Infineon TLE8457

Add to my manuals
33 Pages

advertisement

Infineon TLE8457 | Manualzz

TLE8457

LIN Transceiver with integrated Voltage Regulator

1 Overview

Features

• Single-wire LIN transceiver for transmission rates up to 20 kBit/s

• Compliant to ISO 17987-4, LIN specification 2.2A and SAE J2602

• 5 V or 3.3 V Low Drop-Out Linear Voltage Regulator with 70 mA current capability

• Stable with ceramic output capacitor of 1 µF

• Ultra low current consumption in Sleep Mode of max. 16µA

• Ultra low current consumption in Standby Mode: typical 20 µA

• Very low leakage current on the BUS pin

V

CC

undervoltage detection with RESET output

• TxD protected with dominant time-out function and state check after mode change to Normal Operation Mode

• Initialization watchdog with automatic transition to Sleep Mode

• BUS short to V

BAT

protection and BUS short to GND handling

• Over-temperature protection and supply undervoltage detection

• Very high ESD robustness; ±8kV according to IEC61000-4-2

• Optimized for high Electromagnetic Compatibility (EMC);

Very low emission and high immunity to interference

• Available in standard PG-DSO-8 and leadless PG-TSON-8 packages

• PG-TSON-8 package supports Automated Optical Inspection (AOI)

• Green Product (RoHS compliant)

• AEC Qualified

Applications

• LIN slave satellite modules

• Window lifters

• Rain/light sensors

• Sun roof control modules

• Wiper modules

• Ambient lighting

Data Sheet

www.infineon.com/transceivers

1 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Overview

Description

The TLE8457 is a monolithic integrated LIN transceiver and Low Drop-Out voltage regulator. The device is designed to supply a microcontroller and peripherals with up to 70mA, provide protection through V

CC undervoltage reset, while also offering bi-directional bus communication compliant to LIN Specification 2.2A

and SAE J2602. With the ultra low quiescent current consumption of typical 20 µA in Standby Mode the

TLE8457 is especially suited for applications that are permanently supplied by the battery.

Based on the Infineon BiCMOS technology the TLE8457 provides excellent ESD robustness together with a very high level of electromagnetic compatibility (EMC). The TLE8457 is AEC qualified and tailored to withstand the harsh conditions of the automotive environment.

Type

TLE8457ASJ

TLE8457ALE

TLE8457BSJ

TLE8457BLE

LDO V

CC

Output Voltage Package

5 V PG-DSO-8

5 V

3.3 V

3.3 V

PG-TSON-8

PG-DSO-8

PG-TSON-8

Marking

8457A

8457A

8457B

8457B

Data Sheet 2 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

8

9

2

3

3.1

3.2

5

5.1

5.2

5.3

4.2

4.2.1

4.2.2

4.3

4.3.1

4.3.2

4.4

4.5

4

4.1

4.1.1

4.1.2

4.1.3

4.1.4

4.1.5

4.1.6

4.5.1

4.5.2

4.6

6

6.1

6.2

7

7.1

7.2

7.3

7.4

1

Table of Contents

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Normal Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Init Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Bus Wake-up event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Mode Transition via EN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Power-Up / Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

V

S

Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

VCC Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Reset Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Initialization Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

TxD Time-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Short Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Over-temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Functional Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ESD Robustness according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Transient Robustness according to ISO 7637-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

LIN Physical Layer Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Data Sheet 3 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Block Diagram

2 Block Diagram

V

S

1

Linear Regulator

Bandgap

Reference

Current Limitation

Control

Supply Monitor

R

slave

BUS

4

Wake

Receiver

Over-Temperature and Over-Current

Protection

Transmitter

Driver

V

CC

Undervoltage

Detection

Control

Driver

Time-Out

GND

3

Receiver

BUS

V

S

/

2

RF-

Filter

8

V

CC

R

NRST

V

CC

7

NRST

R

EN

V

CC

2

EN

R

TxD

V

CC

6

TxD

5

RxD

TLE8457_BLOCK_DIAGRAM

Figure 1 Block diagram

Data Sheet 4 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Pin Configuration

3 Pin Configuration

3.1

Pin Assignment

V

S

EN

1

2

GND

BUS

3

4

PG-DSO-8

Figure 2 Pin configuration

6

5

8

7

V

CC

NRST

TxD

RxD

V

EN

GND

BUS

S

3

4

1

2

(PAD)

PG-TSON-8

(Top side X-Ray view)

8

7

V

CC

NRST

TxD

6

5

RxD

TLE8457_PINNING

3

4

5

3.2

Pin

1

2

6

7

8

PAD

Symbol

V

S

EN

GND

BUS

RxD

TxD

V

CC

Pin Definitions and Functions

NRST

Function

Battery Supply Voltage;

Decoupling capacitor required

Enable Input;

Integrated pull-down resistor

Logical “high” to select Normal Operation Mode

Ground

BUS Input / Output;

Integrated LIN Slave Termination

Receive Data Output;

Monitors the LIN bus signal in Normal Operation Mode

Indicates a wake-up event in Init Mode

Transmit Data Input;

Integrated pull-up resistor

Logical “low” to drive a dominant signal on the LIN bus

Undervoltage Reset Output;

Integrated pull-up resistor

Logical “low” during Reset

Voltage Regulator Output;

Output capacitor requirements specified in Functional Device Characteristics

Connect to PCB heat sink area. Do not connect to other potential than GND

Data Sheet 5 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Functional Description

4 Functional Description

4.1

Operating Modes

The operation mode of the TLE8457 is controlled with the EN and TxD input pins (see

Figure 3

and

Table 2

).

The TLE8457 has 3 major operation modes:

• Normal Operation Mode

• Standby Mode

• Sleep Mode

Additionally the TLE8457 has an Init Mode that is automatically entered when powering up, detecting wakeup events or in case of malfunctions.

Power-up

Recovery from overtemperature event on voltage regulator

Standby Mode

LIN transceiver: Off

LDO regulator: On

EN: Low

NRST: High

11

BU

S W ake-up

1

13

9

10

Normal Operation Mode

LIN transceiver: On

LDO regulator: On

EN: High

NRST: High

12

V

CC

under voltage

4

2

EN

V

CC

under volt ag e

3

Init Mode

LIN transceiver: Off

LDO regulator: On

EN: Low

RxD: Wake-up source

1)

NRST: High

2)

7

BUS Wake-up

EN

AND

TxD

EN

8

Initializ

BU

S W ak e-up ation W atchdog

5

6

Sleep Mode

LIN transceiver: Off

LDO regulator: Off

EN: Low

NRST: Low

1) Wake-up Source

:

RxD: logical „high“ after Power-up or Reset

RxD: logical „low“ after BUS Wake-up detection

2)

Reset:

NRST will stay „low“ during LDO failures and for the Reset time

t

RST

Figure 3 Operation mode state diagram

TLE8457_MODE_DIAGRAM

Data Sheet 6 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Functional Description

Table 1 Operation mode transitions

No. Reason for transition Comment

1

2

Power-on detection

Mode change with EN input

The V

S

supply voltage rise above the V

S,PON

power-on reset level

Triggered by logical “high” level

3

V

CC

undervoltage detection

V

CC output voltage fall below the reset threshold level

4 Mode change with EN and TxD inputs Triggered by logical “low” level on EN and TxD

5

6

Mode change with EN input

Bus wake-up detection

12 V

CC

undervoltage detection

Triggered by logical “high” level

RxD set “low” for signalling the bus wake-up event to the microcontroller

7 Bus wake-up detection RxD set “low” for signalling the bus wake-up event to the microcontroller

8 Initialization watchdog timer elapsed

Forced transition to Sleep Mode because of no response from microcontroller after power-on, wake-up, reset or if local errors are preventing V

CC

to power up

9 Mode change with EN and TxD inputs Triggered by logical “low” level on EN while TxD is held “high”

10 Mode change with EN input

11 Bus wake-up detection

Triggered by logical “high” level

RxD set “low” for signalling the bus wake-up event to the microcontroller

Detection of failure due to V

CC over-temperature event

undervoltage or recovery from an

13 Recovery from LDO overtemperature event

When over-temperature on the LDO is detected the TLE8457 is disabled. After recover the device is activated in Init Mode

Table 2

Mode

Operating Mode Control

Control Functionality Comments

Sleep

Init

EN

Low

Low

TxD

Low

High

1)

V

CC

Off

On

NRST

Low

High

2)

RxD

Floating –

Low

High

High

RxD “low” after a bus wake-up

RxD “high” after power-up or reset

– Standby Low

High

1)

On High

Normal

Operation

High Low

High

On High Low

High

RxD reflects the signal on the bus

TxD driven by the microcontroller

1) The TxD input has a pull-up structure to V

CC

2) NRST is logical “low” during V

CC

and is default set to logical “high” if left open.

undervoltage and while issuing a reset pulse to the microcontroller.

Data Sheet 7 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Functional Description

4.1.1

Normal Operation Mode

In Normal Operation Mode both the voltage regulator and the LIN transceiver are active. The TLE8457 supports data transmission rates up to 20 kBit/s: Data from the microcontroller is transmitted to the LIN bus via the TxD input, while the receiver detects the data stream on the LIN bus and forwards it to the RxD output.

After entering Normal Operation Mode the TLE8457 requires a logical “high” signal for the time t to,rec

on the

TxD input before releasing the data communication; The transmitter remains deactivated as long as the signal on the TxD input pin remains logical “low”, preventing possible bus communication disturbance (see

Figure 4

).

From Normal Operation Mode the TLE8457 can be set to Standby Mode or Sleep Mode.

EN

t

MODE,HIGH

t

MODE,LOW t

V

CC t

NRST t

RxD

Data transmission

t

to,rec t

TxD Data transmission

Standby mode Normal Operation mode t

Sleep mode

TLE8457_NORMAL_MODE

Figure 4 Entering Normal Operation Mode, transition to Sleep Mode

4.1.2

Standby Mode

Standby Mode is a low power mode with ultra low quiescent current consumption while the voltage regulator remains active, supplying for example a microcontroller in Stop mode. No LIN bus communication is possible, the transmitter and the receiver are disabled. The low power receiver is still active and the device can wakeup by a message on the LIN bus.

For changing the operation mode change from Standby Mode to Sleep Mode, the device has first to be set in

Normal Operation Mode, then in Sleep Mode (see

Figure 4

).

Data Sheet 8 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Functional Description

4.1.3

Init Mode

After a power-up event the TLE8457 enters Init Mode by default. In this mode the LIN transceiver is disabled, but the voltage regulator is switched on. Following the linear voltage regulator has reached its nominal output voltage V

CC

and the NRST output set “high”, the external microcontroller can change the mode to Normal

Operation Mode. If the Initialization Watchdog timer elapses before a “high” signal is detected on the EN input,

the TLE8457 will autonomously transition to Sleep Mode (see

“Initialization Watchdog” on Page 15

). The

Initialization Watchdog protection in Init Mode is always activated after starting up the voltage regulator and after a reset pulse, triggered by the NRST output going “high”.

In Init Mode the TLE8457 indicates wake-up information on the RxD output. After a power-up and reset event, the RxD output will be “high”. If the TLE8457 is in Init Mode after BUS wake-up detection, the RxD output will be “low”.

Transitions to Init Mode can be controlled with the EN input when in Sleep Mode, or automatic forced after:

• Bus wake-up event on the BUS pin.

• Power-up event on the supply V

S

.

• Power-on reset caused by the supply V

S

.

• Voltage regulator failure event due to V

S

undervoltage.

• Recovery of an over-temperature event on the voltage regulator.

V

S

V

S,PON t

LIN

t

WK,bus t

V

CC t

NRST t

RxD

RxD signals Power-up RxD signals Bus Wake-up

EN

The device remains in Init mode while the signal on the EN pin is „low“

Init mode Un-powered

Figure 5 Entering Init Mode after power-up

Data Sheet 9 t t

Normal Operation mode

TLE8457_INIT_MODE

Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Functional Description

4.1.4

Sleep Mode

Sleep Mode is a low power mode with quiescent current consumption reduced to a minimum while the device can still wake-up by a message on the LIN bus. Both the transceiver and the voltage regulator are switched off.

4.1.5

Bus Wake-up event

A bus wake-up event, also called remote wake-up, causes a transition from a low power mode to Init Mode. A falling edge on the LIN bus, followed by a dominant bus signal for the time t

WK,bus results in a bus wake-up event. The mode change to Init Mode becomes active with the following rising edge on the LIN bus, when bus voltage exceeds V wake-up event.

BUS,wk

. The TLE8457 remains in low power mode until it detects a state change on the LIN bus from dominant to recessive (see

Figure 6

). In Init Mode a logical “low” signal on the RxD output indicates a bus

In case the TLE8457 detects a bus wake-up event while already being in Init, the wake-up event will be signalled with a logical “low” level on RxD and override the previous wake source (see

Figure 5

).

V

BUS

V

BUS,dom

t

WK,bus

Sleep mode

V

CC

NRST

EN

TxD

RxD

Figure 6 Bus wake-up behavior

Data Sheet 10

V

BUS,wk

Init mode

V

CC,UV,ON

t

RST

TxD is „high“ because of internal pull-up structure

RxD „low“ indicates a Bus

Wake-up event

TLE8457_BUS_WAKE t t t t t t

Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Functional Description

4.1.6

Mode Transition via EN pin

The EN input is used for operation mode control of the TLE8457. By setting the EN input logical “high” for the time t

MODE,HIGH triggered.

while being in Init Mode or Standby Mode, a transition to Normal Operation Mode will be

If the voltage level at the EN input is set logical “high” while the TLE8457 is in Sleep Mode, a transition to Init

Mode is initiated. If the EN input is continuously held “high” though powering up the voltage regulator and the following reset pulse, Normal Operation Mode will be entered.

From Normal Operation Mode the TLE8457 can be set to either Sleep Mode or Standby Mode. If the EN input is set “low” for the time t

MODE,LOW

while the TxD input is held logical “high”, the mode will change to Standby

Mode. For a transition to Sleep Mode, the TxD must be set logical “low” before the time t

MODE,LOW is set “low”, for preventing driving the bus dominant though mode transition to Sleep Mode.

elapses after

EN goes “low” (see

Figure 7

). It is recommended to program a short delay time from EN is set “low” until TxD

The EN input has an integrated pull-down resistor to ensure the device remains in a low power mode if the EN input is left open. The EN input has an integrated hysteresis (see

Figure 7

).

The TLE8457 changes the operation modes regardless of the signal on the BUS pin. In the case of a short circuit failure between the LIN bus and GND, resulting in a permanent dominant signal, the TLE8457 can be set to

Sleep Mode.

EN

t

MODE,LOW

t

MODE,HIGH

V

EN,OFF

V

EN,ON

t

MODE,LOW

t

MODE,HIGH

EN hysteresis t

TxD t

t

RST

NRST

Normal Operation mode

Standby mode

Normal Operation mode

Sleep mode Init mode

Normal Operation mode t

TLE8457_MODE_CONTROL

Figure 7 Operation mode control

The EN input is blocked while the TLE8457 is in Init Mode and NRST is “low”, no mode transitions to Normal

Operation Mode is possible while a reset pulse is issued. After the NRST output goes “high”, mode control with the EN input is released. At the same time the Initialization Watchdog timer starts (see

“Initialization

Watchdog” on Page 15

).

Note: If the TLE8457 is being forced to Sleep Mode by the Initialization Watchdog while the EN input is externally being held at a logical “high” level, the device will reinitiate Init Mode after the VCC voltage has been discharged below ~1 V. In such applications additional supervision means are recommended.

Data Sheet 11 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Functional Description

4.2

Power Supplies

The TLE8457 is designed for being supplied by the battery line through an external reverse polarity protection diode at the V

S

pin (see

Figure 18

). An input capacitor is needed for damping input line transients.

4.2.1

Power-Up / Power-Down

During power-up the TLE8457 will enter Init Mode when the V

The voltage regulator output V

V

CC the reset time t

RST

CC

will track the V

reaches the under-voltage level V

CC,UVC

S

S

supply reaches the power-on reset level V

supply voltage until V

TLE8457 can change operating mode accordingly (see

Table 2

).

CC

S,PON

reaches its nominal voltage level. As

, a reset pulse is issued, the NRST output will stay logical “low” for

and then be set logical “high”. As NRST goes “high”, the EN input will become active and the

.

V

S

V

S,UV,ON

V

S,UV,OFF

V

CC

V

S

V

CC,UV

V

CC,UV

V

CC

V

S,PON

V

S,PON t

NRST

t

RST t

EN un-powered Init mode Normal Operation mode

Figure 8 Power-up and power-down behavior

Transmission blocked

Init mode t un-powered

TLE8457_VS_POWER-UP_DOWN

While powering down the TLE8457 will block the LIN transmitter if being in Normal Operation Mode as the V

S supply voltage falls below V below V

CC

+ V

DR

. As V

CC

S,UV,OFF

. The voltage regulator will start tracking the V

S

falls below the undervoltage level V

CC,UV the TLE8457 will enter Init Mode. When the V

S voltage regulator will be disabled and the TLE8457 considered un-powered.

supply voltage when falling

the NRST output will be set logical “low” and

supply voltage falls below the power-on-reset level V

S,PON

the

Data Sheet 12 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Functional Description

4.2.2

V

S

Undervoltage Detection

V

S

Undervoltage blocking level

V

S,UV,OFF

Undervoltage hysteresis

V

S,UV,hys

Undervoltage release level

V

S,UV,ON

Normal Operation mode No communication possible

Power-on reset level

V

S,PON

Blanking time

t

blank,UV

Normal Operation mode

TLE8457_VS_EARLY_UNDERVOLTAGE_A t

Figure 9 V

S

early undervoltage detection

The TLE8457 has an undervoltage detection on the supply pin V

S

with two different thresholds:

• In Normal Operation Mode the TLE8457 blocks the communication between the LIN bus and the microcontroller when detecting an early undervoltage event. The RxD output will be set “high”. However, no mode change will occur. After V

S

rises above the undervoltage release level V

S,UV,REL

, the bus

communication interface will be released when the signal on the TxD input goes “high”. See

Figure 9

.

• In case the power supply V

S

drops below the power-on reset level V

S,PON

the TLE8457 not only blocks the transceiver communication, it also changes the operation mode to Init mode after recovery of V

S

, see

Figure 10

. In Init Mode the TLE8457 indicates a power-up event on the RxD pin. The power-on reset detection is active in all operation modes.

V

S

Undervoltage blocking level

V

S,UV,OFF

Undervoltage hysteresis

V

S,UV,hys

Normal Operation mode

Power-down

Figure 10 V

S

undervoltage detection

No communication possible

Undervoltage release level

V

S,UV,ON

Power-on reset level

V

S,PON

Blanking time

t

blank,UV

Init mode (EN = “low“)

Normal Operation mode (EN = “high“) t

TLE8457_VS_UNDERVOLTAGE_A

Data Sheet 13 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Functional Description

4.3

Voltage Regulator

The TLE8457 has an integrated voltage regulator dedicated for supplying microcontrollers and/or on-board sensors under harsh automotive environment conditions. It can supply a load current up to 70 mA with an output voltage tolerance within ± 2%. Because of the ultra low current consumption, the TLE8457 is perfectly suited for applications permanently connected to the battery supply. Additionally, in Sleep Mode, the voltage regulator is switched off and an even lower quiescent current can be achieved.

The voltage regulator output is protected against undervoltage, overcurrent, over-temperature and power-up failures. In case the load current rises above the functional range, for example during V output current is limited to I

CC,lim

. Therefore the V falling below the undervoltage reset threshold.

CC

CC

short circuits, the

output voltage will drop and a reset pulse will be issued if

The V

CC

supply output provides a stable supply voltage with output capacitors down to 1 µF, including low ESR multi-layer ceramic capacitors.

4.3.1

VCC Undervoltage Detection

The TLE8457 has undervoltage detection on the voltage regulator V

CC undervoltage threshold V

CC,UV

for longer than detection time t det,RST

output. If the V

CC

voltage falls below the

the NRST output will be set logical “low” and the TLE8457 will automatically enter Init Mode and start the Initialization Watchdog (see

Chapter 4.3.2

and

Chapter 4.4

).

t

det,RST

V

CC,UV

V

CC

Normal Operation mode (EN = „high“)

Standby mode (EN = „low“)

Init mode

Normal Operation mode (EN = „high“)

Init mode (EN = „low“) t

NRST

t

RST t

NRST goes and stays „low“ as long as

V

CC

is in undervoltage

NRST stays „low“ for additional Reset time

t

RST

Figure 11 V

CC

undervoltage detection

TLE8457_VCC_UNDERVOLTAGE

4.3.2

Reset Output

The NRST output is used for issuing reset pulses to for example an external microcontroller. In case of voltage regulator undervoltage or over-temperature events the NRST output will go “low” and a mode transition to

Init Mode will be triggered. The NRST output will stay “low” until a complete recovery from the failure and additionally for the reset time t

RST

, then go “high” (see

Figure 11

).

While the TLE8457 is in Init Mode and NRST is “low” mode transition to Normal Operation Mode is blocked.

The NRST pin is internally pulled up to V can be implemented.

CC

. If needed in the application, an additional external pull-up resistor

Data Sheet 14 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Functional Description

4.4

Initialization Watchdog

The TLE8457 features an enhanced Initialization Watchdog timer for detection of local failures and error handling for minimizing system current consumption. The benefit of this safety function is to prevent a malfunctioning ECU being stuck in Init Mode with high current consumption and draining the car battery. The

Initialization Watchdog is only active in Init Mode, with the two use cases: V

Operation Mode activation.

CC

supply initialization and Normal

V

S

1

V

S,PON

2

V

CC,UV

V

CC

NRST

Watchdog

V

CC

Supply Initialization

Timeout

1

t

RST

3

Normal Operation mode Activation

Timeout

2

5

t

to,rec

EN

Un-powered Init mode

4

Normal Operation mode

If Timeout → forced transition to Sleep mode If Timeout → forced transition to Sleep mode

4

5

1

2

3

V

S

exceeds the Power-on reset threshold →

V

CC

Supply Initialization Watchdog is started

V

CC

exceeds the

V

CC

-Undervoltage threshold → Reset timer is started

Reset timer elapses → Normal Operation mode Activation Watchdog is started

Mode change with the EN input → Mode transition to normal mode

TxD must be „high“ for at least

t

to,rec

after entering Normal mode for releasing the transmitter

TLE8457_WATCHDOG

Figure 12 Initialization Watchdog

VCC Supply Initialization

The V

CC

supply Initialization watchdog is detecting if local errors on the ECU is preventing the V

CC

supply to power up correctly because of short circuits to ground or if components on the board are drawing too high currents. The timer is started when the linear regulator is switched on after power-up events or after mode transitions to Init mode triggered by either bus wake-up or the EN input being set “high” in Sleep Mode.

Additionally, the timer will start when detecting V event.

CC

undervoltage and after recovery from an overtemperature

Data Sheet 15 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Functional Description

In case the V

CC

voltage rise above the V

CC,UV

undervoltage threshold before the timer elapses, V

CC successfully initialized and the timer is disabled. If the timer elapses before V

CC

TLE8457 will autonomously transition to Sleep Mode.

is considered

powers up correctly, the

Normal Operation Mode Activation

After the TLE8457 has generated a reset pulse the Initialization Watchdog is started for monitoring the activation of Normal Operation Mode. The microcontroller must set the EN input “high” before the timer elapses after t

Init_WD

, else the TLE8457 will autonomously transition to Sleep Mode.

t

Init_WD

EN tt

t

RST

NRST

Standby mode / Sleep mode / unpowered

Figure 13 Enable activation time-out

Init mode t

Sleep mode

TLE8457_INITIALIZATION_TIMEOUT

Data Sheet 16 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Functional Description

4.5

LIN Transceiver

The LIN interface is a single wire, bi-directional bus, used for in-vehicle networks. The integrated LIN transceiver of the TLE8457 is the interface between the microcontroller and the physical LIN bus (see

Figure 18

). Data from the microcontroller is driven to the LIN bus via the TxD input. The transmit data stream

on the TxD input is converted to a LIN bus signal with optimized slew rates in order to minimize the electromagnetic emission of the LIN network. The RxD output reads back the information from the LIN bus to the microcontroller. The receiver has an integrated filter network for noise suppression from the LIN bus and to increase the electromagnetic immunity level of the transceiver.

The LIN specification defines two valid bus levels (see

Figure 14

):

• Dominant state with the LIN bus voltage level near GND, actively driven by a transceiver.

• Recessive state with the LIN bus voltage pulled up to the supply voltage V

S

through the bus termination.

By setting the TxD input of the TLE8457 to a logical “low” signal, the transceiver generates a dominant level on the BUS interface pin. The receiver reads back the signal on the LIN bus and indicates the dominant LIN bus signal with a logical “low” on the RxD output to the microcontroller. By setting the TxD input “high”, the transceiver sets the LIN interface pin to the recessive level. At the same time the recessive level on the LIN bus is indicated by a logical “high” signal on the RxD output.

Every LIN network consists of a master node and one or more slave nodes. To configure the TLE8457 for master node applications, a termination resistor of 1 kΩ and a diode must be connected between the LIN bus and the power supply V

S

(see

Figure 18

).

TxD

V

CC t

V

S

Recessive Dominant Recessive

V

th_REC

BUS

V

th_DOM t

RxD

V

CC t

TLE8457_LIN_COMMUNICATION_A

Figure 14 LIN bus signals

Data Sheet 17 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Functional Description

4.5.1

TxD Time-out

The TxD time-out feature protects the LIN bus against permanent blocking in case the logical signal on the TxD input is continuously “low”, caused by for example a malfunctioning microcontroller or a short circuit on the printed circuit board. In Normal Operation Mode, a logical “low” signal on the TxD input for time t > t

TxD disables the transmitter’s output driver stage (see

Figure 15

). The receiver will remain active and the data on the bus are still monitored on the RxD output.

The TLE8457 will release the output stage after a TxD time-out event first when detecting a logical “high” signal on the respective TxD input for the time t to,rec

.

TxD time-out due to e.g. microcontroller error

t

TxD

Normal communication

Recovery of the microcontroller error

Release after TxD time-out

t

to,rec

Normal communication

TxD t

V

BUS t

TLE8457_TXD_TIMEOUT_A

Figure 15 TxD time-out

4.5.2

Short Circuit

The BUS pin of TLE8457 can withstand short circuits to either GND or to the power supply V the TLE8457 to overheat.

S

. The integrated over-temperature protection may disable the transmitter if a permanent short circuit on the BUS pin causes

4.6

Over-temperature Protection

The TLE8457 has two independent over-temperature detectors for protecting the device against thermal overstress; on the voltage regulator pass element and on the LIN bus transmitter. In case the junction temperature at the LIN transmitter increase above the thermal shut down level T the transmitter’s junction temperature cools down below T

J

< T

JSD

JSD

, it will be disabled until

- ∆T. No other effect nor mode change will occur. After a LIN transmitter over-temperature recovery the TxD input requires a logical “high” signal before restarting data transmission.

If an over-temperature event is detected on the voltage regulator, it will be disabled and the NRST output will be set “low”. During the over-temperature condition no functionality of the TLE8457 is available. After the junction temperature cools down below T reactivated.

J

< T

JSD

- ∆T, the TLE8457 will automatically enter Init Mode and be

Note: Depending on the over-temperature circumstance, either only the LIN transmitter will detect overtemperature, for example due to bus short circuit or severe EMC injection, only the voltage regulator detector or both (simultaneously or sequentially).

Data Sheet 18 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

General Product Characteristics

5 General Product Characteristics

5.1

Absolute Maximum Ratings

Table 3 Absolute Maximum Ratings Voltages, Currents and Temperatures

1)

All voltages with respect to ground; positive current flowing into pin; unless otherwise specified

Parameter Symbol

Min.

Values

Typ.

Max.

Unit Note or

Test Condition

Voltage

Supply input voltage

Bus input voltage

V

S

V

BUS

Logic voltages at EN and TxD

V

logic,in

Logic voltages at RxD and NRST V logic,out

Voltage regulator output

Currents

V

CC

-0.3

-27

-0.3

-0.3

-0.3

45

40

7.0

V

CC

0.3

7.0

+

V

V

V

V

V

LIN Spec 2.2A (Par. 11)

Number

P_5.1.1

P_5.1.2

P_5.1.3

P_5.1.4

P_5.1.5

P_5.1.6

P_5.1.7

Output current at RxD

Output current at NRST

Temperature

Junction temperature

Storage temperature

ESD Susceptibility

Electrostatic discharge voltage at V

S

and BUS vs. GND

Electrostatic discharge voltage all other pins

I

I

RxD

NRST

T

j

T

V

V

s

ESD

ESD

-15

-40

-55

-8

-2

15

10

150

150

8

2 mA – mA –

°C

°C

– kV Human Body Model

(100pF via 1.5 kΩ)

2) kV Human Body Model

(100pF via 1.5 kΩ)

2)

Electrostatic discharge voltage corner pins

V

ESD

-750 – 750 V Charged Device

Model

3)

Electrostatic discharge voltage at all other pins

V

ESD

-500 – 500 V Charged Device

Model

3)

1) Not subject to production test, specified by design

2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100pF)

3) ESD susceptibility, Charged Device Model “CDM” EIA / JESD 22-C101 or ESDA STM5.3.1

P_5.1.8

P_5.1.9

P_5.1.10

P_5.1.11

P_5.1.12

P_5.1.13

Notes

1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation.

Data Sheet 19 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

General Product Characteristics

5.2

Functional Range

Table 4

Parameter

Operating Range

Symbol Values

Min.

Typ.

Max.

Unit Note or

Test Condition

Number

Supply Voltage

Supply Voltage range for Normal

Operation

Extended Supply Voltage Range for Operation

V

V

S(nor)

S(ext)

5.5

3.0

28

40

V

V

LIN Spec 2.2A Param.

10

Parameter deviations possible

P_5.2.12

P_5.2.22

Stability Requirement on VCC

Output capacitor range

Output capacitor ESR

C

VCC

1.0

ESR(C

VCC

) –

5.0

µF

1)

,

2)

,

3)

3)

P_5.2.3

P_5.2.4

Thermal parameter

Junction temperature

T

j

-40 – 150 °C

3)

P_5.2.5

1) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%.

2) Relevant ESR value at f = 10 kHz.

3) Not subject to production test, specified by design.

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

Data Sheet 20 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

General Product Characteristics

5.3

Note:

Thermal Characteristics

This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, please visit www.jedec.org

.

Table 5 Thermal Resistance

1)

Parameter Symbol Values

Min.

Typ.

Max.

Thermal Resistance, PG-DSO-8 Package Version

Junction ambient

R

thJA

Thermal Resistance, PG-TSON-8 Package Version

130 –

Unit Note or

K/W

Test Condition

2)

Number

P_5.3.1

Junction ambient

Junction ambient

Junction ambient

R

thJA

60

190

70

K/W

2)

K/W Footprint only

3)

K/W 300mm2 heatsink on

PCB

3)

P_5.3.2

P_5.3.5

P_5.3.6

Thermal Shutdown Junction Temperature

Thermal shutdown temperature T

JSD

160 180 200 °C

T

JSD

increasing

P_5.3.3

Thermal shutdown hysteresis ΔT – 10 – K

T

JSD

decreasing

P_5.3.4

1) Not subject to production test, specified by design.

2) Specified R thJA

value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product

(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 μm Cu, 2 x 35 μm

Cu). Where applicable a thermal via array under the exposed pad contacted to the first inner copper layer.

3) Specified RthJA value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board; The product

(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1 inner copper layer (1 x 70 μm Cu).

Data Sheet 21 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Electrical Characteristics

6 Electrical Characteristics

6.1

Functional Device Characteristics

Table 6 Electrical Characteristics

5.5 V < V

S

< 28 V; R

LIN

= 500 Ω; -40°C < T j

< 150°C; all voltages with respect to ground; positive current flowing into pin

1)

; unless otherwise specified.

Parameter Symbol Values

Min. Typ. Max.

Unit Note or Test Condition

Current Consumption

Current consumption at V

S

, transmitter in Recessive state

Current consumption at V

S

, transmitter in Dominate state

Current consumption at V

Dominate State

Current consumption at V

Standby Mode

I

S,standby

= I

S

- I

CC

S

Current consumption at V

S

Sleep Mode

Current consumption at V

,

S in

in

Sleep Mode. Bus shorted to

GND

S in

I

I

I

I

I

I

S,rec

S,dom

S,dom_max

S,standby

S,Sleep

S,SC_GND

0.1

0.3

0.7

mA I

CC

= 50 µA; Without R

LIN

TxD = “high”; V

BUS

= V

S

0.1

1.0

3.0

mA I

CC

= 50 µA; Without R

TxD = “low”; V

BUS

= 0 V

LIN

;

70 71 73 mA I

CC

= 70 mA; Without R

TxD = “low”; V

BUS

= 0 V

LIN

;

– 20 40 µA

I

Standby Mode;

V

CC

S

= 50 µA;

= V

BUS

= 13.5 V;

250

7

16 µA Sleep Mode; V

S

V

BUS

= V

S

; V

CC

= 13.5 V;

= 0V

800 µA Sleep Mode;

V

V

S

CC

= 13.5 V; V

BUS

= 0V

= 0 V;

;

Power-up / Power-down

Power-on reset level on V

S

V

S,PON

Undervoltage threshold, V

S

on V

S,UV,ON

Undervoltage threshold, V

S

off V

S,UV,OFF

Undervoltage hysteresis on V

S

V

S,UV,hys

= V

S,UV,ON

- V

S,UV,OFF

V

S,UV,hys

Undervoltage blanking time

t

BLANK,UV

Enable Input: EN

HIGH level input voltage

LOW level input voltage

Input hysteresis

Pull-down resistance

Delay time for mode change,

EN → “low”

V

EN,ON

V

EN,OFF

V

EN,hys

R

EN

t

MODE,LOW

4.7

4.4

200

2

50

– 3.0

5.15 5.5

4.85 5.2

300

10

200

0.8

V

V

V mV

µs

V

V

Rising edge

Falling edge

2)

2)

– mV –

15 30 60 kΩ –

10 – 50 µs –

– – 5 µs

2)

Delay time for mode change,

EN → “high”

t

MODE,HIGH

Initialization Watchdog time

t

Init_WD

200 – 1000 ms –

Number

P_6.1.1

P_6.1.2

P_6.1.3

P_6.1.4

P_6.1.5

P_6.1.6

P_6.1.7

P_6.1.8

P_6.1.9

P_6.1.10

P_6.1.11

P_6.1.12

P_6.1.13

P_6.1.14

P_6.1.15

P_6.1.16

P_6.1.17

P_6.1.18

Data Sheet 22 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Electrical Characteristics

Table 6 Electrical Characteristics (cont’d)

5.5 V < V

S

< 28 V; R

LIN

= 500 Ω; -40°C < T j

< 150°C; all voltages with respect to ground; positive current flowing into pin

1)

; unless otherwise specified.

Parameter Symbol Values Unit Note or Test Condition

Min. Typ. Max.

Input capacitance Ci

EN

– 5 – pF

2)

P_6.1.83

Reset Output: NRST

HIGH level leakage current

LOW level output voltage

I

NRST,H

V

NRST

5

0.4

µA

V

I

2)

NRST

= 1.5 mA; V

Reset time

Internal pull-up resistance

t

RST

R

NRST

4

5

10

10

16

20 ms kΩ

Voltage Regulator Output, 5 V versions (TLE8457ASJ and TLE8457ALE): VCC

CC

P_6.1.19

> 1 V;

P_6.1.20

P_6.1.21

P_6.1.22

Output voltage

V

CC

V

DR

4.9

5.0

5.1

V 0.05 mA < I

CC

< 70 mA;

5.8 V < VS < 28 V

250 650 mV I

CC

< 70 mA

Number

P_6.1.23

P_6.1.24

Output voltage drop

V

DR

= V

S

- V

CC

3)

Output voltage drop, 50mA

V

DR

= V

S

- V

CC

Output voltage drop, 20mA

V

DR

= V

S

- V

CC

Output current limitation

Load regulation

I

V

V

DR,50

DR,20

CC,lim

∆V

CC,lo

180

80

480

200 mV I mV I

CC

CC

< 50 mA

< 20 mA

P_6.1.25

P_6.1.26

P_6.1.27

P_6.1.28

Line regulation

∆V

Power supply ripple rejection PSRR

Undervoltage reset threshold V

CC,li

CC,UV

-150 –

-70 mA 0 V < V

CC

< 4.8 V

25 50 mV 0.05 mA < I

CC

VS = 13.5 V

< 70 mA;

50

25 50 mV I

CC

= 1 mA;

5.8 V < V

S

< 28 V

60 – dB

2)

; I

V

r

CC

= 50 mA; f = 100 Hz;

= 0.5 V pp

; V

S

= 13.5 V

4.27 4.4

4.5

V

V

CC decreasing

P_6.1.29

P_6.1.30

P_6.1.31

Undervoltage reset hysteresis V

CC,UV,hy

50 100 – mV –

Undervoltage detection time t det,RST

1 – 20 µs

2)

C

; V

CC

NRST

= 3.5 V

= 20 pF

Voltage Regulator Output, 3.3 V versions (TLE8457BSJ and TLE8457BLE): VCC

Output voltage

V

CC

V

DR

3.234 3.300 3.366 V

0.05 mA < I

CC

< 70 mA;

4.066 V < VS < 28 V

380 770 mV I

CC

< 70 mA Output voltage drop

V

DR

= V

S

- V

CC

Output voltage drop, 50mA

V

DR

= V

S

- V

CC

Output voltage drop, 20mA

V

DR

= V

S

- V

CC

Output current limitation

I

V

V

DR,50

DR,20

CC,lim

280

110

-150 –

550

220

-70 mV I mV I

CC

CC

< 50 mA

< 20 mA mA 0 V < V

CC

< 3.1 V

P_6.1.32

P_6.1.33

P_6.1.34

P_6.1.35

P_6.1.36

P_6.1.37

P_6.1.38

Data Sheet 23 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Electrical Characteristics

Table 6 Electrical Characteristics (cont’d)

5.5 V < V

S

< 28 V; R

LIN

= 500 Ω; -40°C < T j

< 150°C; all voltages with respect to ground; positive current flowing into pin

1)

; unless otherwise specified.

Parameter Symbol Values Unit Note or Test Condition

Load regulation

Line regulation

∆V

∆V

Power supply ripple rejection PSRR

Undervoltage reset threshold V

CC,lo

CC,li

CC,UV

Min. Typ. Max.

– 25 50 mV 0.05 mA < I

CC

V

S

= 13.5 V

< 70 mA;

50

25 50 mV I

CC

= 1 mA;

4.066 V < V

S

60 – dB

< 28 V

2)

; I

V

r

CC

= 50 mA; f = 100 Hz;

= 0.5 V pp

; V

S

= 13.5 V

2.82 2.90 2.96 V

V

CC decreasing

Number

P_6.1.39

P_6.1.40

P_6.1.41

P_6.1.42

Undervoltage reset hysteresis V

Undervoltage detection time t

Receiver Output: RxD

HIGH level output voltage

LOW level output voltage

CC,UV,hy det,RST

V

RxD,H

V

RxD,L

33

1

66

20 mV –

µs

2)

C

; V

CC

NRST

= 2.31 V

= 20 pF

0.8

× V

CC

0.2

× V

CC

V

V

I

I

RxD

RxD

= -2 mA; V

BUS

= 2 mA; V

BUS

= V

S

= 0 V

P_6.1.43

P_6.1.44

P_6.1.45

P_6.1.46

Transmission Input: TxD

HIGH level input voltage range V

TxD,H

P_6.1.47

LOW level input voltage range V

Input hysteresis

Pull-up resistance

TxD time-out

TxD recessive release time

Input capacitance

Bus Receiver: BUS

Receiver threshold voltage, recessive to dominant edge

Receiver dominant state

Receiver threshold voltage, dominant to recessive edge

Receiver recessive state

Receiver center voltage

TxD,L

V

TxD,hys

R

TxD

t

TxD

t

to,rec

Ci

V

V

V

V

V

th_dom

BUSdom th_rec

BUSrec

BUS_CNT

0.7

× V

CC

200 –

0.3

× V

CC

V

V

Recessive state

Dominant state mV –

15 30 60 kΩ –

8 18 28 ms –

– 10 µs

2)

5 – pF

2)

0.4

× V

S

0.44

-27 –

0.6

× V

S

0.475

× V

S

× V

S

0.56

× V

S

0.5

× V

S

0.4

× V

S

0.6

× V

S

V

V

40 V

0.525

× V

S

V

V

V

LIN Spec 2.2A (Par. 17)

V

LIN Spec 2.2A (Par. 19)

V

S

S

< 18V;

< 18V;

LIN Spec 2.2A (Par. 18)

S

< 18V;

4)

5)

6)

P_6.1.48

P_6.1.49

P_6.1.50

P_6.1.51

P_6.1.52

P_6.1.93

P_6.1.53

P_6.1.54

P_6.1.55

P_6.1.56

P_6.1.57

Data Sheet 24 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Electrical Characteristics

Table 6 Electrical Characteristics (cont’d)

5.5 V < V

S

< 28 V; R

LIN

= 500 Ω; -40°C < T j

< 150°C; all voltages with respect to ground; positive current flowing into pin

1)

; unless otherwise specified.

Parameter Symbol Values Unit Note or Test Condition

Receiver hysteresis

Wake-Up threshold voltage

V

V

HYS

BUS,wk

Min. Typ. Max.

0.07

× V

S

0.4

× V

S

0.12

× V

0.5

× V

S

S

0.175

× V

0.6

× V

S

S

V

V

LIN Spec 2.2A (Par. 20)

V

S

< 18V;

7)

Number

P_6.1.58

P_6.1.59

Bus Transmitter: BUS

Bus recessive output voltage V

BUS,ro

Bus short circuit current

Leakage current

Leakage current

Leakage current

Leakage current

Forward voltage serial diode

Bus pull-up resistance

Bus dominant output voltage maximum load

Bus dominant output voltage maximum load

I

I

I

I

I

V

BUS_LIM

BUS_NO_GND

BUS_NO_BAT

BUS_PAS_dom

BUS_PAS_rec

SerDiode

R

slave

V

V

BUS,do

BUS,do

Input capacitance Ci

BUS

Dynamic Transceiver Characteristics: BUS

Dominant time for Bus Wakeup

Propagation delay:

LIN bus Dominant to RxD Low

LIN bus Recessive to RxD High

Receiver delay symmetry t t

t t

WK,bus rx_pdft rx_pdr rx_sym

0.8

× V

S

– V

S

V TxD = “high”; Open load

40 85 125 mA V

BUS

= 18 V;

LIN Spec 2.2A (Par. 12);

P_6.1.60

P_6.1.61

-1 -0.5

P_6.1.62

– 1 5 mA V

S

= 0 V; V

BUS

= -12 V;

LIN Spec 2.2A (Par. 15)

µA

V

S

= 0 V; V

BUS

= 18 V;

LIN Spec 2.2A (Par. 16)

P_6.1.63

P_6.1.64

-1

-0.5

1

5 mA V

S

= 18 V; V

BUS

= 0 V;

LIN Spec 2.2A (Par. 13)

µA

V

S

= 8 V; V

BUS

= 18 V;

Driver stage “off”;

TxD = “high”;

LIN Spec 2.2A (Par. 14)

0.4

– 1.0

V

I

SerDiode

= - 75 µA

LIN Spec 2.2A (Par.21)

20 40 60 kΩ LIN Spec 2.2A (Par. 26)

P_6.1.65

P_6.1.66

P_6.1.67

P_6.1.68

1.4

V

2.0

30

V pF

V

V

TxD

S

= 0 V; R

= 5.5 V;

LIN

= 500 Ω;

V

V

TxD

S

= 0 V; R

= 18 V;

LIN

2)

= 500 Ω;

P_6.1.98

P_6.1.95

30

1

1

-2

3.5

3.5

150

6

6

2

µs

µs

µs

LIN Spec 2.2A (Par. 31)

C

RxD

= 20 pF

µs LIN Spec 2.2A (Par. 32)

t

C

rx_sym

RxD

= t rx_pdf

= 20 pF

- t rx_pdr

;

P_6.1.69

P_6.1.70

P_6.1.71

Data Sheet 25 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Electrical Characteristics

Table 6 Electrical Characteristics (cont’d)

5.5 V < V

S

< 28 V; R

LIN

= 500 Ω; -40°C < T j

< 150°C; all voltages with respect to ground; positive current flowing into pin

1)

; unless otherwise specified.

Parameter Symbol Values Unit Note or Test Condition

Duty cycle D1

(for worst case at 20 kBit/s)

D1

Min. Typ. Max.

0.396 – –

Number

P_6.1.72

D1 = t

Duty cycle D1

V

S

supply 5.5 V to 7.0 V

(for worst case at 20 kBit/s)

D1 = t bus_rec(min)

Duty cycle D2

/ 2 × t bit

(for worst case at 20 kBit/s)

D2 = t bus_rec(max)

Duty cycle D2

V

S

supply 6.1 V to 7.6 V

(for worst case at 20 kBit/s)

D2 = t bus_rec(max)

Duty cycle D3

V

S

/ 2 × t bit

supply 7.0 V to 18.0 V

(for worst case at 10.4 kBit/s)

D3 = t bus_rec(min)

Duty cycle D3

V

S

supply 5.5 V to 7.0 V

(for worst case at 10.4 kBit/s)

D3 = t bus_rec(min) bus_rec(min)

/ 2 × t

/ 2 × t

/ 2 × t

/ 2 × t bit bit bit bit

D1

D2

D2

D3

D3

0.396 –

0.417 –

0.417 –

0.581

0.581

Duty cycle 1

TH

TH

Dom

V

S

Rec

8)

(max) = 0.744 × V

(max) =0.581 × V

S

= 7.0 … 18 V; t bi

LIN Spec 2.2A (Par. 27)

S

;

;

= 50 µs; t

Duty cycle 1

TH

Rec

TH

Dom

8)

(max) = 0.760 × V

5.5 V < V bit

S

= 50 µs

< 7.0 V;

S

;

(max) = 0.593 × V

S

;

Duty cycle 2

TH

Rec

TH

Dom

8)

(min)= 0.422 × V

S

;

(min)= 0.284 × V

S t

V

S

= 7.6 … 18 V; bit

= 50 µs;

LIN Spec 2.2A (Par. 28)

; t

Duty cycle 2

TH

Rec

TH

Dom

8)

(min)= 0.41 × V

6.1 V < V bit

S

< 7.6 V;

= 50 µs;

S

;

(min)= 0.275 × V

S

;

Duty cycle 3

TH

Rec

8)

(max) = 0.778 × V t

V

S

= 7.0 … 18 V; bit

= 96 µs;

LIN Spec 2.2A (Par. 29)

S

;

TH

Dom

(max) =0.616 × V

S

;

Duty cycle 3

TH

Rec

8)

(max) = 0.797 × V

TH

Dom

(max) = 0.630 × V

5.5 V < V t bit

S

< 7.0 V;

= 96 µs;

S

;

S

;

P_6.1.73

P_6.1.74

P_6.1.75

P_6.1.76

P_6.1.77

Data Sheet 26 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Electrical Characteristics

Table 6 Electrical Characteristics (cont’d)

5.5 V < V

S

< 28 V; R

LIN

= 500 Ω; -40°C < T j

< 150°C; all voltages with respect to ground; positive current flowing into pin

1)

; unless otherwise specified.

Parameter Symbol Values Unit Note or Test Condition Number

Min. Typ. Max.

Duty cycle D4

V

S

supply 7.6 V to 18.0 V

(for worst case at 10.4 kBit/s)

D4 = t bus_rec(max)

/ 2 × t bit

D4

– – 0.590

Duty cycle 4

TH t

V

Rec

8)

(min) = 0.389 × V

TH

S

Dom

(min) = 0.251 × V

= 7.6 … 18 V; bit

= 96 µs;

LIN Spec 2.2A (Par. 30)

S

;

S

;

P_6.1.78

Duty cycle D4

V

S

supply 6.1 V to 7.6 V

(for worst case at 10.4 kBit/s)

D4

– – 0.590

t

Duty cycle 4

TH

Rec

8)

(min) = 0.378 × V

TH

Dom

(min)= 0.242 × V

S

6.1 V < V bit

S

< 7.6 V;

= 96 µs;

S

;

;

P_6.1.79

D4 = t bus_rec(max)

/ 2 × t bit

1) Load current on VCC specified positive direction out of pin.

2) Not subject to production test, specified by design.

3) Measured when the output voltage VCC has dropped 100 mV from the nominal value obtained at VS = 13.5V

4) Minimum limit specified by design.

5) Maximum limit specified by design.

6) V

BUS_CNT

7) V

HYS

= V

= (V

th_rec th_dom

+ V

- V

th_dom

.

th rec

) / 2;.

8) Bus load according to LIN Spec 2.2A:

Load 1 = 1 nF / 1 kΩ = C

BUS

Load 2 = 6.8 nF / 660 Ω = C

BUS

Load 3 = 10 nF / 500 Ω = C

/ R

LIN

BUS

/ R

/ R

LIN

LIN

Data Sheet 27 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Electrical Characteristics

6.2

Diagrams

R

LIN

C

Bus

100 nF

V

S

V

CC

BUS

GND

NRST

EN

TxD

RxD

Figure 16 Simplified test circuit for dynamic transceiver characteristics

C

VCC

C

NRST

C

RxD

TLE8457_TEST_CIRCUIT_A

t

Bit

t

Bit

TxD

(input to transmitting node)

t

Bus_dom(max)

t

Bus_rec(min)

V

SUP

(Transceiver supply of transmitting node)

TH

Rec(max)

TH

Dom(max)

TH

Rec(min)

TH

Dom(min)

t

Bus_dom(min)

t

Bus_rec(max)

RxD

(output of receiving node 1)

t

rx_pdf(1)

t

rx_pdr(1)

RxD

(output of receiving node 2)

t

rx_pdr(2)

Duty Cycle D1, D3 = t

BUS_rec(min)

/ (2 x t

BIT

)

Duty Cycle D2, D4 = t

BUS_rec(max)

/ (2 x t

BIT

)

Figure 17 Timing diagram for dynamic transceiver characteristics

t

Bit

Thresholds of receiving node 1

Thresholds of receiving node 2

t

rx_pdf(2)

TLE8457_LIN_TIMING_DIAGRAM_A

Data Sheet 28 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Application Information

7 Application Information

Note:

7.1

The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

Application Example

V

Bat

LIN

BUS

1kΩ

1nF

22μF 100nF

100nF

7

V

S

6

BUS

V

I

V

Q

TLE42xx

GND

INH

1μF

5 V or 3.3V

100nF

INH

8

2.4kΩ

Pull-Up to MCU

Supply

TLE7258

RxD

1

4

TxD

2

EN

GND

5

V

CC

Micro Controller e.g XC22xx

GND

ECU_1

22μF 100nF

1

V

S

220pF

4

BUS

V

CC

8

1μF

TLE8457

GND

3

RxD

NRST

TxD

EN

5

7

6

2

100nF

V

CC

Micro Controller e.g XC22xx

GND

ECU_X

Figure 18 Simplified application circuit

Data Sheet 29 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Application Information

7.2

ESD Robustness according to IEC61000-4-2

Test for ESD robustness according to IEC61000-4-2 (150 pF, 330 Ω) have been performed. The results and test conditions are available in a separate test report.

Table 7 ESD Robustness according to IEC61000-4-2

Performed Test Results Unit Remarks

Electrostatic discharge voltage at pin V

S

, BUS versus GND +8 kV

1)

Positive pulse

Electrostatic discharge voltage at pin V

S

, BUS versus GND -8 kV

1)

Negative pulse

1) ESD susceptibility according LIN EMC 1.3 Test Specification, Section 4.3. (IEC 61000-4-2) - Tested by external test house.

7.3

Transient Robustness according to ISO 7637-2

Test for transient robustness according to ISO 7637-2 have been performed. The results and test conditions are available in a separate test report.

Table 8 Automotive Transient Robustness according to ISO 7637-2

Performed Test

Pulse 1

Pulse 2

Pulse 3a

Pulse 3b

Results Unit

-100

+75

-150

+100

V

V

V

V

7.4

LIN Physical Layer Compatibility

As the LIN physical layer is independent from higher LIN layers (for example LIN protocol layer), all nodes with a LIN physical layer according to this revision can be mixed with LIN physical layer nodes, which are according to older revisions (LIN 1.0, LIN 1.1, LIN 1.2, LIN 1.3, LIN 2.0, LIN 2.1 and LIN 2.2), without any restrictions.

Data Sheet 30 Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Package Outlines

8 Package Outlines

1.27

0.41

+0.1

-0.06

2)

0.1

0.2

M

A B 8x

B

4

-0.2

1)

0.35 x 45˚

C

+0.06

0.19

6

±0.2

0.64

±0.25

0.2

M

C 8x

8 5

1 4

5

-0.2

1)

Index Marking

A

1) Does not include plastic or metal protrusion of 0.15 max. per side

2) Lead width can be 0.61 max. in dambar area

GPS01181

Figure 19 PG-DSO-8 (Plastic Dual Small Outline PG-DSO-8)

3

±0.1

0.05

0.1

±0.1

Z

0.3

±0.1

2.4

±0.1

0.38

±0.1

Pin 1 Marking

Z (4:1)

0.65

±0.1

Pin 1 Marking

0.3

±0.1

PG-TSON-8-1-PO V01

0.07 MIN.

Figure 20 PG-TSON-8 (Plastic Thin Small Outline Nonleaded PG-TSON-8)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant

(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

For further information on alternative packages, please visit our website:

http://www.infineon.com/packages

.

Data Sheet 31

Dimensions in mm

Rev. 1.0

2016-08-05

TLE8457

LIN Transceiver with integrated Voltage Regulator

Revision History

9 Revision History

Table 9 Revision History

Revision

1.0

Data

2016-08-05

Changes

Data Sheet created

Data Sheet 32 Rev. 1.0

2016-08-05

Please read the Important Notice and Warnings at the end of this document

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,

DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,

HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,

OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,

SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-08-05

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2016 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about any aspect of this document?

Email: [email protected]

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of

Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest

Infineon Technologies Office ( www.infineon.com

).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon

Technologies office.

Except as otherwise explicitly approved by Infineon

Technologies in a written document signed by authorized representatives of Infineon Technologies,

Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals