epson lq-2550 - What`s Download-Service

epson lq-2550 - What`s Download-Service
L Q - 2 5 5 0
TECHNICAL MANUAL
EPSON
REV.-A
PRECAUTIONS
Precautionary notations throughout the text are categorized relative to 1) personal injury, and 2) damage
to equipment:
DANGER
Signals a precaution which, if ignored, could result in serious or fatal personal
injury. Great caution should be exercised in performing procedures preceded by
a DANGER headings.
WARNING
Signals a precaution which, if ignored, could result in damage to equipment.
The precautionary measures itemized below should always be observed when performing repair/maintenance procedures.
DANGER
1. ALWAYS DISCONNECT THE PRODUCT FROM BOTH THE POWER SOURCE AND THE
HOST COMPUTER BEFORE PERFORMING ANY MAINTENANCE OR REPAIR
PROCEDURE.
2. NO WORK SHOULD BE PERFORMED ON THE UNIT BY PERSONS UNFAMILIAR WITH
BASIC SAFETY MEASURES AS DICTATED FOR ALL ELECTRONICS TECHNICIANS IN
THEIR LINE OF WORK.
3. WHEN PERFORMiNG TESTING AS DICTATED WITHIN THIS MANUAL, DO NOT
CONNECT THE UNIT TO A POWER SOURCE UNTIL INSTRUCTED TO DO SO. WHEN
THE POWER SUPPLY CABLE MUST BE CONNECTED, USE EXTREME CAUTION IN
WORKING ON POWER SUPPLY AND OTHER ELECTRONIC COMPONENTS.
WARNING
1. REPAIRS ON EPSON PRODUCT SHOULD BE PERFORMED ONLY BY AN EPSON
CERTIFIED REPAIR TECHNICIAN.
2. MAKE CERTAIN THAT THE SOURCE VOLTAGE IS THE SAME AS THE RATED
VOLTAGE, LISTED ON THE SERIAL NUMBER/RATING PLATE. IF THE EPSON PRODUCT HAS A PRIMARY-AC RATING DIFFERENT FROM THE AVAILABLE POWER
SOURCE, DO NOT CONNECT IT TO THE POWER SOURCE.
3. ALWAYS VERIFY THAT THE EPSON PRODUCT HAS BEEN DISCONNECTED FROM THE
POWER SOURCE BEFORE REMOVING OR REPLACING PRINTED CIRCUIT BOARDS
AND/OR INDIVIDUAL CHIPS.
4. IN ORDER TO PROTECT SENSITIVE KP CHIPS AND CIRCUITRY, USE STATIC
DISCHARGE EQUIPMENT, SUCH AS ANTI-STATIC WRIST STRAPS, WHEN ACCESSING INTERNAL COMPONENTS.
5. REPLACE MALFUNCTIONING COMPONENTS ONLY WITH THOSE COMPONENTS
RECOMMENDED BY THE MANUFACTURER; INTRODUCTION OF SECOND-SOURCE
ICS OR OTHER NONAPPROVED COMPONENTS MAY DAMAGE THE PRODUCT AND
VOID ANY APPLICABLE EPSON WARRANTY.
- ii -
REV.-A
PREFACE
This manual describes functions, theory of electrical and mechanical
operations, maintenance, and repair of the LQ-2550.
The instructions and procedures included herein are intended for the
experienced repair technician, and attention should be given to the
precautions on the preceding page. The chapters are organized as follows:
Chapter 1 -
Provides a general product overview, lists specifications,
and illustrates the main components of the printer.
Chapter 2 -
Describes the theory of printer operation.
Chapter 3 -
Discusses the options
Chapter 4 -
Includes a step-by-step guide for product disassembly,
assembly, and adjustment.
Chapter 5 -
Provides Epson-approved techniques for troubleshooting.
Chapter 6 -
Describes preventive maintenance techniques and lists
lubricants and adhesives required to service the equipment.
“ The contents of this manual are subject to change without notice.
- iv -
REV.-A
REVISION TABLE
REVISION
DATE ISSUED
A
CHANGE DOCUMENT
I
March 31, 1988
I
I
I
I
I
1
f’!
.
1st issue
I
1
I
.,
t-.+,:,
.%
(:,., .,.,~.DŠ:ˆ,
-v-
REV.-A
TABLE OF CONTENTS
CHAPTER 1.
GENERAL DESCRIPTION
CHAPTER 2.
OPERATING PRINCIPLES
CHAPTER 3.
OPTIONAL EQUIPMENTS
CHAPTER 4.
DISASSEMBLY, ASSEMBLY, AND ADJUSTMENT
CHAPTER 5.
TROUBLESHOOTING
CHAPTER 6.
MAINTENANCE
APPENDIX
– vi -
REV.-A
CHAPTER 1
GENERAL DESCRIPTION
1.1
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.2
..
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
1.2.1 Hardware Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-3
1.2.2 Firmware Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1o
1.3
INTERFACE OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-14
..
1.3.1 8-bit Parallel Interface Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-14
1.3.2 RS-232C Serial Interface Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 1-17
1.4
SELF-TEST OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20
1.5
HEXADECIMAL DUMP FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21
1.6
PRINTER INITIALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22
..
1.6.1 Hardware Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22
1.6.2 Software Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-22
..
1.6.3 Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-22
1.7
ERROR CONDITIONS AND BUZZER OPERATION . . . . . . . . . . . . . . . . . . 1-23
1.7.1 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23
1.7.2 Buzzer Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-23
.
1.8
MAIN COMPONENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .1-24
1.8.1 Printer Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .1-25
.
.
1.8.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-25
1.8.1.2 Paper Handling and Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26
1.8.2 ROMA Board (Main Board) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.27
1.8.3 ROPS/ROPSE Board
(Power Supply Circuit Board) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28
1.8.4 Fan Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... . . . . . . . . . . . . . . . . 1-29
1.8.5 Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-29
..
1.8.6 Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30
..
1.8.6.1 Hardware Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-30
1.8.6.2 SeiecType Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 1-32
l-i
REV.-A
LIST OF FIGURES
Figure 1-1.
Exterior Views of the LQ-2550 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1
Figure 1-2.
Printhead Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-3
Figure 1-3.
Cut Sheet Paper Printable Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Figure 1-4. Fanfold Paper Printable Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-6
Figure 1-5.
. -7
Label Printable Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1-6.
.
Character Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-12
Figure 1-7.
Data .Transmission Timing for the
8-bit Parallel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-14
Figure 1-8.
36-pin 57-30360 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
Figure 1-9.
Handshaking for RS-232C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17
Figure 1-10. Serial Data Transmission Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18
Figure 1-11. Serial Interface Connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-18
. -20
Figure 1-12. Self-Test Printing (LQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. -21
Figure 1-13. Hexadecimal Dump List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1-14. LQ-2550 Component Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-24
Figure 1-15. Model-5560 Printer Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25
.
Figure 1-16. ROMA Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-27
. -28
Figure 1-17. ROPS/ROPSE Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
..
Figure 1-18. Fan Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29
..
Figure 1-19. Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29
.
Figure 1-20. Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-30
Figure 1-21. SelecType Operational Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-33
—
LIST OF TABLES
Table 1-1.
.
Optional Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-2
Table 1-2.
Optional Interface Boards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-2
Table 1-3.
Line Feed Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. 4
Table 14.
Cut Sheet Paper Specified Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Table 1-5.
Fanfold Paper Specified Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Table 1-6.
Ribbon Cartridge Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Table 1-7.
Dimensions and Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-8
Table 1-8.
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Table 1-9.
Environmental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-9
Table 1-10.
Printing Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-11
.
REV.-A
Table 1-11. Character Matrix and Character Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
Table 1-12. 8-bit Parallel l/F Connector
. -15
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 1-13. Select/Deselect Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-16
Table 1-14. Serial Interface Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17
Table 1-15. RS-232C Serial Interface Connector
.
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-19
. -20
Table 1-16. Self-Test Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 1-17. Hexadecimal Dump Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-21
l-iii
REV.-A
FEATURES
The LQ-2550 printer is
‘ 1.1
a multifunction, 24-pin, impact dot-matrix printer. The main features Of this
printer are:
● IESC/P Expanded is implemented as a standard
● IUpward compatibility with the LQ-2500/LQ-2500+
● A maximum print speed of 400 CPS in draft mode at 12 CPI and 133 CPS in LQ mode at 12 CPI
● IDirect selection of font, pitch, and normal/condensed mode, and SelecType function with LCD (Liquid
Crystal Display) which makes panel settings easier
● Multiple standard fonts (Roman, Saris Serif, Courier, Prestige, Script, OCR-A, and OCR-B)
● Advanced paper handling:
Automatic release function
Automatic platen gap adjustment function
Micro adjustment function
Tear-off function
Automatic paper-loading/ejectin9
● Color printing capability
function
● Low-noise acoustics
● Both 8-bit parallel and RS-232C serial interfaces
● Push and (optional) pull tractor feeding ,
● Printing of fanfold paper without removal of the cut sheet feeder (option)
● Optional interface for the EPSON 8100 series
● Optional low-priced, double-bin cut sheet feeder with envelope feeding capability
Figure 1-1 shows exterior views of the printer, Table 1-1 lists optional units that are available, and Table
1-2 lists the optional interface boards (refer to Chapter 3 for more detailed information) for the LQ-2550.
Setting for Cut Sheet Paper
Setting for Continuous Paper
Figure 1-1. Exterior Views of the LQ-2550
1-1
Table 1-1. Optional Units
Name
No.
#73 14
Pull tractor unit
#7343
Double bin cut sheet feeder
#7394
Scanner option kit
#7762
Ribbon cartridge (black)
#7763
Ribbon cattridge (color)
#7764
Ribbon cartridge (film-black)
Table 1-2. Optional Interface Boards
{:’”.,
Name
No.
#8143
New serial interface
#8145
RS-232C current loop interface type II
#8 148
Intelligent serial interface
#8 149
Intelligent serial interface type II
#8 149M
#8 161
#81 65
#8 172
#8 172M
I
I
I
I
Intelligent serial interface type Ill
IEEE-488 interface
Intelligent IEEE-488 interface
32 K-byte buffer parallel interface
128K-byte buffer parallel interface
I
g:;;
.7, ...,
1-2
REV.-A
\
1.2 SPECIFICATIONS
The LQ-2550 communicates with a wide variety of host computers, with the aid of the optional Identity
Modules. However, this section describes the specifications for the printer without the Identity Module.
Specifications not affected by firmware (hardware specifications) are the same whether or not the
Identity Module is installed.
1.2.1 Hardware Specifications
Printing Method
Serial, impact dot matrix
Pin Configuration
See Figure 1-2 (1 2x2 staggered, diameter: 0.2 mm).
..=
=’
2
0
OJ
\
4
$
5
1’
11
7
I
13
15
17
$’-
21
23
6
8
10
12
14
4
16
la
20
22
24
1160”
Figure 1-2. Printhead Pin Configuration
1-3
REV.-A
Friction feed
Feeding Method
Tractor feed (push: standard, push-pull: optional)
NOTES: 1. When using friction feed:
● Select friction feed on the control panel.
● Do not use continuous (fanfold) paper.
● Do not use a single sheet paper shorter than 92mm or longer than 364mm
● Do not perform any reverse paper feed operations within the top 8.5 mm and bottom
22 mm of the paper.
● Do not perform reverse feed beyond 1/6” after the paper end has been detected.
● Do not use multi-part, single-sheet forms.
2. When using push-pull tractor feed:
● Select tractor feed on the control panel.
● Mount the pull tractor unit (optional).
● Do not loosen the paper between the platen and the pull sprocket.
● Precisely align the horizontal position of the pull sprocket and push tractor.
● Do not perform reverse feeding for more than 1/6”.
● Do not perform reverse feeding after the paper end has been detected.
● Multiple copy paper must be pasted together using line or dots.
● Copy paper must be carbonless multi-part paper.
Paper Loading Directions
Fanfold paper
Inserted from the rear
Cut sheet paper
Inserted from the top
Line Spacing
1/6”, 1/8”, or programmable in units of 1/1 80” orl/360”
Line Feed Speed
See Table 1-3.
Table 1-3. Line Feed Speeds
Feeding Method
1/6” line spacing
[ins/line]
Continuous
[inch/s]
84
4.0
Friction without CSF
Friction with CSF
Tractor
=
1-4
REV.-A
\ Paper Specifications
Refer to Table 1-4 and Figure 1-3.
Cut sheet paper
Table 1-4. Cut Sheet Paper Specified Conditions
I
182 -364 (7.2 - 14.3”)
Width
[mm]
Length
[mm] I 364 (14.3”) max.
Thickness [mm]
I
0.065-0.10 (0.0025 - 0.004”)
[ l b ] I 14-22 ( 5 2 - 8 2 g/m2)
Weight
Quality
I Plain paper
Copies
I Not available
7.2-14.3”,
182 ’364 mm
t
0.1 2“, 3 mm.
or more
1-
Printable area
I
-0.1 2“, 3 mm
1
or more
.33”, 6.5 mm
r mol
v
r
i
n
tt
1
T
ABC
T
L
J
XYZ
MAX. . . 3;
364mm I
e
a
r
e
a
0.52”,
XYZ
ABC
3mm
NOTES: 1. Printing is possible approx. 8.5mm (0.33”) from the top of the paper. But the paper feed
accuracy can not be assured in the area approx. 22mm (0.87”) from the top of the paper.
2. Printing is possible approximately 45.9mm past the point where end-of-page has been
detected. Thus, the value 13.3mm (0.52”) (lowest print position) is given for reference only.
Paper feed accuracy cannot be assured in the area approximately 22mm(0.87”) from the
bottom of the page.
Figure 1-3. Cut Sheet Paper Printable Area
1-5
REV.-A
.“3
f. . . . .,,.~
Refer to Table 1-5 and Figure 1-4.
Fanfold paper
Table 1-5. Fanfold Paper Specified Conditions
Width
Copies
101 -406 (4.0 - 16.0”)
[mm]
6 (1 original + 5 ) over the entire temperature range
[sheets]
Quality
Plain paper
Total Thickness [mm]
0.06-0.46 (0.0023 -0.0 18“)
Weight
1 sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12- 2 2 ( 4 0 - 8 2 g/m2)
6 sheets ...................12 - 1 5 ( 4 0 - 58.2 g/m2) each sheet
IIbs]
4-16” ,
M
*
~
101 -4C)6mm
d
Printable area
I *
0
0
0
0
0
o
Printable
area
i
0.35”, 9 mm
0
0
0
0
0
0
o
o
0
L
XYZ
d :
ABC
0
0
0
or more
0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - 04 o
0
0.35”, 9 mm 0
0
or more
0
T
XYZ
:
T 0
o ABC
i
Printable
area
o
0’
o
0
0
0
0
0
0
0
0
0
0
*: 101 - 381 mm (4 - 15“) wide paper . . . . . . . . . . . . . . . . . . . . . 13mm or more,
406 mm ( 16“) wide paper . . . . . . . . . . . . . . . . . . . . . 26mm or more
Figure 1-4. Fanfold Paper Printable Area
1-6
{ ;
.., ,.
REV.-A
..
Envelopes
No. 6 165 x 92 mm (6.5 x 3.63”)
Size
No. 10241 x 105mm (9.5 x 4. 13“)
Bond paper, xerographic copier paper, airmail paper
Quality
Thickness
0.16-0.52 mm (0.0063 -0.01 97”)
NOTE: Differences in thickness within printing area must be less than 0.25 mm (0.0098”).
1 2 - 24 lb (45 - 9 1 g/m2)
Weight
NOTES: 1. Envelope printing is only available at normal temperature.
2. Keep the longer side of the envelope horizontal.
Labels
\
Size
2. 1/2
Thickness
O.19 mm (0.0075”) max.
X 15/1
6“, 4
X 15/1
6“, 4
X 1“7/16“
NOTE: Thickness excluding the base paper must be less than or equal to 0.12 mm (0.0047”).
NOTES: 1. Printing of labels is only possible at normal temperature.
2. Labels must be fanfold.
3. Labels with pressure-sensitive paper must be joined by dot or line pasting, and the total
thickness must be less than or equal to 0.3 mm (0.01 1 8“) and should be printed under
conditions between 5 to 35 ‘C and 20 to 80% RH.
4. Examples of labels: AVERY CONTINUOUS FORM LABELS
AVERY MINI-LINE LABELS
Printable area
See Figure 1-5.
101.6 mm [ 4“ )
k
2
<
}
63.5mm ( ” 2 ” )
23. Emm
(’5+6”)
J
_
r
36.5mm
(176”)
Figure 1-5. Label Printable Area
1-7
A
REV.-A
See Table 1-6.
Ribbon Cartridge
Table 1-6. Ribbon Cartridge Specification
I
[
Ribbon Model No.
#7762
#7764
#7763
Type
Normal
Film
Multi-color
Color
L
i
Black, Cyan,
Black
f
Magenta, and yellow
e
[million/characters]*’
0.2
3
Black:
1
Cyan:
0.7
Magenta: 0.7
Yellow: 0.5
xl: LQ-selftest
Dimensions
See Table 1-7 (Details are shown in Figure A-59.)
Weight
See Table 1-7.
..
.4‘
c
Table 1-7. Dimensions and Weight
Width [mm]
Height [mm]
Depth [mm]
Weight [Kg]
676
198
535
20 (approx.)
NOTE: Including the paper feed knob and paper guide.
Electrical Specifications
See Table 1-8.
Table 1-8. Electrical Specifications
1 0 0 -
120 V Version
f
Voltage ~ AC]
220-240 V Version
I
108- 132
Frequency Range [Hz]
198-264
49.5 - 6 0 . 5
Rating Current “’ [A]
1.6
1.0
Insulation Resistance
[M ohm] min.
10
(between AC line and chassis)
I
Dielectric Strength ~ AC, rms]
1250
(1 minute, between AC line and chassis)
*1: At draft-selftest
I
printing.
1-8
3750
, .,
f-..+,
REV.-A
Environmental Conditions
Refer to Table 1-9.
Table 1-9. Environmental Conditions
Temperature [“C]
I
Storage
Operating
–30 - 65*
5 - 3 5
5 - 8 5
10-80
I
2
1
I
0.50
0.25
1
Humidity [% RH]
Resistance to shock [G]
1 (within 1 ms)
Resistance to Vibration [G]
(55 Hz, max.)
x: With shipment container
‘. Reliability
MCBF
5 million lines (excluding printhead)
(MCBF . . . Mean Cycles Between Failure)
MTBF
6000 POH (duty 25%)
(POH . . . Power On Hour)
Printhead life
Safety Approvals
Safety standards
200 million strokes/wire
UL478 (U.S.A. version)
CSA22.2#154
VDE0806 (TUV) (European version)
Radio frequency
FCC class B (U.S.A. version)
Interface (RFI)
VDE0871 (self-certification)
(European version)
1-9
REV.-A
1.2.2 Firmware Specifications
Control Code
Printing Direction
ESC/P-83 Expanded
Bidirectional logic seeking
Input Data Buffer
8K-bytes
Character Code
8 bits
Character Set
96 ASCII and 13 international character sets
No. O
Roman:
Family
SansSerif: No. 1
No. 2
Courier:
Prestige:
No. 3
Script:
No. 4
OCR-B:
No. 5
OCR-A:
No. 6
Font and Character Spacing Roman:
SansSerif:
Printing Mode
10, 12, 15, Proportional
10, 12, 15, Proportional
Courier:
10, 12, 15, Proportional
Prestige:
10, 12, 15, Proportional
Script:
10, 12, 15, Proportional
OCR-B:
10, 12, Proportional
OCR-A:
Draft:
10, 12 Proportional
10, 12, 15
Printing quality (Draft/LQ)
Character pitch (10, 12, 15 CPI or Propotiional)
Condensed
Double-width
Double-height
Emphasized
Double-strike
Italic
Underlined
Outline
Shadow
NOTE: A condensed mode for 15 CPI characters is not available.
Print Speed
Refer to Table 1-10.
1-10
f’--+,:
REV.-A
Table 1-10. Printing Mode
Print
Pitch
10
Condensed Emphasized
0
0
1
1
12
0
x
0
1
.,,
1
15
0
x
0
1
‘proportional
Double
Width
Character
Pitch ICPI]
Printing Speed
[CPS]
Draft
LQ
0
10
333
111
136
1
5
167
55
68
0
10
167
111
136
1
5
83
55
68
o
17.1
285
189
233
1
8.5
142
94
116
0
12
400
133
163
1
6
200
67
81
0
12
200
133
163
1
6
100
67
81
o
20
333
221
272
1
10
167
111
136
0
15
500
167
204
1
15
250
83
204
0
7.5
250
167
102
1
7.5
124
83
102
94
Max. 116
221
Min. 272
50
Max. 58
10
111
Min. 136
17.1
189
Max. 233
40
444
Min. 544
94
Max. 116
221
Min. 272
142
Max. 174
333
Min. 408
71
Max. 87
167
Min. 204
285
Max. 174
60
667
Min.
816
12.8
142
Max.
87
30
333
Min.
1
x
x
o
x
o
Ignored
8.6
—
20
1
1
x
4.3
o
1
8.6
—
20
\
‘proportional
Superl’
subscript
o
x
o
12.8
—
30
1
6.4
—
15
1
x
Printable
Columns
o
25.7
1
—
~
4
204
NOTES: 1. Max. means the value when the maximum width characters are printed.
2. Min. means the value when the minimum width characters are printed.
3. “—“ means that LQ character set is automatically selected when proportional pitch is
specified.
\
1-11
;
REV.-A
...
, 1,
See Figure 1-6.
character Matrix
f:
--,
(Superscript Character)
Pin Nos. 17 to 24 are not used for superscript
(Normal
Ascender Area
:
3
4
5
6
7
:
10
II
12
printing.
Character)
—
R
15
16
17
18
19
20
21
22
23
24
3
4
5
6
7
8
9
A
H
T
Ascender Area (15pi!Ch)
,
1
L
s
P
A
c
13
14
;
i).
10
II
E
(a 2
12
I?
14
r
;
k
T
H
T
s
P
A
c
E
s
P
A
c
E
. ..
L
—
Descender Area
Face Wid!h(al)
R
4
(Subscript Character)
Pin Nos. 1 to 8 are not used for subscript printing.
Character Width (CW)
—
9
10 L
II E
12 F
13 T
14
15 s
16 P
17 A
18 c
E
;:
21
22
23
R
A
H
T
s
P
A
c
E
24
—
Figure 1-6. Character Matrix
1-12
—
r’
.. ;
REV.-A
See Table 1-11.
Character Size
Table 1-11. Character Matrix and Character Size
Printing Mode
I
Face Matrix
9
X
23
DRAFT, 12 pitch
9
X
23
DRAFT, 15 pitch
9
X
16
DRAFT, 10 pitch
DRAFT, 10 pitch, condensed
I
...
I
I
HDD
I
1
120
I
I
I
Unit
ESC SP
]
120
1.9
X
3.2
120
1.9
X
3.2
120
120
1.0
X
2.3
120
.
.
240
‘1
.
240
...
DRAFT, 12 pitch, condensed
Character Size
H. x V. [mm]
I
...
240
240
LQ, 10 pitch
29
X
23
360
2.0
X
3.2
180
LQ, 12 pitch
29
X
23
360
2.0
X
3.2
180
LQ, 15 pitch
15
X
16
360
1.0
X
2.3
180
.
.
LQ, 10 pitch, condensed
...
I
LQ, 12 pitch, condensed
LQ, proportional
I
360
I
.
I
...
360
...
Max. 39 x 23
360
2.6
X
3.2
Min. 18 x 23
360
1.0
X
3.2
...
360
...
...
360
...
Max. 28 x 16
360
1.8
X
2.3
Min. 12 x 16
360
0.7
X
2.3
...
360
...
...
360
..
360
360
180
LQ, proportional, condensed
360
LQ, proportional, super/subscript
180
LQ proportional, super/subscript,
condensed
360
NOTES: 1. “HDD” means the Horizontal dot density, and the units are dots per inch.
2. “Face matrix” and “character size” indicate the maximum size of characters and this vail
will change with condition of paper.
3. “Unit ESC sp” indicates the minimum length which is added to the right of the character
that can be specified with ESC sp control code.
4. “...” indicates that the character matrix is reformed by printer firmware. Character width
becomes half of a non-condensed character.
1-13
REV.-A
1.3 INTERFACE OVERVIEW
The LQ-2550 has both an 8-bit Parallel interface and an RS-232C serial interface as standard. The
interface can be selected from the control Panel (For details of the control Panel settings, refer to Section
1.8.6.2.).
1.3.1 8-bit Parallel Interface Specifications
Data Transmission Mode
Synchronization
8-bit parallel
Handshaking
Logic Level
By BUSY and ACKNLG (either or both)
ITL (LS) compatible
Data Transmission Timing
See Figure 1-7.
Connector
57-30360 (AMPHENOL) or equivalent (See Figure 1-8.)
Refer to Table 1-12.
By STROBE pulse
Connector Pin Assignment
Select/Deselect (DC1/DC3)
Control
Refer to Table 1-13.
BUSY
ACKNLG
DATA
STROBE
NOTE: Transmission time (rising and falling time) of every input signal must be less than 0.2 #s.
Figure 1-7. Data Transmission Timing for the 8-bit Parallel Interface
1.
19. GNO ( Pa., ..,ml. )
2.
20. GNO (Pm.. w,tn2.)
3.
21. GNO IPa, c w.tn3.)
4.
22. GNO ( Pair .,,”4.)
5.
2 3 . CJNO [Pa., w:tm5.1
6,
28, GNO (Pa;, w:,n6.)
?.
2 5 . GNO ( Pa,. w,,n?.]
e.
2 6 . GNO ( Per w:m8.)
9.
2’7. GNO ( Pm,, .,,.9.)
10
2 8 . GNO (P,., .,,.10,1
II
29, GNO ( Par -,. I l.)
12
3 0 . GNO (Pa.< .,,-12.1
13
31. Fit
14
32, ERRGR
J5
33, GNO
16
34. NC
17
3 s . .5V
—
.
36. SLCTIN
19
Figure 1-8. 36-Pin 57-30360 Connector
1-14
\
Table 1-12. 8-bit Parallel l/F Connector Pin Assignments
Pin No.1
Signal
Return
I 1/0 I
Description
1
STROBE
19
I
Strobe pulse to read the input data. Pulse width must be
more than 0.5 KS. Input data is latched after falling edge of
this signal.
2
3
4
5
6
7
8
9
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7
DATA8
20
21
22
23
24
25
26
27
I
I
I
I
I
I
I
I
Parallel input data to the printer.
“HIGH” level means data “l”.
“LOW’” level means data “O”.
10
ACKNLG
28
0
This pulse indicates data are received and the printer is
ready to accept next data. Pulse width is approx. 11 IJS.
11
BUSY
29
0
“HIGH” indicates printer can not accept data.
12
PE
30
0
“HIGH” indicates paper-out.
This signal is effective only when ERROR signal is “LOW”.
13
SLCT
—
o
Always “HIGH”. (Pulled up to +5V through 3.3 K ohms
resistor.)
14
AUTOFEED-XT
—
I
If this signal is “LOW” when the printer is initialized, a line
feed is automatically performed by input of “CR” code (Auto
LF).
15
NC
—
—
Not used.
16
GND
—
—
Ground for twisted-pair.
17
Chassis GND
—
—
Printer chassis ground.
18
NC
—
—
Not used.
19 to 30
GND
—
—
Ground for twisted-pair.
.31
INIT
16
I
Pulse (width: 50 WS min., active “LOW”) input for printer
initialization.
.32
ERROR
—
o
“LOW” indicates that some error has occurred in the printer.
.33
GND
—
—
Ground for twisted-pair.
.
.34
NC
—
—
Not used.
.35
+ 5V
—
o
Always “HIGH”. (Pulled up to +5V through 3.3 K ohms
resistor.)
#
<36
SLECT-IN
—
I
If the signal is “LOW” when printer is initialized, the
DC l/DC3 control is disabled.
NOTES: 1. “Direction” of signal flow is as viewed from the printer.
2. “Return” denotes “TWISTED PAIR RETURN” and is to be connected at signal ground level.
As to the wiring for the interface, be sure to use a twisted-pair cable for each signal and
never fail to connect the return side. To prevent noise, cables should be shielded and
connected to the chassis of the host computer and the printer.
1-15
REV.-A
>
(’.
Table 1-13. Select/Deselect Control
ON-LINE
Sw
SLCT-IN
Dcl/Dc3
ERROR
OFF-LINE
HIGH/LOW
DC l/DC3
LOW
ON-LINE
HIGH
LOW
BUSY
ACKNLG
DATA ENTRY
HIGH
No pulse
Disable
LOW/HIGH (During
data entry)
Pulse output after
entry)
Enable
(Normal Process)
L O W / H I G H (Durring
Pulse output after
entry
Enable (Waits DC 1.
data entry)
Enable (Normal
Process)
DC 1
HIGH
DC3
HIGH
DC1
HIGH
LOW/HIGH (During
data entry)
Pulse output after
entry
DC3
HIGH
L O W / H I G H (Durring
data entry)
Pulse output after
entry
See Note 2)
NOTES: 1. In Table 1-13, it is assumed that no ERROR status exists other than that attributable to the
OFF-LINE mode.
2. Once the printer is deselected by the DC3 code, the printer will not revert to the selected
state until the DC 1 code is input (In the deselected state, input data is ignored until DC 1
is received.).
(.;
3. The DC 1 and DC3 codes are enabled only when the SLCT-IN signal (Input Connector Pin
No. 36 when the parallel interface unit is used) is HIGH and the printer is initialized.
4, The SLCT4N signal is LOW when the printer is initialized. At this time the DC l/DC3 printer
select/deselect control is invalidated, and these control codes are ignored.
5. The SLCT-IN signal is HIGH, and it is not set to LOW by SelecType function when the printer
is initialized. The printer will start from the selected (DC 1 ) state.
f
‘.
1-16
.
‘“’
.
,
REV.-A
\
1.3.2 RS-232C
Serial Interface Specifications
Data Transmission Mode
RS-232C serial
Synchronization
Asynchronous
Handshaking
By DTR (REV) signal or X-ON/OFF protocol
Refer to Table 1-14 and Figure 1-9.
Table 1-14. Serial Interface Handshaking
DTR Signal
X-ON/OFF protocol
MARK
X-OFF (DC3\l 3H)
Description
When the number of bytes remaining in the input
buffer reaches 256 or less, the signal level goes to
MARK, or an X-OFF code is sent to the host computer.
This indicates that the printer is not ready to receive
data.
When the number of bytes remaining in the input
buffer reaches 528 or more, the signal level goes to
SPACE, or an X-ON code is sent to the host computer.
This indicates that the printer is ready to receive data.
X-ON (DC 1/1 1 H)
SPACE
DTR {REV) Signal
MARK ( -
12V)
I
----------------
I
I
I
I
I
I
I
I
I
I
1
I
SPASE ( + 12V) L,8Kbyte
:
t
I
I
I
I
1
‘‘:’‘5 1 2 b y t e 256byte O
X-ON
X-OFF
byte Input Buffer Vacant Area
X-ON/X-OFF Protocol
Figure 1-9. Handshaking for RS-232C Interface
Word Length
Start bit
1
Data bits
8
Parity
Odd, Even, or none
1 bit or more
Stop bits
Bit Rate
300, 600, 1200, 2400, 4800, 9600, or 19200 BPS
Logic Level
EIA level, MARK: logical 1 (–3 - –27 V)
SPACE: logical O (+3 - +27 V)
1-17
-.
REV.-A
[ +V)
DTR
( -v)
( +V)
RXD
[ -v)
. . .~
{ ...“,’
See Figure 1-10.
Data Transmission Timing
------
1
--------------------- -- -- -- -- -- -- -- --
--7
—-:s!Mik16k .1
Data Bit
stop Blt
1-
Pcr:;y
s;t&*
DTR Handshake
( +V)
RXO
(
–
“‘IIM!l!m
D a t a Blt
-v]
J
,,—
StW
Bit
17
Stmf
“T-
POrli/y
L
Blt
m
\
( +V)
TXD
( -v)
.stu-t Data Blt
Blt [X-OFF)
X-ONDZ-OFF Protocol
S::t D~t:at:t
NOTES: 1. The value of “T” varies according to the input data.
2. The word structure of serial data is 1 start bit + 8 data bits + parity (Odd, Even, or none)
+ 1 or more stop bits.
Figure 1-10. Serial Data Transmission Timing
Error Detection
Parity error: “*” is printed.
Overrun error: Ignored
Framing error: Ignored
Connector
D-SUB 25-pin connector (See Figure 1-1 1.)
Connector Pin Assignments Refer to Table 1-15.
Zn
.
.,
-.. ,,,
f
1. CHA5.51S GND
Z.TXO
3.RxD
4.NC
5.NC
SAC
7.SIGW GNO
e.Nc
9.NC
to.Nc —
t I.REv
IZ.NC
#
IXNC
E
34. Nc
45. NC
\6. NC
!7. Nc
18. NC
19. NC
2D.DTR
2i.NC
Z2.NC
2%NC
Z4.NC
2SNC
Figure 1-11. Serial Interface Connector
.:.,
. . ., ,’
1-18
Table 1-15. RS-232C Serial Interface Connector Pin Assignments
\
IPin No.
Signal
Description
1/0
2
TXD
o
Transmit data.
20
DTR
o
Indicates when printer is ready to receive data. “MARK” level
indicates printer is not ready to receive data.
11
REV(=2nd RTS)
o
Same as DTR.
3
RXD
I
Receive data.
7
SIGNAL GND
—
Signal (Logic) ground level.
1
CHASSIS GND
—
Printer chassis ground.
NOTE: “Direction” of signal flow is as viewed from the printer.
\
1-19
REV.-A
-’%
f
1.4 SELF-TEST OPERATION
The LQ-2550 printer has the following self-test functions. The current and default settings at the control -‘“
panel are printed when the self-test is executed. When the C-SF mode is enabIed, the current sheet length
is printed out at the end of the first page.
Table 1-16 lists the self-test operating instructions and Figure 1-12 shows the self-test printing.
Table 1-16. Self-Test Operation
Start
stop
Turn the power ON while pressing the
Push the ON LINE switch, and turn the
LINE FEED switch.
power OFF.
Type-face
Draft
LQ
Turn the power ON while pressing the
FORM FEED switch.
#...
&
.+’
Current setting
FONT
Roman
PITCH
10CPI
CONDENSED
off
FORM LNG
Tractor
66LINE
CSF binl
132LINE
CSF bin2
132LINE
off
1“ SKIP
AUTO TEAR OFF
o f f
o
LEFT MARGIN
RIGHT MARGIN
136
CG TABLE
Italic
COUNTRY
USA
PRINT DIR.
Bi-d
COLOR
Black
...
c“
- ,. .
Default setting
. . . A{] I IT MACRO
I
1
IRoman
! “ #$%&. ‘ ( )*+, -. /0 I 234 56789: ; < = >[email protected])EFcHTJ}
! “ #$%&‘ ( )*+ , -. /01234 56789 : ; < = > [email protected] ABCllEFGHI.JKI
“ #$%&. ‘ ( )*+ ,-. /0123456789 : ; < = > [email protected] ABCDFFGHIJKIIh
#$%& ‘ ( )*+ ,-. /0 123456789 : ; < = > [email protected] A13CDEFGHIJKLMb
$%&. ‘ ( )*+ ,-. /0 123456789 : ; < = > [email protected])J?FGH IJKl,MN(
%& ‘ ( )*+ , -. /0 123456789 : ; < = > [email protected]! ABCI)EFGHIJKLMNOE
& ‘ ( )*+ , - . /0 1234 56789: “, < = > [email protected]~c:~F.F~H T JK],MNOPG
Figure 1-12. Self-Test Printing (LQ)
.....
1-20
REV.-A
., 1.5 HEXADECIMAL DUMP FUNCTION
In hexadecimal dump mode, the printer prints out the data it receives in hexadecimal format. The printer
prints a column of 16 hexadecimal values, followed by a column containing the 16 corresponding ASCII
characters. If there is no corresponding printable character for a value (e.g., a control code, such as
a carriage return or line feed), a period (.) is printed in the ASCII column in the position of the code.
Each line of the dump contains 16 values, printed in the order they were received, and any remaining
data (less than 16 values on the final line) can be printed by operating the ON LINE switch. Table 1-17
explains the hexadecimal dump operation and Figure 1-13 shows a sample printout of the operation.
Table 1-17. Hexadecimal Dump Operation
I
Function
Hexadecimal dump mode
I
Operation
stop
I
Turn the power ON while
Turn the power OFF.
pressing both the LINE FEED
\
and FORM FEED switches.
Data Dump
Mode
31 2E 31 20 46 45 41 54 55 52 45 53 OD 06 OD
54 68 65 20 4C 51 2D 38 35 30 2F 31 30 35 30
70 72 69 6E 74 65 72 73 20 61 72 65 20 6D 75
74 69 66 75 6E 63 74 69 6F 6E 61 6C 2C 20 32
2D 70 69 6E 20 70 72 69 6E 74 68 65 61 64 2C
69 6D 70 61 63 74 20 64 6F 74 2D OD 06 6D 61
72 69 78 20 70 72 69 6E 74 65 72 73 2E 20 54
65 20 6D 61 69 6E 20 66 65 61 74 75 ‘72 65 73
6F 66 20 74 68 65 20 74 68 65 73 65 20 70 72
6 E 74 65 72 73 20 61 72 65 3A 20 OD OA OD OA
~ 20 55 70 77 61 72 64 20 63 6 F 6D 70 61 74 69
69 6C 69 74 79 20 77 69 74 68 20 74 68 65 20
51 2D 38 30 30 2F 31 30 30 30 OD OA 2 E 20 41
,6D 61 78 69 6D 75 6D 20 70 72 69 6E 74 20 73
65 65 64 20 6F 66 20 32 36 34 20 43 50 53 20
,6E 20 64 72 61 66 74 20 6D 6F 64 65 20 61 74
Fig 1-13. Hexadecimal Dump List
1-21
OA
20
6C
34
20
74
68
20
69
2E
62
4C
20
70
69
20
1.1 FEATURES. . . .
T h e LQ-850/1050
printers are mul
tifunctlonal, 2 4
-pin p r i n t h e a d ,
impact dot- . . mat
rix p r i n t e r s . T h
e main f eatu res
o f t h e t h e s e pri
nters are: . . . . .
U p w a r d compatib
ility with t h e L
Q-800 /1000... A
maximum print sp
e e d o f 2 6 4 CPS i
n draft mode at
I
REV.-A
1.6 PRINTER INITIALIZATION
There are two initialization methods: hardware initialization and software initialization.
1.6.1
Hardware
Initialization
This type of initialization occurs when printer power is turned on or when the printer receives the I NIT
signal from the host via the 8-bjt Parallel interface. When the winter is initialized in this wwt it Performs
the following actions:
● Initializes the printer mechanism
● Clears the downloaded character set
● Clears the input data buffer
● Clears the image buffer
● Sets printer selections to their default values (Refer to Section 1.6.3.)
1.6.2 Software Initialization
This type of initialization occurs when the printer receives a command (ESC @) via software. When the
printer is initialized in this way, it performs the following actions:
● Clears the image buffer
● Sets printer selections to their default values
(Several settings are changed by the last SelecType operation before [email protected] is input (Refer to Section
1.6.3.).
1.6.3 Default Values
The default values set by the default setting mode of the SelecType function are only reset by a hardware
initialization. The printer’s default values are as follows:
Preset paper position becomes top-of-form position
Page Position
Left and Right Margin
SelecType setting
Line Spacing
1/6”
Vertical Tab Positions
Cleared
Horizontal Tab Positions
Every 8 characters (relative)
VFU Channel
Channel O
Family Number of Type Style SelecType setting
Downloaded Characters
Deselected
Justification
Left justification
Character Spacing
No additional spacing
Bit Image Mode Assignment ESC K = ESC *O, ESC L = ESC xl, ESC Y = ESC X2,
ESC Z = ESC X3
. .,,
1-22
REV.-A
‘ 1.7 ERROR CONDITIONS AND BUZZER OPERATION
This section describes the error conditions and buzzer operation of the printer.
1.7.1 Error Conditions
If any of the following errors occur, the printer automatically enters the OFF LINE mode and outputs
the appropriate interface signal.
● Carriage and platen gap home positons are not detected at printer mechanism initialization.
● The ON LINE switch is pressed, causing the printer to enter OFF-LINE mode.
● Paper-out is detected.
● A paper-out signal is detected after the printer has perFormed a paper loading operation with the
cut sheet feeder enabled.
For information concerning the status of the interface signals, refer to Table I-l 2.
1.7.2 Buzzer Operation
..
The buzzer rings as follows:
● When a BEL code is sent to the printer, the buzzer sounds for 0.1 seconds.
● When an error has occurred,
Carriage Trouble:
Sounds 5 times (rings for 0.5 seconds with 0.5 second intervals.)
Paper End:
Sounds 3 times (rings for 0.1 seconds with 0.1 second intervals.)
● When a panel setting is accepted, the buzzer sounds for 0.1 seconds.
1-23
REV.-A
1.8 MAIN COMPONENTS
The LQ-2550 printer includes the following major subassemblies:
● Model-5560 printer mechanism
● ROMA board (main board)
● ROPS/ROPSE board (power supply board, 100- 120V and 220- 240V versions)
● Fan Unit
● Housing
c
ROPNL-W board (control panel)
Figure 1-14 shows the LQ-2550 component locations.
Fan Unit
\
Printer Mechanism
Figure 1-14. LQ-2550 Component Locations
1-24
.
r’
REV.-A
1.8.1 Printer Mechanism
This section describes over view of the printer mechanism, and paper handling and operations.
1.8.1.1 Overview
To improve paper handling, the following functions are newly incorporated in this 24-pin printer in
addition to the conventional ones.
● Automatic release mechanism
● Automatic paper thickness detection nechanism
● Automatic platen gap adjustment mechanism
● Automatic paper width detection mechanism
● Automatic loading lever open/close mechanism
Figure 1-15. Model-5560 Printer Mechanism
1-25
-
REV.-A
f “:;
1.8.1.2 Paper Handling and Operations
Paper Loading and Ejection
Since the paper release lever is controlled automatically, the pApER SELECT and LOAD/EJECT switches
on the control panel provide highly improved paper handling. That is, change over between fanfold
(continuous) and single sheet paper and loading/ejecting paper are performed automatically.
a) Single Sheet Loading and Ejection
To load a sheet of paper, press the PAPER SELECT switch and select FRICTION feed. If fanfold paper
is loaded, the paper is ejected backward (automatic back out). Place the page along the paper guide,
and press the LOAD/EJECT switch. This loads the paper at the top-of-form position. If the
LOAD/EJECT switch is pressed after paper has been loaded, it causes the paper to be ejected
forward.
b) Fanfold Paper Loading and Ejection (Back Out)
Set the fanfold paper into the push-tractor unit. To load fanfold paper, press the PAPER SELECT
switch and select TRACTOR feed. If single sheet paper is loaded, the paper is ejected forward and
{;,,
the fanfold paper is loaded. When the TRACTOR feed has already been selected, pressing the
LOAD/EJECT switch loads the paper automatically to the top-of-form position. If LOAD\ EJECT
switch is pressed after the fanfold paper has been loaded, the printer ejects the paper backward
to the push tractor. To back out several pages, press the LOAD\ EJECT switch several times, since
reverse feed is performed on a page-by-page basis.
Micro Adjustment Function
In either case a) or b) above, the top-of-form position is adjustable using the MICRO FEED switch (the
message “TOF ADJUST” is displayed on the LCD, and the MICRO FEED, V, and A LEDs are lit.). Pressing
the FORM FEED switch advances the paper forward in increments ofl/1 80” continuously as long as
the switch is held down, and pressing the LINE FEED switch moves the paper in reverse in increments
of 1/180”. Moving the paper with these switches is called micro adjustment. The adjusted position
is stored in the memory and remains effective at the next loading even if the power is cycled. But the
tractor feed is selected, the adjusted position is remained even if the power is turned off.
Auto-Tear-Off Function
To enable the auto-tear-off function, select AUTO TEAR OFF using the SelecType function. When this
,:. ,
(-’
J.-,
function is activated and the PAPER SELECT is FRICTION, paper is fed in the following way: after the
input data buffer becomes empty, while the printer is ON-LINE, the printer feeds the paper so that the
perforation at the form’s end is moved automatically to the tear-off edge of the printer cover. After the
printer has positioned the paper, the message “TEAR OFF ADJUST” is displayed on the LCD, and the
V, A, and MICRO FEED LEDs are lit. The FORM FEED and LINE FEED switches are then available for micro
adjustment of the tear-off position. The adjusted position is stored in the memory and remains effective
at the next tear-off even if the power is turned off and on. If subsequent data is input to the printer,
the paper will be reversed to its original position automatically and printing will start. If the ON-LINE
switch is pressed (taking the printer OFF-LINE) while the paper is advanced to the tear-off position, then
the printer will reverse the paper to its original position. The manual tear-off function selected by the
TEAR OFF switch is also called a tear-off function.
. , -.,,.
1-26
REV.-A
‘1 1.8.2 ROMA Board (Main Board)
Figure 1-16 shows the ROMA board, which contains an HD64 180R1 P6 (main) CPU andaPPD7810HG
(sub) CPU to control the operation of the printer. Driver circuits for the motors, solenoids, printhead,
and sensors are also included on this board. The main ICS on the ROMA board are:
CPU
● HD64180R1 P6 (1 3A) . . . . . . . . . . .
● pPD7810HG (7B) . . . . . . . . . . . . . . . . . .
8-bit one-chip CPU (main control)
8-bit one-chip CPU (sub control)
Gate Array IC
● EO5A1OAA (1 4A) . . . . . . . . . . . . . . . . . . . Memory management unit (MMU) IC
● E05A02LA (2A) . . . . . . . . . . . . . . . . . . . . . . Printhead data control IC
● E05A09BA (4B) . . . . . . . . . . . . . . . . . . . . . Carriage (CR) and paper feed (PF) motors phase pulse control unit
(MCU) IC
● E05A09BA (3B) . . . . . . . . . . . . . . . . . . . . . Platen gap (PG) and color select (CS) motors phase pulse control unit
(MCU) IC
“)
Memory IC
● EP-ROM (1 1A) . . . . . . . . . . . . . . . . . . . . . . . . .
Main CPU program, 256 K-bit
● EP-ROM (7A) . . . . . . . . . . . . . . . . . . . . . . . . . . . Sub CPU program, 256 K-bit
● MASK-ROM (1 2A) . . . . . . . . . . . . . . . . . .
Character generator, 2M-bit
● PS-RAM (9A) . . . . . . . . . . . . . . . . . . . . . . . . . . . Buffers, working area, 256 K-bit
● ST-RAM* (1OA) . . . . . . . . . . . . . . . . . . . . . . .
Holds status data, panel data, 256 K-bit
x: This memory is backed-up by a lithium battery.
Universal IC
● M546 10P (1 1 B) . . . . . . . . . . . . . . . . . . . . . 8-bit parallel interface IC
● S17304 (7C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . CR motor driver IC
● STK6981 H (7D) . . . . . . . . . . . . . . . . . . . . . PF motor driver IC
● H8D2148 (2C) . . . . . . . . . . . . . . . . . . . . . . . .
Head fan (HF) motor controller and driver IC
● STK66082E (1A) . . . . . . . . . . . . . . . . . . .
Printhead driver IC
LA 3B
,,—
)
7 A 7B 9 A 1 0 A 1 1 A 1 2 A
1A --
2°C
- ,,
7’D
i
IB
7C
Figure 1-16. ROMA Board
1-27
13A
14A
REV.-A
...
..Y
:\
f ~•
The power supply circuit board is one of two boards, the ROPS for 100- 120 V AC operation or the “-”
ROPSE for 220- 240 V operation. The basic construction of the two boards are the same: each board
1.8.3 ROPS\ROPSE Board (Power Supply Circuit Board)
contains a fuse, line filter, and switching regulator circuit. Compact circuitry is made possible by the
use of a DC-to-DC converter.
...
L
ROPS Board
--+
f“
- , :.,
.’
——-————
..—. +
ROPSE Board
Figure 1-17. ROPS/ROPSE Board
1-28
.-
REV.-A
) 1.8.4 Fan U n i t
A fan unit is used to lower the internal temperature of the printer. It removes heat within the printer
housing that is generated by the electric circuits.
.
Figure 1-18. Fan Unit
1.8.5 Housing
The housing consists of the upper and lower cases and accommodates the control panel, printer
mechanism, control circuit board, power circuit, and fan unit. The optional cartridges (e.g., font and
identity modules) can be mounted easily without removing the upper case. Figure 1-19 shows the
LQ-2250 housings.
)
.
Figure. 1-19. Housing
1-29
REV.-A
c
1.8.6 Control Panel
This section describes the control panel functions.
1.8.6.1 Hardware Specification
On the control Panel, there are twelve non-locking switches, sixteen LEDs, and a 20-column LCD (Liquid
Crystal Display) as shown in Figure 1-20. The functions of the switches and indicators are given
immediately below the illustration.
r
0
0 POWER
TEAR
0 READY
0 PAPER OUT ~
o ON LINE
❑
pig=
1
LCD
@s$aQ
fjfyyj
-,
ON UNE FONM FEEO LINE FEED LOAOIE.JfCl
Figure 1-20. Control Panel
ON LINE Switch
This switch toggles the printer between ON-LINE and OFF-LINE. If the printer is set OFF-LINE, printing
is stopped and the printer becomes BUSY. This switch is also used in the SelecType function.
ON LINE LED (Green) Lights in the ON-LINE mode. Blinks when the printhead temperature is too high.
FORM FEED Switch
Pressing this switch once while the printer is OFF-LINE, advances the paper ve~ically to the next
top-of-form position. This switch is also used for the micro adjustment function, the platen gap
adjustment function, and the SelecType function.
LINE FEED Switch
When the printer is OFF-LINE, the paper advances continuously one line at a time if this switch is pressed
for more than 0.5 seconds. The space between lines of text is set using the line spacing command.
This switch is also used for the micro adjustment function, the platen gap adjustment function, and
(“-:. -.,
the SelecType function.
LOAD/EJECT Switch
Pressing this switch when the printer is OFF-LINE, loads or ejects the paper (If a page is inserted in the
cut sheet feeder, it is loaded; if a page is already loaded, it is ejected). Details of the paper loading and
ejection process are described in Section 1.8.1.2. This switch is also used in the SelecType function.
.:
.. . .
1-30
REV.-A
)
FONT Switch
Pressing this switch selects a font, and holding the switch for more than 1.0 second cycles through
the fonts sequentially. The LCD displays the currently selected font.
PITCH Switch
Pressing this switch selects the character pitch, and holdingthe switch for more than 1.0 second cycles
through the character pitches sequentially. The LCD displays the currently selected character pitch.
CONDENSED Switch
Pressing this switch selects normal or condensed printing.
CONDENSED LED (Green) Lights when condensed mode is selected.
PAPER SELECT Switch
Selects the paper. Each time this switch is pressed, the paper handling method changes in the following
order: TRACTOR, FRICTION, CSF BIN 1, CSF BIN2. Each LED and the LCD displays the currently selected
paper handling.
.) TRACTOR LED (Green) Lights when tractor feed is selected.
FRICTION LED (Green) Lights when friction feed is selected.
CSF LED (Green) Lights when CSF mode is selected.
TEAR OFF Switch
Advance the paper to the tear-off position. This switch is only effective for the tractor feed (Refer to
Section 1.8.1.2.).
TEAR OFF LED (Orange) Lights when the tear-off function is enabled.
MICRO FEED Switch
Selects or cancels the micro adjustment function. When this function is enabled, the LED on this switch
and the V and A LEDs are lit. In the micro feed mode, the LINE FEED switch is used to feed the paper
backward and the FORM FEED switch is used to feed the paper forward. Paper feed performed in this
micro feed mode does not affect the page position control. This function is also used to adjust the paper
loading position and to adjust the paper to meet the tear-off edge (Refer to Section 1.8.1.2.).
) MICRO FEED LED (Orange) Lights when micro feed is enabled.
PLATEN GAP ADJUST Switch
Selects or cancels the platen gap adjustment function. When this function is selected, three LEDs (A,
V, and the LED on this switch) are lit and the LINE FEED and FORM FEED switches are used to increase
and decrease the platen gap respectively. The relative platen gap value message is displayed on the
LCD. “+” level means to be widened. “-” level means to be narrowed. The limits of adjustment are
+0. 14mm to –O. 1 4mm.
PLATEN GAP ADJUST LED (Orange) Lights when the platen gap adjustment function is enabled.
SelecType Switch
Selects or cancels the SelecType function. When the SelecType function is selected, the LED on this
switch is lit and the functions of the ON LINE, FORM FEED, LINE FEED, and LOAD/EJECT switches are
changed for the SelecType function.
SelecType LED (Orange) Lights when SelecType mode is selected.
)
1-31
REV.-A
Other LEDs
POWER LED (Green) Lights when power is ON.
READY LED (Green) Lights when the printer can receive data.
PAPER OUT LED (Red) Lights when the paper is at the end.
D a A V LED (Yellow) Lights the setting for the SelecType, tear-off, micro adjustment, and platen gap
adjustment functions.
1.8.6.2 SelecType
Function
This function is invoked when the SelecType switch is pressed (except during ‘printing). When” this
function is invoked, the printer beeps and the message ‘“SelecType MODE’” is displayed.. In the
SelecType function, major functions can be set by operating the ON LINE (a). FORM FEED (A), LINE FEED
(V), and LOAD/EJECT (D) switches. By pressing the SelecType switch the second time the printer exits
this mode and returns to the ON-LINE mode. Exiting without performing “SAVE MACRO” or “SAVE
DEFAULTS” means that MACRO settings or DEFAULT settings will not be stored in the backup memory.
● Refer to Figure 1-21 for the entire SelecType operational sequence.
[ “
The SelecType mode has five menus. While the message “SeiecType MODE” is displayed, every time ~’
the LINE FEED (V) switch is pressed, the main menu of this mode is displayed in the order:
LOAD MACRO
Function in which the settings stored in one of the four macro channels can be read out and set as
the current SelecType settings.
CHANGE MACRO
Function in which the current settings can be changed and stored into one of the four macro channels.
The twelve settings and their options are shown in Table 1-18.
CHANGE DEFAULTS
Functions in which the default settings shown can be changed. the default settings and options are
shown in Table 1-19.
. . ,. .
(’
.7
PRINT OUT SETTINGS
Function in which all settings in macro channels and the defaults can be printed out.
CLEAR ALL MACROS
Function which all settings in macro channels are cleared.
,.,
1-32
REV.-A
CHAPTER 2
OPERATING PRINCIPLES
..
2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1
2.1.1 Connector Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
2.1.2 Printer Mechanism Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2.1.2.1 Printing Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2.1.2.2 Platen Gap Adjustment Mechanism . . . . . . . . . . . . . 2-8
2.1.2.3 Carriage Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
2.1.2.4 Paper Feed Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
2.2 POWER SUPPLY CIRCUIT OPERATION
(ROPS/ROPSE
.
Board) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-25
2.2.1 ROPS/ROPSE Board Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-25
.
.
2.2.2 Input Filter Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-27
2.2.3 Rectifier, Smoothing,
and Surge-suppression Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27
2.2.4 Main Switching Circuit 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 -28
2.2.5 +5 V and +12 V Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31
2.2.5.1 +5 V Current Limiting and Voltage
Regulator Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
.
2.2.6 Main Switching Circuit 2 (+35 V Supply Circuit) . . . . . 2-34
2.2.7 +35 V Current Limiting and Voltage
Regulator Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36
..
2.2.8 Over Voltage Protection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
2.3 CONTROL CIRCUIT BOARD (ROMA Board) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-40
2.3.1 Reset Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42
2.3.1.1 VX (Drive System Pull-up) Voltage
Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43
2.3.1.2 Power ON/OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44
2.3.1.3 INIT Signal Input from CN1 or CN2 . . . . . . . . . . . . . 2-45
2.3.1.4 Font/Identity Module Installation
and Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46
2.3.1.5 ST-RAM (1 OA) Battery Backup Circuit . . . . . . . . 2-47
2.3.2 interface...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48
2.3.2.1
8-Bit Parallel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48
2.3.2.2
RS-232C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-52
2.3.3 Control Panel Interface Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-55
2.3.3.1
LED Drive Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-56
Z.i
REV.-A
, ‘-’,
2.3.3.2 Switch Status Read Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-57
i..
2.3.3.3 LCD Control/Drive Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-58
2.3.4 State Detection and Sensor Signal Input Circuits . . . . . 2-61
2.3.4.1 Reference Voltage Supply Circuit . . . . . . . . . . . . . . . . . . 2-63
2.3.4.2 35 V Line Voltage Detection Circuit . . . . . . . . . . . . . 2-64
2.3.4.3 VR1/VR2 Reading Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-65
2.3.4.4 Printhead Temperature Detection Circuit... 2-66
2.3.4.5 PW Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-67
2.3.4.6 PT Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-68
2.3.4.7 PG HP Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69
2.3.4.8 CR HP Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70
2.3.4.9 PE Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-71
2.3.4.10 RL/LD Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-72
2.3.4.11 Case Open Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73
‘i.,<,’
2.3.5 Printhead Control/Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-74
2.3.5.1 E05A02LA Gate Array (2A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-75
2.3.5.2 Printhead Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-76
2.3.5.3 Relationship Between Paper Thickness
and Print Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-78
2.3.5.4 Relationship Between the First Printhead Drive
Pulse Width and +35 V Line Voltage . . . . . . . . . . 2-79
2.3.6 HF Motor Control/Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-80
2.3.7 CR and PF Motors Control/Drive Circuit . . . . . . . . . . . . . . . . . . . . . . 2-82
2.3.7.1 E05A09BA Gate Array (MCU: 4B)............ . . . . . 2-83
2.3.7.2 CR Motor Control/Drive Circuit . . . . . . . . . . . . . . . . . . . . . 2-84
2.3.7.3 PF Motor Control/Drive Circuit . . . . . . . . . . . . . . . . . . . . . . 2-93
c,.:
- - J ’
2.3.8 PG and CS Motors Control/Drive Circuits . . . . . . . . . . . . . . . . . . . 2-98
2.3.8.1 E05A09BA Gate Array (MCU: 3B)............ . . . . . 2-99
2.3.8.2 PG Motor Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-100
2.3.8.3 CS Motor Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-102
2.3.9 PT/RL/LD Solenoid Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-104
2.3.10 Buzzer Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-105
2.3.11 Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-106
LIST OF FIGURES
Figure 2-1.
Cable Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2
Figure 2-2.
Printer Mechanism Block Diagram .., ,,...,,,,,. ,..,.,....,,, .,., 2-4
..$.
Z.ii
.,
REV.-A
Figure 2-3.
Printing Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Figure 2-4.
Printhead Cooling Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Figure 2-5.
Platen Gap Adjustment Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Figure 2-6.
Paper Thickness Detection Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Figure 2-7.
Paper Thickness Detection Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Figure 2-8.
Platen Gap Adjustment Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Figure 2-9.
Carriage Movement Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Figure 2-10.
PW Sensor Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-11
Figure 2-11.
Ribbon Feed Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-13
Figure 2-12.
Color Ribbon Strip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Figure 2-13.
Color Select Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-15
Figure 2-14.
Push Tractor Feeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-17
Figure 2-15.
. -18
Friction Feeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 2-16.
Paper Release Mechanism Operations . . . . . . . . . . . . . . . . . . . . . . . . 2-21
Figure 2-17.
Paper Loading Lever Open/Close Mechanism
.
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-24
Figure 2-18.
ROPS/ROPSE Board Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
Figure 2-19.
Input Filter Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
. -27
Figure 2-20.
Rectifier, Smoothing,
and Surge-suppression Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27
Figure 2-21.
Surge Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
.
Figure 2-22.
Main Switching Circuit 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 2-23.
Main Switching Circuit 1 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . 2-30
Figure 2-24.
+5 V and +12 V Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31
Figure 2-25.
+5 V Current Limiting Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
Figure 2-26.
+5 V Voltage Regulator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33
Figure 2-27.
Main Switching Circuit 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-34
Figure 2-28.
+35 V Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-35
Figure 2-29.
Main Switching Circuit 2 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . 2-35
Figure 2-30.
+35 V Current Limiting and Voltage Regulator
2-28
Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-36
.
Figure 2-31.
PWM Comparison Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37
Figure 2-32.
Over Voltage Protection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
Figure 2-33.
ROMA Board Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-40
Figure 2-34.
Main CPU Address Map.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41
Figure 2-35.
Sub CPU Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Figure 2-36.
Reset Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.42
Figure 2-37.
Vx Voltage Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43
Figure 2-38.
Power ON Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.44
2-iii
REV.-A
Figure 2-39.
. -45
INIT Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 2-40.
Module Installed/Removed Reset Timing . . . . . . . . . . . . . . . . . . . 2-46
Figure 2-41.
Battery Backup Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-47
Figure 2-42.
(8-bit Parallel) Data Transmission Timing . . . . . . . . . . . . . . . . . . . 2-48
Figure 2-43.
8-Bit Parellel Interface Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49
Figure 2-44.
8-Bit Parallel Interface Circuit Operation .:... . . . . . . . . . . . . .. 2-50
Figure 2-45.
8-Bit Parallel Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51
Figure 2-46.
. -52
DTR Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 2-47.
X-ON/X-OFF Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-52
Figure 2-48.
RS-232C Serial Interface Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-53
Figure 2-49.
RS-232C Serial Interface Circuit Operation . . . . . . . . . . . . . . 2-54
Figure 2-50.
RS-232C Data Transmission Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-54
Figure 2-51.
Control Panel Interface Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-55
Figure 2-52.
MSM59371 Data Transfer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-56
Figure 2-53.
MSM59371 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-56
Figure 2-54.
SED1 200 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-58
Figure 2-55.
SED1 200 Command/Data Write Timing . . . . . . . . . . . . . . . . . . . . 2-59
Figure 2-56.
SED1 200 Character Code Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-60
Figure 2-57.
Reference Voltage Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63
Figure 2-58.
35 V Line Voltage Detection Circuit.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-64
Figure 2-59.
35 V Line Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-64
Figure 2-60.
VR1/VR2 Reading Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-65
Figure 2-61.
Printhead Temperature Detection Circuit . . . . . . . . . . . . . . . . . . 2-66
Figure 2-62.
Printhead Temperature and Printing Operation . . . . . . . 2-66
Figure 2-63.
PW Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67
Figure 2-64.
. -68
PT Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 2-65.
Paper Thickness and AN4 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-68
Figure 2-66.
PG HP Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69
Figure 2-67.
CR HP Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-70
Figure 2-68.
PE Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Figure 2-69.
RL/LD Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-72
Figure 2-70.
Case Open Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73
Figure 2-71.
Printhead Control/Drive Circuit Block Diagram . . . . . . . 2-74
Figure 2-72.
Printhead Drive Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-76
Figure 2-73.
Printhead Drive Circuit Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . 2-77
Figure 2-74.
First Printhead Drive Pulse Width and
-
-..>\
. .‘;
f
7
1
+35 V Line Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-79
....
..
2-iv
,.’
REV.-A
Figure 2-75. HF Motor Control/Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-80
Figure 2-76. HF Motor Control/Drive Circuit Signal Timing . . . . . . 2-80
Figure 2-77. CR and PF Motors Control Circuit Block
Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82
.
Figure 2-78.
TMI Clock Generation Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-84
Figure 2-79. Sub CPU Output Signal and TM1 Signal Timing.. 2-84
Figure 2-80. Reference Voltage Generation Circuit . . . . . . . . . . . . . . . . . . . . . . 2-85
Figure 2-81.
CR Motor Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-86
Figure 2-82. CR Motor Drive Circuit Signal Timing . . . . . . . . . . . . . . . . . . . . . . 2-87
Figure 2-83. CR Motor Phase Switching Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-89
Figure 2-84. Carriage Motion Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-91
.
Figure 2-85.
High Speed Skip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-92
Figure 2-86.
PF Motor Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-94
Figure 2-87.
PF Motor Drive Circuit Signal Timing . . . . . . . . . . . . . . . . . . . . . . . 2-95
Figure 2-88.
PF Motor Phase Switching Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-97
Figure 2-89. PG and CS Motors Drive Circuit Block Diagram.. 2-98
Figure 2-90.
PG Motor Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-100
Figure 2-91.
PG Motor Drive Circuit Signal Timing . . . . . . . . . . . . . . . . . . . . . . 2-100
Figure 2-92.
PG Motor Phase Switching Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-101
Figure 2-93. Paper Thickness and Platen Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-101
Figure 2-94.
CS Motor Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-102
Figure 2-95. CS Motor Phase Switching Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-103
Figure 2-96.
PT/RL/LD Solenoid Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 1 0 4
Figure 2-97.
PT Sorenoid Drive Circuit Pulse Timing . . . . . . . . . . . . . . . . . . . 2-104
Figure 2-98.
Buzzer Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-105
Figure 2-99.
Buzzer Drive Circuit Pulse Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-105
Figure 2-100. Printer Mechanism Initialization Sequence 1.... . . . . . 2-106
Figure 2-101. Printer Mechanism Initialization Sequence 2.... . . . . . 2-107
LIST OF TABLES
Table 2-1.
Connector Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Table 2-2.
Printhead Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Table 2-3.
HF Motor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Table 2-4.
PT Solenoid Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Table 2-5.
PT Sensor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Table 2-6.
Platen Gap Adjustment Mechanism
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 2-10
2-v
REV.-A
Table 2-7.
PG Motor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-10
Table 2-8.
PG HP Sensor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Table 2-9. ”
Carriage Movement Mechanism Specifications . . . . . . . 2-12
Table 2-10.
CR Motor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-12
Table 2-11.
CR HP Sensor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Table 2-12.
PW Sensor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Table 2-13.
Ribbon Feed Gear Train. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-13
Table 2-14.
Color Select Mechanism Specifications . . . . . . . . . . . . . . . . . . . . . . 2-14
Table 2-15.
CS Motor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Table 2-16.
Color Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-14
.
Table 2-17.
Paper Feed Mechanism Specifications . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Table 2-18.
PF Motor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Table 2-19.
PE Sensor Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-16
Table 2-20.
Paper Feeding Method and Paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Table 2-21.
Paper Release Mechanism Specifications . . . . . . . . . . . . . . . . . . 2-19
Table 2-22.
RL Solenoid Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Table 2-23.
RL Sensor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Table 2-24.
Paper Feeding Method Switch Timing . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Table 2-25.
Paper Loading Lever Open/Close Mechanism
.
,,
L
. -22
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2-26.
LD Solenoid Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
Table 2-27.
LD Sensor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
Table 2-28.
Paper Loading Lever Open/Close Timing . . . . . . . . . . . . . . . . . . . . 2-23
Table 2-29.
ROPS/ROPSE Board Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
Table 2-30.
Voltages and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
Table 2-31.
State of Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46
Table 2-32.
ST-RAM Conditions with Power ON/OFF . . . . . . . . . . . . . . . . . . 2-47
Table 2-33.
8-Bit Parallel l/F Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51
Table 2-34.
Switch Status Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-57
Table 2-35.
SED1 200 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-58
Table 2-36.
SED1 200 Command List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-59
Table 2-37.
State Detection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-61
Table 2-38.
Sensors List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-62
.
Table 2-39.
35 V Line Voltage and ANO Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-64
Table 2-40.
VR1/VR2 Values and AN5/AN6 Voltages . . . . . . . . . . . . . . . . . 2-65
Table 2-41.
Printhead Temperature Upper/Lower Limits
and AN 1 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67
Table 2-42.
Paper State and AN3 Voltage Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67
.“.-
2-vi
.--’
REV.-A
Table 2-43.
PG Gear Flag an PA1 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69
Table 2-44.
HP Sensor Flag and PAO Voltage . . . . . . . . . . . . . . . . . . . . . . . . 2-70
Table 2-45.
Paper State and PB7 Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-71
Table 2-46.
RL/LD Sensor Circuit Signal Status . . . . . . . . . . . . . . . . . . . . . . . . . . 2-72
Table 2-47.
Printer Cover State and AN1 Voltage . . . . . . . . . . . . . . . . . . . . . . 2-73
Table 2-48.
E05A02LA Gate Array Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-75
Table 2-49.
Printhaad Drive Pulse and Paper Thickness . . . . . . . . . . . 2-78
Table 2-50.
Printhead Coil Drive Cycle, Printhead First Drive
Pulse Width, and Print Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-78
Table 2-51.
H8D2148 Input Signal and HF Motor Status . . . . . . . . 2-81
Table 2-52.
MCU (4B) Address Allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-83
Table 2-53.
MCU POT Terminal States and Carriage Speed . . . 2-85
Table 2-54.
CR Motor Speed and Phase Switching, System . . . 2-90
Table 2-55.
Various PF Motor Control Relationships . . . . . . . . . . . . . . . . . . 2-93
Table 2-56.
MCU (3B) Address Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-99
Table 2-57.
Motor Control Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-100
Table 2-58.
Related Factors for CS Motor Control . . . . . . . . . . . . . . . . . . . . . . 2-102
Table 2-59.
Related Factors for PT/RL/LD Solenoid Control . . . 2-104
2-vii
REV.-A
2.1 GENERAL
This chapter will describe features and operations of the Model-5560 printer mechanism, ROPS/ROPSE
power circuit board, ROMA control circuit board and control panel.
In this chapter, the following abbreviations are used:
CR: Carriage
CS: Color select
PE: Paper end
PF: Paper feed
PG: Platen gap
PT: Paper thickness
LD: Loading
RL: Release
HP: Home position
HF: Head fan
PW:Paper width
2-1
REV.-A
!.,.%
{ ~
Figure 2-1 shows the connection between the ROMA board and other units. Table 2-1 gives general ““””
2.1.1 Connector Descriptions
descriptions of the connectors.
#8C0
-:
‘FANuNITk
%
CARRIAGE
HOME POSITION
SENSOR
. ...
PAPER THICKNESS
SOLENOID. SENSOR
L.
PAPER END
SENSOR
PAPER WIDTH
SENSOR.
COLOR SELECT
MOTOR.
HEAD FAN
MOTOR
%
z
PRINTHEAD
THERMISTOR
$
23
PLATEN GAP
MOTOR
PLATEN GAP
tllHOME IWSITION SENSOF
LOADING
“
T SOLENOID. SENSOR
>
z
...
<,’
CARRIAGE
MOTOR
PAPERWED
MOlm
—
(
r
:
(
(
Figure 2-1. Cable Connections
2-2
Table 2-1. Connector Descriptions
Boards
ROMA
I
I
I
Connectors
CN 1
Host computer
l/F (8-bit parallel)
CN2
#8 IXX l/F board
l/F (option)
CN3
Host computer
l/F (RS-232C serial)
CN4
Identity/font module
SLOT A
I
32
CN5
Font module
SLOT B
I
32
CN6
Not used
CN7
Battery unit
I
CN8
Control panel
I
CN9
I
I
I
I
36
I
I
26
—
l–
Memory backup +3V DC
I
I
2
18
18
CS motor, HF motor, and
I Printer mechanism
l-i
PW sensor
CN 10
Printhead (R)
I
I
18
I
Printhead (F)
CN 12
I
PT solenoid and PT sensor
5
I
CN 13
I
CR HP sensor
3
I
CN14
I
Fan unit
I
CN 15
I
PE sensor
2
I
CN16
/
PG motor and PG HP sensor
9
CN 17
CR motor
6
CN 18
PF motor
6
CN 19
LD solenoid and LD sensor
4
CN20
RL solenoid and RL sensor
4
Case open sensor
3
I
CN1l
I
II
I CN21 I
I
3oPs/
Pin number
Descriptions
Connection
Uppercase
ROPS board
+ 5 VDC &12 VDC +35 DC
CN 1
External AC power switch
Power supply board
CN2
ROMA board
CN22
30PSE
I
18
2
12
2
r==
NOTES: Refer to Table A-18 in Appendix for details.
2-3
REV.-A
..%
{
2.1.2 Printer Mechanism Operations
The Model-5560 is a serial printer mechanism equipped with a 24-pin impact dot printhead. This “““
mechanism has various new features to reduce manual paper handling. A block diagram is shown in
Figure 2-2.
+5
Printing Mechanism
/
@Printhead
@Thermal Sensor
.-.------------‘@HF Motor
‘
@Thermal Sensor
f
I
+
Driver Circuit
I
Driver Circuit
*
I
+35
A
I
I
I
I
I
*
+35
/
Driver Circuit
@PG H. P. Sensor
Carriage
rf
-
+35
t
<
@PT Sensor
---------------‘@PA Motor
+35
I
I
PG Adjust Mechanism
@PT Solenoid
I
*
{’-”:’
%“
+35
A
/
Mechanism
+
.-
T
@CR Motor
Driver Circuit
@CR H. P. Sensor
I
@PW Sensor
[email protected] Motor
I
I
+35 +5
44
I
c
@RL Sensor
---------------‘@LD Solenoid
4
-
@LD Sensor
I
I
I
@PE Sensor
---------------‘@AL Solenoid
c
Driver Circuit
Paper Feed Mechanism
@PF Motor
-
+35
I
I
I
I
Driver Circuit
*
+35
Driver Circuit
I
I
I
-
+35
Driver Circuit
I
-
I
I
Printer
Mechanism
ROMA Board
I
Figure 2-2. Printer Mechanism Block Diagram
.’
. . ,.
2-4
REV.-A
2.1.2.1 Printing Mechanism
The printing mechanism consists of two parts: The printing mechanism composed of the printhead,
ink ribbon and platen, and the printhead cooling mechanism composed of the printhead fan.
Printing Mechanism
Figure 2-3 shows the printing mechanism.
The printhead has 24 wires arranged in two staggered lines (12 wires for each line). These wires are
connected to their own wire drive coils. The printhead specifications are listed in Table 2-2.
The basic printing operations are as follows:
1. The drive signal is sent from the control circuit to the printhead drive circuit and converted to the
printhead drive voltage (+35 V DC), which causes current to flow through the assigned head driving
coil in the printhead. This magnetizes the coil and the iron core.
2. This magnetism pulls the actuating plate to the iron core, and the dot wire attached to the plate is
pushed toward the platen.
3. The dot wire strikes the inked ribbon and paper against the platen to print a dot on the paper.
4. When the coil is de-energized, the iron core loses it magnetic force so that the actuating plate returns
to its initial position under the action of the actuating plate spring. After having struck the platen,
the dot wire also returns to its initial position under the action of impact energy and the wire resetting
spring, and is held in contact with the actuating plate until it is driven again.
This is the sequence used to print a dot on the paper.
Platen
Ribbon Mask
Dot Wwe
Wtre Reaatwtg Spring
Stopper
Papar
Act~ating Plate Spring
Figure 2-3. Printing Mechanism
2-5
Table 2-2. Printhead Specifications
Remarks
Description
Item
Refer to Figure 1-2.
Type
Impact dot
Pin Diameter
0.2 mm
Pin Configuration
12 line X 2 col.
Dot Pitch
1/1 80”
Drive Voltage
35 VDC
* 10%
Coil Resistance
8.6 ohms * 10%
25”C, for one coil
Drive Frequency
2.00 KHz (Max.)
Drive Mode
Normal
The selection is depend on the paper
copy 1
thickness. Refer to section 2.3.5.3
copy 2
for details.
Thermistor
Built-in
Thermal Sensor
?=.. , :
f.-, . ~
2-6
REV.-A
Printhead Cooling Mechanism
Figure 2-4 shows the printhead cooling mechanism.
The printhead has a built-in thermistor to protect the dot wire drive coils from the high printhead
temperatures (which can occur after many hours of continuous printing) which may burn or degrade
them. The printhead temperature detected by the thermistor is converted into a voltage signal and fed
back to the control circuit. This is used for printhead protection and, if the printhead temperature rises
to about 40°C, the HF motor (Refer to Table 2-3 for its specif ications.) is turned on to cool down the
printhead.
Another thermistor is used to protect the HF motor drive circuit from abnormal heating of the HF motor.
Printhead
- Thermistor
Thermistor
Figure 2-4. Printhead Cooling Mechanism
Table 2-3. HF Motor Specifications
Item
Type
I
Description
I
Remarks
Two-phase 6-pole PM type stepper ‘
motor
Drive Voltage
I & 1 OYO
35 VDC
Coil Resistance
~ 61 ohms & 7%
25”C, for one coil
Drive Frequency
I 1600PPS &
One-phase excitation
120PPS
Driving Method
Constant voltage drive
Thermal sensor
Thermistor
I
Built-in
2-7
—.
REV.-A
2.1.2.2 Platen Gap Adjustment Mechanism
This mechanism sets the platen-printhead gap according to the paper thickness. Figure 2-5 shows the
~--:h
1--, :
platen gap adjustment sequence.
NOTE: Also, the gap can be ajusted by control panel operation (Refer to section 1.8.6. 1.).
Start
Paper Thickness
Platen Gap
Printhead Drive
Detection
Adjustment
Mode Selection
Setup Completed
Figure 2-5. Platen Gap Adjustment Sequence
Paper Thickness Detection Mechanism
Figure 2-6 shows the paper thickness detection mechanism. The PT sensor lever is driven by the PT
solenoid when it is energized. The distance that the PT sensor lever moves is monitored by the TCR
on the PT sensor, and the detected value is converted into a voltage and transferred to the control circuit.
Table 2-4 lists the specifications of the PT solenoid and Table 2-5 lists the specifications of the PT sensor.
Platen
u
-(O&w
Y q--O~T
I
PT Sensor Lever
L--pTso,enoid
\
\
I
u 1
pTsensor { ~T”
Figure 2-6. Paper Thickness Detection Mechanism
<-’
. ,
Table 2-4. PT Solenoid Specifications
Remarks
Description
Item
Resistance
65 ohms
& 10%
Drive Voltage
35 VDC
* 10%
Table 2-5. PT Sensor Specifications
Item
I
I
Description
Remarks
Type
Conductive rubber
TCR (Touch Control Sensor)
Drive Voltage
12 VDC
+ 1.5 V, –2.5 V
.,
. . .
2-8
REV.-A
Figure 2-7 shows the operation of the paper thichness detection mechanism.
When paper is not loaded, point A of the PT sensor lever pushes the platen using shaft B as a fulcrum.
At this time, point C of the PT sensor lever places pressure on the TCR (Touch Control Sensor) in the
PT sensor to indicate the thickness. Ta is used for this TCR reading. After paper is loaded, point A of
the paper sensor lever holds the paper against the platen. Tb is used for this TCR reading.
Platen
/
PT Sensor Lever
A
Tb
B
TCR
(b) When paper is loaded:
(a) When no paper is loaded:
Figure 2-7. Paper Thickness Detection Operation
The control circuit uses Tb - Ta as the paper thickness, and controls the platen gap mechanism so
as to provide the proper platen gap for the paper.
The control circuit adjusts printhead trigger pulses applied to the printhead coils according to the paper
width which is divided into three grades {Refer to Section 2.3.5.).
2-9
REV.-A
Platen Gap Adjustment Mechanism
‘%
Figure 2-8 shows the platen gap adjustment mectlanism and Table 2-6 lists its specifications. Thef“
. “
rotation of the PG motor is transmitted to the pG gear via the PG reduction gear. The position of the
PG gear is detected by the PG HP sensor (Refer to Figure 2-8(a).).
When the PG gear rotates, it drives carriage guide shaft B. Because carriage guide shaft B is attached
off-center, its rotation varies the printhead-platen gap (Refer to Figure 2-8(b).).
c
4
PG HP Sensor
Flag
..
PG Reduction Gear
PG Motor Pinion Gear
‘k.? ~
<.
\ ,
---~,
:: 1’
& Q
.~
~.
PG Gear
~o
Carriage Guide Shaft B
&
‘-----/
(a) PG Motor Gear Train
u
!
, Printhead
Gap
. . ‘. . .
L“
Platen
Guide Shaft B
e C.w.
- C.c.w.
(b) Platen Gap Adjustment
Figure 2-8. Platen Gap Adjustment Mechanism
Table 2-6. Platen Gap Adjustment Mechanism Specifications
I
Motor
I
Driving method
I
PG motor;
/ Gear
transmission
Table 2-7. PG Motor Specifications
Type
Description
I
,. .::,,,
c
*:.,”’
PG HP sensor
Refer to Table 2-8.
Refer to Table 2-7.
Item
Sensor
Table 2-8. PG HP Sensor Specifications
I Remarks
Item
[
Description
Four-phase 48-poie
Type
Photo-interrupter
PM type stepper
motor
Drive Voltage
5 VDC
Remarks
1
* 5°/0
0’70
Drive Voltage
3 5 VDC
*1
Hold Voltage
5 VDC
& 5°h
C o i l R e s i s t a n c e I 1250hrns~ 7% ] 25°C, for
one coil
Driving
Frequency
Driving Method
400 PPS
2-2 phase
excitation
Constant
drive
voltage
.1
“., --,
2-10
REV.-A
2.1.2.3 Carriage Mechanism
This mechanism consists of the carriage movement mechanism, ribbon feed mechanism and color
select mechanism.
Carriage Movement Mechanism
Figure 2-9 shows the carriage movement mechanism and Table 2-9 lists its specifications. The printhead
is mounted on the carriage, and the entire unit is supported by the two carriage guide shafts. The
carriage is fixed to the timing belt on one side and is moved when the CR motor drives the timing belt.
Printing is accomplished by the combination of printing mechanism and carriage movement mechanism
operations.
The print start position is determined by the CR HP sensor when the mechanism is initialized. The PW
sensor monitors paper width so as to prevent printing outside the printable area (See Figure 2-1 O.).
Am. /“”’”9 “e”
Carriage Guide Shaft B
Figure 2-9. Carriage Movement Mechanism
Paper
~ Platen
d
P W
Sens4 ~ ~
Platen
Y “----’4
I
/
;aper
Figure 2-10. PW Sensor Operations
2-11
Table 2-9. Carriage Movement Mechanism Specifications
Motor
CR motor;
Driving Method
Timing belt
Carriage Per
Sensor
Step Movement
1/1 20’’/step
CR HP sensor
PW sensor
Refer to
Refer to
Table 2-11.
Table 2-12.
(MIN.)
Refer to Table 2-10.
Table 2-10. CR Motor Specifications
Description
Item
Remarks
Four-phase 200-pole PM type step-
Type
per motor
Drive Voltage
35 VDC
* 10’YO
Coil Resistance
2.15 ohms & 10%
25”C, for one coil
Driving Frequency
4000 PPS
2-2 phase excitation
2667 PPS
1-2 phase excitation
2000 PPS
1333 PPS
667 PPS
Driving Method
Constant current chopper drive
Table 2-11. CR HP Sensor Specifications
Description
Item
Type
Remarks
G
..3,
.,
Photo-interrupter
-;’
Drive Voltage
& 5’yo
5 VDC
Table 2-12. PW Sensor Specifications
Item
Description
Type
Photo-reflector
Drive Voltage
5 VDC
Remarks
&
2-12
!55%0
REV.-A
Ribbon Feed Mechanism
The ribbon feed mechanism consists of the ribbon feed mechanism and ribbon cartridge. Figure 2-11
shows the ribbon feed mechanism.
@
Inked Ribbon -
I*
—..
Ribbon Ureakmg :Spring
Ribbon
Drive Gear
/
Ribbon
Cartridge
1
#
Ribbon Feed
Transmission
~ G~ar B 1
Ribbon
Roller
Feed
Ribbon Pressure
1=’
I
%
Transmis
Ribbon
Figure 2-11. Ribbon Feed Mechanism
The ribbon feed mechanism is mounted on the carriage. The ribbon drive wire is fixed between the
side frames of the mechanism. The wire is wrapped around the ribbon drive pulley so that the ribbon
drive gear always turns counterclockwise, via the gear trains containing the planetary gear (Refer to
Table 2-1 3).
Table 2-13. Ribbon Feed Gear Train
Direction of Carriage
Gear Train
Movement
Left to right
Ribbon drive pulley + Ribbon feed planetary gear +
(arrow C))
Ribbon feed transmission gear A + Ribbon feed transmission gear B 1 -+
Ribbon drive gear
Right to left
Ribbon drive pulley + Ribbon feed planetary gear -+
(arrow *)
Ribbon feed transmission gear B2 + Ribbon drive gear
The inked ribbon is a loop contained in the cartridge case, and is held between the ribbon feed and
ribbon pressure rollers. When the ribbon feed roller mounted on the ribbon drive gear is driven by the
movement of the gear, the inked ribbon is fed. A spring is attached at the exit of the carriage case to
prevent the ribbon from slackening.
The area along the printhead wire is shielded by the ribbon mask to prevent the paper from getting
>{
dirty during ribbon feeding.
2-13
REV.-A
Color Select Mechanism Specifications
If the color ribbon cartridge is mounted on the carriage, the color select mechanism operates to allow
/ :;,,
i...
seven-color printing.
Table 2-14 shows the specifications of the color select mechanism.
Table 2-14. Color Select Mechanism Specifications
CS motor;
Ribbon Shift
Driving Method
Motor
Crank gear
-
Black
Syan
Magenta -
Refer to Table 2-15.
Color Select*’
Direction
Syan
Magenta
Refer to Table 2-16.
Yellow
*1: Three of the seven colors are printed by mixing the three ribbon colors.
Table 2-15. CS Motor Specifications
item
Remarks
Description
I
Four-phase 48-pole PM type stepper
Type
motor
Drive Voltage
35 VDC
* 1 O’xo
Hold Voltage
5 VDC
* 570
Coil Resistance
165 ohms 5 10 ohms
25”C, for one coil
Driving Frequency
450 PPS
2-2 phase excitation
Driving Method
Constant voltage drive
Table 2-16. Color Select
Print Ribbon
Print color
1st time
2nd time
Black
Black
Magenta
Magenta
Cyan
Cyan
Violet
Magenta
Yellow
Yellow
Orange
Yellow
Magenta
Green
Yellow
Cyan
Cyan
NOTE: The printer prints in sequence from bright colors to dark colors so as to minimize ribbon
. .. . .
f*
:
\ .,
smearing due to mixed color printing.
2-14
REV.-A
1. Outline
The color-inked ribbon is divided into four strips as shown in Figure 2-12. One strip can be selected
by vertically moving the color ribbon cartridge using point A of the carriage as a fulcrum.
Color Ribbon Cartridge
@
[Selected Color]
6.075 . . . . Yellow
-— Printing Point
Carriage – —
— - - – — - W - - Down
J
Figure 2-12. Color Ribbon Strip Selection
2. Operations
The rotation of the CS motor is converted into vertical motion of the CS rod via the CS transmission
gear and CS drive gear, and moves the color ribbon cartridge up or down. The cartridge location spring
at the rear of the cartridge pushes the ribbon cartridge against the CS rod via the cartridge location
pin to firmly hold the ribbon cartridge.
The next color strip on the ribbon cartridge is selected by the CS motor rotating 40 steps from Color
select home position (point C). (Refer to Figure 2-13 (b).) When the black ribbon cartridge is mounted,
the bottom of the ribbon cartridge touches projecting part A of the carriage.
This keeps the bottom of the black ribbon cartridge away from the CS rod during its up and down
movement, and defeats the color select mechanism operation.
The cartridge location spring at the rear of the ribbon cartridge pushes the ribbon cartridge toward
the projecting patt A of the carriage via the cartridge location pin to firmly hold the ribbon cartridge.
(Refer to Figure 2-1 3(a).)
Black Ribbon Cartridge
Carriage
Color Ribbon Cartridge
L----7
Cattridge Location Pin
Cartridge Location Spring
n
Black
Cyan
Magenta
Yellow
. .
J::~n9 Part A
CS Unit
L..
1..-I
‘
‘“”1..4
CS Rod
CS~rana~i~~ion~ea**csDriveGear
L. . —..TCS ‘otorpinion ’ear
(Cross section)
(a) When a black ribbon is used
(b) when a color ribbon is used
Figure 2-13. Color Select Mechanism
2-15
.-
REV.-A
2.1.2.4 Paper Feed Mechanism
This mechanism consists of the pF motor, paper feed mechanism, paper release mechanism and paper
loading lever open/close mechanism.
.c, ,\
,,*’
Paper feed mechanism
The PF motor drives the platen or tractor via the PF transmission gear, and feeds the paper. If the paper
runs out, the PE sensor detects it (Refer to Figures 2-14 and 2-1 5.).
Table 2-17 lists the specifications of the paper feed mechanism.
Table 2-17. Paper Feed Mechanism Specifications
PE sensor;
l/360 ”/step
PF motor;
Gear
Refer to Table 2-18.
transmission
Sensor
Paper feeding per step
Driving method
Motor
Refer to Table 2-19.
Table 2-18. PF Motor Specifications
Remarks
Description
Item
Four-phase 48-pole PM type stepper
Type
motor
Drive Voltage
\ 35 VDC
Hold Voltage
5 VDC
Coil Resistance
I 4.2 ohms A 10%
Driving Frequency
144 PPS
Driving Method
Constant voltage drive
I 25°C, for one coil
2-2 phase excitation
Table 2-19. PE Sensor Specifications
Item
Type
Rated Voltage
II
Description
II
Remarks
Mechanical switch
I
I
I 5 VDC
,, .
c
..,+’
I
1 * 5%
Push tractor feeding and friction feeding are described below.
The paper feeding methods consist of push tractor feeding (for continuous paper) and friction feeding
(for cut sheet paper). (Refer to Table 2-20.)
Table 2-20. Paper Feeding Method and Paper
Y
Paper Release Mechanism State
Friction Feeding
Tractor Feeding
Paper
Cut sheet
Continuous
Push tractor
Invalid
Valid
Paper feeding method
Standard
*:
Cut sheet feeder”
Push & pUii*
r
Optional Equipment
“\----2-16
REV.-A
1. Push Tractor Feeding
Paper is fed by driving the PF motor with the paper release lever set forward to load fan-fold paper into
the push tractor unit.
Paper Releae Lever
P
r (close)
-.
,.
ar
Gear
(i) Side
View
(ii) Top View
(a) Gear Arrangement
Push Tractor
Paper Tension Roller
Continuous Paper
Paper Holding Roller
~c.w.
/-l----
%
- C.c.w.
.“ 0
J
;
&’&
-.
““
o
.-
c?
o
/
““
P,:n.or
% G“ “
@=
u
B
/
Platen
‘PF Roller (release)
(b) Paper Path
Figure 2-14. Push Tractor Feeding
2-17
/
REV.-A
2. Friction Feeding
The paper is loaded from the upper paper entrance with the paper release lever set backward. The paper
is held against the platen by the paper feed roller and is fed due to friction by the platen and paper
feed roller.
During friction feeding, the paper release lever retracts the tractor gear from the tractor transmission
gear so that the push tractor is not driven.
Paper Release Lever
Paper Te
Pape
Tra
sor (open)
P
(i) Side View
(ii) Top View
(a) Gear Arrangement
Cut Sheet
/
Paper
/1
Paper Tension Roller
P a p e r H o l d i n g R o l l e r . ~1 --
/1
J
t
% / ~
4’/
//
0
Q
/“”
‘
DA
+ C.w.
~ C.c.w.
\
PE Sensor
-Of)
Platen
PF Roller (friction)
&
(b) Paper Path
Figure 2-15. Friction Feeding
.-. . . . .’
2-18
REV.-A
Paper Release Mechanism
The paper release mechanism operates so that the paper feeding method is automatically switched
between friction feeding and push tractor feeding.
Table 2-21 lists the specifications of the paper release mechanism.
Table 2-21. Paper Release Mechanism Specifications
Motor
Driving Method
Sensor
Trigger
PF motor;
Gear via trigger
RL solenoid;
RL sensor;
Refer to Table 2-18.
clutch
Refer to Table 2-22.
Refer to Table 2-23.
Table 2-22. RL Solenoid Specifications
Item
Description
Remarks
Coil Resistance
130 ohms
* 10%
Drive Voltage
35 VDC
* 10%
Table 2-23. RL Sensor Specifications
Item
Description
Type
Micro switch
Rated Voltage
5 VDC
Remarks
& 596
2-19
REV.-A
Figure 2-16 shows the basic operations of the paper release mechanism, and Table 2-24 lists the switch
timina for the paper feeding method. Switching is described below.
Table 2-24. Paper Feeding Method Switch Timing
Paper Release
Lever State
o
,
1
I
o
I
1
1
I
I
I
1
I
1
1
I
1
I
1
#
1
t
1
I
1
ON
RL
Solenoid
OFF
C.w.
PF
Motor
Hold
C.c. w .
Close
RL
sensor
Open
1
1
8
I
1
t
1
1
I
1
t
I
1
I
1
I
I
I
1
(d) Friction + Tractor +a)
(c) Friction
(b) Tractor+ Friction
(a) Tractor
.,~,
f
. .- ~ Šˆ
#
1
I
1
I
8
1
I
1
1
I
1
1
1
o
I
t
1
1
1
1
1
,I
1
I
I
I
I
1
I
1
I
1
1
1
1
t
1
I
1
1
i“:*‘
1. Switching from Tractor Feeding to Friction Feeding
When the RL solenoid is energized, the RLtrigger is pulled, and the clockwise rotation of the PF motor
is transmitted as follows:
PF motor + PF transmission gear + Tractor transmission gear+ Sun gear + RL planetav gear A +
Paper release lever
The RL sensor confirms the switching operation. Subsequently, the PF motor is driven counterclockwise so as to allign the RL planetary lever and RL trigger.
2 Switching from Friction Feeding to Tractor Feeding
When the RL solenoid is energized, the RL trigger is pulled, and the counterclockwise rotation of
the PF motor is transmitted as follows:
PF motor + PF transmission gear + Tractor transmission gear + Sun gear
+ RL planetary gear B + Paper release lever
The RL sensor confirms the switching operation. Subsequently, the paper feed motor is driven
clockwise so as to align the RL planetary lever and RL trigger.
2-20
,.,,
F
4“
REV.-A
paDer Release Lever
RL Sensor (close)
$
, RL planetary Gear B
with tractor transmission
-1,+,
*-+-J “~:,
gear)
A
(a) Tractor
+sl
(b) Tractor + Friction
(d) Friction + Tractor
~ C.w.
* C.c.w.
(c) Friction
Figure
2-16. Paper Release Mechanism Operations
2-21
REV.-A
Paper Loading Lever Open/Close Mechanism
This mechanism advances the paper through the paper holding roller during loading or unloading. Table
f::
2-25 lists the specifications of the paper loading lever open/close mechanism.
Table 2-25. Paper Loading Lever Open/Close Mechanism Specifications
Trigger
Driving Method
Motor
Sensor
PF motor;
Gear via
LD solenoid;
LD sensor;
Refer to Table 2-18.
trigger clutch
Refer to Table 2-26.
Refer to Table 2-27.
Table 2-27. LD Sensor Specifications
Table 2-26. LD Solenoid Specifications
Item
Description
Remarks
Item
Description
Coil Resistance
130 ohms
* 10%
Type
Micro switch
Drive Voltage
35 VDC
* 10%
Rated Voltage
5 VDC
Remarks
+5%
Figure 2-17 shows the basic operation of the paper loading Iever open\close mechanism, and Table
2-28 lists open/close timing for the paper loading lever.
.t
. , -.“’
/,”
,.
2-22
,,
.....,
REV.-A
Switching operations are described below.
Table 2-28. Paper Loading Lever Open/Close Timing
Paper Loading
Lever State
1
1
I
I
t
I
I
1
I
1
1
1
1
I
1
I
I
ON
LD
Solenoid
OFF
C.w.
PF
Motor
Hold
C.c. w.
Close
II
1
11
!
1
I
I
I
I
I
I
I
I
I
1
I
I
1
1
1
1
1
1
1
1
t
LD
Sensor
Open
+(a
(d) Open + Close
(c) Open
(b) Close+ Open
(a) Close
t
I
1
1
1
11
I
, I
1
I
t
t
1
I
1
1
1
1
1
t
t
1
I
1
b
I
t
1
I
1
1
I
1
1
1
1
1
1
1
1
1
1
1. Switching from Close to Open
When the LD solenoid is energized, the LD trigger is pulled and the clockwise rotation of the paper
feed motor is transmitted as follows:
PF motor + PF transmission gear + Platen gear + LD planetary gear -+ LD gear A + Paper loading
lever + Paper holding lever (= Paper holding roller)
The LD sensor confirms the switching operation.
Subsequently, the PF motor is driven clockwise/counterclockwise so as to take up slack in the paper.
2. Switching from Open to Close
When the LD solenoid is energized, the LD trigger is pulled, and the clockwise rotation of the PF motor
is transmitted as follows:
PF motor ~ PF transmission gear+ Platen gear+ LD planetary gear+ LD gear A + LD gear+ Paper
loading lever + Paper holding lever (= paper holding roller)
The LD sensor confirms the switch operation. Subsequently, the PF motor is driven clockwise/counterclockwise so as to take up slack in the paper.
2-23
REV.-A
Paper Loading Lever
LD Sen
(open)
(i) Top View
.—
Shaft
(ii) Side View
ear
LD
Spring
(a) Close
Iu I
(d) Open ~ Close
(b) Close + Open
‘“ =
LD Sensor (close)
Ilml
a C.w.
w C.c.w.
o
%
(c) Open
Figure 2-17. Paper Loading Lever Open/Close Mechanism Operation
2-24
REV.-A
2.2 POWER SUPPLY CIRCUIT OPERATION (ROPS/ROPsE Board)
The DC power supplies required by the control circuits and mechanisms in this printer are included
on the power supply board. Table 2-29 shows the input ratings for this board.
Table 2-29. ROPS/ROPSE Board Ratings
Fuse F1 Rating
Input Voltage [VAC]
Name
ROPS
100- 120
125V, 6.3A
ROPSE
220-
250V, 4.OA
240
2.2.1 ROPS/ROPSE Board Outline
The ROPS/ROPSE board supplies various DC voltages, as shown in Table 2-30, to operate the
mechanisms and control circuits.
Since the ROPS board has almost the same structure as the ROPSE board, this section will be describe
the ROPS board.
● Refer to Appendix, Figures A-49 and A-50, for the entire circuit of the ROPS/ROPSE board.
Table 2-30. Voltages and Applications
~ower
Applications
SU P PI Y V o l t a g e (DC)
+35 V– GH
. Printhead solenoids driving
● PT solenoid driving
. LD solenoid driving
● RL solenoid driving
● HF motor driving
. PG motor driving
● CR motor driving
● CS motor driving
● PF motor driving
● Fan motor driving
+ 5V - GL
● Logic circuit
● Sensor circuits (excluding the PT sensor circuit)
● Control panel
● PG motor holding
● CS motor holding
● PF motor holding
● Optional interface board
● Optional Identity/Font module
tiX (+5 V) - GL
● Reset circuit
● +35 V drive system/control system output pull ups
● Buzzer
f 1 2V – GL
● Optional interface board
+ 12 V – AGN
● PT sensor circuit (+ 12 V only)
NOTE: GH . . Ground of drive circuit, GL .,.. Ground of logic circuit, AGN . . . . Ground of analog circuit
2-25
REV.-A
““3
[
External noise on the AC input line is first attenuated by the input filter circuit. Then the input AC is -““
Figure 2-18 shows a block diagram of the power supply circuit.
rectified by the full-wave rectifier circuit and smoothed by the smoothing circuit.
Surge current that flows when the printer power is first turned on is suppressed by the surgesuppression circuit.
The voltage output from the smoothing circuit is converted to various voltages for the control circuits
(+5 V and Y 12 V) and drive circuits (+35 V).
When main switching circuit 1 is activated, voltage is induced in the secondary side of transformer
T1 by electromagnetic coupling with the primaw side. The voltage is rectified and smoothed separately
into + 5 V and * 12 V.
After being rectified and smoothed, the + 5 V output is fed back to main switching circuit 1 by the current
limiting and voltage regulator circuits via the photo coupler, and stabilized.
When the power supply for the control circuits starts operating normally, voltage is induced in the
secondary side of transformer T2. Upon receiving this voltage, main switching circuit 2 turns on, and
voltage is induced in the secondary side of transformer T3. After being rectified and smoothed, the
+35 V output is fed back to main switching circuit 2 by the current limiting, voltage regulator, and .
(-.+
over voltage protection circuits, and is stabilized.
Power SW.
~;
INPUT FILTER
CIRCUIT
I
1
mm
FULL-WAVE
RECTIFIER
CIRCUIT
r
SURGE-SUPPRESSION
CIRCUIT
SMOOTHING
CIRCUIT
-
Y
PRIMARY SIDE TI SECONDARY SIDE
MAIN SWITCHING
CIRCUIT 1
i
—
I
RECTIFIER AND
SMOOTHING
CIRCUIT
r
,.
RECTIFIER AND
SMOOTHING
CIRCUIT
CURRENT LIMITING
AND VOLTAGE
— REGUIATOR CIRCUITS
1
~
=1+-121T0 THE
ANALOG
AND LOGIC
+5 CIRCUITS
k]
,~:
,., .-
GL
PRIMARY SIDE T2 SECONDARY SIDE
F
Im
-
J&D ~
Vcc+
PRIMARY SIDE T3 SECONDARY SIDE
MAIN SWITCHING
CIRCUIT 2
RECTIFIER AND
SMOOTHING
CIRCUIT
vcc\
CURRENT LIMITING
AND VOLTAGE
- REGULATOR CIRCUITS
OVER VOLTAGE
PROTECTION
CIRCUIT
4
+35 TO THE
MECHANISM
DRIVE
GL CIRCUITS
:J
,.
Figure 2-18. ROPS/ROPSE Board Block Diagram
2-26
. ,.
REV.-A
2.2.2 Input Filter Circuit
Figure 2-19 shows the input filter circuit. The input filter circuit attenuates external harmonics (noise)
on the AC input line, and inhibits noise generated by the circuits in the printer from going out over the
AC line. The coils and capacitors employed in this filter have been chosen to be able to handle
fluctuations of the AC input line. The frame grounds (F. G.) connected between C2 and C3, and C5 and
C7 are for leakage current from the AC line to the frame.
SW (#8 CO)
...
AC I N
IL——.I
Figure 2-19. Input Filter Circuit
2.2.3 Rectifier, Smoothing, and Surge-suppression Circuits
Figure 2-20 shows the rectifier, smoothing, and surge-suppression circuits. The filtered AC input voltage
from the input filter is input to diode bridge DB 1, full-wave rectified, and smoothed by capacitor Cl 2. .
Normally, the voltage across C 12 is O V before the printer power is turned on. This means the line is
shorted at C 12 via DB 1 when viewed from the input side. Therefore, when the power is first turned
on, a large charging current flows to C 12. This current is known as a surge current. If the power switch
is turned on again when the input voltage is near its peak, the maximum surge current will flow (See
point @ in Figure 2-2 1.).
I-3
I
+
DB1
>
INPUT
FILTER
CIRCUIT
Dl
-~’
IL2
C12
1
11
12
●
D6
●
IG
d 13
>
1
R8
Q3
VIN
T2
I
10 n Sw
Figure 2-20. Rectifier, Smoothing, and Surge-suppression Circuits
2-27
FET
14
REV.-A
SURGE CURRENT$
1
v
\
0
INPUT VOLTAGE
VIN
/
Figure 2-21. Surge Current
After the power is turned on, as the voltage across C 12 rises, the current is stabilized. Therefore, after
the power switch is turned on, resistor R9 is inserted in series between smoothing capacitor C 12 and
the input line to limit the surge current until the voltage across C 12 is stabilized. When 120 VAC is
applied, the voltage across C 12 reaches about 170 V. In this circuit, the surge current is limited to
[
... /
approx. 17 [A] or less (170/R9 = 17 [A]).
When C 12 is fully charged, R9 is shorted to prevent it from wasting energy as heat. It is shorted by
TRIAC TY 1. When FET Q3 is turned on, voltage is induced by coil T314-13 at the primary side in coil T314-13
at the secondaw side of transformer T3, and the line between T1 and T2 is shorted upon receiving
IG.
2.2.4 Main Switching Circuit 1
Figure 2-22 shows main switching circuit 1.
I
T1
~ -. --, D7
,,
‘[-.,.,>
VIN
J
1’(:”= I
D2
Is A
Q1
IB
D1
R2
IL
>
1
cl 1
- — — .-
I
E
&
R5
R 1 :
( -. . _ _ . . . - — — — — — —
1
12 To the circuits
“at the secondary
side
7
vlA
L
12
61
Figure 2-22. Main Switching Circuit 1
2-28
1“
REV.-A
The starting sequence is described below.
1. When the printer power is turned on, DC input voltage V IN is input to this circuit.
2. Drive current Is flows to the base of switching transistor Q1 via starting resistor R4, and Q1 turns
on.
3. At the same time as step 2, V 1 IN is applied to coil T1 IM at the primary side of pulse transformer
Tl, voltage VIA is induced in coil T1 M of TI at the primary side, and positive bias current ]B flows.
Therefore, Q1 turns on quickly.
4. Since the valUe of current IB is constant as shown in the expression below, current IL applied to coil
T1 m-s increases continuously in proportion to time.
,, = (T7JTIcM) VIN–(VDZ + VOIBE)
R5 + R2 (1 + hFE)
where, VD2: Voltage drop across D2
VCIIBE:
Voltage drop between the base and emitter of Q 1
At this time, voltages V1.S, V1O+12, and V1O-12 are induced in coils T13-5, T1 3-4, and T1 2-3 at the
secondary side. Since the current flows in the reverse direction to diodes D7, D8, and D9, no voltage
is output to the circuits at the secondary side.
5. IL increases as time passes. When hFE x IB = IL, however, Q1 saturates, so that the value of IL is limited.
Therefore, voltage V 1 IN across coil T110.E drops. At the same time, a reverse voltage is applied to
coil T1 7-6, the value of IB lowers, and current flows in the reverse direction via R 1 and D 1. Since the
potential at point @ becomes higher than that at [email protected], speed-up capacitor C 11 absorbs current
which flows from point @ to @. Therefore, Q 1 turns off quickly.
6. When Q 1 turns off, the energy induced in coils T1 3.5, T1 3-4, and T1 z-a at the secondary side in step
4 is released in the reverse direction and the forward current flows to diodes D7, D8, and D9 at the
secondary side. In this way, voltage is applied to the secondary side of the circuit.
7. The energy being released decreases linearly with time. When the energy release is completed, the
voltage at each coil of T1 reaches zero momentarily, but switching current IB flows in the forward
direction again due to R5, and Q1 switches on again. The potential at [email protected] becomes higher than
that at point @, and the energy accumulated in C 11 is released to keep IB flowing to Q1.
8. The operating sequence then returns to step 3. The circuit continues switching by repeating this
sequence.
The above described sequence is generally known as a self-excited ringing choke converter (R. C. C.)
system.
When Q1 turns off in step 5, reverse voltage is induced at point @ momentarily, but D4, R7, and C 13
(snubber circuit) act as a limiter.
2-29
REV.-A
.:>,
The waveforms at various points are shown below,
f
---
T
VIN
Voltage Vm
across T 110-8
J!_
o
1
1
1
Voltage across
T 17-6
1
‘ T
------------------ --------- -
-------- --------- --------
8
1
Q1 base
current IB
0
l-l
T1 7-6
—
T 110-8
I
I
I
I
1
I
I
X
A
t
0
VIN
1
Y’ i “
1
I
I
I
i
1
1
-L
I ~ (AV.)
T
+ OFF-4+ ON -++
Q1 collector
current IL
0
1
1
1
I
Ion
( n=5,-1 2,+12 )
o
Output current 10
o~
10 = (105 + 10+12 + 10– 12)
Figure 2-23. Main Switching Circuit 1 Waveforms
As shown in the figure above, the output voltage to the circuits at the secondary side is controlled by
the ON/OFF time of Q 1.
...,
2-30
REV.-A
2.2.5 +5 V and +12 V Supply Circuit
Figure 2-24 shows the +5 V and + 12 V supply circuit.
T1
R16
~: “
,.
,,
,
‘3
C21
I
AAA
\
I
1
413
1
+5V
2
3
+12V
5
6
14
4- — – – – — 11
I
GL
4 -1 2V
/
R14
12
R12
31
— — — — — J
>’*:
Pcl
Vvv
Figure 2-24. +5 V and +12 V Supply Circuit
This circuit outputs + 5 V, + 12 V, and –12 V. As described in the former section, this circuit also rectifies
and smoothes the energy released from the secondary side of pulse transformer T 1. The * 12 V is output
after being rectified by D8 and D9, and smoothed by C22 and C23. Fuse resistors R 19 and R22 protect
this circuit against a shorted output. R 17 and R 18 are dummy resistors, and are used to limit the rise
of the output voltage when it is open-circuited.
The + 5 V is output after being rectified by D7, smoothed by C 18, and after passing through the filter
circuit consisting of C 19, L3, and C20, so that rippIes and spikes will be eliminated.
2-31
REV.-A
‘k
2.2.5.1 +5 V Current Limiting and Voltage Regulator Circuits
The + 5 V current limiting and voltage regulation is performed by controlling the ON/OFF time of f-.
switching transistor Q 1.
Current Limiting
Figure 2-25 shows the + 5 V current limiting circuit.
The +5 V current limiting is controlled by a comparator (IC 1 ).
T1
10
L3
m
(
T
+5
>
5
C19
#
1
~i - - - E!sk
II
1+
3
R3
3’
~“
L
--
--
-
---,
,1/1
I
I
I
12
,—
1
I
1
- _ - _ _ ~
Pcl
Figure 2-25. +5 V Current Limiting Circuit
Reference voltage Vr.fs which is obtained by dividing the + 5 V output by R24 and R23 is supplied to
the plus side (pin 3) of IC 1. Voltage VR20, which is proportional to the current flowing through current
, ,:,-.
C:’
..
detection resistor R20, is supplied to the minus side (pin 2) of IC 1.
As the load at R20 increases, VR20 rises. When Vrefs < VR20, the output (pin 1 ) of IC 1 is changed from
+ 12 V (HIGH) to O V (LOW) by Zener diode ZD 1 and R 14. ZD 1 keeps the voltage at the cathode side
of the photo transistor in photo coupler PC 1 constant. At this time, the photo diode and photo transistor
of PC 1 turns on, transistor Q2 turns on, and Q 1 turns off.
The collector current for the transistor of PC 1 is supplied by D3, C 10, and the primary side of coil T1 ~s.
1
. . . .
2-32
REV.-A
Voltage Regulation
Figure 2-26 shows the + 5 V voltage regulator circuit. The voltage is regulated by shunt regulatorL5431
(Q4).
T1
r-----J
VIN
Q1
3
+12
>
1
——
J
w-w’ (
R12
Vvv
/
Pc 1
Figure
2-26. +5 V Voltage Regulator Circuit
Q4 keeps the cathode at + 5 V using the 2.5 V reference voltage from the gate terminal, which is set
by voltage dividing resistors R 13 and R 15. If the output exceeds + 5 V, current IK flows to the cathode
of Q4, the photo diode and photo transistor of PC 1 turns on, Q2 turns on, and Q 1 turns off.
2-33
REV.-A
. ;,&,
[.
2.2.6 Main Switching Circuit 2 (+35 V Supply Circuit)
Figure 2-27 shows main switching circuit 2.
Main switching circuit
2 turns on after the + 5 V line is turned on. The +35 V supPly circuit is controlled
mainly by regulator IC TL594 (IC2) at the secondary side. The circuit configuration of main switching
circuit 2 is a general forward converter system, which is a separately-excited system. This circuit is
turned on after the + 5 V line turns on, -+ 12 V is applied to pin 12 of IC2, and IC2 starts oscillation.
R39
T3
C36
m-~
LI
9
D5
●
10
R6
~
V31N
—I
Vlr
C14
C15
IL2
12
●
1k
4
+ D
Q3
R1 1
T2
I
(Refer to Figure 2-30.)
Figure 2-27. Main Switching Circuit 2
,g>,
!.”
One end of coil T2s-z is connected to the + 5 V line and the other end is connected to the collectors
(pin 8 and pin 1 1) of the output transistors TR1 and TR2 of IC2 (Refer to Figure 2-30.). Since IC2 already
started switching when it received the + 12 V, transistors TR 1 and TR2 are on. Therefore, current flows
through coil T2s-z of T2 in the direction shown by Q. Gate current IG, then flows through coil T2s.e in
the direction shown by @, potential VG is generated across R 10, and Q3 turns on. Input voltage V3iN
is applied to coil T3 10.12 on the primary side of T3 and voltage V035 is induced in coil T3z.s on the secondary
side.
2-34
REV.-A
Figure 2-28 shows the +35 V supply circuit.
Current flowing in the direction shown [email protected] is applied to choke coil L4 and smoothing capacitors C31,
C32, and C33, via D 10-1, and then output.
If the output voltage from the secondary side reaches the limit of the current limiting or voltage regulator
circuits in the latter stage of this circuit, transistors TR 1 and TR2 of IC2” turn off so that no current
flows to coil T2s-z. IG therefore stops flowing to coil T2M (Refer to Figure 2-27.), VG becomes O V, and
Q3 turns off. No current IL2 flows to coil TSIO-12, and the energy ~’ accumulated in choke coil L4 is output
rectified by D 10-2, smoothed by C31, C32, and C33, and output.
When the current drops below the limit of the current limiting or voltage regulator circuits (after Q3
has turned off), TR1 and TR2 turn on again, and this sequence is repeated. Figure 2-29 shows the
waveforms at various points in main switching circuit 2.
In this way, the voltage output from this circuit is kept constant by controlling the ON/OFF time of Q3,
which is the different method employed in main switching circuit 1.
*1: See Figure 2-30,
R39
J
10
T3
C36
v~,
L4
-D- 10-1
------ 1
! ‘=,
7
+35V 2 . 5 A
: (O-5A)
~)
@
l,,
. 5
I
#
I
I
,
R38
4
D1O-2
C33 C32 C31
R42
I
I
1
‘. - - - - - - - -
-. /
—
- -
10
11 GH
1
@
12 0
Figure 2-28. +35 V Supply Circuit
o~
‘;’ f’ ’ a’andTR 2dTR2
2. coil T2 5-8
of T2
(IG)
Current
O
~ :
3“T3’0-’20fT3c”rren’ (’L2)oLlJ’l/L
4. TS2-5 of T 3 C u r r e n t @
o~
6. Choke coil L4 Current ~’
8. Output current 1035
o~
Figure 2-29. Main Switching Circuit 2 Waveforms
2-35
REV.-A
w
{ “
Figure 2-30 shows the +35 V current limiting and voltage regulator circuits. This circuits is controlled “+;””
2.2.7 +35 V Current Limiting and Voltage Regulator Circuits
by switching regulator IC TL594*1 (IC2).
IC2 has two error amplifiers, EA 1 and EA2. IC2 compares the output from either amplifier to a sawtooth
waveform from the oscillator section, using a PWM comparator, and turns on TR 1 and TR2 only when
the sawtooth waveform is larger than the outputs from both amlifiers.
xl: Refer to Section A.1.2.1 in Appendix for details.
Refence voltage for
comparison detection
section
——.— —..
\
r
Voltage
section
f
>
I
,%
I
>+
I
—
I section
()
‘R~ti ‘)
1+
R42
-—————. A-——
15
14
13
11
12
10
/
9
I
‘EA2-
vREF(+5vj
‘
C
TR2
TR1
I
o&2y/
C30 , I
()
1000PF i ‘50V
—
R35
1 Kfl
1
I
I
I
R41
R361 ‘ *‘1
I
1
16
+35V
I
1690
1%
R29
200Kf2
A
\ *
I +35
T
I Current
I
I
I
+12
.—— —— — — - 1 0 3 5
R371 detection
I 11 .3Kfl
VJ,,l
detection
I
I
~
\ - — — —— —. I c GH
EA1
+-
a
1
Osc
GND
1
2
3
4
5
6
7
8
—
x
.!&
‘R27
~ tG
R1 1
r
3
T2
5“
8
“3
2Kfl
+5V
12
C27
10OPF
R30
I
C 2 8 R32
1000PF 9.76Kfl
5%
1%
I
100K(I
R28
C26
5.62KCI
1%
,
3
33PF
-
C 2 9
0. IuF
tiGL
7
R31
2.1 Kfl
1%
,-s
[’”
. . .. .
Figure. 2-30. +35 V Current Limiting and Voltage Regulator Circuits
..
2-36
REV.-A
The relationships between the error amplifier outputs, sawtooth waveform output from the oscillator,
and the dead-time control voltage are shown in Figure 2-31.
EAI and EA2 outputs
Sawtooth
waveform
1
I
High
[+ > -)
Deed time control voltage
TR1andTR2baeiim
Low
(+< –)
.
~1
1
-1
ToN (max )
T
TON (m<
ON
(max ) /
t-
v
TON (max. )
One cycle
4
Figure 2-31. PWM Comparison Sequence
The on-time of TR 1 and TR2 becomes short when the outputs of EA1 and EA2 are not inverted, and
becomes long when the outputs are inverted. The maximum on-time, however, is limited to 45% of one
cycle by the dead-time control.
Current Limiting
Figure 2-30 shows the +35 V current limiting circuit. Current limiting is performed mainly by error
amplifier EA2.
Reference voltage V,,nw which is obtained by dividing the +35 V by R36 and R37 is supplied to the
minus side of EA2 via resistor R35.
V o l t a g e VRO which is proportional to current 1035 flowing to current detection resistor RO ( =
R40//R4 l//R42) is supplied to the plus side of EA2.
Vrefssl ~ VRO (at this time, 1035 z 7 [A])
As the load at 1035 increases. When the condition shown above is met, the output of EA2 changes from
LOW to HIGH. When the output of EA2 is HIGH, TR 1 and TR2 turn off, and Q3 in main switching circuit
2 turns off.
In this way, the voltage induced in the secondary side of T3 is dropped.
Voltage Regulation
Figure 2-30 shows the +35 V voltage regulator circuit. Voltage regulation is performed mainly by error
amplifier EA 1.
R e f e r e n c e v o l t a g e V R E F (+5 V) output from IC2 (pin 14) via resistor R27 is supplied to the minus side
of EA 1.
V o l t a g e which is obtained by dividing the +35 V by R33 and R34 {see the expression below) is supplied
to the plus side of EA 1.
V35E
=
R33
R33 + R34
2-37
x V035
REV.-A
When the output voltage of the +35 V line rises and the relationship between VREF and V35E becomes .*,,,,
[;
as shown below, the output of EA1 is changed from LOW to H I G H .
VREF s V35E (at this time, V035 z 35.3 [V])
When the output of EA 1 is HIGH, TR 1 and TR2 turn off, and Q3 in main switching circuit 2 turns off.
In this way, the voltage induced in the secondary side of T3 drops. When VREF z V35E, TR 1 and TR2
starts switching operation again, and turns Q3 on and off.
2-38
REV.-A
2.2.8 Over V o l t a g e P r o t e c t i o n C i r c u i t
As described in Section 2.2.7, the voltage from the +35 V line is monitored by the voltage regulator
circuit, and fed back to main switching circuit 2 to keep the voltage constant. This circuit is employed
to protect main switching circuit 2 from being damaged if the voltage regulator circuit operates
abnormally.
Figure 2-32 shows the over voltage protection circuit.
Reference voltage VREF (5 V) is supplied to the plus side of IC 1. Voltage VOVER (= 0.12 X V035), which
is obtained by dividing the +35 V by R45 and R46, is supplied to the minus side (pin 6) of IC 1.
When the output voltage of the +35 V line meets the condition shown in the expression below, the
output (pin 7) of IC 1 changes from HIGH (1 2 V) to LOW (O V), transistor Q5 turns on, and R28 is shorted.
Therefore, 5 V is applied to the dead-time control terminal (pin 4) of IC2, the dead-time becomes 100%,
and TR 1 and TR2 turn off.
VREF s VOVER (V035 z 4 0 . 8 ~])
Then, Q3 in main switching circuit 2 is cut off, the voltage applied to coil TIo.12 of T3 turns off, and
the voltage induced in coil T3z-s at the secondary side drops,
+35
R46
15.4 Kfl
1%
R45
2.15 Kfl
4 1%
+12
TL594(IC2)
dT A
GH
16
6
15
I
14
13
12
11
10
9
VREF(+5V
5
—
+
Ic 1
+
7
R43
IKfI
R44
3.9K(I
EA1
+–
1
K
IQ--l=m
2
—
+5
IG
50
T2
t
●3
R28
5.62K(I
1%
h
I
4)
8
1
2
Vvv
R31
2.1 Kfl
1%
+~
C26N 16V
105”C
33J
—
—C29
0,1 UF
~25V
fiGL
Figure 2-32. Over Voltage Protection Circuit
2-39
REV.-A
(.....,
‘3
2.3 CONTROL CIRCUIT BOARD (ROMA Board)
Figure 2-33 shows a block diagram of the ROMA board.
The ROMA board mainly consists of two 8-bit CPUS; one is the HD64 180R 1 P6 (1 3A) for the main control
and the other is the pPD78 10HG (7B) for the sub control. Both are operated at a clock frequency of
12.2 MHz (to match the serial data transfer clocks). The main and sub CPUS communicate with each
other using serial ports. Various gate array ICS and hybrid ICS are employed to lighten the load on the
main and sub CPUS and to simplify the circuits.
~-—. —
ROMA
12.2 MHZ
VXGEMERATION
flol-
ll~h
I
IREsETclRc~~
i
~#j-f&p6,,3A,
AO-A18
MMU
( 1 4A}
MM102
I
LATCH
(14C)
1
1
Sf;\AL
B O A R D
1 2.2 MHZ
~ol-1
MM1OO
— M5461OP
( 11 B)
-/
PRINTER
MECHANISM
u
sTK66082E
(1A)
PRINTHEAO
(
I
I
—
—
1
&
8uZZER ‘
=
ORIVER
)0- 07
1
ORIVER
LO SOLENOID
ORIVER
RL SOLENOIO
ORIVER
PT SOLENOIO
I
B
a
MM101
EOSA021A , ;:’ ~
(2A)
I
—
lp—~=:=pEN)::~:R
/— \ ~::~,,, p o R T
-7 POO-7 1 E
P
-?>
8-BIT
PARALLEL
l/F
—
“
71
r
2M-BIT
ROM
C . G.(1 2A)
1
1
LATCH
(BA)
Aa -15
PG HP SENSOR
CR HP SENSOR
lo- D7
,0-A7
‘“J
1
.k
*?...,”..
I
1
PE SENSOR
LO SENSOR
RL SENSOR
PT SENSOR
PRINTER
MECHANISM
PW SENSOR
PRINTHEAO
THERMISTOR
R
—
CSBOO
*2
I
IM-BIT
ROM
C.G.11 29)
1
—
CSS40
. . ,.
(-j
1
2:;_;iS;T
[ 1 OA)
=M
———
_------,
: IOENTITY(
FONT I
y
; MOOULE
—
I IS LOT Al
CSBDO
,-------
riii-=
,
1—
—————— —
J
( S L O T 81 ~ —
CSBEO
,-------
xl: VP-3000 (Japanese version): 5 12K-bit ROM
X2: Used only in the VP-3000
Figure 2-33. ROMA Board Block Diagram
2-40
,..
REV.-A
The main functions of the main CPU and its peripheral components are as follows:
● Interfacing with the host computer
● Processing and expanding the commands and data input from the computer via the interface
● Printhead control
The main CPU controls the memory using a gate array (MMU: 14A).
Figure 2-34 shows the IC address map for the main CPU.
The main functions of the sub CPU and its peripheral components are as follows:
● Printer mechanism control
● Control panel control
● Printer cover state monitoring
● Buzzer driving
The sub CPU has a multiplexed low order address/data bus. The low order address bus and data bus
are selected according to the ALE signal from the sub CPU via a latch ( 14C).
Figure 2-35 shows the IC address map for the sub CPU.
FFFFH
MMU G/A
( 14)
FDAOH
FD40H
FD20H
=
LS375
( 14C)
E05A02LA
G/A ( 2 A )
M54610P
( 11 B)
PS-RAM (9A)
k
FFFFH
MCU G/A
(3B)
FDOOH
COOOH
~
PS RAM
(9A)
I
8000H
------1
PROGRAM ROM
( 1 1A)
MCU G/A
(4 B)
t
1 Kbyle X 32 BANK
I
2M-b,t MASK ROM
(C GO. 12A)
BANK AREA
6000H
INTERNAL RAM
FFOOH
I
SLOT
A
Not used
I
SL:T
8Kbyte X 46 BANK
I
I
8000H
256 Ki~~f)TRAM
~,”
OOH
40H
PROGRAM ROM
( 7A)
OOH
BANK ADDRESS ~
m
3
(n
OOOOH
OOOOH
Figure 2-34. Main CPU Address Map
2-41
Figure 2-35. Sub CPU Address Map
REV.-A
2.3.1 R e s e t C i r c u i t
Figure 2-36 shows the reset circuit.
After being input to the E05A 10AA gate array (NIMU: 14A), the reset signal resets the gate array, then
is sent out to the other devices. Reset operation (hardware reset) is performed when:
1. The printer power is turned on or off.
2. A low ~ signal is input from the host computer.
3. A identity/font module is installed or removed with the power on.
MMU [1 4A)
m
MAIN-CPU( 13A)
On
ROMA BOARD
RESET
=
of
LS 175 (14C)
RESET of MCU (4B)
,,
RESET of MCU (3B)
BI
$.
---.“.
RESET of SUB-CPU(7B)
~1
EXTERNAL
TO
EXTERNAL
RESET of CN2
)
Figure 2-36. Reset Circuit
2-42
REV.-A
2.3.1.1 Vx (Drive System Pull-up) Voltage Supply Circuit
Figure 2-37 shows the Vx voltage supply circuit.
The Vx voltage is used to pull up the bus for the control signals transmitted to the power on reset on
reset circuit, and drive circuits. It is also used to pull up the output of the buzzer drive IC (66).
R=b
R2
ZD 1
PT SOLENOID DRIVE CIRCUIT
4. Iv
R20
Q2
--———
RESET of E05A02LA (2A)
E OUTPUT of IC (6B)
.C32
“R21
R21
Figure 2-37. Vx Voltage Supply Circuit
After the printer power is turned on, the + 5V line reaches about 4.7V, and a potential of about 0.6V
(VR21) is induced across resistor R21. The difference and +5V is applied to the Vx line.
When the + 5V line drops to about 4.7V or less, Q2 and Q 1 turn off so that the Vx line drops to OV.
Therefore, each IC is reset, and the control circuits stop operating.
2-43
REV.-A
2.3.1.2 Power ON/OFF
.,!, ,
Figure 2-36 shows the reset circuit and Figure 2-38 shows the waveform of this operation.
When the power is switched on and Vx rises, voltage is applied to the integration circuit (composed
of R 120, C66, D 14). The voltage at C66 increases according to VTHLD = Vx (1-e-n) and the reset circuit
in the MMU sets the ROUT signal high (Figure 2-38, TR1). The reset (ROUT) signal is sent to the IC’S on
the ROMA board and to the outside via CN2.
When the power is switched off, the voltage at C66 decreases according to VTHLD = Vx (e-n-l) and,
when VTHLD reaches V N the output switches from high to low, and the reset circuit in the MMU sets
the ROUT signal low. (Dl 4 is a diode used to discharge C66).
AT POWER ON
(v)
AT POWER OFF
I
I
Vx
5
THLD
VP
‘–––––––
v.
0
I
I I
I [ TRI
~lrI
5
ROUT
11
I
I {I
I
I
I
0
I
I
I
1
RESET
CPU O P E R A T E S
—
RESET
t~
Figure 2-38. Power ON Reset Timing
2-44
{.
.
REV.-A
2 . 3 . 1 . 3 INIT Signal Input from CN1 or CN2
Figures 2-36 shows the reset circuit and Figure 2-39 show the timing of the signals during this operation.
When the INIT signal is input from outside (it should be low for 50 PS or more), it reduces the voltage
at the CPU terminal via the integration circuit (R 115, C67, and D 13), the M546 10P (1 1 B), and IC (6 B).
When the voltage at the CPU terminal reaches VN, the reset circuit (in the MMU) is activated to set the
DISC signal low. When the DISC signal goes low, the ROUT signal subsequently goes low, the voltage
at the THLD terminal drops to VN (the pulse width shold be: TR2 > INIT = low), and then the DISC signal
goes high after the reset circuit is initialized. When the THLD terminal voltage increases to VP, the ROUT
signal goes high again.
5(v)
w
INIT
CPU
VP
VN
DISC
11:
THLD
VP
vN
+k-- -—- —- ~-—- - -- - ~------1
w
I
1
ROUT
I
@
F
k--i
37 l/.ls
Figure 2-39. INIT Reset Timing
2-45
REV.-A
.-~
2.3.1.4 Font/lndentity Module Installation and Removal
Figure 2-36 shows the reset circuit and Figure 2-40 shows the module installed/removed reset timing.
t.- ,”’
The font and indentity modules should not be installed or removed while the power is on. If this is done,
the ROUT signal must be set low to prevent a ROMA board circuit malfunction.
After reset, the main CPU starts execution for address 00001-1 and sends a ~ signal to the memory devices.
The reset circuit in the MMU counts 32x= pulses and then generates a RDCLK pulse. When a module is
installed or removed, the exculsive OR value of CAR1 and CAR2 changes from the reset default value, and
the DISC signal is set low by the rising edge of the second pulse of the synchronized RDCLK signal.
Consequently, the THLD voltage begins decreasing. When the THLD voltage drops to V N the DISC signal
goes high an then begins increasing. When it rises to VP, the ROUT signal goes high and the main and
sub CPUS restart from address OOOOH.
Also, Table 2-31 shows the relationship between the input at CAR1 and CAR2 of MMU (1 4A) and the
state of the mudule.
DISC
THLD
ROUT
—
t
CAR1
●
1
RD CLK
t
I
I
1
I
1
1
1
C’R2
1
1
:;
r-i
0,
,,
t,
1
I
1
1
1
)
1
,,
,,8
I
(
1
2
A CARATRIDGE IS
INSTALLED ~ REMOVED
.7-)
,,,
f
2
A CARTRIDGE REMOVED
~ IN STACLED
Figure 2-40. Module Installed/Removed Reset Timing
Table 2-31. State of Module
CN4 Side
Installed
Not installed
YARI
CN5 Side
Mouting
Removing
Mounting
Removing
L
ROUT
CAR2
H -L
L-H
Mouting
Removing
Mounting
I?cmm,, i n ”
:H%i=&‘--T
2-46
“
REV.-A
2.3.1.5 ST-RAM (1 OA) Battery Backup Circuit
The ST-RAM (1 OA) employes a lithium battery (3.00 to 3.35 VDC) for backup, and is used to maintain
the initial data for the printer mechanism and settings for the control panel when the printer power
is turned off.
Figure 2-41 shows the ST-RAM (1 OA) battery backup circuit, and Table 2-32 shows the ST-RAM
conditions when the power is turned on or off.
+5
4
020
ZD6
(
Q19
R96
m
22
CN7
D17
LITIUM B A T T E R Y 1 ~- --- ‘ u - ‘ ;
I
Y
m
R97
-
: -2 I
3.00
3.35(v)
–
-
-
‘-
/
Cs
2 8 Vcc
-’
c45—
(—
ST-RAM
4 ~ND (1 OA)
\
777
‘+
Figure 2-41. Battery Backup Circuit
When the power is turned on under normal conditions, + 5V is applied to Vcc of the ST-RAM, and the
CPU starts read/write operations. When the power is turned off, and the voltage on the + 5V line drops
to about 3.3V or less, transistors Q 19 and Q20 turn off, and the voltage from the external lithium battery
is applied to the Vcc terminal of the ST-RAM. In this way, the data in the ST-RAM is maintained.
When the voltage from the lithium battery drops, the message “RAM CLEAR” is displayed on the LCD
when the printer power is turned on.
Table 2-32. ST-RAM Conditions with Power ON/OFF
I
I
I
Printer
Power
OFF
I
ON
~
I
+5
V
Line
L
H
I CS(Pin 22)
I
I
L“
I
Vcc
I
2.4-
I
H
*1: Must be 0.2 V or less
*2: Must be 2.0 V or m o r e
X3: Data hold
N O T E : L = O V, H = 5V
Reference: Power consumption at standby: 0.002 [mA] TYP.
2-47
+5
[v]
I
2.7*2 I
I
ST-RAM Mode I
Standby* 3
I
Normal
I
REV.-A
2.3.2 I n t e r f a c e
This printer has both an 8-bit parallel interface and an RS-232C serial interface.
2.3.2.1 8-Bit Parallel Interface
Operating Principles
Figure 2-42 shows the 8-bit parallel interface data transmission timing. Data is transferred between
a host computer and the printer using the following sequence:
BUSY
fl(a)
ACKNLG
I
/
$
~b
DATA
, {~
STROBE
Figure 2-42. 8-Bit Parallel Data Transmission Timing
a) First, the host computer confirms that the BUSY signal from the printer is low or that the ACKNLG
signal from the printer is high. When the BUSY signal is low, the printer is ready to receive data.
When it is high, the printer can not receive data from the host computer since the printer is
proseccing
data. Therefore, the host computer does not transfer data until the BUSY signal changes
from high to low. (Some host computers check both the BUSY and ACKNLG signals, and others just
check either the BUSY or ACKNLG
signal.)
b) After the host computer has confirmed that the BUSY signal is low, it places data (8 bits per word)
in parallel on the data bus (DO - D7), and the printer reads the data atthefalling edge of the STROBE
pulse.
c) After receiving a data word from the host computer, the printer sets the BUSY signal high to inform
the host computer that the printer is proseccing
d) After proseccing
data and is not ready to receive any more data.
the data, the printer sets the ACKNLG signal low, allowing the host computer to
transfer data again. The printer sets the BUSY signal low approximately 5 ps after setting the
ACKNLG signal low, then sets the ACKNLG signal high after approximately 5 KS, informing that theF
,,,::
host computer that the printer is ready to receive data.
,
.!.
2-48
REV.-A
8-bit Parallel Inteface Circuit
Figure 2-43 shows the 8-bit parallel interface circuit.
This circuit is controlled by the main CPU.
Address mapping for the M546 10P ( 11 B) is performed by the main CPU via the MMU (14A). General
purpose 8-bit parallel interface IC M546 10P ( 11 B) is employed to simplify the control required from
the main CPU.
The latch circuit ( 14C) converts the control data in the main CPU into an 8-bit parallel interface signal
(PE, ERROR, and BUSY) according to the select signal (MMI02) from the MMU.
The SLCTIN and AUTO FEED XT signals are fixed signals from the host computer, read into the sub
CPU as default values, and transferred to the main CPU.
● Refer to Appendix A.1.l .10 for the details of the M546 10P.
M54610P(1 1 El)
EXTERNAL
,
\
t
Ei5
INIT +
6B
R87
A4h
B03
I
RDY
—
.
BSYF
CONTROL
READY LED pANEL
EBUSY
B USY
6USY 9
BSSL
—
T
R
R
A%
ACKNLG s
ACKI
h-%-
I
DATA1-8
‘0
DIN l-~
R126
STROBE
iF2
1
I
II I
m
B04
BO 1
I
I
II
I
I
i
I
l
m
l
MAIN CPU
..-. .
II JAI
!“
m
p
\\
DOU1- 6
—
Psw
A
PE #
I
I I iii
<Wl
—
la la
\
1
G
C51
ERROR 8
I~
=
I ..-
m
Bll
—
DO- D 7
/
LITCH
F
(14CI
m,D Q
IQ
20
2D u
30
3D
40
4D
0
MMI02
MMIOO
PORT1
’
O’J
PORTO
CLK
I
1
“
SLCTIN
AUTOFEEO-XT1
J
MMU
(1 4A)
[
I
1
Figure 2-43. 8-Bit Parellel Interface Circuit
Figures 2-44 and 2-45 show the processing sequence for these signals and the interface signal timing.
Table 2-33 shows the control signals used between the printer and host computer.
2-49
(\
ON-LINE
/)
4
Hardware reset
is occured.
DC 1 is sent.
1
q
8-bit data is input.
q
—
STROBE pulse is sent.
Set default
I
(
I
values.
. PORTO = - H “ . . . f i x e d
)
●
PORT 1 = “ H - . . . f i x e d
S e t i n i t i a l vaiues.
. EBUSY = “ L “
●
B14 = “ L
-
Bll =
-
H
“
&
I YES
ERROR STATE
I NO
ACKI goes “ L“ .
I
Wait 5 us
if’?,
%.. -
I
CPU write address at
MMIOO .
t
Wait 5 us
I
[
ACKI goes “ H “
I
(5
A
Figure 2-44. 8-Bit Parallel Interface Circuit Operation
. .
2-50
READ DATA
INITIAL IZE
From
CPU
I
w=
t’
%-5
ACK
1J
@-
I
HOST
/,
[
“4
*
DIN 1-8
I(
x
I
VALID DATA
I
1
“b
Figure 2-45. 8-Bit Parallel Interface Timing
Table 2-33. 8-Bit Parallel l/F Signals
IEADY/ERROR
PE
H
Disable
BUSY
PRINTER
Goes high, when
HOST
Acknowledge:
ON-LINE
READY
OFF-LINE
NOT READY
STROBE pulse is sent
from host.
L
L
H
An error has
occurred. (for error
conditions, refer to
Section 1.7.1.)
H
OFF-LINE
Paper end has
occurred.
2-51
PAPER END
REV.-A
2.3.2.2 RS-232C Serial Interface
Operating Principles
The two handshaking methods are as follows:
1. Status flag . . . DTR (REV) signal
The DTR signal is set to SPACE (+V) when the printer can accept data and is set to MARK (–V) when
the printr is in an error state or when the empty area in the input buffer reaches 256 bytes or less.
In this way, handshaking with the host is accomplished by setting the DTR signal to either SPACE
or MARK. (Refer to Figure 2-46.)
( + v)
t+
------
I I
DTR
( -v)
[ +V)
y–
RXD
[ -v)
II
StoD
II
Data Bit
J
B i t “’
P:r,yy
Start
Bit
NOTES: 1. The value of “T” veries according to the input data.
2. The word structure of the serial data is:
1 start bit + 8 data bits + parity (Odd, Even, or none) + 1 or more stop bits.
Figure 2-46. DTR Handshaking
2. X-ON/X-OFF protocol . . . Sent over the TXD line
Handshaking is accomplished by sending either X-ON (1 1H)orX-OFF(13H) over the TXD line to the
host. When the printer can accept data, the printer sends an X-ON code. When the printer becomes
busy, it sends, an X-OFF code to the host computer. The X-OFF code is sent to the host when the
empty area in the printer input buffer reaches 256 bytes or less, or when the printer is in an error
state (Refer to Figure 2-47.).
>
r“:
~. . . .
[ + v)
RXD
–
‘“[lM14m[:::1
-
Data Bit
[ -VI
I
P;ri~y
Start
Bit
,,
stop Bit
--
( + v)
TXD
‘T
k
‘
--
--[ --
ik
+[ -/+ ‘
-
J
--
--
{k
[ --
[
--
+’ -++
[ – v)
Start Data Blt
Blt (X-OFF)
Stint D~tao~;t
Blt
-
NOTES: 1. The value of “T” veries according to the input data.
2. The word structure of the serial data is: 1 start bit + 8 data bits + parity (Odd, Even, or
none) 1 or more stop bits.
Figure 2.47. X-ON/X-OFF Handshaking
<’
. . . . .
2-52
REV.-A
Circuit Description
Figure 2-48 shows the RS-232C serial interface circuit. Data transmitted from the host computer is
converted from EIA (+3 to +27 V, –3 to –27 V) to ITL O V, + 5 V voltage levels by the RS-232C line
driver 75189 (3A). The converted data is sent to the main CPU via buffers in the M546 10P (1 1 B). On
the contrary, data transmitted from the main CPU is sent to the 75188 (4A), converted from TTL to EIA
voltage levels, and transmitted to the host computer.
The sequence for the serial interface operation is shown in Figure 2-49, and that for handshaking in
Figure 2-50.
-12
+12
.-.
D1
D2
MMI02 of MMU(l 4A)
75188 (4A)
~––––- ---——
CN3
VCC
!
GND
-
“
6
~
91
4
DTR&20
1
-VCC
36
6
CLK
,0
,D 4
‘
~3
BUSY:
~ EBUSY
L - - - - - –– - - - J
5
REV~
MAIN-CPU
( 1 3A)
1
TxD
&2
2
3
I
1
1
I
1
1
1
I
I
1
1
1
1
1I
RxD
TxA 1
IRXA1
-12
R22
75189 (3A)
;3
Clo
9
z’
10
M546 10P (1 1 B)
,- - - - - – - – - - - - - 1
#
;2
3!
; B02
L – – – – _ – – – – – - - .1
1
Vcc 14
‘Gh
— C7
GND
FG ~~~
7
4)
I
1
4
13
4#
777
Figure 2-48. RS-232C Serial Interface Circuit
2-53
REV.-A
I
-
s e t Inltlal
values.
● EBUSY--L- (DTR-SPACE)
● Send X-ON (llH).
,
.
I
I i n e data twrrer
v a c a n t 8rea reach
● EBUSY= H ( DTR-MARK ) .
● Send X-OFF ( 13H ).
-
-
I
I
I
Host recoin I ze and
stoD the data send.
I
I
I i ne data butrer
v a c a n t a r e a reach
Figure 2-49. RS-232C Serial Interface Circuit Operation
+
From
CPU
E BUSY
[
INITIAL IZE
OPERATION
*
H
L
I
f
SPACE
DTR
To
Host
MARK
[ TXD MARK 3:
From
Host
X-OFF
X-ON
X-ON
SPACE
SPACE
RXD MARK
(
~+-----~
I
L
INPUT BUFFER
VACANT ARE~
“— m:
OATA
t
8K byte
Figure 2-50. RS-232C
S 256 byte
Data Transmission Timing
2-54
~ 512 byte
.:%
(“- ,.
REV.-A
‘,
2.3.3 Control Panel Interface Circuit
Figure 2-51 shows the control panel interface circuit.
This circuit is mainly divided into the following three blocks:
● LED drive section
● Switch status read section
● LCD control/drive section
Descriptions of the above sections will now be given.
● Refer to Figure A-55 for the detailed circuits on the ROPNL board.
PB4
CN8
I
G?
D3
2A
D2
3A
D1
4A
DO
5A
AO
1A
WE
6A
+5
LCD SELL
(20 columns)
I
1
G
2Y –+
3Y
DIQ
4Y
DOO
5Y
AOQ
IY
WRQ
6Y
—
LCDCE+
GND
VCC
J
t
()
777
CONTROLLER
;.;H:
+5
LS365
(9B)
LCD
;144KUP
‘5 P O W E R
LED
~
+5
GND
h
1
?
@
*
LOAD ‘
PB5
~
R75
DTO Q
I
I
AN5 ‘ –
R83
AN6
R85
AN7 ~
I
PBO
AN5
AN6
AN7
T
RESET
CIRCUIT
5
1;4
1
PB 1
-“s’)
c1
-J e =
INVERTER
SWITCH STATUS
READING CIRCUIT
+5
PORTEXPANDER
DRIVER
Ic
c
PANEL
LED ( xl 4)
b
1
R66
ONLINE SWITCH
STATUS
PC3
C40
A
,,,
I
,
DRIVER
v
RDY of ~fl
M 5 4 6 10P( 11 B)
Figure 2-51. Control Panel Interface Circuit
2-55
_ READY
LED ( X 1)
REV.-A
2.3.3.1 LED Drive Section
Each LED is controlled and driven by port expander driver IC MSM59371, which includes a 16-bit shift
register and LED drivers.
Figure 2-52 shows the data transfer timing for the MSM59371, and Figure 2-53 shows a block diagram
of the MSM5937 1.
The MSM59371 converts 16-bit serial data (DATA IN) from the sub CPU into parallel data using a
synchronous clock (CLK) and trigger signal (LOAD), then outputs the data to the output ports (O 1 to O 16).
Output ports 01 to 014 are used to drive the LEDs, and 015 and 016 are for the signals that control
the reading of the switch states.
DATA IN
(=~q
016
015
*1
014 013 012 011 010 09
LED7 LED19 LEO 11 LEO lO LE09 LE016 LE?!15 LE~l 4 LEW13 L::6 L8~5 L~~4 L~~3 L~~8
*’
CLK
(==0)
LOAD
(=~D)
Indicatea
Indicates an old value.
a new value.
I
x: Switch read control flag
NOTES: 1. An LED turns on when the data bit is “1”.
2. Refer to Table A-41 for the layout of the LEDs.
Figure 2-52. MSM59371 Data Transfer Timing
DATA IN
CLK
D1
D2
+
i
RESET
D3
D4
D5
D6
D7
Da
D9
D1O
D1 1
D12
D13
D14
D15
D16
i
J
1
i
+
J
i
i
+
i
I
i
i
1
I
I
I
1
013
014
16-BIT LATCHES WITH RESET
LOAD
I
I
01
02
03
04
05
06
I
07
08
09
010
011
Figure 2-53. MSM59371 Block Diagram
2-56
012
015”
016
REV.-A
2.3.3.2 Switch Status Read Section
The state of each switch is read periodically by the sub CPU through analog ports AN5 to AN7. When
the state of a switch is found to be different from the previous value, the new value is transferred to
the LED drive and LCD control/drive sections as data to rewrite the switch status.
Since the states of 11 switches must be read using only the three input ports (AN5 to AN7), a matrix
circuit is constructed using four control signals (O 15 and 016 of the MSM59371, CKO, and DTO) (See
Table 2-34).
The state of the ON LINE switch is monitored using port PC3 of the sub CPU via LPF (consisting of R66
and C40).
Table 2-34. Switch Status Reading
MSM59371
SUB CPU
(IN)
(OUT)
Control Signal Status
Switches Read
016
015
CKO
DTO
AN7
AN6
AN5
1
0
0
0
SW2
SW7
SW6
o
1
0
0
SW3
Swl 1
Swlo
o
0
1
0
—
SW9
Swl o
0
0
0
1
SW4
Swl 2
SW8
NOTE: Refer to Table A-40 for the layout of the switches.
2-57
REV.-A
\
Figure 2-55 shows the command/data write timing for the SED 1200.
The sub CPU selects which type of information will be written, command or data, using address line
AO (command: AO = O, data: AO = 1), then outputs 4-bit data on the data bus (DO to D3). The sub CPU
enables the outputs of tri-state LS375 (96) by changing port PB4 from high to low, and writes the
command/data into the SED 1200.
Table 2-36 lists the commands of the SED 1200, and Figure 2-56 shows the character code map for
SED 1200. Writing command/data to the SED 1200 is performed by inputting 4-bit data twice, the upper
nibble and lower nibble (4 bits X 2 = 8 bits).
SUB-CPU
(7 B)
( ‘ B ”
I
~
LCDCE
I
/
1
out put
o f IC (9B)
1
1
,
1
I
1
I
~ Upper4 b i t I
AO
J
J
t
I
I
!
n*
%>
Lower4 bit ;
DO– D3
[\
I
~ 200ns or more ~
1
*: n=O Write command
n = 1 Write data
Figure 2-55. SED1 200 Command/Data Write Timing
Table 2-36. SED1200 Corr
First Input
WR
AO DB3 DB2 DB1 DBO
(D7) (D6) ( D 5 ) ( D 4 )
)and List
Second Input
3B3 DB2 DB1 DBO
D3) (D2) (Dl) ( D O )
Command
CS
SET CURSOR
DIRECTION
CURSOR ADDRESS
–1 +1
CURSOR FONT
SELECT
CURSOR BLINK
ON/OFF
DISPLAY ON/OFF
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
CURSOR ON/OFF
0
0
0
0
0
0
0
1
1
1
SYSTEM RESET
LINE SELECT
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
‘“
0
0
0
1
0
(N Colums-l)B
0
0
0
11
(N Colums-l)B
0
0
1
0
0
0
0
0
1
0
(Lower Address)
0
0
0
0
1
0
0
(CGRAM Data)
1 St
I DO= 1:DEC.
DO= O:INC.
– 1/+ 1 DO= 1 :– 1
DO= O:+ 1
DO= 1 :Blinking
A/U
DO= O: Under Line
ON/OFF DO= 1 :ON
DO= O: OFF
ON/OFF DO= 1 :ON
DO= O: OFF
ON/OFF DO= 1 :ON
DO= O: OFF
0
2/1
DO= 1 :Display
for 1 line
DO= O: Display
for 2 lines
Lli E
:*
(CHARACTER CODE)”’
CODE
:1: Refer to Figure
56.
2-59
I
D/l
LINE
SET CGRAM
ADDRESS
SET CGRAM DATA
Function
I
I
—
,c:%
REV.-A
.-”,
Low,, 4 b,t
I
I 1- I cr>
RAM
4
I
ID. to D,) of Chafacle<
5
I
Code [HexadeOmdl
6 I 7 I
8
I
9
I
A
I B I
c
I ‘=’~.i
AREA I
Figure 2-56. SED1 200 Character Code Map
r“
, . -. ,
2-60
REV.-A
, 2.3.4
State Detection and Sensor Signal Input Circuits
This section describes the state detection circuits on the ROMA board and sensor signal input circuit.
Table 2-37 lists the state detection circuits onthe ROMA board. Table 2-38 lists the sensors connected
to the ROMA board.
Table 2-37. State Detection Circuits
,
Name
Description
,
Sub CPU Signal
Reference
Reading Port
Section
Monitors the 35 V line voltage
ANO
VR1 Reading
Reads the correction value for bidirec-
AN6
Circuit
tional printing in the LQ mode
VR2 Reading
Reads the correction value for bidirec-
C i r c u i t
tional printing in the draft mode
35 V Line Voltage
2.3.4.2
Detection Circuit
2.3.4.3
2-61
AN5
REV.-A
Table 2-38. Sensors List
Name
Printhead ther-
Type
Position
Printhead
Thermistor
Description
Detects the
Sub CPU Signal
Reference
Reading Port
Section
AN 1
2.3.4.4
AN3
2.3.4.5
AN4
2.3.4.6
PA 1
2.3.4.7
PAO
2.3.4.8
PB7
2.3.4.9
printhead
mal sensor
temperature
PW sensor
PT sensor
Printer
Photo
Detects the
mechanism
reflector
paper width
Printer
TCS
Detects the pa-
mechanism
PG HP sensor
per thickness
Printer
Photo
Detects the plat-
mechanism
interrupter
en gap home
position
CR HP sensor
Printer
Photo
Detects the car-
mechanism
interrupter
riage home
position
PE sensor
Printer
Mechanical
Detects whether
mechanism
switch
paper exists or
not
RL sensor
Printer
Micro switch
mechanism
LD sensor
Printer
Detects paper
AN6
feeding meted
2.3.4.10
Micro switch
mechanism
Detects the load-
AN7
ing lever
position
Case open
senser
Upper case
Hall effect IC
Detects whether
the printer cover
is open or
closed
2-62
AN 1
2.3.4.11
REV.-A
2.3.4.1 Reference Voltage Supply Circuit
Figure 2-57 shows the circuit that supplies reference voltage VAREF (4.746 VDC) to the A/D converter
in the sub CPU. In this circuit, programmable shunt regulatorTL431 (9C) is used to output the reference
voltage.
\ R71
AVCC
-.
C42
D6
SUB CPU(7B)
E
VAREF
C48 ~~+;
.. >
AVSS
@ :
1,.3’
@ :
Ik
-
/7+7’
Figure 2-57. Reference Voltage Supply Circuit
Reference voltage
VAREF
for the A/D converter is determined by the combination of resistors R72 and
R73 connected in parallel with the TL431.
V.,~F = V,., (1 + ~ ) + I,,f X R72 = 4 . 7 4 6 [ V ]
where,
Iref =
2 [p,A]
V,,f = 2.495 [V]
As shown by the above expression,
VAREF
is regulated to approximately 4.746 ~].
2-63
REV.-A
,,,,,
c
As shown in Figure 2-58, this circuit detects the voltage on the 35 V line. The detected voltage is divided,.. .,,“
2.3.4.2 35 V Line Voltage Detection Circuit
by R79 and R80, and the voltage at point @ is input to the ANO terminal of the sub CPU.
+35
VAREF
4
R80
’
\
ANO 4
SUB CPU
(7 B)
1
0
R78
= C68
R79
AVSS
Figure 2-58. 35 V Line Voltage Detection Circuit
<t
,/
As shown in Figure 2-59, if the detected voltage drops to 30.53 V or less due to a circuit problem or
high duty cycle printing, the printer stops printing. and the message “ERROR 2“ is displayed on the
control panel on the LCD. The printer cannot be recovered from this state. The power must be turned
off and then on again.
NOTE: If “ERROR 2“ is displayed again after the printer power is turned off and on, refer to Chapter
5 (Troubleshooting).
(v)
35
———-————-——————-——.
a
c
.1
v
n
>
m3 0 . 5 3
m
Limit Volue
\ =-- --
4-r
0
Normal Operation
“ERROR2“
t+
Figure 2-59. 35 V Line Protection
Table 2-39 shows the relationship between the 35 V line voltage and the input voltage at ANO.
2-64
REV.-A
Table 2-39. 35 V Line Voltage and ANO Voltage
I
35 V Line Voltage [V]
3.89
35
30.53
ANO Terminal Voltage [V] I
●
3.39
1
xl: Lower limit
2.3.4.3 VR1/VR2 Reading Circuit
Figure 2-60 shows the VR1/VR2 reading circuit. The values (voltages) set by VR1 and VR2 are used
to control the corrections for bidirectional printing in the LQ and draft modes. VR 1 is used for
bidirectional printing in the LQ mode, and VR2 is used for bidirectional printing in the draft mode.
NOTE: Refer to Section 4.3.6 for adjustment of VR1 and VR2.
VAREF
R102
R103
\
R 7 5 VR2
Ahh
*
AN5 -
SUB CPU
AN6 (7 B)
VR1:LQ FONT Bi-d. ADJUSTMENT
VR2:DRAFT FONT Bi-d. ADJUSTMENT
R83
*
T
VR1
‘vs-R’06
Figure 2-60. VR1/VR2 Reading Circuit
Table 2-40 shows the relationship between the VR l/VR2 value and the terminal voltages at AN5/AN6.
Table 2-40. VR1/VR2 Values and AN5/AN6 Voltages
VR1/VR2 value
I
AN5/AN6 terminal voltage
M A X . - MIN. [V]
3.68 - 1.4
2-65
I
REV.-A
&!h
2.3.4.4 Printhead Temperature Detection Circuit
Figure 2-61 shows the printhead
t.
temperature detection circuit. This circuit detects the temperature
using a thermistor in the printhead.
VAREF
R59 &
\
CN
R58
AN1 4
‘1’
I
I
~12
SUB CPU
(7 B)
C50
AVSS
11
14 /
-
Y
/
PRINTHEAD
L
o
w
.EL
:
t-
\
Figure 2-61. Printhead Temperature Detection Circuit
/. .,,
~:
The temperature of the printhead rises as the solenoids in the printhead continue to be driven. To prevent
the solenoids from burning, printer operates as shown in Figure 2-62.
Normol Speed PrinIing
- — - - - - - - ResI f o r
Printing
— -—-— Ho If Speed Printing
90” c ~•€
t
e-.,
/
.t
\
‘\
w
5
GL
K
E
:
u
o
2
z
.;
>-.,
\
Upper Limif Value
\
/“’
‘\
s
‘L~
80° C
Lower Limit Value
c-.,
Figure 2-62. Printhead Temperature and Printing Operation
If the printhead temperature exceeds the upper limit (90”C), printing is “automatically stopped. In this
state, the ON LINE LED blinks. When the printhead
is resumed at half speed. When the printhead
temperature drops to the upper limit or less, printing
temperature drops to the lower limit (80” C) or less, the
normal printing speed is automatically resumed.
NOTE: “Half speed” actually means to drop down to the next lower print speed.
Table 2-41 shows the relationship between the upper/lower limit values for printhead
the voltage at the AN 1 terminal of the sub C P U .
2-66
temperature, and
REV.-A
~ T a b l e 2 - 4 1 . Printhead Temperature Upper/lower Limits and AN1 Voltage
Temperature [“C]
AN1 Terminal Voltage [V]
Upper limit
90
2.71
Lower limit
80
2.80
2.3.4.5 PW Sensor Circuit
Figure 2-63 shows the PW sensor circuit. This sensor becomes active when the paper thickness exceeds
0.18 [mm] (a postcard or envelop). The paper width is detected by this sensor, and carriage movement
is controlled so that printing is executed to within 1/2 inch from either end of the paper.
+5 CN9
1
VAREF
180
1
Al 1
\
AVSS
A
xl 2
Y
AN3
SUB CPU
(7 B)
;
n
1
1
1
~13
Y
1
1
— CM2-7
d)
/m
am
JF
1. Paper: Reflection
2. Platen: No reflection
1
1
Figure 2-63. PW Sensor Circuit
Table 2-42 shows the relationship between the PW sensor detection position and the voltage at the
AN3 terminal of the sub CPU.
Table 2-42. Paper State and AN3 Voltage Level
Detection Position
AN3 Terminal Voltage Level
Paper
H
Platen
L
2-67
REV.-A
-.t,
2.3.4.6. PT Sensor Circuit
t ~•
Figure 2-64 shows the PT sensor circuit. The TCS (Touch Control Sensor) in this circuit detects the paper “‘-”’
thickness according to the change in pressure applied by the PT solenoid, and the pressure is changed
the voltage value.This
r
circuit can detect paper thickness between O and 0.8 [mm].
TR1
—.- 78L08
*1 R 1 O
I
t
R1
2.2KfI
CN 12
1
3
+12
1
Icl
—
1
0
+
TCS
l%
*2
+
.
- -J
1
1
(+ 1
I
‘4;
T
c1
0 . 0 luF
R2
10K (1
*5
TH 1
*3
R8
I
5 ~ CM2-6
v
T
33::
L
4
I
I
A
n+’
SUB CPU
(78)
i.::
A VSS
(
*1: Resistor for sensor gain adjustment
* 2 : Touch control sensor
* 3 : Potentiometer (VR) for gain adjustment
*4: 8 V for constant voltage supply
* 5 : Thermistor for compensating for changes in paper thickness due to changes in temperature
Figure 2-64. PT Sensor Circuit
Figure 2-65 shows the relationship between the PW sensor detection value and the voltage at the AN4
terminal of the sub CPU.
1
h-----Effective paper
thickness detection
range
I
P a p e r thickness[mm] ~
●
Paper thickness (T) = 1.66x AN4 terminal voltage (E)
Where, 15 E $4.5
Figure 2-65. Paper Thickness and AN4 Voltage
2-68
:
“<. ,,.
REV.-A
2.3.4.7 PG HP Sensor Circuit
Figure 2-66 shows the PG HP sensor circuit. This circuit determines the platen gap home position of
the PG motor.
PG GEAR
FLAG
II
CN 16
–r–
n _ _ ,
71
T
+5
R19
I
I
I
1
I
‘
Ii
I
I
.
’
–
L
RI 8
/
R60
Y
I
IJ ~’
l-l
L
*;
I
1
~1
!
T
SU8 CPU
(7 B)
PA1
CM 1-3
J
–
J
_
–
Figure 2-66. PG HP Sensor Circuit
Table 2-43 shows the relationship between the PG gear flag and the voltage at the PA1 terminal of
the sub CPU.
Table 243. PG Gear Flag and PA1 Voltage
PG Gear Flag Position
PA1 Terminal Voltage [V]
At the home position
5
Outside the home position
o
2-69
REV.-A
~,
2.3.4.8 CR HP Sensor Circuit
f
Figure 2-67 shows the CR Hf’ sensor circuit. This circuit determines the home position of the carriage. “’””
CARRIAGE
FLAG
r
1
1
1
1
II
r ---– - ~ -
----
1
t
,
1
1 JF
1
1
1
1
1
I
1
I
1
I
1
I
I
I
1
,
__--,
8
1
I
1
!
,
CN13
1
+5
1
Y
11
1
1
/
1:
SUB CPU
(7 B)
PAO
\
CM 1-5
J
,
t,Y
1
I
I---_L--–_-l_____-l
Figure 2-67. CR HP Sensor Circuit
Table 2-44 shows the relationship between the carriage flag and the voltage at the PAO terminal of
the sub CPU.
Table 2-44. CR HP Sensor Flag and PAO Voltage
I
Carriage Flag Position
I
PAO Terminal Voltage [V]
At the home position
5
Outside the home position
o
2-70
I
[=;’
REV.-A
\
2.3.4.9 PE Sensor Circuit
Figure 2-68 shows the PE sensor circuit. This circuit determines whether paper exists in the printer or
not.
+5
A
CN5
1
R5
2;
‘f
/
R30
l;
Y
#
t
I
~B7 SUB CPU
(7 B)
J
1
w?
Figure 2-68. PE Sensor Circuit
Table 2-45 shows the relationship between the paper state and the voltage at the PB7 terminal of the
sub CPU.
Table 2-45. Paper State and PB7 Voltage
I
I
Paper State
Loading (Paper exists)
I
PB7 Terminal Voltage [V] I
1
Ejecting
(Paper
5
out)
I
2-71
o
I
REV.-A
::.34
2.3.4.10 RL/LD Sensor Circuit
{ :
Figure 2-69 shows the RIJLD sensor circuit. This circuit uses the AN6 and AN7 terminals of the sub --
CPU as signal inputs.
VAREF
\
RL Sensor
CN20
11
D12
n
Y
0>
RI 02
R83
*
AN6
VR1
R85
SUB CPU
( 7 B ) AN7
+)
*
R106
+5V
6
AVSS
3
PC7
/
(6B)
RM 1-5
4
5
‘(5B)
u
4
Figure 2-69. RL/LD Sensor Circuit
Table 2-46 shows the relationship between the printer mechanism status and signals at the sub CPU
ports AN6 and AN7.
Table 2-46. RL/LD Sensor Circuit Signal Status
PC7 Terminal
AN6 Sub CPU
Terminal Voltage
Terminal Voltage
Level ● 1
Level
x
H
H
Friction
—
H
—
Tractor
—
—
L
—
Open
—
L
Closed
—
H
Release Lever
Loading Lever
Position
Position
H
x
L
Voltage of the
Sub CPU
—
AN7 Sub CPU
I
,,:,
Q’,,,
*1: When the terminal voltage at PC7 is “H,” the actual voltage level is between 3.68 and 1.4 ~]
depending on the value of VR1 (AN6).
NOTE: The “X” mark means unstable.
.
1
x. . . .
2-72
:
REV.-A
2.3.4.11 Case Open Sensor Circuit
Figure 2-70 shows the case open sensor circuit. This circuit employs an IC including a hall-effect element
that can detect a magnetic field.
5 CN21
1
tt
I
5
R104
\
X2
T
(7B)
CM2-5
i
Magnet
Magnetic Field
~1
AN 1
SUB CPU
iz%z
Upper Case
Hall-Effect
(5B)
A VS S
n
NOTE: The output of the hall-effect IC goes LOW/HIGH when the IC moves close to/away from the
magnet.
Figure 2-70. Case Open Sensor Circuit
Table 2-47 shows the relationship between the printer cover state and the voltage at the AN 1 terminal
of the Sub CPU.
Table 2-47. Printer Cover State and AN1 Voltage
AN1 Terminal Voltage [V]
-.
Closed
5
.-
Open
o
Printer Cover State
2-73
REV.-A
2.3.5 Printhead Control/Drive Circuit
Figure 2-71 shows the printhead control/drive circuit block diagram. The main CPU (1 3A) transmits
print data for one line in three steps (8-bit data x 3 = 24 dots) and stores the data in control gate array
E05A02LA (2A). The sub CPU (7B) outputs the printhead trigger pulse (HPW) to the E05A02 LA. When
the HPW signal is LOW, chopper type drive signal PNPON goes active, the drive transistors in printhead
drive IC STK-66082E (1A) which drive the printhead coils are activated, and printing is executed. The
sub CPU monitors the printhead internal temperature to prevent the printhead coil from burning, and
also monitors the paper thickness and +35 V line voltage in order to apply the correct print energy
the printhead coils in accordance with the paper thickness.
to
PT SENSOR CIRCUIT
AN4
-i
ANO
-
AN 1
~
+35V VOLTAGE
MONITORING CIRCUIT
4
!
SUB CPU
(7 B)
PRINTHEAD TEMPERATURE
4
MONITORING CIRCUIT
l-l+
Vx
PC7
coo
DREQ
Uuu
1
1
1
1
,
I
1
,
t
8
9
#
I
I
t
+35V
PNP1 -4
—
1m’ ‘
HPW
E05A02LA
4
2A)
STK66082E
( 1A)
11
1
124
AO
MAIN CPU ~R
( 1 3A) DO
P1
1
PB
F
N1
1
N24
L
D17
~:
f=
..-”/
1
+
GH
MMIO1
MMU
( 1 4A)
ROMA Board
! Printer Mechanism
Figure 2-71. Printhead Control/Drive Circuit Block Diagram
r
+
. . . . .,
2-74
REV.-A
2.3.5.1 E05A02LA Gate Array (2A)
● Refer to Appendix A.1 .1.18 for the details of the E05A02 LA.
The E05A02LA gate array is a 24-pin printhead data control IC, and includes the interface circuits used
between the CPU and printhead driver. Because the gate array is mapped so that it corresponds to CPU
memory addresses, the functions of the gate array can be accessed as memory-mapped 1/0. This IC
constructs the data for one character row (24 dots) by inputting 8-bit data three times, and outputs the
print signal to printhead driver IC STK66082E (1A) using printhead trigger pulse HPW. The IC also has
functions to write and output the 24-bit data effectively. Table 2-48 shows the E05A02LA gate array
functions.
Table 2-48. E05A02LA Gate Array Functions
Function
Address Bus AO
o
● Inputs a command.
Data bit 7:
Sets the data latch write sequence.
HIGH: Ascending order
LOW: Descending order
1
Data bit 6:
Enables/disables the HPW.
Data bit 5:
Resets the counter.
Data bits 4 to O:
Not used.
● Latches data, and increments the counter.
When latching data, half-protection is performed by NANDing the contents
of the new data and the previous data (so that the output goes LOW
continuously).
. Data latching is completed by latching l-byte data three times.
● The REDY signal is changed to HIGH by the WR signal that latches the third
byte, so that data transfer is automatically inhibited.
● When HPW is set valid, the latched data is inverted and output while HPW
is
LOW.
● The REDY signal goes LOW at the leading edge of HPW, to indicate that the
gate array is ready to receive data.
NOTE: When HPW is set invalid, the output is open-drain active regardless of the HPW input.
2-75
REV.-A
2.3.5.2 Printhead Drive Circuit
The printhead drive circuit converts the print signals output from the E05A02LA into printhead coil drive
[:::
voltages. The major drive circuits are incorporated in hybrid IC STK66082E ( 1 A). Figure 2-72 shows
the equivalent circuit.
● Refer to Appendix A.1.l.l 4 for the details of the STK66082E.
V1+35
VXPU 1
+35 ~ ,
DNP1
/
P1
coo
II
SUB CPU
(7B)
PC7
‘F
$“”2
- t - - - J
I
*
I
* 3
I
I
F1
/
24
IL
Printhead
Coil
?
2
*1: +35 V Switching Transistor
*2: +35 V Power Transistor
*3: Printhead Coil Switching Transistor
Figure 2-72. Printhead
Drive Equivalent Circuit
The functions of each section are as follows.
+35 V Switching Transistor
This transistor turns on when both printhead drive pulse HPW from the sub CPU and chopper type drive
signal PNPON are LOW.
+35 V Power Transistor
This transistor outputs +35 V to common lines P 1 through P8 when the 35 V switching transistor is
on.
Printhead
Coil Switching Transistor
This transistor corresponds to outputs H 1 through H24 of the E05A02 LA. The E05A02LA transmits
the print signal to this transistor when HPW is LOW. When the print signal is active, this transistor turns
on. When the transistor turns on, ~ through N24 are shorted by GH, current flows to the printhead
coil from the +35 V line, and printing is executed.
Figure 2-73 shows the printhead drive circuit signal timing.
2-76
C..
REV.-A
4
4
*1
-
*2
%
5[V]
HPW
(7 B:pin 23)
o
Approx.
- - n
~
I
1
~
,
n
n
1
I
f
11
n
f
I
1
I
I
I
y;;ylj ‘v],---1
8
1
1
I
1
I
I
5[V]
:
PNPON
-I
I
I
9
1
I
I
1
(7B: pin 24)
0
K.
35[V]
( 1 ~ n ~ 24)
(1A)
O
*1:
II
rllln
III u
1
1
I
1
1
u
I
- - - - Uu
u
I
Approx. 250 [~ s] at 35 V, 25 ‘C, in the Draft self test mode,
when the paper thickness is normal
*2:
Approx. 220 [u s] at 35 V, 25 ‘C, in the Draft self test mode,
when the paper thickness is normal
* 3 : First pulse width. this varies depending on the paper
thickness (paper mode) and the +35 V line voltage. Refer
to sections 2.3.5.3 and 2.3.5.4.
Figure 2-73. Printhead Drive Circuit Signal Timing
2-77
u
REV.-A
2.3.5.3 Relationship Between Paper Thickness and Print Mode
The sub CPU detects paper thickness t [mm] using the PT sensor. Based on t, the sub CPU selects one
.- . ,
.,
[. “
,’
of three printhead drive pulses so that the correct print energy will be applied to the printhead coils.
Table 2-49 shows the relationship between the printhead drive pulse and paper thickness.
Table 2-49. Printhead Drive Pulse and Paper Thickness
Printhead Solenoid Drive Pulse
Paper Thickness [mm]
Normal mode
0.06 s t s 0.18
Copy mode 1
0.18 s t s 0.36
Copy mode 2
0.36 s t s 0.46
As shown in Figure 2-73, the printhead coil is driven by the chopper type control which divides a cycle
into three pulses. The width of the first pulse is varied depending on the paper thickness so that the
correct print energy can by applied to the printhead coil. Table 2-50 shows the relationship between
the printhead coil drive cycle, printhead first drive pulse width, and print mode.
.~.‘
{
Table 2-50. Printhead Coil Drive Cycle, Printhead First Drive Pulse Width, and Print Mode
Printhead Coil First Drive Pulse
Width ● 2
CR Motor
Printhead
Speed
Coil Drive
Nomal
copy
copy
Cycle “1
Mode
Mode 1
Mode 2
[KHz]
[ps]
[ps]
[MS]
[PPS]
Printing Mode
Text
Bit image
8-dot normal-density, high
4000
2.00
110
140
120
Draft
speed double density
24-dot normal density
2667
2000
110
2.00
2.00
~
I
110
140
120
120
140
1333
2.00
!
110
120
140
667
1.00
~
110
120
140
—
8-dot CRT graphics II
24-dot CRT graphics II
Half speed
Draft
LQ
Half speed
LQ
‘.. .,,
F
+ .,.>
8-dot double-density,
quadruple-density
24-dot double-density
24-dot triple-density
—
.
24-dot quadruple-density
*1: The +35 V line voltage is 35 V .
*2: Refer to Figure 2-73 for the PNPON signal.
~’
>,
-
2-78
.,..
REV.-A
2.3.5.4 Relationship Between the First Printhead Drive Pulse Width and +35 V Line Voltage
As described in Section 2.3.5.3, this printer has three kinds of pulse widths for the first drive pulse
depending on the paper thickness. Figure 2-74 shows the relationship between the first printhead drive
pulse width and +35 V line voltage.
To keep the energy (W.s [J]) applied to the printhead coil constant, the first drive pulse width of the
PlWT5’N signal (see Figure 2-73) is controlled by the sub CPU internal clock (output from the COO
terminal) depending on the +35 Vline voltage.
K
!
Normol Mode
nml
: C!opy Mode 2
Copy
Mode I
:
A’
143
135
127
128
-120—
I 12
108
-loo—
92
0
In
5
n
0)
>
.-
&
31.5
35
38.5
31.5
35
38.5
+35 V Line Voltage [V]
+35 V Line Voltage [V]
(a) Normal Mode
(b) Copy Modes 1 and 2
*1: Refer to Figure 2-73.
Figure 2-74. First Printhead Drive Pulse Width and +35 V Line Voltage
2-79
REV.-A
.: .,.,
e,/
2.3.6 HF Motor Control/Drive Circuit
Figure 2-75 shows the HF motor control/drive circuit, and Figure 2-76 shows the HF motor control/drive ‘
--
circuit signal timing.
+35 CN9
R43
+5
H8D2
5
SUB
161 HF MOTC R
6
148(2c)
COIL DRIVER TR.
---------,
;’ d
%-
I
I-J
CPU
[70)
PB6
m
15
1
HF MOTOR
{input
co~[gg~;;n)
TH 4
-0
[Acceleration
control)
-D
I I
1,
1
OS~&;ON
-0
1
:-y+-
:
GE#IW#.~}ON
‘ 011
-B
v .“ 1 R45 !
[2-phase)
[timer)
,
1,
I
814 I
1 Y
,
PHASE PuLSE
UNSTABLE
lNT;,~~u;;ON
ON/OFF
:E
.
‘ 012
R46 i
Thermistor in
HF motor
h
i
h
-.”
+35
T
,
SURGE VOLTAGE
ABSORVING C I R C U I T ~
1
- - - - - - - - -
--------J
Figure 2-75. HF Motor Control/Drive Circuit
‘ylyi : ~~
output
H
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
))
((
- - - - - - - - - - - - - - - -
Integration
Circuit
output
c.,.,:
L
k-;’
Unstable ~
Oscillation
Circuit
output L
wJ”lflflFrifl
11111,
Ill
,
!11
111
,
A
H
ON
OFF
(2C:pin13)
m+k.i+ki
L
H
8
(2 C:pin 1 2)
L
ON
OFF
t
,
OFF
1
:
1
)1
{{
OFF
OFF
ON
1
[v]
Approx. 60
al 1
Collector
Voltage O
Figure 2-76. Motor Control/Drive Circuit Signal Timing
2-80
.
,
i .,,
REV.-A
Control Circuit
The control circuit consists of hybrid IC li8D2 148 (2 C). This IC is divided into four blocks.
1. HF Motor ON/OFF Circuit
This circuit controls the ON/OFF switching of the HF motor using two inputs (ENB signal and HF motor
thermistor resistance). The sub CPU sets the ENB signal LOW when the thermistor in the printhead
detects a temperature of 40”C or higher. While the HF motor is on, the sub CPU monitors the temperature
of the HF motor using a thermistor in the HF motor to prevent the motor coils from burning if the motor
stops due to external noise (Refer to Table 2-5 1.).
Table 2-51. H8D2148 Input Signal and HF Motor Status
ENB
TH Terminal Voltage [V]
HF Motor Status
H
—
OFF
< 4.22
ON
z 4.22
ON ~ OFF
HF motor abnormal heat generation occurs.
~ 4.15
OFF ~ ON
HF motor abnormal heat generation ends.
L
Note
Normal
NOTE: Even when the HF motor is on, the motor will stop five seconds after the last print signal is
received.
2. Integration Circuit
When the output from the HF motor ON/OFF circuit changes from HIGH to LOW, it is integrated by this
circuit, and output to the block in the second stage. Acceleration control is performed using this
integrated waveform.
3. Unstable Oscillation Circuit
This circuit generates the reference clock to execute phase switching for the HF motor. R43 is an
oscillation frequency selection resistor. The frequency starts rising gradually at the leading edge of the
integrated signal from the previous stage and stablizes at the set value (approx. 1600 Hz).
4. Phase Pulse Generation Circuit
This circuit generates the phase switching pulse for the 2-phase stepper motor. The phase switching
pulse is synchronized with the clock pulse output from the previous stage.
Drive Circuit
The drive circuit consists of an HF motor coil drive transistor and surge voltage absorption circuit that
absorbs the surge voltage output from the motor coil when the HF motor coil drive transistor changes
from on to off. D4 and D5 are flywheel diodes, and ZD5 is a surge voltage consumption Zener diode.
2-81
REV.-A
2.3.7 CR and PF Motors Control/Drive Circuit
Figure 2-77 shows the CR and PF motors controVdrive circuit block diagram. The CR and PF motors
are controlled by the sub CPU (7 B). The stepper motor control gate array IC (M CU:4B) is memory-mapped
into the address space of the sub CPU, allowing the stepper motor to be controlled by address selection
(MMIO1 ). The reference clock required to generate the phase switching pulses that drive the stepper
motor is generated by a timer in the sub CPU. The TM 1 clock is output to the MMU via the TM 1 clock
generation circuit, and the TM2 clock is directly output to the MMU (TM 1 and TM2 are for the CR
motorand PF motor phase switching pulse generation, respectively). Based on these clocks, the MCU
generates CR and PF motor phase switching pulses, drives stepper motor drivers IC S17304 (7C: CR
motor) and STK698 1 H (7D: PF motor), and rotates the CR and PF motors. These motor driver ICS input
a reference voltage that corresponds to the motor speed for the constant current control drive IC. The
CR and PF motor constant current control is based on the reference voltage.
+35
SURGE
VOLTAGE
4
ABSORVING CIRCUIT I
+5
-(
f
~T
AO1
1
DO1
~3
PHASE PULSES
t
POTO
1
2
1 1 + UH_l
+5
TM 1
MCU
(4 B)
+35
A
+
lmml
/
mpF’s””u
F-=HPC7
TM2
SCK
t
PHASE PULSES
t
A 0 2
—
RCK
1
D02
+5
PF
MOTOR
t<. “
I
ADO
1
3
SURGE
VOLTAGE
ABSORVING
C I R C U I T P~ GH
SURGE
VOLTAGE
ABSORVING
CIRCUIT
RESET
CIRCUIT
PF MOTOR
DRIVER
(7 D)
4
H
REFERENCE
VOLTAGE
ENABLE
\
I
(
POT3
Figure 2-77. CR and PF Motors Control Circuit Block Diagram
.
f:<
,..
2-82
REV.-A
2.3.7.1 E05A09BA Gate Array (MCU: 4B)
The MCU has two 4-phase stepper motor phase switching pulse generation circuits that can be
controlled separately. Phase switching timing, motor forward rotation, reverse rotation, and holding,
and the phase switching system are all controlled by the sub CPU. In addition to the above, the MCU
can control three ports.
● Refer to Appendix A. 1.1.9 for details of the MCU.
CPU. However, the operating mode
The MCU (4B) goes active when address MMIO 1 is output by the sub ——
is selected by a combination of the low order (4-bit) address and the RD (RCK) or ~ (~) signal. Table -2-52 shows these combinations.
—.
Table 2-52. MCU (4B) Address Allocations
RST
Eii
AD3
AD2
AD1
ADO
SCK
m
H
H
x
x
x
x
x
x
Changes nothing.
L
L
L
L
L
L
H
H
Function
Remark
H
L
CR motor rotational c-w
direction
C.c.w.
L
H
CR motor phase
2-2
L
switching
1-2
H
Left to righ
Carriage
Right to Ief
!
H
‘F- E-i:’ rotationaona’ =--lPaper :::
H
H
L
L
L
H
PF motor phase
2-2
H
L
switching
1-2
L
H
Not used
OUT = H
POTO selection
H
H
L
L
H
OUT = L
Selects R56.
OUT = H
POT1 selection
H
L
H
L
L
H
OUT = L
Selects R57.
OUT = H
POT2 selection
H
H
L
L
H
OUT = L
Selects R55.
OUT = H
POT3 selection
H
H
L
L
—
—
—
OUT = L
Enables IC (7 D).
‘-+-l- +;pu’o:” -
H
L
L
—
L
H
Same as the RST signal input
H
L
Not used
—
—
Resets the internal circuit and closes
the output gate.
NOTES: 1.X . . . Don’t care.
2. When the printer power is on or when the LOW INIT signal is input the RST signal goes
LOW.
2-83
REV.-A
2.3.7.2 CR Motor Control/Drive Circuit
The circuits included in the CR motor control/drive circuit are as follows.
TM1 Clock Generation Circuit
Figure 2-78 shows the TM 1 clock generation circuit and Figure 2-79 shows the timing for the sub CPU
output signal and TM 1 signal. This circuit employs retriggerable IC LS 123 (5A). This IC generates the
TM 1 signal that includes a constant LOW pulse width even when the frequency of the reference clock
output from the TO terminal of the sub CPU changes (when acceleration, deceleration, or constant speed
control is performed.) The LOW pulse width is set to approximately 25 [ps] by R25 and C 13.
SUE CPU (78)
MCU
\
“’’”w”
i“
w
+5
w
c16
[5s)
A
Figure 2-78. TM1 Clock Generation Circuit
TO
(7BI pin 21)
Yiii
(4B: pin 21)
NOTE: In the draft sel f test mode: T1 = 254 [pS], T2 = 123 [pS], T3= 2 ,5
[/4s]
Figure 2-79. Sub CPU Output Signal and TM1 Signal T“iming
...
2-84
REV.-A
Reference Voltage Generation Circuit
Figure 2-80 shows the reference voltage generation circuit and Table 2-53 shows the relationship
between each POT terminal state of the MCU and carriage speed. This circuit changes the voltage
applied to the RS terminal of the CR motor driver IC S17304 (7C) using the combination of R55, R56,
R57, and R 123 so that the current limiting value for the current flowing to a coil of the CR motor varies.
The current limit is raised as the carriage speed increases by changing the voltage applied to the RX
terminal.
\
MMU POTO 34
(4 B)
5
POT1 3
/
R56
VAvhv
S1-7304
2 0 Rx (7C)
R57
Vvv
R55
1
POT2 ~
R123
\
/
G7
Figure 2-80. Reference Voltage Generation Circuit
Table 2-53. MCU POT Terminal States and Carriage Speed
RX Terminal
POT2
POT1
POTO
Mode
H
H
H
Driving
L
H
H
1
H
L
H
Low
H
H
L
Voltage
High
Holding
2-85
CR Motor Coil
Current [A/Coil]
Carriage Speed
Voltage
1.4 * ().1
Speed O or 1
1.0 * 0.1
0.6 & 0.1
Speed 2 or 3
0.25
Speed 4
—
REV.-A
CR Motor Drive Circuit
Figure 2-81 shows the CR motor drive circuit. Figure 2-82 shows the CR motor drive circuit signal timing.
c-,.:>
This circuit employs unipolar stepper motor driver IC S17304 (7 C), and drives the CR motor using
constant current chopper type control. The chopper type control is performed by a separately-excited
system. The +35 V power supply voltage is applied intermittently to the CR motor coil from AC COM and
BCCOM so
that a mean voltage is applied to the CR motor coil, which keeps the CR motor current constant.
● Refer to Appendix A.1.l.12 for details of the S17304.
SURGE VOLTAGE
ABSORVING CIRCUIT 1
GH
GH
t
t
i ----------------t
SURGE VOLTAGE
ABSORVING CIRCUIT 1’
- - - - -. . ., Iiii=lJ
~m”’”
---1
f - - - +----------------,
L
I
I
,.-.
CR MOTOR
---------- ~
0
-----
16
51
6
Y
~1 , DA1
-... ,
7
i
B;
.-
- -
10
11
nRl
- - - I
T
18
SURGE VOLTAGE A8SORVlNG
CIRCUIT I
LI
Y
Dcl
! - - T
1
R
0;
9
Y
Y
,
I
, --------------- ,
DBD1 DD1
015
IO
If.
,=
Z04
I
‘W-v’#
BO1
Col
AO1
DAC1
E
6
12
3
4
7
3
R84 ~ ;
u
,
IiH
L
- - - - - - - - - - - - - - - J
+
1
*
+35
+
1
?
I
T
r
P::IW:RC
t
T
PHASE B
DRIvER
1
t
r
.-,
. ..
“
SI-7304
(7C)
?
PHASE D
DRIvER
t ,.,.d
t
2
R93
R66
3
t
f
GH
+35
I
I
1
,
L
7
/\
REFERENCE
VOLTAGE
GENERATION
CIRCUIT
Figure 2-81. CR Motor Drive Circuit
2-86
REV.-A
[v]
AIN
(7C: pin 3)
AOUT
(7C: pin 5)
5
0
50
0
10
(7C: ‘$n 2)
0
0.5ms/Dl V
NO TE:
In the Draft self test mode:
Figure 2-82. CR Motor Drive Circuit Signal Timing
2-87
REV.-A
The blocks are as follows.
1. Phase Drivers (A to D)
These drivers are turned on and off upon receiving the drive pulses AO 1 to DO 1 from the MCU (4 B).
When the input signal is HIGH, the corresponding phase driver turns on.
2. CMP1 and CMP2
CMP1 or CMP2 compares the reference voltage at the minus terminal with the voltage applied to the
plus terminal, which is from the current detection resistor (R93 or R88). When the reference voltage
is lower than the voltage across the current detection resistor, the output goes HIGH, and the voltage
applied to ACCOM or BDCOM is shut off.
3. CR Motor Power Switches (A/C phase and B/D phase)
This switch is turned on and off upon receiving the output from CMP 1 (CMP2). When the output from
CMP1 (CMP2) is LOW, +35 V is applied
to ACCOM (BDcoM).
4. O.s.c.
The O.S.C. generates a square wave which is used as the reference for chopper type driving (Pulse Width
Modulation control).
5. Current Detection Resistors (R93 and R88)
Voltage is induced across the current detection resistor in proportion to the current that flows to the
CR motor coil. This voltage is input to the plus terminal of CMP1 (CMP2).
6. Reference Voltage Generation Circuit
The current applied to the CR motor coil is determined by the reference voltage applied to the minus
terminal of CMP1 (CMP2). (Refer to the section on Reference Voltage Generation Circuit.)
7. Surge Voltage Absorbing Circuit I
When the phase A driver or phase C driver (phase B driver or phase D driver) turns off, positive surge
voltage is induced at the CR motor coil. This voltage is absorbed by ZD4 via fly wheel diode DA 1 or ,-<
f’
DC1 (DB1 or DD1).
.,.
8. Surge Voltage Absorbing Circuit II (11’)
When the phase A driver or phase C driver (phase B driver or phase D driver) turns on, negative surge
voltage is induced at the CR motor coil. This voltage is absorbed by ZD2 (ZD3) via flywheel diode DAC 1
(DBD 1).
2-88
REV.-A
CR Motor Phase Switching System
The CR motor is a 4-phase stepper motor, and each phase is controlled by the corresponding terminal
(AO1 to DO1) of the MCU (4 B). Two phase switching systems are used; 2-2 phase switching and 1-2
phase switching. One step of the 2-2 phase switching system corresponds to two steps of the 1-2
system. Figure 2-83 shows the CR motor phase switching timing. Table 2-54 shows the relationship
between the CR motor speed and the phase switching system.
r
TM1
I
A(),
(4
—
—
p
—
p
u
—
u
—
N
‘
t
I
t
OFF
1. 1
u
—
—
“
I
I
1
I
Bol
DO1
1
I
1
I
‘N
OFF
OFF
I
I
2
1
I
I
I
I
I
I
I
3
I
I
r
ON
Step
I
I
1
1
B ) CO1 o;;
Ulnnr
I
I
4
‘5
I
6
I
I
7
8
I
1
C.c. w ~ C.w
Rotation
(Carriage moves left to right.)
(a) 2 Phase Excitation
o
I
L
Step
1
Rotation
I
2
I
3
I
I
4
5
I
6
I
7
I
I
I
8~1
C.c. w ~ C.w
(Carriage moves left to right.)
(b) 1-2 Phase Excitation
Figure 2-83. CR Motor Phase Switching Timing
2-89
1.
Table 2-54. CR Motor Speed and Phase Switching System
Driving
Mode
1
o
Speed
Phase Switching
3
4
1-2
2-2
System
Carriage Speed
2
Holding
2-2
4000
2667
2000
1333
667
Cycle [jdstep]
250
375
500
750
1450
DPI [dot./inch]
60
90
120 (60)
180
360
(1 20,1 80)
Draft
—
Condensed
LQ
Half speed
[PPS]
Print Mode
~Major mode)
draft, Half
—
LQ
speed draft
NOTE: The carriage speed and cycle in the 1-2 phase switching system are converted to those in the
2-2 phase switching system.
S“
REV.-A
Carriage Motion Area and Speed Control
The carriage motion area is shown in Figure 2-84. This is mainly divided into three areas: 1 ) acceleration
area, 2) printable area, and 3) deceleration area. The printer has five carriage speeds modes.
Printable area 13.6-
Acceleration area
IiL!
t
Speed
I
1
IF
1
1
1
I
t
I
1
I
111
I
I
1I
1
t
1
1
1
1
1
1
I
1
1
1
1‘
1
1
1
I
I
t
1
1
1
1
.....
1
1
1
I
1
816 step
t
.-
-,
*
I
1
Deceleration area
.
%;
1
-.
1
1
8 step i
I
1
1
1
60
step
~
m
1
1
Figure 2-84. Carriage Motion Area
1. Acceleration Control
When the carriage speed is either O or 1, the carriage is accelerated for 60 steps using 2-2 phase
switching. When the speed is 2, 3, or 4, the carriage is accelerated for 120 steps using 1-2 phase
switching.
2. Constant Speed Control
Within the printable area, the carriage moves at a constant speed except when the logic seeking function
is active. When the logic seeking function isactive, printing is performed after phase switching for 8
steps (speed O orl) or 16 steps (speed 2, 3, or 4).
3. Deceleration Control
When the speed is O or 1, the carriage is decelerated for 60 steps using 2-2 phase switching. When
the speed is 2, 3, or 4, the carriage is decelerated for 120 steps using 1-2 phase switching.
4. High Speed Skip
When spaces (20H) continue for 10 characters or more during text printing, high speed skipping (speed
O = 4000 PPS) will be performed. This function is shown in Figure 2-85 and is used to shorten the
printing time.
a) Acceleration control:
When shifting to the high speed skip mode from thel-2 phase
switching at speed 2, 3, or 4, the current setting value is changed to
that of speed O and the switching system is changed to 1-2 phase
switching.
b) Constant speed control:
The carriage is moved at 4000 PPS.
c) Deceleration control:
When returning to the 1-2 phase switching at speed 2, 3, or 4 from
the high speed skip mode, the switching system is changed from 2-2
to 1-2 after deceleration control is performed in the 2-2 phase
switching mode. At this time, a margin for one character is used.
2-91
..
. . .)
(
Speed
J-.
Speed
Speed
Speed
Speed
High Speed Ski
Printoble High Speed Skip COns!Onl
Acea
Acceleration SCH. Speed Area
.
H i g h S p e e d S k i p C o n t r o l Range min.9CH.
N o n - p r i n t a b l e Area
min.10CH.
r
5
Figure 2-85. High Speed Skip
~+,
:,.. ., ,
f
r
...
2-92
REV.-A
2.3.7.3 PF Motor Control/Drive Circuit
The PF motor is driven only by the 2-2 phase switching system, and the minimum paper feeding amount
s 1/360 inch. Table 2-55 shows the various PF motor control relationships.
Table 2-55. Various PF Motor Control Relationships
Acceleration/
PF Motor Coil
Paper Feeding
Current [A/Coil]
Amount [Inches]
Holding
0.07 * 0.01
—
—
Driving
0.8 ~ ().1
s 46/360
Not performed.
Mode
Remark
Deceleration
Control
—
Constant speed
control:290 [PPS]
~ 46/360
Performed.
At constant speed:
1440 [PPS]
2-93
REV.-A
+
PF Motor Drive Circuit
[
Figure 2-86 shows the PF motor drive circuit and Figure 2-87 shows the PF motor drive circuit signal -“
timing. This circuit employs unipolar stepper motor driver IC STK698 1 H (7D) and drives the PF motor
using constant current chopper type control. The chopper type control is performed by a self-excitation
system using the reactance in the PF motor coil. The +35 V power supply voltage is applied
intermittently to the PF motor coil from AC COM and BCCOM so that a mean voltage is applied to the PF
motor coil to keep the PF motor coil current constant.
● Refer to Appendix A.1.l.l 1 for details of the STK6981 H.
+ +5
+5
D16
*
PF MOTOR
,- --- - - - - - - - - 1
,
1
I
R98
C57
+35 +
: D15
C34
+ + +35
*
17
SURGE VOLTAGE A8SORVING
~-----
DD
16
R54
grim
,a
16
R52
1 4
15
R53
7
[.
1
1
+
+35
‘S;
m
ZD5
D02
14
- - - - - - - - - CL16
(4B)
\
CIR C UIT
C54
=
;
m
L---------------J
B02
C02
13
R51
5
A02 E
/
T
8
12
R95
R94
r
7
GH
GH
I
HOLt)/)RIVE
HOLO/DRIVE
Sw
I
3T+35
,
,,,
/--%
POT3
(4B)
,. _ - - - _ - - - - - - _ -,
v’
.,. .
Figure 2-86. PF Motor Drive Circuit
2-94
REV.-A
5
AIN
(7D’ pin 5) o
AOUT 20
(7D: pin 4) o
I
(7D: ‘p?n 8 ) o
NOTE: During form feeding.
Figure 2-87. PF Motor Drive Circuit Signal Timing
2-95
REV.-A
#’![..\
Each block in the PF motor drive circuit is described below.
$,. :
1. Phase Drivers (A to D)
These drivers are turned on and off upon receiving the drive pulses A02 to D02 from the MCU (4 B).
When the input signal is HIGH, the corresponding phase driver turns on.
2. PF Motor Power Switches (A/C phase and B/D phase)
This switch is turned on and off upon receiving the output from CMP 1 (CMP2). When the output from
the CMP1 (CMP2) is HIGH, +35 V is applied to ACCOM (BDcoM).
3. Current Detection Resistors (R95 end R94)
Voltage is induced across the current detection resistors in proportion to the current that flows to the
PF motor coil. The voltage is input to the minus terminal of CMP1 (CMP2).
4. Reference Voltage Circuit
The current applied to the PF motor coil is determined by the reference voltage applied to the plus
4.
terminal of CMP1 or CMP2.
.0’
5. CMP1 and CMP2
CMP 1 or CMP2 compares the reference voltage at the plus terminal to the voltage applied to the minus
terminal, which is from the current detection resistor (R95 or R94). When the reference voltage is lower
than the voltage across the current detection resistor, the output goes LOW.
6. Surge Voltage Absorbing Circuit
When a phase driver changes from on to off, a surge voltage is induced due to reactance in the motor
coil. This voltage is absorbed by ZD5 via flywheel diode DA or DC (DB or DD).
7. Driving/holding Control
Driving and holding of the PF motor is controlled by the POT3 terminal of the MCU (4 B). When the output
at the terminal is HIGH, the motor is held, and when it is LOW, the motor is driven. When the motor
is held, the PF motor power switch turns off, and + 5 V is applied to
ACCOM (BDcoM)
via D 16 and R99
A’-”.
ii: . . .
(D15 and R98).
2-96
REV.-A
PF Motor Phase Switching Timing
The PF motor is a 4-phase stepper motor, and each phase is controlled by the corresponding terminal
(A02 to D02) of the MCU (4 B). The 2-2 phase switching system is employed. Figure 2-88 shows the
PF motor phase switching timing.
Tti2
ON
OFF I
A02
C02
1
ON
OFF
ON
B02
I
OFF
D02
ON
OFF
Step
1
3
2
Rotation C.C. W ~
4
C. W(Forward paper feeding)
Figure 2-88. PF Motor Phase Switching Timing
2-97
REV.-A
2.3.8 PG and CS Motors Control/Drive Circuits
Figure 2-89 shows a block diagram of the PG motor and CS motor drive circuits.The MCU (3B) is mapped
into the sub CPU address space, and the PG and CS motors are controlled from the sub CPU by sending
commands to the MCU (3 B).The reference clock required to generate phase switching pulses for the
stepper motor drive is generated by the timer within the sub CPU, which generates the phase switching
pulses for the PG and CS motor drive circuits by sending commands to the MCU.
The PG and CS motors are driven using constant voltage.
+35+5
1
1
I
Vx
I
d
PG MOTOR
DRIVER
CIRCUIT
PG
MOTOR
HOLD\ DRIVE
POT1
c
PHASE PULSES
<
I
~T
I
I
1
AO1
/
DO1
+5
Vx
A
A
A
I
Cs
MOTOR
I
CS MOTOR DRIVER
CIRCUIT
(CS UNIT)
GH
I
1
HOLD/DRIVE
b+
ADDRESS
DECORDER
(6A)
i
ADO
1
3
GH
+35
C=
PHASE PULSES
MSU
(3 B)
A;2
I
ALE
PDO
1
7
LOW ADDRESS
LATCH (8A)
POT3 ~K *
c
PF6
1
7
~K
c ~R
Inm
D02
.
L
Figure 2-89. PG and CS Motors Drive Circuits Block Diagram
2-98
I
SUB CPU
(7 B)
REV.-A
2.3.8.1 E05A09BA Gate Array (MCU: 3B)
The E05A09BA gate array has the same functions as the MCU (4B) described in Section 2.3.7.1. This
MCU (3B) is accessed when address MMI02 is selected by the sub CPU. Table 2-56 lists the address
assignments for the MCU (3 B).
● See A. 1.1.9 in Appendix for details of the MCU.
m
7%
H
H
L
Tahle
Assignments
. .—-. -—— .—
—.”.
... - -(3B}
,-—, Address
. ---- -2.56.
- -. MCU
Function
AD3 AD2 AD1 ADO S297 m
No change
x
x
x
x
x
x
PG motor
cow
L
L
L
L
L
H
rotation
C.c.w.
H
L
direction
PG motor
2-2
H
L
H
phase
1-2
H
L
switching
CS motor
H
L
L
H
C“w”
rotation
C.c.w.
H
L
direction
CS
motor
2-2
H
L
H
phase
1-2
H
L
switching
POTO
H
L
L
L
H
OUT = H
selection
H
L
OUT = L
H
H
L
H
H
L
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
POT1
Remark
Platen gap
Narrow to wide
Wide to narrow
Not used
Ribbon
Coior
y-M+C*B
B~C+M+Y
Not used
Pull-up (Not used)
OUT = H
PG motor hold
OUT = L
PG motor drive
selection
POT2
selection
OUT = H
POT3
OUT = H
CS motor hold
OUT = L
CS motor drive
Pull-up (Not used)
OUT = L
selection
L
Positive
NPN
logic
AO1 to DO1
output logic
H
L
------
NU
—
—
—
—
—
Negative logic
H
L
L
H
Same as the RST
signal input
H
L
Not used
—
—
PNP (Not used)
Resets the internal circuit
reset and disables the
output
- . . . . . . . .
I tS: 1 . X : Not CIWlrl(?U.
2. When the power is first applied or when INIT goes LOW, RST goes LOW.
2-99
REV.-A
2.3.8.2 PG Motor Drive Circuit
Figure 2-90 shows the PG motor drive circuit and Figure 2-90 shows the signal timing.
~i;,
The PG motor is driven using only 2-2 phase switching and regulated +35 VDC. Table 2-57 lists the
relationships between various CS motor control factors.
2’ R9
+35
,
PG MOTOR
44-+5
:1
1
1
o
;4
B
7
Q13
R48
AAA
Y
1
1
D
Q14
6
AO1
B O 1 (~c8u)
4
~2
R49
I
I
3
A44
Q7
>,
,
{. , -.,,*, :
Col
(
:5
1
2
Q8
DO1
1
Figure 2-90. PG Motor Drive Circuit
CV3
5
AOI
(3B: pin 7)
T
I
o
I
I
I
II ‘1
\
\
I
++++ +tt++H+ -l-H+
* ++++u-t+ ++++
50
I
\
\
44..,4
013 Collect or
1’
o ~
5V
i
50V
-----
5US
Figure 2-91. PG Motor Drive Circuit Signal Timing
Table 2-57. Motor Control Factors
MCU (3B)
I
Remarks
PG motor
POT1
Applied Voltage [V]
State
High
5
Hold
Low
I
35
I Drive I C o n s t a n t s p e e d 4 0 0 [PPS]
2-100
:,
g
REV.-A
PG Motor Phase Switching Timing
The PG motor is a 4-phase stepper motor, and the phases are controlled by MCU(3B) terminals AO1
to DO 1. 2-2 phase switching is used for this motor. Figure 2-92 shows the PG motor phase switching
timing.
’
c
0
1
o
’
“:g~
::~
(3B)
’
0
1
::~
’
[
0
1
“::~
Step ~
1
2
3
4
C.c. w ~ C. W(Platen gap: narrow to wide)
Rotation
Figure 2-92. PG Motor Phase Switching Timing
Relationship Between Platen Gap and Papar Thickness
The paper thickness value detected by the PT sensor is processed by the sub CPU(7B), which rotates
the PG motor to obtain the proper platen gap (see Section 2.1 .2.2).
During initialization after power is applied, the PG motor is driven to set the platen gap, starting from
the platen gap home position determined by the PG HP sensor ( 1.2 mm from the platen). The PG motor
increments or decrements the platen gap in steps of 0.0014 mm. Figure 2-93 shows the relationship
between paper thickness and platen gap.
If the control panel is set, a total of 10 steps of fine adjustment can be manually performed on the platen
gap value with 0.014 mm per step (see Section 1.8.6.1).
Platen Gop
[mm]
0.8
0.69
1
0.6 }
0.5
0.47
0.4
0.33
0 :3 J
1
1
0 . 0 6
0.1
1
0.2
[
1
0.3
0.4
1
1
0 . 4 6
0.5
1
0.6
1
0.7
I
0.8
Poper Thickness
[mm]
NOTE: The above figures include no manual adjustments.
Figure 2-93. Paper Thickness and Platen Gap
2-101
REV.-A
2.3.8.3 CS Motor Drive Circuit
CS Motor Drive Circuit
Figure 2-94 shows the CS motor drive circuit and Table 2-58 lists the related factors for CS motor
control. The CS motor is driven using only 2-2 phase switching and regulated +35 VDC.
In this printer, the color ribbon can be switched at every 40 steps (Refer to Figure 2-1 3.) from the color
home position, and the CS motor has an adjustable speed control.
The CS motor drive circuit supplies regulated voltage to control the motor.
CS UNIT
\
r – – – - – – – – – l
u PA1428H
I
I
v
6A 2
R34
13
A02
Vvv
I
I
\/
C02
MCU
(3 B) ~02
8A
AAA
D02
/\
6
Y
\#
9A
Y
I
I
I
1
’
Y
I
———
I
I
I
I
I
I
I
-J
)
I
I
R31
AAA
16
Y
b
1
I
R32
14
–––-––––I
I
I
/
Y
R33
15
CS MOTOR
\/
8
\ \
‘ ‘lo’ ‘1
+35 +5
9:D
I
I
I
I
,
I
I
———— +
I
A
I
Vx
COM
c.,.,
-’3
POTC
R40
17
Q4
I
/
l/4w
I – – – – – – – – – J
I
Figure 2-94. CS Motor Drive Circuit
Table 2-58. Related Factors for CS Motor Control
MCU (3B)
PG motor
Remarks
POT3
Applied voltage [V]
State
High
5
Hold
Low
35
Drive
Adjustable speed control is possible.
For constant speed, 450 [PPS]
....
2-102
REV.-A
CS Motor Phase Switching Timing
The CS motor is a 4-phase stepper motor, and the phases are controlled by MCU(3B) terminals A02
to D02. 2-2 phase switching is used for controlling this motor. Figure 2-95 shows the CS motor phase
switching timing.
(
ON
A02
OFF
C02
(301
I
I
I
ON
OFF I
ON
B02
ON
D02
[
[
I
I
I
OFF
OFF
I
Step
I
Rotation
2
I
3
4
c .C .W ~ C .W (Color ribbon B+C+M+Y)
Figure 2-95. CS Motor Phase Switching Timing
Color Ribbon Switching Control
When power is applied, a color home position seek is performed. This operation mechanically
determines the color home position by rotating the CS motor counterclockwise for 150 steps(120 steps
are used for actual movement.). (120 - 150 + n steps cannot be adjusted. See Figure 2-1 3.)
The ribbon color is switched in the sequence black ~ cyan ~ magenta ~ yellow for every 40 steps
starting from the color home position.
2-103
REV.-A
#-’’:b,
g, ;,
2.3.9 PT/RL/LD Solenoid Drive Circuit
Figure 2-96 shows the PT/RL/LD solenoid drive circuit, Table 2-59 lists the related factors for PT/RL/LD
solenoid control, and Figure 2-96 shows the PTsolenoid drive circuit pulse timing.
Each solenoid drive circuit is turned on and off directly by the sub CPU (7 B).
+35
-Vx
/
6B
5
PA4
RL SOLENOID d
: : A
6B
SUB CPU
(7 B)
6
PA5
1%3
5B
7
PA6
1%1
1
\
Figure 2-96. PT/RL/LD Solenoid Drive Circuit
Table 2-59. Related Factors for PT/RL/LD Solenoid Control
Solenoid
PT
RL
LD
Sub CPU control port
PA6
PA5
PA4
HIGH
Not driven
LOW
Driven (35 @/J)
HIGH
Not driven
LOW
Driven (35 M)
HIGH
Not driven
LOW
Driven (35 M)
CV3.
5 “
PA6
(7B: pin 7)
o
Solenoid state
I
I
H_ t
+-H+ ++++-++tt-4-H++tt+
20
013 Collector
I
0
1
0.2!3
Figure 2-97. PT Solenoid Drive Circuit Pulse Timing
2-104
REV.-A
2.3.10 Buzzer Drive Circuit
This printer uses a piezo-buzzer to confirm control panel switch input and indicate errors. Figure 2-98
shows the buzzer drive circuit and Figure 2-99 shows the its pulse timing.
Vx
R7
3.3K
10
F3zl
#o
11 8
PA7
R35
+
IK
SUB CPU
(7 B)
Figure 2-98. Buzzer Drive Circuit
Buzzer on stote
~
[WI
PA7
(7B: pin 8)
6B: pin 10
5
0
5
0
Buzzer sounds when there is no paper.
Figure 2-99. Buzzer Drive Circuit Pulse Timing
2-105
REV.-A
2.3.11 Initialization Sequence
Figure 2-100 shows the initial sequence from power-on to printing operation.
(
1
POWER ON
1
PG HP SEEK
+
TRACTOR
FRICTION
WITH PAPER
T
I
PAPER OUT
1
PWS (Platen V)=VS I
*)PW reference
voltage set
Platen surface voltage
measurement
] (using the PW sensor).
PAPER THICKNESS EIF
I Paper end voltage
-civolta,e
measurement (using the PT s e n s o r ) .
z=
-e’’sensor)”
PAPER THICKNESS EZF
Paper loaded
voltage measurement
(usin the PT sensor).
PG ADJUST
No
I
PWS
SCANNING
+i?l
]
. . . -!
. .,.,
t. .. . .
T
CR CENTERING
(PAPER CENTER)
I PAPER
I CR CENTERING 40COI. I
I
F E E D T.O.F I
I
[
Figure 2-100.
PRINTING
1
Printer Mechanism Initialization Sequence 1
NOTES: *1: For the setup operations marked with a *), use the value stored in the back-up memory.
*2: The platen gap detected by the PW sensor is converted into voltage Vs.
The sub CPU detects the paper end by comparing Vs with 2 X Vs.
~..
2-106
REV.-A
WITH PAPER
PAPER OUT
Y
=’s’ :’ n’ensor) ai;s’ :’ n’ensor)
PAPER THICKNESS EIF
Paper end voltage
measurement
detected by the PT sensor)
::~:;W:OUS PAPER
PAPER THICKNESS
EtF= EOF
*) Paper end voltage set
=
[ PAPER THICKNESS EZFI
1
CR CENTERING 40COI.
I
I
I
II PAPER FEED T.O.F I1
4
I
PRINTING
I
NOTE: For the setup operations marked with a *), use the value stored in the back-up memory.
Figure 2-101. Printer Mechanism Initialization Sequences 2
2-107
REV.-A
CHAPTER 3
OPTIONAL EQUIPMENTS
..
3.1 GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.2 OPTIONAL INTERFACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1
3.2.1 8143 Interfece Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-2
LIST OF TABLES
Table 3-1. Optional Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1
Table 3-2. 8143 Jumper Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-2
Table 3-3. DIP Switch Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-3
Table 3-4. Bit Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-3
Table 3-5. 8143 Handshaking Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
S.i
REV.-A
3.1 GENERAL
This chapter describes the options available for the LQ-2550.
3.2 OPTIONAL INTERFACES
The LQ-2550 uses the 8100 series optional interfaces. The main optional interfaces are listed in Table
3-1.
Table 3-1. Optional Interfaces
Description
Cat. No.
Function
Buffer Size
Standard
Parallel
Interfaces
RS-232C
Current Loop
#8 172
32K
32 K-byte buffer parallel interface
#8 172M
128K
128 K-byte buffer parallel interface
Buffer Size
Flag Control
X-ON/OFF
Control
Max. Bit Rates
#8 143=
None
o
0
19200
#8 145
2K
o
x
9600
#8 148
2K/8K
o
0
19200
#8 149
32K
o
0
19200
#8 149M
128K
o
0
19200
Buffer Size
Function
Listen Only
Operation
Address
Operation
(BPS)
IEEE-488
#816 1
None
L
x/0
o
(G P-IB)
#8165
2K/8K
AH,L,DC
o
0
O... Available
X ... Not available *... Refer to section 3.2.1.
NOTES: 1. Refer to the “Optiorlal Interfaces Technical Manual” for details,
2. When optional interface is used, DIP switches 2-3 and 2-4 should be set at OFF. This means
that the printer interface is set to the parallel interface.
3-1
REV.-A
~-, .,
g
3.2.1 8143 Interface Board
When the RS-232C and 20 mA neutral current IOOP are in use, the printer will also SUPPOrt the 8143 ‘-”’
new serial interface.
Specifications
Synchronization
Asynchronous
Bit rate
75 to 19,200 B P S
Word length
1 bit
Start bit
Data bit
7 or 8 bit*
Odd, Even or Non-parity’
1 bit or more
Parity bit
Stop bit
Signal level (EIA level)
RS-232C
MARK = logical “1”’ (–3 to –27 V)
SPACE = logical “O” (+3 to +27 V)
MARK = logical “1” (current ON)
Current loop
SPACE = logical “O” (current OFF)
By REV (DTR) signal or X-ON/X-OFF code
Handshaking
(Signal polarity can be inverted by jumper setting.)
X Can be selected by DIP switch setting on the 8143 board.
NOTE: The parallel interface cable, if connected, should be disconnected before using the 8143 board
because parallel interface input is used to read jumper settings and DIP switch status.
Jumper Settings
Table 3-2 shows the 8143 interface jumper settings.
Table 3-2. 8143 Jumper Settings
Function
J1
I
J2
I
ON: “_lTY TXD” is pulled up to + 12V through 470 ohm resistor.
I ON: ‘TTY TXD RET”” is connected to signal ground.
ON: “TTY RXD” is pulled up to + 12V through 470 ohm resistor.
J4
ON: “TTY RXD RET” is connected to signal ground.
J5
I ON: “-DTR and DCD”’ are pulled up to + 12V through 4.7K ohm resistor.
ON
Selects input signal level
JC
JNOR
JREV
Selects polarity to disable
data entry
J
OFF
RS-232C level
OFF
JF
ON
OFF
Current loop level
ON
MARK (RS-232C)
SPACE (Current loop)
ON
Selects TTY TXD function
JX
I
——
JRS
—
I
J3
Outputs DTR flag
OFF
OFF
ON
SPACE (Rs-232C)
MARK (Current loop)
OFF
outputs
ON
signal
X - O N/ X - O F F
0
3-2
REV.-A
DIP Switch Settings
Table 3-3 shows the 8143 DIP switch settings, and Table 3-4 lists the bit rates selected by the DIP switch
settings. When a standard 8-bit parallel interface is used instead of the 8143 VF board , DIP switch
1-8 should be turned off.
Table 3-3. DIP Switch Settings
DIP SW
OFF
ON
Function
No.
1-1 (JB3)
Bit rate selection
See Table 3-4.
1-2 (J8/7)
Data length selection
7 bits
1-3 (JB 1)
Bit rate selection
See Table 3-4.
1-4 (JB2)
Bit rate selection
See Table 3-4.
1-5 (JOIE)
Parity selection
Even
Odd
(JPDS)
Parity selection
Enabled
Disabled
1-7 (JB4)
Bit rate selection
See Table 3-4.
1-8 (P/S)
# 8143 l/F selection
Enabled
1-6
8 bits
Disabled
Table 3-4. Bit Rate Selection
Bit Rate
SW1-7
Swl-1
SW1-4
SW1-3
Bit Rate
SW1-7
Swl-1
SW1-4
SW1-3
(BPS)
(JB4)
(JB3)
(JB2)
(JB1)
(BPS)
(JB4)
(JB3)
(JB2)
(JB1)
75
ON
ON
ON
ON
1,800
OFF
ON
ON
ON
110
ON
ON
ON
OFF
2,400
OFF
ON
ON
OFF
134.5
ON
ON
OFF
ON
4,800
OFF
ON
OFF
ON
150
ON
ON
OFF
OFF
9,600
OFF
ON
OFF
OFF
200
ON
OFF
ON
ON
19,200
OFF
OFF
ON
ON
300
ON
OFF
ON
OFF
19,200
OFF
OFF
ON
OFF
600
ON
OFF
OFF
ON
19,200
OFF
OFF
OFF
ON
1,200
ON
OFF
OFF
OFF
19,200
OFF
OFF
OFF
OFF
NOTE: In the current loop operation, normal data transfer cannot be guaranteed at a bit rate greater
than 1200 BPS.
Handshaking Timing
The handshake controls are shown in Table 3-5.
Table 3-5. 8143 Handshaking Control
I
Transmission ~
Possible
Impossible
Flag
X-ON/OFF Control
~ Resets when the vacant area of the input
! buffer is over 512 bytes.
..-. —— ~ Sets when the vacant area of the input buffer
Sends X-ON when the vacant area of the input
I is 256 bytes or iess.
Error Handling
Errors are processed as follows:
Parity error:
an asterisk ‘“x” is printed,
Overrun error:
ignored.
Framing error:
ignored.
3-3
buffer reaches 512 bytes.
Sends X-OFF when the vacant area of the
T
I input buffer reaches 256 bytes.
REV.-A
CHAPTER 4
DISASSEMBLY, ASSEMBLY,
AND ADJUSTMENT
4.1 GENERAL REPAIR INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. -1
4.2 DISASSEMBLY AND ASSEMBLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. -5
4.2.1 Printhead Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . . . . . . . . . . . . . . . . . 4-6
.
4.2.2 Upper Case Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-7
. -8
4.2.3 Push Tractor Unit Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2.3.1 Push Tractor Unit Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-8
4.2.3.2 Push Tractor Unit Disassembly . . . . . . . . . . . . . . . . . . . . . . 4-9
.
4.2.4 Circuit Board Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-10
4.2.4.1 ROMA Control Board Removal . . . . . . . . . . . . . . . . . . . . . . . 4-10
4.2.4.2 ROPS/ROPSE Power Supply Board
Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
4.2.4.3 Control Panel Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-12
4.2.4.4 Case Open Sensor Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-12
4.2.4.5 Battery Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
4.2.4.6 Cooling Fan Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 -14
4.2.5 Printer Mechanism Disassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
4.2.5.1
Printer Mechanism Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
4.2.5.2
Color Select Unit Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16
4.2.5.3
Cartridge Base Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17
4.2.5.4
Cable Removal (Front Head Cable, Rear
Head Cable, Color Select Cable) . . . . . . . . . . . . . . . . . . . . . 4-18
4.2.5,5
Paper Tension Assembly Removal ................ 4-19
4.2.5,6
Carriage Motor Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20
4.2.5.7
Paper Feed Motor Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
4.2.5.8
Platen Gap Motor Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-22
4.2.5.9
Head Fan Motor Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-23
4.2.5.10 Platen Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
4.2.5.11 Carriage Home Position Sensor Removal ... 4-25
4.2.5.12 Paper End Sensor Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
4.2.5.13 Platen Gap Home Position Sensor
Assembly Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
4.2.5.14 Paper Width Sensor Removal . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
o-i
REV.-A
4.2.5.15 Paper Release Solenoid Assembly
.
Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-28
4.2.5.16 Paper Loading Trigger Assembly Removal. 4-30
4.2.5.17 Paper Thickness Sensor Assembly
.
Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-32
4.2.5.18 Paper Guide Plate Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-33
4.2.5.19 Paper Holding Roller Assembly Removal.... 4-34
4.2.5.20 Left Frame Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 -35
4.2.5.21 Paper Feed Roller Assembly Removal . . . . . . . . . . 4-37
4.2.5.22 Timing Belt Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 -38
...
4 . 3 A D J U S T M E N T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-39
4.3.1
Timing Belt Tension Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40
4.3.2
Paper Feed Motor Backlash Adjustment . . . . . . . . . . . . . . . . . . . . . . 4-41
4.3.3
Parallelism Adjustment Between Carriage Guide
.
Shaft B and Platen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-42
4.3.4
Platen Gap Home Position Sensor Mounting
.
Position Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-44
4.3.5
Platen Gap Initial Value Write Operation . . . . . . . . . . . . . . . . . . . . . 4-46
4.3.6
Bi-directional Printing Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-47
TABLE OF FIGURES
Figure 4-1.
External View of LQ-2550 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. -1
Figure 4-2.
Transport Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-2
.
Figure 4-3.
Printhead Protector and White Foam Packing
.
Material Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-2
Figure 4-4.
Printer Disassembly Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Figure 4-5.
.
Printer Covers Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-6
Figure 4-6.
Printhead Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Figure 4-7.
Upper Case Removal (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Figure 4-8.
Upper Case Removal (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
.
Figure 4-9.
Main Components Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Figure 4-10. Push Tractor Unit Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Figure 4-11. Push Tractor Unit Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .4-8
Figure 4-12. Left Tractor Assembly Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Figure 4-13. Tractor Assembly Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-9
.
Q-ii
i
;,, *
REV.-A
Figure 4-14. ROMA Board Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
Figure 4-15. ROPS/ROPSE Board Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-11
Figure 4-16. Control Panel Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. -12
Figure 4-17. Case Open Sensor Removal (Back of Base Frame) . . . 4-12
.
Figure 4-18. Battery Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-13
.
Figure 4-19. Base Plate Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-14
. -14
Figure 4-20. Ground Screws Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
.
Figure 4-21. Cooling Fan Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-14
.
Figure 4-22. Connector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-15
Figure 4-23. Printer Mechanism Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 -15
Figure 4-24. Color Select Unit Removal (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-16
Figure 4-25. Color Select Unit Removal (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-16
Figure 4-26. Cartridge Base Removal (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 -17
Figure 4-27. Cartridge Base Removal (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 -17
..
Figure 4-28. Cable Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
Figure 4-29. Cable Holder B and Connector Removal
.
(Back of Base Frame) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-18
Figure 4-30. Front Head Cable, Rear Head Cable, and Color
Select Cable Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
Figure 4-31. Paper Tension Assembly Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-19
Figure 4-32. Belt Driven Pulley Screw Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20
. -20
Figure 4-33. Carriage Motor Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4-34. Paper Feed Motor Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-21
Figure 4-35. Platen Gap Motor Screw Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-22
Figure 4-36. Platen Gap Motor Removal (Back of Base Frame).... 4-22
Figure 4-37. Head Fan Motor Connector Removal
(Back of Base Frame) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23
Figure 4-38. Ribbon Drive Assembly Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-23
Figure 4-39. Head Fan Motor Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23
..
Figure 4-40. Platen Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
Figure 4-41. Carriage Home Position Sensor Removal . . . . . . . . . . . . . . . . . . . . . 4-25
Figure 4-42. Paper End Sensor Removal
(Rear of Printer Mechanism) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 -25
Figure 4-43. Platen Gap Home Position Sensor Assembly
Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 4-26
Figure 4-44. Paper Width Sensor Connector Removal
(Back of Carriage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
Figure 4-45. Paper Width Sensor Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
Figure 4-46. Paper Release Lever Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28
o-iii
REV.-A
Figure 4-47. Paper Release Solenoid Assembly Removal . . . . . . . . . . . . . . . . 4-28
. -29
Figure 4-48. Path of Sensor Lead Wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4-49. Positional Relationship Between Release Planetary
Lever and Release Trigger Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
Figure 4-50. Positional Relationship Between Paper Release
Lever and Paper Release Support Lever . . . . . . . . . . . . . . . . . . . . . . . 4-29
Figure 4-51. Paper Loading Trigger Assembly Removal .................. 4-30
Figure 4-52. Path of Sensor Lead Wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 -30
Figure 4-53. Paper Loading Lever, Loading Gear A, Loading
Gear Assembly Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-31
Figure 4-54. Loading Planetary Gear Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-31
Figure 4-55. Paper Thickness Sensor Assembly Removal (1)
(Back of Base Frame) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-32
...
Figure 4-56. Paper Thickness Sensor Assembly Removal (2) ........ 4-32
Figure 4-57. Paper Guide Plate Spring Removal
(Back of Base Frame) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-33
.
Figure 4-58. Paper Guide Plate Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-33
Figure 4-59. Paper Guide Plate Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 -33
Figure 4-60. Paper Holding Roller Assembly Removal . . . . . . . . . . . . . . . . . . . . . 4-34
Figure 4-61. Left Frame Removal (l).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .4-35
..
Figure 4-62. Left Frame Removal (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-35
.
Figure 4-63. Printer Mechanism with Left Frame Removed .......... 4-35
Figure 4-64. Leaf Spring Mounting Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-36
Figure 4-65. Platen Gap Gear Assembly Installation . . . . . . . . . . . . . . . . . . . . . . . . 4-36
Figure 4-66. Paper Feed Spring Removal (Back of Base Frame) . . . 4-37
Figure 4-67. Paper Feed Roller Assembly Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37
Figure 4-68. Timing Belt Removal (1) (Back of Base Frame) . . . . . . . . . . 4-38
->,,
f-....-“,’
Figure 4-69. Timing Belt Removal (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38
Figure 4-70. Timing Belt Fixation (Back of Base Frame) ................. 4-38
Figure 4-71. Printer Adjustment Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 -39
Figure 4-72. Timing Belt Tension Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-40
Figure 4-73. Paper Feed Motor and Paper Feed Reduction Gear
Backlash Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-41
Figure 4-74. Paper Width Sensor and Ribbon Mask Holder
...
Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-43
Figure 4-75. Platen Gap Motor Gears Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-43
Figure 4-76. Dial Gauge Base and Dial Gauge Positions and
Names of Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-43
:. .
4-iv
REV.-A
Figure 4-77. Head Adjustment Lever Mounting Position
Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-43
. -45
Figure 4-78. Platen Gap Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4-79. Extension Cable E649 Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-45
Figure 4-80. Platen Gap Gear Mounting Position Adjustment . . . . . . 4-45
Figure 4-81. Platen Gap Initial Value Write Sequence . . . . . . . . . . . . . . . . . . . . . 4-46
Figure 4-82. Bi-directional Printing Alignment Value
.
Adjustment Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-46
Figure 4-83. Bidirectional Printing Alignment Sequence . . . . . . . . . . . . . . . . 4-48
LIST OF TABLES
Table 4-1.
Repair Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Table 4-2.
Measuring Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
. -3
Table 4-3.
Lubricants and Adhesive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-3
Table 4-4.
Abbreviations for Small Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-4
Table 4-5.
Screw Types and Abbreviated Part Names . . . . . . . . . . . . . . . . . 4-4
4-v
REV.-A
4.1 GENERAL REPAIR INFORMATION
This chapter describes the disassembly, assembly, and adjustment procedures for replacing any of the
main components of the LQ-2550. Figure 4-1 shows the external view of the LQ-2550.
Sheet Guide
Guide
idge Cover
Knob
Printer Cover
Push Tractor
Paper Supprot
/
/
/
/Printhead
Roller Shaft
/
/
Gro~nd Connector
Parallel Interface
/
Po;er Switch
/
/
P1’aten Paper Guide
AC Inlet
Figure 4-1. External View of LQ-2550
4-1
REV.-A
DANGER
. Prior to beginning the disassembly, assembly, and adjustment procedures, be sure to
disconnect the AC power cord and the interface cable.
● Wear aloves to Protect your hands from being CUt.
WARNING
B When disassembling and checking the printer, remove the protective materials inside of the
printer. Removal of the protective materials can be performed by reversing the order of
installation. (Refer to Figures 4-2 and 4-3.)
● For transportation, the protective parts should be installed in the printer as follows:
1. Secure the two transport screws.
2. Slide the printhead all the way to the left, then insert the printhead protector between
the platen and the paper holding roller shaft.
3. Install the three pieces of white foam packing material.
Figure 4-2. Transport Screws
White Foam Packing Material
Printhead Protector
*
w
Papef
Figure 4-3. Printhead Protector and White Foam Packing
Material Installation
4-2
REV.-A
The tools, measuring instruments, and lubricants listed in Tables 4-1 through 4-3 are recommended
for use when disassembling and repairing the printer.
Table 4-1. Repair Tools
Designation
Part No.
Availability
Class
Phillips screwdriver #2
Phillips screwdriver #1
Box driver (7 mm across)
Round nose pliers
Diagonal cutting nipper
Tweezers
E-ring holder #2
E-ring holder #3
E-ring holder #5
E-ring holder #6
E-ring holder #8
Brush #1
Brush #2
Cleaning brush
Hexagonal wrench (3 mm across)
Tension gauge (7000 g) #E668
Thickness gauge (1.2 mm) #E667
Adjustment Cartridge #E658
Dial gauge #E 672
Dial gauge base #E 671
Extension cable #E 649
B743800200
B743800 100
B74 1700200
B740400 100
B740500 100
B64 1000100
B740800300
B740800500
B740800700
B740800800
B74080 1000
B74 1400200
B74 1400100
B74 1600100
o
0
0
0
0
0
o
o
o
o
0
0
0
0
B777200301
B77670150 1
Y499035020
B7651 11401
B7651 11801
B765 109801
:
@
@
@
@
@
A
A
A
A
A
A
A
A
A
A
A
B
B
B
A
A
A
A
A
A
A
Availability
Class
O: Commercially available tool
A: Mandatory
@: EPSON exclusive tool
B: Recommended
Table 4-2. Measuring Instruments
Designation
Oscilloscope
Multi meter
Specification
Class
20 MHz or more
B
A
A: Mandatory
B: Recommended
Table 4-3. Lubricants and Adhesive
Classification
Oil
Grease
Grease
Adhesive
Designation
o-2
G-2
G-27
Neji lock #2 (G)
Capacity
40
40
40
1000
cc
g
g
g
Availability
@
@
@
@
@: EpSON
Part No.
B7 10200001
B70020001 1
B702700001
B730200200
exclusive product
After disassembly, assembly, and adjustment, be sure to perform lubrication, adhesive application,
cleaning, and inspection, as indicated in Chapter 6, to maintain optimal printer performance.
4-3
REV.-A
‘+$
[“
Small parts are described using the following abbreviations.
Table 4-4. Abbreviations for Small Parts
.
Part Name
Abbreviation
Cup Screw
Cross-Bind-head screw
Cross-Bind-head with Outside-toothed washer
Cross-Bind-head B-tight
Cross-Bind-head S-tight
Cross-Bind-head S-tight with Outside-toothed washer
Cross-Pan-head with Spring washer
Cross-Pan-head S-tight with Outside-toothed washer
Cross-Pan-head S-tight with Plain washer
Cross-Pan-head with Outside-toothed washer
Cross-Pan-head with Plain washer
Hexagon Nut with Outside toothed lock washer
Plain Washer
Leaf Spring
Retaining ring type-E
Cs
CB
CBO
CBB
CBS
CBS (0)
CPS
CPS (o)
CPS (P)
CP (o)
CP (P)
HNO
Pw
LS
RE
Table 4-5 describes the relationship between the form of screw and its abbreviated part name.
Table 4-5. Screw Types and Abbreviated Part Names
Side
Top
cross–recessed head 1.~ind
e
1.~lain washer
1 .~ormal
@#a
0=
@
,~lotted head
Washer
(~ bled)
B(xiy
Head
0= 2.
!&tight
(with Ijotch)
~,, i/\, ,\:.:,,II
I
R$!!!lMo
[email protected] toothed
lock washer
2.~an
‘G
0=
~
3.Qp
4.~appin9
Ql=
3.~pring washer
mo (@&J
I
@
4.~russ
MIM!!?W
b
4-4
REV.-A
4.2 DISASSEMBLY AND ASSEMBLY
This section describes the procedures for disassembling the main components of the LQ-2550 printer,
with illustrations. The disassembled components are reassembled by simply performing the disassembly operation in reverse sequence. Assembly procedures, therefore, have been omitted. However,
special notes for assembly are labeled “ASSEMBLY POINT.” For assembly and disassembly procedures
which require adjustments, the necessary adjustments are indicated by “ADJUSTMENT REQUIRED.”
Refer to Figures A-55, A-56 and A-57, which are exploded diagrams of the LQ-2550 and the printer
mechanism.
WARNING
● Read Section 4.1, General Repair Information, before disassembling the printer.
. Remove the paper and the ribbon cartridge when disassembling the printer.
h
1
The disassembly sequence in this section is grouped into five parts: (1) removal of the printhead, (2)
removal of the upper case, (3) removal of the tractor unit, (4) removal of the circuit boards, and (5)
disassembly of the printer mechanism.
This sequence is shown in Figure 4-4.
START
i)
Power Cord, Interface cable,
Paper Removal
w
Printer Cover Removal
(Refer to Section 4.2.2 Upper
Case Removal.)
P+
=2
4.2.2
4 .2.1
4-7
Upper Case Removal
I
4.2.3.1
I
4-6
==t=l
I
Printhead Removal
4.8
Push Tractor Unit
Removal
I
I 14.2.4.3 I 4.12 I
Control Panel
Removal
I
I
Cooling Fan
Removal
I
Figure 4-4. Printer Disassembly Procedures
4-5
c
REV.-A
!y,
-.,,.,. .
4.2.1 Printhead R e m o v a l
Step 1: Remove the two printer covers.
Step 2: Remove the two screws CS(M3X 6) securing the printhead.
Step 3: Disconnect the printhead connector by lifting the printhead, and remove the printhead.
- p r i n t e r ~over
Figure 4-5. Printer Covers Removal
Cs
(M3x 6)
A
. Printhead
Figure 4-6. Printhead Removal
-.
~
.,. ..
4-6
REV.-A
4.2.2 Upper Case Removal
Step 1: Pull out the paper feed knob.
Step 2: Remove the two printer covers. (Refer to arrows @ through @.)
Step 3: Remove the cartridge cover.
Step 4: Remove the platen paper guide by turning it toward you.
Step 5: Remove the three screws CBB(M4 X 12) securing the upper and lower cases.
Step 6: Lift the front edge of the upper case and move it backward.
Step 7: Disconnect connector CN21 on the ROMA board, and remove the upper case.
‘pTcase “at7paperGuide
Printer Cover
@
/.
Cartridge Cover
Prin ,ter Cover
PaDer Feed Knob
CBB ~M4 X 12)
Figure 4-8. Upper Case Removal (2)
Figure 4-7. Upper Case Removal (1)
Figure 4-9 shows the arrangement of the main components of this printer as seen after removing the
upper case.
ROPS Board
(Power Supply Board)
\
ROMA BOARD
(Control Board)
,
/- Push Tractor Unit
Printer
Mechanism
Figure 4-9. Main Components Arrangement
4-7
REV.-A
*
:,
f--- ~
4.2.3 Push Tractor Unit Removal
The push tractor unit should be removed before removing the circuit boards and the printer mechanism from the lower case.
4.2.3.1 Push Tractor Unit Removal
Step 1: Remove the upper case. (Refer to Section 4.2.2.)
Step 2: Remove the two screws CBS(M3 X 6) securing the push tractor unit to the printer mechanism.
Step 3: Remove the push tractor unit.
:
t . .“9
Figure 4-10. Push Tractor Unit Removal
ASSEMBLY POINT:
● Mount the push tractor unit as shown in Figure 4-11.
CBS (M3x6)
/’
/(
@
Push Tractor Unit
.
..
r
Paper Guide
c)
w
//
@
/ / ‘;~] ‘LJ
//
,-U
\/
4’
4
.- -----. =
//
,//
/’
/’ /
Shaft
Dowel
/
.
Figure 4-11. Push Tractor Unit Mounting
4-8
REV.-A
4.2.3.2 Push Tractor Unit Disassembly
This section describes the removal of the left tractor assembly.
Step 1: Remove the left shaft holder inward from the left tractor frame.
Step 2: Remove the nut HNO(M4) and the screw CPS(M3 X 6) from the left side of tractor frame, then
remove the frame.
Step 3: Remove the E-ring RE(5) from the shaft.
Step 4: Push the tractor lock lever backwards, and remove the left tractor a~embly from the shafts.
Tractor
RE (5),
HNO (M4)————J
h
CPS
(M3X 6) ~
\
Tractor Frame
I
Figure 4-12. Left Tractor Assembly Removal
ASSEMBLY POINT:
● When mounting the tractor assemblies on the shafts, set them so that the marks on the right and
left tractor frames are at the same positions. Make sure that the pins on the right and left tractor
belts are alighned (parallel).
4-9
REV.-A
:3,.,,
f.-, ,
4.2.4 Circuit Board Removal
The circuit boards control the printer mechanism, and consist of the ROMA control board and the
ROPS/ROPSE power supply board.
Removal of the control panel, the case open sensor, the battery, and the cooling fan are also described
in this section.
DANGER
i
1
Prior to disassembly of any of the main circuit components, be sure to first disconnect the
power cord and the interface cable.
4.2.4.1 ROMA Control Board Removal
Step 1: Remove the upper case. (Refer to Section 4.2.2.)
Step 2: Remove the push tractor unit. (Refer to Section 4.2.3. 1.)
Step 3: Disconnect connector CN22 from the ROMA board, which connects the ROMA board to the
ROPS/ROPSE board.
..
L
Step 4: Disconnect fourteen connectors CN15, CN 14, CN 13, CN 12, CN 11, CN 10, CN9, CN 16, CN8, ‘“
CN 19, CN20, CN 17, CN 18, and CN7 from the ROMA board, which connect the printer
mechanism to the ROMA board.
Step 5: Remove the shield plate and the DIP switch cover.
Step 6: Remove the three CBB(M3X 12) screws and two CPS(0)(M3 X 8) screws securing the ROMA
board to the lower case, then remove the ROMA board.
CPS (o)
(M3x8)
I
I
CBB
(M3X 12)
CN22
II
CPS (o)
(M3x8)
Shield Plate
AI
. DIP Switch
Cover
CN
( -.
15
ROMA Board
\
CN14—
CN 13
/
/
CN 12
CN”l 1
CN9 CN 1 0 CN”l 6
CN8
C N 1 9 CN20 C N 1 7
CN 18
CN7
Figure 4-14. ROMA Board Removal
...
4-10
REV.-A
ADJUSTMENT REQUIRED
● When the ROMA board is replaced, perform the following adjustment:
Section 4.3.6 Bi-directional Printing Alignment (Page 4-47)
● When the connector CN7 for the battery is disconnected, perform the following adjustment:
Section 4.3.5 Platen Gap Initial Value Write Operation (Page 4-46).
4.2.4.2 ROPS/ROPSE Power Supply Board Removal
Step 1: Remove the upper case. (Refer to Section 4.2.2.)
Step 2: Remove the push tractor unit. (Refer to Section 4.2.3.1.)
Step 3: Disconnect connector CN2 from the ROPS/ROPSE board, which connects the ROPS\ROPSE
board to the ROMA board.
Step 4: Disconnect connector CN 1 from the ROPS/ROPSE board, which connects the power switch
to the ROPS/ROPSE board.
Step 5: Remove the two CBB(M3X 12) screws and four CP(0)(M3X8) screws securing the ROPS/
ROPSE board to the lower case, and remove the ROPS/ROPSE board.
CBB
(M3x 12)
CN
CP (o)
(M3X 8)
CN2
1‘
CP (o) (M3x8)
ROPS/ROPSE
Board
CBB
(M3 x 12)
Figure 4-15. ROPS/ROPSE Board Removal
4-11
—.
REV.-A
:3
4.2.4.3 Control Panel Removal
( “.-
Step 1: Remove the upper case. (Refer to Section 4.2.2.)
Step 2: Remove the two screws CBB(M4X 12) securing the control panel.
Step 3: Disconnect the cable from the connector at the back of the control panel, which connects the
control panel to the ROMA board.
Step 4: Remove the control panel.
CBB
(M4 X 12) Connector
Control Panel
CBB
(M4 X 12)
Figure 4-16. Control Panel Removal
4.2.4.4 Case Open Sensor Removal
Step 1: Remove the upper case. (Refer to Section 4.2.2.)
Step 2: Remove the screw CBB(M3X 10) securing the case open sensor, then remove the case open
sensor.
Upper Case
-3..,
‘.’,
(’
..= .,
.CBB
(M3x 12)
Figure 4-17. Case Open Sensor Removal (Back of Base Frame)
4-12
REV.-A
4.2.4.5 Battery Removal
Step 1: Remove the upper case. (Refer to Section 4.2.2.)
Step 2: Disconnect connector CN7 on the ROMA board.
Step 3: Insert a slotted screwdriver into the groove of the lower case, then unlock the tab of the battery
case.
Step 4: Remove the battery together with the battery case.
CN7
I
Battery Case
Screwdriver
/
K1I!i
GI roow
Figure 4-18. Battery Removal
ADJUSTMENT REQUIRED
When connector CN7 for the battery is disconnected, perform the following adjustment:
Section 4.3.5 Platen Gap Initial Value Write Operation (Page 4-46)
ASSEMBLY POINT:
● When mounting the battery, push down the tab of the battery case with a slotted screwdriver so
that it can be smoothly inserted into the lower case.
4-13
REV.-A
4.2.4.6 Cooling Fan Removal
Step 1: Remove the upper case. (Refer to Section 4.2.2.)
Step 2: Remove the push tractor unit. (Refer to Section 4.2.3. 1.)
Step 3: Remove the ROMA board. (Refer to Section 4.2.4.1.)
Step 4: Ramove the ROPS/ROPSE board. (Refer to Section 4.2.4.2.)
Step 5: Remove the eight screws CPS(0)(M3 X 6) securing the ground plates, then remove the four
ground plates.
Step 6: Remove the screw CBO(M4 X 8) securing the ground terminal of the power cord.
Step 7: Remove the three screws CBB(M3 X 12) securing the base plate to the lower case.
CPS (o)
(M3X6)
- :,;.,>,
.,.
{.
,.
CPS (o)
(M3x6)
CBB (M3x 12)
CBB (M3x 12)
L
CBO (M4 X 6)
Base Plate
Groun~ Plate
Power Cord
Figure 4-19. Base Plate Removal
Remove the two ground screws CPS(0)(M3 X 6) at the rear of the printer, then remove the
base plate.
Step 9: Tear off the three pieces of tape fixing the cooling fan wires to the lower case.
Step 10: Remove the two screws CBB(M4 X 12) securing the fan adapter to the lower case.
Step 1 1: Lift the cooling fan together with the fan screen and fan adapter, and remove them.
Step 8:
CPS (0) (M3x 6)
Figure 4-20. Ground Screws Removal
Tape
Lead Wire
I
Cooling Fan
Fan Screen
Fan Adapter
CBB
(M4 X 12)
Figure 4-21. Cooling Fan Removal
..
I
,.
4-14
REV.-A
4.2.5 Printer Mechanism Disassembly
This section describes the procedures for disassembling the main components of the printer
mechanism. Refer to Figures A-56 and A-57 in the appendix during assembly.
Printer Mechanism Removal
Remove the upper case. (Refer to Section 4.2.2.)
Remove the push tractor unit. (Refer to Section 4.2.3. 1.)
Disconnect twelve connectors CN 15, CN 13, CN 12, CN 11, CN 10, CN9, CN 16, CN8, CN 19,
CN20, CN 17 and CN 18 from the ROMA board, which connect the printer mechanism to the
ROMA board.
Step 4: Remove the eight screws CPS(0)(M3X 6) securing the ground plates, then remove the four
ground plates. (See Figure 4-1 9.)
Step 5: Remove the five screws CB(M4 X 6) securing the printer mechanism to the lower case.
Step 6: Remove the printer mechanism.
4.2.5.1
Step 1:
Step 2:
Step 3:
.ROMA Board
CN15
CN 13
CN 12
~N1( CJ9
c~l$’J16
CN8
/
CN19
I
\
CN20
\
CN17
\
CN 18
Figure 4-22. Connector Locations
CB (M4x6) -
Printer
Mechanism
>CB (M4 X 6)
{
CB (M4X 6)
Figure 4-23. Printer Mechanism Removal
ADJUSTMENT REQUIRED
● When the printer mechanism, is removed or replaced, perform the following adjustment:
Section 4.3.5 Platen Gap Initial Value Write Operation (Page 4-46)
● When the printer mechanism is replaced, perform the following adjustment:
Section 4.3.6 Bi-directional Printing Alignment (Page 4-47).
4-15
REV.-A
4.2.5.2 Color Select Unit Removal
Step 1: Remove the front side of the printer cover.
Step 2: Turn the lever on the color select unit counterclockwise 90 degrees to unlock the color
select unit.
Step 3: Remove the color select unit by lifting it straight up.
Lever
Color Se
.
,.
t.-J
Figure 4-24. Color Select Unit Removal (1)
Color Select Unit
c. ,-. ,
,’
Figure 4-25. Color Select Unit Removal (2)
4-16
REV.-A
4.2.5.3 Cartridge Base Removal
Removal of the cartridge base is useful when removing the head cables, the head fan motor, and the
paper width sensor.
WARNING
When removing the cartridge base, be careful not to snap the tabs.
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5.1.)
Step 2: Remove the printhead. (Refer to Section 4.2.1.)
Step 3: Remove the screw CB(M4X8) securing the cartridge base to the carriage.
Step 4: Release the three tabs at the back of the cartridge base, then remove the cartridge base by
lifting it straight up.
1
1
I
Tab
\
Figure 4-26. Cartridge Base Removal (1)
Tab
‘ T w e e z e r s
Figure 4-27. Cartridge Base Removal (2)
4-17
REV.-A
4.2.5.4 Cable Removal (Front Head Cable, Rear Head Cable, Color Select Cable)
WARNING
● When removing the cables from the two tabs of the carriage, be careful not to disconnect
the cables.The three cables should be put together as shown in Figure 4-28 for assembly.
. If they are put together incorrectly. the printer mechanism will not operate.
@ ‘..... Fold front and rear head cables and put them together. Then mount them to the
carriage with rear head cable on top.
@ . . . . . . Bind the three cables together and fold them.
~ - ZColor
,—
Select
Cable
R\
Figure 4-28. Cable Binding
Step
Step
Step
Step
1:
2:
3:
4:
Step 5:
Step
Step
Step
Step
Cable
6:
7:
8:
9:
Remove the printer mechanism. (Refer to Section 4.2.5.1.)
Remove the printhead. (Refer to Section 4.2. 1.)
Remove the cartridge base. (Refer to Section 4.2.5.3.)
Remove cable holders A and B, then draw out the three cables, the front head cable, rear head
cable, and color select cable, from the cutout in the base frame.
Place the carriage over the cutout in the base frame, then disconnect the two connectors from
the back of the base frame.
Remove the color select unit. (Refer to Section 4.2.5.2.)
Loosen the three cables from the two tabs of the carriage.
Remove the screw CPS(M3X 6) securing the color select cable, and remove the cable.
Remove the front and rear head cables.
Rear Head Cable
Front Head Cable
Connector
Cable Holder B A
cutout
\
Tab
/
.
f
-.. .
-CPS
(M3X 6)
Color Se’lect Cable
Figure 4-29. Cable Holder B and Connector
Removal (Back of Base Frame)
Figure 4-30. Front Head Cable, Rear Head
Cable, and Color Select Cable Removal
ASSEMBLY POINT:
● Verify that the cables do not touch the left frame or the back of the carriage when moving
the carriage to the left end.
,
4-18
REV.-A
4.2.5.5 Paper Tension Assembly Removal
WARNING
● Confirm that the paper release lever is in the friction position (backward setting).
● When removing the two screws securing the paper tension assembly to the right and left
frames, take care not to drop the plain washers PW(3-O.54.8) inserted between the paper
tension assembly and both frames.
Step 1: Remove the upper case. (Refer to Section 4.2.2.)
Step 2: Remove the two screws CPS(M3X8) securing the paper tension assembly to the right and left
frames, and remove the paper tension assembly.
CPS
(M3X8)
/
- Paper Tension Assembly
-CPS
(M3X 8)
Figure 4-31. Paper Tension Assembly Removal
4-19
REV.-A
4.2.5.6 Carriage Motor Removal
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5.1.)
Step 2: Remove the screw CBS(0)(4X12) securing the belt driven pulley mounting plate, then release
the timing belt from the belt drive pulley at the rear of the carriage motor.
Step 3: Remove the two screws CPS(M3X8) securing the carriage motor to the base frame.
Step 4: Remove the CPS(0)(M3X 8) screw for the motor ground wire from the base frame.
Step 5: Remove the carriage motor.
CBS (0)
(M4X 12)
~ Belt Drive
Pulley
Timing Belt
Carriage Mot
Figure 4-32. Belt Driven Pulley Screw Removal
Carriage Motor
Motor Ground Wire
CPS (o)
(M3X8)
-CPS
(M3x 8)
Figure 4-33. Carriage Motor Removal
ADJUSTMENT REQUIRED
When the carriage motor is removed, perform the following adjustments:
● Section 4.3.1 Timing Belt Tension Adjustment (Page 4-40)
● Section 4.3.6 Bi-directional Printing Alignment (Page 4-47)
4-20
REV.-A
4.2.5.7 Paper Feed Motor Removal
1
WARNING
When removing the paper feed motor, the tractor transmission gear spring may fly out. Be
careful not to lose it.
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5.1.)
Step 2: Remove the two screws CPS(M3X8) securing the paper feed motor, and remove the motor.
13x 8)
Feed
(M3X8)
Figure 4-34. Paper Feed Motor Removal
ADJUSTMENT REQUIRED
When the paper feed motor is replaced, perform the following adjustment:
Section 4.3.2 Paper Feed Motor Backlash Adjustment (Page 4-4 1)
4-21
REV.-A
4.2.5.8 Platen Gap Motor Removal
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5. 1.)
Step 2: Remove the two screws CPS(M3 X 8) securing the platen gap motor.
If the platen gap home position flag prevents the motor securing screw from being
removed, manually rotate the platen gap reduction gear so that the screw can be removed.
NOTE: Do not hold the platen gap home position flag to rotate the gear.
Step 3: Remove the wire clamp fixing the lead wires of the platen gap motor from the base frame.
Step 4: Take out the platen gap motor through the cutout at the back of the base frame, then separate
the lead wires from the motor by disconnecting the connector. (The lead wire is supplied
independently of the platen gap motor. The motor lead wire is included in the platen gap home
position sensor assembly.)
[~.
-.
Platen Gap Reduction Gear
I
Platen Gap
Home Position
Sensor
v
CPS (M3x8)
\
Platen Gap Home Position Flag
Figure 4-35. Platen Gap Motor Screw Removal
.+
n
(-,
Connector
u
●
●
*
m
8
m
..
2
+
~ f;\
-1
cutout
.;,a., ,
!
f
;
:;i”: “;’
“
~ [
A. I
Figure 4-36. Platen Gap Motor Removal (Back of Base Frame)
4-22
REV.-A
4.2.5.9 Head Fan Motor Removal
WARNING
When shifting the ribbon drive assembly, be careful not to cause unnecessary stress at the
point where the lead wires come out from the head fan motor.
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5. 1.)
Step 2: Remove the printhead. (Refer to Section 4.2. 1.)
Step 3: Remove the cartridge base. (Refer to Section 4.2.5.3.)
Step 4: Place the carriage over the cutout in the base frame, and disconnect the two connectors of
the head fan motor and the paper width sensor at the back of the base frame.
Step 5: Loosen the lead wires of the head fan motor and the paper width sensor from the hooks of
the ribbon drive assembly and the carriage.
Step 6: Remove the screw CPS(M3X 6) securing the ribbon drive assembly, then shift the assembly
in the direction of the arrow.
steD 7: Remove the screw CPS(M3 X 61 securima the head fan motor and remove the motor.
“ Connector of
Connector
of
Head Fan Motor Paper Width Sensor
‘ ‘
CPS (M3 X 6)
Ribbon Drive Assembly
Citout
Figure 4-37. Head Fan Motor Connector
Figure 4-38. Ribbon Drive Assembly Removal
Removal (Back of Base Frame)
Head Fan Motor
/
Ribbon Drive
Assembly
Figure
CPS (M3 X 6)
4-39. Head Fan Motor Removal
4-23
REV.-A
.,
e
1 ...,
4.2.5.10 Platen Removal
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5.1.)
WARNING
Confirm that the paper release lever is in the friction position (backward setting).
Step 2: Remove the paper tension assembly. (Refer to Section 4.2.5.5.)
Step 3: Remove the paper feed motor. (Refer to Section 4.2.5.7.)
Step 4: Remove the paper feed reduction gear.
Step 5: Rotate the platen and pass a screwdriver through the cutout in the platen gear, then remove
the screw CPS(M3 X 8) securing the shaft holder at the right frame side.
Step 6: Remove the E-ring RE(8) from the platen shaft at the left frame side.
Step 7: Shift the whole platen shaft to the right, then remove the right side of the shaft holder
outward.
Step 8: Remove the platen with the gears and other related parts attached.
NOTE: It is unnecessary to remove the left side of the shaft holder.
R: (8)
I
I
I
-
-s.”””
I
/2---’-1
k .-‘
PaDer Release Lever
Shaft Holder
(right side)
7
Y/
/’
‘7;
Plate~ Gear
\
\
.%
‘.;
f
....>
Figure 4-40. Platen Removal
ADJUSTMENT REQUIRED
● When the platen is removed, perform the following adjustment:
Section 4.3.2 Paper Feed Motor Backlash Adjustment (Page 4-4 1)
. When the platen is replaced, perform the following adjustments:
Section 4.3.4 Platen Gap Home Position Sensor Mounting Position Adjustment (Page 4-44)
Section 4.3.5 Platen Gap Initial Value Write Operation (Page 4-46)
:’
. . . ,.. ’
4-24
REV.-A
4.2.5.11 Carriage Home Position Sensor Removal
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5.1.)
Step 2: Separate the cable from the carriage home position sensor by disconnecting the connector.
NOTE: The carriage home position sensor and the home position sensor cable are supplied
as separate after service parts.
Step 3: Press the two tabs securing the carriage home position sensor, and remove the sensor.
,(
.
..
.,.,
.:+.:.2<,.
“.,
..F.
&
.
.
.-
.
.
,:*,: *,
,, .% ,:
:.,:,L,, ....,&,,.,&,,.
-’
.
.-,-, .,
. .-& .,.,:*~,~,
‘;..,,:;.’
.#,te;?:t,
‘:’:: ’’”~;’-. ::,”
.,:’:
,+?.,..
:
...’
.,. .,
.,1:.7:, : ,.
.. .’!”.
. . .
,
‘“”
’”:’;
U&, ..-
Carriage Ho~~ Position Sensor
Figure 4-41. Ca~??age Home PosNlon Sensor Removal
4.2.5.12 Paper End Sensor Removal
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5.1.)
Step 2: Loosen the two bends securing the paper end sensor to the paper guide at the rear of the printer.
Step 3: Remove the paper end sensor.
Paper End Sensor Bend
~
paper Guide
Figure 4-42. Paper End Sensor Removal (Rear of Printer Mechanism)
ASSEMBLY POINTS:
● Confirm that the paper end sensor is securely fixed to the paper guide by the two tabs.
● Verify that the sensor lever operates smoothly without touching the paper guide.
. Pass the lead wires of the paper end sensor through the cutout in the base frame, and fix them to
the wire clamp.
4-25
REV.-A
%
{:.
The platen gap home position sensor assembly includes the lead wires from the platen gap motor. ‘“
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5. 1.)
Step 2: Disconnect the connector for the platen gap motor at the back of the base frame.
4.2.5.13 Platen Gap Home Position Sensor Assembly Removal
Step 3: Remove the screw CPS(P)(M3X 8) securing the platen gap home position sensor, then remove
the platen gap home position sensor assembly.
CPS (P)
(M3x8)
Platen Gap
Home Position
Sensor
Connector’ for
Platen Gap Motor
Figure 443. Platen Gap !iome Position Sensor Assembly Removal
ADJUSTMENT REQUIRED
When the platen gap home position sensor mounting position is shifted, perform the following
adjustment:
Section 4.3.4 Platen Gap Home Position Sensor Mounting Position Adjustment (Page 4-44)
f’-’
k... .-
.
4-26
,.
REV.-A
4.2.5.14 Paper Width Sensor Removal
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5. 1.)
Step 2: Remove the printhead. (Refer to Section 4.2.1.)
Step 3: Remove the cartridge base. (Refer to Section 4.2.5.3.)
Step 4: Place the carriage over the cutout in the base frame, then disconnect the connector for the
paper width sensor from the back of the base frame.
Step 5: Remove the screw CB(M2.5X5) securing the paper width sensor and remove the sensor.
Figure 444. Paper Width Sensor Connector Removal (Back of Carriage)
-.:L
Paper Width=
Sensor
;B2.5X5)
—
Figure 4-45. Paper Width Sensor Removal
4-27
REV.-A
. :. ,,
P
.., ,-,...:
4.2.5.15 Paper Release Solenoid Assembly Removal
WARNING
When mounting the sensor, the stud should be fixed in the frame hole. Otherwise paper
release mechanism will not function correctly.
Step 1: Remove the printer mechanism. (Refer to Section 4,2,5,1,)
Step 2: Remove the paper tension assembly. (Refer to Section 4.2.5.5.)
Step 3: Remove the paper feed motor, being careful not to lose the spring at the rear of the motor.
(Refer to Section 4.2.5.7.)
Step 4: Remove the paper feed reduction gear and the platen. (Refer to Section 4.2.5 .10.)
Step 5: Remove the tractor transmission gear and the paper release lever by pushing the loading
trigger plate in the direction of the arrow.
Step 6: Remove the two screws CB(M2X8) and CPS(M3X8) securing the paper release solenoid
assembly (one is for sensor and the other is for solenoid), then remove the paper release
solenoid assembly (sensor and solenoid).
Paper Release Lever
“Tractor Transmission Gear
Loading Trigger Plate
Figure 446. Paper
Release Lever Removal
c
-.-’
Release Trigger Plate
se”,:”’”””’”
Paper Releaae
Planetary Lever
\
\
w/
==’~ea
%CPS (M3x8)
\ .
CB [M2x8)
2
#
- ““” k’
.
&
,, .7
\
Release Sun Gear
Paper Release Lever
—. /Tractor Transmission Gear
Paper Feed Motor
~ paPer Release S.t&m Le.er>
‘x’@
Paper Feed Reduction Gear “\
Figure 4-47. Paper Release Solenoid Assembly Removal
4-28
-
REV.-A
ADJUSTMENT REQUIRED
When the paper release solenoid assembly is removed, perform the following adjustment:
Section 4.3.2 Paper Feed Motor Backlash Adjustment (Page 4-4 1)
ASSEMBLY POINTS:
● The lead wires from the sensor should be drawn along the frame to the rear of the printer and hooked
by the tabs on the loading frame.
Tab
Loadi
Figure 4-48. Path of Sensor Lead Wires
● Before mounting the paper release lever, confirm that the paper release planetary lever and the
release trigger plate are in their correct positions as shown in Figure 4-49.
● The positional relationship between paper release lever and paper release support lever is shown “
in Figure 4-50.
!!2’
c-..
Paper Release Planetary Lever
/
Figure 4-49. Positional Relationship Between Release
Planetary Lever and Release Trigger Plate
Paper Release Lever
o
.-
@
0
paper
&
Release
Suppon
LEWW
Figure 4-50. Positional Relationship Between Paper Release
Lever and Paper Release Support Lever
4-29
REV.-A
4.2.5.16 Paper Loading Trigger Assembly Removal
The loading planetary gear is not included in the paper loading trigger assembly.
,[email protected]:” ‘\
+:. .;
WARNING
When mounting the sensor, the stud of the sensor should be fixed in the frame hole. Otherwise,
the paper loading mechanism will not function correctly.
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5. 1.)
Step 2: Remove the paper feed motor. (Refer to Section 4.2.5.7.)
NOTE: Take care not to lose the spring at the rear of the paper feed motor.
Step 3: Remove the loading lever shaft, the paper loading lever, the loading gear spring, the loading
gear A, and the loading gear assembly.
Step 4: Remove the two screws CB(M2X 8) and CPS(P)(M3 X 8) securing the paper loading trigger
assembly (one is for sensor and the other is for loading frame), then remove the paper loading
trigger assembly.
Step 5: Remove the loading planetary gear from the paper loading trigger assembly.
;:
‘..
5_
bly
Lever
Lever Shaft
/
Loading Gear Assembly
[email protected]
Figure 4-51. Paper Loading Trigger Assembly Removal
ASSEMBLY POINTS:
● Pass the lead wires for the sensor of the paper loading trigger assembly between the cutout in the
loading frame and the right frame.
Right Frame
Sensor of Paper
Loading Trigger
Assembly
Paper
olenoid
Loading Fram
Figure 4-52. Path of Sensor Lead Wires
● Hook the lead wires forthe sensor of the paper release solenoid assembly under the tab on the loading
frame. (Refer to Figure 4-52.)
4-30
$,
{...”
REV.-A
● When setting the paper loading lever, observe the following sequence.
@ Align the two marks on the loading gear A and the loading gear assembly.
@ Set the paper loading lever so that the marks on the lever is in alignment with the mark on the
loading gear A.
ase
Lever
Loading Gear A
...
oading Gear Assembly
Figure 4-53. Paper Loading Lever, Loading Gear A,
Loading Gear Assembly Setup
@ Install the loading lever shaft, and tighten the screw temporary.
@ Check the following operations of the loading planetary gear.
(1) The platen gear should engage the loading planetary gear and the planetary gear should
follow the platen gear when it rotates.
(2) When pressing the loading trigger plate in the direction of the arrow, the loading planetary
gear should engage loading gear A so that the rotation of the platen gear is transmitted to
the loading gear. If the loading planetary gear does not work well, adjust it using the screw
CPS (P) (M3X 8) securing the loading frame.
1
I
r
1
9 Trigger
Loading Lever
Shafl
Loading Frame
CP’S (P)
(M3x8)
Figure 4-54. Loading Planetary Gear Operation
@ Tighten the loading lever shaft and the screw securing the loading frame.
@ Install the loading gear spring.
ADJUSTMENT REQUIRED
When the paper loading trigger assembly is removed, perform the following adjustment:
Section 4.3.2 Paper Feed Motor Backlash Adjustment (Page 4-4 1)
4-31
REV.-A
4.2.5.17 Paper Thickness Sensor Assembly Removal
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5. 1.)
Step 2: Release the lead wires (except the carriage home position sensor wire) from the wire clamp
at the back of the base frame.
Step 3: Remove the three screws CPS(M3 X 8) securing the paper thickness sensor unit to the base
frame at the back of the base frame.
Step 4: Remove the left frame. (Refer to Section 4.2.5 .20.)
Step 5: Remove the paper guide assembly.
Step 6: Remove the paper thickness sensor assembly.
K%
z=, :,
Wire Clamp
4
,,.
.Carriage Home
Position Sensor
Wire
m
m
..-rm —...
Figure ~55. Paper Thickness Sensor Assembly Re;oval (1)
‘.. ---..,.-.
Paper Thickn#@$s##%%Frame)
\
.+,
\,/’
,=
;’
., ‘.
#, .“a . . .
Figure 4-56. Paper Thickness Sensor Assembly Removal (2)
ADJUSTMENT REQUIRED
. When the paper thickness sensor assembly is removed, perform the foIlowing adjustments:
Section 4.3.1 Timing Belt Tension Adjustment (Page 4-40)
Section 4.3.2 Paper Feed Motor Backlash Adjustment (Page 4-4 1)
Section 4.3.3 Parallelism Adjustment Between Carriage Guide Shaft B and Platen (Page 4-42)
Section 4.3.6 Bi-directional Printing Alignment (Page 4-47)
● When the paper thickness sensor is replaced, perform the following adjustment:
Section 4.3.5 Platen Gap Initial Value Write Operation (Page 4-46).
.,
4-32
REV.-A
4.2.5.18 Paper Guide Plate Removal
DANGER
Because the paper guide plate is a thin metallic part, handle it carefully.
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5.1.)
Step 2: Place the printhead at the left (or right) end.
Step 3: Remove the three paper guide plate springs from the back of the base frame.
Step 4: Draw the paper guide plate horizontally toward you, then tilt and remove it so as not to
damage the ribbon mask. (The paper guide plate cannot be removed upward.)
Paper Guide Plate Spring
Figure 4-57. Paper Guide Plate Spring Removal (Back of Base Frame)
@
Paoer Guide Plate
#
Figure 4-58. Paper Guide Plate Removal
ASSEMBLY POINTS:
● When mounting the paper guide plate, verify the orientation of its top as shown in Figure 4-59.
P
Platan
+
Paper Guide Plate
Figure 4-59. Paper Guide Plate Orientation
● You can easily mount the paper guide plate spring by using a round nose pliers. (Refer to Figure 4-57.)
4-33
REV.-A
{’b,
t. ~ •
4.2.5.19 Paper Holding Roller Assembly Removal
Step 1: Remove the two paper holding lever springs from the right and left frames.
Step 2: Remove the two E-rings RE(3) fixing the right and left paper holding levers to both frames.
Step 3: Remove the left paper holding lever from the shaft.
Step 4: Shift the whole paper holding roller shaft, then remove the paper holding roller assembly by
rotating it in the direction of the arrow.
Right Paper Holdin9
‘ever\
RE (3)
Holding
Lever Sprin9
paper
f-.
RE (3)
U.,.
Figure 4-60. Paper Holding Roller Assembly Removal
. ., ,.
4-34
REV.-A
4.2.5.20 Left Frame Removal
This section describes the removal of the left frame from the printer mechanism. This is useful when
removing the paper feed roller shaft and the paper thickness sensor assembly.
Step 1: Remove the paper holding roller assembly. (Refer to Section 4.2.5.1 9.)
Step 2: Remove the paper tension assembly. (Refer to Section 4.2.5.5.)
Step 3: Remove the paper feed motor. (Refer to Section 4.2.5.7.)
Step 4: Remove the platen. (Refer to Section 4.2.5.10)
NOTE: The tractor transmission gear, paper feed reduction gear and paper feed motor
should be mounted again after the above steps, in order to easily remove the left
frame. This will help prevent the parts on the right frame from being dropped.
Step 5: Release the lead wires of the platen gap home position sensor and the platen gap motor
from the wire clamp at the back of the base frame.
Step 6: Remove the ribbon drive wire spring and the ribbon drive wire.
Step 7: Remove the screw CBS(0)(M4 X 12) securing the belt driven pulley mounting plate.
Step 8: Remove the screw CP(P)(M3 X 6) securing the platen gap gear assembly on carriage guide
shaft B, then remove the platen gap gear assembly and the leaf spring LS(8.2-O.25-1 5).
Step 9: Remove the nut HNO(M4) securing carriage guide shaft A to the left frame.
Step 10: Remove the nut HNO(M4) securing the side frame support to the left frame.
Step 1 1: Remove the three screws CPS(M3X8) securing the left frame to the base frame.
Step 12: Remove the left frame from the base frame with the sensor and motor attached.
HNO (M4)
Platen Gap Home
Position Sensor
Platen G laD
G e a r
(0)
I
7Assemblv
CP (P) (M3X 6)
CBS
Side Frame Support
m
Carriage Guide
Shaft B
l:!
y *+
(M4 X 12) - -:%
Ribbc m Drive Wire Spring
Ribbon Drive Shaft
‘:$+
...,,.
.., .i :.: .,.
?0
cp::%[email protected]
Carriage
‘i
GI u i d‘kbbon
e S h a fDrweWlre
t A “
Figure 4-61. Left Frame Removal (1)
Left Frame
Left,Frame
Figure 4-62. Left Frame Removal (2)
Figure 4-63. Printer Mechanism with Left
Frame Removed
4-35
REV.-A
.,.,!,
ADJUSTMENT REQUIRED
When the left frame is removed, perform the following adjustments:
{...
● Section 4.3.1 Timing Belt Tension Adjustment (Page 4-40)
● Section 4.3.2 Paper Feed Motor Backlash Adjustment (Page 4-41)
● Section 4.3.3 Parallelism Adjustment Between Carriage Guide Shaft B and Platen (Page 4-42)
● Section 4.3.6 Bi-directional Printing Alignment (Page 4-47)
ASSEMBLY POINTS:
● Prior to installing the platen gap gear assembly, verify that the leaf spring is mounted as shown below.
Platan Gap Gear
Assembly
Leaf Spring
Left Frame
Carriage Guide
Shaft B
[
Figure 464. Leaf Spring Mounting Orientation
● When installing the platen gap gear assembly, shift one cog at the end of the gear so as to true up
the edge of the two gears at the other end. This ensures that the platen gap gear assembly will
rotate without backlash.
Platen Gap Gear Assembly
\
---.”
f“‘“
. :.- ,
*
Figure 4-65. Platen Gap Gear Assembly Installation
● Install the ribbon drive wire as following procedures.
@ Mount the ribbon drive wire to the ribbon drive wire spring.
@ Wind it around the ribbon drive pulley at the back of the carriage counterclockwise.
@) Attach it to the right frame.
@ Move the carriage horizontally, and confirm that the ribbon drive shaft rotates counterclockwise.
● If the nut at the right frame securing the side frame support is loose, tighten it using a 7 mm wrench.
4-36
REV.-A
4.2.5.21 Paper Feed Roller Assembly Removal
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5.1.)
Step 2: Remove the four paper feed springs at the back of the base frame.
Step 3: Remove the three screws CPS(M3X8) securing the paper thickness sensor assembly at the
back of the printer.
Step 4: Remove the left frame. (Refer to Section 4.2.5 .20.)
Step 5: Remove the paper guide assembly.
Step 6: Remove the paper thickness sensor assembly, and place it at the opposite side of the base frame.
Step 7: Remove the paper feed roller shaft, then remove the paper feed roller assembly from the shaft.
Paper Feed Spring
Figure 4-66. Paper Feed Spring Removal (Back of Base Frame)
Paper Thickness
Sensor Assembly
Paper Feed Roller
Paper Feed
Roller Shaft
—
—..—,
Figure 4-67. Paper Feed Roller Assembly Removal
ADJUSTMENT REQUIRED
When the paper feed roller assembly is removed, perform the following adjustments:
. Section 4.3.1 Timing Belt Tension Adjustment (Page 4-40)
● Section 4.3.2 Paper Feed Motor Backlash Adjustment (Page 4-41)
● Section 4.3.3 Parallelism Adjustment Between Carriage Guide Shaft B and Platen (Page 4-42)
. Section 4.3.6 Bi-directional Printing Alignment (Page 4-47)
4-37
REV.-A
4.2.5.22
Step 1:
Step 2:
Step 3:
Timing Belt Removal
Remov~ the printer mechanism. (Refer to Section 4.2.5. 1.)
Place the carriage over the cutout in the base frame.
Remove the screw CPS(M3 X 8) securing the timing belt fixing plate at the back of the base
frame, then remove the belt fixing plate.
Step 4: Remove the screw CBS(0)(M4 X 12) securing the belt driven pulley mounting plate, then
remove the timing belt from the pulley.
Step 5: Release the timing belt from the belt drive pulley at the rear of the carriage motor.
CPS
(M3x 8)
Timing Belt
Fixing Plate
.,
,, :.,
~\~~
/
‘ fi
Figure 4-68. Timing Belt Removal (1) (Back of Base Frame)
/wr’ve
\
\
Timing Belt
Figure 4-69. Timing Belt Removal (2)
ADJUSTMENT REQUIRED
When the timing belt is replaced or loosened, perform the following adjustment:
Section 4.3.1 Timing Belt Tension Adjustment (Page 4-40)
ASSEMBLY POINT:
● When attaching the timing belt to the carriage, secure the screw so that the timing belt and timing
belt fixing plate are positioned as shown below.
Timing Belt
Two teeth of the belt
should be exposed.
Left Frame ~
Timing Belt Fixing Plate
~ Right Frame
Figure 4-70. Timing Belt Fixation (Back of Base Frame)
4-38
,s ‘:.,
●
& :“
REV.-A
4.3. ADJUSTMENT
This section describes the adjustment procedures required when reassembling the LQ-2550 printer.
When disassembly or replacement is performed during maintenance or repairs of the parts described
in this section, the following adjustments should be performed to ensure proper operation.
The adjustment sequence is shown in Figure 4-71.
Description
Y
START
Timing Belt Tension
Adjustment
.4-32 t 4-41
.433 t 4-42
Paper Feed Motor
Backlash Adjustment
Parallelism Adjustment
Between Carriage Guide
Shaft B and Platen
t
4.3.4
4-44
Platen Gap Home
Position Sensor Mounting
Position Adjustment
t
4.3.5
4-46
Platen Gap Initial Value
Write Operation
t
4.3.6
4-47
Figure 4-71. Printer Adjustment Procedures
4-39
REV.-A
4.3.1 Timing Belt Tension Adjustment
This adjustment is required when the timing belt is removed or loosened.
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5.1.)
Step 2: Verify that the timing belt is correctly inserted into the bottom of the carriage.
Step 3: Loosen the screw CBS(0)(M4X 12) on the belt driven pulley mounting plate.
Step 4: Adjust the belt tension using a tension gauge.
Tension value: 5000g & 500g
Step 5: Tighten the screw CBS(0)(M4 X 12) on the belt driven pulley mounting plate.
c. ,.
i-,
T
unting Plate
Figure 4-72. Timing Belt Tension Adjustment
4-40
REV.-A
4.3.2. Paper Feed Motor Backlash Adjustment
This adjustment is required when either the paper feed motor is replaced or when its mounting position
is shifted.
Step 1: Remove the printer mechanism. (Refer to Section 4.2.5.1.)
Step 2: Loosen the two screws CPS(M3 X 8) securing the paper feed motor.
Step 3: Manually rotate the paper feed motor, and adjust the backlash between the pinion and the
paper feed reduction gear.
Allowable backlash: 0.05mm to 0.1 mm
Step 4: Tighten the screws CPS(M3X8) on the paper feed motor.
ear
(M3X8)
per Feed Motor
Paper
Paper Feed Motor
/’
Lo
/
\
’
Pinion
Figure 4-73, Paper Feed Motor and Paper Feed Reduction
Gear Backlash Adjustment
4-41
REV.-A
4.3.3 Parallelism Adjustment Between Carriage Guide Shaft B and Platen
This adjustment is required when:
● Left frame is removed.
Step 1:
Remove the printer mechanism. (Refer to Section 4.2.5.1.)
Step 2:
Remove the printhead. (Refer to Section 4.2. 1.)
Step 3:
Remove the CB screw (M2.5 X 5), then remove the paper width sensor from the ribbon mask.
(See Figure 4-74.)
Step 4:
Remove the two CB screws (M2.5 X 5), then remove the ribbon mask.
(See Figure 4-74.)
Step 5:
Rotate the platen gap motor pinion manually so that the carriage moves to the farthest position
from the platen. (See Figure 4-75.)
Step 6:
Move the carriage to the left.
Step 7:
Fix the dial gauge base to the carriage using the two CS screws (M3 X 6) for securing the
printhead. (See Figure 4-76.)
Step 8:
Attach the dial gauge to the dial gauge base, confirm that the feeler of the gauge touches
the platen and that the long needle registers 15 to 20 units higher on the scale than when
the feeler does not contact the platen, and fix the dial gauge with the hexagonal screw.
Step 9:
Set the limiters (left and right) at 1.5 and 1.5 on the scale.
Step 10: Rotate the outer frame of the dial gauge and so that the long needle points to O.
Step 1 1: While pushing the lift lever, move the carriage to the right end of the platen.
Step 12: Loosen the CPS(P) screw (M3 X 8), slide the head adjustment lever, and fix it at a point where
the long needle of the dial gauge registers between the limits. (See Figure 4-77.)
Step 13: While pushing the lift lever, move the carriage to the left end of the platen, and confirm that
the long needle registers between the limits.
If it does not, repeat the adjustment from Step 10.
Step 14: Remove the dial gauge and dial gauge base, and attach the ribbon mask, paper width sensor,
and printhead.
NOTE: Perform the adjustment with the printer mechanism on a flat table.
4-42
‘c’
.. .,
REV.-A
Paper Width Sensor
Ribbon Mask
I
Printhead
CB (M2
x 5)
Figure 4-74. Paper Width Sensor and Ribbon Mask Holder Removal
Platen Gap Home Position Sensor
Q
.<:
.,
Platen Gap Reduction Gear
Platen
Gap
Motor
Pinion.
0%0
&
~ TO farthest
position.
*Q
.~
~.
Platen Gap Gear
Carriage Guide Shaft B
~-~y
\./
Figure 4-75. Platen Gap Motor Gears Series
Platen
Cs
ase
Hexa
Figure 4-76. Dial Gauge Base and Dial Gauge Positions and Names of Parts
!
I
1
ma
I
_———— Right Frame
Platen Gap: Wide *
@ Platen Gap: Narrow
CPS(P) (M3x 8)
Head Adjustment
Lever
x
Figure 4-77. Head Adjustment Lever Mounting Position Adjustment
4-43
REV.-A
4.3.4 Platen Gap Home Position Sensor Mounting Position Adjustment
This adjustment is required when:
c:,..?..+
. The platen gap home position sensor mounting position is shifted.
● The platen gap gear is replaced.
● The platen is replaced.
Step 1:
Remove the printer mechanism. (Refer to Section 4.2.5. 1.)
Step 2:
Remove the printhead. (Refer to Section 4.2. 1.)
Step 3:
Remove the CB screw (M2.5 X 5), then remove the paper width sensor from the ribbon mask.
(See Figure 4-74.)
Step 4:
Remove the two CB screws (M2.5 X 5), then remove the ribbon mask.
(See Figure 4-74.)
Step 5:
Attach the printhead by the two CS screws (M3 X 6).
Step 6:
Move the carriage to the center of the platen.
Step 7:
Rotate the platen gap motor pinion little by little manually so that the gap between the platen
and printhead can be adjusted to 1.2 [mm] using a thickness gauge. (See Figure 4-78.)
Step 8:
Loosen the CPS(P) screw (M3 X 8) securing the platen gap home position sensor (See Figure
4-80).
Step 9:
Connect extension cable E649 (modified cable; see Figure 4-79.) between the ROMA board
(CN 16) and the 9 pin connector of the printer mechanism.
Step 10: Attach the probe of either the oscilloscope or multi-meter (digital type) to CN 16 of the ROMA
board. (Connect the plus and minus probes to pins 8 and 9, respectively. When using the
oscilloscope, its ranges should be 2 V/DIV. and 1 ms/DIV.)
Step 1 1: Turn the printer power on.
Step 12: Move the platen gap home position sensor along the groove on left frame, and fix it at the
position where the voltage changes from O to 0.1 M (low level) to 5 M, using the CPS(P)
screw. (See Figure 4-80.)
NOTE: If the voltage does not reach 5.0 M even after the platen gap home position sensor was moved
to the back of the mechanism, loosen the screw CTB(P) (M3 X 8) and move the platen gap home
position flag to clockwise until the voltage reaches 5.0 M. (See Figure 4-80.) At this time, make
sure that the platen gap gear does not move.
. ,,,
4-44
REV.-A
Platen Gap Home Position Sensor
O TO farthest
position.
Platen Gap Reduction Gear
platen Gap Gear
Carriage Guide Shaft B
Platen Gap Motor Pinion
(a) Platen Gap Motor Gears Series
Thickness Gauge
,,1
~ 1.2 [mm]
rinthead
Platan
Carriage Guide ~haft B
p: Wide
~ Gap: Narrow
(b) Platen Gap Adjustment
Figure 4-78. Platen Gap Adjustment
‘0MAB0ardcN16
‘F7*’’’:’’’nnect0r)
NOTE: Remove cables for pins 1 to 5.
Figure 4-79. Extension Cable E649 Modification
CPS (P) (“3x 8)
Platen Gao Home Position Sensor
‘roow
\w/
~
Platen Gap Gear
@
Backward
/ k,P,,fvt3x13)>--l
Match Mark
Pla{en Gap Home Position Flag
!
, . . . . .
—,
Figure 4-80. Platen Gap Gear Mounting Position Adjustment
4-45
REV.-A
4.3.5 Platen Gap Initial Value Write Operation
The platen gap initial value write operation is required when:
● Connector CN7 for the battery unit is disconnected.
(The LCD displays “RAM CLEAR” with the power on.)
● The printer mechanism is removed or replaced.
● The platen is replaced.
● The paper thickness sensor assembly is replaced.
The procedure is as follows (see Figure 4-8 1):
Step 1:
Remove the cartridge cover, and insert the adjustment cartridge in slot A (see Figure 4-82).
Step 2:
Confirm that no paper is loaded, and turn the printer power on. The LCD displays
“Bi-D Adjustment”, and the A and V LEDs blink.
Step 3:
Press either the FORM FEED ( ❑ ) or LINE FEED ( ❑ ) switch once. The LCD displays
“XWrite PG Voltage”, and the A and V LEDs blink.
Step 4:
Press the LOAD/EJECT ( Q ) switch. The printer measures the platen gap four times in each
(once per 1/4 rotation of the platen) of the friction and push tractor modes and stores the
mean value of the four measured values for each mode in the memory as the initial platen
gap. When the write operation is completed, the LCD displays “XWrite PG Voltage” again,
and the A and V LEDs blink.
Step 5:
Turn the printer power off, and remove the adjustment cartridge from slot A.
Step 1
Insert the adjustment
catridge
Step 2
Step 3
Step 4
Right Rear Corner of the Printer
Step 5
Vi 1 vR2
Figure 4-81. Platen Gap Initial Value
Figure 4-82. Bidirectional Printing Alignment
Write Sequence
Value Adjustment Section
4-46
{-,,
REV.-A
)
4.3.6 Bi-directional Printing Alignment
This alignment is required when:
. The even-numbered lines and the odd-numbered lines are misaligned in the bi-directional printing
mode.
● The printer mechanism is replaced.
● The ROMA board is replaced.
● The timing belt is loosened.
The alignment procedure is as follows (see Figure 4-83.):
Step 1:
Step 2:
Remove the cartridge cover, and insert the adjustment cartridge in slot A (see Figure 4-82).
Load continuous paper (width: 15 to 16 inches) into the pull tractor.
Turn the printer power on. The LCD displays “x Bi-D Adjustment,” and the A and V LEDs blink.
Step 3:
Press the LOAD/EJECT ( E ) switch. The LCD displays “PAPER OUT”, and the D LED blinks.
Step 4:
Press E so that the paper is loaded. The LCD displays “OFF LINE,” and the a LED blinks.
Step 5:
Press the ON LINE switch (El). The printer enters the menu selection mode, the LCD displays
“aEX AALL VLQ DrD,” and the A, V, and DLEDs blink.
Step 6:
If ❑ is pressed, “1 l“ characters are printed for four lines in the Draft test mode, and the LCD
displays “Draft mode printing.”
If the characters on the odd-numbered lines are shifted to the left when compared with those
on the even-numbered lines, press
❑
to shift the characters to the right. Each time
❑
is
pressed, the alignment value increments (the alignment value is displayed on the LCD as
“T [~ xx]”). If the characters on the odd-numbered lines are shifted to the right, press ❑ to
shift the characters to the left. If
❑
is pressed after the alignment value is set, the alignment
value displayed on the LCD is added and “1 l“ characters are printed again for four lines.
Step 7:
When the correct alignment value is set, press
❑
. The LCD displays
“Tar. < +xx>, VR2 < +xx>.”
Step 8:
Adjust VR2 using either a Philips or standard screw driver, with a thin tip, so that VR2 is set
to the target (Tar.) value. When VR2 is turned clockwise, the alignment value increments, and
when it is turned counterclockwise, the value decrements.
When VR2 is adjusted to the target value, the buzzer wind ring continuously like “Pi-pi-pi,
pi-pi-pi”””””” and the aLED will blink.
Step 9:
Press El. The printer returns to the menu selection mode (Step 5).
Step 10: If
❑
is pressed, “1 l“ characters are printed for four lines in the LQ test mode, and the LCD
displays “LQ mode printing.”
If the characters on the odd-numbered lines are shifted to the left when compared to the
even-numbered lines, press
❑
to shift the characters to the right. Each time El is pressed,
the alignment value increments (the alignment value is displayed on the LCD as “T [+ xx]”).
If the characters on the odd-numbered lines are shifted to the right, press H to shift the
characters to the left. If
❑
is pressed after the alignment value is set, the alignment value
displayed on the LCD is added and “1 l“ characters are printed again for four lines.
Step 1 1: When the correct alignment value is set, press El. The LCD displays
“Tar. < +XX >, VR 1 < +XX> .“.
4-47
REV.-A
“;
Step 12: Adjust VR 1 using either a philips or standard screw driver, with a thin tip, so that VR 1 is set
f
to the target (Tar.) value. When VR 1 is turned clockwise, the alignment value increments, and ‘when it is turned counterclockwise, the value decrements.
When VR1 is adjusted to the target value, the buzzer will ring continuously like “Pi-pi-pi,
pi-pi-pi”.-” and the dLED will blink.
Step 13: Press ❑ . The printer returns to the menu selection mode (Step 5).
Step 14: If H is pressed, the printer executes test printing at each of five printing speeds, and the LCD
displays “’All mode print test”. After all the test printing is completed, the printer returns to
Step 5.
Step 15: Press ❑ . The LCD displays the initial message “x Bi-D Adjustment.”
Step 16: Turn the printer power off, and remove the adjustment cartridge.
o
START
b
.,
St epl
o
m
\ -*
St ep2
Step3
OQ
Slep4
A
Q
St ep5
1
Exit
E
l
Al I
❑
h“
‘H
9’;::
St ep15
Step14
St epl O
St ep6
Stepl 6
Step I I
St ep7
END
St ep12
St ep8
St ep13
Step9
T
Figure 4-83. Bidirectional Printing Alignment Sequence
.’
4-48
REV.-A
CHAPTER 5
TROUBLESHOOTING
...
5.1 GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.1.1 Diagnostic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. 4
5.1.1.1 System Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 4
..
5.2 UNIT REPLACEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
..
5.3 UNIT REPAIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-17
.
5.3.1 ROPS/ROPSE Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-17
..
5.3.2 ROMA Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23
5.3.3 Model-5560 Printer Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-24
LIST OF FIGURES
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1
Figure 5-1.
Troubleshooting
Figure 5-2.
Extension Cable Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-3
Figure 5-3.
Printer Diagnostic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Figure 5-4.
RS-232C l/F Cable Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-5
Figure 5-5.
Printhead Connectors F and R Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Figure 5-6.
Relationship Between Printhead
Temperature and
. -16
Thermistor Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 5-7.
ROPS/ROPSE Board Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
Figure 5-8.
AC Connector for Measuring Instruments .................. 5-1 7
Figure 5-9.
Q2 Output/Ql Input Voltage Waveforms . . . . . . . . . . . . . . . . . . . 5-20
Figure 5-10. Q1 Input/Output Voltage Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20
Figure 5-11. DB1 Output/TYl off + On Voltage Waveforms . . . . . . . 5-20
Figure 5-12. Q3 Input/Output Voltage Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21
Figure 5-13. IC2 Oscillation/Output Voltage Waveforms . . . . . . . . . . . . . . . 5-21
S.i
REV.-A
LIST OF TABLES
Table 5-1.
.
Troubleshooting Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-2
Table 5-2.
. -5
Printer Diagnostic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 5-3.
. -6
Replacement Unit Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 5-4.
Symptoms and Reference Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-7
Table 5-5.
ROPS/ROPSE
Table 5-6.
Relationship between Common Wires and Each
Board Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-16
...
Board Unit Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-18
Table 5-7.
ROPS/ROPSE
Table 5-8.
ROPS/ROPSE Board Voltage Waveforms . . . . . . . . . . . . . . . . . . . 5-20
Table 5-9.
ROPS Board Main Parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Table 5-10.
ROPSE Board Main Parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 -22
Table 5-11.
ROMA Board Main Parts List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 -23
Table 5-12.
Electric Device List . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-24
S.ii
REV.-A
5.1 GENERAL
Because various types of problems can occur, troubleshooting is not easy to perform. Here is a simple
procedure provided to perform troubleshooting.
START
I
I
I
I
I
I
Fault checking with
the diagnostic tool. I
!
I
L
)
I
Unit Replacement
J
I
I
{Fault is corrected>
Figure 5-1. Troubleshooting Procedure
Table 5-1 lists the troubleshooting tools contained in the printer.
5-1
I
J
I
I
REV.-A
Table 5-1. Troubleshooting Tools
E653
E654
E658
Description
Item
Tool No.
Diagnostic
Tool
Adjustment
Cartridge
Part No.
● Use with EPSON PC, APEX, EQUITY series
B7651 10101
● Use with EPSON QX-16
B7651 10201
. Write mechanism initial value, and perform print
Y499035020
alignment adjustment
E594
Cable (2 pin)
● Between ROMA board (CN 15) and PE sensor
B765 105401
E625
Cable (3 pin)
● Between ROMA board (CN 13) and CR home
B765 108001
position sensor
. Between ROMA board (CN21 ) and case open
sensor
916
Cable (4 pin)
● Between ROMA board (CN 19) and LD solenoid,
Y427307000
and LD sensor
. Between ROMA board (CN20) and RL solenoid,
and RL sensor
E600
Cable (5 pin)
●
Between ROMA board (CN 12) and PT sol BQ765 105501
noid, and PT sensor
E512
Cable (6 pin)
● Between ROMA board (CN 17) and CR motor
B765 102701
● Between ROMA board (CN 18) and PF motor
E649
Cable (9 pin)
● Between ROMA board (CN 16) and PG motor, and
B765 109801
PG home position sensor
E659
Cable (18 pin)
E660
Connector
(18 pin)
● Between ROMA board (CN9) and HF motor, CS
motor, and PW sensor
● Between ROMA board (CN 10) and printhead
● Between ROMA board (CN 1 1) and printhead
B7651 10801
B7651 10901
NOTES: 1. These cables and connectors are longer than the distance between the ROMA board and
the printer mechanism to make troubleshooting easier (Refer to Figure 5-2.).
2. In this chapter, the following abbreviations are used:
CR: Carriage
CS: Color select
PE: Paper end
PF: Paper feed
PG: Platen gap
LC: Loading
RL: Release
PT: Paper thickness
PW: Paper width
5-2
REV.-A
R O M A
EEEl
--n
B O A R D
m
CJ
PRINTER
MECHAN;SM
Figure 5-2. Extension Cable Connections
5-3
REV.-A
5.1.1 Diagnostic Tools
The diagnostic tools enable anyone to troubleshoot the electric components, regardless of experience.
5.1.1.1 System Outline
This system has the following features:
● Provides anyone with a way to troubleshoot, regardless of technical or electronic expertise.
● A choice of programs offers various methods for repair, analysis, and testing of the printer.
● Defective units can be identified easily.
Connect this system to an MS-DOS-based computer (EPSON QXI 6, PC (EQUITY), etc.) using an RS-232C
cable.
First, install the diagnostic cartridge in the printer and run the diagnostic program with the computer.
The host-computer sends the test programs to the printer, which then executes them. The host computer
receives the test program results back from the printer and determines the status of the printer. Figure
5-3 and Table 5-2 show this diagnostic system.
r
,
- - - — -
RS-232C
~rinter
Host Computer
E P S O N PCIEQUITY)
25 Pin
II
0
II
I
I
I
Diagnostic
cortridge
(SLOTA)
l--
Send test program
b
r ---------— 1
1
*
I
I
;
–----l
r-~
I
1---
J
Contains
●
E653
Receive tested program
-
I
I
0
~Floppy Disc(2DSxl) ~
- - —— - — - - - -
(a) #E653 with EPSON PC (EQUITY)
g. . . . ,
r
—. RS-232C
interface
Host Computer
EPSON OX-16
‘i’)
Iu I
7
-
-
-
—
----—
~ri “, ~r Diagnostic
cartridge
[
(SLOTA)
25 Pin
i - -
Send test program
1
I
I
I
I
_ - – - i
-
—
-
-
-
-
-
=
Receive tested program
1<
I
I
i
I
I
l-flo~py Disc(2DDxl) ~
- - - — - - — -
(b) #E654 with EPSON QX-16
Figure 5-3. Printer Diagnostic System
5-4
r-l
i.;
Contains
● E654
REV.-A
Table 5-2. Printer Diagnostic System
Computer
EPSON PC (EQUITY)
EPSON QX-16
Diagnostic Tool
#E653
#E654
● Floppy disk (2DSX 1)
. Floppy disk (2DDX 1)
● Diagnostic cartridge
● Operational manual
● D-SUB 25 pin l/F cable”
Cable
● AMPHENOL 36 pin l/F cable”z
xl: The RS-232C l/F cable circuit is shown in Figure 5-4.
X2: It is useful when performing the test printing to use the 8-bit parallel interface.
1
FG
CN3
10
01
FG
TXD
20
02
TXD
RXD
30
0 3
RXD
CTS
50
011
REV
DTR
SG
020
SG
0 7
70
Host
VF Cable
LQ-2550
Computer
Figure 54. RS-232C l/F Cable Circuit
5-5
., .
[“’..
REV.-A
5.2 UNIT REPLACEMENT
The unit replacement is based on system analysis. According to the particular symptom found by the
multimeter, the units listed in Table 5-3 need to be replaced, and Table 5-4 shows sympton and
reference pages.
Table 5-3. Replacement Unit Numbers
Description
Unit
Unit No.
125V 6.3A (for ROPS board)
X50206 1070
250V 4.OA (for ROPSE board)
X502063060
ROPS Board
1 0 0 - 120V AC
Y456202000
ROPSE Board
2 2 0 - 240V AC
Y456203000
Battery Unit
Lithium battery
Y454504000
ROMA Board
Control board
Y456201 200
Fan Unit
Fan motor
Y456503000
Panel Unit
ROPNL-W board
Y45650 1000
#8C2
Case open sensor
Y456305000
Model-5560
Printer mechanism (exclude printhead)
Y456590000
Printhead
24-pin dot head
F4 18000000
CS Unit
Color select unit
F344902000
Fuse (Fl)
WARNINGS
1. Before starting any unit replacement, confirm that all connectors are connected firmly, and that
no cables are cut.
2. When repairing the printer by unit replacement, be sure to reattach the upper case and reconnect
connector CN21 to the ROMA board. (If CN2 1 is disconnected, the LCD on the printer continues
to display “CASE OPEN.”)
.
5-6
REV.-A
Table 5-4. Svm~toms
and Reference Pages
. .
Printer does not operate at
all with power switch on.
Reference Page
Problem Indicators
Symptom
● POWER LED on the control panel is not lit.
. HF motor does not rotate.
● if the printer cover is not shut correctly, the LCD displays
5-8
“CASE OPEN.”
Platen gap adjustment
mechanism and carriage
mechanism are not
initialized.
● LCD displays “ERROR n“.”
Abnormal paper release
● The paper feed system is not switched correctly by the
mechanism operation
5-9
*1: n = O, 2 or 10
5-10
PAPER SELECT switch.
5-11
Incorrect printing with normal carriage operation
a) When using a black
ribbon:
(In the self test or normal printing mode)
--——--—--—————-———
b) When using a color
ribbon:
(In the self test mode)
(mixed color; violet, orange, and green).
. Printing colors are not switched correctly.
Abnormal paper feed
● The paper feeding method and the paper being used do
. Vertical lines (ruled lines) are misaligned.
. A specific dot is missing.
-—- ——————— ——----— ——————— -—- —. ——————— —---
● Printing positions are misaligned during color printing
--———-—————
5-12
5-13
not match.
. Line feeding is not uniform during printing.
. LD solenoid (paper holding roller shaft) does not open and
close.
Abnormal control panel
operation
● Printer does not respond to switches.
● LEDs light abnormally.
5-14
. No message is displayed on the LCD.
Incorrect printing in
ON LINE mode
● Printer operates abnormally when it is connected to a
5-15
host computer.
The flow charts on the subsequent pages use the following symbols.
Start
Branching
o-
Processing
End
v
Forwarding to another
Returning to the Start of
v
item
Decision
5-7
the item
.
{“
REV.-A
9
1. Printer does not operate at all with power switch on.
-.
Table 5-5. ROPS/ROPSE Board Output Voltages
Power Output Terminal
(Connector CN2)
l-+
Output Voltage IVl
+ Side
– Side
7.8-9
10-11-12
3
5-6
Approx. – 1 IV
4
5-6
Approx. – 1 I V
1-2
5-6
+ 5 & 5%
35V *
10%
START
NOTE: The values are for when CN2 is disconnected.
+3
Meosure the AC input
voltage.
Use correct AC
input volt oge.
v
Reploce the fuse. ond
+ disconnect connector CN2
on the ROPS/ROPSE board.
on the ROPSIROPSE
@Disconnect connector CN2
on the ROPSZROPSE boord.
turn the printer power on.
and measure
the output valtage.
is turned on ogain, doee
I
I
Re lace
the ROPS/ f! OPSE baord.
Connect CN2 on
the ROPS/ROPSE boord.
Disconect connecters
on the ROMA board,
except CN8, CNII and CN22.
rinter power is turned on,
-
Reploce the ROMA baard.
Reploce
f=
...
the fan unit.
Connect 011
the connectors
on the ROMA board.
printer power is turned on.
R epl ace
the printer mechanism.
*
I
messoqe d i s Iayed o
R epl oce
the cose o en sensor
(s8 1 2).
*1: When the printer cover is open: “CASE OPEN”
When the printer cover is shut: “OFF LINE” or “ON LINE”
*2: Refer to Table 5-5.
*3: ROPS b o a r d : 1 0 8 - 1 3 2 V A C
ROPSE board: 198 - 264V AC
5-8
REV.-A
2. Platen gap adjustment mechanism and carriage mechanism are not initialized.
rlnter power is turned on,
e the mechanisms initialize
I
CD display ‘ERROR 10*?
Replace the
printer mechanism.
CD display “ERROR 2“?
with the same version
number for the main
and sub CPUS.
m
Use progrom ROMS* I
b
I
IN
Confirm that each
C.G. ROM
is inserted correctly.
CD display “ERROR O’?
D
Replace the
ROMA board.
I
*
*
5-9
REV.-A
3. Abnormal paper release mechanism operation
R e p l a c e the panel unit.
N
ontinuous poper s e
ot t h e p r i n t i n g s t a r t
Select ‘FRICTION”
usin the
PAP1! R SELECT switch.
ontinuous poper fed in
he reverse direction?
I
I
Load a cut sheet
from the upper
paper entrance.
,
I
!
Is the
aper release mechanism
et to the friction
N
●
-DEE24
Is the
fault corrected?
<
‘Ne
●
*
5-10
REV.-A
4. Incorrect printing with normal carriage operation
a) In the self test or normal printing mode: Using a black ribbon.
1
perform poper selection,
then turn the power o f f .
Execute the self test
by turning the printer
power on while pressing
both the LINE FEED
Align the
bi -di recti onal
printing positions.
Refer to Section
erti cat I ines (ruled lines
*2
Measure the
resi stance value
of the printhead
t her mi st or.
1
3
Y
Y
N
the
resistance
values
I Replace the printheod. I
1<
the fault
N
I
~.,
‘ w i t h i n - t h e DaDer
I
I:P!:ce
,
I
\
,“
R epl ace
the printer mechonism.
-’
*1: Refer to Figure 5-5 and Table 5-6.
*2: Refer to Figure 5-6.
5-11
REV.-A
b) In the self test: Using a color ribbon
tnstall t h e C S u n i t
n d colar r i b b o n cortridge.
rinter
Replace
the CS unit.
power is turned on,
.
Replace
the printer mechanism.
then turn the power off.
\
I
t
I
Perform the self test.
color printing (viol et, or Of198.
d green), are printing Posltlo
Align the printing
positions for
bi -directional
print ing. Refer
Ja sec~ 43-L
Reploce
the ROMA board.
I
v
*
switching performed correctly
~g=.:
.
● 1: Confirm whether the CS unit operates correctly by observing the up and down movement of the
color ribbon cartridge and rotational noise of the CS motor.
5-12
REV.-A
5. Abnormal paper feed
(
START
J
paper feeding metho
Turn the printer power
on and select the
feed be selected usin
corresponding paper
feeding system using <;;-;*
)he PAPER SWCTSW itc&
Y
mount of line feeding var
Replace
the printer mechanism.
oes the LD solenoid open o
the fault corrected?
ND
*
*
5-13
X/
REV.-A
.-h
...
f’
6. Abnormal control panel operation
(
;-:,
Remove the paper
and turn the printer
power on.
)
Con,f irm that the t)uzzer
rings when paper is
placed in the upper
paper entrance and
moved back and forth
a few centimeters.
r
I
Replace
the printer mechanism.
+1
and ~he - corresponding
LED is lit.
I
I
switch and LED operate
the massage “MEMORY CLEAR”
the fault corrected?
the battery unit.
Replace
the ROMA board.
4
*1: The MICRO FEED switch is only valid when paper is loaded in the printer mechanism. The TEAR
OFF switch is only valid when continuous paper is loaded in the printer mechanism.
.
5-14
REV.-A
7. Incorrect printing in ON LINE mode
I
Perform
the self test.
I
Refer to other
troubleshooting items.
Check the settings
of the interface
between the printer
and host computer.
I
I
Check the interfoce
cable between the
printer and host
computer as follows:
● Are the signal
connections correct? *1
.1s the interface
cable connected firmly?
I
Change the settings.
I
the fault corrected?
N
+
xl: 8-Bit parallel . .. Refer to Section 1.3.1.
RS-232C Serial . . Refer to Section 1.3.2.
5-15
REV.-A
—
F
I
I
3
WARN ING WAR NUN13 ATTENTION
Hot
Hel B
Choud
5 I 1321 9 17 C
I C2C3C4Z420
r-l
128 ; 16 ~ 4
m
<.
D
I
(a) Back of the printhead
.
f
%-.. ..*
3 II 192
1522231810
C 5 C 6 7 c7
C8 146
(b) Printhead connectors closeup
Figure 5-5. Printhead Connectors F and R Wiring
Table 5-6. Relationship between Common Wires
and Each Coil
R
F
9om
al
~
%
&
2
:
:
2
z
.&
Common Corresponding Common Corresponding
Line
Coil Numbers
Line
Coil Numbers
cl
1, 9, 17
C5
2, 7, 15
C2
5, 13, 21
C6
3, 11, 19
C3
12, 20, 24
C7
14, 22, 23
C4
4, 8, 16
C8
6, 10, 18
I
I
I
I
I
I
I
25
–
I
I
I
I
,-+,. >
~ :
->
r - - - - - - I
4.3
50
IKOI
Thermistor Resistance Value
Figure 5.6, Relationship Between Printhead
Temperature and Thermistor Resistance
If a specific dot is not printed, one possible cause is a defective printhead coil (refer to Figure 1-2 for
the relationships between the coil numbers and wire pins).
Whether the coil is defective or not is determined by measuring the resistance across the terminals
of the common line and corresponding coils (refer to Figure 5-5 and Table 5-6). The normal resistance
for a printhead coil is 8.6 !2 + 10% (at 25”C).
If a thermistor, a temperature sensor in the printhead, is shorted, the message “HEAD HOT” is displayed
on the LCD even when printing is not being executed. The relationship between the printhead
temperature and thermistor resistance value in the normal state is shown in Figure 5-6.
5-16
REV.-A
5.3 UNIT REPAIR
Unit repair is divided into three parts: ( 1 ) The ROPS/ROPSE board; (2) The ROMA board; (3) The Printer
mechanism.
This section will describe (l), the ROPS/ROPSE board unit repair. If (2) ROMA board or (3) Printer
mechanism should need repair, use the diagnostic tool introduced in Section 5.1.1.
5.3.1 ROPS/ROPSE Board
The power supply circuit ROPS/ROPSE board is divided into three blocks:(1) Input filter circuit, (2) Main
switching circuits, and (3) Secondary side (Refer to Figure 5-7.).
INPUT FILTER
CIRCUIT
SECONOARY
SIDE
MAIN SWITCHING
+ 35 v
TRANSFOl?MERS
,
Ti,T2,T3
+ 5V
* 12V
I
Figure 5-7. ROPS/ROPSE Board Block Diagram
If trouble occurs, first determine the faulty block and then find the bad component, referring to Tables
5-7 and 5-8, and Figures 5-9 to 5-13. in addition, Tables 5-9 and 5-10 list the parts used in the
ROPS/ROPSE board.
DANGER
1. Before checking anything using the measuring instruments, check (that there are no metal chips
inside and that there are no burned components.).
2. Since this power supply is an isolated switching regulator, do not use a grounded measuring
instrument such as a multimeter or oscilloscope. If a grounded instrument is used, fuse F 1 may
burn out. Be sure that the measuring instrument is not connected to ground before using it on
this power supply circuit. In most cases, the line plug shown in Figure 5-8 will avoid this problem.
3. If your measuring instrument has multiple channels, measure the resistance value of each block
in the same way as described above and as shown in Figure 5-7. (Do not connect multiple
channels, such as channel 1 to the main switching circuit and channel 2 to the secondary side.)
4. Measure the resistance value on the circuit board after turn the power off.
Ww
Figure 5-8. AC Connector for Measuring Instruments
5-17
REV.-A
Table
——. - 5-7. ROPS/ROPSE
. . — —. — Board
— — Unit ReDair
~o DC voltage is
xesent at the + 5 V,
~ 12 V, or +35 V
Transistor Cll does not
turn on.
Solution
Checkpoint
Cause
Symptom
● Observe the voltage wave-form
between the base of Q 1 and pin
6 of T1. See Figure 5-9.
Observe the output
voltage waveform of
Q2.
)Utput.
0 Observe the voltage waveform be-
Replace Q2 or pC 1
tween the base and emitter of Q2
(Q3). See Figure 5-9.
Triac TY 1 is defective.
. Observe the voltage waveform between the collector of Q 1 and pin
6 of T1. See Figure 5-10.
Replace Q1.
. Check the continuity between T1
Replace TY1.
and T2 of TY 1. See Figure 5-11.
rhe + 12 V line is
~ead.
OP. AMP. IC1 is
● Check the voltage between pins 8
defective.
and 2 of IC 1. (Approx. 10.6 V)
. Check the voltage between pins 4
and 2 of IC 1. (Approx. 10.7 V)
Fuse resistor RI 9 (R21)
is open.
rhe – 12 V line is
Fuse resistor R22 (R25)
dead.
is open.
4n abnormal voltage
s output to the
+5V line.
;5 v + 5 % )
Shunt regulator Q4 (Q5)
is defective.
Replace IC 1
. Check the voltage between pins 1
and 2 of ICI. (Approx. 7.4 V)
Measure the voltage
between A and K of
ZD1, or replace IC 1.
. Measure the resistance across
Replace R19 (R21).
R19 (R2 1). (Approx.
3.1 ohms)
. Measure the resistance across
Replace R22 (R25).
R22 (R25). (Approx. 3.1 ohms)
. Measure the voltage between the
cathode and anode of Q4 (Q5).
(Approx. 9.0 V)
Replace Q4 (Q5).
. Measure the voltage between the
gate and anode of Q4 (Q5).
(Approx. 2.5 V)
Photo coupler PC 1 is
defective.
● Measure the voltage between pins
Zener diode ZD 1 is
defective.
● Confirm the voltage between the
Replace PC 1.
1 and 2 of the photo diode in
Pc 1.
(Approx. 1.1 V)
Replace ZD1.
anode and cathode of ZD 1.
(Approx. 1.9 V)
NOTE: The parenthesized component numbers indicate those for the ROPSE board.
5-18
REV.-A
Table 5-7. ROPS/ROPSE Board Unit ReDair
Symptom
The +35 V line is
dead.
4n abnormal voltage
s output on the
+35 V line.
:35 v + lo%)
The FET (Q3 (Q4)) does
not turn on.
IC2 does not operate.
Solution
Checkpoint
Cause
. ObseNe the voltage between pins
12 and 7 of IC2. (Approx. 10.6 V)
Replace IC2.
. Measure the resistance across
R1 1 (RI 4). (Approx. 20.0 ohms)
Replace RI 1 (RI 4).
. Measure the resistance across
R1O (Rl 3). Approx. 20.0 ohms)
Replace Q1O (R13).
. Observe the voltage wave-form
between the gate and source of
Q3 (Q4). See Figure 5-12.
. Observe the voltage waveform between the drain and souce of Q3
(Q4). See Figure 5-12.
Replace Q3 (Q4).
. Measure the voltage between pins
4 and 7 of IC2. (Approx. 1.6 V)
. Measure the voltage between pins
12 and 7 of IC2. (Approx. 10.6 V)
. Observe the voltage waveform between pins 5 and 7 of IC2. See
Figure 5-13.
● Observe the voltage waveform between pins 11 and 10 (pins 8 and
9) of IC2. See Figure 5-13.
. Measure the voltage between pins
14 and 13 of IC2. (Approx. 5.0 V)
Replace IC2.
NOTE: The parenthesized component numbers indicate those for the ROPSE board.
5-19
REV.-A
Table 5-8. ROPS/ROPSE
‘s”:’”9 + Side
osltlon
– Side
V/D IV.
S/DIV.
Emitter
2
5p
2(Q3)
Base
1 -T1
Base of 6pln o f 2
T1
a l
Board Voltage Waveforms
Voltage Waveform
Condition
Storage
A T=l I 7op 5
i
-1
—
—
—
r7
+
/*
r
!
I
Figure 5-9. Q2 Output/Ql Input Voltage
Waveforms
11
11 -T1
Base
Emlttor
of Q 1
Emitter
1
lp
Storage
(CN2 is
disconnected )
6pln o f 100
T1
f
m
)
i‘1
L [email protected]
*—
—
—.
-
1-
—
-\ .
\
)‘
Ii
.I
Iv
Figure 5-10. Q1 Input/Output Voltage Waveforms
)B 1
+
—
100
-Y1
T1
T2
50
20m
Storage
\
-~
+
-1+
--
t
—— - -
Figure 5-11. DB1 Output/TYl Off + On
Voltage Waveforms
5-20
REV.-A
Table 5-8. ROPS/ROPSE Board Voltage Waveforms
flesuring + side
position
– Side
V/D IV.
S/DIV.
)3 (Q4) Gate
Source
5
2/.L
)3 (Q4)
Source
100
Drain
Voltage Waveform
Condition
Storage
1
1\
-
— -
— —
— —
#
1
Figure 5-12. Q3 Input/Output Voltege Waveforms
C2
5pin ”
7pin
2
C2
11 pin
lOpin
5
5p
Storage
A T=a’*p:
!
{
— .
—
\
Figure 5-13. IC2 Oscillation/Output Voltage
Waveforms
NOTE: ( ) means location of the ROPSE board.
5-21
REV.-A
,6 ‘
f.-- ::
Table 5-9. ROPS Board Main Parts List
Classification
Location
Description
Name
ZD 1
Zenor Diode
HZ2CLL-TD
2.2 - 2.6V 50mA 250mW
Q1
Transistor
2SC3446
500V 3A 40W
Q2
2SC2655-TPE6
Q5
2SA 10 15-TPE2
50V 2A 900mW
50V 150mA 400mW
Q3
I FET
Q4
Ic 1
Ic
! 2SK556
L5431 -AA
450V 12A
Refer to Table A-1.
NJM2903D
TL594CN
IC2
Resistor
MEG05N 10OKU 135
10 ohms 5W 135°C
R1O
ERQ-1CUJ201
200 ohms IW & 5%
R1 1
ERQ-1 CUJ200
20 ohms IW & 5%
R 19,R22
ERQ-12HUJ2R0
2 ohms l/2W & 5%
R9
I Photo Coupler lTLp621
Pc 1
Triac
TY1
BCR 10CM-8L
55V 50mA 150mW
400V 10A
Table 5-10. ROPSE Board Main Parts List
Location
Classification
Description
Name
ZD 1
Zenor Diode
HZ2CLL-TD
2 . 2 - 2.6V 50mA 250mW
Q1
Transistor
2SC3456
800V 1.5A
Q2,Q3
2SC2655-TPE6
50V 2A 900mW
Q6
2SA 10 15-TPE2
50V 150mA 400mW
..=
Q4
FET
2SK872
900V 6A
Q5
Icl
Ic
L543 1 -AA
Refer to Table A-1.
NJM2903D
IC2
R1 1
f
*..>. ‘
TL594CN
Resistor
MEG05N 10OKU 135
10 ohms 5W 135°C
R13
ERQ-2CUJ 101
100 ohms 2W & 5Y0
R14
ERQ-1 CUJ200
20
o h m s IW A 57.
R2 1,R25
ERQ-12HUJ2R0
2
ohms
l / 2 W * 57.
Pc 1
Photo Coupler
TLP732LF2
55V 50mA 150mW
TY 1
Triac
BCR 10CM-8L
400V 10A
5-22
REV.-A
5.3.2 ROMA Board
The ROMA board can be repaired using the diagnostic tool. Table 5-11 lists the main parts of the ROMA
board.
Table 5-11. ROMA Board Main Parts List
Classification
Location
Name
Description
Refer to Table A-1.
6A
5B,6B
5A
14C
9B
4A
3A
TTL
74LSO0
74LS05
74LS 123
74LS 175
74 LS365A
SN75 188N
SN75 189N
8A
C-MOS
TC74HC373P
9C
Ic
TL431 CLPB
1 IB
LSI
M546 10P
1A
2C
7C
7D
Hybrid IC
STK66082E
H8D2 148
SI-7304
STK6981 H
9A
10A
PS-RAM
ST-RAM
HM65256BSP-15
/APD43257C-l 5L
14A
2A
3B,4B
Gate Array
E05A1 OAA
E05A02LA
E05A09BA
13A
7B
CPU
HD64 180R1 P6
PPD7810HG
ZD 1
~D2,zD3
Zenor Diode
MA4043-L-TA
MA4300-H-TA
RD39JSB3
HZS39EB3-TD
MA4033-L-TA
4.03 30.238.99
36.0 3.12 -
Q1
Q2,Q4,Q6,Q 19
Q3,Q 17,Q 18
Q5,Q 10
Q7,Q8,Q 1 1-Q 14
Q9
Q 15,Q 16
Q20
Transistor
2SA 1020-TPE6
2SC 18 15Y-TPE2
2SD 1843-T
2SD 1521
2SD 1978-TZ
2SB 1093-T
2SC4007
2SA 10 15-TPE2
50V 2A 900mW
50V 150mA 400mW
60V 1A 10W
50V 1.5A 10W
120V 1.5A 1.2W
80V 1.5A IW
80V 4A 40W
50V 150mA 400mW
CR 1,CR2
Ceramic O.S.C.
CSA 12.2MT-TF
12.2MHZ
ZD4
ZD5
ZD6
5-23
4.26V 250mA 370mW
3 1.8V 250mA 370mW
- 40.99V 5A 400mW
37.85V 150mA 400mW
3.28V 250mA 370mW
REV.-A
5.3.3 Model-5560 Printer Mechanism
Use the diagnostic tool to detect malfunctions among the motors, solenoids, and sensors.
Table 5-12 lists the reference Tables for these component. For other components, use the printing test,
and also inspect visually.
Table 5-12. Electric Device List
Name
Classification
Motor
Solenoid
Sensor
Reference Table
HF Motor
2-2
PG Motor
2-7
CR Motor
2-10
CS Motor
2-15
PF Motor
2-18
PT Solenoid
2-4
RL Solenoid
2-22
LD Solenoid
2-26
PT Sensor
2-5
PG Home Position Sensor
2-8
CR home Position Sensor
2-11
PW Sensor
2-12
PE Sensor
2-19
RL Sensor
2-23
LD Sensor
2-27
5-24
i..
REV.-A
CHAPTER 6
MAINTENANCE
6.1 PREVENTIVE MAINTENANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
6.2 LUBRICATION AND ADHESIVE APPLICATION . . . . . . . . . . . . . . . . . . . . . . . 6-1
LIST OF FIGURES
Figure 6-1.
Correct Adhesive Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-2
Figure 6-2.
LQ-2550 Lubrication and Adhesive Application
.
Points Diagram 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-2
Figure 6-3.
LQ-2550 Lubrication and Adhesive Application
.
Points Diagram 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-3
Figure 6-4.
LQ-2550 Lubrication and Adhesive Application
Points Diagram 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
LIST OF TABLES
Table 6-1.
Lubricants and Adhesive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Table 6-2.
Lubrication Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-1
.
Table 6-3.
Adhesive Application Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-2
&j
REV.-A
6.1 PREVENTIVE MAINTENANCE
Proper maintenance is essential to maintain optimal printer performance for the longest possibly period
and to minimize malfunction frequency. Preventive maintenance includes regular cleaning of the case
exterior, using neutral detergent, and occasional vacuuming of the mechanism interior to remove dust
and paper particles.
Following cleaning, refer to Section 6.2 to verify that the unit is adequately lubricated. Before returning
the serviced printer to the consumer, inspect the springs, paper feed rollers, and the basic operationof
the unit.
WARNING
Disconnect the printer from the power supply before performing maintenance. Do not use thinner,
trichloroethylene, or ketone-based solvents on theplastic components of the printer.
LUBRICATION AND ADHESIVE APPLICATION
6.2
EPSON recommends that the points illustrated in Figures 6-2, 6-3, and 6-4 be lubricated, according
to the schedule listed in Table 6-2, with EPSON O-2, G-2 and G-27, which have been extensively tested
and found to comply with needs of this priter. (Refer to Table 6-1 for details of O-2, G-2 and G-27.) Be
sure that the parts to be lubricated are clean before applying lubricant, and avoid excessive application,
which may damage related parts.
Adhesive application is necessary at the point indicated in Table 6-3 when the part is disassembled
or replaced. EPSON recommends Neji Lock #2 (G) adhesive be applied to the point diagramed in
Figure 6-3. Avoid overflow of excess to related parts.
Table 6-1. Lubricants and Adhesive
Classification
Oil
Grease
—.————
Grease
—
Adhesive
Designation
Capacity
Availability
Part No.
o-2
40 cc
@
B7 10200001
G-2
40 g
@
B70020001 1
G-27
40 g
@-.—
@l
B702700001
I Neji lock #2 (G)
1000 g
B730200200
I
@: EpSON exclusive product
Table 6-2. Lubrication Points
(Refer to Figures 6-2, 6-3, and 6-4.)
Ref. No.
(1)
(2)
(3)-X
(4)
(5)X
(6)
(7)
(8)X
(9)
(1 o)
Lubrication Points
Lubricant
Oil pad inside of carriage
Gear portion of platen gear
Contact portion of dowel on release trigger plate and right frame
Gear portion of release planetary gear
Four convex portion of release sun gear
Gear portion of tractor transmission gear
Outer gear portion of paper feed reduction gear
Contact portion of paper release support lever and paper release lever
Outer and inner gear portions of loading gear A
Outer and inner gear portions of loading gear assembly
o-2
G-27
G-2
G-27
G-27
G-27
G-27
G-27
G-27
G-27
“
“X” Lubrication is necessary in the process of assembly
6-1
REV.-A
<-,.,
Table 6-2. Lubrication Points (Cent’d)
(Refer to Figures 6-2, 6-3, and 6-4.)
Ref. No.
(11)
(1 2)X
(1 3)%
(14)
(15)
(16)
(1 7)X
Lubrication Points
‘i-. -,
Lubricant
G-27
G-27
G-27
G-27
G-27
G-27
G-27
Contact portion of frame and paper holding lever (right and left)
Contact portion of carriage guide shaft B and frame (right and left)
Shaft that sets platen gap reduction gear
Gear portion of platen gap gear assembly
Outer and inner gear portions of platen gap reduction gear
Gear portion of paper ejecting gear
Contact portion of paper feed roller and paper feed roller holder
“X Lubrication is necessary in the process of assembly.
Table 6-3. Adhesive Application Points
(Refer to Figures 6-1 and 6-2.)
Ref. No.
(21)
(22)
(23)
Adhesive Application Points
No. of Points
Screw for sensor of paper release solenoid assembly
(inside of right frame)
Screw for sensor of paper loading trigger assembly
(inside of right frame)
Contact portion of platen gap home position sensor and left frame
Po Screw for Sensor]
L
Right Frame
Adhesive
+
u
Figure 6-1. Correct Adhesive Application
42=-J
Figure 6-2. LQ-2550 Lubrication and Adhesive Application Points Diagram 1
6-2
1
1
1
REV.-A
P
-r:?
-cl
Figure 6-3. LQ-2550 Lubrication and Adhesive Application Points Diagram 2
6-3
REV.-A
/7’
i_-
Figure 6-4. LQ-2550 Lubrication and Adhesive Application Points Diagram 3
6-4
REV.-A
APPENDIX
. -1
A.1 PRINCIPLE IC SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
..
A.1.l R O M A B o a r d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1
A.1 .1.1
.
HD64180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-2
A.1.1.2
wPD781OHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-6
A.1.1.3
.. 2
2 7 5 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
A.1 .1.4
.. 3
2 7 2 5 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
A.1.1.5
HM65256BSP-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-14
A.1 .1.6
wPD43257C-15L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 5
A.1 .1.7
6
.
EO5A1OAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1
A.1 .1.8
9
.
E05A02LA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1
A.1 .1.9
.
E05A09BA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-20
..
A.1.1.1O M5461OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-22
.
A.1 .1.11 STK6981 H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-24
.
A.1 .1.12 SI-7304 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-26
.
A.1.1.13 H 8 D 2 1 4 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-28
.
A.1 .1.14 STK66082E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-29
A.1.1.15 7400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-33
A.1.1.16 7405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-33
A.1.l.l 7 74123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-33
A.1 .1.18 74175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-33
A.1.l.l 9 7 4 3 6 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-33
..
A.1 .1.20 74373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-33
A.1 .1.21
75188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-33
A.1 .1.22 75189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-33
A.1 .1.23 TL431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-34
A.1.2 ROPS/ROPSE Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-35
A.1.2.1 TL594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-36
A.1.2.2 NJM2903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-37
....
A.2 CONNECTOR PIN ASSIGNMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-38
A.3 D R A W I N G S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
... 4 9
LIST OF FIGURES
Figure A-1.
HD64180 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
...
Figure A-2.
HD64180 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3
A-i
REV.-A
Figure A-3. OP Code Fetch Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
. -5
Figure A-4.
Memory Data Read/Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5
Figure A-5.
KPD781 OHG Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-6
Figure A-6.
vPD781 OHG Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7
Figure A-7.
OP Code Fetch Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
. -1 O
Figure A-8.
Memory Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-10
.
Figure A-9.
Memory Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
. -1 1
Figure A-10. 27512 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 2
Figure A-1 1. 27512 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
. -1 2
Figure A-1 2. 27256 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1
.
3
Figure A-1 3. 27256 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
. -1 3
Figure A-1 4. HM65256BSP-15 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1 4
Figure A-1 5. HM65256BSP-15 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-14
Figure A-1 6. wPD43257C-15L Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 5
i.
Figure A-1 7. IAPD43257C-15L Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1 5
Figure A-1 8. E05A1 OAA Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1 6
Figure A-1 9. E05A1 OAA Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
.. 6
Figure A-20. E05A02LA Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
. -1 9
Figure A-21. E05A02LA Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1 9
Figure A-22. E05A09BA Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
. -20
Figure A-23. E05A09BA Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-20
Figure A-24. M5461 OP Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
. -22
Figure A-25. M5461OP Internal Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A -22
Figure A-26. STK6981 H Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-24
Figure A-27. STK6981 H Internal Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-24
Figure A-28. S1-7304 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-26
Figure A-29. S1-7304 Internal Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
. -26
c“
-. .,
Figure A-30. H8D2148 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . A-28
Figure A-31. H8D2148 Internal Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A -28
Figure A-32. STK66082E Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-29
Figure A-33. STK66082E Internal Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A -30
Figure A-34. 7400 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-33
Figure A-35. 7405 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-33
Figure A-36. 74123 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-33
.
Figure A-37. 74175 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-33
Figure A-38. 74365 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-33
Figure A-39. 74373 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-33
Figure A-40. 75188 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-33
Figure A-41. 75189 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-33
A.ii
:.
-.. .
REV.-A
Figure A-42. TL431 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-34
.
Figure A-43. TL594 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-36
Figure A-44. TL594 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-36
....
. -37
Figure A-45. NJM2903 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
.
Figure A-46. Cable Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-38
Figure A-47. ROPS Board Component Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A 4 9
Figure A-48. ROPSE Board Component Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-50
Figure A-49. ROPS Board Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-51
Figure A-50. ROPSE Board Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-52
Figure A-51. ROMA Board Component Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-53
Figure A-52. ROMA Board Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-54
Figure A-53. ROPNL Board Component Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-55
Figure A-54. ROPNL Board Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-56
Ffgure A-55. LQ-2550 Exploded Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A -57
Figure A-56. Model-5560 Exploded Diagram 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-58
Figure A-57. Model-5560 Exploded Diagram 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-59
Figure A-58. Model-5560 Push Tractor Unit Exploded Diagram . . A-59
Figure A-59. LQ-2550 Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-61
LIST OF TABLES
Table A-1.
Primary ICs on the ROMA Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
Table A-2.
HD64180 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4
Table A-3.
KPD781 OHG Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8
Table A-4.
27512 Signal Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 2
Table A-5.
27256 Signal Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 3
Table A-6.
HM65256BSP-15 Signal Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 4
Table A-7.
wPD43257C-15L Signal Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1 5
Table A-8.
E05A1 OAA Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
.. 7
Table A-9.
E05A02LA Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
.. 9
Table A-1 O.
E05A09BA Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-21
.
Table A-1 1.
M5461 OP Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-23
Table A-1 2.
STK6722H Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-25
.
Table A-1 3.
S1-7304 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-27
Table A-1 4.
H8D2148 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-28
..
Table A-1 5.
STK66082E Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-31
Table A-1 6.
Primary ICS on the ROPS/ROPSE Board . . . . . . . . . . . . . . . . . . . . A-35
Table A-1 7. TL594 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-36
A.iii
REV.-A
..
Table A-1 8. Connector Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-39
(:
Table A-1 9. CN2 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-40
Table A-20.
CN4 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..A-41
.
Table A-21. CN5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .A-42
Table A-22. CN6 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-43
Table A-23.
. -44
CN7 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
Table A-24.
CN8 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .A-44
Table A-25. CN9 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-45
Table A-26.
CN 10 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-45
Table A-27.
CN1 1 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..A-46
.
Table A-28.
CN 12 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-46
Table A-29.
CN 13 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-46
Table A-30.
CN 14 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .A-46
.
. -47
Table A-31. CN15 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
Table A-32.
. -47
CN16 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
Table A-33.
CN17 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-47
Table A-34.
CN18 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-47
Table A-35.
CN19 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..A-47
.
Table A-36.
CN20 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-48
Table A-37.
CN21 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .A-48
.
Table A-38.
CN22 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-48
Table A-39.
CN1 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
. -48
Table A-40.
ROPNL Board Switch Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-55
Table A-41.
ROPNL Board LED Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-55
Table A-42.
LQ-2550 Parts Name List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-60
..,
A-iv
REV.-A
A.1 PRINCIPLE IC SPECIFICATIONS
This chapter describes the principal ICS used in this printer.
A.1.l ROMA Board
Table A-1 shows the primary ICS used on the ROMA board.
Table A-1. Primary ICS on the ROMA Board
Location
Type
Name of IC
Description
Reference
Section
13A
7B
HD64 180R 1 P6
pPD78 10HG
CPU
CPU
CMOS 8-Bit
NMOS 8-Bit
A. 1.1.1
A. 1.1.2
1A
1A
7A
D275 12-J2 ‘1
M5L27256K” 2
M5L27256K
EP-ROM
EP-ROM
EP-ROM
Program ROM for HD64 180R1 P6
Program ROM for HD64 180R 1 P6
Program ROM for wPD7810HG
A. 1.1.3
A. 1.1.4
A. 1.1.4
12A
12A
M40A13KA*’
M20A02EA*’
Mask-ROM
Mask-ROM
12B
M 10A13KA*1
Mask-ROM
4M-Bit Kanji C.G.
2M-Bit Alpha, numeric, and graphics
C.G.
1 M-Bit Alpha, numeric, kana, and
graphics C.G.
9A
10A
HM65256BSP-15
~PD43257C-15
PS-RAM
ST-RAM
32K X 8-Bit 150nS
32K X 8-Bit 150nS
A. 1.1.5
A. 1.1.6
14A
2A
3B, 4B
E05A 10AA
E05A02LA
E05A09BA
Gate array
Gate array
Gate array
Memory Management Unit
Printhead Data Controi
Motor Control Unit
A. 1.1.7
A. 1.1.8
A. 1.1.9
1lB
M546 10P
LSI
8-Bit Parallel l/F
A. 1.1.10
7D
7C
2C
1A
STK6981 H
SI-7304
H8D2 148
STK66082E
Hybrid
Hybrid
Hybrid
Hybrid
PF Motor Driver
CR Motor Driver
HF Motor Control and Driver
Printhead Driver
A. 1.1.11
A. 1.1.12
A. 1.1.13
A. 1.1.14
6A
5B, 6B
5A
14A
9B
8A
74LSO0
74LS05
74LS 123
74LS 175
74 LS365A
74 LS373
TTL
ITL
TTL
TTL
TTL
TTL
Quad 2 Input NAND –
Hex O.C. Inverters
Dual Retriggerable Single Shot
Quad D-FFs
Hex 3-State Bus Buffers
Octal 3-State D-Latches
A.
A.
A.
A.
A.
A.
4A
3A
—9C
SN75 188N”2
SN75 189N’2
Ic
Ic
Quad Line Drivers
Quad Line Receivers
A. 1.1.21
A. 1.1.22
Adjustable Precision Shunt Regulator
A. 1.1.23
TL431 CLPB
IC
IC
IC
IC
-
I Ic
xl: IC used only in the VP-3000 (Japan only).
X2: IC used in the LQ-2550.
A-1
—
—
—
1.1.151.1.16
1.1.17
1.1.18
1.1.19
1.1.20
REV.-A
A . 1 . l . l HD64180
The HD64 180 is an 8-bit one-chip CPU, and is software compatible with model 2-80 and higher models.
The chip includes a DMA controller (DMAC), asynchronous serial communication interface (ASCI) (2
channels), serial 1/0 port, and timers (one with internal and one with external output), in addition to
the CPU.
The main features are as follows:
● MMU: 5 12K-byte physical address space
● DMAC (2 channels): High speed data transfer between memories (including memory mapped 1/0)
. ASCI (2 channels): Start-stop asynchronous system (full duplex) SCI modem control signals
● CS 1/0 port ( 1 channel): Serial to parallel conversion shift register
. 16-bit timer (2 channels): Pulse output function
. Interrupts: Internal (4), external (8)
● Bus I/F: 80 CPU-line bus l/F
● Dynamic RAM refresh controller: Programmable refresh interval
● Low speed memory input/output I/F: Programmable number of weight states
● Built-in clock oscillator circuit
● CMOS
Figures A-1 and A-2 show the pin diagram and internal block diagram. Table A-2 shows the terminal
functions.
Figure A-1. HD64180 Pin Diagram
A-2
,6 :,
i,,’
REV.-A
&—
Timing
Generator
I
I
—
I
CPU
f
AIs/TOUT -
E!E!E!=
>
DMACS
(2)
:
5
~
m
ii
II
—
DREQI
— TENDI
.
7
1
Txs RXSICTSI -
Asynchronous
Scl
(channel O)
CKS -
Htt-
Asynchronous
Scl
(channel 1)
MMU
>
(
>
<
L CKAI/TENDo
—
RXI%
-
v
w
AO-A17
RTSO
TWV
<
V
Address
RXAO
I
Data
w
1
DO-D7
Figure A-2. HD64180 Block Diagram
A-3
‘;:
Table A-2. HD64180 Terminal Functions
Pin No.
Terminal
1/0
32
1, 33
Vcc
Vss
I
—
Description
Notes
+5 VDC
GND
2
XTAL
I
3
EXTAL
I
64
+
o
Pulled up
7
RESET
I
Reset signal
13-31
AO-A 18
0
Address bus (1 9-bit, 5 12K-byte)
34-41
DO-D7
1/0
Data bus (8-bit)
63
62
59
m
WR
ME
o
o
o
Read pulse
Write pulse
Memory enable
58
4
IOE
WAIT
o
I
Pulled up
Pulled up
60
E
o
Enable (synchronous clock)
6
5
58
61
12
BUSREQ
BUSACK
HALT
LIR
ST
I
o
o
o
o
Pulled up
Pulled up
Pulled up
Pulled up
Pulled up
57
REF
o
Refresh signal
8
9
10
NMI
INTO
INT1
I
I
I
Pulled down
Pulled up
Pulled up
11
INT2
I
Interrupt 2
IC (1 1 B: BSYF, pin 37)
47
54
55
45
46
DREQO
DREQ 1
TEND 1
TXAO
I
I
0
o
IC (2A: RDY, pin 32)
RXAO
I
Data request signal
Pulled up
Pulled up
Pulled up
Pulled up
42
43
RTSO
CTSO
o
I
44
DCDO
48
49
‘
,
External oscillator (1 2.2 MHz)
I
TXA 1
RXA 1
~
50
CKA 1
1/0
51
52
53
TXS
RXS
CKS
o
I
1/0
IC (1 4A: ROUT, pin 21)
IC (1 4A: ME, pin 4 5 )
IC (1 4A: E, pin 53)
IC (1 4A: REF, pin 1 1)
IC (7B: PB2, pin 1 1)
SCI channel O RTS –
IC (7B: PB3, pin 12)
SCI channel O CTS
———.—.——
-—
Pulled down
—
+–
External serial l/F TXD
External serial VF RXD
+
‘ Pulled up
i ~~~ ~~~~~~~ j
CSO 1/0 TXD
CSO l/O RXD
CS 1/0 clock
IC (7B: RXD, pin 18)
IC (7B: TX13, p i n 1 7 )
IC (7B: SCK, pin 19)
A-4
REV.-A
CPU Timing
● Two oscillator cycles define one state.
● One machine cycle, such as OP (operational) code fetch or memory read/write, requires three states.
a) OP code fetch timing
During the first half of state T1, the contents of the program counter (PC) are output on address bus
lines AO to Al 8. During the latter half of state T1, the ME and ~ signals go active, and the memory
is accessed.
The OP codes on the data busses are fetched at the trailing clock of state T2.
The ~ signal goes active from the first half of state T1 to that of state T3, and indicates that this cycle
is an OP code fetch cycle.
OP code fetch cycle
4
k
+
~
I
1
1
x
Ao - A18
I
I
0 0 - D?
pc+l
I
I
I
- - - - - - - -
‘wmT
x
pc I
- - - - - - - -
m
A+
+_______________
I
1
- - - - - - - - - - - - - - - -
ij
I
I
11
I
\
/
Figure A-3. OP Code Fetch Timing
b) Memory Data Read/Write Timing
The memory data access timing is different from the OP code fetch timing in the following points:
. The LIR signal does not go active.
. Read data is valid a half clock later, as comparing with the OP code fetch timing. (The data is fetched
at the trailing clock of state T3.)
For memory data write timing, the ME signal and WR signal are activated at the latter half of state T1
and the first half of state T2, respectively, and the write data is output on DO to 07 from the latter half
of state T 1. The ME and WR signals go inactive in the latter half of state T3, and the write data remains
valid on the data bus unitl just before state T 1 starts.
Read circle
‘T1
4
73
,
)( Memory
AO - A18
1
1
0
address;
I
Write circle
I_
1
T1
12
13
‘T1
,
x
Memoryi address
x
DO- D7
WAIT
RD
~R
—
- -
- - - - - - - - - - - - - - i----L-\
- - - — - - — - - - * +--+- h
I
,
1
I
I
i
1/
I
I
I
I
I
I
I
/
Figure A-4. Memory Data Read/Write Timing
A-5
REV.-A
~,,,
~< /
A.1.1.2 PPD781OHG
The wPD78 10HG is a one-chip 8-bit CPU and includes two 8-bit timers, an 8-bit A/D converter, 256-byte
RAM, and a serial interface.
The main features of this chip are as follows:
● 256-byte RAM
● Direct addressing of up to 64K bytes
● 8-bit A/D converter
. 158 instructions
● 1 KS instruction cycle (12 MHz)
. 16-bit timer/event counter
● Two 8-bit timers
● Interrupts (3 internal, 8 external)
● General purpose serial interface
● 1/0 lines (1/0 ports: 28 bits; edge detection inputs: Four)
● Zero crossing detection
● Standby function
● Built-in clock oscillator circuit
● NMOS
Figures A-5 and A-6 show the pin diagram and the internal block diagram. Table A-3 shows the functions
of each terminal.
PAO
—
PA1
—
PA2
—
PA3
—
PA4
—
PA5
+
PA6
—
PA7
—
PBO
—
PSI
—
PB2
—
PB3
—
P84
—
?0s
—
PB6
—
PB7
—
TXD
—
RXD
—
Pc2($Zi?i?
PC3
—
PC4(TO)
—
PCS
—
Pc6(coD)—
PC7
—
ml—
I N T 1
—
MODE1
—
R E S E T —
MOOEO
—
x2
—
xl
—
Vss
—
Vcc
:
63
62
61
60
59
58
57
—
—
—
—
—
—
—
—
z; —
3
:
6
7
8
9
10
11
54
53
52
51
12
13
14
15
—
—
—
—
50 —
49 —
16
17
18
;:
:;
23
24
25
26
27
28
29
30
31
48
47
46
45
44
43
42
41
—
—
—
—
—
—
—
—
40
39
38
37
36
35
—
—
—
—
—
—
34 —
33 —
32
Von
PD7
P06
PD5
PD4
PC13
P132
PD1
PDO
PF7
PF6
PF5
PF4
PF3
PF2
PF 1
PFO
ALE
G
m
<.-m
f ,
-G.
A VC C
V AREF
AN7
A N 6
AN5
AN4
A N 3
A N 2
AN
1
ANO
AV SS
Figure A-5. pPD781 OHG Pin Diagram
.;
A-6
REV.-A
=7
I
1
I
b
$=-
!?
v
m
o
m
x)(
Figure A-6. PPD781OHG Block Diagram
A-7
REV.-A
Table A-3. ~PD781 OHG Terminal Functions
Pin
No.
Terminal
1/0
Signal
Name
3
PA2
I
AFXT
4
PA3
I
SLIN
1
PAO
I
CRHM
2
PA 1
I
PGHM
5
PA4
6
PA5
7
PA6
o
o
o
LDPL
RLPL
PTPL
CR home position sensor signal HOME/OUT
PG home position sensor signal HOME/OUT
LD solenoid OFF/ON
RL solenoid OFF/ON
PT solenoid OFF/ON
16
PB7
I
PESN
PE sensor PAPER STAY/END
8
PA7
9
10
PBO
PB 1
o
o
0
BUZ
DTO
CKO
14
13
PB5
PB4
o
o
LOAD
LCDCE
Buzzer
Serial data signal
Serial data synchronous
clock
Serial data trigger pulse
LCD controller chip enable
20
INT2
I
OLSW
signal
ON LINE switch signal
Control panel
11
12
PB2
PB3
I
SINH
CS 1/0 handshaking
IC (1 3A: RTSO, pin 42)
o
15
17
PB6
TXD
RXD
PC2
TO
o
o
I
1/0
o
MINH
FNEN
TXD
RXD
SCK
CRTM
CS 1/0 handshaking
HF motor enable signal
CS1/O TXD
CS1/O RXD
CS 1/0 clock
CR motor drive pulse
IC (1 3A: CTSO, pin 43)
IC (2C: pin 2)
IC (1 3A: RXS, pin 52)
IC (1 3A: TXS, pin 51 )
IC (1 3A: CKS, pin 53)
IC (5A: pin 9),
IC (5B: pin 1)
PC5
coo
PFTM
HPW
PNPON
PF motor drive pulse
PC7
o
o
o
IC
IC
IC
IC
25
NM I
I
P/s
26
INT1
I
18
19
21
22
23
24
Notes
Description
Parallel l/F AUTO FEED XT
signal
Parallel l/F SLIN signal
Printhead coil trigger pulse
Printhead driver drive voltage
ON/OFF
Parallel/Serial
Pulled up
A-8
External 8-bit parallel l\F
External 8-bit parallel l/F
Printer mechanism
Printer mechanism
Printer
mechanism
Printer mechanism
Printer
Printer
mechanism
mechanism
Control panel
Control panel
Control panel
Control panel
Control panel
(4B:
(2A:
(5B:
(6B:
TM2, pin 20)
pin 31)
pin 3),
pin 3)
Optional 81 XX l/F board
REV.-A
Table A-3. PPD781OHG Terminal Functions
Signal
Name
Pin
No.
Terminal
1/0
34
35
ANO
AN 1
I
I
36
37
38
39
AN2
AN3
AN4
AN5
I
I
I
I
40
AN6
I
41
AN7
I
I
43
AVCC
I
42
33
V AR E F
o
AVSS
—
47
PFO
o
J
54
J
PF7
55
PDO
~
62
J
PD7
46
44
45
ALE
RD
WR
o
29
27
MODEO
MODE 1
I
I
Mode 3 select (fixed)
Address OOOOH to EFFFH
(External)
FFOOH to FFFFH
(Internal RAM)
28
RESET
i
Reset signal
31
xl
I
External oscillator
(1 2.2 MHz)
30
x2
I
64
63
32
Vcc
Vml
GND
I
I
—
1/0
Description
Notes
+35 V line voltage detection
Printhead temperature and
printer cover OPEN/CLOSE
detection
Image scanner signal
PW sensor signal
PT sensor signal
CONDENSED, PAPER SELECT, MICRO FEED, and
FONT switches signal
SelecType, TEAR OFF,
PLATEN GAP ADJUST, and
Optional image scanner
Printer mechanism
Printer mechanism
Control panel
PITCH switches signal
LOAD/EJECT, LINE FEED,
FORM FEED switches signal
Control panel
Printhead, upper case
Control panel
Analog port power supply
(+5 VDC)
Analog port reference voltage
Analog port ground
Upper address (A8 to Al 5)
bus
Lower address (AO to A7)/
data (AO to A7) bus
Selected by the ALE signal
o
o
Address latch enable
Read strobe
Write strobe
+ 5 VDC
+ 5 VDC
Ground
A-9
REV.-A
#-.,
Timing
g
● Three oscillator cycles define one state.
● One read/write machine cycle requires three states, and one OP code fetch machine cycle requires
4 states.
● Wait states cannot be inserted.
a) OP Code Fetch Timing
The OP code fetch timing consists of four states, T1 to T4. During T1 to T3, program memory is
read, and instructions are processed (decoded) during T4.
AB 15 to 8 (PF7 to O) are output from T1 to T4. Since AD7 to O (PD7 to O) are used in the multiplex
mode, the address is latched at the ALE signal during state T1, and the drivers for AD7 to O are
disabled. Then the ~ signal is output from T1 to T3 to enable the memory to be addressed, fetching
at T3, and internal processing at T4.
CLOCK
f
ALE
AB15 -8
(PF7 -O)
Y
AD7 - o
(PD7 -O)
x
ADDRESS
A D D R E S S }- --<
m
OP CODE
>---c
\
)
/
\
Figure A-7. OP Code Fetch Timing
b) Memory Read Timing
The memory read timing consists of three states, T1 to T3.
Timings for address output, the ALE signal, and the ~ signal are the same as those for the OP code
fetch (excluding T4).
T1
T2
T3
CLOCK
f
ALE
AB15 -8
(PF7 -O)
x
AD7 - 0
(PD7 -0)
x
ADDRESS
A D D R E S S ~ --- -(
READ DATA
Figure A-8. Memory Read Timing
A-1 O
x
}---c
REV.-A
c )
Memory Write Timing
The memory write timing consists of three states, T1 to T3.
Timings for address output and the ALE signal are the same as those for the memory read machine
cycle, however, AD7 to O (PD7 to O) are not disabled after the memory address is output, and write
data is output on AD7 to O from the beginning of T2 to the end of T3. The WR signal is output from
the middle of T1 to the beginning of T3.
CLOCK
~L~ ~
AB15 -8
(PF7 -O)
x
x x
iii?i~
AD7 -o
(PD7 -O)
x
x
ADDRESS
ADDRESS
WRITE DATA
x
I
Figure A-9. Memory Write Timing
NOTE: When PD7 to O and PF7 to O are output to the mautiplexed address/data bus (AD7 to O) and
address bus (AB 15 to 7), both the ~ and WR signals during the machine cycle are HIGH when
external memory is not being accessed.
A-1 1
REV.-A
# -
A.1.1.3 27512
The 27512 is an EPROM, which is an ultra-violet erasable and electrically programmable ROM. ‘;
Features:
A!s 1
28 Va
A!r 2
27 A14
Al 3
20 Ala
An 4
2 5 Aa
AS 5
24 At
Aa n
6
23
AI I ‘
A$ 7
2 2 @/VP?
● 65536 words X 8 bits
● TTL compatible input/output
● +5V single power
● Acccess time: 200 ns (max.)
● 28 pins (DIP)
8
At
l-l
● AO to Al 5: Address input
● =: Chip enable input
●
~/VPP:
2 1 AM
At %1
O
20 E
19 al
Ao 10
Terminal Functions:
Output enable input/programming power supply
● 00 to 07: Data output
● V..: Power supply (+5 V)
00 11
01 12
01 13
18 Oe
17 0s
CmD 1 4
15 03
16 04
Figure A-10. 27512 Pin Diagram
o GND: Ground
Vw GND
?
Vet
?
00 0%
T
?
0s
?
?
04
0s 06
?
?
;..-.
.“:.,
01
7
?
BEE
Output Buffer
Circuit
me
I
I
v
AO w
A! *
AZ w
AS w
6
Column
Decoder
.?”
Column Gate
I
A4
As
Ab
AI
?
+
t
z-
02
Addres
Buffer
Aa
As
A~o
AI! i
10
+
I
+
3-e
1024
Row
Decoder
Figure A-1 1. 27512 Block Diagram
Table A-4. 27512 Signal Status
Vcc
(28)
Mode
Read
Output disable
(20)
L
L
Data output
*
~igh impedance
H
*
$
Standby
—
.
L
High impedance
——
Data input
VPP
H
High
impedance
Active
L
L
Data
output
I
I
Program
Program inhibit
Program
CE
(22)
5V
Standby
verify
6V
00- 07
(1 1 - 13, 15 - 19)
OE/VPP
* : Vn-1 o r VIL
A-1 2
\
Power
Active
REV.-A
A.1.1.4 27256
The 27256 is an EPROM, which is a ultra-violet erasable and electrically programmable ROM.
Features:
● 32768 words X 8 bits
● TTL compatible input/output
● + 5 V single power supply
:::m:::
Al 3
fir
3
26
A6
6
25 A a
● Access time: 250 nS (max.)
● 28 pins (DIP)
A5
5
24 A 9
A4
6
23 Aft
Terminal Functions:
/42
A3
At
● AO to Al 4: Address input
A
● =: Chip enable input
● =: Output enable input
o DO to D7: Data output
●
VPP:
●
V..:
Program power supply
Power supply (+5 V)
M
21 A,IJ
8
9
o 10
00
11
D 4
12
.z
19 D7
16 DG
!---P
17 05
D 2 13
16 D4
G NO M,
13 03
Figure A-12. 27256 Pin Diagram
● GND: Ground
Doto out put
00- D7
Vcc
o
GND
Vpp
o
A
‘1
zX—
I
=.
I I t 1 i 1
Output Enoble
Output B u f f e r
—
E— Chip Enable
I
Y- Decode
Address
AO - A{4
22 =E
7
!!
Input ‘-
Y- Select
I
I
Memory
Ce II
Mat rix
X - Decode
I
262144 bit
‘:
E
I
Figure A-1 3. 27256
Block Diagram
Table A-5. 27256 Signal Status
Mode
CE
OE
A9
VPP
Vcc
Read
L
L
x
Vcc
Vcc
D out
Output Disable
L
H
x
Vcc
Vcc
High Z
Standby
H
x
x
Vcc
Vcc
High Z
High Performance Program
L
H
x
VPP
Vcc
D
Program Verify
H
L
x
VPP
VPP
! D out
Optional Verify
L
L
x
VPP
VPP
D out
Program Inhibit
H
H
x
VPP
Vcc
High Z
‘“L
L
VH
Vcc
Vcc
Code
—
Identifier
NOTES: 1. X... Don’t care
2. VH = 12.OV & 0.5V
A-1 3
3.
VCC =
–0.6 - + 7 V
4.
VPP =
–0.6 - + 14V
outputs
in
———
-
REV.-A
A.1.1.5 HM65256Bsp-15
The HM65256BSp-15 is a CMOS pseudo static RAM, and features low power consumption and TTL
f“’”
compatible input/output.
Features:
● 32768 words X 8 bits
At4
Vcc
A12
m
● TTL compatible input/output
A7
~
● +5 V single power supply
AC
4
● ~ access time: 150 nS (max.)
As
~
ZJ A 9
A4
~
ZJ AI!
● 28 pins (DIP)
Terminal Functions:
● AO to Al 4: Address input
. WE: Write enable
A13
ZJ
Al
22
A2 ~
21
AIO
E
AI
~
ZJ
AO
10
19
. ~: Output enable input
R
1/01
12
17
1/07
1/06
1/0s
1/02
13
16
1/04
Gt40
14
15
1/01
10
1/00
● ~: Chip enable input
A8
● 1/00 to 1/07: Data input/output
● Vcc: Power supply (+5 V)
● GND: Ground
A.
Figure A-14. HM65256BSP-15 Pin Diagram
T
Address
Row
Memory
LOICh
D*cnd*r
(256112e11e
\
-. —,.
Matrix
COntrO1
I
Vck
1 1
i
Cm*ml
1/07
Colullm Du0d2f
I
- —
- - - - - - --
1
(g4
.....
= 0
5E 0
WE 0
1
I
f’,
I
---- ----wriwcontml
Rwd.
1
Figure A-1 5. HM65256BSP-15 Block Diagram
Table A-6. HM65256BSP-15 Signal Status
CE
OE
——
WE
1/0 Terminal
Function
L
L
H
Low Z
Read
L
x
L
High Z
Write
L
H
H
High Z
—
H
L
x
High Z
Refresh
H
H-
X
High Z
Standby
NOTE: X Don’t care
A-1 4
REV.-A
A.1.1.6 wPD43257C-15L
The wPD43257C-15L is a CMOS static RAM, features low power consumption, and has a standby mode
so that the memory can be backed up with a battery.
Features:
● 32768 words X 8 bits
● TTL compatible input/output
A14
WC
AIX
WE
● +5 V single power supply
AT
Am
. CE access time: 150 nS (max.)
A4
A4
● 28 pins (DIP)
As
A4
● Battery back-up is possible
A4
Ail
A*
CE4
Standby power consumption: 2 PA (typ.)
Terminal Functions:
. AO to Al 4: Address input
● WE: Write enable
Al
AOO
At
m
Ao
1/00
1/01
1/07
I/&
I/o*
● CE1: Chip enable 1 input
I/a
1/0s
. CE2: Chip enable 2 input
GM)
1/04
● 1/01 to 1/08: Data output
Figure A-1 6. IAPD43257C-15L Pin Diagram
● Vcc: Power supply (+5 V)
● GND: Ground
A s
A. —
A7
—
As
—~
Ss
AD —
B%ew
Row
08coder
AII—
AIr—
AIs—
A14—
,
cell ArroY
262, 144 ens
(5i2 X 512)
1
—
lmrl#
1/01
!
1/04
Memory
control
+– -
1
sense switch
Op4J
Colwrm Oecoder
Control
I
I
Ad&em Suffer
()
L
I
1
I I I
Ao AI At As A4 Ato
I
WE
Figure A-1 7. pPD43257C-15L Block Diagram
Table A-7. pPD43257C-15L Signal Status
CE1
CE2
WE
Mode
Output Status
H
x
x
High impedance
x
L
x
Deselect
(Power down)
L
H
H
Read
D OUT
L
H
L
Write
DIN
NOTE: X... Don’t care
A-1 5
REV.-A
... %
A.1.1.7 EO5A1OAA
f
The E05A 10AA is a gate array, and includes a memory management unit, reset circuit, and memory refresh circuit.
GND
B~
CSBCO
=K
W3
AB t5
A914
ABi’{
ABIO
REF
F
m
w
PORT I
BANK3
Vcc
~“
—
;
63 “
—
3
62 —
—
61 —
—
;
60 ~
—
6
59 —
—
4
7
—
8
:: 4
—
9
S6 —
—
10
5s —
—
11
54 —
—
12
53 —
—
13
52 —
—
14
51 —
—
15
50 —
—
49 —
16
—
—
ii
20
21
22
23
24
25
26
27
28
29
30
31
32
m=
m
—
—
m
~
—
—
—
—
m —
PORT2 -—
PORT 1 —
~~TO —
—
—
GND
:!
45
44
43
42
41
;:
38
37
36
35
34
33
Pi%E
*
AB8
081
MO
ABO
AB2
E
To
BANKO
ABI
DB2
AB7
CAR2
==
—
—
—
—
—
—
—
—
—
—
—
—
—
A 6
&
BANKi
-O
1306
AB13
ABi2
AB9
D83
084
DB5
007
KC
Figure A-1 8. E05A1 OAA Pin Diagram
GND VDO i+ 5V)
$4
AB 15-8
[
LOWER
- ~FRE~H AOORESS
RE F
DB 7 - o
c
AOORESS/
DATA
9
MAN AGEMENT
A 8 15-0
Da 7 . 0
18-BIT
m
MMIOA
Cssoo
EXTERNAL
MEMORY
MANAGEMENT
P
c S640
CSBCO
m
CS BEO
CS BFO
==
1/32
OUNTE
1
CAR
I
I
~— a ao
-m
—
BANK DECOOER
I
‘
7
—----J!
Figure A-1 9, E05A1 OAA Block Diagram
A-16
@ A NK5-O
I
RESET
cIRCUI T
TH L D
MLT
c Pu
I
L’1
CAR2
0 1 Sc
I
ROUT
f .-,
REV.-A
Table A-8. EO5A1OAA Terminal Functions
Pin
No.
Name
1/0
51
BANKO
o
Bank select O
43
18
17
15
BANK 1
BANK2
BANK3
OE
0
o
o
o
Bank select 1
Bank select 2
Bank select 3
Output enable
55
50
54
53
45
24
44
48
58
38
10
9
39
40
8
7
59
28
29
ABO
AB 1
AB2
AB3
AB4
AB5
AB6
AB7
AB8
AB9
AB 10
AB 11
AB 12
AB 13
AB 14
AB 15
AB 16
AB 17
AB 18
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Address bus O
Address bus 1
Address bus 2
Enable signal
Memory enable signal
Address bus 5
Address bus 6
Address bus 7
Address bus 8
Address bus 9
Address bus 10
Address bus 11
Address bus 12
Address bus 13
Address bus 14
Address bus 15
Address bus 16
Address bus 17
Address bus 18
56
57
49
37
D1
D2
D3
D4
D5
D6
D7
1/0
1/0
1/0
1/0
1/0
1/0
POT I
o
o
::,
0
POTO
;
1/0
1/0
MMI02
MMI03
CSBOO
Description
IC (1 2A: Al 7, pin 30),
IC (12B: Al 7, pin 30)
IC (1 2A: Al 8, pin 31)
Not used
Not used
IC (9A: ~, pin 22)
Port 1
Port 2
IC (1 1 B: PSW”, pin 20)
IC (1 1 B: BSSL, pin 3 4 )
-.
Memory mapped 1/0 O
~
Memory mapped 1/0 1
Memory mapped 1/0 2
Memory mapped 1/0 3
——
0
‘Chip
select bank OOH “–
o
o
o
CSBCO
Chip select bank 40H
Chip select bank COH
60
42
CSBDO
CSBEO
o
o
Chip select bank DOH
Chip select bank E O H
25
CSBFO
o
Chip select bank
CSB40
3
IC (1 3A: E, pin 60)
IC (1 3A: ME, pin 59)
Data bus O
Data bus 1
Data bus 2
Data bus 3
Data bus 4
Data bus 5
Data bus 6
Data bus 7
o
o
26
Notes
FOH
A-1 7
IC (1 1 B: CS, pin 32)
1:
IC (2A: CS, pin 12)
IC ( 14C: CLK, pin 9)
CN6 (MMIO, pin 20)
IC (1 2A: C–E, pin 22) C.G.
IC (12B: CE pin 22) C.G.
CN6 (CG3, pin 41)
pin 18)
CN5 (SLOT-B: CG, pin 18)
IC (1 OA: CS, pin 20)
CN4 (SLOT-A: CG,
REV.-A
Table A-8. EO5A1OAA Terminal Functions
Pin
No.
Name
1/0
11
52
46
REF
m
WR
I
I
I
Refresh cycle
Read strobe
Write strobe
IC (1 3A: REF, pin 57)
13
RANI
14
PRO I
o
o
RANI select
ROM (PROG.) select
62
2
4
31
PROE
B80
BANK
m
o
o
o
I
External ROM select
Bank select
Bank select
8-bit parallel l/F data input flag
IC (9A: ~, pin 20)
IC (1 1A: ~, pin 20) or CN6
(PROG pin 42)
CN4 (SLOT-A: PROG, pin 26)
CN6 (KANJI, pin 39)
CN6 (BANK, pin 19)
IC (1 1 B: BSYF, (pin 37))
33,
64
1, 32
Vcc
I
+5 VDC
Vss
—
Ground
23
21
22
6
63
61
THLD
ROUT
DISC
MLT
CPU
CAR 1
I
o
o
I
I
I
47
CAR2
I
Power-on reset
RESET signal
Discharge
Pulled down
Power-on reset/lNIT reset
Cartridge MOUNT/DISMOUNT
signal
Cartridge MOUNT/DISMOUNT
signal
Description
Notes
CN4 (SLOT-A: ~, pin 8)
CN5 (SLOT-B: ~, pin 8)
.,:?
p-
A-18
REV.-A
A.1.1.8 E05A02LA
The E05A02LA is a gate array IC used to lighten the load on the CPU when processing print data.
DO-D7
Data Latch
> Block 1
*
Y
Iii DO*2
iFw
-
T-
*
Commands/REDY/
e. W Control
CT
AO
a
n
I
v
5
*
*
*— —
Address
Decode
“+=U
I
>
*
1
l
Data Latch
Block 2
Data Latch
Block 3
Data Latch and ~
---F
Caunter Clock
Cantrol
GJ=JFigure A-21. E05A02LA Block Diagram
Figure A-20. E05A02LA Pin Diagram
Tahl~
.
WW.-
.
A-Q Ff)5Af371 A Terminal Fllnctinrm
.
v.
---- ----- .
. -. . . . . . . . . - . . . . . . . . . .
Pin
No.
Ter-minal
1/0
1
~
8
HI
{
H8
0
Printhead solenoids (1 to 8) ON/OFF
13
{
20
H9
J
H16
o
Printhead solenoids (9 to 16) ON/OFF
34
J
41
H17
J
H24
o
Printhead solenoids (17 to 24) ON/OFF
22
\
29
DO
\
D7
I
Print data/command
11
12
10
30
31
32
AO
CE
WR
RST
HPW
REDY
I
I
I
I
I
o
Address bit O
Chip enable
Write strobe
Reset signal
Printhead solenoid trigger pulse
Ready signal
42
9,12,
33
VDD
Vss
I
—
+ 5 VDC
Ground
Description
A-1 9
A
H9
\
H16
H17
J
H24
REV.-A
A.1.1.9 E05A09BA
The E05A09BA is a gate array used to separately control two 4-phase stepper motors.
V(JD
POT 2
Do I
s
co I
FE3Y
POT O
G
POT
m-z
I
Bo I
SCK
AO 1
RC K
AD O
AD I
PO T 3
D02
AD 2
C02
AD 3
B02
Vss
A02
I
I
Figure A-22. E05A09BA Pin Diagram
T-ire
L,
OA
I
09
09
MOTOR +
- REFERENCE
-
E -~
—
CONTROLLER
01 .
—
MOTOR ~
—
‘HA%LSES
PLMES
GENERATOR —
P U L S E
3
\
GATE
—
ENCE
E
OA - - PULSE
03-% CONTROLLER REFER
L
DO I
.
PuLSES
GENERATOR
Bo 2
.
* m
0304
b
OS
b
060708
J
4
4
09
t
0 9
O&
4
MoDE
S E L EC TOR
.—————— —
ADDRESS OECOO E R:
II
04
—
-
,
{
i
+
..,
C= A03 ADZ AOl
b
6.
4
t
1’ ?
I,,
.
400
o
r
A M P,
n=
06 J
& R= ~
Figure A-23. E05A09BA Block Diagram
A-20
-, -.,
POT O
05
b
C02
DO 2
I
i
I
AO 2
GATE
!
0 I 02
co
.
I
R
00
*
Oe
0 2+ MOTOR 2
PNASE
.
* 00 I
IN VERTER
—
ii
AO I
m
—
t
MOTOR 2
Yin
*
—
- MOTOR I
- PHASE
\
“Po T t
POT
2
POT
3
2..
f,
.
.-
REV.-A
Table A-10. E05A09BA Terminal Functions
Pin
No.
Terminal
1/0
8
9
10
11
ADO
AD 1
AD2
AD3
I
I
I
I
Address bus O
Address bus 1
Address bus 2
Address bus 3
21
20
TM 1
TM2
I
I
CR motor synchronous pulse
PF motor synchronous pulse
18
19
RCK
SCK
I
I
Read pulse
Write pulse
4
POTO
o
5
POT1
o
1
POT2
o
17
POT3
o
CR motor reference voltage
#O OFF/~ (Hold)
CR motor reference voltage
# 1 OFF/ON (Speed 4)
CR motor reference voltage
#2 OFF/~ (Speed 2, 3)
IC (7D: E, pin 18)
7
6
3
AO 1
601
Col
0
0
o
2
DO 1
0
13
14
16
A02
602
C02
D02
o
0
o
o
22
23
RST
Cs
I
I
24
12
VDD
Vss
I
—
15
Description (4B)
Description (3B)
Pulled up
Pulled up
Pulled up
PG motor HOLD/DRIVE
Pulled up
CS motor HOLD/DRIVE
PG motor coil A
PG motor coil B
CR motor coil A
CR motor coil B
CR motor coil C
CR motor coil D
PG motor coil C
PG motor coil D
PF motor coil A
PF motor coil B
CS motor coil B
CS motor coil A
PF motor coil C
PF motor coil D
CS motor coil C
CS motor coil D
Reset signal
Chip select
+ 5 VDC
Ground
A-2 1
REV.-A
A.1.1.1O M54610p
The M546 10P is an IC used to simplify data processing between the host computer and CPU.
BTi
u
— ‘1
4 2 —
V c c
imz— 2
41 —Ei15
imz
— 3
4 0 —
803
m— 4
3 9 —
RQY
m— 5
38 —
B-
GND— 6
3 7 —
B S YF
B04— 7
3 6 —
80 I — 8
au SY — 9
m— 10
35 —
EB SY
GND -
3 4 —
B S S L
33 —
32 —
3! —
01 N 8— II
01 N 7 — 12
DI N 6 — 13
DI N 5 — 14
D] N 4 — 15
DIN 3 — 16
01 N 2 — 17
01 N I — 18
m— 19
m— 2 0
GND
— 21
30
29
28
27
26
—
—
—
—
—
25
24
23
22
—
—
—
—
ACK I
c%
m
m
DOU8
DOU7
DOU 6
DOU5
DOU4
DO U3
DOU2
00 u I
Figure A-24. M5461 OP Pin Diagram
h“
I
.. —..
.
-.s ,, ;-’”/-
.. . .-.,;,
T:’,
.
d
1
#-:.:,
%. “
REV.-A
Table A-1 1. M5461OP Terminal Functions
Pin
No.
Name
11
DIN8
J
18
!
DIN 1
22
DOU 1
J
29
Description
Signal Direction
—
+- HOST
8-bit parallel I/F data (8 to 1)
{
DOU8
+ CPU ● ’
8-bit parallel l/F data (1 to 8)
19
STB
~ HOST
STROBE pulse
9
BUSY
~ HOST
BUSY signal
20
Psvv
+ MMU ● 2
BUSY signal output timing IC (1 4A: PO, pin 30)
O: Leading edge of the STROBE signal
1: Trailing edge
34
BSSL
~ MMU
BUSY signal selection
O: When ACKI changes from LOW to HIGH, BUSY changes
HIGH toLOW.
1: When CS”WR changes from HIGH to LOW, BUSY
changes HIGH to LOW.
RD
WR
+ CPU
+ CPU
Write strobe
32
Cs
~ MMU
Chip select signal (-MMIOO, pin 19)
33
36
37
38
1
ACKI
EBUSY
BSYF
RDY
BI 1
Data bit 2
Data bit 3
BUSY flag
Ready signal
8
BO 1
3
2
B12
B02
- CPU
+ CPU
+ CPU
-+ PANEL LED
+ CPU
~ HOST
- HOST
+ CPU
450
38
I
I
B13
B03
B14
~ HOST
; + MMU
+ CPU
71
B04
! -+ H O ST
~ ~~ signal
1 ———
I I NIT signal
Data bit 1
1 ERROR s.ig nal
I
1
41
~
a15
:
,
@–~~
1
‘\,/(:~
21,
:; id E:
4
.
AT
j,
Read strobe
30
31
.
!
~•ŒŒäW‚•ˆ•‚ˆäÀ›•
C)
t
.-
—
Data bit O
PE signal
i RXD s i g n a l
i RXD signa I
Pulled up
~ Open
-- i -~. ~ v ~(:
(; rou nd
35
—
——
—.——-——
A-23
..———————
REV.-A
~,..,,
A.1.l.l 1 STK6981 H
The STK6981 H is a unipolar constant current chopper type driver IC, and includes a control/drive circuit
t..
for a 4-phase stepper motor.
5
y
---- - - -la
1234
Figure A-26. STK6981 H Pin Diagram
345
2
6
7
8
12
9
13
17
16
15
14
I
Q
010
Q3
011
D12
)
~$
TR7
TR8
RI
01
LiJl
Oe
D8
TR6
TR4
,
.
,
L
TR5
1-
ZI
1
I
R15
Figure A-27. STK6981 H Internal Circuit
.
,A -
,;
. . . ..
A-24
REV.-A
Table A-1 2. STK6722H Terminal Functions
Pin
No.
Terminal
Description
1/0
+35
VDC
VPP
I
GND
—
GH
2
17
ACcOM
o
BDCOM
o
PF motor coil A/C drive voltage
PF motor coil B/D drive voltage
5
7
16
AIN
BIN
CIN
DIN
I
I
I
I
PF motor coil B drive pulse
PF motor coil C drive pulse
PF motor coil D drive pulse
4
13
6
15
AOUT
BOUT
COUT
DOUT
o
o
o
o
PF
PF
PF
PF
3
ZD
o
PF motor surge voltage output terminal
18
E
o
HOLD/DRIVE switch
8
12
RAC
RBD
I
I
Coil A/C current detection resistor mounting terminal
Coil B/D current detection resistor mounting terminal
9
11
VRAC
VRBD
I
I
Constant current control reference voltage (Coil A/C)
Constant current control reference voltage (Coil B/D)
1
10
14
PF motor coil A drive pulse
motor
motor
motor
motor
coil
coil
coil
coil
A
B
C
D
drive
drive
drive
drive
terminal
terminal
terminal
terminal
A-25
REV.-A
::7,,
A.1.1.12 S1-7304
c
The S1-7304 is a unipolar constant current chopper type driver IC, and includes a control/drive circuit .
for a 4-phase stepper motor.
~
o
g
b
&
- - - - - - - - - - - - - - - - - - - }
{I
12 -------------------1920
Figure A-28. S1-7304 Pin Diagram
i
—..
6
8
6
5
7
4
3
-.-3
,K
. ... .-,
2
1
t-ill
Ce
R4
Figure A-29. S1-7304 Internal Circuit
A-26
Trigger
Pulse
Oscillot ion
Circuit
Table A-1 3. S1-7304 Terminal Functions
Pin
No.
Terminal
15
VPP
I
1 9
GND
—
GH
16
18
A CC O M
BDCOM
o
o
CR motor coil A/C drive voltage
CR motor coil B/D drive voltage
3
12
4
13
AIN
BIN
CIN
DIN
I
I
I
I
CR
CR
CR
CR
motor
motor
motor
motor
coil
coil
coil
coil
A
B
C
D
drive pulse
drive pulse
drive pulse
drive pulse
5
9
7
11
AOUT
BOUT
COUT
DOUT
o
o
o
o
CR
CR
CR
CR
motor
motor
motor
motor
coil
coil
coil
coil
A
B
C
D
drive
drive
drive
drive
8
ZD”
o
CR motor surge voltage output terminal
17
E
o
HOLD/DRIVE switch
2
14
RAC
RBD
I
I
Coil A/C current detection resistor mounting terminal
Coil B/D current detection resistor mounting terminal
20
RX
I
Constant current control reference voltage
6
10
DA
DB
I
I
Coil A/C surge voltage
Coil B/D surge voltage
1
Vcc
I
+ 5 VDC
Description
1/0
+ 3 5
VDC
terminal
terminal
terminal
terminal
A-27
REV.-A
~. k
~.,,,
The H8D2 148 is an IC with temperature detection and feedback circuits, and is used to control the
A.1.1.13 H8D2148
2-phase stepper motor.
I
D2148
1 2 3 . . . . . . . . . 13
Figure A-30. H8D2148 Pin Diagram
s
Vcc
$
‘T
DT VF
II
Q?
78
5
R5
z
RI
C5
1
12 03
‘
8
?2
C3
4
-
?4
3
cl
C2
1-
Ic 1/4
+
C4
&
-
R 12
6
J
C9
?14
R6
R9
R 13
R 1S
TR 1
Terminal
1/0
12
13
A
B
o
o
2
4
ENB
I
TH
o
8
9
VF
FB
I
I
5
6
Vcc
GND
I
—
1
3
7
10
11
TOUT
REF
DT
SOUT
FOUT
—
—
—
—
—
B
FOUT
TOUT ,
Figure A-31. H8D2148 internal Circuit
Table A-1 4. H8D2148 Terminal Functions
Pin
No.
r-b
IC2
-)
Ic 1/4
+
b
R 10
%
T
(
1
Description
Primary Destinations “
HF motor coil A drive terminal
HF motor coil B drive terminal
Enable IC (7B: PB6, pin 15)
HF motor temperature detection (thermistor)
External resistor terminal for constant selection
+5 VDC
Ground
Not used
A-28
REV.-A
A.1.1.14 STK66082E
The STK66082E is a unipolar constant current chopper type driver IC, and includes a drive circuit for
the solenoids of the printhead.
t
White Line .
n
0’
-
“o
STK66082E
o“
I
11111111111111111111111111 11111111111111
1 3 5 7 9 11 13 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 9 4 1
I
2 4 8 8 10 12 14 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 3 6 3 8 4 0
(a) Front View
id
c 1
o“
7
“o
0 0 0 0 0 0
Q
White Line
v
[
8
42444648505254585860
62846668707274767880
4 3 4 5 4 7 4 9 5 1 5 3 5S 5 7 5 9 8 1 6 3 8 5 8 7 8 9 7 1 7 3 7 5 7 7 7 9 8
82
1
(b) Reor View
Figure A-32. STK66082E Pin Diagram
A-29
(c) Left
Side View
ZJ
2
D
0,$,
a 0
0,0,3,
0
,.2, 4,
0
+
“,>
8,3
,7,,38 0
,>, ,30 0
B
(i.)
I
o
4 a 1731
+ 3 1441
4 t? #s*,
,70, as
1
412 1s31
-.0 a, ,Ut
4 Jalsll
4 * 1ss1
4 * ,s78
+ m 1s08
+ a 8+s,
4 7 1498
+ # 1*PI
+ 4 ,468
4 a 8438
4 0 tul
,’s114
,64,2>
IUo as
6’7, M
,’,,28
,6,,2,
1911 10
1901
4U,
,s3,
4s,,
,s.,
*
,0
,1
,4
,,
,46, s
,s0, ,,
0
1
I
i
[
I
1
I
1
REV.-A
Table A-1 5. STK66082E Terminal Functions
Input Side
Output Side
Description
Pin No.
Terminal
Pin No.
Terminal
26
53
50
11
12
13
18
45
48
iii
m
m
Printhead solenoid #1 drive
9
17
35
PI
Common line for printhead solenoids #1, #9, and #17
56
43
16
m
E
G
Printhead solenoid #5 drive
13
21
37
P2
Common line for printhead solenoids #5, #13, and #21
Printhead solenoid #12 drive
68
55
28
14
15
16
52
17
47
E
23
18
21
m
20
54
19
42
G
24
32
P3
25
110
20
H1O
24
111
112
22
H1 1
49
H12
34
P4
113
114
59
61
H13
H14
115
57
H15
76
P5
4
6
2
H16
H17
H18
78
P6
51
67
66
69
12
11
14
116
117
118
Common line for printhead solenoids # 12, #20, and #24
Printhead solenoid #4 drive
8
16
Common line for printhead solenoids #4, #8, and #16
Printhead solenoid #2 drive
7
15
Common line for printhead solenoids #2, #7, and #15
Printhead solenoid #3 drive
11
19
Common line for printhead solenoids #3, # 11, and #19
13
64
119
1
H19
120
H20
22
27
121
62
15
H21
23
75
P7
7
8
63
H22
H23
H24
73
P8
9
10
65
122
123
124
Printhead solenoid #14 cjrive
Common line for printhead solenoids # 14, #22, and #23
Printhead solenoid #6 drive
10
18
Common line for printhead solenoids #6, #1 O, and #18
33
36
74
77
V1
V2
V3
V4
+ 3 5 VDC
5
19
46
60
El
E2
E3
E4
GH
31
72
EN 1
EN2
+35 VDC input OFF/ON (Fixed LOW)
A-3 1
REV.-A
Table A-1 5. STK66082E Terminal Functions
.,+,
<’
.x,
Input Side
Output Side
Pin No.
Description
Terminal
Pin No.
Terminal
39
41
80
82
PNP 1
PNP2
PNP3
PNP4
+35 VDC input ON/OFF
29
70
NU 1
NU2
Printhead drive Tr. (X 24)
base pulled up (by Vx)
40
Pu 1
+35 VDC switching Tr. (x 4)
81
PU2
30
TS 1
38
71
TS2
79
TS4
base pulled up (by Vx)
Not used (open)
TS3
3
17
44
58
D1
D2
D3
D4
Surge voltage feedback terminal
(~ +35 V line)
L
{:.
REV.-A
A.1.1.16 7405
A.1.1.15 7400
‘CC
VCC 4B
4A
4Y
30
3A
6A
6Y
5A
5V
4A
4Y
3~
w
1A
10 IY
2A
2B
2Y
Gt4D
Figure A-35. 7405 Pin Diagram
Figure A-34. 7400 Pin Diagram
A.1 .1 .18 74175
A.1 .1.1 7 74123
v,.
40
4<
40
3D
I
I
36
30
cl-m
16
I
L---J
Cima
G{
6A
4A
6Y
5A
{Y 2b 2Y
5Y
3A
4A
3
Y
V,,
GND
GUI
OUTPUT A 3
INPUT Bf 4
P
5
CUTPUT B 6
7
80
INPUT A
13 INPUT D!
%%%%
12 INPuT D2
OUTPUT A
t 1 OUTPUT D
INPUT 8
10 I N P U T C+
9
70
70
60
00
50
50
A.1.1.22 7 5 1 8 9
WE
INPUTA 2
80
Figure A-39. 74373 Pin Diagram
‘ccr-bvcc
GND
.?0
EM&LE
4Y
Figure A-38. 74365 Pin Diagram
A.1 .1.21 75188
IWUT f32
26
A.1.1.20 7 4 3 7 3
A.1.1.19 74365
G2
20
I
Figure A-37. 74175 Pin Diagram
Figure A-36. 74123 Pin Diagram
VCC
10
16
10
~
RESPONSE
C ONTROL B
I N P U T C2
OUTPUT 8
8 OUTPUT C
@
GND
Figure A-40. 75188 Pin Diagram
Vcc
INPUT D
RESPONSE
CONTROL D
OUTPUT D
INPUT C
RESPONSE
CONTROLC
O U T PUT C
Figure A-41. 75189 Pin Diagram
A-33
REV.-A
@A
$,:
A.1.1.23 TL431
The TL431 is a high-accuracy temperature compensated shunt regulator. The output voltage can be
changed between 2.5 and 35 V using two external resistors. The TL43 1 has high stability and outputs
a large current so that it can replace various Zener diodes.
Features:
● Temperature compensated feedback voltage: 50 PPM/”C TYP
● Low Zener current: 400 WA TYP.
. High response speed
,a
● Low dynamic output impedance
● Low noise
r.
L.
P,
,,
I.J
.-l
,,
L.
ANODE
REF
m
1
8
REF
NC 2
7
NC
NC 3
6
A
K
CATHODE
‘c4_-bNc
Figure A-42. TL431 Pin Diagram
,.-..
f
..-.
A-34
REV.-A
A.1.2 ROPWROPSE B o a r d
Table A-1 6 shows the primary ICS on the ROPS/ROPSE board.
Table A-1 6. Primary ICS on the ROPS/ROPSE Board
Location
Name of IC
Type
Description
Reference Section
Q4
L5431 -AA
Ic
Low power type TL431
IC2
TL594CN
Ic
Switching Regulator
A. 1.2.1
Ic 1
NJ M2903D
Ic
Dual Comparators
A. 1.2.2
A-35
A. 1.1.23
REV.-A
& ‘1
A.1.2.1 TL594
‘~
The TL594 is a switching regulator IC, and consists of two error amplifiers, a comparator, reference
voltage generator, sawtooth waveform generator, dead-time control circuit, and power transistors.
NON
INV
IN
I
PUT
REF O U T P U T
INV
INPUT
OUT
CONTROL
VCC C 2 E 2 El
●
OSCILLATOR
NON
INv
INPUT
F E E D O E A O CT
INV
INPUT BACK TIME
CONTROL
RT
GNO
Cl
Figure A-44. TL594 Block Diagram
Figure A-43. TL594 Pin Diagram
Table A-1 7. TL594 Terminal Functions
1/0
Terminal
in No.
Description
1
NON INV
I
+side of ERROR AMP1
2
INV
I
–side of ERROR AMP 1
16
NON INV
I
+side of ERROR AMP 2
15
INV
I
–side of ERROR AMP 2
3
FEED BACK
I
Feed back
4
DEADTIME
I
Dead time control
13
OUTPUT CONTROL
I
Output control
5
CT
I
External condenser terminal for the
sawtooth waveform oscillator
6
RT
12
Vcc
7
GND
I I ‘ Ground
8
c1
t
II
9
El
11
C2
10
E2
14
REF OUT
I
External resistor terminal
i I t 12 V DC
.—
Collector of TR 1
Emitter of TR 1
—L:-,—
——
~ I I C o l l e c t o r of;R2
~ -O--! Emitter
i
o
o f
T R 2—..—..———.—-. -....—.—
+——.....——.—
Reference Voltage output (+ 5V DC)
A-36
REV.-A
A.1.2.2 NJM2903
The NJ M2903 includes two comparators. The main features are as follows:
● Single power supply
. Open collector output
● Voltage range: +2 to +36 V
OuTp”TAm’3P’v+
INVERTING
INPuT A
NON-INVERTING
INPUT A
GND
m
z
L
4 I I
A
7 OUTPUT B
B
++
3
J1
–
~ INVERTING
INPuT B
N ON-1 NVERTI N G
INPuT B
Figure A-45. NJ M2903 Pin Diagram
A-37
REV.-A
A.2
CONNECTOR PIN ASSIGNMENTS
Figure A-46 shows interconnections of the primary connectors and cables. Table A-18 gives a summary
of each connector.
NOTE: The signal directions for the connectors are as viewed from the ROMA board.
CARRIAGE
HOME POSITION
SENSOR
\-
PAPER THICKNESS
SOLENOID. SENSOR
z
o
0
m
1m
u
Cn
o
w
m
z
PAPER END
SENSOR
PAPER WIDTH
SENSOR.
COLOR SELECT
MOTOR.
HEAD FAN
MOTOR
PRINTHEAD
THERMISTOR
$
m
PLATEN GAP
MOTOR
PLATEN GAP
z
rTIHOfUE POSITION SENSOf
LOADING
o
~ SOLENOID. SENSOR
>
z
<2
[IA
4
I
I
12
r
2
[
=++
L
,----- 8
~ SOLE;%;A%NSOR
x
CARRIAGE
MOTOR
PAPERFEED
MOTOR
Figure A-46. Cable Connections
A-38
REV.-A
Table A-1 8. Connector Summary
Reference
Table
loard
connector
:;;;:’
lOMA
loard
CN 1
36
Host computer
l/F (8-bit parallel)
CN2
CN3
26
25
#8 IXX VF Board
Host computer
l/F (option)
l/F (RS-232C serial)
CN4
CN5
32
32
Identity/font module
Font module
SLOT A
SLOT B
CN6
44
Not used
CN7
2
Battery unit
CN8
18
Control panel
CN9
18
Printer mechanism
CN 10
CN 11
CN 12
CN 13
CN 14
CN 15
CN 16
18
18
5
3
2
2
9
CN 17
CN 18
CN 19
CN20
6
6
4
4
CN21
3
CN22
12
ROPS/ROPSPE
5V, + 12V-GND, 35 V,-GH
#8Bz
A-38
CN 1
4
External AC plug socket
AC power supply (via the #8C0
POWER switch)
A-39
CN2
12
ROMA Board
Regulated power supply
A-38
IOPES\
IOPSE
Soard
Destination
Description
A-22
—
A-23
#8BY
A-24
HF motor, CS motor, PW
—
sensor
—
Printhead (R)
—
Printhead (F)
PT solenoid and PT sensor
—
CR home position sensor
—
—
Fan unit
—
PE sensor
PG motor and PG home
—
position sensor
—
CR motor
—
PF motor
LD solenoid and LD sensor
—
—
RL solenoid
and RL sensor
Case open sensor
#8C2
A-25
3. In this section, the following abbreviations are used:
PF: Paper f e e d
PG: Platen gap
LD: Loading
RL: Release
PT: Paper thickness
HF: Head fan
PW: Paper width
A-39
A-1 9
1-15
x
2. – . . . Included in the unit
PE: Paper end
1-12
A-20
A-2 1
NOTES: 1. x . . . Not necessary
CS: Color select
Prepared
on the user side
x
Prepared
on the user side
x
x
+3 VDC
CR: Carriage
Cable
#8Bz
A-26
A-27
A-28
A-29
A-30
A-3 1
A-32
A-33
A-34
A-35
A-36
A-37
REV.-A
Table A-1 9. CN2 Pin Assignments
Pin No.
Signal
1/0
1
ERROR
o
Error
2
PE
o
Paper end
3
D6 (B4)
I
Data bit 6
4
BUSY
o
BUSY (READY)
5
D5 (B3)
I
Data bit 5
6
ACKNLG
o
Acknowledge
7
D4 (Par-dis)
I
Data bit 4 (Parity disable)
8
INIT
I
Initialize
9
D3 (0/E)
I
Data bit 3 (Odd/Even parity select)
10
STROBE
I
Strobe pulse
11
D7 (RXD)
I
Data bit 7 (Serial signal input)
12
GND
—
Signal GND
13
RESET
o
Reset
14
–12
o
– 12V DC
15
D2 (B2)
I
Data bit 2 (Bit rate select)
16
+5
o
+5V DC
17
D1 (Bl)
I
Data bit 1 (Bit rate select)
18
NC
—
19
DO\(8/7)
I
Data bit O (8-bit/7-bit select)
20
+12
o
+ 12V DC
21
P/s
I
Parallel/Serial select
22
—
—
23
SLCT IN
I
24
GND
—
Signal GND
25
TXD
o
Transit data
26
GND
—
Signal GND
Description
Not connected
—
Select in
NOTE: The parenthesized descriptions in the “signal’” column are for the 8143 interface board.
,,
A-40
. .
Table A-20. CN4 Pin Assignments
Pin NO.
Signal
1/0
1
D5
1/0
Data bus 5
2
D4
1/0
Data bus 4
3
D7
1/0
Data bus 7
4
AB 1
0
Bank 1
5
A5
o
Address bus 5
6
A6
o
Address bus 6
7
A lO
o
Address bus 10
8
R
I
Reset signal
9
GND
—
GND
10
A9
o
Address bus 9
11
A8
o
Address bus 8
12
D2
1/0
Data bus 2
13
D1
1/0
Data bus 1
14
RD
o
Read strobe
15
DO
1/0
Data bus O
16
AO
o
17
D3
1/0
18
CG
o
19
D6
1/0
20
A14
o
Address bus 14
21
A4
o
Address bus 4
22
WR
o
Write strobe
23
A7
o
Address bus 7
24
+5
o
+ 5V DC
25
Al 1
0
Address bus 11
26
PROG
I
Program select
27
Al 2
0
Address bus 12
28
A13
o
Address bus 13
29
Al
o
Address bus 1
30
ABO
o
Bank O
31
A2
o
Address bus 2
32
A3
o
Address bus 3
Description
Address bus O
Data bus 3
CG select
Data bus 6
A-4 1
Table A-21. CN5 Pin Assignments
Description
Pin No.
Signal
1/0
1
D5
1/0
Data bus 5
2
D4
1/0
Data bus 4
3
D7
1/0
Data bus 7
4
Ae 1
0
Bank 1
5
A5
o
Address bus 5
6
A6
o
Address bus 6
A1O
o
Address bus 10
71
8 \ R I I
I
Reset
signal
9
GND
—
GND
10
A9
o
Address bus 9
11
I
A8
]
O
D2
1/0
Data bus 2
13
D1
1/0
Data bus 1
14
RD
o
Read strobe
15
DO
1/0
Data bus O
[ AO [ O I
Address
17
D3
1/0
18
CG
o
19
D6
1/0
20
A14
o
21
I
A4
\
bus
O
Data bus 3
CG select
Data bus 6
Address bus 14
O
lAddressbus4
WR
o
Write strobe
23
A7
o
Address bus 7
24
I
25
Al 1
0
Address bus 11
26
PROG
I
Pulled up (+5V)
27
Al 2
0
Address bus 12
28
Al 3
0
Address bus 13
29 I Al I
O
I
I
O
I,’
.s
22
‘5
,. .
lAddressbus8
12
16
c:
I
c..:,;
+5V DC
Address
bus
.’--.: ?-
1
30
ABO
o
Bank O
31
A2
o
Address bus 2
32
A3
o
Address bus 3
,.. .
A-42
REV.-A
Table A-22. CN6 Pin Assignments
Description
Signal
1/0
1
A12
o
Address bus 12
2
A7
o
Address bus 7
3
A6
o
Address but 6
4
A5
o
Address bus 5
5
A4
o
Address bus 4
6
A lO
o
Address bus 10
7
Al
o
Address bus 1
8
AO
o
Address bus O
9
DO
1/0
Data bus O
10
D1
1/0
Data bus 1
11
D2
1/0
Data bus 2
12
+5
o
13
I GND I
14
BO
o
Not used
15
Al 7
—
Not Connected
16
A14
o
Bank O
17
A16
o
Bank 2
n No.
–
18 I ~ I O I
+ 5V DC
I
I GND
Pulled
up (+5V
I
DC)
19
BANK
o
Kanji C.G ROM CE Signal
20
MMIO
o
~ select
21
I ~ I
O
22
I
23
I ~ I O I
I
NC I
Read
-
I
Notconnected
Not
A8
o
Address bus 8
25
A9
o
Address bus 9
I All I
O
I
Address
bus
A3
o
Address bus 3
28
A2
o
Address bus 2
29
D7
1/0
30
D6
I
D5
I
11
27
31
I
connected
24
26
I
I
pulse
Data bus 7
I
1/0 I Data bus 6
I
1/0
lDatabus5
H+-+%=::: ‘–+H+K’:----36
B?
o
Not used
A-43
–
REV.-A
Table A-22. CN6 Pin Assignments
Description
Pin No.
Signal
1/0
37
Ala
—
Not connected
38
Al 5
0
Bank 1
39
KANJI
o
Kanji C.G ROM OE Signal
40
ALE
—
Not connected
41
CG3
o
CG3 select
42
PROG
o
Not used
43
WR
o
Write pulse
44
RST
o
Not used
Table A-23. CN7 Pin Assignments
Pin No.
Signal
1/0
1
2
BAT
GND
I
—
Description
(-;
Battery + side (3.0 to 3.3 VDC)
Ground
Table A-24. CN8 Pin Assignments
Description
Pin No.
Signal
1/0
1
SHLD
—
Pulled down
3
REDY
o
LED2 ON/OFF “z
13
OLSW
I
SW1 OFF\~
4
6
15
AN5
AN6
AN7
1
I
I
Read status of SW5, SW6, SW8, and SW1 O “’.
Read status of SW7, SW9, SW1 1, and SW12.
Read status of SW2, SW3, and SW4.
12
8
7
10
9
5
11
AO
DO
D1
D2
D3
WR
LCDCE
o
o
o
o
o
o
o
LCD
LCD
LCD
LCD
LCD
LCD
LCD
14
16
17
18
2
LOAD
CKO
DTO
+5
GND
o
o
o
o
—
Port expander IC parallel data output trigger
Port expander IC Serial data transfer clock
Port expander IC Serial data
+ 5 VDC
Ground
control driver IC address bit O
control driver IC data bit O
control driver IC data bit 1
control driver IC data bit 2
control driver IC data bit 3
control driver IC write strobe
control driver IC chip select
*1: See Table A-40.
*2: See Table A-4 1.
A-44
u-.-%.
f-:. .
REV.-A
Table A-25. CN9 Pin Assignments
Description
1/0
Pin No.
Signal
3
IMSN
I
4
—
11
AGN
+ 5
o
Scan data
Analog ground
+ 5 VDC
12
PWSN
I
Paper width signal
13
GND
—
Ground
1
CSEN
o
CS unit enable
2
—
5
GH
+35
o
Ground (for drive circuits)
+ 3 5 VDC
6
CSA
7
Csc
8
CS motor coil A
CS motor coil B
CS motor coil C
CSB
o
o
o
9
CSD
o
CS motor coil D
10
CSHL
o
+ 5VDC
14
16
17
FNB
FNA
FNAB
FTH
o
o
o
I
HF motor coil B
HF motor coil A
Common line for coils A and B (+35 VDC)
HF motor thermistor
18
GND
—
Ground
15
Table A-26. CN1 O Pin Assignments
Description
Pin No.
Signal
1/0
1
4
H2
H7
o
o
Printhead solenoid #2
Printhead solenoid #7
7
H15
2
C5
o
o
Printhead solenoid #15
Common line (+35 VDC)
18
17
m
HI 1
16
H19
3
C6
o
0
o
o
Printhead
Printhead
Printhead
Common
14
H14
8
H22
Printhead solenoid #14
PrintheacI solenoid #22
9
5,6
H23
C7
o
o
o
o
solenoid #3
solenoid #1 1
solenoid #19
line (+35 VDC)
Printhead solenoid #23
Common line (+35 VDC)
15
H6
H1O
o
o
Printhead solenoid #6
11
10
H18
o
12,13
C8
o
Printhead solenoid #18
Common line (+35 VDC)
Printhead solenoid #10
A-45
Table A-27. CN1 1 Pin Assignments
Description
Pin No.
Signal
1/0
17
2
3
4
HI
m
H17
cl
o
o
o
o
Printhead solenoid # 1
Printhead solenoid #9
Printhead solenoid #17
Common line (+35 VDC)
16
18
1
,, 5
m
H13
H21
C2
o
o
o
o
Printhead
Printhead
Printhead
Common
solenoid
solenoid
solenoid
line (+35
#5
#13
#21
VDC)
10
9
8
6
H12
H20
H24
C3
o
o
o
o
Printhead
Printhead
Printhead
Common
solenoid
solenoid
solenoid
line (+35
#12
#20
#24
VDC)
15
m
o
11
H8
o
Printhead solenoid #4
Printhead solenoid #8
13
H16
7
C4
o
o
Printhead solenoid #16
Common line (+35 VDC)
14
TMSN
I
12
AGN
—
Printhead thermistor
Analog ground
Table A-28. CN12 Pin Assignments
Pin No.
Signal
1/0
1
PGPL
+35
o
o
3
+ 12
4
PGSN
AGN
0
I
2
5
Description
PT solenoid ON/OFF
, +35 VDC
—
+ 1 2 VDC
Paper thickness signal
Analog ground
Table A-29. CN13 Pin Assignments
Signal
1
CRHM
I
2
GND
CRLP
—
o
3
,
1/0
Pin No.
Description
CR home position signal
Ground
+ 5 VDC
Table A-30. CN14 Pin Assignments
Pin
1
2
No.
I Signal
I
I 1/0 I
+35
o
GH
—
Description
+35 VDC
Ground (for drive circuits)
.,
A-46
REV.-A
Table A-31. CN15 Pin Assignments
Description
1/0
Pin No.
Signal
1
PESN
I
Paper end signal
2
GND
-
Ground
Table A-32. CN16 Pin Assignments
Pin No.
Signal
1/0
3
PGAC
PGBD
PFA
PFC
PFB
PFD
o
o
o
o
o
o
6
1
2
4
5
Description
Common line for PG motor coils A and C (+35 VDC)
Common line for PG motor coils B and C (+35 VDC)
PG motor coil A
PG motor coil C
PG motor coil B
PG motor coil D
Table A-33. CN17 Pin Assignments
Pin No.
Signal
1/0
5
6
CRAC
CRBD
o
o
1
CRA
o
2
CRC
3
CRB
4
CRD
o
o
o
Description
Common line for CR motor coils A and C (+35 VDC)
Common line for CR motor coils B and C (+35 VDC)
CR motor coil A
CR motor coil C
CR motor coil B
CR motor coil D
Table A-34. CN18 Pin Assignments
Pin No.
Description
1/0
Signal
5
PFAC
o
Common line for PF motor coils A and C (+35 VDC)
6
1
PFBD
Common line for PF motor coils B and C (+35 VDC)
PFA
o
o
2
PFC
o
PF motor coil C
3
PFB
PFD
o
PF motor coil B
o
PF motor coil D
4
PF motor coil A
Table A-35. CN19 Pin Assignments
Pin No.
Signal
1
LDSW
2
BK2
3
4
+ 35
LDPL
1/0
‘
Description
I
LD sensor signal
o
LD sensor enable signal
+35 VDC
0
o
LD solenoid ON/OFF
A-47
REV.-A
r7
Pin No.
Signal
1
RLSW
#-!:..
Table A-36. CN20 Pin Assignments
1/0
Description
RL sensor signal
3
BK2
+35
o
RL sensor enable signal
+ 3 5 VDC
4
RLPL
O
RL solenoid ON/OFF
2
Pin No.
o
Signal
1/0
%_
Table A-37. CN21 Pin Assignments
1
+ 5
2
OPEN
o
I
Printer cover OPEN/CLOSE signal
3
GND
—
Ground
+ 5 VDC
-
‘escripL
Table A-38. CN22 Pin Assignments
Description
Pin No. I Signal I 1/0 I
I
i
+ 5 VDC
I
– 12 VDC
1,2
+ 5
3
4
+12
–12
5,6
GND
—
7 - 9
+35
I
10-12
GH
—
12 VDC
Ground (for control circuits)
+ 3 5 VDC
Ground (for drive circuits)
Table A-39. CN1 Pin Assignments
Pin No.
Signal
1/0
1
2
N
i
L
I
Description
External AC plug connector
~-,
=., ,.
A-48
REV.-A
I A.3
Drawings
UNIT Y4S620200000
rJl
T
FI
6.3A~2SV
1
T
1
T
n
b
I
-
‘0- - - - -
‘“- --
-
-’e
l-.~:
ml
Component Layout
A-49
REV.-A
<’:’”
\l
gv~gilNN’lEo “
I
)(J7b
~
I
NPROTECTION
AGAINST RISK OF FIRE, REPLACE O NLY WITH SAME TYPE ANO RATINGS I
v–
I
Ill
w
0
0
0
●
I
f’::,
-. ....:’
C27
‘k
—
T L 594
“u
I
N
R39
—
6—
m
la
111+
R38
—
—
!?40
R4!
R2#
R30
*u Gz
n. 9’
It h
n
XI
+
n ye:”
KG
LJu
Figure A-48. ROPSE Board Component Layout
A-50
I
REV.-A
A.
h
Q-Lo
O*
.
0s
am
=---
It:
1
II I
I
I 1
1
I
1
●u
m
n
—
—
—
—
>
I
,.
r
<
I
‘5
“’/:. . . . . . . ..—..
1
1 —
=6xm
●
Figure A-49. ROPS Board Circuit Diagram
A-5 1
REV.-A
1
1
i
t
-
-
L
I
“
!
Irl
,
.<
*
I
N
;
x:
Figure A-50. ROPSE Board Circuit Diagram
A-52
I
I
REV.-A
● :,-]:,@g:c ‘N” ‘45620’00000
rru,
5,.
6600>1
l_0?
*,
~3
:.. .
i;
I
I
-:
—
—. I
L+
~
,.
i
L —
,
>
.——-...C!U
q-.
CN4
‘z
-9
l::
!E:-7;
r —.-—-–.——.-—~ :
Figure A-51. ROMA Board Component Layout
A-53
‘=””
REV.-A
Figure A-53. ROPNL Board Component Layout
Table A-41. ROPNL Board LED Layout
Table A-40. ROPNL Board Switch Layout
Name
Switch
Name
Switch
LED 1
POWER
SN2
ON LINE
FORM FEED
LED2
READY
SVV3
LINE FEED
LED3
ON LINE
SW4
LOAD/EJECT
LED4
TRACTOR
SVV5
PAPER SELECT
LED5
FRICTION
SVV6
FONT
LED6
CSF
SVV7
PITCH
LED7
CONDENSED
SVV8
CONDENSED
LED8
PAPER OUT
SW9
TEAR OFF
LED9
TEAR OFF
Svvl
MICRO FEED
Swl 1
MICRO FEED
PLATEN GAP ADJUST
LED 10
LED1 1
PLATEN GAP ADJUST
Swl 2
SelecType
LED 12
SelecType
Swl o
LED 13
a
LED 14
LED 15
A
v
LED 16
D
LED 17
J
LED26
A-55
LCD backup light
REV.-A
0
z
—
/
\
J’r
In
0
m
1,
—
P
t
2-3
F2 J-++’
t -!-!t
Q’”
SED1200FOA
+&
L3Kx3
<
g:
a
t0
0
0
m
1r
I
MSM5937 IRS
Figure A.54. ROPNL Board Circuit Diagram
A-56
REV.-A
Figure A-57. Model-5560 Exploded Diagram 2
2
Figure A-58. Model-5560 Push Tractor Unit Exploded Diagram
A-59
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement