MB39A102 - Fujitsu

MB39A102 - Fujitsu
Fujitsu ASSP Product
1/31
Power Management
Evaluation board Manual
MB39A102
MB39A102
Rev 1.0E
September, 2001
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
Power Management
MB39A102 Evaluation board
MB39A102 Specifications
1. Pin Assignments
2. Package & Dimension
3. Pin Descriptions
4. Block Diagram
5. Setting Method
1) Output Voltage
2) Triangular Wave Oscillation Frequency
3) Soft-Start Time
4) CTL Functional Matrix
5) Functional Matrix of Protection enable
6 Time Constant For Timer-Latch Short-Circuit
Protection Circuit
MB39A102 Evaluation board Explanations
1. Evaluation Board Specifications
2. Pin Descriptions
3. Sw Information
4. Setup & Confirmation Method
5. Parts Layout Block
6. Circuit Diagram
7. Circuit Parts List
8. Initialization
9. Reference Data
10. Parts Select Method
MB39A102 Evaluation Board ver1.0E
2/31
Fujitsu ASSP Product
Power Management
MB39A102
Specifications
MB39A102 Evaluation Board ver1.0E
3/31
Fujitsu ASSP Product
4/31
Power Management
1. Pin Assignments
(TOP VIEW)
CS2
1
30
CS1
-INE2
2
29
-INE1
FB2
3
28
FB1
DTC2
4
27
DTC1
VCC
5
26
VCCO
CTL
6
25
OUT1
VREF
7
24
OUT2
RT
8
23
OUT3
CT
9
22
OUT4
GND
10
21
GNDO
CSCP
11
20
-INS
DTC3
12
19
DTC4
FB3
13
18
FB4
-INE3
14
17
-INE4
CS3
15
16
CS4
(FPT-30P-M04)
2. Package & Dimension
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
5/31
Power Management
3. Pin Descriptions
Pin No
CH1
CH2
CH3
CH4
Pin Name I/O
27
28
29
30
25
4
3
2
1
24
12
13
14
15
23
19
18
17
16
22
DTC1
FB1
-INE1
CS1
OUT1
DTC2
FB2
-INE2
CS2
OUT2
DTC3
FB3
-INE3
CS3
OUT3
DTC4
FB4
-INE4
CS4
OUT4
9
CT
8
RT
6
11
20
26
CTL
CSCP
-INS
VCCO
5
VCC
7
21
10
VREF
GNDO
GND
OSC
Control
Power
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
Description
CH1 dead time control terminal.
CH1 error amplifier output terminal.
CH1 error amplifier inverted input terminal.
CH1 soft-start setting capacitor terminal.
CH1 totem pole type output terminal.
CH2 dead time control terminal.
CH2 error amplifier output terminal.
CH2 error amplifier inverted input terminal.
CH2 soft-start setting capacitor terminal.
CH2 totem pole type output terminal.
CH3 dead time control terminal.
CH3 error amplifier output terminal.
CH3 error amplifier inverted input terminal.
CH3 soft-start setting capacitor terminal.
CH3 totem pole type output terminal
CH4 dead time control terminal.
CH4 error amplifier output terminal.
CH4 error amplifier inverted input terminal.
CH4 soft start setting capacitor terminal.
CH4 totem pole type output terminal
Triangular wave oscillation frequency setting capacitor connection
terminal.
Triangular wave oscillation frequency setting resistor connection
terminal.
I Power supply control terminal.
- Timer latch short-circuit detection capacitor connection terminal.
I Short-circuit detection comparator inverted input terminal.
- Drive output block power supply terminal.
Power supply terminal for reference power supply and control
circuit.
O Reference voltage output terminal.
- Output circuit power supply terminal.
- Ground terminal.
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
6/31
Power Management
4. Block Diagram
Down Conversion
A
CH1 ON/OFF
Control Input
(L:ON,H:OFF)
-INE1
offset ±10mV
29
VREF
Error
Amp1
(12 µA )
CS1
L priority
<< CH1 >>
Drive1
L priority
DTC1
B
CH2 ON/OFF
Control Input
(L:ON,H:OFF)
-INE2
OUT1
(1.24V)
28
Io=130mA
at VCCO=4V
27
offset ±10mV
2
VREF
<< CH2 >>
L priority
DTC2
-INE3
24
offset ±10mV
VREF
L priority
Error
Amp3
Up/Down Conversion
Drive3
23
Pch
L priority
FB3
VIN
(2.5V to 6V)
DTC3
D
CH4 ON/OFF
Control Input
(L:ON,H:OFF)
-INE4
CS4
offset ±10mV
VREF
L priority
Error
Amp4
(12 µA )
Up Conversion
PWM
Comp.4
Drive4
16
L priority
DTC4
D
<< CH4 >>
22
Nch
FB4
OUT3
Io=130mA
at VCCO=4V
12
17
OUT4
GNDO
(1.24V)
21
18
Io=130mA
at VCCO=4V
19
VREF
H : at SCP
SCP
Comp.
-INS (100kΩ)
Short Detection Control 20
Input (L:Short)
(1V)
Charge Current
CSCP
(1 µ A)
21
Power supply for
Error Amp
SCP Comp.
SCP
H : UVLO release
UVLO
OSC
bias
VREF
(0.9V)
9
VR1
7
CT
Accurary
±10%
1MHz
correspondence
MB39A102 Evaluation Board ver1.0E
Power
ON/OFF
CTL
Accurary
±1%
(2.0V)
8
5
Error Amp
Reference
(1.24V)
(0.4V)
RT
Vo3
(3.3V)
(1.24V)
13
CTL4
C
<< CH3 >>
PWM
Comp.3
15
CTL3
OUT2
Io=130mA
at VCCO=4V
4
14
Vo2
(2.5V)
(1.24V)
3
(12 µA )
CS3
B
Drive2
Pch
FB2
CH3 ON/OFF
Control Input
(L:ON,H:OFF)
Down Conversion
PWM
Comp.2
1
CTL2
C
L priority
Error
Amp2
(12 µA )
CS2
Vo1
(1.8V)
25
Pch
FB1
A
PWM
Comp.1
30
CTL1
26
VCCO
10
VREF
GND
Accurary
±1%
6
VCC
CTL
H:ON (Power ON)
L:OFF(Standby)
VTH=1.4V
Vo4
(5.0V)
Fujitsu ASSP Product
7/31
Power Management
5. Setting Method
1) Output Voltage
Vo
R1
Error
Amp
Vo=
-INEX
1.24V
R2
(R1+R2)
R2
1.24V
CSX
2) Triangular Wave Oscillation Frequency
The triangular wave oscillation frequency can be set by the timing resistor (RT ) connected the RT
terminal (pin 8) and timing capacitor (CT ) connected the CT terminal (pin 9) .
Triangular wave oscillation frequency : fosc
fosc(kHz) ≅ 1200000/(CT(pF) × RT(kΩ) )
3) Soft-Start Time
To provide a soft-start by preventing current surges at power-on, soft-start capacitor (Cs) can be connected
to the CS terminal. The error amplifier makes a soft-start in a proportion to the output voltage to the CS
terminal voltage regardless of the load current on the DC/DC converter.
Note that the soft-start time can be calculated by the following formula.
Soft-start time (time to output 100%) : ts
ts(s) ≅ 0.103 × CS (µF)
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
8/31
Power Management
4) CTL Functional Matrix
ON/OFF of each channel are set according to a setting condition of the CTL terminal(pin 6), the
CS1 terminal(pin30), the CS2 terminal(pin 1), the CS2 terminal(pin 15), and the CS4 terminal(pin
16).
CTL
CS1
CS2
CS3
CS4
Power
CH1
CH2
CH3
CH4
L
-*
-*
-*
-*
OFF
OFF
OFF
OFF
OFF
H
GND
GND
GND
GND
ON
OFF
OFF
OFF
OFF
H
Hi-Z
GND
GND
GND
ON
ON
OFF
OFF
OFF
H
GND
Hi-Z
GND
GND
ON
OFF
ON
OFF
OFF
H
GND
GND
Hi-Z
GND
ON
OFF
OFF
ON
OFF
H
GND
GND
GND
Hi-Z
ON
OFF
OFF
OFF
ON
H
Hi-Z
Hi-Z
Hi-Z
Hi-Z
ON
ON
ON
ON
ON
* : Undefined
5) Functional Matrix of Protection enable
Function
OUT1
OUT2
OUT3
OUT4
Short-Circuit Protection
H
H
H
L
UVLO
H
H
H
L
* The method of releasing the latch after protection operates is as follows.
1. The latch after all protection operates by making the CTL terminal “L" is released.
2. The latch after all protection operates by turning on VCC again is released.
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
9/31
Power Management
6) Constant For Timer-Latch Short-Circuit Protection Circuit
The short-circuit detection comparator (SCP comparator) in the each channel constantly compares the
error amplifier output level. While the switching regulator load conditions are stable on all channels,
the short-circuit detection comparator output remains at “L” level, and the CSCP terminal (pin 11) is
held at “L” level.
If the load conditions change rapidly due to a short-circuiting of load, causing the output voltage to
drop, the output from the short detection comparator goes to “H” level. The external short-circuit
protection capacitor CSCP connected to the CSCP terminal to be charged at 1.0µA.
Short-Circuit Detection Time :tPE
tPE (s) ≅ 0.70 × CSCP (µF)
When the capacitor CSCP is charged to the threshold voltage VTH ≅0.70V the SR latch is set, and the
external FET is turned off (dead time is set to 100%). At this point the SR latch input is closed and the
CSCP terminal is held at “L” level.
The latch of the timer latch type short-circuit protection circuit can be released by intercepting power
supply (VCC) or setting the CTL terminal “L" level.
Vo1
FBX
R1
−
-INEX
Error
Amp
+
R2
(1.24 V)
SCP
Comp
+
+
−
(1µA)
CSCP
CTL
11
S R
Latch
(1.0 V)
each channel
Drive
VREF
UVLO
The FBX terminal voltage becomes less than 1.35V in the range of VCC ≅ 1.7V to 2V outside
recommended operation conditions.
Therefore, be careful please not to do the short-circuit detection operation.
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
Power Management
10/31
MB39A102 Evaluation board
Explanations
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
11/31
Power Management
1. Evaluation Board Specifications
CH1
CH2
CH3
CH4
Input voltage
VIN=2.5Vto 6V( 3.6V typ.)
Oscillation frequency
fosc=500kHz
Output voltage
2.5V 15V, 5V, -7.5V 15V, 5V
3.3V
Output current(max) 250mA 10mA, 50mA, -5mA 10mA, 50mA 500mA
2. Pin Descriptions
Function table of the Pin terminal
Symbol
VIN
VoX
CTL
GNDX
ICGND
Descriptions
Power supply pin
VIN = 2.5V to 6V ( 3.6V typ.)
DC/DC converter output pin
Power supply control pin
VCTL = 0V to 0.8V : Standby mode
VCTL = 2.0V to VIN : Operation mode
DC/DC converter ground pin
MB39A102 ground pin
3. Sw Information
DIP Switch Function Table
SW
1
2
3
4
5
Name
CS1
CS2
CS3
CS4
CTL
Function
CH1 control
CH2 control
CH3 control
CH4 control
Power supply control
MB39A102 Evaluation Board ver1.0E
ON
Output ON
Output ON
Output ON
Output ON
Operation mode
OFF
Output OFF
Output OFF
Output OFF
Output OFF
Standby mode
Fujitsu ASSP Product
Power Management
12/31
4. Setup & Confirmation Method
(1) Set up
•The power supply side terminal is connected with VIN•GND.
Please connect the Vo side with a necessary load device or measurement machine.
* SW5(CTL) is made OFF(standby mode), and SW1 to SW4(CS1 to CS4) is put into the state of turning off
(output OFF).
(2) Confirmation Method
* Please turn on the power to VIN (power supply), make SW5 ON(Operation mode), and turn on SW1 to
SW4 (output ON).
IC operates normally if Vo1=2.5V(typ.), Vo2-1=15V (typ.), Vo2-2=5V (typ.), Vo2-3=-7.5V (typ.),
Vo3-1=15V (typ.), Vo3-2=5V (typ.), and Vo4=3.3V(typ.) are output.
* Please confirm each output referring to various setting etc. of the attached paper.
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
13/31
Power Management
5. Parts Layout Block
Note) Only parts C1 and C2 are arranged on the back of the board.
Board parts block diagram
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
14/31
Power Management
Board Layout
Top Side
Inside VIN & GND(Layer 3)
MB39A102 Evaluation Board ver1.0E
Inside GND(Layer 2)
Bottom Side
Fujitsu ASSP Product
15/31
Power Management
6. Circuit Diagram
R13 R14
-INE1
A
CS1
FB1
0.047µF
R17
DTC1
R18
XXX
-INE2
0Ω
R20
B
b
P7
VIN
(2.5V to 6V)
C31
XXX
GND
C22
0.1µF
C23
L priority
D
3kΩ 22kΩ
R33 15kΩ
d
C26
0.1µF
C27
0.1µF
R35
30kΩ
P12
offset ±10mV
2
VREF
L priority
Short-Circuit Detection Control
Input (L:Short)
P9
CSCP
0Ω
C3
XXX
C4
1µF
Vo1
2.5V
A
C5
L2
0Ω
22µF
Io1=250mA
C6
D1
4.7µF
SBS004
L1
XXX
PWM
Comp.2
Drive2
OUT2
17
C8
1µF
Io=130mA
at VCCO=4V
offset ±10mV
PWM
Comp.3
Drive3
OUT3
23
P3
Q4
R9 MCH3309
Io=130mA
at VCCO=4V
Error
Amp4
<CH4>
PWM
Comp.4
Io=130mA
at VCCO=4V
R12
180Ω
UVLO
bias
VREF
0.9V
0.4V
RT
R37
24kΩ
9
P10 CT
C29
100pF
0Ω
10µH
VR1
7
Accurary
±10%
1MHz
correspondence
Power
ON/OFF
CTL
VREF
C30
0.1µF
R2
0Ω
GND4
e
CTL
H:ON (Power ON)
L:OFF(Standby)
VTH=1.4V
IC GND
SW1
CS1 OPEN
OFF
5
CTL
ON
4
CS4 OPEN
ON
3
CS3 OPEN
ON
2
CS2 OPEN
ON
1
Note) The constant of the unsurface mounted component is
described with XXX.
OFF
OFF
OFF
OFF
ON
a
b
c
d
e
6
It is IC operation, and a state of all channel ON in the above figure.
MB39A102 Evaluation Board ver1.0E
C19
10µF
C17 Q5
1µF CPH3206
GND
Accurary
±1%
Vo4
3.3V
Io4=500mA
D7
SBS004
L4
15µH
6
10
P11
C18
4.7µF
D
C2
0.1µF
Accurary
±1%
2.0V
8
VCC
5
Error Amp
Reference
1.24V
11
OSC
L3
C16
4700pF
Power supply for
Error Amp
SCP Comp.
H : UVLO release
C28
0.01µF
R11
H : at SCP
1V
T2
GND3
GNDO
SCP
Vo3-2
5V
Io3-2=50mA
C15
2.2µF
P4
21
20
D5
SB05-05CP
C14
2.2µF
D6
SB05-05CP
22
1.24V
SCP
Comp.
Vo3-1
15V
Io3-1=10mA
OUT4
Nch
VREF
R10
0Ω
C12
XXX
C13
1µF
Drive4
18
GND2
C
0Ω
L priority
Vo2-3
-7.5V
Io2-3=-5mA
The same
transformer use
1.24V
16
100kΩ
D2
SB05-05CP
Vo2-2
C9
5V
2.2µF
D3
SB05-05CP
D4
C10 Io2-2=50mA
SB05-05CP
2.2µF
C11
2.2µF
<CH3>
L priority
Pch
VREF
L priority
R6
0Ω
C7
XXX
GND1
Vo2-1
15V
Io2-1=10mA
B
T1
24
1.24V
Error
Amp3
P2
Q2
MCH3309
0Ω
offset ±10mV
DTC4
19
R36
18kΩ
Charge Current
(1 µ A)
Error
Amp2
Pch
-INS
R4
0Ω
R5
<CH2>
L priority
1
R34
1kΩ
FB4
OUT1
25
P1
Q1
MCH3309
R3
Io=130mA
at VCCO=4V
12µA
CS4
P8
Drive1
27
R22
2kΩ
-INE4
PWM
Comp.1
R1
0Ω
1.24V
FB2
0.047µF
3
R23
DTC2
4
R24
33kΩ 20kΩ
R25 R26
-INE3
C
14
VREF
2.4kΩ 43kΩ
12µA
R27 15kΩ
CS3
15
R28
C24
0.1µF
C25 2kΩ
L priority
c
0.047µF FB3 13
R29
DTC3
12
R30
33kΩ 20kΩ
R31 R32
C1
0.1µF
28
12µA
CS2
26
Pch
2.4kΩ 43kΩ
R21 15kΩ
P6
VCCO
<CH1>
L priority
Error
Amp1
30
R16
C21 2kΩ
C20
0.1µF
R19
VREF
12µA
P5
a
offset ±10mV
29
3.3kΩ 12kΩ
R15 15kΩ
Fujitsu ASSP Product
16/31
Power Management
7. Circuit Parts List
Specification
Component
Item
No. (Circuit
Parts No.
MB39A102PFT
2 Q1
Pch FET
MCH3309
3 Q2
Pch FET
MCH3309
4 Q3
Package Vendor Remark
Rated1
diagram
mark)
1 M1
IC
-
-
Rated2
Rated3
PD=0.9W VGSS=10V ID=1.5A
PD=0.9W VGSS=10V ID=1.5A
-
PD=0.9W VGSS=10V ID=1.5A
PC=0.9W VCEO=15V IC=3A
Value
deviation Characteristic
-
-
-
-
-
-
-
SANYO
-
-
-
-
SANYO
-
-
-
-
-
-
-
-
-
SANYO
FPT-30P-M04 FUJITSU
5 Q4
Pch FET
MCH3309
6 Q5
7 D1
NPN
SBD
CPH3206
SBS004
IF(AV)=1A VRRM=15V
-
-
-
-
SC-62
SOT-23
SANYO
SANYO
8 D2
SBD
SB05-05CP
IF(AV)=0.5A VRRM=50V
-
-
-
-
SOT-23
SANYO
9 D3
SBD
SB05-05CP
IF(AV)=0.5A VRRM=50V
-
-
-
-
SOT-23
SANYO
10 D4
SBD
SB05-05CP
IF(AV)=0.5A VRRM=50V
-
-
SANYO
SBD
SB05-05CP
IF(AV)=0.5A VRRM=50V
-
-
-
-
SOT-23
11 D5
-
-
SOT-23
SANYO
12 D6
SBD
SB05-05CP
IF(AV)=0.5A VRRM=50V
-
-
-
-
SOT-23
SANYO
13 D7
SBD
SBS004
IF(AV)=1A VRRM=15V
-
-
-
-
SOT-23
SANYO
14 L1
Inductor
-
-
-
-
-
-
15 L2
Inductor
RLF5018T-220MR63 IDC1=0.63A IDC2=0.86A
-
22uH
±20%
RDC=0.13Ω
-
TDK
TDK
-
-
-
16 L3
Inductor
RLF5018T-100MR94 IDC1=0.94A IDC2=1.3A
-
10uH
±20%
RDC=0.067Ω
-
17 L4
Inductor
RLF5018T-150MR76 IDC1=0.76A IDC2=1.0A
-
15uH
±20%
RDC=0.097Ω
-
TDK
18 T1
Transformer CLQ52 5388-T095
-
-
-
-
-
SUMIDA
-
-
19 T2
Transformer CLQ52 5388-T095
-
-
-
-
-
-
-
SUMIDA
20 C1
Ceramic condenser
C1608JB1H104K
50V
-
-
0.1uF
±10%
B characteristic
1608
TDK
21 C2
Ceramic condenser
C1608JB1H104K
50V
-
-
0.1uF
±10%
B characteristic
1608
TDK
22 C3
Ceramic condenser
-
-
-
-
-
-
-
-
23 C4
Ceramic condenser
25V
-
-
1uF
±10%
B characteristic
3216
TDK
C3216JB1E105K
24 C5
Jumper
25 C6
Ceramic condenser
-
26 C7
Ceramic condenser
-
-
-
-
-
-
-
-
27 C8
Ceramic condenser
C3216JB1E105K
25V
-
-
1uF
±10%
B characteristic
3216
TDK
28 C9
Ceramic condenser
C3216JB1C225K
16V
-
-
2.2uF
±10%
B characteristic
3216
TDK
29 C10
Ceramic condenser
C3216JB1C225K
16V
-
-
2.2uF
±10%
B characteristic
3216
TDK
30 C11
Ceramic condenser
C3216JB1C225K
16V
-
-
2.2uF
±10%
B characteristic
3216
TDK
31 C12
Ceramic condenser
-
-
-
-
-
-
-
-
32 C13
Ceramic condenser
C3216JB1E105K
25V
-
-
1uF
±10%
B characteristic
3216
TDK
33 C14
Ceramic condenser
C3216JB1C225K
16V
-
-
2.2uF
±10%
B characteristic
3216
TDK
34 C15
Ceramic condenser
C3216JB1C225K
16V
-
-
2.2uF
±10%
B characteristic
3216
TDK
35 C16
Ceramic condenser
C1608JB1H472K
50V
-
-
4700pF
±10%
B characteristic
1608
TDK
36 C17
Ceramic condenser
C3216JB1E105K
25V
-
-
1uF
±10%
B characteristic
3216
TDK
37 C18
Ceramic condenser
C3216JB1A475M
10V
-
-
4.7uF
±10%
B characteristic
3216
TDK
38 C19
Ceramic condenser
C3216JB1A106M
6.3V
-
-
10uF
±10%
B characteristic
3216
TDK
39 C20
Ceramic condenser
C1608JB1H104K
50V
-
-
0.1uF
±10%
B characteristic
1608
TDK
40 C21
Ceramic condenser
C1608JB1H473K
50V
-
-
0.047uF
±10%
B characteristic
1608
TDK
41 C22
Ceramic condenser
C1608JB1H104K
50V
-
-
0.1uF
±10%
B characteristic
1608
TDK
42 C23
Ceramic condenser
C1608JB1H473K
50V
-
-
0.047uF
±10%
B characteristic
1608
TDK
C3216JB1A475M
-
-
1/4W
-
-
0Ω
max 50mΩ
-
3216
-
10V
-
-
4.7uF
±10%
B characteristic
3216
TDK
Not mounting
Not mounting
Not mounting
Not mounting
Not mounting
< To next page >
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
17/31
Power Management
< From previous page >
Specification
Component
No. (Circuit
Item
Parts No.
Package Vendor Remark
Rated1
Rated2
Rated3
C1608JB1H104K
50V
-
-
0.1uF
±10%
B characteristic
1608
TDK
C1608JB1H473K
50V
-
-
0.047uF
±10%
B characteristic
1608
TDK
Ceramic condenser
C1608JB1H104K
50V
-
-
0.1uF
±10%
B characteristic
1608
TDK
46 C27
Ceramic condenser
C1608JB1H104K
50V
-
-
0.1uF
±10%
B characteristic
1608
TDK
47 C28
Ceramic condenser
C1608JB1H103K
50V
-
-
0.01uF
±10%
B characteristic
1608
TDK
48 C29
Ceramic condenser
C1608CH1H101J
50V
-
-
100pF
±5%
CH characteristic
1608
TDK
49 C30
Ceramic condenser
C1608JB1H104K
50V
-
-
0.1uF
±10%
B characteristic
1608
TDK
50 C31
Ceramic condenser
-
-
-
-
-
-
-
-
-
51 R1
Jumper
-
1/16W
-
-
0Ω
max 50mΩ
-
1608
-
52 R2
Jumper
-
1/16W
-
-
0Ω
max 50mΩ
-
1608
-
53 R3
Jumper
-
1/4W
-
-
0Ω
max 50mΩ
-
3216
-
54 R4
Jumper
-
1/16W
-
-
0Ω
max 50mΩ
-
1608
-
55 R5
Jumper
-
1/4W
-
-
0Ω
max 50mΩ
-
3216
-
56 R6
Jumper
-
1/16W
-
-
0Ω
max 50mΩ
-
1608
-
57 R9
Jumper
-
1/4W
-
-
0Ω
max 50mΩ
-
3216
-
58 R10
Jumper
-
1/16W
-
-
0Ω
max 50mΩ
-
1608
-
59 R11
Jumper
-
1/4W
-
-
0Ω
max 50mΩ
-
3216
-
60 R12
Resistor
PR0816P-181-D
1/16W
-
-
180Ω
±0.5%
±25ppm/℃
1608
ssm
61 R13
Resistor
PR0816P-332-D
1/16W
-
-
3.3kΩ
±0.5%
±25ppm/℃
1608
ssm
62 R14
Resistor
PR0816P-123-D
1/16W
-
-
12kΩ
±0.5%
±25ppm/℃
1608
ssm
63 R15
Resistor
PR0816P-153-D
1/16W
-
-
15kΩ
±0.5%
±25ppm/℃
1608
ssm
64 R16
Resistor
PR0816P-202-D
1/16W
-
-
2kΩ
±0.5%
±25ppm/℃
1608
ssm
65 R17
Jumper
-
1/16W
-
-
0Ω
max 50mΩ
-
1608
-
66 R18
Resistor
-
-
-
-
-
-
-
-
-
67 R19
Resistor
PR0816P-242-D
1/16W
-
-
2.4kΩ
±0.5%
±25ppm/℃
1608
ssm
68 R20
Resistor
PR0816P-433-D
1/16W
-
-
43kΩ
±0.5%
±25ppm/℃
1608
ssm
69 R21
Resistor
PR0816P-153-D
1/16W
-
-
15kΩ
±0.5%
±25ppm/℃
1608
ssm
70 R22
Resistor
PR0816P-202-D
1/16W
-
-
2kΩ
±0.5%
±25ppm/℃
1608
ssm
71 R23
Resistor
PR0816P-333-D
1/16W
-
-
33kΩ
±0.5%
±25ppm/℃
1608
ssm
72 R24
Resistor
PR0816P-203-D
1/16W
-
-
20kΩ
±0.5%
±25ppm/℃
1608
ssm
73 R25
Resistor
PR0816P-242-D
1/16W
-
-
2.4kΩ
±0.5%
±25ppm/℃
1608
ssm
74 R26
Resistor
PR0816P-433-D
1/16W
-
-
43kΩ
±0.5%
±25ppm/℃
1608
ssm
75 R27
Resistor
PR0816P-153-D
1/16W
-
-
15kΩ
±0.5%
±25ppm/℃
1608
ssm
76 R28
Resistor
PR0816P-202-D
1/16W
-
-
2kΩ
±0.5%
±25ppm/℃
1608
ssm
77 R29
Resistor
PR0816P-333-D
1/16W
-
-
33kΩ
±0.5%
±25ppm/℃
1608
ssm
78 R30
Resistor
PR0816P-203-D
1/16W
-
-
20kΩ
±0.5%
±25ppm/℃
1608
ssm
79 R31
Resistor
PR0816P-302-D
1/16W
-
-
3kΩ
±0.5%
±25ppm/℃
1608
ssm
80 R32
Resistor
PR0816P-223-D
1/16W
-
-
22kΩ
±0.5%
±25ppm/℃
1608
ssm
81 R33
Resistor
PR0816P-153-D
1/16W
-
-
15kΩ
±0.5%
±25ppm/℃
1608
ssm
82 R34
Resistor
PR0816P-102-D
1/16W
-
-
1kΩ
±0.5%
±25ppm/℃
1608
ssm
83 R35
Resistor
PR0816P-303-D
1/16W
-
-
30kΩ
±0.5%
±25ppm/℃
1608
ssm
84 R36
Resistor
PR0816P-183-D
1/16W
-
-
18kΩ
±0.5%
±25ppm/℃
1608
ssm
85 R37
Resistor
PR0816P-243-D
1/16W
-
-
24kΩ
±0.5%
±25ppm/℃
1608
ssm
86 SW1
DIP SW
DMS-6H
-
-
-
-
-
-
-
MATSUKYU
87 PIN
Wiring terminal
WT-2-1
-
-
-
-
-
-
-
Mac-Eight
diagram
mark)
43 C24
Ceramic condenser
44 C25
Ceramic condenser
45 C26
MB39A102 Evaluation Board ver1.0E
Value
deviation Characteristic
Not mounting
Not mounting
Fujitsu ASSP Product
Power Management
8. Initialization
(1) Output voltage setting
CH1
Vo1 (V) = 1.24 / R15 × (R13 + R14 + R15) ≅ 2.5 (V)
CH2
Vo2-2 (V) = 1.24 / R21 × (R19 + R20 + R21) ≅ 5.0 (V)
CH3
Vo3-2 (V) = 1.24 / R27 × (R25 + R26 + R27) ≅ 5.0 (V)
CH4
Vo4 (V) = 1.24 / R33 × (R31 + R32 + R33) ≅ 3.3 (V)
(2) Oscillation frequency
fosc (kHz) = 1200000 / (C29(pF) × R37(kΩ)) ≅ 500 (kHz)
(3) Soft-start time
CH1
ts (s) = 0.103 × C20 (µF) ≅ 10.3 (ms)
CH2
ts (s) = 0.103 × C22 (µF) ≅ 10.3 (ms)
CH3
ts (s) = 0.103 × C24 (µF) ≅ 10.3 (ms)
CH4
ts (s) = 0.103 × C26 (µF) ≅ 10.3 (ms)
(4) Short-circuit detection time
tscp (s) = 0.70 × C28 (µF) ≅ 7.0 (ms)
MB39A102 Evaluation Board ver1.0E
18/31
Fujitsu ASSP Product
19/31
Power Management
9. Reference Data
(1) Conversion efficiency – Input voltage
Total efficiency
Total efficiency - Input voltage
100
95
At VIN≅ 2.59V
Stop for the CH1 short-circuit detection operation
Total efficiency η(%)
90
85
80
Vo1=2.5V,
Vo2-1=15V,
Vo2-2=5V,
Vo2-3=-7.5V,
Vo3-1=15V,
Vo3-2=5V,
Vo4=3.3V,
fosc=500kHz
75
70
65
Io1=250mA
Io2-1=10mA
Io2-2=50mA
Io2-3=-5mA
Io3-1=10mA
Io3-2=50mA
Io4=500mA
60
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
Input voltage VIN(V)
Each channel efficiency
Each channel efficiency - Input voltage
100
Each channel efficiency η(%)
95
90
CH1
85
CH4
80
CH2
CH3
75
70
Not e ) On ly c o n c e r n e d c h an n e l is t u r n e d o n .
Ext e r n al SW T r dr i vin g c u r r e n t is in c lu de d.
C H2 an d CH3 ar e a di sc on t in u o u s m ode .
65
60
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Input voltage VIN(V)
MB39A102 Evaluation Board ver1.0E
5.5
6.0
6.5
7.0
Fujitsu ASSP Product
20/31
Power Management
(2) Load regulation (VIN=3.6V)
( Load regulation)
)
CH1 Output voltage - Load cuttent(
CH1
VIN=3.6V
DC/DC converter output voltage (V)
5
4
3
Vo1=2.5V setting
2
1
0
0
50
100
150
200
250
300
Load current Io(mA)
( Load regulation)
)
CH2 and CH3 Output voltage - Load current(
VIN=3.6V
7
DC/DC converter output voltage (V)
CH2,CH3
6
Vo3-2=5V setting
5
Vo2-2=5V setting
4
Note) Transformer using channel acquires only the
output to which the feedback control is done.
Vo2-1 and Vo3-1 : Io=10mA fixation
Vo2-3 : Io=-5mA fixation
3
2
0
10
20
30
40
50
Load current Io(mA)
( Load regulation)
)
CH4 Output voltage - Load current(
VIN=3.6V
5
DC/DC converter output voltage (V)
CH4
4
Vo4=3.3V setting
3
2
1
0
0
100
200
300
Load current Io(mA)
MB39A102 Evaluation Board ver1.0E
400
500
Fujitsu ASSP Product
21/31
Power Management
(3) Line regulation
Output is a feedback control.
Output voltage - Input voltage
( Line regulation : Output is a feedback control)
6
DC/DC converter output voltage (V)
Vo2-2=5V setting
5
Vo3-2=5V setting
4
Vo4=3.3V setting
3
Vo1=2.5V setting
2
1
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
Input voltage VIN(V)
Output is a feedback control none.
Output voltage- Input voltage
( Line regulation : Output is a feedback control none)
Output voltage- Input voltage
( Line regulation : Output is a feedback control none)
-5
16
DC/DC converter output voltage (V)
DC/DC converter output voltage (V)
17
Vo3-1=15V setting
Vo2-1=15V setting
15
14
13
12
-6
-7
Vo2-3=-7.5V setting
-8
-9
-10
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
Input voltage VIN(V)
MB39A102 Evaluation Board ver1.0E
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Input voltage VIN(V)
5.5
6.0
6.5
7.0
Fujitsu ASSP Product
22/31
Power Management
10. Parts Select Method
P-ch MOS FET
Inductor(L2)
Schottky Barrier Diode
Output Smoothing Condenser
Transformer
CH1
CH2
Output Smoothing Condenser
Schottky Barrier Diode
CH3
Output Smoothing Condenser
CH4
Transformer
Output Smoothing Condenser
NPN Tr
Inductor(L3)
Board Photograph
MB39A102 Evaluation Board ver1.0E
Inductor(L4)
Schottky Barrier Diode
Fujitsu ASSP Product
23/31
Power Management
The parts selection method is written in the following.
CH1 : 2.5V output(Down conversion)
VIN(max)=6V, Io=250mA, fosc=500kHz
1. P-ch MOS FET(MCH3309(SANYO) )
VDS=-20V, VGS= ±10V, ID=-1.5A, RDS(on)=340mΩ(max), Qg=3.2nC
Drain current : Peak value
The peak value of the drain current of FET should be in the rated current value of FET.
When the peak value of the drain current of FET is assumed to be ID, ID is obtained by the following formula.
ID ≥ IO +
VIN(max) - VO
t ON
2L
6 − 2.5
1
≥ 0.25 +
×
× 0.417
−6
2 × 22 × 10
500 × 10 3
*)
VO = VIN ×
t ON
t ON
t
VO
1
V
= t×
× O
=
VIN fosc VIN
≥ 0.316A
Drain-source voltage and gate-source voltage
Source-drain voltage and gate-source voltage of FET should be in the rated voltage value of FET.
When the source-drain voltage of FET is assumed to be VDS, and the gate-source voltage is assumed to be
VGS, VDS and VGS are obtained by the following formula.
VDS ≤ − VIN(max)
≤ − 6V
VGS ≥ VIN(max)
≥ 6V
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
Power Management
24/31
2. Schottky Barrier Diode(SBS004(SANYO))
VF=0.35V(max) : at IF = 1A, VRRM=15V, IF = 1A, IFSM=10A,
Diode current : Peak value
The peak value of the diode current should be in the rated current value of the diode.
When the peak value of the diode current is assumed to be IFSM, IFSM is obtained by the following
formula.
VO
× t OFF
2L
2.5
1
≥ 0.25 +
×
× (1 − 0.417)
−6
2 × 22 × 10
500 × 10 3
≥ 0.316A
I FSM ≥ I O +
Diode current : Average value
The average value of the diode current should be in the rated current value of the diode.
When the average value of the diode current is assumed to be IF, IF is obtained by the following
formula.
toff
t
≥ 0.25 × 0.583
IF ≥ IO ×
≥ 0.146A
Repetition peak reverse voltage
The repetition peak reverse voltage of the diode should be in the rated voltage value of the diode.
When the repetition peak reverse voltage of the diode is assumed to be VRRM,
VRRM is obtained by the following formula.
VRRM ≥ VIN(max)
≥ 6V
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
Power Management
25/31
3. Inductor (L2 : SLF12565T-220M3R5 : TDK)
22µH(tolerance : ±20%), rated current = 0.63A
The condition of L because of a continuous current in the range of the use voltage
V
-V
L ≥ IN(max) O ⋅ t ON
2I O
6 - 2.5
1
≥
×
× 0.42
2 × 0.25 500 × 103
≥ 5.88uH
Load current value which becomes continuous current condition.
V
I O ≥ O ⋅ t OFF
2L
2.5
1
≥
×
× (1 - 0.42)
−6
2 × 22 × 10
500 × 10 3
≥ 66mA
Inductor current : peak value
The peak value of the inductor current should be in the rated current value of the inductor.
When the peak value of the inductor current is assumed to be IL, IL is obtained by the following formula.
IL ≥ IO +
VIN(max) - VO
≥ 0.25 +
2L
⋅ t ON
6 - 2.5
1
×
× 0.417
−6
2 × 22 × 10
500 × 10 3
≥ 0.316A
Inductor current : peak to peak value
When the peak to peak value of the inductor current is assumed to be ∆IL, ∆IL is obtained by the
following formula.
∆I L =
=
VIN(max) − VO
L
× t ON
6 − 2.5
1
×
× 0.42
−6
22 × 10
500 × 103
≅ 0.134A
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
26/31
Power Management
CH2,CH3 : (Transformer conversion)
VIN(max)=6V
VIN(min)=2.5V
,
VO2-1, VO3-1 = 15V
VO2-2 , VO3-2 = 5V
VO2-3 = -7.5V ,
Io2-1 , IO3-1 = 10mA
Io2-2 , IO3-2 = 50mA
Io2-3 = -5mA
1. P-ch MOS FET(MCH3309(SANYO) )
VDS=-20V, VGS= ±10V, ID=-1.5A, RDS(on)=340mΩ(max), Qg=3.2nC
Ratings of the drain current of FET should be 0.7A or more.
Moreover, ratings of drain-source voltage and gate-source voltage of FET should be 9V or more.
2. Schottky Barrier Diode(SB05-05CP(SANYO))
VRRM=50V, IF=500mA, IFSM=5A,
Ratings of the diode are VRRM (repetition peak reverse voltage)= each 49V, IF (average output
current)=50mA, and should be IFSM (serge forward current)=0.3A or more.
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
27/31
Power Management
CH4:3.3V output(Sepic conversion)
VIN(min)=2.5V,Io=500mA,fosc=500kHz
1. NPN Tr(CPH3206(SANYO))
VCEO=15V, VCBO=15V, IC=3A,hFE=200(min)
Collector current : Peak value
The peak value of the collector current of Tr should be in the rated current value of Tr.
When the peak value of the collector current of Tr is made IC, IC is obtained by the following formula.
IC ≥
VO + VIN(min)
VIN(min)
≥
1æ 1
1 ö
÷ × VIN(min) × t ON
× I O + çç
+
2 è L 3 L 4 ÷ø
3.3 + 2.5
1æ
1
1
1
ö
× 2.5 ×
× 0.69
× 0.5 + ç
+
-6
-6 ÷
2.5
2 è 10 × 10
15 × 10 ø
500 × 10 3
≥ 1.397A
*)
t ON
t OFF
VO
= t×
VIN + VO
VO = VIN ×
t ON
=
VO
1
×
fosc VIN + VO
Collector-emitter voltage and collector-base voltage
The collector-emitter voltage and the collector-base voltage of Tr should be in the rated voltage values.
When the collector-emitter voltage and the collector-base voltage of Tr are assumed to be VCEO and VCBO,
VCEO and VCBO are obtained by the following formula.
VCEO = VCBO ≥ VIN(max) + VO
≥ 6 + 3.3
≥ 9.3V
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
Power Management
28/31
2. Schottky Barrier Diode(SBS004(SANYO))
VF=0.35V(max) : at IF=1A, VRRM=15V, IFSM=10A, IF=1A
Diode current : Peak value
The peak value of the diode current should be in the rated current value of the diode.
When the peak value of the diode current is assumed to be IFSM, IFSM is obtained by the following
formula.
I FSM ≥
VO + VIN(min)
≥
VIN(min)
1æ 1
1 ö
÷ × VO × t OFF
× I O + çç
+
2 è L 3 L 4 ÷ø
3.3 + 2.5
1æ
1
1
1
ö
× 3.3 ×
× (1 - 0.569)
× 0.5 + ç
+
-6
-6 ÷
2.5
2 è 10 × 10
15 × 10 ø
500 × 10 3
≥ 1.397A
Diode current : Average value
The average value of the diode current should be in the rated current value of the diode.
When the average value of the diode current is assumed to be IF, IF is obtained by the following
formula.
IF ≥ IO
≥ 0.5A
Repetition peak reverse voltage
The repetition peak reverse voltage of the diode should be in the rated voltage value of the diode.
When the repetition peak reverse voltage of the diode is assumed to be VRRM,
VRRM is obtained by the following formula.
VRRM ≥ VIN(max) + VO
≥ 6 + 3.3
≥ 9.3V
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
29/31
Power Management
3. Inductor(L3 : RLF5018T-100MR94 : TDK)
10µH(tolerance : ±20%), rated current = 0.94A
The condition of L because of a continuous current in the range of the use voltage
L≥
VIN(max)
2
× t ON
2I O VO
62
1
≥
×
× 0.355
2 × 0.5 × 3.3 500 × 10 3
≥ 7.7uH
Load current value which becomes continuous current condition.
2
VIN(max)
IO ≥
× t ON
2LVO
62
1
≥
×
× 0.355
−6
2 × 10 × 10 × 3.3 500 × 10 3
≥ 0.387A
*) The continuous current condition becomes a large current value compared with
the current value obtained by L4.
Inductor current : peak value
The peak value of the inductor current should be in the rated current value of the inductor.
When the peak value of the inductor current is assumed to be IL, IL is obtained by the following formula.
IL ≥
≥
VO
VIN(min)
IO +
VIN(min)
2L
× t ON
3.3
2.5
1
× 0.5 +
×
× 0.57
−6
2.5
2 × 10 × 10
500 × 10 3
≥ 0.802A
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
Power Management
30/31
4. Inductor (L4 : RLF5018T-150MR76 : TDK)
15µH(tolerance : ±20%), rated current = 0.76A
The condition of L because of a continuous current in the range of the use voltage
L≥
VIN(max)
× t ON
2I O
6
1
≥
×
× 0.355
2 × 0.5 500 × 10 3
≥ 4.3uH
Load current value which becomes continuous current condition.
V
I O ≥ IN(max) × t ON
2L
6
1
≥
×
× 0.355
−6
2 × 15 × 10
500 × 10 3
≥ 0.142A
*) The continuous current condition becomes a large current value compared with
the current value obtained by L3.
Inductor current : peak value
The peak value of the inductor current should be in the rated current value of the inductor.
When the peak value of the inductor current is assumed to be IL, IL is obtained by the following formula.
IL ≥ IO +
VIN(max)
≥ 0.5 +
2L
× t ON
6
1
×
× 0.355
−6
2 × 15 × 10
500 × 10 3
≥ 0.642A
MB39A102 Evaluation Board ver1.0E
Fujitsu ASSP Product
Power Management
31/31
All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU
sales representatives before ordering.
The information and circuit diagrams in this document are presented as examples of semiconductor device
applications, and are not intended to be incorporated in devices for actual use.
Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties
arising from the use of this information or circuit diagrams.
FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and
other office equipment, industrial, communications, and measurement equipment, personal or household devices,
etc.).
CAUTION:
Customers considering the use of our products in special applications where failure or abnormal operation may
directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability
are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls,
medical devices for life support, etc.) are requested to consult with
FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such
use without prior approval.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from
such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire
protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export
under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will
be required for export of those products from Japan.
MB39A102 Evaluation Board ver1.0E
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement