Internal Combustion Engine
Engineering Fundamentals
of the
Internal Combustion Engine
Willard W. Pulkrabek
University of Wisconsin-· .. Platteville
Mean Effective Pressure, 49
Torque and Power, 50
Dynamometers, 53
Air-Fuel Ratio and Fuel-Air Ratio, 55
Specific Fuel Consumption, 56
Engine Efficiencies, 59
Volumetric Efficiency, 60
Emissions, 62
Noise Abatement, 62
Equations, 63
Problems, 65
Design Problems, 67
Air-Standard Cycles, 68
Otto Cycle, 72
Real Air-Fuel Engine Cycles, 81
SI Engine Cycle at Part Throttle, 83
Exhaust Process, 86
Diesel Cycle, 91
Dual Cycle, 94
Comparison of Otto, Diesel, and Dual Cycles, 97
Miller Cycle, 103
Comparison of Miller Cycle and Otto Cycle, 108
Two-Stroke Cycles, 109
Stirling Cycle, 111
Lenoir Cycle, 113
Summary, 115
Problems, 116
Design Problems, 120
Thermochemistry, 121
Hydrocarbon Fuels-Gasoline, 131
Some Common Hydrocarbon Components, 134
Self-Ignition and Octane Number, 139
Diesel Fuel, 148
Alternate Fuels, 150
Conclusions, 162
Problems, 162
Design Problems, 165
Intake Manifold, 166
Volumetric Efficiency of SI Engines, 168
Intake Valves, 173
Fuel Injectors, 178
Carburetors, 181
Supercharging and Turbocharging, 190
Stratified Charge Engines
and Dual Fuel Engines, 195
5-8 Intake for Two-Stroke Cycle Engines, 196
5-9 Intake for CI Engines, 199
5-10 Conclusions, 201
Problems, 202
Design Problems, 204
Turbulence, 206
Swirl, 208
Squish and Tumble, 213
Divided Combustion Chambers, 214
Crevice Flow and Blowby, 215
Mathematical Models and Computer
Simulation, 219
Internal Combustion Engine Simulation
Program, 221
Conclusions, 225
Problems, 226
Design Problems, 228
Combustion in SI Engines, 229
Combustion in Divided Chamber Engines
and Stratified Charge Engines, 243
Engine o?Itrating Characteristics, 246
Modern Fast Burn Combustion Chambers, 248
Combustion in CI Engines, 251
Summary, 259
Problems, 260
Design Problems, 261
Blowdown, 262
Exhaust Stroke, 265
Exhaust Valves, 268
Exhaust Temperature, 269
Exhaust Manifold, 270
Turbochargers, 272
Exhaust Gas Recycle-EGR, 273
Tailpipe and Muffler, 273
Two-Stroke Cycle Engines, 274
Summary and Conclusions, 274
Problems, 275
Design Problems, 276
Air Pollution, 277
Hydrocarbons (He), 278
Carbon Monoxide (CO), 285
Oxides of Nitrogen (NOx), 285
Particulates, 287
Other Emissions, 290
Aftertreatment, 292
Catalytic Converters, 293
CI Engines, 301
Chemical Methods to Reduce Emissions, 303
Exhaust Gas Recycle-EGR, 304
Non-Exhaust Emissions, 307
Problems, 308
Design Problems, 311
Energy Distribution, 313
Engine Temperatures, 314
Heat Transfer in Intake System, 317
Heat Transfer in Combustion Chambers, 318
Heat Transfer in Exhaust System, 324
Effect of Engine Operating Variables
on Heat Transfer, 327
10-7 Air Cooled Engines, 334
10-8 Liquid Cooled Engines, 335
Oil as a Coolant, 340
Adiabatic Engines, 341
Some Modern Trends in Engine Cooling, 342
Thermal Storage, 343
Summary, 345
Problems, 345
Design Problems, 348
11-1 Mechanical Friction and Lubrication, 349
11-2 Engine Friction, 351
11-3 Forces on Piston, 360
11-4 Engine Lubrication Systems, 364
11-5 Two-Stroke Cycle Engines, 366
11-6 Lubricating Oil, 367
11-7 Oil Filters, 373
11-8 Summary and Conclusions, 375
Problems, 376
Design Problems, 377
Thermodynamic Properties of Air, 379
Properties of Fuels, 380
Chemical Equilibrium Constants, 381
Conversion Factors for Engine Parameters, 382
This book was written to be used as an applied thermoscience textbook in a onesemester, college-level, undergraduate engineering course on internal combustion
engines. It provides the material needed for a basic understanding of the operation
of internal combustion engines. Students are assumed to have knowledge of fundamental thermodynamics, heat transfer, and fluid mechanics as a prerequisite to get
maximum benefit from the text. This book can also be used for self-study and/or as
a reference book in the field of engines.
Contents include the fundamentals of most types of internal combustion
engines, with a major emphasis on reciprocating engines. Both spark ignition and
compression ignition engines are covered, as are those operating on four-stroke and
two-stroke cycles, and ranging in size from small model airplane engines to the
largest stationary engines. Rocket engines and jet engines are not included. Because
of the large number of engines that are used in automobiles and other vehicles, a
major emphasis is placed on these.
The book is divided into eleven chapters. Chapters 1 and 2 give an introduction, terminology, definitions, and basic operating characteristics. This is followed
in Chapter 3 with a detailed analysis of basic engine cycles. Chapter 4 reviews fundamental thermochemistry as applied to engine operation and engine fuels.
Chapters 5 through 9 follow the air-fuel charge as it passes sequentially through an
engine, including intake, motion within a cylinder, combustion, exhaust, and emisxi
sions. Engine heat transfer, friction, and lubrication are covered in Chapters 10 and
11. Each chapter includes solved example problems and historical notes followed by
a set of unsolved review problems. Also included at the end of each chapter are
open-ended problems that require limited design application. This is in keeping with
the modern engineering education trend of emphasizing design. These design problems can be used as a minor weekly exercise or as a major group project. Included in
the Appendix is a table of solutions to selected review problems.
Fueled by intensive commercial competition and stricter government regulations on emissions and safety, the field of engine technology is forever changing. It is
difficult to stay knowledgeable of all advancements in engine design, materials, controls, and fuel development that are experienced at an ever-increasing rate. As the
outline for this text evolved over the past few years, continuous changes were
required as new developments occurred. Those advancements, which are covered
in this book, include Miller cycle, lean burn engines, two-stroke cycle automobile
engines, variable valve timing, and thermal storage. Advancements and technological changes will continue to occur, and periodic updating of this text will be
Information in this book represents an accumulation of general material collected by the author over a period of years while teaching courses and working in
research and development in the field of internal combustion engines at the
Mechanical Engineering Department of the University of Wisconsin-Platteville.
During this time, information has been collected from many sources: conferences,
newspapers, personal communication, books, technical periodicals, research, product literature, television, etc. This information became the basis for the outline and
notes used in the teaching of a class about internal combustion engines. These class
notes, in turn, have evolved into the general outline for this textbook. A list of references from the technical literature from which specific information for this book
was taken is included in the Appendix in the back of the book. This list will be
referred to at various points throughout the text. A reference number in brackets
will refer to that numbered reference in the Appendix list.
Several references were of special importance in the development of these
notes and are suggested for additional reading and more in-depth study. For keeping
up with information about the latest research and development in automobile and
internal combustion engine technology at about the right technical level, publications by SAE (Society of Automotive Engineers) are highly recommended;
Reference [11] is particularly appropriate for this. For general information about
most engine subjects, [40,58,100,116] are recommended. On certain subjects, some
of these go into much greater depth than what is manageable in a one-semester
course. Some of the information is slightly out of date but, overall, these are very
informative references. For historical information about engines and automobiles in
general, [29, 45, 97, 102] are suggested. General data, formulas, and principles of
engineering thermodynamics and heat transfer are used at various places throughout this text. Most undergraduate textbooks on these subjects would supply the
needed information. References [63] and [90] were used by the author.
Keeping with the trend of the world, SI units are used throughout the book,
often supplemented with English units. Most research and development of engines
is done using SI units, and this is found in the technical literature. However, in the
non-technical consumer market, English units are still common, especially with
automobiles. Horsepower, miles per gallon, and cubic inch displacement are some of
the English terminology still used. Some example problems and some review problems are done with English units. A conversion table of SI and English units of
common parameters used in engine work is induded in the Appendix at the back of
the book.
I would like to express my gratitude to the many people who have influenced
me and helped in the writing of this book. First I thank Dorothy with love for always
being there, along with John, Tim, and Becky. I thank my Mechanical Engineering
Department colleagues Ross Fiedler and Jerry Lolwing for their assistance on many
occasions. I thank engineering students Pat Horihan and Jason Marcott for many of
the computer drawings that appear in the book. I thank the people who reviewed
the original book manuscript and offered helpful suggestions for additions and
improvements. Although I have never met them, I am indebted to authors J. B.
Heywood, C. R. Ferguson, E. F. Obert, and R. Stone. The books these men have
written about internal combustion engines have certainly influenced the content of
this textbook. I thank my father, who many years ago introduced me to the field of
automobiles and generated a lifelong interest. I thank Earl of Capital City Auto
Electric for carrying on the tradition.
The author wishes to thank and acknowledge the following organizations for permission to reproduce photographs, drawings, and tables from their publications in
this text: Carnot Press, Fairbanks Morse Engine Division of Coltec Industries, Ford
Motor Company, General Motors, Harley Davidson, Prentice-Hall Inc., SAE International, Th~. Combustion Institute, and Tuescher Photography.
Discharge coefficient of carburetor throat
Cetane index
Cetane number
Exhaust gas recycle [%]
Force [N] [lbf]
Friction force [N] [lbf]
Force of connecting rod [N] [lbf]
Forces in the X direction [N] [lbf]
Forces in the Y direction [N] [lbf]
View factor
Fuel-air ratio [kgf/kga]
Fuel sensitivity
Moment of inertia [kg-m2 ] [lbm-ft2 ]
Ignition delay [sec]
Chemical equilibrium constant
Molecular weight (molar mass) [kg/kgmole] [lbm/lbmmole]
Motor octane number
Engine speed [RPM]
Number of moles
Number of cylinders
Moles of vapor
Nusselt number
Octane number
Pressure [kPa] [atm] [psi]
Air pressure [kPa] [atm] [psi]
Exhaust pressure [kPa] [atm] [psi]
Pressure when the exhaust valve opens [kPa] [psi]
Fuel pressure [kPa] [atm] [psi]
Intake pressure [kPa] [atm] [psi]
Injection pressure [kPa] [atm] [psi]
Standard pressure [kPa] [atm] [psi]
Pressure in carburetor throat [kPa] [atm] [psi]
Vapor pressure [kPa] [atm] [psi]
Heat transfer [kJ] [BTU]
Heat transfer rate [kW] [hp] [BTU/sec]
Higher heating value [kJ/kg] [BTU/lbm]
Heating value of fuel [kJ/kg] [BTU/lbm]
Lower heating value [kJ/kg] [BTU/lbm]
Ratio of connecting rod length to crank offset
Gas constant [kJ/kg-K] [ft-Ibf/lbm-OR] [BTU/lbm-OR]
Reynolds number
Research octane number
Stroke length [cm] [in.]
Specific gravity
Specific work [kJ/kg] [ft-Ibf/lbm] [BTU/lbm]
Brake-specific work [kJ/kg] [ft-Ibf/lbm] [BTU/lbm]
Friction-specific work [kJ/kg] [ft-Ibf/lbm] [BTU/lbm]
Indicated-specific work [kJ/kg] [ft-Ibf/lbm] [BTU/lbm]
Distance [em] [m] [in.] [ft]
Fraction of exhaust
Exhaust residual
Mole fraction of water vapor
Pressure ratio
Ratio of valve areas
Cutoff ratio
Angular momentum
[kg-m2/sec] [lbm-ft2/sec]
Emissivity of gas
Emissivity of wall
Combustion efficiency [%]
Fuel conversion efficiency [%]
Mechanical efficiency [%]
Isentropic efficiency [%]
Thermal efficiency [%]
Volumetric efficiency of the engine [%]
Crank angle measured from TDC [0]
Charging efficiency
Delivery ratio
Relative charge
Scavenging efficiency
Trapping efficiency
Dynamic viscosity [kg/m-sec] [lbm/ft-sec]
Dynamic viscosity of gas [kg/m-sec] [lbm/ft -see]
Stoichiometric coefficients
Density [kg/m3 ] [lbm/ft3 ]
Density of air [kg/m3 ] [lbm/ft3 ]
Density of air at standard conditions [kg/m3 ] [lbm/ft3 ]
Density of fuel [kg/m3 ] [lbm/ft3 ]
Stefan-Boltzmann constant [W/m2-K4] [BTU/hr-ft2-OR4]
Torque [N-m] [lbf-ft]
Shear force per unit area [N/m2] [lbf/ft2 ]
Equivalence ratio
Angle between connecting rod and centerline of the cylinder
Angular velocity of swirl [rev/see]
Specific humidity [kgv/kga]
This chapter introduces and defines the internal combustion engine. It lists ways of
classifying engines and terminology used in engine technology. Descriptions are
given of many common engine components and of basic four-stroke and two-stroke
cycles for both spark ignition and compression ignition engines.
The internal combustion engine (Ie) is a heat engine that converts chemical energy
in a fuel into mechanical energy, usually made available on a rotating output shaft.
Chemical energy of the fuel is first converted to thermal energy by means of combustion or oxidation with air inside the engine. This thermal energy raises the
temperature and pressure of the gases within the engine, and the high-pressure gas
then expands against the mechanical mechanisms of the engine. This expansion is
converted by the mechanical linkages of the engine to a rotating crankshaft, which is
the output of the engine. The crankshaft, in turn, is connected to a transmission
and/or power train to transmit the rotating mechanical energy to the desired final
use. For engines this will often be the propulsion of a vehicle (i.e., automobile, truck,
locomotive, marine vessel, or airplane). Other applications include stationary
Chap. 1
engines to drive generators or pumps, and portable engines for things like chain
saws and lawn mowers.
Most internal combustion engines are reciprocating engines having pistons
that reciprocate back and forth in cylinders internally within the engine. This book
concentrates on the thermodynamic study of this type of engine. Other types of IC
engines also exist in much fewer numbers, one important one being the rotary
engine [104]. These engines will be given brief coverage. Engine types not covered
by this book include steam engines and gas turbine engines, which are better classified as external combustion engines (i.e., combustion takes place outside the
mechanical engine system). Also not included in this book, but which could be classified as internal combustion engines, are rocket engines, jet engines, and firearms.
Reciprocating engines can have one cylinder or many, up to 20 or more. The
cylinders can be arranged in many different geometric configurations. Sizes range
from small model airplane engines with power output on the order of 100 watts to
large multicylinder stationary engines that produce thousands of kilowatts per
There are so many different engine manufacturers, past, present, and future,
that produce and have produced engines which differ in size, geometry, style, and
operating characteristics that no absolute limit can be stated for any range of engine
characteristics (i.e., size, number of cylinders, strokes in a cycle, etc.). This book will
work within normal characteristic ranges of engine geometries and operating parameters, but there can always be exceptions to these.
Early development of modern internal combustion engines occurred in the latter half of the 1800s and coincided with the development of the automobile. History
records earlier examples of crude internal combustion engines and self-propelled
road vehicles dating back as far as the 1600s [29]. Most of these early vehicles were
steam-driven prototypes which never became practical operating vehicles. Technology, roads, materials, and fuels were not yet developed enough. Very early examples
of heat engines, including both internal combustion and external combustion, used
gun powder and other solid, liquid, and gaseous fuels. Major development of the
modern steam engine and, consequently, the railroad locomotive occurred in the latter half of the 1700s and early 1800s. By the 1820s and 1830s, railroads were present
in several countries around the world.
Most of the very earliest internal combustion engines of the 17th
and 18th centuries can be classified as atmospheric engines. These were
large engines with a single piston and cylinder, the cylinder being open
on the end. Combustion was initiated in the open cylinder using any of the
various fuels which were available. Gunpowder was often used as the
fuel. Immediately after combustion, the cylinder would be full of hot
exhaust gas at atmospheric pressure. At this time, the cylinder end was
closed and the trapped gas was allowed to cool. As the gas cooled, it cre-
Figure 1-1 The Charter Engine made in 1893 at the Beloit works of Fairbanks,
Morse & Company was one of the first successful gasoline engine offered for sale in
the United States. Printed with permission, Fairbanks Morse Engine Division,
Coltec Industries.
ated a vacuum within the cylinder. This caused a pressure differential
across the piston, atmospheric pressure on one side and a vacuum on the
other. As the piston moved because of this pressure differential, it would
do work by being connected to an external system, such as raising a
weight [29].
Some early steam engines also were atmospheric engines. Instead
of combustion, the open cylinder was filled with hot steam. The end was
then closed and the steam was allowed to cool and condense. This created the necessary vacuum.
In addition to a great amount of experimentation and development in Europe
and the United States during the middle and latter half of the 1800s, two other technological occurrences during this time stimulated the emergence of the internal
combustion engine. In 1859, the discovery of crude oil in Pennsylvania finally made
available the development of reliable fuels which could be used in these newly
developed engines. Up to this time, the lack of good, consistent fuels was a major
drawback in engine development. Fuels like whale oil, coal gas, mineral oils, coal,
and gun powder which were available before this time were less than ideal for
engine use and development. It still took many years before products of the petroleum industry evolved from the first crude oil to gasoline, the automobile fuel of the
20th century. However, improved hydrocarbon products began to appear as early
Figure 1·2 Ford Taurus SHO 3.4 liter (208 in.3), spark ignition, four-stroke cycle
engine. The engine is rated at 179 kW at 6500 RPM (240 hp) and develops 305 N-m
of torque at 4800 RPM (225Ibf-ft). It is a 60° V8 with 8.20 cm bore (3.23 in.), 7.95 cm
stroke (3.13 in.), and a compression ratio of 10: 1. The engine has four chain driven
camshafts mounted in aluminum heads with four valves per cylinder and coil-onplug ignition. Each spark plug has a separate high-voltage coil and is fired by Ford's
Electronic Distributorless Ignition System (ED IS). Courtesy of Ford Motor
as the 1860s and gasoline, lubricating oils, and the internal combustion engine
evolved together.
The second technological invention that stimulated the development of the
internal combustion engine was the pneumatic rubber tire, which was first marketed
by John B. Dunlop in 1888 [141]. This invention made the automobile much more
practical and desirable and thus generated a large market for propulsion systems,
including the internal combustion engine.
During the early years of the automobile, the internal combustion engine competed with electricity and steam engines as the basic means of propulsion. Early in
the 20th century, electricity and steam faded from the automobile picture-electricity
because of the limited range it provided, and steam because of the long start-up time
needed. Thus, the 20th century is the period of the internal combustion engine and
Sec. 1-3
Engine Classifications
the automobile powered by the internal combustion engine. Now, at the end of the
century, the internal combustion engine is again being challenged by electricity and
other forms of propulsion systems for automobiles and other applications. What
goes around comes around.
During the second half of the 19th century, many different styles of internal combustion engines were built and tested. Reference [29] is suggested as a good history
of this period. These engines operated with variable success and dependability using
many different mechanical systems and engine cycles.
The first fairly practical engine was invented by J.J.E. Lenoir (1822-1900) and
appeared on the scene about 1860 (Fig. 3-19). During the next decade, several hundred of these engines were built with power up to about 4.5 kW (6 hp) and
mechanical efficiency up to 5%. The Lenoir engine cycle is described in Section
3-13. In 1867 the Otto-Langen engine, with efficiency improved to about 11 %, was
first introduced, and several thousand of these were produced during the next
decade. This was a type of atmospheric engine with the power stroke propelled by
atmospheric pressure acting against a vacuum. Nicolaus A. Otto (1832-1891) and
Eugen Langen (1833-1895) were two of many engine inventors of this period.
During this time, engines operating on the same basic four-stroke cycle as the
modern automobile engine began to evolve as the best design. Although many people were working on four-stroke cycle design, Otto was given credit when his
prototype engine was built in 1876.
In the 1880s the internal combustion engine first appeared in automobiles [45].
Also in this decade the two-stroke cycle engine became practical and was manufactured in large numbers.
By 1892, Rudolf Diesel (1858-1913) had perfected his compression ignition
engine into basically the same diesel engine known today. This was after years of
development work which included the use of solid fuel in his early experimental
engines. Early compression ignition engines were noisy, large, slow, single-cylinder
engines. They were, however, generally more efficient than spark ignition engines. It
wasn't until the 1920s that multicylinder compression ignition engines were made
small enough to be used with automobiles and trucks.
Internal combustion engines can be classified in a number of different ways:
1. Types of Ignition
(a) Spark Ignition (SI). An SI engine starts the combustion process in each
cycle by use of a spark plug. The spark plug gives a high-voltage electrical
1955 Chevrolet "small block" V8 engine with 265 in.3 (4.34 L) displacement. The four-stroke cycle, spark ignition engine was equipped with a carburetor
and overhead valves. Copyright General Motors Corp., used with permission.
Figure 1-3
discharge between two electrodes which ignites the air-fuel mixture in the
combustion chamber surrounding the plug. In early engine development,
before the invention of the electric spark plug, many forms of torch holes
were used to initiate combustion from an external flame.
(b) Compression Ignition (CI). The combustion process in a CI engine starts
when the air-fuel mixture self-ignites due to high temperature in the combustion chamber caused by high compression.
2. Engine Cycle
(a) Four-Stroke Cycle. A four-stroke cycle experiences four piston movements over two engine revolutions for each cycle.
(b) Two-Stroke Cycle. A two-stroke cycle has two piston movements over one
revolution for each cycle.
Figure 1-4 Engine Classification by Valve Location. (a) Valve in block, L head.
Older automobiles and some small engines. (b) Valve in head, I head. Standard on
modern automobiles. (c) One valve in head and one valve in block, F head. Older,
less common automobiles. (d) Valves in block on opposite sides of cylinder, T head.
Some historic automobile engines.
Three-stroke cycles and six-stroke cycles were also tried in early engine development [29].
3. Valve Location (see Fig. 1-4)
(a) Valves in head (overhead valve), also called I Head engine.
(b) Valves in block (flat head), also called L Head engine. Some historic
engines with valves in block had the intake valve on one side of the cylinder and the exhaust valve on the other side. These were called T Head
The Valve Functions Are Performed by Two Concentric, Ported
Sleeves, Generally of Cast Iron, Which Are Inserted between the
Cylinder-Wall and the Piston. The Sleeves Are Given a Reciprocating Motion by Connection to an Eccentric Shaft Driven from the
Crankshaft through the Usual 2 to 1 Gear, Their Stroke in the
Older Designs at Least, Being Either 1 or 1v.. In. The' Sleeves
Project from the Cylinder at the Bottom and, at the Top They
Exte!,d into an Annular Space between the Cylinder-Wall a'nd the
SpeCial Form of Cylinder-Head So That, during the Compression
and the Power Strokes, the Gases Do Not Come Into Contact with
the Cylinder-Wall But Are Separated Therefrom by Two Layers
of Cast Iron and Two Films of Lubricating Oil. The Cylinder, As
Well As Each Sleeve, Is Provided with an Exhaust-Port on One
Side and with an Inlet-Port on the Opposite Side. The Passage
for Either the Inlet or the Exhaust Is Open When All Three of th€.
Ports on the Particular Side Are In Register with Each Other
Figure 1-5 Sectional view of Willy-Knight sleeve valve engine of 1926. Reprinted
with permission from © 1995 Automotive Engineering magazine. Society of Automotive Engineers, Inc.
(c) One valve in head (usually intake) and one in block, also called F Head
engine; this is much less common.
4. Basic Design
(a) Reciprocating. Engine has one or more cylinders in which pistons reciprocate back and forth. The combustion chamber is located in the closed end
of each cylinder. Power is delivered to a rotating output crankshaft by
mechanical linkage with the pistons.
Figure 1·6 Chevrolet LT4 V8, four-stroke cycle, spark ignition engine with 5.7liter
displacement. This fuel-injected, overhead valve engine was an option in the 1986
Corvette. Copyright General Motors Corp., used with permission.
(b) Rotary. Engine is made of a block (stator) built around a large non-con-
centric rotor and crankshaft. The combustion chambers are built into the
nonrotating block.
5. Position and Number of Cylinders of Reciprocating Engines (Fig. 1-7)
(a) Single Cylinder. Engine has one cylinder and piston connected to the
(b) In-Line. Cylinders are positioned in a straight line, one behind the other
along the length of the crankshaft. They can consist of 2 to 11 cylinders or
possibly more. In-line four-cylinder engines are very common for automobile and other applications. In-line six and eight cylinders are historically
common automobile engines. In-line engines are sometimes called straight
(e.g., straight six or straight eight).
(c) V Engine. Two banks of cylinders at an angle with each other along a single crankshaft. The angle between the banks of cylinders can be anywhere
from 15° to 120°, with 60°-90° being common. V engines have even numbers of cylinders from 2 to 20 or more. V6s and V8s are common
automobile engines, with V12s and V16s (historic) found in some luxury
and high-performance vehicles.
(d) Opposed Cylinder Engine. Two banks of cylinders opposite each other on
a single crankshaft (a V engine with a 180° V). These are common on small
Sec. 1-3
Engine Classifications
aircraft and some automobiles with an even number of cylinders from two
to eight or more. These engines are often called flat engines (e.g., flat
(e) W Engine. Same as a V engine except with three banks of cylinders on the
same crankshaft. Not common, but some have been developed for racing
automobiles, both modern and historic. Usually 12 cylinders with about a
60° angle between each bank.
(1) Opposed Piston Engine. Two pistons in each cylinder with the combustion
chamber in the center between the pistons. A single-combustion process
causes two power strokes at the same time, with each piston being pushed
away from the center and delivering power to a separate crankshaft at each
end of the cylinder. Engine output is either on two rotating crankshafts or
on one crankshaft incorporating complex mechanical linkage.
(g) Radial Engine. Engine with pistons positioned in a circular plane around
the central crankshaft. The connecting rods of the pistons are connected to
a master rod which, in turn, is connected to the crankshaft. A bank of cylinders on a radial engine always has an odd number of cylinders ranging
from 3 to 13 or more. Operating on a four-stroke cycle, every other cylinder fires and has a power stroke as the crankshaft rotates, giving a smooth
operation. Many medium- and large-size propeller-driven aircraft use
radial engines. For large aircraft, two or more banks of cylinders are
mounted together, one behind the other on a single crankshaft, making
one powerful, smooth engine. Very large ship engines exist with up to 54
cylinders, six banks of 9 cylinders each.
There are at least two historic examples of radial engines being
mounted with the crankshaft fastened to the vehicle while the heavy bank
of radial cylinders rotated around the stationary crank. The Sopwith
Camel, a very successful World War I fighter aircraft, had the engine so
mounted with the propeller fastened to the rotating bank of cylinders. The
gyroscopic forces generated by the large rotating engine mass allowed
these planes to do some maneuvers which were not possible with other
airplanes, and restricted them from some other maneuvers. Snoopy has
been flying a Sopwith Camel in his battles with the Red Baron for many
The little-known early Adams-Farwell automobiles had three- and
five-cylinder radial engines rotating in a horizontal plane with the stationary crankshaft mounted vertically. The gyroscopic effects must have given
these automobiles very unique steering characteristics [45].
Figure 1-8 Supercharger used to increase inlet air pressure to engine. Compressor
is driven off engine crankshaft, which gives fast response to speed changes but adds
parasitic load to engine.
6. Air Intake Process
(a) Naturally Aspirated. No intake air pressure boost system.
(b) Supercharged. Intake air pressure increased with the compressor driven
off of the engine crankshaft (Fig. 1-8).
(c) Turbocharged. Intake air pressure increased with the turbine-compressor
driven by the engine exhaust gases (Fig. 1-9).
(d) Crankcase Compressed. Two-stroke cycle engine which uses the crankcase
as the intake air compressor. Limited development work has also been
done on design and construction of four-stroke cycle engines with
crankcase compression.
7. Method of Fuel Input for SI Engines
(a) Carbureted.
(b) Multipoint Port Fuel Injection. One or more injectors at each cylinder
(c) Throttle Body Fuel Injection. Injectors upstream in intake manifold.
8. Fuel Used
(a) Gasoline.
(b) Diesel Oil or Fuel Oil.
(c) Gas, Natural Gas, Methane.
(d) LPG.
(e) Alcohol-Ethyl,
(f) Dual Fuel. There are a number of engines that use a combination of two or
more fuels. Some, usually large, CI engines use a combination of methane
and diesel fuel. These are attractive in developing third-world countries
because of the high cost of diesel fuel. Combined gasoline-alcohol fuels
Figure 1-9 Turbocharger used to increase inlet air pressure to engine. Turbine that
drives compressor is powered by exhaust flow from engine. This adds no load to the
engine but results in turbo lag, a slower response to engine speed changes.
are becoming more common as an alternative to straight gasoline automobile engine fuel.
(g) Gasohol. Common fuel consisting of 90% gasoline and 10% alcohol.
9. Application
(a) Automobile, Truck, Bus.
(b) Locomotive.
(c) Stationary.
(d) Marine.
(e) Aircraft.
(f) Small Portable, Chain Saw, Model Airplane.
LO. Type of Cooling
(a) Air Cooled.
(b) Liquid Cooled, Water Cooled.
Several or all of these classifications can be used at the same time to identify a
given engine. Thus, a modern engine might be called a turbocharged, reciprocating,
spark ignition, four-stroke cycle, overhead valve, water-cooled, gasoline, multipoint
fuel-injected, V8 automobile engine.
Figure 1-10 General Motors 7.4 liter L29, V8, four-stroke cycle, spark ignition,
truck engine. Displacement is 454 in. 3 (7.44 L) with 4.25 in. bore (10.80 cm) and 4.00
in. stroke (10.16 cm). The engine has a maximum speed of 5000 RPM, with a compression ratio of 9.0: 1, overhead valves, and multipoint port fuel injection. This
engine was used in several models of 1996 Chevrolet and GMC trucks. Copyright
General Motors Corp., used with permission.
The following terms and abbreviations are commonly used in engine technology literature and will be used throughout this book. These should be learned to assure
maximum understanding of the following chapters.
Internal Combustion
Spark Ignition (81)
An engine in which the combustion process in each cycle is
started by use of a spark plug.
Compression Ignition (CI)
An engine in which the combustion process starts when
the air-fuel mixture self-ignites due to high temperature in the combustion
chamber caused by high compression. CI engines are often called Diesel
engines, especially in the non-technical community.
Figure 1-11 Power and torque curves of
GM 7.4 liter L29 truck engine shown in
Fig. 1-10. The engine has a power rating
of 290 hp (216 kW) at 4200 RPM and a
torque rating of 410 lbf-ft (556 N-m) at
3200 RPM. Copyright General Motors
Corp., used with permission.
Top-Dead-Center (TDC) Position of the piston when it stops at the furthest point
away from the crankshaft. Top because this position is at the top of most
engines (not always), and dead because the piston stops at this point. Because
in some engines top-de ad-center is not at the top of the engine (e.g., horizontally opposed engines, radial engines, etc.), some Sources call this position
Head-End-Dead-Center (HEDC). Some sources call this position Top-Center
(TC). When an occurrence in a cycle happens before TDC, it is often abbreviated bTDC or bTe. When the occurrence happens after TDC, it will be
abbreviated aTDC or aTe. When the piston is at TDC, the volume in the
cylinder is a minimum called the clearance volume.
Bottom-Dead-Center (BDC) Position of the piston when it stops at the point closest to the crankshaft. Some sources call this Crank-End-Dead-Center (CEDC)
because it is not always at the bottom of the engine. Some sources call this
point Bottom-Center (BC). During an engine cycle things can happen before
bottom-dead-center, bBDC or bBC, and after bottom-de ad-center, aBDC or
Direct Injection (DI) Fuel injection into the main combustion chamber of an
engine. Engines have either one main combustion chamber (open chamber)
Chap. 1
Figure 1-12 Poppet valve is spring
loaded closed, and pushed open by cam
action at proper time in cycle. Most automobile engines and other reciprocating
engines use poppet valves. Much less
common are sleeve valves and rotary
valves. Components include: (A) valve
seat, (B) head, (C) stem, (D) guide, (E)
spring, (F) camshaft, (G) manifold.
or a divided combustion chamber made up of a main chamber and a smaller
connected secondary chamber.
Indirect Injection (IDI)
Fuel injection into the secondary chamber of an engine
with a divided combustion chamber.
Diameter of the cylinder or diameter of the piston face, which is the same
minus a very small clearance.
Movement distance of the piston from one extreme position to the other:
TDC to BDC or BDC to TDC.
Clearance Volume
Minimum volume in the combustion chamber with piston at
or Displacement Volume
Volume displaced by the piston as it travels through one stroke. Displacement can be given for one cylinder or for the
entire engine (one cylinder times number of cylinders). Some literature calls
this swept volume.
Engine with computer controls that regulate operating characteristics such as air-fuel ratio, ignition timing, valve timing, exhaust control, intake
tuning, etc. Computer inputs come from electronic, mechanical, thermal, and
chemical sensors located throughout the engine. Computers in some automo-
Smart Engine
Sec. 1-4
Terminology and Abbreviations
biles are even programmed to adjust engine operation for things like valve wear
and combustion chamber deposit buildup as the engine ages. In automobiles
the same computers are used to make smart cars by controlling the steering,
brakes, exhaust system, suspension, seats, anti-theft systems, sound-entertainment systems, shifting, doors, repair analysis, navigation, noise suppression,
environment, comfort, etc. On some systems engine speed is adjusted at the
instant when the transmission shifts gears, resulting in a smoother shifting
process. At least one automobile model even adjusts this process for transmission fluid temperature to assure smooth shifting at cold startup.
Engine Management System (EMS)
smart engines.
Computer and electronics used to control
Wide-Open Throttle (WOT) Engine operated with throttle valve fully open when
maximum power and/or speed is desired.
Ignition Delay (ID)
of combustion.
Time interval between ignition initiation and the actual start
Figure 1-13 Harley-Davidson two-cylinder, air-cooled, overhead valve "Knucklehead" motorcycle engine first introduced in 1936. The 45° V engine had displacement
of 60 cubic inches with 3.3125 inch bore and 3.500 inch stroke. Operating on a fourstroke cycle with a compression ratio of 7: 1 the engine was rated at 40 bhp at 4800
RPM. Ignition was by Harley-Davidson generator-battery system. Photograph courtesy of the Harley-Davidson Juneau A venue Archives. All rights reserved. Copyright
Figure 1-14 Harley-Davidson motorcycle of 1936 powered by "Knucklehead"
engine shown in Fig. 1-13. The motorcycle had a rated top speed of 90-95 MPH with
a fuel economy of 35-50 MPG. Photograph courtesy of the Harley-Davidson Juneau
Avenue Archives. All rights reserved. Copyright Harley-Davidson.
Ratio (AF)
Ratio of mass of air to mass of fuel input into engine.
Ratio (FA)
Ratio of mass of fuel to mass of air input into engine.
Brake Maximum Torque (BMT)
Overhead Valve (ORV)
Speed at which maximum torque occurs.
Valves mounted in engine head.
Overhead Cam (aRC)
Camshaft mounted in engine head, giving more direct control of valves which are also mounted in engine head.
Fuel Injected (FI)
The following is a list of major components found in most reciprocating internal
combustion engines (see Fig. 1-15).
Body of engine containing the cylinders, made of cast iron or aluminum. In
many older engines, the valves and valve ports were contained in the block.
The block of water-cooled engines includes a water jacket cast around the
cylinders. On air-cooled engines, the exterior surface of the block has cooling
Rotating shaft used to push open valves at the proper time in the engine
cycle, either directly or through mechanical or hydraulic linkage (push rods,
Figure 1-15 Cross-section of four-stroke cycle S1 engine showing engine components; (A) block, (B) camshaft, (C) combustion chamber, (D) connecting rod, (E)
crankcase, (F) crankshaft, (G) cylinder, (H) exhaust manifold, (I) head, (J) intake
manifold, (K) oil pan, (L) piston, (M) piston rings, (N) push rod, (0) spark plug, (P)
valve, (Q) water jacket.
rocker arms, tappets). Most modern automobile engines have one or more
camshafts mounted in the engine head (overhead cam). Most older engines
had camshafts in the crankcase. Camshafts are generally made of forged steel
or cast iron and are driven off the crankshaft by means of a belt or chain (timing chain). To reduce weight, some cams are made from a hollow shaft with
the cam lobes press-fit on. In four-stroke cycle engines, the camshaft rotates at
half engine speed.
Venturi flow device which meters the proper amount of fuel into the air
flow by means of a pressure differential. For many decades it was the basic fuel
metering system on all automobile (and other) engines. It is still used on lowcost small engines like lawn mowers, but is uncommon on new automobiles.
Chamber mounted in exhaust flow containing catalytic material that promotes reduction of emissions by chemical reaction.
Catalytic converter
The end of the cylinder between the head and the piston face
where combustion occurs. The size of the combustion chamber continuously
changes from a minimum volume when the piston is at TDC to a maximum
when the piston is at BDC. The term "cylinder" is sometimes synonymous with
"combustion chamber" (e.g., "the engine was firing on all cylinders"). Some
engines have open combustion chambers which consist of one chamber for each
cylinder. Other engines have divided chambers which consist of dual chambers
on each cylinder connected by an orifice passage.
Combustion chamber
rod Rod connecting the piston with the rotating crankshaft, usually
made of steel or alloy forging in most engines but may be aluminum in some
small engines.
Connecting rod bearing
Bearing where connecting rod fastens to crankshaft.
Metal fins on the outside surfaces of cylinders and head of an aircooled engine. These extended surfaces cool the cylinders by conduction and
Cooling fins
Part of the engine block surrounding the rotating crankshaft. In many
engines, the oil pan makes up part of the crankcase housing.
Rotating shaft through which engine work output is supplied to external systems. The crankshaft is connected to the engine block with the main
bearings. It is rotated by the reciprocating pistons through connecting rods
connected to the crankshaft, offset from the axis of rotation. This offset is
sometimes called crank throw or crank radius. Most crankshafts are made of
forged steel, while some are made of cast iron.
The circular cylinders in the engine block in which the pistons reciprocate back and forth. The walls of the cylinder have highly polished hard
surfaces. Cylinders may be machined directly in the engine block, or a hard
metal (drawn steel) sleeve may be pressed into the softer metal block. Sleeves
may be dry sleeves, which do not contact the liquid in the water jacket, or wet
sleeves, which form part of the water jacket. In a few engines, the cylinder
walls are given a knurled surface to help hold a lubricant film on the walls. In
some very rare cases, the cross section of the cylinder is not round.
Sec. 1-5
Engine Components
Piping system which carries exhaust gases away from the engine
cylinders, usually made of cast iron.
Exhaust manifold
Exhaust system
Flow system for removing exhaust gases from the cylinders, treating them, and exhausting them to the surroundings. It consists of an exhaust
manifold which carries the exhaust gases away from the engine, a thermal or
catalytic converter to reduce emissions, a muffler to reduce engine noise, and
a tailpipe to carry the exhaust gases away from the passenger compartment.
Most engines have an engine-driven fan to increase air flow through the radiator and through the engine compartment, which increases waste heat removal
from the engine. Fans can be driven mechanically or electrically, and can run
continuously or be used only when needed.
Rotating mass with a large moment of inertia connected to the crankshaft of the engine. The purpose of the flywheel is to store energy and furnish
a large angular momentum that keeps the engine rotating between power
strokes and smooths out engine operation. On some aircraft engines the propeller serves as the flywheel, as does the rotating blade on many lawn mowers.
A pressurized nozzle that sprays fuel into the incoming air on SI
engines or into the cylinder on CI engines. On SI engines, fuel injectors are
located at the intake valve ports on multipoint port injector systems and
upstream at the intake manifold inlet on throttle body injector systems. In a
few SI engines, injectors spray directly into the combustion chamber.
Fuel injector
Electrically or mechanically driven pump to supply fuel from the fuel
tank (reservoir) to the engine. Many modern automobiles have an electric fuel
pump mounted submerged in the fuel tank. Some small engines and early
automobiles had no fuel pump, relying on gravity feed.
Fuel pump
Lacking a fuel pump, it was necessary to back Model T Fords
up high-slope hills becauseofthelocation ofthe fuel tank relative to the engine.
Small electrical resistance heater mounted inside the combustion chamber of many CI engines, used to preheat the chamber enough so that combustion
will occur when first starting a cold engine. The glow plug is turned off after the
engine is started.
Glow plug
The piece which closes the end of the cylinders, usually containing part of
the clearance volume of the combustion chamber. The head is usually cast iron
or aluminum, and bolts to the engine block. In some less common engines, the
Chap. 1
head is one piece with the block. The head contains the spark plugs in SI
engines and the fuel injectors in CI engines and some SI engines. Most modern
engines have the valves in the head, and many have the camshaft(s) positioned
there also (overhead valves and overhead cam).
Gasket which serves as a sealant between the engine block and head
where they bolt together. They are usually made in sandwich construction of
metal and composite materials. Some engines use liquid head gaskets.
Head gasket
Piping system which delivers incoming air to the cylinders, usually
made of cast metal, plastic, or composite material. In most SI engines, fuel is
added to the air in the intake manifold system either by fuel injectors or with a
carburetor. Some intake manifolds are heated to enhance fuel evaporation.
The individual pipe to a single cylinder is called a runner.
Intake manifold
The bearings connected to the engine block in which the crankshaft
rotates. The maximum number of main bearings would be equal to the number
of pistons plus one, or one between each set of pistons plus the two ends. On
some less powerful engines, the number of main bearings is less than this
Main bearing
Oil reservoir usually bolted to the bottom of the engine block, making up
part of the crankcase. Acts as the oil sump for most engines.
Oil pan
Pump used to distribute oil from the oil sump to required lubrication
points. The oil pump can be electrically driven, but is most commonly mechanically driven by the engine. Some small engines do not have an oil pump and
are lubricated by splash distribution.
Oil pump
Reservoir for the oil system of the engine, commonly part of the
crankcase. Some engines (aircraft) have a separate closed reservoir called a
dry sump.
Oil sump
The cylindrical-shaped mass that reciprocates back and forth in the cylinder, transmitting the pressure forces in the combustion chamber to the rotating
crankshaft. The top of the piston is called the crown and the sides are called
the skirt. The face on the crown makes up one wall of the combustion chamber
and may be a flat or highly contoured surface. Some pistons contain an
indented bowl in the crown, which makes up a large percent of the clearance
volume. Pistons are made of cast iron, steel, or aluminum. Iron and steel pistons can have sharper corners because of their higher strength. They also have
lower thermal expansion, which allows for tighter tolerances and less crevice
volume. Aluminum pistons are lighter and have less mass inertia. Sometimes
synthetic or composite materials are used for the body of the piston, with only
the crown made of metal. Some pistons have a ceramic coating on the face.
Metal rings that fit into circumferential grooves around the piston and
form a sliding surface against the cylinder walls. Near the top of the piston are
Piston rings
Sec. 1-5
Engine Components
usually two or more compression rings made of highly polished hard chrome
steel. The purpose of these is to form a seal between the piston and cylinder
walls and to restrict the high-pressure gases in the combustion chamber from
leaking past the piston into the crankcase (blowby). Below the compression
rings on the piston is at least one oil ring, which assists in lubricating the cylinder walls and scrapes away excess oil to reduce oil consumption.
Mechanical linkage between the camshaft and valves on overhead valve
engines with the camshaft in the crankcase. Many push rods have oil passages
through their length as part of a pressurized lubrication system.
Push rods
Liquid-to-air heat exchanger of honeycomb construction used to remove
heat from the engine coolant after the engine has been cooled. The radiator is
usually mounted in front of the engine in the flow of air as the automobile
moves forward. An engine-driven fan is often used to increase air flow through
the radiator.
Electrical device used to initiate combustion in an SI engine by creating a high-voltage discharge across an electrode gap. Spark plugs are usually
made of metal surrounded with ceramic insulation. Some modern spark plugs
have built-in pressure sensors which supply one of the inputs into engine
Spark plug
Automatic electric-mechanical control system that
keeps the automobile operating at a constant speed by controlling engine
Speed control-cruise
Several methods are used to start IC engines. Most are started by use of an
electric motor (starter) geared to the engine flywheel. Energy is supplied from
an electric battery.
On some very large engines, such as those found in large tractors and construction equipment, electric starters have inadequate power, and small IC
engines are used as starters for the large IC engines. First the small engine is
started with the normal electric motor, and then the small engine engages gearing on the flywheel of the large engine, turning it until the large engine starts.
Early aircraft engines were often started by hand spinning the propeller,
which also served as the engine flywheel. Many small engines on lawn mowers
and similar equipment are hand started by pulling a rope wrapped around a
pulley connected to the crankshaft.
Compressed air is used to start some large engines. Cylinder release
valves are opened, which keeps the pressure from increasing in the compression strokes. Compressed air is then introduced into the cylinders, which
rotates the engine in a free-wheeling mode. When rotating inertia is established, the release valves are closed and the engine is fired.
Chap. 1
Early automobile engines were started with hand cranks that
connected with the crankshaft of the engine. This was a difficult and dangerous process, sometimes resulting in broken fingers and arms when the
engine would fire and snap back the hand crank. The first electric starters
appeared on the 1912Cadillac automobiles, invented by C. Kettering, who
was motivated when his friend was killed in the process of hand starting
an automobile [45].
Supercharger Mechanical compressor powered off of the crankshaft, used to compress incoming air of the engine.
Throttle Butterfly valve mounted at the upstream end of the intake system, used
to control the amount of air flow into an SI engine. Some small engines and
stationary constant-speed engines have no throttle.
Turbine-compressor used to compress incoming air into the engine.
The turbine is powered by the exhaust flow of the engine and thus takes very
little useful work from the engine.
Valves Used to allow flow into and out of the cylinder at the proper time in the
cycle. Most engines use poppet valves, which are spring loaded closed and
pushed open by camshaft action (Fig. 1-12). Valves are mostly made of forged
steel. Surfaces against which valves close are called valve seats and are made of
hardened steel or ceramic. Rotary valves and sleeve valves are sometimes used,
but are much less common. Many two-stroke cycle engines have ports (slots) in
the side of the cylinder walls instead of mechanical valves.
Water jacket System of liquid flow passages surrounding the cylinders, usually
constructed as part of the engine block and head. Engine coolant flows
through the water jacket and keeps the cylinder walls from overheating. The
coolant is usually a water-ethylene glycol mixture.
Water pump Pump used to circulate engine coolant through the engine and radiator. It is usually mechanically run off of the engine.
Wrist pin
Pin fastening the connecting rod to the piston (also called the piston pin).
Most internal combustion engines, both spark ignition and compression ignition,
operate on either a four-stroke cycle or a two-stroke cycle. These basic cycles are
fairly standard for all engines, with only slight variations found in individual designs
Sec. 1-6
Basic Engine Cycles
SI Engine Cycle (Fig. 1-16)
1. First Stroke: Intake Stroke or Induction The piston travels from TDC to
BDC with the intake valve open and exhaust valve closed. This creates an increasing
volume in the combustion chamber, which in turn creates a vacuum. The resulting
pressure differential through the intake system from atmospheric pressure on the
outside to the vacuum on the inside causes air to be pushed into the cylinder. As the
air passes through the intake system, fuel is added to it in the desired amount by
means of fuel injectors or a carburetor.
2. Second Stroke: Compression Stroke When the piston reaches BDC, the
intake valve closes and the piston travels back to TDC with all valves closed. This
compresses the air-fuel mixture, raising both the pressure and temperature in the
cylinder. The finite time required to close the intake valve means that actual compression doesn't start until sometime aBDC. Near the end of the compression
stroke, the spark plug is fired and combustion is initiated.
3. Combustion Combustion of the air-fuel mixture occurs in a very short but
finite length of time with the piston near TDC (i.e., nearly constant-volume combustion). It starts near the end of the compression stroke slightly bTDC and lasts
into the power stroke slightly aTDC. Combustion changes the composition of the
gas mixture to that of exhaust products and increases the temperature in the cylinder to a very high peak value. This, in turn, raises the pressure in the cylinder to a
very high peak value.
4. Third Stroke: Expansion Stroke or Power Stroke With all valves closed,
the high pressure created by the combustion process pushes the piston away from
TDC. This is the stroke which produces the work output of the engine cycle. As the
piston travels from TDC to BDC, cylinder volume is increased, causing pressure and
temperature to drop.
5. Exhaust Blowdown Late in the power stroke, the exhaust valve is opened
and exhaust blow down occurs. Pressure and temperature in the cylinder are still
high relative to the surroundings at this point, and a pressure differential is created
through the exhaust system which is open to atmospheric pressure. This pressure
differential causes much of the hot exhaust gas to be pushed out of the cylinder and
through the exhaust system when the piston is near BDC. This exhaust gas carries
away a high amount of enthalpy, which lowers the cycle thermal efficiency. Opening
the exhaust valve before BDC reduces the work obtained during the power stroke
but is required because of the finite time needed for exhaust blowdown.
6. Fourth Stroke: Exhaust Stroke By the time the piston reaches BDC,
exhaust blowdown is complete, but the cylinder is still full of exhaust gases at
approximately atmospheric pressure. With the exhaust valve remaining open, the
piston now travels from BDC to TDC in the exhaust stroke. This pushes most of the
remaining exhaust gases out of the cylinder into the exhaust system at about atmospheric pressure, leaving only that trapped in the clearance volume when the piston
reaches TDC. Near the end of the exhaust stroke bTDC, the intake valve starts to
Sec. 1-6
Basic Engine Cycles
open, so that it is fully open by TDC when the new intake stroke starts the next
cycle. Near TDC the exhaust valve starts to close and finally is fully closed sometime
aTDC. This period when both the intake valve and exhaust valve are open is called
valve overlap.
CI Engine Cycle
1. First Stroke: Intake Stroke The same as the intake stroke in an SI engine
with one major difference: no fuel is added to the incoming air.
2. Second Stroke: Compression Stroke The same as in an SI engine except
that only air is compressed and compression is to higher pressures and temperature.
Late in the compression stroke fuel is injected directly into the combustion chamber,
where it mixes with the very hot air. This causes the fuel to evaporate and self-ignite,
causing combustion to start.
3. Combustion
Combustion is fully developed by TDC and continues at
about constant pressure until fuel injection is complete and the piston has started
towards BDC.
4. Third Stroke: Power Stroke The power stroke continues as combustion
ends and the piston travels towards BDC.
5. Exhaust Blowdown Same as with an SI engine.
6. Fourth Stroke: Exhaust Stroke Same as with an SI engine.
SI Engine Cycle (Fig. 1-17)
1. Combustion With the piston at TDC combustion occurs very quickly, raising the temperature and pressure to peak values, almost at constant volume.
2. First Stroke: Expansion Stroke or Power Stroke Very high pressure created by the combustion process forces the piston down in the power stroke. The
expanding volume of the combustion chamber causes pressure and temperature to
decrease as the piston travels towards BDC.
3. Exhaust Blowdown
At about 75° bBDC, the exhaust valve opens and
blowdown occurs. The exhaust valve may be a poppet valve in the cylinder head, or
it may be a slot in the side of the cylinder which is uncovered as the piston
approaches BDC. After blowdown the cylinder remains filled with exhaust gas at
lower pressure.
4. Intake and Scavenging When blowdown is nearly complete, at about 50°
bBDC, the intake slot on the side of the cylinder is uncovered and intake air-fuel
enters under pressure. Fuel is added to the air with either a carburetor or fuel injection. This incoming mixture pushes much of the remaining exhaust gases out the
open exhaust valve and fills the cylinder with a combustible air-fuel mixture, a
process called scavenging. The piston passes BDC and very quickly covers the
intake port and then the exhaust port (or the exhaust valve closes). The higher pres-
Sec. 1-6
Basic Engine Cycles
sure at which the air enters the cylinder is established in one of two ways. Large twostroke cycle engines generally have a supercharger, while small engines will intake
the air through the crankcase. On these engines the crankcase is designed to serve as
a compressor in addition to serving its normal function.
5. Second Stroke: Compression Stroke With all valves (or ports) closed, the
piston travels towards TDC and compresses the air-fuel mixture to a higher pressure and temperature. Near the end of the compression stroke, the spark plug is
fired; by the time the piston gets to IDC, combustion occurs and the next engine
cycle begins.
CI Engine Cycle
The two-stroke cycle for a CI engine is similar to that of the SI engine, except for
two changes. No fuel is added to the incoming air, so that compression is done on air
only. Instead of a spark plug, a fuel injector is located in the cylinder. Near the end
Figure 1-18 1996 General Motors L67 3800 Series II spark ignition, four-stroke
cycle, overhead valve, 3.8 liter, V6 engine. This supercharged engine has two valves
per cylinder and has power and torque ratings of 240 hp (179 kW) at 5200 RPM and
280 Ibf-ft (380 N-m) at 3600 RPM. Copyright General Motors Corp., used with
Figure 1-19 Ford 3.0 liter Vulcan V6, spark ignition, four-stroke cycle engine. This
was the standard engine of the 1996 Ford Taurus and Mercury Sable automobiles. It
is rated at 108 kW at 5250 RPM and develops 230 N-m of torque at 3250 RPM.
Courtesy Ford Motor Company.
of the compression stroke, fuel is injected into the hot compressed air and combustion is initiated by self-ignition.
The exhaust of automobiles is one of the major contributors to the world's air pollution problem. Recent research and development has made major reductions in
engine emissions, but a growing population and a greater number of automobiles
means that the problem will exist for many years to come.
During the first half of the 1900s, automobile emissions were not recognized as
a problem, mainly due to the lower number of vehicles. As the number of automobiles grew along with more power plants, home furnaces, and population in general,
air pollution became an ever-increasing problem. During the 1940s, the problem was
first seen in the Los Angeles area due to the high density of people and automobiles, as well as unique weather conditions. By the 1970s, air pollution was
recognized as a major problem in most cities of the United States as well as in many
large urban areas around the world.
Laws were passed in the United States and in other industrialized countries
which limit the amount of various exhaust emissions that are allowed. This put a
major restriction on automobile engine development during the 1980s and 1990s.
Figure 1·20 General Motors Northstar VB engine used in 1995 Cadillac automobiles. This four-stroke cycle, spark ignition, 32 valve, double overhead cam engine
has a 4.6 L displacement and multipoint port fuel injection. If the cooling system of
this engine has a leak, the automobile can be driven at moderate speed for up to
fifty miles without coolant fluid, without damage to the engine. Copyright General
Motors Corp., used with permission.
Although harmful emissions produced by engines have been reduced by over 90%
since the 1940s, they are stilI a major environmental problem.
Four major emissions produced by internal combustion engines are hydrocarbons (He), carbon monoxide (CO), oxides of nitrogen (NOx), and solid particulates.
Hydrocarbons are fuel molecules which did not get burned and smaller nonequilibrium particles of partially burned fuel. Carbon monoxide occurs when not enough
oxygen is present to fully react all carbon to CO2 or when incomplete air-fuel mixing
occurs due to the very short engine cycle time. Oxides of nitrogen are created in an
engine when high combustion temperatures cause some normally stable N to disso2
ciate into monatomic nitrogen N, which then combines with reacting oxygen.
particulates are formed in compression ignition engines and are seen as black smoke
in the exhaust of these engines. Other emissions found in the exhaust of engines
include aldehydes, sulfur, lead, and phosphorus.
Two methods are being used to reduce harmful engine emissions. One is to
improve the technology of engines and fuels so that better combustion Occurs and
fewer emissions are generated. The second method is aftertreatment of the exhaust
gases. This is done by using thermal converters or catalytic converters that promote
chemical reactions in the exhaust flow. These chemical reactions convert the harmful emissions to acceptable CO2, H20, and N2•
In Chapter 2, methods of classifying emissions will be introduced. Chapter 9
studies emissions and aftertreatment methods in detail.
Chap. 1
1-1. List five differences between SI engines and CI engines.
1-2. A four-stroke cycle engine mayor may not have a pressure boost (supercharger, turbocharger) in the intake system. Why must a two-stroke cycle engine always have an
intake pressure boost?
1-3. List two advantages of a two-stroke cycle engine over a four-stroke cycle engine. List
two advantages of a four-stroke cycle engine over a two-stroke cycle engine.
1-4. (a) Why do most very small engines operate on a two-stroke cycle? (b) Why do most
very large engines operate on a two-stroke cycle? (c) Why do most automobile engines
operate on a four-stroke cycle? (d) Why would it be desirable to operate automobile
engines on a two-stroke cycle?
1-5. A single-cylinder vertical atmospheric engine with a 1.2 m bore and a piston of 2700 kg
mass is used to lift a weight. Pressure in the cylinder after combustion and cooling is 22
kPa, while ambient pressure is 98 kPa. Assume piston motion is frictionless.
Calculate: (a) Mass which can be lifted if the vacuum is at the top of the cylinder and
the piston moves up. [kg]
(b) Mass which can be lifted if the vacuum is at the bottom of the cylinder
and the piston moves down. [kg]
1-6. An early atmospheric engine has a single horizontal cylinder with a 3.2-ft bore, a 9.0-ft
stroke, and no clearance volume. After a charge of gunpowder is set off in the open
cylinder, the conditions in the cylinder are ambient pressure and a temperature of
540°F. The piston is now locked in position and the end of the cylinder is closed. After
cooling to ambient temperature, the piston is unlocked and allowed to move. The
power stroke is at constant temperature and lasts until pressure equilibrium is obtained.
Assume the gas in the cylinder is air and piston motion is frictionless. Ambient conditions are 70 P and 14.7 psia.
Calculate: (a) Possible lifting force at start of power stroke. [lb£]
(b) Length of effective power stroke. [ft]
(c) Cylinder volume at end of power stroke. [ft3]
1-7. Two automobile engines have the same total displacement volume and the same total
power produced within the cylinders.
List the possible advantages of: (a) A V6 over a straight six.
(b) A V8 over a V6.
(c) A V6 over a V8.
(d) An opposed cylinder four over a straight four.
(e) An in-line six over an in-line four.
1-8. A nine cylinder, four-stroke cycle, radial SI engine operates at 900 RPM.
Calculate: (a) How often ignition occurs, in degrees of engine rotation.
(b) How many power strokes per revolution.
(c) How many power strokes per second.
Chap. 1
1-10. Design a single-cylinder atmospheric engine capable of lifting a mass of 1000 kg to a
height of three meters. Assume reasonable values of cylinder temperature and pressure after combustion. Decide which direction the cylinder will move, and give the
bore, piston travel distance, mass of piston, piston material, and clearance volume. Give
a sketch of the mechanical linkage to lift the mass.
1-20. Design an alternate fuel engine to be used in a large truck by designating all engine
classifications used in Section 1-3.
1-30. Design a four-stroke
cycle for an SI engine using crankcase compression. Draw
schematics of the six basic processes: intake, compression, combustion, expansion,
blowdown, and exhaust. Describe fully the intake of air, fuel, and oil.
This chapter examines the operating characteristics of reciprocating internal combustion engines. These include the mechanical output parameters of work, torque,
and power; the input requirements of air, fuel, and combustion; efficiencies; and
emission measurements of engine exhaust.
For an engine with bore B (see Fig. 2-1), crank offset a, stroke length S, turning at an
engine speed of N:
S = 2a
Average piston speed is:
Nis generally given in RPM (revolutions per minute),
B, a, and S in m or cm (ft or in.).
Up in m/sec (ft/sec),
Average piston speed for all engines will normally be in the range of 5 to 15
m/sec (15 to 50 ft/sec), with large diesel engines on the low end and high-performance automobile engines on the high end. There are two reasons why engines
operate in this range. First, this is about the safe limit which can be tolerated by
material strength of the engine components. For each revolution of the engine, each
piston is twice accelerated from stop to a maximum speed and back to stop. At a
typical engine speed of 3000 RPM, each revolution lasts 0.02 sec (0.005 sec at 12,000
RPM). If engines operated at higher speeds, there would be a danger of material
failure in the pistons and connecting rods as the piston is accelerated and decelerated during each stroke. From Eq. (2-2) it can be seen that this range of acceptable
piston speeds places a range on acceptable engine speeds also, depending on engine
size. There is a strong inverse correlation between engine size and operating speed.
Very large engines with bore sizes on the order of 0.5 m (1.6 ft) typically operate in
the 200- to 4oo-RPM range, while the very smallest engines (model airplane) with
bores on the order of 1 cm (0.4 in.) operate at speeds of 12,000 RPM and higher.
Table 2-1 gives representative values of engine speeds and other operating variables
for various-sized engines. Automobile engines usually operate in a speed range of
500 to 5000 RPM, with cruising at about 2000 RPM. Under certain conditions using
special materials and design, high-performance experimental engines have been
operated with average piston speeds up to 25 m/sec.
The second reason why maximum average piston speed is limited is because of
the gas flow into and out of the cylinders. Piston speed determines the instantaneous
flow rate of air-fuel into the cylinder during intake and exhaust flow out of the cylinder during the exhaust stroke. Higher piston speeds would require larger valves to
For a given displacement volume, a longer stroke allows for a smaller bore
(under square), resulting in less surface area in the combustion chamber and correspondingly less heat loss. This increases thermal efficiency within the combustion
chamber. However, the longer stroke results in higher piston speed and higher friction losses that reduce the output power which can be obtained off the crankshaft. If
the stroke is shortened, the bore must be increased and the engine will be over
square. This decreases friction losses but increases heat transfer losses. Most modern
automobile engines are near square, with some slightly over square and some
slightly under square. This is dictated by design compromises and the technical
philosophy of the manufacturer. Very large engines have long strokes with stroketo-bore ratios as high as 4:1.
Minimum cylinder volume occurs when the piston is at TDC and is called the
clearance volume Vc·
The compression ratio of an engine is defined as:
+ Vd)/Ve
Modern spark ignition (Sl) engines have compression ratios of 8 to 11, while
compression ignition (Cl) engines have compression ratios in the range 12 to 24.
Engines with superchargers or turbochargers usually have lower compression ratios
than naturally aspirated engines. Because of limitations in engine materials, technology, and fuel quality, very early engines had low compression ratios, on the order
of 2 to 3. Figure 2-5 shows how values of re increased over time to the 8-11 range
used on modern spark ignition automobile engines. This limit of 8 to 11 is imposed
mainly by gasoline fuel properties (see Section 4-4) and force limitations allowable
in smaller high-speed engines.
Various attempts have been made to develop engines with a variable compression ratio. One such system uses a split piston that expands due to changing
hydraulic pressure caused by engine speed and load. Some two-stroke cycle engines
have been built which have a sleeve-type valve that changes the slot opening on the
exhaust port. The position where the exhaust port is fully closed can be adjusted by
several degrees of engine rotation. This changes the effective compression ratio of
the engine.
Figure 2-5 Average compression ratio of American spark ignition automobile
engines as a function of year. During the first forty years compression ratios slowly
increased from 2.5 to 4.5, limited mainly by low octane numbers of the available
fuels. In 1923 TEL was introduced as a fuel additive and this was followed by a rapid
increase in compression ratios. No automobiles were manufactured during 19421945 when production was converted to war vehicles during World War II. A rapid
rise in compression ratios occurred during the 1950s when muscle cars became popular. During the 1970s TEL was phased out as a fuel additive, pollution laws were
enacted, and gasoline became expensive due to an oil embargo imposed by some oil
producing countries. These resulted in lower compression ratios during this time. In
the 1980s and 19908better fuels and combustion chamber technology is allowing for
higher compression ratios. Adapted from [5].
Figure 2-7 1996 General Motors L35 4300 Vortec V6 spark ignition engine. The
engine has multipoint port fuel injection and overhead valves with a displacement of
4.3 L (262 in.3), bore of 10.160 cm (4.00 in.) and stroke of 8.839 cm (3.48 in.). Copyright General Motors Corp., used with permission.
If P represents the pressure inside the cylinder combustion chamber, then Eq.
(2-22) and the areas shown in Fig. 2-9 give the work inside the combustion chamber.
This is called indicated work. Work delivered by the crankshaft is less than indicated
work due to mechanical friction and parasitic loads of the engine. Parasitic loads
include the oil pump, supercharger, air conditioner compressor, alternator, etc.
Actual work available at the crankshaft is called brake work wb' Units of specific
work will be kJ/kg or BTU/lbm.
Wi =
Wi -
indicated specific work generated inside combustion chamber
specific work lost due to friction and parasitic loads
The upper loop of the engine cycle in Fig. 2-9 consists of the compression and
power strokes where output work is generated and is called the gross indicated work
(areas A and C in Fig. 2-9). The lower loop, which includes the intake and exhaust
decreasing engine speed to zero at idle conditions, when no work is taken off the
Care should be taken when using the terms "gross work" and "net work". In
some older literature and textbooks, net work (or net power) meant the output of an
engine with all components, while gross work (or gross power) meant the output of
the engine with fan and exhaust system removed.
Sec. 2-4
Torque and Power
In these equations, bmep and brake work Wb are used because torque is
measured off the output crankshaft.
Many modern automobile engines have maximum torque in the 200 to 300
N-m range at engine speeds usually around 4000 to 6000 RPM. The point of maximum torque is called maximum brake torque speed (MBT). A major goal in the
design of a modern automobile engine is to flatten the torque-versus-speed curve as
shown in Fig. 2-11, and to have high torque at both high and low speed. CI engines
generally have greater torque than SI engines. Large engines often have very high
torque values with MBT at relatively low speed.
Power is defined as the rate of work of the engine. If n = number of revolutions per cycle, and N = engine speed, then:
Engine power can range from a few watts in small model airplane engines to
thousands of kW per cylinder in large multiple-cylinder stationary and ship engines.
There is a large commercial market for engines in the 1.5- to 5-kW (2-7 hp) range
for lawn mowers, chain saws, snowblowers, etc. Power for outboard motors
(engines) for small boats typically ranges from 2 to 40 kW (3-50 hp), with much
larger ones available. Modern automobile engines range mostly from 40 to 220 kW
(50-300 hp). It is interesting to note that a modern midsize aerodynamic automobile
only requires about 5 to 6 kW (7-8 hp) to cruise at 55 mph on level roadway.
Both torque and power are functions of engine speed. At low speed, torque
increases as engine speed increases. As engine speed increases further, torque
reaches a maximum and then decreases as shown in Figs. 2-8 and 2-11. Torque
decreases because the engine is unable to ingest a full charge of air at higher speeds.
Indicated power increases with speed, while brake power increases to a maximum
and then decreases at higher speeds. This is because friction losses increase with
speed and become the dominant factor at very high speeds. For many automobile
engines, maximum brake power occurs at about 6000 to 7000 RPM, about one and a
half times the speed of maximum torque.
Greater power can be generated by increasing displacement, mep, and/or
speed. Increased displacement increases engine mass and takes up space, both of
which are contrary to automobile design trends. For this reason, most modern
engines are smaller but run at higher speeds, and are often turbocharged or supercharged to increase mep.
Other ways which are sometimes used to classify engines are shown in Eqs.
specific power
SP =
output per displacement
Sec. 2-5
specific volume
Vd =
where: Wb
specific weight
SW = (engine weight)/Wb
brake power
piston face area of all pistons
displacement volume
These parameters are important for engines used in transportation vehicles
such as boats, automobiles, and especially airplanes, where keeping weight to a minimum is necessary. For large stationary engines, weight is not as important.
Modern automobile engines usually have brake power output per displacement in the range of 40 to 80 kW/L. The Honda eight-valve-per-cylinder V4
motorcycle engine generates about 130 kW/L, an extreme example of a high-performance racing engine [22]. One main reason for continued development to return to
two-stroke cycle automobile engines is that they have up to 40% greater power output per unit weight.
In the early 1990s, Honda produced a racing motorcycle with a V4
engine, of which each cylinder had four intake valves and four exhaust
valves. The engine was developed by modifying a V8 engine so that the
motorcycle could be raced under rules restricting engines to four cylinders. A four-valve-per-cylinder
V8 engine block was modified by removing
the metal between each set of two cylinders. Special pistons were built to
fit into the resulting non-round, oblong cylinders. This resulted in each
cylinder having eight valves and a piston with two connecting rods using
a common piston pin.
The final product was a very fast, very expensive motorcycle with an
aluminum block, 90° V4 engine having a displacement of 748 cm3. It produced 96 kW at 14,000 RPM and maximum torque of 71 N-m at 11,600
RPM [22, 143].
Dynamometers are used to measure torque and power over the engine operating
ranges of speed and load. They do this by using various methods to absorb the
energy output of the engine, all of which eventually ends up as heat.
Some dynamometers absorb energy in a mechanical friction brake (prony
brake). These are the simplest dynamometers but are not as flexible and accurate as
others at higher energy levels.
Operating Characteristics
Chap. 2
Fluid or hydraulic dynamometers absorb engine energy in water or oil pumped
through orifices or dissipated with viscous losses in a rotor-stator combination.
Large amounts of energy can be absorbed in this manner, making this an attractive
type of dynamometer for the largest of engines.
Eddy current dynamometers use a disk, driven by the engine being tested,
rotating in a magnetic field of controlled strength. The rotating disk acts as an electrical conductor cutting the lines of magnetic flux and producing eddy currents in
the disk. With no external circuit, the energy from the induced currents is absorbed
in the disk.
One of the best types of dynamometers is the electric dynamometer, which
absorbs energy with electrical output from a connected generator. In addition to
having an accurate way of measuring the energy absorbed, the load is easily varied
by changing the amount of resistance in the circuit connected to the generator
output. Many electric dynamometers can also be operated in reverse, with the generator used as a motor to drive (or motor) an unfired engine. This allows the engine
to be tested for mechanical friction losses and air pumping losses, quantities that are
hard to measure on a running fired engine; see Section 11-2.
The engine in Example Problem 2-1 is connected to a dynamometer which gives a
brake output torque reading of 205 N-m at 3600 RPM. At this speed air enters the
cylinders at 85 kPa and 60°C, and the mechanical efficiency of the engine is 85%.
Sec. 2-8
Engine Efficiencies
use the inverse of this, with (L/lOO km) being a common unit. To decrease air pollution and depletion of fossil fuels, laws have been enacted requiring better vehicle
fuel economy. Since the early 1970s, when most automobiles got less than 15 mpg
(15.7 L/lOO km) using gasoline, great strides have been made in improving fuel economy. Many modern automobiles now get between 30 and 40 mpg (7.8 and 5.9 L/lOO
km), with some small vehicles as high as 60 mpg (3.9 L/lOO km).
The time available for the combustion process of an engine cycle is very brief, and
not all fuel molecules may find an oxygen molecule with which to combine, or the
local temperature may not favor a reaction. Consequently, a small fraction of fuel
does not react and exits with the exhaust flow. A combustion efficiency TJc is defined
to account for the fraction of fuel which burns. TJc typically has values in the range
0.95 to 0.98 when an engine is operating properly. For one engine cycle in one cylinder, the heat added is:
One of the most important processes that governs how much power and performance can be obtained from an engine is getting the maximum amount of air into
the cylinder during each cycle. More air means more fuel can be burned and more
energy can be converted to output power. Getting the relatively small volume of
liquid fuel into the cylinder is much easier than getting the large volume of gaseous
air needed to react with the fuel. Ideally, a mass of air equal to the density of
atmospheric air times the displacement volume of the cylinder should be ingested
for each cycle. However, because of the short cycle time available and the flow
restrictions presented by the air cleaner, carburetor (if any), intake manifold, and
intake valve(s), less than this ideal amount of air enters the cylinder. Volumetric
efficiency is defined as:
Volumetric Efficiency
Sometimes (less common) the air density in Eqs. (2-69) and (2-70) is evaluated
at conditions in the intake manifold immediately before it enters the cylinder. The
conditions at this point will usually be hotter and at a lower pressure than surrounding atmospheric conditions.
Typical values of volumetric efficiency for an engine at wide-open throttle
(WOT) are in the range 75% to 90%, going down to much lower values as the throttle is closed. Restricting air flow into an engine (closing the throttle) is the primary
means of power control for a spark ignition engine.
The engine in Example Problem 2-2 is running with an air-fuel ratio AF
heating value of 44,000kJ/kg, and a combustion efficiencyof 97%.
15, a fuel
The four main engine exhaust emissions which must be controlled are oxides of
nitrogen (NOx), carbon monoxide (CO), hydrocarbons (He), and solid particulates
(part). Two common methods of measuring the amounts of these pollutants are
specific emissions (SE) and the emissions index (EI). Specific emissions typically has
units of gm/kW-hr, while the emissions index has units of emissions flow per fuel
In recent years a lot of research and development has been directed towards reducing engine and exhaust noise. This can be done in one of three ways: passive,
semi-active, or active. Noise reduction is accomplished passively by correct design
and the use of proper materials. The use of ribs and stiffeners, composite materials,
Sec. 2-12
and sandwich construction is now routine. This type of construction reduces noise
vibrations in the various engine components.
Hydraulics are often used in semi active noise abatement systems. Some
engines are equipped with flywheels which have hydraulic passages through which
fluid flows. At idle and other constant-speed operation, the system is designed to
give the flywheel the proper stiffness to absorb engine vibrations for frequencies at
that condition. When acceleration occurs the flywheel fluid flows to other locations,
changing the overall stiffness of the flywheel and making it more absorbent to the
new vibration frequency. Some automobiles have hydraulic engine mounts connecting the engine to the automobile body. Fluid in these mounts acts to absorb and
dampen engine vibrations and isolate them from the passenger compartment.
Engine mounts using electrorheological fluid are being developed which will allow
better vibration dampening at all frequencies. The viscosity of these fluids can be
changed by as much as a factor of 50:1 with the application of an external voltage.
Engine noise (vibration) is sensed by accelerometers which feed this information
into the engine management system (EMS). Here the frequency is analyzed, and
proper voltage is applied to the engine mounts to best dampen that frequency [38].
Response time is on the order of 0.005 second.
Active noise abatement is accomplished by generating antinoise to cancel out
engine or exhaust noise. This is done by sensing the noise with a receiver, analyzing
the frequency of the noise, and then generating noise of equal frequency, but out of
phase with the original noise. If two noises are at the same frequency but 180 out of
phase, the wave fronts cancel each other and the noise is eliminated. This method
works well with constant-speed engines and other rotating equipment but is only
partially successful with variable-speed automobile engines. It requires additional
electronic equipment (receiver, frequency analyzer, transmitter) than that used with
normal EMS computers. Some automobiles have receivers and transmitters
mounted under the seats in the passenger compartment as an active engine noise
abatement system. Similar systems are used near the end of the tailpipe, a major
source of engine-related noise.
Noise reduction has been so successful that some automobiles are now
equipped with a safety switch on the starter. At idle speed, the engine is so quiet
that the safety switch is required to keep drivers from trying to start the engine when
it is already running.
In this chapter equations relating the working parameters of engine operation have
been developed, giving tools by which these parameters can be used for engine
design and characterization. By combining earlier equations from the chapter, the
following additional working equations are obtained. These are given as general
equations and as specific equations to be used either with SI units or with English
Operating Characteristics
Chap. 2
(a) Rate of unburned hydrocarbon fuel which is expelled into the exhaust
system. [kg/hr]
(b) Specific emissions of He. [(gm/kW-hr]
(c) Emissions index of He.
2-9. A construction vehicle has a diesel engine with eight cylinders of 5.375-inch bore and
8.0-inch stroke, operating on a four-stroke cycle. It delivers 152-shaft horsepower at
1000 RPM, with a mechanical efficiency of 0.60.
Calculate: (a) Total engine displacement. [in. 3]
(b) Brake mean effective pressure. [psia]
(c) Torque at 1000 RPM. [lbf-ft]
(d) Indicated horsepower.
(e) Friction horsepower.
2-10. A 1500-cm3, four-stroke cycle, four-cylinder CI engine, operating at 3000 RPM, produces 48 kW of brake power. Volumetric efficiency is 0.92 and air-fuel ratio AF = 21:1.
Calculate: (a) Rate of air flow into engine. [kg/see]
(b) Brake specific fuel consumption. [gm/kW-hr]
(c) Mass rate of exhaust flow. [kg/hr]
(d) Brake output per displacement. [kW/L]
2-11. A pickup truck has a five-liter, V6, SI engine operating at 2400 RPM. The compression
ratio rc = 10.2:1, the volumetric efficiency Tlv = 0.91, and the bore and stroke are
related as stroke S = 0.92 B.
Calculate: (a) Stroke length. [em]
(b) Average piston speed. [rnlsec]
(c) Clearance volume of one cylinder. [cm3]
(d) Air flow rate into engine. [kg/see]
2-12. A small single-cylinder, two-stroke cycle SI engine operates at 8000 RPM with a
volumetric efficiency of Tlv = 0.85. The engine is square (bore = stroke) and has a displacement of 6.28 em 3. The fuel-air ratio FA = 0.067.
Calculate: (a) Average piston speed. [m/sec]
(b) Flow rate of air into engine. [kg/see]
(c) Flow rate of fuel into engine. [kg/see]
(d) Fuel input for one cycle. [kg/cycle]
2-13. A single-cylinder, four-stroke cycle CI engine with 12.9-cm bore and 18.0-cm stroke,
operating at 800 RPM, uses 0.113 kg of fuel in four minutes while developing a torque
of76 N-m.
Calculate: (a) Brake specific fuel consumption. [grnlkW-hr]
(b) Brake mean effective pressure. [kpa]
(c) Brake power. [kW]
(d) Specific power. [kW/cm2]
(e) Output per displacement. [kW/L]
(f) Specific volume. [L/kW]
2-14. A 302-in.3 displacement, V8, four-stroke cycle SI engine mounted on a hydraulic
dynamometer has an output of 72 hp at 4050 RPM. Water absorbs the energy output of
the engine as it flows through the dynamometer at a rate of 30 gallons per minute. The
dynamometer has an efficiency of 93% and the water enters at a temperature of 46°F.
Calculate: (a) Exit temperature of the water. [OF]
Chap. 2
Design Problems
(b) Torque output of the engine at this condition. [lbf-ft]
(c) What is bmep at this condition? [psia]
A 3.1-liter, four-cylinder, two-stroke cycle SI engine is mounted on an electrical generator dynamometer. When the engine is running at 1200 RPM, output from the 220-volt
DC generator is 54.2 amps. The generator has an efficiency of 87%.
Calculate: (a) Power output of the engine in kW and hp.
(b) Engine torque. [N-m]
(c) What is engine bmep? [kPa]
2-16. An SI, six-liter, V8 race car engine operates at WOT on a four-stroke cycle at 6000
RPM using stoichiometric nitromethane. Fuel enters the engine at a rate of 0.198 kg/sec
and combustion efficiency is 99%.
Calculate: (a) Volumetric efficiency of engine. [%]
(b) Flow rate of air into engine. [kg/sec]
(c) Heat added per cycle per cylinder. [kJ]
(d) Chemical energy from unburned fuel in the exhaust. [kW]
2-10. Design a six-liter race car engine that operates on a four-stroke cycle. Decide what the
design speed will be, and then give the number of cylinders, bore, stroke, piston rod
length, average piston speed, imep, brake torque, fuel used, AF, and brake power, all at
design speed. All parameter values should be within typical, reasonable values and
should be consistent with the other values. State what assumptions you make (e.g.,
mechanical efficiency, volumetric efficiency, etc.)
2-20. Design a six-horsepower engine for a snowblower. Decide on the operating speed,
number of strokes in cycle, carburetor or fuel injectors, and total displacement. Give
the number of cylinders, bore, stroke, connecting rod length, average piston speed,
brake torque, and brake power. What special considerations must be made knowing
that this engine must start in very cold weather? All parameter values should be within
typical, reasonable values and should be consistent with the other values. State all
assumptions you make.
2-30. Design a small four-stroke cycle Diesel engine to produce 50 kW of brake power at
design speed when installed in a small pickup truck. Average piston speed should not
exceed 8 m/sec at design conditions. Give the design speed, displacement, number of
cylinders, bore, stroke, bmep, and torque. All parameter values should be within
typical, reasonable values and should be consistent with the other values. State all
assumptions you make.
This chapter studies the basic cycles used in reciprocating internal combustion
engines, both four stroke and two stroke. The most common four-stroke SI and CI
cycles are analyzed in detail using air-standard analysis. Lesser used cycles, including
some historic, are analyzed in less detail.
The cycle experienced in the cylinder of an internal combustion engine is very complex. First, air (CI engine) or air mixed with fuel (SI engine) is ingested and mixed
with the slight amount of exhaust residual remaining from the previous cycle. This
mixture is then compressed and combusted, changing the composition to exhaust
products consisting largely of COz, Hz 0, and Nz with many other lesser components. Then, after an expansion process, the exhaust valve is opened and this gas
mixture is expelled to the surroundings. Thus, it is an open cycle with changing composition, a difficult system to analyze. To make the analysis of the engine cycle much
more manageable, the real cycle is approximated with an ideal air-standard cycle
which differs from the actual by the following:
Sec. 3-1
1. The gas mixture in the cylinder is treated as air for the entire cycle, and property values of air are used in the analysis. This is a good approximation during
the first half of the cycle, when most of the gas in the cylinder is air with only
up to about 7% fuel vapor. Even in the second half of the cycle, when the gas
composition is mostly CO2, H20, and N2, using air properties does not create
large errors in the analysis. Air will be treated as an ideal gas with constant
specific heats.
2. The real open cycle is changed into a closed cycle by assuming that the gases
being exhausted are fed back into the intake system. This works with ideal airstandard cycles, as both intake gases and exhaust gases are air. Closing the
cycle simplifies the analysis.
3. The combustion process is replaced with a heat addition term Qin of equal
energy value. Air alone cannot combust.
4. The open exhaust process, which carries a large amount of enthalpy out of the
system, is replaced with a closed system heat rejection process Qout of equal
energy value.
S. Actual engine processes are approximated with ideal processes.
(a) The almost-constant-pressure intake and exhaust strokes are assumed to be
constant pressure. At WOT, the intake stroke is assumed to be at a pressure
Po of one atmosphere. At partially closed throttle or when supercharged,
inlet pressure will be some constant value other than one atmosphere. The
exhaust stroke pressure is assumed constant at one atmosphere.
(b) Compression strokes and expansion strokes are approximated by isentropic processes. To be truly isentropic would require these strokes to be
reversible and adiabatic. There is some friction between the piston and
cylinder walls but, because the surfaces are highly polished and lubricated,
this friction is kept to a minimum and the processes are close to frictionless
and reversible. If this were not true, automobile engines would wear out
long before the 150-200 thousand miles which they now last if properly
maintained. There is also fluid friction because of the gas motion within
the cylinders during these strokes. This too is minimal. Heat transfer for
anyone stroke will be negligibly small due to the very short time involved
for that single process. Thus, an almost reversible and almost adiabatic
process can quite accurately be approximated with an isentropic process.
(c) The combustion process is idealized by a constant-volume process (SI
cycle), a constant-pressure process (CI cycle), or a combination of both (CI
Dual cycle).
(d) Exhaust blowdown is approximated by a constant-volume process.
(e) All processes are considered reversible.
In air-standard cycles, air is considered an ideal gas such that the following
ideal gas relationships can be used:
mixture of all gases
For thermodynamic analysis the specific heats of air can be treated as functions of temperature, which they are, or they can be treated as constants, which
simplifies calculations at a slight loss of accuracy. In this textbook, constant specific
heat analysis will be used. Because of the high temperatures and large temperature
range experienced during an engine cycle, the specific heats and ratio of specific
heats k do vary by a fair amount (see Table A-I in the Appendix). At the low-temperature end of a cycle during intake and start of compression, a value of k = 1.4 is
correct. However, at the end of combustion the temperature has risen such that
k = 1.3 would be more accurate. A constant average value between these extremes
is found to give better results than a standard condition (25°C) value, as is often used
in elementary thermodynamics textbooks. When analyzing what occurs within
engines during the operating cycle and exhaust flow, this book uses the following air
property values:
The cycle of a four-stroke, SI, naturally aspirated engine at WOT is shown in Fig.
2-6. This is the cycle of most automobile engines and other four-stroke SI engines.
For analysis, this cycle is approximated by the air-standard cycle shown in Fig. 3-l.
This ideal air-standard cycle is called an Otto cycle, named after one of the early
developers of this type of engine.
The intake stroke of the Otto cycle starts with the piston at TDC and is a
constant-pressure process at an inlet pressure of one atmosphere (process 6-1 in Fig.
3-1). This is a good approximation to the inlet process of a real engine at WOT,
which will actually be at a pressure slightly less than atmospheric due to pressure
losses in the inlet air flow. The temperature of the air during the inlet stroke is
increased as the air passes through the hot intake manifold. The temperature at
point 1 will generally be on the order of 25° to 35°C hotter than the surrounding air
The second stroke of the cycle is the compression stroke, which in the Otto
cycle is an isentropic compression from BDC to TDC (process 1-2). This is a good
approximation to compression in a real engine, except for the very beginning and
the very end of the stroke. In a real engine, the beginning of the stroke is affected by
the intake valve not being fully closed until slightly after BDC. The end of compression is affected by the firing of the spark plug before TDC. Not only is there an
increase in pressure during the compression stroke, but the temperature within the
cylinder is increased substantially due to compressive heating.
The compression stroke is followed by a constant-volume heat input process
2-3 at TDC. This replaces the combustion process of the real engine cycle, which
occurs at close to constant-volume conditions. In a real engine combustion is
started slightly bTDC, reaches its maximum speed near TDC, and is terminated a
little aTDC. During combustion or heat input, a large amount of energy is added to
the air within the cylinder. This energy raises the temperature of the air to very high
values, giving peak cycle temperature at point 3. This increase in temperature during
a closed constant-volume process results in a large pressure rise also. Thus, peak
cycle pressure is also reached at point 3.
The very high pressure and enthalpy values within the system at TDC generate
the power stroke (or expansion stroke) which follows combustion (process 3-4).
High pressure on the piston face forces the piston back towards BDC and produces
the work and power output of the engine. The power stroke of the real engine cycle
is approximated with an isentropic process in the Otto cycle. This is a good approximation, subject to the same arguments as the compression stroke on being
frictionless and adiabatic. In a real engine, the beginning of the power stroke is
affected by the last part of the combustion process. The end of the power stroke is
affected by the exhaust valve being opened before BDC. During the power stroke,
values of both the temperature and pressure within the cylinder decrease as volume
increases from TDC to BDC.
Engine Cycles
Chap. 3
Near the end of the power stroke of a real engine cycle, the exhaust valve is
opened and the cylinder experiences exhaust blowdown. A large amount of exhaust
gas is expelled from the cylinder, reducing the pressure to that of the exhaust manifold. The exhaust valve is opened bBDC to allow for the finite time of blowdown to
occur. It is desirable for blowdown to be complete by BDC so that there is no high
pressure in the cylinder to resist the piston in the following exhaust stroke. Blowdown in a real engine is therefore almost, but not quite, constant volume. A large
quantity of enthalpy is carried away with the exhaust gases, limiting the thermal efficiency of the engine. The Otto cycle replaces the exhaust blowdown open-system
process of the real cycle with a constant-volume pressure reduction, closed-system
process 4-5. Enthalpy loss during this process is replaced with heat rejection in the
engine analysis. Pressure within the cylinder at the end of exhaust blowdown has
been reduced to about one atmosphere, and the temperature has been substantially
reduced by expansion cooling.
The last stroke of the four-stroke cycle now occurs as the piston travels from
BDC to TDC. Process 5-6 is the exhaust stroke that occurs at a constant pressure of
one atmosphere due to the open exhaust valve. This is a good approximation to the
real exhaust stroke, which occurs at a pressure slightly higher than the surrounding
pressure due to the small pressure drop across the exhaust valve and in the exhaust
At the end of the exhaust stroke the engine has experienced two revolutions,
the piston is again at TDC, the exhaust valve closes, the intake valve opens, and a
new cycle begins. '
When analyzing an Otto cycle, it is more convenient to work with specific
properties by dividing by the mass within the cylinder. Figure 3-2 shows the Otto
cycle in P-v and T-s coordinates. It is not uncommon to find the Otto cycle shown
with processes 6-1 and 5-6 left off the figure. The reasoning to justify this is that
these two processes cancel each other thermodynamically and are not needed in
analyzing the cycle.
The actual cycle experienced by an internal combustion engine is not, in the true
sense, a thermodynamic cycle. An ideal air-standard thermodynamic cycle Occurs
on a closed system of constant composition. This is not what actually happens in an
IC engine, and for this reason air-standard analysis gives, at best, only approximations to actl;lal conditions and outputs. Major differences include:
1. Real engines operate on an open cycle with changing composition. Not only
does the inlet gas composition differ from what exits, but often the mass flow rate is
not the same. Those engines which add fuel into the cylinders after air induction is
complete (CI engines and some SI engines) change the amount of mass in the gas
composition part way through the cycle. There is a greater gaseous mass exiting the
engine in the exhaust than what entered in the induction process. This can be on the
order of several percent. Other engines carry liquid fuel droplets with the inlet air
which are idealized as part of the gaseous mass in air-standard analysis. During combustion, total mass remains about the same but molar quantity changes. Finally,
there is a loss of mass during the cycle due to crevice flow and blowby past the pistons. Most of crevice flow is a temporary loss of mass from the cylinder, but because
it is greatest at the start of the power stroke, some output work is lost during expansion. Blowby can decrease the amount of mass in the cylinders by as much as 1 %
during compression and combustion. This is discussed in greater detail in Chapter 6.
2. Air-standard analysis treats the fluid flow through the entire engine as air
and approximates air as an ideal gas. In a real engine inlet flow may be all air, or it
may be air mixed with up to 7% fuel, either gaseous or as liquid droplets, or both.
During combustion the composition is then changed to a gas mixture of mostly
COz, Hz 0, and Nz, with lesser amounts of CO and hydrocarbon vapor. In CI
engines there will also be solid carbon particles in the combustion products gas mixture. Approximating exhaust products as air simplifies analysis but introduces some
Even if all fluid in an engine cycle were air, some error would be introduced by
assuming it to be an ideal gas with constant specific heats in air-standard analysis. At
Engine Cycles
Chap. 3
the low pressures of inlet and exhaust, air can accurately be treated as an ideal gas,
but at the higher pressures during combustion, air will deviate from ideal gas behavior. A more serious error is introduced by assuming constant specific heats for the
analysis. Specific heats of a gas have a fairly strong dependency on temperature and
can vary as much as 30% in the temperature range of an engine (for air, cp = 1.004
kJ/kg-K at 300 K and cp = 1.292 kJ/kg-K at 3000 K [73]); see Review Problem 3-5.
3. There are heat losses during the cycle of a real engine which are neglected
in air-standard analysis. Heat loss during combustion lowers actual peak temperature and pressure from what is predicted. The actual power stroke, therefore, starts
at a lower pressure, and work output during expansion is decreased. Heat transfer
continues during expansion, and this lowers the temperature and pressure below the
ideal isentropic process towards the end of the power stroke. The result of heat
transfer is a lower indicated thermal efficiency than predicted by air-standard analysis. Heat transfer is also present during compression, which deviates the process
from isentropic. However, this is less than during the expansion stroke due to the
lower temperatures at this time.
4. Combustion requires a short but finite time to occur, and heat addition is
not instantaneous at TDC, as approximated in an Otto cycle. A fast but finite flame
speed is desirable in an engine. This results in a finite rate of pressure rise in the
cylinders, a steady force increase on the piston face, and a smooth engine cycle. A
supersonic detonation would give almost instantaneous heat addition to a cycle, but
would result in a.rough cycle and quick engine destruction. Because of the finite
time required, combustion is started before TDC and ends after IDC, not at constant volume as in air-standard analysis. By starting combustion bTDC, cylinder
pressure increases late in the compression stroke, requiring greater negative work in
that stroke. Because combustion is not completed until aTDC, some power is lost at
the start of the expansion stroke (see Fig. 2-6). Another loss in the combustion
process of an actual engine occurs because combustion efficiency is less than 100%.
This happens because of less than perfect mixing, local variations in temperature
and air-fuel due to turbulence, flame quenching, etc. SI engines will generally have
a combustion efficiency of about 95%, while CI engines are generally about 98%
5. The blowdown process requires a finite real time and a finite cycle time, and
does not occur at constant volume as in air-standard analysis. For this reason, the
exhaust valve must open 40° to 60° bBDC, and output work at the latter end of
expansion is lost.
6. In an actual engine, the intake valve is not closed until after bottom-de adcenter at the end of the intake stroke. Because of the flow restriction of the valve, air
is still entering the cylinder at BDC, and volumetric efficiency would be lower if the
valve closed here. Because of this, however, actual compression does not start at
BDC but only after the inlet valve closes. With ignition then occurring before topdead-center, temperature and pressure rise before combustion is less than predicted
by air-standard analysis.
Sec. 3-4
SI Engine Cycle at Part Throttle
7. Engine valves require a finite time to actuate. Ideally, valves would open
and close instantaneously,
but this is not possible when using a camshaft. Cam profiles must allow for smooth interaction with the cam follower, and this results in fast
but finite valve actuation. To assure that the intake valve is fully open at the start of
the induction stroke, it must start to open before TDC. Likewise, the exhaust valve
must remain fully open until the end of the exhaust stroke, with final closure Occurring after TDC. The resulting valve overlap period causes a deviation from the ideal
Because of these differences which real air-fuel cycles have from the ideal
cycles, results from air-standard
analysis will have errors and will deviate from
actual conditions. Interestingly, however, the errors are not great, and property values of temperature
and pressure are very representative
of actual engine values,
depending on the geometry and operating conditions of the real engine. By changing
operating variables such as inlet temperature
and/or pressure, compression ratio,
peak temperature, etc., in Otto cycle analysis, good approximations
can be obtained
for output changes that will Occur in a real engine as these variables are changed.
Good approximation
of power output, thermal efficiency, and mep can be expected.
Indicated thermal efficiency of a real four-stroke SI engine is always somewhat
less than what air-standard Otto cycle analysis predicts. This is caused by the heat
losses,. friction, ignition timing, valve timing, finite time of combustion and blowdown, and deviation from ideal gas behavior of the real engine. Reference [120]
shows that over a large range of operating variables the indicated thermal efficiency
of an actual SI four-stroke cycle engine can be approximated by;
= 0.85
This will be correct to within a few percent for large ranges of air-fuel equivalence ratio, ignition timing, engine speed, compression ratio, inlet pressure, exhaust
pressure, and valve timing.
When a four-stroke
cycle SI engine is run at less than WOT conditions, air-fuel
input is reduced by partially closing the throttle (butterfly valve) in the intake system. This creates a flow restriction and consequent pressure drop in the incoming
air. Fuel input is then also reduced to match the reduction of air. Lower pressure in
the intake manifold during the intake stroke and the resulting lower pressure in the
cylinder at the start of the compression stroke are shown in Fig. 3-4. Although the
air experiences an expansion cooling because of the pressure drop across the throttle valve, the temperature
of the air entering the cylinders is about the same as at
WOT because it first flows through the hot intake manifold.
Figure 3-4 shows that the net indicated work for the Otto cycle engine will be
less at part throttle than at WOT. The upper loop of the cycle made up of the com-
pression and power strokes represents positive work output, while the lower loop
consisting of the exhaust and intake strokes is negative work absorbed off the rotating crankshaft. The more closed the throttle position, the lower will be the pressure
during the intake stroke and the greater the negative pump work. Two main factors
contribute to the reduced net work at part-throttle operation. The lower pressure at
the start of compression results in lower pressures throughout the rest of the cycle
except for the exhaust stroke. This lowers mep and net work. In addition, when less
air is ingested into the cylinders during intake because of this lower pressure, fuel
input by injectors or carburetor is also proportionally reduced. This results in less
thermal energy from combustion in the cylinders and less resulting work out. It
should be noted that although Qin is reduced, the temperature rise in process 2-3 in
Fig. 3-4 is about the same. This is because the mass of fuel and the mass of air being
heated are both reduced by an equal proportion.
If an engine is equipped with a supercharger or turbocharger the air-standard
cycle is shown in Fig. 3-5, with intake pressure higher than atmospheric pressure.
This results in more air and fuel in the combustion chamber during the cycle, and
the resulting net indicated work is increased. Higher intake pressure increases all
pressures though the cycle, and increased air and fuel give greater Qin in process
2-3. When air is compressed to a higher pressure by a supercharger or turbocharger,
the temperature is also increased due to compressive heating. This would increase
air temperature at the start of the compression stroke, which in turn raises all temperatures in the remaining cycle. This can cause self-ignition and knocking problems
in the latter part of compression or during combustion. For this reason, engine compressors can be equipped with an aftercooler to again lower the compressed
Engine Cycles
Chap. 3
incoming air temperature. Aftercoolers are heat exchangers which often use outside
air as the cooling fluid. In principle, aftercoolers are desirable, but cost and space
limitations often make them impractical on automobile engines. Instead, engines
equipped with a supercharger or turbocharger will usually have a lower compression ratio to reduce knocking problems.
When an engine is operated at WOT, it can be assumed that the air pressure in
the intake manifold is Po = one atmosphere. At part throttle the partially closed
butterfly valve creates a flow restriction, resulting in a lower inlet pressure Pi in the
intake manifold (point 6a in Fig. 3-4). Work done during the intake stroke is,
The exhaust process consists of two steps: blowdown and exhaust stroke. When the
exhaust valve opens near the end of the expansion stroke (point 4 in Fig. 3-6), the
high-temperature gases are suddenly subjected to a pressure decrease as the resulting
blowdown occurs. A large percentage of the gases leaves the combustion chamber
during this blowdown process, driven by the pressure differential across the open
exhaust valve. When the pressure across the exhaust valve is finally equalized, the
cylinder is still filled with exhaust gases at the exhaust manifold pressure of about one
atmosphere. These gases are then pushed out of the cylinder through the still open
exhaust valve by the piston as it travels from BDC to TDC during the exhaust stroke.
Engine Cycles
Chap. 3
Temperature of the exhaust gases is cooled by expansion cooling when the
pressure is suddenly reduced during blowdown. Although this expansion is not
reversible, the ideal gas isentropic relationship between pressure and temperature
serves as a good model to approximate exhaust temperature T7 in the hypothetical
process 4-7 of Fig. 3-6.
= T4(P7/P4)
= T3(P7/P3)(k-l)/k
= Pex = Po
exhaust pressure, which generally can be considered equal to surrounding pressure
P7 is the pressure in the exhaust system and is almost always very close to one
atmosphere in value.
Gas leaving the combustion chamber during the blowdown process will also
have kinetic energy due to high velocity flow through the exhaust valve. This kinetic
energy will very quickly be dissipated in the exhaust manifold, and there will be a subsequent rise in enthalpy and temperature. The first elements of gas leaving the
combustion chamber will have the highest velocity and will therefore reach the highest temperature when this velocity is dissipated (point 7a in Fig. 3-6). Each
subsequent element of gas will have less velocity and will thus experience less temperature rise (points 7b, 7c, etc.). The last elements of gas leaving the combustion
chamber during blowdown and the gas pushed out during the exhaust stroke will
have relatively low kinetic energy and will have a temperature very close to T7.
Choked flow (sonic velocity) will be experienced across the exhaust valve at the start
of blowdown, and this determines the resulting gas velocity and kinetic energy. If possible, it is desirable to mount the turbine of a turbocharger very close to the exhaust
manifold. This is done so that exhaust kinetic energy can be utilized in the turbine.
The state of the exhaust gas during the exhaust stroke is best approximated by
a pressure of one atmosphere, a temperature of T7 given in Eq. (3-37), and a specific
volume shown at point 7 in Fig. 3-6. It will be noted that this is inconsistent with Fig.
3-6 for the exhaust stroke process 5-6. The figure would suggest that the specific volume v changes during process 5-6. This inconsistency occurs because Fig. 3-6 uses a
closed system model to represent an open system process, the exhaust stroke. Also,
it should be noted that point 7 is a hypothetical state and corresponds to no actual
physical piston position.
At the end of the exhaust stroke, there is still a residual of exhaust gas trapped
in the clearance volume of the cylinder. This exhaust residual gets mixed with the
new incoming charge of air and fuel and is carried into the new cycle. Exhaust residual is defined as:
r = mex/mm
where mex is the mass of exhaust gas carried into the next cycle and mm is the mass
of gas mixture within the cylinder for the entire cycle. Values of exhaust residual
Sec. 3-5
Exhaust Process
range from 3% to 7% at full load, increasing to as much as 20% at part-throttle light
loads. CI engines generally have less exhaust residual because their higher compression ratios give them smaller relative clearance volumes. In addition to
clearance volume, the amount of exhaust residual is affected by the location of the
valves and the amount of valve overlap.
In Fig. 3-6, if the blowdown process 4-7 is modeled as an isentropic expansion,
Mass of exhaust in the cylinder after blowdown but before the exhaust stroke
will be:
= VS/v7
Mass of exhaust in the cylinder at the end of the exhaust stroke will be:
where v7 is calculated using either Eq. (3-39) or (3-40) and represents the constant
specific volume of exhaust gas within the cylinder for the entire exhaust stroke 5-6.
The mass of gas mixture in Eq. (3-38) can be obtained from:
Combining this with Eqs. (3-38) and (3-42):
= (Vz/V7)/(V7/V7)
= Vz/V7
V7 is the hypothetical volume of mm expanded to Po after combustion. Using Eqs.
(3-42) and (3-43), the exhaust residual can also be written as:
= (1/rc)[(RT4/P4)/(RT7/P7)]
= compression ratio
one atmosphere under most conditions
= T7 from Eq. (3-37)
and T4 and P 4 are conditions in the cylinder when the exhaust valve opens
When the intake valve opens, a new charge of inlet air ma enters the cylinder
and mixes with the remaining exhaust residual from the previous cycle. The mixing
occurs such that total enthalpy remains constant and:
where hex, ha, and hm are the specific enthalpy values of exhaust, air, and mixture,
all of which are treated as air in air-standard analysis. If specific enthalpy values are
referenced to zero value at an absolute temperature value of zero, then h = cp T and:
The engine in Example Problems 3-1 and 3-2 is now run at part throttle such that the
intake pressure is 50 kPa. Calculate the temperature in the cylinder at the start of the
compression stroke.
The temperature of the intake air can be assumed to be the same even though it
has experienced a pressure reduction expansion when passing the throttle valve. This is
because it still flows through the same hot intake manifold after the throttle. However,
the temperature of the exhaust residual will be reduced due to the expansion cooling it
undergoes when the intake valve opens and the pressure in the cylinder drops to 50
kPa. The temperature of the exhaust residual after expansion can be approximated
using Fig. 3-4 and the isentropic expansion model such that:
Early CI engines injected fuel into the combustion chamber very late in the compression stroke, resulting in the indicator diagram shown in Fig. 3-7. Due to ignition
delay and the finite time required to inject the fuel, combustion lasted into the
expansion stroke. This kept the pressure at peak levels well past TDC. This combustion process is best approximated
as a constant-pressure
heat input in an
air-standard cycle, resulting in the Diesel cycle shown in Fig. 3-8. The rest of the
cycle is similar to the air-standard Otto cycle. The diesel cycle is sometimes called a
Constant· Pressure cycle.
If reptesentative numbers are introduced into Eq. (3-73), it is found that the
value of the term in brackets is greater than one. When this equation is compared
with Eq. (3-31), it can be seen that for a given compression ratio the thermal efficiency of the Otto cycle would be greater than the thermal efficiency of the Diesel
cycle. Constant-volume combustion at TDC is more efficient than constant-pressure
combustion. However, it must be remembered that CI engines operate with much
higher compression ratios than SI engines (12 to 24 versus 8 to 11) and thus have
higher thermal efficiencies.
If Eqs. (3-31) and (3-73) are compared, it can be seen that to have the best of both
worlds, an engine ideally would be compression ignition but would operate on the
Otto cycle. Compression ignition would operate on the more efficient higher compression ratios, while constant-volume combustion of the Otto cycle would give
higher efficiency for a given compression ratio.
The modern high-speed CI engine accomplishes this in part by a simple
operating change from early diesel engines. Instead of injecting the fuel late in the
compression stroke near TDC, as was done in early engines, modern CI engines start
to inject the fuel much earlier in the cycle, somewhere around 20° bTDC. The first
fuel then ignites late in the compression stroke, and some of the combustion occurs
almost at constant volume at TDC, much like the Otto cycle. A typical indicator diagram for a modern CI engine is shown in Fig. 3-9. Peak pressure still remains high into
the expansion stroke due to the finite time required to inject the fuel. The last of the
fuel is still being injected at TDC, and combustion of this fuel keeps the pressure high
into the expansion stroke. The resulting cycle shown in Fig. 3-9 is a cross between an
SI engine cycle and the early CI cycles. The air-standard cycle used to analyze this
modern CI engine cycle is called a Dual cycle, or sometimes a Limited Pressure cycle
(Fig. 3-10). It is a dual cycle because the heat input process of combustion can best be
approximated by a dual process of constant volume followed by constant pressure. It
can also be considered a modified Otto cycle with a limited upper pressure.
Analysis of Air-Standard
Dual Cycle
The analysis of an air-standard Dual cycle is the same as that of the Diesel cycle
except for the heat input process (combustion) 2-x-3.
Figure 3-11 compares Otto, Diesel, and Dual cycles with the same inlet conditions
and the same compression ratios. The thermal efficiency of each cycle can be written
= 1-
I/Iqin I
The area under the process lines on T-s coordinates is equal to the heat transfer, so in Fig. 3-11(b) the thermal efficiencies can be compared. For each cycle, qout
is the same (process 4-1). qin of each cycle is different, and using Fig. 3-11(b) and Eq.
(3-90) it is found for these conditions:
However, this is not the best way to compare these three cycles, because they
do not operate on the same compression ratio. Compression ignition engines that
operate on the Dual cycle or Diesel cycle have much higher compression ratios than
do spark ignition engines operating on the Otto cycle. A more realistic way to compare these three cycles would be to have the same peak pressure-an actual design
limitation in engines. This is done in Fig. 3-12. When this figure is compared with
Eq. (3-90), it is found:
> (TIt )DUAL > (TIt )OTIO
Comparing the ideas of Eqs. (3-91) and (3-92) would suggest that the most efficient engine would have combustion as close as possible to constant volume but
would be compression ignition and operate at the higher compression ratios which
that requires. This is an area where more research and development is needed.
A small truck has a four-cylinder, four-liter CI engine that operates on the air-standard
Dual cycle (Fig. 3-10) using light diesel fuel at an air-fuel ratio of 18. The compression
ratio of the engine is 16:1 and the cylinder bore diameter is 10.0 cm. At the start of the
compression stroke, conditions in the cylinders are 60°C and 100 KPa with a 2%
exhaust residual. It can be assumed that half of the heat input from combustion is
added at constant volume and half at constant pressure.
1. temperature and pressure at each state of the cycle
The Miller cycle, named after R. H. Miller (1890-1967), is a modern modification of
the Atkinson cycle and has an expansion ratio greater than the compression ratio.
This is accomplished, however, in a much different way. Whereas an engine
designed to operate on the Atkinson cycle needed a complicated mechanical linkage
system of some kind, a Miller cycle engine uses unique valve timing to obtain the
same desired results.
Air intake in a Miller cycle is unthrottled. The amount of air ingested into each
cylinder is then controlled by closing the intake valve at the proper time, long before
Figure 3-14 Air-standard Miller cycle
for unthrottled naturally aspirated fourstroke cycle SI engine. If the engine has
early intake valve closing, the cycle will be
6-7-1-7-2-3-4-5-7-6. If the engine has late
intake valve closing, the cycle will be 6-75-7-2-3-4-5-7-6.
BDC (point 7 in Fig. 3-14). As the piston then continues towards BDC during the latter part of the intake stroke, cylinder pressure is reduced along process 7-1. When the
piston reaches BDC and starts back towards TDC cylinder pressure is again increased
during process 1-7. The resulting cycle is 6-7-1-7-2-3-4-5-6. The work produced in the
first part of the intake process 6-7 is canceled by part of the exhaust stroke 7-6, process
7-1 is canceled by process 1-7, and the net indicated work is the area within loop 7-2-34-5-7. There is essentially no pump work. The compression ratio is:
= V7/V2
and the larger expansion ratio is:
The shorter compression stroke which absorbs work, combined with the
longer expansion stroke which produces work, results in a greater net indicated
work per cycle. In addition, by allowing air to flow through the intake system
unthrottled, a major loss experienced by most SI engines is eliminated. This is especially true at part throttle, when an Otto cycle engine would experience low pressure
in the intake manifold and a corresponding high negative pump work. The Miller
Miller Cycle
cycle engine has essentially no pump work (ideally none), much like a CI engine.
This results in higher thermal efficiency.
The mechanical efficiency of a Miller cycle engine would be about the same as
that of an Otto cycle engine, which has a similar mechanical linkage system. An
Atkinson cycle engine, on the other hand, requires a much more complicated
mechanical linkage system, resulting in lower mechanical efficiency.
Another variation of this cycle can be obtained if the intake air is unthrottled
and the intake valve is closed after BDC. When this is done, air is ingested during
the entire intake stroke, but some of it is then forced back into the intake manifold
before the intake valve closes. This results in cycle 6-7-5-7-2-3-4-5-6 in Fig. 3-14. The
net indicated work is again the area within loop 7-2-3-4-5-7, with the compression
and expansion ratios given by Eqs. (3-93) and (3-94).
For either variation of the cycle to work efficiently, it is extremely important to
be able to close the intake valve at the precise correct moment in the cycle (point 7).
However, this point where the intake valve must close changes as the engine speed
and/or load is changed. This control was not possible until variable valve timing was
perfected and introduced. Automobiles with Miller cycle engines were first marketed in the latter half of the 1990s. A typical value of the compression ratio is about
8:1, with an expansion ratio of about 10:1.
The first production automobile engines operating on Miller cycles used both
early intake valve closing methods and late intake valve closing methods. Several
types of variable valve timing systems have been tried and are being developed. At
present, none of these offer full flexibility, and major improvements are still needed.
If the intake valve is closed bBDC, less than full displacement volume of the
cylinder is available for air ingestion. If the intake valve is closed aBDC, the full displacement volume is filled with air, but some of it is expelled out again before the
valve is closed (process 5-7 in Fig. 3-14). In either case, less air and fuel end up in the
cylinder at the start of compression, resulting in low output per displacement and
low indicated mean effective pressure. To counteract this, Miller cycle engines are
usually supercharged or turbocharged with peak intake manifold pressures of
150-200 kPa. Fig. 3-15 shows a supercharged Miller engine cycle.
The four-cylinder,2.5-literSI automobile engine of Example Problem 3-1 is converted
to operate on an air-standard Miller cyclewith early valve closing(cycle6-7-1-7-2-3-45-6 in Fig. 3-15). It has a compression ratio of 8:1 and an expansion ratio of 10:1.A
supercharger is added that givesa cylinder pressure of 160KPa when the intake valve
closes,as shownin Fig.3-15.The temperature is again 60°Cat this point. The same fuel
and AF are used with combustion efficiency 17c = 100%.
temperature and pressure at all points in the cycle
indicated thermal efficiency
indicated mean effectivepressure
exhaust temperature
When the Otto cycle engine of Example Problems 3-1 and 3-2 is compared with a
similar engine operating on a Miller cycle as in Example Problem 3-5, the superiority of the Miller cycle can be seen. Table 3-1 gives such a comparison.
Temperatures in the two cycles are about the same, except for the exhaust
temperature. It is important that the temperature at the beginning of combustion
for either cycle be low enough so that self-ignition and knock do not become problems. The lower exhaust temperature of the Miller cycle is the result of greater
expansion cooling that occurs from the essentially same maximum cycle temperature. Lower exhaust temperature means less energy is lost in the exhaust, with more
of it used as work output in the longer expansion stroke. Pressures throughout the
Miller cycle are higher than those of the Otto cycle, mainly because of the supercharged input. The output parameters of imep, thermal efficiency, and work are all
higher for the Miller cycle, showing the technical superiority of this cycle. Some of
the indicated work and indicated thermal efficiency of the Miller cycle will be lost
due to the need to drive the supercharger. Even with this considered, however,
brake work and brake thermal efficiency will be substantially greater than in an
Otto cycle engine. If a turbocharger were used instead of a supercharger, brake output parameter values would be even higher. One cost of this higher output is the
greater complexity of the valve system of the Miller cycle engine, and the corresponding higher manufacturing costs.
Temperature at start of combustion Tz:
Pressure at start of combustion Pz:
Maximum temperature T3:
Maximum pressure P3:
Exhaust temperature:
Indicated net work per cylinder
per cycle for same Qin:
Indicated thermal efficiency:
Indicated mean effective pressure:
Miller Cycle
Otto Cycle
689 K
2650 kPa
3908 K
1066 K
707 K
1826 kPa
3915 K
10,111 kPa
1183 K
56.6 %
2208 kPa
1.030 kJ
52.9 %
1649 kPa
Engine Cycles
Chap. 3
Process 3-4-5-intake, and exhaust scavenging.
Exhaust port open and intake port open:
Intake air entering at an absolute pressure on the order of 140-180 kPa fills
and scavenges the cylinder. Scavenging is a process in which the air pushes out most
of the remaining exhaust residual from the previous cycle through the open exhaust
port into the exhaust system, which is at about one atmosphere pressure. The piston
uncovers the intake port at point 3, reaches BDC at point 4, reverses direction, and
again closes the intake port at point 5. In some engines fuel is mixed with the incoming air. In other engines the fuel is injected later, after the exhaust port is closed.
Many compression ignition engines-especially large ones-operate
on two-stroke
cycles. These cycles can be approximated by the air-standard cycle shown in Fig.
3-17. This cycle is the same as the two-stroke SI cycle except for the fuel input and
combustion process. Instead of adding fuel to the intake air or early in the compression process, fuel is added with injectors late in the compression process, the same as
with four-stroke cycle CI engines. Heat input or combustion can be approximated
by a two-step (dual) process .
around since 1816, and while it is not a true internal combustion engine, it is
included here briefly because it is a heat engine used to propel vehicles as one of its
applications. The basic engine uses a free-floating, double-acting piston with a gas
chamber on both ends of the cylinder. Combustion does not occur within the cylinder, but the working gas is heated with an external combustion process. Heat input
can also come from solar or nuclear sources. Engine output is usually a rotating
shaft [8].
A Stirling engine has an internal regeneration process using a heat exchanger.
Ideally, the heat exchanger uses the rejected heat in process 4-1 to preheat the
internal working fluid in the heat addition process 2-3. The only heat transfers with
the surroundings then occur with a heat addition process 3-4 at one maximum temperature Thigh, and a heat rejection process 1-2 at one minimum temperature Tlow. If
the processes in the air-standard cycle in Fig. 3-18 can be considered reversible, the
thermal efficiency of the cycle will be:
This is the same thermal efficiency as a Carnot cycle and is the theoretical
maximum possible. Although a real engine cannot operate reversibly, a welldesigned Stirling engine can have a very high thermal efficiency. This is one of the
attractions which is generating interest in this type of engine. Other attractions
include low emissions with no catalytic converter and the flexibility of many possible
Sec. 3-13
Lenoir Cycle
fuels that can be used. This is because heat input is from a continuous steady-state
combustion in an external chamber at a relatively low temperature around 1000 K.
Fuels used have included gasoline, diesel fuel, jet fuel, alcohol, and natural gas. In
some engines, the fuel can be changed with no adjustments needed.
Problems with Stirling engines include sealing, warm-up time needed, and high
cost. Other possible applications include refrigeration, stationary power, and heating of buildings.
One ofthe first successful engines developed during the second half
of the 1800s was the Lenoir engine (Fig. 3-19). Several hundred of these
were built in the 1860s. They operated on a two-stroke cycle and had
mechanical efficiencies up to 5% and power output up to 4.5 kW (6 hp).
The engines were double acting, with combustion occurring on both ends
of the piston. This gave two power strokes per revolution from a single
cylinder [29].
The Lenoir cycle is approximated by the air-standard cycle shown in Fig. 3-20. The
first half of the first stroke was intake, with air-fuel entering the cylinder at atmos-
pheric pressure (process 1-2 in Fig. 3-20). At about halfway through the first stroke,
the intake valve was closed and the air-fuel mixture was ignited without any compression. Combustion raised the temperature and pressure in the cylinder almost at
constant volume in the slow-moving engine (process 2-3). The second half of the
first stroke then became the power or expansion process 3-4. Near BDC, the exhaust
valve opened and blowdown occurred (4-5). This was followed by the exhaust stroke
5-1, completing the two-stroke cycle. There was essentially no clearance volume.
Analysis of Air-Standard
lenoir Cycle
The intake process 1-2 and the latter half of the exhaust stroke process 2-1 cancel
each other thermodynamically on P-V coordinates and can be left out of the analysis of the Lenoir cycle. The cycle then becomes 2-3-4-5-2.
This chapter reviewed the basic cycles used in internal combustion engines.
Although many engine cycles have been developed, for over a century most automobile engines have operated on the basic SI four-stroke cycle developed in the
1870s by Otto and others. This can be approximated and analyzed using the ideal
air-standard Otto cycle. Many small SI engines operate on a two-stroke cycle, sometimes (erroneously) called a two-stroke Otto cycle.
Early four-stroke CI engines operated on a cycle that can be approximated by
the air-standard Diesel cycle. This cycle was improved in modern CI engines of the
type used in automobiles and trucks. Changing the injection timing resulted in a
Engine Cycles
Chap. 3
more efficient engine operating on a cycle best approximated by an air-standard
Dual cycle. Most small CI engines and very large CI engines operate on a two-stroke
At present, most automobile engines operate on the four-stroke Otto cycle,
but major research and development is resulting in two additional cycles for modem
vehicles. Several companies have done major development work to try to create an
automobile engine that would operate on an SI two-stroke cycle. Throughout history, two-stroke cycle automobile engines have periodically appeared with varying
success. These offer greater power per unit weight, but none would pass modem
emission standards. Recent development has concentrated on producing an engine
that would satisfy pollution laws. The major technological change is the input of fuel
by injection directly into the combustion chamber after exhaust and air intake are
completed. If this development work is successful, there will be automobiles on the
market with two-stroke cycle engines.
Advances in valve timing technology, including variable timing, have led to the
introduction of Miller cycle engines. The Miller cycle improves on the four-stroke SI
Otto cycle by closing the intake valve at a more opportune time, either early or late.
This results in an expansion ratio that is greater than the compression ratio and represents the most modem of engine cycles.
3-1. Cylinder conditions at the start of compression in an SI engine operating at WOT on an
air-standard Otto cycle are 60°C and 98 kPa. The engine has a compression ratio of
9.5:1 and uses gasoline with AF = 15.5. Combustion efficiency is 96%, and it can be
assumed that there is no exhaust residual.
Calculate: (a) Temperature at all states in the cycle. [0C]
(b) Pressure at all states in the cycle. [kpa]
(c) Specific work done during power stroke. [kJ/kg]
(d) Heat added during combustion. [kJ/kg]
(e) Net specific work done. [kJ/kg]
(£) Indicated thermal efficiency. [%]
3.2. The engine in Problem 3-1 is a three-liter V6 engine operating at 2400 RPM. At this
speed the mechanical efficiency is 84% .
Calculate: (a) Brake power. [kW]
(b) Torque. [N-m]
(c) Brake mean effective pressure. [kPa]
(d) Friction power lost. [kW]
(e) Brake specific fuel consumption. [gm/kW-hr]
(£) Volumetric efficiency. [%]
(g) Output per displacement. [kW/L]
Chap. 3
3-3. The exhaust pressure of the engine in Problem 3-2 is 100 kPa.
Calculate: (a) Exhaust temperature. [0C]
(b) Actual exhaust residual. [%]
(c) Temperature of air entering cylinders from intake manifold. [0C]
3-4. The engine of Problems 3-2 and 3-3 is operated at part throttle with intake pressure of
75 kPa. Intake manifold temperature, mechanical efficiency, exhaust residual, and
air-fuel ratio all remain the same.
Calculate: (a) Temperature in cylinder at start of compression stroke. [0C]
(b) Temperature in cylinder at start of combustion. [0C]
3-5. An SI engine operating at WOT on a four-stroke air-standard cycle has cylinder conditions at the start of compression of 100°F and 14.7 psia. Compression ratio is rc = 10,
and the heat added during combustion is qin = 800 BTU/lbm. During compression the
temperature range is such that a value for the ratio of specific heats k = 1.4 would be
correct. During the power stroke the temperature range is such that a value of k = 1.3
would be correct. Use these values for compression and expansion, respectively, when
analyzing the cycle. Use a value for specific heat of Cv = 0.216 BTU/lbm-oR, which best
corresponds to the temperature range during combustion.
Calculate: (a) Temperature at all states in cycle. [OF]
(b) Pressure at all states in cycle. [psia]
(c) Average value of k which would give the same indicated thermal efficiency value as the analysis in parts (a) and (b).
3-6. A CI engine operating on the air-standard Diesel cycle has cylinder conditions at the
start of compression of 65°C and 130 kPa. Light diesel fuel is used at an equivalence
ratio of if> = 0.8 with a combustion efficiency Tic = 0.98. Compression ratio is rc = 19.
Calculate: (a) Temperature at each state of the cycle. [0C]
(b) Pressure at each state of the cycle. [kPa]
(c) Cutoff ratio.
(d) Indicated thermal efficiency. [%]
(e) Heat lost in exhaust. [kJ/kg]
3·7. A compression ignition engine for a small truck is to operate on an air-standard Dual
cycle with a compression ratio of rc = 18. Due to structural limitations, maximum
allowable pressure in the cycle will be 9000 kPa. Light diesel fuel is used at a fuel-air
ratio of FA = 0.054. Combustion efficiency can be considered 100%. Cylinder conditions at the start of compression are 50°C and 98 kPa.
Calculate: (a) Maximum indicated thermal efficiency possible with these conditions.
(b) Peak cycle temperature under conditions of part (a). [0C]
(c) Minimum indicated thermal efficiency possible with these conditions.
(d) Peak cycle temperature under conditions of part (c). [0C]
3-8. An in-line six, 3.3-liter CI engine using light diesel fuel at an air-fuel ratio of AF = 20
operates on an air-standard Dual cycle. Half the fuel can be considered burned at constant volume, and half at constant pressure with combustion efficiency Tic = 100%.
Cylinder conditions at the start of compression are 60°C and 101 kPa. Compression
ratio rc = 14:1.
Engine Cycles
Chap. 3
Temperature at each state of the cycle. [K]
Pressure at each state of the cycle. [kPa]
Cutoff ratio.
Pressure ratio.
Indicated thermal efficiency. [%]
(f) Heat added during combustion. [kJ/kg]
(g) Net indicated work. [kJ/kg]
3-9. The engine in Problem 3-8 produces 57 kW of brake power at 2000 RPM.
Calculate: (a) Torque. [N-m]
(b) Mechanical efficiency. [%]
(c) Brake mean effective pressure. [kPa]
(d) Indicated specific fuel consumption. [gmlkW-hr]
3-10. An Otto cycle SI engine with a compression ratio of rc = 9 has peak cycle temperature
and pressure of 2800 K and 9000 kPa. Cylinder pressure when the exhaust valve opens
is 460 kPa, and exhaust manifold pressure is 100 kPa.
Calculate: (a) Exhaust temperature during exhaust stroke. [0C]
(b) Exhaust residual after each cycle. [%]
(c) Velocity out of the exhaust valve when the valve first opens. [mlsec]
(d) Theoretical momentary maximum temperature in the exhaust. [0C]
3-11. An SI engine operates on an air-standard four-stroke Otto cycle with turbocharging.
Air-fuel enters the cylinders at 70°C and 140 kPa, and heat in by combustion equals
qin = 1800 kJ/kg. Compression ratio rc = 8 and exhaust pressure Fex = 100 kPa.
Calculate: (a) Temperature at each state of the cycle. [0C]
(b) Pressure at each state of the cycle. [kPa]
(c) Work produced during expansion stroke. [kJ/kg]
(d) Work of compression stroke. [kJ/kg]
(e) Net pumping work. [kJ/kg]
(f) Indicated thermal efficiency. [%]
(g) Compare with Problems 3-12 and 3-13.
3-12. An SI engine operates on an air-standard four-stroke Miller cycle with turbocharging.
The intake valves close late, resulting in cycle 6-7-8-7-2-3-4-5-6 in Fig. 3-15. Air-fuel
enters the cylinders at 70°C and 140 kPa, and heat in by combustion equals qin = 1800
kJ/kg. Compression ratio rc = 8, expansion ratio re = 10, and exhaust pressure Fex =
100 kPa.
Calculate: (a) Temperature at each state of the cycle. [0C]
(b) Pressure at each state of the cycle. [kPa]
(c) Work produced during expansion stroke. [kJ/kg]
(d) Work of compression stroke. [kJ/kg]
(e) Net pumping work. [kJ/kg]
(f) Indicated thermal efficiency. [%]
(g) Compare with Problems 3-11 and 3-13.
3-13. An SI engine operates on an air-standard four-stroke Miller cycle with turbocharging.
The intake valves close early, resulting in cycle 6-7-1-7-2-3-4-5-6 in Fig. 3-15. Air-fuel
enters the cylinders at 70°C and 140 kPa, and heat in by combustion equals qin = 1800
Chap. 3
kJ/kg. Compression ratio rc = 8, expansion ratio re = 10, and exhaust pressure Pex =
100 kPa.
Calculate: (a) Temperature at each state of the cycle. [0C]
(b) Pressure at each state of the cycle. [kPa]
(c) Work produced during expansion stroke. [kJ/kg]
(d) Work of compression stroke. [kJ/kg]
(e) Net pumping work. [kJ/kg]
(I) Indicated thermal efficiency. [%]
(g) Compare with Problems 3-11 and 3-12.
A six cylinder, two-stroke cycle CI ship engine with bore B = 35 cm and stroke S = 105
cm produces 3600 kW of brake power at 210 RPM.
Calculate: (a) Torque at this speed. [kN-m]
(b) Total displacement. [L]
(c) Brake mean effective pressure. [kPa]
(d) Average piston speed. [mlsec]
A single-cylinder, two-stroke cycle model airplane engine with a 7.54-cm3 displacement
produces 1.42 kW of brake power at 23,000 RPM using glow plug ignition. The square
engine (bore = stroke) uses 31.7 gmlmin of castor oil-methanol-nitromethane
fuel at
an air-fuel ratio AF = 4.5. During intake scavenging, 65% of the incoming air-fuel
mixture gets trapped in the cylinder, while 35% of it is lost with the exhaust before the
exhaust port closes. Combustion efficiency 'TIc = 0.94.
Calculate: (a) Brake specific fuel consumption. [gm/kW-hr]
(b) Average piston speed. [mlsec]
(c) Unburned fuel exhausted to atmosphere. [gm/min]
(d) Torque. [N-m]
A historic single-cylinder engine with a mechanical efficiency 'TIm = 5% operates at 140
RPM on the Lenoir cycle shown in Fig. 3-20. The cylinder has a double acting piston
with a 12-in. bore and a 36-in. stroke. The fuel has a heating value QLHV = 12,000
BTU/lbm and is used at an air-fuel ratio AF = 18. Combustion occurs at constant volume half way through the intake-power stroke when cylinder conditions equal 70°F and
14.7 psia.
Calculate: (a) Temperature at each state of cycle. [OF]
(b) Pressure at each state of cycle. [psia]
(c) Indicated thermal efficiency. [%]
(d) Brake power. [hp]
(e) Average piston speed. [ft/sec]
Cylinder conditions at the start of compression of a four-stroke cycle SI engine are 27°C
and 100 kPa. The engine has a compression ratio of rc = 8:1, and heat addition from
combustion is qin = 2000 kJ/kg.
Calculate: (a) Temperature and pressure at each state of the cycle, using air-standard
Otto cycle analysis with constant specific heats. [OC,kPa]
(b) Indicated thermal efficiency in part (a). [%]
(c) Temperature and pressure at each state of the cycle, using any standard air tables which are based on variable specific heats as functions
of temperature (e.g., reference [73]). [OC,kPa]
(d) Indicated thermal efficiency in part (c). [%]
Engine Cycles
Chap. 3
3-1D. Design an SI engine to operate on a six-stroke cycle. The first four strokes of the cycle
are the same as a four-stroke Otto cycle. This is followed with an additional air-only
intake stroke and an air-only exhaust stroke. Draw simple schematics, and explain the
speed and operation of the camshafts when the valves open and close. Also, explain the
control of the ignition process.
3·2D. Design a mechanical linkage system for a four-stroke cycle, reciprocating SI engine to
operate on the Atkinson cycle (i.e., normal compression stroke and a power stroke
which expands until cylinder pressure equals ambient pressure). Explain using simple
schematic drawings.
3-3D. An SI engine operating on an four-stroke air-standard cycle using stoichiometric gasoline is to have a maximum cylinder pressure of 11,000 kPa at WOT. Inlet pressure can
be 100 kPa without supercharging, or it can be as high as 150 kPa with a supercharger.
Pick a compression ratio and inlet pressure combination to give maximum indicated
thermal efficiency. Pick a compression ratio and inlet pressure to give maximum imep.
and Fuels
This chapter reviews basic thermochemistry principles as applied to IC engines. It
studies ignition characteristics and combustion in engines, the octane number of SI
fuels, and the cetane number of CI fuels. Gasoline and other possible alternate fuels
are examined.
Combustion Reactions
Most IC engines obtain their energy from the combustion of a hydrocarbon fuel
with air, which converts chemical energy of the fuel to internal energy in the gases
within the engine. There are many thousands of different hydrocarbon fuel components, which consist mainly of hydrogen and carbon but may also contain oxygen
(alcohols), nitrogen, and/or sulfur, etc. The maximum amount of chemical energy
that can be released (heat) from the fuel is when it reacts (combusts) with a stoichiometric amount of oxygen. Stoichiometric oxygen (sometimes called theoretical
oxygen) is just enough to convert all carbon in the fuel to C02 and all hydrogen to
Thermochemistry and Fuels
H20, with no oxygen left over. The balanced chemical equation of the simplest
hydrocarbon fuel, methane CH4, burning with stoichiometric oxygen is:
+ 2 02
+ 2 H20
It takes two moles of oxygen to react with one mole of fuel, and this gives one
mole of carbon dioxide and two moles of water vapor. If isooctane is the fuel component, the balanced stoichiometric combustion with oxygen would be:
Molecules react with
quantities (fixed number
kgmole of a substance has
weight (molar mass) ofthat
+ 12.5
O2 ~
8 C02
+ 9 H20
molecules, so in balancing a chemical equation, molar
of molecules) are used and not mass quantities. One
a mass in kilograms equal in number to the molecular
substance. In English units the lbmmole is used.
r.n = !VAl
The components on the left side of a chemical reaction equation which are present before the reaction are called reactants, while the components on the right side of
the equation which are present after the reaction are called products or exhaust.
Very small powerful engines could be built if fuel were burned with pure oxygen. However, the cost of using pure oxygen would be prohibitive, and thus is not
done. Air is used as the source of oxygen to react with fuel. Atmospheric air is made
up of about:
78% nitrogen
by mole
21 % oxygen
1% argon
traces of C02, Ne, CH4, He, H20, etc.
Sec. 4-1
Nitrogen and argon are essentially chemically neutral and do not react in the
combustion process. Their presence, however, does affect the temperature and pressure in the combustion chamber. To simplify calculations without causing any large
error, the neutral argon in air is assumed to be combined with the neutral nitrogen,
and atmospheric air then can be modeled as being made up of 21% oxygen and 79%
nitrogen. For every 0.21 moles of oxygen there is also 0.79 moles of nitrogen, or for
one mole of oxygen there are 0.79/0.21 moles of nitrogen. For every mole of oxygen
needed for combustion, 4.76 moles of air must be supplied: one mole of oxygen plus
3.76 moles of nitrogen.
Stoichiometric combustion of methane with air is then:
+ 2 O2 + 2(3.76) N2 ~
+ 2 H20 + 2(3.76) N2
and of isooctane with air is:
C8H18 + 12.5 02
+ 12.5(3.76) N2 ~
8 C02
+ 9 H20 + 12.5(3.76) N2
It is convenient to balance combustion reaction equations for one kgmole of
fuel. The energy released by the reaction will thus have units of energy per kgmole
of fuel, which is easily transformed to total energy when the flow rate of fuel is
known. This convention will be followed in this textbook. Molecular weights can be
found in Table 4-1 and Table A-2 in the Appendix. The molecular weight of 29 will
be used for air. Combustion can occur, within limits, when more than stoichiometric
air is present (lean) or when less than stoichiometric air is present (rich) for a given
amount of fuel. If methane is burned with 150% stoichiometric air, the excess oxygen ends up in the products:
Even when the flow of air and fuel into an engine is controlled exactly at stoichiometric conditions, combustion will not be "perfect," and components other than
COz, Hz 0, and Nz are found in the exhaust products. One major reason for this is
the extremely short time available for each engine cycle, which often means that less
than complete mixing of the air and fuel is obtained. Some fuel molecules do not
find an oxygen molecule to react with, and small quantities of both fuel and oxygen
end up in the exhaust. Chapter 7 goes into more detail on this and other reasons that
ideal combustion is not obtained. SI engines have a combustion efficiency in the
range of 95% to 98% for lean mixtures and lower values for rich mixtures, where
there is not enough air to react all the fuel (see Fig. 4-1). CI engines operate lean
overall and typically have combustion efficiencies of about 98%.
Figure 4-1 Combustion efficiency as a function of fuel equivalence ratio. Efficiency
for engines operating lean is generally on the order of 98%. When an engine operates fuel rich, there is not enough oxygen to react with all the fuel, and combustion
efficiency decreases. CI engines operate lean and typically have high combustion
efficiency. Adapted from [58].
Equilibrium constants for many reactions can be found in thermodynamic
textbooks or chemical handbooks, tabulated in logarithmic form (In or 10glO)'An
abbreviated table can be found in the Appendix of this book (Table A-3).
Ke is very dependent on temperature, changing many orders of magnitude
over the temperature range experienced in an IC engine. As Ke gets larger, equilibrium is more towards the right (products). This is the maximizing of entropy. For
hydrocarbon fuels reacting with oxygen (air) at high engine temperatures, the equilibrium constant is very large, meaning that there are very few reactants (fuel and
air) left at final equilibrium. However, at these high temperatures another chemical
phenomenon takes place that affects the overall combustion process in the engine
and what ends up in the engine exhaust.
Examination of the equilibrium constants in Table A-3 shows that dissociation
of normally stable components will occur at these high engine temperatures. COz dissociates to CO and 0, Oz dissociates to monatomic 0, Nz dissociates to monatomic
N, etc. This not only affects chemical combustion, but is a cause of one of the major
emission problems of IC engines. Nitrogen as diatomic Nz does not react with other
substances, but when it dissociates to monatomic nitrogen at high temperature it
readily reacts with oxygen to form nitrogen oxides, NO and NOz, a major pollutant
from automobiles. To avoid generating large amounts of nitrogen oxides, combustion
temperatures in automobile engines are lowered, which reduces the dissociation of
Nz. Unfortunately, this also lowers the thermal efficiency of the engine.
Exhaust Dew Point Temperature
When exhaust gases of an IC engine are cooled below their dew point temperature,
water vapor in the exhaust starts to condense to liquid. It is common to see water
droplets come out of an automobile exhaust pipe when the engine is first started and
the pipe is cold. Very quickly the pipe is heated above the dew point temperature,
and condensing water is then seen only as vapor when the hot exhaust is cooled by
the surrounding air, much more noticeable in the cold wintertime.
number of moles of component i
= (h'j)i + ilhi
h'f = enthalpy of formation, the enthalpy needed to form one mole of that
component at standard conditions of 25°C and 1 atm
change of enthalpy from standard temperature for component i
Q will be negative, meaning that heat is given up by the reacting gases. Values
of h'j and ilh are molar-specific quantities and can be found in most thermodynamic
Table A-2 gives heating values for a number of fuels. Heating value QHV is the
negative of the heat of reaction for one unit of fuel, and thus is a positive number. It
is calculated assuming both the reactants and the products are at 25°C. Care must be
used when using heating values, which almost always are given in mass units (kJ/kg),
whereas heats of reaction are obtained using molar quantities as in Eq. (4-5). Two
values of heating value are given in the table; higher heating value is used when
water in the exhaust products is in the liquid state, and lower heating value is used
when water in the products is vapor. The difference is the heat of vaporization of the
+ ilhvap
Higher heating value is usually listed on fuel containers, the higher number
making that fuel seem more attractive. For engine analysis, lower heating value is
the logical value to use. All energy exchange in the combustion chamber occurs at
high temperature, and only somewhere down the exhaust process, where it can no
longer affect engine operation, does the product gas get cooled to the dew point
temperature. Heat into the engine that gets converted to output work can be given
Assuming that inlet conditions of the reactants are known, it is necessary to
find the temperature of the products such that this equation will be satisfied. This is
the adiabatic flame temperature.
Adiabatic flame temperature is the ideal theoretical maximum temperature
that can be obtained for a given fuel and air mixture. The actual peak temperature
in an engine cycle will be several hundred degrees less than this. There is some heat
loss even in the very short time of one cycle, combustion efficiency is less than 100%
so a small amount of fuel does not get burned, and some components dissociate at
the high engine temperatures. All these factors contribute to making the actual peak
engine temperature somewhat less than adiabatic flame temperature.
Engine Exhaust Analysis
It is common practice to analyze the exhaust of an IC engine. The control system of a
modern smart automobile engine includes sensors that continuously monitor the
exhaust leaving the engine. These sensors determine the chemical composition of
the hot exhaust by various chemical, electronic, and thermal methods. This information, along with information from other sensors, is used by the engine management
system (EMS) to regulate the operation of the engine by controlling the air-fuel
ratio, ignition timing, inlet tuning, valve timing, etc.
Repair shops and highway check stations also routinely analyze automobile
exhaust to determine operating conditions and/or emissions. This is done by taking
a sample of the exhaust gases and running it through an external analyzer. When
this is done, there is a high probability that the exhaust gas will cool below its dew
point temperature before it is fully analyzed, and the condensing water will change
the composition of the exhaust. To compensate for this, a dry analysis can be performed by first removing all water vapor from the exhaust, usually by some
thermo-chemical means.
The four-cylinder engine of a light truck owned by a utility company has been converted to run on propane fuel. A dry analysis of the engine exhaust gives the following
volumetric percentages:
The main fuel for SI engines is gasoline, which is a mixture of many hydrocarbon
components and is manufactured from crude petroleum. Crude oil was first discovered in Pennsylvania in 1859, and the fuel product line generated from it developed
along with the development of the IC engine. Crude oil is made up almost entirely
of carbon and hydrogen with some traces of other species. It varies from 83% to
87% carbon and 11% to 14% hydrogen by weight. The carbon and hydrogen can
combine in many ways and form many different molecular compounds. One test of
a crude oil sample identified over 25,000 different hydrocarbon components [93].
The crude oil mixture which is taken from the ground is separated into component products by cracking and/or distillation using thermal or catalytic methods at
an oil refinery. Cracking is the process of breaking large molecular components into
more useful components of smaller molecular weight. Preferential distillation is
used to separate the mixtures into single components or smaller ranges of components. Generally, the larger the molecular weight of a component, the higher is its
Thermochemistry and Fuels
boiling temperature. Low boiling temperature components (smaller molecular
weights) are used for solvents and fuels (gasoline), while high boiling temperature
components with their large molecular weights are used for tar and asphalt or
returned to the refining process for further cracking. The component mixture of the
refining process is used for many products, including:
automobile gasoline
diesel fuel
aircraft gasoline
jet fuel
home heating fuel
industrial heating fuel
natural gas
lubrication oil
The availability and cost of gasoline fuel, then, is a result of a market competition with many other products. This becomes more critical with the depletion of the
earth's crude oil reserves, which looms on the horizon.
Crude oil obtained from different parts of the world contain different amounts
and combinations of hydrocarbon species. In the United States, two general classifications are identified: Pennsylvania crude and western crude. Pennsylvania crude
has a high concentration of paraffins with little or no asphalt, while western crude
has an asphalt base with little paraffin. The crude oil from some petroleum fields in
the Mideast is made up of component mixtures that could be used immediately for
IC engine fuel with little or no refining.
Figure 4-2 shows a temperature-vaporization curve for a typical gasoline mixture. The various components of different molecular weights will vaporize at
different temperatures, small molecular weights boiling at low temperature and
larger molecular weights at higher temperature. This makes a very desirable fuel. A
small percentage of components that vaporize (boil) at low temperature is needed to
assure the starting of a cold engine; fuel must vaporize before it can burn. However,
too much of this front-end volatility can cause problems when the fuel vaporizes too
quickly. Volumetric efficiency of the engine will be reduced if fuel vapor replaces air
too early in the intake system. Another serious problem this can cause is vapor lock,
which occurs when fuel vaporizes in the fuel supply lines or in the carburetor in the
hot engine compartment. When this happens, the supply of fuel is cut off and the
engine stops. A large percent of fuel should be vaporized at the normal intake system temperature during the short time of the intake process. To maximize
volumetric efficiency, some of the fuel should not vaporize until late into the compression stroke and even into the start of combustion. This is why some
high-molecular-weight components are included in gasoline mixtures. If too much of
this high-end volatility is included in the gasoline, however, some of the fuel never
gets vaporized and ends up as exhaust pollution or condenses on the cylinder walls
and dilutes the lubricating oil.
One way that is sometimes used to describe a gasoline is to use three temperatures: the temperature at which 10% is vaporized, at which 50% is vaporized, and
at which 90% is vaporized. The gasoline in Fig. 4-2 could therefore be classified as
If different commercial brands of gasoline are compared, there is found to be
little difference in the volatility curves for a given season and location in the country.
There is usually about a 5°C shift down in temperature on the vaporization curve
for winter gasoline compared with summer.
If gasoline is approximated as a single-component hydrocarbon fuel, it would
have a molecular structure of about CSH15 and a corresponding molecular weight of
Thermochemistry and Fuels
Chap. 4
111. These are the values that will be used in this textbook. Sometimes, gasoline is
approximated by the real hydrocarbon component isooctane CgHlg, which best
matches its component structure and thermodynamic properties. Table A-2 lists
properties of gasoline, isooctane, and some other common fuels.
Carbon atoms form four bonds in molecular structures, while hydrogen has one
bond. A saturated hydrocarbon molecule will have no double or triple carbon-tocarbon bonds and will have a maximum number of hydrogen atoms. An unsaturated
molecule will have double or triple carbon-to-carbon bonds.
A number of different families of hydrocarbon molecules have been identified;
a few of the more common ones are described.
The paraffin family (sometimes called alkanes) are chain molecules with a carbon-hydrogen combination of CnH2n+ 2, n being any number. The simplest member
of this family, and the simplest of all stable hydrocarbon molecules, is methane
(CH4), which is the main component of natural gas. It can be pictured as:
Isobutane can also be called methylpropane-propane
because it has three
carbon atoms in the main chain and one methyl radical, CH3, replacing one of the
hydrogen atoms. Molecules with no branches in their chain are sometimes called
normal; thus butane is sometimes called normal butane or n-butane. Even though
isobutane and n-butane have the same chemical formula, C4HlO, and almost identical molecular weights, they have different thermal and physical properties. This is
true for any two chemical species that have different molecular structures, even if
they have the same chemical formula.
There are many ways chemical chains can be branched, giving a very large
number of possible chemical species. Isooctane (CSH1S) has the following molecular
Aromatics generally make good gasoline fuel components, with some exceptions due to exhaust pollution. They have high densities in the liquid state and thus
have high energy content per unit volume. Aromatics have high solvency characteristics, and care must be used in material selection for the fuel delivery system (e.g.,
they will dissolve or swell some gasket materials). Aromatics will dissolve a greater
Self-Ignition Characteristics of Fuels
If the temperature of an air-fuel mixture is raised high enough, the mixture will selfignite without the need of a spark plug or other external igniter. The temperature
above which this occurs is called the self-ignition temperature (SIT). This is the basic
principle of ignition in a compression ignition engine. The compression ratio is high
enough so that the temperature rises above SIT during the compression stroke. Selfignition then occurs when fuel is injected into the combustion chamber. On the
other hand, self-ignition (or pre-ignition, or auto-ignition) is not desirable in an SI
engine, where a spark plug is used to ignite the air-fuel at the proper time in the
cycle. The compression ratios of gasoline-fueled SI engines are limited to about 11:1
to avoid self-ignition. When self-ignition does occur in an SI engine higher than
desirable, pressure pulses are generated. These high pressure pulses can cause dam-
Figure 4-3 Self-ignition characteristics
of fuels. If the temperature of a fuel is
raised above the self-ignition temperature
(SIT), the fuel will spontaneously ignite
after a short ignition delay (ID) time. The
higher above SIT which the fuel is heated,
the shorter will be ID. Ignition delay is
generally on the order of thousandths of a
second. Adapted from [126].
age to the engine and quite often are in the audible frequency range. This phenomenon is often called knock or ping.
Figure 4-3 shows the basic process of what happens when self-ignition occurs. If
a combustible air-fuel mixture is heated to a temperature less than SIT, no ignition
will occur and the mixture will cool off. If the mixture is heated to a temperature
above SIT, self-ignition will occur after a short time delay called ignition delay (ID).
The higher the initial temperature rise above SIT, the shorter will be ID. The values
for SIT and ID for a given air-fuel mixture are ambiguous, depending on many variables which include temperature, pressure, density, turbulence, swirl, fuel-air ratio,
presence of inert gases, etc. [93].
Ignition delay is generally a very small fraction of a second. During this time,
preignition reactions occur, including oxidation of some fuel components and even
cracking of some large hydrocarbon components into smaller HC molecules. These
preignition reactions raise the temperature at local spots, which then promotes additional reactions until, finally, the actual combustion reaction occurs.
Figure 4-4 shows the pressure-time history within a cylinder of a typical SI
engine. With no self-ignition the pressure force on the piston follows a smooth
curve, resulting in smooth engine operation. When self-ignition does occur, pressure
forces on the piston are not smooth and engine knock occurs.
For illustrative reasons, a combustion chamber can be visualized schematically
as a long hollow tube, shown in Fig. 4-5. Obviously, this is not the shape of a real
engine combustion chamber, but it allows visualization of what happens during combustion. These ideas can then be extrapolated to real combustion engine shapes.
Before combustion the chamber is divided into four equal mass units, each occupying
an equal volume. Combustion starts at the spark plug on the left side, and the flame
front travels from left to right. As combustion occurs, the temperature of the burned
gases is increased to a high value. This, in turn, raises the pressure of the burned gases
and expands the volume of that mass as shown in Fig. 4-5(b). The unburned gases in
front of the flame front are compressed by this higher pressure, and compressive
Figure 4-5 SI engine combustion chamber schematically visualized as long hollow cylinder
with the spark plug located at left end. (a) Mass of air-fuel is equally distributed as spark plug
is fired to start combustion. (b) As flame front moves across chamber, unburned mixture in
front of flame is compressed into smaller volume. (c) Flame front continues to compress
unburned mixture into smaller volume, which increases its temperature and pressure. If compression raises temperature of end gas above SIT, self-ignition and knock can occur.
heating raises the temperature of the gas. The temperature of the unburned gas is further raised by radiation heating from the flame, and this then raises the pressure even
higher. Heat transfer by conduction and convection are not important during this
process due to the very short time interval involved.
The flame front moving through the second mass of air-fuel does so at an
accelerated rate because of the higher temperature and pressure, which increase the
reaction rate. This, in turn, further compresses and heats the unburned gases in front
of the flame as shown in Fig. 4-5(c). In addition, the energy release in the combustion process raises further the temperature and pressure of the burned gases behind
the flame front. This occurs both by compressive heating and radiation. Thus, the
flame front continues its travel through an unburned mixture that is progressively
higher in temperature and pressure. By the time the flame reaches the last portion of
unburned gas, this gas is at a very high temperature and pressure. In this end gas
near the end of the combustion process is where self-ignition and knock occur. To
avoid knock, it is necessary for the flame to pass through and consume all unburned
gases which have risen above self-ignition temperature before the ignition delay
Self-Ignition and Octane Number
time elapses. This is done by a combination of fuel property control and design of
combustion chamber geometry.
At the end of the combustion process, the hottest region in the cylinder is near
the spark plug where combustion was initiated. This region became hot at the start
of combustion and then continued to increase in temperature due to compressive
heating and radiation as the flame front passed through the rest of the combustion
By limiting the compression ratio in an SI engine, the temperature at the end
of the compression stroke where combustion starts is limited. The reduced temperature at the start of combustion then reduces the temperature throughout the entire
combustion process, and knock is avoided. On the other hand, a high compression
ratio will result in a higher temperature at the start of combustion. This will cause all
temperatures for the rest of the cycle to be higher. The higher temperature of the
end gas will create a short ID time, and knock will occur.
Octane Number and Engine Knock
The fuel property that describes how well a fuel will or will not self-ignite is called
the octane number or just octane. This is a numerical scale generated by comparing
the self-ignition characteristics of the fuel to that of standard fuels in a specific test
engine at specific operating conditions. The two standard reference fuels used are
isooctane (2,2,4 trimethylpentane), which is given the octane number (ON) of 100,
and n-heptane, which is given the ON of O. The higher the octane number of a fuel,
the less likely it will self-ignite. Engines with low compression ratios can use fuels
with lower octane numbers, but high-compression engines must use high-octane fuel
to avoid self-ignition and knock.
There are several different tests used for rating octane numbers, each of which
will give a slightly different ON value. The two most common methods of rating
gasoline and other automobile SI fuels are the Motor Method and the Research
Method. These give the motor octane number (MaN) and research octane number
(RON). Another less common method is the Aviation Method, which is used for
aircraft fuel and gives an Aviation Octane Number (AON). The engine used to
measure MaN and RON was developed in the 1930s. It is a single-cylinder, overhead valve engine that operates on the four-stroke Otto cycle. It has a variable
compression ratio which can be adjusted from 3 to 30. Test conditions to measure
MaN and RON are given in Table 4-3.
To find the ON of a fuel, the following test procedure is used. The test engine
is run at specified conditions using the fuel being tested. Compression ratio is
adjusted until a standard level of knock is experienced. The test fuel is then replaced
with a mixture of the two standard fuels. The intake system of the engine is designed
such that the blend of the two standard fuels can be varied to any percent from all
isooctane to all n-heptane. The blend of fuels is varied until the same knock characteristics are observed as with the test fuel. The percent of isooctane in the fuel blend
is the ON given to the test fuel. For instance, a fuel that has the same knock characteristics as a blend of 87% isooctane and 13% n-heptane would have an ON of 87.
On the fuel pumps at an automobile service station is found the anti-knock
= (MON + RON)j2
This is often referred to as the octane number of the fuel.
Because the test engine has a combustion chamber designed in the 1930s and
because the tests are conducted at low speed, the octane number obtained will not
always totally correlate with operation in modern high-speed engines. Octane numbers should not be taken as absolute in predicting knock characteristics for a given
engine. If there are two engines with the same compression ratio, but with different
combustion chamber geometries, one may not knock using a given fuel while the
other may experience serious knock problems with the same fuel.
Operating conditions used to measure MON are more severe than those used
to measure RON. Some fuels, therefore, will have a RON greater than MON (see
Table A-2). The difference between these is called fuel sensitivity:
Fuel sensitivity is a good measure of how sensitive knock characteristics of a
fuel will be to engine geometry. A low FS number will usually mean that knock
characteristics of that fuel are insensitive to engine geometry. FS numbers generally
range from 0 to 10.
For measuring octane numbers above 100, fuel additives are mixed with isooctane and other standard points are established. A common additive used for many
years to raise the octane number of a fuel was tetraethyllead (TEL).
Common octane numbers (anti-knock index) for gasoline fuels used in
automobiles range from 87 to 95, with higher values available for special high-performance and racing engines. Reciprocating SI aircraft engines usually use low-lead
fuels with octane numbers in the 85 to 100 range.
Sec. 4-4
Self-Ignition and Octane Number
The octane number of a fuel depends on a number of variables, some of which
are not fully understood. Things that affect ON are combustion chamber geometry,
turbulence, swirl, temperature, inert gases, etc. This can be seen by the difference in
RON and MaN for some fuels, brought about by different operating characteristics
of the test engine. Other fuels will have identical RON and MON. The higher the
flame speed in an air-fuel mixture, the higher the octane number. This is because,
with a higher flame speed, the air-fuel mixture that is heated above SIT will be consumed during ignition delay time, and knock will be avoided.
Generally there is a high correlation between the compression ratio and the
ON of the fuel an engine requires to avoid knock (Fig. 4-6).
If several fuels of known ON are mixed, a good approximation of the mixture
octane number is:
where %
(% ofA)(ONA)
+ (%
+ (% ofC)(ONc)
mass percent.
Early crude fuels for automobiles had very low octane numbers that required
low compression ratios. This was not a serious handicap to early engines, which
needed low compression ratios because of the technology and materials of that day.
High compression ratios generate higher pressures and forces that could not be tolerated in early engines.
Thermochemistry and Fuels
Fuel components with long chain molecules generally have lower octane numbers: the longer the chain the lower is the ON. Components with more side chains
have higher octane numbers. For a compound with a given number of carbon and
hydrogen atoms, the more these atoms are combined in side chains and not in a few
long chains, the higher will be the octane number. Fuel components with ring molecules have higher octane numbers. Alcohols have high octane numbers because of
their high flame speeds.
There are a number of gasoline additives that are used to raise the octane
number. For many years the standard additive was tetraethyllead TEL, (C2Hs)4Pb.
A few milliliters of TEL in several liters of gasoline could raise the ON several
points in a very predictable manner (Fig. 4-7).
When TEL was first used, it was mixed with the gasoline at the local fuel
service station. The process was to pour liquid TEL into the fuel tank and then add
gasoline, which would mix with the TEL due to the natural turbulence of the
pouring. This was not a safe way of handling TEL, which has toxic vapors and is
even harmful in contact with human skin. Soon after this, TEL was blended into the
gasoline at the refineries, which made it much safer to handle. However, this created a need for additional storage tanks and gasoline pumps at the service station.
High-octane and low-octane fuels were now two different gasolines and could not be
blended at the service station from a common gasoline base.
Figure 2-5 shows how the compression ratios of automobile engines increased
after the introduction of TEL in the 1920s.
The major problem with TEL is the lead that ends up in the engine exhaust.
Lead is a very toxic engine emission. For many years, the lead emissions problem
was not considered serious just due to the lower numbers of automobiles. However,
by the late 1940s and in the 1950s the pollution problem of automobile exhaust was
Sec. 4-4
Self-Ignition and Octane Number
recognized, first in the Los Angeles basin area of California. The reason that awareness of the problem started here was a combination of a high density of automobiles
and the unique weather conditions in the basin. In the 1960s and 1970s, as the number of automobiles proliferated both in the United States and in the rest of the
world, it was recognized that lead could no longer be tolerated in gasoline fuel. In
the 1970s low-lead and no-lead gasolines were being marketed, and by the early
1990s lead in fuel was unlawful in the United States for most vehicles.
The elimination of lead from gasoline created a problem for older automobiles
and other older engines. When TEL is consumed in the combustion process in the
cylinder of an engine, one of the results is lead being deposited on the walls of the
combustion chamber. This lead reacts with the hot walls and forms a very hard surface. When older engines were manufactured, softer steels were used in the cylinder
walls, heads, and valve seats. It was then expected that when these engines were
operated using leaded fuel, these parts would become heat treated and hardened
during use. Now, when these engines are operated using unleaded fuel, they do not
experience this hardening treatment with possible long-term wear problems. The
wear that occurs on valve seats is the most critical, and there have been catastrophic
engine failures when valve seats wore through. There are now lead substitutes available which can be added to gasoline for people who wish to operate older
automobiles for extended lengths of time. Additives that are now used in gasoline to
raise the octane number include alcohols and organomanganese compounds.
As an engine ages, deposits build up on the combustion chamber walls. This
increases knock problems in two ways. First, it makes the clearance volume smaller
and consequently increases the compression ratio. Second, the deposits act as a thermal barrier and increase the temperatures throughout the engine cycle, including
peak temperature. Octane requirements can go up as an engine ages, with an average increase needed of about three or four for older engines.
Knock usually occurs at WOT when the engine is loaded (e.g., fast startup or
going up a hill). Serious knock problems can be reduced by retarding the ignition
spark and starting combustion slightly later in the compression stroke. Many modern smart engines have knock detection to help determine optimum operating
conditions. These are usually transducers that detect knock pressure pulses. Some
spark plugs are equipped with pressure transducers for this purpose. The human ear
is a good knock detector.
Engine knock can also be caused by surface ignition. If any local hot spot exists
on the combustion chamber wall, this can ignite the air-fuel mixture and cause the
same kind of loss of cycle combustion control. This can occur on surface deposits of
older engines, with hot exhaust valves, on hot spark plug electrodes, on any sharp
corner in the combustion chamber. The worst kind of surface ignition is pre-ignition, which starts combustion too early in the cycle. This causes the engine to run
hotter, which causes more surface hot spots, which causes more surface ignition. In
extreme surface ignition problems, when the combustion chamber walls are too hot,
run-on will occur. This means the engine will continue to run after the spark ignition
has been turned off.
Diesel fuel (diesel oil, fuel oil) is obtainable over a large range of molecular weights
and physical properties. Various methods are used to classify it, some using numerical scales and some designating it for various uses. Generally speaking, the greater
the refining done on a sample of fuel, the lower is its molecular weight, the lower is
its viscosity, and the greater is its cost. Numerical scales usually range from one (1)
to five (5) or six (6), with subcategories using alphabetical letters (e.g., AI, 2D, etc).
The lowest numbers have the lowest molecular weights and lowest viscosity. These
are the fuels typically used in CI engines. Higher numbered fuels are used in residential heating units and industrial furnaces. Fuels with the largest numbers are very
viscous and can only be used in large, massive heating units. Each classification has
acceptable limits set on various physical properties, such as viscosity, flash point,
pour point, cetane number, sulfur content, etc.
Another method of classifying diesel fuel to be used in internal combustion
engines is to designate it for its intended use. These designations include bus, truck,
railroad, marine, and stationary fuel, going from lowest molecular weight to highest.
Sec. 4-5
Diesel Fuel
For convenience, diesel fuels for IC engines can be divided into two extreme
categories. Light diesel fuel has a molecular weight of about 170 and can be approximated by the chemical formula C12.3H22.2(see Table A-2). Heavy diesel fuel has a
molecular weight of about 200 and can be approximated as C14.6H24.8.Most diesel
fuel used in engines will fit in this range. Light diesel fuel will be less viscous and
easier to pump, will generally inject into smaller droplets, and will be more costly.
Heavy diesel fuel can generally be used in larger engines with higher injection pressures and heated intake systems. Often an automobile or light truck can use a less
costly heavier fuel in the summer, but must change to a lighter, less viscous fuel in
cold weather because of cold starting and fuel line pumping problems.
Cetane Number
In a compression ignition engine, self-ignition of the air-fuel mixture is a necessity.
The correct fuel must be chosen which will self-ignite at the precise proper time in
the engine cycle. It is therefore necessary to have knowledge and control of the ignition delay time of the fuel. The property that quantifies this is called the cetane
number. The larger the cetane number, the shorter is the ID and the quicker the
fuel will self-ignite in the combustion chamber environment. A low cetane number
means the fuel will have a long ID.
Like octane number rating, cetane numbers are established by comparing the
test fuel to two standard reference fuels. The fuel component n-cetane (hexadecane), C16H34,is given the cetane number value of 100, while heptamethylnonane
(HMN), C12H34,is given the value of 15. The cetane number (CN) of other fuels is
then obtained by comparing the ID of that fuel to the ID of a mixture blend of the
two reference fuels with
CN of fuel
(percent of n-cetane)
+ (0.15)(percent of HMN)
A special CI test engine is used which has the capability of having the compression ratio changed as it operates. Fuel being rated is injected into the engine
cylinder late in the compression stroke at 13° bTDC. The compression ratio is then
varied until combustion starts at TDC, giving an ID of 13° of engine rotation. Without changing the compression ratio, the test fuel is replaced with a blend of the two
reference fuels. Using two fuel tanks and two flow controls, the blend of the fuels is
varied until combustion is again obtained at TDC, an ID of 13°.
The difficulty of this method, in addition to requiring a costly test engine, is to
be able to recognize the precise moment when combustion starts. The very slow rise
in pressure at the start of combustion is very difficult to detect.
Normal cetane number range is about 40 to 60. For a given engine injection
timing and rate, if the cetane number of the fuel is low the ID will be too long. When
this occurs, more fuel than, desirable will be injected into the cylinder before the
first fuel particles ignite, causing a very large, fast pressure rise at the start of combustion. This results in low thermal efficiency and a rough-running engine. If the CN
Sometime during the 21st century, crude oil and petroleum products will become
very scarce and costly to find and produce. At the same time, there will likely be an
increase in the number of automobiles and other IC engines. Although fuel economy of engines is greatly improved from the past and will probably continue to be
improved, numbers alone dictate that there will be a great demand for fuel in the
coming decades. Gasoline will become scarce and costly. Alternate fuel technology,
availability, and use must and will become more common in the coming decades.
Although there have always been some IC engines fueled with non-gasoline
or diesel oil fuels, their numbers have been relatively small. Because of the high cost
of petroleum products, some third-world countries have for many years been using
manufactured alcohol as their main vehicle fuel.
Many pumping stations on natural gas pipelines use the pipeline gas to fuel the
engines driving the pumps. This solves an otherwise complicated problem of delivering fuel to the pumping stations, many of which are in very isolated regions. Some
large displacement engines have been manufactured especially for pipeline work.
These consist of a bank of engine cylinders and a bank of compressor cylinders
connected to the same crankshaft and contained in a single engine block similar to a
V-style engine.
Another reason motivating the development of alternate fuels for the IC
engine is concern over the emission problems of gasoline engines. Combined with
other air-polluting systems, the large number of automobiles is a major contributor
to the air quality problem of the world. Vast improvements have been made in
reducing emissions given off by an automobile engine. If a 30% improvement is
made over a period of years and during the same time the number of automobiles in
the world increases by 30%, there is no net gain. Actually, the net improvement in
Alternate Fuels
cleaning up automobile exhaust since the 1950s, when the problem became apparent, is over 95%. However, additional improvement is needed due to the
ever-increasing number of automobiles.
A third reason for alternate fuel development in the United States and other
industrialized countries is the fact that a large percentage of crude oil must be
imported from other countries which control the larger oil fields. In recent years, up
to a third of the United States foreign trade deficit has been from the purchase of
crude oil, tens of billions of dollars.
Listed next are the major alternate fuels that have been and are being considered and tested for possible high-volume use in automobile and other kinds of IC
engines. These fuels have been used in limited quantities in automobiles and small
trucks and vans. Quite often, fleet vehicles have been used for testing (e.g., taxies,
delivery vans, utility company trucks). This allows for comparison testing with similar gasoline-fueled vehicles, and simplifies fueling of these vehicles.
It must be remembered that, in just about all alternate fuel testing, the engines
used are modified engines which were originally designed for gasoline fueling. They
are, therefore, not the optimum design for the other fuels. Only when extensive
research and development is done over a period of years will maximum performance and efficiency be realized from these engines. However, the research and
development is difficult to justify until the fuels are accepted as viable for large numbers of engines (the chicken-and-egg problem).
Some diesel engines are starting to appear on the market which use dual fuel.
They use methanol or natural gas and a small amount of diesel fuel that is injected at
the proper time to ignite both fuels.
Most alternate fuels are very costly at present. This is often because of the
quantity used. Many of these fuels will cost much less if the amount of their usage
gets to the same order of magnitude as gasoline. The cost of manufacturing, distribution, and marketing all would be less.
Another problem With alternate fuels is the lack of distribution points (service
stations) where the fuel is available to the public. The public will be reluctant to purchase an automobile unless there is a large-scale network of service stations
available where fuel for that automobile can be purchased. On the other hand, it is
difficult to justify building a network of these service stations until there are enough
automobiles to make them profitable. Some cities are starting to make available a
few distribution points for some of these fuels, like propane, natural gas, and
methanol. The transfer from one major fuel type to another will be a slow, costly,
and sometimes painful process.
In the following list, some of the drawbacks for a particular fuel may become
less of a problem if large quantities of that fuel are used (i.e., cost, distribution, etc.).
Alcohols are an attractive alternate fuel because they can be obtained from a number of sources, both natural and manufactured. Methanol (methyl alcohol) and
and Fuels
Chap. 4
ethanol (ethyl alcohol) are two kinds of alcohol that seem most promising and have
had the most development as engine fuel.
The advantages of alcohol as a fuel include:
1. Can be obtained from a number of sources, both natural and manufactured.
2. Is high octane fuel with anti-knock index numbers (octane number on fuel
pump) of over 100. High octane numbers result, at least in part, from the high
flame speed of alcohol. Engines using high-octane fuel can run more efficiently
by using higher compression ratios.
3. Generally less overall emissions when compared with gasoline.
4. When burned, it forms more moles of exhaust, which gives higher pressure and
more power in the expansion stroke.
5. Has high evaporative cooling (hfg) which results in a cooler intake process and
compression stroke. This raises the volumetric efficiency of the engine and
reduces the required work input in the compression stroke.
6. Low sulfur content in the fuel.
The disadvantages of alcohol fuels include:
1. Low energy content of the fuel as can be seen in Table A-2. This means that
almost twice as much alcohol as gasoline must be burned to give the same
energy input to the engine. With equal thermal efficiency and similar engine
output usage, twice as much fuel would have to be purchased, and the distance
which could be driven with a given fuel tank volume would be cut in half. The
same amount of automobile use would require twice as much storage capacity in
the distribution system, twice the number of storage facilities, twice the volume
of storage at the service station, twice as many tank trucks and pipelines, etc.
Even with the lower energy content of alcohol, engine power for a given displacement would be about the same. This is because of the lower air-fuel ratio
needed by alcohol. Alcohol contains oxygen and thus requires less air for stoichiometric combustion. More fuel can be burned with the same amount of air.
2. More aldehydes in the exhaust. If as much alcohol fuel was consumed as gasoline, aldehyde emissions would be a serious exhaust pollution problem.
3. Alcohol is much more corrosive than gasoline on copper, brass, aluminum,
rubber, and many plastics. This puts some restrictions on the design and manufacturing of engines to be used with this fuel. This should also be considered
when alcohol fuels are used in engine systems deSigned to be used with gasoline. Fuel lines and tanks, gaskets, and even metal engine parts can deteriorate
with long-term alcohol use (resulting in cracked fuel lines, the need for special
fuel tank, etc). Methanol is very corrosive on metals.
4. Poor cold weather starting characteristics due to low vapor pressure and
evaporation. Alcohol-fueled engines generally have difficulty starting at temperatures below 10°C. Often a small amount of gasoline is added to alcohol
Sec. 4-6
Alternate Fuels
fuel, which greatly improves cold-weather starting. The need to do this, however, greatly reduces the attractiveness of any alternate fuel.
5. Poor ignition characteristics in general.
6. Alcohols have almost invisible flames, which is considered dangerous when
handling fuel. Again, a small amount of gasoline removes this danger.
7. Danger of storage tank flammability due to low vapor pressure. Air can leak
into storage tanks and create a combustible mixture.
8. Low flame temperatures generate less NOx, but the resulting lower exhaust
temperatures take longer to heat the catalytic converter to an efficient operating temperature.
9. Many people find the strong odor of alcohol very offensive. Headaches and
dizziness have been experienced when refueling an automobile.
10. Vapor lock in fuel delivery systems.
Of all the fuels being considered as an alternate to gasoline, methanol is one of the
more promising and has experienced major research and development. Pure
methanol and mixtures of methanol and gasoline in various percentages have been
extensively tested in engines and vehicles for a number of years [88, 130]. The most
common mixtures are M85 (85% methanol and 15% gasoline) and M10 (10%
methanol and 90% gasoline). The data of these tests which include performance and
emission levels are compared to pure gasoline (MO) and pure methanol (M100).
Some smart flexible-fuel (or variable-fuel) engines are capable of using any random
mixture combination of methanol and gasoline ranging from pure methanol to pure
gasoline. Two fuel tanks are used and various flow rates of the two fuels can be
pumped to the engine, passing through a mixing chamber. Using information from
sensors in the intake and exhaust, the EMS adjusts to the proper air-fuel ratio, ignition timing, injection timing, and valve timing (where possible) for the fuel mixture
being used. Fast, abrupt changes in fuel mixture combinations must be avoided to
allow for these adjustments to occur smoothly.
One problem with gasoline-alcohol mixtures as a fuel is the tendency for alcohol to combine with any water present. When this happens the alcohol separates
locally from the gasoline, resulting in a non-homogeneous mixture. This causes the
engine to run erratically due to the large AF differences between the two fuels.
At least one automobile company has been experimenting with a three-fuel
vehicle which can use any combination of gasoline-methanol-ethanol
Methanol can be obtained from many sources, both fossil and renewable.
These include coal, petroleum, natural gas, biomass, wood, landfills, and even the
ocean. However, any source that requires extensive manufacturing or processing
raises the price of the fuel and requires an energy input back into the overall environmental picture, both unattractive.
Thermochemistry and Fuels
Chap. 4
In some parts of the country, MlO fuel (10% methanol and 90% gasoline) is
now sold at some local service stations in place of gasoline. It is advisable to read the
sometimes small print on the fuel pump to determine the type of fuel that is being
used in your automobile.
Emissions from an engine using MlO fuel are about the same as those using
gasoline. The advantage (and disadvantage) of using this fuel is mainly the 10%
decrease in gasoline use. With M85 fuel there is a measurable decrease in HC and
CO exhaust emissions. However, there is an increase in NOx and a large (= 500%)
increase in formaldehyde formation.
Methanol is used in some dual-fuel CI engines. Methanol by itself is not a good
CI fuel because of its high octane number, but if a small amount of diesel oil is used
for ignition, it can be used with good results. This is very attractive for third-world
countries, where methanol can often be obtained much cheaper than diesel oil.
Older CI bus engines have been converted to operate on methanol in tests conducted in California. This resulted in an overall reduction of harmful emissions
compared with worn engines operating with diesel fuel [115].
Ethanol has been used as automobile fuel for many years in various regions of the
world. Brazil is probably the leading user, where in the early 1990s, 4.5 million
vehicles operated on fuels that were 93% ethanol. For a number of years gasohol
has been available at service stations in the United States, mostly in the Midwest
corn-producing states. Gasohol is a mixture of 90% gasoline and 10% ethanol. As
with methanol, the development of systems using mixtures of gasoline and ethanol
continues. Two mixture combinations that are important are E85 (85% ethanol) and
EI0 (gasohol). E85 is basically an alcohol fuel with 15% gasoline added to eliminate
some of the problems of pure alcohol (i.e., cold starting, tank flammability, etc.).
ElO reduces the use of gasoline with no modification needed to the automobile
engine. Flexible-fuel engines are being tested which can operate on any ratio of
ethanol-gasoline [122].
Ethanol can be made from ethylene or from fermentation of grains and sugar.
Much of it is made from corn, sugar beets, sugar cane, and even cellulose (wood and
paper). In the United States, corn is the major source. The present cost of ethanol is
high due to the manufacturing and processing required. This would be reduced if
larger amounts of this fuel were used. However, very high production would create
a food-fuel competition, with resulting higher costs for both. Some studies show that
at present in the United States, crops grown for the production of ethanol consume
more energy in plowing, planting, harvesting, fermenting, and delivery than what is
in the final product. This defeats one major reason for using an alternate fuel [95].
Ethanol has less HC emissions than gasoline but more than methanol.
A taxicab is equipped with a flexible-fuel four-cylinder SI engine running on a mixture
of methanol and gasoline at an equivalence ratio of 0.95. How must the air-fuel ratio
Alternate Fuels
1. Low emissions. Essentially no CO or HC in the exhaust as there is no carbon
in the fuel. Most exhaust would be H20 and N2•
2. Fuel availability. There are a number of different ways of making hydrogen,
including electrolysis of water.
3. Fuel leakage to environment is not a pollutant.
4. High energy content per volume when stored as a liquid. This would give a
large vehicle range for a given fuel tank capacity, but see the following.
Disadvantages of using hydrogen as a fuel:
1. Heavy, bulky fuel storage, both in vehicle and at the service station. Hydrogen can be stored either as a cryogenic liquid or as a compressed gas. If stored
as a liquid, it would have to be kept under pressure at a very low temperature.
This would require a thermally super-insulated fuel tank. Storing in a gas
phase would require a heavy pressure vessel with limited capacity.
2. Difficult to refuel.
3. Poor engine volumetric efficiency. Any time a gaseous fuel is used in an engine,
the fuel will displace some of the inlet air and poorer volumetric efficiency will
4. Fuel cost would be high at present-day technology and availability.
5. High NOx emissions because of high flame temperature.
6. Can detonate.
At least one automobile company (Mazda) has adapted a rotary Wankel
engine to run on hydrogen fuel. It was reasoned that this is a good type of engine for
this fuel. The fuel intake is on the opposite side of the engine from where combustion occurs, lowering the chance of pre-ignition from a hot engine block; hydrogen
fuel ignites very easily. This same experimental car uses a metal-hydride fuel storage
system [86].
Natural Gas-Methane
Natural gas is a mixture of components, consisting mainly of methane (60-98%)
with small amounts of other hydrocarbon fuel components. In addition it contains
various amounts of N2, CO2, He, and traces of other gases. Its sulfur content
ranges from very little (sweet) to larger amounts (sour). It is stored as compressed
natural gas (CNG) at pressures of 16 to 25 MPa, or as liquid natural gas (LNG)
at pressures of 70 to 210 kPa and a temperature around -160°C. As a fuel, it
works best in an engine system with a single-throttle body fuel injector. This gives
a longer mixing time, which is needed by this fuel. Tests using CNG in varioussized vehicles continue to be conducted by government agencies and private
industry [12, 94, 101].
Thermochemistry and Fuels
Chap. 4
Advantages of natural gas as a fuel include:
1. Octane number of 120, which makes it a very good SI engine fuel. One reason
for this high octane number is a fast flame speed. Engines can operate with a
high compression ratio.
2. Low engine emissions. Less aldehydes than with methanol.
3. Fuel is fairly abundant worldwide with much available in the United States. It
can be made from coal but this would make it more costly.
Disadvantages of natural gas as an engine fuel:
1. Low energy density resulting in low engine performance.
2. Low engine volumetric efficiency because it is a gaseous fuel.
3. Need for large pressurized fuel storage tank. Most test vehicles have a range of
only about 120 miles. There is some safety concern with a pressurized fuel
4. Inconsistent fuel properties.
5. Refueling is slow process.
Some very large stationary CI engines operate on a fuel combination of
methane and diesel fuel. Methane is the major fuel, amounting to more than 90% of
the total. It is supplied to the engine as a gas through high-pressure pipes. A small
amount of high grade, low sulfur diesel fuel is used for ignition purposes. The net
result is very clean running engines. These engines would also be good power plants
for large ships, except that high-pressure gas pipes are undesirable on ships.
In some countries in eastern and southern Asia, buses using natural gas
as fuel have a unique fuel reservoir system. The gas is stored at about one
atmosphere pressure in a large inflatable rubber diaphragm on the roof of
the bus. With a full load of fuel, the bus is about twice the height as when
it has no fuel. No fuel gauge is needed on these buses.
Propane has been tested in fleet vehicles for a number of years. It is a good highoctane SI engine fuel and produces less emissions than gasoline: about 60% less CO,
30% less HC, and 20% less NOx.
Propane is stored as a liquid under pressure and delivered through a high-pressure line to the engine, where it is vaporized. Being a gaseous fuel, it has the
disadvantage of lower engine volumetric efficiency.
Sec. 4-6
Alternate Fuels
Reformulated gasoline is normal-type gasoline with a slightly modified formulation
and additives to help reduce engine emissions. Included in the fuel are oxidation
inhibitors, corrosion inhibitors, metal deactivators, detergents, and deposit control
additives. Oxygenates such as methyl tertiary-butyl ether (MTBE) and alcohols are
added, such that there is 1-3% oxygen by weight. This is to help reduce CO in the
exhaust. Levels of benzene, aromatics, and high boiling components are reduced, as
is the vapor pressure. Recognizing that engine deposits contribute to emissions,
cleaning additives are included. Some additives clean carburetors, some clean fuel
injectors, and some clean intake valves, each of which often does not clean other
On the plus side is that all gasoline-fueled engines, old and new, can use this
fuel without modification. On the negative side is that only moderate emission
reduction is realized, cost is increased, and the use of petroleum products is not
reduced. [121].
In the1atter half of the 1800s, before petroleum-based fuels were perfected, many
other fuels were tested and used in IC engines. When Rudolf Diesel was developing
his engine, one of the fuels he used was a coal dust-water slurry. Fine particles of
coal (carbon) were dispersed in water and injected and burned in early diesel
engines. Although this never became a common fuel, a number of experimental
engines using this fuel have been built over the last hundred years. Even today,
some work continues on this fuel technology. The major improvement in this type of
fuel has been the reduction of the average coal particle size. In 1894 the average particle size was on the order of 100 JL (1 JL = 1 micron = 10 -6 m). This was reduced to
about 75 JL in the 1940-1970 period and further reduced to about 10 JL by the early
1980s. The typical slurry is about 50% coal and 50% water by mass. One major
problem with this fuel is the abrasiveness of the solid particles, which manifests itself
in worn injectors and piston rings [27].
Coal is an attractive fuel because of the large supply which is available. However, as an engine fuel, other methods of use seem more feasible. These include
liquefaction or gasification of the coal.
A 50% coal-water slurry (50% coal and 50% water by mass) is burned in stoichiometric air.
1. air-fuel ratio
2. heating value of fuel
1) Assuming coal is carbon, the fuel mixture in molar quantities will consist of one
mole of carbon to (12/18) moles of water.
Other Fuels
Attempts to use many other types of fuel have been tried throughout the history of
IC engines. Often, this was done out of necessity or to promote financial gain by
some group. At present, a number of biomass fuels are being evaluated, mainly in
Europe. These include CI fuel oil made from wood, barley, soy beans, rape seed,
and even beef tallow. Advantages of these fuels generally include availability and
low cost, low sulfur, and low emissions. Disadvantages include low energy content
(heating value) and corresponding high specific fuel consumption.
In the late 1930sand early 1940spetroleum products became very scarce,
especially in Europe, due to World War II. Just about all gasoline products
were claimed by the German army, leaving no fuel for civilian automobile
use. Although this was an inconvenience for the civilian population, it did
not stop them from using their beloved automobiles [44].
Enterprising people in several countries, mainly Sweden and Germany, developed a way to operate their automobiles using solid fuels like
charcoal, wood, or coal. Using technology first researched 20 years earlier, they converted their vehicles by building a combustion chamber in
the trunk of the car or on a small trailer pulled by the car. In this combustion chamber, the coal, wood, or other solid or waste fuel was burned with
a restricted supply of oxygen (air), This generated a supply of carbon
monoxide, which was then piped to the engine and used to fuel the
and Fuels
Chap. 4
This, however, is reduced because CO is a gaseous fuel which displaces some of the air
in the intake system. For each kgmole of oxygen (4.76 kgmoles of air) in the intake system, there will be [2 + 2(~)(3.76)] = 5.76 kgmoles of gaseous fuel. For the same total
gas volumetric flow rate, only (4.76)/[(4.76) + (5.76)] = 0.452 will be the fraction which
is new inlet air. Therefore:
Qin = (565.6 MJ)(0.452) = 255.7 MJ
Percent loss in heat is then:
% loss of Qin
= {[(406.2) - (255.7)]/(406.2)}(100) = 37.1% loss
Assuming the same thermal efficiency and same engine mechanical efficiency with the
two fuels gives brake power output:
(Wb)co = 62.9%(Wb)gasoline
These calculations are all based on ideal reactions. An actual engine-CO generator
system operated under these conditions would experience many additional losses,
including less than ideal reactions, solid impurities and filtering problems, and fuel
delivery complications. All of these would significantly lower the actual engine output.
For most of the 20th century, the two main fuels that have been used in internal
combustion engines have been gasoline (SI engines) and fuel oil (diesel oil for CI
engines). During this time, these fuels have experienced an evolution of composition
and additives according to the contemporary needs of the engines and environment.
In the latter part of the century, alcohol fuels made from various farm products and
other sources have become increasingly more important, both in the United States
and in other countries. With increasing air pollution problems and a petroleum
shortage looming on the horizon, major research and development programs are
being conducted throughout the world to find suitable alternate fuels to supply
engine needs for the coming decades.
4-1. C4Hs is burned in an engine with a fuel-rich air-fuel ratio. Dry analysis of the exhaust
gives the following volume percents: COz = 14.95%, C4Hs = 0.75%, CO = 0%,
Hz = 0%, Oz = 0%, with the rest being Nz. Higher heating value of this fuel is QHHV
= 46.9 MJ/kg. Write the balanced chemical equation for one mole of this fuel at these
Calculate: (a) Air-fuel ratio.
(b) Equivalence ratio.
(c) Lower heating value of fuel. [MJ/kg]
Chap. 4
(d) Energy released when one kg of this fuel is burned in the engine with a
combustion efficiency of 98%. [MJ]
4-2. Draw the chemical structural formula of 2-methyl-2,3-ethylbutane. This is an isomer of
what chemical family? Write the balanced chemical reaction equation for one mole of
this fuel burning with an equivalence ratio of ¢ = 0.7. Calculate the stoichiometric AF
for this fuel.
4-3. Draw the chemical structural formula of (a) 3,4-dimethylhexane, (b) 2,4-diethylpentane, (c) 3-methyl-3-ethylpentane. These are isomers of what other molecules?
4-4. Hydrogen is used as a fuel in an experimental engine and is burned with stoichiometric
oxygen. Reactants enter at a temperature of 25°C and complete combustion occurs at
constant pressure. Write the balanced chemical reaction equation.
Calculate: (a) Fuel-air (fuel-oxygen) ratio.
(b) Equivalence ratio.
(c) Theoretical maximum temperature from this combustion. (use
enthalpy values from a thermodynamics textbook) [K]
(d) Dew point temperature of exhaust if exhaust pressure is 101 kPa. [0C]
4-5. Isooctane is burned with air in an engine at an equivalence ratio of 0.8333. Assuming
complete combustion, write the balanced chemical reaction equation.
Calculate: (a) Air-fuel ratio.
(b) How much excess air is used. [%]
(c) AKI and FS of this fuel.
4-6. A race car burns nitromethane with air at an equivalence ratio of 1.25. Except for
unburned fuel, all nitrogen ends up as Nz. Write the balanced chemical equation.
Calculate: (a) Percent stoichiometric air. [%]
(b) Air-fuel ratio.
4-7. Methanol is burned in an engine with air at an equivalence ratio of ¢ = 0.75. Exhaust
pressure and inlet pressure are 101 kPa. Write the balanced chemical equation for this
Calculate: (a) Air-fuel ratio.
(b) Dew point temperature of the exhaust if the inlet air is dry. [0C]
(c) Dew point temperature of the exhaust if the inlet air has a relative
humidity of 40% at 25°C. [0C]
(d) Antiknock index of methanol.
4-8. Compute the indicated power generated at WOT by a three-liter, four-cylinder, fourstroke cycle SI engine operating at 4800 RPM using either gasoline or methanol. For
each case, the intake manifold is heated such that all fuel is evaporated before the
intake ports, and the air-fuel mixture enters the cylinders at 60°C and 100 kPa. Compression ratio rc = 8.5, fuel equivalence ratio ¢ = 1.0, combustion efficiency 'T/c = 98%,
and volumetric efficiency 'T/v = 100%. Calculate the indicated specific fuel consumption for each fuel. [gm/kW-hr]
4-9. A four-cylinder SI engine with a compression ratio rc = 10 operates on an air-standard
Otto cycle at 3000 RPM using ethyl alcohol as fuel. Conditions in the cylinders at the
start of the compression stroke are 60°C and 101 kPa. Combustion efficiency 'T/c = 97%.
Write the balanced stoichiometric chemical equation for this fuel.
Calculate: (a) AF if the engine operates at an equivalence ratio ¢ = 1.10.
(b) Peak temperature in cycle of part (a). [0C]
(c) Peak pressure in cycle of part (a). [kPa]
Thermochemistry and Fuels
4-10. Tim's 1993 Buick has a six-cylinder, four-stroke cycle SI engine with multipoint port
fuel injectors operating on an Otto cycle at WOT. The fuel injectors are set to deliver
an AF such that gasoline would burn at stoichiometric conditions. (approximate gasoline using isooctane properties)
Calculate: (a) Equivalence ratio of air-gasoline mixture.
(b) Equivalence ratio if gasoline is replaced with ethanol without readjusting the AF delivered by the fuel injectors.
(c) Increase or decrease in brake power using alcohol instead of gasoline
under these conditions, with the same air flow rate and same thermal
efficiency. Assume ethanol would burn under these conditions with the
same combustion efficiency. [%]
4-11. For the sarlte air flow rate, what would be the percentage increase in engine power if
stoichiometric gasoline is replaced with stoichiometric nitromethane? Assume the same
thermal efficiency and same combustion efficiency. [%]
4-12. Compare the indicated power generated in an engine using stoichiometric gasoline, stoichiometric methanol, or stoichiometric nitromethane. Assume the same combustion
efficiency, thermal efficiency, and air flow rate for all fuels.
4-13. Isodecane is used as a fuel.
Calculate: (a) Anti-knock index.
(b) MON if 0.2 gmlL of TEL is added to the fuel.
(c) How many gallons of butene-1 should be added to 10 gallons of isodecane to give a mixture MON of 87.
4-14. A six-liter, eight-cylinder, four-stroke cycle SI race car engine operates at 6000 RPM
using stoicl1iometric nitromethane as fuel. Combustion efficiency is 99%, and the fuel
input rate is 0.198 kg/sec.
Calculate: (a) Volumetric efficiency of the engine. [%]
(b) Flow rate of air into the engine. [kg/sec]
(c) Heat generated in each cylinder per cycle. [kJ]
(d) How much chemical energy there is in unburned fuel in the exhaust.
4-15. (a) Give three reasons why methanol is a good alternate fuel for automobiles. (b) Give
three reasons why it is not a good alternate fuel.
4-16. When one-half mole of oxygen and one-half mole of nitrogen are heated to 3000 K at a
pressure of 5000 kPa, some of the mixture will react to form NO by the reaction equation! O2 + ! N2 ~ NO. Assume these are the only components which react.
Calculate: (a) Chemical equilibrium constant for this reaction at these conditions
using Table A-3.
(b) Number of moles of NO at equilibrium.
(c) Number of moles of O2 at equilibrium.
(d) Number of moles of NO at equilibrium if total pressure is doubled.
(e) Number of moles of NO at equilibrium if there was originally one-half
mole of oxygen, one-half mole of nitrogen, and one mole of argon at
5000 kPa total pressure.
4-17. A fuel mixture consists of 20% isooctane, 20% triptane, 20% isodecane, and 40%
toluene by moles. Write the chemical reaction formula for the stoichiometric combustion of one mole of this fuel.
Calculate: (a) Air-fuel ratio.
Design Problems
(b) Research octane number.
(c) Lower heating value of fuel mixture. [kJ/kg]
4-18. A flexible-fuel vehicle operates with a stoichiometric fuel mixture of one-third isooctane, one-third ethanol, and one-third methanol, by mass.
Calculate: (a) Air-fuel ratio.
(b) MaN, RON, FS, and AKI.
4-19. It is desired to find the cetane number of a fuel oil which has a density of 860 kg/m3 and
a midpoint boiling temperature of 229°C. When tested in the standard test engine, the
fuel is found to have the same ignition characteristics as a mixture of 23% hexadecane
and 77% heptamethylnonane.
Calculate: (a) Cetane number of fuel.
(b) Percent error if cetane index is used to approximate the cetane number. [%]
4-20. A CI engine running at 2400 RPM has an ignition delay of 15° of crankshaft rotation.
What is the ID in seconds?
4-21. A fuel blend has a density of 720 kg/m3 and a midpoint boiling temperature (temperature at which 50% will be evaporated) of 91°C. Calculate the cetane index.
4-22. The fuel which a coal-burning carbon monoxide generator supplies to an automobile
engine consists of CO + !(3.76)Nz.
Calculate: (a) HHV and LHV of fuel. [kJ/kg]
(b) Stoichiometric air-fuel ratio.
(c) Dew point temperature of exhaust. [0C]
4-10. Using data from Table A-2 and boiling point data from chemistry handbooks, design a
three-component gasoline blend. Give a three-temperature classification of your blend
and draw a vaporization curve similar to Fig. 4-2. What is RON, MaN, and AKI of
your blend?
4-20. An automobile
for the vehicle)
4-30. An automobile
for the vehicle)
will use hydrogen as fuel. Design a fuel tank (i.e., a fuel storage system
and a method to deliver the fuel from the tank to the engine.
will use propane as fuel. Design a fuel tank (i.e., a fuel storage system
and a method to deliver the fuel from the tank to the engine.
This chapter describes intake systems of engines-how air and fuel are delivered
into the cylinders. The object of the intake system is to deliver the proper amount of
air and fuel accurately and equally to all cylinders at the proper time in the engine
cycle. Flow into an engine is pulsed as the intake valves open and close, but can generally be modeled as quasi-steady state flow.
The intake system consists of an intake manifold, a throttle, intake valves, and
either fuel injectors or a carburetor to add fuel. Fuel injectors can be mounted by the
intake valves of each cylinder (multipoint port injection), at the inlet of the manifold
(throttle body injection), or in the cylinder head (CI engines and modern two-stroke
cycle and some four-stroke cycle SI automobile engines).
The intake manifold is a system designed to deliver air to the engine through pipes
to each cylinder, called runners. The inside diameter of the runners must be large
enough so that a high flow resistance and the resulting low volumetric efficiency do
not occur. On the other hand, the diameter must be small enough to assure high air
velocity and turbulence, which enhances its capability of carrying fuel droplets and
increases evaporation and air-fuel mixing.
Intake Manifold
The length of a runner and its diameter should be sized together to equalize, as
much as possible, the amount of air and fuel that is delivered to each separate cylinder. Some engines have active intake manifolds with the capability of changing
runner length and diameter for different engine speeds. At low speeds, the air is
directed through longer, smaller diameter runners to keep the velocity high and to
assure proper mixing of air and fuel. At high engine speeds, shorter, larger diameter
runners are used, which minimizes flow resistance but still enhances proper mixing.
The amount of air and fuel in one runner length is about the amount that gets delivered to one cylinder each cycle.
To minimize flow resistance, runners should have no sharp bends, and the
interior wall surface should be smooth with no protrusions such as the edge of a
Some intake manifolds are heated to accelerate the evaporation of the fuel
droplets in the air-fuel mixture flow. This is done by heating the walls with hot
engine coolant flow, by designing the intake manifold to be in close thermal contact
with the hot exhaust manifold, or sometimes with electrical heating.
On SI engines, air flow rate through the intake manifold is controlled by a
throttle plate (butterfly valve) usually located at the upstream end. The throttle is
incorporated into the carburetor for those engines so equipped.
Fuel is added to inlet air somewhere in the intake system-before the manifold, in the manifold, or directly into each cylinder. The further upstream the fuel is
added, the more time there is to evaporate the fuel droplets and to get proper mixing of the air and fuel vapor. However, this also reduces engine volumetric efficiency
by displacing incoming air with fuel vapor. Early fuel addition also makes it more
difficult to get good cylinder-to-cylinder AF consistency because of the asymmetry
of the manifold and different lengths of the runners.
It is found that when fuel is added early in the intake system, the flow of fuel
through the manifold occurs in three different manners. Fuel vapor mixes with the
air and flows with it. Very small liquid fuel droplets are carried by the air flow,
smaller droplets following the streamlines better than larger droplets. With a higher
mass inertia, liquid particles will not always flow at the same velocity as the air and
will not flow around corners as readily, larger droplets deviating more than smaller
ones. The third way fuel flows through the manifold is in a thin liquid film along the
walls. This film occurs because gravity separates some droplets from the flow, and
when other droplets strike the wall where the runner executes a corner. These latter
two types of liquid fuel flow make it difficult to deliver the same air-fuel ratio to
each of the cylinders. The length of a runner to a given cylinder and the bends in it
will influence the amount of fuel that gets carried by a given air flow rate. The liquid
film on the manifold walls also makes it difficult to have precise throttle control.
When the throttle position is changed quickly and the air flow rate changes, the time
rate of change of fuel flow will be slower due to this liquid wall film.
Gasoline components evaporate at different temperatures and at different
rates. Because of this, the composition of vapor in the air flow will not be exactly the
same as that of the fuel droplets carried by the air or the liquid film on the manifold
Air And Fuel Induction
Chap. 5
walls. The air-fuel mixture which is then delivered to each cylinder can be quite different, both in composition and in air-fuel ratio. One result of this is that the
possibility of knock problems will be different in each cylinder. The minimum fuel
octane number that can be used in the engine is dictated by the worst cylinder (i.e.,
the cylinder with the greatest knock problem). This problem is further complicated
by the fact that the engine is operated over a range of throttle settings. At part throttle there is a lower total pressure in the intake manifold, and this changes the
evaporation rate of the various fuel components. Most of these problems are
reduced or eliminated by using multipoint port fuel injection, with each cylinder
receiving its own individual fuel input.
It is desirable to have maximum volumetric efficiency in the intake of any engine.
This will vary with engine speed, and Fig. 5-1 represents the efficiency curve of a
typical engine. There will be a certain engine speed at which the volumetric efficiency is maximum, decreasing at both higher and lower speeds. There are many
physical and operating variables that shape this curve. These will be examined.
In a naturally aspirated engine, volumetric efficiency will always be less than 100%
because fuel is also being added and the volume of fuel vapor will displace some
incoming air. The type of fuel and how and when it is added will determine how
much the volumetric efficiency is affected. Systems with carburetors or throttle body
injection add fuel early in the intake flow and generally have lower overall volumetric efficiency. This is because the fuel will immediately start to evaporate and fuel
Sec. 5-2
Volumetric Efficiency of SI Engines
vapor will displace incoming air. Multipoint injectors which add fuel at the intake
valve ports will have better efficiency because no air is displaced until after the
intake manifold. Fuel evaporation does not occur until the flow is entering the cylinder at the intake valve. Those engines that inject fuel directly into the cylinders after
the intake valve is closed will experience no volumetric efficiency loss due to fuel
evaporation. Manifolds with late fuel addition can be designed to further increase
volumetric efficiency by having larger diameter runners. High velocity and turbulence to promote evaporation are not needed. They can also be operated cooler,
which results in a denser inlet air flow.
Those fuels with a smaller air-fuel ratio, like alcohol, will experience a greater
loss in volumetric efficiency. Fuels with high heat of vaporization will regain some of
this lost efficiency due to the greater evaporation cooling that will occur with these
fuels. This cooling will create a denser air-fuel flow for a given pressure, allowing for
more air to enter the system. Alcohol has high heat of vaporization, so some efficiency lost due to AF is gained back again.
Gaseous fuels like hydrogen and methane displace more incoming air than liquid fuels, which are only partially evaporated in the intake system. This must be
considered when trying to modify engines made for gasoline fuel to operate on these
gaseous fuels. It can be assumed that fuel vapor pressure in the intake system is
between 1% and 10% of total pressure when gasoline-type liquid fuel is being used.
When gaseous fuels or alcohol is being used, the fuel vapor pressure is often greater
than 10% of the total. Intake manifolds can be operated much cooler when gaseous
fuel is used, as no vaporization is required. This will gain back some lost volumetric
The later that fuel vaporizes in the intake system, the better is the volumetric
efficiency. On the other hand, the earlier that fuel vaporizes, the better are the mixing process and cylinder-to-cylinder distribution consistency.
In older carbureted automobile engines, somewhere around 60% evaporation
of the fuel in the intake manifold was considered desirable, with the rest of the evaporation taking place during the compression stroke and combustion process. If fuel is
evaporated too late in the cycle, a small percent of the high-molecular-weight components may not vaporize. Some of this unvaporized fuel ends up on the cylinder
walls, where it gets by the piston rings and dilutes the lubricating oil in the crankcase.
Heat Transfer-High
All intake systems are hotter than the surrounding air temperature and will consequently heat the incoming air. This lowers the density of the air, which reduces
volumetric efficiency. Intake manifolds for carbureted systems or throttle body
injection systems are purposely heated to enhance fuel evaporation. At lower engine
speeds, the air flow rate is slower and the air remains in the intake system for a
longer time. It thus gets heated to higher temperatures at low speeds, which lowers
the volumetric efficiency curve in Fig. 5-1 at the low-speed end.
Air And Fuel Induction
Some systems have been tried which inject small amounts of water into the
intake manifold. This is to improve the volumetric efficiency by increasing the
resulting evaporative cooling that occurs. Probably the most successful use of this
principle was with large high-performance aircraft engines of World War II. Power
was increased by substantial amounts when water injection was added to some of
these engines.
Valve Overlap
At TDC at the end of the exhaust stroke and the beginning of the intake stroke,
both intake and exhaust valves are open simultaneously for a brief moment. When
this happens, some exhaust gas can get pushed through the open intake valve back
into the intake system. The exhaust then gets carried back into the cylinder with the
intake air-fuel charge, displacing some of the incoming air and lowering volumetric
efficiency. This problem is greatest at low engine speeds, when the real time of valve
overlap is greater. This effect lowers the efficiency curve in Fig. 5-1 at the low engine
speed end. Other factors that affect this problem are the intake and exhaust valve
location and engine compression ratio.
Fluid Friction Losses
Air moving through any flow passage or past any flow restriction undergoes a pressure drop. For this reason, the pressure of the air entering the cylinders is less than
the surrounding atmospheric air pressure, and the amount of air entering the cylinder is subsequently reduced. The viscous flow friction that affects the air as it passes
through the air filter, carburetor, throttle plate, intake manifold, and intake valve
reduces the volumetric efficiency of the engine intake system. Viscous drag, which
causes the pressure loss, increases with the square of flow velocity. This results in
decreasing the efficiency on the high-speed end ofthe curve in Fig. 5-1. Much development work has been done to reduce pressure losses in air intake systems. Smooth
walls in the intake manifold, the avoidance of sharp corners and bends, elimination
of the carburetor, and close-fitting parts alignment with no gasket protrusions all
contribute to decreasing intake pressure loss. One of the greatest flow restrictions is
the flow through the intake valve. To reduce this restriction, the intake valve flow
area has been increased by building multivalve engines having two or even three
intake valves per cylinder.
Air-fuel flow into the cylinders is usually diverted into a rotational flow pattern within the cylinder. This is done to enhance evaporation, mixing, and flame
speed and will be explained in the next chapter. This flow pattern is accomplished by
shaping the intake runners and contouring the surface of the valves and valve ports.
This increases inlet flow restriction and decreases volumetric efficiency.
If the diameter of the intake manifold runners is increased, flow velocity will
be decreased and pressure losses will be decreased. However, a decrease in velocity
Sec. 5-2
Efficiency of 51 Engines
will result in poorer mixing of the air and fuel and less accurate cylinder-to-cylinder
distribution. Compromises in design must be made.
In some low-performance, high fuel-efficient engines, the walls of the intake
manifold are made rough to enhance turbulence to get better air-fuel mixing. High
volumetric efficiency is not as important in these engines.
Choked Flow
The extreme case of flow restriction is when choked flow occurs at some location in
the intake system. As air flow is increased to higher velocities, it eventually reaches
sonic velocity at some point in the system. This choked flow condition is the maximum flow rate that can be produced in the intake system regardless of how
controlling conditions are changed. The result of this is a lowering of the efficiency
curve on the high-speed end in Fig. 5-1. Choked flow occurs in the most restricted
passage of the system, usually at the intake valve or in the carburetor throat on those
engines with carburetors.
Closing Intake Valve After BDC
The timing of the closure of the intake valve affects how much air ends up in the
cylinder. Near the end of the intake stroke, the intake valve is open and the piston is
moving from TDC towards BDC. Air is pushed into the cylinder through the open
intake valve due to the vacuum created by the additional volume being displaced by
the piston. There is a pressure drop in the air as it passes through the intake valve,
and the pressure inside the cylinder is less than the pressure outside the cylinder in
the intake manifold. This pressure differential still exists the instant the piston
reaches BDC and air is still entering the cylinder. This is why the closing of the
intake valve is timed to occur aBDC. When the piston reaches BDC, it starts back
towards TDC and in so doing starts to compress the air in the cylinder. Until the air
is compressed to a pressure equal to the pressure in the intake manifold, air continues to enter the cylinder. The ideal time for the intake valve to close is when this
pressure equalization occurs between the air inside the cylinder and the air in the
manifold. If it closes before this point, air that was still entering the cylinder is
stopped and a loss of volumetric efficiency is experienced. If the valve is closed after
this point, air being compressed by the piston will force some air back out of the
cylinder, again with a loss in volumetric efficiency.
This valve-closing point in the engine cycle, at which the pressure inside the
cylinder is the same as the pressure in the intake manifold, is highly dependent on
engine speed. At high engine speeds, there is a greater pressure drop across the
intake valve due to the higher flow rate of air. This, plus the less real cycle time at
high speed, would ideally close the intake valve at a later cycle position. On the
other hand, at low engine speeds the pressure differential across the intake valve is
less, and pressure equalization would occur earlier after BDC. Ideally, the valve
should close at an earlier position in the cycle at low engine speeds.
Air And Fuel Induction
Chap. 5
The position where the intake valve closes on most engines is controlled by a
camshaft and cannot change with engine speed. Thus, the closing cycle position is
designed for one engine speed, depending on the use for which the engine is designed. This is no problem for a single-speed industrial engine but is a compromise for
an automobile engine that operates over a large speed range. The result of this singleposition valve timing is to reduce the volumetric efficiency of the engine at both high
and low speeds. This is a strong argument for variable valve-timing control.
Intake Tuning
When gas flows in a pulsed manner, as in the intake manifold of an engine, pressure
waves are created that travel down the length of the flow passage. The wavelength
of these waves is dependent on pulse frequency and air flow rate or velocity. When
these waves reach the end of the runner or an obstruction in the runner, they create
a reflected pressure wave back along the runner. The pressure pulses of the primary
waves and the reflected waves can reinforce or cancel each other, depending on
whether they are in or out of phase.
If the length of the intake manifold runner and the flow rate are such that the
pressure waves reinforce at the point where the air enters the cylinder through the
intake valve, the pressure pushing the air in will be slightly higher, and slightly more
air will enter the cylinder. When this happens, the system is tuned and volumetric
efficiency is increa~ed. However, when the flow rate of air is such that the reflected
pressure pulses are out of phase with the primary pulses, the pressure pushing air
into the cylinder is slightly reduced and volumetric efficiency is lower. All older
engines and many modern engines have passive constant-length intake runner systems that can be tuned for one engine speed (i.e., length of runner designed for one
certain air flow rate and pulse timing). At other speeds the system will be out of
tune, and volumetric efficiency will be less at both higher and lower engine speeds.
Some modern engines have active intake systems that can tune the manifold
over a range of engine speeds. This is done by changing the length of the intake runners to match the air flow rate at various engine operating conditions. Various
methods are used to accomplish this. Some systems have single-path runners that
can be changed in length during operation by various mechanical methods. Other
systems have dual-path runners with controlling valves and/or secondary throttle
plates. As the engine speed changes, the air is directed through various-length runners which best tune the flow for that speed. All active systems are controlled by the
Exhaust Residual
During the exhaust stroke, not all of the exhaust gases get pushed out of the cylinder
by the piston, a small residual being trapped in the clearance volume. The amount of
this residual depends on the compression ratio, and somewhat on the location of the
valves and valve overlap. In addition to displacing some incoming air, this exhaust
Sec. 5-3
Intake Valves
gas residual interacts with the air in two other ways. When the very hot gas mixes
with the incoming air it heats the air, lowers the air density, and decreases volumetric efficiency. This is counteracted slightly, however, by the partial vacuum created
in the clearance volume when the hot exhaust gas is in turn cooled by the incoming
In all modern automobile engines and in many other engines, some exhaust gas is
recycled (EGR) into the intake system to dilute the incoming air. This reduces combustion temperatures in the engine, which results in less nitrogen oxides in the
exhaust. Up to about 20% of exhaust gases will be diverted back into the intake
manifold, depending on how the engine is being operated. Not only does this
exhaust gas displace some incoming air, but it also heats the incoming air and lowers
its density. Both of these interactions lower the volumetric efficiency of the engine.
In addition, engine crankcases are vented into the intake systems, displacing
some of the incoming air and lowering the volumetric efficiency. Gases forced
through the crankcase can amount to about 1% of the total gas flow through the
Intake valves of most IC engines are poppet valves that are spring loaded closed and
pushed open at the proper cycle time by the engine camshaft, shown schematically
in Fig. 1-12. Much rarer are rotary valves or sleeve valves, found on some engines.
Most valves and valve seats against which they close are made of hard alloy
steel or, in some rarer cases, ceramic. They are connected by hydromechanical or
mechanical linkage to the camshaft. Ideally, they would open and close almost
instantaneously at the proper times. This is impossible in a mechanical system, and
slower openings and closings are necessary to avoid wear, noise, and chatter. The
lobes on a camshaft are designed to give quick but smooth opening and closing without bounce at the mechanical interface. This requires some compromise in the speed
of valve actuation.
Earlier engines had camshafts mounted close to the crankshaft and the valves
mounted in the engine block. As combustion chamber technology progressed,
valves were moved to the cylinder head (overhead valves), and a long mechanical
linkage system (push rods, rocker arms, tappets) was required. This was improved
by also mounting the camshaft in the engine head (i.e., overhead cam engines). Most
modern automobile engines have one or two camshafts mounted in the head of each
bank of cylinders. The closer the camshaft is mounted to the stems of the valves, the
greater is the mechanical efficiency of the system.
The distance which a valve opens (dimension I in Fig. 5-2) is called valve lift
and is generally on the order of a few millimeters to more than a centimeter,
Sec. 5-3
Intake Valves
Ai is the total inlet valve area for one cylinder, whether it has one, two, or
three intake valves.
On many newer engines with overhead valves and small fast-burn combustion
chambers, there is often not enough wall space in the combustion chambers to fit
the spark plug and exhaust valve and still have room for an intake valve large
enough to satisfy Eq. (5-4). For this reason, most engines are now built with more
than one intake valve per cylinder. Two or three smaller intake valves give more
flow area and less flow resistance than one larger valve, as was used in older engines.
At the same time, these two or three intake valves, along with usually two exhaust
valves, can be better fit into a given cylinder head size with enough clearance to
maintain the required structural strength; see Fig. 5-3.
Multiple valves require a greater complexity of design with more camshafts
and mechanical linkages. It is often necessary to have specially shaped cylinder
heads and recessed piston faces just to avoid valve-to-valve or valve-to-piston
contact. These designs would be difficult if not impossible without the use of computer-aided design (CAD). When two or more valves are used instead of one, the
valves will be smaller and lighter. This allows the use of lighter springs and reduces
forces in the linkage. Lighter valves can also be opened and closed faster. Greater
voluIlli<tric efficiency of multiple valves overshadows the added cost of manufacturing and the added complexity and mechanical inefficiency.
Some engines with multiple intake valves are designed so that only one intake
valve per cylinder operates at low speed. As speed is increased, less time per cycle is
available for air intake, and the second (and sometimes third) valve actuates, giving
additional inlet flow area. This allows for increased control of the flow of air within
the cylinder at various speeds, which results in more efficient combustion. In some
of these systems, the valves will have different timing. The low-speed valve will close
at a relatively early point aBDC. When operating, the high-speed valve(s) will then
Figure 5·3 Possible valve arrangements for a modern overhead valve engine. For a
given combustion chamber size, two or three smaller intake valves will give greater
flow area than one larger valve. For each cylinder, the flow area of the intake
valve(s) is generally about 10 percent greater than the flow area of the exhaust
valve(s). (8) Most early overhead valve engines (1950s-1980s) and a few modern
engines. (b) Most present-day automobile engines. (c) Some modern high-performance automobile engines.
close at a later position (up to 20° later) to avoid lowering the volumetric efficiency,
as explained in Section 5-2.
Mass flow through the intake valve into a cylinder is shown in Fig. 5-4. Reverse
flow can result when valve overlap occurs near TDC. Reverse flow out of the cylinder will also occur at lower engine speeds as the intake valve is closing aBDC, as
previously explained.
Intake valves normally start to open somewhere between 10° and 25° bTDC
and should be totally open by TDC to get maximum flow during the intake stroke.
The higher the speed for which the engine is designed, the earlier in the cycle the
intake valve will be opened. In most engines valve timing is set for one engine speed,
with losses occurring at any lower speed or higher speed. At lower than design speed
the intake valve opens too early, creating valve overlap that is larger than necessary.
This problem is made worse because low engine speeds generally have low intake
manifold pressures. At higher than design speeds, the intake valve opens too late
and intake flow has not been fully established at TDC, with a loss in volumetric efficiency. Automobile engines operate at many different speeds, with valve timing set
Sec. 5-3
Intake Valves
for optimization at only one speed. Industrial engines which operate at only one
speed can obviously have their valve timing set for that speed. Modern automobile
engines have longer valve overlap because of their higher operating speeds.
Intake valves normally finish closing about 40°-50° aBDC for engines operating on an Otto cycle. Again, the correct point of closing can be designed for only
one engine speed, with increased losses at either higher or lower than design speed.
Various ways of obtaining variable valve timing are being developed for automobile engines. These allow intake valve opening and closing to change with engine
speed, giving better flow efficiency over a range of speeds. Some engines use a
hydraulic-mechanical system that allows for an adjustment in the linkage between
the camshaft and valves. It does this with engine oil and bleed holes that require
longer cycle time (equal real time) to shift linkage dimensions as speed is increased.
With proper design, the intake valve can be made to open earlier and close later as
engine speed is increased.
Some engines have camshafts with dual lobes for each valve. As engine speed
changes, the follower that rides the cam shifts from one lobe to the other, changing
valve timing. This gives better engine efficiency at a cost of mechanical complexity
and added cost [9, 133].
T~e most flexible variable valve-timing system is electronic actuators on each
valve and no camshaft. This has been done experimentally on engines but at present
is too costly and takes up too much room to be practical on automobiles. Not only
does this type of system give essentially infinite variation in timing, but it also allows
for changing valve lift and gives much faster opening and closing times than that
which can be obtained with a camshaft [36].
If valve lift can be controlled, more efficient operation can be obtained at all
engines speeds. Flow resistance and mass flow patterns can be changed to better
give desired operation characteristics at different speeds.
A 2.8-liter four-cylinder square engine (bore = stroke) with two intake valves per cylinder is designed to have a maximum speed of 7500 RPM. Intake temperature is 600C.
Fuel injectors are nozzles that inject a spray of fuel into the intake air. They are normally controlled electronically, but mechanically controlled injectors which are cam
actuated also exist. A metered amount of fuel is trapped in the nozzle end of the
injector, and a high pressure is applied to it, usually by a mechanical compression
process of some kind. At the proper time, the nozzle is opened and the fuel is
sprayed into the surrounding air.
Most modern automobile SI engines have multipoint port fuel injectors. In this
type of system, one or more injectors are mounted by the intake valve(s) of each
cylinder. They spray fuel into the region directly behind the intake valve, sometimes
directly onto the back of the valve face. Contact with the relatively hot valve surface
enhances evaporation of the fuel and helps cool the valve. The injectors are usually
timed to spray the fuel into the quasi-stationary air just before the intake valve
opens. High liquid spray velocity is necessary to assure evaporation and mixing with
the air. Because injection starts before the intake valve is open, there is a momentary pause in the air flow, and the air velocity does not promote the needed mixing
and evaporation enhancement. When the valve then opens, the fuel vapor and liquid
droplets are carried into the cylinder by the onrush of air, often with the injector
Sec. 5-4
Fuel Injectors
continuing to spray. Any backflow of hot residual exhaust gas that occurs when the
intake valve opens also enhances the evaporation of fuel droplets. Each cylinder has
its own injector or set of injectors which give a fairly constant fuel input cycle-tocycle and cylinder-to-cylinder, depending on the manufactured quality of the
injector parts. Even with perfect control of the fuel flow, there would still be variations in AF due to the imperfect air flow cycle-to-cycle and cylinder-to-cylinder.
Multipoint port injector systems are better than carburetors or throttle body injector
systems at giving consistent AF delivery. Some multipoint systems have an additional auxiliary injector or injectors mounted upstream in the intake manifold to
give added fuel when rich mixtures are needed for startup, idling, WOT acceleration, or high RPM operation.
Because there is such a short duration (time and length) after fuel injection for
evaporation and mixing to occur, it is essential that port injectors spray very tiny
droplets of fuel. Ideally, droplet size could be varied with engine speed, smaller at
higher speeds, when real time is shorter.
Intake systems with multipoint injectors can be built with improved volumetric
efficiency. There is no venturi throat to create a pressure drop as with a carburetor.
Because little or no air-fuel mixing occurs in most of the intake manifold, high velocity is not as important, and larger diameter runners with less pressure loss can be
used. There is also no displacement of incoming air with fuel vapor in the manifold.
Some systems have a single fuel pump (common rail) supplying all cylinders or
a bank of cylinders. The fuel can be supplied at high pressure with the injectors only
acting as a metering device. Some systems supply the fuel to the injectors at low
pressure, and the injector must then increase the pressure and meter the flow. Other
systems have a fuel pump for each cylinder, with the pump sometimes built as a single unit with the injector. The amount of fuel injected each cycle and injection
pressure are controlled by the EMS. Injection pressure is generally on the order of
200 to 300 kPa absolute, but can be much higher. Engine operating conditions and
information from sensors in the engine and exhaust system are used to continuously
adjust AF and injection pressure. Engines with pump systems and controls on each
cylinder can be more finely adjusted than those with single-pump systems for the
entire engine or bank of cylinders.
Injection pumps deliver fuel volumetric ally and must be controlled to compensate for thermal expansion of the fuel at different temperatures, and for
compressibility at different pressures. Time average of fuel flow into an engine at
different operating conditions can vary by as much as a factor of 50.
The amount of fuel injected for each cycle can be adjusted by injection time,
which is on the order of 1.5 to 10 ms. This corresponds to an engine rotation of 100
to 300°, depending on immediate operating conditions. The duration of injection is
determined by feedback from engine and exhaust sensors. Sensing the amount of
oxygen in the exhaust is one of the more important feedbacks in adjusting injection
duration for proper air-fuel ratio. This is done by measuring the partial pressure of
the oxygen in the exhaust manifold. Other feedback parameters include engine
speed, temperatures, air flow rate, and throttle position. Engine startup when a
Air And Fuel Induction
Chap. 5
richer mixture is needed is determined by coolant temperature and the starter
switch. Various ways of determining intake air flow rate include pressure drop measurement and hot-wire flow sensors. Hot-wire sensors determine air flow rate by the
cooling effect on hot electrical resistors.
Various kinds of fuel injectors are available. Most operate by trapping a small
amount of fuel behind the nozzle orifice. The nozzle is closed by a needle valve held
against its seat by a spring or magnetic force. On lower pressure nozzles, injection is
initiated by increasing pressure and pushing open the valve, allowing flow to occur.
On high-pressure nozzles, flow is initiated by lifting the valve needle off its seat by
action of an electric solenoid. Spray duration, and sometimes pressure, is generally
controlled electronically.
Some systems add air to the fuel in front of the injectors, and the actual injection consists of an air-fuel mixture. This greatly enhances the evaporation and
mixing processes after injection. Modern experimental two-stroke cycle automobile
engines use this process to assure proper mixing in the very short time available
between injection and combustion.
To simplify the fuel delivery system, at least one type of motorcycle two-stroke
cycle engine uses high-pressure gas tapped off the combustion chamber to provide
the necessary pressure for the fuel injectors [50]. This may be one way to keep cost
down in smalllawn-mower-type engines in the coming transition from carburetors
to fuel injection.
Som~ fuel injection systems, including most very early ones, consist of throttle
body injection. This consists of one or more injectors mounted near the inlet of the
intake manifold, usually just downstream of the throttle plate. This injector or set of
injectors supplies fuel for all cylinders, allowing the distribution to be controlled by
the intake manifold. This is simpler technology than multipoint injection and a fair
amount cheaper to manufacture. Fewer injectors are needed and coarser nozzles can
be used, as there is a longer flow duration to evaporate and mix the larger fuel
droplets. A greater variation in cylinder-to-cylinder AF can be expected. Controls
are simpler, with some injectors giving a continuous spray under some operating
conditions. Throttle response time is slower with throttle body injection than with
port injection.
Some SI and all CI engine fuel injection systems have the injectors mounted in
the cylinder head and inject directly into the combustion chamber. This gives very
constant fuel input cycle-to-cycle and cylinder-to-cylinder. Modern experimental
two-stroke cycle automobile engines use this system to avoid losing fuel out of the
exhaust system during scavenging and valve overlap. This type of system requires
very precise injectors giving extremely fine droplets of fuel. Fuel is added during the
compression stroke, which allows an extremely short period of time for evaporation
and mixing, less than 0.008 second at 3000 RPM. High turbulence and swirl are also
Injectors that spray directly into the combustion chamber must operate with
much higher pressures than injectors that spray into the intake system (some as high
as 10 MPa). The air into which the fuel must be injected is at much higher pressures
For several decades, carburetors were used on most SI engines as the means of
adding fuel to the intake air. The basic principle on which the carburetor works is
extremely simple, but by the 1980s, when fuel injectors finally replaced it as the main
fuel input system, it had evolved into a complicated, sophisticated, expensive system. Carburetors are still found on a few automobiles, but the vast majority of car
engines use simpler, better controlled, more flexible fuel injector systems. Many
small engines like those on lawn mowers and model airplanes still use carburetors,
although much simpler ones than those found on the automobile engines of the
1960s and 1970s. This is to keep the cost of these engines down, simple carburetors
being cheap to manufacture while fuel injectors require more costly control systems.
Even on some of these small engines, carburetors are being replaced with fuel injectors as pollution laws become more stringent.
Figure 5-5 shows that the basic carburetor is a venturi tube (A) mounted with
a throttle plate (B) (butterfly valve) and a capillary tube to input fuel (C). It is usually mounted on the upstream end of the intake manifold, with all air entering the
engine passing first through this venturi tube. Most of the time, there will be an air
filter mounted directly on the upstream side of the carburetor. Other main parts of
the carburetor are the fuel reservoir (D), main metering needle valve (E), idle speed
adjustment (F), idle valve (G), and choke (H).
As air enters the engine due to the pressure differential between the surrounding atmospheric air and the partial vacuum in the cylinders during intake
strokes, it is accelerated to high velocity in the throat of the venturi. By Bernoulli's
principle, this causes the pressure in the throat P2 to be reduced to a value less than
the surrounding pressure Pi, which is about one atmosphere. The pressure above
the fuel in the fuel reservoir is equal to atmospheric pressure as the reservoir is
vented to the surroundings (P3 = Pi > P2).There is, therefore, a pressure differential through the fuel supply capillary tube, and this forces fuel flow into the venturi
throat. As the fuel flows out of the end of the capillary tube, it breaks into very small
droplets which are carried away by the high-velocity air. These droplets then evap-
orate and mix with the air in the following intake manifold. As engine speed is
increased, the higher flow rate of air will create an even lower pressure in the venturi
throat. This creates a greater pressure differential through the fuel capillary tube,
which increases the fuel flow rate to keep up with the greater air flow rate and
engine demand. A properly designed carburetor can supply the correct AF at all
engine speeds, from idle to WOT. There is a main metering valve (E) in the fuel
capillary tube for flow rate adjustment.
Sec. 5-5
The level in the fuel reservoir is controlled by a float shutoff. Fuel comes from
a fuel tank supplied by an electric fuel pump on most modern automobiles, by a
mechanical-driven fuel pump on older automobiles, or even by gravity on some
small engines (lawn mowers) and historic automobiles.
The throttle controls the air flow rate and thus the engine speed. There is an
idle speed adjustment (throttle stop) which sets the closed throttle position such that
some air can flow even at fully closed throttle. This adjustment, which is usually
about 50_150 of throttle plate rotation, controls how fast the engine will run at idle
conditions. Because the air flow rate through the venturi throat will be minimal at
idle conditions when the throttle is closed, the pressure in the throat will only be
slightly less than atmospheric pressure. The pressure differential through the fuel
capillary tube will be very small, resulting in a low fuel flow rate and very poor flow
control. An idle valve is added (G) which gives better fuel flow control at idle and
almost closed throttle position. When the throttle is closed or almost closed, there is
a large pressure differential across the throttle plate, and the pressure in the intake
system downstream of the throttle (B) is very low. There is, therefore, a substantial
pressure drop through the idle valve, allowing for proper flow control and a greater
flow rate of fuel. Engines are usually run with a richer air-fuel mixture at low and
idle speeds to avoid misfires caused by a large exhaust residual resulting from valve
Another butterfly valve called the choke (H) is positioned upstream of the
venturi throat. This is needed to start cold engines. It is not really the air-fuel ratio
that is important for considering combustion, but the air-vapor ratio; only fuel that
is vaporized reacts in a combustion process. When an engine is cold (as in an automobile sitting overnight in northern Minnesota in January), a very small percent of
fuel will vaporize in the intake and compression processes. The fuel is cold and much
more viscous, creating a lower flow rate and larger droplets which vaporize more
slowly. The metal engine parts are cold and inhibit vaporization. Even in the compression stroke, which heats the air-fuel mixture, the cold cylinder walls absorb heat
and reduce vaporization. Engine lubrication is cold and more viscous, making the
engine turn more slowly in the starting process. As the engine turns over slowly with
the starter, only a very small air flow is generated through the carburetor. This creates only a very small pressure differential through the fuel capillary tube and a very
low flow rate. At starting conditions, the throttle is wide open, so no substantial
pressure differential is established through the idle valve. All of this creates very little fuel evaporation, and if normal carburetor action were used, there would not be
enough fuel vapor in the cylinder to create combustion and get the engine started.
For this reason, the choke was added to carburetors. When starting a cold engine,
the first step is to close the choke. This restricts air flow and creates a vacuum in the
entire intake system downstream of the choke, even at the very low air flow rates
encountered in starting. There is, therefore, a large pressure differential across both
the fuel capillary tube and the idle valve, causing a large fuel flow to mix with the
low air flow. This gives a very rich air-fuel mixture entering the cylinders, up to AF
= 1:1 for very cold starts. With only a small percent of fuel evaporating, a com-
Air And Fuel Induction
bustible air-vapor mixture is created, combustion occurs, and the engine starts. Only
a few engine cycles are required before everything starts to heat up and more normal operation occurs. As the engine heats up, the choke is opened and has no effect
on final steady-state operation.
It does not require frigid winter temperatures to create the need for of a choke
for starting an engine. Anyone who has ever tried to start a cheap chokeless lawn
mower at lOoe will agree with this.
Most later automobile carburetors were equipped with automatic chokes.
These would be closed by the vehicle operator before cold starting was attempted,
usually by stepping the throttle pedal to the floor. After the engine was started, the
choke would slowly open automatically as the engine temperature increased, controlled by thermal and/or vacuum means. Smalllawn-mower-type engines and older
automobile engines have manually controlled chokes.
Many small low-cost engines have no choke. Some constant-speed engines like
those for model airplanes or some industrial applications have no throttle.
Another added feature of modern automobile carburetors is an accelerator
pump. When fast acceleration is desired, the throttle is quickly opened to WOT, and
the air and fuel flowing into the engine are quickly increased. The gaseous air and
fuel vapor react to this acceleration very quickly due to their low mass inertia. The
fuel that is still liquid in larger droplets and in the film along the walls of the intake
manifold has much higher density and mass inertia and, therefore, accelerates much
slower. The engine experiences a momentary deficiency of fuel and a major reduction in the fuel-air ratio. This causes an undesirable hesitation in the acceleration of
the engine speed to the possible extreme of stalling the engine. To avoid this, an
acceleration pump is added which injects an added quantity of fuel into the air flow
when the throttle is opened quickly. Instead of experiencing a momentary lean
air-fuel mixture, the engine experiences a momentary rich mixture that assists in the
acceleration process.
Air And Fuel Induction
This equation can be used to size the carburetor throat needed for an engine.
Equation (5-8) can then be used to establish the cross-sectional area of the fuel capillary tube Ac relative to other parameters.
Fortunately it is found that, once the diameters of the carburetor throat and
fuel capillary tube are established, carburetors can be built that will give correct
air-fuel mixtures over a large range of operating conditions. These include starting,
WOT, cruise, and sudden deceleration. Cold-engine starting characteristics of a carburetor have already been explained.
WOT is used for high-speed operation and/or when accelerating under load.
Here the carburetor delivers a rich mixture that gives maximum power at a cost of
poorer fuel economy.
At steady-state cruising, a carburetor delivers a lean mixture (AF = 16) which
gives less power but good fuel economy. A modern midsize automobile requires
only about 5 to 6 kW (7-8 hp) to cruise at 55 MPH on a level highway.
When an engine is operating at high speed and the throttle is suddenly closed
to decelerate the automobile, a slightly rich mixture will be delivered by the carburetor. The combination of a closed throttle and high engine speed will create a high
vacuum in the intake system downstream from the throttle plate. This will cause
very little fuel flow into the carburetor throat but will cause a flow through the idle
valve. This fuel, mixed with the low air flow rate, will give the rich mixture needed to
keep good combustion. With the high vacuum in the intake system, a very large
exhaust residual will occur during valve overlap, and a rich mixture is needed to
sustain combustion. Misfires are common during this type of deceleration. Fuel
injectors give milch better AF control in fast deceleration.
When air flows through a venturi nozzle, the pressure drops as the air is accelerated through the throat and then rises again as the air velocity is reduced past the
throat. There is always a net pressure loss through a venturi, with downstream pressure never equaling upstream pressure. For a given flow rate, the smaller the throat
diameter, the greater will be this net pressure loss. This loss directly reduces the
volumetric efficiency of the engine. This would suggest that the throat diameter of
the carburetor should be made large. However, a large throat area would have low
air velocity and a small pressure differential through the fuel capillary tube, causing
poorer AF control, larger fuel droplets, and poorer mixing of air and fuel. This
would be especially true at low engine speeds and corresponding low air flow rates.
Generally it would be desirable to have large-throat carburetors on high-performance engines, which usually operate at high speeds and where fuel economy is a
secondary priority. Small economy engines that do not need high power would have
small-throat carburetors.
One way to avoid compromising on the throat diameter is to use a two-barrel
carburetor (i.e., two separate, smaller diameter, parallel venturi nozzles mounted in
a single carburetor body). At low engine speeds, only one carburetor barrel is used.
This gives a higher pressure differential to better control fuel flow and mixing without causing a large pressure loss through the carburetor. At higher engine speeds
Figure 5-6 Throat of carburetor with
secondary venturi. The small secondary
venturi gives a large pressure drop and
good fuel flow control, while the larger
primary throat offers less resistance to the
main air flow.
and higher air flow rates, both barrels are used, giving the same better control without a large pressure loss.
Another type of carburetor uses a secondary venturi mounted inside the primary larger venturi, as shown in Fig. 5-6. The large diameter of the primary venturi
avoids a large pressure loss, while the small diameter of the secondary venturi gives
a higher pressure differential for good fuel flow control and mixing. Still another
type of carburetor changes the air flow area in the throat, increasing it at high speed
and decreasing it at low speed. Several methods of doing this on various carburetors
have been tried with mostly less than ideal results. There has even been some success in making a variable-diameter capillary tube for the fuel flow. When modern
electronic controls are used for the various operations of a carburetor, a more
Air And Fuel Induction
dependable, accurate, and flexible system is realized. However, along with the emergence of electronic controls came an even better fuel input system: fuel injectors.
When a four-stroke cycle engine is operating, each cylinder has intake occurring about one-fourth of the time. A single carburetor can, therefore, supply an
air-fuel mixture to as many as four cylinders without the need for enlarging the
throat area. Instead of supplying a given flow rate intermittently one-fourth of the
time to one cylinder, the same carburetor can supply the same flow rate to four
cylinders at almost steady-state flow if the cylinder cycles are dispersed evenly about
the engine rotation, the normal way of operating an engine. The same size carburetor would be correct for two or three cylinders also, with flow occurring on and off.
If five or more cylinders are connected to a single carburetor, the throat area would
have to be larger to accommodate the higher flow rates when more than one cylinder is taking in air and fuel, which would occur at least some of the time.
When eight-cylinder automobile engines were popular during the 1950s
through the 1980s, two- and four-barrel carburetors were quite common. Each barrel of a two-barrel carburetor would be used to supply four cylinders at about
steady-state air flow. Four-barrel carburetors were also used, with each of four cylinders being supplied by two barrels. At low engine speeds, only one barrel of each set
of cylinders (two barrels total) would be in operation. At high speeds, all four barrels would be used.
A downdraft carburetor (vertical venturi tube with air flowing from top to bottom) is best in that gravity assists in keeping the fuel droplets flowing in the same
direction as the alt flow. A long runner (passage between throttle and intake manifold) that allows more distance and time for evaporation and mixing is also good.
Both of these concepts were acceptable in early automobiles, which had large engine
compartments and on which a high hood was desirable for snob appeal. As automobiles were built lower and engine compartments smaller, compromising was
necessary and carburetors were built with shorter barrels and runners. To further
reduce engine compartment height, side-draft carburetors were developed with air
flowing horizontally. These generally need higher flow velocities to keep the fuel
droplets suspended in the air flow, and with higher velocities come greater pressure
losses. For special reasons of space and/or other considerations, some engines are
fitted with updraft carburetors. These need fairly high flow velocities to carry the
fuel droplets in suspension against the action of gravity.
When a carburetor is designed for an aircraft engine, special consideration
must be given to the fact that the vehicle does not always fly horizontally but may
bank or even go into inverted flight. In addition to the possibility of the air flow
being up, down, or horizontal, it is necessary to design the fuel reservoir for these
conditions also. Another difference from an earthbound engine is that the inlet
pressure will be less than one atmosphere, depending on the altitude of the aircraft. This increases the difficulty of keeping the correct AF at all times. Many
aircraft engines are supercharged, which minimizes this problem. Even later automobile carburetors were designed to avoid fuel starvation as the vehicle turns a
Sec. 5-5
sharp corner and sloshes the fuel in the reservoir, a problem which does not occur
with fuel injectors.
A problem sometimes encountered with carburetors is icing, which usually
occurs on the throttle plate. Water vapor in the air will freeze when the air is cooled
to low temperatures. Cooling occurs for two reasons: There is expansion cooling due
to the pressure reduction experienced by the air as it flows through the carburetor,
and there is evaporative cooling due to the just-added fuel droplets in the throat of
the venturi. Fuel additives and heating the carburetor are two possible solutions to
this problem.
Another problem of carburetors is the splitting of the air flow around the
throttle plate immediately after the fuel has been added. This makes it very difficult
to get homogeneous mixing and is a major reason why the air-fuel mixture delivered
to the cylinders is often non-uniform. This problem is more serious with later shortbarrel, short-runner carburetors.
At conditions other than WOT, the major pressure drop in an intake system
will be at the throttle plate of the carburetor. This may be as much as 90% of the
total pressure drop, or greater. The flow may become choked (sonic velocity) at a
partially closed throttle. When the throttle position is suddenly changed, it takes
several engine revolutions to reestablish steady-state flow through the carburetor.
A six-cylinder,3.6-literSI engine is designed to have a maximum speed of 6000RPM.
At this speed the volumetric efficiency of the engine is 0.92. The engine will be
equipped with a two-barrel carburetor, one barrel for low speeds and both barrels for
high speed. Gasoline density can be considered to be 750kg/m3.
Superchargers and turbochargers are compressors mounted in the intake system and
used to raise the pressure of the incoming air. This results in more air and fuel entering each cylinder during each cycle. This added air and fuel creates more power
during combustion, and the net power output of the engine is increased. Pressure
increase can be anywhere from 20 to 250 kPa, with most engines on the lower end of
this scale.
Sec. 5-6
Supercharging and Turbocharging
Superchargers are mechanically driven directly off the engine crankshaft. They
are generally positive displacement compressors running at speeds about the same
as engine speed (Fig. 1-8). The power to drive the compressor is a parasitic load on
the engine output, and this is one of the major disadvantages compared to a turbocharger. Other disadvantages include higher cost, greater weight, and noise. A
major advantage of a supercharger is very quick response to throttle changes. Being
mechanically linked to the crankshaft, any engine speed change is immediately
transferred to the compressor.
Some high-performance automobile engines and just about all large CI
engines are supercharged. All two-stroke cycle engines which are not crankcase
compressed (a form of supercharging) must be either supercharged or turbocharged.
When the first law of thermodynamics is applied to the air flowing through a
supercharger compressor,
Wse = ma(hout
where: Wse
- hin)
= macp(Tout - Tin)
= power needed to drive the supercharger
ma = mass flow rate of air into the engine
cp = specific heat of air
h = specific enthalpy
'" T = temperature
This assumes that the compressor heat transfer, kinetic energy terms, and
potential energy terms are negligibly small, true for most compressors. All compressors have isentropic efficiencies less than 100%, so the actual power needed will
be greater than the ideal. In Fig. 5-7, process 1-2s represents ideal isentropic compression, while process 1-2A is the actual process with an increase in entropy. The
isentropic efficiency TJs of the supercharger compressor is:
Air And Fuel Induction
(17s)sc = Wisen/Wact
[nia(hzs - h1)]/[nia(hzA
= [niacp(Tzs - TI)]/[niacp(TzA
- TI)]
- hI)]
= (Tzs - TI)/(TzA
- TI)
If the inlet temperature and pressure are known as well as the designed output
pressure, the ideal gas isentropic relationship can be used to find Tzs:
Tzs = Tl(PZ/PI)(k-l)/k
The actual outlet temperature TZA can then be calculated from Eq. (5-14) if
the isentropic efficiency is known. When using Eq. (5-15), a value of k = 1.40 should
be used because of the lower temperature at this point.
There is also a mechanical efficiency of less than 100% between the power
taken from the engine and what is delivered to the compressor:
= (Wact)sc/Wfrom
For added engine output power, it is desirable to have the higher input air
pressure supplied by the supercharger. However, the supercharger also raises the
inlet air temperature by compressive heating, as can be seen in Eq. (5-15). This is
undesirable in SI engines. If the temperature at the start of the compression stroke
is higher, all temperatures in the rest of the cycle will also be higher. Often, this will
cause self-ignition and knocking problems during combustion. To avoid this, many
superchargers are equipped with an aftercooler that cools the compressed air back
to a lower temperature. The aftercooler can be either an air-to-air heat exchanger or
an air-to-liquid heat exchanger. The cooling fluid can be air flowing through the
engine compartment, or it can be engine liquid coolant in a more complex system.
Some superchargers are made up of two or more compressor stages with an aftercooler following each stage. Aftercoolers are not needed on superchargers used on
CI engines because there is no concern about knock problems. Aftercoolers are
costly and take up space in the engine compartment. For these reasons, the superchargers on some automobiles do not have aftercoolers. These engines generally
have reduced compression ratios to avoid problems of self-ignition and knock.
The compressor of a turbocharger is powered by a turbine mounted in the exhaust
flow of the engine (Figs. 1-9 and 5-8). The advantage of this is that none of the
engine shaft output is used to drive the compressor, and only waste energy in the
exhaust is used. However, the turbine in the exhaust flow causes a more restricted
flow, resulting in a slightly higher pressure at the cylinder exhaust port. This reduces
the engine power output very slightly. Turbocharged engines generally have lower
specific fuel consumption rates. They produce more power, while the friction power
lost remains about the same.
Maximum pressure in an engine exhaust system is only very little above atmospheric, so there can only be a very small pressure drop through the turbine. Because
of this, it is necessary to run the turbine at very high speeds so that enough power is
produced to run the compressor. Speeds of 100,000 to 130,000 RPM are common.
These high speeds, and the fact that exhaust gas is a hot, corrosive environment,
demand special materials and concern for long-term reliability.
A disadvantage of turbochargers is turbo lag, which occurs with a sudden
throttle change. When the throttle is quickly opened to accelerate an automobile,
the turbocharger will not respond quite as quickly as a supercharger. It takes several
engine revolutions to change the exhaust flow rate and to speed up the rotor of the
turbine. Turbo lag has been greatly reduced by using lightweight ceramic rotors that
can withstand the high temperatures and that have very little mass inertia. Turbo
lag can also be reduced by using a smaller intake manifold.
Most turbochargers, like superchargers, are equipped with an aftercooler to
again lower the compressed air temperature. Many also have a bypass that allows
the exhaust gases to be routed around the turbocharger when an inlet air pressure
boost is not needed. Some modern turbines are being developed which have a variable blade angle. As the engine speed or load is changed, the blade angle can be
adjusted to give maximum efficiency at each flow rate.
Radial flow centrifugal compressors, turning at high speed, are generally used
on automobile-size engines. On very large engines, axial flow compressors are used
because of their greater efficiency at the higher air flow rates. The isentropic efficiency of a compressor is defined as:
While many SI engines are designed to have a homogeneous air-fuel mixture
throughout the combustion chamber, some modern stratified charge engines are designed to have a different air-fuel ratio at different locations within the combustion
chamber. A rich mixture that ignites readily is desired around the spark plug, while
the major volume of the combustion chamber is filled with a very lean mixture that
gives good fuel economy. Special intake systems are necessary to supply this non-homogeneous mixture. Combinations of multiple valves and multiple fuel injectors,
along with flexible valve and injection timing, are used to accomplish the desired results. Some stratified charge SI engines are operated with no throttle, which raises the
volumetric efficiency. Speed is controlled by proper timing and quantity of fuel input.
For various technical and financial reasons, some engines are designed to
operate using a combination of two fuels. For instance, in some third-world countries dual-fuel engines are used because of the high cost of diesel fuel. Large CI
Air And Fuel Induction
Chap. 5
engines are run on a combination of methane and diesel oil. Methane is the main
fuel because it is more cheaply available. However, methane is not a good CI fuel by
itself because it does not readily self-ignite (due to its high octane number). A small
amount of diesel oil is injected at the proper cycle time. This ignites in a normal
manner and initiates combustion in the methane-air mixture filling the cylinder.
Combinations of fuel input systems are needed on these types of engines.
Inlet air in two-stroke cycle engines must be input at a pressure greater than atmospheric. Following blowdown, at the start of the intake process the cylinder is still
filled with exhaust gas at atmospheric pressure. There is no exhaust stroke. Air
under pressure enters the cylinder and pushes most of the remaining exhaust residual out the still-open exhaust port. This is called scavenging. When most of the
exhaust gas is out, the exhaust port closes and the cylinder is filled with air. At part
throttle inlet pressure is low, and this results in poorer scavenging.
There are two general methods of putting air into the cylinders: through normal intake valves, or through intake slots in the cylinder walls. The intake air is
pressurized using a supercharger, turbocharger, or crankcase compression.
Two-stroke cycle engines have open combustion chambers. It would be
extremely difficult to get proper scavenging in a cylinder with a divided chamber.
Some modern experimental two-stroke cycle automobile engines use standard-type superchargers and input the air through intake valves with no fuel added.
The compressed air scavenges the cylinder and leaves it filled with air and a small
amount of exhaust residual. After the intake valve is closed, fuel is injected directly
into the combustion chamber by injectors mounted in the cylinder head. This is done
to avoid HC pollution from fuel passing into the exhaust system when both exhaust
and intake valves are open. In some automobile engines, air is injected with the fuel.
This speeds evaporation and mixing, which is required because of the very short
time of the compression stroke. Fuel injection pressure is on the order of 500 to 600
kPa, while air injection pressure is slightly less at about 500 kPa. For SI engines fuel
injection occurs early in the compression stroke, immediately after the exhaust valve
closes. In CI engines the injection occurs late in the compression stroke, a short time
before combustion starts.
Other modern automobile engines, and just about all small two-stroke cycle
engines, due to cost, use crankcase compression to force air into and scavenge the
cylinders. In these engines, air is introduced at atmospheric pressure into the cylinder below the piston through a one-way valve when the piston is near TDC. The
power stroke pushes the piston down and compresses the air in the crankcase, which
has been designed for this dual purpose. The compressed air then passes through an
input channel into the combustion chambers. In modern automobile engines, the
fuel is added with injectors, as with supercharged engines. In small engines, the
fuel is usually added with a carburetor to the air as it enters the crankcase. This is
Sec. 5-8
Intake For Two-Stroke Cycle Engines
done to keep the cost down on small engines, simple carburetors being cheap to
build. As pollution laws become more stringent, fuel injectors will probably become
more common in small engines.
Exhaust blowdown occurs at about 100° to 110° aTDC when the exhaust valve
is opened or when the exhaust slots in the cylinder walls are uncovered. Slightly
later, at about 50° bBDC, intake occurs by means of valves or intake slots located a
short distance below the exhaust slots in the cylinder walls. Either air or an air-fuel
mixture enters the cylinder at a pressure of 1.2 to 1.8 atmospheres, as explained previously. The pressurized air pushes out most of the remaining exhaust gas through
the still-open exhaust valves or slots. Ideally, the incoming air will force most of the
exhaust gas out of the cylinder without mixing with it and without too much air-fuel
going out the open exhaust valve. Some mixing will occur and some fuel will be lost
out the exhaust valve. This will cause lower fuel economy and HC pollution in the
exhaust. To avoid this, only air is input and used for scavenging in modern experimental two-stroke cycle automobile engines. Fuel is added with injectors after the
intake valve is closed.
Lubricating oil must be added to the inlet air on those engines that use
crankcase compression. The crankcase on these engines cannot be used as the oil
reservoir as with most other engines. Instead, the surfaces of the engine components
are lubricated by oil vapor carried by the intake air. On some engines, lubricating oil
is mixed directly with the fuel and is vaporized in the carburetor along with the fuel.
Other engines have a separate oil reservoir and feed lubricant directly into the
intake air flow. Two negative results occur because of this method of lubrication.
First, some oil vapor gets into the exhaust flow during valve overlap and contributes
directly to HC exhaust emissions. Second, combustion is less efficient due to the
poorer fuel quality of the oil. Engines which use superchargers or turbochargers
generally use standard pressurized lubrication systems, with the crankcase serving as
the oil reservoir.
To avoid an excess of exhaust residual, no pockets of stagnant flow or dead
zones can be allowed in the scavenging process. This is controlled by the size and
position of the intake and exhaust slots or valves, by the geometry of the slots in the
wall, and by contoured flow deflectors on the piston face. Figure 5-10 shows several
geometric configurations of scavenging that are used.
Cross Scavenged Intake slots and exhaust slots are located on opposite sides of the
cylinder wall. Proper design is required to assure that the intake air deflects
up without short-circuiting and leaving a stagnant pocket of exhaust gas at the
head end of the cylinder.
Loop Scavenged Intake and exhaust ports are on the same side of the cylinder
wall, and incoming air flows in a loop.
Unittow Scavenged or Through-Flow
Scavenged Intake ports are in the cylinder
walls and exhaust valves in the head (or intake valves are in the head and
exhaust ports are in the wall, which is less common). This is the most efficient
system of scavenging but requires the added cost of valves.
Figure 5-10 Common scavenging geometries for two-stroke cycle engines. (a) Cross
scavenged with intake ports and exhaust ports on opposite sides of the cylinder.
(b) Loop scavenged with intake ports and exhaust ports on the same side of the cylinder. (c) UBij10wscavenged (or through-flow scavenged) with intake ports in cylinder
walls and exhaust valve in head. Other variations and combinations of these types
exist, depending on the placement of slots and/or valves.
For the same power generation, more air input is required in a two-stroke
cycle engine than in a four-stroke cycle engine. This is because some of the air is lost
in the overlap period of the scavenging process. A number of different intake and
performance efficiencies are defined for the intake process of a two-stroke cycle
engine. Volumetric efficiency of a four-stroke cycle engine can be replaced by either
delivery ratio or charging efficiency:
Delivery Ratio = Adr = mmi/VdPa
Charging Efficiency
= mmtlVdPa
mmi = mass of air-fuel mixture ingested into cylinder
mmt = mass of air-fuel trapped in cylinder after all valves are closed
Vd = displacement volume (swept volume)
Pa = density of air at ambient conditions
typical values:
0.65 <
0.50 <
< 0.95
< 0.75
Delivery ratio is greater than charging efficiency because some of the air-fuel
mixture ingested into the cylinder is lost out of the exhaust port before it is closed.
For those engines that inject fuel after the valves are closed, the mass of mixture in
these equations should be replaced with mass of ingested air. Sometimes, ambient
CI engines are operated unthrottled, with engine speed and power controlled by the
amount of fuel injected during each cycle. This allows for high volumetric efficiency
at all speeds, with the intake system designed for very little flow restriction of the
incomipg air. Further raising the volumetric efficiency is the fact that no fuel is
added until late in the compression stroke, after air intake is fully completed. In
addition, many CI engines are turbocharged, which enhances air intake even more.
Fuel is added late in the compression stroke, starting somewhere around 20°
bTDC. Injectors mounted in the cylinder head inject directly into the combustion
chamber, where self-ignition occurs due to the high temperature of the air caused by
compressive heating. It takes a short period of time for the fuel to evaporate, mix
with the air, and then self-ignite, so combustion starts shortly bTDC. At this time
fuel is still being injected, which keeps combustion occurring well into the power
stroke. It is important that fuel with the correct cetane number be used in an engine
so that self-ignition initiates the start of combustion at the proper cycle position. A
distribution of fuel droplet sizes is desirable so that the start of combustion of all
fuel particles is not simultaneous, but is spread over a short period of cycle time.
This slows the start of the pressure pulse on the piston and gives smoother engine
operation. Time duration of injection in a CI engine is less than that in SI engines.
Injection pressure for CI engines must be much higher than that required for
SI engines. The cylinder pressure into which the fuel is first injected is very high near
the end of the compression stroke, due to the high compression ratio of CI engines.
By the time the final fuel is injected, peak pressure during combustion is being experienced. Pressure must be high enough so that fuel spray will penetrate across the
entire combustion chamber. Injection pressures of 200 to 2000 atmospheres are
common, with average fuel droplet size generally decreasing with increasing pressure. Orifice hole size of injectors is typically in the range of 0.2 to 1.0 mm diameter.
During injection, the mass flow rate of fuel through an injector is:
CDAn V2Pt6.P
To satisfy this can require very high injector pressure at higher engine speeds.
On some modern injectors, orifice flow area An can be varied some to allow greater
flow at higher speeds.
Big, slow..•..engines with large open combustion chambers have low air motion
and turbulence within the cylinder. The injector is mounted near the center of the
chamber, often with five or six orifices to spray over the entire chamber. Because of
the low turbulence, evaporation and mixing are slower and real time between start
of injection and start of combustion is longer. However, engine speed is slower, so
injection timing in cycle time is about the same. Large engines must have very high
injection pressure and high spray velocity. With lower air motion and turbulence,
high liquid spray velocity is needed to enhance evaporation and mixing. Also, high
velocity is needed to assure that some spray reaches fully across the large combustion chamber. Injectors with multiple orifices require higher pressure to obtain the
same injection velocity and penetration distance. Fuel velocity leaving the injector
can be as high as 250 m/sec. However, viscous drag and evaporation reduce this very
For optimum fuel viscosity and spray penetration, it is important to have fuel
at the correct temperature. Often, engines are equipped with temperature sensors
and means of heating or cooling the incoming fuel. Many large truck engines are
equipped with heated fuel filters. This allows the use of cheaper fuel that has less viscosity control.
Small high-speed engines need much faster evaporation and mixing of the fuel
due to the shorter real time available during the cycle. This occurs because of the
high turbulence and motion within the cylinder caused by high engine speed. As
speed is increased, the level of turbulence and air motion increases. This increases
evaporation and mixing and shortens ignition delay, resulting in fairly constant
injection timing for all speeds. Part of the fuel spray is often directed against hot
Correct, consistent induction of air and fuel into an engine is one of the more important and difficult processes to obtain in engine design. High volumetric efficiency of
intake systems, giving a maximum flow of air, is important to supply the oxygen
needed to react with the fuel. Ideally the engine should receive a consistent amount
of air cylinder-to-cylinder and cycle-to-cycle. This does not happen due to turbulence and other flow inconsistencies, and engine operation must be limited by
statistical averages.
Equally important and equally difficult is the supplying of the correct amount
of fuel to the engine. Again, the goal is to supply an equal amount to each cylinder
with no variation cycle-to-cycle. This is limited by the quality and control of the fuel
injectors or carburetor.
Air And Fuel Induction
Chap. 5
Air is supplied through an intake manifold, with flow rate controlled on SI engines by a throttle butterfly valve and uncontrolled on CI engines. Inlet air pressure is
ambient or is increased with a supercharger, a turbocharger, or crankcase compression. Fuel is added in SI engines with throttle body injectors located upstream in the
intake manifold, with port injectors at the intake valve, or (in rarer cases) by injection
directly into the cylinder. Carburetors are used for fuel input on many small, less
costly engines and on most older automobile engines. CI engines inject fuel directly
into the combustion chamber and control engine speed by injection amount.
Lean-burning engines, stratified charge engines, dual-chamber engines, dualfuel engines, and two-stroke cycle automobile engines all have unique and more
complicated induction systems. These require special combinations and design of
carburetors, fuel injectors, valves, and valve timing.
5-1. A five-cylinder, four-stroke cycle SI engine has a compression ratio Tc = 11:1, bore
B = 5.52 cm, stroke S = 5.72 cm, and connecting rod length T = 11.00 cm. Cylinder inlet
conditions are 63°C and 92 kPa. The intake valve closes at 41° aBDC and the spark plug
is fired at'1:5°bTDC.
Calculate: (a) Temperature and pressure in the cylinder at ignition, assuming Otto
cycle analysis (i.e., assume the intake valve closes at BDC and ignition
is at TDC). [K, kPa]
(b) Effective compression ratio (i.e., actual compression of the air-fuel
mixture before ignition).
(c) Actual temperature and pressure in the cylinder at ignition. [K, kPa]
5-2. Two engine options are to be offered in a new automobile model. Engine A is naturally
aspirated with a compression ratio of 10.5:1 and cylinder inlet conditions of 60°C and 96
kPa. Engine B is supercharged with aftercooling and has cylinder inlet conditions of
80°C and 130 kPa. To avoid knock problems, it is desirable to have the air-fuel temperature at the start of combustion in engine B to be the same as in engine A.
Calculate: (a) Temperature at start of combustion in engine A, using air-standard
Otto cycle analysis. [0C]
(b) Compression ratio of engine B which would give the same temperature
at the start of combustion.
(c) Temperature reduction in the aftercooler of engine B if the compressor has an isentropic efficiency of 82% and inlet conditions are the
same as in engine A. [0C]
5-3. Air enters the intake manifold at 74°F and 14.7 psia on a V12 airplane engine with
throttle body injection, using gasoline at an equivalence ratio of ¢ = 0.95. It can be
assumed that all the fuel evaporates in the adiabatic manifold.
Calculate: (a) Temperature of the air-fuel mixture after fuel evaporation [OF]
(b) Percent loss or gain in engine volumetric efficiency due to fuel evaporation. [%]
(c) Temperature in the cylinder at the start of compression, after inlet
air-fuel mixes with the 5% exhaust residual from the previous cycle,
which is at 900°R. [OF]
5-4. Water injection is added to the engine in Problem 5-3 which delivers 1 Ibm of water for
every 30 Ibm of gasoline used. Heat of vaporization of water hfg = 1052 BTU/lbm.
Calculate: (a) Temperature of the air-fuel mixture after evaporation of fuel and
water. [OF]
(b) Percent loss or gain in engine volumetric efficiency due to evaporation
of fuel and water. [%]
5-5. (a) Why is the compression ratio of an SI engine often reduced when the engine is
redesigned to be used with a turbocharger? (b) Is brake power increased or decreased?
(c) Is thermal efficiency increased? (d) Why isn't reducing the compression ratio as
important when a turbocharger is added to a CI engine design?
5-6. A 2A-liter, four-cylinder engine is equipped with multipoint port fuel injection, having
one injector per cylinder. The injectors are constant-flow devices, so the fuel flow rate
into the engine is controlled by injection pulse duration. Maximum power is obtained at
WOT when injection duration is continuous. At this condition, engine speed is 5800
RPM with stoichiometric gasoline and an inlet pressure of 101 kPa. At idle condition,
the engine speed is 600 RPM with stoichiometric gasoline and an inlet pressure of
30 kPa. Volumetric efficiency can be considered 95% at all conditions.
Calculate: (a) Fuel flow rate through an injector. [kg/sec]
(b) Injection pulse duration in seconds at idle conditions.
(c) Injection pulse duration in degrees of engine rotation at idle
5-7. A six-cylinder, four-stroke cycle SI engine with multipoint fuel injection has a displacement of 204 liters and a volumetric efficiency of 87% at 3000 RPM, and operates on
ethyl alcohol with an equivalence ratio of 1.06. Each cylinder has one port injector
which delivers fuel at a rate of 0.02 kg/sec. The engine also has an auxiliary injector
upstream in the intake manifold which delivers fuel at a rate of 0.003 kg/sec to change
the air-fuel ratio and give a richer mixture when needed. When in use, the auxiliary
injector operates continuously and supplies all cylinders.
Calculate: (a) Time of one injection pulse for one cylinder for one cycle. [sec]
(b) AF if the auxiliary injector is not being used.
(c) AF if the auxiliary injector is being used.
5·8. As speed increases in an engine with throttle body fuel injection, does the temperature
of the air-fuel mixture at the intake manifold exit increase or decrease? Explain what
parameters affect your answer.
5-9. A 6.2-liter, V8, four-stroke cycle SI engine is designed to have a maximum speed of
6500 RPM. At this speed, volumetric efficiency is 88%. The engine is equipped with a
four-barrel carburetor, each barrel having a discharge coefficient of CDt = 0.95. The
fuel used is gasoline at AF = 15:1 (density of gasoline Pg = 750 kg/m3).
Calculate: (a) Minimum throat diameter needed in each carburetor venturi. [cm]
(b) Fuel capillary tube diameter needed for each venturi throat if tube discharge coefficient CDc = 0.85 and the capillary tube height differential
is small. [mm]
5-10. (a) Explain how a carbureted automobile engine is started on a cold winter morning;
tell what must be done, why, and how. (b) Why is there an accelerating pump on an
Air And Fuel Induction
automobile carburetor? (c) Explain what happens in the engine cylinders when the
throttle on a carburetor is suddenly closed to decelerate an automobile traveling at high
A V8 engine with 7.5-cm bores is redesigned from two valves per cylinder to four valves
per cylinder. The old design had one inlet valve of 34 mm diameter and one exhaust
valve of 29 mm diameter per cylinder. This is replaced with two inlet valves of 27 mm
diameter and two exhaust valves of 23 mm diameter. Maximum valve lift equals 22% of
the valve diameter for all valves.
Calculate: (a) Increase of inlet flow area per cylinder when the valves are fully open.
(b) Give advantages and disadvantages of the new system.
A CI engine with bore B = 8.2 em has the fuel injectors mounted in the center of the
cylinder head. The injectors have a nozzle diameter of 0.073 mm, a discharge coefficient of 0.72, and an injection pressure of 50 MPa. Average cylinder pressure during
injection can be considered 5000 kPa. Density of the diesel fuel is 860 kg/m 3.
Calculate: (a) Average velocity of the fuel jet as it leaves the injector. [mIsec]
(b) Time for a fuel particle to reach the cylinder wall if it traveled at average exit velocity. [see]
A 3.6-liter, V6 SI engine is designed to have a maximum speed of 7000 RPM. There
are two intake valves per cylinder, and valve lift equals one-fourth valve diameter. Bore
and stroke are related as S = 1.06 B. Design temperature of the air-fuel mixture entering the cylinders is 60°C.
Calculat!(: (a) Ideal theoretical valve diameter. [em]
. (b) Maximum flow velocity through intake valve. [mIsec]
(c) Do the valve diameters and bore size seem compatible?
The volume of the average diesel fuel droplet in Example Problem 5-4 is 3 x 10-14 m3.
The compression ratio of the engine is 18:1. As a rough approximation, it can be
assumed that all fuel droplets have the same volume and are equally spaced throughout
the combustion chamber at TDC. Density of the diesel fuel is p = 860 kg/m 3
Calculate: (a) Number of fuel droplets in one injection.
(b) Approximate distance between droplets in the combustion chamber at
TDC. [mm]
5-10. An in-line, straight 8, four-stroke cycle SI engine has throttle body fuel injection using
two injectors. Each injector supplies fuel for four of the cylinders. The firing order of
the engine is 1-3-7-5-8-6-2-4. Design an intake manifold for this engine with consideration to maintaining consistent AF to each cylinder and overall engine cycle smoothness.
5-20. A 2.5-liter, four-stroke cycle SI engine using multipoint port fuel injection has an idling
speed of 300 RPM (AF = 13.5 and TJv = 0.12) and a maximum WOT speed of 4800
RPM (AF = 12 and TJv = 0.95). Injectors have a constant mass flow rate at all conditions. Design an injection system for this engine, giving the number of injectors per
cylinder and the flow rate through each injector in kg/sec. What is the duration of injection for one cycle, and when should injection start relative to the intake valve opening?
Chap. 5
Design Problems
Give your answers in seconds, in degrees of engine rotation at idle, and at WOT. State
all assumptions you make.
5-30. Design a fuel intake system for a large dual-fuel CI engine to be used in a poor underdeveloped country. The engine is to use only enough diesel oil to promote ignition,
while using some less costly main fuel. Draw a schematic, and give engine values of displacement, speed, and volumetric efficiency. Choose an appropriate main fuel and give
the flow rates of both fuels. What is the overall air-fuel ratio? State all assumptions you
This chapter discusses air, fuel, and exhaust gas motion that occurs within the cylinders during the compression stroke, combustion, and power stroke of the cycle. It is
important to have this motion to speed evaporation of the fuel, to enhance air-fuel
mixing, and to increase combustion speed and efficiency. In addition to the normal
desired turbulence, a rotational motion called swirl is generated on the air-fuel mixture during intake. Near the end of the compression stroke, two additional mass
motions are generated: squish and tumble. Squish is a radial motion towards the
center-line of the cylinder, while tumble is a rotational motion around a circumferential axis. One additional flow motion will be discussed: that of crevice flow and
blowby. This is the flow into the very small crevices of the combustion chamber due
to the very high pressures generated during compression and combustion.
Due to the high velocities involved, all flows into, out of, and within engine cylinders
are turbulent flows. The exception to this are those flows in the corners and small
crevices of the combustion chamber where the close proximity of the walls dampens
out turbulence. As a result of turbulence, thermodynamic transfer rates within an
engine are increased by an order of magnitude. Heat transfer, evaporation, mixing,
Sec. 6-1
and combustion rates all increase. As engine speed increases, flow rates increase,
with a corresponding increase in swirl, squish, and turbulence. This increases the
real-time rate of fuel evaporation, mixing of the fuel vapor and air, and combustion.
When flow is turbulent, particles experience random fluctuations in motion
superimposed on their main bulk velocity. These fluctuations occur in all directions,
perpendicular to the flow and in the flow direction. This makes it impossible to predict the exact flow conditions at any given time and position. Statistical averaging
over many engine cycles gives accurate average flow conditions, but cannot predict
the exact flow of anyone cycle. The result is cyclic variations in operating parameters within an engine (e.g., cylinder pressure, temperature, burn angle, etc.).
A number of different models for turbulence can be found in fluid mechanics
literature, which can be used to predict flow characteristics [59]. One simple model
uses fluctuation velocities of u' in the X coordinate direction, v' in the Y direction,
and w' in the Z direction. These are superimposed on the average bulk velocities of
u, v, and w in the X, Y, and Z directions, respectively. The level of turbulence is then
calculated by taking the root-mean-square average of u', v', and w'. The linear average of u', v', or w' will be zero.
There are many levels of turbulence within an engine. Large-scale turbulence
occurs with eddies on the order of the size of the flow passage (e.g., valve opening,
diame~r of intake runner, height of clearance volume, etc.). These fluctuations are
random but have a directionality controlled by the passage of the flow. On the other
extreme, the smallest scale turbulence is totally random and homogeneous, with no
directionality and controlled by viscous dissipation. There are all levels of turbulence
in between these extremes, with characteristics ranging from those of small-scale turbulence to those of large-scale turbulence. Reference [58] examines the role of
turbulence in internal combustion engines in great detail and is highly recommended
for a more in-depth study of this subject.
Turbulence in a cylinder is high during intake, but then decreases as the flow
rate slows near BDC. It increases again during compression as swirl, squish, and
tumble increase near TDC. Swirl makes turbulence more homogeneous throughout
the cylinder.
The high turbulence near TDC when ignition occurs is very desirable for combustion. It breaks up and spreads the flame front many times faster than that of a
laminar flame. The air-fuel is consumed in a very short time, and self-ignition and
knock are avoided. Local flame speed depends on the turbulence immediately in
front of the flame. This turbulence is enhanced by the expansion of the cylinder
gases during the combustion process. The shape of the combustion chamber is
extremely important in generating maximum turbulence and increasing the desired
rapid combustion.
Turbulence intensity is a strong function of engine speed (Fig. 6-1). As speed is
increased, turbulence increases, and this increases the rate of evaporation, mixing,
and combustion. One result of this is that all engine speeds have about the same
burn angle (i.e., the crank angle through which the engine turns as combustion takes
place). The one phase of this process which is not totally changed by the increase in
turbulence is ignition delay. This is compensated for by advancing ignition spark
timing (initiate-the spark earlier) as the engine speed is increased.
To maximize volumetric efficiency, the inside surface of most intake manifolds
is made as smooth as possible. An exception to this concept is applied to the intake
manifolds of the engines on some economy vehicles where high power is not
desired. The inside surfaces of these manifolds are roughened to promote higher
turbulence levels to enhance evaporation and air-fuel mixing.
One place turbulence is detrimental is in the scavenging process of a twostroke cycle engine. Because of turbulence, the incoming air mixes more with the
exhaust gases, and a greater exhaust residual will remain in the cylinder. Another
negative result occurs during combustion when high turbulence enhances the convection heat transfer to the walls in the combustion chamber. This higher heat loss
lowers the thermal efficiency of the engine.
The main macro mass motion within the cylinder is a rotational motion called swirl.
It is generated by constructing the intake system to give a tangential component to
the intake flow as it enters the cylinder (see Fig. 6-2). This is done by shaping and
contouring the intake manifold, valve ports, and sometimes even the piston face.
Swirl greatly enhances the mixing of air and fuel to give a homogeneous mixture in
the very short time available for this in modern high-speed engines. It is also a main
mechanism for very rapid spreading of the flame front during the combustion
Swirl ratio is a dimensionless parameter used to quantify rotational motion
within the cylinder. It is defined in two different ways in the technical literature:
(SR)l = (angular speed)j(engine
speed) = wjN
= (swirl tangential speed)j(average piston speed)
uti Up
Average values of either the angular speed or tangential speed should be used
in these equations. Angular motion is very non-uniform within the cylinder, being a
maximum away from the walls and being much less near the walls due to viscous drag.
The non-uniformity is both in the radial direction, due to drag with the cylinder walls,
and in the axial direction, due to drag with the piston face and cylinder head.
Figure 6-3 shows how swirl ratio changes through a cycle of the engine.
During intake it is high, decreasing after BDC in the compression stroke due to
Figure 6·3 Average cylinder swirl ratio as a function of crank angle for a typical SI
engine. Swirl is high during the intake process, with a maximum near TDC. It then is
reduced by viscous drag during the compression stroke. There is a second maximum
near ~e end of compression when the radius of rotation is decreased near TDC and
expansion from combustion occurs. Viscous drag with the cylinder walls during the
expansion stroke quickly reduces this again before blowdown occurs.
viscous drag with the cylinder walls. Combustion expands the gases and increases
swirl to another maximum part way into the power stroke. Expansion of the gases
and viscous drag quickly reduce this again before blowdown occurs. Maximum
swirl ratio as defined by Eq. (6-1) can be on the order of 5 to 10 for a modern
engine. One-fourth to one-third of angular momentum will be lost during the
compression stroke.
One simple way of modeling cylinder swirl is the paddle wheel model [58]. The
volume within the cylinder is idealized to contain an imaginary paddle wheel that
has no mass. As the paddle wheel turns, the gas between the blades turns with it,
resulting in a cylinder of gas all rotating at one angular velocity. The mass moment
of inertia of this cylinder of gas is:
1= mB2j8
, where:
mass of gas mixture in the cylinder
bore = diameter of rotating mass
The angular momentum is:
r = Iw
= solid-body angular velocity
Figure 6·4 Combustion chamber geometry of modern automobile engines, with
most of the clearance volume near the centerline of the cylinder. This increases
squish and tumble, and decreases the flame travel distance for most of the combustion process. Engines can be built with (a) the clearance volume in the cylinder
head, (b) as a bowl in the crown of the piston face, or as a combination of these.
Combustion chambers of most modern engines are shaped like those in Fig.
6-4, with most of the clearance volume close to the cylinder centerline. The reason
for this is to reduce the flame travel distance for most of the air-fuel mixture as it
com busts near TDC. The clearance volume can be in the cylinder head as in Fig.
6-4(a), in the crown of the piston as in Fig. 6-4(b), or in a combination of the two.
With this kind of combustion chamber, as the piston nears TDC the radius of the
rotating cylinder of air-fuel is suddenly greatly reduced. This results in a large
increase in angular velocity due to conservation of angular momentum. It is common to have angular velocity increase by a factor of three to five at TDC, even
though viscous drag with the walls is very great at this point. High angular velocity at
TDC is very desirable because it spreads the flame front through the combustion
chamber very quickly. In some engines, burn time is decreased by positioning the
spark plug so that it is offset from center to take advantage of high swirl.
In two-stroke cycle engines with intake ports in the cylinder walls, swirl is generated by shaping the edges of the ports and direction of the intake runners. Swirl
greatly reduces dead spots in the scavenging process but also increases mixing of the
inlet charge with exhaust residual. The shaping of inlet ports and runners to promote swirl reduces the volumetric efficiency of all engines.
When the piston approaches TDC at the end of the compression stroke, the volume
around the outer edges of the combustion chamber is suddenly reduced to a very
small value. Many modern combustion chamber designs have most of the clearance
volume near the centerline of the cylinder (Fig. 6-4). As the piston approaches TDC,
the gas mixture occupying the volume at the outer radius of the cylinder is forced
radially inward as this outer volume is reduced to near zero. This radial inward
motion of the gas mixture is called squish. It adds to other mass motions within the
cylinder to mix the air and fuel, and to quickly spread the flame front. Maximum
squish velocity usually occurs at about 10° bTDC.
During combustion, the expansion stroke begins and the volume of the combustion chamber increases. As the piston moves away from TDC, the burning gases
are propelled radially outward to fill the now-increasing outer volume along the
cylinder. walls. This reverse squish helps to spread the flame front during the latter
part of combustion.
As the piston nears TDC, squish motion generates a secondary rotational flow
called tumble. This rotation occurs about a circumferential axis near the outer edge
of the piston bowl as shown in Fig. 6-6.
Fluid Motion Within Combustion Chamber
Some engines have divided combustion chambers, usually with about 80% of the
clearance volume in the main chamber above the piston and about 20% of the volume as a secondary chamber connected through a small orifice (Fig. 6-7).
Combustion is started in the small secondary chamber, and the flame then passes
through the orifice, where it ignites the main chamber. Intake swirl is not as important in the main chamber of this type of engine, so the intake system can be designed
for greater volumetric efficiency. It is desirable to have very high swirl in the
secondary chamber, and the orifice between the chambers is shaped to supply this;
often, the secondary chamber is called a swirl chamber. As the gases in the secondary chamber are consumed by combustion, the pressure rises and flaming gas
expands back through the orifice and acts as a torch ignition for the main chamber.
The expanding gas rushing back through the orifice creates a large secondary swirl
in the main chamber, which enhances the combustion there. Creating an orifice that
can do all this is a major design challenge.
Often, a divided chamber engine will also be a stratified charge engine. The
intake system is designed to supply a rich mixture in the secondary chamber and a
Figure 6-7 Divided combustion chamber of an SI engine. Secondary chamber will
typically contain about 20% of the total clearance volume. Combustion is generally
initiated in the secondary chamber by positioning of the spark plug. The main airfuel mixture in the primary chamber is ignited by torch ignition as the flame expands
through the orifice between the chambers. Often, divided combustion chamber
engines are also stratified charge engines, with a rich charge in the secondary chamber for good ignition and a lean charge in the primary chamber for good fuel
Sec. 6-5
Crevice Flow and Blowby
lean mixture in the main chamber. The rich mixture with very high swirl in the secondary chamber will ignite readily and combust very quickly. The flaming gases
expanding back through the orifice will then ignite the lean mixture in the main
chamber, a mixture often so lean that it would be difficult to ignite with a spark plug
alone. The net result is an engine that has good ignition and combustion, yet operates mostly lean to give good fuel economy. Placement and timing of intake valves
and injectors to supply the proper air and fuel to all parts of this engine are
extremely important.
A variation of this type of combustion chamber on some CI engines is one with
a totally passive secondary chamber, with all valves and injectors located in the main
chamber. When combustion occurs in the main chamber, high pressure forces gas
through the very small orifice and raises the pressure in the secondary chamber also.
When the pressure in the main chamber is reduced during the power stroke, the
high-pressure gases in the secondary chamber flow back into the main chamber.
This holds the pressure in the main chamber to a higher level for a short time and
gives a smooth, slightly greater force on the piston during the power stroke. This
kind of secondary chamber usually consists of about 5-10% of the clearance volume.
In the combustion chamber of an engine there are tiny crevices that fill with air, fuel,
and exhaust gas during the engine cycle. These crevices include the clearance
between the piston and cylinder walls (about 80% of total), imperfect fit in the
threads of the spark plug or fuel injector (5%), gaps in the gasket between head and
block (10-15%), and unrounded corners at the edge of the combustion chamber and
around the edges of valve faces. Although this volume is on the order of only 1-3 %
of the total clearance volume, the flow into and out of it greatly affects the overall
cycle of the engine.
In an SI engine air-fuel mixture is forced into these crevices, first during compression and then more so during combustion when cylinder pressure is increased.
During combustion, when cylinder pressure is very high, gases are forced into the
crevices and the pressure will be about the same as cylinder pressure. In those
regions away from the spark plug in front of the flame front (piston-cylinder clearance), a mixture of air and fuel will be forced into the crevice. Behind the flame
front (spark plug threads), the gases forced into the crevice will be exhaust products. Because crevice volume is so small and is surrounded by a large mass of metal
at the temperature of the combustion chamber wall, the gases forced into the crevice
will also remain at about wall temperature. The air-fuel within the crevice will not
burn due to the close proximity of the walls. Flame cannot propagate through tiny
metal passages. Heat released by the flame is conducted away by the metal walls
faster than it can be generated by the tiny flame front. There is not enough energy to
keep combustion occurring, and the flame dies.
Fluid Motion Within Combustion Chamber
Chap. 6
Because pressure in the crevices is high and the temperature is about the same
as that of the much cooler walls, density in the crevices is very high. Therefore, even
with crevice volume equaling only a few percent of the total volume, as much as
20% of the total mass of air-fuel can be trapped in the crevices at peak pressure (see
Review Problem 6-3). As the power stroke occurs and pressure is reduced in the
cylinder, the high crevice pressure forces gases in the crevice back into the combustion chamber, where some of the trapped fuel is burned. Some of the reversed
crevice flow occurs later in the power stroke, after combustion has stopped, and this
fuel does not get burned. Some of the fuel, therefore, ends up in the engine exhaust,
contributing to hydrocarbon emissions and lowering combustion efficiency and
engine thermal efficiency. Because fuel is not added until immediately before combustion in a CI engine, less fuel gets into the crevice volume and these resulting
problems are reduced.
Most pistons have two or more compression rings and at least one oil ring.
Compression rings seal the clearance gap between the piston and cylinder walls.
They are made of highly polished chrome steel and are spring loaded against the
hard, polished cylinder walls. As the piston moves towards TDC in the compression
stroke, the compression rings are forced to the bottom surface of the ring grooves,
and some gases leak into the groove at the top (Fig. 6-8). Then, as the piston
reverses direction and starts on the power stroke, the compression rings are forced
to the top of the ring grooves, and the trapped gas can flow out of the groove and
further along the piston. The second compression ring is to stop some of the gases
that have leaked pass the first ring. Another path from which gases leak past the pis-
Figure 6-8 Schematic showing how blowby occurs when combustion chamber
gases are forced past the compression rings of a piston. As the piston moves up in
the compression stroke the compression rings are forced to the bottom of the ring
grooves, and gas is forced into the crevice volume between the piston and cylinder
walls and into the piston ring grooves. When the piston reverses direction for the
power stroke the piston rings are forced to the top of the grooves and the gas in the
grooves can flow past the piston. Gas also leaks past the piston rings through the
gap where the ends meet.
ton rings is the gap where the two ends meet. Figure 6-9 shows various configurations to minimize this flow. The oil ring is for lubrication and offers no resistance to
gas leakage. However, in addition to lubricating, the film of oil between the piston
and cYlinder walls is a major gas sealant restricting gas flow past the piston. The gas
that gets totally past the piston and ends up in the crankcase is called blowby.
Figure 6-10 shows how the pressure in the combustion chamber, between the
compression rings, and in the crankcase varies with crank angle in an engine cycle.
There is a time delay in the pressure change from one chamber to the next due to
the restricted flow passage created by the compression rings. Late in the power
stroke, when the exhaust valve opens, pressure between the compression rings will
be greater than in the combustion chamber, and some gases will be forced back into
the chamber. This is called reverse blowby.
Ideally, crevice volume should be kept at a minimum. Modern engines with
closer tolerances and better quality control have smaller crevice volumes. At the
same time, however, clearance volumes are also smaller due to high compression
ratios, and the percent crevice volume remains about the same. Iron pistons can
have closer tolerances than aluminum pistons because of their lower thermal expansion. The top compression piston ring should be as close as structurally possible to
the top of the piston.
Blowby raises the pressure in the crankcase and contaminates the oil with fuel
and exhaust gases. As much as 1% of the fuel is forced into the crankcase in some
engines. To keep crankcase pressure down, it must be ventilated. In older engines
the crankcase was ventilated to the surroundings, wasting fuel and polluting the surroundings with fuel vapor. All modern automobile engines ventilate the crankcase
back into the intake system, avoiding these problems. Some small engines still have
crankcase ventilation to the surrounding air. Because of the oil contamination
caused by blowby, oil filter systems and more frequent oil changes are necessary.
Engine pressures as a function of crank angle, showing cylinder pressure (PI), pressure between piston compression rings (Pz), and pressure in the (P3). There is a time delay for pressure change from one chamber to the
next due to the restricted flow passage past the pistons. When the exhaust valve
opens and blowdown occurs, pressure in the combustion chamber decreases quickly
and Pz > PI can occur. This is when reverse blowby occurs. The need for crankcase
ventilation can be seen by the pressure buildup in the crankcase. Adapted from [105].
Figure 6-10
Many mathematical models have been developed to help understand, correlate, and
analyze the operation of engine cycles. These include combustion models, models of
physical properties, and models of flow into, through, and out of the cylinders. Even
though models often cannot represent processes and properties to the finest detail,
they are a powerful tool in the understanding and development of engines and
engine cycles. With the use of models and computers in the design of new engines
and components, great savings are made in time and cost. Historically, new design
was a costly, time-consuming practice of trial and error, requiring new-part construction and testing for each change. Now engine changes and new designs are first
developed on the computer using the many models which exist. Often, only after a
component is optimized on the computer is a part actually constructed and tested.
Generally, only minor modifications must then be made to the actual component.
Models range from simple and easy to use, to very complex and requiring
major computer usage. In general, the more useful and accurate models are quite
complex. Models to be used in engine analysis are developed using empirical relationships and approximations, and often treat cycles as quasi-steady-state processes.
Normal fluid flow equations are often used.
Some models will treat the entire flow through the engine as one unit, some
will divide the engine into sections, and some will subdivide each section (e.g., divide
the combustion chamber into several zones-burned and unburned, boundary layer
near the wall, etc.). Most models deal only with one cylinder, which eliminates any
interaction from multicylinders that can occur, mainly in the exhaust system.
Fluid Motion Within Combustion Chamber
Models for the combustion process address ignition, flame propagation, flame
termination, burn rate, burned and unburned zones, heat transfer, emissions generation, knock, and chemical kinetics [51, 85, 114]. They are available for SI and CI
engines with either direct injection or indirect injection. Values for properties are
obtained from standard thermodynamic equations of state and relationships for
thermophysical and transport properties.
Models are available for flow into, within, and out of the combustion chamber. These include turbulence models [16, 91, 118, 119, 127]; models of the flow of
swirl, squish, and tumble in the cylinders [6, 18, 21, 54, 55, 60, 66, 72, 109, 128, 129,
134,142]; and fuel injection spray models [7, 17, 53, 137].
Computer Simulation
At least three methods of computer use are utilized in the operation, testing, and
development of engines. Automobile engines are equipped with their own controlling computer that optimizes smoothness of operation, fuel consumption, emission
control, diagnostics, and a number of other facets of operation. This is done as a
response to inputs from thermal, electrical, chemical, mechanical, and optical sensors located throughout the engine.
Testing for maintenance or experimentation is done by connecting the engine
to an external computer, often larger and with more elaborate sensing equipment
and instt:l!mentation. This can be done with the engine mounted in the automobile
or on an external test stand. The amount and usefulness of the information gathered
depends on many factors. These include the number of channels in the data acquisition equipment, resolution of data, sampling rate, and amount of data (size of
For development work, elaborate mathematical models are often used on
computers to simulate actual engine operation. Complexity and accuracy of the
model often depends on the size of the computer, some models requiring very large
units. Commercial software is available for many operations within an engine, some
made specifically for IC engines and others developed for more general use (e.g.,
heat transfer, chemical kinetics, property values, combustion analysis [6,49,52,54,
67, 75, 96, 117]). With an adequate-sized computer and available software, detailed
combustion analysis can be done, including burn rate analysis, dissociation, changing
composition, heat release analysis, heat transfer, chemical equilibrium, and accurate
thermodynamic and transport properties for burned and unburned gases. Reference
[40] gives computer programs for a number of engine processes.
Automobile companies use very elaborate programs in their engine development work. Usually these have been generated in-house and are highly confidential.
They allow for much faster development of new engines and modifications and
improvements in existing designs. As an example of what these programs are capable of doing, one such program is discussed in the next section. This is a reduced
version of a program used by General Motors that has been released for use by educational institutions. A quotation from the user's guide for this engine simulation
Internal Combustion Engine Simulation Program
program puts modeling and computer use in its proper perspective [87]: "Some people do not believe computer models at all. I trust you are not one of them. Other
people believe computer models completely. I trust you are not one of them. The
engine simulation is only as good as its assumptions and the input data YOU provide. Always be suspicious of the input data, always ask the question 'Is this a good
problem to address with the simulation?' And, especially be sure to ask these questions before drawing conclusions. The greatest danger of complex computer models
is that they can give plausible but incorrect results."
The General Motors Internal Combustion Engine Simulation Program analyzes
what occurs within the combustion chamber and exhaust system during an engine
cycle, starting at the close of the intake valve and proceeding through compression,
combustion, and into the exhaust process. It is applicable to single-cylinder engines
operating on a four-stroke, spark ignition, homogeneous charge cycle. It has limited
capability of analyzing effects from various combustion chamber geometries. Being
written for single-cylinder engines does not allow it to study tuning effects in the
exhau~! system from interactions between multiple cylinders.
Scope of the Program
The program uses the first law of thermodynamics by integrating various models for
combustion, heat transfer, and valve flow rates, using integration methods from
[111]. Integration proceeds by crank angle position, allowing for various fuels,
air-fuel ratios, EGR or other inert gas for charge dilution, and/or valve-opening
profiles. The program is divided into three principal sections: compression, combustion, and gas exchange.
Compression: Integration starts at the closing of the intake valve and proceeds
until the crank angle of ignition is reached. Residual gases from the previous cycle
are included in the cylinder gas mixture, and a number of iterations are performed
until the percentage and chemical content of the residual gases remain at a steadystate value after each cycle.
Combustion: A spherical flame front is assumed, spreading outward from the
ignition point. This divides the cylinder into burned and unburned zones. The
burned zone is further divided into an adiabatic core and a boundary layer subzone
where heat transfer occurs. Heat transfer to the walls also occurs from the unburned
zone. When the exhaust valve opens, the two zones are no longer distinguished and
all gases are considered mixed. As integration continues, the values of properties
are found using the methods for combustion calculations from [96].
Gas Exchange: Three control masses are considered during this process: cylinder gases, exhaust gases downstream of the exhaust valve, and gases that backflow
into the intake system through the open intake valve. When backflow gases are car-
Fluid Motion Within Combustion Chamber
ried back into the combustion chamber, they again become part of the cylinder
gases. Under some conditions there is no backflow. These calculations require valve
discharge coefficients and valve lift versus crank angle data.
Input Quantities
The program reads a data input file of engine and operating parameters. This list
shows the wide range of what can be selected for the simulated run:
Input Section 1:
Title Line Identifying Engine Geometry
piston pin offset
connecting rod length
compression ratio
valve head diameters
valve seat angles
piston surface area/bore area
head surface area/bore area
TDC waIl area/bore area
fuel identification
combustion table selection
heat transfer calculation multiplier
boundary zone weighted factor for three-zone model
Input Section 2:
rocker ratio for intake valve train
intake valve opening position
intake valve closing position
crank angles versus intake cam lifts
rocker ratio for exhaust valve train
exhaust valve opening position
exhaust valve closing position
crank angles versus exhaust cam lifts
valve lift/diameter versus discharge coefficient for intake
valve lift/diameter versus discharge coefficient for exhaust
burned volume ratios versus wetted area ratios (see equations after list)
combustion crank angle fraction versus mass fraction burned
Internal Combustion Engine Simulation Program
Input Section 3:
Operating Conditions
engine speed
air-fuel ratio
integration tolerance
crank angle steps for output
number of cycles to run
intake pressure
exhaust pressure
shift intake valve lifts
shift exhaust valve lifts
intake temperature of air-fuel mixture
temperature of EGR
mass fraction of EGR
crank angle at ignition
combustion efficiency
combustion duration in crank angle degrees
firing or motoring of engine
pIston surface temperature
head temperature
cylinder wall temperature
intake valve temperature
exhaust valve temperature
burned volume ratio
= (burned volume behind flame)j(total cylinder volume)
wetted area ratio = (cylinder surface area behind flame)j(total
cylinder area)
Output File
Output variables of interest, such as temperature, pressure, volume, mass burned,
etc., are all listed versus crank angle. The user can specify the crank angle step size
for output except during combustion, when unit crank angle steps (every degree)
are used. At certain crank angles, the program lists the components in the combustion gas. CO and NO data are given for when the intake valve closes and when the
exhaust valve opens. Indicated, brake, and frictional power are given. For reference,
the output file also includes the input file.
The output file can be read into a spreadsheet program that can be used to
generate tables or curve plotting. Figures 6-11 through 6-14 show results from a
demonstration run. Figure 6-11 shows the effect of changing the intake pressure on
the resulting pressure-volume indicator diagram. Figure 6-12 shows how the generation of NO and CO are affected by the input air-fuel ratio. Figure 6-13 plots
Efficient operation of an engine depends on high turbulence in the air-fuel flows,
plus major generated bulk flows of swirl, squish, reverse squish, and tumble. Turbulence enhances mixing, evaporation, heat transfer, and combustion. High turbulence
during combustion is desirable, and part of combustion chamber geometry design is
to promote this. Swirl is the rotational motion generated in the cylinder during
intake and compression, squish is the radial inward motion that occurs as the piston
nears TDC, and tumble is created by squish motion and the shape of the clearance
volume. All of these motions enhance proper operation of the engine.
Crevice flow is another flow motion that occurs during engine operation-the
flow into the small crevices of the combustion chamber. Although the crevice volume is only a small percent of the total combustion chamber volume, the flow into
and out of it affects combustion and engine emissions. Some of the gas flow in the
crevice between the piston and cylinder walls gets past the piston into the crankcase.
Here it raises the crankcase pressure and contaminates the lubricating oil.
Chap. 6
6-2. A 150-in.3,
RPM. Bore
cylinder air
(a) Angular speed of swirl at TDC. [rev/see]
(b) Tangential speed at the outer edge of the bowl at TDC. [rn/sec]
(c) Swirl ratio as defined by Eq. (6-2) at TDC.
four-cylinder, four-stroke cycle, high-swirl CI engine is running at 3600
and stroke are related by S = 0.95 B. During the compression stroke, the
has a swirl ratio, as defined by Eq. (6-2), of 8.
(a) Swirl tangential speed. [ft/sec]
(b) Angular velocity of cylinder air using the paddle wheel model. [rev/see]
(c) Swirl ratio as defined by Eq. (6-1).
6-3. A 3.3-liter, V6 SI engine with a compression ratio of 10.9:1 operates on an Otto cycle at
2600 RPM using stoichiometric gasoline. Crevice volume, which equals 2.5% of the
clearance volume, has pressure equal to the pressure in the combustion chamber but
remains at the cylinder wall temperature of 190°C. Conditions at the start of compression are 65°C and 98 kPa. Assume complete combustion.
Calculate: (a) Percent of gas mixture mass which is in the crevice volume at the start
of combustion.
(b) Percent of gas mixture mass which is in the crevice volume at the end
of combustion.
6-4. A 6.8-liter, in-line, eight-cylinder CI engine has a compression ratio rc = 18.5 and a
crevice volume equal to 3% of the clearance volume. During the engine cycle pressure
ill. the crevice volume equals combustion chamber pressure while remaining at the
cylinder wall temperature of 190°C. Cylinder conditions at the start of compression are
75°C and 120 kPa, and peak pressure is 11,000 kPa. Cutoff ratio is f3 = 2.3.
Calculate: (a) Crevice volume of one cylinder. [em3]
(b) Percent of air-fuel mixture in the crevice volume at the end of compression. [%]
(c) Percent of air-fuel mixture in the crevice volume at the end of combustion. [%]
6-5. A 292-in.3, V8, four-stroke cycle CI engine operates at 1800 RPM, using light diesel
fuel at AF = 24 and a volumetric efficiency of 94%. Injection timing is from 22° bTDC
to 4° aTDC. Swirl ratio, as defined by Eq. (6-1), equals 2.8 during fuel injection.
Calculate: (a) Time of one injection. [see]
(b) Period of swirl (one rotation). [see]
(c) Number of orifice holes needed in each injector, with one injector per
6-6. A 2.6-liter, four-cylinder, stratified charge SI engine with a compression ratio of 10.5:1
operates on an Otto cycle. The engine has divided combustion chambers, with a
secondary chamber containing 18% of the clearance volume in each cylinder. A 1-cm2
orifice connects the secondary chamber with the main combustion chamber. AF = 13.2
in the secondary chamber where the spark plug is located, and AF = 20.8 in the main
chamber. The fuel is gasoline with a 98% combustion efficiency. When operating at
2600 RPM, the conditions in both chambers at the start of combustion are 700 K and
2100 kPa. Combustion can be modeled as an instantaneous heat addition in the secondary chamber, followed by a gas expansion into the main chamber which lasts for
about 7° of engine rotation. Additional heat is then added from combustion in the main
Calculate: (a) Overall AF.
(b) Peak temperature and pressure in the secondary chamber. roC,kPa]
Fluid Motion Within Combustion Chamber
(c) Approximate velocity of gas flow into the main chamber immediately
after combustion in the secondary chamber. [m/sec]
An automobile has a three-liter V6 SI engine. At slow engine speeds it is desired to
have low cylinder swirl to reduce the flame speed during combustion. At fast engine
speeds high swirl is desired. To accomplish this, the cylinders will each have two (or
three) intake valves, using only one at low speeds and all valves at high speeds. Design
the intake manifold, valve system, combustion chambers, and camshaft(s) for this
engine. Describe the operation at low and high speeds.
It has been suggested that to reduce crevice volume in a cylinder, the top piston compression ring should be located at the top of the piston (i.e., the top of the compression
ring is flush with the piston face). Design a piston-ring-groove system in which this is
possible. Give careful attention to reducing crevice volume and blowby.
Design a method to measure swirl in the cylinder of an operating engine.
This chapter examines the combustion process that occurs in the combustion chamber of an IC engine. Combustion in an engine is a very complex process which is not
completely understood. Simplified models are used to describe this not-so-simple
phenomenon. Although these models do not always explain the fine details of the
combustion process, they do a fairly accurate job of correlating the important broad
operating parameters such as pressure, temperature, fuel, knock, engine speed, etc.
Combustion in an SI engine is quite different from combustion in a CI engine, and
the two types are studied separately.
The combustion process of SI engines can be divided into three broad regions: (1)
ignition and flame development, (2) flame propagation, and (3) flame termination.
Flame development is generally considered the consumption of the first 5% of the
air-fuel mixture (some sources use the first 10%). During the flame development
period, ignition occurs and the combustion process starts, but very little pressure rise
is noticeable and little or no useful work is produced (Fig. 7-1). Just about all useful
work produced in an engine cycle is the result of the flame propagation period of the
combustion process. This is the period when the bulk of the fuel and air mass is
burned (i.e., 80-90%, depending on how defined). During this time, pressure in the
cylinder is greatly increased, and this provides the force to produce work in the
expansion stroke. The final 5% (some sources use 10%) of the air-fuel mass which
burns is classified as flame termination. During this time, pressure quickly decreases
and combustion stops.
In an SI engine, combustion ideally consists of an exothermic subsonic flame
progressing through a premixed homogeneous air-fuel mixture. The spread of the
flame front is greatly increased by induced turbulence, swirl, and squish within the
cylinder. The right combination of fuel and operating characteristics is such that
knock is avoided or almost avoided.
Ignition and Flame Development
Combustion is initiated by an electrical discharge across the electrodes of a spark
plug. This occurs anywhere from 10° to 30° before TDC, depending on the geometry
of the combustion chamber and the immediate operating conditions of the engine.
This high-temperature plasma discharge between the electrodes ignites the air-fuel
mixture in the immediate vicinity, and the combustion reaction spreads outward
from there. Combustion starts very slowly because of the high heat losses to the relatively cold spark plug and gas mixture. Flame can generally be detected at about 6°
of crank rotation after spark plug firing.
Energy dissipation versus time across the electrodes of a typical spark plug is
shown in Fig. 7-2. Applied potential is generally 25,000-40,000 volts, with a maximum current on the order of 200 amps lasting about 10 nsec (1 nsec = 10 -9 sec).
Figure 7-2 Spark plug voltage and current as a function of time for ignition in a
typical SI engine. Maximum voltage can
be greater than 40,000 volts, with a maximum current on the order of 200 amps
lasting for about 10 -8 seconds. The total
energy delivered during one discharge is
generally about 30 to 50 mJ. Reprinted by
permission of Elsevier Science Inc. from
"Initiation and Propagation of Flame
Fronts in Lean CH4-Air Mixtures by the
Three Modes of Ignition Spark," by Maly
and Vogel, copyright 1976 by The Combustion Institute, Ref. [83].
This gives a peak temperature on the order of 60,000 K. Overall spark discharge
lasts about 0.001 second, with an average temperature of about 6000 K. A stoichiometric mixture of hydrocarbon fuel requires about 0.2 mJ (0.2 X 10 -3 J) of energy
to ignite self-sustaining combustion. This varies to as much as 3 mJ for non-stoichiometric mixtures. The discharge of a spark plug delivers 30 to 50 mJ of energy, most
of which, however, is lost by heat transfer.
Several different methods are used to produce the high voltage potential
needed to cause electrical discharge across spark plug electrodes. One common system is a battery-coil combination. Most automobiles use a 12-volt electrical system,
including a 12-volt battery. This low voltage is multiplied many times by the coil that
supplies the very high potential delivered to the spark plug. Some systems use a
capacitor to discharge across the spark plug electrodes at the proper time. Most
small engines and some larger ones use a magneto driven off the engine crankshaft
to generate the needed spark plug voltage. Some engines have a separate high-voltage generation system for each spark plug, while others have a single system with a
distributor that shifts from one cylinder to the next.
Chap. 7
The gap distance between electrodes on a modern spark plug is about 0.7 to
1.7 mm. Smaller gaps are acceptable if there is a rich air-fuel mixture or if the pressure is high (i.e., high inlet pressure by turbocharging or a high compression ratio).
Normal quasi-steady-state temperature of spark plug electrodes between firings
should be about 650° to 700°C. A temperature above 950°C risks the possibility of
causing surface ignition, and a temperature below 350°C tends to promote surface
fouling over extended time.
For older engines with worn piston rings that burn an excess of oil, hotter plugs
are recommended to avoid fouling. The temperature of a spark plug is controlled
by the heat-loss path manufactured into the plug. Hotter plugs have a greater heat
conduction resistance than do colder plugs.
Modern spark plugs are made with better, more expensive materials, and have
a much greater life span than those of a decade ago. Some quality spark plugs with
platinum-tipped electrodes are made to last 160,000 km (100,000 miles) or more.
One reason this is desirable is the difficulty of replacing plugs in some modern
engines. Because of the increased amount of engine equipment and smaller engine
compartments, it is very difficult to change spark plugs. In some extreme cases on
modern automobiles, the engine must be partially removed to change the plugs.
Voltage, current, electrode material, and gap size must be compatible for long-life
plugs (e.g., too high of a current will wear spark plug electrodes).
Whet! a spark plug fires, the plasma discharge ignites the air-fuel mixture
between and near the electrodes. This creates a spherical flame front that propagates outward into the combustion chamber. At first, the flame front moves very
slowly because of its small original size. It does not generate enough energy to
quickly heat the surrounding gases and thus propagates very slowly. This, in turn,
does not raise the cylinder pressure very quickly, and very little compression heating
is experienced. Only after the first 5-10% of the air-fuel mass is burned does the
flame velocity reach higher values with the corresponding fast rise in pressure, the
flame propagation region.
It is desirable to have a rich air-fuel mixture around the electrodes of the spark
plug at ignition. A rich mixture ignites more readily, has a faster flame speed, and
gives a better start to the overall combustion process. Spark plugs are generally
located near the intake valves to assure a richer mixture, especially when starting a
cold engine.
Work to develop better ignition systems continues. Spark plugs with several
electrodes and two or more simultaneous sparks are now available. These give a
more consistent ignition and quicker flame development. One modern experimental
system gives a continuing arc after the initial discharge. It is reasoned that this additional spark will speed combustion and give a more complete combustion as the
air-fuel mixture is swirled through the combustion chamber. This system is quite
similar to methods tried over a hundred years ago. Development work has been
done to create a spark plug with a variable electrode gap size. This would allow flexibility in ignition for different operating conditions. At least one automobile
manufacturer is experimenting with engines that use a point on the top of the piston
as one of the spark electrodes [70]. Using this system, spark ignition can be initiated
across gaps of 1.5 to 8 mm, with a reported lowering of fuel consumption and
Flame Propagation in 51 Engines
By the time the first 5-10% of the air-fuel mass has been burned, the combustion
process is well established and the flame front moves very quickly through the combustion chamber. Due to induced turbulence, swirl, and squish, flame propagation
speed is about 10 times faster than if there were a laminar flame front moving
through a stationary gas mixture. In addition, the flame front, which would expand
Chap. 7
spherically from the spark plug in stationary air, is greatly distorted and spread by
these motions.
As the gas mixture burns, the temperature, and consequently the pressure,
rises to high values. Burned gases behind the flame front are hotter than the
unburned gases before the front, with all gases at about the same pressure. This
decreases the density of the burned gases and expands them to occupy a greater
percent of the total combustion chamber volume. Figure 7-3 shows that when only
30% of the gas mass is burned the burned gases already occupy almost 60% of the
total volume, compressing 70% of the mixture that is not yet burned into 40% of
the total volume. Compression of the unburned gases raises their temperature by
compressive heating. In addition, radiation heating emitted from the flame reaction
zone, which is at a temperature on the order of 3000 K, further heats the gases in the
combustion chamber, unburned and burned. A temperature rise from radiation then
further raises the pressure. Heat transfer by conduction and convection are minor
compared with radiation, due to the very short real time involved in each cycle. As
the flame moves through the combustion chamber, it travels through an environ-
Sec. 7-1
Combustion in SI Engines
ment that is progressively increasing in temperature and pressure. This causes the
chemical reaction time to decrease and the flame front speed to increase, a desirable result. Because of radiation the temperature of the unburned gases behind the
flame front continues to increase, reaching a maximum at the end of the combustion
process. Temperature of the burned gases is not uniform throughout the combustion chamber but is higher near the spark plug where combustion started. This is
because the gas here has experienced a greater amount of radiation energy input
from later flame reaction.
Ideally the air-fuel mixture should be about two-thirds burned at TDC and
almost completely burned at about 15° aTDC. This causes maximum temperature
and maximum pressure of the cycle to occur somewhere between 5° and 10° aTDC,
about optimum for a four-stroke cycle SI engine. Using Eq. (2-14) at 15° aTDC and
an R value of 4 gives V/Vc = 1.17. Thus, combustion in a real four-stroke cycle SI
engine is almost, but not exactly, a constant-volume process, as approximated by the
ideal air-standard Otto cycle. The closer the combustion process is to constant volume, the higher will be the thermal efficiency. This can be seen in the comparison of
the thermal efficiencies of the Otto, Dual, and Diesel cycles in Chapter 3. However,
in a real engine cycle, constant-volume combustion is not the best way to operate.
Figure 7-1 shows how pressure rises with engine rotation for a well-designed fourstroke cycle engine. During combustion, a maximum pressure rise of about 240 kPa
per degl'€e of engine rotation is desirable for a smooth transfer of force to the face of
the piston [58]. True constant-volume combustion would give the pressure curve an
infinite upward slope at TDC, with a corresponding rough engine operation.
A lesser pressure rise rate gives lower thermal efficiency and danger of knock
(i.e., a slower rise in pressure means slower combustion and the likelihood of
knock). The combustion process is, thus, a compromise between the highest thermal efficiency possible (constant volume) and a smooth engine cycle with some loss
of efficiency.
In addition to the effects of turbulence, swirl, and squish, the flame speed
depends on the type of fuel and the air-fuel ratio. Lean mixtures have slower flame
speeds, as shown in Fig. 7-4. Slightly rich mixtures have the fastest flame speeds,
with the maximum for most fuels occurring at an equivalence ratio near 1.2. Exhaust
residual and recycled exhaust gas slows the flame speed. Flame speed increases with
engine speed due to the higher turbulence, swirl, and squish (Fig. 7-5).
The typical burn angle, the angle through which the crankshaft turns during
combustion, is about 25° for most engines (Fig. 7-6). If combustion is to be completed at 15° aTDC, then ignition should occur at about 20° bTDC. If ignition is too
early, the cylinder pressure will increase to undesirable levels before TDC, and work
will be wasted in the compression stroke. If ignition is late, peak pressure will not
occur early enough, and work will be lost at the start of the power stroke due to
lower pressure. Actual ignition timing is typically anywhere from 10° to 30° bTDC,
depending on the fuel used, engine geometry, and engine speed. For any given
engine, combustion occurs faster at higher engine speed. Real time for the combustion process is therefore less, but real time for the engine cycle is also less, and the
Figure 7-6 Burn angle as a function of engine speed for a typical modern 51 engine
with fast-burn combustion chambers. Burn angle is the angle through which the
crankshaft turns during combustion. The increase in the angle of the ignition and
flame development period (5% burn) is mainly due to the almost constant real time
of the spark ignition process. During flame propagation (5% burn to 95% burn)
both combustion speed and engine speed increase, resulting in a fairly constant burn
angle of about 25° for the main part of combustion. Adapted from [61].
burn angle is only slightly changed. This slight change is corrected by advancing the
spark as the engine speed is increased. This initiates combustion slightly earlier in
the cycle, with peak temperature and pressure remaining at about 5° to 10° aTDC.
At part throttle, ignition timing is advanced to compensate for the resulting slower
flame speed. Modern engines automatically adjust ignition timing with electronic
controls. These not only use engine speed to set timing but also sense and make fine
adjustment for knock and incorrect exhaust emissions. Earlier engines used a
mechanical timing adjustment system that consisted of a spring-loaded ignition
distributor that changed with engine speed due to centrifugal forces. Ignition timing
on many small engines is set at an average position with no adjustment possible.
Flame Termination
At about 15° to 20° aTDC, 90-95% of the air-fuel mass has been combusted and the
flame front has reached the extreme corners of the combustion chamber. Figure 7-3
shows the last 5% or 10% of the mass has been compressed into a few percent of the
combustion chamber volume by the expanding burned gases behind the flame front.
Although at this point the piston has already moved away from TDC, the combustion chamber volume has only increased on the order of 10-20% from the very small
clearance volume. This means that the last mass of air and fuel will react in a very
Chap. 7
small volume in the corners of the combustion chamber and along the chamber
Due to the closeness of the combustion chamber walls, the last end gas that
reacts does so at a very reduced rate. Near the walls, turbulence and mass motion of
the gas mixture have been dampened out, and there is a stagnant boundary layer.
The large mass of the metal walls also acts as a heat sink and conducts away much of
the energy being released in the reaction flame. Both of these mechanisms reduce
the rate of reaction and flame speed, and combustion ends by slowly dying away.
Although very little additional work is delivered by the piston during this flame
termination period due to the slow reaction rate, it is still a desirable occurrence.
Because the rise in cylinder pressure tapers off slowly towards zero during flame termination, the forces transmitted to the piston also taper off slowly, and smooth
engine operation results.
During the flame termination period, self-ignition will sometimes occur in the
end gas in front of the flame front, and engine knock will occur. The temperature of
the unburned gases in front of the flame front continues to rise during the combustion process, reaching a maximum in the last end gas. This maximum temperature is
often above self-ignition temperature. Because the flame front moves slowly at this
time, the gases are often not consumed during ignition delay time, and self-ignition
occurs. The resulting knock is usually not objectionable or even noticeable. This is
because there is so little unburned air-fuel left at this time that self-ignition can only
cause very slig'ht pressure pulses. Maximum power is obtained from an engine when
it operates with very slight self-ignition and knock at the end of the combustion
process. This occurs when maximum pressure and temperature exist in the combustion chamber and knock gives a small pressure boost at the end of combustion.
The spark plug is fired at 18° bTDC in an engine running at 1800 RPM. It takes 8° of
engine rotation to start combustion and get into flame propagation mode. Flame termination occurs at 12° aTDC. Bore diameter is 8.4 cm and the spark plug is offset 8 mm
from the centerline of the cylinder. The flame front can be approximated as a sphere
moving out from the spark plug. Calculate the effective flame front speed during flame
Rotational angle during flame propagation is from 10°bTDC to 12° aTDC, which
equals 22°.
Time of flame propagation:
(22°)/[(360° /rev)(1800/60 rev/sec)]
0.00204 sec
Maximum flame travel distance:
bore/2 + offset
(0.084/2) + (0.008)
0.050 m
Effective flame speed:
(0.050 m)/(0.00204 sec)
24.5 m/sec
Sec. 7-1
Combustion in SI Engines
The engine in Example Problem 7-1 is now run at 3000RPM. As speed is increased in
this engine, greater turbulence and swirlincrease the flame front speed at a rate such
that VI
0.85 N. Flame development after spark plug firing still takes 8° of engine
rotation. Calculate how much ignition timing must be advanced such that flame termination again occurs at 12°aTDC.
Flame speed:
Vf =
(0.85)(3000/1800)(24.5m/sec) = 34.7m/sec
With flame travel distance the same, the time of flame propagation is
= (0.050m)/(34.7 m/sec) = 0.00144sec
Rotational angle during flame propagation:
angle = (3000/60 rev/sec)(3600/rev)(0.00144sec) = 25.92°
Flame propagation starts at 13.92°bTDC, and spark plug firing is at 21.92°bTDC.
Ignition timingmust be advanced 3.92°.
Variations in Combustion
Ideally, combustion in every cylinder of an engine would be exactly the same, and
therewould be no cycle-to-cycle variation in anyone cylinder. This does not happen
due to variations that occur in the intake system and within the cylinder. Even if no
variations occurred before combustion, the turbulence within the cylinder would
cause statistical variations to occur during combustion.
Differences in length and geometry of the intake manifold runners leading to
the different cylinders causes cylinder-to-cylinder variations in the volumetric efficiency and air.-fuel delivered. Temperature differences in the runners cause
variations in the evaporation rates, and this causes variations in the air-fuel ratio.
More fuel vapor in a hotter runner will displace more air and give a richer mixture
and lower volumetric efficiency. Evaporative cooling causes temperature differences
and, consequently, density differences. Because gasoline is a mixture with components that evaporate at different temperatures, the component mixture in each
cylinder will not be exactly the same. The vapor of components that evaporate early
in the intake manifold will not follow the exact same paths and distribution as the
still-liquid particles of the components that evaporate later at higher temperatures.
This is less of a problem in engines with port injectors than those with throttle body
injectors or carburetors. Fuel additives evaporate at various different temperatures
and so end up in different concentrations cylinder-to-cylinder and even cycle-tocycle for any single cylinder. Time and spacial variations will occur when EGR is
added to the intake system (Fig. 7-7). Passage of air around the throttle plate breaks
into two flows, causing vortices and other variations that will then affect all downstream flow. Because of imperfect quality control in the manufacturing of fuel injectors, each injector does not deliver the exact same quantity of fuel, and there will be
Figure 7·7 Effect of EGR on the consistency of combustion in the cylinder of an SI
engine. Ideally, the value of the indicated mean effective pressure (X axis) would be
the same for all cycles (100%). With no EGR, the frequency of average imep is very
high, with some variation due to inconsistency in turbulence, AF, etc. As EGR is
added, more variation in combustion occurs. This results in a larger spread of imep
experienced and average imep occurring less often. Reprinted with permission from
SAE Technical Paper 780006 © 1978, Society of Automotive Engineers, Inc., [77].
cycle-to-cycle variations from anyone injector. The standard deviation of AF within
a cylinder is typically on the order of 2-6% ofthe average (Fig. 7-8).
Within the cylinder, variations that already exist in the air-fuel ratio, amount
of air, fuel components, and temperature, along with normal turbulence, will cause
slight variations in swirl and squish cylinder-to-cylinder and cycle-to-cycle. The variations in turbulence and mass motion within the cylinder affect the flame that
occurs, and this results in substantial combustion variations, as shown in Fig. 7-9.
Local variations and incomplete mixing, especially near the spark plug, cause
the initial discharge across the electrodes to vary from the average, which then initiates combustion differently cycle-to-cycle. Once there is a difference in the start of
combustion, the entire following combustion process will be changed. Figure 7-10
shows how turbulence can change the way the same spark plug initiates combustion
in two different cycles. The ensuing combustion process for these cycles will be quite
Fastest burn time within a cylinder is about twice as fast as the slowest burn
time within the same cylinder, the difference due to random variations that occur.
The greatest percentage differences occur at light engine loads and low speeds, with
idle being the worst condition.
As a compromise, the average burn time is used to set the engine operating
conditions (i.e., spark timing, AF, compression ratio, etc.). This lowers the output of
the engine from what could be obtained if all cylinders and all cycles had exactly the
Figure 7·9 Pressure as a function of time for 10 consecutive cycles in a single cylinder of an SI engine, showing variation that occurs due to inconsistency of combustion.
Similar variation would be obtained if the pressure of the Y coordinate would be
replaced with temperature. Adapted from [42].
same combustion process. A cycle in which fast burn occurs is like a cycle with an
over-advanced spark. This happens when there is a rich AF ratio, higher than average turbulence, and good initial combustion startup. The result of this is a
temperature and pressure rise too early in the cycle, with a good chance of knock
occurring. This limits the compression ratio and fuel octane number that can be
tolerated for a given engine. A cycle with a slower than average burn time is like a
cycle with a retarded spark. This occurs when there is a lean mixture and higher than
average EGR. The result of this is a flame lasting well into the power stroke and
thus hot exhaust and hot exhaust valves. This is when partial burns and misfires
occur (Fig. 7-11). There is also a power loss due to higher than average heat loss
during these cycles. Higher heat loss occurs because of the longer combustion time
and because the flame front is wider with the slower burning lean mixture. Slow
burn limits the EGR setting for an engine and the acceptable lean setting for good
fuel economy at cruise conditions. For smooth operation, engine conditions must be
set for the worst cyclic variations in the worst cylinder. If all cylinders had the exact
same combustion process cycle after cycle, a higher engine compression ratio could
be tolerated, and the air-fuel ratio could be set for higher power and greater fuel
economy. Cheaper, lower octane fuel could be used.
Controls and Sensors
Modern smart engines continuously adjust combustion to give optimum output of
power, fuel economy, and emissions. This is done with programed electronic controls using information input from sensors located in appropriate engine, intake, and
exhaust locations. Among other things, these sensors measure throttle position,
throttle rate of change, intake manifold pressure, atmospheric pressure, coolant
temperature, intake temperature, EGR valve position, crank angle, O2 and CO in
Figure 7-11 Effect of EGR on quality of combustion in an SI engine and hydrocarbon emissions in the exhaust. With no EGR, most cycles will have normal burn
time. As the percent of EGR is increased, there will be an increase in cycles with
slow burn or partial burn. With too much EGR, combustion in some cycles will die
out, resulting in a misfire. Reprinted with permission from SAE Technical Paper
780006 © 1978, Society of Automotive Engineers, Inc., [77].
the exhaust, knock, etc. Methods used by these sensors are mechanical, thermal,
electronic, optical, chemical, and combinations of these. The controlled variables
include ignition timing, valve timing, fuel injection duration, exhaust air pump actuation, air-fuel ratio, transmission shifting, turning on of warning lights, repair
diagnostic recording, reprogramming of computer, etc.
On some engines, control of things like ignition timing and injection duration
are adjusted for the entire engine. On other engines, these adjustments are made
separately for a bank of cylinders or even for a single cylinder. The fewer cylinders
controlled by a separate control unit, the more optimum engine operation can be
made. However, this requires more sensors, a larger control computer, potentially
greater maintenance, and higher cost.
Some engines have the combustion chamber divided into a main chamber and a
smaller secondary chamber as shown in Figs. 6-7 and 7-12. This is done to create different intake and combustion characteristics in the two chambers, with a consequent
gain in power--and/or fuel economy. Often, these will be stratified charge engines
with different air-fuel ratios at different locations in the combustion chamber.
The volume of the small secondary chamber is typically up to about 20% of
the total clearance volume. It is designed with different goals in different engines.
On some engines, the secondary chamber is designed primarily to provide very high
swirl. The orifice between the chambers is contoured to create high swirl during the
compression stroke as the intake air-fuel passes from the main chamber into the
swirl chamber where the spark plug is located. This promotes good combustion
ignition in the swirl chamber. As the air-fuel burns in the swirl chamber, it expands
back through the orifice, creating a secondary swirl in the main chamber and acting
as a jet ignition or torch ignition for the gas mixture there. This type of swirl chamber
eliminates the need to create a primary swirl in the main chamber. The intake manifold and valves can be designed with a smoother straight-in flow, and higher
volumetric efficiency is achieved.
Stratified charge engines often have divided chambers. These engines do not
have a homogeneous air-fuel mixture throughout the combustion chamber, but
have a rich mixture around the spark plug and a leaner mixture away from the plug.
The rich mixture around the spark plug assures a good start and early spread of
combustion, while the lean mixture in the rest of the combustion chamber gives
good fuel economy. Often, the air-fuel mixture occupying the greater part of the
combustion chamber is too lean to consistently ignite from a spark plug but burns
adequately when ignited by the small rich mixture near the plug. Dual-chamber
stratified charge engines have a rich mixture in the small secondary chamber where
the spark plug is located and a lean mixture in the main chamber. Most of the power
Combustion in Divided Chamber Engines
of the engine is generated in the large primary chamber using an economical lean
mixture. At least one super economy lean-burn engine is on the market that uses an
overall air-fuel ratio of 25:1. This is leaner than what could be combusted in a
homogeneous mixture engine. High swirl and squish, a rich mixture around the
spark plug, and a very high voltage spark plug with a larger than normal electrode
gap promote good starting of combustion. Experimental SI engines have been
developed which can operate on overall air-fuel ratios up to 40:1.
Some engines have one intake valve in the main chamber and one in the secondary chamber of each cylinder. These supply air and fuel at different air-fuel
ratios, with a rich mixture in the secondary chamber. The extreme of this is when
one intake valve supplies only air with no fuel added. Some engines have only one
intake valve per cylinder operating at low engine speeds and two valves operating at
higher engine speeds, supplying a different air-fuel ratio. Some engines use a combination of intake valves and an in-cylinder fuel injector to create a stratified charge
in the combustion chamber. Some stratified charge engines do not use a divided
chamber but have only normal, single open-chamber geometry.
A variation of stratified charge engines are dual-fuel engines. These engines
use two types of fuel simultaneously, one usually a cheap fuel and a lesser amount of
a better fuel used to assure ignition. These engines can be of a divided chamber or
normal--open-chamber design. Fuel is supplied and various air-fuel ratios are
obtained by a combination of multiple intake valves; fuel injectors, and/or proper
contouring of the intake flow. Natural gas is often the main fuel used in dual-fuel
engines. This is especially true in underdeveloped third-world countries, where natural gas is more available than other fuels.
Another type of divided chamber engine is shown schematically in Fig. 7-13.
This essentially has a small passive secondary chamber off the side of the main com-
Chap. 7
bustion chamber containing no intake, ignition, or special swirl. When combustion
occurs in the main chamber, high-pressure gases are forced through the very small
orifice into the secondary chamber. When the pressure in the main chamber falls
during the power stroke, these high-pressure gases flow slowly back into the main
chamber, slightly increasing the pressure pushing on the piston face and producing
more work. Depending on the design, these backflowing gases may contain a combustible mixture and extend combustion time (and, consequently, work output).
Many combinations and variations of divided chambers and/or stratified
charge engines have been tried, and a number of these exist in modern automobiles.
Power Operation
For maximum power at WOT (fast startup, accelerating up a hill, an airplane taking
off), fuel injectors and carburetors are adjusted to give a rich mixture, and ignition
systems are set with retarded spark (spark later in cycle). This gives maximum
power at a sacrifice of fuel economy. The rich mixture burns faster and allows the
pressure peak to be more concentrated near TDC, with the probable compromise of
rougher operation. At high engine speeds, there is less time for heat transfer to
occur from the cylinders, and exhaust gases and exhaust valves will be hotter. To
maximize flame speed at WOT, no exhaust gas is recycled, resulting in higher levels
of NOx.
Interestingly, another way of obtaining added power from an engine is to operate with a lean mixture. Race cars are sometimes operated this way. In a lean
mixture, flame speed is slow and combustion lasts well past TDC. This keeps the
pressure high well into the power stroke, which produces a greater power output.
This way of operation produces very hot exhaust gases due to the late combustion.
This hot exhaust, combined with the unused oxygen of the lean mixture, oxidizes
the exhaust valves and seats very quickly. This requires changing of the exhaust
valves quite often, something unacceptable except maybe for race cars. Ignition
timing must be set specially for this kind of operation.
Cruising Operation
For cruising operation such as steady freeway driving or long-distance airplane
travel, less power is needed and brake-specific fuel consumption becomes important. For this type of operation a lean mixture is supplied to the engine, high EGR is
used, and ignition timing is advanced to compensate for the resulting slower flame
speed. Fuel usage efficiency (miles/liter) will be high, but thermal efficiency of the
Sec. 7-3
Engine Operating Characteristics
engine will be lower. This is because the engine will be operating at a lower speed,
which gives more time per cycle for heat losses from the combustion chamber.
Idle and Low Engine Speed
At very low engine speeds the throttle will be almost closed, resulting in a high
vacuum in the intake manifold. This high vacuum and low engine speed generate a
large exhaust residual during valve overlap. This creates poor combustion, which
must be compensated for by supplying a rich mixture to the engine. The rich mixture
and poor combustion contribute to high exhaust emissions of HC and CO. Misfires
and cycles where only partial combustion occurs in some cylinders are more common at idle speeds. A 2% misfire rate would cause exhaust emissions to exceed
acceptable standards by 100-200%.
Closing Throttle at High Engine Speed
When quick deceleration is desired and the throttle is closed at high engine speed, a
very large vacuum is created in the intake system. High engine speed wants a large
inflow of air, but the closed throttle allows very little air flow. The result is a high
intake vacuum, high exhaust residual, a rich mixture, and poor combustion. Misfires
and high exhaust emissions are very common with this kind of operation.
Engines with carburetors give especially poor combustion under these conditions. Due to the high vacuum, the carburetor gives a large fuel flow through both
the normal orifice and the idle valve. This, combined with the restricted air flow
rate, creates an overrich mixture with poor combustion and high exhaust pollution
of HC and CO. The controls on engines with fuel injectors shut the fuel flow down
under these conditions, and this results in much smoother operation.
Starting a Cold Engine
When a cold engine is started, an overrich supply of fuel must be supplied to assure
enough fuel vapor to create a combustible gas mixture. When the walls of the intake
system and cylinders are cold, a much smaller percentage of the fuel will vaporize
than in normal steady-state operation. The fuel is also cold and does not flow as
readily. The engine turns very slowly, being driven only by the starting motor, and a
greater amount of the compressive heating during compression is lost by heat transfer to the cold walls. This is made worse by the cold viscous lubricating oil that
resists motion and slows the starting speed even more. All of these factors contribute to the need for a very rich air-fuel ratio when starting a cold engine. Air-fuel
ratios as rich as 1:1 are sometimes used.
Even when everything is very cold, a small percentage of fuel vaporizes and a
combustible air and vapor mixture can be obtained. This mixture is ignited, and
after only a few cycles of combustion, the engine begins to heat up. Within a few
Chap. 7
seconds it starts to operate in a more normal mode, but it can take many minutes
before fully warmed steady-state operation is reached. Once the engine starts to
warm, all of the excess fuel that was originally input vaporizes and a short period of
overrich operation is experienced. During this period, there is a large excess of HC
and CO emissions in the exhaust. To compound this problem, the catalytic converter
is also cold at startup and does not remove these excess emissions. This problem of
excess air pollution at cold startup is addressed in Chapter 9.
Special starting fluids can be purchased for aiding engine startup in extremely
cold temperatures. Substances like diethyl ether with very high vapor pressures
evaporate more readily than gasoline and give a richer air-fuel vapor mixture for
initiating combustion. These fluids generally are obtained in pressurized containers
and are sprayed into the engine air intake before starting.
The combustion chamber for a modern high-speed SI engine must be able to burn
the contained air-fuel mixture very rapidly without creating excess exhaust emissions. It must provide a smooth power stroke, low specific fuel consumption, and
maximum thermal efficiency (a high compression ratio). Two general designs for
such a combustiQ.n chamber are shown in Fig. 6-4. Many modern engines have combustion chambers that are a variation of one or both of these designs. As a
comparison, Fig. 7-14 shows the general design of a combustion chamber found in
historic, L head, valve-in-block engines.
It is desirable to have the minimum combustion time possible without actually
having an instantaneous constant-volume reaction (detonation). If the combustion
time is less than the ignition delay time of the air-fuel mixture after the temperature
has been raised above self-ignition temperature, knock is avoided (see Chapter 4).
Figure 7-14 Combustion chamber of L
head, valve-in-block engine. For several
decades from the 1910s to the 19508, this
was the standard geometry of many engines.
With a few exceptions to the general design,
this type of combustion chamber generally
did not promote high levels of swirl, squish,
or tumble, considered very desirable in modern combustion philosophy. Flame travel
distance was also long compared to modern
combustion chambers. All of this restricted
these early engines to much lower compression ratios than what is common today.
Sec. 7-4
Modern Fast-BurnCombustion Chambers
The faster the burn time, the higher the allowable compression ratio and/or the
lower the octane number required in the fuel.
For the fastest burn time, a minimum flame travel distance is desired with
maximum turbulence, swirl, and squish. The two chambers in Fig. 6-4 satisfy these
requirements, while the older chamber in Fig. 7-14 does not. As the piston
approaches TDC in the chambers in Fig. 6-4, the air-fuel mixture is compressed
towards the centerline of the cylinder. Conservation of angular momentum will
cause a large increase in swirl rotation as the average mass radius is decreased. Some
momentum will be lost via viscous friction with the walls. This inward compression
also causes a large squish velocity in the radial direction towards the cylinder centerline. Both these motions greatly increase flame front speed and decrease
combustion time. There is also a reverse outward squish which further increases the
spread of the flame front. This occurs early in the power stroke when the piston
starts to move away from IDe. In a modern combustion chamber these motions,
along with turbulence, increase flame velocity by a factor of about 10 over a flame
passing through a stagnant air-fuel mixture. It is assumed that the intake systems
for the cylinders shown in Fig. 6-4 are made to provide high turbulence and high
inlet swirl.
The spark plug is placed near the centerline of the cylinder, so the flame must
travel only about one-fourth of the bore diameter before most of the air-fuel mixture is-consumed. A few engines have two spark plugs per cylinder. This allows the
air-fuel mixture to be consumed by two flame fronts and, with proper placement,
can almost decrease combustion time by a factor of two. At least one automobile
manufacturer has experimented with a prototype four-cylinder engine with four
spark plugs per cylinder, one in the center and three at the outer periphery. Most
aircraft engines have two spark plugs per cylinder. However, this is more a safety
feature than to improve combustion. Many aircraft systems have redundancy in case
one fails.
In addition to fast combustion time, the combustion chambers shown in Fig.
6-4 would give smooth engine operation during the power stroke. With the spark
plug located near the center of the clearance volume pressure buildup at the start of
combustion will be slow due to the large volume of surrounding gas which must be
compressed. Placing the spark plug near the edge of the combustion chamber would
give a quicker early pressure rise due to less gas to compress in the immediate vicinity. This would create a rougher engine cycle. Near the end of combustion, the flame
front exists in the small volume of gas at the edges of the combustion chamber. This
allows the pressure rise to die away slowly and contributes again to a smooth power
stroke. If combustion would end with the flame front in a large part of the combustion chamber, pressure rise would end abruptly and the end of the power stroke
would be less smooth. If knock occurs during combustion, it will occur in the last
end gas to burn. If only a small amount of end gas exists, any knock that occurs can
be tolerated and probably wouldn't be detected. A very small amount of knock is
even desirable with this kind of combustion chamber. It means that operating
temperature and pressure are at a maximum and the small amount of knock is not
Chap. 7
detectable. It can even raise power output very slightly by increasing the pressure a
little near the end of the combustion process.
In addition to being placed near the center of the clearance volume, the spark
plug should be positioned near both the intake and exhaust valves. It should be near
the intake valve to assure a richer mixture between the spark plug electrodes, combustion being easier to ignite in a rich mixture. The gas mixture away from the
intake valve will have a greater amount of left-over exhaust residual and will
consequently be leaner. The spark plug should also be near the exhaust valve. The
exhaust valve and port are the hottest parts of the combustion chamber, and this
higher temperature will assure good fuel vaporization near the spark plug. This also
keeps the exhaust valve away from the hot end gas, where the higher surface temperature could cause surface ignition and knock.
To keep the size of the combustion chamber at a minimum, most modern SI
engines have overhead valves. This requires overhead camshafts or a hydromechanical linkage between the valves and a camshaft mounted in the engine block.
Another way of decreasing combustion chamber size is to have more cylinders for a
given displacement volume.
These combustion chambers offer less heat loss, less force on the head bolts,
less wall deposit buildup, and less exhaust emissions. There is less heat loss due to
the smaller wall surface area-to-volume ratio than what existed in the earlier valvein-block engines-:-This, in turn, gives better thermal efficiency. There is less force on
the head bolts holding the head to the engine block because of the smaller head surface area of the combustion chamber. For a given cylinder pressure, total force will
be proportional to the surface area on which that pressure is applied. There will be
less wall deposit buildup with time due to the hotter temperatures and high swirl
motion, which cleans the walls in this type of chamber. There will be less exhaust
emissions because of the smaller flame quench volume and fewer wall deposits.
These will be discussed in greater detail in Chapter 9.
Probably the greatest disadvantage of this type of combustion chamber is the
limited design flexibility it offers. Because of the limited wall surface area, it is
extremely difficult to fit the needed valves, spark plugs, and fuel injectors. Often,
valve sizing and gas flow control contouring must be compromised because of space.
Cylinders with multiple intake and exhaust valves decrease flow resistance but
increase design complexity. Often, surface areas must be cut away to allow for clearance between valves and piston face. This compromises the desire for minimum
corner spaces in the chamber. Mechanical strength cannot be compromised, and
enough surface material must be allowed between valves to assure structural
Some modern engines have divided combustion chambers, as described earlier. These offer high volumetric efficiency, good fuel economy, and cycle operation
flexibility. Two of their main disadvantages are greater heat loss, due to high surface
area, and higher cost and difficulty in manufacturing.
Combustion chambers in older automobile engines, especially the flat-head
valve-in-block type shown in Fig. 7-14, had a much longer flame travel distance and
Combustion in CI Engines
combustion time. Inlet systems were not designed to create swirl motion, and any
inlet swirl that might exist would be greatly dampened out near TDC, when the
air-fuel mixture is forced away from the cylinder centerline. Little squish motion is
promoted. Some mass motion and some turbulence are present, but at lower levels
because of the slower engine speeds. Because of the much greater resulting combustion times, compression ratios had to be much lower. In the early years of this
type of engine (the 1920s), compression ratios were in the range of four or five,
increasing to about seven in later years (the 1950s).
Very large engines are almost always CI engines. Because of their large combustion chambers and corresponding long flame travel distance, combined with slow
engine speed, they would require very high octane fuel and/or very low compression
ratios if operated as an SI engine. With the very long real time of combustion in a
cylinder, it would be impossible to avoid serious knock problems.
Combustion in a compression ignition engine is quite different from that in an SI
engine. Whereas combustion in an SI engine is essentially a flame front moving
through a homogeneous mixture, combustion in a CI engine is an unsteady process
occurring simultaneously at many spots in a very non-homogeneous mixture at a
rate controlled by fuel injection. Air intake into the engine is unthrottled, with
engine torque and power output controlled by the amount of fuel injected per cycle.
Because the incoming air is not throttled, pressure in the intake manifold is consistently at a value close to one atmosphere. This makes the pump work loop of the
engine cycle shown in Fig. 3-9 very small, with a corresponding better thermal efficiency compared to an SI engine. This is especially true at low speeds and low loads
when an SI engine would be at part throttle with a large pump work. For CI engines,
Only air is contained in the cylinder during the compression stroke, and much
higher compression ratios are used in CI engines. Compression ratios of modern CI
engines range from 12 to 24. Compared to normal SI engines, high thermal efficiencies (fuel conversion efficiencies) are obtained when these compression ratios are
used in Eqs. (3-73) and (3-89). However, because the overall air-fuel ratio on which
CI engines operate is quite lean (equivalence ratio cp = 0.8), less brake power output
is often obtained for a given engine displacement.
Fuel is injected into the cylinders late in the compression stroke by one or
more injectors located in each cylinder combustion chamber. Injection time is usually about 20° of crankshaft rotation, starting at about 15° bTDC and ending about
5° aTDC. Ignition delay is fairly constant in real time, so at higher engine speeds
fuel injection must be started slightly earlier in the cycle.
In addition to the swirl and turbulence of the air, a high injection velocity is
needed to spread the fuel throughout the cylinder and cause it to mix with the air.
Chap. 7
After injection the fuel must go through a series of events to assure the proper combustion process:
1. Atomization. Fuel drops break into very small droplets. The smaller the original drop size emitted by the injector, the quicker and more efficient will be this
atomization process.
2. Vaporization. The small droplets of liquid fuel evaporate to vapor. This occurs
very quickly due to the hot air temperatures created by the high compression
of CI engines. High air temperature needed for this vaporization process
requires a minimum compression ratio in CI engines of about 12:1. About 90%
of the fuel injected into the cylinder has been vaporized within 0.001 second
after injection. As the first fuel evaporates, the immediate surroundings are
cooled by evaporative cooling. This greatly affects subsequent evaporation.
Near the core of the fuel jet, the combination of high fuel concentration and
evaporative cooling will cause adiabatic saturation of fuel to occur. Evaporation will stop in this region, and only after additional mixing and heating will
this fuel be evaporated.
3. Mixing. After vaporization, the fuel vapor must mix with air to form a mixture
within the AF range which is combustible. This mixing comes about because of
the high fuel injection velocity added to the swirl and turbulence in the cylinder air~Figure 7-15 shows the non-homogeneous distribution of air-fuel ratio
that develops around the injected fuel jet. Combustion can occur within the
equivalence ratio limits of cP = 1.8 (rich) and cP = 0.8 (lean).
4. Self-Ignition. At about 8° bTDC, 6_8° after the start of injection, the air-fuel
mixture starts to self-ignite. Actual combustion is preceded by secondary reac-
Sec. 7-5
Combustion in CI Engines
tions, including breakdown of large hydrocarbon molecules into smaller
species and some oxidation. These reactions, caused by the high-temperature
air, are exothermic and further raise the air temperature in the immediate
local vicinity. This finally leads to an actual sustained combustion process.
5. Combustion. Combustion starts from self-ignition simultaneously at many
locations in the slightly rich zone of the fuel jet, where the equivalence ratio is
<p = 1 to 1.5 (zone B in Fig. 7-15). At this time, somewhere between 70% and
95% of the fuel in the combustion chamber is in the vapor state. When
combustion starts, multiple flame fronts spreading from the many self-ignition
sites quickly consume all the gas mixture which is in a correct combustible
air-fuel ratio, even where self-ignition wouldn't occur. This gives a very quick
rise in temperature and pressure within the cylinder, shown in Fig. 7-16. The
higher temperature and pressure reduce the vaporization time and ignition
delay time for additional fuel particles and cause more self-ignition points to
further increase the combustion process. Liquid fuel is still being injected into
the cylinder after the first fuel is already burning. After the initial start of combustion when all the air-fuel mixture that is in a combustible state is quickly
consumed, the rest of the combustion process is controlled by the rate at which
fuel can be injected, atomized, vaporized, and mixed into the proper AF. This
rate of combustion, now controlled by injection rate, can be seen in Fig. 7-16 in
the slower pressure rise that occurs after the initial fast rise. Combustion lasts
for about 40° to 50° of engine rotation, much longer than the 20° of fuel injection. This is because some fuel particles take a long time to mix into a
Figure 7-16 Cylinder pressure as a function of crank angle for a CI engine. Point A
is where fuel injection starts, A to B is ignition delay, and point C is the end of fuel
injection. If the cetane number of the fuel is too low, a greater amount of fuel will be
injected during ignition delay time. When combustion then starts, the additional fuel
will cause the pressure at point B to increase too fast, resulting in a rough engine
cycle. Adapted from [10].
Chap. 7
combustible mixture with the air, and combustion therefore lasts well into the
power stroke. This can be seen in Fig. 7-16, where the pressure remains high
until the piston is 30°--40° aTDC. About 60% of the fuel is burned in the first
third of combustion time. Burning rate increases with engine speed, so the
burn angle remains about constant. During the main part of the combustion
process, anywhere from 10% to 35% of the fuel vapor in the cylinder will be in
a combustible AF.
In Chapter 2, it was reasoned that average engine speed strongly correlates
with the inverse of stroke length. This puts the average piston speed for all engines
in the range of about 5 to 15 m/sec. Large, slow engines have adequate real time to
inject, atomize, vaporize, and mix the fuel for combustion to occur in 40°-50° of
engine rotation. These direct injection (DI) engines have large open chambers without the need for high swirl. They generally have very high injection pressures which
give the fuel jets high velocity. This assures that the penetration of the jet reaches
across the large combustion chamber and greatly assists in the mixing of the fuel and
air. DI engines generally have higher brake thermal efficiency because they operate
slower, which reduces friction losses, and they have lower combustion chamber
surface area-to-volume ratios, which reduces heat losses.
Small CI engines operate at much higher speeds and need high swirl to
enhance and speed the vaporization and mixing of the fuel. This must occur at
speeds up to 1Q times faster so that combustion can occur in the same desired
40°_50° of engine rotation. Special intake and cylinder geometries are needed to
generate this necessary high swirl. This can include special swirl chambers separate
from the main combustion chamber, as shown in Fig. 6-7. These indirect injection
(IDI) engines with divided chambers inject the fuel into the smaller secondary
chamber and can use much lower injection pressures. This gives lower fuel jet velocities, which are adequate to penetrate across the smaller combustion chamber. The
high swirl generated in the secondary chamber provides the needed mixing of fuel
and air. As the gas mixture in the secondary chamber combusts, it expands through
the orifice into the main chamber, carrying liquid fuel droplets with it and providing
swirl in the main chamber. Here the main portion of combustion occurs much like
an SI engine. The higher speeds at which IDI engines generally operate make them
better automobile engines. Because of the large surface area-to-volume ratio in the
combustion chambers there is a greater heat loss, and this typically requires a higher
compression ratio. Starting a cold engine is also more difficult because of this.
The diesel engine of Example Problem 5-4 has a compression ratio of 18:1 and operates
on an air-standard Dual cycle. At 2400 RPM, combustion starts at 7° bTDC and lasts
for 42° of engine rotation. The ratio of connecting rod length to crank offset is R = 3.8.
Fuel Injection
The nozzle diameter of a typical fuel injector is 0.2-1.0 mm. An injector may have
one nozzle or several (Fig. 6-5).
Velocity of liquid fue1leaving a nozzle is usually about 100 to 200 m/sec. This
is quickly reduced by viscous drag, evaporation, and combustion chamber swirl. The
vapoijet extends past the liquid jet and ideally just reaches the far walls of the combustion chambers. Evaporation occurs on the outside of the fuel jet while the center
remains liquid. Figure 7-15 shows how the inner liquid core is surrounded by
successive vapor zones of air-fuel that are:
too rich to burn
rich combustible
lean combustible
too lean to burn
Liquid drop diameter size leaving the injector is on the order of 10 -5 m
(10 -2 mm) and smaller, generally with some normal distribution of sizes. Factors
that affect droplet size include pressure differential across the nozzle, nozzle size
and geometry, fuel properties, and air temperature and turbulence. Higher nozzle
pressure differentials give smaller droplets.
Injectors on some small engines with high swirl are designed to spray the fuel
jet against the cylinder wall. This speeds the evaporation process but can only be
done in those engines that operate with very hot walls. This is necessary because of
the limited real time of each cycle in small engines that operate at high speeds. This
practice is not needed and should not be done with large engines operating at slower
speeds. These have low swirl and cooler walls, which would not evaporate the fuel
efficiently. This would lead to high specific fuel consumption and high HC emissions
in the exhaust.
Ignition Delay and Cetane Number
Once the air-fuel mixture is in a combustible air-fuel ratio and the temperature is
hot enough for self-ignition, ignition delay will still be in the range of 0.4 to 3 msec
(0.0004 to 0.003 sec). An increase in temperature, pressure, engine speed, and/or
compression ratio will decrease ignition delay time. Fuel droplet size, injection
velocity, injection rate, and physical characteristics of the fuel seem to have little or
no effect on ignition delay time. At higher engine speeds, turbulence is increased,
wall temperature is higher, and ignition delay is decreased in real time. However,
ID is almost constant in cycle time, which results in a fairly constant crankshaft angle
position for the combustion process at all speeds.
If injection is too early, ignition delay time will increase because temperature
and pressure will be lower. If injection is late, the piston will move past TDC, pressure and temperature will decrease, and again ignition delay time will increase. It is
important to use fuel with the correct cetane number for a given engine. Cetane
number is a measure of ignition delay and must be matched to a given engine cycle
and injection process. If the cetane number is low, ignition delay will be too long,
and a more-than-desirable amount of fuel will be injected into the cylinder before
combustion starts. When combustion then does start, a greater amount of fuel will
be quickly cOJ),sumed, and the initial cylinder pressure rise will be greater. This
causes a very large initial force applied to the piston face and a rough engine cycle.
If the cetane number is high, combustion will start too early before TDC, with a
resulting loss in engine power.
Normal cetane numbers of commonly used fuels are in the range of 40-60. In
this range, ignition delay time is inversely proportional to cetane number:
Cetane number and octane number also have a strong inverse correlation for
most fuels:
Cetane number can be changed by blending small amounts of certain additives
to the fuel. Additives that accelerate ignition include nitrites, nitrates, organic peroxides, and some sulfur compounds.
Alcohol, with its high octane number, is a poor fuel for CI engines.
The flame in a CI engine is highly non-uniform. When self-ignition occurs the flame
will quickly engulf all parts of the combustion chamber that have an air-fuel mixture
in a combustible ratio. Mixtures with an equivalence ratio in the range of 0.8 to
These solid carbon particles are the black smoke seen in the exhaust of large
trucks and railroad locomotives.
In the very fuel-rich zones where AF is just marginally combustible, very large
amounts of solid carbon particles are generated. As the combustion process proceeds and the air-fuel mixture in the combustion chamber is further mixed by swirl
and turbulence, most of the carbon particles further react, and only a very small
percentage of them eventually reach the surrounding environment. Solid carbon
particles are a fuel and react with oxygen when the proper mixture is obtained:
+ 02
+ heat
In that the overall air-fuel ratio is lean in a CI engine, most of the carbon will
find and react with the excess oxygen. Even after the mixture leaves the combustion
chamber, additional reactions take place in the exhaust system, further reducing the
amount of solid carbon. In addition, most CI engine exhaust systems have a particulate trap that filters out a large percentage of the remaining solid carbon. Only a
small percent of the original solid carbon particles that were generated in the combustion chamber is exhausted to the environment.
To keep exhaust smoke (soot) within tolerable limits, CI engines are operated
with an overall lean AF (4) < 0.8). If these engines would operate with an overall
stoichiometric AF, the amount of exhaust smoke would be unacceptable. Even with
lean operation, many metropolitan areas are very concerned with diesel exhaust
from trucks and buses. In many locations, very stringent laws are being imposed on
bus and truck operation, and major improvements must be made to reduce exhaust
emissions from these vehicles.
A CI engine operates with unthrottled intake air, controlling engine power by
the amount of fuel injected. When a truck or railroad locomotive is under heavy
load, such as accelerating from a stop or going up a hill, a more than normal amount
of fuel is injected into the cylinders. This causes a richer mixture that generates a
higher amount of solid carbon soot. A large amount of exhaust smoke is very noticeable under these conditions.
Because CI engines operate overall lean, they have a high combustion efficiency which is generally around 98 %. Of the 2 % of combustion inefficiency, about
half appears as HC emissions in the exhaust. This is in the form of solid carbon and
other HC components. Some HC components are absorbed on the carbon particles
and carried out in the exhaust. If 0.5% of the carbon in the fuel were exhausted as
solid particles, the resulting smoke would be unacceptable. This means that the
amount of solid carbon being exhausted must be kept well below this 0.5%.
Because of the 98% fuel conversion efficiency and their high compression
ratios, the thermal efficiency of CI engines is high compared to Otto cycle SI engines.
However, because of their fuel-lean operation, their power output per unit displacement volume is not as good.
Starting a cold CI engine can be very difficult. The air and fuel are cold, so fuel evaporation is very slow and ignition delay time is lengthened. Lubrication oil is cold, its
viscosity is high, and distribution is limited. The starter motor has to turn the cold
engine that is poorly lubricated with very high viscosity oil. This results in a slower
than normal turnover speed to start the engine. Because of very low engine speed, a
greater amount of blowby past the piston occurs, reducing the effective compression. As the starter motor turns the engine to start it, air within the cylinders must
compress enough to raise the temperature well above self-ignition temperature. This
does not readily happen. The slower than normal rotation of the engine, combined
with the cold metal cylinder walls, promotes a large heat loss to the walls and keeps
the air temperature below that needed to self-ignite the fuel. To overcome this problem, a glow plug is used when starting most CI engines. A glow plug is a simple
resistance heater connected to a battery with the heated surface located within the
combustion chamber of the engine. For a short time, 10--15seconds, before starting
the engine, the glow plug is turned on and the resistor becomes red hot. Now, when
the engine is started, combustion in the first few cycles is not ignited by compressive
heating but by surface ignition off the glow plug. After just a few cycles the cylinder
walls and lubricant are warmed enough, so more normal operation of the engine is
possible, the glow plug is turned off, and self-ignition caused by compressive heating
occurs. Due to their larger wall surface area, engines with divided combustion cham-
Sec. 7-6
bers have a greater heat loss problem than those with single open chambers and are
generally more difficult to start.
Because of the large amount of energy needed to rotate and start very large CI
engines that are cold, using an electric motor powered from a battery is sometimes
not practical. Instead, a small internal combustion engine can be used as the starting
motor for the larger engine. This pony engine, usually having two or four cylinders,
is first started and then used to turn over the large engine by engaging it to the
flywheel of the large engine. The pony engine is then disengaged when the large
engine is started.
To aid in cold starting, many medium-size CI engines are built with a higher
compression ratio than would otherwise be needed. Some are also given a larger
flywheel for this purpose. Preheating the lubricating oil electrically is done on some
engines to help the starting process. Some systems even distribute the oil throughout
the engine before starting by means of an electric oil pump. This oil not only lubricates the engine parts and makes starting easier, but it also reduces the high engine
wear which occurs at this time. Late injection and a richer air-fuel mixture are also
used to aid starting.
It is not an uncommon practice to leave large CI engines running continuously
during cold weather to avoid the problem of restarting them. Truck engines are
often1eft running at highway truck stops in northern climates during winter. This is
undesirable in that it wastes fuel and adds air pollution to the environment.
Another cold-weather problem encountered with cold CI engines in trucks
and automobiles is pumping the fuel from the fuel tank to the engine. Often the fuel
tank is located some distance from the engine, and the fuel supply lines run outside
the warm engine compartment. The high viscosity of cold fuel oil makes it very difficult to pump it through the long, often small diameter, fuel lines. Some diesel fuels
will even gel in the fuel tank in cold weather. Many vehicles overcome this problem
with an electric fuel tank heater and/or by recirculating the fuel through the warm
engine compartment. As much as twice the needed fuel is pumped to the engine
compartment. The excess fuel, after being warmed in the engine compartment, is
recirculated back to the fuel tank, where it mixes with and warms the rest of the fuel.
It is often necessary to change to a higher grade fuel oil for winter operation of an
automobile. The more costly high-grade fuel has lower viscosity and is more easily
pumped. It also works better through the fuel injectors.
Combustion in an SI engine consists of ignition and flame development, flame propagation, and flame termination. Combustion is initiated with a spark plug that
ignites the air-fuel mixture in the immediate vicinity of the spark plug electrodes.
There is essentially no pressure rise or work done at first, and 5-10% of the air-fuel
mixture is consumed before the combustion process is fully developed. When the
flame is fully developed it propagates very rapidly across the combustion chamber,
accelerated and spread by turbulence and mass motions within the cylinder. This
raises the temperature and pressure in the cylinder, and the piston is forced down in
the power stroke. By the time the flame front reaches the corners of the combustion
chamber, only a few percent of the air-fuel mixture remains, and the flame is terminated by heat transfer and viscous drag with the wall.
Combustion in engines with divided combustion chambers is a two-step
process: fairly normal ignition and flame development in the secondary chamber,
and main-tfame propagation in the primary chamber ignited by a flame jet through
the separating orifice. Often the air-fuel ratio is fuel rich in the secondary chamber
and lean in the primary main chamber.
Combustion in a CI engine starts with injection of fuel late in the compression
stroke. The liquid fuel droplets atomize, evaporate, mix with air, and then, after an
ignition delay time, self-ignite simultaneously at many sites. The flame then consumes all fuel which is in a combustible state, and continues to do this as injection
continues. Combustion terminates when the last fuel droplets are reacted after evaporating and mixing with air to form a combustible mixture.
An SI engine operating at 1200 RPM has a 1O.2-cmbore with the spark plug offset by
6 mm from center. The spark plug is fired at 20° bTDC. It takes 6.5° of engine rotation
for combustion to develop and get into flame propagation mode, where the average
flame speed is 15.8 mIsec.
Calculate: (a) Time of one combustion process (i.e., time for flame front to reach the
furthest cylinder wall). [see]
(b) Crank angle position at the end of combustion.
It is desired that flame termination be at the same crank angle position when the speed
of the engine in Problem 7-1 is increased to 2000 RPM. In this range, flame development takes the same amount of real time and flame speed is related to engine speed as
VI ex 0.92 N.
Calculate: (a) Flame speed at 2000 RPM. [m/sec]
(b) Crank angle position when the spark plug should be fired.
(c) Crank angle position when flame propagation starts.
A CI engine with a 3.2-inch bore and 3.9-inch stroke operates at 1850 RPM. In each
cycle, fuel injection starts at 16°bTDC and lasts for 0.0019 second. Combustion starts at
8° bTDC. Due to the higher temperature, the ignition delay of any fuel injected after
combustion starts is reduced by a factor of two from the original ID.
Calculate: (a) ID offirst fuel injected. [see]
(b) ID of first fuel injected in degrees of engine rotation.
(c) Crank angle position when combustion starts on last fuel droplets
'-4. A 3.2-liter SI engine is to be designed with bowl-in-piston combustion chambers as
shown in Fig. 6-4(b). With a central spark plug and combustion at TDC, this gives a
flame travel distance of B / 4. The engine is to operate with an average piston speed of
Design Problems
8 mlsec and a burn angle of 250 of engine crank rotation. Stroke and bore will be related
by S = 0.95 B.
Calculate: (a) Average flame speed if the design is for an in-line four-cylinder engine.
(b) Average flame speed if the design is for a V8 engine. [m/sec]
A large CI engine operating at 310 RPM has open combustion chambers and direct
injection, with 26-cm bores, a 73-cm stroke, and a compression ratio of 16.5:1. Fuel injection in each cylinder starts at 21 bTDC and lasts for 0.019 second. ID is 0.0065 second.
Calculate: (a) ID in degrees of engine rotation.
(b) Crank angle position when combustion starts.
(c) Crank angle position when injection stops.
Some Ford Thunderbird V8 engines have two spark plugs per cylinder. If everything
else is kept the same, list three advantages and three disadvantages this gives for
modern engine operation and design.
The divided combustion chambers of a two-liter, four-cylinder, lean-burn, stratified
charge SI engine have 22 % of clearance volume in the secondary chamber of each
cylinder. The intake system delivers an air-gasoline mixture into the secondary
chamber at an equivalence ratio of 1.2, and into the main chamber at an equivalence
ratio of 0.75.
Calculate: (a) Overall air-fuel ratio.
(b) Overall equivalence ratio.
The engine in Problem 7-7 has a volumetric efficiency of 92%, an overall combustion
efficiency of 99%, an indicated thermal efficiency of 52%, and a mechanical efficiency
of 86% when operating at 3500 RPM.
Calculate: (a) Brake power at this condition. [kW]
(b) bmep. [kPa]
(c) Amount of unburned fuel exhausted from the engine.[kglhr]
(d) bsfc. [gmlkW-hr]
A two-liter, four-cylinder, open-chamber SI engine operates at 3500 RPM using stoichiometric gasoline. At this speed volumetric efficiency is 93%, combustion efficiency
is 98%, indicated thermal efficiency is 47%, and mechanical efficiency is 86%.
Calculate: (a) Brake power. [kW]
(b) bmep. [kPa]
(c) Amount of unburned fuel exhausted from the engine. [kg/hr]
(d) bsfc. [gmlkW-hr]
(e) Compare these results with those of Problem 7-8.
'-10. It is desired to build an engine with a low height for a high-speed sports car with a very
low profile. Design the intake manifold and combustion chamber for a modern fastburn valve-in-block engine. The engine must have high turbulence, swirl, squish, and
tumble, with a short flame travel distance.
'-20. Design a fuel delivery system for a flexible-fuel automobile engine. The engine should
be able to use any mixture combination of gasoline, ethanol, and/or methanol. Tell how
engine variables will change for various fuel combinations (e.g., ignition timing, fuel
injection, etc.). State all assumptions you make.
After combustion is completed and the resulting high-pressure gases have been used
to transfer work to the crankshaft during the expansion stroke, these gases must be
removed from the cylinder to make room for the air-fuel charge of the next cycle.
The exhaust process that does this occurs in two steps, exhaust blowdown followed
by the exhaust stroke. The resulting flow out the exhaust pipe is a non-steady-state
pulsing flow which is often modeled as pseudo-steady-state.
Exhaust blowdown occurs when the exhaust valve starts to open towards the end of
the power stroke, somewhere around 60° to 40° bBDC. At this time, pressure in the
cylinder is still at about 4-5 atmospheres and the temperature is upwards of 1000 K.
Pressure in the exhaust system is about one atmosphere, and when the valve is
opened the resulting pressure differential causes a rapid flow of exhaust gases from
the cylinder, through the valve, into the exhaust system (i.e., exhaust blowdown).
Flow at first will be choked and the outflow velocity will be sonic. This occurs
when the ratio of pressures across an orifice is greater than or equal to:
+ 1)/2]k/(k-l)
Although the gases are not truly ideal and the blowdown process is not isentropic due to heat losses, irreversibility, and choked flow, Eq. (8-3) gives a fairly
good approximation to gas temperature entering the exhaust system.
In addition, the first gas leaving the cylinder will have a high velocity and a
correspondingly high kinetic energy. This high kinetic energy will quickly be dissipated in the exhaust system, and the kinetic energy will be changed to additional
enthalpy, raising the temperature above Tex of Eq. (8-3). As the pressure in the
cylinder decreases during the blowdown process, the gas leaving will have progressively lower velocity and kinetic energy. The first gas leaving the cylinder will thus
have the highest temperature in the exhaust system, with any following gas having a
lower temperature. The last elements of exhaust leaving the cylinder during blowdown will have very little velocity and kinetic energy and will be at a temperature
about equal to Tex in Eq. (8-3). If a turbocharger is located close to the engine near
the exhaust valves, the kinetic energy gained in blowdown can be utilized in the
turbine of the turbocharger. Heat transfer also contributes to the final pseudosteady-state temperature found in the exhaust system.
In an ideal air-standard Otto cycle or Diesel cycle, the exhaust valve opens at
BDC and blowdown occurs instantaneously at constant volume (process 4-5 in Fig.
8-1). This does not happen in a real engine, where blowdown takes a finite length of
time. So that the pressure in the cylinder has been fully reduced by BDC when the
exhaust stroke starts, the exhaust valve starts to open somewhere around 60° to 40°
bBDC. When this happens, the pressure is quickly reduced, and what would have
been additional useful work is lost during the last part of the expansion stroke.
Because of the finite time required, the exhaust valve is not fully open until BDC or
slightly before. The timing when the exhaust valve is opened (in most engines using
a camshaft) is critical. If the valve opens too early, more than necessary work is lost
in the latter stages of the power stroke. If it opens late, there is still excess pressure
in the cylinder at BDC. This pressure resists the piston movement early in the
exhaust stroke and increases the negative pumping work of the engine cycle.
The ideal time to open the exhaust valve depends on engine speed. The finite
real time of blowdown is fairly constant, mainly because of the choked flow condition that occurs at the start (i.e., sonic velocity is the same regardless of engine
speed). The lobe on the camshaft can be designed to open the valve at one given
crankshaft angle, which can be picked to be optimum at one engine speed. Once this
compromise speed has been decided in the design and manufacture of the camshaft,
all other engine speeds will have less-than-optimum timing for the opening of the
exhaust valve. At higher speeds the valve will be opening late, and at lower speeds
the valve will be opening early. Certainly, a need for variable valve timing exists.
The exhaust valve should be as large as possible, considering all other demands
in the design of the combustion chamber. A larger valve gives a greater flow area and
reduces the time of blowdown. This allows for a later exhaust valve opening and a
longer expansion stroke with less lost work. Many modern engines have two exhaust
Sec. 8-2
Exhaust Stroke
valves per cylinder, with the flow area of the two smaller valves being greater than the
flow area of one larger valve. This gives added design flexibility (and complexity) for
fitting the exhaust valves into the existing combustion chamber space.
Some industrial and other constant-speed engines can be designed with valve
timing optimized for that speed. Vehicle engines can be designed for most used
condition (e.g., cruising speed for trucks and airplanes, red-line maximum speed for
a drag racer). Slow-speed engines can have very late exhaust valve opening.
After exhaust blowdown, the piston passes BDC and starts towards TDC in the
exhaust stroke. The exhaust valve remains open. Pressure in the cylinder resisting
the piston in this motion is slightly above the atmospheric pressure of the exhaust
system. The difference between cylinder pressure and exhaust pressure is the small
pressure differential caused by the flow through the exhaust valves as the piston
pushes the gases out of the cylinder. The exhaust valve is the greatest flow restriction in the entire exhaust system and is the location of the only appreciable pressure
drop during the exhaust stroke.
The exhaust stroke can best be approximated by a constant-pressure process,
with MS properties remaining constant at the conditions of point 7 in Fig. 8-1.
Pressure remains about constant, slightly above atmospheric, with temperature and
density constant at values consistent with Eq. (8-3).
Ideally, at the end of the exhaust stroke when the piston reaches TDC, all the
exhaust gases have been removed from the cylinder and the exhaust valve closes.
One reason this does not happen is the finite time it takes to close the exhaust valve.
The lobe on the camshaft is designed to give a smooth closing of the valve and to
keep wear at a minimum. One cost of doing this is a slightly longer time required to
close the valve. To have the valve totally closed at TDC requires the closing process
to start at least 20° bTDC. This is unacceptable in that the valve would be partially
closed during the last segment of the exhaust stroke. Closing can only start at or very
close to TDC, which means that total closing doesn't occur until 8°-50° aTDC.
When the exhaust valve is finally closed, there is still a residual of exhaust
gases trapped in the clearance volume of the cylinder. The higher the compression
ratio of the engine, the less clearance volume exists to trap this exhaust residual.
The valve problem is compounded by the fact that the intake valve should be
totally open at TDC when the intake stroke starts. Because of the finite time
required to open this valve, it must start to open 10°-25° bTDC. There is, therefore,
a period of 15°_50° of engine rotation when both intake and exhaust valves are open.
This is called valve overlap.
During valve overlap there can be some reverse flow of exhaust gas back into
the intake system. When the intake process starts, this exhaust is drawn back into
the cylinder along with the air-fuel charge. This results in a larger exhaust residual
during the rest of the cycle. This backflow of exhaust gases is a greater problem at
Exhaust Flow
Chap. 8
low engine speeds, being worst at idle conditions. At most low engine speeds the
intake throttle is at least partially closed, creating low pressure in the intake manifold. This creates a greater pressure differential, forcing exhaust gas back into the
intake manifold. Cylinder pressure is about one atmosphere, while intake pressure
can be quite low. In addition, real time of valve overlap is greater at low engine
speed, allowing more backflow. Some engines are designed to use this small backflow of hot exhaust gas to help vaporize the fuel that has been injected directly
behind the intake valve face.
Some engines have a one-way reed valve at the exhaust port to keep exhaust
gas from flowing back from the exhaust manifold into the cylinder and intake system
during valve overlap.
Engines equipped with turbochargers or superchargers often will have intake
pressures above one atmosphere and are not subject to exhaust backflow.
Another negative result of valve overlap is that some intake air-fuel mixture
can short-circuit through the cylinder when both valves are open, with some fuel
ending up as pollution in the exhaust system.
Variable valve timing, which is starting to be used on some automobile
engines, decreases the problems of valve overlap. At low engine speeds the exhaust
valve can be closed earlier and the intake valve can be opened later, resulting in less
If the exhaust valve is closed too early, an excess of exhaust gases is trapped in
the cylinder. Also, cylinder pressure would go up near the end of the exhaust stroke,
causing loss sf net work from the engine cycle. If the exhaust valve is closed late,
there is an excess of overlap, with more backflow of exhaust gas into the intake.
Figure 8-2 shows the flow of gases through the exhaust valve out of the cylinder. When the valve is first opened, blowdown occurs with a very high flow rate due
to the large pressure differential. Choked flow will occur (sonic velocity) at first, limiting the maximum flow rate. By the time the piston reaches BDC, blowdown is
complete, and flow out of the exhaust valve is now controlled by the piston during
the exhaust stroke. The piston reaches maximum speed about halfway through the
exhaust stroke, and this is reflected in the rate of exhaust flow. Towards the end of
the exhaust stroke, near TDC, the intake valve opens and valve overlap is experienced. Depending on engine operating conditions, a momentary reverse flow of
exhaust gas back into the cylinder can occur at this point.
A 6.4-literV8 engine with a compressionratio of 9:1operates on the air-standard cycle
and has the exhaust process as shown in Fig. 8-1. Maximum cycle temperature and
pressure are 2550K and 11,000kPa when operating at 3600RPM. The exhaust valve
effectivelyopens at 52°bBDC.
1. time of exhaust blowdown
2. percent of exhaust gas that exits the cylinder during blowdown
3. exit velocityat the start of blowdown,assumingchoked flowoccurs
Exhaust valves are made smaller than intake valves, although the same amount of
mass must flow through each. The pressure differential across the intake valves of a
naturally aspirated engine is less than one atmosphere, while the pressure differential across the exhaust valves during blowdown can be as high as three or four
atmospheres. In addition, if and when choked flow is occurring, sonic velocity
through the exhaust valve is higher than sonic velocity through the intake valve. This
can be seen in'Eq. (8-2), with the exhaust gas being much hotter than the intake
air-fuel mixture. Using Eq. (5-4) to size valves, we have for intake:
where: Ai
= (constant)B2(Up)max/Ci
= area of inlet valve(s)
= average piston speed at maximum engine speed
Exhaust Flow
Chap. 8
exhaust gases in the cylinder when the exhaust valve opens. The difference is
because of expansion cooling. All temperatures will be affected by the equivalence
ratio of the original combustion mixture.
The average temperature in the exhaust system of a typical CI engine will be
2000-5000C. This is lower than SI engine exhaust because of the larger expansion
cooling that occurs due to the higher compression ratios of CI engines. If the
maximum temperature in a CI engine is about the same as in an SI engine, the temperature when the exhaust valve opens can be several hundred degrees less. The
overall lean equivalence ratio of a CI engine also lowers all cycle temperatures from
combustion on.
Exhaust temperature of an engine will go up with higher engine speed or load,
with spark retardation, and/or with an increase in equivalence ratio. Things that are
affected by exhaust temperature include turbochargers, catalytic converters, and
particulate traps.
When the exhaust valve opens and blowdown occurs, the first elements of flow have
high sonic velocity and high kinetic energy. The high velocity is quickly dissipated in the
exhaust manifold, where flow velocity is relatively low. The kinetic energy of the gas is
converted to additional enthalpy with an increase in temperature. Calculate the theoretical maximum temperature in the exhaust flow of Example Problem 8-1.
Agplying conservation of energy:
= Ah =
Using values from Example Problem 8-1:
= (694 m/sec) 2/[2(1 kg-m/N-sec2)(1.108 kJ/kg-K)] = 217°
= Tex + AT = 756 + 217 = 973 K = 700°C
Actual maximum temperature would be less than this due to heat losses and other irreversibilities. Only a very small percent of the exhaust flow would have maximum
kinetic energy and reach maximum temperature. The time-averaged temperature of
the exhaust would be more consistent with T7 in Fig. 8-1 and Example Problem 8-l.
After leaving the cylinders by passing out of the exhaust valves, exhaust gases pass
through the exhaust manifold, a piping system that directs the flow into one or more
exhaust pipes. Exhaust manifolds are usually made of cast iron and are sometimes
designed to have close thermal contact with the intake manifold. This is to provide
heating and vaporization in the intake manifold.
Chemical reactions are still occurring in the exhaust flow as it enters the
exhaust manifold, with carbon monoxide and fuel components reacting with unreacted oxygen. These reactions are greatly reduced because of heat losses and the
lower temperature after blowdown. Some modern engines have insulated exhaust
Sec. 8-5
Exhaust Manifold
manifolds that are designed to operate much hotter and act as a thermal converter
to reduce unwanted emissions in the exhaust gas. Some of these are equipped with
electronically controlled air intake to provide additional oxygen for reaction. This is
discussed in the next chapter.
Modern smart engines have a number of sensors in the exhaust manifold to
give input to engine controls. These can be some combination of thermal, chemical,
electrical, and/or mechanical in nature and supply information about levels of O ,
HC, NOx, CO, CO2, particulates, temperature, and knock. This information is then
used by the engine management system (EMS) to adjust engine parameters such as
AF, injection timing, ignition timing, and EGR rate.
From the exhaust manifold, the gases flow through an exhaust pipe to the
emission control system of the engine, which may consist of thermal and/or catalytic
converters. One argument says these should be as close to the engine as space allows
to minimize heat losses. On the other hand, this creates high temperature problems
in the engine compartment. These converters promote reduction of emissions in the
exhaust gases by additional chemical reaction. They are discussed in the next
Tuning of Exhaust Manifold
As with intake manifolds, the runner lengths of the exhaust manifold can be tuned to
give an assist to the gas flow. Because the flow is a pulsed flow, pressure waves are set
up in the manifold runners. When a wave reaches the end of a passage or a restriction,
a reflected wave is generated that travels back in the opposite direction. When the
reflected wave is in phase with the primary wave, the pulses reinforce and there is a
slight increase in total pressure. At those points where the waves are out of phase,
they cancel each other and there is a slight decrease in total pressure. An exhaust
manifold runner is tuned when the reflected wave is out of phase with the primary
wave at the exit of the exhaust valve. This causes a slight decrease in pressure at that
point, increasing the pressure differential across the valve and giving a small increase
in flow. The pressure pulse wavelength is determined by the frequency, so a runner
length can be designed to give a tuned exhaust at only one engine speed. Exhaust
manifolds can therefore be effectively tuned on engines which run at one engine
speed. Race cars that often run at a constant WOT speed and which need all possible
power can very successfully use exhaust tuning. Trucks and airplanes can have tuned
exhaust systems for cruising conditions. It is very difficult to have a tuned exhaust
system on a standard automobile engine that operates over a large speed range.
Often, space limitations in the engine compartment are the dominant factor that
dictates the exhaust manifold design, and effective tuning is not possible.
On the other hand, on a number of state-of-the-art engines, exhaust tuning is
considered in the engine design. On some high-performance engines variable tuning
is used, with runner length dynamically adjusted as engine speed changes. Other
engines use dual runners of different lengths, automatically switching the exhaust
flow to the runner that is best tuned for that speed.
On turbocharged engines exhaust gases leaving the exhaust manifold enter the turbine of the turbocharger, which drives the compressor that compresses the incoming
air. Pressure of the exhaust gas entering the turbine is only slightly higher than
atmospheric, and only a very small pressure drop is possible through the turbine. In
addition, this non-steady-state pulsed flow varies widely in kinetic energy and
enthalpy due to the velocity and temperature differences that occur during blowdown and the following exhaust stroke. A pseudo-steady-state flow is assumed, with
ni(hin - haut)
nicp(Tin - Tout)
time-averaged turbine power
ni = time-averaged exhaust mass flow rate
h = specific enthalpy
cp = specific heat
T = temperature
Because of the limited pressure drop through the turbine, it is necessary for it
to operate at speeds upward of 100,000 RPM to generate enough power to drive the
compressor. These high speeds, along with the high-temperature corrosive gases
within which the turbine operates, create major mechanical and lubrication design
Turbochargers should be mounted as close as possible to the cylinder exhaust
ports so that turbine inlet pressure, temperature, and kinetic energy can be as high
as possible.
One problem associated with turbocharging is the slow response time experienced when the throttle is opened quickly. It takes several engine cycles before the
increased exhaust flow can acceleate the turbine rotor and give the desired pressure
boost to the inlet air-fuel mixture. To minimize this turbo lag, lightweight ceramic
rotors with small rotational moments of inertia are used that can be accelerated
quicker. Ceramic is also an ideal material because of the high temperatures.
Tailpipe and Muffler
Many turbochargers have a bypass which allows exhaust gas to be routed
around the turbine. This is to keep intake flow from being overcompressed when
engine operating conditions are less demanding. The amount of gas passing through
the turbine is controlled according to engine needs.
Some experimental exhaust turbines have been used to drive small high-speed
generators instead of intake compressors. The electrical energy output from these
systems can be utilized in various ways, such as driving the engine cooling fan.
Modern automobile engines use exhaust gas recycle (EGR) to reduce nitrogen
oxide emissions. Some gas is routed from the exhaust system back into the intake
system. This dilutes the intake gas mixture with noncombustibles, which then lowers
the maximum combustion temperature and consequently reduces the generation of
nitrogen oxides. The amount of EGR can be as high as 15-20% of the total mass
and is regulated according to engine operating conditions. Under some conditions, starting or WOT, no EGR is used. In addition to reducing the maximum
combustion temperature, EGR increases the intake mixture temperature and affects
fuel evaporation.
After exiting the catalytic converter, exhaust gases flow through a tailpipe that ducts
the flow away from the passenger compartment of the vehicle and vents it to the
surroundings. This is usually under and out the back (or side) of an automobile and
often upward behind the cab of large trucks.
Somewhere in the tailpipe section there is usually a larger flow chamber called
the mumer. This is a sound chamber designed to reduce the operating noise of the
engine, most of which is carried out with the exhaust flow. Mufflers use two general
methods of sound reduction. One method absorbs the energy of sound pulses by
flow through a porous medium. Other mufflers reduce sound by the cancellation of
waves. Instead of fully dampening all engine noise, some mufflers are designed to
give a louder, sporty sound.
Some automobiles with air-cooled engines, such as the VW bug, use hot
exhaust gas for heating the passenger compartment in cold weather. The exhaust
flow is ducted through one side of a heat exchanger, while passenger compartment
air is circulated through the other side. This works fine when all equipment is in
good condition. However, as automobiles age, many components suffer from oxidation, rust, and leakage. Any leakage in the heat exchanger allowing exhaust gas into
the circulating passenger air would be very dangerous.
Exhaust Flow
Chap. 8
The exhaust process of a two-stroke cycle engine differs from that of a four-stroke
cycle engine in that there is no exhaust stroke. Blowdown is the same, occurring
when the exhaust valve opens or when the exhaust slot is uncovered near the end of
the power stroke. This is immediately followed with an intake process of compressed air or air-fuel mixture. As the air enters the cylinder at a pressure usually
between 1.2 and 1.8 atmospheres, it pushes the remaining lower pressure exhaust
gas out the still-open exhaust port in a scavenging process. There is some mixing of
intake and exhaust, with some exhaust residual staying in the cylinder and some
intake gas passing into the exhaust system. For those engines which use fuel injectors (CI engines and larger modern SI engines) and have only air in the intake
system, this intake gas that gets into the exhaust system during valve overlap does
not contribute to emission problems. However, it does reduce engine volumetric
efficiency and/or trapping efficiency. For those engines that intake an air-fuel mixture any intake gas that gets into the exhaust system adds to hydrocarbon pollution
and reduces fuel economy. Some two-stroke cycle engines have a one-way reed
valve at the exhaust port to stop gases from flowing back into the cylinder from the
exhaust system.
The exhaust process of a four-stroke cycle IC engine is a two-step process: blowdown and exhaust stroke. Blowdown occurs when the exhaust valve opens late in
the expansion stroke and the remaining high pressure in the cylinder forces the
exhaust gases through the open valve into the exhaust manifold. Because of the
large pressure differential across the valve, sonic velocity occurs and the flow is
choked. As the exhaust gas experiences blowdown, the temperature decreases due
to expansion cooling. The high kinetic energy of the gas during blowdown is dissipated quickly in the exhaust manifold, and there is a momentary rise in the
temperature again from the resulting increase in specific enthalpy. The exhaust
valve must open soon enough so that blowdown is complete when the piston reaches
BDC. At this point, the cylinder is still filled with exhaust gas at about atmospheric
pressure, and most of this is now expelled during the exhaust stroke.
Two-stroke cycle engines experience exhaust blowdown but have no exhaust
stroke. Most of the gas that fills the cylinder after blowdown is expelled by a scavenging process when inlet air enters at elevated pressure.
To reduce the generation of nitrogen oxides, many engines have exhaust gas
recycling, with some of the exhaust flow ducted back into the intake system. Those
engines equipped with turbochargers use the exhaust flow to drive the turbine,
which in turn drives the inlet compressor.
Chap. 8
8-1. A six-cylinder SI engine, with a compression ratio of rc = 8.5, operates on an air-standard
Otto cycle at WOT. Cylinder temperature and pressure when the exhaust valve opens
are 1000 K and 520 kPa. Exhaust pressure is 100 kPa and air temperature in the intake
manifold is 35°C.
Calculate: (a) Exhaust temperature during exhaust stroke. [0C]
(b) Exhaust residual. [%]
(c) Cylinder temperature at the start of compression. [0C]
(d) Peak temperature of cycle. [0C]
(e) Cylinder temperature when the intake valve opens. [0C]
8-2. A four-cylinder SI engine, with a compression ratio of rc = 9, operates on an air-standard Otto cycle at part throttle. Conditions in the cylinders when the exhaust valve
opens are 70 psia and 2760°F. Exhaust pressure is 14.6 psia and conditions in the intake
manifold are 8.8 psia and 135°F.
Calculate: (a) Exhaust temperature during exhaust stroke. [OF]
(b) Exhaust residual. [%]
(c) Cylinder temperature and pressure at the start of compression stroke.
8-3. A three-cylinder, two-stroke cycle SI automobile engine, operating at 3600 RPM, has
peak cycle operating conditions of 2900°C and 9000 kPa. Cylinder temperature when
the exhaust port opens is 1275°C.
Calculate: (a) Cylinder pressure when the exhaust port opens. [kPa]
(b) Maximum flow velocity through the exhaust port. [m/sec]
8-4. An SI Otto cycle engine has a compression ratio of rc = 8.5, and a CI Diesel cycle
engine has a compression ratio of rc = 20.5. Both engine cycles have a maximum temperature of 2400 K and maximum pressure of 9800 kPa. The diesel engine has a cutoff
ratio f3 = 1.95. Calculate the cylinder temperature when the exhaust valve opens on
each engine. [0C]
8-5. Give two reasons why exhaust valves are smaller than intake valves.
8-6. A 1.8-liter, three-cylinder SI engine produces brake power of 42 kW at 4500 RPM, with
a compression ratio rc = 10.1:1 and bore and stroke related by S = 0.85 B. Maximum
temperature in the cycle is 2700 K and maximum pressure is 8200 kPa. Exhaust pressure is 98 kPa. The exhaust valve effectively opens at 56° bBDC.
Calculate: (a) Time of exhaust blowdown. [see]
(b) Percent of exhaust gas that exits cylinder during blowdown. [%]
(c) Exit velocity at the start of blowdown, assuming choked flow occurs.
[m/sec ]
8-7. Exhaust manifold pressure of the engine in Problem 8-6 is 98 kPa. In the manifold, the
high kinetic energy of the exhaust flow during blowdown is quickly dissipated and converted to an increase in specific enthalpy.
Calculate: (a) Pseudo-steady-state exhaust temperature in the exhaust stroke. [0C]
(b) Theoretical peak temperature experienced in the exhaust flow. [0C]
8-8. A four-cylinder, 2.5-liter, four-stroke cycle SI engine with a compression ratio rc = 9.6
operates at 3200 RPM. Peak cycle temperature is 2227°C, peak cycle pressure is 6800
Exhaust Flow
kPa, and exhaust pressure is 101 kPa. The engine operates at part throttle with inlet air
at 60°C and 75 kPa. An exhaust residual remains in the cylinders at the end of the
exhaust stroke. In addition, 12% EGR at exhaust temperature and pressure is diverted
back into the intake manifold, where it mixes with the inlet air before the intake valve.
Calculate: (a) Exhaust temperature during exhaust stroke. [0C]
(b) Exhaust residual before EGR is added. [%]
(c) Cylinder temperature at the start of compression stroke. [0C]
(d) Theoretical design ratio of exhaust valve diameter to intake valve
8-9. A 5.6-liter V8 engine, with a compression ratio of Tc = 9.4:1, operates on an airstandard Otto cycle at 2800 RPM, with a volumetric efficiency l1v = 90% and a
stoichiometric air-fuel ratio using gasoline. The exhaust gas flow undergoes a temperature drop of 44°C as it passes through the turbine of the turbocharger.
Calculate: (a) Mass flow rate of exhaust gas. [kg/see]
(b) Power available to drive the turbocharger compressor. [kW]
8-10. A turbocharged, three-cylinder, four-stroke cycle, 1.5-liter, multipoint port-injected SI
engine using stoichiometric gasoline operates at 2400 RPM with a volumetric efficiency
of 88%. The turbocharger has a turbine isentropic efficiency of 80% and a compressor
isentropic efficiency of 78%. Exhaust flow enters the turbine at 770 K and 119 kPa, and
exits at 98 kPa. Air enters the compressor at 27°C and 96 kPa, and exits at 120 kPa.
Calculate: (a) Mass flow rate through the tubocharger compressor. [kg/see]
(b) Mass flow rate through the turbocharger turbine. [kg/see]
'- (c) Inlet air temperature at turbocharger exit. [0C]
(d) Exhaust temperature at turbocharger exit. [0C]
8-lD. Design a variable valve-timing system to be used on an in-line four-cylinder SI engine.
8-2D. Design a turbine-generator system which can be driven by the exhaust flow of a fourcylinder SI farm tractor engine. The output of the generator can be used to power the
engine cooling fan and other accessories.
8-3D. Design exhaust valves for the engine in Problem 5-13. Decide on the number of valves,
valve diameter, valve lift, and valve timing. Flow though the valves must be such that
blow down occurs before BDC at high engine speed. Address the problem of fitting
valves into the combustion chamber.
This chapter explores the undesirable emissions generated in the combustion process
of automobile and other IC engines. These emissions pollute the environment and
contribute to global warming, acid rain, smog, odors, and respiratory and other health
problems. The major causes of these emissions are non-stoichiometric combustion,
dissociation of nitrogen, and impurities in the fuel and air. The emissions of concern
are hydrocarbons (He), carbon monoxide (CO), oxides of nitrogen (NOx), sulfur,
and solid carbon particulates. Ideally, engines and fuels could be developed such that
very few harmful emissions are generated, and these could be exhausted to the
surroundings without a major impact on the environment. With present technology
this is not possible, and aftertreatment of the exhaust gases to reduce emissions is
very important. This consists mainly of the use of thermal or catalytic converters and
particulate traps.
Until the middle of the 20th century the number of IC engines in the world was
small enough that the pollution they emitted was tolerable, and the environment,
with the help of sunlight, stayed relatively clean. As world population grew, power
Emissions and Air Pollution
Chap. 9
plants, factories, and an ever-increasing number of automobiles began to pollute the
air to the extent that it was no longer acceptable. During the 1940s, air pollution as
a problem was first recognized in the Los Angeles basin in California. Two causes of
this were the large population density and the natural weather conditions of the
area. The large population created many factories and power plants, as well as one
of the largest automobile densities in the world. Smoke and other pollutants from
the many factories and automobiles combined with fog that was common in this
ocean area, and smog resulted. During the 1950s, the smog problem increased along
with the increase in population density and automobile density. It was recognized
that the automobile was one of the major contributors to the problem, and by the
1960s emission standards were beginning to be enforced in California. During the
next decades, emission standards were adopted in the rest of the United States and
in Europe and Japan. By making engines more fuel efficient, and with the use of
exhaust aftertreatment, emissions per vehicle of HC, CO, and NOx were reduced
by about 95% during the 1970s and 1980s. Lead, one of the major air pollutants, was
phased out as a fuel additive during the 1980s. More fuel-efficient engines were
developed, and by the 1990s the average automobile consumed less than half the
fuel used in 1970. However, during this time the number of automobiles greatly
increased, resulting in no overall decrease in fuel usage.
Additional reduction will be difficult and costly. As world population grows,
emission standards become more stringent out of necessity. The strictest laws are
generally initiated in California, with the rest of the United States and world following. Although air pollution is a global problem, some regions of the world still have
no emission standards or laws.
Exhaust gases leaving the combustion chamber of an SI engine contain up to 6000
ppm of hydrocarbon components, the equivalent of 1-1.5 % of the fuel. About 40%
of this is unburned gasoline fuel components. The other 60% consists of partially
reacted components that were not present in the original fuel. These consist of small
nonequilibrium molecules which are formed when large fuel molecules break up
(thermal cracking) during the combustion reaction. It is often convenient to treat
these molecules as if they contained one carbon atom, as CHl'
The makeup of HC emissions will be different for each gasoline blend,
depending on the original fuel components. Combustion chamber geometry and
engine operating parameters also influence the HC component spectrum.
When hydrocarbon emissions get into the atmosphere, they act as irritants and
odorants; some are carcinogenic. All components except CH4 react with atmospheric gases to form photochemical smog.
Sec. 9-2
Hydrocarbons (HC)
Causes of HC Emissions
Nonstoichiometric Air-Fuel Ratio. Figure 9-1 shows that HC emission levels are a strong function of AF. With a fuel-rich mixture there is not enough oxygen
to react with all the carbon, resulting in high levels of HC and CO in the exhaust
products. This is particularly true in engine startup, when the air-fuel mixture is purposely made very rich. It is also true to a lesser extent during rapid acceleration
under load. If AF is too lean poorer combustion occurs, again resulting in HC
emissions. The extreme of poor combustion for a cycle is total misfire. This occurs
more often as AF is made more lean. One misfire out of 1000 cycles gives exhaust
emissions of 1 gmlkg of fuel used.
Figure 9-1 Emissions from an SI engine
as a function of equivalence ratio. A fuel
rich air-fuel ratio does not have enough
oxygen to react with all the carbon and
hydrogen, and both HC and CO emissions
increase. HC emissions also increase at
very lean mixtures due to poor combustion
and misfires. The generation of nitrogen
oxide emissions is a function of the combustion temperature, being greatest near
stoichiometric conditions when temperatures are the highest. Peak NOx emissions
occur at slightly lean conditions, where the
combustion temperature is high and there
is an excess of oxygen to react with the
nitrogen. Adapted from [58].
Emissions and Air Pollution
Chap. 9
Incomplete Combustion.
Even when the fuel and air entering an engine
are at the ideal stoichiometric mixture, perfect combustion does not occur and some
HC ends up in the exhaust. There are several causes of this. Incomplete mixing of
the air and fuel results in some fuel particles not finding oxygen to react with. Flame
quenching at the walls leaves a small volume of unreacted air-and-fuel mixture. The
thickness of this unburned layer is on the order of tenths of a mm. Some of this mixture, near the wall that does not originally get burned as the flame front passes, will
burn later in the combustion process as additional mixing occurs due to swirl and
Another cause of flame quenching is the expansion which occurs during combustion and power stroke. As the piston moves away from TDC, expansion of the
gases lowers both temperature and pressure within the cylinder. This slows combustion and finally quenches the flame somewhere late in the power stroke. This leaves
some fuel particles unreacted.
High exhaust residual causes poor combustion and a greater likelihood of
expansion quenching. This is experienced at low load and idle conditions. High
levels of EGR will also cause this.
It has been found that HC emissions can be reduced if a second spark plug is
added to an engine combustion chamber. By starting combustion at two points, the
flame travel distance and total reaction time are both reduced, and less expansion
quenching results.
Crevice Volumes.
During the compression stroke and early part of the
combustion process, air and fuel are compressed into the crevice volume of the combustion chamber at high pressure. As much as 3% of the fuel in the chamber can be
forced into this crevice volume. Later in the cycle during the expansion stroke,
pressure in the cylinder is reduced below crevice volume pressure, and reverse
blowby occurs. Fuel and air flow back into the combustion chamber, where most of
the mixture is consumed in the flame reaction. However, by the time the last elements of reverse blowby flow occur, flame reaction has been quenched and
unreacted fuel particles remain in the exhaust. Location of the spark plug relative to
the top compression ring gap will affect the amount of HC in engine exhaust, the
ring gap being a large percent of crevice volume. The farther the spark plug is from
the ring gap, the greater is the HC in the exhaust. This is because more fuel will be
forced into the gap before the flame front passes.
Crevice volume around the piston rings is greatest when the engine is cold, due
to the differences in thermal expansion of the various materials. Up to 80% of all
HC emissions can come from this source.
leak Past the Exhaust Valve.
As pressure increases during compression
and combustion, some air-fuel is forced into the crevice volume around the edges of
the exhaust valve and between the valve and valve seat. A small amount even leaks
past the valve into the exhaust manifold. When the exhaust valve opens, the air-fuel
Sec. 9-2
Hydrocarbons (HC)
which is still in this crevice volume gets carried into the exhaust manifold, and there
is a momentary peak in HC concentration at the start of blowdown.
Valve Overlap.
During valve overlap, both the exhaust and intake valves
are open, creating a path where air-fuel intake can flow directly into the exhaust. A
well-designed engine minimizes this flow, but a small amount can occur. The worst
condition for this is at idle and low speed, when real time of overlap is greatest.
Deposits on Combustion Chamber Walls. Gas particles, including those
of fuel vapor, are absorbed by the deposits on the walls of the combustion chamber.
The amount of absorption is a function of gas pressure, so the maximum occurs during compression and combustion. Later in the cycle, when the exhaust valve opens
and cylinder pressure is reduced, absorption capacity of the deposit material is lowered and gas particles are desorbed back into the cylinder. These particles, including
some HC, are then expelled from the cylinder during the exhaust stroke. This problem is greater in engines with higher compression ratios due to the higher pressure
these engines generate. More gas absorption occurs as pressure goes up. Clean combustion chamber walls with minimum deposits will reduce HC emissions in the
exhaust. Most gasoline blends include additives to reduce deposit buildup in engines.
Older engines will typically have a greater amount of wall deposit buildup and
'a corresponding increase of HC emissions. This is due both to age and to less swirl
that was generally found in earlier engine design. High swirl helps to keep wall
deposits to a minimum. When lead was eliminated as a gasoline additive, HC emissions from wall deposits became more severe. When leaded gasoline is burned the
lead treats the metal wall surfaces, making them harder and less porous to gas
Oil on Combustion Chamber Walls. A very thin layer of oil is deposited
on the cylinder walls of an engine to provide lubrication between them and the moving piston. During the intake and compression strokes, the incoming air and fuel
comes in contact with this oil film. In much the same way as wall deposits, this oil
film absorbs and desorbs gas particles, depending on gas pressure. During compression and combustion, when cylinder pressure is high, gas particles, including fuel
vapor, are absorbed into the oil film. When pressure is later reduced during expansion and blowdown, the absorption capability of the oil is reduced and fuel particles
are desorbed back into the cylinder. Some of this fuel ends up in the exhaust.
Propane is not soluble in oil, so in propane-fueled engines the absorption-desorption mechanism adds very little to HC emissions.
As an engine ages, the clearance between piston rings and cylinder walls
becomes greater, and a thicker film of oil is left on the walls. Some of this oil film is
scraped off the walls during the compression stroke and ends up being burned
during combustion. Oil is a high-molecular-weight hydrocarbon compound that
does not burn as readily as gasoline. Some of it ends up as HC emissions. This happens at a very slow rate with a new engine but increases with engine age and wear.
Figure 9-2 HC exhaust emissions as a
function of engine oil consumption. Often
as an engine, ages clearance between the
pistons and cylinder walls increases due to
wear. This increases oil consumption and
contributes to an increase in HC emissions
in three ways: There is added crevice volume, there is added absorption-desorption
of fuel in the thicker oil film on cylinder
walls, and there is more oil burned in the
combustion process. Adapted from [138].
Oil consumption also increases as the piston rings and cylinder walls wear. In older
engines, oil being burned in the combustion chamber is a major source of HC emissions. Figure 9-2 shows how HC emissions go up as oil consumption increases.
In addition to oil consumption going up as piston rings wear, blowby and
reverse blowby also increase. The increase in HC emissions is therefore both from
combustion of oil and from the added crevice volume flow.
Two-Stroke Cycle Engines. Older two-stroke cycle SI engines and many
modem small two-stroke cycle SI engines add HC emissions to the exhaust during
the scavenging process. The air-fuel intake mixture is used to push exhaust residual
out the open exhaust port. When this is done, some of the air and fuel mix with the
exhaust gases and are expelled out of the cylinder before the exhaust port closes.
This can be a major source of HC in the exhaust and is one of the major reasons
why there have been no modem two-stroke cycle automobile engines. They could
not pass anti-pollution requirements. Some experimental automobile two-stroke
cycle engines and just about all small engines use crankcase compression, and this is
a second source of hydrocarbon emissions. The crankcase area and pistons of these
engines are lubricated by adding oil to the inlet air-fuel. The oil is vaporized with
the fuel and lubricates the surfaces which come in contact with the air-fuel-oil mixture. Some of the oil vapor is carried into the combustion chamber and burned with
the air-fuel mixture. Lubricating oil is mostly hydrocarbon components and acts like
additional fuel. However, due to the high molecular weight of its components, oil
does not fully combust as readily as fuel, and this adds to HC emissions in the
Modem experimental two-stroke cycle automobile engines do not add fuel to
the intake air, but scavenge the cylinders with pure air, avoiding putting HC into the
exhaust. After the exhaust port closes, fuel is added by fuel injection directly into
Sec. 9-2
Hydrocarbons (HC)
the cylinder. This creates a need for very fast and efficient vaporization and mixing
of the air and fuel, but it eliminates a major source of HC emissions. Some automobile engines use superchargers instead of crankcase compression, and this eliminates
HC pollution from that source.
Until recently most small engines, such as those used on lawn mowers and
boats, were not regulated for pollution control. Many of these engines are still being
manufactured with uncontrolled scavenging and oil vapor lubrication, contributing
to serious HC (and other) pollution. This problem is starting to be addressed, and in
some parts of the world (starting in California) emission laws and standards are
starting to be applied to lawn mowers, boats, and other small engines. This will
probably phase out, or at least greatly reduce, the number of small two-stroke cycle
engines. Low cost is a major requirement for small engines, and fuel injection
systems are much more costly than the very simple carburetors found on older
engines. Many small engines now operate on a cleaner four-stroke cycle, but still use
a less costly carburetor for fuel input.
In the early 1990s, there were an estimated 83 million lawn mowers in the
United States producing as much air pollution as 3.5 million automobiles. Government studies of equipment using small engines give the following pollution
comparison to that of automobiles (the numbers represent one hour of operation
compMed to miles traveled in an average automobile):
Riding mower-20 miles
Garden tiller-30 miles
Lawn mower-50 miles
String trimmer-70 miles
Chain saw-200 miles
Forklift-250 miles
Agricultural tractor-500 miles
Outboard motor-800 miles
CI Engines.
Because they operate with an overall fuel-lean equivalence
ratio, CI engines have only about one-fifth the HC emissions of an SI engine.
The components in diesel fuel have higher molecular weights on average than
those in a gasoline blend, and this results in higher boiling and condensing temperatures. This allows some HC particles to condense onto the surface of the solid
carbon soot that is generated during combustion. Most of this is burned as mixing
continues and the combustion process proceeds. Only a small percent of the original
carbon soot that is formed is exhausted out of the cylinder. The HC components
condensed on the surface of the carbon particles, in addition to the solid carbon
particles themselves, contribute to the HC emissions of the engine.
In general, a CI engine has about a 98% combustion efficiency, with only
about 2% of the HC fuel being emissions (Fig. 4-1). Some local spots in the combustion chamber will be too lean to combust properly, and other spots will be too
Emissions and Air Pollution
Chap. 9
rich, with not enough oxygen to consume all the fuel. Less than total combustion
can be caused by undermixing or overmixing. Unlike the homogeneous air-fuel
mixture of an SI engine that essentially has one flame front, the air-fuel mixture in
a CI engine is very much nonhomogeneous, with fuel still being added during combustion. Local spots range from very rich to very lean, and many flame fronts exist at
the same time. With undermixing, some fuel particles in fuel-rich zones never find
oxygen to react with. In fuel-lean zones, combustion is limited and some fuel does
not get burned. With overmixing, some fuel particles will be mixed with already
burned gas and will therefore not combust totally.
It is important that injectors be constructed such that when injection stops
there is no dribble from the nozzle. A small amount of liquid fuel will be trapped on
the tip of the nozzle, however. This very small volume of fuel is called sac volume, its
size depending on the nozzle design. This sac volume of liquid fuel evaporates very
slowly because it is surrounded by a fuel-rich environment and, once the injector
nozzle closes, there is no pressure pushing it into the cylinder. Some of this fuel does
not evaporate until combustion has stopped, and this results in added HC particles
in the exhaust.
CI engines also have HC emissions for some of the same reasons as SI engines
do (i.e., wall deposit absorption, oil film absorption, crevice volume, etc.).
As the flame,Jront reaches the wall of a combustion chamber, reaction stops due to the
closeness of the wall, which dampens out all fluid motion and conducts heat away. This
unburned boundary layer can be considered a volume 0.1 mm thick along the entire
combustion chamber surface. The combustion chamber consists mainly of a bowl in the
face of the piston which can be approximated as a 3-cm-diameter hemisphere. Fuel is
originally distributed equally throughout the chamber. Calculate the percent of fuel
that does not get burned due to being trapped in the surface boundary layer.
Exhaust gases of an engine can have up to 2000 ppm of oxides of nitrogen. Most of
this will be nitrogen oxide (NO), with a small amount of nitrogen dioxide (NOz),
and traces of other nitrogen-{)xygen combinations. These are all grouped together
as NOx (or NOx), with x representing some suitable number. NOx is a very undesirable emission, and regulations that restrict the allowable amount continue to
become more stringent. Released NOx reacts in the atmosphere to form ozone and
is one of the major causes of photochemical smog.
NOx is created mostly from nitrogen in the air. Nitrogen can also be found in~
fuel blends, which may contain trace amounts ofNH3, NC, and HCN, but this would
contribute only to a minor degree. There are a number of possible reactions that
form NO, all of which are probably occurring during the combustion process and
immediately after. These include but are not limited to:
Emissions and Air Pollution
Atmospheric nitrogen exists as a stable diatomic molecule at low temperatures,
and only very small trace amounts of oxides of nitrogen are found. However, at the
very high temperatures that occur in the combustion chamber of an engine, some
diatomic nitrogen (Nz) breaks down to monatomic nitrogen (N) which is reactive:
Nz ~
Table A-3 in the Appendix shows that the chemical equilibrium constant for
Eq. (9-7) is highly dependent on temperature, with a much more significant amount
of N generated in the 2500-3000 K temperature range that can exist in an engine.
Other gases that are stable at low temperatures but become reactive and contribute
to the formation of NOx at high temperatures include oxygen and water vapor,
which break down as follows:
Oz ~
HzO ~
+! Hz
Examination of Table A-3 and more elaborate chemical equilibrium constant
tables found in chemistry handbooks show that chemical Eqs. (9-7)-(9-9) all react
much further to the right as high combustion chamber temperatures are reached.
The higher the combustion reaction temperature, the more diatomic nitrogen, Nz,
will dissociate to monatomic nitrogen, N, and the more NOx will be formed. At low
temperatures very little NOx is created.
Although-.!naximum flame temperature will occur at a stoichiometric air-fuel
ratio (cfJ = 1), Fig. 9-1 shows that maximum NOx is formed at a slightly lean equivalence ratio of about cfJ = 0.95. At this condition flame temperature is still very high,
and in addition, there is an excess of oxygen that can combine with the nitrogen to
form various oxides.
In addition to temperature, the formation of NOx depends on pressure,
air-fuel ratio, and combustion time within the cylinder, chemical reactions not being
instantaneous. Figure 9-3 shows the NOx-versus-time relationship and supports the
fact that NOx is reduced in modern engines with fast-burn combustion chambers.
The amount of NOx generated also depends on the location within the combustion
chamber. The highest concentration is formed around the spark plug, where the
highest temperatures occur. Because they generally have higher compression ratios
and higher temperatures and pressure, CI engines with divided combustion chambers and indirect injection (IDI) tend to generate higher levels of NOx.
Figure 9-4 shows how NOx can be correlated with ignition timing. If ignition
spark is advanced, the cylinder temperature will be increased and more NOx will be
Photochemical Smog.
NOx is one of the primary causes of photochemical
smog, which has become a major problem in many large cities of the world. Smog is
formed by the photochemical reaction of automobile exhaust and atmospheric air in
the presence of sunlight. NOz decomposes into NO and monatomic oxygen:
+ energy from sunlight ~
+ 0 + smog
The exhaust of CI engines contains solid carbon soot particles that are generated in
the fuel-rich zones within the cylinder during combustion. These are seen as exhaust
smoke and are an undesirable odorous pollution. Maximum density of particulate
emissions occurs when the engine is under load at WOT. At this condition maximum fuel is injected to supply maximum power, resulting in a rich mixture and poor
Sec. 9-5
Soot particles are clusters of solid carbon spheres. These spheres have diameters from 10 nm to 80 nm (1 nm = 10-9 m), with most within the range of 15-30
nm. The spheres are solid carbon with HC and traces of other components
absorbed on the surface. A single soot particle will contain up to 4000 carbon
spheres [58].
Carbon spheres are generated in the combustion chamber in the fuel-rich
zones where there is not enough oxygen to convert all carbon to CO2:
+ z 02
+ bH20 + cCO + dC(s)
Then, as turbulence and mass motion continue to mix the components in the
combustion chamber, most of these carbon particles find sufficient oxygen to further
react and are consumed to CO2:
+ O2 ~
Over 90% of carbon particles originally generated within an engine are thus
consumed and never get exhausted. If CI engines would operate with an overall stoichiometric air-fuel mixture, instead of overall lean as they do, particulate emissions
in the exhaust would far exceed acceptable levels.
Up to about 25% of the carbon in soot comes from lubricating oil components
which vaporize and then react during combustion. The rest comes from the fuel and
amounts to 0.2-0.5% of the fuel. Because of the high compression ratios of CI
engines, a large expansion occurs during the power stroke, and the gases within the
cylinder are cooled by expansion cooling to a relatively low temperature. This
causes the remaining high-boiling-point components found in the fuel and lubricating oil to condense on the surface of the carbon soot particles. This absorbed portion
of the soot particles is called the soluble organic fraction (SOF), and the amount is
highly dependent on cylinder temperature. At light loads, cylinder temperatures are
reduced and can drop to as low as 200°C during final expansion and exhaust blowdown. Under these conditions, SOF can be as high as 50% of the total mass of soot.
Under other operating conditions when temperatures are not so low, very little
condensing occurs and SOF can be as low as 3% of total soot mass. SOF consists
mostly of hydrocarbon components with some hydrogen, S02, NO, N02, and trace
amounts of sulfur, zinc, phosphorus, calcium, iron, silicon, and chromium. Diesel
fuel contains sulfur, calcium, iron, silicon, and chromium, while lubricating oil additives contain zinc, phosphorus, and calcium.
Particulate generation can be reduced by engine design and control of operating conditions, but quite often this will create other adverse results. If the combustion
time is extended by combustion chamber design and timing control, particulate
amounts in the exhaust can be reduced. Soot particles originally generated will have
a greater time to be mixed with oxygen and combusted to CO2. However, a longer
combustion time means a high cylinder temperature and more NOx generated.
Dilution with EGR lowers NOx emissions but increases particulates and HC emissions. Higher injection pressure gives a finer droplet size, which reduces HC and
particulate emissions but increases cylinder temperature and NOx emissions. Engine
Emissions and Air Pollution
Chap. 9
management systems are programmed to minimize NOx, HC, CO, and particulate
emissions by controlling ignition timing, injection pressure, injection timing, and/or
valve timing. Obviously, compromising is necessary. In most engines, exhaust particulate amounts cannot be reduced to acceptable levels solely by engine design and
Sec. 9-6
Other Emissions
S03 + HzO ~
+ HzO ~
Many countries have laws restricting the amount of sulfur allowed in fuel, and
these are continuously being made more stringent. During the 1990s, the United
States reduced acceptable levels in diesel fuel from 0.05% by weight to 0.01%.
The amount of sulfur in natural gas can range from little (sweet) to large (sour)
amounts. This can be a major emissions problem when this fuel is used in a IC
engine or any other combustion system.
Lead was a major gasoline additive from its introduction in 1923 to when it was phased
out in the 1980s. The additive TEL (tetraethyllead) was effectively used to increase
gasoline octane number, which allowed higher compression ratios and more efficient
engines. However, the resulting lead in the engine exhaust was a highly poisonous
pollutant. During the first half of the 1900s, due to the lower number of automobiles
and other engines, the atmosphere was able to absorb these emissions of lead without
notice-able problems. As population and automobile density increased, the awareness
of air pollution and its danger also increased. The danger of lead emissions was recognized, and a phaseout occurred during the 1970s and 1980s.
The use of lead could not be stopped immediately but had to be phased out
over a number of years. First, low-lead gasoline was introduced, and then, years
later no-lead gasoline. Lead was still the major additive to raise the octane number
of gasoline, and alternate octane raisers had to be developed as lead was phased out.
Millions of modern high-compression engines could not use low-octane fuel. Metals
used in engines also had to be changed as lead in gasoline was phased out. When
leaded fuel is burned, it hardens the surfaces in the combustion chamber and on the
valves and valve seats. Engines designed to use leaded fuel had softer metal surfaces
to start and relied on surface hardening effects that occurred in use. If these engines
are used with unleaded fuel, surface hardening is not realized and serious wear is
quickly experienced. Catastrophic failures of valve seats or piston faces are common
in a short period of time (i.e., 10,000-20,000 miles in an automobile). Harder metals
and added surface treatments are used for engines designed to use unleaded fuel. It
was necessary to phase out leaded gasoline over a period of time as older automobiles wore out and were taken out of operation.
Leaded gasoline contains about 0.15 gm/liter of lead in the fuel. Between 10%
and 50% of this gets exhausted out with the other combustion products. The
remaining lead gets deposited on the walls of the engine and exhaust system. The
hardened combustion chamber surfaces which resulted from the burning of leaded
gasoline were quite impervious to the absorption of gases such as fuel vapor. HC
emissions were also, therefore, slightly reduced in these engines.
After the combustion process stops, those components in the cylinder gas mixture
that have not fully burned continue to react during the expansion stroke, during
exhaust blbwdown, and into the exhaust process. Up to 90% of the HC remaining
after combustion reacts during this time either in the cylinder, near the exhaust port,
or in the upstream part of the exhaust manifold. CO and small component hydrocarbons react with oxygen to form COz and Hz 0 and reduce undesirable emissions.
The higher the exhaust temperature, the more these secondary reactions occur and
the lower the engine emissions. Higher exhaust temperature can be caused by stoichiometric air-fuel combustion, high engine speed, retarded spark, and/or a low
expansion ratio.
Thermal Converters
Secondary reactions occur much more readily and completely if the temperature is
high, so some engines are equipped with thermal converters as a means of lowering
emissions. Thermal converters are high-temperature chambers through which the
exhaust gas flows. They promote oxidation of the CO and HC which remain in the
CO + ~ Oz ~ COz
For this reaction to occur at a useful rate, the temperature must be held above
700°C [58].
CxHy + Z Oz ~ X COz + h HzO
where Z = x + ~ y.
This reaction needs a temperature above 600°C for at least 50 msec to substantially reduce HC. It is therefore necessary for a thermal converter not only to operate
Sec. 9-8
Catalytic Converters
at a high temperature but to be large enough to provide adequate dwell time to
promote the occurrence of these secondary reactions. Most thermal converters are
essentially an enlarged exhaust manifold connected to the engine immediately outside the exhaust ports. This is necessary to minimize heat losses and keep the exhaust
gases from cooling to nonreacting temperatures. However, in automobiles this creates two very serious problems for the engine compartment. In modern, low-profile,
aerodynamic automobiles, space in the engine compartment is very limited, and
fitting in a large, usually insulated thermal converter chamber is almost impossible.
Secondly, because the converter must operate above 700°C to be efficient, even if
it is insulated the heat losses create a serious temperature problem in the engine
Some thermal converter systems include an air intake which provides additional oxygen to react with the CO and HC. This increases the complexity, cost, and
size of the system. Flow rate of air is controlled by the EMS as needed. Air addition
is especially necessary during rich operating conditions such as startup. Because
exhaust from engines is often at a lower temperature than is needed for efficient
operation of a thermal converter, it is necessary to sustain the high temperatures by
the reactions within the system. Adding outside air, which is at a lower temperature,
compounds this problem of maintaining the necessary operating temperature.
-..NOxemissions cannot be reduced with a thermal converter alone.
The most effective aftertreatment system for reducing engine emissions is the catalytic converter found on most automobiles and other modern engines of medium or
large size. HC and CO can be oxidized to Hz 0 and COz in exhaust systems and
thermal converters if the temperature is held at 600°-700°C. If certain catalysts are
present, the temperature needed to sustain these oxidation processes is reduced to
250°-300°C, making for a much more attractive system. A catalyst is a substance that
accelerates a chemical reaction by lowering the energy needed for it to proceed. The
catalyst is not consumed in the reaction and so functions indefinitely unless
degraded by heat, age, contaminants, or other factors. Catalytic converters are
chambers mounted in the flow system through which the exhaust gases flow. These
chambers contain catalytic material, which promotes the oxidation of the emissions
contained in the exhaust flow.
Generally, catalytic converters are called three-way converters because they
promote the reduction of CO, HC, and NOx. Most consist of a stainless steel container mounted somewhere along the exhaust pipe of the engine. Inside the
container is a porous ceramic structure through which the gas flows. In most
converters, the ceramic is a single honeycomb structure with many flow passages
(see Figure 9-5). Some converters use loose granular ceramic with the gas passing
between the packed spheres. Volume of the ceramic structure of a converter is generally about half the displacement volume of the engine. This results in a volumetric
flow rate of exhaust gas such that there are 5 to 30 changeovers of gas each second,
through the converter. Catalytic converters for CI engines need larger flow passages
because of the solid soot in the exhaust gases.
The surface of the ceramic passages contains small embedded particles of catalytic material that promote the oxidation reactions in the exhaust gas as it passes.
Aluminum oxide (alumina) is the base ceramic material used for most catalytic converters. Alumina can withstand the high temperatures, it remains chemically neutral,
it has very low thermal expansion, and it does not thermally degrade with age. The
catalyst materials most commonly used are platinum, palladium, and rhodium.
Figure 9-7 Conversion efficiency of catalytic converters as a function of fuel equivalence ratio. Greatest efficiency occurs when engines operate near stoichiometric
conditions. Converters are very inefficient for NOx conversion when an engine
operates lean. This creates a greater problem for modern CI engines and stratified
charge SI engines, which generally operate very lean overall. Adapted from [76].
tures, while control of NOx requires near stoichiometric conditions. Very poor NOx
control occurs with lean mixtures.
Because'1m engine has a number of cyclic variations occurring-including
AF-the exhaust flow will also show variation. It has been found that this cyclic variation lowers the peak efficiency of a catalytic converter but spreads the width of the
equivalence ratio envelope of operation in which there is acceptable emissions
It is important that a catalytic converter be operated hot to be efficient, but no
hotter. Engine malfunctions can cause poor efficiency and overheating of converters. A poorly tuned engine can have misfires and periods of too lean and/or too rich
conditions. These cause the converter to be inefficient at the very time emissions are
very high and maximum converter efficiency is needed. A turbocharger lowers the
exhaust temperature by removing energy, and this can make a catalytic converter
less efficient.
It is desirable that catalytic converters have an effective lifetime equal to that
of the automobile or at least 200,000 km. Converters lose their efficiency with age
due to thermal degradation and poisoning of the active catalyst material. At high
temperature the metal catalyst material can sinter and migrate together, forming
larger active sites which are, overall, less efficient. Serious thermal degrading occurs
in the temperature range of SOoo-900°e. A number of different impurities contained
in fuel, lubricating oil, and air find their way into the engine exhaust and poison the
catalyst material. These include lead and sulfur from fuels, and zinc, phosphorus,
antimony, calcium, and magnesium from oil additives. Figure 9-8 shows how just a
small amount of lead on a catalyst site can reduce HC reduction by a factor of two or
three. Small amounts of lead impurities are found in some fuels, and 10-30% of this
Figure 9-8 Reduction of catalytic converter efficiency due to contamination by
lead. Some of the lead contained in fuels
gets deposited on the catalyst material in a
converter, greatly reducing converter efficiency. It is imperative (and unlawful) that
leaded gasoline not be used in automobiles equipped with catalytic converters.
To reduce the chances of accidently using
leaded gasoline with a catalytic converter,
the fuel pump nozzle size and the diameter
of the fuel tank inlet are made smaller for
nonleaded gasoline. Adapted from [76].
ends up in the catalytic converter. Up until the early 1990s leaded gasoline was quite
common, and it was imperative that it not be used in engines equipped with catalytic
converters; it was unlawful. Two fuel tanks of leaded gasoline would completely
poison a converter and make it totally useless.
Sulfur offers unique problems for catalytic converters. Some catalysts promote the
conversion of SOz to S03, which eventually gets converted to sulfuric acid. This
degrades the catalytic converter and contributes to acid rain. New catalysts are being
developed that promote the oxidation of HC and CO but do not change SOz to
S03. Some of these create almost no S03 if the temperature of the converter is kept
at 400°C or lower.
Cold Start-Ups
Figure 9-6 shows that catalytic converters are very inefficient when they are cold.
When an engine is started after not being operated for several hours, it takes several
~ninutes for the converter to reach an efficient operating temperature. The temperature at which a converter becomes 50% efficient is defined as the light-off
temperature, and this is in the range of about 250°-300°C. A large percent of automobile travel is for short distances where the catalytic converter never reaches
efficient operating temperature, and therefore emissions are high. Some studies
Emissions and Air Pollution
Chap. 9
suggest that half of the fuel used by automobiles in the United States is on trips of
less than 10 miles distance. Unfortunately, most short trips occur in cities where high
emissions are more harmful. Add to this the fact that most engines use a rich mixture when starting and it can be seen that cold start-ups pose a major problem. It is
estimated that cold start-ups are the source of 70--90% of all HC emissions. A major
reduction in emissions is therefore possible if catalytic converters could be preheated, at least to light-off temperature, before engine startup. Preheating to full
steady-state operating temperature would be even better. Several methods of preheating have been tried with varying success. Because of the time involved and
amount of energy needed, most of these methods preheat only a small portion of
the total converter volume. This small section is large enough to treat the low
exhaust flow rate which usually occurs at startup and immediately following. By the
time higher engine speeds are used, more of the catalytic converter has been heated
by the hot exhaust gas, and the higher flow rates are fully treated. Methods of
catalytic converter preheating include the following.
Locate Converter Close to the Engine: One method used to heat a converter as quickly as possible is to locate it in the engine compartment very close to
the exhaust ports. This method does not actually preheat the converter but does
heat it as quickly as possible after the engine is started. It eliminates the large heat
loss from th.e exhaust pipe that occurs between the engine and a converter in more
common systems where the converter is located away from the engine. These converters can also be insulated to reduce early heat loss. This method does reduce
overall emissions by quick heat-up of the converter, but there is still a short period
of time before light-off temperature is reached. In addition, the same problems
described for thermal converters mounted in the engine compartment are encountered with this type of converter. Adequate cooling of the engine compartment
because of the high temperatures and restricted flow rate of air caused by the
converter is a serious problem. If located in the hot engine compartment, a catalytic
converter will also have a higher steady-state temperature, and this will cause a
greater long-term thermal degrading problem.
Some automobiles use a small secondary catalytic converter mounted in the
engine compartment close to the engine. Because of its small size and location, it
heats up very quickly and is sufficient to oxidize the emissions in the low flow rates
at engine startup. There is also a normal full-size catalytic converter mounted away
from the engine compartment which supplies the catalytic action for the larger flow
rates of normal operation. This converter is heated by the first exhaust flow and ideally reaches efficient operating temperature before the engine is speeded up and
higher flow rates are experienced. These small pre-converters restrict flow in the
exhaust manifold and add some back pressure to the engine. This results in a slight
reduction in engine power output.
Some systems have been developed which have superinsulated catalytic converters. These do not actually preheat the converter on first
Sec. 9-8
Catalytic Converters
engine startup, but they do accelerate the temperature rise to steady-state conditions. They also keep the converter at an elevated temperature for up to a day after
the engine has been turned off. The converter is therefore preheated for subsequent
engine starts [131].
The converter is double walled with a vacuum between the walls. This gives
the super-insulation characteristics much like that of a vacuum bottle. When the
engine is cold and/or not running, the vacuum is sustained. When the engine is
running and the converter is at operating temperature, the vacuum is eliminated and
the space between the walls is filled with a gas. This allows for normal heat losses
during operation and keeps the catalytic converter from overheating.
Electric Heating: A number of systems have been tested using electric preheating, usually by resistance heating. Heating resistors are embedded in the preheat
zone of the converter, and an electrical discharge is initiated before the engine is
started. The preheat zone can be a separate, small pre converter, or it can be the front
end of the normal catalytic converter. Some systems replace the ceramic honeycomb
solid in the preheat zone with a metal structure of multiple flow passages. This allows
a much quicker heating of the flow passage walls by means of thermal conduction,
metal having much higher thermal conductivity than ceramic. Electrical energy for
this type of system usually comes from a battery that is recharged when the engine is
running. Typical values for preheating are 24 volts and 500--700amps.
There is some time delay between heating the electrical elements and reaching
light-off temperature, due to the conduction needed. The most serious problem,
however, is the inability of a normal-sized battery to deliver the amount of energy
needed for such a system.
Flame Heating:
A catalytic converter can be heated with a flame from a
burner nozzle mounted within the structure of the converter [57]. Before the engine
is started (for instance, when the ignition key is inserted), a flame is initiated in the
burner using fuel and air pumped from external sources. Concern must be given to
what emissions this flame would contribute to the overall air pollution problem. A
fuel like propane burned with the correct amount of air would create very little pollution. However, this would require an axillary propane fuel tank on the automobile,
something which would be undesirable unless the automobile engine was also fueled
with propane. In a gasoline-fueled engine, it would be logical to use gasoline in the
converter preheater. However, it would be more difficult to get clean burning with
gasoline. Cost, complexity, and some time delay are disadvantages of this type of
A variation of this system used by at least one major automobile manufacturer is an afterburner mounted directly before the catalytic converter. A very rich
air-fuel mixture is used at startup, which leaves excess fuel in the first exhaust flow.
Air is added to this exhaust by an electric pump, and the resulting mixture is combusted in the afterburner, preheating the catalytic converter.
Emissionsand Air Pollution
Thermal Battery: Energy from a thermal storage system can be used to preheat a catalytic converter if the engine is started within about three days of last being
used (see Chapter 10). With present technology only partial preheating to a temperature around 60°C is possible, which is still below light-off temperature and well
below normal operating temperatures. In addition, the limited amount of energy
available in a thermal battery is often distributed between preheating the engine,
warming the passenger compartment, and preheating the catalytic converter.
Chemical Reaction Preheating:
A possible method for preheating a catalytic converter has been suggested that uses the heat liberated from an exothermic
chemical reaction. When the ignition key is inserted, a small amount of water is
introduced into the converter from an injector mounted through the side of the converter housing. The water spray reacts with a salt imbedded in the surface of the
ceramic honeycomb. This exothermic reaction releases enough energy to heat the
surrounding ceramic structure to a temperature above light-offtemperature, and the
converter is ready for efficient use in a matter of seconds. When the engine is then
started, the hot exhaust gases dry the imbedded salt by evaporating away the water.
The water vapor is carried away with the exhaust gas and the system is ready for the
next cold start. One major problem with this method is degradation of the salt with
age. Also, there is a freezing problem with the water reservoir in cold climates. No
practical systeffi..1lsingthis method has so far appeared on the market [98].
Dual-Fuel Engines
Some engines are made to run on a combination of gasoline and methanol, with the
percent volume of methanol ranging from 0% to 85%. The engine control systems
on these engines are capable of adjusting the air and fuel flow to give optimum combustion and minimum emissions with any combination of these fuels. However, this
creates a unique problem for a catalytic converter. Each of these fuels requires separate catalysts. Incomplete combustion of methanol produces formaldehyde, which
must be removed from the exhaust. To effectively reduce the formaldehyde and any
remaining methanol, a catalytic converter must be operated above 300°C. Preheating of the converter on these systems is very important.
Lean-Burn Engines
A number of automobiles on the market obtain high fuel efficiency by the use of
lean-burn engines. By using a stratified charge, these engines obtain efficient combustion with overall air-fuel ratios of 20 or 21 (</> = 0.7). Figure 9-7 shows that
normal catalytic converters will work in reducing HC and CO at lean conditions but
are very inefficient at reducing NOx. Special converters, which use platinum and
rhodium combined with alkaline rare earths, have been developed for lean-burn
engines. Combustion temperatures must be limited in these engines so that NOx
production is kept within manageable limits.
Sec. 9-9
CI Engines
Cycle Engines
Modem two-stroke cycle engines that use fuel injectors have cooler exhaust because
of their high efficiency and lean operation. Both the lower exhaust temperature and
lean operation make the typical catalytic converter less efficient and create a more
difficult emissions problem with these engines.
One method of reducing emissions in cities is to use hybrid vehicles
powered by both an electric motor and a small internal combustion
engine. The vehicle uses the electric motor for normal operation and can
be classified as a zero emissions vehicle (ZEV)under these conditions. The
IC engine is mostly used to recharge the batteries for the electric motor,
and only occasionally used to power the vehicle when an extended range
is needed. The engine is clean running with very low emissions, being
designed for low power and constant speed, an ultra-low-emissions vehicle (ULEV).
In 1916-1917 a Woods Dual Power automobile could be purchased
for $2650. This vehicle had both an IC engine and an electric motor with
regenerative braking [139].
Catalytic converters are used with CI engines but are not efficient at reducing NOx
due to their overall lean operation. HC and CO can be adequately reduced, although
there is greater difficulty because of the cooler exhaust gases of a CI engine (because
of the larger expansion ratio). This is counter-balanced by the fact that less HC and
CO are generated in the lean bum of the CI engine. NOx is reduced in a CI engine by
the use of EGR, which keeps the maximum temperature down. EGR and lower
combustion temperatures, however, contribute to an increase in solid soot.
Platinum and palladium are two main catalyst materials used for converters on
CI engines. They promote the removal of 30-80% of the gaseous HC and 40--90% of
the CO in the exhaust. The catalysts have little effect on solid carbon soot but do
remove 30-60% of the total particulate mass by oxidizing a large percent of the HC
absorbed on the carbon particles. Diesel fuel contains sulfur impurities, and this
leads to poisoning of the catalyst materials. However, this problem is being reduced
as legal levels of sulfur in diesel fuels continue to be lowered.
Particulate Traps
Compression ignition engine systems are equipped with particulate traps in their
exhaust flow to reduce the amount of particulates released to the atmosphere. Traps
Emissions and Air Pollution
Chap. 9
are filter-like systems often made of ceramic in the form of a monolith or mat, or
else made of metal wire mesh. Traps typically remove 60-90% of particulates in the
exhaust flow. As traps catch the soot particles, they slowly fill up with the particulates. This restricts exhaust gas flow and raises the back pressure of the engine.
Higher back pressure causes the engine to run hotter, the exhaust temperature to
rise, and fuel consumption to increase. To reduce this flow restriction, particulate
traps are regenerated when they begin to become saturated. Regeneration consists
of combusting the particulates in the excess oxygen contained in the exhaust of the
lean-operating CI engine.
Carbon soot ignites at about 550°-650°C, while CI engine exhaust is 150°-350°C
at normal operating conditions. As the particulate trap fills with soot and restricts
flow, the exhaust temperature rises but is still not high enough to ignite the soot and
regenerate the trap. In some systems, automatic flame igniters are used which start
combustion in the carbon when the pressure drop across the trap reaches a predetermined value. These igniters can be electric heaters or flame nozzles that use diesel
fuel. If catalyst material is installed in the traps, the temperature needed to ignite the
carbon soot is reduced to the 350°-450°C range. Some such traps can automatically
regenerate by self-igniting when the exhaust temperature rises from increased back
pressure. Other catalyst systems use flame igniters.
Another way of lowering the ignition temperature of the carbon soot and promoting self-regeneration in traps is to use catalyst additives in the diesel fuel. These
additives generally consist of copper compounds or iron compounds, with about
7 grams of additive in 1000 liters of fuel being normal.
To keep the temperatures high enough to self-regenerate in a catalytic system,
traps can be mounted as close to the engine as possible, even before the turbocharger.
On some larger stationary engines and on some construction equipment and
large trucks, the particulate trap is replaced when it becomes close to filled. The
removed trap is then regenerated externally, with the carbon being burned off in a
furnace. The regenerated trap can then be used again.
Vanous methods are used to determine when soot buildup becomes excessive
and regeneration is necessary. The most common method is to measure pressure
drop in the exhaust flow as it passes through the trap. When a predetermined t;,.p is
reached, regeneration is initiated. Pressure drop is also a function of exhaust flow
rate, and this must be programmed into the regeneration controls. Another method
used to sense soot buildup is to transmit radio frequency waves through the trap and
determine the percent that is absorbed. Carbon soot absorbs radio waves while the
ceramic structure does not. The amount of soot buildup can therefore be determined by the percent decrease in radio signal. This method does not readily detect
soluble organic fraction (SOF).
Modern particulate traps are not totally satisfactory, especially for automobiles. They are costly and complex when equipped for regeneration, and long-term
durability does not exist. An ideal catalytic trap would be simple, economical, and
Sec. 9-10
Chemical Methods to Reduce Emissions
reliable; it would be self-regenerating; and it would impose a minimum increase in
fuel consumption.
Modern Diesel Engines
Carbon soot particulate generation has been greatly reduced in modern CI engines
by advanced design technology in fuel injectors and combustion chamber geometry.
With greatly increased mixing efficiency and speeds, large regions of fuel-rich mixtures can be avoided when combustion starts. These are the regions where carbon
soot is generated, and by reducing their volume, far less soot is generated. Increased
mixing speeds are obtained by a combination of indirect injection, better combustion chamber geometry, better injector design and higher pressures, heated spray
targets, and air-assisted injectors. Indirect injection into a secondary chamber that
promotes high turbulence and swirl greatly speeds the air-fuel mixing process. Better nozzle design and higher injection pressures create finer fuel droplets which
evaporate and mix quicker. Injection against a hot surface speeds evaporation, as
do air-assisted injectors.
Some modern, top-of-the-line CI automobile engines (e.g., Mercedes) have
reduced particulate generation enough that they meet stringent standards without
the neea for particulate traps.
Development work has been done on large stationary engines using cyanuric acid to
reduce NOx emissions. Cyanuric acid is a low-cost solid material that sublimes in
the exhaust flow. The gas dissociates, producing isocyanide that reacts with NOx to
form N2, H20, and CO2• Operating temperature is about 500°C. Up to 95% NOx
reduction has been achieved with no loss of engine performance. At present, this
system is not practical for vehicle engines because of its size, weight, and complexity.
Research is being done using zeolite molecular sieves to reduce NOx emissions. These are materials that absorb selected molecular compounds and catalyze
chemical reactions. Using both SI and CI engines, the efficiency of NOx reduction is
being determined over a range of operating variables, including AF, temperature,
flow velocity, and zeolite structure. At present, durability is a serious limitation with
this method.
Various chemical absorbers, molecular sieves, and traps are being tested to
reduce HC emissions. HC is collected during engine startup time, when the catalytic
converter is cold, and then later released back into the exhaust flow when the converter is hot. The converter then efficiently burns the HC to H20 and CO2• A 35%
reduction of cold-start HC has been achieved.
Emissionsand Air Pollution
H2S emissions occur under rich operating conditions. Chemical systems are
being developed that trap and store H2 S when an engine operates rich and then
convert this to S02 when operation is lean and excess oxygen exists. The reaction
equation is
+ 02 ~
+ H2
Ammonia Injection Systems
Some large ship engines and some stationary engines reduce NOx emissions with an
injection system that sprays NH3 into the exhaust flow. In the presence of a catalyst,
the following reactions occur:
4 NH3
+ 4 NO + 02 ~
6 N02 + 8 NH3 ~
+ 6 H20
7 N2 + 12 H20
4 N2
Careful control must be adhered to, as NH3 itself is an undesirable emission.
Emissions from large ships were not restricted for many years, even after strict
laws were enforced on other engines. It was reasoned that ships operated away from
land masses most of the time and the exhaust gases could be absorbed by the atmosphere without affecting human habitat. However, most seaports are in large cities,
where emission problems are most critical, and polluting from all engines is now
restricted, inclMding ship engines.
Ammonia injection systems are not practical in automobiles or on other
smaller engines. This is because of the needed NH3 storage and fairly complex injection and control system.
The most effective way of reducing NOx emissions is to hold combustion chamber
temperatures down. Although practical, this is a very unfortunate method in that it
also reduces the thermal efficiency of the engine. We have been taught since infancy
in our first thermodynamics course that for maximum engine thermal efficiency,
Qin should be at the highest temperature possible.
Probably the simplest practical method of reducing maximum flame temperature is to dilute the air-fuel mixture with a non-reacting parasite gas. This gas absorbs
energy during combustion without contributing any energy input. The net result is a
lower flame temperature. Any nonreacting gas would work as a diluent, as shown in
Fig. 9-9. Those gases with larger specific heats would absorb the most energy per unit
mass and would therefore require the least amount; thus less C02 would be required
than argon for the same maximum temperature. However, neither C02 nor argon is
readily available for use in an engine. Air is available as a diluent but is not totally
nonreacting. Adding air changes the AF and combustion characteristics. The one
nonreacting gas that is available to use in an engine is exhaust gas, and this is used in
all modern automobile and other medium-size and large engines.
Exhaust gas recycle (EGR) is done by ducting some of the exhaust flow back
into the intake system, usually immediately after the throttle. The amount of flow
can be as high as 30% of the total intake. EGR gas combines with the exhaust residualleft in the cylinder from the previous cycle to effectively reduce the maximum
combustion temperature. The flow rate of EGR is controlled by the EMS. EGR is
defined as a mass percent of the total intake flow:
[mEGR/mJ (100)
m; is the total mass flow into the cylinders.
After EGR combines with the exhaust residual left from the previous cycle,
the total fraction of exhaust in the cylinder during the compression stroke is;
= (EGR/lOO) (1 - xr) + Xr
is the exhaust residual from previous cycle.
Not only does EGR reduce the maximum temperature in the combustion
chamber, but it also lowers the overall combustion efficiency. Figure 7-11 shows that
as EGR is increased, the percent of inefficient slow-burn cycles increases. Further
increase in EGR results in some cycle partial burns and, in the extreme, total mis-
Emissions and Air Pollution
fires. Thus, by using EGR to reduce NOx emissions, a costly price of increased HC
emissions and lower thermal efficiency must be paid.
The amount of EGR is controlled by the EMS. By sensing inlet and exhaust
conditions the flow is controlled, ranging from 0 up to 15-30%. Lowest NOx emissions with relatively good fuel economy occur at about stoichiometric combustion,
with as much EGR as possible without adversely affecting combustion. No EGR is
used during WOT, when maximum power is desired. No EGR is used at idle and
very little at low speeds. Under these conditions, there is already a maximum
exhaust residual and greater combustion inefficiency. Engines with fast-burn combustion chambers can tolerate a greater amount of EGR.
A problem unique to CI engines when using EGR is the solid carbon soot in
the exhaust. The soot acts as an abrasive and breaks down the lubricant. Greater
wear on the piston rings and valve train results.
In Example Problems 4-1 and 4-3 it was found that the theoretical maximum combustion temperature in an engine burning isooctane at an equivalence ratio of 0.833 was
2419 K. To reduce formation of NOx, it is desired to reduce this maximum temperature
to 2200 K. This is done by exhaust gas recycling (EGR). Calculate the amount of EGR
needed to reduce maximum combustion temperature to 2200 K.
Exhaust gas, that consists mostly of N2, C02, and H20, will be approximated as
all nitrogen at a temperature of 1000 K. Enthalpy values can be obtained from most
thermodynamics textbooks. The values used here are from [90].
Engines and fuel supply systems also have sources of emissions other than exhaust
flow. Historically, these were considered minor and were just released to the
surrounding air.
A major source of HC emissions was the crankcase breather tube that was
vented to the air in older automobiles. Blowby flow past the pistons ended up in the
crankcase, and due to the higher pressure it created, it was then pushed out the
breather vent tube. Blowby gas is very high in HCs, especially in 81 engines. Also, in
older engines with greater clearance between the piston and cylinder wall, blowby
flow was much higher. As much as 1 % of the fuel was vented to the atmosphere
through the crankcase breather in some automobiles. This accounted for up to 20%
of total emissions. A simple solution to this problem, which is used on all modern
engines, is to vent the crankcase breather back into the intake system. This not only
reduces emissions but also increases fuel economy.
To keep the pressure at one atmosphere in the fuel tank and in the fuel reservoir of a carburetor, these systems are vented to the surroundings. Historically,
these vents were an additional source of HC emissions when fuel evaporated from
these fuel reservoirs. To eliminate these emissions, fuel vents now include some
form of filter or absorption system which stops the HC vapor from escaping. One
such system absorbs the HCs onto the surface of a carbon filter element. Then, when
the engine is operating, the element is back flushed and the HC is desorbed off the
surface. The recovered HC is ducted into the engine intake with no resulting
Many modern gasoline pumps and other fuel-dispensing systems are equipped
with vapor-collecting nozzles that reduce HC vapor lost to the atmosphere during
Emissionsand Air Pollution
9-1. A diesel truck uses 100 grams of light diesel fuel (assume C12H22) per mile of travel.
0.5% of the carbon in the fuel ends up as exhaust smoke. If the truck travels 15,000
miles per year, how much carbon is put into the atmosphere each year as smoke?
9-2. (a) Why isn't a normal three-way catalytic converter, as used with SI engines, as useful
when used with a CI engine? (b) What main method is used to limit NOx emissions on
a modern diesel truck or automobile? (c) Give at least three disadvantages to using this
9-3. (a) List five reasons why there are HC emissions in the exhaust of an automobile.
(b) To reduce emissions from an SI engine, should AF be set at rich, lean, or stoichiometric? Explain the advantages and disadvantages of each. (c) Why is it good to place
a catalytic converter as close to the engine as possible? Why is this bad?
9-4. A four-cylinder, 2.8-liter, four-stroke cycle SI engine operates at 2300 RPM with a
volumetric efficiency of 88.5%. The fuel used is methyl alcohol at an equivalence ratio
of ¢ = 1.25. During combustion all hydrogen is converted to water, and all carbon is
converted to CO2 and CO.
Calculate: (a) Mole fraction of CO in the exhaust. [%]
(b) Energy lost in the exhaust due to CO. [kW]
9-5. The combustion chambers of a V8 Otto cycle engine with a 7.8:1 compression ratio,
bore of 3.98 inches, and 41O-cubic-inch displacement can be approximated as right circular cylinders. The engine operates at 3000 RPM using gasoline at an AF = 15.2 and a
volumetric efficiency of 95%. When combustion occurs, the flame is dampened out
near the walls and a boundary layer of air-fuel does not get burned. Combustion is at
constant volume at TDC, and the unburned boundary layer can be considered to be
0.004 inch thick over the entire combustion chamber surface. Fuel is originally distributed equally throughout the chamber.
Calculate: (a) Percent of fuel that does not get burned due to being trapped in the
surface boundary layer. [%]
(b) Amount of fuel lost in the exhaust due to this boundary layer. [lbm/hr]
(c) Chemical power of the fuel lost in the exhaust. [hp]
9-6. An older automobile using leaded gasoline gets 16 mpg fuel economy at 55 mph. The
lead in the gasoline amounts to 0.15 gm/L. Forty-five percent of the lead in the fuel gets
exhausted to the environment. Calculate the amount of lead exhausted to the environment in Ibm/mile and Ibm/day if the automobile is driven continuously.
9-7. A small truck has a four-cylinder, 2.2-liter CI engine that operates on an air-standard
Dual cycle using light diesel fuel at an average AF = 21:1. At a speed of 2500 RPM, the
engine has a volumetric efficiency 'TJv = 92%. At this operating condition, 0.4% of the
carbon in the fuel ends up as soot in the exhaust. In addition, there is 20% additional
carbon soot from the lubricating oil. The amount of soot is then increased by 25% due
to other components condensing on the carbon. Carbon density pc = 1400 kglm3.
Calculate: (a) Rate of soot put into the environment. [kg/hr]
(b) Chemical power lost in the soot (consider the entire mass of soot as
carbon). [kW]
Chap. 9
(c) Number of soot clusters exhausted per hour. Assume that an average
cluster contains 2000 spherical carbon particles, and each particle has a
diameter of 20 nm.
The engine in Problem 9-7 operating at 2500 RPM has an indicated thermal efficiency
of 61%, combustion efficiency of 98%, and a mechanical efficiency of 71%.
Calculate: (a) Brake specific fuel consumption. [gm/kW-hr]
(b) Specific emissions of soot particulates. [gm/kW-hr]
(c) Emissions index of soot particulates. [gm/kg]
A turbocharged, 6.4-liter, V8 SI engine operates on an air-standard Otto cycle at WOT
with an engine speed of 5500 RPM. The compression ratio is Tc = 10.4:1, and conditions in the cylinders at the start of compression are 65°C and 120 kPa. Crevice volume
is equal to 2.8% of clearance volume and has pressure equal to cylinder pressure and
temperature equal to 185°C.
Calculate: (a) Total engine crevice volume. [cm3]
(b) Percent of fuel that is trapped in the crevice volume at the start of combustion at TDC. [%]
The engine in Problem 9-9 has a volumetric efficiency of 89% and uses isooctane as
fuel at an air-fuel ratio AF = 14.2. Sixty percent of the fuel that is trapped in the
crevice volume at the start of combustion is later burned due to additional cylinder
Calculate: (a) HC emissions in the exhaust due to the 40% of crevice volume fuel
'that does not get burned. [kg/hr]
(b) Chemical power lost in these HC emissions of the exhaust. [kW]
A large supercharged, two-stroke cycle, diesel ship engine with a displacement of
196 liters operates at 220 RPM. The engine has a delivery ratio of Adr = 0.95 and uses
fuel oil that can be approximated as C12HZZ,at an air-fuel ratio of AF = 22. The ship is
equipped with an ammonia injection system to remove NOx from the exhaust.
Calculate: (a) Amount of NO entering the exhaust system if 0.1% of the nitrogen in
the air is converted to NO (assume no other forms of NOx are produced). [kglhr]
(b) Amount of ammonia to be injected to remove all NO in the exhaust by
the reaction given in Eq. (9-29). [kg/hr]
It is desired to reduce NOx generation in an engine that burns stoichiometric ethanol
by using exhaust gas recycling (EGR) to lower the peak combustion temperature. The
temperature of the air and fuel at the start of combustion is 700 K, and the exhaust gas
can be approximated as Nz at 1000 K. The enthalpy of ethanol at 700 K is -199,000
Calculate: (a) Theoretical maximum temperature with stoichiometric ethanol and no
EGR. [K]
(b) Percent EGR needed to reduce maximum temperature to 2400 K. [%]
It is desired to use electricity to preheat the catalytic converter on a four-cylinder SI
engine of 2.8-liter displacement. The preheat zone of the converter consists of 20% of
the total alumina volume. The specific heat of the ceramic is 765 J/kg-K, and the density
p = 3970 kg/m3. Energy is obtained from a 24-volt battery supplying 600 amps.
Calculate: (a) Electrical energy needed to heat the preheat zone from 25°C to a lightoff temperature of 150°C. [KJ]
(b) Time needed to supply this amount of energy. [sec]
Emissions and Air Pollution
9-14. A 0.02-liter, two-stroke cycle SI lawn mower engine runs at 900 RPM, using gasoline at
an equivalence ratio ¢ = 1.08 and a fuel-to-oil ratio of 60:1 by mass. The engine is
crankcase compressed, and has a delivery ratio Adr = 0.88 and a charging efficiency
Ace = 0.72. Combustion efficiency (17c )gasoline
= 0.94 for the gasoline trapped in the
cylinder, but (17c )oil is only 0.72 for the oil trapped in the cylinder. There is no catalytic
Calculate: (a) HC from the fuel and oil exhausted to the environment due to valve
overlap during scavenging. [kg/hr]
(b) HC in the exhaust from unburned fuel and oil due to combustion inefficiency. [kg/hr]
(c) Total HC in exhaust. [kg/hr]
9-15. A 5.2-liter, V8, four-stroke cycle CI truck engine with a volumetric efficiency of
17v = 96% operates at 2800 RPM, using light diesel fuel at AP = 20:1. The fuel contains
500 ppm of sulfur by mass, which is exhausted to the environment. In the surroundings,
this sulfur is converted to sulfurous acid by reacting with atmospheric oxygen and water
vapor as given in Eqs. (9-15) and (9-18).
Calculate: (a) Amount of sulfur in the engine exhaust. [gmlhr]
(b) Amount of sulfurous acid added to the environment. [kg/hr]
9-16. A modern six-cylinder automobile CI engine is adjusted to operate properly using
diesel fuel with a cetane number of 52. The vehicle is accidently fueled with a diesel
fuel having a cetane number of 42. Would more or less exhaust smoke be expected?
9-17. In 1972, about 2.33 X 109 barrels of gasoline were consumed in the United States as
fuel for internal combustion engines. The average automobile traveled 16,000 km, using
gasoline at a rate of 15 L/100 km. The gasoline, on average, contained 0.15 gmlliter of
lead, 35% of which was exhausted to the environment. 1 barrel = 160 liters.
Calculate: (a) The yearly amount of lead put into the atmosphere by the average
automobile. [kg]
(b) Total amount of lead put into the atmosphere in 1972. [kg]
9-18. A man wants to work on his automobile in his garage on a winter day. Having no heating system in the garage, he runs the automobile in the closed building to heat it. At idle
speed the engine burns 5 Ibm of stoichiometric gasoline per hour, with 0.6% of the
exhaust being carbon monoxide. The inside dimensions of the garage are 20 ft by 20 ft
by 8 ft, and the temperature is 40oP. It can be assumed that 10 parts per million (ppm)
of CO in the air is dangerous to health. Calculate the time to when the CO concentration in the garage is dangerous. [min]
9-19. An SI automobile engine produces 32 kW of brake power while using, on average, 6 kg
of stoichiometric gasoline per 100 km traveled at 100 km/hr. Average emissions from
the engine upstream of the catalytic converter are 1.1 gm/km of NOz, 12.0 gmlkm of
CO, and 1.4 gm/km of He. A catalytic converter removes 95% of the exhaust emissions when it is at steady-state temperature. However, 10% of the time, the catalytic
converter is cold at startup and removes no emissions.
Calculate: (a) Specific emissions of HC upstream of the catalytic converter.
(b) Specific emissions of CO downstream of the catalytic converter, with
the converter warmed. [gmlkW-hr]
Chap. 9
Design Problems
(c) Concentration of NOx in the exhaust upstream of the catalytic converter. [ppm]
(d) Overall average (cold and warmed) of HC emissions to the atmosphere. [gmlkm]
(e) Percent of total HC emissions occurring when the converter is cold.
9-1D. Design a catalytic converter pre heater using solar energy. Decide if solar collectors
should be on the vehicle or on a battery-recharging station. Calculate the sizes needed
for the main components (e.g., battery, collector). Draw a simple schematic of the
9-2D. Design a system to absorb the fuel vapors escaping from the vent on an automobile fuel
tank. The system should have a method of regeneration, with all fuel eventually being
input into the engine.
This chapter examines the heat transfer that occurs within an IC engine, this being
extremely important for proper operation. About 35 % percent of the total chemical
energy that enters an engine in the fuel is converted to useful crankshaft work, and
about 30% of the fuel energy is carried away from the engine in the exhaust flow in
the form of enthalpy and chemical energy. This leaves about one-third of the total
energy that must be dissipated to the surroundings by some mode of heat transfer.
Temperatures within the combustion chamber of an engine reach values on the
order of 2700 K and up. Materials in the engine cannot tolerate this kind of temperature and would quickly fail if proper heat transfer did not occur. Removing heat is
highly critical in keeping an engine and engine lubricant from thermal failure. On
the other hand, it is desirable to operate an engine as hot as possible to maximize
thermal efficiency.
Two general methods are used to cool combustion chambers of engines. The
engine block of a water-cooled engine is surrounded with a water jacket that contains a coolant fluid which is circulated through the engine. An air-cooled engine
has a finned outer surface on the block over which a flow of air is directed.
plug, the exhaust valve and port, and the face of the piston. Not only are these places
exposed to the high-temperature combustion gases, but they are difficult places to
Chapter 7 showed that the highest gas temperatures during combustion occur
around the spark plug. This creates a critical heat transfer problem area. The spark
plug fastened through the combustion chamber wall creates a disruption in the surrounding water jacket, causing a local cooling problem. On air-cooled engines the
spark plug disrupts the cooling fin pattern, but the problem may not be as severe.
The exhaust valve and port operate hot because they are located in the pseudosteady flow of hot exhaust gases and create a difficulty in cooling similar to the one
the spark plug creates. The valve mechanism and connecting exhaust manifold make
it very difficult to route coolant or allow a finned surface to give effective cooling.
The piston face is difficult to cool because it is separated from the water jacket
or outer finned cooling surfaces.
HeatTransfer in Engines
Chap. 10
Engine Warmup
As a cold engine heats up to steady-state temperature, thermal expansion occurs in
all components. The magnitude of this expansion will be different for each component, depending on its temperature and the material from which it is made. Engine
bore limits the thermal expansion of the pistons, and at operating temperatures of a
newer engine there can be very high resulting forces between the piston rings and
skirt and the walls of the cylinder. This causes high viscous heating in the oil film on
the cylinder walls during engine operation.
Figure 10-3 shows how the temperature of various automobile components
increases with time after a cold engine is started. In cold weather, the startup time to
reach steady-state conditions can be as high as 20-30 minutes. Some parts of the
automobile reach steady state much sooner than this, but some do not. Fairly normal operating conditions may be experienced within a few minutes, but it can take
as long as an hour to reach optimum fuel consumption rates. Engines are built to
operate best at steady-state conditions, and full power and optimum fuel economy
may not be realized until this is reached. It would be poor practice to take off with
an airplane, when full power is needed, before the engine is fully warmed up. This is
not as critical with an automobile. Driving before total engine warmup causes some
loss of power and fuel economy, but if there is engine failure, the distance to fall is
much less than in an airplane. A large percent of automobile use is for short trips
with enginesthat are not fully warmed up. In Chapter 9, it was found that this was
also a major cause of air pollution.
The manifold is hot, either by design on some engines or just as a result of its
location close to other hot components in the engine compartment. Carbureted
engines and those with throttle body injection that introduce fuel early in the flow
process purposely have heated intake manifolds to assist in the evaporation of the
fuel. Various methods are used to heat these manifolds. Some are designed such that
the flow passages of the runners come in close thermal contact with the hot exhaust
manifold. Others use hot coolant flow through a surrounding water jacket. Electricity is used to heat some intake manifolds. Some systems have special localized hot
surfaces, called hot spots, in optimum locations, such as immediately after fuel addition or at a tee where maximum convection occurs (Fig. 10-4).
There are several consequences from convective heating in the intake manifold, some good and some bad. The earlier that the fuel gets vaporized, the longer it
is mixed with air, resulting in a more homogeneous mixture. However, increasing
the temperature reduces the volumetric efficiency of the engine by two mechanisms.
Higher temperature reduces the air density and added fuel vapor displaces some of
the air, both reducing the mass of air reaching the cylinders. A compromise is to
vaporize some of the fuel in the intake system and to vaporize the rest in the cylinder during compression, or even during combustion. With older carbureted engines,
it was desirable to vaporize about 60% of the fuel in the intake manifold. Vaporization curves like those in Fig. 4-2 could be used to determine the temperature
necessary to give this 60% evaporation. Often, a design temperature about 25°C
higher than that determined from Fig. 4-2 was used in designing the manifold. This
was because of the short time that the flow was in the manifold, never reaching
steady-state temperature. As fuel vaporizes in the intake manifold, it cools the
surrounding flow by evaporative cooling, counteracting the convective heating.
When the intake charge of air and fuel enters the cylinder, it is further heated by
the hot cylinder walls. This, in turn, helps to cool the cylinder walls and to keep them
from overheating.
Another reason to limit the heating of inlet air is to keep temperature to a
minimum at the start of the compression stroke. The higher the temperature at the
Hot spot in intake manifold
to accelerate fuel evaporation. Localized
sections of wall surface, called hot spots,
can be heated by engine coolant, by conduction from the exhaust manifold, or by
electrical heating. Heated sections are
generally placed close after fuel addition,
or at a tee where high convection occurs.
Figure 10-4
start of compression, the higher will be all temperatures throughout the rest of the
cycle, and the greater is the potential problem of engine knock.
Engine systems using multipoint port injectors have less need for heating the
intake manifold, relying on finer fuel droplets and higher temperature around the
intake valve to assure necessary fuel evaporation. This results in higher volumetric
efficiency for these engines. Often, the fuel is sprayed directly onto the back of the
intake valve face. This not only speeds evaporation, but cools the intake valve,
which can reach cyclic temperatures up to 400°C. Steady-state temperature of intake
valves generally is in the 200°-300°C range.
If an engine is supercharged or turbocharged, the temperature of the inlet air
is also affected by the resulting compressive heating. To avoid this, many of these
systems are equipped with aftercooling, which again lowers the temperature. Aftercoolers are heat exchangers through which the compressed inlet air flows, using
either engine coolant or external air flow as the cooling fluid.
Once the air-fuel mixture is in the cylinders of an engine, the three primary modes
of heat transfer (conduction, convection, and radiation) all play an important part
Sec. 10-4
Heat Transfer in Combustion Chambers
for smooth steady-state operation. In addition, the temperature within the cylinders
is affected by a phase change-evaporation
of the remaining liquid fuel.
The air-fuel mixture entering a cylinder during the intake stroke may be
hotter or cooler than the cylinder walls, with the resulting heat transfer being possible in either direction. During the compression stroke, the temperature of the gas
increases, and by the time combustion starts, there is already a convective heat
transfer to the cylinder walls. Some of this compressive heating is lessened by the
evaporative cooling which occurs when the remaining liquid fuel droplets vaporize.
During combustion peak gas temperatures on the order of 3000 K occur within
the cylinders, and effective heat transfer is needed to keep the cylinder walls from
overheating. Convection and conduction are the main heat transfer modes to
remove energy from the combustion chamber and keep the cylinder walls from
Figure 10-5 shows heat transfer through a cylinder wall. Heat transfer per unit
surface area will be:
Heat Transfer in Engines
Chap. 10
Heat transfer in Eq. (10-5) is cyclic. Gas temperature Tg in the combustion
chamber varies greatly over an engine cycle, ranging from maximum values during
combustion to minimum during intake. It can even be less than wall temperature
early in the intake stroke, momentarily reversing heat transfer direction. Coolant
temperature Tc is fairly constant, with any changes occurring over much longer cycle
times. The coolant is air for air-cooled engines and antifreeze solution for watercooled engines. The convection heat transfer coefficient hg on the cylinder gas side
of the wall varies greatly during an engine cycle due to changes in gas motion, turbulence, swirl, velocity, etc. This coefficient will also have large spatial variation
within the cylinder for the same reasons. The convection heat transfer coefficient on
the coolant side of the wall will be fairly constant, being dependant on coolant velocity. Thermal conductivity k of the cylinder wall is a function of wall temperature and
will be fairly constant.
Convection heat transfer on the inside surface of the cylinder is:
q = Q/A
= hg(Tg - Tw)
Wall temperature Tw should not exceed 180°-200°C to assure thermal stability of the
lubricating oil and structural strength of the wall.
There are a number of ways of identifying a Reynolds number to use for comparing flow characteristics and heat transfer in engines of different sizes, speeds, and
geometries. ChoOsing the best characteristic length and velocity is sometimes difficult [40, 120]. One way of defining a Reynolds number for engines [120] which
correlates data fairly well is:
Even though gas temperatures are very high, radiation to the walls only
amounts to about 10% of the total heat transfer in SI engines. This is due to the
poor emitting properties of gases, which emit only at specific wavelengths. Nz
and Oz, which make up the majority of the gases before combustion, radiate very
little, while the COz and Hz 0 of the products do contribute more to radiation heat
The solid carbon particles that are generated in the combustion products of a
CI engine are good radiators at all wavelengths, and radiation heat transfer to the
walls in these engines is in the range of 20-35% of the total. A large percent of radiation heat transfer to the walls occurs early in the power stroke. At this point the
combustion temperature is maximum, and with thermal radiation potential equal to
T4, a very large heat flux is generated. This is also the time when there is a maximum
amount of carbon soot in CI engines, which further increases radiative heat flow.
Instantaneous heat fluxes as high as 10 MW/m z can be experienced in a CI engine at
this point of the cycle.
Because an engine operates on a cycle, gas temperature Tg within the cylinder
in Fig. 10-5 and Eq. (10-5) is pseudo-steady state. This cyclic temperature causes a
cyclic heat transfer to occur in the cylinder walls. However, due to the very short
cycle times, this cyclic heat transfer is only experienced to a very small surface depth.
At normal speeds, 90% of these heat transfer oscillations are dampened out within
a depth of about 1 mm of the surface in engines with cast-iron cylinder walls. In
engines with aluminum cylinders this depth of 90% dampening is slightly over 2 mm,
and in ceramic walls it is on the order of 0.7 mm. At surface depths greater than
these, the oscillations in heat transfer are almost undetectable and conduction can
be treated as steady state [40].
Heat transfer to cylinder walls continues during the expansion stroke, but the
rate quickly decreases. Expansion cooling and heat losses reduce the gas temperature within the cylinder during this stroke from a maximum temperature on the
order of 2700 K to an exhaust temperature of about 800 K. During the exhaust
stroke, heat transfer to the cylinder walls continues but at a greatly reduced rate. At
this time, cylinder gas temperature is much lower, as is the convection heat transfer
coefficient. There is no swirl or squish motion at this time, and turbulence is greatly
reduced, resulting in a much lower convection heat transfer coefficient.
Cycle-to-cycle variations in combustion that occur within a cylinder result in
cycle-to-cycle variations in the resulting heat transfer to the walls. A typical plot of
cycle-to-cycle variations in heat transfer versus crank angle for one location within a
combustion chamber is shown in Fig. 10-6.
Heat transfer occurs in all four strokes of a cycle, ranging from very high fluxes
to low fluxes and even to zero or heat flow in the reverse direction (i.e., heat flow
from the walls to the gas mixture in the cylinder). In a naturally aspirated engine,
heat flow can be in either direction during the intake stroke, at a given cylinder location. During the compression stroke, the gases heat up and a heat flux to the walls
results. Maximum temperature and maximum heat flux occurs during combustion
and then decreases during the power and exhaust strokes. For engines equipped
with a supercharger or turbocharger, the intake gases are at a higher temperature,
and the corresponding heat flux during intake would be greater and into the walls.
In addition to a time variation of temperature within a combustion chamber,
there is a spatial variation at any given time, as can be seen in Fig. 10-7. The heat
flux curve in Figure 10-6, therefore, would apply only to one local point, and a similar but different curve would apply at a different point. Some locations very close
together can have different heat fluxes at any given instant, especially during combustion (Fig. 10-7).
Cooling difficulties caused by the protrusions of the spark plug, fuel injectors,
and valves through the cylinder walls have been discussed. Another major cooling
problem is the face of the piston. This surface is exposed to the hot combustion
process but cannot be cooled by the coolant in the engine water jacket or an external finned surface. For this reason, the piston crown is one of the hotter points in an
engine. One method used to cool the piston is by splashing or spraying lubricating
oil on the back surface of the piston crown. In addition to being a lubricant, the oil
then also serves as a coolant fluid. After absorbing energy from the piston, the oil
flows back into the oil reservoir in the crankcase, where it is again cooled. Heat is
also conducted from the piston face, but thermal resistance for this is quite high. The
two conduction paths available are (1) down the connecting rod to the oil reservoir,
and (2) through the piston rings to the cylinder walls and into the coolant in the surrounding water jacket (Fig. 10-8). Thermal resistance through the piston body and
connecting rod is low because they are made of metal. However, there is high resistance where these connect together at the wrist pin because of the lubricant film
between the surfaces. This is also true where the connecting rod fastens to the crankshaft through lubricated surfaces. The oil film between surfaces needed for
lubrication and wear reduction constitutes a large thermal resistance and a poor
conduction path.
Aluminum pistons generally operate 30°-80°C cooler than cast-iron pistons
due to their higher thermal conductivity. This reduces knock problems in these
engines, but can cause greater thermal expansion problems between dissimilar
Figure 10-8 Cooling of piston. The face
of a piston (A) is one of the hotter surfaces in a combustion chamber. Cooling is
mainly done by convection to the lubricating oil on the back side of the piston
face, by conduction through the piston
rings in contact with the cylinder walls,
and by conduction down the connecting
rod to the oil reservoir. High conduction
resistance occurs because of lubricated
surfaces at cylinder walls (X) and rod
bearings (Y).
materials. Many modern pistons have a ceramic face and operate at a higher steadystate temperature. Ceramic has poor heat conduction properties but can tolerate
much higher temperatures. Some very large engines have water-cooled pistons.
To avoid thermal breakdown of the lubricating oil, it is necessary to keep the
cylinder wall temperatures from exceeding 180°-200°C. As lubrication technology
improves the quality of oils, this maximum allowable wall temperature is being
raised. As an engine ages, deposits slowly build up on the walls of the cylinders.
These are due to impurities in the air and fuel, imperfect combustion, and lubricating oil in the combustion chamber. These deposits create a thermal resistance and
cause higher wall temperatures. Excessive wall deposits also slightly decrease the
clearance volume of the cylinder and cause a rise in the compression ratio.
Some modern engines use heat pipes to help cool internal hot regions that are
inaccessible to normal cooling by conduction or coolant flow. With one end of the
heat pipe in the hot interior of the engine, the other end can be in contact with the
circulating coolant or exposed to external air flow.
To calculate heat losses in an exhaust pipe, normal internal convection flow models
can be used with one major modification: Due to the pulsing cyclic flow, the Nusselt
number is about 50% higher than would be predicted for the same mass flow in the
same pipe at steady flow conditions [82] (see Fig. 10-9). Heat losses from the exhaust
system affect emissions and turbocharging.
Figure 10-9 Average Nusselt number in the exhaust flow of a reciprocating IC
engine. The cyclic pulsing that occurs in the exhaust increases the Nusselt number
...•..and convection heat transfer in the exhaust pipe by a factor of about 1.5 over steady
flow conditions of equal mass flow rate. Adapted from [82].
Pseudo-steady-state exhaust temperatures of SI engines are generally in the
range of 400°-600°C, with extremes of 300°-900°C. Exhaust temperatures of CI
engines are lower due to their greater expansion ratio and are generally in the range
of 200°-500°C.
Some large engines have exhaust valves with hollow stems containing sodium.
These act as heat pipes and are very effective in removing heat from the face area of
the valve. Whereas solid valve stems remove heat by conduction only, heat pipes
use a phase change cycle to remove a much greater amount of energy. Liquid
sodium is vaporized in the hot end of the hollow valve stem and then is condensed
back to liquid at the cooler end. Because of the large transfer of energy during a
phase change, the effective heat conduction in the stem will be many times greater
than pure conduction.
On the engine in Example Problem 8-1, the exhaust manifold and pipe leading from
the engine to the catalytic converter can be approximated as a lo8-m-Iong pipe with
ID = 6.0 cm and aD = 6.5 cm. Volumetric efficiency of the engine at 3600 RPM is
TJv = 93%, the air-fuel ratio AF = 15:1, and the average wall temperature of the
exhaust pipe is 200°C. Calculate the approximate temperature of the exhaust gas entering the catalytic converter.
Heat transfer within engines depends on so many different variables that it is
difficult to correlate one engine with another. These variables include the air-fuel
ratio, speed, load, brake mean effective pressure, spark timing, compression ratio,
materials, and size. The following is a general comparison of some of these variables.
Engine Size
'If two geometrically similar engines of different size (displacement) are run at the
same speed, and all other variables (temperature, AF, fuel, etc.) are kept as close to
the same as possible, the larger engine will have a greater absolute heat loss but will
be more thermal efficient. If the temperatures and materials of both engines are the
same, heat loss fluxes to the surroundings per unit area will be about the same, but
the absolute heat loss of the larger engine will be greater due to larger surface areas.
A larger engine will generate more output power and will do this at a higher
thermal efficiency. As linear size goes up, volume increases on the order of linear
dimension cubed. If one engine is 50% larger in linear size, its displacement will be
on the order of (1.5)3 = 3.375 larger. With similar mixture properties, the larger
engine will therefore combust about 3.375 times the fuel of the smaller engine and
release 3.375 times the amount of thermal energy. Surface area, on the other hand,
is proportional to length squared, and the larger engine will have only 2.25 times the
surface area and consequent heat loss of the smaller engine. Energy generated goes
up with length cubed, while heat losses go up with length squared. This makes the
larger engine more efficient if everything else is the same.
This reasoning can be extended to more than just absolute size when designing
an engine. What is desirable for good thermal efficiency is a combustion chamber
with a high volume-to-surface area ratio. This is one reason why a modern overhead
valve engine is more efficient than older valve-in-block L head engines that had
large combustion chamber surface areas. This also says that a cylinder with a single,
simple, open combustion chamber will have less percentage heat loss than one with
a split dual chamber that has a large surface area.
Heat Transfer in Engines
Chap. 10
Engine Speed
As engine speed is increased, gas flow velocity into and out of the engine goes up,
with a resulting rise in turbulence and convection heat transfer coefficients. This
increases heat transfer occurring during the intake and exhaust strokes and even
during the early part of the compression stroke.
During combustion and power stroke, gas velocities within the cylinder are
fairly independent of engine speed, being instead controlled by swirl, squish, and
combustion motion. The convection heat transfer coefficient and, thus, convection
are therefore fairly independent of engine speed at this time. Radiation, which is
only important during this portion of the cycle, is also independent of speed. Rate of
heat transfer (kW) during this part of the cycle is therefore constant, but because
the time of the cycle is less at higher speed, less heat transfer per cycle (kJ/cycle)
occurs. This gives the engine a higher thermal efficiency at higher speed. At higher
speeds, more cycles per unit time occur, but each cycle lasts less time. The net result
is a slight rise in heat transfer loss with time (kW) from the engine. This is partly
due to the higher heat losses for part of the cycle, but is mostly due to the higher
steady-state (pseudo-steady-state) losses which the engine establishes at higher
speeds. Mass flow of gas through an engine increases with speed, with a net result of
less heat loss per unit mass (kJ/kg) (i.e., higher thermal efficiency).
All steady-state temperatures within an engine go up as engine speed increases,
as shown in Fig. 10-10.
Sec. 10-6
Effect of Engine Operating Variables on Heat Transfer
Heat transfer to the engine coolant increases with higher speed:
hA (Tw - Tc)
h = convection heat transfer coefficient, which remains about constant
A = surface area, which remains constant
Tc = coolant temperature, which remains about constant
Tw = wall temperature, which increases with speed
To stay at the same steady-state temperature as engine speed is increased,
more heat must be transferred to the surroundings from the coolant in the automobile radiator heat exchanger.
At higher engine speeds, there is less time per cycle. Combustion occurs over
about the same engine rotation (burn angle) at all speeds, so the time of combustion
is less at higher speeds (Fig. 7-6). This means less time for self-ignition and knock.
However, there is also less time for heat transfer per cycle, which means the engine
runs hotter, and a hotter engine has a greater knock problem. The result of this is
that some engines have a greater knock problem at higher speeds while other
engines have less knock problem at higher speeds.
For part of the exhaust blowdown process, there will be sonic velocity through
the exhaust valve, and the flow rate will be choked and independent of engine
speed. At higher speeds, this causes the blow down process to last over a larger
engine rotation angle and results in hotter exhaust valves and ports. The hotter
engine temperatures do increase sonic velocity slightly, which in turn increases the
flow rate slightly. Gases in the exhaust system are hotter at higher engine speeds.
As the load on an engine is increased (going uphill, pulling a trailer), the throttle
must be further opened to keep the engine speed constant. This causes less pressure
drop across the throttle and higher pressure and density in the intake system. Mass
flow rate of air and fuel, therefore, goes up with load at a given engine speed. Heat
transfer within the engine also goes up by
Q = hAj).T
convection heat transfer coefficient
surface area at any point
= temperature difference at that point
The heat transfer coefficient is related to Reynolds number by
Re C
where C is usually on the order of C = 0.8. Reynolds number is proportional to mass
flow rate ni, so the time rate of heat transfer increases with ni0.s. Density of fuel into
the engine increases as ni, so energy into the engine increases as ni.
The percent of heat loss goes down slightly as engine load increases (kJ/cycle).
This quite often is offset by engine knock that occurs most often in an engine under
HeatTransfer in Engines
Chap. 10
load. The result of knock is localized high temperature and high heat transfer.
Engine temperatures increase with load. Figure 10-10 would be very similar if the X
coordinate of speed at constant load were replaced with load at constant speed.
CI engines are run unthrottled, and total mass flow is almost independent of
load. When speed or load is increased and more power is needed, the amount of fuel
injected is increased. This increases the total mass flow in the latter part of each
cycle only very slightly, on the order of 5%. This means that the convection heat
transfer coefficient within the engine is fairly independent of engine load.
At light loads less fuel is injected and burned, creating a cooler steady-state
temperature. This decreases the corresponding heat transfer. At heavy load more
fuel is injected and burned, and the resulting steady-state temperature is higher. This
causes a greater convective heat transfer. Combustion of the richer mixture at heavy
load also creates a larger amount of solid carbon soot. This, in turn, further increases
heat transfer by radiation, solid carbon being a good radiator. The amount of fuel
and, consequently, the amount of energy released per cycle goes up with load. The
percent of heat loss, therefore, changes very little with load in a CI engine.
Spark Timing
More power and higher temperatures are generated when the spark setting is set to
give maximum pressure and temperature at about SO to 10° aTDc. These higher
peak temperatures will create a higher momentary heat loss, but this will occur over
a shorter length of time. With spark timing set either too early or too late, combustion effictency and average temperatures will be lower. These lower temperatures
will give less peak heat loss, but the heat losses will last over a longer length of time
and the overall energy loss will be greater. Higher power output is thus gained with
correct ignition timing. Late ignition timing extends the combustion process longer
into the expansion stroke, resulting in higher exhaust temperature and hotter
exhaust valves and ports.
Fuel Equivalence Ratio
In an SI engine, maximum power is obtained with an equivalence ratio of about
= 1.1. This is also when the greatest heat losses will occur, with less losses when
the engine runs either leaner or richer. The greatest heat loss as a percent of energy
in, mtQHv, will occur at stoichiometric conditions, <p = 1.0. An engine requires the
highest fuel octane number when operating at stoichiometric conditions. Lower
octane can be tolerated when the engine is running rich.
Evaporative Cooling
As fuel is vaporized during intake and start of compression, evaporative cooling
lowers the intake temperature and raises intake density. This increases the volumetric efficiency of the engine. Fuels with high latent heats, like alcohols, have greater
Sec. 10-6
Effect of Engine Operating Variables on Heat Transfer
evaporative cooling and generally make for cooler running engines. If an engine is
operated fuel rich, evaporation of the excess fuel will lower cycle temperatures.
Water injectors are sometimes installed in the intake system of high-performance engines to increase evaporative cooling. This was done quite successfully in
aircraft engines during World War II. Care must be taken to avoid corrosion problems with these engines, especially when the engines are not running.
Saab Automobile Company has been experimenting with water injection to
improve fuel economy at high speed and fast acceleration. To avoid the need for an
additional water source, fluid is taken from the windshield washer reservoir.
Antifreeze solution and washer additives do not seem to harm the engine. Highspeed fuel consumption has been reduced bv 20-30% f70l
-Inlet Air Temperature
Increasing inlet air temperature to an engine results in a temperature increase over
the entire cycle, with a resulting increase in heat losses. A 100°C increase in inlet
temperature will give a 10-15% increase in heat losses. Increasing cycle temperatures also increases the chance of knock. Turbocharged or supercharged engines
generally have higher inlet air temperatures due to compressive heating. Many sys-
Sec. 10-6
Effect of Engine Operating Variables on Heat Transfer
terns have aftercooling to reduce air temperature
before it enters the engine
Coolant Temperature
Increasing the coolant temperature of an engine (hotter thermostat) results in
higher temperatures of all cooled parts. There is little change in the temperatures of
the spark plugs and exhaust valves. Knock is a greater problem in hotter engines.
Engine Materials
Different materials in the manufacture of cylinder and piston components result in
different operating temperatures. Aluminum pistons, with their higher thermal
conductivity, generally operate about 30°-80°C cooler than equivalent cast-iron pistons. Ceramic-faced pistons have poor thermal conductivity, resulting in very high
temperatures. This is by design, with the ceramic being able to tolerate the higher
temperature. Ceramic exhaust valves are sometimes used because of their lower
mass inertia and high temperature tolerance.
Compression Ratio
Changing the compression ratio of an engine changes the heat transfer to the
coolant very little. Increasing the compression ratio decreases heat transfer slightly
up to about rc = 10. Increasing the compression ratio above this increases heat
transfer slightly [58]. There is about a 10% decrease in heat transfer as the compression ratio is raised from 7 to 10. These changes in heat transfer occur mainly
because of the combustion characteristics that change as the compression ratio is
raised (Le., flame speed, gas motion, etc). The higher the compression ratio, the
more expansion cooling will Occur during the power stroke, resulting in cooler
exhaust. CI engines, with their high compression ratios, generally have lower
exhaust temperatures than SI engines. Piston temperatures generally increase
slightly with increasing compression ratio.
When knock occurs, the temperature and pressure are raised in very localized spots
within the combustion chamber. This rise in local temperature can be very severe
and, in extreme cases, can cause surface damage to pistons and valves.
Swirl and Squish
Higher swirl and squish velocities result in a higher convection heat transfer coefficient within the cylinder. This results in better heat transfer to the walls.
Heat Transfer in Engines
Chap. 10
Many small engines and some medium-sized engines are air cooled. This includes
most small-engine tools and toys like lawn mowers, chain saws, model airplanes, etc.
This allows both the weight and price of these engines to be kept low. Some motorcycles, automobiles, and aircraft have air-cooled engines, also benefitting from
lower weight.
Air-cooled engines rely on a flow of air across their external surfaces to
remove the necessary heat to keep them from overheating. On vehicles like motorcycles and aircraft, the forward motion of the vehicle supplies the air flow across the
surface. Deflectors and ductwork are often added to direct the flow to criticallocations. The outer surfaces of the engine are made of good heat-conducting metals and
are finned to promote maximum heat transfer. Automobile engines usually have
fans to increase the air-flow rate and direct it in the desired direction. Lawn mowers
and chain saws rely on free convection from their finned surfaces. Some small
engines have exposed flywheels with air deflectors fastened to the surface. When
the engine is in operation, these deflectors create air motion that increases heat
transfer on the finned surfaces.
It is more difficult to get uniform cooling of cylinders on air-cooled engines
than on liquid-cooled engines. The flow of liquid coolants can be better controlled
and ducted to the hot spots where maximum cooling is needed. Liquid coolants also
have better...thermal properties than air (e.g., higher convection coefficients, specific
heats, etc). Figure 10-11 shows how cooling needs are not the same at all locations
on an engine surface. Hotter areas, such as around the exhaust valve and manifold,
Figure 10-11 Variation of heat losses
from the fins of an air-cooled aircraft
engine. Seventy-one percent of the heat
losses occur on the hotter side of the
cylinder, containing the exhaust valve. The
engine shown was used on a number of
different aircraft, including the six-engine
B-36 bomber. Reprinted with permission
from SAE Technical Paper 500197 © 1950,
Society of Automotive Engineers, Inc.,
Sec. 10-8
Liquid-Cooled Engines
need greater cooling and a larger finned surface area. Cooling the front of an aircooled engine which faces the forward motion of the vehicle is often much easier
and more efficient than cooling the back surface of the engine. This can result in
temperature differences and thermal expansion problems.
When compared with liquid-cooled engines, air-cooled engines have the following advantages: (1) lighter weight, (2) less costly, (3) no coolant system failures
(e.g., water pump, hoses), (4) no engine freeze-ups, and (5) faster engine warmup.
Disadvantages of air-cooled engines are that they (1) are less efficient, (2) are noisier, with greater air flow requirements and no water jacket to dampen noise, and
(3) need a directed air flow and finned surfaces.
Standard heat transfer equations for finned surfaces can be used to calculate
the heat transfer off of these engine surfaces.
The engine block of a water-cooled engine is surrounded with a water jacket
through which coolant liquid flows (Fig. 10-12). This allows for a much better
control of heat removal at a cost of added weight and a need for a water pump. The
cost, weight, and complexity of a liquid coolant system makes this type of cooling
very r~e on small and/or low-cost engines.
Heat Transfer in Engines
Chap. 10
Very few water-cooled engines use just water as the coolant fluid in the water
jacket. The physical properties of water make it a very good heat transfer fluid, but
it has some drawbacks. Used as a pure fluid it has a freezing point of O°C,unacceptable in northern winter climates. Its boiling temperature, even in a pressurized
cooling system, is lower than desired, and without additives it promotes rust and corrosion in many materials. Most engines use a mixture of water and ethylene glycol,
which has the heat transfer advantages of water but improves on some of the physical properties. Ethylene glycol (C2H602), often called antifreeze, acts as a rust
inhibitor and a lubricant for the water pump, two properties not present when water
is used alone. When added to water, it lowers the freezing temperature and raises
the boiling temperature, both desirable consequences. This is true for mixtures with
ethylene glycol concentrations from a very small amount up to about 70%. Due to a
unique temperature-concentration-phase
relationship, the freezing temperature
again rises at high concentrations. The desirable heat transfer properties of water
are also lost at high concentrations. Pure ethylene glycol should not be used as an
engine coolant.
Ethylene glycol is water soluble and has a boiling temperature of 197°C and a
freezing temperature of -11°C in pure form at atmospheric pressure. Table 10-1
gives properties of ethylene glycol-water mixtures. When ethylene glycol is used as
an engine coolant, the concentration with water is usually determined by the coldest
weather temperature which is expected to be experienced.
Engiae coolant cannot be allowed to freeze. If it does, it will not circulate
through the radiator of the cooling system and the engine will overheat. A more
serious consequence is caused when the water in the coolant expands on freezing
and cracks the walls of the water jacket or water pump. This destroys the engine.
Even in climates where there is no danger of freezing water, some ethylene glycol
should be used because of its better thermal and lubricating properties. In addition
to good thermal properties, a coolant should satisfy the following requirements:
Chemically stable under conditions of use
Low toxicity
Low cost
Most commercial antifreezes satisfy these requirements. Many of them are basically
ethylene glycol with small amounts of additives.
A hydrometer is used to determine the concentration of ethylene glycol when
it is mixed with water. The specific gravity of the mixture is determined by the height
at which the calibrated hydrometer floats. Charts such as Table 10-1 can be used to
determine the concentration needed. Most of these hydrometers are used by service
station attendants who have no engineering training. For this reason they are usually
not calibrated in concentration, but only in freezing temperature of the total
water-ethylene glycol mixture. Most commercial antifreeze products (Prestone,
Zerex, etc.) are basically ethylene glycol, and the same calibrated hydrometer can be
used for all of these.
Some commercial engine coolants (Sierra, etc.) use propylene glycol (C4HsO)
as the base ingredient. It is argued that when coolant systems leak or when the
coolant becomes aged and is discarded, these products are less harmful to the environment than ethylene glycol. A far lesser amount of these products is sold in the
United States than those containing ethylene glycol.
The coolant system of a typical automobile engine is shown in Fig. 10-12. Fluid
enters the water jacket of the engine, usually at the bottom of the engine. It flows
through the engine block, where it absorbs energy from the hot cylinder walls. The
flow passages in the water jacket are designed to direct the flow around the outer
surfaces of the cylinder walls and past any other surface that needs cooling. The flow
is also directed through any other component that may need heating or cooling (e.g.,
heating of the intake manifold or cooling of the oil reservoir). The flow leaves the
engine Q!ock containing a high specific enthalpy because of the energy it absorbed in
engine cooling. Exit is usually at the top of the engine block.
Enthalpy must now be removed from the coolant flow so that the circulation
loop can be closed and the coolant can again be used to cool the engine. This is done
by the use of a heat exchanger in the flow loop called, for some unknown reason, a
radiator. The radiator is a honeycomb heat exchanger with hot coolant flowing from
top to bottom exchanging energy with cooler air flowing from front to back, as
shown in Fig. 10-13. Air flow occurs because of the forward motion of the automobile, assisted by a fan located behind the radiator and either driven electrically or off
the engine crankshaft. The cooled engine coolant exits the bottom of the radiator
and reenters the water jacket of the engine, completing a closed loop. A water pump
that drives the flow of the coolant loop is usually located between the radiator exit
and engine block entrance. This pump is either electric or mechanically driven off
the engine. Some early automobiles had no water pump and relied on a natural convection thermal flow loop.
Air leaving the automobile radiator is further used to cool the engine by being
directed through the engine compartment and across the exterior surfaces of the
engine. Because of the modern aerodynamic shape of automobiles and the great
emphasis on cosmetics, it is much more difficult to duct cooling air through the radiator and engine compartment. Much greater efficiency is needed in rejecting energy
with the modern radiator heat exchanger. Modern engines are designed to run hotter
and thus can tolerate a lower cooling air-flow rate. Steady-state temperature of the
air within the engine compartment of a modern automobile is on the order of 125°C.
To keep the coolant fluid temperature from dropping below some minimum
value, and thus keeping the engine operating at a higher temperature and efficiency,
a thermostat is installed in the coolant loop, usually at the engine flow entrance. A
thermostat is a thermally activated go-no go valve. When the thermostat is cold, it is
closed and allows no fluid flow through the main circulation channel. As the engine
warms up, the thermostat also warms up, and thermal expansion opens the flow passage and allows coolant circulation. The higher the temperature, the greater the flow
passage opening, with the greater resulting coolant flow. The coolant temperature is,
therefore, controlled fairly accurately by the opening and closing of the thermostat.
Thermostats are manufactured for different coolant temperatures, depending on
engine use and climate conditions. They generally come in ratings from cold (140 P)
to hot (240 P).
Coolant loops of older automobiles operated at atmospheric pressure using
mostly water. This limited overall coolant temperatures to about 180oP, allowing for
a safety margin to avoid boiling. In order to increase engine operating temperature
for better efficiency, it was necessary to increase coolant temperature. This was done
by pressurizing the coolant loop and adding ethylene glycol to the water. The ethylene glycol raised the boiling temperature of the fluid as shown in Table 1O-l.
Pressurizing the system further raises the boiling temperature of the fluid regardless
HeatTransfer in Engines
Chap. 10
of the concentration of ethylene glycol. Normal coolant system pressures are about
200 kPa absolute.
It is desirable for the coolant to remain mostly liquid throughout the flow loop.
If boiling occurs, a small mass of liquid becomes a large volume of vapor, and
steady-state mass flow becomes almost impossible to sustain. By using ethylene
glycol in a pressurized system, high temperatures can be achieved without largescale boiling. Localized boiling in small hot spots does occur within the engine water
jacket. This is good. The very hottest spots within the engine (either momentary or
almost steady state) require the greatest heat removal and cooling. The phase
change that is experienced when boiling occurs at these local hot spots absorbs a
large amount of energy and supplies the necessary large cooling at these spots. The
circulating convection flow carries the resulting vapor bubbles away from the hot
spots back into the main stream of the coolant. Here they condense back into liquid
due to the cooler fluid temperature, and bulk flow is not interrupted.
As hot engine coolant leaves the engine block, it can be used to heat the passenger compartment of an automobile, when desired. This is done by routing a
portion of the coolant flow through an auxiliary system that supplies the hot side of a
smallliquid-to-air heat exchanger. Outside or recirculated air is heated as it passes
through the other half of the heat exchanger and is ducted into the passenger
compartment and/or onto the cold windows for defrosting. Various manual and automatic controls determine the flow rates of the air and coolant to supply the desired
warming l'esults.
The oil used to lubricate an engine in operation also helps to cool the engine.
Because of its location, a piston gets very little cooling from the coolant in the water
jacket or the external finned surface of an engine. To help cool the piston face, one
of the hottest surfaces in the engine, the back surface of the piston crown, is subjected to a flow of oil. This is done by spraying the oil in pressurized systems or by
splash in non-pressurized systems. The crankcase of many engines also serves as the
Sec. 10-10
Adiabatic Engines
oil reservoir, and the movement of the crankshaft and connecting rods splash oil
over all exposed surfaces. The oil acts as a coolant on the back face of the piston
crown as it absorbs energy and then runs back into the larger reservoir. Here it
mixes with the cooler oil and dissipates this energy into the other engine parts. This
splash oil cooling of the piston is very important in small air-cooled engines as well
as in automobile engines.
Other components are also cooled by oil circulation, either by splash or by
pressurized flow from the oil pump. Oil passages through internal components like
the camshaft and connecting rods offer the only major cooling these parts are subjected to. As the oil cools the various components, it absorbs energy and its
temperature rises. This energy is then dissipated to the rest of the engine by circulation and eventually gets absorbed in the engine coolant flow.
Some high-performance engines have an oil cooler in their lubricant circulation system. The energy absorbed by the oil as it cools the engine components is
dissipated in the oil cooler, which is a heat exchanger cooled by either engine
coolant flow or external air flow.
A small increase in brake power output can be gained by decreasing the heat losses
from an engine cylinder. About 30% of available energy is converted to useful work
(thermal efficiency), and this is done near TDC during combustion and the following expansion stroke, which encompasses about one-fourth of the total engine cycle.
On the other hand, heat transfer occurs over the entire 720° of the cycle. Therefore
only about one-fourth of the saved energy is available when output work is being
generated, and only about 30% of this is utilized. If a 10% decrease of heat loss
energy were accomplished over the cycle (a major accomplishment), only a fraction
of this would appear as added crankshaft output:
% Power Gained
= (10%/4) (0.30) = 0.75%
Most of the reduced heat loss energy ends up in the enthalpy of the exhaust. There
would also be a higher steady-state temperature of internal engine components.
In recent years, so-called adiabatic engines have appeared on the market.
They are not truly adiabatic (no heat losses) but do have greatly reduced heat loss
from the combustion chambers. They usually have no coolant jacket or finned
surfaces, and the only heat losses are from natural convection off the exterior surface. This results in much hotter engine components and some gain in brake
power output.
Advances in material technology allow for engine components to operate at
much higher temperatures without mechanical or thermal failure. This is because of
better heat treating and alloying of metals and advancements in ceramics and composites. The development of flexible ceramic materials which could withstand the
mechanical and thermal shocks that occured within an engine was a major break-
Heat Transfer in Engines
Chap. 10
through in the 1980s. These materials are now commonly found in modern engines,
especially at the highest temperature spots, such as piston face and exhaust port. A
common material found in adiabatic engines is silicon nitride (ShN4)' Because they
have no cooling system (water pump, water jacket, finned surfaces, etc.), adiabatic
engines can be made smaller and lighter than conventional engines. Vehicles can be
made more aerodynamic with a lower drag coefficient because there is no radiator.
This also gives greater flexibility in engine location and positioning.
All engine components of an adiabatic engine, including the cylinder walls,
operate at higher temperatures. These heat the incoming air mixture quicker than in
a conventional engine. This reduces the volumetric efficiency of the engine, which, in
turn, deletes some of the brake power increase gained from less heat loss. The higher
cylinder temperature during the compression stroke also raises the pressure and
reduces the net work output of the cycle by increasing the compression work input.
Adiabatic engines are all compression ignition. They cannot be used as spark
ignition engines, because the hot cylinder walls would heat the air-fuel mixture too
quickly and knock would be a major problem. Another problem created by the hot
cylinder walls, which are on the order of 800 K, is thermal breakdown of the lubricating oil. Better oils have been developed that can tol~rate the conditions in
present-day engines, but lubrication technology will need
continue to advance to
keep up with increasing engine demands. One solution that is being considered and
developed is the use of solid lubricants.
A number of different methods of cooling an engine are being tested and developed.
These include engines with dual water jackets operating at two different coolant
temperatures. A higher thermal efficiency can be obtained by the flexibility this
allows in controlling engine temperatures. The coolant around the engine block is
operated hotter, which reduces oil viscosity and lowers friction between pistons and
cylinder walls. Coolant around the engine head is kept cooler to reduce knocking
and allow for a higher compression ratio. A variation of this is a cooling system that
uses both a liquid coolant and a gaseous coolant in a dual-flow water jacket. Various
other cooling systems take advantage of the large heat transfer that occurs during a
phase change by operating as a two-phase flow at saturation conditions.
At least one company is working to reduce cylinder size and weight on small
engines by building them with neither cooling fins nor a water jacket. The lubricating oil is used to cool the cylinders by piping it through circumferential passages
built into the cylinder walls. Not only has this provided adequate cooling in test
engines, but it also resulted in a more uniform temperature distribution. An oil
cooler system would be required with this type of engine.
Some General Motors automobiles offer a safety feature on their engines in
case of a leak in the coolant system. The automobile is capable of safely driving a
long distance at moderate speed with no coolant in the cooling system. This is possi-
Sec. 10-12
Thermal Storage
ble by firing only four of the eight cylinders at any given time. The four cylinders
that do not get fuel, and do not fire, continue to pump air, which cools the engine
enough to keep it from overheating. Each set of four cylinders cycles between firing
for a period of time and pumping cooling air at other times.
Some vehicles are equipped with a thermal battery that can be used to preheat an
engine and automobile. A thermal battery takes waste heat from the engine coolant
during operation and stores about 500 to 1000 W-hr (1800-3600 kJ) for as long as
three days or more. Various methods to do this have been tried and used. The most
common system stores energy by use of a liquid-solid phase change occurring in a
water-salt crystal mixture. The stored energy can then be used in cold-weather starting to preheat the engine, preheat the catalytic converter, and/or heat the passenger
compartment and defrost the car windows. Preheating can commence within a few
A number of different systems and materials have been tried with various success. One early system uses about 10 kg of Ba(OH)z8HzO as the base material. This
has a l~tent heat (solid to liquid) of 89 W-hr/kg and a melting point of 78°C. The
salt-water mixture of this system is contained within hollow fins fastened on the
interior of a cylindrical flow chamber through which engine coolant flows. The exterior wall of the cylinder is insulated with super-high vacuum insulation that restricts
heat losses to three watts or less when the surrounding temperature is at -20°C [79].
When the engine is running under normal conditions, hot coolant is ducted
through the thermal battery and liquifies the salt-water mixture. This is done with
energy that would otherwise be rejected in the automobile radiator, so there is no
operating cost for the system. When the engine is turned off and coolant flow stops,
the liquid-salt solution will very slowly change phase to solid as it cools. This phase
change will take about three days because of the super-insulated wall of the container. As the salt solution changes phase, the temperature in the container remains
at 78°C. To later recover the energy for use in preheating, an electric pump circulates
the now cold coolant through the thermal battery, where it initiates a liquid-back-tosolid phase change in the salt-water mixture. When this occurs, the latent heat is
absorbed by the coolant, which leaves the battery at a temperature near 78°C. The
coolant can then be ducted to the engine and/or the catalytic converter for preheating
or to heat the passenger compartment. One or all of these are possible with proper
piping and controls.
A preheated engine starts quicker with less wear and wasted fuel. The warmed
cylinder walls and intake manifold promote better fuel evaporation, and combustion starts quicker. Also, the overrich intake mixture used to start a cold engine can
be lessened, saving fuel and causing less emissions. The engine lubricating oil also
gets preheated, which greatly reduces its viscosity. This allows for faster engine
turnover with the starting motor and quicker engine starting. This also allows for
Heat Transfer in Engines
Chap. 10
quicker and better early oil distribution, which reduces engine wear. Preheating an
alcohol-fueled engine is especially important. Because of its high latent heat, it is
difficult to evaporate enough alcohol to get a cold engine started. This is one of the
serious disadvantages of alcohol fuel, and engine preheating reduces the problem.
Chapter 9 explained how a major percent of emissions occurs when a cold
engine is started and before the catalytic converter reaches operating temperature.
Preheating the catalytic converter is, therefore, one very effective way of reducing
emissions. This can be done to a limited extent with a thermal battery.
Another way the stored energy of the thermal battery can be used is to pipe
the heated coolant through the heat exchanger of the passenger compartment
heater system. The heater can then immediately be turned on, with the air flow
directed into the passenger compartment and/or onto the windows for deicing.
For the first 10 seconds of operation, a thermal battery can supply 50-100 kW.
The system can be started when the ignition key is inserted or even when the car
door is opened. Effective preheating occurs within 20-30 seconds. This compares to
several minutes for effective heating of the engine, catalytic converter, and passenger compartment on non-preheated automobiles.
Various systems supply different percentages of the stored energy and in different sequences to the various uses. Some systems have greater flexibility and
changeability than others.
Even if all stored energy is delivered to the passenger compartment, the
engine will warm up quicker. This is because no engine heat will be diverted to the
cabin h~ater system. This may be important in large trucks as laws are being considered in some areas that require driver compartment heating before the driver is
allowed to get into the vehicle. When the thermal battery is being recharged after
the engine has heated up, there is no loss of cabin heater efficiency, the engine supplying more than enough energy for both purposes.
Most thermal battery systems have a mass of about 10 kg and can supply
500-1000 W-hr as their temperature drops from 78°C to 50°C. Total energy depletion
will normally take 20-30 minutes, depending on the engine and surrounding temperatures. The battery can be located either in the engine compartment or somewhere
else in the automobile, like the trunk. Mounting in the engine compartment results in
the least piping and greatest efficiency, but space limitations may not allow this.
The greatest benefit from thermal batteries will probably be in those automobiles that are used for city driving. Many city trips are short enough that the catalytic
converter never reaches operating temperature, resulting in high exhaust emissions.
Reducing startup emissions in densely populated areas is most important because
of the large number of automobiles and other polluting systems, as well as the large
number of people affected. Emissions from limited-range dual-powered automobiles that are being developed for city commuting will be greatly reduced with
thermal storage. These automobiles, which are propelled by an electric motor most
of the time and only use their small IC engine when extra power or range is needed,
operate their engines in an on-off mode. The engine is started only when needed
and therefore operates most often only for short periods of time after startup, a
Chap. 10
highly polluting method. With a thermal battery, energy can be stored while the
engine operates and then used to preheat the engine before the next startup,
Although there is no direct running cost in charging a thermal battery, there
will be a very slight cost in a higher fuel consumption due to the added mass of the
vehicle contributed by the battery. A 10-kg battery is only 1% of the mass in a
lOOO-kgautomobile. This, however, will cause a very slight steady-state increase in
fuel consumption even on long-distance travel, which gets no benefit from the battery.
Thermal batteries are designed to last the lifetime of the automobile.
Combustion temperatures in the cylinders of IC engines can reach values of 2700 K
and higher. Without adequate cooling, temperatures of this magnitude would quickly
destroy engine components and lubricants. If cylinder walls are allowed to exceed
temperatures above 200°C, material failures would occur and most lubricating oils
would break down. To keep the cylinders from overheating, they are surrounded
with a water jacket on liquid-cooled engines or a finned surface on air-cooled engines.
On the other hand, to obtain maximum efficiency from an engine, it is desirable to
operatltit as hot as possible. With improvements in materials and lubrication technology, modern engines can operate much hotter than engines of a few years ago.
Heat removed from engine cylinders is eventually rejected to the surroundings.
Unfortunately, by keeping the engine from overheating with heat transfer to the surroundings, a large percent of the energy generated within the engine is wasted, and
the brake thermal efficiency of most engines is on the order of 30-40%.
Because of the low profile of a modern automobile, cooling air flow is much
more restricted and greater heat transfer efficiency is necessary.
Innovative cooling systems are being developed, but at present most automobile engines are liquid cooled using a water-ethylene glycol solution. Most small
engines are. air cooled because of the requirements of weight, cost, and simplicity.
10-1. An in-line, six-cylinder, 6.6-liter, four-stroke cycle SI engine with multipoint port fuel
injection operates at 3000 RPM, with a volumetric efficiency of T}v = 89%. The intake
manifold runners can be approximated as round pipes with an inside diameter of
4.0 em. Inlet temperature to the manifold is 27°e.
Calculate: (a) Average velocity and mass flow rate of air to each cylinder, using inlet
temperature to evaluate properties. [m/sec, kg/see]
(b) Reynolds number in the runner to cylinder #1, which is 40 em long (use
standard interior pipe flow equations).
HeatTransfer in Engines
Chap. 10
(c) Temperature
of the air entering cylinder #1 if the runner wall temperature is constant at 67°C. [0C]
(d) Wall temperature needed for the runner to cylinder #3, such that the
cylinder air inlet temperature is the same as that in cylinder #1. Runner
length for cylinder #3 is 15 cm. [0C]
10-2. The engine in Problem 10-1 is converted to throttle body fuel injection with the fuel
injected at the inlet end of the manifold. Forty percent of the fuel evaporates in the
intake manifold runners, which cools the air by evaporative cooling. Wall temperatures remain the same.
Calculate: (a) Temperature of the air entering cylinder #1 if the fuel is stoichiometric
gasoline. [0C]
(b) Temperature of the air entering cylinder #1 if the fuel is stoichiometric
ethanol. [0C]
10-3. The engine in Problem 1O-2b has bore and stroke related by S = 0.90 B. Using
inlet conditions to evaluate properties, calculate the Reynolds number as defined by
Eq. (10-7).
10-4. The engine in Problem 10-3 has an exhaust pipe between the engine and catalytic
converter that can be approximated as a round pipe, 1.5 m long and 6.5 cm inside
diameter. Exhaust temperature leaving the engine is 477°C, and the average wall
temperature of the exhaust pipe is 227°C. Calculate the exhaust temperature entering
the catalytic converter. [0C]
10-5. An automobile cruises at 55 mph using a brake power of 20 kW. The engine, which is
represemed by Fig. 10-1, runs at a speed of 2000 RPM.
Approximate: (a) Power lost in the exhaust flow. [kW]
(b) Power lost to friction. [kW]
(c) Power dissipated in the coolant system. [kW]
10-6. An engine represented by Fig. 10-1 has a coolant system with a flow rate of 25 gal/min
and a thermostat that controls coolant flow temperature into the engine at 220°F. The
engine produces 30 bhp at 2500 RPM as the automobile travels at 30 MPH. Frontal
area of the radiator is 4.5 ftz, and a fan increases air flow velocity through the radiator
by a factor of 1.1.
Calculate: (a) Coolant temperature as it exits the engine. [OF]
(b) Air temperature leaving the radiator if the ambient temperature is
75°P' [OF]
10-7. A certain automobile model is offered with two engine options. The two engines are
identical V8s with different displacements; one is 320 in. 3 and the other is 290 in. 3. The
engines are run at identical speeds, temperatures, and operating conditions.
Calculate: (a) Rough approximation of what percent greater (or less) will be the indicated thermal efficiency of the larger engine versus the smaller. [%]
(b) Approximate percent greater (or less) will be the total heat transfer to
the coolant fluid of the larger engine versus the smaller. [%]
10-8. A service station attendant mixes a water-antifreeze solution so that the mixture will
have a freezing point of - 30°C. The antifreeze used is ethylene glycol, but by mistake
the attendant uses a hydrometer calibrated for propylene glycol. Calculate the actual
freezing temperature of the mixture. [0C]
Chap. 10
10-9. A thermal storage battery consists of 10 kg of a salt solution that changes phase at
80°C and has the following properties:
solid to liquid latent heat = 80 W-hr/kg
specific heat as liquid = 900 J/kg-K
specific heat as solid
350 J/kg-K
The battery container is super-insulated with a heat loss rate of 3 W (assume constant).
Engine coolant flows through the battery at a rate of 0.09 kg/sec, and has a temperature
of HO°C when the engine is running. Coolant can be approximated as water.
Calculate: (a) How long it takes for the battery solution to reach 80°C after the
engine is turned off. [hr]
(b) How long the battery solution remains at 80°C as it changes phase. [hr]
(c) How long until the battery cools to an ambient temperature of 10 e.
(d) How long the battery can supply coolant at 80°C when the engine is
started at a temperature of 20°e. Assume the battery solution starts as
all liquid at 80°C, and the engine coolant enters at 20°C and leaves at
A large four-stroke cycle stationary V12 diesel engine is to be used as part of a cogeneration system by using the exhaust energy to generate steam. The engine, which has
a 14.2-cm bore and 24.5-cm stroke, runs at 980 RPM with a volumetric efficiency
iJv = 96%. Air-fuel ratio is AF = 21:1. Steam is generated by running the exhaust
through one side of a gas-steam heat exchanger.
Calculate: (a) Energy made available to generate steam if the exhaust temperature
decreases from 577°C to 227°C as it passes through the heat exchanger.
(b) Saturated steam vapor that can be generated if steam enters the heat
exchanger as saturated liquid at 101 kPa. The heat exchanger efficiency
is 98% and, for water at 101 kPa, hfg = 2257 kJ/kg. [kg/hr]
10-n. During combustion, there is a momentary heat flux through the wall of the combustion chamber at a certain spot equal to 67,000 BTU/hr-ft2. Gas temperature in the
cylinder at this time is 3800oR, and the convection heat transfer coefficient within the
cylinder is 22 BTU/hr-ft2-°R. Coolant temperature is 185°F. Thermal conductivity of
the OA-inch-thick cast-iron cylinder wall is 34 BTU/hr-ft-°R.
Calculate: (a) Inside surface temperature of the cylinder wall. [OF]
(b) Surface temperature on the coolant side of the cylinder wall. [OF]
(c) Convection heat transfer coefficient on the coolant side of the cylinder
wall. [BTU/hr-ft2-OR]
Two engines have cylinders which are geometrically the same in size and shape. The
cylinders of engine A are surrounded with a normal water jacket filled with a waterethylene glycol solution. The cylinders of engine B are insulated, making this an
adiabatic engine. Other than temperatures, the engines are operated with the same
steady-state conditions (as much as possible). (a) Which engine has higher volumetric
efficiency? Why? (b) Which engine has higher thermal efficiency? Why? (c) Which
engine has hotter exhaust? Why? (d) Which engine would be more difficult to lubricate? Why? (e) Which engine would be a better SI engine? Why?
Heat Transfer in Engines
Chap. 10
10-ID. Design a thermal storage system for an automobile. The system is to be used to preheat the oil and the catalytic converter, and to warm the passenger compartment.
Determine the size and materials of a thermal battery. Determine flow rates versus
time, and draw a flow diagram schematic. Explain the sequence of events when the
automobile is started, using approximate energy flows and temperatures.
10-2D. Design an engine cooling system that uses two separate water jackets. Give the fluids
used, flow rates, temperatures, and pressures. Show the flow diagram and pumps on a
schematic drawing of the engine.
This chapter examines the friction that occurs in an engine and the lubrication
needed to minimize this friction. Friction refers to the forces acting between
mechanical components due to their relative motion and to the forces on and by fluids when they move· through the engine. A percentage of the power generated
within the engine cylinders is lost to friction, with a reduction in the resulting brake
power obtained off the crankshaft. Accessories that are run off the engine also
reduce crankshaft output and are often classified as part of the engine friction load.
When two solid surfaces are in contact in an engine, they will touch each other at
the roughness high spots of the surfaces, as shown magnified in Fig. 11-1. The
smoother the surfaces are machined (on a macroscopic level), the lower will be the
surface high points (microscopic) and the less will be the average distance separating them. If one surface is moved relative to the other, the high points will come
into contact and will resist motion (friction) (see Fig. 11-1a). Points of contact will
become hot, sometimes to the point of trying to weld together. To greatly reduce
resistance of surface-to-surface motion, lubricating oil is added to the space between
the surfaces. Lubricating oil adheres to the solid surfaces, and when one surface
Figure 11·1 Motion between engine components, highly magnified to show surface
roughness. (a) Dry or non-lubricated surface showing friction caused by high spots.
(b) Lubricated surface showing reduction
of friction by hydraulic floating.
moves relative to the other, oil is dragged along with the surface. The oil holds the
surfaces apart and one surface hydraulically floats on the other surface. The only
resistance to relative motion is the shearing of fluid layers between the surfaces,
which is orders of magnitude less than that of dry surface motion. Three important
characteristics are needed in a lubricating fluid:
1. It must adhere to the solid surfaces.
2. It must resist being squeezed out from between the surfaces, even under the
extreme forces experienced in an engine between some components.
3. It should not require excessive force to shear adjacent liquid layers. The property that determines this is called viscosity and is addressed later in the
Bearings offer a unique lubrication problem because one surface (race) surrounds the other surface (shaft). When an engine is not in operation, gravity pulls
the shaft in any bearing (crankshaft, connecting rod, etc.) down and squeezes out
the oil film between the two surfaces (Fig. 11-2a). In operation, the combination of
Sec. 11-2
Engine Friction
walls at TDC and BDC, and in heavy loaded bearings of the crankshaft. Periodic
metal-to-metal contact occurs when heavy loaded surfaces move at low speeds and/or
undergo sudden acceleration and direction changes. When this happens, the lubrication is squeezed out and there is a momentary lack of hydraulic floating. Places where
this happens include bearings of the crankshaft and connecting rods, the piston
ring-cylinder wall interface at TDC and BDC, and in most components at startup.
The second term on the right side of Eq. (11-12) is proportional to engine
speed and relates to the hydraulic shear that occurs between many lubricated engine
components. Shear force per unit surface area is given as:
The magnitude of friction mean effective pressure (or friction power, or friction work) is on the order of 10% of net indicated mean effective pressure at WOT
(or net Wi' or net Wi)' This increases to 100% at idle, when no brake power is taken
off the crankshaft. A turbocharged engine will generally have a lower percent friction loss. This is due to the greater brake output realized, while absolute friction
remains about the same. Most power lost to friction ends up heating the engine oil
and coolant. Total engine friction can readily be determined from Eq. (11-1) by
measuring indicated power and brake power. Indicated power is found by integrating the pressure-volume areas of a cycle from an indicator diagram generated from
pressure sensors in the combustion chamber. Brake power is directly measured by
connecting the crankshaft output to a dynamometer.
Friction and Lubrication
Chap. 11
It is much more difficult and less accurate to divide total friction into parts to
determine the percentage of the total contributed by various engine components.
One of the best ways to do this is to motor the engine (i.e., drive an unfired engine
with an external electric motor connected to the crankshaft). Many electric
dynamometers are capable of doing this, making them an attractive type of
dynamometer. Engine power output is measured with an electric dynamometer by
running a generator off the engine crankshaft and measuring the electric load
imposed on the generator. The generator is designed as a dual system, which also
allows it to be used as an electric motor that can drive the connected IC engine.
When an engine is motored, the ignition is turned off and no combustion takes
place. Engine rotation is provided and controlled by the connected electric motor,
with the resulting cycle much like that shown in Fig. 11-3. Unlike a fired engine, both
the compression-expansion loop and the exhaust-intake loop of this cycle represent
negative work on the cylinder gases. This work is provided through the crankshaft
from the electric motor.
Thus, by measuring the electric power input to the motor driving the engine, a
good approximation is obtained of the friction power lost in normal engine
It is imperative that all conditions of the motored engine be kept as close as
possible to the conditions of a fired engine, especially temperature. Temperature
greatly affects the viscosity of the engine fluids (lubricating oil, coolant, and air) and
the thermal expansion and contraction of the various components, both of which
have a major influence on engine friction. The oil must be circulated at the same rate
and temperature (viscosity) as in a fired engine. Air and engine coolant flow should
be kept as consistent as possible (i.e., with the same throttle setting and pump rates).
Friction and Lubrication
Chap. 11
The normal way of measuring friction in an engine by the motoring method is
to first run the engine in a normal fired mode. When the engine has reached a
steady-state condition with all temperatures, it is turned off and immediately tested
using the electric motor. For a very brief period of time, the engine temperatures
will be almost the same as with a fired engine. This will quickly change because no
combustion is occurring, and the engine will start to cool off. There will be some differences immediately. Even with all other temperatures being correct, the exhaust
flow will be quite different. Hot combustion products that make up the exhaust flow
in a fired engine are approximated with much cooler air in a motored engine. At
best, motored engine test results give a close approximation of engine friction.
As friction in an engine is being tested by the motoring method, engine components can be removed to determine how much they individually contribute to
total friction. For instance, the engine can be motored with and without the valves
connected. The difference in power required gives an approximation to the friction
of the valves. A problem with this is the difficulty of keeping engine temperatures
near normal operating temperatures when the engine is partially dismantled. Figure
11-4 gives typical results for the percent of friction contributed by various engine
The components that contribute a major part of total friction are the pistons
and piston rings. Figure 11-5 shows the friction forces on a typical piston assembly as
it transverses one cycle. The forces are greatest near TDC and BDC, where the piston
momentarily stops. When there is no relative motion between the piston and cylinder
walls, th"'eoil film between these surfaces gets squeezed out by the high forces
Sec. 11-2
Engine Friction
between them. When the piston then starts a new stroke, there is very little lubricant
between surfaces, and some metal-to-metal contact occurs, with resulting high friction forces. As the piston gains speed over the lubricated cylinder wall surface, it
drags a film of oil with it and hydraulic floating occurs. This is the most effective form
of lubrication between moving surfaces, and friction forces are minimized.
It can be seen in Fig. 11-5 that there is even a small measurable friction force at
TDC and BDC where the piston velocity is considered zero. This shows that there
are deflections in the connecting components and stretching or compression of the
piston occurring at these points due to mass inertia and high acceleration rates. This
is the reason the maximum allowable average piston speed is about 5 to 15 mlsec for
all engines regardless of size. With speeds higher than these, there would be a dan-
Friction and Lubrication
Chap. 11
ger of structural failure, with too small of a safety margin for the materials in the
piston assemblies of most engines (i.e., iron and aluminum).
The magnitude of the friction forces is about the same for the intake, compression, and exhaust strokes. It is much higher during the expansion stroke,
reflecting the higher pressure and forces that occur at that time.
The piston assemblies of most engines contribute about half of the total friction and can contribute as much as 75% at light loads. The piston rings alone
contribute about 20% of total friction. Most pistons have two compression rings and
one or two oil rings. The second compression ring reduces the pressure differential
that occurs across the first compression ring during combustion and power stroke.
To reduce friction, the trend has been to make compression rings thinner, some
engines having rings as thin as 1 mm. Oil rings distribute and remove an oil film on
the cylinder walls and sustain no pressure differential. All rings are spring loaded
against the walls, which results in high friction forces.
Adding an additional compression ring can add about 10 kPa to fmep of an
engine. Increasing the compression ratio by one will increase fmep by about 10 kPa.
Increasing the compression ratio also requires heavier bearings on the crankshaft
and connecting rods and may require an additional piston compression ring.
The valve train of an engine contributes about 25% of total friction, crankshaft
bearings about 10% of total, and engine-driven accessories about 15% of total.
In Fig. 11-6, motoring mean effective pressure (mmep) is plotted as a function
of average piston speed. Piston speed of the ordinate (X axis) can be replaced with
engine speed without changing the shape of the curves. When data are generated to
make curves like these, a Reynolds number is defined in terms of an average piston
speed such that
Sec. 11-2
Engine Friction
Data from different-size engines can be compared at the same piston speed
and temperature if the kinematic viscosity of the lubricating oil is adjusted to be proportional to the cylinder bore B,-i.e., if B/11 is kept constant. When this is done,
the ordinate variable of piston speed can be replaced with the Reynolds number,
resulting in the same curves. This is limited by how much the kinematic viscosity of
an oil can be adjusted without affecting the lubrication of the engine.
A five-cylinder, in-line engine has an 8.l5-cm bore, a 7.82-cm stroke, and a connecting
rod length of 15.4 cm. Each piston has a skirt length of 6.5 cm and a mass of 0.32 kg. At
a certain engine speed and crank angle, the instantaneous piston speed is 8.25 mIsec,
and clearance between the piston and cylinder wall is 0.004 mm. SAE lOW-30 motor oil
is used in the engine, and at the temperature of the piston-cylinder interface the
dynamic viscosity of the oil is 0.006 N-sec/m 2. Calculate the friction force on one piston
at this condition.
There are many engine and automobile accessories powered off the crankshaft
which reduce the brake power output of the engine. Some of these are continuous
(fuel pump, oil pump, supercharger, engine fan), and some operate only part of the
time (power brake pump, air conditioner compressor, emission control air pump,
power steering pump). When an engine is motored to measure friction, it has been
found that three essential accessories (water pump, fuel pump, and alternator) can
account for as much as 20% of total friction power. The fuel pump and water pump
on many older engines were driven mechanically off the crankshaft. Most modern
engines have electric fuel pumps and some have electric water pumps. The power to
drive these comes from the alternator, which in turn is driven off the engine crankshaft. Most engines have a cooling fan that draws external air through the radiator
and blows it through the engine compartment. Many are powered by direct mechanicallinkage to the crankshaft. As engine speed goes up, fan speed also goes up.
Power needed to drive an air fan goes up as fan speed cubed, so power requirements
can get high at higher engine speeds. Higher engine speeds often mean higher automobile velocity, which is when fan cooling is not necessary. At high automobile
velocity, enough air is forced through the radiator and engine compartment to ade-
Friction and Lubrication
Chap. 11
quately cool the engine just by the forward motion of the car. A fan is not needed.
To save power, some fans are driven only when their cooling effect is needed. This
can be done with mechanical or hydraulic linkage that disconnects at higher speeds
or at cooler temperatures (i.e., with a centrifugal or thermal clutch). Many fans are
electrically driven and can be turned on with a thermal switch only when needed.
Automobiles with air conditioners often require a larger fan due to the added cooling load of the AC condenser.
Figure 11-7 Force balance on a piston.
Side thrust force is a reaction to the connecting rod force and is in the plane of the
connecting rod. When the piston passes
BDC, the side thrust force switches to the
other side of the cylinder. The connecting
rod force and the resulting side thrust
force are greatest during the power stroke,
and this is called the major thrust side.
Lesser forces during the exhaust stroke
Occur on the minor thrust side. The friction force is in the opposite direction to
the piston motion and changes direction
after TDC and BDC.
This side thrust force is the Y direction reaction to the force in the connecting
rod and lies in the plane of the connecting rod. From Eq. (11-27) it can be seen that
Ft is not constant force but changes with piston position (angle </», acceleration
(dUp/dt), pressure (P), and friction force (Ft), all of which vary during the engine
cycle. During the power and intake strokes, the side thrust force will be on one side
of the cylinder (the left side for an engine rotating as shown in Fig. 11-7) in the plane
of the connecting rod. This is called the major thrust side of the cylinder because of
the high pressure during the power stroke. This high pressure causes a strong reaction force in the connecting rod, which in turn causes a large side thrust reaction
force. During the exhaust and compression strokes, the connecting rod is on the
other side of the crankshaft and the resulting side thrust reaction force is on the
other side of the cylinder (the right side in Fig. 11-7). This is called the minor thrust
side due to the lower pressures and forces involved and is again in the plane of the
connecting rod. The side thrust forces on the piston are less in planes turned circumferentially away from the plane of the connecting rod, reaching a minimum in
the plane at a right angle to the connecting rod plane. There will still be a small force
reacting to the spring-loaded piston rings.
The side thrust force also varies with crank angular position as the piston
moves back and forth in the cylinder. Thus, there is continuous variation both in the
circumferential direction and along the length of the cylinder from TDC to BDC.
One result of this force variation is the variation in wear that occurs on the cylinder
walls. The greatest wear occurs in the plane of the connecting rod on the major
thrust side of the cylinder. Significant, but less, wear will occur on the minor thrust
side. This wear will also vary along the length of the cylinder on both sides. Additional wear to various degrees will occur in the other rotation planes and at various
distances along the length of the cylinder. As an engine ages, this wear can become
Friction and Lubrication
significant in some spots. Even if the cross section of an engine cylinder is perfectly
round when the engine is new, wear will erode this roundness with time [125].
To reduce friction, modern engines use pistons that have less mass and shorter
skirts. Less mass lowers the piston inertia and reduces the acceleration term in Eq.
(11-27). Shorter piston skirts reduce rubbing friction because of the smaller surface
contact area. However, shorter skirts require closer tolerances between the piston
and cylinder wall to keep the piston from cocking in the cylinder. Fewer and smaller
piston rings are common compared to earlier engines, but these also require closer
manufacturing tolerances. In some engines, the wrist pin is offset from center by 1 or
2 mm towards the minor thrust side of the piston. This reduces the side thrust force
and resulting wear on the major thrust side.
The philosophy of some manufacturers is to reduce friction by having a shorter
stroke. However, for a given displacement this requires a larger bore, which results
in greater heat losses due to the larger cylinder surface area. Greater flame travel
distance also increases knock problems. This is why most medium-sized engines
(automobile engines) are close to square, with B = S.
Figure 11-8 shows how the oil film thickness between the piston and cylinder
wall varies with speed during an engine cycle for one circumferential position of the
Figure 11-8 Thickness of oil film between
piston and cylinder walls as a function of
cycle position. Film thickness is minimum
when the piston stops at BDC and TDC
and oil gets squeezed out. When the piston
moves in the opposite direction, the oil film
is again dragged between the surfaces,
reaches a maximum thickness at maximum
piston speed, and again decreases with
decreasing piston speed. Adapted from [3].
(Jl17I = 10 -6 m)
There are three basic types of oil distribution systems used in engines: splash, pressurized, or a combination of these.
The crankcase is used as the oil sump (reservoir) in a splash system, and the
crankshaft rotating at high speed in the oil distributes it to the various moving parts
by splash; no oil pump is used. All components, including the valve train and
camshaft, must be open to the crankcase. Oil is splashed into the cylinders behind
the pistons and onto the back of the piston crowns, acting both as a lubricant and a
coolant. Many small four-stroke cycle engines (lawn mowers, golf carts, etc.) use
splash distribution of oil.
An e.pgine with a pressurized oil distribution system uses an oil pump to supply
lubrication to the moving parts through passages built into the components (Fig.
11-10). A typical automobile engine has oil passages built into the connecting rods,
valve stems, push rods, rocker arms, valve seats, engine block, and many other moving components. These make up a circulation network through which oil is
distributed by the oil pump. In addition, oil is sprayed under pressure onto the cylinder walls and onto the back of the piston crowns. Most automobiles actually use
dual distribution systems, relying on splash within the crankcase in addition to the
pressurized flow from the oil pump. Most large stationary engines also use this kind
of dual system. Most aircraft engines and a few automobile engines use a total pressurized system with the oil reservoir located separate from the crankcase. These are
often called dry sump systems (i.e., the crankcase sump is dry of excess oil). Aircraft
do not always fly level, and uncontrolled oil in the crankcase may not supply proper
lubrication or oil pump input when the plane banks or turns. A diaphragm controls
the oil level in the reservoir of a dry sump system, assuring a continuous flow into
the oil pump and throughout the engine.
Oil pumps can be electric or mechanically driven off the engine. Pressure at
the pump exit is typically about 300 to 400 kPa. If an oil pump is driven directly off
the engine, some means should be built into the system to keep the exit pressure
and flow rate from becoming excessive at high engine speeds.
A time of excess wear is at engine startup before the oil pump can distribute
proper lubrication. It takes a few engine cycles before the flow of oil is fully estab-
lished, and during this time, many parts are not properly lubricated. Adding to the
problem is the fact that often the oil is cold at engine startup. Cold oil has much
higher viscosity, which further delays proper circulation. A few engines have oil preheaters which electrically heat the oil before startup. Some engines have pre-oilers
that heat and circulate the oil before engine startup. An electric pump lubricates all
components by distributing oil throughout the engine.
It is recommended that turbocharged engines be allowed to idle for a few seconds before they are turned off. This is because of the very high speeds at which the
turbocharger operates. When the engine is turned off, oil circulation stops and lubricated surfaces begin to lose oil. Stopping the oil supply to a turbocharger operating
at high speed invites poor lubrication and high wear. To minimize this problem, the
engine and turbocharger should be allowed to return to low speed (idle) before the
lubrication supply is stopped.
Friction and Lubrication
Many small engines and some experimental two-stroke cycle automobile engines use
the crankcase as a compressor for the inlet air. Automobile engines which do this
generally have the crankcase divided into several compartments, with each cylinder
having its own separate compressor. These engines cannot use the crankcase as an oil
sump, and an alternate method must be used to lubricate the crankshaft and other
components in the crankcase. In these engines, oil is carried into the engine with the
inlet air in much the same way as the fuel. When the fuel is added to the inlet air, usually with a carburetor, oil particles as well as fuel particles are distributed into the
flow. The air flow then enters the crankcase, where it is compressed. Oil particles carried with the air lubricate the surfaces they come in contact with, first in the crankcase
and then in the intake runner and cylinder.
In some systems (model airplane engines, marine outboard motors, etc.), the
oil is premixed with the fuel in the fuel tank. In other engines (automobiles, some
golf carts, etc.), there is a separate oil reservoir that feeds a metered flow of oil into
the fuel supply line or directly into the inlet air flow. Fuel-to-oil ratio ranges from
30:1 to 400:1, depending on the engine. Some modern high-performance engines
have controls which regulate the fuel-oil ratio, depending on engine speed and load.
Under conditions of high oil input, oil sometimes condenses in the crankcase. Up to
30% of the oil is recirculated from the crankcase in some automobile engines. It is
desirable to get at least 3000 miles per liter of oil used. Most small lower cost engines
have a smgle average oil input setting. If too much oil is supplied, deposits form on
the combustion chamber walls and valves will stick (if there are valves). If too little
oil is supplied, excess wear will occur and the piston can freeze in the cylinder.
Engines that add oil to the inlet fuel obviously are designed to use up oil during
operation. This oil also contributes to HC emissions in the exhaust due to valve
overlap and poor combustion of the oil vapor in the cylinders. New oils that also
burn better as fuel are being developed for two-stroke cycle engines.
Some two-stroke cycle automobile engines and other medium- and large-size
engines use an external supercharger to compress inlet air. These engines use pressurized/splash lubrication systems similar to those on four-stroke cycle engines with
the crankcase also serving as the oil sump.
A four-cylinder, two-stroke cycle engine, with a 2.65-liter displacement and crankcase
compression, is running at 2400 RPM and an air-fuel ratio of 16.2:1. At this condition
the trapping efficiency is 72%, relative charge is 87%, and the exhaust residual from the
previous cycle in each cylinder is 7%. Oil is added to the intake air flow such that the
input fuel-to-oil ratio is 50:1.
1. rate of oil use
2. rate of unburned oil added to the exhaust flow
The oil used in an engine must serve as a lubricant, a coolant, and a vehicle for
removing impurities. It must be able to withstand high temperatures without breaking down and must have a long working life. The development trend in engines is
toward higher operating temperatures, higher speeds, closer tolerances, and smaller
oil sump capacity. All of these require improved oils compared to those used just a
few years ago. Certainly, the technology of the oil industry has to continue to
improve along with the technology growth of engines and fuel.
Early engines and other mechanical systems were often designed to use up the
lubricating oil as it was used, requiring a continuous input of fresh oil. The used oil
was either burned up in the combustion chamber or allowed to fall to the ground.
Just a couple of decades back, the tolerances between pistons and cylinder walls was
such that engines burned some oil that seeped past the pistons from the crankcase.
This required a periodic need to add oil and a frequent oil change due to blowby
contamination of the remaining oil. HC levels in the exhaust were high because of
the oil in the combustion chamber. A rule in the 1950s and 1960s was to have an oil
change in an automobile every 1000 miles.
Friction and Lubrication
Chap. 11
Modern engines run hotter, have closer tolerances which keep oil consumption down, and have smaller oil sumps due to space limitations. They generate more
power with smaller engines by running faster and with higher compression ratios.
This means higher forces and a greater need for good lubrication. At the same time,
many manufacturers now suggest changing the oil every 6000 miles. Not only must
the oil last longer under much more severe conditions, but new oil is not added
between oil changes. Engines of the past that consumed some oil required periodic
makeup oil to be added. This makeup oil mixed with the remaining used oil and
improved the overall lubrication properties within the engine.
The oils in modern engines must operate over an extreme temperature range.
They must lubricate properly from the starting temperature of a cold engine to
beyond the extreme steady-state temperatures that occur within the engine cylinders.
They must not oxidize on the combustion chamber walls or at other hot spots such as
the center crown of the piston or at the top piston ring. Oil should adhere to surfaces
so that they always lubricate and provide a protective covering against corrosion.
This is often called oiliness. Oil should have high film strength to assure no metal-tometal contact even under extreme loads. Oils should be non-toxic and non-explosive.
Lubricating oil must satisfy the following needs:
Sec. 11-6
Lubricating Oil
lubricant that will allow for maximum performance and life span of the engine.
These additives include:
1. Antifoam agents
These reduce the foaming that would result when the crankshaft and other
components rotate at high speed in the crankcase oil sump.
2. Oxidation inhibitors
Oxygen is trapped in the oil when foaming occurs, and this leads to possible
oxidation of engine components. One such additive is zinc dithiophosphate.
3. Pour-point depressant
4. Antirust agents
5. Detergents
These are made from organic salts and metallic salts. They help keep deposits
and impurities in suspension and stop reactions that form varnish and other
surface deposits. They help neutralize acid formed from sulfur in the fuel.
6. Antiwear agents
7. Friction reducers
8. Viscosity index improvers
Lubricating oils are generally rated using a viscosity scale established by the Society
of Automotive Engineering (SAE). Dynamic viscosity is defined from the equation
Ts =
Ts =
shear force per unit area
= dynamic viscosity
velocity gradient
The higher the viscosity value, the greater is the force needed to move adjacent surfaces or to pump oil through a passage. Viscosity is highly dependent on
temperature, increasing with decreasing temperature (Fig. 11-11). In the temperature range of engine operation, the dynamic viscosity of the oil can change by more
than an order of magnitude. Oil viscosity also changes with shear, duj dy, decreasing
with increasing shear. Shear rates within an engine range from very low values to
extremely high values in the bearings and between piston and cylinder walls. The
change of viscosity over these extremes can be several orders of magnitude. Common viscosity grades used in engines are:
SAE 10
SAE 20
SAE 30
Sec. 11-6
Lubricating Oil
SAE 40
SAE 45
SAE 50
The oils with lower numbers are less viscous and are used in cold-weather
operation. Those with higher numbers are more viscous and are used in modern
high-temperature, high-speed, close-tolerance engines.
If oil viscosity is too high, more work is required to pump it and to shear it
between moving parts. This results in greater friction work and reduced brake work
and power output. Fuel consumption can be increased by as much as 15%. Starting
a cold engine lubricated with high-viscosity oil is very difficult (e.g., an automobile at
-20°C or a lawn mower at 100e).
Multigrade oil was developed so that viscosity would be more constant over
the operating temperature range of an engine. When certain polymers are added to
an oil, the temperature dependency of the oil viscosity is reduced, as shown in Fig.
11-12. These oils have low-number viscosity values when they are cold and higher
numbers when they are hot. A value such as SAE lOW-30 means that the oil has
properties of 10 viscosity when it is cold (W = winter) and 30 viscosity when it is
hot. This gives a more constant viscosity over the operating temperature range (Fig.
11-12). This is extremely important when starting a cold engine. When the engine
and oil are cold, the viscosity must be low enough so that the engine can be started
without too much difficulty. The oil flows with less resistance and the engine gets
proper lubrication. It would be very difficult to start a cold engine with high-viscosity oil, because the oil would resist engine rotation and poor lubrication would result
because of the difficulty in pumping the oil. On the other hand, when the engine gets
up to operating temperature, it is desirable to have a higher viscosity oil. High
temperature reduces the viscosity, and oil with a low viscosity number would not
give adequate lubrication.
Some studies show that polymers added to modify viscosity do not lubricate as
well as the base hydrocarbon oils. At cold temperatures SAE 5 oil lubricates better
than SAE 5W-30, and at high temperatures SAE 30 oil lubricates better. However,
if SAE 30 oil is used, starting a cold engine will be very difficult, and poor lubrication and very high wear will result before the engine warms up.
Common oils available include:
SAE 5W-20
SAE 10W-40
SAE 5W-30
SAE lOW-50
SAE 5W-40
SAE 15W-40
SAE 5W-50
SAE 15W-50
SAE lOW-30
SAE 20W-50
Sec. 11-7
Oil Filters
Synthetic Oils
A number of synthetically made oils are available that give better performance than
those made from crude oil. They are better at reducing friction and engine wear,
have good detergency properties which keep the engine cleaner, offer less resistance
for moving parts, and require less pumping power for distribution. With good thermal properties, they provide better engine cooling and less variation in viscosity.
Because of this, they contribute to better cold-weather starting and can reduce fuel
consumption by as much as 15%. These oils cost several times as much as those
made from crude oil. However, they can be used longer in an engine, with 24,000
km (15,000 miles) being the oil change period suggested by most manufacturers.
Available on the market are various oil additives and special oils that can be
added in small quantities to standard oils in the engine. These claim, with some justification, to improve the viscous and wear resistance properties of normal oils. One
major improvement that some of them provide is that they stick to metal surfaces
and do not drain off when the engine is stopped, as most standard oils do. The surfaces are thus lubricated immediately when the engine is next started. With standard
oils it takes several engine rotations before proper lubrication occurs, a major source
of wear.
Solid lubricants, such as powdered graphite, have been developed and tested in
some engines. These are attractive for adiabatic engines and engines using ceramic
components, which generally operate at much higher temperatures. Solid lubricants
remain functional at high temperatures that would break down and destroy more
conventional oils. Distribution is a major difficulty when using solid lubricants.
Included in most pressurized oil systems is a filtration system to remove impurities
from the engine oil. One of the duties of engine oil is to clean the engine by carrying
contaminant impurities in suspension as it circulates. As the oil passes through filters
that are part of the flow passage system these impurities are removed, cleaning the
oil and allowing it to be used for a greater length of time. Contaminants get into an
engine in the incoming air or fuel or can be generated within the combustion chamber when other than ideal stoichiometric combustion occurs. Dust and other
impurities are carried by the incoming air. Some, but not all, of these are removed
by an air filter. Fuels have trace amounts of impurities like sulfur, which create contaminants during the combustion process. Even pure fuel components form some
contaminants, like solid carbon in some engines under some conditions. Many
engine impurities are carried away with the engine exhaust, but some get into the
interior of the engine, mainly in the blowby process. During blowby, fuel, air, and
combustion products are forced past the pistons into the crankcase, where they mix
with the engine oil. Some of the water vapor in the exhaust products condenses in
the crankcase, and the resulting liquid water adds to the contaminants. The gases of
Friction and Lubrication
Chap. 11
blowby pass through the crankcase and are routed back into the air intake. Ideally,
most of the contaminants are trapped in the oil, which then contains dust, carbon,
fuel particles, sulfur, water droplets, and many other impurities. If these were not
filtered out of the oil, they would be spread throughout the engine by the oil distribution system. Also, the oil would quickly become dirty and lose its lubricating
properties, resulting in greater engine wear.
Flow passages in a filter are not all the same size but usually exist in a normal
bell-shaped size distribution (Fig. 11-13). This means that most larger particles will
be filtered out as the oil passes through the filter, but a few as large as the largest
passages will get through.
The choice of filter pore size is a compromise. Better filtration will be obtained
with smaller filter pores, but this requires a much greater flow pressure to push the
oil through the filter. This also results in the filter becoming clogged quicker and
requiring earlier filter cartridge change. Some filter materials and/or material of too
small a pore size can even remove some additives from the oil. Filters are made from
cotton, paper, cellulose, and a number of different synthetic materials. Filters are
usually located just downstream from the oil pump exit.
As a filter is used, it slowly becomes saturated with trapped impurities. As
these impurities fill the filter pores, a greater pressure differential is needed to keep
the same flow rate. When this needed pressure differential gets too high, the oil
pump limit is reached and oil flow through the engine is slowed. The filter cartridge
should be replaced before this happens. Sometimes, when the pressure differential
across a filter gets high enough, the cartridge structure will collapse and a hole will
develop through the cartridge wall. Most of the oil pumped through the filter will
then follow the path of least resistance and flow through the hole. This short circuit
will reduce the pressure drop across the filter, but the oil does not get filtered.
There are several ways in which the oil circulation system can be filtered:
Sec. 11-8
Summary and Conclusions
1. Full-flow oil filtration. All oil flows through the filter. The filter pore size
must be fairly large to avoid extreme pressures in the resulting large flow rate. This
results in some larger impurities in the oil.
2. Bypass oil filtration. Only part of the oil leaving the pump flows through the
filter, the rest bypassing it without being filtered. This system allows the use of a
much finer filter, but only a percentage of the oil gets filtered during each circulation
3. Combination. Some systems use a combination of full-flow and bypass. All
the oil first flows through a filter with large pores and then some of it flows through
a second filter with small pores.
4. Shunt filtration. This is a system using a full-flow filter and a bypass valve.
All oil at first flows through the filter. As the filter cartridge dirties with age, the
pressure differential across it needed to keep the oil flowing increases. When this
pressure differential gets above a predetermined value, the bypass valve opens and
the oil flows around the filter. The filter cartridge must then be replaced before
filtering will again occur.
Brake power output from an engine is less than the power generated in the combustion chambers, due to engine friction. Two types of friction occur which result in
dissipation and loss of useful power. Mechanical friction between moving parts is a
major engine loss, piston motion in the cylinders being a large percentage of this.
Fluid friction occurs in the intake and exhaust systems, in flow through valves, and
because of motion within the cylinders. Operation of engine accessories, although
not friction in the normal sense, is often included as part of the engine friction load.
This is because the accessories are powered, directly or indirectly, off the engine
crankshaft and reduce final crankshaft output power.
To minimize friction and to reduce engine wear, lubrication systems are a
major required facet of any engine. Oil distribution can be by a pressurized system
supplied by a pump, as with automobile engines, and/or by splash distribution, as on
many small engines. In addition to lubricating, engine oil helps to cool the engine
and is a vehicle for removing engine contaminants.
Friction and Lubrication
Chap. 11
11-1. The connecting rod in Fig. 11-9 experiences a force of 1000 N in the position shown
during the power stroke of a four-cylinder, four-stroke cycle SI engine operating at
2000 RPM. Crankshaft offset equals 3.0 em and connecting rod length equals 9.10 em.
Calculate: (a) Side thrust force felt in the cylinder wall at this moment. [N]
(b) Distance the piston has traveled from TDC. [em]
(c) Engine displacement if S = 0.94 B. [L]
(d) Side thrust force felt in the cylinder wall when the piston is at TDC.
Why do cylinders in IC engines get out-oJ-round as the engine is operated for a long
period of time? Why is wear on the cylinder walls not the same along the length of the
cylinder? Theoretically, why is piston frictional force equal to zero at TDC and BDC?
In actuality, why is piston frictional force not equal to zero at TDC and BDC?
A six-cylinder IC engine has a 6.00-cm bore, a 5.78-cm stroke, and a connecting rod
length of 11.56 em. In the power stroke of the cycle for one cylinder at a crank position
of 90° aTDC, the pressure in the cylinder is 4500 kPa and the sliding friction force on
the piston is 0.85 kN. Piston acceleration at this point can be considered zero.
Calculate: (a) Force in the connecting rod at this point. [kN] Is it compressive or
(b) Side thrust force on the piston at this point. [kN] Is it on the major
thrust side or the minor thrust side?
(c) Side thrust force on the piston at this point if the wrist pin is offset
2 mm to reduce the side thrust force. (Assume rod force and friction
force are the same as above.) [kN]
A V6, two-stroke cycle SI automobile engine has a 3.1203-inch bore and 3.45-inch
stroke. The pistons have a height of 2.95 inches and diameter of 3.12 inches. At a certain point during the compression stroke, piston speed in one cylinder is 30.78 ft/sec.
The lubricating oil on the cylinder walls has a dynamic viscosity of 0.00OO42Ibf-sec/ft2.
Calculate the friction force on the piston under this condition. [lbf]
A four-cylinder, four-stroke cycle, 2.8-liter, opposed-cylinder SI engine has brake
mean effective pressure and mechanical efficiency as follows:
at 1000 RPM
= 828 kPa
= 90%
2000 RPM
= 828 kPa
= 88%
3000 RPM
= 646 kPa
= 82%
Calculate: (a) Brake power at 2000 RPM. [kW]
(b) Friction mean effective pressure at 2500 RPM. [kPa]
(c) Friction power lost at 2500 RPM. [kW]
11-6. A 110-in.3-displacement, six-cylinder SI automobile engine operates on a two-stroke
cycle with crankcase compression and throttle body fuel injection. With AF = 17.8
and the engine running at 1850 RPM, the automobile cruises at 65 mph and gets
21 miles per gallon of gasoline. Oil is added to the inlet air at a rate such that input
fuel-to-oil ratio is 40:1. Relative charge is 64% and the exhaust residual from the pre-
Chap. 11
Design Problems
vious cycle is 6%. Combustion efficiency
100% and the density of gasoline
Pg = 46.8 Ibm/ft3.
Calculate: (a) Rate of oil use. [gaI/hr]
(b) Trapping efficiency of the engine. [%]
(c) Rate of unburned oil added to the exhaust flow. [gaI/hr]
11-7. When a supercharger is installed on a four-stroke cycle SI engine with a compression
ratio Yc = 9.2:1, the indicated thermal efficiency at WOT is decreased by 6%. Mass of
air in the cylinders is increased by 22% when operating at the same speed of 2400
RPM. Engine mechanical efficiency stays the same, except that 4 % of the brake
crankshaft output is needed to run the supercharger.
Calculate: (a) Indicated thermal efficiency without a supercharger. [%]
(b) Indicated thermal efficiency with a supercharger. [%]
(c) Percent increase of indicated power when a supercharger is installed.
(d) Percent increase of brake power when a supercharger is installed. [%]
11-10. Design a two-stroke cycle SI engine with crankcase compression that uses a conventi~al
oil distribution system (i.e., a pressurized system with an oil pump and an oil
reservoir in the crankcase).
[1] ABTHOFF,J., H. SCHUSTER,H. LANGER,and G. LOOSE,"The Regenerable Trap Oxidizer-An Emission Control Technique for Diesel Engines," SAE paper 850015, 1985.
[2] ALKIDAS,A. C. and J. P. MYERS,"Transient Heat-Flux Measurements in the Combustion Chamber of a Spark Ignition Engine," Journal of Heat Transfer, AS ME
Trans., vol. 104, pp. 62-67, 1982.
and D. A. PANKA,"Prediction of Piston Ring-Cylinder Bore Oil Film Thickness in Two Particular Engines and
Correlation with Experimental Evidences," Piston Ring Scuffing, p. 107, London:
Mechanical Engineering Pub. Ltd., 1976.
[4] AMANN,C. A., "Control of the Homogeneous-Charge Passenger Car Engine-Defining the Problem," SAE paper 801440,1980.
[5] AMANN,C. A., "Power to Burn," Mechanical Engineering, ASME, vol. 112, no. 4, pp.
46-54, 1990.
Comprehensive Model for 2-D and 3-D Engine Simulations," SAE paper 850554,
Computer Program for Two- and Three-Dimensional Fluid Flows with Chemical
Reactions and Fuel Sprays", report LA-10245-MS, Los Alamos National Laboratory,
[8] "A Stirling Briefing," NASA, Cleveland: Lewis Research Center, March 1987.
[29] CUMMINS,C. L. Jr, Internal Fire, SAE International Inc., 1989.
[30] DEMMLER,A, "Smog-Treating Catalyst," Automotive Engineering, vol. 103, no. 8, p.
32, 1995, SAE International.
[31] Diesel and Gas Turbine Worldwide, a monthly publication by Diesel and Gas Turbine
[32] DINSDALE,S., A ROUGHTON,and N. COLLINGS,"Length Scale and Turbulence Intensity Measurements in a Motored Internal Combustion Engine," SAE paper 880380,
On-Line Acquisition and Processing
System for Instantaneous Engine Data-Applications,"
SAE paper 770218,1977.
[34] DUCK,G. E., H. BEYER,and A MIERBACH,Piston Ring Manual, GOETZE-AG, Germany, 1977.
[35] "Eddy Current Dynamometer Series W," paper L3220/3e, Schenck Company, 1995.
[36] "Electronic Valve Timing," Automotive Engineering, vol. 99, no. 4, pp. 19-24, 1991,
SAE International.
[37] "Engine Mounts and NVH," Automotive Engineering, vol. 102, no. 7, pp. 19-23, 1994,
SAE International.
[38] "ER Fluid Engine Mounts," Automotive Engineering, vol. 101, no. 2, pp. 52-55, 1993,
SAE International.
[39] "Evolution of the Automobile Engine Development," The Civic Report, Honda
Motor Company, Inc., 1978.
C. R, Internal Combustion Engines. New York: Wiley, 1986.
[41] FIEDLER,R A, "General Motors Internal Combustion Engine Simulation Program,"
Geode, vol. 67, pp. 7-8, 1991, University of Wisconsin-Platteville.
HEYWOOD,"Heat Release Analysis of Engine Pressure Data," SAE paper 841359,
SAE Trans., vol. 93, 1984.
[43] GATOWSKI,J. A, J. B. HEYWOOD,and C. DELEPLACE,"Flame Photographs in a
Spark-Ignition Engine," Combustion and Flame, vol. 56, pp. 71-81, 1984.
[44] "Generator Gas," SERI,U. S. Department of Energy, EG-77-C-01-4042, 1979.
[45] GIVENS,L., "A Technical History of the Automobile," Automotive Engineering, vol.
98, nos. 6-8, SAE International Inc.
[46] "Global Warming, Fuels, and Passenger Cars," Automotive Engineering, vol. 99, no. 2,
pp. 15-18, 1991, SAE International.
[47] GLOVER,A R, G. E. HUNDLEBY,and O. HADDED,"An Investigation into Turbulence
in Engines Using Scanning LDA," SAE paper 880378,1988.
[48] GOODSELL,D. L., Dictionary of Automotive Engineering. SAE International Inc.,
1995, 2nd ed.
[49] GORDON,S. and B. J. McBRIDE, "Computer Program for the Calculation of Complex
Chemical Equilibrium Composition, Rocket Performance, Incident and Reflected
Shocks, and Chapman-Jouquet Detonations," NASA publication SP-273, 1971.
[50] GORR, E. and H. S. HILBERT,"The Future of Two-Stroke Engines in Street Bikes,"
Motorcyclist, pp. 32-34, Nov. 1992.
[51] GOSMAN,A D., "Computer Modeling of Flow and Heat Transfer in Engines, Progress
and Prospects," COMODIA '85, Tokyo, Japan, 1985, pp. 15-26.
[52] GOSMAN,A D., "Multidimensional Modeling of Cold Flows and Turbulence in Reciprocating Engines," SAE paper 850344, 1985.
[53] GOSMAN,A D. and R. J. R. JOHNS,"Computer Analysis of Fuel-Air Mixing in DirectInjection Engines," SAE paper 800091, 1980.
[54] GOSMAN,A D., Y. Y. TSUI, and A P. WATKINS,"Calculation of Three Dimensional
Air Motion in Model Engines," SAE paper 840229,1984.
[55] GOSMAN,A D., Y. Y. TSUI, and A P. WATKINS,"Calculation of Unsteady ThreeDimensional Flow in a Model Motored Reciprocating Engine and Comparison with
Experiment", Fifth International Turbulent Shear Flow Meeting, Cornell Univ., 1985.
[56] GRUSE,W. A, Motor Oils: Performance and Evaluation. New York: Van Nos Reinhold, 1967.
[57] "Heated Catalytic Converter," Automotive Engineering, vol. 102, no. 9, 1994, SAE
[58] HEYWOOD,J. B., Internal Combustion Engine Fundamentals. New York: McGrawHill,1988.
[59] HINZE,J. 0., Turbulence. New York: McGraw-Hill, 1975.
and J. C. WALL,"Performance and NOx Emissions Modeling of a Jet Ignition Pre-Chamber Stratified
Charge Engine," SAE paper 760161,1976.
and J. M. NOVAK,"The Prediction of Ignition Delay
alt.d Combustion Intervals for a Homogeneous Charge, Spark Ignition Engine," SAE
paper 780232, SAE Trans., vol. 87, 1978.
[62] HOFFMAN,H., "Development Work on the Mercedes-Benz Commercial Diesel
Engine, Model Series 400," SAE paper 710558,1971.
[63] HOLMAN,J. P., Heat Transfer. New York: McGraw-Hill, 1990.
[64] "Hydrogen as an Alternative Automotive Fuel," Automotive Engineering, vol. 102, no.
10, pp. 25-30, 1994, SAE International.
"Turbulence Intensity and Spatial Integral
Scale During Compression and Expansion Strokes in a Four-Cycle Reciprocating
Engine," SAE paper 870372,1987.
[66] ISSHIKI,Y., Y. SHIMAMOTO,and T. WAKISAKA,"Numerical Prediction of Effect of
Intake Port Configurations on the Induction Swirl Intensity by Three-Dimensional
Gas Flow Analysis," COMODIA 85, Tokyo, Japan, 1985.
[67] JANAF Thermochemical Tables, 2nd ed., NSRDS-NBS37, U. S. National Bureau of
Standards, 1971.
[68] "Japanese 'Miller-Cycle' Engine Development Accelerates," Automotive Engineering,
vol. 101, no. 7, 1993, SAE International.
[69] JONES,J. B., and R. E. DUGAN,Engineering Thermodynamics. Upper Saddle River,
NJ: Prentice Hall, 1996.
[70] JOST,K., "Future Saab Engine Technology," Automotive Engineering, vol. 103, no. 12,
1995, SAE International.
[71] JOST,K., "NGV User's Guide," Parker Hannifin Corporation, 1994.
of Swirling Flow in Cylinder for Predicting D. I. Diesel Engine Performance," SAE
paper 840518, 1984.
[73] KEENAN,J. H., J. CHAO, and J. KAYE, Gas Tables-International
Version, 2nd ed.,
Malabar, FL: Krieger, 1992.
[74] KRAMER,A. S., "The Electric Motor that Killed the Electric Car," Old Cars Weekly
News and Marketplace, Oct. 1994.
[75] KRIEGER,R. B. and G. L. BORMAN,"The Computation of Apparent Heat Release for
Internal Combustion Engines," ASME paper 66-WA/DGP-4, 1966.
[76] KUMMER,J. T., "Catalysts for Automobile Emission Control," Prog. Energy Combustion Science, vol. 6, pp. 177-199,1981.
Burn with Heavy EGR, New Approach for Low NOx and Improved Fuel Economy,"
SAE paper 780006, 1978.
R. M., The Complete Book of the Corvette. Beckman House, 1987.
[79] "Latent Heat Storage," Automotive Engineering, vol. 100, no. 2, pp. 58-61, 1992, SAE
[80] LEARY,W. A. and J. U. JOYELLANOS,
"A Study of Piston and Piston-Ring Friction,"
NACA ARR-4J06, 1944.
[81] LIUEDAHL,J. B., W. M. CARLETON,P. K TURNQUIST,and D. W. SMITH,Tractors and
Their Power Units. New Yok: Wiley, 1979.
and R. O. BUCKIUS,"Heat Transfer in the Straight
Section of an Exhaust Port of a Spark Ignition Engine," SAE paper 790309, 1979.
[83] MALY,R., and M. VOGEL,"Initiation and Propagation of Flame Fronts in Lean C~Air Mixhues by the Three Modes of the Ignition Spark," in Proc. Seventeenth
International Symposium on Combustion, The Combustion Institute, 1976, pp. 821-831.
[84] MATSUI,K, T. TANAKA,and S. OHIGASHI,"Measurement of Local Mixture Strength
of Spark Gap of S. I. Engines," SAE paper 790483, SAE Trans., vol. 88, 1979.
[85] MATTAYI,J. N. and C. A. AMANN,Combustion Modeling in Reciprocating Engines,
Plenum Press, 1980, pp. 41-68.
[86] "Mazda Hydrogen-Fueled Rotary Development," Automotive Engineering, vol. 101,
no. 6, pp. 61-65, 1993, SAE International.
[87] MEINTJES,K, "A User's Guide for the General Motors Engine Simulation Program,"
GMR-5758, General Motors Research Laboratories, Warren, MI, 1987.
[88] "Methanol/Gasoline Blends and Emissions," Automotive Engineering, vol. 100, no. 5,
pp. 17-19, 1992, SAE International.
[89] "Mitsubishi Variable Displacement and Valve Timing/Lift," Automotive Engineering,
vol. 101, no. 1, pp. 99-100, 1993, SAE International.
[90] MORAN,M. J., and H. N. SHAPIRO,Fundamentals of Engineering Thermodynamics.
New York: Wiley, 1988.
[91] MOREL,T. and N. N. MANSOUR,"Modeling of Turbulence in Internal Combustion
Engines," SAE paper 820040, 1982.
[92] NEWHALL,H. K and S. M. SHAHED,"Kinetics of Nitric Oxide Formation in HighPressure Flames," in Proc. Thirteenth International Symposium on Combustion, The
Combustion Institute, 1971, pp. 381-390.
[93] OBERT,E. F., Internal Combustion Engines and Air Pollution. New York: Harper and
Row, 1973.
[94] O'CONNOR,L., "Clearing the Air with Natural Gas Engines," Mechanical Engineering,vol. 115, no. 10,pp.53-56, 1993,AS~E.
[95] O'DONNELL,J., "Gasoline Allies," Autoweek, pp. 16-18, Feb. 1994.
[96] OLIKARA,C. and G. L. BORMAN,"A Computer Program for Calculating Properties of
Equilibrium Combustion Products with Some Applications to I. C. Engines," SAE
paper 750468, 1975.
[97] OPPEL,F., Motoring in America. Castle Books, 1989.
[98] PULKRABEK,W. W. and R. A. SHAVER,"Catalytic Converter Preheating by Using a
Chemical Reaction," SAE paper 931086,1993.
[99] QUADER,A. A., "Why Intake Charge Dilution Decreases Nitric Oxide Emission From
Spark Ignition Engines," SAE paper 710009, SAE Trans., vol. 80, 1971.
[100] RAMOS,J. I., Internal Combustion Engine Modeling. Hemisphere, 1989.
[101] REED,D., "Compressed-Natural-Gas Vehicles," Automotive Engineering, vol. 103, no.
2, p. 269, 1995, SAE International.
[102] RINSCHLER,G. L. and T. ASMUS,"Powerplant Perspectives," Automotive Engineering,
vol. 103, nos. 4-6, 1995, SAE International.
[103] ROGOWSKI,S. ~., Elements of Internal-Combustion Engines. New York: ~cGraw
Hill, 1953.
[104] "Rotary Engine Design: Analysis and Development," SP-768, SAE International, 1989.
[105] RUDDY,B., "Calculated Inter-Ring Gas Pressures and Their Effect Upon Ring Pack
'bubrication," DAROS Information, vol. 6, pp. 2-6, Sweden, 1979.
[106] RYDER,E. A., "Recent Developments in the R-4360 Engine," SAE Quart. Trans., vol.
4, p. 559, 1950.
[107] SAE Fuels and Lubricants Standards Manual, SAE HS-23, 1993.
[108] SAKAI,Y, H. ~IYAZAKI, and K. ~UKAI, "The Effect of Combustion Chamber Shape
on Nitrogen Oxides," SAE paper 730154, 1973.
H. and F. THIELE,"Three-Dimensional Computations for Flowfields in
DI Piston Bowls," SAE paper 860463,1986.
[110] "Sensors and the Intelligent Engine," Automotive Engineering, vol. 99, no. 4, pp.
33-36,1991, SAE International.
[111] SHAMPINE,L. F. and GORDON, ~. K., Computer Solution of Ordinary Differential
Equations. Freeman, 1975.
[112] SHAPIRO,A. H., The Dynamics and Thermodynamics of Compressible Fluid Flow.
New York: Ronald Press, 1953.
[113] SHIGLEY,J. E. and L. D. ~ITCHELL, Mechanical Engineering Design. New York:
and W. J. PITZ, "An Experimental and
~odeling Study of Engine Knock," Twentieth Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, 1984.
[115] "Southern California Alternative-Fuel Projects," Automotive Engineering, vol. 103,
no. 3, pp. 63-66, 1995, SAE International.
[116] STONE,R., Introduction to Internal Combustion Engines. SAE International Inc., 1992.
[117] SVEHLA,R. A. and B. J. ~CBRIDE, "Fortran IV Computer Program for Calculation of
Thermodynamic and Transport Properties of Complex Chemical Systems," NASA
technical note, TND-7056, 1973.
[118] TABACZYNSKI,R. J., "Turbulence and Turbulent Combustion in Spark Ignition
Engines," Proc. Energy Combustion Science, vol. 2, pp. 143-165, 1976.
R. J., F. H. TRINKER,and B. A. S. SHANNON,"Further Refinement and
Validation of a Turbulent Flame Propagation Model for Spark Ignition Engines,"
Combustion and Flame, vol. 39, pp. 111-122, 1980.
[120] TAYLOR,C. F., The Internal Combustion Engine in Theory and Practice. Cambridge,
MA: M.LT. Press, 1977.
[121] "The Changing Nature of Gasoline," Automotive Engineering, vol. 102, no. 1, pp.
99-102,1994, SAE International.
[122] "The Road to Clean Air: Powered with Alternate Fuels," pamphlet by Wisconsin
Alternate Fuels Task Force, 1994.
[123] THOMAS,F. J., J. S. AHLUWALIA,E. SHAMAH,and G. W. VAN DERHORST,"MediumSpeed Diesel Engines Part I: Design Trends and the Use of ResiduaUBlended Fuels,"
ASME paper 84-DGP-15, 1984.
K. D., "Applying Parametrics and AutoCad in Engine Design," Cadence,
pp. 63--68,March 1988.
[125] TING, L. L., and J. E. MAYERJr., "Piston Ring Lubrication and Cylinder Bore Wear
Analyses, Part II-Theory Verification," Trans. ASME, J. Lub. Tech., pp. 258-266,
[126] TIzARD and PYE, Philosophical Magazine, July 1922.
[127] UZKAN,1:.:., Flows in Internal Combustion Engines-II, FED-vol. 20, pp. 39-46, ASME,
New York, 1984.
and T. MOREL,"Characterization of Flow Produced by a
High-Swirl Inlet Port," SAE paper 830266,1983.
and J. M. NovAK, International Symposium on Flows in
Internal Combustion Engines-III, FED-vol. 28, pp. 125-134, ASME, New York, 1985.
[130] VALENTI,M., "Alternate Fuels: Paving the Way to Energy Independence," Mechanical
Engineering, vol. 113, no. 12, pp. 42-46, 1991, ASME.
[131] VALENTI,M., "Insulating Catalytic Converters," Mechanical Engineering, vol. 117, no.
5,pp. 14-16, 1995, ASME.
[132] VALENT!,M., "Pollution-Reducing Cars," Mechanical Engineering, vol. 117, no. 7, p.
12, 1995, ASME.
[133] "Variable Valve Actuation," Automotive Engineering, vol. 99, no. 10, pp. 12-16, 1991,
SAE International.
and Y. ISSHIKI,"Three Dimensional Numerical Analysis of In-Cylinder Flows in Reciprocating Engines," SAE paper 860464,1986.
[135] WALKER,J. W., "The GM 1.8 Liter Gasoline Engine Designed by Chevrolet," SAE
paper 820111,1982.
[136] WALLACE,T. F., "Buick's Turbocharged V-6 Powertrain for 1978," SAE paper 780413,
[137] WATKINS,A. P., A. D. GOSMAN,and B. S. TABRIZI,"Calculation of Three Dimensional
Spray Motion in Engines," SAE paper 860468,1986.
[138] WENTWORTH,J. T., "Effects of Top Compression Ring Profile on Oil Consumption
and Blowby with the Sealed Ring-Orifice Design," SAE paper 820089,1982.
[139] WISE, D. B., The Illustrated Encyclopedia of the World's Automobiles. New York: A
and W Publishers, 1979.
[140] WITZE, P.O., "Measurements of the Spatial Distribution and Engine Speed Dependence of Turbulent Air Motion in an I. C. Engine," SAE paper 770220, 1977.
[141] WOEHRLE,W. J., "A History of the Passenger Car Tire: Part I," Automotive Engineering,vol. 103,no.9,pp. 71-75,1995.
T. HIRAMATSU,and M. KONISHI,"In-Cylinder Gas Motion of Multivalve Engine-Three Dimensional Numerical Simulation,"
SAE paper 860465, 1986.
J., "Honda's Oval-Piston Mega-Bike," Automotive Engineering, vol. 100,
no. 6, pp. 46-47, 1992.
1-5 (a) 6062, (b) 11,462
1-6 (a) 7991, (b) 4.22, (c) 38.41
1-8 (a) 80, (b) 4.5, (c) 67.5
(a) 4.36 X 108, (b) 1.74 X 109, (c) 2.18 X 108
(a) 4703, 4.703, (b) 561, (c) 420, (d) 69.2
(a) 1429, (b) 886, (c) 543, (d) 64.6, 86.6, (e) 247
(a) 0.178, (b) 0.0185, (c) 54.1, (d) 39.6, 53.1
(a) 0.0407, (b) 145.5, (c) 153.5, (d) 32
(a) 5.33, (b) 0.00084, (c) 5.63 X 10-5, (d) 4.22 X 10-7
(a) 95.0, (b) 0.337, (c) 5.35, (d) 21.6
3-1 (c) 1689, (d) 2502, (e) 1362, (I) 54.5
3-2 (a) 78.6, (b) 313, (c) 1311, (d) 15.0, (e) 192.4, (I) 91.1, (g) 26.2
3-3 (a) 856, (b) 3.2, (c) 34
Answers to Selected Review Problems
(a) 58, (b) 455
(a) 60.3, (b) 2777, (c) 53.3, (d) 2580
(a) 599, (b) 3.6, (c) 708, (d) 825
(c) 1317, (d) -301, (e) 7.0, (f) 56.8
(a) 1339, (b) 16.33, (c) 12.3, (d) 0.59
(a) 12.325, (b) 1.20, (c) 43.8, (d) 42.9
(a) 18.16, (b) 20, (c) 100,0
(a) 8.63, (b) 58, (c) 59, (d) 99
(a) 1, (b) 0.596, (c) -39.2
(a) 102.5, (b) 96, (c) 7.14
(a) 0.1222, (b) 0.058, (c) 0.471, (d) 0.058, (e) 0.058
(a) 34.6, (b) -4.9
(a) 3507, 3507, (b) 0.856, (c) no dew point
(a) 778, 2342, (b) 8.24, (c) 703, 1586
(a) 485, (b) 8.88, (c) 17
(a) 40, (b) +5.0, (c) 60
(a)lt.00242, (b) 8.49, (c) 6.01
(a) 2.224, (b) 1.016
(a) 1.535 X 106, (b) 0.360
6-2 (a) 281, (b) 291, (c) 4.85
6-3 (a) 4.04, (b) 18.3
6-5 (a) 0.0024, (b) 0.012, (c) 5
(a) 0.0036, (b) 12.4° aTDC
(a) 24.23, (b) 26.6° bTDC, (c) 15.8° bTDC
(a) 17.2, (b) 0.849
(a) 70.15, (b) 1203, (c) 0.133, (d) 189
(a) 1685, (b) 3.5, (c) 180,8.8
(a) 565, (b) 774
(a) 0.0021, (b) 62.0, (c) 682
(a) 566, (b) 4.4, (c) 133, (d) 0.82
(a) 0.0361, (b) 0.0386, (c) 53, (d) 467
Answers to Selected Review Problems
(a) 7.99, (b) 57.7
(a) 1.72, (b) 1.61, (c) 11.7
(a) 0.0445, (b) 0.42, (c) 3.79 X 1015
(a) 199, (b) 1.04, (c) 5.2
(a) 4.54, (b) 2.57
(a) 2652, (b) 17.9
(a) 0.014, (b) 0.0040, (c) 0.018
(a) 0.126, (b) 1.96 X 107
(a) 0.315
(a) 19.47,0.0289, (b) 49,825, (c) 32.2, (d) 134
(a) 24.4, (b) -2.5
(a) 227, (b) 81
(a) -13.5
(a) 25, (b) 267, (c) 314.7, (d) 2.12
(a) 175.3, (b) 274
(a) 12.27 comp., (b) 3.06 major, (c) 2.84
(a) 20,S,
(a) 38.64, (b) 126.5, (c) 7.38
(a) 0.0774, (b) 86.3, (c) 0.0106
Accelerator pump, 184
Accessory power, 314
Acetylene, 137
Acid rain, 290
Adams-Farwell, 11
Adiabatic engine, 341-342
Adiabatic flame temperature, 129-130
Aftercooling, 192, 194-195, 318
Aftertreatment, 31, 277, 292-303
catalytic converters, 293-301
thermal converters, 292-293
particulate traps, 301-303
Air, 68-71,122-123,379
as an ideal gas, 68-71
table of properties, 71, 379
Air chamber, 245
Air cooled engines, 13, 17, 40, 312, 315, 324,
advantages, 335
Air-fuel cycles, 81-83
Air-fuel ratio (AF), 18,55-56,124,236,257,
table of stoichiometric values of fuels, 380
Air intake, 12-13, 196-199, 251, 258
CI engine, 199, 251, 258
crankcase compressed, 12, 196
naturally aspirated, 12
two-stroke cycle engine, 196-198
also see: Supercharger, Turbocharger
Air pollution, 277-311
also see: Emissions
Air-standard cycles, 68-71
also see: Diesel cycle, Dual cycle, Miller
cycle, Otto cycle, Two-stroke cycles
Aircraft engine, 324, 331-332, 334, 364
Alcohol, 12, 139, 150-153,256,340
advantages, 152
as coolant, 340
corrosiveness, 152
disadvantages, 152-153
Alcohol (cont.)
emissions, 152
high octane, 152
poor ignition, 153
poor starting, 152-153
also see: Ethyl alcohol, Methyl alcohol,
Propyl alcohol
Aldehydes, 31,287,290,300
a-methylnaphthalene (CllHlO), 380
Alternate fuels, 2-3,12-13,134,139,
alcohol, 12, 139, 150-153,340
charcoal, 160-161
CI fuel made from various materials, 160
CO as fuel, 160-161,380
coal, 3, 380
coal-vvater slurry, 159
distribution, 151
ethyl alcohol, 12, 139, 152, 154,380
gasohol, 13, 154
gun povvder, 2
LPG, 12,
methane, 12, 134,380
methyl alcohol, 12, 139, 151, 153-154 300
natural gas, 12,150-151, 157-158,291
propane, 134, 151, 158,281,380
reformulated gasoline, 159
Alternator, 233,356,359-360
Ammonia injection, 304
Ansvvers to selected revievv problems
Anti-knock index (AKI), 144-146, 148
Antifreeze, 336, 338
also see: Coolant, Ethylene glycol,
Propylene glycol
Antinoise, 63
AON (see: Aviation octane number)
Aromatics, 138
Atkinson cycle, 102-103
P-v diagram, 103
Atmospheric engine, 2, 3, 5
Austin, 41
Auto-ignition (see: Self-ignition)
Automatic choke, 184
Average piston speed, 35, 37, 43-44, 51-52,
Aviation octane number (AON), 143
Bearings, 20, 22, 41, 350-351
Benzene (0#6), 138
Block, 18-19
Blovvby, 23, 215-218,307,368
slovved by oil, 368
Blovvdovvn,25-28, 69, 74, 76, 82, 86-89, 93,
Bore, 16,35-38,42-43,78
Brake mean effective pressure (bmep), 37,
CI engines, 50
SI engines, 50, 80
Brake povver, 52-54, 80, 313-314
Brake specific fuel consumption (bsfc),
vs. compression ratio, 57-58
vs. equivalence ratio, 58
vs. engine size, 57-58
vs. engine speed, 57
Brake thermal efficiency (7/1 h, 59, 61
Brake vvork, 46, 52, 54-55, 80, 351
Burn angle, 207, 235, 237
effect of turbulence, 207
vs. engine speed, 237
Butane (C4HlO),134
Butene-1 (C4Hg), 136,380
property values, 380
Butene-2 (C4Hg), 136
Bypass oil filtration, 375
Cadillac, 31
Camshaft, 18-19, 173, 177
Carbon (C), 257, 380
property values, 380
Carbon dioxide (C02), 288
Carbon monoxide (CO), 31, 62,123-124,
amounts, 285
as fuel, 160-161, 380
causes, 285
vs. equivalence ratio, 279
Carburetor, 20, 166, 181-190,307
accelerator pump, 184
air flow, 184-189
choke, 181-184
downdraft, 188
four barrel, 188
fuel capillary tube, 181-183, 189
fuel flow, 184-189
fuel reservoir, 181-182
icing, 189
idle adjustment, 181-183
idle valve, 181-183
metering valve, 181-183
secondary venturi, 187
side-draft, 188
sizing, 188
throttle, 181-184
two barrel, 186
updraft, 188
venturi, 181-182, 186-187, 189
Carnot cycle, 112
Catalysts, 293-295, 300-301
Catalytic converter, 20-21, 293-301,
afterburner, 299
catalysts, 293-295, 300-301
chemical reaction preheating, 300
CI engines, 301
contamination by lead, 296-297
dual fuel, 300
efficiency, 295-297
electric heating, 299
flame heating, 299
hybrid cars, 344
lean burn, 300
light-off temperature, 295, 297-299
materials, 293-294
poisoning, 296-297
preheating, 298-300, 344
sulfur, 297
superinsulation, 298
temperature, 293, 295-298
two-stroke cycle engines, 301
Cetane (C16H34),380
Cetane index (CI), 150
Cetane number (CN), 149-150, 256, 380
change with additives, 150
range, 149-150
table of values for fuels, 380
test method, 149
Charcoal fuel, 160-161
Charging Efficiency (Ace), 198-199
Charter engine, 3
Chemical equilibrium, 125-127,286,380
Chemical equilibrium constants (Ke),
table of values, 380
Chemical methods to remove emissions,
Chevrolet, 9, 181
Choke, 181-184
Choked flow, 70, 88,171,174,262-264,
Christie race car, 40
CI engines, 5-{j, 12, 14,29-30,41,91-92,95,
air-fuel ratios, 257
air intake, 199,251,258
catalytic converters, 301
combustion, 199,251-253,283-284
combustion efficiency, 283-284
emissions, 258, 283
fuel injectors, 199-200, 251, 255, 284
fuel input, 199,201,251,283
indicator diagram, 92, 95
preheating, 259
starting, 258-259
two-stroke cycle, 29-30,110-111
volumetric efficiency, 199,201
CI fuel, 160
made from various materials, 160
see also: Diesel oil
Clearance volume, 15-16,36,40-43,78,88,
Coal, 3, 380
property values, 380
Coal-Water slurry, 159
Cold startup, 183,247-248,258-259,
Coltec Industries, 39
Combustion, 25-26, 28, 69, 72, 75, 78-79, 82,
adiabatic flame temperature, 129
CI engine, 199,251-253,283-284
cylinder pressure, 230
diesel cycle, 93
dual cycle, 95-96
effect of EGR, 240, 242-243
fast burn, 240
flame development, 229-230, 237
flame propagation, 229, 233-234, 237
flame termination, 229, 237
ignition, 229-233, 237
Otto cycle, 72, 75, 7&-79
partial burn, 305
presSJ.1revs. time, 241
reactions, 121-123
SI engines, 229-251
slow burn, 241-242, 305
temperature, 128-130,304,306,312
variation, 239-243
also see: Flame speed
Combustion chamber, 15-16, 19-20,43-44,
divided chamber, 16, 20, 214-215,
fast burn, 175,248-251
open chamber, 15,20
surface area, 43
valve-in-block, 248, 250-251
also see: Divided combustion chambers
Combustion efficiency (TIc), 59, 126,
vs. equivalence ratio, 126
Common rail fuel injection, 179
Complete Expansion cycle (see: Atkinson
Compression, 25-26, 28
Compression ignition engine (see: CI
Compression ratio (Yc), 41-43, 57-58, 77,
CI engines, 257
critical, 145
SI engine, 41
variable, 41
vs. brake specific fuel consumption, 57-58
vs. heat transfer, 333
vs. year, 42
Compression rings, 23, 216-217
Compression stroke, 69, 72, 74-75, 93, 110,
Computer simulation, 219-226
for development, 220
General Motors program, 221-226
levels of use, 220
Connecting rod, 19-20, 36-37, 42
Connecting rod bearing, 20
Constant Pressure cycle (see: Diesel cycle)
Coolant, 315, 333, 336-338, 340
temperature, 315, 333
also see: antifreeze, Ethylene glycol,
Propylene glycol
Cooling fins, 20
Corvette, 9, 181
Cox engine, 40
Cracking of crude oil, 131
Crank angle, 36-37
Crank offset, 20, 35-37, 42
Crank radius (see: Crank offset)
Crank throw (see: Crank offset)
Crankcase, 19-20,217-218,307
pressure, 217-218, 307
ventilation, 218
Crankcase breather tube, 307
Crankcase compression, 12, 196
Crankcase ventilation, 218, 307
Crankshaft, 19-20,41
Crevice flow, 215-219
Crevice volume, 215-216, 21&-219, 280
cause of emissions, 280
lack of combustion, 215
Critical compression ratio, 145
Cross scavenged, 197-198
Crude oil, 3, 131-132, 150--151
cracking, 131
depletion of, 150
Pennsylvania, 132
Mideast, 132
western, 132
Cruise, 246-247
Cruise control, 23
Cutoff ratio ({3),93-94, 96-97,102,255
Cyanuric acid, 303
Cycles, 4-7, 9, 12, 14, 17, 24-31, 40-41,
air-standard cycles, 68-71
Atkinson cycle, 102-103
Carnot cycle, 112
diesel cycle, 91-94, 97-99
dual cycle, 94-102
four-stroke, 4-6, 9,12,14,17,25-27,
Lenoir cycle, 113-115
Miller cycle, 103-108
Otto cycle, 5, 72-81, 83-87, 97-99, 108,
real air-fuel cycles, 81-83
six-stroke, 7, 72
Stirling cycle, 111-113
three-stroke, 7
two-stroke, 5-6, 12,24,27-30,40-41,
Cyclobutane (C4HS), 137
Cycloparaffins 137
Cyclopentane (CSHlO),137
Cylinder, 19-20, 93, 315
Cylinder pressure, 44, 46, 78, 93, 100-101,
CI engine, 93, 253
SI engine, 78
table of units, 382
vs. crank angle, 230, 253
vs. time, 241
Cylinder temperature, 93, 100-101, 105-107,
Delivery Ratio (Adr), 198-199
Dew point temperature, 127-128
Diesel cycle, 91-94, 97-99
blowdown, 93
combustion, 93
comparison with dual and Otto cycles,
compression stroke, 93
exhaust stroke, 93
intake process, 93
P-v diagram, 92
power stroke, 93
T-s diagram, 92
thermal efficiency, 94, 97-99
thermodynamic analysis, 93-94
Diesel engine, 5, 39
Diesel oil, 12, 148-151, 160,256,283,289,
cetane number, 149-150,256,380
classification, 148
heavy, 149,380
light, 149,380
property values, 380
self-ignition, 149
also see: Fuel
Diesel, Rudolf, 5
Diolefins, 137
Direct injection (DI), 15,254
Discharge coefficient (CD), 174, 184-185
Displacement (see: Displacement volume)
Displacement volume (Vd), 16, 36-38, 41,
Distillation, 131
Divided combustion chamber, 16,20,
air chamber, 243
CI engine, 244
combustion, 243
Divided combustion chamber (cant.)
swirl chamber, 244
Downdraft carburetor, 188
Dry analysis (see: Exhaust analysis)
Dry sump, 22, 364
Dual chamber (see: Divided combustion
Dual cycle, 94-102
combustion, 95-96
comparison with diesel and Otto cycles,
P-v diagram, 96
T-s diagram, 96
thermal efficiency, 96-99
thermodynamic analysis, 95
Dual fuel, 12, 151, 154, 158, 195-196,300
catalytic converter, 300
Dual water jacket, 342
Dunlop, John B., 4
Dynamometers, 53-54
eddy current, 54
electric, 54'"
friction brake, 53
hydraulic, 54
Eddy current dynamometer, 54
EGR, 172, 240-243, 273, 304-307
effect on volumetric efficiency, 172
rates, 273
reduction of NOx, 305-307
Efficiencies, 47, 50, 52, 57, 59-62, 64, 79, 81,
catalytic converter efficiency, 295-297
Charging efficiency, 198-199
combustion, 59, 126, 283-284, 305-306,
Delivery ratio, 198-199
enthalpy, 60
fuel conversion, 59
isentropic, 191-194
mechanical, 47, 50,52, 57, 64
Relative charge, 199
Scavenging efficiency, 199
thermal, 59-61, 76-77, 79,83,94,96-99,
Trapping efficiency, 199
volumetric, 60-62, 81, 90, 102,168-173,
Electric dynamometer, 54
Electric vehicles, 4-5
Electronic actuators, 177
Emissions, 30-31, 62, 150, 152, 154, 157,
acid rain, 290
air pollution, 277-311
aldehydes, 31,287,290, 300
carbon monoxide (CO), 31, 62,123-124,
chemical methods to remove, 303-304
CI engines, 283
emissions index, 62
from small engines, 283
hydrocarbon (He), 31, 62, 258, 277-284,
lead, 31,42,291-292, 296-297
nitrogen oxides (NOx), 31, 62, 277-279,
non exhaust emissions, 307
oil, 281-282
ozone, 285, 287-288
particulates (part), 31, 62, 256-258, 277,
phosphorus, 31
ships and seaports, 304
smog, 278, 285-286
specific emissions, 62
sulfur, 31, 157,277,290-291,297
sulfuric acid, 290
sulfurous acid, 290
two-stroke cycle engines, 282, 301
Emissions index (EI), 62
EMS (see: Engine management system)
End gas, 238
Energy distribution in engine, 313
Engine classification, 5-13, 29
application, 13
basic design, 8-11
cooling method, 13
cylinder position, 9
fuel input method, 12
fuel type, 12-13
ignition type, 5-6
intake process, 12
number of strokes, 6-7, 29
valve location, 7-8
Engine components, 18-24
Engine controls, 242-243,
also see: Engine management system,
Engine cycles (see: Cycles)
Engine management system (EMS), 17, 220
also see: Engine controls, Sensors
Engine parameters, 35-67
Engine speed, 37-38, 41, 328-329, 352-353
vs. heat transfer, 328-329
Engine temperatures, 314-316, 319, 323,
vs. time, 316
Engine warmup, 316
Enthalpy efficiency (TJt), 60
Enthalpy of formation, 128
Enthalpyof reaction, 128
Equilibrium constants (see: Chemical
equilibrium constants)
Equivalence ratio (cP), 56, 58, 124,279,330
vs. brake specific fuel consumption, 58
vs. heat transfer, 330
vs. NOx generation, 279
Ethanol (see: Ethyl alcohol)
Ethene (CZH4), 136
Ethyl alcohol (CzHsOH), 12, 139, 152, 154,
how made, 154
mixtures with gasoline, 13, 154
property values, 380
use in Brazil, 154
Ethylbenzene (CSHlO),138
Ethylene glycol (CZH60Z), 336-337, 339
properties, 336-337, 339
Evaporative cooling, 330-332
Exhaust, 86-91, 102, 108, 127-128, 172,
energy, 312-314
kinetic energy, 87-88, 263
pressure, 86-90, 102,262-263,265,268
residual, 88-91, 172,265,280, 305
temperature, 86-91, 102,108, 127-128,
time of flow, 263, 266
Exhaust analysis, 130-131
Exhaust blowdown (see: Blowdown)
Exhaust gas recycle (see: EGR)
Exhaust manifold, 19-20,270-271
chemical reactions, 270-271
sensors, 270-271
tuning, 271
Exhaust pipe, 271
Exhaust pressure, 86-90, 102,262-263, 265,
Exhaust residual (xr), 88-91, 172, 265, 280,
Exhaust stroke, 25-26,69, 74, 76,86-87,89,
Exhaust system, 21, 324-325
heat transfer, 324-325
Exhaust temperature, 86-91, 102, 108,
vs. speed, 328
Exhaust valve, 262, 264-269,280,315,325,
flow through, 266-268
multiple, 264-265
size, 264, 268-269
sodium filled, 325
temperature, 315, 328
timing, 262, 264-266
Expansion ratio (r e), 105-106
Expansion stroke (see: Power stroke)
External combustion engine, 2
F head engine, 7-8
Fairbanks Morse, 39
Fan, 21,359-360
Fast burn, 175,240,248-251
Flame development, 229-230, 237
Flame propagation, 229, 233-234, 237
Flame quenching, 280
Flame speed, 235-236, 238-239
in end gas, 238
vs. AF, 236
Flame speed (cant.)
vs. engine speed, 236
also see: Combustion
Flame termination, 229, 237
Flat head engine (see: Valve-in-block)
Flexible-fuel, 153-154
Fluid friction, 170-171, 353
Fluid motion, 206-228, 249, 333
squish, 206, 211, 213, 249, 333
swirl, 206, 208-212, 214, 249, 333
tumble, 206, 211,213
turbulence, 206-208, 249
Flywheel, 21
Ford, 4, 21,30,288
Formaldehyde (HCHO), 300
Four barrel carburetor, 186
Four-stroke cycle, 4-6, 9, 12, 14, 17,25-27,
P-V diagram, 45
P-v diagram, 48-49
Friction, 170-1.:71,349-377
bearings, 350-351
boundary, 352
by components, 356, 358
engine accessories, 356, 359-360
fluid, 170-171,353
force on piston, 357, 358-359
magnitude, 353, 358
Friction brake dynamometer, 53
Friction mean effective pressure (fmep), 50,
vs. engine speed, 356
vs. piston speed, 358
Friction power, 54-55, 80, 313-314, 351, 355
Friction specific fuel consumption (fsfc), 56
Front end volatility, 132
Fuel, 2, 3, 12-13,59, 121-165,256,291,300,
cetane number, 149-150,256,283,289,
classification, 148
diesel, 12, 148-151, 160,283,289,380
gasohol, 13, 154
gasoline, 3,12,131-134,153-154,300,380
heat of vaporization, 380
heating value, 59, 128,313,380,382
hydrocarbon fuels, 131, 134-139
molecular weights, 123, 380
octane number, 139-148, 152, 158,256,
stoichiometric AF and FA, 380
table of properties, 380
also see: Alternate fuels, Hydrocarbon
Fuel-air ratio (FA), 18,55-56,124,380
table of stoichiometric values of fuels, 380
Fuel conversion efficiency (T/f), 59
Fuel economy, 57,59
Fuel injection (FI), 9, 12, 14-16, 18, 21, 31,
air-fuel, 180
CI engines, 199-201,251,255
control, 178-180
direct injection, 15,254
indirect injection, 16,254
multipoint port, 12, 178
pressures, 180-181,200
throttle body, 12, 180
timing, 178-179,251
two-stroke engines, 180, 282-283
Fuel injectors, 12, 166, 178-181, 199-201,
air-fuel injectors, 180
CI engines, 199-200
common rail, 179
control of, 178-180
drop size, 255
fuel flow, 200-201
fuel spray, 178
multipoint port, 12, 178
pressures, 180-181,200
pumps, 179
throttle body, 12, 180
timing, 178-179
vapor zones, 252, 255
variation in delivery, 179-180
Fuel oil (see: Diesel oil)
Fuel pump, 21, 359
Fuel sensitivity (FS), 144, 148
Fuel tank, 307
Full-flow oil filtration, 375
Gasohol, 13, 154
Gasoline (CgH1S),3,12-13,131-134,
mixtures with alcohol, 13, 153-154,300
property values, 380
vaporization curve, 132-133
General Motors, 6, 9, 14-15,29,31-32,
simulation computer program, 221-226
Glow plug, 21, 223, 258
Gross mean effective pressure (gmep), 50,
Gun powder, 2
Harley-Davidson, 17-18
Head gasket, 22
Heat of combustion, 128
Heat of reaction, 128
Heat of vaporization of fuels, 380
Heat pipe, 324-325
Heat transfer, 312-348
combustion chamber, 318-324
effect of operating variables, 327-333
exhaust system, 324-325
intake system, 317
modern trends, 31, 342
variations, 321-322, 324
vs. crank angle, 322-323
Heat transfer effects by operating variables,
compression ratio, 333
coolant temperature, 333
equivalence ratio, 330
evaporative cooling, 330-332
fuel equivalence ratio, 330
inlet air temperature, 332
knock, 333
load, 329
materials, 333
size, 327
spark timing, 330
squish, 333
swirl, 333
Heating values (HV), 59, 128, 313, 380, 382
higher heating value (HHV), 128, 380
lower heating value (LHV), 128, 380
table for fuels, 380
units, 382
Heptamethylnonane (C12H34),149,380
property values, 380
Heptane (C7H16),380
Hexadecane (C16H34),149
High end volatility, 133
Higher heating value (see: Heating value)
History, 2-5,11,21,24,30,40-41,53,72,
102-103,112-113,143, 158, 160-162, 181,
antifreeze, 338
Atkinson cycle, 102-103
atmospheric engines, 2-3
automobiles that clean the air, 288
buses operating on natural gas, 158
Christie race car, 40
crankshafts, 41
eight -valves-per -cylinder motorcycle
engine, 53
engine coolants, 340
exhaust reduction, 272
fuel injection, 181
fuel pumps, 21
high compression ratios, 257
hybrid powered automobiles, 301
ignition systems, 233
lead at the South Pole, 292
Lenoir engine, 113
oil filter cartridges, 375
radial engines, 11
six-stroke cycles, 72
small high-speed engines, 41
starters, 24
when automobiles ran on charcoal,
Honda, 53
Hot spot, 317-318
Hybrid automobiles, 301, 344
Hydraulic dynamometer, 54
Hydrocarbon emissions (He), 31, 62, 258,
amounts, 278
causes, 278-281
CI engines, 258
vs. equivalence ratio, 279
vs. oil consumption, 282
Hydrocarbon fuels, 131, 134-139
components, 134-139
cracking, 131
distillation, 131
prefixes, 135
Hydrogen (Hz), 156-157, 380
advantages as fuel, 156-157
availability, 157
difficulty of storage, 157
disadvantages, 157
emissions from use, 157
property values, 380
Hydrometer, 336, 338
I "I head engine (see: Overhead Valves)
Icing, 189
Ideal gas, 68-70
Idle, 247
Idle adjustment, 181-183
Ignition, 5--6,21,149,153,214-215,223,
glow plug, 21, 223, 258
jet, 244
timing, 237, 239, 286, 288, 330
torch, 214-215, 223, 244
torch hole, 223
also see: Spark plug
Ignition delay (ID), 17, 140, 143, 145, 149,
In-line engine, 9-10
Indicated gross specific fuel consumption
Indicated mean effect pressure (imep),
Indicated net specific fuel consumption
(insfc), 56
Indicated power, 54, 80, 351
Indicated specific fuel consumption (isfc), 56
Indicated thermal efficiency (711 )i, 59, 61, 79,
Indicator diagram, 45, 92, 95
CI engine, 92, 95
SI engine, 45
Indirect injection (IDI), 16, 254
Induction, 166-205
Intake, 25-28, 74,93,110,172,332
air temperature, 332
tuning, 172
Intake manifold, 19,22,166-167,180,315,
fuel flow, 167
heating of, 167, 317
hot spot, 317-318
runners, 166-167
temperature, 315, 318
Intake stroke, 69, 72, 74, 86, 357
Intake system, 12,245,317
heat transfer, 317
Intake tuning, 172
Intake valves, 166, 171, 173-178,265-266,
flow, 176
late closing, 171
size, 269
temperature, 315
timing, 265
Isentropic efficiency (71s), 191-194
Isobutane (C4HIO),135
Isobutene (C4Hs), 136
Isodecane (CIOHzz),380
Isooctane (CSH1S), 134-135,380
property values, 380
Jet ignition, 244
Kerosene, 340
Knock, 140-148,238,333
vs. heat transfer, 333
L head engine (see: Valve-in-block)
Langen, Eugen, 5
Lead (see: Tetraethyllead)
Lean burn engine, 245, 300
catalytic converter, 300
Lenoir cycle, 113-115
P-V diagram, 114
thermodynamic analysis, 114-115
Lenoir engine, 5, 113, 115
thermal efficiency, 115
Lenoir, J. J. E., 5
Light-off temperature, 295, 297-299
Limited Pressure cycle (see: Dual cycle)
Liquid cooled engine (see: Water cooled
Loop scavenged, 197-198
Lower heating value (see: Heating value
LPG), 12
Lubrication, 197, 282, 349-377
bearings...350- 351
solid, 373
two-stroke engine, 197,282,366--367
Lubrication oil (see: Oil)
Lubrication system, 197,282,364-367
of turbocharger, 365
pressurized, 364-365
splash, 364
two-stroke cycle, 197, 282, 366--367
Main bearing, 20, 22, 41
Major thrust side, 360-361
Mathematical models, 219--220
Maximum brake torque (MBT), 51
Mazda, 157
Mean effective pressure (mep) 37, 49-50,
brake (bmep), 37, 49-50, 54-55, 80,352
friction (fmep), 50, 54-55, 352, 355-356,
gross (gmep), 50, 352, 355
indicated (imep), 49-50, 54-55, 80, 108,
motoring (mmep), 352, 355, 358
net (nmep), 50
pump (pmep), 50, 86, 352, 355
Mechanical efficiency (17m), 47, 50, 52, 57, 64
Mercedes, 244, 303
Metaxylene (CgHlO), 138
Metering valve, 181-183
Methane (CH4), 12, 134,380
property values, 380
also see: Natural gas
Methanol (see: Methyl alcohol)
Methyl alcohol (CH30H), 12, 139, 151,
dual fuel, 154, 300
emissions, 154, 300
mixtures with gasoline, 153-154
property values, 380
Miller cycle, 103-108
comparison with Otto cycle, 108
P-v diagram, 104
Miller, R.H., 103
Minor thrust side, 360-361
Misfires, 242-243, 247, 305-306
Model airplane engines, 40-41, 52, 334
Molar mass (see: Molecular weight)
Molecular weights, 123, 380
MaN (see: Motor octane number)
Motor octane number (MaN), 143-146,
table of values for fuels, 380
Motorcycle, 17-18,53
Honda racing engine, 53
Motoring of engine, 54, 354-356, 358
Motoring mean effective pressure (mmep),
Muffler, 21, 273
Multiple spark plugs, 249, 280
Multipoint port fuel injection, 12, 178
n-Cetane (C16H34),149
Natural gas, 12, 150-151, 157-158,291
advantages as fuel, 158
components, 157
disadvantages as fuel, 158
emissions, 158
Natural gas (cont.)
octane number, 158
storage, 157
sulfur, 157,291
Naturally aspirated, 12
Net mean effective pressure (nmep), 50
Nitrogen oxides (NOx), 31, 62, 277-279,
amounts vs. equivalence ratio, 279
amounts vs. spark timing, 288
amounts vs. time, 287
causes, 285-287
NO, 285
ozone, 285
reduction with EGR, 305-307
smog, 285-286
Nitromethane (CH3NOz), 380
Noise abatement, 62-63
active, 62-63
passive, 62-63
semi-active, 62-63
Non exhaust &missions, 307
Northstar engine, 31
Notation, xv-xix
NOx (see: Nitrogen oxides)
Nusselt number (Nu), 320, 324---326
Octane (see: Octane number)
Octane number (ON), 139-148, 152, 158,
alcohol, 152, 256
Aviation (AON), 143
natural gas, 158
raising with lead, 146,291
Research (RON), 143-146, 148,380
table of values for fuels, 380
test method, 143-144
vs. critical compression ratio, 145
Oil, 289, 314---315,340-342, 362, 367-373
additives, 373
as coolant, 314, 340-342, 367-368
change period, 367-368
chemical composition, 289
detergency, 367-369
grades (SAE), 368-372
multigrade, 371-372
properties, 368-369
synthetic, 373
temperature, 315
to cool piston, 340
viscosity, 368-370, 372
viscosity vs. temperature, 368, 370, 372
Oil as emissions, 281-282
Oil cooler, 341
Oil film thickness, 362
Oil filters, 373-375
bypass 375
full-flow, 375
historic, 375
pore size distribution, 374
shunt filtration, 375
Oil pan, 19, 22
Oil pump, 22, 364
pressure, 364
Oil ring, 23, 216
Oil sump, 22, 364---365
Oldsmobile, 32
Olefins, 136
Open chamber, 15, 20
Operating characteristics, 35-67, 246-248
closing throttle at high speed, 247
cruise, 246-247
idle and low speed, 247
power, 246
starting cold, 183, 247-248, 258-259,
table, 37
Opposed cylinder engine, 9-10
Opposed piston engine, 10-11
Orthoxylene (CgHIO),138
Otto cycle, 5, 72-81, 83-87, 97-99, 108,264
at part throttle, 83-84, 86
blowdown, 76
combustion, 75
comparison with diesel and dual cycles,
comparison with ~iller cycle, 108
compression stroke, 74---75
exhaust stroke, 76
intake process, 74
power stroke, 76
P-V diagram, 73
P-v diagram, 75, 84-85, 87, 264
T-s diagram, 75, 87
thermal efficiency, 76-77,83,97-99
thermodynamic analysis, 74-77
with supercharger or turbocharger, 85-86
Otto, Nicolaus A., 5
Output per displacement (OPD), 52-55, 80
Over square engine, 37, 40
Overexpanded cycle (see: Atkinson cycle)
Overhead earn, 18, 32, 173
Overhead valves, 7-8, 18,29, 173, 175, 250
Overlap (see: Valve overlap)
Oxides of nitrogen (see: Nitrogen oxides)
Ozone (03),285,287-288
Paddle wlteel model, 210
Paraffins, 134-135
Paraxylene (CgHlO),138
Partial burn, 305
Particulate trap, 277, 301-303
regeneration, 302
temperatures, 302
Particulates (part), 31, 62, 256-258, 277,
causes, 287,289-290
chemical composition, 289
soluble organic fraction, 289, 302
also see: Soot
Phosphorus (P), 31
Ping, 140
Piston, 19,22,36,43-44,51-53,315,
cooling of, 323-324, 340
crown, 22
face area, 43-44, 51-53, 315
forces on, 357-364
side thrust force, 360-361, 363
skirt, 22, 315, 362
temperature, 315, 328
Piston crown, 22
Piston pin (see: Wrist pin)
Piston rings, 19,22-23,216-217,282,315,
compression, 23, 216-217
friction, 358
oil, 23, 216
temperature, 315
wear, 282
Piston skirt, 22, 315, 362
temperature, 315
Piston speed, 37-38, 43-44, 80, 254, 353
vs. crank angle, 38
Pontiac, 32
Poppet valve, 16,24,173-174
Power, 15,29-30,32,37,47,50-57,59,
brake power, 52-54, 80, 313-314
friction, 54-55, 80, 313-314, 351, 355
gross, 355
indicated, 54, 80, 351
pumping, 355
specific, 52,54-55, 65,80
table of units, 382
to run accessories, 314
units of, 52
Power operation, 246
Power stroke, 25-26, 28, 69, 73-74, 76, 88,
93, 109, 115, 357
Prandtl number (Pr), 326
Prefixes of hydrocarbon fuel components,
Preheating, 259
Pre-ignition (see: Self-ignition)
Pressure (see: Cylinder pressure)
Pressure ratio (a), 95, 97, 102
Pressurized lubrication system, 364-365
Propane (C3Hg), 134, 151, 158,281,380
emissions, 158, 281
property values, 380
storage, 158
Propanol (see: Propyl alcohol)
Propyl alcohol (C3H70H), 139
Propylene glycol (C4HgO), 337
properties, 337
Pump mean effective pressure (pmep), 50,
Pump work, 47, 52, 84,86,251
Pumping specific fuel consumption (psfc),
Push rods, 19,23
Radial engine, 10--11
Radiator, 23, 335, 338-339
Real air-fuel cycles, 81-83
Reciprocating engine, 2, 8
References, 384-391
Reformulated gasoline, 159
Relative Charge (Arc), 199
Research octane number (RON), 143-146,
table of values for fuels, 380
Reverse blowby, 217-218
Reverse squish, 213, 249
Reynolds number (Re), 320, 326, 329, 358
RON (see: Research octane number)
Rotary engine, 8
Rotary valve, 2~ 173
Sac volume, 284
SAE grades of oil, 368-372
Scavenging, 27-28, 110, 196-199
Charging Efficiency, 198-199
cross, 197-198
Delivery Ratio, 198-199
loop, 197-198
Relative Charge, 199
Scavenging Efficiency, 199
through-flow, 197-198
Trapping Efficiency, 199
Scavenging Efficiency (Ase), 199
Self-ignition, 139-143, 145, 149,252
Self-ignition temperature (SIT), 139-140,
Sensors, 130,242-243,270--271
also see: Engine controls
Shunt oil filtration, 375
SI engines, 4-6, 9, 12, 14, 25-31, 41, 45-46,
four-stroke cycle, 25-27
two-stroke cycle, 27-29, 109-110
Side-draft carburetor, 188
Side thrust force, 360--361, 363
major thrust side, 360--361
minor thrust side, 360--361
Single-cylinder engine, 9-10
Six-stroke cycles, 7, 72
Sleeve valve, 8, 24, 173
Slow burn, 241-242, 305
Smart engine, 16-17,271
Smog, 278, 285-286
Sodium filled exhaust valves, 325
Solid lubricants, 373
Soluble organic fraction (SOF), 289, 302
Sonic velocity (see: Choked flow)
Soot, 256-258, 277, 287-290, 294, 301-303,
also see: Particulates
Sopwith Camel, 11
Spark ignition engine (see: SI engine)
Spark plug, 19, 23, 230--233,242, 249-250,
discharge temperature, 231
electrical values, 230--231,233
multiple, 249, 280
new trends, 231-232
placement, 249-250
temperature, 232, 315
also see: Ignition
Specific emissions (SE), 62
Specific fuel consumption (sfc), 56-59,
brake (bsfc), 56-58, 61-62, 80--81
friction (fsfc), 56
indicated (isfc), 56
indicated gross (igsfc), 56
pumping (psfc), 56
Specific power, 52, 54-55, 65, 80
Specific volume (SV), 53-55
Specific weight (SW), 53
Speed control, 23
Speed of sound, 70, 88
also see: Choked flow
Splash lubrication system, 364
Square engine, 37, 40
over square, 37, 40
under square, 37, 40
Squish, 206, 211, 213, 249, 333
vs. heat transfer, 333
Standard density, 60
Standard pressure 60
Standard temperature, 60
Starter, 23-24
Startup, 152-153, 183,247-248,258-259,
CI engine, 258-259
cold, 183,247-248,258-259,297-300,343
Steam engine, 2, 4
Stirling cycle, 111-113
P-v diagram, 112
regeneration, 112
T-s diagram, 112
thermal efficiency, 112
Stoichiometric air, 121-124, 380
Straight engine (see: In-line engine)
Stratified charge, 195-196,214-215,243-246
dual chamber, 244-245
intake system, 245
lean burn engine, 245
Stroke, 16,35-38,43,78,362
Sulfur (S), 31, 157,277,290-291,297
in natural gas, 157, 291
Sulfuric acid (H2S04), 290
Sulfurous acid (H2S03), 290
Supercharger, 12,24,41,47,49,85-86,
aftercooling, 192, 194-195
compression heating, 192
isentropic efficiency, 191-192
Otto cycle, 85-86
P-v flow diagram, 191
power to drive, 191-192, 194-195
T-s flow diagram, 191
Swept volume (see: Displacement volume)
Swirl, 206, 208-212, 214, 249, 333
angular momentum, 210-211
how generated, 208-209, 211
in divided combustion chamber, 214
paddle wheel model, 210
vs. heat transfer, 333
Swirl chamber, 214, 244
Swirl ratio, 209-210, 212
vs. crank angle, 210
Synthetic oil, 373
T head engine, 7
Table of Contents, v-ix
Tailpipe, 21, 273
TEL (see: Tetraethyllead)
Tetraethyllead (TEL) ((C2Hs)4Pb), 31, 42,
contamination of catalytic converter,
hardening of metal surfaces, 291
raising of octane number, 146,291
Thermal battery (see: Thermal storage)
Thermal converter, 21, 271,277, 292-293
Thermal efficiency ('TJt), 59-61, 76-79, 83,
brake, 59, 61
comparison of Otto, diesel, and dual
cycles, 97-99
diesel cycle, 94, 97-99
dual cycle, 96-99, 102
indicated, 59, 61, 79, 102, 107
Lenoir cycle, 115
Miller cycle, 107
Otto cycle, 76-78, 83, 97-99
Stirling cycle, 112
Thermal storage, 300, 343-345
preheating of catalytic converter, 300
Thermochemistry, 121-165
Thermostat, 335, 339
Three-stroke cycle, 7
Throttle, 24,166,181-184
Throttle body fuel injection, 12, 180
Through-flow scavenged, 197-198
Toluene (C7Hg), 138, 380
property values, 380
Torch ignition, 214-215, 223, 244
Torch hole, 223
Torque, 15,29-30,32,47,50-53,64,80,380
table of units, 380
Torque (cont.)
Trapping Efficiency (Ale), 199
Triptane (C7H16),380
Tumble, 206, 211, 213
Tuning, 172, 271
exhaust 271
intake, 172
Turbo lag, 193,272
Turbocharger, 12-13,24,41,47,49,85-86,
bypass, 273
isentropic efficiency, 193-194
Otto cycle, 85-86
P-v flow diagram, 191, 194
power, 194,272
speed, 272
T-s flow diagram, 191, 194
turbo lag, 193,272
Turbulence, 206-208, 249
levels, 207 .......
models, 207
in two-stroke cycle engine, 208
vs. engine speed, 208
Two-barrel carburetor, 188
2-ethylpentane (C7H16),136
2,5-heptadiene (C7H12), 137
2-methylpropene (C4H8), 136
2-methyl-3-ethylhexane (C9H20),136
Two-stroke cycle, 5-6, 12, 24, 27-30, 40-41,
air intake, 196-198
catalytic converter, 301
charging efficiencies, 198-199
crankcase compression, 12, 196
emissions, 282, 301
exhaust stroke, 274
fuel injection, 180, 282-283
fuel input, 196-197
lubricating, 197,282,366-367
P-V diagram, 109, 111
scavenging, 27-28, 196-199
Ultra-low-emissions vehicle (ULEV), 301
Under square engine, 37, 40
Uniflow scavenged, 197-198
Updraft carburetor, 188
V engine, 4, 6, 9-10, 14, 17, 29-32, 40, 46-47
V6, 29-30, 32, 46-47
V8, 4, 6, 9, 14,31
Valve-in-block, 7-8, 248, 250-251
Valve-in-head (see: Overhead Valves)
Valve lift, 173-174, 177
Valve overlap, 110, 170,265-267,281
Valve seat, 24,173
Valve timing, 105, 171, 175-177,262,
Valves, 8, 16, 19,24,83, 105, 166, 171,
discharge coefficient, 174
electronic actuators, 177
exhaust, 262, 264-269, 280, 315, 325, 328
flow through, 174, 176,266-268
intake, 166,171, 173-178,265-266,269,
lift, 173-174, 177
multiple, 175, 264-265
poppet, 16,24, 173-174
rotary, 24,173
size, 264, 268-269
sleeve, 8, 24, 173
timing, 105, 171, 175-177,262,264-267,
Vapor lock, 132
Variable compression ratio, 41
Variable-fuel, 153
Variable valve timing, 10'5,177,266
Venturi, 181-182, 186-187, 189
Viscosity, 353, 358-359, 368-370, 372, 382
grades of oil (SAE), 368-372
multigrade oils, 371-372
oil viscosity vs. temperature, 368, 370, 372
units, 382
Volumetric efficiency, 60--62,81, 90,102,
CI engine, 199,201
effect of choked flow, 171
effect of EO R, 172
effect of exhaust residual, 172
effect of fluid friction, 170-171
effect of fuel, 168-169
effect of heat transfer, 169-170
effect of intake tuning, 171
effect of valve closing, 171
effect of valve overlap, 170
vs. engine speed, 168
VVengine, 10-11
VValldeposits, 281
VVankelengine, 157
Water cooled engines, 13, 20, 312, 335-340
advantages, 335-336
coolant, 336-338
VVaterinjection, 331-332
dual, 342
VVaterpump, 24, 338-339, 359
VVoods Dual Power, 301
VVork,44-49, 52, 54-55, 59, 79-80,84,86,
brake, 46, 52,54-55, 80, 351
friction, 46, 52, 351
gross, 46, 48, 52
indicated, 45-47, 52, 79, 351
net, 47-48, 52
pump, 47,52, 84, 86,251
specific, 45
table of units, 382
VVristpin, 24, 362
offset, 362
Zeolite molecular sieve, 303
Zero emissions vehicle (ZEV), 301
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project