Global Monthly Water Scarcity - University of Twente Research

Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability Arjen Y. Hoekstra1,2*, Mesfin M. Mekonnen1, Ashok K. Chapagain3, Ruth E. Mathews2, Brian D. Richter4 1 Department of Water Engineering and Management, University of Twente, Enschede, The Netherlands, 2 Water Footprint Network, Enschede, The Netherlands, 3 World Wide Fund-United Kingdom, Godalming, Surrey, United Kingdom, 4 The Nature Conservancy, Charlottesville, Virginia, United States of America Abstract Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996–2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity – as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins – can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption. Citation: Hoekstra AY, Mekonnen MM, Chapagain AK, Mathews RE, Richter BD (2012) Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE 7(2): e32688. doi:10.1371/journal.pone.0032688 Editor: Juan A. Añel, University of Oxford, United Kingdom Received November 16, 2011; Accepted January 29, 2012; Published February 29, 2012 Copyright: ß 2012 Hoekstra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: The authors have no funding or support to report. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] estimating scarcity than the volume of water withdrawn. In industries and households even 90–95% of the water withdrawn will return [20]. Second, in assessing water availability we take into account the flows needed to sustain critical ecological functions, as done earlier by for instance Smakhtin et al. [21]. We use a recently proposed presumptive standard that depletion beyond 20% of a river’s natural flow increases risks to ecological health and ecosystem services [22]. Third, we compare water use and availability on a monthly rather than annual basis, similar to what Wada et al. [13] did recently. In this way we incorporate the often-great variability of water supply and use throughout the year and capture the seasonal nature of water scarcity [23]. Our global water scarcity study is the first to combine those three innovations in one assessment. It compares on a monthly basis the consumptive use component of blue water withdrawals to the estimated ecologically admissible fraction of runoff. Following Hoekstra et al. [24], we define blue water scarcity in a given river basin as the ratio of the blue water footprint in that basin to the blue water available, where the latter accounts for environmental water needs by subtracting from the total runoff the presumed flow requirement for ecological health. As is the case in previous water scarcity indicators, we have focused on scarcity of water available in rivers and groundwater, or the ‘‘blue’’ water [25]; we do not consider scarcity of direct precipitation, or ‘‘green’’ water. Based on [26], the monthly blue water footprint of humanity was estimated at a five by five arc minute spatial resolution for the world as a whole, distinguishing between agricultural, industrial, and domestic water footprints. The blue water footprint of human activities is defined as the volume of surface and groundwater consumed as a result of that activity, whereby consumption refers to the volume of freshwater used and then evaporated or incorporated into a product. Natural runoff Introduction The inexorable rise in demand for water to grow food, supply industries and sustain urban and rural populations has led to a growing scarcity of freshwater in many parts of the world. An increasing number of rivers now run dry before reaching the sea for substantial periods of the year. In many areas, groundwater is being pumped at rates that exceed replenishment, depleting aquifers and the base flows of rivers [1]. Increasingly, governments, corporations and communities are concerned about the future availability and sustainability of water supplies [2]. During the last twenty years, researchers have developed a number of metrics to help characterize, map and track the geography of water scarcity globally. These have included, for example, the ratio of population size to the renewable water supply [3] and the ratio of water withdrawals to the renewable supply [4– 7]. These water scarcity indicators have highlighted the mismatch between water availability and water demand, and have helped document the spread of water scarcity over time. Today, water scarcity assessments underpin global assessments of food [7], poverty and human development [8], economic and business prospects [9], and ecological health [10]. Given this widespread use of water scarcity indicators, their accuracy is at a premium. We have developed a new and more accurate assessment of global water scarcity by combining three innovations in measuring water use and availability. First, following recent developments in water use studies [11–17], we measure water use in terms of consumptive use of ground- and surface water flows – i.e., the blue water footprint – rather than water withdrawals. In agriculture, about 40% of water withdrawals typically return to local rivers and aquifers and thereby becomes available for reuse [18,19], so that the volume of water consumed provides a more accurate basis for PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e32688 Global Monthly Blue Water Scarcity (CIESIN) and the International Center for Tropical Agriculture (CIAT) [30] and by assuming that 5% of the industrial withdrawals and 10% of the domestic withdrawals are ultimately consumed, i.e. evaporated, which are thought to be reasonable estimates according to FAO [20]. Due to a lack of data we have distributed the annual water consumption figures for industry and domestic use equally over the twelve months of the year without accounting for the possible monthly variation. The monthly blue water availability in a river basin in a certain period was calculated as the ‘natural runoff’ in the basin minus ‘environmental flow requirement’. The natural runoff was estimated by adding the actual runoff and the total blue water footprint within the river basin. Monthly actual runoff data at a 30 by 30 arc minute resolution were obtained from the Composite Runoff V1.0 database [27]. These data are based on model estimates that were calibrated against runoff measurements for different periods, with the year 1975 as the mean central year. In order to approximate the natural (undepleted) runoff, we corrected the 1975 actual runoff data by adding the aggregated blue water footprint per basin as in 1975. The latter was estimated to be 74% of the blue water footprint per basin as was estimated by Mekonnen and Hoekstra [26] for the central year 2000. The 74% refers to the ratio of the global blue water footprint in 1975 to the global blue water footprint in 2000 [31]. In order to establish the environmental flow requirement we have adopted the ‘‘presumptive environmental flow standard’’ as proposed by Richter et al. [22] and Hoekstra et al. [24]. We note that the application of this standard does not imply that 80% of the total runoff is unavailable for use. In actuality all of the runoff can be used, as long as no more than 20% of the total runoff is depleted by water consumption. As suggested by Richter et al. [22], this presumptive standard is to be applied only when site-specific scientific investigation of environmental flow needs has not been undertaken. The presumptive standard is meant to be a precautionary approach to estimating environmental flow requirements when detailed local studies have not been completed, which is presently the case for the vast majority of the world’s river basins. We acknowledge that governments and local stakeholders may intentionally choose to consume more than 20% of total natural runoff and bear the ecological consequences to gain other benefits associated with water consumption. However, we feel that it is very important to explicitly account for ecological health in water scarcity assessments, and use of this presumptive standard in the present study enables identification of river basins in which ecological health has likely been compromised. Blue water scarcity values have been classified into four levels of water scarcity: per river basin was estimated by taking estimates of actual runoff from Fekete et al. [27] and adding the water volumes already consumed (the blue water footprint). Blue water availability is estimated by reducing total natural runoff by 80% to account for presumed environmental flow requirements. The blue water availability is thus the volume of water that can be consumed without expected adverse ecological impacts. We hasten to note, however, that flows dedicated to the maintenance of ecological health can be used for other purposes; the presumptive standard is met as long as net depletion remains within 20% of the natural monthly flow. We believe that our indicator provides a more reliable and accurate rendering of the status of water budgets (inputs minus outputs) at the river basin scale than has been available to date because it combines these three improvements over previous studies: use of water consumption instead of water withdrawal, explicit incorporation of environmental flow requirements and a monthly time-step. As such, this indicator provides decisionmakers with an improved picture of where and when current levels of water use are likely to cause water shortages and ecological harm within river basins around the world. Methods The blue water scarcity in a river basin is defined as the ratio of the total blue water footprint to the blue water availability in a river basin during a specific time period [24]. A blue water scarcity of one hundred per cent means that the available blue water has been fully consumed. The blue water scarcity is time-dependent; it varies within the year and from year to year. In this study, we calculate blue water scarcity per river basin on a monthly basis. Blue water footprint and blue water availability are expressed in mm/month. For each month of the year we consider the ten-year average for the period 1996–2005 to incorporate climate variability, while acknowledging that averaging can obscure inter-annual variability in scarcity. Average monthly blue water footprints per river basin for the period 1996–2005 have been derived from the work of Mekonnen and Hoekstra [26], who estimated the global blue water footprint at a 5 by 5 arc minute spatial resolution. They reported annual values at country level, whereas in the current study we use the same underlying data to report monthly values at river basin level. The three primary water-consuming sectors are included: agriculture, industry and domestic water supply. The blue water footprint of crop production was calculated using a daily soil water balance model at the mentioned resolution level as reported in Mekonnen and Hoekstra [11,28,29]. Blue water consumption in irrigated crop production is calculated by performing two different soil water balance scenarios. The first soil water balance scenario is carried out based on the assumption that the soil does not receive any irrigation. The second soil water balance scenario is carried out with the assumption that the amount of actual irrigation is sufficient to meet the irrigation requirement, applying the same crop parameters as in the first scenario. The blue crop water consumption is equal to the crop water evapotranspiration over the growing period as simulated in the second scenario minus the total crop water evapotranspiration as estimated in the first scenario. The blue water footprints of industries and domestic water supply were obtained by spatially distributing national data on industrial and domestic water withdrawals from the Food and Agricultural Organization of the United Nations (FAO) [20] according to population densities around the world as given by the Center for International Earth Science Information Network PLoS ONE | www.plosone.org N N N N 2 low blue water scarcity (,100%): the blue water footprint is lower than 20% of natural runoff and does not exceed blue water availability; river runoff is unmodified or slightly modified; presumed environmental flow requirements are not violated. moderate blue water scarcity (100–150%): the blue water footprint is between 20 and 30% of natural runoff; runoff is moderately modified; environmental flow requirements are not met. significant blue water scarcity (150–200%): the blue water footprint is between 30 and 40% of natural runoff; runoff is significantly modified; environmental flow requirements are not met. severe water scarcity (.200%). The monthly blue water footprint exceeds 40% of natural runoff; runoff is seriously modified; environmental flow requirements are not met. February 2012 | Volume 7 | Issue 2 | e32688 Global Monthly Blue Water Scarcity during the other part. Even in otherwise water abundant areas, intra-annual variability can severely limit blue water availability. Under such conditions, considering blue water availability on an annual basis provides an incomplete and sometimes misleading view of blue water availability per basin. We evaluated 405 river basins, which together cover 66% of the global land area (excluding Antarctica) and represent 65% of the global population in 2000 (estimate based on CIESIN and CIAT [30]). We applied river basin boundaries and names as provided by Global Runoff Data Centre (GRDC) [32] (Figure S1). The land areas not covered include for example Greenland, the Sahara desert in North Africa, the Arabian peninsula, the Iranian, Afghan and Gobi deserts in Asia, the Mojave desert in North America and the Australian desert. Also excluded are many smaller land areas, often along the coasts, that do not fall within major river basins. Monthly water scarcity by river basin For this assessment, we analyzed 405 river basins that collectively account for 69 percent of global runoff, 75 percent of world irrigated area, and 65 percent of world population. For each river basin and each month, we categorize water scarcity from low to severe based on the ratio of blue water footprint to blue water availability (natural runoff minus environmental flow requirements). Referring to Figure 2, in river basins shown in green in a given month, the blue water footprint is less than 20 percent of that month’s natural runoff. There is little or no water scarcity and the basin fully meets that month’s presumptive environmental flow requirement. Data are provided in Table S4. We illustrate the relationships between blue water footprint, natural runoff, environmental flow requirements and blue water availability for the Murray-Darling River Basin in Figure 3. One can see that blue water footprint in the Murray-Darling River Basin is largest in the period that water availability is lowest. The blue water footprint exceeds natural runoff during a part of the dry period, which is made possible through temporary depletion of groundwater or surface water reservoir storage. Table 1 gives an overview of the number of basins and number of people facing low, moderate, significant and severe water scarcity during a given number of months per year. In 223 river basins (55% of the basins studied) with 2.72 billion inhabitants (69% of the total population living in the basins included in this study), the blue water footprint exceeds blue water availability during at least one month of the year. For 201 of these basins, with together 2.67 billion inhabitants, there was severe water scarcity during at least one month of the year, highlighting the fact that when water scarcity exists it is usually of a severe nature, meaning that more than 40% of natural runoff is being consumed. In 35 river basins with 483 million people, there was severe water scarcity for at least half of the year. Of importance when considering the social, economic and environmental impacts of water scarcity is both the severity and the duration of the scarcity (see Figure 4). Twelve of the river basins included in this study experience severe water scarcity during all months of the year. The largest of those basins is the Eyre Lake Basin in Australia, one of the largest endorheic basins in the world, arid and inhabited by only about 86,000 people, but covering around 1.2 million km2. The most heavily populated basin facing severe water scarcity all year long is the Yongding He Basin in northern China (serving water to Beijing), with an area of 214,000 km2 and a population density of 425 persons per km2. Eleven months of severe water scarcity occurs in the San Antonio River Basin in Texas, US and the Groot-Kei River Basin in Eastern Cape, South Africa. Two heavily populated river basins face nine months of severe water scarcity, the Penner River Basin in southern India, a basin with a dry tropical monsoon climate and 10.9 million people, and the Tarim River Basin in China, which includes the Taklamakan Desert with 9.3 million people. Four basins face severe water scarcity during eight months a year: the Indus with 212 million people; the Cauvery with an area of 91,000 km2 and 35 million people; the Dead Sea Basin, which includes the Jordan River and extends over parts of Jordan, Israel, the West Bank and minor parts of Lebanon and Egypt; and the Salinas River in California in the US. Results Monthly blue water footprint Agriculture accounts for 92% of the global blue water footprint; the remainder is equally shared between industrial production and domestic water supply [26]. However, the percentages of water consumed by agriculture, industry and domestic water supply vary across river basins and within the year. While the blue water footprint in agriculture varies from month to month depending on the timing and intensity of irrigation, the domestic water supply and industrial production were assumed to remain constant throughout the year. Therefore, for particular months in certain basins one hundred per cent of the blue water footprint can be attributed to industry and domestic water supply. The intraannual variability of the total blue water footprint is mapped at a five by five arc minute grid in Figure 1. By aggregating the grid data to the level of river basins we obtain the maps as shown in Figure S2. The monthly blue water footprints per basin are further tabulated in Table S1. The values on the maps are shown in mm per month and can thus directly be compared. A large blue water footprint throughout the year is observed for the Indus and Ganges River Basins, because irrigation occurs here throughout the year. A large blue water footprint during part of the year is estimated for basins such as the Tigris-Euphrates, Huang He (Yellow River), Murray-Darling, Guadiana, Colorado (Pacific Ocean) and Krishna. When we consider Europe and North America as a whole, we see a clear peak in the blue water footprint in the months May to September (around the northern summer). In Australia, we see a blue water footprint peak in the months October to March (around the southern summer). One cannot find such distinct seasonal patterns in the blue water footprint in South America, Africa or Asia, because these continents are more heterogeneous in climatic conditions. Monthly natural runoff and blue water availability by river basin Natural runoff and blue water availability vary across basins and over the year as shown on the global maps in Figures S3, S4 and in Tables S2, S3. The Amazon and Congo River Basins together account for 28% of the natural runoff in the 405 river basins considered in this study. At a global level, monthly runoff is above average in the months of January and April to August and below average during the other months of the year. When we look at the runoff per region, we find that most of the runoff in North America occurs in the period of April to June, in Europe from March to June, in Asia between May and September, in Africa in January, August and September, and in South America from January to May. While the Amazon and Congo River Basins display relatively low variability over the year, much sharper gradients are apparent in other basins. In some parts of the world, a large portion of the annual runoff occurs within a few weeks or months, generating floods during one part of the year and drought PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e32688 Global Monthly Blue Water Scarcity Figure 1. Monthly blue water footprint in the period 1996–2005. The data are shown in mm/month on a 5 by 5 arc minute grid. Data per grid cell have been calculated as the water footprint within a grid cell (in m3/month) divided by the area of the grid cell (in 103 m2). doi:10.1371/journal.pone.0032688.g001 PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e32688 Global Monthly Blue Water Scarcity Figure 2. Monthly water scarcity in the world’s major river basins, based on the period of 1996–2005. In each month that a river basin is colored in some shade of green, the monthly water scarcity is low (blue water footprint is less than net availability). In such cases, the presumed environmental flow requirements are not violated, and river runoff in that month is unmodified or only slightly modified. In each month that a river basin is colored yellow, water scarcity is moderate. Blue water footprint is between 20 and 30% of natural runoff; runoff is hence moderately modified and environmental flow requirements are not fully met. When a river basin is colored orange, water scarcity is significant. Blue water footprint is between 30 and 40% of natural runoff, so monthly runoff is significantly modified. In each month that a river basin is colored red, water scarcity is severe; the blue water footprint exceeds 40% of natural runoff, therefore runoff is seriously modified. doi:10.1371/journal.pone.0032688.g002 PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e32688 Global Monthly Blue Water Scarcity Figure 3. Water scarcity over the year for the Murray-Darling River Basin in Australia (average for the period 1996–2005). Net available water – that is natural runoff minus environmental flow requirement – is shown in green. From October until May, the blue water footprint exceeds net available water; in these months, the presumptive environmental flow requirement is not met. When the blue water footprint moves into the yellow, orange and red colors, water scarcity is moderate, significant and severe, respectively. doi:10.1371/journal.pone.0032688.g003 the fact that Oki and Kanae call an area ‘severely water stressed’ already when the annual ratio of water withdrawal to runoff exceeds 40% [5]. When we roughly assume that water consumption (the blue water footprint) is 60% of total water withdrawal in a basin, this criterion is equivalent to saying that severe water stress occurs when the blue water footprint exceeds 24% of runoff, which means that less than 76% of runoff remains (on an annual basis). In our study, severe water scarcity is assumed to occur when less than 60% of runoff remains (on a monthly basis). We thus use a less strict criterion, but apply a monthly evaluation which is more strict. This can help explain the similarity between [5] and our study in the identification of Discussion The current study provides the first global assessment of blue water scarcity at the scale of river basins and at a monthly resolution while accounting for environmental flow requirements. We find that at least 2.7 billion people are living in basins that experience severe water scarcity during at least one month of the year. Our estimate is close to what Oki and Kanae [5] found in another recent global water scarcity study, although they looked at water withdrawals instead of consumption and considered water scarcity at an annual basis. They found 2.4 billion people living in severely water-stressed areas. The similar finding is explained by Table 1. Number of basins and number of people facing low, moderate, significant and severe water scarcity during a given number of months per year. Number of basins facing low, moderate, significant and severe water scarcity during n months per year Number of people (millions) facing low, moderate, significant and severe water scarcity during n months per year Number of months per year (n) Low water scarcity Moderate water scarcity Significant water scarcity Severe water scarcity Low water scarcity Moderate water scarcity Significant water scarcity Severe water scarcity 0 17 319 344 204 353 2690 2600 1289 1 2 55 45 46 18.6 894 357 440 2 1 26 12 49 0.002 302 672 512 3 4 4 2 33 79.6 69.2 220 182 4 6 1 1 22 35.0 0.14 9.2 345 5 18 0 1 16 897 0 97.8 706 6 9 0 0 10 111 0 0 25.6 7 17 0 0 4 144 0 0 88.0 8 29 0 0 4 293 0 0 254 9 29 0 0 3 66.8 0 0 20.2 10 52 0 0 0 428 0 0 0 11 39 0 0 2 296 0 0 1.8 12 182 0 0 12 1233 0 0 93.3 Total 405 405 405 405 3956 3956 3956 3956 doi:10.1371/journal.pone.0032688.t001 PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e32688 Global Monthly Blue Water Scarcity Figure 4. Number of months during the year in which the blue water footprint exceeds blue water availability for the world’s major river basins, based on the period of 1996–2005. Blue water availability refers to natural flows (through rivers and groundwater) minus the presumed environmental flow requirement. doi:10.1371/journal.pone.0032688.g004 severely water stressed areas and in the estimation of the number of people living under severe water stress. However, water scarcity analysis at a monthly time step provides insight into water scarcity that is not revealed in annual water scarcity studies [4–6,21]; in particular the fact that scarcity occurs in certain periods of the year and not in others [13,33]. This enables a more detailed analysis of when water consumption is exceeding water availability which can assist in pinpointing and prioritizing investments in blue water footprint reduction. If stricter criteria for high water scarcity was used in line with previous annual studies, the number of high water stress areas and the people affected by water stress would increase. In this study, water scarcity has been evaluated at the scale of large river basins. Other investigators have presented global water scarcity assessments at a much higher spatial resolution, by applying a 30 arc minute grid [5–6,13]. While we acknowledge that portrayal of water scarcity at a higher spatial resolution can be useful for some purposes, we feel that it is very important to portray water scarcity using geographic units familiar and relevant to water managers and planners, i.e., at the river basin scale. We also caution that the accuracy of existing runoff and water consumption data may not yet warrant interpretation of results at higher spatial resolution. We stress that our basic analyses of blue water footprint and water availability have been carried out at high-resolution grid level, so that it is only in the presentation of scarcity levels that we show results at basin level. The levels of water scarcity estimated in this study correspond strongly with documented ecological declines and socio-economic disruption in some of the world’s most heavily used river basins. The Indus River Basin, with 212 million people, faces severe water scarcity during eight months of the year. In the northwestern Indian provinces of Punjab, Rajasthan and Haryana, each one of which lies fully or partly in the Indus River Basin, groundwater is steadily being depleted [34]. Unsustainable groundwater depletion and severe water scarcity threaten potable water supplies and agricultural output, affecting the country’s food supplies and the government’s welfare programs. The Rio Grande (or Rio Bravo) Basin – an international river basin shared by the US and Mexico – suffers severe water scarcity during seven months of the year. As a result of low water levels, the concentration of pollutants is so high that fish kills have occurred, and the lower river is suffering PLoS ONE | www.plosone.org from greatly increased salinity levels which have displaced 32 native freshwater fish species [35]. Regional economic losses in irrigated agriculture due to water shortages have been estimated at $135 million per year, including loss of more than 4,000 jobs annually [36]. In the Murray-Darling basin in south-eastern Australia with six months of severe water scarcity, depletion of river flows caused the Murray to run dry before reaching the sea for the first time in 2002, and 20 of 23 sub-basins have been assessed as being in ‘‘poor’’ to ‘‘very poor’’ ecosystem health [37]. A highly controversial new draft basin plan proposes a multibillion dollar government program of irrigation water buybacks in an attempt to reduce consumption by at least 20% and increase return flows to depleted wetlands and streams, with projected economic losses to agriculture of at least $800 million per year [37]. With severe water scarcity occurring at least one month per year in close to one half of the river basins included in this study, our results underline the critical nature of water shortages around the world. Businesses, investors, farmers, governments and others may find this scarcity indicator useful in assessing their water-related risks. The indicator highlights where investments in improved water efficiency and productivity may be critical to averting water shortages and seasonal rationing. It also illuminates that trade – particularly in agricultural products – can help alleviate water scarcity through import of water-intensive products from more water-rich areas. Rockström et al. [38] have posed that planetary boundaries for different global resources can be determined. By including the presumptive environmental flow requirement and doing the analysis at a monthly time-step, our water scarcity indicator contributes higher resolution analysis for setting a boundary for the sustainable use of freshwater at local and regional scales [39,40]. Maintaining water use within this boundary of water availability can have implications for economic and infrastructure planning, trade and agricultural policies, and development aid. The presumptive environmental flow standard applied in our water scarcity analysis is a precautionary boundary that should be refined with site-specific studies. However, depletion beyond this boundary will typically involve tradeoffs between the social and economic benefits of increased consumptive use and the loss of ecosystem health and related social and economic costs [22]. 7 February 2012 | Volume 7 | Issue 2 | e32688 Global Monthly Blue Water Scarcity While our water scarcity indicator provides an improved accounting of the current status of basin water budgets, a couple of caveats deserve mention so as to avoid misinterpretation of these results. Our estimates of blue water availability account for monthby-month natural variability in flow, but they do not yet properly account for the perturbation of seasonal runoff patterns by river flow regulation by dams. The runoff dataset from Fekete et al. [27] used in this study is a construct based on runoff modeling on the one hand and river discharge measurements on the other hand, so that it implicitly includes impacts from reservoirs, inter-basin transfers and consumptive water use (but only in those cases where discharge measurements were available). We have nullified the impact of consumptive water use by adding our own consumptive water use estimates to the ‘actual’ runoff from this dataset to obtain ‘natural’ runoff, but we have not been able to cancel out the effects of dams and inter-basin transfers. Further, our water footprint estimates do not yet include evaporation from artificial reservoirs. Additionally, our estimates of blue water footprint do not account for inter-basin transfers of water. For basins that are net exporters of water (e.g., the Colorado, through deliveries to southern California, Las Vegas, the Front Range of Colorado and elsewhere) the scarcity picture is likely worse than presented here, whereas for net importers of water it may be better. Our water scarcity estimates also include uncertainties inherent in the data used and the assumptions made. The data on actual runoff are model-based estimates calibrated against long-term runoff measurements [27]; the model outcomes include an error of 5% at the scale of large river basins and greater in smaller basins. The runoff measurements against which the model is calibrated have accuracy on the order of 610–20 percent [27]. Estimates of blue water footprint can easily contain an uncertainty of 620% [28,29,41]; in general, uncertainties for relatively small river basins will be bigger than for large river basins. In order to estimate natural (undepleted) runoff in each river basin, we have added the estimated blue water footprint from [26] to the estimated actual runoff from [27]. In doing so, we overestimate natural runoff in those months in which the blue water footprint partially draws down the total annual water storage in the basin (e.g., from aquifers) rather than depleting that month’s runoff. Similarly, we underestimate the natural runoff in the months in which water is being stored for later consumption. Further, as a result of our approach we overestimate natural runoff in those months and basins in which a portion of the water consumed comes from fossil (non-renewable) groundwater, because that water should not be included in natural runoff. However, empirical data on consumption of renewable versus fossil groundwater are very difficult to obtain at a global scale; so far only rough assessments based on models and assumptions have been made [12,42,43]. This study has excluded the issue of water pollution. Blue water scarcity has been defined such that it refers to scarcity in quantitative sense. Return flows from agriculture, industries and households are not consumptive use, so they do not affect our scarcity measure. In many places, water scarcity is much higher than suggested by us if one would consider scarcity of uncontaminated water. Despite these cautionary notes, our estimates provide a significant improvement over previous water scarcity indicators and the relative spatial and temporal patterns of water scarcity globally because they provide a more detailed assessment of when and where water scarcity occurs. Moreover, the calculated scarcity values for each river basin and month are conservative estimates of actual scarcity for two reasons. First, by evaluating water scarcity at the level of whole river basins, we do not capture spatial variations within basins. Flows may be substantially more depleted at the subbasin level, for example, than for that basin as a whole. Second, we assume an average year with regard to both blue water footprint and availability, but in many basins inter-annual variations are substantial, aggravating the scarcity problem in the drier years. The water scarcity values presented refer to the period 1996– 2005. Continued growth in blue water footprint due to growing populations, changing food patterns (for instance, more meat consumption) and increasing demand for biofuels, combined with the effects of climate change on runoff patterns, are likely to result in a worsening and expansion of water scarcity in many river basins in the decades ahead [6]. Supporting Information Figure S1 Global river basin map. (TIFF) Figure S2 Global maps of the monthly blue water footprint in the world’s major river basins. Period 1996–2005. (TIF) Figure S3 Global maps of monthly natural runoff in the world’s major river basins. (TIF) Figure S4 Global maps of monthly blue water availability in the world’s major river basins. (TIF) Table S1 Monthly blue water footprint for the world’s major river basins. (PDF) Table S2 Monthly natural runoff for the world’s major river basins. (PDF) Table S3 Monthly blue water availability for the world’s major river basins. (PDF) Table S4 Monthly blue water scarcity for the world’s major river basins. (PDF) Acknowledgments We thank Sandra Postel, National Geographic, for providing comments on a draft of this paper. Author Contributions Conceived and designed the experiments: AYH MMM. Performed the experiments: AYH MMM. Analyzed the data: AYH MMM. Wrote the paper: AYH MMM AKC REM BDR. References 3. Falkenmark M (1989) The massive water scarcity now threatening Africa: Why isn’t it being addressed? Ambio 18(2): 112–118. 4. Alcamo J, Henrichs T (2002) Critical regions: A model-based estimation of world water resources sensitive to global changes. Aquat Sci 64(4): 352– 362. 1. Postel SL (2000) Entering an era of water scarcity: the challenges ahead. Ecol Appl 10(4): 941–948. 2. World Water Assessment Programme (2009) The UN World Water Development Report 3: Water in a Changing World. UNESCO, Paris, France, Earthscan, London, UK. PLoS ONE | www.plosone.org 8 February 2012 | Volume 7 | Issue 2 | e32688 Global Monthly Blue Water Scarcity 5. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790): 1068–1072. 6. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289: 284–288. 7. Comprehensive Assessment of Water Management in Agriculture (2007) Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. Earthscan, London, UK, International Water Management Institute, Colombo, Sri Lanka. 8. UNDP (2006) Beyond Scarcity: Power, Poverty, and the Global Water Crisis. UNDP Human Development Report 2006, New York, USA. 9. World Economic Forum (2011) Global Risks 2011. World Economic Forum, edition 6, Geneva, Switzerland. Available: http://riskreport.weforum.org/ global-risks-2011.pdf. Accessed 2011 June 10. 10. Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-Being: Wetlands and Water Synthesis. World Resources Institute, Washington, DC, USA. 11. Mekonnen MM, Hoekstra AY (2011) The green, blue and grey water footprint of crops and derived crop products. Hydrol Earth Syst Sc 15(5): 1577–1600. 12. Rost S, Gerten D, Bondeau A, Luncht W, Rohwer J, et al. (2008) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44: W09405. doi:10.1029/2007WR006331. 13. Wada Y, Van Beek LPH, Viviroli D, Dürr HH, Weingartner R, et al. (2011) Global monthly water stress: 2. Water demand and severity of water stress, Water Resour Res 47: W07518. doi:10.1029/2010WR009792. 14. Liu J, Yang H (2010) Spatially explicit assessment of global consumptive water uses in cropland: green and blue water. J Hydrol 384: 187–197. 15. Hanasaki N, Inuzuka T, Kanae S, Oki T (2010) An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J Hydrol 384: 232–244. 16. Fader M, Gerten D, Thammer M, Heinke J, Lotze-Campen H, et al. (2011) Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade, Hydrology and Earth System. Sciences 15(5): 1641–1660. 17. Siebert S, Döll P (2010) Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J Hydrol 384: 198–207. 18. Shiklomanov IA (2000) Appraisal and assessment of world water resources. Water Int 25(1): 11–32. 19. Perry C (2007) Efficient irrigation; inefficient communication; flawed recommendations. Irrig Drain 56(4): 367–378. 20. FAO (2010) AQUASTAT on-line database. Food and Agriculture Organization Rome, Italy. Available: http://faostat.fao.org. Accessed 2010 December 12. 21. Smakhtin V, Revenga C, Döll P (2004) A pilot global assessment of environmental water requirements and scarcity. Water Int 29(3): 307–317. 22. Richter BD, Davis MM, Apse C, Konrad C (2011) A presumptive standard for environmental flow protection. River Res Appl;doi:10.1002/rra.1511. 23. Savenije HHG (2000) Water scarcity indicators; the deception of the numbers. Phys Chem Earth Pt B 25(3): 199–204. 24. Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) Water footprint assessment manual: Setting the global standard. Earthscan, London, UK. 25. Falkenmark M (2003) Freshwater as shared between society and ecosystems: from divided approaches to integrated challenges. Philos T Roy Soc B 358(1440): 2037–2049. 26. Mekonnen MM, Hoekstra AY (2011) National water footprint accounts: the green, blue and grey water footprint of production and consumption. Value of PLoS ONE | www.plosone.org 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 9 Water Research Report Series No. 50, UNESCO-IHE, Delft, The Netherlands. Available: www.waterfootprint.org/Reports/Report50-NationalWaterFootprints-Vol1.pdf. Accessed 2011 May 12. Fekete BM, Vörösmarty CJ, Grabs W (2002) High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem Cy 16(3, ;doi:10.1029/1999GB001254 (data available: www.grdc. sr.unh.edu). Accessed 2010 April 12. Mekonnen MM, Hoekstra AY (2010) A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol Earth Syst Sc 14(7): 1259–1276. Mekonnen MM, Hoekstra AY (2010) The green, blue and grey water footprint of crops and derived crop products. Value of Water Research Report Series No. 47, UNESCO-IHE, Delft, The Netherlands. Available: www.waterfootprint.org/Reports/Report47-WaterFootprintCrops-Vol1.pdf). Accessed 2010 December 10. Center for International Earth Science Information Network (CIESIN), Columbia University; and International Center for Tropical Agriculture (CIAT) (2005) Gridded population of the world version 3 (GPWv3): Population density grids.. PalisadesNY: Socioeconomic Data and Applications Center (SEDAC), Columbia University, Available: http://sedac.ciesin.columbia.edu/gpw. Accessed 2010 April 8. Shiklomanov IA, Rodda JC, eds. World water resources at the beginning of the twenty-first century, Cambridge University Press, Cambridge, UK. GRDC (2007) Major River Basins of the World. Global Runoff Data Centre, Federal Institute of Hydrology, Koblenz, Germany. Available: http://grdc.bafg. de. Accessed 2010 April 10. Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, et al. (2008) An integrated model for the assessment of global water resources – Part 2: Applications and assessments. Hydrol Earth Syst Sci 12: 1027–1037. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258): 999–1002. Contreras S, Lozano ML (1994) Water, Endangered Fishes, and Development Perspectives in Arid Lands of Mexico. Conserv Biol 8(2): 379–387. Robinson JRC (2002) Alternative Approaches to Estimate the Impact of Irrigation Water Shortages on Rio Grande Valley Agriculture. Special Report 2002-15. May 17, Texas A&M University, Texas Water Resources Institute, College Station, Texas, USA. Murray–Darling Basin Authority (2010) Guide to the proposed Basin Plan: overview. Murray–Darling Basin Authority, Canberra, Australia. Available: http://www.mdba.gov.au/basin_plan. Accessed 2011 June 10. Rockström J, Falkenmark M, Karlberg L, Hoff H, Rost S, et al. (2009) Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour Res 45: W00A12. doi:10.1029/2007WR006767. Postel SL, Richter BD (2003) Rivers for Life: Managing Water for People and Nature. Island Press, Washington, DC, USA. Richter BD (2010) Re-thinking environmental flows: from allocations and reserves to sustainability boundaries. River Res Appl 26(8): 1052–1063. Hoff H, Falkenmark M, Gerten D, Gordon L, Karlberg L, et al. (2010) Greening the global water system. J Hydrol 384: 177–186. Vörösmarty CJ, Lévêque C, Revenga C (2005) Fresh water. In: Hassan R, Scholes R, Ash N, eds. Ecosystems and Human Well-Being: Current States and Trends, Millenium Ecosystem Assessment Report, Island Press, Washington, DC, USA. pp 165–207. Wada Y, Van Beek LPH, Van Kempen CM, Reckman JWTM, Vasak S, et al. (2010) Global depletion of groundwater resources. Geophysical Research Letters 37: L20402. February 2012 | Volume 7 | Issue 2 | e32688 The map shows the basin ID for the largest river basins (area > 300,000 km2). Data source: GRDC (32). Basin ID 5 6 7 13 16 19 22 25 48 Basin Yenisei Indigirka Lena Kolyma Yukon Mackenzie Pechora Ob Northern Dvina (Severnaya Dvina) Figure S1. Global river basin map Basin ID 64 83 90 96 97 99 107 117 118 Basin Volga Nelson Amur Dniepr Ural Don Columbia St.Lawrence Danube Basin ID 122 124 138 149 155 164 168 177 187 Basin Mississippi Aral Drainage Colorado(Pacific Ocean) Huang He (Yellow River) Tigris & Euphrates Bravo Indus Yangtze(Chang Jiang) Mekong Basin ID 194 195 199 201 207 213 220 227 237 Basin Nile Brahmaputra Irrawaddy Xi Jiang Niger Godavari Senegal Volta Orinoco Basin ID 241 243 259 273 276 290 293 302 320 Basin Shebelle Congo Amazonas Tocantins Rio Parnaiba Sao Francisco Zambezi Parana Limpopo Basin ID 326 331 336 353 356 357 358 393 394 Basin Orange Murray Colorado (Argentina) Ganges Lake Chad Okavango Tarim Balkhash Eyre Lake Figure S2. Global maps of the monthly blue water footprint in the world’s major river basins. Period 1996-2005. Figure S3. Global maps of monthly natural runoff in the world’s major river basins Figure S4. Global maps of monthly blue water availability in the world’s major river basins Table S1. Monthly blue water footprint for the world's major river basins Period: 1996-2005 Basin ID Basin name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 Jan Feb Mar Apr Khatanga 8.8 8.8 8.8 8.8 Olenek 11.3 11.3 11.3 11.3 Anabar 2.6 2.6 2.6 2.6 Yana 46.4 46.4 46.4 46.4 Yenisei 14005.0 14005.0 14010.8 22586.1 Indigirka 79.1 79.1 79.1 79.1 Lena 2433.3 2433.3 2433.3 2433.4 Omoloy 5.5 5.5 5.5 5.5 Tana (NO, FI) 14.6 14.6 14.6 14.6 Colville 5.0 5.0 5.0 5.0 Alazeya 12.6 12.6 12.6 12.6 Anderson 0.6 0.6 0.6 0.6 Kolyma 261.7 261.7 261.7 261.7 Tuloma 397.5 397.5 397.5 397.5 Muonio 110.0 110.0 110.0 110.0 Yukon 709.7 709.7 709.7 733.2 Palyavaam 14.8 14.8 14.8 14.8 Kemijoki 322.5 322.5 322.5 322.5 Mackenzie 3302.6 3302.6 3302.7 3524.1 Noatak 10.3 10.3 10.3 10.3 Anadyr 21.3 21.3 21.3 21.3 Pechora 1147.7 1147.7 1147.7 1147.7 Lule 64.2 64.2 64.2 64.2 Kalixaelven 62.1 62.1 62.1 62.1 Ob 55630.5 55630.5 55641.7 95861.9 Ellice 0.0 0.0 0.0 0.0 Taz 28.6 28.6 28.6 28.6 Kobuk 11.1 11.1 11.1 11.1 Coppermine 2.9 2.9 2.9 2.9 Hayes(Trib. Arctic Ocean) 0.0 0.0 0.0 0.0 Pur 372.7 372.7 372.7 372.7 Varzuga 7.8 7.8 7.8 7.8 Ponoy 6.5 6.5 6.5 6.5 Kovda 62.8 62.8 62.8 62.8 Back 0.1 0.1 0.1 0.1 Kem 147.8 147.8 147.8 147.8 Nadym 82.7 82.7 82.7 82.7 Quoich 0.0 0.0 0.0 0.0 Mezen 79.7 79.7 79.7 79.7 Iijoki 138.9 138.9 138.9 138.9 Joekulsa A Fjoellum 2.3 2.3 2.3 2.3 Svarta, Skagafiroi 6.1 6.1 6.1 6.1 Oulujoki 435.0 435.0 435.0 435.0 Lagarfljot 9.0 9.0 9.0 9.0 Thelon 14.5 14.5 14.5 14.5 Angerman 117.4 117.4 117.4 117.4 Thjorsa 5.5 5.5 5.5 5.5 Northern Dvina(Severnaya D 3254.5 3254.5 3254.5 3256.1 Oelfusa 22.4 22.4 22.4 22.4 Nizhny Vyg (Soroka) 164.6 164.6 164.6 164.6 Kuskokwim 57.6 57.6 57.6 57.6 Vuoksi 1650.8 1650.8 1650.8 1650.8 Onega 333.5 333.5 333.5 333.5 Susitna 152.5 152.5 152.5 153.5 Kymijoki 1285.5 1285.5 1285.5 1285.5 Neva 8027.9 8027.9 8027.9 8045.8 Ferguson 0.0 0.0 0.0 0.0 Copper 24.9 24.9 24.9 24.9 Gloma 1728.4 1728.4 1728.4 1729.2 Kokemaenjoki 1710.1 1710.1 1710.1 1710.1 Vaenern-Goeta 2650.5 2650.5 2650.5 2652.1 Thlewiaza 0.3 0.3 0.3 0.3 Alsek 6.6 6.6 6.6 6.6 Volga 116047.3 116047.3 116127.0 151487.2 Dramselv 642.5 642.5 642.5 642.5 Arnaud 0.0 0.0 0.0 0.0 Nushagak 7.4 7.4 7.4 7.4 Seal 7.2 7.2 7.2 7.2 Taku 11.8 11.8 11.8 11.8 Narva 1601.6 1601.6 1601.6 1604.9 Stikine 10.0 10.0 10.0 10.0 Churchill 605.0 605.0 605.1 680.2 Feuilles (Riviere Aux) 0.0 0.0 0.0 0.0 George 0.2 0.2 0.2 0.2 Caniapiscau 6.2 6.2 6.2 6.2 Western Dvina (Daugava) 2902.1 2902.1 2902.1 3089.8 Aux Melezes 0.0 0.0 0.0 0.0 Baleine, Grande Riviere De 0.0 0.0 0.0 0.0 Spey 26.4 26.4 26.4 26.4 Kamchatka 48.9 48.9 48.9 48.9 Nass 19.9 19.9 19.9 19.9 Skeena 300.1 300.1 300.1 300.1 Nelson 36043.3 36119.7 37077.4 98166.3 Hayes(Trib. Hudson Bay) 96.9 96.9 96.9 96.9 Gudena 400.5 400.5 400.5 402.4 Skjern A 144.1 144.1 144.1 144.4 Neman 4559.5 4559.5 4559.5 4880.6 Fraser 8611.9 8611.9 8617.0 9741.4 Severn(Trib. Hudson Bay) 45.4 45.4 45.4 45.4 Amur 61291 61363 69115 435992 Tweed 326.3 326.3 326.3 326.3 Grande Riviere De La Balei 3.7 3.7 3.7 3.7 Grande Riviere 10.0 10.0 10.0 10.0 Winisk 40.6 40.6 40.6 40.6 Churchill, Fleuve (Labrador) 57.7 57.7 57.7 57.7 Dniepr 58219.8 58219.8 58220.8 75741.6 Ural 7719.8 7719.8 7726.0 29996.9 Wisla 42823.6 42823.6 42830.6 43383.9 Don 39722.6 39722.6 39722.7 104613.8 May 8.8 11.3 2.6 46.4 67379.7 79.1 2434.3 5.5 14.6 5.0 12.6 0.6 261.7 397.5 110.0 864.6 14.8 322.5 3876.2 10.3 21.3 1147.7 64.2 62.1 304570.9 0.0 28.6 11.1 2.9 0.0 372.7 7.8 6.5 62.8 0.1 147.8 82.7 0.0 79.7 139.0 2.3 6.1 445.6 9.0 14.5 117.4 5.5 3650.4 22.4 164.6 59.3 1715.7 381.5 187.7 1364.7 10574.5 0.0 24.9 1903.1 1914.1 2858.8 0.3 6.6 607847.6 654.1 0.0 7.4 7.2 11.8 1893.4 10.0 814.0 0.0 0.2 6.2 4952.7 0.0 0.0 26.4 48.9 19.9 300.1 181129.3 96.9 1175.8 303.4 8336.2 11359.1 45.4 1515404 326.6 3.7 10.0 40.6 57.7 230947.0 138276.3 50173.1 508233.8 Blue water footprint (103 m3/month) Jun Jul Aug 8.8 8.8 8.8 11.3 11.3 11.3 2.6 2.6 2.6 46.4 46.4 46.4 87527.4 79042.8 56657.6 79.1 79.1 79.1 2436.8 2447.0 2468.5 5.5 5.5 5.5 14.6 14.6 14.6 5.0 5.0 5.0 12.6 12.6 12.6 0.6 0.6 0.6 262.0 262.3 264.3 397.5 397.5 397.5 110.0 110.0 110.0 869.9 819.9 756.4 14.8 14.8 14.8 322.5 322.5 322.5 3757.9 3650.4 3685.7 10.3 10.3 10.3 21.3 21.3 21.3 1147.7 1147.7 1147.7 64.2 64.2 64.2 62.1 62.1 62.1 399138.7 534705.8 460741.0 0.0 0.0 0.0 28.6 28.6 28.6 11.1 11.1 11.1 2.9 2.9 2.9 0.0 0.0 0.0 372.7 372.7 372.7 7.8 7.8 7.8 6.5 6.5 6.5 62.8 62.8 62.8 0.1 0.1 0.1 147.8 147.8 147.8 82.7 82.7 82.7 0.0 0.0 0.0 79.7 79.7 79.7 139.1 139.1 139.6 2.3 2.3 2.3 6.1 6.1 6.1 464.0 490.9 525.1 9.0 9.0 9.0 14.5 14.5 14.5 117.4 117.4 117.4 5.5 5.5 5.5 3924.0 3905.7 3715.4 22.4 22.4 22.4 164.6 164.6 164.6 59.5 58.4 57.6 1799.9 1953.7 2144.8 426.0 423.5 383.5 189.8 163.9 153.7 1421.1 1488.1 1625.0 12074.7 11011.0 11704.2 0.0 0.0 0.0 24.9 24.9 24.9 2987.3 4253.9 4640.8 2077.2 2256.1 2597.0 3208.6 3451.6 3187.7 0.3 0.3 0.3 6.6 6.6 6.6 798852.7 1124796 963030.8 826.0 1109.7 905.7 0.0 0.0 0.0 7.4 7.4 7.4 7.2 7.2 7.2 11.8 11.8 11.8 1940.6 2045.5 2297.4 10.0 10.0 10.0 750.3 759.1 763.2 0.0 0.0 0.0 0.2 0.2 0.2 6.2 6.2 6.2 4524.9 4328.4 4954.4 0.0 0.0 0.0 0.0 0.0 0.0 26.4 26.4 26.4 48.9 48.9 48.9 19.9 19.9 19.9 300.1 300.1 300.1 204530.0 355878.4 533170.5 96.9 96.9 96.9 2941.0 3637.7 1889.1 1367.9 2643.4 1120.9 8420.3 8262.7 11094.1 12187.4 15646.7 18285.4 45.4 45.4 45.4 2321588 1258873 758246 333.2 395.3 404.4 3.7 3.7 3.7 10.0 10.0 10.0 40.6 40.6 40.6 57.7 57.7 57.7 285228.0 363212.3 338828.4 227767.1 379764.5 304376.4 53458.7 53639.2 64292.7 647321.8 790482.4 672631.7 Table S1 - 1 Sep Oct Nov Dec Average 8.8 8.8 8.8 8.8 8.8 11.3 11.3 11.3 11.3 11.3 2.6 2.6 2.6 2.6 2.6 46.4 46.4 46.4 46.4 46.4 32477.7 18324.4 14275.6 14012.4 36192.1 79.1 79.1 79.1 79.1 79.1 2445.9 2433.4 2433.3 2433.3 2438.8 5.5 5.5 5.5 5.5 5.5 14.6 14.6 14.6 14.6 14.6 5.0 5.0 5.0 5.0 5.0 12.6 12.6 12.6 12.6 12.6 0.6 0.6 0.6 0.6 0.6 262.8 261.7 261.7 261.7 262.1 397.5 397.5 397.5 397.5 397.5 110.0 110.0 110.0 110.0 110.0 751.8 725.8 712.9 710.3 756.2 14.8 14.8 14.8 14.8 14.8 322.5 322.5 322.5 322.5 322.5 3512.4 3419.4 3324.3 3302.9 3496.8 10.3 10.3 10.3 10.3 10.3 21.3 21.3 21.3 21.3 21.3 1147.7 1147.7 1147.7 1147.7 1147.7 64.2 64.2 64.2 64.2 64.2 62.1 62.1 62.1 62.1 62.1 242699.8 102971.4 57227.1 55632.2 201704.3 0.0 0.0 0.0 0.0 0.0 28.6 28.6 28.6 28.6 28.6 11.1 11.1 11.1 11.1 11.1 2.9 2.9 2.9 2.9 2.9 0.0 0.0 0.0 0.0 0.0 372.7 372.7 372.7 372.7 372.7 7.8 7.8 7.8 7.8 7.8 6.5 6.5 6.5 6.5 6.5 62.8 62.8 62.8 62.8 62.8 0.1 0.1 0.1 0.1 0.1 147.8 147.8 147.8 147.8 147.8 82.7 82.7 82.7 82.7 82.7 0.0 0.0 0.0 0.0 0.0 79.7 79.7 79.7 79.7 79.7 139.2 139.0 138.9 138.9 139.0 2.3 2.3 2.3 2.3 2.3 6.1 6.1 6.1 6.1 6.1 480.8 440.8 435.0 435.0 454.7 9.0 9.0 9.0 9.0 9.0 14.5 14.5 14.5 14.5 14.5 117.4 117.4 117.4 117.4 117.4 5.5 5.5 5.5 5.5 5.5 3340.4 3254.5 3254.5 3254.5 3443.2 22.4 22.4 22.4 22.4 22.4 164.6 164.6 164.6 164.6 164.6 57.6 57.6 57.6 57.6 58.0 1886.8 1667.7 1650.8 1650.8 1756.1 338.8 333.5 333.5 333.5 357.3 152.6 152.6 152.5 152.5 159.7 1456.9 1296.9 1285.5 1285.5 1363.8 8871.9 8031.5 8027.9 8027.9 9204.4 0.0 0.0 0.0 0.0 0.0 24.9 24.9 24.9 24.9 24.9 2178.8 1728.5 1728.4 1728.4 2338.6 2145.7 1723.1 1710.1 1710.1 1914.5 2747.6 2651.0 2650.5 2650.5 2834.2 0.3 0.3 0.3 0.3 0.3 6.6 6.6 6.6 6.6 6.6 356041.0 162975.0 120668.5 116099.0 395835.0 702.3 642.5 642.5 642.5 724.6 0.0 0.0 0.0 0.0 0.0 7.4 7.4 7.4 7.4 7.4 7.2 7.2 7.2 7.2 7.2 11.8 11.8 11.8 11.8 11.8 1791.2 1607.8 1601.6 1601.6 1765.7 10.0 10.0 10.0 10.0 10.0 704.7 665.2 616.8 605.6 681.2 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 6.2 6.2 6.2 6.2 6.2 3556.7 2913.7 2902.1 2902.1 3569.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.4 26.4 26.4 26.4 26.4 49.0 48.9 48.9 48.9 48.9 19.9 19.9 19.9 19.9 19.9 300.1 300.1 300.1 300.1 300.1 281797.3 108523.6 55374.7 39680.0 163957.5 96.9 96.9 96.9 96.9 96.9 1014.8 415.5 400.5 400.5 1123.2 328.4 144.2 144.1 144.1 564.4 7335.1 4682.7 4559.5 4559.5 6317.4 12788.9 9019.3 8619.4 8611.9 11008.4 45.4 45.4 45.4 45.4 45.4 521703 92588 69587 64788 602545 368.3 326.9 326.3 326.3 342.7 3.7 3.7 3.7 3.7 3.7 10.0 10.0 10.0 10.0 10.0 40.6 40.6 40.6 40.6 40.6 57.7 57.7 57.7 57.7 57.7 166626.4 71978.5 58731.2 58219.8 152014.4 113415.5 34294.8 9006.6 7722.5 105648.9 55353.7 44967.6 42827.3 42823.6 48283.1 249166.3 77697.2 40938.9 39722.6 270831.3 Basin ID Basin name 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 Jan Oder 29979.2 Elbe 44757.5 Trent 3851.8 Weser 18785.6 Attawapiskat 9.5 Eastmain 2.9 Manicouagan (Riviere) 92.6 Columbia 34262 Little Mecatina 1.0 Natashquan (Riviere) 3.4 Rhine 122345.5 Albany 128.2 Saguenay (Riviere) 2088.6 Thames 7697.0 Nottaway 293.0 Rupert 2.7 Moose(Trib. Hudson Bay) 815.6 St.Lawrence 383010.0 Danube 172885.0 Seine 46280.8 Dniestr 13797.1 Southern Bug 5970.1 Mississippi 476071.5 Skagit 428.9 Aral Drainage 51679.1 Loire 23162.6 Rhone 28384.8 Saint John 2582.5 Po 40929.7 Penobscot 765.3 St.Croix 120.1 Kuban 6573.6 Connecticut 10498.8 Liao He 25918.6 Garonne 9783.0 Ishikari 3230.4 Merrimack 11384.4 Hudson 19701.2 Colorado(Pacific Ocean) 51531.4 Klamath 695.1 Ebro 4822.5 Rogue 1317.7 Douro 5884.1 Susquehanna 20293.7 Luan He 14156.1 Kura 26370.9 Dalinghe 3816.9 Delaware 32242.6 Sacramento 15241.3 Huang He (Yellow River) 217673 Kizilirmak 4234.6 Yongding He 99988.0 Tejo 11231.7 Sakarya 5368.1 Eel (Calif.) 188.2 Tigris & Euphrates 205397.3 Potomac 17093.4 Guadiana 2588.8 Kitakami 2130.2 Mogami 1860.1 Han-Gang (Han River) 16927.3 Guadalquivir 6527.2 San Joaquin 8455.2 James 4539.4 Bravo 52585.2 Shinano, Chikuma 3548.2 Roanoke 7459.3 Naktong 11953.1 Indus 6455179 Tone 16652.4 Salinas 1560.7 Pee Dee 13141.8 Chelif 2243.7 Cape Fear 8243.5 Tenryu 2246.4 Santee 15848.2 Kiso 3159.0 Yangtze(Chang Jiang) 450511.6 Yodo 16043.7 Sebou 3773.3 Alabama River & Tombigbee 21968.7 Savannah 5927.7 Gono (Go) 667.8 Huai He 84982.9 Apalachicola 15024.4 Brazos 29558.9 Altamaha 12223.9 Mekong 757008.7 Colorado(Caribbean Sea) 15522.5 Trinity(Texas) 27495.9 Pearl 3156.3 Sabine 2914.3 Suwannee 3006.2 Yaqui 12804.7 Nile 1596883 Brahmaputra 95618.5 St.Johns 14741.8 Nueces 5736.2 San Antonio 4887.5 Irrawaddy 61867.7 Fuerte 2992.4 Xi Jiang 112099.1 Bei Jiang 17753.0 Feb 29979.2 44757.5 3851.8 18785.6 9.5 2.9 92.6 35262 1.0 3.4 122345.5 128.2 2088.6 7697.0 293.0 2.7 815.6 383010.0 172888.3 46280.8 13797.1 5970.1 553677.1 428.9 48145.8 23162.6 28529.3 2582.5 40933.9 765.3 120.1 6573.6 10498.8 27536.5 9804.2 3230.4 11384.4 19701.2 79016.8 695.1 10975.0 1317.7 7786.1 20293.8 63826.7 30851.7 4321.7 32244.3 15248.2 738449 4254.3 545652.6 14362.0 5386.4 188.2 718731.7 17093.9 11643.9 2130.8 1860.1 16934.6 33894.1 9670.6 4540.4 100575.1 3548.2 7460.9 12079.3 7692491 16658.4 1560.7 13137.8 4486.6 8240.8 2246.4 15848.7 3159.2 711676.0 16046.0 21476.2 21970.9 5936.8 668.1 147657.0 15066.2 48605.7 12281.3 440654.9 23764.4 27688.4 3156.5 2943.5 3067.6 40790.9 1639017 76934.9 16036.7 11373.9 6350.4 62279.7 7032.5 148679.4 17808.0 Mar 29987.5 44796.9 3856.6 18786.8 9.5 2.9 92.6 180824 1.0 3.4 122352.6 128.2 2088.6 7697.1 293.0 2.7 815.6 383187.1 176401.4 46499.4 13851.0 5970.1 1066448 428.9 215735.5 23736.9 29642.5 2582.5 41954.4 765.3 120.1 6573.6 10499.1 43955.3 11113.9 3230.4 11384.5 19702.3 258871.8 875.6 46643.5 1366.0 20223.4 20304.9 198095.8 107105.3 6670.5 32284.9 48730.6 2375921 7119.9 1990251 30236.9 8192.8 188.5 2729822 17117.0 52785.6 2134.3 1861.2 16961.0 123992.3 92792.8 4547.5 248393.7 3550.4 7501.9 12273.1 14959408 16684.8 1714.9 13237.6 11906.5 8485.1 2246.6 15928.6 3159.2 1138406 16047.9 78740.1 21985.2 6054.9 669.3 567969.3 15382.3 117767.4 12675.9 582312.0 55151.7 29144.4 3157.7 3248.5 3435.9 85472.2 2685612 132628.5 17961.2 28924.4 12503.9 109496.0 14502.1 188596.5 17866.4 Apr 30402.4 45993.8 3867.3 18885.3 9.5 2.9 92.6 848539 1.0 3.4 123279.3 128.2 2088.6 7699.1 293.0 2.7 815.7 386034.2 214410.4 48950.3 21101.3 8880.2 1676456 429.4 1182471 26573.5 32065.3 2582.5 44063.6 765.5 120.1 10296.5 10554.3 421314 13422.2 3254.8 11418.1 19776.2 465243.9 28761.1 78434.8 4252.0 41082.9 20419.3 369022.7 282772.4 24989.9 32560.0 287969 4267862 39274 3417354 47754.6 31515.7 235.2 5090895 17504.4 92804.4 2137.7 1880.2 17284.7 189770.9 399075.9 4915.6 392946.1 3587.8 9261.5 12489.7 13807935 16921.1 8299.6 14886.2 19297.1 10325.2 2248.0 16585.8 3159.5 2002161 16128.7 187653.4 22295.5 6580.1 673.9 1635316 19427.6 168556.2 14587.9 754421.9 79227.2 32670.3 3191.7 4993.8 6565.9 98556.4 2819450 102108.9 18742.7 38248.5 16007.5 150159.0 27035.1 394758.4 19713.7 May 34120.9 47830.3 4113.6 19314.9 9.5 2.9 92.6 1447369 1.0 3.4 135280.2 128.3 2102.2 7726.2 293.2 2.7 821.0 408783.9 349900.8 59473.4 69002.6 28585.4 2574769 436.7 2320721 39703.4 41461.0 2587.8 126507.8 767.3 120.2 77019.1 10865.5 1382065 20437.9 3378.9 11515.8 19909.2 688780.7 81554.8 122848.5 11582.2 74657.3 20885.0 439376.3 308423.7 66489.8 34246.2 667890 4256628 119425 3359369 82013.5 95507.6 657.9 6654136 18009.5 158832.5 2162.4 1927.3 21933.1 279532.8 658744.8 5152.6 525645.7 3678.9 11279.4 20491.6 6182331 17434.2 24644.6 17965.8 32072.6 15144.1 2257.8 17815.1 3160.5 3060663 16362.8 202084.4 23759.7 7448.3 696.4 1948176 28387.7 282486.0 17877.9 1240389 133806.1 34251.9 3317.1 7985.4 14272.2 48621.7 3108601 68629.6 23549.9 48415.9 17404.6 107761.4 31771.5 535641.1 35915.3 Blue water footprint (103 m3/month) Jun Jul Aug 37229.9 40736.3 46184.5 52688.8 71886.0 85614.6 4724.6 7918.2 7500.9 21212.5 29191.0 36488.8 9.5 9.5 9.5 2.9 2.9 2.9 92.8 92.8 92.9 2311177 3409891 2913847 1.0 1.0 1.0 3.4 3.4 3.4 140236.7 145768.4 176128.5 128.6 128.9 128.8 2206.7 2155.3 2134.6 7880.7 8220.7 8141.2 293.3 293.3 293.1 2.7 2.7 2.7 824.1 827.2 823.3 451638.1 537777.5 564415.6 428431.0 640658.5 692509.3 72701.6 118179.0 156201.5 80201.6 60248.9 113028.4 34379.8 50055.3 50401.7 3671826 9923789 12809395 908.0 1462.7 1546.0 4541763 8587253 8909592 65121.6 165091.3 251733.7 58054.0 141031.2 150460.5 2736.4 3219.2 4622.8 202893.7 617810.5 620682.7 777.6 865.5 1048.9 124.5 129.3 135.6 160897.1 291432.5 165757.2 12300.3 12701.8 10951.6 1906167 1116163 667477 38994.0 217419.2 288619.9 14603.7 15213.4 19830.1 11710.1 11758.7 11498.9 20191.0 21219.1 21213.9 833506.3 868950.9 785259.8 127597.5 176238.8 151941.9 275459.1 587776.7 525750.6 20252.7 27198.1 23091.3 252660.6 601045.1 614466.1 21594.8 24593.3 26111.7 226806.4 192323.3 207433.2 521039.7 733223.8 807810.5 97171.0 50590.6 36848.1 37078.2 37708.9 34841.7 1235885 1591869 1566041 3400184 3466422 2159613 168870 187790 206397 1712020 1842686 1930023 223938.2 441127.2 433196.6 139487.4 174554.7 209581.8 1102.8 1441.8 1205.3 4850558 4639864 4544688 18871.4 19799.9 20398.5 420029.3 737694.5 702725.4 7457.6 19066.8 45846.8 6926.2 10796.2 31753.9 37684.3 27829.3 22227.9 689193 1097659 1047458 1062562 1459542 1459787 5472.9 6092.1 6322.3 497835.0 599657.0 567057.2 6456.5 16274.8 37548.0 12219.9 14283.4 15908.4 78141.3 58368.7 55497.2 6262009 8796342 13190821 30525.3 54229.0 105969.7 52141.5 82755.9 87842.6 19219.3 20735.8 21667.2 55384.2 71153.4 66882.8 15161.8 13943.7 14504.2 3038.9 4244.1 9498.5 18043.5 19724.0 19815.2 3417.9 4734.5 8819.0 2339674 3741942 3868817 21036.0 36931.7 71186.4 168880.9 204203.9 162631.6 24523.0 28772.0 31987.1 8419.0 10987.8 13392.7 1130.1 1457.8 3598.7 1581174 1624787 1330904 44625.3 75496.9 125950.5 395665 1060283 973829.0 21013.5 36291.0 45297.4 805570.7 659922.9 528371.9 214639.8 522178.2 524039.6 36749.3 45035.5 41220.4 3336.0 3450.4 3628.9 8449.1 12327.0 8889.5 16998.2 29457.6 42620.1 32724.7 24545.0 38239.4 2101369 2924081 3198978 35127.7 78327.4 55174.6 19402.7 17594.6 18178.2 56133.5 89955.4 66684.0 19929.4 30160.6 22397.7 338248.0 133305.1 88392.4 43066.3 41879.3 44576.8 313893.2 296653.6 302293.3 40428.0 79708.7 61083.2 Table S1 - 2 Sep 40612.3 76979.8 5254.9 30603.1 9.5 2.9 92.7 1540886 1.0 3.4 150043.6 128.4 2095.1 7885.4 293.0 2.7 816.0 478676.0 429867.8 116779.5 63236.6 21160.3 8325019 820.1 6123848 171018.7 72119.4 2960.2 211145.4 825.9 124.2 37165.1 10645.2 467166 187398.5 11559.0 11424.6 20235.2 598564.3 92866.9 242242.7 14726.5 242744.1 22846.0 160173.2 455357.5 27222.0 33292.8 1081215 992897 129236 1020618 200765.3 140841.5 846.8 2850413 18608.5 330357.8 28745.3 14549.3 27161.2 503164 1013340 5119.3 464507.0 13720.9 11010.0 57360.2 16068994 50170.4 55421.4 17175.0 45925.4 11093.5 4323.8 17430.5 4727.2 3424557 31780.5 125903.4 26194.1 8444.6 1559.7 1160434 56360.2 599180.5 26091.4 283186.5 371594.0 33270.3 3334.6 4780.5 19697.9 44900.4 3529943 94765.4 15870.8 33032.0 11958.6 241220.5 23372.6 534178.9 75276.0 Oct 31840.4 50498.2 3919.6 19801.2 9.5 2.9 92.6 615283 1.0 3.4 124553.1 128.2 2088.6 7709.7 293.0 2.7 815.6 402709.1 245115.7 56640.6 20506.5 8384.4 2696248 431.6 2291408 48758.7 32102.8 2594.6 53621.6 770.4 120.1 9876.5 10524.8 49664.8 45387.3 3991.3 11408.5 19767.0 367116.3 28794.6 68777.9 4929.1 45678.2 20997.1 62890.7 167331.3 6012.0 32505.0 300097 434435 49110 352702 50828.6 50135.6 282.0 1543961 17477.1 95626.3 3920.7 3721.7 17042.1 161945.8 379470.4 4966.6 286434.9 4472.4 9934.4 12754.4 13120835 20794.1 11439.2 14965.9 14779.6 9492.9 2375.5 16623.7 3469.9 511004 21024.7 63496.1 23480.1 7316.6 1162.5 234794.7 39981.7 189533.7 19718.3 739371.1 123331.4 29203.9 3202.7 3403.6 12591.8 29924.7 3321549 478232.7 15861.3 14181.0 6937.6 554244.8 28061.2 83317.1 20831.8 Nov 29986.3 44792.1 3851.8 18785.8 9.5 2.9 92.6 129775 1.0 3.4 122345.5 128.2 2088.6 7697.0 293.0 2.7 815.6 383289.8 174598.8 46296.5 13898.7 6097.0 679909 428.9 281293 23288.3 28758.1 2582.5 40929.9 765.3 120.1 6599.1 10506.4 33284.3 11066.3 3230.4 11387.6 19718.1 152984.9 2489.8 11223.1 1336.1 7325.7 20312.5 14435.4 53554.5 4571.4 32316.5 40641 188078 14939 102495 14147.8 9821.4 190.2 664503 17133.5 12663.1 2130.2 1860.1 16943.4 34484.8 66973.1 4569.3 105140.1 3548.3 7680.5 12180.0 7128949 16652.7 2716.4 13358.8 5989.0 8437.9 2247.5 16044.5 3159.7 356944 16047.3 21559.7 22074.9 6083.3 668.4 92572.2 16002.7 37740.8 12513.6 1180498 19980.8 27948.6 3160.4 3076.1 3713.5 14373.1 2035678 455027.2 15025.0 7292.2 5209.5 147710.9 7859.1 67032.5 19111.1 Dec 29979.2 44757.7 3851.8 18785.6 9.5 2.9 92.6 41987 1.0 3.4 122345.5 128.2 2088.6 7697.0 293.0 2.7 815.6 383022.3 172895.0 46280.8 13797.1 5970.1 513391 428.9 100329 23162.6 28384.9 2582.5 40929.7 765.3 120.1 6573.6 10498.8 30489.8 9783.0 3230.4 11384.5 19701.3 88178.4 695.1 5629.7 1317.7 5886.8 20294.9 11342.7 38164.1 4326.1 32254.2 15584 176407 5399 96961 11245.0 5927.5 188.2 264649 17096.7 3155.2 2131.7 1860.1 16938.6 10685.8 13882.9 4540.0 72297.3 3548.5 7460.6 12134.1 3924286 16658.4 1588.6 13144.5 3961.0 8244.8 2246.6 15861.2 3159.4 371101 16048.2 5086.2 21970.5 5962.8 668.7 90858.3 15121.5 24382.9 12265.8 767382.8 14106.5 27522.9 3156.4 2919.7 3045.1 12757.3 1000401 88132.9 14786.2 5200.8 4789.1 40590.2 6195.4 78758.5 18475.3 Average 34253.2 54612.8 4713.6 22452.2 9.5 2.9 92.7 1125758 1.0 3.4 133918.7 128.4 2109.5 7812.4 293.1 2.7 818.4 428796.1 322546.8 71713.7 41372.2 19318.7 3747250 681.6 2887853 73709.5 55916.2 2851.3 173533.6 804.0 122.9 65444.8 10920.4 514266.7 71935.8 7331.9 11471.7 20069.6 436500.5 57767.2 165048.7 9390.6 159953.4 21578.9 163323.5 294333.8 27752.5 33631.3 572201 1889547 78004 1372510 130070.6 73026.7 559.6 2896468 18017.0 218408.9 9999.5 6738.0 21322.3 348192.2 552024.8 5064.8 326089.5 8623.6 10121.7 29643.6 9799132 31612.5 27640.5 16053.0 27840.2 10943.1 3268.3 17130.7 3940.4 1831455 24557.0 103790.8 24248.5 7712.9 1135.1 874968.8 38902.3 327299.1 20236.5 728257.6 174778.5 32683.5 3270.7 5494.3 13206.0 40309.2 2496797 146725.7 17312.6 33764.8 13211.4 169606.3 23195.4 254658.5 35330.9 Basin ID Basin name Jan 203 San Pedro 1970.2 204 Dong Jiang 11698.5 205 Mahi 234803.3 206 Damodar 321001.6 207 Niger 117175.3 208 Narmada 591222 209 Brahmani River (Bhahmani) 108131.9 210 Mahanadi(Mahahadi) 493904.3 211 Santiago 69433.9 212 Panuco 59147.5 213 Godavari 1403293 214 Tapti 276668.3 215 Sittang 3465.5 216 Armeria 3496.4 217 Ca 10049.8 218 Chao Phraya 500052 219 Krishna 2085475 220 Senegal 26195.1 221 Papaloapan 5755.1 222 Grisalva 9068.6 223 Verde 1688.1 224 Mae Klong 25670.1 225 Tranh (Nr Thu Bon) 4406.8 226 Penner 183705.0 227 Volta 9567.8 228 Lempa 8417.2 229 Gambia 331.1 230 Grande De Matagalpa 566.0 231 Cauvery 458718 232 San Juan 9649.7 233 Geba 3460.3 234 Corubal 386.5 235 Magdalena 36962.3 236 Comoe 3723.0 237 Orinoco 51166.0 238 Bandama 3618.5 239 Oueme 965.2 240 Sassandra 1176.2 78624.7 241 Shebelle 242 Mono 400.3 243 Congo 7425.3 244 Atrato 596.3 245 Cuyuni 188.7 246 Cavally 224.8 247 Tano 207.1 248 Cross 1586.0 249 Sanaga 1625.2 250 Pra 4539.5 251 Davo 176.9 252 Essequibo 20.8 253 Kelantan 39173.4 254 Corantijn 53.6 255 Coppename 10.1 256 Kinabatangan 235.4 257 Maroni 8.8 258 San Juan (Columbia - Pacifi 990.4 259 Amazonas 90048.9 260 Pahang 21420.6 261 Nyong 125.9 262 Oyapock 6.2 263 Rajang 1381.3 264 Ntem 182.2 265 Ogooue 600.6 266 Rio Araguari 24.8 267 Mira 5669.4 268 Esmeraldas 14478.9 269 Tana 11163.8 270 Daule & Vinces 76294.6 271 Rio Gurupi 199.6 272 Rio Capim 483.6 273 Tocantins 17599.9 274 Kouilou 80.2 275 Nyanga 12.5 276 Rio Parnaiba 7330.6 277 Rio Itapecuru 1038.7 278 Rio Acarau 706.2 279 Pangani 6122.5 280 Rio Pindare 469.5 281 Sepik 69.0 282 Rio Mearim 1054.4 283 Chira 26561.8 284 Rufiji 8962.8 285 Rio Jaguaribe 8821.3 286 Purari 66.8 287 Ruvu 3703.6 288 Rio Paraiba 2470.4 289 Solo (Bengawan Solo) 333523.1 290 Sao Francisco 27576.3 291 Brantas 180435.4 292 Santa 4443.4 293 Zambezi 18945.8 294 Rio Vaza-Barris 1612.9 295 Rio Itapicuru 2629.4 296 Rio Paraguacu 4204.4 297 Canete 2538.0 298 Rio De Contas 5876.9 299 Roper 10.1 300 Daly 32.7 301 Drysdale 4.4 302 Parana 372525.6 303 Durack 4.5 304 Rio Prado 845.8 305 Victoria 2.8 Feb 3084.5 11620.1 213391.3 150895.6 133775.1 582117 45430.0 146732.8 156850.1 128380.2 846541 227566.1 4516.6 10961.6 9707.5 429799 825245 13556.4 10892.1 12611.1 3855.9 28215.2 4982.2 46423.6 10442.0 3985.4 367.9 594.8 207070 9142.5 4754.7 521.0 40595.1 4563.1 75192.9 5359.1 1307.5 1950.1 60600.1 450.1 9630.1 596.9 205.4 264.5 226.5 1864.2 2104.0 4288.5 219.2 20.8 29665.9 53.6 10.1 201.9 8.8 1280.5 82160.0 9762.1 125.8 6.2 401.3 183.4 546.4 24.8 4594.5 11223.3 11021.9 27282.6 185.4 471.3 11559.6 80.6 12.5 5752.8 919.8 808.0 21481.4 433.7 69.0 880.1 14163.4 8069.6 10924.3 66.8 1994.0 2697.3 96711.1 37265.5 52134.7 4714.9 18076.7 1939.0 3113.9 5205.6 1777.9 6331.4 8.5 30.4 4.4 280676.9 4.5 1144.8 2.8 Mar 5653.0 11600.6 332457.9 217247.6 159994.2 1216831 71957.7 213472.7 329195.1 251479.9 1675666 414078.5 8520.0 23001.5 7879.1 702371 1696212 20473.6 18931.4 38902.8 8808.5 46157.7 3362.2 70472.3 12602.1 10300.0 421.2 3029.8 515498 18721.9 5841.6 617.3 109023.0 6155.5 148018.5 7722.2 1498.3 4275.9 38694.8 431.1 9895.9 620.1 258.7 339.2 206.9 1722.9 1347.5 3579.0 214.8 20.8 1797.7 53.6 10.1 201.9 8.8 2848.2 98044.1 1971.7 125.5 6.2 276.8 180.7 478.0 24.8 3362.4 8395.3 3741.6 15585.9 185.1 471.3 10800.6 78.7 12.5 4658.7 862.8 582.4 20589.8 429.4 69.0 825.0 4811.4 6182.5 7871.0 66.8 1510.1 2946.2 38593.2 57937.4 19233.3 5859.8 31935.5 2318.3 2876.2 6584.1 3242.3 10008.6 107.9 148.0 4.4 232433.0 4.5 1246.2 2.8 Apr 8269.6 13139.6 301590.9 60473.5 102340.4 1529310 57563.0 204175.8 358517.6 266556.7 1996301 494077.2 8858.3 38879.1 11152.4 726552 1831925 15815.1 19716.5 60109.3 9301.3 45329.9 4165.1 60887.3 8230.3 13889.0 366.2 4736.1 458868 27753.9 5808.9 612.7 121897.9 3805.2 116530.6 6704.9 1155.2 3602.8 18624.5 311.4 9371.1 682.7 243.8 278.6 166.7 1362.9 1037.7 1338.1 197.5 20.8 1179.2 53.6 10.1 205.0 8.8 2452.2 250757.2 2172.3 125.3 6.2 275.4 179.4 302.8 24.8 2750.4 7606.1 1002.6 10387.3 185.5 471.0 20018.0 78.8 12.5 6687.2 976.1 481.1 13511.5 436.5 69.0 951.2 5996.6 14982.0 9318.9 66.8 804.6 2212.0 3097.7 94628.2 2510.4 17926.2 85399.4 2205.0 3181.5 12009.8 6624.0 16689.7 661.6 896.6 4.4 310336.0 4.5 1744.2 2.8 May 9543.3 24274.1 185769.5 20235.7 247266.2 1537921 52284.8 213763.2 227133.2 186223.8 2123564 533823.8 5784.9 37308.7 40910.6 447428 1892192 16250.3 14544.8 42527.8 6019.0 20724.5 26187.3 59123.8 5987.6 6041.7 382.3 1566.4 442335 9814.9 4717.1 529.8 126453.2 2893.7 58659.7 5053.7 861.4 2184.4 18867.7 284.5 19489.5 619.3 192.8 162.7 153.9 1270.9 567.7 879.6 105.9 20.8 1582.4 73.0 10.1 211.2 8.8 2799.0 285935.4 2408.5 125.0 6.2 281.3 178.9 265.3 24.8 3808.6 8790.7 920.8 21676.0 192.2 473.7 13298.0 328.9 12.5 13878.3 1843.3 1001.3 23766.6 460.4 69.0 1188.8 11137.9 35507.8 24950.8 66.8 2727.2 2943.5 4184.1 121453.3 2889.4 18412.2 117638.8 1895.9 3252.1 15360.5 7540.1 22514.9 999.3 1355.4 4.4 224416.6 4.5 2161.6 2.8 Blue water footprint (103 m3/month) Jun Jul Aug 4601.2 3673.3 12070.8 25818.1 50233.2 35538.3 51117.1 24897.0 40458.9 18013.7 57510.2 38370.4 227449.8 190715.7 142446.1 408983.0 38561.8 50038.6 23326.4 23378.5 18202.0 76145.2 93534.4 66762.9 88512.1 63621.5 80404.7 80759.8 60191.8 75690.8 823832 551196 539414 201524.6 90419.5 118814.1 35071.4 17130.2 7752.7 13663.1 4419.5 2587.5 18897.3 12304.8 4239.3 309828 1301998 1314239 1086965 1387624 1679785 15939.4 41069.3 35983.9 7490.8 7494.8 11051.7 15144.1 9803.9 13796.8 2591.5 2556.6 2616.5 11506.4 52439.2 66338.2 28753.8 26879.3 12805.6 56079.9 214195.2 204265.8 8736.4 7358.4 5708.3 3074.9 2889.5 2900.3 290.1 1097.0 855.3 402.8 637.9 1219.1 449788 1508522 1507427 4224.3 5693.1 9177.3 1657.3 372.7 80.4 236.9 108.2 90.1 143794.5 277591.3 321763.7 2868.3 2656.4 2317.6 56289.8 84861.4 118091.2 1699.8 1779.8 1487.8 648.6 653.4 607.9 742.6 559.7 581.4 141778.8 217842.5 123581.2 257.8 253.3 276.6 31988.4 33458.0 35361.3 595.2 595.6 597.3 173.8 173.5 201.6 136.0 154.8 174.3 149.5 155.2 169.7 1236.3 1224.4 1224.2 531.5 466.5 444.4 617.9 973.8 1169.3 84.7 106.8 161.7 20.8 20.8 20.8 3175.2 4628.0 5039.6 58.8 156.3 249.1 10.1 10.1 10.1 210.0 209.7 255.4 8.8 8.8 8.8 3381.4 6309.4 6367.6 217698.9 191979.8 286579.2 4547.0 6821.8 6363.9 125.0 125.1 125.1 6.2 6.2 6.2 277.3 297.9 297.1 178.9 178.9 178.9 369.3 713.9 1155.4 24.8 24.8 24.8 5730.0 12593.3 24869.5 11571.1 27996.9 53475.8 2771.7 6243.1 8141.2 48581.3 111075.1 180108.2 228.4 253.2 267.7 480.5 487.3 498.7 17296.2 21141.7 23947.2 2036.2 2923.4 3622.1 12.5 12.5 12.5 19976.6 23026.0 25728.3 2457.8 2708.8 2785.4 2657.1 3081.1 3854.0 57621.2 68179.9 35271.8 528.3 560.4 575.3 69.0 69.0 69.0 1609.1 1764.5 1825.4 11924.2 20562.3 31761.0 19053.8 13350.6 12116.6 35430.5 39452.8 48828.2 66.8 66.8 66.8 2346.2 2409.8 2873.0 2971.3 4130.0 5962.4 15196.8 30962.6 48138.2 122548.9 132061.6 169133.9 8721.2 20930.1 35078.7 16769.7 13970.0 21548.3 124036.6 148703.9 214596.6 1614.1 1815.3 2315.2 2851.4 3307.0 4175.5 12145.9 12096.3 17812.0 5536.9 3993.8 5323.5 18702.6 23056.0 33644.2 939.6 997.4 1160.4 1322.9 1392.6 1547.8 4.4 4.4 4.4 282362.5 389987.9 484246.3 4.5 4.5 4.5 1830.6 2190.6 3280.5 2.8 2.8 2.8 Table S1 - 3 Sep 22712.6 41690.7 80569.1 50884.2 193011.8 112396.8 31067.4 209738.6 178113.9 96250.7 663656 198954.2 31031.5 2146.6 4066.4 977560 2348322 35292.4 6995.3 8004.6 3248.5 44699.2 1545.2 247099.0 6382.8 2579.5 818.6 440.0 1445163 6153.5 279.3 111.3 124292.8 2150.1 86830.9 1212.6 634.5 547.9 47896.3 256.5 32674.7 595.9 217.8 168.0 189.7 1222.4 446.7 854.9 147.3 20.8 30769.7 923.1 10.1 322.7 8.8 2508.4 288724.7 19897.8 125.0 6.2 642.4 178.9 842.7 24.8 19047.6 38916.5 7988.8 150194.0 261.0 524.3 20498.2 3720.0 12.5 24345.8 2449.8 4372.7 31027.4 571.6 69.0 1771.5 27866.3 11378.6 56859.5 66.8 2727.9 11502.7 78677.7 177712.7 52881.4 24273.3 260861.2 3117.0 5578.0 20447.7 5539.0 36795.0 1255.2 1659.7 4.4 441763.5 4.5 3413.9 2.8 Oct 15185.2 12980.1 151801.5 128180.7 207068.0 249632.9 69816.1 494316.1 230843.2 104272.6 1168966 310907.4 44533.4 13316.5 4907.1 1175695 1758006 59240.1 12754.2 8094.8 2719.8 24524.1 1535.0 191439.6 10244.7 3108.5 1268.8 276.3 774266 3690.4 318.8 141.8 46851.9 4090.6 29194.6 2538.2 587.3 844.0 37851.8 244.1 24805.9 595.0 210.9 190.3 158.2 1226.9 507.6 487.4 142.5 20.8 16146.9 548.6 10.1 253.0 8.8 1066.0 205464.6 10406.4 125.0 6.2 454.9 178.9 478.2 24.8 6104.3 17927.0 4856.0 76443.7 235.6 509.9 11143.5 2881.4 12.5 20674.2 1974.0 4049.2 22244.9 540.4 69.0 1592.6 15536.5 9694.2 52105.1 66.8 2245.8 11706.3 51440.1 120696.3 28404.6 12229.0 218911.7 2951.9 5672.9 16656.5 5606.5 25500.9 1106.4 1372.8 4.4 351021.8 4.5 2676.9 2.8 Nov 3834.6 12451.0 127823.0 281488.4 64979.2 212263.3 110970.6 598494.6 139603.3 69303.7 1408048 278697.0 9145.4 11430.0 5918.1 2152860 2284196 51877.4 9045.0 14728.7 3776.9 55270.0 1631.9 245016.4 7843.7 6446.6 342.0 199.7 560226.2 3351.3 2963.3 329.7 36228.9 4433.9 26893.7 5959.7 956.1 2016.3 28963.6 277.6 8041.2 595.0 201.0 225.8 161.4 1382.7 1440.6 486.7 147.0 20.8 8351.1 193.2 10.1 231.7 8.8 871.8 148718.1 9369.4 125.0 6.2 647.3 178.9 246.6 24.8 5516.5 24302.0 1270.2 131809.0 215.4 510.5 10846.6 637.8 12.5 13068.3 1276.0 3535.8 7098.8 486.2 69.0 1140.1 22752.6 4804.0 40421.8 66.8 1384.8 10296.8 274543.7 58297.6 169820.2 8988.3 101555.8 2081.0 4047.1 8324.7 4349.0 9867.6 431.3 422.2 4.4 281804.3 4.5 1327.9 2.8 Dec 3921.9 12101.6 145556.7 245126.1 72785.9 398514.2 105337.9 475411.3 107577.7 80568.1 1423182 277175.7 2562.4 13509.5 6333.7 752664 2233875 28735.1 9997.6 24789.5 4438.0 32920.0 2428.4 187965.9 7902.8 9496.9 338.4 523.6 465899.2 6276.3 4028.0 445.6 37982.4 5521.1 62694.2 8605.1 1201.2 3249.2 48183.1 336.7 5782.6 595.2 199.8 270.4 201.3 1766.8 2049.2 2106.0 237.7 20.8 4871.7 68.3 10.1 234.9 8.8 995.3 82683.1 6314.9 125.4 6.2 1066.2 180.3 337.6 24.8 3371.0 13038.1 4218.5 71459.2 200.1 486.3 11621.8 78.6 12.5 11625.1 1055.5 2922.3 5938.5 474.7 69.0 1074.0 17981.7 5735.0 30580.7 66.8 1773.4 8106.6 172560.2 40099.8 102706.1 3339.1 33946.1 1854.0 3619.3 6676.8 2983.8 7560.9 75.4 77.1 4.4 210576.8 4.5 968.0 2.8 Average 7876.7 21928.8 157519.7 132452.3 154917.3 577316.0 59788.9 273871.0 169150.5 121568.8 1218638 285225.5 14864.4 14560.0 11363.8 899254 1759152 30035.7 11222.4 21465.2 4301.7 37816.2 9890.3 147222.8 8417.3 6094.1 573.2 1182.7 732815.0 9470.8 2856.9 344.2 118619.8 3764.9 76202.0 4311.8 923.1 1810.9 71792.4 315.0 18993.7 607.1 205.6 215.8 178.8 1424.2 1047.4 1776.7 161.8 20.8 12198.4 207.1 10.1 231.1 8.8 2655.8 185732.8 8454.7 125.3 6.2 524.9 179.9 528.1 24.8 8118.1 19810.1 5278.3 76741.4 217.4 489.1 15814.3 1378.9 12.5 14729.3 1695.7 2337.6 26071.2 497.2 69.0 1306.4 17588.0 12486.4 30463.7 66.8 2208.4 5662.1 95635.7 96617.6 56312.1 12706.2 114550.7 2143.3 3692.0 11460.4 4587.9 18045.7 646.1 854.8 4.4 321845.9 4.5 1902.6 2.8 Basin ID Basin name 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 Mitchell(N. Au) Majes Ord Jequitinhonha Macarthur Fitzroy Gilbert Mucuri Rio Doce Save Burdekin Tsiribihina Buzi Loa Limpopo De Grey Paraiba Do Sul Fortescue Mangoky Fitzroy Orange Ashburton Gascoyne Rio Ribeira Do Iguape Incomati Murray Murchison Maputo Uruguay Tugela Colorado (Argentinia) Rio Jacui Huasco Limari Negro (Uruguay) Groot-Vis Salado Blackwood Rapel Negro (Argentinia) Biobio Waikato South Esk Chubut Clutha Baker Santa Cruz Ganges Salween Hong(Red River) Lake Chad Okavango Tarim Horton Hornaday Conception Ulua Patacua Coco Ocona Cuanza Cunene Doring Gamka Groot- Kei Lurio Messalo Rovuma Galana Pyasina Popigay Fuchun Jiang Min Jiang Han Jiang Mamberamo Lorentz Eilanden Uwimbu Sungai Kajan Sungai Mahakam Sungai Kapuas Batang Kuantan Batang Hari Flinders Leichhardt Escaut (Schelde) Issyk-Kul Balkhash Eyre Lake Lake Mar Chiquita Lake Turkana Dead Sea Suriname Lake Titicaca Lake Vattern Great Salt Lake Lake Taymur Daryacheh-Ye Orumieh Van Golu Ozero Sevan Jan 341.7 3314.9 10.2 945.8 1.1 11.9 7.4 398.8 4008.0 7032.9 1069.8 60722.5 339.3 348.3 98842.0 11.0 8096.7 9.8 36833.8 6135.8 122068.9 10.1 16.1 2155.1 6744.6 1796675 19.2 1657.9 674173.3 12844.4 164413.7 259052.2 880.5 33036.7 77510.1 14526.3 30690.2 677.8 160994.9 22754.5 28414.2 805.3 4363.8 4565.2 2540.9 25.4 29.0 13158709 18910.2 86812.4 123841.3 850.3 46367 0.2 0.4 863.2 7388.7 684.0 694.7 1388.9 868.5 184.8 13480.3 2715.0 2443.3 42.1 9.9 368.1 4086.6 462.7 1.6 9387.7 8168.5 8406.5 123.4 4.5 15.9 16.9 412.8 1603.6 1123.8 21554.5 18804.9 13.9 13.2 28581.6 3869.6 7898.1 256.3 73618.5 16702.2 4976.7 72.8 54629.1 717.8 11288.1 11.7 4126.5 847.5 1005.7 Feb 261.0 2330.3 5.1 1485.9 1.1 12.0 7.0 697.6 11396.5 7311.8 1069.6 42436.5 168.7 348.2 124195.8 11.0 7902.6 9.8 29713.2 9673.2 208326.4 10.1 26.1 2072.6 10034.5 1629509 30.4 1863.0 302717.3 32307.0 128020.2 109321.3 669.4 20409.8 40088.3 32500.4 31714.2 868.2 92143.4 22634.3 15065.1 884.8 7720.4 9149.9 17233.5 66.4 136.8 14044732 21222.2 94924.2 182360.2 939.6 103636 0.2 0.4 2402.2 5158.9 319.0 582.3 1328.2 1178.4 215.9 27491.8 13051.7 5945.1 42.1 9.7 278.2 4402.9 462.7 1.6 9389.8 8157.3 8240.3 123.9 4.6 16.5 18.2 124.0 820.3 772.5 8941.9 8425.0 26.6 13.8 28581.6 3867.4 7903.9 391.9 72832.9 12196.8 10605.9 72.8 39854.3 717.8 11334.6 11.7 7750.8 847.7 1005.7 Mar 734.6 2230.2 95.9 1556.0 1.1 12.4 69.2 722.2 10312.4 12439.9 6076.7 88041.6 571.0 349.1 219628.8 11.0 9838.7 10.1 51243.5 46656.6 240318.1 10.1 37.7 2145.4 17801.4 1677274 35.3 6406.3 105062.7 51653.7 103199.4 47759.7 596.5 15231.9 24714.6 31051.4 12777.0 921.3 63877.9 16810.0 11595.8 1470.9 9018.2 10672.0 17807.5 107.7 175.6 19911407 34782.4 106398.9 195207.9 1358.4 364031 0.2 0.4 4812.7 11597.1 962.4 1181.1 1458.9 738.4 172.6 34498.5 17664.1 6908.7 42.5 10.0 236.9 2121.7 462.7 1.6 9394.0 8156.7 8206.6 123.3 4.5 15.9 19.4 27.6 288.3 494.9 831.1 1056.0 130.2 24.0 28582.3 5610.0 26411.0 803.8 50326.6 6961.2 46781.5 72.8 30463.0 717.8 26872.7 11.7 33647.9 993.1 1084.3 Apr 3963.8 6243.8 2642.1 2000.2 1.1 14.1 192.1 893.4 13025.3 22876.0 16014.8 170196.4 1950.0 344.5 213847.8 11.0 14156.2 10.2 62417.9 47241.2 173615.7 10.1 31.0 2360.0 28995.5 851276 27.4 16175.1 9149.2 31877.5 45559.1 2362.1 320.6 4343.8 1701.7 18743.8 4173.2 540.3 14339.2 7621.7 3916.5 936.2 3485.7 6480.2 11223.5 64.7 95.3 12435642 73001.7 217194.1 192937.9 2321.6 795438 0.2 0.4 6493.5 15430.8 1424.5 1487.5 5571.7 660.0 214.8 19964.9 12790.1 4971.3 65.9 10.2 380.9 1109.4 462.7 1.6 14416.1 8768.9 9470.7 123.0 4.5 15.6 18.5 27.7 267.0 455.4 965.8 990.9 192.0 31.9 28814.5 85052.7 176009.3 738.9 42798.2 1990.2 124014.2 72.8 25263.3 719.3 108482.1 11.7 83546.7 1806.4 1191.3 May 5537.1 6557.9 5015.6 2114.7 1.1 14.2 192.0 1042.3 15031.5 18101.7 13433.7 57454.6 2369.0 338.5 120149.9 11.0 11371.2 10.2 19314.3 30687.5 83286.4 10.1 21.7 2087.9 20121.8 281547 16.5 15406.1 4500.7 17955.0 35233.9 2136.7 233.5 2483.7 169.3 15831.9 2776.8 112.5 2676.0 3348.7 5844.3 772.1 1054.4 3205.9 1629.9 33.7 34.8 10053368 71107.9 516481.4 45619.4 2706.3 1367750 0.2 0.4 5091.4 9677.7 722.7 561.4 6039.9 1308.7 387.3 5689.1 7396.2 4848.2 79.2 15.2 604.4 1314.2 462.7 1.6 31425.8 14877.9 17858.6 123.1 4.5 15.6 22.2 28.2 293.8 463.5 1148.5 1605.4 176.5 31.2 31907.5 331331.6 367687.4 643.9 21882.7 2639.1 191001.2 72.8 17817.7 853.4 190196.5 11.7 100958.4 8779.5 1787.3 Blue water footprint (103 m3/month) Jun Jul Aug 5395.0 5844.0 6913.5 3327.0 2217.4 3421.6 6620.6 8488.8 9999.0 2118.7 2390.9 2950.1 1.1 1.1 1.1 13.9 14.3 14.9 166.5 177.4 213.7 1273.0 1400.9 1994.9 19754.2 25232.1 29963.7 21476.8 25475.9 52038.5 13045.9 15661.6 19538.3 3648.5 3562.4 3689.5 2285.2 2411.6 3704.3 344.2 350.9 378.1 125648.9 151835.7 249928.3 11.0 11.0 11.0 13191.8 16284.0 18864.9 10.0 10.1 10.3 3491.1 3051.9 3056.3 22800.7 29204.9 39198.8 99538.7 127434.9 195558.1 10.1 10.1 10.1 16.8 14.0 28.0 2051.4 2090.6 2154.1 20976.2 24492.5 35427.8 141682 147848 291593 13.9 12.6 22.6 17843.1 19266.3 28775.0 4538.6 4675.7 6884.4 18187.8 24585.7 38346.7 27627.6 63043.9 118507.8 2126.9 2125.6 2146.1 377.0 420.7 900.5 1128.7 1359.8 4913.1 169.0 169.1 173.3 12788.2 13412.8 17802.9 2699.5 3138.3 3343.9 58.0 56.5 62.1 1202.5 1193.5 3295.0 1700.5 2238.0 4931.8 5712.0 5919.4 6177.5 771.2 771.2 771.2 242.4 114.1 376.1 1252.6 1584.8 3762.2 204.3 188.7 925.2 27.0 29.0 38.7 18.5 17.8 36.9 5544274 3941654 2382353 75090.7 40034.7 32003.0 257551.0 115094.1 89732.2 47440.0 34137.9 24381.8 2777.0 3170.3 4094.5 1424510 1536483 1380857 0.2 0.2 0.2 0.4 0.4 0.4 6316.2 5835.4 8031.6 6025.2 3696.0 2598.1 403.1 517.0 290.0 289.3 280.7 274.2 2802.8 1669.3 2565.0 2689.8 3287.9 4779.9 485.7 548.8 643.5 2413.1 2085.1 6704.6 6211.1 4523.1 5661.0 4427.5 5461.1 7147.2 78.9 85.1 104.1 15.4 25.7 41.2 438.8 401.0 464.3 2968.8 4794.7 5148.0 462.7 462.7 462.7 1.6 1.6 1.6 25890.3 120394.7 93993.7 16995.3 92286.1 71040.8 21719.8 60040.3 39510.8 123.5 123.2 124.1 4.5 4.6 4.6 15.6 15.9 16.0 29.7 38.1 42.2 29.3 30.4 28.2 278.8 503.9 607.6 467.5 502.7 491.3 2243.1 2968.7 3059.6 2782.2 3403.0 4321.5 146.7 162.3 198.3 28.1 29.8 33.5 33659.4 36561.2 38970.5 551793.0 652012.1 682351.3 451268.4 660660.3 716715.5 558.2 597.0 749.8 24157.2 34910.8 46837.8 2532.7 3148.7 7388.1 180841.4 209018.1 193278.0 72.8 72.8 72.8 15135.1 12497.3 15948.5 993.5 1190.2 1358.0 290908.9 355162.4 295952.7 11.7 11.7 11.7 133857.5 161670.1 185227.9 18522.7 17687.8 18856.2 4689.9 6576.3 7338.7 Table S1 - 4 Sep 8084.4 4721.7 10849.1 2962.3 1.1 15.2 246.0 1783.8 24373.8 66437.5 24172.3 3846.5 4836.8 394.9 325116.1 11.0 14871.9 10.5 3009.5 53174.6 238623.5 10.1 40.4 2099.0 44482.0 566450 35.9 32439.2 7069.2 45657.8 170003.6 2192.2 1491.4 11224.6 185.6 29350.8 6448.3 86.6 25200.3 8688.9 11895.2 771.3 1709.8 6442.3 7142.1 70.2 91.7 3662445 47800.8 76564.6 34770.1 4792.1 981231 0.2 0.4 7388.1 1529.4 288.6 256.1 3477.2 5424.3 658.0 22058.4 15664.3 9965.5 120.3 55.8 501.0 4916.8 462.7 1.6 98617.9 63069.9 41152.2 126.2 4.7 16.6 40.7 556.1 3384.0 1104.4 16614.0 17731.0 236.2 36.8 32038.1 487278.5 543809.3 900.6 66462.2 8373.8 109862.3 72.8 17203.3 955.5 178346.4 11.7 115943.3 13419.3 4115.2 Oct 7994.6 4279.7 8894.4 2164.1 1.1 15.3 244.9 1336.8 18958.1 48232.1 24665.8 3978.5 4651.0 396.1 260022.0 11.0 14426.4 10.7 3297.2 56851.7 235041.8 10.1 42.4 2084.0 30139.7 902256 41.7 26730.3 75991.9 41740.0 212465.5 28141.6 1703.2 15815.0 2311.3 36957.0 7055.3 400.3 76379.7 13110.6 15852.7 772.8 3617.7 9430.3 10489.7 137.0 181.2 7534298 46577.3 35708.5 57186.8 4473.7 229859 0.2 0.4 5674.9 873.7 149.5 223.7 3202.9 5051.3 475.7 44962.5 22727.4 10746.6 121.2 55.8 509.2 4405.9 462.7 1.6 20451.1 11420.9 10352.2 126.8 4.7 16.9 34.4 441.0 2255.0 745.6 17601.1 17859.5 237.2 36.4 28958.6 193577.7 148355.0 923.5 55393.0 6303.4 66696.8 72.8 18560.0 726.5 99340.6 11.7 52188.0 4618.4 2066.8 Nov 4814.7 3531.6 4903.3 1094.5 1.1 14.4 166.5 535.7 6088.4 15712.5 17069.6 2776.9 1881.5 358.0 144978.1 11.0 8900.6 10.5 2252.2 42674.6 144597.6 10.1 37.7 2155.9 16687.2 998880 37.9 13692.5 222852.6 25547.1 229930.1 82757.9 575.0 12289.3 17959.6 25499.1 7087.4 621.9 56481.3 21027.1 5911.7 793.6 4179.9 10387.5 13228.7 122.6 210.6 11330417 20138.6 39272.1 45197.3 2363.9 96323 0.2 0.4 2054.4 1227.4 167.7 233.4 2475.2 1988.5 299.6 32514.2 12638.5 7337.2 72.7 13.7 345.7 1807.1 462.7 1.6 10449.3 9325.7 9234.2 125.8 4.6 17.3 27.9 119.7 1350.9 646.5 14363.5 12626.0 172.6 29.4 28581.6 23889.9 15538.2 721.1 44846.3 4962.7 33941.2 72.8 20898.8 717.8 32184.9 11.7 17973.6 1624.0 1122.2 Dec 1996.1 2713.2 290.0 855.1 1.1 12.5 86.0 375.9 3693.6 7525.0 5682.5 19607.2 694.8 357.0 90398.9 11.0 7285.8 10.2 12760.5 29016.8 110597.0 10.1 32.1 2158.7 10339.6 1224788 30.9 9878.1 345000.7 13318.7 151341.9 131107.2 678.5 17019.2 32370.9 25607.1 7698.1 777.6 90362.1 23140.1 15700.7 862.8 5909.2 10851.3 10746.4 111.6 166.2 6754745 13490.7 55205.2 63649.7 1472.9 39023 0.2 0.4 1500.2 5331.4 575.7 511.1 1547.2 1595.4 198.5 28071.5 11656.3 5007.8 49.4 10.9 331.1 2100.7 462.7 1.6 9426.9 8428.1 8624.0 124.6 4.5 16.6 20.3 276.4 990.5 654.6 10111.4 9336.6 113.5 22.0 28581.6 4687.0 8438.0 586.0 30999.3 8450.8 16173.1 72.8 30440.3 717.8 13326.8 11.7 7598.4 959.4 1040.9 Average 4323.4 3740.8 4817.8 1886.5 1.1 13.8 147.4 1037.9 15153.1 25388.4 13125.1 38330.1 2155.3 359.0 177049.4 11.0 12099.2 10.2 19203.4 34443.0 164917.3 10.1 28.7 2134.6 22186.9 875815 27.0 15844.4 146884.7 29501.8 120778.9 55935.8 737.2 11604.6 16460.2 22839.3 9966.8 431.9 49012.2 12333.9 11000.4 865.3 3482.6 6482.0 7780.0 69.5 99.5 9229504 41180.0 140911.5 87227.5 2610.1 697126 0.2 0.4 4705.3 5877.9 542.0 548.0 2793.9 2464.3 373.8 19994.5 11058.3 6267.5 75.3 22.8 405.0 3264.7 462.7 1.6 37769.8 26724.7 20234.7 124.2 4.6 16.2 27.4 175.1 1053.6 660.2 8366.9 8245.2 150.5 27.5 31151.5 252110.1 260891.2 655.9 47088.8 6804.2 98932.5 72.8 24892.6 865.4 134449.7 11.7 75374.1 7413.5 2752.0 Table S2. Monthly natural runoff for the world's major river basins Basin ID Basin name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 Khatanga Olenek Anabar Yana Yenisei Indigirka Lena Omoloy Tana (NO, FI) Colville Alazeya Anderson Kolyma Tuloma Muonio Yukon Palyavaam Kemijoki Mackenzie Noatak Anadyr Pechora Lule Kalixaelven Ob Ellice Taz Kobuk Coppermine Hayes(Trib. Arctic Ocean) Pur Varzuga Ponoy Kovda Back Kem Nadym Quoich Mezen Iijoki Joekulsa A Fjoellum Svarta, Skagafiroi Oulujoki Lagarfljot Thelon Angerman Thjorsa Northern Dvina(Severnaya Oelfusa Nizhny Vyg (Soroka) Kuskokwim Vuoksi Onega Susitna Kymijoki Neva Ferguson Copper Gloma Kokemaenjoki Vaenern-Goeta Thlewiaza Alsek Volga Dramselv Arnaud Nushagak Seal Taku Narva Stikine Churchill Feuilles (Riviere Aux) George Caniapiscau Western Dvina (Daugava) Aux Melezes Baleine, Grande Riviere De Spey Kamchatka Nass Skeena Nelson Hayes(Trib. Hudson Bay) Gudena Skjern A Neman Fraser Severn(Trib. Hudson Bay) Amur Tweed Grande Riviere De La Bale Grande Riviere Winisk Churchill, Fleuve (Labrador Dniepr Ural Wisla Don Area (km2) 294907.5 208522.0 85015.5 233479.4 2558237.3 341227.8 2425551.1 38871.3 14518.1 57544.7 85493.3 66491.7 652850.5 26057.7 37346.5 829632.3 31112.8 55824.7 1752001.5 32319.5 171275.8 312763.3 25127.6 17157.6 2701040.7 12599.6 152086.0 30242.4 43016.4 22992.8 111351.3 8182.2 13186.0 10227.6 141351.9 42080.8 54624.7 28217.6 76715.3 16163.3 7311.0 3429.6 30554.5 3285.3 238839.0 32372.0 7527.1 323573.1 5678.3 31334.1 118114.0 62707.4 65894.0 49470.3 33623.1 223309.5 15200.4 64959.7 42862.7 26615.9 51791.5 64399.6 28422.0 1408278.9 17364.0 44931.9 29513.6 53439.9 17967.6 58147.0 51147.5 298505.0 37425.3 39054.1 105690.6 89340.3 41384.1 22136.1 2942.2 54103.9 21211.7 42944.4 1099380.3 105371.9 2860.9 2817.6 97299.9 239678.4 98590.5 2023520.4 4770.9 24256.7 111718.4 106470.3 84984.3 510661.3 339084.2 193764.0 425629.6 Jan 1571.7 1231.0 525.8 896.1 16135.2 1902.5 15771.8 26.9 71.8 185.8 184.1 54.7 3721.1 94.6 143.9 4850.3 106.3 487.2 5637.8 156.5 1182.1 2459.1 313.1 78.3 6930.1 30.5 989.9 211.1 28.9 27.0 740.7 47.2 127.2 30.6 327.2 235.3 383.2 41.6 372.9 94.2 75.0 54.9 230.9 112.9 478.4 343.5 422.1 1021.4 378.5 206.5 1269.5 334.8 224.9 1270.7 186.3 1195.2 40.3 1090.8 563.2 236.7 1198.3 91.9 286.1 3091.7 259.8 564.3 517.3 126.4 430.1 710.7 1826.9 789.5 673.6 758.1 2297.2 772.7 637.5 379.8 478.1 689.9 1054.0 1078.2 1698.4 339.8 259.3 351.5 740.2 3955.1 593.2 13098.2 575.8 482.1 2729.2 890.2 1702.6 849.5 324.2 947.0 308.1 Feb 58.7 159.8 85.3 72.8 742.2 179.7 655.1 0.7 0.0 1.4 31.2 0.4 160.9 11.6 13.1 252.5 0.0 3.2 86.9 0.8 1.3 31.2 1.0 6.6 198.1 0.0 6.0 31.8 0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.5 0.2 0.0 4.5 0.1 0.0 0.0 1.1 0.0 0.1 0.5 33.1 35.1 0.0 0.1 1.4 1.2 2.8 2.2 1.0 10.6 0.0 0.0 1.3 1.6 3.2 10.3 0.0 147.2 0.5 0.0 0.0 1.6 0.0 1.2 603.3 20.1 0.0 0.0 0.9 2.1 0.1 0.0 203.5 0.0 0.0 0.2 40.6 7.0 115.5 132.9 3.4 1048.3 0.0 58.9 239.8 0.0 0.9 2.1 0.0 45.1 5.7 37.8 29.4 Natural runoff (Mm3/month) Mar Apr May Jun Jul Aug 35.4 21.4 221.2 25398.5 12884.8 6944.9 96.5 58.3 658.3 16431.9 5510.3 3070.3 51.5 31.1 18.8 4128.1 2082.3 1011.7 44.0 26.6 159.2 7535.9 6820.7 3807.3 452.4 7752.7 162714.9 162047.8 97190.0 64240.9 108.5 65.6 450.9 16809.8 14507.5 6786.0 396.4 361.9 87091.9 124907.8 84650.4 63046.2 0.4 0.2 0.2 426.1 277.1 128.9 0.0 0.0 2851.4 778.3 457.0 276.1 0.8 0.5 45.5 1938.0 1977.6 1034.6 18.9 11.4 6.9 1896.8 555.0 314.2 0.2 0.1 2548.6 797.3 434.9 262.7 97.2 58.8 5342.4 25441.2 35941.4 16207.8 7.1 4.4 1732.1 547.3 300.0 180.4 8.0 213.9 2005.5 1110.4 750.1 388.4 152.7 943.7 53166.5 48766.9 29776.4 16607.0 0.0 0.0 0.0 1878.7 1036.4 526.4 2.0 594.1 8987.0 2448.1 1458.1 934.7 53.5 9063.7 79403.5 79172.3 46002.0 24877.4 0.5 0.3 401.9 1980.3 1099.7 624.3 0.8 0.5 2452.2 21998.7 10380.5 5461.5 19.2 1449.0 58305.9 38794.9 16270.2 9630.9 0.6 1119.1 3851.3 3784.3 1895.4 1112.2 4.0 388.6 1237.8 757.3 351.5 203.1 135.9 80842.2 148619.4 68228.3 36839.8 23540.4 0.0 0.0 0.0 958.3 248.8 150.3 3.6 2.2 12922.1 23163.4 7321.6 4370.1 19.2 11.6 2063.7 1100.6 619.7 373.5 0.1 0.0 390.0 714.8 246.4 139.9 0.0 0.0 0.0 834.5 225.2 133.1 0.3 0.3 7186.7 15161.5 4615.2 2795.1 0.0 0.0 683.9 188.7 110.1 66.6 0.0 0.0 1585.1 438.1 255.8 178.3 0.0 0.0 881.9 280.3 152.3 92.5 2637.8 0.0 0.0 5571.3 8215.3 1590.9 0.4 2642.5 3902.2 1352.6 781.6 490.1 0.1 0.1 4504.7 7346.2 2354.4 1461.2 0.0 0.0 0.0 1216.3 349.6 199.5 2.7 3916.9 10521.7 3855.7 2081.0 1250.6 0.1 1326.2 997.0 396.0 232.9 151.1 0.0 5.7 754.0 592.9 236.8 148.0 29.3 123.6 363.8 392.6 148.0 89.0 0.8 5398.3 1702.8 939.7 562.7 373.1 0.0 22.3 1190.7 742.9 324.1 231.6 0.0 0.0 6190.9 10749.7 3370.2 2026.8 0.4 4027.0 3524.6 2685.5 1232.5 833.4 91.6 1123.0 1723.6 1322.4 662.2 584.0 22.2 44567.2 19378.9 9541.8 5592.3 3376.1 323.1 1726.6 690.3 685.2 565.6 398.0 0.1 5451.2 1622.9 926.7 553.6 334.4 0.9 0.5 16620.3 7998.3 5470.1 5473.3 1.2 10528.9 2968.3 1728.3 1039.2 643.3 1.8 10633.8 3402.5 1902.0 1125.9 680.1 1.4 3654.1 8319.0 8905.7 5269.7 4095.0 1.0 4570.7 1319.9 758.1 456.3 277.2 8.8 32169.2 9560.0 5468.9 3272.4 1984.2 0.0 0.0 0.0 1053.5 296.1 171.1 0.0 17.3 7546.7 10214.6 7440.5 4185.8 12.0 3439.3 3368.1 3615.4 2048.4 1487.9 1.5 3662.2 1092.9 616.1 371.5 225.5 2259.8 5377.8 2297.5 1379.5 819.2 707.0 6.2 3.7 1834.1 666.0 339.5 204.2 0.0 584.4 2611.7 2770.9 1100.4 738.6 747.6 140132.1 51088.9 28581.8 17230.0 10747.1 97.0 1233.4 1458.1 1401.1 734.0 665.9 0.0 0.0 632.5 5641.8 2064.4 1543.3 0.0 1308.4 4936.8 1770.2 1042.6 1293.2 1.0 0.6 3534.7 1434.9 728.5 432.3 0.0 806.8 2508.0 2296.9 1033.2 783.7 1.2 6018.5 1937.0 1079.4 639.7 420.0 508.0 1656.9 9699.8 11933.0 5766.5 3728.6 12.3 3400.0 13120.8 7724.3 3761.6 2131.7 0.0 0.0 2539.5 5199.5 2051.0 1757.3 0.0 0.0 4958.0 5039.7 3961.6 2616.4 0.5 0.3 16170.7 12475.4 6805.5 6229.8 619.6 2.1 9180.8 2977.1 1713.6 1016.3 0.1 0.0 5433.5 3250.9 1841.6 1727.2 0.0 0.0 4270.1 1505.8 1122.0 983.1 174.9 136.5 98.8 58.1 43.8 52.5 0.0 0.0 9603.9 7199.7 5399.2 2604.2 810.7 3441.7 6020.4 4634.1 2047.3 1515.8 1041.9 4491.6 8819.6 7160.8 3082.5 2010.7 35.8 29311.7 20864.5 15143.9 8074.5 5014.9 4.3 2.6 7011.9 3778.4 2054.7 1111.5 103.3 77.1 41.9 24.7 16.2 10.7 121.1 89.0 50.8 28.9 18.4 22.4 2540.2 8813.4 3141.2 1745.1 1037.9 641.8 2360.7 15356.9 26897.1 15496.8 7432.2 4439.9 0.0 969.8 7964.8 3325.3 1813.8 1158.6 59.3 41918.1 57294.3 53865.4 45446.7 49807.8 225.1 158.2 110.7 72.3 54.4 61.3 0.0 0.0 3057.6 1978.3 1140.9 1097.4 0.5 0.3 20738.4 10192.2 6544.7 6144.0 1.3 3470.5 10190.2 4433.5 2449.4 1479.2 0.0 0.0 15223.9 10971.0 6028.7 4689.5 9860.5 20513.6 7860.1 4484.4 2811.4 1783.2 165.2 10759.3 3817.4 2162.0 1470.8 948.2 12812.8 6810.9 4190.9 2577.5 1781.3 1243.2 4138.3 14368.8 5709.0 3280.6 2272.7 1517.1 Table S2 - 1 Sep 4357.0 1870.4 602.5 1832.6 48091.7 3631.1 53636.1 73.6 217.4 579.1 189.8 158.7 10517.4 119.2 294.9 12906.1 355.2 1082.1 15732.9 629.7 4105.7 7855.7 951.7 137.7 18275.7 90.8 3193.2 338.6 84.5 80.4 2896.5 112.4 268.5 71.2 990.4 429.8 1502.8 128.2 799.5 155.9 147.0 76.1 416.6 257.6 1686.6 764.3 668.7 2058.6 471.2 420.4 5291.7 560.3 436.9 4842.3 216.4 1703.3 142.1 3963.1 1400.5 147.2 791.8 198.6 961.8 6887.4 720.2 1878.6 1548.5 415.7 1027.7 372.9 3815.5 1960.1 1931.8 2618.4 6669.5 425.3 1787.2 1130.8 81.3 1918.9 1839.7 1937.6 4579.4 798.0 14.8 70.4 406.1 3254.0 1429.9 50357.7 91.1 1241.0 7187.4 2350.9 4563.7 1063.7 527.8 858.0 801.0 Oct 2419.0 1106.6 354.9 1106.8 24440.8 2176.2 23839.3 43.7 149.0 324.5 114.6 95.8 5575.9 121.3 187.3 7648.1 191.1 1366.4 10447.5 275.6 2116.1 4450.1 683.0 118.6 14074.8 54.8 1738.0 159.6 51.0 48.5 1331.2 140.1 394.1 78.0 588.0 696.2 687.7 74.8 867.4 299.9 221.4 152.2 710.7 309.8 859.5 954.8 840.8 2097.6 658.7 626.2 2398.6 960.4 556.4 2738.5 308.4 2586.4 72.5 2215.5 1344.1 152.9 1475.7 94.1 680.0 6486.8 633.0 1362.9 1382.8 241.7 1263.6 731.8 3379.2 1724.5 1773.6 1701.2 6024.1 849.3 1696.1 994.3 157.4 1546.8 2607.5 2313.5 4110.0 731.1 58.0 165.2 467.3 3618.6 1689.2 28455.4 172.0 1368.9 7682.4 2486.7 4517.0 891.9 322.1 779.6 444.2 Nov 1461.0 668.3 214.4 668.5 14455.9 1314.4 14390.4 26.4 77.9 196.0 69.2 57.9 3367.8 55.2 101.6 4212.2 115.4 516.4 5767.0 166.5 1278.1 2542.8 335.9 57.6 6865.0 33.1 1049.7 96.4 30.8 29.3 804.1 51.2 138.1 33.2 355.2 253.6 415.4 45.2 386.3 102.3 82.3 68.9 247.3 128.1 519.1 371.0 478.5 971.8 434.6 224.2 1372.5 387.0 234.8 1370.5 311.4 1686.6 43.8 1184.1 677.6 501.9 1616.9 56.8 310.6 3165.6 304.9 612.6 561.6 130.6 467.0 1459.3 1948.6 774.9 731.3 823.0 2490.3 1548.2 691.6 412.3 246.1 749.0 1420.3 1518.6 1799.8 339.8 124.8 192.5 1597.2 3140.5 644.0 14176.3 311.6 523.3 2959.2 957.9 1848.4 1449.4 587.8 1157.5 431.0 Dec 882.4 403.7 129.5 403.8 8735.1 793.9 8692.2 15.9 47.1 118.4 41.8 35.0 2034.2 33.5 61.4 2544.3 69.7 312.0 3484.1 100.6 771.9 1536.1 202.9 34.8 4161.9 20.0 634.0 58.2 18.6 17.7 485.8 30.9 83.4 20.1 214.5 153.2 250.9 27.3 233.3 61.8 49.2 36.0 149.5 74.0 313.5 224.1 288.8 587.9 320.1 135.5 829.0 220.0 141.1 827.8 122.5 773.9 26.4 715.2 369.7 154.8 1037.2 34.3 187.6 1902.0 170.5 370.0 339.2 78.9 282.0 466.4 1370.5 468.2 441.7 497.1 1504.1 507.4 417.7 249.0 292.1 452.4 691.1 707.1 1090.5 205.3 157.3 228.6 486.5 2506.4 388.9 8572.4 366.0 316.1 1787.3 578.6 1116.4 588.9 214.5 847.9 212.1 Average 4688.0 2605.5 769.6 1947.9 50583.3 4060.5 39786.6 85.0 410.5 533.5 286.2 370.5 9038.8 267.2 439.9 15152.2 356.6 1515.9 23310.7 453.1 4145.8 11945.4 1187.5 281.3 34059.3 132.2 4616.2 423.7 142.1 116.3 3001.5 119.3 289.1 136.7 1707.6 911.5 1575.6 173.5 2024.4 318.1 192.7 127.9 894.5 282.9 2182.9 1246.8 686.6 7437.6 554.3 875.1 3893.8 1614.4 1611.9 3441.4 710.7 5034.9 153.8 3214.5 1527.3 597.1 1580.3 295.0 852.7 22517.4 639.9 1222.5 1225.1 593.9 908.3 1153.2 3853.1 2990.7 1424.9 1914.5 5055.7 1634.5 1457.0 920.6 168.6 2513.7 2173.5 2846.9 7647.0 1365.4 83.6 122.6 1801.7 7458.9 1664.8 30259.2 203.2 933.8 5497.2 2440.9 4221.8 4350.1 1775.4 2837.0 2792.7 Basin ID Basin name 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 Oder Elbe Trent Weser Attawapiskat Eastmain Manicouagan (Riviere) Columbia Little Mecatina Natashquan (Riviere) Rhine Albany Saguenay (Riviere) Thames Nottaway Rupert Moose(Trib. Hudson Bay) St.Lawrence Danube Seine Dniestr Southern Bug Mississippi Skagit Aral Drainage Loire Rhone Saint John Po Penobscot St.Croix Kuban Connecticut Liao He Garonne Ishikari Merrimack Hudson Colorado(Pacific Ocean) Klamath Ebro Rogue Douro Susquehanna Luan He Kura Dalinghe Delaware Sacramento Huang He (Yellow River) Kizilirmak Yongding He Tejo Sakarya Eel (Calif.) Tigris & Euphrates Potomac Guadiana Kitakami Mogami Han-Gang (Han River) Guadalquivir San Joaquin James Bravo Shinano, Chikuma Roanoke Naktong Indus Tone Salinas Pee Dee Chelif Cape Fear Tenryu Santee Kiso Yangtze(Chang Jiang) Yodo Sebou Alabama River & Tombigbe Savannah Gono (Go) Huai He Apalachicola Brazos Altamaha Mekong Colorado(Caribbean Sea) Trinity(Texas) Pearl Sabine Suwannee Yaqui Nile Brahmaputra St.Johns Nueces San Antonio Irrawaddy Fuerte Xi Jiang Bei Jiang Area (km2) 116536.3 139347.6 9052.9 43140.2 30457.4 48837.5 54205.4 668561.9 17902.9 16948.2 190522.1 123081.0 91366.9 12358.9 118709.0 16063.4 105615.2 1055021.5 793704.8 74227.9 72108.2 60121.0 3196605.4 7961.0 1233148.5 115943.6 97485.2 55151.8 73066.6 21168.9 4638.6 58935.7 27468.3 194436.5 55807.2 13783.3 12645.1 36892.8 640463.6 40040.1 85158.6 14526.6 96125.4 69080.1 71071.5 182283.3 22823.1 26713.4 77208.9 988062.6 77873.6 214406.5 70351.7 62482.7 7449.9 832578.6 32380.6 66020.0 9652.4 6853.1 24771.5 56954.8 34365.6 23528.4 510056.3 11158.8 26801.0 23325.2 1139075.4 15739.3 12654.6 46531.3 45249.3 22652.7 5769.0 40035.3 5419.1 1745094.4 8424.2 36201.3 113117.4 27740.4 3949.5 174309.9 51412.9 117853.1 37117.5 787256.9 110640.3 46168.2 22423.0 25611.8 26400.9 76181.7 3078088.1 518011.4 22489.2 43877.9 10952.4 411516.3 36419.8 362894.3 52915.4 Jan 1032.5 2858.7 691.4 3511.3 121.7 1182.9 1252.8 11960.9 444.5 291.0 13179.1 813.0 1984.2 726.2 2188.3 311.4 1000.2 13835.1 15369.2 3426.9 407.9 38.8 79924.0 951.3 2546.9 5691.9 7316.8 1543.0 4276.6 655.1 170.5 1008.9 934.3 678.2 3122.4 859.4 381.1 1000.4 323.3 3010.5 4220.1 1090.2 3913.4 2091.9 174.3 559.4 58.3 1640.3 5375.8 2702.4 199.1 174.7 2713.3 348.5 1366.1 15514.6 1355.9 246.7 690.1 969.3 814.3 677.2 707.1 1600.5 263.4 1100.6 1844.9 508.2 11918.9 936.2 11.8 2824.5 234.5 1592.2 584.8 804.8 652.3 40746.3 1063.4 1058.8 9397.8 1501.0 457.3 1271.4 2889.5 747.2 1328.3 30683.5 466.3 588.6 1984.2 1109.9 1043.0 15.8 20724.2 28402.7 379.1 4.2 12.3 26908.9 340.7 8372.9 629.5 Natural runoff (Mm3/month) Feb Mar Apr May Jun Jul Aug Sep 1852.6 5896.3 3319.4 2160.7 1462.2 947.3 682.0 505.5 2594.5 4899.4 3701.9 2272.5 1577.0 1147.9 892.7 725.8 368.2 303.2 213.3 137.6 80.5 56.5 51.0 49.0 2008.3 1895.7 1397.8 902.7 617.5 504.3 484.0 501.8 0.0 0.0 0.0 2195.5 613.1 355.5 214.7 350.3 0.0 0.0 2558.1 9188.6 4899.7 2922.3 2536.0 2987.8 0.3 0.2 524.6 8666.6 6924.6 3691.1 2983.3 3220.2 11259.5 20903.3 38188.0 55190.6 36849.4 18551.8 11683.5 7290.7 0.0 0.0 0.0 6156.3 2178.5 1505.7 1078.9 1004.0 0.0 0.0 156.2 3726.8 1620.1 1208.4 808.1 691.2 7657.6 8094.3 9602.3 8013.0 6055.1 4779.6 4183.7 3971.9 0.1 0.1 8411.8 9204.2 3827.2 2148.3 1306.1 1776.4 1.5 1.5 11245.1 11251.7 8137.7 5058.6 4100.4 4665.6 447.7 361.1 237.6 136.9 78.4 49.7 32.4 21.8 0.2 0.2 13451.3 15987.7 7640.1 5188.1 4271.3 5083.6 0.0 0.0 794.7 3201.0 1189.1 796.1 677.5 758.7 0.6 0.6 11334.0 9979.0 4300.8 2527.6 1594.4 2136.5 351.1 29605.6 132375.7 51230.9 31947.4 19602.9 13031.9 15304.9 12969.9 30056.7 34399.1 27077.0 19150.4 14083.1 11248.0 10213.5 2491.0 2183.7 1663.9 1005.1 594.9 402.4 304.5 202.7 13.3 3147.7 2602.1 1528.5 1130.4 792.2 626.7 510.8 7.9 1840.9 967.0 519.4 311.3 205.6 138.9 77.0 66571.6 111936.2 102147.6 83552.9 56877.9 36359.7 27329.8 18097.4 342.8 1452.8 1747.8 975.0 491.1 287.0 173.6 108.5 4161.6 13784.1 20140.9 23937.1 21375.9 17965.9 12930.4 8104.3 3966.2 3912.1 3192.9 2280.7 1475.0 937.1 710.2 546.1 3365.1 5895.8 6325.3 5588.7 4446.6 2690.2 2212.7 2277.1 1.9 1.9 13364.2 4478.5 3060.9 1929.0 1260.9 1384.3 2000.0 3536.1 5530.3 6397.4 4452.6 2941.3 2394.4 2314.0 0.6 482.1 5554.7 1878.0 1224.9 733.4 451.5 421.6 0.1 0.1 1441.8 475.5 301.5 171.5 101.8 88.6 1275.5 1664.7 2123.9 1943.7 1594.5 1393.7 826.2 621.9 7.8 3116.2 4979.1 2528.5 1556.0 985.4 660.3 761.0 20.4 220.6 1657.1 2266.7 2171.0 2661.2 3988.1 2606.5 1918.1 2169.4 2289.6 1911.6 1113.4 759.2 594.0 474.6 2.4 2.4 4390.2 1918.3 1080.5 793.8 776.5 1178.1 8.4 3157.8 1789.4 1035.9 634.7 377.8 233.8 212.7 26.3 4477.0 4970.6 2745.5 1656.2 1063.5 725.6 742.5 99.7 738.0 3046.4 5903.7 4320.1 2390.6 1653.7 1126.8 276.0 3574.1 3546.4 3046.4 2001.6 1051.5 698.7 455.6 2820.2 2785.8 2876.1 2619.8 1631.9 1192.1 853.9 509.9 1088.4 909.0 858.5 622.6 302.4 190.5 120.0 73.0 3031.8 4104.3 2983.9 2057.4 1252.2 1050.6 820.4 404.1 1240.2 8814.7 5917.2 3887.6 2447.9 1522.7 1002.4 867.5 47.2 147.9 279.9 408.1 214.3 964.0 1219.0 725.2 187.2 708.9 3035.7 4111.4 2768.8 1901.8 1396.6 913.7 3.2 6.3 33.3 66.4 80.0 85.0 386.7 210.1 801.3 4062.4 2255.7 1789.8 1043.1 712.5 568.2 587.3 6127.3 6249.1 5067.8 3136.9 2369.0 2064.4 1708.0 1170.4 608.3 2320.1 5166.0 8177.4 9102.2 10309.3 9805.2 9930.4 836.5 1201.8 2397.1 1578.7 804.4 537.4 393.4 241.0 403.8 1472.8 2529.4 2501.8 1275.4 1729.3 2397.6 1071.8 2202.2 3261.5 2062.1 1343.3 834.4 721.8 559.4 292.8 1016.9 1126.0 888.3 508.1 345.2 273.7 242.4 156.9 1258.1 927.1 540.6 304.0 173.7 105.4 63.9 38.7 16609.9 22140.0 25647.8 18735.0 10281.7 7368.3 5738.1 3544.0 1163.5 1705.2 1374.1 948.5 624.9 370.6 255.1 188.4 715.8 1619.0 1022.7 571.6 571.0 703.0 614.9 301.8 172.5 1357.6 1082.6 802.0 551.9 581.1 590.1 631.9 827.6 1039.4 774.9 556.2 376.7 392.9 356.7 430.5 12.5 1372.3 1838.7 1166.9 1200.5 4312.9 3914.3 2697.0 1306.6 3139.9 1977.6 1055.0 1003.9 1110.6 955.3 481.2 829.3 1285.7 1335.3 1136.9 1098.6 1267.9 1193.7 818.4 1239.3 1248.0 954.0 670.9 429.1 258.7 169.2 122.7 84.8 204.6 657.0 1336.3 937.5 913.3 1079.5 1202.6 807.7 800.2 1837.3 1864.2 1290.9 1242.1 1006.9 1172.1 1467.9 1460.0 1085.8 725.1 448.3 316.0 238.3 184.2 274.7 755.4 983.6 697.6 959.3 1987.4 1879.2 1673.3 9642.7 18198.4 21870.2 18514.4 18264.8 32379.1 40736.0 31344.3 260.8 691.8 1057.7 983.0 973.7 1058.8 1240.9 1561.5 34.5 58.5 36.9 32.6 47.2 66.4 68.2 42.9 2381.4 2346.1 1609.2 944.6 589.6 563.3 455.2 460.3 283.5 281.9 175.3 103.2 88.2 81.1 66.7 44.4 1301.8 1225.2 817.3 528.8 353.8 389.9 381.5 348.4 291.0 511.3 839.0 748.4 861.4 816.6 724.3 1026.6 794.4 752.0 496.5 298.4 193.4 174.2 169.8 140.6 218.1 352.4 848.3 836.4 896.9 961.9 750.1 967.8 20673.1 48340.7 86583.8 114954.9 136756.4 119291.0 113382.9 101024.6 536.0 654.4 713.4 583.0 743.8 675.6 510.1 768.0 1081.1 1248.4 934.9 533.2 346.0 284.6 201.0 141.9 10770.1 12232.8 8612.8 4829.3 2684.6 1677.7 1055.0 671.1 1570.4 1658.6 1058.3 583.9 360.8 272.1 190.7 187.5 244.7 265.1 275.8 218.2 354.0 370.2 191.3 273.3 1031.3 2377.3 4348.7 4430.9 4375.0 4755.1 3800.5 3689.6 3847.6 4385.4 3016.0 1572.5 912.7 651.6 531.5 402.8 874.4 717.7 986.3 929.9 587.4 962.4 828.0 508.3 2248.8 2575.1 1555.3 829.5 474.6 313.9 232.8 182.4 405.8 584.3 939.8 5846.3 34283.6 85153.9 107075.0 107961.6 688.6 553.1 621.2 522.3 343.0 497.7 455.0 315.6 822.5 766.2 973.4 839.8 365.7 234.6 152.1 98.0 2012.8 2131.6 1713.4 1094.2 598.0 392.6 256.9 162.9 1334.8 1286.5 1307.3 936.9 456.1 276.7 165.9 101.9 1262.4 1316.2 797.7 415.7 300.4 613.1 756.9 714.7 30.2 63.2 72.9 36.0 24.2 49.0 61.5 44.6 2310.3 6660.0 16300.5 18779.0 21757.3 48384.2 80541.4 66624.1 549.4 2782.9 16852.2 46782.8 103699.0 127521.0 128246.8 107215.1 187.4 226.0 126.3 72.7 67.3 331.1 475.2 796.6 8.4 21.4 28.3 35.8 41.5 66.6 49.3 24.4 13.2 14.4 23.4 25.7 19.4 25.1 18.3 9.9 342.4 994.5 4301.3 10976.0 59825.7 98546.8 111837.4 93122.6 90.6 48.7 39.8 35.5 39.1 166.0 764.0 806.9 2682.6 4932.3 10762.2 25796.8 44596.4 41263.7 42397.2 25138.3 353.9 1921.9 4546.4 6874.5 7013.0 3830.8 3230.7 2159.0 Table S2 - 2 Oct 478.7 865.4 67.1 819.6 329.0 3379.4 3479.9 5462.2 1263.0 792.3 4514.6 2432.0 5748.5 18.4 6291.3 894.3 3024.6 21038.1 12685.9 234.2 629.4 43.3 12199.9 409.0 3850.2 804.6 3477.1 2179.7 2947.8 684.5 166.9 471.0 1049.6 1383.3 657.6 1434.9 361.4 1044.8 740.4 146.5 561.7 41.5 215.0 1337.0 357.8 766.2 123.7 762.0 511.3 5872.9 132.0 442.9 124.7 68.9 23.2 2291.3 213.6 105.4 775.8 519.9 1388.7 185.6 322.2 160.2 640.0 1174.8 159.1 882.4 19300.0 1541.0 9.6 379.9 17.2 265.8 888.4 124.1 780.0 67829.6 820.6 76.4 421.7 165.1 275.9 1900.5 235.8 179.4 112.6 64294.1 115.8 66.6 99.8 62.1 385.8 29.0 36444.6 58846.2 731.2 10.5 5.7 59380.0 406.5 14767.9 1100.4 Nov 627.0 1454.7 198.0 1601.5 132.1 1284.2 1358.9 6682.2 482.6 315.9 6546.6 882.5 2173.4 131.8 2438.0 338.0 1085.8 22898.9 15065.0 696.1 702.3 27.5 20013.0 751.3 1674.4 1839.3 5232.4 2871.4 3482.3 1327.0 352.7 528.0 1699.4 782.0 1074.9 1481.8 783.0 1764.9 370.5 394.9 873.7 212.2 539.3 2499.4 190.0 692.7 64.5 1406.7 343.5 3052.0 83.4 185.1 136.5 26.5 15.6 3575.7 392.6 30.3 828.3 740.8 1010.5 65.2 74.9 381.4 304.7 1150.4 332.5 545.1 10858.9 979.8 2.7 545.7 8.8 359.7 635.8 150.6 608.0 41278.9 652.7 197.1 465.0 238.5 229.3 1153.0 202.2 80.2 72.0 35434.1 35.9 52.7 148.7 86.8 211.7 14.8 22470.9 31386.4 335.3 5.4 4.2 30238.9 207.8 8958.4 668.5 Dec 1046.2 1857.4 402.5 2294.1 79.8 775.6 820.8 7923.4 291.5 190.8 8363.7 533.1 1301.6 395.2 1434.9 204.2 656.0 9715.3 12575.3 1700.9 272.1 18.1 38932.9 600.5 1541.5 3262.7 5154.7 1012.4 2857.2 429.8 111.8 626.0 665.0 454.6 1915.8 564.3 252.8 728.3 231.4 1495.2 2424.5 514.3 1650.2 1658.8 115.8 413.7 39.6 1294.0 1439.3 1802.8 128.5 137.8 1182.1 75.1 579.5 7623.3 752.3 15.9 528.7 1023.9 540.7 160.4 102.3 857.5 204.1 1044.7 853.9 344.9 6757.3 683.0 1.6 1384.2 39.5 725.3 438.9 395.6 420.8 25519.8 632.7 563.6 3348.5 572.9 269.2 823.3 1034.8 367.2 424.7 20497.8 228.7 255.9 752.9 295.2 527.5 15.8 14322.2 18647.3 225.9 3.8 8.8 17673.9 249.3 5447.9 413.5 Average 1667.5 2070.7 218.2 1378.2 366.0 2642.9 2743.6 19328.8 1200.4 816.7 7080.1 2611.2 4639.2 219.8 5331.3 763.8 3136.7 30078.1 17907.8 1242.2 1030.3 349.6 54495.2 690.9 11001.1 2384.9 4498.5 2757.4 3594.2 1153.6 281.9 1173.2 1578.5 1574.1 1500.0 1206.9 769.1 1745.5 1745.4 1641.5 1947.5 501.9 1835.2 2774.0 403.6 1454.7 96.4 1410.3 2963.6 5737.4 711.1 1193.5 1286.2 423.0 449.6 11589.1 778.7 543.2 716.1 667.4 1689.1 1009.9 847.7 674.3 652.3 1207.7 759.7 957.6 19982.1 997.3 34.4 1207.0 118.7 690.8 697.2 374.5 691.1 76365.2 696.1 555.6 4680.5 696.6 285.4 2829.7 1640.2 647.4 862.5 41096.7 403.6 434.7 945.7 618.3 695.4 38.1 29609.9 55911.0 329.5 25.0 15.0 42845.7 266.2 19593.0 2728.5 Basin ID Basin name 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 San Pedro Dong Jiang Mahi Damodar Niger Narmada Brahmani River (Bhahmani Mahanadi(Mahahadi) Santiago Panuco Godavari Tapti Sittang Armeria Ca Chao Phraya Krishna Senegal Papaloapan Grisalva Verde Mae Klong Tranh (Nr Thu Bon) Penner Volta Lempa Gambia Grande De Matagalpa Cauvery San Juan Geba Corubal Magdalena Comoe Orinoco Bandama Oueme Sassandra Shebelle Mono Congo Atrato Cuyuni Cavally Tano Cross Sanaga Pra Davo Essequibo Kelantan Corantijn Coppename Kinabatangan Maroni San Juan (Columbia - Paci Amazonas Pahang Nyong Oyapock Rajang Ntem Ogooue Rio Araguari Mira Esmeraldas Tana Daule & Vinces Rio Gurupi Rio Capim Tocantins Kouilou Nyanga Rio Parnaiba Rio Itapecuru Rio Acarau Pangani Rio Pindare Sepik Rio Mearim Chira Rufiji Rio Jaguaribe Purari Ruvu Rio Paraiba Solo (Bengawan Solo) Sao Francisco Brantas Santa Zambezi Rio Vaza-Barris Rio Itapicuru Rio Paraguacu Canete Rio De Contas Roper Daly Drysdale Parana Durack Rio Prado Victoria Area (km2) 29358.8 32102.9 36237.7 43096.1 2117888.7 95818.2 51973.4 135061.1 126222.3 82929.1 311698.7 65096.3 34265.3 9639.1 28747.0 188419.1 269869.0 436981.1 39885.1 127675.5 18342.8 28004.2 9459.9 54976.4 414004.1 18088.5 69874.3 17991.9 91159.4 41659.4 12774.4 24258.0 261204.9 78506.9 952173.4 98751.1 59842.6 68097.5 805077.0 23899.0 3698918.1 34619.5 85635.0 30665.2 15656.1 52820.2 134252.0 23479.8 8460.3 68788.3 14419.9 65527.6 24750.2 14101.7 65944.9 13898.0 5880854.9 28436.7 34626.2 27075.7 49943.5 33526.9 222662.7 33771.5 13264.8 19796.2 95715.0 41993.5 32335.3 54888.3 774718.3 60000.0 12369.1 336584.2 52672.0 14472.9 50364.8 39112.0 81119.7 56687.0 16699.6 204638.8 72804.3 32139.9 17541.2 18969.1 15146.1 628629.1 10822.6 11882.5 1388572.2 15314.2 37593.4 54607.1 5755.2 56526.5 79907.5 53414.6 26015.9 2640486.1 29363.2 31673.7 78462.4 Natural runoff (Mm3/month) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average 192.9 2.6 4.4 6.2 7.1 3.4 137.0 732.2 987.8 369.0 206.3 130.3 231.6 861.2 105.2 1116.0 3077.8 5758.0 6467.3 4881.8 4699.8 3338.0 1558.5 934.6 567.8 2780.5 884.2 157.9 246.0 223.2 137.5 37.8 2640.9 4426.7 3152.3 1389.2 865.8 573.5 1227.9 1257.9 111.7 160.8 44.8 15.0 253.7 1494.8 4751.2 4657.8 2147.4 1316.0 850.4 1421.8 21778.0 99.0 256.2 1297.8 4833.0 14794.5 38348.0 80634.7 90704.8 47626.3 23829.5 14278.6 28206.7 2407.1 430.8 900.5 1131.7 1138.1 445.1 7352.7 11663.1 8745.2 3757.6 2295.3 1586.4 3487.8 1562.1 33.6 53.2 42.6 38.7 549.7 3888.5 7939.2 6035.6 3059.0 1695.6 1049.7 2162.3 3751.2 108.6 158.0 151.1 158.2 157.6 5209.0 21461.7 14877.9 6698.9 4119.4 2571.8 4951.9 681.2 116.1 243.6 265.3 168.1 205.1 1027.8 2651.8 3112.7 1413.6 791.4 492.4 930.8 1540.6 95.9 186.5 197.5 137.9 362.8 2013.6 2491.4 6156.6 3524.7 1770.8 1046.5 1627.1 6805.4 626.4 1240.0 1477.3 1571.4 891.7 13461.6 27528.4 26621.8 12095.3 7347.2 4834.4 8708.4 1243.3 168.4 306.4 365.6 395.0 149.1 3365.4 5169.5 5115.9 2124.1 1333.7 886.1 1718.5 2254.3 3.3 6.3 6.6 16.9 3852.3 7852.6 10043.8 8332.3 4900.8 2492.4 1478.4 3436.7 60.6 8.1 17.0 28.8 27.6 10.1 3.3 40.7 292.2 147.3 71.6 48.0 62.9 1447.9 56.1 26.8 23.3 154.3 584.1 1876.9 2678.4 4330.1 2767.9 1652.1 965.9 1380.3 4183.6 318.1 519.8 537.6 493.6 1640.2 5541.8 9607.1 16009.4 10072.0 5811.4 3059.8 4816.2 4249.9 610.7 1255.2 1355.6 1400.2 3256.5 16600.9 15185.1 11795.9 6710.3 4670.2 3427.8 5876.5 1629.1 10.0 15.2 11.7 12.0 447.8 3062.5 8464.3 6863.4 3270.9 1792.3 1076.7 2221.3 1877.2 12.4 16.0 15.8 11.5 477.3 2373.0 4411.2 5780.4 4426.4 2194.2 1261.7 1904.8 11859.4 1204.2 664.4 610.2 1646.9 8622.6 11809.7 13230.5 20505.5 19300.8 10998.3 7877.1 9027.5 378.7 2.9 6.5 6.9 4.5 10.1 365.4 850.4 1648.0 893.8 414.1 250.8 402.7 1554.4 20.9 34.2 33.5 1076.4 3580.0 5254.6 5831.8 5582.5 3551.6 1715.1 1031.1 2438.9 2007.0 45.2 24.6 16.4 71.3 290.8 883.2 1278.8 1770.6 2724.1 2418.9 1615.2 1095.5 568.7 34.4 52.1 45.1 43.8 41.5 158.5 151.2 182.9 360.5 1017.5 485.3 261.8 2522.1 7.7 80.1 291.8 828.4 2616.6 3570.8 8402.5 11296.3 5427.0 2744.7 1654.9 3286.9 888.1 2.9 7.6 10.3 11.7 547.6 1582.1 1968.2 3042.2 2295.6 976.3 585.2 993.2 750.8 0.3 0.3 0.3 0.3 145.1 922.2 3078.2 3466.5 1537.8 816.1 492.4 934.2 1788.5 87.6 46.4 30.2 37.4 1350.9 2694.3 2443.9 2701.8 2950.2 1748.2 1248.2 1427.3 2091.4 159.7 385.4 347.3 350.9 1080.8 3669.7 3305.4 2574.1 2347.6 2777.6 1849.0 1744.9 5223.3 533.6 282.7 261.5 1036.0 3952.8 4778.7 4793.9 6119.6 7350.0 4839.9 3921.9 3591.2 537.0 3.5 4.3 4.3 3.5 79.2 413.4 1814.0 2305.1 1207.1 582.6 353.4 608.9 882.9 0.4 0.5 0.5 0.4 293.0 1767.6 3594.2 3165.9 2080.6 964.3 579.0 1110.8 27118.0 3452.3 6430.2 14175.3 21211.1 18633.1 15055.6 15479.8 18291.2 31846.5 31789.4 20916.3 18699.9 447.9 3.4 4.6 105.1 306.0 923.2 676.9 1018.0 1509.8 1021.9 540.3 296.4 571.1 73559.9 9908.6 16110.2 48197.5 96502.6 137370.7 156922.8 139130.4 112036.3 103445.6 77389.5 46830.9 84783.7 1337.1 4.0 5.7 118.4 306.8 1520.8 1055.3 2949.0 5574.4 3186.6 1473.0 881.5 1534.4 458.8 1.0 1.1 6.9 240.8 976.7 1265.1 1320.9 1893.3 1037.9 499.0 301.2 666.9 2261.5 1.4 3.2 129.1 309.3 2250.3 3322.8 4638.5 8322.9 5416.1 2603.4 1487.3 2562.2 1610.5 1126.2 49.5 54.4 2532.2 1755.0 1025.3 1594.0 2005.1 1944.7 1681.9 791.5 1347.5 472.0 122.1 0.3 14.5 50.7 126.1 330.7 356.9 319.3 289.3 132.5 80.1 191.2 193908.5 92837.8 126684.3 138968.9 93475.1 62522.2 55481.6 71460.1 90395.6 111123.4 108901.0 123157.3 105743.0 8908.3 2297.1 2736.4 4317.7 5624.4 5876.9 5976.7 6096.9 6689.5 7140.9 7032.0 5537.1 5686.2 9798.1 3136.9 2829.9 4268.1 9871.7 13477.9 13021.6 10134.4 5445.8 3587.1 3665.6 6571.4 7150.7 2295.7 105.8 221.1 532.9 1553.0 3418.3 2447.3 1941.8 4204.8 4188.2 2935.7 1654.9 2125.0 321.4 0.2 32.5 186.6 547.1 1356.6 700.0 337.1 480.9 810.9 421.8 218.4 451.1 3986.4 1.4 608.2 1184.8 2346.5 4731.8 7828.2 9133.6 11624.3 10815.8 4452.2 2614.4 4944.0 4812.3 3.0 236.5 2004.2 4068.5 5840.0 7929.0 9616.8 13725.9 13358.0 5383.1 3156.1 5844.5 378.6 3.2 102.6 282.2 657.8 1316.6 691.0 327.9 645.8 1039.5 483.0 247.6 514.6 133.7 0.2 0.2 2.0 9.6 542.8 283.0 126.7 238.1 288.6 192.8 89.5 158.9 5069.1 1976.6 2110.6 2932.1 7163.7 13057.2 11720.0 7957.4 3936.3 2438.8 1874.9 3105.6 5278.5 3574.8 439.2 342.5 417.5 434.1 481.7 494.1 561.2 1352.9 2084.8 2431.3 2719.0 1277.8 1313.6 829.3 1710.9 3554.5 11297.6 13180.8 9711.4 6084.0 3012.4 1811.6 1094.1 692.7 4524.4 1551.1 1394.4 1540.4 2071.4 4023.6 4578.3 3861.0 2331.4 1160.6 695.4 420.0 321.1 1995.7 2820.1 862.7 675.4 672.8 675.3 1148.9 787.8 1142.6 1468.5 1388.6 1249.3 1909.0 1233.4 3849.5 4583.6 5326.3 7656.9 11080.5 10145.5 7092.8 4342.7 2242.1 1349.5 815.1 565.6 4920.8 6064.5 2203.5 2616.1 3456.3 4124.0 3912.7 3904.9 3971.2 4103.4 4529.7 4529.1 3905.9 3943.4 950375.6 705085.8 813922.6 857876.6 713184.6 564388.1 424106.1 299107.1 238076.7 243680.0 298076.1 455711.2 546965.9 5776.0 1292.5 1416.5 1962.1 1937.4 1260.3 863.4 823.6 1395.6 2714.8 3612.5 4175.9 2269.2 1269.1 0.1 386.2 1153.1 1817.1 1504.5 698.1 677.8 2434.6 3389.9 1699.9 832.3 1321.9 4282.0 4043.5 4817.3 6249.8 6602.9 5755.6 3526.6 2069.9 1131.7 683.3 412.7 586.7 3346.8 20497.2 8513.0 9657.7 10211.2 9935.6 7769.6 6882.1 6855.9 9242.6 11129.0 11855.9 12276.9 10402.2 2055.6 8.3 442.8 1623.3 2595.7 1808.1 791.1 470.6 1558.6 4430.8 3192.8 1428.3 1700.5 22726.7 7569.4 15733.8 20776.5 19147.2 7950.2 4618.0 2791.3 2505.1 8651.3 23592.1 17443.6 12792.1 4727.0 5377.5 6935.9 8461.5 8118.0 7123.8 4272.9 2486.6 1376.3 831.0 501.9 398.5 4217.6 2073.0 1259.4 1291.0 1430.0 2032.3 1959.3 1248.7 1229.1 1355.3 1165.3 1283.2 912.8 1436.6 2922.0 4238.0 5676.0 6743.2 4668.6 2504.1 1398.8 876.1 589.2 579.1 755.5 966.5 2659.8 290.5 14.7 38.9 512.9 706.1 333.2 183.6 113.4 69.9 103.6 260.5 305.1 244.4 2730.9 4080.6 5260.2 4696.3 2419.3 1482.0 915.4 644.8 472.3 447.2 458.1 400.9 2000.7 491.7 2048.7 4647.2 4513.5 3426.0 2151.5 1412.8 764.6 450.8 272.3 164.5 103.1 1703.9 1537.9 5606.4 8799.8 7926.1 5924.9 3782.3 2616.7 1569.4 878.6 525.8 317.7 205.5 3307.6 82937.0 65826.8 71926.3 45721.6 24110.4 14567.5 8930.8 5585.4 3923.1 3979.0 16536.2 44543.4 32382.3 4007.3 2400.3 3950.9 5306.6 3068.4 1426.7 862.7 522.5 316.7 191.7 1130.5 3001.1 2182.1 1159.8 691.5 941.1 1044.4 523.6 267.4 161.5 97.5 58.9 35.6 692.8 805.1 539.9 2039.6 3746.9 7333.0 6991.8 3124.0 1723.6 1047.6 641.5 394.0 242.4 157.1 558.8 2333.4 84.3 1224.8 3260.0 3253.3 1651.3 883.6 520.8 314.3 190.4 115.4 69.7 42.3 967.5 22.3 31.8 810.4 1076.9 646.7 301.3 179.6 110.0 67.9 42.1 26.2 16.4 277.6 34.7 22.7 34.9 203.1 493.3 239.9 152.6 87.1 59.8 38.7 28.7 27.5 118.6 253.4 2304.7 4716.9 4525.5 2674.7 1415.4 814.8 488.9 295.4 178.6 108.0 65.3 1486.8 15375.9 9555.7 12665.7 12180.9 9397.5 7423.9 6795.9 6812.5 7707.7 8100.4 8084.8 9182.5 9440.3 356.4 2713.7 5445.6 4657.5 2321.9 1253.1 745.7 450.8 272.8 165.1 99.9 61.7 1545.3 76.0 208.7 379.5 341.5 138.2 86.6 62.2 51.9 37.8 21.8 23.1 17.1 120.4 1836.2 3827.1 7683.8 8804.4 4027.1 2129.0 1285.4 779.2 473.6 288.1 176.3 418.8 2644.1 64.1 11.7 1619.3 2744.3 1562.6 861.9 515.6 319.8 213.3 142.0 92.4 60.4 683.9 7089.0 4200.2 5204.7 5335.2 4459.8 3535.0 2952.7 3064.9 3853.1 3615.9 3635.9 4215.8 4263.5 121.7 122.6 361.9 952.4 722.0 287.6 174.0 106.2 64.9 39.6 23.9 73.4 254.2 37.7 2.0 3.5 89.5 253.8 514.2 396.9 208.3 115.4 73.2 46.6 29.6 147.6 2855.5 2415.3 2433.6 1722.1 949.3 531.7 332.1 222.4 171.0 106.2 250.0 1099.8 1090.8 27716.3 15251.7 13981.8 7511.4 4656.8 5028.4 4947.7 3343.7 1665.4 1268.7 4929.8 18730.9 9086.0 1795.8 1741.1 1762.4 1247.5 696.8 395.2 243.3 163.6 122.2 71.2 160.7 531.2 744.2 455.4 563.1 650.9 399.4 210.8 125.2 78.5 57.1 44.0 79.5 128.6 132.8 243.8 73279.9 82019.0 68514.8 32327.8 18268.1 10936.3 6663.6 4203.7 2618.2 1621.8 1305.4 21500.8 26938.3 17.1 1.4 1.7 1.6 61.4 151.1 177.6 102.7 49.8 30.8 18.8 11.8 52.2 56.5 2.3 2.1 7.2 99.2 263.0 645.3 362.8 169.7 102.3 62.2 38.4 150.9 274.1 185.7 300.7 705.2 1494.5 1165.9 1466.7 878.0 455.0 267.7 194.3 163.9 629.3 257.6 233.3 231.1 128.4 67.0 41.2 25.4 17.5 12.9 43.0 62.3 113.9 102.8 297.0 120.1 258.0 556.9 550.1 447.9 457.9 292.5 179.2 110.9 165.1 224.8 305.0 434.9 1537.1 1682.2 599.2 358.4 216.7 131.2 79.7 48.5 29.6 17.7 10.5 428.8 783.7 2684.1 2482.2 919.0 552.0 333.8 202.0 122.6 74.6 45.3 27.1 16.9 686.9 26.2 283.6 270.5 96.7 58.3 35.2 21.3 12.8 7.8 4.7 2.8 1.7 68.5 105979.7 72853.1 68346.4 50136.2 39988.6 34546.3 22504.9 18037.0 19546.7 24410.8 32882.5 57492.3 45560.4 0.0 1.9 1.6 0.6 0.4 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.4 696.0 283.3 357.3 417.6 243.4 187.0 168.8 106.4 58.7 36.6 137.5 549.1 270.1 0.1 20.4 14.0 5.5 3.3 2.0 1.2 0.7 0.4 0.3 0.2 0.1 4.0 Table S2 - 3 Basin ID Basin name 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 Mitchell(N. Au) Majes Ord Jequitinhonha Macarthur Fitzroy Gilbert Mucuri Rio Doce Save Burdekin Tsiribihina Buzi Loa Limpopo De Grey Paraiba Do Sul Fortescue Mangoky Fitzroy Orange Ashburton Gascoyne Rio Ribeira Do Iguape Incomati Murray Murchison Maputo Uruguay Tugela Colorado (Argentinia) Rio Jacui Huasco Limari Negro (Uruguay) Groot-Vis Salado Blackwood Rapel Negro (Argentinia) Biobio Waikato South Esk Chubut Clutha Baker Santa Cruz Ganges Salween Hong(Red River) Lake Chad Okavango Tarim Horton Hornaday Conception Ulua Patacua Coco Ocona Cuanza Cunene Doring Gamka Groot- Kei Lurio Messalo Rovuma Galana Pyasina Popigay Fuchun Jiang Min Jiang Han Jiang Mamberamo Lorentz Eilanden Uwimbu Sungai Kajan Sungai Mahakam Sungai Kapuas Batang Kuantan Batang Hari Flinders Leichhardt Escaut (Schelde) Issyk-Kul Balkhash Eyre Lake Lake Mar Chiquita Lake Turkana Dead Sea Suriname Lake Titicaca Lake Vattern Great Salt Lake Lake Taymur Daryacheh-Ye Orumieh Van Golu Ozero Sevan Area (km2) 71725.2 18612.1 55686.1 68548.9 19673.6 94043.9 46429.1 16732.2 86085.9 114957.8 130426.5 61991.9 27904.7 50206.4 415623.1 56818.6 58027.2 49924.5 43141.1 142915.3 972388.4 75842.1 75998.4 25697.5 46295.7 1059507.7 91416.1 30937.8 265504.6 30079.3 390631.1 70798.0 9871.6 11780.3 70756.4 30441.2 266263.9 22584.8 15689.5 130062.1 24108.6 15358.7 10842.5 145351.9 17118.9 30760.3 30599.9 1024462.6 258475.2 157656.9 2391218.9 705055.7 1051731.4 23926.2 14778.0 25569.5 26392.0 24232.4 25502.0 16063.9 141391.1 110545.5 48855.5 45676.2 18678.3 61172.2 24810.9 151948.6 51921.7 63888.8 48954.2 37697.9 60039.7 30741.5 75416.0 4299.3 20077.5 29373.9 33171.8 75822.7 84902.3 16739.0 42872.4 110041.3 33399.2 21498.7 191032.5 423657.4 1188841.3 154330.1 181536.0 35444.0 24867.7 107215.3 11336.5 74114.4 138782.9 30335.7 17736.8 4765.3 Jan 1080.2 893.9 0.0 4207.8 0.4 5.5 183.1 1331.8 12563.7 2203.3 690.0 9631.8 1304.7 0.3 1880.1 0.0 7384.0 0.0 1857.9 72.4 1857.2 0.0 0.0 2174.8 1039.9 2868.3 0.0 924.9 15702.5 758.7 3500.8 5005.1 92.1 118.1 1301.6 10.7 1011.5 79.6 1119.4 2461.3 1512.9 1209.9 186.5 837.4 1029.1 1928.9 1652.2 32182.1 8366.0 4779.9 6870.6 4075.2 241.9 12.4 12.4 0.6 1735.8 1710.9 2767.8 539.4 10360.7 1828.9 44.0 65.3 2.7 4604.7 941.3 9106.2 187.2 470.7 84.9 1253.4 1710.0 429.5 15446.4 493.1 5431.2 8952.7 10769.4 18606.0 29491.3 3820.3 10918.4 0.4 31.9 1351.5 300.5 273.5 0.2 490.2 2082.5 605.0 2186.8 7124.5 109.1 65.3 723.7 156.1 117.9 8.6 Feb 6217.0 994.8 3.9 1648.8 1.1 446.6 1374.9 412.5 5298.4 3356.1 3679.3 9804.7 1917.2 0.4 3058.9 0.0 4105.7 0.0 2203.9 1909.6 2095.4 0.0 0.0 1657.5 1118.5 1379.7 0.0 719.0 5633.7 786.8 346.2 2492.1 16.5 101.5 86.9 24.1 24.7 0.6 178.1 98.8 29.1 436.0 8.9 70.0 421.2 630.2 385.0 10981.6 95.5 80.7 135.4 6488.8 77.0 0.3 0.0 1.8 77.7 118.6 143.3 582.1 7565.1 2579.9 20.3 14.4 6.5 6185.0 1818.6 15265.1 7.8 4.9 0.8 1966.9 2261.2 189.6 9453.9 445.0 3334.4 5395.2 4092.4 7876.5 13356.0 1460.7 4536.0 89.8 34.8 705.9 48.6 5.8 0.3 594.7 9.0 681.7 1915.0 5963.3 0.5 237.4 0.0 103.1 0.6 0.7 Mar 5876.8 875.9 1.5 1430.8 55.6 490.3 1126.1 315.0 4242.2 2440.7 3662.4 9049.7 1888.8 0.3 2803.2 0.0 3823.9 0.0 1852.5 2134.9 2246.2 0.0 0.0 1425.9 1027.4 1501.2 0.0 618.4 8112.2 752.8 220.9 2901.2 10.1 40.8 492.1 23.0 73.2 0.7 113.7 347.1 298.7 382.1 10.5 172.1 482.8 1099.0 560.0 16447.4 592.3 104.5 144.7 8619.1 269.6 0.2 0.0 3.6 42.4 53.8 70.7 517.1 10296.0 5240.5 25.5 28.8 16.9 6089.2 2197.0 18092.1 34.8 3.1 0.5 3249.4 6444.7 1241.1 12610.4 515.7 3835.7 6379.0 5488.6 10134.8 15227.7 1731.9 5450.1 28.2 11.9 604.0 2132.1 2199.0 0.6 1026.2 100.4 454.0 2088.7 4974.8 645.9 354.3 0.0 506.3 127.0 3.8 Apr 2616.6 436.0 2.7 860.3 14.5 167.3 428.1 254.2 2461.5 1065.6 1887.1 4154.5 752.6 0.3 1433.2 0.0 2180.1 0.0 898.9 885.3 1402.3 0.0 0.0 887.3 517.1 1110.5 0.0 324.5 13990.4 372.3 135.4 3920.9 6.1 21.1 1499.0 13.9 787.5 0.4 66.3 1009.8 919.1 601.3 32.6 336.2 693.8 1638.6 1181.8 12896.7 1511.4 254.5 180.2 3971.7 593.6 0.1 0.0 4.8 31.4 32.7 43.3 245.1 8746.9 2925.0 14.8 40.5 12.9 2522.2 1098.8 9319.0 597.5 2.0 0.3 3037.5 6263.4 2010.5 11467.8 475.1 3751.0 5992.2 6619.3 13756.5 15516.0 2316.9 6252.7 15.5 7.2 472.4 3385.1 4046.6 0.5 504.2 1988.3 289.3 2922.6 2951.8 535.8 782.1 0.0 1527.4 1118.2 76.9 May 1435.1 232.5 4.2 471.5 8.8 101.0 256.1 167.2 1301.4 627.7 1001.1 2354.3 437.8 0.3 767.0 0.0 1239.1 0.0 518.2 493.9 807.0 0.0 0.0 735.4 276.9 1279.6 0.0 179.7 16949.4 204.5 373.1 4897.0 3.7 12.6 2274.1 11.7 1228.1 0.1 510.5 4025.3 3736.5 1271.4 76.3 1273.9 684.7 2259.5 1590.7 12922.0 2846.6 1566.3 263.0 2041.0 1657.0 78.8 0.0 3.8 19.3 19.7 48.4 134.9 3552.8 1322.8 4.2 41.1 8.5 1435.2 548.0 4605.3 654.3 1.3 0.2 4025.8 9721.2 3792.4 9723.6 346.5 3567.3 6010.0 6870.7 12600.1 13513.3 1825.4 4790.1 9.4 4.4 284.9 4295.9 4089.9 0.5 261.0 3300.7 257.0 4729.6 1893.3 246.0 915.8 0.0 1539.9 1378.3 106.9 Natural runoff (Mm3/month) Jun Jul Aug 859.9 521.2 317.3 139.9 84.7 52.7 5.2 6.4 7.5 297.0 203.6 126.2 5.3 3.2 1.9 61.0 36.9 22.3 154.7 93.5 56.5 113.9 88.6 50.0 784.3 483.1 302.0 386.7 242.8 173.8 597.8 363.8 227.1 1436.8 893.2 545.1 265.0 160.8 98.8 0.3 0.3 0.3 501.7 359.2 334.0 0.0 0.0 0.0 759.3 470.0 308.5 0.0 0.0 0.0 330.4 220.7 136.7 300.8 192.9 132.5 489.5 342.5 319.8 0.0 0.0 0.0 0.0 0.0 0.0 782.1 538.1 442.8 173.5 113.5 83.8 2153.4 2511.6 3164.9 0.0 0.0 0.0 114.6 75.2 58.1 19158.1 16344.5 15620.3 126.4 86.3 74.3 707.2 841.7 929.8 5793.0 5339.7 5145.1 2.4 1.6 1.4 27.9 18.7 17.6 3311.9 3222.8 3290.1 9.5 9.9 13.2 1234.8 1105.6 959.3 29.9 254.5 407.6 1373.7 1356.5 1185.4 5859.2 6210.5 6075.1 4786.4 5042.5 4670.4 1642.5 1617.1 1551.8 208.6 392.9 471.5 2263.3 2596.8 3116.1 694.4 642.0 723.7 2536.2 2753.8 2648.6 1850.7 1577.2 2464.8 27823.6 78624.5 128519.9 12055.4 24649.1 32068.1 7439.6 18447.1 22644.5 1227.0 7989.1 36416.6 1233.1 745.9 452.1 2845.3 3326.7 2360.3 314.9 93.6 54.9 181.3 145.7 70.2 4.7 4.3 5.9 510.5 1791.6 1997.4 70.9 693.4 892.9 1698.7 3244.2 2959.2 80.9 48.8 30.6 2127.7 1286.3 779.0 798.9 482.7 291.8 92.2 148.6 176.0 51.1 45.0 62.9 5.9 5.6 6.2 866.8 523.5 316.3 330.8 199.8 120.7 2779.5 1678.9 1014.2 327.5 177.5 104.7 8582.4 2828.9 1874.0 2052.3 754.1 410.5 5573.0 2420.0 1437.2 10643.9 4850.2 3725.5 4718.0 2447.5 2125.6 7842.7 8385.4 7964.6 253.8 280.8 253.8 3244.7 3235.3 3090.1 5432.3 5263.6 5126.4 5795.5 5104.8 4917.8 9668.4 6831.4 5649.9 10291.5 7393.4 6608.1 1075.7 640.6 525.6 2820.9 1767.2 1540.6 5.7 3.5 2.2 2.6 1.6 1.0 168.8 111.6 79.8 3990.2 3002.3 1671.5 2907.0 2102.5 1368.5 0.4 0.4 0.6 162.6 112.7 87.1 4415.2 6718.5 7827.8 203.5 196.8 168.4 5013.8 3973.9 2420.7 1052.7 658.3 552.1 136.0 81.3 60.0 634.2 481.7 350.5 14735.9 6387.8 3298.4 737.8 467.8 347.1 489.2 294.9 184.2 55.9 31.2 21.0 Table S2 - 4 Sep 194.5 34.4 8.1 74.1 1.2 13.5 34.2 28.9 187.0 130.9 146.3 328.9 61.6 0.3 330.6 0.0 264.6 0.0 83.0 101.8 311.7 0.0 0.0 601.1 67.7 3371.2 0.0 46.2 18876.7 66.9 908.5 5743.1 1.6 14.6 3379.1 21.7 1261.2 301.6 876.8 5030.4 4131.1 1388.8 403.2 2246.4 898.4 2149.0 3221.0 96972.9 27586.6 16383.8 27951.2 274.8 1351.4 33.2 37.1 5.5 3135.9 1438.3 3280.5 19.9 472.4 176.4 136.2 111.5 7.9 191.1 72.9 612.7 64.5 1803.8 251.2 1282.3 2882.6 1654.9 8697.3 345.8 3371.3 5387.6 6431.1 5951.6 8936.3 838.5 2438.0 1.4 0.6 54.8 1072.0 905.0 0.7 80.9 6549.2 96.6 1213.0 469.3 40.2 213.3 2513.9 213.8 112.7 12.9 Oct 119.8 31.7 6.6 60.4 0.7 8.1 20.8 21.6 117.8 85.0 95.8 198.3 38.5 0.3 246.8 0.0 590.0 0.0 50.1 79.8 362.3 0.0 0.0 860.6 43.3 3337.6 0.0 33.2 20160.7 64.9 2371.9 5136.4 1.5 15.5 2823.2 27.3 1567.9 166.9 701.4 4368.0 2973.2 1356.2 358.1 1454.2 957.1 1882.5 3226.9 47842.1 18159.4 9602.6 14050.2 167.1 540.9 20.0 22.3 4.2 2748.5 2176.2 3939.1 49.2 307.3 112.8 105.1 105.9 8.3 115.4 44.1 370.2 40.0 814.2 146.9 886.7 2049.4 782.8 6547.6 199.3 2701.3 4552.8 6999.8 7402.7 13775.6 1724.9 4411.4 0.9 0.4 63.7 585.2 412.3 0.7 85.5 4135.2 58.6 729.1 688.1 82.5 121.5 1300.5 126.4 115.2 13.1 Nov 72.3 29.3 3.6 675.7 0.4 4.9 12.5 212.3 2334.5 41.4 59.5 299.2 22.6 0.3 159.6 0.0 1633.4 0.0 56.6 54.4 534.8 0.0 0.0 773.8 129.4 2314.5 0.0 112.3 12864.3 86.0 3152.6 3405.9 0.6 11.4 1553.8 18.9 1418.0 86.8 412.7 3162.3 1809.7 1080.3 217.0 895.8 762.4 1579.4 1605.8 32621.7 9737.1 5433.7 7408.8 100.7 295.2 12.1 13.5 1.5 1916.8 1802.4 2788.7 71.2 304.1 98.1 61.5 87.0 6.0 69.7 26.6 223.6 203.0 491.9 88.7 707.7 1340.9 466.3 7173.3 277.0 2824.9 4357.4 7819.9 11152.8 17293.6 2579.6 6272.8 0.6 0.2 373.3 384.5 445.2 0.5 95.2 2501.6 31.9 440.4 678.7 196.1 68.5 785.5 137.4 230.6 13.9 Dec 43.0 363.0 0.2 3152.4 0.3 3.0 7.6 1046.2 9099.0 348.7 32.7 2841.4 110.9 0.3 308.4 0.0 4400.3 0.0 333.7 35.2 884.1 0.0 0.0 987.3 456.6 2000.4 0.0 467.1 9587.2 376.1 2575.4 2794.2 46.0 31.8 846.5 18.9 767.6 52.5 681.5 1740.6 1045.2 781.6 135.7 580.3 659.5 1282.9 1042.5 19626.1 5522.3 3149.0 4490.9 882.0 164.1 7.3 8.1 1.1 1262.0 1293.7 2041.2 235.0 5458.5 642.6 43.1 55.8 4.4 468.0 16.1 516.4 196.1 297.2 53.6 572.7 880.7 283.9 8630.9 262.3 3278.9 5401.7 6829.4 12616.4 17622.4 2602.7 7176.5 0.4 0.1 746.1 205.0 181.7 0.4 137.7 1394.5 117.9 526.6 2594.8 85.7 66.7 474.4 116.8 77.6 5.9 Average 1612.8 347.4 4.2 1100.7 7.8 113.4 312.4 336.8 3264.6 925.2 1036.9 3461.5 588.3 0.3 1015.2 0.0 2263.2 0.0 711.9 532.8 971.1 0.0 0.0 988.9 420.6 2249.4 0.0 306.1 14416.7 313.0 1338.6 4381.1 15.3 36.0 2006.8 16.9 953.3 115.1 714.7 3365.7 2579.6 1109.9 208.5 1320.2 720.8 1865.7 1696.6 43121.7 11932.5 7490.5 8927.3 2421.0 1143.6 52.3 40.9 3.5 1272.4 858.6 1918.8 212.9 4271.4 1375.0 72.6 59.1 7.6 1948.9 617.9 5298.6 216.2 1431.2 320.3 2201.1 4397.8 1678.5 9495.3 345.7 3472.2 5687.6 6478.2 10187.3 14085.4 1761.9 4864.6 13.2 8.1 418.1 1756.1 1578.1 0.5 303.2 3418.6 263.4 2346.7 2466.8 184.9 357.6 2518.3 498.3 353.9 29.2 Table S3. Monthly blue water availability for the world's major river basins Basin ID Basin name Jan 1 Khatanga 314.3 2 Olenek 246.2 3 Anabar 105.2 4 Yana 179.2 5 Yenisei 3227.0 6 Indigirka 380.5 7 Lena 3154.4 8 Omoloy 5.4 9 Tana (NO, FI) 14.4 10 Colville 37.2 11 Alazeya 36.8 12 Anderson 10.9 13 Kolyma 744.2 14 Tuloma 18.9 15 Muonio 28.8 16 Yukon 970.1 17 Palyavaam 21.3 18 Kemijoki 97.4 19 Mackenzie 1127.6 20 Noatak 31.3 21 Anadyr 236.4 22 Pechora 491.8 23 Lule 62.6 24 Kalixaelven 15.7 25 Ob 1386.0 26 Ellice 6.1 27 Taz 198.0 28 Kobuk 42.2 29 Coppermine 5.8 30 Hayes(Trib. Arctic Ocean) 5.4 31 Pur 148.1 32 Varzuga 9.4 33 Ponoy 25.4 6.1 34 Kovda 65.4 35 Back 36 Kem 47.1 37 Nadym 76.6 38 Quoich 8.3 39 Mezen 74.6 40 Iijoki 18.8 41 Joekulsa A Fjoellum 15.0 42 Svarta, Skagafiroi 11.0 43 Oulujoki 46.2 44 Lagarfljot 22.6 45 Thelon 95.7 46 Angerman 68.7 47 Thjorsa 84.4 48 Northern Dvina(Severnaya D 204.3 49 Oelfusa 75.7 50 Nizhny Vyg (Soroka) 41.3 51 Kuskokwim 253.9 52 Vuoksi 67.0 53 Onega 45.0 54 Susitna 254.1 55 Kymijoki 37.3 56 Neva 239.0 57 Ferguson 8.1 58 Copper 218.2 59 Gloma 112.6 60 Kokemaenjoki 47.3 61 Vaenern-Goeta 239.7 62 Thlewiaza 18.4 63 Alsek 57.2 64 Volga 618.3 65 Dramselv 52.0 66 Arnaud 112.9 67 Nushagak 103.5 68 Seal 25.3 69 Taku 86.0 70 Narva 142.1 71 Stikine 365.4 72 Churchill 157.9 73 Feuilles (Riviere Aux) 134.7 74 George 151.6 75 Caniapiscau 459.4 154.5 76 Western Dvina (Daugava) 77 Aux Melezes 127.5 78 Baleine, Grande Riviere De 76.0 79 Spey 95.6 80 Kamchatka 138.0 81 Nass 210.8 82 Skeena 215.6 83 Nelson 339.7 84 Hayes(Trib. Hudson Bay) 68.0 85 Gudena 51.9 86 Skjern A 70.3 87 Neman 148.0 88 Fraser 791.0 89 Severn(Trib. Hudson Bay) 118.6 90 Amur 2619.6 91 Tweed 115.2 92 Grande Riviere De La Balei 96.4 93 Grande Riviere 545.8 94 Winisk 178.0 95 Churchill, Fleuve (Labrador) 340.5 96 Dniepr 169.9 97 Ural 64.8 98 Wisla 189.4 99 Don 61.6 100 Oder 206.5 Feb 11.7 32.0 17.1 14.6 148.4 35.9 131.0 0.1 0.0 0.3 6.2 0.1 32.2 2.3 2.6 50.5 0.0 0.6 17.4 0.2 0.3 6.2 0.2 1.3 39.6 0.0 1.2 6.4 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.9 0.0 0.0 0.0 0.2 0.0 0.0 0.1 6.6 7.0 0.0 0.0 0.3 0.2 0.6 0.4 0.2 2.1 0.0 0.0 0.3 0.3 0.6 2.1 0.0 29.4 0.1 0.0 0.0 0.3 0.0 0.2 120.7 4.0 0.0 0.0 0.2 0.4 0.0 0.0 40.7 0.0 0.0 0.0 8.1 1.4 23.1 26.6 0.7 209.7 0.0 11.8 48.0 0.0 0.2 0.4 0.0 9.0 1.1 7.6 5.9 370.5 Mar 7.1 19.3 10.3 8.8 90.5 21.7 79.3 0.1 0.0 0.2 3.8 0.0 19.4 1.4 1.6 30.5 0.0 0.4 10.7 0.1 0.2 3.8 0.1 0.8 27.2 0.0 0.7 3.8 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.5 0.0 0.0 5.9 0.2 0.0 0.0 0.1 18.3 4.4 64.6 0.0 0.2 0.2 0.4 0.3 0.2 1.8 0.0 0.0 2.4 0.3 452.0 1.2 0.0 149.5 19.4 0.0 0.0 0.2 0.0 0.2 101.6 2.5 0.0 0.0 0.1 0.4 0.0 0.0 35.0 0.0 162.1 208.4 7.2 0.9 20.7 24.2 508.0 472.1 0.0 11.9 45.0 0.0 0.1 0.3 0.0 1972.1 33.0 2562.6 827.7 1179.3 Apr 4.3 11.7 6.2 5.3 1550.5 13.1 72.4 0.0 0.0 0.1 2.3 0.0 11.8 0.9 42.8 188.7 0.0 118.8 1812.7 0.1 0.1 289.8 223.8 77.7 16168.4 0.0 0.4 2.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0 528.5 0.0 0.0 783.4 265.2 1.1 24.7 1079.7 4.5 0.0 805.4 224.6 8913.4 345.3 1090.2 0.1 2105.8 2126.8 730.8 914.1 6433.8 0.0 3.5 687.9 732.4 1075.6 0.7 116.9 28026.4 246.7 0.0 261.7 0.1 161.4 1203.7 331.4 680.0 0.0 0.0 0.1 1836.2 0.0 0.0 27.3 0.0 688.3 898.3 5862.3 0.5 15.4 17.8 1762.7 3071.4 194.0 8383.6 31.6 0.0 0.1 694.1 0.0 4102.7 2151.9 1362.2 2873.8 663.9 Blue water availability (Mm3/month) May Jun Jul Aug Sep 44.2 5079.7 2577.0 1389.0 871.4 131.7 3286.4 1102.1 614.1 374.1 3.8 825.6 416.5 202.3 120.5 31.8 1507.2 1364.1 761.5 366.5 32543.0 32409.6 19438.0 12848.2 9618.3 90.2 3362.0 2901.5 1357.2 726.2 17418.4 24981.6 16930.1 12609.2 10727.2 0.0 85.2 55.4 25.8 14.7 570.3 155.7 91.4 55.2 43.5 9.1 387.6 395.5 206.9 115.8 1.4 379.4 111.0 62.8 38.0 509.7 159.5 87.0 52.5 31.7 1068.5 5088.2 7188.3 3241.6 2103.5 346.4 109.5 60.0 36.1 23.8 401.1 222.1 150.0 77.7 59.0 10633.3 9753.4 5955.3 3321.4 2581.2 0.0 375.7 207.3 105.3 71.0 1797.4 489.6 291.6 186.9 216.4 15880.7 15834.5 9200.4 4975.5 3146.6 80.4 396.1 219.9 124.9 125.9 490.4 4399.7 2076.1 1092.3 821.1 11661.2 7759.0 3254.0 1926.2 1571.1 770.3 756.9 379.1 222.4 190.3 247.6 151.5 70.3 40.6 27.5 29723.9 13645.7 7368.0 4708.1 3655.1 0.0 191.7 49.8 30.1 18.2 2584.4 4632.7 1464.3 874.0 638.6 412.7 220.1 123.9 74.7 67.7 78.0 143.0 49.3 28.0 16.9 0.0 166.9 45.0 26.6 16.1 1437.3 3032.3 923.0 559.0 579.3 136.8 37.7 22.0 13.3 22.5 317.0 87.6 51.2 35.7 53.7 176.4 56.1 30.5 18.5 14.2 1114.3 1643.1 527.6 318.2 198.1 780.4 270.5 156.3 98.0 86.0 292.2 900.9 1469.2 470.9 300.6 0.0 243.3 69.9 39.9 25.6 2104.3 771.1 416.2 250.1 159.9 199.4 79.2 46.6 30.2 31.2 150.8 118.6 47.4 29.6 29.4 72.8 78.5 29.6 17.8 15.2 340.6 187.9 112.5 74.6 83.3 238.1 148.6 64.8 46.3 51.5 1238.2 2149.9 674.0 405.4 337.3 704.9 537.1 246.5 166.7 152.9 344.7 264.5 132.4 116.8 133.7 3875.8 1908.4 1118.5 675.2 411.7 138.1 137.0 113.1 79.6 94.2 324.6 185.3 110.7 66.9 84.1 3324.1 1599.7 1094.0 1094.7 1058.3 593.7 345.7 207.8 128.7 112.1 680.5 380.4 225.2 136.0 87.4 1663.8 1781.1 1053.9 819.0 968.5 264.0 151.6 91.3 55.4 43.3 1912.0 1093.8 654.5 396.8 340.7 0.0 210.7 59.2 34.2 28.4 1509.3 2042.9 1488.1 837.2 792.6 673.6 723.1 409.7 297.6 280.1 218.6 123.2 74.3 45.1 29.4 459.5 275.9 163.8 141.4 158.4 366.8 133.2 67.9 40.8 39.7 522.3 554.2 220.1 147.7 192.4 10217.8 5716.4 3446.0 2149.4 1377.5 291.6 280.2 146.8 133.2 144.0 126.5 1128.4 412.9 308.7 375.7 987.4 354.0 208.5 258.6 309.7 706.9 287.0 145.7 86.5 83.1 501.6 459.4 206.6 156.7 205.5 387.4 215.9 127.9 84.0 74.6 1940.0 2386.6 1153.3 745.7 763.1 2624.2 1544.9 752.3 426.3 392.0 507.9 1039.9 410.2 351.5 386.4 991.6 1007.9 792.3 523.3 523.7 3234.1 2495.1 1361.1 1246.0 1333.9 595.4 342.7 203.3 123.9 85.1 1086.7 650.2 368.3 345.4 357.4 854.0 301.2 224.4 196.6 226.2 19.8 11.6 8.8 10.5 16.3 1920.8 1439.9 1079.8 520.8 383.8 1204.1 926.8 409.5 303.2 367.9 1763.9 1432.2 616.5 402.1 387.5 4172.9 3028.8 1614.9 1003.0 915.9 1402.4 755.7 410.9 222.3 159.6 8.4 4.9 3.2 2.1 3.0 10.2 5.8 3.7 4.5 14.1 628.2 349.0 207.6 128.4 81.2 5379.4 3099.4 1486.4 888.0 650.8 1593.0 665.1 362.8 231.7 286.0 11458.9 10773.1 9089.3 9961.6 10071.5 22.1 14.5 10.9 12.3 18.2 611.5 395.7 228.2 219.5 248.2 4147.7 2038.4 1308.9 1228.8 1437.5 2038.0 886.7 489.9 295.8 470.2 3044.8 2194.2 1205.7 937.9 912.7 1572.0 896.9 562.3 356.6 212.7 763.5 432.4 294.2 189.6 105.6 838.2 515.5 356.3 248.6 171.6 1141.8 656.1 454.5 303.4 160.2 432.1 292.4 189.5 136.4 101.1 Table S3 - 1 Oct 483.8 221.3 71.0 221.4 4888.2 435.2 4767.9 8.7 29.8 64.9 22.9 19.2 1115.2 24.3 37.5 1529.6 38.2 273.3 2089.5 55.1 423.2 890.0 136.6 23.7 2815.0 11.0 347.6 31.9 10.2 9.7 266.2 28.0 78.8 15.6 117.6 139.2 137.5 15.0 173.5 60.0 44.3 30.4 142.1 62.0 171.9 191.0 168.2 419.5 131.7 125.2 479.7 192.1 111.3 547.7 61.7 517.3 14.5 443.1 268.8 30.6 295.1 18.8 136.0 1297.4 126.6 272.6 276.6 48.3 252.7 146.4 675.8 344.9 354.7 340.2 1204.8 169.9 339.2 198.9 31.5 309.4 521.5 462.7 822.0 146.2 11.6 33.0 93.5 723.7 337.8 5691.1 34.4 273.8 1536.5 497.3 903.4 178.4 64.4 155.9 88.8 95.7 Nov 292.2 133.7 42.9 133.7 2891.2 262.9 2878.1 5.3 15.6 39.2 13.8 11.6 673.6 11.0 20.3 842.4 23.1 103.3 1153.4 33.3 255.6 508.6 67.2 11.5 1373.0 6.6 209.9 19.3 6.2 5.9 160.8 10.2 27.6 6.6 71.0 50.7 83.1 9.0 77.3 20.5 16.5 13.8 49.5 25.6 103.8 74.2 95.7 194.4 86.9 44.8 274.5 77.4 47.0 274.1 62.3 337.3 8.8 236.8 135.5 100.4 323.4 11.4 62.1 633.1 61.0 122.5 112.3 26.1 93.4 291.9 389.7 155.0 146.3 164.6 498.1 309.6 138.3 82.5 49.2 149.8 284.1 303.7 360.0 68.0 25.0 38.5 319.4 628.1 128.8 2835.3 62.3 104.7 591.8 191.6 369.7 289.9 117.6 231.5 86.2 125.4 Dec 176.5 80.7 25.9 80.8 1747.0 158.8 1738.4 3.2 9.4 23.7 8.4 7.0 406.8 6.7 12.3 508.9 13.9 62.4 696.8 20.1 154.4 307.2 40.6 7.0 832.4 4.0 126.8 11.6 3.7 3.5 97.2 6.2 16.7 4.0 42.9 30.6 50.2 5.5 46.7 12.4 9.8 7.2 29.9 14.8 62.7 44.8 57.8 117.6 64.0 27.1 165.8 44.0 28.2 165.6 24.5 154.8 5.3 143.0 73.9 31.0 207.4 6.9 37.5 380.4 34.1 74.0 67.8 15.8 56.4 93.3 274.1 93.6 88.3 99.4 300.8 101.5 83.5 49.8 58.4 90.5 138.2 141.4 218.1 41.1 31.5 45.7 97.3 501.3 77.8 1714.5 73.2 63.2 357.5 115.7 223.3 117.8 42.9 169.6 42.4 209.2 Average 937.6 521.1 153.9 389.6 10116.7 812.1 7957.3 17.0 82.1 106.7 57.2 74.1 1807.8 53.4 88.0 3030.4 71.3 303.2 4662.1 90.6 829.2 2389.1 237.5 56.3 6811.9 26.4 923.2 84.7 28.4 23.3 600.3 23.9 57.8 27.3 341.5 182.3 315.1 34.7 404.9 63.6 38.5 25.6 178.9 56.6 436.6 249.4 137.3 1487.5 110.9 175.0 778.8 322.9 322.4 688.3 142.1 1007.0 30.8 642.9 305.5 119.4 316.1 59.0 170.5 4503.5 128.0 244.5 245.0 118.8 181.7 230.6 770.6 598.1 285.0 382.9 1011.1 326.9 291.4 184.1 33.7 502.7 434.7 569.4 1529.4 273.1 16.7 24.5 360.3 1491.8 333.0 6051.8 40.6 186.8 1099.4 488.2 844.4 870.0 355.1 567.4 558.5 333.5 Basin ID Basin name 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 Jan Elbe 571.7 Trent 138.3 Weser 702.3 Attawapiskat 24.3 Eastmain 236.6 Manicouagan (Riviere) 250.6 Columbia 2392.2 Little Mecatina 88.9 Natashquan (Riviere) 58.2 Rhine 2635.8 Albany 162.6 Saguenay (Riviere) 396.8 Thames 145.2 Nottaway 437.7 Rupert 62.3 Moose(Trib. Hudson Bay) 200.0 St.Lawrence 2767.0 Danube 3073.8 Seine 685.4 Dniestr 81.6 Southern Bug 7.8 Mississippi 15984.8 Skagit 190.3 Aral Drainage 509.4 Loire 1138.4 Rhone 1463.4 Saint John 308.6 Po 855.3 Penobscot 131.0 St.Croix 34.1 Kuban 201.8 Connecticut 186.9 Liao He 135.6 Garonne 624.5 Ishikari 171.9 Merrimack 76.2 Hudson 200.1 Colorado(Pacific Ocean) 64.7 Klamath 602.1 Ebro 844.0 Rogue 218.0 Douro 782.7 Susquehanna 418.4 Luan He 34.9 Kura 111.9 Dalinghe 11.7 Delaware 328.1 Sacramento 1075.2 Huang He (Yellow River) 540.5 Kizilirmak 39.8 Yongding He 34.9 Tejo 542.7 Sakarya 69.7 Eel (Calif.) 273.2 Tigris & Euphrates 3102.9 Potomac 271.2 Guadiana 49.3 Kitakami 138.0 Mogami 193.9 Han-Gang (Han River) 162.9 Guadalquivir 135.4 San Joaquin 141.4 James 320.1 Bravo 52.7 Shinano, Chikuma 220.1 Roanoke 369.0 Naktong 101.6 Indus 2383.8 Tone 187.2 Salinas 2.4 Pee Dee 564.9 Chelif 46.9 Cape Fear 318.4 Tenryu 117.0 Santee 161.0 Kiso 130.5 Yangtze(Chang Jiang) 8149.3 Yodo 212.7 Sebou 211.8 Alabama River & Tombigbee 1879.6 Savannah 300.2 Gono (Go) 91.5 Huai He 254.3 Apalachicola 577.9 Brazos 149.4 Altamaha 265.7 Mekong 6136.7 Colorado(Caribbean Sea) 93.3 Trinity(Texas) 117.7 Pearl 396.8 Sabine 222.0 Suwannee 208.6 Yaqui 3.2 Nile 4144.8 Brahmaputra 5680.5 St.Johns 75.8 Nueces 0.8 San Antonio 2.5 Irrawaddy 5381.8 Fuerte 68.1 Xi Jiang 1674.6 Bei Jiang 125.9 San Pedro 38.6 Feb 518.9 73.6 401.7 0.0 0.0 0.1 2251.9 0.0 0.0 1531.5 0.0 0.3 89.5 0.0 0.0 0.1 70.2 2594.0 498.2 2.7 1.6 13314.3 68.6 832.3 793.2 673.0 0.4 400.0 0.1 0.0 255.1 1.6 4.1 383.6 0.5 1.7 5.3 19.9 714.8 564.0 217.7 606.4 248.0 9.4 37.4 0.6 160.3 1225.5 121.7 167.3 80.8 440.4 203.4 251.6 3322.0 232.7 143.2 34.5 165.5 2.5 261.3 165.9 247.9 17.0 161.5 293.6 54.9 1928.5 52.2 6.9 476.3 56.7 260.4 58.2 158.9 43.6 4134.6 107.2 216.2 2154.0 314.1 48.9 206.3 769.5 174.9 449.8 81.2 137.7 164.5 402.6 267.0 252.5 6.0 462.1 109.9 37.5 1.7 2.6 68.5 18.1 536.5 70.8 0.5 Mar 979.9 60.6 379.1 0.0 0.0 0.0 4180.7 0.0 0.0 1618.9 0.0 0.3 72.2 0.0 0.0 0.1 5921.1 6011.3 436.7 629.5 368.2 22387.2 290.6 2756.8 782.4 1179.2 0.4 707.2 96.4 0.0 332.9 623.2 44.1 433.9 0.5 631.6 895.4 147.6 709.3 557.2 181.8 820.9 1762.9 29.6 141.8 1.3 812.5 1249.8 464.0 240.4 294.6 652.3 225.2 185.4 4428.0 341.0 323.8 271.5 207.9 274.5 628.0 257.1 249.6 40.9 160.0 292.0 151.1 3639.7 138.4 11.7 469.2 56.4 245.0 102.3 150.4 70.5 9668.1 130.9 249.7 2446.6 331.7 53.0 475.5 877.1 143.5 515.0 116.9 110.6 153.2 426.3 257.3 263.2 12.6 1332.0 556.6 45.2 4.3 2.9 198.9 9.7 986.5 384.4 0.9 Apr 740.4 42.7 279.6 0.0 511.6 104.9 7637.6 0.0 31.2 1920.5 1682.4 2249.0 47.5 2690.3 158.9 2266.8 26475.1 6879.8 332.8 520.4 193.4 20429.5 349.6 4028.2 638.6 1265.1 2672.8 1106.1 1110.9 288.4 424.8 995.8 331.4 457.9 878.0 357.9 994.1 609.3 609.3 575.2 171.7 596.8 1183.4 56.0 607.1 6.7 451.1 1013.6 1033.2 479.4 505.9 412.4 177.7 108.1 5129.6 274.8 204.5 216.5 155.0 367.7 395.5 267.1 190.8 131.4 367.5 217.2 196.7 4374.0 211.5 7.4 321.8 35.1 163.5 167.8 99.3 169.7 17316.8 142.7 187.0 1722.6 211.7 55.2 869.7 603.2 197.3 311.1 188.0 124.2 194.7 342.7 261.5 159.5 14.6 3260.1 3370.4 25.3 5.7 4.7 860.3 8.0 2152.4 909.3 1.2 Blue water availability (Mm3/month) May Jun Jul Aug Sep 454.5 315.4 229.6 178.5 145.2 27.5 16.1 11.3 10.2 9.8 180.5 123.5 100.9 96.8 100.4 439.1 122.6 71.1 42.9 70.1 1837.7 979.9 584.5 507.2 597.6 1733.3 1384.9 738.2 596.7 644.0 11038.1 7369.9 3710.4 2336.7 1458.1 1231.3 435.7 301.1 215.8 200.8 745.4 324.0 241.7 161.6 138.2 1602.6 1211.0 955.9 836.7 794.4 1840.8 765.4 429.7 261.2 355.3 2250.3 1627.5 1011.7 820.1 933.1 27.4 15.7 9.9 6.5 4.4 3197.5 1528.0 1037.6 854.3 1016.7 640.2 237.8 159.2 135.5 151.7 1995.8 860.2 505.5 318.9 427.3 10246.2 6389.5 3920.6 2606.4 3061.0 5415.4 3830.1 2816.6 2249.6 2042.7 201.0 119.0 80.5 60.9 40.5 305.7 226.1 158.4 125.3 102.2 103.9 62.3 41.1 27.8 15.4 16710.6 11375.6 7271.9 5466.0 3619.5 195.0 98.2 57.4 34.7 21.7 4787.4 4275.2 3593.2 2586.1 1620.9 456.1 295.0 187.4 142.0 109.2 1117.7 889.3 538.0 442.5 455.4 895.7 612.2 385.8 252.2 276.9 1279.5 890.5 588.3 478.9 462.8 375.6 245.0 146.7 90.3 84.3 95.1 60.3 34.3 20.4 17.7 388.7 318.9 278.7 165.2 124.4 505.7 311.2 197.1 132.1 152.2 453.3 434.2 532.2 797.6 521.3 382.3 222.7 151.8 118.8 94.9 383.7 216.1 158.8 155.3 235.6 207.2 126.9 75.6 46.8 42.5 549.1 331.2 212.7 145.1 148.5 1180.7 864.0 478.1 330.7 225.4 400.3 210.3 139.7 91.1 55.2 524.0 326.4 238.4 170.8 102.0 124.5 60.5 38.1 24.0 14.6 411.5 250.4 210.1 164.1 80.8 777.5 489.6 304.5 200.5 173.5 81.6 42.9 192.8 243.8 145.0 822.3 553.8 380.4 279.3 182.7 13.3 16.0 17.0 77.3 42.0 358.0 208.6 142.5 113.6 117.5 627.4 473.8 412.9 341.6 234.1 1635.5 1820.4 2061.9 1961.0 1986.1 315.7 160.9 107.5 78.7 48.2 500.4 255.1 345.9 479.5 214.4 268.7 166.9 144.4 111.9 58.6 101.6 69.0 54.7 48.5 31.4 60.8 34.7 21.1 12.8 7.7 3747.0 2056.3 1473.7 1147.6 708.8 189.7 125.0 74.1 51.0 37.7 114.3 114.2 140.6 123.0 60.4 160.4 110.4 116.2 118.0 126.4 111.2 75.3 78.6 71.3 86.1 233.4 240.1 862.6 782.9 539.4 211.0 200.8 222.1 191.1 96.2 227.4 219.7 253.6 238.7 163.7 134.2 85.8 51.7 33.8 24.5 267.3 187.5 182.7 215.9 240.5 372.8 258.2 248.4 201.4 234.4 145.0 89.7 63.2 47.7 36.8 139.5 191.9 397.5 375.8 334.7 3702.9 3653.0 6475.8 8147.2 6268.9 196.6 194.7 211.8 248.2 312.3 6.5 9.4 13.3 13.6 8.6 188.9 117.9 112.7 91.0 92.1 20.6 17.6 16.2 13.3 8.9 105.8 70.8 78.0 76.3 69.7 149.7 172.3 163.3 144.9 205.3 59.7 38.7 34.8 34.0 28.1 167.3 179.4 192.4 150.0 193.6 22991.0 27351.3 23858.2 22676.6 20204.9 116.6 148.8 135.1 102.0 153.6 106.6 69.2 56.9 40.2 28.4 965.9 536.9 335.5 211.0 134.2 116.8 72.2 54.4 38.1 37.5 43.6 70.8 74.0 38.3 54.7 886.2 875.0 951.0 760.1 737.9 314.5 182.5 130.3 106.3 80.6 186.0 117.5 192.5 165.6 101.7 165.9 94.9 62.8 46.6 36.5 1169.3 6856.7 17030.8 21415.0 21592.3 104.5 68.6 99.5 91.0 63.1 168.0 73.1 46.9 30.4 19.6 218.8 119.6 78.5 51.4 32.6 187.4 91.2 55.3 33.2 20.4 83.1 60.1 122.6 151.4 142.9 7.2 4.8 9.8 12.3 8.9 3755.8 4351.5 9676.8 16108.3 13324.8 9356.6 20739.8 25504.2 25649.4 21443.0 14.5 13.5 66.2 95.0 159.3 7.2 8.3 13.3 9.9 4.9 5.1 3.9 5.0 3.7 2.0 2195.2 11965.1 19709.4 22367.5 18624.5 7.1 7.8 33.2 152.8 161.4 5159.4 8919.3 8252.7 8479.4 5027.7 1374.9 1402.6 766.2 646.1 431.8 1.4 0.7 27.4 146.4 197.6 Table S3 - 2 Oct 173.1 13.4 163.9 65.8 675.9 696.0 1092.4 252.6 158.5 902.9 486.4 1149.7 3.7 1258.3 178.9 604.9 4207.6 2537.2 46.8 125.9 8.7 2440.0 81.8 770.0 160.9 695.4 435.9 589.6 136.9 33.4 94.2 209.9 276.7 131.5 287.0 72.3 209.0 148.1 29.3 112.3 8.3 43.0 267.4 71.6 153.2 24.7 152.4 102.3 1174.6 26.4 88.6 24.9 13.8 4.6 458.3 42.7 21.1 155.2 104.0 277.7 37.1 64.4 32.0 128.0 235.0 31.8 176.5 3860.0 308.2 1.9 76.0 3.4 53.2 177.7 24.8 156.0 13565.9 164.1 15.3 84.3 33.0 55.2 380.1 47.2 35.9 22.5 12858.8 23.2 13.3 20.0 12.4 77.2 5.8 7288.9 11769.2 146.2 2.1 1.1 11876.0 81.3 2953.6 220.1 73.8 Nov 290.9 39.6 320.3 26.4 256.8 271.8 1336.4 96.5 63.2 1309.3 176.5 434.7 26.4 487.6 67.6 217.2 4579.8 3013.0 139.2 140.5 5.5 4002.6 150.3 334.9 367.9 1046.5 574.3 696.5 265.4 70.5 105.6 339.9 156.4 215.0 296.4 156.6 353.0 74.1 79.0 174.7 42.4 107.9 499.9 38.0 138.5 12.9 281.3 68.7 610.4 16.7 37.0 27.3 5.3 3.1 715.1 78.5 6.1 165.7 148.2 202.1 13.0 15.0 76.3 60.9 230.1 66.5 109.0 2171.8 196.0 0.5 109.1 1.8 71.9 127.2 30.1 121.6 8255.8 130.5 39.4 93.0 47.7 45.9 230.6 40.4 16.0 14.4 7086.8 7.2 10.5 29.7 17.4 42.3 3.0 4494.2 6277.3 67.1 1.1 0.8 6047.8 41.6 1791.7 133.7 41.3 Dec 371.5 80.5 458.8 16.0 155.1 164.2 1584.7 58.3 38.2 1672.7 106.6 260.3 79.0 287.0 40.8 131.2 1943.1 2515.1 340.2 54.4 3.6 7786.6 120.1 308.3 652.5 1030.9 202.5 571.4 86.0 22.4 125.2 133.0 90.9 383.2 112.9 50.6 145.7 46.3 299.0 484.9 102.9 330.0 331.8 23.2 82.7 7.9 258.8 287.9 360.6 25.7 27.6 236.4 15.0 115.9 1524.7 150.5 3.2 105.7 204.8 108.1 32.1 20.5 171.5 40.8 208.9 170.8 69.0 1351.5 136.6 0.3 276.8 7.9 145.1 87.8 79.1 84.2 5104.0 126.5 112.7 669.7 114.6 53.8 164.7 207.0 73.4 84.9 4099.6 45.7 51.2 150.6 59.0 105.5 3.2 2864.4 3729.5 45.2 0.8 1.8 3534.8 49.9 1089.6 82.7 26.1 Average 414.1 43.6 275.6 73.2 528.6 548.7 3865.8 240.1 163.3 1416.0 522.2 927.8 44.0 1066.3 152.8 627.3 6015.6 3581.6 248.4 206.1 69.9 10899.0 138.2 2200.2 477.0 899.7 551.5 718.8 230.7 56.4 234.6 315.7 314.8 300.0 241.4 153.8 349.1 349.1 328.3 389.5 100.4 367.0 554.8 80.7 290.9 19.3 282.1 592.7 1147.5 142.2 238.7 257.2 84.6 89.9 2317.8 155.7 108.6 143.2 133.5 337.8 202.0 169.5 134.9 130.5 241.5 151.9 191.5 3996.4 199.5 6.9 241.4 23.7 138.2 139.4 74.9 138.2 15273.0 139.2 111.1 936.1 139.3 57.1 565.9 328.0 129.5 172.5 8219.3 80.7 86.9 189.1 123.7 139.1 7.6 5922.0 11182.2 65.9 5.0 3.0 8569.1 53.2 3918.6 545.7 46.3 Blue water availability (Mm3/month) Jan Feb Mar Apr May Jun Jul Aug Sep 204 Dong Jiang 172.2 21.0 223.2 615.6 1151.6 1293.5 976.4 940.0 667.6 205 Mahi 176.8 31.6 49.2 44.6 27.5 7.6 528.2 885.3 630.5 206 Damodar 251.6 22.3 32.2 9.0 3.0 50.7 299.0 950.2 931.6 207 Niger 4355.6 19.8 51.2 259.6 966.6 2958.9 7669.6 16126.9 18141.0 208 Narmada 481.4 86.2 180.1 226.3 227.6 89.0 1470.5 2332.6 1749.0 209 Brahmani River (Bhahmani) 312.4 6.7 10.6 8.5 7.7 109.9 777.7 1587.8 1207.1 210 Mahanadi(Mahahadi) 750.2 21.7 31.6 30.2 31.6 31.5 1041.8 4292.3 2975.6 211 Santiago 136.2 23.2 48.7 53.1 33.6 41.0 205.6 530.4 622.5 212 Panuco 308.1 19.2 37.3 39.5 27.6 72.6 402.7 498.3 1231.3 213 Godavari 1361.1 125.3 248.0 295.5 314.3 178.3 2692.3 5505.7 5324.4 214 Tapti 248.7 33.7 61.3 73.1 79.0 29.8 673.1 1033.9 1023.2 215 Sittang 450.9 0.7 1.3 1.3 3.4 770.5 1570.5 2008.8 1666.5 216 Armeria 12.1 1.6 3.4 5.8 5.5 2.0 0.7 8.1 58.4 217 Ca 289.6 11.2 5.4 4.7 30.9 116.8 375.4 535.7 866.0 218 Chao Phraya 836.7 63.6 104.0 107.5 98.7 328.0 1108.4 1921.4 3201.9 219 Krishna 850.0 122.1 251.0 271.1 280.0 651.3 3320.2 3037.0 2359.2 220 Senegal 325.8 2.0 3.0 2.3 2.4 89.6 612.5 1692.9 1372.7 221 Papaloapan 375.4 2.5 3.2 3.2 2.3 95.5 474.6 882.2 1156.1 222 Grisalva 2371.9 240.8 132.9 122.0 329.4 1724.5 2361.9 2646.1 4101.1 223 Verde 75.7 0.6 1.3 1.4 0.9 2.0 73.1 170.1 329.6 224 Mae Klong 310.9 4.2 6.8 6.7 215.3 716.0 1050.9 1166.4 1116.5 225 Tranh (Nr Thu Bon) 401.4 9.0 4.9 3.3 14.3 58.2 176.6 255.8 354.1 226 Penner 113.7 6.9 10.4 9.0 8.8 8.3 31.7 30.2 36.6 227 Volta 504.4 1.5 16.0 58.4 165.7 523.3 714.2 1680.5 2259.3 228 Lempa 177.6 0.6 1.5 2.1 2.3 109.5 316.4 393.6 608.4 229 Gambia 150.2 0.1 0.1 0.1 0.1 29.0 184.4 615.6 693.3 230 Grande De Matagalpa 357.7 17.5 9.3 6.0 7.5 270.2 538.9 488.8 540.4 231 Cauvery 418.3 31.9 77.1 69.5 70.2 216.2 733.9 661.1 514.8 232 San Juan 1044.7 106.7 56.5 52.3 207.2 790.6 955.7 958.8 1223.9 233 Geba 107.4 0.7 0.9 0.9 0.7 15.8 82.7 362.8 461.0 234 Corubal 176.6 0.1 0.1 0.1 0.1 58.6 353.5 718.8 633.2 235 Magdalena 5423.6 690.5 1286.0 2835.1 4242.2 3726.6 3011.1 3096.0 3658.2 236 Comoe 89.6 0.7 0.9 21.0 61.2 184.6 135.4 203.6 302.0 237 Orinoco 14712.0 1981.7 3222.0 9639.5 19300.5 27474.1 31384.6 27826.1 22407.3 238 Bandama 267.4 0.8 1.1 23.7 61.4 304.2 211.1 589.8 1114.9 239 Oueme 91.8 0.2 0.2 1.4 48.2 195.3 253.0 264.2 378.7 240 Sassandra 452.3 0.3 0.6 25.8 61.9 450.1 664.6 927.7 1664.6 241 Shebelle 225.2 9.9 10.9 506.4 351.0 205.1 318.8 401.0 388.9 24.4 0.1 2.9 10.1 25.2 66.1 71.4 63.9 94.4 242 Mono 243 Congo 38781.7 18567.6 25336.9 27793.8 18695.0 12504.4 11096.3 14292.0 18079.1 244 Atrato 1781.7 459.4 547.3 863.5 1124.9 1175.4 1195.3 1219.4 1337.9 245 Cuyuni 1959.6 627.4 566.0 853.6 1974.3 2695.6 2604.3 2026.9 1089.2 246 Cavally 459.1 21.2 44.2 106.6 310.6 683.7 489.5 388.4 841.0 247 Tano 64.3 0.0 6.5 37.3 109.4 271.3 140.0 67.4 96.2 248 Cross 797.3 0.3 121.6 237.0 469.3 946.4 1565.6 1826.7 2324.9 249 Sanaga 962.5 0.6 47.3 400.8 813.7 1168.0 1585.8 1923.4 2745.2 250 Pra 75.7 0.6 20.5 56.4 131.6 263.3 138.2 65.6 129.2 251 Davo 26.7 0.0 0.0 0.4 1.9 108.6 56.6 25.3 47.6 252 Essequibo 1013.8 395.3 422.1 586.4 1432.7 2611.4 2344.0 1591.5 787.3 253 Kelantan 715.0 87.8 68.5 83.5 86.8 96.3 98.8 112.2 270.6 254 Corantijn 262.7 165.9 342.2 710.9 2259.5 2636.2 1942.3 1216.8 602.5 255 Coppename 310.2 278.9 308.1 414.3 804.7 915.7 772.2 466.3 232.1 256 Kinabatangan 564.0 172.5 135.1 134.6 135.1 229.8 157.6 228.5 293.7 257 Maroni 769.9 916.7 1065.3 1531.4 2216.1 2029.1 1418.6 868.5 448.4 258 San Juan (Columbia - Pacifi 1212.9 440.7 523.2 691.3 824.8 782.5 781.0 794.2 820.7 259 Amazonas 190075.1 141017.2 162784.5 171575.3 142636.9 112877.6 84821.2 59821.4 47615.3 260 Pahang 1155.2 258.5 283.3 392.4 387.5 252.1 172.7 164.7 279.1 261 Nyong 253.8 0.0 77.2 230.6 363.4 300.9 139.6 135.6 486.9 262 Oyapock 856.4 808.7 963.5 1250.0 1320.6 1151.1 705.3 414.0 226.3 263 Rajang 4099.4 1702.6 1931.5 2042.2 1987.1 1553.9 1376.4 1371.2 1848.5 264 Ntem 411.1 1.7 88.6 324.7 519.1 361.6 158.2 94.1 311.7 265 Ogooue 4545.3 1513.9 3146.8 4155.3 3829.4 1590.0 923.6 558.3 501.0 266 Rio Araguari 945.4 1075.5 1387.2 1692.3 1623.6 1424.8 854.6 497.3 275.3 267 Mira 414.6 251.9 258.2 286.0 406.5 391.9 249.7 245.8 271.1 268 Esmeraldas 584.4 847.6 1135.2 1348.6 933.7 500.8 279.8 175.2 117.8 269 Tana 58.1 2.9 7.8 102.6 141.2 66.6 36.7 22.7 14.0 270 Daule & Vinces 546.2 816.1 1052.0 939.3 483.9 296.4 183.1 129.0 94.5 271 Rio Gurupi 98.3 409.7 929.4 902.7 685.2 430.3 282.6 152.9 90.2 272 Rio Capim 307.6 1121.3 1760.0 1585.2 1185.0 756.5 523.3 313.9 175.7 273 Tocantins 16587.4 13165.4 14385.3 9144.3 4822.1 2913.5 1786.2 1117.1 784.6 274 Kouilou 801.5 480.1 790.2 1061.3 613.7 285.3 172.5 104.5 63.3 275 Nyanga 232.0 138.3 188.2 208.9 104.7 53.5 32.3 19.5 11.8 276 Rio Parnaiba 407.9 749.4 1466.6 1398.4 624.8 344.7 209.5 128.3 78.8 277 Rio Itapecuru 16.9 245.0 652.0 650.7 330.3 176.7 104.2 62.9 38.1 278 Rio Acarau 4.5 6.4 162.1 215.4 129.3 60.3 35.9 22.0 13.6 279 Pangani 6.9 4.5 7.0 40.6 98.7 48.0 30.5 17.4 12.0 280 Rio Pindare 50.7 460.9 943.4 905.1 534.9 283.1 163.0 97.8 59.1 281 Sepik 3075.2 1911.1 2533.1 2436.2 1879.5 1484.8 1359.2 1362.5 1541.5 282 Rio Mearim 71.3 542.7 1089.1 931.5 464.4 250.6 149.1 90.2 54.6 283 Chira 15.2 41.7 75.9 68.3 27.6 17.3 12.4 10.4 7.6 284 Rufiji 367.2 765.4 1536.8 1760.9 805.4 425.8 257.1 155.8 94.7 285 Rio Jaguaribe 12.8 2.3 323.9 548.9 312.5 172.4 103.1 64.0 42.7 286 Purari 1417.8 840.0 1040.9 1067.0 892.0 707.0 590.5 613.0 770.6 287 Ruvu 24.3 24.5 72.4 190.5 144.4 57.5 34.8 21.2 13.0 288 Rio Paraiba 7.5 0.4 0.7 17.9 50.8 102.8 79.4 41.7 23.1 289 Solo (Bengawan Solo) 571.1 483.1 486.7 344.4 189.9 106.3 66.4 44.5 34.2 290 Sao Francisco 5543.3 3050.3 2796.4 1502.3 931.4 1005.7 989.5 668.7 333.1 291 Brantas 359.2 348.2 352.5 249.5 139.4 79.0 48.7 32.7 24.4 292 Santa 91.1 112.6 130.2 79.9 42.2 25.0 15.7 11.4 8.8 293 Zambezi 14656.0 16403.8 13703.0 6465.6 3653.6 2187.3 1332.7 840.7 523.6 294 Rio Vaza-Barris 3.4 0.3 0.3 0.3 12.3 30.2 35.5 20.5 10.0 295 Rio Itapicuru 11.3 0.5 0.4 1.4 19.8 52.6 129.1 72.6 33.9 296 Rio Paraguacu 54.8 37.1 60.1 141.0 298.9 233.2 293.3 175.6 91.0 297 Canete 51.5 46.7 46.2 25.7 13.4 8.2 5.1 3.5 2.6 298 Rio De Contas 59.4 24.0 51.6 111.4 110.0 89.6 91.6 58.5 35.8 299 Roper 87.0 307.4 336.4 119.8 71.7 43.3 26.2 15.9 9.7 300 Daly 156.7 536.8 496.4 183.8 110.4 66.8 40.4 24.5 14.9 301 Drysdale 5.2 56.7 54.1 19.3 11.7 7.0 4.3 2.6 1.6 302 Parana 21195.9 14570.6 13669.3 10027.2 7997.7 6909.3 4501.0 3607.4 3909.3 303 Durack 0.0 0.4 0.3 0.1 0.1 0.0 0.0 0.0 0.0 304 Rio Prado 139.2 56.7 71.5 83.5 48.7 37.4 33.8 21.3 11.7 305 Victoria 0.0 4.1 2.8 1.1 0.7 0.4 0.2 0.1 0.1 306 Mitchell(N. Au) 216.0 1243.4 1175.4 523.3 287.0 172.0 104.2 63.5 38.9 Basin ID Basin name Table S3 - 3 Oct 311.7 277.8 429.5 9525.3 751.5 611.8 1339.8 282.7 704.9 2419.1 424.8 980.2 29.5 553.6 2014.4 1342.1 654.2 885.3 3860.2 178.8 710.3 544.8 72.1 1085.4 459.1 307.6 590.0 469.5 1470.0 241.4 416.1 6369.3 204.4 20689.1 637.3 207.6 1083.2 336.4 57.9 22224.7 1428.2 717.4 837.6 162.2 2163.2 2671.6 207.9 57.7 487.8 417.0 362.3 139.1 277.7 269.9 905.9 48736.0 543.0 678.0 136.7 2225.8 886.2 1730.3 166.2 233.1 115.8 20.7 89.4 54.5 105.2 795.8 38.3 7.1 48.5 23.1 8.4 7.7 35.7 1620.1 33.0 4.4 57.6 28.4 723.2 7.9 14.6 21.2 253.7 14.2 15.9 324.4 6.2 20.5 53.5 8.6 22.2 5.9 9.1 0.9 4882.2 0.0 7.3 0.1 24.0 Nov 186.9 173.2 263.2 4765.9 459.1 339.1 823.9 158.3 354.2 1469.4 266.7 498.5 14.3 330.4 1162.3 934.0 358.5 438.8 2199.7 82.8 343.0 483.8 203.5 548.9 195.3 163.2 349.6 555.5 968.0 116.5 192.9 6357.9 108.1 15477.9 294.6 99.8 520.7 322.1 26.5 21780.2 1406.4 733.1 587.1 84.4 890.4 1076.6 96.6 38.6 375.0 486.3 218.8 84.0 249.9 163.0 905.8 59615.2 722.5 340.0 82.5 2371.2 638.6 4718.4 100.4 256.6 151.1 52.1 91.6 32.9 63.5 3307.2 226.1 138.6 31.4 13.9 5.2 5.7 21.6 1617.0 20.0 4.6 35.3 18.5 727.2 4.8 9.3 50.0 986.0 32.1 25.7 261.1 3.8 12.4 38.9 12.5 33.0 3.5 5.4 0.6 6576.5 0.0 27.5 0.0 14.5 Dec Average 113.6 556.1 114.7 245.6 170.1 284.4 2855.7 5641.3 317.3 697.6 209.9 432.5 514.4 990.4 98.5 186.2 209.3 325.4 966.9 1741.7 177.2 343.7 295.7 687.3 9.6 12.6 193.2 276.1 612.0 963.2 685.6 1175.3 215.3 444.3 252.3 381.0 1575.4 1805.5 50.2 80.5 206.2 487.8 323.0 219.1 97.1 52.4 331.0 657.4 117.0 198.6 98.5 186.8 249.6 285.5 369.8 349.0 784.4 718.2 70.7 121.8 115.8 222.2 4183.3 3740.0 59.3 114.2 9366.2 16956.7 176.3 306.9 60.2 133.4 297.5 512.4 158.3 269.5 16.0 38.2 24631.5 21148.6 1107.4 1137.2 1314.3 1430.1 331.0 425.0 43.7 90.2 522.9 988.8 631.2 1168.9 49.5 102.9 17.9 31.8 621.1 1055.7 543.8 255.6 138.5 904.9 64.2 399.1 381.8 246.7 113.1 984.2 781.2 788.7 91142.2 109393.2 835.2 453.8 166.5 264.4 117.3 669.4 2455.4 2080.4 285.7 340.1 3488.7 2558.4 79.7 843.5 182.6 287.3 193.3 532.0 61.0 48.9 80.2 400.1 20.6 340.8 41.1 661.5 8908.7 6476.5 600.2 436.4 161.0 108.0 111.8 466.7 8.5 193.5 3.3 55.5 5.5 23.7 13.1 297.4 1836.5 1888.1 12.3 309.1 3.4 24.1 83.8 528.8 12.1 136.8 843.2 852.7 14.7 50.8 5.9 29.5 220.0 218.2 3746.2 1817.2 106.2 148.8 26.6 48.8 4300.2 5387.7 2.4 10.4 7.7 30.2 32.8 125.9 22.8 20.6 45.0 61.0 2.1 85.8 3.4 137.4 0.3 13.7 11498.5 9112.1 0.0 0.1 109.8 54.0 0.0 0.8 8.6 322.6 Basin ID Basin name 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 Majes Ord Jequitinhonha Macarthur Fitzroy Gilbert Mucuri Rio Doce Save Burdekin Tsiribihina Buzi Loa Limpopo De Grey Paraiba Do Sul Fortescue Mangoky Fitzroy Orange Ashburton Gascoyne Rio Ribeira Do Iguape Incomati Murray Murchison Maputo Uruguay Tugela Colorado (Argentinia) Rio Jacui Huasco Limari Negro (Uruguay) Groot-Vis Salado Blackwood Rapel Negro (Argentinia) Biobio Waikato South Esk Chubut Clutha Baker Santa Cruz Ganges Salween Hong(Red River) Lake Chad Okavango Tarim Horton Hornaday Conception Ulua Patacua Coco Ocona Cuanza Cunene Doring Gamka Groot- Kei Lurio Messalo Rovuma Galana Pyasina Popigay Fuchun Jiang Min Jiang Han Jiang Mamberamo Lorentz Eilanden Uwimbu Sungai Kajan Sungai Mahakam Sungai Kapuas Batang Kuantan Batang Hari Flinders Leichhardt Escaut (Schelde) Issyk-Kul Balkhash Eyre Lake Lake Mar Chiquita Lake Turkana Dead Sea Suriname Lake Titicaca Lake Vattern Great Salt Lake Lake Taymur Daryacheh-Ye Orumieh Van Golu Ozero Sevan Jan 178.8 0.0 841.6 0.1 1.1 36.6 266.4 2512.7 440.7 138.0 1926.4 260.9 0.1 376.0 0.0 1476.8 0.0 371.6 14.5 371.4 0.0 0.0 435.0 208.0 573.7 0.0 185.0 3140.5 151.7 700.2 1001.0 18.4 23.6 260.3 2.1 202.3 15.9 223.9 492.3 302.6 242.0 37.3 167.5 205.8 385.8 330.4 6436.4 1673.2 956.0 1374.1 815.0 48.4 2.5 2.5 0.1 347.2 342.2 553.6 107.9 2072.1 365.8 8.8 13.1 0.5 920.9 188.3 1821.2 37.4 94.1 17.0 250.7 342.0 85.9 3089.3 98.6 1086.2 1790.5 2153.9 3721.2 5898.3 764.1 2183.7 0.1 6.4 270.3 60.1 54.7 0.0 98.0 416.5 121.0 437.4 1424.9 21.8 13.1 144.7 31.2 23.6 1.7 Feb 199.0 0.8 329.8 0.2 89.3 275.0 82.5 1059.7 671.2 735.9 1960.9 383.4 0.1 611.8 0.0 821.1 0.0 440.8 381.9 419.1 0.0 0.0 331.5 223.7 275.9 0.0 143.8 1126.7 157.4 69.2 498.4 3.3 20.3 17.4 4.8 4.9 0.1 35.6 19.8 5.8 87.2 1.8 14.0 84.2 126.0 77.0 2196.3 19.1 16.1 27.1 1297.8 15.4 0.1 0.0 0.4 15.5 23.7 28.7 116.4 1513.0 516.0 4.1 2.9 1.3 1237.0 363.7 3053.0 1.6 1.0 0.2 393.4 452.2 37.9 1890.8 89.0 666.9 1079.0 818.5 1575.3 2671.2 292.1 907.2 18.0 7.0 141.2 9.7 1.2 0.1 118.9 1.8 136.3 383.0 1192.7 0.1 47.5 0.0 20.6 0.1 0.1 Mar 175.2 0.3 286.2 11.1 98.1 225.2 63.0 848.4 488.1 732.5 1809.9 377.8 0.1 560.6 0.0 764.8 0.0 370.5 427.0 449.2 0.0 0.0 285.2 205.5 300.2 0.0 123.7 1622.4 150.6 44.2 580.2 2.0 8.2 98.4 4.6 14.6 0.1 22.7 69.4 59.7 76.4 2.1 34.4 96.6 219.8 112.0 3289.5 118.5 20.9 28.9 1723.8 53.9 0.0 0.0 0.7 8.5 10.8 14.1 103.4 2059.2 1048.1 5.1 5.8 3.4 1217.8 439.4 3618.4 7.0 0.6 0.1 649.9 1288.9 248.2 2522.1 103.1 767.1 1275.8 1097.7 2027.0 3045.5 346.4 1090.0 5.6 2.4 120.8 426.4 439.8 0.1 205.2 20.1 90.8 417.7 995.0 129.2 70.9 0.0 101.3 25.4 0.8 Apr 87.2 0.5 172.1 2.9 33.5 85.6 50.8 492.3 213.1 377.4 830.9 150.5 0.1 286.6 0.0 436.0 0.0 179.8 177.1 280.5 0.0 0.0 177.5 103.4 222.1 0.0 64.9 2798.1 74.5 27.1 784.2 1.2 4.2 299.8 2.8 157.5 0.1 13.3 202.0 183.8 120.3 6.5 67.2 138.8 327.7 236.4 2579.3 302.3 50.9 36.0 794.3 118.7 0.0 0.0 1.0 6.3 6.5 8.7 49.0 1749.4 585.0 3.0 8.1 2.6 504.4 219.8 1863.8 119.5 0.4 0.1 607.5 1252.7 402.1 2293.6 95.0 750.2 1198.4 1323.9 2751.3 3103.2 463.4 1250.5 3.1 1.4 94.5 677.0 809.3 0.1 100.8 397.7 57.9 584.5 590.4 107.2 156.4 0.0 305.5 223.6 15.4 Blue water availability (Mm3/month) May Jun Jul Aug Sep 46.5 28.0 16.9 10.5 6.9 0.8 1.0 1.3 1.5 1.6 94.3 59.4 40.7 25.2 14.8 1.8 1.1 0.6 0.4 0.2 20.2 12.2 7.4 4.5 2.7 51.2 30.9 18.7 11.3 6.8 33.4 22.8 17.7 10.0 5.8 260.3 156.9 96.6 60.4 37.4 125.5 77.3 48.6 34.8 26.2 200.2 119.6 72.8 45.4 29.3 470.9 287.4 178.6 109.0 65.8 87.6 53.0 32.2 19.8 12.3 0.1 0.1 0.1 0.1 0.1 153.4 100.3 71.8 66.8 66.1 0.0 0.0 0.0 0.0 0.0 247.8 151.9 94.0 61.7 52.9 0.0 0.0 0.0 0.0 0.0 103.6 66.1 44.1 27.3 16.6 98.8 60.2 38.6 26.5 20.4 161.4 97.9 68.5 64.0 62.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 147.1 156.4 107.6 88.6 120.2 55.4 34.7 22.7 16.8 13.5 255.9 430.7 502.3 633.0 674.2 0.0 0.0 0.0 0.0 0.0 35.9 22.9 15.0 11.6 9.2 3389.9 3831.6 3268.9 3124.1 3775.3 40.9 25.3 17.3 14.9 13.4 74.6 141.4 168.3 186.0 181.7 979.4 1158.6 1067.9 1029.0 1148.6 0.7 0.5 0.3 0.3 0.3 2.5 5.6 3.7 3.5 2.9 454.8 662.4 644.6 658.0 675.8 2.3 1.9 2.0 2.6 4.3 245.6 247.0 221.1 191.9 252.2 0.0 6.0 50.9 81.5 60.3 102.1 274.7 271.3 237.1 175.4 805.1 1171.8 1242.1 1215.0 1006.1 747.3 957.3 1008.5 934.1 826.2 254.3 328.5 323.4 310.4 277.8 15.3 41.7 78.6 94.3 80.6 254.8 452.7 519.4 623.2 449.3 136.9 138.9 128.4 144.7 179.7 451.9 507.2 550.8 529.7 429.8 318.1 370.1 315.4 493.0 644.2 2584.4 5564.7 15724.9 25704.0 19394.6 569.3 2411.1 4929.8 6413.6 5517.3 313.3 1487.9 3689.4 4528.9 3276.8 52.6 245.4 1597.8 7283.3 5590.2 408.2 246.6 149.2 90.4 55.0 331.4 569.1 665.3 472.1 270.3 15.8 63.0 18.7 11.0 6.6 0.0 36.3 29.1 14.0 7.4 0.8 0.9 0.9 1.2 1.1 3.9 102.1 358.3 399.5 627.2 3.9 14.2 138.7 178.6 287.7 9.7 339.7 648.8 591.8 656.1 27.0 16.2 9.8 6.1 4.0 710.6 425.5 257.3 155.8 94.5 264.6 159.8 96.5 58.4 35.3 0.8 18.4 29.7 35.2 27.2 8.2 10.2 9.0 12.6 22.3 1.7 1.2 1.1 1.2 1.6 287.0 173.4 104.7 63.3 38.2 109.6 66.2 40.0 24.1 14.6 921.1 555.9 335.8 202.8 122.5 130.9 65.5 35.5 20.9 12.9 0.3 1716.5 565.8 374.8 360.8 0.0 410.5 150.8 82.1 50.2 805.2 1114.6 484.0 287.4 256.5 1944.2 2128.8 970.0 745.1 576.5 758.5 943.6 489.5 425.1 331.0 1944.7 1568.5 1677.1 1592.9 1739.5 69.3 50.8 56.2 50.8 69.2 713.5 648.9 647.1 618.0 674.3 1202.0 1086.5 1052.7 1025.3 1077.5 1374.1 1159.1 1021.0 983.6 1286.2 2520.0 1933.7 1366.3 1130.0 1190.3 2702.7 2058.3 1478.7 1321.6 1787.3 365.1 215.1 128.1 105.1 167.7 958.0 564.2 353.4 308.1 487.6 1.9 1.1 0.7 0.4 0.3 0.9 0.5 0.3 0.2 0.1 57.0 33.8 22.3 16.0 11.0 859.2 798.0 600.5 334.3 214.4 818.0 581.4 420.5 273.7 181.0 0.1 0.1 0.1 0.1 0.1 52.2 32.5 22.5 17.4 16.2 660.1 883.0 1343.7 1565.6 1309.8 51.4 40.7 39.4 33.7 19.3 945.9 1002.8 794.8 484.1 242.6 378.7 210.5 131.7 110.4 93.9 49.2 27.2 16.3 12.0 8.0 183.2 126.8 96.3 70.1 42.7 0.0 2947.2 1277.6 659.7 502.8 308.0 147.6 93.6 69.4 42.8 275.7 97.8 59.0 36.8 22.5 21.4 11.2 6.2 4.2 2.6 Table S3 - 4 Oct 6.3 1.3 12.1 0.1 1.6 4.2 4.3 23.6 17.0 19.2 39.7 7.7 0.1 49.4 0.0 118.0 0.0 10.0 16.0 72.5 0.0 0.0 172.1 8.7 667.5 0.0 6.6 4032.1 13.0 474.4 1027.3 0.3 3.1 564.6 5.5 313.6 33.4 140.3 873.6 594.6 271.2 71.6 290.8 191.4 376.5 645.4 9568.4 3631.9 1920.5 2810.0 33.4 108.2 4.0 4.5 0.8 549.7 435.2 787.8 9.8 61.5 22.6 21.0 21.2 1.7 23.1 8.8 74.0 8.0 162.8 29.4 177.3 409.9 156.6 1309.5 39.9 540.3 910.6 1400.0 1480.5 2755.1 345.0 882.3 0.2 0.1 12.7 117.0 82.5 0.1 17.1 827.0 11.7 145.8 137.6 16.5 24.3 260.1 25.3 23.0 2.6 Nov 5.9 0.7 135.1 0.1 1.0 2.5 42.5 466.9 8.3 11.9 59.8 4.5 0.1 31.9 0.0 326.7 0.0 11.3 10.9 107.0 0.0 0.0 154.8 25.9 462.9 0.0 22.5 2572.9 17.2 630.5 681.2 0.1 2.3 310.8 3.8 283.6 17.4 82.5 632.5 361.9 216.1 43.4 179.2 152.5 315.9 321.2 6524.3 1947.4 1086.7 1481.8 20.1 59.0 2.4 2.7 0.3 383.4 360.5 557.7 14.2 60.8 19.6 12.3 17.4 1.2 13.9 5.3 44.7 40.6 98.4 17.7 141.5 268.2 93.3 1434.7 55.4 565.0 871.5 1564.0 2230.6 3458.7 515.9 1254.6 0.1 0.0 74.7 76.9 89.0 0.1 19.0 500.3 6.4 88.1 135.7 39.2 13.7 157.1 27.5 46.1 2.8 Dec 72.6 0.0 630.5 0.1 0.6 1.5 209.2 1819.8 69.7 6.5 568.3 22.2 0.1 61.7 0.0 880.1 0.0 66.7 7.0 176.8 0.0 0.0 197.5 91.3 400.1 0.0 93.4 1917.4 75.2 515.1 558.8 9.2 6.4 169.3 3.8 153.5 10.5 136.3 348.1 209.0 156.3 27.1 116.1 131.9 256.6 208.5 3925.2 1104.5 629.8 898.2 176.4 32.8 1.5 1.6 0.2 252.4 258.7 408.2 47.0 1091.7 128.5 8.6 11.2 0.9 93.6 3.2 103.3 39.2 59.4 10.7 114.5 176.1 56.8 1726.2 52.5 655.8 1080.3 1365.9 2523.3 3524.5 520.5 1435.3 0.1 0.0 149.2 41.0 36.3 0.1 27.5 278.9 23.6 105.3 519.0 17.1 13.3 94.9 23.4 15.5 1.2 Average 69.5 0.8 220.1 1.6 22.7 62.5 67.4 652.9 185.0 207.4 692.3 117.7 0.1 203.0 0.0 452.6 0.0 142.4 106.6 194.2 0.0 0.0 197.8 84.1 449.9 0.0 61.2 2883.3 62.6 267.7 876.2 3.1 7.2 401.4 3.4 190.7 23.0 142.9 673.1 515.9 222.0 41.7 264.0 144.2 373.1 339.3 8624.3 2386.5 1498.1 1785.5 484.2 228.7 10.5 8.2 0.7 254.5 171.7 383.8 42.6 854.3 275.0 14.5 11.8 1.5 389.8 123.6 1059.7 43.2 286.2 64.1 440.2 879.6 335.7 1899.1 69.1 694.4 1137.5 1295.6 2037.5 2817.1 352.4 972.9 2.6 1.6 83.6 351.2 315.6 0.1 60.6 683.7 52.7 469.3 493.4 37.0 71.5 503.7 99.7 70.8 5.8 Table S4. Monthly blue water scarcity for the world's major river basins Period: 1996-2005 Basin ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 Basin name Khatanga Olenek Anabar Yana Yenisei Indigirka Lena Omoloy Tana (NO, FI) Colville Alazeya Anderson Kolyma Tuloma Muonio Yukon Palyavaam Kemijoki Mackenzie Noatak Anadyr Pechora Lule Kalixaelven Ob Ellice Taz Kobuk Coppermine Hayes(Trib. Arctic Ocean Pur Varzuga Ponoy Kovda Back Kem Nadym Quoich Mezen Iijoki Joekulsa A Fjoellum Svarta, Skagafiroi Oulujoki Lagarfljot Thelon Angerman Thjorsa Northern Dvina(Severnay Oelfusa Nizhny Vyg (Soroka) Kuskokwim Vuoksi Onega Susitna Kymijoki Neva Ferguson Copper Gloma Population (thousands) 4.63 5.96 1.4 24.5 8453 41.8 1285 2.88 6.52 0.98 6.65 0.09 138 209 57.8 131 7.83 149 494 2.04 11.2 606 35.6 35 29372 0 15.1 2.2 0.431 0 197 4.14 3.41 33.2 0.011 75.6 43.6 0 42.1 62.8 0.762 2.06 197 3.05 2.17 66.6 1.99 1718 7.59 86.9 11.4 750 176 30.1 588 4245 0.007 4.95 759 Water scarcity (%) Jan 0.0028 0.0046 0.0025 0.0259 0.434 0.0208 0.0771 0.102 0.102 0.0134 0.0342 0.0055 0.0352 2.1 0.382 0.0732 0.0697 0.331 0.293 0.0331 0.009 0.233 0.103 0.396 4.01 0 0.0144 0.0264 0.0499 0 0.252 0.0832 0.0254 1.03 0.0001 0.314 0.108 0 0.107 0.737 0.015 0.0554 0.942 0.04 0.0151 0.171 0.0065 1.59 0.0296 0.398 0.0227 2.47 0.741 0.06 3.45 3.36 0.0006 0.0114 1.53 Feb 0.0748 0.0353 0.0155 0.319 9.43 0.22 1.86 4.07 675 1.82 0.202 0.861 0.813 17.1 4.18 1.41 624 50 19 6.28 8.37 18.4 32.6 4.7 140 0 2.38 0.175 11.7 0 676 676 676 676 676 135 207 0 8.87 676 676 676 195 676 104 109 0.0826 46.3 676 676 20.5 676 59.1 34 676 379 676 676 676 Mar 0.124 0.0585 0.0257 0.528 15.5 0.364 3.07 6.71 675 3 0.334 1.42 1.35 27.8 6.9 2.32 643 79 30.9 10.3 13.7 30 52.3 7.75 205 0 3.94 0.29 19.2 0 676 676 676 676 676 198 286 0 14.6 676 676 0.104 271 676 157 163 0.0299 73.4 0.0347 676 33.3 676 92.6 54.5 676 458 676 676 72 Apr 0.205 0.0968 0.0425 0.873 1.46 0.603 3.36 11 675 4.96 0.552 2.36 2.23 44.8 0.257 0.388 656 0.271 0.194 17 22.5 0.396 0.0287 0.0799 0.593 0 6.49 0.48 31.2 0 676 676 676 676 676 0.028 370 0 0.0102 0.0524 0.198 0.0246 0.0403 0.202 225 0.0146 0.0024 0.0365 0.0065 0.0151 53.4 0.0784 0.0157 0.021 0.141 0.125 676 0.72 0.251 May 0.0198 0.0086 0.0704 0.146 0.207 0.0877 0.014 18.1 0.0026 0.0546 0.914 0.0001 0.0245 0.115 0.0274 0.0081 664 0.0179 0.0244 0.0129 0.0043 0.0098 0.0083 0.0251 1.02 0 0.0011 0.0027 0.0037 0 0.0259 0.0057 0.002 0.0356 0 0.0189 0.0092 0 0.0038 0.0697 0.0015 0.0084 0.131 0.0038 0.0012 0.0167 0.0016 0.0942 0.0162 0.0507 0.0018 0.289 0.0561 0.0113 0.517 0.553 676 0.0017 0.283 Jun 0.0002 0.0003 0.0003 0.0031 0.27 0.0024 0.0098 0.0064 0.0094 0.0013 0.0033 0.0004 0.0051 0.363 0.0495 0.0089 0.0039 0.0659 0.0237 0.0026 0.0005 0.0148 0.0085 0.041 2.93 0 0.0006 0.0051 0.002 0 0.0123 0.0208 0.0074 0.112 0 0.0546 0.0056 0 0.0103 0.176 0.0019 0.0077 0.247 0.0061 0.0007 0.0219 0.0021 0.206 0.0163 0.0888 0.0037 0.521 0.112 0.0107 0.937 1.1 0 0.0012 0.413 Jul 0.0003 0.001 0.0006 0.0034 0.407 0.0027 0.0145 0.0098 0.016 0.0013 0.0113 0.0007 0.0036 0.663 0.0733 0.0138 0.0072 0.111 0.0397 0.0047 0.001 0.0353 0.0169 0.0883 7.26 0 0.002 0.009 0.0058 0 0.0404 0.0356 0.0126 0.206 0 0.0945 0.0176 0 0.0192 0.299 0.0048 0.0206 0.436 0.0139 0.0021 0.0476 0.0041 0.349 0.0198 0.149 0.0053 0.94 0.188 0.0156 1.63 1.68 0.0001 0.0017 1.04 Aug 0.0006 0.0018 0.0013 0.0061 0.441 0.0058 0.0196 0.0212 0.0265 0.0024 0.02 0.0011 0.0082 1.1 0.142 0.0228 0.0141 0.173 0.0741 0.0083 0.0019 0.0596 0.0289 0.153 9.79 0 0.0033 0.0149 0.0103 0 0.0667 0.0589 0.0181 0.34 0 0.151 0.0283 0 0.0319 0.462 0.0076 0.0342 0.704 0.0195 0.0036 0.0704 0.0047 0.55 0.0281 0.246 0.0053 1.67 0.282 0.0188 2.93 2.95 0.0001 0.003 1.56 Table S4 - 1 Sep 0.001 0.003 0.0022 0.0127 0.338 0.0109 0.0228 0.0371 0.0337 0.0043 0.0332 0.0019 0.0125 1.67 0.186 0.0291 0.0209 0.149 0.112 0.0082 0.0026 0.073 0.0337 0.225 6.64 0 0.0045 0.0164 0.0171 0 0.0643 0.0349 0.012 0.441 0 0.172 0.0275 0 0.0499 0.446 0.0077 0.04 0.577 0.0175 0.0043 0.0768 0.0041 0.811 0.0238 0.196 0.0054 1.68 0.388 0.0158 3.37 2.6 0.0002 0.0031 0.778 Oct 0.0018 0.0051 0.0037 0.021 0.375 0.0182 0.051 0.0624 0.0491 0.0077 0.0549 0.0031 0.0235 1.64 0.294 0.0475 0.0388 0.118 0.164 0.0188 0.005 0.129 0.047 0.262 3.66 0 0.0082 0.0349 0.0282 0 0.14 0.028 0.0082 0.403 0.0001 0.106 0.0601 0 0.046 0.232 0.0051 0.02 0.31 0.0146 0.0084 0.0615 0.0033 0.776 0.017 0.131 0.012 0.868 0.3 0.0279 2.1 1.55 0.0003 0.0056 0.643 Nov 0.003 0.0084 0.0062 0.0347 0.494 0.0301 0.0845 0.103 0.094 0.0127 0.0909 0.0052 0.0389 3.6 0.541 0.0846 0.0642 0.312 0.288 0.0311 0.0083 0.226 0.0956 0.539 4.17 0 0.0136 0.0578 0.0468 0 0.232 0.0766 0.0234 0.945 0.0001 0.291 0.099 0 0.103 0.679 0.0137 0.0442 0.879 0.0352 0.014 0.158 0.0057 1.67 0.0258 0.367 0.021 2.13 0.71 0.0557 2.06 2.38 0.0005 0.0105 1.28 Dec 0.005 0.014 0.0102 0.0575 0.802 0.0498 0.14 0.171 0.156 0.021 0.151 0.0086 0.0643 5.94 0.895 0.14 0.106 0.517 0.474 0.0514 0.0138 0.374 0.158 0.892 6.68 0 0.0225 0.0956 0.0774 0 0.384 0.127 0.0387 1.56 0.0002 0.482 0.165 0 0.171 1.12 0.0229 0.0845 1.45 0.0609 0.0231 0.262 0.0095 2.77 0.035 0.608 0.0347 3.75 1.18 0.0921 5.25 5.19 0.0008 0.0174 2.34 Average 0.0365 0.0198 0.0151 0.169 2.51 0.118 0.727 3.37 169 0.825 0.2 0.389 0.383 8.91 1.16 0.379 216 10.9 4.3 2.81 3.72 4.16 7.12 1.26 32.7 0 1.07 0.101 5.2 0 169 169 169 169 169 27.9 72 0 2 113 113 56.3 39.3 113 40.5 22.7 0.013 10.7 56.3 113 8.94 114 13 7.4 114 71.5 225 113 63.2 Number of months per year that a basin faces low, moderate, significant or severe water scarcity Low Moderate Significant Severe 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 9 0 0 3 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 8 0 0 4 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 10 1 0 1 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 9 0 0 3 9 0 0 3 9 0 0 3 9 0 0 3 9 0 0 3 10 1 1 0 9 0 0 3 12 0 0 0 12 0 0 0 10 0 0 2 10 0 0 2 11 0 0 1 10 0 1 1 10 0 0 2 9 1 1 1 10 1 1 0 12 0 0 0 12 0 0 0 11 0 0 1 10 0 0 2 12 0 0 0 10 0 0 2 12 0 0 0 12 0 0 0 10 0 0 2 10 0 0 2 8 0 0 4 10 0 0 2 11 0 0 1 Basin ID 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 Basin name Kokemaenjoki Vaenern-Goeta Thlewiaza Alsek Volga Dramselv Arnaud Nushagak Seal Taku Narva Stikine Churchill Feuilles (Riviere Aux) George Caniapiscau Western Dvina (Daugava Aux Melezes Baleine, Grande Riviere Spey Kamchatka Nass Skeena Nelson Hayes(Trib. Hudson Bay Gudena Skjern A Neman Fraser Severn(Trib. Hudson Bay Amur Tweed Grande Riviere De La Ba Grande Riviere Winisk Churchill, Fleuve (Labrad Dniepr Ural Wisla Don Oder Elbe Trent Weser Attawapiskat Eastmain Manicouagan (Riviere) Columbia Little Mecatina Natashquan (Riviere) Rhine Albany Saguenay (Riviere) Thames Nottaway Rupert Moose(Trib. Hudson Bay St.Lawrence Danube Seine Dniestr Southern Bug Population (thousands) 773 1486 0.052 1.03 61274 282 0 1.47 1.07 1.9 1217 1.57 90.5 0 0.032 0.921 2723 0 0 33.2 25.8 2.98 44.9 5566 14.5 450 165 5487 1294 6.79 66165 410 0.558 1.49 6.08 8.63 33021 4063 23550 20898 16526 22408 4841 8503 1.41 0.441 13.9 6607 0.148 0.512 56922 19.2 317 9674 43.8 0.405 122 67620 81753 15598 7442 3142 Water scarcity (%) Jan 3.61 1.11 0.0019 0.0115 18.8 1.24 0 0.0072 0.0284 0.0137 1.13 0.0027 0.383 0 0.0001 0.0013 1.88 0 0 0.0276 0.0354 0.0095 0.139 10.6 0.143 0.772 0.205 3.08 1.09 0.0383 2.34 0.283 0.0039 0.0018 0.0228 0.0169 34.3 11.9 22.6 64.5 14.5 7.83 2.79 2.68 0.0388 0.0012 0.037 1.43 0.0011 0.0059 4.64 0.0789 0.526 5.3 0.0669 0.0043 0.408 13.8 5.62 6.75 16.9 76.9 Feb 532 408 0.0168 676 394 676 0 676 2.29 676 676 0.0083 15.1 0 676 3.57 676 0.0001 0 0.0648 676 676 676 445 6.89 1.73 0.543 676 4.11 676 521 0.68 676 5.77 9.83 676 645 676 566 676 8.09 8.63 5.23 4.68 676 676 134 1.57 676 676 7.99 597 676 8.6 676 676 676 545 6.66 9.29 517 376 Mar 581 0.586 0.0279 676 77.7 3.31 0 676 3.78 676 676 0.0098 24.6 0 676 5.89 676 0.0001 0 0.0754 676 0.0123 0.144 518 11.3 1.94 0.595 0.897 1.83 676 583 0.725 676 9.51 16.1 676 2.95 23.4 1.67 4.8 2.54 4.57 6.36 4.96 676 676 196 4.33 676 676 7.56 626 676 10.7 676 676 676 6.47 2.93 10.6 2.2 1.62 Apr 0.233 0.247 0.0462 0.0056 0.541 0.26 0 0.0028 6.23 0.0073 0.133 0.003 0.1 0 676 9.7 0.168 0.0002 0 0.0967 676 0.0029 0.0334 1.67 18.6 2.61 0.811 0.277 0.317 0.0234 5.2 1.03 676 15.6 0.0059 676 1.85 1.39 3.18 3.64 4.58 6.21 9.06 6.76 676 0.0006 0.0883 11.1 676 0.011 6.42 0.0076 0.0929 16.2 0.0109 0.0017 0.036 1.46 3.12 14.7 4.05 4.59 May 0.876 0.622 0.0001 0.0013 5.95 0.224 0 0.0008 0.001 0.0024 0.489 0.0005 0.031 0 0 0.0002 0.832 0 0 0.133 0.0025 0.0017 0.017 4.34 0.0069 14 2.99 1.33 0.211 0.0028 13.2 1.48 0.0006 0.0002 0.002 0.0019 14.7 18.1 5.99 44.5 7.9 10.5 14.9 10.7 0.0022 0.0002 0.0053 13.1 0.0001 0.0005 8.44 0.007 0.0934 28.2 0.0092 0.0004 0.0411 3.99 6.46 29.6 22.6 27.5 Jun 1.69 1.16 0.0003 0.0012 14 0.295 0 0.0021 0.0025 0.0026 0.899 0.0004 0.0486 0 0 0.0002 1.32 0 0 0.228 0.0034 0.0022 0.021 6.75 0.0128 59.6 23.6 2.41 0.393 0.0068 21.5 2.3 0.0009 0.0005 0.0046 0.0026 31.8 52.7 10.4 98.7 12.7 16.7 29.3 17.2 0.0077 0.0003 0.0067 31.4 0.0002 0.0011 11.6 0.0168 0.136 50.2 0.0192 0.0011 0.0958 7.07 11.2 61.1 35.5 55.2 Jul 3.04 2.11 0.0005 0.003 32.6 0.756 0 0.0036 0.0049 0.0057 1.6 0.0009 0.101 0 0 0.0005 2.13 0 0 0.302 0.0045 0.0049 0.0487 22 0.0236 112 71.8 3.98 1.05 0.0125 13.9 3.63 0.0016 0.0008 0.0083 0.0048 64.6 129 15.1 174 21.5 31.3 70 28.9 0.0133 0.0005 0.0126 91.9 0.0003 0.0014 15.2 0.03 0.213 82.7 0.0283 0.0017 0.164 13.7 22.7 147 38 122 Aug 5.76 2.25 0.0008 0.0045 44.8 0.68 0 0.0029 0.0083 0.0075 2.74 0.0013 0.179 0 0 0.0005 4 0 0 0.252 0.0094 0.0066 0.0746 53.2 0.0436 88.2 25 8.64 2.06 0.0196 7.61 3.3 0.0017 0.0008 0.0137 0.0061 95 161 25.9 222 33.9 48 73.5 37.7 0.022 0.0006 0.0156 125 0.0005 0.0021 21 0.0493 0.26 126 0.0343 0.002 0.258 21.7 30.8 256 90.2 181 Table S4 - 2 Sep 7.29 1.74 0.0009 0.0034 25.8 0.488 0 0.0024 0.0086 0.0057 2.4 0.0013 0.18 0 0 0.0005 4.18 0 0 0.162 0.0128 0.0054 0.0774 30.8 0.0607 34.2 2.33 9.03 1.97 0.0159 5.18 2.02 0.0015 0.0007 0.0086 0.0063 78.3 107 32.3 156 40.2 53 53.6 30.5 0.0135 0.0005 0.0144 106 0.0005 0.0025 18.9 0.0361 0.225 181 0.0288 0.0018 0.191 15.6 21 288 61.9 137 Oct 5.64 0.898 0.0018 0.0048 12.6 0.508 0 0.0027 0.0149 0.0047 1.1 0.0015 0.193 0 0.0001 0.0005 1.72 0 0 0.0838 0.0158 0.0038 0.0649 13.2 0.0662 3.58 0.436 5.01 1.25 0.0134 1.63 0.951 0.0014 0.0006 0.0082 0.0064 40.4 53.2 28.8 87.4 33.3 29.2 29.2 12.1 0.0144 0.0004 0.0133 56.3 0.0004 0.0022 13.8 0.0264 0.182 210 0.0233 0.0015 0.135 9.57 9.66 121 16.3 96.9 Nov 1.7 0.82 0.003 0.0106 19.1 1.05 0 0.0066 0.0275 0.0126 0.549 0.0026 0.398 0 0.0001 0.0012 0.937 0 0 0.0536 0.0326 0.007 0.0988 15.4 0.143 1.61 0.374 1.43 1.37 0.0353 2.45 0.524 0.0036 0.0017 0.0212 0.0156 20.3 7.66 18.5 47.5 23.9 15.4 9.73 5.86 0.0358 0.0011 0.0341 9.71 0.001 0.0054 9.34 0.0726 0.48 29.2 0.0601 0.004 0.376 8.37 5.79 33.3 9.9 111 Dec 5.52 1.28 0.005 0.0175 30.5 1.88 0 0.011 0.0455 0.0209 1.72 0.0036 0.647 0 0.0002 0.002 2.86 0 0 0.0452 0.054 0.0144 0.212 18.2 0.236 1.27 0.315 4.69 1.72 0.0584 3.78 0.446 0.0059 0.0028 0.0351 0.0258 49.4 18 25.3 93.6 14.3 12 4.78 4.09 0.0592 0.0019 0.0564 2.65 0.0017 0.009 7.31 0.12 0.802 9.74 0.102 0.0066 0.622 19.7 6.87 13.6 25.4 165 Average 95.7 35 0.0088 113 56.4 57.2 0 113 1.04 113 114 0.003 3.49 0 169 1.6 114 0 0 0.127 169 56.3 56.4 94.9 3.13 26.8 10.8 59.7 1.45 113 98.4 1.45 169 2.57 2.17 169 89.9 105 62.9 139 18.1 20.3 25.7 13.8 169 113 27.5 37.8 169 113 11 102 113 63.1 113 113 113 55.6 11.1 82.6 70 113 Number of months per year that a basin faces low, moderate, significant or severe water scarcity Low Moderate Significant Severe 10 0 0 2 11 0 0 1 12 0 0 0 10 0 0 2 11 0 0 1 11 0 0 1 12 0 0 0 10 0 0 2 12 0 0 0 10 0 0 2 10 0 0 2 12 0 0 0 12 0 0 0 12 0 0 0 9 0 0 3 12 0 0 0 10 0 0 2 12 0 0 0 12 0 0 0 12 0 0 0 9 0 0 3 11 0 0 1 11 0 0 1 10 0 0 2 12 0 0 0 11 1 0 0 12 0 0 0 11 0 0 1 12 0 0 0 10 0 0 2 10 0 0 2 12 0 0 0 9 0 0 3 12 0 0 0 12 0 0 0 9 0 0 3 11 0 0 1 8 2 1 1 11 0 0 1 8 0 2 2 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 9 0 0 3 10 0 0 2 10 1 1 0 10 2 0 0 9 0 0 3 10 0 0 2 12 0 0 0 10 0 0 2 10 0 0 2 9 1 1 1 10 0 0 2 10 0 0 2 10 0 0 2 11 0 0 1 12 0 0 0 8 2 0 2 11 0 0 1 6 3 2 1 Basin ID 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 Basin name Mississippi Skagit Aral Drainage Loire Rhone Saint John Po Penobscot St.Croix Kuban Connecticut Liao He Garonne Ishikari Merrimack Hudson Colorado(Pacific Ocean Klamath Ebro Rogue Douro Susquehanna Luan He Kura Dalinghe Delaware Sacramento Huang He (Yellow River Kizilirmak Yongding He Tejo Sakarya Eel (Calif.) Tigris & Euphrates Potomac Guadiana Kitakami Mogami Han-Gang (Han River) Guadalquivir San Joaquin James Bravo Shinano, Chikuma Roanoke Naktong Indus Tone Salinas Pee Dee Chelif Cape Fear Tenryu Santee Kiso Yangtze(Chang Jiang) Yodo Sebou Alabama River & Tombig Savannah Gono (Go) Huai He Population (thousands) 74637 84 41543 7807 10015 413 17513 154 20.3 3471 2069 30133 3328 1942 2246 4380 7755 137 2922 260 3744 4004 11172 13774 4435 6416 3015 160715 4460 91200 6899 5655 37.1 49256 3494 1601 1281 1118 11656 3947 1681 910 9249 2133 1472 8178 212208 10011 308 2599 3855 1626 1398 3127 1899 384680 9645 5479 4335 1169 401 97813 Water scarcity (%) Jan 2.98 0.225 10.1 2.03 1.94 0.837 4.79 0.584 0.352 3.26 5.62 19.1 1.57 1.88 14.9 9.85 79.7 0.115 0.571 0.604 0.752 4.85 40.6 23.6 32.7 9.83 1.42 40.3 10.6 286 2.07 7.7 0.0689 6.62 6.3 5.25 1.54 0.959 10.4 4.82 5.98 1.42 99.8 1.61 2.02 11.8 271 8.89 65.9 2.33 4.78 2.59 1.92 9.85 2.42 5.53 7.54 1.78 1.17 1.97 0.73 33.4 Feb 4.16 0.626 5.78 2.92 4.24 676 10.2 676 676 2.58 676 676 2.56 676 676 375 396 0.0972 1.95 0.605 1.28 8.18 676 82.4 676 20.1 1.24 607 2.54 676 3.26 2.65 0.0748 21.6 7.35 8.13 6.18 1.12 676 13 5.83 1.83 593 2.2 2.54 22 399 31.9 22.6 2.76 7.91 3.17 3.86 9.98 7.24 17.2 15 9.93 1.02 1.89 1.37 71.6 Mar 4.76 0.148 7.83 3.03 2.51 676 5.93 0.794 676 1.97 1.68 99.6 2.56 676 1.8 2.2 175 0.123 8.37 0.751 2.46 1.15 670 75.5 531 3.97 3.9 512 2.96 676 4.64 3.64 0.102 61.6 5.02 16.3 0.786 0.895 6.18 19.7 36.1 1.82 607 2.22 2.57 8.12 411 12.1 14.6 2.82 21.1 3.46 2.2 10.6 4.48 11.8 12.3 31.5 0.899 1.83 1.26 119 Apr 8.21 0.123 29.4 4.16 2.53 0.0966 3.98 0.0689 0.0416 2.42 1.06 127 2.93 0.371 3.19 1.99 76.4 4.72 13.6 2.48 6.88 1.73 659 46.6 375 7.22 28.4 413 8.19 676 11.6 17.7 0.218 99.2 6.37 45.4 0.987 1.21 4.7 48 149 2.58 299 0.976 4.27 6.35 316 8 113 4.63 55 6.32 1.34 16.7 1.86 11.6 11.3 100 1.29 3.11 1.22 188 May 15.4 0.224 48.5 8.7 3.71 0.289 9.89 0.204 0.126 19.8 2.15 305 5.35 0.881 5.56 3.63 58.3 20.4 23.4 9.3 18.1 2.69 538 37.5 501 9.57 106 260 37.8 671 30.5 94 1.08 178 9.49 139 1.35 1.73 9.4 132 290 3.84 197 0.987 7.78 14.7 167 8.87 378 9.51 155 14.3 1.51 29.8 1.89 13.3 14 190 2.46 6.38 1.6 220 Jun 32.3 0.924 106 22.1 6.53 0.447 22.8 0.317 0.206 50.5 3.95 439 17.5 6.76 9.23 6.1 96.5 60.7 84.4 33.5 101 4.41 529 94.1 607 17.8 261 187 105 671 134 202 3.18 236 15.1 368 6.76 9.19 15.7 343 484 6.38 266 2.5 13.6 40.7 171 15.7 552 16.3 314 21.4 1.76 46.7 1.91 8.55 14.1 244 4.57 11.7 1.6 181 Jul 136 2.55 239 88.1 26.2 0.834 105 0.59 0.377 105 6.44 210 143 9.58 15.6 9.98 182 126 247 71.4 286 8.08 99.8 193 298 26.5 386 168 175 533 306 319 6.84 315 26.7 525 16.4 13.7 3.23 494 576 11.8 328 6.55 22.6 14.7 136 25.6 623 18.4 438 17.9 2.6 56.6 2.46 15.7 27.3 359 8.57 20.2 1.97 171 Table S4 - 3 Aug 234 4.45 345 177 34 1.83 130 1.16 0.666 100 8.29 83.7 243 12.8 24.6 14.6 237 167 308 96.2 375 13 85.1 289 47.6 30.7 458 110 262 402 387 432 9.43 396 40 571 38.8 44.5 2.84 548 611 18.7 263 18.6 33.4 14.8 162 42.7 644 23.8 501 19 6.56 58.3 5.88 17.1 69.8 405 15.2 35.1 9.41 175 Sep 230 3.78 378 157 15.8 1.07 45.6 0.98 0.701 29.9 6.99 89.6 197 4.91 26.9 13.6 266 168 238 101 300 13.2 110 249 64.8 28.3 462 50 268 476 343 449 10.9 402 49.4 547 22.7 16.9 5.04 523 619 20.9 193 5.85 29.9 17.1 256 16.1 646 18.7 517 15.9 2.11 62 2.44 16.9 20.7 444 19.5 22.5 2.85 157 Oct 111 0.528 298 30.3 4.62 0.595 9.1 0.563 0.36 10.5 5.01 18 34.5 1.39 15.8 9.46 248 98.3 61.2 59.3 106 7.85 87.9 109 24.3 21.3 293 37 186 398 204 364 6.08 337 40.9 454 2.53 3.58 6.14 436 589 15.5 224 1.9 31.2 7.23 340 6.75 595 19.7 429 17.9 1.34 67 2.22 3.77 12.8 416 27.8 22.2 2.11 61.8 Nov 17 0.285 84 6.33 2.75 0.45 5.88 0.288 0.17 6.25 3.09 21.3 5.15 1.09 7.27 5.59 206 3.15 6.42 3.15 6.79 4.06 38 38.7 35.4 11.5 59.1 30.8 89.5 277 51.8 185 6.09 92.9 21.8 209 1.29 1.26 8.38 264 447 5.99 173 1.54 11.5 11.2 328 8.5 502 12.2 339 11.7 1.77 53.3 2.6 4.32 12.3 54.7 23.7 12.8 1.46 40.1 Dec 6.59 0.357 32.5 3.55 2.75 1.28 7.16 0.89 0.537 5.25 7.89 33.5 2.55 2.86 22.5 13.5 191 0.232 1.16 1.28 1.78 6.12 49 46.1 54.6 12.5 5.41 48.9 21 352 4.76 39.5 0.162 17.4 11.4 99.1 2.02 0.908 15.7 33.3 67.8 2.65 177 1.7 4.37 17.6 290 12.2 498 4.75 50.1 5.68 2.56 20 3.75 7.27 12.7 4.51 3.28 5.2 1.24 55.2 Average 66.9 1.18 132 42.1 8.97 113 30 56.8 113 28.1 60.7 177 54.9 116 68.6 38.8 184 54.1 82.8 31.6 101 6.28 299 107 271 16.6 172 205 97.4 508 124 176 3.69 180 20 249 8.45 8 63.6 238 323 7.78 285 3.89 13.8 15.5 271 16.4 388 11.3 236 11.6 2.46 36.7 3.26 11.1 19.2 188 9.13 12.1 2.23 123 Number of months per year that a basin faces low, moderate, significant or severe water scarcity Low Moderate Significant Severe 8 2 0 2 12 0 0 0 7 1 0 4 10 0 2 0 12 0 0 0 10 0 0 2 10 2 0 0 11 0 0 1 10 0 0 2 10 2 0 0 11 0 0 1 7 1 0 4 9 1 1 1 10 0 0 2 11 0 0 1 11 0 0 1 4 0 3 5 9 1 2 0 9 0 0 3 11 1 0 0 7 2 0 3 12 0 0 0 6 1 0 5 8 1 1 2 6 0 0 6 12 0 0 0 6 1 0 5 5 1 2 4 7 1 2 2 0 0 0 12 7 1 0 4 6 0 1 5 12 0 0 0 6 0 1 5 12 0 0 0 5 1 0 6 12 0 0 0 12 0 0 0 11 0 0 1 5 1 0 6 4 1 0 7 12 0 0 0 1 0 4 7 12 0 0 0 12 0 0 0 12 0 0 0 0 1 3 8 12 0 0 0 3 1 0 8 12 0 0 0 5 0 1 6 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 5 1 1 5 12 0 0 0 12 0 0 0 12 0 0 0 5 1 5 1 Basin ID 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 Basin name Apalachicola Brazos Altamaha Mekong Colorado(Caribbean Sea Trinity(Texas) Pearl Sabine Suwannee Yaqui Nile Brahmaputra St.Johns Nueces San Antonio Irrawaddy Fuerte Xi Jiang Bei Jiang San Pedro Dong Jiang Mahi Damodar Niger Narmada Brahmani River (Bhahm Mahanadi(Mahahadi) Santiago Panuco Godavari Tapti Sittang Armeria Ca Chao Phraya Krishna Senegal Papaloapan Grisalva Verde Mae Klong Tranh (Nr Thu Bon) Penner Volta Lempa Gambia Grande De Matagalpa Cauvery San Juan Geba Corubal Magdalena Comoe Orinoco Bandama Oueme Sassandra Shebelle Mono Congo Atrato Cuyuni Population (thousands) 2955 2820 2411 57932 1667 5421 623 574 591 651 162346 67163 2905 614 915 33594 452 64673 20751 655 13461 11043 28680 76931 17017 12476 27697 17992 17860 62327 16928 3191 527 2652 26782 76933 5134 2582 7037 862 1568 1025 10924 19863 4213 1355 547 35203 3736 388 540 25486 2531 12008 4222 5845 3066 16004 1580 67996 511 145 Water scarcity (%) Jan 2.6 19.8 4.6 12.3 16.6 23.4 0.795 1.31 1.44 404 38.5 1.68 19.4 676 199 1.15 4.39 6.69 14.1 5.11 6.79 133 128 2.69 123 34.6 65.8 51 19.2 103 111 0.769 28.8 3.47 59.8 245 8.04 1.53 0.382 2.23 8.26 1.1 162 1.9 4.74 0.22 0.158 110 0.924 3.22 0.219 0.682 4.16 0.348 1.35 1.05 0.26 34.9 1.64 0.0191 0.0335 0.0096 Feb 1.96 27.8 2.73 543 17.3 16.8 0.784 1.1 1.21 676 355 70 42.8 676 241 91 38.8 27.7 25.2 603 55.2 676 676 676 676 676 676 675 669 676 676 676 676 86.5 676 676 676 441 5.24 676 676 55.1 676 676 676 676 3.39 648 8.57 676 676 5.88 676 3.79 676 676 676 612 676 0.0519 0.13 0.0327 Mar 1.75 82 2.46 498 49.9 19 0.741 1.26 1.31 676 202 23.8 39.7 676 434 55.1 149 19.1 4.65 650 5.2 676 676 312 676 676 676 676 674 676 676 676 676 147 676 676 676 590 29.3 676 676 68.5 676 78.7 676 676 32.6 669 33.1 676 676 8.48 676 4.59 676 676 676 356 14.9 0.0391 0.113 0.0457 Apr 3.22 85.4 4.69 401 63.8 16.8 0.931 1.91 4.12 676 86.5 3.03 74.2 676 342 17.5 340 18.3 2.17 665 2.13 676 676 39.4 676 676 676 676 675 676 676 676 676 239 676 676 676 623 49.3 676 676 127 676 14.1 676 676 78.4 661 53.1 676 676 4.3 18.1 1.21 28.3 83.2 14 3.68 3.07 0.0337 0.0791 0.0286 May 9.03 152 10.8 106 128 20.4 1.52 4.26 17.2 676 82.8 0.733 162 676 339 4.91 448 10.4 2.61 670 2.11 676 676 25.6 676 676 676 676 675 676 676 171 676 133 453 676 676 632 12.9 676 9.63 184 676 3.61 258 676 20.9 630 4.74 676 676 2.98 4.73 0.304 8.24 1.79 3.53 5.38 1.13 0.104 0.0551 0.0098 Jun 24.4 337 22.1 11.7 313 50.2 2.79 9.26 28.3 676 48.3 0.169 144 676 514 2.83 551 3.52 2.88 668 2 676 35.5 7.69 459 21.2 242 216 111 462 676 4.55 676 16.2 94.4 167 17.8 7.85 0.878 128 1.61 49.4 676 1.67 2.81 1 0.149 208 0.534 10.5 0.404 3.86 1.55 0.205 0.559 0.332 0.165 69.1 0.39 0.256 0.0506 0.0064 Jul 57.9 551 57.8 3.87 525 96 4.39 22.3 24 251 30.2 0.307 26.6 676 601 0.676 126 3.59 10.4 13.4 5.14 4.71 19.2 2.49 2.62 3.01 8.98 31 14.9 20.5 13.4 1.09 676 3.28 117 41.8 6.71 1.58 0.415 3.5 4.99 15.2 676 1.03 0.913 0.595 0.118 206 0.596 0.451 0.0306 9.22 1.96 0.27 0.843 0.258 0.0842 68.3 0.355 0.302 0.0498 0.0067 Aug 118 588 97.3 2.47 576 136 7.06 26.8 28.2 311 19.9 0.215 19.1 676 613 0.395 29.2 3.57 9.45 8.24 3.78 4.57 4.04 0.883 2.15 1.15 1.56 15.2 15.2 9.8 11.5 0.386 31.8 0.791 68.4 55.3 2.13 1.25 0.521 1.54 5.69 5.01 676 0.34 0.737 0.139 0.249 228 0.957 0.0222 0.0125 10.4 1.14 0.424 0.252 0.23 0.0627 30.8 0.433 0.247 0.049 0.0099 Table S4 - 4 Sep 70 589 71.5 1.31 589 170 10.2 23.5 13.8 503 26.5 0.442 9.96 676 606 1.3 14.5 10.6 17.4 11.5 6.24 12.8 5.46 1.06 6.43 2.57 7.05 28.6 7.82 12.5 19.4 1.86 3.67 0.47 30.5 99.5 2.57 0.605 0.195 0.986 4 0.436 676 0.283 0.424 0.118 0.0814 281 0.503 0.0606 0.0176 3.4 0.712 0.388 0.109 0.168 0.0329 12.3 0.272 0.181 0.0445 0.02 Oct 84.8 528 87.6 5.75 533 219 16 27.4 16.3 516 45.6 4.06 10.8 676 603 4.67 34.5 2.82 9.47 20.6 4.16 54.6 29.8 2.17 33.2 11.4 36.9 81.6 14.8 48.3 73.2 4.54 45.2 0.886 58.4 131 9.06 1.44 0.21 1.52 3.45 0.282 266 0.944 0.677 0.413 0.0468 165 0.251 0.132 0.0341 0.736 2 0.141 0.398 0.283 0.0779 11.3 0.422 0.112 0.0417 0.0294 Nov 39.6 235 86.9 16.7 279 265 10.6 17.7 8.77 486 45.3 7.25 22.4 676 616 2.44 18.9 3.74 14.3 9.29 6.66 73.8 107 1.36 46.2 32.7 72.6 88.2 19.6 95.8 104 1.83 79.8 1.79 185 245 14.5 2.06 0.67 4.56 16.1 0.337 120 1.43 3.3 0.21 0.0571 101 0.346 2.54 0.171 0.57 4.1 0.174 2.02 0.958 0.387 8.99 1.05 0.0369 0.0423 0.0274 Dec 7.31 33.2 14.4 18.7 30.8 53.8 2.1 4.94 2.89 403 34.9 2.36 32.7 676 273 1.15 12.4 7.23 22.3 15 10.7 127 144 2.55 126 50.2 92.4 109 38.5 147 156 0.867 141 3.28 123 326 13.3 3.96 1.57 8.85 16 0.752 194 2.39 8.11 0.344 0.21 126 0.8 5.7 0.385 0.908 9.31 0.669 4.88 1.99 1.09 30.4 2.1 0.0235 0.0538 0.0152 Average 35.1 269 38.6 135 260 90.5 4.83 11.8 12.3 521 84.6 9.51 50.3 676 448 15.2 147 9.78 11.2 278 9.18 316 265 89.5 292 238 269 277 245 300 322 184 365 53 268 334 231 192 8.46 238 175 42.2 512 65.2 192 225 11.4 336 8.7 227 225 4.28 117 1.04 117 120 114 104 58.5 0.117 0.0619 0.0201 Number of months per year that a basin faces low, moderate, significant or severe water scarcity Low Moderate Significant Severe 11 1 0 0 5 0 1 6 12 0 0 0 8 1 0 3 5 1 0 6 8 1 1 2 12 0 0 0 12 0 0 0 12 0 0 0 0 0 0 12 10 0 0 2 12 0 0 0 10 1 1 0 0 0 0 12 0 0 1 11 12 0 0 0 7 2 0 3 12 0 0 0 12 0 0 0 7 0 0 5 12 0 0 0 5 2 0 5 5 3 0 4 10 0 0 2 5 2 0 5 8 0 0 4 7 0 0 5 6 1 0 5 7 1 0 4 5 2 0 5 4 2 1 5 8 0 1 3 5 1 0 6 9 2 0 1 5 2 1 4 3 1 1 7 8 0 0 4 8 0 0 4 12 0 0 0 7 1 0 4 9 0 0 3 10 1 1 0 0 1 2 9 11 0 0 1 8 0 0 4 8 0 0 4 12 0 0 0 0 3 1 8 12 0 0 0 8 0 0 4 8 0 0 4 0 0 12 0 10 0 0 2 12 0 0 0 10 0 0 2 10 0 0 2 10 0 0 2 10 0 0 2 11 0 0 1 12 0 0 0 12 0 0 0 12 0 0 0 Basin ID 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 Basin name Cavally Tano Cross Sanaga Pra Davo Essequibo Kelantan Corantijn Coppename Kinabatangan Maroni San Juan (Columbia - P Amazonas Pahang Nyong Oyapock Rajang Ntem Ogooue Rio Araguari Mira Esmeraldas Tana Daule & Vinces Rio Gurupi Rio Capim Tocantins Kouilou Nyanga Rio Parnaiba Rio Itapecuru Rio Acarau Pangani Rio Pindare Sepik Rio Mearim Chira Rufiji Rio Jaguaribe Purari Ruvu Rio Paraiba Solo (Bengawan Solo) Sao Francisco Brantas Santa Zambezi Rio Vaza-Barris Rio Itapicuru Rio Paraguacu Canete Rio De Contas Roper Daly Drysdale Parana Durack Rio Prado Victoria Mitchell(N. Au) Majes Population (thousands) 1043 1228 8986 3878 4090 588 54.1 628 115 14.2 230 35.4 480 24647 1772 1097 10.6 318 406 606 30 617 2571 4247 3752 224 571 4744 807 30.5 3700 971 462 2174 517 785 932 651 4582 2097 797 699 1212 11103 12443 8996 452 31680 422 958 1629 121 1402 4.05 14.9 2.15 67514 2.23 613 1.37 24.4 103 Water scarcity (%) Jan 0.049 0.322 0.199 0.169 5.99 0.662 0.0021 5.48 0.0204 0.0032 0.0417 0.0011 0.0817 0.0474 1.85 0.0496 0.0007 0.0337 0.0443 0.0132 0.0026 1.37 2.48 19.2 14 0.203 0.157 0.106 0.01 0.0054 1.8 6.16 15.9 88.2 0.926 0.0022 1.48 175 2.44 68.8 0.0047 15.2 32.7 58.4 0.497 50.2 4.88 0.129 47.1 23.3 7.67 4.93 9.89 0.0116 0.0208 0.0833 1.76 116 0.608 9.29 0.158 1.85 Feb 1.25 676 676 346 676 676 0.0053 33.8 0.0323 0.0036 0.117 0.001 0.291 0.0583 3.78 676 0.0008 0.0236 11.1 0.0361 0.0023 1.82 1.32 376 3.34 0.0453 0.042 0.0878 0.0168 0.0091 0.768 0.375 12.7 473 0.0941 0.0036 0.162 33.9 1.05 467 0.008 8.13 676 20 1.22 15 4.19 0.11 676 676 14 3.81 26.4 0.0028 0.0057 0.0077 1.93 1.22 2.02 0.0681 0.021 1.17 Mar 0.767 3.18 1.42 2.85 17.4 676 0.0049 2.62 0.0157 0.0033 0.149 0.0008 0.544 0.0602 0.696 0.162 0.0006 0.0143 0.204 0.0152 0.0018 1.3 0.74 48.1 1.48 0.0199 0.0268 0.0751 0.01 0.0067 0.318 0.132 0.359 295 0.0455 0.0027 0.0757 6.34 0.402 2.43 0.0064 2.09 420 7.93 2.07 5.46 4.5 0.233 676 676 10.9 7.01 19.4 0.0321 0.0298 0.0081 1.7 1.38 1.74 0.099 0.0625 1.27 Apr 0.261 0.447 0.575 0.259 2.37 50.1 0.0035 1.41 0.0075 0.0024 0.152 0.0006 0.355 0.146 0.554 0.0543 0.0005 0.0135 0.0553 0.0073 0.0015 0.962 0.564 0.977 1.11 0.0206 0.0297 0.219 0.0074 0.006 0.478 0.15 0.223 33.3 0.0482 0.0028 0.102 8.78 0.851 1.7 0.0063 0.422 12.4 0.899 6.3 1.01 22.4 1.32 676 220 8.51 25.8 15 0.552 0.488 0.0227 3.09 3.81 2.09 0.255 0.757 7.16 May 0.0524 0.141 0.271 0.0698 0.669 5.49 0.0015 1.82 0.0032 0.0012 0.156 0.0004 0.339 0.2 0.622 0.0344 0.0005 0.0142 0.0345 0.0069 0.0015 0.937 0.941 0.652 4.48 0.0281 0.04 0.276 0.0536 0.012 2.22 0.558 0.774 24.1 0.0861 0.0037 0.256 40.3 4.41 7.98 0.0075 1.89 5.8 2.2 13 2.07 43.7 3.22 15.4 16.4 5.14 56.3 20.5 1.39 1.23 0.0375 2.81 6.28 4.44 0.421 1.93 14.1 Jun 0.0199 0.0551 0.131 0.0455 0.235 0.078 0.0008 3.3 0.0022 0.0011 0.0914 0.0004 0.432 0.193 1.8 0.0416 0.0005 0.0178 0.0495 0.0232 0.0017 1.46 2.31 4.16 16.4 0.0531 0.0635 0.594 0.714 0.0235 5.8 1.39 4.41 120 0.187 0.0046 0.642 68.8 4.47 20.6 0.0095 4.08 2.89 14.3 12.2 11 67 5.67 5.34 5.42 5.21 67.2 20.9 2.17 1.98 0.0621 4.09 10.3 4.9 0.697 3.14 11.9 Jul 0.0316 0.111 0.0782 0.0294 0.705 0.189 0.0009 4.68 0.008 0.0013 0.133 0.0006 0.808 0.226 3.95 0.0896 0.0009 0.0216 0.113 0.0773 0.0029 5.04 10 17 60.7 0.0896 0.0931 1.18 1.69 0.0388 11 2.6 8.58 223 0.344 0.0051 1.18 165 5.19 38.3 0.0113 6.92 5.2 46.6 13.3 43 89 11.2 5.11 2.56 4.12 78.7 25.2 3.8 3.45 0.103 8.66 16.9 6.49 1.15 5.61 13.1 Aug 0.0449 0.252 0.067 0.0231 1.78 0.638 0.0013 4.49 0.0205 0.0022 0.112 0.001 0.802 0.479 3.86 0.0923 0.0015 0.0217 0.19 0.207 0.005 10.1 30.5 35.9 140 0.175 0.159 2.14 3.47 0.0643 20.1 4.43 17.5 203 0.588 0.0051 2.02 306 7.77 76.3 0.0109 13.5 14.3 108 25.3 107 189 25.5 11.3 5.76 10.1 152 57.5 7.28 6.31 0.17 13.4 27.6 15.4 1.91 10.9 32.4 Table S4 - 5 Sep 0.02 0.197 0.0526 0.0163 0.662 0.309 0.0026 11.4 0.153 0.0043 0.11 0.002 0.306 0.606 7.13 0.0257 0.0027 0.0348 0.0574 0.168 0.009 7.03 33 57.1 159 0.289 0.298 2.61 5.87 0.106 30.9 6.43 32.2 260 0.967 0.0045 3.25 369 12 133 0.0087 21 49.8 230 53.4 216 276 49.8 31.3 16.4 22.5 214 103 12.9 11.1 0.282 11.3 44.5 29.1 3.15 20.8 68.6 Oct 0.0227 0.0975 0.0567 0.019 0.234 0.247 0.0043 3.87 0.151 0.0072 0.0911 0.0032 0.118 0.422 1.92 0.0184 0.0045 0.0204 0.0202 0.0276 0.0149 2.62 15.5 23.4 85.5 0.433 0.485 1.4 7.51 0.176 42.7 8.56 48.1 287 1.51 0.0043 4.82 356 16.8 183 0.0092 28.3 79.9 242 47.6 199 76.9 67.5 47.9 27.7 31.1 65.2 115 18.7 15.2 0.466 7.19 70.6 36.6 5.2 33.4 67.6 Nov 0.0385 0.191 0.155 0.134 0.504 0.381 0.0055 1.72 0.0883 0.012 0.0927 0.0054 0.0962 0.249 1.3 0.0368 0.0075 0.0273 0.028 0.0052 0.0247 2.15 16.1 2.44 144 0.655 0.804 0.328 0.282 0.0091 41.6 9.15 67.4 123 2.25 0.0043 5.71 493 13.6 219 0.0092 28.9 110 549 5.91 528 34.9 38.9 55.3 32.5 21.4 34.9 29.9 12.2 7.8 0.771 4.29 109 4.83 8.57 33.3 60.3 Dec 0.0817 0.461 0.338 0.325 4.25 1.33 0.0033 0.896 0.0493 0.0157 0.0615 0.0078 0.127 0.0907 0.756 0.0753 0.0053 0.0434 0.0631 0.0097 0.0311 1.85 6.74 6.91 89.1 0.97 1.18 0.13 0.0131 0.0078 10.4 12.5 89 108 3.63 0.0038 8.71 526 6.85 253 0.0079 12.1 137 78.4 1.07 96.7 12.6 0.789 78.5 47.1 20.4 13.1 16.8 3.58 2.28 1.28 1.83 164 0.881 14.1 23.2 3.74 Average 0.22 56.8 56.6 29.2 59.2 118 0.003 6.29 0.046 0.0048 0.109 0.002 0.358 0.232 2.35 56.4 0.0022 0.0239 0.99 0.0497 0.0083 3.05 10 49.3 59.9 0.248 0.282 0.763 1.64 0.0388 14 4.37 24.8 186 0.89 0.0039 2.37 212 6.33 123 0.0083 11.9 129 113 15.2 106 68.7 17 194 146 13.4 60.3 38.3 5.22 4.16 0.274 5.17 47.7 9.09 3.74 11.1 23.6 Number of months per year that a basin faces low, moderate, significant or severe water scarcity Low Moderate Significant Severe 12 0 0 0 11 0 0 1 11 0 0 1 11 0 0 1 11 0 0 1 10 0 0 2 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 11 0 0 1 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 11 0 0 1 9 2 1 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 3 3 0 6 12 0 0 0 12 0 0 0 12 0 0 0 5 0 2 5 0 0 12 0 7 1 1 3 12 0 0 0 12 0 0 0 8 2 0 2 8 1 0 3 12 0 0 0 8 1 1 2 10 0 1 1 12 0 0 0 9 0 0 3 9 0 0 3 12 0 0 0 10 0 1 1 10 2 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 9 2 1 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 Basin ID 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 Basin name Ord Jequitinhonha Macarthur Fitzroy Gilbert Mucuri Rio Doce Save Burdekin Tsiribihina Buzi Loa Limpopo De Grey Paraiba Do Sul Fortescue Mangoky Fitzroy Orange Ashburton Gascoyne Rio Ribeira Do Iguape Incomati Murray Murchison Maputo Uruguay Tugela Colorado (Argentinia) Rio Jacui Huasco Limari Negro (Uruguay) Groot-Vis Salado Blackwood Rapel Negro (Argentinia) Biobio Waikato South Esk Chubut Clutha Baker Santa Cruz Ganges Salween Hong(Red River) Lake Chad Okavango Tarim Horton Hornaday Conception Ulua Patacua Coco Ocona Cuanza Cunene Doring Gamka Population (thousands) 2.47 887 0.542 5.86 2.71 300 3858 3185 69.3 2397 1034 196 15637 5.41 6928 4.79 587 150 12666 4.97 2.33 2463 2416 2348 4.82 1265 5047 1784 3268 2578 26 142 531 299 1880 27.7 740 710 655 323 55.7 212 33.9 14.5 10 454094 6599 25632 34285 1774 9311 0.036 0.054 193 2716 538 694 68.3 2845 1370 167 279 Water scarcity (%) Jan 187 0.112 1.4 1.09 0.0201 0.15 0.16 1.6 0.775 3.15 0.13 674 26.3 673 0.548 675 9.91 42.3 32.9 673 675 0.495 3.24 313 675 0.896 21.5 8.46 23.5 25.9 4.78 140 29.8 676 15.2 4.26 71.9 4.62 9.39 0.333 11.7 2.73 1.23 0.0066 0.0088 204 1.13 9.08 9.01 0.104 95.8 0.0097 0.0145 676 2.13 0.2 0.125 1.29 0.0419 0.0505 153 20.8 Feb 0.647 0.451 0.512 0.0134 0.0025 0.846 1.08 1.09 0.145 2.16 0.044 472 20.3 674 0.962 674 6.74 2.53 49.7 673 675 0.625 4.49 591 676 1.3 26.9 20.5 185 21.9 20.3 101 231 676 642 676 259 115 259 1.01 434 65.3 20.5 0.0526 0.178 639 111 588 673 0.0724 673 0.375 25.7 676 33.2 1.34 2.03 1.14 0.0779 0.0418 676 454 Mar 31.5 0.544 0.0099 0.0126 0.0307 1.15 1.22 2.55 0.83 4.86 0.151 608 39.2 674 1.29 674 13.8 10.9 53.5 672 675 0.752 8.66 559 675 5.18 6.48 34.3 234 8.23 29.5 186 25.1 676 87.3 676 281 24.2 19.4 1.92 428 31 18.4 0.049 0.157 605 29.4 509 674 0.0788 675 0.621 41.5 676 137 8.94 8.35 1.41 0.0359 0.0165 676 307 Apr 493 1.16 0.038 0.0422 0.224 1.76 2.65 10.7 4.24 20.5 1.3 632 74.6 674 3.25 675 34.7 26.7 61.9 674 675 1.33 28 383 675 24.9 0.327 42.8 168 0.301 26.4 103 0.568 676 2.65 676 108 3.77 2.13 0.778 53.5 9.64 8.09 0.0197 0.0403 482 24.2 427 535 0.292 670 1.03 66.1 676 245 21.8 17.2 11.4 0.0377 0.0367 676 158 May 604 2.24 0.0629 0.07 0.375 3.12 5.78 14.4 6.71 12.2 2.71 648 78.3 675 4.59 675 18.6 31.1 51.6 675 676 1.42 36.3 110 676 42.9 0.133 43.9 47.2 0.218 31.6 98.2 0.0372 676 1.13 676 2.62 0.416 0.782 0.304 6.91 1.26 1.19 0.0075 0.0109 389 12.5 165 86.7 0.663 413 0.0015 103 676 251 18.4 5.8 22.4 0.184 0.146 676 90.1 Jun 641 3.57 0.104 0.114 0.538 5.59 12.6 27.8 10.9 1.27 4.31 659 125 676 8.69 676 5.28 37.9 102 675 675 1.31 60.5 32.9 675 77.9 0.118 71.9 19.5 0.184 78.3 20.2 0.0255 676 1.09 0.97 0.438 0.145 0.597 0.235 0.581 0.277 0.147 0.0053 0.005 99.6 3.11 17.3 19.3 1.13 250 0.0004 0.001 676 5.9 2.84 0.0852 17.3 0.632 0.304 13.1 60.8 Jul 659 5.87 0.172 0.194 0.949 7.9 26.1 52.5 21.5 1.99 7.5 666 211 676 17.3 676 6.91 75.7 186 676 676 1.94 108 29.4 676 128 0.143 142 37.5 0.199 132 36.3 0.0262 676 1.42 0.111 0.44 0.18 0.587 0.238 0.145 0.305 0.147 0.0053 0.0057 25.1 0.812 3.12 2.14 2.13 231 0.0013 0.0012 676 1.03 0.373 0.0433 17.1 1.28 0.568 7.01 50.2 Aug 667 11.7 0.285 0.335 1.89 19.9 49.6 150 43 3.38 18.7 670 374 676 30.6 676 11.2 148 306 675 675 2.43 211 46.1 675 248 0.22 258 63.7 0.209 312 140 0.0263 676 1.74 0.0761 1.39 0.406 0.661 0.248 0.399 0.604 0.639 0.0073 0.0075 9.27 0.499 1.98 0.335 4.53 293 0.0022 0.0026 676 0.65 0.162 0.0463 41.9 3.07 1.1 19 45 Table S4 - 6 Sep 671 20 0.472 0.565 3.59 30.9 65.2 254 82.6 5.85 39.3 672 492 676 28.1 676 18.1 261 383 676 676 1.75 328 84 676 351 0.187 341 93.6 0.191 474 384 0.0275 676 2.56 0.144 14.4 0.864 1.44 0.278 2.12 1.43 3.97 0.0163 0.0142 18.9 0.866 2.34 0.622 8.72 363 0.0036 0.0049 676 0.244 0.1 0.039 87.2 5.74 1.86 81 70.2 Oct 672 17.9 0.781 0.942 5.9 31 80.5 284 129 10 60.4 674 527 676 12.2 676 32.9 356 324 676 676 1.21 348 135 676 403 1.88 322 44.8 2.74 552 510 0.409 676 2.25 1.2 54.4 1.5 2.67 0.285 5.05 3.24 5.48 0.0364 0.0281 78.7 1.28 1.86 2.04 13.4 212 0.006 0.0081 676 0.159 0.0343 0.0284 32.6 8.22 2.11 214 107 Nov 672 0.81 1.29 1.47 6.63 1.26 1.3 190 143 4.64 41.7 674 454 676 2.72 676 19.9 392 135 676 676 1.39 64.5 216 676 61 8.66 148 36.5 12.1 482 539 5.78 676 2.5 3.58 68.4 3.32 1.63 0.367 9.63 5.8 8.68 0.0388 0.0656 174 1.03 3.61 3.05 11.7 163 0.0099 0.0134 676 0.32 0.0465 0.0418 17.4 3.27 1.53 264 72.7 Dec 637 0.136 2.14 2.1 5.68 0.18 0.203 10.8 86.9 3.45 3.13 675 147 674 0.828 674 19.1 412 62.5 675 676 1.09 11.3 306 676 10.6 18 17.7 29.4 23.5 7.38 267 19.1 676 5.01 7.41 66.3 6.65 7.51 0.552 21.8 9.35 8.15 0.0435 0.0797 172 1.22 8.77 7.09 0.835 119 0.0164 0.0222 676 2.11 0.223 0.125 3.29 0.146 0.154 326 105 Average 495 5.37 0.606 0.579 2.15 8.65 20.5 83.2 44.1 6.12 15 644 214 675 9.26 675 16.4 150 146 675 675 1.31 101 234 675 113 7.04 121 81.9 7.97 179 210 26 676 63.7 227 77.3 13.4 25.5 0.546 81.1 10.9 6.39 0.024 0.05 241 15.6 145 168 3.64 346 0.173 19.7 676 56.6 4.53 2.83 21.2 1.89 0.66 315 128 Number of months per year that a basin faces low, moderate, significant or severe water scarcity Low Moderate Significant Severe 2 0 1 9 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 8 1 1 2 10 2 0 0 12 0 0 0 12 0 0 0 0 0 0 12 5 2 0 5 0 0 0 12 12 0 0 0 0 0 0 12 12 0 0 0 7 1 0 4 6 2 1 3 0 0 0 12 0 0 0 12 12 0 0 0 8 1 0 3 4 2 0 6 0 0 0 12 8 1 0 3 12 0 0 0 7 2 0 3 9 0 2 1 12 0 0 0 7 1 0 4 3 4 1 4 11 0 0 1 0 0 0 12 11 0 0 1 8 0 0 4 9 1 0 2 11 1 0 0 11 0 0 1 12 0 0 0 10 0 0 2 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 5 0 2 5 11 1 0 0 8 0 1 3 9 0 0 3 12 0 0 0 1 1 1 9 12 0 0 0 11 1 0 0 0 0 0 12 9 1 0 2 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 4 0 1 7 7 2 1 2 Basin ID 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 Basin name Groot- Kei Lurio Messalo Rovuma Galana Pyasina Popigay Fuchun Jiang Min Jiang Han Jiang Mamberamo Lorentz Eilanden Uwimbu Sungai Kajan Sungai Mahakam Sungai Kapuas Batang Kuantan Batang Hari Flinders Leichhardt Escaut (Schelde) Issyk-Kul Balkhash Eyre Lake Lake Mar Chiquita Lake Turkana Dead Sea Suriname Lake Titicaca Lake Vattern Great Salt Lake Lake Taymur Daryacheh-Ye Orumieh Van Golu Ozero Sevan Population (thousands) 874 1250 288 1994 5589 244 0.845 10914 9730 9672 442 16.1 55.7 58.8 93 892 1607 1520 2049 6.33 6.43 9448 3325 5182 86.2 4097 8701 6150 103 2691 405 2224 6.19 4307 894 412 Water scarcity (%) Jan 454 0.0046 0.0053 0.0202 10.9 0.492 0.0094 3.74 2.39 9.79 0.004 0.0045 0.0015 0.0009 0.0192 0.0431 0.0191 2.82 0.861 16.4 0.206 10.6 6.44 14.4 674 75.1 4.01 4.11 0.0166 3.83 3.29 86.4 0.0081 13.2 3.59 58.7 Feb 456 0.0034 0.0027 0.0091 282 47.1 0.967 2.39 1.8 21.7 0.0066 0.0051 0.0025 0.0017 0.0152 0.0521 0.0289 3.06 0.929 0.148 0.198 20.2 39.8 676 675 61.2 676 7.78 0.019 3.34 676 23.9 157 37.6 676 676 Mar 205 0.0035 0.0023 0.0065 30.5 74.6 1.6 1.45 0.633 3.31 0.0049 0.0044 0.0021 0.0015 0.0025 0.0142 0.0162 0.24 0.0969 2.31 1.01 23.7 1.32 6.01 675 24.5 34.7 51.5 0.0174 3.06 0.556 37.9 226 33.2 3.91 144 Apr 192 0.0131 0.0047 0.0204 0.928 115 2.64 2.37 0.7 2.36 0.0054 0.0048 0.0021 0.0015 0.0021 0.0097 0.0147 0.208 0.0792 6.2 2.22 30.5 12.6 21.7 676 42.4 0.5 214 0.0125 4.28 0.671 69.3 307 27.4 0.808 7.74 May 286 0.0276 0.0139 0.0656 1 171 4.37 3.9 0.765 2.35 0.0063 0.0065 0.0022 0.0019 0.002 0.0117 0.0171 0.315 0.168 9.4 3.58 56 38.6 45 676 41.9 0.4 372 0.0077 4.71 1.73 104 391 32.8 3.18 8.36 Jun 378 0.0455 0.0233 0.0789 4.53 0.027 0.0004 2.32 0.798 2.3 0.0079 0.0089 0.0024 0.0027 0.0025 0.0144 0.0227 1.04 0.493 12.9 5.33 99.7 69.1 77.6 676 74.3 0.287 444 0.0073 7.19 3.65 229 0.0004 90.7 18.9 42 Jul 491 0.0813 0.0643 0.119 13.5 0.0818 0.0011 24.9 9.51 12.3 0.0073 0.0081 0.0025 0.0036 0.003 0.0369 0.034 2.32 0.963 23.2 9.29 164 109 157 676 155 0.234 531 0.0092 9.49 7.32 369 0.0009 173 30 105 Aug 575 0.165 0.171 0.229 24.6 0.123 0.0019 32.7 9.53 9.29 0.0078 0.009 0.0026 0.0041 0.0029 0.0538 0.0372 2.91 1.4 45.3 17.1 244 204 262 676 269 0.472 574 0.015 14.4 11.3 422 0.0018 267 51.2 175 Table S4 - 7 Sep 628 0.315 0.382 0.409 38.1 0.128 0.0032 38.5 10.9 12.4 0.0073 0.0068 0.0025 0.0038 0.0432 0.284 0.0618 9.91 3.64 83.9 30.5 292 227 300 676 411 0.639 568 0.03 18.3 11.9 418 0.0023 271 59.5 160 Oct 648 0.525 0.633 0.688 55 0.284 0.0054 11.5 2.79 6.61 0.0097 0.0118 0.0031 0.0038 0.0315 0.152 0.0271 5.1 2.02 129 48.6 227 165 180 676 324 0.762 569 0.0499 13.5 4.4 409 0.0045 206 20 79 Nov 612 0.521 0.257 0.773 4.45 0.47 0.009 7.38 3.48 9.9 0.0088 0.0083 0.0031 0.0032 0.0077 0.0606 0.0187 2.78 1.01 149 63.5 38.3 31.1 17.5 676 235 0.99 532 0.0826 15.4 1.83 235 0.0075 65.4 3.52 40.2 Dec 569 0.0528 0.34 0.321 5.36 0.778 0.0149 8.23 4.78 15.2 0.0072 0.0086 0.0025 0.0019 0.0202 0.0393 0.0186 1.94 0.65 159 76.8 19.2 11.4 23.2 675 113 3.03 68.6 0.0691 5.87 4.19 99.9 0.0124 32.5 6.18 88.2 Average 458 0.146 0.158 0.228 39.2 34.2 0.802 11.6 4.01 8.96 0.0069 0.0072 0.0024 0.0026 0.0127 0.0644 0.0263 2.72 1.03 53.1 21.5 102 76.3 148 675 152 60.1 328 0.028 8.62 60.5 209 90 104 73 132 Number of months per year that a basin faces low, moderate, significant or severe water scarcity Low Moderate Significant Severe 0 0 1 11 12 0 0 0 12 0 0 0 12 0 0 0 11 0 0 1 10 1 1 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 9 2 1 0 12 0 0 0 8 0 1 3 8 1 1 2 7 0 2 3 0 0 0 12 6 1 1 4 11 0 0 1 4 0 0 8 12 0 0 0 12 0 0 0 11 0 0 1 5 1 0 6 8 0 1 3 8 0 1 3 11 0 0 1 7 2 2 1
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Related manuals
Download PDF
advertisement