ALSTOM WorldFIP Network Installation Manual
WorldFIP Network is a fieldbus system designed for industrial automation applications. It allows for communication between different devices and sensors in a factory or plant, enabling data exchange and control. The system operates at various bit rates, supporting different network topologies, including bus, free, and star.
Advertisement
Advertisement
WorldFIP: Design and
Installation Manual
ALS 50414 e–en
First issue: 03–1993
This edition: 11–2001
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1
Meaning of terms that may be used in this document / Notice to readers
WARNING
Warning notices are used to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist or may be associated with use of a particular equipment.
In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.
Caution
Caution notices are used where there is a risk of damage to equipment for example.
Note
Notes merely call attention to information that is especially significant to understanding and operating the equipment.
This document is based on information available at the time of its publication. While efforts have been made to be accurate, the information contained herein does not purport to cover all details or variations in hardware or software, nor to provide for every possible contingency in connection with installation, operation, or maintenance. Features may be described herein which are not present in all systems. ALSTOM assumes no obligation of notice to holders of this document with respect to changes subsequently made.
ALSTOM makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. ALSTOM gives no warranties of merchantability or fitness for purpose.
In this publication, no mention is made of rights with respect to trademarks or tradenames that may attach to certain words or signs. The absence of such mention, however, in no way implies there is no protection.
Partial reproduction of this document is authorized, but limited to internal use, for information only and for no commercial purpose.
However, such authorization is granted only on the express condition that any partial copy of the document bears a mention of its property, including the copyright statement.
All rights reserved.
Copyright 2001. ALSTOM (Paris, France)
Page 2 WorldFIP: Design and Installation Manual ALS 50414 e–en
Index letter b c d e
Date
03–1998
10–1999
01–2001
11–2001
Nature of revision
Major changes
Use of:
. a FIELDLT line termination,
. a FIELDPROT spur protection,
. a FIELDTRANS transformer.
Use of:
. a MICRODROP Cable.
A MIC Serie 93 cable (Appendix F and G)
Revisions
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 3
Revisions
Page 4 WorldFIP: Design and Installation Manual ALS 50414 e–en
Preface
1. PURPOSE OF MANUAL AND DOCUMENTED VERSION
This document is intended for engineers, technicians and electricians involved in the design and installation of a
WorldFIP network system. It deals mainly with the wiring system (definition of network architecture, choice of components and accessories used in the wiring system and installation rules to be observed) and not with PLC architecture.
This document is divided into two parts:
For details concerning ...
network definition wiring system installation
read chapter ...
1
2
2. CONTENT OF THIS MANUAL
Chapter 1: Design: describes the different topologies and media that can be used. This chapter describes power supply and grounding procedures and lists the characteristics of accessories required for network connection. Network designers with more specific requirements will find further information on advanced topologies at the end of this chapter.
Chapter 2: Installation: gives a list of checks to be carried out before beginning installation work.
Appendix A: Trunk Cable Characteristics: this is a list of the mechanical, electrical and environmental characteristics of the cable.
Appendix B: Drop Cable Characteristics: this is a list of the mechanical, electrical and environmental characteristics of the cable.
Appendix C: MICRODROP cable characteristics: this is a list of the mechanical, electrical and environmental characteristics of the cable.
Appendix D: Multimode Silicon Optical Fibre Cable: this is a list of the mechanical, optical and environmental characteristics of the cable.
Appendix E: Single–mode Silicon Optical Fibre Cable: this is a list of the mechanical, optical and environmental characteristics of the cable.
Appendix F: Characteristics of the Serie 93 MIC TN1 Cable: this is a list of the mechanical and electrical characteristics of the cable.
Appendix G: Application example of free topology with MIC Serie 93 Cable.
Glossary.
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 5
Preface
3. RELATED PUBLICATIONS
For more information, refer to these publications: The documents quoted in this manual are shown in square brackets in the text and listed below:
D
EN50170 (Volume 3) Communication System – General Process.
D
IEC 61158–2 Fieldbus standard for use in industrial control systems.
Physical layer specification and service definition.
D
DPS 50249 FIP Network General Introduction.
D
ALS 50282
D
IEC 60332–1
User Reference Manual: RP131 V2 Repeater.
Tests on electric cables under fire conditions – Part 1: Test on a single vertical insulated wire or cable.
D
IEC 60364–4
D
IEC 60364–5
Electrical installations of buildings – Part 4: Protection for safety
Electrical installations of buildings – Part 5: Selection and erection of electrical equipment.
4. WE WELCOME YOUR COMMENTS AND SUGGESTIONS
ALSTOM strives to produce quality technical documentation. Please take the time to fill in and return the
”Reader ’s Comments” page if you have any remarks or suggestions
Page 6 WorldFIP: Design and Installation Manual ALS 50414 e–en
Reader’s comments
ALS 50414 e–en
WorldFIP: Design and Installation Manual
Your main job is:
System designer
Distributor
System integrator
Installer
Programmer
Maintenance
Operator
Other (specify below)
If you would like a personal reply, please fill in your name and address below:
COMPANY: . . . . . . . . . . . . . . . . . . . . . . . . NAME: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADDRESS: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . COUNTRY: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Send this form directly to your ALSTOM sales representative or to this address:
ALSTOM Technology
Customer Information Publishing (CIP)
23–25 avenue Morane Saulnier
92364 Meudon la Forêt Cedex
France
Fax: +33 (0)1 46 29 10 21
All comments will be considered by qualified personnel.
REMARKS
ALS 50414 e–en
Continue on back if necessary.
WorldFIP: Design and Installation Manual Page 7
Reader’s comments
Page 8 WorldFIP: Design and Installation Manual ALS 50414 e–en
Contents
CHAPTER 1 – DESIGN
1.
STANDARD TOPOLOGIES – RULES AND CONSTRAINTS . . . . . . . . . . . . . . . . . . . .
1.1.
Bit Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.
Solutions using a Wire Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.1.
Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.1.1. Bus Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.1.2. Free Topology
1.2.2.
Connection
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.3.
Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.3.1. Characteristics of Bus Topologies on a Wire Medium . . . . . . . . . . . . . . . . . . . . . .
1.2.3.2. Characteristics of Free Topologies on a Wire Medium at 31.25 kbits/s . . . . . . . . . .
1.3.
Solutions Using a Multimode Optical Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.1.
Topologies
1.3.2.
Distances
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4.
Solutions Using a Single–mode Optical Medium . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5.
Solutions Using Mixed Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5.1.
Topologies
1.5.2.
Distances
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–1
1–1
1–1
1–1
1–1
1–2
1–3
1–5
1–5
1–6
1–7
1–7
1–8
1–8
1–9
1–9
1–10
2.
DESIGN OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–12
2.1.
Medium Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.
Powering via the Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–12
1–14
2.2.1.
Bus Powering on the Signal Pair
2.2.2.
Bus Powering on a Dedicated Pair
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.
Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1.
Networks with an Equipotential Ground Plane
2.3.2.
Networks with no Equipotential Ground Plane
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–14
1–15
1–15
1–16
1–17
3.
ELECTRICAL CABLES AND CONNECTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–19
3.1.
Trunk Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.
Dual–pair Drop Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–19
1–20
3.3.
FIELDTAP Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.
FIELDROP Prewired Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–20
1–21
3.5.
MICRODROP Prewired Solution
3.6.
DCTAP Daisy Chain Connector
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–21
1–22
3.7.
9–pin SUB–D Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.
9–pin SUB–D MDSN connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–23
1–23
3.9.
FIELDLT Line Termination
3.10. FIELDPROT Spur Protection
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–24
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–25
3.11. FIELDTRANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–26
3.12. Sealed TAP Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13. Daisy Chains: Prewired Solution for Local Areas . . . . . . . . . . . . . . . . . . . . . . . . . .
1–27
1–27
3.14. Colour Chart
3.15. Examples
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.15.1.
Plugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.15.2.
Wiring Using a FIELDTAP Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.15.3.
Wiring by DCTAP Daisy Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–29
1–29
1–29
1–30
1–30
4.
OPTICAL CABLES AND CONNECTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–31
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 9
Contents
5.
REPEATERS AND ACTIVE STARS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–32
5.1.
RP131 V2 Repeater Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.
OP130 V2 Active Star Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–32
1–33
6.
ADVANCED TOPOLOGIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–35
CHAPTER 2 – INSTALLATION
1.
CHECK LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.
ESSENTIAL RULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
3.
WIRING VERIFICATION PROCEDURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
4.
QUALITY FACTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
APPENDIX A – CHARACTERISTICS OF THE TRUNK CABLE
1.
MECHANICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–1
2.
ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–2
3.
ENVIRONMENTAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–2
APPENDIX B – CHARACTERISTICS OF THE DROP CABLE
1.
MECHANICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–1
2.
ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–2
3.
ENVIRONMENTAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–2
APPENDIX C – MICRODROP CABLE CHARACTERISTICS
1.
MECHANICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–1
2.
ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–2
3.
ENVIRONMENTAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–2
Page 10 WorldFIP: Design and Installation Manual ALS 50414 e–en
Contents
APPENDIX D – MULTIMODE SILICON OPTICAL FIBRE CABLES
1.
MECHANICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–1
2.
OPTICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–2
3.
ENVIRONMENTAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–2
APPENDIX E – SINGLE–MODE SILICON OPTICAL FIBRE CABLES
1.
MECHANICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–1
2.
OPTICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–1
3.
ENVIRONMENTAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–1
APPENDIX F – CHARACTERISTICS OF THE SERIE 93 MIC TN1 CABLE
1.
MECHANICALS CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–1
2.
ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–2
APPENDIX G – APPLICATION EXAMPLE OF FREE TOPOLOGY WITH
MIC SERIE 93 CABLE
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 11
Figures
Figure 1.1 – Bus Topology with Wire Medium
Figure 1.2 – TAP Function in a Bus Topology
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.3 – Free Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.4 – TAP Function in a Free Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.5 – Lead Protection in a Free Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.6 – Subscriber Connector with Wire Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.7 – Self–looping Connector for Wire Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.8 – Wire Medium – Repeater for Bus Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.9 – Multimode Optical Medium – Star Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.10 – Mixed–medium Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.11 – Wire Medium – Redundant Bus Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.12 – Wire Medium – Redundant Star Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.13 – Mixed Medium – Redundant Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.14 – Wire Medium – Redundant Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.15 – Example of Forbidden Links on a Wire Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.16 – Wire Medium – Bus Powering on the Signal Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.17 – Wire Medium – Line Termination
Figure 1.18 – Ground Plane – Standard Technique
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.19 – Ground Plane – Direct Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.20 – Noise–generating Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.21 – Ground Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.22 – Galvanic Isolation between Installations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.23 – FIELDROP Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.24 – MICRODROP Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.25 – FIELDLT Dimensions and Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.26 – FIELDPROT Dimensions and Block Diagram
Figure 1.27 – FIELDTRANS Dimensions and Block Diagram
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.28 – Standard Definition of a Prewired Daisy Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.29 – CR302–1, 4 Subscribers with LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.30 – CR304–1, 8 Subscribers with LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.31 – Use of Conventional and Customised Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.32 – Wiring Using a FIELDTAP Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.33 – Wiring by DCTAP Daisy Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.34 – OP130 V2 Active Star – 16 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–14
1–16
1–17
1–17
1–18
1–18
1–21
1–21
1–24
1–25
1–26
1–27
1–28
1–28
1–29
1–30
1–30
1–34
1–2
1–2
1–2
1–3
1–3
1–4
1–4
1–5
1–7
1–9
1–12
1–12
1–13
1–13
1–13
1–14
Page 12 WorldFIP: Design and Installation Manual ALS 50414 e–en
Tables
Table 1.1 – Choice of Bit Rate According to Network Topology
Table 1.2 – Characteristics of Bus Topologies on a Wire Medium
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 1.3 – Characteristics of Free Topologies on Wire Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 1.4 – Recommended Length of Leads According to Number of Subscribers per Segment . . . . . . .
Table 1.5 – Characteristics of Optical Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 1.6 – Characteristics of High–speed, Mixed–medium Topologies . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 1.7 – Characteristics of 31.25 kbits/s Mixed–medium Topologies . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 1.8 – Standard Colours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 1.9 – Characteristics of Optical Cables and Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–1
1–5
1–6
1–6
1–8
1–10
1–11
1–29
1–31
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 13
Tables
Page 14 WorldFIP: Design and Installation Manual ALS 50414 e–en
Chapter
1
Design
1. STANDARD TOPOLOGIES – RULES AND CONSTRAINTS
1.1.
Bit Rates
A WorldFIP network can operate at different bit rates: 31.25 kbits/s, 1 Mbit/s, 2.5 Mbits/s and 5 Mbits/s.
The following selection criteria may be applied:
A bit rate of ...
31.25 kbits/s
S 1 Mbit/s
S 2.5 Mbits/s
S 5 Mbits/s
is used to meet the needs of ...
S large–scale topologies
S topologies requiring easy wiring topologies with a total length limited to a few kilometres.
Remark
This bit rate provides applications with only a limited level of performance
Table 1.1 – Choice of Bit Rate According to Network Topology
1.2.
Solutions using a Wire Medium
1.2.1.
Topologies
The copper wire medium is the most economical and versatile wiring solution and is therefore the most widespread.
1.2.1.1. Bus Topology
Communication on a bus–based system works according to a principle whereby each subscriber (S) transmits and receives on the same shielded pair.
This bus topology can be used at any bit rate and is compulsory for bit rates of 1 Mbit/s, 2.5 Mbits/s and 5 Mbits/s.
The bus consists of a single–pair trunk cable which wraps round to each subscriber via a dual–pair drop cable. The branch device between the trunk cable and drop cable is known as a TAP.
Each end of the trunk cable is connected to a line termination (LT).
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–1
Design
Subscriber
S
Subscriber
S
Drop cable
LT
TAP
TAP
Trunk cable
LT
Figure 1.1 – Bus Topology with Wire Medium
Figure 1.2 illustrates the function of the TAP and drop cable which are used to connect a subscriber to the trunk cable.
The trunk cable and drop cable have the same characteristic impedance which matches that of the line termination used. This principle guarantees optimised signal transmission between the different field bus subscribers and minimises parasitic reflections.
Subscriber
S
ÓÓ
ÓÓ
Drop cable
ÓÓ
TAP
Trunk cable
ÓÓ ÓÓ
ÓÓ ÓÓ
Figure 1.2 – TAP Function in a Bus Topology
1.2.1.2. Free Topology
Communication on a free–topology system works according to a principle whereby subscribers can be connected to a set of twisted pairs and these pairs are then interconnected.
A free topology simplifies wiring and implements general–purpose connection boxes. However, it can only be used at a low bit rate, i.e. 31.25 kbits/s.
Subscriber
S
S
S
S
LT
S
Connection leads
LT
Trunk cable
S
S
Figure 1.3 – Free Topology
The bus is composed of a single–pair trunk cable to which single–pair connection leads are connected in parallel, via connection boxes, to link up subscribers. Each end of the trunk cable is connected to a line termination (LT).
Page 1–2 WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
Subscriber
Drop cable
ÓÓÓ
ÓÓÓ
ÓÓ
Connection lead
Connection box
ÓÓ
Trunk cable
ÓÓ
ÓÓÓ
ÓÓÓ
Figure 1.4 – TAP Function in a Free Topology
Fieldbus operation is ensured in the event of subscriber connection or failure of a subscriber connection lead.
Figure 1.5 illustrates the implementation of a protective device, required to allow the network to tolerate a short–circuit on a subscriber connection lead.
Subscriber
ÓÓÓ
ÓÓÓ
ÓÓ
Connection lead
ÓÓ
ÓÓ
Protection
Trunk cable
ÓÓ
ÓÓ
Figure 1.5 – Lead Protection in a Free Topology
The decision whether or not to install protective devices on connection leads must be applied uniformly to all network subscribers.
1.2.2.
Connection
The connection to the trunk cable of a subscriber is generally permanent. For maintenance reasons, a connector has been installed, allowing disconnection of a local subscriber group in a cabinet, if necessary.
Figure 1.6 illustrates this connector.
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–3
Design
Whatever the topology, a 9–pin SUB–D connector is generally used for this purpose. It is recommended to use:
D the 9–pin MicroSUB–D connector to meet miniaturisation requirements and
D the 4–pin circular connector to meet sealing requirements.
ÓÓ
ÓÓ
Subscriber male female
Drop
ÓÓÓ
cable
ÓÓÓ
TAP
Subscriber connector (9–pin SUB–D,
9–pin MicroSUB–D, circular, etc.)
Trunk cable
ÓÓ
ÓÓ
Figure 1.6 – Subscriber Connector with Wire Medium
The connector may also be installed at the trunk cable connection point. For bus topologies, a self–looping connector is required (Figure 1.7).
Subscriber
ÓÓÓ
ÓÓÓ
ÓÓ
Drop cable
ÓÓ
male female
TAP
Self–looping connector
Trunk cable
ÓÓ
ÓÓ
Figure 1.7 – Self–looping Connector for Wire Medium
Whatever the location of the connector, the global activity of the network must not be interrupted when a subscriber or subscriber group is disconnected. In the case of bus topologies, when a subscriber is disconnected at the TAP junction, the active self–looping mechanism inside the connector restores the continuity of the trunk cable within a guaranteed maximum time period compatible with the WorldFIP standard.
You may want to connect a monitoring unit. If so, you could do this by including, for example, one or two spare drop cables and subscriber connectors at strategic points.
Page 1–4 WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
1.2.3.
Distances
The design limits of a wire–medium architecture are determined by a number of basic rules.
Signal attenuation and signal distortion increase with the length of the cable and the number of subscribers on the bus.
These constraints can be overcome by using repeaters (R) which regenerate the signal waveform, in terms of amplitude and phase, throughout the nework.
Subscriber
S
Subscriber
S
LT
TAP TAP
Limited segment length
TAP
R
LT
LT
TAP
Subscriber
TAP
Limited bus length
S
Subscriber
S
TAP
R
TAP
LT
LT
TAP
Subscriber
S
TAP
LT
Figure 1.8 – Wire Medium – Repeater for Bus Expansions
Another constraint concerns the maximum propagation time between two network subscribers. This time is equal to the maximum propagation time of the electrical signal on the medium, plus the time required to cross the repeaters.
1.2.3.1. Characteristics of Bus Topologies on a Wire Medium
Table 1.2 provides a summary of the provided performance.
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ
Bus Topology 31.25 kbits/s 1 Mbit/s 2.5 Mbits/s 5 Mbits/s
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ
Maximum number of 64 32 32 32
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ subscribers per segment
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ
Drop lengths 0.5 to 10 m 0.5 to 10 m 0.5 to 10 m 0.5 to 10 m
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ
Maximum segment length 5 km 1 km 500 m 400 m
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ
Maximum time to cross a 1 Tbit (32
µs)
2.5 Tbits (2.5
µs)
2.5 Tbits (1
µs) not applicable repeater
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ
Maximum time to cross a not applicable 3 Tbits (3
µs)
3 Tbits (1.2
µs) not applicable
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ star
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ
Maximum propagation time 57 Tbits (1824
µs)
58 Tbits (58
µs)
70 Tbits (28
µs)
130 Tbits (26
µs) between two subscribers
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ
Maximum number of 256 256 256 32 subscribers on the network
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ
Maximum total network 160 km with 8 km with 4 km with 400 m
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ length 31 repeaters 7 repeaters 7 repeaters
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ
Table 1.2 – Characteristics of Bus Topologies on a Wire Medium
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–5
Design
Note
Appendix G describes an example of a 31.25 kbits/s free topology implementation with a MIC Serie 93 cable. The
MIC Serie 93 features are given in Appendix F.
Note
In order to take into account the subscriber drop structure and the increased attenuation of drop cables, the total length of a wire segment is calculated using the following formula:
Total segment length = (length of trunk cable + (3 * (length of drop cables)).
This data is guaranteed for the following conditions of use: FIELDRIVE +
FIELDTR transceiver, FIP DEVICE MANAGER basic software V4.5 or later and MICROFIP HANDLER basic software V1.3 or later.
Designers with specific application requirements which are incompatible with these standard recommendations should refer to Section 6., which provides the necessary instructions for creating more advanced topologies.
1.2.3.2. Characteristics of Free Topologies on a Wire Medium at 31.25 kbits/s
Table 1.3 provides a summary of the performance offered.
Free Topology
Maximum number of subscribers per segment
Length of leads
Maximum segment length
Maximum time to cross a repeater
Maximum propagation time between two subscribers
Maximum number of subscribers on the network
Maximum total network length (protocol limit)
31.25 kbits/s
32 see Table 1.4
5 km
1 Tbit (32
µs)
57 Tbits (1824
µs)
256
160 km with 31 repeaters
Table 1.3 – Characteristics of Free Topologies on Wire Medium
Free Topology
Number of Subscribers on Segment
25 –32
19–24
15–18
13–14
1–12
Valid With or Without Protection
Length of Leads
0.5 m
30 m
60 m
90 m
120 m
Table 1.4 – Recommended Length of Leads According to Number of Subscribers per Segment
Page 1–6 WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
Note
These characteristics ensure compatibility with standard IEC 61158–2 and are based on the assumption that:
S there is only one subscriber per drop,
S these lengths are reduced by 30 m for each additional subscriber connected.
In order to take into account the subscriber drop structure, the total length of a wire segment is calculated using the following formula:
Total segment length = total length of trunk cable + 240 m (i.e. two maximum lengths of a connection lead).
This data is guaranteed for the following conditions of use: FIELDRIVE +
FIELDTR transceiver, FIP DEVICE MANAGER basic software V4.5 or later and MICROFIP HANDLER basic software V1.3 or later.
Designers with specific application requirements which are incompatible with these standard recommendations should refer to Section 6., which provides the necessary instructions for creating more advanced topologies.
1.3.
Solutions Using a Multimode Optical Medium
1.3.1.
Topologies
The multimode optical medium offers similar performance to the wire medium in terms of total length. It is ideal for applications in which the fieldbus crosses industrial facilities where electrical noise levels are high or where ground potentials are not uniform throughout the site.
Fully optical network installations are designed with a star topology as this type of medium demands point–to–point connections.
Subscribers (S) are connected around the edge of the optical network and data is exchanged via one or more active optical stars (AOS). Optical links are created between subscribers (S), equipped with an optical coupler, and optical stars (AOS), as well as between optical stars (AOS).
ÔÔÔÔ
Subscriber
ÔÔÔÔ
Subscriber
S
S
ÔÔÔÔ ÔÔÔÔ
ÔÔÔ
Subscriber
S
ÔÔÔ ÔÔÔ
Subscriber
S
ÔÔÔ ÔÔÔ
S
ÔÔÔÔ
ÔÔÔÔ
AOS AOS
S
ÔÔÔ
ÔÔÔ
Figure 1.9 – Multimode Optical Medium – Star Topology
The star topology guarantees uninterrupted global communication throughout the network when a given subscriber is connected or disconnected, either at the active optical star (AOS) or at the subscriber (S) interface.
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–7
Design
1.3.2.
Distances
The design limits of an architecture based on the use of a multimode optical medium are determined by the same rules as those applicable to a wire–based architecture.
As with architectures using a wire medium, the maximum propagation time of the signal between two subscribers is limited. In this type of architecture, this limit is equal to the signal propagation time on the multimode optical medium, plus the time required to cross the active optical stars (AOS).
Another constraint, in this case specific to optical architectures, is the maximum propagation time of the signal between subscribers (S) and active optical stars (AOS).
Optical Topology
Maximum number of connections to each active optical star
Maximum distance between a subscriber and a star
Maximum distance between two stars
Maximum time to cross a star
Maximum propagation time between two subscribers
Maximum number of subscribers per network
Maximum total network length
(protocol limit)
1 Mbit/s
See Subsection 5.2.
1 km
1 to 2.5 km depending on fibre and installation
0.5 Tbit (0.5
µs)
58 Tbits (
58 µs)
256
9.5 km with four stars
Table 1.5 – Characteristics of Optical Topologies
2.5 Mbits/s
See Subsection 5.2.
1 km
1 to 2.5 km depending on fibre and installation
0.5 Tbit (0.2
µs)
70 Tbits (28
µs)
256
5.4 km with three stars
Note
This data is guaranteed for the following conditions of use: FIPOPTIC2/TS transceiver, FIP DEVICE MANAGER basic software V4.5 or later and
MICROFIP HANDLER basic software V1.3 or later.
Designers with specific application requirements which are incompatible with these standard recommendations should refer to Section 6., which provides the necessary instructions for creating more advanced topologies.
1.4.
Solutions Using a Single–mode Optical Medium
The single–mode optical medium provides greatly improved performance in terms of total length compared to wire and multimode optical media, while offering the same advantages as multimode optical fibre for industrial facilities where electrical noise levels are high or where ground potentials are not uniform throughout the site.
This type of medium is used only in making optical fibre sections within mixed topologies where, depending on the characteristics of the fibre used, it can offer total lengths of up to 45 km without a repeater.
Page 1–8 WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
1.5.
Solutions Using Mixed Media
1.5.1.
Topologies
Topologies are more generally designed combining different types of wire and multimode and/or single–mode medium within a global architecture in order to meet all requirements more effectively and at lower costs.
Mixed repeaters (MR) and active mixed stars (AMS) are used to implement this mixed technology. Mixed technology can be used effectively to combine the noise immunity offered by optical fibre with the lower costs offered by copper networks.
LT
TAP
Copper medium zone
TAP TAP LT
Single–mode optical medium zone
S
Multimode optical medium zone
S
MR
ÔÔÔ ÔÔÔ
ÔÔÔ ÔÔÔ
S
AOS
AMS
ÔÔÔ
S
ÔÔÔ
LT
TAP
MR
LT
LT
ÔÔÔ
TAP
MR
TAP
ÔÔÔ ÔÔÔ ÔÔÔ
S
ÔÔÔ
Wire medium zone
TAP S
ÔÔÔ
TAP
S
ÔÔÔ
TAP
ÔÔÔ ÔÔÔ
S
ÔÔÔ
ÔÔÔ ÔÔÔ
TAP
S
ÔÔÔ
ÔÔÔ ÔÔÔ
TAP
S
ÔÔÔ
TAP
LT
LT
LT
LT
MR
ÔÔÔ
TAP
ÔÔÔ
S
ÔÔÔ
TAP
ÔÔÔ ÔÔÔ
S
TAP
ÔÔÔ
LT
Figure 1.10 – Mixed–medium Topology
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–9
Design
1.5.2.
Distances
The topological constraints to be considered when designing a mixed–medium architecture depend on the specific constraints of the different media used.
Mixed Topology – High Speed
Maximum number of subscribers per copper segment
Maximum number of connections to each active optical star
Length of copper drops
Maximum distance between a subscriber and a star
(protocol limit)
Maximum length of a copper segment
Maximum distance between two copper access points
(technological limit)
Maximum distance between two multimode optical access points (technological limit)
1 Mbit/s
32
See Subsection 5.2.
0.5 to 10 m
1 km
1 km
1 km
Maximum distance between two single–mode optical access points (technological limit)
Maximum time to cross a mixed repeater/mixed star
Maximum propagation time between two subscribers
Maximum number of subscribers per network
Maximum total network length (protocol limit)
1 to 2.5 km depending on the type of fibre and attenuation per unit length
23 to 45 km depending on attenuation per unit length
2.5 Tbits (2.5
µs)/
2 Tbits (2
µs)
58 Tbits (58
µs)
256
10 km using two single–mode copper repeaters
2.5 Mbits/s
32
See Subsection 5.2.
0.5 to 10 m
1 km
500 m
500 m
1 to 2.5 km depending on the type of fibre and attenuation per unit length
23 to 45 km depending on attenuation per unit length
2.5 Tbits (1
µs)/
2 Tbits (0.8
µs)
70 Tbits (28
µs)
256
5.2 km using two single–mode copper repeaters
Table 1.6 – Characteristics of High–speed, Mixed–medium Topologies
Note
In order to take into account the subscriber drop structure and the increased attenuation of drop cables, the total length of a wire segment is calculated using the following formula:
Total segment length = (length of trunk cable + (3 * (length of drop cables)).
This data is guaranteed for the following conditions of use: FIELDRIVE +
FIELDTR (copper) and FIPOPTIC2/TS (multimode optical) transceivers and
FIP DEVICE MANAGER basic software V4.5 or later and MICROFIP
HANDLER basic software V1.3 or later.
Before attempting to install the maximum length for an optical link, the installer should ensure that the attenuation is less than 3 dB/km.
Designers with specific application requirements which are incompatible with these standard recommendations should refer to Section 6., which provides the necessary instructions for creating more advanced topologies.
Page 1–10 WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
Mixed Topology – 31.25 kbit/s
Maximum number of subscribers per segment
Length of drops or leads
Maximum segment length
Maximum distance between two copper–access repeaters (technological limit)
Maximum distance between two optical–access repeaters (technological limit)
Maximum time to cross a repeater
Maximum propagation time between two subscribers
Maximum number of subscribers per network
Maximum total network length
(protocol limit)
Bus
64 between 0.5 m and 10 m
5 km
5 km
Free (with protection)
32 see Table 1.4
5 km
5 km
23 to 45 km
Depending on attenuation per unit length
1 Tbit (32
µs)
57 Tbits (1824
µs)
23 to 45 km
Depending on attenuation per unit length
1 Tbit (32
µs)
57 Tbits (1824
µs)
256
S 160 km if there are 31 copper/copper repeaters to be crossed
S 288 km if there are 12 copper/optical repeaters to be crossed, with a 45 km link between two repeaters
256
S 160 km if there are 31 copper/copper repeaters to be crossed
S 288 km if there are 12 copper/optical repeaters to be crossed, with a 45 km link between two repeaters
Table 1.7 – Characteristics of 31.25 kbits/s Mixed–medium Topologies
Note
In order to take into account the subscriber drop structure and the increased attenuation of drop cables, the total length of a wire segment is calculated using the following formulas:
S Total segment length = (length of trunk cable + (3 * (length of drop cables)).
S Total segment length = total length of trunk cable + 240 m
(i.e. two maximum lengths of a connection lead).
This data is guaranteed for the following conditions of use: FIELDRIVE +
FIELDTR transceiver and FIP DEVICE MANAGER basic software V4.5 or later and MICROFIP HANDLER basic software V1.3 or later.
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–11
Design
2. DESIGN OPTIONS
2.1.
Medium Redundancy
When designing a network architecture with medium redundancy, each component of the physical layer must be duplicated to minimise the risk of damage to the network in the event of an incident.
The duplicated components include the connectors of each subscriber (S), cables, TAPs, line terminations (LT), repeaters (WR, OR, MR) and active stars (AOR, AMR).
The WorldFIP interfaces (subscribers) supporting medium redundancy can also be used in single–medium architectures by using only one of the two connectors.
Subscriber
ÔÔÔÔ
S
Subscriber
ÔÔÔ
S
ÔÔÔÔ
Drop cable 1
Drop cable 2
ÔÔÔ
LT
ÔÔÔ
ÔÔÔ ÔÔÔ
LT
ÔÔÔ
TAP
ÔÔÔ
ÔÔ ÔÔÔ
TAP
ÔÔ
TAP
ÔÔ
Trunk cable 1
LT
ÔÔ
ÔÔ ÔÔ
TAP
Trunk cable 2
ÔÔ ÔÔ
LT
ÔÔ ÔÔ
Figure 1.11 – Wire Medium – Redundant Bus Topology
Wherever possible, all components used to ensure redundancy of the physical layer must be physically separated to avoid any simultaneous material damage.
If the medium redundancy strategy is adopted, the entire network must be designed according to redundancy principles: all the subscribers (S) must be equipped with a coupling device designed to manage medium redundancy.
Subscriber
S
ÔÔÔÔ ÔÔÔÔ
S
ÔÔÔÔ ÔÔÔÔ
Subscriber
ÔÔÔÔ
S
ÔÔÔÔ
Redundant
AOS
S
Subscriber
ÔÔÔ ÔÔÔ
S
ÔÔÔ ÔÔÔ
Subscriber
ÔÔÔ
S
ÔÔÔ
Redundant
AOS
Figure 1.12 – Wire Medium – Redundant Star Topology
This design can make use of redundant active stars (AOS, AMS: each component of these products is redundant
(coupling modules, power supply modules, interconnection backplane, etc.)).
Page 1–12 WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
ÔÔ
S
S
ÔÔÔ ÔÔÔ ÔÔ
S
ÔÔÔ ÔÔÔ
Redundant
AOS
LT
LT
TAP
TAP
TAP
TAP
TAP
TAP
LT
LT
Redundant
AMS
S
ÔÔ
ÔÔ ÔÔ
S
ÔÔ
Wire medium zone
Optical medium zone
ÔÔÔ
S
S
ÔÔ ÔÔÔ ÔÔ
S
ÔÔ ÔÔ
Figure 1.13 – Mixed Medium – Redundant Topology
Medium redundancy can be implemented on all types of optical– or wire–based topology whether in star or bus configuration.
S
S
ÔÔÔ ÔÔÔ
ÔÔÔ ÔÔÔ
LT
ÔÔ
TAP
TAP
LT
ÔÔ ÔÔ
TAP
TAP
ÔÔ
S
S
ÔÔ ÔÔ
R
TAP
LT LT
Ô Ô
TAP
LT LT
Ô Ô Ô Ô
TAP
TAP
ÔÔ ÔÔ
TAP
TAP
TAP
TAP
Ô Ô
R
S
ÔÔÔ
R
TAP
LT LT
ÔÔ ÔÔ
TAP
ÔÔÔ
TAP
TAP
LT LT
ÔÔ ÔÔ ÔÔ ÔÔ
TAP TAP LT
Ô Ô
ÔÔ ÔÔ
R
Ô
Figure 1.14 – Wire Medium – Redundant Network
It is forbidden to connect single–medium segments to dual–medium segments via repeaters (WR, OR, MR) or active stars (AOS, AMS).
ÔÔÔ
S
ÔÔÔ
S
ÔÔÔ ÔÔÔ
ÔÔ
LT
TAP
TAP
ÔÔ
TAP
TAP
Ô
LT
Ô ÔÔ ÔÔ
TAP
LT LT
TAP
ÔÔ ÔÔ
R
S S
ÔÔÔ ÔÔÔ
TAP TAP
TAP
Ô
LT
Ô Ô
R
ÔÔ
TAP
TAP
ÔÔ
Figure 1.15 – Example of Forbidden Links on a Wire Medium
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–13
Design
2.2.
Powering via the Bus
2.2.1.
Bus Powering on the Signal Pair
The relevant standards define the possible use of bus–powered devices. This type of device consumes the power it requires on the network. The pair of wires carrying the information signal of the fieldbus also conveys a DC voltage to provide power to subscribers.
This technique is referred to as “bus powering on the signal pair”. The power supply voltage range on the bus is between 9 and 32 VDC (always direct–current power supplies).
In this type of architecture, the fieldbus can include bus–powered subscribers as well as standalone devices.
Bus–powered subscribers are generally sensors and actuators. Most ALSTOM devices are standalone devices.
ALSTOM subscribers can, however, be used on networks with the “bus powering on the signal pair” option, as the fieldbus runs across a series capacitor which provides protection against the DC voltage on the signal pair.
Subscriber (S) signal
Subscriber (S) power signal
ÓÓ ÓÓÓ
ÓÓ ÓÓÓ
TAP TAP
ÓÓ ÔÔÔÔÔ ÓÓÓ ÔÔÔÔ ÓÓÓ
ÓÓ ÔÔÔÔÔ ÓÓÓ ÔÔÔÔ ÓÓÓ
LT compatible with bus powering
ÓÓ ÔÔÔÔÔ ÓÓÓ ÔÔÔÔ ÓÓÓ
Figure 1.16 – Wire Medium – Bus Powering on the Signal Pair
On these networks, line terminations (LT) must include a series capacitor which insulates the terminating resistance of the DC voltage on the signal pair.
On networks without the “bus powering on the signal pair” option, it is possible to use line terminations (LT) composed of a single resistor.
D+
ÔÔ
ÔÔ
D–
ÔÔ
ÔÔ
D+
5% 1/4 W
ÔÔ
ÔÔÔÔ
6.6
µ F
63 V
ÔÔ
ÔÔ
D–
ÔÔ
to cable shielding
220 kohms
ÔÔÔ
5% 1/4 W
ÔÔÔ
Page 1–14
Figure 1.17 – Wire Medium – Line Termination
WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
2.2.2.
Bus Powering on a Dedicated Pair
This option is not included in the standards but is nevertheless used in standard versions of ALSTOM architectures.
This option uses trunk cables (and possibly drop cables) containing a pair dedicated to the power supply voltage
(always a DC power supply) in addition to the pair(s) conveying the information signal of the fieldbus.
When the “bus powering on the signal pair” option is used specifically for remote powering of repeaters (WR, MR), the power supply voltage pair may only be implemented in the trunk cable. Repeaters have low power consumption and cable resistance requirements do not constitute a constraint. In this case, the standard IBM 1A cable can be used: one pair conveys the information signal of the fieldbus and the other pair conveys the power supply voltage to the repeater.
The small cross–sectional area of an IBM 1A cable (AWG 22) considerably restricts the possibility to supply power via the bus – the characteristic resistance of the cable is 65 ohms/meter. When defining networks which are incompatible with IBM 1A cable constraints, the cable must be selected defining the cross–sectional area of the pair of wires dedicated to the power supply voltage.
The voltage transmitted on the dedicated pair is 24 V +/–20% or 48 V +/–20% at the power supply source.
2.3.
Grounding
The ground plane of an electrical system is designed to guarantee:
D the safety of personnel,
D the protection of sensitive devices and system facilities.
The ground plane is composed of a permanent ground connection which cannot be disconnected. It has a sufficiently low impedance and adequate carrying current to avoid any increase in voltage liable to present a risk for connected equipment or for personnel.
The ground plane is also referred to as the equipotential ground plane as it is designed to eliminate excessive differences in potential between two elements adjacent to the plane.
The ground connections of a WorldFIP network must comply with provisions relating to:
D the EMC directive,
D electrical shocks.
In theory, these two categories of provision are complementary since they are both aimed at equalising potential.
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–15
Design
The standard technique used is to ground the shielding of the fieldbus cable at one point of the trunk cable of each segment.
This is why most devices (e.g. subscribers (S), active stars (AMS or AOS), repeaters (WR, MR), TAPs), especially devices manufactured by ALSTOM, provide for direct–current isolation between the cable shielding and ground.
Furthermore, the direct connection between the fieldbus cable and ground can be located in a TAP device.
Creating a capacitive coupling between the shielding of the fieldbus cable and the local ground of each process device
(subscribers (S), active stars (AMS or AOS), repeaters (WR, MR), TAPs) is considered a standard technique. The coupling in question is obtained using a sub–assembly made up of a capacitor and varistor located in the device (S).
2.3.1.
Networks with an Equipotential Ground Plane
A network based on a uniform ground plane, in compliance with standards IEC 60364–4 and IEC 60364–5, can be defined as a network with a single ground plane.
The standard technique recommended in the standard physical layer and summed up above should be used whenever possible:
D connect a device (a TAP) on the length of cable directly to ground and
D couple the other devices to ground via a capacitor.
TAP TAP TAP TAP
Trunk cable
Drop cable
( S ) ( S )
Disconnectable links
Active star or repeater
(AMS, WR)
( S )
Subscriber connected to the fieldbus
Subscriber not connected to the field bus
Non disconnectable links
( S )
Ground plane
Ground electrode
Figure 1.18 – Ground Plane – Standard Technique
Page 1–16 WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
If the network requires devices for which there is no choice other than direct grounding, you can use the following architecture in which each process device is grounded directly. The designer may also opt for a mixed approach using some devices which are directly grounded and others with a capacitive ground connection.
TAP
TAP
Trunk cable
TAP TAP
Drop cable
ÔÔ
( S )
Subscriber connected to the field bus
ÔÔ
( S )
Subscriber not connected to the field bus
Ground plane
Disconnectable links
ÔÔ Ô
(AMS, WR)
ÔÔ Ô ÔÔ
( S )
ÔÔ Ô
Active star or repeater
Non disconnectable links
Ô Ô
( S )
Ground electrode
Figure 1.19 – Ground Plane – Direct Connection
2.3.2.
Networks with no Equipotential Ground Plane
When designing a fieldbus type network covering several installations, it is sometimes impossible to create a uniform ground plane for the entire network.
Under these conditions, a DC connection between the shielding of the field bus cable and the local ground of several devices located in different buildings or installations would generate noise currents in the shielding, owing to the difference in potential between the local grounds of the devices.
Drop cable
TAP
TAP
Trunk cable
TAP TAP
Disconnectable links
Ô Ô
(AMS, WR)
Ô Ô
Active star or repeater
Ô ÔÔ ÔÔ
( S )
Ô Ô
( S )
Ô
Subscriber connected to the field bus
Subscriber not connected to the field bus
Ground plane
Ground electrode
Ground plane
Ground electrode
Figure 1.20 – Noise–generating Installation
In this case, it is strongly recommended to implement standard DC isolation on all the devices except one (connected directly), together with a capacitive coupling to the ground of the cable shielding.
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–17
Design
TAP
TAP
Trunk cable
TAP TAP
Drop cable
Subscriber connected to the field bus
Ô Ô
( S )
Subscriber not connected to the field bus
ÔÔ Ô
( S )
Disconnectable links
Ô Ô
Active star or repeater
(AMS, WR)
ÔÔ
( S )
Ô Ô
Non disconnectable links
ÔÔ Ô
( S )
Ground plane
Ground plane
Ground electrode
Ground electrode
Figure 1.21 – Ground Plane
Another technique, recommended when the field bus covers several installations with high possible voltage differences on the corresponding ground planes, is to use mixed repeaters (MR) connected by an optical segment.
This technique also offers another advantage in terms of safety, because a permanent connection to the local ground is included in each installation.
LT
Subscriber Subscriber
TAP
TAP
MR
TAP LT
Subscriber Subscriber
MR
LT
TAP
TAP
TAP
LT
Wire segment Optical segment Wire segment
Figure 1.22 – Galvanic Isolation between Installations
Page 1–18 WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
3. ELECTRICAL CABLES AND CONNECTORS
3.1.
Trunk Cable
Electrical characteristics of trunk cables derive from those of the standard IBM 1A cable. The standard characteristics of these cables are described in Appendix A of this document.
ALCATEL CABLE/BELDEN and SAGEM products are approved and covered by a technical procurement specification. Network designers may also choose suitable products made by other manufacturers. If this is the case, they must carefully compare manufacturer data sheets with the standard characteristics described in Appendix A.
Dual–pair Electrical Trunk Cables. IBM 1A Type
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Characteristics Approved Suppliers/ Recommended Use
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Catalogue Reference
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
See Appendix A ALCATEL CABLE Making a trunk cable with or without
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
(FILOTEX 33G2772), power supply on the second pair (may be
ÑÑÑÑÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑ
BELDEN (9688) used with a FIELDTAP device)
SAGEM (SAT 15TB 1023/FP96107B)
ÑÑÑÑÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
ACOME products are approved and covered by a technical procurement specification.
Single–pair cable with the same electrical characteristics as the IBM 1A.
Single–pair Electrical Trunk Cables: derived from IBM 1A Type.
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Characteristics
ÑÑÑÑÑÑÑÑÑÑÑ
Recommended Use
ÑÑÑÑÑÑ
Catalogue Reference
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑ ÑÑÑÑÑÑ
ACOME (M21537021) Making a trunk cable.
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–19
Design
3.2.
Dual–pair Drop Cables
The electrical characteristics of this type of cable derive from those of the standard IBM 6A cable. The standard characteristics of these cables are described in Appendix B of this document.
ALCATEL CABLE/BELDEN and SAGEM products are approved and covered by a technical procurement specification. Network designers may also choose suitable products made by other manufacturers. If this is the case, they must carefully compare manufacturer data sheets with the standard characteristics described in Appendix B.
ACOME is also an approved supplier of dual–pair drop cables as it offers a product used in conjunction with a specific procurement specification.
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Dual–Pair Electrical Drop Cables. IBM 6A Type
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ Ñ
Characteristics Approved Suppliers/ Recommended Use
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Catalogue Reference
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
See Appendix B.
ALCATEL CABLE (FILOTEX Making a drop cable without power
ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ 33G2772), supply.
Ñ ÑÑÑÑÑ
BELDEN (9688)
Ñ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
SAGEM (SAT 15TB 1023/FP96107B)
Ñ ÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
ACOME (M21537022) Making a specific drop cable without
ÑÑÑÑÑÑ power supply.
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
3.3.
FIELDTAP Device
A FIELDTAP is a TAP device that can be used when environmental conditions allow the use of IP 20 compatible products.
The main advantages of this solution are its cost–effectiveness (in terms of its electrical characteristics which are ideal for signal management) and its EMC performance.
This product is manufactured by ALSTOM.
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
FIELDTAP Device
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ Ñ
Characteristics Approved Suppliers/ Recommended Use
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Catalogue Reference
ÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
IP 20 ALSTOM (A418251–A) Non–severe environments.
ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
Complies with level 3 (industrial level)
Ñ ÑÑÑÑÑ
ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
Page 1–20 WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
3.4.
FIELDROP Prewired Solution
FIELDROP includes a 9–pin SUB–D connector connected to a 3 m drop cable.
It reduces the installation procedure on site and simplifies the remaining task (i.e. connecting the drop cable to the
TAP) through the use of a FIELDTAP device or sealed TAP.
FIELDROP is available from ALSTOM.
4.40 UNC2A screw
Connector
Metal shielding shell
Insulating sheath
Braid shield
Shock absorber and insulation
Crimping by ferrule or circular brazing
Standard 3 m drop cable
Figure 1.23 – FIELDROP Connection
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Technical Definition
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Characteristics Approved Suppliers/ Recommended Use
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Catalogue Reference
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ 9–pin SUB–D ALSTOM (A416490–A) Minimising the on–site wiring procedure for the connector connected customer. The standard length of 3 m corresponds to
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ to a 3 m long drop the standard product and is inexpensive. The wiring is
Ñ ÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑÑÑÑ cable with metal identical to that proposed in Subsection 3.7.
shielding
Ñ ÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
3.5.
MICRODROP Prewired Solution
MICRODROP includes a 9–pin SUB–D MDSN connector connected to a 3 m drop cable. It reduces the on–site installation procedure and simplifies the remaining task (i.e. connecting the drop cable to the TAP) through the use of a FIELDTAP device.
MICRODROP is available from ALSTOM
Shell cover Insulator
ALS 50414 e–en
Screw
Standard 3 m drop cable
Hood Shell/Shield Assembly
Figure 1.24 – MICRODROP Connection
WorldFIP: Design and Installation Manual Page 1–21
Design
ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Characteristics
ÑÑÑÑÑÑÑÑ
Approved Suppliers/ Recommended Use
Catalogue Reference
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
9–pin SUB–D MDSN ALSTOM (A420611–A)
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ connector connected customer. The standard length of 3 m corresponds to
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ to a 3 m long drop the standard product and is inexpensive. The wiring is cable with metal identical to that proposed in Subsection 3.8.
Ñ ÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑÑÑÑ shielding
Ñ ÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
3.6.
DCTAP Daisy Chain Connector
A DCTAP device can be used when environmental conditions allow the use of IP 20 compatible products.
The DCTAP is designed to combine in a single device the functions of a TAP with those of a subscriber connector
(9–pin SUB–D). In this case, the DCTAP is connected directly to the trunk cable.
This connector is approved subject to the following remarks:
D
IBM 1A dual–pair trunk cables cannot be used with DCTAP connectors (their cross–sectional area is too large and they are not flexible enough). It is recommended to use a trunk cable with a single dedicated pair (see
Subsection 3.1.) for daisy chain connection to the DCTAP.
D
The other solution, considered as a standard, is to create subscriber drops made up of a TAP device, a drop cable and a dedicated subscriber connector. This solution is also considered more effective.
In the second case, the DCTAP device can be used as a subscriber connector, compatible with the standard 9–pin
SUB–D connector. This method is approved on systems when used in conjunction with recommended IBM 6A drop cables.
The cable exits the connector at a 45
° angle with respect to horizontal so as to minimise the space required when the equipment is installed in a cabinet.
This product is manufactured by ALSTOM.
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
DCTAP Daisy Chain Connector. IP 20
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Characteristics Approved Suppliers/ Recommended Use
ÑÑÑÑÑÑ
Catalogue Reference
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑ ÑÑÑÑÑÑ
9–pin SUB–D connector (female)
ÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
ALSTOM (A416493–A) Non–severe environments.
The cable exits the connector at a 45
ÑÑÑÑÑÑÑÑÑÑÑ
° angle (60 mm clearance with respect to
Ñ ÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ front panel)
Ñ ÑÑÑÑÑ
Complies with level 3 (industrial level)
Ñ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ of EMC directives.
ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
Page 1–22 WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
3.7.
9–pin SUB–D Connector
A 9–pin SUB–D connector device can be used when environmental conditions allow the use of IP 20 compatible products.
The use of this subscriber connector, compatible with the standard 9–pin SUB–D connector, is approved when used in conjunction with recommended IBM 6A drop cables.
The following table gives the wiring configuration of the 9–pin SUB–D connector:
Pin ...
6 (+)
7 (–)
The cable exits the connector horizontally.
is connected to the...
orange and red wires green and black wires
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
9–pin SUB–D Connector. IP 20.
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Characteristics Approved Suppliers/ Recommended Use
ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
Catalogue Reference
ÑÑÑÑÑÑ ÑÑÑÑÑÑ
9–pin SUB–D
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
ITT CANNON FBC 115434–3 Non–severe environments.
connector (female)
ÑÑÑÑÑÑ
The cable exits the connector
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ horizontally.
Ñ ÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
Complies with level 3 (industrial level)
Ñ ÑÑÑÑÑ of EMC directives.
Ñ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
3.8.
9–pin SUB–D MDSN connector
9–pin SUB–D MDSN connector device can be used when environmental conditions allow the use of IP 20 compatible products.
The use of this subscriber connector, compatible with the standard 9–pin SUB–D MSDN connector, is approved when used in conjonction with recommended IBM9A drop cables.
The following table gives the wiring configuration of the 9–pin SUB–D connector:
Pin ...
1 (+)
5 (–)
is connected to the...
orange and red wires green and black wires
The cable exits the connector horizontally.
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
9–pin SUB–D connector IP 20.
ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Characteristics Approved Suppliers/ Recommended Use
ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
Catalogue Reference
ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
9–pin SUB–D MDSN ITT CANNON FBC – MDSN Non–severe environments.
connector (female) The cable exits the connector horizontally.
ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
Complies with level 3 (industrial level) of EMC
Ñ ÑÑÑÑÑÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑÑÑ directives.
ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–23
Design
3.9.
FIELDLT Line Termination
The FIELDLT device is used to match different cable segments with characteristic impedance values of 150 ohms for bit rates of 31.25 kbits/s to 5 Mbits/s.
The cable is connected as follows:
Connect the ...
orange conductor black conductor green–yellow conductor
This product is manufactured by ALSTOM.
Characteristics to the ...
positive wire of the cable negative wire of the cable cable shielding.
FIELDLT Device
Approved Suppliers/
Catalogue Reference
ALSTOM (A418471–A)
Recommended Use
Matching different cable segments with characteristic impedance values of 150 ohms for bit rates of 31.25 kbits/s to 5 Mbits/s.
17
14
10
FIELDLT
A418471–X
AA/SS
150
Ω
6.6
µ F orange
220 k
Ω green/yellow
220 k
Ω black
DIMENSIONS BLOCK DIAGRAM
Figure 1.25 – FIELDLT Dimensions and Block Diagram
Page 1–24 WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
3.10. FIELDPROT Spur Protection
The FIELDPROT device is designed to allow operation, on condition that the installation is appropriately sized, in the event of a short–circuit on the subscriber link.
It is only available for a bit rate of 31.25 kbits/s.
It provides an attenuation of 4 dB on 75 ohms.
Dielectric strength at 50 Hz is 2000 V rms
for one minute between:
D
R+/R– and D+/D–,
D
R+/R– and the transformer shield,
D
D+/D– and the transformer shield.
The cable is connected as follows:
Connect the ...
S orange (R+) and
S black (R–) conductor
S orange/white (D+) and
S black/white (D–) conductor green/yellow conductor
to ...
the trunk cable the subscriber the transformer shield – can also be connected to the local ground
This product is manufactured by ALSTOM.
Characteristics
Only for bit rate of
31.25 kbits/s
Φ =
2.7
48
40
33
FIELDPROT
A418472–X
AA/SS
FIELDPROT Device
Approved Suppliers/
Catalogue Reference
ALSTOM (A418472–A)
Recommended Use
Providing protection against short–circuits on the subscriber link
Φ =
2.7
28
24 orange/white
10
Ω to subscriber black/white
10
Ω
1 : 1
6.6
µ F to cable orange black green/yellow
DIMENSIONS BLOCK DIAGRAM
Figure 1.26 – FIELDPROT Dimensions and Block Diagram
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–25
Design
3.11. FIELDTRANS
The FIELDTRANS device is used to ensure the galvanic isolation of two segments of trunk cable, on condition that the installation is appropriately sized.
It is only available for a bit rate of 31.25 kbits/s.
It provides a typical attenuation of 1.5 dB on 150 ohms.
Dielectric strength at 50 Hz is 2000 V rms
for one minute between:
D
R+/R– and D+/D–,
D
R+/R– and the transformer shield,
D
D+/D– and the transformer shield.
The cables are connected as follows:
Connect the ...
S orange (R+) and
S black (R–) conductor
S orange/white (D+) and
S black/white (D–) conductor green/yellow conductor
to
… trunk cable No. 1 trunk cable No. 2 the transformer shield – can also be connected to the local ground
This product is manufactured by ALSTOM.
Characteristics
FIELDTRANS Device
Approved Suppliers/
Catalogue Reference
Only for bit rate of 31.25 kbits/s ALSTOM (A419443–A)
Recommended Use
Providing galvanic isolation between two trunk cables
Φ =
2.7
48
40
33
FIELDTRANS
A419443–A
AA/SS
Φ =
2.7
28
24 orange/white
6.6
µ F to cable 2 black/white
1 : 1
6.6
µ F to cable 1 orange black green/yellow
Page 1–26
BLOCK DIAGRAM
DIMENSIONS
Figure 1.27 – FIELDTRANS Dimensions and Block Diagram
WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
3.12. Sealed TAP Device
A sealed TAP device should be selected when a TAP function is required in a severe environment implying a protection class of IP 65.
The approved manufacturer for this product is ENTRELEC. All the options of this product are described in the following table:
on–line drops.
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ Ñ
Characteristics Suppliers Recommended Use
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
1 fixed drop ENTRELEC TAP:
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
19201–00
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
2 fixed drops ENTRELEC TAP 2: The most commonly used sealed TAP at ALSTOM
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
19204–03 (contractual agreement available)
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
3.13. Daisy Chains: Prewired Solution for Local Areas
Daisy chain products are dedicated to wiring several subscribers in a given local area. This type of product is used mainly for the internal wiring of cabinets.
A number of standard local wiring requirements have been identified and the use of these standard subassemblies optimises costs.
On the basis of these standard approved solutions, the network designer can define more daisy chains distinguished mainly by their dimensions (number of subscribers, length between micro–TAP couplers and the length between micro–TAP couplers and subscribers) and by whether or not they can be used in conjunction with line terminations.
In view of these considerations, a daisy chain arrangement can be summed up in a panel containing the items shown in the figure below:
Subscriber 1 Subscriber 2 Subscriber 3 Subscriber 4
Subscriber n
D1 D3 Dn
D2
D4
LT
µ TAP1
µTAP2
µTAP3
µTAP4
Braid shield = 200 mm
µTAPn
LT
L1 L2 L3 L4 L5 Ln Ln+1
Figure 1.28 – Standard Definition of a Prewired Daisy Chain
Standard CR302–1 and CR304–1 products must be used whenever possible. Figure 1.29 and Figure 1.30 describe their configuration.
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–27
Design
450 450 450 450
µ
TAP4
Shielding continuity
L = 200
LT
LT
µ
TAP1
µ
TAP2
µ
TAP3
600 400
(All dimensions are given in mm)
1500 400 600
Figure 1.29 – CR302–1, 4 Subscribers with LT
LT
450 450
µ TAP1
450
µTAP2 µTAP3
450
450
µTAP4
450
µTAP5
450 450
µTAP6 µTAP7 µTAP8
Shielding continuity
L = 200
LT
600 400
(All dimensions are given in mm)
600 400
1500 400 600 400
600
Figure 1.30 – CR304–1, 8 Subscribers with LT
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Prewired Daisy Chain
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Characteristics Approved Suppliers/ Recommended Use
Catalogue Reference
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ
Fully specified LOGISTEL Expensive solution reserved for specific requirements by the user
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
CR302–1 LOGISTEL/CR302–1 Standardised product
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
CR304–1 LOGISTEL/CR304–1 Standardised product
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Page 1–28 WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
3.14. Colour Chart
The following chart provides a summary of the standard colours used to identify the wires of the trunk cable and drop cable.
ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑ
Type of First Signal Pair Second Signal Pair Power Supply Pair
ÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ
Cable
ÑÑÑÑ
D+ D– D+ D– A+ A–
ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÇÇÇÇÇÇÇÇ ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ
Trunk with Orange Black Red Green
ÇÇÇÇÇÇÇÇ ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ
1+1 pairs
ÇÇÇÇÇÇÇÇ ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÇÇÇÇÇÇÇÇ ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ ÇÇÇÇÇÇÇÇÇ
Trunk with Orange Black
1 pair or or
ÇÇÇÇÇÇÇÇ ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ ÇÇÇÇÇÇÇÇÇ
Red Green
ÇÇÇÇÇÇÇÇ ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ ÇÇÇÇÇÇÇÇÇ ÑÑÑÑ ÇÇÇÇÇÇÇÇÇ ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ
Drop with Orange Black Red Green
2 pairs
ÇÇÇÇÇÇÇÇÇ ÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ
Drop with Orange Black
ÑÑÑÑÑ
Red Green
ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ
Pink Light blue
ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ ÇÇÇÇÇÇÇÇÇ ÑÑÑÑ
2+1 pairs
ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ
ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑ
Table 1.8 – Standard Colours
3.15. Examples
3.15.1. Plugs
Figure 1.31 shows an example of how conventional and customised connectors can be used.
ÔÔÔ
9–pin SUB–D subscriber connector
ÔÔÔ TAP
Drop cable
Subscriber
SEVERITIES 1 AND 2
Figure 1.31 – Use of Conventional and Customised Connectors
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–29
Design
3.15.2. Wiring Using a FIELDTAP Device
Figure 1.32 shows an example of wiring using a FIELDTAP device.
FIELDTAP
FIELDROP
FIELDLT
Subscriber
FIELDTAP
FIELDROP
Subscriber
FIELDROP
Subscriber
FIELDLT
Figure 1.32 – Wiring Using a FIELDTAP Device
3.15.3. Wiring by DCTAP Daisy Chaining
Figure 1.33
gives an example of wiring by DCTAP daisy chaining.
150
Ω termination
(or resistive only)
Page 1–30
DCTAP
150
Ω termination
(or resistive only)
Figure 1.33 – Wiring by DCTAP Daisy Chaining
WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
4. OPTICAL CABLES AND CONNECTORS
The characteristics of optical cables and connectors are given in Table 1.9.
Type of Optical Fibre
Complies with industrial standard
Multimode
S 62.5/125 µm
(best solution currently on the market),
S 50/125 µm
D Characteristics given in
Appendix
…
Possible connections
• subscribers,
• active stars,
• repeaters via an ST connector
S 9/125 µm,
S 10/125 µm
Single–mode
E
• copper/single–mode repeaters, via an FC connector
Table 1.9 – Characteristics of Optical Cables and Connectors
As the products offered by different manufacturers are of uniform quality, no manufacturer qualification has been carried out for this type of product.
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–31
Design
5. REPEATERS AND ACTIVE STARS
5.1.
RP131 V2 Repeater Range
The repeaters in the second–generation RP131 product range offer several options.
These repeaters can connect two field bus segments with wire media on both ends (wire repeaters, WR) or wire and multimode or single–mode optical media (mixed repeaters, MR).
The power supply voltage range covers rated voltages of 24 VDC and 48 VDC for a maximum consumption of 6
W.
The main environmental characteristics are:
D temperature range: –25/+70
°C,
D protection class: IP 20,
D
EMC level 3.
The physical dimensions are 150 x 45 x 120 mm and the unit is mounted on DIN rails.
The following table gives the references and characteristics of these repeaters.
Product Code
IR178–3CC1
IR178–3CM1
IR178–1CC1
IR178–1CM1
IR178–1CO1
IR178–2CC1
IR178–2CM1
IR178–2CO1
Suppliers/Reference: ALSTOM Alspa RP131
Power Supply
Voltage
24/48 VDC
24/48 VDC
24/48 VDC
24/48 VDC
24/48 VDC
24/48 VDC
24/48 VDC
24/48 VDC
Type of Link
copper/copper copper/single–mode copper/copper copper/single–mode copper/multimode copper/copper copper/single–mode copper/multimode
Read [ALS 50282] for more information about RP131 V2.
Bit Rate
31.25 kbits/s
31.25 kbits/s
1 Mbit/s
1 Mbit/s
1 Mbit/s
2.5 Mbits/s
2.5 Mbits/s
2.5 Mbits/s
Protocol
IEC
IEC
UTE / IEC
UTE / IEC
UTE / IEC
UTE / IEC
UTE / IEC
UTE / IEC
Page 1–32 WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
5.2.
OP130 V2 Active Star Range
The active stars in the second–generation OP130 product range offer several options.
OP130 active stars are modular signal regeneration devices designed mainly to connect multimode optical fibres, though they can also be used to connect wire media. The connection capacity of these stars depends on the choice of rack and on the type of board.
An active star is composed of several standard units (100 x 160 mm EUROPE format) assembled in a rack of the following dimensions:
D
19” x 3U x 290 mm rack or
D
4” x 3 U x 290 mm mini–rack.
The star is made up of modules that can be equipped with one or two copper or multimode optical transceivers so that the configuration may be adapted to meet requirements.
ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
Modules Function Characteristics
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ
Racks with a backplane
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ Ñ
(module capacity: 16 slots or 2 slots)
ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ AM147 Rack and backplane Fasteners on front panel
ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ AM148 Rack and backplane Fasteners on rear panel
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ
Power supply units
(1 unit for 8 couplers max., 2 units for 16 couplers max.,
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ Ñ
2 units with a redundant configuration)
ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
AL123A 5 VDC power supplies 48 VDC power supply voltage
ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
AL124A 5 VDC power supplies 24 VDC power supply voltage
ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
AL127A 5 VDC power supplies 90 to 260 VDC power supply voltage
ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
Coupling units
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ
(16 units max.:
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ Ñ
32 single links or 16 double links max.)
ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
IR130A
ÑÑÑÑÑÑÑÑÑÑ
Wire link coupling board
ÑÑÑÑÑÑÑÑÑÑÑÑÑ
9–pin SUB–D connector on front panel
ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
–1M 1 Mbit/s/Copper/
1 channel
ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
–1B 1 Mbit/s/Copper/
2 channels
Ñ ÑÑÑÑÑÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑ
–2M 2.5 Mbits/s/Copper/
Ñ ÑÑÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑÑÑ
1 channel
–2B 2.5 Mbits/s/Copper/
Ñ ÑÑÑÑÑÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑ
2 channels
Ñ ÑÑÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑÑÑ
IR132A Optical link coupling board ST optical connector on front panel
ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
1 Mbit/s/Optmul/
ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
–1M 1 channel
Ñ ÑÑÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑÑÑ
1 Mbit/s/Optmul/
–1B 2 channels
Ñ ÑÑÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑÑÑ
2.5 Mbits/s/Optmul/
Ñ ÑÑÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑÑÑ
–2M 1 channel
2.5 Mbits/s/Optimul/
Ñ ÑÑÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑÑÑ
–2B 2 channels
Ñ ÑÑÑÑÑÑÑÑÑ Ñ ÑÑÑÑÑ Ñ ÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑ
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–33
Design
In its maximum configuration, the OP130 V2 active star is equipped with 16 couplers, dedicated to a wire or multimode optical medium. A power supply module is connected to 8 couplers.
Power supply 1
AM147/148
8 possible coupler slots 8 possible coupler slots Power supply 2
Figure 1.34 – OP130 V2 Active Star – 16 Modules
When the coupling capacity of the active star is not used to the full, the unused slots can be covered by blanking plates.
The second power supply unit:
D must always be included when the active star is used in redundant mode,
D is required when more than 8 couplers are used.
Read [ALS 50281] for more information about OP130 V2.
Page 1–34 WorldFIP: Design and Installation Manual ALS 50414 e–en
Design
6. ADVANCED TOPOLOGIES
This paragraph is intended for network designers with specific requirements who cannot observe the standard topological rules defined in Section 1.
The detailed formula used to calculate the network topology is indicated below and takes into consideration the relevant characteristics of the devices making up the network link.
The length and maximum number of subscribers of a segment depend on the constraints described in Section 1.
The following calculation applies to the rules for defining the total distance of the network and indicates the best way to combine repeaters and optical stars when connecting standard network segments:
D the propagation time Tp between two subscribers of a network has a maximum value of Tpmax as shown below:
Tpmax
57 Tbits
58 Tbits
70 Tbits
Bit Rate
31.25 kbits/s
1 Mbit/s
2.5 Mbits/s
D the propagation time of the information signal on a copper or optical medium is as follows:
Tpco = Tpopt = 5
µs/km
D owing to the structure of drop cables, the distances covered by drop cables forming the drops must be multiplied by 3,
D the maximum propagation time between RP131 repeaters is as follows:
The propagation time between...
wire repeaters mixed repeaters optical repeaters
referred to as...
Tr_WR
Tr_MR
Tr_OR
equals...
2.5 Tbits
2.5 Tbits
2.5 Tbits
D the maximum propagation time between OP130 active stars is as follows:
The propagation time between active stars from ...
a copper wire coupler a copper wire coupler an optical coupler
to ...
a copper wire coupler an optical coupler an optical coupler
referred to as...
Tr_AS_WW
Tr_AS_WO
Tr_AS_OO
equals...
3 Tbits
2 Tbits
0.5 Tbits
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 1–35
Design
The complete formula can thus be summed up as follows:
Tp =
(length of wire trunk cable * Tpco)
+ (3 * length of wire drop cable * Tpco)
+ (length of optical fibre cable * Tpopt)
+ (number of intermediate repeaters * (Tr_WR, Tr_MR or Tr_OR))
+ (number of intermediate active stars * (Tr_AS_WW, Tr_AS_WO or Tr_AS_OO))
(If you use this formula, the number of repeaters or intermediate active stars may be greater.)
Designers with specific requirements who cannot observe the directives set out in this document should contact
ALSTOM/CMF for a specific architecture definition study.
Page 1–36 WorldFIP: Design and Installation Manual ALS 50414 e–en
Chapter
2
Installation
1. CHECK LIST
The following points must be defined during the network design phase before starting installation itself:
D
Network topology
Topological characteristics must be identified and must comply with the design rules set out in Chapter 1. The location of the different devices making up the network must also be defined. These devices include: subscribers, cables, connectors, TAPs, repeaters and active stars.
D
Environmental conditions
The characteristics of each device must satisfy environmental installation constraints regarding the following points: temperature range, EMC protection, IP protection required, etc.
D
Grounding strategy
The ground plane of the installation must be defined, as indicated in Chapter 1, Subsection 2.3.
D
Manuals
You should always read the user reference manuals relating to the equipment so as to follow installation instructions closely.
D
Wiring and checking tools
You should give preference to the wiring and checking tools recommended by equipment manufacturers.
D
Technologies
Technicians involved in optical technology should have the necessary qualifications and use the very latest techniques and solutions available in this field.
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 2–1
Installation
2. ESSENTIAL RULES
Wiring quality depends on three main factors:
D
The passive and active items making up the network must have been designed and approved with respect to the
EMC recommendations corresponding to the EMC severity level demanded by the factory.
Choose wiring solutions offering the right EMC qualification level.
D
Particular attention is required for signal conductor connections. The reliability of the entire automation process depends on the quality of the installation of the physical layer.
A defective “signal” conductor connection, at any point of the field bus network, will lead to an interruption in global communication either immediately or following installation. Furthermore, it is always more difficult to locate possible failures on a field bus type network than on an architecture based on point–to–point links.
Take care when handling “signal” conductor connections.
D
Grounding is the last critical problem relating to wiring.
Cables, connectors and devices (TAPs, repeaters, active stars, subscribers) must be correctly grounded to guarantee the safety of personnel and ensure the reliability of the network with respect to electrical noise.
Low–impedance ground connections must be made and priority must be given to the total shielding of all wiring items. Incorrect grounding at any given point of the field bus network will affect the performance of the entire network.
The quality of ground connections guarantees the safety of personnel and the performance of automation processes.
Page 2–2 WorldFIP: Design and Installation Manual ALS 50414 e–en
Installation
3. WIRING VERIFICATION PROCEDURE
The wiring verification strategy is described below, step by step. It is easier to carry out a detailed check of wiring at the local level than to check the entire network from the beginning.
Moreover, the tools used to carry out checks on the global network are more sophisticated than the standard ohmmeter, especially when the network includes repeaters and active stars.
D
Wire connections. Local verification using an ohmmeter.
Verification of optical wiring is not addressed in this document. Refer to the relevant specific technical instructions concerning this subject.
An ohmmeter can be used to check the quality of a subscriber connection between the TAP and the subscriber as well as the local wiring located in a cabinet. Connection polarity must be checked.
Caution
Field bus networks are sensitive to the polarity of bus connections.
Check continuity along a given conductor path and check the insulation between several conductors or between the conductors and the cable shielding. You can carry out these checks in a given local area before reconnecting the removed line terminations and disconnected subscribers to the field bus.
D
Wire connections. Global verification of each segment using test plugs, an ohmmeter, portable oscilloscope and FIP wiring test set.
The verification of optical wiring is not addressed in this document. Refer to the relevant specific technical instructions concerning this subject.
During the global verification of the wiring system, each segment must be checked individually.
A simple ohmmeter cannot be used to check a segment stretching over several kilometres.
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 2–3
Installation
You may adopt the following method to test a wiring installation:
D leave all the subscribers disconnected
D connect the line terminations (LT) to each end of the segment
D apply a DC voltage (e.g. 9 V with battery) to a subscriber connection via a dedicated connector. Check all the other connectors (using an ohmmeter) to ensure that the polarity is correct and that there is no residual voltage on the shielding.
D then apply a square–wave signal (e.g. coming from a device based on a 1 MHz CMOS oscillator) to a subscriber connection via a dedicated connector. The square–wave signal can be analysed upon reception using a portable oscilloscope at all the other connectors. The attenuation of the initial square–wave test signal can be compared to the attenuation of the field bus cable (typically 15 dB/km on a TRUNK cable).
D
Verification of the global network, comprising several segments, repeaters and active stars
At this stage, each segment should have been previously checked and declared satisfactory.
The repeaters and active stars can only propagate valid WorldFIP protocol frames, recognised as belonging to correct start–of–frame and end–of–frame sequences (these specific signal sequences are detected, checked and regenerated by the repeaters and active stars).
For this reason, the test input signal can no longer be supplied by a simple measuring oscillator. Instead, a WorldFIP station must regenerate the test signal. This measuring station must be equipped with a Bus Arbiter (BA) in order to communicate with the network.
It is recommended that the global network test be carried out with a measuring station equipped with the Bus Arbiter
(BA) on one segment and that data exchanges take place with one or more dual stations connected to all the other stations.
On installations with a redundant medium, the global verification of the wiring should first be carried out on each medium individually (with the dual–medium connectors disconnected), then with both media in operation.
Page 2–4 WorldFIP: Design and Installation Manual ALS 50414 e–en
Installation
4.
QUALITY FACTORS
Once all the wiring has been thoroughly checked, the installation can be considered ready for use.
The following indicators may be used for the final verification:
D
Physical transmission error rate
This parameter is available on a WorldFIP subscriber (e.g. a FIPACCESS station or a FIPSPY) and is used to control frame flags, the Manchester code and the frame check sequences of incoming frames.
In order to meet the required error rate, the physical transmission error rate can be verified by checking continuous exchanges on the field bus; a value of 20 minutes without error should be obtained.
D
List of current subscribers
A list of current subscribers can be provided by the subscriber supporting the bus arbiter function. This list contains all the subscribers which have exchanged a valid “presence” variable with the station supporting the bus arbiter function.
This verification is easy to carry out if the bus arbiter function is performed by a station equipped with FIPACCESS.
This verification is also useful as the “presence” data item implements a significant part of the field bus processing capability; this presence is controlled on both media in a redundant–medium installation, thus allowing a specific test to be performed for each medium.
D
Subscriber identification
The station supporting the bus arbiter function can collect identification variables from different subscribers and thus obtain information concerning each subscriber.
Identification variables can be collected easily using a station equipped with FIPACCESS software.
ALS 50414 e–en WorldFIP: Design and Installation Manual Page 2–5
Installation
Page 2–6 WorldFIP: Design and Installation Manual ALS 50414 e–en
Appendix
A
Characteristics of the Trunk Cable
1. MECHANICAL CHARACTERISTICS
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Item Referenced Value
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Number of pairs 2
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Colours orange and black
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ red and green
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Gauge one wire, 0.64 mm dia.: AWG22
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Metal copper
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Conductor diameter 0.64 mm
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Aluminium–tape sheath (metal foil 100% surrounding the two pairs)
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Shielding sheath 35%
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Outer insulating sheath. Type.
PVC
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Static bend radius 11 cm
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Dynamic bend radius 30 cm
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Outer insulating sheath. Diameter 8 x 11 mm. 0.5 mm
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Traction strength 60 N upon installation
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
40 N in service
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
ALS 50414 e–en WorldFIP: Design and Installation Manual Page A–1
Characteristics of the Trunk Cable
2. ELECTRICAL CHARACTERISTICS
Item Referenced Value
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Attenuation < 15 dB/km
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
From 200 kHz to 3.125 MHz
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Distortion < 10 dB/km
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
From 200 kHz to 3.125 MHz
Characteristic impedance 150
Ω ± 10%
From 200 kHz to 3.125 MHz
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Transfer impedance < 2 m
Ω/m up to 20 MHz
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
(differential mode)
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Conductor resistance < 65
Ω/km at 20°C
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Propagation speed 0.775 C
ÁÁÁÁÁÁÁÁÁÁÁ
(propagation speed of light C)
Capacitance between conductors < 37 pF/m
Near–end crosstalk –52 dB
(differential mode) From 200 kHz to 3.125 MHz
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Far–end crosstalk –58 dB
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
From 200 kHz to 3.125 MHz
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Current per conductor
≥ 1 A
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Shielding resistance 10
Ω/km at 20°C
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Insulation resistance below 500 VDC
≥ 5000 MΩ between conductors and between the
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ conductors and the shielding
Á ÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁ
Dielectric strength
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
1 min
500 VDC between conductors
1500
√2 VDC between the conductors and shielding
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
3. ENVIRONMENTAL CHARACTERISTICS
Item Referenced Value
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Storage temperature –30
°C / +75°C
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Operating temperature –20
°C / +75°C
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Outer insulating sheath ULVW1 Test (IEC 60332– 1)
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
UL746 (PVC 75
°C)
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Page A–2 WorldFIP: Design and Installation Manual ALS 50414 e–en
Appendix
B
Characteristics of the Drop Cable
1. MECHANICAL CHARACTERISTICS
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Item Referenced Value
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Number of pairs 2 (twisted per pair)
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Colours orange and black
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ red and green
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Gauge 7 conductors 0.16 mm dia.: AWG26
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Metal copper
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Conductor diameter 0.48 mm
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Aluminium–tape sheath (metal foil 100% surrounding the two pairs)
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Shielding sheath 35%
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Outer insulating sheath. Type.
PVC
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Static bend radius 5 cm
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Dynamic bend radius 20 cm
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Outer insulating sheath. Diameter 9.1
± 0.4 mm dia.
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Traction strength NA drop cable < 10 m
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
ALS 50414 e–en WorldFIP: Design and Installation Manual Page B–1
Characteristics of the Drop Cable
2. ELECTRICAL CHARACTERISTICS
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Item Referenced Value
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Attenuation < 33 dB/km
ÁÁÁÁÁÁÁÁÁÁÁ
From 200 kHz to 3.125 MHz
Distortion
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Characteristic impedance 150
Ω ± 10%
From 200 kHz to 3.125 MHz
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Transfer impedance NA drop cable
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Conductor resistance < 130
Ω/km at 20°C
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Propagation speed
≥ 0.775 C
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
(propagation speed of light C)
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Capacitance between conductors < 37 pF/m
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Near–end crosstalk – 50 dB
(differential mode) from 200 kHz to 3.125 MHz
Far–end crosstalk – 56 dB
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ from 200 kHz to 3.125 MHz
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Current per conductor
≤ 1 A
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Shielding resistance 20
Ω/km at 20°C
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Insulation resistance below 500 VDC 5000 M
Ω
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ between conductors and between the conductors and the shielding
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Dielectric strength
ÁÁÁÁÁÁÁÁÁÁÁ
1 min
500 VDC between conductors 1500
√2
VDC between the conductors and
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ shielding
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
3. ENVIRONMENTAL CHARACTERISTICS
Item Referenced Value
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Storage temperature –30
°C / +75°C
Operating temperature –20
°C / +75°C
Outer insulating sheath
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
ULVW1 Test (IEC 332– 1)
UL746 (PVC 75
°C)
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Page B–2 WorldFIP: Design and Installation Manual ALS 50414 e–en
Appendix MICRODROP Cable Characteristics
C
1. MECHANICAL CHARACTERISTICS
Item Referenced Value
ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Number of pairs 2 (twisted pair)
Colours orange and black read and green
ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Gauge AWG26 – solid
ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Metal Copper
ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Conductor diameter 0.4 mm
ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Aluminium–tape sheath (metal foil surounding the two pairs) 100%
ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Shielding sheath
ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Outer insulating sheath type PDVF jacket
ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Bend radius
ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ static dynamic
ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Outer insulating sheath 7.1 mm x 4.6 mm
ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Traction strength NA drop cable < 10 m
ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ALS 50414 e–en WorldFIP: Design and Installation Manual Page C–1
MICRODROP Cable Characteristics
2. ELECTRICAL CHARACTERISTICS
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Item Referenced Value
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Attenuation per unit length 33 dB/km < 4 MHz
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Distortion
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Characteristic impedance 150
Ω
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Transfer impedance NA – drop cable
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Conductor resistance < 131.5
Ω/km
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Propagation speed
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Capacitance between conductors
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Near–end crosstalk (differential mode)
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Far–end crosstalk
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Current per conductor
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Shielding resistance
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Dielectric strength 1 min
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
3. ENVIRONMENTAL CHARACTERISTICS
Item Referenced Value
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
Storage temperature
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
Operating temperature
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
Outer insulating sheath
ÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑ
Page C–2 WorldFIP: Design and Installation Manual ALS 50414 e–en
Appendix
D
Multimode Silicon Optical Fibre Cables
1. MECHANICAL CHARACTERISTICS
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Item Referenced Value
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Cable composition Glass fibre under tight–structure round
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Optical fibre (4) sheath
Carriers (1)
Á ÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁ
Characteristics of sheathed fibre
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Outer diameter
Primary protection diameter
2.6 +/–0.1 mm
500/900
µm
Fibre diameter 125 +/– 3
µm
Á ÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁ
Cable characteristics
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Outer diameter 8.8 +/–0.2 mm
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Fire resistance IEC 332–3C
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Bend radius
static 10 cm dynamic 150 cm
Á ÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁ
Crushing strength
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ short period 40 daN/cm long period 10 daN/cm
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
ALS 50414 e–en
WorldFIP: Design and Installation Manual
Page D–1
Multimode Silicon Optical Fibre Cables
2. OPTICAL CHARACTERISTICS
Item Referenced Value
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Attenuation per unit length
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
With 62.5/125
µm fibre
3.5 dB/km
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Attenuation per unit length
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
With 50/125
µm fibre
3 dB/km
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
3. ENVIRONMENTAL CHARACTERISTICS
Item Referenced Value
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Storage temperature
ÁÁÁÁÁÁÁÁÁÁÁ
–30
°C / +75°C
Operating temperature –20
°C / +75°C
ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ
Page D–2
WorldFIP: Design and Installation Manual
ALS 50414 e–en
Appendix
E
Single–mode Silicon Optical Fibre Cables
1. MECHANICAL CHARACTERISTICS
The mechanical characteristics of the cable must be at least equal to those of the fiber it contains.
2. OPTICAL CHARACTERISTICS
Item
Attenuation per unit length
(spectral band 1310 nm)
Passband
Referenced Value
< 0.5 dB/km
> 2000 MHz/km
3. ENVIRONMENTAL CHARACTERISTICS
Characteristics
Storage temperature
Operating temperature
Referenced Value
–30
°C to + 75°C
–25
°C to + 70°C
These values are given as an example only. They depend on the environmental conditions specific to each application and assume that functional performance has not been modified.
ALS 50414 e–en WorldFIP: Design and Installation Manual Page E–1
Single–mode Silicon Optical Fibre Cables
Page E–2 WorldFIP: Design and Installation Manual ALS 50414 e–en
Appendix Characteristics of the Serie 93 MIC TN1 cable
F
Specification: France Telecom CSEC 12–14 (CNET L130) NFC 93526 and 93527 Livre 5.
1. MECHANICALS CHARACTERISTICS
Item
Number of pairs
Colour
Gauge
Metal
Aluminium tape shealth
Outer insulating shealth
Outer insulating shealth diameter
Referenced value
8/14/28
NA one wire; 0.8 mm dia.
copper splitting the cable in 2 pairs with a S or Z shape. Continuity copper wire, dia. 0.5 mm.
Aluminium tape cross fluted surrounded by a PVC coating
– 8 pairs 20 mm
– 14 pairs 22.5 mm
– 28 pairs 28.5 mm
ALS 50414 e–en WorldFIP: Design and Installation Manual Page F–1
Characteristics of the Serie 93 MIC TN1 cable
2. ELECTRICAL CHARACTERISTICS
Item
Attenuation
Distortion
Characteristic Impedance
Transfer Impedance
Conductor resistance
Propagation speed
Capacitance between conductor
Near–end crosstalk
Far–end crosstalk
Current per conductor
Shielding resistance
Insulation resistance below 200 V
Dielectric strength
Referenced values
17 dB/km at 17 MHz
NA
100
Ω at 1 MHz
NA
37
Ω/km at 20°C
NA
25 pairs at 800 Hz average value 55,0 nF/km
NA
NA
NA
NA
1500 M
Ω/km
1.5 kV DC between conductors
2.25 kV DC between conductor/shielding
Page F–2 WorldFIP: Design and Installation Manual ALS 50414 e–en
Appendix Application example of free topology with
MIC Serie 93 Cable
G
Ó ÖÖ Ö
Ó ÖÖ ÒÒ Ò Ö
ÒÒ Ò
60m
60m
Device
#1
Device
#2
6 Km
Repeater
6 Km
ÖÖ Ö ÕÕ Ô ÓÓ Š Ö
Ò Ö ÕÕ Ô
Ò
ÓÓ Š Ò ÒÒ ÖÖ
Ò ÒÒ
60m
60m
60m
Device
#32
Device
#33
Device
#34
ÖÖ ÔÔ
ÖÖ ÔÔ ÒÒ
ÒÒ
60m
Device
# 64
Ô
FIELDLT FIELDTAP
ÖÖ Ò
FIELDPROT
ÖÖ Ò
ALS 50414 e–en WorldFIP: Design and Installation Manual Page G–1
Application example of free topology with MIC Serie 93 Cable
Page G–2 WorldFIP: Design and Installation Manual ALS 50414 e–en
Glossary
Active Mixed Star (AMS)
Active Optical Star (AOS)
Active Star (AS)
Active Wire Star (AWS)
Daisy Chain
Drop
Drop cable
Line Termination (LT)
Medium
Mixed Repeater (MR)
Optical Repeater (OR)
Repeater (R)
Subscriber (S)
TAP
Active device used to regenerate the information signal between optical segments and copper wire segments.
Active device used to regenerate the information signal between several optical segments.
Active device used to regenerate the information signal between several segments, which may be composed of different media.
Active device used to regenerate the information signal between several electrical segments.
Prewired passive device composed of moulded microTAP couplers and overmoulded connectors for local connection of subscribers.
Field bus section, from a TAP coupler to a subscriber.
Passive cable section of a bus, transporting the information signal on two pairs to a subscriber.
Passive device installed at either end of a cable, in order to minimise reflection due to impedance mismatching.
Conductor used for data transmission: copper or optical cable.
Active device used to regenerate the information signal between an electrical segment and an optical segment.
Active device used to regenerate the information signal between two different optical segments.
Active device used to regenerate the information signal between two different segments, which may be composed of different media.
Device with a field bus coupler.
A passive coupling device for connecting a trunk cable to a drop cable with a view to creating a drop.
ALS 50414 e–en WorldFIP: Design and Installation Manual Gloss–1
Glossary
Trunk Cable
Wire Repeater (WR)
Trunk cable section of a bus, transporting the information signal on a single shielded copper pair.
Active device used to regenerate the information signal between two different electrical segments.
Gloss–2 WorldFIP: Design and Installation Manual ALS 50414 e–en
Advertisement
Key Features
- Bus, free, and star topologies
- Support for various bit rates
- Multimode and single-mode optical medium
- Repeaters and active stars for network extension
- Robustness against electrical noise
- Scalability for large networks