Documentación de Referencia de Hibernate

Documentación de Referencia de Hibernate
HIBERNATE - Persistencia
Relacional para Java Idiomático
1
Documentación de
Referencia de Hibernate
3.3.2.GA
por Gavin King, Christian Bauer, Max Rydahl Andersen, Emmanuel Bernard, y Steve Ebersole
and thanks to James Cobb (Graphic Design), Cheyenne Weaver
(Graphic Design), y Bernardo Antonio Buffa Colom&#x00e9
Prefacio ............................................................................................................................ xi
1. Feedback ............................................................................................................. xii
1. Tutorial ........................................................................................................................ 1
1.1. Parte 1 - La primera Aplicación Hibernate ............................................................ 1
1.1.1. Setup ...................................................................................................... 1
1.1.2. La primera clase ...................................................................................... 3
1.1.3. El fichero de mapeo ................................................................................. 4
1.1.4. Configuración de Hibernate ...................................................................... 7
1.1.5. Building with Maven ................................................................................. 9
1.1.6. Esto dirá a Ant que agregue todos los ficheros en el directorio lib que
terminen con .jar al classpath usado para la compilación. También copiará
todos los ficheros que no sean código Java al directorio objetivo, por ejemplo,
ficheros de configuración y mapeos de Hibernate. Si ahora corres Ant, debes
obtener esta salida: ......................................................................................... 10
1.1.7. Esto también debe compilar sin problemas. Finalmente necesitamos
configurar un sistema de logging (registro). Hibernate usa commons logging
y te deja la elección entre Log4J y logging de JDK 1.4. La mayoría de los
desarrolladores prefieren Log4J: copia log4j.properties de la distribución
de Hibernate (está en el directorio etc/) a tu directorio src, junto a
hibernate.cfg.xml. Echa una mirada a la configuración de ejemplo y cambia
los ajustes si te gusta tener una salida más verborrágica. Por defecto, sólo se
muestra el mensaje de arranque de Hibernate en la salida. ................................
1.2. Note: Most new Hibernate users fail at this point and we see questions about Table
not found error messages regularly. However, if you follow the steps outlined above you
will not have this problem, as hbm2ddl creates the database schema on the first run,
and subsequent application restarts will use this schema. If you change the mapping
and/or database schema, you have to re-enable hbm2ddl once again. ........................
1.2.1. Hemos mapeado un clase de entidad persistente a una tabla.
Construyamos sobre esto y agreguemos algunas asociaciones de clase. Primero
agregaremos personas a nuestra aplicación, y almacenaremos una lista de
eventos en las que participan. ..........................................................................
1.2.2. Crearemos ahora una asociación entre estas dos entidades. Obviamente,
las personas pueden participar en eventos, y los eventos tienen participantes.
Las cuestiones de diseño con que tenemos que tratar son: direccionalidad,
multiplicidad y comportamiento de colección. ....................................................
1.2.3. _____________ __________________ | | | | _____________ | EVENTS
| | PERSON_EVENT | | | |_____________| |__________________| | PERSON |
| | | | |_____________| | *EVENT_ID | <--> | *EVENT_ID | | | | EVENT_DATE | |
*PERSON_ID | <--> | *PERSON_ID | | TITLE | |__________________| | AGE | |
_____________| | FIRSTNAME | | LASTNAME | |_____________| .....................
1.2.4. Colección de valores ..............................................................................
1.2.5. Asociaciones bidireccionales ...................................................................
1.2.6. Trabajando enlaces bidireccionales .........................................................
1.3. Part 3 - The EventManager web application .......................................................
12
15
15
17
18
20
22
23
24
iii
HIBERNATE - Persistencia Rela...
1.3.1. Writing the basic servlet ......................................................................... 24
1.3.2. Processing and rendering ....................................................................... 25
1.3.3. Deploying and testing .............................................................................
1.4. Summary ..........................................................................................................
2. Arquitectura ...............................................................................................................
2.1. Visión General ..................................................................................................
2.2. Estados de instancia .........................................................................................
2.3. Integración JMX ................................................................................................
2.4. Soporte JCA: ....................................................................................................
2.5. Contextual sessions ..........................................................................................
3. Configuración ............................................................................................................
3.1. Configuración programática ...............................................................................
3.2. Obteniendo una SessionFactory ........................................................................
3.3. Conexiones JDBC .............................................................................................
3.4. Parámetros de configuración opcionales ............................................................
3.4.1. SQL Dialects ..........................................................................................
3.4.2. Recuperación por Unión Externa (Outer Join Fetching) .............................
27
28
29
29
30
31
31
31
33
33
34
34
36
43
44
3.4.3. Flujos Binarios .......................................................................................
3.4.4. Caché de segundo nivel y de lectura .......................................................
3.4.5. Sustitución de Lenguaje de Consulta .......................................................
3.4.6. Hibernate statistics .................................................................................
3.5. Registros de mensajes (Logging) .......................................................................
3.6. Implementando una NamingStrategy ................................................................
3.7. Fichero de configuración XML ...........................................................................
3.8. Integració con Servidores de Aplicaciones J2EE .................................................
3.8.1. Configuración de la estrategia de transacción ..........................................
3.8.2. SessionFactory ligada a JNDI ...............................................................
3.8.3. Ligado automático de JTA y Session .......................................................
3.8.4. Despliegue JMX .....................................................................................
4. Clases Persistentes ...................................................................................................
4.1. Un ejemplo simple de POJO .............................................................................
4.1.1. Implementa un constructor sin argumentos ..............................................
4.1.2. Provee una propiedad identificadora (opcional) ........................................
4.1.3. Prefiere las clases no finales (opcional) ...................................................
4.1.4. Declara métodos de acceso y modificación para los campos persistentes
(opcional) ........................................................................................................
4.2. Implementando herencia ...................................................................................
4.3. Implementando equals() y hashCode() ............................................................
4.4. Modelos dinámicos ...........................................................................................
4.5. UNTRANSLATED!!! Tuplizers ............................................................................
4.6. EntityNameResolvers ........................................................................................
5. Mapeo O/R Básico .....................................................................................................
5.1. Declaración de mapeo ......................................................................................
5.1.1. Doctype .................................................................................................
44
44
44
45
45
46
46
48
49
50
50
51
53
53
55
55
55
iv
56
56
56
58
60
62
65
65
67
5.1.2. Hibernate-mapping ................................................................................. 68
5.1.3. Class ..................................................................................................... 69
5.1.4. id ...........................................................................................................
5.1.5. Enhanced identifier generators ................................................................
5.1.6. Identifier generator optimization ...............................................................
5.1.7. composite-id ..........................................................................................
5.1.8. Discriminator ..........................................................................................
5.1.9. Version (optional) ...................................................................................
5.1.10. Timestamp (optional) ............................................................................
5.1.11. Property ...............................................................................................
5.1.12. Many-to-one .........................................................................................
5.1.13. One-to-one ...........................................................................................
5.1.14. Natural-id .............................................................................................
5.1.15. Component and dynamic-component .....................................................
5.1.16. Properties ............................................................................................
5.1.17. Subclass ..............................................................................................
5.1.18. Joined-subclass ....................................................................................
72
77
78
78
80
81
82
83
85
88
90
91
92
93
94
5.1.19. Union-subclass ..................................................................................... 96
5.1.20. Join ..................................................................................................... 97
5.1.21. Key ...................................................................................................... 98
5.1.22. Column and formula elements ............................................................... 99
5.1.23. Import ................................................................................................ 100
5.1.24. Any .................................................................................................... 100
5.2. Hibernate types ............................................................................................... 102
5.2.1. Entidades y Valores ............................................................................. 102
5.2.2. Tipos de valores básicos ...................................................................... 103
5.2.3. Tipos de valor personalizados ............................................................... 104
5.3. Mapeando una clase más de una vez .............................................................. 105
5.4. identificadores SQL encomillados ..................................................................... 106
5.5. Alternativas de metadatos ............................................................................... 106
5.5.1. Usando marcado de XDoclet ................................................................ 106
5.5.2. Usando anotaciones JDK 5.0 ................................................................ 109
5.6. Generated properties ....................................................................................... 110
5.7. Auxiliary database objects ............................................................................... 110
6. Collection mapping .................................................................................................. 113
6.1. Colecciones persistentes ................................................................................. 113
6.2. Mapeos de colección ...................................................................................... 114
6.2.1. Claves foráneas de collección ............................................................... 116
6.2.2. Elementos de collección ....................................................................... 116
6.2.3. Colecciones indexadas ......................................................................... 117
6.2.4. Colecciones de valores y asociaciones muchos-a-muchos ...................... 118
6.2.5. Asociaciones uno-a-muchos .................................................................. 121
6.3. Mapeos de colección avanzados ..................................................................... 122
6.3.1. Colecciones ordenadas ......................................................................... 122
v
HIBERNATE - Persistencia Rela...
6.3.2. Asociaciones bidireccionales ................................................................. 123
6.3.3. Asociaciones bidireccionales con colecciones indexadas ......................... 125
6.3.4. Asociaciones ternarias ..........................................................................
6.3.5. Usando un <idbag> ............................................................................
6.4. Ejemplos de colección .....................................................................................
7. Mapeos de Asociación .............................................................................................
7.1. Introducción ....................................................................................................
7.2. Asociaciones Unidireccionales .........................................................................
7.2.1. Many-to-one .........................................................................................
7.2.2. One-to-one ...........................................................................................
7.2.3. One-to-many ........................................................................................
7.3. Asociaciones unidireccionales con tablas de unión ............................................
7.3.1. One-to-many ........................................................................................
7.3.2. Many-to-one .........................................................................................
7.3.3. One-to-one ...........................................................................................
7.3.4. Many-to-many ......................................................................................
7.4. Asociaciones Bidireccionales ...........................................................................
126
127
128
133
133
133
133
134
135
136
136
136
137
138
139
7.4.1. one-to-many / many-to-one ...................................................................
7.4.2. One-to-one ...........................................................................................
7.5. Asociaciones bidireccionales con tablas de unión ..............................................
7.5.1. one-to-many / many-to-one ...................................................................
7.5.2. uno a uno ............................................................................................
7.5.3. Many-to-many ......................................................................................
7.6. UNTRANSLATED! More complex association mappings ....................................
8. Mapeo de Componentes ..........................................................................................
8.1. Objetos dependientes ......................................................................................
8.2. Colecciones de objetos dependientes ...............................................................
8.3. Componentes como índices de Map ................................................................
8.4. Componentes como identificadores compuestos ...............................................
8.5. Componentes dinámicos .................................................................................
9. Inheritance mapping ................................................................................................
9.1. The three strategies ........................................................................................
9.1.1. Tabla por jerarquía de clases ................................................................
9.1.2. Tabla por subclase ...............................................................................
9.1.3. Table per subclass: using a discriminator ...............................................
9.1.4. Mezclando tabla por jerarquía de clases con tabla por subclase ...............
9.1.5. Tabla por clase concreta ......................................................................
9.1.6. Table per concrete class using implicit polymorphism ..............................
9.1.7. Mezclando polimorfismo implícito con otros mapeos de herencia .............
9.2. Limitaciones ....................................................................................................
10. Trabajando con objetos .........................................................................................
10.1. Estados de objeto de Hibernate .....................................................................
10.2. Haciendo los objetos persistentes ..................................................................
10.3. Cargando un objeto .......................................................................................
139
140
142
142
143
144
144
147
147
149
151
151
153
155
155
155
156
157
158
159
159
161
162
163
163
163
165
vi
10.4. Consultando .................................................................................................. 166
10.4.1. Ejecutando consultas .......................................................................... 166
10.4.2. Filtrando colecciones ..........................................................................
10.4.3. Consultas de criterios .........................................................................
10.4.4. Consultas en SQL nativo ....................................................................
10.5. Modificando objetos persistentes ....................................................................
10.6. Modificando objetos separados ......................................................................
10.7. Detección automática de estado ....................................................................
10.8. Borrando objetos persistentes ........................................................................
10.9. Replicando objetos entre dos almacénes de datos diferentes ...........................
10.10. Limpiando (flushing) la sesión ......................................................................
10.11. Persistencia transitiva ..................................................................................
10.12. Usando metadatos ......................................................................................
11. Transactions and Concurrency ..............................................................................
11.1. Ámbitos de sesión y de transacción ...............................................................
11.1.1. Unidad de trabajo ...............................................................................
11.1.2. Transacciones de aplicación ...............................................................
171
172
172
172
173
174
175
176
177
178
179
181
181
181
182
11.1.3. Considerando la identidad del objeto ...................................................
11.1.4. Temas comunes .................................................................................
11.2. Demarcación de la transacción de base de datos ............................................
11.2.1. Entorno no manejado .........................................................................
11.2.2. Usando JTA .......................................................................................
11.2.3. Manejo de excepciones ......................................................................
11.2.4. Transaction timeout ............................................................................
11.3. Control optimista de concurrencia ..................................................................
11.3.1. Chequeo de versiones de aplicación ....................................................
11.3.2. Sesión larga y versionado automático ..................................................
11.3.3. Objetos separados y versionado automático .........................................
11.3.4. Personalizando el versionado automático .............................................
11.4. Pessimistic locking ........................................................................................
11.5. Connection release modes ............................................................................
12. Interceptores y eventos .........................................................................................
12.1. Interceptores .................................................................................................
12.2. Sistema de eventos .......................................................................................
12.3. Seguridad declarativa de Hibernate ................................................................
13. Procesamiento por lotes ........................................................................................
13.1. Inserciones en lote ........................................................................................
13.2. Actualizaciones en lote ..................................................................................
13.3. UNTRANSLATED! The StatelessSession interface ..........................................
13.4. update/delete en masa ..................................................................................
14. HQL: El Lenguaje de Consulta de Hibernate ..........................................................
14.1. Sensibilidad a Mayúsculas .............................................................................
14.2. La cláusula from ...........................................................................................
14.3. Asociaciones y uniones (joins) .......................................................................
183
184
185
186
187
189
189
190
190
191
192
193
193
194
197
197
199
201
203
203
204
205
205
209
209
209
210
vii
HIBERNATE - Persistencia Rela...
14.4. UNTRANSLATED!!! Forms of join syntax ........................................................ 212
14.5. Referring to identifier property ........................................................................ 212
14.6. La cláusula select .........................................................................................
14.7. Funciones de agregación ...............................................................................
14.8. Consultas polimórficas ...................................................................................
14.9. La cláusula where .........................................................................................
14.10. Expresiones ................................................................................................
14.11. La cláusula order by ....................................................................................
14.12. La cláusula group by ...................................................................................
14.13. Subconsultas ...............................................................................................
14.14. Ejemplos de HQL ........................................................................................
14.15. Sentencias UPDATE y DELETE masivas ......................................................
14.16. Consejos y Trucos ......................................................................................
14.17. UNTRANSLATED! Components ...................................................................
14.18. Row value constructor syntax .......................................................................
15. Consultas por Criterios ..........................................................................................
15.1. Creando una instancia de Criteria ...............................................................
212
214
215
215
217
222
222
223
224
227
227
228
229
231
231
15.2. Estrechando el conjunto resultado ..................................................................
15.3. Ordenando los resultados ..............................................................................
15.4. Asociaciones .................................................................................................
15.5. Recuperación dinámica de asociaciones .........................................................
15.6. Consultas por ejemplos .................................................................................
15.7. Proyecciones, agregación y agrupamiento ......................................................
15.8. Consultas y subconsultas separadas ..............................................................
15.9. Consultas por identificador natural .................................................................
16. SQL Nativo .............................................................................................................
16.1. Using a SQLQuery .........................................................................................
16.1.1. Scalar queries ....................................................................................
16.1.2. Entity queries .....................................................................................
16.1.3. Handling associations and collections ..................................................
16.1.4. Returning multiple entities ...................................................................
16.1.5. Returning non-managed entities ..........................................................
16.1.6. Handling inheritance ...........................................................................
16.1.7. Parameters ........................................................................................
16.2. Consultas SQL con nombre ...........................................................................
16.2.1. Usando return-property para especificar explícitamente nombres de
columna/alias .................................................................................................
16.2.2. Usando procedimientos almacenados para consultar ............................
16.3. SQL personalizado para crear, actualizar y borrar ...........................................
16.4. SQL personalizado para carga .......................................................................
17. Filtrando datos .......................................................................................................
17.1. Filtros de Hibernate .......................................................................................
18. Mapeo XML ............................................................................................................
18.1. Trabajando con datos XML ............................................................................
231
232
233
234
234
235
237
238
241
241
241
242
243
243
245
246
246
246
viii
248
249
251
253
255
255
259
259
18.1.1. Especificando los mapeos de XML y de clase juntos ............................. 259
18.1.2. Especificando sólo un mapeo XML ...................................................... 260
18.2. Mapeo de metadatos XML .............................................................................
18.3. Manipulando datos XML ................................................................................
19. Mejorando el rendimiento ......................................................................................
19.1. Estrategias de recuperación ...........................................................................
19.1.1. Trabajando con asociaciones perezosas ..............................................
19.1.2. Afinando las estrategias de recuperación .............................................
19.1.3. Proxies de asociaciones de un solo extremo ........................................
19.1.4. Inicializando colecciones y proxies .......................................................
19.1.5. Usando recuperación en lotes .............................................................
19.1.6. Usando recuperación por subselección ................................................
19.1.7. Usando recuperación perezosa de propiedades ....................................
19.2. El Caché de Segundo Nivel ...........................................................................
19.2.1. Mapeos de caché ...............................................................................
19.2.2. Estrategia: sólo lectura (read only) ......................................................
19.2.3. Estrategia: lectura/escritura (read/write) ...............................................
260
263
265
265
266
267
268
270
271
272
272
273
274
275
275
19.2.4. Estrategia: lectura/escritura no estricta (nonstrict read/write) ..................
19.2.5. Estrategia: transaccional .....................................................................
19.2.6. Cache-provider/concurrency-strategy compatibility ................................
19.3. Gestionando los cachés ................................................................................
19.4. El Caché de Consultas ..................................................................................
19.5. Entendiendo el rendimiento de Colecciones ....................................................
19.5.1. Taxonomia .........................................................................................
19.5.2. Las listas, mapas, idbags y conjuntos son las colecciones más eficientes
de actualizar ..................................................................................................
19.5.3. Los Bags y las listas son las colecciones inversas más eficientes ...........
19.5.4. Borrado de un solo tiro .......................................................................
19.6. Monitoreando el rendimiento ..........................................................................
19.6.1. Monitoreando una SessionFactory .......................................................
19.6.2. Métricas .............................................................................................
20. Guía del Conjunto de Herramientas .......................................................................
20.1. Generación automática de esquemas .............................................................
20.1.1. Personalizando el esquema ................................................................
20.1.2. Ejecutando la herramienta ...................................................................
20.1.3. Propiedades .......................................................................................
20.1.4. Usando Ant ........................................................................................
20.1.5. Actualizaciones incrementales de esquema ..........................................
20.1.6. Usando Ant para actualizaciones incrementales de esquema .................
20.1.7. Schema validation ..............................................................................
20.1.8. Using Ant for schema validation ..........................................................
21. Ejemplo: Padre/Hijo ...............................................................................................
21.1. Una nota sobre las colecciones .....................................................................
21.2. Uno-a-muchos bidirectional ............................................................................
275
276
276
276
278
279
279
280
280
280
281
281
282
285
285
285
289
289
290
290
291
291
292
293
293
293
ix
HIBERNATE - Persistencia Rela...
21.3. Ciclo de vida en cascada .............................................................................. 295
21.4. Tratamiento en cascada y unsaved-value ..................................................... 297
21.5. Conclusión ....................................................................................................
22. Ejemplo: Aplicación de Weblog .............................................................................
22.1. Clases Persistentes .......................................................................................
22.2. Mapeos de Hibernate ....................................................................................
22.3. Código Hibernate ..........................................................................................
23. Ejemplo: Varios Mapeos ........................................................................................
23.1. Empleador/Empleado .....................................................................................
23.2. Autor/Obra ....................................................................................................
23.3. Cliente/Orden/Producto ..................................................................................
23.4. Mapeos misceláneos de ejemplo ...................................................................
23.4.1. Asociación uno-a-uno "Tipificada" ........................................................
23.4.2. Ejemplo de clave compuesta ...............................................................
23.4.3. Muchos-a-muchos con atributo de clave compuesta compartido .............
23.4.4. Discriminación basada en contenido ....................................................
23.4.5. Asociaciones sobre claves alternativas ................................................
297
299
299
300
303
309
309
311
313
315
315
316
319
320
321
24. Mejores Prácticas ...................................................................................................
25. Database Portability Considerations ......................................................................
25.1. Portability Basics ...........................................................................................
25.2. Dialect ..........................................................................................................
25.3. Dialect resolution ...........................................................................................
25.4. Identifier generation .......................................................................................
25.5. Database functions ........................................................................................
25.6. Type mappings .............................................................................................
References ....................................................................................................................
323
327
327
327
327
328
329
329
331
x
Prefacio
Working with object-oriented software and a relational database can be cumbersome and time
consuming in today's enterprise environments. Hibernate is an Object/Relational Mapping tool
for Java environments. The term Object/Relational Mapping (ORM) refers to the technique of
mapping a data representation from an object model to a relational data model with a SQL-based
schema.
Hibernate not only takes care of the mapping from Java classes to database tables (and from
Java data types to SQL data types), but also provides data query and retrieval facilities. It can
also significantly reduce development time otherwise spent with manual data handling in SQL
and JDBC.
Hibernate's goal is to relieve the developer from 95 percent of common data persistence related
programming tasks. Hibernate may not be the best solution for data-centric applications that
only use stored-procedures to implement the business logic in the database, it is most useful
with object-oriented domain models and business logic in the Java-based middle-tier. However,
Hibernate can certainly help you to remove or encapsulate vendor-specific SQL code and will help
with the common task of result set translation from a tabular representation to a graph of objects.
Si eres nuevo en Hibernate y lo del Mapeo Objeto/Relacional o incluso en Java, sigue por favor
estos pasos:
1. Lee Capítulo 1, Tutorial para un tutorial de 30 minutos, usando Tomcat.
2. Lee Capítulo 2, Arquitectura para entender los entornos en los que puede ser usado Hibernate.
3. View the eg/ directory in the Hibernate distribution. It contains a simple standalone application.
Copy your JDBC driver to the lib/ directory and edit etc/hibernate.properties, specifying
correct values for your database. From a command prompt in the distribution directory, type
ant eg (using Ant), or under Windows, type build eg.
4. Use this reference documentation as your primary source of information. Consider reading
[JPwH] if you need more help with application design, or if you prefer a step-by-step tutorial. Also
visit http://caveatemptor.hibernate.org and download the example application from [JPwH].
5. Los FAQs son respondidos en el sitio web de Hibernate.
6. Links to third party demos, examples, and tutorials are maintained on the Hibernate website.
7. El Area de Comunidad en el sitio web de Hibernate es una buena fuente de patrones de diseño
y varias soluciones de integración (Tomcat, JBoss, Struts, EJB, etc.).
If you have questions, use the user forum linked on the Hibernate website. We also provide a
JIRA issue tracking system for bug reports and feature requests. If you are interested in the
development of Hibernate, join the developer mailing list. If you are interested in translating this
documentation into your language, contact us on the developer mailing list.
xi
Prefacio
A través de JBoss Inc. (see http://www.hibernate.org/SupportTraining/) hay disponibilidad de
soporte comercial de desarrollo, soporte de producción y entrenamiento en Hibernate. Hibernate
es un proyecto de la suite de productos de código abierto JBoss Professional.
1. Feedback
Use Hibernate JIRA [http://opensource.atlassian.com/projects/hibernate] to report errors or
request enhacements to this documentation.
xii
Tutorial
Intended for new users, this chapter provides an step-by-step introduction to Hibernate, starting
with a simple application using an in-memory database. The tutorial is based on an earlier tutorial
developed by Michael Gloegl. All code is contained in the tutorials/web directory of the project
source.
Importante
This tutorial expects the user have knowledge of both Java and SQL. If you have
a limited knowledge of JAVA or SQL, it is advised that you start with a good
introduction to that technology prior to attempting to learn Hibernate.
Nota
The distribution contains another example application under the tutorial/eg
project source directory.
1.1. Parte 1 - La primera Aplicación Hibernate
For this example, we will set up a small database application that can store events we want to
attend and information about the host(s) of these events.
Nota
Although you can use whatever database you feel comfortable using, we will use
HSQLDB [http://hsqldb.org/] (an in-memory, Java database) to avoid describing
installation/setup of any particular database servers.
1.1.1. Setup
The first thing we need to do is to set up the development environment. We will be using
the "standard layout" advocated by alot of build tools such as Maven [http://maven.org].
Maven, in particular, has a good resource describing this layout [http://maven.apache.org/guides/
introduction/introduction-to-the-standard-directory-layout.html]. As this tutorial is to be a web
application, we will be creating and making use of src/main/java, src/main/resources and
src/main/webapp directories.
We will be using Maven in this tutorial, taking advantage of its transitive dependency management
capabilities as well as the ability of many IDEs to automatically set up a project for us based on
the maven descriptor.
1
Capítulo 1. Tutorial
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/
maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.hibernate.tutorials</groupId>
<artifactId>hibernate-tutorial</artifactId>
<version>1.0.0-SNAPSHOT</version>
<name>First Hibernate Tutorial</name>
<build>
<!-- we dont want the version to be part of the generated war file name -->
<finalName>${artifactId}</finalName>
</build>
<dependencies>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-core</artifactId>
</dependency>
<!-- Because this is a web app, we also have a dependency on the servlet api. -->
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
</dependency>
<!-- Hibernate uses slf4j for logging, for our purposes here use the simple backend -->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
</dependency>
<!-- Hibernate gives you a choice of bytecode providers between cglib and javassist -->
<dependency>
<groupId>javassist</groupId>
<artifactId>javassist</artifactId>
</dependency>
</dependencies>
</project>
2
La primera clase
Sugerencia
It is not a requirement to use Maven. If you wish to use something else to build
this tutoial (such as Ant), the layout will remain the same. The only change is
that you will need to manually account for all the needed dependencies. If you
use something like Ivy [http://ant.apache.org/ivy/] providing transitive dependency
management you would still use the dependencies mentioned below. Otherwise,
you'd need to grab all dependencies, both explicit and transitive, and add them
to the project's classpath. If working from the Hibernate distribution bundle, this
would mean hibernate3.jar, all artifacts in the lib/required directory and all
files from either the lib/bytecode/cglib or lib/bytecode/javassist directory;
additionally you will need both the servlet-api jar and one of the slf4j logging
backends.
Save this file as pom.xml in the project root directory.
1.1.2. La primera clase
Next, we create a class that represents the event we want to store in the database; it is a simple
JavaBean class with some properties:
package org.hibernate.tutorial.domain;
import java.util.Date;
public class Event {
private Long id;
private String title;
private Date date;
public Event() {}
public Long getId() {
return id;
}
private void setId(Long id) {
this.id = id;
}
public Date getDate() {
return date;
3
Capítulo 1. Tutorial
}
public void setDate(Date date) {
this.date = date;
}
public String getTitle() {
return title;
}
public void setTitle(String title) {
this.title = title;
}
}
This class uses standard JavaBean naming conventions for property getter and setter methods,
as well as private visibility for the fields. Although this is the recommended design, it is not
required. Hibernate can also access fields directly, the benefit of accessor methods is robustness
for refactoring.
The id property holds a unique identifier value for a particular event. All persistent entity classes
(there are less important dependent classes as well) will need such an identifier property if we want
to use the full feature set of Hibernate. In fact, most applications, especially web applications, need
to distinguish objects by identifier, so you should consider this a feature rather than a limitation.
However, we usually do not manipulate the identity of an object, hence the setter method should
be private. Only Hibernate will assign identifiers when an object is saved. Hibernate can access
public, private, and protected accessor methods, as well as public, private and protected fields
directly. The choice is up to you and you can match it to fit your application design.
The no-argument constructor is a requirement for all persistent classes; Hibernate has to create
objects for you, using Java Reflection. The constructor can be private, however package or public
visibility is required for runtime proxy generation and efficient data retrieval without bytecode
instrumentation.
Save this file to the src/main/java/org/hibernate/tutorial/domain directory.
1.1.3. El fichero de mapeo
Hibernate necesita saber cómo cargar y almacenar objetos de la clase persistente. Aquí es donde
el fichero de mapeo de Hibernate entra en juego. El fichero de mapeo le dice a Hibernate a qué
tabla en la base de datos tiene que acceder, y qué columnas en esta tabla debe usar.
La estructura básica de un fichero de mapeo se parece a esto:
<?xml version="1.0"?>
4
El fichero de mapeo
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="org.hibernate.tutorial.domain">
[...]
</hibernate-mapping>
Hibernate DTD is sophisticated. You can use it for auto-completion of XML mapping elements
and attributes in your editor or IDE. Opening up the DTD file in your text editor is the easiest
way to get an overview of all elements and attributes, and to view the defaults, as well as some
comments. Hibernate will not load the DTD file from the web, but first look it up from the classpath
of the application. The DTD file is included in hibernate-core.jar (it is also included in the
hibernate3.jar, if using the distribution bundle).
Importante
We will omit the DTD declaration in future examples to shorten the code. It is, of
course, not optional.
Between the two hibernate-mapping tags, include a class element. All persistent entity classes
(again, there might be dependent classes later on, which are not first-class entities) need a
mapping to a table in the SQL database:
<hibernate-mapping package="org.hibernate.tutorial.domain">
<class name="Event" table="EVENTS">
</class>
</hibernate-mapping>
So far we have told Hibernate how to persist and load object of class Event to the table EVENTS.
Each instance is now represented by a row in that table. Now we can continue by mapping the
unique identifier property to the tables primary key. As we do not want to care about handling
this identifier, we configure Hibernate's identifier generation strategy for a surrogate primary key
column:
<hibernate-mapping package="org.hibernate.tutorial.domain">
<class name="Event" table="EVENTS">
5
Capítulo 1. Tutorial
<id name="id" column="EVENT_ID">
<generator class="native"/>
</id>
</class>
</hibernate-mapping>
The id element is the declaration of the identifier property. The name="id" mapping attribute
declares the name of the JavaBean property and tells Hibernate to use the getId() and setId()
methods to access the property. The column attribute tells Hibernate which column of the EVENTS
table holds the primary key value.
The nested generator element specifies the identifier generation strategy (aka how are identifier
values generated?). In this case we choose native, which offers a level of portability depending
on the configured database dialect. Hibernate supports database generated, globally unique, as
well as application assigned, identifiers. Identifier value generation is also one of Hibernate's many
extension points and you can plugin in your own strategy.
Sugerencia
native is no longer consider the best strategy in terms of portability. for further
discussion, see Sección 25.4, “Identifier generation”
Lastly, we need to tell Hibernate about the remaining entity class properties. By default, no
properties of the class are considered persistent:
<hibernate-mapping package="org.hibernate.tutorial.domain">
<class name="Event" table="EVENTS">
<id name="id" column="EVENT_ID">
<generator class="native"/>
</id>
<property name="date" type="timestamp" column="EVENT_DATE"/>
<property name="title"/>
</class>
</hibernate-mapping>
Similar to the id element, the name attribute of the property element tells Hibernate which
getter and setter methods to use. In this case, Hibernate will search for getDate(), setDate(),
getTitle() and setTitle() methods.
6
Configuración de Hibernate
Nota
Why does the date property mapping include the column attribute, but the title
does not? Without the column attribute, Hibernate by default uses the property
name as the column name. This works for title, however, date is a reserved
keyword in most databases so you will need to map it to a different name.
The title mapping also lacks a type attribute. The types declared and used in the mapping files
are not Java data types; they are not SQL database types either. These types are called Hibernate
mapping types, converters which can translate from Java to SQL data types and vice versa. Again,
Hibernate will try to determine the correct conversion and mapping type itself if the type attribute
is not present in the mapping. In some cases this automatic detection using Reflection on the
Java class might not have the default you expect or need. This is the case with the date property.
Hibernate cannot know if the property, which is of java.util.Date, should map to a SQL date,
timestamp, or time column. Full date and time information is preserved by mapping the property
with a timestamp converter.
Sugerencia
Hibernate makes this mapping type determination using reflection when the
mapping files are processed. This can take time and resources, so if startup
performance is important you should consider explicitly defining the type to use.
Save
this
mapping
Event.hbm.xml.
file
as
src/main/resources/org/hibernate/tutorial/domain/
1.1.4. Configuración de Hibernate
At this point, you should have the persistent class and its mapping file in place. It is now time to
configure Hibernate. First let's set up HSQLDB to run in "server mode"
Nota
We do this do that the data remains between runs.
We will utilize the Maven exec plugin to launch the HSQLDB server by running: mvn exec:java
-Dexec.mainClass="org.hsqldb.Server" -Dexec.args="-database.0 file:target/data/
tutorial" You will see it start up and bind to a TCP/IP socket; this is where our application will
connect later. If you want to start with a fresh database during this tutorial, shutdown HSQLDB,
delete all files in the target/data directory, and start HSQLDB again.
Hibernate will be connecting to the database on behalf of your application, so it needs to know
how to obtain connections. For this tutorial we will be using a standalone connection pool (as
7
Capítulo 1. Tutorial
opposed to a javax.sql.DataSource). Hibernate comes with support for two third-party open
source JDBC connection pools: c3p0 [https://sourceforge.net/projects/c3p0] and proxool [http://
proxool.sourceforge.net/]. However, we will be using the Hibernate built-in connection pool for
this tutorial.
Atención
The built-in Hibernate connection pool is in no way intended for production use. It
lacks several features found on any decent connection pool.
For Hibernate's configuration, we can use a simple hibernate.properties file, a more
sophisticated hibernate.cfg.xml file, or even complete programmatic setup. Most users prefer
the XML configuration file:
<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory>
<!-- Database connection settings -->
<property name="connection.driver_class">org.hsqldb.jdbcDriver</property>
<property name="connection.url">jdbc:hsqldb:hsql://localhost</property>
<property name="connection.username">sa</property>
<property name="connection.password"></property>
<!-- JDBC connection pool (use the built-in) -->
<property name="connection.pool_size">1</property>
<!-- SQL dialect -->
<property name="dialect">org.hibernate.dialect.HSQLDialect</property>
<!-- Enable Hibernate's automatic session context management -->
<property name="current_session_context_class">thread</property>
<!-- Disable the second-level cache -->
<property name="cache.provider_class">org.hibernate.cache.NoCacheProvider</property>
<!-- Echo all executed SQL to stdout -->
<property name="show_sql">true</property>
8
Building with Maven
<!-- Drop and re-create the database schema on startup -->
<property name="hbm2ddl.auto">update</property>
<mapping resource="org/hibernate/tutorial/domain/Event.hbm.xml"/>
</session-factory>
</hibernate-configuration>
Nota
Notice that this configuration file specifies a different DTD
You configure Hibernate's SessionFactory. SessionFactory is a global factory responsible for
a particular database. If you have several databases, for easier startup you should use several
<session-factory> configurations in several configuration files.
The first four property elements contain the necessary configuration for the JDBC connection.
The dialect property element specifies the particular SQL variant Hibernate generates.
Sugerencia
In most cases, Hibernate is able to properly determine which dialect to use. See
Sección 25.3, “Dialect resolution” for more information.
Hibernate's automatic session management for persistence contexts is particularly useful in this
context. The hbm2ddl.auto option turns on automatic generation of database schemas directly
into the database. This can also be turned off by removing the configuration option, or redirected
to a file with the help of the SchemaExport Ant task. Finally, add the mapping file(s) for persistent
classes to the configuration.
Save this file as hibernate.cfg.xml into the src/main/resources directory.
1.1.5. Building with Maven
We will now build the tutorial with Maven. You will need to have Maven installed; it is available
from the Maven download page [http://maven.apache.org/download.html]. Maven will read the /
pom.xml file we created earlier and know how to perform some basic project tasks. First, lets run
the compile goal to make sure we can compile everything so far:
[hibernateTutorial]$ mvn compile
9
Capítulo 1. Tutorial
[INFO] Scanning for projects...
[INFO] -----------------------------------------------------------------------[INFO] Building First Hibernate Tutorial
[INFO] task-segment: [compile]
[INFO] -----------------------------------------------------------------------[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Compiling 1 source file to /home/steve/projects/sandbox/hibernateTutorial/target/classes
[INFO] -----------------------------------------------------------------------[INFO] BUILD SUCCESSFUL
[INFO] -----------------------------------------------------------------------[INFO] Total time: 2 seconds
[INFO] Finished at: Tue Jun 09 12:25:25 CDT 2009
[INFO] Final Memory: 5M/547M
[INFO] ------------------------------------------------------------------------
1.1.6. Esto dirá a Ant que agregue todos los ficheros en el
directorio lib que terminen con .jar al classpath usado para
la compilación. También copiará todos los ficheros que no
sean código Java al directorio objetivo, por ejemplo, ficheros
de configuración y mapeos de Hibernate. Si ahora corres Ant,
debes obtener esta salida:
It is time to load and store some Event objects, but first you have to complete the
setup with some infrastructure code. You have to startup Hibernate by building a global
org.hibernate.SessionFactory object and storing it somewhere for easy access in
application code. A org.hibernate.SessionFactory is used to obtain org.hibernate.Session
instances. A org.hibernate.Session represents a single-threaded unit of work. The
org.hibernate.SessionFactory is a thread-safe global object that is instantiated once.
We will create a HibernateUtil helper class that takes care of startup and makes accessing the
org.hibernate.SessionFactory more convenient.
package org.hibernate.tutorial.util;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;
public class HibernateUtil {
private static final SessionFactory sessionFactory = buildSessionFactory();
10
Esto dirá a Ant que agregue todos los ficheros en el directorio lib que terminen con
tivo, por ejemplo, ficheros de configuración y mapeos de Hibernate. Si ahora corres Ant, debes obtener esta salida:
private static SessionFactory buildSessionFactory() {
try {
// Create the SessionFactory from hibernate.cfg.xml
return new Configuration().configure().buildSessionFactory();
}
catch (Throwable ex) {
// Make sure you log the exception, as it might be swallowed
System.err.println("Initial SessionFactory creation failed." + ex);
throw new ExceptionInInitializerError(ex);
}
}
public static SessionFactory getSessionFactory() {
return sessionFactory;
}
}
Save this code as src/main/java/org/hibernate/tutorial/util/HibernateUtil.java
This class not only produces the global org.hibernate.SessionFactory reference in its static
initializer; it also hides the fact that it uses a static singleton. We might just as well have looked up
the org.hibernate.SessionFactory reference from JNDI in an application server or any other
location for that matter.
If you give the org.hibernate.SessionFactory a name in your configuration, Hibernate will try
to bind it to JNDI under that name after it has been built. Another, better option is to use a JMX
deployment and let the JMX-capable container instantiate and bind a HibernateService to JNDI.
Such advanced options are discussed later.
You now need to configure a logging system. Hibernate uses commons logging and provides two
choices: Log4j and JDK 1.4 logging. Most developers prefer Log4j: copy log4j.properties from
the Hibernate distribution in the etc/ directory to your src directory, next to hibernate.cfg.xml.
If you prefer to have more verbose output than that provided in the example configuration, you
can change the settings. By default, only the Hibernate startup message is shown on stdout.
The tutorial infrastructure is complete and you are now ready to do some real work with Hibernate.
11
Capítulo 1. Tutorial
1.1.7. Esto también debe compilar sin problemas. Finalmente
necesitamos configurar un sistema de logging (registro).
Hibernate usa commons logging y te deja la elección entre
Log4J y logging de JDK 1.4. La mayoría de los desarrolladores
prefieren Log4J: copia log4j.properties de la distribución de
Hibernate (está en el directorio etc/) a tu directorio src, junto
a hibernate.cfg.xml. Echa una mirada a la configuración de
ejemplo y cambia los ajustes si te gusta tener una salida más
verborrágica. Por defecto, sólo se muestra el mensaje de
arranque de Hibernate en la salida.
We are now ready to start doing some real worjk with Hibernate. Let's start by writing an
EventManager class with a main() method:
package org.hibernate.tutorial;
import org.hibernate.Session;
import java.util.*;
import org.hibernate.tutorial.domain.Event;
import org.hibernate.tutorial.util.HibernateUtil;
public class EventManager {
public static void main(String[] args) {
EventManager mgr = new EventManager();
if (args[0].equals("store")) {
mgr.createAndStoreEvent("My Event", new Date());
}
HibernateUtil.getSessionFactory().close();
}
private void createAndStoreEvent(String title, Date theDate) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();
Event theEvent = new Event();
12
ng y te deja la elección entre Log4J y logging de JDK 1.4. La mayoría de los desarrolladores prefieren Log4J: copia
log4j.properties de la distribución de Hibernate (está en el directorio
etc/) a tu directorio src, junto a
theEvent.setTitle(title);
tener una salida más verborrágica. Por defecto, sólo se muestra el mensaje de arranque de Hibernate en la salida.
theEvent.setDate(theDate);
session.save(theEvent);
session.getTransaction().commit();
}
}
In createAndStoreEvent() we created a new Event object and handed it over to Hibernate. At
that point, Hibernate takes care of the SQL and executes an INSERT on the database.
A org.hibernate.Session is designed to represent a single unit of work (a single atmoic piece of
work to be performed). For now we will keep things simple and assume a one-to-one granularity
between a Hibernate org.hibernate.Session and a database transaction. To shield our code from
the actual underlying transaction system we use the Hibernate org.hibernate.Transaction
API. In this particular case we are using JDBC-based transactional semantics, but it could also
run with JTA.
What does sessionFactory.getCurrentSession() do? First, you can call it as many times
and anywhere you like once you get hold of your org.hibernate.SessionFactory. The
getCurrentSession() method always returns the "current" unit of work. Remember that we
switched the configuration option for this mechanism to "thread" in our src/main/resources/
hibernate.cfg.xml? Due to that setting, the context of a current unit of work is bound to the
current Java thread that executes the application.
Importante
Hibernate offers three methods of current session tracking. The "thread" based
method is not intended for production use; it is merely useful for prototyping and
tutorials such as this one. Current session tracking is discussed in more detail later
on.
A org.hibernate.Session begins when the first call to getCurrentSession() is made for the
current thread. It is then bound by Hibernate to the current thread. When the transaction ends,
either through commit or rollback, Hibernate automatically unbinds the org.hibernate.Session
from the thread and closes it for you. If you call getCurrentSession() again, you get a new
org.hibernate.Session and can start a new unit of work.
Related to the unit of work scope, should the Hibernate org.hibernate.Session be used to execute
one or several database operations? The above example uses one org.hibernate.Session for one
operation. However this is pure coincidence; the example is just not complex enough to show
any other approach. The scope of a Hibernate org.hibernate.Session is flexible but you should
never design your application to use a new Hibernate org.hibernate.Session for every database
13
Capítulo 1. Tutorial
operation. Even though it is used in the following examples, consider session-per-operation an
anti-pattern. A real web application is shown later in the tutorial which will help illustrate this.
See Capítulo 11, Transactions and Concurrency for more information about transaction handling
and demarcation. The previous example also skipped any error handling and rollback.
To
our
run this, we will make use of the Maven exec plugin to
class
with
the
necessary
classpath
setup:
mvn
exec:java
call
-
Dexec.mainClass="org.hibernate.tutorial.EventManager" -Dexec.args="store"
Nota
You may need to perform mvn compile first.
You should see Hibernate starting up and, depending on your configuration, lots of log output.
Towards the end, the following line will be displayed:
Debes ver, después de la compilación, a Hibernate arrancando y, dependiendo de tu
configuración mucha salida de registro (log). Al final encontrarás la siguiente línea:
This is the INSERT executed by Hibernate.
To list stored events an option is added to the main method:
if (args[0].equals("store")) {
mgr.createAndStoreEvent("My Event", new Date());
}
else if (args[0].equals("list")) {
List events = mgr.listEvents();
for (int i = 0; i < events.size(); i++) {
Event theEvent = (Event) events.get(i);
System.out.println(
"Event: " + theEvent.getTitle() + " Time: " + theEvent.getDate()
);
}
}
A new listEvents() method is also added:
private List listEvents() {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();
14
Note: Most new Hibernate users fail at this point and we see questions about
l use this schema. If you change the mapping and/or database schema, you have to re-enable hbm2ddl once again.
List result = session.createQuery("from Event").list();
session.getTransaction().commit();
return result;
}
Here, we are using a Hibernate Query Language (HQL) query to load all existing Event objects
from the database. Hibernate will generate the appropriate SQL, send it to the database and
populate Event objects with the data. You can create more complex queries with HQL. See
Capítulo 14, HQL: El Lenguaje de Consulta de Hibernate for more information.
Now we can call our new functionality, again using the Maven exec plugin: mvn exec:java Dexec.mainClass="org.hibernate.tutorial.EventManager" -Dexec.args="list"
1.2. Note: Most new Hibernate users fail at this point
and we see questions about Table not found error
messages regularly. However, if you follow the steps
outlined above you will not have this problem, as
hbm2ddl creates the database schema on the first
run, and subsequent application restarts will use this
schema. If you change the mapping and/or database
schema, you have to re-enable hbm2ddl once again.
So far we have mapped a single persistent entity class to a table in isolation. Let's expand on that
a bit and add some class associations. We will add people to the application and store a list of
events in which they participate.
1.2.1. Hemos mapeado un clase de entidad persistente a
una tabla. Construyamos sobre esto y agreguemos algunas
asociaciones de clase. Primero agregaremos personas a
nuestra aplicación, y almacenaremos una lista de eventos en
las que participan.
The first cut of the Person class looks like this:
package org.hibernate.tutorial.domain;
public class Person {
15
Capítulo 1. Tutorial
private Long id;
private int age;
private String firstname;
private String lastname;
public Person() {}
// Accessor methods for all properties, private setter for 'id'
}
Save this to a file named src/main/java/org/hibernate/tutorial/domain/Person.java
Next, create the new mapping file as src/main/resources/org/hibernate/tutorial/domain/
Person.hbm.xml
<hibernate-mapping package="org.hibernate.tutorial.domain">
<class name="Person" table="PERSON">
<id name="id" column="PERSON_ID">
<generator class="native"/>
</id>
<property name="age"/>
<property name="firstname"/>
<property name="lastname"/>
</class>
</hibernate-mapping>
<hibernate-mapping>
<class
name="Person"
table="PERSON">
<id
name="id"
column="PERSON_ID"> <generator class="increment"/> </id> <property name="age"/>
<property name="firstname"/> <property name="lastname"/> </class> </hibernate-mapping >
Finalmente, agrega el nuevo mapeo a la configuración de Hibernate:
Create an association between these two entities. Persons can participate in events, and events
have participants. The design questions you have to deal with are: directionality, multiplicity, and
collection behavior.
16
cuestiones de diseño con que tenemos que tratar son: direccionalidad, multiplicidad y comportamiento de colección.
1.2.2. Crearemos ahora una asociación entre estas dos
entidades. Obviamente, las personas pueden participar en
eventos, y los eventos tienen participantes. Las cuestiones
de diseño con que tenemos que tratar son: direccionalidad,
multiplicidad y comportamiento de colección.
By adding a collection of events to the Person class, you can easily navigate to the events for a
particular person, without executing an explicit query - by calling Person#getEvents. Multi-valued
associations are represented in Hibernate by one of the Java Collection Framework contracts;
here we choose a java.util.Set because the collection will not contain duplicate elements and
the ordering is not relevant to our examples:
Hasta ahora hemos diseñado asociaciones unidireccionales multivaluadas, implementadas con
un Set. Escribamos el código para esto en las clases Java y luego lo mapeemos:
Before mapping this association, let's consider the other side. We could just keep this
unidirectional or create another collection on the Event, if we wanted to be able to navigate it from
both directions. This is not necessary, from a functional perspective. You can always execute an
explicit query to retrieve the participants for a particular event. This is a design choice left to you,
but what is clear from this discussion is the multiplicity of the association: "many" valued on both
sides is called a many-to-many association. Hence, we use Hibernate's many-to-many mapping:
<class name="Person" table="PERSON">
<id name="id" column="PERSON_ID">
<generator class="native"/>
</id>
<property name="age"/>
<property name="firstname"/>
<property name="lastname"/>
<set name="events" table="PERSON_EVENT">
<key column="PERSON_ID"/>
<many-to-many column="EVENT_ID" class="Event"/>
</set>
</class>
Hibernate supports a broad range of collection mappings, a set being most common. For a manyto-many association, or n:m entity relationship, an association table is required. Each row in this
table represents a link between a person and an event. The table name is decalred using the table
17
Capítulo 1. Tutorial
attribute of the set element. The identifier column name in the association, for the person side, is
defined with the key element, the column name for the event's side with the column attribute of
the many-to-many. You also have to tell Hibernate the class of the objects in your collection (the
class on the other side of the collection of references).
Hibernate soporta todo tipo de mapeos de colección, siendo el más común un <set>. Para una
asociación muchos-a-muchos (o relación de entidad n:m), se necesita una tabla de asociación.
Cada fila en esta tabla representa un enlace entre una persona y un evento. Esta tabla se
configura con el atributo table del elemento set. El nombre de la columna identificadora en la
asociación, para el lado de la persona, se define con el elemento <key>. El nombre de columna
para el lado del evento se define con el atributo column del <many-to-many>. También tienes
que decirle a Hibernate la clase de los objetos en tu colección (correcto: la clase del otro lado
de la colección de referencias).
El esquema de base de datos para este mapeo es, por lo tanto:
1.2.3. _____________ __________________ | | | |
_____________ | EVENTS | | PERSON_EVENT | | | |
_____________| |__________________| | PERSON | | | |
| |_____________| | *EVENT_ID | <--> | *EVENT_ID | | | |
EVENT_DATE | | *PERSON_ID | <--> | *PERSON_ID | | TITLE | |
__________________| | AGE | |_____________| | FIRSTNAME | |
LASTNAME | |_____________|
Now we will bring some people and events together in a new method in EventManager:
private void addPersonToEvent(Long personId, Long eventId) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();
Person aPerson = (Person) session.load(Person.class, personId);
Event anEvent = (Event) session.load(Event.class, eventId);
aPerson.getEvents().add(anEvent);
session.getTransaction().commit();
}
After loading a Person and an Event, simply modify the collection using the normal collection
methods. There is no explicit call to update() or save(); Hibernate automatically detects that the
collection has been modified and needs to be updated. This is called automatic dirty checking. You
18
N_ID | | TITLE | |__________________| | AGE | |_____________| | FIRSTNAME | | LASTNAME | |_____________|
can also try it by modifying the name or the date property of any of your objects. As long as they are
in persistent state, that is, bound to a particular Hibernate org.hibernate.Session, Hibernate
monitors any changes and executes SQL in a write-behind fashion. The process of synchronizing
the memory state with the database, usually only at the end of a unit of work, is called flushing. In
our code, the unit of work ends with a commit, or rollback, of the database transaction.
You can load person and event in different units of work. Or you can modify an object outside of
a org.hibernate.Session, when it is not in persistent state (if it was persistent before, this state
is called detached). You can even modify a collection when it is detached:
private void addPersonToEvent(Long personId, Long eventId) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();
Person aPerson = (Person) session
.createQuery("select p from Person p left join fetch p.events where p.id = :pid")
.setParameter("pid", personId)
.uniqueResult(); // Eager fetch the collection so we can use it detached
Event anEvent = (Event) session.load(Event.class, eventId);
session.getTransaction().commit();
// End of first unit of work
aPerson.getEvents().add(anEvent); // aPerson (and its collection) is detached
// Begin second unit of work
Session session2 = HibernateUtil.getSessionFactory().getCurrentSession();
session2.beginTransaction();
session2.update(aPerson); // Reattachment of aPerson
session2.getTransaction().commit();
}
The call to update makes a detached object persistent again by binding it to a new unit of work,
so any modifications you made to it while detached can be saved to the database. This includes
any modifications (additions/deletions) you made to a collection of that entity object.
This is not much use in our example, but it is an important concept you can incorporate into
your own application. Complete this exercise by adding a new action to the main method of the
EventManager and call it from the command line. If you need the identifiers of a person and an
event - the save() method returns it (you might have to modify some of the previous methods
to return that identifier):
19
Capítulo 1. Tutorial
else if (args[0].equals("addpersontoevent")) {
Long eventId = mgr.createAndStoreEvent("My Event", new Date());
Long personId = mgr.createAndStorePerson("Foo", "Bar");
mgr.addPersonToEvent(personId, eventId);
System.out.println("Added person " + personId + " to event " + eventId);
}
This is an example of an association between two equally important classes : two entities. As
mentioned earlier, there are other classes and types in a typical model, usually "less important".
Some you have already seen, like an int or a java.lang.String. We call these classes value
types, and their instances depend on a particular entity. Instances of these types do not have
their own identity, nor are they shared between entities. Two persons do not reference the same
firstname object, even if they have the same first name. Value types cannot only be found in the
JDK , but you can also write dependent classes yourself such as an Address or MonetaryAmount
class. In fact, in a Hibernate application all JDK classes are considered value types.
You can also design a collection of value types. This is conceptually different from a collection of
references to other entities, but looks almost the same in Java.
1.2.4. Colección de valores
Let's add a collection of email addresses to the Person entity. This will be represented as a
java.util.Set of java.lang.String instances:
private Set emailAddresses = new HashSet();
public Set getEmailAddresses() {
return emailAddresses;
}
public void setEmailAddresses(Set emailAddresses) {
this.emailAddresses = emailAddresses;
}
The mapping of this Set is as follows:
<set name="emailAddresses" table="PERSON_EMAIL_ADDR">
<key column="PERSON_ID"/>
<element type="string" column="EMAIL_ADDR"/>
</set>
20
Colección de valores
The difference compared with the earlier mapping is the use of the element part which tells
Hibernate that the collection does not contain references to another entity, but is rather a collection
whose elements are values types, here specifically of type string. The lowercase name tells you
it is a Hibernate mapping type/converter. Again the table attribute of the set element determines
the table name for the collection. The key element defines the foreign-key column name in the
collection table. The column attribute in the element element defines the column name where the
email address values will actually be stored.
Here is the updated schema:
_____________
__________________
|
|
|
|
_____________
| EVENTS |
| PERSON_EVENT |
|
|
___________________
|_____________|
|__________________|
| PERSON |
|
|
|
|
|
|
|_____________|
| PERSON_EMAIL_ADDR |
| *EVENT_ID | <--> | *EVENT_ID
|
|
|
|___________________|
| EVENT_DATE |
| *PERSON_ID
| <--> | *PERSON_ID | <--> | *PERSON_ID
| TITLE
|
|__________________|
| AGE
|
| *EMAIL_ADDR
|
|_____________|
| FIRSTNAME |
|___________________|
| LASTNAME |
|_____________|
|
You can see that the primary key of the collection table is in fact a composite key that uses both
columns. This also implies that there cannot be duplicate email addresses per person, which is
exactly the semantics we need for a set in Java.
You can now try to add elements to this collection, just like we did before by linking persons and
events. It is the same code in Java:
private void addEmailToPerson(Long personId, String emailAddress) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();
Person aPerson = (Person) session.load(Person.class, personId);
// adding to the emailAddress collection might trigger a lazy load of the collection
aPerson.getEmailAddresses().add(emailAddress);
session.getTransaction().commit();
}
21
Capítulo 1. Tutorial
This time we did not use a fetch query to initialize the collection. Monitor the SQL log and try to
optimize this with an eager fetch.
1.2.5. Asociaciones bidireccionales
Next you will map a bi-directional association. You will make the association between person and
event work from both sides in Java. The database schema does not change, so you will still have
many-to-many multiplicity.
Nota
A relational database is more flexible than a network programming language, in
that it does not need a navigation direction; data can be viewed and retrieved in
any possible way.
First, add a collection of participants to the Event class:
private Set participants = new HashSet();
public Set getParticipants() {
return participants;
}
public void setParticipants(Set participants) {
this.participants = participants;
}
Now map this side of the association in Event.hbm.xml.
<set name="participants" table="PERSON_EVENT" inverse="true">
<key column="EVENT_ID"/>
<many-to-many column="PERSON_ID" class="events.Person"/>
</set>
These are normal set mappings in both mapping documents. Notice that the column names in
key and many-to-many swap in both mapping documents. The most important addition here is
the inverse="true" attribute in the set element of the Event's collection mapping.
What this means is that Hibernate should take the other side, the Person class, when it needs to
find out information about the link between the two. This will be a lot easier to understand once
you see how the bi-directional link between our two entities is created.
22
Trabajando enlaces bidireccionales
1.2.6. Trabajando enlaces bidireccionales
First, keep in mind that Hibernate does not affect normal Java semantics. How did we create
a link between a Person and an Event in the unidirectional example? You add an instance of
Event to the collection of event references, of an instance of Person. If you want to make this
link bi-directional, you have to do the same on the other side by adding a Person reference to
the collection in an Event. This process of "setting the link on both sides" is absolutely necessary
with bi-directional links.
Many developers program defensively and create link management methods to correctly set both
sides (for example, in Person):
protected Set getEvents() {
return events;
}
protected void setEvents(Set events) {
this.events = events;
}
public void addToEvent(Event event) {
this.getEvents().add(event);
event.getParticipants().add(this);
}
public void removeFromEvent(Event event) {
this.getEvents().remove(event);
event.getParticipants().remove(this);
}
The get and set methods for the collection are now protected. This allows classes in the same
package and subclasses to still access the methods, but prevents everybody else from altering
the collections directly. Repeat the steps for the collection on the other side.
What about the inverse mapping attribute? For you, and for Java, a bi-directional link is simply
a matter of setting the references on both sides correctly. Hibernate, however, does not have
enough information to correctly arrange SQL INSERT and UPDATE statements (to avoid constraint
violations). Making one side of the association inverse tells Hibernate to consider it a mirror
of the other side. That is all that is necessary for Hibernate to resolve any issues that arise
when transforming a directional navigation model to a SQL database schema. The rules are
straightforward: all bi-directional associations need one side as inverse. In a one-to-many
association it has to be the many-side, and in many-to-many association you can select either side.
23
Capítulo 1. Tutorial
1.3. Part 3 - The EventManager web application
A Hibernate web application uses Session and Transaction almost like a standalone application.
However, some common patterns are useful. You can now write an EventManagerServlet. This
servlet can list all events stored in the database, and it provides an HTML form to enter new events.
1.3.1. Writing the basic servlet
First we need create our basic processing servlet. Since our servlet only handles HTTP GET
requests, we will only implement the doGet() method:
package org.hibernate.tutorial.web;
// Imports
public class EventManagerServlet extends HttpServlet {
protected void doGet(
HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
SimpleDateFormat dateFormatter = new SimpleDateFormat( "dd.MM.yyyy" );
try {
// Begin unit of work
HibernateUtil.getSessionFactory().getCurrentSession().beginTransaction();
// Process request and render page...
// End unit of work
HibernateUtil.getSessionFactory().getCurrentSession().getTransaction().commit();
}
catch (Exception ex) {
HibernateUtil.getSessionFactory().getCurrentSession().getTransaction().rollback();
if ( ServletException.class.isInstance( ex ) ) {
throw ( ServletException ) ex;
}
else {
throw new ServletException( ex );
}
}
}
24
Processing and rendering
}
Save
this
servlet
as
src/main/java/org/hibernate/tutorial/web/
EventManagerServlet.java
The pattern applied here is called session-per-request. When a request hits the servlet, a
new Hibernate Session is opened through the first call to getCurrentSession() on the
SessionFactory. A database transaction is then started. All data access occurs inside a
transaction irrespective of whether the data is read or written. Do not use the auto-commit mode
in applications.
Do not use a new Hibernate Session for every database operation. Use one Hibernate Session
that is scoped to the whole request. Use getCurrentSession(), so that it is automatically bound
to the current Java thread.
Next, the possible actions of the request are processed and the response HTML is rendered. We
will get to that part soon.
Finally, the unit of work ends when processing and rendering are complete. If any problems
occurred during processing or rendering, an exception will be thrown and the database transaction
rolled back. This completes the session-per-request pattern. Instead of the transaction
demarcation code in every servlet, you could also write a servlet filter. See the Hibernate website
and Wiki for more information about this pattern called Open Session in View. You will need it as
soon as you consider rendering your view in JSP, not in a servlet.
1.3.2. Processing and rendering
Now you can implement the processing of the request and the rendering of the page.
// Write HTML header
PrintWriter out = response.getWriter();
out.println("<html><head><title>Event Manager</title></head><body>");
// Handle actions
if ( "store".equals(request.getParameter("action")) ) {
String eventTitle = request.getParameter("eventTitle");
String eventDate = request.getParameter("eventDate");
if ( "".equals(eventTitle) || "".equals(eventDate) ) {
out.println("<b><i>Please enter event title and date.</i></b>");
}
else {
createAndStoreEvent(eventTitle, dateFormatter.parse(eventDate));
out.println("<b><i>Added event.</i></b>");
25
Capítulo 1. Tutorial
}
}
// Print page
printEventForm(out);
listEvents(out, dateFormatter);
// Write HTML footer
out.println("</body></html>");
out.flush();
out.close();
This coding style, with a mix of Java and HTML, would not scale in a more complex applicationkeep in mind that we are only illustrating basic Hibernate concepts in this tutorial. The code prints
an HTML header and a footer. Inside this page, an HTML form for event entry and a list of all
events in the database are printed. The first method is trivial and only outputs HTML:
private void printEventForm(PrintWriter out) {
out.println("<h2>Add new event:</h2>");
out.println("<form>");
out.println("Title: <input name='eventTitle' length='50'/><br/>");
out.println("Date (e.g. 24.12.2009): <input name='eventDate' length='10'/><br/>");
out.println("<input type='submit' name='action' value='store'/>");
out.println("</form>");
}
The listEvents() method uses the Hibernate Session bound to the current thread to execute
a query:
private void listEvents(PrintWriter out, SimpleDateFormat dateFormatter) {
List result = HibernateUtil.getSessionFactory()
.getCurrentSession().createCriteria(Event.class).list();
if (result.size() > 0) {
out.println("<h2>Events in database:</h2>");
out.println("<table border='1'>");
out.println("<tr>");
out.println("<th>Event title</th>");
out.println("<th>Event date</th>");
out.println("</tr>");
Iterator it = result.iterator();
while (it.hasNext()) {
26
Deploying and testing
Event event = (Event) it.next();
out.println("<tr>");
out.println("<td>" + event.getTitle() + "</td>");
out.println("<td>" + dateFormatter.format(event.getDate()) + "</td>");
out.println("</tr>");
}
out.println("</table>");
}
}
Finally, the store action is dispatched to the createAndStoreEvent() method, which also uses
the Session of the current thread:
protected void createAndStoreEvent(String title, Date theDate) {
Event theEvent = new Event();
theEvent.setTitle(title);
theEvent.setDate(theDate);
HibernateUtil.getSessionFactory()
.getCurrentSession().save(theEvent);
}
The servlet is now complete. A request to the servlet will be processed in a single Session and
Transaction. As earlier in the standalone application, Hibernate can automatically bind these
objects to the current thread of execution. This gives you the freedom to layer your code and
access the SessionFactory in any way you like. Usually you would use a more sophisticated
design and move the data access code into data access objects (the DAO pattern). See the
Hibernate Wiki for more examples.
1.3.3. Deploying and testing
To deploy this application for testing we must create a Web ARchive (WAR). First we must define
the WAR descriptor as src/main/webapp/WEB-INF/web.xml
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4"
xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/webapp_2_4.xsd">
<servlet>
27
Capítulo 1. Tutorial
<servlet-name>Event Manager</servlet-name>
<servlet-class>org.hibernate.tutorial.web.EventManagerServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Event Manager</servlet-name>
<url-pattern>/eventmanager</url-pattern>
</servlet-mapping>
</web-app>
To build and deploy call mvn package in your project directory and copy the hibernatetutorial.war file into your Tomcat webapps directory.
Nota
If you do not have Tomcat installed, download it from http://tomcat.apache.org/
and follow the installation instructions. Our application requires no changes to the
standard Tomcat configuration.
Once deployed and Tomcat is running, access the application at http://localhost:8080/
hibernate-tutorial/eventmanager. Make sure you watch the Tomcat log to see Hibernate
initialize when the first request hits your servlet (the static initializer in HibernateUtil is called)
and to get the detailed output if any exceptions occurs.
1.4. Summary
This tutorial covered the basics of writing a simple standalone Hibernate application and a small
web application. More tutorials are available from the Hibernate website [http://hibernate.org].
28
Arquitectura
2.1. Visión General
The diagram below provides a high-level view of the Hibernate architecture:
We do not have the scope in this document to provide a more detailed view of all the runtime
architectures available; Hibernate is flexible and supports several different approaches. We will,
however, show the two extremes: "minimal" architecture and "comprehensive" architecture.
This next diagram illustrates how Hibernate utilizes database and configuration data to provide
persistence services, and persistent objects, to the application.
The "minimal" architecture has the application provide its own JDBC connections and manage its
own transactions. This approach uses a minimal subset of Hibernate's APIs:
The "comprehensive" architecture abstracts the application away from the underlying JDBC/JTA
APIs and allows Hibernate to manage the details.
Here are some definitions of the objects depicted in the diagrams:
SessionFactory (org.hibernate.SessionFactory)
A threadsafe, immutable cache of compiled mappings for a single database. A factory
for Session and a client of ConnectionProvider, SessionFactory can hold an optional
(second-level) cache of data that is reusable between transactions at a process, or cluster,
level.
Session (org.hibernate.Session)
A single-threaded, short-lived object representing a conversation between the application and
the persistent store. It wraps a JDBC connection and is a factory for Transaction. Session
holds a mandatory first-level cache of persistent objects that are used when navigating the
object graph or looking up objects by identifier.
Objetos y colecciones persistentes
Short-lived, single threaded objects containing persistent state and business function. These
can be ordinary JavaBeans/POJOs. They are associated with exactly one Session. Once the
Session is closed, they will be detached and free to use in any application layer (for example,
directly as data transfer objects to and from presentation).
Objetos y colecciones transitorios y separados
Instances of persistent classes that are not currently associated with a Session. They may
have been instantiated by the application and not yet persisted, or they may have been
instantiated by a closed Session.
29
Capítulo 2. Arquitectura
Transaction (org.hibernate.Transaction)
(Optional) A single-threaded, short-lived object used by the application to specify atomic
units of work. It abstracts the application from the underlying JDBC, JTA or CORBA
transaction. A Session might span several Transactions in some cases. However,
transaction demarcation, either using the underlying API or Transaction, is never optional.
ConnectionProvider (org.hibernate.connection.ConnectionProvider)
(Optional) A factory for, and pool of, JDBC connections. It abstracts the application from
underlying Datasource or DriverManager. It is not exposed to application, but it can be
extended and/or implemented by the developer.
TransactionFactory (org.hibernate.TransactionFactory)
(Optional) A factory for Transaction instances. It is not exposed to the application, but it can
be extended and/or implemented by the developer.
Interfaces de Extensión
Hibernate offers a range of optional extension interfaces you can implement to customize the
behavior of your persistence layer. See the API documentation for details.
Given a "minimal" architecture, the application bypasses the Transaction/TransactionFactory
and/or ConnectionProvider APIs to communicate with JTA or JDBC directly.
2.2. Estados de instancia
An instance of a persistent class can be in one of three different states. These states are defined
in relation to a persistence context. The Hibernate Session object is the persistence context. The
three different states are as follows:
transitorio
The instance is not associated with any persistence context. It has no persistent identity or
primary key value.
persistente
The instance is currently associated with a persistence context. It has a persistent identity
(primary key value) and can have a corresponding row in the database. For a particular
persistence context, Hibernate guarantees that persistent identity is equivalent to Java identity
in relation to the in-memory location of the object.
separado
The instance was once associated with a persistence context, but that context was closed,
or the instance was serialized to another process. It has a persistent identity and can have
a corresponding row in the database. For detached instances, Hibernate does not guarantee
the relationship between persistent identity and Java identity.
30
Integración JMX
2.3. Integración JMX
JMX is the J2EE standard for the management of Java components. Hibernate can be
managed via a JMX standard service. AN MBean implementation is provided in the distribution:
org.hibernate.jmx.HibernateService.
For an example of how to deploy Hibernate as a JMX service on the JBoss Application Server,
please see the JBoss User Guide. JBoss AS also provides these benefits if you deploy using JMX:
• Session Management: the Hibernate Session's life cycle can be automatically bound to the
scope of a JTA transaction. This means that you no longer have to manually open and close
the Session; this becomes the job of a JBoss EJB interceptor. You also do not have to worry
about transaction demarcation in your code (if you would like to write a portable persistence
layer use the optional Hibernate Transaction API for this). You call the HibernateContext
to access a Session.
• HAR deployment: the Hibernate JMX service is deployed using a JBoss service deployment
descriptor in an EAR and/or SAR file, as it supports all the usual configuration options of a
Hibernate SessionFactory. However, you still need to name all your mapping files in the
deployment descriptor. If you use the optional HAR deployment, JBoss will automatically detect
all mapping files in your HAR file.
Para más información sobre estas opciones, consulta la Guía de Usuario del JBoss AS.
Another feature available as a JMX service is runtime Hibernate statistics. See Sección 3.4.6,
“Hibernate statistics” for more information.
2.4. Soporte JCA:
Hibernate can also be configured as a JCA connector. Please see the website for more
information. Please note, however, that at this stage Hibernate JCA support is under development.
2.5. Contextual sessions
Most applications using Hibernate need some form of "contextual" session, where a given session
is in effect throughout the scope of a given context. However, across applications the definition
of what constitutes a context is typically different; different contexts define different scopes to
the notion of current. Applications using Hibernate prior to version 3.0 tended to utilize either
home-grown ThreadLocal-based contextual sessions, helper classes such as HibernateUtil, or
utilized third-party frameworks, such as Spring or Pico, which provided proxy/interception-based
contextual sessions.
Starting with version 3.0.1, Hibernate added the SessionFactory.getCurrentSession()
method. Initially, this assumed usage of JTA transactions, where the JTA transaction defined both
the scope and context of a current session. Given the maturity of the numerous stand-alone
JTA TransactionManager implementations, most, if not all, applications should be using JTA
31
Capítulo 2. Arquitectura
transaction management, whether or not they are deployed into a J2EE container. Based on that,
the JTA-based contextual sessions are all you need to use.
However, as of version 3.1, the processing behind SessionFactory.getCurrentSession()
is
now
pluggable.
To
that
end,
a
new
extension
interface,
org.hibernate.context.CurrentSessionContext, and a new configuration parameter,
hibernate.current_session_context_class, have been added to allow pluggability of the
scope and context of defining current sessions.
See the Javadocs for the org.hibernate.context.CurrentSessionContext interface for a
detailed discussion of its contract. It defines a single method, currentSession(), by which
the implementation is responsible for tracking the current contextual session. Out-of-the-box,
Hibernate comes with three implementations of this interface:
• org.hibernate.context.JTASessionContext: current sessions are tracked and scoped by a
JTA transaction. The processing here is exactly the same as in the older JTA-only approach.
See the Javadocs for details.
• org.hibernate.context.ThreadLocalSessionContext:current sessions are tracked by
thread of execution. See the Javadocs for details.
• org.hibernate.context.ManagedSessionContext: current sessions are tracked by thread of
execution. However, you are responsible to bind and unbind a Session instance with static
methods on this class: it does not open, flush, or close a Session.
The first two implementations provide a "one session - one database transaction" programming
model. This is also also known and used as session-per-request. The beginning and end of a
Hibernate session is defined by the duration of a database transaction. If you use programmatic
transaction demarcation in plain JSE without JTA, you are advised to use the Hibernate
Transaction API to hide the underlying transaction system from your code. If you use JTA,
you can utilize the JTA interfaces to demarcate transactions. If you execute in an EJB container
that supports CMT, transaction boundaries are defined declaratively and you do not need any
transaction or session demarcation operations in your code. Refer to Capítulo 11, Transactions
and Concurrency for more information and code examples.
The hibernate.current_session_context_class configuration parameter defines which
org.hibernate.context.CurrentSessionContext implementation should be used. For
backwards compatibility, if this configuration parameter is not set but a
org.hibernate.transaction.TransactionManagerLookup is configured, Hibernate will use the
org.hibernate.context.JTASessionContext. Typically, the value of this parameter would just
name the implementation class to use. For the three out-of-the-box implementations, however,
there are three corresponding short names: "jta", "thread", and "managed".
32
Configuración
Hibernate is designed to operate in many different environments and, as such, there is a broad
range of configuration parameters. Fortunately, most have sensible default values and Hibernate
is distributed with an example hibernate.properties file in etc/ that displays the various
options. Simply put the example file in your classpath and customize it to suit your needs.
3.1. Configuración programática
An instance of org.hibernate.cfg.Configuration represents an entire set of mappings of
an application's Java types to an SQL database. The org.hibernate.cfg.Configuration is
used to build an immutable org.hibernate.SessionFactory. The mappings are compiled from
various XML mapping files.
You can obtain a org.hibernate.cfg.Configuration instance by instantiating it directly and
specifying XML mapping documents. If the mapping files are in the classpath, use addResource().
For example:
Configuration cfg = new Configuration()
.addResource("Item.hbm.xml")
.addResource("Bid.hbm.xml");
An alternative way is to specify the mapped class and allow Hibernate to find the mapping
document for you:
Configuration cfg = new Configuration()
.addClass(org.hibernate.auction.Item.class)
.addClass(org.hibernate.auction.Bid.class);
Hibernate will then search for mapping files named /org/hibernate/auction/Item.hbm.xml
and /org/hibernate/auction/Bid.hbm.xml in the classpath. This approach eliminates any
hardcoded filenames.
A org.hibernate.cfg.Configuration also allows you to specify configuration properties. For
example:
Configuration cfg = new Configuration()
.addClass(org.hibernate.auction.Item.class)
.addClass(org.hibernate.auction.Bid.class)
.setProperty("hibernate.dialect", "org.hibernate.dialect.MySQLInnoDBDialect")
.setProperty("hibernate.connection.datasource", "java:comp/env/jdbc/test")
33
Capítulo 3. Configuración
.setProperty("hibernate.order_updates", "true");
This is not the only way to pass configuration properties to Hibernate. Some alternative options
include:
1.
2.
3.
4.
Pasar una instancia de java.util.Properties a Configuration.setProperties().
Colocar hibernate.properties en un directorio raíz del classpath.
Establecer propiedades System usando java -Dproperty=value.
Include <property> elements in hibernate.cfg.xml (this is discussed later).
If you want to get started quicklyhibernate.properties is the easiest approach.
The org.hibernate.cfg.Configuration is intended as a startup-time object that will be
discarded once a SessionFactory is created.
3.2. Obteniendo una SessionFactory
Cuando todos los mapeos han sido parseados por la Configuration, la aplicación debe obtener
una fábrica de instancias de Session. Esta fábrica está concebida para ser compartida por todas
las hebras de aplicación:
SessionFactory sessions = cfg.buildSessionFactory();
Hibernate permite que tu aplicación instancie más de una SessionFactory. Esto es útil si estás
usando más de una base de datos.
3.3. Conexiones JDBC
It is advisable to have the org.hibernate.SessionFactory create and pool JDBC connections
for you. If you take this approach, opening a org.hibernate.Session is as simple as:
Session session = sessions.openSession(); // open a new Session
Once you start a task that requires access to the database, a JDBC connection will be obtained
from the pool.
Before you can do this, you first need to pass some JDBC connection properties
to Hibernate. All Hibernate property names and semantics are defined on the class
org.hibernate.cfg.Environment. The most important settings for JDBC connection
configuration are outlined below.
Hibernate will obtain and pool connections using java.sql.DriverManager if you set the
following properties:
34
Conexiones JDBC
Tabla 3.1. Propiedades JDBC de Hibernate
Nombre de propiedad
Propósito
hibernate.connection.driver_class
clase del driver jdbc
hibernate.connection.url
URL de jdbc
hibernate.connection.username
usuario de base de datos
hibernate.connection.password
contraseña del usuario de base de datos
hibernate.connection.pool_size
número máximo de conexiones manejadas por
pooling
Hibernate's own connection pooling algorithm is, however, quite rudimentary. It is intended to
help you get started and is not intended for use in a production system, or even for performance
testing. You should use a third party pool for best performance and stability. Just replace the
hibernate.connection.pool_size property with connection pool specific settings. This will turn off
Hibernate's internal pool. For example, you might like to use c3p0.
C3P0 is an open source JDBC connection pool distributed along with Hibernate in the lib
directory. Hibernate will use its org.hibernate.connection.C3P0ConnectionProvider for
connection pooling if you set hibernate.c3p0.* properties. If you would like to use Proxool, refer to
the packaged hibernate.properties and the Hibernate web site for more information.
The following is an example hibernate.properties file for c3p0:
hibernate.connection.driver_class = org.postgresql.Driver
hibernate.connection.url = jdbc:postgresql://localhost/mydatabase
hibernate.connection.username = myuser
hibernate.connection.password = secret
hibernate.c3p0.min_size=5
hibernate.c3p0.max_size=20
hibernate.c3p0.timeout=1800
hibernate.c3p0.max_statements=50
hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect
For use inside an application server, you should almost always configure Hibernate to obtain
connections from an application server javax.sql.Datasource registered in JNDI. You will need
to set at least one of the following properties:
Tabla 3.2. Propiedades de Datasource de Hibernate
Nombre de propiedad
Propósito
hibernate.connection.datasource
nombre del datasource JNDI
hibernate.jndi.url
URL del provedor JNDI (optional)
35
Capítulo 3. Configuración
Nombre de propiedad
Propósito
hibernate.jndi.class
clase de la InitialContextFactory de JNDI
(opcional)
hibernate.connection.username
usuario de base de datos (opcional)
hibernate.connection.password
contraseña del usuario de base de datos
(opcional)
Here is an example hibernate.properties file for an application server provided JNDI
datasource:
hibernate.connection.datasource = java:/comp/env/jdbc/test
hibernate.transaction.factory_class = \
org.hibernate.transaction.JTATransactionFactory
hibernate.transaction.manager_lookup_class = \
org.hibernate.transaction.JBossTransactionManagerLookup
hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect
Las conexiones JDBC obtenidas de un datasource JNDI participarán automáticamente en las
transacciones del servidor de aplicaciones manejadas por contenedor.
Arbitrary connection properties can be given by prepending "hibernate.connection" to the
connection property name. For example, you can specify a charSet connection property using
hibernate.connection.charSet.
You can define your own plugin strategy for obtaining JDBC connections by implementing
the interface org.hibernate.connection.ConnectionProvider, and specifying your custom
implementation via the hibernate.connection.provider_class property.
3.4. Parámetros de configuración opcionales
There are a number of other properties that control the behavior of Hibernate at runtime. All are
optional and have reasonable default values.
Aviso
Some of these properties are "system-level" only. System-level properties can be
set only via java -Dproperty=value or hibernate.properties. They cannot be
set by the other techniques described above.
Tabla 3.3. Propiedades de Configuración de Hibernate
Nombre de propiedad
Propósito
hibernate.dialect
El nombre de clase de un Dialect de
Hibernate que permite a Hibernate generar
36
Parámetros de configuración opcionales
Nombre de propiedad
Propósito
SQL optimizado para una base de datos
relacional en particular.
e.g. full.classname.of.Dialect
In
most
cases
Hibernate
will
actually
be
able
to
choose
the
correct
org.hibernate.dialect.Dialect
implementation based on the JDBC metadata
returned by the JDBC driver.
hibernate.show_sql
Escribe todas las sentencias SQL a la consola.
This is an alternative to setting the log category
org.hibernate.SQL to debug.
e.g. true | false
hibernate.format_sql
Pretty print the SQL in the log and console.
e.g. true | false
hibernate.default_schema
Cualifica, en el SQL generado, los nombres de
tabla sin cualificar con el esquema/tablespace
dado.
e.g. SCHEMA_NAME
hibernate.default_catalog
Qualifies unqualified table names with the
given catalog in generated SQL.
e.g. CATALOG_NAME
hibernate.session_factory_name
La SessionFactory será ligada a este nombre
en JNDI automáticamente después de ser
creada.
e.g. jndi/composite/name
hibernate.max_fetch_depth
Sets a maximum "depth" for the outer join fetch
tree for single-ended associations (one-to-one,
many-to-one). A 0 disables default outer join
fetching.
e.g. recommended values between 0 and 3
hibernate.default_batch_fetch_size
Sets a default size for Hibernate batch fetching
of associations.
e.g. recommended values 4, 8, 16
37
Capítulo 3. Configuración
Nombre de propiedad
Propósito
hibernate.default_entity_mode
Sets a default mode for entity representation
for
all
sessions
opened
from
this
SessionFactory
dynamic-map, dom4j, pojo
hibernate.order_updates
Forces Hibernate to order SQL updates by the
primary key value of the items being updated.
This will result in fewer transaction deadlocks
in highly concurrent systems.
e.g. true | false
hibernate.generate_statistics
De
habilitarse,
Hibernate
colectará
estadísticas útiles para la afinación de
rendimiento.
e.g. true | false
hibernate.use_identifer_rollback
De habilitarse, las propiedades identificadoras
generadas serán reseteadas a valores por
defecto cuando los objetos sean borrados.
e.g. true | false
hibernate.use_sql_comments
De activarse, Hibernate generará comentarios
dentro del SQL, para una más fácil depuración,
por defecto a false.
e.g. true | false
Tabla 3.4. Propiedades de JDBC y Conexiones de Hibernate
Nombre de propiedad
Propósito
hibernate.jdbc.fetch_size
Un valor distinto de cero que determina el
tamaño de recuperación de JDBC (llama a
Statement.setFetchSize()).
hibernate.jdbc.batch_size
Un valor distinto de cero habilita el uso
de actualizaciones en lote de JDBC2 por
Hibernate.
e.g. recommended values between 5 and 30
hibernate.jdbc.batch_versioned_data
Set this property to true if your JDBC
driver returns correct row counts from
executeBatch(). Iit is usually safe to turn this
option on. Hibernate will then use batched DML
38
Parámetros de configuración opcionales
Nombre de propiedad
Propósito
for automatically versioned data. Defaults to
false.
e.g. true | false
hibernate.jdbc.factory_class
Selecciona un Batcher personalizado. La
mayoría de las aplicaciones no necesitarán
esta propiedad de configuración.
e.g. classname.of.BatcherFactory
hibernate.jdbc.use_scrollable_resultset
Enables use of JDBC2 scrollable resultsets
by Hibernate. This property is only
necessary when using user-supplied JDBC
connections. Hibernate uses connection
metadata otherwise.
e.g. true | false
hibernate.jdbc.use_streams_for_binary
Usa flujos (streams) al escribir/leer tipos
binary o serializable a/desde JDBC
(propiedad a nivel de sistema).
e.g. true | false
hibernate.jdbc.use_get_generated_keys
Enables
use
of
JDBC3
PreparedStatement.getGeneratedKeys()
to retrieve natively generated keys after insert.
Requires JDBC3+ driver and JRE1.4+, set
to false if your driver has problems with the
Hibernate identifier generators. By default, it
tries to determine the driver capabilities using
connection metadata.
e.g. true|false
hibernate.connection.provider_class
EL
nombre
de
ConnectionProvider
clase
de
personalizado
un
que
provea conexiones JDBC a Hibernate.
e.g. classname.of.ConnectionProvider
hibernate.connection.isolation
Sets the JDBC transaction isolation level.
Check java.sql.Connection for meaningful
values, but note that most databases do not
support all isolation levels and some define
additional, non-standard isolations.
e.g. 1, 2, 4, 8
39
Capítulo 3. Configuración
Nombre de propiedad
Propósito
hibernate.connection.autocommit
Enables autocommit for JDBC
connections (it is not recommended).
pooled
e.g. true | false
hibernate.connection.release_mode
Specifies when Hibernate should release
JDBC connections. By default, a JDBC
connection is held until the session is
explicitly closed or disconnected. For an
application server JTA datasource, use
after_statement to aggressively release
connections after every JDBC call. For a
non-JTA connection, it often makes sense to
release the connection at the end of each
transaction, by using after_transaction.
auto will choose after_statement for the
JTA and CMT transaction strategies and
after_transaction for the JDBC transaction
strategy.
e.g.
(default)
|
on_close
after_transaction | after_statement
auto
|
This
setting
only
affects
Sessions
returned from SessionFactory.openSession.
For
Sessions
obtained
through
SessionFactory.getCurrentSession,
the
CurrentSessionContext
implementation
configured for use controls the connection
release mode for those Sessions. See
Sección 2.5, “Contextual sessions”
hibernate.connection.<propertyName>
Pasa la propiedad JDBC propertyName a
DriverManager.getConnection().
hibernate.jndi.<propertyName>
Pasa
la
propiedad
propertyName
a
InitialContextFactory de JNDI.
Tabla 3.5. Propiedades de Caché de Hibernate
Nombre de propiedad
Propósito
hibernate.cache.provider_class
El nombre de clase de un CacheProvider
personalizado.
e.g. classname.of.CacheProvider
40
Parámetros de configuración opcionales
Nombre de propiedad
Propósito
hibernate.cache.use_minimal_puts
Optimizes second-level cache operation to
minimize writes, at the cost of more frequent
reads. This setting is most useful for clustered
caches and, in Hibernate3, is enabled by
default for clustered cache implementations.
e.g. true|false
hibernate.cache.use_query_cache
Enables the query cache. Individual queries
still have to be set cachable.
e.g. true|false
hibernate.cache.use_second_level_cache Can be used to completely disable the second
level cache, which is enabled by default for
classes which specify a <cache> mapping.
e.g. true|false
hibernate.cache.query_cache_factory
El
nombre
de clase de una interface
QueryCache personalizada, por defecto al
StandardQueryCache prefabricado.
e.g. classname.of.QueryCache
hibernate.cache.region_prefix
Un prefijo a usar para los nombres de región
del caché de segundo nivel.
e.g. prefix
hibernate.cache.use_structured_entries Fuerza a Hibernate a almacenar los datos en
el caché de segundo nivel en un formato más
amigable al humano.
e.g. true|false
Tabla 3.6. Propiedades de Transacción de Hibernate
Nombre de propiedad
Propósito
hibernate.transaction.factory_class
El
nombre
de
clase
de
un
TransactionFactory a usar con la API
de Transaction de Hibernate (por defectoa
JDBCTransactionFactory).
e.g. classname.of.TransactionFactory
jta.UserTransaction
Un
nombre
usado
por
JTATransactionFactory para obtener la
UserTransaction
JNDI
JTA
del
servidor
de
aplicaciones.
41
Capítulo 3. Configuración
Nombre de propiedad
Propósito
e.g. jndi/composite/name
hibernate.transaction.manager_lookup_class
The
classname
of
a
TransactionManagerLookup. It is required
when JVM-level caching is enabled or when
using hilo generator in a JTA environment.
e.g.
classname.of.TransactionManagerLookup
hibernate.transaction.flush_before_completion
De habilitarse, la sesión se limpiará (flushed)
automáticamente durante la fase previa a la
compleción de la transacción. (Muy útil cuando
se usa Hibernate con CMT).
e.g. true | false
hibernate.transaction.auto_close_sessionIf enabled, the session will be automatically
closed during the after completion phase
of the transaction. Built-in and automatic
session context management is preferred, see
Sección 2.5, “Contextual sessions”.
e.g. true | false
Tabla 3.7. Propiedades Misceláneas
Nombre de propiedad
Propósito
hibernate.current_session_context_class Supply a custom strategy for the scoping
of the "current" Session. See Sección 2.5,
“Contextual sessions” for more information
about the built-in strategies.
e.g. jta | thread | managed | custom.Class
hibernate.query.factory_class
Elige la implementación de parser HQL.
e.g.
org.hibernate.hql.ast.ASTQueryTranslatorFactory
or
org.hibernate.hql.classic.ClassicQueryTranslatorFactory
hibernate.query.substitutions
Is used to map from tokens in Hibernate
queries to SQL tokens (tokens might be
function or literal names, for example).
e.g.
hqlLiteral=SQL_LITERAL,
hqlFunction=SQLFUNC
42
SQL Dialects
Nombre de propiedad
Propósito
hibernate.hbm2ddl.auto
Automatically validates or exports schema
DDL
to
the
database
when
the
SessionFactory is created. With createdrop, the database schema will be dropped
when the SessionFactory is closed explicitly.
e.g. validate | update | create | createdrop
hibernate.cglib.use_reflection_optimizerEnables
the use of CGLIB instead of
runtime reflection (System-level property).
Reflection can sometimes be useful
when troubleshooting. Hibernate always
requires CGLIB even if you turn off the
optimizer. You cannot set this property in
hibernate.cfg.xml.
e.g. true | false
3.4.1. SQL Dialects
Always set the hibernate.dialect property to the correct org.hibernate.dialect.Dialect
subclass for your database. If you specify a dialect, Hibernate will use sensible defaults for some
of the other properties listed above. This means that you will not have to specify them manually.
Tabla 3.8. Dialectos SQL de Hibernate(hibernate.dialect)
RDBMS
Dialecto
DB2
org.hibernate.dialect.DB2Dialect
DB2 AS/400
org.hibernate.dialect.DB2400Dialect
DB2 OS390
org.hibernate.dialect.DB2390Dialect
PostgreSQL
org.hibernate.dialect.PostgreSQLDialect
MySQL
org.hibernate.dialect.MySQLDialect
MySQL con InnoDB
org.hibernate.dialect.MySQLInnoDBDialect
MySQL con MyISAM
org.hibernate.dialect.MySQLMyISAMDialect
Oracle (cualquier versión) org.hibernate.dialect.OracleDialect
Oracle 9i
org.hibernate.dialect.Oracle9iDialect
Oracle 10g
org.hibernate.dialect.Oracle10gDialect
Sybase
org.hibernate.dialect.SybaseDialect
Sybase Anywhere
org.hibernate.dialect.SybaseAnywhereDialect
Microsoft SQL Server
org.hibernate.dialect.SQLServerDialect
43
Capítulo 3. Configuración
RDBMS
Dialecto
SAP DB
org.hibernate.dialect.SAPDBDialect
Informix
org.hibernate.dialect.InformixDialect
HypersonicSQL
org.hibernate.dialect.HSQLDialect
Ingres
org.hibernate.dialect.IngresDialect
Progress
org.hibernate.dialect.ProgressDialect
Mckoi SQL
org.hibernate.dialect.MckoiDialect
Interbase
org.hibernate.dialect.InterbaseDialect
Pointbase
org.hibernate.dialect.PointbaseDialect
FrontBase
org.hibernate.dialect.FrontbaseDialect
Firebird
org.hibernate.dialect.FirebirdDialect
3.4.2. Recuperación por Unión Externa (Outer Join Fetching)
If your database supports ANSI, Oracle or Sybase style outer joins, outer join fetching will often
increase performance by limiting the number of round trips to and from the database. This is,
however, at the cost of possibly more work performed by the database itself. Outer join fetching
allows a whole graph of objects connected by many-to-one, one-to-many, many-to-many and oneto-one associations to be retrieved in a single SQL SELECT.
Outer join fetching can be disabled globally by setting the property hibernate.max_fetch_depth
to 0. A setting of 1 or higher enables outer join fetching for one-to-one and many-to-one
associations that have been mapped with fetch="join".
Ver Sección 19.1, “Estrategias de recuperación” para más información.
3.4.3. Flujos Binarios
Oracle limits the size of byte arrays that can be passed to and/or from its JDBC driver.
If you wish to use large instances of binary or serializable type, you should enable
hibernate.jdbc.use_streams_for_binary. This is a system-level setting only.
3.4.4. Caché de segundo nivel y de lectura
The properties prefixed by hibernate.cache allow you to use a process or cluster scoped secondlevel cache system with Hibernate. See the Sección 19.2, “El Caché de Segundo Nivel” for more
information.
3.4.5. Sustitución de Lenguaje de Consulta
You can define new Hibernate query tokens using hibernate.query.substitutions. For
example:
44
Hibernate statistics
hibernate.query.substitutions true=1, false=0
This would cause the tokens true and false to be translated to integer literals in the generated
SQL.
hibernate.query.substitutions toLowercase=LOWER
This would allow you to rename the SQL LOWER function.
3.4.6. Hibernate statistics
If you enable hibernate.generate_statistics, Hibernate exposes a number of metrics that
are useful when tuning a running system via SessionFactory.getStatistics(). Hibernate can
even be configured to expose these statistics via JMX. Read the Javadoc of the interfaces in
org.hibernate.stats for more information.
3.5. Registros de mensajes (Logging)
Hibernate utilizes Simple Logging Facade for Java [http://www.slf4j.org/] (SLF4J) in order to log
various system events. SLF4J can direct your logging output to several logging frameworks (NOP,
Simple, log4j version 1.2, JDK 1.4 logging, JCL or logback) depending on your chosen binding. In
order to setup logging you will need slf4j-api.jar in your classpath together with the jar file for
your preferred binding - slf4j-log4j12.jar in the case of Log4J. See the SLF4J documentation
[http://www.slf4j.org/manual.html] for more detail. To use Log4j you will also need to place a
log4j.properties file in your classpath. An example properties file is distributed with Hibernate
in the src/ directory.
It is recommended that you familiarize yourself with Hibernate's log messages. A lot of work has
been put into making the Hibernate log as detailed as possible, without making it unreadable. It
is an essential troubleshooting device. The most interesting log categories are the following:
Tabla 3.9. Categorías de Registro de Hibernate
Categoría
Función
org.hibernate.SQL
Registra todas las sentencias DML de SQL a medida que se
ejecutan
org.hibernate.type
Registra todos los parámetros JDBC
org.hibernate.tool.hbm2ddl
Registra todas las sentencias DDL de SQL a medida que se
ejecutan
org.hibernate.pretty
Registra el estado de todas las entidades (máximo de 20 entidades)
asociadas con la sesión en tiempo de limpieza (flush)
org.hibernate.cache
Registra toda la actividad del caché de segundo nivel
45
Capítulo 3. Configuración
Categoría
Función
org.hibernate.transaction
Registra la actividad relacionada con la transacción
org.hibernate.jdbc
Registra toda adquisición de recursos JDBC
org.hibernate.hql.ast Regista los ASTs de HQL y SQL, así como otra información sobre
análisis de consultas.
org.hibernate.secure
Registra todas las peticiones de autorización JAAS
org.hibernate
Log everything. This is a lot of information but it is useful for
troubleshooting
Al desarrollar aplicacinoes con Hibernate, casi siempre debes trabajar con debug habilitado
para la categoría org.hibernate.SQL o, alternativamente, la propiedad hibernate.show_sql
habilitada.
3.6. Implementando una NamingStrategy
La interface org.hibernate.cfg.NamingStrategy te permite especificar un "estándar de
nombrado" para objetos de la base de datos y elementos de esquema.
You can provide rules for automatically generating database identifiers from Java identifiers or
for processing "logical" column and table names given in the mapping file into "physical" table
and column names. This feature helps reduce the verbosity of the mapping document, eliminating
repetitive noise (TBL_ prefixes, for example). The default strategy used by Hibernate is quite
minimal.
You can specify a different strategy by calling Configuration.setNamingStrategy() before
adding mappings:
SessionFactory sf = new Configuration()
.setNamingStrategy(ImprovedNamingStrategy.INSTANCE)
.addFile("Item.hbm.xml")
.addFile("Bid.hbm.xml")
.buildSessionFactory();
org.hibernate.cfg.ImprovedNamingStrategy es una estrategia prefabricada que puede ser
un punto de partida útil para algunas aplicaciones.
3.7. Fichero de configuración XML
Un enfoque alternativo de configuración es especificar una configuración completa en un fichero
llamado hibernate.cfg.xml. Este fichero puede ser usado como un remplazo del fichero
hibernate.properties o, si ambos están presentes, para sobrescribir propiedades.
The XML configuration file is by default expected to be in the root of your CLASSPATH. Here is
an example:
46
Fichero de configuración XML
<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<!-- a SessionFactory instance listed as /jndi/name -->
<session-factory
name="java:hibernate/SessionFactory">
<!-- properties -->
<property name="connection.datasource"
>java:/comp/env/jdbc/MyDB</property>
<property name="dialect"
>org.hibernate.dialect.MySQLDialect</property>
<property name="show_sql"
>false</property>
<property name="transaction.factory_class">
org.hibernate.transaction.JTATransactionFactory
</property>
<property name="jta.UserTransaction"
>java:comp/UserTransaction</property>
<!-- mapping files -->
<mapping resource="org/hibernate/auction/Item.hbm.xml"/>
<mapping resource="org/hibernate/auction/Bid.hbm.xml"/>
<!-- cache settings -->
<class-cache class="org.hibernate.auction.Item" usage="read-write"/>
<class-cache class="org.hibernate.auction.Bid" usage="read-only"/>
<collection-cache collection="org.hibernate.auction.Item.bids" usage="read-write"/>
</session-factory>
</hibernate-configuration
>
The advantage of this approach is the externalization of the mapping file names to configuration.
The hibernate.cfg.xml is also more convenient once you have to tune the Hibernate cache. It
is your choice to use either hibernate.properties or hibernate.cfg.xml. Both are equivalent,
except for the above mentioned benefits of using the XML syntax.
47
Capítulo 3. Configuración
With the XML configuration, starting Hibernate is then as simple as:
SessionFactory sf = new Configuration().configure().buildSessionFactory();
You can select a different XML configuration file using:
SessionFactory sf = new Configuration()
.configure("catdb.cfg.xml")
.buildSessionFactory();
3.8. Integració con Servidores de Aplicaciones J2EE
Hibernate tiene los siguientes puntos de integración con la infraestructura J2EE:
• Container-managed datasources: Hibernate can use JDBC connections managed by the
container and provided through JNDI. Usually, a JTA compatible TransactionManager and
a ResourceManager take care of transaction management (CMT), especially distributed
transaction handling across several datasources. You can also demarcate transaction
boundaries programmatically (BMT), or you might want to use the optional Hibernate
Transaction API for this to keep your code portable.
• Ligamento Automático JNDI: Hibernate puede ligar sus SessionFactory a JNDI después del
arranque.
• JTA Session binding: the Hibernate Session can be automatically bound to the scope of JTA
transactions. Simply lookup the SessionFactory from JNDI and get the current Session. Let
Hibernate manage flushing and closing the Session when your JTA transaction completes.
Transaction demarcation is either declarative (CMT) or programmatic (BMT/UserTransaction).
• JMX deployment: if you have a JMX capable application server (e.g. JBoss AS), you can choose
to deploy Hibernate as a managed MBean. This saves you the one line startup code to build your
SessionFactory from a Configuration. The container will startup your HibernateService
and also take care of service dependencies (datasource has to be available before Hibernate
starts, etc).
Dependiendo de tu entorno, podrías tener que establecer la opción de configuración
hibernate.connection.aggressive_release a true si tu servidor de aplicaciones muestra
excepciones "connection containment".
48
Configuración de la estrategia de transacción
3.8.1. Configuración de la estrategia de transacción
The Hibernate Session API is independent of any transaction demarcation system in your
architecture. If you let Hibernate use JDBC directly through a connection pool, you can begin
and end your transactions by calling the JDBC API. If you run in a J2EE application server, you
might want to use bean-managed transactions and call the JTA API and UserTransaction when
needed.
Para mantener tu código portable entre estos dos (y otros) entornos recomendamos la API de
Transaction de Hibernate, que envuelve y oculta el sistema subyacente. Tienes que especificar
una clase fábrica para las instancias de Transaction estableciendo la propiedad de configuración
hibernate.transaction.factory_class de Hibernate.
There are three standard, or built-in, choices:
org.hibernate.transaction.JDBCTransactionFactory
delega a transacciones de base de datos (JDBC) (por defecto)
org.hibernate.transaction.JTATransactionFactory
delegates to container-managed transactions if an existing transaction is underway in this
context (for example, EJB session bean method). Otherwise, a new transaction is started and
bean-managed transactions are used.
org.hibernate.transaction.CMTTransactionFactory
delega a transacciones JTA manejadas por contenedor
You can also define your own transaction strategies (for a CORBA transaction service, for
example).
Some features in Hibernate (i.e., the second level cache, Contextual Sessions with JTA, etc.)
require access to the JTA TransactionManager in a managed environment. In an application
server, since J2EE does not standardize a single mechanism, you have to specify how Hibernate
should obtain a reference to the TransactionManager:
Tabla 3.10. TransactionManagers de JTA
Transaction Factory
org.hibernate.transaction.JBossTransactionManagerLookup
Servidor de
Aplicaciones
JBoss
org.hibernate.transaction.WeblogicTransactionManagerLookup
Weblogic
org.hibernate.transaction.WebSphereTransactionManagerLookup
WebSphere
org.hibernate.transaction.WebSphereExtendedJTATransactionLookup
WebSphere 6
org.hibernate.transaction.OrionTransactionManagerLookup
Orion
org.hibernate.transaction.ResinTransactionManagerLookup
Resin
org.hibernate.transaction.JOTMTransactionManagerLookup
JOTM
49
Capítulo 3. Configuración
Transaction Factory
Servidor de
Aplicaciones
org.hibernate.transaction.JOnASTransactionManagerLookup
JOnAS
org.hibernate.transaction.JRun4TransactionManagerLookup
JRun4
org.hibernate.transaction.BESTransactionManagerLookup
Borland ES
3.8.2. SessionFactory ligada a JNDI
A JNDI-bound Hibernate SessionFactory can simplify the lookup function of the factory and
create new Sessions. This is not, however, related to a JNDI bound Datasource; both simply
use the same registry.
If you wish to have the SessionFactory bound to a JNDI namespace, specify a name (e.g.
java:hibernate/SessionFactory) using the property hibernate.session_factory_name. If
this property is omitted, the SessionFactory will not be bound to JNDI. This is especially useful
in environments with a read-only JNDI default implementation (in Tomcat, for example).
Al ligar la SessionFactory a JNDI, Hibernate usará los valores de hibernate.jndi.url,
hibernate.jndi.class para instanciar un contexto inicial. Si étos no se especifican, se usará
el InitialContext por defecto.
Hibernate
will
automatically place the SessionFactory in JNDI after you call
cfg.buildSessionFactory(). This means you will have this call in some startup code, or utility
class in your application, unless you use JMX deployment with the HibernateService (this is
discussed later in greater detail).
If you use a JNDI SessionFactory, an EJB or any other class, you can obtain the
SessionFactory using a JNDI lookup.
It is recommended that you bind the SessionFactory to JNDI in a managed environment and
use a static singleton otherwise. To shield your application code from these details, we also
recommend to hide the actual lookup code for a SessionFactory in a helper class, such as
HibernateUtil.getSessionFactory(). Note that such a class is also a convenient way to
startup Hibernatesee chapter 1.
3.8.3. Ligado automático de JTA y Session
The easiest way to handle Sessions and transactions is Hibernate's automatic "current" Session
management. For a discussion of contextual sessions see Sección 2.5, “Contextual sessions”.
Using the "jta" session context, if there is no Hibernate Session associated with the current
JTA transaction, one will be started and associated with that JTA transaction the first time you call
sessionFactory.getCurrentSession(). The Sessions retrieved via getCurrentSession() in
the"jta" context are set to automatically flush before the transaction completes, close after
the transaction completes, and aggressively release JDBC connections after each statement.
This allows the Sessions to be managed by the life cycle of the JTA transaction to which it
is associated, keeping user code clean of such management concerns. Your code can either
50
Despliegue JMX
use JTA programmatically through UserTransaction, or (recommended for portable code) use
the Hibernate Transaction API to set transaction boundaries. If you run in an EJB container,
declarative transaction demarcation with CMT is preferred.
3.8.4. Despliegue JMX
The line cfg.buildSessionFactory() still has to be executed somewhere to get a
SessionFactory into JNDI. You can do this either in a static initializer block, like the one in
HibernateUtil, or you can deploy Hibernate as a managed service.
Hibernate is distributed with org.hibernate.jmx.HibernateService for deployment on an
application server with JMX capabilities, such as JBoss AS. The actual deployment and
configuration is vendor-specific. Here is an example jboss-service.xml for JBoss 4.0.x:
<?xml version="1.0"?>
<server>
<mbean code="org.hibernate.jmx.HibernateService"
name="jboss.jca:service=HibernateFactory,name=HibernateFactory">
<!-- Required services -->
<depends
>jboss.jca:service=RARDeployer</depends>
<depends
>jboss.jca:service=LocalTxCM,name=HsqlDS</depends>
<!-- Bind the Hibernate service to JNDI -->
<attribute name="JndiName"
>java:/hibernate/SessionFactory</attribute>
<!-- Datasource settings -->
<attribute name="Datasource"
>java:HsqlDS</attribute>
<attribute name="Dialect"
>org.hibernate.dialect.HSQLDialect</attribute>
<!-- Transaction integration -->
<attribute name="TransactionStrategy">
org.hibernate.transaction.JTATransactionFactory</attribute>
<attribute name="TransactionManagerLookupStrategy">
org.hibernate.transaction.JBossTransactionManagerLookup</attribute>
<attribute name="FlushBeforeCompletionEnabled"
>true</attribute>
<attribute name="AutoCloseSessionEnabled"
>true</attribute>
51
Capítulo 3. Configuración
<!-- Fetching options -->
<attribute name="MaximumFetchDepth"
>5</attribute>
<!-- Second-level caching -->
<attribute name="SecondLevelCacheEnabled"
>true</attribute>
<attribute name="CacheProviderClass"
>org.hibernate.cache.EhCacheProvider</attribute>
<attribute name="QueryCacheEnabled"
>true</attribute>
<!-- Logging -->
<attribute name="ShowSqlEnabled"
>true</attribute>
<!-- Mapping files -->
<attribute name="MapResources"
>auction/Item.hbm.xml,auction/Category.hbm.xml</attribute>
</mbean>
</server
>
This file is deployed in a directory called META-INF and packaged in a JAR file with the extension
.sar (service archive). You also need to package Hibernate, its required third-party libraries, your
compiled persistent classes, as well as your mapping files in the same archive. Your enterprise
beans (usually session beans) can be kept in their own JAR file, but you can include this EJB
JAR file in the main service archive to get a single (hot-)deployable unit. Consult the JBoss AS
documentation for more information about JMX service and EJB deployment.
52
Clases Persistentes
Persistent classes are classes in an application that implement the entities of the business problem
(e.g. Customer and Order in an E-commerce application). Not all instances of a persistent class
are considered to be in the persistent state. For example, an instance can instead be transient
or detached.
Hibernate works best if these classes follow some simple rules, also known as the Plain Old Java
Object (POJO) programming model. However, none of these rules are hard requirements. Indeed,
Hibernate3 assumes very little about the nature of your persistent objects. You can express a
domain model in other ways (using trees of Map instances, for example).
4.1. Un ejemplo simple de POJO
Most Java applications require a persistent class representing felines. For example:
package eg;
import java.util.Set;
import java.util.Date;
public class Cat {
private Long id; // identifier
private Date birthdate;
private Color color;
private char sex;
private float weight;
private int litterId;
private Cat mother;
private Set kittens = new HashSet();
private void setId(Long id) {
this.id=id;
}
public Long getId() {
return id;
}
void setBirthdate(Date date) {
birthdate = date;
}
public Date getBirthdate() {
53
Capítulo 4. Clases Persistentes
return birthdate;
}
void setWeight(float weight) {
this.weight = weight;
}
public float getWeight() {
return weight;
}
public Color getColor() {
return color;
}
void setColor(Color color) {
this.color = color;
}
void setSex(char sex) {
this.sex=sex;
}
public char getSex() {
return sex;
}
void setLitterId(int id) {
this.litterId = id;
}
public int getLitterId() {
return litterId;
}
void setMother(Cat mother) {
this.mother = mother;
}
public Cat getMother() {
return mother;
}
void setKittens(Set kittens) {
this.kittens = kittens;
}
public Set getKittens() {
return kittens;
}
54
Implementa un constructor sin argumentos
// addKitten not needed by Hibernate
public void addKitten(Cat kitten) {
kitten.setMother(this);
kitten.setLitterId( kittens.size() );
kittens.add(kitten);
}
}
The four main rules of persistent classes are explored in more detail in the following sections.
4.1.1. Implementa un constructor sin argumentos
Cat has a no-argument constructor. All persistent classes must have a default constructor (which
can be non-public) so that Hibernate can instantiate them using Constructor.newInstance().
It is recommended that you have a default constructor with at least package visibility for runtime
proxy generation in Hibernate.
4.1.2. Provee una propiedad identificadora (opcional)
Cat has a property called id. This property maps to the primary key column of a database table.
The property might have been called anything, and its type might have been any primitive type,
any primitive "wrapper" type, java.lang.String or java.util.Date. If your legacy database
table has composite keys, you can use a user-defined class with properties of these types (see
the section on composite identifiers later in the chapter.)
La propiedad identificadora es estrictamente opcional. Puedes olvidarla y dejar que Hibernate
siga internamente la pista de los identificadores del objeto. Sin embargo, no recomendamos esto.
In fact, some functionality is available only to classes that declare an identifier property:
• Reasociación transitiva de objetos separados (actualizaciones o fusiones en cascada) - ver
Sección 10.11, “Persistencia transitiva”
• Session.saveOrUpdate()
• Session.merge()
We recommend that you declare consistently-named identifier properties on persistent classes
and that you use a nullable (i.e., non-primitive) type.
4.1.3. Prefiere las clases no finales (opcional)
Un aspecto central de Hibernate, proxies, depende de que las clases persistentes sean ya no
finales, o sean ya la implementación de una interface que declare todos los métodos públicos.
You can persist final classes that do not implement an interface with Hibernate. You will not,
however, be able to use proxies for lazy association fetching which will ultimately limit your options
for performance tuning.
55
Capítulo 4. Clases Persistentes
Debes también evitar declarar métodos public final en clases non-final. Si quieres usar
una clase con un método public final, debes deshabilitar explícitamente el uso de proxies
estableciendo lazy="false".
4.1.4. Declara métodos de acceso y modificación para los
campos persistentes (opcional)
Cat declares accessor methods for all its persistent fields. Many other ORM tools directly persist
instance variables. It is better to provide an indirection between the relational schema and
internal data structures of the class. By default, Hibernate persists JavaBeans style properties
and recognizes method names of the form getFoo, isFoo and setFoo. If required, you can switch
to direct field access for particular properties.
Las propiedades no necesitan ser declaradas públicas. Hibernate puede persistir una propiedad
con un par get / set protected o private.
4.2. Implementando herencia
A subclass must also observe the first and second rules. It inherits its identifier property from the
superclass, Cat. For example:
package eg;
public class DomesticCat extends Cat {
private String name;
public String getName() {
return name;
}
protected void setName(String name) {
this.name=name;
}
}
4.3. Implementando equals() y hashCode()
You have to override the equals() and hashCode() methods if you:
• intend to put instances of persistent classes in a Set (the recommended way to represent manyvalued associations); and
• piensas usar reasociación de instancias separadas.
Hibernate guarantees equivalence of persistent identity (database row) and Java identity only
inside a particular session scope. When you mix instances retrieved in different sessions, you
must implement equals() and hashCode() if you wish to have meaningful semantics for Sets.
56
Implementando equals() y hashCode()
The most obvious way is to implement equals()/hashCode() by comparing the identifier value
of both objects. If the value is the same, both must be the same database row, because they are
equal. If both are added to a Set, you will only have one element in the Set). Unfortunately, you
cannot use that approach with generated identifiers. Hibernate will only assign identifier values to
objects that are persistent; a newly created instance will not have any identifier value. Furthermore,
if an instance is unsaved and currently in a Set, saving it will assign an identifier value to the object.
If equals() and hashCode() are based on the identifier value, the hash code would change,
breaking the contract of the Set. See the Hibernate website for a full discussion of this problem.
This is not a Hibernate issue, but normal Java semantics of object identity and equality.
It is recommended that you implement equals() and hashCode() using Business key equality.
Business key equality means that the equals() method compares only the properties that form
the business key. It is a key that would identify our instance in the real world (a natural candidate
key):
public class Cat {
...
public boolean equals(Object other) {
if (this == other) return true;
if ( !(other instanceof Cat) ) return false;
final Cat cat = (Cat) other;
if ( !cat.getLitterId().equals( getLitterId() ) ) return false;
if ( !cat.getMother().equals( getMother() ) ) return false;
return true;
}
public int hashCode() {
int result;
result = getMother().hashCode();
result = 29 * result + getLitterId();
return result;
}
}
A business key does not have to be as solid as a database primary key candidate (see
Sección 11.1.3, “Considerando la identidad del objeto”). Immutable or unique properties are
usually good candidates for a business key.
57
Capítulo 4. Clases Persistentes
4.4. Modelos dinámicos
Note
The following features are currently considered experimental and may change in
the near future.
Persistent entities do not necessarily have to be represented as POJO classes or as JavaBean
objects at runtime. Hibernate also supports dynamic models (using Maps of Maps at runtime) and
the representation of entities as DOM4J trees. With this approach, you do not write persistent
classes, only mapping files.
By default, Hibernate works in normal POJO mode. You can set a default entity representation
mode for a particular SessionFactory using the default_entity_mode configuration option (see
Tabla 3.3, “Propiedades de Configuración de Hibernate”).
The following examples demonstrate the representation using Maps. First, in the mapping file an
entity-name has to be declared instead of, or in addition to, a class name:
<hibernate-mapping>
<class entity-name="Customer">
<id name="id"
type="long"
column="ID">
<generator class="sequence"/>
</id>
<property name="name"
column="NAME"
type="string"/>
<property name="address"
column="ADDRESS"
type="string"/>
<many-to-one name="organization"
column="ORGANIZATION_ID"
class="Organization"/>
<bag name="orders"
inverse="true"
58
Modelos dinámicos
lazy="false"
cascade="all">
<key column="CUSTOMER_ID"/>
<one-to-many class="Order"/>
</bag>
</class>
</hibernate-mapping
>
Even though associations are declared using target class names, the target type of associations
can also be a dynamic entity instead of a POJO.
After setting the default entity mode to dynamic-map for the SessionFactory, you can, at runtime,
work with Maps of Maps:
Session s = openSession();
Transaction tx = s.beginTransaction();
Session s = openSession();
// Create a customer
Map david = new HashMap();
david.put("name", "David");
// Create an organization
Map foobar = new HashMap();
foobar.put("name", "Foobar Inc.");
// Link both
david.put("organization", foobar);
// Save both
s.save("Customer", david);
s.save("Organization", foobar);
tx.commit();
s.close();
One of the main advantages of dynamic mapping is quick turnaround time for prototyping, without
the need for entity class implementation. However, you lose compile-time type checking and
will likely deal with many exceptions at runtime. As a result of the Hibernate mapping, the
59
Capítulo 4. Clases Persistentes
database schema can easily be normalized and sound, allowing to add a proper domain model
implementation on top later on.
Los modos de representación de entidad pueden ser establecidos por Session:
Session dynamicSession = pojoSession.getSession(EntityMode.MAP);
// Create a customer
Map david = new HashMap();
david.put("name", "David");
dynamicSession.save("Customer", david);
...
dynamicSession.flush();
dynamicSession.close()
...
// Continue on pojoSession
Please note that the call to getSession() using an EntityMode is on the Session API, not
the SessionFactory. That way, the new Session shares the underlying JDBC connection,
transaction, and other context information. This means you do not have to call flush() and
close() on the secondary Session, and also leave the transaction and connection handling to
the primary unit of work.
Puede encontrarse más información sobre las capacidades de representación XML en
Capítulo 18, Mapeo XML.
4.5. UNTRANSLATED!!! Tuplizers
org.hibernate.tuple.Tuplizer, and its sub-interfaces, are responsible for managing
a
particular
representation of a piece of data given that representation's
org.hibernate.EntityMode. If a given piece of data is thought of as a data structure, then a
tuplizer is the thing that knows how to create such a data structure and how to extract values
from and inject values into such a data structure. For example, for the POJO entity mode, the
corresponding tuplizer knows how create the POJO through its constructor. It also knows how to
access the POJO properties using the defined property accessors.
There
are
two
high-level
types
of
Tuplizers,
represented
by
the
org.hibernate.tuple.entity.EntityTuplizer
and
org.hibernate.tuple.component.ComponentTuplizer interfaces. EntityTuplizers are
responsible for managing the above mentioned contracts in regards to entities, while
ComponentTuplizers do the same for components.
Users can also plug in their own tuplizers. Perhaps you require that a java.util.Map
implementation other than java.util.HashMap be used while in the dynamic-map entity-mode.
Or perhaps you need to define a different proxy generation strategy than the one used by default.
60
UNTRANSLATED!!! Tuplizers
Both would be achieved by defining a custom tuplizer implementation. Tuplizer definitions are
attached to the entity or component mapping they are meant to manage. Going back to the
example of our customer entity:
<hibernate-mapping>
<class entity-name="Customer">
<!-Override the dynamic-map entity-mode
tuplizer for the customer entity
-->
<tuplizer entity-mode="dynamic-map"
class="CustomMapTuplizerImpl"/>
<id name="id" type="long" column="ID">
<generator class="sequence"/>
</id>
<!-- other properties -->
...
</class>
</hibernate-mapping>
public class CustomMapTuplizerImpl
extends org.hibernate.tuple.entity.DynamicMapEntityTuplizer {
// override the buildInstantiator() method to plug in our custom map...
protected final Instantiator buildInstantiator(
org.hibernate.mapping.PersistentClass mappingInfo) {
return new CustomMapInstantiator( mappingInfo );
}
private static final class CustomMapInstantiator
extends org.hibernate.tuple.DynamicMapInstantitor {
// override the generateMap() method to return our custom map...
protected final Map generateMap() {
return new CustomMap();
}
}
}
61
Capítulo 4. Clases Persistentes
4.6. EntityNameResolvers
The org.hibernate.EntityNameResolver interface is a contract for resolving the entity name
of a given entity instance. The interface defines a single method resolveEntityName which is
passed the entity instance and is expected to return the appropriate entity name (null is allowed
and would indicate that the resolver does not know how to resolve the entity name of the given
entity instance). Generally speaking, an org.hibernate.EntityNameResolver is going to be
most useful in the case of dynamic models. One example might be using proxied interfaces as
your domain model. The hibernate test suite has an example of this exact style of usage under
the org.hibernate.test.dynamicentity.tuplizer2. Here is some of the code from that package for
illustration.
/**
* A very trivial JDK Proxy InvocationHandler implementation where we proxy an interface as
* the domain model and simply store persistent state in an internal Map. This is an extremely
* trivial example meant only for illustration.
*/
public final class DataProxyHandler implements InvocationHandler {
private String entityName;
private HashMap data = new HashMap();
public DataProxyHandler(String entityName, Serializable id) {
this.entityName = entityName;
data.put( "Id", id );
}
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
String methodName = method.getName();
if ( methodName.startsWith( "set" ) ) {
String propertyName = methodName.substring( 3 );
data.put( propertyName, args[0] );
}
else if ( methodName.startsWith( "get" ) ) {
String propertyName = methodName.substring( 3 );
return data.get( propertyName );
}
else if ( "toString".equals( methodName ) ) {
return entityName + "#" + data.get( "Id" );
}
else if ( "hashCode".equals( methodName ) ) {
return new Integer( this.hashCode() );
}
return null;
62
EntityNameResolvers
}
public String getEntityName() {
return entityName;
}
public HashMap getData() {
return data;
}
}
/**
*
*/
public class ProxyHelper {
public static String extractEntityName(Object object) {
// Our custom java.lang.reflect.Proxy instances actually bundle
// their appropriate entity name, so we simply extract it from there
// if this represents one of our proxies; otherwise, we return null
if ( Proxy.isProxyClass( object.getClass() ) ) {
InvocationHandler handler = Proxy.getInvocationHandler( object );
if ( DataProxyHandler.class.isAssignableFrom( handler.getClass() ) ) {
DataProxyHandler myHandler = ( DataProxyHandler ) handler;
return myHandler.getEntityName();
}
}
return null;
}
// various other utility methods ....
}
/**
* The EntityNameResolver implementation.
* IMPL NOTE : An EntityNameResolver really defines a strategy for how entity names should be
* resolved. Since this particular impl can handle resolution for all of our entities we want to
* take advantage of the fact that SessionFactoryImpl keeps these in a Set so that we only ever
* have one instance registered. Why? Well, when it comes time to resolve an entity name,
* Hibernate must iterate over all the registered resolvers. So keeping that number down
* helps that process be as speedy as possible. Hence the equals and hashCode impls
*/
public class MyEntityNameResolver implements EntityNameResolver {
public static final MyEntityNameResolver INSTANCE = new MyEntityNameResolver();
63
Capítulo 4. Clases Persistentes
public String resolveEntityName(Object entity) {
return ProxyHelper.extractEntityName( entity );
}
public boolean equals(Object obj) {
return getClass().equals( obj.getClass() );
}
public int hashCode() {
return getClass().hashCode();
}
}
public class MyEntityTuplizer extends PojoEntityTuplizer {
public MyEntityTuplizer(EntityMetamodel entityMetamodel, PersistentClass mappedEntity) {
super( entityMetamodel, mappedEntity );
}
public EntityNameResolver[] getEntityNameResolvers() {
return new EntityNameResolver[] { MyEntityNameResolver.INSTANCE };
}
public String determineConcreteSubclassEntityName(Object entityInstance,
SessionFactoryImplementor factory) {
String entityName = ProxyHelper.extractEntityName( entityInstance );
if ( entityName == null ) {
entityName = super.determineConcreteSubclassEntityName( entityInstance, factory );
}
return entityName;
}
...
}
In order to register an org.hibernate.EntityNameResolver users must either:
1. Implement a custom Tuplizer, implementing the getEntityNameResolvers method.
2. Register it with the org.hibernate.impl.SessionFactoryImpl (which is the implementation
class for org.hibernate.SessionFactory) using the registerEntityNameResolver
method.
64
Mapeo O/R Básico
5.1. Declaración de mapeo
Object/relational mappings are usually defined in an XML document. The mapping document is
designed to be readable and hand-editable. The mapping language is Java-centric, meaning that
mappings are constructed around persistent class declarations and not table declarations.
Please note that even though many Hibernate users choose to write the XML by hand, a number of
tools exist to generate the mapping document. These include XDoclet, Middlegen and AndroMDA.
Here is an example mapping:
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="eg">
<class name="Cat"
table="cats"
discriminator-value="C">
<id name="id">
<generator class="native"/>
</id>
<discriminator column="subclass"
type="character"/>
<property name="weight"/>
<property name="birthdate"
type="date"
not-null="true"
update="false"/>
<property name="color"
type="eg.types.ColorUserType"
not-null="true"
update="false"/>
65
Capítulo 5. Mapeo O/R Básico
<property name="sex"
not-null="true"
update="false"/>
<property name="litterId"
column="litterId"
update="false"/>
<many-to-one name="mother"
column="mother_id"
update="false"/>
<set name="kittens"
inverse="true"
order-by="litter_id">
<key column="mother_id"/>
<one-to-many class="Cat"/>
</set>
<subclass name="DomesticCat"
discriminator-value="D">
<property name="name"
type="string"/>
</subclass>
</class>
<class name="Dog">
<!-- mapping for Dog could go here -->
</class>
</hibernate-mapping
>
We will now discuss the content of the mapping document. We will only describe, however, the
document elements and attributes that are used by Hibernate at runtime. The mapping document
also contains some extra optional attributes and elements that affect the database schemas
exported by the schema export tool (for example, the not-null attribute).
66
Doctype
5.1.1. Doctype
All XML mappings should declare the doctype shown. The actual DTD can be found at the
URL above, in the directory hibernate-x.x.x/src/org/hibernate , or in hibernate3.jar.
Hibernate will always look for the DTD in its classpath first. If you experience lookups of the DTD
using an Internet connection, check the DTD declaration against the contents of your classpath.
5.1.1.1. UNTRANSLATED! EntityResolver
Hibernate will first attempt to resolve DTDs in its classpath. It does this is by registering a custom
org.xml.sax.EntityResolver implementation with the SAXReader it uses to read in the xml
files. This custom EntityResolver recognizes two different systemId namespaces:
• a hibernate namespace is recognized whenever the resolver encounters a systemId starting
with http://hibernate.sourceforge.net/. The resolver attempts to resolve these entities
via the classloader which loaded the Hibernate classes.
• a user namespace is recognized whenever the resolver encounters a systemId using a
classpath:// URL protocol. The resolver will attempt to resolve these entities via (1) the
current thread context classloader and (2) the classloader which loaded the Hibernate classes.
The following is an example of utilizing user namespacing:
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd" [
<!ENTITY types SYSTEM "classpath://your/domain/types.xml">
]>
<hibernate-mapping package="your.domain">
<class name="MyEntity">
<id name="id" type="my-custom-id-type">
...
</id>
<class>
&types;
</hibernate-mapping
>
Where types.xml is a resource in the your.domain package and contains a custom typedef.
67
Capítulo 5. Mapeo O/R Básico
5.1.2. Hibernate-mapping
This element has several optional attributes. The schema and catalog attributes specify that
tables referred to in this mapping belong to the named schema and/or catalog. If they are
specified, tablenames will be qualified by the given schema and catalog names. If they are
missing, tablenames will be unqualified. The default-cascade attribute specifies what cascade
style should be assumed for properties and collections that do not specify a cascade attribute.
By default, the auto-import attribute allows you to use unqualified class names in the query
language.
<hibernate-mapping
schema="schemaName"
catalog="catalogName"
default-cascade="cascade_style"
default-access="field|property|ClassName"
default-lazy="true|false"
auto-import="true|false"
package="package.name"
/>
schema (optional): the name of a database schema.
catalog (optional): the name of a database catalog.
default-cascade (optional - defaults to none): a default cascade style.
default-access (optional - defaults to property): the strategy Hibernate should use for
accessing all properties. It can be a custom implementation of PropertyAccessor.
default-lazy (optional - defaults to true): the default value for unspecified lazy attributes
of class and collection mappings.
auto-import (optional - defaults to true): specifies whether we can use unqualified class
names of classes in this mapping in the query language.
package (optional): specifies a package prefix to use for unqualified class names in the
mapping document.
If you have two persistent classes with the same unqualified name, you should set autoimport="false". An exception will result if you attempt to assign two classes to the same
"imported" name.
The hibernate-mapping element allows you to nest several persistent <class> mappings, as
shown above. It is, however, good practice (and expected by some tools) to map only a single
68
Class
persistent class, or a single class hierarchy, in one mapping file and name it after the persistent
superclass. For example, Cat.hbm.xml, Dog.hbm.xml, or if using inheritance, Animal.hbm.xml.
5.1.3. Class
You can declare a persistent class using the class element. For example:
<class
name="ClassName"
table="tableName"
discriminator-value="discriminator_value"
mutable="true|false"
schema="owner"
catalog="catalog"
proxy="ProxyInterface"
dynamic-update="true|false"
dynamic-insert="true|false"
select-before-update="true|false"
polymorphism="implicit|explicit"
where="arbitrary sql where condition"
persister="PersisterClass"
batch-size="N"
optimistic-lock="none|version|dirty|all"
lazy="true|false"
(16)
entity-name="EntityName"
(17)
check="arbitrary sql check condition"
(18)
rowid="rowid"
(19)
subselect="SQL expression"
(20)
abstract="true|false"
(21)
node="element-name"
/>
name (optional): the fully qualified Java class name of the persistent class or interface. If this
attribute is missing, it is assumed that the mapping is for a non-POJO entity.
69
Capítulo 5. Mapeo O/R Básico
table (optional - defaults to the unqualified class name): the name of its database table.
discriminator-value (optional - defaults to the class name): a value that distinguishes
individual subclasses that is used for polymorphic behavior. Acceptable values include null
and not null.
mutable (optional - defaults to true): specifies that instances of the class are (not) mutable.
schema (optional): overrides the schema name specified by the root <hibernate-mapping>
element.
catalog (optional): overrides the catalog name specified by the root <hibernate-mapping>
element.
proxy (optional): specifies an interface to use for lazy initializing proxies. You can specify
the name of the class itself.
dynamic-update (optional - defaults to false): specifies that UPDATE SQL should be
generated at runtime and can contain only those columns whose values have changed.
dynamic-insert (optional - defaults to false): specifies that INSERT SQL should be
generated at runtime and contain only the columns whose values are not null.
select-before-update (optional - defaults to false): specifies that Hibernate should never
perform an SQL UPDATE unless it is certain that an object is actually modified. Only when
a transient object has been associated with a new session using update(), will Hibernate
perform an extra SQL SELECT to determine if an UPDATE is actually required.
polymorphism (optional - defaults to implicit): determines whether implicit or explicit query
polymorphism is used.
where (optional): specifies an arbitrary SQL WHERE condition to be used when retrieving
objects of this class.
persister (optional): specifies a custom ClassPersister.
batch-size (optional - defaults to 1): specifies a "batch size" for fetching instances of this
class by identifier.
optimistic-lock (optional - defaults to version): determines the optimistic locking strategy.
16
lazy (optional): lazy fetching can be disabled by setting lazy="false".
17
entity-name (optional - defaults to the class name): Hibernate3 allows a class to be
18
19
20
21
70
mapped multiple times, potentially to different tables. It also allows entity mappings that are
represented by Maps or XML at the Java level. In these cases, you should provide an explicit
arbitrary name for the entity. See Sección 4.4, “Modelos dinámicos” and Capítulo 18, Mapeo
XML for more information.
check (optional): an SQL expression used to generate a multi-row check constraint for
automatic schema generation.
rowid (optional): Hibernate can use ROWIDs on databases. On Oracle, for example,
Hibernate can use the rowid extra column for fast updates once this option has been set
to rowid. A ROWID is an implementation detail and represents the physical location of a
stored tuple.
subselect (optional): maps an immutable and read-only entity to a database subselect. This
is useful if you want to have a view instead of a base table. See below for more information.
abstract (optional): is used to mark abstract superclasses in <union-subclass>
hierarchies.
Class
It is acceptable for the named persistent class to be an interface. You can declare implementing
classes of that interface using the <subclass> element. You can persist any static inner class.
Specify the class name using the standard form i.e. e.g.Foo$Bar.
Immutable classes, mutable="false", cannot be updated or deleted by the application. This
allows Hibernate to make some minor performance optimizations.
The optional proxy attribute enables lazy initialization of persistent instances of the class.
Hibernate will initially return CGLIB proxies that implement the named interface. The persistent
object will load when a method of the proxy is invoked. See "Initializing collections and proxies"
below.
Implicit polymorphism means that instances of the class will be returned by a query that names
any superclass or implemented interface or class, and that instances of any subclass of the class
will be returned by a query that names the class itself. Explicit polymorphism means that class
instances will be returned only by queries that explicitly name that class. Queries that name
the class will return only instances of subclasses mapped inside this <class> declaration as a
<subclass> or <joined-subclass>. For most purposes, the default polymorphism="implicit"
is appropriate. Explicit polymorphism is useful when two different classes are mapped to the same
table This allows a "lightweight" class that contains a subset of the table columns.
The persister
for
the
class.
attribute lets you customize the persistence strategy used
You
can,
for
example,
specify
your
own
subclass
of
org.hibernate.persister.EntityPersister, or you can even provide a completely new
implementation of the interface org.hibernate.persister.ClassPersister that implements,
for example, persistence via stored procedure calls, serialization to flat files or LDAP. See
org.hibernate.test.CustomPersister for a simple example of "persistence" to a Hashtable.
The dynamic-update and dynamic-insert settings are not inherited by subclasses, so they can
also be specified on the <subclass> or <joined-subclass> elements. Although these settings
can increase performance in some cases, they can actually decrease performance in others.
Use of select-before-update will usually decrease performance. It is useful to prevent a
database update trigger being called unnecessarily if you reattach a graph of detached instances
to a Session.
Si habilitas dynamic-update, tendrás opción de estrategias de bloqueo optimistas:
• version: check the version/timestamp columns
• all: check all columns
• dirty: check the changed columns, allowing some concurrent updates
• none: do not use optimistic locking
It is strongly recommended that you use version/timestamp columns for optimistic locking with
Hibernate. This strategy optimizes performance and correctly handles modifications made to
detached instances (i.e. when Session.merge() is used).
71
Capítulo 5. Mapeo O/R Básico
There is no difference between a view and a base table for a Hibernate mapping. This is
transparent at the database level, although some DBMS do not support views properly, especially
with updates. Sometimes you want to use a view, but you cannot create one in the database (i.e.
with a legacy schema). In this case, you can map an immutable and read-only entity to a given
SQL subselect expression:
<class name="Summary">
<subselect>
select item.name, max(bid.amount), count(*)
from item
join bid on bid.item_id = item.id
group by item.name
</subselect>
<synchronize table="item"/>
<synchronize table="bid"/>
<id name="name"/>
...
</class
>
Declare the tables to synchronize this entity with, ensuring that auto-flush happens correctly and
that queries against the derived entity do not return stale data. The <subselect> is available both
as an attribute and a nested mapping element.
5.1.4. id
Las clases mapeadas deben declarar la columna de clave primaria de la tabla de la base de
datos. En la mayoría de los casos tendrá también una propiedad estilo Javabeans que tenga el
identificador único de una instancia. El elemento <id> define el mapeo de esa propiedad a la
columna de clave primaria.
<id
name="propertyName"
type="typename"
column="column_name"
unsaved-value="null|any|none|undefined|id_value"
access="field|property|ClassName"
node="element-name|@attribute-name|element/@attribute|.">
<generator class="generatorClass"/>
72
id
</id
>
name (optional): the name of the identifier property.
type (opcional): un nombre que indica el nobre Hibernate.
column (optional - defaults to the property name): the name of the primary key column.
unsaved-value (optional - defaults to a "sensible" value): an identifier property value
that indicates an instance is newly instantiated (unsaved), distinguishing it from detached
instances that were saved or loaded in a previous session.
access (optional - defaults to property): the strategy Hibernate should use for accessing
the property value.
Si se omite el atributo name, se asume que la clase no tiene propiedad identificadora.
El atributo unsaved-value es importante! Si la propiedad identificadora de tu clase no tiene por
defecto el valor por defecto normal de Java (null o cero), entonces debes especificar el valor por
defecto real.
There is an alternative <composite-id> declaration that allows access to legacy data with
composite keys. Its use is strongly discouraged for anything else.
5.1.4.1. Generator
El elemento hijo opcional <generator> nombra una clase Java usada en generar identificadores
únicos para instancias de la clase persistente. De requerirse algún parámetro para configurar o
inicializar la instancia del generador, se pasa usando el elemento <param>.
<id name="id" type="long" column="cat_id">
<generator class="org.hibernate.id.TableHiLoGenerator">
<param name="table"
>uid_table</param>
<param name="column"
>next_hi_value_column</param>
</generator>
</id
>
All generators implement the interface org.hibernate.id.IdentifierGenerator. This is a very
simple interface. Some applications can choose to provide their own specialized implementations,
however, Hibernate provides a range of built-in implementations. The shortcut names for the builtin generators are as follows:
73
Capítulo 5. Mapeo O/R Básico
increment
genera indentificadores de tipo long, short o int que sólo son únicos cuando ningún otro
proceso está insertando datos en la misma tabla. No usar en un cluster.
identity
soporta columnas de identidad en DB2, MySQL, MS SQL Server, Sybase y HypersonicSQL.
El identificador devuelto es de tipo long, short o int.
sequence
usa una secuencia en DB2, PostgreSQL, Oracle, SAP DB, McKoi o un generador en
Interbase. El identificador devuelto es de tipo long, short o int.
hilo
usa un algoritmo alto/bajo para generar eficientemente identificadores de tipo long,
short o int, dada una tabla y columna como fuente de valores altos (por defecto
hibernate_unique_key y next_hi respectivamente). El algoritmo alto/bajo genera
identificadores que son únicos sólo para una base de datos particular.
seqhilo
usa un algoritmo alto/bajo para generar eficientemente identificadores de tipo long, short o
int, dada una secuencia de base de datos.
uuid
uses a 128-bit UUID algorithm to generate identifiers of type string that are unique within a
network (the IP address is used). The UUID is encoded as a string of 32 hexadecimal digits
in length.
guid
usa una cadena GUID generada por base de datos en MS SQL Server y MySQL.
native
selects identity, sequence or hilo depending upon the capabilities of the underlying
database.
assigned
lets the application assign an identifier to the object before save() is called. This is the default
strategy if no <generator> element is specified.
select
retrieves a primary key, assigned by a database trigger, by selecting the row by some unique
key and retrieving the primary key value.
foreign
uses the identifier of another associated object. It is usually used in conjunction with a <oneto-one> primary key association.
UNTRANSLATED! sequence-identity
a specialized sequence generation strategy that utilizes a database sequence for the actual
value generation, but combines this with JDBC3 getGeneratedKeys to return the generated
74
id
identifier value as part of the insert statement execution. This strategy is only supported on
Oracle 10g drivers targeted for JDK 1.4. Comments on these insert statements are disabled
due to a bug in the Oracle drivers.
5.1.4.2. Algoritmo alto/bajo
The hilo and seqhilo generators provide two alternate implementations of the hi/lo algorithm.
The first implementation requires a "special" database table to hold the next available "hi" value.
Where supported, the second uses an Oracle-style sequence.
<id name="id" type="long" column="cat_id">
<generator class="hilo">
<param name="table"
>hi_value</param>
<param name="column"
>next_value</param>
<param name="max_lo"
>100</param>
</generator>
</id
>
<id name="id" type="long" column="cat_id">
<generator class="seqhilo">
<param name="sequence"
>hi_value</param>
<param name="max_lo"
>100</param>
</generator>
</id
>
Unfortunately, you cannot use hilo when supplying your own Connection to Hibernate. When
Hibernate uses an application server datasource to obtain connections enlisted with JTA, you
must configure the hibernate.transaction.manager_lookup_class.
5.1.4.3. Algoritmo UUID
The UUID contains: IP address, startup time of the JVM that is accurate to a quarter second,
system time and a counter value that is unique within the JVM. It is not possible to obtain a MAC
address or memory address from Java code, so this is the best option without using JNI.
75
Capítulo 5. Mapeo O/R Básico
5.1.4.4. Columnas de identidad y secuencias
For databases that support identity columns (DB2, MySQL, Sybase, MS SQL), you can use
identity key generation. For databases that support sequences (DB2, Oracle, PostgreSQL,
Interbase, McKoi, SAP DB) you can use sequence style key generation. Both of these strategies
require two SQL queries to insert a new object. For example:
<id name="id" type="long" column="person_id">
<generator class="sequence">
<param name="sequence"
>person_id_sequence</param>
</generator>
</id
>
<id name="id" type="long" column="person_id" unsaved-value="0">
<generator class="identity"/>
</id
>
For cross-platform development, the native strategy will, depending on the capabilities of the
underlying database, choose from the identity, sequence and hilo strategies.
5.1.4.5. Identificadores asignados
If you want the application to assign identifiers, as opposed to having Hibernate generate them,
you can use the assigned generator. This special generator uses the identifier value already
assigned to the object's identifier property. The generator is used when the primary key is a natural
key instead of a surrogate key. This is the default behavior if you do not specify a <generator>
element.
The assigned generator makes Hibernate use unsaved-value="undefined". This forces
Hibernate to go to the database to determine if an instance is transient or detached, unless there
is a version or timestamp property, or you define Interceptor.isUnsaved().
5.1.4.6. Claves primarias asignadas por disparadores
Hibernate does not generate DDL with triggers. It is for legacy schemas only.
<id name="id" type="long" column="person_id">
<generator class="select">
<param name="key"
76
Enhanced identifier generators
>socialSecurityNumber</param>
</generator>
</id
>
In the above example, there is a unique valued property named socialSecurityNumber. It is
defined by the class, as a natural key and a surrogate key named person_id, whose value is
generated by a trigger.
5.1.5. Enhanced identifier generators
Starting with release 3.2.3, there are 2 new generators which represent a re-thinking of 2 different
aspects of identifier generation. The first aspect is database portability; the second is optimization
Optimization means that you do not have to query the database for every request for a new
identifier value. These two new generators are intended to take the place of some of the named
generators described above, starting in 3.3.x. However, they are included in the current releases
and can be referenced by FQN.
The first of these new generators is org.hibernate.id.enhanced.SequenceStyleGenerator
which is intended, firstly, as a replacement for the sequence generator and, secondly, as a better
portability generator than native. This is because native generally chooses between identity
and sequence which have largely different semantics that can cause subtle issues in applications
eyeing portability. org.hibernate.id.enhanced.SequenceStyleGenerator, however, achieves
portability in a different manner. It chooses between a table or a sequence in the database to store
its incrementing values, depending on the capabilities of the dialect being used. The difference
between this and native is that table-based and sequence-based storage have the same exact
semantic. In fact, sequences are exactly what Hibernate tries to emulate with its table-based
generators. This generator has a number of configuration parameters:
• sequence_name (optional, defaults to hibernate_sequence): the name of the sequence or table
to be used.
• initial_value (optional, defaults to 1): the initial value to be retrieved from the sequence/table.
In sequence creation terms, this is analogous to the clause typically named "STARTS WITH".
• increment_size (optional - defaults to 1): the value by which subsequent calls to the sequence/
table should differ. In sequence creation terms, this is analogous to the clause typically named
"INCREMENT BY".
• force_table_use (optional - defaults to false): should we force the use of a table as the
backing structure even though the dialect might support sequence?
• value_column (optional - defaults to next_val): only relevant for table structures, it is the name
of the column on the table which is used to hold the value.
• optimizer (optional - defaults to none): See Sección 5.1.6, “Identifier generator optimization”
The second of these new generators is org.hibernate.id.enhanced.TableGenerator, which
is intended, firstly, as a replacement for the table generator, even though it actually functions
much more like org.hibernate.id.MultipleHiLoPerTableGenerator, and secondly, as a re-
77
Capítulo 5. Mapeo O/R Básico
implementation of org.hibernate.id.MultipleHiLoPerTableGenerator that utilizes the notion
of pluggable optimizers. Essentially this generator defines a table capable of holding a number of
different increment values simultaneously by using multiple distinctly keyed rows. This generator
has a number of configuration parameters:
• table_name (optional - defaults to hibernate_sequences): the name of the table to be used.
• value_column_name (optional - defaults to next_val): the name of the column on the table that
is used to hold the value.
• segment_column_name (optional - defaults to sequence_name): the name of the column on the
table that is used to hold the "segment key". This is the value which identifies which increment
value to use.
• segment_value (optional - defaults to default): The "segment key" value for the segment from
which we want to pull increment values for this generator.
• segment_value_length (optional - defaults to 255): Used for schema generation; the column
size to create this segment key column.
• initial_value (optional - defaults to 1): The initial value to be retrieved from the table.
• increment_size (optional - defaults to 1): The value by which subsequent calls to the table
should differ.
• optimizer (optional - defaults to ): See Sección 5.1.6, “Identifier generator optimization”
5.1.6. Identifier generator optimization
For identifier generators that store values in the database, it is inefficient for them to hit the
database on each and every call to generate a new identifier value. Instead, you can group a bunch
of them in memory and only hit the database when you have exhausted your in-memory value
group. This is the role of the pluggable optimizers. Currently only the two enhanced generators
(Sección 5.1.5, “Enhanced identifier generators” support this operation.
• none (generally this is the default if no optimizer was specified): this will not perform any
optimizations and hit the database for each and every request.
• hilo: applies a hi/lo algorithm around the database retrieved values. The values from the
database for this optimizer are expected to be sequential. The values retrieved from the
database structure for this optimizer indicates the "group number". The increment_size is
multiplied by that value in memory to define a group "hi value".
• pooled: as with the case of hilo, this optimizer attempts to minimize the number of hits to
the database. Here, however, we simply store the starting value for the "next group" into the
database structure rather than a sequential value in combination with an in-memory grouping
algorithm. Here, increment_size refers to the values coming from the database.
5.1.7. composite-id
<composite-id
name="propertyName"
78
composite-id
class="ClassName"
unsaved-value="undefined|any|none"
access="field|property|ClassName"
node="element-name|.">
<key-property name="propertyName" type="typename" column="column_name"/>
<key-many-to-one name="propertyName class="ClassName" column="column_name"/>
......
</composite-id
>
A table with a composite key can be mapped with multiple properties of the class as identifier
properties. The <composite-id> element accepts <key-property> property mappings and
<key-many-to-one> mappings as child elements.
<composite-id>
<key-property name="medicareNumber"/>
<key-property name="dependent"/>
</composite-id
>
The persistent class must override equals() and hashCode() to implement composite identifier
equality. It must also implement Serializable.
Unfortunately, this approach means that a persistent object is its own identifier. There is no
convenient "handle" other than the object itself. You must instantiate an instance of the persistent
class itself and populate its identifier properties before you can load() the persistent state
associated with a composite key. We call this approach an embedded composite identifier, and
discourage it for serious applications.
A second approach is what we call a mapped composite identifier, where the identifier properties
named inside the <composite-id> element are duplicated on both the persistent class and a
separate identifier class.
<composite-id class="MedicareId" mapped="true">
<key-property name="medicareNumber"/>
<key-property name="dependent"/>
</composite-id
>
In this example, both the composite identifier class, MedicareId, and the entity class itself have
properties named medicareNumber and dependent. The identifier class must override equals()
79
Capítulo 5. Mapeo O/R Básico
and hashCode() and implement Serializable. The main disadvantage of this approach is code
duplication.
The following attributes are used to specify a mapped composite identifier:
• mapped (optional - defaults to false): indicates that a mapped composite identifier is used, and
that the contained property mappings refer to both the entity class and the composite identifier
class.
• class (optional - but required for a mapped composite identifier): the class used as a composite
identifier.
We will describe a third, even more convenient approach, where the composite identifier
is implemented as a component class in Sección 8.4, “Componentes como identificadores
compuestos”. The attributes described below apply only to this alternative approach:
• name (optional - required for this approach): a property of component type that holds the
composite identifier. Please see chapter 9 for more information.
• access (optional - defaults to property): the strategy Hibernate uses for accessing the property
value.
• class (optional - defaults to the property type determined by reflection): the component class
used as a composite identifier. Please see the next section for more information.
The third approach, an identifier component, is recommended for almost all applications.
5.1.8. Discriminator
The <discriminator> element is required for polymorphic persistence using the table-per-classhierarchy mapping strategy. It declares a discriminator column of the table. The discriminator
column contains marker values that tell the persistence layer what subclass to instantiate for a
particular row. A restricted set of types can be used: string, character, integer, byte, short,
boolean, yes_no, true_false.
<discriminator
column="discriminator_column"
type="discriminator_type"
force="true|false"
insert="true|false"
formula="arbitrary sql expression"
/>
80
Version (optional)
column (optional - defaults to class): the name of the discriminator column.
type (optional - defaults to string): a name that indicates the Hibernate type
force (optional - defaults to false): "forces" Hibernate to specify the allowed discriminator
values, even when retrieving all instances of the root class.
insert (optional - defaults to true): set this to false if your discriminator column is also part
of a mapped composite identifier. It tells Hibernate not to include the column in SQL INSERTs.
formula (optional): an arbitrary SQL expression that is executed when a type has to be
evaluated. It allows content-based discrimination.
Los valores reales de la columna discriminadora están especificados por el atributo
discriminator-value de los elementos <class> y <subclass>.
The force attribute is only useful if the table contains rows with "extra" discriminator values that
are not mapped to a persistent class. This will not usually be the case.
The formula attribute allows you to declare an arbitrary SQL expression that will be used to
evaluate the type of a row. For example:
<discriminator
formula="case when CLASS_TYPE in ('a', 'b', 'c') then 0 else 1 end"
type="integer"/>
5.1.9. Version (optional)
The <version> element is optional and indicates that the table contains versioned data. This is
particularly useful if you plan to use long transactions. See below for more information:
<version
column="version_column"
name="propertyName"
type="typename"
access="field|property|ClassName"
unsaved-value="null|negative|undefined"
node="element-name|@attribute-name|element/@attribute|."
/>
column (optional - defaults to the property name): the name of the column holding the version
number.
name: the name of a property of the persistent class.
81
Capítulo 5. Mapeo O/R Básico
type (optional - defaults to integer): the type of the version number.
access (optional - defaults to property): the strategy Hibernate uses to access the property
value.
unsaved-value (optional - defaults to undefined): a version property value that indicates
that an instance is newly instantiated (unsaved), distinguishing it from detached instances
that were saved or loaded in a previous session. Undefined specifies that the identifier
property value should be used.
generated (optional - defaults to never): specifies that this version property value is
generated by the database. See the discussion of generated properties for more information.
insert (optional - defaults to true): specifies whether the version column should be included
in SQL insert statements. It can be set to false if the database column is defined with a
default value of 0.
Version numbers can be of Hibernate type long, integer, short, timestamp or calendar.
A version or timestamp property should never be null for a detached instance. Hibernate will detect
any instance with a null version or timestamp as transient, irrespective of what other unsavedvalue strategies are specified. Declaring a nullable version or timestamp property is an easy way
to avoid problems with transitive reattachment in Hibernate. It is especially useful for people using
assigned identifiers or composite keys.
5.1.10. Timestamp (optional)
The optional <timestamp> element indicates that the table contains timestamped data. This
provides an alternative to versioning. Timestamps are a less safe implementation of optimistic
locking. However, sometimes the application might use the timestamps in other ways.
<timestamp
column="timestamp_column"
name="propertyName"
access="field|property|ClassName"
unsaved-value="null|undefined"
node="element-name|@attribute-name|element/@attribute|."
/>
column (optional - defaults to the property name): the name of a column holding the
timestamp.
name: the name of a JavaBeans style property of Java type Date or Timestamp of the
persistent class.
access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.
82
Property
unsaved-value (optional - defaults to null): a version property value that indicates that an
instance is newly instantiated (unsaved), distinguishing it from detached instances that were
saved or loaded in a previous session. Undefined specifies that the identifier property value
should be used.
source (optional - defaults to vm): Where should Hibernate retrieve the timestamp value
from? From the database, or from the current JVM? Database-based timestamps incur an
overhead because Hibernate must hit the database in order to determine the "next value". It
is safer to use in clustered environments. Not all Dialects are known to support the retrieval
of the database's current timestamp. Others may also be unsafe for usage in locking due to
lack of precision (Oracle 8, for example).
generated (optional - defaults to never): specifies that this timestamp property value is
actually generated by the database. See the discussion of generated properties for more
information.
Note
<Timestamp> is equivalent to <version type="timestamp">. And <timestamp
source="db"> is equivalent to <version type="dbtimestamp">
5.1.11. Property
The <property> element declares a persistent JavaBean style property of the class.
<property
name="propertyName"
column="column_name"
type="typename"
update="true|false"
insert="true|false"
formula="arbitrary SQL expression"
access="field|property|ClassName"
lazy="true|false"
unique="true|false"
not-null="true|false"
optimistic-lock="true|false"
83
Capítulo 5. Mapeo O/R Básico
node="element-name|@attribute-name|element/@attribute|."
index="index_name"
unique_key="unique_key_id"
length="L"
precision="P"
scale="S"
/>
name: el nombre de la propiedad, con la letra inicial en minúsculas.
column (optional - defaults to the property name): the name of the mapped database table
column. This can also be specified by nested <column> element(s).
type (opcional): un nombre que indica el nobre Hibernate.
update, insert (optional - defaults to true): specifies that the mapped columns should
be included in SQL UPDATE and/or INSERT statements. Setting both to false allows a pure
"derived" property whose value is initialized from some other property that maps to the same
column(s), or by a trigger or other application.
formula (opcional): una expresión SQL que define el valor para una propiedad computada.
Las propiedades computadas no tienen una columna mapeada propia.
access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.
lazy (optional - defaults to false): specifies that this property should be fetched lazily when
the instance variable is first accessed. It requires build-time bytecode instrumentation.
unique (optional): enables the DDL generation of a unique constraint for the columns. Also,
allow this to be the target of a property-ref.
not-null (optional): enables the DDL generation of a nullability constraint for the columns.
optimistic-lock (optional - defaults to true): specifies that updates to this property do or
do not require acquisition of the optimistic lock. In other words, it determines if a version
increment should occur when this property is dirty.
generated (optional - defaults to never): specifies that this property value is actually
generated by the database. See the discussion of generated properties for more information.
typename puede ser:
1. The name of a Hibernate basic type: integer, string, character, date, timestamp,
float, binary, serializable, object, blob etc.
2. The name of a Java class with a default basic type: int, float, char, java.lang.String,
java.util.Date, java.lang.Integer, java.sql.Clob etc.
3. El nombre de una clase Java serializable.
4. The class name of a custom type: com.illflow.type.MyCustomType etc.
If you do not specify a type, Hibernate will use reflection upon the named property and guess
the correct Hibernate type. Hibernate will attempt to interpret the name of the return class of the
property getter using, in order, rules 2, 3, and 4. In certain cases you will need the type attribute.
84
Many-to-one
For example, to distinguish between Hibernate.DATE and Hibernate.TIMESTAMP, or to specify
a custom type.
The access attribute allows you to control how Hibernate accesses the property at runtime. By
default, Hibernate will call the property get/set pair. If you specify access="field", Hibernate
will bypass the get/set pair and access the field directly using reflection. You can specify
your own strategy for property access by naming a class that implements the interface
org.hibernate.property.PropertyAccessor.
A powerful feature is derived properties. These properties are by definition read-only. The property
value is computed at load time. You declare the computation as an SQL expression. This then
translates to a SELECT clause subquery in the SQL query that loads an instance:
<property name="totalPrice"
formula="( SELECT SUM (li.quantity*p.price) FROM LineItem li, Product p
WHERE li.productId = p.productId
AND li.customerId = customerId
AND li.orderNumber = orderNumber )"/>
You can reference the entity table by not declaring an alias on a particular column. This would be
customerId in the given example. You can also use the nested <formula> mapping element if
you do not want to use the attribute.
5.1.12. Many-to-one
An ordinary association to another persistent class is declared using a many-to-one element. The
relational model is a many-to-one association; a foreign key in one table is referencing the primary
key column(s) of the target table.
<many-to-one
name="propertyName"
column="column_name"
class="ClassName"
cascade="cascade_style"
fetch="join|select"
update="true|false"
insert="true|false"
property-ref="propertyNameFromAssociatedClass"
85
Capítulo 5. Mapeo O/R Básico
access="field|property|ClassName"
unique="true|false"
not-null="true|false"
optimistic-lock="true|false"
lazy="true|proxy|false"
not-found="ignore|exception"
entity-name="EntityName"
formula="cualquier expresi&#x00f3;n SQL"
node="element-name|@attribute-name|element/@attribute|."
embed-xml="true|false"
index="index_name"
unique_key="unique_key_id"
foreign-key="foreign_key_name"
/>
name: the name of the property.
column (optional): the name of the foreign key column. This can also be specified by nested
<column> element(s).
class (optional - defaults to the property type determined by reflection): the name of the
associated class.
cascade (optional): specifies which operations should be cascaded from the parent object
to the associated object.
fetch (optional - defaults to select): chooses between outer-join fetching or sequential
select fetching.
update, insert (optional - defaults to true): specifies that the mapped columns should
be included in SQL UPDATE and/or INSERT statements. Setting both to false allows a pure
"derived" association whose value is initialized from another property that maps to the same
column(s), or by a trigger or other application.
property-ref (optional): the name of a property of the associated class that is joined to this
foreign key. If not specified, the primary key of the associated class is used.
access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.
unique (optional): enables the DDL generation of a unique constraint for the foreign-key
column. By allowing this to be the target of a property-ref, you can make the association
multiplicity one-to-one.
not-null (optional): enables the DDL generation of a nullability constraint for the foreign
key columns.
86
Many-to-one
optimistic-lock (optional - defaults to true): specifies that updates to this property do or
do not require acquisition of the optimistic lock. In other words, it determines if a version
increment should occur when this property is dirty.
lazy (optional - defaults to proxy): by default, single point associations are proxied.
lazy="no-proxy" specifies that the property should be fetched lazily when the instance
variable is first accessed. This requires build-time bytecode instrumentation. lazy="false"
specifies that the association will always be eagerly fetched.
not-found (optional - defaults to exception): specifies how foreign keys that reference
missing rows will be handled. ignore will treat a missing row as a null association.
entity-name (optional): the entity name of the associated class.
formula (opcional): una expresión SQL que define el valor para una clave foránea
computada.
Setting a value of the cascade attribute to any meaningful value other than none will propagate
certain operations to the associated object. The meaningful values are divided into three
categories. First, basic operations, which include: persist, merge, delete, save-update,
evict, replicate, lock and refresh; second, special values: delete-orphan; and third,all
comma-separated combinations of operation names: cascade="persist,merge,evict" or
cascade="all,delete-orphan". See Sección 10.11, “Persistencia transitiva” for a full
explanation. Note that single valued, many-to-one and one-to-one, associations do not support
orphan delete.
Here is an example of a typical many-to-one declaration:
<many-to-one name="product" class="Product" column="PRODUCT_ID"/>
The property-ref attribute should only be used for mapping legacy data where a foreign key
refers to a unique key of the associated table other than the primary key. This is a complicated
and confusing relational model. For example, if the Product class had a unique serial number
that is not the primary key. The unique attribute controls Hibernate's DDL generation with the
SchemaExport tool.
<property name="serialNumber" unique="true" type="string" column="SERIAL_NUMBER"/>
Entonces el mapeo para OrderItem debería usar:
<many-to-one
name="product"
column="PRODUCT_SERIAL_NUMBER"/>
property-ref="serialNumber"
This is not encouraged, however.
87
Capítulo 5. Mapeo O/R Básico
Si la clave única referenciada abarca múltiples propiedades de la entidad asociada, debes mapear
las propiedades dentro de un elemento <properties>.
If the referenced unique key is the property of a component, you can specify a property path:
<many-to-one name="owner" property-ref="identity.ssn" column="OWNER_SSN"/>
5.1.13. One-to-one
Una asociación uno-a-uno a otra clase persistente se declara usando un elemento one-to-one.
<one-to-one
name="propertyName"
class="ClassName"
cascade="cascade_style"
constrained="true|false"
fetch="join|select"
property-ref="propertyNameFromAssociatedClass"
access="field|property|ClassName"
formula="cualquier expresi&#x00f3;n SQL"
lazy="true|proxy|false"
entity-name="EntityName"
node="element-name|@attribute-name|element/@attribute|."
embed-xml="true|false"
foreign-key="foreign_key_name"
/>
name: the name of the property.
class (optional - defaults to the property type determined by reflection): the name of the
associated class.
cascade (optional): specifies which operations should be cascaded from the parent object
to the associated object.
constrained (optional): specifies that a foreign key constraint on the primary key of the
mapped table and references the table of the associated class. This option affects the order
in which save() and delete() are cascaded, and determines whether the association can
be proxied. It is also used by the schema export tool.
88
One-to-one
fetch (optional - defaults to select): chooses between outer-join fetching or sequential
select fetching.
property-ref (optional): the name of a property of the associated class that is joined to the
primary key of this class. If not specified, the primary key of the associated class is used.
access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.
formula (optional): almost all one-to-one associations map to the primary key of the owning
entity. If this is not the case, you can specify another column, columns or expression to join
on using an SQL formula. See org.hibernate.test.onetooneformula for an example.
lazy (optional - defaults to proxy): by default, single point associations are proxied.
lazy="no-proxy" specifies that the property should be fetched lazily when the
instance variable is first accessed. It requires build-time bytecode instrumentation.
lazy="false" specifies that the association will always be eagerly fetched. Note that
if constrained="false", proxying is impossible and Hibernate will eagerly fetch the
association.
entity-name (optional): the entity name of the associated class.
There are two varieties of one-to-one associations:
• asociaciones de clave primaria
• asociaciones de clave foráneas única
Primary key associations do not need an extra table column. If two rows are related by the
association, then the two table rows share the same primary key value. To relate two objects by
a primary key association, ensure that they are assigned the same identifier value.
For a primary key association, add the following mappings to Employee and Person respectively:
<one-to-one name="person" class="Person"/>
<one-to-one name="employee" class="Employee" constrained="true"/>
Ensure that the primary keys of the related rows in the PERSON and EMPLOYEE tables are
equal. You use a special Hibernate identifier generation strategy called foreign:
<class name="person" table="PERSON">
<id name="id" column="PERSON_ID">
<generator class="foreign">
<param name="property"
>employee</param>
</generator>
</id>
89
Capítulo 5. Mapeo O/R Básico
...
<one-to-one name="employee"
class="Employee"
constrained="true"/>
</class
>
A newly saved instance of Person is assigned the same primary key value as the Employee
instance referred with the employee property of that Person.
Alternatively, a foreign key with a unique constraint, from Employee to Person, can be expressed
as:
<many-to-one name="person" class="Person" column="PERSON_ID" unique="true"/>
This association can be made bidirectional by adding the following to the Person mapping:
<one-to-one name="employee" class="Employee" property-ref="person"/>
5.1.14. Natural-id
<natural-id mutable="true|false"/>
<property ... />
<many-to-one ... />
......
</natural-id
>
Although we recommend the use of surrogate keys as primary keys, you should try to identify
natural keys for all entities. A natural key is a property or combination of properties that is unique
and non-null. It is also immutable. Map the properties of the natural key inside the <natural-id>
element. Hibernate will generate the necessary unique key and nullability constraints and, as a
result, your mapping will be more self-documenting.
It is recommended that you implement equals() and hashCode() to compare the natural key
properties of the entity.
This mapping is not intended for use with entities that have natural primary keys.
• mutable (optional - defaults to false): by default, natural identifier properties are assumed to
be immutable (constant).
90
Component and dynamic-component
5.1.15. Component and dynamic-component
The <component> element maps properties of a child object to columns of the table of a parent
class. Components can, in turn, declare their own properties, components or collections. See the
"Component" examples below:
<component
name="propertyName"
class="className"
insert="true|false"
update="true|false"
access="field|property|ClassName"
lazy="true|false"
optimistic-lock="true|false"
unique="true|false"
node="element-name|."
>
<property ...../>
<many-to-one .... />
........
</component
>
name: the name of the property.
class (optional - defaults to the property type determined by reflection): the name of the
component (child) class.
insert: do the mapped columns appear in SQL INSERTs?
update: do the mapped columns appear in SQL UPDATEs?
access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.
lazy (optional - defaults to false): specifies that this component should be fetched lazily
when the instance variable is first accessed. It requires build-time bytecode instrumentation.
optimistic-lock (optional - defaults to true): specifies that updates to this component
either do or do not require acquisition of the optimistic lock. It determines if a version
increment should occur when this property is dirty.
91
Capítulo 5. Mapeo O/R Básico
unique (optional - defaults to false): specifies that a unique constraint exists upon all
mapped columns of the component.
Las etiquetas hijas <property> mapean propiedades de la clase hija columnas de la tabla.
El elemento <component> permite un subelemento <parent> que mapea una propiedad de la
clase del componente como una referencia de regreso a la entidad contenedora.
The <dynamic-component> element allows a Map to be mapped as a component, where the
property names refer to keys of the map. See Sección 8.5, “Componentes dinámicos” for more
information.
5.1.16. Properties
The <properties> element allows the definition of a named, logical grouping of the properties
of a class. The most important use of the construct is that it allows a combination of properties
to be the target of a property-ref. It is also a convenient way to define a multi-column unique
constraint. For example:
<properties
name="logicalName"
insert="true|false"
update="true|false"
optimistic-lock="true|false"
unique="true|false"
>
<property ...../>
<many-to-one .... />
........
</properties
>
name: the logical name of the grouping. It is not an actual property name.
insert: do the mapped columns appear in SQL INSERTs?
update: do the mapped columns appear in SQL UPDATEs?
optimistic-lock (optional - defaults to true): specifies that updates to these properties
either do or do not require acquisition of the optimistic lock. It determines if a version
increment should occur when these properties are dirty.
unique (optional - defaults to false): specifies that a unique constraint exists upon all
mapped columns of the component.
92
Subclass
Por ejemplo, si tenemos el siguiente mapeo de <properties>:
<class name="Person">
<id name="personNumber"/>
...
<properties name="name"
unique="true" update="false">
<property name="firstName"/>
<property name="initial"/>
<property name="lastName"/>
</properties>
</class>
You might have some legacy data association that refers to this unique key of the Person table,
instead of to the primary key:
<many-to-one name="person"
class="Person" property-ref="name">
<column name="firstName"/>
<column name="initial"/>
<column name="lastName"/>
</many-to-one
>
The use of this outside the context of mapping legacy data is not recommended.
5.1.17. Subclass
Polymorphic persistence requires the declaration of each subclass of the root persistent class. For
the table-per-class-hierarchy mapping strategy, the <subclass> declaration is used. For example:
<subclass
name="ClassName"
discriminator-value="discriminator_value"
proxy="ProxyInterface"
lazy="true|false"
dynamic-update="true|false"
dynamic-insert="true|false"
93
Capítulo 5. Mapeo O/R Básico
entity-name="EntityName"
node="element-name">
<property .... />
.....
</subclass
>
name: the fully qualified class name of the subclass.
discriminator-value (optional - defaults to the class name): a value that distinguishes
individual subclasses.
proxy (optional): specifies a class or interface used for lazy initializing proxies.
lazy (optional - defaults to true): setting lazy="false" disables the use of lazy fetching.
Each subclass declares its own persistent properties and subclasses. <version> and <id>
properties are assumed to be inherited from the root class. Each subclass in a hierarchy must
define a unique discriminator-value. If this is not specified, the fully qualified Java class name
is used.
For information about inheritance mappings see Capítulo 9, Inheritance mapping.
5.1.18. Joined-subclass
Each subclass can also be mapped to its own table. This is called the table-per-subclass mapping
strategy. An inherited state is retrieved by joining with the table of the superclass. To do this you
use the <joined-subclass> element. For example:
<joined-subclass
name="ClassName"
table="tablename"
proxy="ProxyInterface"
lazy="true|false"
dynamic-update="true|false"
dynamic-insert="true|false"
schema="schema"
catalog="catalog"
extends="SuperclassName"
persister="ClassName"
subselect="SQL expression"
entity-name="EntityName"
node="element-name">
94
Joined-subclass
<key .... >
<property .... />
.....
</joined-subclass
>
name: the fully qualified class name of the subclass.
table: the name of the subclass table.
proxy (optional): specifies a class or interface to use for lazy initializing proxies.
lazy (optional, defaults to true): setting lazy="false" disables the use of lazy fetching.
A discriminator column is not required for this mapping strategy. Each subclass must, however,
declare a table column holding the object identifier using the <key> element. The mapping at the
start of the chapter would then be re-written as:
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="eg">
<class name="Cat" table="CATS">
<id name="id" column="uid" type="long">
<generator class="hilo"/>
</id>
<property name="birthdate" type="date"/>
<property name="color" not-null="true"/>
<property name="sex" not-null="true"/>
<property name="weight"/>
<many-to-one name="mate"/>
<set name="kittens">
<key column="MOTHER"/>
<one-to-many class="Cat"/>
</set>
<joined-subclass name="DomesticCat" table="DOMESTIC_CATS">
<key column="CAT"/>
<property name="name" type="string"/>
</joined-subclass>
</class>
95
Capítulo 5. Mapeo O/R Básico
<class name="eg.Dog">
<!-- mapping for Dog could go here -->
</class>
</hibernate-mapping
>
For information about inheritance mappings see Capítulo 9, Inheritance mapping.
5.1.19. Union-subclass
A third option is to map only the concrete classes of an inheritance hierarchy to tables. This is
called the table-per-concrete-class strategy. Each table defines all persistent states of the class,
including the inherited state. In Hibernate, it is not necessary to explicitly map such inheritance
hierarchies. You can map each class with a separate <class> declaration. However, if you wish
use polymorphic associations (e.g. an association to the superclass of your hierarchy), you need
to use the <union-subclass> mapping. For example:
<union-subclass
name="ClassName"
table="tablename"
proxy="ProxyInterface"
lazy="true|false"
dynamic-update="true|false"
dynamic-insert="true|false"
schema="schema"
catalog="catalog"
extends="SuperclassName"
abstract="true|false"
persister="ClassName"
subselect="SQL expression"
entity-name="EntityName"
node="element-name">
<property .... />
.....
</union-subclass
>
name: the fully qualified class name of the subclass.
96
Join
table: the name of the subclass table.
proxy (optional): specifies a class or interface to use for lazy initializing proxies.
lazy (optional, defaults to true): setting lazy="false" disables the use of lazy fetching.
No se requiere columna o columna clave discriminadora para esta estrategia de mapeo.
For information about inheritance mappings see Capítulo 9, Inheritance mapping.
5.1.20. Join
Using the <join> element, it is possible to map properties of one class to several tables that have
a one-to-one relationship. For example:
<join
table="tablename"
schema="owner"
catalog="catalog"
fetch="join|select"
inverse="true|false"
optional="true|false">
<key ... />
<property ... />
...
</join
>
table: the name of the joined table.
schema (optional): overrides the schema name specified by the root <hibernate-mapping>
element.
catalog (optional): overrides the catalog name specified by the root <hibernate-mapping>
element.
fetch (optional - defaults to join): if set to join, the default, Hibernate will use an inner
join to retrieve a <join> defined by a class or its superclasses. It will use an outer join for
a <join> defined by a subclass. If set to select then Hibernate will use a sequential select
for a <join> defined on a subclass. This will be issued only if a row represents an instance
of the subclass. Inner joins will still be used to retrieve a <join> defined by the class and
its superclasses.
97
Capítulo 5. Mapeo O/R Básico
inverse (optional - defaults to false): if enabled, Hibernate will not insert or update the
properties defined by this join.
optional (optional - defaults to false): if enabled, Hibernate will insert a row only if the
properties defined by this join are non-null. It will always use an outer join to retrieve the
properties.
For example, address information for a person can be mapped to a separate table while preserving
value type semantics for all properties:
<class name="Person"
table="PERSON">
<id name="id" column="PERSON_ID"
>...</id>
<join table="ADDRESS">
<key column="ADDRESS_ID"/>
<property name="address"/>
<property name="zip"/>
<property name="country"/>
</join>
...
This feature is often only useful for legacy data models. We recommend fewer tables than classes
and a fine-grained domain model. However, it is useful for switching between inheritance mapping
strategies in a single hierarchy, as explained later.
5.1.21. Key
The <key> element has featured a few times within this guide. It appears anywhere the parent
mapping element defines a join to a new table that references the primary key of the original table.
It also defines the foreign key in the joined table:
<key
column="columnname"
on-delete="noaction|cascade"
property-ref="propertyName"
not-null="true|false"
update="true|false"
98
Column and formula elements
unique="true|false"
/>
column (optional): the name of the foreign key column. This can also be specified by nested
<column> element(s).
on-delete (optional - defaults to noaction): specifies whether the foreign key constraint has
database-level cascade delete enabled.
property-ref (optional): specifies that the foreign key refers to columns that are not the
primary key of the original table. It is provided for legacy data.
not-null (optional): specifies that the foreign key columns are not nullable. This is implied
whenever the foreign key is also part of the primary key.
update (optional): specifies that the foreign key should never be updated. This is implied
whenever the foreign key is also part of the primary key.
unique (optional): specifies that the foreign key should have a unique constraint. This is
implied whenever the foreign key is also the primary key.
For systems where delete performance is important, we recommend that all keys should be
defined on-delete="cascade". Hibernate uses a database-level ON CASCADE DELETE constraint,
instead of many individual DELETE statements. Be aware that this feature bypasses Hibernate's
usual optimistic locking strategy for versioned data.
The not-null and update attributes are useful when mapping a unidirectional one-to-many
association. If you map a unidirectional one-to-many association to a non-nullable foreign key,
you must declare the key column using <key not-null="true">.
5.1.22. Column and formula elements
Mapping elements which accept a column attribute will alternatively accept a <column>
subelement. Likewise, <formula> is an alternative to the formula attribute. For example:
<column
name="column_name"
length="N"
precision="N"
scale="N"
not-null="true|false"
unique="true|false"
unique-key="multicolumn_unique_key_name"
index="index_name"
sql-type="sql_type_name"
check="SQL expression"/>
99
Capítulo 5. Mapeo O/R Básico
<formula
>expresi&#x00f3;n SQL</formula
>
column and formula attributes can even be combined within the same property or association
mapping to express, for example, exotic join conditions.
<many-to-one name="homeAddress" class="Address"
insert="false" update="false">
<column name="person_id" not-null="true" length="10"/>
<formula
>'MAILING'</formula>
</many-to-one
>
5.1.23. Import
If your application has two persistent classes with the same name, and you do not want to specify
the fully qualified package name in Hibernate queries, classes can be "imported" explicitly, rather
than relying upon auto-import="true". You can also import classes and interfaces that are not
explicitly mapped:
<import class="java.lang.Object" rename="Universe"/>
<import
class="ClassName"
rename="ShortName"
/>
class: the fully qualified class name of any Java class.
rename (optional - defaults to the unqualified class name): a name that can be used in the
query language.
5.1.24. Any
There is one more type of property mapping. The <any> mapping element defines a polymorphic
association to classes from multiple tables. This type of mapping requires more than one column.
The first column contains the type of the associated entity. The remaining columns contain the
100
Any
identifier. It is impossible to specify a foreign key constraint for this kind of association. This is not
the usual way of mapping polymorphic associations and you should use this only in special cases.
For example, for audit logs, user session data, etc.
The meta-type attribute allows the application to specify a custom type that maps database
column values to persistent classes that have identifier properties of the type specified by idtype. You must specify the mapping from values of the meta-type to class names.
<any name="being" id-type="long" meta-type="string">
<meta-value value="TBL_ANIMAL" class="Animal"/>
<meta-value value="TBL_HUMAN" class="Human"/>
<meta-value value="TBL_ALIEN" class="Alien"/>
<column name="table_name"/>
<column name="id"/>
</any
>
<any
name="propertyName"
id-type="idtypename"
meta-type="metatypename"
cascade="cascade_style"
access="field|property|ClassName"
optimistic-lock="true|false"
>
<meta-value ... />
<meta-value ... />
.....
<column .... />
<column .... />
.....
</any
>
name: el nombre de la propiedad.
id-type: el tipo del identificador.
meta-type (optional - defaults to string): any type that is allowed for a discriminator
mapping.
101
Capítulo 5. Mapeo O/R Básico
cascade (opcional- por defecto a none): el estilo de cascada.
access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.
optimistic-lock (optional - defaults to true): specifies that updates to this property either
do or do not require acquisition of the optimistic lock. It defines whether a version increment
should occur if this property is dirty.
5.2. Hibernate types
5.2.1. Entidades y Valores
In relation to the persistence service, Java language-level objects are classified into two groups:
An entity exists independently of any other objects holding references to the entity. Contrast this
with the usual Java model, where an unreferenced object is garbage collected. Entities must be
explicitly saved and deleted. Saves and deletions, however, can be cascaded from a parent entity
to its children. This is different from the ODMG model of object persistence by reachability and
corresponds more closely to how application objects are usually used in large systems. Entities
support circular and shared references. They can also be versioned.
An entity's persistent state consists of references to other entities and instances of value types.
Values are primitives: collections (not what is inside a collection), components and certain
immutable objects. Unlike entities, values in particular collections and components, are persisted
and deleted by reachability. Since value objects and primitives are persisted and deleted along
with their containing entity, they cannot be independently versioned. Values have no independent
identity, so they cannot be shared by two entities or collections.
Until now, we have been using the term "persistent class" to refer to entities. We will continue to
do that. Not all user-defined classes with a persistent state, however, are entities. A component is
a user-defined class with value semantics. A Java property of type java.lang.String also has
value semantics. Given this definition, all types (classes) provided by the JDK have value type
semantics in Java, while user-defined types can be mapped with entity or value type semantics.
This decision is up to the application developer. An entity class in a domain model will normally
have shared references to a single instance of that class, while composition or aggregation usually
translates to a value type.
We will revisit both concepts throughout this reference guide.
The challenge is to map the Java type system, and the developers' definition of entities and
value types, to the SQL/database type system. The bridge between both systems is provided
by Hibernate. For entities, <class>, <subclass> and so on are used. For value types we use
<property>, <component>etc., that usually have a type attribute. The value of this attribute is
the name of a Hibernate mapping type. Hibernate provides a range of mappings for standard
JDK value types out of the box. You can write your own mapping types and implement your own
custom conversion strategies.
With the exception of collections, all built-in Hibernate types support null semantics.
102
Tipos de valores básicos
5.2.2. Tipos de valores básicos
The built-in basic mapping types can be roughly categorized into the following:
integer, long, short, float, double, character, byte, boolean, yes_no, true_false
Mapeos de tipos primitivos de Java o clases de envoltura a la tipos de columna SQL
(especícifica del vendedor). boolean, yes_no y true_false son codificaciones alternativas
a boolean de Java o java.lang.Boolean.
string
Un mapeo del tipo java.lang.String a VARCHAR (u Oracle VAARCHAR2).
date, time, timestamp
Mapeos de tipo desde java.util.Date y sus subclases a tipos SQL DATE, TIME y TIMESTAMP
(o equivalente).
calendar, calendar_date
Mapeos de tipo desde java.util.Date y sus subclases a tipos SQL TIMESTAMP y DATE (o
equivalente).
big_decimal, big_integer
Mapeos de tipo desde java.math.BigDecimal y java.math.BigInteger a NUMERIC (o
NUMBER de Oracle).
locale, timezone, currency
Mapeos de tipo desde java.util.Locale, java.util.TimeZone y java.util.Currency a
VARCHAR (o VARCHAR2 de Oracle). Las instancias de Locale y Currency son mapeadas a sus
códigos ISO. Las instancias de TimeZone son mapeadas a sus ID.
class
Un mapeo de tipo java.lang.Class a VARCHAR (o VARCHAR2 de Oracle). Una Class es
mapeara a su nombre completamente cualificado.
binary
Mapea arreglos de bytes a un tipo binario SQL apropiado.
text
Mapea cadenas largas Java al tipo SQL CLOB o TEXT.
serializable
Maps serializable Java types to an appropriate SQL binary type. You can also indicate the
Hibernate type serializable with the name of a serializable Java class or interface that does
not default to a basic type.
clob, blob
Type mappings for the JDBC classes java.sql.Clob and java.sql.Blob. These types can
be inconvenient for some applications, since the blob or clob object cannot be reused outside
of a transaction. Driver support is patchy and inconsistent.
103
Capítulo 5. Mapeo O/R Básico
UNTRANSLATED!
imm_date,
imm_time,
imm_timestamp,
imm_calendar,
imm_calendar_date, imm_serializable, imm_binary
Type mappings for what are considered mutable Java types. This is where Hibernate makes
certain optimizations appropriate only for immutable Java types, and the application treats
the object as immutable. For example, you should not call Date.setTime() for an instance
mapped as imm_timestamp. To change the value of the property, and have that change made
persistent, the application must assign a new, nonidentical, object to the property.
Unique identifiers of entities and collections can be of any basic type except binary, blob and
clob. Composite identifiers are also allowed. See below for more information.
Los tipos de valor básicos tienen sus constantes Type correspondientes definidas en
org.hibernate.Hibernate. Por ejemplo, Hibernate.STRING representa el tipo string.
5.2.3. Tipos de valor personalizados
It is relatively easy for developers to create their own value types. For example, you might want
to persist properties of type java.lang.BigInteger to VARCHAR columns. Hibernate does not
provide a built-in type for this. Custom types are not limited to mapping a property, or collection
element, to a single table column. So, for example, you might have a Java property getName()/
setName() of type java.lang.String that is persisted to the columns FIRST_NAME, INITIAL,
SURNAME.
To
implement
a
custom
type, implement either org.hibernate.UserType or
org.hibernate.CompositeUserType and declare properties using the fully qualified classname
of the type. View org.hibernate.test.DoubleStringType to see the kind of things that are
possible.
<property name="twoStrings" type="org.hibernate.test.DoubleStringType">
<column name="first_string"/>
<column name="second_string"/>
</property
>
Observa el uso de etiquetas <column> para mapear una propiedad a múltiples columnas.
Las
interfaces
CompositeUserType,
EnhancedUserType,
UserCollectionType,
y
UserVersionType proveen soporte a usos más especializados.
You can even supply parameters to a UserType in the mapping file. To do this, your UserType must
implement the org.hibernate.usertype.ParameterizedType interface. To supply parameters
to your custom type, you can use the <type> element in your mapping files.
<property name="priority">
<type name="com.mycompany.usertypes.DefaultValueIntegerType">
104
Mapeando una clase más de una vez
<param name="default"
>0</param>
</type>
</property
>
Ahora el UserType puede recuperar el valor del parámetro llamado default del objeto
Properties que se le pasa.
If you regularly use a certain UserType, it is useful to define a shorter name for it. You can do this
using the <typedef> element. Typedefs assign a name to a custom type, and can also contain a
list of default parameter values if the type is parameterized.
<typedef class="com.mycompany.usertypes.DefaultValueIntegerType" name="default_zero">
<param name="default"
>0</param>
</typedef
>
<property name="priority" type="default_zero"/>
también es posible sobrescribir los parámetros provistos en un typedef sobre una base caso por
caso usando parámetros de tipo en el mapeo de la propiedad.
Even though Hibernate's rich range of built-in types and support for components means you will
rarely need to use a custom type, it is considered good practice to use custom types for nonentity classes that occur frequently in your application. For example, a MonetaryAmount class is a
good candidate for a CompositeUserType, even though it could be mapped as a component. One
reason for this is abstraction. With a custom type, your mapping documents would be protected
against changes to the way monetary values are represented.
5.3. Mapeando una clase más de una vez
It is possible to provide more than one mapping for a particular persistent class. In this case, you
must specify an entity name to disambiguate between instances of the two mapped entities. By
default, the entity name is the same as the class name. Hibernate lets you specify the entity name
when working with persistent objects, when writing queries, or when mapping associations to the
named entity.
<class name="Contract" table="Contracts"
entity-name="CurrentContract">
105
Capítulo 5. Mapeo O/R Básico
...
<set name="history" inverse="true"
order-by="effectiveEndDate desc">
<key column="currentContractId"/>
<one-to-many entity-name="HistoricalContract"/>
</set>
</class>
<class name="Contract" table="ContractHistory"
entity-name="HistoricalContract">
...
<many-to-one name="currentContract"
column="currentContractId"
entity-name="CurrentContract"/>
</class
>
Associations are now specified using entity-name instead of class.
5.4. identificadores SQL encomillados
You can force Hibernate to quote an identifier in the generated SQL by enclosing the table or
column name in backticks in the mapping document. Hibernate will use the correct quotation style
for the SQL Dialect. This is usually double quotes, but the SQL Server uses brackets and MySQL
uses backticks.
<class name="LineItem" table="`Line Item`">
<id name="id" column="`Item Id`"/><generator class="assigned"/></id>
<property name="itemNumber" column="`Item #`"/>
...
</class
>
5.5. Alternativas de metadatos
XML does not suit all users so there are some alternative ways to define O/R mapping metadata
in Hibernate.
5.5.1. Usando marcado de XDoclet
Many Hibernate users prefer to embed mapping information directly in sourcecode using XDoclet
@hibernate.tags. We do not cover this approach in this reference guide since it is considered part
of XDoclet. However, we include the following example of the Cat class with XDoclet mappings:
106
Usando marcado de XDoclet
package eg;
import java.util.Set;
import java.util.Date;
/**
* @hibernate.class
* table="CATS"
*/
public class Cat {
private Long id; // identifier
private Date birthdate;
private Cat mother;
private Set kittens
private Color color;
private char sex;
private float weight;
/*
* @hibernate.id
* generator-class="native"
* column="CAT_ID"
*/
public Long getId() {
return id;
}
private void setId(Long id) {
this.id=id;
}
/**
* @hibernate.many-to-one
* column="PARENT_ID"
*/
public Cat getMother() {
return mother;
}
void setMother(Cat mother) {
this.mother = mother;
}
/**
* @hibernate.property
* column="BIRTH_DATE"
107
Capítulo 5. Mapeo O/R Básico
*/
public Date getBirthdate() {
return birthdate;
}
void setBirthdate(Date date) {
birthdate = date;
}
/**
* @hibernate.property
* column="WEIGHT"
*/
public float getWeight() {
return weight;
}
void setWeight(float weight) {
this.weight = weight;
}
/**
* @hibernate.property
* column="COLOR"
* not-null="true"
*/
public Color getColor() {
return color;
}
void setColor(Color color) {
this.color = color;
}
/**
* @hibernate.set
* inverse="true"
* order-by="BIRTH_DATE"
* @hibernate.collection-key
* column="PARENT_ID"
* @hibernate.collection-one-to-many
*/
public Set getKittens() {
return kittens;
}
void setKittens(Set kittens) {
this.kittens = kittens;
}
// addKitten not needed by Hibernate
108
Usando anotaciones JDK 5.0
public void addKitten(Cat kitten) {
kittens.add(kitten);
}
/**
* @hibernate.property
* column="SEX"
* not-null="true"
* update="false"
*/
public char getSex() {
return sex;
}
void setSex(char sex) {
this.sex=sex;
}
}
See the Hibernate website for more examples of XDoclet and Hibernate.
5.5.2. Usando anotaciones JDK 5.0
JDK 5.0 introduced XDoclet-style annotations at the language level that are type-safe and checked
at compile time. This mechanism is more powerful than XDoclet annotations and better supported
by tools and IDEs. IntelliJ IDEA, for example, supports auto-completion and syntax highlighting
of JDK 5.0 annotations. The new revision of the EJB specification (JSR-220) uses JDK 5.0
annotations as the primary metadata mechanism for entity beans. Hibernate3 implements the
EntityManager of JSR-220 (the persistence API). Support for mapping metadata is available
via the Hibernate Annotations package as a separate download. Both EJB3 (JSR-220) and
Hibernate3 metadata is supported.
Este es un ejemplo de una clase POJO anotada como un bean de entidad EJB:
@Entity(access = AccessType.FIELD)
public class Customer implements Serializable {
@Id;
Long id;
String firstName;
String lastName;
Date birthday;
@Transient
109
Capítulo 5. Mapeo O/R Básico
Integer age;
@Embedded
private Address homeAddress;
@OneToMany(cascade=CascadeType.ALL)
@JoinColumn(name="CUSTOMER_ID")
Set<Order
> orders;
// Getter/setter and business methods
}
Note
Support for JDK 5.0 Annotations (and JSR-220) is currently under development.
Please refer to the Hibernate Annotations module for more details.
5.6. Generated properties
Generated properties are properties that have their values generated by the database. Typically,
Hibernate applications needed to refresh objects that contain any properties for which the
database was generating values. Marking properties as generated, however, lets the application
delegate this responsibility to Hibernate. When Hibernate issues an SQL INSERT or UPDATE
for an entity that has defined generated properties, it immediately issues a select afterwards to
retrieve the generated values.
Properties marked as generated must additionally be non-insertable and non-updateable. Only
versions, timestamps, and simple properties, can be marked as generated.
never (the default): the given property value is not generated within the database.
insert: the given property value is generated on insert, but is not regenerated on subsequent
updates. Properties like created-date fall into this category. Even though version and timestamp
properties can be marked as generated, this option is not available.
always: the property value is generated both on insert and on update.
5.7. Auxiliary database objects
Auxiliary database objects allow for the CREATE and DROP of arbitrary database objects.
In conjunction with Hibernate's schema evolution tools, they have the ability to fully define a
user schema within the Hibernate mapping files. Although designed specifically for creating and
110
Auxiliary database objects
dropping things like triggers or stored procedures, any SQL command that can be run via a
java.sql.Statement.execute() method is valid (for example, ALTERs, INSERTS, etc.). There
are essentially two modes for defining auxiliary database objects:
The first mode is to explicitly list the CREATE and DROP commands in the mapping file:
<hibernate-mapping>
...
<database-object>
<create
>CREATE TRIGGER my_trigger ...</create>
<drop
>DROP TRIGGER my_trigger</drop>
</database-object>
</hibernate-mapping
>
The second mode is to supply a custom class that constructs the CREATE and DROP commands.
This custom class must implement the org.hibernate.mapping.AuxiliaryDatabaseObject
interface.
<hibernate-mapping>
...
<database-object>
<definition class="MyTriggerDefinition"/>
</database-object>
</hibernate-mapping
>
Additionally, these database objects can be optionally scoped so that they only apply when certain
dialects are used.
<hibernate-mapping>
...
<database-object>
<definition class="MyTriggerDefinition"/>
<dialect-scope name="org.hibernate.dialect.Oracle9iDialect"/>
<dialect-scope name="org.hibernate.dialect.Oracle10gDialect"/>
</database-object>
</hibernate-mapping>
111
112
Collection mapping
6.1. Colecciones persistentes
Hibernate requires that persistent collection-valued fields be declared as an interface type. For
example:
public class Product {
private String serialNumber;
private Set parts = new HashSet();
public Set getParts() { return parts; }
void setParts(Set parts) { this.parts = parts; }
public String getSerialNumber() { return serialNumber; }
void setSerialNumber(String sn) { serialNumber = sn; }
}
The actual interface might be java.util.Set, java.util.Collection, java.util.List,
java.util.Map, java.util.SortedSet, java.util.SortedMap or anything you like
("anything you like" means you will have to write an implementation of
org.hibernate.usertype.UserCollectionType.)
Notice how the instance variable was initialized with an instance of HashSet. This is the best way
to initialize collection valued properties of newly instantiated (non-persistent) instances. When you
make the instance persistent, by calling persist() for example, Hibernate will actually replace
the HashSet with an instance of Hibernate's own implementation of Set. Be aware of the following
errors:
Cat cat = new DomesticCat();
Cat kitten = new DomesticCat();
....
Set kittens = new HashSet();
kittens.add(kitten);
cat.setKittens(kittens);
session.persist(cat);
kittens = cat.getKittens(); // Okay, kittens collection is a Set
(HashSet) cat.getKittens(); // Error!
The persistent collections injected by Hibernate behave like HashMap, HashSet, TreeMap, TreeSet
or ArrayList, depending on the interface type.
113
Capítulo 6. Collection mapping
Collections instances have the usual behavior of value types. They are automatically persisted
when referenced by a persistent object and are automatically deleted when unreferenced. If a
collection is passed from one persistent object to another, its elements might be moved from one
table to another. Two entities cannot share a reference to the same collection instance. Due to
the underlying relational model, collection-valued properties do not support null value semantics.
Hibernate does not distinguish between a null collection reference and an empty collection.
Use persistent collections the same way you use ordinary Java collections. However, please
ensure you understand the semantics of bidirectional associations (these are discussed later).
6.2. Mapeos de colección
Sugerencia
There are quite a range of mappings that can be generated for collections that
cover many common relational models. We suggest you experiment with the
schema generation tool so that you understand how various mapping declarations
translate to database tables.
The Hibernate mapping element used for mapping a collection depends upon the type of interface.
For example, a <set> element is used for mapping properties of type Set.
<class name="Product">
<id name="serialNumber" column="productSerialNumber"/>
<set name="parts">
<key column="productSerialNumber" not-null="true"/>
<one-to-many class="Part"/>
</set>
</class
>
Aparte de <set>, existen además los elementos de mapeo <list>, <map>, <bag>, <array> y
<primitive-array>. El elemento <map> es representativo:
<map
name="propertyName"
table="table_name"
schema="schema_name"
lazy="true|false"
114
Mapeos de colección
inverse="true|false"
cascade="all|none|save-update|delete|all-delete-orphan"
sort="unsorted|natural|comparatorClass"
order-by="column_name asc|desc"
where="arbitrary sql where condition"
fetch="join|select|subselect"
batch-size="N"
access="field|property|ClassName"
optimistic-lock="true|false"
node="element-name|."
embed-xml="true|false"
>
<key .... />
<map-key .... />
<element .... />
</map
>
name: the collection property name
table (optional - defaults to property name): the name of the collection table. It is not used
for one-to-many associations.
schema (optional): the name of a table schema to override the schema declared on the root
element
lazy (optional - defaults to true): disables lazy fetching and specifies that the association
is always eagerly fetched. It can also be used to enable "extra-lazy" fetching where most
operations do not initialize the collection. This is suitable for large collections.
inverse (optional - defaults to false): marks this collection as the "inverse" end of a
bidirectional association.
cascade (optional - defaults to none): enables operations to cascade to child entities.
sort (optional): specifies a sorted collection with natural sort order or a given comparator
class.
order-by (optional, JDK1.4 only): specifies a table column or columns that define the
iteration order of the Map, Set or bag, together with an optional asc or desc.
where (optional): specifies an arbitrary SQL WHERE condition that is used when retrieving or
removing the collection. This is useful if the collection needs to contain only a subset of the
available data.
115
Capítulo 6. Collection mapping
fetch (optional, defaults to select): chooses between outer-join fetching, fetching by
sequential select, and fetching by sequential subselect.
batch-size (optional, defaults to 1): specifies a "batch size" for lazily fetching instances of
this collection.
access (optional - defaults to property): the strategy Hibernate uses for accessing the
collection property value.
optimistic-lock (optional - defaults to true): specifies that changes to the state of the
collection results in increments of the owning entity's version. For one-to-many associations
you may want to disable this setting.
mutable (optional - defaults to true): a value of false specifies that the elements of the
collection never change. This allows for minor performance optimization in some cases.
6.2.1. Claves foráneas de collección
Collection instances are distinguished in the database by the foreign key of the entity that owns the
collection. This foreign key is referred to as the collection key column, or columns, of the collection
table. The collection key column is mapped by the <key> element.
There can be a nullability constraint on the foreign key column. For most collections, this is implied.
For unidirectional one-to-many associations, the foreign key column is nullable by default, so you
may need to specify not-null="true".
<key column="productSerialNumber" not-null="true"/>
The foreign key constraint can use ON DELETE CASCADE.
<key column="productSerialNumber" on-delete="cascade"/>
Mira el capítulo anterior por una definición completa del elemento <key>.
6.2.2. Elementos de collección
Collections can contain almost any other Hibernate type, including: basic types, custom types,
components and references to other entities. This is an important distinction. An object in a
collection might be handled with "value" semantics (its life cycle fully depends on the collection
owner), or it might be a reference to another entity with its own life cycle. In the latter case, only
the "link" between the two objects is considered to be a state held by the collection.
Se hace referencia al tipo contenido como el tipo de elemento de la colección. Los elementos de
colección son mapeados por <element> o <composite-element>, o en el caso de referencias
de entidades, con <one-to-many> o <many-to-many>. Las dos primeras mapean elementos con
semántica de valor, los dos siguientes son usados para mapear asociaciones de entidades.
116
Colecciones indexadas
6.2.3. Colecciones indexadas
All collection mappings, except those with set and bag semantics, need an index column in the
collection table. An index column is a column that maps to an array index, or List index, or Map
key. The index of a Map may be of any basic type, mapped with <map-key>. It can be an entity
reference mapped with <map-key-many-to-many>, or it can be a composite type mapped with
<composite-map-key>. The index of an array or list is always of type integer and is mapped
using the <list-index> element. The mapped column contains sequential integers that are
numbered from zero by default.
<list-index
column="column_name"
base="0|1|..."/>
column_name (required): the name of the column holding the collection index values.
base (optional - defaults to 0): the value of the index column that corresponds to the first
element of the list or array.
<map-key
column="column_name"
formula="any SQL expression"
type="type_name"
node="@attribute-name"
length="N"/>
column (optional): the name of the column holding the collection index values.
formula (optional): a SQL formula used to evaluate the key of the map.
type (required): the type of the map keys.
<map-key-many-to-many
column="column_name"
formula="any SQL expression"
class="ClassName"
/>
column (optional): the name of the foreign key column for the collection index values.
117
Capítulo 6. Collection mapping
formula (optional): a SQ formula used to evaluate the foreign key of the map key.
class (required): the entity class used as the map key.
If your table does not have an index column, and you still wish to use List as the property type,
you can map the property as a Hibernate <bag>. A bag does not retain its order when it is retrieved
from the database, but it can be optionally sorted or ordered.
6.2.4. Colecciones de valores y asociaciones muchos-amuchos
Any collection of values or many-to-many associations requires a dedicated collection table with
a foreign key column or columns, collection element column or columns, and possibly an index
column or columns.
For a collection of values use the <element> tag. For example:
<element
column="column_name"
formula="any SQL expression"
type="typename"
length="L"
precision="P"
scale="S"
not-null="true|false"
unique="true|false"
node="element-name"
/>
column (optional): the name of the column holding the collection element values.
formula (optional): an SQL formula used to evaluate the element.
type (required): the type of the collection element.
A many-to-many association is specified using the <many-to-many> element.
<many-to-many
column="column_name"
formula="any SQL expression"
class="ClassName"
fetch="select|join"
118
Colecciones de valores y asociaciones muchos-a-muchos
unique="true|false"
not-found="ignore|exception"
entity-name="EntityName"
property-ref="propertyNameFromAssociatedClass"
node="element-name"
embed-xml="true|false"
/>
column (optional): the name of the element foreign key column.
formula (optional): an SQL formula used to evaluate the element foreign key value.
class (required): the name of the associated class.
fetch (optional - defaults to join): enables outer-join or sequential select fetching for this
association. This is a special case; for full eager fetching in a single SELECT of an entity and
its many-to-many relationships to other entities, you would enable join fetching,not only of
the collection itself, but also with this attribute on the <many-to-many> nested element.
unique (optional): enables the DDL generation of a unique constraint for the foreign-key
column. This makes the association multiplicity effectively one-to-many.
not-found (optional - defaults to exception): specifies how foreign keys that reference
missing rows will be handled: ignore will treat a missing row as a null association.
entity-name (optional): the entity name of the associated class, as an alternative to class.
property-ref (optional): the name of a property of the associated class that is joined to this
foreign key. If not specified, the primary key of the associated class is used.
Here are some examples.
A set of strings:
<set name="names" table="person_names">
<key column="person_id"/>
<element column="person_name" type="string"/>
</set
>
A bag containing integers with an iteration order determined by the order-by attribute:
<bag name="sizes"
table="item_sizes"
order-by="size asc">
<key column="item_id"/>
119
Capítulo 6. Collection mapping
<element column="size" type="integer"/>
</bag
>
An array of entities, in this case, a many-to-many association:
<array name="addresses"
table="PersonAddress"
cascade="persist">
<key column="personId"/>
<list-index column="sortOrder"/>
<many-to-many column="addressId" class="Address"/>
</array
>
Un mapa de índices de cadenas a fechas:
<map name="holidays"
table="holidays"
schema="dbo"
order-by="hol_name asc">
<key column="id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date" type="date"/>
</map
>
A list of components (this is discussed in the next chapter):
<list name="carComponents"
table="CarComponents">
<key column="carId"/>
<list-index column="sortOrder"/>
<composite-element class="CarComponent">
<property name="price"/>
<property name="type"/>
<property name="serialNumber" column="serialNum"/>
</composite-element>
</list
120
Asociaciones uno-a-muchos
>
6.2.5. Asociaciones uno-a-muchos
A one-to-many association links the tables of two classes via a foreign key with no intervening
collection table. This mapping loses certain semantics of normal Java collections:
• An instance of the contained entity class cannot belong to more than one instance of the
collection.
• An instance of the contained entity class cannot appear at more than one value of the collection
index.
An association from Product to Part requires the existence of a foreign key column and possibly
an index column to the Part table. A <one-to-many> tag indicates that this is a one-to-many
association.
<one-to-many
class="ClassName"
not-found="ignore|exception"
entity-name="EntityName"
node="element-name"
embed-xml="true|false"
/>
class (required): the name of the associated class.
not-found (optional - defaults to exception): specifies how cached identifiers that reference
missing rows will be handled. ignore will treat a missing row as a null association.
entity-name (optional): the entity name of the associated class, as an alternative to class.
The <one-to-many> element does not need to declare any columns. Nor is it necessary to specify
the table name anywhere.
Aviso
If the foreign key column of a <one-to-many> association is declared NOT NULL,
you must declare the <key> mapping not-null="true" or use a bidirectional
association with the collection mapping marked inverse="true". See the
discussion of bidirectional associations later in this chapter for more information.
The following example shows a map of Part entities by name, where partName is a persistent
property of Part. Notice the use of a formula-based index:
121
Capítulo 6. Collection mapping
<map name="parts"
cascade="all">
<key column="productId" not-null="true"/>
<map-key formula="partName"/>
<one-to-many class="Part"/>
</map
>
6.3. Mapeos de colección avanzados
6.3.1. Colecciones ordenadas
Hibernate soporta colecciones implementando java.util.SortedMap y java.util.SortedSet.
Debes especificar un comparador en el fichero de mapeo:
<set name="aliases"
table="person_aliases"
sort="natural">
<key column="person"/>
<element column="name" type="string"/>
</set>
<map name="holidays" sort="my.custom.HolidayComparator">
<key column="year_id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date" type="date"/>
</map
>
Los valores permitidos del atributo sort son unsorted, natural y el nombre de una clase que
implemente java.util.Comparator.
Las
colecciones
ordenadas
java.util.TreeMap.
realmente
se
comportan
como
java.util.TreeSet
o
If you want the database itself to order the collection elements, use the order-by attribute of set,
bag or map mappings. This solution is only available under JDK 1.4 or higher and is implemented
using LinkedHashSet or LinkedHashMap. This performs the ordering in the SQL query and not
in the memory.
<set name="aliases" table="person_aliases" order-by="lower(name) asc">
<key column="person"/>
122
Asociaciones bidireccionales
<element column="name" type="string"/>
</set>
<map name="holidays" order-by="hol_date, hol_name">
<key column="year_id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date type="date"/>
</map
>
Note
The value of the order-by attribute is an SQL ordering, not an HQL ordering.
Associations can even be sorted by arbitrary criteria at runtime using a collection filter():
sortedUsers = s.createFilter( group.getUsers(), "order by this.name" ).list();
6.3.2. Asociaciones bidireccionales
Una asociación bidireccional permite la nevegación desde ambos "extremos" de la asociación.
Son soportados dos tipos de asociación bidireccional:
uno-a-muchos
set or bag valued at one end and single-valued at the other
muchos-a-muchos
set o bag valorados a ambos extremos
You can specify a bidirectional many-to-many association by mapping two many-to-many
associations to the same database table and declaring one end as inverse. You cannot select
an indexed collection.
Here is an example of a bidirectional many-to-many association that illustrates how each category
can have many items and each item can be in many categories:
<class name="Category">
<id name="id" column="CATEGORY_ID"/>
...
<bag name="items" table="CATEGORY_ITEM">
<key column="CATEGORY_ID"/>
<many-to-many class="Item" column="ITEM_ID"/>
123
Capítulo 6. Collection mapping
</bag>
</class>
<class name="Item">
<id name="id" column="ITEM_ID"/>
...
<!-- inverse end -->
<bag name="categories" table="CATEGORY_ITEM" inverse="true">
<key column="ITEM_ID"/>
<many-to-many class="Category" column="CATEGORY_ID"/>
</bag>
</class
>
Changes made only to the inverse end of the association are not persisted. This means that
Hibernate has two representations in memory for every bidirectional association: one link from A
to B and another link from B to A. This is easier to understand if you think about the Java object
model and how a many-to-many relationship in Javais created:
category.getItems().add(item);
// The category now "knows" about the relationship
item.getCategories().add(category); // The item now "knows" about the relationship
session.persist(item);
session.persist(category);
// The relationship won't be saved!
// The relationship will be saved
El lado no-inverso se usa para salvar la representación en memoria a la base de datos.
You can define a bidirectional one-to-many association by mapping a one-to-many association
to the same table column(s) as a many-to-one association and declaring the many-valued end
inverse="true".
<class name="Parent">
<id name="id" column="parent_id"/>
....
<set name="children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set>
</class>
124
Asociaciones bidireccionales con colecciones indexadas
<class name="eg.Child">
<id name="id" column="id"/>
....
<many-to-one name="parent"
class="Parent"
column="parent_id"
not-null="true"/>
</class
>
Mapping one end of an association with inverse="true" does not affect the operation of
cascades as these are orthogonal concepts.
6.3.3. Asociaciones bidireccionales con colecciones indexadas
A bidirectional association where one end is represented as a <list> or <map>, requires special
consideration. If there is a property of the child class that maps to the index column you can use
inverse="true" on the collection mapping:
<class name="Parent">
<id name="id" column="parent_id"/>
....
<map name="children" inverse="true">
<key column="parent_id"/>
<map-key column="name"
type="string"/>
<one-to-many class="Child"/>
</map>
</class>
<class name="Child">
<id name="id" column="child_id"/>
....
<property name="name"
not-null="true"/>
<many-to-one name="parent"
class="Parent"
column="parent_id"
not-null="true"/>
</class
>
125
Capítulo 6. Collection mapping
If there is no such property on the child class, the association cannot be considered truly
bidirectional. That is, there is information available at one end of the association that is not
available at the other end. In this case, you cannot map the collection inverse="true". Instead,
you could use the following mapping:
<class name="Parent">
<id name="id" column="parent_id"/>
....
<map name="children">
<key column="parent_id"
not-null="true"/>
<map-key column="name"
type="string"/>
<one-to-many class="Child"/>
</map>
</class>
<class name="Child">
<id name="id" column="child_id"/>
....
<many-to-one name="parent"
class="Parent"
column="parent_id"
insert="false"
update="false"
not-null="true"/>
</class
>
Note that in this mapping, the collection-valued end of the association is responsible for updates
to the foreign key.
6.3.4. Asociaciones ternarias
There are three possible approaches to mapping a ternary association. One approach is to use
a Map with an association as its index:
<map name="contracts">
<key column="employer_id" not-null="true"/>
<map-key-many-to-many column="employee_id" class="Employee"/>
<one-to-many class="Contract"/>
</map
126
Usando un <idbag>
>
<map name="connections">
<key column="incoming_node_id"/>
<map-key-many-to-many column="outgoing_node_id" class="Node"/>
<many-to-many column="connection_id" class="Connection"/>
</map
>
A second approach is to remodel the association as an entity class. This is the most common
approach.
A final alternative is to use composite elements, which will be discussed later.
6.3.5. Usando
un <idbag>
The majority of the many-to-many associations and collections of values shown previously all map
to tables with composite keys, even though it has been have suggested that entities should have
synthetic identifiers (surrogate keys). A pure association table does not seem to benefit much
from a surrogate key, although a collection of composite values might. It is for this reason that
Hibernate provides a feature that allows you to map many-to-many associations and collections
of values to a table with a surrogate key.
The <idbag> element lets you map a List (or Collection) with bag semantics. For example:
<idbag name="lovers" table="LOVERS">
<collection-id column="ID" type="long">
<generator class="sequence"/>
</collection-id>
<key column="PERSON1"/>
<many-to-many column="PERSON2" class="Person" fetch="join"/>
</idbag
>
An <idbag> has a synthetic id generator, just like an entity class. A different surrogate key
is assigned to each collection row. Hibernate does not, however, provide any mechanism for
discovering the surrogate key value of a particular row.
The update performance of an <idbag> supersedes a regular <bag>. Hibernate can locate
individual rows efficiently and update or delete them individually, similar to a list, map or set.
En la implementación actual, la estrategia de generación de identificador native no está
soportada para identificadores de colecciones <idbag>.
127
Capítulo 6. Collection mapping
6.4. Ejemplos de colección
This section covers collection examples.
The following class has a collection of Child instances:
package eg;
import java.util.Set;
public class Parent {
private long id;
private Set children;
public long getId() { return id; }
private void setId(long id) { this.id=id; }
private Set getChildren() { return children; }
private void setChildren(Set children) { this.children=children; }
....
....
}
If each child has, at most, one parent, the most natural mapping is a one-to-many association:
<hibernate-mapping>
<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set>
</class>
<class name="Child">
<id name="id">
<generator class="sequence"/>
</id>
<property name="name"/>
</class>
128
Ejemplos de colección
</hibernate-mapping
>
Esto mapea a las siguientes definiciones de tablas:
create table parent ( id bigint not null primary key )
create table child ( id bigint not null primary key, name varchar(255), parent_id bigint )
alter table child add constraint childfk0 (parent_id) references parent
Si el padre es requerido, usa una asociación bidireccional uno-a-muchos:
<hibernate-mapping>
<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set>
</class>
<class name="Child">
<id name="id">
<generator class="sequence"/>
</id>
<property name="name"/>
<many-to-one name="parent" class="Parent" column="parent_id" not-null="true"/>
</class>
</hibernate-mapping
>
Observa la restricción NOT NULL:
create table parent ( id bigint not null primary key )
create table child ( id bigint not null
primary key,
129
Capítulo 6. Collection mapping
name varchar(255),
parent_id bigint not null )
alter table child add constraint childfk0 (parent_id) references parent
Alternatively, if this association must be unidirectional you can declare the NOT NULL constraint
on the <key> mapping:
<hibernate-mapping>
<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children">
<key column="parent_id" not-null="true"/>
<one-to-many class="Child"/>
</set>
</class>
<class name="Child">
<id name="id">
<generator class="sequence"/>
</id>
<property name="name"/>
</class>
</hibernate-mapping
>
On the other hand, if a child has multiple parents, a many-to-many association is appropriate:
<hibernate-mapping>
<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children" table="childset">
<key column="parent_id"/>
<many-to-many class="Child" column="child_id"/>
</set>
</class>
130
Ejemplos de colección
<class name="Child">
<id name="id">
<generator class="sequence"/>
</id>
<property name="name"/>
</class>
</hibernate-mapping
>
Definiciones de tabla:
create table parent ( id bigint not null primary key )
create table child ( id bigint not null primary key, name varchar(255) )
create table childset ( parent_id bigint not null,
child_id bigint not null,
primary key ( parent_id, child_id ) )
alter table childset add constraint childsetfk0 (parent_id) references parent
alter table childset add constraint childsetfk1 (child_id) references child
For more examples and a complete explanation of a parent/child relationship mapping, see
Capítulo 21, Ejemplo: Padre/Hijo for more information.
Even more complex association mappings are covered in the next chapter.
131
132
Mapeos de Asociación
7.1. Introducción
Association mappings are often the most difficult thing to implement correctly. In this section
we examine some canonical cases one by one, starting with unidirectional mappings and then
bidirectional cases. We will use Person and Address in all the examples.
Associations will be classified by multiplicity and whether or not they map to an intervening join
table.
Nullable foreign keys are not considered to be good practice in traditional data modelling, so
our examples do not use nullable foreign keys. This is not a requirement of Hibernate, and the
mappings will work if you drop the nullability constraints.
7.2. Asociaciones Unidireccionales
7.2.1. Many-to-one
Una asociación unidireccional muchos-a-uno es el tipo más común de asociaciones
unidireccionales.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressId"
not-null="true"/>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
</class
>
create table Person ( personId bigint not null primary key, addressId bigint not null )
create table Address ( addressId bigint not null primary key )
133
Capítulo 7. Mapeos de Asociación
7.2.2. One-to-one
Una asociación unidireccional uno-a-uno en una clave primaria es casi idéntica. La única
diferencia es la restricción de unicidad de la columna.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressId"
unique="true"
not-null="true"/>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
</class
>
create table Person ( personId bigint not null primary key, addressId bigint not null unique )
create table Address ( addressId bigint not null primary key )
A unidirectional one-to-one association on a primary key usually uses a special id generator In
this example, however, we have reversed the direction of the association:
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
</class>
<class name="Address">
<id name="id" column="personId">
<generator class="foreign">
<param name="property"
>person</param>
134
One-to-many
</generator>
</id>
<one-to-one name="person" constrained="true"/>
</class
>
create table Person ( personId bigint not null primary key )
create table Address ( personId bigint not null primary key )
7.2.3. One-to-many
A unidirectional one-to-many association on a foreign key is an unusual case, and is not
recommended.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<set name="addresses">
<key column="personId"
not-null="true"/>
<one-to-many class="Address"/>
</set>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
</class
>
create table Person ( personId bigint not null primary key )
create table Address ( addressId bigint not null primary key, personId bigint not null )
135
Capítulo 7. Mapeos de Asociación
You should instead use a join table for this kind of association.
7.3. Asociaciones unidireccionales con tablas de unión
7.3.1. One-to-many
A unidirectional one-to-many association on a join table is the preferred option. Specifying
unique="true", changes the multiplicity from many-to-many to one-to-many.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<set name="addresses" table="PersonAddress">
<key column="personId"/>
<many-to-many column="addressId"
unique="true"
class="Address"/>
</set>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
</class
>
create table Person ( personId bigint not null primary key )
create table PersonAddress ( personId not null, addressId bigint not null primary key )
create table Address ( addressId bigint not null primary key )
7.3.2. Many-to-one
A unidirectional many-to-one association on a join table is common when the association is
optional. For example:
<class name="Person">
<id name="id" column="personId">
136
One-to-one
<generator class="native"/>
</id>
<join table="PersonAddress"
optional="true">
<key column="personId" unique="true"/>
<many-to-one name="address"
column="addressId"
not-null="true"/>
</join>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
</class
>
create table Person ( personId bigint not null primary key )
create table PersonAddress ( personId bigint not null primary key, addressId bigint not null )
create table Address ( addressId bigint not null primary key )
7.3.3. One-to-one
A unidirectional one-to-one association on a join table is possible, but extremely unusual.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<join table="PersonAddress"
optional="true">
<key column="personId"
unique="true"/>
<many-to-one name="address"
column="addressId"
not-null="true"
unique="true"/>
</join>
</class>
137
Capítulo 7. Mapeos de Asociación
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
</class
>
create table Person ( personId bigint not null primary key )
create table PersonAddress ( personId bigint not null primary key, addressId bigint not null unique )
create table Address ( addressId bigint not null primary key )
7.3.4. Many-to-many
Finally, here is an example of a unidirectional many-to-many association.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<set name="addresses" table="PersonAddress">
<key column="personId"/>
<many-to-many column="addressId"
class="Address"/>
</set>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
</class
>
create table Person ( personId bigint not null primary key )
create table PersonAddress ( personId bigint not null, addressId bigint not null, primary key
(personId, addressId) )
138
Asociaciones Bidireccionales
create table Address ( addressId bigint not null primary key )
7.4. Asociaciones Bidireccionales
7.4.1. one-to-many / many-to-one
A bidirectional many-to-one association is the most common kind of association. The following
example illustrates the standard parent/child relationship.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressId"
not-null="true"/>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
<set name="people" inverse="true">
<key column="addressId"/>
<one-to-many class="Person"/>
</set>
</class
>
create table Person ( personId bigint not null primary key, addressId bigint not null )
create table Address ( addressId bigint not null primary key )
If you use a List, or other indexed collection, set the key column of the foreign key to not null.
Hibernate will manage the association from the collections side to maintain the index of each
element, making the other side virtually inverse by setting update="false" and insert="false":
<class name="Person">
139
Capítulo 7. Mapeos de Asociación
<id name="id"/>
...
<many-to-one name="address"
column="addressId"
not-null="true"
insert="false"
update="false"/>
</class>
<class name="Address">
<id name="id"/>
...
<list name="people">
<key column="addressId" not-null="true"/>
<list-index column="peopleIdx"/>
<one-to-many class="Person"/>
</list>
</class
>
If the underlying foreign key column is NOT NULL, it is important that you define not-null="true"
on the <key> element of the collection mapping. Do not only declare not-null="true" on a
possible nested <column> element, but on the <key> element.
7.4.2. One-to-one
A bidirectional one-to-one association on a foreign key is common:
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressId"
unique="true"
not-null="true"/>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
<one-to-one name="person"
property-ref="address"/>
140
One-to-one
</class
>
create table Person ( personId bigint not null primary key, addressId bigint not null unique )
create table Address ( addressId bigint not null primary key )
A bidirectional one-to-one association on a primary key uses the special id generator:
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<one-to-one name="address"/>
</class>
<class name="Address">
<id name="id" column="personId">
<generator class="foreign">
<param name="property"
>person</param>
</generator>
</id>
<one-to-one name="person"
constrained="true"/>
</class
>
create table Person ( personId bigint not null primary key )
create table Address ( personId bigint not null primary key )
141
Capítulo 7. Mapeos de Asociación
7.5. Asociaciones bidireccionales con tablas de unión
7.5.1. one-to-many / many-to-one
The following is an example of a bidirectional one-to-many association on a join table. The
inverse="true" can go on either end of the association, on the collection, or on the join.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<set name="addresses"
table="PersonAddress">
<key column="personId"/>
<many-to-many column="addressId"
unique="true"
class="Address"/>
</set>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
<join table="PersonAddress"
inverse="true"
optional="true">
<key column="addressId"/>
<many-to-one name="person"
column="personId"
not-null="true"/>
</join>
</class
>
create table Person ( personId bigint not null primary key )
create table PersonAddress ( personId bigint not null, addressId bigint not null primary key )
create table Address ( addressId bigint not null primary key )
142
uno a uno
7.5.2. uno a uno
A bidirectional one-to-one association on a join table is possible, but extremely unusual.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<join table="PersonAddress"
optional="true">
<key column="personId"
unique="true"/>
<many-to-one name="address"
column="addressId"
not-null="true"
unique="true"/>
</join>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
<join table="PersonAddress"
optional="true"
inverse="true">
<key column="addressId"
unique="true"/>
<many-to-one name="address"
column="personId"
not-null="true"
unique="true"/>
</join>
</class
>
create table Person ( personId bigint not null primary key )
create table PersonAddress ( personId bigint not null primary key, addressId bigint not null unique )
create table Address ( addressId bigint not null primary key )
143
Capítulo 7. Mapeos de Asociación
7.5.3. Many-to-many
Here is an example of a bidirectional many-to-many association.
<class name="Person">
<id name="id" column="personId">
<generator class="native"/>
</id>
<set name="addresses">
<key column="personId"/>
<many-to-many column="addressId"
class="Address"/>
</set>
</class>
<class name="Address">
<id name="id" column="addressId">
<generator class="native"/>
</id>
<set name="people" inverse="true">
<key column="addressId"/>
<many-to-many column="personId"
class="Person"/>
</set>
</class
>
create table Person ( personId bigint not null primary key )
create table PersonAddress ( personId bigint not null, addressId bigint not null, primary key
(personId, addressId) )
create table Address ( addressId bigint not null primary key )
7.6. UNTRANSLATED! More complex association
mappings
More complex association joins are extremely rare. Hibernate handles more complex situations
by using SQL fragments embedded in the mapping document. For example, if a table
with historical account information data defines accountNumber, effectiveEndDate and
effectiveStartDatecolumns, it would be mapped as follows:
144
UNTRANSLATED! More complex association mappings
<properties name="currentAccountKey">
<property name="accountNumber" type="string" not-null="true"/>
<property name="currentAccount" type="boolean">
<formula
>case when effectiveEndDate is null then 1 else 0 end</formula>
</property>
</properties>
<property name="effectiveEndDate" type="date"/>
<property name="effectiveStateDate" type="date" not-null="true"/>
You can then map an association to the current instance, the one with null effectiveEndDate,
by using:
<many-to-one name="currentAccountInfo"
property-ref="currentAccountKey"
class="AccountInfo">
<column name="accountNumber"/>
<formula
>'1'</formula>
</many-to-one
>
In a more complex example, imagine that the association between Employee and Organization
is maintained in an Employment table full of historical employment data. An association to the
employee's most recent employer, the one with the most recent startDate, could be mapped in
the following way:
<join>
<key column="employeeId"/>
<subselect>
select employeeId, orgId
from Employments
group by orgId
having startDate = max(startDate)
</subselect>
<many-to-one name="mostRecentEmployer"
class="Organization"
column="orgId"/>
</join
>
145
Capítulo 7. Mapeos de Asociación
This functionality allows a degree of creativity and flexibility, but it is more practical to handle these
kinds of cases using HQL or a criteria query.
146
Mapeo de Componentes
The notion of a component is re-used in several different contexts and purposes throughout
Hibernate.
8.1. Objetos dependientes
A component is a contained object that is persisted as a value type and not an entity reference.
The term "component" refers to the object-oriented notion of composition and not to architecturelevel components. For example, you can model a person like this:
public class Person {
private java.util.Date birthday;
private Name name;
private String key;
public String getKey() {
return key;
}
private void setKey(String key) {
this.key=key;
}
public java.util.Date getBirthday() {
return birthday;
}
public void setBirthday(java.util.Date birthday) {
this.birthday = birthday;
}
public Name getName() {
return name;
}
public void setName(Name name) {
this.name = name;
}
......
......
}
public class Name {
char initial;
String first;
String last;
public String getFirst() {
147
Capítulo 8. Mapeo de Componentes
return first;
}
void setFirst(String first) {
this.first = first;
}
public String getLast() {
return last;
}
void setLast(String last) {
this.last = last;
}
public char getInitial() {
return initial;
}
void setInitial(char initial) {
this.initial = initial;
}
}
Now Name can be persisted as a component of Person. Name defines getter and setter methods
for its persistent properties, but it does not need to declare any interfaces or identifier properties.
Our Hibernate mapping would look like this:
<class name="eg.Person" table="person">
<id name="Key" column="pid" type="string">
<generator class="uuid.hex"/>
</id>
<property name="birthday" type="date"/>
<component name="Name" class="eg.Name"
> <!-- class attribute optional -->
<property name="initial"/>
<property name="first"/>
<property name="last"/>
</component>
</class
>
La tabla person tendría las columnas pid, birthday, initial, first y last.
Like value types, components do not support shared references. In other words, two persons
could have the same name, but the two person objects would contain two independent name
objects that were only "the same" by value. The null value semantics of a component are ad hoc.
148
Colecciones de objetos dependientes
When reloading the containing object, Hibernate will assume that if all component columns are
null, then the entire component is null. This is suitable for most purposes.
The properties of a component can be of any Hibernate type (collections, many-to-one
associations, other components, etc). Nested components should not be considered an exotic
usage. Hibernate is intended to support a fine-grained object model.
El elemento <component> permite un subelemento <parent> que mapee una propiedad de la
clase del componente como una referencia de regreso a la entidad contenedora.
<class name="eg.Person" table="person">
<id name="Key" column="pid" type="string">
<generator class="uuid.hex"/>
</id>
<property name="birthday" type="date"/>
<component name="Name" class="eg.Name" unique="true">
<parent name="namedPerson"/> <!-- reference back to the Person -->
<property name="initial"/>
<property name="first"/>
<property name="last"/>
</component>
</class
>
8.2. Colecciones de objetos dependientes
Collections of components are supported (e.g. an array of type Name). Declare your component
collection by replacing the <element> tag with a <composite-element> tag:
<set name="someNames" table="some_names" lazy="true">
<key column="id"/>
<composite-element class="eg.Name"
> <!-- class attribute required -->
<property name="initial"/>
<property name="first"/>
<property name="last"/>
</composite-element>
</set
>
149
Capítulo 8. Mapeo de Componentes
Importante
If you define a Set of composite elements, it is important to implement equals()
and hashCode() correctly.
Composite elements can contain components but not collections. If your composite element
contains components, use the <nested-composite-element> tag. This case is a collection of
components which themselves have components. You may want to consider if a one-to-many
association is more appropriate. Remodel the composite element as an entity, but be aware that
even though the Java model is the same, the relational model and persistence semantics are still
slightly different.
A composite element mapping does not support null-able properties if you are using a <set>.
There is no separate primary key column in the composite element table. Hibernate uses each
column's value to identify a record when deleting objects, which is not possible with null values.
You have to either use only not-null properties in a composite-element or choose a <list>, <map>,
<bag> or <idbag>.
A special case of a composite element is a composite element with a nested <many-to-one>
element. This mapping allows you to map extra columns of a many-to-many association table to
the composite element class. The following is a many-to-many association from Order to Item,
where purchaseDate, price and quantity are properties of the association:
<class name="eg.Order" .... >
....
<set name="purchasedItems" table="purchase_items" lazy="true">
<key column="order_id">
<composite-element class="eg.Purchase">
<property name="purchaseDate"/>
<property name="price"/>
<property name="quantity"/>
<many-to-one name="item" class="eg.Item"/> <!-- class attribute is optional -->
</composite-element>
</set>
</class
>
There cannot be a reference to the purchase on the other side for bidirectional association
navigation. Components are value types and do not allow shared references. A single Purchase
can be in the set of an Order, but it cannot be referenced by the Item at the same time.
Incluso son posibles las asociaciones ternarias (o cuaternarias, etc):
150
Componentes como índices de Map
<class name="eg.Order" .... >
....
<set name="purchasedItems" table="purchase_items" lazy="true">
<key column="order_id">
<composite-element class="eg.OrderLine">
<many-to-one name="purchaseDetails class="eg.Purchase"/>
<many-to-one name="item" class="eg.Item"/>
</composite-element>
</set>
</class
>
Composite elements can appear in queries using the same syntax as associations to other entities.
8.3. Componentes como índices de Map
The <composite-map-key> element allows you to map a component class as the key of a Map.
Ensure that you override hashCode() and equals() correctly on the component class.
8.4. Componentes como identificadores compuestos
You can use a component as an identifier of an entity class. Your component class must satisfy
certain requirements:
• Debe implementar java.io.Serializable.
• It must re-implement equals() and hashCode() consistently with the database's notion of
composite key equality.
Note
In Hibernate3, although the second requirement is not an absolutely hard
requirement of Hibernate, it is recommended.
You cannot use an IdentifierGenerator to generate composite keys. Instead the application
must assign its own identifiers.
Use the <composite-id> tag, with nested <key-property> elements, in place of the usual
<id> declaration. For example, the OrderLine class has a primary key that depends upon the
(composite) primary key of Order.
<class name="OrderLine">
<composite-id name="id" class="OrderLineId">
151
Capítulo 8. Mapeo de Componentes
<key-property name="lineId"/>
<key-property name="orderId"/>
<key-property name="customerId"/>
</composite-id>
<property name="name"/>
<many-to-one name="order" class="Order"
insert="false" update="false">
<column name="orderId"/>
<column name="customerId"/>
</many-to-one>
....
</class
>
Any foreign keys referencing the OrderLine table are now composite. Declare this in your
mappings for other classes. An association to OrderLine is mapped like this:
<many-to-one name="orderLine" class="OrderLine">
<!-- the "class" attribute is optional, as usual -->
<column name="lineId"/>
<column name="orderId"/>
<column name="customerId"/>
</many-to-one
>
Sugerencia
The column element is an alternative to the column attribute everywhere. Using
the column element just gives more declaration options, which are mostly useful
when utilizing hbm2ddl
Una asociación muchos-a-muchos a OrderLine también usa la clave foránea compuesta:
<set name="undeliveredOrderLines">
<key column name="warehouseId"/>
<many-to-many class="OrderLine">
<column name="lineId"/>
<column name="orderId"/>
152
Componentes dinámicos
<column name="customerId"/>
</many-to-many>
</set
>
La colección de OrderLines en Order usaría:
<set name="orderLines" inverse="true">
<key>
<column name="orderId"/>
<column name="customerId"/>
</key>
<one-to-many class="OrderLine"/>
</set
>
The <one-to-many> element declares no columns.
Si OrderLine posee una colección por sí misma, tiene también una clave foránea compuesta.
<class name="OrderLine">
....
....
<list name="deliveryAttempts">
<key
> <!-- a collection inherits the composite key type -->
<column name="lineId"/>
<column name="orderId"/>
<column name="customerId"/>
</key>
<list-index column="attemptId" base="1"/>
<composite-element class="DeliveryAttempt">
...
</composite-element>
</set>
</class
>
8.5. Componentes dinámicos
You can also map a property of type Map:
153
Capítulo 8. Mapeo de Componentes
<dynamic-component name="userAttributes">
<property name="foo" column="FOO" type="string"/>
<property name="bar" column="BAR" type="integer"/>
<many-to-one name="baz" class="Baz" column="BAZ_ID"/>
</dynamic-component
>
The semantics of a <dynamic-component> mapping are identical to <component>. The advantage
of this kind of mapping is the ability to determine the actual properties of the bean at deployment
time just by editing the mapping document. Runtime manipulation of the mapping document is
also possible, using a DOM parser. You can also access, and change, Hibernate's configurationtime metamodel via the Configuration object.
154
Inheritance mapping
9.1. The three strategies
Hibernate soporta las tres estrategias básicas de mapeo de herencia:
• tabla por jerarquía de clases
• tabla por subclase
• tabla por clase concreta
En adición, Hibernate soporta un cuarto, ligeramente diferente tipo de polimorfismo:
• polimorfismo implícito
It is possible to use different mapping strategies for different branches of the same inheritance
hierarchy. You can then make use of implicit polymorphism to achieve polymorphism across the
whole hierarchy. However, Hibernate does not support mixing <subclass>, <joined-subclass>
and <union-subclass> mappings under the same root <class> element. It is possible to mix
together the table per hierarchy and table per subclass strategies under the the same <class>
element, by combining the <subclass> and <join> elements (see below for an example).
It is possible to define subclass, union-subclass, and joined-subclass mappings in separate
mapping documents directly beneath hibernate-mapping. This allows you to extend a class
hierarchy by adding a new mapping file. You must specify an extends attribute in the subclass
mapping, naming a previously mapped superclass. Previously this feature made the ordering of
the mapping documents important. Since Hibernate3, the ordering of mapping files is irrelevant
when using the extends keyword. The ordering inside a single mapping file still needs to be defined
as superclasses before subclasses.
Es posible usar estrategias de mapeo diferentes para diferentes ramificaciones de la misma
jerarquía de herencia, y entonces usar polimorfismo implícito para conseguir polimorfismo a
través de toda la jerarquía. Sin embargo, Hibernate no soporta la mezcla de mapeos <subclass>,
y <joined-subclass> y <union-subclass> bajo el mismo elemento <class> raíz. Es posible
mezclar juntas las estrategias de tabla por jerarquía y tabla por subclase, bajo el mismo
elemento <class>, combinando los elementos <subclass> y <join> (ver debajo).
9.1.1. Tabla por jerarquía de clases
Suppose we have an interface Payment with the implementors CreditCardPayment,
CashPayment, and ChequePayment. The table per hierarchy mapping would display in the following
way:
155
Capítulo 9. Inheritance mapping
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">
<property name="creditCardType" column="CCTYPE"/>
...
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">
...
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">
...
</subclass>
</class
>
Exactly one table is required. There is a limitation of this mapping strategy: columns declared by
the subclasses, such as CCTYPE, cannot have NOT NULL constraints.
9.1.2. Tabla por subclase
A table per subclass mapping looks like this:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="AMOUNT"/>
...
<joined-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="creditCardType" column="CCTYPE"/>
...
</joined-subclass>
<joined-subclass name="CashPayment" table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
...
</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
156
Table per subclass: using a discriminator
<key column="PAYMENT_ID"/>
...
</joined-subclass>
</class
>
Four tables are required. The three subclass tables have primary key associations to the
superclass table so the relational model is actually a one-to-one association.
9.1.3. Table per subclass: using a discriminator
Hibernate's implementation of table per subclass does not require a discriminator column. Other
object/relational mappers use a different implementation of table per subclass that requires a type
discriminator column in the superclass table. The approach taken by Hibernate is much more
difficult to implement, but arguably more correct from a relational point of view. If you want to use a
discriminator column with the table per subclass strategy, you can combine the use of <subclass>
and <join>, as follows:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">
<join table="CREDIT_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="creditCardType" column="CCTYPE"/>
...
</join>
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">
<join table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
...
</join>
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">
<join table="CHEQUE_PAYMENT" fetch="select">
<key column="PAYMENT_ID"/>
...
</join>
</subclass>
157
Capítulo 9. Inheritance mapping
</class
>
la declaración opcional fetch="select" dice a Hibernate que no recupere los datos de la
subclase ChequePayment usando una unión externa (outer join) al consultar la superclase.
9.1.4. Mezclando tabla por jerarquía de clases con tabla por
subclase
You can even mix the table per hierarchy and table per subclass strategies using the following
approach:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">
<join table="CREDIT_PAYMENT">
<property name="creditCardType" column="CCTYPE"/>
...
</join>
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">
...
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">
...
</subclass>
</class
>
Para cualquiera de estas estrategias de mapeo, una asociación polimórfica a la clase raíz Payment
es mapeada usando <many-to-one>.
<many-to-one name="payment" column="PAYMENT_ID" class="Payment"/>
158
Tabla por clase concreta
9.1.5. Tabla por clase concreta
There are two ways we can map the table per concrete class strategy. First, you can use <unionsubclass>.
<class name="Payment">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="sequence"/>
</id>
<property name="amount" column="AMOUNT"/>
...
<union-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">
<property name="creditCardType" column="CCTYPE"/>
...
</union-subclass>
<union-subclass name="CashPayment" table="CASH_PAYMENT">
...
</union-subclass>
<union-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
...
</union-subclass>
</class
>
Están implicadas tres tablas. Cada tabla define columnas para todas las propiedades de la clase,
inccluyendo las propiedades heredadas.
The limitation of this approach is that if a property is mapped on the superclass, the column name
must be the same on all subclass tables. The identity generator strategy is not allowed in union
subclass inheritance. The primary key seed has to be shared across all unioned subclasses of
a hierarchy.
If your superclass is abstract, map it with abstract="true". If it is not abstract, an additional table
(it defaults to PAYMENT in the example above), is needed to hold instances of the superclass.
9.1.6. Table per concrete class using implicit polymorphism
Un enfoque alternativo es hacer uso de polimorfismo implícito:
<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CREDIT_AMOUNT"/>
159
Capítulo 9. Inheritance mapping
...
</class>
<class name="CashPayment" table="CASH_PAYMENT">
<id name="id" type="long" column="CASH_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CASH_AMOUNT"/>
...
</class>
<class name="ChequePayment" table="CHEQUE_PAYMENT">
<id name="id" type="long" column="CHEQUE_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CHEQUE_AMOUNT"/>
...
</class
>
Notice that the Payment interface is not mentioned explicitly. Also notice that properties of Payment
are mapped in each of the subclasses. If you want to avoid duplication, consider using XML entities
(for example, [ <!ENTITY allproperties SYSTEM "allproperties.xml"> ] in the DOCTYPE
declaration and &allproperties; in the mapping).
La desventaja de este enfoque es que Hibernate no genera UNIONs de SQL al realizar consultas
polimórficas.
Para esta estrategia de mapeo, una asociación polimórfica a Payment es mapeada generalmente
usando <any>.
<any name="payment" meta-type="string" id-type="long">
<meta-value value="CREDIT" class="CreditCardPayment"/>
<meta-value value="CASH" class="CashPayment"/>
<meta-value value="CHEQUE" class="ChequePayment"/>
<column name="PAYMENT_CLASS"/>
<column name="PAYMENT_ID"/>
</any
>
160
Mezclando polimorfismo implícito con otros mapeos de herencia
9.1.7. Mezclando polimorfismo implícito con otros mapeos de
herencia
Since the subclasses are each mapped in their own <class> element, and since Payment is just
an interface), each of the subclasses could easily be part of another inheritance hierarchy. You
can still use polymorphic queries against the Payment interface.
<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="CREDIT_CARD" type="string"/>
<property name="amount" column="CREDIT_AMOUNT"/>
...
<subclass name="MasterCardPayment" discriminator-value="MDC"/>
<subclass name="VisaPayment" discriminator-value="VISA"/>
</class>
<class name="NonelectronicTransaction" table="NONELECTRONIC_TXN">
<id name="id" type="long" column="TXN_ID">
<generator class="native"/>
</id>
...
<joined-subclass name="CashPayment" table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="amount" column="CASH_AMOUNT"/>
...
</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="amount" column="CHEQUE_AMOUNT"/>
...
</joined-subclass>
</class
>
Once again, Payment is not mentioned explicitly. If we execute a query against the
Payment interface, for example from Payment, Hibernate automatically returns instances of
CreditCardPayment (and its subclasses, since they also implement Payment), CashPayment and
ChequePayment, but not instances of NonelectronicTransaction.
161
Capítulo 9. Inheritance mapping
9.2. Limitaciones
There are limitations to the "implicit polymorphism" approach to the table per concreteclass mapping strategy. There are somewhat less restrictive limitations to <union-subclass>
mappings.
La siguiente tabla muestra las limitaciones de mapeos de tabla por clase concreta, y de
polmorfismo implícito, en Hibernate.
Tabla 9.1. Funcionalidades de mapeo de herencia
Estrategiamuchos- unouno-amushos- load()/ ConsultasUniones Recuperación
de
a-uno
a-uno
muchos aget()
polimórficas
polimórficas
por
herencia polimórfica
polimórfica
polimórfica
muchos polimórficos
unión
polimórfica
externa
(outer
join)
tabla por <many- <one<onejerarquía to-one> to-one> to-
<many-
s.get(Payment.class,
from
from
to-
id)
de
clases
many>
many>
Payment
Order
p
o join
soportada
o.payment
p
tabla por <many- <one<onesubclase to-one> to-one> tomany>
<many-
s.get(Payment.class,
from
from
to-
id)
many>
Payment
Order
p
o join
soportada
o.payment
p
tabla por <many- <one<oneclase
to-one> to-one> to-
<many-
s.get(Payment.class,
from
from
to-
id)
concreta
(unionsubclass)
many>
many>
Payment
Order
p
o join
soportada
(para
o.payment
inverse="true"
p
solamente)
tabla por <any>
clase
concreta
(polimorfismo
implícito)
162
no
no
<manys.createCriteria(Payment.class).add(
from
no
no
Restrictions.
soportada soportada to-any>
Payment soportada soportada
p
Trabajando con objetos
Hibernate is a full object/relational mapping solution that not only shields the developer from
the details of the underlying database management system, but also offers state management
of objects. This is, contrary to the management of SQL statements in common JDBC/SQL
persistence layers, a natural object-oriented view of persistence in Java applications.
En otras palabras, los desarroladores de aplicaciones Hibernate deben siempre pensar en el
estado de sus objetos, y no necesariamente en la ejecución de sentencias SQL. Esta parte
es cuidada por Hibernate y es sólo relevante para el desarrollador de la aplicación al afinar el
rendimiento del sistema.
10.1. Estados de objeto de Hibernate
Hibernate define y soporta los siguientes estados de objeto:
• Transient - an object is transient if it has just been instantiated using the new operator, and it
is not associated with a Hibernate Session. It has no persistent representation in the database
and no identifier value has been assigned. Transient instances will be destroyed by the garbage
collector if the application does not hold a reference anymore. Use the Hibernate Session to
make an object persistent (and let Hibernate take care of the SQL statements that need to be
executed for this transition).
• Persistent - a persistent instance has a representation in the database and an identifier value.
It might just have been saved or loaded, however, it is by definition in the scope of a Session.
Hibernate will detect any changes made to an object in persistent state and synchronize the
state with the database when the unit of work completes. Developers do not execute manual
UPDATE statements, or DELETE statements when an object should be made transient.
• Detached - a detached instance is an object that has been persistent, but its Session has been
closed. The reference to the object is still valid, of course, and the detached instance might
even be modified in this state. A detached instance can be reattached to a new Session at a
later point in time, making it (and all the modifications) persistent again. This feature enables
a programming model for long running units of work that require user think-time. We call them
application transactions, i.e., a unit of work from the point of view of the user.
We will now discuss the states and state transitions (and the Hibernate methods that trigger a
transition) in more detail.
10.2. Haciendo los objetos persistentes
Las instancias recién instanciadas de una clase persistente son consideradas transitorias por
Hibernate. Podemos hacer una instancia transitoria persistente asociándola con una sesión:
163
Capítulo 10. Trabajando con o...
DomesticCat fritz = new DomesticCat();
fritz.setColor(Color.GINGER);
fritz.setSex('M');
fritz.setName("Fritz");
Long generatedId = (Long) sess.save(fritz);
If Cat has a generated identifier, the identifier is generated and assigned to the cat when save()
is called. If Cat has an assigned identifier, or a composite key, the identifier should be assigned
to the cat instance before calling save(). You can also use persist() instead of save(), with
the semantics defined in the EJB3 early draft.
• persist() makes a transient instance persistent. However, it does not guarantee that the
identifier value will be assigned to the persistent instance immediately, the assignment might
happen at flush time. persist() also guarantees that it will not execute an INSERT statement
if it is called outside of transaction boundaries. This is useful in long-running conversations with
an extended Session/persistence context.
• save() does guarantee to return an identifier. If an INSERT has to be executed to get the
identifier ( e.g. "identity" generator, not "sequence"), this INSERT happens immediately, no
matter if you are inside or outside of a transaction. This is problematic in a long-running
conversation with an extended Session/persistence context.
Alternatively, you can assign the identifier using an overloaded version of save().
DomesticCat pk = new DomesticCat();
pk.setColor(Color.TABBY);
pk.setSex('F');
pk.setName("PK");
pk.setKittens( new HashSet() );
pk.addKitten(fritz);
sess.save( pk, new Long(1234) );
If the object you make persistent has associated objects (e.g. the kittens collection in the
previous example), these objects can be made persistent in any order you like unless you have
a NOT NULL constraint upon a foreign key column. There is never a risk of violating foreign key
constraints. However, you might violate a NOT NULL constraint if you save() the objects in the
wrong order.
Usually you do not bother with this detail, as you will normally use Hibernate's transitive
persistence feature to save the associated objects automatically. Then, even NOT NULL constraint
violations do not occur - Hibernate will take care of everything. Transitive persistence is discussed
later in this chapter.
164
Cargando un objeto
10.3. Cargando un objeto
The load() methods of Session provide a way of retrieving a persistent instance if you know its
identifier. load() takes a class object and loads the state into a newly instantiated instance of
that class in a persistent state.
Cat fritz = (Cat) sess.load(Cat.class, generatedId);
// you need to wrap primitive identifiers
long id = 1234;
DomesticCat pk = (DomesticCat) sess.load( DomesticCat.class, new Long(id) );
Alternativamente, puedes cargar estado dentro de una instancia dada:
Cat cat = new DomesticCat();
// load pk's state into cat
sess.load( cat, new Long(pkId) );
Set kittens = cat.getKittens();
Be aware that load() will throw an unrecoverable exception if there is no matching database
row. If the class is mapped with a proxy, load() just returns an uninitialized proxy and does not
actually hit the database until you invoke a method of the proxy. This is useful if you wish to create
an association to an object without actually loading it from the database. It also allows multiple
instances to be loaded as a batch if batch-size is defined for the class mapping.
If you are not certain that a matching row exists, you should use the get() method which hits the
database immediately and returns null if there is no matching row.
Cat cat = (Cat) sess.get(Cat.class, id);
if (cat==null) {
cat = new Cat();
sess.save(cat, id);
}
return cat;
You can even load an object using an SQL SELECT ... FOR UPDATE, using a LockMode. See
the API documentation for more information.
165
Capítulo 10. Trabajando con o...
Cat cat = (Cat) sess.get(Cat.class, id, LockMode.UPGRADE);
Any associated instances or contained collections will not be selected FOR UPDATE, unless you
decide to specify lock or all as a cascade style for the association.
Es posible volver a cargar un objeto y todas sus colecciones en cualquier momento, usando el
método refresh(). Esto es útil cuando se usan disparadores de base de datos para inicializar
algunas de las propiedades del objeto.
sess.save(cat);
sess.flush(); //force the SQL INSERT
sess.refresh(cat); //re-read the state (after the trigger executes)
How much does Hibernate load from the database and how many SQL SELECTs will it use? This
depends on the fetching strategy. This is explained in Sección 19.1, “Estrategias de recuperación”.
10.4. Consultando
If you do not know the identifiers of the objects you are looking for, you need a query. Hibernate
supports an easy-to-use but powerful object oriented query language (HQL). For programmatic
query creation, Hibernate supports a sophisticated Criteria and Example query feature (QBC and
QBE). You can also express your query in the native SQL of your database, with optional support
from Hibernate for result set conversion into objects.
10.4.1. Ejecutando consultas
Las
consultas
HQL
y SQL nativas son representadas con una instancia de
org.hibernate.Query. Esta interface ofrece métodos para la ligación de parámetros, manejo del
conjunto resultado, y para la ejecución de la consulta real. Siempre obtienes una Query usando
la Session actual:
List cats = session.createQuery(
"from Cat as cat where cat.birthdate < ?")
.setDate(0, date)
.list();
List mothers = session.createQuery(
"select mother from Cat as cat join cat.mother as mother where cat.name = ?")
.setString(0, name)
.list();
List kittens = session.createQuery(
166
Ejecutando consultas
"from Cat as cat where cat.mother = ?")
.setEntity(0, pk)
.list();
Cat mother = (Cat) session.createQuery(
"select cat.mother from Cat as cat where cat = ?")
.setEntity(0, izi)
.uniqueResult();
A query is usually executed by invoking list(). The result of the query will be loaded completely
into a collection in memory. Entity instances retrieved by a query are in a persistent state. The
uniqueResult() method offers a shortcut if you know your query will only return a single object.
Queries that make use of eager fetching of collections usually return duplicates of the root objects,
but with their collections initialized. You can filter these duplicates through a Set.
10.4.1.1. Iterando los resultados
Occasionally, you might be able to achieve better performance by executing the query using the
iterate() method. This will usually be the case if you expect that the actual entity instances
returned by the query will already be in the session or second-level cache. If they are not already
cached, iterate() will be slower than list() and might require many database hits for a simple
query, usually 1 for the initial select which only returns identifiers, and n additional selects to
initialize the actual instances.
// fetch ids
Iterator iter = sess.createQuery("from eg.Qux q order by q.likeliness").iterate();
while ( iter.hasNext() ) {
Qux qux = (Qux) iter.next(); // fetch the object
// something we couldnt express in the query
if ( qux.calculateComplicatedAlgorithm() ) {
// delete the current instance
iter.remove();
// dont need to process the rest
break;
}
}
10.4.1.2. Consultas que devuelven tuplas
Hibernate queries sometimes return tuples of objects. Each tuple is returned as an array:
Iterator kittensAndMothers = sess.createQuery(
167
Capítulo 10. Trabajando con o...
"select kitten, mother from Cat kitten join kitten.mother mother")
.list()
.iterator();
while ( kittensAndMothers.hasNext() ) {
Object[] tuple = (Object[]) kittensAndMothers.next();
Cat kitten = (Cat) tuple[0];
Cat mother = (Cat) tuple[1];
....
}
10.4.1.3. Resultados escalares
Queries can specify a property of a class in the select clause. They can even call SQL aggregate
functions. Properties or aggregates are considered "scalar" results and not entities in persistent
state.
Iterator results = sess.createQuery(
"select cat.color, min(cat.birthdate), count(cat) from Cat cat " +
"group by cat.color")
.list()
.iterator();
while ( results.hasNext() ) {
Object[] row = results.next();
Color type = (Color) row[0];
Date oldest = (Date) row[1];
Integer count = (Integer) row[2];
.....
}
10.4.1.4. Ligación de parámetros
Methods on Query are provided for binding values to named parameters or JDBC-style ?
parameters. Contrary to JDBC, Hibernate numbers parameters from zero. Named parameters
are identifiers of the form :name in the query string. The advantages of named parameters are
as follows:
• los parámetros con nombre son insensibles al orden en que aparecen en la cadena de consulta
• they can occur multiple times in the same query
• son auto-documentados
168
Ejecutando consultas
//named parameter (preferred)
Query q = sess.createQuery("from DomesticCat cat where cat.name = :name");
q.setString("name", "Fritz");
Iterator cats = q.iterate();
//positional parameter
Query q = sess.createQuery("from DomesticCat cat where cat.name = ?");
q.setString(0, "Izi");
Iterator cats = q.iterate();
//named parameter list
List names = new ArrayList();
names.add("Izi");
names.add("Fritz");
Query q = sess.createQuery("from DomesticCat cat where cat.name in (:namesList)");
q.setParameterList("namesList", names);
List cats = q.list();
10.4.1.5. Paginación
If you need to specify bounds upon your result set, that is, the maximum number of rows you want
to retrieve and/or the first row you want to retrieve, you can use methods of the Query interface:
Query q = sess.createQuery("from DomesticCat cat");
q.setFirstResult(20);
q.setMaxResults(10);
List cats = q.list();
Hibernate sabe cómo traducir este límite de consulta al SQL nativo de tu DBMS.
10.4.1.6. Iteración scrollable
If your JDBC driver supports scrollable ResultSets, the Query interface can be used to obtain a
ScrollableResults object that allows flexible navigation of the query results.
Query q = sess.createQuery("select cat.name, cat from DomesticCat cat " +
"order by cat.name");
ScrollableResults cats = q.scroll();
if ( cats.first() ) {
169
Capítulo 10. Trabajando con o...
// find the first name on each page of an alphabetical list of cats by name
firstNamesOfPages = new ArrayList();
do {
String name = cats.getString(0);
firstNamesOfPages.add(name);
}
while ( cats.scroll(PAGE_SIZE) );
// Now get the first page of cats
pageOfCats = new ArrayList();
cats.beforeFirst();
int i=0;
while( ( PAGE_SIZE
> i++ ) && cats.next() ) pageOfCats.add( cats.get(1) );
}
cats.close()
Note that an open database connection and cursor is required for this functionality. Use
setMaxResult()/setFirstResult() if you need offline pagination functionality.
10.4.1.7. Externalizando consultas con nombre
You can also define named queries in the mapping document. Remember to use a CDATA section
if your query contains characters that could be interpreted as markup.
<query name="eg.DomesticCat.by.name.and.minimum.weight"
><![CDATA[
from eg.DomesticCat as cat
where cat.name = ?
and cat.weight
>?
] ]></query
>
La ligación de parámetros y ejecución se hace programáticamente:
Query q = sess.getNamedQuery("eg.DomesticCat.by.name.and.minimum.weight");
q.setString(0, name);
q.setInt(1, minWeight);
170
Filtrando colecciones
List cats = q.list();
The actual program code is independent of the query language that is used. You can also define
native SQL queries in metadata, or migrate existing queries to Hibernate by placing them in
mapping files.
Also note that a query declaration inside a <hibernate-mapping> element requires a global
unique name for the query, while a query declaration inside a <class> element is made
unique automatically by prepending the fully qualified name of the class. For example
eg.Cat.ByNameAndMaximumWeight.
10.4.2. Filtrando colecciones
A collection filter is a special type of query that can be applied to a persistent collection or array.
The query string can refer to this, meaning the current collection element.
Collection blackKittens = session.createFilter(
pk.getKittens(),
"where this.color = ?")
.setParameter( Color.BLACK, Hibernate.custom(ColorUserType.class) )
.list()
);
The returned collection is considered a bag that is a copy of the given collection. The original
collection is not modified. This is contrary to the implication of the name "filter", but consistent
with expected behavior.
Observe that filters do not require a from clause, although they can have one if required. Filters
are not limited to returning the collection elements themselves.
Collection blackKittenMates = session.createFilter(
pk.getKittens(),
"select this.mate where this.color = eg.Color.BLACK.intValue")
.list();
Even an empty filter query is useful, e.g. to load a subset of elements in a large collection:
Collection tenKittens = session.createFilter(
mother.getKittens(), "")
.setFirstResult(0).setMaxResults(10)
.list();
171
Capítulo 10. Trabajando con o...
10.4.3. Consultas de criterios
HQL is extremely powerful, but some developers prefer to build queries dynamically using an
object-oriented API, rather than building query strings. Hibernate provides an intuitive Criteria
query API for these cases:
Criteria crit = session.createCriteria(Cat.class);
crit.add( Restrictions.eq( "color", eg.Color.BLACK ) );
crit.setMaxResults(10);
List cats = crit.list();
Las APIs de Criteria y la asociada Example son discutidas en más detalle en Capítulo 15,
Consultas por Criterios.
10.4.4. Consultas en SQL nativo
You can express a query in SQL, using createSQLQuery() and let Hibernate manage the
mapping from result sets to objects. You can at any time call session.connection() and use
the JDBC Connection directly. If you choose to use the Hibernate API, you must enclose SQL
aliases in braces:
List cats = session.createSQLQuery("SELECT {cat.*} FROM CAT {cat} WHERE ROWNUM<10")
.addEntity("cat", Cat.class)
.list();
List cats = session.createSQLQuery(
"SELECT {cat}.ID AS {cat.id}, {cat}.SEX AS {cat.sex}, " +
"{cat}.MATE AS {cat.mate}, {cat}.SUBCLASS AS {cat.class}, ... " +
"FROM CAT {cat} WHERE ROWNUM<10")
.addEntity("cat", Cat.class)
.list()
SQL queries can contain named and positional parameters, just like Hibernate queries. More
information about native SQL queries in Hibernate can be found in Capítulo 16, SQL Nativo.
10.5. Modificando objetos persistentes
Transactional persistent instances (i.e. objects loaded, saved, created or queried by the Session)
can be manipulated by the application, and any changes to persistent state will be persisted when
the Session is flushed. This is discussed later in this chapter. There is no need to call a particular
method (like update(), which has a different purpose) to make your modifications persistent. The
172
Modificando objetos separados
most straightforward way to update the state of an object is to load() it and then manipulate it
directly while the Session is open:
DomesticCat cat = (DomesticCat) sess.load( Cat.class, new Long(69) );
cat.setName("PK");
sess.flush(); // changes to cat are automatically detected and persisted
Sometimes this programming model is inefficient, as it requires in the same session both an SQL
SELECT to load an object and an SQL UPDATE to persist its updated state. Hibernate offers an
alternate approach by using detached instances.
Importante
Hibernate does not offer its own API for direct execution of UPDATE or DELETE
statements. Hibernate is a state management service, you do not have to think
in statements to use it. JDBC is a perfect API for executing SQL statements,
you can get a JDBC Connection at any time by calling session.connection().
Furthermore, the notion of mass operations conflicts with object/relational
mapping for online transaction processing-oriented applications. Future versions
of Hibernate can, however, provide special mass operation functions. See
Capítulo 13, Procesamiento por lotes for some possible batch operation tricks.
10.6. Modificando objetos separados
Muchas aplicaciones necesitan recuperar un objeto en una transacción, enviarla a la capa de UI
para su manipulación, y entonces salvar los cambios en una nueva transacción. Las aplicaciones
que usan este tipo de enfoque en un entorno de alta concurrencia usualmente usan datos
versionados para asegurar el aislamiento de la unidad de trabajo "larga".
Hibernate soporta este modelo al proveer re-unión de instancias separadas usando los métodos
Session.update() o Session.merge():
// in the first session
Cat cat = (Cat) firstSession.load(Cat.class, catId);
Cat potentialMate = new Cat();
firstSession.save(potentialMate);
// in a higher layer of the application
cat.setMate(potentialMate);
// later, in a new session
secondSession.update(cat); // update cat
173
Capítulo 10. Trabajando con o...
secondSession.update(mate); // update mate
Si el Cat con identificador catId ya hubiera sido cargado por secondSession cuando la aplicación
intentó volver a unirlo, se habría lanzado una excepción.
Use update() if you are certain that the session does not contain an already persistent instance
with the same identifier. Use merge() if you want to merge your modifications at any time without
consideration of the state of the session. In other words, update() is usually the first method you
would call in a fresh session, ensuring that the reattachment of your detached instances is the
first operation that is executed.
The application should individually update() detached instances that are reachable from the given
detached instance only if it wants their state to be updated. This can be automated using transitive
persistence. See Sección 10.11, “Persistencia transitiva” for more information.
The lock() method also allows an application to reassociate an object with a new session.
However, the detached instance has to be unmodified.
//just reassociate:
sess.lock(fritz, LockMode.NONE);
//do a version check, then reassociate:
sess.lock(izi, LockMode.READ);
//do a version check, using SELECT ... FOR UPDATE, then reassociate:
sess.lock(pk, LockMode.UPGRADE);
Note that lock() can be used with various LockModes. See the API documentation and the
chapter on transaction handling for more information. Reattachment is not the only usecase for
lock().
Se discuten otros modelos para unidades de trabajo largas en Sección 11.3, “Control optimista
de concurrencia”.
10.7. Detección automática de estado
Los usuarios de Hibernate han pedido un método de propósito general que bien salve una
instancia transitoria generando un identificador nuevo, o bien actualice/reúna las instancias
separadas asociadas con su identificador actual. El método saveOrUpdate() implementa esta
funcionalidad.
// in the first session
Cat cat = (Cat) firstSession.load(Cat.class, catID);
// in a higher tier of the application
Cat mate = new Cat();
174
Borrando objetos persistentes
cat.setMate(mate);
// later, in a new session
secondSession.saveOrUpdate(cat); // update existing state (cat has a non-null id)
secondSession.saveOrUpdate(mate); // save the new instance (mate has a null id)
El uso y semántica de saveOrUpdate() parece ser confuso para usuarios nuevos. Primeramente,
en tanto no estés intentando usar instancias de una sesión en otra sesión nueva, no debes
necesitar usar update(), saveOrUpdate(), o merge(). Algunas aplicaciones enteras nunca
usarán ninguno de estos métodos.
Usualmente update() o saveOrUpdate() se usan en el siguiente escenario:
• la aplicación carga un objeto en la primera sesión
• el objeto es pasado a la capa de UI
• se hacen algunas modificaciones al objeto
• el objeto se pasa abajo de regreso a la capa de negocio
• la aplicación hace estas modificaciones persistentes llamando a update() en una segunda
sesión
saveOrUpdate() hace lo siguiente:
•
•
•
•
si el objeto ya es persistente en esta sesión, no hace nada
si otro objeto asociado con la sesión tiene el mismo identificador, lanza una excepción
si el objeto no tiene ninguna propiedad identificadora, lo salva llamando a save()
si el identificador del objeto tiene el valor asignado a un objeto recién instanciado, lo salva
llamando a save()
• if the object is versioned by a <version> or <timestamp>, and the version property value is the
same value assigned to a newly instantiated object, save() it
• en cualquier otro caso se actualiza el objeto llamando a update()
y merge() es muy diferente:
• si existe una instancia persistente con el mismo identificador asignado actualmente con la
sesión, copia el estado del objeto dado en la instancia persistente
• si no existe ninguna instancia persistente actualmente asociada a la sesión, intente cargarla
de la base de datos, o crear una nueva instancia persistente
• la instancia persistente es devuelta
• la instancia dada no resulta ser asociada a la sesión, permanece separada
10.8. Borrando objetos persistentes
Session.delete() will remove an object's state from the database. Your application, however,
can still hold a reference to a deleted object. It is best to think of delete() as making a persistent
instance, transient.
175
Capítulo 10. Trabajando con o...
sess.delete(cat);
You can delete objects in any order, without risk of foreign key constraint violations. It is still
possible to violate a NOT NULL constraint on a foreign key column by deleting objects in the wrong
order, e.g. if you delete the parent, but forget to delete the children.
10.9. Replicando objetos entre dos almacénes de datos
diferentes
It is sometimes useful to be able to take a graph of persistent instances and make them persistent
in a different datastore, without regenerating identifier values.
//retrieve a cat from one database
Session session1 = factory1.openSession();
Transaction tx1 = session1.beginTransaction();
Cat cat = session1.get(Cat.class, catId);
tx1.commit();
session1.close();
//reconcile with a second database
Session session2 = factory2.openSession();
Transaction tx2 = session2.beginTransaction();
session2.replicate(cat, ReplicationMode.LATEST_VERSION);
tx2.commit();
session2.close();
The ReplicationMode determines how replicate() will deal with conflicts with existing rows in
the database:
• ReplicationMode.IGNORE: ignores the object when there is an existing database row with the
same identifier
• ReplicationMode.OVERWRITE: overwrites any existing database row with the same identifier
• ReplicationMode.EXCEPTION: throws an exception if there is an existing database row with
the same identifier
• ReplicationMode.LATEST_VERSION: overwrites the row if its version number is earlier than the
version number of the object, or ignore the object otherwise
Los casos de uso para esta funcionalidad incluyen reconciliar datos ingresados en instancias
diferentes de bases de datos, actualizar información de configuración de sistema durante
actualizaciones de producto, deshacer cambios producidos durante transacciones no-ACID y
más.
176
Limpiando (flushing) la sesión
10.10. Limpiando (flushing) la sesión
Sometimes the Session will execute the SQL statements needed to synchronize the JDBC
connection's state with the state of objects held in memory. This process, called flush, occurs by
default at the following points:
• antes de algunas ejecuciones de consulta
• desde org.hibernate.Transaction.commit()
• desde Session.flush()
The SQL statements are issued in the following order:
1. all entity insertions in the same order the corresponding objects were saved using
Session.save()
2. todas las actualizaciones de entidades
3. todas los borrados de colecciones
4. todos los borrados, actualizaciones e inserciones de elementos de colección
5. todas las inserciones de colecciones
6. all entity deletions in the same order the corresponding objects were deleted using
Session.delete()
An exception is that objects using native ID generation are inserted when they are saved.
Except when you explicitly flush(), there are absolutely no guarantees about when the Session
executes the JDBC calls, only the order in which they are executed. However, Hibernate does
guarantee that the Query.list(..) will never return stale or incorrect data.
It is possible to change the default behavior so that flush occurs less frequently. The FlushMode
class defines three different modes: only flush at commit time when the Hibernate Transaction
API is used, flush automatically using the explained routine, or never flush unless flush() is called
explicitly. The last mode is useful for long running units of work, where a Session is kept open
and disconnected for a long time (see Sección 11.3.2, “Sesión larga y versionado automático”).
sess = sf.openSession();
Transaction tx = sess.beginTransaction();
sess.setFlushMode(FlushMode.COMMIT); // allow queries to return stale state
Cat izi = (Cat) sess.load(Cat.class, id);
izi.setName(iznizi);
// might return stale data
sess.find("from Cat as cat left outer join cat.kittens kitten");
177
Capítulo 10. Trabajando con o...
// change to izi is not flushed!
...
tx.commit(); // flush occurs
Durante la limpieza, puede ocurrir una excepción (por ejemplo, si una operación DML violase una
restricción). Ya que el manejo de excepciones implica alguna comprensión del comportamiento
transaccional de Hibernate, lo discutimos en Capítulo 11, Transactions and Concurrency.
10.11. Persistencia transitiva
Es absolutamente incómodo dalvar, borrar, o reunir objetos individuales, especialmente si tratas
con un grafo de objetos asociados. Un caso común es una relación padre/hijo. Considera el
siguiente ejemplo:
If the children in a parent/child relationship would be value typed (e.g. a collection of addresses
or strings), their life cycle would depend on the parent and no further action would be required
for convenient "cascading" of state changes. When the parent is saved, the value-typed child
objects are saved and when the parent is deleted, the children will be deleted, etc. This works for
operations such as the removal of a child from the collection. Since value-typed objects cannot
have shared references, Hibernate will detect this and delete the child from the database.
Now consider the same scenario with parent and child objects being entities, not value-types (e.g.
categories and items, or parent and child cats). Entities have their own life cycle and support
shared references. Removing an entity from the collection does not mean it can be deleted), and
there is by default no cascading of state from one entity to any other associated entities. Hibernate
does not implement persistence by reachability by default.
Para cada operación básica de la sesión de Hibernate - incluyendo persist(), merge(),
saveOrUpdate(), delete(), lock(), refresh(), evict(), replicate() - hay un estilo de
cascada correspondiente. Respectivamente, los estilos de cascada se llaman create, merge,
save-update, delete, lock, refresh, evict, replicate. Si quieres que una operación sea
tratada en cascada a lo largo de una asociación, debes indicar eso en el documento de mapeo.
Por ejemplo:
<one-to-one name="person" cascade="persist"/>
Los estilos de cascada pueden combinarse:
<one-to-one name="person" cascade="persist,delete,lock"/>
You can even use cascade="all" to specify that all operations should be cascaded along the
association. The default cascade="none" specifies that no operations are to be cascaded.
178
Usando metadatos
Un estilo de cascada especial, delete-orphan, se aplica sólo a asociaciones uno-a-muchos, e
indica que la operación delete() debe aplicarse a cualquier objeto hijo que sea quitado de la
asociación.
Recomendaciones:
• It does not usually make sense to enable cascade on a <many-to-one> or <many-to-many>
association. Cascade is often useful for <one-to-one> and <one-to-many> associations.
• Si la esperanza de vida de los objetos hijos está ligada a la eesperanza de vida del objeto
padre, házlo un objeto de ciclo de vida especificando cascade="all,delete-orphan".
• En otro caso, puede que no necesites tratamiento en cascada en absoluto. Pero si piensas que
estarás trabajando frecuentemente con padre e hijos juntos en la misma transacción, y quieres
ahorrarte algo de tipeo, considera usar cascade="persist,merge,save-update".
Mapear una asociación (ya sea una asociación monovaluada, o una colección) con
cascade="all" marca la asociación como una relación del estilo padre/hijo donde save/update/
delete en el padre resulta en save/update/delete del hijo o hijos.
Furthermore, a mere reference to a child from a persistent parent will result in save/update of the
child. This metaphor is incomplete, however. A child which becomes unreferenced by its parent
is not automatically deleted, except in the case of a <one-to-many> association mapped with
cascade="delete-orphan". The precise semantics of cascading operations for a parent/child
relationship are as follows:
• Si un padre le es pasado a persist(), todos los hijos le son pasados a persist()
• Si un padre le es pasado a merge(), todos los hijos le son pasados a merge()
• Si un padre le es pasado a save(), update() o saveOrUpdate(), todos los hijos le son pasados
a saveOrUpdate()
• Si un hijo transitorio o separado se vuelve referenciado por un padre persistente, le es pasado
a saveOrUpdate()
• Si un padre es borrado, todos los hijos le son pasados a delete()
• Si un hijo deja de ser referenciado por un padre persistente, no ocurre nada especial
- la aplicación debe borrar explícitamente el hijo de ser necesario - a menos que
cascade="delete-orphan", en cuyo caso el hijo "huérfano" es borrado.
Finally, note that cascading of operations can be applied to an object graph at call time or at flush
time. All operations, if enabled, are cascaded to associated entities reachable when the operation
is executed. However, save-update and delete-orphan are transitive for all associated entities
reachable during flush of the Session.
10.12. Usando metadatos
Hibernate requires a rich meta-level model of all entity and value types. This model can be useful to
the application itself. For example, the application might use Hibernate's metadata to implement a
"smart" deep-copy algorithm that understands which objects should be copied (eg. mutable value
179
Capítulo 10. Trabajando con o...
types) and which objects that should not (e.g. immutable value types and, possibly, associated
entities).
Hibernate exposes metadata via the ClassMetadata and CollectionMetadata interfaces
and the Type hierarchy. Instances of the metadata interfaces can be obtained from the
SessionFactory.
Cat fritz = ......;
ClassMetadata catMeta = sessionfactory.getClassMetadata(Cat.class);
Object[] propertyValues = catMeta.getPropertyValues(fritz);
String[] propertyNames = catMeta.getPropertyNames();
Type[] propertyTypes = catMeta.getPropertyTypes();
// get a Map of all properties which are not collections or associations
Map namedValues = new HashMap();
for ( int i=0; i<propertyNames.length; i++ ) {
if ( !propertyTypes[i].isEntityType() && !propertyTypes[i].isCollectionType() ) {
namedValues.put( propertyNames[i], propertyValues[i] );
}
}
180
Transactions and Concurrency
The most important point about Hibernate and concurrency control is that it is easy to understand.
Hibernate directly uses JDBC connections and JTA resources without adding any additional
locking behavior. It is recommended that you spend some time with the JDBC, ANSI, and
transaction isolation specification of your database management system.
Hibernate does not lock objects in memory. Your application can expect the behavior as defined
by the isolation level of your database transactions. Through Session, which is also a transactionscoped cache, Hibernate provides repeatable reads for lookup by identifier and entity queries and
not reporting queries that return scalar values.
In addition to versioning for automatic optimistic concurrency control, Hibernate also offers,
using the SELECT FOR UPDATE syntax, a (minor) API for pessimistic locking of rows. Optimistic
concurrency control and this API are discussed later in this chapter.
The discussion of concurrency control in Hibernate begins with the granularity of Configuration,
SessionFactory, and Session, as well as database transactions and long conversations.
11.1. Ámbitos de sesión y de transacción
A SessionFactory is an expensive-to-create, threadsafe object, intended to be shared by all
application threads. It is created once, usually on application startup, from a Configuration
instance.
A Session is an inexpensive, non-threadsafe object that should be used once and then discarded
for: a single request, a conversation or a single unit of work. A Session will not obtain a JDBC
Connection, or a Datasource, unless it is needed. It will not consume any resources until used.
In order to reduce lock contention in the database, a database transaction has to be as short
as possible. Long database transactions will prevent your application from scaling to a highly
concurrent load. It is not recommended that you hold a database transaction open during user
think time until the unit of work is complete.
What is the scope of a unit of work? Can a single Hibernate Session span several database
transactions, or is this a one-to-one relationship of scopes? When should you open and close a
Session and how do you demarcate the database transaction boundaries? These questions are
addressed in the following sections.
11.1.1. Unidad de trabajo
First, let's define a unit of work. A unit of work is a design pattern described by Martin Fowler as
“ [maintaining] a list of objects affected by a business transaction and coordinates the writing out
of changes and the resolution of concurrency problems. ”[PoEAA] In other words, its a series of
operations we wish to carry out against the database together. Basically, it is a transaction, though
fulfilling a unit of work will often span multiple physical database transactions (see Sección 11.1.2,
181
Capítulo 11. Transactions and...
“Transacciones de aplicación”). So really we are talking about a more abstract notion of a
transaction. The term "business transaction" is also sometimes used in lieu of unit of work.
Do not use the session-per-operation antipattern: do not open and close a Session for every
simple database call in a single thread. The same is true for database transactions. Database calls
in an application are made using a planned sequence; they are grouped into atomic units of work.
This also means that auto-commit after every single SQL statement is useless in an application as
this mode is intended for ad-hoc SQL console work. Hibernate disables, or expects the application
server to disable, auto-commit mode immediately. Database transactions are never optional.
All communication with a database has to occur inside a transaction. Auto-commit behavior for
reading data should be avoided, as many small transactions are unlikely to perform better than
one clearly defined unit of work. The latter is also more maintainable and extensible.
The most common pattern in a multi-user client/server application is session-per-request. In this
model, a request from the client is sent to the server, where the Hibernate persistence layer runs.
A new Hibernate Session is opened, and all database operations are executed in this unit of work.
On completion of the work, and once the response for the client has been prepared, the session
is flushed and closed. Use a single database transaction to serve the clients request, starting and
committing it when you open and close the Session. The relationship between the two is one-toone and this model is a perfect fit for many applications.
The challenge lies in the implementation. Hibernate provides built-in management of the "current
session" to simplify this pattern. Start a transaction when a server request has to be processed,
and end the transaction before the response is sent to the client. Common solutions are
ServletFilter, AOP interceptor with a pointcut on the service methods, or a proxy/interception
container. An EJB container is a standardized way to implement cross-cutting aspects such as
transaction demarcation on EJB session beans, declaratively with CMT. If you use programmatic
transaction demarcation, for ease of use and code portability use the Hibernate Transaction API
shown later in this chapter.
Your application code can access a "current session" to process the request by calling
sessionFactory.getCurrentSession(). You will always get a Session scoped to the current
database transaction. This has to be configured for either resource-local or JTA environments,
see Sección 2.5, “Contextual sessions”.
You can extend the scope of a Session and database transaction until the "view has been
rendered". This is especially useful in servlet applications that utilize a separate rendering phase
after the request has been processed. Extending the database transaction until view rendering,
is achieved by implementing your own interceptor. However, this will be difficult if you rely on
EJBs with container-managed transactions. A transaction will be completed when an EJB method
returns, before rendering of any view can start. See the Hibernate website and forum for tips and
examples relating to this Open Session in View pattern.
11.1.2. Transacciones de aplicación
The session-per-request pattern is not the only way of designing units of work. Many business
processes require a whole series of interactions with the user that are interleaved with database
182
Considerando la identidad del objeto
accesses. In web and enterprise applications, it is not acceptable for a database transaction to
span a user interaction. Consider the following example:
• The first screen of a dialog opens. The data seen by the user has been loaded in a particular
Session and database transaction. The user is free to modify the objects.
• The user clicks "Save" after 5 minutes and expects their modifications to be made persistent.
The user also expects that they were the only person editing this information and that no
conflicting modification has occurred.
From the point of view of the user, we call this unit of work a long-running conversation or
application transaction. There are many ways to implement this in your application.
A first naive implementation might keep the Session and database transaction open during user
think time, with locks held in the database to prevent concurrent modification and to guarantee
isolation and atomicity. This is an anti-pattern, since lock contention would not allow the application
to scale with the number of concurrent users.
You have to use several database transactions to implement the conversation. In this case,
maintaining isolation of business processes becomes the partial responsibility of the application
tier. A single conversation usually spans several database transactions. It will be atomic if only one
of these database transactions (the last one) stores the updated data. All others simply read data
(for example, in a wizard-style dialog spanning several request/response cycles). This is easier
to implement than it might sound, especially if you utilize some of Hibernate's features:
• Automatic Versioning: Hibernate can perform automatic optimistic concurrency control for you.
It can automatically detect if a concurrent modification occurred during user think time. Check
for this at the end of the conversation.
• Detached Objects: if you decide to use the session-per-request pattern, all loaded instances
will be in the detached state during user think time. Hibernate allows you to reattach the objects
and persist the modifications. The pattern is called session-per-request-with-detached-objects.
Automatic versioning is used to isolate concurrent modifications.
• Extended (or Long) Session: the Hibernate Session can be disconnected from the underlying
JDBC connection after the database transaction has been committed and reconnected when a
new client request occurs. This pattern is known as session-per-conversation and makes even
reattachment unnecessary. Automatic versioning is used to isolate concurrent modifications
and the Session will not be allowed to be flushed automatically, but explicitly.
Both session-per-request-with-detached-objects and session-per-conversation have advantages
and disadvantages. These disadvantages are discussed later in this chapter in the context of
optimistic concurrency control.
11.1.3. Considerando la identidad del objeto
An application can concurrently access the same persistent state in two different Sessions.
However, an instance of a persistent class is never shared between two Session instances. It is
for this reason that there are two different notions of identity:
183
Capítulo 11. Transactions and...
Identidad de Base de Datos
foo.getId().equals( bar.getId() )
Identidad JVM
foo==bar
For objects attached to a particular Session (i.e., in the scope of a Session), the two notions
are equivalent and JVM identity for database identity is guaranteed by Hibernate. While the
application might concurrently access the "same" (persistent identity) business object in two
different sessions, the two instances will actually be "different" (JVM identity). Conflicts are
resolved using an optimistic approach and automatic versioning at flush/commit time.
This approach leaves Hibernate and the database to worry about concurrency. It also provides
the best scalability, since guaranteeing identity in single-threaded units of work means that it does
not need expensive locking or other means of synchronization. The application does not need to
synchronize on any business object, as long as it maintains a single thread per Session. Within
a Session the application can safely use == to compare objects.
However, an application that uses == outside of a Session might produce unexpected results. This
might occur even in some unexpected places. For example, if you put two detached instances into
the same Set, both might have the same database identity (i.e., they represent the same row). JVM
identity, however, is by definition not guaranteed for instances in a detached state. The developer
has to override the equals() and hashCode() methods in persistent classes and implement their
own notion of object equality. There is one caveat: never use the database identifier to implement
equality. Use a business key that is a combination of unique, usually immutable, attributes. The
database identifier will change if a transient object is made persistent. If the transient instance
(usually together with detached instances) is held in a Set, changing the hashcode breaks the
contract of the Set. Attributes for business keys do not have to be as stable as database primary
keys; you only have to guarantee stability as long as the objects are in the same Set. See the
Hibernate website for a more thorough discussion of this issue. Please note that this is not a
Hibernate issue, but simply how Java object identity and equality has to be implemented.
11.1.4. Temas comunes
Do not use the anti-patterns session-per-user-session or session-per-application (there are,
however, rare exceptions to this rule). Some of the following issues might also arise within the
recommended patterns, so ensure that you understand the implications before making a design
decision:
• A Session is not thread-safe. Things that work concurrently, like HTTP requests, session beans,
or Swing workers, will cause race conditions if a Session instance is shared. If you keep your
Hibernate Session in your HttpSession (this is discussed later in the chapter), you should
consider synchronizing access to your Http session. Otherwise, a user that clicks reload fast
enough can use the same Session in two concurrently running threads.
• An exception thrown by Hibernate means you have to rollback your database transaction and
close the Session immediately (this is discussed in more detail later in the chapter). If your
184
Demarcación de la transacción de base de datos
Session is bound to the application, you have to stop the application. Rolling back the database
transaction does not put your business objects back into the state they were at the start of the
transaction. This means that the database state and the business objects will be out of sync.
Usually this is not a problem, because exceptions are not recoverable and you will have to start
over after rollback anyway.
• The Session caches every object that is in a persistent state (watched and checked for dirty
state by Hibernate). If you keep it open for a long time or simply load too much data, it will grow
endlessly until you get an OutOfMemoryException. One solution is to call clear() and evict()
to manage the Session cache, but you should consider a Stored Procedure if you need mass
data operations. Some solutions are shown in Capítulo 13, Procesamiento por lotes. Keeping
a Session open for the duration of a user session also means a higher probability of stale data.
11.2. Demarcación de la transacción de base de datos
Database, or system, transaction boundaries are always necessary. No communication with the
database can occur outside of a database transaction (this seems to confuse many developers
who are used to the auto-commit mode). Always use clear transaction boundaries, even for readonly operations. Depending on your isolation level and database capabilities this might not be
required, but there is no downside if you always demarcate transactions explicitly. Certainly, a
single database transaction is going to perform better than many small transactions, even for
reading data.
A Hibernate application can run in non-managed (i.e., standalone, simple Web- or Swing
applications) and managed J2EE environments. In a non-managed environment, Hibernate
is usually responsible for its own database connection pool. The application developer has
to manually set transaction boundaries (begin, commit, or rollback database transactions)
themselves. A managed environment usually provides container-managed transactions (CMT),
with the transaction assembly defined declaratively (in deployment descriptors of EJB session
beans, for example). Programmatic transaction demarcation is then no longer necessary.
However, it is often desirable to keep your persistence layer portable between non-managed
resource-local environments, and systems that can rely on JTA but use BMT instead of CMT.
In both cases use programmatic transaction demarcation. Hibernate offers a wrapper API called
Transaction that translates into the native transaction system of your deployment environment.
This API is actually optional, but we strongly encourage its use unless you are in a CMT session
bean.
Ending a Session usually involves four distinct phases:
•
•
•
•
limpiar (flush) la sesión
comprometer la transacción
cerrar la sesión
manejar excepciones
We discussed Flushing the session earlier, so we will now have a closer look at transaction
demarcation and exception handling in both managed and non-managed environments.
185
Capítulo 11. Transactions and...
11.2.1. Entorno no manejado
If a Hibernate persistence layer runs in a non-managed environment, database connections are
usually handled by simple (i.e., non-DataSource) connection pools from which Hibernate obtains
connections as needed. The session/transaction handling idiom looks like this:
// Non-managed environment idiom
Session sess = factory.openSession();
Transaction tx = null;
try {
tx = sess.beginTransaction();
// do some work
...
tx.commit();
}
catch (RuntimeException e) {
if (tx != null) tx.rollback();
throw e; // or display error message
}
finally {
sess.close();
}
You do not have to flush() the Session explicitly: the call to commit() automatically triggers the
synchronization depending on the FlushMode for the session. A call to close() marks the end of
a session. The main implication of close() is that the JDBC connection will be relinquished by
the session. This Java code is portable and runs in both non-managed and JTA environments.
As outlined earlier, a much more flexible solution is Hibernate's built-in "current session" context
management:
// Non-managed environment idiom with getCurrentSession()
try {
factory.getCurrentSession().beginTransaction();
// do some work
...
factory.getCurrentSession().getTransaction().commit();
}
catch (RuntimeException e) {
186
Usando JTA
factory.getCurrentSession().getTransaction().rollback();
throw e; // or display error message
}
You will not see these code snippets in a regular application; fatal (system) exceptions should
always be caught at the "top". In other words, the code that executes Hibernate calls in the
persistence layer, and the code that handles RuntimeException (and usually can only clean up
and exit), are in different layers. The current context management by Hibernate can significantly
simplify this design by accessing a SessionFactory. Exception handling is discussed later in this
chapter.
You
the
should select
default,
and
org.hibernate.transaction.JDBCTransactionFactory,
for
the
second
example
select
"thread"
which is
as
your
hibernate.current_session_context_class.
11.2.2. Usando JTA
If your persistence layer runs in an application server (for example, behind EJB session beans),
every datasource connection obtained by Hibernate will automatically be part of the global JTA
transaction. You can also install a standalone JTA implementation and use it without EJB.
Hibernate offers two strategies for JTA integration.
If you use bean-managed transactions (BMT), Hibernate will tell the application server to start and
end a BMT transaction if you use the Transaction API. The transaction management code is
identical to the non-managed environment.
// BMT idiom
Session sess = factory.openSession();
Transaction tx = null;
try {
tx = sess.beginTransaction();
// do some work
...
tx.commit();
}
catch (RuntimeException e) {
if (tx != null) tx.rollback();
throw e; // or display error message
}
finally {
sess.close();
}
187
Capítulo 11. Transactions and...
If you want to use a transaction-bound Session, that is, the getCurrentSession() functionality
for easy context propagation, use the JTA UserTransaction API directly:
// BMT idiom with getCurrentSession()
try {
UserTransaction tx = (UserTransaction)new InitialContext()
.lookup("java:comp/UserTransaction");
tx.begin();
// Do some work on Session bound to transaction
factory.getCurrentSession().load(...);
factory.getCurrentSession().persist(...);
tx.commit();
}
catch (RuntimeException e) {
tx.rollback();
throw e; // or display error message
}
With CMT, transaction demarcation is completed in session bean deployment descriptors, not
programmatically. The code is reduced to:
// CMT idiom
Session sess = factory.getCurrentSession();
// do some work
...
In a CMT/EJB, even rollback happens automatically. An unhandled RuntimeException thrown
by a session bean method tells the container to set the global transaction to rollback. You do
not need to use the Hibernate Transaction API at all with BMT or CMT, and you get automatic
propagation of the "current" Session bound to the transaction.
When
configuring
Hibernate's
transaction
factory,
choose
if you use JTA directly (BMT),
and org.hibernate.transaction.CMTTransactionFactory in a CMT session bean.
Remember to also set hibernate.transaction.manager_lookup_class. Ensure that your
hibernate.current_session_context_class is either unset (backwards compatibility), or is set
to "jta".
org.hibernate.transaction.JTATransactionFactory
188
Manejo de excepciones
The getCurrentSession() operation has one downside in a JTA environment. There is one
caveat to the use of after_statement connection release mode, which is then used by default.
Due to a limitation of the JTA spec, it is not possible for Hibernate to automatically clean up
any unclosed ScrollableResults or Iterator instances returned by scroll() or iterate().
You must release the underlying database cursor by calling ScrollableResults.close() or
Hibernate.close(Iterator) explicitly from a finally block. Most applications can easily avoid
using scroll() or iterate() from the JTA or CMT code.)
11.2.3. Manejo de excepciones
If the Session throws an exception, including any SQLException, immediately rollback the
database transaction, call Session.close() and discard the Session instance. Certain methods
of Session will not leave the session in a consistent state. No exception thrown by Hibernate
can be treated as recoverable. Ensure that the Session will be closed by calling close() in a
finally block.
The HibernateException, which wraps most of the errors that can occur in a Hibernate
persistence layer, is an unchecked exception. It was not in older versions of Hibernate. In our
opinion, we should not force the application developer to catch an unrecoverable exception at a
low layer. In most systems, unchecked and fatal exceptions are handled in one of the first frames
of the method call stack (i.e., in higher layers) and either an error message is presented to the
application user or some other appropriate action is taken. Note that Hibernate might also throw
other unchecked exceptions that are not a HibernateException. These are not recoverable and
appropriate action should be taken.
Hibernate
wraps SQLExceptions thrown while interacting with the database in a
JDBCException. In fact, Hibernate will attempt to convert the exception into a more
meaningful subclass of JDBCException. The underlying SQLException is always available
via JDBCException.getCause(). Hibernate converts the SQLException into an appropriate
JDBCException subclass using the SQLExceptionConverter attached to the SessionFactory.
By default, the SQLExceptionConverter is defined by the configured dialect. However,
it is also possible to plug in a custom implementation. See the javadocs for the
SQLExceptionConverterFactory class for details. The standard JDBCException subtypes are:
• JDBCConnectionException: indicates an error with the underlying JDBC communication.
• SQLGrammarException: indicates a grammar or syntax problem with the issued SQL.
• ConstraintViolationException: indicates some form of integrity constraint violation.
• LockAcquisitionException: indicates an error acquiring a lock level necessary to perform the
requested operation.
• GenericJDBCException: a generic exception which did not fall into any of the other categories.
11.2.4. Transaction timeout
An important feature provided by a managed environment like EJB, that is never provided for
non-managed code, is transaction timeout. Transaction timeouts ensure that no misbehaving
189
Capítulo 11. Transactions and...
transaction can indefinitely tie up resources while returning no response to the user. Outside a
managed (JTA) environment, Hibernate cannot fully provide this functionality. However, Hibernate
can at least control data access operations, ensuring that database level deadlocks and queries
with huge result sets are limited by a defined timeout. In a managed environment, Hibernate can
delegate transaction timeout to JTA. This functionality is abstracted by the Hibernate Transaction
object.
Session sess = factory.openSession();
try {
//set transaction timeout to 3 seconds
sess.getTransaction().setTimeout(3);
sess.getTransaction().begin();
// do some work
...
sess.getTransaction().commit()
}
catch (RuntimeException e) {
sess.getTransaction().rollback();
throw e; // or display error message
}
finally {
sess.close();
}
setTimeout() cannot be called in a CMT bean, where transaction timeouts must be defined
declaratively.
11.3. Control optimista de concurrencia
The only approach that is consistent with high concurrency and high scalability, is optimistic
concurrency control with versioning. Version checking uses version numbers, or timestamps,
to detect conflicting updates and to prevent lost updates. Hibernate provides three possible
approaches to writing application code that uses optimistic concurrency. The use cases we
discuss are in the context of long conversations, but version checking also has the benefit of
preventing lost updates in single database transactions.
11.3.1. Chequeo de versiones de aplicación
In an implementation without much help from Hibernate, each interaction with the database occurs
in a new Session and the developer is responsible for reloading all persistent instances from
the database before manipulating them. The application is forced to carry out its own version
190
Sesión larga y versionado automático
checking to ensure conversation transaction isolation. This approach is the least efficient in terms
of database access. It is the approach most similar to entity EJBs.
// foo is an instance loaded by a previous Session
session = factory.openSession();
Transaction t = session.beginTransaction();
int oldVersion = foo.getVersion();
session.load( foo, foo.getKey() ); // load the current state
if ( oldVersion != foo.getVersion() ) throw new StaleObjectStateException();
foo.setProperty("bar");
t.commit();
session.close();
La propiedad version se mapea usando <version>, e Hibernate la incrementará
automáticamente durante la limpieza si la entidad está sucia.
If you are operating in a low-data-concurrency environment, and do not require version checking,
you can use this approach and skip the version check. In this case, last commit wins is the default
strategy for long conversations. Be aware that this might confuse the users of the application,
as they might experience lost updates without error messages or a chance to merge conflicting
changes.
Manual version checking is only feasible in trivial circumstances and not practical for most
applications. Often not only single instances, but complete graphs of modified objects, have to
be checked. Hibernate offers automatic version checking with either an extended Session or
detached instances as the design paradigm.
11.3.2. Sesión larga y versionado automático
A single Session instance and its persistent instances that are used for the whole conversation are
known as session-per-conversation. Hibernate checks instance versions at flush time, throwing
an exception if concurrent modification is detected. It is up to the developer to catch and handle
this exception. Common options are the opportunity for the user to merge changes or to restart
the business conversation with non-stale data.
The Session is disconnected from any underlying JDBC connection when waiting for user
interaction. This approach is the most efficient in terms of database access. The application does
not version check or reattach detached instances, nor does it have to reload instances in every
database transaction.
// foo is an instance loaded earlier by the old session
Transaction t = session.beginTransaction(); // Obtain a new JDBC connection, start transaction
191
Capítulo 11. Transactions and...
foo.setProperty("bar");
session.flush(); // Only for last transaction in conversation
t.commit();
// Also return JDBC connection
session.close(); // Only for last transaction in conversation
The foo object knows which Session it was loaded in. Beginning a new database transaction
on an old session obtains a new connection and resumes the session. Committing a database
transaction disconnects a session from the JDBC connection and returns the connection to
the pool. After reconnection, to force a version check on data you are not updating, you can
call Session.lock() with LockMode.READ on any objects that might have been updated by
another transaction. You do not need to lock any data that you are updating. Usually you would
set FlushMode.MANUAL on an extended Session, so that only the last database transaction
cycle is allowed to actually persist all modifications made in this conversation. Only this last
database transaction will include the flush() operation, and then close() the session to end
the conversation.
This pattern is problematic if the Session is too big to be stored during user think time (for example,
an HttpSession should be kept as small as possible). As the Session is also the first-level cache
and contains all loaded objects, we can probably use this strategy only for a few request/response
cycles. Use a Session only for a single conversation as it will soon have stale data.
Note
Earlier versions of Hibernate required explicit disconnection and reconnection of a
Session. These methods are deprecated, as beginning and ending a transaction
has the same effect.
Keep the disconnected Session close to the persistence layer. Use an EJB stateful session bean
to hold the Session in a three-tier environment. Do not transfer it to the web layer, or even serialize
it to a separate tier, to store it in the HttpSession.
The extended session pattern, or session-per-conversation, is more difficult to implement with
automatic current session context management. You need to supply your own implementation of
the CurrentSessionContext for this. See the Hibernate Wiki for examples.
11.3.3. Objetos separados y versionado automático
Cada interacción con el almacén persistente ocurre en una nueva Session. Sin embargo, las
mismas instancias persistentes son reusadas para cada interacción con la base de datos.
La aplicación manipula el estado de las instancias separadas originalmente cargadas en
otra Session y luego las readjunta usando Session.update(), Session.saveOrUpdate(), o
Session.merge().
192
Personalizando el versionado automático
// foo is an instance loaded by a previous Session
foo.setProperty("bar");
session = factory.openSession();
Transaction t = session.beginTransaction();
session.saveOrUpdate(foo); // Use merge() if "foo" might have been loaded already
t.commit();
session.close();
Again, Hibernate will check instance versions during flush, throwing an exception if conflicting
updates occurred.
You can also call lock() instead of update(), and use LockMode.READ (performing a version
check and bypassing all caches) if you are sure that the object has not been modified.
11.3.4. Personalizando el versionado automático
You can disable Hibernate's automatic version increment for particular properties and collections
by setting the optimistic-lock mapping attribute to false. Hibernate will then no longer
increment versions if the property is dirty.
Legacy database schemas are often static and cannot be modified. Or, other applications might
access the same database and will not know how to handle version numbers or even timestamps.
In both cases, versioning cannot rely on a particular column in a table. To force a version check
with a comparison of the state of all fields in a row but without a version or timestamp property
mapping, turn on optimistic-lock="all" in the <class> mapping. This conceptually only works
if Hibernate can compare the old and the new state (i.e., if you use a single long Session and not
session-per-request-with-detached-objects).
Concurrent modification can be permitted in instances where the changes that have been made
do not overlap. If you set optimistic-lock="dirty" when mapping the <class>, Hibernate will
only compare dirty fields during flush.
In both cases, with dedicated version/timestamp columns or with a full/dirty field comparison,
Hibernate uses a single UPDATE statement, with an appropriate WHERE clause, per entity to execute
the version check and update the information. If you use transitive persistence to cascade
reattachment to associated entities, Hibernate may execute unnecessary updates. This is usually
not a problem, but on update triggers in the database might be executed even when no changes
have been made to detached instances. You can customize this behavior by setting selectbefore-update="true" in the <class> mapping, forcing Hibernate to SELECT the instance to
ensure that changes did occur before updating the row.
11.4. Pessimistic locking
It is not intended that users spend much time worrying about locking strategies. It is usually enough
to specify an isolation level for the JDBC connections and then simply let the database do all the
193
Capítulo 11. Transactions and...
work. However, advanced users may wish to obtain exclusive pessimistic locks or re-obtain locks
at the start of a new transaction.
Hibernate will always use the locking mechanism of the database; it never lock objects in memory.
The LockMode class defines the different lock levels that can be acquired by Hibernate. A lock is
obtained by the following mechanisms:
• LockMode.WRITE se adquiere automáticamente cuando Hibernate actualiza o inserta una fila.
• LockMode.UPGRADE can be acquired upon explicit user request using SELECT ... FOR UPDATE
on databases which support that syntax.
• LockMode.UPGRADE_NOWAIT can be acquired upon explicit user request using a SELECT ...
FOR UPDATE NOWAIT under Oracle.
• LockMode.READ is acquired automatically when Hibernate reads data under Repeatable Read
or Serializable isolation level. It can be re-acquired by explicit user request.
• LockMode.NONE representa la ausencia de un bloqueo. Todos los objetos se pasan a este modo
de bloqueo al final de una Transaction. Los objetos asociados con una sesión vía una llamada
a update() o saveOrUpdate() también comienzan en este modo de bloqueo.
La "petición explícita del usuario" se expresa en una de las siguientes formas:
• Una llamada a Session.load(), especificando un LockMode.
• Una llamada a Session.lock().
• Una llamada a Query.setLockMode().
Si se llama a Session.load() con UPGRADE o UPGRADE_NOWAIT, y el objeto pedido no ha sido
aún cargado por la sesión, el objeto es cargado usando SELECT ... FOR UPDATE. Si se llama
a load() para un objeto que ya esté cargado con un bloqueo menos restrictivo que el pedido,
Hibernate llama a lock() para ese objeto.
Session.lock() performs a version number check if the specified lock mode is READ, UPGRADE or
UPGRADE_NOWAIT. In the case of UPGRADE or UPGRADE_NOWAIT, SELECT ... FOR UPDATE is used.
If the requested lock mode is not supported by the database, Hibernate uses an appropriate
alternate mode instead of throwing an exception. This ensures that applications are portable.
11.5. Connection release modes
One of the legacies of Hibernate 2.x JDBC connection management meant that a Session would
obtain a connection when it was first required and then maintain that connection until the session
was closed. Hibernate 3.x introduced the notion of connection release modes that would instruct
a session how to handle its JDBC connections. The following discussion is pertinent only to
connections provided through a configured ConnectionProvider. User-supplied connections
are outside the breadth of this discussion. The different release modes are identified by the
enumerated values of org.hibernate.ConnectionReleaseMode:
194
Connection release modes
• ON_CLOSE: is the legacy behavior described above. The Hibernate session obtains a connection
when it first needs to perform some JDBC access and maintains that connection until the session
is closed.
• AFTER_TRANSACTION: releases connections after a org.hibernate.Transaction has been
completed.
• AFTER_STATEMENT (also referred to as aggressive release): releases connections after every
statement execution. This aggressive releasing is skipped if that statement leaves open
resources associated with the given session. Currently the only situation where this occurs is
through the use of org.hibernate.ScrollableResults.
The configuration parameter hibernate.connection.release_mode is used to specify which
release mode to use. The possible values are as follows:
• auto (the default): this choice delegates to the release mode returned by the
org.hibernate.transaction.TransactionFactory.getDefaultReleaseMode() method.
For JTATransactionFactory, this returns ConnectionReleaseMode.AFTER_STATEMENT; for
JDBCTransactionFactory, this returns ConnectionReleaseMode.AFTER_TRANSACTION. Do
not change this default behavior as failures due to the value of this setting tend to indicate bugs
and/or invalid assumptions in user code.
• on_close: uses ConnectionReleaseMode.ON_CLOSE. This setting is left for backwards
compatibility, but its use is discouraged.
• after_transaction: uses ConnectionReleaseMode.AFTER_TRANSACTION. This setting
should
not
be
used
in
JTA
environments.
Also
note
that
with
ConnectionReleaseMode.AFTER_TRANSACTION, if a session is considered to be in autocommit mode, connections will be released as if the release mode were AFTER_STATEMENT.
• after_statement: uses ConnectionReleaseMode.AFTER_STATEMENT. Additionally,
the configured ConnectionProvider is consulted to see if it supports this
setting (supportsAggressiveRelease()). If not, the release mode is reset to
ConnectionReleaseMode.AFTER_TRANSACTION. This setting is only safe in environments
where we can either re-acquire the same underlying JDBC connection each time you make
a call into ConnectionProvider.getConnection() or in auto-commit environments where it
does not matter if we re-establish the same connection.
195
196
Interceptores y eventos
It is useful for the application to react to certain events that occur inside Hibernate. This allows for
the implementation of generic functionality and the extension of Hibernate functionality.
12.1. Interceptores
The Interceptor interface provides callbacks from the session to the application, allowing the
application to inspect and/or manipulate properties of a persistent object before it is saved,
updated, deleted or loaded. One possible use for this is to track auditing information. For example,
the following Interceptor automatically sets the createTimestamp when an Auditable is
created and updates the lastUpdateTimestamp property when an Auditable is updated.
You can either implement Interceptor directly or extend EmptyInterceptor.
package org.hibernate.test;
import java.io.Serializable;
import java.util.Date;
import java.util.Iterator;
import org.hibernate.Interceptor;
import org.hibernate.type.Type;
public class AuditInterceptor implements Interceptor, Serializable {
private int updates;
private int creates;
public void onDelete(Object entity,
Serializable id,
Object[] state,
String[] propertyNames,
Type[] types) {
// do nothing
}
public boolean onFlushDirty(Object entity,
Serializable id,
Object[] currentState,
Object[] previousState,
String[] propertyNames,
Type[] types) {
197
Capítulo 12. Interceptores y ...
if ( entity instanceof Auditable ) {
updates++;
for ( int i=0; i < propertyNames.length; i++ ) {
if ( "lastUpdateTimestamp".equals( propertyNames[i] ) ) {
currentState[i] = new Date();
return true;
}
}
}
return false;
}
public boolean onLoad(Object entity,
Serializable id,
Object[] state,
String[] propertyNames,
Type[] types) {
return false;
}
public boolean onSave(Object entity,
Serializable id,
Object[] state,
String[] propertyNames,
Type[] types) {
if ( entity instanceof Auditable ) {
creates++;
for ( int i=0; i<propertyNames.length; i++ ) {
if ( "createTimestamp".equals( propertyNames[i] ) ) {
state[i] = new Date();
return true;
}
}
}
return false;
}
public void postFlush(Iterator entities) {
System.out.println("Creations: " + creates + ", Updates: " + updates);
}
public void preFlush(Iterator entities) {
198
Sistema de eventos
updates=0;
creates=0;
}
...
}
There are two kinds of inteceptors: Session-scoped and SessionFactory-scoped.
UNTRANSLATED! A Session-scoped interceptor is specified when a session is opened using
one of the overloaded SessionFactory.openSession() methods accepting an Interceptor.
Session session = sf.openSession( new AuditInterceptor() );
A SessionFactory-scoped interceptor is registered with the Configuration object prior to
building the SessionFactory. Unless a session is opened explicitly specifying the interceptor to
use, the supplied interceptor will be applied to all sessions opened from that SessionFactory.
SessionFactory-scoped interceptors must be thread safe. Ensure that you do not store sessionspecific states, since multiple sessions will use this interceptor potentially concurrently.
new Configuration().setInterceptor( new AuditInterceptor() );
12.2. Sistema de eventos
If you have to react to particular events in your persistence layer, you can also use the Hibernate3
event architecture. The event system can be used in addition, or as a replacement, for interceptors.
All the methods of the Session interface correlate to an event. You have a LoadEvent, a
FlushEvent, etc. Consult the XML configuration-file DTD or the org.hibernate.event package
for the full list of defined event types. When a request is made of one of these methods, the
Hibernate Session generates an appropriate event and passes it to the configured event listeners
for that type. Out-of-the-box, these listeners implement the same processing in which those
methods always resulted. However, you are free to implement a customization of one of the
listener interfaces (i.e., the LoadEvent is processed by the registered implementation of the
LoadEventListener interface), in which case their implementation would be responsible for
processing any load() requests made of the Session.
The listeners should be considered singletons. This means they are shared between requests,
and should not save any state as instance variables.
A custom listener implements the appropriate interface for the event it wants to process and/or
extend one of the convenience base classes (or even the default event listeners used by Hibernate
199
Capítulo 12. Interceptores y ...
out-of-the-box as these are declared non-final for this purpose). Custom listeners can either be
registered programmatically through the Configuration object, or specified in the Hibernate
configuration XML. Declarative configuration through the properties file is not supported. Here is
an example of a custom load event listener:
public class MyLoadListener extends DefaultLoadEventListener {
// this is the single method defined by the LoadEventListener interface
public Object onLoad(LoadEvent event, LoadEventListener.LoadType loadType)
throws HibernateException {
if ( !MySecurity.isAuthorized( event.getEntityClassName(), event.getEntityId() ) ) {
throw MySecurityException("Unauthorized access");
}
return super.onLoad(event, loadType);
}
}
Necesitas además una entrada de configuración diciéndole a Hibernate que use el oyente en vez
del oyente por defecto:
<hibernate-configuration>
<session-factory>
...
<listener type="load" class="MyLoadListener"/>
</session-factory>
</hibernate-configuration
>
Instead, you can register it programmatically:
Configuration cfg = new Configuration();
cfg.getSessionEventListenerConfig().setLoadEventListener( new MyLoadListener() );
Listeners registered declaratively cannot share instances. If the same class name is used in
multiple <listener/> elements, each reference will result in a separate instance of that class.
If you need to share listener instances between listener types you must use the programmatic
registration approach.
Why implement an interface and define the specific type during configuration? A listener
implementation could implement multiple event listener interfaces. Having the type additionally
defined during registration makes it easier to turn custom listeners on or off during configuration.
200
Seguridad declarativa de Hibernate
12.3. Seguridad declarativa de Hibernate
Usually, declarative security in Hibernate applications is managed in a session facade layer.
Hibernate3 allows certain actions to be permissioned via JACC, and authorized via JAAS. This is
an optional functionality that is built on top of the event architecture.
Primero, debes configurar los oyentes de eventos apropiados, para habilitar el uso de autorización
JAAS.
<listener type="pre-delete" class="org.hibernate.secure.JACCPreDeleteEventListener"/>
<listener type="pre-update" class="org.hibernate.secure.JACCPreUpdateEventListener"/>
<listener type="pre-insert" class="org.hibernate.secure.JACCPreInsertEventListener"/>
<listener type="pre-load" class="org.hibernate.secure.JACCPreLoadEventListener"/>
Note
that
<listener
type="..."><listener
is shorthand for <event
class="..."/></event> when there is exactly one listener for a
type="..."
class="..."/>
particular event type.
Next, while still in hibernate.cfg.xml, bind the permissions to roles:
<grant role="admin" entity-name="User" actions="insert,update,read"/>
<grant role="su" entity-name="User" actions="*"/>
Los nombres de role son los roles entendidos por tu proveedor de JACC.
201
202
Procesamiento por lotes
A naive approach to inserting 100,000 rows in the database using Hibernate might look like this:
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
for ( int i=0; i<100000; i++ ) {
Customer customer = new Customer(.....);
session.save(customer);
}
tx.commit();
session.close();
This would fall over with an OutOfMemoryException somewhere around the 50,000th row. That is
because Hibernate caches all the newly inserted Customer instances in the session-level cache.
In this chapter we will show you how to avoid this problem.
If you are undertaking batch processing you will need to enable the use of JDBC batching. This
is absolutely essential if you want to achieve optimal performance. Set the JDBC batch size to a
reasonable number (10-50, for example):
hibernate.jdbc.batch_size 20
Hibernate disables insert batching at the JDBC level transparently if you use an identity identifier
generator.
You can also do this kind of work in a process where interaction with the second-level cache is
completely disabled:
hibernate.cache.use_second_level_cache false
UNTRANSLATED! However, this is not absolutely necessary, since we can explicitly set the
CacheMode to disable interaction with the second-level cache.
13.1. Inserciones en lote
When making new objects persistent flush() and then clear() the session regularly in order to
control the size of the first-level cache.
Session session = sessionFactory.openSession();
203
Capítulo 13. Procesamiento po...
Transaction tx = session.beginTransaction();
for ( int i=0; i<100000; i++ ) {
Customer customer = new Customer(.....);
session.save(customer);
if ( i % 20 == 0 ) { //20, same as the JDBC batch size
//flush a batch of inserts and release memory:
session.flush();
session.clear();
}
}
tx.commit();
session.close();
13.2. Actualizaciones en lote
For retrieving and updating data, the same ideas apply. In addition, you need to use scroll() to
take advantage of server-side cursors for queries that return many rows of data.
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
ScrollableResults customers = session.getNamedQuery("GetCustomers")
.setCacheMode(CacheMode.IGNORE)
.scroll(ScrollMode.FORWARD_ONLY);
int count=0;
while ( customers.next() ) {
Customer customer = (Customer) customers.get(0);
customer.updateStuff(...);
if ( ++count % 20 == 0 ) {
//flush a batch of updates and release memory:
session.flush();
session.clear();
}
}
tx.commit();
session.close();
204
UNTRANSLATED! The StatelessSession interface
13.3. UNTRANSLATED! The StatelessSession interface
Alternatively, Hibernate provides a command-oriented API that can be used for streaming data to
and from the database in the form of detached objects. A StatelessSession has no persistence
context associated with it and does not provide many of the higher-level life cycle semantics.
In particular, a stateless session does not implement a first-level cache nor interact with any
second-level or query cache. It does not implement transactional write-behind or automatic dirty
checking. Operations performed using a stateless session never cascade to associated instances.
Collections are ignored by a stateless session. Operations performed via a stateless session
bypass Hibernate's event model and interceptors. Due to the lack of a first-level cache, Stateless
sessions are vulnerable to data aliasing effects. A stateless session is a lower-level abstraction
that is much closer to the underlying JDBC.
StatelessSession session = sessionFactory.openStatelessSession();
Transaction tx = session.beginTransaction();
ScrollableResults customers = session.getNamedQuery("GetCustomers")
.scroll(ScrollMode.FORWARD_ONLY);
while ( customers.next() ) {
Customer customer = (Customer) customers.get(0);
customer.updateStuff(...);
session.update(customer);
}
tx.commit();
session.close();
In this code example, the Customer instances returned by the query are immediately detached.
They are never associated with any persistence context.
The insert(), update() and delete() operations defined by the StatelessSession interface
are considered to be direct database row-level operations. They result in the immediate execution
of a SQL INSERT, UPDATE or DELETE respectively. They have different semantics to the save(),
saveOrUpdate() and delete() operations defined by the Session interface.
13.4. update/delete en masa
As already discussed, automatic and transparent object/relational mapping is concerned with
the management of the object state. The object state is available in memory. This means that
manipulating data directly in the database (using the SQL Data Manipulation Language (DML)
the statements: INSERT, UPDATE, DELETE) will not affect in-memory state. However, Hibernate
provides methods for bulk SQL-style DML statement execution that is performed through the
Hibernate Query Language (HQL).
205
Capítulo 13. Procesamiento po...
The pseudo-syntax for UPDATE and DELETE statements is: ( UPDATE | DELETE ) FROM?
EntityName (WHERE where_conditions)?.
Some points to note:
• En la cláusula-from, la palabra clave FROM es opcional
• There can only be a single entity named in the from-clause. It can, however, be aliased. If the
entity name is aliased, then any property references must be qualified using that alias. If the
entity name is not aliased, then it is illegal for any property references to be qualified.
• No joins, either implicit or explicit, can be specified in a bulk HQL query. Sub-queries can be
used in the where-clause, where the subqueries themselves may contain joins.
• La cláusula-where es también opcional.
As an example, to execute an HQL UPDATE, use the Query.executeUpdate() method. The
method is named for those familiar with JDBC's PreparedStatement.executeUpdate():
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
String hqlUpdate = "update Customer c set c.name = :newName
where c.name = :oldName";
// or String hqlUpdate = "update Customer set name = :newName
where name = :oldName";
int updatedEntities = s.createQuery( hqlUpdate )
.setString( "newName", newName )
.setString( "oldName", oldName )
.executeUpdate();
tx.commit();
session.close();
In keeping with the EJB3 specification, HQL UPDATE statements, by default, do not effect the
version or the timestamp property values for the affected entities. However, you can force
Hibernate to reset the version or timestamp property values through the use of a versioned
update. This is achieved by adding the VERSIONED keyword after the UPDATE keyword.
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
String hqlVersionedUpdate = "update versioned Customer set name
= :newName where name = :oldName";
int updatedEntities = s.createQuery( hqlUpdate )
.setString( "newName", newName )
.setString( "oldName", oldName )
.executeUpdate();
206
update/delete en masa
tx.commit();
session.close();
Custom version types, org.hibernate.usertype.UserVersionType, are not allowed in
conjunction with a update versioned statement.
Para ejecutar un DELETE HQL, usa el mismo método Query.executeUpdate():
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
String hqlDelete = "delete Customer where name = :oldName";
int deletedEntities = s.createQuery( hqlDelete )
.setString( "oldName", oldName )
.executeUpdate();
tx.commit();
session.close();
The int value returned by the Query.executeUpdate() method indicates the number of entities
effected by the operation. This may or may not correlate to the number of rows effected in the
database. An HQL bulk operation might result in multiple actual SQL statements being executed
(for joined-subclass, for example). The returned number indicates the number of actual entities
affected by the statement. Going back to the example of joined-subclass, a delete against one
of the subclasses may actually result in deletes against not just the table to which that subclass
is mapped, but also the "root" table and potentially joined-subclass tables further down the
inheritance hierarchy.
Ten en cuenta que existen actualmente unas pocas limitaciones con las operaciones HQL
masivas, que serán atendidas en lanzamientos futuros; consulta la hoja de ruta de JIRA para
más detalles.
• Only the INSERT INTO ... SELECT ... form is supported; not the INSERT INTO ... VALUES ...
form.
The properties_list is analogous to the column specification in the SQL INSERT statement.
For entities involved in mapped inheritance, only properties directly defined on that given
class-level can be used in the properties_list. Superclass properties are not allowed and
subclass properties do not make sense. In other words, INSERT statements are inherently nonpolymorphic.
• select_statement can be any valid HQL select query, with the caveat that the return types must
match the types expected by the insert. Currently, this is checked during query compilation
rather than allowing the check to relegate to the database. This might, however, cause problems
between Hibernate Types which are equivalent as opposed to equal. This might cause issues
207
Capítulo 13. Procesamiento po...
with mismatches between a property defined as a org.hibernate.type.DateType and a
property defined as a org.hibernate.type.TimestampType, even though the database might
not make a distinction or might be able to handle the conversion.
• For the id property, the insert statement gives you two options. You can either explicitly specify
the id property in the properties_list, in which case its value is taken from the corresponding
select expression, or omit it from the properties_list, in which case a generated value is used.
This latter option is only available when using id generators that operate in the database;
attempting to use this option with any "in memory" type generators will cause an exception
during parsing. For the purposes of this discussion, in-database generators are considered
to be org.hibernate.id.SequenceGenerator (and its subclasses) and any implementers of
org.hibernate.id.PostInsertIdentifierGenerator. The most notable exception here is
org.hibernate.id.TableHiLoGenerator, which cannot be used because it does not expose
a selectable way to get its values.
• For properties mapped as either version or timestamp, the insert statement gives you two
options. You can either specify the property in the properties_list, in which case its value is
taken from the corresponding select expressions, or omit it from the properties_list, in which
case the seed value defined by the org.hibernate.type.VersionType is used.
The following is an example of an HQL INSERT statement execution:
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
String hqlInsert = "insert into DelinquentAccount (id, name) select c.id, c.name from Customer c
where ...";
int createdEntities = s.createQuery( hqlInsert )
.executeUpdate();
tx.commit();
session.close();
208
HQL: El Lenguaje de Consulta de
Hibernate
Hibernate uses a powerful query language (HQL) that is similar in appearance to SQL. Compared
with SQL, however, HQL is fully object-oriented and understands notions like inheritance,
polymorphism and association.
14.1. Sensibilidad a Mayúsculas
With the exception of names of Java classes and properties, queries are case-insensitive. So
SeLeCT is the same as sELEct is the same as SELECT, but org.hibernate.eg.FOO is not
org.hibernate.eg.Foo, and foo.barSet is not foo.BARSET.
This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords
more readable, but this convention is unsuitable for queries embedded in Java code.
14.2. La cláusula from
La consulta más simple posible de Hibernate es de la forma:
from eg.Cat
This returns all instances of the class eg.Cat. You do not usually need to qualify the class name,
since auto-import is the default. For example:
from Cat
In order to refer to the Cat in other parts of the query, you will need to assign an alias. For example:
from Cat as cat
This query assigns the alias cat to Cat instances, so you can use that alias later in the query.
The as keyword is optional. You could also write:
from Cat cat
Multiple classes can appear, resulting in a cartesian product or "cross" join.
209
Capítulo 14. HQL: El Lenguaje...
from Formula, Parameter
from Formula as form, Parameter as param
It is good practice to name query aliases using an initial lowercase as this is consistent with Java
naming standards for local variables (e.g. domesticCat).
14.3. Asociaciones y uniones (joins)
You can also assign aliases to associated entities or to elements of a collection of values using
a join. For example:
from Cat as cat
inner join cat.mate as mate
left outer join cat.kittens as kitten
from Cat as cat left join cat.mate.kittens as kittens
from Formula form full join form.parameter param
The supported join types are borrowed from ANSI SQL:
•
•
•
•
inner join
left outer join
right outer join
full join (no útil usualmente)
Las construcciones inner join, left outer join y right outer join pueden ser abreviadas.
from Cat as cat
join cat.mate as mate
left join cat.kittens as kitten
Puedes proveer condiciones de unión extra usando la palabra clave with de HQL.
from Cat as cat
210
Asociaciones y uniones (joins)
left join cat.kittens as kitten
with kitten.bodyWeight
> 10.0
A "fetch" join allows associations or collections of values to be initialized along with their parent
objects using a single select. This is particularly useful in the case of a collection. It effectively
overrides the outer join and lazy declarations of the mapping file for associations and collections.
See Sección 19.1, “Estrategias de recuperación” for more information.
from Cat as cat
inner join fetch cat.mate
left join fetch cat.kittens
A fetch join does not usually need to assign an alias, because the associated objects should not
be used in the where clause (or any other clause). The associated objects are also not returned
directly in the query results. Instead, they may be accessed via the parent object. The only reason
you might need an alias is if you are recursively join fetching a further collection:
from Cat as cat
inner join fetch cat.mate
left join fetch cat.kittens child
left join fetch child.kittens
The fetch construct cannot be used in queries called using iterate() (though scroll() can
be used). Fetch should be used together with setMaxResults() or setFirstResult(), as these
operations are based on the result rows which usually contain duplicates for eager collection
fetching, hence, the number of rows is not what you would expect. Fetch should also not be
used together with impromptu with condition. It is possible to create a cartesian product by join
fetching more than one collection in a query, so take care in this case. Join fetching multiple
collection roles can produce unexpected results for bag mappings, so user discretion is advised
when formulating queries in this case. Finally, note that full join fetch and right join fetch
are not meaningful.
If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to force
Hibernate to fetch the lazy properties in the first query immediately using fetch all properties.
from Document fetch all properties order by name
211
Capítulo 14. HQL: El Lenguaje...
from Document doc fetch all properties where lower(doc.name) like '%cats%'
14.4. UNTRANSLATED!!! Forms of join syntax
HQL supports two forms of association joining: implicit and explicit.
The queries shown in the previous section all use the explicit form, that is, where the join
keyword is explicitly used in the from clause. This is the recommended form.
The implicit form does not use the join keyword. Instead, the associations are "dereferenced"
using dot-notation. implicit joins can appear in any of the HQL clauses. implicit join result in
inner joins in the resulting SQL statement.
from Cat as cat where cat.mate.name like '%s%'
14.5. Referring to identifier property
There are 2 ways to refer to an entity's identifier property:
• The special property (lowercase) id may be used to reference the identifier property of an entity
provided that the entity does not define a non-identifier property named id.
• If the entity defines a named identifier property, you can use that property name.
References to composite identifier properties follow the same naming rules. If the entity has a nonidentifier property named id, the composite identifier property can only be referenced by its defined
named. Otherwise, the special id property can be used to reference the identifier property.
Importante
Please note that, starting in version 3.2.2, this has changed significantly. In
previous versions, id always referred to the identifier property regardless of its
actual name. A ramification of that decision was that non-identifier properties
named id could never be referenced in Hibernate queries.
14.6. La cláusula select
The select clause picks which objects and properties to return in the query result set. Consider
the following:
select mate
from Cat as cat
212
La cláusula select
inner join cat.mate as mate
The query will select mates of other Cats. You can express this query more compactly as:
select cat.mate from Cat cat
Queries can return properties of any value type including properties of component type:
select cat.name from DomesticCat cat
where cat.name like 'fri%'
select cust.name.firstName from Customer as cust
Queries can return multiple objects and/or properties as an array of type Object[]:
select mother, offspr, mate.name
from DomesticCat as mother
inner join mother.mate as mate
left outer join mother.kittens as offspr
Or as a List:
select new list(mother, offspr, mate.name)
from DomesticCat as mother
inner join mother.mate as mate
left outer join mother.kittens as offspr
Or - assuming that the class Family has an appropriate constructor - as an actual typesafe Java
object:
select new Family(mother, mate, offspr)
from DomesticCat as mother
join mother.mate as mate
left join mother.kittens as offspr
You can assign aliases to selected expressions using as:
213
Capítulo 14. HQL: El Lenguaje...
select max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n
from Cat cat
Esto es lo más útil cuando se usa junto con select new map:
select new map( max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n )
from Cat cat
Esta consulta devuelve un Map de aliases a valores seleccionados.
14.7. Funciones de agregación
HQL queries can even return the results of aggregate functions on properties:
select avg(cat.weight), sum(cat.weight), max(cat.weight), count(cat)
from Cat cat
The supported aggregate functions are:
• avg(...), sum(...), min(...), max(...)
• count(*)
• count(...), count(distinct ...), count(all...)
You can use arithmetic operators, concatenation, and recognized SQL functions in the select
clause:
select cat.weight + sum(kitten.weight)
from Cat cat
join cat.kittens kitten
group by cat.id, cat.weight
select firstName||' '||initial||' '||upper(lastName) from Person
The distinct and all keywords can be used and have the same semantics as in SQL.
select distinct cat.name from Cat cat
214
Consultas polimórficas
select count(distinct cat.name), count(cat) from Cat cat
14.8. Consultas polimórficas
Una consulta como:
from Cat as cat
returns instances not only of Cat, but also of subclasses like DomesticCat. Hibernate queries
can name any Java class or interface in the from clause. The query will return instances of all
persistent classes that extend that class or implement the interface. The following query would
return all persistent objects:
from java.lang.Object o
La interface Named podría ser implementada por varias clases persistentes:
from Named n, Named m where n.name = m.name
These last two queries will require more than one SQL SELECT. This means that the order by
clause does not correctly order the whole result set. It also means you cannot call these queries
using Query.scroll().
14.9. La cláusula where
The where clause allows you to refine the list of instances returned. If no alias exists, you can
refer to properties by name:
from Cat where name='Fritz'
Si existe un alias, usan un nombre cualificado de propiedad:
from Cat as cat where cat.name='Fritz'
This returns instances of Cat named 'Fritz'.
The following query:
215
Capítulo 14. HQL: El Lenguaje...
select foo
from Foo foo, Bar bar
where foo.startDate = bar.date
returns all instances of Foo with an instance of bar with a date property equal to the startDate
property of the Foo. Compound path expressions make the where clause extremely powerful.
Consider the following:
from Cat cat where cat.mate.name is not null
This query translates to an SQL query with a table (inner) join. For example:
from Foo foo
where foo.bar.baz.customer.address.city is not null
would result in a query that would require four table joins in SQL.
The = operator can be used to compare not only properties, but also instances:
from Cat cat, Cat rival where cat.mate = rival.mate
select cat, mate
from Cat cat, Cat mate
where cat.mate = mate
The special property (lowercase) id can be used to reference the unique identifier of an object.
See Sección 14.5, “Referring to identifier property” for more information.
from Cat as cat where cat.id = 123
from Cat as cat where cat.mate.id = 69
The second query is efficient and does not require a table join.
Properties of composite identifiers can also be used. Consider the following example where
Person has composite identifiers consisting of country and medicareNumber:
216
Expresiones
from bank.Person person
where person.id.country = 'AU'
and person.id.medicareNumber = 123456
from bank.Account account
where account.owner.id.country = 'AU'
and account.owner.id.medicareNumber = 123456
Once again, the second query does not require a table join.
See Sección 14.5, “Referring to identifier property” for more information regarding referencing
identifier properties)
The special property class accesses the discriminator value of an instance in the case of
polymorphic persistence. A Java class name embedded in the where clause will be translated to
its discriminator value.
from Cat cat where cat.class = DomesticCat
You can also use components or composite user types, or properties of said component types.
See Sección 14.17, “UNTRANSLATED! Components” for more information.
An "any" type has the special properties id and class that allows you to express a join in the
following way (where AuditLog.item is a property mapped with <any>):
from AuditLog log, Payment payment
where log.item.class = 'Payment' and log.item.id = payment.id
The log.item.class and payment.class would refer to the values of completely different
database columns in the above query.
14.10. Expresiones
Expressions used in the where clause include the following:
• mathematical operators: +, -, *, /
• binary comparison operators: =, >=, <=, <>, !=, like
• operadores lógicos and, or, not
• Parentheses ( ) that indicates grouping
217
Capítulo 14. HQL: El Lenguaje...
• in, not in, between, is null, is not null, is empty, is not empty, member of y not
member of
• Caso "simple", case ... when ... then ... else ... end, y caso "buscado", case when ...
then ... else ... end
•
•
•
•
concatenación de cadenas ...||... o concat(...,...)
current_date(), current_time(), and current_timestamp()
second(...), minute(...), hour(...), day(...), month(...), and year(...)
Cualquier función u operador definido por EJB-QL 3.0: substring(), trim(), lower(),
upper(), length(), locate(), abs(), sqrt(), bit_length(), mod()
• coalesce() y nullif()
• str() para convertir valores numéricos o temporales a una cadena legible.
• cast(... as ...), donde el segundo argumento es el nombre de un tipo Hibernate , y
extract(... from ...) si cast() y extract() fuesen soportados por la base de datos
subyacente.
• la función index() de HQL, que se aplica a alias de una colección indexada unida.
• HQL functions that take collection-valued path expressions: size(), minelement(),
maxelement(), minindex(), maxindex(), along with the special elements() and indices
•
•
•
•
•
functions that can be quantified using some, all, exists, any, in.
Any database-supported SQL scalar function like sign(), trunc(), rtrim(), and sin()
parámetros posicionales JDBC ?
named parameters :name, :start_date, and :x1
literales SQL 'foo', 69, 6.66E+2, '1970-01-01 10:00:01.0'
constantes Java public static final eg.Color.TABBY
in and between can be used as follows:
from DomesticCat cat where cat.name between 'A' and 'B'
from DomesticCat cat where cat.name in ( 'Foo', 'Bar', 'Baz' )
The negated forms can be written as follows:
from DomesticCat cat where cat.name not between 'A' and 'B'
from DomesticCat cat where cat.name not in ( 'Foo', 'Bar', 'Baz' )
Similarly, is null and is not null can be used to test for null values.
Booleans can be easily used in expressions by declaring HQL query substitutions in Hibernate
configuration:
218
Expresiones
<property name="hibernate.query.substitutions"
>true 1, false 0</property
>
Esto remplazará las palabras clave true y false con los literales 1 y 0 en el SQL traducido de
este HQL:
from Cat cat where cat.alive = true
You can test the size of a collection with the special property size or the special size() function.
from Cat cat where cat.kittens.size
>0
from Cat cat where size(cat.kittens)
>0
For indexed collections, you can refer to the minimum and maximum indices using minindex
and maxindex functions. Similarly, you can refer to the minimum and maximum elements of a
collection of basic type using the minelement and maxelement functions. For example:
from Calendar cal where maxelement(cal.holidays)
> current_date
from Order order where maxindex(order.items)
> 100
from Order order where minelement(order.items)
> 10000
The SQL functions any, some, all, exists, in are supported when passed the element or
index set of a collection (elements and indices functions) or the result of a subquery (see below):
select mother from Cat as mother, Cat as kit
219
Capítulo 14. HQL: El Lenguaje...
where kit in elements(foo.kittens)
select p from NameList list, Person p
where p.name = some elements(list.names)
from Cat cat where exists elements(cat.kittens)
from Player p where 3
> all elements(p.scores)
from Show show where 'fizard' in indices(show.acts)
Note that these constructs - size, elements, indices, minindex, maxindex, minelement,
maxelement - can only be used in the where clause in Hibernate3.
Elements of indexed collections (arrays, lists, and maps) can be referred to by index in a where
clause only:
from Order order where order.items[0].id = 1234
select person from Person person, Calendar calendar
where calendar.holidays['national day'] = person.birthDay
and person.nationality.calendar = calendar
select item from Item item, Order order
where order.items[ order.deliveredItemIndices[0] ] = item and order.id = 11
select item from Item item, Order order
where order.items[ maxindex(order.items) ] = item and order.id = 11
The expression inside [] can even be an arithmetic expression:
220
Expresiones
select item from Item item, Order order
where order.items[ size(order.items) - 1 ] = item
HQL also provides the built-in index() function for elements of a one-to-many association or
collection of values.
select item, index(item) from Order order
join order.items item
where index(item) < 5
Scalar SQL functions supported by the underlying database can be used:
from DomesticCat cat where upper(cat.name) like 'FRI%'
Consider how much longer and less readable the following query would be in SQL:
select cust
from Product prod,
Store store
inner join store.customers cust
where prod.name = 'widget'
and store.location.name in ( 'Melbourne', 'Sydney' )
and prod = all elements(cust.currentOrder.lineItems)
Ayuda: algo como
SELECT cust.name, cust.address, cust.phone, cust.id, cust.current_order
FROM customers cust,
stores store,
locations loc,
store_customers sc,
product prod
WHERE prod.name = 'widget'
AND store.loc_id = loc.id
AND loc.name IN ( 'Melbourne', 'Sydney' )
AND sc.store_id = store.id
AND sc.cust_id = cust.id
AND prod.id = ALL(
221
Capítulo 14. HQL: El Lenguaje...
SELECT item.prod_id
FROM line_items item, orders o
WHERE item.order_id = o.id
AND cust.current_order = o.id
)
14.11. La cláusula order by
The list returned by a query can be ordered by any property of a returned class or components:
from DomesticCat cat
order by cat.name asc, cat.weight desc, cat.birthdate
Los asc o desc opcionales indican ordenamiento ascendente o descendente respectivamente.
14.12. La cláusula group by
A query that returns aggregate values can be grouped by any property of a returned class or
components:
select cat.color, sum(cat.weight), count(cat)
from Cat cat
group by cat.color
select foo.id, avg(name), max(name)
from Foo foo join foo.names name
group by foo.id
Se permite también una cláusula having.
select cat.color, sum(cat.weight), count(cat)
from Cat cat
group by cat.color
having cat.color in (eg.Color.TABBY, eg.Color.BLACK)
SQL functions and aggregate functions are allowed in the having and order by clauses if they
are supported by the underlying database (i.e., not in MySQL).
222
Subconsultas
select cat
from Cat cat
join cat.kittens kitten
group by cat
having avg(kitten.weight)
> 100
order by count(kitten) asc, sum(kitten.weight) desc
Neither the group by clause nor the order by clause can contain arithmetic expressions.
Hibernate also does not currently expand a grouped entity, so you cannot write group by cat if
all properties of cat are non-aggregated. You have to list all non-aggregated properties explicitly.
14.13. Subconsultas
Para bases de datos que soportan subconsultas, Hibernate soporta subconsultas dentro de
consultas. Una subconsulta debe ser encerrada entre paréntesis (frecuentemente por una
llamada a una función de agregación SQL). Incluso se permiten subconsultas correlacionadas
(subconsultas que hacen referencia a un alias en la consulta exterior).
from Cat as fatcat
where fatcat.weight
>(
select avg(cat.weight) from DomesticCat cat
)
from DomesticCat as cat
where cat.name = some (
select name.nickName from Name as name
)
from Cat as cat
where not exists (
from Cat as mate where mate.mate = cat
)
from DomesticCat as cat
where cat.name not in (
select name.nickName from Name as name
223
Capítulo 14. HQL: El Lenguaje...
)
select cat.id, (select max(kit.weight) from cat.kitten kit)
from Cat as cat
Note that HQL subqueries can occur only in the select or where clauses.
Note that subqueries can also utilize row value constructor syntax. See Sección 14.18, “Row
value constructor syntax” for more information.
14.14. Ejemplos de HQL
Hibernate queries can be quite powerful and complex. In fact, the power of the query language is
one of Hibernate's main strengths. The following example queries are similar to queries that have
been used on recent projects. Please note that most queries you will write will be much simpler
than the following examples.
The following query returns the order id, number of items, the given minimum total value and the
total value of the order for all unpaid orders for a particular customer. The results are ordered
by total value. In determining the prices, it uses the current catalog. The resulting SQL query,
against the ORDER, ORDER_LINE, PRODUCT, CATALOG and PRICE tables has four inner joins and an
(uncorrelated) subselect.
select order.id, sum(price.amount), count(item)
from Order as order
join order.lineItems as item
join item.product as product,
Catalog as catalog
join catalog.prices as price
where order.paid = false
and order.customer = :customer
and price.product = product
and catalog.effectiveDate < sysdate
and catalog.effectiveDate
>= all (
select cat.effectiveDate
from Catalog as cat
where cat.effectiveDate < sysdate
)
group by order
having sum(price.amount)
> :minAmount
224
Ejemplos de HQL
order by sum(price.amount) desc
¡Qué monstruo! Realmente, en la vida real, no estoy muy afilado en subconsultas, de modo que
mi consulta fue realmente algo como esto:
select order.id, sum(price.amount), count(item)
from Order as order
join order.lineItems as item
join item.product as product,
Catalog as catalog
join catalog.prices as price
where order.paid = false
and order.customer = :customer
and price.product = product
and catalog = :currentCatalog
group by order
having sum(price.amount)
> :minAmount
order by sum(price.amount) desc
La próxima consulta cuenta el número de pagos en cada estado, excluyendo todos los pagos en
el estado AWAITING_APPROVAL donde el estado más reciente fue hecho por el usuario actual. Se
traduce en una consulta SQL con dos joins interiores y una subselect correlacionada contra las
tablas PAYMENT, PAYMENT_STATUS y PAYMENT_STATUS_CHANGE.
select count(payment), status.name
from Payment as payment
join payment.currentStatus as status
join payment.statusChanges as statusChange
where payment.status.name <
> PaymentStatus.AWAITING_APPROVAL
or (
statusChange.timeStamp = (
select max(change.timeStamp)
from PaymentStatusChange change
where change.payment = payment
)
and statusChange.user <
> :currentUser
)
group by status.name, status.sortOrder
225
Capítulo 14. HQL: El Lenguaje...
order by status.sortOrder
If the statusChanges collection was mapped as a list, instead of a set, the query would have
been much simpler to write.
select count(payment), status.name
from Payment as payment
join payment.currentStatus as status
where payment.status.name <
> PaymentStatus.AWAITING_APPROVAL
or payment.statusChanges[ maxIndex(payment.statusChanges) ].user <
> :currentUser
group by status.name, status.sortOrder
order by status.sortOrder
La próxima consulta usa la función isNull() de MS SQL Server para devolver todas las cuentas y
pagos inpagos de la organización a la que pertenece el usuario actual. Se traduce en una consulta
SQL con tres joins interiores, un join exterior y una subconsulta contra las tablas ACCOUNT,
PAYMENT, PAYMENT_STATUS, ACCOUNT_TYPE, ORGANIZATION y ORG_USER.
select account, payment
from Account as account
left outer join account.payments as payment
where :currentUser in elements(account.holder.users)
and PaymentStatus.UNPAID = isNull(payment.currentStatus.name, PaymentStatus.UNPAID)
order by account.type.sortOrder, account.accountNumber, payment.dueDate
Para algunas bases de datos, necesitaríamos eliminar la subselect (correlacionada).
select account, payment
from Account as account
join account.holder.users as user
left outer join account.payments as payment
where :currentUser = user
and PaymentStatus.UNPAID = isNull(payment.currentStatus.name, PaymentStatus.UNPAID)
order by account.type.sortOrder, account.accountNumber, payment.dueDate
226
Sentencias UPDATE y DELETE masivas
14.15. Sentencias UPDATE y DELETE masivas
HQL now supports update, delete and insert ... select ... statements. See Sección 13.4,
“update/delete en masa” for more information.
14.16. Consejos y Trucos
You can count the number of query results without returning them:
( (Integer) session.createQuery("select count(*) from ....").iterate().next() ).intValue()
Para ordenar un resultado por el tamaño de una colección, usa la siguiente consulta:
select usr.id, usr.name
from User as usr
left join usr.messages as msg
group by usr.id, usr.name
order by count(msg)
Si tu base de datos soporta subselects, puedes colocar una condición sobre el tamaño de
selección en la cláusula where de tu consulta:
from User usr where size(usr.messages)
>= 1
If your database does not support subselects, use the following query:
select usr.id, usr.name
from User usr.name
join usr.messages msg
group by usr.id, usr.name
having count(msg)
>= 1
As this solution cannot return a User with zero messages because of the inner join, the following
form is also useful:
select usr.id, usr.name
from User as usr
227
Capítulo 14. HQL: El Lenguaje...
left join usr.messages as msg
group by usr.id, usr.name
having count(msg) = 0
Las propiedades de un JavaBean pueden ser ligadas al parámetros de consulta con nombre:
Query q = s.createQuery("from foo Foo as foo where foo.name=:name and foo.size=:size");
q.setProperties(fooBean); // fooBean has getName() and getSize()
List foos = q.list();
Las colecciones son paginables usando la interface Query con un filtro:
Query q = s.createFilter( collection, "" ); // the trivial filter
q.setMaxResults(PAGE_SIZE);
q.setFirstResult(PAGE_SIZE * pageNumber);
List page = q.list();
Collection elements can be ordered or grouped using a query filter:
Collection orderedCollection = s.filter( collection, "order by this.amount" );
Collection counts = s.filter( collection, "select this.type, count(this) group by this.type" );
Puedes hallar el tamaño de una colección sin inicializarla:
( (Integer) session.createQuery("select count(*) from ....").iterate().next() ).intValue();
14.17. UNTRANSLATED! Components
Components can be used similarly to the simple value types that are used in HQL queries. They
can appear in the select clause as follows:
select p.name from Person p
select p.name.first from Person p
228
Row value constructor syntax
where the Person's name property is a component. Components can also be used in the where
clause:
from Person p where p.name = :name
from Person p where p.name.first = :firstName
Components can also be used in the order by clause:
from Person p order by p.name
from Person p order by p.name.first
Another common use of components is in row value constructors.
14.18. Row value constructor syntax
HQL supports the use of ANSI SQL row value constructor syntax, sometimes referred to AS
tuple syntax, even though the underlying database may not support that notion. Here, we are
generally referring to multi-valued comparisons, typically associated with components. Consider
an entity Person which defines a name component:
from Person p where p.name.first='John' and p.name.last='Jingleheimer-Schmidt'
That is valid syntax although it is a little verbose. You can make this more concise by using row
value constructor syntax:
from Person p where p.name=('John', 'Jingleheimer-Schmidt')
It can also be useful to specify this in the select clause:
select p.name from Person p
Using row value constructor syntax can also be beneficial when using subqueries that need
to compare against multiple values:
229
Capítulo 14. HQL: El Lenguaje...
from Cat as cat
where not ( cat.name, cat.color ) in (
select cat.name, cat.color from DomesticCat cat
)
One thing to consider when deciding if you want to use this syntax, is that the query will be
dependent upon the ordering of the component sub-properties in the metadata.
230
Consultas por Criterios
Acompaña a Hibernate una API de consultas por criterios intuitiva y extensible.
15.1. Creando una instancia de Criteria
La interface org.hibernate.Criteria representa una consulta contra una clase persistente en
particular. La Session es una fábrica de instancias de Criteria.
Criteria crit = sess.createCriteria(Cat.class);
crit.setMaxResults(50);
List cats = crit.list();
15.2. Estrechando el conjunto resultado
Un
criterio
individual
de
consulta
es
una
instancia
de
la
interface
org.hibernate.criterion.Criterion. La clase org.hibernate.criterion.Restrictions
define métodos de fábrica para obtener ciertos tipos prefabricados de Criterion.
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.like("name", "Fritz%") )
.add( Restrictions.between("weight", minWeight, maxWeight) )
.list();
Restrictions can be grouped logically.
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.like("name", "Fritz%") )
.add( Restrictions.or(
Restrictions.eq( "age", new Integer(0) ),
Restrictions.isNull("age")
))
.list();
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.in( "name", new String[] { "Fritz", "Izi", "Pk" } ) )
.add( Restrictions.disjunction()
.add( Restrictions.isNull("age") )
.add( Restrictions.eq("age", new Integer(0) ) )
231
Capítulo 15. Consultas por Cr...
.add( Restrictions.eq("age", new Integer(1) ) )
.add( Restrictions.eq("age", new Integer(2) ) )
))
.list();
There are a range of built-in criterion types (Restrictions subclasses). One of the most useful
allows you to specify SQL directly.
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.sql("lower({alias}.name) like lower(?)", "Fritz%", Hibernate.STRING) )
.list();
El sitio {alias} será remplazado por el alias de fila de la entidad consultada.
You can also obtain a criterion from a Property instance. You can create a Property by calling
Property.forName():
Property age = Property.forName("age");
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.disjunction()
.add( age.isNull() )
.add( age.eq( new Integer(0) ) )
.add( age.eq( new Integer(1) ) )
.add( age.eq( new Integer(2) ) )
))
.add( Property.forName("name").in( new String[] { "Fritz", "Izi", "Pk" } ) )
.list();
15.3. Ordenando los resultados
You can order the results using org.hibernate.criterion.Order.
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.like("name", "F%")
.addOrder( Order.asc("name") )
.addOrder( Order.desc("age") )
.setMaxResults(50)
.list();
232
Asociaciones
List cats = sess.createCriteria(Cat.class)
.add( Property.forName("name").like("F%") )
.addOrder( Property.forName("name").asc() )
.addOrder( Property.forName("age").desc() )
.setMaxResults(50)
.list();
15.4. Asociaciones
By navigating associations using createCriteria() you can specify constraints upon related
entities:
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.like("name", "F%")
.createCriteria("kittens")
.add( Restrictions.like("name", "F%")
.list();
The second createCriteria() returns a new instance of Criteria that refers to the elements
of the kittens collection.
There is also an alternate form that is useful in certain circumstances:
List cats = sess.createCriteria(Cat.class)
.createAlias("kittens", "kt")
.createAlias("mate", "mt")
.add( Restrictions.eqProperty("kt.name", "mt.name") )
.list();
(createAlias() no crea una nueva instancia de Criteria.)
The kittens collections held by the Cat instances returned by the previous two queries are not
pre-filtered by the criteria. If you want to retrieve just the kittens that match the criteria, you must
use a ResultTransformer.
List cats = sess.createCriteria(Cat.class)
.createCriteria("kittens", "kt")
.add( Restrictions.eq("name", "F%") )
.returnMaps()
.list();
233
Capítulo 15. Consultas por Cr...
Iterator iter = cats.iterator();
while ( iter.hasNext() ) {
Map map = (Map) iter.next();
Cat cat = (Cat) map.get(Criteria.ROOT_ALIAS);
Cat kitten = (Cat) map.get("kt");
}
15.5. Recuperación dinámica de asociaciones
You can specify association fetching semantics at runtime using setFetchMode().
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.like("name", "Fritz%") )
.setFetchMode("mate", FetchMode.EAGER)
.setFetchMode("kittens", FetchMode.EAGER)
.list();
Esta consulta recuperará tanto mate como kittens por unión exterior (outer join). Ver
Sección 19.1, “Estrategias de recuperación” para más información.
15.6. Consultas por ejemplos
La clase org.hibernate.criterion.Example te permite construir un criterio de consulta a partir
de una instancia dada.
Cat cat = new Cat();
cat.setSex('F');
cat.setColor(Color.BLACK);
List results = session.createCriteria(Cat.class)
.add( Example.create(cat) )
.list();
Las propiedades de versión, los identificadores y las asociaciones son ignorados. Por defecto,
las propiedades valuadas a nulo son excluídas.
Puedes ajustar cómo se aplica el Example.
Example example = Example.create(cat)
.excludeZeroes()
//exclude zero valued properties
.excludeProperty("color") //exclude the property named "color"
.ignoreCase()
//perform case insensitive string comparisons
234
Proyecciones, agregación y agrupamiento
.enableLike();
//use like for string comparisons
List results = session.createCriteria(Cat.class)
.add(example)
.list();
Puedes incluso usar ejemplos para colocar criterios sobre objetos asociados.
List results = session.createCriteria(Cat.class)
.add( Example.create(cat) )
.createCriteria("mate")
.add( Example.create( cat.getMate() ) )
.list();
15.7. Proyecciones, agregación y agrupamiento
The class org.hibernate.criterion.Projections is a factory for Projection instances. You
can apply a projection to a query by calling setProjection().
List results = session.createCriteria(Cat.class)
.setProjection( Projections.rowCount() )
.add( Restrictions.eq("color", Color.BLACK) )
.list();
List results = session.createCriteria(Cat.class)
.setProjection( Projections.projectionList()
.add( Projections.rowCount() )
.add( Projections.avg("weight") )
.add( Projections.max("weight") )
.add( Projections.groupProperty("color") )
)
.list();
No es necesario ningún "group by" explícito en una consulta por criterios. Ciertos tipos de
proyecciones son definidos para ser proyecciones agrupadas, que además aparecen en la
cláusula SQL group by.
An alias can be assigned to a projection so that the projected value can be referred to in restrictions
or orderings. Here are two different ways to do this:
235
Capítulo 15. Consultas por Cr...
List results = session.createCriteria(Cat.class)
.setProjection( Projections.alias( Projections.groupProperty("color"), "colr" ) )
.addOrder( Order.asc("colr") )
.list();
List results = session.createCriteria(Cat.class)
.setProjection( Projections.groupProperty("color").as("colr") )
.addOrder( Order.asc("colr") )
.list();
Los métodos alias() y as() simplemente envuelven una instancia de proyección en otra
instancia de Projection con alias. Como un atajo, puedes asignar un alias cuando agregas la
proyección a una lista de proyecciones:
List results = session.createCriteria(Cat.class)
.setProjection( Projections.projectionList()
.add( Projections.rowCount(), "catCountByColor" )
.add( Projections.avg("weight"), "avgWeight" )
.add( Projections.max("weight"), "maxWeight" )
.add( Projections.groupProperty("color"), "color" )
)
.addOrder( Order.desc("catCountByColor") )
.addOrder( Order.desc("avgWeight") )
.list();
List results = session.createCriteria(Domestic.class, "cat")
.createAlias("kittens", "kit")
.setProjection( Projections.projectionList()
.add( Projections.property("cat.name"), "catName" )
.add( Projections.property("kit.name"), "kitName" )
)
.addOrder( Order.asc("catName") )
.addOrder( Order.asc("kitName") )
.list();
Puedes también usar Property.forName() para expresar proyecciones:
List results = session.createCriteria(Cat.class)
236
Consultas y subconsultas separadas
.setProjection( Property.forName("name") )
.add( Property.forName("color").eq(Color.BLACK) )
.list();
List results = session.createCriteria(Cat.class)
.setProjection( Projections.projectionList()
.add( Projections.rowCount().as("catCountByColor") )
.add( Property.forName("weight").avg().as("avgWeight") )
.add( Property.forName("weight").max().as("maxWeight") )
.add( Property.forName("color").group().as("color" )
)
.addOrder( Order.desc("catCountByColor") )
.addOrder( Order.desc("avgWeight") )
.list();
15.8. Consultas y subconsultas separadas
The DetachedCriteria class allows you to create a query outside the scope of a session and
then execute it using an arbitrary Session.
DetachedCriteria query = DetachedCriteria.forClass(Cat.class)
.add( Property.forName("sex").eq('F') );
Session session = ....;
Transaction txn = session.beginTransaction();
List results = query.getExecutableCriteria(session).setMaxResults(100).list();
txn.commit();
session.close();
A DetachedCriteria can also be used to express a subquery. Criterion instances involving
subqueries can be obtained via Subqueries or Property.
DetachedCriteria avgWeight = DetachedCriteria.forClass(Cat.class)
.setProjection( Property.forName("weight").avg() );
session.createCriteria(Cat.class)
.add( Property.forName("weight").gt(avgWeight) )
.list();
DetachedCriteria weights = DetachedCriteria.forClass(Cat.class)
237
Capítulo 15. Consultas por Cr...
.setProjection( Property.forName("weight") );
session.createCriteria(Cat.class)
.add( Subqueries.geAll("weight", weights) )
.list();
Correlated subqueries are also possible:
DetachedCriteria avgWeightForSex = DetachedCriteria.forClass(Cat.class, "cat2")
.setProjection( Property.forName("weight").avg() )
.add( Property.forName("cat2.sex").eqProperty("cat.sex") );
session.createCriteria(Cat.class, "cat")
.add( Property.forName("weight").gt(avgWeightForSex) )
.list();
15.9. Consultas por identificador natural
For most queries, including criteria queries, the query cache is not efficient because query cache
invalidation occurs too frequently. However, there is a special kind of query where you can optimize
the cache invalidation algorithm: lookups by a constant natural key. In some applications, this kind
of query occurs frequently. The criteria API provides special provision for this use case.
First, map the natural key of your entity using <natural-id> and enable use of the second-level
cache.
<class name="User">
<cache usage="read-write"/>
<id name="id">
<generator class="increment"/>
</id>
<natural-id>
<property name="name"/>
<property name="org"/>
</natural-id>
<property name="password"/>
</class
>
This functionality is not intended for use with entities with mutable natural keys.
Once you have enabled the Hibernate query cache, the Restrictions.naturalId() allows you
to make use of the more efficient cache algorithm.
238
Consultas por identificador natural
session.createCriteria(User.class)
.add( Restrictions.naturalId()
.set("name", "gavin")
.set("org", "hb")
).setCacheable(true)
.uniqueResult();
239
240
SQL Nativo
You can also express queries in the native SQL dialect of your database. This is useful if you want
to utilize database-specific features such as query hints or the CONNECT keyword in Oracle. It also
provides a clean migration path from a direct SQL/JDBC based application to Hibernate.
Hibernate3 allows you to specify handwritten SQL, including stored procedures, for all create,
update, delete, and load operations.
16.1. Using a SQLQuery
Execution of native SQL queries is controlled via the SQLQuery interface, which is obtained by
calling Session.createSQLQuery(). The following sections describe how to use this API for
querying.
16.1.1. Scalar queries
The most basic SQL query is to get a list of scalars (values).
sess.createSQLQuery("SELECT * FROM CATS").list();
sess.createSQLQuery("SELECT ID, NAME,
BIRTHDATE FROM CATS").list();
These will return a List of Object arrays (Object[]) with scalar values for each column in the CATS
table. Hibernate will use ResultSetMetadata to deduce the actual order and types of the returned
scalar values.
To avoid the overhead of using ResultSetMetadata, or simply to be more explicit in what is
returned, one can use addScalar():
sess.createSQLQuery("SELECT * FROM CATS")
.addScalar("ID", Hibernate.LONG)
.addScalar("NAME", Hibernate.STRING)
.addScalar("BIRTHDATE", Hibernate.DATE)
This query specified:
• the SQL query string
• the columns and types to return
241
Capítulo 16. SQL Nativo
This will return Object arrays, but now it will not use ResultSetMetadata but will instead explicitly
get the ID, NAME and BIRTHDATE column as respectively a Long, String and a Short from the
underlying resultset. This also means that only these three columns will be returned, even though
the query is using * and could return more than the three listed columns.
It is possible to leave out the type information for all or some of the scalars.
sess.createSQLQuery("SELECT * FROM CATS")
.addScalar("ID", Hibernate.LONG)
.addScalar("NAME")
.addScalar("BIRTHDATE")
This is essentially the same query as before, but now ResultSetMetaData is used to determine
the type of NAME and BIRTHDATE, where as the type of ID is explicitly specified.
How the java.sql.Types returned from ResultSetMetaData is mapped to Hibernate types is
controlled by the Dialect. If a specific type is not mapped, or does not result in the expected type,
it is possible to customize it via calls to registerHibernateType in the Dialect.
16.1.2. Entity queries
The above queries were all about returning scalar values, basically returning the "raw" values
from the resultset. The following shows how to get entity objects from a native sql query via
addEntity().
sess.createSQLQuery("SELECT * FROM CATS").addEntity(Cat.class);
sess.createSQLQuery("SELECT ID, NAME,
BIRTHDATE FROM CATS").addEntity(Cat.class);
This query specified:
• the SQL query string
• the entity returned by the query
Assuming that Cat is mapped as a class with the columns ID, NAME and BIRTHDATE the above
queries will both return a List where each element is a Cat entity.
If the entity is mapped with a many-to-one to another entity it is required to also return this when
performing the native query, otherwise a database specific "column not found" error will occur.
The additional columns will automatically be returned when using the * notation, but we prefer to
be explicit as in the following example for a many-to-one to a Dog:
242
Handling associations and collections
sess.createSQLQuery("SELECT
CATS").addEntity(Cat.class);
ID,
NAME,
BIRTHDATE,
DOG_ID
FROM
This will allow cat.getDog() to function properly.
16.1.3. Handling associations and collections
It is possible to eagerly join in the Dog to avoid the possible extra roundtrip for initializing the proxy.
This is done via the addJoin() method, which allows you to join in an association or collection.
sess.createSQLQuery("SELECT c.ID, NAME, BIRTHDATE, DOG_ID, D_ID, D_NAME FROM
CATS c, DOGS d WHERE c.DOG_ID = d.D_ID")
.addEntity("cat", Cat.class)
.addJoin("cat.dog");
In this example, the returned Cat's will have their dog property fully initialized without any extra
roundtrip to the database. Notice that you added an alias name ("cat") to be able to specify the
target property path of the join. It is possible to do the same eager joining for collections, e.g. if
the Cat had a one-to-many to Dog instead.
sess.createSQLQuery("SELECT ID, NAME, BIRTHDATE, D_ID, D_NAME, CAT_ID FROM CATS
c, DOGS d WHERE c.ID = d.CAT_ID")
.addEntity("cat", Cat.class)
.addJoin("cat.dogs");
At this stage you are reaching the limits of what is possible with native queries, without starting to
enhance the sql queries to make them usable in Hibernate. Problems can arise when returning
multiple entities of the same type or when the default alias/column names are not enough.
16.1.4. Returning multiple entities
Until now, the result set column names are assumed to be the same as the column names
specified in the mapping document. This can be problematic for SQL queries that join multiple
tables, since the same column names can appear in more than one table.
Column alias injection is needed in the following query (which most likely will fail):
243
Capítulo 16. SQL Nativo
sess.createSQLQuery("SELECT c.*, m.* FROM CATS c, CATS m WHERE c.MOTHER_ID =
c.ID")
.addEntity("cat", Cat.class)
.addEntity("mother", Cat.class)
The query was intended to return two Cat instances per row: a cat and its mother. The query will,
however, fail because there is a conflict of names; the instances are mapped to the same column
names. Also, on some databases the returned column aliases will most likely be on the form "c.ID",
"c.NAME", etc. which are not equal to the columns specified in the mappings ("ID" and "NAME").
The following form is not vulnerable to column name duplication:
sess.createSQLQuery("SELECT {cat.*}, {mother.*}
c.MOTHER_ID = c.ID")
FROM CATS c, CATS m WHERE
.addEntity("cat", Cat.class)
.addEntity("mother", Cat.class)
This query specified:
• the SQL query string, with placeholders for Hibernate to inject column aliases
• the entities returned by the query
The {cat.*} and {mother.*} notation used above is a shorthand for "all properties". Alternatively,
you can list the columns explicitly, but even in this case Hibernate injects the SQL column aliases
for each property. The placeholder for a column alias is just the property name qualified by the
table alias. In the following example, you retrieve Cats and their mothers from a different table
(cat_log) to the one declared in the mapping metadata. You can even use the property aliases
in the where clause.
String sql = "SELECT ID as {c.id}, NAME as {c.name}, " +
"BIRTHDATE as {c.birthDate}, MOTHER_ID as {c.mother}, {mother.*} " +
"FROM CAT_LOG c, CAT_LOG m WHERE {c.mother} = c.ID";
List loggedCats = sess.createSQLQuery(sql)
.addEntity("cat", Cat.class)
.addEntity("mother", Cat.class).list()
244
Returning non-managed entities
16.1.4.1. Alias and property references
In most cases the above alias injection is needed. For queries relating to more complex mappings,
like composite properties, inheritance discriminators, collections etc., you can use specific aliases
that allow Hibernate to inject the proper aliases.
The following table shows the different ways you can use the alias injection. Please note that the
alias names in the result are simply examples; each alias will have a unique and probably different
name when used.
Tabla 16.1. Alias injection names
Description
Syntax
Example
A simple property
{[aliasname].
A_NAME as {item.name}
[propertyname]
A
composite {[aliasname].
CURRENCY as {item.amount.currency}, VALUE
property
[componentname]. as {item.amount.value}
[propertyname]}
Discriminator of an {[aliasname].class}
DISC as {item.class}
entity
All properties of an {[aliasname].*}
entity
A collection key
The id
collection
of
{item.*}
{[aliasname].key} ORGID as {coll.key}
an {[aliasname].id} EMPID as {coll.id}
The element of an {[aliasname].element}
XID as {coll.element}
collection
property
element
of
in
the {[aliasname].element.
NAME as {coll.element.name}
the [propertyname]}
collection
All properties of {[aliasname].element.*}
{coll.element.*}
the element in the
collection
All properties of the {[aliasname].*}
the collection
{coll.*}
16.1.5. Returning non-managed entities
It is possible to apply a ResultTransformer to native SQL queries, allowing it to return nonmanaged entities.
sess.createSQLQuery("SELECT NAME, BIRTHDATE FROM CATS")
245
Capítulo 16. SQL Nativo
.setResultTransformer(Transformers.aliasToBean(CatDTO.class))
This query specified:
• the SQL query string
• a result transformer
The above query will return a list of CatDTO which has been instantiated and injected the values
of NAME and BIRTHNAME into its corresponding properties or fields.
16.1.6. Handling inheritance
Native SQL queries which query for entities that are mapped as part of an inheritance must include
all properties for the baseclass and all its subclasses.
16.1.7. Parameters
Native SQL queries support positional as well as named parameters:
Query query = sess.createSQLQuery("SELECT * FROM CATS WHERE
like ?").addEntity(Cat.class);
List pusList = query.setString(0, "Pus%").list();
NAME
query = sess.createSQLQuery("SELECT * FROM CATS
WHERE NAME like :name").addEntity(Cat.class);
List pusList = query.setString("name", "Pus%").list();
16.2. Consultas SQL con nombre
Named SQL queries can be defined in the mapping document and called in exactly the same way
as a named HQL query. In this case, you do not need to call addEntity().
<sql-query name="persons">
<return alias="person" class="eg.Person"/>
SELECT person.NAME AS {person.name},
person.AGE AS {person.age},
person.SEX AS {person.sex}
FROM PERSON person
WHERE person.NAME LIKE :namePattern
</sql-query
>
246
Consultas SQL con nombre
List people = sess.getNamedQuery("persons")
.setString("namePattern", namePattern)
.setMaxResults(50)
.list();
The <return-join> element is use to join associations and the <load-collection> element is
used to define queries which initialize collections,
<sql-query name="personsWith">
<return alias="person" class="eg.Person"/>
<return-join alias="address" property="person.mailingAddress"/>
SELECT person.NAME AS {person.name},
person.AGE AS {person.age},
person.SEX AS {person.sex},
address.STREET AS {address.street},
address.CITY AS {address.city},
address.STATE AS {address.state},
address.ZIP AS {address.zip}
FROM PERSON person
JOIN ADDRESS address
ON person.ID = address.PERSON_ID AND address.TYPE='MAILING'
WHERE person.NAME LIKE :namePattern
</sql-query
>
Una consulta SQL con nombre puede devolver un valor escalar. Debes especificar el alias de
columna y tipo Hibernate usando el elementp <return-scalar>:
<sql-query name="mySqlQuery">
<return-scalar column="name" type="string"/>
<return-scalar column="age" type="long"/>
SELECT p.NAME AS name,
p.AGE AS age,
FROM PERSON p WHERE p.NAME LIKE 'Hiber%'
</sql-query
>
You can externalize the resultset mapping information in a <resultset> element which will allow
you to either reuse them across several named queries or through the setResultSetMapping()
API.
247
Capítulo 16. SQL Nativo
<resultset name="personAddress">
<return alias="person" class="eg.Person"/>
<return-join alias="address" property="person.mailingAddress"/>
</resultset>
<sql-query name="personsWith" resultset-ref="personAddress">
SELECT person.NAME AS {person.name},
person.AGE AS {person.age},
person.SEX AS {person.sex},
address.STREET AS {address.street},
address.CITY AS {address.city},
address.STATE AS {address.state},
address.ZIP AS {address.zip}
FROM PERSON person
JOIN ADDRESS address
ON person.ID = address.PERSON_ID AND address.TYPE='MAILING'
WHERE person.NAME LIKE :namePattern
</sql-query
>
You can, alternatively, use the resultset mapping information in your hbm files directly in java code.
List cats = sess.createSQLQuery(
"select {cat.*}, {kitten.*} from cats cat, cats kitten where kitten.mother = cat.id"
)
.setResultSetMapping("catAndKitten")
.list();
16.2.1. Usando return-property para especificar explícitamente
nombres de columna/alias
You can explicitly tell Hibernate what column aliases to use with <return-property>, instead of
using the {}-syntax to let Hibernate inject its own aliases.For example:
<sql-query name="mySqlQuery">
<return alias="person" class="eg.Person">
<return-property name="name" column="myName"/>
<return-property name="age" column="myAge"/>
<return-property name="sex" column="mySex"/>
</return>
248
Usando procedimientos almacenados para consultar
SELECT person.NAME AS myName,
person.AGE AS myAge,
person.SEX AS mySex,
FROM PERSON person WHERE person.NAME LIKE :name
</sql-query>
<return-property> also works with multiple columns. This solves a limitation with the {}-syntax
which cannot allow fine grained control of multi-column properties.
<sql-query name="organizationCurrentEmployments">
<return alias="emp" class="Employment"
>
<return-property name="salary"
>
<return-column name="VALUE"/>
<return-column name="CURRENCY"/>
</return-property>
<return-property name="endDate" column="myEndDate"/>
</return>
SELECT EMPLOYEE AS {emp.employee}, EMPLOYER AS {emp.employer},
STARTDATE AS {emp.startDate}, ENDDATE AS {emp.endDate},
REGIONCODE as {emp.regionCode}, EID AS {emp.id}, VALUE, CURRENCY
FROM EMPLOYMENT
WHERE EMPLOYER = :id AND ENDDATE IS NULL
ORDER BY STARTDATE ASC
</sql-query
>
In this example <return-property> was used in combination with the {}-syntax for injection.
This allows users to choose how they want to refer column and properties.
Si tu mapeo tiene un discriminador debes usar <return-discriminator> para especificar la
columna discriminadora.
16.2.2. Usando procedimientos almacenados para consultar
Hibernate3 provides support for queries via stored procedures and functions. Most of the following
documentation is equivalent for both. The stored procedure/function must return a resultset as
the first out-parameter to be able to work with Hibernate. An example of such a stored function
in Oracle 9 and higher is as follows:
CREATE OR REPLACE FUNCTION selectAllEmployments
RETURN SYS_REFCURSOR
249
Capítulo 16. SQL Nativo
AS
st_cursor SYS_REFCURSOR;
BEGIN
OPEN st_cursor FOR
SELECT EMPLOYEE, EMPLOYER,
STARTDATE, ENDDATE,
REGIONCODE, EID, VALUE, CURRENCY
FROM EMPLOYMENT;
RETURN st_cursor;
END;
Para usar esta consulta en Hibernate necesitas mapearla por medio de una consulta con nombre.
<sql-query name="selectAllEmployees_SP" callable="true">
<return alias="emp" class="Employment">
<return-property name="employee" column="EMPLOYEE"/>
<return-property name="employer" column="EMPLOYER"/>
<return-property name="startDate" column="STARTDATE"/>
<return-property name="endDate" column="ENDDATE"/>
<return-property name="regionCode" column="REGIONCODE"/>
<return-property name="id" column="EID"/>
<return-property name="salary"
>
<return-column name="VALUE"/>
<return-column name="CURRENCY"/>
</return-property>
</return>
{ ? = call selectAllEmployments() }
</sql-query
>
Stored procedures currently only return scalars and entities. <return-join> and <loadcollection> are not supported.
16.2.2.1. Reglas/limitaciones para usar procedimientos almacenados
You cannot use stored procedures with Hibernate unless you follow some procedure/function
rules. If they do not follow those rules they are not usable with Hibernate. If you still want to use
these procedures you have to execute them via session.connection(). The rules are different
for each database, since database vendors have different stored procedure semantics/syntax.
Stored procedure queries cannot be paged with setFirstResult()/setMaxResults().
250
SQL personalizado para crear, actualizar y borrar
The recommended call form is standard SQL92: { ? = call functionName(<parameters>) }
or { ? = call procedureName(<parameters>}. Native call syntax is not supported.
El procedimiento debe devolver un conjunto resultado. Esto se hace devolviendo un
SYS_REFCURSOR en Oracle 9 o 10. En Oracle necesitas definir un tipo REF CURSOR.
• A function must return a result set. The first parameter of a procedure must be an OUT that
returns a result set. This is done by using a SYS_REFCURSOR type in Oracle 9 or 10. In Oracle
you need to define a REF CURSOR type. See Oracle literature for further information.
Para Sybase o MS SQL server se aplican las siguientes reglas:
• The procedure must return a result set. Note that since these servers can return multiple result
sets and update counts, Hibernate will iterate the results and take the first result that is a result
set as its return value. Everything else will be discarded.
• Si habilitas SET NOCOUNT ON en tu procedimiento será probablemente más eficiente, pero esto
no es un requerimiento.
16.3. SQL personalizado para crear, actualizar y borrar
Hibernate3 puede usar sentencias SQL personalizadas para las operaciones de crear, actualizar
y borrar. Los persistidores de clases y colecciones en Hibernate ya contienen un conjunto
de cadenas generadas en tiempo de configuración (insertsql, deletesql, updatesql, etc.).
Las etiquetas de mapeo <sql-insert>, <sql-delete>, y <sql-update> sobrescriben estas
cadenas:
<class name="Person">
<id name="id">
<generator class="increment"/>
</id>
<property name="name" not-null="true"/>
<sql-insert
>INSERT INTO PERSON (NAME, ID) VALUES ( UPPER(?), ? )</sql-insert>
<sql-update
>UPDATE PERSON SET NAME=UPPER(?) WHERE ID=?</sql-update>
<sql-delete
>DELETE FROM PERSON WHERE ID=?</sql-delete>
</class
>
The SQL is directly executed in your database, so you can use any dialect you like. This will
reduce the portability of your mapping if you use database specific SQL.
Los procedimientos almacenados son soportados si está establecido el atributo callable:
251
Capítulo 16. SQL Nativo
<class name="Person">
<id name="id">
<generator class="increment"/>
</id>
<property name="name" not-null="true"/>
<sql-insert callable="true"
>{call createPerson (?, ?)}</sql-insert>
<sql-delete callable="true"
>{? = call deletePerson (?)}</sql-delete>
<sql-update callable="true"
>{? = call updatePerson (?, ?)}</sql-update>
</class
>
The order of the positional parameters is vital, as they must be in the same sequence as Hibernate
expects them.
You
can
view
the
expected order by enabling debug logging for the
org.hibernate.persister.entity level. With this level enabled, Hibernate will print out the
static SQL that is used to create, update, delete etc. entities. To view the expected sequence, do
not include your custom SQL in the mapping files, as this will override the Hibernate generated
static SQL.
The stored procedures are in most cases required to return the number of rows inserted, updated
and deleted, as Hibernate has some runtime checks for the success of the statement. Hibernate
always registers the first statement parameter as a numeric output parameter for the CUD
operations:
CREATE OR REPLACE FUNCTION updatePerson (uid IN NUMBER, uname IN VARCHAR2)
RETURN NUMBER IS
BEGIN
update PERSON
set
NAME = uname,
where
ID = uid;
return SQL%ROWCOUNT;
END updatePerson;
252
SQL personalizado para carga
16.4. SQL personalizado para carga
You can also declare your own SQL (or HQL) queries for entity loading:
<sql-query name="person">
<return alias="pers" class="Person" lock-mode="upgrade"/>
SELECT NAME AS {pers.name}, ID AS {pers.id}
FROM PERSON
WHERE ID=?
FOR UPDATE
</sql-query
>
This is just a named query declaration, as discussed earlier. You can reference this named query
in a class mapping:
<class name="Person">
<id name="id">
<generator class="increment"/>
</id>
<property name="name" not-null="true"/>
<loader query-ref="person"/>
</class
>
Esto incluso funciona con procedimientos almacenados.
You can even define a query for collection loading:
<set name="employments" inverse="true">
<key/>
<one-to-many class="Employment"/>
<loader query-ref="employments"/>
</set
>
<sql-query name="employments">
<load-collection alias="emp" role="Person.employments"/>
SELECT {emp.*}
FROM EMPLOYMENT emp
253
Capítulo 16. SQL Nativo
WHERE EMPLOYER = :id
ORDER BY STARTDATE ASC, EMPLOYEE ASC
</sql-query
>
You can also define an entity loader that loads a collection by join fetching:
<sql-query name="person">
<return alias="pers" class="Person"/>
<return-join alias="emp" property="pers.employments"/>
SELECT NAME AS {pers.*}, {emp.*}
FROM PERSON pers
LEFT OUTER JOIN EMPLOYMENT emp
ON pers.ID = emp.PERSON_ID
WHERE ID=?
</sql-query
>
254
Filtrando datos
Hibernate3 provides an innovative new approach to handling data with "visibility" rules. A
Hibernate filter is a global, named, parameterized filter that can be enabled or disabled for a
particular Hibernate session.
17.1. Filtros de Hibernate
Hibernate3 has the ability to pre-define filter criteria and attach those filters at both a class level
and a collection level. A filter criteria allows you to define a restriction clause similar to the existing
"where" attribute available on the class and various collection elements. These filter conditions,
however, can be parameterized. The application can then decide at runtime whether certain filters
should be enabled and what their parameter values should be. Filters can be used like database
views, but they are parameterized inside the application.
Para usar los filtros, éstos deben primero ser definidos y luego unidos a los elementos de
mapeo apropiados. Para definir un filtro, usa el elemento <filter-def/> dentro de un elemento
<hibernate-mapping/>:
<filter-def name="myFilter">
<filter-param name="myFilterParam" type="string"/>
</filter-def
>
This filter can then be attached to a class:
<class name="myClass" ...>
...
<filter name="myFilter" condition=":myFilterParam = MY_FILTERED_COLUMN"/>
</class
>
Or, to a collection:
<set ...>
<filter name="myFilter" condition=":myFilterParam = MY_FILTERED_COLUMN"/>
</set
>
Or, to both or multiples of each at the same time.
255
Capítulo 17. Filtrando datos
The
methods
on
getEnabledFilter(String
are:
enableFilter(String
filterName), and disableFilter(String
filterName),
Session
filterName). By
default, filters are not enabled for a given session. Filters must be enabled through use of the
Session.enableFilter() method, which returns an instance of the Filter interface. If you used
the simple filter defined above, it would look like this:
session.enableFilter("myFilter").setParameter("myFilterParam", "some-value");
Methods on the org.hibernate.Filter interface do allow the method-chaining common to much of
Hibernate.
The following is a full example, using temporal data with an effective record date pattern:
<filter-def name="effectiveDate">
<filter-param name="asOfDate" type="date"/>
</filter-def>
<class name="Employee" ...>
...
<many-to-one name="department" column="dept_id" class="Department"/>
<property name="effectiveStartDate" type="date" column="eff_start_dt"/>
<property name="effectiveEndDate" type="date" column="eff_end_dt"/>
...
<!-Note that this assumes non-terminal records have an eff_end_dt set to
a max db date for simplicity-sake
-->
<filter name="effectiveDate"
condition=":asOfDate BETWEEN eff_start_dt and eff_end_dt"/>
</class>
<class name="Department" ...>
...
<set name="employees" lazy="true">
<key column="dept_id"/>
<one-to-many class="Employee"/>
<filter name="effectiveDate"
condition=":asOfDate BETWEEN eff_start_dt and eff_end_dt"/>
</set>
</class
>
256
Filtros de Hibernate
In order to ensure that you are provided with currently effective records, enable the filter on the
session prior to retrieving employee data:
Session session = ...;
session.enableFilter("effectiveDate").setParameter("asOfDate", new Date());
List results = session.createQuery("from Employee as e where e.salary
> :targetSalary")
.setLong("targetSalary", new Long(1000000))
.list();
Even though a salary constraint was mentioned explicitly on the results in the above HQL, because
of the enabled filter, the query will return only currently active employees who have a salary greater
than one million dollars.
If you want to use filters with outer joining, either through HQL or load fetching, be careful of
the direction of the condition expression. It is safest to set this up for left outer joining. Place the
parameter first followed by the column name(s) after the operator.
After being defined, a filter might be attached to multiple entities and/or collections each with
its own condition. This can be problematic when the conditions are the same each time. Using
<filter-def/> allows you to definine a default condition, either as an attribute or CDATA:
<filter-def name="myFilter" condition="abc > xyz">...</filter-def>
<filter-def name="myOtherFilter">abc=xyz</filter-def>
This default condition will be used whenever the filter is attached to something without specifying
a condition. This means you can give a specific condition as part of the attachment of the filter
that overrides the default condition in that particular case.
257
258
Mapeo XML
XML Mapping is an experimental feature in Hibernate 3.0 and is currently under active
development.
18.1. Trabajando con datos XML
Hibernate allows you to work with persistent XML data in much the same way you work with
persistent POJOs. A parsed XML tree can be thought of as another way of representing the
relational data at the object level, instead of POJOs.
Hibernate soporta dom4j como API para manipular árboles XML. Puedes escribir consultas que
traigan árboles dom4j de la base de datos y tener cualquier modificación que hagas al árbol
sincronizada automáticamente a la base de datos. Puedes incluso tomar un documento XML,
analizarlo usando dom4j, y escribirlo a la base de datos con cualquiera de las operaciones básicas
de Hibernate: persist(), saveOrUpdate(), merge(), delete(), replicate() (la fusión no
está aún soportada).
Esta funcionalidad tiene muchas aplicaciones incluyendo la importación/exportación de datos,
externalización de datos de entidad vía JMS o SOAP y reportes basados en XSLT.
A single mapping can be used to simultaneously map properties of a class and nodes of an XML
document to the database, or, if there is no class to map, it can be used to map just the XML.
18.1.1. Especificando los mapeos de XML y de clase juntos
He aquí un ejemplo de mapear un POJO y XML simultáneamente:
<class name="Account"
table="ACCOUNTS"
node="account">
<id name="accountId"
column="ACCOUNT_ID"
node="@id"/>
<many-to-one name="customer"
column="CUSTOMER_ID"
node="customer/@id"
embed-xml="false"/>
<property name="balance"
column="BALANCE"
node="balance"/>
259
Capítulo 18. Mapeo XML
...
</class
>
18.1.2. Especificando sólo un mapeo XML
He aquí un ejemplo donde no hay ninguna clase POJO:
<class entity-name="Account"
table="ACCOUNTS"
node="account">
<id name="id"
column="ACCOUNT_ID"
node="@id"
type="string"/>
<many-to-one name="customerId"
column="CUSTOMER_ID"
node="customer/@id"
embed-xml="false"
entity-name="Customer"/>
<property name="balance"
column="BALANCE"
node="balance"
type="big_decimal"/>
...
</class
>
This mapping allows you to access the data as a dom4j tree, or as a graph of property name/
value pairs or java Maps. The property names are purely logical constructs that can be referred
to in HQL queries.
18.2. Mapeo de metadatos XML
A range of Hibernate mapping elements accept the node attribute. This lets you specify the name
of an XML attribute or element that holds the property or entity data. The format of the node
attribute must be one of the following:
260
Mapeo de metadatos XML
• "element-name": map to the named XML element
• "@attribute-name": map to the named XML attribute
• ".": map to the parent element
• "element-name/@attribute-name": map to the named attribute of the named element
For collections and single valued associations, there is an additional embed-xml attribute. If
embed-xml="true", the default, the XML tree for the associated entity (or collection of value type)
will be embedded directly in the XML tree for the entity that owns the association. Otherwise, if
embed-xml="false", then only the referenced identifier value will appear in the XML for single
point associations and collections will not appear at all.
Do not leave embed-xml="true" for too many associations, since XML does not deal well with
circularity.
<class name="Customer"
table="CUSTOMER"
node="customer">
<id name="id"
column="CUST_ID"
node="@id"/>
<map name="accounts"
node="."
embed-xml="true">
<key column="CUSTOMER_ID"
not-null="true"/>
<map-key column="SHORT_DESC"
node="@short-desc"
type="string"/>
<one-to-many entity-name="Account"
embed-xml="false"
node="account"/>
</map>
<component name="name"
node="name">
<property name="firstName"
node="first-name"/>
<property name="initial"
node="initial"/>
<property name="lastName"
node="last-name"/>
</component>
261
Capítulo 18. Mapeo XML
...
</class
>
In this case, the collection of account ids is embedded, but not the actual account data. The
following HQL query:
from Customer c left join fetch c.accounts where c.lastName like :lastName
would return datasets such as this:
<customer id="123456789">
<account short-desc="Savings"
>987632567</account>
<account short-desc="Credit Card"
>985612323</account>
<name>
<first-name
>Gavin</first-name>
<initial
>A</initial>
<last-name
>King</last-name>
</name>
...
</customer
>
Si estableces embed-xml="true" en el mapeo <one-to-many>, los datos podrían verse así:
<customer id="123456789">
<account id="987632567" short-desc="Savings">
<customer id="123456789"/>
<balance
>100.29</balance>
</account>
<account id="985612323" short-desc="Credit Card">
<customer id="123456789"/>
<balance
262
Manipulando datos XML
>-2370.34</balance>
</account>
<name>
<first-name
>Gavin</first-name>
<initial
>A</initial>
<last-name
>King</last-name>
</name>
...
</customer
>
18.3. Manipulando datos XML
You can also re-read and update XML documents in the application. You can do this by obtaining
a dom4j session:
Document doc = ....;
Session session = factory.openSession();
Session dom4jSession = session.getSession(EntityMode.DOM4J);
Transaction tx = session.beginTransaction();
List results = dom4jSession
.createQuery("from Customer c left join fetch c.accounts where c.lastName like :lastName")
.list();
for ( int i=0; i<results.size(); i++ ) {
//add the customer data to the XML document
Element customer = (Element) results.get(i);
doc.add(customer);
}
tx.commit();
session.close();
Session session = factory.openSession();
Session dom4jSession = session.getSession(EntityMode.DOM4J);
Transaction tx = session.beginTransaction();
263
Capítulo 18. Mapeo XML
Element cust = (Element) dom4jSession.get("Customer", customerId);
for ( int i=0; i<results.size(); i++ ) {
Element customer = (Element) results.get(i);
//change the customer name in the XML and database
Element name = customer.element("name");
name.element("first-name").setText(firstName);
name.element("initial").setText(initial);
name.element("last-name").setText(lastName);
}
tx.commit();
session.close();
When implementing XML-based data import/export, it is useful to combine this feature with
Hibernate's replicate() operation.
264
Mejorando el rendimiento
19.1. Estrategias de recuperación
Hibernate uses a fetching strategy to retrieve associated objects if the application needs to
navigate the association. Fetch strategies can be declared in the O/R mapping metadata, or overridden by a particular HQL or Criteria query.
Hibernate3 define las siguientes estrategias de recuperación:
• Join fetching: Hibernate retrieves the associated instance or collection in the same SELECT,
using an OUTER JOIN.
• Select fetching: a second SELECT is used to retrieve the associated entity or collection. Unless
you explicitly disable lazy fetching by specifying lazy="false", this second select will only be
executed when you access the association.
• Subselect fetching: a second SELECT is used to retrieve the associated collections for all entities
retrieved in a previous query or fetch. Unless you explicitly disable lazy fetching by specifying
lazy="false", this second select will only be executed when you access the association.
• Batch fetching: an optimization strategy for select fetching. Hibernate retrieves a batch of entity
instances or collections in a single SELECT by specifying a list of primary or foreign keys.
Hibernate también distingue entre:
• Immediate fetching: an association, collection or attribute is fetched immediately when the
owner is loaded.
• Lazy collection fetching: a collection is fetched when the application invokes an operation upon
that collection. This is the default for collections.
• "Extra-lazy" collection fetching: individual elements of the collection are accessed from the
database as needed. Hibernate tries not to fetch the whole collection into memory unless
absolutely needed. It is suitable for large collections.
• Proxy fetching: a single-valued association is fetched when a method other than the identifier
getter is invoked upon the associated object.
• "No-proxy" fetching: a single-valued association is fetched when the instance variable is
accessed. Compared to proxy fetching, this approach is less lazy; the association is fetched
even when only the identifier is accessed. It is also more transparent, since no proxy is visible
to the application. This approach requires buildtime bytecode instrumentation and is rarely
necessary.
265
Capítulo 19. Mejorando el ren...
• Lazy attribute fetching: an attribute or single valued association is fetched when the instance
variable is accessed. This approach requires buildtime bytecode instrumentation and is rarely
necessary.
We have two orthogonal notions here: when is the association fetched and how is it fetched. It is
important that you do not confuse them. We use fetch to tune performance. We can use lazy to
define a contract for what data is always available in any detached instance of a particular class.
19.1.1. Trabajando con asociaciones perezosas
By default, Hibernate3 uses lazy select fetching for collections and lazy proxy fetching for
single-valued associations. These defaults make sense for most associations in the majority of
applications.
If you set hibernate.default_batch_fetch_size, Hibernate will use the batch fetch
optimization for lazy fetching. This optimization can also be enabled at a more granular level.
Please be aware that access to a lazy association outside of the context of an open Hibernate
session will result in an exception. For example:
s = sessions.openSession();
Transaction tx = s.beginTransaction();
User u = (User) s.createQuery("from User u where u.name=:userName")
.setString("userName", userName).uniqueResult();
Map permissions = u.getPermissions();
tx.commit();
s.close();
Integer accessLevel = (Integer) permissions.get("accounts"); // Error!
Since the permissions collection was not initialized when the Session was closed, the collection
will not be able to load its state. Hibernate does not support lazy initialization for detached objects.
This can be fixed by moving the code that reads from the collection to just before the transaction
is committed.
Alternatively, you can use a non-lazy collection or association, by specifying lazy="false" for
the association mapping. However, it is intended that lazy initialization be used for almost all
collections and associations. If you define too many non-lazy associations in your object model,
Hibernate will fetch the entire database into memory in every transaction.
On the other hand, you can use join fetching, which is non-lazy by nature, instead of select
fetching in a particular transaction. We will now explain how to customize the fetching strategy.
In Hibernate3, the mechanisms for choosing a fetch strategy are identical for single-valued
associations and collections.
266
Afinando las estrategias de recuperación
19.1.2. Afinando las estrategias de recuperación
La recuperación por selección (la preestablecida) es extremadamente vulnerable a problemas
de selección N+1, de modo querríamos habilitar la recuperación por unión (join fetching) en el
documento de mapeo:
<set name="permissions"
fetch="join">
<key column="userId"/>
<one-to-many class="Permission"/>
</set
<many-to-one name="mother" class="Cat" fetch="join"/>
La estrategia de recuperación definida en el documento de mapeo afecta a:
• las recuperaciones vía get() o load()
• las recuperaciones que ocurren implícitamente cuando se navega una asociación
(recuperación perezosa)
• las consultas de Criteria
• HQL queries if subselect fetching is used
Irrespective of the fetching strategy you use, the defined non-lazy graph is guaranteed to be loaded
into memory. This might, however, result in several immediate selects being used to execute a
particular HQL query.
Usually, the mapping document is not used to customize fetching. Instead, we keep the default
behavior, and override it for a particular transaction, using left join fetch in HQL. This tells
Hibernate to fetch the association eagerly in the first select, using an outer join. In the Criteria
query API, you would use setFetchMode(FetchMode.JOIN).
If you want to change the fetching strategy used by get() or load(), you can use a Criteria
query. For example:
User user = (User) session.createCriteria(User.class)
.setFetchMode("permissions", FetchMode.JOIN)
.add( Restrictions.idEq(userId) )
.uniqueResult();
This is Hibernate's equivalent of what some ORM solutions call a "fetch plan".
267
Capítulo 19. Mejorando el ren...
A completely different approach to problems with N+1 selects is to use the second-level cache.
19.1.3. Proxies de asociaciones de un solo extremo
Lazy fetching for collections is implemented using Hibernate's own implementation of persistent
collections. However, a different mechanism is needed for lazy behavior in single-ended
associations. The target entity of the association must be proxied. Hibernate implements lazy
initializing proxies for persistent objects using runtime bytecode enhancement which is accessed
via the CGLIB library.
At startup, Hibernate3 generates proxies by default for all persistent classes and uses them to
enable lazy fetching of many-to-one and one-to-one associations.
The mapping file may declare an interface to use as the proxy interface for that class, with
the proxy attribute. By default, Hibernate uses a subclass of the class. The proxied class must
implement a default constructor with at least package visibility. This constructor is recommended
for all persistent classes.
There are potential problems to note when extending this approach to polymorphic classes.For
example:
<class name="Cat" proxy="Cat">
......
<subclass name="DomesticCat">
.....
</subclass>
</class
>
Primero, las instancias de Cat nunca serán objeto de un cast a DomesticCat, incluso aunque la
instancia subyacente sea instancia de DomesticCat:
Cat cat = (Cat) session.load(Cat.class, id); // instantiate a proxy (does not hit the db)
if ( cat.isDomesticCat() ) {
// hit the db to initialize the proxy
DomesticCat dc = (DomesticCat) cat;
// Error!
....
}
Secondly, it is possible to break proxy ==:
Cat cat = (Cat) session.load(Cat.class, id);
// instantiate a Cat proxy
DomesticCat dc =
(DomesticCat) session.load(DomesticCat.class, id); // acquire new DomesticCat proxy!
268
Proxies de asociaciones de un solo extremo
System.out.println(cat==dc);
// false
Sin embargo, la situación no en absoluta tan mala como parece. Aunque tenemos ahora dos
referencias a objetos proxy diferentes, la instancia subyacente será aún el mismo objeto:
cat.setWeight(11.0); // hit the db to initialize the proxy
System.out.println( dc.getWeight() ); // 11.0
Third, you cannot use a CGLIB proxy for a final class or a class with any final methods.
Finally, if your persistent object acquires any resources upon instantiation (e.g. in initializers or
default constructor), then those resources will also be acquired by the proxy. The proxy class is
an actual subclass of the persistent class.
These problems are all due to fundamental limitations in Java's single inheritance model. To
avoid these problems your persistent classes must each implement an interface that declares
its business methods. You should specify these interfaces in the mapping file where CatImpl
implements the interface Cat and DomesticCatImpl implements the interface DomesticCat. For
example:
<class name="CatImpl" proxy="Cat">
......
<subclass name="DomesticCatImpl" proxy="DomesticCat">
.....
</subclass>
</class
>
Then proxies for instances of Cat and DomesticCat can be returned by load() or iterate().
Cat cat = (Cat) session.load(CatImpl.class, catid);
Iterator iter = session.createQuery("from CatImpl as cat where cat.name='fritz'").iterate();
Cat fritz = (Cat) iter.next();
Note
list() does not usually return proxies.
Las relaciones también son inicializadas perezosamente. Esto significa que debes declarar
cualquier propiedad como de tipo Cat, no CatImpl.
269
Capítulo 19. Mejorando el ren...
Certain operations do not require proxy initialization:
• equals(): if the persistent class does not override equals()
• hashCode(): if the persistent class does not override hashCode()
• El método getter del identificador
Hibernate detectará las clase persistentes que sobrescriban equals() o hashCode().
By choosing lazy="no-proxy" instead of the default lazy="proxy", you can avoid problems
associated with typecasting. However, buildtime bytecode instrumentation is required, and all
operations will result in immediate proxy initialization.
19.1.4. Inicializando colecciones y proxies
A LazyInitializationException will be thrown by Hibernate if an uninitialized collection or
proxy is accessed outside of the scope of the Session, i.e., when the entity owning the collection
or having the reference to the proxy is in the detached state.
Sometimes a proxy or collection needs to be initialized before closing the Session. You can force
initialization by calling cat.getSex() or cat.getKittens().size(), for example. However, this
can be confusing to readers of the code and it is not convenient for generic code.
The static methods Hibernate.initialize() and Hibernate.isInitialized(), provide the
application with a convenient way of working with lazily initialized collections or proxies.
Hibernate.initialize(cat) will force the initialization of a proxy, cat, as long as its Session is
still open. Hibernate.initialize( cat.getKittens() ) has a similar effect for the collection
of kittens.
Another option is to keep the Session open until all required collections and proxies have
been loaded. In some application architectures, particularly where the code that accesses data
using Hibernate, and the code that uses it are in different application layers or different physical
processes, it can be a problem to ensure that the Session is open when a collection is initialized.
There are two basic ways to deal with this issue:
• In a web-based application, a servlet filter can be used to close the Session only at the end of
a user request, once the rendering of the view is complete (the Open Session in View pattern).
Of course, this places heavy demands on the correctness of the exception handling of your
application infrastructure. It is vitally important that the Session is closed and the transaction
ended before returning to the user, even when an exception occurs during rendering of the view.
See the Hibernate Wiki for examples of this "Open Session in View" pattern.
• In an application with a separate business tier, the business logic must "prepare" all collections
that the web tier needs before returning. This means that the business tier should load all the
data and return all the data already initialized to the presentation/web tier that is required for a
particular use case. Usually, the application calls Hibernate.initialize() for each collection
that will be needed in the web tier (this call must occur before the session is closed) or retrieves
the collection eagerly using a Hibernate query with a FETCH clause or a FetchMode.JOIN in
Criteria. This is usually easier if you adopt the Command pattern instead of a Session Facade.
270
Usando recuperación en lotes
• You can also attach a previously loaded object to a new Session with merge() or lock() before
accessing uninitialized collections or other proxies. Hibernate does not, and certainly should
not, do this automatically since it would introduce impromptu transaction semantics.
Sometimes you do not want to initialize a large collection, but still need some information about
it, like its size, for example, or a subset of the data.
Puedes usar un filtro de colecciones para obtener el tamaño de una colección sin inicializarla:
( (Integer) s.createFilter( collection, "select count(*)" ).list().get(0) ).intValue()
El método createFilter() se usa también para recuperar eficientemente subconjuntos de una
colección sin necesidad de inicializar toda la colección:
s.createFilter( lazyCollection, "").setFirstResult(0).setMaxResults(10).list();
19.1.5. Usando recuperación en lotes
Using batch fetching, Hibernate can load several uninitialized proxies if one proxy is accessed.
Batch fetching is an optimization of the lazy select fetching strategy. There are two ways you can
configure batch fetching: on the class level and the collection level.
Batch fetching for classes/entities is easier to understand. Consider the following example: at
runtime you have 25 Cat instances loaded in a Session, and each Cat has a reference to its owner,
a Person. The Person class is mapped with a proxy, lazy="true". If you now iterate through
all cats and call getOwner() on each, Hibernate will, by default, execute 25 SELECT statements
to retrieve the proxied owners. You can tune this behavior by specifying a batch-size in the
mapping of Person:
<class name="Person" batch-size="10"
>...</class
>
Hibernate will now execute only three queries: the pattern is 10, 10, 5.
You can also enable batch fetching of collections. For example, if each Person has a lazy collection
of Cats, and 10 persons are currently loaded in the Session, iterating through all persons will
generate 10 SELECTs, one for every call to getCats(). If you enable batch fetching for the cats
collection in the mapping of Person, Hibernate can pre-fetch collections:
<class name="Person">
271
Capítulo 19. Mejorando el ren...
<set name="cats" batch-size="3">
...
</set>
</class
>
Con un batch-size de 3, Hibernate cargará 3, 3, 3, 1 colecciones en cuatro SELECTs. Una vez
más, el valor del atributo depende del número esperado de colecciones sin inicializar en una
Session en particular.
Batch fetching of collections is particularly useful if you have a nested tree of items, i.e. the typical
bill-of-materials pattern. However, a nested set or a materialized path might be a better option
for read-mostly trees.
19.1.6. Usando recuperación por subselección
If one lazy collection or single-valued proxy has to be fetched, Hibernate will load all of them,
re-running the original query in a subselect. This works in the same way as batch-fetching but
without the piecemeal loading.
19.1.7. Usando recuperación perezosa de propiedades
Hibernate3 supports the lazy fetching of individual properties. This optimization technique is also
known as fetch groups. Please note that this is mostly a marketing feature; optimizing row reads is
much more important than optimization of column reads. However, only loading some properties
of a class could be useful in extreme cases. For example, when legacy tables have hundreds of
columns and the data model cannot be improved.
Para habilitar la carga perezosa de propiedades, establece el atributo lazy en tus mapeos de
propiedades:
<class name="Document">
<id name="id">
<generator class="native"/>
</id>
<property name="name" not-null="true" length="50"/>
<property name="summary" not-null="true" length="200" lazy="true"/>
<property name="text" not-null="true" length="2000" lazy="true"/>
</class
>
Lazy property loading requires buildtime bytecode instrumentation. If your persistent classes are
not enhanced, Hibernate will ignore lazy property settings and return to immediate fetching.
Para la instrumentación del bytecode, usa la siguiente tarea Ant:
272
El Caché de Segundo Nivel
<target name="instrument" depends="compile">
<taskdef name="instrument" classname="org.hibernate.tool.instrument.InstrumentTask">
<classpath path="${jar.path}"/>
<classpath path="${classes.dir}"/>
<classpath refid="lib.class.path"/>
</taskdef>
<instrument verbose="true">
<fileset dir="${testclasses.dir}/org/hibernate/auction/model">
<include name="*.class"/>
</fileset>
</instrument>
</target
>
A different way of avoiding unnecessary column reads, at least for read-only transactions, is to
use the projection features of HQL or Criteria queries. This avoids the need for buildtime bytecode
processing and is certainly a preferred solution.
You can force the usual eager fetching of properties using fetch all properties in HQL.
19.2. El Caché de Segundo Nivel
A Hibernate Session is a transaction-level cache of persistent data. It is possible to configure
a cluster or JVM-level (SessionFactory-level) cache on a class-by-class and collection-bycollection basis. You can even plug in a clustered cache. Be aware that caches are not aware of
changes made to the persistent store by another application. They can, however, be configured
to regularly expire cached data.
You have the option to tell Hibernate which caching implementation to use by specifying the
name of a class that implements org.hibernate.cache.CacheProvider using the property
hibernate.cache.provider_class. Hibernate is bundled with a number of built-in integrations
with the open-source cache providers that are listed below. You can also implement your own
and plug it in as outlined above. Note that versions prior to 3.2 use EhCache as the default cache
provider.
Tabla 19.1. Proveedores de Caché
Caché
clase del Provedor
Tipo
Hashtable
(no
org.hibernate.cache.HashtableCacheProvider
memoria
Cluster
Seguro
Caché de
Consultas
Soportado
si
pensado
273
Capítulo 19. Mejorando el ren...
Caché
clase del Provedor
Tipo
Cluster
Seguro
Caché de
Consultas
Soportado
para
uso en
producción)
EHCache
org.hibernate.cache.EhCacheProvider
memoria,
si
disco
OSCache
org.hibernate.cache.OSCacheProvider
memoria,
si
disco
SwarmCache org.hibernate.cache.SwarmCacheProvider
clusterizado sí
(ip
(invalidación
multicast)
JBoss
Cache 1.x
en cluster)
org.hibernate.cache.TreeCacheProvider
clusterizado sí
(ip
sí (requiere
(replicación) sincronización
multicast),
transaccional
JBoss
Cache 2
de reloj)
org.hibernate.cache.jbc2.JBossCacheRegionFactory
clusterizado yes
(ip
(replication
sí (requiere
sincronización
multicast),
or
de reloj)
transaccional invalidation)
19.2.1. Mapeos de caché
El elemento <cache> de una mapeo de clase o colección tiene la siguiente forma:
<cache
usage="transactional|read-write|nonstrict-read-write|read-only"
/>
usage especifica la estrategia de caching: transactional, read-write, nonstrict-readwrite o read-only
region (optional: defaults to the class or collection role name): specifies the name of the
second level cache region
include (optional: defaults to all) non-lazy: specifies that properties of the entity mapped
with lazy="true" cannot be cached when attribute-level lazy fetching is enabled
Alternatively, you can specify <class-cache> and <collection-cache> elements in
hibernate.cfg.xml.
El atributo usage especifica una estrategia de concurrencia al caché.
274
Estrategia: sólo lectura (read only)
19.2.2. Estrategia: sólo lectura (read only)
If your application needs to read, but not modify, instances of a persistent class, a read-only
cache can be used. This is the simplest and optimal performing strategy. It is even safe for use
in a cluster.
<class name="eg.Immutable" mutable="false">
<cache usage="read-only"/>
....
</class
>
19.2.3. Estrategia: lectura/escritura (read/write)
If the application needs to update data, a read-write cache might be appropriate.
This cache strategy should never be used if serializable transaction isolation level is
required. If the cache is used in a JTA environment, you must specify the property
hibernate.transaction.manager_lookup_class and naming a strategy for obtaining the JTA
TransactionManager. In other environments, you should ensure that the transaction is completed
when Session.close() or Session.disconnect() is called. If you want to use this strategy in a
cluster, you should ensure that the underlying cache implementation supports locking. The builtin cache providers do not support locking.
<class name="eg.Cat" .... >
<cache usage="read-write"/>
....
<set name="kittens" ... >
<cache usage="read-write"/>
....
</set>
</class
>
19.2.4. Estrategia: lectura/escritura no estricta (nonstrict read/
write)
If the application only occasionally needs to update data (i.e. if it is extremely unlikely that two
transactions would try to update the same item simultaneously), and strict transaction isolation
is not required, a nonstrict-read-write cache might be appropriate. If the cache is used in a
JTA environment, you must specify hibernate.transaction.manager_lookup_class. In other
275
Capítulo 19. Mejorando el ren...
environments, you should ensure that the transaction is completed when Session.close() or
Session.disconnect() is called.
19.2.5. Estrategia: transaccional
The transactional cache strategy provides support for fully transactional cache providers such
as JBoss TreeCache. Such a cache can only be used in a JTA environment and you must specify
hibernate.transaction.manager_lookup_class.
19.2.6. Cache-provider/concurrency-strategy compatibility
Importante
None of the cache providers support all of the cache concurrency strategies.
The following table shows which providers are compatible with which concurrency strategies.
Tabla 19.2. Soporte a Estrategia de Concurrencia a Caché
Caché
read-only
nonstrict-readwrite
read-write
transactional
Hashtable
(no pensado
si
si
si
EHCache
si
si
si
OSCache
si
si
si
SwarmCache
si
si
JBoss Cache 1.x
si
si
JBoss Cache 2
si
si
para uso en
producción)
19.3. Gestionando los cachés
Whenever you pass an object to save(), update() or saveOrUpdate(), and whenever you
retrieve an object using load(), get(), list(), iterate() or scroll(), that object is added to
the internal cache of the Session.
When flush() is subsequently called, the state of that object will be synchronized with the
database. If you do not want this synchronization to occur, or if you are processing a huge number
of objects and need to manage memory efficiently, the evict() method can be used to remove
the object and its collections from the first-level cache.
ScrollableResult cats = sess.createQuery("from Cat as cat").scroll(); //a huge result set
276
Gestionando los cachés
while ( cats.next() ) {
Cat cat = (Cat) cats.get(0);
doSomethingWithACat(cat);
sess.evict(cat);
}
La Session también provee un método contains() para determinar si una instancia pertenece
al caché de la sesión.
To evict all objects from the session cache, call Session.clear()
Para el caché de segundo nivel, hay métodos definidos en SessionFactory para desahuciar el
estado en caché de una instancia, clase entera, instancia de colección o rol enter de colección.
sessionFactory.evict(Cat.class, catId); //evict a particular Cat
sessionFactory.evict(Cat.class); //evict all Cats
sessionFactory.evictCollection("Cat.kittens", catId); //evict a particular collection of kittens
sessionFactory.evictCollection("Cat.kittens"); //evict all kitten collections
The CacheMode controls how a particular session interacts with the second-level cache:
• CacheMode.NORMAL: will read items from and write items to the second-level cache
• CacheMode.GET: will read items from the second-level cache. Do not write to the second-level
cache except when updating data
• CacheMode.PUT: will write items to the second-level cache. Do not read from the second-level
cache
• CacheMode.REFRESH: will write items to the second-level cache. Do not read from the secondlevel cache. Bypass the effect of hibernate.cache.use_minimal_puts forcing a refresh of the
second-level cache for all items read from the database
Para navegar por los contenidos de una región de caché de segundo nivel o de consultas, usa
la API de Statistics:
Map cacheEntries = sessionFactory.getStatistics()
.getSecondLevelCacheStatistics(regionName)
.getEntries();
You will need to enable statistics and, optionally, force Hibernate to keep the cache entries in a
more readable format:
277
Capítulo 19. Mejorando el ren...
hibernate.generate_statistics true
hibernate.cache.use_structured_entries true
19.4. El Caché de Consultas
Query result sets can also be cached. This is only useful for queries that are run frequently with
the same parameters. You will first need to enable the query cache:
hibernate.cache.use_query_cache true
This setting creates two new cache regions: one holding cached query result sets
(org.hibernate.cache.StandardQueryCache), the other holding timestamps of the most recent
updates to queryable tables (org.hibernate.cache.UpdateTimestampsCache). Note that the
query cache does not cache the state of the actual entities in the result set; it caches only identifier
values and results of value type. The query cache should always be used in conjunction with the
second-level cache.
Most queries do not benefit from caching, so by default, queries are not cached. To enable
caching, call Query.setCacheable(true). This call allows the query to look for existing cache
results or add its results to the cache when it is executed.
If you require fine-grained control over query cache expiration policies, you can specify a named
cache region for a particular query by calling Query.setCacheRegion().
List blogs = sess.createQuery("from Blog blog where blog.blogger = :blogger")
.setEntity("blogger", blogger)
.setMaxResults(15)
.setCacheable(true)
.setCacheRegion("frontpages")
.list();
Si la consulta debe forzar un refresco de si región del caché de consultas, debes llamar a
Query.setCacheMode(CacheMode.REFRESH). Esto es particularmente útil en casos donde los
datos subyacentes pueden haber sido actualizados por medio de un proceso separado (es decir,
no modificados a través de Hibernate) y permite a la aplicación refrescar selectivamente conjuntos
resultado de consultas en particular. Esto es una alternativa más eficient al desahuciamiento de
una región del caché de consultas vía SessionFactory.evictQueries().
278
Entendiendo el rendimiento de Colecciones
19.5. Entendiendo el rendimiento de Colecciones
In the previous sections we have covered collections and their applications. In this section we
explore some more issues in relation to collections at runtime.
19.5.1. Taxonomia
Hibernate define tres tipos básicos de colecciones:
• colecciones de valores
• one-to-many associations
• many-to-many associations
Esta clasificación distingue las varias tablas y relaciones de clave foránea pero no nos dice
absolutamente todo lo que necesitamos saber sobre el modelo relacional. Para entender
completamente la estructura relacional y las características de rendimiento, debemos considerar
la estructura de la clave primaria que es usada por Hibernate para actualizar o borrar filas de
colección. Esto sugiere la siguiente clasificación:
• colecciones indexadas
• conjuntos (sets)
• bolsas (bags)
All indexed collections (maps, lists, and arrays) have a primary key consisting of the <key> and
<index> columns. In this case, collection updates are extremely efficient. The primary key can be
efficiently indexed and a particular row can be efficiently located when Hibernate tries to update
or delete it.
Sets have a primary key consisting of <key> and element columns. This can be less efficient for
some types of collection element, particularly composite elements or large text or binary fields, as
the database may not be able to index a complex primary key as efficiently. However, for one-tomany or many-to-many associations, particularly in the case of synthetic identifiers, it is likely to
be just as efficient. If you want SchemaExport to actually create the primary key of a <set>, you
must declare all columns as not-null="true".
<idbag> mappings define a surrogate key, so they are efficient to update. In fact, they are the
best case.
Bags are the worst case since they permit duplicate element values and, as they have no index
column, no primary key can be defined. Hibernate has no way of distinguishing between duplicate
rows. Hibernate resolves this problem by completely removing in a single DELETE and recreating
the collection whenever it changes. This can be inefficient.
279
Capítulo 19. Mejorando el ren...
For a one-to-many association, the "primary key" may not be the physical primary key of the
database table. Even in this case, the above classification is still useful. It reflects how Hibernate
"locates" individual rows of the collection.
19.5.2. Las listas, mapas, idbags y conjuntos son las
colecciones más eficientes de actualizar
From the discussion above, it should be clear that indexed collections and sets allow the most
efficient operation in terms of adding, removing and updating elements.
There is, arguably, one more advantage that indexed collections have over sets for many-to-many
associations or collections of values. Because of the structure of a Set, Hibernate does not UPDATE
a row when an element is "changed". Changes to a Set always work via INSERT and DELETE of
individual rows. Once again, this consideration does not apply to one-to-many associations.
After observing that arrays cannot be lazy, you can conclude that lists, maps and idbags are the
most performant (non-inverse) collection types, with sets not far behind. You can expect sets to be
the most common kind of collection in Hibernate applications. This is because the "set" semantics
are most natural in the relational model.
However, in well-designed Hibernate domain models, most collections are in fact one-to-many
associations with inverse="true". For these associations, the update is handled by the manyto-one end of the association, and so considerations of collection update performance simply do
not apply.
19.5.3. Los Bags y las listas son las colecciones inversas más
eficientes
There is a particular case, however, in which bags, and also lists, are much more performant than
sets. For a collection with inverse="true", the standard bidirectional one-to-many relationship
idiom, for example, we can add elements to a bag or list without needing to initialize (fetch) the
bag elements. This is because, unlike a set, Collection.add() or Collection.addAll() must
always return true for a bag or List. This can make the following common code much faster:
Parent p = (Parent) sess.load(Parent.class, id);
Child c = new Child();
c.setParent(p);
p.getChildren().add(c); //no need to fetch the collection!
sess.flush();
19.5.4. Borrado de un solo tiro
Deleting collection elements one by one can sometimes be extremely inefficient. Hibernate knows
not to do that in the case of an newly-empty collection (if you called list.clear(), for example).
In this case, Hibernate will issue a single DELETE.
280
Monitoreando el rendimiento
Suppose you added a single element to a collection of size twenty and then remove two elements.
Hibernate will issue one INSERT statement and two DELETE statements, unless the collection is
a bag. This is certainly desirable.
Sin embargo, supón que quitamos dieciocho elementos, dejando dos y luego añadimos tres
nuevos elementos. Hay dos formas posibles de proceder
• borrar dieciocho filas una a una y luego insertar tres filas
• remove the whole collection in one SQL DELETE and insert all five current elements one by one
Hibernate cannot know that the second option is probably quicker. It would probably be
undesirable for Hibernate to be that intuitive as such behavior might confuse database triggers,
etc.
Fortunately, you can force this behavior (i.e. the second strategy) at any time by discarding (i.e.
dereferencing) the original collection and returning a newly instantiated collection with all the
current elements.
One-shot-delete does not apply to collections mapped inverse="true".
19.6. Monitoreando el rendimiento
La optimización no es de mucho uso sin el monitoreo y el acceso a números de rendimiento.
Hibernate provee un rango completo de figuras sobre sus operaciones internas. Las estadísticas
en Hibernate están disponibles por SessionFactory.
19.6.1. Monitoreando una SessionFactory
Puedes acceder a las métricas de SessionFactory de dos formas. Tu primera opción es llamar
a sessionFactory.getStatistics() y leer o mostrar por pantalla la Statistics por ti mismo.
Hibernate can also use JMX to publish metrics if you enable the StatisticsService MBean.
You can enable a single MBean for all your SessionFactory or one per factory. See the following
code for minimalistic configuration examples:
// MBean service registration for a specific SessionFactory
Hashtable tb = new Hashtable();
tb.put("type", "statistics");
tb.put("sessionFactory", "myFinancialApp");
ObjectName on = new ObjectName("hibernate", tb); // MBean object name
StatisticsService stats = new StatisticsService(); // MBean implementation
stats.setSessionFactory(sessionFactory); // Bind the stats to a SessionFactory
server.registerMBean(stats, on); // Register the Mbean on the server
281
Capítulo 19. Mejorando el ren...
// MBean service registration for all SessionFactory's
Hashtable tb = new Hashtable();
tb.put("type", "statistics");
tb.put("sessionFactory", "all");
ObjectName on = new ObjectName("hibernate", tb); // MBean object name
StatisticsService stats = new StatisticsService(); // MBean implementation
server.registerMBean(stats, on); // Register the MBean on the server
You can activate and deactivate the monitoring for a SessionFactory:
• en tiempo de configuración, establece hibernate.generate_statistics a false
• en
tiempo
de
ejecución:
sf.getStatistics().setStatisticsEnabled(true)
o
hibernateStatsBean.setStatisticsEnabled(true)
Statistics can be reset programmatically using the clear() method. A summary can be sent to
a logger (info level) using the logSummary() method.
19.6.2. Métricas
Hibernate provides a number of metrics, from basic information to more specialized information
that is only relevant in certain scenarios. All available counters are described in the Statistics
interface API, in three categories:
• Métricas relacionadas al uso general de Session usage, tales como número de sesiones
abiertas, conexiones JDBC recuperadas, etc,
• Metrics related to the entities, collections, queries, and caches as a whole (aka global metrics).
• Métricas detalladas relacionadas a una entidad, colección, consulta o región de caché en
particular.
For example, you can check the cache hit, miss, and put ratio of entities, collections and queries,
and the average time a query needs. Be aware that the number of milliseconds is subject to
approximation in Java. Hibernate is tied to the JVM precision and on some platforms this might
only be accurate to 10 seconds.
Simple getters are used to access the global metrics (i.e. not tied to a particular entity, collection,
cache region, etc.). You can access the metrics of a particular entity, collection or cache region
through its name, and through its HQL or SQL representation for queries. Please refer to the
Statistics, EntityStatistics, CollectionStatistics, SecondLevelCacheStatistics, and
QueryStatistics API Javadoc for more information. The following code is a simple example:
282
Métricas
Statistics stats = HibernateUtil.sessionFactory.getStatistics();
double queryCacheHitCount = stats.getQueryCacheHitCount();
double queryCacheMissCount = stats.getQueryCacheMissCount();
double queryCacheHitRatio =
queryCacheHitCount / (queryCacheHitCount + queryCacheMissCount);
log.info("Query Hit ratio:" + queryCacheHitRatio);
EntityStatistics entityStats =
stats.getEntityStatistics( Cat.class.getName() );
long changes =
entityStats.getInsertCount()
+ entityStats.getUpdateCount()
+ entityStats.getDeleteCount();
log.info(Cat.class.getName() + " changed " + changes + "times" );
You can work on all entities, collections, queries and region caches, by retrieving the list of names
of entities, collections, queries and region caches using the following methods: getQueries(),
getEntityNames(), getCollectionRoleNames(), and getSecondLevelCacheRegionNames().
283
284
Guía del Conjunto de Herramientas
Roundtrip engineering with Hibernate is possible using a set of Eclipse plugins, commandline
tools, and Ant tasks.
Hibernate Tools currently include plugins for the Eclipse IDE as well as Ant tasks for reverse
engineering of existing databases:
• Mapping Editor: an editor for Hibernate XML mapping files that supports auto-completion and
syntax highlighting. It also supports semantic auto-completion for class names and property/
field names, making it more versatile than a normal XML editor.
• Console: the console is a new view in Eclipse. In addition to a tree overview of your console
configurations, you are also provided with an interactive view of your persistent classes and
their relationships. The console allows you to execute HQL queries against your database and
browse the result directly in Eclipse.
• Development Wizards: several wizards are provided with the Hibernate Eclipse tools. You can
use a wizard to quickly generate Hibernate configuration (cfg.xml) files, or to reverse engineer
an existing database schema into POJO source files and Hibernate mapping files. The reverse
engineering wizard supports customizable templates.
•
Please refer to the Hibernate Tools package documentation for more information.
However, the Hibernate main package comes bundled with an integrated tool : SchemaExport
aka hbm2ddl.It can even be used from "inside" Hibernate.
20.1. Generación automática de esquemas
DDL can be generated from your mapping files by a Hibernate utility. The generated schema
includes referential integrity constraints, primary and foreign keys, for entity and collection tables.
Tables and sequences are also created for mapped identifier generators.
You must specify a SQL Dialect via the hibernate.dialect property when using this tool, as
DDL is highly vendor-specific.
First, you must customize your mapping files to improve the generated schema. The next section
covers schema customization.
20.1.1. Personalizando el esquema
Many Hibernate mapping elements define optional attributes named length, precision and
scale. You can set the length, precision and scale of a column with this attribute.
<property name="zip" length="5"/>
285
Capítulo 20. Guía del Conjunt...
<property name="balance" precision="12" scale="2"/>
Some tags also accept a not-null attribute for generating a NOT NULL constraint on table
columns, and a unique attribute for generating UNIQUE constraint on table columns.
<many-to-one name="bar" column="barId" not-null="true"/>
<element column="serialNumber" type="long" not-null="true" unique="true"/>
A unique-key attribute can be used to group columns in a single, unique key constraint. Currently,
the specified value of the unique-key attribute is not used to name the constraint in the generated
DDL. It is only used to group the columns in the mapping file.
<many-to-one name="org" column="orgId" unique-key="OrgEmployeeId"/>
<property name="employeeId" unique-key="OrgEmployee"/>
An index attribute specifies the name of an index that will be created using the mapped column
or columns. Multiple columns can be grouped into the same index by simply specifying the same
index name.
<property name="lastName" index="CustName"/>
<property name="firstName" index="CustName"/>
A foreign-key attribute can be used to override the name of any generated foreign key constraint.
<many-to-one name="bar" column="barId" foreign-key="FKFooBar"/>
Many mapping elements also accept a child <column> element. This is particularly useful for
mapping multi-column types:
<property name="name" type="my.customtypes.Name"/>
<column name="last" not-null="true" index="bar_idx" length="30"/>
<column name="first" not-null="true" index="bar_idx" length="20"/>
<column name="initial"/>
</property
286
Personalizando el esquema
>
The default attribute allows you to specify a default value for a column.You should assign the
same value to the mapped property before saving a new instance of the mapped class.
<property name="credits" type="integer" insert="false">
<column name="credits" default="10"/>
</property
>
<version name="version" type="integer" insert="false">
<column name="version" default="0"/>
</property
>
El atributo sql-type permite al usuario sobrescribir el mapeo por defecto de tipo Hibernate a tipo
de datos SQL.
<property name="balance" type="float">
<column name="balance" sql-type="decimal(13,3)"/>
</property
>
El atributo check te permite especificar una comprobación de restricción.
<property name="foo" type="integer">
<column name="foo" check="foo
> 10"/>
</property
>
<class name="Foo" table="foos" check="bar < 100.0">
...
<property name="bar" type="float"/>
</class
>
287
Capítulo 20. Guía del Conjunt...
The following table summarizes these optional attributes.
Tabla 20.1. Resumen
Atributo
Valores
Interpretación
length
number
largo de columna/precisión decimal
precision
number
column decimal precision
scale
number
column decimal scale
not-null
true|false
specifies that the column should be non-nullable
unique
true|false
especifica que la columna debe tener una restricción
de unicidad
index
index_name
especifica el nombre de un índice (multicolumna)
unique-key
unique_key_name
especifica el nombre de una restricción de unicidad
multicolumna
foreign-key
foreign_key_name especifica el nombre de la restricción de clave
foránea generada por una asociación, úsalo e <oneto-one>, <many-to-one>, <key>, or <many-tomany> . Nota que los lados inverse="true" no
serán considerados por SchemaExport.
sql-type
column_type
sobrescribe el tipo de columna por defecto (sólo
atributo del elemento <column>)
default
SQL expression
specify a default value for the column
check
SQL expression
crea una restricción de comprobación SQL en
columna o tabla
El elemento <comment> te permite especificar un comentario para el esquema generado.
<class name="Customer" table="CurCust">
<comment
>Current customers only</comment>
...
</class
>
<property name="balance">
<column name="bal">
<comment
>Balance in USD</comment>
</column>
</property
288
Ejecutando la herramienta
>
This results in a comment on table or comment on column statement in the generated DDL
where supported.
20.1.2. Ejecutando la herramienta
La herramienta SchemaExport escribe un guión DDL a la salida estándar y/o ejecuta las
sentencias DDL.
The following table displays the SchemaExport command line options
java -cp classpaths_de_hibernate org.hibernate.tool.hbm2ddl.SchemaExport opciones
ficheros_de_mapeo
Tabla 20.2. Opciones de Línea de Comandos de SchemaExport
Opción
Descripción
--quiet
do not output the script to stdout
--drop
sólo desechar las tablas
--create
only create the tables
--text
do not export to the database
--output=my_schema.ddl
enviar la salida del guión ddl a un fichero
--naming=eg.MyNamingStrategy
select a NamingStrategy
--config=hibernate.cfg.xml
lee la configuración de Hibernate de un fichero XML
--
lee las propiedades de base de datos de un fichero
properties=hibernate.properties
--format
formatea agradablemente el SQL generado en el
guión
--delimiter=x
establece un delimitador de fin de línea para el guión
You can even embed SchemaExport in your application:
Configuration cfg = ....;
new SchemaExport(cfg).create(false, true);
20.1.3. Propiedades
Database properties can be specified:
• como propiedades de sistema con -D<property>
• en hibernate.properties
289
Capítulo 20. Guía del Conjunt...
• en un fichero de propiedades mencionado con --properties
Las propiedades necesarias son:
Tabla 20.3. Propiedades de Conexión de SchemaExport
Nombre de Propiedad
Descripción
hibernate.connection.driver_class clase del driver jdbc
hibernate.connection.url
url de jdbc
hibernate.connection.username
usuario de base de datos
hibernate.connection.password
contraseña de usuario
hibernate.dialect
dialecto
20.1.4. Usando Ant
Puedes llamar a SchemaExport desde tu guión de construcción de Ant:
<target name="schemaexport">
<taskdef name="schemaexport"
classname="org.hibernate.tool.hbm2ddl.SchemaExportTask"
classpathref="class.path"/>
<schemaexport
properties="hibernate.properties"
quiet="no"
text="no"
drop="no"
delimiter=";"
output="schema-export.sql">
<fileset dir="src">
<include name="**/*.hbm.xml"/>
</fileset>
</schemaexport>
</target
>
20.1.5. Actualizaciones incrementales de esquema
The SchemaUpdate tool will update an existing schema with "incremental" changes. The
SchemaUpdate depends upon the JDBC metadata API and, as such, will not work with all JDBC
drivers.
java -cp classpaths_de_hibernate org.hibernate.tool.hbm2ddl.SchemaUpdate opciones
ficheros_de_mapeo
290
Usando Ant para actualizaciones incrementales de esquema
Tabla 20.4. Opciones de Línea de Comandos de SchemaUpdate
Opción
Descripción
--quiet
do not output the script to stdout
--text
do not export the script to the database
--naming=eg.MyNamingStrategy
select a NamingStrategy
--
lee las propiedades de base de datos de un fichero
properties=hibernate.properties
--config=hibernate.cfg.xml
specify a .cfg.xml file
You can embed SchemaUpdate in your application:
Configuration cfg = ....;
new SchemaUpdate(cfg).execute(false);
20.1.6. Usando Ant para actualizaciones incrementales de
esquema
Puedes llamar a SchemaUpdate desde el guión de Ant:
<target name="schemaupdate">
<taskdef name="schemaupdate"
classname="org.hibernate.tool.hbm2ddl.SchemaUpdateTask"
classpathref="class.path"/>
<schemaupdate
properties="hibernate.properties"
quiet="no">
<fileset dir="src">
<include name="**/*.hbm.xml"/>
</fileset>
</schemaupdate>
</target
>
20.1.7. Schema validation
The SchemaValidator tool will validate that the existing database schema "matches" your
mapping documents. The SchemaValidator depends heavily upon the JDBC metadata API and,
as such, will not work with all JDBC drivers. This tool is extremely useful for testing.
291
Capítulo 20. Guía del Conjunt...
hibernate_classpaths org.hibernate.tool.hbm2ddl.SchemaValidator options
mapping_files
java
-cp
Tabla 20.5. SchemaValidator Command Line Options
Opción
Descripción
--naming=eg.MyNamingStrategy
select a NamingStrategy
--
lee las propiedades de base de datos de un fichero
properties=hibernate.properties
--config=hibernate.cfg.xml
specify a .cfg.xml file
You can embed SchemaValidator in your application:
Configuration cfg = ....;
new SchemaValidator(cfg).validate();
20.1.8. Using Ant for schema validation
You can call SchemaValidator from the Ant script:
<target name="schemavalidate">
<taskdef name="schemavalidator"
classname="org.hibernate.tool.hbm2ddl.SchemaValidatorTask"
classpathref="class.path"/>
<schemavalidator
properties="hibernate.properties">
<fileset dir="src">
<include name="**/*.hbm.xml"/>
</fileset>
</schemavalidator>
</target
>
292
Ejemplo: Padre/Hijo
One of the first things that new users want to do with Hibernate is to model a parent/child
type relationship. There are two different approaches to this. The most convenient approach,
especially for new users, is to model both Parent and Child as entity classes with a <one-tomany> association from Parent to Child. The alternative approach is to declare the Child as
a <composite-element>. The default semantics of a one-to-many association in Hibernate are
much less close to the usual semantics of a parent/child relationship than those of a composite
element mapping. We will explain how to use a bidirectional one-to-many association with
cascades to model a parent/child relationship efficiently and elegantly.
21.1. Una nota sobre las colecciones
Hibernate collections are considered to be a logical part of their owning entity and not of the
contained entities. Be aware that this is a critical distinction that has the following consequences:
• When you remove/add an object from/to a collection, the version number of the collection owner
is incremented.
• If an object that was removed from a collection is an instance of a value type (e.g. a composite
element), that object will cease to be persistent and its state will be completely removed from
the database. Likewise, adding a value type instance to the collection will cause its state to be
immediately persistent.
• Conversely, if an entity is removed from a collection (a one-to-many or many-to-many
association), it will not be deleted by default. This behavior is completely consistent; a change
to the internal state of another entity should not cause the associated entity to vanish. Likewise,
adding an entity to a collection does not cause that entity to become persistent, by default.
Adding an entity to a collection, by default, merely creates a link between the two entities.
Removing the entity will remove the link. This is appropriate for all sorts of cases. However, it is
not appropriate in the case of a parent/child relationship. In this case, the life of the child is bound
to the life cycle of the parent.
21.2. Uno-a-muchos bidirectional
Supón que empezamos con una asociación simple <one-to-many> desde Parent a Child.
<set name="children">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set
>
293
Capítulo 21. Ejemplo: Padre/Hijo
If we were to execute the following code:
Parent p = .....;
Child c = new Child();
p.getChildren().add(c);
session.save(c);
session.flush();
Hibernate publicaría dos sentencias SQL:
• un INSERT para crear el registro de c
• un UPDATE para crear el enlace desde p a c
This is not only inefficient, but also violates any NOT NULL constraint on the parent_id column.
You can fix the nullability constraint violation by specifying not-null="true" in the collection
mapping:
<set name="children">
<key column="parent_id" not-null="true"/>
<one-to-many class="Child"/>
</set
>
Sin embargo, esta no es la solución recomendada.
The underlying cause of this behavior is that the link (the foreign key parent_id) from p to c is
not considered part of the state of the Child object and is therefore not created in the INSERT.
The solution is to make the link part of the Child mapping.
<many-to-one name="parent" column="parent_id" not-null="true"/>
You also need to add the parent property to the Child class.
Now that the Child entity is managing the state of the link, we tell the collection not to update the
link. We use the inverse attribute to do this:
<set name="children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set
294
Ciclo de vida en cascada
>
The following code would be used to add a new Child:
Parent p = (Parent) session.load(Parent.class, pid);
Child c = new Child();
c.setParent(p);
p.getChildren().add(c);
session.save(c);
session.flush();
Only one SQL INSERT would now be issued.
You could also create an addChild() method of Parent.
public void addChild(Child c) {
c.setParent(this);
children.add(c);
}
The code to add a Child looks like this:
Parent p = (Parent) session.load(Parent.class, pid);
Child c = new Child();
p.addChild(c);
session.save(c);
session.flush();
21.3. Ciclo de vida en cascada
You can address the frustrations of the explicit call to save() by using cascades.
<set name="children" inverse="true" cascade="all">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set
>
This simplifies the code above to:
295
Capítulo 21. Ejemplo: Padre/Hijo
Parent p = (Parent) session.load(Parent.class, pid);
Child c = new Child();
p.addChild(c);
session.flush();
Similarly, we do not need to iterate over the children when saving or deleting a Parent. The
following removes p and all its children from the database.
Parent p = (Parent) session.load(Parent.class, pid);
session.delete(p);
session.flush();
However, the following code:
Parent p = (Parent) session.load(Parent.class, pid);
Child c = (Child) p.getChildren().iterator().next();
p.getChildren().remove(c);
c.setParent(null);
session.flush();
will not remove c from the database. In this case, it will only remove the link to p and cause a NOT
NULL constraint violation. You need to explicitly delete() the Child.
Parent p = (Parent) session.load(Parent.class, pid);
Child c = (Child) p.getChildren().iterator().next();
p.getChildren().remove(c);
session.delete(c);
session.flush();
In our case, a Child cannot exist without its parent. So if we remove a Child from the collection,
we do want it to be deleted. To do this, we must use cascade="all-delete-orphan".
<set name="children" inverse="true" cascade="all-delete-orphan">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set
>
296
Tratamiento en cascada y unsaved-value
Even though the collection mapping specifies inverse="true", cascades are still processed by
iterating the collection elements. If you need an object be saved, deleted or updated by cascade,
you must add it to the collection. It is not enough to simply call setParent().
21.4. Tratamiento en cascada y unsaved-value
Suppose we loaded up a Parent in one Session, made some changes in a UI action and wanted
to persist these changes in a new session by calling update(). The Parent will contain a collection
of children and, since the cascading update is enabled, Hibernate needs to know which children
are newly instantiated and which represent existing rows in the database. We will also assume
that both Parent and Child have generated identifier properties of type Long. Hibernate will use
the identifier and version/timestamp property value to determine which of the children are new.
(See Sección 10.7, “Detección automática de estado”.) In Hibernate3, it is no longer necessary
to specify an unsaved-value explicitly.
The following code will update parent and child and insert newChild:
//parent and child were both loaded in a previous session
parent.addChild(child);
Child newChild = new Child();
parent.addChild(newChild);
session.update(parent);
session.flush();
This may be suitable for the case of a generated identifier, but what about assigned identifiers
and composite identifiers? This is more difficult, since Hibernate cannot use the identifier property
to distinguish between a newly instantiated object, with an identifier assigned by the user, and
an object loaded in a previous session. In this case, Hibernate will either use the timestamp or
version property, or will actually query the second-level cache or, worst case, the database, to
see if the row exists.
21.5. Conclusión
The sections we have just covered can be a bit confusing. However, in practice, it all works out
nicely. Most Hibernate applications use the parent/child pattern in many places.
We mentioned an alternative in the first paragraph. None of the above issues exist in the case of
<composite-element> mappings, which have exactly the semantics of a parent/child relationship.
Unfortunately, there are two big limitations with composite element classes: composite elements
cannot own collections and they should not be the child of any entity other than the unique parent.
297
298
Ejemplo: Aplicación de Weblog
22.1. Clases Persistentes
The persistent classes here represent a weblog and an item posted in a weblog. They are to be
modelled as a standard parent/child relationship, but we will use an ordered bag, instead of a set:
package eg;
import java.util.List;
public class Blog {
private Long _id;
private String _name;
private List _items;
public Long getId() {
return _id;
}
public List getItems() {
return _items;
}
public String getName() {
return _name;
}
public void setId(Long long1) {
_id = long1;
}
public void setItems(List list) {
_items = list;
}
public void setName(String string) {
_name = string;
}
}
package eg;
import java.text.DateFormat;
import java.util.Calendar;
299
Capítulo 22. Ejemplo: Aplicac...
public class BlogItem {
private Long _id;
private Calendar _datetime;
private String _text;
private String _title;
private Blog _blog;
public Blog getBlog() {
return _blog;
}
public Calendar getDatetime() {
return _datetime;
}
public Long getId() {
return _id;
}
public String getText() {
return _text;
}
public String getTitle() {
return _title;
}
public void setBlog(Blog blog) {
_blog = blog;
}
public void setDatetime(Calendar calendar) {
_datetime = calendar;
}
public void setId(Long long1) {
_id = long1;
}
public void setText(String string) {
_text = string;
}
public void setTitle(String string) {
_title = string;
}
}
22.2. Mapeos de Hibernate
The XML mappings are now straightforward. For example:
300
Mapeos de Hibernate
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="eg">
<class
name="Blog"
table="BLOGS">
<id
name="id"
column="BLOG_ID">
<generator class="native"/>
</id>
<property
name="name"
column="NAME"
not-null="true"
unique="true"/>
<bag
name="items"
inverse="true"
order-by="DATE_TIME"
cascade="all">
<key column="BLOG_ID"/>
<one-to-many class="BlogItem"/>
</bag>
</class>
</hibernate-mapping
>
<?xml version="1.0"?>
301
Capítulo 22. Ejemplo: Aplicac...
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="eg">
<class
name="BlogItem"
table="BLOG_ITEMS"
dynamic-update="true">
<id
name="id"
column="BLOG_ITEM_ID">
<generator class="native"/>
</id>
<property
name="title"
column="TITLE"
not-null="true"/>
<property
name="text"
column="TEXT"
not-null="true"/>
<property
name="datetime"
column="DATE_TIME"
not-null="true"/>
<many-to-one
name="blog"
column="BLOG_ID"
not-null="true"/>
</class>
</hibernate-mapping
>
302
Código Hibernate
22.3. Código Hibernate
The following class demonstrates some of the kinds of things we can do with these classes using
Hibernate:
package eg;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Iterator;
import java.util.List;
import org.hibernate.HibernateException;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;
import org.hibernate.tool.hbm2ddl.SchemaExport;
public class BlogMain {
private SessionFactory _sessions;
public void configure() throws HibernateException {
_sessions = new Configuration()
.addClass(Blog.class)
.addClass(BlogItem.class)
.buildSessionFactory();
}
public void exportTables() throws HibernateException {
Configuration cfg = new Configuration()
.addClass(Blog.class)
.addClass(BlogItem.class);
new SchemaExport(cfg).create(true, true);
}
public Blog createBlog(String name) throws HibernateException {
Blog blog = new Blog();
blog.setName(name);
blog.setItems( new ArrayList() );
303
Capítulo 22. Ejemplo: Aplicac...
Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
session.persist(blog);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
return blog;
}
public BlogItem createBlogItem(Blog blog, String title, String text)
throws HibernateException {
BlogItem item = new BlogItem();
item.setTitle(title);
item.setText(text);
item.setBlog(blog);
item.setDatetime( Calendar.getInstance() );
blog.getItems().add(item);
Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
session.update(blog);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
return item;
}
304
Código Hibernate
public BlogItem createBlogItem(Long blogid, String title, String text)
throws HibernateException {
BlogItem item = new BlogItem();
item.setTitle(title);
item.setText(text);
item.setDatetime( Calendar.getInstance() );
Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
Blog blog = (Blog) session.load(Blog.class, blogid);
item.setBlog(blog);
blog.getItems().add(item);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
return item;
}
public void updateBlogItem(BlogItem item, String text)
throws HibernateException {
item.setText(text);
Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
session.update(item);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
305
Capítulo 22. Ejemplo: Aplicac...
finally {
session.close();
}
}
public void updateBlogItem(Long itemid, String text)
throws HibernateException {
Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
BlogItem item = (BlogItem) session.load(BlogItem.class, itemid);
item.setText(text);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
}
public List listAllBlogNamesAndItemCounts(int max)
throws HibernateException {
Session session = _sessions.openSession();
Transaction tx = null;
List result = null;
try {
tx = session.beginTransaction();
Query q = session.createQuery(
"select blog.id, blog.name, count(blogItem) " +
"from Blog as blog " +
"left outer join blog.items as blogItem " +
"group by blog.name, blog.id " +
"order by max(blogItem.datetime)"
);
q.setMaxResults(max);
result = q.list();
tx.commit();
}
306
Código Hibernate
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
return result;
}
public Blog getBlogAndAllItems(Long blogid)
throws HibernateException {
Session session = _sessions.openSession();
Transaction tx = null;
Blog blog = null;
try {
tx = session.beginTransaction();
Query q = session.createQuery(
"from Blog as blog " +
"left outer join fetch blog.items " +
"where blog.id = :blogid"
);
q.setParameter("blogid", blogid);
blog = (Blog) q.uniqueResult();
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
return blog;
}
public List listBlogsAndRecentItems() throws HibernateException {
Session session = _sessions.openSession();
Transaction tx = null;
List result = null;
try {
tx = session.beginTransaction();
307
Capítulo 22. Ejemplo: Aplicac...
Query q = session.createQuery(
"from Blog as blog " +
"inner join blog.items as blogItem " +
"where blogItem.datetime
> :minDate"
);
Calendar cal = Calendar.getInstance();
cal.roll(Calendar.MONTH, false);
q.setCalendar("minDate", cal);
result = q.list();
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();
}
return result;
}
}
308
Ejemplo: Varios Mapeos
This chapters explores some more complex association mappings.
23.1. Empleador/Empleado
The following model of the relationship between Employer and Employee uses an entity class
(Employment) to represent the association. You can do this when there might be more than one
period of employment for the same two parties. Components are used to model monetary values
and employee names.
Here is a possible mapping document:
<hibernate-mapping>
<class name="Employer" table="employers">
<id name="id">
<generator class="sequence">
<param name="sequence"
>employer_id_seq</param>
</generator>
</id>
<property name="name"/>
</class>
<class name="Employment" table="employment_periods">
<id name="id">
<generator class="sequence">
<param name="sequence"
>employment_id_seq</param>
</generator>
</id>
<property name="startDate" column="start_date"/>
<property name="endDate" column="end_date"/>
<component name="hourlyRate" class="MonetaryAmount">
<property name="amount">
<column name="hourly_rate" sql-type="NUMERIC(12, 2)"/>
</property>
<property name="currency" length="12"/>
</component>
309
Capítulo 23. Ejemplo: Varios ...
<many-to-one name="employer" column="employer_id" not-null="true"/>
<many-to-one name="employee" column="employee_id" not-null="true"/>
</class>
<class name="Employee" table="employees">
<id name="id">
<generator class="sequence">
<param name="sequence"
>employee_id_seq</param>
</generator>
</id>
<property name="taxfileNumber"/>
<component name="name" class="Name">
<property name="firstName"/>
<property name="initial"/>
<property name="lastName"/>
</component>
</class>
</hibernate-mapping
>
Here is the table schema generated by SchemaExport.
create table employers (
id BIGINT not null,
name VARCHAR(255),
primary key (id)
)
create table employment_periods (
id BIGINT not null,
hourly_rate NUMERIC(12, 2),
currency VARCHAR(12),
employee_id BIGINT not null,
employer_id BIGINT not null,
end_date TIMESTAMP,
start_date TIMESTAMP,
primary key (id)
)
310
Autor/Obra
create table employees (
id BIGINT not null,
firstName VARCHAR(255),
initial CHAR(1),
lastName VARCHAR(255),
taxfileNumber VARCHAR(255),
primary key (id)
)
alter table employment_periods
add constraint employment_periodsFK0 foreign key (employer_id) references employers
alter table employment_periods
add constraint employment_periodsFK1 foreign key (employee_id) references employees
create sequence employee_id_seq
create sequence employment_id_seq
create sequence employer_id_seq
23.2. Autor/Obra
Consider the following model of the relationships between Work, Author and Person. In
the example, the relationship between Work and Author is represented as a many-to-many
association and the relationship between Author and Person is represented as one-to-one
association. Another possibility would be to have Author extend Person.
El siguiente documento de mapeo representa estas relaciones correctamente:
<hibernate-mapping>
<class name="Work" table="works" discriminator-value="W">
<id name="id" column="id">
<generator class="native"/>
</id>
<discriminator column="type" type="character"/>
<property name="title"/>
<set name="authors" table="author_work">
<key column name="work_id"/>
<many-to-many class="Author" column name="author_id"/>
</set>
<subclass name="Book" discriminator-value="B">
311
Capítulo 23. Ejemplo: Varios ...
<property name="text"/>
</subclass>
<subclass name="Song" discriminator-value="S">
<property name="tempo"/>
<property name="genre"/>
</subclass>
</class>
<class name="Author" table="authors">
<id name="id" column="id">
<!-- The Author must have the same identifier as the Person -->
<generator class="assigned"/>
</id>
<property name="alias"/>
<one-to-one name="person" constrained="true"/>
<set name="works" table="author_work" inverse="true">
<key column="author_id"/>
<many-to-many class="Work" column="work_id"/>
</set>
</class>
<class name="Person" table="persons">
<id name="id" column="id">
<generator class="native"/>
</id>
<property name="name"/>
</class>
</hibernate-mapping
>
There are four tables in this mapping: works, authors and persons hold work, author and person
data respectively. author_work is an association table linking authors to works. Here is the table
schema, as generated by SchemaExport:
create table works (
id BIGINT not null generated by default as identity,
312
Cliente/Orden/Producto
tempo FLOAT,
genre VARCHAR(255),
text INTEGER,
title VARCHAR(255),
type CHAR(1) not null,
primary key (id)
)
create table author_work (
author_id BIGINT not null,
work_id BIGINT not null,
primary key (work_id, author_id)
)
create table authors (
id BIGINT not null generated by default as identity,
alias VARCHAR(255),
primary key (id)
)
create table persons (
id BIGINT not null generated by default as identity,
name VARCHAR(255),
primary key (id)
)
alter table authors
add constraint authorsFK0 foreign key (id) references persons
alter table author_work
add constraint author_workFK0 foreign key (author_id) references authors
alter table author_work
add constraint author_workFK1 foreign key (work_id) references works
23.3. Cliente/Orden/Producto
In this section we consider a model of the relationships between Customer, Order, Line Item
and Product. There is a one-to-many association between Customer and Order, but how can you
represent Order / LineItem / Product? In the example, LineItem is mapped as an association
class representing the many-to-many association between Order and Product. In Hibernate this
is called a composite element.
The mapping document will look like this:
313
Capítulo 23. Ejemplo: Varios ...
<hibernate-mapping>
<class name="Customer" table="customers">
<id name="id">
<generator class="native"/>
</id>
<property name="name"/>
<set name="orders" inverse="true">
<key column="customer_id"/>
<one-to-many class="Order"/>
</set>
</class>
<class name="Order" table="orders">
<id name="id">
<generator class="native"/>
</id>
<property name="date"/>
<many-to-one name="customer" column="customer_id"/>
<list name="lineItems" table="line_items">
<key column="order_id"/>
<list-index column="line_number"/>
<composite-element class="LineItem">
<property name="quantity"/>
<many-to-one name="product" column="product_id"/>
</composite-element>
</list>
</class>
<class name="Product" table="products">
<id name="id">
<generator class="native"/>
</id>
<property name="serialNumber"/>
</class>
</hibernate-mapping
>
customers, orders, line_items y products tienen los datos de cliente, orden, ítem de línea
de orden y producto respectivamente. Además line_items actúa como una tabla de asociación
enlazando órdenes con productos.
314
Mapeos misceláneos de ejemplo
create table customers (
id BIGINT not null generated by default as identity,
name VARCHAR(255),
primary key (id)
)
create table orders (
id BIGINT not null generated by default as identity,
customer_id BIGINT,
date TIMESTAMP,
primary key (id)
)
create table line_items (
line_number INTEGER not null,
order_id BIGINT not null,
product_id BIGINT,
quantity INTEGER,
primary key (order_id, line_number)
)
create table products (
id BIGINT not null generated by default as identity,
serialNumber VARCHAR(255),
primary key (id)
)
alter table orders
add constraint ordersFK0 foreign key (customer_id) references customers
alter table line_items
add constraint line_itemsFK0 foreign key (product_id) references products
alter table line_items
add constraint line_itemsFK1 foreign key (order_id) references orders
23.4. Mapeos misceláneos de ejemplo
These examples are available from the Hibernate test suite. You will find many other useful
example mappings there by searching in the test folder of the Hibernate distribution.
23.4.1. Asociación uno-a-uno "Tipificada"
<class name="Person">
315
Capítulo 23. Ejemplo: Varios ...
<id name="name"/>
<one-to-one name="address"
cascade="all">
<formula
>name</formula>
<formula
>'HOME'</formula>
</one-to-one>
<one-to-one name="mailingAddress"
cascade="all">
<formula
>name</formula>
<formula
>'MAILING'</formula>
</one-to-one>
</class>
<class name="Address" batch-size="2"
check="addressType in ('MAILING', 'HOME', 'BUSINESS')">
<composite-id>
<key-many-to-one name="person"
column="personName"/>
<key-property name="type"
column="addressType"/>
</composite-id>
<property name="street" type="text"/>
<property name="state"/>
<property name="zip"/>
</class
>
23.4.2. Ejemplo de clave compuesta
<class name="Customer">
<id name="customerId"
length="10">
<generator class="assigned"/>
</id>
<property name="name" not-null="true" length="100"/>
<property name="address" not-null="true" length="200"/>
316
Ejemplo de clave compuesta
<list name="orders"
inverse="true"
cascade="save-update">
<key column="customerId"/>
<index column="orderNumber"/>
<one-to-many class="Order"/>
</list>
</class>
<class name="Order" table="CustomerOrder" lazy="true">
<synchronize table="LineItem"/>
<synchronize table="Product"/>
<composite-id name="id"
class="Order$Id">
<key-property name="customerId" length="10"/>
<key-property name="orderNumber"/>
</composite-id>
<property name="orderDate"
type="calendar_date"
not-null="true"/>
<property name="total">
<formula>
( select sum(li.quantity*p.price)
from LineItem li, Product p
where li.productId = p.productId
and li.customerId = customerId
and li.orderNumber = orderNumber )
</formula>
</property>
<many-to-one name="customer"
column="customerId"
insert="false"
update="false"
not-null="true"/>
<bag name="lineItems"
fetch="join"
inverse="true"
cascade="save-update">
317
Capítulo 23. Ejemplo: Varios ...
<key>
<column name="customerId"/>
<column name="orderNumber"/>
</key>
<one-to-many class="LineItem"/>
</bag>
</class>
<class name="LineItem">
<composite-id name="id"
class="LineItem$Id">
<key-property name="customerId" length="10"/>
<key-property name="orderNumber"/>
<key-property name="productId" length="10"/>
</composite-id>
<property name="quantity"/>
<many-to-one name="order"
insert="false"
update="false"
not-null="true">
<column name="customerId"/>
<column name="orderNumber"/>
</many-to-one>
<many-to-one name="product"
insert="false"
update="false"
not-null="true"
column="productId"/>
</class>
<class name="Product">
<synchronize table="LineItem"/>
<id name="productId"
length="10">
<generator class="assigned"/>
</id>
318
Muchos-a-muchos con atributo de clave compuesta compartido
<property name="description"
not-null="true"
length="200"/>
<property name="price" length="3"/>
<property name="numberAvailable"/>
<property name="numberOrdered">
<formula>
( select sum(li.quantity)
from LineItem li
where li.productId = productId )
</formula>
</property>
</class
>
23.4.3. Muchos-a-muchos con atributo de clave compuesta
compartido
<class name="User" table="`User`">
<composite-id>
<key-property name="name"/>
<key-property name="org"/>
</composite-id>
<set name="groups" table="UserGroup">
<key>
<column name="userName"/>
<column name="org"/>
</key>
<many-to-many class="Group">
<column name="groupName"/>
<formula
>org</formula>
</many-to-many>
</set>
</class>
<class name="Group" table="`Group`">
<composite-id>
<key-property name="name"/>
<key-property name="org"/>
319
Capítulo 23. Ejemplo: Varios ...
</composite-id>
<property name="description"/>
<set name="users" table="UserGroup" inverse="true">
<key>
<column name="groupName"/>
<column name="org"/>
</key>
<many-to-many class="User">
<column name="userName"/>
<formula
>org</formula>
</many-to-many>
</set>
</class>
23.4.4. Discriminación basada en contenido
<class name="Person"
discriminator-value="P">
<id name="id"
column="person_id"
unsaved-value="0">
<generator class="native"/>
</id>
<discriminator
type="character">
<formula>
case
when title is not null then 'E'
when salesperson is not null then 'C'
else 'P'
end
</formula>
</discriminator>
<property name="name"
not-null="true"
length="80"/>
<property name="sex"
320
Asociaciones sobre claves alternativas
not-null="true"
update="false"/>
<component name="address">
<property name="address"/>
<property name="zip"/>
<property name="country"/>
</component>
<subclass name="Employee"
discriminator-value="E">
<property name="title"
length="20"/>
<property name="salary"/>
<many-to-one name="manager"/>
</subclass>
<subclass name="Customer"
discriminator-value="C">
<property name="comments"/>
<many-to-one name="salesperson"/>
</subclass>
</class
>
23.4.5. Asociaciones sobre claves alternativas
<class name="Person">
<id name="id">
<generator class="hilo"/>
</id>
<property name="name" length="100"/>
<one-to-one name="address"
property-ref="person"
cascade="all"
fetch="join"/>
<set name="accounts"
inverse="true">
321
Capítulo 23. Ejemplo: Varios ...
<key column="userId"
property-ref="userId"/>
<one-to-many class="Account"/>
</set>
<property name="userId" length="8"/>
</class>
<class name="Address">
<id name="id">
<generator class="hilo"/>
</id>
<property name="address" length="300"/>
<property name="zip" length="5"/>
<property name="country" length="25"/>
<many-to-one name="person" unique="true" not-null="true"/>
</class>
<class name="Account">
<id name="accountId" length="32">
<generator class="uuid.hex"/>
</id>
<many-to-one name="user"
column="userId"
property-ref="userId"/>
<property name="type" not-null="true"/>
</class
>
322
Mejores Prácticas
Write fine-grained classes and map them using <component>:
Usa una clase Dirección para encapsular calle, distrito, estado, código postal. Esto
alienta la reutilización de código y simplifica el refactoring.
Declare identifier properties on persistent classes:
Hibernate makes identifier properties optional. There are a range of reasons why you should
use them. We recommend that identifiers be 'synthetic', that is, generated with no business
meaning.
Identify natural keys:
Identifica las claves naturales de todas las entidades, y mapealas usando <natural-id>.
Implementa equals() y hashCode() para comparar las propiedades que componen la clave
natural.
Place each class mapping in its own file:
Do not use a single monolithic mapping document. Map com.eg.Foo in the file com/eg/
Foo.hbm.xml. This makes sense, particularly in a team environment.
Load mappings as resources:
Despliega los mapeos junto a las clases que mapean.
Consider externalizing query strings:
This is recommended if your queries call non-ANSI-standard SQL functions. Externalizing the
query strings to mapping files will make the application more portable.
Usa variables de ligado.
As in JDBC, always replace non-constant values by "?". Do not use string manipulation to
bind a non-constant value in a query. You should also consider using named parameters in
queries.
Do not manage your own JDBC connections:
Hibernate allows the application to manage JDBC connections, but his approach should be
considered a last-resort. If you cannot use the built-in connection providers, consider providing
your own implementation of org.hibernate.connection.ConnectionProvider.
Consider using a custom type:
Suppose you have a Java type from a library that needs to be persisted but does not
provide the accessors needed to map it as a component. You should consider implementing
org.hibernate.UserType. This approach frees the application code from implementing
transformations to/from a Hibernate type.
Use hand-coded JDBC in bottlenecks:
In performance-critical areas of the system, some kinds of operations might benefit from direct
JDBC. Do not assume, however, that JDBC is necessarily faster. Please wait until you know
323
Capítulo 24. Mejores Prácticas
something is a bottleneck. If you need to use direct JDBC, you can open a Hibernate Session
and usingfile:///usr/share/doc/HTML/en-US/index.html that JDBC connection. This way you
can still use the same transaction strategy and underlying connection provider.
Understand Session flushing:
Sometimes the Session synchronizes its persistent state with the database. Performance
will be affected if this process occurs too often. You can sometimes minimize unnecessary
flushing by disabling automatic flushing, or even by changing the order of queries and other
operations within a particular transaction.
In a three tiered architecture, consider using detached objects:
When using a servlet/session bean architecture, you can pass persistent objects loaded in
the session bean to and from the servlet/JSP layer. Use a new session to service each
request. Use Session.merge() or Session.saveOrUpdate() to synchronize objects with the
database.
In a two tiered architecture, consider using long persistence contexts:
Database Transactions have to be as short as possible for best scalability. However, it is
often necessary to implement long running application transactions, a single unit-of-work from
the point of view of a user. An application transaction might span several client request/
response cycles. It is common to use detached objects to implement application transactions.
An appropriate alternative in a two tiered architecture, is to maintain a single open persistence
contact session for the whole life cycle of the application transaction. Then simply disconnect
from the JDBC connection at the end of each request and reconnect at the beginning of
the subsequent request. Never share a single session across more than one application
transaction or you will be working with stale data.
Do not treat exceptions as recoverable:
This is more of a necessary practice than a "best" practice. When an exception occurs,
roll back the Transaction and close the Session. If you do not do this, Hibernate cannot
guarantee that in-memory state accurately represents the persistent state. For example, do
not use Session.load() to determine if an instance with the given identifier exists on the
database; use Session.get() or a query instead.
Prefer lazy fetching for associations:
Use eager fetching sparingly. Use proxies and lazy collections for most associations to classes
that are not likely to be completely held in the second-level cache. For associations to cached
classes, where there is an a extremely high probability of a cache hit, explicitly disable eager
fetching using lazy="false". When join fetching is appropriate to a particular use case, use
a query with a left join fetch.
Use the open session in view pattern, or a disciplined assembly phase to avoid problems with
unfetched data:
Hibernate frees the developer from writing tedious Data Transfer Objects (DTO). In a
traditional EJB architecture, DTOs serve dual purposes: first, they work around the problem
that entity beans are not serializable; second, they implicitly define an assembly phase where
all data to be used by the view is fetched and marshalled into the DTOs before returning control
324
to the presentation tier. Hibernate eliminates the first purpose. Unless you are prepared to
hold the persistence context (the session) open across the view rendering process, you will
still need an assembly phase. Think of your business methods as having a strict contract
with the presentation tier about what data is available in the detached objects. This is not a
limitation of Hibernate. It is a fundamental requirement of safe transactional data access.
Consider abstracting your business logic from Hibernate:
Hide Hibernate data-access code behind an interface. Combine the DAO and Thread Local
Session patterns. You can even have some classes persisted by handcoded JDBC associated
to Hibernate via a UserType. This advice is, however, intended for "sufficiently large"
applications. It is not appropriate for an application with five tables.
Do not use exotic association mappings:
Practical test cases for real many-to-many associations are rare. Most of the time you need
additional information stored in the "link table". In this case, it is much better to use two oneto-many associations to an intermediate link class. In fact, most associations are one-tomany and many-to-one. For this reason, you should proceed cautiously when using any other
association style.
Prefer bidirectional associations:
Las asociaciones unidireccionales son más difíciles de consultar. En una aplicación grande,
casi todas las asociaciones deben ser navegables en ambas direcciones en consultas.
325
326
Database Portability Considerations
25.1. Portability Basics
One of the selling points of Hibernate (and really Object/Relational Mapping as a whole) is the
notion of database portability. This could mean an internal IT user migrating from one database
vendor to another, or it could mean a framework or deployable application consuming Hibernate to
simultaneously target multiple database products by their users. Regardless of the exact scenario,
the basic idea is that you want Hibernate to help you run against any number of databases without
changes to your code, and ideally without any changes to the mapping metadata.
25.2. Dialect
The first line of portability for Hibernate is the dialect, which is a specialization of the
org.hibernate.dialect.Dialect contract. A dialect encapsulates all the differences in how
Hibernate must communicate with a particular database to accomplish some task like getting a
sequence value or structuring a SELECT query. Hibernate bundles a wide range of dialects for
many of the most popular databases. If you find that your particular database is not among them,
it is not terribly difficult to write your own.
25.3. Dialect resolution
Originally, Hibernate would always require that users specify which dialect to use. In the case of
users looking to simultaneously target multiple databases with their build that was problematic.
Generally this required their users to configure the Hibernate dialect or defining their own method
of setting that value.
Starting with version 3.2, Hibernate introduced the notion of automatically detecting the dialect to
use based on the java.sql.DatabaseMetaData obtained from a java.sql.Connection to that
database. This was much better, expect that this resolution was limited to databases Hibernate
know about ahead of time and was in no way configurable or overrideable.
Starting with version 3.3, Hibernate has a fare more powerful way to automatically determine
which dialect to should be used by relying on a series of delegates which implement the
org.hibernate.dialect.resolver.DialectResolver which defines only a single method:
public Dialect resolveDialect(DatabaseMetaData metaData) throws JDBCConnectionException
. The basic contract here is that if the resolver 'understands' the given database metadata then
it returns the corresponding Dialect; if not it returns null and the process continues to the next
resolver. The signature also identifies org.hibernate.exception.JDBCConnectionException
as possibly being thrown. A JDBCConnectionException here is interpreted to imply a "non
transient" (aka non-recoverable) connection problem and is used to indicate an immediate stop to
resolution attempts. All other exceptions result in a warning and continuing on to the next resolver.
327
Capítulo 25. Database Portabi...
The cool part about these resolvers is that users can also register their own custom resolvers
which will be processed ahead of the built-in Hibernate ones. This might be useful in a number
of different situations: it allows easy integration for auto-detection of dialects beyond those
shipped with HIbernate itself; it allows you to specify to use a custom dialect when a particular
database is recognized; etc. To register one or more resolvers, simply specify them (seperated
by commas, tabs or spaces) using the 'hibernate.dialect_resolvers' configuration setting (see the
DIALECT_RESOLVERS constant on org.hibernate.cfg.Environment).
25.4. Identifier generation
When considering portability between databases, another important decision is selecting the
identifier generation stratagy you want to use. Originally Hibernate provided the native generator
for this purpose, which was intended to select between a sequence, identity, or table strategy
depending on the capability of the underlying database. However, an insidious implication of this
approach comes about when targtetting some databases which support identity generation and
some which do not. identity generation relies on the SQL definition of an IDENTITY (or autoincrement) column to manage the identifier value; it is what is known as a post-insert generation
strategy becauase the insert must actually happen before we can know the identifier value.
Because Hibernate relies on this identifier value to uniquely reference entities within a persistence
context it must then issue the insert immediately when the users requests the entitiy be associated
with the session (like via save() e.g.) regardless of current transactional semantics.
Nota
Hibernate was changed slightly once the implication of this was better understood
so that the insert is delayed in cases where that is feasible.
The underlying issue is that the actual semanctics of the application itself changes in these cases.
Starting with version 3.2.3, Hibernate comes with a set of enhanced [http://in.relation.to/2082.lace]
identifier generators targetting portability in a much different way.
Nota
There are specifically 2 bundled enhancedgenerators:
• org.hibernate.id.enhanced.SequenceStyleGenerator
• org.hibernate.id.enhanced.TableGenerator
The idea behind
the identifer value
these generators is to port the actual semantics of
generation to the different databases. For example, the
org.hibernate.id.enhanced.SequenceStyleGenerator mimics the behavior of a sequence on
databases which do not support sequences by using a table.
328
Database functions
25.5. Database functions
Aviso
This is an area in Hibernate in need of improvement. In terms of portability
concerns, this function handling currently works pretty well from HQL; however, it
is quite lacking in all other aspects.
SQL functions can be referenced in many ways by users. However, not all databases support the
same set of functions. Hibernate, provides a means of mapping a logical function name to a a
delegate which knows how to render that particular function, perhaps even using a totally different
physical function call.
Importante
Technically
this
function
registration
is
handled
through
the
org.hibernate.dialect.function.SQLFunctionRegistry class which is
intended to allow users to provide custom function definitions without having to
provide a custom dialect. This specific behavior is not fully completed as of yet.
It is sort of implemented such that users can programatically register functions with
the org.hibernate.cfg.Configuration and those functions will be recognized
for HQL.
25.6. Type mappings
This section scheduled for completion at a later date...
329
330
References
[PoEAA] Patterns of Enterprise Application Architecture. 0-321-12742-0. por Martin Fowler.
Copyright © 2003 Pearson Education, Inc.. Addison-Wesley Publishing Company.
[JPwH] Java Persistence with Hibernate. Second Edition of Hibernate in Action. 1-932394-88-5.
http://www.manning.com/bauer2 . por Christian Bauer y Gavin King. Copyright © 2007
Manning Publications Co.. Manning Publications Co..
331
332
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising