Global Monthly Water Scarcity - University of Twente Research

Global Monthly Water Scarcity - University of Twente Research
Global Monthly Water Scarcity: Blue Water Footprints
versus Blue Water Availability
Arjen Y. Hoekstra1,2*, Mesfin M. Mekonnen1, Ashok K. Chapagain3, Ruth E. Mathews2, Brian D. Richter4
1 Department of Water Engineering and Management, University of Twente, Enschede, The Netherlands, 2 Water Footprint Network, Enschede, The Netherlands, 3 World
Wide Fund-United Kingdom, Godalming, Surrey, United Kingdom, 4 The Nature Conservancy, Charlottesville, Virginia, United States of America
Abstract
Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to
characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints
(consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to
sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for
the period 1996–2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month
of the year. The ecological and economic consequences of increasing degrees of water scarcity – as evidenced by the Rio
Grande (Rio Bravo), Indus, and Murray-Darling River Basins – can include complete desiccation during dry seasons,
decimation of aquatic biodiversity, and substantial economic disruption.
Citation: Hoekstra AY, Mekonnen MM, Chapagain AK, Mathews RE, Richter BD (2012) Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water
Availability. PLoS ONE 7(2): e32688. doi:10.1371/journal.pone.0032688
Editor: Juan A. Añel, University of Oxford, United Kingdom
Received November 16, 2011; Accepted January 29, 2012; Published February 29, 2012
Copyright: ß 2012 Hoekstra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Funding: The authors have no funding or support to report.
Competing Interests: The authors have declared that no competing interests exist.
* E-mail: [email protected]
estimating scarcity than the volume of water withdrawn. In
industries and households even 90–95% of the water withdrawn
will return [20]. Second, in assessing water availability we take into
account the flows needed to sustain critical ecological functions, as
done earlier by for instance Smakhtin et al. [21]. We use a recently
proposed presumptive standard that depletion beyond 20% of a
river’s natural flow increases risks to ecological health and
ecosystem services [22]. Third, we compare water use and
availability on a monthly rather than annual basis, similar to
what Wada et al. [13] did recently. In this way we incorporate the
often-great variability of water supply and use throughout the year
and capture the seasonal nature of water scarcity [23]. Our global
water scarcity study is the first to combine those three innovations
in one assessment. It compares on a monthly basis the
consumptive use component of blue water withdrawals to the
estimated ecologically admissible fraction of runoff.
Following Hoekstra et al. [24], we define blue water scarcity in a
given river basin as the ratio of the blue water footprint in that
basin to the blue water available, where the latter accounts for
environmental water needs by subtracting from the total runoff
the presumed flow requirement for ecological health. As is the case
in previous water scarcity indicators, we have focused on scarcity
of water available in rivers and groundwater, or the ‘‘blue’’ water
[25]; we do not consider scarcity of direct precipitation, or
‘‘green’’ water. Based on [26], the monthly blue water footprint of
humanity was estimated at a five by five arc minute spatial
resolution for the world as a whole, distinguishing between
agricultural, industrial, and domestic water footprints. The blue
water footprint of human activities is defined as the volume of
surface and groundwater consumed as a result of that activity,
whereby consumption refers to the volume of freshwater used and
then evaporated or incorporated into a product. Natural runoff
Introduction
The inexorable rise in demand for water to grow food, supply
industries and sustain urban and rural populations has led to a
growing scarcity of freshwater in many parts of the world. An
increasing number of rivers now run dry before reaching the sea
for substantial periods of the year. In many areas, groundwater is
being pumped at rates that exceed replenishment, depleting
aquifers and the base flows of rivers [1]. Increasingly, governments, corporations and communities are concerned about the
future availability and sustainability of water supplies [2].
During the last twenty years, researchers have developed a
number of metrics to help characterize, map and track the
geography of water scarcity globally. These have included, for
example, the ratio of population size to the renewable water supply
[3] and the ratio of water withdrawals to the renewable supply [4–
7]. These water scarcity indicators have highlighted the mismatch
between water availability and water demand, and have helped
document the spread of water scarcity over time. Today, water
scarcity assessments underpin global assessments of food [7],
poverty and human development [8], economic and business
prospects [9], and ecological health [10]. Given this widespread
use of water scarcity indicators, their accuracy is at a premium.
We have developed a new and more accurate assessment of
global water scarcity by combining three innovations in measuring
water use and availability. First, following recent developments in
water use studies [11–17], we measure water use in terms of
consumptive use of ground- and surface water flows – i.e., the blue
water footprint – rather than water withdrawals. In agriculture,
about 40% of water withdrawals typically return to local rivers and
aquifers and thereby becomes available for reuse [18,19], so that
the volume of water consumed provides a more accurate basis for
PLoS ONE | www.plosone.org
1
February 2012 | Volume 7 | Issue 2 | e32688
Global Monthly Blue Water Scarcity
(CIESIN) and the International Center for Tropical Agriculture
(CIAT) [30] and by assuming that 5% of the industrial
withdrawals and 10% of the domestic withdrawals are ultimately
consumed, i.e. evaporated, which are thought to be reasonable
estimates according to FAO [20]. Due to a lack of data we have
distributed the annual water consumption figures for industry and
domestic use equally over the twelve months of the year without
accounting for the possible monthly variation.
The monthly blue water availability in a river basin in a certain
period was calculated as the ‘natural runoff’ in the basin minus
‘environmental flow requirement’. The natural runoff was
estimated by adding the actual runoff and the total blue water
footprint within the river basin. Monthly actual runoff data at a 30
by 30 arc minute resolution were obtained from the Composite
Runoff V1.0 database [27]. These data are based on model
estimates that were calibrated against runoff measurements for
different periods, with the year 1975 as the mean central year. In
order to approximate the natural (undepleted) runoff, we corrected
the 1975 actual runoff data by adding the aggregated blue water
footprint per basin as in 1975. The latter was estimated to be 74%
of the blue water footprint per basin as was estimated by
Mekonnen and Hoekstra [26] for the central year 2000. The 74%
refers to the ratio of the global blue water footprint in 1975 to the
global blue water footprint in 2000 [31].
In order to establish the environmental flow requirement we
have adopted the ‘‘presumptive environmental flow standard’’ as
proposed by Richter et al. [22] and Hoekstra et al. [24]. We note
that the application of this standard does not imply that 80% of the
total runoff is unavailable for use. In actuality all of the runoff can
be used, as long as no more than 20% of the total runoff is
depleted by water consumption. As suggested by Richter et al. [22],
this presumptive standard is to be applied only when site-specific
scientific investigation of environmental flow needs has not
been undertaken. The presumptive standard is meant to be a
precautionary approach to estimating environmental flow requirements when detailed local studies have not been completed, which
is presently the case for the vast majority of the world’s river
basins. We acknowledge that governments and local stakeholders
may intentionally choose to consume more than 20% of total
natural runoff and bear the ecological consequences to gain other
benefits associated with water consumption. However, we feel that
it is very important to explicitly account for ecological health in
water scarcity assessments, and use of this presumptive standard in
the present study enables identification of river basins in which
ecological health has likely been compromised.
Blue water scarcity values have been classified into four levels of
water scarcity:
per river basin was estimated by taking estimates of actual runoff
from Fekete et al. [27] and adding the water volumes already
consumed (the blue water footprint). Blue water availability is
estimated by reducing total natural runoff by 80% to account for
presumed environmental flow requirements. The blue water
availability is thus the volume of water that can be consumed
without expected adverse ecological impacts. We hasten to note,
however, that flows dedicated to the maintenance of ecological
health can be used for other purposes; the presumptive standard is
met as long as net depletion remains within 20% of the natural
monthly flow.
We believe that our indicator provides a more reliable and
accurate rendering of the status of water budgets (inputs minus
outputs) at the river basin scale than has been available to date
because it combines these three improvements over previous
studies: use of water consumption instead of water withdrawal,
explicit incorporation of environmental flow requirements and a
monthly time-step. As such, this indicator provides decisionmakers with an improved picture of where and when current levels
of water use are likely to cause water shortages and ecological
harm within river basins around the world.
Methods
The blue water scarcity in a river basin is defined as the ratio of
the total blue water footprint to the blue water availability in a
river basin during a specific time period [24]. A blue water scarcity
of one hundred per cent means that the available blue water has
been fully consumed. The blue water scarcity is time-dependent; it
varies within the year and from year to year. In this study, we
calculate blue water scarcity per river basin on a monthly basis.
Blue water footprint and blue water availability are expressed in
mm/month. For each month of the year we consider the ten-year
average for the period 1996–2005 to incorporate climate
variability, while acknowledging that averaging can obscure
inter-annual variability in scarcity.
Average monthly blue water footprints per river basin for the
period 1996–2005 have been derived from the work of Mekonnen
and Hoekstra [26], who estimated the global blue water footprint
at a 5 by 5 arc minute spatial resolution. They reported annual
values at country level, whereas in the current study we use the
same underlying data to report monthly values at river basin level.
The three primary water-consuming sectors are included:
agriculture, industry and domestic water supply. The blue water
footprint of crop production was calculated using a daily soil water
balance model at the mentioned resolution level as reported in
Mekonnen and Hoekstra [11,28,29]. Blue water consumption in
irrigated crop production is calculated by performing two different
soil water balance scenarios. The first soil water balance scenario is
carried out based on the assumption that the soil does not receive
any irrigation. The second soil water balance scenario is carried
out with the assumption that the amount of actual irrigation is
sufficient to meet the irrigation requirement, applying the same
crop parameters as in the first scenario. The blue crop water
consumption is equal to the crop water evapotranspiration over
the growing period as simulated in the second scenario minus the
total crop water evapotranspiration as estimated in the first
scenario.
The blue water footprints of industries and domestic water
supply were obtained by spatially distributing national data on
industrial and domestic water withdrawals from the Food and
Agricultural Organization of the United Nations (FAO) [20]
according to population densities around the world as given by
the Center for International Earth Science Information Network
PLoS ONE | www.plosone.org
N
N
N
N
2
low blue water scarcity (,100%): the blue water footprint is
lower than 20% of natural runoff and does not exceed blue
water availability; river runoff is unmodified or slightly
modified; presumed environmental flow requirements are not
violated.
moderate blue water scarcity (100–150%): the blue water
footprint is between 20 and 30% of natural runoff; runoff is
moderately modified; environmental flow requirements are not
met.
significant blue water scarcity (150–200%): the blue water
footprint is between 30 and 40% of natural runoff; runoff is
significantly modified; environmental flow requirements are
not met.
severe water scarcity (.200%). The monthly blue water
footprint exceeds 40% of natural runoff; runoff is seriously
modified; environmental flow requirements are not met.
February 2012 | Volume 7 | Issue 2 | e32688
Global Monthly Blue Water Scarcity
during the other part. Even in otherwise water abundant areas,
intra-annual variability can severely limit blue water availability.
Under such conditions, considering blue water availability on an
annual basis provides an incomplete and sometimes misleading
view of blue water availability per basin.
We evaluated 405 river basins, which together cover 66% of the
global land area (excluding Antarctica) and represent 65% of the
global population in 2000 (estimate based on CIESIN and CIAT
[30]). We applied river basin boundaries and names as provided
by Global Runoff Data Centre (GRDC) [32] (Figure S1). The land
areas not covered include for example Greenland, the Sahara
desert in North Africa, the Arabian peninsula, the Iranian, Afghan
and Gobi deserts in Asia, the Mojave desert in North America
and the Australian desert. Also excluded are many smaller land
areas, often along the coasts, that do not fall within major river
basins.
Monthly water scarcity by river basin
For this assessment, we analyzed 405 river basins that
collectively account for 69 percent of global runoff, 75 percent
of world irrigated area, and 65 percent of world population. For
each river basin and each month, we categorize water scarcity
from low to severe based on the ratio of blue water footprint to
blue water availability (natural runoff minus environmental flow
requirements). Referring to Figure 2, in river basins shown in
green in a given month, the blue water footprint is less than 20
percent of that month’s natural runoff. There is little or no water
scarcity and the basin fully meets that month’s presumptive
environmental flow requirement. Data are provided in Table S4.
We illustrate the relationships between blue water footprint,
natural runoff, environmental flow requirements and blue water
availability for the Murray-Darling River Basin in Figure 3. One
can see that blue water footprint in the Murray-Darling River
Basin is largest in the period that water availability is lowest. The
blue water footprint exceeds natural runoff during a part of the dry
period, which is made possible through temporary depletion of
groundwater or surface water reservoir storage.
Table 1 gives an overview of the number of basins and number
of people facing low, moderate, significant and severe water
scarcity during a given number of months per year. In 223 river
basins (55% of the basins studied) with 2.72 billion inhabitants
(69% of the total population living in the basins included in this
study), the blue water footprint exceeds blue water availability
during at least one month of the year. For 201 of these basins, with
together 2.67 billion inhabitants, there was severe water scarcity
during at least one month of the year, highlighting the fact that
when water scarcity exists it is usually of a severe nature, meaning
that more than 40% of natural runoff is being consumed. In 35
river basins with 483 million people, there was severe water
scarcity for at least half of the year.
Of importance when considering the social, economic and
environmental impacts of water scarcity is both the severity and
the duration of the scarcity (see Figure 4). Twelve of the river
basins included in this study experience severe water scarcity
during all months of the year. The largest of those basins is the
Eyre Lake Basin in Australia, one of the largest endorheic basins in
the world, arid and inhabited by only about 86,000 people, but
covering around 1.2 million km2. The most heavily populated
basin facing severe water scarcity all year long is the Yongding He
Basin in northern China (serving water to Beijing), with an area of
214,000 km2 and a population density of 425 persons per km2.
Eleven months of severe water scarcity occurs in the San Antonio
River Basin in Texas, US and the Groot-Kei River Basin in
Eastern Cape, South Africa. Two heavily populated river basins
face nine months of severe water scarcity, the Penner River Basin
in southern India, a basin with a dry tropical monsoon climate and
10.9 million people, and the Tarim River Basin in China, which
includes the Taklamakan Desert with 9.3 million people. Four
basins face severe water scarcity during eight months a year: the
Indus with 212 million people; the Cauvery with an area of
91,000 km2 and 35 million people; the Dead Sea Basin, which
includes the Jordan River and extends over parts of Jordan, Israel,
the West Bank and minor parts of Lebanon and Egypt; and the
Salinas River in California in the US.
Results
Monthly blue water footprint
Agriculture accounts for 92% of the global blue water footprint;
the remainder is equally shared between industrial production and
domestic water supply [26]. However, the percentages of water
consumed by agriculture, industry and domestic water supply vary
across river basins and within the year. While the blue water
footprint in agriculture varies from month to month depending on
the timing and intensity of irrigation, the domestic water supply
and industrial production were assumed to remain constant
throughout the year. Therefore, for particular months in certain
basins one hundred per cent of the blue water footprint can be
attributed to industry and domestic water supply. The intraannual variability of the total blue water footprint is mapped at a
five by five arc minute grid in Figure 1. By aggregating the grid
data to the level of river basins we obtain the maps as shown in
Figure S2. The monthly blue water footprints per basin are further
tabulated in Table S1. The values on the maps are shown in mm
per month and can thus directly be compared.
A large blue water footprint throughout the year is observed for
the Indus and Ganges River Basins, because irrigation occurs here
throughout the year. A large blue water footprint during part of
the year is estimated for basins such as the Tigris-Euphrates,
Huang He (Yellow River), Murray-Darling, Guadiana, Colorado
(Pacific Ocean) and Krishna. When we consider Europe and
North America as a whole, we see a clear peak in the blue water
footprint in the months May to September (around the northern
summer). In Australia, we see a blue water footprint peak in the
months October to March (around the southern summer). One
cannot find such distinct seasonal patterns in the blue water
footprint in South America, Africa or Asia, because these
continents are more heterogeneous in climatic conditions.
Monthly natural runoff and blue water availability by
river basin
Natural runoff and blue water availability vary across basins and
over the year as shown on the global maps in Figures S3, S4 and
in Tables S2, S3. The Amazon and Congo River Basins together
account for 28% of the natural runoff in the 405 river basins
considered in this study. At a global level, monthly runoff is above
average in the months of January and April to August and below
average during the other months of the year. When we look at the
runoff per region, we find that most of the runoff in North
America occurs in the period of April to June, in Europe from
March to June, in Asia between May and September, in Africa in
January, August and September, and in South America from
January to May. While the Amazon and Congo River Basins
display relatively low variability over the year, much sharper
gradients are apparent in other basins. In some parts of the world,
a large portion of the annual runoff occurs within a few weeks or
months, generating floods during one part of the year and drought
PLoS ONE | www.plosone.org
3
February 2012 | Volume 7 | Issue 2 | e32688
Global Monthly Blue Water Scarcity
Figure 1. Monthly blue water footprint in the period 1996–2005. The data are shown in mm/month on a 5 by 5 arc minute grid. Data per grid
cell have been calculated as the water footprint within a grid cell (in m3/month) divided by the area of the grid cell (in 103 m2).
doi:10.1371/journal.pone.0032688.g001
PLoS ONE | www.plosone.org
4
February 2012 | Volume 7 | Issue 2 | e32688
Global Monthly Blue Water Scarcity
Figure 2. Monthly water scarcity in the world’s major river basins, based on the period of 1996–2005. In each month that a river basin is
colored in some shade of green, the monthly water scarcity is low (blue water footprint is less than net availability). In such cases, the presumed
environmental flow requirements are not violated, and river runoff in that month is unmodified or only slightly modified. In each month that a river
basin is colored yellow, water scarcity is moderate. Blue water footprint is between 20 and 30% of natural runoff; runoff is hence moderately modified
and environmental flow requirements are not fully met. When a river basin is colored orange, water scarcity is significant. Blue water footprint is
between 30 and 40% of natural runoff, so monthly runoff is significantly modified. In each month that a river basin is colored red, water scarcity is
severe; the blue water footprint exceeds 40% of natural runoff, therefore runoff is seriously modified.
doi:10.1371/journal.pone.0032688.g002
PLoS ONE | www.plosone.org
5
February 2012 | Volume 7 | Issue 2 | e32688
Global Monthly Blue Water Scarcity
Figure 3. Water scarcity over the year for the Murray-Darling River Basin in Australia (average for the period 1996–2005). Net
available water – that is natural runoff minus environmental flow requirement – is shown in green. From October until May, the blue water footprint
exceeds net available water; in these months, the presumptive environmental flow requirement is not met. When the blue water footprint moves into
the yellow, orange and red colors, water scarcity is moderate, significant and severe, respectively.
doi:10.1371/journal.pone.0032688.g003
the fact that Oki and Kanae call an area ‘severely water stressed’
already when the annual ratio of water withdrawal to runoff
exceeds 40% [5]. When we roughly assume that water
consumption (the blue water footprint) is 60% of total water
withdrawal in a basin, this criterion is equivalent to saying that
severe water stress occurs when the blue water footprint exceeds
24% of runoff, which means that less than 76% of runoff remains
(on an annual basis). In our study, severe water scarcity is assumed
to occur when less than 60% of runoff remains (on a monthly
basis). We thus use a less strict criterion, but apply a monthly
evaluation which is more strict. This can help explain the
similarity between [5] and our study in the identification of
Discussion
The current study provides the first global assessment of blue
water scarcity at the scale of river basins and at a monthly
resolution while accounting for environmental flow requirements.
We find that at least 2.7 billion people are living in basins that
experience severe water scarcity during at least one month of the
year. Our estimate is close to what Oki and Kanae [5] found in
another recent global water scarcity study, although they looked at
water withdrawals instead of consumption and considered water
scarcity at an annual basis. They found 2.4 billion people living in
severely water-stressed areas. The similar finding is explained by
Table 1. Number of basins and number of people facing low, moderate, significant and severe water scarcity during a given
number of months per year.
Number of basins facing low, moderate, significant
and severe water scarcity during n months per year
Number of people (millions) facing low, moderate,
significant and severe water scarcity during
n months per year
Number of months
per year (n)
Low water
scarcity
Moderate water
scarcity
Significant
water scarcity
Severe water
scarcity
Low water
scarcity
Moderate
water scarcity
Significant
water scarcity
Severe water
scarcity
0
17
319
344
204
353
2690
2600
1289
1
2
55
45
46
18.6
894
357
440
2
1
26
12
49
0.002
302
672
512
3
4
4
2
33
79.6
69.2
220
182
4
6
1
1
22
35.0
0.14
9.2
345
5
18
0
1
16
897
0
97.8
706
6
9
0
0
10
111
0
0
25.6
7
17
0
0
4
144
0
0
88.0
8
29
0
0
4
293
0
0
254
9
29
0
0
3
66.8
0
0
20.2
10
52
0
0
0
428
0
0
0
11
39
0
0
2
296
0
0
1.8
12
182
0
0
12
1233
0
0
93.3
Total
405
405
405
405
3956
3956
3956
3956
doi:10.1371/journal.pone.0032688.t001
PLoS ONE | www.plosone.org
6
February 2012 | Volume 7 | Issue 2 | e32688
Global Monthly Blue Water Scarcity
Figure 4. Number of months during the year in which the blue water footprint exceeds blue water availability for the world’s major
river basins, based on the period of 1996–2005. Blue water availability refers to natural flows (through rivers and groundwater) minus the
presumed environmental flow requirement.
doi:10.1371/journal.pone.0032688.g004
severely water stressed areas and in the estimation of the number
of people living under severe water stress.
However, water scarcity analysis at a monthly time step
provides insight into water scarcity that is not revealed in annual
water scarcity studies [4–6,21]; in particular the fact that scarcity
occurs in certain periods of the year and not in others [13,33].
This enables a more detailed analysis of when water consumption
is exceeding water availability which can assist in pinpointing
and prioritizing investments in blue water footprint reduction. If
stricter criteria for high water scarcity was used in line with
previous annual studies, the number of high water stress areas and
the people affected by water stress would increase.
In this study, water scarcity has been evaluated at the scale of
large river basins. Other investigators have presented global water
scarcity assessments at a much higher spatial resolution, by
applying a 30 arc minute grid [5–6,13]. While we acknowledge
that portrayal of water scarcity at a higher spatial resolution can be
useful for some purposes, we feel that it is very important to
portray water scarcity using geographic units familiar and relevant
to water managers and planners, i.e., at the river basin scale. We
also caution that the accuracy of existing runoff and water
consumption data may not yet warrant interpretation of results at
higher spatial resolution. We stress that our basic analyses of blue
water footprint and water availability have been carried out at
high-resolution grid level, so that it is only in the presentation of
scarcity levels that we show results at basin level.
The levels of water scarcity estimated in this study correspond
strongly with documented ecological declines and socio-economic
disruption in some of the world’s most heavily used river basins.
The Indus River Basin, with 212 million people, faces severe water
scarcity during eight months of the year. In the northwestern
Indian provinces of Punjab, Rajasthan and Haryana, each one of
which lies fully or partly in the Indus River Basin, groundwater is
steadily being depleted [34]. Unsustainable groundwater depletion
and severe water scarcity threaten potable water supplies and
agricultural output, affecting the country’s food supplies and the
government’s welfare programs. The Rio Grande (or Rio Bravo)
Basin – an international river basin shared by the US and Mexico
– suffers severe water scarcity during seven months of the year. As
a result of low water levels, the concentration of pollutants is so
high that fish kills have occurred, and the lower river is suffering
PLoS ONE | www.plosone.org
from greatly increased salinity levels which have displaced 32
native freshwater fish species [35]. Regional economic losses in
irrigated agriculture due to water shortages have been estimated at
$135 million per year, including loss of more than 4,000 jobs
annually [36]. In the Murray-Darling basin in south-eastern
Australia with six months of severe water scarcity, depletion of
river flows caused the Murray to run dry before reaching the sea
for the first time in 2002, and 20 of 23 sub-basins have been
assessed as being in ‘‘poor’’ to ‘‘very poor’’ ecosystem health [37].
A highly controversial new draft basin plan proposes a multibillion dollar government program of irrigation water buybacks in
an attempt to reduce consumption by at least 20% and increase
return flows to depleted wetlands and streams, with projected
economic losses to agriculture of at least $800 million per year
[37].
With severe water scarcity occurring at least one month per year
in close to one half of the river basins included in this study, our
results underline the critical nature of water shortages around the
world. Businesses, investors, farmers, governments and others may
find this scarcity indicator useful in assessing their water-related
risks. The indicator highlights where investments in improved
water efficiency and productivity may be critical to averting water
shortages and seasonal rationing. It also illuminates that trade –
particularly in agricultural products – can help alleviate water
scarcity through import of water-intensive products from more
water-rich areas.
Rockström et al. [38] have posed that planetary boundaries for
different global resources can be determined. By including the
presumptive environmental flow requirement and doing the
analysis at a monthly time-step, our water scarcity indicator
contributes higher resolution analysis for setting a boundary for
the sustainable use of freshwater at local and regional scales
[39,40]. Maintaining water use within this boundary of water
availability can have implications for economic and infrastructure
planning, trade and agricultural policies, and development aid.
The presumptive environmental flow standard applied in our
water scarcity analysis is a precautionary boundary that should be
refined with site-specific studies. However, depletion beyond this
boundary will typically involve tradeoffs between the social and
economic benefits of increased consumptive use and the loss of
ecosystem health and related social and economic costs [22].
7
February 2012 | Volume 7 | Issue 2 | e32688
Global Monthly Blue Water Scarcity
While our water scarcity indicator provides an improved
accounting of the current status of basin water budgets, a couple
of caveats deserve mention so as to avoid misinterpretation of these
results. Our estimates of blue water availability account for monthby-month natural variability in flow, but they do not yet properly
account for the perturbation of seasonal runoff patterns by river
flow regulation by dams. The runoff dataset from Fekete et al. [27]
used in this study is a construct based on runoff modeling on the
one hand and river discharge measurements on the other hand, so
that it implicitly includes impacts from reservoirs, inter-basin
transfers and consumptive water use (but only in those cases
where discharge measurements were available). We have nullified
the impact of consumptive water use by adding our own
consumptive water use estimates to the ‘actual’ runoff from this
dataset to obtain ‘natural’ runoff, but we have not been able to
cancel out the effects of dams and inter-basin transfers.
Further, our water footprint estimates do not yet include
evaporation from artificial reservoirs. Additionally, our estimates
of blue water footprint do not account for inter-basin transfers of
water. For basins that are net exporters of water (e.g., the
Colorado, through deliveries to southern California, Las Vegas,
the Front Range of Colorado and elsewhere) the scarcity picture is
likely worse than presented here, whereas for net importers of
water it may be better.
Our water scarcity estimates also include uncertainties inherent
in the data used and the assumptions made. The data on actual
runoff are model-based estimates calibrated against long-term
runoff measurements [27]; the model outcomes include an error of
5% at the scale of large river basins and greater in smaller basins.
The runoff measurements against which the model is calibrated
have accuracy on the order of 610–20 percent [27]. Estimates of
blue water footprint can easily contain an uncertainty of 620%
[28,29,41]; in general, uncertainties for relatively small river basins
will be bigger than for large river basins.
In order to estimate natural (undepleted) runoff in each river
basin, we have added the estimated blue water footprint from [26]
to the estimated actual runoff from [27]. In doing so, we
overestimate natural runoff in those months in which the blue
water footprint partially draws down the total annual water storage
in the basin (e.g., from aquifers) rather than depleting that month’s
runoff. Similarly, we underestimate the natural runoff in the months
in which water is being stored for later consumption. Further, as a
result of our approach we overestimate natural runoff in those
months and basins in which a portion of the water consumed comes
from fossil (non-renewable) groundwater, because that water should
not be included in natural runoff. However, empirical data on
consumption of renewable versus fossil groundwater are very
difficult to obtain at a global scale; so far only rough assessments
based on models and assumptions have been made [12,42,43].
This study has excluded the issue of water pollution. Blue water
scarcity has been defined such that it refers to scarcity in quantitative
sense. Return flows from agriculture, industries and households are
not consumptive use, so they do not affect our scarcity measure. In
many places, water scarcity is much higher than suggested by us if
one would consider scarcity of uncontaminated water.
Despite these cautionary notes, our estimates provide a significant
improvement over previous water scarcity indicators and the
relative spatial and temporal patterns of water scarcity globally
because they provide a more detailed assessment of when and where
water scarcity occurs. Moreover, the calculated scarcity values for
each river basin and month are conservative estimates of actual
scarcity for two reasons. First, by evaluating water scarcity at the
level of whole river basins, we do not capture spatial variations
within basins. Flows may be substantially more depleted at the subbasin level, for example, than for that basin as a whole. Second, we
assume an average year with regard to both blue water footprint
and availability, but in many basins inter-annual variations are
substantial, aggravating the scarcity problem in the drier years.
The water scarcity values presented refer to the period 1996–
2005. Continued growth in blue water footprint due to growing
populations, changing food patterns (for instance, more meat
consumption) and increasing demand for biofuels, combined with
the effects of climate change on runoff patterns, are likely to result
in a worsening and expansion of water scarcity in many river
basins in the decades ahead [6].
Supporting Information
Figure S1
Global river basin map.
(TIFF)
Figure S2 Global maps of the monthly blue water footprint in the world’s major river basins. Period 1996–2005.
(TIF)
Figure S3 Global maps of monthly natural runoff in the
world’s major river basins.
(TIF)
Figure S4 Global maps of monthly blue water availability in the world’s major river basins.
(TIF)
Table S1 Monthly blue water footprint for the world’s
major river basins.
(PDF)
Table S2 Monthly natural runoff for the world’s major
river basins.
(PDF)
Table S3 Monthly blue water availability for the
world’s major river basins.
(PDF)
Table S4 Monthly blue water scarcity for the world’s
major river basins.
(PDF)
Acknowledgments
We thank Sandra Postel, National Geographic, for providing comments on
a draft of this paper.
Author Contributions
Conceived and designed the experiments: AYH MMM. Performed the
experiments: AYH MMM. Analyzed the data: AYH MMM. Wrote the
paper: AYH MMM AKC REM BDR.
References
3. Falkenmark M (1989) The massive water scarcity now threatening Africa: Why
isn’t it being addressed? Ambio 18(2): 112–118.
4. Alcamo J, Henrichs T (2002) Critical regions: A model-based estimation
of world water resources sensitive to global changes. Aquat Sci 64(4): 352–
362.
1. Postel SL (2000) Entering an era of water scarcity: the challenges ahead. Ecol
Appl 10(4): 941–948.
2. World Water Assessment Programme (2009) The UN World Water Development Report 3: Water in a Changing World. UNESCO, Paris, France,
Earthscan, London, UK.
PLoS ONE | www.plosone.org
8
February 2012 | Volume 7 | Issue 2 | e32688
Global Monthly Blue Water Scarcity
5. Oki T, Kanae S (2006) Global hydrological cycles and world water resources.
Science 313(5790): 1068–1072.
6. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water
resources: vulnerability from climate change and population growth. Science
289: 284–288.
7. Comprehensive Assessment of Water Management in Agriculture (2007) Water
for Food, Water for Life: A Comprehensive Assessment of Water Management
in Agriculture. Earthscan, London, UK, International Water Management
Institute, Colombo, Sri Lanka.
8. UNDP (2006) Beyond Scarcity: Power, Poverty, and the Global Water Crisis.
UNDP Human Development Report 2006, New York, USA.
9. World Economic Forum (2011) Global Risks 2011. World Economic Forum,
edition 6, Geneva, Switzerland. Available: http://riskreport.weforum.org/
global-risks-2011.pdf. Accessed 2011 June 10.
10. Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-Being:
Wetlands and Water Synthesis. World Resources Institute, Washington, DC,
USA.
11. Mekonnen MM, Hoekstra AY (2011) The green, blue and grey water footprint
of crops and derived crop products. Hydrol Earth Syst Sc 15(5): 1577–1600.
12. Rost S, Gerten D, Bondeau A, Luncht W, Rohwer J, et al. (2008) Agricultural
green and blue water consumption and its influence on the global water system.
Water Resour Res 44: W09405. doi:10.1029/2007WR006331.
13. Wada Y, Van Beek LPH, Viviroli D, Dürr HH, Weingartner R, et al. (2011)
Global monthly water stress: 2. Water demand and severity of water stress,
Water Resour Res 47: W07518. doi:10.1029/2010WR009792.
14. Liu J, Yang H (2010) Spatially explicit assessment of global consumptive water
uses in cropland: green and blue water. J Hydrol 384: 187–197.
15. Hanasaki N, Inuzuka T, Kanae S, Oki T (2010) An estimation of global virtual
water flow and sources of water withdrawal for major crops and livestock
products using a global hydrological model. J Hydrol 384: 232–244.
16. Fader M, Gerten D, Thammer M, Heinke J, Lotze-Campen H, et al. (2011)
Internal and external green-blue agricultural water footprints of nations, and
related water and land savings through trade, Hydrology and Earth System.
Sciences 15(5): 1641–1660.
17. Siebert S, Döll P (2010) Quantifying blue and green virtual water contents in
global crop production as well as potential production losses without irrigation.
J Hydrol 384: 198–207.
18. Shiklomanov IA (2000) Appraisal and assessment of world water resources.
Water Int 25(1): 11–32.
19. Perry C (2007) Efficient irrigation; inefficient communication; flawed recommendations. Irrig Drain 56(4): 367–378.
20. FAO (2010) AQUASTAT on-line database. Food and Agriculture Organization
Rome, Italy. Available: http://faostat.fao.org. Accessed 2010 December 12.
21. Smakhtin V, Revenga C, Döll P (2004) A pilot global assessment of
environmental water requirements and scarcity. Water Int 29(3): 307–317.
22. Richter BD, Davis MM, Apse C, Konrad C (2011) A presumptive standard for
environmental flow protection. River Res Appl;doi:10.1002/rra.1511.
23. Savenije HHG (2000) Water scarcity indicators; the deception of the numbers.
Phys Chem Earth Pt B 25(3): 199–204.
24. Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) Water
footprint assessment manual: Setting the global standard. Earthscan, London,
UK.
25. Falkenmark M (2003) Freshwater as shared between society and ecosystems:
from divided approaches to integrated challenges. Philos T Roy Soc B
358(1440): 2037–2049.
26. Mekonnen MM, Hoekstra AY (2011) National water footprint accounts: the
green, blue and grey water footprint of production and consumption. Value of
PLoS ONE | www.plosone.org
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
9
Water Research Report Series No. 50, UNESCO-IHE, Delft, The Netherlands.
Available: www.waterfootprint.org/Reports/Report50-NationalWaterFootprints-Vol1.pdf. Accessed 2011 May 12.
Fekete BM, Vörösmarty CJ, Grabs W (2002) High-resolution fields of global
runoff combining observed river discharge and simulated water balances. Global
Biogeochem Cy 16(3, ;doi:10.1029/1999GB001254 (data available: www.grdc.
sr.unh.edu). Accessed 2010 April 12.
Mekonnen MM, Hoekstra AY (2010) A global and high-resolution assessment of
the green, blue and grey water footprint of wheat. Hydrol Earth Syst Sc 14(7):
1259–1276.
Mekonnen MM, Hoekstra AY (2010) The green, blue and grey water footprint
of crops and derived crop products. Value of Water Research Report Series
No. 47, UNESCO-IHE, Delft, The Netherlands. Available: www.waterfootprint.org/Reports/Report47-WaterFootprintCrops-Vol1.pdf). Accessed 2010
December 10.
Center for International Earth Science Information Network (CIESIN),
Columbia University; and International Center for Tropical Agriculture (CIAT)
(2005) Gridded population of the world version 3 (GPWv3): Population density
grids.. PalisadesNY: Socioeconomic Data and Applications Center (SEDAC),
Columbia University, Available: http://sedac.ciesin.columbia.edu/gpw. Accessed 2010 April 8.
Shiklomanov IA, Rodda JC, eds. World water resources at the beginning of the
twenty-first century, Cambridge University Press, Cambridge, UK.
GRDC (2007) Major River Basins of the World. Global Runoff Data Centre,
Federal Institute of Hydrology, Koblenz, Germany. Available: http://grdc.bafg.
de. Accessed 2010 April 10.
Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, et al. (2008) An integrated
model for the assessment of global water resources – Part 2: Applications and
assessments. Hydrol Earth Syst Sci 12: 1027–1037.
Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of
groundwater depletion in India. Nature 460(7258): 999–1002.
Contreras S, Lozano ML (1994) Water, Endangered Fishes, and Development
Perspectives in Arid Lands of Mexico. Conserv Biol 8(2): 379–387.
Robinson JRC (2002) Alternative Approaches to Estimate the Impact of
Irrigation Water Shortages on Rio Grande Valley Agriculture. Special Report
2002-15. May 17, Texas A&M University, Texas Water Resources Institute,
College Station, Texas, USA.
Murray–Darling Basin Authority (2010) Guide to the proposed Basin Plan:
overview. Murray–Darling Basin Authority, Canberra, Australia. Available:
http://www.mdba.gov.au/basin_plan. Accessed 2011 June 10.
Rockström J, Falkenmark M, Karlberg L, Hoff H, Rost S, et al. (2009) Future
water availability for global food production: the potential of green water for
increasing resilience to global change. Water Resour Res 45: W00A12.
doi:10.1029/2007WR006767.
Postel SL, Richter BD (2003) Rivers for Life: Managing Water for People and
Nature. Island Press, Washington, DC, USA.
Richter BD (2010) Re-thinking environmental flows: from allocations and
reserves to sustainability boundaries. River Res Appl 26(8): 1052–1063.
Hoff H, Falkenmark M, Gerten D, Gordon L, Karlberg L, et al. (2010) Greening
the global water system. J Hydrol 384: 177–186.
Vörösmarty CJ, Lévêque C, Revenga C (2005) Fresh water. In: Hassan R,
Scholes R, Ash N, eds. Ecosystems and Human Well-Being: Current States and
Trends, Millenium Ecosystem Assessment Report, Island Press, Washington,
DC, USA. pp 165–207.
Wada Y, Van Beek LPH, Van Kempen CM, Reckman JWTM, Vasak S, et al.
(2010) Global depletion of groundwater resources. Geophysical Research Letters
37: L20402.
February 2012 | Volume 7 | Issue 2 | e32688
The map shows the basin ID for the largest river basins (area > 300,000 km2). Data source: GRDC (32).
Basin ID
5
6
7
13
16
19
22
25
48
Basin
Yenisei
Indigirka
Lena
Kolyma
Yukon
Mackenzie
Pechora
Ob
Northern Dvina (Severnaya Dvina)
Figure S1. Global river basin map
Basin ID
64
83
90
96
97
99
107
117
118
Basin
Volga
Nelson
Amur
Dniepr
Ural
Don
Columbia
St.Lawrence
Danube
Basin ID
122
124
138
149
155
164
168
177
187
Basin
Mississippi
Aral Drainage
Colorado(Pacific Ocean)
Huang He (Yellow River)
Tigris & Euphrates
Bravo
Indus
Yangtze(Chang Jiang)
Mekong
Basin ID
194
195
199
201
207
213
220
227
237
Basin
Nile
Brahmaputra
Irrawaddy
Xi Jiang
Niger
Godavari
Senegal
Volta
Orinoco
Basin ID
241
243
259
273
276
290
293
302
320
Basin
Shebelle
Congo
Amazonas
Tocantins
Rio Parnaiba
Sao Francisco
Zambezi
Parana
Limpopo
Basin ID
326
331
336
353
356
357
358
393
394
Basin
Orange
Murray
Colorado (Argentina)
Ganges
Lake Chad
Okavango
Tarim
Balkhash
Eyre Lake
Figure S2. Global maps of the monthly blue water footprint in the world’s major river basins. Period 1996-2005.
Figure S3. Global maps of monthly natural runoff in the world’s major river basins
Figure S4. Global maps of monthly blue water availability in the world’s major river basins
Table S1. Monthly blue water footprint for the world's major river basins
Period: 1996-2005
Basin ID Basin name
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
Jan
Feb
Mar
Apr
Khatanga
8.8
8.8
8.8
8.8
Olenek
11.3
11.3
11.3
11.3
Anabar
2.6
2.6
2.6
2.6
Yana
46.4
46.4
46.4
46.4
Yenisei
14005.0
14005.0
14010.8
22586.1
Indigirka
79.1
79.1
79.1
79.1
Lena
2433.3
2433.3
2433.3
2433.4
Omoloy
5.5
5.5
5.5
5.5
Tana (NO, FI)
14.6
14.6
14.6
14.6
Colville
5.0
5.0
5.0
5.0
Alazeya
12.6
12.6
12.6
12.6
Anderson
0.6
0.6
0.6
0.6
Kolyma
261.7
261.7
261.7
261.7
Tuloma
397.5
397.5
397.5
397.5
Muonio
110.0
110.0
110.0
110.0
Yukon
709.7
709.7
709.7
733.2
Palyavaam
14.8
14.8
14.8
14.8
Kemijoki
322.5
322.5
322.5
322.5
Mackenzie
3302.6
3302.6
3302.7
3524.1
Noatak
10.3
10.3
10.3
10.3
Anadyr
21.3
21.3
21.3
21.3
Pechora
1147.7
1147.7
1147.7
1147.7
Lule
64.2
64.2
64.2
64.2
Kalixaelven
62.1
62.1
62.1
62.1
Ob
55630.5
55630.5
55641.7
95861.9
Ellice
0.0
0.0
0.0
0.0
Taz
28.6
28.6
28.6
28.6
Kobuk
11.1
11.1
11.1
11.1
Coppermine
2.9
2.9
2.9
2.9
Hayes(Trib. Arctic Ocean)
0.0
0.0
0.0
0.0
Pur
372.7
372.7
372.7
372.7
Varzuga
7.8
7.8
7.8
7.8
Ponoy
6.5
6.5
6.5
6.5
Kovda
62.8
62.8
62.8
62.8
Back
0.1
0.1
0.1
0.1
Kem
147.8
147.8
147.8
147.8
Nadym
82.7
82.7
82.7
82.7
Quoich
0.0
0.0
0.0
0.0
Mezen
79.7
79.7
79.7
79.7
Iijoki
138.9
138.9
138.9
138.9
Joekulsa A Fjoellum
2.3
2.3
2.3
2.3
Svarta, Skagafiroi
6.1
6.1
6.1
6.1
Oulujoki
435.0
435.0
435.0
435.0
Lagarfljot
9.0
9.0
9.0
9.0
Thelon
14.5
14.5
14.5
14.5
Angerman
117.4
117.4
117.4
117.4
Thjorsa
5.5
5.5
5.5
5.5
Northern Dvina(Severnaya D 3254.5
3254.5
3254.5
3256.1
Oelfusa
22.4
22.4
22.4
22.4
Nizhny Vyg (Soroka)
164.6
164.6
164.6
164.6
Kuskokwim
57.6
57.6
57.6
57.6
Vuoksi
1650.8
1650.8
1650.8
1650.8
Onega
333.5
333.5
333.5
333.5
Susitna
152.5
152.5
152.5
153.5
Kymijoki
1285.5
1285.5
1285.5
1285.5
Neva
8027.9
8027.9
8027.9
8045.8
Ferguson
0.0
0.0
0.0
0.0
Copper
24.9
24.9
24.9
24.9
Gloma
1728.4
1728.4
1728.4
1729.2
Kokemaenjoki
1710.1
1710.1
1710.1
1710.1
Vaenern-Goeta
2650.5
2650.5
2650.5
2652.1
Thlewiaza
0.3
0.3
0.3
0.3
Alsek
6.6
6.6
6.6
6.6
Volga
116047.3 116047.3 116127.0 151487.2
Dramselv
642.5
642.5
642.5
642.5
Arnaud
0.0
0.0
0.0
0.0
Nushagak
7.4
7.4
7.4
7.4
Seal
7.2
7.2
7.2
7.2
Taku
11.8
11.8
11.8
11.8
Narva
1601.6
1601.6
1601.6
1604.9
Stikine
10.0
10.0
10.0
10.0
Churchill
605.0
605.0
605.1
680.2
Feuilles (Riviere Aux)
0.0
0.0
0.0
0.0
George
0.2
0.2
0.2
0.2
Caniapiscau
6.2
6.2
6.2
6.2
Western Dvina (Daugava)
2902.1
2902.1
2902.1
3089.8
Aux Melezes
0.0
0.0
0.0
0.0
Baleine, Grande Riviere De
0.0
0.0
0.0
0.0
Spey
26.4
26.4
26.4
26.4
Kamchatka
48.9
48.9
48.9
48.9
Nass
19.9
19.9
19.9
19.9
Skeena
300.1
300.1
300.1
300.1
Nelson
36043.3
36119.7
37077.4
98166.3
Hayes(Trib. Hudson Bay)
96.9
96.9
96.9
96.9
Gudena
400.5
400.5
400.5
402.4
Skjern A
144.1
144.1
144.1
144.4
Neman
4559.5
4559.5
4559.5
4880.6
Fraser
8611.9
8611.9
8617.0
9741.4
Severn(Trib. Hudson Bay)
45.4
45.4
45.4
45.4
Amur
61291
61363
69115
435992
Tweed
326.3
326.3
326.3
326.3
Grande Riviere De La Balei
3.7
3.7
3.7
3.7
Grande Riviere
10.0
10.0
10.0
10.0
Winisk
40.6
40.6
40.6
40.6
Churchill, Fleuve (Labrador)
57.7
57.7
57.7
57.7
Dniepr
58219.8
58219.8
58220.8
75741.6
Ural
7719.8
7719.8
7726.0
29996.9
Wisla
42823.6
42823.6
42830.6
43383.9
Don
39722.6
39722.6
39722.7 104613.8
May
8.8
11.3
2.6
46.4
67379.7
79.1
2434.3
5.5
14.6
5.0
12.6
0.6
261.7
397.5
110.0
864.6
14.8
322.5
3876.2
10.3
21.3
1147.7
64.2
62.1
304570.9
0.0
28.6
11.1
2.9
0.0
372.7
7.8
6.5
62.8
0.1
147.8
82.7
0.0
79.7
139.0
2.3
6.1
445.6
9.0
14.5
117.4
5.5
3650.4
22.4
164.6
59.3
1715.7
381.5
187.7
1364.7
10574.5
0.0
24.9
1903.1
1914.1
2858.8
0.3
6.6
607847.6
654.1
0.0
7.4
7.2
11.8
1893.4
10.0
814.0
0.0
0.2
6.2
4952.7
0.0
0.0
26.4
48.9
19.9
300.1
181129.3
96.9
1175.8
303.4
8336.2
11359.1
45.4
1515404
326.6
3.7
10.0
40.6
57.7
230947.0
138276.3
50173.1
508233.8
Blue water footprint (103 m3/month)
Jun
Jul
Aug
8.8
8.8
8.8
11.3
11.3
11.3
2.6
2.6
2.6
46.4
46.4
46.4
87527.4
79042.8
56657.6
79.1
79.1
79.1
2436.8
2447.0
2468.5
5.5
5.5
5.5
14.6
14.6
14.6
5.0
5.0
5.0
12.6
12.6
12.6
0.6
0.6
0.6
262.0
262.3
264.3
397.5
397.5
397.5
110.0
110.0
110.0
869.9
819.9
756.4
14.8
14.8
14.8
322.5
322.5
322.5
3757.9
3650.4
3685.7
10.3
10.3
10.3
21.3
21.3
21.3
1147.7
1147.7
1147.7
64.2
64.2
64.2
62.1
62.1
62.1
399138.7 534705.8 460741.0
0.0
0.0
0.0
28.6
28.6
28.6
11.1
11.1
11.1
2.9
2.9
2.9
0.0
0.0
0.0
372.7
372.7
372.7
7.8
7.8
7.8
6.5
6.5
6.5
62.8
62.8
62.8
0.1
0.1
0.1
147.8
147.8
147.8
82.7
82.7
82.7
0.0
0.0
0.0
79.7
79.7
79.7
139.1
139.1
139.6
2.3
2.3
2.3
6.1
6.1
6.1
464.0
490.9
525.1
9.0
9.0
9.0
14.5
14.5
14.5
117.4
117.4
117.4
5.5
5.5
5.5
3924.0
3905.7
3715.4
22.4
22.4
22.4
164.6
164.6
164.6
59.5
58.4
57.6
1799.9
1953.7
2144.8
426.0
423.5
383.5
189.8
163.9
153.7
1421.1
1488.1
1625.0
12074.7
11011.0
11704.2
0.0
0.0
0.0
24.9
24.9
24.9
2987.3
4253.9
4640.8
2077.2
2256.1
2597.0
3208.6
3451.6
3187.7
0.3
0.3
0.3
6.6
6.6
6.6
798852.7 1124796 963030.8
826.0
1109.7
905.7
0.0
0.0
0.0
7.4
7.4
7.4
7.2
7.2
7.2
11.8
11.8
11.8
1940.6
2045.5
2297.4
10.0
10.0
10.0
750.3
759.1
763.2
0.0
0.0
0.0
0.2
0.2
0.2
6.2
6.2
6.2
4524.9
4328.4
4954.4
0.0
0.0
0.0
0.0
0.0
0.0
26.4
26.4
26.4
48.9
48.9
48.9
19.9
19.9
19.9
300.1
300.1
300.1
204530.0 355878.4 533170.5
96.9
96.9
96.9
2941.0
3637.7
1889.1
1367.9
2643.4
1120.9
8420.3
8262.7
11094.1
12187.4
15646.7
18285.4
45.4
45.4
45.4
2321588 1258873
758246
333.2
395.3
404.4
3.7
3.7
3.7
10.0
10.0
10.0
40.6
40.6
40.6
57.7
57.7
57.7
285228.0 363212.3 338828.4
227767.1 379764.5 304376.4
53458.7
53639.2
64292.7
647321.8 790482.4 672631.7
Table S1 - 1
Sep
Oct
Nov
Dec
Average
8.8
8.8
8.8
8.8
8.8
11.3
11.3
11.3
11.3
11.3
2.6
2.6
2.6
2.6
2.6
46.4
46.4
46.4
46.4
46.4
32477.7
18324.4
14275.6
14012.4
36192.1
79.1
79.1
79.1
79.1
79.1
2445.9
2433.4
2433.3
2433.3
2438.8
5.5
5.5
5.5
5.5
5.5
14.6
14.6
14.6
14.6
14.6
5.0
5.0
5.0
5.0
5.0
12.6
12.6
12.6
12.6
12.6
0.6
0.6
0.6
0.6
0.6
262.8
261.7
261.7
261.7
262.1
397.5
397.5
397.5
397.5
397.5
110.0
110.0
110.0
110.0
110.0
751.8
725.8
712.9
710.3
756.2
14.8
14.8
14.8
14.8
14.8
322.5
322.5
322.5
322.5
322.5
3512.4
3419.4
3324.3
3302.9
3496.8
10.3
10.3
10.3
10.3
10.3
21.3
21.3
21.3
21.3
21.3
1147.7
1147.7
1147.7
1147.7
1147.7
64.2
64.2
64.2
64.2
64.2
62.1
62.1
62.1
62.1
62.1
242699.8 102971.4
57227.1
55632.2 201704.3
0.0
0.0
0.0
0.0
0.0
28.6
28.6
28.6
28.6
28.6
11.1
11.1
11.1
11.1
11.1
2.9
2.9
2.9
2.9
2.9
0.0
0.0
0.0
0.0
0.0
372.7
372.7
372.7
372.7
372.7
7.8
7.8
7.8
7.8
7.8
6.5
6.5
6.5
6.5
6.5
62.8
62.8
62.8
62.8
62.8
0.1
0.1
0.1
0.1
0.1
147.8
147.8
147.8
147.8
147.8
82.7
82.7
82.7
82.7
82.7
0.0
0.0
0.0
0.0
0.0
79.7
79.7
79.7
79.7
79.7
139.2
139.0
138.9
138.9
139.0
2.3
2.3
2.3
2.3
2.3
6.1
6.1
6.1
6.1
6.1
480.8
440.8
435.0
435.0
454.7
9.0
9.0
9.0
9.0
9.0
14.5
14.5
14.5
14.5
14.5
117.4
117.4
117.4
117.4
117.4
5.5
5.5
5.5
5.5
5.5
3340.4
3254.5
3254.5
3254.5
3443.2
22.4
22.4
22.4
22.4
22.4
164.6
164.6
164.6
164.6
164.6
57.6
57.6
57.6
57.6
58.0
1886.8
1667.7
1650.8
1650.8
1756.1
338.8
333.5
333.5
333.5
357.3
152.6
152.6
152.5
152.5
159.7
1456.9
1296.9
1285.5
1285.5
1363.8
8871.9
8031.5
8027.9
8027.9
9204.4
0.0
0.0
0.0
0.0
0.0
24.9
24.9
24.9
24.9
24.9
2178.8
1728.5
1728.4
1728.4
2338.6
2145.7
1723.1
1710.1
1710.1
1914.5
2747.6
2651.0
2650.5
2650.5
2834.2
0.3
0.3
0.3
0.3
0.3
6.6
6.6
6.6
6.6
6.6
356041.0 162975.0 120668.5 116099.0 395835.0
702.3
642.5
642.5
642.5
724.6
0.0
0.0
0.0
0.0
0.0
7.4
7.4
7.4
7.4
7.4
7.2
7.2
7.2
7.2
7.2
11.8
11.8
11.8
11.8
11.8
1791.2
1607.8
1601.6
1601.6
1765.7
10.0
10.0
10.0
10.0
10.0
704.7
665.2
616.8
605.6
681.2
0.0
0.0
0.0
0.0
0.0
0.2
0.2
0.2
0.2
0.2
6.2
6.2
6.2
6.2
6.2
3556.7
2913.7
2902.1
2902.1
3569.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
26.4
26.4
26.4
26.4
26.4
49.0
48.9
48.9
48.9
48.9
19.9
19.9
19.9
19.9
19.9
300.1
300.1
300.1
300.1
300.1
281797.3 108523.6
55374.7
39680.0 163957.5
96.9
96.9
96.9
96.9
96.9
1014.8
415.5
400.5
400.5
1123.2
328.4
144.2
144.1
144.1
564.4
7335.1
4682.7
4559.5
4559.5
6317.4
12788.9
9019.3
8619.4
8611.9
11008.4
45.4
45.4
45.4
45.4
45.4
521703
92588
69587
64788
602545
368.3
326.9
326.3
326.3
342.7
3.7
3.7
3.7
3.7
3.7
10.0
10.0
10.0
10.0
10.0
40.6
40.6
40.6
40.6
40.6
57.7
57.7
57.7
57.7
57.7
166626.4
71978.5
58731.2
58219.8 152014.4
113415.5
34294.8
9006.6
7722.5 105648.9
55353.7
44967.6
42827.3
42823.6
48283.1
249166.3
77697.2
40938.9
39722.6 270831.3
Basin ID Basin name
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
Jan
Oder
29979.2
Elbe
44757.5
Trent
3851.8
Weser
18785.6
Attawapiskat
9.5
Eastmain
2.9
Manicouagan (Riviere)
92.6
Columbia
34262
Little Mecatina
1.0
Natashquan (Riviere)
3.4
Rhine
122345.5
Albany
128.2
Saguenay (Riviere)
2088.6
Thames
7697.0
Nottaway
293.0
Rupert
2.7
Moose(Trib. Hudson Bay)
815.6
St.Lawrence
383010.0
Danube
172885.0
Seine
46280.8
Dniestr
13797.1
Southern Bug
5970.1
Mississippi
476071.5
Skagit
428.9
Aral Drainage
51679.1
Loire
23162.6
Rhone
28384.8
Saint John
2582.5
Po
40929.7
Penobscot
765.3
St.Croix
120.1
Kuban
6573.6
Connecticut
10498.8
Liao He
25918.6
Garonne
9783.0
Ishikari
3230.4
Merrimack
11384.4
Hudson
19701.2
Colorado(Pacific Ocean)
51531.4
Klamath
695.1
Ebro
4822.5
Rogue
1317.7
Douro
5884.1
Susquehanna
20293.7
Luan He
14156.1
Kura
26370.9
Dalinghe
3816.9
Delaware
32242.6
Sacramento
15241.3
Huang He (Yellow River)
217673
Kizilirmak
4234.6
Yongding He
99988.0
Tejo
11231.7
Sakarya
5368.1
Eel (Calif.)
188.2
Tigris & Euphrates
205397.3
Potomac
17093.4
Guadiana
2588.8
Kitakami
2130.2
Mogami
1860.1
Han-Gang (Han River)
16927.3
Guadalquivir
6527.2
San Joaquin
8455.2
James
4539.4
Bravo
52585.2
Shinano, Chikuma
3548.2
Roanoke
7459.3
Naktong
11953.1
Indus
6455179
Tone
16652.4
Salinas
1560.7
Pee Dee
13141.8
Chelif
2243.7
Cape Fear
8243.5
Tenryu
2246.4
Santee
15848.2
Kiso
3159.0
Yangtze(Chang Jiang)
450511.6
Yodo
16043.7
Sebou
3773.3
Alabama River & Tombigbee 21968.7
Savannah
5927.7
Gono (Go)
667.8
Huai He
84982.9
Apalachicola
15024.4
Brazos
29558.9
Altamaha
12223.9
Mekong
757008.7
Colorado(Caribbean Sea)
15522.5
Trinity(Texas)
27495.9
Pearl
3156.3
Sabine
2914.3
Suwannee
3006.2
Yaqui
12804.7
Nile
1596883
Brahmaputra
95618.5
St.Johns
14741.8
Nueces
5736.2
San Antonio
4887.5
Irrawaddy
61867.7
Fuerte
2992.4
Xi Jiang
112099.1
Bei Jiang
17753.0
Feb
29979.2
44757.5
3851.8
18785.6
9.5
2.9
92.6
35262
1.0
3.4
122345.5
128.2
2088.6
7697.0
293.0
2.7
815.6
383010.0
172888.3
46280.8
13797.1
5970.1
553677.1
428.9
48145.8
23162.6
28529.3
2582.5
40933.9
765.3
120.1
6573.6
10498.8
27536.5
9804.2
3230.4
11384.4
19701.2
79016.8
695.1
10975.0
1317.7
7786.1
20293.8
63826.7
30851.7
4321.7
32244.3
15248.2
738449
4254.3
545652.6
14362.0
5386.4
188.2
718731.7
17093.9
11643.9
2130.8
1860.1
16934.6
33894.1
9670.6
4540.4
100575.1
3548.2
7460.9
12079.3
7692491
16658.4
1560.7
13137.8
4486.6
8240.8
2246.4
15848.7
3159.2
711676.0
16046.0
21476.2
21970.9
5936.8
668.1
147657.0
15066.2
48605.7
12281.3
440654.9
23764.4
27688.4
3156.5
2943.5
3067.6
40790.9
1639017
76934.9
16036.7
11373.9
6350.4
62279.7
7032.5
148679.4
17808.0
Mar
29987.5
44796.9
3856.6
18786.8
9.5
2.9
92.6
180824
1.0
3.4
122352.6
128.2
2088.6
7697.1
293.0
2.7
815.6
383187.1
176401.4
46499.4
13851.0
5970.1
1066448
428.9
215735.5
23736.9
29642.5
2582.5
41954.4
765.3
120.1
6573.6
10499.1
43955.3
11113.9
3230.4
11384.5
19702.3
258871.8
875.6
46643.5
1366.0
20223.4
20304.9
198095.8
107105.3
6670.5
32284.9
48730.6
2375921
7119.9
1990251
30236.9
8192.8
188.5
2729822
17117.0
52785.6
2134.3
1861.2
16961.0
123992.3
92792.8
4547.5
248393.7
3550.4
7501.9
12273.1
14959408
16684.8
1714.9
13237.6
11906.5
8485.1
2246.6
15928.6
3159.2
1138406
16047.9
78740.1
21985.2
6054.9
669.3
567969.3
15382.3
117767.4
12675.9
582312.0
55151.7
29144.4
3157.7
3248.5
3435.9
85472.2
2685612
132628.5
17961.2
28924.4
12503.9
109496.0
14502.1
188596.5
17866.4
Apr
30402.4
45993.8
3867.3
18885.3
9.5
2.9
92.6
848539
1.0
3.4
123279.3
128.2
2088.6
7699.1
293.0
2.7
815.7
386034.2
214410.4
48950.3
21101.3
8880.2
1676456
429.4
1182471
26573.5
32065.3
2582.5
44063.6
765.5
120.1
10296.5
10554.3
421314
13422.2
3254.8
11418.1
19776.2
465243.9
28761.1
78434.8
4252.0
41082.9
20419.3
369022.7
282772.4
24989.9
32560.0
287969
4267862
39274
3417354
47754.6
31515.7
235.2
5090895
17504.4
92804.4
2137.7
1880.2
17284.7
189770.9
399075.9
4915.6
392946.1
3587.8
9261.5
12489.7
13807935
16921.1
8299.6
14886.2
19297.1
10325.2
2248.0
16585.8
3159.5
2002161
16128.7
187653.4
22295.5
6580.1
673.9
1635316
19427.6
168556.2
14587.9
754421.9
79227.2
32670.3
3191.7
4993.8
6565.9
98556.4
2819450
102108.9
18742.7
38248.5
16007.5
150159.0
27035.1
394758.4
19713.7
May
34120.9
47830.3
4113.6
19314.9
9.5
2.9
92.6
1447369
1.0
3.4
135280.2
128.3
2102.2
7726.2
293.2
2.7
821.0
408783.9
349900.8
59473.4
69002.6
28585.4
2574769
436.7
2320721
39703.4
41461.0
2587.8
126507.8
767.3
120.2
77019.1
10865.5
1382065
20437.9
3378.9
11515.8
19909.2
688780.7
81554.8
122848.5
11582.2
74657.3
20885.0
439376.3
308423.7
66489.8
34246.2
667890
4256628
119425
3359369
82013.5
95507.6
657.9
6654136
18009.5
158832.5
2162.4
1927.3
21933.1
279532.8
658744.8
5152.6
525645.7
3678.9
11279.4
20491.6
6182331
17434.2
24644.6
17965.8
32072.6
15144.1
2257.8
17815.1
3160.5
3060663
16362.8
202084.4
23759.7
7448.3
696.4
1948176
28387.7
282486.0
17877.9
1240389
133806.1
34251.9
3317.1
7985.4
14272.2
48621.7
3108601
68629.6
23549.9
48415.9
17404.6
107761.4
31771.5
535641.1
35915.3
Blue water footprint (103 m3/month)
Jun
Jul
Aug
37229.9
40736.3
46184.5
52688.8
71886.0
85614.6
4724.6
7918.2
7500.9
21212.5
29191.0
36488.8
9.5
9.5
9.5
2.9
2.9
2.9
92.8
92.8
92.9
2311177 3409891 2913847
1.0
1.0
1.0
3.4
3.4
3.4
140236.7 145768.4 176128.5
128.6
128.9
128.8
2206.7
2155.3
2134.6
7880.7
8220.7
8141.2
293.3
293.3
293.1
2.7
2.7
2.7
824.1
827.2
823.3
451638.1 537777.5 564415.6
428431.0 640658.5 692509.3
72701.6 118179.0 156201.5
80201.6
60248.9 113028.4
34379.8
50055.3
50401.7
3671826 9923789 12809395
908.0
1462.7
1546.0
4541763 8587253 8909592
65121.6 165091.3 251733.7
58054.0 141031.2 150460.5
2736.4
3219.2
4622.8
202893.7 617810.5 620682.7
777.6
865.5
1048.9
124.5
129.3
135.6
160897.1 291432.5 165757.2
12300.3
12701.8
10951.6
1906167 1116163
667477
38994.0 217419.2 288619.9
14603.7
15213.4
19830.1
11710.1
11758.7
11498.9
20191.0
21219.1
21213.9
833506.3 868950.9 785259.8
127597.5 176238.8 151941.9
275459.1 587776.7 525750.6
20252.7
27198.1
23091.3
252660.6 601045.1 614466.1
21594.8
24593.3
26111.7
226806.4 192323.3 207433.2
521039.7 733223.8 807810.5
97171.0
50590.6
36848.1
37078.2
37708.9
34841.7
1235885 1591869 1566041
3400184 3466422 2159613
168870
187790
206397
1712020 1842686 1930023
223938.2 441127.2 433196.6
139487.4 174554.7 209581.8
1102.8
1441.8
1205.3
4850558 4639864 4544688
18871.4
19799.9
20398.5
420029.3 737694.5 702725.4
7457.6
19066.8
45846.8
6926.2
10796.2
31753.9
37684.3
27829.3
22227.9
689193 1097659 1047458
1062562 1459542 1459787
5472.9
6092.1
6322.3
497835.0 599657.0 567057.2
6456.5
16274.8
37548.0
12219.9
14283.4
15908.4
78141.3
58368.7
55497.2
6262009 8796342 13190821
30525.3
54229.0 105969.7
52141.5
82755.9
87842.6
19219.3
20735.8
21667.2
55384.2
71153.4
66882.8
15161.8
13943.7
14504.2
3038.9
4244.1
9498.5
18043.5
19724.0
19815.2
3417.9
4734.5
8819.0
2339674 3741942 3868817
21036.0
36931.7
71186.4
168880.9 204203.9 162631.6
24523.0
28772.0
31987.1
8419.0
10987.8
13392.7
1130.1
1457.8
3598.7
1581174 1624787 1330904
44625.3
75496.9 125950.5
395665 1060283 973829.0
21013.5
36291.0
45297.4
805570.7 659922.9 528371.9
214639.8 522178.2 524039.6
36749.3
45035.5
41220.4
3336.0
3450.4
3628.9
8449.1
12327.0
8889.5
16998.2
29457.6
42620.1
32724.7
24545.0
38239.4
2101369 2924081 3198978
35127.7
78327.4
55174.6
19402.7
17594.6
18178.2
56133.5
89955.4
66684.0
19929.4
30160.6
22397.7
338248.0 133305.1
88392.4
43066.3
41879.3
44576.8
313893.2 296653.6 302293.3
40428.0
79708.7
61083.2
Table S1 - 2
Sep
40612.3
76979.8
5254.9
30603.1
9.5
2.9
92.7
1540886
1.0
3.4
150043.6
128.4
2095.1
7885.4
293.0
2.7
816.0
478676.0
429867.8
116779.5
63236.6
21160.3
8325019
820.1
6123848
171018.7
72119.4
2960.2
211145.4
825.9
124.2
37165.1
10645.2
467166
187398.5
11559.0
11424.6
20235.2
598564.3
92866.9
242242.7
14726.5
242744.1
22846.0
160173.2
455357.5
27222.0
33292.8
1081215
992897
129236
1020618
200765.3
140841.5
846.8
2850413
18608.5
330357.8
28745.3
14549.3
27161.2
503164
1013340
5119.3
464507.0
13720.9
11010.0
57360.2
16068994
50170.4
55421.4
17175.0
45925.4
11093.5
4323.8
17430.5
4727.2
3424557
31780.5
125903.4
26194.1
8444.6
1559.7
1160434
56360.2
599180.5
26091.4
283186.5
371594.0
33270.3
3334.6
4780.5
19697.9
44900.4
3529943
94765.4
15870.8
33032.0
11958.6
241220.5
23372.6
534178.9
75276.0
Oct
31840.4
50498.2
3919.6
19801.2
9.5
2.9
92.6
615283
1.0
3.4
124553.1
128.2
2088.6
7709.7
293.0
2.7
815.6
402709.1
245115.7
56640.6
20506.5
8384.4
2696248
431.6
2291408
48758.7
32102.8
2594.6
53621.6
770.4
120.1
9876.5
10524.8
49664.8
45387.3
3991.3
11408.5
19767.0
367116.3
28794.6
68777.9
4929.1
45678.2
20997.1
62890.7
167331.3
6012.0
32505.0
300097
434435
49110
352702
50828.6
50135.6
282.0
1543961
17477.1
95626.3
3920.7
3721.7
17042.1
161945.8
379470.4
4966.6
286434.9
4472.4
9934.4
12754.4
13120835
20794.1
11439.2
14965.9
14779.6
9492.9
2375.5
16623.7
3469.9
511004
21024.7
63496.1
23480.1
7316.6
1162.5
234794.7
39981.7
189533.7
19718.3
739371.1
123331.4
29203.9
3202.7
3403.6
12591.8
29924.7
3321549
478232.7
15861.3
14181.0
6937.6
554244.8
28061.2
83317.1
20831.8
Nov
29986.3
44792.1
3851.8
18785.8
9.5
2.9
92.6
129775
1.0
3.4
122345.5
128.2
2088.6
7697.0
293.0
2.7
815.6
383289.8
174598.8
46296.5
13898.7
6097.0
679909
428.9
281293
23288.3
28758.1
2582.5
40929.9
765.3
120.1
6599.1
10506.4
33284.3
11066.3
3230.4
11387.6
19718.1
152984.9
2489.8
11223.1
1336.1
7325.7
20312.5
14435.4
53554.5
4571.4
32316.5
40641
188078
14939
102495
14147.8
9821.4
190.2
664503
17133.5
12663.1
2130.2
1860.1
16943.4
34484.8
66973.1
4569.3
105140.1
3548.3
7680.5
12180.0
7128949
16652.7
2716.4
13358.8
5989.0
8437.9
2247.5
16044.5
3159.7
356944
16047.3
21559.7
22074.9
6083.3
668.4
92572.2
16002.7
37740.8
12513.6
1180498
19980.8
27948.6
3160.4
3076.1
3713.5
14373.1
2035678
455027.2
15025.0
7292.2
5209.5
147710.9
7859.1
67032.5
19111.1
Dec
29979.2
44757.7
3851.8
18785.6
9.5
2.9
92.6
41987
1.0
3.4
122345.5
128.2
2088.6
7697.0
293.0
2.7
815.6
383022.3
172895.0
46280.8
13797.1
5970.1
513391
428.9
100329
23162.6
28384.9
2582.5
40929.7
765.3
120.1
6573.6
10498.8
30489.8
9783.0
3230.4
11384.5
19701.3
88178.4
695.1
5629.7
1317.7
5886.8
20294.9
11342.7
38164.1
4326.1
32254.2
15584
176407
5399
96961
11245.0
5927.5
188.2
264649
17096.7
3155.2
2131.7
1860.1
16938.6
10685.8
13882.9
4540.0
72297.3
3548.5
7460.6
12134.1
3924286
16658.4
1588.6
13144.5
3961.0
8244.8
2246.6
15861.2
3159.4
371101
16048.2
5086.2
21970.5
5962.8
668.7
90858.3
15121.5
24382.9
12265.8
767382.8
14106.5
27522.9
3156.4
2919.7
3045.1
12757.3
1000401
88132.9
14786.2
5200.8
4789.1
40590.2
6195.4
78758.5
18475.3
Average
34253.2
54612.8
4713.6
22452.2
9.5
2.9
92.7
1125758
1.0
3.4
133918.7
128.4
2109.5
7812.4
293.1
2.7
818.4
428796.1
322546.8
71713.7
41372.2
19318.7
3747250
681.6
2887853
73709.5
55916.2
2851.3
173533.6
804.0
122.9
65444.8
10920.4
514266.7
71935.8
7331.9
11471.7
20069.6
436500.5
57767.2
165048.7
9390.6
159953.4
21578.9
163323.5
294333.8
27752.5
33631.3
572201
1889547
78004
1372510
130070.6
73026.7
559.6
2896468
18017.0
218408.9
9999.5
6738.0
21322.3
348192.2
552024.8
5064.8
326089.5
8623.6
10121.7
29643.6
9799132
31612.5
27640.5
16053.0
27840.2
10943.1
3268.3
17130.7
3940.4
1831455
24557.0
103790.8
24248.5
7712.9
1135.1
874968.8
38902.3
327299.1
20236.5
728257.6
174778.5
32683.5
3270.7
5494.3
13206.0
40309.2
2496797
146725.7
17312.6
33764.8
13211.4
169606.3
23195.4
254658.5
35330.9
Basin ID Basin name
Jan
203 San Pedro
1970.2
204 Dong Jiang
11698.5
205 Mahi
234803.3
206 Damodar
321001.6
207 Niger
117175.3
208 Narmada
591222
209 Brahmani River (Bhahmani) 108131.9
210 Mahanadi(Mahahadi)
493904.3
211 Santiago
69433.9
212 Panuco
59147.5
213 Godavari
1403293
214 Tapti
276668.3
215 Sittang
3465.5
216 Armeria
3496.4
217 Ca
10049.8
218 Chao Phraya
500052
219 Krishna
2085475
220 Senegal
26195.1
221 Papaloapan
5755.1
222 Grisalva
9068.6
223 Verde
1688.1
224 Mae Klong
25670.1
225 Tranh (Nr Thu Bon)
4406.8
226 Penner
183705.0
227 Volta
9567.8
228 Lempa
8417.2
229 Gambia
331.1
230 Grande De Matagalpa
566.0
231 Cauvery
458718
232 San Juan
9649.7
233 Geba
3460.3
234 Corubal
386.5
235 Magdalena
36962.3
236 Comoe
3723.0
237 Orinoco
51166.0
238 Bandama
3618.5
239 Oueme
965.2
240 Sassandra
1176.2
78624.7
241 Shebelle
242 Mono
400.3
243 Congo
7425.3
244 Atrato
596.3
245 Cuyuni
188.7
246 Cavally
224.8
247 Tano
207.1
248 Cross
1586.0
249 Sanaga
1625.2
250 Pra
4539.5
251 Davo
176.9
252 Essequibo
20.8
253 Kelantan
39173.4
254 Corantijn
53.6
255 Coppename
10.1
256 Kinabatangan
235.4
257 Maroni
8.8
258 San Juan (Columbia - Pacifi
990.4
259 Amazonas
90048.9
260 Pahang
21420.6
261 Nyong
125.9
262 Oyapock
6.2
263 Rajang
1381.3
264 Ntem
182.2
265 Ogooue
600.6
266 Rio Araguari
24.8
267 Mira
5669.4
268 Esmeraldas
14478.9
269 Tana
11163.8
270 Daule & Vinces
76294.6
271 Rio Gurupi
199.6
272 Rio Capim
483.6
273 Tocantins
17599.9
274 Kouilou
80.2
275 Nyanga
12.5
276 Rio Parnaiba
7330.6
277 Rio Itapecuru
1038.7
278 Rio Acarau
706.2
279 Pangani
6122.5
280 Rio Pindare
469.5
281 Sepik
69.0
282 Rio Mearim
1054.4
283 Chira
26561.8
284 Rufiji
8962.8
285 Rio Jaguaribe
8821.3
286 Purari
66.8
287 Ruvu
3703.6
288 Rio Paraiba
2470.4
289 Solo (Bengawan Solo)
333523.1
290 Sao Francisco
27576.3
291 Brantas
180435.4
292 Santa
4443.4
293 Zambezi
18945.8
294 Rio Vaza-Barris
1612.9
295 Rio Itapicuru
2629.4
296 Rio Paraguacu
4204.4
297 Canete
2538.0
298 Rio De Contas
5876.9
299 Roper
10.1
300 Daly
32.7
301 Drysdale
4.4
302 Parana
372525.6
303 Durack
4.5
304 Rio Prado
845.8
305 Victoria
2.8
Feb
3084.5
11620.1
213391.3
150895.6
133775.1
582117
45430.0
146732.8
156850.1
128380.2
846541
227566.1
4516.6
10961.6
9707.5
429799
825245
13556.4
10892.1
12611.1
3855.9
28215.2
4982.2
46423.6
10442.0
3985.4
367.9
594.8
207070
9142.5
4754.7
521.0
40595.1
4563.1
75192.9
5359.1
1307.5
1950.1
60600.1
450.1
9630.1
596.9
205.4
264.5
226.5
1864.2
2104.0
4288.5
219.2
20.8
29665.9
53.6
10.1
201.9
8.8
1280.5
82160.0
9762.1
125.8
6.2
401.3
183.4
546.4
24.8
4594.5
11223.3
11021.9
27282.6
185.4
471.3
11559.6
80.6
12.5
5752.8
919.8
808.0
21481.4
433.7
69.0
880.1
14163.4
8069.6
10924.3
66.8
1994.0
2697.3
96711.1
37265.5
52134.7
4714.9
18076.7
1939.0
3113.9
5205.6
1777.9
6331.4
8.5
30.4
4.4
280676.9
4.5
1144.8
2.8
Mar
5653.0
11600.6
332457.9
217247.6
159994.2
1216831
71957.7
213472.7
329195.1
251479.9
1675666
414078.5
8520.0
23001.5
7879.1
702371
1696212
20473.6
18931.4
38902.8
8808.5
46157.7
3362.2
70472.3
12602.1
10300.0
421.2
3029.8
515498
18721.9
5841.6
617.3
109023.0
6155.5
148018.5
7722.2
1498.3
4275.9
38694.8
431.1
9895.9
620.1
258.7
339.2
206.9
1722.9
1347.5
3579.0
214.8
20.8
1797.7
53.6
10.1
201.9
8.8
2848.2
98044.1
1971.7
125.5
6.2
276.8
180.7
478.0
24.8
3362.4
8395.3
3741.6
15585.9
185.1
471.3
10800.6
78.7
12.5
4658.7
862.8
582.4
20589.8
429.4
69.0
825.0
4811.4
6182.5
7871.0
66.8
1510.1
2946.2
38593.2
57937.4
19233.3
5859.8
31935.5
2318.3
2876.2
6584.1
3242.3
10008.6
107.9
148.0
4.4
232433.0
4.5
1246.2
2.8
Apr
8269.6
13139.6
301590.9
60473.5
102340.4
1529310
57563.0
204175.8
358517.6
266556.7
1996301
494077.2
8858.3
38879.1
11152.4
726552
1831925
15815.1
19716.5
60109.3
9301.3
45329.9
4165.1
60887.3
8230.3
13889.0
366.2
4736.1
458868
27753.9
5808.9
612.7
121897.9
3805.2
116530.6
6704.9
1155.2
3602.8
18624.5
311.4
9371.1
682.7
243.8
278.6
166.7
1362.9
1037.7
1338.1
197.5
20.8
1179.2
53.6
10.1
205.0
8.8
2452.2
250757.2
2172.3
125.3
6.2
275.4
179.4
302.8
24.8
2750.4
7606.1
1002.6
10387.3
185.5
471.0
20018.0
78.8
12.5
6687.2
976.1
481.1
13511.5
436.5
69.0
951.2
5996.6
14982.0
9318.9
66.8
804.6
2212.0
3097.7
94628.2
2510.4
17926.2
85399.4
2205.0
3181.5
12009.8
6624.0
16689.7
661.6
896.6
4.4
310336.0
4.5
1744.2
2.8
May
9543.3
24274.1
185769.5
20235.7
247266.2
1537921
52284.8
213763.2
227133.2
186223.8
2123564
533823.8
5784.9
37308.7
40910.6
447428
1892192
16250.3
14544.8
42527.8
6019.0
20724.5
26187.3
59123.8
5987.6
6041.7
382.3
1566.4
442335
9814.9
4717.1
529.8
126453.2
2893.7
58659.7
5053.7
861.4
2184.4
18867.7
284.5
19489.5
619.3
192.8
162.7
153.9
1270.9
567.7
879.6
105.9
20.8
1582.4
73.0
10.1
211.2
8.8
2799.0
285935.4
2408.5
125.0
6.2
281.3
178.9
265.3
24.8
3808.6
8790.7
920.8
21676.0
192.2
473.7
13298.0
328.9
12.5
13878.3
1843.3
1001.3
23766.6
460.4
69.0
1188.8
11137.9
35507.8
24950.8
66.8
2727.2
2943.5
4184.1
121453.3
2889.4
18412.2
117638.8
1895.9
3252.1
15360.5
7540.1
22514.9
999.3
1355.4
4.4
224416.6
4.5
2161.6
2.8
Blue water footprint (103 m3/month)
Jun
Jul
Aug
4601.2
3673.3
12070.8
25818.1
50233.2
35538.3
51117.1
24897.0
40458.9
18013.7
57510.2
38370.4
227449.8 190715.7 142446.1
408983.0
38561.8
50038.6
23326.4
23378.5
18202.0
76145.2
93534.4
66762.9
88512.1
63621.5
80404.7
80759.8
60191.8
75690.8
823832
551196
539414
201524.6
90419.5 118814.1
35071.4
17130.2
7752.7
13663.1
4419.5
2587.5
18897.3
12304.8
4239.3
309828 1301998 1314239
1086965 1387624 1679785
15939.4
41069.3
35983.9
7490.8
7494.8
11051.7
15144.1
9803.9
13796.8
2591.5
2556.6
2616.5
11506.4
52439.2
66338.2
28753.8
26879.3
12805.6
56079.9 214195.2 204265.8
8736.4
7358.4
5708.3
3074.9
2889.5
2900.3
290.1
1097.0
855.3
402.8
637.9
1219.1
449788 1508522 1507427
4224.3
5693.1
9177.3
1657.3
372.7
80.4
236.9
108.2
90.1
143794.5 277591.3 321763.7
2868.3
2656.4
2317.6
56289.8
84861.4 118091.2
1699.8
1779.8
1487.8
648.6
653.4
607.9
742.6
559.7
581.4
141778.8 217842.5 123581.2
257.8
253.3
276.6
31988.4
33458.0
35361.3
595.2
595.6
597.3
173.8
173.5
201.6
136.0
154.8
174.3
149.5
155.2
169.7
1236.3
1224.4
1224.2
531.5
466.5
444.4
617.9
973.8
1169.3
84.7
106.8
161.7
20.8
20.8
20.8
3175.2
4628.0
5039.6
58.8
156.3
249.1
10.1
10.1
10.1
210.0
209.7
255.4
8.8
8.8
8.8
3381.4
6309.4
6367.6
217698.9 191979.8 286579.2
4547.0
6821.8
6363.9
125.0
125.1
125.1
6.2
6.2
6.2
277.3
297.9
297.1
178.9
178.9
178.9
369.3
713.9
1155.4
24.8
24.8
24.8
5730.0
12593.3
24869.5
11571.1
27996.9
53475.8
2771.7
6243.1
8141.2
48581.3 111075.1 180108.2
228.4
253.2
267.7
480.5
487.3
498.7
17296.2
21141.7
23947.2
2036.2
2923.4
3622.1
12.5
12.5
12.5
19976.6
23026.0
25728.3
2457.8
2708.8
2785.4
2657.1
3081.1
3854.0
57621.2
68179.9
35271.8
528.3
560.4
575.3
69.0
69.0
69.0
1609.1
1764.5
1825.4
11924.2
20562.3
31761.0
19053.8
13350.6
12116.6
35430.5
39452.8
48828.2
66.8
66.8
66.8
2346.2
2409.8
2873.0
2971.3
4130.0
5962.4
15196.8
30962.6
48138.2
122548.9 132061.6 169133.9
8721.2
20930.1
35078.7
16769.7
13970.0
21548.3
124036.6 148703.9 214596.6
1614.1
1815.3
2315.2
2851.4
3307.0
4175.5
12145.9
12096.3
17812.0
5536.9
3993.8
5323.5
18702.6
23056.0
33644.2
939.6
997.4
1160.4
1322.9
1392.6
1547.8
4.4
4.4
4.4
282362.5 389987.9 484246.3
4.5
4.5
4.5
1830.6
2190.6
3280.5
2.8
2.8
2.8
Table S1 - 3
Sep
22712.6
41690.7
80569.1
50884.2
193011.8
112396.8
31067.4
209738.6
178113.9
96250.7
663656
198954.2
31031.5
2146.6
4066.4
977560
2348322
35292.4
6995.3
8004.6
3248.5
44699.2
1545.2
247099.0
6382.8
2579.5
818.6
440.0
1445163
6153.5
279.3
111.3
124292.8
2150.1
86830.9
1212.6
634.5
547.9
47896.3
256.5
32674.7
595.9
217.8
168.0
189.7
1222.4
446.7
854.9
147.3
20.8
30769.7
923.1
10.1
322.7
8.8
2508.4
288724.7
19897.8
125.0
6.2
642.4
178.9
842.7
24.8
19047.6
38916.5
7988.8
150194.0
261.0
524.3
20498.2
3720.0
12.5
24345.8
2449.8
4372.7
31027.4
571.6
69.0
1771.5
27866.3
11378.6
56859.5
66.8
2727.9
11502.7
78677.7
177712.7
52881.4
24273.3
260861.2
3117.0
5578.0
20447.7
5539.0
36795.0
1255.2
1659.7
4.4
441763.5
4.5
3413.9
2.8
Oct
15185.2
12980.1
151801.5
128180.7
207068.0
249632.9
69816.1
494316.1
230843.2
104272.6
1168966
310907.4
44533.4
13316.5
4907.1
1175695
1758006
59240.1
12754.2
8094.8
2719.8
24524.1
1535.0
191439.6
10244.7
3108.5
1268.8
276.3
774266
3690.4
318.8
141.8
46851.9
4090.6
29194.6
2538.2
587.3
844.0
37851.8
244.1
24805.9
595.0
210.9
190.3
158.2
1226.9
507.6
487.4
142.5
20.8
16146.9
548.6
10.1
253.0
8.8
1066.0
205464.6
10406.4
125.0
6.2
454.9
178.9
478.2
24.8
6104.3
17927.0
4856.0
76443.7
235.6
509.9
11143.5
2881.4
12.5
20674.2
1974.0
4049.2
22244.9
540.4
69.0
1592.6
15536.5
9694.2
52105.1
66.8
2245.8
11706.3
51440.1
120696.3
28404.6
12229.0
218911.7
2951.9
5672.9
16656.5
5606.5
25500.9
1106.4
1372.8
4.4
351021.8
4.5
2676.9
2.8
Nov
3834.6
12451.0
127823.0
281488.4
64979.2
212263.3
110970.6
598494.6
139603.3
69303.7
1408048
278697.0
9145.4
11430.0
5918.1
2152860
2284196
51877.4
9045.0
14728.7
3776.9
55270.0
1631.9
245016.4
7843.7
6446.6
342.0
199.7
560226.2
3351.3
2963.3
329.7
36228.9
4433.9
26893.7
5959.7
956.1
2016.3
28963.6
277.6
8041.2
595.0
201.0
225.8
161.4
1382.7
1440.6
486.7
147.0
20.8
8351.1
193.2
10.1
231.7
8.8
871.8
148718.1
9369.4
125.0
6.2
647.3
178.9
246.6
24.8
5516.5
24302.0
1270.2
131809.0
215.4
510.5
10846.6
637.8
12.5
13068.3
1276.0
3535.8
7098.8
486.2
69.0
1140.1
22752.6
4804.0
40421.8
66.8
1384.8
10296.8
274543.7
58297.6
169820.2
8988.3
101555.8
2081.0
4047.1
8324.7
4349.0
9867.6
431.3
422.2
4.4
281804.3
4.5
1327.9
2.8
Dec
3921.9
12101.6
145556.7
245126.1
72785.9
398514.2
105337.9
475411.3
107577.7
80568.1
1423182
277175.7
2562.4
13509.5
6333.7
752664
2233875
28735.1
9997.6
24789.5
4438.0
32920.0
2428.4
187965.9
7902.8
9496.9
338.4
523.6
465899.2
6276.3
4028.0
445.6
37982.4
5521.1
62694.2
8605.1
1201.2
3249.2
48183.1
336.7
5782.6
595.2
199.8
270.4
201.3
1766.8
2049.2
2106.0
237.7
20.8
4871.7
68.3
10.1
234.9
8.8
995.3
82683.1
6314.9
125.4
6.2
1066.2
180.3
337.6
24.8
3371.0
13038.1
4218.5
71459.2
200.1
486.3
11621.8
78.6
12.5
11625.1
1055.5
2922.3
5938.5
474.7
69.0
1074.0
17981.7
5735.0
30580.7
66.8
1773.4
8106.6
172560.2
40099.8
102706.1
3339.1
33946.1
1854.0
3619.3
6676.8
2983.8
7560.9
75.4
77.1
4.4
210576.8
4.5
968.0
2.8
Average
7876.7
21928.8
157519.7
132452.3
154917.3
577316.0
59788.9
273871.0
169150.5
121568.8
1218638
285225.5
14864.4
14560.0
11363.8
899254
1759152
30035.7
11222.4
21465.2
4301.7
37816.2
9890.3
147222.8
8417.3
6094.1
573.2
1182.7
732815.0
9470.8
2856.9
344.2
118619.8
3764.9
76202.0
4311.8
923.1
1810.9
71792.4
315.0
18993.7
607.1
205.6
215.8
178.8
1424.2
1047.4
1776.7
161.8
20.8
12198.4
207.1
10.1
231.1
8.8
2655.8
185732.8
8454.7
125.3
6.2
524.9
179.9
528.1
24.8
8118.1
19810.1
5278.3
76741.4
217.4
489.1
15814.3
1378.9
12.5
14729.3
1695.7
2337.6
26071.2
497.2
69.0
1306.4
17588.0
12486.4
30463.7
66.8
2208.4
5662.1
95635.7
96617.6
56312.1
12706.2
114550.7
2143.3
3692.0
11460.4
4587.9
18045.7
646.1
854.8
4.4
321845.9
4.5
1902.6
2.8
Basin ID Basin name
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
Mitchell(N. Au)
Majes
Ord
Jequitinhonha
Macarthur
Fitzroy
Gilbert
Mucuri
Rio Doce
Save
Burdekin
Tsiribihina
Buzi
Loa
Limpopo
De Grey
Paraiba Do Sul
Fortescue
Mangoky
Fitzroy
Orange
Ashburton
Gascoyne
Rio Ribeira Do Iguape
Incomati
Murray
Murchison
Maputo
Uruguay
Tugela
Colorado (Argentinia)
Rio Jacui
Huasco
Limari
Negro (Uruguay)
Groot-Vis
Salado
Blackwood
Rapel
Negro (Argentinia)
Biobio
Waikato
South Esk
Chubut
Clutha
Baker
Santa Cruz
Ganges
Salween
Hong(Red River)
Lake Chad
Okavango
Tarim
Horton
Hornaday
Conception
Ulua
Patacua
Coco
Ocona
Cuanza
Cunene
Doring
Gamka
Groot- Kei
Lurio
Messalo
Rovuma
Galana
Pyasina
Popigay
Fuchun Jiang
Min Jiang
Han Jiang
Mamberamo
Lorentz
Eilanden
Uwimbu
Sungai Kajan
Sungai Mahakam
Sungai Kapuas
Batang Kuantan
Batang Hari
Flinders
Leichhardt
Escaut (Schelde)
Issyk-Kul
Balkhash
Eyre Lake
Lake Mar Chiquita
Lake Turkana
Dead Sea
Suriname
Lake Titicaca
Lake Vattern
Great Salt Lake
Lake Taymur
Daryacheh-Ye Orumieh
Van Golu
Ozero Sevan
Jan
341.7
3314.9
10.2
945.8
1.1
11.9
7.4
398.8
4008.0
7032.9
1069.8
60722.5
339.3
348.3
98842.0
11.0
8096.7
9.8
36833.8
6135.8
122068.9
10.1
16.1
2155.1
6744.6
1796675
19.2
1657.9
674173.3
12844.4
164413.7
259052.2
880.5
33036.7
77510.1
14526.3
30690.2
677.8
160994.9
22754.5
28414.2
805.3
4363.8
4565.2
2540.9
25.4
29.0
13158709
18910.2
86812.4
123841.3
850.3
46367
0.2
0.4
863.2
7388.7
684.0
694.7
1388.9
868.5
184.8
13480.3
2715.0
2443.3
42.1
9.9
368.1
4086.6
462.7
1.6
9387.7
8168.5
8406.5
123.4
4.5
15.9
16.9
412.8
1603.6
1123.8
21554.5
18804.9
13.9
13.2
28581.6
3869.6
7898.1
256.3
73618.5
16702.2
4976.7
72.8
54629.1
717.8
11288.1
11.7
4126.5
847.5
1005.7
Feb
261.0
2330.3
5.1
1485.9
1.1
12.0
7.0
697.6
11396.5
7311.8
1069.6
42436.5
168.7
348.2
124195.8
11.0
7902.6
9.8
29713.2
9673.2
208326.4
10.1
26.1
2072.6
10034.5
1629509
30.4
1863.0
302717.3
32307.0
128020.2
109321.3
669.4
20409.8
40088.3
32500.4
31714.2
868.2
92143.4
22634.3
15065.1
884.8
7720.4
9149.9
17233.5
66.4
136.8
14044732
21222.2
94924.2
182360.2
939.6
103636
0.2
0.4
2402.2
5158.9
319.0
582.3
1328.2
1178.4
215.9
27491.8
13051.7
5945.1
42.1
9.7
278.2
4402.9
462.7
1.6
9389.8
8157.3
8240.3
123.9
4.6
16.5
18.2
124.0
820.3
772.5
8941.9
8425.0
26.6
13.8
28581.6
3867.4
7903.9
391.9
72832.9
12196.8
10605.9
72.8
39854.3
717.8
11334.6
11.7
7750.8
847.7
1005.7
Mar
734.6
2230.2
95.9
1556.0
1.1
12.4
69.2
722.2
10312.4
12439.9
6076.7
88041.6
571.0
349.1
219628.8
11.0
9838.7
10.1
51243.5
46656.6
240318.1
10.1
37.7
2145.4
17801.4
1677274
35.3
6406.3
105062.7
51653.7
103199.4
47759.7
596.5
15231.9
24714.6
31051.4
12777.0
921.3
63877.9
16810.0
11595.8
1470.9
9018.2
10672.0
17807.5
107.7
175.6
19911407
34782.4
106398.9
195207.9
1358.4
364031
0.2
0.4
4812.7
11597.1
962.4
1181.1
1458.9
738.4
172.6
34498.5
17664.1
6908.7
42.5
10.0
236.9
2121.7
462.7
1.6
9394.0
8156.7
8206.6
123.3
4.5
15.9
19.4
27.6
288.3
494.9
831.1
1056.0
130.2
24.0
28582.3
5610.0
26411.0
803.8
50326.6
6961.2
46781.5
72.8
30463.0
717.8
26872.7
11.7
33647.9
993.1
1084.3
Apr
3963.8
6243.8
2642.1
2000.2
1.1
14.1
192.1
893.4
13025.3
22876.0
16014.8
170196.4
1950.0
344.5
213847.8
11.0
14156.2
10.2
62417.9
47241.2
173615.7
10.1
31.0
2360.0
28995.5
851276
27.4
16175.1
9149.2
31877.5
45559.1
2362.1
320.6
4343.8
1701.7
18743.8
4173.2
540.3
14339.2
7621.7
3916.5
936.2
3485.7
6480.2
11223.5
64.7
95.3
12435642
73001.7
217194.1
192937.9
2321.6
795438
0.2
0.4
6493.5
15430.8
1424.5
1487.5
5571.7
660.0
214.8
19964.9
12790.1
4971.3
65.9
10.2
380.9
1109.4
462.7
1.6
14416.1
8768.9
9470.7
123.0
4.5
15.6
18.5
27.7
267.0
455.4
965.8
990.9
192.0
31.9
28814.5
85052.7
176009.3
738.9
42798.2
1990.2
124014.2
72.8
25263.3
719.3
108482.1
11.7
83546.7
1806.4
1191.3
May
5537.1
6557.9
5015.6
2114.7
1.1
14.2
192.0
1042.3
15031.5
18101.7
13433.7
57454.6
2369.0
338.5
120149.9
11.0
11371.2
10.2
19314.3
30687.5
83286.4
10.1
21.7
2087.9
20121.8
281547
16.5
15406.1
4500.7
17955.0
35233.9
2136.7
233.5
2483.7
169.3
15831.9
2776.8
112.5
2676.0
3348.7
5844.3
772.1
1054.4
3205.9
1629.9
33.7
34.8
10053368
71107.9
516481.4
45619.4
2706.3
1367750
0.2
0.4
5091.4
9677.7
722.7
561.4
6039.9
1308.7
387.3
5689.1
7396.2
4848.2
79.2
15.2
604.4
1314.2
462.7
1.6
31425.8
14877.9
17858.6
123.1
4.5
15.6
22.2
28.2
293.8
463.5
1148.5
1605.4
176.5
31.2
31907.5
331331.6
367687.4
643.9
21882.7
2639.1
191001.2
72.8
17817.7
853.4
190196.5
11.7
100958.4
8779.5
1787.3
Blue water footprint (103 m3/month)
Jun
Jul
Aug
5395.0
5844.0
6913.5
3327.0
2217.4
3421.6
6620.6
8488.8
9999.0
2118.7
2390.9
2950.1
1.1
1.1
1.1
13.9
14.3
14.9
166.5
177.4
213.7
1273.0
1400.9
1994.9
19754.2
25232.1
29963.7
21476.8
25475.9
52038.5
13045.9
15661.6
19538.3
3648.5
3562.4
3689.5
2285.2
2411.6
3704.3
344.2
350.9
378.1
125648.9 151835.7 249928.3
11.0
11.0
11.0
13191.8
16284.0
18864.9
10.0
10.1
10.3
3491.1
3051.9
3056.3
22800.7
29204.9
39198.8
99538.7 127434.9 195558.1
10.1
10.1
10.1
16.8
14.0
28.0
2051.4
2090.6
2154.1
20976.2
24492.5
35427.8
141682
147848
291593
13.9
12.6
22.6
17843.1
19266.3
28775.0
4538.6
4675.7
6884.4
18187.8
24585.7
38346.7
27627.6
63043.9 118507.8
2126.9
2125.6
2146.1
377.0
420.7
900.5
1128.7
1359.8
4913.1
169.0
169.1
173.3
12788.2
13412.8
17802.9
2699.5
3138.3
3343.9
58.0
56.5
62.1
1202.5
1193.5
3295.0
1700.5
2238.0
4931.8
5712.0
5919.4
6177.5
771.2
771.2
771.2
242.4
114.1
376.1
1252.6
1584.8
3762.2
204.3
188.7
925.2
27.0
29.0
38.7
18.5
17.8
36.9
5544274 3941654 2382353
75090.7
40034.7
32003.0
257551.0 115094.1
89732.2
47440.0
34137.9
24381.8
2777.0
3170.3
4094.5
1424510 1536483 1380857
0.2
0.2
0.2
0.4
0.4
0.4
6316.2
5835.4
8031.6
6025.2
3696.0
2598.1
403.1
517.0
290.0
289.3
280.7
274.2
2802.8
1669.3
2565.0
2689.8
3287.9
4779.9
485.7
548.8
643.5
2413.1
2085.1
6704.6
6211.1
4523.1
5661.0
4427.5
5461.1
7147.2
78.9
85.1
104.1
15.4
25.7
41.2
438.8
401.0
464.3
2968.8
4794.7
5148.0
462.7
462.7
462.7
1.6
1.6
1.6
25890.3 120394.7
93993.7
16995.3
92286.1
71040.8
21719.8
60040.3
39510.8
123.5
123.2
124.1
4.5
4.6
4.6
15.6
15.9
16.0
29.7
38.1
42.2
29.3
30.4
28.2
278.8
503.9
607.6
467.5
502.7
491.3
2243.1
2968.7
3059.6
2782.2
3403.0
4321.5
146.7
162.3
198.3
28.1
29.8
33.5
33659.4
36561.2
38970.5
551793.0 652012.1 682351.3
451268.4 660660.3 716715.5
558.2
597.0
749.8
24157.2
34910.8
46837.8
2532.7
3148.7
7388.1
180841.4 209018.1 193278.0
72.8
72.8
72.8
15135.1
12497.3
15948.5
993.5
1190.2
1358.0
290908.9 355162.4 295952.7
11.7
11.7
11.7
133857.5 161670.1 185227.9
18522.7
17687.8
18856.2
4689.9
6576.3
7338.7
Table S1 - 4
Sep
8084.4
4721.7
10849.1
2962.3
1.1
15.2
246.0
1783.8
24373.8
66437.5
24172.3
3846.5
4836.8
394.9
325116.1
11.0
14871.9
10.5
3009.5
53174.6
238623.5
10.1
40.4
2099.0
44482.0
566450
35.9
32439.2
7069.2
45657.8
170003.6
2192.2
1491.4
11224.6
185.6
29350.8
6448.3
86.6
25200.3
8688.9
11895.2
771.3
1709.8
6442.3
7142.1
70.2
91.7
3662445
47800.8
76564.6
34770.1
4792.1
981231
0.2
0.4
7388.1
1529.4
288.6
256.1
3477.2
5424.3
658.0
22058.4
15664.3
9965.5
120.3
55.8
501.0
4916.8
462.7
1.6
98617.9
63069.9
41152.2
126.2
4.7
16.6
40.7
556.1
3384.0
1104.4
16614.0
17731.0
236.2
36.8
32038.1
487278.5
543809.3
900.6
66462.2
8373.8
109862.3
72.8
17203.3
955.5
178346.4
11.7
115943.3
13419.3
4115.2
Oct
7994.6
4279.7
8894.4
2164.1
1.1
15.3
244.9
1336.8
18958.1
48232.1
24665.8
3978.5
4651.0
396.1
260022.0
11.0
14426.4
10.7
3297.2
56851.7
235041.8
10.1
42.4
2084.0
30139.7
902256
41.7
26730.3
75991.9
41740.0
212465.5
28141.6
1703.2
15815.0
2311.3
36957.0
7055.3
400.3
76379.7
13110.6
15852.7
772.8
3617.7
9430.3
10489.7
137.0
181.2
7534298
46577.3
35708.5
57186.8
4473.7
229859
0.2
0.4
5674.9
873.7
149.5
223.7
3202.9
5051.3
475.7
44962.5
22727.4
10746.6
121.2
55.8
509.2
4405.9
462.7
1.6
20451.1
11420.9
10352.2
126.8
4.7
16.9
34.4
441.0
2255.0
745.6
17601.1
17859.5
237.2
36.4
28958.6
193577.7
148355.0
923.5
55393.0
6303.4
66696.8
72.8
18560.0
726.5
99340.6
11.7
52188.0
4618.4
2066.8
Nov
4814.7
3531.6
4903.3
1094.5
1.1
14.4
166.5
535.7
6088.4
15712.5
17069.6
2776.9
1881.5
358.0
144978.1
11.0
8900.6
10.5
2252.2
42674.6
144597.6
10.1
37.7
2155.9
16687.2
998880
37.9
13692.5
222852.6
25547.1
229930.1
82757.9
575.0
12289.3
17959.6
25499.1
7087.4
621.9
56481.3
21027.1
5911.7
793.6
4179.9
10387.5
13228.7
122.6
210.6
11330417
20138.6
39272.1
45197.3
2363.9
96323
0.2
0.4
2054.4
1227.4
167.7
233.4
2475.2
1988.5
299.6
32514.2
12638.5
7337.2
72.7
13.7
345.7
1807.1
462.7
1.6
10449.3
9325.7
9234.2
125.8
4.6
17.3
27.9
119.7
1350.9
646.5
14363.5
12626.0
172.6
29.4
28581.6
23889.9
15538.2
721.1
44846.3
4962.7
33941.2
72.8
20898.8
717.8
32184.9
11.7
17973.6
1624.0
1122.2
Dec
1996.1
2713.2
290.0
855.1
1.1
12.5
86.0
375.9
3693.6
7525.0
5682.5
19607.2
694.8
357.0
90398.9
11.0
7285.8
10.2
12760.5
29016.8
110597.0
10.1
32.1
2158.7
10339.6
1224788
30.9
9878.1
345000.7
13318.7
151341.9
131107.2
678.5
17019.2
32370.9
25607.1
7698.1
777.6
90362.1
23140.1
15700.7
862.8
5909.2
10851.3
10746.4
111.6
166.2
6754745
13490.7
55205.2
63649.7
1472.9
39023
0.2
0.4
1500.2
5331.4
575.7
511.1
1547.2
1595.4
198.5
28071.5
11656.3
5007.8
49.4
10.9
331.1
2100.7
462.7
1.6
9426.9
8428.1
8624.0
124.6
4.5
16.6
20.3
276.4
990.5
654.6
10111.4
9336.6
113.5
22.0
28581.6
4687.0
8438.0
586.0
30999.3
8450.8
16173.1
72.8
30440.3
717.8
13326.8
11.7
7598.4
959.4
1040.9
Average
4323.4
3740.8
4817.8
1886.5
1.1
13.8
147.4
1037.9
15153.1
25388.4
13125.1
38330.1
2155.3
359.0
177049.4
11.0
12099.2
10.2
19203.4
34443.0
164917.3
10.1
28.7
2134.6
22186.9
875815
27.0
15844.4
146884.7
29501.8
120778.9
55935.8
737.2
11604.6
16460.2
22839.3
9966.8
431.9
49012.2
12333.9
11000.4
865.3
3482.6
6482.0
7780.0
69.5
99.5
9229504
41180.0
140911.5
87227.5
2610.1
697126
0.2
0.4
4705.3
5877.9
542.0
548.0
2793.9
2464.3
373.8
19994.5
11058.3
6267.5
75.3
22.8
405.0
3264.7
462.7
1.6
37769.8
26724.7
20234.7
124.2
4.6
16.2
27.4
175.1
1053.6
660.2
8366.9
8245.2
150.5
27.5
31151.5
252110.1
260891.2
655.9
47088.8
6804.2
98932.5
72.8
24892.6
865.4
134449.7
11.7
75374.1
7413.5
2752.0
Table S2. Monthly natural runoff for the world's major river basins
Basin ID Basin name
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
Khatanga
Olenek
Anabar
Yana
Yenisei
Indigirka
Lena
Omoloy
Tana (NO, FI)
Colville
Alazeya
Anderson
Kolyma
Tuloma
Muonio
Yukon
Palyavaam
Kemijoki
Mackenzie
Noatak
Anadyr
Pechora
Lule
Kalixaelven
Ob
Ellice
Taz
Kobuk
Coppermine
Hayes(Trib. Arctic Ocean)
Pur
Varzuga
Ponoy
Kovda
Back
Kem
Nadym
Quoich
Mezen
Iijoki
Joekulsa A Fjoellum
Svarta, Skagafiroi
Oulujoki
Lagarfljot
Thelon
Angerman
Thjorsa
Northern Dvina(Severnaya
Oelfusa
Nizhny Vyg (Soroka)
Kuskokwim
Vuoksi
Onega
Susitna
Kymijoki
Neva
Ferguson
Copper
Gloma
Kokemaenjoki
Vaenern-Goeta
Thlewiaza
Alsek
Volga
Dramselv
Arnaud
Nushagak
Seal
Taku
Narva
Stikine
Churchill
Feuilles (Riviere Aux)
George
Caniapiscau
Western Dvina (Daugava)
Aux Melezes
Baleine, Grande Riviere De
Spey
Kamchatka
Nass
Skeena
Nelson
Hayes(Trib. Hudson Bay)
Gudena
Skjern A
Neman
Fraser
Severn(Trib. Hudson Bay)
Amur
Tweed
Grande Riviere De La Bale
Grande Riviere
Winisk
Churchill, Fleuve (Labrador
Dniepr
Ural
Wisla
Don
Area (km2)
294907.5
208522.0
85015.5
233479.4
2558237.3
341227.8
2425551.1
38871.3
14518.1
57544.7
85493.3
66491.7
652850.5
26057.7
37346.5
829632.3
31112.8
55824.7
1752001.5
32319.5
171275.8
312763.3
25127.6
17157.6
2701040.7
12599.6
152086.0
30242.4
43016.4
22992.8
111351.3
8182.2
13186.0
10227.6
141351.9
42080.8
54624.7
28217.6
76715.3
16163.3
7311.0
3429.6
30554.5
3285.3
238839.0
32372.0
7527.1
323573.1
5678.3
31334.1
118114.0
62707.4
65894.0
49470.3
33623.1
223309.5
15200.4
64959.7
42862.7
26615.9
51791.5
64399.6
28422.0
1408278.9
17364.0
44931.9
29513.6
53439.9
17967.6
58147.0
51147.5
298505.0
37425.3
39054.1
105690.6
89340.3
41384.1
22136.1
2942.2
54103.9
21211.7
42944.4
1099380.3
105371.9
2860.9
2817.6
97299.9
239678.4
98590.5
2023520.4
4770.9
24256.7
111718.4
106470.3
84984.3
510661.3
339084.2
193764.0
425629.6
Jan
1571.7
1231.0
525.8
896.1
16135.2
1902.5
15771.8
26.9
71.8
185.8
184.1
54.7
3721.1
94.6
143.9
4850.3
106.3
487.2
5637.8
156.5
1182.1
2459.1
313.1
78.3
6930.1
30.5
989.9
211.1
28.9
27.0
740.7
47.2
127.2
30.6
327.2
235.3
383.2
41.6
372.9
94.2
75.0
54.9
230.9
112.9
478.4
343.5
422.1
1021.4
378.5
206.5
1269.5
334.8
224.9
1270.7
186.3
1195.2
40.3
1090.8
563.2
236.7
1198.3
91.9
286.1
3091.7
259.8
564.3
517.3
126.4
430.1
710.7
1826.9
789.5
673.6
758.1
2297.2
772.7
637.5
379.8
478.1
689.9
1054.0
1078.2
1698.4
339.8
259.3
351.5
740.2
3955.1
593.2
13098.2
575.8
482.1
2729.2
890.2
1702.6
849.5
324.2
947.0
308.1
Feb
58.7
159.8
85.3
72.8
742.2
179.7
655.1
0.7
0.0
1.4
31.2
0.4
160.9
11.6
13.1
252.5
0.0
3.2
86.9
0.8
1.3
31.2
1.0
6.6
198.1
0.0
6.0
31.8
0.1
0.0
0.3
0.0
0.0
0.0
0.0
0.5
0.2
0.0
4.5
0.1
0.0
0.0
1.1
0.0
0.1
0.5
33.1
35.1
0.0
0.1
1.4
1.2
2.8
2.2
1.0
10.6
0.0
0.0
1.3
1.6
3.2
10.3
0.0
147.2
0.5
0.0
0.0
1.6
0.0
1.2
603.3
20.1
0.0
0.0
0.9
2.1
0.1
0.0
203.5
0.0
0.0
0.2
40.6
7.0
115.5
132.9
3.4
1048.3
0.0
58.9
239.8
0.0
0.9
2.1
0.0
45.1
5.7
37.8
29.4
Natural runoff (Mm3/month)
Mar
Apr
May
Jun
Jul
Aug
35.4
21.4
221.2 25398.5 12884.8
6944.9
96.5
58.3
658.3 16431.9
5510.3
3070.3
51.5
31.1
18.8
4128.1
2082.3
1011.7
44.0
26.6
159.2
7535.9
6820.7
3807.3
452.4
7752.7 162714.9 162047.8 97190.0 64240.9
108.5
65.6
450.9 16809.8 14507.5
6786.0
396.4
361.9 87091.9 124907.8 84650.4 63046.2
0.4
0.2
0.2
426.1
277.1
128.9
0.0
0.0
2851.4
778.3
457.0
276.1
0.8
0.5
45.5
1938.0
1977.6
1034.6
18.9
11.4
6.9
1896.8
555.0
314.2
0.2
0.1
2548.6
797.3
434.9
262.7
97.2
58.8
5342.4 25441.2 35941.4 16207.8
7.1
4.4
1732.1
547.3
300.0
180.4
8.0
213.9
2005.5
1110.4
750.1
388.4
152.7
943.7 53166.5 48766.9 29776.4 16607.0
0.0
0.0
0.0
1878.7
1036.4
526.4
2.0
594.1
8987.0
2448.1
1458.1
934.7
53.5
9063.7 79403.5 79172.3 46002.0 24877.4
0.5
0.3
401.9
1980.3
1099.7
624.3
0.8
0.5
2452.2 21998.7 10380.5
5461.5
19.2
1449.0 58305.9 38794.9 16270.2
9630.9
0.6
1119.1
3851.3
3784.3
1895.4
1112.2
4.0
388.6
1237.8
757.3
351.5
203.1
135.9 80842.2 148619.4 68228.3 36839.8 23540.4
0.0
0.0
0.0
958.3
248.8
150.3
3.6
2.2 12922.1 23163.4
7321.6
4370.1
19.2
11.6
2063.7
1100.6
619.7
373.5
0.1
0.0
390.0
714.8
246.4
139.9
0.0
0.0
0.0
834.5
225.2
133.1
0.3
0.3
7186.7 15161.5
4615.2
2795.1
0.0
0.0
683.9
188.7
110.1
66.6
0.0
0.0
1585.1
438.1
255.8
178.3
0.0
0.0
881.9
280.3
152.3
92.5
2637.8
0.0
0.0
5571.3
8215.3
1590.9
0.4
2642.5
3902.2
1352.6
781.6
490.1
0.1
0.1
4504.7
7346.2
2354.4
1461.2
0.0
0.0
0.0
1216.3
349.6
199.5
2.7
3916.9 10521.7
3855.7
2081.0
1250.6
0.1
1326.2
997.0
396.0
232.9
151.1
0.0
5.7
754.0
592.9
236.8
148.0
29.3
123.6
363.8
392.6
148.0
89.0
0.8
5398.3
1702.8
939.7
562.7
373.1
0.0
22.3
1190.7
742.9
324.1
231.6
0.0
0.0
6190.9 10749.7
3370.2
2026.8
0.4
4027.0
3524.6
2685.5
1232.5
833.4
91.6
1123.0
1723.6
1322.4
662.2
584.0
22.2 44567.2 19378.9
9541.8
5592.3
3376.1
323.1
1726.6
690.3
685.2
565.6
398.0
0.1
5451.2
1622.9
926.7
553.6
334.4
0.9
0.5 16620.3
7998.3
5470.1
5473.3
1.2 10528.9
2968.3
1728.3
1039.2
643.3
1.8 10633.8
3402.5
1902.0
1125.9
680.1
1.4
3654.1
8319.0
8905.7
5269.7
4095.0
1.0
4570.7
1319.9
758.1
456.3
277.2
8.8 32169.2
9560.0
5468.9
3272.4
1984.2
0.0
0.0
0.0
1053.5
296.1
171.1
0.0
17.3
7546.7 10214.6
7440.5
4185.8
12.0
3439.3
3368.1
3615.4
2048.4
1487.9
1.5
3662.2
1092.9
616.1
371.5
225.5
2259.8
5377.8
2297.5
1379.5
819.2
707.0
6.2
3.7
1834.1
666.0
339.5
204.2
0.0
584.4
2611.7
2770.9
1100.4
738.6
747.6 140132.1 51088.9 28581.8 17230.0 10747.1
97.0
1233.4
1458.1
1401.1
734.0
665.9
0.0
0.0
632.5
5641.8
2064.4
1543.3
0.0
1308.4
4936.8
1770.2
1042.6
1293.2
1.0
0.6
3534.7
1434.9
728.5
432.3
0.0
806.8
2508.0
2296.9
1033.2
783.7
1.2
6018.5
1937.0
1079.4
639.7
420.0
508.0
1656.9
9699.8 11933.0
5766.5
3728.6
12.3
3400.0 13120.8
7724.3
3761.6
2131.7
0.0
0.0
2539.5
5199.5
2051.0
1757.3
0.0
0.0
4958.0
5039.7
3961.6
2616.4
0.5
0.3 16170.7 12475.4
6805.5
6229.8
619.6
2.1
9180.8
2977.1
1713.6
1016.3
0.1
0.0
5433.5
3250.9
1841.6
1727.2
0.0
0.0
4270.1
1505.8
1122.0
983.1
174.9
136.5
98.8
58.1
43.8
52.5
0.0
0.0
9603.9
7199.7
5399.2
2604.2
810.7
3441.7
6020.4
4634.1
2047.3
1515.8
1041.9
4491.6
8819.6
7160.8
3082.5
2010.7
35.8 29311.7 20864.5 15143.9
8074.5
5014.9
4.3
2.6
7011.9
3778.4
2054.7
1111.5
103.3
77.1
41.9
24.7
16.2
10.7
121.1
89.0
50.8
28.9
18.4
22.4
2540.2
8813.4
3141.2
1745.1
1037.9
641.8
2360.7 15356.9 26897.1 15496.8
7432.2
4439.9
0.0
969.8
7964.8
3325.3
1813.8
1158.6
59.3 41918.1 57294.3 53865.4 45446.7 49807.8
225.1
158.2
110.7
72.3
54.4
61.3
0.0
0.0
3057.6
1978.3
1140.9
1097.4
0.5
0.3 20738.4 10192.2
6544.7
6144.0
1.3
3470.5 10190.2
4433.5
2449.4
1479.2
0.0
0.0 15223.9 10971.0
6028.7
4689.5
9860.5 20513.6
7860.1
4484.4
2811.4
1783.2
165.2 10759.3
3817.4
2162.0
1470.8
948.2
12812.8
6810.9
4190.9
2577.5
1781.3
1243.2
4138.3 14368.8
5709.0
3280.6
2272.7
1517.1
Table S2 - 1
Sep
4357.0
1870.4
602.5
1832.6
48091.7
3631.1
53636.1
73.6
217.4
579.1
189.8
158.7
10517.4
119.2
294.9
12906.1
355.2
1082.1
15732.9
629.7
4105.7
7855.7
951.7
137.7
18275.7
90.8
3193.2
338.6
84.5
80.4
2896.5
112.4
268.5
71.2
990.4
429.8
1502.8
128.2
799.5
155.9
147.0
76.1
416.6
257.6
1686.6
764.3
668.7
2058.6
471.2
420.4
5291.7
560.3
436.9
4842.3
216.4
1703.3
142.1
3963.1
1400.5
147.2
791.8
198.6
961.8
6887.4
720.2
1878.6
1548.5
415.7
1027.7
372.9
3815.5
1960.1
1931.8
2618.4
6669.5
425.3
1787.2
1130.8
81.3
1918.9
1839.7
1937.6
4579.4
798.0
14.8
70.4
406.1
3254.0
1429.9
50357.7
91.1
1241.0
7187.4
2350.9
4563.7
1063.7
527.8
858.0
801.0
Oct
2419.0
1106.6
354.9
1106.8
24440.8
2176.2
23839.3
43.7
149.0
324.5
114.6
95.8
5575.9
121.3
187.3
7648.1
191.1
1366.4
10447.5
275.6
2116.1
4450.1
683.0
118.6
14074.8
54.8
1738.0
159.6
51.0
48.5
1331.2
140.1
394.1
78.0
588.0
696.2
687.7
74.8
867.4
299.9
221.4
152.2
710.7
309.8
859.5
954.8
840.8
2097.6
658.7
626.2
2398.6
960.4
556.4
2738.5
308.4
2586.4
72.5
2215.5
1344.1
152.9
1475.7
94.1
680.0
6486.8
633.0
1362.9
1382.8
241.7
1263.6
731.8
3379.2
1724.5
1773.6
1701.2
6024.1
849.3
1696.1
994.3
157.4
1546.8
2607.5
2313.5
4110.0
731.1
58.0
165.2
467.3
3618.6
1689.2
28455.4
172.0
1368.9
7682.4
2486.7
4517.0
891.9
322.1
779.6
444.2
Nov
1461.0
668.3
214.4
668.5
14455.9
1314.4
14390.4
26.4
77.9
196.0
69.2
57.9
3367.8
55.2
101.6
4212.2
115.4
516.4
5767.0
166.5
1278.1
2542.8
335.9
57.6
6865.0
33.1
1049.7
96.4
30.8
29.3
804.1
51.2
138.1
33.2
355.2
253.6
415.4
45.2
386.3
102.3
82.3
68.9
247.3
128.1
519.1
371.0
478.5
971.8
434.6
224.2
1372.5
387.0
234.8
1370.5
311.4
1686.6
43.8
1184.1
677.6
501.9
1616.9
56.8
310.6
3165.6
304.9
612.6
561.6
130.6
467.0
1459.3
1948.6
774.9
731.3
823.0
2490.3
1548.2
691.6
412.3
246.1
749.0
1420.3
1518.6
1799.8
339.8
124.8
192.5
1597.2
3140.5
644.0
14176.3
311.6
523.3
2959.2
957.9
1848.4
1449.4
587.8
1157.5
431.0
Dec
882.4
403.7
129.5
403.8
8735.1
793.9
8692.2
15.9
47.1
118.4
41.8
35.0
2034.2
33.5
61.4
2544.3
69.7
312.0
3484.1
100.6
771.9
1536.1
202.9
34.8
4161.9
20.0
634.0
58.2
18.6
17.7
485.8
30.9
83.4
20.1
214.5
153.2
250.9
27.3
233.3
61.8
49.2
36.0
149.5
74.0
313.5
224.1
288.8
587.9
320.1
135.5
829.0
220.0
141.1
827.8
122.5
773.9
26.4
715.2
369.7
154.8
1037.2
34.3
187.6
1902.0
170.5
370.0
339.2
78.9
282.0
466.4
1370.5
468.2
441.7
497.1
1504.1
507.4
417.7
249.0
292.1
452.4
691.1
707.1
1090.5
205.3
157.3
228.6
486.5
2506.4
388.9
8572.4
366.0
316.1
1787.3
578.6
1116.4
588.9
214.5
847.9
212.1
Average
4688.0
2605.5
769.6
1947.9
50583.3
4060.5
39786.6
85.0
410.5
533.5
286.2
370.5
9038.8
267.2
439.9
15152.2
356.6
1515.9
23310.7
453.1
4145.8
11945.4
1187.5
281.3
34059.3
132.2
4616.2
423.7
142.1
116.3
3001.5
119.3
289.1
136.7
1707.6
911.5
1575.6
173.5
2024.4
318.1
192.7
127.9
894.5
282.9
2182.9
1246.8
686.6
7437.6
554.3
875.1
3893.8
1614.4
1611.9
3441.4
710.7
5034.9
153.8
3214.5
1527.3
597.1
1580.3
295.0
852.7
22517.4
639.9
1222.5
1225.1
593.9
908.3
1153.2
3853.1
2990.7
1424.9
1914.5
5055.7
1634.5
1457.0
920.6
168.6
2513.7
2173.5
2846.9
7647.0
1365.4
83.6
122.6
1801.7
7458.9
1664.8
30259.2
203.2
933.8
5497.2
2440.9
4221.8
4350.1
1775.4
2837.0
2792.7
Basin ID Basin name
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
Oder
Elbe
Trent
Weser
Attawapiskat
Eastmain
Manicouagan (Riviere)
Columbia
Little Mecatina
Natashquan (Riviere)
Rhine
Albany
Saguenay (Riviere)
Thames
Nottaway
Rupert
Moose(Trib. Hudson Bay)
St.Lawrence
Danube
Seine
Dniestr
Southern Bug
Mississippi
Skagit
Aral Drainage
Loire
Rhone
Saint John
Po
Penobscot
St.Croix
Kuban
Connecticut
Liao He
Garonne
Ishikari
Merrimack
Hudson
Colorado(Pacific Ocean)
Klamath
Ebro
Rogue
Douro
Susquehanna
Luan He
Kura
Dalinghe
Delaware
Sacramento
Huang He (Yellow River)
Kizilirmak
Yongding He
Tejo
Sakarya
Eel (Calif.)
Tigris & Euphrates
Potomac
Guadiana
Kitakami
Mogami
Han-Gang (Han River)
Guadalquivir
San Joaquin
James
Bravo
Shinano, Chikuma
Roanoke
Naktong
Indus
Tone
Salinas
Pee Dee
Chelif
Cape Fear
Tenryu
Santee
Kiso
Yangtze(Chang Jiang)
Yodo
Sebou
Alabama River & Tombigbe
Savannah
Gono (Go)
Huai He
Apalachicola
Brazos
Altamaha
Mekong
Colorado(Caribbean Sea)
Trinity(Texas)
Pearl
Sabine
Suwannee
Yaqui
Nile
Brahmaputra
St.Johns
Nueces
San Antonio
Irrawaddy
Fuerte
Xi Jiang
Bei Jiang
Area (km2)
116536.3
139347.6
9052.9
43140.2
30457.4
48837.5
54205.4
668561.9
17902.9
16948.2
190522.1
123081.0
91366.9
12358.9
118709.0
16063.4
105615.2
1055021.5
793704.8
74227.9
72108.2
60121.0
3196605.4
7961.0
1233148.5
115943.6
97485.2
55151.8
73066.6
21168.9
4638.6
58935.7
27468.3
194436.5
55807.2
13783.3
12645.1
36892.8
640463.6
40040.1
85158.6
14526.6
96125.4
69080.1
71071.5
182283.3
22823.1
26713.4
77208.9
988062.6
77873.6
214406.5
70351.7
62482.7
7449.9
832578.6
32380.6
66020.0
9652.4
6853.1
24771.5
56954.8
34365.6
23528.4
510056.3
11158.8
26801.0
23325.2
1139075.4
15739.3
12654.6
46531.3
45249.3
22652.7
5769.0
40035.3
5419.1
1745094.4
8424.2
36201.3
113117.4
27740.4
3949.5
174309.9
51412.9
117853.1
37117.5
787256.9
110640.3
46168.2
22423.0
25611.8
26400.9
76181.7
3078088.1
518011.4
22489.2
43877.9
10952.4
411516.3
36419.8
362894.3
52915.4
Jan
1032.5
2858.7
691.4
3511.3
121.7
1182.9
1252.8
11960.9
444.5
291.0
13179.1
813.0
1984.2
726.2
2188.3
311.4
1000.2
13835.1
15369.2
3426.9
407.9
38.8
79924.0
951.3
2546.9
5691.9
7316.8
1543.0
4276.6
655.1
170.5
1008.9
934.3
678.2
3122.4
859.4
381.1
1000.4
323.3
3010.5
4220.1
1090.2
3913.4
2091.9
174.3
559.4
58.3
1640.3
5375.8
2702.4
199.1
174.7
2713.3
348.5
1366.1
15514.6
1355.9
246.7
690.1
969.3
814.3
677.2
707.1
1600.5
263.4
1100.6
1844.9
508.2
11918.9
936.2
11.8
2824.5
234.5
1592.2
584.8
804.8
652.3
40746.3
1063.4
1058.8
9397.8
1501.0
457.3
1271.4
2889.5
747.2
1328.3
30683.5
466.3
588.6
1984.2
1109.9
1043.0
15.8
20724.2
28402.7
379.1
4.2
12.3
26908.9
340.7
8372.9
629.5
Natural runoff (Mm3/month)
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
1852.6
5896.3
3319.4
2160.7
1462.2
947.3
682.0
505.5
2594.5
4899.4
3701.9
2272.5
1577.0
1147.9
892.7
725.8
368.2
303.2
213.3
137.6
80.5
56.5
51.0
49.0
2008.3
1895.7
1397.8
902.7
617.5
504.3
484.0
501.8
0.0
0.0
0.0
2195.5
613.1
355.5
214.7
350.3
0.0
0.0
2558.1
9188.6
4899.7
2922.3
2536.0
2987.8
0.3
0.2
524.6
8666.6
6924.6
3691.1
2983.3
3220.2
11259.5 20903.3 38188.0 55190.6 36849.4 18551.8 11683.5
7290.7
0.0
0.0
0.0
6156.3
2178.5
1505.7
1078.9
1004.0
0.0
0.0
156.2
3726.8
1620.1
1208.4
808.1
691.2
7657.6
8094.3
9602.3
8013.0
6055.1
4779.6
4183.7
3971.9
0.1
0.1
8411.8
9204.2
3827.2
2148.3
1306.1
1776.4
1.5
1.5 11245.1 11251.7
8137.7
5058.6
4100.4
4665.6
447.7
361.1
237.6
136.9
78.4
49.7
32.4
21.8
0.2
0.2 13451.3 15987.7
7640.1
5188.1
4271.3
5083.6
0.0
0.0
794.7
3201.0
1189.1
796.1
677.5
758.7
0.6
0.6 11334.0
9979.0
4300.8
2527.6
1594.4
2136.5
351.1 29605.6 132375.7 51230.9 31947.4 19602.9 13031.9 15304.9
12969.9 30056.7 34399.1 27077.0 19150.4 14083.1 11248.0 10213.5
2491.0
2183.7
1663.9
1005.1
594.9
402.4
304.5
202.7
13.3
3147.7
2602.1
1528.5
1130.4
792.2
626.7
510.8
7.9
1840.9
967.0
519.4
311.3
205.6
138.9
77.0
66571.6 111936.2 102147.6 83552.9 56877.9 36359.7 27329.8 18097.4
342.8
1452.8
1747.8
975.0
491.1
287.0
173.6
108.5
4161.6 13784.1 20140.9 23937.1 21375.9 17965.9 12930.4
8104.3
3966.2
3912.1
3192.9
2280.7
1475.0
937.1
710.2
546.1
3365.1
5895.8
6325.3
5588.7
4446.6
2690.2
2212.7
2277.1
1.9
1.9 13364.2
4478.5
3060.9
1929.0
1260.9
1384.3
2000.0
3536.1
5530.3
6397.4
4452.6
2941.3
2394.4
2314.0
0.6
482.1
5554.7
1878.0
1224.9
733.4
451.5
421.6
0.1
0.1
1441.8
475.5
301.5
171.5
101.8
88.6
1275.5
1664.7
2123.9
1943.7
1594.5
1393.7
826.2
621.9
7.8
3116.2
4979.1
2528.5
1556.0
985.4
660.3
761.0
20.4
220.6
1657.1
2266.7
2171.0
2661.2
3988.1
2606.5
1918.1
2169.4
2289.6
1911.6
1113.4
759.2
594.0
474.6
2.4
2.4
4390.2
1918.3
1080.5
793.8
776.5
1178.1
8.4
3157.8
1789.4
1035.9
634.7
377.8
233.8
212.7
26.3
4477.0
4970.6
2745.5
1656.2
1063.5
725.6
742.5
99.7
738.0
3046.4
5903.7
4320.1
2390.6
1653.7
1126.8
276.0
3574.1
3546.4
3046.4
2001.6
1051.5
698.7
455.6
2820.2
2785.8
2876.1
2619.8
1631.9
1192.1
853.9
509.9
1088.4
909.0
858.5
622.6
302.4
190.5
120.0
73.0
3031.8
4104.3
2983.9
2057.4
1252.2
1050.6
820.4
404.1
1240.2
8814.7
5917.2
3887.6
2447.9
1522.7
1002.4
867.5
47.2
147.9
279.9
408.1
214.3
964.0
1219.0
725.2
187.2
708.9
3035.7
4111.4
2768.8
1901.8
1396.6
913.7
3.2
6.3
33.3
66.4
80.0
85.0
386.7
210.1
801.3
4062.4
2255.7
1789.8
1043.1
712.5
568.2
587.3
6127.3
6249.1
5067.8
3136.9
2369.0
2064.4
1708.0
1170.4
608.3
2320.1
5166.0
8177.4
9102.2 10309.3
9805.2
9930.4
836.5
1201.8
2397.1
1578.7
804.4
537.4
393.4
241.0
403.8
1472.8
2529.4
2501.8
1275.4
1729.3
2397.6
1071.8
2202.2
3261.5
2062.1
1343.3
834.4
721.8
559.4
292.8
1016.9
1126.0
888.3
508.1
345.2
273.7
242.4
156.9
1258.1
927.1
540.6
304.0
173.7
105.4
63.9
38.7
16609.9 22140.0 25647.8 18735.0 10281.7
7368.3
5738.1
3544.0
1163.5
1705.2
1374.1
948.5
624.9
370.6
255.1
188.4
715.8
1619.0
1022.7
571.6
571.0
703.0
614.9
301.8
172.5
1357.6
1082.6
802.0
551.9
581.1
590.1
631.9
827.6
1039.4
774.9
556.2
376.7
392.9
356.7
430.5
12.5
1372.3
1838.7
1166.9
1200.5
4312.9
3914.3
2697.0
1306.6
3139.9
1977.6
1055.0
1003.9
1110.6
955.3
481.2
829.3
1285.7
1335.3
1136.9
1098.6
1267.9
1193.7
818.4
1239.3
1248.0
954.0
670.9
429.1
258.7
169.2
122.7
84.8
204.6
657.0
1336.3
937.5
913.3
1079.5
1202.6
807.7
800.2
1837.3
1864.2
1290.9
1242.1
1006.9
1172.1
1467.9
1460.0
1085.8
725.1
448.3
316.0
238.3
184.2
274.7
755.4
983.6
697.6
959.3
1987.4
1879.2
1673.3
9642.7 18198.4 21870.2 18514.4 18264.8 32379.1 40736.0 31344.3
260.8
691.8
1057.7
983.0
973.7
1058.8
1240.9
1561.5
34.5
58.5
36.9
32.6
47.2
66.4
68.2
42.9
2381.4
2346.1
1609.2
944.6
589.6
563.3
455.2
460.3
283.5
281.9
175.3
103.2
88.2
81.1
66.7
44.4
1301.8
1225.2
817.3
528.8
353.8
389.9
381.5
348.4
291.0
511.3
839.0
748.4
861.4
816.6
724.3
1026.6
794.4
752.0
496.5
298.4
193.4
174.2
169.8
140.6
218.1
352.4
848.3
836.4
896.9
961.9
750.1
967.8
20673.1 48340.7 86583.8 114954.9 136756.4 119291.0 113382.9 101024.6
536.0
654.4
713.4
583.0
743.8
675.6
510.1
768.0
1081.1
1248.4
934.9
533.2
346.0
284.6
201.0
141.9
10770.1 12232.8
8612.8
4829.3
2684.6
1677.7
1055.0
671.1
1570.4
1658.6
1058.3
583.9
360.8
272.1
190.7
187.5
244.7
265.1
275.8
218.2
354.0
370.2
191.3
273.3
1031.3
2377.3
4348.7
4430.9
4375.0
4755.1
3800.5
3689.6
3847.6
4385.4
3016.0
1572.5
912.7
651.6
531.5
402.8
874.4
717.7
986.3
929.9
587.4
962.4
828.0
508.3
2248.8
2575.1
1555.3
829.5
474.6
313.9
232.8
182.4
405.8
584.3
939.8
5846.3 34283.6 85153.9 107075.0 107961.6
688.6
553.1
621.2
522.3
343.0
497.7
455.0
315.6
822.5
766.2
973.4
839.8
365.7
234.6
152.1
98.0
2012.8
2131.6
1713.4
1094.2
598.0
392.6
256.9
162.9
1334.8
1286.5
1307.3
936.9
456.1
276.7
165.9
101.9
1262.4
1316.2
797.7
415.7
300.4
613.1
756.9
714.7
30.2
63.2
72.9
36.0
24.2
49.0
61.5
44.6
2310.3
6660.0 16300.5 18779.0 21757.3 48384.2 80541.4 66624.1
549.4
2782.9 16852.2 46782.8 103699.0 127521.0 128246.8 107215.1
187.4
226.0
126.3
72.7
67.3
331.1
475.2
796.6
8.4
21.4
28.3
35.8
41.5
66.6
49.3
24.4
13.2
14.4
23.4
25.7
19.4
25.1
18.3
9.9
342.4
994.5
4301.3 10976.0 59825.7 98546.8 111837.4 93122.6
90.6
48.7
39.8
35.5
39.1
166.0
764.0
806.9
2682.6
4932.3 10762.2 25796.8 44596.4 41263.7 42397.2 25138.3
353.9
1921.9
4546.4
6874.5
7013.0
3830.8
3230.7
2159.0
Table S2 - 2
Oct
478.7
865.4
67.1
819.6
329.0
3379.4
3479.9
5462.2
1263.0
792.3
4514.6
2432.0
5748.5
18.4
6291.3
894.3
3024.6
21038.1
12685.9
234.2
629.4
43.3
12199.9
409.0
3850.2
804.6
3477.1
2179.7
2947.8
684.5
166.9
471.0
1049.6
1383.3
657.6
1434.9
361.4
1044.8
740.4
146.5
561.7
41.5
215.0
1337.0
357.8
766.2
123.7
762.0
511.3
5872.9
132.0
442.9
124.7
68.9
23.2
2291.3
213.6
105.4
775.8
519.9
1388.7
185.6
322.2
160.2
640.0
1174.8
159.1
882.4
19300.0
1541.0
9.6
379.9
17.2
265.8
888.4
124.1
780.0
67829.6
820.6
76.4
421.7
165.1
275.9
1900.5
235.8
179.4
112.6
64294.1
115.8
66.6
99.8
62.1
385.8
29.0
36444.6
58846.2
731.2
10.5
5.7
59380.0
406.5
14767.9
1100.4
Nov
627.0
1454.7
198.0
1601.5
132.1
1284.2
1358.9
6682.2
482.6
315.9
6546.6
882.5
2173.4
131.8
2438.0
338.0
1085.8
22898.9
15065.0
696.1
702.3
27.5
20013.0
751.3
1674.4
1839.3
5232.4
2871.4
3482.3
1327.0
352.7
528.0
1699.4
782.0
1074.9
1481.8
783.0
1764.9
370.5
394.9
873.7
212.2
539.3
2499.4
190.0
692.7
64.5
1406.7
343.5
3052.0
83.4
185.1
136.5
26.5
15.6
3575.7
392.6
30.3
828.3
740.8
1010.5
65.2
74.9
381.4
304.7
1150.4
332.5
545.1
10858.9
979.8
2.7
545.7
8.8
359.7
635.8
150.6
608.0
41278.9
652.7
197.1
465.0
238.5
229.3
1153.0
202.2
80.2
72.0
35434.1
35.9
52.7
148.7
86.8
211.7
14.8
22470.9
31386.4
335.3
5.4
4.2
30238.9
207.8
8958.4
668.5
Dec
1046.2
1857.4
402.5
2294.1
79.8
775.6
820.8
7923.4
291.5
190.8
8363.7
533.1
1301.6
395.2
1434.9
204.2
656.0
9715.3
12575.3
1700.9
272.1
18.1
38932.9
600.5
1541.5
3262.7
5154.7
1012.4
2857.2
429.8
111.8
626.0
665.0
454.6
1915.8
564.3
252.8
728.3
231.4
1495.2
2424.5
514.3
1650.2
1658.8
115.8
413.7
39.6
1294.0
1439.3
1802.8
128.5
137.8
1182.1
75.1
579.5
7623.3
752.3
15.9
528.7
1023.9
540.7
160.4
102.3
857.5
204.1
1044.7
853.9
344.9
6757.3
683.0
1.6
1384.2
39.5
725.3
438.9
395.6
420.8
25519.8
632.7
563.6
3348.5
572.9
269.2
823.3
1034.8
367.2
424.7
20497.8
228.7
255.9
752.9
295.2
527.5
15.8
14322.2
18647.3
225.9
3.8
8.8
17673.9
249.3
5447.9
413.5
Average
1667.5
2070.7
218.2
1378.2
366.0
2642.9
2743.6
19328.8
1200.4
816.7
7080.1
2611.2
4639.2
219.8
5331.3
763.8
3136.7
30078.1
17907.8
1242.2
1030.3
349.6
54495.2
690.9
11001.1
2384.9
4498.5
2757.4
3594.2
1153.6
281.9
1173.2
1578.5
1574.1
1500.0
1206.9
769.1
1745.5
1745.4
1641.5
1947.5
501.9
1835.2
2774.0
403.6
1454.7
96.4
1410.3
2963.6
5737.4
711.1
1193.5
1286.2
423.0
449.6
11589.1
778.7
543.2
716.1
667.4
1689.1
1009.9
847.7
674.3
652.3
1207.7
759.7
957.6
19982.1
997.3
34.4
1207.0
118.7
690.8
697.2
374.5
691.1
76365.2
696.1
555.6
4680.5
696.6
285.4
2829.7
1640.2
647.4
862.5
41096.7
403.6
434.7
945.7
618.3
695.4
38.1
29609.9
55911.0
329.5
25.0
15.0
42845.7
266.2
19593.0
2728.5
Basin ID Basin name
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
San Pedro
Dong Jiang
Mahi
Damodar
Niger
Narmada
Brahmani River (Bhahmani
Mahanadi(Mahahadi)
Santiago
Panuco
Godavari
Tapti
Sittang
Armeria
Ca
Chao Phraya
Krishna
Senegal
Papaloapan
Grisalva
Verde
Mae Klong
Tranh (Nr Thu Bon)
Penner
Volta
Lempa
Gambia
Grande De Matagalpa
Cauvery
San Juan
Geba
Corubal
Magdalena
Comoe
Orinoco
Bandama
Oueme
Sassandra
Shebelle
Mono
Congo
Atrato
Cuyuni
Cavally
Tano
Cross
Sanaga
Pra
Davo
Essequibo
Kelantan
Corantijn
Coppename
Kinabatangan
Maroni
San Juan (Columbia - Paci
Amazonas
Pahang
Nyong
Oyapock
Rajang
Ntem
Ogooue
Rio Araguari
Mira
Esmeraldas
Tana
Daule & Vinces
Rio Gurupi
Rio Capim
Tocantins
Kouilou
Nyanga
Rio Parnaiba
Rio Itapecuru
Rio Acarau
Pangani
Rio Pindare
Sepik
Rio Mearim
Chira
Rufiji
Rio Jaguaribe
Purari
Ruvu
Rio Paraiba
Solo (Bengawan Solo)
Sao Francisco
Brantas
Santa
Zambezi
Rio Vaza-Barris
Rio Itapicuru
Rio Paraguacu
Canete
Rio De Contas
Roper
Daly
Drysdale
Parana
Durack
Rio Prado
Victoria
Area (km2)
29358.8
32102.9
36237.7
43096.1
2117888.7
95818.2
51973.4
135061.1
126222.3
82929.1
311698.7
65096.3
34265.3
9639.1
28747.0
188419.1
269869.0
436981.1
39885.1
127675.5
18342.8
28004.2
9459.9
54976.4
414004.1
18088.5
69874.3
17991.9
91159.4
41659.4
12774.4
24258.0
261204.9
78506.9
952173.4
98751.1
59842.6
68097.5
805077.0
23899.0
3698918.1
34619.5
85635.0
30665.2
15656.1
52820.2
134252.0
23479.8
8460.3
68788.3
14419.9
65527.6
24750.2
14101.7
65944.9
13898.0
5880854.9
28436.7
34626.2
27075.7
49943.5
33526.9
222662.7
33771.5
13264.8
19796.2
95715.0
41993.5
32335.3
54888.3
774718.3
60000.0
12369.1
336584.2
52672.0
14472.9
50364.8
39112.0
81119.7
56687.0
16699.6
204638.8
72804.3
32139.9
17541.2
18969.1
15146.1
628629.1
10822.6
11882.5
1388572.2
15314.2
37593.4
54607.1
5755.2
56526.5
79907.5
53414.6
26015.9
2640486.1
29363.2
31673.7
78462.4
Natural runoff (Mm3/month)
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec Average
192.9
2.6
4.4
6.2
7.1
3.4
137.0
732.2
987.8
369.0
206.3
130.3
231.6
861.2
105.2
1116.0
3077.8
5758.0
6467.3
4881.8
4699.8
3338.0
1558.5
934.6
567.8
2780.5
884.2
157.9
246.0
223.2
137.5
37.8
2640.9
4426.7
3152.3
1389.2
865.8
573.5
1227.9
1257.9
111.7
160.8
44.8
15.0
253.7
1494.8
4751.2
4657.8
2147.4
1316.0
850.4
1421.8
21778.0
99.0
256.2
1297.8
4833.0 14794.5 38348.0 80634.7 90704.8 47626.3 23829.5 14278.6 28206.7
2407.1
430.8
900.5
1131.7
1138.1
445.1
7352.7 11663.1
8745.2
3757.6
2295.3
1586.4
3487.8
1562.1
33.6
53.2
42.6
38.7
549.7
3888.5
7939.2
6035.6
3059.0
1695.6
1049.7
2162.3
3751.2
108.6
158.0
151.1
158.2
157.6
5209.0 21461.7 14877.9
6698.9
4119.4
2571.8
4951.9
681.2
116.1
243.6
265.3
168.1
205.1
1027.8
2651.8
3112.7
1413.6
791.4
492.4
930.8
1540.6
95.9
186.5
197.5
137.9
362.8
2013.6
2491.4
6156.6
3524.7
1770.8
1046.5
1627.1
6805.4
626.4
1240.0
1477.3
1571.4
891.7 13461.6 27528.4 26621.8 12095.3
7347.2
4834.4
8708.4
1243.3
168.4
306.4
365.6
395.0
149.1
3365.4
5169.5
5115.9
2124.1
1333.7
886.1
1718.5
2254.3
3.3
6.3
6.6
16.9
3852.3
7852.6 10043.8
8332.3
4900.8
2492.4
1478.4
3436.7
60.6
8.1
17.0
28.8
27.6
10.1
3.3
40.7
292.2
147.3
71.6
48.0
62.9
1447.9
56.1
26.8
23.3
154.3
584.1
1876.9
2678.4
4330.1
2767.9
1652.1
965.9
1380.3
4183.6
318.1
519.8
537.6
493.6
1640.2
5541.8
9607.1 16009.4 10072.0
5811.4
3059.8
4816.2
4249.9
610.7
1255.2
1355.6
1400.2
3256.5 16600.9 15185.1 11795.9
6710.3
4670.2
3427.8
5876.5
1629.1
10.0
15.2
11.7
12.0
447.8
3062.5
8464.3
6863.4
3270.9
1792.3
1076.7
2221.3
1877.2
12.4
16.0
15.8
11.5
477.3
2373.0
4411.2
5780.4
4426.4
2194.2
1261.7
1904.8
11859.4
1204.2
664.4
610.2
1646.9
8622.6 11809.7 13230.5 20505.5 19300.8 10998.3
7877.1
9027.5
378.7
2.9
6.5
6.9
4.5
10.1
365.4
850.4
1648.0
893.8
414.1
250.8
402.7
1554.4
20.9
34.2
33.5
1076.4
3580.0
5254.6
5831.8
5582.5
3551.6
1715.1
1031.1
2438.9
2007.0
45.2
24.6
16.4
71.3
290.8
883.2
1278.8
1770.6
2724.1
2418.9
1615.2
1095.5
568.7
34.4
52.1
45.1
43.8
41.5
158.5
151.2
182.9
360.5
1017.5
485.3
261.8
2522.1
7.7
80.1
291.8
828.4
2616.6
3570.8
8402.5 11296.3
5427.0
2744.7
1654.9
3286.9
888.1
2.9
7.6
10.3
11.7
547.6
1582.1
1968.2
3042.2
2295.6
976.3
585.2
993.2
750.8
0.3
0.3
0.3
0.3
145.1
922.2
3078.2
3466.5
1537.8
816.1
492.4
934.2
1788.5
87.6
46.4
30.2
37.4
1350.9
2694.3
2443.9
2701.8
2950.2
1748.2
1248.2
1427.3
2091.4
159.7
385.4
347.3
350.9
1080.8
3669.7
3305.4
2574.1
2347.6
2777.6
1849.0
1744.9
5223.3
533.6
282.7
261.5
1036.0
3952.8
4778.7
4793.9
6119.6
7350.0
4839.9
3921.9
3591.2
537.0
3.5
4.3
4.3
3.5
79.2
413.4
1814.0
2305.1
1207.1
582.6
353.4
608.9
882.9
0.4
0.5
0.5
0.4
293.0
1767.6
3594.2
3165.9
2080.6
964.3
579.0
1110.8
27118.0
3452.3
6430.2 14175.3 21211.1 18633.1 15055.6 15479.8 18291.2 31846.5 31789.4 20916.3 18699.9
447.9
3.4
4.6
105.1
306.0
923.2
676.9
1018.0
1509.8
1021.9
540.3
296.4
571.1
73559.9
9908.6 16110.2 48197.5 96502.6 137370.7 156922.8 139130.4 112036.3 103445.6 77389.5 46830.9 84783.7
1337.1
4.0
5.7
118.4
306.8
1520.8
1055.3
2949.0
5574.4
3186.6
1473.0
881.5
1534.4
458.8
1.0
1.1
6.9
240.8
976.7
1265.1
1320.9
1893.3
1037.9
499.0
301.2
666.9
2261.5
1.4
3.2
129.1
309.3
2250.3
3322.8
4638.5
8322.9
5416.1
2603.4
1487.3
2562.2
1610.5
1126.2
49.5
54.4
2532.2
1755.0
1025.3
1594.0
2005.1
1944.7
1681.9
791.5
1347.5
472.0
122.1
0.3
14.5
50.7
126.1
330.7
356.9
319.3
289.3
132.5
80.1
191.2
193908.5 92837.8 126684.3 138968.9 93475.1 62522.2 55481.6 71460.1 90395.6 111123.4 108901.0 123157.3 105743.0
8908.3
2297.1
2736.4
4317.7
5624.4
5876.9
5976.7
6096.9
6689.5
7140.9
7032.0
5537.1
5686.2
9798.1
3136.9
2829.9
4268.1
9871.7 13477.9 13021.6 10134.4
5445.8
3587.1
3665.6
6571.4
7150.7
2295.7
105.8
221.1
532.9
1553.0
3418.3
2447.3
1941.8
4204.8
4188.2
2935.7
1654.9
2125.0
321.4
0.2
32.5
186.6
547.1
1356.6
700.0
337.1
480.9
810.9
421.8
218.4
451.1
3986.4
1.4
608.2
1184.8
2346.5
4731.8
7828.2
9133.6 11624.3 10815.8
4452.2
2614.4
4944.0
4812.3
3.0
236.5
2004.2
4068.5
5840.0
7929.0
9616.8 13725.9 13358.0
5383.1
3156.1
5844.5
378.6
3.2
102.6
282.2
657.8
1316.6
691.0
327.9
645.8
1039.5
483.0
247.6
514.6
133.7
0.2
0.2
2.0
9.6
542.8
283.0
126.7
238.1
288.6
192.8
89.5
158.9
5069.1
1976.6
2110.6
2932.1
7163.7 13057.2 11720.0
7957.4
3936.3
2438.8
1874.9
3105.6
5278.5
3574.8
439.2
342.5
417.5
434.1
481.7
494.1
561.2
1352.9
2084.8
2431.3
2719.0
1277.8
1313.6
829.3
1710.9
3554.5 11297.6 13180.8
9711.4
6084.0
3012.4
1811.6
1094.1
692.7
4524.4
1551.1
1394.4
1540.4
2071.4
4023.6
4578.3
3861.0
2331.4
1160.6
695.4
420.0
321.1
1995.7
2820.1
862.7
675.4
672.8
675.3
1148.9
787.8
1142.6
1468.5
1388.6
1249.3
1909.0
1233.4
3849.5
4583.6
5326.3
7656.9 11080.5 10145.5
7092.8
4342.7
2242.1
1349.5
815.1
565.6
4920.8
6064.5
2203.5
2616.1
3456.3
4124.0
3912.7
3904.9
3971.2
4103.4
4529.7
4529.1
3905.9
3943.4
950375.6 705085.8 813922.6 857876.6 713184.6 564388.1 424106.1 299107.1 238076.7 243680.0 298076.1 455711.2 546965.9
5776.0
1292.5
1416.5
1962.1
1937.4
1260.3
863.4
823.6
1395.6
2714.8
3612.5
4175.9
2269.2
1269.1
0.1
386.2
1153.1
1817.1
1504.5
698.1
677.8
2434.6
3389.9
1699.9
832.3
1321.9
4282.0
4043.5
4817.3
6249.8
6602.9
5755.6
3526.6
2069.9
1131.7
683.3
412.7
586.7
3346.8
20497.2
8513.0
9657.7 10211.2
9935.6
7769.6
6882.1
6855.9
9242.6 11129.0 11855.9 12276.9 10402.2
2055.6
8.3
442.8
1623.3
2595.7
1808.1
791.1
470.6
1558.6
4430.8
3192.8
1428.3
1700.5
22726.7
7569.4 15733.8 20776.5 19147.2
7950.2
4618.0
2791.3
2505.1
8651.3 23592.1 17443.6 12792.1
4727.0
5377.5
6935.9
8461.5
8118.0
7123.8
4272.9
2486.6
1376.3
831.0
501.9
398.5
4217.6
2073.0
1259.4
1291.0
1430.0
2032.3
1959.3
1248.7
1229.1
1355.3
1165.3
1283.2
912.8
1436.6
2922.0
4238.0
5676.0
6743.2
4668.6
2504.1
1398.8
876.1
589.2
579.1
755.5
966.5
2659.8
290.5
14.7
38.9
512.9
706.1
333.2
183.6
113.4
69.9
103.6
260.5
305.1
244.4
2730.9
4080.6
5260.2
4696.3
2419.3
1482.0
915.4
644.8
472.3
447.2
458.1
400.9
2000.7
491.7
2048.7
4647.2
4513.5
3426.0
2151.5
1412.8
764.6
450.8
272.3
164.5
103.1
1703.9
1537.9
5606.4
8799.8
7926.1
5924.9
3782.3
2616.7
1569.4
878.6
525.8
317.7
205.5
3307.6
82937.0 65826.8 71926.3 45721.6 24110.4 14567.5
8930.8
5585.4
3923.1
3979.0 16536.2 44543.4 32382.3
4007.3
2400.3
3950.9
5306.6
3068.4
1426.7
862.7
522.5
316.7
191.7
1130.5
3001.1
2182.1
1159.8
691.5
941.1
1044.4
523.6
267.4
161.5
97.5
58.9
35.6
692.8
805.1
539.9
2039.6
3746.9
7333.0
6991.8
3124.0
1723.6
1047.6
641.5
394.0
242.4
157.1
558.8
2333.4
84.3
1224.8
3260.0
3253.3
1651.3
883.6
520.8
314.3
190.4
115.4
69.7
42.3
967.5
22.3
31.8
810.4
1076.9
646.7
301.3
179.6
110.0
67.9
42.1
26.2
16.4
277.6
34.7
22.7
34.9
203.1
493.3
239.9
152.6
87.1
59.8
38.7
28.7
27.5
118.6
253.4
2304.7
4716.9
4525.5
2674.7
1415.4
814.8
488.9
295.4
178.6
108.0
65.3
1486.8
15375.9
9555.7 12665.7 12180.9
9397.5
7423.9
6795.9
6812.5
7707.7
8100.4
8084.8
9182.5
9440.3
356.4
2713.7
5445.6
4657.5
2321.9
1253.1
745.7
450.8
272.8
165.1
99.9
61.7
1545.3
76.0
208.7
379.5
341.5
138.2
86.6
62.2
51.9
37.8
21.8
23.1
17.1
120.4
1836.2
3827.1
7683.8
8804.4
4027.1
2129.0
1285.4
779.2
473.6
288.1
176.3
418.8
2644.1
64.1
11.7
1619.3
2744.3
1562.6
861.9
515.6
319.8
213.3
142.0
92.4
60.4
683.9
7089.0
4200.2
5204.7
5335.2
4459.8
3535.0
2952.7
3064.9
3853.1
3615.9
3635.9
4215.8
4263.5
121.7
122.6
361.9
952.4
722.0
287.6
174.0
106.2
64.9
39.6
23.9
73.4
254.2
37.7
2.0
3.5
89.5
253.8
514.2
396.9
208.3
115.4
73.2
46.6
29.6
147.6
2855.5
2415.3
2433.6
1722.1
949.3
531.7
332.1
222.4
171.0
106.2
250.0
1099.8
1090.8
27716.3 15251.7 13981.8
7511.4
4656.8
5028.4
4947.7
3343.7
1665.4
1268.7
4929.8 18730.9
9086.0
1795.8
1741.1
1762.4
1247.5
696.8
395.2
243.3
163.6
122.2
71.2
160.7
531.2
744.2
455.4
563.1
650.9
399.4
210.8
125.2
78.5
57.1
44.0
79.5
128.6
132.8
243.8
73279.9 82019.0 68514.8 32327.8 18268.1 10936.3
6663.6
4203.7
2618.2
1621.8
1305.4 21500.8 26938.3
17.1
1.4
1.7
1.6
61.4
151.1
177.6
102.7
49.8
30.8
18.8
11.8
52.2
56.5
2.3
2.1
7.2
99.2
263.0
645.3
362.8
169.7
102.3
62.2
38.4
150.9
274.1
185.7
300.7
705.2
1494.5
1165.9
1466.7
878.0
455.0
267.7
194.3
163.9
629.3
257.6
233.3
231.1
128.4
67.0
41.2
25.4
17.5
12.9
43.0
62.3
113.9
102.8
297.0
120.1
258.0
556.9
550.1
447.9
457.9
292.5
179.2
110.9
165.1
224.8
305.0
434.9
1537.1
1682.2
599.2
358.4
216.7
131.2
79.7
48.5
29.6
17.7
10.5
428.8
783.7
2684.1
2482.2
919.0
552.0
333.8
202.0
122.6
74.6
45.3
27.1
16.9
686.9
26.2
283.6
270.5
96.7
58.3
35.2
21.3
12.8
7.8
4.7
2.8
1.7
68.5
105979.7 72853.1 68346.4 50136.2 39988.6 34546.3 22504.9 18037.0 19546.7 24410.8 32882.5 57492.3 45560.4
0.0
1.9
1.6
0.6
0.4
0.2
0.1
0.1
0.1
0.0
0.0
0.0
0.4
696.0
283.3
357.3
417.6
243.4
187.0
168.8
106.4
58.7
36.6
137.5
549.1
270.1
0.1
20.4
14.0
5.5
3.3
2.0
1.2
0.7
0.4
0.3
0.2
0.1
4.0
Table S2 - 3
Basin ID Basin name
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
Mitchell(N. Au)
Majes
Ord
Jequitinhonha
Macarthur
Fitzroy
Gilbert
Mucuri
Rio Doce
Save
Burdekin
Tsiribihina
Buzi
Loa
Limpopo
De Grey
Paraiba Do Sul
Fortescue
Mangoky
Fitzroy
Orange
Ashburton
Gascoyne
Rio Ribeira Do Iguape
Incomati
Murray
Murchison
Maputo
Uruguay
Tugela
Colorado (Argentinia)
Rio Jacui
Huasco
Limari
Negro (Uruguay)
Groot-Vis
Salado
Blackwood
Rapel
Negro (Argentinia)
Biobio
Waikato
South Esk
Chubut
Clutha
Baker
Santa Cruz
Ganges
Salween
Hong(Red River)
Lake Chad
Okavango
Tarim
Horton
Hornaday
Conception
Ulua
Patacua
Coco
Ocona
Cuanza
Cunene
Doring
Gamka
Groot- Kei
Lurio
Messalo
Rovuma
Galana
Pyasina
Popigay
Fuchun Jiang
Min Jiang
Han Jiang
Mamberamo
Lorentz
Eilanden
Uwimbu
Sungai Kajan
Sungai Mahakam
Sungai Kapuas
Batang Kuantan
Batang Hari
Flinders
Leichhardt
Escaut (Schelde)
Issyk-Kul
Balkhash
Eyre Lake
Lake Mar Chiquita
Lake Turkana
Dead Sea
Suriname
Lake Titicaca
Lake Vattern
Great Salt Lake
Lake Taymur
Daryacheh-Ye Orumieh
Van Golu
Ozero Sevan
Area (km2)
71725.2
18612.1
55686.1
68548.9
19673.6
94043.9
46429.1
16732.2
86085.9
114957.8
130426.5
61991.9
27904.7
50206.4
415623.1
56818.6
58027.2
49924.5
43141.1
142915.3
972388.4
75842.1
75998.4
25697.5
46295.7
1059507.7
91416.1
30937.8
265504.6
30079.3
390631.1
70798.0
9871.6
11780.3
70756.4
30441.2
266263.9
22584.8
15689.5
130062.1
24108.6
15358.7
10842.5
145351.9
17118.9
30760.3
30599.9
1024462.6
258475.2
157656.9
2391218.9
705055.7
1051731.4
23926.2
14778.0
25569.5
26392.0
24232.4
25502.0
16063.9
141391.1
110545.5
48855.5
45676.2
18678.3
61172.2
24810.9
151948.6
51921.7
63888.8
48954.2
37697.9
60039.7
30741.5
75416.0
4299.3
20077.5
29373.9
33171.8
75822.7
84902.3
16739.0
42872.4
110041.3
33399.2
21498.7
191032.5
423657.4
1188841.3
154330.1
181536.0
35444.0
24867.7
107215.3
11336.5
74114.4
138782.9
30335.7
17736.8
4765.3
Jan
1080.2
893.9
0.0
4207.8
0.4
5.5
183.1
1331.8
12563.7
2203.3
690.0
9631.8
1304.7
0.3
1880.1
0.0
7384.0
0.0
1857.9
72.4
1857.2
0.0
0.0
2174.8
1039.9
2868.3
0.0
924.9
15702.5
758.7
3500.8
5005.1
92.1
118.1
1301.6
10.7
1011.5
79.6
1119.4
2461.3
1512.9
1209.9
186.5
837.4
1029.1
1928.9
1652.2
32182.1
8366.0
4779.9
6870.6
4075.2
241.9
12.4
12.4
0.6
1735.8
1710.9
2767.8
539.4
10360.7
1828.9
44.0
65.3
2.7
4604.7
941.3
9106.2
187.2
470.7
84.9
1253.4
1710.0
429.5
15446.4
493.1
5431.2
8952.7
10769.4
18606.0
29491.3
3820.3
10918.4
0.4
31.9
1351.5
300.5
273.5
0.2
490.2
2082.5
605.0
2186.8
7124.5
109.1
65.3
723.7
156.1
117.9
8.6
Feb
6217.0
994.8
3.9
1648.8
1.1
446.6
1374.9
412.5
5298.4
3356.1
3679.3
9804.7
1917.2
0.4
3058.9
0.0
4105.7
0.0
2203.9
1909.6
2095.4
0.0
0.0
1657.5
1118.5
1379.7
0.0
719.0
5633.7
786.8
346.2
2492.1
16.5
101.5
86.9
24.1
24.7
0.6
178.1
98.8
29.1
436.0
8.9
70.0
421.2
630.2
385.0
10981.6
95.5
80.7
135.4
6488.8
77.0
0.3
0.0
1.8
77.7
118.6
143.3
582.1
7565.1
2579.9
20.3
14.4
6.5
6185.0
1818.6
15265.1
7.8
4.9
0.8
1966.9
2261.2
189.6
9453.9
445.0
3334.4
5395.2
4092.4
7876.5
13356.0
1460.7
4536.0
89.8
34.8
705.9
48.6
5.8
0.3
594.7
9.0
681.7
1915.0
5963.3
0.5
237.4
0.0
103.1
0.6
0.7
Mar
5876.8
875.9
1.5
1430.8
55.6
490.3
1126.1
315.0
4242.2
2440.7
3662.4
9049.7
1888.8
0.3
2803.2
0.0
3823.9
0.0
1852.5
2134.9
2246.2
0.0
0.0
1425.9
1027.4
1501.2
0.0
618.4
8112.2
752.8
220.9
2901.2
10.1
40.8
492.1
23.0
73.2
0.7
113.7
347.1
298.7
382.1
10.5
172.1
482.8
1099.0
560.0
16447.4
592.3
104.5
144.7
8619.1
269.6
0.2
0.0
3.6
42.4
53.8
70.7
517.1
10296.0
5240.5
25.5
28.8
16.9
6089.2
2197.0
18092.1
34.8
3.1
0.5
3249.4
6444.7
1241.1
12610.4
515.7
3835.7
6379.0
5488.6
10134.8
15227.7
1731.9
5450.1
28.2
11.9
604.0
2132.1
2199.0
0.6
1026.2
100.4
454.0
2088.7
4974.8
645.9
354.3
0.0
506.3
127.0
3.8
Apr
2616.6
436.0
2.7
860.3
14.5
167.3
428.1
254.2
2461.5
1065.6
1887.1
4154.5
752.6
0.3
1433.2
0.0
2180.1
0.0
898.9
885.3
1402.3
0.0
0.0
887.3
517.1
1110.5
0.0
324.5
13990.4
372.3
135.4
3920.9
6.1
21.1
1499.0
13.9
787.5
0.4
66.3
1009.8
919.1
601.3
32.6
336.2
693.8
1638.6
1181.8
12896.7
1511.4
254.5
180.2
3971.7
593.6
0.1
0.0
4.8
31.4
32.7
43.3
245.1
8746.9
2925.0
14.8
40.5
12.9
2522.2
1098.8
9319.0
597.5
2.0
0.3
3037.5
6263.4
2010.5
11467.8
475.1
3751.0
5992.2
6619.3
13756.5
15516.0
2316.9
6252.7
15.5
7.2
472.4
3385.1
4046.6
0.5
504.2
1988.3
289.3
2922.6
2951.8
535.8
782.1
0.0
1527.4
1118.2
76.9
May
1435.1
232.5
4.2
471.5
8.8
101.0
256.1
167.2
1301.4
627.7
1001.1
2354.3
437.8
0.3
767.0
0.0
1239.1
0.0
518.2
493.9
807.0
0.0
0.0
735.4
276.9
1279.6
0.0
179.7
16949.4
204.5
373.1
4897.0
3.7
12.6
2274.1
11.7
1228.1
0.1
510.5
4025.3
3736.5
1271.4
76.3
1273.9
684.7
2259.5
1590.7
12922.0
2846.6
1566.3
263.0
2041.0
1657.0
78.8
0.0
3.8
19.3
19.7
48.4
134.9
3552.8
1322.8
4.2
41.1
8.5
1435.2
548.0
4605.3
654.3
1.3
0.2
4025.8
9721.2
3792.4
9723.6
346.5
3567.3
6010.0
6870.7
12600.1
13513.3
1825.4
4790.1
9.4
4.4
284.9
4295.9
4089.9
0.5
261.0
3300.7
257.0
4729.6
1893.3
246.0
915.8
0.0
1539.9
1378.3
106.9
Natural runoff (Mm3/month)
Jun
Jul
Aug
859.9
521.2
317.3
139.9
84.7
52.7
5.2
6.4
7.5
297.0
203.6
126.2
5.3
3.2
1.9
61.0
36.9
22.3
154.7
93.5
56.5
113.9
88.6
50.0
784.3
483.1
302.0
386.7
242.8
173.8
597.8
363.8
227.1
1436.8
893.2
545.1
265.0
160.8
98.8
0.3
0.3
0.3
501.7
359.2
334.0
0.0
0.0
0.0
759.3
470.0
308.5
0.0
0.0
0.0
330.4
220.7
136.7
300.8
192.9
132.5
489.5
342.5
319.8
0.0
0.0
0.0
0.0
0.0
0.0
782.1
538.1
442.8
173.5
113.5
83.8
2153.4
2511.6
3164.9
0.0
0.0
0.0
114.6
75.2
58.1
19158.1 16344.5 15620.3
126.4
86.3
74.3
707.2
841.7
929.8
5793.0
5339.7
5145.1
2.4
1.6
1.4
27.9
18.7
17.6
3311.9
3222.8
3290.1
9.5
9.9
13.2
1234.8
1105.6
959.3
29.9
254.5
407.6
1373.7
1356.5
1185.4
5859.2
6210.5
6075.1
4786.4
5042.5
4670.4
1642.5
1617.1
1551.8
208.6
392.9
471.5
2263.3
2596.8
3116.1
694.4
642.0
723.7
2536.2
2753.8
2648.6
1850.7
1577.2
2464.8
27823.6 78624.5 128519.9
12055.4 24649.1 32068.1
7439.6 18447.1 22644.5
1227.0
7989.1 36416.6
1233.1
745.9
452.1
2845.3
3326.7
2360.3
314.9
93.6
54.9
181.3
145.7
70.2
4.7
4.3
5.9
510.5
1791.6
1997.4
70.9
693.4
892.9
1698.7
3244.2
2959.2
80.9
48.8
30.6
2127.7
1286.3
779.0
798.9
482.7
291.8
92.2
148.6
176.0
51.1
45.0
62.9
5.9
5.6
6.2
866.8
523.5
316.3
330.8
199.8
120.7
2779.5
1678.9
1014.2
327.5
177.5
104.7
8582.4
2828.9
1874.0
2052.3
754.1
410.5
5573.0
2420.0
1437.2
10643.9
4850.2
3725.5
4718.0
2447.5
2125.6
7842.7
8385.4
7964.6
253.8
280.8
253.8
3244.7
3235.3
3090.1
5432.3
5263.6
5126.4
5795.5
5104.8
4917.8
9668.4
6831.4
5649.9
10291.5
7393.4
6608.1
1075.7
640.6
525.6
2820.9
1767.2
1540.6
5.7
3.5
2.2
2.6
1.6
1.0
168.8
111.6
79.8
3990.2
3002.3
1671.5
2907.0
2102.5
1368.5
0.4
0.4
0.6
162.6
112.7
87.1
4415.2
6718.5
7827.8
203.5
196.8
168.4
5013.8
3973.9
2420.7
1052.7
658.3
552.1
136.0
81.3
60.0
634.2
481.7
350.5
14735.9
6387.8
3298.4
737.8
467.8
347.1
489.2
294.9
184.2
55.9
31.2
21.0
Table S2 - 4
Sep
194.5
34.4
8.1
74.1
1.2
13.5
34.2
28.9
187.0
130.9
146.3
328.9
61.6
0.3
330.6
0.0
264.6
0.0
83.0
101.8
311.7
0.0
0.0
601.1
67.7
3371.2
0.0
46.2
18876.7
66.9
908.5
5743.1
1.6
14.6
3379.1
21.7
1261.2
301.6
876.8
5030.4
4131.1
1388.8
403.2
2246.4
898.4
2149.0
3221.0
96972.9
27586.6
16383.8
27951.2
274.8
1351.4
33.2
37.1
5.5
3135.9
1438.3
3280.5
19.9
472.4
176.4
136.2
111.5
7.9
191.1
72.9
612.7
64.5
1803.8
251.2
1282.3
2882.6
1654.9
8697.3
345.8
3371.3
5387.6
6431.1
5951.6
8936.3
838.5
2438.0
1.4
0.6
54.8
1072.0
905.0
0.7
80.9
6549.2
96.6
1213.0
469.3
40.2
213.3
2513.9
213.8
112.7
12.9
Oct
119.8
31.7
6.6
60.4
0.7
8.1
20.8
21.6
117.8
85.0
95.8
198.3
38.5
0.3
246.8
0.0
590.0
0.0
50.1
79.8
362.3
0.0
0.0
860.6
43.3
3337.6
0.0
33.2
20160.7
64.9
2371.9
5136.4
1.5
15.5
2823.2
27.3
1567.9
166.9
701.4
4368.0
2973.2
1356.2
358.1
1454.2
957.1
1882.5
3226.9
47842.1
18159.4
9602.6
14050.2
167.1
540.9
20.0
22.3
4.2
2748.5
2176.2
3939.1
49.2
307.3
112.8
105.1
105.9
8.3
115.4
44.1
370.2
40.0
814.2
146.9
886.7
2049.4
782.8
6547.6
199.3
2701.3
4552.8
6999.8
7402.7
13775.6
1724.9
4411.4
0.9
0.4
63.7
585.2
412.3
0.7
85.5
4135.2
58.6
729.1
688.1
82.5
121.5
1300.5
126.4
115.2
13.1
Nov
72.3
29.3
3.6
675.7
0.4
4.9
12.5
212.3
2334.5
41.4
59.5
299.2
22.6
0.3
159.6
0.0
1633.4
0.0
56.6
54.4
534.8
0.0
0.0
773.8
129.4
2314.5
0.0
112.3
12864.3
86.0
3152.6
3405.9
0.6
11.4
1553.8
18.9
1418.0
86.8
412.7
3162.3
1809.7
1080.3
217.0
895.8
762.4
1579.4
1605.8
32621.7
9737.1
5433.7
7408.8
100.7
295.2
12.1
13.5
1.5
1916.8
1802.4
2788.7
71.2
304.1
98.1
61.5
87.0
6.0
69.7
26.6
223.6
203.0
491.9
88.7
707.7
1340.9
466.3
7173.3
277.0
2824.9
4357.4
7819.9
11152.8
17293.6
2579.6
6272.8
0.6
0.2
373.3
384.5
445.2
0.5
95.2
2501.6
31.9
440.4
678.7
196.1
68.5
785.5
137.4
230.6
13.9
Dec
43.0
363.0
0.2
3152.4
0.3
3.0
7.6
1046.2
9099.0
348.7
32.7
2841.4
110.9
0.3
308.4
0.0
4400.3
0.0
333.7
35.2
884.1
0.0
0.0
987.3
456.6
2000.4
0.0
467.1
9587.2
376.1
2575.4
2794.2
46.0
31.8
846.5
18.9
767.6
52.5
681.5
1740.6
1045.2
781.6
135.7
580.3
659.5
1282.9
1042.5
19626.1
5522.3
3149.0
4490.9
882.0
164.1
7.3
8.1
1.1
1262.0
1293.7
2041.2
235.0
5458.5
642.6
43.1
55.8
4.4
468.0
16.1
516.4
196.1
297.2
53.6
572.7
880.7
283.9
8630.9
262.3
3278.9
5401.7
6829.4
12616.4
17622.4
2602.7
7176.5
0.4
0.1
746.1
205.0
181.7
0.4
137.7
1394.5
117.9
526.6
2594.8
85.7
66.7
474.4
116.8
77.6
5.9
Average
1612.8
347.4
4.2
1100.7
7.8
113.4
312.4
336.8
3264.6
925.2
1036.9
3461.5
588.3
0.3
1015.2
0.0
2263.2
0.0
711.9
532.8
971.1
0.0
0.0
988.9
420.6
2249.4
0.0
306.1
14416.7
313.0
1338.6
4381.1
15.3
36.0
2006.8
16.9
953.3
115.1
714.7
3365.7
2579.6
1109.9
208.5
1320.2
720.8
1865.7
1696.6
43121.7
11932.5
7490.5
8927.3
2421.0
1143.6
52.3
40.9
3.5
1272.4
858.6
1918.8
212.9
4271.4
1375.0
72.6
59.1
7.6
1948.9
617.9
5298.6
216.2
1431.2
320.3
2201.1
4397.8
1678.5
9495.3
345.7
3472.2
5687.6
6478.2
10187.3
14085.4
1761.9
4864.6
13.2
8.1
418.1
1756.1
1578.1
0.5
303.2
3418.6
263.4
2346.7
2466.8
184.9
357.6
2518.3
498.3
353.9
29.2
Table S3. Monthly blue water availability for the world's major river basins
Basin ID Basin name
Jan
1 Khatanga
314.3
2 Olenek
246.2
3 Anabar
105.2
4 Yana
179.2
5 Yenisei
3227.0
6 Indigirka
380.5
7 Lena
3154.4
8 Omoloy
5.4
9 Tana (NO, FI)
14.4
10 Colville
37.2
11 Alazeya
36.8
12 Anderson
10.9
13 Kolyma
744.2
14 Tuloma
18.9
15 Muonio
28.8
16 Yukon
970.1
17 Palyavaam
21.3
18 Kemijoki
97.4
19 Mackenzie
1127.6
20 Noatak
31.3
21 Anadyr
236.4
22 Pechora
491.8
23 Lule
62.6
24 Kalixaelven
15.7
25 Ob
1386.0
26 Ellice
6.1
27 Taz
198.0
28 Kobuk
42.2
29 Coppermine
5.8
30 Hayes(Trib. Arctic Ocean)
5.4
31 Pur
148.1
32 Varzuga
9.4
33 Ponoy
25.4
6.1
34 Kovda
65.4
35 Back
36 Kem
47.1
37 Nadym
76.6
38 Quoich
8.3
39 Mezen
74.6
40 Iijoki
18.8
41 Joekulsa A Fjoellum
15.0
42 Svarta, Skagafiroi
11.0
43 Oulujoki
46.2
44 Lagarfljot
22.6
45 Thelon
95.7
46 Angerman
68.7
47 Thjorsa
84.4
48 Northern Dvina(Severnaya D
204.3
49 Oelfusa
75.7
50 Nizhny Vyg (Soroka)
41.3
51 Kuskokwim
253.9
52 Vuoksi
67.0
53 Onega
45.0
54 Susitna
254.1
55 Kymijoki
37.3
56 Neva
239.0
57 Ferguson
8.1
58 Copper
218.2
59 Gloma
112.6
60 Kokemaenjoki
47.3
61 Vaenern-Goeta
239.7
62 Thlewiaza
18.4
63 Alsek
57.2
64 Volga
618.3
65 Dramselv
52.0
66 Arnaud
112.9
67 Nushagak
103.5
68 Seal
25.3
69 Taku
86.0
70 Narva
142.1
71 Stikine
365.4
72 Churchill
157.9
73 Feuilles (Riviere Aux)
134.7
74 George
151.6
75 Caniapiscau
459.4
154.5
76 Western Dvina (Daugava)
77 Aux Melezes
127.5
78 Baleine, Grande Riviere De
76.0
79 Spey
95.6
80 Kamchatka
138.0
81 Nass
210.8
82 Skeena
215.6
83 Nelson
339.7
84 Hayes(Trib. Hudson Bay)
68.0
85 Gudena
51.9
86 Skjern A
70.3
87 Neman
148.0
88 Fraser
791.0
89 Severn(Trib. Hudson Bay)
118.6
90 Amur
2619.6
91 Tweed
115.2
92 Grande Riviere De La Balei
96.4
93 Grande Riviere
545.8
94 Winisk
178.0
95 Churchill, Fleuve (Labrador)
340.5
96 Dniepr
169.9
97 Ural
64.8
98 Wisla
189.4
99 Don
61.6
100 Oder
206.5
Feb
11.7
32.0
17.1
14.6
148.4
35.9
131.0
0.1
0.0
0.3
6.2
0.1
32.2
2.3
2.6
50.5
0.0
0.6
17.4
0.2
0.3
6.2
0.2
1.3
39.6
0.0
1.2
6.4
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.9
0.0
0.0
0.0
0.2
0.0
0.0
0.1
6.6
7.0
0.0
0.0
0.3
0.2
0.6
0.4
0.2
2.1
0.0
0.0
0.3
0.3
0.6
2.1
0.0
29.4
0.1
0.0
0.0
0.3
0.0
0.2
120.7
4.0
0.0
0.0
0.2
0.4
0.0
0.0
40.7
0.0
0.0
0.0
8.1
1.4
23.1
26.6
0.7
209.7
0.0
11.8
48.0
0.0
0.2
0.4
0.0
9.0
1.1
7.6
5.9
370.5
Mar
7.1
19.3
10.3
8.8
90.5
21.7
79.3
0.1
0.0
0.2
3.8
0.0
19.4
1.4
1.6
30.5
0.0
0.4
10.7
0.1
0.2
3.8
0.1
0.8
27.2
0.0
0.7
3.8
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.5
0.0
0.0
5.9
0.2
0.0
0.0
0.1
18.3
4.4
64.6
0.0
0.2
0.2
0.4
0.3
0.2
1.8
0.0
0.0
2.4
0.3
452.0
1.2
0.0
149.5
19.4
0.0
0.0
0.2
0.0
0.2
101.6
2.5
0.0
0.0
0.1
0.4
0.0
0.0
35.0
0.0
162.1
208.4
7.2
0.9
20.7
24.2
508.0
472.1
0.0
11.9
45.0
0.0
0.1
0.3
0.0
1972.1
33.0
2562.6
827.7
1179.3
Apr
4.3
11.7
6.2
5.3
1550.5
13.1
72.4
0.0
0.0
0.1
2.3
0.0
11.8
0.9
42.8
188.7
0.0
118.8
1812.7
0.1
0.1
289.8
223.8
77.7
16168.4
0.0
0.4
2.3
0.0
0.0
0.1
0.0
0.0
0.0
0.0
528.5
0.0
0.0
783.4
265.2
1.1
24.7
1079.7
4.5
0.0
805.4
224.6
8913.4
345.3
1090.2
0.1
2105.8
2126.8
730.8
914.1
6433.8
0.0
3.5
687.9
732.4
1075.6
0.7
116.9
28026.4
246.7
0.0
261.7
0.1
161.4
1203.7
331.4
680.0
0.0
0.0
0.1
1836.2
0.0
0.0
27.3
0.0
688.3
898.3
5862.3
0.5
15.4
17.8
1762.7
3071.4
194.0
8383.6
31.6
0.0
0.1
694.1
0.0
4102.7
2151.9
1362.2
2873.8
663.9
Blue water availability (Mm3/month)
May
Jun
Jul
Aug
Sep
44.2
5079.7
2577.0
1389.0
871.4
131.7
3286.4
1102.1
614.1
374.1
3.8
825.6
416.5
202.3
120.5
31.8
1507.2
1364.1
761.5
366.5
32543.0 32409.6 19438.0 12848.2
9618.3
90.2
3362.0
2901.5
1357.2
726.2
17418.4 24981.6 16930.1 12609.2 10727.2
0.0
85.2
55.4
25.8
14.7
570.3
155.7
91.4
55.2
43.5
9.1
387.6
395.5
206.9
115.8
1.4
379.4
111.0
62.8
38.0
509.7
159.5
87.0
52.5
31.7
1068.5
5088.2
7188.3
3241.6
2103.5
346.4
109.5
60.0
36.1
23.8
401.1
222.1
150.0
77.7
59.0
10633.3
9753.4
5955.3
3321.4
2581.2
0.0
375.7
207.3
105.3
71.0
1797.4
489.6
291.6
186.9
216.4
15880.7 15834.5
9200.4
4975.5
3146.6
80.4
396.1
219.9
124.9
125.9
490.4
4399.7
2076.1
1092.3
821.1
11661.2
7759.0
3254.0
1926.2
1571.1
770.3
756.9
379.1
222.4
190.3
247.6
151.5
70.3
40.6
27.5
29723.9 13645.7
7368.0
4708.1
3655.1
0.0
191.7
49.8
30.1
18.2
2584.4
4632.7
1464.3
874.0
638.6
412.7
220.1
123.9
74.7
67.7
78.0
143.0
49.3
28.0
16.9
0.0
166.9
45.0
26.6
16.1
1437.3
3032.3
923.0
559.0
579.3
136.8
37.7
22.0
13.3
22.5
317.0
87.6
51.2
35.7
53.7
176.4
56.1
30.5
18.5
14.2
1114.3
1643.1
527.6
318.2
198.1
780.4
270.5
156.3
98.0
86.0
292.2
900.9
1469.2
470.9
300.6
0.0
243.3
69.9
39.9
25.6
2104.3
771.1
416.2
250.1
159.9
199.4
79.2
46.6
30.2
31.2
150.8
118.6
47.4
29.6
29.4
72.8
78.5
29.6
17.8
15.2
340.6
187.9
112.5
74.6
83.3
238.1
148.6
64.8
46.3
51.5
1238.2
2149.9
674.0
405.4
337.3
704.9
537.1
246.5
166.7
152.9
344.7
264.5
132.4
116.8
133.7
3875.8
1908.4
1118.5
675.2
411.7
138.1
137.0
113.1
79.6
94.2
324.6
185.3
110.7
66.9
84.1
3324.1
1599.7
1094.0
1094.7
1058.3
593.7
345.7
207.8
128.7
112.1
680.5
380.4
225.2
136.0
87.4
1663.8
1781.1
1053.9
819.0
968.5
264.0
151.6
91.3
55.4
43.3
1912.0
1093.8
654.5
396.8
340.7
0.0
210.7
59.2
34.2
28.4
1509.3
2042.9
1488.1
837.2
792.6
673.6
723.1
409.7
297.6
280.1
218.6
123.2
74.3
45.1
29.4
459.5
275.9
163.8
141.4
158.4
366.8
133.2
67.9
40.8
39.7
522.3
554.2
220.1
147.7
192.4
10217.8
5716.4
3446.0
2149.4
1377.5
291.6
280.2
146.8
133.2
144.0
126.5
1128.4
412.9
308.7
375.7
987.4
354.0
208.5
258.6
309.7
706.9
287.0
145.7
86.5
83.1
501.6
459.4
206.6
156.7
205.5
387.4
215.9
127.9
84.0
74.6
1940.0
2386.6
1153.3
745.7
763.1
2624.2
1544.9
752.3
426.3
392.0
507.9
1039.9
410.2
351.5
386.4
991.6
1007.9
792.3
523.3
523.7
3234.1
2495.1
1361.1
1246.0
1333.9
595.4
342.7
203.3
123.9
85.1
1086.7
650.2
368.3
345.4
357.4
854.0
301.2
224.4
196.6
226.2
19.8
11.6
8.8
10.5
16.3
1920.8
1439.9
1079.8
520.8
383.8
1204.1
926.8
409.5
303.2
367.9
1763.9
1432.2
616.5
402.1
387.5
4172.9
3028.8
1614.9
1003.0
915.9
1402.4
755.7
410.9
222.3
159.6
8.4
4.9
3.2
2.1
3.0
10.2
5.8
3.7
4.5
14.1
628.2
349.0
207.6
128.4
81.2
5379.4
3099.4
1486.4
888.0
650.8
1593.0
665.1
362.8
231.7
286.0
11458.9 10773.1
9089.3
9961.6 10071.5
22.1
14.5
10.9
12.3
18.2
611.5
395.7
228.2
219.5
248.2
4147.7
2038.4
1308.9
1228.8
1437.5
2038.0
886.7
489.9
295.8
470.2
3044.8
2194.2
1205.7
937.9
912.7
1572.0
896.9
562.3
356.6
212.7
763.5
432.4
294.2
189.6
105.6
838.2
515.5
356.3
248.6
171.6
1141.8
656.1
454.5
303.4
160.2
432.1
292.4
189.5
136.4
101.1
Table S3 - 1
Oct
483.8
221.3
71.0
221.4
4888.2
435.2
4767.9
8.7
29.8
64.9
22.9
19.2
1115.2
24.3
37.5
1529.6
38.2
273.3
2089.5
55.1
423.2
890.0
136.6
23.7
2815.0
11.0
347.6
31.9
10.2
9.7
266.2
28.0
78.8
15.6
117.6
139.2
137.5
15.0
173.5
60.0
44.3
30.4
142.1
62.0
171.9
191.0
168.2
419.5
131.7
125.2
479.7
192.1
111.3
547.7
61.7
517.3
14.5
443.1
268.8
30.6
295.1
18.8
136.0
1297.4
126.6
272.6
276.6
48.3
252.7
146.4
675.8
344.9
354.7
340.2
1204.8
169.9
339.2
198.9
31.5
309.4
521.5
462.7
822.0
146.2
11.6
33.0
93.5
723.7
337.8
5691.1
34.4
273.8
1536.5
497.3
903.4
178.4
64.4
155.9
88.8
95.7
Nov
292.2
133.7
42.9
133.7
2891.2
262.9
2878.1
5.3
15.6
39.2
13.8
11.6
673.6
11.0
20.3
842.4
23.1
103.3
1153.4
33.3
255.6
508.6
67.2
11.5
1373.0
6.6
209.9
19.3
6.2
5.9
160.8
10.2
27.6
6.6
71.0
50.7
83.1
9.0
77.3
20.5
16.5
13.8
49.5
25.6
103.8
74.2
95.7
194.4
86.9
44.8
274.5
77.4
47.0
274.1
62.3
337.3
8.8
236.8
135.5
100.4
323.4
11.4
62.1
633.1
61.0
122.5
112.3
26.1
93.4
291.9
389.7
155.0
146.3
164.6
498.1
309.6
138.3
82.5
49.2
149.8
284.1
303.7
360.0
68.0
25.0
38.5
319.4
628.1
128.8
2835.3
62.3
104.7
591.8
191.6
369.7
289.9
117.6
231.5
86.2
125.4
Dec
176.5
80.7
25.9
80.8
1747.0
158.8
1738.4
3.2
9.4
23.7
8.4
7.0
406.8
6.7
12.3
508.9
13.9
62.4
696.8
20.1
154.4
307.2
40.6
7.0
832.4
4.0
126.8
11.6
3.7
3.5
97.2
6.2
16.7
4.0
42.9
30.6
50.2
5.5
46.7
12.4
9.8
7.2
29.9
14.8
62.7
44.8
57.8
117.6
64.0
27.1
165.8
44.0
28.2
165.6
24.5
154.8
5.3
143.0
73.9
31.0
207.4
6.9
37.5
380.4
34.1
74.0
67.8
15.8
56.4
93.3
274.1
93.6
88.3
99.4
300.8
101.5
83.5
49.8
58.4
90.5
138.2
141.4
218.1
41.1
31.5
45.7
97.3
501.3
77.8
1714.5
73.2
63.2
357.5
115.7
223.3
117.8
42.9
169.6
42.4
209.2
Average
937.6
521.1
153.9
389.6
10116.7
812.1
7957.3
17.0
82.1
106.7
57.2
74.1
1807.8
53.4
88.0
3030.4
71.3
303.2
4662.1
90.6
829.2
2389.1
237.5
56.3
6811.9
26.4
923.2
84.7
28.4
23.3
600.3
23.9
57.8
27.3
341.5
182.3
315.1
34.7
404.9
63.6
38.5
25.6
178.9
56.6
436.6
249.4
137.3
1487.5
110.9
175.0
778.8
322.9
322.4
688.3
142.1
1007.0
30.8
642.9
305.5
119.4
316.1
59.0
170.5
4503.5
128.0
244.5
245.0
118.8
181.7
230.6
770.6
598.1
285.0
382.9
1011.1
326.9
291.4
184.1
33.7
502.7
434.7
569.4
1529.4
273.1
16.7
24.5
360.3
1491.8
333.0
6051.8
40.6
186.8
1099.4
488.2
844.4
870.0
355.1
567.4
558.5
333.5
Basin ID Basin name
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
Jan
Elbe
571.7
Trent
138.3
Weser
702.3
Attawapiskat
24.3
Eastmain
236.6
Manicouagan (Riviere)
250.6
Columbia
2392.2
Little Mecatina
88.9
Natashquan (Riviere)
58.2
Rhine
2635.8
Albany
162.6
Saguenay (Riviere)
396.8
Thames
145.2
Nottaway
437.7
Rupert
62.3
Moose(Trib. Hudson Bay)
200.0
St.Lawrence
2767.0
Danube
3073.8
Seine
685.4
Dniestr
81.6
Southern Bug
7.8
Mississippi
15984.8
Skagit
190.3
Aral Drainage
509.4
Loire
1138.4
Rhone
1463.4
Saint John
308.6
Po
855.3
Penobscot
131.0
St.Croix
34.1
Kuban
201.8
Connecticut
186.9
Liao He
135.6
Garonne
624.5
Ishikari
171.9
Merrimack
76.2
Hudson
200.1
Colorado(Pacific Ocean)
64.7
Klamath
602.1
Ebro
844.0
Rogue
218.0
Douro
782.7
Susquehanna
418.4
Luan He
34.9
Kura
111.9
Dalinghe
11.7
Delaware
328.1
Sacramento
1075.2
Huang He (Yellow River)
540.5
Kizilirmak
39.8
Yongding He
34.9
Tejo
542.7
Sakarya
69.7
Eel (Calif.)
273.2
Tigris & Euphrates
3102.9
Potomac
271.2
Guadiana
49.3
Kitakami
138.0
Mogami
193.9
Han-Gang (Han River)
162.9
Guadalquivir
135.4
San Joaquin
141.4
James
320.1
Bravo
52.7
Shinano, Chikuma
220.1
Roanoke
369.0
Naktong
101.6
Indus
2383.8
Tone
187.2
Salinas
2.4
Pee Dee
564.9
Chelif
46.9
Cape Fear
318.4
Tenryu
117.0
Santee
161.0
Kiso
130.5
Yangtze(Chang Jiang)
8149.3
Yodo
212.7
Sebou
211.8
Alabama River & Tombigbee 1879.6
Savannah
300.2
Gono (Go)
91.5
Huai He
254.3
Apalachicola
577.9
Brazos
149.4
Altamaha
265.7
Mekong
6136.7
Colorado(Caribbean Sea)
93.3
Trinity(Texas)
117.7
Pearl
396.8
Sabine
222.0
Suwannee
208.6
Yaqui
3.2
Nile
4144.8
Brahmaputra
5680.5
St.Johns
75.8
Nueces
0.8
San Antonio
2.5
Irrawaddy
5381.8
Fuerte
68.1
Xi Jiang
1674.6
Bei Jiang
125.9
San Pedro
38.6
Feb
518.9
73.6
401.7
0.0
0.0
0.1
2251.9
0.0
0.0
1531.5
0.0
0.3
89.5
0.0
0.0
0.1
70.2
2594.0
498.2
2.7
1.6
13314.3
68.6
832.3
793.2
673.0
0.4
400.0
0.1
0.0
255.1
1.6
4.1
383.6
0.5
1.7
5.3
19.9
714.8
564.0
217.7
606.4
248.0
9.4
37.4
0.6
160.3
1225.5
121.7
167.3
80.8
440.4
203.4
251.6
3322.0
232.7
143.2
34.5
165.5
2.5
261.3
165.9
247.9
17.0
161.5
293.6
54.9
1928.5
52.2
6.9
476.3
56.7
260.4
58.2
158.9
43.6
4134.6
107.2
216.2
2154.0
314.1
48.9
206.3
769.5
174.9
449.8
81.2
137.7
164.5
402.6
267.0
252.5
6.0
462.1
109.9
37.5
1.7
2.6
68.5
18.1
536.5
70.8
0.5
Mar
979.9
60.6
379.1
0.0
0.0
0.0
4180.7
0.0
0.0
1618.9
0.0
0.3
72.2
0.0
0.0
0.1
5921.1
6011.3
436.7
629.5
368.2
22387.2
290.6
2756.8
782.4
1179.2
0.4
707.2
96.4
0.0
332.9
623.2
44.1
433.9
0.5
631.6
895.4
147.6
709.3
557.2
181.8
820.9
1762.9
29.6
141.8
1.3
812.5
1249.8
464.0
240.4
294.6
652.3
225.2
185.4
4428.0
341.0
323.8
271.5
207.9
274.5
628.0
257.1
249.6
40.9
160.0
292.0
151.1
3639.7
138.4
11.7
469.2
56.4
245.0
102.3
150.4
70.5
9668.1
130.9
249.7
2446.6
331.7
53.0
475.5
877.1
143.5
515.0
116.9
110.6
153.2
426.3
257.3
263.2
12.6
1332.0
556.6
45.2
4.3
2.9
198.9
9.7
986.5
384.4
0.9
Apr
740.4
42.7
279.6
0.0
511.6
104.9
7637.6
0.0
31.2
1920.5
1682.4
2249.0
47.5
2690.3
158.9
2266.8
26475.1
6879.8
332.8
520.4
193.4
20429.5
349.6
4028.2
638.6
1265.1
2672.8
1106.1
1110.9
288.4
424.8
995.8
331.4
457.9
878.0
357.9
994.1
609.3
609.3
575.2
171.7
596.8
1183.4
56.0
607.1
6.7
451.1
1013.6
1033.2
479.4
505.9
412.4
177.7
108.1
5129.6
274.8
204.5
216.5
155.0
367.7
395.5
267.1
190.8
131.4
367.5
217.2
196.7
4374.0
211.5
7.4
321.8
35.1
163.5
167.8
99.3
169.7
17316.8
142.7
187.0
1722.6
211.7
55.2
869.7
603.2
197.3
311.1
188.0
124.2
194.7
342.7
261.5
159.5
14.6
3260.1
3370.4
25.3
5.7
4.7
860.3
8.0
2152.4
909.3
1.2
Blue water availability (Mm3/month)
May
Jun
Jul
Aug
Sep
454.5
315.4
229.6
178.5
145.2
27.5
16.1
11.3
10.2
9.8
180.5
123.5
100.9
96.8
100.4
439.1
122.6
71.1
42.9
70.1
1837.7
979.9
584.5
507.2
597.6
1733.3
1384.9
738.2
596.7
644.0
11038.1
7369.9
3710.4
2336.7
1458.1
1231.3
435.7
301.1
215.8
200.8
745.4
324.0
241.7
161.6
138.2
1602.6
1211.0
955.9
836.7
794.4
1840.8
765.4
429.7
261.2
355.3
2250.3
1627.5
1011.7
820.1
933.1
27.4
15.7
9.9
6.5
4.4
3197.5
1528.0
1037.6
854.3
1016.7
640.2
237.8
159.2
135.5
151.7
1995.8
860.2
505.5
318.9
427.3
10246.2
6389.5
3920.6
2606.4
3061.0
5415.4
3830.1
2816.6
2249.6
2042.7
201.0
119.0
80.5
60.9
40.5
305.7
226.1
158.4
125.3
102.2
103.9
62.3
41.1
27.8
15.4
16710.6 11375.6
7271.9
5466.0
3619.5
195.0
98.2
57.4
34.7
21.7
4787.4
4275.2
3593.2
2586.1
1620.9
456.1
295.0
187.4
142.0
109.2
1117.7
889.3
538.0
442.5
455.4
895.7
612.2
385.8
252.2
276.9
1279.5
890.5
588.3
478.9
462.8
375.6
245.0
146.7
90.3
84.3
95.1
60.3
34.3
20.4
17.7
388.7
318.9
278.7
165.2
124.4
505.7
311.2
197.1
132.1
152.2
453.3
434.2
532.2
797.6
521.3
382.3
222.7
151.8
118.8
94.9
383.7
216.1
158.8
155.3
235.6
207.2
126.9
75.6
46.8
42.5
549.1
331.2
212.7
145.1
148.5
1180.7
864.0
478.1
330.7
225.4
400.3
210.3
139.7
91.1
55.2
524.0
326.4
238.4
170.8
102.0
124.5
60.5
38.1
24.0
14.6
411.5
250.4
210.1
164.1
80.8
777.5
489.6
304.5
200.5
173.5
81.6
42.9
192.8
243.8
145.0
822.3
553.8
380.4
279.3
182.7
13.3
16.0
17.0
77.3
42.0
358.0
208.6
142.5
113.6
117.5
627.4
473.8
412.9
341.6
234.1
1635.5
1820.4
2061.9
1961.0
1986.1
315.7
160.9
107.5
78.7
48.2
500.4
255.1
345.9
479.5
214.4
268.7
166.9
144.4
111.9
58.6
101.6
69.0
54.7
48.5
31.4
60.8
34.7
21.1
12.8
7.7
3747.0
2056.3
1473.7
1147.6
708.8
189.7
125.0
74.1
51.0
37.7
114.3
114.2
140.6
123.0
60.4
160.4
110.4
116.2
118.0
126.4
111.2
75.3
78.6
71.3
86.1
233.4
240.1
862.6
782.9
539.4
211.0
200.8
222.1
191.1
96.2
227.4
219.7
253.6
238.7
163.7
134.2
85.8
51.7
33.8
24.5
267.3
187.5
182.7
215.9
240.5
372.8
258.2
248.4
201.4
234.4
145.0
89.7
63.2
47.7
36.8
139.5
191.9
397.5
375.8
334.7
3702.9
3653.0
6475.8
8147.2
6268.9
196.6
194.7
211.8
248.2
312.3
6.5
9.4
13.3
13.6
8.6
188.9
117.9
112.7
91.0
92.1
20.6
17.6
16.2
13.3
8.9
105.8
70.8
78.0
76.3
69.7
149.7
172.3
163.3
144.9
205.3
59.7
38.7
34.8
34.0
28.1
167.3
179.4
192.4
150.0
193.6
22991.0 27351.3 23858.2 22676.6 20204.9
116.6
148.8
135.1
102.0
153.6
106.6
69.2
56.9
40.2
28.4
965.9
536.9
335.5
211.0
134.2
116.8
72.2
54.4
38.1
37.5
43.6
70.8
74.0
38.3
54.7
886.2
875.0
951.0
760.1
737.9
314.5
182.5
130.3
106.3
80.6
186.0
117.5
192.5
165.6
101.7
165.9
94.9
62.8
46.6
36.5
1169.3
6856.7 17030.8 21415.0 21592.3
104.5
68.6
99.5
91.0
63.1
168.0
73.1
46.9
30.4
19.6
218.8
119.6
78.5
51.4
32.6
187.4
91.2
55.3
33.2
20.4
83.1
60.1
122.6
151.4
142.9
7.2
4.8
9.8
12.3
8.9
3755.8
4351.5
9676.8 16108.3 13324.8
9356.6 20739.8 25504.2 25649.4 21443.0
14.5
13.5
66.2
95.0
159.3
7.2
8.3
13.3
9.9
4.9
5.1
3.9
5.0
3.7
2.0
2195.2 11965.1 19709.4 22367.5 18624.5
7.1
7.8
33.2
152.8
161.4
5159.4
8919.3
8252.7
8479.4
5027.7
1374.9
1402.6
766.2
646.1
431.8
1.4
0.7
27.4
146.4
197.6
Table S3 - 2
Oct
173.1
13.4
163.9
65.8
675.9
696.0
1092.4
252.6
158.5
902.9
486.4
1149.7
3.7
1258.3
178.9
604.9
4207.6
2537.2
46.8
125.9
8.7
2440.0
81.8
770.0
160.9
695.4
435.9
589.6
136.9
33.4
94.2
209.9
276.7
131.5
287.0
72.3
209.0
148.1
29.3
112.3
8.3
43.0
267.4
71.6
153.2
24.7
152.4
102.3
1174.6
26.4
88.6
24.9
13.8
4.6
458.3
42.7
21.1
155.2
104.0
277.7
37.1
64.4
32.0
128.0
235.0
31.8
176.5
3860.0
308.2
1.9
76.0
3.4
53.2
177.7
24.8
156.0
13565.9
164.1
15.3
84.3
33.0
55.2
380.1
47.2
35.9
22.5
12858.8
23.2
13.3
20.0
12.4
77.2
5.8
7288.9
11769.2
146.2
2.1
1.1
11876.0
81.3
2953.6
220.1
73.8
Nov
290.9
39.6
320.3
26.4
256.8
271.8
1336.4
96.5
63.2
1309.3
176.5
434.7
26.4
487.6
67.6
217.2
4579.8
3013.0
139.2
140.5
5.5
4002.6
150.3
334.9
367.9
1046.5
574.3
696.5
265.4
70.5
105.6
339.9
156.4
215.0
296.4
156.6
353.0
74.1
79.0
174.7
42.4
107.9
499.9
38.0
138.5
12.9
281.3
68.7
610.4
16.7
37.0
27.3
5.3
3.1
715.1
78.5
6.1
165.7
148.2
202.1
13.0
15.0
76.3
60.9
230.1
66.5
109.0
2171.8
196.0
0.5
109.1
1.8
71.9
127.2
30.1
121.6
8255.8
130.5
39.4
93.0
47.7
45.9
230.6
40.4
16.0
14.4
7086.8
7.2
10.5
29.7
17.4
42.3
3.0
4494.2
6277.3
67.1
1.1
0.8
6047.8
41.6
1791.7
133.7
41.3
Dec
371.5
80.5
458.8
16.0
155.1
164.2
1584.7
58.3
38.2
1672.7
106.6
260.3
79.0
287.0
40.8
131.2
1943.1
2515.1
340.2
54.4
3.6
7786.6
120.1
308.3
652.5
1030.9
202.5
571.4
86.0
22.4
125.2
133.0
90.9
383.2
112.9
50.6
145.7
46.3
299.0
484.9
102.9
330.0
331.8
23.2
82.7
7.9
258.8
287.9
360.6
25.7
27.6
236.4
15.0
115.9
1524.7
150.5
3.2
105.7
204.8
108.1
32.1
20.5
171.5
40.8
208.9
170.8
69.0
1351.5
136.6
0.3
276.8
7.9
145.1
87.8
79.1
84.2
5104.0
126.5
112.7
669.7
114.6
53.8
164.7
207.0
73.4
84.9
4099.6
45.7
51.2
150.6
59.0
105.5
3.2
2864.4
3729.5
45.2
0.8
1.8
3534.8
49.9
1089.6
82.7
26.1
Average
414.1
43.6
275.6
73.2
528.6
548.7
3865.8
240.1
163.3
1416.0
522.2
927.8
44.0
1066.3
152.8
627.3
6015.6
3581.6
248.4
206.1
69.9
10899.0
138.2
2200.2
477.0
899.7
551.5
718.8
230.7
56.4
234.6
315.7
314.8
300.0
241.4
153.8
349.1
349.1
328.3
389.5
100.4
367.0
554.8
80.7
290.9
19.3
282.1
592.7
1147.5
142.2
238.7
257.2
84.6
89.9
2317.8
155.7
108.6
143.2
133.5
337.8
202.0
169.5
134.9
130.5
241.5
151.9
191.5
3996.4
199.5
6.9
241.4
23.7
138.2
139.4
74.9
138.2
15273.0
139.2
111.1
936.1
139.3
57.1
565.9
328.0
129.5
172.5
8219.3
80.7
86.9
189.1
123.7
139.1
7.6
5922.0
11182.2
65.9
5.0
3.0
8569.1
53.2
3918.6
545.7
46.3
Blue water availability (Mm3/month)
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
204 Dong Jiang
172.2
21.0
223.2
615.6
1151.6
1293.5
976.4
940.0
667.6
205 Mahi
176.8
31.6
49.2
44.6
27.5
7.6
528.2
885.3
630.5
206 Damodar
251.6
22.3
32.2
9.0
3.0
50.7
299.0
950.2
931.6
207 Niger
4355.6
19.8
51.2
259.6
966.6
2958.9
7669.6 16126.9 18141.0
208 Narmada
481.4
86.2
180.1
226.3
227.6
89.0
1470.5
2332.6
1749.0
209 Brahmani River (Bhahmani)
312.4
6.7
10.6
8.5
7.7
109.9
777.7
1587.8
1207.1
210 Mahanadi(Mahahadi)
750.2
21.7
31.6
30.2
31.6
31.5
1041.8
4292.3
2975.6
211 Santiago
136.2
23.2
48.7
53.1
33.6
41.0
205.6
530.4
622.5
212 Panuco
308.1
19.2
37.3
39.5
27.6
72.6
402.7
498.3
1231.3
213 Godavari
1361.1
125.3
248.0
295.5
314.3
178.3
2692.3
5505.7
5324.4
214 Tapti
248.7
33.7
61.3
73.1
79.0
29.8
673.1
1033.9
1023.2
215 Sittang
450.9
0.7
1.3
1.3
3.4
770.5
1570.5
2008.8
1666.5
216 Armeria
12.1
1.6
3.4
5.8
5.5
2.0
0.7
8.1
58.4
217 Ca
289.6
11.2
5.4
4.7
30.9
116.8
375.4
535.7
866.0
218 Chao Phraya
836.7
63.6
104.0
107.5
98.7
328.0
1108.4
1921.4
3201.9
219 Krishna
850.0
122.1
251.0
271.1
280.0
651.3
3320.2
3037.0
2359.2
220 Senegal
325.8
2.0
3.0
2.3
2.4
89.6
612.5
1692.9
1372.7
221 Papaloapan
375.4
2.5
3.2
3.2
2.3
95.5
474.6
882.2
1156.1
222 Grisalva
2371.9
240.8
132.9
122.0
329.4
1724.5
2361.9
2646.1
4101.1
223 Verde
75.7
0.6
1.3
1.4
0.9
2.0
73.1
170.1
329.6
224 Mae Klong
310.9
4.2
6.8
6.7
215.3
716.0
1050.9
1166.4
1116.5
225 Tranh (Nr Thu Bon)
401.4
9.0
4.9
3.3
14.3
58.2
176.6
255.8
354.1
226 Penner
113.7
6.9
10.4
9.0
8.8
8.3
31.7
30.2
36.6
227 Volta
504.4
1.5
16.0
58.4
165.7
523.3
714.2
1680.5
2259.3
228 Lempa
177.6
0.6
1.5
2.1
2.3
109.5
316.4
393.6
608.4
229 Gambia
150.2
0.1
0.1
0.1
0.1
29.0
184.4
615.6
693.3
230 Grande De Matagalpa
357.7
17.5
9.3
6.0
7.5
270.2
538.9
488.8
540.4
231 Cauvery
418.3
31.9
77.1
69.5
70.2
216.2
733.9
661.1
514.8
232 San Juan
1044.7
106.7
56.5
52.3
207.2
790.6
955.7
958.8
1223.9
233 Geba
107.4
0.7
0.9
0.9
0.7
15.8
82.7
362.8
461.0
234 Corubal
176.6
0.1
0.1
0.1
0.1
58.6
353.5
718.8
633.2
235 Magdalena
5423.6
690.5
1286.0
2835.1
4242.2
3726.6
3011.1
3096.0
3658.2
236 Comoe
89.6
0.7
0.9
21.0
61.2
184.6
135.4
203.6
302.0
237 Orinoco
14712.0
1981.7
3222.0
9639.5 19300.5 27474.1 31384.6 27826.1 22407.3
238 Bandama
267.4
0.8
1.1
23.7
61.4
304.2
211.1
589.8
1114.9
239 Oueme
91.8
0.2
0.2
1.4
48.2
195.3
253.0
264.2
378.7
240 Sassandra
452.3
0.3
0.6
25.8
61.9
450.1
664.6
927.7
1664.6
241 Shebelle
225.2
9.9
10.9
506.4
351.0
205.1
318.8
401.0
388.9
24.4
0.1
2.9
10.1
25.2
66.1
71.4
63.9
94.4
242 Mono
243 Congo
38781.7 18567.6 25336.9 27793.8 18695.0 12504.4 11096.3 14292.0 18079.1
244 Atrato
1781.7
459.4
547.3
863.5
1124.9
1175.4
1195.3
1219.4
1337.9
245 Cuyuni
1959.6
627.4
566.0
853.6
1974.3
2695.6
2604.3
2026.9
1089.2
246 Cavally
459.1
21.2
44.2
106.6
310.6
683.7
489.5
388.4
841.0
247 Tano
64.3
0.0
6.5
37.3
109.4
271.3
140.0
67.4
96.2
248 Cross
797.3
0.3
121.6
237.0
469.3
946.4
1565.6
1826.7
2324.9
249 Sanaga
962.5
0.6
47.3
400.8
813.7
1168.0
1585.8
1923.4
2745.2
250 Pra
75.7
0.6
20.5
56.4
131.6
263.3
138.2
65.6
129.2
251 Davo
26.7
0.0
0.0
0.4
1.9
108.6
56.6
25.3
47.6
252 Essequibo
1013.8
395.3
422.1
586.4
1432.7
2611.4
2344.0
1591.5
787.3
253 Kelantan
715.0
87.8
68.5
83.5
86.8
96.3
98.8
112.2
270.6
254 Corantijn
262.7
165.9
342.2
710.9
2259.5
2636.2
1942.3
1216.8
602.5
255 Coppename
310.2
278.9
308.1
414.3
804.7
915.7
772.2
466.3
232.1
256 Kinabatangan
564.0
172.5
135.1
134.6
135.1
229.8
157.6
228.5
293.7
257 Maroni
769.9
916.7
1065.3
1531.4
2216.1
2029.1
1418.6
868.5
448.4
258 San Juan (Columbia - Pacifi
1212.9
440.7
523.2
691.3
824.8
782.5
781.0
794.2
820.7
259 Amazonas
190075.1 141017.2 162784.5 171575.3 142636.9 112877.6 84821.2 59821.4 47615.3
260 Pahang
1155.2
258.5
283.3
392.4
387.5
252.1
172.7
164.7
279.1
261 Nyong
253.8
0.0
77.2
230.6
363.4
300.9
139.6
135.6
486.9
262 Oyapock
856.4
808.7
963.5
1250.0
1320.6
1151.1
705.3
414.0
226.3
263 Rajang
4099.4
1702.6
1931.5
2042.2
1987.1
1553.9
1376.4
1371.2
1848.5
264 Ntem
411.1
1.7
88.6
324.7
519.1
361.6
158.2
94.1
311.7
265 Ogooue
4545.3
1513.9
3146.8
4155.3
3829.4
1590.0
923.6
558.3
501.0
266 Rio Araguari
945.4
1075.5
1387.2
1692.3
1623.6
1424.8
854.6
497.3
275.3
267 Mira
414.6
251.9
258.2
286.0
406.5
391.9
249.7
245.8
271.1
268 Esmeraldas
584.4
847.6
1135.2
1348.6
933.7
500.8
279.8
175.2
117.8
269 Tana
58.1
2.9
7.8
102.6
141.2
66.6
36.7
22.7
14.0
270 Daule & Vinces
546.2
816.1
1052.0
939.3
483.9
296.4
183.1
129.0
94.5
271 Rio Gurupi
98.3
409.7
929.4
902.7
685.2
430.3
282.6
152.9
90.2
272 Rio Capim
307.6
1121.3
1760.0
1585.2
1185.0
756.5
523.3
313.9
175.7
273 Tocantins
16587.4 13165.4 14385.3
9144.3
4822.1
2913.5
1786.2
1117.1
784.6
274 Kouilou
801.5
480.1
790.2
1061.3
613.7
285.3
172.5
104.5
63.3
275 Nyanga
232.0
138.3
188.2
208.9
104.7
53.5
32.3
19.5
11.8
276 Rio Parnaiba
407.9
749.4
1466.6
1398.4
624.8
344.7
209.5
128.3
78.8
277 Rio Itapecuru
16.9
245.0
652.0
650.7
330.3
176.7
104.2
62.9
38.1
278 Rio Acarau
4.5
6.4
162.1
215.4
129.3
60.3
35.9
22.0
13.6
279 Pangani
6.9
4.5
7.0
40.6
98.7
48.0
30.5
17.4
12.0
280 Rio Pindare
50.7
460.9
943.4
905.1
534.9
283.1
163.0
97.8
59.1
281 Sepik
3075.2
1911.1
2533.1
2436.2
1879.5
1484.8
1359.2
1362.5
1541.5
282 Rio Mearim
71.3
542.7
1089.1
931.5
464.4
250.6
149.1
90.2
54.6
283 Chira
15.2
41.7
75.9
68.3
27.6
17.3
12.4
10.4
7.6
284 Rufiji
367.2
765.4
1536.8
1760.9
805.4
425.8
257.1
155.8
94.7
285 Rio Jaguaribe
12.8
2.3
323.9
548.9
312.5
172.4
103.1
64.0
42.7
286 Purari
1417.8
840.0
1040.9
1067.0
892.0
707.0
590.5
613.0
770.6
287 Ruvu
24.3
24.5
72.4
190.5
144.4
57.5
34.8
21.2
13.0
288 Rio Paraiba
7.5
0.4
0.7
17.9
50.8
102.8
79.4
41.7
23.1
289 Solo (Bengawan Solo)
571.1
483.1
486.7
344.4
189.9
106.3
66.4
44.5
34.2
290 Sao Francisco
5543.3
3050.3
2796.4
1502.3
931.4
1005.7
989.5
668.7
333.1
291 Brantas
359.2
348.2
352.5
249.5
139.4
79.0
48.7
32.7
24.4
292 Santa
91.1
112.6
130.2
79.9
42.2
25.0
15.7
11.4
8.8
293 Zambezi
14656.0 16403.8 13703.0
6465.6
3653.6
2187.3
1332.7
840.7
523.6
294 Rio Vaza-Barris
3.4
0.3
0.3
0.3
12.3
30.2
35.5
20.5
10.0
295 Rio Itapicuru
11.3
0.5
0.4
1.4
19.8
52.6
129.1
72.6
33.9
296 Rio Paraguacu
54.8
37.1
60.1
141.0
298.9
233.2
293.3
175.6
91.0
297 Canete
51.5
46.7
46.2
25.7
13.4
8.2
5.1
3.5
2.6
298 Rio De Contas
59.4
24.0
51.6
111.4
110.0
89.6
91.6
58.5
35.8
299 Roper
87.0
307.4
336.4
119.8
71.7
43.3
26.2
15.9
9.7
300 Daly
156.7
536.8
496.4
183.8
110.4
66.8
40.4
24.5
14.9
301 Drysdale
5.2
56.7
54.1
19.3
11.7
7.0
4.3
2.6
1.6
302 Parana
21195.9 14570.6 13669.3 10027.2
7997.7
6909.3
4501.0
3607.4
3909.3
303 Durack
0.0
0.4
0.3
0.1
0.1
0.0
0.0
0.0
0.0
304 Rio Prado
139.2
56.7
71.5
83.5
48.7
37.4
33.8
21.3
11.7
305 Victoria
0.0
4.1
2.8
1.1
0.7
0.4
0.2
0.1
0.1
306 Mitchell(N. Au)
216.0
1243.4
1175.4
523.3
287.0
172.0
104.2
63.5
38.9
Basin ID Basin name
Table S3 - 3
Oct
311.7
277.8
429.5
9525.3
751.5
611.8
1339.8
282.7
704.9
2419.1
424.8
980.2
29.5
553.6
2014.4
1342.1
654.2
885.3
3860.2
178.8
710.3
544.8
72.1
1085.4
459.1
307.6
590.0
469.5
1470.0
241.4
416.1
6369.3
204.4
20689.1
637.3
207.6
1083.2
336.4
57.9
22224.7
1428.2
717.4
837.6
162.2
2163.2
2671.6
207.9
57.7
487.8
417.0
362.3
139.1
277.7
269.9
905.9
48736.0
543.0
678.0
136.7
2225.8
886.2
1730.3
166.2
233.1
115.8
20.7
89.4
54.5
105.2
795.8
38.3
7.1
48.5
23.1
8.4
7.7
35.7
1620.1
33.0
4.4
57.6
28.4
723.2
7.9
14.6
21.2
253.7
14.2
15.9
324.4
6.2
20.5
53.5
8.6
22.2
5.9
9.1
0.9
4882.2
0.0
7.3
0.1
24.0
Nov
186.9
173.2
263.2
4765.9
459.1
339.1
823.9
158.3
354.2
1469.4
266.7
498.5
14.3
330.4
1162.3
934.0
358.5
438.8
2199.7
82.8
343.0
483.8
203.5
548.9
195.3
163.2
349.6
555.5
968.0
116.5
192.9
6357.9
108.1
15477.9
294.6
99.8
520.7
322.1
26.5
21780.2
1406.4
733.1
587.1
84.4
890.4
1076.6
96.6
38.6
375.0
486.3
218.8
84.0
249.9
163.0
905.8
59615.2
722.5
340.0
82.5
2371.2
638.6
4718.4
100.4
256.6
151.1
52.1
91.6
32.9
63.5
3307.2
226.1
138.6
31.4
13.9
5.2
5.7
21.6
1617.0
20.0
4.6
35.3
18.5
727.2
4.8
9.3
50.0
986.0
32.1
25.7
261.1
3.8
12.4
38.9
12.5
33.0
3.5
5.4
0.6
6576.5
0.0
27.5
0.0
14.5
Dec Average
113.6
556.1
114.7
245.6
170.1
284.4
2855.7
5641.3
317.3
697.6
209.9
432.5
514.4
990.4
98.5
186.2
209.3
325.4
966.9
1741.7
177.2
343.7
295.7
687.3
9.6
12.6
193.2
276.1
612.0
963.2
685.6
1175.3
215.3
444.3
252.3
381.0
1575.4
1805.5
50.2
80.5
206.2
487.8
323.0
219.1
97.1
52.4
331.0
657.4
117.0
198.6
98.5
186.8
249.6
285.5
369.8
349.0
784.4
718.2
70.7
121.8
115.8
222.2
4183.3
3740.0
59.3
114.2
9366.2 16956.7
176.3
306.9
60.2
133.4
297.5
512.4
158.3
269.5
16.0
38.2
24631.5 21148.6
1107.4
1137.2
1314.3
1430.1
331.0
425.0
43.7
90.2
522.9
988.8
631.2
1168.9
49.5
102.9
17.9
31.8
621.1
1055.7
543.8
255.6
138.5
904.9
64.2
399.1
381.8
246.7
113.1
984.2
781.2
788.7
91142.2 109393.2
835.2
453.8
166.5
264.4
117.3
669.4
2455.4
2080.4
285.7
340.1
3488.7
2558.4
79.7
843.5
182.6
287.3
193.3
532.0
61.0
48.9
80.2
400.1
20.6
340.8
41.1
661.5
8908.7
6476.5
600.2
436.4
161.0
108.0
111.8
466.7
8.5
193.5
3.3
55.5
5.5
23.7
13.1
297.4
1836.5
1888.1
12.3
309.1
3.4
24.1
83.8
528.8
12.1
136.8
843.2
852.7
14.7
50.8
5.9
29.5
220.0
218.2
3746.2
1817.2
106.2
148.8
26.6
48.8
4300.2
5387.7
2.4
10.4
7.7
30.2
32.8
125.9
22.8
20.6
45.0
61.0
2.1
85.8
3.4
137.4
0.3
13.7
11498.5
9112.1
0.0
0.1
109.8
54.0
0.0
0.8
8.6
322.6
Basin ID Basin name
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
Majes
Ord
Jequitinhonha
Macarthur
Fitzroy
Gilbert
Mucuri
Rio Doce
Save
Burdekin
Tsiribihina
Buzi
Loa
Limpopo
De Grey
Paraiba Do Sul
Fortescue
Mangoky
Fitzroy
Orange
Ashburton
Gascoyne
Rio Ribeira Do Iguape
Incomati
Murray
Murchison
Maputo
Uruguay
Tugela
Colorado (Argentinia)
Rio Jacui
Huasco
Limari
Negro (Uruguay)
Groot-Vis
Salado
Blackwood
Rapel
Negro (Argentinia)
Biobio
Waikato
South Esk
Chubut
Clutha
Baker
Santa Cruz
Ganges
Salween
Hong(Red River)
Lake Chad
Okavango
Tarim
Horton
Hornaday
Conception
Ulua
Patacua
Coco
Ocona
Cuanza
Cunene
Doring
Gamka
Groot- Kei
Lurio
Messalo
Rovuma
Galana
Pyasina
Popigay
Fuchun Jiang
Min Jiang
Han Jiang
Mamberamo
Lorentz
Eilanden
Uwimbu
Sungai Kajan
Sungai Mahakam
Sungai Kapuas
Batang Kuantan
Batang Hari
Flinders
Leichhardt
Escaut (Schelde)
Issyk-Kul
Balkhash
Eyre Lake
Lake Mar Chiquita
Lake Turkana
Dead Sea
Suriname
Lake Titicaca
Lake Vattern
Great Salt Lake
Lake Taymur
Daryacheh-Ye Orumieh
Van Golu
Ozero Sevan
Jan
178.8
0.0
841.6
0.1
1.1
36.6
266.4
2512.7
440.7
138.0
1926.4
260.9
0.1
376.0
0.0
1476.8
0.0
371.6
14.5
371.4
0.0
0.0
435.0
208.0
573.7
0.0
185.0
3140.5
151.7
700.2
1001.0
18.4
23.6
260.3
2.1
202.3
15.9
223.9
492.3
302.6
242.0
37.3
167.5
205.8
385.8
330.4
6436.4
1673.2
956.0
1374.1
815.0
48.4
2.5
2.5
0.1
347.2
342.2
553.6
107.9
2072.1
365.8
8.8
13.1
0.5
920.9
188.3
1821.2
37.4
94.1
17.0
250.7
342.0
85.9
3089.3
98.6
1086.2
1790.5
2153.9
3721.2
5898.3
764.1
2183.7
0.1
6.4
270.3
60.1
54.7
0.0
98.0
416.5
121.0
437.4
1424.9
21.8
13.1
144.7
31.2
23.6
1.7
Feb
199.0
0.8
329.8
0.2
89.3
275.0
82.5
1059.7
671.2
735.9
1960.9
383.4
0.1
611.8
0.0
821.1
0.0
440.8
381.9
419.1
0.0
0.0
331.5
223.7
275.9
0.0
143.8
1126.7
157.4
69.2
498.4
3.3
20.3
17.4
4.8
4.9
0.1
35.6
19.8
5.8
87.2
1.8
14.0
84.2
126.0
77.0
2196.3
19.1
16.1
27.1
1297.8
15.4
0.1
0.0
0.4
15.5
23.7
28.7
116.4
1513.0
516.0
4.1
2.9
1.3
1237.0
363.7
3053.0
1.6
1.0
0.2
393.4
452.2
37.9
1890.8
89.0
666.9
1079.0
818.5
1575.3
2671.2
292.1
907.2
18.0
7.0
141.2
9.7
1.2
0.1
118.9
1.8
136.3
383.0
1192.7
0.1
47.5
0.0
20.6
0.1
0.1
Mar
175.2
0.3
286.2
11.1
98.1
225.2
63.0
848.4
488.1
732.5
1809.9
377.8
0.1
560.6
0.0
764.8
0.0
370.5
427.0
449.2
0.0
0.0
285.2
205.5
300.2
0.0
123.7
1622.4
150.6
44.2
580.2
2.0
8.2
98.4
4.6
14.6
0.1
22.7
69.4
59.7
76.4
2.1
34.4
96.6
219.8
112.0
3289.5
118.5
20.9
28.9
1723.8
53.9
0.0
0.0
0.7
8.5
10.8
14.1
103.4
2059.2
1048.1
5.1
5.8
3.4
1217.8
439.4
3618.4
7.0
0.6
0.1
649.9
1288.9
248.2
2522.1
103.1
767.1
1275.8
1097.7
2027.0
3045.5
346.4
1090.0
5.6
2.4
120.8
426.4
439.8
0.1
205.2
20.1
90.8
417.7
995.0
129.2
70.9
0.0
101.3
25.4
0.8
Apr
87.2
0.5
172.1
2.9
33.5
85.6
50.8
492.3
213.1
377.4
830.9
150.5
0.1
286.6
0.0
436.0
0.0
179.8
177.1
280.5
0.0
0.0
177.5
103.4
222.1
0.0
64.9
2798.1
74.5
27.1
784.2
1.2
4.2
299.8
2.8
157.5
0.1
13.3
202.0
183.8
120.3
6.5
67.2
138.8
327.7
236.4
2579.3
302.3
50.9
36.0
794.3
118.7
0.0
0.0
1.0
6.3
6.5
8.7
49.0
1749.4
585.0
3.0
8.1
2.6
504.4
219.8
1863.8
119.5
0.4
0.1
607.5
1252.7
402.1
2293.6
95.0
750.2
1198.4
1323.9
2751.3
3103.2
463.4
1250.5
3.1
1.4
94.5
677.0
809.3
0.1
100.8
397.7
57.9
584.5
590.4
107.2
156.4
0.0
305.5
223.6
15.4
Blue water availability (Mm3/month)
May
Jun
Jul
Aug
Sep
46.5
28.0
16.9
10.5
6.9
0.8
1.0
1.3
1.5
1.6
94.3
59.4
40.7
25.2
14.8
1.8
1.1
0.6
0.4
0.2
20.2
12.2
7.4
4.5
2.7
51.2
30.9
18.7
11.3
6.8
33.4
22.8
17.7
10.0
5.8
260.3
156.9
96.6
60.4
37.4
125.5
77.3
48.6
34.8
26.2
200.2
119.6
72.8
45.4
29.3
470.9
287.4
178.6
109.0
65.8
87.6
53.0
32.2
19.8
12.3
0.1
0.1
0.1
0.1
0.1
153.4
100.3
71.8
66.8
66.1
0.0
0.0
0.0
0.0
0.0
247.8
151.9
94.0
61.7
52.9
0.0
0.0
0.0
0.0
0.0
103.6
66.1
44.1
27.3
16.6
98.8
60.2
38.6
26.5
20.4
161.4
97.9
68.5
64.0
62.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
147.1
156.4
107.6
88.6
120.2
55.4
34.7
22.7
16.8
13.5
255.9
430.7
502.3
633.0
674.2
0.0
0.0
0.0
0.0
0.0
35.9
22.9
15.0
11.6
9.2
3389.9
3831.6
3268.9
3124.1
3775.3
40.9
25.3
17.3
14.9
13.4
74.6
141.4
168.3
186.0
181.7
979.4
1158.6
1067.9
1029.0
1148.6
0.7
0.5
0.3
0.3
0.3
2.5
5.6
3.7
3.5
2.9
454.8
662.4
644.6
658.0
675.8
2.3
1.9
2.0
2.6
4.3
245.6
247.0
221.1
191.9
252.2
0.0
6.0
50.9
81.5
60.3
102.1
274.7
271.3
237.1
175.4
805.1
1171.8
1242.1
1215.0
1006.1
747.3
957.3
1008.5
934.1
826.2
254.3
328.5
323.4
310.4
277.8
15.3
41.7
78.6
94.3
80.6
254.8
452.7
519.4
623.2
449.3
136.9
138.9
128.4
144.7
179.7
451.9
507.2
550.8
529.7
429.8
318.1
370.1
315.4
493.0
644.2
2584.4
5564.7 15724.9 25704.0 19394.6
569.3
2411.1
4929.8
6413.6
5517.3
313.3
1487.9
3689.4
4528.9
3276.8
52.6
245.4
1597.8
7283.3
5590.2
408.2
246.6
149.2
90.4
55.0
331.4
569.1
665.3
472.1
270.3
15.8
63.0
18.7
11.0
6.6
0.0
36.3
29.1
14.0
7.4
0.8
0.9
0.9
1.2
1.1
3.9
102.1
358.3
399.5
627.2
3.9
14.2
138.7
178.6
287.7
9.7
339.7
648.8
591.8
656.1
27.0
16.2
9.8
6.1
4.0
710.6
425.5
257.3
155.8
94.5
264.6
159.8
96.5
58.4
35.3
0.8
18.4
29.7
35.2
27.2
8.2
10.2
9.0
12.6
22.3
1.7
1.2
1.1
1.2
1.6
287.0
173.4
104.7
63.3
38.2
109.6
66.2
40.0
24.1
14.6
921.1
555.9
335.8
202.8
122.5
130.9
65.5
35.5
20.9
12.9
0.3
1716.5
565.8
374.8
360.8
0.0
410.5
150.8
82.1
50.2
805.2
1114.6
484.0
287.4
256.5
1944.2
2128.8
970.0
745.1
576.5
758.5
943.6
489.5
425.1
331.0
1944.7
1568.5
1677.1
1592.9
1739.5
69.3
50.8
56.2
50.8
69.2
713.5
648.9
647.1
618.0
674.3
1202.0
1086.5
1052.7
1025.3
1077.5
1374.1
1159.1
1021.0
983.6
1286.2
2520.0
1933.7
1366.3
1130.0
1190.3
2702.7
2058.3
1478.7
1321.6
1787.3
365.1
215.1
128.1
105.1
167.7
958.0
564.2
353.4
308.1
487.6
1.9
1.1
0.7
0.4
0.3
0.9
0.5
0.3
0.2
0.1
57.0
33.8
22.3
16.0
11.0
859.2
798.0
600.5
334.3
214.4
818.0
581.4
420.5
273.7
181.0
0.1
0.1
0.1
0.1
0.1
52.2
32.5
22.5
17.4
16.2
660.1
883.0
1343.7
1565.6
1309.8
51.4
40.7
39.4
33.7
19.3
945.9
1002.8
794.8
484.1
242.6
378.7
210.5
131.7
110.4
93.9
49.2
27.2
16.3
12.0
8.0
183.2
126.8
96.3
70.1
42.7
0.0
2947.2
1277.6
659.7
502.8
308.0
147.6
93.6
69.4
42.8
275.7
97.8
59.0
36.8
22.5
21.4
11.2
6.2
4.2
2.6
Table S3 - 4
Oct
6.3
1.3
12.1
0.1
1.6
4.2
4.3
23.6
17.0
19.2
39.7
7.7
0.1
49.4
0.0
118.0
0.0
10.0
16.0
72.5
0.0
0.0
172.1
8.7
667.5
0.0
6.6
4032.1
13.0
474.4
1027.3
0.3
3.1
564.6
5.5
313.6
33.4
140.3
873.6
594.6
271.2
71.6
290.8
191.4
376.5
645.4
9568.4
3631.9
1920.5
2810.0
33.4
108.2
4.0
4.5
0.8
549.7
435.2
787.8
9.8
61.5
22.6
21.0
21.2
1.7
23.1
8.8
74.0
8.0
162.8
29.4
177.3
409.9
156.6
1309.5
39.9
540.3
910.6
1400.0
1480.5
2755.1
345.0
882.3
0.2
0.1
12.7
117.0
82.5
0.1
17.1
827.0
11.7
145.8
137.6
16.5
24.3
260.1
25.3
23.0
2.6
Nov
5.9
0.7
135.1
0.1
1.0
2.5
42.5
466.9
8.3
11.9
59.8
4.5
0.1
31.9
0.0
326.7
0.0
11.3
10.9
107.0
0.0
0.0
154.8
25.9
462.9
0.0
22.5
2572.9
17.2
630.5
681.2
0.1
2.3
310.8
3.8
283.6
17.4
82.5
632.5
361.9
216.1
43.4
179.2
152.5
315.9
321.2
6524.3
1947.4
1086.7
1481.8
20.1
59.0
2.4
2.7
0.3
383.4
360.5
557.7
14.2
60.8
19.6
12.3
17.4
1.2
13.9
5.3
44.7
40.6
98.4
17.7
141.5
268.2
93.3
1434.7
55.4
565.0
871.5
1564.0
2230.6
3458.7
515.9
1254.6
0.1
0.0
74.7
76.9
89.0
0.1
19.0
500.3
6.4
88.1
135.7
39.2
13.7
157.1
27.5
46.1
2.8
Dec
72.6
0.0
630.5
0.1
0.6
1.5
209.2
1819.8
69.7
6.5
568.3
22.2
0.1
61.7
0.0
880.1
0.0
66.7
7.0
176.8
0.0
0.0
197.5
91.3
400.1
0.0
93.4
1917.4
75.2
515.1
558.8
9.2
6.4
169.3
3.8
153.5
10.5
136.3
348.1
209.0
156.3
27.1
116.1
131.9
256.6
208.5
3925.2
1104.5
629.8
898.2
176.4
32.8
1.5
1.6
0.2
252.4
258.7
408.2
47.0
1091.7
128.5
8.6
11.2
0.9
93.6
3.2
103.3
39.2
59.4
10.7
114.5
176.1
56.8
1726.2
52.5
655.8
1080.3
1365.9
2523.3
3524.5
520.5
1435.3
0.1
0.0
149.2
41.0
36.3
0.1
27.5
278.9
23.6
105.3
519.0
17.1
13.3
94.9
23.4
15.5
1.2
Average
69.5
0.8
220.1
1.6
22.7
62.5
67.4
652.9
185.0
207.4
692.3
117.7
0.1
203.0
0.0
452.6
0.0
142.4
106.6
194.2
0.0
0.0
197.8
84.1
449.9
0.0
61.2
2883.3
62.6
267.7
876.2
3.1
7.2
401.4
3.4
190.7
23.0
142.9
673.1
515.9
222.0
41.7
264.0
144.2
373.1
339.3
8624.3
2386.5
1498.1
1785.5
484.2
228.7
10.5
8.2
0.7
254.5
171.7
383.8
42.6
854.3
275.0
14.5
11.8
1.5
389.8
123.6
1059.7
43.2
286.2
64.1
440.2
879.6
335.7
1899.1
69.1
694.4
1137.5
1295.6
2037.5
2817.1
352.4
972.9
2.6
1.6
83.6
351.2
315.6
0.1
60.6
683.7
52.7
469.3
493.4
37.0
71.5
503.7
99.7
70.8
5.8
Table S4. Monthly blue water scarcity for the world's major river basins
Period: 1996-2005
Basin
ID
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
Basin name
Khatanga
Olenek
Anabar
Yana
Yenisei
Indigirka
Lena
Omoloy
Tana (NO, FI)
Colville
Alazeya
Anderson
Kolyma
Tuloma
Muonio
Yukon
Palyavaam
Kemijoki
Mackenzie
Noatak
Anadyr
Pechora
Lule
Kalixaelven
Ob
Ellice
Taz
Kobuk
Coppermine
Hayes(Trib. Arctic Ocean
Pur
Varzuga
Ponoy
Kovda
Back
Kem
Nadym
Quoich
Mezen
Iijoki
Joekulsa A Fjoellum
Svarta, Skagafiroi
Oulujoki
Lagarfljot
Thelon
Angerman
Thjorsa
Northern Dvina(Severnay
Oelfusa
Nizhny Vyg (Soroka)
Kuskokwim
Vuoksi
Onega
Susitna
Kymijoki
Neva
Ferguson
Copper
Gloma
Population
(thousands)
4.63
5.96
1.4
24.5
8453
41.8
1285
2.88
6.52
0.98
6.65
0.09
138
209
57.8
131
7.83
149
494
2.04
11.2
606
35.6
35
29372
0
15.1
2.2
0.431
0
197
4.14
3.41
33.2
0.011
75.6
43.6
0
42.1
62.8
0.762
2.06
197
3.05
2.17
66.6
1.99
1718
7.59
86.9
11.4
750
176
30.1
588
4245
0.007
4.95
759
Water scarcity (%)
Jan
0.0028
0.0046
0.0025
0.0259
0.434
0.0208
0.0771
0.102
0.102
0.0134
0.0342
0.0055
0.0352
2.1
0.382
0.0732
0.0697
0.331
0.293
0.0331
0.009
0.233
0.103
0.396
4.01
0
0.0144
0.0264
0.0499
0
0.252
0.0832
0.0254
1.03
0.0001
0.314
0.108
0
0.107
0.737
0.015
0.0554
0.942
0.04
0.0151
0.171
0.0065
1.59
0.0296
0.398
0.0227
2.47
0.741
0.06
3.45
3.36
0.0006
0.0114
1.53
Feb
0.0748
0.0353
0.0155
0.319
9.43
0.22
1.86
4.07
675
1.82
0.202
0.861
0.813
17.1
4.18
1.41
624
50
19
6.28
8.37
18.4
32.6
4.7
140
0
2.38
0.175
11.7
0
676
676
676
676
676
135
207
0
8.87
676
676
676
195
676
104
109
0.0826
46.3
676
676
20.5
676
59.1
34
676
379
676
676
676
Mar
0.124
0.0585
0.0257
0.528
15.5
0.364
3.07
6.71
675
3
0.334
1.42
1.35
27.8
6.9
2.32
643
79
30.9
10.3
13.7
30
52.3
7.75
205
0
3.94
0.29
19.2
0
676
676
676
676
676
198
286
0
14.6
676
676
0.104
271
676
157
163
0.0299
73.4
0.0347
676
33.3
676
92.6
54.5
676
458
676
676
72
Apr
0.205
0.0968
0.0425
0.873
1.46
0.603
3.36
11
675
4.96
0.552
2.36
2.23
44.8
0.257
0.388
656
0.271
0.194
17
22.5
0.396
0.0287
0.0799
0.593
0
6.49
0.48
31.2
0
676
676
676
676
676
0.028
370
0
0.0102
0.0524
0.198
0.0246
0.0403
0.202
225
0.0146
0.0024
0.0365
0.0065
0.0151
53.4
0.0784
0.0157
0.021
0.141
0.125
676
0.72
0.251
May
0.0198
0.0086
0.0704
0.146
0.207
0.0877
0.014
18.1
0.0026
0.0546
0.914
0.0001
0.0245
0.115
0.0274
0.0081
664
0.0179
0.0244
0.0129
0.0043
0.0098
0.0083
0.0251
1.02
0
0.0011
0.0027
0.0037
0
0.0259
0.0057
0.002
0.0356
0
0.0189
0.0092
0
0.0038
0.0697
0.0015
0.0084
0.131
0.0038
0.0012
0.0167
0.0016
0.0942
0.0162
0.0507
0.0018
0.289
0.0561
0.0113
0.517
0.553
676
0.0017
0.283
Jun
0.0002
0.0003
0.0003
0.0031
0.27
0.0024
0.0098
0.0064
0.0094
0.0013
0.0033
0.0004
0.0051
0.363
0.0495
0.0089
0.0039
0.0659
0.0237
0.0026
0.0005
0.0148
0.0085
0.041
2.93
0
0.0006
0.0051
0.002
0
0.0123
0.0208
0.0074
0.112
0
0.0546
0.0056
0
0.0103
0.176
0.0019
0.0077
0.247
0.0061
0.0007
0.0219
0.0021
0.206
0.0163
0.0888
0.0037
0.521
0.112
0.0107
0.937
1.1
0
0.0012
0.413
Jul
0.0003
0.001
0.0006
0.0034
0.407
0.0027
0.0145
0.0098
0.016
0.0013
0.0113
0.0007
0.0036
0.663
0.0733
0.0138
0.0072
0.111
0.0397
0.0047
0.001
0.0353
0.0169
0.0883
7.26
0
0.002
0.009
0.0058
0
0.0404
0.0356
0.0126
0.206
0
0.0945
0.0176
0
0.0192
0.299
0.0048
0.0206
0.436
0.0139
0.0021
0.0476
0.0041
0.349
0.0198
0.149
0.0053
0.94
0.188
0.0156
1.63
1.68
0.0001
0.0017
1.04
Aug
0.0006
0.0018
0.0013
0.0061
0.441
0.0058
0.0196
0.0212
0.0265
0.0024
0.02
0.0011
0.0082
1.1
0.142
0.0228
0.0141
0.173
0.0741
0.0083
0.0019
0.0596
0.0289
0.153
9.79
0
0.0033
0.0149
0.0103
0
0.0667
0.0589
0.0181
0.34
0
0.151
0.0283
0
0.0319
0.462
0.0076
0.0342
0.704
0.0195
0.0036
0.0704
0.0047
0.55
0.0281
0.246
0.0053
1.67
0.282
0.0188
2.93
2.95
0.0001
0.003
1.56
Table S4 - 1
Sep
0.001
0.003
0.0022
0.0127
0.338
0.0109
0.0228
0.0371
0.0337
0.0043
0.0332
0.0019
0.0125
1.67
0.186
0.0291
0.0209
0.149
0.112
0.0082
0.0026
0.073
0.0337
0.225
6.64
0
0.0045
0.0164
0.0171
0
0.0643
0.0349
0.012
0.441
0
0.172
0.0275
0
0.0499
0.446
0.0077
0.04
0.577
0.0175
0.0043
0.0768
0.0041
0.811
0.0238
0.196
0.0054
1.68
0.388
0.0158
3.37
2.6
0.0002
0.0031
0.778
Oct
0.0018
0.0051
0.0037
0.021
0.375
0.0182
0.051
0.0624
0.0491
0.0077
0.0549
0.0031
0.0235
1.64
0.294
0.0475
0.0388
0.118
0.164
0.0188
0.005
0.129
0.047
0.262
3.66
0
0.0082
0.0349
0.0282
0
0.14
0.028
0.0082
0.403
0.0001
0.106
0.0601
0
0.046
0.232
0.0051
0.02
0.31
0.0146
0.0084
0.0615
0.0033
0.776
0.017
0.131
0.012
0.868
0.3
0.0279
2.1
1.55
0.0003
0.0056
0.643
Nov
0.003
0.0084
0.0062
0.0347
0.494
0.0301
0.0845
0.103
0.094
0.0127
0.0909
0.0052
0.0389
3.6
0.541
0.0846
0.0642
0.312
0.288
0.0311
0.0083
0.226
0.0956
0.539
4.17
0
0.0136
0.0578
0.0468
0
0.232
0.0766
0.0234
0.945
0.0001
0.291
0.099
0
0.103
0.679
0.0137
0.0442
0.879
0.0352
0.014
0.158
0.0057
1.67
0.0258
0.367
0.021
2.13
0.71
0.0557
2.06
2.38
0.0005
0.0105
1.28
Dec
0.005
0.014
0.0102
0.0575
0.802
0.0498
0.14
0.171
0.156
0.021
0.151
0.0086
0.0643
5.94
0.895
0.14
0.106
0.517
0.474
0.0514
0.0138
0.374
0.158
0.892
6.68
0
0.0225
0.0956
0.0774
0
0.384
0.127
0.0387
1.56
0.0002
0.482
0.165
0
0.171
1.12
0.0229
0.0845
1.45
0.0609
0.0231
0.262
0.0095
2.77
0.035
0.608
0.0347
3.75
1.18
0.0921
5.25
5.19
0.0008
0.0174
2.34
Average
0.0365
0.0198
0.0151
0.169
2.51
0.118
0.727
3.37
169
0.825
0.2
0.389
0.383
8.91
1.16
0.379
216
10.9
4.3
2.81
3.72
4.16
7.12
1.26
32.7
0
1.07
0.101
5.2
0
169
169
169
169
169
27.9
72
0
2
113
113
56.3
39.3
113
40.5
22.7
0.013
10.7
56.3
113
8.94
114
13
7.4
114
71.5
225
113
63.2
Number of months per year that a basin faces low,
moderate, significant or severe water scarcity
Low
Moderate Significant
Severe
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
9
0
0
3
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
8
0
0
4
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
10
1
0
1
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
9
0
0
3
9
0
0
3
9
0
0
3
9
0
0
3
9
0
0
3
10
1
1
0
9
0
0
3
12
0
0
0
12
0
0
0
10
0
0
2
10
0
0
2
11
0
0
1
10
0
1
1
10
0
0
2
9
1
1
1
10
1
1
0
12
0
0
0
12
0
0
0
11
0
0
1
10
0
0
2
12
0
0
0
10
0
0
2
12
0
0
0
12
0
0
0
10
0
0
2
10
0
0
2
8
0
0
4
10
0
0
2
11
0
0
1
Basin
ID
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
Basin name
Kokemaenjoki
Vaenern-Goeta
Thlewiaza
Alsek
Volga
Dramselv
Arnaud
Nushagak
Seal
Taku
Narva
Stikine
Churchill
Feuilles (Riviere Aux)
George
Caniapiscau
Western Dvina (Daugava
Aux Melezes
Baleine, Grande Riviere
Spey
Kamchatka
Nass
Skeena
Nelson
Hayes(Trib. Hudson Bay
Gudena
Skjern A
Neman
Fraser
Severn(Trib. Hudson Bay
Amur
Tweed
Grande Riviere De La Ba
Grande Riviere
Winisk
Churchill, Fleuve (Labrad
Dniepr
Ural
Wisla
Don
Oder
Elbe
Trent
Weser
Attawapiskat
Eastmain
Manicouagan (Riviere)
Columbia
Little Mecatina
Natashquan (Riviere)
Rhine
Albany
Saguenay (Riviere)
Thames
Nottaway
Rupert
Moose(Trib. Hudson Bay
St.Lawrence
Danube
Seine
Dniestr
Southern Bug
Population
(thousands)
773
1486
0.052
1.03
61274
282
0
1.47
1.07
1.9
1217
1.57
90.5
0
0.032
0.921
2723
0
0
33.2
25.8
2.98
44.9
5566
14.5
450
165
5487
1294
6.79
66165
410
0.558
1.49
6.08
8.63
33021
4063
23550
20898
16526
22408
4841
8503
1.41
0.441
13.9
6607
0.148
0.512
56922
19.2
317
9674
43.8
0.405
122
67620
81753
15598
7442
3142
Water scarcity (%)
Jan
3.61
1.11
0.0019
0.0115
18.8
1.24
0
0.0072
0.0284
0.0137
1.13
0.0027
0.383
0
0.0001
0.0013
1.88
0
0
0.0276
0.0354
0.0095
0.139
10.6
0.143
0.772
0.205
3.08
1.09
0.0383
2.34
0.283
0.0039
0.0018
0.0228
0.0169
34.3
11.9
22.6
64.5
14.5
7.83
2.79
2.68
0.0388
0.0012
0.037
1.43
0.0011
0.0059
4.64
0.0789
0.526
5.3
0.0669
0.0043
0.408
13.8
5.62
6.75
16.9
76.9
Feb
532
408
0.0168
676
394
676
0
676
2.29
676
676
0.0083
15.1
0
676
3.57
676
0.0001
0
0.0648
676
676
676
445
6.89
1.73
0.543
676
4.11
676
521
0.68
676
5.77
9.83
676
645
676
566
676
8.09
8.63
5.23
4.68
676
676
134
1.57
676
676
7.99
597
676
8.6
676
676
676
545
6.66
9.29
517
376
Mar
581
0.586
0.0279
676
77.7
3.31
0
676
3.78
676
676
0.0098
24.6
0
676
5.89
676
0.0001
0
0.0754
676
0.0123
0.144
518
11.3
1.94
0.595
0.897
1.83
676
583
0.725
676
9.51
16.1
676
2.95
23.4
1.67
4.8
2.54
4.57
6.36
4.96
676
676
196
4.33
676
676
7.56
626
676
10.7
676
676
676
6.47
2.93
10.6
2.2
1.62
Apr
0.233
0.247
0.0462
0.0056
0.541
0.26
0
0.0028
6.23
0.0073
0.133
0.003
0.1
0
676
9.7
0.168
0.0002
0
0.0967
676
0.0029
0.0334
1.67
18.6
2.61
0.811
0.277
0.317
0.0234
5.2
1.03
676
15.6
0.0059
676
1.85
1.39
3.18
3.64
4.58
6.21
9.06
6.76
676
0.0006
0.0883
11.1
676
0.011
6.42
0.0076
0.0929
16.2
0.0109
0.0017
0.036
1.46
3.12
14.7
4.05
4.59
May
0.876
0.622
0.0001
0.0013
5.95
0.224
0
0.0008
0.001
0.0024
0.489
0.0005
0.031
0
0
0.0002
0.832
0
0
0.133
0.0025
0.0017
0.017
4.34
0.0069
14
2.99
1.33
0.211
0.0028
13.2
1.48
0.0006
0.0002
0.002
0.0019
14.7
18.1
5.99
44.5
7.9
10.5
14.9
10.7
0.0022
0.0002
0.0053
13.1
0.0001
0.0005
8.44
0.007
0.0934
28.2
0.0092
0.0004
0.0411
3.99
6.46
29.6
22.6
27.5
Jun
1.69
1.16
0.0003
0.0012
14
0.295
0
0.0021
0.0025
0.0026
0.899
0.0004
0.0486
0
0
0.0002
1.32
0
0
0.228
0.0034
0.0022
0.021
6.75
0.0128
59.6
23.6
2.41
0.393
0.0068
21.5
2.3
0.0009
0.0005
0.0046
0.0026
31.8
52.7
10.4
98.7
12.7
16.7
29.3
17.2
0.0077
0.0003
0.0067
31.4
0.0002
0.0011
11.6
0.0168
0.136
50.2
0.0192
0.0011
0.0958
7.07
11.2
61.1
35.5
55.2
Jul
3.04
2.11
0.0005
0.003
32.6
0.756
0
0.0036
0.0049
0.0057
1.6
0.0009
0.101
0
0
0.0005
2.13
0
0
0.302
0.0045
0.0049
0.0487
22
0.0236
112
71.8
3.98
1.05
0.0125
13.9
3.63
0.0016
0.0008
0.0083
0.0048
64.6
129
15.1
174
21.5
31.3
70
28.9
0.0133
0.0005
0.0126
91.9
0.0003
0.0014
15.2
0.03
0.213
82.7
0.0283
0.0017
0.164
13.7
22.7
147
38
122
Aug
5.76
2.25
0.0008
0.0045
44.8
0.68
0
0.0029
0.0083
0.0075
2.74
0.0013
0.179
0
0
0.0005
4
0
0
0.252
0.0094
0.0066
0.0746
53.2
0.0436
88.2
25
8.64
2.06
0.0196
7.61
3.3
0.0017
0.0008
0.0137
0.0061
95
161
25.9
222
33.9
48
73.5
37.7
0.022
0.0006
0.0156
125
0.0005
0.0021
21
0.0493
0.26
126
0.0343
0.002
0.258
21.7
30.8
256
90.2
181
Table S4 - 2
Sep
7.29
1.74
0.0009
0.0034
25.8
0.488
0
0.0024
0.0086
0.0057
2.4
0.0013
0.18
0
0
0.0005
4.18
0
0
0.162
0.0128
0.0054
0.0774
30.8
0.0607
34.2
2.33
9.03
1.97
0.0159
5.18
2.02
0.0015
0.0007
0.0086
0.0063
78.3
107
32.3
156
40.2
53
53.6
30.5
0.0135
0.0005
0.0144
106
0.0005
0.0025
18.9
0.0361
0.225
181
0.0288
0.0018
0.191
15.6
21
288
61.9
137
Oct
5.64
0.898
0.0018
0.0048
12.6
0.508
0
0.0027
0.0149
0.0047
1.1
0.0015
0.193
0
0.0001
0.0005
1.72
0
0
0.0838
0.0158
0.0038
0.0649
13.2
0.0662
3.58
0.436
5.01
1.25
0.0134
1.63
0.951
0.0014
0.0006
0.0082
0.0064
40.4
53.2
28.8
87.4
33.3
29.2
29.2
12.1
0.0144
0.0004
0.0133
56.3
0.0004
0.0022
13.8
0.0264
0.182
210
0.0233
0.0015
0.135
9.57
9.66
121
16.3
96.9
Nov
1.7
0.82
0.003
0.0106
19.1
1.05
0
0.0066
0.0275
0.0126
0.549
0.0026
0.398
0
0.0001
0.0012
0.937
0
0
0.0536
0.0326
0.007
0.0988
15.4
0.143
1.61
0.374
1.43
1.37
0.0353
2.45
0.524
0.0036
0.0017
0.0212
0.0156
20.3
7.66
18.5
47.5
23.9
15.4
9.73
5.86
0.0358
0.0011
0.0341
9.71
0.001
0.0054
9.34
0.0726
0.48
29.2
0.0601
0.004
0.376
8.37
5.79
33.3
9.9
111
Dec
5.52
1.28
0.005
0.0175
30.5
1.88
0
0.011
0.0455
0.0209
1.72
0.0036
0.647
0
0.0002
0.002
2.86
0
0
0.0452
0.054
0.0144
0.212
18.2
0.236
1.27
0.315
4.69
1.72
0.0584
3.78
0.446
0.0059
0.0028
0.0351
0.0258
49.4
18
25.3
93.6
14.3
12
4.78
4.09
0.0592
0.0019
0.0564
2.65
0.0017
0.009
7.31
0.12
0.802
9.74
0.102
0.0066
0.622
19.7
6.87
13.6
25.4
165
Average
95.7
35
0.0088
113
56.4
57.2
0
113
1.04
113
114
0.003
3.49
0
169
1.6
114
0
0
0.127
169
56.3
56.4
94.9
3.13
26.8
10.8
59.7
1.45
113
98.4
1.45
169
2.57
2.17
169
89.9
105
62.9
139
18.1
20.3
25.7
13.8
169
113
27.5
37.8
169
113
11
102
113
63.1
113
113
113
55.6
11.1
82.6
70
113
Number of months per year that a basin faces low,
moderate, significant or severe water scarcity
Low
Moderate Significant
Severe
10
0
0
2
11
0
0
1
12
0
0
0
10
0
0
2
11
0
0
1
11
0
0
1
12
0
0
0
10
0
0
2
12
0
0
0
10
0
0
2
10
0
0
2
12
0
0
0
12
0
0
0
12
0
0
0
9
0
0
3
12
0
0
0
10
0
0
2
12
0
0
0
12
0
0
0
12
0
0
0
9
0
0
3
11
0
0
1
11
0
0
1
10
0
0
2
12
0
0
0
11
1
0
0
12
0
0
0
11
0
0
1
12
0
0
0
10
0
0
2
10
0
0
2
12
0
0
0
9
0
0
3
12
0
0
0
12
0
0
0
9
0
0
3
11
0
0
1
8
2
1
1
11
0
0
1
8
0
2
2
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
9
0
0
3
10
0
0
2
10
1
1
0
10
2
0
0
9
0
0
3
10
0
0
2
12
0
0
0
10
0
0
2
10
0
0
2
9
1
1
1
10
0
0
2
10
0
0
2
10
0
0
2
11
0
0
1
12
0
0
0
8
2
0
2
11
0
0
1
6
3
2
1
Basin
ID
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
Basin name
Mississippi
Skagit
Aral Drainage
Loire
Rhone
Saint John
Po
Penobscot
St.Croix
Kuban
Connecticut
Liao He
Garonne
Ishikari
Merrimack
Hudson
Colorado(Pacific Ocean
Klamath
Ebro
Rogue
Douro
Susquehanna
Luan He
Kura
Dalinghe
Delaware
Sacramento
Huang He (Yellow River
Kizilirmak
Yongding He
Tejo
Sakarya
Eel (Calif.)
Tigris & Euphrates
Potomac
Guadiana
Kitakami
Mogami
Han-Gang (Han River)
Guadalquivir
San Joaquin
James
Bravo
Shinano, Chikuma
Roanoke
Naktong
Indus
Tone
Salinas
Pee Dee
Chelif
Cape Fear
Tenryu
Santee
Kiso
Yangtze(Chang Jiang)
Yodo
Sebou
Alabama River & Tombig
Savannah
Gono (Go)
Huai He
Population
(thousands)
74637
84
41543
7807
10015
413
17513
154
20.3
3471
2069
30133
3328
1942
2246
4380
7755
137
2922
260
3744
4004
11172
13774
4435
6416
3015
160715
4460
91200
6899
5655
37.1
49256
3494
1601
1281
1118
11656
3947
1681
910
9249
2133
1472
8178
212208
10011
308
2599
3855
1626
1398
3127
1899
384680
9645
5479
4335
1169
401
97813
Water scarcity (%)
Jan
2.98
0.225
10.1
2.03
1.94
0.837
4.79
0.584
0.352
3.26
5.62
19.1
1.57
1.88
14.9
9.85
79.7
0.115
0.571
0.604
0.752
4.85
40.6
23.6
32.7
9.83
1.42
40.3
10.6
286
2.07
7.7
0.0689
6.62
6.3
5.25
1.54
0.959
10.4
4.82
5.98
1.42
99.8
1.61
2.02
11.8
271
8.89
65.9
2.33
4.78
2.59
1.92
9.85
2.42
5.53
7.54
1.78
1.17
1.97
0.73
33.4
Feb
4.16
0.626
5.78
2.92
4.24
676
10.2
676
676
2.58
676
676
2.56
676
676
375
396
0.0972
1.95
0.605
1.28
8.18
676
82.4
676
20.1
1.24
607
2.54
676
3.26
2.65
0.0748
21.6
7.35
8.13
6.18
1.12
676
13
5.83
1.83
593
2.2
2.54
22
399
31.9
22.6
2.76
7.91
3.17
3.86
9.98
7.24
17.2
15
9.93
1.02
1.89
1.37
71.6
Mar
4.76
0.148
7.83
3.03
2.51
676
5.93
0.794
676
1.97
1.68
99.6
2.56
676
1.8
2.2
175
0.123
8.37
0.751
2.46
1.15
670
75.5
531
3.97
3.9
512
2.96
676
4.64
3.64
0.102
61.6
5.02
16.3
0.786
0.895
6.18
19.7
36.1
1.82
607
2.22
2.57
8.12
411
12.1
14.6
2.82
21.1
3.46
2.2
10.6
4.48
11.8
12.3
31.5
0.899
1.83
1.26
119
Apr
8.21
0.123
29.4
4.16
2.53
0.0966
3.98
0.0689
0.0416
2.42
1.06
127
2.93
0.371
3.19
1.99
76.4
4.72
13.6
2.48
6.88
1.73
659
46.6
375
7.22
28.4
413
8.19
676
11.6
17.7
0.218
99.2
6.37
45.4
0.987
1.21
4.7
48
149
2.58
299
0.976
4.27
6.35
316
8
113
4.63
55
6.32
1.34
16.7
1.86
11.6
11.3
100
1.29
3.11
1.22
188
May
15.4
0.224
48.5
8.7
3.71
0.289
9.89
0.204
0.126
19.8
2.15
305
5.35
0.881
5.56
3.63
58.3
20.4
23.4
9.3
18.1
2.69
538
37.5
501
9.57
106
260
37.8
671
30.5
94
1.08
178
9.49
139
1.35
1.73
9.4
132
290
3.84
197
0.987
7.78
14.7
167
8.87
378
9.51
155
14.3
1.51
29.8
1.89
13.3
14
190
2.46
6.38
1.6
220
Jun
32.3
0.924
106
22.1
6.53
0.447
22.8
0.317
0.206
50.5
3.95
439
17.5
6.76
9.23
6.1
96.5
60.7
84.4
33.5
101
4.41
529
94.1
607
17.8
261
187
105
671
134
202
3.18
236
15.1
368
6.76
9.19
15.7
343
484
6.38
266
2.5
13.6
40.7
171
15.7
552
16.3
314
21.4
1.76
46.7
1.91
8.55
14.1
244
4.57
11.7
1.6
181
Jul
136
2.55
239
88.1
26.2
0.834
105
0.59
0.377
105
6.44
210
143
9.58
15.6
9.98
182
126
247
71.4
286
8.08
99.8
193
298
26.5
386
168
175
533
306
319
6.84
315
26.7
525
16.4
13.7
3.23
494
576
11.8
328
6.55
22.6
14.7
136
25.6
623
18.4
438
17.9
2.6
56.6
2.46
15.7
27.3
359
8.57
20.2
1.97
171
Table S4 - 3
Aug
234
4.45
345
177
34
1.83
130
1.16
0.666
100
8.29
83.7
243
12.8
24.6
14.6
237
167
308
96.2
375
13
85.1
289
47.6
30.7
458
110
262
402
387
432
9.43
396
40
571
38.8
44.5
2.84
548
611
18.7
263
18.6
33.4
14.8
162
42.7
644
23.8
501
19
6.56
58.3
5.88
17.1
69.8
405
15.2
35.1
9.41
175
Sep
230
3.78
378
157
15.8
1.07
45.6
0.98
0.701
29.9
6.99
89.6
197
4.91
26.9
13.6
266
168
238
101
300
13.2
110
249
64.8
28.3
462
50
268
476
343
449
10.9
402
49.4
547
22.7
16.9
5.04
523
619
20.9
193
5.85
29.9
17.1
256
16.1
646
18.7
517
15.9
2.11
62
2.44
16.9
20.7
444
19.5
22.5
2.85
157
Oct
111
0.528
298
30.3
4.62
0.595
9.1
0.563
0.36
10.5
5.01
18
34.5
1.39
15.8
9.46
248
98.3
61.2
59.3
106
7.85
87.9
109
24.3
21.3
293
37
186
398
204
364
6.08
337
40.9
454
2.53
3.58
6.14
436
589
15.5
224
1.9
31.2
7.23
340
6.75
595
19.7
429
17.9
1.34
67
2.22
3.77
12.8
416
27.8
22.2
2.11
61.8
Nov
17
0.285
84
6.33
2.75
0.45
5.88
0.288
0.17
6.25
3.09
21.3
5.15
1.09
7.27
5.59
206
3.15
6.42
3.15
6.79
4.06
38
38.7
35.4
11.5
59.1
30.8
89.5
277
51.8
185
6.09
92.9
21.8
209
1.29
1.26
8.38
264
447
5.99
173
1.54
11.5
11.2
328
8.5
502
12.2
339
11.7
1.77
53.3
2.6
4.32
12.3
54.7
23.7
12.8
1.46
40.1
Dec
6.59
0.357
32.5
3.55
2.75
1.28
7.16
0.89
0.537
5.25
7.89
33.5
2.55
2.86
22.5
13.5
191
0.232
1.16
1.28
1.78
6.12
49
46.1
54.6
12.5
5.41
48.9
21
352
4.76
39.5
0.162
17.4
11.4
99.1
2.02
0.908
15.7
33.3
67.8
2.65
177
1.7
4.37
17.6
290
12.2
498
4.75
50.1
5.68
2.56
20
3.75
7.27
12.7
4.51
3.28
5.2
1.24
55.2
Average
66.9
1.18
132
42.1
8.97
113
30
56.8
113
28.1
60.7
177
54.9
116
68.6
38.8
184
54.1
82.8
31.6
101
6.28
299
107
271
16.6
172
205
97.4
508
124
176
3.69
180
20
249
8.45
8
63.6
238
323
7.78
285
3.89
13.8
15.5
271
16.4
388
11.3
236
11.6
2.46
36.7
3.26
11.1
19.2
188
9.13
12.1
2.23
123
Number of months per year that a basin faces low,
moderate, significant or severe water scarcity
Low
Moderate Significant
Severe
8
2
0
2
12
0
0
0
7
1
0
4
10
0
2
0
12
0
0
0
10
0
0
2
10
2
0
0
11
0
0
1
10
0
0
2
10
2
0
0
11
0
0
1
7
1
0
4
9
1
1
1
10
0
0
2
11
0
0
1
11
0
0
1
4
0
3
5
9
1
2
0
9
0
0
3
11
1
0
0
7
2
0
3
12
0
0
0
6
1
0
5
8
1
1
2
6
0
0
6
12
0
0
0
6
1
0
5
5
1
2
4
7
1
2
2
0
0
0
12
7
1
0
4
6
0
1
5
12
0
0
0
6
0
1
5
12
0
0
0
5
1
0
6
12
0
0
0
12
0
0
0
11
0
0
1
5
1
0
6
4
1
0
7
12
0
0
0
1
0
4
7
12
0
0
0
12
0
0
0
12
0
0
0
0
1
3
8
12
0
0
0
3
1
0
8
12
0
0
0
5
0
1
6
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
5
1
1
5
12
0
0
0
12
0
0
0
12
0
0
0
5
1
5
1
Basin
ID
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
Basin name
Apalachicola
Brazos
Altamaha
Mekong
Colorado(Caribbean Sea
Trinity(Texas)
Pearl
Sabine
Suwannee
Yaqui
Nile
Brahmaputra
St.Johns
Nueces
San Antonio
Irrawaddy
Fuerte
Xi Jiang
Bei Jiang
San Pedro
Dong Jiang
Mahi
Damodar
Niger
Narmada
Brahmani River (Bhahm
Mahanadi(Mahahadi)
Santiago
Panuco
Godavari
Tapti
Sittang
Armeria
Ca
Chao Phraya
Krishna
Senegal
Papaloapan
Grisalva
Verde
Mae Klong
Tranh (Nr Thu Bon)
Penner
Volta
Lempa
Gambia
Grande De Matagalpa
Cauvery
San Juan
Geba
Corubal
Magdalena
Comoe
Orinoco
Bandama
Oueme
Sassandra
Shebelle
Mono
Congo
Atrato
Cuyuni
Population
(thousands)
2955
2820
2411
57932
1667
5421
623
574
591
651
162346
67163
2905
614
915
33594
452
64673
20751
655
13461
11043
28680
76931
17017
12476
27697
17992
17860
62327
16928
3191
527
2652
26782
76933
5134
2582
7037
862
1568
1025
10924
19863
4213
1355
547
35203
3736
388
540
25486
2531
12008
4222
5845
3066
16004
1580
67996
511
145
Water scarcity (%)
Jan
2.6
19.8
4.6
12.3
16.6
23.4
0.795
1.31
1.44
404
38.5
1.68
19.4
676
199
1.15
4.39
6.69
14.1
5.11
6.79
133
128
2.69
123
34.6
65.8
51
19.2
103
111
0.769
28.8
3.47
59.8
245
8.04
1.53
0.382
2.23
8.26
1.1
162
1.9
4.74
0.22
0.158
110
0.924
3.22
0.219
0.682
4.16
0.348
1.35
1.05
0.26
34.9
1.64
0.0191
0.0335
0.0096
Feb
1.96
27.8
2.73
543
17.3
16.8
0.784
1.1
1.21
676
355
70
42.8
676
241
91
38.8
27.7
25.2
603
55.2
676
676
676
676
676
676
675
669
676
676
676
676
86.5
676
676
676
441
5.24
676
676
55.1
676
676
676
676
3.39
648
8.57
676
676
5.88
676
3.79
676
676
676
612
676
0.0519
0.13
0.0327
Mar
1.75
82
2.46
498
49.9
19
0.741
1.26
1.31
676
202
23.8
39.7
676
434
55.1
149
19.1
4.65
650
5.2
676
676
312
676
676
676
676
674
676
676
676
676
147
676
676
676
590
29.3
676
676
68.5
676
78.7
676
676
32.6
669
33.1
676
676
8.48
676
4.59
676
676
676
356
14.9
0.0391
0.113
0.0457
Apr
3.22
85.4
4.69
401
63.8
16.8
0.931
1.91
4.12
676
86.5
3.03
74.2
676
342
17.5
340
18.3
2.17
665
2.13
676
676
39.4
676
676
676
676
675
676
676
676
676
239
676
676
676
623
49.3
676
676
127
676
14.1
676
676
78.4
661
53.1
676
676
4.3
18.1
1.21
28.3
83.2
14
3.68
3.07
0.0337
0.0791
0.0286
May
9.03
152
10.8
106
128
20.4
1.52
4.26
17.2
676
82.8
0.733
162
676
339
4.91
448
10.4
2.61
670
2.11
676
676
25.6
676
676
676
676
675
676
676
171
676
133
453
676
676
632
12.9
676
9.63
184
676
3.61
258
676
20.9
630
4.74
676
676
2.98
4.73
0.304
8.24
1.79
3.53
5.38
1.13
0.104
0.0551
0.0098
Jun
24.4
337
22.1
11.7
313
50.2
2.79
9.26
28.3
676
48.3
0.169
144
676
514
2.83
551
3.52
2.88
668
2
676
35.5
7.69
459
21.2
242
216
111
462
676
4.55
676
16.2
94.4
167
17.8
7.85
0.878
128
1.61
49.4
676
1.67
2.81
1
0.149
208
0.534
10.5
0.404
3.86
1.55
0.205
0.559
0.332
0.165
69.1
0.39
0.256
0.0506
0.0064
Jul
57.9
551
57.8
3.87
525
96
4.39
22.3
24
251
30.2
0.307
26.6
676
601
0.676
126
3.59
10.4
13.4
5.14
4.71
19.2
2.49
2.62
3.01
8.98
31
14.9
20.5
13.4
1.09
676
3.28
117
41.8
6.71
1.58
0.415
3.5
4.99
15.2
676
1.03
0.913
0.595
0.118
206
0.596
0.451
0.0306
9.22
1.96
0.27
0.843
0.258
0.0842
68.3
0.355
0.302
0.0498
0.0067
Aug
118
588
97.3
2.47
576
136
7.06
26.8
28.2
311
19.9
0.215
19.1
676
613
0.395
29.2
3.57
9.45
8.24
3.78
4.57
4.04
0.883
2.15
1.15
1.56
15.2
15.2
9.8
11.5
0.386
31.8
0.791
68.4
55.3
2.13
1.25
0.521
1.54
5.69
5.01
676
0.34
0.737
0.139
0.249
228
0.957
0.0222
0.0125
10.4
1.14
0.424
0.252
0.23
0.0627
30.8
0.433
0.247
0.049
0.0099
Table S4 - 4
Sep
70
589
71.5
1.31
589
170
10.2
23.5
13.8
503
26.5
0.442
9.96
676
606
1.3
14.5
10.6
17.4
11.5
6.24
12.8
5.46
1.06
6.43
2.57
7.05
28.6
7.82
12.5
19.4
1.86
3.67
0.47
30.5
99.5
2.57
0.605
0.195
0.986
4
0.436
676
0.283
0.424
0.118
0.0814
281
0.503
0.0606
0.0176
3.4
0.712
0.388
0.109
0.168
0.0329
12.3
0.272
0.181
0.0445
0.02
Oct
84.8
528
87.6
5.75
533
219
16
27.4
16.3
516
45.6
4.06
10.8
676
603
4.67
34.5
2.82
9.47
20.6
4.16
54.6
29.8
2.17
33.2
11.4
36.9
81.6
14.8
48.3
73.2
4.54
45.2
0.886
58.4
131
9.06
1.44
0.21
1.52
3.45
0.282
266
0.944
0.677
0.413
0.0468
165
0.251
0.132
0.0341
0.736
2
0.141
0.398
0.283
0.0779
11.3
0.422
0.112
0.0417
0.0294
Nov
39.6
235
86.9
16.7
279
265
10.6
17.7
8.77
486
45.3
7.25
22.4
676
616
2.44
18.9
3.74
14.3
9.29
6.66
73.8
107
1.36
46.2
32.7
72.6
88.2
19.6
95.8
104
1.83
79.8
1.79
185
245
14.5
2.06
0.67
4.56
16.1
0.337
120
1.43
3.3
0.21
0.0571
101
0.346
2.54
0.171
0.57
4.1
0.174
2.02
0.958
0.387
8.99
1.05
0.0369
0.0423
0.0274
Dec
7.31
33.2
14.4
18.7
30.8
53.8
2.1
4.94
2.89
403
34.9
2.36
32.7
676
273
1.15
12.4
7.23
22.3
15
10.7
127
144
2.55
126
50.2
92.4
109
38.5
147
156
0.867
141
3.28
123
326
13.3
3.96
1.57
8.85
16
0.752
194
2.39
8.11
0.344
0.21
126
0.8
5.7
0.385
0.908
9.31
0.669
4.88
1.99
1.09
30.4
2.1
0.0235
0.0538
0.0152
Average
35.1
269
38.6
135
260
90.5
4.83
11.8
12.3
521
84.6
9.51
50.3
676
448
15.2
147
9.78
11.2
278
9.18
316
265
89.5
292
238
269
277
245
300
322
184
365
53
268
334
231
192
8.46
238
175
42.2
512
65.2
192
225
11.4
336
8.7
227
225
4.28
117
1.04
117
120
114
104
58.5
0.117
0.0619
0.0201
Number of months per year that a basin faces low,
moderate, significant or severe water scarcity
Low
Moderate Significant
Severe
11
1
0
0
5
0
1
6
12
0
0
0
8
1
0
3
5
1
0
6
8
1
1
2
12
0
0
0
12
0
0
0
12
0
0
0
0
0
0
12
10
0
0
2
12
0
0
0
10
1
1
0
0
0
0
12
0
0
1
11
12
0
0
0
7
2
0
3
12
0
0
0
12
0
0
0
7
0
0
5
12
0
0
0
5
2
0
5
5
3
0
4
10
0
0
2
5
2
0
5
8
0
0
4
7
0
0
5
6
1
0
5
7
1
0
4
5
2
0
5
4
2
1
5
8
0
1
3
5
1
0
6
9
2
0
1
5
2
1
4
3
1
1
7
8
0
0
4
8
0
0
4
12
0
0
0
7
1
0
4
9
0
0
3
10
1
1
0
0
1
2
9
11
0
0
1
8
0
0
4
8
0
0
4
12
0
0
0
0
3
1
8
12
0
0
0
8
0
0
4
8
0
0
4
0
0
12
0
10
0
0
2
12
0
0
0
10
0
0
2
10
0
0
2
10
0
0
2
10
0
0
2
11
0
0
1
12
0
0
0
12
0
0
0
12
0
0
0
Basin
ID
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
Basin name
Cavally
Tano
Cross
Sanaga
Pra
Davo
Essequibo
Kelantan
Corantijn
Coppename
Kinabatangan
Maroni
San Juan (Columbia - P
Amazonas
Pahang
Nyong
Oyapock
Rajang
Ntem
Ogooue
Rio Araguari
Mira
Esmeraldas
Tana
Daule & Vinces
Rio Gurupi
Rio Capim
Tocantins
Kouilou
Nyanga
Rio Parnaiba
Rio Itapecuru
Rio Acarau
Pangani
Rio Pindare
Sepik
Rio Mearim
Chira
Rufiji
Rio Jaguaribe
Purari
Ruvu
Rio Paraiba
Solo (Bengawan Solo)
Sao Francisco
Brantas
Santa
Zambezi
Rio Vaza-Barris
Rio Itapicuru
Rio Paraguacu
Canete
Rio De Contas
Roper
Daly
Drysdale
Parana
Durack
Rio Prado
Victoria
Mitchell(N. Au)
Majes
Population
(thousands)
1043
1228
8986
3878
4090
588
54.1
628
115
14.2
230
35.4
480
24647
1772
1097
10.6
318
406
606
30
617
2571
4247
3752
224
571
4744
807
30.5
3700
971
462
2174
517
785
932
651
4582
2097
797
699
1212
11103
12443
8996
452
31680
422
958
1629
121
1402
4.05
14.9
2.15
67514
2.23
613
1.37
24.4
103
Water scarcity (%)
Jan
0.049
0.322
0.199
0.169
5.99
0.662
0.0021
5.48
0.0204
0.0032
0.0417
0.0011
0.0817
0.0474
1.85
0.0496
0.0007
0.0337
0.0443
0.0132
0.0026
1.37
2.48
19.2
14
0.203
0.157
0.106
0.01
0.0054
1.8
6.16
15.9
88.2
0.926
0.0022
1.48
175
2.44
68.8
0.0047
15.2
32.7
58.4
0.497
50.2
4.88
0.129
47.1
23.3
7.67
4.93
9.89
0.0116
0.0208
0.0833
1.76
116
0.608
9.29
0.158
1.85
Feb
1.25
676
676
346
676
676
0.0053
33.8
0.0323
0.0036
0.117
0.001
0.291
0.0583
3.78
676
0.0008
0.0236
11.1
0.0361
0.0023
1.82
1.32
376
3.34
0.0453
0.042
0.0878
0.0168
0.0091
0.768
0.375
12.7
473
0.0941
0.0036
0.162
33.9
1.05
467
0.008
8.13
676
20
1.22
15
4.19
0.11
676
676
14
3.81
26.4
0.0028
0.0057
0.0077
1.93
1.22
2.02
0.0681
0.021
1.17
Mar
0.767
3.18
1.42
2.85
17.4
676
0.0049
2.62
0.0157
0.0033
0.149
0.0008
0.544
0.0602
0.696
0.162
0.0006
0.0143
0.204
0.0152
0.0018
1.3
0.74
48.1
1.48
0.0199
0.0268
0.0751
0.01
0.0067
0.318
0.132
0.359
295
0.0455
0.0027
0.0757
6.34
0.402
2.43
0.0064
2.09
420
7.93
2.07
5.46
4.5
0.233
676
676
10.9
7.01
19.4
0.0321
0.0298
0.0081
1.7
1.38
1.74
0.099
0.0625
1.27
Apr
0.261
0.447
0.575
0.259
2.37
50.1
0.0035
1.41
0.0075
0.0024
0.152
0.0006
0.355
0.146
0.554
0.0543
0.0005
0.0135
0.0553
0.0073
0.0015
0.962
0.564
0.977
1.11
0.0206
0.0297
0.219
0.0074
0.006
0.478
0.15
0.223
33.3
0.0482
0.0028
0.102
8.78
0.851
1.7
0.0063
0.422
12.4
0.899
6.3
1.01
22.4
1.32
676
220
8.51
25.8
15
0.552
0.488
0.0227
3.09
3.81
2.09
0.255
0.757
7.16
May
0.0524
0.141
0.271
0.0698
0.669
5.49
0.0015
1.82
0.0032
0.0012
0.156
0.0004
0.339
0.2
0.622
0.0344
0.0005
0.0142
0.0345
0.0069
0.0015
0.937
0.941
0.652
4.48
0.0281
0.04
0.276
0.0536
0.012
2.22
0.558
0.774
24.1
0.0861
0.0037
0.256
40.3
4.41
7.98
0.0075
1.89
5.8
2.2
13
2.07
43.7
3.22
15.4
16.4
5.14
56.3
20.5
1.39
1.23
0.0375
2.81
6.28
4.44
0.421
1.93
14.1
Jun
0.0199
0.0551
0.131
0.0455
0.235
0.078
0.0008
3.3
0.0022
0.0011
0.0914
0.0004
0.432
0.193
1.8
0.0416
0.0005
0.0178
0.0495
0.0232
0.0017
1.46
2.31
4.16
16.4
0.0531
0.0635
0.594
0.714
0.0235
5.8
1.39
4.41
120
0.187
0.0046
0.642
68.8
4.47
20.6
0.0095
4.08
2.89
14.3
12.2
11
67
5.67
5.34
5.42
5.21
67.2
20.9
2.17
1.98
0.0621
4.09
10.3
4.9
0.697
3.14
11.9
Jul
0.0316
0.111
0.0782
0.0294
0.705
0.189
0.0009
4.68
0.008
0.0013
0.133
0.0006
0.808
0.226
3.95
0.0896
0.0009
0.0216
0.113
0.0773
0.0029
5.04
10
17
60.7
0.0896
0.0931
1.18
1.69
0.0388
11
2.6
8.58
223
0.344
0.0051
1.18
165
5.19
38.3
0.0113
6.92
5.2
46.6
13.3
43
89
11.2
5.11
2.56
4.12
78.7
25.2
3.8
3.45
0.103
8.66
16.9
6.49
1.15
5.61
13.1
Aug
0.0449
0.252
0.067
0.0231
1.78
0.638
0.0013
4.49
0.0205
0.0022
0.112
0.001
0.802
0.479
3.86
0.0923
0.0015
0.0217
0.19
0.207
0.005
10.1
30.5
35.9
140
0.175
0.159
2.14
3.47
0.0643
20.1
4.43
17.5
203
0.588
0.0051
2.02
306
7.77
76.3
0.0109
13.5
14.3
108
25.3
107
189
25.5
11.3
5.76
10.1
152
57.5
7.28
6.31
0.17
13.4
27.6
15.4
1.91
10.9
32.4
Table S4 - 5
Sep
0.02
0.197
0.0526
0.0163
0.662
0.309
0.0026
11.4
0.153
0.0043
0.11
0.002
0.306
0.606
7.13
0.0257
0.0027
0.0348
0.0574
0.168
0.009
7.03
33
57.1
159
0.289
0.298
2.61
5.87
0.106
30.9
6.43
32.2
260
0.967
0.0045
3.25
369
12
133
0.0087
21
49.8
230
53.4
216
276
49.8
31.3
16.4
22.5
214
103
12.9
11.1
0.282
11.3
44.5
29.1
3.15
20.8
68.6
Oct
0.0227
0.0975
0.0567
0.019
0.234
0.247
0.0043
3.87
0.151
0.0072
0.0911
0.0032
0.118
0.422
1.92
0.0184
0.0045
0.0204
0.0202
0.0276
0.0149
2.62
15.5
23.4
85.5
0.433
0.485
1.4
7.51
0.176
42.7
8.56
48.1
287
1.51
0.0043
4.82
356
16.8
183
0.0092
28.3
79.9
242
47.6
199
76.9
67.5
47.9
27.7
31.1
65.2
115
18.7
15.2
0.466
7.19
70.6
36.6
5.2
33.4
67.6
Nov
0.0385
0.191
0.155
0.134
0.504
0.381
0.0055
1.72
0.0883
0.012
0.0927
0.0054
0.0962
0.249
1.3
0.0368
0.0075
0.0273
0.028
0.0052
0.0247
2.15
16.1
2.44
144
0.655
0.804
0.328
0.282
0.0091
41.6
9.15
67.4
123
2.25
0.0043
5.71
493
13.6
219
0.0092
28.9
110
549
5.91
528
34.9
38.9
55.3
32.5
21.4
34.9
29.9
12.2
7.8
0.771
4.29
109
4.83
8.57
33.3
60.3
Dec
0.0817
0.461
0.338
0.325
4.25
1.33
0.0033
0.896
0.0493
0.0157
0.0615
0.0078
0.127
0.0907
0.756
0.0753
0.0053
0.0434
0.0631
0.0097
0.0311
1.85
6.74
6.91
89.1
0.97
1.18
0.13
0.0131
0.0078
10.4
12.5
89
108
3.63
0.0038
8.71
526
6.85
253
0.0079
12.1
137
78.4
1.07
96.7
12.6
0.789
78.5
47.1
20.4
13.1
16.8
3.58
2.28
1.28
1.83
164
0.881
14.1
23.2
3.74
Average
0.22
56.8
56.6
29.2
59.2
118
0.003
6.29
0.046
0.0048
0.109
0.002
0.358
0.232
2.35
56.4
0.0022
0.0239
0.99
0.0497
0.0083
3.05
10
49.3
59.9
0.248
0.282
0.763
1.64
0.0388
14
4.37
24.8
186
0.89
0.0039
2.37
212
6.33
123
0.0083
11.9
129
113
15.2
106
68.7
17
194
146
13.4
60.3
38.3
5.22
4.16
0.274
5.17
47.7
9.09
3.74
11.1
23.6
Number of months per year that a basin faces low,
moderate, significant or severe water scarcity
Low
Moderate Significant
Severe
12
0
0
0
11
0
0
1
11
0
0
1
11
0
0
1
11
0
0
1
10
0
0
2
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
11
0
0
1
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
11
0
0
1
9
2
1
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
3
3
0
6
12
0
0
0
12
0
0
0
12
0
0
0
5
0
2
5
0
0
12
0
7
1
1
3
12
0
0
0
12
0
0
0
8
2
0
2
8
1
0
3
12
0
0
0
8
1
1
2
10
0
1
1
12
0
0
0
9
0
0
3
9
0
0
3
12
0
0
0
10
0
1
1
10
2
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
9
2
1
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
Basin
ID
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
Basin name
Ord
Jequitinhonha
Macarthur
Fitzroy
Gilbert
Mucuri
Rio Doce
Save
Burdekin
Tsiribihina
Buzi
Loa
Limpopo
De Grey
Paraiba Do Sul
Fortescue
Mangoky
Fitzroy
Orange
Ashburton
Gascoyne
Rio Ribeira Do Iguape
Incomati
Murray
Murchison
Maputo
Uruguay
Tugela
Colorado (Argentinia)
Rio Jacui
Huasco
Limari
Negro (Uruguay)
Groot-Vis
Salado
Blackwood
Rapel
Negro (Argentinia)
Biobio
Waikato
South Esk
Chubut
Clutha
Baker
Santa Cruz
Ganges
Salween
Hong(Red River)
Lake Chad
Okavango
Tarim
Horton
Hornaday
Conception
Ulua
Patacua
Coco
Ocona
Cuanza
Cunene
Doring
Gamka
Population
(thousands)
2.47
887
0.542
5.86
2.71
300
3858
3185
69.3
2397
1034
196
15637
5.41
6928
4.79
587
150
12666
4.97
2.33
2463
2416
2348
4.82
1265
5047
1784
3268
2578
26
142
531
299
1880
27.7
740
710
655
323
55.7
212
33.9
14.5
10
454094
6599
25632
34285
1774
9311
0.036
0.054
193
2716
538
694
68.3
2845
1370
167
279
Water scarcity (%)
Jan
187
0.112
1.4
1.09
0.0201
0.15
0.16
1.6
0.775
3.15
0.13
674
26.3
673
0.548
675
9.91
42.3
32.9
673
675
0.495
3.24
313
675
0.896
21.5
8.46
23.5
25.9
4.78
140
29.8
676
15.2
4.26
71.9
4.62
9.39
0.333
11.7
2.73
1.23
0.0066
0.0088
204
1.13
9.08
9.01
0.104
95.8
0.0097
0.0145
676
2.13
0.2
0.125
1.29
0.0419
0.0505
153
20.8
Feb
0.647
0.451
0.512
0.0134
0.0025
0.846
1.08
1.09
0.145
2.16
0.044
472
20.3
674
0.962
674
6.74
2.53
49.7
673
675
0.625
4.49
591
676
1.3
26.9
20.5
185
21.9
20.3
101
231
676
642
676
259
115
259
1.01
434
65.3
20.5
0.0526
0.178
639
111
588
673
0.0724
673
0.375
25.7
676
33.2
1.34
2.03
1.14
0.0779
0.0418
676
454
Mar
31.5
0.544
0.0099
0.0126
0.0307
1.15
1.22
2.55
0.83
4.86
0.151
608
39.2
674
1.29
674
13.8
10.9
53.5
672
675
0.752
8.66
559
675
5.18
6.48
34.3
234
8.23
29.5
186
25.1
676
87.3
676
281
24.2
19.4
1.92
428
31
18.4
0.049
0.157
605
29.4
509
674
0.0788
675
0.621
41.5
676
137
8.94
8.35
1.41
0.0359
0.0165
676
307
Apr
493
1.16
0.038
0.0422
0.224
1.76
2.65
10.7
4.24
20.5
1.3
632
74.6
674
3.25
675
34.7
26.7
61.9
674
675
1.33
28
383
675
24.9
0.327
42.8
168
0.301
26.4
103
0.568
676
2.65
676
108
3.77
2.13
0.778
53.5
9.64
8.09
0.0197
0.0403
482
24.2
427
535
0.292
670
1.03
66.1
676
245
21.8
17.2
11.4
0.0377
0.0367
676
158
May
604
2.24
0.0629
0.07
0.375
3.12
5.78
14.4
6.71
12.2
2.71
648
78.3
675
4.59
675
18.6
31.1
51.6
675
676
1.42
36.3
110
676
42.9
0.133
43.9
47.2
0.218
31.6
98.2
0.0372
676
1.13
676
2.62
0.416
0.782
0.304
6.91
1.26
1.19
0.0075
0.0109
389
12.5
165
86.7
0.663
413
0.0015
103
676
251
18.4
5.8
22.4
0.184
0.146
676
90.1
Jun
641
3.57
0.104
0.114
0.538
5.59
12.6
27.8
10.9
1.27
4.31
659
125
676
8.69
676
5.28
37.9
102
675
675
1.31
60.5
32.9
675
77.9
0.118
71.9
19.5
0.184
78.3
20.2
0.0255
676
1.09
0.97
0.438
0.145
0.597
0.235
0.581
0.277
0.147
0.0053
0.005
99.6
3.11
17.3
19.3
1.13
250
0.0004
0.001
676
5.9
2.84
0.0852
17.3
0.632
0.304
13.1
60.8
Jul
659
5.87
0.172
0.194
0.949
7.9
26.1
52.5
21.5
1.99
7.5
666
211
676
17.3
676
6.91
75.7
186
676
676
1.94
108
29.4
676
128
0.143
142
37.5
0.199
132
36.3
0.0262
676
1.42
0.111
0.44
0.18
0.587
0.238
0.145
0.305
0.147
0.0053
0.0057
25.1
0.812
3.12
2.14
2.13
231
0.0013
0.0012
676
1.03
0.373
0.0433
17.1
1.28
0.568
7.01
50.2
Aug
667
11.7
0.285
0.335
1.89
19.9
49.6
150
43
3.38
18.7
670
374
676
30.6
676
11.2
148
306
675
675
2.43
211
46.1
675
248
0.22
258
63.7
0.209
312
140
0.0263
676
1.74
0.0761
1.39
0.406
0.661
0.248
0.399
0.604
0.639
0.0073
0.0075
9.27
0.499
1.98
0.335
4.53
293
0.0022
0.0026
676
0.65
0.162
0.0463
41.9
3.07
1.1
19
45
Table S4 - 6
Sep
671
20
0.472
0.565
3.59
30.9
65.2
254
82.6
5.85
39.3
672
492
676
28.1
676
18.1
261
383
676
676
1.75
328
84
676
351
0.187
341
93.6
0.191
474
384
0.0275
676
2.56
0.144
14.4
0.864
1.44
0.278
2.12
1.43
3.97
0.0163
0.0142
18.9
0.866
2.34
0.622
8.72
363
0.0036
0.0049
676
0.244
0.1
0.039
87.2
5.74
1.86
81
70.2
Oct
672
17.9
0.781
0.942
5.9
31
80.5
284
129
10
60.4
674
527
676
12.2
676
32.9
356
324
676
676
1.21
348
135
676
403
1.88
322
44.8
2.74
552
510
0.409
676
2.25
1.2
54.4
1.5
2.67
0.285
5.05
3.24
5.48
0.0364
0.0281
78.7
1.28
1.86
2.04
13.4
212
0.006
0.0081
676
0.159
0.0343
0.0284
32.6
8.22
2.11
214
107
Nov
672
0.81
1.29
1.47
6.63
1.26
1.3
190
143
4.64
41.7
674
454
676
2.72
676
19.9
392
135
676
676
1.39
64.5
216
676
61
8.66
148
36.5
12.1
482
539
5.78
676
2.5
3.58
68.4
3.32
1.63
0.367
9.63
5.8
8.68
0.0388
0.0656
174
1.03
3.61
3.05
11.7
163
0.0099
0.0134
676
0.32
0.0465
0.0418
17.4
3.27
1.53
264
72.7
Dec
637
0.136
2.14
2.1
5.68
0.18
0.203
10.8
86.9
3.45
3.13
675
147
674
0.828
674
19.1
412
62.5
675
676
1.09
11.3
306
676
10.6
18
17.7
29.4
23.5
7.38
267
19.1
676
5.01
7.41
66.3
6.65
7.51
0.552
21.8
9.35
8.15
0.0435
0.0797
172
1.22
8.77
7.09
0.835
119
0.0164
0.0222
676
2.11
0.223
0.125
3.29
0.146
0.154
326
105
Average
495
5.37
0.606
0.579
2.15
8.65
20.5
83.2
44.1
6.12
15
644
214
675
9.26
675
16.4
150
146
675
675
1.31
101
234
675
113
7.04
121
81.9
7.97
179
210
26
676
63.7
227
77.3
13.4
25.5
0.546
81.1
10.9
6.39
0.024
0.05
241
15.6
145
168
3.64
346
0.173
19.7
676
56.6
4.53
2.83
21.2
1.89
0.66
315
128
Number of months per year that a basin faces low,
moderate, significant or severe water scarcity
Low
Moderate Significant
Severe
2
0
1
9
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
8
1
1
2
10
2
0
0
12
0
0
0
12
0
0
0
0
0
0
12
5
2
0
5
0
0
0
12
12
0
0
0
0
0
0
12
12
0
0
0
7
1
0
4
6
2
1
3
0
0
0
12
0
0
0
12
12
0
0
0
8
1
0
3
4
2
0
6
0
0
0
12
8
1
0
3
12
0
0
0
7
2
0
3
9
0
2
1
12
0
0
0
7
1
0
4
3
4
1
4
11
0
0
1
0
0
0
12
11
0
0
1
8
0
0
4
9
1
0
2
11
1
0
0
11
0
0
1
12
0
0
0
10
0
0
2
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
5
0
2
5
11
1
0
0
8
0
1
3
9
0
0
3
12
0
0
0
1
1
1
9
12
0
0
0
11
1
0
0
0
0
0
12
9
1
0
2
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
4
0
1
7
7
2
1
2
Basin
ID
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
Basin name
Groot- Kei
Lurio
Messalo
Rovuma
Galana
Pyasina
Popigay
Fuchun Jiang
Min Jiang
Han Jiang
Mamberamo
Lorentz
Eilanden
Uwimbu
Sungai Kajan
Sungai Mahakam
Sungai Kapuas
Batang Kuantan
Batang Hari
Flinders
Leichhardt
Escaut (Schelde)
Issyk-Kul
Balkhash
Eyre Lake
Lake Mar Chiquita
Lake Turkana
Dead Sea
Suriname
Lake Titicaca
Lake Vattern
Great Salt Lake
Lake Taymur
Daryacheh-Ye Orumieh
Van Golu
Ozero Sevan
Population
(thousands)
874
1250
288
1994
5589
244
0.845
10914
9730
9672
442
16.1
55.7
58.8
93
892
1607
1520
2049
6.33
6.43
9448
3325
5182
86.2
4097
8701
6150
103
2691
405
2224
6.19
4307
894
412
Water scarcity (%)
Jan
454
0.0046
0.0053
0.0202
10.9
0.492
0.0094
3.74
2.39
9.79
0.004
0.0045
0.0015
0.0009
0.0192
0.0431
0.0191
2.82
0.861
16.4
0.206
10.6
6.44
14.4
674
75.1
4.01
4.11
0.0166
3.83
3.29
86.4
0.0081
13.2
3.59
58.7
Feb
456
0.0034
0.0027
0.0091
282
47.1
0.967
2.39
1.8
21.7
0.0066
0.0051
0.0025
0.0017
0.0152
0.0521
0.0289
3.06
0.929
0.148
0.198
20.2
39.8
676
675
61.2
676
7.78
0.019
3.34
676
23.9
157
37.6
676
676
Mar
205
0.0035
0.0023
0.0065
30.5
74.6
1.6
1.45
0.633
3.31
0.0049
0.0044
0.0021
0.0015
0.0025
0.0142
0.0162
0.24
0.0969
2.31
1.01
23.7
1.32
6.01
675
24.5
34.7
51.5
0.0174
3.06
0.556
37.9
226
33.2
3.91
144
Apr
192
0.0131
0.0047
0.0204
0.928
115
2.64
2.37
0.7
2.36
0.0054
0.0048
0.0021
0.0015
0.0021
0.0097
0.0147
0.208
0.0792
6.2
2.22
30.5
12.6
21.7
676
42.4
0.5
214
0.0125
4.28
0.671
69.3
307
27.4
0.808
7.74
May
286
0.0276
0.0139
0.0656
1
171
4.37
3.9
0.765
2.35
0.0063
0.0065
0.0022
0.0019
0.002
0.0117
0.0171
0.315
0.168
9.4
3.58
56
38.6
45
676
41.9
0.4
372
0.0077
4.71
1.73
104
391
32.8
3.18
8.36
Jun
378
0.0455
0.0233
0.0789
4.53
0.027
0.0004
2.32
0.798
2.3
0.0079
0.0089
0.0024
0.0027
0.0025
0.0144
0.0227
1.04
0.493
12.9
5.33
99.7
69.1
77.6
676
74.3
0.287
444
0.0073
7.19
3.65
229
0.0004
90.7
18.9
42
Jul
491
0.0813
0.0643
0.119
13.5
0.0818
0.0011
24.9
9.51
12.3
0.0073
0.0081
0.0025
0.0036
0.003
0.0369
0.034
2.32
0.963
23.2
9.29
164
109
157
676
155
0.234
531
0.0092
9.49
7.32
369
0.0009
173
30
105
Aug
575
0.165
0.171
0.229
24.6
0.123
0.0019
32.7
9.53
9.29
0.0078
0.009
0.0026
0.0041
0.0029
0.0538
0.0372
2.91
1.4
45.3
17.1
244
204
262
676
269
0.472
574
0.015
14.4
11.3
422
0.0018
267
51.2
175
Table S4 - 7
Sep
628
0.315
0.382
0.409
38.1
0.128
0.0032
38.5
10.9
12.4
0.0073
0.0068
0.0025
0.0038
0.0432
0.284
0.0618
9.91
3.64
83.9
30.5
292
227
300
676
411
0.639
568
0.03
18.3
11.9
418
0.0023
271
59.5
160
Oct
648
0.525
0.633
0.688
55
0.284
0.0054
11.5
2.79
6.61
0.0097
0.0118
0.0031
0.0038
0.0315
0.152
0.0271
5.1
2.02
129
48.6
227
165
180
676
324
0.762
569
0.0499
13.5
4.4
409
0.0045
206
20
79
Nov
612
0.521
0.257
0.773
4.45
0.47
0.009
7.38
3.48
9.9
0.0088
0.0083
0.0031
0.0032
0.0077
0.0606
0.0187
2.78
1.01
149
63.5
38.3
31.1
17.5
676
235
0.99
532
0.0826
15.4
1.83
235
0.0075
65.4
3.52
40.2
Dec
569
0.0528
0.34
0.321
5.36
0.778
0.0149
8.23
4.78
15.2
0.0072
0.0086
0.0025
0.0019
0.0202
0.0393
0.0186
1.94
0.65
159
76.8
19.2
11.4
23.2
675
113
3.03
68.6
0.0691
5.87
4.19
99.9
0.0124
32.5
6.18
88.2
Average
458
0.146
0.158
0.228
39.2
34.2
0.802
11.6
4.01
8.96
0.0069
0.0072
0.0024
0.0026
0.0127
0.0644
0.0263
2.72
1.03
53.1
21.5
102
76.3
148
675
152
60.1
328
0.028
8.62
60.5
209
90
104
73
132
Number of months per year that a basin faces low,
moderate, significant or severe water scarcity
Low
Moderate Significant
Severe
0
0
1
11
12
0
0
0
12
0
0
0
12
0
0
0
11
0
0
1
10
1
1
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
12
0
0
0
9
2
1
0
12
0
0
0
8
0
1
3
8
1
1
2
7
0
2
3
0
0
0
12
6
1
1
4
11
0
0
1
4
0
0
8
12
0
0
0
12
0
0
0
11
0
0
1
5
1
0
6
8
0
1
3
8
0
1
3
11
0
0
1
7
2
2
1
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement