Dahu: Commodity Switches for Direct Connect Data Center Networks

Dahu: Commodity Switches for Direct Connect Data Center Networks
Dahu: Commodity Switches for Direct Connect Data
Center Networks
Sivasankar Radhakrishnan∗ , Malveeka Tewari∗ , Rishi Kapoor∗ ,
George Porter∗ , Amin Vahdat†∗
∗
†
University of California, San Diego
Google Inc.
{sivasankar, malveeka, rkapoor, gmporter, vahdat}@cs.ucsd.edu
ABSTRACT
in switches, NICs, and by the end-host application logic. This increases the burden on the developer, and creates a tight coupling
between applications and the network.
On the other hand, scale-out data centers have adopted indirect
network topologies, such as folded Clos and Fat-trees, in which
servers are restricted to the edges of the network fabric. There are
dedicated switches that are not connected to any servers, but simply route traffic within the network fabric. Data centers have a much
looser coupling between applications and network topology, placing the burden of path selection on network switches themselves.
Given the limited resources and memory available in commodity
switches, data center networks have historically relied on relatively
simple mechanisms for choosing paths, e.g., Equal-Cost Multi-Path
Routing (ECMP).
ECMP relies on static hashing of flows across a fixed set of
shortest paths to a destination. For hierarchical topologies like Fattrees [2], shortest path routing has been largely sufficient when
there are no failures. However, recently proposed direct network
topologies like HyperX, BCube, and Flattened Butterfly [1, 17, 20],
which employ paths of different lengths, have not seen adoption in
data centers due to the limitations imposed by commodity data center switches and shortest path routing. ECMP leaves lot of network
capacity untapped when there is localized congestion or hot-spots
as it ignores uncongested longer paths while forwarding. Further,
even in hierarchical networks, ECMP makes it hard to route efficiently under failures, when the network is no longer completely
symmetric, and some non-shortest paths can be utilized to improve
network utilization.
Commodity switches and shortest path routing have led to hierarchical networks in data centers. These restrictions on topology and routing also mean that higher level adaptive protocols like
MPTCP [26] are unable to take advantage of the full capacity of
direct networks because all paths are not exposed to them through
routing/forwarding tables.
The goal of this paper is to bridge the benefits of direct connect networks—higher capacity with fewer switches (lower cost)
for common communication patterns—with the lower complexity,
commoditization, and decoupled application logic of data center
networks. To that aim, we present Dahu, a lightweight switch
mechanism that enables us to leverage non-shortest paths with
loop-free forwarding, while operating locally, with small switch
state requirements and minimal additional latency. Dahu seeks to
obtain the benefits of non-shortest path routing without coupling
the application to the underlying topology. Dahu supports dynamic
flow-level hashing across links, resulting in higher network utilization. Dahu addresses the local hash imbalance that occurs with
ECMP using only local information in the switches.
Solving “Big Data” problems requires bridging massive quantities
of compute, memory, and storage, which requires a very high bandwidth network. Recently proposed direct connect networks like HyperX [1] and Flattened Butterfly [20] offer large capacity through
paths of varying lengths between servers, and are highly cost effective for common data center workloads. However data center
deployments are constrained to multi-rooted tree topologies like
Fat-tree [2] and VL2 [16] due to shortest path routing and the limitations of commodity data center switch silicon.
In this work we present Dahu1 , simple enhancements to commodity Ethernet switches to support direct connect networks in
data centers. Dahu avoids congestion hot-spots by dynamically
spreading traffic uniformly across links, and forwarding traffic over
non-minimal paths where possible. By performing load balancing
primarily using local information, Dahu can act more quickly than
centralized approaches, and responds to failure gracefully. Our
evaluation shows that Dahu delivers up to 500% improvement in
throughput over ECMP in large scale HyperX networks with over
130,000 servers, and up to 50% higher throughput in an 8,192
server Fat-tree network.
Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network Communications
General Terms
Design; Performance
Keywords
Data center network; Direct connect network
1.
INTRODUCTION
Historically, high-speed networks have fallen into two main
design spaces. High performance computing (HPC) and supercomputing networks have typically adopted direct network topologies,
configured so that every switch has some servers connected to it.
The remaining ports in each switch are used to connect to other
switches in the topology (eg. mesh, torus, hypercube). This type
of network is highly resource efficient, and offers high capacity
through the presence of many variable-length paths between a
source and destination. However, the choice of which path to forward traffic over is ultimately controlled by proprietary protocols
1
Dahu is a legendary creature well known in France with legs of
differing lengths.
978-1-4799-1640-5/13/$31.00 ©2013 IEEE
59
Dahu makes the following contributions: (1) Novel hardware
primitives to efficiently utilize non-minimal paths in different
topologies with a modest increase in switch state, while preventing
persistent forwarding loops, (2) A virtual port abstraction that
enables dynamic multipath traffic engineering, (3) A decentralized load balancing algorithm and heuristic, (4) Minimal hardware
modifications for easy deployability, and (5) Large scale simulations on networks with over 130K servers to evaluate Dahu’s
performance. Our evaluation shows that Dahu delivers up to 50%
higher throughput relative to ECMP in an 8,192 server Fat-tree
network and up to 500% throughput improvement in large HyperX
networks with over 130,000 servers. We are encouraged by these
results, and believe that they are a concrete step toward our goal of
combining the benefits of HPC and data center network topologies.
2.
with a resulting total bandwidth of 1Gbps. However, by sending
some traffic flows over non-shortest path links, as shown in (b), the
total throughput can be increased to 3Gbps.
H1
H3
H2
S1
S4
S2
S3
H1
H6
S1
S4
S2
S3
(a) Throughput = 1Gbps
MOTIVATION AND REQUIREMENTS
H6
H5
H5
H4
H4
(b) Throughput = 3Gbps
Figure 1: (a) Shortest, and (b) Non-shortest path routing
Fully-provisioned multi-rooted tree topologies are ideal for targeting worst case communication patterns—where all hosts in the
network simultaneously try to communicate at access link speeds.
However, common communication patterns have only few network
hot-spots and overprovisioning the topology for worst-case traffic results in high CAPEX. Oversubscribing the multi-rooted tree
topology would reduce CAPEX, but network performance would
also suffer in the common case since the oversubscribed layers of
the tree have even lower capacity to tolerate hot-spots.
Direct networks provide an interesting point in the design space
of network topologies, since they provide good performance for
most realistic traffic patterns, at much lower cost than fullyprovisioned Clos networks [1, pg.8-9][20, pg.6-8]. There are two
defining characteristics of direct networks which distinguish them
from tree based topologies. (1) Hosts are embedded throughout the
structure of the network. Each switch has some hosts connected to
it. (2) There are many network paths between any pair of servers—
but they are of varying length. These properties of direct networks
allow more flexible use of overall network capacity, with slack
bandwidth in one portion of the network available to be leveraged
by other congested parts of the network by forwarding traffic along
longer less congested paths. In a sense the oversubscription is
“spread throughout the network” rather than at specific stages or
points in the topology.
Direct networks are very popular in HPC—Titan, the world’s
fastest supercomputer, uses a 3D torus, a direct connect topology [29]. However, data centers have been largely constrained to
multi-rooted trees due to commodity switch silicon and shortest
path based routing protocols. Direct networks have significant
potential in meeting the bandwidth requirements for data centers. Dahu presents simple enhancements to commodity Ethernet
switches (both hardware and software) to support direct connect
topologies in data centers.
2.1
1G link
H3
H2
(2) Cost-effective commodity switch hardware: Direct networks in supercomputers rely on custom designed silicon that is
expensive and topology dependent. Routing is typically integrated
with proprietary protocols in NICs and switches. Data center networks on the other hand are built using low cost commodity offthe-shelf switches [2, 16]. So commodity Ethernet switch silicon
must be enhanced to provide the necessary features to support direct connect topologies in the data center while keeping costs low.
(3) Dynamic traffic management: Although shortest path
routing is the main roadblock to deploying direct networks, the
static nature of ECMP style forwarding in switches presents a
challenge—even for indirect networks. Hashing flows on to paths,
oblivious to current link demands or flow rates can result in imbalance, significantly reducing achieved throughput compared to
innate network capacity [3].
There have been several recent proposals for dynamic traffic engineering in data centers. Centralized approaches like Hedera [3]
and MicroTE [7] advocate a central fabric scheduler that periodically measures traffic demands, and computes good paths for bandwidth intensive flows to maximize bandwidth utilization. However
they have long control loops that only react to changes in traffic at
timescales on the order of hundreds of milliseconds at best, i.e. they
are only effective for long lived flows. Further, scaling such centralized approaches to very large numbers of flows in large scale
data centers presents challenges in terms of switch state requirements. MPTCP [26] is a transport layer solution that splits flows
into subflows that take different paths through the network, and
modulates the rates of subflows based on congestion. However, in
direct networks, MPTCP requires many subflows to probe the different paths, making it impractical for short flows. We illustrate this
in Section 6.4.
(4) Decouple applications and routing: Direct connect networks in supercomputers tightly couple application development
and routing, which requires application developers to be concerned
with workloads, routing for certain expected application behaviors,
etc. Data center workloads are much more dynamic, and developers often cannot predict the composed behavior of many co-located
applications. Handling routing functionality entirely in the network
significantly simplifies application development as is done in data
centers today.
Challenges
In order to deploy direct connect networks in data centers, we
need to address the following challenges:
(1) Non-shortest path routing: Current data center switches
and routing protocols only support routing over shortest paths. Direct networks, offer large path diversity between servers, but the
paths are of varying lengths, typically with only a small number
of shortest paths. Shortest path routing artificially constrains bandwidth utilization during periods of localized congestion, and traffic
to a destination could potentially achieve higher throughput, if alternate longer paths are also used. Consider a simple mesh network
of four switches, as shown in Figure 1. In (a), the shortest path connecting the sources and destinations is congested, by a factor of 3
2.2
Dahu Requirements and Design Decisions
(1) On-demand non-shortest path routing: Dahu should only
enable non-minimal paths on demand when shortest paths do not
have sufficient capacity. Using shorter paths by default results in
fewer switch hops and likely lower end-to-end latency for traffic.
60
of virtual ports. Multiple destination prefixes in the routing table
may point to the same port group. For the rest of this paper, the
term member port of a port group is used to refer to a physical port
which has some virtual port in the port group mapped to it.
The virtual port to egress port mapping provides an abstraction
for dynamically migrating traffic from one egress port to another
within any port group. Each virtual port is mapped to exactly one
egress port at any time, but this mapping can be changed dynamically. A key advantage of the indirection layer is that when a virtual
port is remapped, only the flows which hash to that virtual port are
migrated to other egress ports. Other flows remain on their existing
paths and their packets don’t get re-ordered. All flows that map to
a virtual port can only be remapped as a group to another egress
port. Thus, virtual ports dictate the granularity of traffic engineering, with more virtual ports providing finer grained control over
traffic. We propose that each port group have a relatively large number of virtual ports—on the order of 1,000 for high-radix switches
with 64-128 physical ports. That means each virtual port is responsible for an average of 0.1% or less of the total traffic to the port
group. If required, the routing table can be augmented with more
fine grained forwarding entries.
Each port group keeps a set of counters corresponding to each
member port indicating how much traffic the port group has forwarded to that port. While having a traffic counter for each virtual port provides fine grained state, it comes at a higher cost for
two reasons: (1) The memory required to store the counters is
fairly large. For example, a switch with 64 port groups, 1,024 virtual ports per port group, and 64 bit traffic counters needs 512KB
of on-chip memory just for these port group counters. (2) Reading all 65,536 counters from hardware to switch software would
take a long time, increasing the reaction time of traffic engineering
schemes that use all these counters for computations. Dahu uses
the port group mechanism and associated counters to implement a
novel load balancing scheme described in Section 4.
Dahu must achieve this while ensuring there are no persistent forwarding loops.
(2) Dynamic traffic engineering: Dahu chooses to load balance
traffic primarily using local decisions in each switch which helps
react quickly to changing traffic demands and temporary hot-spots.
In addition, it inter-operates with other routing and traffic engineering schemes.
(3) Readily deployable: Any proposed changes to switch hardware should be simple enough to be realizable with current technology, with minimal required switch state. Switches should still
make flow-level forwarding decisions—i.e., packets of a particular
flow should follow the same path through the network to the extent possible. This avoids excessive packet reordering, which can
have undesirable consequences for TCP. Moving flows to alternate
paths periodically at coarse time scales (e.g., of several RTTs) is
acceptable.
(4) Generic/Topology Independent: The switch hardware
should be topology independent and deployable in a variety of
networks including indirect networks. Non-shortest path routing
is also beneficial in the case of Clos topologies which are left
asymmetric and imbalanced under failures.
(5) Fault tolerant: Failures must be handled gracefully, and rerouting of flows upon failure should only affect a small subset of
flows, so that the effect of failures is proportional to the region of
the network that has failed. To prevent traffic herds, Dahu should
not move many flows in the network around when a single path fails
or is congested. Rather, it should be possible to make finer-grained
decisions and migrate a smaller subset of flows to alternate paths.
Dahu achieves these targets through a combination of switch
hardware and software enhancements, which we describe in Sections 3 and 4 respectively.
3.
SWITCH HARDWARE PRIMITIVES
Dahu proposes new hardware primitives which enable better
ways of utilizing the path diversity in direct connect topologies,
and addresses some of the limitations of ECMP.
3.1
3.2
Allowed Port Bitmaps
Port groups enable the use of multiple egress port choices for
any destination prefix. However, it is sometimes useful to have
many egress ports in a port group, but use only a subset of them
for forwarding traffic to a particular prefix. One reason to do this
is to avoid forwarding on failed egress ports. Consider two prefixes in the routing table F1 and F2 both of which point to port
group G1 which has member egress ports P1 , P2 , P3 , P4 . Suppose
a link fails and egress port P4 cannot be used to reach prefix F1 ,
whereas all member ports can still be used to reach F2 . Now, one
option is to create another port group G2 with member ports P1 , P2
and P3 only, for prefix F1 . This can quickly result in the creation
of many port groups for a large network which might experience
many failures at once. We propose a more scalable approach where
we continue to use the existing port group, but restrict the subset of
member ports which are used for forwarding traffic to a particular
destination.
For each destination prefix in the routing table, we store an allowed port bitmap, which indicates the set of egress ports that are
allowed to be used to reach the prefix. The bitmap is as wide as
the number of egress ports, and only the bits corresponding to the
allowed egress ports for the prefix are set. One way to restrict forwarding to the allowed egress ports is to compute a hash for the
packet and check if the corresponding port group virtual port maps
to an allowed egress port. If not, we compute another hash for the
packet and repeat until we find an allowed egress port.
To pick an allowed port efficiently, we propose a parallel scheme
where the switch computes 16 different hash functions for the
Port Groups With Virtual Ports
ECMP spreads traffic over multiple equal-cost paths to a destination. Internally, the switch must store state to track which set of
ports can be used to reach the destination prefix. A common mechanism is storing a list of egress ports in the routing table, represented
as a bitmap. Dahu augments this with a layer of indirection: each
router prefix points to a set of virtual ports, and each virtual port is
mapped to a physical port. In fact, the number of virtual ports can
be much larger than the number of physical ports. We define a port
group as a collection of virtual ports mapped to their corresponding
physical ports (a many-to-one mapping). The routing table is modified to allow a pointer to a port group for any destination prefix
instead of a physical egress port. When multiple egress choices are
available for a particular destination prefix, the routing table entry
points to a port group.
When the switch receives a packet, it looks up the port group
for the destination prefix from the routing table. It computes a hash
based on the packet headers, similar to ECMP, and uses this to index into the port group to choose a virtual port. Finally, it forwards
the packet on the egress port to which the virtual port is mapped.
This port group mechanism adds one level of indirection in the
switch output port lookup pipeline, which we use to achieve better load balancing, and support for non-shortest network paths.
In hardware, a port group is simply an array of integers. The
integer at index i is the egress port number to which virtual port i
in that port group is mapped. Each port group has a fixed number
61
Routing Table
1A. Prefix
Lookup
Prefix
Port Group ID
Prefix Bitmap
192.7.2.X
11
001100100100
10.2.1.X
4
110110010010
6. Forward on
Egress Port P
P
K:1
Mux
DST: 10.2.1.5
Packet Header
H1
Port
Group 4
2
5. Find Egress Port
with Highest Priority
2. Egress
Port Lookup
<<
<<
CMP
AND
11
11
i
1
7
H2
Priority
Encoder <<
<<
CMP
AND
OR
5
Hk
7
12
1B. Hash
Pkt Header i
2
10
<<
CMP
AND
3. Find Egress
Port Bitmap
<<
4. Find Allowed
Egress Ports
<<
Shift left ‘1’ by i bits
<<
Shift left input
i by j bits
j
i
k
CMP
j
j = 0 if i = 0
j = 1 otherwise
Table Lookup
Data Operations
Figure 2: Datapath pipeline for packet forwarding in Dahu.
When a switch receives a packet, if the derouting count in the
packet header has reached a maximum threshold, then the switch
forwards the packet along shortest paths only. This is enforced using the Bshort allowed port bitmap for the destination prefix described earlier. The derouting count is also used while computing
the packet hash. If a packet loops through the network and revisits a switch, its derouting count will have changed. The resulting
change to the hash value will likely forward the packet along a different path to the destination. Each switch also ensures that a packet
is not forwarded back on the ingress port that it arrived on. Further,
in practice, only a few deroutings are required to achieve benefits
from non-minimal routing and the derouting count threshold for
the network can be configured by the administrator as appropriate.
These factors ensure that any loops that occur due to non-minimal
routing are infrequent and don’t hinder performance.
As with current distributed routing protocols, transient loops
may occur in certain failure scenarios. Dahu uses standard IP TTL
defense mechanisms to ensure that packets eventually get dropped
if there are loops during routing convergence.
packet in parallel. The first valid allowed egress port among the
hashed choices is used for forwarding. In case none of the 16 hash
functions picked an allowed egress port, we generate another set of
16 hash values for the packet and retry. This is repeated some fixed
number of times (say 2) to bound output port lookup latency. If an
allowed egress port is still not found, we just fall back to randomly
picking one of the allowed egress ports, i.e. we ignore the port
group mechanism for this packet and just hash it on to one of the
allowed egress ports directly. We explore other uses of the allowed
port bitmap in Section 4.2.1.
Figure 2 illustrates the egress port lookup pipeline incorporating
both port groups and allowed egress port mechanisms. The switch
supports a fixed number of allowed port bitmaps for each prefix
and has a selector field to indicate which bitmap should be used.
Dahu uses an allow all bitmap which is a hardwired default bitmap
Ball where all bits are set, i.e. all member ports of the port group
are allowed. The shortest path bitmap Bshort is an always available bitmap that corresponds to the set of shortest path egress ports
to reach the particular destination prefix. Unlike the Ball bitmap,
Bshort is not in-built and has to be updated by the switch control
logic if port group forwarding is used for the prefix. Its use is described in Sections 3.3 and 4.2.1. There can be other bitmaps as
well for further restricting the set of egress ports for a destination
prefix based on other constraints.
3.3
4.
SWITCH SOFTWARE
Now we look at how Dahu’s hardware primitives can more efficiently utilize the network’s available capacity. We describe how
to leverage non-minimal paths, and then look at dynamic traffic
engineering to address local hash imbalances in switches. These
techniques rely on Dahu’s hardware primitives, but are independent
and may be deployed separately. We begin with some background
on HyperX topology.
Eliminating Forwarding Loops
Dahu uses non-shortest path forwarding to avoid congestion hotspots when possible. The term derouting is used to refer to a nonminimal forwarding choice by a switch. The number of times a particular packet has been derouted (routed on an egress port not along
shortest paths) is referred to as the derouting count. An immediate
concern with derouting is that it can result in forwarding loops. To
prevent persistent forwarding loops, Dahu augments network packets with a 4-bit field in the IP header to store the derouting count.
Switches increment this field only if they choose a non-minimal
route for the packet. Servers set this field to zero when they transmit traffic. In practice, the derouting count need not be a new header
field, e.g., part of the TTL field or an IP option may be used instead.
4.1
Background on HyperX Topology
We use the HyperX topology, a direct connect network for detailing how Dahu’s hardware primitives are used, and for evaluating the techniques. This section summarizes the HyperX topology
and related terminology [1].
HyperX is an L-dimensional direct network with many paths of
varying length between any pair of servers. It can be viewed as
a generalization of the HyperCube topology. In an L-dimensional
62
shortest path distance from Ss to Sd . In Figure 3, the egress
port on switch (0, 0) along path 2 is in this set.
HyperCube, each switch’s position can be denoted by a vector of
L coordinates, each coordinate being 0 or 1. Any two switches that
differ in their coordinate vectors in exactly one dimension are connected by a bidirectional link. Each switch has some fixed number
T of servers attached to it. Eg., a regular cube is a 3-dimensional
HyperCube with 8 switches and 12 edges.
3. All the remaining ports that are connected to other switches.
The egress ports which connect to neighbors along dimensions already aligned with Sd are members of this class. Each
of these neighbors is one additional hop away from Sd as
compared to the shortest path distance from Ss to Sd . In Figure 3, the egress ports on switch (0,0) along paths 3 and 4 are
in this set.
1 Shortest path
Dimension 2
0,2
2 3 4 Non-shortest paths
(deroute count = 1)
4
Dahu’s port group mechanism and allowed port bitmaps enable
switches to efficiently route along non-minimal paths. The number
of shortest and non-minimal path egress ports for a single destination prefix is not limited artificially, unlike n-way ECMP. We now
look in more detail at how to enable non-minimal routing in direct
connect networks.
2,2
1,2
3
0,1
0,0
Ingress Switch
2,1
1,1
1,0
2
1
2,0
4.2.1
Dimension 1
Egress Switch
Figure 3: HyperX topology (L=2, S=3). Only switches and the
links between them are shown for clarity. The T servers connected
to each switch are not shown in the figure. The position of the
switches is shown on a 2-dimensional lattice. The paths between
switches (0, 0) and (2, 0) with at most 1 derouting are shown.
Ingress switch (0, 0) and the egress switch (2, 0) are offset along
dimension 1 and aligned along dimension 2.
A regular (L, S, T ) HyperX, is a generalization of the HyperCube where the switch coordinates in each dimension are integers
in the range [0, S-1] rather than just 0 or 1. Again, any two switches
whose coordinate vectors differ in only one dimension are directly
connected. Figure 3 shows an example of a 2-dimensional HyperX
network with the switches overlaid on a 2-D lattice. An offset dimension for a pair of switches is one in which their coordinates
differ. Similarly, an aligned dimension for a pair of switches is one
in which their coordinates are the same. Some examples of HyperX topologies are: (1) A HyperCube is a regular HyperX with
S=2, and (2) An L=1 HyperX is just a fully connected graph.
4.2
Space saving techniques
A strawman solution for non-minimal routing is to create one
port group for each destination prefix. For each prefix’s port group,
we make all appropriate physical ports (both along shortest paths
and non-minimal paths to the destination) members of the port
group. When a switch receives a packet, it looks up the port group
for the destination prefix, and hashes the packet onto one of the
virtual ports in the port group. Use of some of the corresponding
egress ports results in non-minimal forwarding.
One characteristic of the HyperX topology is that in any source
switch, the set of shortest path egress ports is different for each
destination switch. These ports must be stored separately for each
destination switch, thereby requiring a separate destination prefix
and a separate port group in case of the strawman solution. For a
large HyperX network, the corresponding switch memory overhead
would be impractical. For example, a network with 2,048 128-port
switches, and 1,024 virtual ports per port group would need 2 MB
of on-chip SRAM just to store the port group mapping (excluding
counters). Thus, we seek to aggregate more prefixes to share port
groups. We now describe some techniques to use a small number
of port groups to enable the use of non-minimal paths, while using
only shortest paths whenever possible.
In a HyperX switch, any egress port that is connected to another
switch can be used to reach any destination. However not all egress
ports would result in paths of equal length. Let us assume that we
only use a single port group P Gall , say with 1,024 virtual ports.
All physical ports in the switch connected to other switches are
members of the port group P Gall . If we simply used this port group
for all prefixes in the routing table, that would enable non-minimal
forwarding for all destinations.
Dahu uses the allowed port bitmap hardware primitive to restrict
forwarding to shorter paths when possible. If Dahu determines that
only shortest paths need to be used for a particular destination prefix, the Bshort allowed port bitmap for the prefix is used for forwarding, even when the derouting count has not reached the maximum threshold. Otherwise, the allowed port bitmap is expanded
to also include egress ports that would result in one extra hop being used and so on for longer paths. For HyperX, there are only
three classes of egress port choices by distance to destination as
described earlier; in our basic non-minimal routing scheme, we either restrict forwarding to the shortest path ports or allow all paths
to the destination (all member ports of P Gall ).
We now look at the question of how Dahu determines when additional longer paths have to be enabled for a destination prefix to
meet traffic demands. Switches already have port counters for the
total traffic transmitted by each physical port. Periodically (e.g.,
Non-Minimal Routing
As described earlier, ECMP constrains traffic routes to the set
of shortest paths between any pair of switches. While this keeps
path lengths low, it can also impose artificial constraints on available bandwidth. Direct connect networks like HyperX have many
paths of differing length between any pair of nodes. In a HyperX
switch Ss , there are three classes of egress port choices to reach
any destination switch Sd .
1. Set of shortest path egress ports to reach Sd . The size of the
set is equal to the number of offset dimensions, i.e. dimensions in which the switch coordinates of Ss and Sd differ. In
Figure 3, the egress port on switch (0, 0) along path 1 is a
short path egress port.
2. Set of egress ports connected to neighbors along offset dimensions excluding the shortest path egress ports. Each of
these neighbors is at the same distance from Sd , equal to the
63
ports between physical ports, thus getting fine grained control over
traffic. Intuitively, in any port group, the number of virtual ports
that map to any member port is a measure of the fraction of traffic
from the port group that gets forwarded through that member port.
We now describe the constraints and assumptions under which we
load balance traffic at each switch in the network.
1.  Compute aggregate utilization (Agg) and capacity
(Cap) for all egress ports in the Bshort bitmap
2.  If Agg / Cap < Threshold,
Set allowed ports to Bshort (there is sufficient
capacity along shortest paths for this prefix)
Else, set allowed ports to Ball.
4.3.1
Figure 4: Restricting non-minimal forwarding
every 10ms), the switch software reads all egress port counters, iterates over each destination prefix, and performs the steps shown in
Figure 4 to enable non-minimal paths based on current utilization.
It is straightforward to extend this technique to progressively enable paths of increasing lengths instead of all non-minimal paths at
once. In summary, we have a complete mechanism for forwarding
traffic along shorter paths whenever possible, using just a single
port group and enabling non-minimal routing whenever required
for capacity reasons.
4.2.2
Constrained non-minimal routing
As described earlier, in a HyperX network, each switch has three
classes of egress port choices to reach any destination. Based on
this, Dahu defines a constrained routing scheme as follows—a
switch can forward a packet only to neighbors along offset dimensions. If a packet is allowed to use non-minimal routing at a switch,
it can only be derouted along already offset dimensions. Once a
dimension is aligned, we do not further deroute the packet along
that dimension. After each forwarding choice along the path taken
by a packet, it either moves closer to the destination or stays at
the same distance from the destination. We call this scheme Dahu
constrained routing. For this technique, we create one port group
for each possible set of dimensions in which the switch is offset
from the destination switch. This uses 2L port groups where L, the
number of dimensions is usually small, e.g., 3–5. This allows migrating groups of flows between physical ports at an even smaller
granularity than with a single port group.
This technique is largely inspired by Dimensionally Adaptive,
Load balanced (DAL) routing [1]. However, there are some key
differences. DAL uses per-packet load balancing, whereas Dahu
uses flow level hashing to reduce TCP reordering. DAL allows at
most one derouting in each offset dimension, but Dahu allows any
number of deroutings along offset dimensions until the derouting
threshold is reached.
4.3
Design Considerations
Periodically, each switch uses local information to rebalance
traffic. This allows the switch to react quickly to changes in traffic
demand and rebalance port groups more frequently than a centralized approach or one that requires information from peers. Note
that this design decision is not fundamental–certainly virtual port
mappings can be updated through other approaches. For different
topologies, more advanced schemes may be required to achieve
global optimality such as through centralized schemes.
We assume that each physical port might also have some traffic that is not re-routable. So Dahu’s local load balancing scheme
is limited to moving the remainder of traffic within port groups.
Dahu’s techniques can inter-operate with other traffic engineering
approaches. For example, a centralized controller can make globally optimal decisions for placing elephant flows on efficient paths
in the network [3], or higher layer adaptive schemes like MPTCP
can direct more traffic onto uncongested paths. Dahu’s heuristic
corrects local hashing inefficiencies and can make quick local decisions within a few milliseconds to avoid temporary congestion.
This can be complemented by a centralized or alternate approach
that achieves global optimality over longer time scales of few hundreds of milliseconds.
4.3.2
Control Loop Overview
Every Dahu switch periodically rebalances the aggregate traffic
on its port groups once each epoch (e.g., every 10ms). At the end of
each rebalancing epoch, the switch performs the following 3 step
process:
Step 1: Measure current load: The switch collects the following local information from hardware counters: (1a) for each port
group, the amount of traffic that the port group sends to each of the
member ports, and (1b) for each egress port, the aggregate bandwidth used on the port.
Step 2: Compute balanced allocation: The switch computes a
balanced traffic allocation for port groups, i.e. the amount of traffic each port group should send in a balanced setup to each of its
member ports. We describe two ways of computing this in Sections 4.4 and 4.5.
Step 3: Remap port groups: The switch then determines which
virtual ports in each port group must be remapped to other member
ports in order to achieve a balanced traffic allocation, and changes
the mapping accordingly. We have the current port group traffic matrix (measured) and the computed balanced traffic allocation matrix
for each port group to it member egress ports.
As mentioned in Section 3.1, a switch only maintains counters
for the total traffic from a port group to each of its member ports.
We treat all virtual ports that map to a particular member port as
equals and use port group counters to compute the average traffic
that each of the virtual ports is responsible for. Then, we remap an
appropriate number of virtual ports to other member ports depending on the intended traffic allocation matrix using a first-fit heuristic. In general, this remapping problem is similar to bin packing.
Traffic Load Balancing
Per-packet uniform distribution of traffic across available paths
from a source to destination can theoretically lead to very good network utilization in some symmetric topologies such as Fat-trees.
But this is not used in practice due to the effects of packet reordering and faults on the transport protocol. ECMP tries to spread traffic
uniformly across shortest length paths at the flow level instead. But
due to its static nature, there can be local hash imbalances. Dahu
presents a simple load balancing scheme using local information at
each switch to spread traffic more uniformly.
Each Dahu switch performs load balancing with the objective
of balancing or equalizing the aggregate load on each egress port.
This also balances bandwidth headroom on each egress port, so
TCP flow rates can grow. This simplifies our design, and enables
us to avoid more complex demand estimation approaches. When
multiple egress port choices are available, we can remap virtual
4.4
Load Balancing Algorithm
We now describe an algorithm for computing a balanced traffic allocation on egress ports. Based on the measured traffic, the
64
Port
0
1
0
4
1
--
BG
Agg
PG
Port
2
3
1
2
--
0
1
--
2
1
2
2
2
0
BG
6
4
4
2
Agg
Initial Port Group (PG)
Utilizations
PG
0
1
2⅔ 1⅔
--
1
2
2
4⅔ 4⅔
Port
2
3
2⅔
--
0
--
2
1
PG
2
0
BG
4⅔
2
Agg
Step 1:
Balancing Port Group 0
0
1
2⅔ 1⅔
--
0
2
2
4⅔ 3⅔
Port
2
3
2⅔
--
0
--
3
1
PG
2
0
BG
4⅔
3
Agg
Step 2:
Balancing Port Group 1
0
1
2⅓ 2⅓
--
0
2
2
4⅓ 4⅓
2
3
2⅓
--
--
3
2
0
4⅓
3
Step 3:
Balancing Port Group 0 (again)
Figure 5: Port group rebalancing algorithm. Egress ports that are not a member of the port group are indicated by ‘—’. The last row of the
matrix represents the aggregate traffic (Agg) on the member ports (from port counters). The row indicating background traffic (BG) is added
for clarity and is not directly measured by Dahu.
switch generates a port group traffic matrix where the rows represent port groups and columns represent egress ports in the switch
(see Figure 5). The elements in a row represent egress ports and
the amount of traffic (bandwidth) that the port group is currently
forwarding to those egress ports. If an egress port is not a member
of the port group corresponding to the matrix row, then the respective matrix element is zeroed. Additionally, the Aggregate utilization row of elements stores the total bandwidth utilization on each
egress port. This is the bandwidth based on the egress port counter,
and accounts for traffic forwarded by any of the port groups, as well
as background traffic on the port that is not re-routable using port
groups, such as elephant flows pinned to the path by Hedera.
We first pick a port group in the matrix and try to balance the aggregate traffic for each of the member ports by moving traffic from
this port group to different member ports where possible. To do
this, Dahu computes the average aggregate utilization of all member ports of the port group. Then, it reassigns the traffic for that
port group to equalize the aggregate traffic for the member ports to
the extent possible. If a member port’s aggregate traffic exceeds the
average across all members, and the member port receives some
traffic from this port group then we reassign the traffic to other
member ports as appropriate. Dahu performs this operation for all
port groups and repeats until convergence. To ensure convergence,
we terminate the algorithm when subsequent iterations offload less
than a small constant threshold δ. Figure 5 shows the steps in the
algorithm. Host facing ports in the switch can be ignored when executing this algorithm.
4.5
1.  Sort the physical ports by their aggregate
utilization
2.  Offload traffic from the highest loaded port H1 to
the least loaded port with which it shares
membership in any port group
3.  Continue offloading traffic from H1 to the least
loaded ports in order until they are completely
balanced or H1 runs out of lesser loaded ports to
offload to.
Figure 6: Load Balancing Heuristic
onds to 0.5 milliseconds, even for large networks with over 130,000
servers. We believe an optimized version targeted at a switch ARM
or PPC processor can run within 1ms with a small DRAM requirement of under 10 MB. In the rest of this paper, we employ this
heuristic for load balancing.
4.6
Fault Tolerance
Dahu relies on link-level techniques for fault detection, and uses
existing protocols to propagate fault updates through the network.
If a particular egress link or physical port Pf on the switch is down,
the virtual ports in each port group which map to Pf are remapped
to other member ports of the respective port groups. The remapping
is performed by switch software and the actual policy could be as
simple as redistributing the virtual ports uniformly to other egress
ports or something more complicated.
On the other hand, when the switch receives fault notifications
from the rest of the network, a specific egress port Pf may have
to be disabled for only some destination prefixes because of downstream faults. We use the allowed port bitmaps technique described
in Section 3.2 to just disable Pf for specific prefixes. The virtual port to physical port mappings in the port groups are left unchanged. In both scenarios, the only flows migrated to other egress
ports are ones that were earlier mapped to the failed egress port Pf .
When a physical port comes up, some virtual ports automatically
get mapped to it the next time port groups are balanced.
Load Balancing Heuristic
The load balancing algorithm considers all physical ports and
port groups in the switch and aims to balance the aggregate load
on all of them to the extent possible. However, the algorithm may
take many steps to converge for a large switch with many ports
and port groups. We now describe a quick and practical heuristic
to compute the balanced traffic allocation. The key idea behind the
heuristic is to offload traffic from the highest loaded port to the
least loaded port with which it shares membership in any of the
port group, instead of trying to balance the aggregate load on all
ports. By running the heuristic quickly, the switch can balance the
port groups at time scales on the order of a few milliseconds.
The heuristic, as described in Figure 6, is repeated for some fixed
number R (say 16) of highest loaded switch ports, and has a low
runtime of around 1ms. The runtime depends on the number of
physical ports and port groups in the switch and is independent of
the number of flows in the system. Our research grade implementation of the heuristic for our simulator running on a general purpose x86 CPU showed average runtimes of few 10’s of microsec-
5.
DEPLOYABILITY
Deployability has been an important goal during the design of
Dahu. In this section, we look at two primary requirements for
65
ulator from Hedera [3], and added support for decentralized routing
in each switch, port groups, allowed port bitmaps, and the load balancing heuristic. The Dahu-augmented Hedera simulator evaluates
the AIMD behavior of TCP flow bandwidths to calculate the total
throughput achieved by flows in the network.
We built a workload generator that generates open-loop input
traffic profiles for the simulator. It creates traffic profiles with different distributions of flow inter-arrival times and flow sizes. This
allows us to evaluate Dahu’s performance over a wide range of traffic patterns, including those based on existing literature [6, 16].
Modeling the AIMD behavior of TCP flow bandwidth instead of
per-packet behavior means that the simulator does not model TCP
timeouts, retransmits, switch buffer occupancies and queuing delay
in the network. The simulator only models unidirectional TCP data
flows but not the reverse flow for ACKs. We believe this is justified, since the bandwidth consumed by ACKs is quite negligible
compared to data. We chose to make these trade-offs in the simulator to evaluate at a large scale—over 130K servers, which would
not have been possible otherwise.
We simulated five seconds of traffic in each experiment, and each
switch rebalanced port groups (16 highest loaded ports) and recomputed prefix bitmaps every 10ms. For non-shortest path forwarding,
switches used 80% of available capacity along shortest paths to the
destination as the threshold utilization to dynamically enable nonshortest paths. These values were chosen based on empirical measurements.
adding Dahu support to switches: the logic to implement the functionality, and the memory requirements of the data structures.
To our knowledge, existing switch chips do not provide Dahulike explicit hardware support for non-minimal routing in conjunction with dynamic traffic engineering. However, there are some
similar efforts including Broadcom’s resilient hashing feature [9]
in their modern switch chips which is targeted at handling link failure and live topology updates, and the Group Table feature in the
recent OpenFlow 1.1 Specification [24] which uses a layer of indirection in the switch datapath for multipath support. The increasing popularity of OpenFlow, software defined networks [22], and
custom computing in the control plane (via embedded ARM style
processors in modern switch silicon) indicates a new trend that we
can leverage where large data centers operators are adopting the
idea of a programmable control plane for the switches. The need
for switch hardware modification to support customizable control
plane for switches is no longer a barrier to innovation, as indicated
by the deployment of switches with custom hardware by companies
like Google [18].
To implement the hardware logic, we also need sufficient memory in the chip to support the state requirements for Dahu functionality. We now briefly estimate this overhead. Consider a large
Dahu switch with 128 physical ports, 64 port groups with 1,024
virtual ports each, 16,384 prefixes in the routing table, and support
for up to two different allowed port bitmaps for each prefix. The
extra state required for all of Dahu’s features is a modest 640 KB.
Of this, 64 KB each are required for storing the virtual to physical
port mappings for all the port groups, and the port group counters
per egress port. 512 KB is required for storing two bitmaps for each
destination prefix. A smaller 64 port switch would only need a total
of 352 KB for a similar number of port groups and virtual ports.
This memory may come at the expense of additional packet buffers
(typically around 10 MB); however, recent trends in data center
congestion management [4, 5] indicate that trading a small amount
of buffer memory for more adaptive routing may be worthwhile.
6.
EVALUATION
We evaluated Dahu through flow-level simulations on both HyperX and Fat-tree topologies. Overall, our results show:
1. 10-50% throughput improvement in Fat-tree networks, and
250-500% improvement in HyperX networks compared to
ECMP.
Figure 7: Simulator throughput vs. theoretical maximum
2. With an increase of only a single network hop, Dahu achieves
significant improvements in throughput.
Simulator Validation: To validate the throughput numbers reported by the simulator, we generated a range of traffic profiles
with a large number of long-lived flows between random hosts in
a (L=3, S=8, T =48) HyperX network with 1Gbps links; (L, S,
T defined in Section 4.1). We computed the theoretical maximum
bandwidth achievable for the traffic patterns by formulating maximum multi-commodity network flow problems and solving them
using the CPLEX [10] linear program solver—both for shortest
path routing and non-minimal routing. We also ran our simulator
on the same traffic profile.
As shown in Figure 7 the aggregate throughput reported by the
simulator was within the theoretical maximum for all the traffic
patterns that we validated. In case of shortest path forwarding, the
theoretical and simulator numbers matched almost perfectly indicating that the ECMP implementation was valid. With non-minimal
forwarding, the simulator’s performance is reasonably close to the
theoretical limit. Note that the multi-commodity flow problem simply optimizes for the total network utilization whereas the simulator
and TCP in general, also take fairness into account.
3. Dahu scales to large networks of over 130,000 nodes.
4. Dahu enables MPTCP to leverage non-shortest paths and
achieve higher throughput with fewer subflows.
The evaluation seeks to provide an understanding of Dahu’s
effect on throughput and hop count in different network topologies (HyperX and Fat-tree) under different traffic patterns. We first
present a description of the simulator that we used for our experiments and the methodology for validating its accuracy. We simulate
HyperX networks, large and small, and measure throughput as well
as expected hop count for different workloads. We then move on to
evaluate Dahu on an 8,192 host Fat-tree network using two communication patterns. We conclude this section by evaluating how
MPTCP benefits from Dahu through the use of non-shortest paths.
6.1
Simulator
We evaluated Dahu using a flow level network simulator that
models the performance of TCP flows. We used the flow level sim-
66
In addition, we also explicitly computed the max-min fair flow
bandwidths for these traffic profiles using the water-filling algorithm [8]. We compared the resulting aggregate throughput to those
reported by the simulator. For all evaluated traffic patterns, the simulator throughput was within 10% of those reported by the maxmin validator. This small difference is because the TCP’s AIMD
congestion control mechanism only yields approximate max-min
fairness in flow bandwidths whereas the validator computes a perfectly max-min fair distribution.
6.2
HyperX Networks
We first evaluate Dahu with HyperX networks which have many
paths of differing lengths between any source and destination. We
simulate a (L=3, S=14, T =48) HyperX network with 1Gbps links,
as described in [1]. This models a large data center with 131,712
servers, interconnected by 2,744 switches, and an oversubscription
ratio of 1:8.
We seek to measure how Dahu’s non-minimal routing and load
balancing affect performance as we vary traffic patterns, the maximum derouting threshold, and non-minimal routing scheme (constrained or not). We run simulations with Clique and Mixed traffic patterns (described next), and compare the throughput, average
hop count and link utilizations for Dahu and ECMP. In the graphs,
Dahu-n refers to Dahu routing with at most n deroutings. C-Dahun refers to the similar Constrained Dahu routing variant.
6.2.1
(a) Average hop count
Clique Traffic Pattern
A Clique is a subset of switches and associated hosts that communicate among themselves; each host communicates with every
other host in its clique over time. This represents distributed jobs
in a data center which are usually run on a subset of the server
pool. A typical job runs on a few racks of servers. There could be
multiple cliques (or jobs) running in different parts of the network.
We parameterize this traffic pattern by i) clique size, the number of
switches in the clique, and ii) total number of cliques in the network. In this experiment, we vary the total number of cliques from
64 to 768, keeping the clique size fixed at 2 switches (96 servers).
Each source switch in a clique generates 18Gbps of traffic with
1.5 MB average flow size.
(b) Link utilization (number of cliques = 512)
Figure 9: Average hop count, and link utilization for Clique traffic
pattern with different routing schemes
This validates a major goal of this work, which is improving the statistical multiplexing of bandwidth in direct network topologies. As
the number of cliques increases, the bandwidth slack in the network
decreases, and the relative benefit of non-minimal routing comes
down to around 250%. Dahu and constrained Dahu have similar
performance for the same derouting threshold.
We further find that a large derouting threshold provides larger
benefit with less load, since there are many unused links in the network. As load increases, links are more utilized on average, bandwidth slack reduces, and a derouting threshold of one starts performing better.
Hop count: Beyond raw throughput, latency in an important performance metric that is related to network hop count. Figure 9a
shows the average hop count for each routing scheme. Dahu delivers significantly higher bandwidth with a small increase in average
hop count. Average hop count increases with increase in derouting
threshold. For smaller derouting threshold, the hop count is similar to that of ECMP while still achieving most of the bandwidth
improvements of non-minimal routing. Note that the small error
bars indicate that the average hop count is similar while varying
the number of cliques.
Link utilization: Figure 9b shows the CDF of inter-switch
link utilizations for ECMP and Dahu for the experiment with 512
cliques. With shortest path routing, 90% of the links have zero
utilization, whereas Dahu achieves its bandwidth gains by utilizing
available capacity on additional links in the network. Also, we see
that a single derouting can achieve most of the overall bandwidth
gains while consuming bandwidth on significantly fewer links in
the network thereby sparing network capacity for more traffic.
Figure 8: Throughput gain with Clique traffic pattern.
Bandwidth: Figure 8 shows the bandwidth gains with Dahu relative to ECMP as we vary the number of communicating cliques.
Dahu offers substantial gains of 400-500% over ECMP. The performance gain is highest with a smaller number of cliques, showing that indeed derouting and non-shortest path forwarding can effectively take advantage of excess bandwidth in HyperX networks.
67
(a) Load = 4.5Gbps/switch
(b) Load = 17.5Gbps/switch
(c) Load = 33.5Gbps/switch
Figure 10: Dahu with Mixed Traffic Pattern
Mixed Traffic Pattern
%Gain in b/w over ECMP
6.2.2
The “mixed traffic pattern” represents an environment with a few
hot racks that send lot of traffic, representing jobs like data backup.
For this traffic pattern, we simulate 50 cliques with 10 switches in
each. Every switch acts as a network hot-spot and has flows to other
members of the clique with average size = 100 MB. The load from
each source switch is varied from 3Gbps to 32Gbps. We also generate random all-to-all traffic between all the hosts in the network.
This background traffic creates an additional load of 1.5Gbps per
source switch with average flow size of 200 KB.
Figure 10 shows that for low load levels (4.5Gbps total load per
switch) ECMP paths are sufficient to fulfill demand. As expected,
total bandwidth achieved is same for both ECMP and Dahu. However, at high load (17.5Gbps and 33.5Gbps per switch) Dahu performs significantly better than ECMP by utilizing available slack
bandwidth.
6.3
Dahu
40
30
20
10
0
Stride Stride
16
256
Rnd
10%
load
Rnd
20%
load
Rnd
30%
load
Rnd
40%
load
Rnd
60%
load
Rnd
75%
load
Figure 11: Throughput gain for k = 32 Fat-tree with Stride and
Random (Rnd) traffic patterns.
Fat-Tree Networks
path routing, and the additional improvements achieved using Dahu
dynamic load balancing.
We extended the htsim packet level simulator [11] (used to evaluate MPTCP in [26]), to simulate a (L=3, S=10, T =20) HyperX
network with 100 Mbps links. This network has 1000 switches,
20,000 hosts and an oversubscription ratio of 1:4. We chose a
smaller topology and lower link speed due to the higher computational overhead of packet level simulations. We generated a random
permutation matrix (without replacement), and selected a subset
of source-destination pairs to create long lived flows, with 50% of
total hosts sending traffic. To evaluate the impact of non-shortest
path routing, we ran MPTCP under two scenarios: (1) ECMP
style shortest-path routing (MPTCP-ECMP), and (2) Dahu-style
non-shortest path routing with one allowed deroute but no load
balancing (MPTCP-1Der). To understand the additional impact
of Dahu’s load balancing, we also ran the Dahu simulator on the
same topology and traffic pattern by treating each subflow as an
independent TCP flow.
Since we used a packet level simulator for MPTCP and a flow
level simulator for Dahu, we also validated that the two simulators reported comparable throughput results under identical scenarios [25, pg.12].
Figure 12 shows that Dahu’s non-shortest path routing unlocks
300% more bandwidth compared to ECMP. With MPTCP-1Der,
throughput increases with the number of subflows, indicating that
in order to effectively leverage the large path diversity in direct
connect networks, MPTCP needs to generate a large number of
subflows, making it unsuitable for short flows. Dahu, on the other
hand, is able to achieve a similar throughput with 8 subflows that
To illustrate Dahu’s generality, we evaluate it in the context of
a Fat-tree topology. Fat-trees, unlike HyperX, have a large number
of shortest paths between a source and destination, so this evaluation focuses on Dahu’s load balancing behavior, rather than its use
of non-shortest paths. We compare Dahu with ECMP, with hosts
communicating over long lived flows in a k = 32 Fat-tree (8,192
hosts). We consider these traffic patterns: (1) Stride: With n total
hosts and stride length x, each host i sends traffic to host (i + x)
mod n. (2) Random: Each host communicates with another randomly chosen destination host in the network. To study the effect
of varying overall network load, we pick a subset of edge switches
that send traffic to others and vary the number of hosts on each of
these edge switches that originate traffic.
Figure 11 shows that Dahu achieves close to 50% improvement
with stride traffic patterns. The load balancing heuristic rebalances
virtual port mappings at each switch minimizing local hash imbalances and improves total throughput. For random traffic patterns,
Dahu outperforms ECMP by 10-20%. Overall, Dahu is better able
to utilize network links in Fat-tree networks than ECMP, even when
only shortest-path links are used.
6.4
50
MPTCP in HyperX Networks
MPTCP is a recent host-based transport layer solution for traffic
engineering [26]. MPTCP relies on splitting each flow into multiple subflows that take different paths through the network, and
modulates the amount of data transmitted on each subflow based
on congestion, thus improving the network utilization. In this section, we evaluate how MPTCP benefits from Dahu non-shortest
68
8.
MPTCP-ECMP
MPTCP-1Der
Dahu
Throughput (in Gbps)
800
700
There have been many recent proposals for scale-out multipath
data center topologies such as Clos networks [2, 16, 23], direct networks like HyperX [1], Flattened Butterfly [20], DragonFly [21],
and even randomly connected topologies proposed in Jellyfish [27].
Many current proposals use ECMP-based techniques which are inadequate to utilize all paths, or to dynamically load balance traffic.
Routing proposals for these networks are limited to shortest path
routing (or K-shortest path routing with Jellyfish) and end up underutilizing the network, more so in the presence of failures. While
DAL routing [1] allows deroutes, it is limited to HyperX topologies. In contrast, Dahu proposes a topology-independent, deployable solution for non-minimal routing that eliminates routing loops,
routes around failures, and achieves high network utilization.
Hedera [3] and MicroTE [7] propose a centralized controller to
schedule long lived flows on globally optimal paths. However they
operate on longer time scales and scaling them to large networks
with many flows is challenging. While DevoFlow [12] improves
the scalability through switch hardware changes, it does not support
non-minimal routing or dynamic hashing. Dahu can co-exist with
such techniques to better handle congestion at finer time scales.
MPTCP [26] proposes a host based approach for multipath load
balancing, by splitting a flow into multiple subflows and modulating how much data is sent over different subflows based on congestion. However, as a transport protocol, it does not have control over the network paths taken by subflows. Dahu exposes the
path diversity to MPTCP and enables MPTCP to efficiently utilize the non-shortest paths in a direct connect network. There have
also been proposals that employ variants of switch-local per-packet
traffic splitting [13, 30]. With Dahu, instead of per-packet splitting,
we locally rebalance flow aggregates across different paths thereby
largely reducing in-network packet reordering.
Traffic engineering has been well studied in the context of wide
area networks. TeXCP [19], MATE [14], and REPLEX [15] split
flows on different paths based on load, however their long control
loops make them inapplicable in the data center context which requires faster response times to deal with short flows and dynamic
traffic changes. FLARE [28] exploits the inherent burstiness in TCP
flows to schedule “flowlets” (bursts of packets) on different paths
to reduce extensive packet reordering.
Finally, a key distinction between Dahu and the related traffic
engineering approaches is that Dahu actively routes over nonshortest paths in order to satisfy traffic demand. Dahu decouples
non-minimal routing and its mechanism for more balanced hashing
and offers a more flexible architecture for better network utilization
in direct connect networks.
600
500
400
300
200
100
0
8
16
64
128
Number of subflows
Figure 12: MPTCP-ECMP, MPTCP-1Der, and Dahu performance
for L=3, S=10, T =20 HyperX topology. Results obtained from
packet level simulations for MPTCP and flow level simulations for
Dahu.
MPTCP-1Der achieves with 64 or 128 subflows, and can also handle short flows with efficient hash rebalancing. At the transport
layer, MPTCP has no way of distinguishing between shortest and
non-shortest paths and can leverage Dahu for better route selection. These results indicate that Dahu effectively enables MPTCP
to leverage non-shortest paths, and achieve much better network
utilization in direct networks with fewer subflows.
7.
RELATED WORK
DISCUSSION
As seen in Section 6, Dahu exploits non-minimal routing to derive large benefits over ECMP for different topologies and varying communication patterns. Yet, there is a scenario where nonminimal routing can be detrimental. This occurs when the network
as a whole is highly saturated; shortest path forwarding itself does
well as most links have sufficient traffic and there is no “unused”
capacity or slack in the network. With Dahu, a derouted flow consumes bandwidth on more links than if it had used just shortest
paths, thereby contributing to congestion on more links. In large
data centers, this network saturation scenario is uncommon. Networks have much lower average utilizations although there may
be hot-spots or small cliques of racks with lot of communication
between them. Usually, there is network slack or unused capacity
which Dahu can leverage. The network saturation case can be dealt
with in many ways. For example, a centralized monitoring infrastructure can periodically check if a large fraction of the network
is in its saturation regime and notify switches to stop using nonminimal paths.
Alternatively, a simple refinement to the localized load balancing scheme can be used which relies on congestion feedback from
neighboring switches to fall back to shortest path forwarding in
such high load scenarios. Network packets are modified to store
1 bit in the IP header which is updated by each switch along the
path of a packet to indicate whether the switch used a shortest path
egress port or derouted the packet. A switch receiving a packet
checks if two conditions are satisfied: (1) It doesn’t have enough
capacity to the destination along shortest paths alone, and (2) The
previous hop derouted the packet. If both conditions are satisfied, it
sends congestion feedback to the previous hop notifying it to stop
sending derouted traffic through this path for the particular destination prefix, for a certain duration of time (say 5ms). This solution
is discussed further in [25].
9.
CONCLUSION
Existing solutions for leveraging multipaths in the data center
rely on ECMP which is insufficient due to its static nature and inability to extend beyond shortest path routing. We present a new
switch mechanism, Dahu, that enables dynamic hashing of traffic onto different network paths. Dahu exploits non-shortest path
forwarding to reduce congestion while preventing persistent forwarding loops using novel switch hardware primitives and control
software. We present a decentralized load balancing heuristic that
makes quick, local decisions to mitigate congestion, and show the
feasibility of proposed switch hardware modifications. We evaluate
Dahu using a simulator for different topologies and different traffic patterns and show that it significantly outperforms shortest path
routing and complements MPTCP performance by selecting good
paths for hashing subflows.
69
10.
REFERENCES
[16] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable And Flexible Data Center Network. In Proc. of
ACM SIGCOMM, 2009.
[17] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers. In Proc. of ACM SIGCOMM, 2010.
[18] U. Hölzle. OpenFlow @ Google. Talk at Open Networking
Summit, 2012.
[19] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the
Tightrope: Responsive Yet Stable Traffic Engineering. In
Proc. of ACM SIGCOMM, 2005.
[20] J. Kim, W. J. Dally, and D. Abts. Flattened butterfly: A
Cost-efficient Topology for High-radix networks. In Proc. of
ISCA, 2007.
[21] J. Kim, W. J. Dally, S. Scott, and D. Abts.
Technology-Driven, Highly-Scalable Dragonfly Topology. In
Proc. of ISCA, 2008.
[22] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A Distributed Control Platform For
Large-scale Production Networks. In Proc. of Usenix OSDI,
2010.
[23] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson.
F10: A Fault-Tolerant Engineered Network. In Proc. of
Usenix NSDI, 2013.
[24] OpenFlow Switch Specification - Version 1.1.
http://www.openflow.org/documents/
openflow-spec-v1.1.0.pdf.
[25] S. Radhakrishnan, R. Kapoor, M. Tewari, G. Porter, and
A. Vahdat. Dahu: Improved Data Center Multipath
Forwarding. Technical Report UCSD/CS2013-0992, Feb
2013.
[26] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik,
and M. Handley. Improving Datacenter Performance and
Robustness with Multipath TCP. In Proc. of ACM
SIGCOMM, 2011.
[27] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish:
Networking Data Centers Randomly. In NSDI, 2012.
[28] S. Sinha, S. Kandula, and D. Katabi. Harnessing TCPs
Burstiness using Flowlet Switching. In HotNets, 2004.
[29] Titan Supercomputer.
http://www.olcf.ornl.gov/support/
system-user-guides/titan-user-guide/.
[30] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz.
DeTail: Reducing the Flow Completion Time Tail in
Datacenter Networks. In Proc. of ACM SIGCOMM, 2012.
[1] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.
Schreiber. HyperX: Topology, Routing, and Packaging of
Efficient Large-Scale Networks. In Proc. of SC, 2009.
[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In Proc. of
ACM SIGCOMM, 2008.
[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In Proc. of Usenix NSDI, 2010.
[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center
TCP (DCTCP). In Proc. of ACM SIGCOMM, 2010.
[5] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat,
and M. Yasuda. Less Is More: Trading a Little Bandwidth for
Ultra-Low Latency in the Data Center. In Proc. of Usenix
NSDI, 2012.
[6] T. Benson, A. Akella, and D. A. Maltz. Network Traffic
Characteristics of Data Centers in the Wild. In Proc. of ACM
IMC, 2010.
[7] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE:
Fine Grained Traffic Engineering for Data Centers. In Proc.
of ACM CoNEXT, 2011.
[8] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall,
1987.
[9] Broadcom Smart-Hash Technology.
http://www.broadcom.com/collateral/wp/
StrataXGS_SmartSwitch-WP200-R.pdf.
[10] CPLEX Linear Program Solver. http:
//www-01.ibm.com/software/integration/
optimization/cplex-optimizer/.
[11] MPTCP htsim simulator. http://nrg.cs.ucl.ac.
uk/mptcp/implementation.html.
[12] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee. DevoFlow: Scaling Flow
Management for High-Performance Networks. In Proc. of
ACM SIGCOMM, 2011.
[13] A. A. Dixit, P. Prakash, R. R. Kompella, and C. Hu. On the
Efficacy of Fine-Grained Traffic Splitting Protocols in Data
Center Networks. Technical Report Purdue/CSD-TR 11-011,
2011.
[14] A. Elwalid, C. Jin, S. Low, and I. Widjaja. MATE: MPLS
Adaptive Traffic Engineering. In Proc. of IEEE INFOCOM,
2001.
[15] S. Fischer, N. Kammenhuber, and A. Feldmann. REPLEX:
Dynamic Traffic Engineering Based on Wardrop Routing
Policies. In Proc. of ACM CoNEXT, 2006.
70
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement