Ferroli RGA ST 40.2, 50.2, 60.2, 70.2, 80.2, 90.2, 100.2, 115.2, 130.2, 145.2, 160.2, 180.2, 200.2 Air-water chiller Technical manual
Below you will find brief information for Air-water chiller RGA ST 40.2, Air-water chiller RGA ST 50.2, Air-water chiller RGA ST 60.2, Air-water chiller RGA ST 70.2, Air-water chiller RGA ST 80.2. This series of air-water chillers and heat pumps satisfies the cooling and heating requirements of residential plants of medium size.
PDF
Download
Document
Advertisement
Advertisement
-FRIEND A R E IG RA N T G RGA ST RE F S Y E O L C AIR-WATER CHILLERS AND HEAT PUMPS FOR OUTDOOR INSTALLATION TECHNICAL MANUAL 1 2 SUMMARY THIS MANUAL IS DIVIDED INTO SECTIONS. THEIR NAMES APPEAR IN THE HEADING OF EACH PAGE. GENERAL FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Presentation of the unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Unit identification code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Description of the component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 ACCESSORIES AND OPTIONAL EQUIPMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 "Storing and hydronic kit" options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Mechanical options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 TECHNICAL DATA AND PERFORMANCE - BASE VERSION (VB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 NET NOMINAL performances - Base setting up (AB) - Standard plants - EUROVENT certified data . . . . . . . . . . . . . . . . . . . . 12 NET NOMINAL performances - Low noise setting up (AS) - Standard plants - EUROVENT certified data . . . . . . . . . . . . . . . . 13 NET NOMINAL performances - Exta low noise setting up (AX) - Standard plants - EUROVENT certified data . . . . . . . . . . . . . 13 COOLING performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 HEATING performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Correction factor for the use of glycol in heating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Correction factor for the use of glycol in cooling mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Fouling factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 TECHNICAL DATA AND PERFORMANCE - DESUPERHEATER VERSION (VD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 NET NOMINAL performances - IR unit - Standard plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 NET NOMINAL performances - IP unit - Standard plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Desuperheaters VD performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Corrective factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 TECHNICAL DATA AND PERFORMANCE - RECOVERY VERSION (VR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 NET NOMINAL performances - IR unit - Standard plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Total recovery VR performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 BR - BP UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Corrective factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 NOISE LEVELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 ELECTRICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 OPERATING LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 WATER PRESSURE DROP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Plant side exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Desuperheaters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Total recovery exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 WORKING HEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Standard working head pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 High working head pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DIMENSIONAL AND PHYSICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Dimensional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 The manufacturer declines all responsibility for any inaccuracies in this manual due to printing or typing errors. The manufacturer reserves the right to modify the products contents in this catalogue without previous notice. 3 4 GENERAL FEATURES Presentation of the unit This series of air-water chillers and heat pumps satisfies the cooling and heating requirements of residential plants of medium size. All the units are suitable for outdoor installation and can be applied to fan coil plants, radiant floor plants and high efficiency radiators plants. The refrigerant circuit, contained in a compartment protected from the air flow to simplify the maintenance operations, is equipped with scroll compressors mounted on damper supports, shell and tube heat exchanger with threaded or victaulic fittings (according to the model), thermostatic expansion valve (standard for IR) or electronic expansion valve (standard for IP / option for IR), reverse cycle valve, dehydrator filter, axial fans with safety protection grilles, finned coil made of copper pipes and aluminium louvered fins with subcooling section. The circuit is protected by a safety gas valve, high and low pressure switches and differential pressure switch on the heat exchanger. The heat exchanger and all the hydraulic pipes are thermally insulated in order to avoid condensate generation and to reduce thermal losses. All the units can be equipped with variable speed fans control that allows the units to operate with low outdoor temperatures in cooling and high outdoor temperature in heating and permits to reduce noise emissions in such operating conditions. The low noise acoustic setting up (AS) is obtained, starting from the base setting up (AB), reducing the rotational speed of the fans and mounting sound jackets on the compressors and the technical compartment is clad with soundproofing material of suitable thickness. The eXtra low noise acoustic setting up (AX) is obtained, starting from the low noise setting up (AS), further reducing the rotational speed of the fans and using finned coil with bigger surface. All the units are supplied with a management and control electrical panel containing general switch, phase presence and correct sequence controller, microprocessor controller with display and all the other electrical components with IP54 minimum protection degree. All the units are accurately built and individually tested in the factory. Only electric and hydraulic connections are required for installation. 5 GENERAL FEATURES Unit identification code The codes that identify the units and the meaning of the letters used are described below. RGA ST IP 40.2 VB AB 0M5 Unit type IR - Unit suitable for hydronic plant installation operating as chiller IP - Unit suitable for hydronic plant installation operating as reversible heat pump BR - Unit suitable for hydronic plant installation with brine solutions operating as chiller BP - Unit suitable for hydronic plant installation with brine solutions operating as reversible heat pump Power supply 5 - 400 V - 3 - 50 Hz Operating range M - Medium temperature. The unit is suitable to be installed in temperate climates. A - Medium temperature. The unit is suitable to be installed in tropical climates. Refrigerant type Unit model 0 -R410A N° compressors Unit version VB - Base version VD-Desuperheaters version (with plate heat exchanger) VR-Total recovery version (with plate heat exchanger) Acoustic setting up AB - Base setting up AS - Low noise setting up AX - Extra low noise setting up The available special versions are described below: VB: Standard unit. VD: Version with Desuperheater (available forboth IR units and IP units) Produces cold water in the same way as the standard version plus hot water from 30 to 70°C at the same time. This is achieved by installing a water-refrigerant gas heat exchanger between the compressor and coils in order to recover 25 to 30% of the heating capacity that would otherwise be dispersed in the air. It helps to remind that hot water production is possible only in combination with cold-hot water production in the main heat exchanger and it is subordinated by it. VR: Total Heat Recovery unit Produces cold water as in the standard version plus hot water at a temperature of 30 to 55°C at the same time. This is achieved thanks to a water-refrigerant gas heat exchanger that totally recovers the heating capacity that would otherwise be dispersed in the air. The total heat recovery function is enabled and disabled by means of a valve on the compressor delivery of each circuit: when the temperature of the water that enters the recuperator drops, the valve switches the hot gas flow from the condensing coils to the recovery heat exchanger. On the other hand, when the temperature of the water reaches the set-point, the valve shuts off the heat recuperator and switches the hot gas flow to the condensing coils. It helps to remind that hot water production is possible only in combination with cold water production in the main heat exchanger and it is subordinated by it. 6 GENERAL FEATURES Description of the component 1. Fans. Axial type, they are contained in a sheet nozzle and are equipped with a safety grille, scythe-shaped blades increase the efficiency and reduce the noise level. The fans are directly coupled to the single-phase motor by means of an external rotor. Thermal protection against operating faults is installed inside the winding. The fans rotational speed can be modulated continuosly by an analogue device or an inverter (option) to control the condensation pressure (in cooling) and the evaporation pressure (in heating) in order to extend the operating limits of the unit and to reduce noise emissions. Optionally are available Electronically Commutated (EC) fans, which ensure maximum energy efficiency at reduced speed of rotation. 2. Electric control and monitoring panel. It contains all the power, control and security components necessary to guarantee the unit to work properly. The unit is managed by a microprocessor controller to which all the electrical loads and the control devices are connected. The user interface, placed on the frontal panel, allows to view and to modify, if necessary, all the parameters of the unit. This is housed in a metal casing in which the various electrical components are positioned on one metal plate. 2a. The power section includes: • Main door-locking circuit-breaker. • Fuse-holder that can be isolated with protection fuse triad for each compressor, or thermal magnetic circuit breakers (option). • Fuse-holder that can be isolated with protection fuse for compressor oil heaters and antifreeze (if installed), or thermal magnetic circuit breakers (option). • Control contactor for each compressor or soft starters (option). • Fuse-holder that can be isolated with protection fuse triad for fans, or thermal magnetic circuit breakers (option). • Protection fuse for the fans, or thermal magnetic circuit breakers (option). • Thermal magnetic contactor switch to protect the pump (if the Hydronic Kit is installed). • Phase presence and sequence monitoring device on power supply, or voltage monitor and sequence meter (accessory). 2b. The auxiliary section includes: • Fuses on the auxiliary transformer, or thermal magnetic circuit breakers (option). • Electromagnetic noise filter • Adjusting fan speed board (option) • Insulating and safety transformer to power the auxiliary circuit. 2c. The microprocessor monitoring section includes: MODE • User interfacing terminal with display. • On-off key. • Operating mode selector key. °C • Compressor on-off display LED. • Operational mode LED • Antifreeze heaters activated indicator LED. • Fans on-off dislay LED • Pumps on-off display LED • Check-control with fault code display • Defrosting, alarm, economy, stand-by LED. Control system main functions: temperature control of the water produced by the unit, compressor and pump operating hour counter, timing and cycling of start-ups, input parameters by keyboard, alarms management, smart defrosting control and operating mode change (only IP unit), dynamic setpoint (climatic control), scheduling and integrative heaters control. If you installed the hydronic kit these functions are enabled: antifreeze with pump, start-up cycle after prolonged inactivity (antisticking), if the hydronic kit installed has 2 pumps there is a cycling between each pump to ensure an equivalent lifetime, with inverter modulating hydronic kit the water flow of the plant can be adjusted. Digital input functions: low pressure, high pressure, high temperature on compressor supply, phase presence and sequence monitoring device on power supply, differential water pressure control, compressors thermal protection, fans thermal protection, pumps thermal protection (only if installed MP accessory), ON/OFF and remote operating mode change, demand limit and Economy function, recovery enabling (only for the VR Version), recovery Pump Thermal Protective (only for the VR Version), recovery differential water pressure control (only for the VR Version). Digital output functions: compressor start-up, pump start-up (only with MP accessory), plate heat exchanger electrical heater, remote general alarm, 4-way valve (only IP unit), integrative heaters and clean contact on compressors start-up, recovery valve management (only for the VR Version), recovery pump management (only for the VR Version). Analogic input functions: in and out water temperature, coil temperature probe, external air temperature probe (if present), in and out recovery water temperature (only for the VR Version). Analogic output functions: continuous adjustment of fans rotating speed (option for AB and standard for AS and AX acoustic setting up), continuous adjustment of pump rotating speed (only if hydronic kit with modulating pump is installed). 7 GENERAL FEATURES 3. Compressors. They are the SCROLL type with orbiting coil equipped with built-in thermal protection and oil heater (accessory for IR, as standard for IP). The AS unit includes: a soundproofing jacket for the compressors, to reduce noise level. All units are equipped with two compressors connected in parallel (1 single cooling circuit) which can operate at the same time (100% cooling power) or individually (50% of the cooling power), thus adapting to the different thermal loads of the system supplied. 4. Frame, supporting structure and lateral panels are made of galvanized and painted sheet-steel (colour RAL 7035) to guarantee good resistance to the weather. Accessibility to internal parts is possible removing the frontal panel, for other manteinances also the lateral panel can be removed. 1 5. Evaporator shell and tube type, it is installed in a shell of heat-insulating material to prevent the formation of condensation and heat exchanges towards the outside. Standard supply also includes antifreeze heater a differential pressure switch on the water circuit to avoid the risk of freezing if the water flow is shut off for some reason. 6. Condensing coils, the aluminium finned pack type with shaped profile to increase the heat exchange coefficient and with copper pipes arranged in staggered rows. A sub-cooling section is integrated into the lower part. 2 6 5 4 3 Hydraulic and cooling circuit components 7.One-way valves (IP unit only), allowing the refrigerant gas to pass into the appropriate exchangers, depending on the operating cycle. 8. 4-way cycle reversal valve (IP unit only), reverses the flow direction of the refrigerant gas as the summer/winter operating mode is changed. 9. Safety valve. Installed on the delivery pipe of the compressors, this operates if extreme faults should occur in the plant. 10. Fluid valve (accessory). Ball type, this allows the gas flow on the fluid line to be turned on and off. Along with the cock on the compressor delivery, it allows the components of the fluid line to be subjected to extraordinary maintenance work and the compressors to be replaced if necessary (without discharging the refrigerant gas from the unit). 11. Compressor delivery valve (accessory). Ball type, allows the gas delivered to the compressors to be turned on and off. 12. Dehydrator filter. Mechanical type. Retains impurities and traces of moisture in the circuit. Hermetic type for mod. 40÷100 or a cartridge type for mod. 115÷200. 15. High pressure switch (n°2). With fixed setting. Are is installed on the delivery pipe and blocks the compressors if the operating pressures exceed the tolerated values. If it activates, the unit will block and can only be restarted by resetting via the user interface terminal. 17. Water differential pressure switch. This is standard supply and is installed on the connections between the water inlet and outlet of the exchanger. It stops the unit if it activates. 18. Pressure taps: 1/4 " SAE (7/16" UNF) type with flow regulator. Allow the operating pressure of the system to be measured: compressor delivery, lamination component inlet, compressor intake. 19. Pressure taps: 5/16 " SAE type with flow regulator. Allow the charge/discharge of the gas from the system, precisely from compressor outlet an expansion valve inlet. 20. Electrical heating elements to heat the compressor oil. "Belt" type (accessory for IR, as standard for IP). These activate when the compressor turns off and keep the temperature of the oil sufficiently high so as to prevent refrigerant gas from migrating during these pauses. Low pressure switch (N°1 of series IR version, N°2 of series IP version). With fixed setting. It is installed on the suction pipe and blocks the compressors if the operating pressures drop below the tolerated values. Automatically resets as the pressure increases. If it activates frequently, the unit will block and can only be restarted by resetting via the user interface terminal. Expansion valve: - Thermostatic valve (standard for IR and BR unit) with external equalizer, this supplies the evaporator correctly, keeping the selected overheating degree at a steady level. - Electronic valve (standard for IP and BP unit, optional for IR and BR unit) supplies the evaporator correctly, keeping the selected overheating degree at a more steady level; ensures a faster response to load changes and superior stability which translates into increased efficiency at partial loads. Fluid and humidity indicator. Signals when fluid passes through the circuit, indicating that the refrigerant gas charge is correct. The fluid indicator light also indicates the amount of moisture in the refrigerant gas by changing colour. Fluid receiver (IP unit only), this is a plenum tank that accounts for variations to the refrigerant gas charge the unit must supply as the summer/winter operating mode varies. Fluid separator (IP unit only), on the compressor intake to protect against possible fluid back-flows. 8 GENERAL FEATURES 9 19 18 11 17 15 12 10 20 Desuperheater unit VD (available for both IR units and IP units) Hydraulic and chilling circuit components: - Desuperheater. Specially designed for the specific version. Plate type, made of stainless steel (AISI 316). It is installed within a shell of thermal barrier insulating material to prevent heat exchanges towards the outside. Standard supply also includes an electric antifreeze heater to prevent the parts from freezing during the winter, when the system remains at a standstill (if not drained). - Water safety valve.On the heat recovery inlet pipe. It acts whenever faulty service leads to an operating pressure in the plumbing system that exceeds the valve opening value (Fig.1). - Water drain taps for emptying the exchangers and pipes of the unit dedicated to heat recovery (Fig. 1). - Air vent. Accessed by removing the front panels. It consists of a manually operated valve installed in the highest part of the water pipes. To use in conjunction with the water drain cocks situated in the rear part of the unit, for emptying the exchangers and pipes dedicated to heat recovery. Total Heat Recovery unit VR (only available for IR units) Hydraulic and cooling circuit components: - Heat recovery exchanger. Specially designed for the specific version. Plate type, made of stainless steel (AISI 316). It is installed within a shell of thermal barrier insulating material to prevent heat dispersion towards the outside. Standard supply also includes an electric antifreeze heater to prevent the parts from freezing during the winter, if is it not drained. - Differential water pressure switch. Installed on exchanger. It disables the heat recovery version if activated owing to lack of water flowing through the recovery exchangers. - Heat recovery management valve. This delivers refrigerant to the condensing coils or heat recovery exchanger, depending on demands for hot water, and into the appropriate exchangers depending on whether hot water is required or not. - Fluid receiver. This is a plenum tank that accounts for the refrigerant charge variations required by the unit as the operating modes change (condensing in air or in water). - One-way valves. Make the refrigerant obligatorily pass through the appropriate heat exchangers (coils / heat exchanger), depending on the operating mode. 9 KIT M(1-2)P AM 2P KIT M(1-2)P PS 2P ACCESSORIES AND OPTIONAL EQUIPMENT VE VE "Storing and hydronic kit" optionsVS SF M MKT SS Pipe kit without tank M1P SS 2P STD 1 Standard pump Storing and hydronic kit SP SF M PPS/SF AV S Allows the circulation of the water on the plant side. M1P SS 2PSHP1 F RM 1 High head pump SA P P VU RA AV VU AV IN SA VU Allows the circulationSPof the water on SF the plant side and guarantees a higher available RM plants. RA static head, suitable for high pressure drop IN the circulation of the water on the plant side with the possibility to set the rotaAllows F tional speed of the pump in order to get the requested flow rate without the necessity to install other setting devices. SA M1PM SS 2P STD F 1 Standard modulating pump SA AV This accessory consists of steel pipes insulated with thermal barrier material and allows OUT the water inlet/outlet connection to be routed outside the unit. OUT S VS PPS/SF VU P P M1PM SS 2P HP1 1 Standard modulating high head pump Allows the circulation of the water on the plant side, ensuring a higher available static head, suitable for high pressure drop plants, with the possibility to set the rotational speed of the pump in order to get the requested flow rate without the necessity to install other setting devices. M2P SS 2P STD 2 Standard pumps Allows the circulation of the water on the plant side and includes a second pump installed as a backup to the first. TT UBI KIM TO MD(1U-L2O )PKPIS 2P M2P SS 2P HP1 2 High head pumps SENZA SERBATOIO Allows the circulation of the water on the plant side, ensuring a higher available static MKO UL(1O-2K)P ITSTSU2BPI CON ITDM head, suitable for high pressure drop plants, and includes a second pump installed as S E R B ATOIO a backup to the first. VE Pipe kit M SF M PPS/SF PPS/SF VS SF SP ST P VU SA RM MSF AV AV AV S SP Standard pump VS SF OUT PPS/SF PPS/SF SF M VS AV OUT IN SF VU RM SA SA VE M Expansion valve SP F SA VU SA P DESCRIPTION VICTAULIC CONNECTIONS FILTER GAUGE PUMP 1/4" SAE ODPRESSURE ULOTOKBE ISOCKET TUSED TUBAS IC ONWITH CORE PPS M / SF AIR PURGE SERBSUCTION ATOIOBALL VALVE RA Options AV IN ITEM AV F M P OUT OUT P AV F AV S S P ST SP RA VS only in case of 2 pumps ITEM RM S SA SF ST VE VS VU RA AV IN IN VU SA P DESCRIPTION DISCHARGE BALL VALVE TANK DRAIN WATER VALVE AIR VENT VALVE HEAT EXCHANGER EXPANSION VESSEL SAFETY VALVE CHECK VALVE VS SF PPS/SF Thermostatic AV (standard for IR and BR unit) with external equalizer, this supplies the evaporator correctly, OUTselected overheating degree at a steady level. keeping the Electronic (standard for IP and BP unit, optional for IR and BR unit) supplies the evaporator correctly, keeping the selected overheating degree at a more steady level; ensures a faster response to load changes and superior stability which translates into increased efficiency at partial loads. S SA Soft starter AV Reduces the compressor start current of about 40%. Compressor power factor correction Allows toIN reduce the phase shift between the absorbed current and the power supply voltage keeping it above the value of 0,91. On-off Fans control Electrical protecion load Drain pan kit 10 SA (standard for AB unit) the condensation pressure (in cooling) and the evaporation pressure (in heating) is regulated by on-off cycles. Modulating control (condensation / evaporation control) (standard for AS and AX unit, optional for AB unit) The fans rotational speed can be modulated continuosly by an adjusting fan speed device to control the condensation pressure (in cooling) and the evaporation pressure (in heating) in order to extend the operating limits of the unit, to reduce noise emissions and improve energy efficiency. Modulating control (condensation / evaporation control) with EC fans (optional for AB, AS and AX unit) The fans rotational speed can be modulated continuosly by EC fans (Electronic Commutation) to control the condensation pressure (in cooling) and the evaporation pressure (in heating) in order to extend the operating limits of the unit, to reduce noise emissions and maximize energy efficiency. Fuses Allows to protect the electrical loads with fuses. Thermal magnetic Allows to protect the electrical loads with thermal magnetic circuit breakers simplifying the maintenance and reload operations. Provides a pan under the coil to drain the condensing water, fitted with 1/2" outlet connection positioned opposite to the electric control panel. ACCESSORIES AND OPTIONAL EQUIPMENT Accessories Supplied accessories Rubber vibration dampers Allow to reduce the transmission to the unit support plane of the mechanical vibrations generated by the compressor and by the fans in their normal operating mode, the degree of isolation is about 85% Spring vibration dampers Allow to reduce the transmission to the unit support plane of the mechanical vibrations generated by the compressor and by the fans in their normal operating mode, the degree of isolation is about 90% Water paddle flow switch Allows to detect the water flow lack through the plate heat exchanger and operates as an integration of the protecion offered by the differential pressure switch (standard). Remote control It is suitable for wall mounting and reports all the control and visualization functions available on the user interface placed on the unit. It therefore allows the complete remote control of the unit. Programmer clock It allows the unit to be turned on and off according to a set program, through the digital input available on the unit wiring board (remote stand by). Modbus serial interface on RS485 It allows to communicate with the unit controller and to view the operating conditions of the unit through Modbus communication protocol. The RS485 serial line ensures the signal quality up to distances of about 1200 meters (that can be extended by means of proper repeaters). Phase sequence and voltage controller It checks not only the presence and correct order of the power supply phases but also the voltage level on each phase and avoid the unit to operate with voltage levels outside the permitted limits. Victaulic connections This accessory consists of steel pipes that allows the water inlet/outlet to be connected straight inside the unit. Factory mounted accessories Coil protection grilles Protects the external surface of the finned coil. High and low pressure gauges 2 pressure gauges allow visualization of high and low refrigerant gas pressure. Coil shut off valves It consists of two ball valves installed before and after the coil that allow for the pump-down maintenance. Outdoor air sensor External air probe mounted near coil allows smart defrosting, climatic variation of setpoint and reducing the external air temperature below a setpoint. High temperature thermostat Two thermostats in series on compressors outlet pipes preserve operation not allowing temperature to rise up than a specified non adjustable value. Low temperature kit (di serie per unità IP e BP, optional per unità IR e BR) sono costituite da resistenze carter di riscaldamento olio compressori. Modbus serial interface on RS485 It allows to communicate with the unit controller and to view the operating conditions of the unit through Modbus communication protocol. The RS485 serial line ensures the signal quality up to distances of about 1200 meters (that can be extended by means of proper repeaters). Phase sequence and voltage controller It checks not only the presence and correct order of the power supply phases but also the voltage level on each phase and avoid the unit to operate with voltage levels outside the permitted limits. ATC Advanced temperature control It consists of a properly calibrated pressure switch that partializes the unit preventing the high pressure alarm. Pressure transducer It consists of a transducer, which allows operation of the control condensation, evaporation and defrost by reading the pressure. Mechanical options Electrical options For finned coils with special treatment (copper fins, tin-copper plated, acrylic, epoxy or hydrophilic painting) please contact our technical department. For other voltages, please contact our technical department enables heat pump stop 11 TECHNICAL DATA AND PERFORMANCE - BASE VERSION (VB) Technical data Frame Model Power supply Refrigerant Type Refrigerant circuit Quantity Compressor Type Quantity Power steps Oil charge CP1A Oil charge CP1B Plant side heat exchanger Type Quantity Water volume Source side heat exchanger Type Quantity Frontal surface Fans Type Quantity Diameter Nominal rotational speed AB Nominal air flow rate AB Nominal rotational speed AS Nominal air flow rate AS Nominal rotational speed AX Nominal air flow rate AX Plant side hydraulic circuit Expansion vessel volume Expansion vessel precharge Expansion vessel maximum pressure Safety valve set Units with standard pump (option) Type F.L.A. Maximum total current input F.L.I. Maximum total power input 1 50.2 60.2 70.2 400 - 3+N - 50 40.2 3,3 3,3 3,3 3,3 3,3 3,3 9,5 3,3 3,3 80.2 3,3 3,3 - 1 - scroll 2 0 - 50 - 100 3,3 5,3 5,3 4,7 5,3 5,3 n° % l l 5,3 5,3 5,3 5,3 axial 3 5,90 2 900 5,3 5,3 29,2 Finned coil 1 4,72 3,38 630 R410A shell and tube 1 21,7 15,3 2 2 3 4 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. V-ph-Hz 400 - 3 - 50 5,3 5,3 5,3 5,3 37,8 n° l 7,41 n° m2 3 800 4 20330 20330 29050 28100 27680 41460 40100 38790 47400 62190 59820 82920 79760 16950 16950 24210 23420 23070 34550 33420 32330 39540 51830 49850 69100 66470 13560 13560 19370 18740 18460 27640 26740 25870 31630 41460 39880 55280 53180 12 49,4 26,2 57,0 30,2 650 24 150 1000 43,9 23,4 750 62,4 32,8 73,3 38,0 l kPa kPa kPa 800 600 Centrifugal pump 80,0 94,5 102 46,6 57,6 63,1 110 68,6 n° mm rpm m3/h rpm m3/h rpm m3/h 129 79,2 142 86,8 168 100 179 107 A kW Data declared according to EN 14511. The values are referred to units without options and accessories. NET NOMINAL performances - Base setting up (AB) - Standard plants - EUROVENT certified data Model 40.2 50.2 60.2 70.2 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. Cooling A35W7 ( source : air in 35°C d.b. / plant : water in 12°C out 7°C ) IR Cooling capacity Power input EER ESEER Water flow rate plant side Pressure drops plant side 45,0 15,7 2,87 3,93 2,16 23 53,0 18,8 2,82 3,90 2,56 33 58,1 20,8 2,79 3,85 2,80 28 68,2 24,1 2,83 3,91 3,29 38 78,1 28,0 2,79 3,84 3,76 49 90,3 32,5 2,78 3,93 4,35 43 Cooling A35W7 ( source : air in 35°C d.b. / plant : water in 12°C out 7°C ) IP 101 35,9 2,81 3,86 4,87 54 Cooling capacity 43,5 52,4 57,0 66,7 73,6 88,5 98 Power input 15,5 19,0 20,7 24,1 27,0 32,3 35,7 EER 2,81 2,76 2,75 2,77 2,73 2,74 2,75 ESEER 3,84 3,82 3,80 3,80 3,73 3,87 3,78 Water flow rate plant side 2,09 2,53 2,75 3,21 3,54 4,26 4,73 Pressure drops plant side 21 32 27 36 42 43 50 Heating A7W45 ( source : air in 7°C d.b. 6°C w.b. / plant : water in 40°C out 45°C ) Heating capacity 48,1 58,1 63,2 74,5 83,0 99,6 110 Power input 15,6 19,1 20,9 24,4 27,6 33,5 35,9 COP 3,08 3,04 3,02 3,05 3,01 2,97 3,06 Water flow rate plant side 2,28 2,75 2,99 3,53 3,93 4,72 5,21 Pressure drops plant side 26 38 32 43 52 52 61 111 39,9 2,78 3,93 5,35 65 125 45,1 2,77 3,82 6,02 45 142 51,5 2,76 3,89 6,83 57 157 57,1 2,75 3,77 7,55 69 179 64,6 2,77 3,80 8,60 48 198 71,6 2,77 3,82 9,56 59 109 39,8 2,74 3,87 5,26 62 121 44,5 2,72 3,73 5,83 42 137 50,3 2,72 3,84 6,59 54 153 56,3 2,72 3,72 7,36 67 177 63,5 2,79 3,82 8,50 46 196 71,2 2,75 3,79 9,46 57 125 41,1 3,04 5,92 77 136 44,9 3,03 6,45 53 154 51,8 2,97 7,31 66 173 56,9 3,04 8,17 82 197 65,1 3,03 9,32 56 216 71,7 3,01 10,2 66 EER (Energy Efficiency Ratio) = ratio of the total cooling capacity to the effective power input of the unit ESEER (European Seasonal Energy Efficiency Ratio) COP (Coefficient Of Performance) = ratio of the total heating capacity to the effective power input of the unit HRE (Heat Recovery Efficiency) = ratio of the total capacity of the system (heating plus cooling capacity) to the effectice power input 12 kW kW W/W W/W l/s kPa kW kW W/W W/W l/s kPa kW kW W/W l/s kPa TECHNICAL DATA AND PERFORMANCE - BASE VERSION (VB) NET NOMINAL performances - Low noise setting up (AS) - Standard plants Model 40.2 50.2 60.2 70.2 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. Cooling A35W7 ( source : air in 35°C d.b. / plant : water in 12°C out 7°C ) IR Cooling capacity Power input EER ESEER Water flow rate plant side Pressure drops plant side 43,6 16,3 2,67 3,81 2,10 22 51,5 19,4 2,65 3,79 2,48 31 56,3 21,6 2,61 3,74 2,71 26 66,2 24,9 2,66 3,80 3,19 36 75,7 29,2 2,59 3,70 3,65 44 - EUROVENT certified data 87,6 33,7 2,60 3,81 4,21 41 97,8 37,3 2,62 3,73 4,71 50 Cooling A35W7 ( source : air in 35°C d.b. / plant : water in 12°C out 7°C ) IP Cooling capacity 41,8 50,4 54,8 64,0 70,6 85,0 94,4 Power input 16,0 20,0 21,8 25,5 28,6 34,1 37,7 EER 2,61 2,52 2,51 2,51 2,47 2,49 2,50 ESEER 3,69 3,60 3,58 3,58 3,52 3,65 3,55 Water flow rate plant side 2,01 2,43 2,64 3,08 3,40 4,09 4,54 Pressure drops plant side 20 30 25 33 39 39 46 Heating A7W45 ( source : air in 7°C d.b. 6°C w.b. / plant : water in 40°C out 45°C ) Heating capacity 46,9 56,5 61,7 72,5 80,9 97,0 107 Power input 14,9 18,2 20,0 23,2 26,4 31,9 34,2 COP 3,15 3,10 3,09 3,13 3,06 3,04 3,13 Water flow rate plant side 2,23 2,68 2,92 3,44 3,83 4,60 5,06 Pressure drops plant side 24 36 31 41 49 50 59 108 41,4 2,61 3,83 5,21 60 121 46,8 2,59 3,69 5,83 42 138 53,4 2,58 3,79 6,64 54 152 59,2 2,57 3,66 7,31 65 174 67,0 2,60 3,69 8,36 45 193 74,3 2,60 3,70 9,27 55 105 42,0 2,50 3,67 5,06 58 116 47,0 2,47 3,52 5,59 39 131 53,1 2,47 3,60 6,31 49 147 59,5 2,47 3,52 7,07 62 170 67,1 2,53 3,60 8,17 43 189 75,3 2,51 3,57 9,08 53 122 39,2 3,11 5,78 75 133 42,8 3,11 6,31 50 150 49,4 3,04 7,12 62 168 54,3 3,09 7,98 78 192 62,1 3,09 9,08 53 211 68,5 3,08 9,99 64 kW kW W/W W/W l/s kPa kW kW W/W W/W l/s kPa kW kW W/W l/s kPa Data declared according to EN 14511. The values are referred to units without options and accessories. NET NOMINAL performances - Exta low noise setting up (AX) - Standard plants Model 40.2 50.2 60.2 70.2 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. Cooling A35W7 ( source : air in 35°C d.b. / plant : water in 12°C out 7°C ) IR Cooling capacity Power input EER ESEER Water flow rate plant side Pressure drops plant side 42,7 16,3 2,62 3,96 2,05 21 50,3 19,8 2,54 3,88 2,42 30 55,1 22,1 2,49 3,80 2,65 25 64,7 25,4 2,55 3,89 3,12 34 74,0 29,9 2,47 3,76 3,56 44 85,6 32,8 2,61 4,09 4,12 39 Cooling A35W7 ( source : air in 35°C d.b. / plant : water in 12°C out 7°C ) IP - EUROVENT certified data 95,6 38,3 2,50 3,79 4,60 48 Cooling capacity 41,0 49,3 53,7 62,8 69,3 83,3 92,5 Power input 17,1 21,1 23,0 26,8 30,1 35,9 39,8 EER 2,40 2,34 2,33 2,34 2,30 2,32 2,32 ESEER 3,62 3,56 3,55 3,55 3,49 3,62 3,53 Water flow rate plant side 1,97 2,37 2,58 3,02 3,33 4,00 4,45 Pressure drops plant side 19 28 24 32 37 38 44 Heating A7W45 ( source : air in 7°C d.b. 6°C w.b. / plant : water in 40°C out 45°C ) Heating capacity 45,2 54,5 59,4 70,0 78,0 93,5 104 Power input 14,2 17,3 19,0 22,2 25,1 30,4 32,7 COP 3,18 3,15 3,13 3,15 3,11 3,08 3,18 Water flow rate plant side 2,15 2,58 2,81 3,32 3,70 4,43 4,92 Pressure drops plant side 23 34 28 38 47 45 54 105 42,6 2,46 3,86 5,06 58 118 48,1 2,45 3,74 5,69 41 134 54,3 2,47 3,86 6,45 52 149 60,3 2,47 3,76 7,17 63 169 68,8 2,46 3,73 8,12 42 188 76,2 2,47 3,75 9,03 52 102 44,3 2,30 3,60 4,92 53 114 49,5 2,30 3,50 5,49 38 129 56,0 2,30 3,60 6,21 47 144 62,7 2,30 3,49 6,93 58 166 70,8 2,34 3,56 7,98 41 185 79,4 2,33 3,53 8,89 50 118 37,3 3,16 5,59 69 128 40,8 3,14 6,07 47 145 47,1 3,08 6,88 59 162 51,7 3,13 7,69 73 184 59,1 3,11 8,74 49 203 65,1 3,12 9,60 59 kW kW W/W W/W l/s kPa kW kW W/W W/W l/s kPa kW kW W/W l/s kPa Data declared according to EN 14511. The values are referred to units without options and accessories. EER (Energy Efficiency Ratio) = ratio of the total cooling capacity to the effective power input of the unit ESEER (European Seasonal Energy Efficiency Ratio) COP (Coefficient Of Performance) = ratio of the total heating capacity to the effective power input of the unit HRE (Heat Recovery Efficiency) = ratio of the total capacity of the system (heating plus cooling capacity) to the effectice power input 13 TECHNICAL DATA AND PERFORMANCE - BASE VERSION (VB) COOLING performances The graphs allow to get the corrective factors to be applied to the nominal performances in order to obtain the real performances in the selected operating conditions. For the "Operation limits" of the unit refer to the section limits. The reference nominal condition is: A35W7 (source : air in 35°C d.b. / plant : water in 12°C out 7°C) Cooling capacity Potenza frigo Outlet air temperature (°C D.B.) 1.6 1.5 1.4 F G 1.3 E B C D A = 20°C A B = 25°C C = 30°C D = 35°C E = 40°C F = 45°C G = 50°C 1.2 1.1 A35W7 1.0 0.9 0.8 0.7 5 6 7 8 9 10 11 12 13 14 15 16 17 1 Outlet water temperature [°C] Total power input Outlet air temperature (°C D.B.) Pot ass TOTALE in raffreddamen A = 20°C 1.4 B = 25°C 1.3 E F G D C C = 30°C A B D = 35°C E = 40°C F = 45°C G = 50°C 1.2 1.1 A35W7 1.0 0.9 0.8 5 6 7 8 9 10 11 12 13 14 15 16 17 Outlet water temperature [°C] The standard performances refer to a 5°C temperature difference between the water entering and leaving the heat exchanger and to operation of the unit with all fans at nominal or maximum speed. A 0.44 x 10-4 m2 K/W fouling factor has also been considered with the unit installed at zero meters above sea level (Pb = 1013mbar). 14 1 TECHNICAL DATA AND PERFORMANCE - BASE VERSION (VB) HEATING performances The graphs allow to get the corrective factors to be applied to the nominal performances in order to obtain the real performances in the selected operating conditions. For the "Operation limits" of the unit refer to the section limits. The reference nominal condition is: A7W45 (source : air in 7°C d.b. 6°C w.b. / plant : water in 40°C out 45°C) Heating capacity Potenza termica Outlet air temperature (°C D.B. / W.B.) A = -5,5 / -6°C -6 1.3 B = -1,3 / -2°C -2 A B C D E F C = 2,8 2 / 2°C G 1.2 D = 7 /6 6°C 9 E = 10,1 / 9°C 12 F = 13,2 / 12°C 15 G = 16,4 /15°C 1.1 A7W45 1.0 0.9 0.8 0.7 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 Outlet water temperature [°C] Pot Ass TOTALE in riscaldamen Total power input Outlet air temperature (°C D.B. / W.B.) A = -5,5 / -6°C 1.3 B = -1,3 / -2°C C = 2,8 / 2°C 1.2 1.1 B A 1.0 D C F E G D = 7 / 6°C E = 10,1 / 9°C F = 13,2 / 12°C G = 16,4 /15°C -6 -2 2 6 9 A7W45 12 15 0.9 0.8 0.7 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 Outlet water temperature [°C] The standard performances refer to a 5°C temperature difference between the water entering and leaving the heat exchanger and to operation of the unit with all fans at nominal or maximum speed. A 0.44 x 10-4 m2 K/W fouling factor has also been considered with the unit installed at zero meters above sea level (Pb = 1013mbar). NOTE For air temperatures of less than 7°C, the heating capacity is declared without considering the effect of the defrosting, strictly correlated with the humidity in the outdoor air. 15 TECHNICAL DATA AND PERFORMANCE - BASE VERSION (VB) Correction factor for the use of glycol in heating mode ETHYLENE GLYCOL with water produced between 30 ÷ 55 º C. Percentage Of glycol in mass / volume 0/0 10 / 8,9 20 / 18,1 30 / 27,7 40 / 37,5 0 -3,2 -8 -14 -22 CCPT - Heating capacity 1,000 0,995 0,985 0,975 0,970 CCPA - Power input 1,000 1,010 1,015 1,020 1,030 CCQA - Water flow rate 1,000 1,038 1,062 1,091 1,127 CCDP - Water pressure drop 1,000 1,026 1,051 1,077 1,103 0/0 10 / 9,6 20 / 19,4 30 / 29,4 40 / 39,6 0 -3,3 -7 -13 -21 CCPT - Heating capacity 1,000 0,990 0,975 0,965 0,955 CCPA - Power input 1,000 1,010 1,020 1,030 1,040 CCQA - Water flow rate 1,000 1,018 1,032 1,053 1,082 CCDP - Water pressure drop 1,000 1,026 1,051 1,077 1,103 Freezing point [°C] PROPYLENE GLYCOL with water produced between 30 ÷ 55ºC. Percentage Of glycol in mass / volume Freezing point [°C] Based on DESIGN CONDITIONS extract Heating Capacity (kWtr). Based on type and percentage of glycol extract CCPT, CCQA, CCDP. Then calculate. Pt_brine = kWtr x CCPT Pass_CP_brine = kWa x CCPA Then calculate brine flow rate to the heat recovery exchanger: Q_brine [l/s]=CCQA x (Pt_brine [kW]*0.86/∆T_brine)/3.6 where ΔT_brine is the temperature difference outlet-intlet heat recovery exchanger: ∆T_brine=Twout_brine-Twin_brine With this brine flow rate enter in abscissa on the water pressure drop of the heat recovery then you have Dp_app. Finally you can calculate the actual pressure drop of the brine on heat recovery: Dp_brine =CCDP x Dp_app 16 TECHNICAL DATA AND PERFORMANCE - BASE VERSION (VB) Correction factor for the use of glycol in cooling mode ETHYLENE GLYCOL with water produced between 5 ÷ 20 º C. Percentage Of glycol in mass / volume 0/0 10 / 8,9 20 / 18,1 30 / 27,7 40 / 37,5 0 -3,2 -8 -14 -22 CCPF - Cooling capacity 1,00 0,99 0,98 0,97 0,95 CCPA - Power input 1,00 1,00 0,99 0,99 0,98 CCQA - Water flow rate 1,00 1,04 1,08 1,12 1,16 CCDP - Water pressure drop 1,00 1,08 1,16 1,25 1,35 10 / 9,6 20 / 19,4 30 / 29,4 40 / 39,6 Freezing point [°C] PROPYLENE GLYCOL with water produced between 5 ÷ 20 º C. Percentage Of glycol in mass / volume 0/0 Freezing point [°C] 0 -3,3 -7 -13 -21 CCPF - Cooling capacity 1,00 0,98 0,96 0,94 0,92 CCPA - Power input 1,00 0,99 0,98 0,95 0,93 CCQA - Water flow rate 1,00 1,01 1,03 1,06 1,09 CCDP - Water pressure drop 1,00 1,05 1,11 1,22 1,38 Based on outdoor air temperature and leaving water temperature of the evaporator (DESIGN CONDITIONS) extract Cooling Capacity (kWf) and Compressors Power Input (kWa). Based on type and percentage of glycol extract CCPF, CCPA, CCQA, CCDP. Then calculate. Pf_brine = kWf x CCPF Pass_CP_brine = kWa x CCPA Then calculate brine flow rate of the evaporator: Q_brine_evap [l/s]=CCQA x (Pf_brine [kW]*0.86/ΔT_brine)/3.6 where ΔT_brine is the difference inlet-outlet evaporator water temperature: ΔT_brine=Twin_evap_brine-Twout_evap_brine With this brine flow rate enter in abscissa on the water pressure drop of the evaporator then you have Dp_app. Finally you can calculate the actual pressure drop of the brine on evaporator side: Dp_evap_brine =CCDP x Dp_app Fouling factors The performances supplied with the tables are referred to a fouling factory = 0.44x10-4 m² K/W . For different values of the fouling factory, use the reduction coefficients reported in the following table. Fouling factory (m² K / W) (m² K / W) (m² K / W) 0,44 x 10-4 0,86 x 10-4 1,72 x 10-4 F.c. PF 1,00 0,98 0,93 Evaporator F.c. PA 1,00 0,99 0,98 F.c. PF: Correction Factor for Cooling capacity F.c. PA: Correction Factor for compressor power Input 17 TECHNICAL DATA AND PERFORMANCE - DESUPERHEATER VERSION (VD) Heat exchanger specifications Model 40.2 Type of recovery exchanger Quantity Max. operating pressure on wet side Total water content of recovery exchangers 0,55 50.2 0,55 60.2 0,55 70.2 0,55 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. 0,55 Brazed plates 1 600 0,75 0,75 1,20 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. 1,20 1,20 1,20 1,50 1,50 N° kPa l NET NOMINAL performances - IR unit - Standard plants Base setting up AB Model IR 40.2 50.2 60.2 70.2 Cooling A35W7 - W45 (source : air in 35°C d.b. / plant : water in 12°C out 7°C / Recovery : water in 40°C out 45°C ) Cooling capacity 46.8 55.1 60.3 71.0 81.1 93.8 105 115 130 148 163 185 Total power input 15.3 18.3 20.3 23.4 27.3 31.8 35.1 38.9 44.0 50.3 55.8 63.0 EER 3.05 3.00 2.98 3.03 2.97 2.95 2.99 2.96 2.95 2.94 2.92 2.94 HRE 3.93 3.86 3.84 3.88 3.83 3.80 3.86 3.85 3.83 3.81 3.80 3.82 Water flow rate 2.25 2.66 2.91 3.42 3.91 4.52 5.06 5.54 6.26 7.12 7.84 8.93 25 36 30 41 52 47 59 69 50 62 76 51 Water pressure drop Recovered heating capacity 13.5 15.7 17.6 20.0 23.6 27.1 30.4 34.4 38.4 44.0 49.3 55.4 Recovered water flow rate 0.65 0.75 0.84 0.96 1.13 1.29 1.45 1.64 1.83 2.10 2.36 2.65 Recovered water pressure drop 6 9 11 14 19 15 18 11 14 18 22 18 206 69.9 2.95 3.83 9.94 62 61.3 2.93 21 kW kW W/W W/W l/s kPa kW l/s kPa Low noise setting up AS Model IR 40.2 50.2 60.2 70.2 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. Cooling A35W7 - W45 (source : air in 35°C d.b. / plant : water in 12°C out 7°C / Recovery : water in 40°C out 45°C ) Cooling capacity 45.4 53.5 58.6 68.8 78.8 91.0 101 112 126 144 158 181 Total power input 15.9 19.0 21.0 24.3 28.3 32.9 36.3 40.4 45.6 52.0 57.7 65.3 EER 2.86 2.82 2.79 2.84 2.78 2.76 2.79 2.78 2.76 2.77 2.73 2.76 HRE 3.71 3.64 3.62 3.66 3.61 3.59 3.62 3.63 3.61 3.61 3.59 3.61 Water flow rate 2.18 2.58 2.82 3.32 3.79 4.38 4.87 5.40 6.07 6.93 7.60 8.70 Water pressure drop 24 34 29 38 49 45 54 65 115 59 71 49 Recovered heating capacity 13.5 15.7 17.6 20.0 23.6 27.1 30.4 34.4 38.4 44.0 49.3 55.4 Recovered water flow rate 0.65 0.75 0.84 0.96 1.13 1.29 1.45 1.64 1.83 2.10 2.36 2.65 Recovered water pressure drop 6 9 11 14 19 15 18 11 14 18 22 18 200 72.4 2.77 3.61 9.65 59 61.3 2.93 21 kW kW W/W W/W l/s kPa kW l/s kPa Extra low noise setting up AX Model IR 40.2 50.2 60.2 70.2 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. Cooling A35W7 - W45 (source : air in 35°C d.b. / plant : water in 12°C out 7°C / Recovery : water in 40°C out 45°C ) Cooling capacity 44.3 52.2 57.2 67.3 76.9 88.9 99 109 123 139 155 176 Total power input 16.0 19.4 21.6 24.7 29.1 32.0 37.3 41.5 46.8 52.9 58.9 67.0 EER 2.77 2.70 2.65 2.72 2.64 2.78 2.66 2.64 2.63 2.63 2.63 2.62 HRE 3.62 3.51 3.47 3.53 3.45 3.63 3.48 3.47 3.45 3.46 3.47 3.45 Water flow rate 2.13 2.52 2.76 3.24 3.70 4.28 4.78 5.26 5.92 6.69 7.45 8.46 Water pressure drop 22 32 27 36 47 43 52 62 22 55 69 45 Recovered heating capacity 13.5 15.7 17.6 20.0 23.6 27.1 30.4 34.4 38.4 44.0 49.3 55.4 Recovered water flow rate 0.65 0.75 0.84 0.96 1.13 1.29 1.45 1.64 1.83 2.10 2.36 2.65 Recovered water pressure drop 6 9 11 14 19 15 18 11 14 18 22 18 Data declared according to EN 14511. The values are referred to units without options and accessories. EER (Energy Efficiency Ratio) = ratio of the total cooling capacity to the effective power input of the unit ESEER (European Seasonal Energy Efficiency Ratio) COP (Coefficient Of Performance) = ratio of the total heating capacity to the effective power input of the unit HRE (Heat Recovery Efficiency) = ratio of the total capacity of the system (heating plus cooling capacity) to the effectice power input 18 195 74.3 2.63 3.46 9.41 56 61.3 2.93 21 kW kW W/W W/W l/s kPa kW l/s kPa TECHNICAL DATA AND PERFORMANCE - DESUPERHEATER VERSION (VD) Heat exchanger specifications Model 40.2 Type of recovery exchanger Quantity Max. operating pressure on wet side Total water content of recovery exchangers 0,55 50.2 0,55 60.2 0,55 70.2 0,55 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. 0,55 Brazed plates 1 600 0,75 0,75 1,20 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. 1,20 1,20 1,20 1,50 1,50 N° kPa l NET NOMINAL performances - IP unit - Standard plants Base setting up AB Model IP 40.2 50.2 60.2 70.2 Cooling A35W7 - W45 (source : air in 35°C d.b. / plant : water in 12°C out 7°C / Recovery : water in 40°C out 45°C ) Cooling capacity 45.3 54.5 59.3 69.3 76.5 92.1 102 113 126 143 159 183 Total power input 15.1 18.5 20.1 23.5 26.4 31.5 34.9 38.7 43.4 49.1 54.9 62.1 EER 3.00 2.94 2.94 2.95 2.90 2.92 2.93 2.92 2.90 2.91 2.89 2.95 HRE 3.86 3.76 3.79 3.78 3.77 3.75 3.77 3.78 3.76 3.77 3.75 3.80 Water flow rate 2.18 2.63 2.86 3.34 3.68 4.43 4.92 5.45 6.07 6.88 7.64 8.84 23 35 29 38 47 45 54 67 47 59 73 50 Water pressure drop Recovered heating capacity 13.0 15.2 17.0 19.4 22.9 26.2 29.2 33.2 37.1 42.4 47.5 52.4 Recovered water flow rate 0.62 0.73 0.81 0.93 1.09 1.25 1.40 1.59 1.77 2.03 2.27 2.50 Recovered water pressure drop 6 8 10 13 18 14 17 10 13 17 21 16 204 69.5 2.94 3.77 9.84 61 58.1 2.78 19 kW kW W/W W/W l/s kPa kW l/s kPa Low noise setting up AS Model IP 40.2 50.2 60.2 70.2 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. Cooling A35W7 - W45 (source : air in 35°C d.b. / plant : water in 12°C out 7°C / Recovery : water in 40°C out 45°C ) Cooling capacity 43.4 52.3 56.9 66.6 73.4 88.3 98 109 121 136 153 177 Total power input 15.7 19.6 21.3 24.7 27.8 33.3 36.8 41.0 45.8 51.7 57.9 65.4 EER 2.77 2.68 2.67 2.69 2.64 2.66 2.67 2.67 2.65 2.63 2.64 2.70 HRE 3.60 3.45 3.47 3.48 3.46 3.44 3.46 3.48 3.46 3.45 3.46 3.50 Water flow rate 2.09 2.52 2.74 3.21 3.53 4.25 4.72 5.26 5.83 6.55 7.36 8.50 Water pressure drop 21 32 27 36 42 43 50 62 111 54 67 46 Recovered heating capacity 13.0 15.2 17.0 19.4 22.9 26.2 29.2 33.2 37.1 42.4 47.5 52.4 Recovered water flow rate 0.62 0.73 0.81 0.93 1.09 1.25 1.40 1.59 1.77 2.03 2.27 2.50 Recovered water pressure drop 6 8 10 13 18 14 17 10 13 17 21 16 196 73.4 2.67 3.47 9.46 56 58.1 2.78 19 kW kW W/W W/W l/s kPa kW l/s kPa Extra low noise setting up AX Model IP 40.2 50.2 60.2 70.2 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. Cooling A35W7 - W45 (source : air in 35°C d.b. / plant : water in 12°C out 7°C / Recovery : water in 40°C out 45°C ) Cooling capacity 42.6 51.3 55.8 65.2 72.0 86.6 96 106 119 134 150 173 Total power input 16.6 20.5 22.4 26.1 29.3 35.0 38.7 43.1 48.2 54.6 61.2 69.0 EER 2.56 2.50 2.50 2.50 2.46 2.47 2.48 2.47 2.47 2.46 2.45 2.50 HRE 3.34 3.24 3.26 3.24 3.24 3.22 3.24 3.24 3.24 3.23 3.23 3.26 Water flow rate 2.04 2.47 2.69 3.14 3.46 4.17 4.62 5.11 5.73 6.45 7.21 8.31 Water pressure drop 21 31 26 34 42 41 48 58 21 52 63 44 Recovered heating capacity 13.0 15.2 17.0 19.4 22.9 26.2 29.2 33.2 37.1 42.4 47.5 52.4 Recovered water flow rate 0.62 0.73 0.81 0.93 1.09 1.25 1.40 1.59 1.77 2.03 2.27 2.50 Recovered water pressure drop 6 8 10 13 18 14 17 10 13 17 21 16 192 77.3 2.48 3.23 9.22 54 58.1 2.78 19 kW kW W/W W/W l/s kPa kW l/s kPa Data declared according to EN 14511. The values are referred to units without options and accessories. EER (Energy Efficiency Ratio) = ratio of the total cooling capacity to the effective power input of the unit ESEER (European Seasonal Energy Efficiency Ratio) COP (Coefficient Of Performance) = ratio of the total heating capacity to the effective power input of the unit HRE (Heat Recovery Efficiency) = ratio of the total capacity of the system (heating plus cooling capacity) to the effectice power input NOTE : THE HEATING CAPACITY RECOVERED BY THE DESUPERHEATER EXCLUSIVELY REFERS TO UNITS OPERATING IN THE COOLING MODE. 19 TECHNICAL DATA AND PERFORMANCE - DESUPERHEATER VERSION (VD) Desuperheaters VD performances The graphs allow to get the corrective factors to be applied to the nominal performances in order to obtain the real performances in the selected operating conditions. The reference nominal condition is: A35W7 - 45 (source : air in 35°C d.b. / plant : water in 12°C out 7°C / Recovery : water in 40°C out 45°C ) Potenza recuperata VD Recovered capacity VD Outlet air temperature (°C D.B.) A = 20°C 1.5 B = 25°C 1.4 A B 1.3 1.2 1.1 C = 30°C C D = 35°C D E E = 40°C F = 45°C F A35W7 - 45 1.0 25 0.9 35 30 40 0.8 45 20 0.7 0.6 0.5 0.4 0.3 0.2 30 35 40 45 50 55 Recovery outlet water temperature [°C] 60 65 70 The standard performances refer to a 5°C temperature difference between the water entering and leaving the heat exchanger and to operation of the unit with all fans at nominal or maximum speed. A 0.44 x 10-4 m2 K/W fouling factor has also been considered with the unit installed at zero meters above sea level (Pb = 1013mbar). 20 TECHNICAL DATA AND PERFORMANCE - DESUPERHEATER VERSION (VD) Corrective factors On the water leaving temperature of the desuperheater, extract from the graphs the correction factors that have to be applied to the cooling capacity and power input. Es. water leaving temperature of the desuperheater = 50°C Cooling capacity PfVD= Pf x CPfVD → PfVD= Pf x 1,035 Power input PaVD= Pa x CPaVD → PaVD= Pa x 0,975 Cooling capacity coefficient Coefficiente Potenza Frigorifera 1,060 1,055 1,050 1,045 1,040 1,035 1,030 1,025 1,020 1,015 1,010 1,005 1,000 25 30 35 40 45 50 55 60 65 70 75 65 70 75 Recovery outlet water temperature [°C] Compressor power input coefficient Coefficiente Potenza Assorbita Compressori 1,000 0,995 0,990 0,985 0,980 0,975 0,970 0,965 0 960 0,960 0,955 0,950 25 30 35 40 45 50 55 60 Recovery outlet water temperature [°C] 21 TECHNICAL DATA AND PERFORMANCE - RECOVERY VERSION (VR) Heat exchanger specifications Model 40.2 Type of recovery exchanger Quantity Max. operating pressure on wet side Total water content of recovery exchangers 3,61 50.2 3,61 60.2 4,56 70.2 5,42 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. 6,27 Brazed plates 1 600 5,46 5,93 6,86 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. 7,49 8,74 9,67 10,9 12,6 N° kPa l NET NOMINAL performances - IR unit - Standard plants Base setting up AB Model 40.2 50.2 60.2 70.2 Cooling A35W7 - W45 (source : air in 35°C d.b. / plant : water in 12°C out 7°C / Recovery : water in 40°C out 45°C ) IR Cooling capacity Total power input EER HRE Water flow rate Water pressure drop Recovered heating capacity Recovered water flow rate Recovered water pressure drop 47 13.9 3.36 7.67 2.25 25 60 2.87 35 55 16.9 3.25 7.46 2.66 36 71 3.40 49 60 18.4 3.28 7.52 2.91 30 78 3.72 41 71 21.4 3.31 7.58 3.42 43 91 4.37 45 81 25.3 3.20 7.35 3.91 52 105 5.02 50 94 27.9 3.36 7.67 4.52 50 120 5.73 48 105 31.1 3.38 7.71 5.06 59 135 6.45 52 115 35.0 3.29 7.52 5.54 69 148 7.07 47 130 40.0 3.25 7.45 6.26 50 168 8.03 52 148 44.4 3.33 7.61 7.12 64 190 9.08 51 163 185 206 49.9 55.3 62.1 3.26 3.35 3.32 7.47 7.65 7.59 7.84 8.93 9.94 76 52 64 210 238 265 10.00 11.40 12.70 52 55 55 kW kW 40.2 50.2 60.2 70.2 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. W/W W/W l/s kPa kW l/s kPa Low noise setting up AS Model Cooling A35W7 - W45 (source : air in 35°C d.b. / plant : water in 12°C out 7°C / Recovery : water in 40°C out 45°C ) IR Cooling capacity Total power input EER HRE Water flow rate Water pressure drop Recovered heating capacity Recovered water flow rate Recovered water pressure drop 47 13.9 3.36 7.67 2.25 25 60 2.87 35 55 16.9 3.25 7.46 2.66 36 71 3.40 49 60 18.4 3.28 7.52 2.91 30 78 3.72 41 71 21.4 3.31 7.58 3.42 43 91 4.37 45 81 25.3 3.20 7.35 3.91 52 105 5.02 50 94 27.9 3.36 7.67 4.52 50 120 5.73 48 105 31.1 3.38 7.71 5.06 59 135 6.45 52 115 35.0 3.29 7.52 5.54 69 148 7.07 47 130 40.0 3.25 7.45 6.26 50 168 8.03 52 148 44.4 3.33 7.61 7.12 64 190 9.08 51 163 185 206 49.9 55.3 62.1 3.26 3.35 3.32 7.47 7.65 7.59 7.84 8.93 9.94 76 52 64 210 238 265 10.00 11.40 12.70 52 55 55 kW kW 40.2 50.2 60.2 70.2 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 U.M. W/W W/W l/s kPa kW l/s kPa Extra low noise setting up AX Model IR Cooling A35W7 - W45 (source : air in 35°C d.b. / plant : water in 12°C out 7°C / Recovery : water in 40°C out 45°C ) Cooling capacity 47 55 60 71 81 94 105 115 130 148 163 185 206 Total power input 13.9 16.9 18.4 21.4 25.3 27.9 31.1 35.0 40.0 44.4 49.9 55.3 62.1 EER 3.36 3.25 3.28 3.31 3.20 3.36 3.38 3.29 3.25 3.33 3.26 3.35 3.32 HRE 7.67 7.46 7.52 7.58 7.35 7.67 7.71 7.52 7.45 7.61 7.47 7.65 7.59 Water flow rate 2.25 2.66 2.91 3.42 3.91 4.52 5.06 5.54 6.26 7.12 7.84 8.93 9.94 25 36 30 43 52 50 59 69 50 64 76 52 64 Water pressure drop Recovered heating capacity 60 71 78 91 105 120 135 148 168 190 210 238 265 Recovered water flow rate 2.87 3.40 3.72 4.37 5.02 5.73 6.45 7.07 8.03 9.08 10.00 11.40 12.70 Recovered water pressure drop 35 49 41 45 50 48 52 47 52 51 52 55 55 Data declared according to EN 14511. The values are referred to units without options and accessories. EER (Energy Efficiency Ratio) = ratio of the total cooling capacity to the effective power input of the unit ESEER (European Seasonal Energy Efficiency Ratio) COP (Coefficient Of Performance) = ratio of the total heating capacity to the effective power input of the unit HRE (Heat Recovery Efficiency) = ratio of the total capacity of the system (heating plus cooling capacity) to the effectice power input 22 kW kW W/W W/W l/s kPa kW l/s kPa TECHNICAL DATA AND PERFORMANCE - RECOVERY VERSION (VR) Total recovery VR performances The graphs allow to get the corrective factors to be applied to the nominal performances in order to obtain the real performances in the selected operating conditions. The reference nominal condition is: A35W7 - 45 (source : air in 35°C d.b. / plant : water in 12°C out 7°C / Recovery : water in 40°C out 45°C ) Recovered capacity VR Recovery outlet water temperature (°C) A = 55°C 1.4 B = 50°C 1.3 A B C D C = 45°C E D = 40°C E = 35°C 1.2 1.1 A35W7 - 45 1.0 0.9 0.8 5 6 7 8 9 10 11 12 13 14 15 16 17 Evaporator outlet water temperature [°C] The standard performances refer to a 5°C temperature difference between the water entering and leaving the heat exchanger and to operation of the unit with all fans at nominal or maximum speed. A 0.44 x 10-4 m2 K/W fouling factor has also been considered with the unit installed at zero meters above sea level (Pb = 1013mbar). 23 BR - BP UNIT Corrective factors Correction factors to apply to the basic version data. ETHYLENE GLYCOL Percentage Of glycol in mass / volume Freezing point [°C] Produced water temperature CCPF - Cooling capacity CCPA - Power input CCQA - Water flow rate CCDP - Pressure drop Percentage Of glycol in mass / volume Freezing point [°C] Produced water temperature CCPF - Cooling capacity CCPA - Power input CCQA - Water flow rate CCDP - Pressure drop Percentage Of glycol in mass / volume Freezing point [°C] Produced water temperature CCPF - Cooling capacity CCPA - Power input CCQA - Water flow rate CCDP - Pressure drop 4 0,912 0,967 1,071 1,090 4 0,899 0,960 1,106 1,140 4 0,884 0,880 1,150 1,190 2 0,855 0,957 1,072 1,095 2 0,842 0,950 1,107 1,145 2 0,827 0,870 1,151 1,195 0 0,798 0,947 1,073 1,100 0 0,785 0,940 1,108 1,150 0 0,770 0,860 1,153 1,200 -2 0,738 0,927 1,075 1,110 20 / 18,1 -8 -4 0,683 0,897 1,076 1,120 -6 - -8 - -10 - -12 - -2 0,725 0,920 1,109 1,155 30 / 27,7 -14 -4 0,670 0,890 1,110 1,160 -6 0,613 0,870 1,111 1,175 -8 0,562 0,840 1,112 1,190 -10 - -12 - -2 0,710 0,840 1,154 1,210 40 / 37,5 -22 -4 0,655 0,810 1,155 1,220 -6 0,598 0,790 1,157 1,235 -8 0,547 0,760 1,158 1,250 -10 0,490 0,724 1,159 1,269 -12 0,437 0,686 1,161 1,290 -2 0,690 0,900 1,039 1,130 20 / 19,4 -7 -4 0,641 0,875 1,040 1,140 -6 - -8 - -10 - -12 - -2 0,680 0,888 1,069 1,200 30 / 29,4 -13 -4 0,630 0,865 1,069 1,210 -6 0,583 0,838 1,068 1,255 -8 0,536 0,810 1,067 1,300 -10 - -12 - PROPYLENE GLYCOL Percentage Of glycol in mass / volume Freezing point [°C] Produced water temperature CCPF - Cooling capacity CCPA - Power input CCQA - Water flow rate CCDP - Pressure drop Percentage Of glycol in mass / volume Freezing point [°C] Produced water temperature CCPF - Cooling capacity CCPA - Power input CCQA - Water flow rate CCDP - Pressure drop 4 0,874 0,945 1,037 1,110 4 0,869 0,935 1,072 1,160 2 0,807 0,935 1,038 1,115 2 0,799 0,923 1,071 1,175 0 0,740 0,925 1,039 1,120 0 0,729 0,910 1,070 1,190 Percentage Of glycol in mass / volume 40 / 39,6 Freezing point [°C] -21 Produced water temperature 4 2 0 -2 -4 -6 CCPF - Cooling capacity 0,848 0,784 0,719 0,670 0,620 0,570 CCPA - Power input 0,865 0,855 0,845 0,820 0,795 0,773 CCQA - Water flow rate 1,116 1,114 1,112 1,110 1,108 1,107 CCDP - Pressure drop 1,230 1,275 1,320 1,375 1,430 1,500 Based on leaving water temperature of the evaporator and condensing temperature = 7°C extract Cooling Capacity Input (kWa). Based on type and percentage of glycol extract CCPF, CCPA, CCQA, CCDP. Then calculate. Pf_brine = kWf x CCPF Pass_CP_brine = kWa x CCPA Then calculate brine flow rate: Q_brine_evap [l/s]=CCQA x (Pf_brine [kW]*0.86/DT_brine)/3.6 where DT_brine is the difference between inlet-outlet evaporator water temperature: DT_brine=Twin_evap_brine-Twout_evap_brine With this brine flow rate enter in abscissa on the water pressure drop of the evaporator then you have Dp_app. Finally you can calculate the actual pressure drop of the brine on evaporator side: Dp_evap_brine =CCDP x Dp_app 24 -8 0,520 0,750 1,105 1,570 (kWf) and -10 -12 0,478 0,438 0,714 0,680 1,103 1,101 1,642 1,724 Compressors Power NOISE LEVELS Open field Q=2 The noise levels refer to units operating in the nominal conditions (A35W7), due to a change of external air temperature noise levels may change to ensure proper functioning of the unit within operating range. The acoustic pressure levels are calculated 1/ 5 / 10 meters away from the outer surface of the unit operating in the free field and resting on a reflecting surface (directional factor of 2). SWL = Sound power levels, with reference to 1x10-12 W. The Total sound power level in dB(A) measured in compliance with ISO 9614 standards, is certified according to the Eurovent certification program. Eurovent certification (E) exclusively refers to the Total Sound Power in db(A), which is therefore the only binding acoustic specification (the values of the Octave bands in the table are indicative). SPL = Sound pressure levels, with reference to 2x10-5 Pa. The sound pressure levels are values calculated by applying the ISO-3744 relation (Eurovent 8/1). Base setting up AB MOD. 40.2 50.2 60.2 70.2 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 63 85,4 85,4 89,4 91,2 91,2 92,2 92,2 92,2 92,4 94,2 94,2 92,4 92,4 125 88,3 88,3 87,0 88,9 88,9 89,9 89,9 89,9 90,0 91,9 91,9 90,1 90,1 250 84,6 84,6 84,8 86,4 86,4 87,4 87,4 87,4 87,8 89,4 89,4 88,6 88,6 SWL (dB) Octave bands (Hz) 500 1000 79,8 76,3 79,8 76,3 80,3 77,4 82,3 78,0 82,3 78,0 83,3 79,0 83,3 79,0 83,3 79,0 83,3 80,4 85,3 81,0 85,3 81,0 86,0 83,2 86,0 83,2 250 81,0 81,0 82,6 83,6 83,6 84,6 84,6 84,6 84,8 86,4 86,4 87,4 87,4 SWL (dB) Octave bands (Hz) 500 1000 77,0 73,5 77,0 73,5 77,8 74,3 78,8 75,3 78,8 75,3 79,8 76,3 79,8 76,3 79,8 76,3 80,3 77,4 82,3 78,0 82,3 78,0 83,3 79,0 83,3 79,0 2000 67,0 67,0 67,8 68,8 68,8 69,8 69,8 69,8 73,8 71,6 71,6 72,6 72,6 4000 64,0 64,0 59,2 60,2 60,2 61,2 61,2 61,2 65,3 64,0 64,0 65,0 65,0 8000 52,0 52,0 50,3 51,3 51,3 52,3 52,3 52,3 56,0 55,6 55,6 56,6 56,6 dB 91 91 90 91 91 92 92 92 93 94 94 95 95 SWL (dB) Octave bands (Hz) 500 1000 74,8 71,0 74,8 71,0 76,0 72,0 77,0 73,5 77,0 73,5 77,8 74,3 77,8 74,3 77,8 74,3 78,8 75,3 79,8 76,3 79,8 76,3 80,3 77,4 80,3 77,4 2000 65,5 65,5 67,0 67,0 67,0 67,8 67,8 67,8 68,8 69,8 69,8 73,8 73,8 4000 59,4 59,4 62,0 64,0 64,0 59,2 59,2 59,2 60,2 61,2 61,2 65,3 65,3 8000 53,6 53,6 52,0 52,0 52,0 50,3 50,3 50,3 51,3 52,3 52,3 56,0 56,0 dB 88 88 90 91 91 90 90 90 91 92 92 93 93 SWL 2000 69,8 69,8 73,8 71,6 71,6 72,6 72,6 72,6 76,8 74,6 74,6 77,8 77,8 4000 61,2 61,2 65,3 64,0 64,0 65,0 65,0 65,0 68,3 67,0 67,0 71,2 71,2 8000 52,3 52,3 56,0 55,6 55,6 56,6 56,6 56,6 59,0 58,6 58,6 62,8 62,8 dB 92 92 93 94 94 95 95 95 96 97 97 96 96 dB(A) 82 82 83 84 84 85 85 85 86 87 87 88 88 SPL dB(A) (E) 1m 64 64 65 66 66 67 67 67 68 69 69 69 69 5m 55 55 56 57 57 58 58 58 59 60 60 61 61 10 m 50 50 51 52 52 53 53 53 54 55 55 56 56 Low noise setting up AS MOD. 40.2 50.2 60.2 70.2 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 63 90,0 90,0 83,4 84,4 84,4 85,4 85,4 85,4 89,4 91,2 91,2 92,2 92,2 125 82,0 82,0 86,3 87,3 87,3 88,3 88,3 88,3 87,0 88,9 88,9 89,9 89,9 SWL SPL dB(A) (E) 1m 61 61 62 63 63 64 64 64 65 66 66 66 66 dB(A) (E) 77 77 78 79 79 80 80 80 81 82 82 83 83 1m 59 59 60 61 61 62 62 62 63 64 64 64 64 dB(A) 79 79 80 81 81 82 82 82 83 84 84 85 85 5m 52 52 53 54 54 55 55 55 56 57 57 58 58 10 m 47 47 48 49 49 50 50 50 51 52 52 53 53 Extra low noise setting up AX MOD. 40.2 50.2 60.2 70.2 80.2 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 63 82,6 82,6 89,0 90,0 90,0 83,4 83,4 83,4 84,4 85,4 85,4 89,4 89,4 125 83,6 83,6 81,0 82,0 82,0 86,3 86,3 86,3 87,3 88,3 88,3 87,0 87,0 250 80,2 80,2 80,0 81,0 81,0 82,6 82,6 82,6 83,6 84,6 84,6 84,8 84,8 SWL SPL dB(A) 5m 50 50 51 52 52 53 53 53 54 55 55 56 56 10 m 45 45 46 47 47 48 48 48 49 50 50 51 51 (E): EUROVENT certifield data. The values are for units without options and accessories. 25 ELECTRICAL DATA Unit UNIT 40.2 50.2 FLA FLI MIC MIC SS 40,2 21,6 134 89,3 400 - 3+N - 50 45,7 53,3 58,7 24,4 28,4 31,0 143 149 173 96,3 101 117 Power supply 60.2 70.2 80.2 90.2 69,6 36,2 213 143 Unit layout 100.2 115.2 130.2 145.2 160.2 180.2 200.2 75,5 44,0 264 174 90,0 55,0 259 175 97,9 60,5 267 183 400 - 3 - 50 106 123 66,0 75,7 267 348 183 200 136 83,3 361 246 159 95,4 355 248 170 103 391 272 UM V-ph-Hz A kW A A COILS BATTERIA HEAT EXCHANGER SERBATOIO POMPA PUMP 11 POMPA PUMP 22 SCAMBIATORE CP1B CP1A Compressors UNIT 40.2 50.2 60.2 70.2 80.2 90.2 Power supply CP1A CP1B CP1A CP1B CP1A CP1B CP1A CP1B FLA LRA FLI Winding resistance 100.2 115.2 130.2 145.2 160.2 180.2 200.2 400 - 3 - 50 21,0 21,0 111 111 10,2 10,2 1,40 1,40 22,0 22,0 118 118 11,6 11,6 1,20 1,20 25,0 25,0 118 118 13,3 13,3 1,20 1,20 31,0 31,0 140 140 14,6 14,6 1,10 1,10 34,0 34,0 174 174 17,2 17,2 0,80 0,80 40,0 34,0 225 174 COIL 22,6 17,2 0,60 0,80 UM V-ph-Hz 44,0 44,0 210 210 25,4 25,4 0,60 0,60 53,0 44,0 210 210 30,9 25,4 0,50 0,60 100.2 115.2 53,0 53,0 210 210 30,9 30,9 0,50 0,50 66,0 53,0 287 210 38,5 30,9 0,30 0,50 66,0 66,0 287 287 38,5 38,5 0,30 0,30 76,0 76,0 267 267 43,5 43,5 0,30 0,30 81,0 81,0 298 298 47,1 47,4 0,30 0,30 A A kW Ω TANK Single Fan AC specifications 40.2 50.2 UNIT Power supply FLA LRA FLI PUMP 2 Single Fan EC specifications 40.2 50.2 UNIT Power supply FLA LRA FLI NOTE: FLA = LRA = FLI = 26 60.2 230 - 1 - 50 2,62 10,5 0,60 60.2 70.2 80.2 90.2 400 - 3 - 50 4,10 13,5 HEAT 2,10 PUMP 1 70.2 80.2 90.2 100.2 EXCHANGER 115.2 230 - 1 - 50 3,20 12,8 0,72 Full load current at maximum tolerated conditions Locked rotor current Full load power input at maximum tolerated conditions 130.2 145.2 160.2 180.2 200.2 CP1B 130.2 145.2 160.2 180.2 200.2 400 - 3 - 50 2,85 11,4 1,85 MIC = MIC SS = options CP1A UM V-ph-Hz A A kW UM V-ph-Hz A A kW Maximum instantaneous current of the unit Maximum instantaneous current of the unit with soft starter ELECTRICAL DATA Primary-secondary pump Standard pump 40.2 50.2 UNIT 60.2 70.2 80.2 90.2 Power supply 100.2 115.2 FLA LRA FLI 3,70 20,0 1,78 3,70 20,0 1,78 3,70 20,0 1,78 3,70 20,0 1,78 3,70 20,0 1,78 400 - 3 - 50 4,50 4,50 4,50 43,5 43,5 43,5 2,55 2,55 2,55 UNIT 40.2 50.2 60.2 70.2 80.2 90.2 High head pump Power supply 6,10 6,10 FLA 57,7 57,7 LRA 3,48 3,48 FLI Standard modulating pump 40.2 50.2 UNIT 6,10 57,7 3,48 6,10 57,7 3,48 60.2 70.2 80.2 90.2 6,10 57,7 3,48 6,10 57,7 3,48 100.2 115.2 3,70 20,0 1,78 3,70 20,0 1,78 3,70 20,0 1,78 400 - 3 - 50 4,50 4,50 4,50 43,5 43,5 43,5 2,55 2,55 2,55 60.2 70.2 80.2 90.2 6,10 57,7 3,48 400 - 3 - 50 6,10 6,10 8,70 57,7 57,7 87,0 3,48 3,48 4,56 Power supply FLA LRA FLI 115.2 6,10 57,7 3,48 Power supply 3,70 3,70 FLA 20,0 20,0 LRA 1,78 1,78 FLI High head modulating pump 40.2 50.2 UNIT 100.2 400 - 3 - 50 6,10 6,10 8,70 57,7 57,7 87,0 3,48 3,48 4,56 6,10 57,7 3,48 6,10 57,7 3,48 100.2 115.2 130.2 145.2 160.2 180.2 200.2 4,50 43,5 2,55 6,10 57,7 3,48 6,10 57,7 3,48 8,70 87,0 4,56 8,70 87,0 4,56 130.2 145.2 160.2 180.2 200.2 8,70 87,0 4,56 8,70 87,0 4,56 8,70 87,0 4,56 10,4 116 6,29 10,4 116 6,29 130.2 145.2 160.2 180.2 200.2 4,50 43,5 2,55 6,10 57,7 3,48 6,10 57,7 3,48 8,70 87,0 4,56 8,70 87,0 4,56 130.2 145.2 160.2 180.2 200.2 8,70 87,0 4,56 8,70 87,0 4,56 8,70 87,0 4,56 10,4 116 6,29 10,4 116 6,29 UM V-ph-Hz A A kW UM V-ph-Hz A A kW UM V-ph-Hz A A kW UM V-ph-Hz A A kW Summary tables (total values): Units with primary-secondary pump Standard unit 40.2 50.2 60.2 UNIT Power supply 60.2 80.2 90.2 FLA FLI MIC MIC SS NOTE: FLA = LRA = FLI = 46,3 25,1 140 95,4 70.2 400 - 3+N - 50 51,8 59,4 64,8 27,9 31,9 34,5 150 155 179 102 107 123 75,7 39,7 219 149 81,6 47,5 270 180 70.2 80.2 90.2 400 - 3+N - 50 49,4 57,0 62,4 26,2 30,2 32,8 147 152 177 100 105 121 73,3 38,0 216 147 80,0 46,6 269 179 70.2 80.2 90.2 43,9 FLA 23,4 FLI 137 MIC 93,0 MIC SS Units with high head modulating pump 40.2 50.2 60.2 UNIT Power supply 90.2 80,0 46,6 269 179 46,3 FLA 25,1 FLI 140 MIC 95,4 MIC SS Units with standard modulating pump 40.2 50.2 60.2 UNIT Power supply 80.2 73,3 38,0 216 147 43,9 FLA 23,4 FLI 137 MIC 93,0 MIC SS Units with high head pump 40.2 50.2 UNIT Power supply 70.2 400 - 3+N - 50 49,4 57,0 62,4 26,2 30,2 32,8 147 152 177 100 105 121 400 - 3+N - 50 51,8 59,4 64,8 27,9 31,9 34,5 150 155 179 102 107 123 75,7 39,7 219 149 Full load current at maximum tolerated conditions Locked rotor current Full load power input at maximum tolerated conditions 81,6 47,5 270 180 100.2 115.2 130.2 145.2 160.2 180.2 200.2 94,5 57,6 264 180 102 63,1 272 188 400 - 3 - 50 110 129 68,6 79,2 272 354 188 206 142 86,8 367 253 168 100 363 257 179 107 400 281 100.2 115.2 130.2 145.2 160.2 180.2 200.2 96,1 58,5 265 181 107 65,1 276 192 400 - 3 - 50 115 132 70,6 80,3 276 357 192 209 145 87,9 370 255 169 102 365 258 180 109 402 282 100.2 115.2 130.2 145.2 160.2 180.2 200.2 94,5 57,6 264 180 102 63,1 272 188 400 - 3 - 50 110 129 68,6 79,2 272 354 188 206 142 86,8 367 253 168 100 363 257 179 107 400 281 100.2 115.2 130.2 145.2 160.2 180.2 200.2 96,1 58,5 265 181 107 65,1 276 192 MIC = MIC SS = options 400 - 3 - 50 115 132 70,6 80,3 276 357 192 209 145 87,9 370 255 169 102 365 258 180 109 402 282 UM V-ph-Hz A kW A A UM V-ph-Hz A kW A A UM V-ph-Hz A kW A A UM V-ph-Hz A kW A A Maximum instantaneous current of the unit Maximum instantaneous current of the unit with soft starter 27 OPERATING LIMITS The table below lists the operating limits within which correct operation of the units is guaranteed, depending on the Version and Operating Mode available for each type of unit. Remember that in Heat Pump units, heat recovery only takes place during operation in the cooling mode. STANDARD UNIT Thermal gradient of the water Limit value Minimum °C 4 Maximum °C 8 NOTE: the admissible limits for water flow rate on heat exchangers are indicated under the related pressure drop graph (see section "water pressure drop"). If the unit is equipped with pumping module the admissible limits are indicated under the related working head graph (see section "working head"). Verify that water flow rate is inside the admissible limits. IN COOLING MODE UNIT MEDIUM TEMPERATURE - 0 M 5 UNIT HIGH TEMPERATURE - 0 A 5 WATER OUTLET TEMPERATURE WATER OUTLET TEMPERATURE 15 15 RHA 0M5 RHA 0M5 [°C] [°C] EXTERNAL AIR TEMPERATURE [°C] 25 EXTERNAL AIR TEMPERATURE [°C] 25 ATC 25 RHA 0A5 RHA 0A5 ATC 25 ATC ATC With fans modulating control 7 With fans modulating control and brine 75 ATC (Advanced Temperature Control) function may occur, if present ATC 5 IN HEATING MODE 7 75 5 -10 0 15 35 40 50 55 -10 0 15 35 40 50 55 [°C B.S.] -10 0 15 35 42 52 55 -10 0 15 35 42 52 55 [°CBRINE B.S.] UNIT BR - BP - IN COOLING MODE [°C B.S. [°C B.S.] GLICOLE WATER OUTLET TEMPERATURE WATER OUTLET TEMPERATURE [°C] [°C] RHA 0M5 55 55 45 [°C] RHA 0M5 45 C] 25 [°C] 30 2 ATC 25 7 -10 control 2 With fans modulating 30 -10 0 10 20 -10 0 10 20 7 0 15 35 [°C] Limit value -5 with Desuperheater (VD) -12 -12 Total Recovery (VR) -10 0 28 30 7 10 20 0 40 30 0 0 -10 0 15 10 [°C B.S.] 40 20 30 35 40 40 20 30 40 See graph 10 5 Brine is mandatory 40 50 40 50 0 15 35 40 50 55 [°C B.S.] -10 [°C B.S.] 52 55 15 20 55 Recovery water temp. from 45 30 to 70°C (Refer to Desuperheater Standard Performances -10 0 15 35 40 30 50 table) -10 -10 7 ATC With fans modulating control and brine is mandatory 15 35 42 EVAPORATOR [°C] WATER OUTLET TEMPERATURE [°C] -5 2 30 -10 5 -10 40 -10 [°C] 5 [°C] [°C B.S.] 30 [°C B.S.] 50 55 40 Version 5 [°C B.S.] 40 7 5 HEAT RECOVERY UNIT -10 30 7 EXTERNAL AIR 25 TEMPERATURE ATC 30 -10 [°C] RHA 0A5 EXTERNAL AIR TEMPERATURE 7 [°C B.S.] 5 [°C B.S.] 50 50 -10 50 -10 50 [°C] 2 0 30 7 35 10 20 40 45 30 RECOVERED WATER OUTLET TEMPERATURE [°C B.S.] 40 55 [°C] 50 0 10 20 30 40 50 60 70 80 90 100 110 120 1 2 Upper limit value Lower limit value MODELS Graphic refer Operating range Water pressure drop (kPa) [kPa] Q Δp Q Δp 1 2 40.2 1 1.6 13 3.2 59 3 50.2 2 1.6 13 3.2 59 4 60.2 3 2.0 14 4.0 66 3 4 5 70.2 4 2.0 14 4.0 66 5 80.2 5 2.0 14 4.0 66 6 7 90.2 6 2.8 18 6.4 109 100.2 7 2.8 18 6.4 109 Water[l/s] flow rate (l/s) 6 7 8 115.2 8 2.8 18 6.4 109 130.2 9 3.8 17 8.8 110 8 145.2 10 3.8 17 8.8 110 9 160.2 11 3.8 17 8.8 110 9 10 11 200.2 13 5.0 16 10.4 82 12 13 180.2 12 5.0 16 10.4 82 10 Perdite di carico evaporatori fascio tubiero RGA ST 11 UM l\s kPa l\s kPa Q= Water flow rate ∆P= Water pressure drop NOTE 180.2‐200.2 130.2‐145.2‐160.2 90.2‐100.2‐115.2 60.2‐70.2‐80.2 40.2 ‐ 50.2 The graph below illustrates the water pressure drop values in kPa depending on the flow rate in liters/second. The operating range is delimited by the minimum and maximum values given in the next table. The graphs are referred to units operating with water at the temperature of 10°C (density 1000 kg/m3). Plant side exchanger WATER PRESSURE DROP 29 5 0,50 15 25 35 45 55 65 75 85 95 105 115 125 135 145 Upper limit value Lower limit value MODELS Graphic refer Operating range Water pressure drop (kPa) 30 Q Δp Q Δp 0,75 50.2 1 0,57 3,11 40.2 1 0,57 3,11 1,00 3,11 60.2 1 0,57 1,25 3,11 70.2 1 0,57 1,50 1,75 2,00 3,11 80.2 1 0,57 3,50 90.2 2 0,76 100.2 2 0,76 5 3,50 150 3,50 115.2 2 0,76 2,25 Water flow rate (l/s) 3,50 130.2 3 1,11 2,50 3,50 145.2 3 1,11 3,50 160.2 3 1,11 2,75 3,50 180.2 4 1,41 3,00 1 3,50 200.2 4 1,41 3,25 UM l\s kPa l\s kPa 3,50 NOTE Q= Water flow rate ∆P= Water pressure drop 4 3 2 The graph below illustrates the water pressure drop values in kPa depending on the flow rate in liters/second. The operating range is delimited by the minimum and maximum values given in the next table. The graphs are referred to units operating with water at the temperature of 10°C (density 1000 kg/m3). Desuperheaters WATER PRESSURE DROP Water pressure drop (kPa) 1,0 2,0 Upper limit value Lower limit value MODELS Graphic refer Operating range 15 25 35 45 55 65 75 85 95 105 115 125 135 145 Q Δp Q Δp 3,0 50.2 1 1,89 5,97 5,93 5,0 40.2 1 1,88 4,0 7,0 2 8,0 3 7,13 60.2 2 2,25 8,00 70.2 3 2,53 8,73 80.2 4 2,76 10,1 90.2 5 3,21 Water flow rate (l/s) 6,0 1 100.2 6 3,47 15 11,0 150 9,0 4 12,6 115.2 7 3,97 10,0 5 13,6 130.2 8 4,30 11,0 6 15,6 145.2 9 4,93 17,0 17,0 180.2 11 6,13 13,0 160.2 10 5,38 12,0 7 17,0 200.2 12 6,69 14,0 8 UM l\s kPa l\s kPa 15,0 NOTE 16,0 Q= Water flow rate ∆P= Water pressure drop 9 17,0 12 11 10 The graph below illustrates the water pressure drop values in kPa depending on the flow rate in liters/second. The operating range is delimited by the minimum and maximum values given in the next table. The graphs are referred to units operating with water at the temperature of 10°C (density 1000 kg/m3). Total recovery exchanger WATER PRESSURE DROP 31 Working head (kPa) [kPa] 32 RGA ST ‐ Prevalenza Utile pompe STD 2 1 2 3 MODELS Graphic refer Lower limit value Upper limit value Operating range 0 50 100 150 200 250 300 4 Q Q 3 4 5 40.2 1 1,6 3,2 50.2 2 5 6 60.2 3 7 8 70.2 4 2,0 4,0 6 10 7 11 80.2 5 90.2 6 100.2 7 2,8 6,2 l/s flow rate (l/s) Water 9 115.2 8 8 13 130.2 9 12 145.2 10 3,8 8,6 9 160.2 11 180.2 200.2 12 13 5,0 10,4 10 UM l\s l\s 11 Q= Water flow rate NOTE 180.2‐200.2 130.2‐145.2‐160.2 90.2‐100.2‐115.2 90.2 100.2 115.2 80.2 60.2‐70.2 40.2 ‐ 50.2 Working head is that at the pumping module outlet reduced by all pressure losses inside the unit. The graph below illustrates for the pumping module the working head values in kPa depending on the flow rate in liters/second. The operating range is delimited by the minimum and maximum values given in the next table. The graphs are referred to units operating with water at the temperature of 10°C (density 1000 kg/m3). Standard working head pumps WORKING HEAD Working head (kPa) 50 100 150 200 250 300 350 400 2 1 MODELS Graphic refer Lower limit value Upper limit value Operating range [kPa] 2 Q Q 3 4 40.2 1 3 5 1,6 3,2 4 50.2 2 60.2 3 5 6 70.2 4 2,0 4,0 7 8 6 7 10 80.2 5 90.2 6 100.2 7 2,8 6,2 8 115.2 8 11 Water flow l/s rate (l/s) 9 130.2 9 12 145.2 10 3,8 8,8 9 13 160.2 11 RGA ST ‐ Prevalenza Utile pompe HP1 11 180.2 200.2 12 13 5,0 10,4 10 UM l\s l\s Q= Water flow rate NOTE 180.2‐200.2 115.2 90.2‐100.2 80.2 60.2‐70.2 40 2 50.2 40.2 ‐ 50 2 Working head is that at the pumping module outlet reduced by all pressure losses inside the unit. The graph below illustrates for the pumping module the working head values in kPa depending on the flow rate in liters/second. The operating range is delimited by the minimum and maximum values given in the next table. The graphs are referred to units operating with water at the temperature of 10°C (density 1000 kg/m3). High working head pumps WORKING HEAD 33 34 40.2 791 50.2 793 60.2 2501 954 1930 844 *: Center distance of vibration damper holes W 10 00 70.2 80.2 1600 876 893 1197 1278 10 00 90.2 100.2 115.2 130.2 145.2 160.2 180.2 200.2 3343 1104 1793 3343 1104 2193 1414 1465 1522 445 435 335 2000 1561 H 110 130 12/14 1783 2366 8 A 4097 1104 2193 1784 1812 mm mm mm mm kg 12/14 11 - Water outlet MKT SS - MP SS 12 - Water inlet for Desuperheater (VD) 13 - Water outlet for Desuperheater (VD) 14 - Water inlet for Total recovery (VR) 15 - Water outlet for Total recovery (VR) L 6 - ø 22 mm input hole for accessory cables 7- ø 60 mm hole for electric power supply input 8 - Access panel to pump compartment 9 - Water inlet for MP SS 10 - Water inlet for MKT SS *: Center distance of vibration damper holes 826 587 11 9 10 13/15 12/14 10 1 - Access panel to electric panel’s power section 2 - Access panel to compressor compartment 3 - ø 13 mm vibration damper fixing holes 4 - Coil protection grilles (accessory) 5 - ø 65 mm lifting holes L W H A Weight max in operation Mod. 90-100-115 Mod. 510 500 00 370 Mod. 40-50-60-70-80 8 8 DIMENSIONAL AND PHYSICAL DATA Dimensional data 1 - Access panel to electric panel’s power section 2 - Access panel to compressor compartment 3 - ø 13 mm vibration damper fixing holes 4 - Coil protection grilles (accessory) 5 - ø 65 mm lifting holes Mod. 180-200 510 500 *: Center distance of vibration damper holes 370 6 - ø 22 mm input hole for accessory cables 7- ø 60 mm hole for electric power supply input 8 - Access panel to pump compartment 9 - Water inlet for MP SS 10 - Water inlet for MKT SS *: Center distance of vibration damper holes 532 518 388 Mod. 130-145-160 130 130 3097 12/14 2366 11 - Water outlet MKT SS - MP SS 12 - Water inlet for Desuperheater (VD) 13 - Water outlet for Desuperheater (VD) 14 - Water inlet for Total recovery (VR) 15 - Water outlet for Total recovery (VR) 853 826 12/14 8 8 DIMENSIONAL AND PHYSICAL DATA 35 36 Codice 3QE39931 ">
Advertisement
Key Features
- Suitable for outdoor installation
- Refrigerant circuit with scroll compressors
- Shell and tube heat exchanger
- Thermostatic expansion valve
- Variable speed fans control
- Microprocessor controller with display
- Individually tested in the factory
Frequently Answers and Questions
What is the purpose of this series of air-water chillers and heat pumps?
This series of air-water chillers and heat pumps satisfies the cooling and heating requirements of residential plants of medium size.
Where can these units be installed?
All the units are suitable for outdoor installation and can be applied to fan coil plants, radiant floor plants and high efficiency radiators plants.
What type of compressors are used in these units?
The refrigerant circuit is equipped with scroll compressors mounted on damper supports.
What type of heat exchanger is used in these units?
The refrigerant circuit is equipped with shell and tube heat exchanger with threaded or victaulic fittings.
How is the unit controlled?
All the units are supplied with a management and control electrical panel containing general switch, phase presence and correct sequence controller, microprocessor controller with display and all the other electrical components with IP54 minimum protection degree.