PIC16C7X - semic.sk
PIC16C7X
8-Bit CMOS Microcontrollers with A/D Converter
Devices included in this data sheet:
• PIC16C72
• PIC16C74A
• PIC16C73
• PIC16C76
• PIC16C73A
• PIC16C77
• Wide operating voltage range: 2.5V to 6.0V
• High Sink/Source Current 25/25 mA
• Commercial, Industrial and Extended temperature
ranges
• Low-power consumption:
• < 2 mA @ 5V, 4 MHz
• 15 µA typical @ 3V, 32 kHz
• < 1 µA typical standby current
• PIC16C74
PIC16C7X Microcontroller Core Features:
• High-performance RISC CPU
• Only 35 single word instructions to learn
• All single cycle instructions except for program
branches which are two cycle
• Operating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle
• Up to 8K x 14 words of Program Memory,
up to 368 x 8 bytes of Data Memory (RAM)
• Interrupt capability
• Eight level deep hardware stack
• Direct, indirect, and relative addressing modes
• Power-on Reset (POR)
• Power-up Timer (PWRT) and
Oscillator Start-up Timer (OST)
• Watchdog Timer (WDT) with its own on-chip RC
oscillator for reliable operation
• Programmable code-protection
• Power saving SLEEP mode
• Selectable oscillator options
• Low-power, high-speed CMOS EPROM
technology
• Fully static design
PIC16C7X Features
PIC16C7X Peripheral Features:
• Timer0: 8-bit timer/counter with 8-bit prescaler
• Timer1: 16-bit timer/counter with prescaler,
can be incremented during sleep via external
crystal/clock
• Timer2: 8-bit timer/counter with 8-bit period
register, prescaler and postscaler
• Capture, Compare, PWM module(s)
• Capture is 16-bit, max. resolution is 12.5 ns,
Compare is 16-bit, max. resolution is 200 ns,
PWM max. resolution is 10-bit
• 8-bit multichannel analog-to-digital converter
• Synchronous Serial Port (SSP) with
SPI and I2C
• Universal Synchronous Asynchronous Receiver
Transmitter (USART/SCI)
• Parallel Slave Port (PSP) 8-bits wide, with
external RD, WR and CS controls
• Brown-out detection circuitry for
Brown-out Reset (BOR)
72
73
73A
74
74A
76
77
Program Memory (EPROM) x 14
2K
4K
4K
4K
4K
8K
8K
Data Memory (Bytes) x 8
128
192
192
192
192
368
368
I/O Pins
22
22
22
33
33
22
33
Parallel Slave Port
—
—
—
Yes
Yes
—
Yes
Capture/Compare/PWM Modules
1
2
2
2
2
2
2
Timer Modules
3
3
3
3
3
3
3
A/D Channels
5
5
5
8
8
5
8
SPI/I2C
SPI/I2C,
USART
SPI/I2C,
USART
SPI/I2C,
USART
SPI/I2C,
USART
SPI/I2C,
USART
SPI/I2C,
USART
In-Circuit Serial Programming
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Brown-out Reset
Yes
—
Yes
—
Yes
Yes
Yes
Interrupt Sources
8
11
11
12
12
11
12
Serial Communication
 1997 Microchip Technology Inc.
DS30390E-page 1
PIC16C7X
Pin Diagrams
SDIP, SOIC, Windowed Side Brazed Ceramic
SSOP
•1
28
RB7
MCLR/VPP
•1
28
RB7
RA0/AN0
2
27
RB6
RA0/AN0
2
27
RB6
RA1/AN1
3
26
RB5
RA1/AN1
3
26
RB5
RA2/AN2
4
25
RB4
RA2/AN2
4
25
RB4
RA3/AN3/VREF
5
24
RB3
RA3/AN3/VREF
5
24
RB3
RA4/T0CKI
6
23
RB2
RA4/T0CKI
6
23
RB2
RA5/SS/AN4
VSS
7
8
22
21
RB1
RB0/INT
RA5/SS/AN4
VSS
7
8
22
21
RB1
RB0/INT
OSC1/CLKIN
9
20
VDD
OSC1/CLKIN
9
20
VDD
OSC2/CLKOUT
10
19
VSS
OSC2/CLKOUT
10
19
VSS
RC0/T1OSO/T1CKI
11
18
RC7
RC0/T1OSO/T1CKI
11
18
RC7
RC1/T1OSI
12
17
RC6
RC1/T1OSI
12
17
RC6
RC2/CCP1
13
16
RC5/SDO
RC2/CCP1
13
16
RC5/SDO
RC3/SCK/SCL
14
15
RC4/SDI/SDA
RC3/SCK/SCL
14
15
RC4/SDI/SDA
MCLR/VPP
PIC16C72
PIC16C72
SDIP, SOIC, Windowed Side Brazed Ceramic
•1
28
RB7
RA0/AN0
2
27
RB6
RA1/AN1
3
26
RB5
MCLR/VPP
RA2/AN2
4
25
RB4
RA3/AN3/VREF
5
24
RB3
RA4/T0CKI
6
23
RB2
RA5/SS/AN4
VSS
7
8
22
21
RB1
RB0/INT
OSC1/CLKIN
9
20
VDD
OSC2/CLKOUT
10
19
VSS
RC0/T1OSO/T1CKI
11
18
RC7/RX/DT
RC1/T1OSI/CCP2
12
17
RC6/TX/CK
RC2/CCP1
13
16
RC5/SDO
RC3/SCK/SCL
14
15
RC4/SDI/SDA
PIC16C73
PIC16C73A
PIC16C76
DS30390E-page 2
PDIP, Windowed CERDIP
MCLR/VPP
RA0/AN0
RA1/AN1
RA2/AN2
RA3/AN3/VREF
RA4/T0CKI
RA5/SS/AN4
RE0/RD/AN5
RE1/WR/AN6
RE2/CS/AN7
VDD
VSS
OSC1/CLKIN
OSC2/CLKOUT
RC0/T1OSO/T1CKI
RC1/T1OSI/CCP2
RC2/CCP1
RC3/SCK/SCL
RD0/PSP0
RD1/PSP1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0/INT
VDD
VSS
RD7/PSP7
RD6/PSP6
RD5/PSP5
RD4/PSP4
RC7/RX/DT
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
RD3/PSP3
RD2/PSP2
PIC16C74
PIC16C74A
PIC16C77
 1997 Microchip Technology Inc.
PIC16C7X
1
2
3
4
5
6
7
8
9
10
11
PIC16C74
33
32
31
30
29
28
27
26
25
24
23
NC
RC0/T1OSO/T1CKI
OSC2/CLKOUT
OSC1/CLKIN
VSS
VDD
RE2/CS/AN7
RE1/WR/AN6
RE0/RD/AN5
RA5/SS/AN4
RA4/T0CKI
MQFP
TQFP
RC7/RX/DT
RD4/PSP4
RD5/PSP5
RD6/PSP6
RD7/PSP7
VSS
VDD
RB0/INT
RB1
RB2
RB3
1
2
3
4
5
6
7
8
9
10
11
PIC16C74A
PIC16C77
12
13
14
15
16
17
18
19
20
21
22
RB3
RB2
RB1
RB0/INT
VDD
VSS
RD7/PSP7
RD6/PSP6
RD5/PSP5
RD4/PSP4
RC7/RX/DT
NC
NC
RB4
RB5
RB6
RB7
MCLR/VPP
RA0/AN0
RA1/AN1
RA2/AN2
RA3/AN3/VREF
PIC16C74
PIC16C74A
PIC16C77
39
38
37
36
35
34
33
32
31
30
29
18
19
20
21
22
23
24
25
26
27
28
7
8
9
10
11
12
13
14
15
16
17
RC1/T1OSI/CCP2
RC2/CCP1
RC3/SCK/SCL
RD0/PSP0
RD1/PSP1
RD2/PSP2
RD3/PSP3
RC4/SDI/SDA
RC5/SDO
RC6/TX/CK
NC
RA4/T0CKI
RA5/SS/AN4
RE0/RD/AN5
RE1/WR/AN6
RE2/CS/AN7
VDD
VSS
OSC1/CLKIN
OSC2/CLKOUT
RC0/T1OSO/T1CKI
NC
44
43
42
41
40
39
38
37
36
35
34
6
5
4
3
2
1
44
43
42
41
40
PLCC
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
RD3/PSP3
RD2/PSP2
RD1/PSP1
RD0/PSP0
RC3/SCK/SCL
RC2/CCP1
RC1/T1OSI/CCP2
NC
RA3/AN3/VREF
RA2/AN2
RA1/AN1
RA0/AN0
MCLR/VPP
NC
RB7
RB6
RB5
RB4
NC
NC
NC
RB4
RB5
RB6
RB7
MCLR/VPP
RA0/AN0
RA1/AN1
RA2/AN2
RA3/AN3/VREF
12
13
14
15
16
17
18
19
20
21
22
RC7/RX/DT
RD4/PSP4
RD5/PSP5
RD6/PSP6
RD7/PSP7
VSS
VDD
RB0/INT
RB1
RB2
RB3
44
43
42
41
40
39
38
37
36
35
34
MQFP
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
RD3/PSP3
RD2/PSP2
RD1/PSP1
RD0/PSP0
RC3/SCK/SCL
RC2/CCP1
RC1/T1OSI/CCP2
NC
Pin Diagrams (Cont.’d)
 1997 Microchip Technology Inc.
33
32
31
30
29
28
27
26
25
24
23
NC
RC0/T1OSO/T1CKI
OSC2/CLKOUT
OSC1/CLKIN
VSS
VDD
RE2/CS/AN7
RE1/WR/AN6
RE0/RD/AN5
RA5/SS/AN4
RA4/T0CKI
DS30390E-page 3
PIC16C7X
1.0
GENERAL DESCRIPTION
The PIC16C7X is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers with
integrated analog-to-digital (A/D) converters, in the
PIC16CXX mid-range family.
All PIC16/17 microcontrollers employ an advanced
RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack,
and multiple internal and external interrupt sources.
The separate instruction and data buses of the Harvard
architecture allow a 14-bit wide instruction word with
the separate 8-bit wide data. The two stage instruction
pipeline allows all instructions to execute in a single
cycle, except for program branches which require two
cycles. A total of 35 instructions (reduced instruction
set) are available. Additionally, a large register set gives
some of the architectural innovations used to achieve a
very high performance.
PIC16CXX microcontrollers typically achieve a 2:1
code compression and a 4:1 speed improvement over
other 8-bit microcontrollers in their class.
The PIC16C72 has 128 bytes of RAM and 22 I/O pins.
In addition several peripheral features are available
including: three timer/counters, one Capture/Compare/
PWM module and one serial port. The Synchronous
Serial Port can be configured as either a 3-wire Serial
Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I 2C) bus. Also a 5-channel high-speed
8-bit A/D is provided. The 8-bit resolution is ideally
suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.
The PIC16C73/73A devices have 192 bytes of RAM,
while the PIC16C76 has 368 byes of RAM. Each device
has 22 I/O pins. In addition, several peripheral features
are available including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The
Synchronous Serial Port can be configured as either a
3-wire Serial Peripheral Interface (SPI) or the two-wire
Inter-Integrated Circuit (I 2C) bus. The Universal Synchronous
Asynchronous
Receiver
Transmitter
(USART) is also known as the Serial Communications
Interface or SCI. Also a 5-channel high-speed 8-bit A/
D is provided.The 8-bit resolution is ideally suited for
applications requiring low-cost analog interface, e.g.
thermostat control, pressure sensing, etc.
The PIC16C74/74A devices have 192 bytes of RAM,
while the PIC16C77 has 368 bytes of RAM. Each
device has 33 I/O pins. In addition several peripheral
features are available including: three timer/counters,
two Capture/Compare/PWM modules and two serial
ports. The Synchronous Serial Port can be configured
as either a 3-wire Serial Peripheral Interface (SPI) or
the two-wire Inter-Integrated Circuit (I2C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also known as the Serial
Communications Interface or SCI. An 8-bit Parallel
Slave Port is provided. Also an 8-channel high-speed
 1997 Microchip Technology Inc.
8-bit A/D is provided. The 8-bit resolution is ideally
suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.
The PIC16C7X family has special features to reduce
external components, thus reducing cost, enhancing
system reliability and reducing power consumption.
There are four oscillator options, of which the single pin
RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard
crystal, and the HS is for High Speed crystals. The
SLEEP (power-down) feature provides a power saving
mode. The user can wake up the chip from SLEEP
through several external and internal interrupts and
resets.
A highly reliable Watchdog Timer with its own on-chip
RC oscillator provides protection against software lockup.
A UV erasable CERDIP packaged version is ideal for
code development while the cost-effective One-TimeProgrammable (OTP) version is suitable for production
in any volume.
The PIC16C7X family fits perfectly in applications ranging from security and remote sensors to appliance control and automotive. The EPROM technology makes
customization of application programs (transmitter
codes, motor speeds, receiver frequencies, etc.)
extremely fast and convenient. The small footprint
packages make this microcontroller series perfect for
all applications with space limitations. Low cost, low
power, high performance, ease of use and I/O flexibility
make the PIC16C7X very versatile even in areas where
no microcontroller use has been considered before
(e.g. timer functions, serial communication, capture
and compare, PWM functions and coprocessor applications).
1.1
Family and Upward Compatibility
Users familiar with the PIC16C5X microcontroller family will realize that this is an enhanced version of the
PIC16C5X architecture. Please refer to Appendix A for
a detailed list of enhancements. Code written for the
PIC16C5X can be easily ported to the PIC16CXX family of devices (Appendix B).
1.2
Development Support
PIC16C7X devices are supported by the complete line
of Microchip Development tools.
Please refer to Section 16.0 for more details about
Microchip’s development tools.
DS30390E-page 5
PIC16C7X
TABLE 1-1:
PIC16C7XX FAMILY OF DEVCES
PIC16C710
PIC16C71
PIC16C711
PIC16C715
PIC16C72
PIC16CR72(1)
Maximum Frequency
of Operation (MHz)
20
20
20
20
20
20
EPROM Program Memory
(x14 words)
512
1K
1K
2K
2K
—
ROM Program Memory
(14K words)
—
—
—
—
—
2K
Data Memory (bytes)
36
36
68
128
128
128
Timer Module(s)
TMR0
TMR0
TMR0
TMR0
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
Capture/Compare/
Peripherals PWM Module(s)
—
—
—
—
1
1
Serial Port(s)
(SPI/I2C, USART)
—
—
—
—
SPI/I2C
SPI/I2C
Parallel Slave Port
—
—
Clock
Memory
Features
—
—
—
—
A/D Converter (8-bit) Channels 4
4
4
4
5
5
Interrupt Sources
4
4
4
4
8
8
I/O Pins
13
13
13
13
22
22
Voltage Range (Volts)
3.0-6.0
3.0-6.0
3.0-6.0
3.0-5.5
2.5-6.0
3.0-5.5
In-Circuit Serial Programming
Yes
Yes
Yes
Yes
Yes
Yes
Brown-out Reset
Yes
—
Yes
Yes
Yes
Yes
Packages
18-pin DIP, 18-pin DIP, 18-pin DIP, 18-pin DIP, 28-pin SDIP, 28-pin SDIP,
SOIC, SSOP SOIC, SSOP
SOIC;
SOIC;
SOIC
SOIC;
20-pin SSOP 20-pin SSOP
20-pin SSOP
PIC16C74A
PIC16C73A
Clock
Memory
PIC16C77
20
20
20
EPROM Program Memory
(x14 words)
4K
4K
8K
8K
Data Memory (bytes)
192
192
368
368
Timer Module(s)
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
2
2
2
Serial Port(s) (SPI/I2C, US- SPI/I2C, USART
ART)
SPI/I2C, USART
SPI/I2C, USART
SPI/I2C, USART
Parallel Slave Port
Yes
—
Yes
8
5
8
Capture/Compare/PWM Mod- 2
Peripherals ule(s)
—
A/D Converter (8-bit) Channels 5
Features
PIC16C76
Maximum Frequency of Oper- 20
ation (MHz)
Interrupt Sources
11
12
11
12
I/O Pins
22
33
22
33
Voltage Range (Volts)
2.5-6.0
2.5-6.0
2.5-6.0
2.5-6.0
In-Circuit Serial Programming
Yes
Yes
Yes
Yes
Brown-out Reset
Yes
Yes
Yes
Yes
Packages
28-pin SDIP,
SOIC
40-pin DIP;
44-pin PLCC,
MQFP, TQFP
28-pin SDIP,
SOIC
40-pin DIP;
44-pin PLCC,
MQFP, TQFP
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C7XX Family devices use serial programming with clock pin RB6 and data pin RB7.
Note 1: Please contact your local Microchip sales office for availability of these devices.
DS30390E-page 6
 1997 Microchip Technology Inc.
PIC16C7X
2.0
PIC16C7X DEVICE VARIETIES
A variety of frequency ranges and packaging options
are available. Depending on application and production
requirements, the proper device option can be selected
using the information in the PIC16C7X Product Identification System section at the end of this data sheet.
When placing orders, please use that page of the data
sheet to specify the correct part number.
For the PIC16C7X family, there are two device “types”
as indicated in the device number:
1.
2.
2.1
C, as in PIC16C74. These devices have
EPROM type memory and operate over the
standard voltage range.
LC, as in PIC16LC74. These devices have
EPROM type memory and operate over an
extended voltage range.
UV Erasable Devices
The UV erasable version, offered in CERDIP package
is optimal for prototype development and pilot
programs. This version can be erased and
reprogrammed to any of the oscillator modes.
2.3
Quick-Turnaround-Production (QTP)
Devices
Microchip offers a QTP Programming Service for factory production orders. This service is made available
for users who choose not to program a medium to high
quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but
with all EPROM locations and configuration options
already programmed by the factory. Certain code and
prototype verification procedures apply before production shipments are available. Please contact your local
Microchip Technology sales office for more details.
2.4
Serialized Quick-Turnaround
Production (SQTPSM) Devices
Microchip offers a unique programming service where
a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.
Serial programming allows each device to have a
unique number which can serve as an entry-code,
password, or ID number.
Microchip's PICSTART Plus and PRO MATE II
programmers both support programming of the
PIC16C7X.
2.2
One-Time-Programmable (OTP)
Devices
The availability of OTP devices is especially useful for
customers who need the flexibility for frequent code
updates and small volume applications.
The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the
program memory, the configuration bits must also be
programmed.
 1997 Microchip Technology Inc.
DS30390E-page 7
PIC16C7X
3.0
ARCHITECTURAL OVERVIEW
The high performance of the PIC16CXX family can be
attributed to a number of architectural features commonly found in RISC microprocessors. To begin with,
the PIC16CXX uses a Harvard architecture, in which,
program and data are accessed from separate memories using separate buses. This improves bandwidth
over traditional von Neumann architecture in which program and data are fetched from the same memory
using the same bus. Separating program and data
buses further allows instructions to be sized differently
than the 8-bit wide data word. Instruction opcodes are
14-bits wide making it possible to have all single word
instructions. A 14-bit wide program memory access
bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35)
execute in a single cycle (200 ns @ 20 MHz) except for
program branches.
The table below lists program memory (EPROM) and
data memory (RAM) for each PIC16C7X device.
Device
PIC16C72
PIC16C73
PIC16C73A
PIC16C74
PIC16C74A
PIC16C76
PIC16C77
Program
Memory
2K x 14
4K x 14
4K x 14
4K x 14
4K x 14
8K x 14
8K x 14
PIC16CXX devices contain an 8-bit ALU and working
register. The ALU is a general purpose arithmetic unit.
It performs arithmetic and Boolean functions between
the data in the working register and any register file.
The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise
mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically
one operand is the working register (W register). The
other operand is a file register or an immediate constant. In single operand instructions, the operand is
either the W register or a file register.
The W register is an 8-bit working register used for ALU
operations. It is not an addressable register.
Depending on the instruction executed, the ALU may
affect the values of the Carry (C), Digit Carry (DC), and
Zero (Z) bits in the STATUS register. The C and DC bits
operate as a borrow bit and a digit borrow out bit,
respectively, in subtraction. See the SUBLW and SUBWF
instructions for examples.
Data Memory
128 x 8
192 x 8
192 x 8
192 x 8
192 x 8
368 x 8
386 x 8
The PIC16CXX can directly or indirectly address its
register files or data memory. All special function registers, including the program counter, are mapped in the
data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry
out any operation on any register using any addressing
mode. This symmetrical nature and lack of ‘special
optimal situations’ make programming with the
PIC16CXX simple yet efficient. In addition, the learning
curve is reduced significantly.
 1997 Microchip Technology Inc.
DS30390E-page 9
PIC16C7X
FIGURE 3-1:
PIC16C72 BLOCK DIAGRAM
13
Program
Memory
Program
Bus
14
PORTA
RA0/AN0
RA1/AN1
RA2/AN2
RA3/AN3/VREF
RA4/T0CKI
RA5/SS/AN4
RAM
File
Registers
128 x 8
8 Level Stack
(13-bit)
2K x 14
8
Data Bus
Program Counter
EPROM
RAM Addr(1)
PORTB
9
Addr MUX
Instruction reg
7
Direct Addr
8
RB0/INT
Indirect
Addr
RB7:RB1
FSR reg
STATUS reg
8
3
Power-up
Timer
Oscillator
Start-up Timer
Instruction
Decode &
Control
Power-on
Reset
Timing
Generation
ALU
MCLR
RC0/T1OSO/T1CKI
RC1/T1OSI
RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6
RC7
8
Watchdog
Timer
Brown-out
Reset
OSC1/CLKIN
OSC2/CLKOUT
MUX
PORTC
W reg
VDD, VSS
Timer0
Timer1
Timer2
A/D
Synchronous
Serial Port
CCP1
Note 1: Higher order bits are from the STATUS register.
DS30390E-page 10
 1997 Microchip Technology Inc.
PIC16C7X
FIGURE 3-2:
Device
PIC16C73/73A/76 BLOCK DIAGRAM
Program Memory Data Memory (RAM)
PIC16C73
PIC16C73A
PIC16C76
4K x 14
4K x 14
8K x 14
192 x 8
192 x 8
368 x 8
13
8
Data Bus
Program Counter
PORTA
RA0/AN0
RA1/AN1
RA2/AN2
RA3/AN3/VREF
RA4/T0CKI
RA5/SS/AN4
EPROM
Program
Memory
Program
Bus
RAM
File
Registers
8 Level Stack
(13-bit)
14
RAM Addr(1)
PORTB
9
Addr MUX
Instruction reg
7
Direct Addr
8
RB0/INT
Indirect
Addr
RB7:RB1
FSR reg
STATUS reg
8
3
MUX
Power-up
Timer
Instruction
Decode &
Control
Timing
Generation
OSC1/CLKIN
OSC2/CLKOUT
Oscillator
Start-up Timer
Power-on
Reset
ALU
RC0/T1OSO/T1CKI
RC1/T1OSI/CCP2
RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6/TX/CK
RC7/RX/DT
8
Watchdog
Timer
Brown-out
Reset(2)
MCLR
PORTC
W reg
VDD, VSS
Timer0
Timer1
Timer2
A/D
CCP1
CCP2
Synchronous
Serial Port
USART
Note 1: Higher order bits are from the STATUS register.
2: Brown-out Reset is not available on the PIC16C73.
 1997 Microchip Technology Inc.
DS30390E-page 11
PIC16C7X
FIGURE 3-3:
Device
PIC16C74/74A/77 BLOCK DIAGRAM
Program Memory Data Memory (RAM)
192 x 8
192 x 8
368 x 8
4K x 14
4K x 14
8K x 14
PIC16C74
PIC16C74A
PIC16C77
13
8
Data Bus
Program Counter
PORTA
RA0/AN0
RA1/AN1
RA2/AN2
RA3/AN3/VREF
RA4/T0CKI
RA5/SS/AN4
EPROM
Program
Memory
Program
Bus
RAM
File
Registers
8 Level Stack
(13-bit)
14
RAM Addr (1)
PORTB
9
Addr MUX
Instruction reg
Direct Addr
7
8
RB0/INT
Indirect
Addr
RB7:RB1
FSR reg
STATUS reg
8
3
Power-up
Timer
Instruction
Decode &
Control
Timing
Generation
OSC1/CLKIN
OSC2/CLKOUT
Oscillator
Start-up Timer
Power-on
Reset
MUX
ALU
PORTD
8
Watchdog
Timer
Brown-out
Reset(2)
RC0/T1OSO/T1CKI
RC1/T1OSI/CCP2
RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6/TX/CK
RC7/RX/DT
W reg
RD7/PSP7:RD0/PSP0
Parallel Slave Port
MCLR
PORTC
VDD, VSS
PORTE
RE0/RD/AN5
RE1/WR/AN6
Timer0
Timer1
Timer2
A/D
CCP1
CCP2
Synchronous
Serial Port
USART
RE2/CS/AN7
Note 1: Higher order bits are from the STATUS register.
2: Brown-out Reset is not available on the PIC16C74.
DS30390E-page 12
 1997 Microchip Technology Inc.
PIC16C7X
TABLE 3-1:
PIC16C72 PINOUT DESCRIPTION
DIP
Pin#
SSOP
Pin#
SOIC
Pin#
I/O/P
Type
OSC1/CLKIN
9
9
9
I
OSC2/CLKOUT
10
10
10
O
—
Oscillator crystal output. Connects to crystal or resonator in
crystal oscillator mode. In RC mode, the OSC2 pin outputs
CLKOUT which has 1/4 the frequency of OSC1, and denotes
the instruction cycle rate.
MCLR/VPP
1
1
1
I/P
ST
Master clear (reset) input or programming voltage input. This
pin is an active low reset to the device.
RA0/AN0
2
2
2
I/O
TTL
PORTA is a bi-directional I/O port.
RA0 can also be analog input0
RA1/AN1
3
3
3
I/O
TTL
RA1 can also be analog input1
RA2/AN2
4
4
4
I/O
TTL
RA3/AN3/VREF
RA4/T0CKI
5
6
5
6
5
6
I/O
I/O
TTL
ST
RA5/SS/AN4
7
7
7
I/O
TTL
RB0/INT
RB1
RB2
RB3
RB4
RB5
RB6
RB7
21
22
23
24
25
26
27
28
21
22
23
24
25
26
27
28
21
22
23
24
25
26
27
28
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
TTL/ST(1)
TTL
TTL
TTL
TTL
TTL
TTL/ST(2)
TTL/ST(2)
RC0/T1OSO/T1CKI
11
11
11
I/O
ST
RC1/T1OSI
RC2/CCP1
12
13
12
13
12
13
I/O
I/O
ST
ST
RC3/SCK/SCL
14
14
14
I/O
ST
RC4/SDI/SDA
15
15
15
I/O
ST
16
17
18
8, 19
20
16
17
18
8, 19
20
16
17
18
8, 19
20
I/O
I/O
I/O
P
P
ST
ST
ST
—
—
Pin Name
RC5/SDO
RC6
RC7
VSS
VDD
Buffer
Type
Description
ST/CMOS(3) Oscillator crystal input/external clock source input.
RA2 can also be analog input2
RA3 can also be analog input3 or analog reference voltage
RA4 can also be the clock input to the Timer0 module.
Output is open drain type.
RA5 can also be analog input4 or the slave select for the
synchronous serial port.
PORTB is a bi-directional I/O port. PORTB can be software
programmed for internal weak pull-up on all inputs.
RB0 can also be the external interrupt pin.
Interrupt on change pin.
Interrupt on change pin.
Interrupt on change pin. Serial programming clock.
Interrupt on change pin. Serial programming data.
PORTC is a bi-directional I/O port.
RC0 can also be the Timer1 oscillator output or Timer1
clock input.
RC1 can also be the Timer1 oscillator input.
RC2 can also be the Capture1 input/Compare1 output/
PWM1 output.
RC3 can also be the synchronous serial clock input/output
for both SPI and I2C modes.
RC4 can also be the SPI Data In (SPI mode) or
data I/O (I2C mode).
RC5 can also be the SPI Data Out (SPI mode).
Ground reference for logic and I/O pins.
Positive supply for logic and I/O pins.
Legend: I = input
O = output
I/O = input/output
P = power
— = Not used
TTL = TTL input
ST = Schmitt Trigger input
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in serial programming mode.
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
 1997 Microchip Technology Inc.
DS30390E-page 13
PIC16C7X
TABLE 3-2:
PIC16C73/73A/76 PINOUT DESCRIPTION
DIP
Pin#
SOIC
Pin#
I/O/P
Type
OSC1/CLKIN
9
9
I
OSC2/CLKOUT
10
10
O
—
Oscillator crystal output. Connects to crystal or resonator in
crystal oscillator mode. In RC mode, the OSC2 pin outputs
CLKOUT which has 1/4 the frequency of OSC1, and denotes
the instruction cycle rate.
MCLR/VPP
1
1
I/P
ST
Master clear (reset) input or programming voltage input. This
pin is an active low reset to the device.
RA0/AN0
2
2
I/O
TTL
PORTA is a bi-directional I/O port.
RA0 can also be analog input0
RA1/AN1
3
3
I/O
TTL
RA1 can also be analog input1
RA2/AN2
4
4
I/O
TTL
RA3/AN3/VREF
RA4/T0CKI
5
6
5
6
I/O
I/O
TTL
ST
RA5/SS/AN4
7
7
I/O
TTL
RB0/INT
RB1
RB2
RB3
RB4
RB5
RB6
RB7
21
22
23
24
25
26
27
28
21
22
23
24
25
26
27
28
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
TTL/ST(1)
TTL
TTL
TTL
TTL
TTL
TTL/ST(2)
TTL/ST(2)
RC0/T1OSO/T1CKI
11
11
I/O
ST
RC1/T1OSI/CCP2
12
12
I/O
ST
RC2/CCP1
13
13
I/O
ST
RC3/SCK/SCL
14
14
I/O
ST
RC4/SDI/SDA
15
15
I/O
ST
RC5/SDO
RC6/TX/CK
16
17
16
17
I/O
I/O
ST
ST
RC5 can also be the SPI Data Out (SPI mode).
RC6 can also be the USART Asynchronous Transmit or
Synchronous Clock.
RC7/RX/DT
18
18
I/O
ST
8, 19
20
8, 19
20
P
P
—
—
RC7 can also be the USART Asynchronous Receive or
Synchronous Data.
Ground reference for logic and I/O pins.
Positive supply for logic and I/O pins.
Pin Name
VSS
VDD
Buffer
Type
Description
ST/CMOS(3) Oscillator crystal input/external clock source input.
RA2 can also be analog input2
RA3 can also be analog input3 or analog reference voltage
RA4 can also be the clock input to the Timer0 module.
Output is open drain type.
RA5 can also be analog input4 or the slave select for the
synchronous serial port.
PORTB is a bi-directional I/O port. PORTB can be software
programmed for internal weak pull-up on all inputs.
RB0 can also be the external interrupt pin.
Interrupt on change pin.
Interrupt on change pin.
Interrupt on change pin. Serial programming clock.
Interrupt on change pin. Serial programming data.
PORTC is a bi-directional I/O port.
RC0 can also be the Timer1 oscillator output or Timer1
clock input.
RC1 can also be the Timer1 oscillator input or Capture2
input/Compare2 output/PWM2 output.
RC2 can also be the Capture1 input/Compare1 output/
PWM1 output.
RC3 can also be the synchronous serial clock input/output
for both SPI and I2C modes.
RC4 can also be the SPI Data In (SPI mode) or
data I/O (I2C mode).
Legend: I = input
O = output
I/O = input/output
P = power
— = Not used
TTL = TTL input
ST = Schmitt Trigger input
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in serial programming mode.
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
DS30390E-page 14
 1997 Microchip Technology Inc.
PIC16C7X
TABLE 3-3:
PIC16C74/74A/77 PINOUT DESCRIPTION
DIP
Pin#
PLCC
Pin#
QFP
Pin#
I/O/P
Type
OSC1/CLKIN
13
14
30
I
OSC2/CLKOUT
14
15
31
O
—
Oscillator crystal output. Connects to crystal or resonator in
crystal oscillator mode. In RC mode, OSC2 pin outputs
CLKOUT which has 1/4 the frequency of OSC1, and
denotes the instruction cycle rate.
MCLR/VPP
1
2
18
I/P
ST
Master clear (reset) input or programming voltage input.
This pin is an active low reset to the device.
Pin Name
Buffer
Type
Description
ST/CMOS(4) Oscillator crystal input/external clock source input.
PORTA is a bi-directional I/O port.
RA0/AN0
2
3
19
I/O
TTL
RA0 can also be analog input0
RA1/AN1
3
4
20
I/O
TTL
RA1 can also be analog input1
RA2/AN2
4
5
21
I/O
TTL
RA2 can also be analog input2
RA3/AN3/VREF
5
6
22
I/O
TTL
RA3 can also be analog input3 or analog reference
voltage
RA4/T0CKI
6
7
23
I/O
ST
RA4 can also be the clock input to the Timer0 timer/
counter. Output is open drain type.
RA5/SS/AN4
7
8
24
I/O
TTL
RA5 can also be analog input4 or the slave select for
the synchronous serial port.
PORTB is a bi-directional I/O port. PORTB can be software
programmed for internal weak pull-up on all inputs.
RB0/INT
33
36
8
I/O
TTL/ST(1)
RB1
34
37
9
I/O
TTL
RB2
35
38
10
I/O
TTL
RB3
36
39
11
I/O
TTL
RB4
37
41
14
I/O
TTL
RB5
38
42
15
I/O
TTL
RB6
39
43
16
I/O
TTL/ST(2)
RB0 can also be the external interrupt pin.
Interrupt on change pin.
Interrupt on change pin.
Interrupt on change pin. Serial programming clock.
40
44
17
I/O
TTL/ST(2)
Interrupt on change pin. Serial programming data.
O = output
I/O = input/output
P = power
— = Not used
TTL = TTL input
ST = Schmitt Trigger input
This buffer is a Schmitt Trigger input when configured as an external interrupt.
This buffer is a Schmitt Trigger input when used in serial programming mode.
This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel
Slave Port mode (for interfacing to a microprocessor bus).
This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
RB7
Legend: I = input
Note 1:
2:
3:
4:
 1997 Microchip Technology Inc.
DS30390E-page 15
PIC16C7X
TABLE 3-3:
PIC16C74/74A/77 PINOUT DESCRIPTION (Cont.’d)
Pin Name
DIP
Pin#
PLCC
Pin#
QFP
Pin#
I/O/P
Type
Buffer
Type
Description
PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI
15
16
32
I/O
ST
RC0 can also be the Timer1 oscillator output or a
Timer1 clock input.
RC1/T1OSI/CCP2
16
18
35
I/O
ST
RC1 can also be the Timer1 oscillator input or
Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1
17
19
36
I/O
ST
RC2 can also be the Capture1 input/Compare1 output/
PWM1 output.
RC3/SCK/SCL
18
20
37
I/O
ST
RC3 can also be the synchronous serial clock input/
output for both SPI and I2C modes.
RC4/SDI/SDA
23
25
42
I/O
ST
RC4 can also be the SPI Data In (SPI mode) or
data I/O (I2C mode).
RC5/SDO
24
26
43
I/O
ST
RC5 can also be the SPI Data Out
(SPI mode).
RC6/TX/CK
25
27
44
I/O
ST
RC6 can also be the USART Asynchronous Transmit or
Synchronous Clock.
RC7/RX/DT
26
29
1
I/O
ST
RC7 can also be the USART Asynchronous Receive or
Synchronous Data.
PORTD is a bi-directional I/O port or parallel slave port
when interfacing to a microprocessor bus.
RD0/PSP0
19
21
38
I/O
ST/TTL(3)
RD1/PSP1
RD2/PSP2
RD3/PSP3
RD4/PSP4
20
21
22
27
22
23
24
30
39
40
41
2
I/O
I/O
I/O
I/O
ST/TTL(3)
ST/TTL(3)
ST/TTL(3)
ST/TTL(3)
RD5/PSP5
RD6/PSP6
RD7/PSP7
28
29
30
31
32
33
3
4
5
I/O
I/O
I/O
ST/TTL(3)
ST/TTL(3)
ST/TTL(3)
RE0/RD/AN5
8
9
25
I/O
ST/TTL(3)
RE0 can also be read control for the parallel slave port,
or analog input5.
RE1/WR/AN6
9
10
26
I/O
ST/TTL(3)
RE1 can also be write control for the parallel slave port,
or analog input6.
RE2/CS/AN7
10
11
27
I/O
ST/TTL(3)
12,31
11,32
—
13,34
12,35
1,17,28,
40
6,29
7,28
12,13,
33,34
P
P
—
—
—
RE2 can also be select control for the parallel slave
port, or analog input7.
Ground reference for logic and I/O pins.
Positive supply for logic and I/O pins.
These pins are not internally connected. These pins should
be left unconnected.
PORTE is a bi-directional I/O port.
VSS
VDD
NC
Legend: I = input
Note 1:
2:
3:
4:
O = output
I/O = input/output
P = power
— = Not used
TTL = TTL input
ST = Schmitt Trigger input
This buffer is a Schmitt Trigger input when configured as an external interrupt.
This buffer is a Schmitt Trigger input when used in serial programming mode.
This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel
Slave Port mode (for interfacing to a microprocessor bus).
This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
DS30390E-page 16
 1997 Microchip Technology Inc.
PIC16C7X
22.0
PACKAGING INFORMATION
22.1
28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)(JW)
N
C
E1 E
eA
eB
α
Pin #1
Indicator Area
D
S1
S
Base
Plane
Seating
Plane
L
B1
A3
A2
A
A1
e1
B
D1
Package Group: Ceramic Side Brazed Dual In-Line (CER)
Millimeters
Inches
Symbol
α
A
A1
A2
A3
B
B1
C
D
D1
E
E1
e1
eA
eB
L
N
S
S1
Min
Max
0°
3.937
1.016
2.921
1.930
0.406
1.219
0.228
35.204
32.893
7.620
7.366
2.413
7.366
7.594
3.302
28
1.143
0.533
10°
5.030
1.524
3.506
2.388
0.508
1.321
0.305
35.916
33.147
8.128
7.620
2.667
7.874
8.179
4.064
28
1.397
0.737
 1997 Microchip Technology Inc.
Notes
Typical
Typical
Reference
Typical
Reference
Min
Max
0°
0.155
0.040
0.115
0.076
0.016
0.048
0.009
1.386
1.295
0.300
0.290
0.095
0.290
0.299
0.130
28
0.045
0.021
10°
0.198
0.060
0.138
0.094
0.020
0.052
0.012
1.414
1.305
0.320
0.300
0.105
0.310
0.322
0.160
28
0.055
0.029
Notes
DS30390E-page 251
PIC16C7X
22.2
40-Lead Ceramic CERDIP Dual In-line with Window (600 mil) (JW)
N
E1 E
α
C
Pin No. 1
Indicator
Area
eA
eB
D
S
S1
Base
Plane
Seating
Plane
L
B1
A1 A3 A A2
e1
B
D1
Package Group: Ceramic CERDIP Dual In-Line (CDP)
Millimeters
Symbol
Min
Max
α
0°
A
A1
A2
A3
B
B1
C
D
D1
E
E1
e1
eA
eB
L
N
S
S1
4.318
0.381
3.810
3.810
0.355
1.270
0.203
51.435
48.260
15.240
12.954
2.540
14.986
15.240
3.175
40
1.016
0.381
DS30390E-page 252
Inches
Notes
Min
Max
10°
0°
10°
5.715
1.778
4.699
4.445
0.585
1.651
0.381
52.705
48.260
15.875
15.240
2.540
16.002
18.034
3.810
40
2.286
1.778
0.170
0.015
0.150
0.150
0.014
0.050
0.008
2.025
1.900
0.600
0.510
0.100
0.590
0.600
0.125
40
0.040
0.015
0.225
0.070
0.185
0.175
0.023
0.065
0.015
2.075
1.900
0.625
0.600
0.100
0.630
0.710
0.150
40
0.090
0.070
Typical
Typical
Reference
Reference
Typical
Notes
Typical
Typical
Reference
Reference
Typical
 1997 Microchip Technology Inc.
PIC16C7X
22.3
28-Lead Plastic Dual In-line (300 mil) (SP)
N
α
E1 E
C
eA
eB
Pin No. 1
Indicator
Area
B2
D
B1
S
Base
Plane
Seating
Plane
L
Detail A
B3
A1 A2 A
e1
B
Detail A
D1
Package Group: Plastic Dual In-Line (PLA)
Millimeters
Symbol
Min
Max
α
0°
A
A1
A2
B
B1
B2
B3
C
D
D1
E
E1
e1
eA
eB
L
N
S
3.632
0.381
3.175
0.406
1.016
0.762
0.203
0.203
34.163
33.020
7.874
7.112
2.540
7.874
8.128
3.175
28
0.584
 1997 Microchip Technology Inc.
Inches
Notes
Min
Max
10°
0°
10°
4.572
–
3.556
0.559
1.651
1.016
0.508
0.331
35.179
33.020
8.382
7.493
2.540
7.874
9.652
3.683
1.220
0.143
0.015
0.125
0.016
0.040
0.030
0.008
0.008
1.385
1.300
0.310
0.280
0.100
0.310
0.320
0.125
28
0.023
0.180
–
0.140
0.022
0.065
0.040
0.020
0.013
1.395
1.300
0.330
0.295
0.100
0.310
0.380
0.145
0.048
Typical
4 places
4 places
Typical
Reference
Typical
Reference
Notes
Typical
4 places
4 places
Typical
Reference
Typical
Reference
DS30390E-page 253
PIC16C7X
22.4
40-Lead Plastic Dual In-line (600 mil) (P)
N
α
E1 E
C
eA
eB
Pin No. 1
Indicator
Area
D
S
S1
Base
Plane
Seating
Plane
L
B1
A1 A2 A
e1
B
D1
Package Group: Plastic Dual In-Line (PLA)
Millimeters
Symbol
Min
α
0°
10°
0°
10°
A
A1
A2
B
B1
C
D
D1
E
E1
e1
eA
eB
L
N
S
S1
–
0.381
3.175
0.355
1.270
0.203
51.181
48.260
15.240
13.462
2.489
15.240
15.240
2.921
40
1.270
0.508
5.080
–
4.064
0.559
1.778
0.381
52.197
48.260
15.875
13.970
2.591
15.240
17.272
3.683
40
–
–
–
0.015
0.125
0.014
0.050
0.008
2.015
1.900
0.600
0.530
0.098
0.600
0.600
0.115
40
0.050
0.020
0.200
–
0.160
0.022
0.070
0.015
2.055
1.900
0.625
0.550
0.102
0.600
0.680
0.145
40
–
–
DS30390E-page 254
Max
Inches
Notes
Typical
Typical
Reference
Typical
Reference
Min
Max
Notes
Typical
Typical
Reference
Typical
Reference
 1997 Microchip Technology Inc.
PIC16C7X
22.5
28-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body) (SO)
e
B
h x 45°
N
Index
Area
E
H
α
C
Chamfer
h x 45°
L
1
2
3
D
Seating
Plane
Base
Plane
CP
A1
A
Package Group: Plastic SOIC (SO)
Millimeters
Symbol
Min
Max
Inches
Notes
Min
Max
α
0°
8°
0°
8°
A
A1
B
C
D
E
e
H
h
L
N
CP
2.362
0.101
0.355
0.241
17.703
7.416
1.270
10.007
0.381
0.406
28
–
2.642
0.300
0.483
0.318
18.085
7.595
1.270
10.643
0.762
1.143
28
0.102
0.093
0.004
0.014
0.009
0.697
0.292
0.050
0.394
0.015
0.016
28
–
0.104
0.012
0.019
0.013
0.712
0.299
0.050
0.419
0.030
0.045
28
0.004
 1997 Microchip Technology Inc.
Typical
Notes
Typical
DS30390E-page 255
PIC16C7X
22.6
28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)
N
Index
area
E
H
α
C
L
1 2 3
B
e
A
Base plane
CP
Seating plane
D
A1
Package Group: Plastic SSOP
Millimeters
Symbol
Min
Max
Inches
Notes
Min
Max
α
0°
8°
0°
8°
A
A1
B
C
D
E
e
H
L
N
CP
1.730
0.050
0.250
0.130
10.070
5.200
0.650
7.650
0.550
28
-
1.990
0.210
0.380
0.220
10.330
5.380
0.650
7.900
0.950
28
0.102
0.068
0.002
0.010
0.005
0.396
0.205
0.026
0.301
0.022
28
-
0.078
0.008
0.015
0.009
0.407
0.212
0.026
0.311
0.037
28
0.004
DS30390E-page 256
Reference
Notes
Reference
 1997 Microchip Technology Inc.
PIC16C7X
22.7
44-Lead Plastic Leaded Chip Carrier (Square)(PLCC)
0.812/0.661 N Pics
.032/.026
D
1.27
.050
2 Sides
0.177
.007 S B D-E S
-A-
D1
-D-
3
-F-
-HA
A1
3
D3/E3
D2
0.38
.015
3
-G-
8
F-G S
0.177
.007 S B A S
2 Sides
9
0.101 Seating
.004 Plane
D
-C-
4
E2
E1
E
0.38
.015
F-G S
4
-B-
3
-E-
0.177
.007 S A F-G S
10
0.254
.010 Max
2
0.254
.010 Max
11
-H-
11
0.508
.020
0.508
.020
-H-
2
0.812/0.661
3
.032/.026
1.524
.060 Min
6
6
-C1.651
.065
1.651
.065
R 1.14/0.64
.045/.025
R 1.14/0.64
.045/.025
5
0.533/0.331
.021/.013
0.64 Min
.025
0.177
, D-E S
.007 M A F-G S
Package Group: Plastic Leaded Chip Carrier (PLCC)
Millimeters
Symbol
Min
Max
A
4.191
A1
D
D1
D2
D3
E
E1
E2
E3
N
CP
LT
2.413
17.399
16.510
15.494
12.700
17.399
16.510
15.494
12.700
44
–
0.203
 1997 Microchip Technology Inc.
Inches
Notes
Min
Max
4.572
0.165
0.180
2.921
17.653
16.663
16.002
12.700
17.653
16.663
16.002
12.700
44
0.102
0.381
0.095
0.685
0.650
0.610
0.500
0.685
0.650
0.610
0.500
44
–
0.008
0.115
0.695
0.656
0.630
0.500
0.695
0.656
0.630
0.500
44
0.004
0.015
Reference
Reference
Notes
Reference
Reference
DS30390E-page 257
PIC16C7X
22.8
44-Lead Plastic Surface Mount (MQFP 10x10 mm Body 1.6/0.15 mm Lead Form) (PQ)
4 D
D1 5
0.20 M C A-B S
D S
0.20 M H A-B S
D S
7
0.20 min.
0.05 mm/mm A-B
D3
0.13 R min.
Index
area 6
9
PARTING
LINE
b
0.13/0.30 R
α
L
E3
C
E1 E
1.60 Ref.
0.20 M C A-B S
D S
4
TYP 4x
10
e
0.20 M H A-B S
B
D S
5
7
0.05 mm/mm D
A2
A
Base
Plane
Seating
Plane
A1
Package Group: Plastic MQFP
Millimeters
Symbol
Min
Max
α
0°
A
A1
A2
b
C
D
D1
D3
E
E1
E3
e
L
N
CP
2.000
0.050
1.950
0.300
0.150
12.950
9.900
8.000
12.950
9.900
8.000
0.800
0.730
44
0.102
DS30390E-page 258
Inches
Notes
Min
Max
7°
0°
7°
2.350
0.250
2.100
0.450
0.180
13.450
10.100
8.000
13.450
10.100
8.000
0.800
1.030
44
–
0.078
0.002
0.768
0.011
0.006
0.510
0.390
0.315
0.510
0.390
0.315
0.031
0.028
44
0.004
0.093
0.010
0.083
0.018
0.007
0.530
0.398
0.315
0.530
0.398
0.315
0.032
0.041
44
–
Typical
Reference
Reference
Notes
Typical
Reference
Reference
 1997 Microchip Technology Inc.
PIC16C7X
22.9
44-Lead Plastic Surface Mount (TQFP 10x10 mm Body 1.0/0.10 mm Lead Form) (TQ)
D
D1
1.0ø (0.039ø) Ref.
Pin#1
2
11°/13°(4x)
Pin#1
2
E
0° Min
E1
Θ
11°/13°(4x)
Detail B
e
3.0ø (0.118ø) Ref.
Option 1 (TOP side)
A2
A
L
Detail A
R 0.08/0.20
Option 2 (TOP side)
A1
Detail B
R1 0.08 Min
Base Metal
Lead Finish
b
L
c
1.00 Ref.
Gage Plane
0.250
c1
L1
1.00 Ref
b1
Detail A
S
0.20
Min
Detail B
Package Group: Plastic TQFP
Millimeters
Symbol
Min
Max
A
A1
A2
D
D1
E
E1
L
e
b
b1
c
c1
N
1.00
0.05
0.95
11.75
9.90
11.75
9.90
0.45
Θ
Inches
Notes
Min
Max
1.20
0.15
1.05
12.25
10.10
12.25
10.10
0.75
0.039
0.002
0.037
0.463
0.390
0.463
0.390
0.018
0.047
0.006
0.041
0.482
0.398
0.482
0.398
0.030
0.30
0.30
0.09
0.09
44
0.45
0.40
0.20
0.16
44
0.012
0.012
0.004
0.004
44
0.018
0.016
0.008
0.006
44
0°
7°
0°
7°
0.80 BSC
Notes
0.031 BSC
Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010”) per
side. D1 and E1 dimensions including mold mismatch.
2: Dimension “b” does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m
(0.003”)max.
3: This outline conforms to JEDEC MS-026.
 1997 Microchip Technology Inc.
DS30390E-page 259
PIC16C7X
22.10
Package Marking Information
28-Lead SSOP
Example
XXXXXXXXXXXX
XXXXXXXXXXXX
PIC16C72
20I/SS025
AABBCAE
9517SBP
28-Lead PDIP (Skinny DIP)
Example
MMMMMMMMMMMM
XXXXXXXXXXXXXXX
AABBCDE
PIC16C73-10/SP
AABBCDE
28-Lead Side Brazed Skinny Windowed
Example
XXXXXXXXXXX
XXXXXXXXXXX
AABBCDE
MMMMMMMMMMMMMMMM
XXXXXXXXXXXXXXXXXXXX
AABBCDE
MM...M
XX...X
AA
BB
C
D1
E
Note:
9517CAT
Example
28-Lead SOIC
Legend:
PIC16C73/JW
PIC16C73-10/SO
945/CAA
Microchip part number information
Customer specific information*
Year code (last 2 digits of calender year)
Week code (week of January 1 is week '01’)
Facility code of the plant at which wafer is manufactured.
C = Chandler, Arizona, U.S.A.
S = Tempe, Arizona, U.S.A.
Mask revision number for microcontroller
Assembly code of the plant or country of origin in which
part was assembled.
In the event the full Microchip part number cannot be marked on one
line, it will be carried over to the next line thus limiting the number of
available characters for customer specific information.
* Standard OTP marking consists of Microchip part number, year code, week code,
facility code, mask revision number, and assembly code. For OTP marking beyond
this, certain price adders apply. Please check with your Microchip Sales Office.
For QTP devices, any special marking adders are included in QTP price.
DS30390E-page 260
 1997 Microchip Technology Inc.
PIC16C7X
Package Marking Information (Cont’d)
40-Lead PDIP
Example
MMMMMMMMMMMMMM
XXXXXXXXXXXXXXXXXX
AABBCDE
40-Lead CERDIP Windowed
PIC16C74-04/P
9512CAA
Example
MMMMMMMMM
XXXXXXXXXXX
XXXXXXXXXXX
AABBCDE
44-Lead PLCC
44-Lead MQFP
PIC16C74
-10/L
AABBCDE
Example
PIC16C74
-10/PQ
MMMMMMMM
XXXXXXXXXX
XXXXXXXXXX
AABBCDE
AABBCDE
MM...M
XX...X
AA
BB
C
D1
E
Note:
AABBCDE
Example
MMMMMMMM
XXXXXXXXXX
XXXXXXXXXX
AABBCDE
Legend:
PIC16C74/JW
Microchip part number information
Customer specific information*
Year code (last 2 digits of calender year)
Week code (week of January 1 is week '01’)
Facility code of the plant at which wafer is manufactured.
C = Chandler, Arizona, U.S.A.
S = Tempe, Arizona, U.S.A.
Mask revision number for microcontroller
Assembly code of the plant or country of origin in which
part was assembled.
In the event the full Microchip part number cannot be marked on one
line, it will be carried over to the next line thus limiting the number of
available characters for customer specific information.
* Standard OTP marking consists of Microchip part number, year code, week code,
facility code, mask revision number, and assembly code. For OTP marking beyond
this, certain price adders apply. Please check with your Microchip Sales Office.
For QTP devices, any special marking adders are included in QTP price.
 1997 Microchip Technology Inc.
DS30390E-page 261
PIC16C7X
Package Marking Information (Cont’d)
44-Lead TQFP
Example
MMMMMMMM
XXXXXXXXXX
XXXXXXXXXX
AABBCDE
Legend:
PIC16C74A
-10/TQ
AABBCDE
MM...M
XX...X
AA
BB
C
D1
E
Note:
Microchip part number information
Customer specific information*
Year code (last 2 digits of calender year)
Week code (week of January 1 is week '01’)
Facility code of the plant at which wafer is manufactured.
C = Chandler, Arizona, U.S.A.
S = Tempe, Arizona, U.S.A.
Mask revision number for microcontroller
Assembly code of the plant or country of origin in which
part was assembled.
In the event the full Microchip part number cannot be marked on one
line, it will be carried over to the next line thus limiting the number of
available characters for customer specific information.
* Standard OTP marking consists of Microchip part number, year code, week code,
facility code, mask revision number, and assembly code. For OTP marking beyond
this, certain price adders apply. Please check with your Microchip Sales Office.
For QTP devices, any special marking adders are included in QTP price.
DS30390E-page 262
 1997 Microchip Technology Inc.
PIC16C7X
APPENDIX E: PIC16/17 MICROCONTROLLERS
E.1
PIC12CXXX Family of Devices
PIC12C508
Clock
Memory
Peripherals
Features
PIC12C509
PIC12C671
PIC12C672
Maximum Frequency
of Operation (MHz)
4
4
4
4
EPROM Program Memory
512 x 12
1024 x 12
1024 x 14
2048 x 14
Data Memory (bytes)
25
41
128
128
Timer Module(s)
TMR0
TMR0
TMR0
TMR0
A/D Converter (8-bit) Channels
—
—
4
4
Wake-up from SLEEP on
pin change
Yes
Yes
Yes
Yes
I/O Pins
5
5
5
5
Input Pins
1
1
1
1
Internal Pull-ups
Yes
Yes
Yes
Yes
Voltage Range (Volts)
2.5-5.5
2.5-5.5
2.5-5.5
2.5-5.5
In-Circuit Serial Programming
Yes
Yes
Yes
Yes
Number of Instructions
33
33
35
35
Packages
8-pin DIP, SOIC
8-pin DIP, SOIC
8-pin DIP, SOIC
8-pin DIP, SOIC
All PIC12C5XX devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.
All PIC12C5XX devices use serial programming with data pin GP1 and clock pin GP0.
E.2
PIC14C000 Family of Devices
PIC14C000
Clock
Memory
Peripherals
Features
Maximum Frequency of Operation (MHz)
20
EPROM Program Memory (x14 words)
4K
Data Memory (bytes)
192
Timer Module(s)
TMR0
ADTMR
Serial Port(s)
(SPI/I2C, USART)
I2C with SMBus
Support
Slope A/D Converter Channels
8 External; 6 Internal
Interrupt Sources
11
I/O Pins
22
Voltage Range (Volts)
2.7-6.0
In-Circuit Serial Programming
Yes
Additional On-chip Features
Internal 4MHz Oscillator, Bandgap Reference,Temperature Sensor,
Calibration Factors, Low Voltage Detector, SLEEP, HIBERNATE,
Comparators with Programmable References (2)
Packages
28-pin DIP (.300 mil), SOIC, SSOP
 1997 Microchip Technology Inc.
DS30390E-page 265
PIC16C7X
E.3
PIC16C15X Family of Devices
PIC16C154
Clock
Memory
PIC16C156
PIC16CR156
PIC16C158
PIC16CR158
Maximum Frequency
of Operation (MHz)
20
20
20
20
20
20
EPROM Program Memory
(x12 words)
512
—
1K
—
2K
—
ROM Program Memory
(x12 words)
—
512
—
1K
—
2K
RAM Data Memory (bytes) 25
25
25
25
73
73
TMR0
TMR0
TMR0
TMR0
TMR0
TMR0
I/O Pins
12
12
12
12
12
12
Voltage Range (Volts)
3.0-5.5
2.5-5.5
3.0-5.5
2.5-5.5
3.0-5.5
2.5-5.5
Number of Instructions
33
33
33
33
33
33
Packages
18-pin DIP, 18-pin DIP,
18-pin DIP, 18-pin DIP,
18-pin DIP,
18-pin DIP,
SOIC;
SOIC;
SOIC;
SOIC;
SOIC;
SOIC;
20-pin SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP
Peripherals Timer Module(s)
Features
PIC16CR154
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high
I/O current capability.
E.4
PIC16C5X Family of Devices
PIC16C52
Clock
Memory
PIC16C54A
20
20
20
EPROM Program Memory
(x12 words)
384
512
512
—
512
1K
ROM Program Memory
(x12 words)
—
—
—
512
—
—
25
25
25
25
25
24
TMR0
TMR0
TMR0
TMR0
TMR0
TMR0
I/O Pins
12
12
12
12
20
12
Voltage Range (Volts)
2.5-6.25
2.5-6.25
2.0-6.25
2.0-6.25
2.5-6.25
2.5-6.25
Number of Instructions
33
33
33
33
Packages
18-pin DIP, 18-pin DIP,
18-pin DIP,
18-pin DIP,
SOIC
SOIC;
SOIC;
SOIC;
20-pin SSOP 20-pin SSOP 20-pin SSOP
PIC16CR57B
33
33
28-pin DIP,
SOIC,
SSOP
18-pin DIP,
SOIC;
20-pin SSOP
PIC16C58A
PIC16CR58A
Maximum Frequency
of Operation (MHz)
20
20
20
20
EPROM Program Memory
(x12 words)
2K
—
2K
—
ROM Program Memory
(x12 words)
—
2K
—
2K
73
RAM Data Memory (bytes)
72
72
73
TMR0
TMR0
TMR0
TMR0
I/O Pins
20
20
12
12
Voltage Range (Volts)
2.5-6.25
2.5-6.25
2.0-6.25
2.5-6.25
Number of Instructions
33
33
33
33
Packages
28-pin DIP,
SOIC,
SSOP
28-pin DIP, SOIC,
SSOP
18-pin DIP, SOIC; 18-pin DIP, SOIC;
20-pin SSOP
20-pin SSOP
Peripherals Timer Module(s)
Features
PIC16C56
20
PIC16C57
Memory
PIC16C55
20
RAM Data Memory (bytes)
Clock
PIC16CR54A
4
Peripherals Timer Module(s)
Features
PIC16C54
Maximum Frequency
of Operation (MHz)
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer (except PIC16C52), selectable code protect and
high I/O current capability.
DS30390E-page 266
 1997 Microchip Technology Inc.
PIC16C7X
E.5
PIC16C55X Family of Devices
PIC16C556(1)
PIC16C554
Clock
Memory
Maximum Frequency of Operation (MHz)
20
PIC16C558
20
EPROM Program Memory (x14 words)
512
1K
2K
Data Memory (bytes)
80
80
128
Timer Module(s)
Peripherals Comparators(s)
Features
20
TMR0
TMR0
TMR0
—
—
—
Internal Reference Voltage
—
—
—
Interrupt Sources
3
3
3
I/O Pins
13
13
13
Voltage Range (Volts)
2.5-6.0
2.5-6.0
2.5-6.0
Brown-out Reset
—
—
—
Packages
18-pin DIP,
SOIC;
20-pin SSOP
18-pin DIP,
SOIC;
20-pin SSOP
18-pin DIP,
SOIC;
20-pin SSOP
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high
I/O current capability. All PIC16C5XX Family devices use serial programming with clock pin RB6 and data pin RB7.
Note 1: Please contact your local Microchip sales office for availability of these devices.
E.6
PIC16C62X and PIC16C64X Family of Devices
PIC16C620
Clock
Memory
PIC16C622
PIC16C642
PIC16C662
20
20
20
20
20
EPROM Program Memory
(x14 words)
512
1K
2K
4K
4K
Data Memory (bytes)
80
80
128
176
176
Timer Module(s)
TMR0
TMR0
TMR0
TMR0
TMR0
2
Peripherals Comparators(s)
Features
PIC16C621
Maximum Frequency
of Operation (MHz)
2
2
2
2
Internal Reference Voltage
Yes
Yes
Yes
Yes
Yes
Interrupt Sources
4
4
4
4
5
I/O Pins
13
13
13
22
33
Voltage Range (Volts)
2.5-6.0
2.5-6.0
2.5-6.0
3.0-6.0
3.0-6.0
Brown-out Reset
Yes
Yes
Yes
Yes
Yes
Packages
18-pin DIP,
SOIC;
20-pin SSOP
18-pin DIP,
SOIC;
20-pin SSOP
18-pin DIP,
SOIC;
20-pin SSOP
28-pin PDIP,
SOIC,
Windowed
CDIP
40-pin PDIP,
Windowed
CDIP;
44-pin PLCC,
MQFP
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high
I/O current capability. All PIC16C62X and PIC16C64X Family devices use serial programming with clock pin RB6 and data pin RB7.
 1997 Microchip Technology Inc.
DS30390E-page 267
PIC16C7X
E.7
PIC16C6X Family of Devices
PIC16C61
Clock
Memory
PIC16C62A
PIC16CR62
PIC16C63
PIC16CR63
Maximum Frequency
of Operation (MHz)
20
20
20
20
20
EPROM Program Memory
(x14 words)
1K
2K
—
4K
—
ROM Program Memory
(x14 words)
—
—
2K
—
4K
Data Memory (bytes)
36
128
128
192
192
Timer Module(s)
TMR0
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
Capture/Compare/
Peripherals PWM Module(s)
—
1
1
2
2
Serial Port(s)
(SPI/I2C, USART)
—
SPI/I2C
SPI/I2C
SPI/I2C,
USART
SPI/I2C
USART
Parallel Slave Port
—
—
—
—
—
Features
Interrupt Sources
3
7
7
10
10
I/O Pins
13
22
22
22
22
Voltage Range (Volts)
3.0-6.0
2.5-6.0
2.5-6.0
2.5-6.0
2.5-6.0
In-Circuit Serial Programming
Yes
Yes
Yes
Yes
Yes
Brown-out Reset
—
Yes
Yes
Yes
Yes
Packages
18-pin DIP, SO 28-pin SDIP,
SOIC, SSOP
28-pin SDIP,
SOIC, SSOP
28-pin SDIP, 28-pin SDIP,
SOIC
SOIC
PIC16C64A
Clock
Memory
PIC16C65A
PIC16CR65
PIC16C66
PIC16C67
20
20
20
20
20
20
EPROM Program Memory
(x14 words)
2K
—
4K
—
8K
8K
ROM Program Memory (x14
words)
—
2K
—
4K
—
—
Data Memory (bytes)
128
128
192
192
368
368
Timer Module(s)
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
1
1
2
2
2
2
Serial Port(s) (SPI/I2C, USART)
SPI/I2C
SPI/I2C
SPI/I2C,
USART
SPI/I2C,
USART
SPI/I2C,
USART
SPI/I2C,
USART
Parallel Slave Port
Yes
Yes
Yes
Yes
—
Yes
Interrupt Sources
8
8
11
11
10
11
I/O Pins
33
33
33
33
22
33
Voltage Range (Volts)
2.5-6.0
2.5-6.0
2.5-6.0
2.5-6.0
2.5-6.0
2.5-6.0
Capture/Compare/PWM ModPeripherals ule(s)
Features
PIC16CR64
Maximum Frequency
of Operation (MHz)
In-Circuit Serial Programming
Yes
Yes
Yes
Yes
Yes
Yes
Brown-out Reset
Yes
Yes
Yes
Yes
Yes
Yes
Packages
40-pin DIP; 40-pin DIP;
40-pin DIP;
40-pin DIP;
44-pin PLCC, 44-pin PLCC, 44-pin PLCC, 44-pin
MQFP, TQFP MQFP, TQFP MQFP, TQFP PLCC,
MQFP,
TQFP
28-pin SDIP, 40-pin DIP;
SOIC
44-pin
PLCC,
MQFP,
TQFP
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current
capability. All PIC16C6X Family devices use serial programming with clock pin RB6 and data pin RB7.
DS30390E-page 268
 1997 Microchip Technology Inc.
PIC16C7X
E.8
PIC16C8X Family of Devices
PIC16F83
Clock
Memory
Peripherals
Features
PIC16CR83
PIC16F84
PIC16CR84
Maximum Frequency
of Operation (MHz)
10
10
10
10
Flash Program Memory
512
—
1K
—
EEPROM Program Memory
—
—
—
—
ROM Program Memory
—
512
—
1K
Data Memory (bytes)
36
36
68
68
Data EEPROM (bytes)
64
64
64
64
Timer Module(s)
TMR0
TMR0
TMR0
TMR0
Interrupt Sources
4
4
4
4
I/O Pins
13
13
13
13
Voltage Range (Volts)
2.0-6.0
2.0-6.0
2.0-6.0
2.0-6.0
Packages
18-pin DIP,
SOIC
18-pin DIP,
SOIC
18-pin DIP,
SOIC
18-pin DIP,
SOIC
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C8X Family devices use serial programming with clock pin RB6 and data pin RB7.
E.9
PIC16C9XX Family Of Devices
PIC16C923
Clock
Memory
Maximum Frequency of Operation (MHz)
PIC16C924
8
EPROM Program Memory
4K
4K
Data Memory (bytes)
176
176
Timer Module(s)
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
Capture/Compare/PWM Module(s)
1
1
SPI/I2C
SPI/I2C
Parallel Slave Port
—
—
A/D Converter (8-bit) Channels
—
5
LCD Module
4 Com,
32 Seg
4 Com,
32 Seg
Serial Port(s)
Peripherals (SPI/I2C, USART)
Features
8
Interrupt Sources
8
9
I/O Pins
25
25
Input Pins
27
27
Voltage Range (Volts)
3.0-6.0
3.0-6.0
In-Circuit Serial Programming
Yes
Yes
Brown-out Reset
—
—
Packages
64-pin SDIP(1),
TQFP;
68-pin PLCC,
Die
64-pin SDIP(1),
TQFP;
68-pin PLCC,
Die
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C9XX Family devices use serial programming with clock pin RB6 and data pin RB7.
 1997 Microchip Technology Inc.
DS30390E-page 269
PIC16C7X
E.10
PIC17CXXX Family of Devices
PIC17C42A
Clock
Memory
Clock
Memory
PIC17CR43
PIC17C44
33
33
33
33
EPROM Program Memory
(words)
2K
—
4K
—
8K
ROM Program Memory
(words)
—
2K
—
4K
—
RAM Data Memory (bytes)
232
232
454
454
454
Timer Module(s)
TMR0,
TMR1,
TMR2,
TMR3
TMR0,
TMR1,
TMR2,
TMR3
TMR0,
TMR1,
TMR2,
TMR3
TMR0,
TMR1,
TMR2,
TMR3
TMR0,
TMR1,
TMR2,
TMR3
2
Captures/PWM Module(s)
2
2
2
2
Serial Port(s) (USART)
Yes
Yes
Yes
Yes
Yes
Hardware Multiply
Yes
Yes
Yes
Yes
Yes
External Interrupts
Yes
Yes
Yes
Yes
Yes
Interrupt Sources
11
11
11
11
11
I/O Pins
33
33
33
33
33
Voltage Range (Volts)
2.5-6.0
2.5-6.0
2.5-6.0
2.5-6.0
2.5-6.0
Number of Instructions
58
58
58
58
58
Packages
40-pin DIP;
44-pin PLCC,
MQFP, TQFP
40-pin DIP;
44-pin PLCC,
MQFP, TQFP
40-pin DIP;
44-pin PLCC,
MQFP, TQFP
40-pin DIP;
44-pin PLCC,
MQFP, TQFP
40-pin DIP;
44-pin PLCC,
MQFP, TQFP
PIC17C752
PIC17C756
Maximum Frequency
of Operation (MHz)
33
33
EPROM Program Memory
(words)
8K
16K
ROM Program Memory
(words)
—
—
RAM Data Memory (bytes)
454
902
Timer Module(s)
TMR0,
TMR1,
TMR2,
TMR3
TMR0,
TMR1,
TMR2,
TMR3
Peripherals
Features
PIC17C43
33
Peripherals
Features
PIC17CR42
Maximum Frequency
of Operation (MHz)
Captures/PWM Module(s)
4/3
4/3
Serial Port(s) (USART)
2
2
Hardware Multiply
Yes
Yes
External Interrupts
Yes
Yes
Interrupt Sources
18
18
I/O Pins
50
50
Voltage Range (Volts)
3.0-6.0
3.0-6.0
Number of Instructions
58
58
Packages
64-pin DIP;
68-pin LCC,
68-pin TQFP
64-pin DIP;
68-pin LCC,
68-pin TQFP
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high
I/O current capability.
DS30390E-page 270
 1997 Microchip Technology Inc.
PIC16C7X
PIN COMPATIBILITY
Devices that have the same package type and VDD,
VSS and MCLR pin locations are said to be pin
compatible. This allows these different devices to
operate in the same socket. Compatible devices may
only requires minor software modification to allow
proper operation in the application socket
(ex., PIC16C56 and PIC16C61 devices). Not all
devices in the same package size are pin compatible;
for example, the PIC16C62 is compatible with the
PIC16C63, but not the PIC16C55.
Pin compatibility does not mean that the devices offer
the same features. As an example, the PIC16C54 is
pin compatible with the PIC16C71, but does not have
an A/D converter, weak pull-ups on PORTB, or
interrupts.
TABLE E-1:
PIN COMPATIBLE DEVICES
Pin Compatible Devices
Package
PIC12C508, PIC12C509, PIC12C671, PIC12C672
8-pin
PIC16C154, PIC16CR154, PIC16C156,
PIC16CR156, PIC16C158, PIC16CR158,
PIC16C52, PIC16C54, PIC16C54A,
PIC16CR54A,
PIC16C56,
PIC16C58A, PIC16CR58A,
PIC16C61,
PIC16C554, PIC16C556, PIC16C558
PIC16C620, PIC16C621, PIC16C622
PIC16C641, PIC16C642, PIC16C661, PIC16C662
PIC16C710, PIC16C71, PIC16C711, PIC16C715
PIC16F83, PIC16CR83,
PIC16F84A, PIC16CR84
18-pin,
20-pin
PIC16C55, PIC16C57, PIC16CR57B
28-pin
PIC16CR62, PIC16C62A, PIC16C63, PIC16CR63,
PIC16C66, PIC16C72, PIC16C73A, PIC16C76
28-pin
PIC16CR64, PIC16C64A, PIC16C65A,
PIC16CR65, PIC16C67, PIC16C74A, PIC16C77
40-pin
PIC17CR42, PIC17C42A,
PIC17C43, PIC17CR43, PIC17C44
40-pin
PIC16C923, PIC16C924
64/68-pin
PIC17C756, PIC17C752
64/68-pin
 1997 Microchip Technology Inc.
DS30390E-page 271
PIC16C7X
PIC16C7X PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.
Examples
PART NO. -XX X /XX XXX
Pattern:
Package:
Temperature
Range:
Frequency
Range:
Device
QTP, SQTP, Code or Special Requirements
a)
JW
= Windowed CERDIP
PQ
= MQFP (Metric PQFP)
TQ
= TQFP (Thin Quad Flatpack)
SO
= SOIC
SP
= Skinny plastic dip
b)
P
= PDIP
L
= PLCC
SS
= SSOP
= 0°C to +70°C
I
= -40°C to +85°C
c)
E
= -40°C to +125°C
04
= 200 kHz (PIC16C7X-04)
04
= 4 MHz
10
= 10 MHz
20
= 20 MHz
PIC16C7X
:VDD range 4.0V to 6.0V
PIC16C7XT :VDD range 4.0V to 6.0V (Tape/Reel)
PIC16LC7X :VDD range 2.5V to 6.0V
PIC16LC7XT :VDD range 2.5V to 6.0V (Tape/Reel)
PIC16C72 - 04/P 301
Commercial Temp.,
PDIP Package, 4 MHz,
normal VDD limits, QTP
pattern #301
PIC16LC76 - 041/SO
Industrial Temp., SOIC
package, 4 MHz,
extended VDD limits
PIC16C74A - 10E/P
Automotive Temp.,
PDIP package, 10 MHz,
normal VDD limits
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of
each oscillator type (including LC devices).
Sales and Support
Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:
1. The Microchip Website at www.microchip.com
2. Your local Microchip sales office (see following page)
3. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
4. The Microchip’s Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.
For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.
DS30390E-page 287
 1997 Microchip Technology Inc.
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement