EP 1 371 268 B1
&
(19)
(11)
EP 1 371 268 B1
EUROPEAN PATENT SPECIFICATION
(12)
(45) Date of publication and mention
(51) Int Cl.:
H04S 3/00 (2006.01)
of the grant of the patent:
09.05.2007 Bulletin 2007/19
(86) International application number:
PCT/US2002/008682
(21) Application number: 02753802.4
(87) International publication number:
(22) Date of filing: 20.03.2002
WO 2002/078396 (03.10.2002 Gazette 2002/40)
(54) SYSTEM AND METHOD FOR AUTOMATICALLY ADJUSTING THE SOUND AND VISUAL
PARAMETERS OF A HOME THEATRE SYSTEM
SYSTEM UND VERFAHREN ZUM AUTOMATISCHEN EINSTELLEN DES KLANGS UND VISUELLER
PARAMETER EINES HOME-THEATRE-SYSTEMS
SYSTEME ET PROCEDE PERMETTANT DE REGLER AUTOMATIQUEMENT LES PARAMETRES
SONORES ET VISUELS D’UN SYSTEME DE CINEMA A DOMICILE
(74) Representative: Bertsch, Florian Oliver
(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
(30) Priority: 21.03.2001 US 813722
(43) Date of publication of application:
17.12.2003 Bulletin 2003/51
Kraus & Weisert
Patent- und Rechtsanwälte
Thomas-Wimmer-Ring 15
80539 München (DE)
(56) References cited:
US-A- 5 386 478
US-B1- 6 195 435
US-A- 5 666 424
(73) Proprietor: HARMAN INTERNATIONAL
INDUSTRIES, INCORPORATED
Northridge, CA 91329 (US)
(72) Inventor: JORDAN, Richard, J.
• PATENT ABSTRACTS OF JAPAN vol. 1998, no.
10, 31 August 1998 (1998-08-31) & JP 10 136498
A (FUJI FILM MICRO DEVICE KK;FUJI PHOTO
FILM CO LTD), 22 May 1998 (1998-05-22)
EP 1 371 268 B1
Simi Valley, CA 93063-1094 (US)
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give
notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in
a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art.
99(1) European Patent Convention).
Printed by Jouve, 75001 PARIS (FR)
1
EP 1 371 268 B1
2
Description
phone receiving the reference audio signal.
BACKGROUND OF THE INVENTION
SUMMARY
[0001] 1. Cross-references to Related Applications.
[0002] This application claims priority from a U.S. Patent Application No. 09/813,722, filed March 21, 2001 entitled "System and Method for Automatically Adjusting
the Sound and Visual Parameters of a Home Theatre
System."
[0003] 2. Field of the Invention.
[0004] This invention relates generally to a system and
method for remotely adjusting acoustic and visual parameters for home theatre systems including a surround
sound audio system and/or a visual display device.
[0005] 3. General Background and State of the Art.
[0006] Some features of adjusting acoustic parameters are taught in the Plunkett Patent (U.S. 5,386,478).
However, in recent years, film sound, television audio,
and music playback formats have changed to incorporate
the popularity of surround sound for improved tonality
and accurate spatial reconstruction of sound. In particular, digital multi-channel surround sound technology has
fostered an approach to achieve unparalleled fidelity in
sound reproduction. One step in achieving that task, however, is properly setting up a sound system for optimal
performance. An improperly set-up surround sound system can result in noticeably inferior sound quality and/or
inaccurate reproduction of the sound the original artist or
director intended. A variety of parameters, including,
speaker location, listener location, phase delay, speaker
level, equalization, and bass management, play an important part in the surround sound set up and subsequent
audio performance. Existing audio systems allow the user to set these parameters manually, either on a hand
held remote control, or on the main surround sound unit.
Parameter adjustment for multi-channel surround sound,
however, is becoming increasingly complex and difficult,
especially with digital multi channel audio.
[0007] Televisions, projectors, and other display devices used in home theatre systems have come a long
way in recent years in regard to visual quality. However,
to achieve this quality, or to achieve an intended visual
reproduction, it is usually necessary that various visual
parameters in the display be set, for a particular viewing
environment such as a dark room. These parameters
may include brightness, tint, color, white level, and contrast. Existing display devices allow the user to manually
adjust these parameters, however, this can be burdensome and many viewers are not properly trained for making these settings. Therefore, there is still a need for an
apparatus and method capable of setting a complex set
of audio and visual parameters in a home theatre system,
including a multi-channel surround sound audio system
and/or a display system.
[0008] JP 10 136498 A discloses a system for automatically adjusting the acoustic characteristics of a multichannel audio system. The system comprises a micro-
5
10
15
20
25
30
35
40
[0009] A general feature of this invention is to provide
a system and method for setting various acoustic and
visual parameters to improve the reproduction of audio
signals and visual signals. For example, one feature of
the invention is to incorporate a hand-held remote control
device that operates the main surround sound unit (e.g.,
home theatre receiver and/or digital decoder). The invention may also operate the display device via electromagnetic link, for example. Of course, it is not necessary to
the invention that the device be incorporated in the remote control device of the surround sound unit, or the
display device.
[0010] In one embodiment of the invention, a device
may include a sensor or a plurality of sensors capable of
detecting various types of signals emitted by a display
device and/or an individual speaker and/or a group of
speakers, a processor which is able to process the signal,
and a communication device (electromagnetic) which
can communicate information to and from the main surround sound unit and/or the display device. After a user
issues a command on the hand-held device (27) to initiate
the set-up procedure, the device sends a command to
the main surround sound unit (1) or the program source
(2) or the display device (131) to generate the test signals
(13, 21-26, 128, 129). The sensor or group of sensors
on the remote device (6) then detects the test signal(s)
from an output device (135) in a display device (131)
and/or an individual speaker and/or a group of speakers
(15-20, 120-127). It then processes the signal, determines the adjustment which needs to be made, and
sends the appropriate adjustment command to the main
surround sound unit (1) and/or the display device (131).
[0011] Other systems, methods, features and advantages of the invention will be or will become apparent to
one with skill in the art upon examination of the following
figures and detailed description. It is intended that all such
additional systems, methods, features and advantages
be included within this description, be within the scope
of the invention, and be protected by the accompanying
claims.
45
BRIEF DESCRIPTION OF THE FIGURES
50
55
2
[0012] The invention can be better understood with reference to the following figures. The components in the
figures are not necessarily to scale, emphasis instead
being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals
designate corresponding parts throughout the different
views.
[0013] FIG. 1 is a system diagram in accordance with
one embodiment of the invention, in which a remote control receives test signals generated by six speakers and
sends an adjustment command to the main surround
3
EP 1 371 268 B1
sound unit.
[0014] FIG. 2 is a method diagram in accordance with
one embodiment of the invention, in which the cascaded
process of generating a test signal, adjusting a level parameter, a time parameter, and a frequency parameter,
is described.
[0015] FIG. 3 is a method diagram in accordance with
one embodiment of the invention, in which the process
of generating a test signal, adjusting a level parameter,
a time parameter, and a frequency parameter, is described.
[0016] FIG. 4 is a method diagram in accordance with
one embodiment of the invention, in which the process
of generating a test signal, adjusting a level parameter,
a time parameter, a frequency level parameter, a frequency center parameter, and a frequency bandwidth
parameter is described.
[0017] FIG. 5 is a method diagram in accordance with
one embodiment of the invention, in which the process
of generating a test signal, adjusting a level parameter,
a time parameter, a frequency level parameter, a frequency center parameter, and a frequency bandwidth
parameter, a tint parameter, a color parameter, a brightness parameter, a white level parameter, and a contrast
parameter is described.
[0018] FIG. 6 is a system diagram in accordance with
one embodiment of the invention, in which a remote control receives test signals generated by seven speakers
and sends an adjustment command to the main surround
sound unit.
[0019] FIG. 7 is a system diagram in accordance with
one embodiment of the invention, in which a remote control receives test signals generated by seven speakers
and receives test signals generated by a display device
and sends adjustment commands to the main surround
sound unit and to the display device.
5
10
15
20
25
30
35
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
40
[0020] This description is not to be taken in a limiting
sense, but is made merely for the purpose of illustrating
the general principles of the invention. The section titles
and overall organization of the present detailed description are for the purpose of convenience only and are not
intended to limit the present invention. Accordingly, the
invention will be described with respect to making automatic adjustments in a digital 6-speaker (where one
speaker is a subwoofer) surround sound system. It is to
be understood that the particular digital surround sound
format described herein is for illustration only; the invention also applies to other surround sound formats.
[0021] I. AUTOMATIC ADJUSTMENT OF SURROUND SOUND PARAMETERS
[0022] FIG. 1 illustrates by way of example a simplified
system diagram representing one embodiment of the invention where a remote control (27) receives test signals
(21-26) generated by six speakers (15-20), then proc-
45
50
55
3
4
esses the test signals with its onboard processor (29)
and then sends an adjustment command(s) information
(14) to the main surround sound unit (1) via an electromagnetic communications link (28, 12). For this example,
there are six speakers in the surround sound system
(15-20) and one of the speakers is a sub woofer (20).
Using six speakers is for illustration purposes only, so
that the invention may apply to any number of speakers
for achieving surround sound with or without a sub woofer
(see FIG. 6 for seven speakers embodiment with sub
woofer). To improve the surround sound effect, the listener may initiate the adjustment process on the remote
device (27), and the system may automatically adjust
itself to a predetermined optimal setting. The predetermined setting may be adjusted by the user or adjusted
by the manufacturer through a communication medium,
such as the Internet.
[0023] To make the audio adjustment, a user may first
initiate the adjustment process by issuing a command on
the remote control unit (27). Thereafter, the communication link device (28) on the remote control device may
communicate with the main surround unit (1) via the communication link on the main surround sound unit (12) by
transmitting and receiving electromagnetic signals. The
main surround sound unit (1) may initiate the test signals
that may be stored in a variety of medium such as in the
main unit (1), the digital multi-channel surround sound
program source (2), and the remote control unit (27). The
test signal may be also downloaded from the Internet via
the network communication link (3). The test signals from
the speakers (15-20, 120-127) may correspond to what
the listener should hear from each surround sound
speaker, in regard to level, various frequency parameters, and time. For example, the test signals for all of the
channels may specify that the listener at some predetermined position should hear from all of the speakers
(15-20). Sound that has a flat frequency response arrives
at the same time to the listener’s ears (i.e., no delay between any of the speakers), and is at the same relative
sound pressure level (i.e., if the volume is set to 75 dB,
the listener should hear 75 dB from each speaker). Alternatively, the test signals may specify that the listener
at some predetermined position should hear from the rear
left (19) and rear right (18) speakers sound that is equalized to enhance higher frequencies, and at the same relative decibel level (sound pressure level) as every other
speaker. Moreover, the sound produced by the speakers
(19) and (18) may arrive slightly later than the front left
(15) and front right (17) speakers. The test signal(s) (133)
from the output device (135) in the display device (131)
may be initiated in a similar fashion and correspond to
what the home theatre user should see from the output
device, in regard to color, contrast, tint, brightness and
white level. The calibration routine may be done automatically and/or able to make any type of setting, specified by the test signals.
[0024] FIG. 2 illustrates by way of example a flow chart
that represents a cascaded functional algorithm for the
5
EP 1 371 268 B1
automatic calibration routine for setting up a digital multichannel surround sound audio system in a home theatre
system. The original test signals and/or information about
what the listener should hear from each speaker is represented by 30. The information 30 can be stored in the
main surround unit (1), the digital multi-channel surround
sound program source (2), or the remote control. Alternatively, the test signal information can be stored remotely on a database, and either the program source (2) or
the remote control (27) or the main unit (1) can download
this information via a telephone modem connection, or
other network connection (3). That is, the information 30
may be stored in a variety of methods known to one skilled
in the art or methods developed in the future.
[0025] After the initiation command (44) is given, the
test signals are generated (32) by a plurality of speakers
(15-20, FIG. 1). For this example, the system may assume that the original test signals (30) specify that the
listener should hear sound at the same relative sound
pressure level from each speakers, with no delay between each speaker, and at a flat frequency response.
The information may be included with the original test
signal information (30), along with the actual audible test
signal (this can be ping noise, pink noise, a tone at a
specific frequency, pulses, etc).
[0026] After a test signal is generated, the system may
run a series of conditional checks to determine if the
acoustic parameters are correct, and make the appropriate adjustments. For example, with the level condition
33, if the original test signal information indicates that the
listener should hear sound at an equal sound pressure
level from each of the individual speakers, then the sensor (6) in the remote control (27) should detect equal
decibel levels from each of the individual speakers. In
other words, if the volume setting of the power amplifier
(10, FIG. 1) is set to 75 decibels, the sensor in the remote
control unit should detect the actual sound at or near 75
decibels from each of the speakers. A myriad of factors,
however, can affect the quality of sound, such as positioning of the speaker, room acoustics, etc. For example,
depending on the configuration of the room and the positioning of the speakers, if the sound is set to X decibels,
the listener may actually hear the sound at Y decibels,
which is equal to (X + N) decibels, where N is some arbitrary offset factor, which can be positive or negative.
[0027] With this invention, however, once the sensor
(6) in the remote device (27) measures the actual sound
level, the remote control unit may determine the level
correction that may be needed, and send this information
(14) via the communications link (12, 28) back to the main
unit (1) to adjust the level. Put differently, the system
according to this invention corrects for the offset factor
N. Alternatively, the remote device may measure the actual sound level, and send this measured level information back to the main unit (1) that may then determine
what level of correction is needed, and may make that
adjustment. For example, if the sensor on the remote
actually detects 73 decibels, yet it is set at 75 decibels
5
10
15
20
25
30
35
40
45
50
55
4
6
on the main unit, the remote control unit (27) may send
the command to the main unit (1) to adjust the measured
speaker volume by +2 decibels. Still further, the remote
control unit may send the measured level to the main unit
(1), and the main unit may calculate and make the appropriate adjustment. After the adjustment is made, the
test signal may be generated with the change (+2 decibels in this example), and the sensor in the remote control
again reports the detected level. If more adjustment is
needed, the process discussed above continues. If no
adjustment is needed, however, the adjustment value is
stored and the process moves on.
[0028] The information in the original test signals (30)
may also specify the time condition for the system. For
example, the information in the original test signals (30)
may specify that the listener should hear the sound from
each of the speakers 15- 20 at the same time. Because
the listener may not be equidistant from each speaker,
the time it takes for a sound signal originating from a
particular speaker to travel to the listener may be different. For instance, it may take T milliseconds for a sound
signal originating from speaker 16 to travel to the listener,
and it may take T + N milliseconds for a sound signal
originating from the speaker 17 to travel to the listener.
In order for the sound to arrive at the listener from both
speakers at the same time, the sound from speaker 17
must be played in advance, or, alternatively, the sound
from speaker 16 must be delayed. The information stored
in the original test signal may specify which speaker to
calibrate the time adjustment to, or specify some synchronization standard to which each speaker may be adjusted.
[0029] In FIG. 2, the condition 34 represents the adjustment stage for the time condition in which the test
signal is generated in 32, which may be N, where N is
some whole integer number, pulses generated by N different speakers. The sensor (6) on the remote control
(27) may determine which pulse originated from which
speaker. This enables the sensor to measure the difference in time between the arrival of the N pulses. If there
is a difference, the processor in the remote control (27)
may determine the necessary adjustment that needs to
be made (where a delay needs to be applied) and sends
the adjustment information to the main unit which makes
the correction. The remote control unit may alternatively
send the information regarding the arrival times and/or
relative delay to the main unit, which then makes the
appropriate adjustment calculation and applies it. The
test signal generated in 32 may be one test signal from
a single speaker. The sensor on the remote control may
determine the time delay and calculate the appropriate
adjustment that needs to be made in order to properly
synchronize the time so that the listener can hear synchronized sound (for example, to synchronize the sound
for a particular frame of a movie).
[0030] After the adjustment is made, a test signal may
be generated with the change, and the sensor in the remote control may again determine and report the time
7
EP 1 371 268 B1
delay information. If more adjustment is needed, the loop
continues. If no adjustment is needed, however, the adjustment value is stored and the process moves on.
[0031] In FIG. 2, the condition 35 represents the adjustment stage for the frequency condition. The test signal information in (32) may include information regarding
the frequency settings for single or multiple speakers.
For example, the information may indicate that the frequency equalization for all of the speakers in a specified
frequency spectrum should be flat. Put differently, the
sensor in the remote control may determine, for all the
frequencies in that spectrum, what the relative levels are
and then make the appropriate adjustment calculations
and send them to the main unit (1) for correction. Alternatively, the sensor in the remote control may determine,
for all the frequencies in that spectrum, what the relative
levels are and send this information to the main unit to
make the proper calculations and corrections. After the
adjustment is made, the test signal is generated with the
change and the sensor (6) in the remote control (27)
again determines and reports the frequency information.
If more adjustment is needed, the loop continues. If no
adjustment is needed, the adjustment value is stored and
the process moves on. The frequency and level conditions may be interdependent, so that the conditional
checks (33 and 35) may take both factors into account
when determining what the adjustments should be made.
[0032] FIG. 3 illustrates by way of example a flow chart
that represents a parallel functional algorithm for the automatic calibration routine. The original test signals (50)
and/or information about what the listener should hear
from each speaker may be stored in the main surround
unit (1), the digital multi-channel sound program source
(2), or the remote control (27). Alternatively, the original
test signals 50 may be stored remotely and may be downloaded from the Internet, via the network communication
link (3) for example. In this way, the algorithm may be
modified for updates so that it may be downloaded. After
the initiation command (51) is given, the system may
process the test signal information (53) to determine what
the desired multi-channel sound settings are, i.e., the
sound pressure level, the frequency level, the time delay,
and to specify a testing algorithm (54). That is, the algorithm may be specified to test the different elements (time,
frequency, and level) and/or how to test the different elements (parallel or serially) and/or which elements to
test. All of the system processing (52) may be performed
in a variety of ways, for example, it may be performed
through the remote control (27) or the main surround
sound unit (1) or the program source unit (2).
[0033] The testing algorithm (54) may instruct the software condition switch (61) so that the system may properly set which conditions should be checked according
to the testing algorithm (54). For example, if the original
test signal information specifies that the sound the listener should hear should be at an equal sound pressure
level, flat equalization, and at an equal time (no delay
between the arrival of sound at the listeners ears), the
5
10
15
20
25
30
35
40
45
50
55
5
8
initial processing (53) may specify an adjustment algorithm (54) so that the sound pressure level and frequency
conditions may be checked first, simultaneously, and
once these levels are set, the time condition may be
checked and set. In this example, the algorithm may include the appropriate information for the software switch
(61) to turn "off" the time condition switch (60), and turn
"on" the level and frequency condition switches (58, 59),
so that the sound pressure level and frequency conditions may be checked first. The algorithm then forwards
the initial level and frequency settings to generate the
test signals (80) that are generated by the speakers
(15-20, 120-127). Once the software switch (61) is properly set, the frequency and level detection may be done
in parallel at 65 and 66, respectively.
[0034] Thereafter, a sensor (6) in the remote control
unit (27) may report the detected sound pressure level
and frequency characteristics of the test signal (represented by steps 65 and 66 on the method flowchart FIG.
3). The sensor (6) may be a single condenser microphone
and/or multiple condenser microphones and/or multiple
microphones optimized for different frequency spectrums. Of course, other sensors known to one skilled in
the art may be used as well. The remote control (27) may
process the information obtained by the sensor (6) with
its internal processor (29) and send the adjustment settings back to the main unit (1) via the communications
link (12, 28). Alternatively, the remote control unit (27)
may send the information obtained by the sensor (6) to
the main unit (1) via the communications link (12, 28),
and the processor (11) in the main unit (1) may determine
the necessary adjustments.
[0035] With regard to the flowchart FIG. 3, the information obtained by the sensor (6) may occur in (65) and
(66) and is then processed in the processor (52). The
measured levels may be processed (52) to determine if
further adjustment is needed (56). If the detected levels
(sound pressure and frequency) are equal or within an
acceptable range to the levels specified in the test signal
information (50), the adjustment for those levels may be
stored, and the system continues. If, however, more adjustment is needed, the processing (52) may make a further adjustment (62). Further, there may be multiple sublevels of the frequency level detection and setting (i.e.,
the frequency level test may include X sub tests of various
frequencies). The frequency and level conditions may be
interdependent, so that processing (52) may take both
factors into account when determining what the adjustments (62) should be. For example, even though the level
condition may already be optimal (i.e., the detected level
is equal to the desired level specified in the test signal
information), if the frequency settings are changed, the
overall level may be affected and may have to be adjusted
again to achieve an optimal setting for both sound pressure level and individual frequency levels. The processing software may determine what adjustments need to
be made in order to achieve the desired results for both
the frequency and level settings.
9
EP 1 371 268 B1
[0036] After the adjustment is made (62), the test signal may be generated (80) with the changes (for both the
frequency and level), and the sensor (6) in the remote
control (27) again reports the detected levels. If more
adjustment is needed, the adjustment and processing
continues. If no adjustment is needed, however, the
processing software may determine if there are any other
adjustments that need to be made (55). If there are other
adjustments that need to be made (in this example, the
time delay still needs to be set), the testing algorithm (54)
may specify to the switch (61) which detection element
(s) should be turned "on" and which detection element
(s) should be turned "off." For example, the processing
(52) may instruct the switch (61) to turn "off" the level and
frequency detection (59, 60) and turn "on" the time detection (58). The routine for the time delay adjustment
may then begin.
[0037] For the time delay, the test signals generated
in 80 may be N, where N is some whole integer number,
pulses generated by N different speakers. The sensor
(6) in the remote control unit (27) detects which pulse
originated from which speaker. The remote control (27)
may process the information obtained by the sensor (6)
with its internal processor (29) and send the adjustment
settings back to the main unit (1) via the communications
link (12, 28). Alternatively, the remote control unit (27)
may send the information obtained by the sensor (6) to
the main unit (1) via the communications link (12, 28),
and the processor (11) in the main unit (1) may determine
the necessary adjustments. With regard to the method
flowchart FIG. 3, the time delay information obtained by
the sensor (6) may occur in (64) and is then processed
(52).
[0038] The sensor (6) on the remote control (27) may
determine which pulse originated from which speaker.
This enables the sensor to measure the difference in time
between the arrival of the N pulses (64). If there is a
difference, the processor (29) in the remote control (27)
may determine the necessary adjustment that needs to
be made (where a delay needs to be applied) and sends
the adjustment information to the main unit (1) which
makes the correction. This may be accomplished in the
processing stage in the method flowchart (52). The remote control unit may alternatively send the information
regarding the arrival times and/or relative delay to the
main unit, which then makes the appropriate adjustment
calculation and applies it. Alternatively, the test signal
generated in 80 may be one test signal from a single
speaker. The sensor (6) on the remote control (27) may
determine the time delay and calculate the appropriate
adjustment that needs to be made in order to properly
synchronize the time so that the listener hears a sound
to some predetermined timing, such as synchronizing
the sound for a particular frame of a movie. Again, this
may be accomplished in the processing stage in the
method flowchart (52). After the adjustment is made, the
test signal may be generated with the change and the
sensor (6) in the remote control (27) again determines
5
10
15
20
25
30
35
40
45
50
55
6
10
and reports the time delay information (64). If the
processing, (52) determines more adjustment is needed,
the loop continues. If no adjustment is needed, the adjustment value is stored and the process moves on. When
all of the information is correct as specified in the original
test signal (50) information, the processing (52) saves
the settings (57) and the setup is complete (81).
[0039] FIG. 4 illustrates by way of example a flow chart
that represents a functional algorithm for the automatic
calibration routine, similar to the embodiment described
above for figure 3, with two additional criteria for detection; namely, a frequency center (90) detection and a
frequency bandwidth detection (91). The original test signals and/or information about what the listener should
hear from each speaker is represented by 50. Alternatively, the original test signal 50 may be stored remotely
on a computer and can be downloaded via a global and/or
local and/or wide area network connection (3). After the
initiation command is given (51), the system initially processes the test signal information (53) to determine what
the desired multi channel sound settings are, such as
sound pressure level, frequency level, frequency center,
frequency bandwidth, and time delay, and to specify a
software testing, algorithm (54). The software testing algorithm may specify which order to test the different elements (time, frequency level, frequency center, frequency bandwidth, and sound pressure level) and/or how
to test the different elements (parallel or serially) and/or
which elements to test.
[0040] Each detection that is to be set: sound pressure
level, frequency level, frequency center, frequency bandwidth, and time delay, may be represented in the algorithm as variables Dspl, Dfl, Dfc, Db and Dt, respectively.
If two criteria are to be detected and set simultaneously,
the algorithm may represent them with an ’&’ symbol.
Further, a coefficient may be attached to an individual
variable, or group of variables connected with an ’&’ symbol to indicate the order of testing. So, for example, if the
algorithm specifies checking and setting the Sound Pressure Level, frequency level, frequency center, and frequency bandwidth simultaneously first, and then check
and set the time delay, it may specify the algorithm : 1
(Dspl & Dfl & Dfc & Db), 2(Dt). Each detection and setting
(Dspl, Dfl, Dfc, Db and Dt) may contain subsets of detections and setting. For example, the frequency level may
contain J independent tests for J different frequencies.
The software algorithm may specify testing all J independent frequencies simultaneously, or sequentially.
The software algorithm may also determine an appropriate test signal. The algorithms can be predetermined in
the system and/or can be determined at the time of testing
and/or can be catered to the information in the program
source. There may be many possible combinations of
the order of testing of the different elements. All of the
system processing (52) can be performed in either the
remote control (27) or in the main surround sound unit
(1) or the program source unit (2) or in the actual speakers
(15-20, 120-126). The system processing (52) may in-
11
EP 1 371 268 B1
clude a Digital Signal Processor and/or with analog
processing means. Both methods of analyzing and manipulating acoustic data are well appreciated in the art.
The testing algorithm (54) may instruct the software condition switch (61) so that the system can properly set
which conditions should be checked according to the
testing algorithm (54). The software switch (61), properly
set allows the appropriate detection’s to be done in parallel or serially.
[0041] The detection and setting for sound pressure
level, frequency level, and time condition may be substantially similar to the discussion above related to figures
3 and 4. For the frequency center, the sensor (6) in the
remote control unit (27) reports the detected center frequency or frequencies of the test signal(s) (represented
by step 92 on the method flowchart FIG. 4). The measured center levels are processed (52) to determine if adjustment is needed (i.e., the detected frequency center
is different from the specified frequency center in the test
signal). If the detected centers (frequency center) is equal
or within an acceptable range to the centers specified in
the test signal information (50), the adjustment for those
center frequencies may be stored, and the system may
continue. If, however, more adjustment is needed, the
processing (52) may make further adjustments (62). The
frequency center may be interdependent with the other
settings, so that processing (52) may take multiple factors
into account when determining what the adjustments (62)
should be. For example, even though the frequency center may already be optimal (i.e., the detected center is
equal to the desired center specified in the test signal
information), the algorithm may calculate that if the frequency levels are changed, the center may be affected
and may have to be changed slightly to achieve an optimal setting for both level and frequency center. The
processing software may determine what adjustments
need to be made to achieve the desired results for the
frequency center and any other detection criteria which
may be affected. After the adjustment is made (62), the
test signal may be generated (80) with the change (for
both the frequency center and frequency level), and the
sensor (6) in the remote control (27) again reports the
detected levels. If more adjustment is needed, the adjustment and processing continues. That is, one feature
of the present invention is that when setting one particular
criteria (64, 65, 66, 90, 91), the system processing (52)
may take another criteria into account to determine what
overall adjustments need to be made (56). Note that all
of the criteria (64-66, 90, 91) may be interdependent. The
adjustment for the frequency bandwidth may be substantially similar to the adjustment for the frequency center
described above.
[0042] II. AUTOMATIC ADJUSTMENT OF VISUAL
PARAMETERS
[0043] FIG. 5 illustrates by way of example a flow chart
that represents a functional algorithm for the automatic
calibration routine, similar to the embodiment described
above for figure 4, with additional criteria for detection;
5
10
15
20
25
30
35
40
45
50
55
7
12
namely, visual detection for the display used in the home
theatre environment (i.e., Television, Projector, LCD,
plasma display) which may include Contrast detection,
Color detection, White level detection, Sharpness detection, tint detection, and/or brightness detection. The corresponding system diagram is represented by FIG. 7.
The detection and setting for acoustic criteria (in figure
5) is substantially the same as described in the embodiment representing figure 4. The switch settings (61) in
Figure 5 include a higher level switch which can select
between audio (114) and/or video (113) detection. The
original test signals and/or information so that the viewer
should view from the display is represented by 50 may
be stored in either 1 and/or 2 and/or 27 and/or, 131.
[0044] Alternatively, the original test signals 50 may
be stored remotely on a computer and can be
downloaded by the display device (131), the program
source (2), the surround sound main unit (1), and the
remote control unit (27) internet. Of course, the original
test signals 50 may be downloaded through a local and
wide area network connection as well. For example, a
specific movie director may desire certain visual settings
for a particular movie, and may offer this information on
an internet web site, or alternatively include this
information on the storage medium (i.e., DVD) for the
movie (2). After the initiation command is given (51), the
system initially processes the test signal information (53)
to determine what the desired optical viewing settings
are, in regard to contrast, white level, tint, color, and
brightness, to specify a software testing algorithm (54).
The software testing algorithm then specifies the order
in which to test the different visual detection elements
and/or how to test the different elements (parallel or
serially) and/or which elements are to be tested. Each of
the detection’s which are to be set, contrast, white level,
tint, color, and brightness, may be represented in the
algorithm as variables Vcontrast, Vcolor, Vwhite, Vbright, and
Vtint respectively. If two criteria are to be detected and
set simultaneously, the algorithm may represent them
with an ’&’ symbol. Further, a coefficient may be attached
to an individual variable, or group of variables connected
with an ’&’ symbol to indicate the order of testing. For
example, if the algorithm specifies that checking and
setting the contrast, white level, and brightness first, and
then checking and setting the tint and color, it may specify
the algorithm : 1 (Vbright & Vcontrast & Vwhite), 2(Vcolor &
Vtint).
[0045] Each detection and setting criteria may contain
subsets. For example, the color detection may contain J
independent tests for J different color frequencies. The
software algorithm may specify testing all J independent
color frequencies simultaneously, or sequentially. The
software algorithm may also determine an appropriate
visual test signal. The algorithms can be predetermined
in the system and/or can be determined at the time of
testing and/or can be catered to the information in the
program source. There may be many possible combinations of the order for testing the different elements. All of
13
EP 1 371 268 B1
the system processing (52) can be performed in either
the remote control (27), the main surround sound unit
(1), the program source unit (2), or in the display device
(131). , The system processing (52) may include a Digital
Signal Processor and/or an analog processing means.
The testing algorithm (54) may instruct the software condition switch (61) so that the system can properly set
which conditions should be checked according to the
testing algorithm (54). Once the software switch (61) is
properly set, the appropriate detection’s may be done in
parallel or serially.
[0046] For visual detection (103-107) and processing
(52), the test signal(s) may include a myriad of patterns
and/or signals. For brightness, contrast, tint, and white
level, the test signals may include grayscale patterns,
intensity maps, brightness maps, and individual frequency signals (i.e., white screen). For color, the test signals
may include color maps, color patterns, grayscale patterns, and individual color frequency signals (i.e., blue
screen, red screen, green screen). The sensor (6) or plurality of sensors (6) in the remote control unit (27) reports
the detected visual characteristic of the test signal
(103-107) on the method flowchart FIG. 5. The sensor
(6) in the remote control (27) may include, an optoelectric
sensor, a luminance detector, an optical comparator, a
color analyzer, a light sensitive sensor, and a digital camera for detecting visual elements (103-107, figure 5). Devices to detect and measure color, white level, brightness, contrast and tint are well appreciated in the art.
The measured visual criteria may be processed (52) to
determine if adjustment is needed (i.e., the detected visual level is different from the specified level in the test
signal). If the visual element is equal to or within an acceptable range to the visual element specified in the test
signal information (50), the adjustment for the visual element may be stored, and the system may continue. If,
however, more adjustment is needed, the processing
(52) may make a further adjustment (62).
[0047] Each visual element for detecting (103-107)
may be interdependent to other visual elements
(104-107), so that processing (52) may take multiple factors into account when determining the adjustment(s)
(62) that needs to be made. The visual elements can be
detected and processed in parallel or serially. After the
adjustments (if needed) are made (62), the test signal
may be generated (80) with the change, and the sensor
(s) (6) in the remote control (27) again reports the detected level(s). If more adjustment is needed, the adjustment
and processing continues. If there are still other visual
adjustments that need to be made according to the testing algorithm, the processing may specify to the switch
(61) which detection element(s) should be turned on and
off. When all of the visual information is correct as specified in the original test signal (50) information, the testing
setting and processing stops and the setup is complete.
[0048] Another application of the present invention is
a home theatre system in which a user may be able to
view all of the adjustment settings, view frequency
5
10
15
20
25
30
35
40
45
50
55
8
14
graphs, select adjustment settings, view test signal information, and generally follow the adjustment process by
viewing, and interacting with a display device (76) attached to the remote control unit (27). The display device
may be a color or black and white LCD (liquid crystal
display) screen, which may be touch screen enabled (so
the user may input commands). The processing (52) in
the system may include a connection to the display device so that any stage of the adjustment process can be
outputted. For example, the user may be able to view on
the display screen (76) frequency response curves from
a given speaker. As a further example, the user may be
able to view and select multiple configurations for automatic calibration. As yet another example, the listener
may be able to choose and select between different visual
settings, such as black and white, mellow, faded, high
contrast, etc.
[0049] Yet another feature of the present invention is
that all of the system processing (52) may be performed
on the on-board processor (29) in remote control unit
(27), with the settings then sent to the main unit (1), program source (2), and display device (131) for storage.
The on-board processor (29) may include a DSP (Digital
Signal Processor), an analog signal processor, and a microcomputer. The processor (29) may also be coupled
to the output display device (76) to view information relating to the adjustment settings. The processor may also
send information via electromagnetic link (12, 130) to the
display device (131) to view information relating to the
adjustment settings on the output device (135) of the display device (131). Alternatively, all of the system processing (52) may be performed on the processor in the main
unit (1), the program source (2), the display device (131);
the appropriate information is then sent via the communications link (12) to the remote control unit’s (27) display
device (76) for output.
[0050] Another application of the present invention is
for a modern digital surround sound system that includes
an optional band-limited low frequency effects (LFE)
channel, in addition to the discrete and main channels.
In contrast to the main channels, the LFE delivers bassonly information and has no direct effect on the perceived
directionality of the reproduced soundtrack. The LFE
channel carries additional bass information to supplement the bass information in the main channels. The LFE
channel may be realized by sending additional bass information through any one or combination of the main
speakers (15-20). The proper settings for the LFE channel can be obtained through the process outlined in Figures. 2, 3, 4, and 5. For example, the signal in the LFE
channel may be calibrated during soundtrack production
to be able to contribute 10-Decibel higher Sound Pressure Level than the same bass signal from any one of
the front channels. In other words, the process in Figures
2, 3, 4, and 5 proceed with a set of test signals and test
signal information, for the channels which make up the
LFE channel.
[0051] While various embodiments of the invention
15
EP 1 371 268 B1
have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and
implementations are possible within the scope of this invention. Accordingly, the invention is not to be restricted
except in light of the attached claims and their equivalents.
5
Claims
4.
The system according to claim 1, where the predetermined setting is a sound pressure level setting
(65).
5.
The system according to claims 1 or 4, where the
predetermined setting is a frequency level detection
(65).
6.
The system according to claims 1, 4 or 5, where the
predetermined setting is a frequency center setting
(90).
7.
The system according to claims 1, 4, 5 or 6, where
the predetermined setting is a frequency bandwidth
setting (91).
8.
The system according to claims 1, or 4-7, where the
predetermined setting is a time delay setting (64).
9.
The system according to claim 1, where the sensor
(6) in the remote control (27) is a microphone.
10
1.
A system for automatically adjusting a home theatre
system, comprising:
a surround sound unit (1) adapted to generate
a test signal (32, 50) based on a predetermined
setting (53) and send the test signal to a speaker
(15, 16, 17, 18, 19, 20), where the speaker generates an acoustic test signal (21, 22, 23, 24,
25, 26) based on the test signal;
a sensor (6) that receives the acoustic test signal
(21, 22, 23, 24, 25, 26) from the speaker (15,
16, 17, 18, 19, 20), where the sensor (6) is communicateably coupled to a processor (29, 52)
that determines an adjustment information (56)
that needs to be made so that the acoustic test
signal (21, 22, 23, 24, 25, 26) detected by the
sensor (6) is substantially similar to the first predetermined setting (53);
characterized in that the sensor is comprised in a
remote control (27), and in that the remote control
further comprises a sensor adapted to automatically
adjust a display used in the home theatre using at
least one of: contrast detection, color detection,
white level detection, sharpness detection, tint detection, and/or brightness detection.
2.
3.
The system according to claim 1, where the processor (29, 52) transmits the adjustment information
(56) via a communication link (12, 28) to the surround
sound unit (1), where the surround sound unit (1)
generates an adjusted test signal (62) that modifies
the test signal based upon the adjustment information so that the acoustic test signals (21, 22, 23, 24,
25, 26) detected by the sensor is substantially similar
to the first predetermined setting (53).
The system according to claims 1 or 2, where the
surround sound unit generates a plurality of test signals (32, 50) and sends the plurality of test signals
to a plurality of speakers (15, 16, 17, 18, 19, 20) to
generate a plurality of acoustic test signals (21, 22,
23, 24, 25, 26), where the processor determines difference in arrival time for the plurality of acoustic test
signals and determines the adjustment information
so that the plurality of acoustic test signals arrive at
the remote control substantially at the same time.
15
20
16
10. The system according to claim 1, where the remote
control further includes an output display device (76).
25
11. A system according to claim 1, where the surround
sound unit (1) is communicateably coupled to an Internet to download the test signal.
30
35
40
45
50
55
12. A method for automatically adjusting a theatre system, comprising:
generating a test signal (80) based upon a predetermined setting (53) for a particular element
within a number of elements (58, 59, 60, 92, 93)
for adjustments in a theatre system;
sending the test signal (80) to at least one speaker (15, 16, 17, 18, 19, 20) to generate a sound
corresponding to the test signal (80);
receiving (64, 65, 68, 90, 91) the sound from the
at least one speaker; and
processing (52) the sound to determine if an adjustment information (56) based upon the predetermined setting (53) is needed so that the
test signal if adjusted to the adjustment information (56) is substantially similar to the predetermined setting;
characterized by
further comprising the step of automatically adjusting
a display used in the home theatre, the adjustement
step comprises at least one of the following steps:
contrast detection, color detection, white level detection, sharpness detection, tint detection, and/or
brightness detection.
13. The method according to claim 12, further including
downloading the test signal from an Internet.
9
17
EP 1 371 268 B1
14. The method according to claim 12, where the receiving is done through a sensor in a remote control that
is located a predetermined location.
15. The method according to claims 12 or 14, where the
receiving is done at a predetermined position so that
the adjustment information adjust the test signal to
be substantially similar to the predetermined setting
at the predetermined position.
18
26. The method according to claims 12, 23, 24 or 25,
where the predetermined setting is a predetermined
arrival time delay (64).
5
Patentansprüche
1.
System zum automatischen Einstellen eines Heimtheater-Systems, umfassend:
10
16. The method according to claims 12, 14 or 15, further
including:
producing an adjusted test signal (62) that modifies the test signal based upon the adjustment
information to substantially match the predetermined setting; and
sending the adjusted test signal (62) to the at
least one speaker (15, 16, 17, 18, 19, 20) to generate an adjusted sound corresponding to the
adjusted test signal.
eine Raumklang-Einheit (1), die angepasst ist,
ein Test-Signal (32, 50), basierend auf einer vordefinierten Einstellung (53), zu erzeugen und
das Test-Signal zu einem Lautsprecher (15, 16,
17, 18, 19, 20) zu senden, wobei der Lautsprecher ein akustisches Test-Signal (21, 22, 23, 24,
25, 26) erzeugt, das auf dem Test-Signal basiert;
einen Sensor (6), der das akustische Test-Signal (21, 22, 23, 24, 25, 26) von dem Lautsprecher (15, 16, 17, 18, 19, 20) empfängt, wobei
der Sensor (6) mit einem Prozessor (29, 52)
kommunizierend gekoppelt ist, der eine Einstellungsinformation (56) ermittelt, die gemacht
werden muss, damit das akustische Test-Signal
(21, 22, 23, 24, 25, 26), das vom Sensor (6) detektiert wird, im Wesentlichen ähnlich zu der ersten vordefinierten Einstellung (53) ist;
15
20
17. The method according to claims 12, 14, 15 or 16,
where if the adjustment information is not needed
then saving the predetermined setting (53).
25
18. The method according to claims 12, 14, 15, 16 or
17, further including selecting the particular element
within the number of elements (58, 59, 60, 92, 93)
for the generating of the test signal (80).
30
19. The method according to claims 12, or 14-18, further
including selecting more than one elements within
the number of elements (58, 59, 60, 92, 93) for the
generating of the test signal (80).
35
20. The method according to claims 12, or 14-19, where
the receiving of the sound is done by a sensor in the
remote control, where the remote control has a processor for the processing of the sound.
40
dadurch gekennzeichnet, dass der Sensor in einer Fernbedienung (27) enthalten ist, und dass die
Fernbedienung weiterhin einen Sensor umfasst, der
dazu ausgebildet ist, automatisch eine in dem Heimtheater verwendete Anzeigevorrichtung unter der
Verwendung von zumindest einem der folgenden
Merkmale anzupassen: Kontrastdetektion, Farbdetektion, Weißpegeldetektion, Schärfedetektion,
Farbtondetektion und/oder Helligkeitsdetektion.
2.
System gemäß Anspruch 1, wobei der Prozessor
(29, 52) die Einstellungsinformation (56) mittels einer Kommunikationsverbindung (12, 28) zu der
Raum-Klang-Einheit (1) überträgt, wobei die Raumklang-Einheit (1) ein angepasstes Test-Signal (62)
erzeugt, das das Test-Signal auf Grundlage der Einstellungsinformation so modifiziert, dass das akustische Test-Signal (21, 22, 23, 24, 25, 26), das vom
Sensor detektiert wird, im Wesentlichen ähnlich der
ersten vordefinierten Einstellung (53) ist.
3.
System gemäß Anspruch 1 oder 2, wobei die Raumklang-Einheit eine Vielzahl von Test-Signalen (32,
50) erzeugt und die Vielzahl von Test-Signalen an
eine Vielzahl von Lautsprechern (15, 16, 17, 18, 19,
20) sendet, um eine Vielzahl von akustischen TestSignalen (21, 22, 23, 24, 25, 26) zu erzeugen, wobei
der Prozessor eine Differenz der Ankunftszeit der
Vielzahl der akustischen Test-Signale ermittelt und
21. The method according to claim 12, where the
processing is done in a main surround unit (1).
22. The method according to claim 12, where the test
signal is an acoustic test signal.
23. The method according to claim 12, where the predetermined setting is a predetermined sound pressure level (65).
45
50
24. The method according to claims 12 or 23, where the
predetermined setting is a predetermined frequency
bandwidth (91).
55
25. The method according to claims 12, 23 or 24, where
the predetermined setting is a predetermined frequency equalization.
10
19
EP 1 371 268 B1
die Einstellungsinformation so ermittelt, dass die
Vielzahl von akustischen Test-Signalen an der Fernbedienung im Wesentlichen zur gleichen Zeit ankommt.
5
4.
System gemäß Anspruch 1, wobei die vordefinierte
Einstellung eine Schalldruckpegel-Einstellung (65)
ist.
5.
System gemäß den Ansprüchen 1 oder 4, wobei die
vordefinierte Einstellung eine Frequenz-Ebenen-Erkennung (65) ist.
6.
System gemäß Ansprüchen 1, 4 oder 5, wobei die
vordefinierte Einstellung eine Frequenz-Mitten-Einstellung (90) ist.
7.
8.
System gemäß Ansprüchen 1, 4, 5 oder 6, wobei die
vordefinierte Einstellung eine Frequenz-Bandbreiten-Einstellung (91) ist.
10
15
20
System gemäß Ansprüchen 1, oder 4 bis 7, wobei
die vordefinierte Einstellung eine Zeitverzögerungseinstellung (64) ist.
20
dadurch gekennzeichnet, dass es
weiterhin den Schritt des automatischen Anpassens
einer Anzeige umfasst, die in dem Heimtheater verwendet wird, wobei der Anpassungs-Schritt mindestens einen der folgenden Schritte umfasst: Kontrastdetektion, Farbdetektion, Weißpegeldetektion,
Schärfedetektion, Farbtondetektion und/oder Helligkeitsdetektion.
13. Verfahren gemäß Anspruch 12, weiterhin das Herunterladen des Test-Signals aus einem Internet beinhaltend.
14. Verfahren gemäß Anspruch 12, wobei das Empfangen durch einen Sensor in einer Fernbedienung
durchgeführt wird, die an einem vordefinierten Platz
liegt.
15. Verfahren gemäß Ansprüchen 12 oder 14, wobei das
Empfangen an einer vordefinierten Position durchgeführt wird, so dass die Einstellungsinformation das
Test-Signal anpasst, damit es im Wesentlichen ähnlich der vordefinierten Einstellung an der vordefinierten Position ist.
25
9.
System gemäß Anspruch 1, wobei der Sensor (6) in
der Fernbedienung (27) ein Mikrofon ist.
10. System gemäß Anspruch 1, wobei die Fernbedienung weiterhin eine Ausgabe-Anzeige-Vorrichtung
(76) beinhaltet.
11. System gemäß Anspruch 1, wobei die RaumklangEinheit (1) kommunikationsfähig an ein Internet gekoppelt ist, um das Test-Signal herunterzuladen.
16. Verfahren gemäß Ansprüchen 12, 14 oder 15, weiterhin beinhaltend:
30
35
12. Verfahren zum automatischen Einstellen eines
Theater-Systems, umfassend:
Erzeugen eines Test-Signals (80), basierend
auf einer vordefinierten Einstellung (53), für ein
spezielles Element aus einer Anzahl von Elementen (58, 59, 60, 92, 93) für Einstellungen in
einem Theater-System;
Senden des Test-Signals (80) an mindestens
einen Lautsprecher (15, 16, 17, 18, 19, 20), um
ein Geräusch entsprechend dem Test-Signal
(80) zu erzeugen;
Empfangen (64, 65, 68, 90, 91) des Geräuschs
von dem mindestens einen Lautsprecher; und
Verarbeiten (52) des Geräuschs, um festzustellen, ob eine Einstellungsinformation (56) basierend auf der vordefinierten Einstellung (53) gebraucht wird, so dass das Test-Signal, falls es
zur Einstellungsinformation (56) angepasst ist,
im Wesentlichen ähnlich der vordefinierten Einstellung ist;
Produzieren eines angepassten Test-Signals
(62), welches das Test-Signal basierend auf der
Einstellungsinformation modifiziert, um wesentlich der vordefinierten Einstellung zu entsprechen; und
Senden des angepassten Test-Signals (62) an
den mindestens einen Lautsprecher (15, 16, 17,
18, 19, 20), um ein angepasstes Geräusch, entsprechend zu dem angepassten Test-Signal zu
erzeugen.
40
17. Verfahren gemäß Ansprüchen 12, 14, 15, 16, wobei,
falls die Einstellungsinformation nicht benötigt wird,
dann ein Speichern der vordefinierten Einstellung
(53) erfolgt.
45
18. Verfahren gemäß Ansprüchen 12, 14, 15, 16, oder
17, weiterhin beinhaltend das Auswählen des speziellen Elements innerhalb der Anzahl von Elementen (58, 59, 60, 92, 93) für das Erzeugen des TestSignals (80).
50
19. Verfahren gemäß Ansprüchen 12, oder 14 bis 18,
weiterhin beinhaltend das Auswählen mehr als eines
Elements innerhalb einer Anzahl von Elementen (58,
59, 60, 92, 93) zum Erzeugen des Test-Signals (80).
55
20. Verfahren gemäß Ansprüchen 12, oder 14 bis 19,
wobei das Empfangen des Geräuschs von einem
Sensor in der Fernbedienung durchgeführt wird, wo-
11
21
EP 1 371 268 B1
bei die Fernbedienung einen Prozessor hat, um das
Geräusch zu verarbeiten.
21. Verfahren gemäß Anspruch 12, wobei das Verarbeiten in einer Haupt-Raumklang-Einheit (1) durchgeführt wird.
22
cesseur (29, 52) transmet l’information d’ajustement
(56) via un lien de communication (12, 28) à l’unité
de son d’ambiance (1), où l’unité de son d’ambiance
(1) génère un signal test ajusté (62) qui modifie le
signal test basé sur l’information d’ajustement de
sorte que les signaux de test acoustiques (21, 22,
23, 24, 25, 26) détectés par le capteur sont substantiellement similaires au premier réglage prédéterminé (53).
5
22. Verfahren gemäß Anspruch 12, wobei das Test-Signal ein akustisches Test-Signal ist.
10
23. Verfahren gemäß Anspruch 12, wobei die vordefinierte Einstellung ein vordefinierter Schalldruckpegel (65) ist.
24. Verfahren gemäß Ansprüchen 12 oder 23, wobei die
vordefinierte Einstellung eine vordefinierte Frequenz-Bandbreite (91) ist.
25. Verfahren gemäß Ansprüchen 12, 23 oder 24, wobei
die vordefinierte Einstellung eine vordefinierte Frequenz-Entzerrung ist.
26. Verfahren gemäß Ansprüchen 12, 23, 24 oder 25,
wobei die vordefinierte Einstellung eine vordefinierte
Ankunftszeit-Verzögerung (64) ist.
Système pour ajuster automatiquement un système
home cinéma, comprenant :
une unité de son d’ambiance (1) adaptée à générer un signal test (32, 50) basé sur un réglage
prédéterminé (53) et à envoyer le signal test à
un haut-parleur (15, 16, 17, 18, 19, 20), où le
haut-parleur génère un signal test acoustique
(21, 22, 23, 24, 25, 26) basé sur le signal test ;
un capteur (6) qui reçoit le signal test acoustique
(21, 22, 23, 24, 25, 26) depuis le haut-parleur
(15, 16, 17, 18, 19, 20), où le capteur (6) est
couplé de manière communicante à un processeur (29, 52) qui détermine une information
d’ajustement (56) qui doit être faite de sorte que
le signal test acoustique (21, 22, 23, 24, 25, 26)
détecté par le capteur (6) est substantiellement
similaire au premier réglage prédéterminé (53) ;
caractérisé en ce que le capteur est compris
dans une commande à distance (27), et en ce
que la commande à distance comprend en outre
un capteur adapté à ajuster automatiquement
un affichage utilisé dans le home cinéma utilisant au moins un des : détection de contraste,
détection de couleur, détection du niveau de
blanc, détection de définition, détection de teinte, et/ou détection de brillance.
2.
Système selon la revendication 1 ou 2, dans lequel
l’unité de son d’ambiance génère une pluralité de
signaux test (32, 50) et envoie la pluralité de signaux
test vers une pluralité de haut-parleurs (15, 16, 17,
18, 19, 20) pour générer une pluralité de signaux
test acoustiques (21, 22, 23, 24, 25, 26), dans lequel
le processeur détermine la différence en temps d’arrivée pour la pluralité de signaux test acoustiques et
détermine l’information d’ajustement de sorte que la
pluralité de signaux test acoustiques arrive à la commande à distance substantiellement en même
temps.
4.
Système selon la revendication 1, dans lequel le réglage prédéterminé est un réglage de niveau de
pression sonore (65).
5.
Système selon les revendications 1 ou 4, dans lequel
le réglage prédéterminé est une détection du niveau
de fréquence (65).
6.
Système selon les revendications 1, 4 ou 5, dans
lequel le réglage prédéterminé est un réglage de
sommet de fréquence (90).
7.
Système selon les revendications 1, 4, 5 ou 6, dans
lequel le réglage prédéterminé est un réglage de largeur de bande de fréquence (91).
8.
Système selon les revendications 1, ou 4-7, dans
lequel le réglage prédéterminé est un réglage de
temporisation (64).
9.
Système selon la revendication 1, dans lequel le capteur (6) dans la commande à distance (27) est un
microphone.
15
20
25
Revendications
1.
3.
30
35
40
45
50
10. Système selon la revendication 1, dans lequel la
commande à distance inclut en outre un afficheur de
sortie (76).
11. Système selon la revendication 1, dans lequel l’unité
de son d’ambiance (1) est couplée de manière communicante à Internet pour télécharger le signal test.
55
12. Procédé pour ajuster automatiquement un système
home cinéma, comprenant :
Système selon la revendication 1, dans lequel le pro-
12
23
EP 1 371 268 B1
générer un signal test (80) basé sur un réglage
prédéterminé (53) pour un élément particulier
parmi un nombre d’élément (58, 59, 60, 92, 93)
pour des ajustements dans un système home
cinéma ;
envoyer le signal test (80) à au moins un hautparleur (15, 16, 17, 18, 19, 20) pour générer un
son correspondant au signal test (80) ;
recevoir (64, 65, 68, 90, 91) le son depuis le au
moins un haut-parleur ; et
traiter (52) le son pour déterminer si une information d’ajustement (56) basée sur le réglage
prédéterminé (53) est nécessaire de sorte que
le signal test s’il est ajusté sur l’information
d’ajustement (56) est substantiellement similaire au réglage prédéterminé ;
caractérisée en ce qu’il :
comprend en outre l’étape d’ajuster automatiquement un afficheur utilisé dans le home cinéma, l’étape d’ajustement comprenant au moins une des étapes suivantes :
détection de contraste, détection de couleur, détection du niveau de blanc, détection
de définition, détection de teinte, et/ou détection de brillance.
24
18. Procédé selon les revendications 12, 14, 15, 16 ou
17, comprenant en outre sélectionner l’élément particulier parmi les éléments (58, 59, 60, 92, 93) pour
la génération du signal test (80).
5
19. Procédé selon les revendications 12, ou 14-18, comprenant en outre sélectionner plus d’un élément parmi les éléments (58, 59, 60, 92, 93) pour la génération du signal test (80).
10
15
20. Procédé selon les revendications 12, ou 14-19, dans
lequel la réception du son est faite par un capteur
dans la commande à distance, dans lequel la commande à distance a un processeur pour le traitement
du son.
21. Procédé selon la revendication 12, dans lequel le
traitement est fait dans une unité d’ambiance principale (1).
20
22. Procédé selon la revendication 12, dans lequel le
signal test est un signal test acoustique.
25
13. Procédé selon la revendication 12, comprenant en
outre télécharger le signal test depuis Internet.
30
14. Procédé selon la revendication 12, dans lequel la
réception est faite par un capteur dans une commande à distance qui est située dans une position prédéterminée.
23. Procédé selon la revendication 12, dans lequel le
réglage prédéterminé est un niveau de pression sonore prédéterminé (65).
24. Procédé selon les revendications 12 ou 23, dans lequel le réglage prédéterminé est une largeur de bande de fréquence prédéterminée (91).
25. Procédé selon les revendications 12, 23 ou 24, dans
lequel le réglage prédéterminé est une égalisation
de fréquence prédéterminée.
35
15. Procédé selon les revendications 12 ou 14, dans lequel la réception est faite à une position prédéterminée de sorte que l’information d’ajustement ajuste
le signal test pour qu’il soit substantiellement similaire au réglage prédéterminé à la position prédéterminée.
26. Procédé selon les revendications 12, 23, 24 ou 25,
dans lequel le réglage prédéterminé est une temporisation d’arrivée prédéterminée (64).
40
16. Procédé selon les revendications 12, 14 ou 15, comprenant en outre :
45
produire un signal test ajusté (62) qui modifie le
signal test basé sur l’information d’ajustement
pour correspondre substantiellement au réglage prédéterminé ; et
envoyer le signal test ajusté (62) vers le au
moins un haut-parleur (15, 16, 17, 18, 19, 20)
pour générer un son ajusté correspondant au
signal test ajusté.
17. Procédé selon les revendications 12, 14, 15 ou 16,
dans lequel si l’information d’ajustement n’est pas
nécessaire alors conserver le réglage prédéterminé
(53).
50
55
13
EP 1 371 268 B1
14
EP 1 371 268 B1
15
EP 1 371 268 B1
16
EP 1 371 268 B1
17
EP 1 371 268 B1
18
EP 1 371 268 B1
19
EP 1 371 268 B1
20
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement