Shared Equipment Facility Catalog

Shared Equipment Facility Catalog
School of Dentistry
Biomedical Materials Science
Shared Equipment Facility
Advanced Materials Characterization Equipment
For Materials Testing, Physical & Chemical
Characterization, and Failure Analysis
1
TABLE OF CONTENTS
About The Facility
2
High Resolution X-Ray Diffraction System
3
Three-Axis Mechanical Testing System (MTS Bionix)
4
Uniaxial Mechanical Testing Systems (MTS 810 and 812)
5
Multi-Frame Flex Test System (MTS 858)
6
Nano Indenter (MTS G200)
7
High Elongation Screw Machine (MTS Sintech)
8
Biaxial Mechanical Testing System (ADMET eXpert 8602)
9
Uniaxial Dynamic Mechanical Analysis Testing System (TA Instruments
electroforce 3220 series III)
Orbital Bearing Wear Tester/Hip Simulator
10
Mini Frame Flex Test System
12
Laser Confocal Microscope
13
Optical & Fluorescence Microscope with Live Cell Culture Chamber
14
Zeiss Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-Ray
Spectroscopy & Electron Backscattered Diffraction Capabilities
Fourier Transform Infrared Spectrometer
15
ICP-MS with Laser Ablation
17
Thermo-Gravimetric Analyzer (TGA) and Thermo-Mechanical Analyzer (TMA)
18
Differential Scanning Calorimeter (DSC) and Differential Thermal Analysis
(DTA)
SpectroMaxx Compositional Analysis
19
X-Ray Microtomography (Micro-CT)
21
Computer Modeling
22
Corrosion Testing Equipment
23
Ceramic Processing
24
Atomic Force Microscope (AFM)
25
CNC Vertical Milling Machine (Haas Mini Mill)
27
CNC Toolroom Lathe (Haas TL 1)
28
Sample Preparation
29
Equipment Usage Rates
30
11
16
20
2
ABOUT THE FACILITY
The Department of Biomedical Materials
Science at the University of Mississippi
Medical Center (UMMC) was formed in July
2004 but has existed as a division within
another department for approximately 35
years. As a part of the academic program
of the School of Graduate Studies in the
Health Sciences and the School of
Dentistry, efforts are dedicated to research,
development, and characterization of
materials, and the interfacial and biological
phenomena that govern the outcome of
biomedical implants and devices.
In light of the fact that the equipment
available in our laboratories represents the
state of the art in material testing and
characterization, and requests from a
variety of industries and other universities
for access to this equipment, the
department has formalized a shared
equipment facility.
This facility provides access to equipment
used to perform materials processing,
characterization, and certification. These
services are now available to users within
and outside the academic community on a
fee-for-service basis.
Users may become trained in the use of the
equipment and be allowed independent
INNOVATION...
Research at Its Best
Operation, or testing may be performed by
departmental personnel at an additional cost.
Contact:
R. Scott Williamson, Ph.D.
Director
Biomedical Materials Science User Facility
[email protected]
T: 601-984-6170 | F: 601-984-6087
Department of Biomedical Materials Science
School of Dentistry
University of Mississippi Medical Center
2500 North State Street, Room D528
Jackson, MS 39216
umc.edu/research_facilities
3
High Resolution X-Ray Diffraction System
X-ray diffraction is a non-destructive
analytical technique which reveals
information about the crystallographic
structure, chemical composition, and
physical properties of materials and thin
films.
Our x-ray diffraction system is a four axis
Scintag system with a copper or chromium
x-ray source. The analyses are performed
with an automated diffractometer
controlled by JADE software. The data are
analyzed with a computerized match
procedure compared to NIST ICSD.

X-Ray Sources: Copper (2.2 kW, 60 kV
max) & Chromium (1.7 kW, 60 kV max)

Grain alignment (texture) of polycrystalline
materials

Goniometer: theta/3-theta (theta/2-theta
and theta/theta), Theta Range: 0 to 180
degrees, Omega Range: -2 to 90 degrees

Determination of residual stresses

Determination of crystal lattice
parameters

Capability of testing metals, ceramics,
powders, minerals, thin films, and
coatings

NIST ICSD database search with over
70,000 inorganic crystal structures

Scan Rate: 0.1 to 120 degrees at 2-theta
per minute (continuous scan mode)

Sample holder with variable rotation
speed

Crystallographic structure identification

Chemical composition
4
Three–Axis Mechanical Testing System
The MTS 858 Bionix system is a three-axis
hydraulic load frame connected to an MTS
Flex-Test GT controller. The Bionix system is
equipped with a lateral actuator and a
vertical actuator capable of simultaneous
vertical and rotational control. The vertical
control channel has a load capacity of 25
kN, displacement capacity of 100 mm,
rotation range from 0 to 60 degrees, and a
torsion range from 0 to 250 Nm. The lateral
channel has a load capacity of 2.25 kN and
displacement range from 10 to 100 mm.
The vertical actuator can be controlled in
load, displacement, or strain and torsion or
rotation while acquiring data from any and
all of the other modes. This allows for a
multitude of test configurations including
biomechanics, stress corrosion cracking,
corrosion fatigue, and torsion.
The
controller is connected to a computer with
MTS Testworks software for data
acquisition.

Three-axis hydraulic load frame

MTS Flex-test GT controller

Rotation range from 0 to 60 degrees,

MTS TestWorks software for test setup
and data acquisition

Torsion range from 0 to 250 Nm

Equipped with an vertical actuator and a
lateral actuator capable of simultaneous
vertical and rotational control

Vertical actuator:

Vertical actuator can be controlled in
load, displacement, or strain as well as
torsion or rotation while acquiring data
from any and all of the other modes

Lateral actuator:

Load range up to 25 kN

Load range up to 2.25 kN

Displacement capacity of 100 mm

Displacement range from 10 to 100
mm
5
Uniaxial Mechanical Testing Systems
 Displacement
range up to 100
mm
 Strain ranges
from 2 to 20%
 Hydraulic driven
The MTS 810 and 812 testing systems
deliver a broad array of testing capabilities
for both low and high force static and
dynamic testing. A range of test modes,
load capacities, and control modes can be
used for your testing needs. Both the 810
and 812 models can be operated in either
displacement, load or strain control while
simultaneously capturing data from the
other two channels.
The 810 and 812 testing systems are
hydraulic driven load frames equipped with
fatigue rated servo-valves capable of both
monotonic and cyclic loading.
For all
systems, tests are programmed and
monitored using MTS TestWorks software,
which includes real time data observations.
Test fixtures are available for axial tension,
compression, bending, fatigue and shear
tests. A test space maximum daylight of 30
inches (~75 cm) is available for both
systems.
 Low and high force static and dynamic
testing
 Range of test mode operations including
load, displacement, and strain
 Load ranges from 100 N (.02 kip) to 450 kN
load frames
equipped with
fatigue rated
servo-valves for
low
displacement
high frequency
tests
 Tests are
programmed
and monitored
using MTS
TestWorks software
 Axial tension, compressive, shear, three- and
four-point bend test fixtures are available for
a variety of material sizes and geometries
 The ability to test materials ranging in
strength from polymers to composites and
ceramics, to metals.
 A large test space (maximum daylight of 30
inches) to accommodate standard, medium
and large size specimens
 Hydraulic grips with inserts to accommodate
rounds, flats, and fine wire specimens (MTS
810 and 812)
 The capacity to perform a wide variety of test
types from tensile to high cycle fatigue,
fracture mechanics, compressive bending,
and durability of components
6
Multi-Frame Flex Test System
The Multi-Frame FlexTest System is a
hydraulic mechanical test system consisting
of five independently controlled load frames
with the capability of performing dynamic
and monotonic testing in air or fluid
environment under thermal control. Each
load frame is capable of being programmed
in either load or displacement control with
one frame also having strain control
capability. All load frames have a load range
of 25 kN and displacement range of 100
mm. The load frame with strain control
capability has a range of 2-20%.
The test system is connected to a computer
with independent data acquisition using
MTS TestWorks software. A variety of tests,
along with appropriate test fixtures, can be
performed including stress corrosion
cracking, high and low cycle corrosion
fatigue, and compression testing.
Each load frame is equipped with
independent strain gauge alignment fixtures
for precise sample alignment. A test space
maximum daylight of 24 inches (~60 cm) is
available for all four load frames.
 Hydraulic mechanical test system consisting
of five independently controlled load frames
 Capability of performing dynamic and
monotonic testing in air or fluid environment
under thermal control
 Each load frame is capable of being operated
in either load or displacement control with
one frame also having strain control capability
 All four load frames have a load range up to
25 kN
 Displacement range to 100 mm Strain control
for one frame with range of 2-20%
 Independent data acquisition using MTS
TestWorks software
 A variety of tests can be performed including
stress corrosion cracking, high and low cycle
corrosion fatigue, and compression testing
 Each load frame is equipped with
independent strain gauge alignment fixtures
for precise alignment
7
Nano Indenter
The MTS G200 Nano Indenter system
provides a fast and reliable way to acquire
mechanical data on the submicron scale.
The system records stiffness data along
with load and displacement data
dynamically, allowing hardness and Young’s
modulus to be calculated at every data
point during the indentation experiment.
The Nano Vision software is capable of
recording this data and creating 3D images.

Conforms to ISO 14577-1, 2 and 3
delivering the utmost integrity in test
results

200 mm of stage travel

Displacement resolution of <0.01 nm

Total indenter travel of 1.5 mm

Max indentation depth >500 µm

Loading Capability

Maximum load 500 mN

Load Resolution 50 nN

Contact Force <1.0 µN

Positional Accuracy 1 µm

Objective 10x and 40x
8
High Elongation Screw Machine
This MTS Sintech high elongation test
system has a load capacity of
5 kN making it ideal for testing a variety of
materials including polymers, metals,
paper, ceramics, fine wires, composites,
fabrics, films, fasteners, and wood. Test
methods include tension, compression,
flex, compliance, and peel/tear.
Tests can be conducted in either load, displacement, or strain control. Capable of
measuring low loads with an 5 N load cell.
This load system has a DXL strain gauge
attached with capabilities of measuring
strain in excess of 1000%.
9
Biaxial Mechanical Testing System
The ADMET eXpert 8602 system is an axialtorsional electric load frame with a screwdriven actuator.
The actuator has the
capability of both vertical and rotational
control simultaneously or independently.
The load capacity of this load frame is 500
lb (2224 N) in both tension and
compression with an attached NIST
traceable load cell. The actuator has a total
displacement of +/- 4 in (100 mm) of travel
with a total crosshead movement of 20
inches. The torsion capacity of this frame is
250 in-lb in both clockwise and counter
clockwise directions without a maximum
rotation limit. The maximum rotational
speed is 60 RPM. This load frame is very
versatile and is attached on top of an
industrial cart so that it can be transported
to other areas of the University for testing.
This machine is ideal for orthopedic and
dental screw testing (ASTM F 543 Test
Annex A1-A4), biomechanical testing of
cadaver and artificial bones and joints,
spinal constructs, three and four point
bending, simple tension testing, and many
other applications. The test system is
connected
to
a
computer
with
MTESTQuatro® software which monitors
and records all of the test data. The
versatility of the load frame and software
makes programming easy and offers a wide
range of possible test procedures.

Bi-Axial actuator

Load, displacement,
rotational control

Electrical motor

500 lb (2224 N) load capacity in tension
and compression

4 in (100 mm) displacement

250 in-lb maximum torque

60 RPM maximum

Unlimited rotation

Versatile and easy to re-locate for testing
needs within the UMMC campus

MTESTQuatro® controller
torsion,
and/or
10
Uniaxial Dynamic Mechanical Analysis Testing System
The TA Instruments 3220 Series III
electroforce system is a low force, low
displacement, high frequency load frame.
The actuator is magnet driven with highly
precise dimensional accuracy. This load
frame exceeds ASTM E 2309 Class A’s
standard for accuracy and has nm
displacement resolution. The load frame is
equipped with a 50 lb (225 N) load cell
capacity with smaller load cells available.
The displacement of the actuator is a
maximum of ¼ in (6.5 mm). At low
displacements, the actuator is capable of
testing at a frequency of 300 Hz. This
frame is also capable of dynamic
mechanical analysis (DMA) up to 200 Hz.
The vertical testing space for this system is
17 in (43 cm). The system also has a
temperature controlled bath for optional
testing in solution.

High frequency up to 300 Hz

Dynamic mechanical analysis up to 200
Hz

Nanometer displacement resolution with
high accuracy

Load capacity up to 50 lb (225N)

Displacement maximum of ¼ in (6.5 mm)

Optional temperature
environment chamber

Load or Displacement control
controlled
11
Uniaxial Mechanical Testing Systems
Simulation of human joint motion for the
purpose of testing and evaluation
prosthetic devices prior to clinical
deployment is essential to assure the
sucessful outcome of such surgical
procedures. This simulator, equipped for
wear in serum, has been designed with
greater head space than most systems as
well as load and torque cells at each of the
eight stations. This configuration allows the
placement of full hip stems, monitoring of
load and torque at each station.

For hips, loads and motions are
generated to simulate walking. Other
joints as well as components requiring
rotation under load control may be
evaluated.

The laboratory also has the capability to
perform pin-on-disc unidirectional wear
testing and fretting corrosion testing in
compliance with ASTM Test Method
F897.
Fretting Corrosion System
8-Station Hip Wear Tester
Pin-on-Disk Wear Tester
12
Mini Frame Test System
The Mini Frame test system is a closed
loop servo-hydraulic system connected to
the MTS Flex Test GT controller. The mini
frame has a 25 kN load capacity and 100
mm displacement capacity.
This load
frame is used for a variety of mechanical
tests including monotonic, static, cyclic
loading and fracture mechanics. A COD
(crack opening displacement) gauge can be
connected to the controller to allow for
fracture mechanics testing. The test
system can be operated in load,
displacement, or extensometer (COD)
mode while acquiring data through MTS
TestWorks or MTS crack growth software. A
thermally controlled solution bath can also
be installed for environmentally controlled
testing. The mini frame also has a strain
gauge alignment fixture attached for
precise sample alignment. A test space
maximum daylight of 24 inches (~60 cm) is
available for test fixtures and samples.

Closed loop servo hydraulic system

Control modes of load, displacement, or
strain

MTS Flex Test GT controller with MTS
TestWorks software

Load capacity range to 25 kN

Displacement range of 0 to l00 mm

Strain capacity range from 2% to 20%

MTS crack growth software for fracture
mechanics testing

COD (crack opening displacement) gauge
can be connected to the controller to
allow for fracture mechanics testing

Fatigue crack-growth measurement using
KRAK-GAGE technology

A variety of tests can be performed
including stress corrosion cracking, high
and low cycle corrosion fatigue, and
compression testing

Capability of performing dynamic and
monotonic testing in air or fluid
environment under thermal control

Strain gauge alignment fixture attached
for precise sample alignment
13
Laser Confocal Microscope
The laser confocal microscope is a valuable
tool for achieving high resolution images and
three-dimensional reconstructions of
surfaces. This instrument has the ability to
produce blur-free images of thick
transparent samples at various depths. The
microscope is also configured to measure
and display surface morphology of opaque
samples using reflected light techniques.
Photographs are taken by using a spatial
pinhole to eliminate out-of-focus light. When
photographs are taken, only the light within
the focal plane can be detected producing
high quality wide-field images.
Capabilities include:

Surface roughness measurements

Creation of 3D photos of surface
morphology

Imaging in aqueous environments –
Water-immersible objectives included

Imaging of specimens stained with
fluorescent dyes

Rotation of collected images in 3
dimensions for assessment of specimen
features
Artificial Hip Component
Worn Polyurethane Surface
3D Image of Fracture Surface
14
Optical and Fluorescence Microscope/Live Cell Chamber
Live Cells in Culture
Optical and Fluorescence imaging capability:
Time lapse imaging capability allows observations of cell culture at specified time points.
Motorized stage allows for pre-programmed
imaging of multiple
locations (especially
helpful to image multi-well cell culture plates)
 Objectives: 2.5X, 4X, 10X, 20X, 40X, 60X.
 1.6X magnification changer offering increased
magnification to eyepieces and cameras
without changing objectives.
LiveCellTM Environmental Chamber facilitates
a long-term cell culture under the microscope.
Independent control of temperature, %CO2
and humidity achieved with the LiveCellTM
chamber, combined with the time lapse
imaging capability and the motorized stage,
allows long-term culture studies under the microscope
 Dedicated computer server
 Slidebook image acquisition/analysis software.
Cell Culture Facility: Complete cell culture
suite with following equipment available:
 Tissue culture hoods – Nuaire
 Tissue culture incubators
 UV/Vis Spectrophotometer – Nanodrop
 Fluorescence/Luminescence MicroPlate
Reader – BioTek
 Floor Incubator / Shaker – Inova
15
Scanning Electron Microscope (FE-SEM)
with EDS and EBSD Capabilities
Scanning
E l e c t ro n
Microscope:
Zeiss Supra 40 SEM with Schottky type field
emitter system. Samples may be viewed
using accelerating voltages as low as 100 V,
allowing the viewing of beam sensitive
samples and non-conductive samples
without damage to the samples or charging
effects in the images.
Fractured Metal Surface
With the capability for accelerating voltages
up to 30,000 V, sufficient beam energies
may be achieved for efficient compositional
analysis using EDS and microstructural
analysis using EBSD.
Rat Cochlea
Metal Crystal Structure
Detectors:
 Everhart-Thornley secondary electron
detector
 4-quadrant solid state backscattered
electron detector
 High efficiency annular in-lens secondary
electron detector system

Since the detector is mounted
immediately adjacent to the EBSD
detector, EDS data may be collected
simultaneously with the collection of
microstructural data.

EDAX TEAM Analytical Software
 Forward scattered detector mounted on
the EBSD camera
Large Cylindrical Specimen Chamber,
allowing the insertion of large samples
without requiring sectioning
Imaging System: Digital storage of images
with resolutions up to 3072x2304 pixels,
allowing printing of large-format images for
presentations and reports.
Energy Dispersive X-ray Spectroscopy (EDS
 Detecting unit capable of the detection of all
elements down to and including Carbon.
Electron Backscattered Diffraction (EBSD
 EDAX High-Speed EBSD Camera with
integrated forward scattered detector

EDAX/TSL analytical software to allow
identification of phases present and the
composition and orientation of each
phase with respect to other phases
16
Fourier Transform Infrared Spectroscopy
Fourier Transform Infrared Spectrometry
(FTIR) is used to determine the molecular
composition of a variety of materials.

The samples may be analyzed in
transmission, or thick samples may be
analyzed in reflection.

The technique may be used as a sensitive
method for detecting additives in a
polymer or for comparison of apparently
similar polymers.

Changes in a material due to oxidation or
other chemical changes in the polymer
structure can frequently be detected
using a ratio of the areas of characteristic
peaks.
17
ICP-MS and Laser Ablation
The ELAN DRC II combines the power of
patented Dynamic Reaction Cell
technology, Axial-Field Technology, and
high performance sample introduction
with the ability to run any reaction gas
(ammonia, methane, oxygen, and
others).

The lack of high-voltage ion extraction
lenses results in lower on-peak
background levels and lower
equivalent concentrations leading to
accurate quantitative measurements
at ultra trace levels.

Elan DRC II allows accurate
determinations at the ppb levels for
several important elements.

The laser ablation system can
volatilize solid samples into a gas
carrier stream that can then be fed to
the ICP-MS for compositional analysis.
The CETAC LSX-213 delivers high
intensity 213 nm, 5 nanosecond laser
pulses at rates of 1-20 Hz.
The homogeneous flat top energy profile
of the laser produces aperture spot sizes
from 10 to 200 micron while
maintaining a constant energy density.

The laser output energy is fully
adjustable to produce as much, or as
little ablation necessary to analyze
virtually any solid sample - ideal for
geological, forensic industrial and
biological samples.

For analysis, you can easily set
precise points for a single point
analysis, multi-point analysis, line
scan analysis, area scan analysis,
area raster analysis, depth profiling, or
analyzing an arbitrary pattern.
18
Thermo-Gravimetric and Thermo-Mechanical Analysis
Thermo-gravimetric Analysis (TGA) is used
to measure changes in the weight of a
sample as a function of temperature and/
or time. Thermo-mechanical Analysis (TMA)
evaluates the deformation of a sample
under stress as a function of changes in
temperature.
TMA 40 Thermo-mechanical Analysis System
Liquid Nitrogen Cooled DSC 30 Module

Temperature Range: -170ºC - 600ºC
TGA50 Thermo-gravimetric Analysis
Module

Temperature Range: 25ºC - 1000ºC

Polymer thermal stability under various
gaseous environments

Coefficient of thermal expansion and
contraction (CTE) as a function of
temperature

Effect of temperature on hardness
and/or flexibility

Sample holder which allows
measurement while immersed in various
liquids
19
Differential Scanning Calorimeter (DSC)
Differential Thermal Analysis (DTA)
Differential Thermal Analysis (DTA) is a
technique for determining the difference
in temperature between a substance and
a reference sample as a function of either
time or temperature as the materials are
subjected to identical heating regimens.
The system is commonly used for the
determination of changes of phase in
ceramics, metals, and polymers.
An
example is the determination of transus
temperatures from one phase to another.

Temperature Range: 200ºC to 1600ºC

1st and 2nd order transitions of ceramic
compositions
Differential Scanning Calorimeter (DSC) is
a technique in which the difference in the
amount of heat required to increase the
temperature of a sample is measured.
Information on thermal expansion is
obtained.

Liquid Nitrogen Cooled

Temperature Range: -150ºC to 700ºC
for high sensitivity and resolution
Measurements

Melting Point

Glass Transition

Crystallinity of Polymers

Curing Reactions

Thermal Decomposition
20
SPECTROMAXX Compositional Analysis
The Arc-Spark OES is used for both
qualitative and quantitative compositional
analysis of metals and alloys
Using standards, the instrument provides
concentrations in ppm of alloying
elements including carbon, which is not
readily obtainable by many alternative
methods

Samples must be electrically conductive
in order to be tested using the
SPECTROMAXX system; Non-conductive
materials can be tested using the ICPMS with laser ablation system

Trace elements such as carbon,
nitrogen, phosphorous, and sulfur can
be analyzed in the ppm range

Data is easily transferred to a
spreadsheet for analysis and storage
21
X-Ray Microtomography (Micro-CT)
The system obtains multiple X-ray
projections of the object from different
angular views, as the object rotates on a
high-precision stage. From these
projections, cross section images of the
object are reconstructed by a modified
Feldkamp cone-beam algorithm, creating a
complete 3D representation of internal
microstructure and density over a selected
range of heights in the transmission
images.


The virtual vantage point and object
opacity can be adjusted to view external
and/or internal surfaces.
Microstructure can be viewed as
coronal, sagittal, and transverse
sections, and 3D quantitative analysis is
available.

Data are exported as bitmaps of crosssections and can be converted to finite
element models using our Mimics
software.

Max Specimen Size: 70 mm height 68
mm diameter

Max Resolution: 1 µm

Scan & Reconstruction Time: Variable (1
hour to 1 day)

2D and 3D quantitative analysis

Export Formats: Finite element (Abaqus,
Ansys), 3D animations, and 2D cross
sections (.bmp, .tiff, .jpg.)
Images and 3-D
reconstruction of
dental implants
22
Computer Modeling
Our Dell Precision T7400 graphics
workstation (dual quad-core processors,
32GB RAM, 2TB HD, 512MB graphics
accelerator) is a powerful platform for
several finite element modeling packages.
Mimics (Materialise) software can convert
3D models captured by our micro-CT
scanner, as well as a variety of medical
scanners into finite element models
suitable for export to Abaqus or ANSYS.

Rapid prototyping interface

Assign material stiffness as function of
radiolucency

3D quantitative analyses:
surface areas, and volumes
distances,

Input formats: VFF, Raw, BMP, TIFF,
DICOM, JPEG

Output formats: IGES, STL, VRML, PLY,
INP, OUT, NAS, MSH

Graph types: contour plots and vector
plots mapped onto component/interface
or graphed along length of user defined
path

Solution types: static, transient,
mechanical, thermal, coupled thermalmechanical
25DL Plus ultrasonic thickness gauge
(Panametrics-NDT)

Density, shear sound velocity, longitudinal
sound velocity

Elastic constants: Poisson’s ratio, Young’s
modulus, shear modulus, and bulk
modulus
ALTA Pro (Reliasoft) software can analyze
accelerated lifetime test data to predict
product reliability and can perform Monte
Carlo simulations to design more efficient
fatigue tests.
Abaqus FEA (Simulia) with fe-safe (Safe
Technology) software can predict the
mechanically and thermally induced stress
and microstrain distributions in a
component or surrounding an implant. The
necessary material elasticity constants are
determined using our ultrasonic pulse
apparatus and analytical balance. Fe-safe
works in conjunction with Abaqus to predict
fatigue lifetimes of components.

Calculate: stress, strain, displacement,
temperature, fatigue life, safety factor
3-D Reconstruction
23
Corrosion Testing Equipment
Gamry Series G 300 Potentiostat/
Galvanostat/ZRA

Compliance Voltage: ± 20 V

Frequency Range: 10 mHz-300 kHz

Current Range: 3nA-300mA

Oven: Temperature control to ± 1°C
Software Applications include:

DC105 (Tafel, Potentiodynamic, Cyclic
Polarization, Galvanic Corrosion,
Galvanodynamic)

EIS300 (Potentiostatic EIS, Multi-Sine
EIS, Galvanostatic EIS)
Princeton Applied Research PARSTAT
2273 Potentiostat/Galvanostat/FRA w/
20A Power Booster

Compliance Voltage: up to ± 100V

Frequency Response Analyzer: DC and
EIS analysis from 10mHz-10MHz

Current Measurement Range: 40pA to 2A (higher w/booster)

20A Power Booster: allows for higher
current applications such as battery
research, corrosion of large electrodes
electrosynthesis, and electrodeposition

Impedence Frequency Range: 10 mHz
to 1 MHz
Software Applications include:

PowerCV (Cyclic Voltametry)

PowerCORR (Tafel Plots, Linear and
Cyclic Polarization, Galvanic,
Galvanodynamic)

PowerSINE (Potentiostatic EIS, MultiSine EIS, Galvanostatic EIS)
24
Ceramic Processing
The ceramic processing laboratory contains
the equipment typically found in a dental
laboratory and allows the fabrication of a
variety of all-ceramic prostheses (powder
porcelain, pressable, glass-infiltrated, CADCAM, and sintered). Some of the
techniques, such as lost wax method and
air abrasion, are also useful in preparation
or surface treatment of metallic and other
materials for a variety of applications.
Cerec inLab 3D dental CAD-CAM system
(Sirona)




Waxelectric I waxing unit with Vario E
preheating reservoir

Restoration Types: veneers, inlays, onlays,
crowns, FPDs, and non-dental specimens
(using milling unit scanner)
Vacuum Powder Mixer Plus for investment
plaster mixing

007EX wax burnout furnace
Materials: GFRP composites, glassceramics, polycrystalline ceramics, and
clean burning “wax” (monolithic materials,
frameworks, and press-to-fit)

Media Types: glass or alumina beads

Pressure Range: 5-8 bar (73-116 psi)

Media Sizes: 50 micron (270 mesh) or
125 micron (115 mesh)
In EOS scanner for rapid 3D model
acquisition
Sintramat sintering furnace (IvoclarVivadent)

Solid-state sintering of polycrystalline
ceramics with max temperature 1600 °C
Touch & Press furnace (Dentsply Detrey)

Vacuum firing

Materials: powder porcelains, pressable
glass-ceramics, glass-infiltrated
polycrystalline ceramics

Lost wax method auxiliary equipment
Max temperature 1200 °C
Quattro IS air abrasion (sandblasting) unit
(Renfert)
USB2000 optical spectrophotometer (Ocean
Optics)

Integrating sphere for color measurement
without edge loss

Measures specular, diffuse, and specular
+ diffuse reflection

Output data: reflectance vs wavelength,
CIELAB, XYZ, and contrast ratio
(translucency)
25
Atomic Force Microscope (AFM)
Veeco Bioscope Catalyst with Veeco
NanoScope V controller
Equipped with Easy Align tip alignment
system, system isolation table, and
heating perfusion chamber.

Acceptable samples: Standard metal,
ceramic, polymer, and composite
specimens, live cells, tissues, and
bacteria.

Sample Sizes / Types: Petri dishes (35,
50, 60 mm dia, glass or plastic), cover
slips, glass slides. Samples up to 10 mm
thick. Larger samples can also fit on
sample stage.

Perfusion / closed fluid cells: Includes
50 mm perfusion cell, also includes
microcell with <60µL sealed volume
around the AFM probe, through which
fluid can be exchanged

Sample heating: Includes bio-heater
(with full PID temp control) for imaging
from RT to 40 C. “Cooled” (temps < RT)
sample temperatures can use same PID
loop with cooled fluid

X-Y, Z range scanning: 150 µm closed
loop, >180 µm open loop, >20 µm
closed loop scanning and pulling range
26
Atomic Force Microscope (AFM) cont’d.

Motorization / tip approach: X, Y, and Z
axis fully motorized. Tip approach is
motorized and controlled by software

Available imaging modes: Contact
mode, Tapping mode, ScanAssist,
Nanoindenting/scratching. All modes
scan either in air or fluid.

AFM is designed to function both as an
independent AFM as well as in
conjunction with an inverted optical
microscope such as the Olympus IX81
in our laboratory.

When using the AFM in conjunction with
an optical microscope, the Microscope
Image Registration and Overlay (MIRO)
software allows integration of optical
images (from the CCD camera on the
microscope) and AFM images.
27
CNC Vertical Milling Machine
The Haas Mini Mill is capable of
performing most common machining
operations such as profiling, slotting,
facing, pocketing, drilling, reaming, and
tapping.

7.5 hp 6000 rpm spindle

Up to 500 inch per minute feed rate

Travels: X axis: 16”, Y axis: 12”, Z axis:
10”

Table can hold up to 500 lb work piece

Mastercam Cad/Cam programming
software

Repeatable part to part accuracy and
consistency

Automatic tool changer with 10 pocket
carousel

Coolant flush minimizes heat generated
in work piece

Renishaw Wireless Intuitive Probing
System for locating and measuring

Haas machines are ISO 9001 certified
28
CNC Toolroom Lathe
The Haas Toolroom Lathe is capable of
performing most common machining
operations such as profiling, turning down
diameters, facing, threading, drilling,
reaming, and tapping.

7.5 hp 2000 rpm spindle

Quick change tool post

3 jaw scroll chuck

Max cutting diameter: 16”

Max cutting length: 30”

Mastercam Cad/Cam programming
software

Repeatable part to part accuracy and
consistency

Coolant flush minimizes heat generated
in work piece

Haas machines are ISO 9001 certified
29
Sample Preparation
TECHNICS Sputter Coater
DELTECH Glass Melting Furnace
LADD Critical Point Dryer
Box Furnaces (3)
Calcified Tissue Histology
PRO 100 Ceramic Vacuum Furnace
REICHERT-JUNG Polycut E Sledge
Microtome
Lindberg Blue 1200°C Tube Furnaces (2)
Single-zone 2” dia.
SHANDON Autosharp 5 Microtome Knife
Sharpener
Three-zone 6” dia.
STREURS Accutom– 50 Sectioning Saw
Tissue Culture Facility
LECO Grinder/Polisher
Polymer Synthesis Laboratory
LECO Low Speed Sectioning Saw (MMA)
Struers LectroPol - 5 Electropolisher
Coating Application
Struers Discotom-6 Cut-Off Saw
Allied High Tech –TechPrep grinder/
polisher with MultiPrep head
Struers Accutom-50 Sectioning Saw (2) -correction of item name
Mitutoyo 543-452B thickness gauge
Struers TegraPol Automated Polisher (2)
CHEMAT TECHNOLOGY Model KW-4A Spin
Coater
Struers Citopress-20 Mounters (2)
Materials Processing
Leica-EM ACE 600 High Vacuum Sputter
Coater
Buehler Electroetcher
Buehler Vibromet 2 Vibratory Polisher
30
Equipment Usage Rates
Hour
HalfDay
Day
Week
X-Ray Diffraction
$75
$180
$290
$715
MTS 810 / 812 or ADMET Test Systems
$75
$180
$290
$715
MTS Multi-Frame Flex Test (per frame)
$50
$105
$180
$440
TA Instruments electroforce 3220 DMA
$75
$180
$290
$715
MTS/Sintech Screw Machine
$50
$105
$180
$440
MTS 8-Station Wear Tester
Call for Quotation
MTS Mini-Frame Test / MTS Evolution
$50
$105
$180
$440
Nanoindenter
$95
$210
$355
$880
Laser Scanning Confocal Microscope
$75
$180
$290
$715
Optical & Fluorescence Microscope
$50
$105
$180
$440
$105
$260
$440
$1105
Energy Dispersive X-Ray Spectophotometer
(EDAX)
$80
$205
$335
$845
Electron Back Scattered Diffractometer (EBSD)
$80
$205
$335
$845
$55
$130
$225
$555
$95
$210
$355
$880
Laser Ablation / TGA/TMA System
$55
$130
$225
$555
Differential Thermal Analyser (DTA)
$55
$130
$225
$555
Differential Scanning Calorimeter (DSC)
$75
$180
$290
$715
SpectroMax-Arc/Spark Compositional
$95
$210
$355
$880
Micro-CT
$95
$210
$355
$880
Gel Permeation Chromatography
$55
$130
$225
$555
AFM
$95
$210
$355
$880
Gamry / Potentiostat Corrosion System
$50
$105
$180
$440
Scanning Electron Microscope (SEM)
Fourier Transform Infrared Spectrophotometer
(FTIR)
Inductively Coupled Plasma Spectrophotometer (ICP-MS)
Cerec CAD/CAM System
Mini Mill and Lathe
Fretting Corrosion System
Call for Quotation
$75
$275
31
School of Dentistry
Department of
Biomedical Materials Science
Contact:
R. Scott Williamson, Ph.D.
Director
Biomedical Materials Science
Shared Equipment Facility
[email protected]
T: 601-984-6170 | F: 601-984-6087
Department of Biomedical Materials Science
School of Dentistry
University of Mississippi Medical Center
2500 North State Street, Room D528
Jackson, MS 39216 - 4505
umc.edu/research_facilities
NT OF BIOMEDICAL MATERIALS SCIENCE
April 2017
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement