IRB 2400 16 Manual - Riley Surface World

IRB 2400 16 Manual - Riley Surface World
Product Specification
IRB 2400
3HAC 5672-1
M98A / BW OS 3.2 / Rev. 1
The information in this document is subject to change without notice and should not be construed as a
commitment by ABB Robotics Products AB. ABB Robotics Products AB assumes no responsibility for
any errors that may appear in this document.
In no event shall ABB Robotics Products AB be liable for incidental or consequential damages arising
from use of this document or of the software and hardware described in this document.
This document and parts thereof must not be reproduced or copied without
ABB Robotics Products AB´s written permission, and contents thereof must not be imparted to a third
party nor be used for any unauthorized purpose. Contravention will be prosecuted.
Additional copies of this document may be obtained from ABB Robotics Products AB at its then current
charge.
© ABB Robotics Products AB
Article number: 3HAC 7677-1
Issue: M2000/Rev.1
ABB Robotics Products AB
S-721 68 Västerås
Sweden
Product Specification IRB 2400
CONTENTS
Page
1 Introduction ..................................................................................................................... 3
2 Description ....................................................................................................................... 5
2.1 Structure.................................................................................................................. 5
2.2 Safety/Standards ..................................................................................................... 6
2.3 Operation ................................................................................................................ 7
2.4 Installation .............................................................................................................. 9
2.5 Programming .......................................................................................................... 9
2.6 Automatic Operation .............................................................................................. 11
2.7 Maintenance and Troubleshooting ......................................................................... 12
2.8 Robot Motion.......................................................................................................... 13
2.9 External Axes ......................................................................................................... 16
2.10 Inputs and Outputs................................................................................................ 16
2.11 Communication..................................................................................................... 17
3 Technical specification .................................................................................................... 19
3.1 Structure.................................................................................................................. 19
3.2 Safety/Standards ..................................................................................................... 22
3.3 Operation ................................................................................................................ 23
3.4 Installation .............................................................................................................. 24
3.5 Programming .......................................................................................................... 33
3.6 Automatic Operation .............................................................................................. 37
3.7 Maintenance and Troubleshooting ......................................................................... 37
3.8 Robot Motion.......................................................................................................... 38
3.9 External Axes ......................................................................................................... 41
3.10 Inputs and Outputs................................................................................................ 42
3.11 Communication..................................................................................................... 46
4 Specification of Variants and Options........................................................................... 47
5 Accessories ....................................................................................................................... 65
6 Index ................................................................................................................................. 67
Product Specification IRB 2400 M98A/BaseWare OS 3.2
1
Product Specification IRB 2400
2
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Introduction
1 Introduction
Thank you for your interest in the IRB 2400. This manual will give you an overview
of the characteristics and performance of the robot.
IRB 2400 is a 6-axis industrial robot, designed specifically for manufacturing
industries that use flexible robot-based automation. The robot has an open structure
that is specially adapted for flexible use, and can communicate extensively with
external systems.
The robot is equipped with an operating system called BaseWare OS. BaseWare OS
controls every aspect of the robot, like motion control, development and execution of
application programs communication etc.
The functions in this document are all included in BaseWare OS, if not otherwise
specified. For additional functionality, the robot can be equipped with optional
software for application support - gluing, arc welding for example, communication
features - network communication - and advanced functions such as multitasking,
sensor control etc. For complete information on optional software, see the Product
Specification RobotWare.
All the features are not described in this document. For a more complete and detailed
description, please see the User’s Guide, RAPID Reference Manual and Product
Manual, or contact your nearest ABB Flexible Automation Centre.
Different robot versions
The IRB 2400 is available in different versions depending on its handling capacity and
environment protection. The following robot versions are available, floor mounting or
inverted:
Robot Versions
IRB 2400L
IRB 2400FL
IRB 2400/10
IRB 2400F/10
IRB 2400/16
IRB 2400F/16
Definition of version designation
IRB 2400 Application / Reach - Handling capacity
Prefix
Description
Version
L
Long arm
Application
F
Manipulator adapted for use in harsh environments (e.g. foundry)
Handling capacity
yy
Indicates the maximum handling capacity (kg)
Product Specification IRB 2400 M98A/BaseWare OS 3.2
3
Introduction
How to use this manual
The characteristics of the robot are described in Chapter 2: Description.
The most important technical data is listed in Chapter 3: Technical specification.
Note that the sections in chapter 2 and 3 are related to each other. For example, in
section 2.2 you can find an overview of safety and standards, in section 3.2 you can find
more detailed information.
To make sure that you have ordered a robot with the correct functionality, see
Chapter 4: Specification of Variants and Options.
In Chapter 5 you will find accessories for the robot.
Chapter 6 contains an Index, to make things easier to find.
Other manuals
The User’s Guide is a reference manual with step by step instructions on how to
perform various tasks.
The programming language is described in the RAPID Reference Manual.
The Product Manual describes how to install the robot, as well as maintenance
procedures and troubleshooting.
The Product Specification RobotWare describes the software options.
4
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Description
2 Description
2.1 Structure
The robot is made up of two main parts: a manipulator and a controller.
Axis 4
Axis 5
Axis 6
Axis 3
Axis 2
Axis 1
Figure 1 The IRB 2400 manipulator has 6 axes.
Teach pendant
Mains switch
Operator´s panel
Disk drive
Figure 2 The controller is specifically designed to control robots, which means that optimal
performance and functionality is achieved.
The controller contains the electronics required to control the manipulator, external
axes and peripheral equipment.
Product Specification IRB 2400 M98A/BaseWare OS 3.2
5
Description
2.2 Safety/Standards
The robot complies fully with the health and safety standards specified in the EEC’s
Machinery Directives as well as ANSI/RIA 15.06-1992.
The robot is designed with absolute safety in mind. It has a dedicated safety system
based on a two-channel circuit which is monitored continuously. If any component
fails, the electrical power supplied to the motors shuts off and the brakes engage.
Safety category 3
Malfunction of a single component, such as a sticking relay, will be detected at the next
MOTOR OFF/MOTOR ON operation. MOTOR ON is then prevented and the faulty
section is indicated. This complies with category 3 of EN 954-1, Safety of machinery safety related parts of control systems - Part 1.
Selecting the operating mode
The robot can be operated either manually or automatically. In manual mode, the robot
can only be operated via the teach pendant, i.e. not by any external equipment.
Reduced speed
In manual mode, the speed is limited to a maximum of 250 mm/s (600 inch/min.).
The speed limitation applies not only to the TCP (Tool Centre Point), but to all parts of
the robot. It is also possible to monitor the speed of equipment mounted on the robot.
Three position enabling device
The enabling device on the teach pendant must be used to move the robot when in manual mode. The enabling device consists of a switch with three positions, meaning that
all robot movements stop when either the enabling device is pushed fully in, or when it
is released completely. This makes the robot safer to operate.
Safe manual movement
The robot is moved using a joystick instead of the operator having to look at the teach
pendant to find the right key.
Over-speed protection
The speed of the robot is monitored by two independent computers.
Emergency stop
There is one emergency stop push button on the controller and another on the teach
pendant. Additional emergency stop buttons can be connected to the robot’s safety
chain circuit.
Safeguarded space stop
The robot has a number of electrical inputs which can be used to connect external safety
equipment, such as safety gates and light curtains. This allows the robot’s safety functions to be activated both by peripheral equipment and by the robot itself.
Delayed safeguarded space stop
A delayed stop gives a smooth stop. The robot stops in the same way as at normal
program stop with no deviation from the programmed path. After approx. one second
the power supplied to the motors shuts off.
6
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Description
Restricting the working space
The movement of each of the axes can be restricted using software limits. Axes 1 and
2 can also be restricted by means of an adjustable mechanical stop. Axis 3 can be
restricted using an electrical limit switch.
Hold-to-run control
“Hold-to-run” means that you must depress the start button in order to move the robot.
When the key is released the robot will stop. The hold-to-run function makes program
testing safer.
Fire safety
Both the manipulator and control system comply with UL’s (Underwriters Laboratory)
tough requirements for fire safety.
Safety lamp
As an option, the robot can be equipped with a safety lamp. This is activated when the
motors are in the MOTORS ON state.
2.3 Operation
All operations and programming can be carried out using the portable teach
pendant (see Figure 3) and the operator’s panel (see Figure 5).
Display
1
2
P1
7
8
9
4
5
6
1
2
3
Joystick
0
P2
P3
Emergency
stop button
Figure 3 The teach pendant is equipped with a large display, which displays prompts,
information, error messages and other information in plain English.
Information is presented on a display using windows, pull-down menus, dialogs and
function keys. No previous programming or computer experience is required to learn
how to operate the robot. All operation can be carried out from the teach pendant,
which means that a specific keyboard is not required. All information, including the
complete programming language, is in English or, if preferred, some other major
language.
Product Specification IRB 2400 M98A/BaseWare OS 3.2
7
Description
Menu keys
File
Edit
View
1 Goto ...
Inputs/Outputs
2 Goto Top
3 Goto Bottom
Name
Value
di1
di2
grip1
grip2
clamp3B
feeder
progno
welderror
I/O list
1
Menu
4(64)
1
0
1
0
1
1
13
0
Line indicator
Cursor
0
Function keys
Figure 4 Window for manual operation of input and output signals.
Using the joystick, the robot can be manually jogged (moved). The user determines the
speed of this movement; large deflections of the joystick will move the robot quickly,
smaller deflections will move it more slowly.
The robot supports different user levels, with dedicated windows for:
- Production
- Programming
- System setup
- Service and installation
Operator’s panel
Motors On button
Operating mode selector
and indicating lamp
Emergency stop
Duty time counter
Figure 5 The operating mode is selected using the operator’s panel on the controller.
8
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Description
Using a key switch, the robot can be locked in two or three different operating modes:
100%
• Automatic mode:
Running production
• Manual mode at reduced speed:
Programming and setup
Max. speed: 250 mm/s (600 inches/min.)
Manual mode at full speed (option):
Equipped with this mode, the robot is
not approved according to ANSI/UL
Testing at full program speed
Both the operator’s panel and the teach pendant can be mounted externally, i.e. outside
the cabinet. The robot can then be controlled from there.
The robot can be remotely controlled from a computer, PLC or from a customer’s
panel, using serial communication or digital system signals.
For more information on how to operate the robot, see the User’s Guide.
2.4 Installation
The robot has a standard configuration and can be operated immediately after
installation. Its configuration is displayed in plain language and can easily be changed
using the teach pendant. The configuration can be stored on a diskette and/or
transferred to other robots that have the same characteristics.
The same version of the robot can either be mounted on the floor or inverted. An end
effector, max. weight 7, 10 or 16 kg including payload, can be mounted on the robot’s
mounting flange (axis 6) depending
on the robot version. Other equipment can be mounted on the upper arm, max. weight
11 or 12 kg, and on the base, max. weight 35 kg.
2.5 Programming
Programming the robot involves choosing instructions and arguments from lists of
appropriate alternatives. Users do not need to remember the format of instructions,
since they are prompted in plain English. “See and pick” is used instead of “remember
and type”.
The programming environment can be easily customised using the teach pendant.
- Shop floor language can be used to name programs, signals, counters, etc.
- New instructions can be easily written.
- The most common instructions can be collected in easy-to-use pick lists.
- Positions, registers, tool data, or other data, can be created.
Programs, parts of programs and any modifications can be tested immediately without
having to translate the program.
The program is stored as a normal PC text file, which means that it can be edited using
a standard PC.
Product Specification IRB 2400 M98A/BaseWare OS 3.2
9
Description
Movements
A sequence of movements is programmed as a number of partial movements between
the positions to which you want the robot to move.
The positions of a motion instruction are selected either by manually jogging the robot
to the desired position with the joystick, or by referring to a previously defined position.
The exact position can be defined (see Figure 6) as:
- a stop point, i.e. the robot reaches the programmed position;
or
- a fly-by point, i.e. the robot passes close to the programmed position. The size
of the deviation is defined independently for the TCP, the tool orientation and
the external axes.
Stop point
Fly-by point
User-definable distance
(in mm)
Figure 6 The fly-by point reduces the cycle time since the robot does not have to stop at
the programmed point.The path is speed independent.
The velocity may be specified in the following units:
- mm/s
- seconds (time it takes to reach the next programmed position)
- degrees/s (for reorientation of the tool or for a rotation of an external axis)
Program management
For convenience, the programs can be named and stored in different directories.
Areas of the robot’s program memory can also be used for program storage. This gives
a very fast memory where you can store programs. These can then be automatically
downloaded using an instruction in the program. The complete program or parts of
programs can be transferred to/from a diskette.
Programs can be printed on a printer connected to the robot, or transferred to a PC
where they can be edited or printed.
Editing programs
Programs can be edited using standard editing commands, i.e. “cut-and-paste”, copy,
delete, find and change, etc. Individual arguments in an instruction can also be edited
using these commands.
No reprogramming is necessary when processing left-hand and right-hand parts, since
the program can be mirrored in any plane.
10
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Description
A robot position can easily be changed either by:
- jogging the robot with the joystick to a new position and then pressing the
“ModPos” key (this registers the new position)
or by
- entering or modifying numeric values.
To prevent unauthorised personnel making program changes, passwords can be used.
Testing programs
Several helpful functions can be used when testing programs. For example, it is
possible to
- start from any instruction
- execute an incomplete program
- run one cycle
- execute forward/backward step-by-step
- simulate wait conditions
- temporarily reduce the speed
- change a position
- tune (displace) a position during program execution.
For more information, see the User´s Guide and RAPID Reference Manual.
2.6 Automatic Operation
A dedicated production window with commands and information required by the
operator is automatically displayed during automatic operation.
The operation procedure can be customised to suit the robot installation by means of
user-defined operating dialogs.
Select program to run:
Front A Front B Front C
Other
SERVICE
Figure 7 The operator dialogs can be easily customised.
Product Specification IRB 2400 M98A/BaseWare OS 3.2
11
Description
A special input can be set to order the robot to go to a service position. After service,
the robot is ordered to return to the programmed path and continue program execution.
You can also create special routines that will be automatically executed when the power
is switched on, at program start and on other occasions. This allows you to customise
each installation and to make sure that the robot is started up in a controlled way.
The robot is equipped with absolute measurement, making it possible to operate the
robot directly from when the power is switched on. For your convenience, the robot
saves the used path, program data and configuration parameters so that the program can
easily be restarted from where you left off. Digital outputs are also set automatically to
the value before the power failure.
2.7 Maintenance and Troubleshooting
The robot requires only a minimum of maintenance during operation. It has been
designed to make it as easy to service as possible:
- Maintenance-free AC motors are used.
- Oil is used for the gear boxes.
- The cabling is routed for longevity, and in the unlikely event of a failure, its
modular design makes it easy to change.
- The controller is enclosed, which means that the electronic circuitry is protected
when operating in a normal workshop environment.
- It has a program memory “battery low” alarm.
The robot has several functions to provide efficient diagnostics and error reports:
- It performs a self-test when power on is set.
- Errors are indicated by a message displayed in plain language.
The message includes the reason for the fault and suggests recovery action.
- A board error is indicated by an LED on the faulty unit.
- Faults and major events are logged and time-stamped. This makes it possible to
detect error chains and provides the background for any downtime. The log can be
read on the display of the teach pendant, stored in a file and also printed on a
printer.
- There are commands and service programs in RAPID to test units and functions.
Most errors detected by the user program can also be reported to and handled by the
standard error system. Error messages and recovery procedures are displayed in plain
language.
12
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Description
2.8 Robot Motion
IRB 2400L
3421
1702
5
R=
21
2885
560
100
1810
IRB 2400/10
IRB 2400/16
2900
1441
4
R=
48
2458
393
100
1550
Figure 8 Working space of IRB 2400 (dimensions in mm).
Product Specification IRB 2400 M98A/BaseWare OS 3.2
13
Description
Motion performance
The QuickMoveTM concept means that a self-optimizing motion control is used.
The robot automatically optimizes the servo parameters to achieve the best possible
performance throughout the cycle - based on load properties, location in working area,
velocity and direction of movement.
- No parameters have to be adjusted to achieve correct path, orientation and
velocity.
- Maximum acceleration is always obtained (acceleration can be reduced, e.g.
when handling fragile parts).
- The number of adjustments that have to be made to achieve the shortest
possible cycle time is minimized.
The TrueMoveTM concept means that the programmed path is followed – regardless of
the speed or operating mode – even after an emergency stop, a safeguarded stop, a
process stop, a program stop or a power failure.
The robot can, in a controlled way, pass through singular points, i.e. points where two
axes coincide.
Coordinate systems
Tool Centre Point (TCP)
Y
Tool coordinates
Z
Z
X
Y
Base coordinates
Z
X
Z User
coordinates
Z
Object
coordinates
Y
Y
X
Y
World coordinates
X
X
Figure 9 The coordinate systems, used to make jogging and off-line programming easier.
The world coordinate system defines a reference to the floor, which is the starting
point for the other coordinate systems. Using this coordinate system, it is possible to
relate the robot position to a fixed point in the workshop. The world coordinate system
is also very useful when two robots work together or when using a robot carrier.
14
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Description
The base coordinate system is attached to the base mounting surface of the robot.
The tool coordinate system specifies the tool’s centre point and orientation.
The user coordinate system specifies the position of a fixture or workpiece
manipulator.
The object coordinate system specifies how a workpiece is positioned in a fixture or
workpiece manipulator.
The coordinate systems can be programmed by specifying numeric values or jogging
the robot through a number of positions (the tool does not have to be removed).
Each position is specified in object coordinates with respect to the tool’s position and
orientation. This means that even if a tool is changed because it is damaged, the old
program can still be used, unchanged, by making a new definition of the tool.
If a fixture or workpiece is moved, only the user or object coordinate system has to be
redefined.
Stationary TCP
When the robot is holding a work object and working on a stationary tool, it is possible
to define a TCP for that tool. When that tool is active, the programmed path and speed
are related to the work object.
Program execution
The robot can move in any of the following ways:
- Joint motion (all axes move individually and reach
the programmed position at the same time)
- Linear motion (the TCP moves in a linear path)
- Circle motion (the TCP moves in a circular path)
Soft servo - allowing external forces to cause deviation from programmed position can be used as an alternative to mechanical compliance in grippers, where imperfection
in processed objects can occur.
If the location of a workpiece varies from time to time, the robot can find its position
by means of a digital sensor. The robot program can then be modified in order to adjust
the motion to the location of the part.
Product Specification IRB 2400 M98A/BaseWare OS 3.2
15
Description
Jogging
The robot can be manually operated in any one of the following ways:
- Axis-by-axis, i.e. one axis at a time
- Linearly, i.e. the TCP moves in a linear path (relative to one of the coordinate
systems mentioned above)
- Reoriented around the TCP
It is possible to select the step size for incremental jogging. Incremental jogging can be
used to position the robot with high precision, since the robot moves a short distance
each time the joystick is moved.
During manual operation, the current position of the robot and the external axes can be
displayed on the teach pendant.
2.9 External Axes
The robot can control up to six external axes. These axes are programmed and moved
using the teach pendant in the same way as the robot’s axes.
The external axes can be grouped into mechanical units to facilitate, for example,
the handling of robot carriers, workpiece manipulators, etc.
The robot motion can be simultaneously coordinated with a one-axis linear robot
carrier and a rotational external axis.
A mechanical unit can be activated or deactivated to make it safe when, for example,
manually changing a workpiece located on the unit. In order to reduce investment costs,
any axes that do not have to be active at the same time can use the same drive unit.
Programs can be reused in other mechanical units of the same type.
2.10 Inputs and Outputs
A distributed I/O system is used, which makes it possible to mount the I/O units either
inside the cabinet or outside the cabinet with a cable connecting the I/O unit to the
cabinet.
A number of different input and output units can be installed:
- Digital inputs and outputs
- Analog inputs and outputs
- Remote I/O for Allen-Bradley PLC
- InterBus-S Slave
- Profibus DP Slave
16
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Description
The inputs and outputs can be configured to suit your installation:
- Each signal and board can be given a name, e.g. gripper, feeder
- I/O mapping (i.e. a physical connection for each signal)
- Polarity (active high or low)
- Cross connections
- Up to 16 digital signals can be grouped together and used as if they were a single signal when, for example, entering a bar code
Signals can be assigned to special system functions, such as program start, so as to be
able to control the robot from an external panel or PLC.
The robot can work as a PLC by monitoring and controlling I/O signals:
- I/O instructions can be executed concurrent with the robot motion.
- Inputs can be connected to trap routines. (When such an input is set, the
trap routine starts executing. Following this, normal program execution
resumes. In most cases, this will not have any visible effect on the robot motion,
i.e. if a limited number of instructions are executed in the trap routine.)
- Background programs (for monitoring signals, for example) can be
run in parallel with the actual robot program. Requires option Multitasking, see
Product Specification RobotWare.
Manual commands are available to:
- List all the signal values
- Create your own list of your most important signals
- Manually change the status of an output signal
- Print signal information on a printer
Signal connections consist of either connectors or screw terminals, which are located
in the controller. I/O signals can also be routed to connectors on the upper arm of the
robot.
2.11 Communication
The robot can communicate with computers or other equipment via RS232/RS422
serial channels or via Ethernet. However this requires optional software, see the
Product Specification RobotWare.
Product Specification IRB 2400 M98A/BaseWare OS 3.2
17
Description
18
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Technical specification
3 Technical specification
Applies to standard and Foundry versions unless otherwise stated.
3.1 Structure
Weight:
Manipulator
Controller
380 kg
240 kg
Volume:
Controller
950 x 800 x 540 mm
Airborne noise level:
The sound pressure level outside
the working space
< 70 dB (A) Leq (acc. to
Machinery directive 89/392 EEC)
50
800
540
Cabinet extension
Option 115
800
Extended cover
500
Option 114
250
200
950
980 *
Lifting points
for forklift
* Castor wheels
500
Figure 10 View of the controller from the front and from above (dimensions in mm).
Product Specification IRB 2400 M98A/BaseWare OS 3.2
19
Technical specification
IRB 2400L
1225
870
290
65
260
360
150
855
251 138
176 268
1730
615
446
454
180
CL
100
600
305
723
R=76
R=448
444
R=347
A
123
389
A-A
A
R=330
Figure 11 View of the manipulator from the side, rear and above (dimensions in mm).
20
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Technical specification
IRB 2400/10
IRB 2400/16
1065
306
755
180
85
133
135
251 138
176 268
705
1564
615
454
446
180
100
CL
600
305
723
R=98
R=448
A-A
R=347
444
A
78
85
(163)
A
389
R=330
Figure 12 View of the manipulator from the side, rear and above (dimensions in mm).
Product Specification IRB 2400 M98A/BaseWare OS 3.2
21
Technical specification
3.2 Safety/Standards
The robot conforms to the following standards:
EN 292-1
Safety of machinery, terminology
EN 292-2
Safety of machinery, technical specifications
EN 954-1
Safety of machinery, safety related parts of control
systems
1
EN 60204
Electrical equipment of industrial machines
IEC 204-1
Electrical equipment of industrial machines
ISO 10218, EN 775
Manipulating industrial robots, safety
ANSI/RIA 15.06/1992
Industrial robots, safety requirements
ISO 9787
Manipulating industrial robots, coordinate systems
and motions
IEC 529
Degrees of protection provided by enclosures
EN 50081-2
EMC, Generic emission
EN 50082-2
EMC, Generic immunity
ISO 9409-1
Manipulating industrial robots, mechanical
interfaces
ANSI/UL 1740-1996 (option) Safety Standard for Industrial Robots and Robotic
Equipment
CAN/CSA Z 434-94 (option) Industrial Robots and Robot Systems - General
Safety Requirements
Safeguarded space stops via inputs
External safety equipment can be connected to the robot’s two-channel emergency stop
chain in several different ways (see Figure 13).
Operating mode selector
Auto mode
safeguarded space stop
General mode
safeguarded space stop
External emergency stop
Emergency stop
250 mm/s
100%
Teach pendant
Enabling device
M
~
Note. Manual mode 100% is an option
Figure 13 All safeguarded space stops force the robot’s motors to the MOTORS OFF state.
A time delay can be connected to any safeguarded space stop.
1. There is a deviation from the extra demand for only electromechanical components on emergency stop of
category 0 in paragraph 9.2.5.4. EN 60204-1 accepts one channel circuit without monitoring, instead the
design is made to comply with category 3 according to EN 954-1, where the demand for redundancy is
founded.
22
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Technical specification
3.3 Operation
Hold-to-run
Motion keys
Menu keys
P5
Window
keys
7
4
1
1
2
Display
P1
8
5
2
0
9
6
3
P4
Joystick
Enabling
device
P2
P3
Function keys
Navigation keys
Figure 14 The teach pendant is very easy to use since any functions provided via the function and
menu keys are described in plain language. The remaining keys can perform only one
function each.
Display
16 text lines with 40 characters per line.
Motion keys
Select the type of movement for robot or external axis when jogging: linear movement,
reorientation or axis-by-axis movement.
Navigation keys
Move the cursor and enter data.
Menu keys
Display pull-down menus.
Function keys
Select the commands used most often.
Window keys
Display one of the robot’s various windows. These windows control a number of
different functions:
- Jogging (manual operation)
- Programming, editing and testing a program
- Manual input/output management
- File management
- System configuration
- Service and troubleshooting
- Automatic operation
Product Specification IRB 2400 M98A/BaseWare OS 3.2
23
Technical specification
User-defined keys
Five user-defined keys that can be configured to set or reset an output (e.g. open/close
gripper) or to activate a system input (see chapter 3.10).
3.4 Installation
Operating requirements
Protection standards
IEC529
Normal
Manipulator
Wrist
Controller
IP54
IP54
IP54
IRB 2400F
Manipulator
Wrist
Controller
IP55
IP67
IP54
Explosive environments
The robot must not be located or operated in an explosive environment.
Ambient temperature
Manipulator during operation
Controller during operation
Complete robot during transportation and storage,
for short periods (not exceeding 24 hours)
+5oC (41oF) to +45oC (113oF)
+5oC (41oF) to +52oC (125oF)
-25oC (13oF) to +55oC (131oF)
up to +70oC (158oF)
Relative humidity
Complete robot during transportation and storage Max. 95% at constant temperature
Complete robot during operation
Max. 95% at constant temperature
Power supply
Mains voltage
200-600V, 3p (3p + N for certain
options), +10%,-15%
Mains frequency
48.5 to 61.8 Hz
Rated power (transformer size):
4.5-14.4 kVA
Absolute measurement backup
1000 h (rechargeable battery)
Configuration
The robot is very flexible and can, by using the teach pendant, easily be configured to suit
the needs of each user:
Authorisation
Most common I/O
Instruction pick list
Instruction builder
Operator dialogs
Language
24
Password protection for configuration and program
window
User-defined lists of I/O signals
User-defined set of instructions
User-defined instructions
Customised operator dialogs
All text on the teach pendant can be displayed in
several languages
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Technical specification
Date and time
Power on sequence
EM stop sequence
Main start sequence
Program start sequence
Program stop sequence
Change program sequence
Working space
External axes
Brake delay time
I/O signal
Serial communication
Calendar support
Action taken when the power is switched on
Action taken at an emergency stop
Action taken when the program is
starting from the beginning
Action taken at program start
Action taken at program stop
Action taken when a new program is loaded
Working space limitations
Number, type, common drive unit, mechanical units
Time before brakes are engaged
Logical names of boards and signals, I/O mapping,
cross connections, polarity, scaling, default value at
start up, interrupts, group I/O
Configuration
For a detailed description of the installation procedure, see the Product Manual Installation and Commissioning.
Mounting the manipulator
Maximum load in relation to the base coordinate system.
IRB 2400L
Endurance load
in operation
Max. load at
emergency stop
Force xy
±1700 N
Force z floor mounting
+4100 ±1100 N
Force z inverted mounting -4100 ±1100 N
±2100 N
+4100 ±1400 N
-4100 ±1400 N
Torque xy
Torque z
IRB 2400/10
IRB 2400/16
±3000 Nm
±450 Nm
±3400 Nm
±900 Nm
Force xy
±2000 N
Force z floor mounting
+4100 ±1400 N
Force z inverted mounting -4100 ±1400 N
±2600 N
+4100 ±1900 N
-4100 ±1900 N
Torque xy
Torque z
±3400 Nm
±550 Nm
±4000 Nm
±900 Nm
X
B
48
Z = centre line axis 1
280
B
D=18,5
Y
A
B-B
210
Z
0.5
D=18,5 (2x)
A
The same
dimensions
48
20
260
260
D=35
0.25
View from the bottom of the base
+0.039
-0
H8
(2x)
A-A
Figure 15 Hole configuration (dimensions in mm).
Product Specification IRB 2400 M98A/BaseWare OS 3.2
25
Technical specification
Load diagrams
IRB 2400L Nominal performance
Z (mm)
600
500
1 kg
400
1.5 kg
300
2 kg
200
3 kg
100
4 kg
5 kg
L (mm)
65
100
200
300
400
Z = see the above diagram and the coordinate system in Figure 9
L = distance in X-Y plane from Z-axis to the centre of gravity
J = maximum own moment of inertia on the total handling weight = ≤ 0.012 kgm2
Figure 16 Maximum weight permitted for load mounting on the mounting flange at different positions
(centre of gravity).
26
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Technical specification
IRB 2400L Reduced performance
Z (mm)
600
1 kg
500
400
1.5 kg
2 kg
300
3 kg
200
4 kg
100
5 kg
6 kg
7 kg
L (mm)
65
100
200
300
400
Z = see the above diagram and the coordinate system in Figure 9
L = distance in X-Y plane from Z-axis to the centre of gravity
J = maximum own moment of inertia on the total handling weight = ≤ 0.012 kgm2
Figure 17 Maximum weight permitted for load mounting on the mounting flange at different positions
(centre of gravity).
Product Specification IRB 2400 M98A/BaseWare OS 3.2
27
Technical specification
IRB 2400/10
Z (mm)
200
6 kg
150
8 kg
100
10 kg
12 kg
50
L (mm)
100
150
200
85
Z = see the above diagram and the coordinate system in Figure 9
L = distance in X-Y plane from Z-axis to the centre of gravity
J = maximum own moment of inertia on the total handling weight = ≤ 0.040 kgm2
Figure 18 Maximum weight permitted for load mounting on the mounting flange at different positions
(centre of gravity).
28
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Technical specification
IRB 2400/16
Z (mm)
200
10 kg
150
12 kg
100
14 kg
16 kg
50
L (mm)
100
150
200
85
Z = see the above diagram and the coordinate system in Figure 9
L = distance in X-Y plane from Z-axis to the centre of gravity
J = maximum own moment of inertia on the total handling weight = ≤ 0.060 kgm2
Figure 19 Maximum weight permitted for load mounting on the mounting flange at different positions
(centre of gravity).
Product Specification IRB 2400 M98A/BaseWare OS 3.2
29
Technical specification
Mounting equipment
The robot is supplied with tapped holes on the upper arm and on the base for mounting
extra equipment.
300
IRB 2400L
A
A
400
Max. 10kg
M8 (2x)
Depth 14
M5 (2x)
Depth 9
D
D
135
150
Max. 1kg
37
67
30
37
D=200
170
62
70 (2x)
470
400
D-D
A-A
CL
M8 (3x) R=77
Depth 16
C
120o (3x)
B
150
D=50
M8 (3x) R=92
Depth 16
38o
B
120o (3x)
C
C-C
Max. 35 kg total
38o
B-B
Figure 20 The shaded area indicates the permitted positions (centre of gravity) for any extra equipment
mounted in the holes (dimensions in mm).
30
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Technical specification
IRB 2400/10
IRB 2400/16
A
300
A
M6 (2x)
35
70
400
25
110
M8 (3x)
Depth of thread 14
65
450
300
M5 (2x)
177
100
D=240 22
90
78
43
200
Max. 2kg
A-A
Max. 10kg
M8 (3x) R=77
Depth 16
C
120o (3x)
150
B
D=50
M8 (3x) R=92
Depth 16
38o
120o (3x)
B
C
C-C
Max. 35 kg total
38o
B-B
Figure 21 The shaded area indicates the permitted positions (centre of gravity) for any extra equipment
mounted in the holes (dimensions in mm).
Product Specification IRB 2400 M98A/BaseWare OS 3.2
31
Technical specification
IRB 2400L
A
o
45
D=6
+0.012
-0
H7
∅ 0.05
B
9
B
A
h8
+0
-0.039
D=25 -0
R=20
D=50
+0.027
H8
M6 (4x)
90o (4x)
6
A-A
IRB 2400/10
IRB 2400/16
A
+0.012
D=6 -0
H7, depth min 8
0.05 B
o
30
B
10
R=25
+0
D=63 -0.046 h8
D=31,5 +0.039
H8
-0
60 o
5x
M6 (6x)
A
7
A-A
Figure 22 The mechanical interface, mounting flange (dimensions in mm).
32
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Technical specification
3.5 Programming
The programming language - RAPID - is a high-level application-oriented programming
language and includes the following functionality:
- hierarchial and modular structure
- functions and procedures
- global or local data and routines.
- data typing, including structured and array types
- user defined names on variables, routines, inputs/outputs etc.
- extensive program flow control
- arithmetic and logical expressions
- interrupt handling
- error handling
- user defined instructions
- backward execution handler
The available sets of instructions/functions are given below. A subset of instructions to suit
the needs of a particular installation, or the experience of the programmer, can be installed
in pick lists. New instructions can easily be made by defining macros consisting of a
sequence of standard instructions.
Note that the lists below only cover BaseWare OS. For instructions and functions
associated with optional software, see Product Specification RobotWare.
Miscellaneous
:=
WaitTime
WaitUntil
comment
OpMode
RunMode
Dim
Present
Load
UnLoad
Assigns a value
Waits a given amount of time
Waits until a condition is met
Inserts comments into the program
Reads the current operating mode
Reads the current program execution mode
Gets the size of an array
Tests if an optional parameter is used
Loads a program module during execution
Deletes a program module during execution
To control the program flow
ProcCall
Calls a new procedure
CallByVar
Calls a procedure by a variable
RETURN
Finishes execution of a routine
FOR
Repeats a given number of times
GOTO
Goes to (jumps to) a new instruction
Compact IF
If a condition is met, then execute one instruction
IF
If a condition is met, then execute a sequence of instructions
label
Line name (used together with GOTO)
TEST
Depending on the value of an expression ...
Product Specification IRB 2400 M98A/BaseWare OS 3.2
33
Technical specification
WHILE
Stop
EXIT
Break
Repeats as long as ...
Stops execution
Stops execution when a restart is not allowed
Stops execution temporarily
Motion settings
AccSet
ConfJ
ConfL
VelSet
GripLoad
SingArea
PDispOn
PDispSet
DefFrame
DefDFrame
EOffsOn
EOffsSet
ORobT
SoftAct
TuneServo
Reduces the acceleration
Controls the robot configuration during joint movement
Monitors the robot configuration during linear movement
Changes the programmed velocity
Defines the payload
Defines the interpolation method through singular points
Activates program displacement
Activates program displacement by specifying a value
Defines a program displacement automatically
Defines a displacement frame
Activates an offset for an external axis
Activates an offset for an external axis using a value
Removes a program displacement from a position
Activates soft servo for a robot axis
Tunes the servo
Motion
MoveC
MoveJ
MoveL
MoveAbsJ
MoveXDO
SearchC
SearchL
ActUnit
DeactUnit
Offs
RelTool
MirPos
CRobT
CJointT
CPos
CTool
CWObj
StopMove
StartMove
Moves the TCP circularly
Moves the robot by joint movement
Moves the TCP linearly
Moves the robot to an absolute joint position
Moves the robot and set an output in the end position
Searches during circular movement
Searches during linear movement
Activates an external mechanical unit
Deactivates an external mechanical unit
Displaces a position
Displaces a position expressed in the tool coordinate system
Mirrors a position
Reads current robot position (the complete robtarget)
Reads the current joint angles
Reads the current position (pos data)
Reads the current tool data
Reads the current work object data
Stops robot motion
Restarts robot motion
Input and output signals
InvertDO
Inverts the value of a digital output signal
PulseDO
Generates a pulse on a digital output signal
Reset
Sets a digital output signal to 0
Set
Sets a digital output signal to 1
SetAO
Sets the value of an analog output signal
SetDO
Sets the value of a digital output signal after a defined time
SetGO
Sets the value of a group of digital output signals
WaitDI
Waits until a digital input is set
WaitDO
Waits until a digital output is set
AInput
Reads the value of an analog input signal
DInput
Reads the value of a digital input signal
34
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Technical specification
DOutput
GInput
GOutput
TestDI
IODisable
IOEnable
Reads the value of a digital output signal
Reads the value of a group of digital input signals
Reads the value of a group of digital output signals
Tests if a digital input signal is set
Disables an I/O module
Enables an I/O module
Interrupts
ISignalDI
ISignalDO
ITimer
IDelete
ISleep
IWatch
IDisable
IEnable
CONNECT
Orders interrupts from a digital input signal
Orders interrupts from a digital output signal
Orders a timed interrupt
Cancels an interrupt
Deactivates an interrupt
Activates an interrupt
Disables interrupts
Enables interrupts
Connects an interrupt to a trap routine
Error Recovery
EXIT
RAISE
RETRY
TRYNEXT
RETURN
Terminates program execution
Calls an error handler
Restarts following an error
Skips the instruction that has caused the error
Returns to the routine that called the current routine
Communication
TPErase
TPWrite
TPReadFK
TPReadNum
ErrWrite
Erases text printed on the teach pendant
Writes on the teach pendant
Reads function keys
Reads a number from the teach pendant
Stores an error message in the error log
System & Time
ClkReset
ClkStart
ClkStop
ClkRead
CDate
CTime
GetTime
Resets a clock used for timing
Starts a clock used for timing
Stops a clock used for timing
Reads a clock used for timing
Reads the current date as a string
Reads the current time as a string
Gets the current time as a numeric value
Mathematics
Add
Clear
Decr
Incr
Abs
Sqrt
Exp
Pow
ACos
ASin
ATan/ATan2
Cos
Sin
Adds a numeric value
Clears the value
Decrements by 1
Increments by 1
Calculates the absolute value
Calculates the square root
Calculates the exponential value with the base “e”
Calculates the exponential value with an arbitrary base
Calculates the arc cosine value
Calculates the arc sine value
Calculates the arc tangent value
Calculates the cosine value
Calculates the sine value
Product Specification IRB 2400 M98A/BaseWare OS 3.2
35
Technical specification
Tan
EulerZYX
OrientZYX
PoseInv
PoseMult
PoseVect
Round
Trunc
Calculates the tangent value
Calculates Euler angles from an orientation
Calculates the orientation from Euler angles
Inverts a pose
Multiplies a pose
Multiplies a pose and a vector
Rounds a numeric value
Truncates a numeric value
Text strings
NumToStr
StrFind
StrLen
StrMap
StrMatch
StrMemb
StrOrder
StrPart
StrToVal
ValToStr
Converts numeric value to string
Searches for a character in a string
Gets the string length
Maps a string
Searches for a pattern in a string
Checks if a character is a member of a set
Checks if strings are ordered
Gets a part of a string
Converts a string to a numeric value
Converts a value to a string
For more information on the programming language, see RAPID Reference Manual.
Memory
Memory size
Instructions1)
Program memory:
Standard
Extended memory 8 MB
2.5 MB2)
6.0 MB2)
7500
18000
Mass storage3) :
RAM memory Standard
Extended 8 MB
0.5 MB
4.0 MB
3000
31000
Diskette
1.44 MB
15000
1)
Depending on type of instruction.
Some software options reduce the program memory. See Product
Specification RobotWare.
3) Requires approx. 3 times less space than in the program memory, i.e. 1 MB
mass memory can store 3 MB of RAPID instructions.
2)
Type of diskette: 3.5” 1.44 MB (HD) MS DOS format.
Programs and all user-defined data are stored in ASCII format.
Memory backup
The RAM memory is backed up by two Lithium batteries. Each battery has a
typical capacity of >12 months power off time. A warning is given at power on
when one of the batteries is empty.
36
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Technical specification
3.6 Automatic Operation
The following production window commands are available:
- Load/select the program
- Start the program
- Execute instruction-by-instruction (forward/backward)
- Reduce the velocity temporarily
- Display program-controlled comments (which tell the operator what is
happening)
- Displace a position, also during program execution (can be blocked)
3.7 Maintenance and Troubleshooting
The following maintenance is required:
- Changing filter for the drive system cooling every year.
- Changing batteries every 3rd year.
- Changing oil in the wrist after the first year and then every 5th year.
The maintenance intervals depends on the use of the robot. For detailed information on
maintenance procedures, see Maintenance section in the Product Manual.
Product Specification IRB 2400 M98A/BaseWare OS 3.2
37
Technical specification
3.8 Robot Motion
IRB 2400L
The working area is the same for both floor and inverted mounting
Type of motion
Range of movement
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
+180o
+110o
+65o
+185o
+115o
+400o
Rotation motion
Arm motion
Arm motion
Wrist motion
Bend motion
Turn motion
-180o
-100o
-60o
-185o
-115o
-400o (Unlimited as optional)
to
to
to
to
to
to
3421
Z
Wrist centre
Pos 0
Pos 1
Axis 4
Axis 3
1702
+
+
+
Axis 5
Pos 6
R=
+
Axis 2
+
Axis 6
521
2885
Pos 2
Pos 5
X
Axis 1
Pos 3
560
Pos 4
100
1810
R=
570
0
40
=
R
Positions at wrist centre (mm)
Pos 4
pos.
x
0
1
2
3
4
5
6
970
404
602
1577
400
-1611
-115
z
1620
2298
745
-246
-403
623
1088
Angle (degrees)
pos.
axis 2
axis 3
0
1
2
3
4
5
6
0
0
0
110
110
-100
-100
0
-60
65
-60
24.5
-60
65
Figure 23 The extreme positions of the robot arm (dimensions in mm).
38
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Technical specification
IRB 2400/10, IRB 2400/16
The working area is the same for both floor and inverted mounting
Type of motion
Range of movement
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
+180o
+110o
+65o
+200o
+120o
+400o
Rotation motion
Arm motion
Arm motion
Wrist motion
Bend motion
Turn motion
to
to
to
to
to
to
-180o
-100o
-60o
-200o (Unlimited as optional)
-120o
-400o (Unlimited as optional)
2900
Pos 1
Wrist centre
Pos 0
Z
Axis 4
Axis 3
1441
+ +
+
+
Axis 5
Axis 6
2458
Pos 6
+
Axis 2
448
R=
Pos 2
Pos 5
X
Pos 3
Axis 1
393
Pos 4
100
1550
R=
570
00
=4
R
Pos 4
Positions at wrist centre (mm)
pos.
x
0
1
2
3
4
5
6
855
360
541
1351
400
-1350
-53
z
1455
2041
693
-118
-302
624
1036
Angle (degrees)
pos.
axis 2
axis 3
0
1
2
3
4
5
6
0
0
0
110
110
-100
-100
0
-60
65
-60
18.3
-60
65
Figure 24 The extreme positions of the robot arm (dimensions in mm).
Product Specification IRB 2400 M98A/BaseWare OS 3.2
39
Technical specification
Performance according to ISO 9283
At rated load and 1 m/s velocity on the inclined ISO test plane with all six robot axes
in motion.
Unidirectional pose repeatability:
RP = 0.06 mm
Linear path accuracy:
AT = 0.45 - 1.0 mm
Linear path repeatability:
RT = 0.14 - 0.25 mm
Minimum positioning time, to within 0.2 mm of the position:
0.2 - 0.35 sec. (on 35 mm linear path)
0.4 - 0.6 sec. (on 350 mm linear path)
The above values are the range of average test-results from a number of robots. If
guaranteed values are required, please contact your nearest ABB Flexible Automation
Centre.
Velocity
Versions:
Axis no. 1
2
3
4
5
6
IRB 2400L
150o/s
150o/s
150o/s
360o/s
360o/s
450o/s
IRB 2400/10
IRB 2400/16
150o/s
150o/s
150o/s
360o/s
360o/s
450o/s
150o/s
150o/s
150o/s
360o/s
360o/s
450o/s
There is a supervision to prevent overheating in applications with intensive and
frequent movements.
Resolution
Approx. 0.01o on each axis.
40
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Technical specification
3.9 External Axes
An external axis is an AC motor (IRB motor type or similar) controlled via a drive unit
mounted in the robot cabinet or in a separate enclosure. See Specification of Variants
and Options.
Resolver
Connected directly to motor shaft
Transmitter type resolver
Voltage ratio 2:1 (rotor: stator)
5.0 V/4 kHz
Resolver supply
Absolute position is accomplished by battery-backed resolver revolution counters in
the serial measurement board (SMB). The SMB is located close to the motor(s)
according to Figure 25, or inside the cabinet.
For more information on how to install an external axis, see the Product Manual Installation and Commissioning.
When more than two external axes are used, the drive units for external axis 3 and
upwards must be placed in a separate cabinet according to Figure 25.
Not supplied on delivery
SMB
SMB
Measurement System 2
SMB
SMB
alt.
Not supplied
on delivery
Drive System 2 inside
user designed cabinet
(no ABB drives)
Measurement
System 1
SMB
Not supplied on delivery
Figure 25 Outline diagram, external axes.
Product Specification IRB 2400 M98A/BaseWare OS 3.2
41
Technical specification
3.10 Inputs and Outputs
Types of connection
The following types of connection are available:
- “Screw terminals” on the I/O units
- Serial interface for distributed I/O units
- Air and signal connections to upper arm
For more detailed information, see Chapter 4: Specification of Variants and Options.
I/O units
Several I/O units can be used. The following table shows the maximum number of
physical signals that can be used on each unit.
Digital
Type of unit
Analog
Option no.
In
Out
Digital I/O 24 VDC
20x
16
16
Internal/External1
Digital I/O 120 VAC
25x
16
16
Internal/External
Analog I/O
22x
AD Combi I/O
23x
16
16
Relay I/O
26x
16
16
Allen-Bradley
Remote I/O Slave
281
1282
128
Interbus-S Slave
284-285
642
64
Profibus DP Slave
286-287
1282
128
100
100
4
Simulated I/O3
Encoder interface
unit4
Voltage
inputs
288-289
Voltage
output
3
2
Current
output
1
Power supply
Internal
Internal/External1
Internal/External1
30
30
1
1. The digital signals are supplied in groups, each group having 8 inputs or outputs.
2. To calculate the number of logical signals, add 2 status signals for RIO unit and 1 for Interbus-S
and Profibus DP.
3. A non physical I/O unit can be used to form cross connections and logical conditions without
physical wiring. No. of signals are to be configured. Some ProcessWares include SIM unit.
4. Dedicated for conveyor tracking only.
Distributed I/O
The total number of logical signals is 512 (inputs or outputs, group I/O, analog and
digital including field buses)
Max. total no of units*
Max. total cable length
Cable type (not included)
Data rate (fixed)
20 (including SIM units)
100 m
According to DeviceNet specification release 1.2
500 Kbit/s
* Max. four units can be mounted inside the cabinet.
42
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Technical specification
Signal data
Permitted customer 24 V DC load
Digital inputs
24 V DC
max. 6 A
(options 201-208)
Optically-isolated
Rated voltage:
24 V DC
Logical voltage levels: “1”
15 to 35 V
“0”
-35 to 5 V
Input current at rated input voltage:
6 mA
Potential difference:
max. 500 V
Time delays:
hardware
5−15 ms
software
≤ 3 ms
Time variations:
± 2 ms
Digital outputs (options 201-208)
24 V DC
Optically-isolated, short-circuit protected, supply polarity protection
Voltage supply
19 to 35 V
Rated voltage
24 V DC
Output current:
max. 0.5 A
Potential difference:
max. 500 V
Time delays:
hardware
≤ 1 ms
software
≤ 2 ms
Time variations:
± 2 ms
Relay outputs (options 261-268)
Single pole relays with one male contact (normally open)
Rated voltage:
24 V DC, 120 VAC
Voltage range:
19 to 35 V DC
24 to 140 V AC
Output current:
max. 2 A
Potential difference:
max. 500V
Time intervals: hardware (set signal)
typical 13 ms
hardware (reset signal) typical 8 ms
software
≤ 4 ms
Digital inputs
120 V AC
(options 251-258)
Optically isolated
Rated voltage
Input voltage range: “1”
Input voltage range: “0”
Input current (typical):
Time intervals: hardware
software
Product Specification IRB 2400 M98A/BaseWare OS 3.2
120 V AC
90 to 140 V AC
0 to 45 V AC
7.5 mA
≤ 20 ms
≤ 4 ms
43
Technical specification
Digital outputs
120 V AC
(options 251-258)
Optically isolated, voltage spike protection
Rated voltage
120 V AC
Output current:
max. 1A/channel, 12 A
16 channels or
max. 2A/channel, 10 A
16 channels
(56 A in 20 ms)
min. 30mA
Voltage range:
24 to 140 V AC
Potential difference:
max. 500 V
Off state leakage current:
max. 2mA rms
On state voltage drop:
max. 1.5 V
Time intervals: hardware
≤ 12 ms
software
≤ 4 ms
Analog inputs (options 221-228)
Voltage Input voltage:
+10 V
Input impedance:
>1 Mohm
Resolution:
0.61 mV (14 bits)
Accuracy:
+0.2% of input signal
Analog outputs (option 221-228)
Voltage Output voltage:
Load impedance:
Resolution:
Current Output current:
Load impedance:
Resolution:
Accuracy:
min.
min.
+10 V
2 kohm
2.44 mV (12 bits)
4-20 mA
800 ohm
4.88 µA (12 bits)
+0.2% of output signal
Analog outputs (option 231-238)
Output voltage (galvanically isolated):
Load impedance:
min.
Resolution:
Accuracy:
Potential difference:
Time intervals: hardware
software:
0 to +10 V
2 kohm
2.44 mV (12 bits)
±25 mV ±0.5% of output
voltage
max. 500 V
≤ 2.0 ms
≤ 4 ms
Signal connections on robot arm
For connection of extra equipment on the manipulator, there are cables integrated into
the manipulator’s cabling, one Burndy UTG 014 12SHT connector and one Burndy
UTG 018 23SHT connector on the rear part of the upper arm.
A hose for compressed air is also integrated into the manipulator. There is an inlet
(R1/4”) at the base and an outlet (R1/4”) on the rear part of the upper arm.
Signals23
Power10
Air 1
44
50 V, 250 mA
250 V, 2 A
Max. 8 bar, inner hose diameter 8 mm
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Technical specification
System signals
Signals can be assigned to special system functions. Several signals can be given the
same functionality.
Digital outputs
Motors on/off
Executes program
Error
Automatic mode
Emergency stop
Restart not possible
Restart not successful
Run chain closed
Digital inputs
Motors on/off
Starts program from where it is
Motors on and program start
Starts program from the beginning
Stops program
Stops program when the program cycle is ready
Stops program after current instruction
Executes “trap routine” without affecting status of stopped
regular program1
Loads and starts program from the beginning1
Resets error
Resets emergency stop
System reset
Synchronizes external axes
Analog output
TCP speed signal
1. Program can be decided when configuring the robot.
For more information on system signals, see User’s Guide - System Parameters.
Product Specification IRB 2400 M98A/BaseWare OS 3.2
45
Technical specification
3.11 Communication
The robot has two serial channels - one RS232 and one RS422 Full duplex - which
can be used to communicate point to point with printers, terminals, computers and other
equipment (see Figure 26).
Figure 26 Serial point-to-point communication.
The serial channels can be used at speeds of 300 to 19200 bit/s (max. 1 channel with
speed 19200 bit/s).
For high speed and/or network communication, the robot can be equipped with
Ethernet interface (see Figure 27). Transmission rate is 10Mbit/s.
Figure 27 Serial network communication.
Character-based or binary information can be transferred using RAPID instructions.
This requires the option Advanced functions, see Product Specification RobotWare.
In addition to the physical channels, a Robot Application Protocol (RAP) can be used.
This requires either the option FactoryWare Interface or RAP Communication, see
Product Specification RobotWare.
46
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Specification of Variants and Options
4 Specification of Variants and Options
The different variants and options for the IRB 2400 are described below.
The same numbers are used here as in the Specification form.
For software options, see Product Specification RobotWare.
Note Options marked with * are inconsistent with UL/UR approval.
1 MANIPULATOR
VARIANTS
021
022
023
024
025
026
IRB 2400L
IRB 2400FL
IRB 2400/10
IRB 2400F/10
IRB 2400/16
IRB 2400F/16
IRB 2400 Application / Reach - Handling capacity
Application:
F
Reach:
Handling capacity:
Robot adapted for foundry environments.
Degree of protection as in chapter 3.4.
The manipulator is finished with a special coating.
Specifies the max. reach at the wrist centre.
Specifies the nominal handling capacity.
Manipulator colour
The manipulator is painted with ABB orange if no colour is specified.
08A08V
Colours according to RAL-codes.
MOUNTING POSITION
This choice specifies the configuration the robot will be delivered in. It can easily be
changed without additional parts.
02x Floor mounted
02y Hanging
APPLICATION INTERFACE
For more details see chapter 3.10.
041 Integrated hose and cables for connection
of extra equipment on the manipulator to
the rear part of the upper arm.
Product Specification IRB 2400 M98A/BaseWare OS 3.2
47
Specification of Variants and Options
043 Hose and cables for connection of extra
equipment are extended to the wrist on
the outside of the upper arm. Not possible
on IRB 2400L, option 021 and 022.
CONNECTION OF SIGNALS
Internal or external connection is ordered by the choice of manipulator cable, options
641-644 and 651-656.
045 Internal connection
The signals are connected directly inside the manipulator base to one 24-pins
rectangular Burndy connector and one 12-pins rectangular Burndy connector.
The cables connected to the Burndy connector must have a tightly closing cover with
dimension according to Figure 28.
(Only together with options 641-644.)
External connection
The signals are connected directly to the manipulator base to one 40-pins Harting
connector.
(Only together with options 651-656.)
Not supplied on delivery
Cover
D=7 (2x)
40
74
86
Figure 28 Cover for internal connection of signals.
Internal connection
67A- The signals are connected to 12-pole screw
67D terminals, Phoenix MSTB 2.5/12-ST-5.08,
inside the controller. See Figure 38.
If 43x
If 043
If 67A-67D, 671-674
External connection
671- The signals are connected to 12-pole screw
674 terminals, Phoenix MSTB 2.5/12-ST-5.08,
inside the controller. See Figure 38.
48
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Specification of Variants and Options
DRESSING
919 Mounting of extra equipment ordered from ABB Flexible Automation Sweden/Dpt U.
SAFETY LAMP
691 A safety lamp with an orange fixed light can be mounted on the manipulator.
The lamp is active in MOTORS ON mode.
The safety lamp is required on a UL/UR approved robot.
POSITION SWITCH
Switches indicating the position of axis 1.
A design with two stationary or 1, 2 or 3 adjustable switches is available. The switches
are manufactured by Telemecanique or Burnstein, and of type forced disconnect.
Note The switches are not recommended to be used in severe environment with sand or
chips.
Switches axis 1 (see Figure 29)
The first
switch
Controller
The second
switch
Controller
The third
switch
Controller
081 One switch
082 Two switches
083 Three switches
Figure 29 Connections of the switches
084 Two switches, axis 1, stationary (see Figure 30)
The two switches divide the working area of
axis 1 into two fixed working zones, approx. 175°
each. Together with external safety arrangement, this
option allows access to one working zone at the same
time as the robot is working in the other one.
Controller
Figure 30 Connections of the switches.
Connection of signals
071- The signals are connected to 12-pole screw terminals, Phoenix MSTB 2.5/12-ST-5.08,
074 in the controller.
Product Specification IRB 2400 M98A/BaseWare OS 3.2
49
Specification of Variants and Options
WORKING RANGE LIMIT
To increase the safety of the robot, the working range of axes 1, 2 and 3 can be restricted
by extra mechanical stops.
621 Axis 1
Two extra stops for restricting the working range.
The stops can be mounted within the area
from 50o to 140o. See Figure 31.
140o
50o
50o
140o
Figure 31
622 Axis 2
Stop lugs for restricting the working range.
Figure 32 illustrates the mounting positions
of the stops.
20o
40o
50o
70o
80o
Figure 32
623 Axis 3
Equipment for electrically restricting the working range in increments of 5o.
2 SAFETY STANDARDS
UNDERWRITERS LABORATORY
Option 691 Safety lamp is included on UL and UR robots.
695 UL Listed, certificate on product level.
Underwriters Laboratories Inc. has tested and examined the finished complete product,
i.e. manipulator and controller, and determined that the product fulfils the stipulated
safety standards.
Some options marked with * are inconstistent with UL Listed.
Option 112 Standard cabinet without upper cover can not be UL Listed at delivery, it
may be ordered as UL Recognized.
696 UR Recognized, certificate on component level.
Underwriters Laboratories Inc. has tested and examined the components in the product,
manipulator and controller, and determined that they fulfil the stipulated safety standards.
50
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Specification of Variants and Options
3 CONTROL SYSTEM
CABINET SIZE
111 Standard cabinet (with upper cover).
112 Standard cabinet without upper cover. To be used when cabinet extension is mounted
on top of the cabinet after delivery.
This option is inconsistent with UL approval (option 695 UL Listed).
114 With extended cover 250 mm.
The height of the cover is 250 mm, which increases the available space for external equipment
that can be mounted inside the cabinet.
This option is inconsistent with UL approval (option 695 UL Listed).
115 With cabinet extension, 800 mm.
A cabinet extension is mounted on top of the standard cabinet. There is a mounting plate inside.
(See Figure 33).
The cabinet extension is opened via a front door and it has no floor. The upper part of the
standard cabinet is therefore accessible.
This option cannot be combined with option 142.
This option is inconsistent with UL approval (option 695 UL Listed).
Shaded area 40x40
(four corners) not available
for mounting
705
730
Figure 33 Mounting plate for mounting of equipment (dimensions in mm).
CABINET TYPE
121 Standard, i.e. without Castor wheels.
122 Cabinet on Castor wheels.
Product Specification IRB 2400 M98A/BaseWare OS 3.2
51
Specification of Variants and Options
OPERATOR’S PANEL
The operator’s panel and teach pendant holder can be installed in different ways.
181 Standard, i.e. on the front of the cabinet.
182 External, i.e. in a separate operator’s unit.
All necessary cabling, including flange, connectors, sealing strips, screws, etc., is
supplied. External enclosure is not supplied. (See Figure 34.)
183 External, mounted in a box. (See Figure 35.)
M4 (x4)
M8 (x4)
45o
196
Required depth 200 mm
193
180 224 240
223
70
62
140
96
Holes for
flange
184
External panel enclosure
(not supplied)
Holes for
teach pendant holder
Teach pendant
connection
Connection to
the controller
200
Holes for
operator’s panel
90
5 (x2)
155
Figure 34 Required preparation of external panel enclosure (all dimensions in mm).
52
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Specification of Variants and Options
M5 (x4) for fastening of box
337
Connection flange
370
Figure 35 Operator’s panel mounted in a box (all dimensions in mm).
EXTERNAL CABLE LENGTH (for external panel)
185 15 m
186 22 m
187 30 m
OPERATING MODE SELECTOR
193 Standard, 2 modes: manual and automatic
191* Standard, 3 modes: manual, manual full speed and automatic.
DISK DRIVE COOLING
472 The disk drive normally works well at temperatures up to +40oC (104oF). At higher
temperatures a cooling device for the drive is necessary to ensure good functionality.
The disk drive will not deteriorate at higher temperatures but there will be an increase
in the number of reading/writing problems as the temperature increases.
MAINS FILTER (EU Electromagnetic compability)
The mains filter reduces the emission of radio frequency on the incoming power, to levels
below requirements in the Machinery Directive 89/392/EEC. For installations in countries
not affected by this directive, the filter can be excluded.
(The option number is depending on the transformer).
177-179 Mains filter
Product Specification IRB 2400 M98A/BaseWare OS 3.2
53
Specification of Variants and Options
DOOR KEYS
461 Standard
462 DIN 3 mm
463 Square outside 7 mm
465 EMKA
MAINS VOLTAGE
The robot can be connected to a rated voltage of between 200 V and 600 V,
3-phase and protective earthing. A voltage fluctuation of +10% to -15% is permissible in each
connection.
151-
Voltage
174
200 V
220 V
400 V
440 V
Voltage
Voltage
400 V
440 V
475 V
500 V
475 V
500 V
525 V
600 V
CONNECTION OF MAINS
The power is connected either inside the cabinet or to a connector on the cabinet’s left-hand side.
The cable is not supplied. If option 132-133 is chosen, the female connector (cable part) is
included.
131 Cable gland for inside connection. Diameter of cable:
11-12 mm.
133* 32 A, 380-415 V, 3p + PE (see Figure 36).
136* 32 A, 380-415 V, 3p + N + PE (see Figure 36).
Figure 36 CEE male connector.
134 Connection via an industrial Harting 6HSB connector in
accordance with DIN 41640.
35 A, 600 V, 6p + PE (see Figure 37).
Figure 37 DIN male connector.
54
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Specification of Variants and Options
MAINS SWITCH
141* Rotary switch in accordance with the standard in section 3.2 and IEC 337-1,
VDE 0113.
142 Rotary switch with door interlock.
143 Flange disconnect in accordance with the standard in section 3.2.
Includes door interlock.
144 Rotary switch with door interlock and servo disconnector.
This option adds a mechanical switch to the two series connected motors on contactors.
The switch is operated by the same type of handle as the rotary mains switch. The
handle can be locked by a padlock, e.g. in an off position.
147/149
Circuit breaker for the option rotary switch. A 16 A (147) or 25 A (149) circuit breaker for short
circuit protection of main cables in the cabinet. Circuit breaker approved in accordance
with IEC 898, VDE 0660. (The option number is depending on the transformer.)
14B
Fuses (3x15 A) for the option Rotary switch for short circuit protection of main cables in the
cabinet. Interrupt capacity: 50 kA.
Product Specification IRB 2400 M98A/BaseWare OS 3.2
55
Specification of Variants and Options
I/O AND COMMUNICATION
The standard cabinet can be equipped with up to four I/O units. For more details, see Technical
Specification 3.10.
Note The use of I/O units and field buses can be limited because of CPU overload in the
controller during motions.
Backplane
X1 (SIO1)
X2 (SIO2)
X10 (CAN3)
I/O units (x4)
X16 (CAN2)
Panel unit
WARNING
REMOVE JUMPERS BEFORE CONNECTING
ANY EXTERNAL EQUIPMENT
MS NS
EN
ES1 ES2 GS1 GS2 AS1 AS2
X1 - 4
safety signals
X5
XT5, customer signals
XT6, customer power
XT8, position switch
XT21 (115/230 V ACsupply)
X8
X6 CONTROL PANEL
X9 (CAN1)
XT31 (24V supply)
Figure 38 I/O unit and screw terminal locations.
CABINET I/O MODULES
201-208 Digital 24 VDC I/O: 16 inputs/16 outputs.
221-228 Analog I/O: 4 inputs/4 outputs.
231-238 AD Combi I/O: 16 digital inputs/16 digital outputs and 2 analog outputs (0-10V).
251-258 Digital 120 VAC I/O 16 inputs/16 outputs.
261-268 Digital I/O with relay outputs: 16 inputs/16 outputs.
Relay outputs to be used when more current or voltage is required from the digital outputs.
The inputs are not separated by relays.
56
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Specification of Variants and Options
Connection of I/O:
301 Internal connection (options 201-204, 221-224, 231-234, 251-254, 261-264)
The signals are connected directly to screw terminals on the I/O units in the upper part
of the cabinet (see Figure 38).
305 External connection
Standard industrial connectors, 64-pin/socket plugs in accordance with DIN 43652,
located on the left-hand side of the cabinet. Corresponding cable connectors are also
supplied.
FIELD BUSES MOUNTED IN CABINET
For more details, see Technical Specification 3.9.
281 Allen-Bradley Remote I/O Slave
Up to 128 digital inputs and 128 digital outputs, in groups of 32, can be transferred serially
to a PLC equipped with an Allen-Bradley 1771 RIO node adapter. The unit reduces the
number of I/O units that can be mounted in cabinet by one. The field bus cables are
connected directly to the screw terminals on the A-B RIO unit in the upper part of the
cabinet (see Figure 38).
284/285
InterBus-S Slave
Up to 64 digital inputs and 64 digital outputs per unit, in groups of 16, can be transferred
serially to a PLC equipped with an InterBus-S interface. The unit reduces the number of
I/O units that can be mounted in cabinet by one. The signals are connected directly to the
InterBus-S-slave unit (two 9-pole D-sub) in the upper part of the cabinet, and to a 5-pole
screw connector.
286/287
Profibus DP Slave
Up to 128 digital inputs and 128 digital outputs per unit, in groups of 16, can be
transferred serially to a PLC equipped with a Profibus DP interface. The unit reduces the
number of I/O units that can be mounted in cabinet by one. The signals are connected
directly to the Profibus DP slave unit (one 9-pole D-sub) in the upper part of the cabinet,
and to a 5-pole screw connector.
288/289
Encoder interface unit for conveyor tracking
Conveyor Tracking, or Line Tracking, is the function whereby the robot follows a work
object which is mounted on a moving conveyor. The encoder and synchronization
switch cables are connected directly to the encoder unit in the upper part of the cabinet
(see Figure 38). Screw connector is included. For more information see Product
Specification RobotWare.
Product Specification IRB 2400 M98A/BaseWare OS 3.2
57
Specification of Variants and Options
CONNECTION OF SAFETY SIGNALS
381 Internal
The signals are connected directly to screw terminals (X1-X4) in the upper part
of the cabinet (see Figure 38).
382 External
Standard industrial connectors, 64-pin plugs in accordance with DIN 43652, located on
the left-hand side of the cabinet. Corresponding cable connectors are also supplied.
ADDITIONAL UNITS
I/O units can be delivered separately. The units can then be mounted outside the cabinet
or in the cabinet extension. These are connected in a chain to a connector
(CAN 3 or CAN 2, see Figure 38) in the upper part of the cabinet. Connectors to the
I/O units and a connector to the cabinet (Phoenix MSTB 2.5/xx-ST-5.08), but no
cabling, is included. Measures according to Figure 39 and Figure 40.
For more details, see Technical Specification 3.9.
68A-F Digital I/O 24 V DC: 16 inputs/16 outputs.
68G-H Analog I/O.
68 I-L AD Combi I/O: 16 digital inputs/16 digital outputs and 2 analog outputs (0-10V).
68M-P Digital I/O 120 V AC: 16 inputs/16 outputs.
68Q-T Digital I/O with relay outputs: 16 inputs/16 outputs.
68U
Allen Bradley Remote I/O
68V-X Interbus-S Slave
68Y-Z Profibus DP Slave
69A-B Encoder interface unit for conveyor tracking
EN 50022 mounting rail
195
203
49
Figure 39 Dimensions for units 68A-T.
58
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Specification of Variants and Options
EN 50022 mounting rail
170
115
49
Figure 40 Dimension for units 67U-Z, 69A-B.
COMMUNICATION
As standard, the robot is equipped with one RS232 (SIO 1) and one RS422 (SIO 2)
connector inside the cabinet. The signals are connected to 9-pole D-sub connectors on
the backplane. See Figure 26 and Figure 38.
292 EtherNet
(See Figure 27.) Connectors: RJ45 and AUI on the board front.
294 DeviceNet
Connection on the left side to a 5-pole connector in accordance with ANSI.
TEACH PENDANT
631 With back lighting
Extension cable for the teach pendant:
661 10 m
This can be connected between the controller and the connector on the teach
pendant’s cable.
A maximum of two extension cables may be used; i.e. the total length of cable between
the controller and the teach pendant should not exceed 30 m.
662 2 x 10 m
Teach pendant language:
575
576
577
578
579
580
581
582
583
584
585
English
Swedish
German
French
Spanish
Portuguese
Danish
Italian
Dutch
Japanese
Czech
Product Specification IRB 2400 M98A/BaseWare OS 3.2
59
Specification of Variants and Options
EXTERNAL AXES
Drive unit mounted in cabinet
The controller is equipped with drives for external axes.The motors are connected to a
standard industrial 64-pin female connector, in accordance with DIN 43652, on the lefthand side of the cabinet. (Male connector is also supplied.)
The transformer 4.5 kVA is replaced with 7.2 kVA, and the DC-link size DC1 is
replaced with DC2.
391 Drive unit T
The drive unit is part of the DC-link. Recommended motor type see Figure 41.
392 Drive unit GT
A separate drive unit including two drives. Recommended motor types see Figure 41.
394 Drive unit T+GT
A combination of 391 and 392.
395 Drive unit C
The drive unit is part of the DC-link. Recommended motor type see Figure 41.
396 Drive unit C+GT
A combination of 395 and 392.
398 Prepared for GT
No drive units or cables are included, only transformer 7.2 kVA and DC link DC2.
EXTERNAL AXES MEASUREMENT BOARD
The resolver can either be connected to a serial measurement board outside the
controller, or to a measurement board inside the cabinet.
386 Serial measurement board inside cabinet
Signal interface to external axes with absolute position at power on. The board is
located in the cabinet and occupies one I/O unit slot. The resolvers are connected to a
standard industrial 64-pin connector in accordance with DIN 43652, on the left-hand
side of the cabinet.
387 Serial measurement board as separate unit
24 V POWER SUPPLY
As standard, the 24 V supply to the serial measurement board disappears almost
momentarily at a power failure. To allow position control of external high speed
(> 3000 rpm) motors during the power failure braking intervals, a power supply
unit with extended 24 V capacity can be installed.
39A Standard power supply unit
39B Extended power supply unit
60
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Specification of Variants and Options
EXTERNAL AXES - SEPARATE CABINET
If more external axes than in option 390 are to be used, an external cabinet can be
supplied. The external cabinet is connected to one Harting connector (cable length 7
m) on the left-hand side of the robot controller.
Door interlock, mains connection, mains voltage and mains filter according to the
robot controller. One transformer 7.2 kVA, and one mains switch are included.
37N-O Drive unit GT, for 4, or 6 motors. Recommended motor types see Figure 41.
37Q
Drive unit ECB, for 3 or 6 motors. Recommended motor types see Figure 41.
37V
Drive unit GT + ECB
37X
Drive unit GT + GT + ECB
Drive unit data
Max current
Rated current
Motor type1
U
11 - 55A rms
24A rms
M, L
G
6 - 30A rms
16A rms
S, M, L
T
7,5 - 37A rms
20A rms
S, M, L
E
4 - 19A rms
8,4A rms
C
2,5 - 11A rms
5A rms
B
1,5 - 7A rms
4A rms
1. Motors from ABB Flexible Automation/System Products.
Types: S=small (TN=1,7 Nm), M=medium (TN=5 Nm), L=large
(TN=12 Nm)
Figure 41 Motor selecting table.
EQUIPMENT
Manipulator cable, internal connectors
641- The cables are connected directly to the drive units inside the cabinet via a cable
644 gland on the left-hand side of the controller.
These options are not available for IRB 2400F.
Manipulator cable, external connection
651- The cables are connected to 64-pin standard industrial connectors in accordance with
654 DIN 43652, located on the left-hand side of the controller and on the base of the
manipulator.
655 7 m, metal braided
656 15 m, metal braided
Product Specification IRB 2400 M98A/BaseWare OS 3.2
61
Specification of Variants and Options
SERVICE OUTLET
Any of the following standard outlets with protective earthing can be chosen for
maintenance purposes.
The maximum load permitted is 500 VA (max. 100 W can be installed inside the
cabinet).
421* 230 V mains outlet in accordance with DIN VDE 0620; single socket suitable for
Sweden, Germany and other countries.
422* 230 V in accordance with French standard; single socket.
423* 120 V in accordance with British standard; single socket.
424 120 V in accordance with American standard; single socket, Harvey Hubble.
425* Service outlet according to 421 and a computer connection on the front of the cabinet.
The computer connection is connected to the RS232 serial channel.
POWER SUPPLY
431 Connection from the main transformer.
The voltage is switched on/off by the mains switch on the front of the cabinet.
432 Connection before mains switch without transformer.
Note this only applies when the mains voltage is 400 V, three-phase with neutral
connection and a 230 V service socket.
Note! Connection before mains switch is not in compliance with some national
standards, NFPL 79 for example.
433 Connection before mains switch with an additional transformer for line voltages
400-500 V and with a secondary voltage of 115 V or 230 V, 2A.
Note! Connection before mains switch is not in compliance with some national
standards, NFPL 79 for example.
439 Earth fault protection
To increase personal safety, the service outlet can be supplied with an earth fault
protection which trips at 30 mA earth current. The earth fault protection is placed next
to the service outlet (see Figure 38). Voltage range: 110 - 240 V AC.
RAM MEMORY
402 Standard, total memory 8+8 MB
403 Extended memory, total 8+16 MB
62
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Specification of Variants and Options
EXTRA DOCUMENTATION
Product Manuals
G11-G13
G21-G23
G31-G33
G41-G43
G51-G53
G61-G63
G71-G73
G81-G83
G91-G93
English
Swedish
German
French
Spanish
Portuguese
Danish
Italian
Dutch
Product Specification IRB 2400 M98A/BaseWare OS 3.2
63
Specification of Variants and Options
64
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Accessories
5 Accessories
There is a range of tools and equipment available, specially designed for the robot.
Software options for robot and PC
For more information, see Product Specification RobotWare.
Robot Peripherals
- Track Motion
- Tool System
- Motor Units
Product Specification IRB 2400 M98A/BaseWare OS 3.2
65
Accessories
66
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Index
6 Index
A
absolute measurement 12
accessories 65
Allen-Bradley Remote I/O 16, 42, 57
analog signals 16, 44
arithmetic 33
arrays 33
automatic mode 9
automatic operation 11, 37
B
backup
absolute measurement 24
memory 36
BaseWare OS 3
battery 36
C
cabinet extension 19, 51
cabinet wheels 51
communication 17, 46
concurrent I/O 17
configuration 9, 17, 24
connection 62
mains supply 54
cooling device 19
coordinate systems 14
cross connections 17
cursor 7
D
DeviceNet 59
diagnostics 12
digital signals 16, 43
diskette 36
display 7, 23
distributed I/O 42
DOOR KEYS 54
drive units 60, 61
position 11
programs 10
emergency stop 6, 7, 22
enabling device 6, 7
Encoder interface unit 42, 57
equipment
mounting 30
permitted extra load 30
error handling 12
event routine 12
extended cover 19, 51
extended memory 36
external axes 16, 41
external panel 52
extra equipment
connections 48
F
fire safety 7
fly-by point 10
function keys 23
functions 33
H
hold-to-run control 7
humidity 24
I
I/O 16, 42
I/O units 42
incremental jogging 16
inputs 16, 42
installation 9, 24
instructions 33
Interbus-S Slave 42, 57
interrupt 17
inverted robot 9
J
jogging 16
joystick 8
E
L
editing
language 24
Product Specification IRB 2400 M98A/BaseWare OS 3.2
67
Index
lighting
connection 62
teach pendant 59
load 9, 25
load diagrams 26
logical expressions 33
M
mains supply 54
mains switch 55
mains voltage 53, 54
maintenance 12, 37
manipulator cable 61
manual mode 9
mechanical interface 32
memory
backup 36
extended 36
mass storage 36
RAM memory 36
menu keys 23
mirroring 10
motion 13, 38
motion keys 23
motion performance 14
mounting
extra equipment 30
robot 25
mounting flange 32
Multitasking 17
N
navigation keys 23
noise level 19
O
operating mode 8
operating mode selector 53
operating requirements 24
operation 7, 23
operator dialogs 24
operator’s panel 8, 52
options 47
outputs 16, 42
overspeed protection 6
68
P
password 11, 24
payload 9
performance 14, 40
PLC functionality 17
position
editing 11
execution 15
programming 10, 15
position fixed I/O 17
position switch 49
power supply 24
printer 10
production window 11
Profibus DP Slave 42, 57
program
editing 10
testing 11
program displacement 34
program storage 36
programming 9, 33
programming language 33
protection standards 24
Q
QuickMove 14
R
range of movement
working space 38
RAPID 33
reduced speed 6
repeatability 40
robot motion 38
Robot Peripherals 65
robot versions 3, 47
S
safeguarded space stop 6, 22
delayed 6, 22
safety 6, 22
safety lamp 7, 49
serial communication 17, 46
service 12
service outlets 62
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Index
service position indicator 49
signal connections 44, 48
signal data 43
singular points 14
soft servo 34
space requirements 19
standards 6, 22
stationary TCP 15
stop point 10
structure 5, 19
suspended robot 9
system signals 45
T
TCP 15
teach pendant 7, 23
teach pendant cable 59
teach pendant lighting 59
temperature 24
testing programs 11
transformer 54
trap routines 17
troubleshooting 12
TrueMove 14
U
UL approved 7, 22
user-defined keys 24
V
variants 47
volume 19
W
weight 19
window keys 23
windows 7
working space
restricting 7, 50
Product Specification IRB 2400 M98A/BaseWare OS 3.2
69
Index
70
Product Specification IRB 2400 M98A/BaseWare OS 3.2
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement