BEST PRACTICES: A Guide to Making Effective

BEST PRACTICES: A Guide to Making Effective

 

 

 

     BEST PRACTICES:  A Guide to Making Effective Measurements of 

Sound Absorption Coefficient 

 

 

 

Spectronics, Inc. 

2100 Elgin Place 

Lexington, KY 40515‐1171  www.spectronics.net 

July 2013 

 

 

 

 

 

Copyright © 2013 Spectronics, Inc.

  

 

 

 

 

Table of Contents 

1.  INTRODUCTION ..................................................................................................................................... 2 

2.  SAC MEASUREMENT – OVERVIEW ........................................................................................................ 2 

3.  PREPARATION AND MOUNTING OF SAMPLES ...................................................................................... 3 

3.1  Characteristics of Good Samples .................................................................................................. 3 

3.2  Methods for Cutting Samples ....................................................................................................... 4 

3.3    Selection of Material Sample Sheets ............................................................................................ 6 

3.4  Cutting, Marking and Mounting of Samples ................................................................................. 6 

3.5  Examples of Sound Absorption Measurement ............................................................................. 7 

4.    MICROPHONES AND CALIBRATION ........................................................................................................ 9 

4.1  Microphone Type and Mounting .................................................................................................. 9 

4.2  Calibration of Microphones ........................................................................................................ 11 

5.    DEVELOPING A QUALITY TESTING PROGRAM ...................................................................................... 11 

6.    PERIODIC MAINTENANCE OF SPECTRONICS IMPEDANCE TUBE .......................................................... 12 

7.    REFERENCES ......................................................................................................................................... 12 

APPENDIX 1:  Sensitivity of Sound Absorption Coefficient to Environmental and Physical Parameters .... 13 

APPENDIX 2:  Frequency Limits of the Spectronics Impedance Tube ......................................................... 16 

APPENDIX 3:  Measurement of Microphone Acoustic Centers .................................................................. 20 

 

APPENDIX 4:  “Impedance Tube Specimen Preparation and Mounting Issues” by Dan R. Stanley, 

Proceedings, Internoise 2012 ..................................................................................................................... 22 

 

1. INTRODUCTION 

The  purpose  of  this  manual  is  to  help  you  obtain  consistently  reliable  results  of  sound  absorption coefficient (SAC) using Spectronics’ impedance tube.  This manual is a supplement  to  the  standards

1,2

  that  provide  background  information  and  describe  the  measurement  procedure in detail.   

Like  all  experimental  methods,  there  is  a  certain  amount  of  art  or  technique  in  making  SAC  measurements.  We hope the information in this manual will help minimize the uncertainties in 

SAC measurements so that you may gain confidence in the results.  If you need additional help  or information, please do not hesitate to contact us: 

Spectronics, Inc.:  [email protected] 

 

2. SAC MEASUREMENT – OVERVIEW 

The  measurement  of  sound  absorption  of  materials  is  complicated  by  the  following  considerations: 

1. No  “reference” sound absorbing material exists with which to compare results 

2. There is normally variation in the manufacture of sound absorbing materials 

3. There  can  be  variation  in  sample  preparation  including  sheet  selection  and  sample  cutting  

4. Mounting of the sample in the sample holder must be done with care 

5. Not  accounting  for  environmental  factors  such  as  temperature  or  physical  parameters  such as microphone spacing (this is discussed in more detail in Appendix 1) 

6. Other factors, such as training of personnel, poor maintenance of records, etc. 

The following suggestions will help remove much of the uncertainty in SAC measurements: 

1. The user should become familiar with the process of SAC measurement by testing the same  sample repeatedly over a number of days/weeks (items 4‐6 above) 

2. The user should average the results from multiple samples (items 2‐4 above) 

3. The user should insure that materials selected for SAC measurements meet manufacturing  specifications and tolerances (item 2 above) 

There are additional sources of uncertainty due to the SAC testing itself.  These include: 

Region 1:  Uncertainty where the SAC is low, especially at low frequencies. 

Region 2:    Uncertainty where the SAC has a resonance condition. 

 

Region 3:    Uncertainty where the SAC approaches the high frequency limit of the tube. 

 

Figure  1  shows  these  three  regions  for  two  common  foam  materials.    As  with  most  uncertainties,  these  uncertainties  can  be  reduced  by  averaging  the  SAC  results  from  multiple  samples.    These  regions  and  the  limitation  of  the  impedance  tube  are  discussed  in  detail  in 

Appendix 2. 

 

 

 

 

1.0

0.9

 

 

 

 

0.8

0.7

0.6

0.5

 

 

0.4

0.3

0.2

25 mm foam

12 mm foam

 

 

 

 

0.1

0.0

0 1000 2000 3000

Frequency (Hz)

4000 5000 6000

 

Figure 1.  Three common regions of uncertainty in SAC measurements. 

When making SAC measurements, the value of practice and experience cannot be overstated.  

Users who make measurements on a frequent basis become skilled at noticing when data looks 

“good” and when it looks “bad.”  Users also become practiced at cutting and preparing samples  and learn how to mount samples in a repeatable manner. 

3.  PREPARATION AND MOUNTING OF SAMPLES 

3.1  Characteristics of Good Samples

 

Samples should be geometric circular cylinders

 

 

Both faces should be flat and parallel 

Roll test:   place the sample on its side and push it gently.  A good sample will roll  in a straight line. 

Sides should be smooth (no bulges or cups) 

Facings (coverings), if any, must not extend beyond the edge of the sample.  It may be  necessary to trim the facing slightly around its edge.  The facing should cover the sample  but not extend beyond it as this will cause the facing to bend when it is inserted into the  sample holder. 

Must be correct diameter 

 

– Cutters may cut different materials to a slightly different diameter due to the  compressibility of the material; user may need several cutters with different  diameters 

Test for correct diameter:  when the sample holder is held in the vertical  position, sample should remain inside, but just barely.   

Cutter should be sharpened after cutting several samples 

3.2  Methods for Cutting Samples 

There  are  three  common  methods  to  cut  samples  for  SAC  measurements.    These  are  CNC  waterjet cutters, rotating blade cutters, and die cutters.  The advantages and disadvantages of  each  method  are  discussed  below;  more  information  is  provided  in  Reference  3  which  is  reprinted in Appendix 4. 

(1) CNC Waterjet Cutters 

CNC waterjet cutters are the best overall method for preparing samples for a wide variety  of materials, especially plastic foams.  The size of the sample is accurate, and, most of all is  repeatable.    The  major  disadvantage  of  waterjet  cutters  is  their  very  high  cost  which  is  difficult to justify unless SAC testing is done on a regular basis. 

(2) Rotating Blade Cutters 

Rotating blade cutters are very sharp, circular devices that are mounted in a drill press or  similar  device  as  shown  in  Figure  2.    Rotating  blade  cutters  are  a  good  alternative  to  waterjet cutters because they are inexpensive.  The problem with rotating blade cutters is  they  have  a  fixed  diameter;  depending  on  the  compressibility  of  the  material,  a  rotating  blade cutter will cut samples having slightly different diameter.   

The other problem with rotating blade cutters is they must be kept very sharp to produce  high‐quality  samples.    Figure  3  shows  how  to  sharpen  a  rotating  blade  cutter.    It  is  suggested that rotating blade cutters be sharpened after several samples. 

                      

 

 

 

 

 

 

 

Figure 2.  A rotating cutter (left); cutter mounted in a drill press (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3) Die Cutters 

Figure 3.  Sharpening a rotating blade cutter

Die cutters are similar to rotating blade cutters but are used to shear cut a material using a  mechanical press or a hammer.  Like rotating blade cutters they have a fixed diameter and  must  be  kept  sharp.    The  main  advantage  of  die  cutters  is  that  they  can  cut  semi‐hard  materials  such  as  rubbers.    They  also  work  well  in  cutting  low  density  fibrous  materials.  

Figure 4 shows how to use a hand‐operated die cutter. 

Figure 4  Using a hand‐operated die cutter

.

 

3.3    Selection of Material Sample Sheets 

An often overlooked factor in SAC measurements is the selection of the material sheets from  which samples are cut.  The following are important criteria in material sheet selection: 

 Material sheets should have uniform thickness and must not have tears, warps, bends  or other physical deformities – sheets must be flat and uniform in all directions 

 Material sheets must be clean – no dirt, moisture, or foreign materials 

 Material sheets that meet the above criteria must meet chemical and physical 

  specifications of the manufacturer 

 3.4  Cutting, Marking and Mounting of Samples 

The material sample sheets should be selected according to the criteria in Section 3.3.  Once  this has been done, use an appropriate sample cutting system (see Section 3.2) to prepare the  samples.   

 Initially, three to five samples should be prepared.  Subsequently, cut a quantity of  samples needed to produce an acceptable uncertainty based on material variability,  cutting variability, and other testing factors.   

 Give special attention to the fit of the samples inside the sample holder; use the 

“diameter test” in Section 3.1 for the correct fit. 

 Mark the side of the samples to be placed toward the sound source.  All samples cut  from a material sample sheet should be tested with the same side toward the sound  source.  The properties of some materials are different depending which side is tested. 

 Set the correct piston position before inserting the sample into the sample holder, as  shown in Figure 5.  Inserting the sample into the holder before setting the piston  position may compress the sample or create an air space behind it.   

 Attach a piece of thin “double‐sided” tape (such as “Scotch #665 Double‐Sided Tape”) to  the piston face.  This will hold the sample to the piston. 

 Insert the sample with the marked side toward the sound source. 

 The sample should be located flush with the sample holder flange, as shown in Figure 6. 

 If the sample has a cover, it should not be larger than the sample diameter; it may be  necessary to trim the cover slightly around its circumference to prevent the cover from  bending when the sample is inserted into the sample holder. 

 Attach the sample holder to the impedance tube using the three screws supplied.  These  screws are sufficient to hold the sample holder against the impedance tube.  (Six holes  are provided for the convenience of attaching the sample holder, but only three screws  are needed.)  The screws should be spaced 120 degrees apart (every other hole) in the  sample holder flange.  Hand‐tighten the screws equally.   Do not use a wrench. 

 When properly mounted, the O‐ring located in the sample holder flange will be  compressed; a very small space may remain. 

 Do not make any changes to the piston position while the sample holder is attached to  the impedance tube; the change in pressure created by moving the piston will also  move the sample because the system is very well sealed.   

 

 If you want to create an air space behind the sample for testing purposes, remove the  sample holder, set the piston position, and insert the sample to the required position. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Setting the piston position.

Figure 6.  A correctly mounted sample.

3.5  Examples of Sound Absorption Measurement 

Four samples of 25 mm foam and four samples of 12 mm foam were prepared according to the  procedures in Sections 3.3 and 3.4.  All of these samples were cut using a rotating blade cutter  as described in Section 3.2.  Figures 7 and 8 show the SAC for each of the samples.  Figure 9  shows the averages of the samples. 

1.2

1.0

0.8

0.6

0.4

0.2

Sample 1

Sample 2

Sample 3

Sample 4

0.0

0 1000 2000 3000

Frequency (Hz)

4000 5000

Figure 7.  SAC of four "identical" samples of 25 mm foam. 

6000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0

Sample1

Sample 2

Sample 3

Sample 4

1000 2000 3000

Frequency (Hz)

4000 5000

Figure 8.  SAC of four "identical" samples of 12 mm foam. 

6000

 

Averages of Foam Samples

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0

25 mm foam

12 mm foam

1000 2000 3000

Frequency (Hz)

4000 5000

Figure 9.  Averages of four samples of 25 mm and 12 mm foam. 

6000

 

4.    MICROPHONES AND CALIBRATION 

4.1  Microphone Type and Mounting 

It  is  recommended  that  a  pair  of microphones  be  dedicated  to  SAC measurements.    The  use,  calibration, and behavior of a pair of dedicated microphones can be recorded over time to note  any  changes  in  microphone  response  or  sensitivity.    The  microphones  should  remain  in  the  microphone holders without changing their orientation (i.e., do not rotate the microphones in  their holders). 

The standards

1,2

 recommend that “pressure” (pressure response) microphones be used for SAC  testing.  Either ½ inch or ¼ inch microphones may be used.   Microphones may be either “pre‐ polarized” or externally polarized.  It is preferred to use so‐called “back‐vented” microphones  as back venting improves the phase response at low frequency.  It is not necessary to use so‐ called “phase matched” microphones because the standards require a phase calibration in any  case, as will be discussed in Section 4.2. 

One‐half inch microphones have the advantage that they may be used for testing at relatively  low sound levels compared to ¼ inch microphones.  This is because ½ inch microphones have a  nominal sensitivity of approximately 50 mV/Pa compared to 1 mV/Pa for ¼ inch microphones.  

However, for precision results above 5 kHz use ¼ inch microphones. 

For  both  ½  and  ¼  inch  microphones  sealing  is  accomplished  by  an  O‐ring  inside  of  the  microphone holder.   

The preferred method of mounting microphones is shown in Figure 10.  Using the finger or a  small tool, apply a very small amount of petroleum jelly or similar lubricant to the O‐ring inside  of the microphone holder.  This will prevent the O‐ring from being damaged by the sharp edges  on some preamplifiers.  (Almost certainly there will be some minor damage to the O‐rings, but  this  will  not  affect  the  O‐rings’  ability  to  seal  around  the  microphones.)    Also  apply  a  small  amount of lubricant to the edge of the preamplifier to help the preamplifier stretch the O‐ring  as it is pushed through the microphone holder. 

 

 

 

 

Warning:  Do not remove the protective grid from the microphone.   

For ½ inch microphones, insert the microphone from the curved surface side of the microphone  holder  as  shown  in  Figure  10.    Pull  the  connector  end  of  the  preamplifier  through  the  microphone holder until the microphone stops.  When properly installed the microphone grid  will be flush with the curved surface of the microphone holder. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Preferred method of mounting ½ inch microphones.

 

One‐quarter inch microphones are mounted in a similar way except that a brass insert is used  to  hold  the  microphone  inside  the  microphone  holder,  as  seen  in  Figure  11.    Insert  the  microphone into the brass insert, pull the connector end of the preamplifier through the brass  insert until the microphone stops, and lightly tighten the nylon set screw using a 5/64” Allen  wrench (supplied).  Apply a small amount of lubricant to the rounded end of the brass insert  and carefully push the insert into the microphone holder until it stops. 

Do not over‐tighten set screw

 

 

Figure 11.  Preferred method of mounting ¼ inch microphones.

 

10 

 

 

4.2  Calibration of Microphones 

It  is  not  necessary  to  perform  an  amplitude  calibration  of  the  microphones  using  a  sound  calibrator  or  pistonphone  device.    However,  the  standards

1,2

  require  a  relative  phase  and  amplitude calibration of the microphone pair.  This procedure is described in some detail in the  standards and is summarized here.   

 

Insert  the  sample  holders/microphones  into  the  impedance  tube.    It  is  suggested  that  the  microphones be identified in some way so that the same microphone/preamplifier combination  always  occupies  the  same  position  in  the  tube  when  testing  takes  place.    The  microphone  position  nearer  to  the  sound  source  is  always  designated  Position  1,  and  the  microphone  position  nearer  to  the  sample  is  always  designated  Position  2.    This  is  called  the  “Standard 

 

Position” of the microphones/preamplifiers. 

Select  a  very  absorptive  material  (such  as  25  mm  foam)  and  insert  it  into  the  sample  holder.  

Attach the sample holder to the impedance tube.  Perform a frequency response function (FRF)  measurement with the microphones in the Standard Position.  Interchange the positions of the  microphone holders so that the microphone holder from Position 2 is now located in Position 1,  and vice versa.  Perform a second FRF measurement.  The software will divide the two FRF’s to  yield the microphone calibration function H c

.  Return the microphone holders to the Standard 

Position. 

 

Do  not  rotate  the  microphones  in  their  holders  or  rotate  the  holders  after  calibration  is  finished.  This is because a microphone has an “acoustic” center that may not coincide with its  geometric center.  (To correct for the microphone acoustic centers, please refer to Appendix 3.) 

 

It  is  recommended  that  the  calibration  be  performed  at  the  beginning  of  each  series  of  SAC  tests  on  a  given  day.    A  copy  of  the  microphone  calibration  H c

  should  be  kept  in  order  to  observe the behavior of the microphones over time. 

5.    DEVELOPING A QUALITY TESTING PROGRAM 

 

There  is  no  “reference”  test  sample  with  which  to  compare  one’s  SAC  results.    To  develop  confidences in SAC testing it is recommended that the user (1) develop a detailed test protocol  that is followed whenever testing is conducted, (2) maintain records of microphone calibration  functions H c

, and (3) select a group of “reference” samples with which to compare results from  time‐to‐time.   

 

The reference samples should be materials that are typically bought (or sold) by the company  on a regular basis.  The samples should be prepared in a rigorous way as described in Sections 

3.3 and 3.4.  Approximately five samples of each of several materials should be prepared and 

11 

  tested.  After testing, the samples should be kept in a clean, safe place and not exposed to heat  or sunlight.  Protect the samples so they are not crushed or misshapen during storage.   

 

All  samples  have  a  “shelf  life”  so  they  must  be  replaced  periodically,  such  as  every  12‐18  months depending on sample material. 

6.    PERIODIC MAINTENANCE OF SPECTRONICS IMPEDANCE TUBE 

Very little periodic maintenance is required to keep the impedance tube in good working order.  

If  it  is  noticed  that  the  microphone  holders  become  difficult  to  remove  or  insert  into  the  impedance  tube,  wipe  with  a  cloth  the  interior  surfaces  of  the  impedance  tube  where  the  microphone  holders  are  inserted  and  coat  these  surfaces  with  a  very  small  amount  of  petroleum jelly.  Insert the microphone holders and move them up and down until they move  smoothly.  If the microphone holders are too loose, remove them and wipe excess petroleum  jelly from the surfaces. 

If  the  piston  becomes  difficult  to  move  in  the  sample  holder,  remove  the  piston  by  first  removing the black knob at the end of the piston shaft and pushing the shaft through the shaft  collar  at  the  rear  of  the  sample  holder.    At  this  point  you  should  be  able  to  remove  the  piston/shaft  from  the  front  of  the  sample  holder  where  the  sample  holder  attaches  to  the  impedance tube. 

 

7.    REFERENCES 

1. Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes – 

Part 2:  Transfer‐function method; ISO 10534‐2:1998, International Organization for 

Standardization, Geneva. 

2. Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two 

Microphones and a Digital Frequency Analysis System; ASTM E1050‐10, American National 

Standards Institute, New York City. 

3. Impedance Tube Specimen Preparation and Mounting Issues, Stanley, Dan R., Proceedings

Internoise 2012, New York City, 19‐22 August, 2012. 

 

12 

APPENDIX 1:  Sensitivity of Sound Absorption Coefficient to Environmental  and Physical Parameters 

The  primary  environmental  and  physical  parameters  for  impedance  tube  measurements  are  shown below.  These include the ambient temperature T, the ambient pressure P, the distances  x

1

  and  x

2

  from  the  sample  to  the  microphones,  the  microphone  spacing  s,  and  the  tube  diameter d. 

 

 

 

 

 

 

The sound absorption coefficient depends only on the microphone spacing s and the ambient  temperature  T.    The  acoustical  impedance  (z)  depends  on  the  ambient  temperature  and  ambient  pressure  P  (unless  z  is  normalized  by  the  characteristic  impedance)  as  well  as  the  distance  x

1

  (or  x

2

)  and  the  spacing  s.    All  measured  quantities  are  independent  of  the 

impedance  tube  diameter  d.    Figures  A1‐A4  show  the  sensitivity  of  T  and  s  on  the  sound  absorption coefficient for two thicknesses of foam.  

Temperature Sensitivity, 12 mm Foam

0.60

0.50

0.40

0.30

0.20

0.10

0.00

1.00

0.90

0.80

0.70

0

T = 20 C; mic. Spacing = 29.21 mm

T= 15 C; mic. Spacing = 29.21 mm

T = 25 C; mic. Spacing = 29.21 mm

1000 2000 3000

Frequency (Hz)

4000 5000

Figure A1.  Temperature sensitivity of 12 mm foam. 

13 

6000

 

 

 

 

 

 

Microphone Spacing Sensitivity, 12 mm Foam

0.60

0.50

0.40

0.30

0.20

0.10

0.00

1.00

0.90

0.80

0.70

T = 20 C; mic. Spacing = 29.21 mm

T = 20 C; mic. Spacing = 28.91 mm

T = 20 C; mic. Spacing = 29.51 mm

0 1000 2000 3000

Frequency (Hz)

4000 5000

Figure A2.  Microphone spacing sensitivity of 12 mm foam. 

6000

 

Temperature Sensitivity, 25 mm Foam

1.20

1.00

0.80

0.60

0.40

0.20

0.00

0

T = 20 C; mic. spacing = 29.21 mm

T = 15 C; mic. Spacing = 29.21 mm

T = 25 C; mic. Spacing = 29.21 mm

1000 2000 3000

Frequency (Hz)

4000 5000

Figure A3.  Temperature sensitivity of 25 mm foam. 

14 

6000

 

 

Microphone Spacing Sensitivity, 25 mm Foam

1.20

1.00

0.80

0.60

 

 

 

 

 

0.40

T = 20 C; mic. spacing = 29.21 mm

T = 20 C; mic. Spacing = 28.91 mm

0.20

T = 20 C; mic. Spacing = 29.51 mm

0.00

0 1000 2000 3000

Frequency (Hz)

4000 5000 6000

 

 

Figure A4.  Microphone spacing sensitivity of 25 mm foam. 

From  Figures  A1‐A4  it  may  be  seen  that  the  uncertainty  increases  above  5  kHz  due  to  uncertainty in the ambient temperature and/or microphones spacing.  However, the sensitivity  to microphone spacing is much greater than that due to ambient temperature.   

It  should  be  possible  to  measure  the  ambient  temperature  to  an  uncertainty  less  than  one  degree Celsius, so that the uncertainty due to ambient temperature is quite small and can be  neglected in most cases. 

The physical microphone spacing s is known with high certainty to be 29.21 mm.  However, the  uncertainty due to microphone spacing is complicated by the fact that the acoustic center of a  microphone does not coincide with its geometric center.  This is explained further in Appendix 

3.  To reduce the uncertainty due to microphone spacing above 5 kHz, it is necessary in most  cases to replace s with its value based on knowledge of the acoustic centers of the microphones  used in the SAC measurement. 

15 

APPENDIX 2:  Frequency Limits of the Spectronics Impedance Tube 

The  Spectronics  impedance  tube  may  be  used  to  obtain  SAC  data  from  50  Hz  to  5650  Hz.  

However,  the  useful  frequency  range  will  be  somewhat  less  depending  on  the  uncertainty  in  the SAC data that the user is willing to accept and the additional calibration (see Appendix 3)  that  the  user  is  willing  to  conduct.  The  following  examples  will  illustrate  the  limits  of  the  impedance tube. 

Low Frequency Uncertainty 

The uncertainty in Region 1 of Figure 1 manifests itself as a random error superimposed on the  mean SAC result, as seen in the figure below for a sample of 25 mm foam.   The results in this  figure  were  obtained  using  microphone  spacings  of  29.2  and  76.2  mm.    Except  for  a  small  amount of random error on the 29.2 mm data, the results are identical for both spacings.  If the  random error is undesirable, a frequency smoothing of the SAC data can be performed.  

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0

Microphone spacing = 29.2 mm

Microphone spacing = 76.2 mm

100 200

Frequency (Hz)

300 400 500

 

Figure A5. Low‐frequency response of impedance tube for two microphone spacings. 

High Frequency Uncertainty 

 

The uncertainty in Region 3 is due to the proximity of the measured frequency to the maximum  frequency  of  the  impedance  tube.    The  maximum  frequency  is  determined  by  the  first  cross  mode  frequency  of  the  impedance  tube  or  by  the  limitation  due  to  the  microphone  spacing,  whichever is smaller.  Table A1 shows these frequencies for the Spectronics’ tube at 20° C. 

16 

 

Table A1.  Maximum Frequency of Tube as Recommended by Standards and from Theory. 

Standard (or Theory) 

ISO 10534‐2 

ASTM E‐1050 

Theory 

Based on tube diameter  Based on microphone spacing

5717 Hz 

5776 Hz 

5776 Hz 

5284 Hz 

4697 Hz 

5871 Hz 

The  standards

1,2

  are  somewhat  conservative  in  their  recommendation  of  a  maximum  frequency, especially ASTM E‐1050, as seen from Table A1. 

The  standards

  also  point  out  that  there  is  no  “reference”  absorption  material  with  which  to  compare  one’s  results.    However,  there  is  another  option  just  as  effective:    measure  the  acoustical impedance of a closed, rigid tube and compare it to acoustic theory.  Both the sound  absorption coefficient and the acoustical impedance are calculated from the pressure reflection  coefficient, so we would expect one to be a good substitute for the other.  A measurement of  the acoustical impedance of a closed tube will show the frequency limits of the impedance tube  and serve as a check on the effect of parameters such as ambient temperature and the location  of the microphones.  The idea is shown in Figure A6. 

 

 

Figure A6. Acoustical Impedance of a closed tube of length L. 

The normalized acoustical impedance of a closed, rigid tube of length L is z = ‐jcot(kL) where k is  the  wave  number  2πf/cf  is  the  frequency  in  hertz,  and  c  is  the  speed  of  sound.    This  experiment must be done with a careful measurement of L, an accurate value of the ambient  temperature  with  which  to  determine  the  speed  of  sound,  and  correction  for  microphone  acoustic centers (see Appendix 3). 

17 

Figure  A7  shows  the  results  of  the  closed  tube  test  for  the  34.8  mm  Spectronics  impedance  tube  where  L  is  approximately  51  mm.    Figure  A7  shows  good  agreement  between  the  theoretical impedance and the impedance measured by the impedance tube.   

 

The  upper  limit  of  the  impedance  tube  occurs at  approximately  5,700  Hz  which is due  to  the  onset of the first tube cross mode.  The frequency of this mode at 20° C is  

f

max

0 .

586

c d

5776 Hz

As the frequency approaches f max

 the uncertainty in the SAC results will increase as can be seen  in many of the examples in this report. 

 

‐3

‐4

0

‐1

0

‐2

4

3

2

1

Measured

Theory:  ‐ cot(kL)

1000 2000 3000 4000 5000 6000

5,650 Hz 

Frequency (Hz)

 

Figure A7. Acoustical impedance of a closed tube. 

Uncertainty Near Resonances 

Like all acoustic systems, sound absorbing materials exhibit acoustic/structural resonances.  The  resonance  frequencies  depend  on  the  properties  of  the  material  (e.g.,  flow  resistivity)  and  material thickness and occur where the imaginary part (reactance) of the acoustical impedance  is zero: 

0

 

The  acoustical  impedance  is  part  of  the  SAC  measurement  procedure.    Figure  A8  shows  the  acoustical impedance of the 25 mm foam shown in Figure 1.  Figure A8 shows two resonance  frequencies  between  1‐2  kHz  that  are  responsible  for  the  peak  in  the  SAC  in  Figure  1.    The 

18 

  location of these resonance frequencies and indeed the position of the entire reactance curve  in Figure A8 is quite sensitive to the factors mentioned above as well as to sample cutting and  preparation.  This “resonance” sensitivity will increase the uncertainty in SAC measurements of  such samples. 

6.0

4.0

2.0

‐6.0

‐8.0

‐10.0

0.0

‐2.0

0

‐4.0

1000 2000 3000

Reactance

Resistance

Frequency (Hz)

4000 5000 6000

 

Figure A8. Acoustical impedance of a 25 mm foam sample

.

 

 

 

19 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 3:  Measurement of Microphone Acoustic Centers 

To  reduce  the  uncertainty  of  sound  absorption  measurements  at  high  frequency  it  may  be  necessary to know the spacing between the acoustic centers of the microphones.  This spacing  should  be  used  in  place  of  the  “geometric”  spacing  s  to  determine  more  precisely  the  sound  absorption coefficient.  The following is a procedure for determining the microphone acoustic  centers. 

1. Select a frequency range 0 – 2 kHz and at least 1600 measurement points. 

2. Measure the microphone calibration function H c

 for this frequency range using a highly  absorptive sample such as 25 mm foam. 

3. Determine  the  frequency  response  function  (FRF)  between  the  microphones  with  no 

sample  and  with  the  backing  piston  positioned  flush  with  the  flange  of  the  sample 

 

 

 

 

 

 

 

  holder, as shown in Figure A9 below. 

 

 

 

 

 

 

 

Figure A9.  Determining the microphone acoustic centers. 

4. Correct the FRF of Step 3 by dividing by H c

 to obtain a result similar to Figure A10. 

Figure A10.  Corrected FRF (magnitude).

20 

 

5. Obtain the distance s between the acoustic centers using the following equations: 

 

250

1 1

mm 

 

 

331.6 1

273

m/s 

 

Example: 

 T = 20 C  

f

1

 = 1055.6 Hz 

f

2

= 1657.4 Hz 

331.6 1

20

273

343.53 m/s 

250 · 343.53

1

1055.6

1

1657.4

29.54 mm 

6. Use 29.54 mm in place of the geometric spacing 29.21 mm.   See example below. 

 

 

 

 

 

 

 

 

 

 

Correction for Microphone Acoustic Centers

0.80

0.70

0.60

After correction, s = 29.54 mm

Before correction, s = 29.21 mm

0.50

0.40

0.30

0.20

0.10

0.00

0 1000 2000 3000

Frequency (Hz)

4000 5000 6000

Figure A11.  SAC of 12 mm foam corrected for microphone acoustic centers.

 

 

Note:  changing the orientation of the microphones in their holders or rotating the holders will require  re‐measurement of the microphone acoustic centers. 

21 

 

 

APPENDIX 4:  “Impedance Tube Specimen Preparation and Mounting Issues” by 

Dan R. Stanley, Proceedings, Internoise 2012 

 

22 

Impedance Tube Specimen Preparation And Mounting Issues

Dan R. Stanley a)

E-A-R

TM

Thermal/Acoustic Systems

Aearo technologies LLC, a 3M Company

Indianapolis, IN 46268

1 INTRODUCTION

The collection of impedance data by ASTM E1050

1

to characterize the acoustic absorption of a material is a process that has been precisely addressed with regards to the theory, mathematics, and physical apparatus. In actual laboratory practice, a critical part of obtaining reliable measurement data rests with the preparation and fitting of measurement specimens in an impedance tube test cell. This is a component of the process that is typically either sketchy, or largely undefined in references on the subject of impedance measurement. The quality of a test specimen and the way that it fits into a test cell can spell the difference between very good and poor measurement results. This paper will outline and address a range of issues and concerns that revolve around specimen selection, preparation, and mounting to insure accurate test results.

2 MATERIAL SAMPLE SHEET SELECTION

Material samples used to cut out impedance test specimens should meet the following criteria where ever possible.

1. Material sample sheets should have the prescribed thickness.

2. Material samples should have even thickness over the cutting area.

3. Material samples should be without warps, bends, creases, wrinkles, or blemishes.

4. Material samples should be free of moisture, dirt, or other foreign materials on the surface, or internal to the sheet.

5. Material samples with a facing present should have no unwanted perforations or tears in the facing material, and preferably no wrinkles.

________________________ a) email: [email protected]

6. Material samples should meet any engineering specified chemical and physical standards that apply.

3 TEST SPECIMEN CUTTING

The cutting of test specimens is a critically important step in obtaining good, consistent test results. A variety of cutting methods can be used, each with particular advantages and disadvantages. There are three cutting systems that are well suited for obtaining specimens for impedance testing, as follows:

1. Rotating circular steel blades mounted in a drill press or milling machine.

2. High pressure water jet stream with computer numeric control of cutting.

3. Circular die blades used with a stamping press.

Rotating circular blades work best with smaller sample number runs for most materials.

With good blades and proper technique, samples are usually of very good to excellent geometry.

Of the three cutting approaches, the rotating blade system is the most cost effective to obtaining good test specimens due to the cost of a set of blades and a drill press being considerably lower than that of a water jet or stamping press. This approach is not a good choice for some items with a tough, fibrous nature, or a flimsy nature. Materials cut by this process must be carefully stabilized on a faced cutting base to insure that friction does not rip the material apart when cutting thicker samples. The process is also labor intensive due to a need for fairly frequent honing of the edge of the blade. And there is no way to make very fine specimen diameter adjustments within a standard test diameter for unusual or variable material characteristics.

To be effective, a rotating blade must be very smooth, true, accurate, and sharp edged.

Such a blade would be of a steel alloy with good strength and ease of sharpening. It would also have a wall thickness as thin as reasonably possible, to minimize friction with the sample material during the cutting process. A good blade will have a tapering wall profile with a maximum thickness of no more that 0.045” to 0.050”, concentricity of 0.002” or less, and a very high surface polish inside and out. The front edge will also be thin and sharp. Photos of a high performance cutting blade are shown in Figures 1 and 2.

The water jet cutting system works best for larger sample cutting runs, where the labor time with circular blade cutting may be prohibitive. The O.D. of a sample material can easily be precisely adjusted with this method for special test or material circumstances. A fine water jet operating with a slow feed rate can produce excellent test samples from most materials in a fairly short period. This approach also can have problems cutting some materials of a tough, fibrous nature, or a very flimsy nature. The sides of specimens over 1 inch thick can sometimes become slightly ragged due to a loss of precision in the water jet when making deeper cuts. Also, time must be allotted for the specimens to dry, assuming that post cut shrinkage of the material is not a problem for test cell fit.

The die blade / stamping press method is used for materials that are unsuitable for the first two methods. This includes materials of a tough fibrous, or a very flimsy nature. A sharp die blade can produce good specimens from such materials. The drawbacks include the possibility of

concave edges on some materials, particularly some flexible foams, and a possible lack of precision in controlling the O.D. compared with the other two methods. This method is frequently very good for cutting low density fiberglass materials of reasonable thickness, where edge shape distortion is less of a problem.

4 TEST SPECIMEN CRITERIA

The test specimens that are cut from a material sample sheet should meet the following specifications:

1. The specimen geometry should be that of a uniform concentric cylinder.

2. The front and rear faces of a specimen should be as flat and parallel as possible.

3. The test specimen should have very straight, smooth sides without any rough edges or protrusions.

4. Test specimens with a facing should be cut such that the facing does not in any way protrude beyond the edge of the specimen body.

5. Test specimens with an adhesive backing should not have any protrusions of the adhesive that will hinder a very smooth insertion of the specimen into the test cell.

6. The specimen should have a diameter such that the sample fits into the test cell with only the slightest physical drag. Specimens that fit tightly or loosely can tend to produce errors or inconsistencies in measurement, particularly with facings. The ideal specimen would have only enough friction in the cell to just avoid moving if the specimen holder were turned upside down.

Figure 3 shows a comparison between die punching and rotating blade cutting of the same 1 inch acoustic foam material, illustrating the undesirable geometry issues that can occur with a poorly chosen and applied cutting technique.

5 TEST SPECIMEN MOUNTING

The actual mounting of test specimens in the test cell is a very important step in obtaining good test results. Most impedance test cells are round, and have an adjustable rear plate to accommodate various thicknesses. This plate should be adjusted to a level slightly deeper than the specimen height before insertion of the specimen. Test samples usually are either plain, or pressure sensitive adhesive backed. If a rear adhesive is present, then a light coat of WD40 (or similar) on the rear cell plate will make it easier to remove the sample from the back plate after testing. With either case, there is a simple method of inserting a specimen into the test cell.

For insertion, the cell tube should be vertical, and the specimen should be slowly and gently pushed down into the cell, allowing the specimen to self center in the circular cell as it approaches the back plate. When the specimen contacts the rear plate, only a slight amount of pressure should be put on the face of the specimen to insure that there are no rear air gaps, and that specimens with a rear adhesive have ample adhesion to the plate. When the sample is

properly placed in the cell, the back plate can be moved forward to a point where the specimen face is flush with the front cell lip to complete the mounting. When the mounting is completed, the way that the sample rests in the cell should be examined. The sample should have the following characteristics as it sits in the cell:

1. The surface, or face, should be uniformly even and flush with the front cell lip.

2. In the case of a material with a face that has topographical variations (such as a waffle pattern), the highest point of the sample should be flush with the cell lip.

3. The front surface, or facing, should have a relatively even, consistent, and very small gap

(at most) with the cell wall around it’s circumference.

4. If a film facing is present, it should not have any wrinkles that protrude or interact with the cell wall, and it should not be convex or concave in any way.

6 SPECIAL MOUNTING ISSUES

While most materials can be successfully mounted by using the previously detailed steps, there may be special situations due to several issues. Various materials will usually cut slightly differently from one to another, and final diameters tend to vary very slightly. There may also be specimen shrinkage issues, and rates of, which vary from material to material. The best way to deal with shrinkage (unless it is immediate) is to test samples as soon as possible after cutting. In cases of unavoidable shrinkage, gaps between the cell wall and the face of the specimen may exist. While the introduction of a foreign material to the face of a test specimen is not desirable, there are times where the use of petroleum jelly may be called for to fill edge gaps around the circumference of the specimen. The jelly is best applied with the use of a small plastic hypodermic needle. In this way, a very small, narrow bead of the material can be applied to the edge gap to seal the air path between the specimen and the cell wall.

7 PREPARATION & MOUNTING VERIFICATION

A good indicator of quality preparation, correct diameter, and good mounting lies with the resulting absorption curves of groups of specimens that have been cut from a small area of a material. If the material is relatively uniform, the resulting test curves should be closely comparable. If there is a significant outlying test result, there may be an anomaly with the specimen, or the way that it was mounted in the test cell. Figure 4 shows the test results of a series of five 99mm diameter 25.4mm (1.0 inch) thick acoustic foam samples that verify proper preparation, size, and mounting technique. All of the curves are relatively smooth and regular, and without significant response anomalies. Averaging of groups of curves will give results having a strong degree of measurement confidence. How measurement variation can begin to appear when even slightly non- optimal diameters or cutting techniques are used on the same material is shown in Figure 5.

While the use of an impedance tube system to measure acoustic absorption is not an extremely precise and repeatable process due to unavoidable variations of specimen cutting and cell fit, the disciplined use of the guidelines stated in this paper will help to insure that test results

maintain a consistent level of accuracy and validity. The experience gained with repeated preparation and testing will also contribute to a better feel for more subtle aspects of preparation and specimen fitting for testing.

8 REFERENCES

1. ASTM E1050-10, Standard Test Method for Impedance and Absorption of Acoustical

Materials Using A Tube, Two Microphones and a Digital Frequency Analysis System,

ASTM International, December 2010

Fig. 1 - Cutting end of 29mm circular steel blade with plunger tool.

Fig. 2 - Circular steel blade and center mounted specimen removal plunger.

Fig. 3 - Specimen geometry - die blade cut on the left, and rotating blade cut on the right. Note

the curved vertical edges of the die blade sample, and the slightly off axis profile.

Fig. 4 - Absorption response of a group of five nominally 99mm diameter foam samples that

were cut by the water jet technique.

Fig. 5 - Absorption response of a group of five nominally 99mm diameter foam samples that

were cut by the water jet technique.

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement

Table of contents