Report Date: 15/02/2013 Assessor: Marc Fitzgerald Address

Report Date: 15/02/2013 Assessor: Marc Fitzgerald Address
Report Date: 15/02/2013
Assessor: Marc Fitzgerald
Address: PALMYRA
WHITECHURCH ROAD
DUBLIN 16
BER:
104987961
MPRN:
10001284386
About this Advisory Report
Energy use in our homes is responsible for almost a quarter of Ireland's total CO2
emissions. Reducing energy use will save you money and is good for the
environment. This report provides advice on improving your BER, reducing your
energy usage and costs, while improving the comfort of your home. The improvement
measures recommended in this report are not mandatory and can be completed at
your own discretion. Some improvements may require the use of suitably qualified
installers or professional advice. All works should be completed to the relevant health
and safety standards. Where applicable, works should be completed to the relevant
Building Regulations.
In this report an associated cost and impact are provided for the recommendations
specific to your home. Costs and impacts are divided into categories and these are
defined as follows:
Low Cost are improvements that are expected to cost less than 100 euro to complete.
Medium Cost are improvements that are expected to cost 100 euro to 1,000 euro to
complete.
High Cost are improvements that are expected to cost more than 1,000 euro to
complete.
The above costs are guidelines only and actual costs will vary depending on house
size, work specification and market conditions.
Low Impact are measures that will make a small improvement in energy efficiency.
Medium Impact are measures that will make a medium improvement in energy
efficiency.
High Impact are measures that will make a large improvement in energy efficiency.
Implementing any improvement measure will reduce your energy consumption. When
implementing improvements it is sensible to prioritise those with a low cost and a high
impact first. The money saved by reducing energy usage can help to pay for the
improvement measures. Moreover apart from increasing the comfort and costs the
measures could increase the value of your home and reduce its environmental impact.
Ventilation
General Operational Advice on Ventilation
Care should always be taken to ensure a sufficient level of ventilation to maintain fresh
air levels in each room and to remove moisture, water vapour and pollutants. For
health and safety reasons it is important to ensure an adequate air supply to
combustion appliances e.g. gas, oil or solid fuel. Signs of inadequate ventilation are
persistent condensation and mould growth. If such problems exist, they should be
addressed first, since reducing ventilation may make the problem worse. In a typical
home 20% of all heat loss is through ventilation and draughts. Energy consumption
can be improved while maintaining adequate ventilation. If draught sealing is damaged
at any time make sure to replace it. When draughtproofing or making houses more
airtight, it is important to maintain recommended ventilation standards.
Radon concentrations can increase in existing houses as a result of greater
airtightness. Further information on Radon is available from the Radiological
Protection Institute of Ireland in their publication "Radon in Homes". This guide can be
downloaded from www.rpii.ie.
Chimneys
This dwelling has one or more chimneys.
The chimney(s) in this dwelling increase heat loss by allowing heated air to escape.
When making improvements it is important for safety reasons to ensure that proper
ventilation is provided in rooms with combustion appliances. There are 3 upgrade
options available to you to reduce the heat loss through the chimney(s):
(a) Installing a closed-in stove will reduce heat losses, and will also be approximately
twice as efficient as an open fire, giving the same heat for half as much fuel.
Cost: High
Impact: Medium
(b) Supplying outside air directly to the heating appliance instead of drawing heated air
from the room will reduce heat loss in the room. If possible, the appliance should be
room sealed i.e. takes its air supply directly from outside. This will eliminate all air
exchange with the room in which it is situated.
Cost: High
Impact: Low
(c) Installing a chimney damper will reduce heat losses when the fireplace is not in
use. If the chimney is never used it can be permanently sealed which involves
installing a permanent insulated panel. An adjustable vent should be incorporated into
the panel to avoid the chimney space becoming damp.
Cost: Medium
Impact: Low
Fan & Vents
This dwelling has one or more fans/vents.
The fans and vents in this dwelling increase heat loss by allowing heated air to escape
but can be important in ensuring adequate ventilation.
If there is no cover on the inside of the vents, installing controllable vent covers will
allow you to control the air flow through the vents, and so can help reduce heat loss. It
is important not to permanently close or cover over air vents as they are required to
provide ventilation for the removal of moisture, pollutants and operation of combustion
appliances. It is important for safety reasons to have proper ventilation in any room
which contains combustion appliances. For further details please refer to publication 'A
Detailed Guide to Insulating Your Home' available on www.seai.ie.
Cost: Low
Impact: Low
Draught Lobby
This dwelling has no draught lobby.
Open doors and air gaps around doorways are a source of heat loss in a dwelling.
The construction of a draught lobby/porch on the frequently used external doorways in
this dwelling would reduce these heat losses. Lobbies should be constructed to the
relevant Building Regulations. Care should be taken not to block any existing
ventilation openings inadvertently.
Cost: High
Impact: Low
Suspended Wooden Floor
This dwelling has an unsealed suspended wooden floor.
Suspended wooden floors allow air to infiltrate the dwelling.
Sealing the suspended floor(s) would reduce heat loss by increasing the air tightness.
Typically a floor is sealed with a manmade board such as plywood or oriented strand
board (OSB). A suspended wooden floor is considered sealed if all joints in the floor
(at the edges and main part of the floor) are draught sealed using membranes or
adhesives. Carpets with a good underlay or lino can have a similar impact. It is
important for health and safety to maintain proper ventilation in rooms. Suspended
timber ground floors require sub-floor ventilation to avoid dampness and wood rot.
Ventilation openings to the sub-floor space should not be blocked.
Cost: Medium
Impact: Low
Draught Stripping
This dwelling has less than 100% draught stripping.
Fitting draught sealing around external windows, doors, attic hatches, pipes, wires,
etc. which are not draught sealed will reduce unwanted ventilation which causes heat
loss and draughts in the dwelling. Letter boxes can be fitted with a letter box cover to
reduce draughts. Avoid eliminating any required ventilation which may be obstructed
inadvertently through excessive draught proofing. It is important for safety reasons to
have proper ventilation in any room which contains combustion appliances. Proper
ventilation in homes is required for the removal of pollutants and the health of
occupants. Before draught-sealing, check for signs of inadequate ventilation such as
persistent condensation and mould growth. If such problems exist, they should be
addressed first, since draught-sealing may make the problem worse. For further
details please refer to publication "A Detailed Guide to Insulating Your Home"
available on www.seai.ie
Cost: Low
Impact: Low
Ventilation System
This dwelling has natural ventilation.
No specific action is advised.
Building Elements
Floors
General Operational Advice on Floors
Floors can be a source of significant heat loss and dampness in a dwelling. For
example heat loss through the ground floor of a two storey house typically accounts
for about 10% of total heat loss. For a single storey house this figure is about 15%.
However, if a house is well insulated everywhere except for the ground floor, this
percentage will be higher. A U-Value is a measure of the heat loss through the fabric
of the building. The lower the U-Value the better and the higher the U-Value the
greater the heat loss. Floors with a U-Value greater than 0.25 could be improved in a
number of ways. A relatively simple way to reduce heat loss through a ground floor is
to lay a carpet with foam backing or a foam underlay ensuring that both carpet and
underlay are laid wall to wall. Sealing of gaps in the ground floor will help to reduce
draughts. Modern insulation methods for new houses may also be implemented in
existing houses. In some cases this would be disruptive and costly, but if work needs
to be done on the floor anyway, this is a good time to consider an insulation upgrade.
For further details please refer to publication 'A Detailed Guide to Insulating Your
Home' available on www.seai.ie
Part of the floor area in this dwelling has a U-Value of less than 0.6 and greater
than 0.25.
The insulation in this floor can be improved.
Cost: High
Impact: Low
Roofs
General Operational Advice on Roofs
Proper insulation will help retain valuable heat and improve overall comfort levels. If
insulation is disturbed or damaged at any time, e.g. in attic space, make sure to
restore or replace it.
Heat loss through an un-insulated roof of a typical house can account for up to 30% of
the total heat loss. Installing insulation will reduce this heat loss, and hence reduce the
energy demand of the dwelling. A U-Value is the measure of the heat loss through the
fabric of the building. The lower the U-Value the better and the higher the U-Value the
greater the heat loss. Modern pitched roofs or habitable roof spaces that are insulated
between the rafters, have a U-Value less than or equal to 0.2. Modern flat and pitched
roofs that are insulated at ceiling level, have a U-Value less than or equal to 0.16.
Blanket insulation, rigid board insulation or expanding foam may be used to achieve
the required insulation level. Loose beads may also be used for roofs insulated on the
ceiling. Installing roof insulation generally involves a considerable amount of work.
The attic/roof space must have adequate ventilation to prevent dampness. This is
achieved by leaving a continuous air gap along the eaves at each side. Electric cables
should not be buried under insulation. Leave clearance for recessed lights to avoid
them overheating. For further details please refer to publication ' A Detailed Guide to
Insulating Your Home' available on www.seai.ie
Part of the pitched roof insulated on the rafter or room in roof in this dwelling has a UValue of less than 0.4 and greater than 0.2.
The insulation in this roof can be improved.
Cost: High
Impact: Low
Part of the pitched roof insulated on the ceiling in this dwelling has a U-Value of less
than 0.4 and greater than 0.16.
The insulation in this roof can be improved.
Cost: Medium
Impact: Low
Walls
Heat loss through the walls can account for up to 30% of the total heat loss. This can
typically be reduced by two-thirds by insulating the walls and so reduce the energy
demand of the dwelling. A U-Value is a measure of the heat loss through the building
fabric. The lower the U-Value the better and the higher the U-Value the greater the
heat loss. Walls with a U-Value greater than 0.27 could be improved. Insulation may
be installed as cavity fill. This is where the gap between the inner and outer layers of
external walls is filled with an insulating material. If cavity insulation is not applicable or
is not technically possible, insulation may be installed internally or externally. Internal
insulation involves a layer of insulation being fixed to the inside surface of external
walls, and a suitable fire resistant finish being incorporated or applied. External solid
wall insulation is the application of an insulant and a weather-protective finish to the
outside of the wall.
For further details please refer to publication 'A Detailed Guide to Insulating Your
Home' available on www.seai.ie
Part of the wall area in this dwelling has a U-Value of greater than or equal to 1.1.
The insulation in this wall can be greatly improved.
Cost: High
Impact: High
Windows
Glass allows heat to escape more readily than most other building materials. For this
reason, it is important that the windows are as energy efficient as possible. Windows
can account for around 15% of the heat loss in your home. Installing energy efficient
windows such as low-E double glazing helps to retain heat and improves comfort
through elimination of cold window surfaces and associated downdraughts and
condensation. The use of shutters, lined curtains and blinds can improve heat
retention at night and further reduce downdraughts.
A U-Value is a measure of the heat loss through the building fabric. The lower the UValue the better and the higher the U-Value the greater the heat loss. Windows with a
heat loss greater than the current building standards (i.e. have a U-Value greater than
2) could be improved. The best benefits are achieved through replacing single glazed
windows with low-E double glazing or triple glazing.
Note that single glazing can also be improved by adding secondary glazing (installing
a secondary window and frame on the room side of the existing window).
Some of the windows in this dwelling with a U-Value of greater than or equal to 4.
The heat loss through these windows can be greatly reduced.
Cost: High
Impact: High
Some of the windows in this dwelling with a U-Value of less than 4 and greater than or
equal to 2.7.
The heat loss through these windows can be significantly reduced.
Cost: High
Impact: Medium
Doors
Heat is lost from dwellings through doors which often have relatively poor thermal
insulation compared to other elements of the building. Installing insulated doors will
reduce this heat loss, and also generally reduce draughts through air gaps at the
frames. Replacement doors, whether glazed or half glazed, should have insulated
cores. A U-Value is a measure of the heat loss through the fabric of the building. The
lower the U-Value the better and the higher the U-Value the greater the heat loss.
Doors with a U-Value greater than 2.0 could be improved. For further details please
refer to publication 'A Detailed Guide to Insulating Your Home' available on
www.seai.ie
Part of the door area in this dwelling has a U-Value of less than 4 and greater than or
equal to 2.7.
The heat loss through this door area can be significantly reduced.
Cost: Medium
Impact: Low
Hot Water
General Operational Advice on Hot Water.
Ensure that the hot water cylinder insulation is not disturbed or damaged. Incomplete
insulation increases heat loss and costs money.
A cylinder thermostat is not required for the hot water system in this dwelling.
No specific action is advised.
Hot Water Cylinder Insulation
The hot water cylinder insulation is less than 80mm.
Installing a cylinder lagging jacket of at least 80mm thickness reduces hot water
storage heat losses. If the cylinder is reaching the end of its useful life, consider
replacing it with a preinsulated cylinder model.
Cost: Low
Impact: High
Lighting
General Operational Advice on Lighting
Compact Fluorescent Lamps (CFLs) use 20% of the energy used by typical
incandescent bulbs to give the same amount of light. A 22 Watt CFL has the same
light output as a 100 Watt incandescent. LED (Light-emitting diode) lights use less
than 10% of the energy required for corresponding tungsten lights. Low energy lighting
will give highest savings in rooms that are most often used.
Lighting - Low Energy Bulbs
The low energy lighting in this dwelling is less than 50%.
Replacement of traditional light bulbs (tungsten or incandescent) with energy saving
bulbs (CFL or LED) can reduce lighting costs significantly. They also last considerably
longer than ordinary light bulbs thereby saving on replacement costs. Consider
replacing traditional light bulbs with energy saving bulbs.
Cost: Low
Impact: Medium
Space Heating
General Operational Advice on Space Heating
A reduction of 1oC on your thermostat can reduce annual space heating costs by 10%
or more. An automatic timer switch or programmer allows you to schedule the heating
duty on the hot water and heating system and to turn the system on and off as
required. Use this facility to limit the running time for the heating system to fit your
specific needs and you will save money.
Room thermostats nomally turn the boiler and heating circulation pump off when the
room temperature has reached the desired level. A room thermostat is normally
located in a living area or circulations area (hall or landing). Guide temperature
settings are 20oC for a living room and 16 - 18oC for circulation areas. However, the
most appropriate setting depends on location of the thermostat and the heating
system design. Choose the lowest setting that gives acceptable comfort conditions.
Finding the setting to suit you may take some experimentation.
Thermostatic Radiator Valves (TRVs) can be set to suit the heating requirements of
the room(s) in question.
For further details please refer to "A Detailed Guide to Home Heating
Systems" available on www.seai.ie
Dist. System losses and gains (control category)
The heating system controls in this dwelling could be improved.
If feasible, fully zoned controls (for time and temperature) should be considered to
optimise heating usage in different areas of the dwelling. A seven day programmer in
each heating zone will allow you to customise a heating schedule for each area
independently (upstairs and downstairs for example) to meet your specific heating
needs for each day of the week. This would reduce the amount of energy used and
lower your fuel bills. Independent room thermostats in each zone enable the boiler to
switch off when no heat is required.
Cost: Medium
Impact: Low
Main Heating System
General Operational Advice on Main Heating System
You should have your boiler professionally serviced at least once per year. A clean
and serviced appliance will operate more economically and will have a longer service
life.
Efficiency of Main Heating System (Gas or Oil)
This dwelling has an oil/gas main heating system. The efficiency of the boiler is less
than 70%.
If your boiler is over 15 years old and/or has an efficiency of less than 80% you should
consider upgrading it to a condensing boiler. A condensing boiler is capable of much
higher efficiencies than other types of boiler, meaning it will burn less fuel to heat this
dwelling. Boilers with an efficiency of over 90% are available on the market. While
boiler upgrades can be undertaken at your own discretion, please note that, in the
case of replacement boilers, it is a mandatory requirement under current Building
Regulations that a replacement boiler has a minimum efficiency of 86%. When an old
boiler is due for repair or replacement it is usually more cost effective to replace it with
a condensing boiler. Condensing boilers need a drain for the condensate which may
limit where they can be located. This can be borne in mind if you are considering
remodelling the room containing the existing boiler even if the existing boiler is to be
retained for the time being. Renewable or Low Carbon heat sources should also be
considered as replacements for oil or gas boilers. Two such alternatives are biomass
boilers and heat pumps. A biomass boiler burns renewable fuel such as wood pellets
and therefore is less damaging to the environment than fossil fuels. Heat pumps
transfer the heat stored in the ground or outside air into the home for heating or hot
water. Biomass boilers could also be considered as a low carbon dioxide direct
alternative to a gas or oil boiler. Biomass boilers usually require more fuel storage
space than gas/oil boilers. Heat pumps could also be used to improve energy
consumption levels but are not as easily retrofitted, particularly when the dwelling
does not have underfloor heating.
Cost: High
Impact: High
Thermal Solar Panels
This dwelling has no solar water heating.
Solar Panels, also known as "collectors", can be fitted to a building's roof. They use
the sun's heat to warm water, or another fluid, which passes through the panel. The
fluid is then fed to a heat store (e.g. a hot water tank) and helps provide hot water
directly or can provide a source of hot water for the central heating system in the
dwelling. Solar panels work throughout daylight hours, even if the sky is overcast and
there is no direct sunshine. Solar panels can also be used to meet some space
heating demand. Ideally the panels should be located on an unshaded, south facing
roof at a tilt angle of 30°- 45° to the horizontal. Space will be need to accommodate
an appropriately sized cylinder for the system and a thermal mixing (anti-scald) valve
should also be installed.
Cost: High
Impact: Medium
PV Solar System or Microturbine
This dwelling has no Photo Voltaics (PV) or Microturbine installed.
A solar photovoltaic (PV) system is one which converts light directly into electricity via
panels placed on the roof with no waste and no emissions. This electricity is used
throughout the home to supplement the electricity purchased from an energy supplier.
Ideally the panels should be located on an unshaded, south facing roof at a tilt angle
of 30°- 45° to the horizontal. Batteries can be used to store electricity from the PV
array or wind turbine. However, this increases the installation and equipment cost as
well as maintenance cost.
A Micro-windturbine is a small turbine placed on the property which uses wind to
generate electricity. The electricity is used throughout the home to supplement the
electricity from an energy supplier. The turbine should not be subject to wind shelter.
To be effective, the turbine should be at a height well clear of nearby roofs and other
obstructions.
Cost: High
Impact: High
General Advice on Energy Use in Your Home
The way we use energy in our homes can reduce energy consumption. Some simple
everyday measures will save money, improve comfort and reduce your impact on the
environment. Some of these are outlined below.
Appliances: New kitchen appliances carry an energy rating label which rates energy
efficiency on a scale of A to G. When buying new appliances look for A rated products
which are more energy efficient and cost less to run. Do not under or overload
appliances, such as dishwashers and washing machines. For washing machines, a
40ºC rather than a 60ºC wash cycle cuts electricity use by approximately a third.
(Modern washing powders and detergents can work equally effectively at lower
temperatures.) Defrost your freezer regularly to save energy and extend the operating
life. Equipment on standby uses up to 20% of the energy it would use when fully on.
When an appliance is not in use, turn it off fully.
Lighting: Avail of natural daylight whenever possible and avoid leaving electric lights
switched on in unoccupied rooms. All lighting lamps carry an energy label similar to
that on appliances (i.e. an A to G label) so always choose the most efficient to suit
your particular needs.
Useful Links and Sources of Further Information
Useful energy saving tips are available on www.change.ie (Tel. 1890 242643) and
www.powerofone.ie. For specific queries on BER please contact SEAI on 1890734237
or by email [email protected] There are many useful documents available on The
Sustainable Energy Authority of Ireland's (SEAI) website www.seai.ie
The most recent Technical Guidance Documents for the Building Regulations and
other supporting documents are available from the Department of Environment,
Heritage and Local Government website www.environ.ie on the link to Building
Standards (Tel. 1890 202021). Some of these documents are listed below.
Technical Guidance Document Part L Conservation of Fuel and Energy - Dwellings;
Technical Guidance Document Part J Heat Producing Appliances;
Technical Guidance Document Part F Ventilation.
When performing building works it is important to take the correct health and safety
measures. Useful health and safety information on ventilation, radon and combustion
devices can be found on the Carbon Monoxide safety website:
www.carbonmonoxide.ie Tel. 1850797979 and The Radiological Protect Institute of
Ireland website www.rpii.ie/radon Tel. 01 269 77 66.
Please consider the environment before printing this document
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement