Battery (Ancient) History 1800 1836 1859 1868 1888 1898 1899 1946 1960s 1970s 1990 1991 1992 1999 Voltaic pile: silver zinc Daniell cell: copper zinc Planté: rechargeable lead-acid cell Leclanché: carbon zinc wet cell Gassner: carbon zinc dry cell Commercial flashlight, D cell Junger: nickel cadmium cell Neumann: sealed NiCd Alkaline, rechargeable NiCd Lithium, sealed lead acid Nickel metal hydride (NiMH) Lithium ion Rechargeable alkaline Lithium ion polymer Battery Nomenclature Duracell batteries 9v battery 6v dry cell The Electrochemical Cell (2) • • • • Zinc is (much) more easily oxidized than Copper Maintain equilibrium electron densities Add copper ions in solution to Half Cell II Salt bridge only carries negative ions – This is the limiting factor for current flow – Pick a low-resistance bridge The Electrochemical Series Most wants to reduce (gain electrons) • Gold • Mercury • Silver • Copper • Lead • Nickel • Cadmium • Iron • Zinc • Aluminum • Magnesium • Sodium • Potassium • Lithium Most wants to oxidize (lose electrons) Battery Characteristics • • • • • • Size – Physical: button, AAA, AA, C, D, ... – Energy density (watts per kg or cm3) Longevity – Capacity (Ah, for drain of C/10 at 20°C) – Number of recharge cycles Discharge characteristics (voltage drop) Cost Behavioral factors – Temperature range (storage, operation) – Self discharge – Memory effect Environmental factors – Leakage, gassing, toxicity – Shock resistance Primary (Disposable) Batteries • • • • • • Zinc carbon (flashlights, toys) Heavy duty zinc chloride (radios, recorders) Alkaline (all of the above) Lithium (photoflash) Silver, mercury oxide (hearing aid, watches) Zinc air Standard Zinc Carbon Batteries • Chemistry Zinc (-), manganese dioxide (+) Zinc, ammonium chloride aqueous electrolyte • Features + Inexpensive, widely available + Inefficient at high current drain + Poor discharge curve (sloping) + Poor performance at low temperatures Heavy Duty Zinc Chloride Batteries • Chemistry Zinc (-), manganese dioxide (+) Zinc chloride aqueous electrolyte • Features (compared to zinc carbon) + Better resistance to leakage + Better at high current drain + Better performance at low temperature Standard Alkaline Batteries • Chemistry Zinc (-), manganese dioxide (+) Potassium hydroxide aqueous electrolyte • Features + 50-100% more energy than carbon zinc + Low self-discharge (10 year shelf life) + Good for low current (< 400mA), long-life use + Poor discharge curve Lithium Manganese Dioxide • Chemistry Lithium (-), manganese dioxide (+) Alkali metal salt in organic solvent electrolyte • Features + High energy density + Long shelf life (20 years at 70°C) + Capable of high rate discharge + Expensive Secondary (Rechargeable) Batteries • • • • • • Nickel cadmium Nickel metal hydride Alkaline Lithium ion Lithium ion polymer Lead acid Nickel Cadmium Batteries • Chemistry Cadmium (-), nickel hydroxide (+) Potassium hydroxide aqueous electrolyte • Features + Rugged, long life, economical + Good high discharge rate (for power tools) Relatively low energy density Toxic NiCd Recharging • Over 1000 cycles (if properly maintained) • Fast, simple charge (even after long storage) C/3 to 4C with temperature monitoring • Self discharge 10% in first day, then 10%/mo Trickle charge (C/16) will maintain charge • Memory effect Overcome by 60% discharges to 1.1V Nickel Metal Hydride Batteries • Features + Higher energy density (40%) than NiCd + Nontoxic • Chemistry LaNi5, TiMn2, ZrMn2 (-), nickel hydroxide (+) Potassium hydroxide aqueous electrolyte – Reduced life, discharge rate (0.2-0.5C) – More expensive (20%) than NiCd NiMH Recharging • Less prone to memory than NiCd • Shallow discharge better than deep Degrades after 200-300 deep cycles Need regular full discharge to avoid crystals • Self discharge 1.5-2.0 more than NiCd • Longer charge time than for NiCd To avoid overheating Secondary Alkaline Batteries • Features – 50 cycles at 50% discharge – No memory effect – Shallow discharge better than deeper Lead Acid Batteries • Chemistry Lead Sulfuric acid electrolyte • Features + Least expensive + Durable + Low energy density + Toxic Lead Acid Recharging • • • • • Low self-discharge – 40% in one year (three months for NiCd) No memory Cannot be stored when discharged Limited number of full discharges Danger of overheating during charging Lead Acid Batteries • Ratings CCA: cold cranking amps (0F for 30 sec) RC: reserve capacity (minutes at 10.5v, 25amp) • Deep discharge batteries Used in golf carts, solar power systems 2-3x RC, 0.5-0.75 CCA of car batteries Several hundred cycles Lithium Ion Batteries • Chemistry Graphite (-), cobalt or manganese (+) Nonaqueous electrolyte • Features + 40% more capacity than NiCd + Flat discharge (like NiCd) + Self-discharge 50% less than NiCd Expensive Lithium Ion Recharging • • 300 cycles 50% capacity at 500 cycles Lithium Ion Polymer Batteries • Chemistry Graphite (-), cobalt or manganese (+) Nonaqueous electrolyte • Features + Slim geometry, flexible shape, light weight + Potentially lower cost (but currently expensive) + Lower energy density, fewer cycles than Li-ion Lithium-ion Batteries in Notebooks • • Lithium: greatest electrochemical potential, lightest weight of all metals – But, Lithium metal is explosive – So, use Lithium-{cobalt, manganese, nickel} dioxide Overcharging would convert lithium-x dioxide to metallic lithium, with risk of explosion IBM ThinkPad Backup Battery • Panasonic CR2032 coin-type lithium-magnesium dioxide primary battery – Application: CMOS memory backup – Constant discharge, ~0.1 mA – Weight: 3.1g – 220 mA-h capacity IBM ThinkPad T21 Main Battery • • • Lithium-ion secondary battery 3.6 A-h capacity at 10.8V Back-of-the-envelope calculations from workload shown earlier: – Maximum: 47 minutes – Average: 2 hours, 17 minutes – Sleep: 19 hours?
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
advertisement