A

0.5…2.5 A

1.1…5.5 A

3.2…16 A

10, 15, 20

120% of Full Load current (FLC) Setting

3

➊Refer to

Motor Overload Trip Curves on page 243

240

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Specifications for EtherNet/IP Chapter 11

Standards Compliance

Control Voltage

Module Inrush

Module Steady

Certifications

Total Control Power (Pick Up)

Total Control Power (Running)

Input Ratings – Sourced from

Control Circuit

(A3/A2)

UL/NEMA

UL 508

CSA C22.2, No. 14

EN/IEC 60947-4

EN/IEC 60947-4-1

CE Marked per Low Voltage 2006/95/EC

EMC Directive 2004/108/EC

CCC

ODVA for EtherNet/IP cULus (File No. E3125, Guides NLDX, NLDX7)

IEC

Units

Volts

EtherNet/IP Version – Control and I/O Power Requirements

A1/A2

A3/A2

A1/A2 A3/A2

W/O HOA W/ HOA

Amps

Amps

Watts

Watts

0.92

0.06

22.08

1.44

0.30

0.30

7.20

7.20

24V DC

1.09

0.23

26.16

5.52

0.125

0.125

3.00

3.00

➊ Add power requirements for outputs (1 A max.) to A1/A2.

➋ Add power requirements for inputs (200 mA max.) to A3/A2.

➌ If A1 power is disconnected.

Rated Operation Voltage

Input On-State Voltage Range

Input On-State Current

Input Off-State Voltage Range

Input Off-State Current

Off to On

On to Off

Input Compatibility

Number of Inputs

Voltage Status Only

Current Available

UL/NEMA IEC

24V DC

10…26V DC

3.0 mA @ 10V DC

7.2 mA @ 24V DC

0…5V DC

<1.5 mA

Input Filter – Software Selectable

Settable from 0…64 ms in 1 ms increments

Settable from 0…64 ms in 1 ms increments

N/A IEC 1+

4

Sensor Source

11…26.4V DC from DeviceNet

50 mA max. per input, 200 mA total

A3/A2

0.295

0.295

7.08

7.08

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

241

Chapter 11 Specifications for EtherNet/IP

Output Ratings – Sourced from Control Circuit (A1/A2)

Device Level Ring (DLR)

Ethernet Port

Web Server

Device Connections

Rated Operation Voltage

Rate Insulation Voltage

Dielectric Withstand

Operating Frequency

Type of Current

Conventional Thermal Current Ith

Peak Output Current

Type of Contacts

Number of Contacts

Load Types

Surge Suppression

Thermo-Protection

Maximum Cycle Rate

Maximum Blocking Voltage

Maximum On-State Voltage @

Maximum Output

Maximum Off-State Leakage Current

UL/NEMA IEC

26.4V DC

250V

1500V AC (UL)

Solid state sourcing output

24V DC

2000V AC (IEC)

0.5 A each, 1 A max. combined

Current limited 2-8 amps (5 amps nominal) @ 24V DC

Normally open (N.O.)

2

Resistive or light inductive

Integrated diode, clamps @ 35V DC

Integrated short circuit and over current protection

30 operations/minute capacitive and inductive loads

35V DC

1.5V DC

Fault Recovery

EtherNet Receptacles

Ports

IP Address

DHCP Timeout

Communication Rate

Data

10 μA

Beacon-based performance including IEEE 1588 end to end transparent clock

Ring recovery time is less than 3 ms for a 50 node network

2 D-coded, 4-pin female M12 connectors

Embedded switch with 2 ports

DHCP enabled by default

30 s

10/100 Mbs with auto negotiate half duplex and full duplex

Transported over both TCP and UDP

Min. of 500 I/O packets/second (pps)

Supports up to 150 concurrent TCP sockets

Security

E-mail

Configuration

Embedded web server

Login and password configurable

Support Simple Mail Transfer Protocol (SMTP)

Status, diagnostics, and configuration tabs

Supports scheduled (Class 1) and unscheduled (Class 3 & UCMM) connections

6 - Class 3 connections are supported simultaneously

Supports up to 2 Class 1 CIP connections [Exclusive owner (data) or listen-only]. One connection per PLC.

Listen only connection requires a data connection to be established.

Class 1 Connection API: 2…3200 ms, Class 3 Connection API: 100…10 000 ms

20 ms default (2 ms minimum)

3 concurrent Encapsulation sessions

TCP port supports 5 concurrent incoming connections

242

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Specifications for EtherNet/IP Chapter 11

Motor Overload Trip Curves

Figure 90 - Bulletin 280E/281E Overload Trip Curves

10000

10000

1000

100

10

1

0 100 200 300 400 500 600 700

Cold

Hot

100

1

0 100 200 300 400 500 600 700

% of

Cold

Hot

10000

100

1

0 100 200 300 400 500 600 700

% of

Cold

Hot

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

243

Chapter 11 Specifications for EtherNet/IP

Contactor Life Load Curves

280/1_-_12* = 100-C12*

280/1_-_23* = 100-C23*

Life Load Curves:

AC-3 Switching of squirrel-cage motors while starting

U

e

= 230…400…460V

AC-4 Switching of squirrel-cage motors

Ue = 400…460V

244

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

AC-3 & AC-4 10% AC-4 Mixed operation of squirrel-cage motors

U

e

= 400…460V

Specifications for EtherNet/IP Chapter 11

Maximum Operating Rates:

AC-3 Switching of squirrel-cage motors while starting

U

e

= 230…460V, Relative operating time 40%, Starting time tA = 0.25 s

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

245

Chapter 11 Specifications for EtherNet/IP

AC-4 Inching of squirrel-cage motors

Ue = 230…460V, Starting time tA = 0.25 s

246

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Specifications for EtherNet/IP Chapter 11

Bulletin 284E

Power Circuit

Control

Circuit

Electrical Ratings

Rated Operation Voltage

Rate Insulation Voltage

Rated Impulsed Voltage

Dielectric Withstand

Operating Frequency

Utilization Category

Protection Against Shock

Rated Operation Voltage

Rate Insulation Voltage

Rated Impulsed Voltage

Dielectric Withstand

Overvoltage Category

Operating Frequency

Short Circuit

Protection

SCPD Performance Type 1

SCPD List

Current Rating

10 A

25 A

UL/NEMA

200…575V

600V

6 kV

2200V AC

50/60 Hz

N/A

IEC

200…500V

600 V

6 kV

2500V AC

50/60 Hz

AC-3

N/A IP2X

24V DC (+10%, –15%) A2 (should be grounded at voltage source)

250V

250V

4 kV

1500V AC

50/60 Hz

Voltage

2000V AC

III

50/60 Hz

600Y/347V

Sym. Amps rms

480Y/277V

65 kA

30 kA

480Y/480V

65 kA

30 kA

30 kA

30 kA

Size per NFPA 70 (NEC) or NFPA 79 for Group Motor Applications

Environmental

Operating Temperature Range

Storage and Transportation

Temperature Range

Altitude

Humidity

Pollution Degree

Enclosure Ratings

Approximate Shipping Weight

UL/NEMA

NEMA 4/12

Resistance to Shock

–20…40°C (–4…104°F)

–25….85°C (–13…185°F)

1000 m

5…95% (on-condensing)

3

13.6 kg (30 lb)

IEC

IP67

600V

30 kA

30 kA

Mechanical

Operational

Non-Operational

Wire Size

Tightening Torque

Wire Strip Length

WireSize

Tightening Torque

Wire Strip Length

Disconnect Lock Out

Resistance to Vibration

1 G, 0.15 mm (0.006 in.) Displacement

2.5 G, 0.38 mm (0.015 in.) Displacement

Power and Ground Terminals

Primary/Secondary Terminal:

#16…#10 AWG

Primary Terminal: 10.8 lb·in.

Secondary Terminal: 4.5 lb·in.

Primary/Secondary Terminal:

1.0…4.0 mm2

Primary Terminal: 1.2 N·m

Secondary Terminal: 0.5 N·m

0.35 in. (9 mm)

Control and Safety Monitor Inputs

#18…#10 AWG

6.2 lb·in.

1.0…4.0 mm2

0.7 N·m

0.35 in. (9 mm)

Maximum of 5/16 in. (8 mm) lock shackle or hasp. The hasp should not exceed

5/16 in. (8 mm) when closed, or damage will occur to disconnect guard.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

247

Chapter 11 Specifications for EtherNet/IP

Other Rating

Certifications

Conducted Radio Frequency Emissions

Radiated Emissions

Electrostatic Discharge

Radio Frequency Electromagnetic Field

Fast Transient

Surge Transient

Standards Compliance

UL/NEMA

EMC Emission Levels

10V rms Communications Cables

10V rms (PE)

150 kHz…80 MHz

Class A

EMC Immunity Levels

4 kV contact and 8 kV Air

10V/m, 80 KHz…1 GHz

3V/m, 1.4 GHz…2 GHz

1V/m, 2.0 GHz …2.7 GHz

2 kV (Power)

2 kV (PE)

1 kV (Communications and Control)

1 kV (12) L-L, 2 kV (2) L-N (Earth)

IEC

UL/NEMA

UL 508C

CSA C22.2, No. 14

EN50178

EN61800-3

EN/IEC 60947-4-2

CE Marked per Low Voltage 2006/95/EC

EMC Directive 2004/108/EC

CCC

ODVA for EtherNet/IP cULus (File No. E207834,

Guide NMMS, NMMS7)

IEC

EtherNet/IP Version – Control and I/O Power Requirements

Control Voltage

Current

Total Control Power (no options)

Total Control Power (with Dynamic Brake or Output Contactor option)

Total Control Power (with Dynamic Brake and Output Contactor option)

Volts

Amps 0.375

Watts

Watts

Watts

➊ Add power requirements for outputs (1 A max.) to A1/A2.

➋ Add power requirements for inputs (200 mA max.) to A3/A2.

➌ If A1 power is disconnected.

9

12

15

Drive Characteristics

Maximum (kW) Hp Rating/Input Voltage

Overload Capacity

Preset Speeds

Carrier Frequency

A3/A2

0.125

3

3

3

24V DC

Sensorless Vector Control

5 Hp (3.3 kW)/480V AC

150% for 60 s

200% for 3 s

8

2…16 kHz

A3/A2

0.35

8.4

8.4

8.4

248

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Specifications for EtherNet/IP Chapter 11

Drive Characteristics

Skip Frequency

StepLogic Functionality

Timer/Counter Functions

Line Voltage [V]

Frequency

[Hz]

380

460

50

60

Drive Ratings – VFD Output Current vs. Input Current

3-Phase kW

Rating

0.4

3-Phase Hp

Rating

Output Current [A]

Sensorless Vector

Control

1.4

0.75

1.5

2.2

3.0

0.5

1

2

3

5

1.4

2.3

4.0

6.0

7.6

2.3

4.0

6.0

7.6

Sensorless Vector Control

Input Current [A]

Sensorless Vector

Control

2.15

3.80

6.40

9.00

12.40

1.85

3.45

5.57

8.20

12.5

Output Frequency

Efficiency

Motor Protection

Overcurrent

Over Voltage

Under Voltage

Faultless Power Ride Through

I

2

PowerFlex 40

0…400 Hz (Programmable)

97.5% (Typical)

Sensorless Vector Control (SVC)

Protective Specifications – Sensorless Vector Control

t overload protection – 150% for 60 seconds, 200% for 3 seconds (provides Class 10 protection)

200% hardware limit, 300% instantaneous fault

200…240V AC Input – Trip occurs @ 405V DC bus voltage (equivalent to 290V AC incoming line)

380…460V AC Input – Trip occurs @ 810V DC bus voltage (equivalent to 575V AC incoming line)

460…600V AC Input – Trip occurs @ 1005V DC bus voltage (equivalent to 711V AC incoming line)

200…240V AC Input – Trip occurs @ 210V DC bus voltage (equivalent to 150V AC incoming line)

380…480V AC Input – Trip occurs @ 390V DC bus voltage (equivalent to 275V AC incoming line)

460…600V AC Input – If 600V rated trip occurs @ 487V DC bus voltage (344V AC incoming line);

If 480V rated trip occurs @ 390V DC bus voltage (275V AC incoming line)

100 milliseconds

Carrier Frequency

Frequency Accuracy – Digital Input

Speed Regulation – Open Loop with Slip Compensation

Stop Modes

Control Specifications – Sensorless Vector Control

2…16 kHz. Drive rating based on 4 kHz.

Within ±0.05% of set output frequency.

±1% of base speed across a 60:1 speed range

Multiple programmable stop modes including – Ramp, Coast, DC-Brake, Ramp-to-Hold and S Curve.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

249

Chapter 11 Specifications for EtherNet/IP

Accel/Decel

Intermittent Overload

Electronic Motor Overload Protection

Control Specifications – Sensorless Vector Control

Two independently programmable accel and decel times. Each time may be programmed from 0…600 s in 0.1 s increments.

150% Overload capability for up to 1 m

200% Overload capability for up to 3 s

Class 10 protection with speed sensitive response

Input Voltage

480V, 50/60 Hz,

Three-Phase

Drive Rating

[kW]

0.4

0.75

1.5

2.2

4.0

Minimum DB Resistance

2

3

5

[Hp]

0.5

1

Minimum DB Resistance

[

Ω]

97

97

97

97

77

Motor Overload Trip Curves

Motor OL Current parameter provides class 10 overload protection. Ambient insensitivity is inherent in the electronic design of the overload.

No Derate

100

80

60

40

20

0

0 25 50 75 100 125 150 175 200

% of P132 [Motor NP Hertz]

Figure 91 - 284E Overload Trip Curves

Min Derate

100

80

60

40

20

0

0 25 50 75 100 125 150 175 200

% of P132 [Motor NP Hertz]

Max Derate

100

80

60

40

20

0

0 25 50 75 100 125 150 175 200

% of P132 [Motor NP Hertz]

250

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Specifications for EtherNet/IP Chapter 11

Input Ratings – Sourced from Control

Circuit (A3/A2)

Output Ratings – Sourced from Control Circuit (A1/

A2)

Device Level Ring (DLR)

Ethernet Port

Rated Operation Voltage

Input On-State Voltage Range

Input On-State Current

Input Off-State Voltage Range

Input Off-State Current

Off to On

On to Off

Input Compatibility

Number of Inputs

Voltage Status Only

Current Available

Rated Operation Voltage

Rate Insulation Voltage

Dielectric Withstand

Type of Control Circuit

Type of Current

Conventional Thermal Current Ith

Peak Output Current

Type of Contacts

Number of Contacts

Load Types

Surge Suppression

Thermo-Protection

Maximum Cycle Rate

Maximum Blocking Voltage

Maximum On-State Voltage @

Maximum Output

Maximum Off-State Leakage Current

Fault Recovery

Ports

IP Address

DHCP Timeout

Communication Rate

Data

Web Server

Security

E-mail

Configuration

UL/NEMA

24V DC

10…26V DC

3.0 mA @ 10V DC

7.2 mA @ 24V DC

0…5V DC

<1.5 mA

Input Filter – Software Selectable

Settable from 0…64 ms in 1 ms increments

IEC

N/A

Settable from 0…64 ms in 1 ms increments

IEC 1+

4

Sensor Source

11…26.4V DC from DeviceNet

50 mA max. per input, 200 mA total

26.4V DC

250V

1500V AC (UL) 2000V AC (IEC)

Solid state sourcing output

24V DC

0.5 A each, 1 A max. combined

Current limited 2-8 amps (5 amps nominal) @ 24V DC

Normally open (N.O.)

2

Resistive or light inductive

Integrated diode, clamps @ 35V DC

Integrated short circuit and over current protection

30 operations/minute capacitive and inductive loads

35V DC

1.5V DC

10 μA

Beacon-based performance including IEEE 1588 end to end transparent clock

Ring recovery time is less than 3 ms for a 50 node network

2 D-coded, 4-pin female M12 connectors

Embedded switch with 2 ports

DHCP enabled by default

30 s

10/100 Mbs with auto negotiate half duplex and full duplex

Transported over both TCP and UDP

Min. of 500 I/O packets/second (pps)

Supports up to 150 concurrent TCP sockets

Embedded web server

Login and password configurable

Support Simple Mail Transfer Protocol (SMTP)

Status, diagnostics, and configuration tabs

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

251

Chapter 11 Specifications for EtherNet/IP

Device Connections

UL/NEMA

Supports scheduled (Class 1) and unscheduled (Class 3 & UCMM) connections

IEC

6 - Class 3 connections are supported simultaneously

Supports up to 2 Class 1 CIP connections [Exclusive owner (data) or listen-only]. One connection per PLC.

Listen only connection requires a data connection to be established.

Class 1 Connection API: 2…3200 ms

Class 3 Connection API: 100…10 000 ms

20 ms default (2 ms minimum)

3 concurrent Encapsulation sessions

TCP port supports 5 concurrent incoming connections

252

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Chapter

12

Accessories

Industrial Ethernet Media

D Code Connectivity (M12) – 1585D

M12 D Code

Patchcords and Cordsets IP67

Connector Type

Male Straight to

Male Straight

Male Straight to

Male Right Angle

Male Right Angle to

Male Right Angle

Male Straight to

Female Straight

➊ Available in 0.3, 0.6, 1, 2, 5, 10, 15, and increments of 5 meters up to 75 meters.

Cat. No.

Unshielded

1585D-M4TBDM-

1585D-M4TBDE ➊

1585D-E4TBDE- ➊

1585D-M4TBDF ➊

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

253

Chapter 12 Accessories

Front Mount Receptacle

Patchcords and Cordsets IP20 to IP67

Connector Type

Transition Cable

Female Front Mount to

RJ45

Connector Type

Male Straight to

RJ45

Cat. No.

Unshielded

1585D-D4TBJM ➊

Unshielded

1585D-M4TBJM-

➊ Available in 0.3, 0.6, 1, 2, 5, 10, 15, and increments of 5 meters up to 75 meters.

Note:

Refer to www.ab.com/networks/media/ethernet to learn more about

Industrial Ethernet Media.

M12 to RJ45 Bulkhead Adapter – 1585A Description

Transition from IP20 environment to IP67 environment

In-cabinet connectivity with RJ45 connector providing On-Machine solution with M12 D Code connector

Differential 100 ohm terminators used for unused pairs

Cat 5e

Cat. No.

1585A-DD4JD

254

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Accessories Chapter 12

Sensor Media

Description Description

EtherNet/IP

Communications

DC Micro

Patchcord

DC Micro V-

Cable

I/O Connection Pin Count

Input/Output

4-Pin

Connector

Straight Female

Straight Male

Straight Female

Right Angle Male

Straight Female

Input

Right Angle Female

Cat. No.

889D-F4ACDM-

889D-F4ACDE- ➊

879D-F4ACDM-

879D-R4ACM-

➊ Replace symbol with desired length in meters (for example, Cat. No. 889D-F4ACDM-1 for a 1 m cable). Standard cable lengths: 1 m, 2 m, 5 m, and 10 m.

Sensor Wiring

Sensor Wiring

3

4

1

2

)

Brown

)

White

)

Black

)

Blue

Quick-Disconnect

+

Sensor Male

Connection

Female Input

ArmorStart

Connection

Pin 1: +24V (A3 or DNET)

Pin 2: Input 0

Pin 3: Common

Pin 4: Input 1

Pin 5: NC (No Connection)

Motor and Brake Cables

Description Rating Length m (ft) Cat. No.

Motor Cable Cordsets

90° M22 Motor Cordset IP67/NEMA Type 4

3 (9.8)

6 (19.6)

10 (32.8)

14 (45.9)

20 (65.6)

280-MTR22-M3

280-MTR22-M6

280-MTR22-M10

280-MTR22-M14

280-MTR22-M20

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

255

Chapter 12 Accessories

256

Description

90° M35 Motor Cordset

Rating Length m (ft)

3 (9.8)

6 (19.6)

10 (32.8)

14 (45.9)

20 (65.6)

Motor Cable Cordsets, High Flex

90° M22 Motor Cordset IP67/NEMA Type 4

Motor Cable Cordsets, Extended Source/Control Brake

90° M25 Source Brake Cable IP67/NEMA Type 4

Extended Source/Control Brake Cable Cordsets, High Flex

3 (9.8)

6 (19.6)

8 (26.2)

10 (32.8)

14 (45.9)

20 (65.6)

Motor Cable Cordsets, Shielded VFD Motor Cable Cordsets, Shielded (VFD)

90° M22 Motor Cordset IP67/NEMA Type 4

3 (9.8)

6 (19.6)

14 (45.9)

6 (19.6)

14 (45.9)

90° M25 Source Brake Cable IP67/NEMA Type 4

3 (9.8)

6 (19.6)

10 (32.8)

14 (45.9)

20 (65.6)

Dynamic Brake Cable

M22 Dynamic Brake Cable

(DB Option)

IP67/NEMA Type 4

IP67/NEMA Type 4 3 (9.8)

284-MTRS22-M3

284-MTRS22-M6

284-MTRS22-M14

285-BRC25-M6

285-BRC25-M14

285-BRCF25-M3

285-BRCF25-M6

285-BRCF25-M10

285-BRCF25-M14

285-BRCF25-M20

Cat. No.

280-MTR35-M3

280-MTR35-M6

280-MTR35-M10

280-MTR35-M14

280-MTR35-M20

280-MTRF22-M3

280-MTRF22-M6

280-MTRF22-M8

280-MTRF22-M10

280-MTRF22-M14

280-MTRF22-M20

285-DBK22-M3

Motor Cable Patchcords

90° Male/Straight Female M22 IP67/NEMA Type 4

90° Male/Straight Female M35

Motor Cable Patchcords, Shielded (VFD)

IP67/NEMA Type 4

90° Male/Straight Female M22 IP67/NEMA Type 4

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

1 (3.3)

3 (9.8)

1 (3.3)

3 (9.8)

1 (3.3)

3 (9.8)

280-MTR22-M1D

280-MTR22-M3D

280-MTR35-M1D

280-MTR35-M3D

284-MTRS22-M1D

284-MTRS22-M3D

Accessories Chapter 12

Sealing Caps

Other

Description

Plastic Sealing Cap (M12) ➊

Motor Connector Aluminum Sealing Cap

(M22) for 10A protection*

Motor Connector Aluminum Sealing Cap

(M35) for 25A protection

Dynamic Brake Connector (M22)

Source/Control Brake Cap (M25)

➊ To achieve IP67 rating, sealing caps must be installed on all unused I/O connections.

Input

1485A-M12

EtherNet/IP

Output

1485A-M12

— 1485A-C1

889A-QMCAP

1485A-C1

Contact Local Sales

Office

Description

Locking Tag

Padlock attachment to the lockable handles

Up to three padlocks 4…8 mm (5/16 in.) shackle

Replacement At-Motor Handle

Kit include (1) handle, (1) guard, and (3) screws

Replacement Fan for 284 Control Module

Cat. No.

140M-C-M3

280-DISHDL

284-FAN

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

257

Chapter 12 Accessories

Recommended Cord Grips

Description

Thomas & Betts Cord Grip

Cord grips for ArmorStart devices with 10 A short circuit protection rating

1 in. Stain Relief Cord Connector, 1 in. Lock Nut

Cable Range: 0.31…0.56 in.

Used with Control Power Media

Cordset – Example: Cat. No. 889N-M65GF-M2

Thomas & Betts Cord Grip

Cord grips for ArmorStart devices with 10 A short circuit protection rating

3/4 in. Stain Relief Cord Connector, 3/4 in. Lock Nut

Cable Range: 0.31…0.56 in.

Used with Three-Phase Power

Media Cordset – Example: Cat. No. 280-PWR22G-M1

Thomas & Betts Cord Grip

Cord grips for ArmorStart devices with 25 A short circuit protection rating

1 in. Stain Relief Cord Connector, 1 in. Lock Nut

Cable Range: 0.31…0.56 in.

Used with Control Power Media

Cordset – Example: Cat. No. 889N-M65GF-M2

Thomas & Betts Cord Grip

Cord grips for ArmorStart devices with 25 A short circuit protection rating

3/4 in. Stain Relief Cord Connector, 3/4 in. Lock Nut

Cable Range: 0.31…0.56 in.

Used with Three-Phase Power

Media Cordset – Example: Cat. No. 280-PWR22G-M1

Thomas & Betts

Part No.

2931NM

2940NM

2931NM

2942NM

258

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Accessories Chapter 12

Dynamic Braking Resistors

Sensorless Vector Control (SVC) Minimum Resistance and

Recommended Modules for Option DB

Resistance

Ohms ±5%

Table 47 - Dynamic Brake Specification for Option DB (IP20 Resistor)

Continuous

Power kW

Max Energy kJ

Max Braking

Torque % of

Motor

Application Type 1

Braking Torque

% of Motor Duty Cycle %

Application Type 2

Braking Torque

% of Motor Duty Cycle %

Drive and

Motor Size kW

(Hp)

Cat. No.

380…480 Volt AC Input Drives

0.37 (0.5)

0.75 (1)

1.5 (2)

2.2 (3)

4 (5)

Note 1:

Always check resistor ohmic value against minimum resistance for drive being used.

Note 2:

Duty cycle listed is based on full speed to zero speed deceleration.

For constant regen at full speed, duty cycle capability is half of what is listed.

Application Type 1 represents maximum capability up to 100% braking torque where possible.

Application Type 2 represents more than 100% braking torque where possible, up to a maximum of 150%.

Note 3:

Dynamic brake modules have an IP20 rating.

ATTENTION: Resistor temperature may exceed 200°C.

ATTENTION: AC drives do not offer protection for externally mounted brake resistors, especially in the case of brake IGBT failure. A risk of fire exists if external braking resistors are not protected. External resistor packages must be protected from over temperature or the protective circuit shown, or equivalent, must be supplied.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

259

Chapter 12 Accessories

Bulletin 284E Option (-DB) – IP20 Resistor

Installation Dimensions

Cat. No.

AK-R2-091P500, AK-R2-047P500, AK-R2-360P500

AK-R2-030P1K2, AK-R2-120P1K2

Weight

1.1 (2.5)

2.7 (8)

Dimensions are in millimeters (inches) and weights are in kilograms (pounds).

Figure 92 - Bulletin 284E Dimensions

17.0

(0.67)

Frame A

30.0

(1.18)

60.0

(2.36)

31.0

(1.22)

61.0

(2.40)

Frame B

59.0

(2.32)

SURFACES MAY BE

316.0

(12.44)

335.0

(13.19)

13.0

(0.51)

AK-R2-091P500

AK-R2-047P500

AK-R2-360P500

386.0

(15.20)

405.0

(15.94)

AK-R2-030P1K2

AK-R2-120P1K2

Thermostat

260

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Accessories Chapter 12

Recommended thermostat control wiring to prevent dynamic brake overheating.

Figure 93 - Thermostat Control Wiring

3-Phase

Power

R (L1)

S (L2)

(M)

Contactor

T (L3)

Power Off Power On

Power Source

M

M

DB Resistor Thermostat

Sensorless Vector Control (SVC) Recommended Dynamic Brake

Modules for Option DB1 (IP67 Resistor)

Drive and

Motor Size kW Cat. No.

380…480 Volt AC Input Drives

0.37 (0.5)

0.75 (1)

284R-360P500-M*

284R-360P500-M*

1.5 (2)

2.2 (3)

4 (5)

284R-360P500-M*

284R-120P1K2-M*

284R-120P1K2-M*

Resistance

Ohms ± 5%

Continuous

Power kW

Max Energy kJ

Max Braking

Torque % of

Motor

Application Type 1

Braking

Torque % of

Motor

Duty

Cycle %

360

360

360

120

120

Application Type 2

Braking

Torque % of

Motor

Duty

Cycle %

0.086

0.086

0.086

0.26

0.26

17

17

17

52

52

305%

220%

110%

197%

124%

100%

100%

100%

100%

100%

47%

23%

12%

24%

13%

150%

150%

110%

150%

124%

Drive rating and DB part numbers are not interchangeable. Only use specified resistor. Customer is responsible to evaluate if performance meets application requirement.

31%

15%

11%

16%

10%

Note:

Duty Cycle listed is based on full speed to zero speed deceleration. For constant regen at full speed, duty cycle capability is half of what is listed.

Application Type 1 represents maximum capability up to 100% braking torque where possible.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

261

Chapter 12 Accessories

Application Type 2 represents more than 100% braking torque where possible, up to a maximum of 150%.

Installation Dimensions

Figure 94 - Bulletin 284 Dynamic Brake Module

A

H

C

B

D

J

E

F

G

Cat. No.

284R-091P500

284R-120P1K2

284R-120P1K2

A mm (in.)

89 ± 3

(3.5 ± 0.12)

B mm (in.)

215 ± 5

(8.46 ± 0.2)

420 ± 5

(16.54 ± 0.2)

C mm (in.)

D mm (in.)

235 ± 5

(9.25 ± 0.2)

E mm (in.)

F mm (in.)

G mm (in.)

H mm (in.)

M05 = 0.5 m

M1 = 1 m ➊

60 ± 2

(2.36 ± 0.08)

127

(5)

12.54

(0.49)

60 ± 2

(2.36 ± 0.08)

440 ± 5

(17.32 ± 0.2)

➊ Length is user-selectable based on the suffix added to the catalog number. For a length of 500±10mm, add

-M05 to the end of the catalog number. For a length of 1000±10mm, add -M1 to the end of the catalog number.

J mm (in.)

50 ± 1.5

(1.97 ± 0.06)

Note:

The customer must protect the resistor in the event of a shorted switch in the VFD. This is done via PLC control. An example ControlLogix program can be downloaded from http://samplecode.rockwellautomation.com

262

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Introduction

Appendix

A

Applying More Than One ArmorStart

Motor Controller in a Single Branch Circuit on Industrial Machinery

Each ArmorStart motor controller is listed for group installation. This appendix explains how to use this listing to apply ArmorStart motor controllers in multiple-motor branch circuits according to 7.2.10.4(1) and 7.2.10.4(2) of

NFPA 79, Electrical Standard for Industrial Machinery.

From the perspective of the ArmorStart product family, being listed for group installation means one set of fuses or one circuit breaker may protect a branch circuit that has two or more of these motor controllers connected to it. This appendix refers to this type of branch circuit as a multiple-motor branch circuit.

The circuit topology shown in

Figure 95

, is one configuration, but not the only possible configuration, of a multiple-motor branch circuit. In these circuits, a single set of fuses (or a single circuit breaker) protects multiple motors, their controllers and the circuit conductors. The motors may be any mixture of power ratings and the controllers may be any mixture of motor controller technologies (magnetic motor controllers and variable-frequency AC drive controllers).

This appendix addresses only NFPA 79 applications. This is not because these products are only suitable for industrial machinery, but because industrial machinery is their primary market. In fact, while all versions of the ArmorStart products may be applied on industrial machinery, the versions that have the

Conduit Entrance Gland Plate Option may also be used in applications governed by NFPA 70, National Electrical Code (NEC), (see “ArmorStart Product

Family”).

In the 2012 Edition of NFPA 79, motor controllers that are listed for group installation may be installed in multiple-motor branch circuits according to either of two alternative sets of requirements. The first is found in 7.2.10.4(2), the second in 7.2.10.4(3). The requirements of 7.2.10.4(3) are similar to those in

430.53(C) of NFPA 70, while the requirements of 7.2.10.4(2) are found only in

NFPA 79. This appendix explains the requirements of 7.2.10.4(2), rather than those of 7.2.10.4(3), because this is the simpler method to use when applying the

ArmorStart family of motor controllers.

The user must determine the requirements – NFPA 79 or NFPA 70 – to use for the application. When making this determination, it is necessary to understand the ArmorStart LT product characteristics and useful to understand the definition of industrial machinery. The section of this appendix, “ArmorStart

Product Family”, specifies whether a motor controller is suitable for installation

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

263

Appendix A

Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery according to NFPA 79 or NFPA 70 (or both). The definition of industrial machinery is found in 3.3.56 of NFPA 79 and 670.2 of Article 670, Industrial

Machinery, in NFPA 70.

These conventions are used throughout this appendix. First, although all of the equipment is connected to a three-phase electrical supply, all of the figures are shown as one-line diagrams. Second, although all of the ArmorStart LT motor controllers are listed for group installation with both fuses and a specific family of inverse time circuit breakers, this appendix considers only fuses. This is done to avoid repetitive explanations with minor, but necessary qualifications, for circuit breakers. Generally, the principles for selecting the fuses also apply to selecting inverse time circuit breakers. Third, all references, unless indicated otherwise, are to NFPA 79 – 2012.

Note:

The following example uses ArmorStart LT. This provides a more comprehensive example,

Figure 95 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit

Electrical Supply

Final

Overcurrent

Device

Disconnecting

Means

Single Set of Fuses

NFPA 79, 3.3.10 Branch Circuit. The Circuit

Conductors Between the Final Overcurrent Device

Protecting the Circuit and the Outlet(s). [70:100]

Any Mixture of Motor Controller

Technologies

* Each Controller is Listed for Group

Installation with Specified Maximum

Protection

½ HP

Bulletin 294

Overload

Class 10

Nameplate*

2 HP

Bulletin 294

Overload

Class 10

Nameplate*

5 HP

Bulletin 291

Overload

Class 10/15/20

Nameplate*

5 HP

Bulletin 290

Overload

Class 10/15/20

Nameplate*

1 HP

Bulletin 294

Overload

Class 10

Nameplate*

1/2 Hp 2 Hp 5 Hp 5 Hp 1 Hp

Two or More Motors with any

Mixture or Power Ratings

ArmorStart LT Product Family

This section contains a brief description of the attributes of the ArmorStart LT motor controllers that are relevant to applying them in multiple-motor branch circuits.

The term motor controller refers to the device that stops and starts the motor.

The ArmorStart LT product family consists of two types of motor controllers.

The Bulletin 290 and 291 controllers are magnetic motor controllers that use an electromechanical contactor to stop and start the motor. The Bulletin 294 motor

264

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery

Appendix A

controllers use a variable-frequency AC drive to stop, start and vary the speed of the motor. This appendix refers to the Bulletin 290, 291 and 294 products as either motor controllers or just controllers.

Each ArmorStart LT motor controller incorporates an integrated overload relay and motor disconnecting means. The Underwriters Laboratories’ (UL) listing for each motor controller confirms that the motor controller – including its integral overload relay and motor disconnecting means — is suitable for motor group installation.

The suitability of each ArmorStart LT motor controller for installation according to either NFPA 79 or NFPA 70 depends on the means of connecting the power circuit wiring. All of the controllers are suitable for installation in multiple-motor branch circuits on industrial machinery according to 7.2.10.4 of NFPA 79. The controllers that have the Conduit Entrance Gland Plate Option are also suitable for installation in multiple-motor branch circuits according to 430.53(C) and

430.53(D) of NFPA 70 (NEC). The controllers that have the Power Media

Gland Plate Option are suitable for installation only on industrial machinery.

These versions are limited to industrial machinery because the UL listing for the power media connectors themselves and their matching cable assemblies covers installation only on industrial machinery.

Multiple-Motor Branch

Circuits and Motor

Controllers Listed for Group

Installation – General

Multiple-motor branch circuits, like that shown in

Figure 95 , have this

fundamental tradeoff: protecting more than one controller with a single set of fuses requires more electrical and mechanical robustness in each controller.

In exchange for eliminating the cost and space necessary for a dedicated set of fuses in front of each controller, the construction of each controller itself must be more robust. For the circuit configuration shown in

Figure 95 to be practical,

the ampere rating of the fuse must be large enough to operate all of the motors, without opening, under normal starting and running conditions. This rating of fuse must be larger than the rating permitted to protect a circuit that supplies only a single motor and its controller. In general, as the rating of the fuse increases, so does the magnitude of fault currents that flow until the fuse opens.

This higher magnitude of fault current results in more damage to the controller.

Therefore, the additional controller robustness is necessary to withstand these higher fault currents, without controller damage, that could result in a shock or fire hazard.

Consequently, to the controller, being listed for group installation mostly means the UL testing is performed with fuses that have this practical, and higher, ampere rating. This testing verifies that it is safe to apply this controller in a multiple-motor branch circuit, provided the fuse is of the same class and does not have a rating exceeding that marked on the controller.

The example in

Figure 96 , illustrates this increase in the maximum ampere rating

of fuse that is permitted to protect a controller. This example compares the rating of the fuse used in the UL testing of two variable-frequency AC drive-based motor controllers. Both controllers have a rated power of ½ horsepower and a

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

265

Appendix A

Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery

266

rated output current of 1.5 amperes. The controller shown on the left is intended for installation in individual-motor branch circuits. The controller shown on the right is the ArmorStart LT Bulletin 294 controller that must be listed for group installation to be installed, as intended, in multiple-motor branch circuits. For this example, assume all testing is done with fuses of the same class.

The UL investigation of both controllers is done according to UL 508C, Power

Conversion Equipment. The controllers are connected to the test supply through the three-phase conductors and equipment grounding conductor and then covered with cotton in areas that are likely to vent hot gases and sparks during the tests. During the test, electrical faults are impressed on the output of, and internal to, these variable-frequency AC drive-based controllers. Increasing the ampere rating of the fuses increases the magnitude of the fault currents that flow through, and damage, the controller before the fuses open. Afterwards, the damage to the controller is evaluated to determine whether a potential shock or fire hazard exists when protected by fuses having this ampere rating. One criterion of the evaluation is the examination of the equipment grounding conductor that must not open during the test as this could leave exposed conductive parts in an energized state (shock hazard). Another criterion is that the cotton must not ignite as this indicates the expulsion from the controller of hot gases or molten metal fragments (fire hazard).

Referring to the controller on the left, UL 508C permits the individual-motor testing to be performed with the maximum rating of fuse that can be used to protect an individual-motor branch circuit. According to both NFPA 70 and

NFPA 79, this is 400 percent of the full-load current rating of the largest motor that the controller can supply. In UL 508C, this is taken to be 400 percent of the rated output current of the controller, or 6 amperes.

Referring to the controller on the right, UL 508C permits the group installation testing to be performed with the maximum rating of fuse that can be used to protect a multiple-motor branch circuit. According to both NFPA 70

(430.53(C)) and NFPA 79 (7.2.10.4(3)), this is 250 amperes. This value, derived from the installation requirements of 430.53(C) and 430.53(D) of NFPA 70, is determined by the largest size of power conductor that the ArmorStart LT controller can accept, 10 AWG. Because the UL 508C test covers all possibilities in NFPA 70 and NFPA 79, it permits the maximum value of 250 amperes. This covers 7.2.10.4(2), which permits only 100 amperes. However, in this case, the manufacturer, Rockwell Automation, chose to test and mark with the lower value of 45 amperes. This value was chosen as the tradeoff between the maximum number and type of controllers in the branch circuit – limited by the maximum fuse rating - and the electrical and mechanical robustness engineered into each controller.

Therefore, to make its use in the multiple-motor branch circuit of Figure 95

practical, the ½ horsepower Bulletin 294 controller was engineered to be robust enough to safely contain the damage when protected by a fuse having a rating of 45 amperes, rather than just 6 amperes.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery

Appendix A

Figure 96 - UL508C Variable-Frequency AC Drive Motor Controller Evaluation

Short-Circuit Test Circuit Short-Circuit Test Circuit

UL 508C – test with 6 ampere max

½ HP Motor

Controller

Max = 400% * Rated Output Current

= 400% * 1.5 A = 6 A

Rated Output

Current = 1.5 A

6A fuse max

Max permitted rating for test fuse based on

Rated Output

Current

Manufacturer’s choice -

Reduce rating for test to 45 A

Max rating for 10 AWG

= 250 A

Max permitted rating for test fuse based on maximum size of power conductors

Bulletin 294

½ HP Motor

Controller

Suitable for motor group installation

Rated Output

Current = 1.5 A

45 A fuse max

Maximum conductor size

= 10 AWG

Maximum conductor size

= 10 AWG

Motor Motor

Maximum Fuse Ampere

Rating According to

7.2.10.4(1) and 7.2.10.4(2)

This section uses

Figure 97 to explain the requirements from 7.2.10.4(1) and

7.2.10.4(2) that are relevant to, and permit, the multiple-motor branch circuit of

Figure 95 .

The following is the complete text of 7.2.10.4(1) and 7.2.10.4(2) and an

abbreviated version of Table 48 from the 2012 Edition of NFPA 79. The table

is abbreviated to cover the size of conductors that are generally relevant to the

ArmorStart LT motor controllers.

Complete Text

“7.2.10.4 Two or more motors or one or more motor(s) and other load(s), and their control equipment shall be permitted to be connected to a single branch circuit where short-circuit and ground-fault protection is provided by a single inverse time circuit breaker or a single set of fuses, provided the following conditions under (1) and either (2) or (3) are met:

(1) Each motor controller and overload device is either listed for group installation with specified maximum branch-circuit protection or selected such that the ampere rating of the motor branch short-circuit and ground-fault protective device does not exceed that permitted by 7.2.10.1 for that individual motor controller or overload device and corresponding motor load.

(2) The rating or setting of the branch short-circuit and ground-fault protection device does not exceed the values in

Table 48

for the smallest conductor in the circuit.”

(3) …(not considered in this appendix)

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

267

Appendix A

Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery

Table 48 - Abbreviated Table 7.2.10.4

Table 7.2.10.4 Relationship Between Conductor Size and Maximum Rating or Setting of Short-Circuit

Protective Device for Power Circuits Group Installations

Conductor Size (AWG) Maximum Rating

Fuse or Inverse Time*

Circuit Breaker

(amperes)

14

12

60

80

10

8

6

100

150

200

The following text and

Figure 97

provide an explanation of 7.2.10.4(1) and (2). In the following, the text not relevant to

Figure 95

is replaced by ellipsis points (…). Then each individual requirement is underlined and followed by an underlined letter in parentheses. This underlined letter in the following text corresponds to the letter in

Figure 97 .

“7.2.10.4 Two or more motors (a)…and their control equipment (b) shall be permitted to be connected to a single branch circuit (c) where short-circuit and ground-fault protection is provided by a single inverse time circuit breaker or a single set of fuses (d), provided the following conditions under (1) and…(2)… are met:

(1) Each motor controller and overload device is… listed for group installation with specified maximum branch-circuit protection (e) …

(2) The rating or setting of the branch short-circuit and ground-fault protection device does not exceed the values in Table 7.2.10.4 for the smallest conductor in the circuit.” (f )

Summarizing the requirements relevant to

Figure 95 : 7.2.10.4(1) and 7.2.10.4(2)

permit two or more ArmorStart LT motor controllers to be installed in a single branch circuit provided (1) all the motor controllers are listed for group

installation, (2) the fuse does not exceed the maximum rating that Table 48

permits to protect the smallest conductor and (3) the fuse complies with the maximum fuse ratings of all of the controllers.

268

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Explanatory Example

Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery

Appendix A

Figure 97 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit

d

“...a single set of fuses…” f

“The rating or setting of the branch short-circuit and ground-fault protection device does not exceed the values in Table 7.2.10.4 for the smallest conductor in the circuit.”

Branch circuit (shown as dotted lines) – all of the conductors on the load side of the single set of fuses c

“...shall be permitted to be connected to a single branch circuit…” e

“Each motor controller and overload device is ...

listed for group installation with specified maximum branch-circuit protection…”

“Suitable for Motor Group Installation”

Sym. Amps RMS

Fuse

Max. Ratings

5 KA 10 KA

45A 45A*

* Type CC, J and T fuses only b e

Markings that satisfy

7.2.10.4(1)

“... and their control equipment … ”

½ HP

Bulletin 294

Overload

Class 10

Nameplate*

2 HP

Bulletin 294

Overload

Class 10

Nameplate*

5 HP

Bulletin 291

Overload

Class 10/15/20

Nameplate*

5 HP

Bulletin 290

Overload

Class 10/15/20

Nameplate*

1 HP

Bulletin 294

Overload

Class 10

Nameplate* a

“Two or more motors ...”

1/2 HP

FLC =

1.1 A**

2 HP

FLC =

3.4 A**

5 HP

FLC =

7.6 A**

5 HP

FLC =

7.6 A**

* Each controller is listed for group installation with the same specified maximum protection

1 HP

FLC =

2.1 A**

The example addresses the overcurrent protection of the conductors, controllers and motors. Protection for three overcurrent conditions is considered: motor running overloads, short-circuit (line-to-line) faults, and ground-faults (line-toground). The short-circuit fault and ground-fault protection is governed by

7.2.10.4(1) and 7.2.10.4(2) and explained in Requirements 1,2 and 3 and

Figure 98 . The overload protection,explained in Requirement 4, is governed by

7.3.1 and 7.3.1.1. Overload coordination depends on each conductor having the minimum ampacity given by 12.5.3 and 12.5.4. The method for determining this minimum ampacity is explained in Requirement 5 and

Figure 99

.

The example branch circuit is shown in

Figure 98 and Figure 99 . The circuit

topology consists of a set of 10 AWG conductors that supply multiple sets of 14

AWG conductors. Each set of 14 AWG conductors supply a controller and motor. These conductor sizes are chosen to be the smallest conductors that have sufficient ampacity, without derating, for the loads each must carry. All of the wiring is customer-supplied, rather than the ArmorConnect Power Media, because all controllers have the Conduit Entrance Gland Plate Option. Fuses protect the branch circuit.

The example addresses five basic requirements that the motor controllers, fuses and conductors must satisfy. The letters in the circles on

Figure 98

and

Figure 99

are referenced in the explanations as letters in parentheses. Ellipses points (…) are used to replace NFPA 79 text that is not applicable to the multiple-motor branch circuit shown in

Figure 98 and Figure 99 . Unless indicated, all text is

from NFPA 79.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

269

Appendix A

Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery

Figure 98 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit —

Conductor and Controller Protection

Electrical Supply -

480Y/277V

Available Fault Current

Sym. Amps RMS 9 KA

Disconnecting

Means

Fuses

45 A Max,

CC, J or T d a

Branch short-circuit and ground-fault protection device

Combined Load Conductors

Controller ratings further restrict the fuse

“Suitable for Motor Group Installation”

Sym. Amps RMS

Fuse

Max. Ratings

5 KA 10 KA

45A 45A*

* Type CC, J and T fuses only d

Compare to controller max fuse ratings a

½ HP

Bulletin 294

Overload

Class 10

Nameplate*

2 HP

Bulletin 294

Overload

Class 10

Nameplate*

5 HP

Bulletin 291

Overload

Class 10/15/20

Nameplate*

5 HP

Bulletin 290

Overload

Class 10/15/20

Nameplate*

Table 7.2.10.4

Max

Fuse

AWG (A)

- -

14 60

12 80

10 100

8 150

- -

Conductor protection -

60 A max, any class c

7.2.10.4(2) -

“smallest conductor in the circuit”

= 14 AWG b

Conductor protection

Determine fuse class and max rating for conductor protection

1/2 HP

FLC =

1.1 A**

“Smallest conductor”

2 HP

FLC =

3.4 A**

5 HP

FLC =

7.6 A**

5 HP

FLC =

7.6 A**

10 AWG

1 HP

Bulletin 294

Overload

Class 10

Nameplate*

* Each controller is suitable for group installation with the same maximum ratings of fuse.

** Table 430.250 of NFPA 70-2011

1 HP

FLC =

2.1 A**

Figure 99 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit Minimum

Conductor Ampacity

Electrical Supply

Min Amp. =

125% * 1.8 A

I1 =

1.8 A c

Min Amp. =

125% * 5.5 A

Minimum Required Ampacity (MRA)

MRA = 1.25 * Max {controller input currents} + Sum {remaining controller input currents}

Controller input currents = {I1,I2,I3,I4,I5}

Max controller input current = I3 = I4, choose I3 as Max (either is ok)

MRA = 1.25 * I3 + (I1 + I2 + I4 + I5}

= 1.25 * 7.6 A + (1.8 A + 5.5 A + 7.6 A + 3.0 A) = 27.4 A

Combined Load Conductors

10 AWG

Min Amp. =

125% * 7.6 A a

Min Amp. =

125% * 7.6 A

Min Amp. =

125% * 3.0 A

I2 =

5.5 A

I3 =

7.6 A

I4 =

7.6 A b

I5 =

3.0 A

Min Amp. =

125% * 1.1A

½ HP

Bulletin

294

1.1 A

1/2 HP

FLC =

1.1 A**

2 HP

Bulletin

294

3.4 A

Min Amp. =

125% * 7.6 A

5 HP

Bulletin

291

7.6 A a

Min Amp. =

125% * 7.6 A

5 HP

Bulletin

290

7.6 A b

Min Amp. =

125% * 2.1 A

1 HP

Bulletin

294

2.1 A

Min Amp. =

125% * 3.4 A

2 HP

FLC =

3.4 A**

5 HP

FLC =

7.6 A**

5 HP

FLC =

7.6 A**

1 HP

FLC =

2.1 A**

** Table 430.250 of NFPA 70-2011

270

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery

Appendix A

1. Requirement One: Controller Ratings

— The motor controllers and overload relays must be listed for group installation with specified maximum branch-circuit protection.

Text:

“7.2.10.4(1) Each motor controller and overload device is… listed for group installation with specified maximum branch-circuit protection…”

Analysis:

To apply the ArmorStart LT motor controllers in the multiple-motor branch circuit shown in

Figure 98 , 7.2.10.4(1) must be satisfied; each controller

must be listed for group installation with specified maximum branch-circuit protection. The UL listing for each ArmorStart LT motor controller confirms that it – including its integral overload relay and motor disconnecting means — is suitable for motor group installation with specified fuses, satisfying 7.2.10.4(1).

The Bulletin 290E and 291E controllers are listed for group installation according to UL 508, Industrial Control Equipment. The Bulletin 294E controllers are listed for group installation according to UL 508C, Power

Conversion Equipment.

Referring to

Figure 99 (a) indicates the markings on the nameplate that satisfy

7.2.10.4(1). The marking “Suitable for Motor Group Installation” satisfies the requirement to be listed for group installation. The ratings located beneath the description “Max. Ratings” are the specified maximum branch circuit protection.

The (a) beside the fuse(s) indicates that the maximum protection specified on the nameplate applies to these fuse(s).

2. Requirement Two: Conductor Short-circuit and Ground-Fault

Protection

— The fuse must protect the conductors for short-circuit faults and ground faults.

Text:

“7.2.10.4(2) The rating or setting of the branch short-circuit and groundfault protection device does not exceed the values in

Table 48

for the smallest conductor in the circuit.”

Analysis:

Referring to

Figure 98 , 7.2.10.4(2) must be satisfied. The fuse, as indicated by the description in Figure 98

(a), is the branch short-circuit and ground-fault protection device. The word circuit means the branch circuit.

The conductors of the branch circuit start at the load side of the fuses and end at the input to the motor, including the conductors between the motor controllers and the motor. The smallest conductor in the circuit is any one of the 14 AWG conductors that supply each controller and motor. The note at (b) indicates the conductor protection is based on the smallest conductor,

14 AWG. Referring to

Table 48 a 14 AWG conductor may be used in a circuit

that is protected by a fuse of any class having a rating of 60 amperes or less (c).

Therefore, selecting a fuse of any class with a maximum rating of 60 amperes satisfies the conductor protection requirement of 7.2.10.4(2).

Supplementary Note 1:

The value specified in Table 48 is the maximum rating

of fuse that 7.2.10.4(2) permits to protect that size of conductor. The rating of

the fuse may be set to the maximum value given by Table 48 for the smallest

conductor without further justification. However, if any controller, or other

component, has a maximum rating of fuse that is less than the Table 48

value, the

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

271

Appendix A

Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery

272

maximum rating of the fuse protecting the branch circuit must be reduced to the lower value so that all components are applied according to their ratings. For example, as shown in Requirement Three, a lower value may be necessary to protect the motor controller within its ratings because its specified maximum

protection is less than the rating that Table 48 permits for the smallest circuit

conductor. Another reason to use a lower rating of fuse is to provide more conservative conductor and controller protection. However, in all cases it is important to ensure the ampere rating is sufficient to start and operate the motors without nuisance opening of the fuse(s).

Supplementary Note 2:

The note at (b) points to the conductor on the output of the ½ Hp Bulletin 294E controller in order to emphasize that the smallest conductor in the circuit includes the conductors between each controller and motor. This includes the output of the variable-frequency AC drive-based

Bulletin 294E controllers; even though these drives have electronic short-circuit protection. According to NFPA 79, the fuse, and not the drive’s electronic shortcircuit protection, provides the short-circuit fault and ground-fault protection for these output conductors.

Supplementary Note 3:

Generally, connecting a smaller conductor to a larger conductor requires the installation of fuses at the connection. This connection may be made without this fuse, in some cases, through the use of a tap rule that indirectly protects the smaller conductor by limiting two things: the ratio of the ampacity of the larger conductor to the ampacity of the smaller conductor and the maximum length of the smaller conductor (see, for example, 7.2.8.2). When applying 7.2.10.4(2), such a tap rule is neither applicable nor necessary. In

Figure 98 , the smaller 14 AWG conductors may be connected to combined load

conductors of any size because 7.2.10.4 does not indirectly protect the smaller conductor by limiting the ratio of the larger to smaller conductor ampacities and

the conductor length. Instead, Table 48 protects the smallest conductor directly

by specifying the maximum rating of fuse that may protect a branch circuit that contains a conductor of that size.

3. Requirement Three: Controller Short-Circuit and Ground-Fault

Protection

— Each motor controller must be protected according to its own ratings, that is, applied in accordance with its listing.

Text:

“(1) Each motor controller and overload device is… listed for group installation with specified maximum branch-circuit protection…”

Analysis:

See (d) in

Figure 98 . The characteristics of the fuse(s) permitted to

protect the conductors (see Requirement 2) must now be compared to those in the controller’s ratings. To comply with the listing of each motor controller and overload relay, the fuse(s) must comply with the maximum branch-circuit protection specified in the controller markings. Therefore, the fuse(s) must be of a class marked on all of the controllers and the rating of the fuse(s) must not exceed the rating marked on any of the controllers. The markings of each controller specify that a fuse having a maximum rating of 45 A may protect the motor controller. When connecting to an electrical supply having an available fault current of 5000 amperes or less, the class of the fuse is not specified and may be any class. When connecting to an electrical supply having an available fault

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery

Appendix A

current between 5000 and 10000 amperes, the class of the fuse must be CC, J or T. Since the electrical supply has an available fault current of 9000 amperes, selecting a Class CC, J or T fuse with a rating of 45 A or less ensures each motor controller is applied within its own ratings.

Supplementary Note 1:

The rating of the fuse must not exceed the rating permitted by 7.2.10.4(2) to protect the smallest conductor in the circuit.

Selecting a Class CC, J or T fuse with a rating of 45 amperes, being less than 60 amperes, also protects the conductors (see Requirement 2). Although the

ArmorStart LT products presently have a maximum fuse rating of 45 A, future controllers may have maximum fuse ratings that exceed 60 A. In this case, the maximum rating of fuse is limited by the rating to protect the 14 AWG conductors, 60 A. The maximum rating permitted for the controller, 45 A, is a maximum rating and can be reduced, for more conservative protection, provided nuisance opening of the fuses do not occur.

Supplementary Note 2:

In this appendix, a fuse having a rating of any class means a fuse having the let-through characteristics of an Class RK-5 fuse. Class

RK-5 fuses are assumed to have the maximum let-through of any class of fuse. For this reason, the ArmorStart LT motor controllers that are marked for use with fuses, without a restriction to a particular class, have been tested with and are intended to be used with fuses having a class of RK-5. Of course, fuses of a class that have lower let-throughs than Class RK-5, such as Class CC, J or T, are also acceptable. A fuse having a rating of any class also restricts the fuse to those that have been evaluated for use as branch-circuit protection devices. This means that semiconductor fuses, used to protect power electronic equipment, or supplemental fuses cannot be used to protect the multiple-motor branch circuit.

Supplementary Note 3:

There are four complementary ratings relevant to the

“specified maximum branch-circuit protection” of 7.2.10.4(1). They are: the fuse class, the maximum fuse rating, the voltage rating and connection of the source

(480Y/277 V), and the available fault current of the source. Applying the controllers according to these four ratings means that a fault on the output of all the controllers, and internal faults for Bulletin 294 controllers, will not result in a shock or fire hazard.

Supplementary Note 4:

In this example, the assumption is made that the available fault current at the controller is that of the source on the line side of the fuses. Although it is true that the wiring impedance between the fuses and the first controller reduce the fault current available at the controllers, this reduction is neglected by assuming the first controller, the ½ horsepower

Bulletin 294 controller, is very close to the fuses.

4. Requirement Four: Overload Protection

— The motors, conductors and controllers must be protected against motor overload conditions.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

273

Appendix A

Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery

274

Text:

“7.3.1 General. Overload devices shall be provided to protect each motor, motor controller, and branch-circuit conductor against excessive heating due to motor overloads or failure to start.”

“7.3.1.1 Motors. Motor overload protection shall be provided in accordance with

Article 430, Part III, of NFPA 70.”

Analysis:

Each ArmorStart LT motor controller incorporates an integral overload relay. This overload function must be set in accordance with Article 430,

Part III of NFPA 70. Selecting the ampacity of the circuit conductors appropriately (see Requirement 5) ensures the overload relays, when set according to 7.3.1.1, will protect the conductors against overheating due to motor overloads.

Supplementary Note:

Each individual controller overload relay directly protects the conductors connected to the input and output of that controller and the motor that the controller supplies. The combined load conductor is protected by the tripping of one or more of the controller overload relays, which remove(s) the overloaded motor(s) before the combined load conductor overheats.

5. Requirement: Conductor Ampacity

—The minimum ampacity of conductors.

Text:

“12.5.3 Motor circuit conductors supplying a single motor shall have an ampacity not less than 125 percent of the motor full-load current rating.”

“12.5.4 Combined load conductors shall have an ampacity not less than … 125 percent of the full-load current rating of the highest rated motor plus the sum of the full-load current ratings of all other connected motors…”

Analysis:

Referring to

Figure 99 , (a), (b) and (c) explain the method for

calculating the minimum required conductor ampacity for each of these conductors: input and output conductors of Bulletin 290E and 291E controllers

(a), input and output conductors of Bulletin 294E controllers (b) and combined load conductors that supply Bulletin 290E, 291E and 294E controllers (c). The currents I1 through I5 are the input currents to the controllers. For the Bulletin

290E and 291E controllers, these are the same as the output motor currents. For the Bulletin 294E controllers, these currents are the rated input currents.

The example does not address conditions of use such as an ambient temperature exceeding 30 °C or more than three current-carrying conductors in a cable or raceway. In a particular application, these conditions of use may require derating of the ampacity given in Table 12.5.1. This example assumes that, under the conditions of use, both conductors have sufficient ampacity for the application.

This means the 14 AWG conductors have an ampacity of no less than

9.5 A and the 10 AWG conductors have an ampacity of no less than

27.4 A.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery

Appendix A

Input and Output Conductors of Bulletin 290E and 291E

Controllers (a)

For Bulletin 290E and 291E controllers, which use an electromechanical contactor to control the motor, the input current, like the output current, is just the current to the motor. Therefore, the minimum conductor ampacity for both input and output conductors is 125 percent of the motor full-load current rating, as specified in the text of 12.5.3 (a).

Referring to

Figure 99 , the full-load current rating of a three-phase, 460 V, 5 Hp

induction motor is 7.6 amperes. Using this value, both the input and output conductors must have an ampacity that is not less than 125% of 7.6 A or 9.5 A.

Input and Output Conductors of Bulletin 294E Controllers

(b)

The Bulletin 294E controllers use a variable-frequency AC drive to control the motor. These drives use a power conversion method that generates input currents that are larger than the output currents. The input currents are larger because, unlike the output currents to the motor, they are not sinusoidal. Consequently, when determining the minimum ampacity of the input conductors, the requirement of 12.5.3 must be based on the rated input current of the controller, rather than the full-load current rating of the motor. Therefore, the minimum ampacity of the input conductors must be 125% of the controller rated input current, while that of the output conductors must be 125% of the motor full-load current rating.

Referring to

Figure 99 , the 1 Hp Bulletin 294E controller has a rated input

current of 3.0 amperes. Using the rated input current, the conductors from the combined load conductors to the controllers must have an ampacity of 125% of 3.0 A or 3.75 A. The output conductors must have an ampacity of 125% of

2.1 A or 2.6 A.

Combined Load Conductors

(c)

The requirement for the minimum ampacity of the combined load conductors is given by 12.5.4. When the combined load conductors supply one or more

Bulletin 294E controllers, the minimum ampacity calculation of 12.5.4 must be made by substituting the rated input current of the Bulletin 294E controllers for the full-load current rating of the motors that these controllers supply.

In Figure 99

, the currents I1, I2, I3, I4 and I5 are the input currents to each controller. I3 and I4 are the full-load current ratings of the 5 Hp motors. I1, I2 and I5 are the rated input currents of the Bulletin 294E controllers. Referring to the explanatory text (c) in

Figure 99 , the method for calculating the minimum

ampacity of the combined load conductors follows: first, multiply the largest input current to any controller – Bulletin 290E, 291E or 294E - by 125%. In this case, the input currents to the Bulletin 290E and 291E controllers, I3 and I4, are the largest, 7.6 A. Because they are the same, either can be used. Choose I3 to calculate 125% of the maximum. 125% of 7.6 A is 9.5 A. Second, sum the remaining input currents (I1, I2, I4, I5) for a total of 17.9 A. Third, add the result from the first step to the result from the second for a total of 27.4 A. Finally, the minimum ampacity of the combined load conductors is 27.4 A.

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

275

Appendix A

Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery

Supplementary Note 1:

The input currents to the Bulletin 294E motor controllers are larger than the output currents to the motor because the input currents contain harmonics resulting from the power conversion process.

This harmonic content and the magnitude of the resulting non-sinusoidal input currents depend on the impedance of the electrical supply. The value specified for the rated input current is the maximum value over the range of possible supply impedances. For this reason, the magnitude of current measured on a particular electrical system may be less than the specified value.

276

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012

Appendix

B

CIP Information

High Level Product

Description

The ArmorStart EtherNet/IP is an extension of the ArmorStart DeviceNet.

Three product types offered:

Bulletin Number

280E

281E

284E

Distributed Starter Type

DOL

Reversing

Inverter

0x172

0x174

0x176

0x177

0x178

0xD1

0xD2

0xD3

0xDA

Product Codes and Name Strings

The following table lists the product codes and name strings that will be added to the ArmorStart product family for EtherNet/IP.

Product Code

(hex)

0x91

0x92

0x93

Product Code

(decimal)

145

146

147

Identity Object Name String

ArmorStart Bulletin 280E 0.5…2.5 A 24V DC

ArmorStart Bulletin 280E 1.1…5.5 A 24V DC

ArmorStart Bulletin 280E 3.2…16 A 24V DC

370

372

374

375

376

209

210

211

218

ArmorStart Bulletin 281E 0.5…2.5 A 24V DC

ArmorStart Bulletin 281E 1.1…5.5 A 24V DC

ArmorStart Bulletin 281E 3.2…16 A 24V DC

ArmorStart Bulletin 281E 0.3…1.5 A 24V DC

ArmorStart Bulletin 284E PF40 480V 0.5 Hp

ArmorStart Bulletin 284E PF40 480V 1 Hp

ArmorStart Bulletin 284E PF40 480V 2 Hp

ArmorStart Bulletin 284E PF40 480V 3 Hp

ArmorStart Bulletin 284E PF40 480V 5 Hp

CIP Explicit Connection

Behavior

The ArmorStart allows run, jog and user outputs to be driven by connected explicit messages when no I/O connection exists, or when a I/O connection exists in the idle state, a single EtherNet/IP Class 3 explicit connection will be allowed to send “explicit control” messages via an “Active Explicit” connection.

An EtherNet/IP Class 3 explicit connection becomes the “explicit control”

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

277

Appendix B CIP Information connection when it becomes the first EtherNet/IP Class 3 explicit connection to send a “set” service to one of the following:

• The “value” attribute of any DOP instance (class code 0x09).

• The “data” attribute of any output (consumed) Assembly instance (class code 0x04).

• Attribute 3 or 4 of the Control Supervisor Object (class code 0x29).

EDS Files

Most of the information contained in the EDS (Electronic Data Sheet) files for the ArmorStart EtherNet/IP product line will be able to be extracted via the network.

CIP Object Requirements

The following CIP objects will be covered in the following subsections.

0x001D

0x001E

0x0029

0x002C

0x0047

0x0048

0x0097

0x0098

Class

0x0001

0x0004

0x0006

0x0008

0x0009

0x000F

0x0010

0x00B4

0x00F5

0x00F6

Object

Identity Object

Assembly Object

Connection Manager Object

Discrete Input Point Object

Discrete Output Point Object

Parameter Object

Parameter Group Object

Discrete Input Group Object

Discrete Output Group Object

Control Supervisor Object

Overload Object

Device Level Ring Object

QoS Object

DPI Fault Object

DPI Alarm Object

Interface Object

TCP/IP Interface Object

Ethernet Link Object

For convenience, all objects that are accessible via the EtherNet/IP port are included.

278

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

CIP Information Appendix B

Identity Object

CLASS CODE 0x0001

The following class attributes are supported for the Identity Object:

Attribute ID

1

2

Access Rule

Get

Get

Name

Revision

Max Instance

Data Type

UINT

UINT

Value

1

9

Up to nine instances (Instance 1…9) of the Identity Object will be supported.

The following table shows what each instance will represent, and what the revision attribute will report:

5

6

7

8 ➊

9 ➊

Instance

1

2

3

4

Name

EtherNet/IP Module

EtherNet/IP Boot

FPGA

Control Module

Revision Attribute

The firmware rev of the EtherNet/IP board main firmware.

The firmware rev of the EtherNet/IP board boot firmware.

The rev of the FPGA program

A coded revision reflecting the revision attribute of the other various identity object instances (excluding boot code). Major revisions are coded as: 0SSSMMMM

0 = reserved by DeviceNet

SSS = Revision of Soft-start or inverter. Initial release = 0; We will be limited to support for 8 major revisions.

MMMM = Revision of Main ArmorStart board. Initial release = 1; We will be limited to support for 15 major revisions.

Main Control Board

Operating System

Main Control Board Boot Code

The Internal PF 40 Inverter

MCB IIC Daughter Board

BASE IIC Daughter Board

The firmware rev of the Main ArmorStart board OS stored in flash memory.

The firmware rev of the Main ArmorStart board boot code stored in flash memory.

The firmware rev of the Inverter as read from the RS485 connection.

The firmware rev of the MCB IIC Daughter Board

The firmware rev of the Base IIC Daughter Board

➊ These instance numbers will assume the next available instance base on the unit configuration. (If the unit is a DOL (No Drive) and there is a MCB Daughter board present it’s instance number will be 7.)

IMPORTANT

Attempts access Attribute 10 of all DeviceNet Main Control Board instances will be blocked. If Attribute 10 (Heartbeat Interval) is accessed, an “Attribute Not Supported” error will be generated.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

279

Appendix B CIP Information

Attribute ID Access Rule

2 Get Type

3 Get Product Code

Revision

Minor Revision

6 Get Serial Number

Product Name

7 Get

ASCII String

8 Get State

Instance 1 of the Identity Object will contain the following attributes:

Name

UINT

UINT

UINT

Structure of:

USINT

USINT

Data Type

WORD

UDINT

Structure of:

USINT

STRING

USINT

Value

1

22

Starter Rating specific

See table above.

Bit 0…0 = Not Owned; 1 = Owned by Master

Bit 2…0 = Factory Defaulted; 1 = Configured

Bit 8 - Minor Recoverable fault

Bit 9 - Minor Unrecoverable fault

Bit 10 - Major Recoverable fault

Bit 11 - Major Unrecoverable fault

Unique number for each device

Product Code specific

Returns the value "3 = Operational"

102

UDINT

➊ Instance 1 only

The following common services will be implemented for Instance 1. Service requests to other instances are serviced through the bridge.

Service Code Class

Implemented for:

Instance Service Name

0x01 Yes Yes Get_Attributes_All

0x05 No Yes Reset

0x0E Yes Yes Get_Attributes_Single

The Type 0 and 1 reset service types will reset the Control Module. The

EtherNet/IP module will perform the Type 0 or 1 reset on itself.

280

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

CIP Information Appendix B

Assembly Object

CLASS CODE 0x0004

The following class attributes are supported for the Assembly Object:

Attribute ID Access Rule

1 Get

Name

Revision

Data Type

UINT

Value

1

The following static Assembly instance attributes will be supported for each

Assembly instance.

Attribute ID

1

Access Rule

Get

Name

Number of Members in Member List UINT

Member List

Member Data Description

Data Type

Array of STRUCT

UINT

Member Path

UINT

Packed

EPATH

3

4

Conditional

Get

Data

Size

100 Get String

Array of BYTE

UINT

STRING

Array of CIP paths

Size of Member Data in bits

Value

Size of Member EPATA in bytes

Logically encoded member name

Number of bytes in attribute 3

The following services will be implemented for the Assembly Object.

Implemented for:

Service Code Class Instance Service Name

0x0E Yes Yes Get_Attribute_Single

0x10 No Yes Set_Attribute_Single

0x18 No Yes Get_Member

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

281

Appendix B CIP Information

Byte

0

Bit 7

Byte

Bit 7

Bit 6

Bit 6

I/O Assemblies

The following table summarizes the Assembly instances that are supported in the

ArmrorStart EtherNet/IP Product:

Instance Type

3 Consumed

Description

Required ODVA Consumed Instance

150

151 ➊

162

166 ➊

191

192

Produced

Produced

Consumed

Consumed

Consumed

Consumed

Default Bulletin 280E/281E Produced Assembly

Default Bulletin 284E Produced Assembly

Default Consumed Instance for DOL and Reversing Starters

Default Consumed Instance for Inverter type Starters

Empty assembly for Input Only I/O Connection

Empty assembly for Listen Only I/O Connection

➊ These assemblies are selectable on Inverter Type ArmorStart units only.

Instances 3 and 52 are required by the ODVA Motor Starter Profile. When used as an EtherNet/IP Class 1 connection point, the I/O data attribute is simply passed through the bridge.

Instance 3

This is the required output (consumed) assembly.

Bit 5

Instance 3 ODVA Starter

Bit 4 Bit 3

— —

Bit 2

Instance 52

This is the required input (produced) assembly.

Bit 1

Bit 0

Run Fwd

Bit 5

Instance 52 ODVA Starter

Bit 4 Bit 3

— —

Bit 2

Running

Bit 1

Bit 0

Fault

282

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

CIP Information Appendix B

Instance 150

This is the default input (produced) assembly for Bulletin 280E/281E starters.

13

14

15

9

10

11

12

Byte

0

1

2

Bit 7

3

4 —

5 —

Instance 150 "Starter Stat" - Default Status Assembly for Bulletin 280E/281E Starters

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

Reserved (AOP Tag name: {name}:I.Fault)

Reserved (AOP Tag name: {name}:I.Fault)

Bit 1 Bit 0

DisconnectClosed

Reserved (AOP Tag name: {name}:I.Fault)

Reserved (AOP Tag name: {name}:I.Fault)

Hand

RunningReverse TripPresent

In3 In2 In1 In0

6 Pt07DeviceOut Pt06DeviceOut Pt05DeviceOut Pt04DeviceOut Pt03DeviceOut Pt02DeviceOut Pt01DeviceOut Pt00DeviceOut

Pt14DeviceOut

Pt13DeviceOut Pt12DeviceOut Pt11DeviceOut Pt10DeviceOut Pt09DeviceOut Pt08DeviceOut

8 Value of the parameter pointed to by “Parameter Int00DeviceOut Cfg” (low byte) - ProducedWord0Param

Value of the parameter pointed to by “Parameter Int00DeviceOut Cfg” (high byte) - ProducedWord0Param

Value of the parameter pointed to by “Parameter Int01DeviceOut Cfg” (low byte) - ProducedWord1Param

Value of the parameter pointed to by “Parameter Int01DeviceOut Cfg” (high byte) - ProducedWord1Param

Value of the parameter pointed to by “Parameter Int02DeviceOut Cfg” (low byte) - ProducedWord2Param

Value of the parameter pointed to by “Parameter Int02DeviceOut Cfg” (high byte) - ProducedWord2Param

Value of the parameter pointed to by “Parameter Int03DeviceOut Cfg” (low byte) - ProducedWord3Param

Value of the parameter pointed to by “Parameter Int03DeviceOut Cfg” (high byte) - ProducedWord3Param

Note:

Byte 0 - 3 refers to PLC communication status. All 1s (bit high) indicates a connection fault (communication fault) exists or all 0s (bit low) connection is normal.

Instance 151

This is the default input (produced) assembly for Inverter Type Distributed

Starters.

Byte

0

1

2

3

4

5

6

Bit 7

AtReference

OutputContactor

Status

Bit 6

Network

ReferenceStatus

BrakeContactor

Status

Produce Assembly - Instance 151 “Drive Status” - 284E Starters

Bit 5 Bit 4 Bit 3 Bit 2

Reserved - {name}:I.Fault

Reserved - {name}:I.Fault

NetControlStatus

Bit 1

Reserved - {name}:I.Fault

Reserved - {name}:I.Fault

Ready RunningReverse RunningForward WarningPresent

DisconnectClosed Hand In3 In2 In1

OutputFrequency (Low) (xxx.x Hz)

Bit 0

TripPresent

In0

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

283

Appendix B CIP Information

11

12

9

10

Byte

7

8

15

16

13

14

17

Bit 7 Bit 6

Produce Assembly - Instance 151 “Drive Status” - 284E Starters

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

OutputFrequency (High) (xxx.x Hz)

Pt07DeviceOut Pt06DeviceOut Pt05DeviceOut Pt04DeviceOut Pt03DeviceOut Pt02DeviceOut Pt01DeviceOut Pt00DeviceOut

LogicEnable Pt14DeviceOut Pt14DeviceOut Pt13DeviceOut Pt11DeviceOut P10DeviceOut Pt09DeviceOut

Value of the parameter pointed to by “Parameter 13 Prod Assy Word 0" (low byte)” - Int00DeviceOut

Pt08DeviceOut

Value of the parameter pointed to by “Parameter 13 Prod Assy Word 0" (high byte)” - Int00DeviceOut

Value of the parameter pointed to by “Parameter 14 Prod Assy Word 1" (low byte)” - Int01DeviceOut

Value of the parameter pointed to by “Parameter 14 Prod Assy Word 1" (high byte)” - Int01DeviceOut

Value of the parameter pointed to by “Parameter 15 Prod Assy Word 2" (low byte)” - Int02DeviceOut

Value of the parameter pointed to by “Parameter 15 Prod Assy Word 2" (high byte)” - Int02DeviceOut

Value of the parameter pointed to by “Parameter 16 Prod Assy Word 3" (low byte)” - Int03DeviceOut

Value of the parameter pointed to by “Parameter 16 Prod Assy Word 3" (high byte)” - Int03DeviceOut

Note:

Byte 0 - 3 refers to PLC communication status. All 1s (bit high) indicates a connection fault (communication fault) exists or all 0s (bit low) connection is normal.

** Contactor Reference

Contactor 1 Source Brake Contactor status

Contactor 2 Output Contactor status

Instance 162

This is the standard output (consumed) assembly with

Network Inputs.

Byte

0

1

2

Instance 162 Default Consumed DOL and Reversing Starter

Bit 7

OutB

Bit 6

OutA

Bit 5

Bit 4

Bit 3

Bit 2

ResetFault

Bit 1

RunReverse

Bit 0

RunForward

Pt07DeviceIn Pt06DeviceIn Pt05DeviceIn Pt04DeviceIn Pt03DeviceIn Pt02DeviceIn Pt01DeviceIn Pt00DeviceIn

Pt15DeviceIn Pt14DeviceIn Pt13DeviceIn Pt12DeviceIn Pt11DeviceIn Pt10DeviceIn Pt09DeviceIn Pt08DeviceIn

Instance 166

This is the standard output (consumed) assembly for Inverter Type Distributed

Starters with network inputs.

284

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

CIP Information Appendix B

3

4

5

Byte

0

Bit 7

Out B

1 DriveInput4

2

Pt07DeviceIn

Pt15DeviceIn

Bit 6

Out A

DriveInput3

Instance 166 Consumed Inverter Type Starter with Network Inputs

Bit 5 Bit 4 Bit 3 Bit 2

DriveInput2

JogReverse

DriveInput1

JogForward

DecelCtrl_1

ResetFault

DecelCtrl_0

Pt06DeviceIn

Pt14DeviceIn

Pt05DeviceIn

Pt13DeviceIn

FreqCommand (Low) (xxx.x Hz)

FreqCommand (High) (xxx.x Hz)

Pt04DeviceIn

Pt12DeviceIn

Pt03DeviceIn

Pt11DeviceIn

Pt02DeviceIn

Pt10DeviceIn

Bit 1

RunReverse

AccelCtrl_1

Bit 0

RunForward

AccelCtrl_0

Pt01DeviceIn

Pt9DeviceIn

Pt00DeviceIn

Pt8DeviceIn

Connection Manager Object

CLASS CODE 0x0006

The following class attributes will be supported for the Connection Manager

Object.

Attribute ID Access Rule

1 Get

Name

Revision

2 Get Max

3

4

6

Get

Get

Get

Number of Instances

Optional Attribute List

Max Number Class Attribs

Data Type

UINT

UINT

UINT

Array of UINT

UINT

Two Class 1 connections for I/O transfer will be supported.

Six Class 3 explicit connections will be supported.

The following instance attributes will be supported:

Value

1

Attribute ID

1

2

3

Access Rule

Get/Set

Get/Set

Get/Set

Name

Open Requests

Open Format Rejects

Open Resource Rejects

Data Type

UINT

UINT

UINT

Value

Number of Forward Open service requests received.

Number of Forward Open service requests which were rejected due to bad format.

Number of Forward Open service requests which were rejected due to lack of resources.

4 Get/Set Open Other Rejects UINT

Number of Forward Open service requests which were rejected for reasons other than bad format or lack of resources.

5 Get/Set Close Requests UINT Number of Forward Close service requests received.

6 Get/Set Close

Number of Forward Close service requests which were rejected due to bad format.

UINT

Number of Forward Close service requests which were rejected for reasons other than bad format.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

285

Appendix B CIP Information

286

The following services will be implemented for the Connection Manager Object.

Service Code

0E hex

4E hex

54 hex

Implemented for:

Class Instance Service Name

Yes

No

No

Yes

Yes

Yes

Get_Attribute_Single

Forward_Close

Forward_Open

Class 1 Connections

Class 1 connections are used to transfer I/O data, and can be established to the assembly object instances. Each Class 1 connection establishes two data transports, one consuming and one producing. The heartbeat instances are used for connections that shall access only inputs. Class 1 uses UDP transport.

• Total numbers of supported Class 1 connections equals 2 (total for: exclusive owner + input only + listen only)

• Supported Actual Packet Interval (API): 2

3200 ms (Note that the minimum API can be higher if processor resources become a problem)

• T->O (Target to Originator) Connection type: point-to-point, multicast

• O->T (Originator to Target) Connection type: point-to-point

• Supported trigger type: cyclic, change-of-state

The producing instance can be assigned to multiple transports, using any combination of multicast and point-to-point connection types.

Only one Exclusive-owner connection will be supported at each time. If there’s already an Exclusive-owner connection established and an originator tries to establish a new Exclusive-owner connection an “Ownership conflict” (general status = 0x01, extended status = 0x0106) error code will be returned.

For a connection to be established the requested data sizes must be an exact match of the connections points that the connection tries to connect to. If the requested and actual sizes don’t match, an “Invalid connection size” (general status = 0x01, extended status = 0x0109) error code will be returned.

Exclusive Owner Connection

This connection type is used for controlling the outputs of the module and shall not be dependent on any other condition. Only one exclusive owner connection can be opened against the module.

If an exclusive owner connection is already opened “Connection in use” (general status = 0x01, extend status = 0x0100) shall be returned an error code.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

CIP Information Appendix B

• Connection point O -> T shall be Assembly object, Instance 3, 162 or 166 (162 for product codes <= 0x100 only, 166 for product codes

> 0x100 only).

• Connection point T -> O shall be Assembly object, Instance 52, 150 or 151 (150 for product codes <= 0x100 only, 151 for product codes

> 0x100 only).

Listen Only Connection

This connection is dependent on another connection to exist. If that connection

(exclusive owner or input only) is closed, the listen only connection shall be closed as well.

It is recommended that the originator sets the data size in the Forward_Open be zero.

• Number of supported listen only connections equals two (shared with exclusive owner and listen only connection).

• Connection point O -> T shall be Assembly object, Instance 192 (Listen only heartbeat)

• Connection point T -> O shall be Assembly object, Instance 52, 150 or 151 (150 for product codes <= 0x100 only, 151 for product codes

> 0x100 only)

Class 3 CIP Connections

Class 3 CIP connections are used to establish connections to the message router.

The connection is used for explicit messaging. Class 3 CIP connections use TCP connections.

• Three concurrent encapsulation sessions will be supported

• Six concurrent Class 3 CIP connections will be supported

• More than one Class 3 CIP connection per encapsulation session will be supported

• Supported Actual Packet Interval (API): 100

10000 ms

• T->O Connection type: point-to-point

• O->T Connection type: point-to-point

• Supported trigger type: application

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

287

Appendix B CIP Information

Discrete Input Point Object

CLASS CODE 0x0008

The following class attributes are currently supported for the Discrete Input

Point Object:

Attribute ID

1

2

Access Rule

Get

Get

Attribute ID

3

115

116

Access Rule

Get

Get/Set

Get/Set

Name

Revision

Max Instance

Data Type

UINT

UINT

Value

2

4

Four instances of the Discrete Input Point Object are supported. All instances contain the following attributes.

Name

Value

Force Enable

Force Value

Data Type

BOOL

BOOL

BOOL

Value

0 = OFF, 1 = ON

0 = Disable, 1 = Enable

0 = OFF, 1 = ON

The following common services will be implemented for the Discrete Input Point

Object.

Implemented for:

Service Code Class Instance Service Name

0x0E Yes Yes Get_Attribute_Single

0x10 No Yes Set_Attribute_Single

Discrete Output Point Object

CLASS CODE 0x0009

The following class attributes are supported.

Attribute ID Access Rule

1 Get

2 Get

Name

Revision

Max Instance

Data Type

UINT

UINT

Value

1

4 or 10

Four instances of the Discrete Output Point Object are supported for DOL/

Reverser units. Ten instances are supported for Drive units. The following table summarizes the DOP instances.

288

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

CIP Information Appendix B

Attribute ID

3

5

6

7

8

113

114

115

116

Access Rule

Get

Get/Set

Get/Set

Get/Set

Get/Set

Get/Set

Get/Set

Get/Set

Get/Set

117 Get/Set

Instance Name

1 Run Fwd Output

2

9

10

7

8

5

6

3

4

Run Rev Output

User Output 1

User Output 2

Drive Input 1

Drive Input 2

Drive Input 3

Drive Input 4

Drive Jog Fwd

Drive Jog Rev

0029-01-03

0029-01-04

None

None

None

None

None

None

None

None

Description

Run Forward output. For all starter types, this output is hard wired from the

ArmorStart CPU to the actuator.

Run Reverse output. For all starter types, this output is hard wired from the

ArmorStart CPU to the actuator.

These are the two ArmorStart user outputs for all starter types.

These four instances exist for Inverter units only. They are drive the outputs on the main control board that are connected to Drive Inputs 1…4.

This instances exists for Inverter units only.

All instances contain the following attributes.

Name

Value

Fault Action

Fault Value

Idle Action

Idle Value

Pr Fault Action

Pr Fault Value

Force Enable

Force Value

Input Binding

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

STRUCT:

USINT

Data Type

Array of USINT

Value

0 = OFF, 1 = ON

0 = Fault Value attribute, 1 = Hold Last State

0 = OFF, 1 = ON

0 = Fault Value attribute, 1 = Hold Last State

0 = OFF, 1 = ON

0 = Pr Fault Value attribute, 1 = Ignore

0 = OFF, 1 = ON

0 = Disable, 1 = Enable

0 = OFF, 1 = ON

Size of Appendix I encoded path

Appendix I encoded path

NULL path means Attribute 3 drives the output.

Otherwise, this is a path to a bit in the Bit Table.

➊ For DOP Instances 1, 2, 9 and 10, Attributes 113 and 114 have “Get” only access, and their values are always 0.

The following common services are implemented for the Discrete Output Point

Object.

Implemented for:

Service Code Class Instance

0x0E Yes Yes

Service Name

Get_Attribute_Single

0x10 No Yes Set_Attribute_Single

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

289

Appendix B CIP Information

Parameter Object

Attribute ID

1

2

8

Access Rule

Get

Get

Get

Access Rule

Get/Set

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Attribute ID

1

2

3

18

19

16

17

20

21

14

15

12

13

10

11

8

9

6

7

4

5

CLASS CODE 0x000F

The following class attributes will be supported for the Parameter Object.

Name

Revision

Max Instance

Parameter Class Descriptor

Data Type

UINT

UINT

WORD

Value

The number of instances of the parameter object will depend upon the type of

Control Module that the EtherNet/IP board is connected to.

The following instance attributes will be implemented for all parameter attributes.

Name

Value

Link Path Size

Link Path

Descriptor

Data Type

Data Size

Parameter Name String

Units String

Help String

Minimum Value

Maximum Value

Default Value

Scaling Multiplier

Scaling Devisor

Scaling Base

Scaling Offset

Multiplier Link

Divisor Link

Base Link

Offset Link

Decimal Precision

Data Type

Specified in Descriptor

USINT

Array of:

BYTE

EPATH

WORD

EPATH

USINT

SHORT_STRING

SHORT_STRING

SHORT_STRING

Specified in Descriptor

Specified in Descriptor

INT

UINT

UINT

UINT

Specified in Descriptor

UINT

UINT

UINT

UINT

USINT

Value

290

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

CIP Information Appendix B

The following services will be implemented for the Parameter Object.

Implemented for:

Service Code Class Instance

0x01 No Yes

Service Name

Get_Attribute_All

0x0E Yes

0x10 No

0x4b No

Yes

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

Get_Enum_String

Parameter Group Object

Attribute ID

1

2

Access Rule

Get

Get

Attribute ID

1

2

3 n

4

Access Rule

Get

Get

Get

Get

Get

CLASS CODE 0x0010

The following class attributes will be supported for the Parameter Object.

Name

Revision

Max Instance

Data Type

UINT

UINT

Value

The following instance attributes will be supported for all parameter group instances.

Name

Group Name String

Number of Members

1st Parameter

2nd Parameter

Nth Parameter

Data Type

SHORT_STRING

UINT

UINT

UINT

UINT

Value

The following common services will be implemented for the Parameter Group

Object.

Implemented for:

Service Code Class Instance

0x01 Yes Yes

Service Name

Get_Attribute_All

0x0E Yes Yes Get_Attribute_Single

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

291

Appendix B CIP Information

Discrete Input Group Object

CLASS CODE 0x001D

No class attributes will be supported for the Discrete Input Group Object.

A single instance of the Discrete Input Group Object is supported and contains the following instance attributes.

Attribute ID

3

4

6

7

Access Rule

Get

Get

Get/Set

Get/Set

Name

Number of Instances

Binding

Off_On_Delay

Off_On_Delay

Data Type

USINT

Array of UINT

UINT

UINT

Value

4

List of DIP Instances

The following common services will be implemented for the Discrete Input

Group Object.

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

No

No

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

Discrete Output Group Object

CLASS CODE 0x001E

No class attributes will be supported for the Discrete Output Group Object.

Instance 1 exists for all ArmorStart units. Instance 2 exists for drive units only.

Instances 1 contains the following instance attributes.

Attribute ID

3

4

6

104

105

Access Rule

Get

Get

Get/Set

Get/Set

Get/Set

Name

Number of Instances

Binding

Command

Network Status Overrride

Comm Status Overrride

Data Type

USINT

Array of UINT

BOOL

BOOL

BOOL

Value

4 for DOL/Soft Starter 10 for Inverters

List of DOP Instances

0 = Idle, 1 = Run

0 = No Override (go to safe state)

1 = Override (run local logic)

0 = No Override (go to safe state)

1 = Override (run local logic)

292

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Attribute ID

3

4

7

8

9

10

113

114

Access Rule

Get

Get

Get/Set

Get/Set

Get/Set

Get/Set

Get/Set

Get/Set

CIP Information Appendix B

Instance 2 contains the following instance attributes.

Name

Number of Instances

Binding

Fault Action

Fault Value

Idle Action

Idle Value

Pr Fault Action

Pr Fault Value

Data Type

USINT

Array of UINT

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

Value

4

5, 6, 7, 8

0 = Fault Value Attribute, 1 = Hold Last State

0 = OFF, 1 = On

0 = Idle Value Attribute, 1 = Hold Last State

0 = OFF, 1 = On

0 = Pr Fault Value Attribute, 1 = Ignore

0 = OFF, 1 = On

The following common services are implemented for the Discrete Output Group

Object.

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

No

No

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

Control Supervisor Object

CLASS CODE 0x0029

No class attributes are supported.

A single instance (Instance 1) of the Control Supervisor Object is supported and contains the following instance attributes.

Attribute ID

3

10

12

100

101

4 ➊

7

8 ➊

9

Access Rule

Get/Set

Get/Set

Get

Get

Get

Get

Get/Set

Get/Set

Get/Set

Name

Run 1

Run 2

Running 1

Running 2

Ready

Tripped

Fault Reset

Keypad Mode

Keypad Disable

Data Type

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

Value

These Run outputs also map to DOP

Instances 1 and 2

0->1 = Trip Reset

0 = Maintained, 1 = Momentary

0 = Not Disabled, 1= Disabled

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

293

Appendix B CIP Information

Attribute ID Access Rule

115

152

153

Get

Get

Get

Name

Warning Status

124

130

131

150 ➋

151

Get/Set

Get/Set

Get/Set

Get/Set

Get

Trip Enable

Trip Reset Mode

Trip Reset Level

High Speed Ena

Base Enclosure

Base Options

Wiring Options

WORD

BOOL

USINT

BOOL

WORD

Data Type

WORD

WORD

WORD

Value

Bits 0…1 = Reserved

Bit 2 = PL Warning (does not apply for Ethernet version)

Bit 3 = Reserved

Bit 4 = PR Warning (does not apply for Ethernet version)

Bit 5 = CP Warning

Bit 6 = I/O Warning

Bit 7 = Reserved

Bit 8 = PI Warning (does not apply for Ethernet version)

Bit 9 = DN Warning

Bits 10…12 = Reserved

Bit 13 = HW Warning

Bits 14…15 = Reserved

Bit enumerated trip enable word

0 = Manual, 1 = Auto

0 = 100%, Default = 75

0 = Disable, 1 = Enable

Bit 0 = IP67

Bit 1 = NEMA 4x

Bits 2…15 Reserved

Bit 0 = Output Fuse

Bit 1 = Safety Monitor

Bit 2 = CP Fuse Detect

Bits 3…7 = Reserved

Bit 8 = 10A Base

Bit 9 = 25A Base

Bit 10…15 = Reserved

Bit 0 = Conduit

Bit 1 = Round Media

Bits 2…15 = Reserved

294

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Attribute ID

154

Access Rule

Get

155

Overload Object

Get

156

157

Get

Get

158 ➋ Get

CIP Information Appendix B

Name

Starter Enclosure

Starter Options

Last Pr Trip

DB Status

DB Fault

Data Type

WORD

WORD

UINT

WORD

WORD

Value

Bit 0 = IP67

Bit 1 = NEMA 4x

Bits 2…15 Reserved

Bit 0 = Full Keypad

Bit 1 = Safety Monitor

Bit 2 = Source Brake

Bit 3 = CP Brake

Bit 4 = Dynamic Brake

Bit 5 = Output Contactor

Bit 6 = EMI Filter

Bit 7 = 0…10V Analog In

Bits 8…15 = Reserved

Bit 0 = DB Faulted

Bit 1 = DB Overtemp Warning

Bit 2 = DB On

Bit 3 = DB Flt Reset Inhibit

Bits 4…15 = Reserved

Bit 0 = DB Overtemp

Bit 1 = DB OverCurrent

Bit 2 = DB UnderCurrent

Bit 3 = DB Shorted Switch

Bit 4 = DB Open

Bit 5 = Reserved

Bit 6 = DB Bus Voltage Link Open

Bit 7 = Reserved

Bit 8 = DB Comms

Bits 9…15 = Reserved

➊ Reversing Starters and Inverter Starters only.

Inverter Starters only

The following common services are implemented for the Control Supervisor

Object.

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

No

No

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

CLASS CODE 0x002C

No class attributes will be supported for the Overload Object.

A single instance (Instance 1) of the Overload Object is supported for DOL and

Reversing Starters. Instance 1 contains the following instance attributes.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

295

Appendix B CIP Information

Attribute ID

3

4

5

9

10

7

8

190

192

193

194

195

Access Rule

Get/Set

Get/Set

Get

Get

Get

Get

Get

Get/Set

Get

Get

Get

Get

Name

FLA Setting

Trip Class

Average Current

% Thermal Utilized

Current L1

Current L2

Current L3

FLA Setting Times 10

Average Current Times 10

Current L1 Times 10

Current L2 Times 10

Current L3 Times 10

Data Type

BOOL

USINT

INT

USINT

INT

INT

INT

BOOL

UINT

UINT

UINT

UINT

Value

xxx.x amps

— xxx.x amps xxx% FLA xxx.x amps xxx.xx amps xxx.xx amps xxx.xx amps

The following common services are implemented for the Overload Object.

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

No

No

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

Device Level Ring (DLR)

Object

Attribute ID

1

Access Rule

Get

Attribute ID

1

2

Access Rule

Get

Get

10

12

Get

Get

CLASS CODE 0x0047

The following class attributes will be supported for the DLR Object.

Name

Revision

Data Type

UINT

Value

2

A single instance (Instance 1) will be supported with the following instance attributes.

Name

Network Topology

Network Status

USINT

USINT

Data Type Value

0 = Linear, 1 = Ring

0 = Normal

1 = Ring Fault

2 = Unexpected Loop Detect

3 = Partial Network Fault

4 = Rapid Fault/Restore Cycle

Ring Supervisor Active Supervisor Address

Capability Flags

Struct of

UDINT

Array of 6

USINT

DWORD 0x00000002

296

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Qos Object

Attribute ID

1

Access Rule

Get

Attribute ID

1

6

7

4

5

8

Access Rule

Set

Set

Set

Set

Set

Set

DPI Fault Object

CIP Information Appendix B

The following common services will be implemented for the DLR Object.

Service Code

0x01

0x0E

Implemented for:

Class Instance Service Name

Yes

Yes

Yes

Yes

Get_Attribute_All

Set_Attribute_Single

CLASS CODE 0x0048

The following class attributes will be supported for the QoS Object.

Name

Revision

Data Type

UINT

Value

1

A single instance (Instance 1) will be supported and it contains the following instance attributes.

Name

802 1Q Tag Enable

DSCP Urgent

DSCP Scheduled

DSCP High

DSCP Low

DSCP Explicit

USINT

Data Type

USINT

USINT

USINT

USINT

USINT

0 = Disable (Default)

1 - Enable

Default = 55

Default = 47

Default = 43

Default = 31

Default = 27

Value

The following common services will be implemented for the QoS Object.

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

Yes

No

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

CLASS CODE 0x0097

The DPI Fault Object is implemented in the DeviceNet Main Control Board.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

297

Appendix B CIP Information

The following class attributes are supported:

Attribute ID

1

2

3

4

6

Access Rule

Get

Get

Get

Get

Get

Name

Class Revision

Number of Instances

Fault Cmd Write

Fault Instance Read

Number of Recorded Faults

Data Type

UINT

UINT

USINT

UINT

UINT

Value

1

4

0 = NOP, 1 = Clear Fault, 2 = Clear Flt Queue

The instance of the Fault Queue Entry containing information about the Fault that tripped the Device.

The number of Faults recorded in the Fault Queue.

Four instances of the DPI Fault Object are supported. The have the following instance attributes:

Value

1

Attribute ID

0

3

Get

Access Rule

Get

Get

Name

Full/All Info

Fault Code

Fault Source

DPI Port Number

Device Object Instance

B Fault Text

Fault Time Stamp

Timer Value

Timer Description

Help Object Instance

Fault Data

Basic Info

Fault Code

Fault Source

DPI Port Number

Device Object Instance

Fault Time Stamp

Timer Value

Timer Description

Help Text

Struct of:

Data Type

UINT

Struct of:

USINT

USINT

BYTE[16]

Struct of:

ULDINT

WORD

USINT

Struct of:

UINT

Struct of:

USINT

USINT

Struct of:

ULINT

WORD

STRING

The following services are supported:

See table below.

0

0x2c

See table below.

See table below.

0

0x2C

See table below.

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

Yes

Yes

Yes

No

Get_Attribute_Single

Set_Attribute_Single

298

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

CIP Information Appendix B

The table below lists Fault Codes, Fault Text, and Fault Help Strings for DOL and Reversers.

Table 49 - Bulletin 280E/281E

Fault Code

1

2

3

5

13

14

15

16

17

19

21

Fault Text Help Text

Hdw Short Ckt The built in 140M Circuit Breaker has tripped.

Sfw Short Ckt The wire protection algorithm detected an unsafe current surge.

Motor Overload Load has drawn excessive current based on trip class selected.

Phase Loss

Indicates missing supply phase. This fault can be disabled.

Control Pwr Loss Indicates the loss of control power. This fault can be disabled.

Control Pwr Fuse The Control Power Fuse has blown. Remove power and replace fuse.

Input Short Flags a shorted sensor, input device, or input wiring mistake.

Output Fuse

Over Temp

The Output Fuse has blown. Remove all power and replace the fuse.

Indicates the operating temperature has been exceeded.

Phase Imbalance Indicates an imbalanced supply voltage.

A3 Power Loss Unswitched (A3) Power was lost or dipped below the 12V DC threshold.

27

28

30

31

MCB EEPROM

Base EEPROM

Wrong Base

Wrong CTs

This is a major fault which renders the ArmorStart inoperable.

This is a major fault which renders the ArmorStart inoperable.

The ArmorStart controller is connected to the wrong base type.

This is a major fault which renders the ArmorStart inoperable.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

299

Appendix B CIP Information

300

Table 49 - Bulletin 280E/281E

Fault Code Fault Text Help Text

The table below lists Fault Codes, Fault Text, and Fault Help Strings for VFD units.

Table 50 Bulletin 284E

14

15

12

13

10

11

8

9

Fault Code

1

2

3

6

7

4

5

22

23

20

21

18

19

16

17

Fault Text Help Text

Hdw Short Ckt The built in 140M Circuit Breaker has tripped.

Fault 2

Motor Overload The Load has drawn excessive current.

Drive Overload 150% load for 1 min. or 200% load for 3 sec. exceeded

Phase U to Gnd A Phase U to Ground fault detected between drive and motor.

Phase V to Gnd A Phase V to Ground fault detected between drive and motor.

Phase W to Gnd A Phase W to Ground fault detected between drive and motor.

Phase UV Short Excessive current detected between phases U and V.

Phase UW Short Excessive current detected between phases U and W.

Phase VW Short Excessive current detected between phases V and W.

Ground Fault A current path to earth ground at one or more output terminals.

Stall The drive is unable to accelerate the motor.

Control Pwr Loss Indicates the loss of control power. This fault can be disabled.

Control Pwr Fuse The Control Power Fuse has blown. Remove power and replace fuse.

Input Short Flags a shorted sensor, input device, or input wiring mistake.

Output Fuse

Over Temp

The Output Fuse has blown. Remove all power and replace the fuse.

Indicates the operating temperature has been exceeded.

Heatsink OvrTmp The Heatsink temperature exceeds a predefined value.

HW OverCurrent The drive output current has exceeded the hardware limit.

SW OverCurrent Programmed parameter 198 (SW Current Trip) has been exceeded.

A3 Power Loss Unswitched (A3) Power was lost or dipped below the 12V DC threshold.

Internal Comm Communication with the internal Power Flex drive has been lost.

Drive Comm Loss The RS485 port on the internal Power Flex stopped communicating.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

CIP Information Appendix B

Table 50 Bulletin 284E

36

37

34

35

32

33

30

31

Fault Code

24

25

28

29

26

27

42

43

44

40

41

38

39

45

Fault Text Help Text

Power Loss Drive DC Bus Voltage remained below 85% of nominal bus voltage.

Under Voltage DC Bus Voltage fell below the minimum value.

Over Voltage

MCB EEPROM

Base EEPROM

Drive EEPROM

DC Bus Voltage exceeded the maximum value.

This is a major fault which renders the ArmorStart inoperable.

This is a major fault which renders the ArmorStart inoperable.

The drive EEPROM checksum checks have failed.

Wrong Base

Fan RMP

Power Unit

Drive I/O Brd

The ArmorStart controller is connected to the wrong base type.

The internal cooling fan is not running properly.

A major failure has been detected in the drive power section.

A failure has been detected in the drive control and I/O section.

Restart Retries Automatic fault reset and run retries exceeded.

Drive Aux In Flt The drive auxiliary input interlock is open inside the ArmorStart.

Analog Input (PF Fault Code 29)

Drv Param Reset Internal Drive Parameters (Parameters > 100) have been defaulted.

SCV Autotune

Source Brake

Unknown Fault

DB1 Comm

The drive automatic tuning function was either aborted or failed.

The source brake fuse has blown. Remove power and replace fuse.

Communication with an internal DB1 board has been lost.

DB1 Fault A fault has been detected with the operation of the Dynamic Brake.

DB Switch Short The Dynamic Brake switch is shorted.

Fault 44

Incompatible COMM

Device

The Software revision of the Drive is not compatible with the ArmorStart.

➊ The Fault text for this error is not return by the device, and is only reported as “Fault 45”.

DPI Alarm Object

Attribute ID

1

2

3

74

6

Access Rule

Get

Get

Set

Get

Get

CLASS CODE 0x0098

The following class attributes will be supported:

Name

Class Revision

Number of Instances

Alarm Cmd Write

Alarm Instance Read

Number of Recorded Faults

Data Type

UINT

UINT

USINT

UINT

UINT

Value

1

1

0=NOP, 1=Clear Fault, 2=Clear Flt Queue

The instance of the Fault Queue Entry containing information about the Fault that tripped the Device.

The number of Faults recorded in the Fault Queue.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

301

Appendix B CIP Information

1

Attribute ID

0

3

A single instance of the DPI Alarm Object will be supported with the following instance attributes.

Get

Access Rule

Get

Get

Name

Full/All Info

Alarm Code

Alarm Source

DPI Port Number

Device Object Instance

Alarm Text

Alarm Time Stamp

Timer Value

Timer Descriptor

Help Object Instance

Alarm Data

Basic Info

Alarm Code

Alarm Source

DPI Port Number

Device Object Instance

Alarm Time Stamp

Timer Value

Timer Descriptor

Help Text

Struct of:

UINT

Struct of:

USINT

USINT

Struct of:

ULINT

WORD

STRING

Struct of:

Data Type

UINT

Struct of:

USINT

USINT

STRING

Struct of:

ULINT

WORD

USINT

The following services are supported.

Value

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

Yes

Yes

Yes

No

Get_Attribute_Single

Set_Attribute_Single

The table below lists Warning Codes, Warning Text, and Warning Help Strings that do not match the fault text.

Fault Code

101

102

Fault Text

IP67/4X Mismatch

DB Terminal

Help Text

The Base enclosure type does not match the Control Module enclosure type.

A warning has been detected with the operation of the Dynamic Brake.

302

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

CIP Information Appendix B

Interface Object

CLASS CODE 0x00B4

The following class attribute are supported.

Attribute ID

1

Access Rule

Get

Name

Revision

Data Type

UINT

Value

1 for DOL

2 for Inverters

A single instance (Instance 1) of the Interface Object is supported with the following instance attributes.

Attribute ID Access Rule

7 Get/Set

8 Get/Set

9

10

13

15

16

17

19

23

24

Get/Set

Get/Set

Get/Set

Get/Set

Get/Set

Get/Set

Get/Set

Get

Get

Name

Prod Assy Word 0

Prod Assy Word 1

Prod Assy Word 2

Prod Assy Word 3

Starter COS Mask

Autobaud Enable

Consumed Assy

Produced Assy

Set To Defaults

I/O Produced Size

I/O Consumed Size

50 Get/Set PNB COS Mask

Data Type

USINT (rev 1)

UINT (rev 2)

USINT (rev 1)

UINT (rev 2)

USINT (rev 1)

UINT (rev 2)

USINT (rev 1)

UINT (rev 2)

WORD

BOOL

USINT

USINT

BOOL

USINT

WORD

Min/Max

Default

1

5

Description

Defines Word 0 of Assy 120

Defines Word 1 of Assy 120

— 6 Defines Word 2 of Assy 120

0 - 0xFFFF

0 - 1

0 to 185

100 to 187

0 to 1

0 t0 20

0 to 16

0 to 0x00FF

7 Defines Word 3 of Assy 120

0xFFFF

1

160 (drive 164)

161 (drive 165)

0

0

Change of state mask for starter bits

1= enabled, 0 = disabled

3, 160, 162, 182, 187 (also for drives 164, 166, 170 and

188)

52, 120, 161, 163, 181…187 (also for drives 165, 167 and 171) 189, 190

0 = No action, 1 = Reset

Change of state mask for PNBs

The following common services are implemented for the Interface Object.

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

No

No

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

303

Appendix B CIP Information

TCP/IP Interface Object

Attribute ID

1

Access Rule

Get

Attribute ID

1

2

3

Access Rule

Get

Get

Get/Set

4 Get

5

6

8

9

Get/Set

Get/Set

Get/Set

Get/Set

CLASS CODE 0x00F5

The following class attributes will be supported.

Name

Revision

Data Type

UINT

Value

1

One instance of the TCP/IP Interface Object will be supported with the following instance attributes.

Name

Status

Configuration Capability

Configuration Control

Physical Link Object

Interface Configuration

Host Name

TTL Value

Multicast Config

DWORD

DWORD

Data Type

DWORD

Struct of

UINT

Padded EPATH

Struct of

UDINT

UDINT

UDINT

UDINT

UDINT

STRING

STRING

USINT

Struct of

USINT

USINT

UINT

UDINT

0x00000014

0 = Configuration from NVS

2 = Configuration from DHCP

Value

2 words

NULL Enet Link Object Instance

IP Address

Network Mask

Gateway Address

Primary DNS

Secondary DNS

Default Domain Name for not fully qualified host names

Time to Live value for EtherNet/IP multicast packets

Allocation Control

Reserved

Number of multicast addresses to allocate (1…4)

Multicast starting address.

The following common services will be implemented for the TCP/IP Interface

Object.

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

No

Yes

No

Yes

Yes

Yes

Get_Attribute_All

Get_Attribute_Single

Set_Attribute_Single

304

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

CIP Information Appendix B

Ethernet Link Object

CLASS CODE 0x00F6

The following class attributes will be supported.

Attribute ID

1

2

3

Access Rule

Get

Get

Get

Name

Revision

Max Instance

Number of Instances

Data Type

UINT

UINT

UINT

Value

3

2

2

One instance of the Ethernet Link Object will be supported with the following instance attributes.

Attribute ID

1

2

3

Access Rule

Get

Get

Get

Name

Interface Speed

Interface Flags

Physical Address

Data Type

UDINT

DWORD

ARRAY of 6 USINTs

Struct of:

In Octets

In Ucast packets

In NUcast packets

In Discards

In Errors

In Unknown Protos

Out Octets

Out Ucast packets

Out NUcast packets

Out Discards

Out Errors

Struct of:

Alignment Errors

FCS Errors

Single Collisions

SQE Test Errors

Deferred Transmits

Late Collisions

Excessive Collisions

MAC Transmit Errors

Carrier Sense Errors

Frame Too Long

MAC Receive Errors

Struct of:

Control Bits

Forced Interface Speed

7 Get Interface USINT

10 or 100 Mbit/Sec

See ENet/IP Spec

MAC Address

8 Get Interface USINT

9 Get/Set Admin USINT

10 Get Interface

Instance 1: Port 1

SHORT_STRING

Instance 2: Port 2

Value

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

305

Appendix B CIP Information

The following common services will be implemented for the Ethernet Link

Object.

Service Code

0x01

0x0E

0x10

Implemented for:

Class Instance Service Name

No

Yes

No

Yes

Yes

Yes

Get_Attribute_All

Get_Attribute_Single

Set_Attribute_Single

306

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Appendix

C

Using DeviceLogix

DeviceLogix is a stand-alone Boolean program that resides within the

ArmorStart®. The program is embedded in the product software so that there is no additional module required to use this technology. To program DeviceLogix you will need the latest AOP for ArmorStart EtherNet/IP for Control Logix or other Logix family PLCs.

In addition to the actual programming, DeviceLogix can be configured to operate under specific situations. It is important to note that the DeviceLogix program will only run if the logic has been enabled. This can be done within the

“Logic Editor.” The operation configuration is accomplished by setting the

“Network Override” and “Communication Override” parameters. The following information describes the varying levels of operation:

• If both overrides are disabled and the logic is enabled, the ONLY time

DeviceLogix will run is if there is an active I/O connection with a master, i.e. the master is in Run mode. At all other times, DeviceLogix will be running the logic, but will NOT control the state of the outputs.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

307

Appendix C Using DeviceLogix

• If the Network Override is enabled and the logic is enabled then

DeviceLogix controls the state of the outputs when the PLC is in Run mode and if a network fault such as Duplicate MAC ID or module Bus off condition occurs.

• If the Communications Override is enabled and the logic is enabled, the device does not need any I/O connection to run the logic. As long as there is control power and a DeviceNet power source connected to the device, the logic will control the state of the outputs.

DeviceLogix Programming

DeviceLogix has many applications and the implementation is typically only limited to the imagination of the programmer. Keep in mind that the application of DeviceLogix is only designed to handle simple logic routines.

DeviceLogix is programmed using simple Boolean math operators such as AND,

OR, NOT, timers, counters, and latches. Decision making is done by combining these Boolean operations with any of the available I/O. The inputs and outputs used to interface with the logic can come from the network or from the device hardware. Hardware I/O is the physical Inputs and Outputs located on the device such as push buttons and pilot lights that are connected to the ArmorStart.

There are many reasons to use the DeviceLogix functionality, but some of the most common are listed below:

• Increased system reliability

• Fast update times (1 - 2 ms possible)

• Improved diagnostics and reduced troubleshooting

• Operation independent of PLC or network status

• Continue to run process in the event of network interruptions

• Critical operations can be safely shutdown through local logic

DeviceLogix Programming

Example

The following example will show how to program a simple logic routine to interface the ArmorStart EtherNet I/P with a remote hard-wired startstop station. In this case the I/O is wired as shown in

Table 51

.

Table 51 - Hardware Bit Assignments and Description for the ArmorStart

Bit

In 0

In 1

In 2

In 3

Input Table

Description

Start Button

Stop Button

N/A

N/A

Bit

Run Forward

N/A

Output Table

Description

Contactor Coil

N/A

308

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Using DeviceLogix Appendix C

IMPORTANT

Before programming logic, it is important to decide on the conditions under which the logic will run. As defined earlier, the conditions can be defined by setting parameter 8

(Network Override) and parameter 9 (Comm. Override) to the desired value.

1.

While in the AOP, click on the DeviceLogix tab. Click the Launch Editor button.

2.

Select Function Block or Ladder editor. Note that once selected you are not able to switch back without recreating the logic.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

309

Appendix C Using DeviceLogix

3.

Refer to the tool bar at the top of the DeviceLogix editor window, click the

Move/Logical group and select the RSTD (Latch Reset). Move it to the work space and click to drop it.

4.

From the toolbar, Click on the “Bit Input” button and select In 0 from the

Hardware Boolean tree. This is the remote start button based on the example I/O table.

310

5.

Place the input to the left of the reset function. To drop the input on the page, left click on the desired position.

6.

Place the mouse cursor over the tip of In 0. The tip will turn green. Click on the tip when it turns green.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Using DeviceLogix Appendix C

7.

Move the mouse cursor toward the Set input of the reset function. A line will follow the cursor. When a connection can be made, the tip of the RSL function will also turn green. Click the on Input and the line will be drawn from In 0 to the Set Input of the reset function.

Note:

If this was not a valid connection, one of the pin tips would have turned red rather than green. Left double clicking on the unused portion of the grid or pressing the “Esc” key at any time will cancel the connection process.

8.

From the toolbar, Click on the “Bit Input” button and select In 1 from the pull-down menu. This is the remote stop button based on the example I/O table.

9.

Place the input to the left of the reset function.

10.

Connect the input to the reset input of the reset function.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

311

Appendix C Using DeviceLogix

11.

From the toolbar, Click on the “Bit Output” button and select “Run

Forward”

from the hardware boolean tree. Run Forward is the relay controlling the coil of the contactor.

12.

Move the cursor into the grid and place the Output to the right of the reset function block.

13.

Connect the output of the reset function block to Run Forward.

14.

Click on the “Verify” button located in the toolbar or select “Logic Verify” from the “Tools” pull-down menu.

312

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Using DeviceLogix Appendix C

15.

Click file close. The program is not saved automatically. Fill in the information on following window and accept changes. This saves the program but has not been downloaded in the product.

16.

The last step is to enable the logic via the drop down.

17.

Click OK. To download the DeviceLogix program you must go on-line with the PLC and allow the download. Ensure that the PLC is in the

Program position. If in any other position, the download will not occur and an error will be generated.

18.

The ArmorStart is now programmed and the logic is Active.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

313

Appendix C Using DeviceLogix

Import and Export

The ArmorStart EtherNet/IP AOP provides users an import or export function.

The export function allows the DeviceLogix program to be saved to a file. This file can then be imported into a similar product of same function regardless of horsepower. Importing of DeviceLogix between unlike products is not allowed, e.g. Bulletin 284E and Bulletin 280E.

Bulletin 284 - VFD Preset

Speed Example

DeviceLogix can be used to select one of multiple preset frequencies cooperatively with the PLC or independently based on user input. This can be done using the four digit inputs or the frequency control bits in DeviceLogix.

The digital inputs provide the user the most flexibility, but can be more complex to configure. If a preset speed is needed, the simpler approach is to use frequency control found in the produced network bits of DeviceLogix. If you prefer not to apply DeviceLogix for preset speeds, then implement the digit inputs to select preset speed via Instance 166 found in Chapter 5. The following example will demonstrate the use of frequency control bits in DeviceLogix

Frequency control (Freq Cntl) bits allow a maximum of 4 Preset Speeds, each preset has a predefined accel or decel reference. If more are required then digital inputs must be configured and properly used. The example will focus on

Frequency Control 2,1,0 in the Produced Network Bit

Table 52 . Note that there

are other capabilities shown in the table that are not reviewed in this example.

Figure 100

below shows all of the available network outputs supported by

Bulletin 284.Referring to Table 52 the preset frequencies are defined in

parameter 170,171,172 and 173 of Bulletin 284. Also note the truth table that selects each of those frequencies. For example if Freq Cntl bit 2=1, 1=1, and 0=0 then the controller frequency is based on Parameter 172 (Preset Freq 2).

314

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Using DeviceLogix Appendix C

Figure 100 - Bulletin 284E Produced Network Bits in DeviceLogix Output

1

1

Freq Ctrl 2

0

0

1

0

0

Accel2

0

0

1

1

Decel 2

0

0

1

1

1

Table 52 -

Refer to table 22 - Parameters 170…177 Preset Freq Options for predefined accel and decel

0

1

Freq Ctrl 1

0

1

0

0

1

Accel1

0

1

0

1

Decel 1

0

1

0

1

1

Freq Ctrl 0

0

1

0

1

0

1

0

1

Description

No Command

Accel 1 Enable

Accel 2 Enable

Hold Accel Rate Selected

No Command

Decel 1 Enable

Decel 2 Enable

Hold Decel Rate Selected

No Command

Freq Source = P136 (Start Source)

Freq Source = P169 (Internal Freq)

Freq Source = Comms

P170 (Preset Freq 0) (Accel/Decel 1)

P171 (Preset Freq 1) (Accel/Decel 1)

P172 (Preset Freq 2) (Accel/Decel 2)

P173 (Preset Freq 3) (Accel/Decel 2)

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

315

Appendix C Using DeviceLogix

Using parameters 170-173, set them to 0,10,30, and 60 respectively.

Figure 101

shows the preset frequencies 0-3.

Figure 101 - P170-173 Preset Frequency Settings

In this example DeviceLogix will receive data from the PLC program. The communication and network overrides are disabled as shown below. Refer to Appendix C for details when using the override function.

Figure 102

shows the DeviceLogix program. This allows the user to select one of three predefined frequencies based on two network bits.

316

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Figure 102 - DeviceLogix Program

Using DeviceLogix Appendix C

Once you exit the DeviceLogix editor, ensure that the logic is “Enabled” otherwise the preset frequency control will not operate. Refer to

Figure 103 .

Figure 103 -

This simple PLC program is used to select one of three preset speeds, speed 1, 2, or 3. For the purpose of this example speed 1, 2, & 3 are BOOL bits but they can be any valid input. Notice that there is an interlock for speed 1 and speed 2 to ensure they do not trigger at the same time. This would accidently cause speed 3 to run.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

317

Appendix C Using DeviceLogix

Download the finished program file to the PLC. In order for the parameters and

DeviceLogix program to update in the device, ensure the PLC is in program mode, and open the AOP for the Bulletin 284E.

Select the Parameters and DeviceLogic tab. This will force a correlation between the program file and the device. If a difference exists either upload from the device or download from the project to the device. In this example you will want to download.

Figure 104

is an example of the parameter correlation when a difference occurs between the project and the device.

Figure 104 -

Figure 105

is an example of the DeviceLogix correlation when a difference occurs between the project and the device.

318

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Figure 105 - DeviceLogix Correlation

Using DeviceLogix Appendix C

Please note the caution statement prior to download.

After the DeviceLogix correlation is successful the following window will display.

After both correlations are complete place the PLC in run mode and test the program by exercising speed 1, 2, and 3 bits.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

319

Appendix C Using DeviceLogix

IMPORTANT

To download a new DeviceLogix program, connect to the PLC and stay in program mode. There can be no active I/O connections to the device or the download will fail.

Open the AOP and select the DeviceLogix tab to start the correlation process. If a difference exists then an upload or download is necessary.

Operation

When bit Speed_1 is ON then the Bulletin 284E will accelerate to 10 Hz or decelerate using accel/decel Time 2

When bit Speed_2 is ON then the Bulletin 284E will accelerate to 30 Hz or decelerate using accel/decel Time 2

DeviceLogix Ladder Editor

Example

ArmorStart EtherNet/IP supports DeviceLogix in a ladder programming environment. When using the ladder editor additional explanation is needed with regard to naming conventions. Fault bits such as “Overload Trip” are tagged

“FB0, FB1, FB2, etc. Status bits such as “Running Fwd” are tagged SB0, SB1, SB2, etc. Outputs such as “Run Reverse” are tagged DOP0, DOP1 etc. Produced

Network Bits such as “Fault Reset” are tagged PNB0, PNB1, etc.

This document will help users interpret the naming conventions.

ArmorStart 280 and 281 Status Bits

The screen capture below shows how to choose status bits in the ladder editor.

320

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Using DeviceLogix Appendix C

The following table contains the status bit definitions for ArmorStart 280D and

281D units:

Status Bit Declaration

1 = Running Fwd

2 = Running Rev

3 = Ready

4 = Net Ctl Status

5 = At Reference

6 = Keypad Hand

7 = HOA Status

8 = 140M On

9 = Explicit Msg Cnxn Exists

10 = IO Cnxn Exists

11 = Explicit Cnxn Fault

12 = IO Cnxn Fault

13 = IO Cnxn Idle

14 = Current Flowing

15 = Keypad Hand Direction

Bulletin 280 and 281 ArmorStart Fault Bits

The screen capture below shows how to choose fault bits in the ladder editor.

The following table contains the fault bit definitions for Bulletin 280D and

281D ArmorStart units:

Fault Bit Declaration

0 = Short Circuit

1 = Overload

2 = Phase Loss

3 = Control Power

4 = IO Fault

5 = Over Temp

6 = Phase Imbalance

7 = DNet Power Loss

9 = HW Flt

10 = PL Warning

11 = CP Warning

12 = IO Warning

13 = Phase Imbal Warn

14 = DN Warning

15 = HW Warning

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

321

Appendix C Using DeviceLogix

Bulletin 280 and 281 ArmorStart Outputs

The screen capture below shows how to choose outputs in the ladder editor.

322

The Bulletin 280 and 281 have the following bit definitions:

0 = Run Forward

1 = Run Reverse

2 = User Output A

3 = User Output B

Bulletin 280 and 281 ArmorStart Produced Network Bits

The screen capture below shows how to choose Produced Network Bits in the ladder editor.

The following table contains the produced network bit definitions for Bulletin

280 and 281 ArmorStart units

Produce Network bit declaration

0 = Net Output 0

1 = Net Output 1

2 = Net Output 2

3 = Net Output 3

4 = Net Output 4

5 = Net Output 5

6 = Net Output 6

7 = Net Output 7

8 = Net Output 8

9 = Net Output 9

10 = Net Output 10

11 = Net Output 11

12 = Net Output 12

13 = Net Output 13

14 = Net Output 14

15 = Fault Reset

16 = Motion Disable

17 = Keypad Disable

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Using DeviceLogix Appendix C

Bulletin 284 ArmorStart Status Bits

The following table contains the status bit definitions for ArmorStart 284

Status bit declaration

1 = Warning

2 = Running Fwd

3 = Running Rev

4 = Ready

5 = Net Ctl Status

6 = Net Ref Status

7 = At Reference

8 = Drive Opto 1

9 = Drive Opto 2

10 = Keypad Jog

11= Keypad Hand

12 = HOA Status

13 = 140M On

14 = Contactor 1

15 = Contactor 2

16 = Explicit Msg Cnxn Exists

17 = IO Cnxn Exists

18 = Explicit Cnxn Fault

19 = IO Cnxn Fau

20 = IO Cnxn Idle

21 = Keypad Hand Direction

Bulletin 284 ArmorStart Fault Bits

The screen capture below shows how to choose Fault Bits in the ladder editor.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

323

Appendix C Using DeviceLogix

The following table contains the fault bit definitions for ArmorStart 284

Fault bit declaration

0 = Short Circuit

1 = Overload

2 = Phase Short

3 = Ground Fault

4 = Stall

5 = Control Power

6 = IO Fault

7 = Over Temp

8 = Phase Over Current

9 = DNet Power Loss

10 = Internal Comm

11 = DC Bus Fault

13 = HW Flt

14 = Reset Retries

15 = Misc. Fault

16 = CP Warning

17 = IO Warning

18 = DN Warning

19 = HW Warning

Bulletin 284 ArmorStart Outputs

The screen capture below shows how to choose outputs in the ladder editor.

324

The Bulletin 284 bit definitions:

0 = Run Forward

1 = Run Reverse (Reserved)

2 = User Output A

3 = User Output B

4 = Drive Digital In 1

5 = Drive Digital In 2

6 = Drive Digital In 3

7 = Drive Digital In 4

8 = Jog Forward

9 = Jog Reverse

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Using DeviceLogix Appendix C

Bulletin 284 ArmorStart Produced Network Bits

The screen capture below shows how to choose Produced Network Bits in the ladder editor.

0

The following table contains the produced network bit definitions for Bulletin

284 ArmorStart units

Produce network bit declaration

0 = Net Output 0

1 = Net Output 1

2 = Net Output 2

3 = Net Output 3

4 = Net Output 4

5 = Net Output 5

6 = Net Output 6

7 = Net Output 7

8 = Net Output 8

9 = Net Output 9

10 = Net Output 10

11 = Net Output 11

12 = Net Output 12

13 = Net Output 13

14 = Net Output 14

15 = Fault Reset

16 = Accel 1

17 = Accel 2

18 = Decel 1

19 = Decel 2

20 = Freq Select 1

21 = Freq Select 2

22 = Freq Select 3

23 = Motion Disable

24 = Keypad Disable

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

325

Appendix C Using DeviceLogix

Notes:

326

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

PID Loop

Appendix

D

PID Setup

The Bulletin 284E ArmorStart® Distributed Motor with sensorless vector control has a built-in PID (proportional, integral, differential) control loop. The PID loop is used to maintain a process feedback (such as pressure, flow, or tension) at a desired set point. The PID loop works by subtracting the PID feedback from a reference and generating an error value. The PID loop reacts to the error, based on the PID Gains, and outputs a frequency to try to reduce the error value to 0.

To enable the PID loop, Parameter 232 (PID Ref Sel) must be set to an option other than Option 0 (PID Disabled).

Exclusive Control and Trim Control are two basic configurations where the PID loop may be used.

Exclusive Control

In Exclusive Control, the Speed Reference becomes 0, and the PID Output becomes the entire Freq Command. Exclusive Control is used when

Parameter 232 (PID Ref Sel) is set to Option 1, 2, 3, or 4. This configuration does not require a master reference, only a desired set point, such as a flow rate for a pump.

PID Ref

PID Fdbk

+

PID

Error

PID Loop

PID Prop Gain

PID Integ Time

+

+

+

PID Diff Rate

PID

Output

PID Enabled

Accel/Decel

Ramp

Freq

Command

Example

• In a pumping application, the PID Reference equals the Desired System

Pressure set point.

• The Pressure Transducer signal provides PID Feedback to the drive.

Fluctuations in actual system pressure, due to changes in flow, result in a

PID Error value.

• The drive output frequency increases or decreases to vary motor shaft speed to correct for the PID Error value.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

327

Appendix D PID Setup

328

• The Desired System Pressure set point is maintained as valves in the system are opened and closed causing changes in flow.

• When the PID Control Loop is disabled, the Commanded Speed is the

Ramped Speed Reference.

Pump

PID Reference =

Desired System Pressure

PID Feedback =

Pressure Transducer Signal

Trim Control

In Trim Control, the PID Output is added to the Speed Reference. In Trim mode, the output of the PID loop bypasses the accel/decel ramp as shown. Trim

Control is used when Parameter 232 (PID Ref Sel) is set to Option 5, 6, 7, or 8.

PID Ref

PID Fdbk

+

PID

Error

PID Loop

PID Prop Gain

PID Integ Time

+

+

+

PID Diff Rate

PID

Output

PID Enabled

Speed Ref

Accel/Decel

Ramp

+

+

Output

Freq

Example

• In a winder application, the PID Reference equals the Equilibrium set point.

• The Dancer Pot signal provides PID Feedback to the drive. Fluctuations in tension result in a PID Error value.

• The Master Speed Reference sets the wind/unwind speed.

• As tension increases or decreases during winding, the Speed Reference is trimmed to compensate. Tension is maintained near the Equilibrium set point.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

PID Setup Appendix D

PID Reference =

Equilibrium Set Point

0 Volts

PID Feedback =

Dancer Pot Signal

10 Volts

Speed Reference

PID Reference and Feedback

Parameter 232 (PID Ref Sel) is used to enable/disable the PID mode. Select

Option 0 (PID Disabled) to disable or Option 1 to select the source of the PID

Reference. If Parameter 232 (PID Ref Sel) is not set to 0 (PID Disabled), the PID can still be disabled by selecting the programmable Digital Input options

(Parameters 151…154) such as Jog, Local, or PID Disable.

Options

0

PID Disabled

1

PID Setpoint

4

Comm Port

5

Setpnt, Trim

8

Comm, Trim

Description

Disables the PID loop (default setting)

Selects Exclusive Control. Parameter 237 (PID Setpoint) will be used to set the value of the PID

Reference

Selects Exclusive Control. The reference word from a communication network DeviceNet

™ becomes the PID Reference. The value sent over the network is scaled so that Parameter 135

(Maximum Freq) x 10 = 100% reference. For example, with (Maximum Freq) = 60 Hz, a value of 600 sent over the network would represent 100% reference.

Selects Trim Control. Parameter 237 (PID Setpoint) will be used to set the value of the PID

Reference.

Selects Trim Control. The reference word from a communication network DeviceNet becomes the PID Reference. The value sent over the network is scaled so that Parameter 135

(Maximum Freq) x 10 = 100% reference. For example, with (Maximum Freq) = 60 Hz, a value of 600 sent over the network would represent 100% reference.

Parameter 233 (PID Feedback Sel) is used to select the source of the PID feedback.

Option

2

Comm Port

Description

The Consumed Assembly (Instance 164 – Default Consumed Inverter Type Distributed Motor

Controller) from a communication network which becomes the PID Feedback. The value sent over the network is scaled so that Parameter 135 (Maximum Freq) x 10 = 100% Feedback. For example, with (Maximum Freq) = 60 Hz, a value of 600 sent over the network would represent 100% Feedback.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

329

Appendix D PID Setup

330

PID Deadband

Parameter 238 (PID Deadband) is used to set a range, in percent, of the PID

Reference that the drive will ignore.

Example

• (PID Deadband) is set to 5.0

• The PID Reference is 25.0%

• The PID Regulator will not act on a PID Error that falls between 20.0 and

30.0%

PID Preload

The value set in Parameter 239 (PID Preload), in Hertz, will be pre-loaded into the integral component of the PID at any start or enable. This will cause the drive’s frequency command to initially jump to that preload frequency, and the

PID loop starts regulating from there.

PID Enabled

PID Pre-load Value

PID Output

Freq Cmd

PID Pre-load Value > 0

PID Limits

Parameter 230 (PID Trim Hi) and Parameter 231 (PID Trim Lo) are used to limit the PID output and are only used in trim mode. (PID Trim Hi) sets the maximum frequency for the PID output in trim mode. (PID Trim Lo) sets the reverse frequency limit for the PID output in trim mode. Note that when the

PID reaches the Hi or Lo limit, the PID regulator stops integrating so that windup does not occur.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

PID Setup Appendix D

PID Gains

The proportional, integral, and differential gains make up the PID regulator.

• Parameter 234 (PID Prop Gain)

The proportional gain (unitless) affects how the regulator reacts to the magnitude of the error. The proportional component of the PID regulator outputs a speed command proportional to the PID error. For example, a proportional gain of 1 would output 100% of maximum frequency when the PID error is 100% of the analog input range. A larger value for (PID

Prop Gain) makes the proportional component more responsive, and a smaller value makes it less responsive. Setting (PID Prop Gain) to 0.00 disables the proportional component of the PID loop.

• Parameter 235 (PID Integ Time)

The integral gain (units of seconds) affects how the regulator reacts to error over time and is used to get rid of steady state error. For example, with an integral gain of 2 seconds, the output of the integral gain component would integrate up to 100% of maximum frequency when the PID error is

100% for 2 seconds. A larger value for (PID Integ Time) makes the integral component less responsive, and a smaller value makes it more responsive.

Setting (PID Integ Time) to 0 disables the integral component of the PID loop.

• Parameter 236 (PID Diff Rate)

The Differential gain (units of 1/seconds) affects the rate of change of the

PID output. The differential gain is multiplied by the difference between the previous error and current error. Thus, with a large error the D has a large effect and with a small error the D has less of an effect. This parameter is scaled so that when it is set to 1.00, the process response is

0.1% of (Maximum Freq) when the process error is changing at 1%/ second. A larger value for (PID Diff Rate) makes the differential term have more of an effect and a small value makes it have less of an effect. In many applications, the D gain is not needed. Setting (PID Diff Rate) to 0.00

(factory default) disables the differential component of the PID loop.

Guidelines for Adjusting the PID Gains

1.

Adjust the proportional gain. During this step it may be desirable to disable the integral gain and differential gain by setting them to 0. After a step change in the PID Feedback:

• If the response is too slow increase Parameter 234 (PID Prop Gain).

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

331

Appendix D PID Setup

332

• If the response is too quick and/or unstable (see Figure 106), decrease

Parameter 234 (PID Prop Gain).

• Typically, Parameter 234 (PID Prop Gain) is set to some value below the point where the PID begins to go unstable.

2.

Adjust the integral gain (leave the proportional gain set as in Step 1). After

a step change in the PID Feedback:

• If the response is too slow (see Figure 107), or the PID Feedback does

not become equal to the PID Reference, decrease Parameter 235 (PID

Integ Time).

• If there is a lot of oscillation in the PID Feedback before settling out

(see Figure 108), increase Parameter 235 (PID Integ Time).

3.

At this point, the differential gain may not be needed. However, if after determining the values for Parameter 234 (PID Prop Gain) and Parameter

235 (PID Integ Time):

• Response is still slow after a step change, increase Parameter 236 (PID

Diff Rate).

• Response is still unstable, decrease Parameter 236 (PID Diff Rate).

The following figures show some typical responses of the PID loop at different points during adjustment of the PID Gains.

Figure 106 - Response is Unstable

PID Reference

PID Feedback

Time

Figure 107 - Slow Response – Over-Damped

PID Reference

PID Feedback

Time

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Figure 108 - Oscillation – Under-Damped

PID Reference

PID Feedback

Time

Figure 109 - Good Response – Critically Damped

PID Reference

PID Feedback

Time

PID Setup Appendix D

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

333

Appendix D PID Setup

Notes:

334

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Appendix

E

StepLogic, Basic Logic and Timer/

Counter Functions

Four Bulletin 284E ArmorStart® logic functions provide the capability to program simple logic functions without a separate controller.

StepLogic Function

Steps through up to eight preset speeds based on programmed logic.

Programmed logic can include conditions that need to be met from digital inputs programmed as Logic In1 and Logic In2 before stepping from one preset speed to the next. A timer is available for each of the eight steps and is used to program a time delay before stepping from one preset speed to the next. The status of a digital output can also be controlled based on the step being executed.

Basic Logic Function

Up to two digital inputs can be programmed as Logic In1 and/or Logic

In2. A digital output can be programmed to change state based on the condition of one or both inputs based on basic logic functions such as

AND, OR, NOR. The basic logic functions can be used with or without

StepLogic.

Timer Function

A digital input can be programmed for Timer Start. A digital output can be programmed as a Timer Out with an output level programmed to the desired time. When the timer reaches the time programmed into the output level the output will change state. The timer can be reset via a digital input programmed as Reset Timer.

Counter Function

A digital input can be programmed for Counter In. A digital output can be programmed as Counter Out with an output level programmed to the desired number of counts. When the counter reaches the count programmed into the output level the output will change state. The counter can be reset via a digital input programmed as Reset Counter.

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

335

Appendix E StepLogic, Basic Logic and Timer/ Counter Functions

StepLogic Using Timed Steps

To activate this function, set Parameter 138 (Speed Reference) to Option 6

(StpLogic). Three parameters are used to configure the logic, speed reference, and time for each step.

• Logic is defined using Parameters 240…247 (StpLogic x)

• Preset Speeds are set with Parameters 170…177 (Preset Freq x)

• Time of operation for each step is set with Parameters 250…257 (StpLogic

Time x)

The direction of motor rotation can be forward or reverse.

Figure 110 - Using Timed Steps

Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Forward

0

Reverse

Time

StepLogic Sequence

• Sequence begins with a valid start command

• A normal sequence begins with Step 0 and transitions to the next step when the corresponding StepLogic time has expired

• Step 7 is followed by Step 0

• Sequence repeats until a stop is issued or a fault condition occurs

StepLogic Using Basic Logic

Functions

Digital input and digital output parameters can be configured to use logic to transition to the next step. Logic In1 and Logic In2 are defined by programming

Parameters 151…154 (Digital In x Sel) to Option 23 (Logic In1) or Option 24

(Logic In2).

336

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

StepLogic, Basic Logic and Timer/ Counter Functions Appendix E

Example

• Run at Step 0

• Transition to Step 1 when Logic In1 is true

Logic senses the edge of Logic In1 when it transitions from OFF to ON.

Logic In1 is not required to remain ON.

• Transition to Step 2 when both Logic In1 and Logic In2 are true

The drive senses the level of both Logic In1 and Logic In2 and transitions to Step 2 when both are ON.

• Transition to Step 3 when Logic In2 returns to a false or OFF state

Inputs are not required to remain in the On condition except under the logic conditions used for the transition from Step 2 to Step 3.

Figure 111 - Logic Transitioning to the Next Step

Start Step 0 Step 1 Step 2 Step 3

Frequency

Logic In1

Logic In2

Time

The step time value and the basic logic may be used together to satisfy machine conditions. For instance, the step may need to run for a minimum time period and then use the basic logic to trigger a transition to the next step.

Figure 112 - Step Running for a Minimum Time Period

Start Step 0 Step 1

Frequency

Logic In1

Logic In2

Time

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

337

Appendix E StepLogic, Basic Logic and Timer/ Counter Functions

Timer Function

Digital inputs and outputs control the timer function and are configured with

Parameters 151…154 (Digital In x Sel) set to Option 18 (Timer Start) and

Option 20 (Reset Timer).

Digital outputs (relay) define a preset level and indicate when the level is reached.

Level Parameter 156 (Relay Out Level) is used to set the desired time in seconds.

Parameter 155 (Relay Out Sel) is set to Option 16 (Timer Out) and causes the output to change state when the preset level is reached.

Counter Function

Digital inputs and outputs control the counter function and are configured with

Parameters 151…154 (Digital In x Sel) set to Option 19 (Counter In) and

Option 21 (Reset Counter).

Digital outputs (relay) define a preset level and indicate when the level is reached.

Level Parameters 156 (Relay Out Level) is used to set the desired count value.

Parameter 155 (Relay Out Sel) is set to Option 17 (Counter Out) which causes the output to change state when the level is reached.

Example

• A photo eye is used to count packages on a conveyor line

• An accumulator holds the packages until five are collected

• A diverter arm redirects the group of five packages to a bundling area

• The diverter arm returns to its original position and triggers a limit switch that resets the counter

• parameters are set to the following options:

– Parameter 151 (Digital In 1 Sel) set to Option 19 to select (Counter In)

– Parameter 152 (Digital In 2 Sel) set to Option 21 to select (Reset

Counter)

– Parameter 155 (Relay Out Sel) set to Option 17 to select (Counter

Out)

– Parameter 156 (Relay Out Level) set to 5.0 (counts)

338

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

StepLogic Parameters

StepLogic, Basic Logic and Timer/ Counter Functions Appendix E

Digits 0…3 for each (StpLogic x) parameter must be programmed according to the desired profile.

Digit 0

1

Digit 1

F

Digit 2

0

Digit 3

0 d

E b

C

F

9

A

7

8

5

6

3

4

Setting

0

1

2

Table 53 - Digit 0 and Digit 1 Settings

Description

Skip Step (jump immediately).

Step based on the time programmed in the respective (StpLogic Time x) parameter.

Step if Logic In1 is active (logically true).

Step if Logic In2 is active (logically true).

Step if Logic In1 is not active (logically false).

Step if Logic In2 is not active (logically false).

Step if either Logic In1 or Logic In2 is active (logically true).

Step if both Logic In1 and Logic In2 is active (logically true).

Step if neither Logic In1 or Logic In2 is active (logically true).

Step if Logic In1 is active (logically true) and Logic In2 is not active (logically false).

Step if Logic In2 is active (logically true) and Logic In1 is not active (logically false).

Step after (StpLogic Time x) and Logic In1 is active (logically true).

Step after (StpLogic Time x) and Logic In2 is active (logically true).

Step after (StpLogic Time x) and Logic In1 is not active (logically false).

Step after (StpLogic Time x) and Logic In2 is not active (logically false).

Do not step OR no jump to, so use Digit 0 logic.

Table 54 - Digit 2 Settings

5

6

3

4

Setting

0

1

2

9

A

7

8

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Logic

Jump to Step 0

Jump to Step 1

Jump to Step 2

Jump to Step 3

Jump to Step 4

Jump to Step 5

Jump to Step 6

Jump to Step 7

End Program (Normal Stop)

End Program (Coast to Stop)

End Program and Fault (F2)

AND

NOR

XOR

XOR

TIMED AND

TIMED AND

TIMED OR

TIMED OR

IGNORE

TRUE

FALSE

FALSE

OR

Logic

SKIP

TIMED

TRUE

339

Appendix E StepLogic, Basic Logic and Timer/ Counter Functions

5

6

3

4

Setting

0

1

2

9

A

7

8 b

Table 55 - Digit 3 Settings

Accel/Decel

Parameters Used

1

1

1

1

1

1

2

2

2

2

2

2

OFF

OFF

OFF

ON

ON

ON

StepLogic

Output State

OFF

OFF

OFF

ON

ON

ON

Commanded Direction

FWD

REV

No Output

FWD

REV

No Output

FWD

REV

No Output

FWD

REV

No Output

340

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Appendix

F

Renewal Parts

Bulletin 280E/281E

Control Module Renewal Part Product Selection

Figure 113 - Bulletin 280E/281E Control Module Renewal Part Catalog Structure

Bulletin Number

Bulletin 280 Full Voltage Starter

Bulletin 281 Reversing Starter

Communications

E EtherNet/IP

280 E

F 12Z

N B

R

Option 1

Option 1

3 Hand-Off-Auto Selector Keypad

3FR Hand-Off-Auto Selector Keypad

Enclosure Type

F Type 4 (IP67)

Contactor Size/Control Voltage

24V DC

12Z

23Z

Control Module

N Control Module Only

Motor Connection

R Round

Overload Selection

Current Range

A 0.24…1.2

B 0.5…2.5 A

C 1.1…5.5 A

D 3.2…16 A

Current Rating

(A)

0.24…1.2

0.5…2.5

1.1…5.5

3.2…16

230V AC

50 Hz

0.18

0.37

1.1

4

kW

400V AC

50 Hz

0.37

0.75

2.2

7.5

Table 56 - Full Voltage Starters – IP67/NEMA Type 4

Hp

200V AC

60 Hz

0.5

1

3

230V AC

60 Hz

0.5

1

5

460V AC

60 Hz

0.5

1

3

10

575V AC

60 Hz

0.5

1.5

3

10

Cat. No.

24V DC

280E-F12Z-NA-R

280E-F12Z-NB-R

280E-F12Z-NC-R

280E-F23Z-ND-R

Current Rating

(A)

0.24…1.2

0.5…2.5

1.1…5.5

3.2…16

230V AC

50 Hz

0.18

0.37

1.1

4

kW

400V AC

50 Hz

0.37

0.75

2.2

7.5

Table 57 - Reversing Starters – IP67/NEMA Type 4

Hp

200V AC

60 Hz

1

3

0.5

230V AC

60 Hz

1

5

0.5

460V AC

60 Hz

0.5

1

3

10

575V AC

60 Hz

0.5

1.5

3

10

Cat. No.

24V DC

281E-F12Z-NA-R

281E-F12Z-NB-R

281E-F12Z-NC-R

281E-F23Z-ND-R

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

341

Appendix F Renewal Parts

Base Module Renewal Part Product Selection

Figure 114 - Bulletin 280E Base Module Renewal Part Catalog Structure

280 E

F N

10 – C

Bulletin Number

Bulletin 280 Starter

Communications

E EtherNet/IP

Enclosure Type

F Type 4 (IP67)

N Base Only

No Control Module

Line Connection

C Conduit Entrance

R ArmorConnect™ Power Media

Short Circuit Protection (Bul. 140M)

10 10 A Rated Device

25 25 A Rated Device

Current Rating

(A)

0.24…1.2

0.5…2.5

1.1…5.5

3.2…16

230V AC

50 Hz

0.18

0.37

1.1

4

kW

400V AC

50 Hz

0.37

0.75

2.2

7.5

Table 58 - Bulletin 280E Full Voltage Starters and Bulletin 281E Reversing Starters –

IP67/NEMA Type 4

Hp

200V AC

60 Hz

0.5

1

3

230V AC

60 Hz

0.5

1

5

460V AC

60 Hz

0.5

1

3

10

575V AC

60 Hz

0.5

1.5

3

10

Cat. No.

280E-FN-10-C

280E-FN-10-C

280E-FN-10-C

280E-FN-25-C

Current Rating

(A)

0.24…1.2

0.5…2.5

1.1…5.5

3.2…16

230V AC

50 Hz

0.18

0.37

1.1

4

kW

400V AC

50 Hz

0.37

0.75

2.2

7.5

Table 59 - Bulletin 280E Full Voltage Starters and Bulletin 281E Reversing Starters –

IP67/NEMA Type 4, with ArmorConnect Connectivity

Hp

200V AC

60 Hz

1

3

0.5

230V AC

60 Hz

1

5

0.5

460V AC

60 Hz

0.5

1

3

10

575V AC

60 Hz

0.5

1.5

3

10

Cat. No.

280E-FN-10-R

280E-FN-10-R

280E-FN-10-R

280E-FN-25-R

Description

Control Voltage Fuse

Output Fuse

Source Brake Fuse

Table 60 - Internal Fuses

Current Rating

7 A

2.5 A

3.0 A

Cat. No.

W25172-260-17

W25176-155-03

W25172-260-12

342

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Renewal Parts Appendix F

Motor Cable Cordsets

Motor Cable Cordsets,

High Flex

Motor Cable Patchcords

Description

Table 61 - Motor Cables

90° M22 Motor Cordset

90° M35 Motor Cordset

90° M22 Motor Cordset

90° Male/Straight Female M22

90° Male/Straight Female M35

Cable Rating

IP67/NEMA Type 4

IP67/NEMA Type 4

IP67/NEMA Type 4

IP67/NEMA Type 4

IP67/NEMA Type 4

6 (19.6)

8 (26.2)

10 (32.8)

14 (45.9)

20 (65.6)

1 (3.3)

3 (9.8)

1 (3.3)

3 (9.8)

Length m (ft)

3 (9.8)

6 (19.6)

10 (32.8)

14 (45.9)

20 (65.6)

3 (9.8)

6 (19.6)

10 (32.8)

14 (45.9)

20 (65.6)

3 (9.8)

280-MTRF22-M6

280-MTRF22-M8

280-MTRF22-M10

280-MTRF22-M14

280-MTRF22-M20

280-MTR22-M1D

280-MTR22-M3D

280-MTR35-M1D

280-MTR35-M3D

Cat. No.

280-MTR22-M3

280-MTR22-M6

280-MTR22-M10

280-MTR22-M14

280-MTR22-M20

280-MTR35-M3

280-MTR35-M6

280-MTR35-M10

280-MTR35-M14

280-MTR35-M20

280-MTRF22-M3

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

343

Appendix F Renewal Parts

Bulletin 284E

Control Module Renewal Part Product Selection

Figure 115 - Bulletin 284E Control Module Renewal Part Catalog Structure

284 E – F V D2P3 Z – N – R – Option 1 – Option 2

Bulletin

Number

Communications

E EtherNet/IP

– Option 3

Option 3

EMI EMI Filter

OC Output Contactor

Enclosure Type

F Type 4 (IP67)

Torque Performance Mode

V Sensorless Vector Control

Volts per Hz

Output Current

Control Module

N Control Module Only

Control Voltage

Z 24V DC

Option 2

DB DB Brake Connector

DB1 DB Brake Connector for

IP67 Dynamic Brake

Resistor

SB Source Brake Connector

Option 1

3 Hand-Off-Auto Selector

Keypad with Jog Function

Blank Status Only

Motor Media Type

R Round

Input Voltage

380…480V

50/60 Hz

3-Phase

kW

0.4

0.75

1.5

2.2

3.0

Hp

0.5

1.0

2.0

3.0

5.0

Table 62 - Bulletin 284E Control Module with

Sensorless Vector Control,

IP67/NEMA 4

24 V DC

Control Voltage

284E-FVD1P4Z-N-R

284E-FVD2P3Z-N-R

284E-FVD4P0Z-N -R

284E-FVD6P0Z-N-R

284E-FVD7P6Z-N-R

344

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

Bulletin

Number

Communications

E EtherNet/IP

Enclosure Type

F Type 4 (IP67)

Base

N Base Only — no starter

Base Module Renewal Part Product Selection

Figure 116 - Bulletin 284E Base Module Renewal Part Catalog Structure

284 E

F N

10

C

Renewal Parts Appendix F

Line Media

C Conduit

R ArmorConnect™ Power Media

Short-Circuit Protection

Bulletin 140 Current Rating (A)

10 10 A Rated Device

25 25 A Rated Device

Input Voltage

380…480V

50/60 Hz

3-Phase

380…480V

50/60 Hz

3-Phase

kW

0.4…2.2

3.0

0.4…2.2

3.0

Table 63 - Bulletin 284E Base Module Renewal

Part, IP67/NEMA 4, With Conduit Entrance

Hp

0.5…3.0

5.0

0.5…3.0

5.0

24 V DC

Control Voltage

280E-FN-10-C

280E-FN-25-C

280E-FN-10-R

280E-FN-25-R

Description

M22 Dynamic Brake Cable (DB Option)

Cable Rating

IP67/NEMA Type 4

Table 64 - Dynamic Brake Cable

Length m (ft)

3 (9.8)

Cat. No.

285-DBK22-M3

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

345

Appendix F Renewal Parts

346

Motor Cable Cordsets

Table 65 - Motor Cables

Description

Motor Cable Cordsets, High Flex

90° M22 Motor Cordset

Motor Cable Cordsets,

Shielded (VFD)

Extended Source/

Control Brake

Cable Cordsets

Extended Source/

Control Brake

Cable Cordsets, High Flex

90° M22 Motor Cordset

90° M35 Motor Cordset

90° M22 Motor Cordset

90° M25 Source Brake Cable

90° M25 Source Brake Cable

Cable Rating

IP67/NEMA Type 4

IP67/NEMA Type 4

IP67/NEMA Type 4

IP67/NEMA Type 4

IP67/NEMA Type 4

IP67/NEMA Type 4

Motor Cable Patchcords

90° Male/

Straight Female M22

90° Male/

Straight Female M35

90° Male/

Straight Female M22

IP67/NEMA Type 4

IP67/NEMA Type 4

IP67/NEMA Type 4

Motor Cable Patchcords

Shielded (VFD)

Internal Replacement Fan

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

6 (19.6)

8 (26.2)

10 (32.8)

14 (45.9)

20 (65.6)

3 (9.8)

6 (19.6)

14 (45.9)

6 (19.6)

14 (45.9)

3 (9.8)

Length m (ft)

3 (9.8)

6 (19.6)

10 (32.8)

14 (45.9)

20 (65.6)

3 (9.8)

6 (19.6)

10 (32.8)

14 (45.9)

20 (65.6)

3 (9.8)

6 (19.6)

10 (32.8)

14 (45.9)

20 (65.6)

1 (3.3)

3 (9.8)

1 (3.3)

3 (9.8)

1 (3.3)

3 (9.8)

280-MTRF22-M6

280-MTRF22-M8

280-MTRF22-M10

280-MTRF22-M14

280-MTRF22-M20

284-MTRS22-M3

284-MTRS22-M6

284-MTRS22-M14

285-BRC25-M6

285-BRC25-M14

285-BRCF25-M3

Cat. No.

280-MTRM22-M3

280-MTR22-M6

280-MTR22-M10

280-MTR22-M14

280-MTR22-M20

280-MTR35-M3

280-MTR35-M6

280-MTR35-M10

280-MTR35-M14

280-MTR35-M20

280-MTRF22-M3

285-BRCF25-M6

285-BRCF25-M10

285-BRCF25-M14

285-BRCF25-M20

280-MTR22-M1D

280-MTR22-M3D

280-MTR35-M1D

280-MTR35-M3D

284-MTRS22-M1D

284-MTRS22-M3D

284-FAN

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products.

At http://www.rockwellautomation.com/support/ , you can find technical manuals, a knowledge base of FAQs, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.

For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer TechConnect

SM support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/support/ .

Installation Assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual.

You can contact Customer Support for initial help in getting your product up and running.

United States or Canada 1.440.646.3434

Outside United States or Canada Use the Worldwide Locator at http://www.rockwellautomation.com/support/americas/phone_en.html

, or contact your local Rockwell

Automation representative.

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility.

However, if your product is not functioning and needs to be returned, follow these procedures.

United States

Outside United States

Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.

Please contact your local Rockwell Automation representative for the return procedure.

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication RA-DU002 , available at http://www.rockwellautomation.com/literature/ .

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

Rockwell Automation Publication 280E-UM001B-EN-P – July 2012

348

Supersedes Publication 280E-UM001A-EN-P — January 2011

Copyright © 2012 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement

Table of contents