Rockwell Automation ArmorStart 280D, 281D, 284D Distributed Motor Controller User Manual
Below you will find brief information for ArmorStart 280D, ArmorStart 281D, ArmorStart 284D. The ArmorStart is a pre-engineered starter that offers a robust IP67/NEMA Type 4 enclosure design, suitable for water wash down environments. It offers a modular 'plug and play' design, quick disconnects for I/O, communications, and motor connections, four DC inputs and two relay outputs for monitoring and controlling the application process. The ArmorStart comes with built-in diagnostics capabilities and an optional Hand/Off/Auto (HOA) keypad configuration that allows local start/stop control at the ArmorStart Distributed Motor Controller.
Advertisement
Advertisement
User Manual
ArmorStart® Distributed Motor Controller — Safety Version
Catalog Numbers 280D, 281D, 284D
Important User Information
Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.
Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.
If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.
The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.
No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.
Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation,
Inc., is prohibited.
Throughout this manual, when necessary, we use notes to make you aware of safety considerations.
WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment,
which may lead to personal injury or death, property damage, or economic loss.
ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property
damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.
IMPORTANT
Identifies information that is critical for successful application and understanding of the product.
Labels may also be on or inside the equipment to provide specific precautions.
SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous
voltage may be present.
BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may
reach dangerous temperatures.
ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to
potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL
Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).
ArmorConnect, ArmorStart, ControlLogix, DeviceLogix, PLC, RSNetWorx, RSLogix 5000, and SLC are trademarks of Rockwell Automation, Inc.
Trademarks not belonging to Rockwell Automation are property of their respective companies.
European Communities (EC) Directive Compliance
If this product has the CE mark it is approved for installation within the European Union and EEA regions. It has been designed and tested to meet the following directives.
Low Voltage and EMC Directives
This product is tested to meet Council Directive 73/23/EEC Low Voltage and 89/336/EEC and Council Directive
89/336/EC Electromagnetic Compatibility (EMC) by applying the following standard(s):
· Bulletin 280/281: EN 60947-4-1 — Low-voltage switchgear and controlgear — Part 4-1:Contactors and motor-starters — Electromechanical contactors and motor-starters.
· Bulletin 284: EN 61800-3 — Adjustable speed electronic power drive systems — Part 3: EMC product standard including specific test methods.
This product is intended for use in an industrial environment.
Notes
Chapter 1
Product Overview
Chapter 2
Installation and Wiring
Table of Contents
Table of Contents
Introduction ....................................................................................1-1
Description .....................................................................................1-1
Operation .......................................................................................1-2
Mode of Operation ..........................................................................1-2
Bulletin 280/281 — Full-Voltage Start .....................................1-2
Bulletin 284 — Sensorless Vector Control ................................1-2
Description of Features ..................................................................1-3
Overload Protection .................................................................1-3
LED Status Indication ..............................................................1-5
Fault Diagnostics .....................................................................1-5
Inputs ......................................................................................1-6
Outputs ...................................................................................1-6
Gland Plate Entrance ...............................................................1-6
Motor Cable .............................................................................1-6
ArmorStart with DeviceNet Network Capabilities ......................1-6
DeviceLogix™ ........................................................................1-6
Peer to Peer Communications (ZIP) ..........................................1-6
Factory Installed Options ................................................................1-7
Optional HOA Keypad Configuration .........................................1-7
HOA Selector Keypad with Jog Function ...................................1-7
Source Brake Contactor............................................................1-7
Dynamic Brake Resistor ...........................................................1-8
Shielded Motor Cable ...............................................................1-8
i
Receiving .......................................................................................2-1
Unpacking ......................................................................................2-1
Inspecting ......................................................................................2-1
General Precautions .......................................................................2-2
Precautions for Bulletin 280/281 Applications .................................2-2
Precautions for Bulletin 284 Applications.........................................2-3
Dimensions ....................................................................................2-4
Bulletin 280/281 ......................................................................2-4
Bulletin 284............................................................................2-10
Wiring ...................................................................................2-15
Power and Ground Wiring .....................................................2-15
Terminal Designations ..................................................................2-15
Optional Locking Clip ...................................................................2-18
ArmorConnect Power Media .........................................................2-19
Description ............................................................................2-19
ArmorStart Safety with ArmorConnect Connectivity ...............2-20
Terminal Designations............................................................2-21
ArmorConnect Cable Ratings ..................................................2-21
Branch Circuit Protection Requirements for
ArmorConnect Three-Phase Power Media .............................2-21
Group Motor Installations for USA and Canada Markets ................2-22
Wiring and Workmanship Guidelines ............................................2-22
DeviceNet Network Installation .....................................................2-23
Other DeviceNet System Design Considerations ....................2-23
ii
Table of Contents
Chapter 3
Bulletin 280/281
Programmable Parameters
Electromagnetic Compatibility (EMC) ............................................2-24
Grounding .............................................................................2-24
Wiring ...................................................................................2-24
Introduction ....................................................................................3-1
Parameter Programming .........................................................3-1
Parameter Group Listing .................................................................3-2
DeviceLogix™ Group .....................................................................3-2
DeviceNet Group ............................................................................3-7
Starter Protection Group ...............................................................3-10
Misc. Group .................................................................................3-17
ZIP Parameters ............................................................................3-18
Starter Display .............................................................................3-26
Starter Setup ................................................................................3-27
Chapter 4
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Introduction ....................................................................................4-1
Parameter Programming .........................................................4-1
Parameter Group Listing .................................................................4-2
DeviceLogix™ Group .....................................................................4-3
Starter Protection Group ...............................................................4-12
Drive DeviceNet Group ..................................................................4-18
Display Group................................................................................4-20
Basic Program Group ....................................................................4-25
Clear Type 1 Fault and Restart the Drive........................................4-45
Step Logic.....................................................................................4-58
Chapter 5
HOA Keypad Operation
Introduction ....................................................................................5-1
Keypad Description ........................................................................5-1
Keypad Disable and HOA ................................................................5-5
Table of Contents
iii
Chapter 6
DeviceNet™ Commissioning
Chapter 7
Explicit Messaging on DeviceNet™
Chapter 8
Using DeviceLogix™
Chapter 9
ArmorStart® ZIP Configuration
Chapter 10
Diagnostics
Establishing a DeviceNet Node Address ......................................... 6-1
Node Commissioning using Hardware ............................................ 6-1
Node Commissioning using Software ............................................. 6-2
Building and Registering an EDS File ............................................. 6-3
System Configuration ................................................................... 6-6
Using Automap feature with default Input and Output (I/O)
Assemblies .................................................................................... 6-7
Default Input and Output (I/O) Assembly Formats ........................... 6-7
Setting the Motor FLA and Overload Trip Class (Bulletin 280/281)... 6-8
Setting the Motor FLA (Bulletin 284) ............................................... 6-9
Logic Controller Application Example with Explicit
Messaging ..................................................................................... 7-1
Programming the 1747-SLC .......................................................... 7-1
I/O Mapping ............................................................................ 7-1
Explicit Messaging with SLC .......................................................... 7-2
Setting up the Data File ................................................................. 7-4
Sequence of Events ....................................................................... 7-4
Programming the 1756-ControlLogix ............................................. 7-7
I/O Mapping ............................................................................ 7-7
Explicit Messaging with ControlLogix ............................................. 7-8
Setting Up the MSG Instruction ...................................................... 7-8
DeviceLogix Programming ............................................................. 8-1
DeviceLogix Programming Example ............................................... 8-2
Overview ....................................................................................... 9-1
ZIP Parameter Overview ................................................................ 9-1
Data Production ............................................................................. 9-3
Data Consumption ......................................................................... 9-3
Mapping Consumed Data to the DeviceLogix Data Table. ............... 9-3
Finding ZIP bits in Device Logix Editor........................................... 9-12
Overview ..................................................................................... 10-1
Protection Programming ....................................................... 10-1
Fault Display ................................................................................ 10-1
Clear Fault ................................................................................... 10-2
Fault Codes ................................................................................. 10-2
Fault Definitions .......................................................................... 10-3
Short Circuit ......................................................................... 10-3
Overload Trip ........................................................................ 10-3
iv
Table of Contents
Chapter 11
Troubleshooting
Appendix A
Specifications
Appendix B
Bulletin 280/281 CIP Information
Phase Loss ............................................................................10-3
Phase Short............................................................................10-3
Ground Fault ..........................................................................10-3
Stall .......................................................................................10-3
Control Power ........................................................................10-3
I/O Fault ................................................................................10-3
Over Temperature .................................................................10-3
Phase Imbalance ...................................................................10-4
Over Current...........................................................................10-4
DeviceNet™ Power Loss .......................................................10-4
Internal Communication Fault.................................................10-4
DC Bus Fault ..........................................................................10-4
EEPROM Fault .......................................................................10-4
Hardware Fault ......................................................................10-4
Restart Retries .......................................................................10-4
Miscellaneous Faults..............................................................10-4
Introduction ..................................................................................11-1
Bulletin 280/281 Troubleshooting..................................................11-2
Bulletin 284 Troubleshooting.........................................................11-6
Fault Definitions .....................................................................11-6
DeviceNet Troubleshooting Procedures ......................................11-15
Control Module Replacement ......................................................11-16
Base Module Replacement..........................................................11-18
Bulletin 280/281 Specifications.......................................................A-1
Bulletin 284 Specifications ..............................................................A-5
ArmorConnect™ Three-Phase Power Media ................................A-10
Trunk Cables .........................................................................A-10
Drop Cables ..........................................................................A-11
Power Tees & Reducer ..........................................................A-12
Power Receptacles ................................................................A-14
Electronic Data Sheets ...................................................................B-1
DOL Type Product Codes and Name Strings ...................................B-1
DOL Reversing Type Product Codes and Name String .....................B-1
DeviceNet Objects ..........................................................................B-2
Identity Object — CLASS CODE 0x0001 .........................................B-3
Identity Objects ..............................................................................B-3
Message Router — CLASS CODE 0x0002 ......................................B-3
DeviceNet Object — CLASS CODE 0x0003 .....................................B-4
Assembly Object — CLASS CODE 0x0004 .....................................B-5
“Word-wise” I/O Assemblies ..........................................................B-5
“Word-wise” Bit-Packed Assemblies ..............................................B-6
Standard Distributed Motor Controller I/O Assemblies .....................B-7
Standard Distributed Motor Controller Output
(Consumed) Assemblies ..........................................................B-7
Appendix C
Bulletin 284 CIP Information
Table of Contents
Standard Distributed Motor Controller Input
(Produced) Assemblies ............................................................B-8
Connection Object — CLASS CODE 0x0005 .................................B-10
Discrete Input Point Object — CLASS CODE 0x0008 ...................B-14
Discrete Output Point Object — CLASS CODE 0x0009 ..................B-15
Discrete Output Point Object Special Requirements ......................B-16
DOP Instances 3 and 4 Special Behavior ...............................B-16
DOP Instances 1 and 2 Special Behavior ...............................B-17
Parameter Object — CLASS CODE 0x000F ..................................B-21
Parameter Group Object — CLASS CODE 0x0010 ........................B-22
Discrete Input Group Object — CLASS CODE 0x001D ..................B-23
Discrete Output Group Object — CLASS CODE 0x001E ................B-24
Control Supervisor Object -CLASS CODE 0x0029 ..........................B-25
Acknowledge Handler Object — CLASS CODE 0x002b .................B-26
Overload Object — CLASS CODE 0x002c .....................................B-27
DeviceNet Interface Object -CLASS CODE 0x00B4 ........................B-28
v
Electronic Data Sheets ...................................................................C-1
VFD Type Product Codes and Name Strings ....................................C-1
DeviceNet Objects ..........................................................................C-2
Identity Object — CLASS CODE 0x0001 .........................................C-2
Identity Objects ..............................................................................C-3
Message Router — CLASS CODE 0x0002 ......................................C-3
DeviceNet Object — CLASS CODE 0x0003 .....................................C-4
Assembly Object — CLASS CODE 0x0004 .....................................C-5
“Word-wise” I/O Assemblies ..........................................................C-6
“Word-wise” Bit-Packed Assemblies ..............................................C-6
Standard Distributed Motor Controller I/O Assemblies .....................C-8
Standard Distributed Motor Controller Output
(Consumed) Assemblies ..........................................................C-8
Bulletin 284 Distributed Motor Controller I/O Assemblies ................C-9
Standard Distributed Motor Controller Ouput
(Consumed) Assemblies ..........................................................C-9
Standard Distributed Motor Controller Input
(Produced) Assemblies ............................................................C-9
Inverter Type Distributed Motor Controller Input
(Produced) Assemblies ...........................................................C-10
PowerFlex Native Assemblies .................................................C-11
Connection Object — CLASS CODE 0x0005 .................................C-13
Discrete Input Point Object — CLASS CODE 0x0008 ...................C-18
Discrete Output Point Object — CLASS CODE 0x0009 ..................C-19
Discrete Output Point Object Special Requirements ......................C-20
DOP Instances 3 and 4 Special Behavior ...............................C-20
DOP Instances 1, 2, 9, and 10 Special Behavior ....................C-22
Parameter Object — CLASS CODE 0x000F ..................................C-26
Parameter Group Object — CLASS CODE 0x0010 ........................C-27
Discrete Input Group Object — CLASS CODE 0x001D ..................C-28
Discrete Output Group Object — CLASS CODE 0x001E ................C-29
vi
Table of Contents
Control Supervisor Object -CLASS CODE 0x0029 ..........................C-30
Acknowledge Handler Object — CLASS CODE 0x002b .................C-31
DeviceNet Interface Object -CLASS CODE 0x00B4 ........................C-32
Appendix D
Group Motor Installations
Appendix E
Safety I/O Module and TÜV
Requirements
Application of ArmorStart® Controllers in Group Installation ...........D-1
ArmorStart Safety-Related Parts......................................................E-1
ArmorBlock Guard I/O Modules .......................................................E-2
Specifications ..........................................................................E-2
ArmorBlock Guard I/O Recommended Compatible
Cables and Connectors.............................................................E-3
Safety-Related Specifications..........................................................E-6
Maintenance and Internal Part Replacement....................................E-6
Troubleshooting ..............................................................................E-7
Accessories .................................................................................... F-1
Appendix F
Accessories
Appendix G
Renewal Parts
Appendix H
PID Setup
Renewal Parts.................................................................................G-1
Appendix I
Step Logic, Basic Logic and Timer/
Counter Functions
Exclusive Control.............................................................................H-1
Trim Control....................................................................................H-2
PID Reference and Feedback...........................................................H-3
PID Deadband .................................................................................H-3
PID Preload .....................................................................................H-4
Guidelines For Adjusting PID Gains ..................................................H-5
Step Logic Using Timed Steps.......................................................... I-2
Step Logic Using Basic Logic Functions............................................ I-3
Timer Function................................................................................. I-4
Counter Function.............................................................................. I-5
Step Logic Parameters ..................................................................... I-6
Introduction
Description
Safety ArmorStart
Chapter
1
Product Overview
This chapter provides a brief overview of the features and functionality of the Bulletin 280/281 and 284 ArmorStart®
Distributed Motor Controllers.
The ArmorStart Distributed Motor Controllers are integrated, preengineered, starters with Bulletin 280/281 for full-voltage and reversing applications and Bulletin 284 for variable frequency AC drives applications. The ArmorStart offers a robust IP67/NEMA Type
4 enclosure design, which is suitable for water wash down environments.
The modular “plug and play” design offers simplicity in wiring the installation. The quick disconnects for the I/O, communications, and motor connections reduce the wiring time and eliminate wiring errors.
The ArmorStart offers, as standard, four DC inputs and two relay outputs, to be used with sensors and actuators respectively, for monitoring and controlling the application process. The ArmorStart’s
LED status indication and built-in diagnostics capabilities allow ease of maintenance and troubleshooting. The optional Hand/Off/Auto
(HOA) keypad configuration allows local start/stop control at the
ArmorStart Distributed Motor Controller.
The ArmorStart Distributed Motor Controller offers short circuit protection per UL508 and IEC 60947. The ArmorStart is rated for local-disconnect service by incorporating the Bulletin 140 Motor
Protector as the local-disconnect, eliminating the need for additional components. The ArmorStart Distributed Motor Controllers are suitable for group motor installations.
The safety version of the ArmorStart provides a safety solution integrated into DeviceNet Safety installations. The Bulletin 280/281/
284 Safety ArmorStart achieves Category 4 functionality by using redundant contactors. The Safety ArmorStart offers a quick connects via the gland plate to the 1732DS-IB8XOBV4 safety I/O module. The
Bulletin 1732DS Safety I/O inputs will monitor the status of the safety rated contactors inside the ArmorStart. The Bulletin 1732DS
Safety I/O outputs to provide 24V DC power for control power to the
ArmorStart.
Note: The Bulletin 280/281/284 Safety ArmorStart is suitable for safety applications up to Safety Category 4PL e (TÜV assessment per ISO 13849-1:2008). T
Ü
V compliance letter is available upon request.
Note: For additional information regarding the
1732DS-IB8XOBV4 safety I/O module, see publication
1791DS-UM001*-EN-P.
1-2
Operation
Product Overview
Mode of Operation
The ArmorStart Distributed Motor Controllers can operate threephase squirrel-cage induction motors as follows:
Bulletin 280/281: 0.5…16 A; up to 10 Hp (7.5 kW) @ 480V AC;
50/60 Hz.
Bulletin 284: up to 5 Hp (3.0 kW) @ 480V AC; 50/60 Hz.
Bulletin 280/281 Full-Voltage Start
This method is used in applications requiring across-the-line starting, in which full inrush current and locked-rotor torque are realized. The
ArmorStart Bulletin 280 offers full-voltage starting and the Bulletin
281 offers full-voltage starting for reversing applications.
100%
Percent
Voltage
Time (seconds)
Bulletin 284 Sensorless Vector Control
• Sensorless Vector Control provides exceptional speed regulation and very high levels of torque across the entire speed range of the drive
• The Autotune feature allows the Bulletin 284 ArmorStart
Distributed Motor Controller to adapt to individual motor characteristics.
• To select this method of operation, select V for the Mode of
Operation listed in the catalog structure. See the Industrial
Controls catalog
Description of Features
10000
1000
100
10
1
0 100 200 300 400 500 600 700
Cold
Hot
Product Overview
1-3
Overload Protection
The ArmorStart Distributed Motor Controller incorporates, as standard, electronic motor overload protection. This overload protection is accomplished electronically with an I
2 t algorithm. The
ArmorStart’s overload protection is programmable via the communication network, providing the user with flexibility.
The Bulletin 280/281 overload trip class can be selected for class 10,
15, 20 protection. Ambient insensitivity is inherent in the electronic design of the overload.
Figure 1.1 Overload Trip Curves
10000
100
1
0 100 200 300 400 500 600 700
% of
Class 20 Overload Curves
Class 20
10000
Cold
Hot
100
Cold
Hot
1
0 100 200 300 400 500 600 700
1-4
Product Overview
The Bulletin 284 ArmorStart Distributed Motor Controller incorporates, as standard, electronic motor overload protection. This overload protection is accomplished electronically with an I
2 t algorithm. The ArmorStart’s overload protection is programmable via the communication network providing the user with flexibility.
Programming the Motor OL Current parameter provides class 10 overload protection for the Bulletin 284 Distributed Motor Controller.
Ambient insensitivity is inherent in the electronic design of the overload.
Figure 1.2 Overload Trip Curves
% of P132 (Motor NP Hertz) % of P132 (Motor NP Hertz)
% of P132 (Motor NP Hertz)
Product Overview
LED Status Indication
The LED Status Indication provides 4 status LEDs and a Reset button. The LEDs provide status indication for the following:
1-5
• POWER LED
The LED is illuminated solid green when control power is present and with the proper polarity
• RUN LED
This LED is illuminated solid green when a start command and control power are present
• NETWORK LED
This bi-color (red/green) LED indicates the status of the communication link
• FAULT LED
Indicates Controller Fault (Trip) condition
The “Reset Button” acts as a local trip reset.
Figure 1.3 Status Indication and Reset
Fault Indication
• Short Circuit
• Overload
• Phase Loss
• Control Power Loss
• Control Power Fuse Detection
• Output Power Fuse Detection
• I/O Fault
• Over Temperature
• DeviceNet™ Power Loss
• EEprom Fault
• Hardware Fault
Fault Diagnostics
Fault diagnostics capabilities built in the ArmorStart Distributed
Motor Controller help you pinpoint a problem for easy troubleshooting and quick re-starting.
Available on
Bulletin:
280/281 284
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Fault Indication
• Phase Imbalance
• Miscellaneous Fault
• Brake Fuse Detection
• Internal Comm. Fault
• DC Bus Fault
• Ground Fault
• Overcurrent
• Restart Retries
• Stall
• Phase Short
Available on
Bulletin:
280/281 284
X
X
X
X
X
X
X
X
X
X
X
1-6
Product Overview
Inputs
The inputs are single-keyed (2 inputs per connector), which are sourced from DeviceNet power (24V DC), with LED status indication.
Outputs
Two dual-key relay output connectors are supplied as standard. The outputs are sourced from control power (A1 and A2). LED status indication is also provided as standard for each output.
Gland Plate Entrance
The ArmorStart product offers two different methods of connecting incoming three-phase power to the device. One method offered is the traditional conduit entrance with a 1 in. conduit hole opening for wiring three-phase power. The second method offers connectivity to the ArmorConnect™ power media. Factory-installed receptacles are provided for connectivity to the three-phase power media.
Motor Cable
With every ArmorStart Distributed Motor Controller, a 3-meter unshielded 4-conductor cordset is provided with each unit as standard. If the optional EMI filter is selected for Bulletin 284 units, a shielded 4-conductor cordset is provided with each unit as standard.
ArmorStart with DeviceNet Network Capabilities
The ArmorStart Distributed Motor Controller delivers advanced capabilities to access parameter settings and provides fault diagnostics, and remote start-stop control. DeviceNet is the communication protocol, provided with the ArmorStart Bulletin
280D/281D or 284D Distributed Motor Controller.
DeviceLogix™
DeviceLogix is a stand-alone Boolean program that resides within the
ArmorStart Distributed Motor Controller. DeviceLogix is programmed using Boolean math operations, such as, AND, OR,
NOT, Timers, Counters, and Latches. DeviceLogix can run as a standalone application, independent of the network. However, 24V DC must be supplied at the DeviceNet connector to power the inputs.
Peer to Peer Communications (ZIP)
The zone control capabilities of ArmorStart Distributed Motor
Controllers is ideal for large horsepower (0.5…10 Hp) motored conveyors. The ArmorStart Distributed Motor Controllers have builtin DeviceNet communications, DeviceLogix technology, and the added Zone Interlocking Parameters (ZIP) which allow one
ArmorStart to receive data directly, from up to four other DeviceNet nodes, without going through a network scanner. These direct communications between conveyor zones are beneficial in a merge, diverter, or accumulation conveyor application.
Factory Installed Options
Product Overview
1-7
Optional HOA Keypad Configuration (Bulletin 280/281 only)
The ArmorStart offers two optional factory-installed Hand/Off/Auto
(HOA) configurations: Standard and Forward/Reverse HOA.
Figure 1.4 Optional HOA Configuration
Optional HOA Selector Keypad with Jog Function (Bulletin 284 only)
The HOA Selector Keypad with Jog Function allows for local start/ stop control with capabilities to jog in forward/reverse motor directions.
Figure 1.5 Optional HOA with Jog Function Configuration
Source Brake Contactor (Bulletins 284 only)
An internal contactor is used to switch the electromechanical motor brake on/off. The motor brake is powered from the main power circuit. A customer-accessible 3.0 A fuse is provided to protect the brake cable. A 3 meter, 3-pin cable for connection to the motor brake is provided as standard when the option is selected.
EMI Filter (Bulletin 284 only)
The EMI Filter option is required if the Bulletin 284 ArmorStart
Distributed Motor Controller must be CE-compliant. If the EMI Filter is selected, a 3 meter shielded 4-conductor cordset is provided as standard. This option is only available with sensorless vector control.
1-8
Product Overview
Dynamic Brake Resistor (Bulletin 284 only)
The IP67 Dynamic Brake Resistor plug and play design offers simplicity in writing and installation. The factory installed option of
DB1 must be selected in order to have the quick disconnect connectivity. The cable length of the IP67 Dynamic Brake Resistor is available in two lengths, 0.5 meter and 1 meter. See Appendix F,
Accessories, for available IP67 Dynamic Brake Resistors.
Note: The IP67 Dynamic Brake Resistor is used only with the
-DB1 factory-installed option.
Shielded Motor Cable (Bulletin 284 only)
A 3 meter shielded 4-conductor cordset is provided instead of the 3 meter unshielded 4-conductor cordset. If the EMI Filter is selected, a
3 meter shielded 4-conductor cordset is provided as standard.
Receiving
Unpacking
Inspecting
Storing
Chapter
2
Installation and Wiring
It is the responsibility of the user to thoroughly inspect the equipment before accepting the shipment from the freight company. Check the item(s) received against the purchase order. If any items are damaged, it is the responsibility of the user not to accept delivery until the freight agent has noted the damage on the freight bill. Should any concealed damage be found during unpacking, it is again the responsibility of the user to notify the freight agent. The shipping container must be left intact and the freight agent should be requested to make a visual inspection of the equipment.
Remove all packing material, wedges, or braces from within and around the starter. Remove all packing material from device(s).
After unpacking, check the nameplate catalog number(s) against the purchase order.
The controller should remain in its shipping container prior to installation. If the equipment is not to be used for a period of time, it must be stored according to the following instructions in order to maintain warranty coverage.
• Store in a clean, dry location.
• Store within an ambient temperature range of –25°C…+85°C
(–13°F…+185°F).
• Store within a relative humidity range of 0…95%, noncondensing.
• Do not store equipment where it could be exposed to a corrosive atmosphere.
• Do not store equipment in a construction area.
2-2
Installation and Wiring
General Precautions
In addition to the precautions listed throughout this manual, the following statements, which are general to the system, must be read and understood.
ATTENTION
!
The controller contains ESD (electrostatic discharge)-sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing, or repairing the assembly.
Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, refer to Publication
8000-4.5.2, Guarding against Electrostatic
Discharge, or any other applicable ESD protection handbooks.
ATTENTION
!
ATTENTION
An incorrectly applied or installed controller can damage components or reduce product life. Wiring or application errors, such as undersizing the motor, incorrect or inadequate AC supply, or excessive ambient temperatures, may result in malfunction of the system.
!
Only personnel familiar with the controller and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to do this may result in personal injury and/or equipment damage.
Precautions for Bulletin 280/281
Applications
ATTENTION
To prevent electrical shock, open disconnect prior to connecting and disconnecting cables. Risk of shock - environment rating may not be maintained with open receptacles.
!
Precautions for Bulletin 284
Applications
Installation and Wiring
2-3
ATTENTION
!
The drive contains high voltage capacitors which take time to discharge after removal of mains supply. Before working on drive, ensure isolation of mains supply from line inputs (R, S, T [L1, L2, L3]).
Wait three minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels. Risk of shock - environment rating may not be maintained with open receptacles.
ATTENTION
!
Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to do this may result in personal injury and/or equipment damage.
2-4
Dimensions
Installation and Wiring
Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change.
Figure 3 Dimensions for Bulletin 280D Safety Product, IP67/NEMA Type 4 with Conduit Entrance
Installation and Wiring
2-5
Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change.
Figure 4 Dimensions for Bulletin 280D Safety Product, IP67/NEMA Type 4 with ArmorConnect™ Connectivity
ArmorStart device with a 10 A short circuit protection rating ArmorStart device with a 25 A short circuit protection rating
2-6
Installation and Wiring
Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change.
Figure 5 Dimensions for Bulletin 281D Safety Product, IP67/NEMA Type 4 with Conduit Entrance
Installation and Wiring
2-7
Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change.
Figure 6 Dimensions for Bulletin 281D Safety Product, IP67/NEMA Type 4 with ArmorConnect Connectivity
ArmorStart device with a 10 A short circuit protection rating ArmorStart device with a 25 A short circuit protection rating
2-8
Installation and Wiring
Local Disconnect
Figure 7 Bulletin 280D ArmorStart Safety Product with Conduit Entrance
LED Status
Indication
2 Outputs
(Micro/M12)
4 Inputs
(Micro/M12)
DeviceNet
Connection
(Mini/M18)
Ground Terminal
A1/A2 - 24V DC Control Power from
1732DS Safety I/O Module output
Safety Monitor input from
1732DS Safety I/O Module input
Motor
Connection
Figure 8 Bulletin 281D ArmorStart Safety Product with Conduit Entrance
Local Disconnect
LED Status
Indication
2 Outputs
(Micro/M12)
4 Inputs
(Micro/M12)
DeviceNet
Connection
(Mini/M18)
Ground Terminal
A1/A2 - 24V DC Control Power from
1732DS Safety I/O Module output
Safety Monitor input from
1732DS Safety I/O Module input
Motor
Connection
Installation and Wiring
Figure 9 Bulletin 280D ArmorStart Safety Product with ArmorConnect
2-9
A1/A2 - 24V DC Control Power from
1732DS Safety I/O Module output
Three-Phase Power
Safety Monitor input from
A1/A2 - 24V DC Control Power from
1732DS Safety I/O Module output
Three-Phase Power
Safety Monitor input from
1732DS Safety I/O Module input
1732DS Safety I/O Module input
Figure 10 Bulletin 281D ArmorStart Safety Product with ArmorConnect
Three-Phase Power A1/A2 - 24V DC Control Power from
1732DS Safety I/O Module output
A1/A2 - 24V DC Control Power from
1732DS Safety I/O Module output
Safety Monitor input from
1732DS Safety I/O Module input
Three-Phase Power
Safety Monitor input from
1732DS Safety I/O Module input
2-10
Dimensions
Installation and Wiring
Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change.
Figure 11 Dimensions for Bulletin 284D Safety Product, 2 Hp and below @
460V AC, IP67/NEMA Type 4 with Conduit Entrance
Installation and Wiring
2-11
Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change.
Figure 12 Dimensions for Bulletin 284D Safety Product, 2 Hp and below @
460V AC, NEMA Type 4 with ArmorConnect™ Connectivity
ArmorStart device with a 10 A short circuit protection rating
2-12
Installation and Wiring
Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change.
Figure 13 Dimensions for Bulletin 284D Safety Product, 3 Hp and above @
460V AC, IP67/NEMA Type 4 with Conduit Entrance
Installation and Wiring
2-13
Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change.
Figure 14 Dimensions for Bulletin 284D Safety Product, 3 Hp and above @
460V AC, IP67/NEMA Type 4 with ArmorConnect Connectivity
ArmorStart device with a 25 A short circuit protection rating
2-14
Installation and Wiring
Local Disconnect
Figure 15 Bulletin 284 ArmorStart Safety Product with Conduit Entrance
LED Status
Indication
2 Outputs
(Micro/M12)
4 Inputs
(Micro/M12)
DeviceNet
Connection
(Mini/M18)
Ground
Terminal
A1/A2 - 24V DC Control Power from
1732DS Safety I/O Module output
Dynamic
Brake Connector
Safety Monitor input from
1732DS Safety I/O Module input
Motor
Connector
Source Brake
Connector
Figure 16 Bulletin 284 ArmorStart Safety Product with ArmorConnect
Three-Phase Power
A1/A2 - 24V DC Control Power from
1732DS Safety I/O Module output
Three-Phase Power
A1/A2 - 24V DC Control Power from
1732DS Safety I/O Module output
Safety Monitor input from
1732DS Safety I/O Module input
Safety Monitor input from
1732DS Safety I/O Module input
Wiring
Terminal Designations
Installation and Wiring
2-15
Power and Ground Wiring
Table 2.1 provides the power and ground wire capacity and the tightening torque requirements. The power and ground terminals will accept a maximum of two wires per terminal.
Table 2.1 Power and Ground Wire, Size and Torque Specifications
Terminals
Power and
Ground
Wire Size
Primary Terminal:
1.3…5.3 mm
2
(#16 …#10 AWG)
Secondary Terminal:
0.8…5.3 mm
2
(#18 …#10 AWG)
Torque
Primary Terminal:
10.8 lb•in
(1.2 N•m)
Secondary Terminal:
4.5 lb•in
(0.5 N•m)
Wire Strip Length
0.35 in. (9 mm)
As shown in the next figures, the ArmorStart Distributed Motor Controller contains terminals for power, control, safety monitor inputs, and ground wiring. Access can be gained by removing the terminal access cover plate.
Figure 2.1 Bulletin 280 Power, Control, and Safety Monitor Input Terminals
2-16
Installation and Wiring
Figure 2.2 Bulletin 281 Power, Control, and Safety Monitor Input Terminals
Installation and Wiring
2-17
Figure 2.3 Bulletin 284 ArmorStart Power, Control, and Safety Monitor Input
Terminals
Table 2.2 Power, Control, Safety Monitor, and Ground Terminal Designations
Terminal Designations No. of Poles Description
SM1
SM2
A1 (+)
A2 (-)
PE
1/L1
3/L3
5/L5
2
2
2
2
2
2
2
2
Safety Monitor Input
Safety Monitor Input
Control Power Input
Control Power Common
Ground
Line Power Phase A
Line Power Phase B
Line Power Phase C
2-18
Installation and Wiring
Optional Locking Clip
The clam shell design clips over the ArmorStart motor connector and motor cable to limit customer access from disconnecting the motor cable on the ArmorStart Distributed Motor Controller. The locking clip is an optional device that can be used, if desired.
Figure 2.4 Bulletin 280 Installation of Locking Clip
Figure 2.5 Bulletin 281Installation of Locking Clip
Figure 2.6 Bulletin 284 Installation of Locking Clip
ArmorConnect Power Media
Installation and Wiring
2-19
Description
The ArmorConnect power media offers both three-phase and control power cable system of cord sets, patch cords, receptacles, tees, reducers and accessories to be utilized with the ArmorStart
Distributed Motor Controller. These cable system components allow quick connection of ArmorStart Distributed Motor Controllers, there by reducing installation time. They provide for repeatable, reliable connection of the three-phase and control power to the ArmorStart
Distributed Motor Controller and motor by providing a plug-and-play environment that also avoids system mis-wiring. When specifying power media for use with the ArmorStart Distributed Motor
Controllers (Bulletin 280/281 and 284) use only the Bulletin 280
ArmorConnect power media.
Figure 2.7 Three-Phase Power System Overview
Enclosure
Bulletin 1492FB
Branch Circuit
Protective Device
Bulletin 1606
Power Supply
1606-XLSDNET4
DeviceNet
Power Supply
PLC
Bulletin 280/281
ArmorStart
RESET
Bulletin 283
ArmorStart
OFF
Bulletin 284
ArmorStart
Bulletin 800F
Emergency Stop
Pushbutton
➊
Three-Phase Power Trunk- PatchCord cable with integral female or male connector on each end
Example Part Number: 280-PWR35A-M*
➋
Three-Phase Drop Cable- PatchCord cable with integral female or male connector on each end
Example Part Number: 280-PWR22A-M*
➌
Three-Phase Power Tees and Reducer -
Tee connects to a single drop line to trunk with quick change connectors – Part Number: 280-T35
Reducing Tee connects to a single drop line (Mini) to trunk (Quick change) connector – Part Number: 280-RT35
Reducer connects from quick change male connector to mini female connector– Part Number: 280-RA35
➍
Three-Phase Power Receptacles -
Female receptacles are a panel mount connector with flying leads – Part Number: 280-M35F-M1
2-20
Installation and Wiring
ArmorStart Safety with
ArmorConnect Connectivity
ArmorStart devices with 10 A short circuit protection rating
ArmorStart devices with 25 A short circuit protection rating
Ground
Terminal
A1/A2 -24V DC
Control Power from
1732DS Safety
I/O Module Output
Three-Phase Power Receptacle
Safety Monitor
Input from
1732DS Safety
I/O Module Input
Ground
Terminal
A1/A2 -24V DC
Control Power from
1732DS Safety
I/O Module Output
Three-Phase Power Receptacle
Safety Monitor
Input from
1732DS Safety
I/O Module Input
ArmorStart devices with conduit entrance
A1/A2 -24V DC
Control Power from
1732DS Safety
I/O Module Output
Ground
Terminal
Three-Phase Power Receptacle
Safety Monitor
Input from
1732DS Safety
I/O Module Input
Terminal Designations
Installation and Wiring
2-21
Terminal
Designations
SM1
SM2
A1 (+)
A2 (-)
PE
1/L1
3/L2
5/L3
Description Color Code
Safety Monitor Input
Safety Monitor Input
Control Power Input
Brown
White
Brown
Control Power Common Blue
Ground Green/Yellow
Line Power - Phase A Black
Line Power - Phase B White
Line Power - Phase C Red
ArmorConnect Cable Ratings
The ArmorConnect power media cables are rated per UL Type TC
600V 90 °C Dry 75 °C Wet, Exposed Run (ER) or MTW 600V 90 °C or STOOW 105 °C 600V - CSA STOOW 600V FT2.
Branch Circuit Protection Requirements for ArmorConnect
Three-Phase Power Media
When using ArmorConnect three-phase power media, only fuses can be used for the motor branch circuit protective device, for the group motor installations. The following fuse types are recommended: Class
CC, T, or J type fuses.
Maximum Ratings
Voltage (V)
Sym. Amps RMS
Time Delay Fuse
Non-Delay Fuse
480Y/277
65 kA
50 A
100 A
2-22
Installation and Wiring
Group Motor Installations for USA and Canada Markets
Wiring and Workmanship
Guidelines
The ArmorStart Distributed Motor Controllers are listed for use with each other in group installations per NFPA 79, Electrical Standard for
Industrial Machinery. When applied according to the group motor installation requirements, two or more motors, of any rating or controller type, are permitted on a single branch circuit. Group Motor
Installation has been successfully used for many years in the USA and
Canada.
Note: For additional information regarding group motor installations with the ArmorStart Distributed Motor
Controller, see Appendix C.
In addition to conduit and seal-tite raceway, it is acceptable to utilize cable that is dual rated Tray Cable, Type TC-ER and Cord, STOOW, for power and control wiring on ArmorStart installations. In the USA and Canada installations, the following guidance is outlined by the
NEC and NFPA 79.
In industrial establishments where the conditions of maintenance and supervision ensure that only qualified persons service the installation, and where the exposed cable is continuously supported and protected against physical damage using mechanical protection, such as struts, angles, or channels, Type TC tray cable that complies with the crush and impact requirements of Type MC (Metal Clad) cable and is identified for such use with the marking Type TC-ER (Exposed
Run)* shall be permitted between a cable tray and the utilization equipment or device as open wiring. The cable shall be secured at intervals not exceeding 1.8 m (6 ft) and installed in a “good workmanlike” manner. Equipment grounding for the utilization equipment shall be provided by an equipment grounding conductor within the cable.
*Historically cable meeting these crush and impact requirements were designated and marked “Open Wiring”. Cable so marked is equivalent to the present Type TC-ER and can be used.
While the ArmorStart is intended for installation in factory floor environments of industrial establishments, the following must be taken into consideration when locating the ArmorStart in the application: Cables, including those for control voltage including
24V DC and communications, are not to be exposed to an operator or building traffic on a continuous basis. Location of the ArmorStart to minimize exposure to continual traffic is recommended. If location to minimize traffic flow is unavoidable, other barriers to minimize inadvertent exposure to the cabling should be considered. Routing cables should be done in such a manner to minimize inadvertent exposure and/or damage.
DeviceNet Network Installation
Installation and Wiring
2-23
Additionally, if conduit or other raceways are not used, it is recommended that strain relief fittings be utilized when installing the cables for the control and power wiring through the conduit openings.
The working space around the ArmorStart may be minimized as the
ArmorStart does not require examination, adjustment, servicing or maintenance while energized. In lieu of this service, the ArmorStart is meant to be unplugged and replaced after proper lockout/tag-out procedures have been employed.
Since the ArmorStart is available with a factory installed HOA keypad option this may require the ArmorStart to be selected and installed as follows if the application requires frequent use of the hand operated interface by the equipment operator:
1. They are not less than 0.6 m (2 ft) above the servicing level and are within easy reach of the normal working position of the operator.
2. The operator is not placed in a hazardous situation when operating them.
3. The possibility of inadvertent operation is minimized.
If the operated interface is used in industrial establishments where the conditions of maintenance and supervision ensure that only qualified persons operate and service the ArmorStart's operator interface, and the installation is located so that inadvertent operation is minimized then other installation locations with acceptable access can be provided.
The ArmorStart Distributed Motor Controller contains the equivalent of 30 in. (0.76 m) of DeviceNet drop cable's electrical characteristics and therefore 30 in. of drop cable must be included in the DeviceNet drop cable budget for each ArmorStart in addition to actual drop cable required for the installation.
Other DeviceNet System Design Considerations
The separation of the control power and DeviceNet power is recommended as a good design practice. This minimizes the load on the DeviceNet supply, and prevents transients which may be present on the control power system from influencing the communication controls. For additional information regarding 24V DC control power system design, see Appendix D.
2-24
Installation and Wiring
Electromagnetic
Compatibility
(EMC)
The following guidelines are provided for EMC installation compliance.
General Notes (Bulletin 284 only)
• The motor Cable should be kept as short as possible in order to avoid electromagnetic emission as well as capacitive currents
• Conformity of the drive with CE EMC requirements does not guarantee an entire machine installation complies with CE EMC requirements. Many factors can influence total machine/ installation compliance.
• Using an EMI filter with any drive rating, may result in relatively high ground leakage currents. Therefore, the filter must only be used in installations and solidly grounded (bonded) to the building power distribution ground. Grounding must not rely on flexible cables and should not include any form of plug or socket that would permit inadvertent disconnection. Some local codes may require redundant ground connections. The integrity of all connections should be periodically checked.
Grounding
Connect a grounding conductor to the terminal provided as standard on each ArmorStart Distributed Motor Controller. Refer to Table 2.2 for grounding provision location. There is also an externally available ground terminal. Refer to Figure 7, Figure 8, and Figure 15.
Wiring
Wire in an industrial control application can be divided into three groups: power, control, and signal. The following recommendations for physical separation between these groups is provided to reduce the coupling effect.
• Minimum spacing between different wire groups in the same tray should be 6 in. (16 cm).
• Wire runs outside an enclosure should be run in conduit or have shielding/armor with equivalent attenuation.
• Different wire groups should be run in separate conduits.
• Minimum spacing between conduits containing different wire groups should be 3 in. (8 cm).
Introduction
Chapter
3
Bulletin 280/281 Programmable
Parameters
This chapter describes each programmable parameter and its function.
Parameter Programming
Each Distributed Motor Controller type will have a common set of parameters followed by a set of parameters that pertain to the individual starter type.
Refer to Chapter 6, DeviceNet™ Commissioning for instructions in using RSNetWorx™ for DeviceNet to modify parameter settings.
Important: Resetting the Factory Default Values Parameter 47,
Set to Defaults, allows the installer to reset all parameters to the factory default values. It also resets the MAC ID to its factory default after DeviceNet Power is cycled if switches are set >63.
Important: Parameter setting changes downloaded to the
ArmorStart™ take effect immediately, even during a
“running” status.
Important: Parameter setting changes made in a configuration tool such as RSNetWorx for DeviceNet do not take effect in the ArmorStart until the installer applies or downloads the new settings to the device.
3-2
Bulletin 280/281 Programmable Parameters
Parameter Group Listing
The Bulletin 280/281 ArmorStart contains eight parameter groups.
The parameters shown in the DeviceLogix, DeviceNet, Starter
Protection, User I/O, Misc. Parameter, ZIP Parameters, Starter
Display and Starter Setup, are discussed in this chapter.
DeviceLogix
1 Hdw Inputs
2 Network Inputs
3 Network Outputs
4 Trip Status
5 Starter Status
6 DNet Status
7 Starter Command
8 Network Override
9 Comm Override
DeviceNet
Starter
Protection
10 Autobaud Enable 22 Breaker Type
11 Consumed IO Assy 23 PrFltResetMode
12 Produced IO Assy 24 Pr Fault Enable
13 Prod Assy Word 0 25 Pr Fault Reset
14 Prod Assy Word 1 26 StrtrDN FltState
15 Prod Assy Word 2 27 StrtrDN FltValue
16 Prod Assy Word 3 28 StrtrDN IdlState
17 Consumed IO Size 29 StrtrDN IdlValue
18 Produced IO Size 61 Last PR Fault
19 Starter COS Mask 62 Warning Status
20 Net Out COS Mask
21 DNet Voltage
Table 3.1 Parameter Group Listing
User I/O Misc.
ZIP Parameters Starter Display Starter Setup
30 Off-to-On Delay
31 On-to-Off Delay
32 In Sink/Source
33 OutA Pr FltState
45 Keypad Mode
46 Keypad Disable
47 Set To Defaults
56 Base Enclosure
34 OutA Pr FltValue 57 Base Option
35 OutA DN FltState 58 Wiring Option
67 AutoRun Zip 101 Phase A Current 106 FLA Setting
68 Zone Produced EPR 102 Phase B Current 107 Overload Class
69 Zone Produced PIT 103 Phase C Current 108 OL Reset Level
70 Zone #1 MacId 104 Average Current
71 Zone #2 MacId
72 Zone #3 MacId
36 OutA DN FltValue 59 Starter Enclosure 73 Zone #4 MacId
37 OutA DN IdlState 60 Starter Options 74 Zone #1 Health
105% Therm Utilized
38 OutA DN IdlValue
39 OutB Pr FltState
40 OutB Pr FltValue
41 OutB DN FltState
75 Zone #2 Health
76 Zone #3 Health
77 Zone #4 Health
78 Zone #1 Mask
42 OutB DN FltValue
43 OutB DN IdlState
44 OutB DN IdlValue
79 Zone #2 Mask
80 Zone #3 Mask
81 Zone #4 Mask
82 Zone #1 Offset
83 Zone #2 Offset
84 Zone #3 Offset
85 Zone #4 Offset
86 Zone #1 EPR
87 Zone #2 EPR
88 Zone #3 EPR
89 Zone #4 EPR
90 Zone #1 Control
91 Zone #2 Control
92 Zone #3 Control
93 Zone #4 Control
94 Zone #1 Key
95 Zone #2 Key
96 Zone #3 Key
97 Zone #4 Key
98 Device Value Key
99 Zone Ctrl Enable
DeviceLogix™ Group
Hdw Inputs
This parameter provides status of hardware inputs
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
1
GET
WORD
DeviceLogix
—
0
15
0
3
—
—
—
X
2
—
—
X
—
Bulletin 280/281 Programmable Parameters
Bit
1
—
X
—
—
0
X
—
—
—
Function
Input 0
Input 1
Input 2
Input 3
3-3
Network Inputs
This parameter provides status of network inputs
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
2
GET
WORD
DeviceLogix
—
0
65535
0
Bit
Function
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — — — X Net Input 0
— — — — — — — — — — — — — — X — Net Input 1
— — — — — — — — — — — — — X — — Net input 2
— — — — — — — — — — — — X — — — Net Input 3
— — — — — — — — — — — X — — — — Net Input 4
— — — — — — — — — — X — — — — — Net Input 5
— — — — — — — — — X — — — — — — Net Input 6
— — — — — — — — X — — — — — — — Net Input 7
— — — — — — — X — — — — — — — — Net Input 8
— — — — — — X — — — — — — — — — Net Input 9
— — — — — X — — — — — — — — — — Net Input 10
— — — — X — — — — — — — — — — — Net Input 11
— — — X — — — — — — — — — — — — Net Input 12
— — X — — — — — — — — — — — — — Net Input 13
— X — — — — — — — — — — — — — — Net Input 14
X — — — — — — — — — — — — — — — Net Input 15
Network Outputs
This parameter provides status of network outputs
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
3
GET
WORD
DeviceLogix
—
0
32767
0
3-4
Bulletin 280/281 Programmable Parameters
Bit
Function
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — — X Net Output 0
— — — — — — — — — — — — — X — Net Output 1
— — — — — — — — — — — — X — — Net Output 2
— — — — — — — — — — — X — — — Net Output 3
— — — — — — — — — — X — — — — Net Output 4
— — — — — — — — — X — — — — — Net Output 5
— — — — — — — — X — — — — — — Net Output 6
— — — — — — — X — — — — — — — Net Output 7
— — — — — — X — — — — — — — — Net Output 8
— — — — — X — — — — — — — — — Net Output 9
— — — — X — — — — — — — — — — Net Output 10
— — — X — — — — — — — — — — — Net Output 11
— — X — — — — — — — — — — — — Net Output 12
— X — — — — — — — — — — — — — Net Output 13
X — — — — — — — — — — — — — — Net Output 14
Trip Status
This parameter provides trip identification
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
4
GET
WORD
DeviceLogix Setup
—
0
16383
0
Bit
Function
13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — X
— — — — — — — — — — — — X —
— — — — — — — — — — — X — —
— — — — — — — — — — X — — —
Short Circuit
Overload
Phase Loss
Reserved
— — — — — — — — — X — — — —
— — — — — — — — X — — — — —
Reserved
Control Power
— — — — — — — X — — — — — — I/O Fault
— — — — — — X — — — — — — — Over Temperature
— — — — — X — — — — — — — — Phase Imbalance
— — — — X — — — — — — — — — Dnet Power Loss
— — — X — — — — — — — — — —
— — X — — — — — — — — — — —
Reserved
Reserved
— X — — — — — — — — — — — —
X — — — — — — — — — — — — —
EEprom
HW Fault
Starter Status
This parameter provides the status of the starter
Bulletin 280/281 Programmable Parameters
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
5
GET
WORD
DeviceLogix
—
0
16383
0
3-5
Bit
13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — X
— — — — — — — — — — — — X —
— — — — — — — — — — — X — —
— — — — — — — — — — X — — —
— — — — — — — — — X — — — —
— — — — — — — — X — — — — —
— — — — — — — X — — — — — —
— — — — — — X — — — — — — —
— — — — — X — — — — — — — —
— — — — X — — — — — — — — —
— — — X — — — — — — — — — —
— — X — — — — — — — — — — —
— X — — — — — — — — — — — —
X — — — — — — — — — — — — —
DNet Status
This parameter provides status of the DeviceNet connection
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Function
Tripped
Warning
Running Fwd
Running Rev
Ready
Net Ctl Status
Reserved
At Reference
Reserved
Reserved
Reserved
Keypad Hand
HOA Status
140M On
6
GET
WORD
DeviceLogix
—
0
32, 767
0
3-6
Bulletin 280/281 Programmable Parameters
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Function:
— — — — — — — — — — — — — — — X Explicit Connection
— — — — — — — — — — — — — — X — I/O Connection
— — — — — — — — — — — — — X — —
— — — — — — — — — — — — X — — —
Explicit Fault
I/O Fault
— — — — — — — — — — — X — — — —
— — — — — — — — X X X — — — — —
— — — — — — — X — — — — — — — —
— — — — — — X — — — — — — — — —
I/O Idle
Reserved
ZIP 1 Cnxn
ZIP 1 Flt
— — — — — X — — — — — — — — — —
— — — — X — — — — — — — — — — —
— — — X — — — — — — — — — — — —
— — X — — — — — — — — — — — — —
— X — — — — — — — — — — — — — —
X — — — — — — — — — — — — — — —
ZIP 2 Cnxn
ZIP 2 Flt
ZIP 3 Cnxn
ZIP 3 Flt
ZIP 4 Cnxn
ZIP 4 Flt
Starter Command
The parameter provides the status of the starter command.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
7
GET
WORD
DeviceLogix
—
0
255
0
Bit
7 6 5 4 3 2 1 0
— — — — — — — X
— — — — — — X —
— — — — — X — —
— — — — X — — —
— — — X
— — X —
—
—
—
—
—
—
—
—
— X — — — — — —
X — — — — — — —
Network Override
This parameter allows for the local logic to override a Network fault
0 = Disable
1 = Enable
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Function:
Run Fwd
Run Rev
Fault Reset
Reserved
Reserved
Reserved
User Out A
User Out B
8
GET/SET
BOOL
DeviceLogix
1
0
—
0
DeviceNet Group
Comm Override
This parameter allows for local logic to override the absence of an I/O connection
0 = Disable
1 = Enable
Bulletin 280/281 Programmable Parameters
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
9
GET/SET
BOOL
DeviceLogix
1
0
—
0
3-7
Autobaud Enable
When this parameter is enabled, the device will attempt to determine the network baud rate and set its baud rate to the same, provided network traffic exists.
At least one node with an established baud rate must exist on the network for autobaud to occur.
0 = Disable
1 = Enable
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Consumed I/O Assy
This parameter selects the format of the I/O data consumed.
Enter a Consumed I/O assembly instance number to select a data format.
Produced I/O Assy
This parameter selects the format of the I/O data produced.
Enter a Produces I/O assembly instance number to select a data format.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
11
GET/SET
USINT
DeviceNet
—
0
187
160
12
GET/SET
USINT
DeviceNet
—
0
190
161
10
GET/SET
BOOL
DeviceNet
—
0
1
1
3-8
Bulletin 280/281 Programmable Parameters
Prod Assy Word 0
This parameter is used to build bytes 0-1 for produced assembly
120
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Produced Assy Word 1
This parameter is used to build bytes 2-3 for produced assembly
120
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Prod Assy Word 2
This parameter is used to build bytes 4-5 for produced assembly
120
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Prod Assy Word 3
This parameter is used to build bytes 6-7 for produced assembly
120
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Consumed I/O Size
This parameter reflects the consumed I/O data size in bytes.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
13
GET/SET
USINT
DeviceNet
—
0
108
1
14
GET/SET
USINT
DeviceNet
—
0
108
4
15
GET/SET
USINT
DeviceNet
—
0
108
5
16
GET/SET
USINT
DeviceNet
—
0
108
6
17
GET
USINT
DeviceNet
8
1
—
0
Starter COS Mask
This parameter allows the installer to define the change-ofstate conditions that will result in a change-of-state message being produced
➊
➋
Produced I/O Size
This parameter reflects the produced I/O data size in bytes.
Bulletin 280/281 Programmable Parameters
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
18
GET
USINT
DeviceNet
8
2
—
0
3-9
19
GET/SET
WORD
DeviceNet
—
0
16383
16149
➊
16157
➋
Bulletin 280 products.
Bulletin 281 products.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
12
—
—
—
—
X
—
—
—
—
—
—
—
—
—
13
—
—
—
—
—
X
—
—
—
—
—
—
—
—
10
—
—
X
—
—
—
—
—
—
—
—
—
—
—
11
—
—
—
X
—
—
—
—
—
—
—
—
—
—
9
—
X
—
—
—
—
—
—
—
—
—
—
—
—
8
X
—
—
—
—
—
—
—
—
—
—
—
—
—
Bit
6
—
—
—
—
—
—
—
—
X
—
—
—
—
—
7
—
—
—
—
—
—
—
—
—
X
—
—
—
—
5
—
—
—
—
—
—
—
X
—
—
—
—
—
—
4
—
—
—
—
—
—
X
—
—
—
—
—
—
—
3
—
—
—
—
—
—
X
—
—
—
—
—
—
1
—
—
—
—
—
—
—
—
—
—
—
X
—
—
2
—
—
—
—
—
—
—
—
—
—
—
—
X
—
0
—
—
—
—
—
—
—
—
—
—
X
—
—
—
Function
Tripped
Warning
Running Fwd
Running Rev
Ready
Reserved
Reserved
Reserved
Input 0
Input 1
Input 2
Input 3
HOA Status
140M On
3-10
Bulletin 280/281 Programmable Parameters
Net Out COS Mask
This parameter sets the bits that will trigger a COS message when network outputs change state.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
20
GET/SET
WORD
DeviceNet
—
0
32767
0
13
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
14
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
11
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
12
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
9
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
10
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
Bit
7
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
8
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
6
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
5
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
4
Dnet Voltage
This parameter provides the voltage measurement for the
DeviceNet network
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
2
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
3
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
1
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
0
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
Starter Protection Group
Breaker Type
This parameter identifies the
Bulletin 140M used in this product
0 = 140M-D8N-C10
1 = 140M-D8N-C25
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
22
GET/SET
BOOL
Starter Protection
1
0
—
0
Function
Net Output 0
Net Output 1
Net Output 2
Net Output 3
Net Output 4
Net Output 5
Net Output 6
Net Output 7
Net Output 8
Net Output 9
Net Output 10
Net Output 11
Net Output 12
Net Output 13
Net Output 14
21
GET
UINT
DeviceNet xx.xx Volts
0
6500
0
PrFlt Reset Mode
This parameter configures the
Protection Fault reset mode.
0= Manual
1= Automatic
Bulletin 280/281 Programmable Parameters
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
23
GET/SET
BOOL
Starter Protection
1
0
—
0
3-11
Pr Fault Enable
This parameter enables the
Protection Fault by setting the bit to 1
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
24
GET/SET
WORD
Starter Protection Setup
—
0
16383
12419
Bit
Function
13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — X
— — — — — — — — — — — — X —
— — — — — — — — — — — X — —
— — — — — — — — — — X — — —
Short Circuit
Overload
Phase Loss
Reserved
— — — — — — — — — X — — — —
— — — — — — — — X — — — — —
Reserved
Control Power
— — — — — — — X — — — — — — I/O Fault
— — — — — — X — — — — — — — Over Temperature
— — — — — X — — — — — — — — Phase Imbalance
— — — — X — — — — — — — — — Dnet Power Loss
— — — X — — — — — — — — — —
— — X — — — — — — — — — — —
Reserved
Reserved
— X — — — — — — — — — — — —
X — — — — — — — — — — — — —
Eeprom
HW Fault
Pr Fault Reset
This parameter resets the
Protection Fault on a transition of
0-->1.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
25
GET/SET
BOOL
Starter Protection
1
0
—
0
3-12
Bulletin 280/281 Programmable Parameters
StrtrDN FltState
This parameter in conjunction with Parameter 27 defines how the starter will respond when a
DeviceNet fault occurs. When set to “1”, hold to last state occurs.
When set to “0”, will go to DnFlt
Value on DN faults as determined by Parameter 27.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
StrtrDN FltValue
This parameter determines how the starter will be commanded in the event of a Device Net fault.
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
StrtrDN IdlState
This parameter in conjunction with Parameter 29 defines how the starter will respond when a
DeviceNet network is idle. When set to “1”, hold to last state occurs. When set to “0”, will go to DnIdl Value on DN Idle as determined by Parameter 29.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
StrtrDN IdlValue
This parameter determines the state that starter assumes when the network is idle and
Parameter 28 is set to “0”
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
26
GET/SET
BOOL
Starter Protection
—
0
1
0
27
GET
BOOL
Starter Protection
1
0
—
0
28
GET/SET
BOOL
Starter Protection
—
0
1
0
29
GET
BOOL
Starter Protection
1
0
—
0
Bulletin 280/281 Programmable Parameters
3-13
Last PR Fault
0 = None
1 = Hardware Short Circuit
2 = Software Short Circuit
3 = Motor Overload
4 = Reserved
5 = Phase Loss
6 – 12 = Reserved
13 = Control Power Loss
14 = Control Power Fuse
15 = I/O Short
16 = Output Fuse
17 = Overtemp
18= Reserved
19 = Phase Imbalance
20 = Reserved
21 = DNet Power Loss
22 = Internal Comm
23-26 = Reserved
27 = MCB EEPROM
28 = Base EEPROM
29 = Reserved
30 = Wrong Base
31 = Wrong CTs
32-100 = Reserved
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
61
GET
UINT
Starter Protection
—
0
100
0
Warning Status
This parameter warns the user of a condition, without faulting
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
62
GET
WORD
Starter Protection
—
0
65535
0
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Warning
reserved reserved
Phase Loss reserved reserved
Control Power
IO Warning reserved
Phase Imbalance
DeviceNet reserved reserved reserved
Hardware reserved reserved
3-14
User I/O
Bulletin 280/281 Programmable Parameters
Off-to-On Delay
This parameter allows the installer to program a time duration before an input is reported “ON”
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
On-to-Off Delay
This parameter allows the installer to program a time duration before an input is reported “OFF”
In Sink/Source
This parameter allows the installer to program the inputs to be sink or source.
0=Sink
1=Source
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
OutA Pr FltState
This parameter in conjunction with Parameter 34 defines how
Output A will respond when a protection trip occurs. When set to “1”, Output A continues to operate as command via the network. When set to “0”, Output
A will open or close as determined by setting in
Parameter 34
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
32
GET/SET
BOOL
User I/
1
0
—
0
31
GET/SET
UINT
User I/O ms
0
65.000
0
30
GET/SET
UINT
User I/O ms
0
65.000
0
33
GET/SET
BOOL
User I/O
—
0
1
0
OutA Pr FltValue
This parameter determines the state the Out A assumes when a trip occurs and Parameter 33 is set to “0”
0 = Open
1 = Close
Bulletin 280/281 Programmable Parameters
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
34
GET/SET
BOOL
User I/O
1
0
—
0
3-15
OutA DN FltState
This parameter in conjunction with Parameter 36 defines how
Output A will respond when a
DeviceNet network fault occurs.
When set to “1”, Output A will hold state prior to trip occurrence. When set to “0”,
Output A will open or close as determined by setting in
Parameter 36
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
35
GET/SET
BOOL
User I/O
—
0
1
0
OutA DN FltValue
This parameter determines the state that Output A assumes when a DeviceNet network fault occurs and Parameter 35 is set to
“0”
0 = Open
1 = Close
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
OutA DN IdlState
This parameter in conjunction with Parameter 38 defines how
Output A will respond when the
DeviceNet network is idle. When set to “0”, Output A will open or close as determined by the setting in Parameter 38 The
DN Flt parameters supersede the
Dn Idl parameters
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
37
GET/SET
BOOL
User I/O
—
0
1
0
36
GET/SET
BOOL
User I/O
1
0
—
0
OutA DN IdlValue
This parameter determines the state that Output A assumes when the network is idle and
Parameter 37 is set to “0”
0 = Open
1 = Close
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
38
GET/SET
BOOL
User I/O
1
0
—
0
3-16
Bulletin 280/281 Programmable Parameters
OutB Pr FltState
This parameter in conjunction with Parameter 40 defines how
Output B will respond when a protection trip occurs. When set to “1”, Output B continue to operate as command via the network. When set to “0”, Output
B will open or close as determined by setting in
Parameter 40
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
OutB Pr FltValue
This parameter determines the state the Out B assumes when a protection trip occurs and
Parameter 39 is set to “0”
0 = Open
1 = Close
OutB DN FltState
This parameter in conjunction with Parameter 42 defines how
Output B will respond when a
DeviceNet network fault occurs.
When set to “1”, Output B will hold state prior to trip occurrence. When set to “0”,
Output B will open or close as determined by setting in
Parameter 42
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
OutB DN FltValue
This parameter determines the state that Output B assumes when a DeviceNet network fault occurs and Parameter 41 is set to
“0”
0 = Open
1 = Close
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
OutB DN IdlState
This parameter in conjunction with Parameter 44 defines how
Output B will respond when the
DeviceNet network is idle. When set to “0”, Output B will open or close as determined by the setting in Parameter 44. The
DN Flt parameters supersede the
Dn Idl parameters
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
41
GET/SET
BOOL
User I/O
—
0
1
0
40
GET/SET
BOOL
User I/O
1
0
—
0
39
GET/SET
BOOL
User I/O
—
0
1
0
43
GET/SET
BOOL
User I/O
—
0
1
0
42
GET/SET
BOOL
User I/O
1
0
—
0
Misc. Group
OutB DN IdlValue
This parameter determines the state that Output B assumes when the network is idle and
Parameter 43 is set to “0”
0 = Open
1 = Close
Bulletin 280/281 Programmable Parameters
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
44
GET/SET
BOOL
User I/O
1
0
—
0
3-17
Keypad Mode
This parameter selects if the keypad operation is maintained or momentary
0= Maintained
1= Momentary
Base Enclosure
Indicates the ArmorStart Base unit enclosure rating
Bit 0 = IP67
Bit 1 = Nema 4X
Bit 2-15 = Reserved
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Keypad Disable
This parameter disables all keypad function except for the
“OFF” and “RESET” buttons
0=Not Disabled
1=Disabled
Set to Defaults
This parameter if set to 1 will set the device to the factory defaults
0=No Operation
1=Set to Defaults
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
47
GET/SET
BOOL
Misc.
1
0
—
0
46
GET/SET
BOOL
Misc.
1
0
—
0
45
GET/SET
BOOL
Misc.
1
0
—
0
56
GET
WORD
Misc.
—
0
65535
0
3-18
Bulletin 280/281 Programmable Parameters
Base Options
Indicates the options for the
ArmorStart Base unit
Bit 0 = Output Fuse
Bit 1 = Safety Monitor
Bit 2 = CP Fuse Detect
Bits 3-7 = Reserved
Bit 8 = 10A Base
Bit 9 = 25A Base
Bit 10-15 = Reserved
Wiring Options
Bit 0 = Conduit
Bit 1 = Round Media
Bits 2-15 = Reserved
ZIP Parameters
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Starter Enclosure
Bit 0 = IP67
Bit 1 = NEMA 4x
Bits 2-15 reserved
Starter Option
Bit 0 = HOA Keypad
Bit 1 = Safety Monitor
Bit 2 = Source Brake
Bits 4-15 = Reserved
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
AutoRun Zip
Enables ZIP data production on power up
0=Disable
1=Enable
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
57
GET
WORD
Misc.
—
0
65535
0
60
GET
WORD
Misc.
—
0
66535
—
59
GET
WORD
Misc.
—
0
65535
—
58
GET
WORD
Misc.
—
0
65535
0
67
Get/Set
BOOL
ZIP Parameters
0
1
0
Zone Produced EPR
The Expected Packet Rate in msec. Defines the rate at which
ZIP data is produced. Defaults to
75 msec.
Bulletin 280/281 Programmable Parameters
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
68
GET/SET
UINT
Zip Parameter msec
0
65535
75
3-19
Zone Produced PIT
The Production Inhibit Time in msec. Defines the minimum time between Change of State data production
Zone #1 MAC ID
The node address of the device whose data is to be consumed for zone 1
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
69
GET/SET
UINT
ZIP Parameters msec
0
65535
75
70
GET/SET
USINT
ZIP Parameters
—
0
64
64
Zone #2 MAC ID
The node address of the device whose data is to be consumed for zone 2
Zone #3 MAC ID
The node address of the device whose data is to be consumed for zone 3
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
71
GET/SET
USINT
ZIP Parameters
—
0
64
64
72
GET/SET
USINT
ZIP Parameters
—
0
64
64
3-20
Bulletin 280/281 Programmable Parameters
Zone #4 MAC ID
The node address of the device whose data is to be consumed for zone 4
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Zone #1 Health
Read Only consumed connection status for zone 1
0 = Healthy
1 = Unhealthy
Zone #2 Health
Read Only consumed connection status for zone 2
0 = Healthy
1 = Unhealthy
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Zone #3 Health
Read Only consumed connection status for zone 3
0 = Healthy
1 = Unhealthy
Zone #4 Health
Read Only consumed connection status for zone 4
0 = Healthy
1 = Unhealthy
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
73
GET/SET
USINT
Misc. Option
—
0
64
64
74
GET
BOOL
ZIP Parameters
1
0
—
0
75
GET
BOOL
ZIP Parameters
1
0
—
0
76
GET
BOOL
ZIP Parameters
1
0
—
0
77
GET
BOOL
ZIP Parameters
1
0
—
0
Zone #1 Mask
Bit enumerated consumed data mask for zone 1. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table
Bulletin 280/281 Programmable Parameters
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
78
GET/SET
BYTE
ZIP Parameters
—
0
255
0
3-21
Zone #2 Mask
Bit enumerated consumed data mask for zone 2. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
79
GET/SET
BYTE
ZIP Parameters
—
0
255
0
Zone #3 Mask
Bit enumerated consumed data mask for zone 3. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Zone #4 Mask
Bit enumerated consumed data mask for zone 4. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
80
GET/SET
BYTE
ZIP Parameters
—
0
255
0
81
GET/SET
BYTE
ZIP Parameters
—
0
255
0
Zone #1 Offset
The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 1.
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
82
GET/SET
UINT
ZIP Parameters
7
0
—
0
3-22
Bulletin 280/281 Programmable Parameters
Zone #2 Offset
The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 2.
Zone #3 Offset
The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 3.
Zone #4 Offset
The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 4.
Zone #1 EPR
The Expected Packet Rate in msec. for the zone 1 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #1 Health” will report 1 = Not Healthy.
Zone #2 EPR
The Expected Packet Rate in msec. for the zone 1 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #2 Health” will report 1 = Not Healthy.
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
83
GET/SET
UNIT
ZIP Parameters
7
0
—
0
84
GET/SET
UNIT
ZIP Parameters
1
0
—
0
85
GET/SET
UNIT
ZIP Parameters
1
0
—
0
86
GET/SET
UINT
ZIP Parameters msec
0
65535
75
87
GET/SET
UNIT
ZIP Parameters msec
0
65535
75
Zone #3 EPR
The Expected Packet Rate in msec. for the zone 1 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #3 Health” will report 1 = Not Healthy.
Bulletin 280/281 Programmable Parameters
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
88
GET/SET
UNIT
ZIP Parameters msec
0
65535
75
3-23
Zone #4 EPR
The Expected Packet Rate in msec. for the zone 1 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #4 Health” will report 1 = Not Healthy.
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
89
GET/SET
UNIT
ZIP Parameters msec
0
65535
75
Zone #1 Control
Zone 1 Control Word. Default
Bit 0 and Bit 1 set, all other bits clear.
Bit0=Security Enable 1=Enable data security
Bit1=COS Cnxn 1=Consume
DNet Group 2 COS messages
Bit2=Poll Cnxn
1=Consume DNet Group 2 Poll
Response msgs.
Bit3=Strobe Cnxn
1=Consume DNet Group 2
Strobe Response msgs.
Bit4=Multicast Poll
1=Consume Multicast Poll
Response messages.
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
90
GET/SET
BYTE
ZIP Parameters
—
0
255
3
3-24
Bulletin 280/281 Programmable Parameters
Zone #2 Control
Zone 2 Control Word. Default
Bit 0 and Bit 1 set, all other bits clear.
Bit0=Security Enable 1=Enable data security
Bit1=COS Cnxn 1=Consume
DNet Group 2 COS messages
Bit2=Poll Cnxn
1=Consume DNet Group 2 Poll
Response msgs.
Bit3=Strobe Cnxn
1=Consume DNet Group 2
Strobe Response msgs.
Bit4=Multicast Poll
1=Consume Multicast Poll
Response messages
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Zone #3 Control
Zone 3 Control Word. Default
Bit 0 and Bit 1 set, all other bits clear.
Bit0=Security Enable 1=Enable data security
Bit1=COS Cnxn 1=Consume
DNet Group 2 COS messages
Bit2=Poll Cnxn
1=Consume DNet Group 2 Poll
Response msgs.
Bit3=Strobe Cnxn
1=Consume DNet Group 2
Strobe Response msgs.
Bit4=Multicast Poll
1=Consume Multicast Poll
Response messages
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Zone #4 Control
Zone 3 Control Word. Default
Bit 0 and Bit 1 set, all other bits clear.
Bit0=Security Enable 1=Enable data security
Bit1=COS Cnxn 1=Consume
DNet Group 2 COS messages
Bit2=Poll Cnxn
1=Consume DNet Group 2 Poll
Response msgs.
Bit3=Strobe Cnxn
1=Consume DNet Group 2
Strobe Response msgs.
Bit4=Multicast Poll
1=Consume Multicast Poll
Response messages
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
92
GET/SET
BYTE
ZIP Parameters
—
0
255
3
91
GET/SET
BYTE
ZIP Parameters
—
0
255
3
93
GET/SET
BYTE
ZIP Parameters
—
0
255
3
Zone #1 Key
When the “Security Enable” bit for zone 1 is enabled, this value must match the value of the
Device Value Key parameter in the device whose data is being consumed for zone 1.
Bulletin 280/281 Programmable Parameters
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
94
GET/SET
UINT
ZIP Parameters
—
0
65535
0
3-25
Zone #2 Key
When the “Security Enable” bit for zone 2 is enabled, this value must match the value of the
Device Value Key parameter in the device whose data is being consumed for zone 2.
Zone #3 Key
When the “Security Enable” bit for zone 3 is enabled, this value must match the value of the
Device Value Key parameter in the device whose data is being consumed for zone 3.
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
95
GET/SET
UINT
ZIP Parameters
—
0
65535
0
96
GET/SET
UINT
ZIP Parameters
—
0
65535
0
Zone #4 KEY
When the “Security Enable” bit for zone 4 is enabled, this value must match the value of the
Device Value Key parameter in the device whose data is being consumed for zone 4
Device Value Key
This value is produced in the last
2 bytes of data when one of the
ZIP assemblies is chosen for data production.
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
97
GET/SET
UINT
ZIP Parameters
—
0
65535
0
98
GET/SET
UINT
ZIP Parameters
—
0
65535
0
3-26
Bulletin 280/281 Programmable Parameters
Zone Ctrl Enable
Global enable for ZIP peer-topeer messaging. This parameter must be disabled before any changes to the ZIP configuration for the device can be made.
0=Disable
1=Enable
Parameter Number
Access Rule
Data Type
Group
Units
MinimumValue
Maximum Value
Default Value
Starter Display
Phase A Current
This parameter provides the current of Phase A measured n increments of 1/10 th
of an ampere
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Phase B Current
This parameter provides the current of Phase B measured in increments of 1/10 th
of an ampere
Phase C Current
This parameter provides the current of Phase C measured in increments of 1/10 th
of an ampere
Average Current
This parameter provides the average current measured in increments of 1/10 th
of an ampere
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
99
GET/SET
BOOL
ZIP Parameters
1
0
—
0
101
GET/SET
INT
Starter Display xx.x Amps
0
32767
0
102
GET/SET
INT
Starter Display xx.x Amps
0
32767
0
103
GET/SET
INT
Starter Display xx.x Amps
0
32767
0
104
GET/SET
INT
Starter Display xx.x Amps
0
32767
0
Starter Setup
% Therm Utilized
This parameter displays the
% Thermal Capacity used
Bulletin 280/281 Programmable Parameters
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
105
GET/SET
USINT
Starter Display
% FLA
0
100
0
3-27
FLA Setting
The motor’s full load current rating is programmed in this parameter
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
106
GET/SET
INT
Starter Setup xx.x Amps
See Table 3.2
See Table 3.2
See Table 3.2
Table 3.2 FLA Setting Ranges and Default Values (with indicated setting precision)
FLA Current Range (A)
Minimum Value
0.24
0.5
1.1
3.2
Maximum Value
1.2
2.5
5.5
16.0
Default Value
0.24
0.5
1.1
3.2
Overload Class
This parameter allows the installer to select the overload class
1= Overload Class 10
2= Overload Class 15
3= Overload Class 20
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
107
GET/SET
USINT
Starter Setup xx.x Amps
1
3
1
OL Reset Level
This parameter allows the installer select the % Thermal
Capacity which an overload can be cleared
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
108
GET/SET
USINT
Starter Setup
% FLA
0
100
75
3-28
Notes
Bulletin 280/281 Programmable Parameters
Parameter Programming
Chapter
4
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
This chapter describes each programmable parameter and its function for Bulletin 284 Sensorless Vector Controllers.
Each Distributed Motor Controller type will have a common set of parameters followed by a set of parameters that pertain to the individual starter type.
Refer to Chapter 6, DeviceNet™ Commissioning, for instructions in using RSNetworx
™ for DeviceNet™ to modify parameter settings.
Important: Resetting the Factory Default Values Parameter 47, Set
to Defaults, allows the installer to reset all parameter to the factory default values. It also resets the MAC ID to its factory default after DeviceNet Power is cycled if switches are set >63.
Important: Parameter setting changes downloaded to the
ArmorStart® take effect immediately, even during a running status.
Important:
Parameter setting changes made in a configuration tool such as RSNetworx™ for DeviceNet do not take effect in the ArmorStart until the installer applies or downloads the new settings to the device.
4-2
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Parameter Group Listing
The Bulletin 284D ArmorStart contains ten parameter groups. The parameters shown in the DeviceLogix™, DeviceNet , Starter
Protection , User I/O , Misc. Parameter , Drive DeviceNet , Display
Group, Basic Program, and Advanced Program will be discussed in this chapter.
Table 4.1 Paramerer Group Listing
DeviceLogix
1 Hdw Inputs
2 Network Inputs
3 Network Outputs
4 Trip Status
5 Starter Status
6 DNet Status
7 Starter Command
8 Network Override
9 Comm Override
DeviceNet
10 Autobaud Enable
11 Consumed IO Assy
12 Produced IO Assy
13 Prod Assy Word 0
14 Prod Assy Word 1
15 Prod Assy Word 2
16 Prod Assy Word 3
17 Consumed IO Size
18 Produced IO Size
19 Starter COS Mask
20 Net Out COS Mask
21 DNet Voltage
Starter Protection
22 Breaker Type
23 PrFltResetMode
24 Pr Fault Enable
25 Pr Fault Reset
26 StrtrDN FltState
27 StrtrDN FltValue
28 StrtrDN IdlState
29 StrtrDN IdlValue
61 RAST Pr Fault
62 Warning Status
User I/O
30 Off-to-On Delay
31 On-to-Off Delay
32 In Sink/Source
33 OutA Pr FltState
34 OutA Pr FltValue
35 OutA DN FltState
36 OutA DN FltValue
37 OutA DN IdlState
38 OutA DN IdlValue
39 OutB Pr FltState
40 OutB Pr FltValue
41 OutB DN FltState
42 OutB DN FltValue
43 OutB DN IdlState
44 OutB DN IdlValue
Display Group
101 Output Freq
102 Commanded Freq
103 Output Current
104 Output Voltage
105 DC Bus Voltage
106 Drive Status
107 Fault 1 Code
108 Fault 2 Code
109 Fault 3 Code
110 Process Display
112 Control Source
113 Contrl In Status
114 Dig In Status
115 Comm Status
116 Control SW Ver
117 Drive Type
118 Elapsed Run Time
119 Testpoint Data
120 Analog In 0…10V
121 Analog In 4…20 mA
122 Output Power
123 Output Power Fctr
124 Drive Temp
125 Counter Status
126 Timer Status
127 Timer Stat Fract
128 Stp Logic Status
129 Torque Current
ZIP Parameters
67 AutoRun Zip
68 Zone Produced EPR
69 Zone Produced PIT
70 Zone #1 MacId
71 Zone #2 MacId
72 Zone #3 MacId
73 Zone #4 MacId
74 Zone #1 Health
75 Zone #2 Health
76 Zone #3 Health
77 Zone #4 Health
78 Zone #1 Mask
79 Zone #2 Mask
80 Zone #3 Mask
81 Zone #4 Mask
82 Zone #1 Offset
83 Zone #2 Offset
84 Zone #3 Offset
85 Zone #4 Offset
86 Zone #1 EPR
87 Zone #2 EPR
88 Zone #3 EPR
89 Zone #4 EPR
90 Zone #1 Control
91 Zone #2 Control
92 Zone #3 Control
93 Zone #4 Control
94 Zone #1 Key
95 Zone #2 Key
96 Zone #3 Key
97 Zone #4 Key
98 Device Value Key
99 Zone Ctrl Enable
Basic Setup
131 Motor NP Volts
132 Motor NP Hertz
133 Motor OL Current
134 Minimum Freq
135 Maximum Freq
136 Start Source
137 Stop Mode
138 Speed Reference
139 Accel Time 1
140 Decel Time 1
141 Reset To Defalts
142 Reserved
143 Motor OL Ret
151 Digital In1 Sel
152 Digital In2 Sel
153 Digital In3 Sel
154 Digital In4 Sel
155 Relay Out Sel
156 Relay Out Level
157 Relay Out LevelF
158 Opto Out1 Sel
159 Opto Out1 Level
160 Opto Out1 LevelF
161 Opto Out2 Sel
162 Opto Out2 Level
163 DB Threshold
164 Opto Out Logic
165 Analog Out Sel
166 Analog Out High
167 Accel Time 2
168 Decel Time 2
169 Internal Freq
170 Preset Freq 0
171 Preset Freq 1
172 Preset Freq 2
173 Preset Freq 3
174 Preset Freq 4
175 Preset Freq 5
176 Preset Freq 6
177 Preset Freq 7
178 Jog Frequency
179 Jog Accel/Decel
180 DC Brake Time
181 DC Brake Level
182 DB Resistor Sel
183 S Curve %
184 Boost Select
185 Start Boost
186 Break Voltage
187 Break Frequency
188 Maximum Voltage
Miscellaneous
45 Keypad Mode
46 Keypad Disable
47 Set To Defaults
56 Base Enclosure
57 Base Options
58 Wiring Options
59 Starter Enclosure
60 Starter Options
Drive DeviceNet
48 Drive Control
49 Drvin PrFltState
50 Drvin PrFltValue
51 Drvin DNFltState
52 Drvin DNFltValue
53 Drvin DNFltState
54 Drvin DNFltValue
55 High Speed Enable
Advanced Setup
189 Current Limit 1
190 Motor OL Select
191 PWM Frequency
192 Auto Rstrt Tries
193 Auto Rstrt Delay
194 Start At PowerUp
195 Reverse Disable
196 Flying Start En
197 Compensation
198 SW Current Trip
199 Process Factor
200 Fault Clear
201 Program Lock
202 Testpoint Sel
203 Comm Data Rate
204 Comm Node Addr
205 Comm Loss Action
206 Comm Loss Time
207 Comm Format
208 Language
209 Anlg Out Setpt
210 Anlg In 0…10V Lo
211 Anlg In 0…10V Hi
212 Anlg In 4…20 mA Lo
213 Anlg In4…20 mA Hi
214 Slip Hertz @ FLA
215 Process Time Lo
216 Process Time Hi
217 Bus Reg Mode
218 Current Limit 2
219 Skip Frequency
220 Skip Freq Band
221 Stall Fault Time
222 Analog In Loss
223 10V Bipolar Enbl
224 Var PWM Disable
225 Torque Perf Mode
226 Motor NP FLA
227 Autotune
228 IR Voltage Drop
229 Flux Current Ref
230 PID Trim Hi
231 PID Trim Lo
232 PID Ref Sel
233 PID Feedback Sel
234 PID Prop Gain
235 PID Integ Time
236 PID Diff Rate
237 PID Setpoint
238 PID Deadband
239 PID Preload
240 Stp Logic 0
241 Stp Logic 1
242 Stp Logic 2
243 Stp Logic 3
244 Stp Logic 4
245 Stp Logic 5
246 Stp Logic 6
247 Stp Logic 7
248 Reserved
249 Reserved
250 Stp Logic Time 0
251 Stp Logic Time 1
252 Stp Logic Time 2
253 Stp Logic Time 3
254 Stp Logic Time 4
255 Stp Logic Time 5
256 Stp Logic Time 6
257 Stp Logic Time 7
258 Reserved
259 Reserved
260 EM Brk Off Delay
261 EM Brk On Delay
262 MOP Reset Sel
.
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
DeviceLogix Group
Hdw Inputs
This parameter provides status of hardware inputs.
Network Inputs
This parameter provides status of network inputs.
14
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
15
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
13
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
12
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
11
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
10
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
9
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
8
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
Bit
7
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bit
3
—
—
—
X
2
—
—
X
—
1
—
X
—
—
This parameter is not available with the Bulletin 284A.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
4
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
5
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
6
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
2
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
3
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
0
X
—
—
—
0
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
1
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
1
GET
WORD
DeviceLogix
—
0
15
0
2
GET
WORD
DeviceLogix
—
0
65535
0
Function
Input 0
Input 1
Input 2
Input 3
Function
Net Input 0
Net Input 1
Net input 2
Net Input 3
Net Input 4
Net Input 5
Net Input 6
Net Input 7
Net Input 8
Net Input 9
Net Input 10
Net Input 11
Net Input 12
Net Input 13
Net Input 14
Net Input 15
4-3
4-4
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Network Outputs
This parameter provides status of network outputs.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
3
GET
WORD
DeviceLogix
—
0
32767
0
13
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
14
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
12
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
10
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
11
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
9
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
Bit
7
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
8
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
5
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
6
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
3
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
4
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
2
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
0
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
1
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
Function
Net Output 0
Net Output 1
Net Output 2
Net Output 3
Net Output 4
Net Output 5
Net Output 6
Net Output 7
Net Output 8
Net Output 9
Net Output 10
Net Output 11
Net Output 12
Net Output 13
Net Output 14
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
4-5
Trip Status
This parameter provides trip identification.
14
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
15
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
13
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
12
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
10
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
11
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
9
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
8
—
—
—
—
—
—
—
Bit
7
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
6
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
5
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
➊
Indicates DB1 Comm Fault for Bulletin 284.
4
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
3
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
2
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
0
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
1
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
4
GET
WORD
DeviceLogix
—
0
65535
0
Function
Short Circuit
Overload
Phase Short
Ground Fault
Stall
Control Power
IO Fault
Overtemperature
Over Current
Dnet Power Loss
Internal Comm
➊
DC Bus Fault
EEprom
HW Fault
Restart Retries
Misc. Fault
4-6
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Starter Status
This parameter provides the status of the starter.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
14
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
15
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
12
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
13
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
10
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
11
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
9
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
Bit
7
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
8
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
6
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
➊
Refers to Source Brake contactor status.
➋
Refers to Output contactor status.
5
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
4
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
3
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
1
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
2
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
0
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
5
GET
WORD
DeviceLogix
—
0
65535
0
Function
Tripped
Warning
Running Fwd
Running Rev
Ready
Net Ctl Status
Net Ref Status
At Reference
DrvOpto1
DrvOpto2
Keypad Jog
Keypad Hand
HOA Status
140M On
Contactor 1 ➊
Contactor 2 ➋
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Dnet Status
This parameter provides status of the DeviceNet connection.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
14
—
X
—
—
—
—
—
—
—
—
—
—
—
—
15
—
—
X
—
—
—
—
—
—
—
—
—
—
—
12
—
—
—
—
—
—
X
—
—
—
—
—
—
—
13
X
—
—
—
—
—
—
—
—
—
—
—
—
—
10
—
—
—
—
X
—
—
—
—
—
—
—
—
—
11
—
—
—
—
—
X
—
—
—
—
—
—
—
—
9
—
—
—
X
—
—
—
—
—
—
—
—
—
—
Bit
7
—
—
—
—
—
—
—
—
—
X
—
—
—
—
8
—
—
—
—
—
—
—
—
—
—
X
—
—
—
5
—
—
—
—
—
—
—
—
—
X
—
—
—
—
6
—
—
—
—
—
—
—
—
—
X
—
—
—
—
3
—
—
—
—
—
—
—
X
—
—
—
—
—
—
4
—
—
—
—
—
—
—
—
X
—
—
—
—
—
1
—
—
—
—
—
—
—
—
—
—
—
—
X
—
2
—
—
—
—
—
—
—
—
—
—
—
—
—
X
0
—
—
—
—
—
—
—
—
—
—
—
X
—
—
6
GET
WORD
DeviceLogix
—
0
31
0
Function
Exp Cnxn
IO Cnxn
Exp Flt
IO Flt
IO Idle
Reserved
ZIP 1 Cnxn
ZIP 1 Flt
ZIP 2 Cnxn
ZIP 2 Flt
ZIP 3 Cnxn
ZIP 3 Flt
ZIP 4 Cnxn
ZIP 4 Flt
Starter Command
This parameter provides the command the starter.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
7
—
—
—
—
X
—
—
—
6
—
—
—
X
—
—
—
—
5
—
—
X
—
—
—
—
—
4
—
X
—
—
—
—
—
—
Bit
3
X
—
—
—
—
—
—
—
2
—
—
—
—
—
—
—
X
1
—
—
—
—
—
—
X
—
0
—
—
—
—
—
X
—
—
7
GET/SET
WORD
DeviceLogix
—
0
255
0
Function
Run Fwd
Run Rev
Fault Reset
Jog Fwd
Jog Rev
Reserved
User Out A
User Out B
4-7
4-8
Network Override
This parameter allows for the local logic to override a Network fault.
0 = Disable
1 = Enable
Comm Override
This parameter allows for local logic to override a loss of an I/O connection.
0 = Disable
1 = Enable
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
DeviceNet Group
Autobaud Enable
When this parameter is enabled, the device will attempt to determine the network baud rate and set its baud rate to the same, provided network traffic exists. At least one node with an established baud rate must exist on the network for autobaud to occur.
0 = Disable
1 = Enable
Consumed I/O Assy
This parameter selects the format of the I/O data consumed
Produced I/O Assy
This parameter selects the format of the I/O data produced.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
10
GET/SET
BOOL
DeviceNet
1
1
—
0
11
GET/SET
USINT
DeviceNet
—
0
188
164
12
GET/SET
USINT
DeviceNet
—
0
190
165
8
GET/SET
BOOL
DeviceLogix
—
0
1
0
9
GET/SET
BOOL
DeviceLogix
1
0
—
0
Prod Assy Word 0
This parameter is used to build bytes 0-1 for produced assembly 120.
Produced Assy Word 1
This parameter is used to build bytes 2-3 for produced assembly 120
Prod Assy Word 2
This parameter is used to build bytes 4-5 for produced assembly 120.
Prod Assy Word 3
Consumer I/O Size
This parameter maps to the Scanner Tx Size.
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
This parameter is used to build bytes 6-7 for produced assembly 120.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
15
GET/SET
USINT
DeviceNet
—
0
262
5
16
GET/SET
USINT
DeviceNet
—
0
262
6
13
GET/SET
USINT
DeviceNet
—
0
262
1
14
GET/SET
USINT
DeviceNet
—
0
262
4
17
GET
USINT
DeviceNet
8
4
—
0
4-9
4-10
Produced I/O Size
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
This parameter maps to the Scanners Rx Size.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Starter COS Mask
This parameter allows the installer to define the change-of-state conditions that will result in a change-of-state message being produced.
13
—
—
X
—
—
—
—
—
—
—
—
—
—
—
12
—
X
—
—
—
—
—
—
—
—
—
—
—
—
11
X
—
—
—
—
—
—
—
—
—
—
—
—
—
10
—
—
—
—
—
—
X
—
—
—
—
—
—
—
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
8
—
—
—
—
X
—
—
—
—
—
—
—
—
—
9
—
—
—
—
—
X
—
—
—
—
—
—
—
—
Bit
7
—
—
—
X
—
—
—
—
—
—
—
—
—
—
6
—
—
—
—
—
—
—
—
—
—
X
—
—
—
4
—
—
—
—
—
—
—
—
X
—
—
—
—
—
5
—
—
—
—
—
—
—
—
—
X
—
—
—
—
2
—
—
—
—
—
—
—
—
—
—
—
—
—
X
3
—
—
—
—
—
—
—
X
—
—
—
—
—
—
1 0
— X
X —
— —
— —
— —
— —
— —
— —
— —
— —
— —
— —
— —
— —
18
GET
USINT
DeviceNet
8
4
—
0
19
GET/SET
WORD
DeviceNet
—
0
16383
16383
Function
Tripped
Warning
Running Fwd
Running Rev
Ready
Net Ctl Status
Net Ref Status
At Reference
User Input 1
User Input 2
User Input 3
User Input 4
HOA Status
140M On
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
4-11
Net Out COS Mask
This parameter sets the bit that will trigger a COS message on the network output.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
20
GET/SET
WORD
DeviceNet
—
0
32767
0
13
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
14
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
12
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
11
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
10
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
9
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
8
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
Dnet Voltage
This parameter provides the voltage measurement for the DeviceNet network.
6
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
Bit
7
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
5
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
4
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
3
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
2
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
1
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
0
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
21
GET
UINT
DeviceNet
V
0
6500
0
Function
Net Output 0
Net Output 1
Net Output 2
Net Output 3
Net Output 4
Net Output 5
Net Output 6
Net Output 7
Net Output 8
Net Output 9
Net Output 10
Net Output 11
Net Output 12
Net Output 13
Net Output 14
4-12
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Starter Protection Group
Breaker Type
This parameter identifies the Bulletin 140M used in this product.
0 = 140M-D8N-C10
1 = 140M-D8N-C25
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
PrFlt Reset Mode
This parameter is the Protection Fault reset mode.
0 = Manual
1 = Automatic
Pr Fault Enable
This parameter enables the Protection Fault by setting the bit to 1.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
14
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
15
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
12
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
13
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
10
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
11
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
Bit
7
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
8
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
9
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
5
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
6
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
3
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
4
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
1
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
2
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
0
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
22
GET
BOOL
Starter Protection
—
0
1
—
23
GET/SET
BOOL
Starter Protection
1
0
—
0
24
GET/SET
WORD
Starter Protection
—
0
65535
64927
Function
Short Circuit
Overload
Phase Short
Ground Fault
Stall
Control Power
IO Fault
Overtemperature
Over Current
Dnet Power Loss
Internal Comm
DC Bus Fault
EEprom
HW Fault
Restart Retries
Misc. Fault
Pr Fault Reset
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
This parameter resets the Protection Fault on a transition 0 > 1.
StrtrDN FltState
This parameter in conjunction with Parameter 27 defines how the starter will respond when a DeviceNet fault occurs. When set to 1, hold to last state occurs.
When set to 0, will go to DnFlt Value on DN faults as determined by Parameter 27.
StrtrDN FltValue
This parameter determines if the starter will be commanded in the event of a
DevceNet fault.
0 = OFF
1 = ON
StrtrDN IdlState
This parameter in conjunction with Parameter 29 defines how the starter will respond when a DeviceNet network is idle. When set to 1, hold to last state occurs. When set to 0, will go to DnFlt Value on DN faults as determined by Parameter 29.
0 = Go to Idle Value
1 = Hold Last State
StrtrDN IdlValue
This parameter determines the state that starter assumes when the network is idle and Parameter 28 is set to 0.
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
27
GET/SET
BOOL
Starter Protection
—
0
1
0
28
GET/SET
BOOL
Starter Protection
1
0
—
0
25
GET/SET
BOOL
Starter Protection
—
0
1
0
26
GET/SET
BOOL
Starter Protection
1
0
—
0
29
GET/SET
BOOL
Starter Protection
1
0
—
0
4-13
4-14
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Last PR Fault
1 =Hdw Short Ckt
2 = Reserved
3 =Motor Overload (PF Fault Code 7)
4 =Drive Overload (PF Fault Code 64)
5 = Phase U to Gnd (PF Fault Code 38)
6 = Phase V to Gnd (PF Fault Code 39)
7 = Phase W to Gnd (PF Fault Code 40)
8 = Phase UV Short (PF4 Fault Code 41)
9 = Phase UW Short (PF Fault Code 42)
10 = Phase VW Short (PF Fault Code 43)
11 = Ground Fault (PF Fault Code 13)
12 = Stall (PF Fault Code 6)
13 = Control Pwr Loss
14 = Control Pwr Fuse
15 = Input Short
16 = Output Fuse
17 = Over Temp
18 = Heatsink OvrTmp (PF Fault Code 8)
19 = HW OverCurrent (PF Fault Code 12)
20 = SW OverCurrent (PF Fault Code 63)
21 = DNet Power Loss
22 = Internal Comm
23 = Drive Comm Loss (PF Fault Code 81)
24 = Power Loss (PF Fault Code 3)
25 = Under Voltage (PF Fault Code 4)
26 = Over Voltage (PF Fault Code 5)
27 = MCB EEPROM
28 = Base EEPROM
29 =Drive EEPROM (PF Fault Code 100)
30 = Wrong Base
31 = Fan RPM
32 = Power Unit (PF Fault Code 70)
33 = Drive IO Brd (PF Fault Code122)
34 = Restart Retries (PF Fault Code 33)
35 = Drive Aux In Flt (PF Fault Code 2)
36 = Analog Input (PF Fault Code 29)
37 = Drv Param Reset (PF Fault Code 48)
38 = SCV Autotune (PF Fault Code 80)
39 = Source Brake
40 = Reserved
41 = DB1 Comm
42 = DB1 Fault
Warning Status
This parameter warns the user of a condition, without faulting
Parameter Number
Access Rule
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Data Type
Group
Units
61
GET
UINT
Starter Protection
—
0
45
0
62
GET
WORD
Starter Protection
—
0
65535
0
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
User I/O Group
Off-to-On Delay
This parameter allows the installer to program a time duration before being reported
ON.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
On-to-Off Delay
This parameter allows the installer to program a time duration before being reported
OFF.
In Sink/Source
This parameter allows the installer to program the inputs to be sink or source.
0 = Sink
1 = Source
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
1
0
—
0
32
GET/SET
BOOL
User I/O
30
GET/SET
UINT
User I/O ms
0
65.000
0
31
GET/SET
UINT
User I/O ms
0
65.000
0
4-15
4-16
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Miscellaneous Group
Keypad Mode
This parameter selects if the keypad operation is maintained or momentary.
0 = Maintained
1 = Momentary
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Keypad Disable
This parameter disables all keypad function except for the OFF and RESET buttons.
0 = Not Disabled
1 = Disabled
Set to Defaults
This parameter if set to 1 will set the device to the factory defaults.
0 = No Operation
1 = Set to Defaults
Base Enclosure
Indicates the ArmorStart Base unit enclosure rating
0 = IP67
1 = Nema 4X
2-15 = Reserved
Base Options
Indicates the options for the ArmorStart Base unit
Bit 0 = Output Fuse
Bit 1 = Safety Monitor
Bit 2 = CP Fuse Detect
Bits 3-7 = Reserved
Bit 8 = 10A Base
Bit 9 = 25A Base
Bit 10-15 = Reserved
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
0
57
GET
WORD
Misc.
—
0
56
GET
WORD
Misc.
—
0
47
GET/SET
BOOL
Misc.
—
0
1
0
46
GET/SET
BOOL
Misc.
1
0
—
0
45
GET/SET
BOOL
Misc.
1
0
—
0
0
Wiring Options
Bit 0 = Conduit
Bit 1 = Round Media
Bits 2-15 = Reserved
Starter Enclosure
Bit 0 = IP67
Bit 1 = NEMA 4x
Bits 2-15 reserved
Starter Option
Bit 0 = HOA Keypad
Bit 1 = Safety Monitor
Bit 2 = Source Brake
Bit 3 = Control Brake
Bit 4 = Dynamic Brake
Bit 5 = Output Contactor
Bit 6 = EMI Filter
Bit 7 = 0-10V Analog In
Bits 8-15 = Reserved
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
0
59
GET
WORD
Misc.
—
0
58
GET
WORD
Misc.
—
0
0
60
GET
WORD
Misc.
—
0
66535
0
4-17
4-18
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Drive DeviceNet Group
Drive Control
This parameter provides the status of drive parameters.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
48
GET
WORD
Drive DeviceNet
—
0
4095
0
Drvin PrFltState
This parameter, in conjunction with Parameter 50, defines how the Drive Digital
Inputs 1…4 will respond when a protection trip occurs. When set to 1, Drive Digital
Inputs 1…4 continue to operate as command via the network. When set to 0, Drive
Digital Inputs 1…4 will open or close as determined by setting in Parameter 50.
0 = Go to PrFlt Value
1 = Ignore PrFlt
Drvin PrFltValue
This parameter determines the state of Drive Digital Inputs 1…4, assumes when a trip occurs and Parameter 49 is set to 0.
0 = Open
1 = Close
Bit
11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — X
— — — — — — — — — — X —
— — — — — — — — — X
— — — — — — — — X —
—
—
—
—
— — — — — — — X
— — — — — — X —
—
—
—
—
—
—
—
—
— — — — — X
— — — — X —
—
—
—
—
—
—
—
—
—
—
—
—
— — — X
— — X —
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
— X
X —
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Function
Accel 1 En
Accel 2 En
Decel 1 En
Decel 3 En
Freq Sel 0
Freq Sel 1
Freq Sel 2
Reserved
Drv In 1
Drv In 2
Drv In 3
Drv In 4
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
49
GET/SET
BOOL
Drive DeviceNet
—
0
1
0
50
GET/SET
BOOL
Drive DeviceNet
1
0
—
0
Drvin DNFltState
This parameter, in conjunction with Parameter 52, defines how the Drive Digital
Inputs 1…4 will respond when a DeviceNet fault occurs. When set to 1, Drive
Digital Inputs 1…4 hold to last state occurs. When set to 0, will go to DnFlt Value on
DN faults as determined by Parameter 52.
0 = Go to Fault Value
1 = Hold Last State
Drvin DNFlt Value
This parameter determines the state of Drive Digital Inputs 1…4 when a DeviceNet
Fault occurs and Parameter 51 is set to 0.
0 = OFF
1 = ON
Drvin DNIdlState
This parameter, in conjunction with Parameter 54, defines how the Drive Digital
Input 1…4 will respond when a DeviceNet network is idle. When set to 1, hold to last state occurs. When set to 0, will go to DnFlt Value on DN faults as determined by Parameter 54.
0 = Go to Fault Value
1 = Hold Last State
StrtrDN IdlValue
This parameter determines the state that Drive Digital Inputs 1…4 assume when the network is idle and Parameter 53 is set to 0.
0 = OFF
1 = ON
High Speed En
0 = Disabled
1 = Enabled
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
53
GET/SET
BOOL
Drive DeviceNet
—
0
1
0
54
GET/SET
BOOL
Drive DeviceNet
1
0
—
0
51
GET/SET
BOOL
Drive DeviceNet
—
0
1
0
52
GET/SET
BOOL
Drive DeviceNet
1
0
—
0
55
GET/SET
BOOL
Drive DeviceNet
1
0
—
0
4-19
4-20
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Display Group
Output Freq
Output frequency present at T1, T2, T3.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Commanded Freq
Value of the active frequency command. Displays the commanded frequency even if the drive is not running.
Output Current
Output Current present at T1, T2, T3.
Output Voltage
Output Current present at T1, T2, T3.
DC Bus Voltage
Present DC Bus voltage level.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
101
102, 110, 134, 135, 138
GET
UINT
Display Group
0.1 Hz
0.0
400.0 Hz
Read Only
102
101, 113, 134, 135, 138
GET
UINT
Display Group
0.1 Hz
0.0
400.0 Hz
Read Only
103
GET
UINT
Display Group
0.01
0.00
Drive rated amps x 2
Read Only
104
131, 184, 188
GET
UINT
Display Group
1V AC
0
230V, 460V, or 600V AC
Read Only
105
GET
UINT
Display Group
1V DC
Based on Drive Rating
Read Only
Drive Status
Present operating condition of the drive.
Bit 0 = running
Bit 1 = Forward
Bit 2 = Accelerating
Bit 3 = Decelerating
Fault 1 Code
A code that represents drive fault. The code will appear in this parameter as the most recent fault that has occurred.
Fault 2 Code
A code that represents a drive fault. The code will appear in this parameter as the second most recent fault that has occurred.
Fault 3 Code
A code that represents a drive fault. The code will appear in this parameter as the third most recent fault that has occurred.
Process Display
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
106
195
GET
Byte
Display Group
—
0
1
Read Only
4-21
The output frequency scaled by the process factor (Parameter 199).
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
109
GET
UINT
Display Group
—
F122
F2
Read Only
110
101. 199
GET
LINT
Display Group
0.01…1
0.00
9999
Read Only
107
GET
UINT
Display Group
—
F122
F2
Read Only
108
GET
UINT
Display Group
—
F122
F2
Read Only
4-22
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Control Source
Displays the source of the Start Command and Speed Reference.
Valid Start Commands for the Bulletin 284 ArmorStart are the following:
2 = 2-wire
3 = 2-wire Level Sensitive
4 = 2-wire High Speed
5 = RS485 (DSI) Port
9 = Jog
Valid Speed Commands for the Bulletin 284 ArmorStart are the following:
1 = Internal Frequency
2 = 0…10V Input/Remote Potentiometer
4 = Preset Freq X
5 = RS485 (DSI) port
6 = Step Logic Control
9 = Jog Freq
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Contrl In Status
Status of the control terminal block control inputs:
Bit 0 = Start/Run FWD input
Bit 1 = Direction/Run REV Input
Bit 2 = Stop Input
Bit 3 = Dynamic Brake Transistor On
Dig In Status
Status of the control terminal block digital inputs:
Bit 0 = Digital IN 1 Sel
Bit 1 = Digital IN 2 Sel
Bit 2 = Digital IN 3 Sel
Bit 3 = Digital IN 4 Sel
Comm Status
Status of communications ports:
Bit 0 = Receiving Data
Bit 1 = Transmitting Data
Bit 2 = RS485
Bit 3 = Communication Error
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
112
136, 138, 151…154 (Digital
Inx Sel) must be set to 4, 169,
170…177 (Preset Freq X),
240…247 (Step Logic
Control)
GET
UINT
Display Group
1
0
9
5
113
102, 134, 135
GET
UINT
Display Group
1
0
1
0
114
151…154
GET
UINT
Display Group
1
0
1
0
115
203…207
GET
UINT
Display Group
1
0
1
0
Control SW Ver
Main Control Board software version for AC Drive.
Drive Type
Used by Rockwell Automation field service personnel.
Elapsed Run Time
Accumulated time drive is outputting power. Time is displayed in 10 hour increments.
Testpoint Data
The present value of the function selected in Parameter 202.
Analog In 0…10V
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
The percent value of the voltage at I/O terminal 13 (100% = 10V).
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
118
GET
UINT
Display Group
1 = 10 hrs
0
9999
Read Only
119
202
GET
UINT
Display Group
1 Hex
0
FFFF
Read Only
116
GET
UINT
Display Group
0.01
1.00
99.99
Read Only
117
GET
UINT
Display Group
1
1001
9999
Read Only
120
210, 211
GET
UINT
Display Group
0.1%
0.0%
100.0%
Read Only
4-23
Analog In 4…20 mA
This parameter is not available for use with the Bulletin 284 ArmorStart
Distributed Motor Controller.
Parameter Number 121
4-24
Output Power
The output power present at T1, T2, and T3.
Output Power Fctr
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
The angle in electrical degrees between motor voltage and current.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Drive Temp
Present operating temperature of the drive power section.
Counter Status
The current value of the counter when counter is enabled.
Timer Status
The current value of the timer when timer is enabled.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
124
GET
UINT
Display Group
1
°C
0
120
Read Only
125
GET
UINT
Display Group
1
0
9999
Read Only
126
GET
UINT
Display Group
0.1 sec
0
9999
Read Only
122
GET
UINT
Display Group
0.00
Drive rated power X 2
Read Only
123
GET
UINT
Display Group
0.1
°
0.0
°
180.0
°
Read Only
Stp Logic Status
When Parameter 138 (Speed Reference) is set to 6 Stp Logic, this parameter will display the current step of step logic as defined by Parameters 240…247 (Stp
Logic X).
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
128
GET
UINT
Display Group
1
0
8
Read Only
4-25
Torque Current
The current value of the motor torque current.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
129
GET
UINT
Display Group
0.01
0.00
Drive Rated Amps x 2
Read Only
Basic Program Group
Motor NP Volts
Stop drive before changing this parameter.
Set to the motor name plate rated volts.
Motor NP Hertz
Set to the motor nameplate rated frequency.
Stop drive before changing this parameter.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
131
104, 184, 185…187
GET/SET
UINT
Basic Program
1V AC
20
240V, 460V, or 600V AC
Based on Drive Rating
132
184, 185…187, and 190
GET/SET
UINT
Basic Program
1 Hz
15
400
60 Hz
4-26
Motor OL Current
Set to the maximum allowable current. The drive fault on an F7 Motor Over load if the value of this parameter is exceeded by 150% for 60 seconds.
Minimum Freq
Sets the lowest frequency the drive will output continuously.
Maximum Freq
Stop drive before changing this parameter.
Sets the Highest frequency the drive will output continuously.
Start Source
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Stop drive before changing this parameter.
Sets the control scheme used to start the Bulletin 284 ArmorStart.
2 = 2-wire
3 = 2-wire Level Sensitive
4 = 2-wire High Speed
5 = RS485 (DSI) Port
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
133
155, 158, 161, 189, 190, 198,
214, 218
GET/SET
UINT
Basic Program
0.1 A
0.0
Drive rated amps x 2
Based on Drive Rating
134
101, 102, 113, 135, 185, 186,
187, 210, 212
GET/SET
UINT
Basic Program
0.1 Hz
0.0
400
0.0
135
101, 102, 113, 134, 135, 178,
185, 186, 187, 211, 213
GET/SET
UINT
Basic Program
0.1 Hz
0.0
400
60.0
136
112 and 137
GET/SET
UINT
Basic Program
—
0
5
5
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Stop Mode
Valid Stop Mode for the Bulletin 284 ArmorStart are the following:
0 = Ramp, CF Ramp to Stop. Stop command clears active fault.
1 =
Coast, CF Coast to Stop. Stop command clears active fault.
2 = DC Brake,CF DC Injection Braking Stop. Stop command clears active fault.
3 =
DCBrkAuto, CF DC injection Braking with Auto Shutoff.
Standard DC Injection Braking for value set in Parameter 180 (DC Brake Time) or
Drive shuts off if the drive detects that the motor is stopped.
Stop command clears active fault
4 =
Ramp Ramp to Stop
5 = Coast Coast to Stop
6 =
DC Brake DC Injection Braking Stop
7 = DC BrakeAuto DC Injection Stop with Auto Shutoff.
Standard DC Injection Braking for value set in Parameter 180 (DC Brake Time) or
Drive shuts off if current limit is exceeded
8 = Ramp + EM B, CF Ramp to Stop with EM Brake Control. Stop command clears active fault.
9 = Ramp + EM Brk Ramp to Stop with EM Brake Control.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value 9
4-27
137
136, 180, 181, 182, 205, 260,
261
GET/SET
UINT
Basic Program
—
0
9
Speed Reference
Valid Speed References for the Bulletin 284 ArmorStart are the following:
1 = Internal Freq
2 = 0…10V Input
4 = Preset Freq
5 = Comm port
6 = Stp Logic
9 = Jog Freq
Note: Option 2 must be selected when using 0…10V Analog Input.
Accel Time 1
Sets the rate of acceleration for all speed increases.
Maximum Freq
Accel Time
= Accel Rate
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
138
101, 102, 112, 139, 140, 151,
152, 153, 154, 169,
170…173, 174…177, 210,
211, 213, 232, 240…247, and 250…257
GET/SET
UINT
Basic Program
—
0
7
5
139
138, 140, 151, 152, 153, 154,
167, 170…173, 174…177, and 240…247
GET/SET
UINT
Basic Program
0.1 sec
0.0 sec
600.0 sec
10.0 sec
4-28
Motor OL Current
Set to the maximum allowable current. The drive fault on an F7 Motor Over load if the value of this parameter is exceeded by 150% for 60 seconds.
Minimum Freq
Sets the lowest frequency the drive will output continuously.
Maximum Freq
Stop drive before changing this parameter.
Sets the Highest frequency the drive will output continuously.
Start Source
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Stop drive before changing this parameter.
Sets the control scheme used to start the Bulletin 284 ArmorStart.
2 = 2-wire
3 = 2-wire Level Sensitive
4 = 2-wire High Speed
5 = RS485 (DSI) Port
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
133
155, 158, 161, 189, 190, 198,
214, 218
GET/SET
UINT
Basic Program
0.1 A
0.0
Drive rated amps x 2
Based on Drive Rating
134
101, 102, 113, 135, 185, 186,
187, 210, 212
GET/SET
UINT
Basic Program
0.1 Hz
0.0
400
0.0
135
101, 102, 113, 134, 135, 178,
185, 186, 187, 211, 213
GET/SET
UINT
Basic Program
0.1 Hz
0.0
400
60.0
136
112 and 137
GET/SET
UINT
Basic Program
—
0
5
5
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Stop Mode
Valid Stop Mode for the Bulletin 284 ArmorStart are the following:
0 = Ramp, CF Ramp to Stop. Stop command clears active fault.
1 =
Coast, CF Coast to Stop. Stop command clears active fault.
2 = DC Brake,CF DC Injection Braking Stop. Stop command clears active fault.
3 =
DCBrkAuto, CF DC injection Braking with Auto Shutoff.
Standard DC Injection Braking for value set in Parameter 180 (DC Brake Time) or
Drive shuts off if the drive detects that the motor is stopped.
Stop command clears active fault
4 =
Ramp Ramp to Stop
5 = Coast Coast to Stop
6 =
DC Brake DC Injection Braking Stop
7 = DC BrakeAuto DC Injection Stop with Auto Shutoff.
Standard DC Injection Braking for value set in Parameter 180 (DC Brake Time) or
Drive shuts off if current limit is exceeded
8 = Ramp + EM B, CF Ramp to Stop with EM Brake Control. Stop command clears active fault.
9 = Ramp + EM Brk Ramp to Stop with EM Brake Control.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value 9
4-29
137
136, 180, 181, 182, 205, 260,
261
GET/SET
UINT
Basic Program
—
0
9
Speed Reference
Valid Speed References for the Bulletin 284 ArmorStart are the following:
1 = Internal Freq
2 = 0…10V Input
4 = Preset Freq
5 = Comm port
6 = Stp Logic
9 = Jog Freq
Note: Option 2 must be selected when using 0…10V Analog Input.
Accel Time 1
Sets the rate of acceleration for all speed increases.
Maximum Freq
Accel Time
= Accel Rate
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
138
101, 102, 112, 139, 140, 151,
152, 153, 154, 169,
170…173, 174…177, 210,
211, 213, 232, 240…247, and 250…257
GET/SET
UINT
Basic Program
—
0
7
5
139
138, 140, 151, 152, 153, 154,
167, 170…173, 174…177, and 240…247
GET/SET
UINT
Basic Program
0.1 sec
0.0 sec
600.0 sec
10.0 sec
4-30
Decel Time 1
Sets the rate of deceleration for all speed decreases.
Maximum Freq
Decel Time
Reset To Defaults
=
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Decel Rate
Stop drive before changing this parameter.
Resets all parameter values to factory defaults.
0 = Ready/Idle (Default)
1 = Factory Rset
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Motor OL Ret
Enables/disables the Motor overload Retention function. When Enabled, the value held in the motor overload counter is saved at power-down and restored at powerup. A change to this parameter setting resets the counter.
0 = Disabled (Default)
1 = Enabled
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Advanced Program Group
151 (Digital In 1 SEL)
152 (Digital In 2 SEL)
153 (Digital In 3 SEL)
154 (Digital In 4 SEL)
Stop drive before changing this parameter.
Selects the function for the digital inputs.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
140
138, 139, 151, 152, 153, 154,
168, 170…173, 174…177, and 240…247
GET/SET
UINT
Basic Program
0.1 sec
0.1 sec
600.0 sec
10.0 sec
141
GET/SET
BOOL
Basic Program Group
1
0
—
1
143
GET/SET
BOOL
Basic Program Group
1
0
—
0
151, 152, 153, 154
112, 114, 138…140, 167,
168, 170…173, 174…177,
178, 179, 240…247
GET/SET
UINT
Advanced Program Group
See Table 4.2 for details
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Table 4.2 Digital Inputs Options
4-31
5
8
9
6
7
10
11
12
13
18
19
20
21
22
14
15
16
17
23
Options
0
1
2
3
4
24
25
26
Not Used
Acc & Dec2
Jog
Description
Terminal has no function but can be read over network communication via Parameter 114 (Dig In Status).
• When active, Parameter 167 (Accel Time 2) and Parameter 168 (Decel Time 2) are used for all ramp rates except Jog.
• Can only be tied to one input.
• When input is present, drive accelerates according to the value set in Parameter 179 (Jog Accel/Decel) and ramps to the value set in Parameter 178 (Jog Frequency).
• When the input is removed, drive ramps to a stop according to the value set in Parameter 179 (Jog Accel/
Decel).
• A valid Start command will override this input.
When enable, an F2
Auxiliary Input fault will occur when the input is removed.
Refer to Parameters 170…173 and 174…177.
Aux Fault
Preset Freq
(Parameters 151 and 152 Default)
Local (Parameter
153 Default)
Option not valid for Bulletin 284 ArmorStart.
Comm Port
Clear Fault
This option is the default setting.
When active, clears active fault.
RampStop,CF Causes drive to immediately ramp to stop regardless of how Parameter 137 (Stop Mode) is set.
CoastStop,CF Causes drive to immediately ramp to stop regardless of how Parameter 137 (Stop Mode) is set.
DCInjStop,CF Causes drive to immediately begin a DC Injection stop regardless of how Parameter 137 (Stop Mode) is set.
Jog Forward
(Parameter 154
Default)
Drive accelerates to Parameter 178 (Jog Frequency) according to Parameter 179 (Jog Accel/Decel) and ramps to stop when input becomes inactive. A valid start will override this command.
Jog Reverse
10V In Ctrl
Drive accelerates to Parameter 178 (Jog Frequency) according to Parameter 179 (Jog Accel/Decel) and ramps to stop when input becomes inactive. A valid start will override this command.
Option with Factory Installed option — A10 (0…10V Analog Input). Selects 0…10V or +/-10V as the frequency reference. Start source is not changed.
20MA In Ctrl
PID Disable
MOP Up
MOP Down
Option not valid for Bulletin 284 ArmorStart.
Disabled PID function. Drive uses the next valid non-PID speed reference.
Increases the value of Parameter 169 (internal Freq) at a rate 2 Hz per second. Default of Parameter 169 is 60 Hz.
Decreases the value of Parameter 169 (internal Freq) at a rate 2 Hz per second. Default of Parameter 169 is 60 Hz.
Timer Start
Counter In
Clears and starts the timer function. May be used to control the relay or opto outputs.
Starts the counter function. May be used to control the relay or opto outputs.
Reset Timer Clears the active timer.
Reset Countr Clears the active counter.
Rset Tim&Cnt Clear active timer and counter.
Logic In1
Logic Function input number 1. May be used to control the relay or opto outputs (see Parameters 155, 158, 161 options 11…14). May be used in conjunction with Step Logic Parameters 240…247 (Stp Logic X).
Logic In2
Logic Function input number 1. May be used to control the relay or opto outputs (see Parameters 155, 158, 161 options 11…14). May be used in conjunction with Step Logic Parameters 240…247 (Stp Logic X).
Current Lmt2 When active, Parameter 218 (Current Limit 2) determines the drive current limit level.
Anlg Invert
Inverts the scaling of analog input levels set in parameter 210 (Anlg In 0…10V LO) and parameter 211
(Anlg In 0…10 HI).
4-32
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Options
0
1
2
3
4
5
6
7
19
20
21
22
8
12
13
14
15
9
10
11
16
17
18
Ready/Fault
(Default)
At Frequency
MotorRunning
Reverse
Motor Overld
Ramp Reg
Above Freq
Above Cur
Above DCVolt
Retries Exst
Above Anlg V
Logic In 1
Logic In 2
Logic In 1 & 2
Logic In 1 or 2
StpLogic Out
Timer Out
Counter Out
Above PF Ang
Anlg In Loss
ParamControl
NonRec Fault
EM Brk Cntrl
155 (Relay Out Sel)
Sets the condition that changes the state of the output relay contacts.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
155
133, 156, 192, 240…247,
250…257, 260, 261
GET/SET
UINT
Advanced Program Group
—
0
22
22
Table 4.3
Description
Relay changes state when power is applied. This indicates the drive is ready for operation. Relay returns drive to shelf state when power is removed or a fault occurs.
Drive reached commanded frequency.
Motor is receiving power from drive.
Drive is commanded to run in reverse direction.
Motor overload condition exists.
Ramp regulator is modifying the programmed accel/decal times to avoid overcurrent or overvoltage fault from occurring.
Drive exceeds the frequency (Hz) value set in Parameter 156 (Relay Out Level) Use Parameter 156 to set threshold.
Drive exceeds the current (% Amps) value set in Parameter 156 (Relay Out Level) Use Parameter 156 to set threshold.
Drive exceeds the DC bus voltage value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold.
Value set in Parameter 192 (Auto Rstrt Tries) is exceeded.
Option not valid for Bulletin 284 ArmorStart.
An input is programmed as Logic In 1 and is active.
An input is programmed as
Logic In 2 and is active.
Both Logic inputs are programmed and active.
One or both Logic inputs are programmed and one or both is active.
Drive enters Step Logic step with Digit 3 of Command Word (Parameters 240…247).
Timer has reached value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold.
Counter has reached value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold.
Power factor angle has exceeded the value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold.
Analog input loss has occurred. Program parameter 122 (Analog In Los) for desired action when loss occurs
Enables the output to be controlled over the network communications by writing to Parameter 156 (Relay Out
Level) (0 = Off, 1 = ON).
Value set in Parameter 192 (Auto Rstrt Tries) is exceeded.
EM Brake is energized. Program Parameter 260 (EM Brk Off Delay) and Parameter 262 (EM Brk On Delay) for desired action.
Relay Out Level
Sets the trip point for the digital output relay if the value of Parameter 155 (Relay
Out Sel) is 6, 7, 8, 10, 16, 17, 18, or 20.
Parameters 155 Setting Parameter 156 Min./Max.
6
7
8
10
16
17
18
20
0/400 Hz
0/180%
0/815V
0/100%
0.1/9999 sec
1/9999 counts
1/180
°
0/1
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
4-33
156
155, 158, 161
GET/SET
UINT
Advanced Program Group
0.1
0.0
9999
0.0
2
3
4
5
6
158 (Opto Out1 Sel)
161 (Opto Out2 Sel)
Determines the operation of the programmable opto outputs.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Table 4.4 Parameter 158 and 161 Options
Options
0
1
7
8
9
10
158, 161
133, 156, 192, 240…247,
250…257
GET/SET
UINT
Advanced Program Group
See Table 4.4 for details
Ready/Fault
(Default)
At Frequency
(Parameter 161
Default)
MotorRunning
(Parameter
158Default)
Reverse
Motor Overld
Ramp Reg
Above Freq
Above Cur
Above DCVolt
Retries Exst
Above Anlg V
Description
Opto outputs are active when power is applied. This indicates the drive is ready for operation. Opto outputs are inactive when power is removed or a fault occurs.
Drive reached commanded frequency.
Motor is receiving power from drive.
Drive is commanded to run in reverse direction.
Motor overload condition exists.
Ramp regulator is modifying the programmed accel/decal times to avoid overcurrent or overvoltage fault from occurring.
Drive exceeds the frequency (Hz) value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto Output 2
Level) Use Parameter 159 or 162 to set threshold.
Drive exceeds the current (% Amps) value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto Output
2 Level). Use Parameter 159 or 162 to set threshold. Important: Value for Parameter 159 or 162 must entered in percent of the drive rated output current.
Drive exceeds the DC bus voltage value set in Parameter 159 (Opto Out 1 Level). Use Parameter 159 or 162 to set threshold.
Value set in Parameter 192 (Auto Rstrt Tries) is exceeded.
Option not valid for Bulletin 284 ArmorStart.
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
4-34
Options
11
12
13
14
15
16
17
18
19
20
21
Logic In 1
Logic In 2
Logic In 1 & 2
Logic In 1 or 2
StpLogic Out
Timer Out
Counter Out
Above PF Ang
Anlg In Loss
ParamControl
NonRec Fault
Description
An input is programmed as
Logic In 1 and is active.
An input is programmed as Logic In 2 and is active.
Both Logic inputs are programmed and active.
One or both Logic inputs are programmed and one or both is active.
Drive enters Step Logic step with Digit 3 of Command Word (Parameters 240…247).
Timer has reached value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto Output 2 Level). Use
Parameter 159 or 162 to set threshold.
Counter has reached value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto Output 2 Level). Use
Parameter 159 or 162 to set threshold.
Power factor angle has exceeded the value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto
Output 2 Level). Use Parameter 159 or 162 to set threshold.
Analog input loss has occurred. Program parameter 122 (Analog In Los) for desired action when loss occurs
Enables the output to be controlled over the network communications by writing to Parameter 159 (Opto Out 1
Level) or Parameter 162 (Opto Output 2 Level) (0 = Off, 1 = ON).
Value set in Parameter 192 (Auto Rstrt Tries) is exceeded.
ATTENTION
Parameter 192 (Auto Rstrt Tries) is not enabled. A nonresettable fault has occurred.
!
22
159 (Opto Out1 Level)
162 (Opto Out2 Level)
Sets the trip point for the digital output relay if the value of Parameter 158 (Opto
Out1 Sel) or Parameter 161 (Opto Out2 Sel) is 6, 7, 8, 10, 16, 17, 18, or 20.
Parameters 158 and 161
Setting
6
10
16
17
18
7
8
20
EM Brk Cntrl
EM Brake is energized. Program Parameter 260 (EM Brk Off Delay) and Parameter 262 (EM Brk On Delay) for desired action.
Parameters 159 and 161
Min./Max.
0/400 Hz
0/180%
0/815V
0/100%
0.1/9999 sec
1/9999 counts
1/180
°
0/1
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
159 162
GET/SET
UINT
Advanced Program Group
—
0.0
9999
0.0
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
4-35
Opto Out Logic
Determines the logic (Normally Open/N.O. or Normally Closed/N.C.) of the opto outputs.
Option
0
1
2
3
Opto Out1 Logic
N.O. (Normally Open)
N.C. (Normally Closed)
N.O. (Normally Open)
N.C. (Normally Closed)
Opto Out2 Logic
N.O. (Normally Open)
N.O. (Normally Open)
N.C. (Normally Closed)
N.C. (Normally Closed)
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
164
GET/SET
UINT
Advanced Program Group
1
0
3
0
4-36
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Options
OutFreq 0…10
OutCurr 0…10
OutVolt 0…10
OutPowr 0…10
TstData 0…10
OutFreq 0…20
OutCurr 0…20
OutVolt 0…20
OutPowr 0…20
TstData 0…20
OutFreq 4…20
OutCurr 4…20
OutVolt 4…20
OutPowr 4…20
TstData 4…20
OutTorq 0…10
OutTorq 0…20
OutTorq 4…20
Setpnt 0…10
Setpnt 0…20
Setpnt 4…20
12
13
14
15
10
11
8
9
16
17
18
19
20
6
7
4
5
2
3
0
1
Analog Out Sel
Sets the analog output signal (0…10V). The output is used to provide a signal that is proportional to several drives
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Table 4.5 Analog Output Options
165
135, 166
GET/SET
UINT
Advanced Program Group
See Table for details
Output Range
0…10V
0…10V
0…10V
0…10V
0…10V
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…20 mA
4…20 mA
4…20 mA
4…20 mA
4…20 mA
4…20 mA
0…10V
0…20 mA
4…20 mA
0…10V
0…20 mA
4…20 mA
Minimum Output
Value
0V = 0 Hz
0V = 0 Amps
0V = 0 Volts
0V = 0 kW
0V = 0000
0 mA = 0 Hz
0 mA = 0 Amps
0 mA = 0 Volts
0 mA = 0 kW
0 mA = 0000
4 mA = 0 Hz
4 mA = 0 Amps
4 mA = 0 Volts
4 mA = 0 kW
4 mA = 0000
0V = 0 Amps
0 mA = 0 Amps
4 mA = 0 Amps
0V = 0%
0 mA = 0%
4 mA = 0%
Maximum Output Value A066
(Analog Out High)
P035 (Maximum Freq)
200% Drive Rated Output Current
120% Drive Rated Output Volts
200% Drive Rated Power
65535 (Hex FFFF)
P035 (Maximum Freq)
200% Drive Rated Output Current
120% Drive Rated Output Volts
200% Drive Rated Power
65535 (Hex FFFF)
P035 (Maximum Freq)
200% Drive Rated Output Current
120% Drive Rated Output Volts
200% Drive Rated Power
65535 (Hex FFFF)
200% Drive Rated FLA
200% Drive Rated FLA
200% Drive Rated FLA
100.0% Setpoint Setting
100.0% Setpoint Setting
100.0% Setpoint Setting
DIP Switch Position
0…10V
0…10V
0…10V
0…10V
0…10V
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…10V
0…20 mA
0…20 mA
0…10V
0…20 mA
0…20 mA
Related
Parameter
104
122
119
129
122
119
101
103
129
129
209
209
209
119
101
103
104
101
103
104
122
Note: Only output range 0…10V applies with the factory installed
A10 option.
Options 5…14, 16, 17, 19, and 20 are not valid options.
Analog Out High
Scales the maximum output value for parameter 165 source setting
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
166
GET/SET
UINT
Advanced Program Group
%
0%
800%
100%
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Accel Time 2
When active, sets the rate of acceleration for all speed increases except for jog.
Maximum Freq
Accel Time
= Accel Rate
Parameter 135
(Maximum Freq)
Speed
Acceleration
0
0
Param.
139 or
167
(Accel
Time x)
Time
Deceleration
Param.
140 or
168
(Decel
Time x)
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
4-37
167
139, 151, 152, 153, 154,
170…173, 174…177,
240…247
GET/SET
UINT
Advanced Program Group
0.1 sec
0.0
600.0
20.0
Decel Time 2
When active, sets the rate of deceleration for all speed decreases except for jog.
Maximum Freq
Decel Time
= Decel Rate
Parameter 135
(Maximum Freq)
Speed
Acceleration
0
0
Param.
139 or
167
(Accel
Time x)
Time
Deceleration
Param.
140 or
168
(Decel
Time x)
Internal Freq
Provide the frequency command to drive when Parameter 138 (Speed Reference) is set to 1
Internal Freq. When enabled, this parameter will change the frequency command in real time.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
168
140, 151, 152, 153, 154,
170…173, 174…177,
240…247
GET/SET
UINT
Advanced Program Group
0.1 sec
0.0
600.0
20.0
169
138, 162
GET/SET
UINT
Advanced Program Group
0.1 Hz
0.0
400.0
60.0
4-38
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
170 (Preset Freq 0) ➊
171 (Preset Freq 1)
172 (Preset Freq 2)
173 (Preset Freq 3)
174 (Preset Freq 4)
175 (Preset Freq 5)
176 (Preset Freq 6)
177 (Preset Freq 7)
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
170…173, 174…177
138, 139, 140, 151, 152, 152,
153, 167, 168, 240…247,
250…257
GET/SET
UINT
Advanced Program Group
0.1 Hz
0.0
400.0
See Table 4.A
Table 4.A 170…177 Preset Freq Options
Values
Provides a fixed frequency command value when 151…153 (Digital Inx Sel) is set to
4 Preset Frequencies.
Input State of Digital In
1 (I/O Terminal 05 when
Parameter 151 = 4)
0
1
0
1
0
1
0
1
Input State of Digital In
2 (I/O Terminal 06 when
Parameter 152 = 4)
1
1
0
0
1
1
0
0
.
Input State of Digital In
3 (I/O Terminal 07 when
Parameter 153 = 4)
1
1
1
1
0
0
0
0
170 Default ➊
171 Default
172 Default
173 Default
174 Default
175 Default
176 Default
177 Default
Min./Max.
Display
Frequency
Source
170 (Preset Freq 0)
171 (Preset Freq 1)
172 (Preset Freq 2)
173 (Preset Freq 3)
174 (Preset Freq 4)
175 (Preset Freq 5)
176 (Preset Freq 6)
177 (Preset Freq 7)
0.0 Hz
5.0 Hz
10.0 Hz
20.0 Hz
30.0 Hz
40.0 Hz
50.0 Hz
60.0 Hz
0.0/400.0 Hz
0.1 Hz
Accel/Decel
Parameter
Used ➋
(Accel Time 1)/(Decel Time 1)
(Accel Time 1)/(Decel Time 1)
(Accel Time 2)/(Decel Time 2)
(Accel Time 2)/(Decel Time 2)
(Accel Time 3)/(Decel Time 3)
(Accel Time 3)/(Decel Time 3)
(Accel Time 4)/(Decel Time 4)
(Accel Time 4)/(Decel Time 4)
➊
To activate 170 (Preset Freq 0) set 138 (Speed Reference) to option 4 Preset Freq.
➋
When a Digital Input is set to Accel 2 & Decel 2, and the input is active, that input overrides the settings in this table.
Jog Frequency
Sets the output frequency when the jog command is issued.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
178
135, 151, 152, 153, 154, 179
GET/SET
UINT
Advanced Program Group
0.1 Hz
0.0
400.0
10.0
Jog Accel/Decel
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Sets the acceleration and deceleration time when a jog command is issued.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
4-39
179
178, 151, 152, 153, 154
GET/SET
UINT
Advanced Program Group
0.1 sec
0.1
600.0
10.0
DC Brake Time
Sets the length of time that DC brake current is injected into the motor. Refer to
Parameter 181 DC Brake Level.
DC Brake Level
Defines the maximum DC brake current, in amps, applied to the motor when
Parameter 137 (Stop Mode) is set to either
Ramp or DC Brake.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
180
137, 181
GET/SET
UINT
Advanced Program Group
0.1 sec
0.0
99.9
(Setting of 99.9 = Continuous)
0.0
181
137, 180
GET/SET
UINT
Advanced Program Group
0.1 A
0.0
Drive rated amps X 1.8
Drive rated amps X 0.05
ATTENTION
!
• If a hazard of injury due to movement of equipment or material exists, an auxiliary mechanical braking device must be used.
• This feature should not be used with synchronous or permanent magnet motors. Motors may be demagnetized during braking.
4-40
DB Resistor Sel
Stop drive before changing this parameter.
Enables/disables external dynamic braking.
Setting
0
1
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Min./Max.
Disabled
Normal RA Res (5% Duty Cycle)
2 No Protection (100% Duty Cycle)
3…99 x% Duty Cycle Limited (3…99% of Duty Cycle)
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
S Curve %
Sets the percentage of acceleration or deceleration time that is applied to ramp as S
Curve. Time is added, half at the beginning and half at the end of the ramp.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Figure 4.2
182
137
GET/SET
UINT
Advanced Program Group
1
0
99
0
183
GET/SET
UINT
Advanced Program Group
1%
0
100
0% disabled
Boost Select
Sets the boost voltage (% of Parameter 131 [Motor NP Volts]) and redefines the Volts per Hz curve. Active when Parameter 225 (Torque Perf Mode) = 0V/Hz Drive may add additional voltage unless Option 5 is selected.
See Table 4.6 for details
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
184
104, 131, 132, 185, 186, 187,
225
GET/SET
UINT
Advanced Program Group
—
0
14
8
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Table 4.6 Boost Select Options
4-41
Options
11
12
13
14
9
10
7
8
5
6
3
4
0
1
2
Figure 4.1
Description
Custom V/Hz
30.0, VT
35.0, VT
40.0, VT
45.0, VT
0.0 no IR
0.0
2.5, CT (Default for 5 Hp/4.0 kW Drive)
5.0, CT Default
7.5,CT
10.0,CT
12.5,CT
15.0,CT
17.5,CT
20.0,CT
Variable Torque (Typical fan/pump curves)
Constant Torque
1/2 (Motor NP Volts)
4
3
2
1
Settings
5...14
0 50
% Parameter 132 (Motor NP Hertz)
100
4-42
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Start Boost
Sets the boost voltage (% of Parameter 131 [Motor NP Volts]) and redefines the Volts per Hz curve when Parameter 184 (Boost Select) = 0 Custom V/Hz and Parameter
225 (Torque Perf Mode) = 0V/Hz.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
185
131, 132, 134, 135, 184, 186,
187, 188, 225
GET/SET
UINT
Advanced Program Group
1.1%
0.0%
25.0%
2.5%
Figure 4.3
Parameter 188 (Maximum Voltage)
Parameter 131 (Motor NP Volts)
Parameter 186 (Start Boost)
Parameter 187 (Break Frequency)
Parameter 134 (Minimum Freq) Frequency
Parameter 132 (Motor NP Hertz)
Parameter 135 (Maximum Freq)
Brake Voltage
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Sets the frequency where brake voltage is applied when Parameter 184 (Boost
Select) = 0 Custom V/Hz and Parameter 225 (Torque Perf Mode) = 0V/Hz.
Brake Frequency
Sets the frequency where brake frequency is applied when Parameter 184 (Boost
Select) = 0 Custom V/Hz and Parameter 225 (Torque Perf Mode) = 0V/Hz.
Maximum Voltage
Sets the highest voltage the drive will output.
Current Limit 1
Maximum output current allowed before current limiting occurs
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
4-43
186
131, 132, 134, 135, 184, 185,
187, 188, 225
GET/SET
UINT
Advanced Program Group
1.1%
0.0%
100.0%
25.0%
187
131, 132, 134, 135, 184, 185,
186, 188, 225
GET/SET
UINT
Advanced Program Group
0.1 Hz
0.0 Hz
400.0 Hz
15.0 Hz
188
104, 185, 186, 187
GET/SET
UINT
Advanced Program Group
1V AC
20V AC
Drive Rated Volts
Drive Rated Volts
189
133, 218
GET/SET
UINT
Advanced Program Group
0.1 A
0.1 A
Drive rated amps X 1.8
Drive rated amps X 1.5
4-44
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Motor OL Select
Drive provides Class 10 motor overload protection. Setting 0…2 select the derating factor for I
2 t overload function.
0 = No Derate
1 = Min. Derate
2 = Max. Derate
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Figure 4.4 Overload Trip Curves
190
132, 133
GET/SET
UINT
Advanced Program Group
1
0
2
0
% of P132 (Motor NP Hertz)
PWM Frequency
Sets the carrier frequency the PWM output waveform. The Figure 4.5 provides derating guidelines based on the PWM frequency setting.
% of P132 (Motor NP Hertz)
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Figure 4.5
% of P132 (Motor NP Hertz)
191
224
GET/SET
UINT
Advanced Program Group
0.l Hz
2.0 Hz
16.0 Hz
4.0 Hz
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
4-45
Auto Rstrt Tries
Set the maximum number of times the drive attempts to reset a fault and restart.
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
192
155, 158, 161, 193
GET/SET
UINT
Advanced Program Group
1
0
9
0
Clear a Type 1 Fault and Restart the Drive
1. Set Parameter 192 (Auto Rstrt Tries) to a value other than 0.
2. Set Parameter 193 (AutoRstrt Delay) to a value other than 0.
Clear an Overvoltage, Undervoltage, or Heatsink OvrTmp Fault without Restarting the Drive
1. Set Parameter 192 (Auto Rstrt Tries) to a value other than 0.
2. Set Parameter 193 (AutoRstrt Delay) to 0.
ATTENTION
!
Equipment damage and/or personal injury may result if this parameter is used in an inappropriate application. Do not use this function without considering applicable local, national, and international codes, standards, regulations, or industry guidelines.
Auto Rstrt Delay
Sets time between restart attempts when Parameter 192 (Auto Rstrt Tries) is set to a value other than zero.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
193
192
GET/SET
UINT
Advanced Program Group
0.1 sec
0.0
300.0 sec
1.0 sec
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
4-46
Start at PowerUp
Stop drive before changing this parameter.
Enables/disables a feature that allows a Start or Run command to automatically cause the drive to resume running at command speed after the drive input is restored. Requires a digital input configured Run or Start and a valid start contact.
This parameter will not function if Parameter 136 (Start Source) is set to 4
2-W High
Speed.
0 = Disabled
1 = Enabled
ATTENTION
!
Equipment damage and/or personal injury may result if this parameter is used in an inappropriate application. Do not use this function without considering applicable local, national, and international codes, standards, regulations, or industry guidelines.
Reverse Disable
Stop drive before changing this parameter.
Enables/disables the function that allows the direction of the motor rotation to be changed. The reverse command may come from a digital command or serial command. All reverse inputs including two-wire Run Reverse will be ignored with reverse disabled.
0 = Disabled
1 = Enabled
Flying Start En
Sets the condition that allows the drive to reconnect to a spinning motor at actual
RPM.
0 = Disabled
1 = Enabled
Compensation
Enables/disables correction options that may improve problems with motor instability
0 = Disabled
1 = Electrical (Default)
Some drive/motor combinations have inherent instabilities which are exhibited as non-sinusoidal motor currents. This setting attempts to correct this condition
2 = Mechanical
Some motor/load combinations have mechanical resonances which can be excited by the drive current regulator. This setting slows down the current regulator response and attempts to correct this condition.
3 = Both
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
194
192
GET/SET
UINT
Advanced Program Group
—
0
1
0
195
106
GET/SET
UINT
Advanced Program Group
—
0
1
0
196
GET/SET
UINT
Advanced Program Group
—
0
1
0
197
GET/SET
UINT
Advanced Program Group
—
0
3
1
SW Current Trip
Enables/disables a software instantaneous (within 100 ms) current trip.
Process Factor
Fault Clear
Stop drive before changing this parameter.
Resets a fault and clears the fault queue. Used primarily to clear a fault over network communications.
0 = Ready/Idle (Default)
1 = Reset Fault
2 = Clear Buffer (Parameters 107…109 [Fault x Code])
Program Lock
Protects parameters against change by unauthorized personnel.
0 = Unlocked
1 = Locked
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Scales the output frequency value displayed by Parameter 110 (Process Display).
Output Freq x Process Factor = Process Display
Testpoint Sel
Used by Rockwell Automation field service personnel.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
4-47
198
133
GET/SET
UINT
Advanced Program Group
0.1 A
0.0
Drive rated amps x 2
0.0 (Disabled)
199
110
GET/SET
UINT
Advanced Program Group
0.1
0.1
999.9
30.0
200
GET/SET
UINT
Advanced Program Group
—
0
2
0
201
GET/SET
UINT
Advanced Program Group
1
0
—
0
202
119
GET/SET
UINT
Advanced Program Group
1 Hex
0
FFFF
400
4-48
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Comm Data Rate
This parameter is not available for use with the ArmorStart Distributed Motor
Controller.
Parameter Number
CommNode Addr
This parameter is not available for use with the ArmorStart Distributed Motor
Controller.
Comm Loss Action
Selects the drive’s response to a loss of the communication connection or excessive communication errors.
0 = Fault (Default)
Drive will fault on an F81 Comm Loss and coast to stop
1 = Coast Stop
Stops drive via coast to stop
2 = Stop
Stops via Parameter 137 (Stop Mode) setting
3 = Continu Last
Drive continues operating at communication commanded speed saved in RAM
Parameter Number
Comm Loss Time
Sets the time that the drive remain in communication loss before implanting the option selected in Parameter 205 (Comm Loss Action).
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Comm Format
This parameter is not available for use with the ArmorStart Distributed Motor
Controller.
Language
This parameter is not available for use with the ArmorStart Distributed Motor
Controller.
Anlg Out Setpnt
When parameter 165 (Analog Out Sel) is set to option 18, this sets the percentage of the analog output desired
Parameter Number
Parameter Number
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
203
208
209
165
GET/SET
UINT
Advanced Program Group
0.1%
0.0%
100.0%
0.0%
204
205
115, 137, 206
GET/SET
UINT
Advanced Program Group
3
0
—
0
206
115, 205
GET/SET
UINT
Advanced Program Group
0.1 sec
0.1 sec
60.0 sec
15.0 sec
207
Anlg In 0…10V Lo
Stop drive before changing this parameter.
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Sets the analog input level that corresponds to parameter 134 (Minimum Freq) if a
0…10V input is used by parameter 138 (Speed Reference)
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
4-49
210
121, 134, 138, 222
GET/SET
UINT
Advanced Program Group
0.1%
0.0%
100.0%
0.0%
Figure 4.6
Parameter 135
[Maximum Freq]
Speed Reference
Parameter 134
[Minimum Freq]
0
0
Parameter 210
[Anlg In 0-10V Lo]
Parameter 211
[Anlg In 0-10V Hi]
Anlg In 0…10V HI
Stop drive before changing this parameter.
Sets the analog input level that corresponds to parameter 135 (Maximum Freq) if a
0…10V input is used by parameter 138 (Speed Reference). Analog inversion can be accomplished by setting this value smaller than parameter 210 (Anlg In 0…10V Lo).
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Anlg In4…20MA LO
This parameter is not available for use with the ArmorStart Distributed Motor
Controller.
Anlg In4…20 mA HI
This parameter is not available for use with the ArmorStart Distributed Motor
Controller.
Parameter Number
Parameter Number
211
121, 135, 138, 222, 223
GET/SET
UINT
Advanced Program Group
0.1%
0.0%
100.0%
0.0%
212
213
4-50
Slip Hertz @ FLA
Compensates for the inherent slip in an induction motor. This frequency is added to the commanded output frequency based on motor current.
Process Time Lo
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Scales the time value when the drive is running at Parameter 134 (Minimum Freq).
When set to a value other than zero, Parameter 110 (Process Display) indicates the duration of the process.
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Process Time Hi
Scales the time value when the drive is running at Parameter 135 (Maximum Freq).
When set to a value other than zero, Parameter 110 (Process Display) indicates the duration of the process.
Bus Reg Mode
Enables the bus regulator.
0 = Disable
1 = Enabled
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
214
133
GET/SET
UINT
Advanced Program Group
0.1 Hz
0.0 Hz
10.0 Hz
2.0 Hz
215
110, 134
GET/SET
UNIT
Advanced Setup
Hz
0.00
99.99
0.00
216
110, 135
GET/SET
UNIT
Advanced Setup
Hz
0.00
99.99
0.00
217
GET/SET
UNIT
Advanced Setup
—
0
1
1
Current Limit 2
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Maximum output current allowed before current limiting occurs. This parameter is only active if Parameters 151, 152, 153, and 154 (Digital Inx Sel) is set to 25
Current Lmt2 and is active.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
4-51
218
133, 151, 152, 153, 154, 189
GET/SET
UINT
Advanced Program Group
0.1 A
0.1 A
Drive rated amps x 1.8
Drive rated amps x 1.5
Skip Frequency
Sets the frequency at which the drive will not operate.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
219
220
GET/SET
UINT
Advanced Program Group
0.1 hz
0.0
400.0 Hz
0.0 Hz
Skip Frq Band
Determines the brand width around Parameter 219 (Skip Frequency). Parameter
220 (Skip Frquency) is split applying 1/2 above and 1/2 below the actual skip frequency. A setting of 0.0 disables this parameter.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
220
219
GET/SET
UINT
Advanced Program Group
0.1 Hz
0.0 Hz
30.0 Hz
0.0 Hz
Figure 4.7
4-52
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Stall Fault Time
Sets for the fault time that the drive will remain in stall mode before a fault is issued.
0 = 60 sec (Default)
1 = 120 sec
2 = 240 sec
3 = 360 sec
4 = 480 sec
5 =
Flt Disabled
Analog In Loss
Selects drive action when an input signal loss is detected. Signal loss is defined as an analog signal less than 1V. The signal loss event ends and normal operation resumes when the input signal level is greater than or equal to 1.5V. If using a
0…10V analog input, set parameter 210 (Anlg In 0…10V Lo) to a minimum of 20%
(i.e., 2 volts).
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Table 4.7
Options
4
5
6
2
3
0
1
Disabled (Default)
Fault (F29)
Stop
Zero Ref
Min Freq Ref
Max Freq Ref
Int Freq Ref
Description
F29 Analog Input Loss
Uses P037 (Stop Mode)
Drive runs at zero speed reference
Drive runs at minimum frequency
Drive runs at maximum frequency
Drive runs at internal frequency
221
GET/SET
UINT
Advanced Program Group
—
0
5
0
222
210, 211, 232
GET/SET
UINT
Advanced Program Group
See Table 4.7 for details
10V Bipolar Enbl
Enables/disables bipolar control. In bipolar mode, direction is commanded by the sign of the reference.
Options
0 = Unipolar In (Default) 0…10V only
1 = Bipolar In +/- 10V
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
223
138, 211
GET/SET
UINT
Advanced Program Group
—
0
1
0
Var PWM Disable
Stop drive before changing this parameter.
Enables/disables a feature that varies the carrier frequency for the PWM output waveform defined by Parameter 191 (PWM Frequency).
0 = Enabled
1 = Disabled
Disabling this feature when low frequency condition exists may result in IGBT stress and nuisance tripping.
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
4-53
224
191
GET/SET
UINT
Advanced Program Group
—
0
1
0
Torque Perf Mode
Stop drive before changing this parameter.
Enables/disables sensorless vector control operation.
0 = V/Hz
1 = Sensrls Vect
Motor NP FLA
Set to the motor nameplate full load amps.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
225
184, 185, 186, 187, 227
GET/SET
UINT
Advanced Program Group
—
0
1
1
226
227
GET/SET
UINT
Advanced Program Group
0.1 A
0.1
Drive rated amps x 2
Drive rated amps
4-54
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Autotune
Stop drive before changing this parameter.
Provides an automatic method for setting Parameter 228 (IR Voltage Drop) and
Parameter 229 (Flux Current Ref), which affect sensorless vector performance.
Parameter 226 (Motor NP FLA) must be set to the motor nameplate full load amps before running the Autotune procedure.
Provides an automatic method for setting A128 (IR Voltage Drop) and A129 (Flux
Current Ref), which affect sensorless vector performance. Parameter A126 (Motor
NP FLA) must be set to the motor nameplate full load amps before running the
Autotune procedure.
0 = Ready/Idle (Default)
1 = Static Tune
2 = Rotate Tune
Ready (0) — Parameter returns to this setting following a Static Tune or Rotate
Tune.
Static Tune (1) — A temporary command that initiates a non-rotational motor stator resistance test for the best possible automatic setting of A128 (IR Voltage
Drop). A start command is required following initiation of this setting. The parameter returns to Ready (0) following the test, at which time another start transition is required to operate the drive in normal mode. Used when motor cannot be uncoupled from the load.
Rotate Tune (2) — A temporary command that initiates a Static Tune followed by a rotational test for the best possible automatic setting of A129 (Flux Current Ref). A start command is required following initiation of this setting. The parameter returns to Ready (0) following the test, at which time another start transition is required to operate the drive in normal mode.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
227
225, 226, 228, 229
GET/SET
UINT
Advanced Program Group
—
0
3
0
Important:
Used when motor is uncoupled from the load. Results may not be valid if a load is coupled to the motor during this procedure.
ATTENTION
!
Rotation of the motor in an undesired direction can occur during this procedure. To guard against possible injury and/ or equipment damage, it is recommended that the motor be disconnected from the load before proceeding.
If the Autotune routine fails, an F80 SVC Autotune fault is displayed.
IR Voltage Drop
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Value of volts dropped across the resistance of the motor stator.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
4-55
228
227
GET/SET
UINT
Advanced Program Group
0.1V AC
0.0
230
Based on Drive Rating
Flux Current Ref
Value of amps for full motor flux.
PID Trim Hi
Sets the maximum positive value that is added to a PID reference when PID trim is used.
PID Trim Lo
Sets the minimum positive value that is added to a PID reference when PID trim is used.
PID Ref Select
Stop drive before changing this parameter.
Enables/disables PID mode and selects the source of the PID reference. Valid PID
Ref Select for the Bulletin 284 ArmorStart are the following:
0 = PID Disable
1 = PID Setpoint
4 = Comm Port
5 = Setpnt Trim
8 = Comm, Trim
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
229
227
GET/SET
UINT
Advanced Program Group
0.01 A
0.00
Motor NP Volts
Based on Drive Rating
230
GET/SET
UINT
Advanced Program Group
0.1
0.0
400.0
60.0
231
GET/SET
UINT
Advanced Program Group
0.1
0.0
400.0
0.1
232
138, 222
GET/SET
UINT
Advanced Program Group
—
0
9
0
4-56
PID Feedback Sel
Valid PID Feedback Sel command for the Bulletin 284 ArmorStart is the following;
2 = Comm Port
PID Prop Gain
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Sets the value for the PID proportional component when the PID mode is enabled by
Parameter 232 (PID Ref Sel).
PID Integ Time
Sets the value for the PID integral component when the PID mode is enabled by
Parameter 232 (PID Ref Sel).
PID Diff Rate
Sets the value for the PID differential component when the PID mode is enabled by
Parameter 232 (PID Rel Sel).
PID Setpoint
Provides an internal fixed value for process setpoint when the PID mode is enabled by Parameter 232 (PID Ref Sel).
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
233
GET/SET
UINT
Advanced Program Group
—
0
2
0
234
GET/SET
UINT
Advanced Program Group
0.01
0.00
99.99
0.01
235
GET/SET
UINT
Advanced Program Group
0.1 sec
0.0 sec
999.9 sec
0.1 sec
236
GET/SET
UINT
Advanced Program Group
0.01 (1/sec)
0.00 (1/sec)
99.99 (1/sec)
0.01 (1/sec)
237
GET/SET
UINT
Advanced Program Group
0.1%
0.0%
10.0%
0.0%
PID Deadband
Sets the lower limit of the PID output.
PID Preload
Sets the value used to preload the integral component on start or enable.
A240 (Stp Logic 0)
A241 (Stp Logic 1)
A242 (Stp Logic 2)
A243 (Stp Logic 3)
A244 (Stp Logic 4)
A245 (Stp Logic 5)
A246 (Stp Logic 6)
A247 (Stp Logic 7)
Stop drive before changing this parameter.
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
4-57
238
GET/SET
UINT
Advanced Program Group
0.1%
0.0%
10.0%
0.0%
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
239
GET/SET
UINT
Advanced Program Group
0.0 Hz
0.0 Hz
400.0 Hz
0.0 Hz
240…247
GET/SET
UINT
Advanced Program Group
—
0001 baFF
00F1
Parameters 240…247 are only active if 138 (Speed Reference) is set to 6 Stp Logic.
These parameters can be used to create a custom profile of frequency commands. Each step can be based on time, status of a Logic input, or a combination of time and the status of a Logic input.
Digits 0…3 for each (Stp Logic x) parameter must be programmed according to the desired profile.
A Logic input is established by setting a digital input, Parameters
151…154 (Digital Inx Sel), to 23 Logic In1 and/or 24 Logic In2.
A time interval between steps can be programmed using Parameters
250…257 (Stp Logic Time x). See Table 4.8 for related parameters.
The speed for any step is programmed using Parameters 170…177
(Preset Freq x).
4-58
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Table 4.8
Step Logic Parameter
(Active when 138 = 6 Stp
Logic)
240 (Stp Logic 0)
241 (Stp Logic 1)
242 (Stp Logic 2)
243 (Stp Logic 3)
244 (Stp Logic 4)
245 (Stp Logic 5)
246 (Stp Logic 6)
247 (Stp Logic 7)
Related Preset Frequency
Parameter (Can be activated independent of Step Logic
Parameters)
170 (Preset Freq 0)
171 (Preset Freq 1)
172 (Preset Freq 2)
173 (Preset Freq 3)
174 (Preset Freq 4)
175 (Preset Freq 5)
176 (Preset Freq 6)
177 (Preset Freq 7)
Related Step Logic Time
Parameter (Active when
240…247 Digit 0 or 1 are set to 1, b, C, d, or E)
250 (Stp Logic Time 0)
251 (Stp Logic Time 1)
252 (Stp Logic Time 2)
253 (Stp Logic Time 3)
254 (Stp Logic Time 4)
255 (Stp Logic Time 5)
256 (Stp Logic Time 6)
257 (Stp Logic Time 7)
How Step Logic Works
The step logic sequence begins with a valid start command. A normal sequence always begins with 240 (Stp Logic 0).
Digit 0: Logic For Next Step — This digit defines the logic for the next step. When the condition is met the program advances to the next step. Step 0 follows Step 7. Example: Digit 0 is set 3. When Logic
In2 becomes active, the program advances to the next step.
Digit 1: Logic to Jump to a Different Step — For all settings other than F, when the condition is met, the program overrides Digit 0 and jumps to the step defined by Digit 2.
Digit 2: Different Step to Jump — When the condition for Digit 1 is met, the Digit 2 setting determines the next step or to end the program.
Digit 3: Step Settings — This digit defines what accel/decel profile the speed command will follow and the direction of the command for the current step. In addition, if a relay or opto output (Parameters 155,
158, and 161) is set to 15 StpLogic Out, this parameter can control the status of that output.
Any Step Logic parameter can be programmed to control a relay or opto output, but you cannot control different outputs based on the condition of different Step Logic commands.
Step Logic Settings
The logic for each function is determined by the four digits for each step logic parameter. The following is a listing of the available settings for each digit. Refer to Appendix J for details.
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Table 4.9 Digit 3 Settings
Required
Setting
6
7
4
5
2
3
0
1
A b
8
9
Table 4.10 Digit 2 Settings
Accel/Decel
Parameter Used
Accel/Decel 1
Accel/Decel 1
Accel/Decel 1
Accel/Decel 1
Accel/Decel 1
Accel/Decel 1
Accel/Decel 2
Accel/Decel 2
Accel/Decel 2
Accel/Decel 2
Accel/Decel 2
Accel/Decel 2
Step Logic
Output State
On
On
Off
Off
Off
Off
Off
On
Off
On
On
On d
E b
C
F
9
A
7
8
5
6
3
4
0
1
2
6
7
4
5
2
3
0
1
8
9
A
Jump to Step 0
Jump to Step 1
Jump to Step 2
Jump to Step 3
Jump to Step 4
Jump to Step 5
Jump to Step 6
Jump to Step 7
End Program (Normal Stop)
End Program (Coast to Stop)
End Program and Fault (F2)
Table 4.11 Digit 1 and Digit 0 Settings
Skip Step (Jump Immediately)
Step Based on (Stp Logic Time x)
Step if Logic In1 is Active
Step if Logic In2 is Active
Step if Logic In1 is Not Active
Step if Logic In12 is Not Active
Stop if either Logic In1 and Logic In2 is Active
Stop if both Logic In1 and Logic In2 is Active
Stop if neither Logic In1 and Logic In2 is Active
Step if Logic In1 is Active and Logic In2 is Not Active
Step if Logic In2 is Active and Logic In1 is Not Active
Step after (Stp Logic Time x) and Logic In1 is Active
Step after (Stp Logic Time x) and Logic In2 is Active
Step after (Stp Logic Time x) and Logic In1 is Not Active
Step after (Stp Logic Time x) and Logic In2 is Not Active
Do Not Stop/Ignore Digit 2 Settings
Commanded
Direction
FWD
REV
No Output
FWD
REV
No Output
FWD
REV
No Output
FWD
REV
No Output
4-59
4-60
A250 (Stp Logic Time 0)
A251 (Stp Logic Time 1)
A252 (Stp Logic Time 2)
A253 (Stp Logic Time 3)
A254 (Stp Logic Time 4)
A255 (Stp Logic Time 5)
A256 (Stp Logic Time 6)
A257 (Stp Logic Time 7)
Sets the time to remain in each step if the corresponding StpLogic command is set to Step after Time.
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
250…257
138, 155, 158, 161,
171…177, 240…247
GET/SET
UINT
Advanced Program Group
0.1 sec
0.0 sec
999.9 sec
30.0 sec
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
4-61
EM Brk Off Delay
Sets the time the drive will remain at minimum frequency before ramping to the commanded frequency and energizing the brake coil relay when Parameter 137 (Stop
Mode) is set to option 8 or 9.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
260
137
GET/SET
UNIT
Advanced Setup
0.01 sec
0.01 sec
10 sec
0.0 sec
Frequency
260 [EM Brk Off Delay]
Ramp Accel
Ramp Decel
261 [EM Brk On Delay]
Minimum Freq
Start
Commanded
EM Brk
Energized (Off)
Time
Stop
Commanded
EM Brk On Delay
Sets the time the drive will remain at minimum frequency before stopping and deenergizing the brake coil relay when Parameter 137 (Stop Mode) is set to option 8 or
9.
EM Brk
De-Energized (On)
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
MOP Reset Sel
Sets the drive to save the current MOP Reference command.
0 = Zero MOP Ref
This option clamps Parameter 169 (Internal Freq) at 0.0 Hz when drive is not running.
1 = Save MOP Ref (Default)
Reference is saved in Parameter 169 (Internal Freq).
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Drive Stops
261
137
GET/SET
UNIT
Advanced Setup
0.01 sec
0.01 sec
10.00 sec
0.0 sec
262
169
Get/Set
UINT
Advanced Program Group
—
0
1
0
4-62
DB Threshold
Bulletin 284 Programmable Parameters for Sensorless Vector Controllers
Sets the DC bus Voltage Threshold for Dynamic Brake operation. If the DC bus voltage falls below the value set in this parameter, the Dynamic Brake will not turn on. Lower values will make the Dynamic Braking function more responsive, but may result in nuisance Dynamic Brake activation.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
263
GET/SET
UINT
Advanced Program Group
—
0.0%
110.0%
100%
Introduction
Chapter
5
HOA Keypad Operation
This chapter provides a basic understanding of the programming of the factory-installed optional built-in Hand/Off/Auto (HOA) keypad.
The HOA keypad can be programmed for maintained or momentary operation.
Figure 5.1 Optional HOA Keypads
Available on Bulletin 280
Keypad Description
Available on Bulletin 281
Available on Bulletin 284
The keys found on the optional HOA keypads are described below:
Table 5.1 HOA Keypad — Key Description
HAND
The Hand key will initiate starter operation
AUTO
OFF
The Auto key allows for Start/Stop control via the communications network
If the starter is running, pressing the OFF key will cause the starter to stop.
REV
The REV key selects reverse direction of the motor
FWD
The FWD key selects forward direction of the motor
DIR Arrow
The Dir arrow selects the direction of the motor, either forward or reverse.
JOG
When pressed, JOG will be initiated if no other control devices are sending a stop command. Releasing the key will cause the drive to stop, using selected stop mode.
5-2
HOA Keypad Operation
Figure 5.2 Bulletin 280 Hand -Off-Auto Selector Keypad
The following state transition matrix summarizes the HOA Keypad when parameter 45 “Keypad Mode” is set to 1=momentary.
HAND STOP
Command motor off and Transition to
“AUTO”
Command motor ON and Transition to
“HAND FWD”
Ignore
HAND FWD
Ignore
AUTO
Ignore
Ignore Ignore
Command motor OFF and transition to
“HAND STOP”
Command motor off and transition to
“HAND STOP”
The following state transition matrix summarizes the HOA Keypad when parameter 45 “Keypad Mode” is set to 0=maintained.
NO KEY
PRESSED
HAND STOP
Ignore
Command motor off and Transition to
“AUTO”
Command motor ON and transition to
“HAND FWD”
Ignore
HAND FWD
Command motor off and transition to
“HAND STOP”
Ignore
Ignore
Command motor off and transition to
“HAND STOP”
AUTO
Ignore
Ignore
Ignore
Command motor off and Transition to
“HAND STOP”
HOA Keypad Operation
Figure 5.3 Bulletin 281 Hand-Off-Auto Selector Keypad with
Forward/Reverse Function
5-3
HAND STOP
Set FWD LED
Set REV LED
Command motor off and
Transition to “AUTO”
If (FWD LED) transition to
“HAND FWD”
If (REV LED)
Transition to “HAND REV”
Ignore
The following state transition matrix summarizes the HOA behavior when parameter 45 “Keypad Mode” is set to 1=momentary
HAND FWD HAND REV AUTO
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Set FWD LED
Set REV LED
Ignore
Ignore
NO KEY
PRESSED
HAND STOP
Ignore
Set FWD LED
Set REV LED
Command motor off and
Transition to “AUTO”
If (FWD LED) transition to
“HAND FWD”
If (REV LED)
Transition to “HAND REV”
Ignore
Command motor off and transition to “HAND STOP”
The following state transition matrix summarizes the HOA behavior when parameter 45 “Keypad Mode” is set to 0=maintained
HAND FWD
Command motor off and transition to “HAND STOP”
HAND REV
Command motor off and transition to “HAND STOP”
AUTO
Ignore
Ignore
Ignore
Ignore
Ignore
Command motor off and transition to “HAND STOP”
Ignore
Ignore
Ignore
Ignore
Command motor off and
Transition to “HAND STOP”
Set FWD LED
Set REV LED
Ignore
Ignore
Command motor off and transition to “HAND STOP”
Command motor off and transition to “HAND STOP”
Command motor off and transition to “HAND STOP”
5-4
HOA Keypad Operation
Figure 5.4 Bulletin 284 Hand-Off-Auto Selector Keypad with JOG and
Direction Arrow Functions
No Key
Pressed
HAND STOP
If (FWD LED) Set REV LED
Else If (REV LED) Set FWD LED
If (FWD LED) transition to JOG FWD
If (REV LED) Transition to JOG REV
Command motor off and Transition to AUTO
If (FWD LED) transition to HAND FWD
Else If (REV LED) Transition to HAND
REV
The following state transition matrix summarizes the Jog/HOA behavior when Parameter 45, Keypad Mode, is set to 1 = momentary.
JOG FWD JOG REV AUTO HAND FWD
If (FWD LED)
Set REV LED
Else If (REV LED)
Set FWD LED
HAND REV
If (FWD LED)
Set REV LED
Else If (REV LED)
Set FWD LED
Ignore Ignore Ignore
Ignore Ignore Ignore Ignore Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore Ignore
Command motor off and transition to HAND STOP
Command motor off and transition to HAND STOP
Command motor off and transition to
HAND STOP
Command motor off and transition to
HAND STOP
Command motor off and transition to
HAND STOP
Command motor off and transition to
HAND STOP
Ignore
Command motor off and
Transition to
HAND STOP
No Key
Pressed
HAND STOP
Ignore
If (FWD LED) Set REV LED
Else If (REV LED) Set FWD LED
If (FWD LED) transition to JOG FWD
If (REV LED) Transition to JOG REV
Command motor off and Transition to AUTO
If (FWD LED) transition to HAND FWD
If (REV LED) Transition to HAND REV
The following state transition matrix summarizes the Jog/HOA behavior when Parameter 45 Keypad Mode is set to 0 = maintained.
AUTO HAND FWD
Command motor off and transition to HAND STOP
HAND REV
Command motor off and transition to
HAND STOP
JOG FWD
Command motor off and transition to
HAND STOP
JOG REV
Command motor off and transition to
HAND STOP
Ignore
Ignore Ignore Ignore Ignore Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Command motor off and transition to HAND STOP
Command motor off and transition to
HAND STOP
Command motor off and transition to
HAND STOP
Command motor off and transition to
HAND STOP
Command motor off and transition to HAND STOP
Keypad Disable and HOA
HOA Keypad Operation
5-5
Parameter 46 “Keypad Disable”, disables the “HAND”, “FWD” and
“REV” buttons on the HOA keypad. The “OFF” and “AUTO” buttons are always enabled, even if parameter 46 is set to “1=disable”.
Note: In nearly all instances, if the processor detects multiple buttons are pressed at the same time, the software interprets this as a “no button pressed” condition. The only exception to this rule is if multiple buttons are pressed and one of them is the “OFF” button. If the “OFF” button is pressed in combination with any combination of other buttons, the processor will interpret this the same as if the “OFF” button were pressed by itself.
5-6
Notes:
HOA Keypad Operation
Node Commissioning using
Hardware
Chapter
6
DeviceNet™ Commissioning
This chapter refers to Bulletin 280D/281D and 284D products.
Establishing a DeviceNet Node Address
The ArmorStart® is shipped with a default node address of 63 and
Autobaud enabled. Each device on a DeviceNet network must have a unique node address or MAC ID which can be set to a value from 0 to
63. Keep in mind that most DeviceNet systems use address 0 for the master device (Scanner) and node address 63 should be left vacant for introduction of new slave devices. The ArmorStart offers two methods for node commissioning as shown below.
The node address for a device can be changed using software or by setting hardware switches that reside on the back of the control module. While both methods yield the same result, it is good practice to choose one method and deploy it throughout the system.
The ArmorStart is shipped with the hardware rotary switches set to a value of (99). If the switches are set to a value (64) or above, the device will automatically configure itself to the software node address. If the switches are set to a value of (63) or less, the device will be at the node address designated by the switch configuration.
To set an address using the hardware rotary switches, simply set the switches to the desired node address and cycle power to the unit. The
Device will re-start at the new address.
Figure 6.1 Rotary Node Address Configuration
See Detail A
Detail A
6-2
DeviceNet™ Commissioning
Node Commissioning using
Software
To set the node address of the ArmorStart using software or other handheld tools, leave the hardware switches in there default position
(99) or insure that they are set to something greater than (63). With the hardware switches set, use the software or handheld tool to change the address.
To begin the configuration of ArmorStart using software, execute the
RSNetWorx™ software and complete the following procedure. You must use RSNetWorx Revision 3.21 Service Pack 2 or later.
1. Go on-line using RSNetWorx for DeviceNet. This can be accomplished by selecting the Network menu, and then choosing
Online.
2. Choose the appropriate DeviceNet PC interface. In this example, a 1784-PCIDS module is chosen. Other common DeviceNet interfaces are the 1770-KFD, and 1784-PCD.
Note: DeviceNet drivers must be configured using RSLinx prior to being available to RSNetWorx.
3. Click OK.
4. RSNetWorx will notify the user to upload or download devices before viewing configuration. Click OK.
5. RSNetWorx will now browse the network and display all of the nodes it has detected on the network. For some versions of
RSNetWorx software the ArmorStart EDS files and icon may not be included and will show up as an “Unregistered Device”. If the screen appears like the example below, continue with Building
and Registering an EDS file.
6. If RSNetWorx recognizes the device as an ArmorStart, skip ahead to the following section Changing the Node address (MAC
ID)
Building and Registering an EDS
File
DeviceNet™ Commissioning
6-3
The EDS file defines how RSNetWorx for DeviceNet will communicate to the ArmorStart. Follow the steps below to build and register the EDS file.
To register a device you must first obtain the EDS file from the following web page: http://www.ab.com/networks/eds
After obtaining the files do the following:
1. Right mouse click on the “Unrecognized Device” icon and choose Register Device from the menu.
2. Click Next. The following screen appears:
3. Choose “Register an EDS file(s)” as shown above and then click the Next button.
4. Choose to “Register a single file” and specify the file name or use the Browse button to locate the EDS file on your computer. If connected to the Internet you may use the Download EDS file button to automatically search for the correct EDS file.
6-4
DeviceNet™ Commissioning
5. Click the Next button.
6. The following screen will display any warning or errors if a problem occurs while registering the file. If a problem occurs insure that you have the correct file and try again. Click the Next button when no errors occur.
7. Select an alternative icon by highlighting the new device and clicking Change Icon. Once you have selected an icon, choose
OK and then click the Next button
8. When asked if you would like to register this device, click the
Next button.
Using the Node Commissioning
Tool Inside RSNetWorx for
DeviceNet
DeviceNet™ Commissioning
6-5
9. Click the Finish button. After a short while RSNetWorx will update your online screen by replacing the unrecognized device with the name and icon given by the EDS file you have just registered.
1. Choose “Node Commissioning” from the “Tools” menu at the top of the screen.
2. Clicking on Browse… will prompt a screen similar to the one below to appear.
3. Select the ArmorStart located at node 63, and then click OK. The node commissioning screen will have the “Current Device Settings” entries completed. It will also provide the current network baud rate in the “New ArmorStart Settings” area. Do not change the baud rate unless you absolutely sure that this value needs to be changed.
4. Enter the desired node address in the “New Device Settings” section. In this example, the new node address is 5. Click Apply to apply the new node address.
6-6
DeviceNet™ Commissioning
5. When the new node address has been successfully applied, the
“Current Device Settings” section of the window is updated as follows. If an error occurs, check to make sure the device is properly powered up and connected to the network.
System Configuration
6. Click Close to exit the node commissioning tool.
7. Choose “Single Pass Browse” from the “Network” menu to update RSNetWorx and verify that the node address is set correctly.
Selection of produced and consumed I/O assemblies (sometimes referred to as input and output assemblies) define the format of I/O message data that is exchanged between the ArmorStart and other devices on the network. The consumed information is generally used to command the state of its outputs, and produced information typically contains the state of the inputs and the current fault status of the device.
The default consumed and produced assemblies are shown below; for additional formats refer to Appendix B, page B-1. The ArmorStart default configuration varies depending on the type of starter.
Choosing the size and format of the I/O data that is exchanged by the
ArmorStart is done by choosing a consumed assembly instance number. This instance number is written to the Consumed IO Assy parameter. The different instances/formats allow user programming flexibility and network optimization.
Important: The Consumed and Produced IO Assy parameter values can not be changed while the ArmorStart is online with a scanner. Any attempts to change the value of this parameter while online with a scanner will result in the error message “Object State Conflict”.
Using Automap feature with default Input and Output (I/O)
Assemblies
DeviceNet™ Commissioning
6-7
The Automap feature available in all Rockwell Automation scanners will automatically map the information as shown below. If manual mapping is not required, the information below can be used to map a device based on the default configuration.
Table 6.1 Default Input and Output (I/O) Assemblies
Message type
Consumed data size
Produced data size
Default
Polled
1 byte (Rx)
2 bytes (Tx)
Default Input and Output (I/O)
Assembly Formats
Byte
0
Byte
0
1
Bit 7
User Out B
Bit 7
Not Used
Not Used
Bit 6
User Out A
Bit 6
Not Used
Not Used
The I/O assembly format for the ArmorStart is identified by the value in parameter 11 (Consumed IO Assy.) and parameter 12 (Produced IO
Assy.). These values determine the amount and arrangement of the information communicated to the master scanner. The tables below identify the default information produced and consumed by the standard starter. For additional formats and advance configurations please reference Table B.11 on page B-5.
Bit 5
Not Used
Table 6.2 Instance 160 — Default Consumed Data for Standard Distributed
Motor Controller (1 byte)
Bit 4
Not Used
Bit 3
Not Used
Bit 2
Fault Reset
Bit 1
Run Rev
Bit 0
Run Fwd
Table 6.3 Instance 161 — Default Produced Data for Standard Distributed
Motor Controller (2 bytes)
Bit 5
Not Used
140M On
Bit 4
Ready
HOA
Status
Bit 3
Running Rev
User In 3
Bit 2
Running Fwd
User In 2
Bit 1
Warning
User In 1
Bit 0
Tripped
User In 0
6-8
DeviceNet™ Commissioning
Setting the Motor FLA and
Overload Trip Class (Bulletin 280/
281)
The product should now be configured and communicating on the network. The last step is to program the motor FLA setting
(parameter# 106) and overload trip class (parameter# 107). This can be accomplished by using software such as RSNetWorx for
DeviceNet or another handheld DeviceNet tool.
Using the software, access the device parameters screen as shown below. Notice that by default the motor FLA is set to the minimum
FLA setting for the device and the overload trip class is set to 10.
Select FLA setting (parameter #106) and enter a value that corresponds to the FLA of the motor connected to the ArmorStart.
Make sure the single radio button is selected and then select
Download to Device.
Select Overload Class (parameter #107) and choose the overload trip class to be used with the motor connected to the ArmorStart. The
ArmorStart can be set up for trip class 10, 15, or 20. Make sure the
Single radio button is selected and then select Download to Device.
The proper motor protection is now in place.
Figure 6.2 RSNetWorx Parameter Screen
Setting the Motor FLA (Bulletin
284)
DeviceNet™ Commissioning
6-9
The product should now be configured and communicating on the network. The last step is to program the proper motor OL current setting (Parameter 133). This can be accomplished by using software such as RSNetWorx for DeviceNet or a handheld DeviceNet tool.
Use the software to access the device parameters screen. By default the motor OL current is set to the minimum motor OL current setting for the device. Set this parameter to the desired value and download to the device.
Select Motor OL Current (Parameter 133) and enter a value that corresponds to the FLA of the motor connected to the ArmorStart.
Make sure the Single radio button is selected and then select
Download to Device.
The proper motor protection is now in place.
Figure 7 RSNetWorx Parameter Screen
6-10
Notes:
DeviceNet™ Commissioning
Logic Controller Application
Example with Explicit
Messaging
Chapter
7
Explicit Messaging on DeviceNet™
This chapter is designed to demonstrate programming and explicit message examples for both the SLC™ family of programmable controllers and ControlLogix® family of programmable controllers.
The examples will show how to develop a program for simple control and use a simple explicit message to retrieve data that is not automatically acquired based on the input and output assembly of the device. The user of the device can use this example as a guide in developing, their own programs.
Below is the RSNetWorx™ view of the simple network used in this example.
Figure 7.1 Simple Network
Programming the 1747-SLC
To assist in the development of the example the network will consist only of the ArmorStart® and scanner. Therefore the only mapped information in the scanner will be the ArmorStart. Refer to Chapter 6,
DeviceNet™ Commissioning for assistance in mapping.
I/O Mapping
The following example will utilize the Standard Distributed Motor
Controller and the factory default input and output assembly of 160 and 161. Refer to Appendix B, Bulletin 280/281 CIP Information for additional assembly formats. The default input and output assemblies are shown in the table below with the corresponding data size.
Table 7.1 Message Type (I/O Assembly)
Instance 160 – Consumed (output)
Instance 161 – Produced (input)
Data Size (bytes)
1 (Rx)
2 (Tx)
7-2
Byte 0
Address
Data
Byte 1
Address
Data
Byte
Address
Data
Bit 7
I:1.23
reserved
Bit 15
I:1.31
reserved
Explicit Messaging on DeviceNet™
If a different I/O assembly is selected, the data size may change. It is important to understand that the I/O assembly selected here will directly affect the input and output mapping in the scanner’s scanlist and the amount of Programmable Logic Controller (PLC) memory reserved for this information.
Bit 6
I:1.22
)
Table 7.2 Example SLC Input Addressing (Produced Assembly)
Instance 161 Default Produced Standard Distributed Motor Controller
Bit 5
I:1.21
Bit 4
I:1.20
Bit 3
I:1.19
Bit 2
I:1.18
Bit 1
I:1.17
Reserved
Bit 14
I:1.30
Reserved reserved
Bit 13
I:1.29
140M On
Ready
Bit 12
I:1.28
HOA
Running Rev
Bit 11
I:1.27
User In 3
Running Fwd
Bit 10
I:1.26
User In 2
Warning
Bit 9
I:1.25
User In 1
Bit 0
I:1.16
Tripped
Bit 8
I:1.24
User In 0
Bit 7
O:1.23
User Out B
Table 7.3 Example SLC Output Addressing (Consumed Assembly)
)
Instance 160 Default Consumed Standard Distributed Motor Controller
Bit 6
O:1.22
Bit 5
O:1.21
Bit 4
O:1.20
Bit 3
O:1.19
Bit 2
O:1.18
Bit 1
O:1.17
Bit 0
O:1.16
User Out A reserved reserved reserved Fault Reset Run Rev Run Fwd
Explicit Messaging with SLC
The example PLC program for the SLC will use the “Tripped” and the “140M On” bit from the produced assembly and the “Fault
Reset”, “User Out A”, and “Run Fwd” bit from the consumed assembly.
The 1747-SDN module uses the M0 and M1 file areas for data transfer. Only words 224 through 256 are used to execute the Explicit
Message Request and Response function. The minimum data size for the explicit message request is 6 words and the maximum is 32 words. The following tables illustrate the standard format of the explicit message request and response.
)
Table 7.4 Explicit Message Request (Get_Attribute_Single)
Bit location within Word
15 … 8
TXID
PORT
SERVICE
7 … 0
COMMAND
SIZE
MAC ID
CLASS
INSTANCE
ATTRIBUTE
Word - 0
Word - 1
Word - 2
Word - 3
Word - 4
Word - 5
Explicit Messaging on DeviceNet™
Table 7.5 Explicit Message Response (Get_Attribute_Single)
15 … 8
TXID
PORT
SERVICE
Bit location within Word
7 … 0
STATUS
SIZE
MAC ID
DATA
Word - 0
Word - 1
Word - 2
Word - 3
7-3
• Transmission ID (TXID):
The scanner uses this value to track the transaction to completion, and returns the value with the response that matches the request downloaded by the SLC-500 processor. The TXID data size is one byte.
• Command:
This code instructs the scanner how to administer the request. A listing of these codes can be found in the 1747-SDN User
Manual, Publication 1747-5.8. The Command data size is one byte.
• Status:
The Status code provides the communication module’s status and its response.
• Port:
The physical channel of the scanner where the transaction is to be routed. The port setting can be zero (channel A) or one (channel
B). The Port data size is one byte. Please note that the 1747-SDN has only one channel, and so this value is always set to zero.
• Size:
This identifies the size of the transaction body in bytes. The transaction body begins at word 3. The maximum size is 58 bytes.
The Size data size is one byte.
• Service:
This code specifies the type of request being delivered. The
Service data size is one byte.
• MAC ID:
The DeviceNet™ network node address of the device for which the transaction is intended is identified here. The slave device must be listed in the scanner module’s scan list and be on-line for the explicit message transaction to be completed.
• Class:
The desired DeviceNet class is specified here.
7-4
Explicit Messaging on DeviceNet™
Setting up the Data File
Sequence of Events
• Instance:
This code identifies the specific instance within the object class towards which the transaction is directed. The value zero is reserved to denote that the transaction is directed towards the class itself versus a specific instance within the class.
• Attribute:
This code identifies the specific characteristic of the object towards which the transaction is directed. The attribute data size is one word.
The following table lists the most common transaction types (get information and set information), and the appropriate service, class, instance, and attribute that corresponds to the type.
Table 7.6 Common Configuration Examples for ArmorStart
Transaction Type
Get_Attribute_Single
Set_Attribute_Single
Service c Class c Instance c Attribute c
0x0E
0x10
0x0F
0x0F
Par. # ➁
Par. # ➁
1 ➂
1 ➂ c The numeric values are in a hexadecimal format.
➁ This is the actual parameter number.
➂ The code “1” specifies the value of the instance (parameter).
Use the following sequence of events as a guide for establishing explicit messages in your SLC ladder logic.
1. Put the explicit message request data into an integer (N) file of the
SLC-500 processor.
2. Use the file copy instruction (COP) to copy the explicit message request data entered in step 1 to the M0 File, words 224 through
256.
3. Use the examine-if-closed instruction (XIC) to monitor bit 15 of the scanner’s module status register for an indication that it has received a response from the ArmorStart.
4. Copy the data from the M1 file, words 224 through 256, into a file in the SLC-500 processor using the file copy instruction (COP).
The following example shows the exact data format to perform a
“Get Attribute Single” request. This message will specifically access parameter 104, Average Current. The first three words are shown segmented into two bytes, corresponding to the upper and lower bytes shown in the explicit message request table (Table 7.4).
Note: The data in the table is shown in a hexadecimal format.
Therefore parameter 104 decimal is equal to 68 hexadecimal
(0x68).
Word
N7:x
Word
N7:x
TXID Command
0
01 01
TXID
01
10
Status
xx
Explicit Messaging on DeviceNet™
Port
00
1
Size
06
Table 7.7 Get_Attribute_Single Request
Service MAC ID
2
0E 04
Class
3
000F
Instance Attribute
4
0068
5
0001
Port
00
11
Size
06
Table 7.8 Get_Attribute_Single Response
Service MAC ID
12
0E 04
Data
13 x
14
—
15
—
6
—
16
—
7
—
17
—
7-5
7-6
Explicit Messaging on DeviceNet™
Figure 7.2 SLC Example of Ladder Logic Program
If a trip condition exists, momentarily setting B3:0.1 will reset the fault. B3:0.0 will need to be re-initiated to start the “run Fwd”
Explicit Messaging on DeviceNet™
7-7
Programming the
1756-ControlLogix
I/O Mapping
The following example will use the standard distributed motor controller and the factory default input and output assembly of 160 and 161. Refer to Appendix B for additional assembly formats. The default input and output assembly will again be used in the following example.
Note: The addressing is different between the SLC 1747 and
ControlLogix 1756 program. It is important that the user understand how to create and use “tags” in order to properly follow the example. Please see the RSLogix™ 5000 programming manual for additional help with defining tags.
The tables below list the data configuration for the ControlLogix platform and include the tag name as used in the example program.
7-8
Byte 0
Address
Tag Name
Data
Byte 1
Address
Tag Name
Data
Bit 7
Local:1:I.
Data[1].7
— reserved
Bit 15
Local:1:I.
Data[1].15
— reserved
Explicit Messaging on DeviceNet™
)
Table 7.9 Example ControlLogix Input Addressing (Produced Assembly)
Instance 161 Default Produced Standard Distributed Motor Controller
Bit 6
Local:1:I.
Data[1].6
— reserved
Bit 5
Local:1:I.
Data[1].5
— reserved
Bit 4
Local:1:I.
Data[1].4
—
Ready
Bit 3
Local:1:I.
Data[1].3
—
Bit 2
Local:1:I.
Data[1].2
—
Running Rev Running Fwd
Bit 1
Local:1:I.
Data[1].1
Status_ warning
Warning
Bit 0
Local:1:I.
Data[1].0
Status_ tripped
Tripped
Bit 14
Local:1:I.
Data[1].14
— reserved
Bit 13
Local:1:I.
Data[1].13
Status_140M
140M On
Bit 12
Local:1:I.
Data[1].12
—
HOA
Bit 11
Local:1:I.
Data[1].11
—
User In 3
Bit 10
Local:1:I.
Data[1].10
—
User In 2
Bit 9
Local:1:I.
Data[1].9
—
User In 1
Bit 8
Local:1:I.
Data[1].8
—
User In 0
Byte 0
Address
Tag Name
Data
Bit 7
Local:1:O.
Data[1].7
Control_Out
B
User Out B
)
Table 7.10 Example ControlLogix Output Address (Consumed Assembly)
Instance 160 Default Consumed Standard Distributed Motor Controller
Bit 6
Local:1:O.
Data[1].6
Control_Out
A
User Out A
Bit 5
Local:1:O.
Data[1].5
— reserved
Bit 4
Local:1:O.
Data[1].4
— reserved
Bit 3
Local:1:O.
Data[1].3
— reserved
Bit 2
Local:1:O.
Data[1].2
Control_fault
Reset
Fault Reset
Bit 1
Local:1:O.
Data[1].1
—
Run Rev
Bit 0
Local:1:O.
Data[1].0
—
Run Fwd
Explicit Messaging with
ControlLogix
The ControlLogix platform requires significantly less structure to initiate an explicit message. The explicit message Request and
Response is configured within the MSG function. The MSG function can be found in the Input/Output tab of RSLogix 5000. Notice that in the ControlLogix program example, rung 6 is the only required logic to complete the explicit message request.
Setting Up the MSG Instruction
A tag name must be given to the MSG function before the rest of the information can be defined. In this example a tag was created with the name explicit_mess. After the instruction has been named, click on the gray box to define the rest of the instruction.
The following example shows the exact data format to perform a Get
Attribute Single request. This message will specifically access parameter 104, Average Current. See Table 7.6 on page 7-4 for additional configurations.
Explicit Messaging on DeviceNet™
Figure 7.3 Message Configuration
7-9
• Message Type
Select CIP Generic from pull down menu to configure an explicit message.
• Destination Element
This is the tag name of the location you are going to place the response information. In this example a tag was created with the name explicit_data.
• Service Type
The pull down menu has several options, however only the Get
Attribute Single is used for this example.
The Class, Instance, and Attribute define the actual information being requested. Additional configurations of these parameters can be found in Appendix B.
• Class
In this example the value is “F”
• Instance
In this example the value is “104”
• Attribute
In this example the value is “1”
After the above information has been entered, click on the communication tab.
• Path
The path will define the route the message will take to get to the device it is intended for. In this example the path is Scanner,2,4; where scanner is the name of the 1756-DNB in the rack, 2 represents the DeviceNet port, and 4 represents the physical node address of the ArmorStart.
7-10
Explicit Messaging on DeviceNet™
Figure 7.4 Scanner Path
Explicit Messaging on DeviceNet™
Figure 7.5 ControlLogix Example of Ladder Logic Program
7-11
7-12
Notes
Explicit Messaging on DeviceNet™
DeviceLogix Programming
Chapter
8
Using DeviceLogix™
DeviceLogix is a stand-alone Boolean program that resides within the
ArmorStart®. The program is embedded in the product software so that there is no additional module required to use this technology;
RSNetWorx™ for DeviceNet™ is required to program the device.
In addition to the actual programming, DeviceLogix can be configured to operate under specific situations. It is important to note that the DeviceLogix program will only run if the logic has been enabled. This can be done within the “Logic Editor” of RSNetWorx.
The operation configuration is accomplished by setting the “Network
Override” and “Communication Override” parameter. The following information describes the varying levels of operation:
• If both overrides are disabled and the logic is enabled, the ONLY time DeviceLogix will run is if there is an active I/O connection with a master, i.e. the master is in Run mode. At all other times
DeviceLogix will be running the logic, but will NOT control the state of the outputs.
• If the Network Override is enabled and the logic is enabled then
DeviceLogix controls the state of the outputs when the PLC is in
Run mode and if a network fault such as Duplicate MAC ID or
Module Bus off condition occurs.
• If the Communications Override is enabled and the logic is enabled, the device does not need any I/O connection to run the logic. As long as there is control power and a DeviceNet power source connected to the device, the logic will control the state of the outputs.
DeviceLogix has many applications and the implementation is typically only limited to the imagination of the programmer. Keep in mind that the application of DeviceLogix is only designed to handle simple logic routines.
DeviceLogix is programmed using simple Boolean math operators such as AND, OR, NOT, timers, counters, and latches. Decision making is done by combining these Boolean operations with any of the available I/O. The inputs and outputs used to interface with the logic can come from the network or from the device hardware.
Hardware I/O is the physical Inputs and Outputs located on the device such as push buttons and pilot lights that are connected to the
ArmorStart.
8-2
Using DeviceLogix™
DeviceLogix Programming
Example
There are many reasons to use the DeviceLogix functionality, but some of the most common are listed below:
• Increased system reliability
• Fast update times (1 - 2 ms possible)
• Improved diagnostics and reduced troubleshooting
• Operation independent of PLC or Network status
• Continue to run process in the event of network interruptions
• Critical operations can be safely shutdown through local logic
The following example will show how to program a simple logic routine to interface the ArmorStart with a remote hard-wired startstop station. In this case the I/O is wired as shown in the table.
Table 8.1 Hardware Bit Assignments and Description for the ArmorStart
Bit
Input 0
Input 1
Input 2
Input 3
Input Table
Description
Start Button
Stop Button
N/A
N/A
Bit
Run Fwd
N/A
—
—
Output Table
Description
Contactor Coil
N/A
—
—
Important: Before programming logic, it is important to decide on the conditions under which the logic will run. As defined earlier, the conditions can be defined by setting parameter 8 (Network Override) and parameter 9
(Comm. Override) to the desired value.
1. While in RSNetWorx for DeviceNet, Double click on the
ArmorStart.
2. Click on the “DeviceLogix” tab. If you are on-line with a device a dialog box will appear asking you to upload or download. Click on “Upload.”
3. Click the Start Logic Editor button.
4. If programming off-line continue to step 5, otherwise click on the
“Edit” button. Click “Yes” when asked if you want to Enter Edit
Mode. Once in edit mode the entire list of Function Blocks will be displayed in the toolbar.
5. Left Click on the “RSL” function block. This is a reset dominate latch.
6. Move the cursor into the grid, and left click to drop the function onto the grid.
Using DeviceLogix™
8-3
7. From the toolbar, Click on the “Discrete Input” button and select
Input 0 from the pull-down menu. This is the remote start button based on the example I/O table.
8. Place the input to the left of the RSL function. To drop the input on the page, left click on the desired position.
9. Place the mouse cursor over the tip of Input 0. The tip will turn green. Click on the tip when it turns green.
10. Move the mouse cursor toward the input of the RSL function. A line will follow the cursor. When a connection can be made, the tip of the RSL function will also turn green. Click the on Input and the line will be drawn from Input 0 to the Set Input of the
RSL function.
Note: If this was not a valid connection, one of the pin tips would have turned red rather than green. Left double clicking on the unused portion of the grid or pressing the “Esc” key at any time will cancel the connection process.
11. From the toolbar, Click on the “Discrete Input” button and select
Input 1 from the pull-down menu. This is the remote stop button based on the example I/O table.
12. Place the input to the left of the RSL function.
13. Connect the input to the reset input of the RSL latch.
8-4
Using DeviceLogix™
14. From the toolbar, Click on the “Discrete Output” button and select “Run Fwd” from the pull-down menu. Run Fwd is the relay controlling the coil of the contactor. Click OK.
15. Move the cursor into the grid and place the Output to the right of the RSL function block.
16. Connect the output of the “RSL” function block to Run Fwd.
17. Click on the “Verify” button located in the toolbar or select
“Logic Verify” from the “Tools” pull-down menu.
18. Click on the “Edit” button to toggle out of edit mode if online with a device.
19. Go to the pull-down menu in the right corner of the toolbar and select “Download”.
20. Note: Ensure that the PLC key switch is in the Program position.
If in any other position, the download will not occur and an error will be generated.
21. Press “OK” when told the download was successful.
22. Now from the same pull-down menu select “Logic Enable On.”
23. The ArmorStart is now programmed and the logic is Active.
Overview
ZIP Parameter Overview
Chapter
9
ArmorStart® ZIP Configuration
This chapter describes the steps necessary to configure the Zone
Interlocking Parameters (ZIP) to configure peer-to-peer communication between an ArmorStart and another ZIP enabled device such as another ArmorStart or a 1977-ZCIO module. First, an overview of the ZIP parameter set is presented. Then the steps necessary to enable peer-to-peer data production are described. Next, the steps necessary to enable peer-to-peer data consumption are described. Finally, the steps necessary to map the consumed peer-topeer data to the DeviceLogix™ data table for use in local logic are described.
Each ArmorStart can consume ZIP data from up to 4 other devices.
The 4 devices are referred to as “zones” of data and these zones are numbered from 1 to 4. The following parameters are used to configure a device for ZIP peer-to-peer communication:
9-2
ArmorStart® ZIP Configuration
81
82
83
84
85
86
79
80
77
78
75
76
87
88
89
90
Param #
67
71
72
73
74
68
69
70
Parameter Name
AutoRun ZIP
Zone ProducedEPR
Zone ProducedPIT
Zone #1 MacId
Zone #2 MacId
Zone #3 MacId
Zone #4 MacId
Zone #1 Health
Zone #2 Health
Zone #3 Health
Zone #4 Health
Zone #1 Mask
Zone #2 Mask
Zone #3 Mask
Zone #4 Mask
Zone #1 Offset
Zone #2 Offset
Zone #3 Offset
Zone #4 Offset
Zone #1 EPR
Zone #2 EPR
Zone #3 EPR
Zone #4 EPR
Zone #1 Control
91 Zone #2 Control
92 Zone #3 Control
93 Zone #4 Control
96
97
94
95
98
99
Zone #1 Key
Zone #2 Key
Zone #3 Key
Zone #4 Key
Device Value Key
Zone Ctrl Enable
Parameter Description
Enables ZIP data production on power up
0=Disable; 1=Enable
The Expected Packet Rate in msec. Defines the rate of at which ZIP data is produced. Defaults to 75 msec.
The Production Inhibit Time in msec. Defines the minimum time between Change of State data production
The node address of the device whose data is to be consumed for zone 1
The node address of the device whose data is to be consumed for zone 2
The node address of the device whose data is to be consumed for zone 3
The node address of the device whose data is to be consumed for zone 4
Read Only consumed connection status for zone 1
0=Healthy; 1=Not Healthy
Read Only consumed connection status for zone 2
0=Healthy; 1=Not Healthy
Read Only consumed connection status for zone 3
0=Healthy; 1=Not Healthy
Read Only consumed connection status for zone 4
0=Healthy; 1=Not Healthy
Bit enumerated consumed data mask for zone 1. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table
Bit enumerated consumed data mask for zone 2. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table
Bit enumerated consumed data mask for zone 3. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table
Bit enumerated consumed data mask for zone 4. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table
The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 1.
The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 2.
The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 3.
The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 4.
The Expected Packet Rate in msec. for the zone 1 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #1 Health” will report 1 = Not Healthy.
The Expected Packet Rate in msec. for the zone 2 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #2 Health” will report 1 = Not Healthy
The Expected Packet Rate in msec. for the zone 3 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #3 Health” will report 1 = Not Healthy
The Expected Packet Rate in msec. for the zone 4 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #4 Health” will report 1 = Not Healthy
Zone 1 Control Word. Default Bit 1 set, all other bits clear.
Bit0=Security Enable 1=Enable data security
Bit1=COS Cnxn 1=Consume DNet Group 2 COS messages
Bit2=Poll Cnxn 1=Consume DNet Group 2 Poll Response msgs.
Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs.
Bit4=Multicast Poll 1=Consume Multicast Poll Response messages.
Zone 2 Control Word. Default Bit 1 set, all other bits clear.
Bit0=Security Enable 1=Enable data security
Bit1=COS Cnxn 1=Consume DNet Group 2 COS messages
Bit2=Poll Cnxn 1=Consume DNet Group 2 Poll Response msgs.
Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs.
Bit4=Multicast Poll 1=Consume Multicast Poll Response messages.
Zone 3 Control Word. Default Bit 1 set, all other bits clear.
Bit0=Security Enable 1=Enable data security
Bit1=COS Cnxn 1=Consume DNet Group 2 COS messages
Bit2=Poll Cnxn 1=Consume DNet Group 2 Poll Response msgs.
Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs.
Bit4=Multicast Poll 1=Consume Multicast Poll Response messages.
Zone 4 Control Word. Default Bit 1 set, all other bits clear.
Bit0=Security Enable 1=Enable data security
Bit1=COS Cnxn 1=Consume DNet Group 2 COS messages
Bit2=Poll Cnxn 1=Consume DNet Group 2 Poll Response msgs.
Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs.
Bit4=Multicast Poll 1=Consume Multicast Poll Response messages.
When the “Security Enable” bit for zone 1 is enabled, this value must match the value of the Device Value Key parameter in the device whose data is being consumed for zone 1.
When the “Security Enable” bit for zone 1 is enabled, this value must match the value of the Device Value Key parameter in the device whose data is being consumed for zone 2.
When the “Security Enable” bit for zone 1 is enabled, this value must match the value of the Device Value Key parameter in the device whose data is being consumed for zone 3.
When the “Security Enable” bit for zone 1 is enabled, this value must match the value of the Device Value Key parameter in the device whose data is being consumed for zone 4.
This value is produced in the last 2 bytes of data when one of the ZIP assemblies is chosen for data production.
Global enable for ZIP peer-to-peer messaging. This parameter must be disabled before any changes to the ZIP configuration for the device can be made. 0=Disable; 1=Enable
Data Production
Data Consumption
Mapping Consumed Data to the
DeviceLogix Data Table.
ArmorStart® ZIP Configuration
9-3
In a typical ZIP system, each device on the network automatically produces IO data using “Change of State” (COS) triggering. The automatic production of this COS data by an ArmorStart is enabled by setting Parameter 67 (AutoRun ZIP) to a value of 1 = Enable. Then
COS data will be produced automatically when the global ZIP enable parameter (Zone Ctrl Enable, Parameter 99) is set to the value of 1 =
Enable. Data production will take place at a rate specified by
Parameter 68 (Zone ProducedEPR). The minimum period between
Change of State productions is determined by the value of Parameter
69 (Zone ProducedPIT)
In the ArmorStart data from up to 4 other devices can be consumed for use in the local logic. The 4 devices whose data is to be consumed are logically referred to by zone number, i.e. zones 1 – 4. To configure an ArmorStart to consume data from another node on the network, the node address or “MacId” is placed in the proper “Zone MacId” parameter (parameters 70-73). For example to configure an
ArmorStart to consume data for zone 1 from node number 11 on the network, the value 11 is placed in Parameter 70 (Zone #1 MacId).
Not all zones need to be configured to consume data. If the user wishes to turn off data consumption for a zone, the value 64 is placed in the Zone MacId parameter for that zone.
The ArmorStart monitors the frequency at which all consumed data is received in order to determine the health of each zone’s data connection. The Zone EPR parameters (parameters 86-89) define the
“Expected Packet Rate” for each of the 4 zone connections.
If no consumed data for a zone is received in 4 times the EPR, then the zone connection times out, and the value of the corresponding
“Zone Health” parameter (parameters 74-77) is set to the value 1 =
Not Healthy. The “Zone Health” status of each zone is also available for use in DeviceLogix programs.
Consumed data for the 4 zones is placed in an 8 byte section of the
DeviceLogix Data Table. Individual bits in this section of the
DeviceLogix Data Table can be used in DeviceLogix programs. The table below shows the organization of the 8 bytes of the data table
Byte #
5
6
3
4
0
1
2
7
Bit Number and Name
ZIP 7 ZIP 6 ZIP 5 ZIP 4 ZIP 3 ZIP 2 ZIP 1
ZIP 15 ZIP 14 ZIP 13 ZIP 12 ZIP 11 ZIP 10 ZIP 9
ZIP 0
ZIP 8
ZIP 23 ZIP 22 ZIP 21 ZIP20 ZIP 19 ZIP 18 ZIP 17 ZIP 16
ZIP 31 ZIP 30 ZIP 29 ZIP 28 ZIP 27 ZIP 26 ZIP 25 ZIP 24
ZIP 39 ZIP 38 ZIP 37 ZIP 36 ZIP 35 ZIP 34 ZIP 33 ZIP 32
ZIP 47 ZIP 46 ZIP 45 ZIP 44 ZIP 43 ZIP 42 ZIP 41 ZIP 40
ZIP 55 ZIP 54 ZIP 53 ZIP 52 ZIP 51 ZIP 50 ZIP 49 ZIP 48
ZIP 63 ZIP 62 ZIP 61 ZIP 60 ZIP 59 ZIP 58 ZIP 57 ZIP 56
9-4
ArmorStart® ZIP Configuration
The “Zone Mask” parameters (parameters 78-81) select individual bytes within a consumed message for placement in the DeviceLogix
Data Table. Each single bit in the mask represents a corresponding byte in the consumed message packet. For example, consider an
ArmorStart that has zone 1 configured to consume data from another
ArmorStart that is producing data of the following format:
Instance 163 Standard Produced Starter with Network Outputs and ZIP CCV
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
5
6
1
2 140M On
Ready Running RevRunning Fwd Warning Tripped
HOA User In 4 User In 3 User In 2 User In 1
3 Net Out 8 Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 2 Net Out 1
4 Net Out 15 Net Out 14 Net Out 13 Net Out 12 Net Out 11 Net Out 10 Net Out 9
Device Value Key (low)
Device Value Key (high)
The user can choose to place only bytes 1 and 2 of the above consumed data in the DeviceLogix Data Table by selecting a Zone
Mask value of 00000011 binary as shown in the following
RSNetWorx for DeviceNet screen:
The “Zone Offset” parameters (parameters 82-85) determine where in the DeviceLogix Data Table to place the consumed data bytes chosen for mapping. The “Zone Offset” value corresponds to a byte in the
DeviceLogix Data Table where the data should be placed. Continuing our example from above, a value of 2 in the “Zone #1 Offset” parameter would result in the masked consumed data bytes being placed starting at byte 2 in the data table. This would result in the following ZIP bit assignments:
ZIP 16 = Zone 1: Tripped
ZIP 17 = Zone 1: Warning
ArmorStart® ZIP Configuration
9-5
ZIP 18 = Zone 1: Running Fwd
ZIP 19 = Zone 1: Running Rev
ZIP 20 = Zone 1: Ready
ZIP 21 = Zone 1: reserved
ZIP 22 = Zone 1: reserved
ZIP 23 = Zone 1: reserved
ZIP 24 = Zone 1: User In 1
ZIP 25 = Zone 1: User In 2
ZIP 26 = Zone 1: User In 3
ZIP 27 = Zone 1: User In 4
ZIP 28 = Zone 1: HOA
ZIP 29 = Zone 1: 140M Stat
ZIP 30 = Zone 1: reserved
ZIP 31 = Zone 1: reserved
ZIP bits appear in the list of Network Input Points that are available for use in the DeviceLogix Editor in RSNetWorx for DeviceNet as shown below:
ZIP Example
Consider the following network with 4 ArmorStarts and a 1799-ZCIO module.
9-6
ArmorStart® ZIP Configuration
We will configure node 10 to consume data as follows:
Zone 1 data will come from node 11
Zone 2 data will come from node 12
Zone 3 data will come from node 13
Zone 4 data will come from node 14.
First we must set up nodes 11-14 to “Auto Produce” data when ZIP is enabled.
For the ArmorStarts at node 11-13 (shown above) this is done by setting parameter 67 “AutoRun Zip” to “Enabled”. Note that we will leave parameters 68 and 69 at their default values so that data will be produced every 75 msec.
For the 1799-ZCIO module (shown below) this is done by setting parameter 13 “AutoRun Zip” to “Enabled”.
ArmorStart® ZIP Configuration
9-7
Next we must configure data consumption for the 4 zones in the
ArmorStart at node 10.
First set the “Zone MacId” parameters as shown below:
9-8
ArmorStart® ZIP Configuration
We will leave the “Zone EPR” parameters at their default value of 75 msec. This tells our ArmorStart that if no data for a zone is consumed for a period of 300 msec (4 times the EPR), the zone connection should time out and the health status should be set to “Not Healthy”.
We will also leave the “Zone Control” parameters at their default telling the ArmorStart to consume Change of State Data for each zone, and to disable data security checking. Since data security checking is disabled, we can also leave parameters 94-98 at their default values of 0.
We will set the “Zone Masks” to the value of 00000011 binary. This tells each zone to map bytes 1 and 2 to the DeviceLogix Data Table.
ArmorStart® ZIP Configuration
9-9
We will set the “Zone Offsets as shown below. This maps zone 1 data to byte 0 of the DeviceLogix Data Table, zone 2 data to byte 2 of the
DeviceLogix Data Table, zone 3 data to byte 4 of the DeviceLogix
Data Table and zone 4 data to byte 6 of the DeviceLogix Data Table.
Assuming the ArmorStarts mapped to zones 1 to 3 are producing the following data:
9-10
ArmorStart® ZIP Configuration
Byte
5
6
3
4
1
2
Instance 163 Standard Produced Starter with Network Outputs and ZIP CCV
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
140M On
Ready Running Rev Running Fwd Warning
HOA User In 4 User In 3 User In 2
Tripped
User In 1
Net Out 8 Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 2 Net Out 1
Net Out 15 Net Out 14 Net Out 13 Net Out 12 Net Out 11 Net Out 10 Net Out 9
Device Value Key (low)
Device Value Key (high)
And assuming that the 1799-ZCIO module is producing the following data:
Byte
5
6
7
3
4
1
2
1799-ZCIO Produced Assembly
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Input 7
Output 7
Input 6
Logic Ena
Output 6
Input 5 Input 4 Input 3 Input 2 Input 1
Input 9
Input 0
Input 8
Output 5 Output 4 Output 3 Output 2 Output 1 Output 0
Output 9 Output 8
Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 2 Net Out 1 Net Out 0
ZIP CCV (Low)
ZIP CCV (High)
The above configuration results in the following DeviceLogix ZIP
Data Table mapping
ZIP 0 = Zone 1: Tripped
ZIP 1 = Zone 1: Warning
ZIP 2 = Zone 1: Running Fwd
ZIP 3 = Zone 1: Running Rev
ZIP 4 = Zone 1: Ready
ZIP 5 = Zone 1: reserved
ZIP 6 = Zone 1: reserved
ZIP 7 = Zone 1: reserved
ZIP 8 = Zone 1: User In 1
ZIP 9 = Zone 1: User In 2
ZIP 10 = Zone 1: User In 3
ZIP 11 = Zone 1: User In 4
ZIP 12 = Zone 1: HOA
ZIP 13 = Zone 1: 140M Stat
ZIP 14 = Zone 1: reserved
ZIP 15 = Zone 1: reserved
ZIP 16 = Zone 2: Tripped
ZIP 17 = Zone 2: Warning
ZIP 18 = Zone 2: Running Fwd
ZIP 19 = Zone 2: Running Rev
ZIP 20 = Zone 2: Ready
ZIP 21 = Zone 2: reserved
ZIP 22 = Zone 2: reserved
ZIP 23 = Zone 2: reserved
ZIP 24 = Zone 2: User In 1
ZIP 25 = Zone 2: User In 2
ZIP 26 = Zone 2: User In 3
ZIP 27 = Zone 2: User In 4
ZIP 28 = Zone 2: HOA
ZIP 29 = Zone 2: 140M Stat
ZIP 30 = Zone 2: reserved
ZIP 31 = Zone 2: reserved
ArmorStart® ZIP Configuration
ZIP 32 = Zone 3: Tripped
ZIP 33 = Zone 3: Warning
ZIP 34 = Zone 3: Running Fwd
ZIP 35 = Zone 3: Running Rev
ZIP 36 = Zone 3: Ready
ZIP 37 = Zone 3: reserved
ZIP 38 = Zone 3: reserved
ZIP 39 = Zone 3: reserved
ZIP 40 = Zone 3: User In 1
ZIP 41 = Zone 3: User In 2
ZIP 42 = Zone 3: User In 3
ZIP 43 = Zone 3: User In 4
ZIP 44 = Zone 3: HOA
ZIP 45 = Zone 3: 140M Stat
ZIP 46 = Zone 3: reserved
ZIP 47 = Zone 3: reserved
ZIP 48 = Zone 4: Input 0
ZIP 49 = Zone 4: Input 1
ZIP 50 = Zone 4: Input 2
ZIP 51 = Zone 4: Input 3
ZIP 52 = Zone 4: Input 4
ZIP 53 = Zone 4: Input 5
ZIP 54 = Zone 4: Input 6
ZIP 55 = Zone 4: Input 7
ZIP 56 = Zone 4: Input 8
ZIP 57 = Zone 4: Input 9
ZIP 58 = Zone 4: reserved
ZIP 59 = Zone 4: reserved
ZIP 60 = Zone 4: reserved
ZIP 61 = Zone 4: reserved
ZIP 62 = Zone 4: Logic Ena
ZIP 63 = Zone 4: reserved
9-11
9-12
ArmorStart® ZIP Configuration
Finding ZIP bits in the DeviceLogix
Editor
The 64 ZIP bits are available for use in DeviceLogix programs in the list of “Network Input Points”.
Network
Input Points
Select “Network Input Points” in the DeviceLogix editor toolbar, and scroll down past the first 16 Network Inputs. The 64 ZIP bits are available for use in the list as shown below:
Overview
Fault Display
Chapter
10
Diagnostics
This chapter describes the fault diagnostics of the ArmorStart®
Distributed Motor Controller and the conditions that cause various faults to occur.
Protection Programming
Many of the protective features available with the ArmorStart
Distributed Motor Controller can be enabled and adjusted through the programming parameters provided. For further details on programming, refer to Chapter 3, 4, 5, or 6, Program and Status
Parameters.
The ArmorStart Distributed Motor Controller comes equipped with a built-in LED status indication which provides four status LEDs and a
Reset button. The LEDs provide status indication for the following:
• Power LED
The LED is illuminated solid green when control power is present and with the proper polarity
• RUN LED
This LED is illuminated solid green when a start command and control power are present
• Network LED
This bi-color (red/green) LED indicates the status of the communication link
• FAULT LED
Indicates Controller Fault (Trip) condition
The Reset Button provides local fault trip reset.
Figure 10.1 LED Status Indication and Reset
Important: Resetting the fault will not correct the cause of the fault condition. Corrective action must be taken before resetting the fault.
10-2
Clear Fault
Diagnostics
Fault Codes
You may clear a fault using the following methods:
• Remotely via network communications
• A remote reset will be attempted upon detection of a rising edge
(0 to 1 transition) of the “Fault Reset” bit in the various I/O assemblies. A remote reset will also be attempted upon detection of the rising edge of the “Fault Reset” parameter.
• Locally via the “Reset” button on the LED Status indication keypad.
Table 10.1 provides a complete reference of the Fault LED indications for Bulletin 280 and 281 ArmorStart Distributed Motor
Controllers.
13
14
15
16
9
10
11
12
7
8
5
6
3
4
1
2
Table 10.1 Fault Indication
Blink Pattern
Fault Types
Bulletin 280/281
Short Circuit
Overload Trip
Phase Loss
Reserved
Reserved
Control Power
I/O Fault
Over Temperature
Phase Imbalance
DeviceNet™ Power Loss
Reserved
Reserved
EEPROM Fault
Hardware Fault
Reserved
Reserved
Bulletin 284
Short Circuit
Overload Trip
Phase Short
Ground Fault
Stall
Control Power
I/O Fault
Over Temperature
Over Current
DeviceNet™ Power Loss
Internal Communications
DC Bus Fault
EEPROM Fault
Hardware Fault
Restart Retries
Misc. Fault
Fault Definitions
Diagnostics
10-3
Short Circuit
Short Circuit indicates that the Bulletin 140M motor protector has tripped, or that the internal wiring protection algorithm has detected an unsafe current surge. This fault cannot be disabled. The Fault LED will flash a 1-blink pattern.
Overload Trip
The load has drawn excessive current and based on the overload trip class selected, the device has tripped. This fault cannot be disabled.
The Fault LED will flash a 2-blink pattern.
Phase Loss
Indicates a missing supply phase. This fault can be disabled and is disabled by default. The Fault LED will flash a 3-blink pattern.
Phase Short
Indicates the drive has detected a phase short. This fault cannot be disabled. The Fault LED will flash a 3-blink pattern.
Ground Fault
Indicates the drive has detected a ground fault. This fault cannot be disabled. The Fault LED will flash a 4-blink pattern.
Stall
Indicates the drive has detected a stall condition, indicating the motor has not reached full speed. This fault cannot be disabled. The Fault
LED will flash a 5-blink pattern.
Control Power
Indicates a loss of control power voltage or a blown control power fuse. This fault can be disabled and is disabled by default. The Fault
LED will flash a 6-blink pattern.
I/O Fault
This error can indicate a shorted sensor, shorted input device, or input wiring mistakes
.
It can also indicate a blown output fuse. This fault can be disabled and is disabled by default. The Fault LED will flash a
7-blink pattern.
Over Temperature
Indicates that the operating temperature has been exceeded. This fault cannot be disabled. The Fault LED will flash a 8-blink pattern.
10-4
Diagnostics
Phase Imbalance
Indicates an imbalance supply voltage. This fault can be disabled and
is disabled by default. The Fault LED will flash a 9-blink pattern.
Over Current
Indicates the drive has detected an over current fault. This fault cannot be disabled. The Fault LED will flash a 9-blink pattern.
DeviceNet™ Power Loss
DeviceNet power has been lost or has dropped below the 12V threshold
.
This fault can be disabled and is disabled by default. The
Fault LED will flash a 10-blink pattern.
Internal Communication Fault
Indicates an internal communication fault has been detected. This fault cannot be disabled. The Fault LED will flash 11-blink pattern.
DC Bus Fault
Indicates the drive has detected a DC Bus Fault. This fault cannot be disabled. The Fault LED will flash a 12-blink pattern.
EEPROM Fault
This is a major fault, which renders the ArmorStart inoperable. This fault cannot be disabled. The Fault LED will flash a 13-blink pattern.
Hardware Fault
Indicates incorrect base/starter assembly. This fault cannot be disabled. The Fault LED will flash a 14-blink pattern.
Restart Retries
This fault is generated when the drive detects that the auto retries count has been exceeded. This fault cannot be disabled. The Fault
LED will flash a 15-blink pattern.
Miscellaneous Faults
For Bulletin 284 units, this fault is actually the logical OR of the drive’s Auxiliary Input fault (fault code F2), Heatsink Over
Temperature (fault code F8), Params Defaulted fault (fault code F48) and SVC Autotune fault (fault code F80).
This fault cannot be disabled. The Fault LED will flash a 16-blink pattern.
Introduction
Chapter
11
Troubleshooting
The purpose of this chapter is to assist in troubleshooting the
ArmorStart® Distributed Motor Controller using the LED Status
Display and diagnostic parameters.
ATTENTION
!
Servicing energized industrial control equipment can be hazardous. Electrical shock, burns or unintentional actuation of controlled industrial equipment may cause death or serious injury. For safety of maintenance personnel as well as others who might be exposed to electrical hazards associated with maintenance activities, follow the local safety related work practices (for example, the
NFPA70E, Part II in the United States).
Maintenance personnel must be trained in the safety practices, procedures, and requirements that pertain to their respective job assignments.
ATTENTION
!
Do not attempt to defeat or override fault circuits.
The cause of the fault indication must be determined and corrected before attempting operation. Failure to correct a control system of mechanical malfunction may result in personal injury and /or equipment damage due to uncontrolled machine system operation.
ATTENTION
!
The drive contains high voltage capacitors that take time to discharge after removal of mains supply.
Before working on drive, ensure isolation of mains supply from line inputs (R, S, T, [L1, L2, L3]). Wait three minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death.
Darkened display LEDs is not an indication that capacitors have discharged to safe voltage levels.
ATTENTION
!
Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage.
11-2
Troubleshooting
ATTENTION
!
This drive contains electrostatic discharge- (ESD) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing, or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, refer to Allen-Bradley
Publication 8000-4.5.2, Guarding against
Electrostatic Damage, or any other applicable ESD protection handbook.
ATTENTION
!
An incorrectly applied or installed drive can result in component damage or a reduction in product life.
Wiring or application errors, such as undersizing the motor, incorrect or inadequate AC supply, or excessive ambient temperatures may result in malfunction of the system.
Bulletin 280/281 Troubleshooting
The following flowchart for Bulletin 280/281 units, is provided to aid in quick troubleshooting.
Yes
Faulted Display
No
Fault
LED
Network
LED
See
Table 11.1
See
Table 11.12
Motor will not
Start
See
Table 11.11
Blink Pattern
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Troubleshooting
11-3
Definitions
Short Circuit
Overload Trip
Phase Loss
Reserved
Reserved
Control Power
I/O Fault
Reserved
Reserved
EEPROM Fault
Table 11.1 Fault LED Indications for Bulletin 280 and 281 ArmorStart
Distributed Motor Controllers
Over Temperature
Phase Imbalance
DNet Power Loss
Hardware Fault
Possible Causes or Remedies
The motor circuit protector has tripped, or the internal wiring protection algorithm has detected an unsafe current range. Try to reset the protector if tripped. If the condition continues, check the power wiring. This fault cannot be disabled.
The load has drawn excessive current and based on the trip class selected, the device has tripped. Verify that the load is operating correctly and the
ArmorStart is properly set-up. This fault cannot be disabled.
The ArmorStart has detected a missing phase. Verify that three-phase voltage is present at the line side connections. This fault can be disabled and is disabled by default.
Not Used
Not Used
The ArmorStart has detected a loss of the control power voltage or blown control power fuse. Check control voltage, wiring, and proper polarity.
Replace control voltage fuse if necessary. This fault can be disabled and is disabled by default.
This error indicates a shorted sensor, shorted input device, or input wiring mistakes or a blown output fuse.
If this fault occurs, the offending problem should be isolated or removed prior to restarting the system. This fault can be disabled and is disabled by default.
Indicates that the operating temperature has been exceeded. This fault cannot be disabled.
The ArmorStart has detected a voltage imbalance. Check the power system and correct if necessary. This fault can be disabled and is disabled by default.
DeviceNet™ power has been lost or has dropped below the 12 volt threshold. Check the state of the network power supply and look for
DeviceNet media problems. This fault can be disabled and is disabled by default.
Not Used
Not Used
This is a major fault, which renders the ArmorStart inoperable. Possible causes of this fault are transients induced during EEprom storage routines.
If the fault was initiated by a transient, power cycling should clear the problem; otherwise, replacement of the ArmorStart may be required. This fault cannot be disabled.
This fault indicates that a serious hardware problem exists. Check for a base/starter module mismatch. If no mismatch exists, the ArmorStart may need to be replaced. (Hdw Flt is the factory-enabled default setting.) This fault cannot be disabled.
11-4
Troubleshooting
LED Status Indication
Fault or Network Status Led indicates a fault condition
No Fault condition indicated
Display is blank
Table 11.2 Motor Will Not Start – No Output Voltage to the Motor
Possible Cause
See Fault Description
Three Phase is absent
Control voltage is absent
Possible Solutions
See Table 11.1 and/or Table 11.16 addressing fault conditions
Check power system.
Check three-phase power wiring and correct if necessary
Check control wiring and polarity. Correct if necessary.
Fault displayed
Display is blank
Display
Starting
Fault displayed
Starting
Display
Fault displayed
RUN LED is blank
Display
Starting
Table 11.3 Motor Will Not Start – No Output Voltage to the Motor
Possible Cause
See fault description
Control voltage is absent
Two or three power phases are missing
Possible Solutions
See Table 11.12 addressing fault conditions
Check control wiring and proper polarity. Correct if necessary
Check power system
Table 11.4 Motor Rotates (but does not accelerate to full speed)
Possible Cause
See fault description
Mechanical problems
Inadequate Current Limit setting
Failed control module
Possible Solutions
See Table 11.12 addressing fault conditions
Check for binding or external loading and correct
Check motor
Adjust the Current Limit level to a higher setting
Replace control module
Table 11.5 Motor Stops While Running
Possible Cause
See fault description
Control voltage is absent
Failed control module
Two or three power phases are missing
Failed control module
Possible Solutions
See Table 11.12 addressing fault conditions
Check control wiring and correct if necessary
Replace control module
Check power system
Replace control module
Troubleshooting
11-5
Display
Motor current and voltage fluctuates with steady load
Motor
Erratic load
Erratic operation
Accelerates too fast
Accelerates too slow
Motor stops too quickly with Soft Stop
Motor stops too slowly with Soft Stop
Table 11.6 Miscellaneous Situations
Possible Cause
Loose connections
Starting time
Initial torque
Current limit setting
Kickstart
Starting time
Initial torque
Current limit setting
Kickstart
Time setting
Stopping time setting
Misapplication
Possible Solutions
Verify type of motor as a standard squirrel cage induction motor
Check load conditions
Shut off all power to controller and check for loose connections
Increase starting time
Lower initial torque setting
Decrease current limit setting
Lower kickstart time or turn off
Decrease starting time
Increase initial torque setting
Increase current limit setting
Increase kickstart time or turn off
Verify the programmed stopping time and correct it or increase
Verify the programmed stopping time and correct if necessary
The Soft Stop is intended to extend the stopping time for loads that stop suddenly when power is removed from the motor
11-6
Troubleshooting
Bulletin 284 Troubleshooting
Fault Definitions
Some of the Bulletin 284 ArmorStart Distributed Motor Controller faults are detected by the internal hardware of the ArmorStart, while others are detected by the internal drive. For internal drive faults, the internal hardware of the
ArmorStart simply polls the drive for the existence of faults and reports the fault state. No fault latching is done by the internal hardware of the ArmorStart for these faults. The Pr FltReset Mode parameter (Parameter 23) determines the Auto Resettability of only the faults that are detected on the main control board. These faults are listed as “param 23” autoresettable in 11.7. The Auto Resettability of the faults that are detected in the internal drive is controlled by internal drive parameters. These faults are listed as drive controlled in 11.7.The following flowchart for Bulletin 284 units, is provided to aid in quick troubleshooting.
Yes
Faulted Display
No
Define Nature of the Problem
Fault
LED
Network
LED
Motor will not start
See
Table 11.7
See
Table 11.16
See
Common
Symptoms and
Corrective
Actions
Troubleshooting
11-7
Table 11.7 Fault LED indications for Bulletin 284 ArmorStart Distributed
Motor Controllers
Blink
Pattern
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
ArmorStart
Short
(140M)
—
—
—
—
Control
Power
IO Fault
—
—
10 DNet Power
Loss
Internal
Comm
—
—
—
—
—
Fault Definitions
Drive Controlled
—
Overload Fault
(Drive Error Codes 7 and 64)
Phase Short (Drive Error
Codes 41…43)
Ground Fault (Drive Error
Codes 13, 38…40)
Motor Stalled
(Drive Error Code 6)
—
—
Heatsink Over temperature
(Drive Error Code 8)
Over-Current
(Drive Error Codes 12 and 63)
—
—
DC Bus Fault
(Drive Error Codes 3, 4, and 5)
EEPROM Fault/Internal Comm
Flt
(Drive Error Codes 81 and
100)
Hardware Fault
(Drive Error Codes 2, 70, and
122)
Auto Restart Tries
(Drive Error Code 33)
Miscellaneous Fault
Possible Causes or Remedies
The circuit breaker has tripped. Try to reset the breaker. If the condition continues check the power wiring. This fault cannot be disabled.
An excessive motor load exists. Reduce load so drive output current does not exceed the current set by Parameter 133 (Motor OL Current) and verify Parameter 184 (Boost Select) setting. Reduce load or extend Accel Time. This fault cannot be disabled.
The ArmorStart has detected a phase short. Excessive current has been detected between two of the output terminals. Check the motor for a shorted condition. Replace starter module if fault cannot be cleared. This fault cannot be disabled.
A current path to earth has been detected at or more of the drive output terminals or a phase to ground fault has been detected between the drive and motor in this phase. Check the motor for a grounded condition. Replace starter module if fault cannot be cleared. This fault cannot be disabled.
Drive is unable to accelerate motor. Increase Parameter 139 and/or 167 (Accel Time x) or reduce load so drive output current does not exceed the current by Parameter 189. This fault cannot be disabled.
The ArmorStart has detected a loss of the control power voltage. Check control voltage, wiring and proper polarity. Replace control voltage fuse if necessary. This fault can be disabled and is disabled by default.
Depending on the types of modules in the configuration this error could be generated by a shorted sensor, shorted input device, wiring mistakes, or a blown output fuse.
If this fault occurs, the offending problem should be isolated or removed prior to restarting the system. This fault can be disabled and is disabled by default.
Heatsink temperature exceeds a predefined value. Check for blocked or dirty heatsink fins. Verify that ambient temperature has not exceeded. Replace internal fan. This fault cannot be disabled.
The ArmorStart has detected a voltage imbalance. Check the power system and correct if necessary. This fault cannot be disabled.
DeviceNet
™ power has been lost or has dropped below the 12V threshold. Check the state of the network power supply and look for DeviceNet media problems. This fault can be disabled and is disabled by default.
This fault occurs when communications between the main board the drive is lost. This fault cannot be disabled. This fault cannot be disabled. Verify that the disconnect is in the “on” position and three phase power is present.
DC bus voltage remained below 85% of nominal. DC bus voltage fell below the minimum value. DC bus voltage exceeded maximum value. Monitor the incoming AC line for low voltage or line power interruption. Check input fuses. Monitor the AC line for high line voltage or transient conditions.
Bus overvoltage can also be caused by motor regeneration. Extend the decel time or install a starter module with the dynamic brake option. This fault cannot be disabled.
This is a major fault, which renders the ArmorStart inoperable. Possible causes of this fault are transients induced during EEprom storage routines. If the fault was initiated by a transient, power cycling should clear the problem. Otherwise replacement of the starter module may be required.
This fault cannot be disabled.
Indicates incorrect base/starter assembly. Auxiliary input interlock is open. Failure has been detected in the drive power section. Failure has been detected in the Drive control and I/O section.
Cycle power and replace drive if fault cannot be cleared. This fault cannot be disabled.
Drive unsuccessfully attempted to reset a fault and resume running for the programmed number of
Parameter 192 (Auto RstrtTries). Correct the cause of the fault. This fault cannot be disabled.
This fault is actually the logical OR of the drive’s Auxiliary Input fault (Fault Code 2), Heatsink
Overtemperature fault (Fault Code 8), Parameter Defaulted fault (Fault Code 48), and SVC Autotune fault (Fault Code 80), Fan RPM Fault, and DB1 Fault. This fault cannot be disabled.
11-8
Troubleshooting
Operation and Troubleshooting of the DB1 - Dynamic Brake
The DB1 Dynamic Brake option provides the following protection features:
• DB Resistor Overtemperature Fault
• DB Overcurrent Fault
• DB Undercurrent Fault
• DB Switch Fault
• DB Open Fault
• DB VBus Link Fault
• DB Thermal Warning
• DB Comm Fault
DB Resistor Overtemperature Fault
The DB1 measures current continuously, and models resistor body temperature based on measured current and resistor model parameters. The DB1 not only calculates the present resistor body temperature, but also predicts the future resistor body temperature.
The resistor overtemperature level is based on the predicted future resistor body temperature, not on the present resistor body temperature. This fault is disabled when parameter 182 (DB Resistor
Sel) is “Disabled.
Troubleshooting – DB Resistor body temperature is too hot. Allow resistor to cool.
DB Overcurrent Fault
The DB1 compares each current measurement against the Max
Current Level. If 5 consecutive samples are above the Max Current
Level, then a fault is recorded. This fault is intended to notify the user if the DB resistance is lower than expected. This fault is disabled when parameter 182 (DB Resistor Sel) is “Disabled.
Troubleshooting – DB monitor has measured a DB current higher than expected. Turn off all power to unit. Allow at least 3 minutes for capacitors to discharge. Disconnect DB resistor from ArmorStart control module. Caution- DB resistor may still be hot. Measure DB resistor value at the connector with an ohmmeter. DB resistor value should be within the limits defined in Table 11.8. If DB resistance value is within limits, replace control module. If not, replace DB resistor.
DB Undercurrent Fault
The DB1 compares each current measurement against the Min
Current Level. The Min Current Level = Min DB Voltage Level/Max
DB Resistance. If 5 consecutive samples are below the Min Current
Level and the DB is ON, then a fault is recorded. This fault is intended to notify the user if the DB resistance is higher than expected. This fault is disabled when parameter 182 (DB Resistor
Sel) is “Disabled.
Troubleshooting
11-9
Troubleshooting – DB monitor has measured a DB current lower than expected. Turn off all power to unit. Allow at least 3 minutes for capacitors to discharge. Disconnect DB resistor from ArmorStart control module. Caution- DB resistor may still be hot. Measure DB resistor value at the connector with an ohmmeter. DB resistor value should be within the limits defined in Table 11.8. If DB resistance value is within limits, replace control module. If not, replace DB resistor.
DB Switch Fault
A DB Switch fault is issued when continuous DB resistor current is detected when the Drive Bus Voltage level is less than the DB Voltage
Level. If 5 consecutive samples of Drive Bus Voltage less than DB
Level is detected along with continuous DB resistor current flow, then a shorted DB IGBT fault (DB Switch) is recorded.
It is the user’s responsibility to provide an input power contactor to each ArmorStart with a drive. The user must write logic to control
(open) the input contactor to the ArmorStart in the event of a DB
Switch Fault. The Instruction Literature provides information on how to connect the input contactor, and how to implement the logic.
Troubleshooting – Attempt to reset the fault by removing all power to the unit and restarting. If the fault persists, replace control module.
DB Open Fault
A DB Open fault is issued when Bus Voltage is greater than the DB
Voltage Level, and no DB resistor current has been detected. If 5 consecutive samples of Drive Bus Voltage greater than the DB Level is detected along with no DB resistor current flow, then an open DB fault is recorded. This fault is intended to notify the customer of an open DB resistor, or open wire. The fault is disabled when the DB
Resistor Setup parameter (82) is “Disabled”.
Troubleshooting – DB monitor expected to see current flow and measured none. Likely cause is an open DB resistor, loose DB resistor connector, or open wire in DB cable. Check DB cable connector for tightness. If problem persists, remove DB resistor cable connector from unit and check DB resistance. If DB resistor is open, replace DB resistor. Otherwise replace control module.
DB Thermal Warning
A DB Thermal Warning is issued if the predicted future resistor body temperature is greater than the Max DB resistor temperature x DB
Thermal Warning Percent.
Troubleshooting – None. DB resistor thermal value has exceeded the preset threshold of 90% of thermal value.
11-10
Troubleshooting
DB VBus Link Fault
For proper operation, the DB1 monitors parameters from the Drive internally inside the ArmorStart. If the internal communications to the drive is lost, then this fault is issued. Since the DB1 can no longer provide resistor protection, the user must implement logic to open the input contactor.
Troubleshooting – Make sure that 3 phase line power and control power is applied to unit. Attempt to reset fault. If fault persists, replace control module.
DB Comm Fault
The communications link is monitored continuously. If the DB1 stops responding, then the MCB issues this fault. Since the DB1 can no longer provide resistor protection, the user must implement logic to open the input contactor.
Troubleshooting – Replace control module.
Table 11.8 IP67 Dynamic Brake Resistance Values
Line Voltage
[V AC]
230
460
600
DB1 Resistor
Part Number
284R-091P500-M*
284R-091P500-M*
284R-091P500-M*
284R-360P500-M*
284R-360P500-M*
284R-360P500-M*
284R-120P1K2-M*
284R-120P1K2-M*
284R-360P500-M*
284R-360P500-M*
284R-360P500-M*
284R-120P1K2-M*
284R-120P1K2-M*
* - Indicates cable length (0.5 m or 1.0 m).
Drive
[kW (Hp)]
0.37 (0.5)
0.75 (1)
1.5 (2)
0.37 (0.5)
0.75 (1)
1.5 (2)
2.2 (3)
3.3 (5)
0.37 (0.5)
0.75 (1)
1.5 (2)
2.2 (3)
3.3 (5)
Minimum DB
Resistance [Ω]
86.35
86.35
86.35
341.62
341.62
341.62
113.87
113.87
341.62
341.62
341.62
113.87
113.87
Maximum DB
Resistance [Ω]
97.91
97.91
97.91
387.33
387.33
387.33
129.11
129.11
387.33
387.33
387.33
129.11
129.11
Troubleshooting
11-11
Internal Drive Faults
A fault is a condition that stops the drive. There are two fault types.
Type
1
2
Description
Auto-Reset/Run
When this type of fault occurs, and Parameter 192 (Auto Rstrt Tries) Related
Parameter(s): 155, 158, 161, 193 is set to a value greater than 0, a userconfigurable timer, Parameter 193 (AutoRstrt Delay) Related Parameter(s): 192, begins. When the timer reaches zero, the drive attempts to automatically reset the fault. If the condition that caused the fault is no longer present, the fault will be reset and the drive will be restarted
Non-Resettable
This type of fault may require drive or motor repair, or is caused by wiring or programing errors. The cause of the fault must be corrected before the fault can be cleared.
Automatically Clearing Faults (Option/Step)
Clear a Type 1 Fault and Restart the Drive
1. Set Parameter 192 (Auto Rstrt Tries) to a value other than 0.
2. Set Parameter 193 (Auto Rstrt Delay) to a value other than 0.
Clear an Overvoltage, Undervoltage or Heatsink OvrTmp Fault without Restarting the Drive
1. Set 192 (Auto Rstrt Tries) to a value other than 0.
2. Set 193 (Auto Rstrt Delay) to 0.
Auto Restart (Reset/Run)
11-12
Troubleshooting
The Auto Restart feature provides the ability for the drive to automatically perform a fault reset followed by a start attempt without user or application intervention. This allows remote or unattended operation. Only certain faults are allowed to be reset. Certain faults
(Type 2) that indicate possible drive component malfunction are not resettable.Caution should be used when enabling this feature, since the drive will attempt to issue its own start command based on user selected programming.
No.
F2
F3
F4
F5
F6
F7
Fault
Auxiliary Input
F8 Heatsink OvrTmp
F12 HW OverCurrent
F13
F33
F38
F39
F40
F41
F42
F43
Phase U to Gnd
Phase V to Gnd
Phase W to Gnd
Phase UV Short
Phase UW Short
Phase VW Short
F48 Params Defaulted
F63 SW OverCurrent
F64
F70
F80
Power Loss
UnderVoltage
OverVoltage
Motor Stalled
Motor Overload
Ground Fault
Auto Rstrt Tries
Drive Overload
Power Unit
SVC Autotune
Table 11.9 Fault Types, Descriptions, and Actions
Type
➊
1
2
1
1
1
1
1
2
2
2
2
Description Action
Auxiliary input interlock is open.
DC bus voltage remained below
85% of nominal.
DC bus voltage fell below the minimum value.
DC bus voltage exceeded maximum value.
1.
Check remote wiring.
2.
Verify communications.
3.
4.
Monitor the incoming AC line for low voltage or line power interruption.
Check input fuses.
5.Monitor the incoming AC line for low voltage or line power interruption.
Drive is unable to accelerate motor.
7.Increase Parameter 139…167 (Accel Time x) or reduce load so drive output current does not exceed the current set by Parameter 189 (Current Limit 1).
Internal electronic overload trip
Heatsink temperature exceeds a predefined value.
The drive output current has exceeded the hardware current limit.
A current path to earth ground has been detected at one or more of the drive output terminals.
8.
An excessive motor load exists. Reduce load so drive output current does not exceed the current set by Parameter 133 (Motor OL Current).
9.
Verify Parameter 184 (Boost Select) setting
10. Check for blocked or dirty heat sink fins. Verify that ambient temperature has not exceeded 40
°C.
11. Replace internal fan.
12.Check programming. Check for excess load, improper programming of
Parameter 184 (Boost Select), DC brake volts set too high, or other causes of excess current.
13.Check the motor and external wiring to the drive output terminals for a grounded condition.
Drive unsuccessfully attempted to reset a fault and resume running for the programmed number of
Parameter 192 (Auto Rstrt Tries).
A phase to ground fault has been detected between the drive and motor in this phase
.
Excessive current has been detected between these two output terminals.
6.Monitor the AC line for high line voltage or transient conditions. Bus overvoltage can also be caused by motor regeneration. Extend the decel time or install dynamic brake option.
14.Correct the cause of the fault and manually clear.
15. Check the wiring between the drive and motor.
16. Check motor for grounded phase.
17. Replace starter module if fault cannot be cleared.
18. Check the motor and drive output terminal wiring for a shorted condition.
19. Replace starter module if fault cannot be cleared.
2
2
2
2
The drive was commanded to write default values to EEPROM.
Programmed Parameter 198 (SW
Current Trip) has been exceeded.
Drive rating of 150% for 1 min. or
200% for 3 sec. has been exceeded.
Failure has been detected in the drive power section.
The autotune function was either cancelled by the user or failed.
20. Clear the fault or cycle power to the drive.
21. Program the drive parameters as needed.
22.Check load requirements and Parameter 198 (SW Current Trip) setting.
23.Reduce load or extend Accel Time.
24. Cycle power.
25. Replace starter module if fault cannot be cleared.
26.Restart procedure.
Troubleshooting
No.
F81
F100
F122
Fault
Comm Loss
Parameter
Checksum
I/O Board Fail
Type
➊
2
2
2
Description
RS485 (DSI) port stopped communicating.
The checksum read from the board does not match the checksum calculated.
Failure has been detected in the drive control and I/O section.
Action
27. Turn off using Parameter 205 (Comm Loss Action).
28. Replace starter module if fault cannot be cleared.
29.Set Parameter 141 (Reset To Defaults) to option 1 Reset Defaults.
30. Cycle power.
31. Replace starter module if fault cannot be cleared.
➊
See Table 11.7 for internal drive fault types.Common Symptoms and Corrective Actions
11-13
Table 11.10 Motor Does Not Start
Cause(s)
No output voltage to the motor.
Drive is
Faulted
Indication
None
Flashing red status light
Corrective Action
Check the power circuit.
• Check the supply voltage.
• Check all fuses and disconnects
Check the motor.
• Verify that the motor is connected properly.
• Verify that I/O Terminal 01 is active.
• Verify that Parameter 136 (Start Source) matches your configuration.
• Verify that Parameter 195 (Reverse Disable) is not prohibiting movement.
Clear fault.
• Press Stop
• Cycle power
• Set Parameter 200 (Fault Clear) to option 1 Clear Faults.
• Cycle digital input is Parameter 151…154 (Digital Inx Sel) is set to option 7 Clear Fault.
Table 11.11 Drive Does Not Respond to Changes in Speed Command
Cause(s)
No value is coming form the source of the command.
Incorrect reference source is being selected via remote device or digital inputs.
Indication Corrective Action
The drive
Run indicator is lit and output is
0 Hz.
• Check Parameter 112 (Control Source) for correct source.
• If the source is an analog input, check wiring and use a meter to check for presence of signal.
• Check Parameter 102 (Commanded Freq) to verify correct command.
None • Check Parameter 112 (Control Source) for correct source.
• Check Parameter 114 (Dig In Status) to see if inputs are selecting an alternate source. Verify settings for
Parameters 151…154 (Digital Inx Sel).
• Check Parameter 138 (Speed Reference) for the source of the speed reference. Reprogram as necessary.
11-14
Troubleshooting
Table 11.12 Motor and/or Drive Will Not Accelerate to Commanded Speed
Cause(s) Indication
Acceleration time is excessive.
Excess load or short acceleration times force the drive into current limit, slowing, or stopping acceleration.
Speed command source or value is not as expected.
Programming is preventing the drive output from exceeding limiting values.
Torque performance does not match motor characteristics.
None
None
None
None
None
Corrective Action
Reprogram Parameter 139 (Accel Time 1) or Parameter
167 (Accel Time 2).
• Compare Parameter 103 (Output Current) with
Parameter 189 (Current Limit1).
• Remove excess load or reprogram Parameter 139
(Accel Time 1) or Parameter 167 (Accel Time 2).
• Check for improper setting of Parameter 184 (Boost
Select).
• Verify Parameter 102 (Commanded Freq).
• Check Parameter 112 (Control Source) for the proper
Speed Command.
Check Parameter 135 (Maximum Freq) to insure that speed is not limited by programming.
• Set motor nameplate full load amps in Parameter
226 (Motor NP FLA).
• Use Parameter 227 (Autotune) to perform
Static
Tune or Rotate Tune procedure.
• Set Parameter 225 (Torque Perf Mode) to option 0V/Hz.
Table 11.13 Motor Operation is Unstable
Cause(s) Indication
Motor data was incorrectly entered.
None
Corrective Action
1.
Correctly enter motor nameplate data into Parameters 131,
132, and 133.
2.
Enable Parameter 197 (Compensation).
3.
Use Parameter 184 (Boost Select) to reduce boost level.
Table 11.14 Drive Will Not Reverse Motor Direction
Cause(s)
Digital input is not selected for reversing control.
Motor wiring is improperly phased for reverse.
Reverse is disabled.
Indication
None
None
None
Corrective Action
Check (Digital Inx Sel). Choose correct input and program for reversing mode.
Switch two motor leads.
Check Parameter 195 (Reverse Disable).
Network Status LED
Off
Flashes green-red-off
Solid Green
Flashing Green
Flashing Red
Solid Red
Flashing Red and Green
Troubleshooting
11-15
Table 11.15 Drive Does Not Power Up
Cause(s)
No input power to drive.
Jumper between I/O Terminals P2 and P1 not installed and/or DC
Bus Inductor not connected.
Indication
None
None
Corrective Action
Check the power circuit.
• Check the supply voltage.
• Check all fuses and disconnects.
Install jumper or connect DC Bus Inductor.
DeviceNet Troubleshooting Procedures
The following table identifies possible causes and corrective actions when troubleshooting DeviceNet related failures using the
NETWORK STATUS LED.
Table 11.16 DeviceNet Troubleshooting Procedures
Definition
The device has not completed the initialization, is not on an active network, or may not be powered up.
While waiting to detect the network baud rate, the
LED will flash this pattern about every 3 seconds.
Possible Causes
Check to make sure the product is properly wired and configured on the network.
If the product stays in this state, it means that there is no set baud rate. Ensure that at least one device on the network has a set baud rate.
No action Required The device is operating in a normal condition, and is communicating to another device on the network.
The device is operating in a normal condition, and is on-line, but has no connection to another device.
This is the typical state for new devices.
Recoverable fault has occurred.
The device has detected a major error that has rendered it incapable of communicating on the network (Duplicate MAC ID, Bus-off, media issue).
The device has detected a network access error and is in a communication faulted state. The device has subsequently received and accepted an Identify
Communication Faulted Request Long Protocol message.
The device may need to be mapped to a master scanner, placed in a scanlist, or have another device communicate to it.
Check to make sure the PLC™ and scanner are operating correctly and that there are no media/ cabling issues. Check to see if other networked devices are in a similar state.
Troubleshooting should be done to ensure that the network is correct (terminators, lengths, etc.) and there is not a duplicate node problem. If other devices on the network appear to be operating fine and power cycling the device does not work, contact Technical Support.
This is not a common state for DeviceNet products.
Power cycling the device may resolve the problem; however, if the problem continues, it may be necessary to contact technical support.
11-16
Troubleshooting
Control Module Replacement
(Bulletin 280/281)
Removal of Starter Module
ATTENTION
To avoid shock hazard, disconnect main power before working on the controller, motor, or control devices
!
1) Disconnect from power source
2) Remove motor cable.
3) Loosen the four mounting screws.
4) Unplug the Control module from the base by pulling forward.
Installation of Control Module
5) Install control module.
6) Tighten four mounting screws.
7) Install motor cable.
Figure 11.1 Bulletin 280/281 Control Module Replacement
1
Motor Cable
2
3
4
Note: DeviceNet base module is shown
2
30 lb-in/
3.39 Nm
1
3
Control Module Replacement
(Bulletin 284)
Troubleshooting
11-17
ATTENTION
To avoid shock hazard, disconnect main power before working on the controller, motor, or control devices
!
Removal of Control Module
1) Disconnect from power source
2) Remove motor cable.
3) Loosen the four mounting screws.
4) Unplug the Control module from the base by pulling forward.
Installation of Control Module
5) Install control module.
6) Tighten four mounting screws.
7) Install all cables to starter module.
Figure 11.2 Bulletin 284 Control Module Replacement
1
Motor Cable
2
3
4
Note: DeviceNet base module is shown
2
30 lb-in/
3.39 Nm
1
3
11-18
Troubleshooting
Base Module Replacement
(Bulletin 280/281)
Removal of Base Module
To avoid shock hazard, disconnect main power
ATTENTION
before working on the controller, motor, or control devices
!
1) Disconnect from power source.
2) Remove motor cable, comunication cables and all others connected to the inputs and outputs.
3) Loosen four mounting screws on the Starter Module.
4) Unplug the Control Module from the base by pulling forward.
5) Loosen four mounting screws on the Terminal Access Cover Plate.
6) Remove cover plate.
7) Loosen terminal screws.
8) Remove all wires from terminal block.
Figure 11.3 Bulletin 280/281 Base Module Removal
Base Module
1
Input/Output Cable
2
4
Communication
Cable
2
Motor Cable
3
Control Module
Note: DeviceNet base module is shown
Terminal Access
Cover Plate
5
6
7
8
Base Module Replacement
(Bulletin 280/281)
Troubleshooting
Installation of Base Module
ATTENTION
To avoid shock hazard, disconnect main power before working on the controller, motor, or control devices
!
1) Mount Base Module with four mounting screws.
2) Re-install conduit fittings and wires onto terminal block.
3) Tighten the terminal screws.
4) Install terminal cover plate.
5) Tighten four mounting screws on the terminal access cover plate.
6) Install Control Module.
7) Tighten the four mounting screws.
8) Install motor cable, comunication cables and all others connected to the inputs and outputs.
Figure 11.4 Bulletin 280/281 Base Module Installation
Base Module
11-19
Terminal Access
Cover Plate
4
3
12 lb - in./1.36 Nm
5
46 - 50 lb-in
6
Control Module
2
1
Input/
Output
Cable
Base
Module
7
Communication
Cable
7
Motor Cable
11-20
Troubleshooting
Base Module Replacement
(Bulletin 284)
Removal of Base Module
ATTENTION
To avoid shock hazard, disconnect main power before working on the controller, motor, or control devices
!
1) Disconnect from power source.
2) Remove all cables from Starter Module, comunication cables and all others connected to the inputs and outputs.
3) Loosen four mounting screws on the Control Module.
4) Unplug Control Module from the base by pulling forward.
5) Loosen four mounting screws on the Terminal Access Cover Plate.
6) Remove cover plate.
7) Loosen terminal screws.
8) Remove all wires from terminal block.
9) Remove conduit fittings.
10) Loosen mounting screws and remove.
Figure 11.5 Bulletin 284 Base Module Removal
Base Module
Input/Output
Cable
1
Communication
Cable
2
2
Motor
Cable
4
3
Control
Module
5
Terminal Access
Cover Plate
6
7
8
Base Module Replacement
(Bulletin 284)
Troubleshooting
ATTENTION
To avoid shock hazard, disconnect main power before working on the controller, motor, or control devices
!
Installation of Base Module
1) Mount Base Module with four mounting screws.
2) Re-install conduit fittings and wires onto terminal block.
3) Tighten terminal screws.
4) Install terminal cover plate.
5) Tighten four mounting screws on the terminal access cover plate.
6) Install Control Module.
7) Tighten four mounting screws.
8) Install all cables to Control Module, comunication cables and all others connected to the inputs and outputs.
Figure 11.6 Bulletin 284 Base Module Installation
Base Module
11-21
Terminal Access
Cover Plate
4
3
12 lb - in./1.36 Nm
2
1
5
6
Input/
Output
Cable
Base Module
7
Control
Module
Communication
Cable
7
Motor
Cable
11-22
Troubleshooting
Figure 11.7 Control Voltage and Output Fuse Replacement
Output Fuse Control Voltage Fuse
Troubleshooting
Figure 11.8 Source Brake Fuse Replacement (Bulletin 284 only)
11-23
Source/ Control Brake Fuses
11-24
Notes:
Troubleshooting
Appendix
A
Specifications
Bulletin 280/281
Power Circuit
Control
Circuit
Short Circuit
Protection
Electrical Ratings
Rated Operation Voltage
Rate Insulation Voltage
Rated Impulsed Voltage
Dielectric Withstand
Operating Frequency
Utilization Category
Protection Against Shock
Rated Operating Current Max.
Rated Operation Voltage
Rate Insulation Voltage
Rated Impulsed Voltage
Dielectric Withstand
Overvoltage Category
Operating Frequency
Current Rating
SCPD Performance Type 1
Sym. Amps RMS @ 480Y/277V
0.5…2.5 A
1.1…5.5 A
3.2…16 A
SCPD List
Control Voltage
Contactor (Pick Up)
Contactor (Hold In)
Total Control Power (Pick Up)
Total Control Power (Hold In)
Outputs (2) 1 A max. each)
Total Control (Pick Up) with max. outputs
Total Control (Hold In) with max. outputs
UL/NEMA
380Y/220…480Y/277V AC
2200V AC
N/A
N/A
—
1500V AC
—
Size per NEC Group Motor
Units
Volts
Amps
Amps
VA (W)
VA (W)
Power Requirements
W/O HOA
24V DC
1.09
0.30
(26.0 W)
(7.2 W)
External Devices powered by Control Voltage
Amps 2
VA (W)
VA (W)
(65.0 W)
(50.0 W)
600V
4 kV
50/60 Hz
2.5 A
5.5 A
16 A
250V
50/60 Hz
65kA
30kA
IEC
380Y/220…480Y/277V AC
2500V AC
AC-3
IP2X
24V DC (+10%, -15%) A2 (should be grounded at voltage source)
4 kV
2000V AC
III
—
W/ HOA
24V DC
1.09
0.30
(26.0 W)
(7.2 W)
2
(73.0 W)
(58.0 W)
Input Ratings
Output Ratings (Sourced from Control Circuit)
Rated Operation Voltage
Input On-State Voltage Range
Input On-state Current
Input Off-state Voltage Range
Input Off-state Current
Off to On
On to Off
Input Compatibility
Number of inputs
Voltage Status Only
Current Available
Rated Operation Voltage
Rate Insulation Voltage
Backplane Current Load
Type of control circuit
Kind of Current
Conventional Thermal Current I
th
Type of Contacts
Number of Contacts
24V DC
10…26V DC
3.0 mA @ 10V DC
7.2 mA @ 24V DC
0…5V DC
<1.5 mA
Input Filter — Software Selectable
N/A
Settable from 0…64 ms in 1 ms increments
Settable from 0…64 ms in 1 ms increments
IEC 1+
4
Sensor Source
11…25V DC from DeviceNet™
50 mA MAX per Input, 200 mA Total
240V AC / 30V DC
250V
240V AC / 30V DC
250V
400 mA
50/60 Hz 50/60 Hz
Electromechanical Relay
AC/DC
Total of both outputs
≤
2 A
Normally Open (N.O.)
2
A-2
Environmental
Other Rating
Specifications
Bulletin 280/281, Continued
Electrical Ratings
Operating Temperature Range
Storage and Transportation temperature range
Altitude
Humidity
Pollution Degree
Enclosure Ratings
Approximate Shipping Weight
UL/NEMA IEC
-20…40°C (-4…104°F)
–25….85°C (–13…185°F)
2000 m
5…95% (non-condensing)
3
NEMA 4/12/13
6.8 kg (15 lbs.)
Mechanical Resistance to Shock
IP67 or IP69K
Operational
WireSize
Tightening Torque
Wire Strip Length
WireSize
Tightening Torque
Wire Strip Length
Conducted Radio Frequency Emissions
Radiated Emissions
Electrostatic Discharge
Radio Frequency Electromagnetic Field
Fast Transient
Surge Transient
Overload Current Range
Trip Classes
Trip Rating
Number of poles
DeviceNet Supply Voltage Rating
DeviceNet Input Current
External Devices powered by DeviceNet
Total w/max. Sensor Inputs (4)
DeviceNet Input Current Surge
Baud Rates
Distance Maximum
Certifications
Resistance to Vibration
1 G, 0.15 mm (0.006 in.) displacement
Power and Ground Terminals
Primary Terminal:
#16…#10 AWG
Secondary Terminal:
#18…#10 AWG
Primary Terminal: 10.8 in·lb
Secondary Terminal: 4.5 in·lb
0.35 in. (9 mm)
Control and Safety Monitor Inputs
Primary Terminal:
1.5…5.3 mm
2
Secondary Terminal:
0.8…5.3 mm
2
Primary Terminal: 1.2 N·m
Secondary Terminal: 0.5 N·m
#18…#10 AWG
6.2 in·lb
1.0 …4.0 mm
2
0.7 N·m
0.35 in. (9 mm)
EMC Emission levels
Class A
Class A
EMC immunity levels
4 kV contact and 8 kV Air
10 V/m
2 kV
1 kV L-L, 2 kV L-N (Earth)
Overload Characteristics
0.5…2.5 A
1.1…5.5 A
3.2…16 A
10, 15, 20
120% of FLC setting
3
DeviceNet Specifications
Range 11…25V DC, 24V DC Nominal
167 mA @ 24V DC - 4.0 W
364 mA @ 11V DC - 4.0 W
Sensors Inputs 4 * 50 mA - total 200 mA
367 mA @ 24V DC - 8.8 W
15 A for 250 µs
DeviceNet Communications
125, 250, 500 kbps
500 m (1630 ft) @ 125 kbps
200 m (656 ft) @ 250 kbps
100 m (328 ft) @ 500 kbps cULus (File No. E3125)
UL 508
EN/IEC 60947-4-1
CE Marked per Low Voltage Directive 73/23/EEC and EMC Directive 89/336/EEC
Bulletin 280/281, Continued
Specifications
Figure A.1 External Connections for Input Connector
1
2
5
4
3
Pin 1: +V Out
Pin 2: Input
Pin 3: Comm
Pin 4: Input
Pin 5: NC (No Connection)
Figure A.2 External Connections for Output Connector
2
1
3
Pin 1: PE
Pin 2: Return
Pin 3: Relay Out
Figure A.3 External Connections for DeviceNet™ Connector
A-3
Figure A.4 External Connections for Motor Connector (
≤
3 Hp @ 460V AC)
Pin 1: T1 - Black
Pin 2: T2 - White
Pin 3: T3 - Red
Pin 4: Ground - Green/Yellow
Figure A.5 External Connections for Motor Connector (> 3 Hp @ 460V AC)
Pin 1: T1 - Black
Pin 2: Ground - Green/Yellow
Pin 3: T3 - Red
Pin 4: T2 - White
Figure A.6 Safety Monitor Input (SM1/SM2)
Pin 1: SM2- White
Pin 2: SM1 - Brown
Pin 3: N/C- No connection
Pin 4: N/C- No connection
A-4
Specifications
Bulletin 280/281, Continued
Figure A.7 External Connections for Safety Input Power (A1/A2)
Pin 1: M - White
Pin 2: A1 - Brown
Pin 3: P - Black
Pin 4: A2 - Blue
Figure A.8 Overload Trip Curves
10000
1000
100
10
1
0 100 200 300 400 500 600 700
Cold
Hot
Class 15 Overload Curves
Class 15
10000
100
Cold
Hot
1
0 100 200 300 400 500 600 700
Class 20 Overload Curves
Class 20
10000
100
Cold
Hot
1
0 100 200 300 400 500 600 700
Specifications
A-5
Bulletin 284
Power Circuit
Short Circuit
Protection
Control
Circuit
Electrical Ratings
Rated Operation Voltage
Rate Insulation Voltage
Rated Impulsed Voltage
Dielectric Withstand
Operating Frequency
Utilization Category
Protection Against Shock
SCPD Performance
Sym. Amps RMS @ 480Y/277V
Current Rating
10 A
25 A
SCPD List
Rated Operation Voltage
Rate Insulation Voltage
Rated Impulsed Voltage
Dielectric Withstand
Overvoltage Category
Operating Frequency
UL/NEMA
380Y/220…480Y/277V AC
IEC
380Y/220…480Y/277V AC
2200V AC
600V
4 kV
50/60 Hz
2500V AC
N/A
N/A
AC-3
IP2X
65 kA
30 kA
Size per NEC Group Motor —
24V DC (+10%, -15%) A2 (should be grounded at voltage source)
250V 250V
— 4 kV
1500V AC
—
50/60 Hz
2000V AC
III
50/60 Hz
Total Control (Pick Up)
Total Control (Hold In)
Outputs (2) 1 A max. each
Total Control VA (Pick Up) with max. outputs
Total Control VA (Hold In) with max. outputs
Input Ratings
Control Voltage
Output Ratings (Sourced from Control Circuit)
Units
Volts
VA (W)
VA (W)
Amps
VA (W)
VA (W)
Rated Operation Voltage
Input On-State Voltage Range
Input On-state Current
Input Off-state Voltage Range
Input Off-state Current
Off to On
On to Off
Power Requirements
No Options
24V DC
(11.0 W)
(11.0 W)
Brake or Output Contactor
24V DC
(13.0 W)
(13.0 W)
External Devices powered by Control Voltage
Input Compatibility
Number of inputs
Voltage Status Only
Current Available
Rated Operation Voltage
Rate Insulation Voltage
Dielectric Withstand
Operating Frequency
Type of control circuit
Kind of Current
Conventional Thermal Current I
th
Type of Contacts
Number of Contacts
2
(59.0 W)
(59.0 W)
2
(61.0 W)
(61.0 W)
With Brake and Output Contactor
24V DC
(16.0 W)
(16.0 W)
2
(64.0 W)
(64.0 W)
24V DC
10…26V DC
3.0 mA @ 10V DC
7.2 mA @ 24V DC
0…5V DC
<1.5 mA
Input Filter — Software Selectable
Settable from 0…64 ms in 1 ms increments
N/A
Settable from 0…64 ms in 1 ms increments
IEC 1+
4
Sensor Source
11…25V DC from DeviceNet™
50 mA MAX per Input, 200 mA Total
240V AC / 30V DC
250V
240V AC / 30V DC
250V
1500V AC
50/60 Hz
2000V AC
50/60 Hz
Electromechanical Relay
AC/DC
Total of both outputs
≤
2 A
Normally Open (N.O.)
2
A-6
Bulletin 284, Continued
Environmental
Other Rating
Specifications
Electrical Ratings
Operating Temperature Range
Storage and Transportation temperature range
Altitude
Humidity
Pollution Degree
Enclosure Ratings
Approximate Shipping Weight
UL/NEMA IEC
-20…40°C (-4…104°F)
–25….85°C (–13…185°F)
2000 m
5…95% (non-condensing)
3
NEMA 4/12/13
18.1 kg (40 lbs.)
Mechanical Resistance to Shock
IP67 or IP69K
Operational
WireSize
Tightening Torque
Wire Strip Length
WireSize
Tightening Torque
Wire Strip Length
Conducted Radio Frequency Emissions
Radiated Emissions
Electrostatic Discharge
Radio Frequency Electromagnetic Field
Fast Transient
Surge Transient
Trip Class
Overload Protection
Number of poles
DeviceNet Supply Voltage Rating
DeviceNet Input Current
External Devices powered by DeviceNet
Total w/max. Sensor Inputs (4)
DeviceNet Input Current Surge
Baud Rates
Distance Maximum
Certifications
Resistance to Vibration
1 G, 0.15 mm (0.006 in.) displacement
Power and Ground Terminals
Primary Terminal:
#16…#10 AWG
Secondary Terminal:
#18…#10 AWG
Primary Terminal: 10.8 in·lb
Secondary Terminal: 4.5 in·lb
0.35 in. (9 mm)
Control and Safety Monitor Inputs
#18…#10 AWG
6.2 in·lb
Primary Terminal:
1.5…5.3 mm
2
Secondary Terminal:
0.8…5.3 mm
2
Primary Terminal: 1.2 N·m
Secondary Terminal: 0.5 N·m
1.0…4.0 mm
0.7 N·m
2
0.35 in. (9 mm)
EMC Emission levels
Class A
Class A
EMC immunity levels
4 kV contact and 8 kV Air
10 V/m
2 kV
1 kV L-L, 2 kV L-N (Earth)
Overload Characteristics
10
I
2 t overload protection - 150% for 60 seconds, 200% for 30 seconds
3
DeviceNet Specifications
Range 11…25V DC, 24V DC Nominal
167 mA @ 24V DC - 4.0 W
364 mA @ 11V DC - 4.0 W
Sensors Inputs 4 * 50 mA - total 200 mA
367 mA @ 24V DC - 8.0 W
15 A for 250 µs
DeviceNet Communications
125, 250, 500 kbps
500 m (1630 ft) @ 125 kbps
200 m (656 ft) @ 250 kbps
100 m (328 ft) @ 500 kbps cULus (File No. E207834)
UL 508C
EN 50178, EN 61800-3, EN 60947-1
CE Marked per Low Voltage Directive 73/23/EEC and EMC Directive 89/336/EEC
Specifications
A-7
Bulletin 284, Continued
Drive Ratings
Line Voltage
380
460
IP67 Dynamic Brake Resistor Ratings
Frequency
50
60
3-Phase kW Rating
0.4
0.75
1.5
2.2
3.0
—
—
—
—
—
3-Phase Hp Rating
—
0.5
1
2
—
—
—
—
3
5
Output Current (A)
7.6
1.4
2.3
4.0
1.4
2.3
4.0
6.0
6.0
7.6
Input Current (A)
2.15
3.80
6.40
9.00
12.40
1.85
3.45
5.57
8.20
12.5
Table A.1 IP67 Dynamic Brake Resistor
Drive and
Motor Size kW
Part Number
Resistance
Ohms ± 5%
Application Type 1
Continuous
Power kW
Max Energy kJ
Max
Braking
Torque % of
Motor
Braking
Torque % of
Motor
Duty
Cycle %
Application Type 2
Braking
Torque % of
Motor
Duty
Cycle %
400-480 Volt AC Input Drives
0.37 (0.5) 284R-360P500-M*
0.75 (1) 284R-360P500-M*
1.5 (2)
2.2 (3)
4 (5)
284R-360P500-M*
284R-120P1K2-M*
284R-120P1K2-M*
360
360
360
120
120
0.086
0.086
0.086
0.26
0.26
17
17
17
52
52
305%
220%
110%
197%
124%
100%
100%
100%
100%
100%
47%
23%
12%
24%
13%
150%
150%
110%
150%
124%
31%
15%
11%
16%
10%
* - Indicates cable length (0.5 m or 1.0 m).
Note: Always check the resistor ohms against minimum resistance for drive being used.
Note: Duty Cycle listed is based on full speed to zero speed deceleration. For constance regen at full speed, duty cycle capability is half of what is listed. Application Type 1 represents maximum capability up to 100% braking torque where possible. Application Type 2 represents more than 100% braking torque where possible, up to a maximum of 150%.
Figure A.9 Dynamic Brake Resistor
A
H
C
B
D
J
E
F
G
A-8
Specifications
Bulletin 284, Continued
Figure A.10 External Connections for Input Connector
Figure A.11 External Connections for Output Connector
Figure A.12 External Connections for DeviceNet™ Connector
Figure A.13 External Connections for Motor Connector
Figure A.14 External Connections for Control/Source Brake Connector
Pin 1: L1 - Black
Pin 2: GND - Green/Yellow
Pin 3: L2 - White
Bulletin 284, Continued
Specifications
Figure A.15 External Connections for Dynamic Brake Connector
Pin 1: GND - Green/Yellow
Pin 2: BR+ - Black
Pin 3: BR- - White
A-9
Figure A.16 External Connections for 0…10V Analog Input
Pin 1: 10V DC
Pin 2: 0…10V Input
Pin 3: Analog Common
Pin 4: Analog Output
Pin 5: RS485 Shield
Figure A.17 Safety Monitor Input (SM1/SM2)
Pin 1: SM2- White
Pin 2: SM1 - Brown
Pin 3: N/C- No connection
Pin 4: N/C- No connection
Figure A.18 External Connections for Safety Input Power (A1/A2)
Pin 1: M - White
Pin 2: A1 - Brown
Pin 3: P - Black
Pin 4: A2 - Blue
Overload Curves
% of P132 (Motor NP Hertz) % of P132 (Motor NP Hertz)
% of P132 (Motor NP Hertz)
A-10
Specifications
ArmorConnect™ Three-Phase
Power Media
Female straight
88.9 (3.50)
38.6
(1.52)
Female 90 deg.
49.5 - 57.1
(1.95 - 2.25)
74.7
(2.94)
38.6
(1.52)
Trunk Cables
Specifications
Certifications
Standards Compliance
Mechanical
Coupling Nut
Housing
Insert
Cable Diameter
Electrical
Contacts
Cable
Cable Rating
UL 2237
Black Anodized Aluminum or 316 Stainless Steel
Black PVC
Black PVC
0.775 in. +/- 0.12 in. (19.68 mm +/- 0.5 mm)
Assembly Rating
Copper Alloy with Gold over Nickel Plating
Black PVC, dual rated UL TC/Open Wiring and STOOW
600V AC/DC
600V @ 25 A, Symmetrical Amps RMS Fault: 65 kA when used with Class CC, T, or J type fuses
Environmental
Enclosure Type Rating
Operating Temperature
IP67, NEMA 4; IP69K 1200 psi washdown
UL Type TC 600V 90 °C Dry 75 °C Wet, Exposed Run (ER) or
MTW 600V 90 °C or STOOW 105 °C 600V -
CSA STOOW 600V FT2
Dimensions
Dimensions are approximate. Illustrations are not drawn to scale.
Male straight
88.9 (3.50)
38.6
(1.52)
Male 90 deg.
49.5 - 57.1
(1.95 - 2.25)
74.7
(2.94)
38.6
(1.52)
Pinout and Color Code
Specifications
Face View Pinout
4-pin
A-11
1
2
4
3
1
2
4
3
Color Code
Female
1 Black 3 Red
2 Green/Yellow Extended PIN 4 White
Drop Cables
Specifications
Certifications
Standards Compliance
Mechanical
Coupling Nut
Housing
Insert
Cable Diameter
Electrical
Contacts
Cable
Cable Rating
Assembly Rating
Environmental
Enclosure Type Rating
Operating Temperature
UL
UL 2237
Male
Black Anodized Aluminum or 316 Stainless Steel
Black PVC
Black PVC
0.43 in. +/- 0.12 in. (10.9 mm +/- 0.5 mm)
Brass with Gold over Nickel Plating
Black PVC, dual rated UL TC/Open Wiring and STOOW
600V AC/DC
600V @ 10 or 15 A, Symmetrical Amps RMS Fault: 65 kA when used with Class CC, T, or J type fuses
IP67, NEMA 4; IP69K 1200 psi washdown
UL Type TC 600V 90 °C Dry 75 °C Wet, Exposed Run (ER) or
MTW 600V 90 °C or STOOW 105 °C 600V -
CSA STOOW 600V FT2
A-12
Specifications
Female straight
56.1 (2.21)
25.4
(1.00)
Female 90 deg.
32.5 (1.28)
40.4
(1.59)
25.4
(1.00)
Dimensions
Dimensions are approximate. Illustrations are not drawn to scale.
Male straight
59.4 (2.34)
25.4
(1.00)
Male 90 deg.
32.5 (1.28)
43.2
(1.70)
Pinout and Color Code
25.4
(1.00)
Face View Pinout
4-pin
Color Code
1 Black
2 White
Female
Power Tees & Reducer
Specifications
Certifications
Standards Compliance
Mechanical
Coupling Nut
Housing
Insert
Electrical
Contacts
Voltage
Assembly Rating
Male
3 Red
4 Green/Yellow Extended PIN
UL
UL 2237
Black Anodized Aluminum (Trunk) or 316 Stainless Steel,
Black Zinc Diecast (Drop) or 316 Stainless Steel
Black PVC
Black PVC
Copper Alloy with Gold over Nickel Plating
600V AC/DC trunk Tee: 25 A
Reducing Tee: Trunk 25 A/ Drop 15 A
Reducer: 15 A
Symmetrical Amps RMS Fault: 65 kA when used with Class
CC, T, or J type fuses
Environmental
Enclosure Type Rating
IP67, NEMA 4; IP69K 1200 psi washdown
Specifications
Dimensions
Dimensions are approximate. Illustrations are not drawn to scale.
Reducer
38.1
(1.50)
112.5
(4.43)
M35
MALE
#1
#2
#3
#4
BLACK
RED
GREEN/YELLOW
WHITE
M22
FEMALE
#1
#2
#3
#4
25.4
(1.00)
Power Tee
WIRING DIAGRAM
#2-GREEN/YELLOW
#1-BLACK
KEYWAY
73.7 (2.90)
108.0
(4.25)
EXTENDED PIN 2
GREEN/YELLOW LEAD
#3 RED
#1 BLACK
#2 GREEN/YELLOW
#4 WHITE
#4-WHITE
#3-RED
19.0
(0.75)
FEMALE
#3-RED
#2-WHITE
38.0
(1.50)
WIRING DIAGRAM
Power Tee - reducing drop
#4-GREEN/YELLOW
KEYWAY
#1-BLACK
Assembly Rating
65.3 (2.57)
108.0
(4.25)
EXTENDED PIN 2
GREEN/YELLOW LEAD
#3 RED
#1 BLACK
#2 GREEN/YELLOW
#4 WHITE
19.0
(0.75)
38.0
(1.50)
Pinout and Color Code
Color Code
Face View Pinout
4-pin
Quick Change Connector
FEMALE
WIRING DIAGRAM
Mini Connector
A-13
A-14
Specifications
Trunk Tee: 25 A A
Female
1 Black
2 Green/Yellow Extended PIN
Male
3 Red
4 White
Reducing Tees
Trunk: 25 A
Drop: 15 A
B
Female
1 Black
2 Green/Yellow Extended PIN
Male
3 Red
4 White
Female
1 Black
2 Green/Yellow Extended PIN
3 Red
4 White
Reducer
Trunk: 25 A
Drop: 15 A
C
Male
1 Black
2 Green/Yellow Extended PIN
3 Red
4 White
Female
1 Black
2 Green/Yellow Extended PIN
3 Red
4 White
Power Receptacles
Specifications
Certifications
Standards Compliance
Mechanical
Insert
Receptacle Shell Material
Electrical
Contacts
Cable Rating
Assembly Rating
Environmental
Enclosure Type Rating
UL
UL 2237
Black PVC
Black Anodized Aluminum (female) and Zinc DieCast, Black
E-Coat (male), or 316 Stainless Steel
Copper Alloy with Gold over Nickel Plating (Trunk), Brass with Gold over Nickel Plating (Drop)
600V AC/DC
4 pin - 16 AWG, 600V @ 10 A
4 pin - 14 AWG, 600V @ 15 A
4 pin - 10 AWG, 600V @ 25 A
Symmetrical Amps RMS Fault: 65 kA when used with Class
CC, T, or J type fuses
IP67, NEMA 4; IP69K 1200 psi washdown
18.49
(0.728)
280-M22F-M1
Specifications
Dimensions
Dimensions are approximate. Illustrations are not drawn to scale.
45.26
(1.782)
280-M35F-M1
A-15
3.81
(0.150)
7.32
(0.288)
15.95
(0.628)
12.09 (0.476)
1000
(39.37)
280-M22M-M1
7.62 +/-2.54
(0.30 +/- 0.10)
51.61
(2.032)
11.89 (0.468)
6.35 (0.25)
1000
(39.37)
280-M35M-M1
28.04
(1.104)
4.75
(0.187)
Assembly Rating Color Code
1000
(39.37)
6.35 (0.25)
Pinout and Color Code
Quick Change Connector
Face View Pinout
4-pin
Mini Connector
11.89 (0.468)
1000
(39.37)
Mini Connector
16 AWG 600V, 10 A
14 AWG 600V, 15 A
10 AWG 600V, 25 A
A
B
Female
1 Black
2 Green/Yellow Extended PIN
Male
3 Red
4 White
1 Black
2 White
Female Male
3 Red
4 Green/Yellow Extended PIN
A-16
Notes:
Specifications
Appendix
B
Bulletin 280/281 CIP Information
Electronic Data Sheets
DOL Type Product Codes and Name
Strings
Electronic Data Sheets (EDS) files are specially formatted ASCII files that provide all of the information necessary for a configuration tool (e.g. RSNetWorx™ for DeviceNet™) to access and alter the parameters of the device. The EDS file contains all of the device information: number of parameters, groupings, parameter name, minimum, maximum, and default values, units, data format and scaling.
EDS files for all the ArmorStart ® Distributed Motor Controller units are available from the Internet at
http://www.ab.com/networks/eds.
They may also be built automatically by some configuration tools since all of the information necessary for a basic EDS file may be extracted from the ArmorStart Distributed Motor Controller.
Product codes for DOL starters (and DOL Reversing starters) are based on the Overload relay current rating and the control power rating of the starter. The following table lists the product codes for the
Bulletin 280 Distributed Motor Controllers:
Table B.1 Bul. 280 Distributed Motor Controller Product Codes and Name
Strings
280D Device
Type
22
22
22
Product Code
0xA1
0xA2
0xA3
Contactor Size
Code
100C-12
100C-12
100C-23
Overload
Current Rating
0.5…2.5 A
1.1…5.5 A
3.2…16 A
Control Power
Voltage
24V DC
24V DC
24V DC
DOL Reversing Type Product Codes and Name String
The following table lists the product codes for the Bulletin 281
Distributed Motor Controllers:
Table B.2 Bul. 281 Distributed Motor Controller Product Codes and Name
Strings
281D
Device Type
22
22
22
Product
Code
0xE1
0xE2
0xE3
Contactor Size
Code
100C-12
100C-12
100C-23
Overload
Current Rating
0.5…2.5 A
1.1…5.5 A
3.2…16 A
Control Power
Voltage
24V DC
24V DC
24V DC
B-2
Bulletin 280/281 CIP Information
DeviceNet Objects
The ArmorStart Distributed Motor Controller supports the following
DeviceNet object classes:
Table B.3 DeviceNet Object Classes
Class
0x0010
0x001D
0x001E
0x0029
0x002B
0x002C
0x00B4
0x0001
0x0002
0x0003
0x0004
0x0005
0x0008
0x0009
0x000F
Object
Identity
Message Router
DeviceNet
Assembly
Connection
Discrete Input Point
Discrete Output Point
Parameter Object
Parameter Group Object
Discrete Input Group
Discrete Output Group
Control Supervisor
Acknowledge Handler
Overload Object
DN Interface Object
Bulletin 280/281 CIP Information
B-3
Identity Object — CLASS CODE
0x0001
The following class attributes are supported for the Identity Object:
Table B.4 Identity Object Class Attributes
Attribute ID
1
Access Rule
Get
Name
Revision
Data Type
UINT
Value
1
Identity Objects
Attribute ID Access Rule
1
2
3
Get
Get
Get
4 Get
5
6
7
8
9
10
Get
Get
Get
Get
Get
Get/Set
Name
Vendor
Device Type
Product Code
Revision
Major Revision
Minor Revision
A single instance of the Identity Object is supported. The following instance attributes are supported.
Table B.5 Identity Object Instance Attributes
Data Type
UINT
UINT
UINT
Structure of:
USINT
USINT
Value
1
22 or 133
See Table B.1 and Table B.2
Indicates Software Firmware Revision Number
Status WORD
Bit 0 — 0=not owned; 1=owned by master
Bit 2 — 0=Factory Defaulted; 1=Configured
Bit 8 — Minor Recoverable fault
Bit 9 — Minor Unrecoverable fault
Bit 10 — Major Recoverable fault
Bit 11 — Major Unrecoverable fault
Unique Number for Each Device Serial Number
Product Name
String Length
ASCII String
State
Configuration Consistency Value
Heartbeat Interval
UDINT
Structure of:
USINT
STRING
USINT
UINT
USINT
Product code specific
See Table B.1 and Table B.2
Returns the value “3=Operational”
Unique value depending on output of the parameter checksum algorithm.
In seconds. Default = 0
The following common services are implemented for the Identity
Object:
Table B.6 Identity Object Common Services
Service
Code
0x0E
0x05
0x10
Implemented for:
Class
Yes
No
No
Instance
Yes
Yes
Yes
Service
Name
Get_Attribute_Single
Reset
Set_Attribute_Single
Message Router — CLASS CODE
0x0002
No class or instance attributes are supported. The message router object exists only to rout explicit messages to other objects.
B-4
Bulletin 280/281 CIP Information
DeviceNet Object — CLASS CODE
0x0003
The following class attributes are supported for the DeviceNet Object:
Table B.7 DeviceNet Object Class Attributes
Attribute ID
1
Access Rule
Get
Name
Revision
Data Type
UINT
Value
2
A single instance (instance 1) of the DeviceNet Object is supported.
The following instance attributes are supported.
Table B.8 DeviceNet Object Instance Attributes
Attribute ID Access Rule
1 Get/Set
2
5
8
Get/Set
Get
Get
Name
Node Address
Baud Rate
Allocation Info
Allocation Choice
Master Node Addr
MAC ID Switch Value
Data Type
USINT
USINT
Value
0 - 63
0=125K
1=250K
2=500K
Structure of:
BYTE
USINT
BOOL
Allocation_byte*
0…63 = address
255 = unallocated
0-63
*Allocation_byte Bit 0
Bit 1
Bit 4
Bit 5
Bit 6
Explicit messaging
Polled I/O
COS I/O
Cyclic I/O
Acknowledge Suppression
The following services are implemented for the DeviceNet Object:
Table B.9 DeviceNet Object Common Services
Service
Code
0x0E
0x10
0x4B
Implemented for:
Class
Yes
No
Instance
Yes
Yes
No Yes
0x4C No Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
Allocate_Master/Slave
_Connection_Set
Release_Master/Slave
_Connection_Set
Assembly Object — CLASS CODE
0x0004
Bulletin 280/281 CIP Information
B-5
The following class attributes are supported for the Assembly Object:
Table B.10 Assembly Object Class Attributes
Attribute ID
2
Access Rule
Get
Name
Max Instance
Data Type
UINT
Value
190
All of the various instances of the assembly object will support attribute 3. The following table summarizes the various instances that are supported:
Table B.11 DeviceNet Assembly Object Instance Attributes
Attribute ID
3
52
120
160
161
162
163
185
186
187
189
190
181
182
183
184
Type
Consumed
Produced
Produced
Consumed
Produced
Consumed
Produced
Produced
Consumed
Produced
Produced
Produced
Produced
Consumed
Produced
Produced
Description
Required ODVA Consumed Instance
Required ODVA Produced Instance
Custom Parameter Based Word Wise Assembly
Default Consumed Instance for DOL and SoftStart units
Default Produced Instance for DOL and SoftStart units
Standard Consumed Instance for DOL and SoftStart with
Network Inputs
Standard Produced Instance for DOL and SoftStart with
Network Outputs
User Inputs
Consumed Network Bits (a.k.a Network Inputs)
Produced Network Bits (a.k.a. Network Outputs)
Trip Status Bits
Starter Status Bits
DeviceNet Status Bits
Starter Control Bits
Warning Status Bits
1779-ZCIO Bits
Custom Parameter Based
“Word-wise” I/O Assemblies
Table B.12 Custom Parameter Based “Word-Wise” (Produced) Assembly
Instance 120
Instance 120
Word Byte Bit 7
0
1
2
3
6
7
4
5
2
3
0
1
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value of the parameter pointed to by “Prod Assy Word 0” Param (low byte)
Value of the parameter pointed to by “Prod Assy Word 0” Param (high byte)
Value of the parameter pointed to by “Prod Assy Word 1” Param (low byte)
Value of the parameter pointed to by “Prod Assy Word 1” Param (high byte)
Value of the parameter pointed to by “Prod Assy Word 2” Param (low byte)
Value of the parameter pointed to by “Prod Assy Word 2” Param (high byte)
Value of the parameter pointed to by “Prod Assy Word 3” Param (low byte)
Value of the parameter pointed to by “Prod Assy Word 3” Param (high byte)
B-6
Bulletin 280/281 CIP Information
“Word-wise” Bit-Packed
Assemblies
Assemblies whose instance numbers are 180…189 are all one word
(16 bits) long. They can be used “stand alone”, but their main use is to assemble information for EDS file parameters. These “word-wise” assemblies become the building blocks for the custom parameter-based “word-wise” assemblies described above. Note that these “word-wise” assemblies are designed for use with
DeviceLogix™, so their contents reflect the various words in the
DeviceLogix data table.
Table B.13 Instance 181 — This is a “Read Only” Status Assembly
Byte Bit 7
0
1
—
Bit 6
—
Instance 181 — Hardware Inputs 1…16
Bit 5
—
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
— Input 3 Input 2 Input 1 Input 0
Reserved
Table B.14 Instance 182 — This is a “Read/Write” Control Assembly
Instance 182 — Consumed Network Inputs 1…16
Byte Bit 7
0
1
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Net Input
8
Net Input
7
Net Input
6
Net Input
5
Net Input
4
Net Input
3
Net Input
2
Net Input
1
Net Input
16
Net Input
15
Net Input
14
Net Input
13
Net Input
12
Net Input
11
Net Input
10
Net Input
9
Table B.15 Instance 183 This is a “Read Only” Status Assembly
Instance 183 — Produced Network Outputs 1…15
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 Net Out 8 Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 8 Net Out 1
1 Reserved
Net Out
15
Net Out
14
Net Out
13
Net Out
12
Net Out
11
Net Out
10
Net Out 9
Table B.16 Instance 184 This is a “Read Only” Status Assembly
Byte Bit 7
0
1
—
—
Bit 6
In SS Flt
—
Instance 184 — Trip Status
Bit 5
Control
Power
Bit 4
—
Bit 3
—
Bit 2
Phase
Loss
Hw Flt EEPROM — —
Bit 1
OL Trip
DNet
Power
Bit 0
Short
Circuit
Phase
Imbal
Standard Distributed Motor
Controller I/O Assemblies
Bulletin 280/281 CIP Information
B-7
Table B.17 Instance 185 This is a “Read Only” Status Assembly
Byte Bit 7
0
1
At Ref
—
Bit 6
—
—
Instance 185 — Starter Status
Bit 5
Net Ctl
Status
140M On
Bit 4
Ready
HOA
Stat.
Bit 3
Running
Rev
Keypad
Hand
Bit 2
Running
Fwd
Bit 1 Bit 0
Warning Tripped
— — —
Table B.18 Instance 186 This is a “Read Only” Status Assembly
Instance 186 — DeviceNet Status
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 — — — I/O Idle I/O Flt Exp Flt I/O Cnxn Exp Cnxn
1 ZIP FLT ZIP4 CNX ZIP3 FLT ZIP2 CNX ZIP2 FLT ZIP2 CNX ZIP1 FLT ZIP1 CNX
Table B.19 Instance 187 This is a “Read/Write” Assembly
Byte Bit 7
0
1
Bit 6
User Out
B
—
User Out
A
—
Instance 187 — Starter Control Bits
Bit 5 Bit 4 Bit 3
—
—
—
—
—
—
Bit 2
Fault
Reset
—
Bit 1 Bit 0
Run Rev Run Fwd
— —
Table B.20 Instance 189 This is a “Read-Only” Assembly
Byte Bit 7
0
1
—
—
Bit 6
Instance 189 — Warning Status Bits
Bit 5 Bit 4
IO
Warning
Control
Power
Warning
—
— HW Warn —
Bit 3
—
—
Bit 2
PL
Warning
—
Bit 1
—
Bit 0
—
DN Warn PI Warn
Standard Distributed Motor Controller IO Assemblies are available on all Starter Types.
Standard Distributed Motor Controller Output (Consumed)
Assemblies
Table B.21 Instance 3 is the required output (consumed) assembly defined in the DeviceNet Motor Starter Profile
Byte Bit 7
0 —
Bit 6
—
Instance 3 — ODVA Starter
Bit 5
—
Bit 4
—
Bit 3
—
Bit 2
—
Bit 1 Bit 0
— Run Fwd
B-8
Bulletin 280/281 CIP Information
Table B.22 Instance 160 is the default output (consumed) assembly for
Standard Distributed Motor Controllers
Byte
0
Instance 160 — Default Consumed Standard Distributed Motor Controller
Bit 7
User Out
B
Bit 6
User Out
A
Bit 5
—
Bit 4
—
Bit 3
—
Bit 2
Fault
Reset
Bit 1 Bit 0
Run Rev Run Fwd
Table B.23 Instance 162 is the standard output (consumed) assembly with
Network Inputs
Instance 162 — Standard Consumed Starter with Network Inputs
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0
User Out
B
User Out
A
— — —
Fault
Reset
Run Rev Run Fwd
1 Net In 8 Net In 7 Net In 6 Net In 5 Net In 4 Net In 3 Net In 2 Net In 1
2 Net In 16 Net In 15 Net In 14 Net In 13 Net In 12 Net In 11 Net In 10 Net In 9
Standard Distributed Motor Controller Input (Produced)
Assemblies
Table B.24 Instance 52 is the required input (produced) assembly defined in the DeviceNet Motor Starter Profile
Byte Bit 7
— —
Bit 6
—
Instance 52 — ODVA Starter
Bit 5
—
Bit 4
—
Bit 3
—
Bit 2
Running
Bit 1
—
Table B.25 Instance 161 is the default input (produced) assembly for
Standard Distributed Motor Controllers
Bit 0
Fault
Byte Bit 7
0
Instance 161 — Default Producted Standard Distributed Motor Controller
—
Bit 6
—
Bit 5
—
Bit 4
Ready
Bit 3
Running
Rev
Bit 2
Running
Fwd
Bit 1 Bit 0
Warning Tripped
1 — — 140M On
HOA
Stat.
User In 3 User In 2 User In 1 User In 0
Bulletin 280/281 CIP Information
Table B.26 Instance 163 is the standard input (produced) assembly with
Network Outputs and ZIP CCV
B-9
Instance 163 — Standard Produced Starter with Network Outputs
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 — — — Ready
Running
Rev
Running
Fwd
Warning Tripped
1
4
5
— — 140M On
HOA
Stat.
User In 4 User In 3 User In 2 User In 1
2 Net Out 8 Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 2 Net Out 1
3
Logic
Enabled
Net Out
15
Net Out
14
Net Out
13
Net Out
12
Net Out
11
Net Out
10
Net Out 9
ZIP CCV (Low)
ZIP CCV (High)
Table B.27 Instance 190 is the 1999-ZCIO Native Format Produced Assembly
Instance 190 — 1799-ZCIO Native Format Produced Assembly
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0
1
5
6
Running
Rev
Reserved
Running
Fwd
Logic
Enabled
Warning Tripped Input 3
Reserved
Input 2 Input 1
140M On
Input 0
HOA
2 Reserved
User Out
B
User Out
A
Run Rev Run Fwd
3 Reserved
4 Net Out 8 Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 2 Net Out 1
ZIP CCV (Low)
ZIP CCV (High)
B-10
Bulletin 280/281 CIP Information
Connection Object — CLASS CODE
0x0005
Attribute
ID
1
4
5
8
9
6
7
12
13
14
15
16
2
3
Access
Rule
Get
Get
Get
Get
Get
Get
Get
Get
Get/Set
Get
Get
Get
Get
Get
No class attributes are supported for the Connection Object
Multiple instances of the Connection Object are supported, instances
1, 2, and 4 from the group 2 predefined master/slave connection set, instances 5 and 6 are available through explicit UCMM connections.
Instance 1 is the Predefined Group 2 Connection Set Explicit
Message Connection. The following instance 1 attributes is supported:
Table B.28 Connection Object Instance 1 Attributes
Name
Data
Type
State
Instance Type
Transport Class Trigger
Produced Connection ID
Consumed Connection ID
Initial Comm Characteristics
Produced Connection Size
Consumed Connection Size
Expected Packet Rate
Watchdog Action
Produced Connection Path Length
Produced Connection Path
Consumed Connection Path Length
Consumed Connection Path
USINT
USINT
USINT
UINT
UINT
USINT
UINT
UINT
UINT
USINT
UINT
UINT
Value
0=nonexistant
1=configuring
3=established
4=timed out
0=Explicit
Message
0x83 — Server,
Transport Class 3
10xxxxxx011 xxxxxx = node
address
10xxxxxx100 xxxxxx = node
address
0x22
0x61
0x61 in ms
01 = auto delete
03 = deferred delete
0
Empty
0
Empty
Attribute ID Access Rule
1
4
12
13
14
15
16
5
8
9
6
7
2
3
Get
Get
Get
Get
Get
Get
Get
Get
Get/Set
Get/Set
Get
Get/Set
Get
Get/Set
Bulletin 280/281 CIP Information
B-11
Name
State
Instance Type
Instance 2 is the Predefined Group 2 Connection Set Polled I/O
Message Connection. The following instance 2 attributes are supported:
Table B.29 Connection Object Instance 2 Attributes
Transport Class Trigger
Produced Connection ID
Consumed Connection ID
Initial Comm Characteristics
Produced Connection Size
Consumed Connection Size
Expected Packet Rate
Watchdog Action
Produced Connection Path Length
Produced Connection Path
Consumed Connection Path Length
Consumed Connection Path
Data Type
USINT
USINT
USINT
UINT
UINT
USINT
UINT
UINT
UINT
USINT
UINT
UINT
Value
0=nonexistant
1=configuring
3=established
4=timed out
1= I/O Connection
0x82 — Server, Transport Class 2
(If alloc_choice != polled and ack suppression is enabled then value = 0x80)
01111xxxxxx xxxxxx=node
address
10xxxxxx101 xxxxxx=node
address
0x21
0 to 8
0 to 8 in ms
0=transition to timed out
1=auto delete
2=auto reset
8
21 04 00 25 (assy inst) 00 30 03
8
21 04 00 25 (assy inst) 00 30 03
6
7
8
9
12
13
14
15
16
B-12
Attribute ID
1
2
3
4
5
Get
Get
Get
Get/Set
Get
Get
Get
Get
Get/Set
Bulletin 280/281 CIP Information
Access Rule
Get
Get
Get
Get
Get
Instance 4 is the Predefined Group 2 Connection Set Change of State/
Cyclic I/O Message Connection. The following instance 4 attributes are supported:
Table B.30 Connection Object Instance 4 Attributes
Name
State
Instance Type
Transport Class Trigger
Produced Connection ID
Consumed Connection ID
Initial Comm Characteristics
Produced Connection Size
Consumed Connection Size
Expected Packet Rate
Watchdog Action
Produced Connection Path Length
Produced Connection Path
Consumed Connection Path Length
Consumed Connection Path
Data Type
USINT
USINT
USINT
UINT
UINT
USINT
UINT
UINT
UINT
USINT
UINT
UINT
Value
0=nonexistant
1=configuring
3=established
4=timed out
1=I/O Connection
0x00 (Cyclic, unacknowledged)
0x03 (Cyclic, acknowledged)
0x10 (COS, unacknowledged)
0x13 (COS, acknowledged)
01101xxxxxx xxxxxx=node
address
10xxxxxx101 xxxxxx=node
address
0x02 (acknowledged)
0x0F (unacknowledged)
0 to 8
0 to 8 in ms
0=transition to timed out
1=auto delete
2=auto reset
8
21 04 00 25 (assy inst) 00 30 03
8
21 04 00 25 (assy inst) 00 30 03
Attribute ID Access Rule
1 Get
2
7
8
9
5
6
3
4
12
13
14
15
16
Attribute ID Access Rule
1
2
3
4
5
12
13
14
15
16
8
9
6
7
Get
Get
Get
Get
Get
Get
Get
Get
Get/Set
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get/Set
Get
Get
Get
Get
Get
Bulletin 280/281 CIP Information
B-13
Instances 5 and 6 are available group 3 explicit message connections that are allocated through the UCMM. The following attributes are supported:
Name
Table B.31 Connection Object Instance 5 and 6 Attributes
Data Type
State
Instance Type
Transport Class Trigger
Produced Connection ID
Consumed Connection ID
Initial Comm Characteristics
Produced Connection Size
Consumed Connection Size
Expected Packet Rate
Watchdog Action
Produced Connection Path Length
Produced Connection Path
Consumed Connection Path Length
Consumed Connection Path
USINT
USINT
USINT
UINT
UINT
USINT
UINT
UINT
UINT
USINT
UINT
UINT
Value
0=nonexistant
1=configuring
3=established
4=timed out
0=Explicit
Message
0x83 — Server, Transport Class 3
Depends on message group and Message ID
Depends on message group and Message ID
0x33 (Group 3)
0
0XFFFF in ms
01 = auto delete
03 = deferred delete
0
Empty
0
Empty
Name
State
Instances 8-11 are ZIP Consumers. The following instance attributes will be supported:
Table B.32 Connection Object Instances 8-11 Attributes
Instance Type
Transport Class Trigger
Produced Connection ID
Consumed Connection ID
Initial Comm Characteristics
Produced Connection Size
Consumed Connection Size
Expected Packet Rate
Watchdog Action
Produced Connection Path Length
Produced Connection Path
Consumed Connection Path Length
Consumed Connection Path
Data Type
USINT
USINT
USINT
UINT
UINT
USINT
UINT
UINT
UINT
USINT
UINT
UINT
Value
0=nonexistant
1=configuring
3=established
1=I/O Connection
0x20 (COS, unacknowledged)
FFFF (not producing data)
01101xxxxxx xxxxxx=node address
0xF0 (unacknowledged)
0
8 in milliseconds
2=auto reset
0
0
8
21 0E 03 25 01 00 30 02
B-14
Bulletin 280/281 CIP Information
Discrete Input Point Object —
CLASS CODE 0x0008
The following services are implemented for the Connection Object:
Table B.33 Connection Objects Common Services
Service
Code
0x05
0x0E
0x10
Implemented for:
Class
No
No
No
Instance
Yes
Yes
Yes
Service
Name
Reset
Get_Attribute_Single
Set_Attribute_Single
The following class attributes are supported for the Discrete Input
Point Object:
Table B.34 Discrete Input Point Object Class Attributes
Attribute ID
1
2
Access Rule
Get
Get
Name
Revision
Max Instance
Data Type
UINT
UINT
Value
2
4
Four instances of the Discrete Input Point Object are supported. All instances contain the following attributes:
Table B.35 Discrete Input Point Object Instance Attributes
Attribute ID Access Rule
3
115
116
Get
Get/Set
Get/Set
Name
Value
Force Enable
Force Value
Data Type
BOOL
BOOL
BOOL
Value
0=OFF, 1=ON
0=Disable, 1=Enabl;e
0=OFF, 1=ON
The following common services are implemented for the Discrete
Input Point Object:
Table B.36 Discrete Input Point Object Instance Common Services
Service
Code
0x0E
0x10
Implemented for:
Class
Yes
No
Instance
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
Discrete Output Point Object —
CLASS CODE 0x0009 ➊
Attribute ID
8
113
114
115
116
6
7
3
5
Access Rule
Get
Get/Set
Get/Set
Get/Set
Get/Set
Get/Set "
Get/Set "
Get/Set
Get/Set
Bulletin 280/281 CIP Information
B-15
The following class attributes are supported for the Discrete Output
Point Object:
Table B.37 Discrete Output Point Object Class Attributes
Attribute ID
1
2
Access Rule
Get
Get
Name
Revision
Max Instance
Data Type
UINT
UINT
Value
1
4
Four instances of the Discrete Output Point Object are supported. The following table summarizes the DOP instances:
Table B.38 Discrete Output Point Object Instance Attributes
Instance ID Name
Alternate
Mapping
1
2
3
4
Run Fwd Output 0029 – 01 – 03
Run Rev Output 0029 – 01 – 04
User Output A
User Output B none none
Description
Run Forward output. For all starter types, this output is hard wired from the ArmorStart CPU to the actuator
Run Reverse output. For all starter types, this output is hard wired from the ArmorStart CPU to the actuator
These are the 2 ArmorStart user outputs.
All instances contain the following attributes.
Name
Value
Fault Action
Fault Value
Idle Action
Idle Value
Pr Fault Action
Pr Fault Value
Force Enable
Force Value
Data Type
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
Value
0=OFF, 1=ON
0=Fault Value attribute, 1=Hold Last State
0=OFF, 1=ON
0=Fault Value attribute, 1=Hold Last State
0=OFF, 1=ON
0=Pr Fault Value attribute, 1=Ignore
0=OFF, 1=ON
0=Disable, 1=Enable
0=OFF, 1=ON
➊ For DOP instances 1 and 2, attributes 113 and 114 have “Get” only access, and their values are always 0.
The following common services are implemented for the Discrete
Output Point Object:
Table B.39 Discrete Output Object Common Services
Service
Code
0x0E
0x10
Implemented for:
Class
Yes
No
Instance
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
B-16
Bulletin 280/281 CIP Information
Discrete Output Point Object
Special Requirements
DOP Instances 3 and 4 Special Behavior
There are many sources that can affect an output point’s value: an I/O message, an explicit message, local logic, network fault and idle conditions, and protection fault conditions. An output point must know how to select which source of data to use to drive its value attribute.
An output that is not used in a DeviceLogix program behaves much the same as in the DeviceNet Specification. One notable addition to
DOP behavior for the ArmorStart implementation is that Protection
Fault Action and Protection Fault Value attributes determine the behavior of the DOP when the ArmorStart faults on a protection fault.
The following State Transition Diagram is used for DOP Instances 3
and 4 when they are not in use in a DeviceLogix Program.
Figure B.1 State Transition Diagram — Unbound DOP Instances 3 and 4
Non-Existant
Power On
Available
DNet Fault
Protection Fault
DNet Fault Idle
DNet
Idle
Ready
Protection F
DNet Fault
Connection Transitions to Established
Protection Fault Reset
Protection Fault
Protection Fault
Run
Bulletin 280/281 CIP Information
B-17
DOP Instances 1 and 2 Special Behavior
Besides the sources that can affect output points 3 and 4, DOPs 1 and
2 can be affected by keypad inputs since they double as the Run
Forward and Run Reverse outputs. This adds complexity to their behavior, so their behavior is defined in this section separately.
The following State Transition Diagram is used for DOP Instances 1
and 2
Figure B.2 DOP Instances 1 and 2
Power Off
Non-Existant
Power Up
Auto State = Auto Init
Auto
Keyad "Hand"
Button Pressed
Hand State = Hand Stop
Keyad "Auto"
Button Pressed
Auto State = Auto Init
Hand
B-18
Bulletin 280/281 CIP Information
The following State Transition Diagram is used in Auto State for
Unbound DOP Instances 1 and 2
Figure B.3 Auto State for Unbound DOP Instances 1 and 2
Auto Init
Idle
DNet Fault
Protection Fault
DNet Fault DNet Fault
DNet
Idle
Ready
Receive Data
DNet Fault
Connection Transitions to Established
Protection Fault Reset
Protection F
Protection Fault
Protection Fault
Run
Bulletin 280/281 CIP Information
B-19
The following State Transition Diagram is used in Hand State for
DOPs 1 and 2 with parameter 45 Keypad Mode set to
1 = momentary.
Figure B.4 Hand State for DOPs 1 and 2 (Momentary)
Hand Key Pressed w/ Fwd Selected
Hand Key Pressed w/ Rev Selected
Hand Stop
Off Key
Pressed
Off Key
Pressed
Hand Forward Hand Reverse
Protection Fault
Protection
Fault
Protection Fault
Protection
Fault
Cleared
Protection Fault
B-20
Bulletin 280/281 CIP Information
The following State Transition Diagram is used in Hand State for
DOPs 1 and 2 with parameter 45 Keypad Mode set to 1 = maintained.
Figure B.5 Hand State for DOPs 1 and 2 (Maintained)
Hand Key Pressed w/ Fwd Selected
Hand Key Pressed w/ Rev Selected
Hand Stop
Hand Forward
No Key or
Off Key
Pressed
No Key or
Off Key
Pressed
Hand Reverse
Protection Fault
Protection
Fault
Protection Fault
Protection
Fault
Cleared
Protection Fault
Parameter Object — CLASS CODE
0x000F
Bulletin 280/281 CIP Information
B-21
The following class attributes are supported for the Parameter Object:
Table B.40 Parameter Object Class Attributes
Attribute ID
1
2
8
9
Access Rule
Get
Get
Get
Get
Name
Revision
Max Instance
Parameter Class Descriptor
Configuration Assembly Instance
Data Type
UINT
UINT
WORD
UINT
The number of instances of the parameter object will depend upon the type of Distributed Motor Controller. There is a standard set of instances reserved (1-99) for all starters. These instances are followed by a unique set of instances for each starter type (Across the Line,
Soft start, or Inverter type).
The following instance attributes are implemented for all parameter attributes:
Table B.41 Parameter Object Instance Attributes
Attribute ID Access Rule
1
2
Get/Set
Get
Name
Value
Link Path Size
3
16
17
18
19
12
13
14
15
20
21
10
11
8
9
6
7
4
5
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Link Path
Descriptor
Data Type
Data Size
Parameter Name String
Units String
Help String
Minimum Value
Maximum Value
Default Value
Scaling Multiplier
Scaling Divisor
Scaling Base
Scaling Offset
Multiplier Link
Divisor Link
Base Link
Offset Link
Decimal Precision
Data Type
Specified in Descriptor
USINT
Array of:
BYTE
EPATH
WORD
EPATH
USINT
SHORT_STRING
SHORT_STRING
SHORT_STRING
Specified in Descriptor
Specified in Descriptor
Specified in Descriptor
UINT
UINT
UINT
INT
UINT
UINT
UINT
UINT
USINT
B-22
Bulletin 280/281 CIP Information
The following common services are implemented for the Parameter
Object:
Table B.42 Parameter Object Common Services
Service Code
0x0E
0x10
0x01
Implemented for:
Class
Yes
No
No
Instance
Yes
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
Get_Attributes_All
Parameter Group Object — CLASS
CODE 0x0010
The following class attributes are supported for the Parameter Object:
Table B.43 Parameter Group Object Class Attributes
Attribute ID
1
2
Access Rule
Get
Get
Name
Revision
Max Instance
Data Type
UINT
UINT
All Bulletin 280/281 Motor Starters have the following instances of the parameter group object:
• Instance 1 = DeviceLogix Parameters
• Instance 2 = DeviceNet Parameters
• Instance 3 = Starter Protection Parameters
• Instance 4 = User I/O Parameters
• Instance 5 = Miscellaneous Setup Parameters
• Instance 6 = ZIP Parameters
• Instance 7 = Starter Display
• Instance 8 = Starter Setup
The following instance attributes are supported for all parameter group instances:
Table B.44 Parameter Group Object Instance Attributes
Attribute ID
1
2
3
4 n
Access Rule
Get
Get
Get
Get
Get
Name
Group Name String
Number of Members
1 st
Parameter
2 nd
Parameter
Nth Parameter
Data Type
SHORT_STRING
UINT
UINT
UINT
UINT
Discrete Input Group Object —
Class CODE 0x001D
Bulletin 280/281 CIP Information
B-23
The following common services are implemented for the Parameter
Group Object:
Table B.45 Parameter Group Object Service Common Services
Discrete Input Group Object — CLASS CODE 0x001D "
Service Code
0x0E
Implemented for:
Class
Yes
Instance
Yes
Service Name
Get_Attribute_Single
No class attributes are supported for the Discrete Input Group Object.
A single instance of the Discrete Input Group Object is supported. It contains the following attributes:
Table B.46 Discrete Input Instance Attributes
Attribute ID Access Rule
6
7
3
4
Get
Get
Get/Set
Get/Set
Name
Number of Instances
Binding
Off_On_Delay
On_Off_Delay
Data Type Value
USINT 4
Array of UINT List of DIP instances
UINT
UINT in µsec in µsec
The following common services are implemented for the Discrete
Input Group Object:
Table B.47 Discrete Input Group Object Common Services
Service Code
0x0E
0x10
Class
No
No
Implemented for:
Instance
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
B-24
Bulletin 280/281 CIP Information
Discrete Output Group Object —
CLASS CODE 0x001E
Attribute ID
3
4
6
104
105
Access Rule
Get
Get
Get/Set
Get/Set
Get/Set
No class attributes are supported for the Discrete Output Group
Object.
A single instance of the Discrete Output Group Object is supported. It contains the following attributes:
Table B.48 Discrete Output Instance Attributes
Name
Number of Instances
Binding
Command
Network Status Override
Comm Status Override
Data Type
USINT
Array of UINT
BOOL
BOOL
BOOL
Value
4 for DOL
List of DOP instances; 1, 2, 3, 4
0=idle; 1=run
0=No Override (go to safe state)
1=Override (run local logic)
0=No override (go to safe state)
1=Override (run local logic)
The following common services are implemented for the Discrete
Output Group Object:
Table B.49 Discrete Output Group Common Services
Service Code
0x0E
0x10
Class
No
No
Implemented for:
Instance
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
Bulletin 280/281 CIP Information
B-25
Control Supervisor Object -CLASS
CODE 0x0029
No class attributes are supported.
The following instance attributes are supported:
Attribute ID Access Rule
9
10
12
100
101
3
*4
7
*8
Get/Set
Get/Set
Get
Get
Get
Get
Get/Set
Get/Set
Get/Set
115
124
130
131
151
152
153
154
155
156
Get
Get/Set
Get/Set
Get/Set
Get
Get
Get
Get
Get
Get
A single instance (instance 1) of the Control Supervisor Object will be supported.
Table B.50 Control Supervisor Instance Attributes
Name
Run 1
Run 2
Running 1
Running 2
Ready
Tripped
Fault Reset
Keypad Mode
Keypad Disable
Warning Status
Trip Enable
Trip Reset Mode
Trip Reset Level
Base Enclosure
Base Options
Wiring Options
Starter Enclosure
Starter Options
Last Pr Trip
Data Type
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
WORD
WORD
BOOL
USINT
WORD
WORD
WORD
WORD
WORD
UINT
Value
These Run outputs also map to DOP instances 1 and 2.
Status of RUN FWD contact
Status of RUN REV contact
Device not faulted
Device faulted
0->1 = Trip Reset
0=Maintained; 1=Momentary
0=Not Disabled; 1=Disabled
Bits 0-4 = reserved
Bit 5 = CP Warning
Bit 6 = IO Warning
Bit 7 = reserved
Bit 8 = reserved
Bit 9 = DN Warning
Bits 10-12 = reserved
Bit 13 = HW Warning
Bits 14-15 = reserved
Bit enumerated trip enable word
0=manual; 1=auto
0 – 100%; default = 75
Bit 0 = IP67
Bit 1 = NEMA 4x
Bits 2-15 reserved
Bit 0 = Output Fuse
Bit 1 = Safety Monitor
Bit 2 = CP Fuse Detect
Bits 3-7 = Reserved
Bit 8 = 10A Base
Bit 9 = 25A Base
Bit 10-15 = Reserved
Bit 0 = Conduit
Bit 1 = Round Media
Bits 2-15 = Reserved
Bit 0 = IP67
Bit 1 = NEMA 4x
Bits 2-15 reserved
Bit 0 = Full Keypad
Bit 1 = Safety Monitor
Bits 2-15 reserved
See Parameter 61
B-26
Bulletin 280/281 CIP Information
Acknowledge Handler Object —
CLASS CODE 0x002b
The following common services are implemented for the Control
Supervisor Object:
Table B.51 Control Supervisor Object Common Services
Service Code
0x0E
0x10
Implemented for:
Class
No
No
Instance
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
No class attributes are supported for the Acknowledge Handler
Object.
A single instance (instance 1) of the Acknowledge Handler Object is supported. The following instance attributes are supported:
Table B.52 Acknowledge Handler Instance Attributes
Attribute ID Access Rule
1
2
Get/Set
Get
3 Get
Name
Acknowledge Timer
Retry Limit
COS Producing Connection
Instance
Data Type
UINT
USINT
UINT
Value
milliseconds
1
4
The following common services are implemented for the
Acknowledge Handler Object:
Table B.53 Acknowledge Handler Common Services
Service Code
0x0E
0x10
Implemented for:
Class
No
No
Instance
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
Overload Object — CLASS CODE
0x002c
Bulletin 280/281 CIP Information
B-27
No class attributes are supported for the Overload Object.
A single instance (instance 1) of the Overload Object is supported for
Bulletin 280/281:
Table B.54 Overload Object Instance Attributes
Attribute ID Access Rule
3 Get/Set
4
10
190
192
193
8
9
5
7
194
195
Get/Set
Get
Get
Get
Get
Get
Get/Set
Get
Get
Get
Get
Name
FLA Setting
Trip Class
Average Current
% Thermal Utilized
Current L1
Current L2
Current L3
FLA Setting Times 10
Avg. Current Times 10
Current L1 Times 10
Current L2 Times 10
Current L3 Times 10
Data Type
BOOL
USINT
UINT
USINT
UINT
UINT
UINT
BOOL
UINT
UINT
UINT
UINT
Value
xxx.x Amps
1=10
2=15
3=20 xxx.x Amps xxx% FLA xxx.x Amps xxx.x Amps xxx.x Amps xxx.x Amps xxx.x Amps xxx.x Amps
The following common services are implemented for the Overload
Object:
Table B.55 Acknowledge Handler Object Common Services
Service Code
0x0E
0x10
Implemented for:
Class
No
No
Instance
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
B-28
Bulletin 280/281 CIP Information
DeviceNet Interface Object -CLASS
CODE 0x00B4
Attribute ID
13
15
16
17
9
10
7
8
19
23
24
30
50
Access Rule
Get/Set
Get/Set
Get/Set
Get/Set
Get/Set
Get/Set
Get/Set
Get/Set
Get/Set
Get
Get
Get
Get/Set
This “vendor specific” object has no class attributes.
Name
Prod Assy Word 0
Prod Assy Word 1
Prod Assy Word 2
Prod Assy Word 3
Starter COS Mask
Autobaud Enable
Consumed Assy
Produced Assy
Set To Defaults
I/O Produced Size
I/O Consumed Size
DNet Voltage
PNB COS Mask
A single instance (instance 1) of the DeviceNet Interface Object is supported:
Table B.56 DeviceNet Interface Object Instance Attribute
Data Type
USINT
USINT
USINT
USINT
WORD
BOOL
USINT
USINT
BOOL
USINT
USINT
UINT
WORD
Min/Max Default
0…108
0…108
0…108
0…108
0…0xFFFF 0xFFFF
0…1 1
0…185
100…187
160
161
6
7
1
5
0…1
0…8
0…3 xx.xx
0 to 0x00FF
0
—
—
—
0
Description
Defines Word 0 of Assy 120
Defines Word 1 of Assy 120
Defines Word 2 of Assy 120
Defines Word 3 of Assy 120
Change of state mask for starter bits
1= enabled; 0 = disabled
3, 121, 160, 162, 182, 187
52, 121, 161, 163, 181-187,189,190
0=No action; 1=Reset
Size of I/O Produced Data in Bytes
Size of I/O Consumed Data in Bytes
DeviceNet Voltage xx.xx Volts
Change of state mask for PNBs
The following common services are implemented for the DeviceNet
Interface Object:
Table B.57 DeviceNet Interface Object Common Services
Service Code
0x0E
0x10
Implemented for:
Class
No
No
Instance
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
Appendix
C
Bulletin 284 CIP Information
Electronic Data Sheets
VFD Type Product Codes and Name
Strings
Electronic Data Sheets (EDS) files are specially formatted ASCII files that provide all of the information necessary for a configuration tool (e.g., RSNetWorx
™ for DeviceNet™ Revision 3.21 Service Pack
2 or later) to access and alter parameters of the device. The EDS file contains all of the device information: number of parameter, groupings, parameter name, minimum, maximum, and default values, units, data format, and scaling.
EDS files for all the ArmorStart® Distributed Motor Controllers units are available from the Internet at www.ab.com/networks/eds.
They may also be built automatically by some configuration tools since much of the information necessary for an EDS file may be extracted from the ArmorStart Distributed Motor Controller.
Product codes for the Bulletin 284 variable frequency drives are based on the Horse Power Rating and Supply Voltage rating of the
Distributed Motor Controller. Table C.1 lists the product codes and name strings for the Bulletin 284 Distributed Motor Controllers:
Table C.1 Bulletin 284 Product Codes and Name Strings
284D
Device
Type
22
22
22
22
22
Product
Code
0x192
0x194
0x196
0x197
0x198
Hp
0.50
1
2
3
5
Supply Voltage
480V AC
480V AC
480V AC
480V AC
480V AC
Name String
ArmorStart 284D PF40 480V 0.5 Hp
ArmorStart 284D PF40 480V 1 Hp
ArmorStart 284D PF40 480V 2 Hp
ArmorStart 284D PF40 480V 3 Hp
ArmorStart 284D PF40 480V 5 Hp
Drive Type
PF40
PF40
PF40
PF40
PF40
C-2
Bulletin 284 CIP Information
DeviceNet Objects
The ArmorStart Distributed Motor Controller supports the following
DeviceNet object classes:
Table C.2 DeviceNet Object Classes
Class
0x000F
0x0010
0x001D
0x001E
0x0029
0x002B
0x00B4
0x0001
0x0002
0x0003
0x0004
0x0005
0x0008
0x0009
Object
Identity
Message Router
DeviceNet
Assembly
Connection
Discrete Input Point
Discrete Output Point
Parameter Object
Parameter Group Object
Discrete Input Group
Discrete Output Group
Control Supervisor
Acknowledge Handler
DN Interface Object
Identity Object — CLASS CODE 0x0001
The following class attributes are supported for the Identity Object:
Table C.3 Identity Object Class Attributes
Attribute ID
1
Access Rule
Get
Name
Revision
Data Type
UINT
Value
1
Bulletin 284 CIP Information
C-3
Identity Object
A single instance of the Identity Object is supported. The following instance attributes are supported:
4
Table C.4 Identity Object Instance Attributes
Attribute
ID
1
2
3
Access
Rule
Get
Get
Get
Get
Name
Vendor
Device Type
Product Code
Revision
Major Revision
Minor Revision
Data Type
UINT
UINT
UINT
Structure of:
USINT
USINT
5
6
Get Status WORD
1
22 or 133
See Table C.1
Value
Indicates Software Firmware
Revision Number
Bit 0: 0 = not owned; 1 = owned by master
Bit 2: 0 = Factory Defaulted;
1 = Configured
Bit 8: Minor Recoverable fault
Bit 9: Minor Unrecoverable fault
Bit 10: Major Recoverable fault
Bit 11: Major Unrecoverable fault
Unique Number for Each Device
7
8
9
10
Get
Get
Serial Number
Product Name
String Length
ASCII String
State Get
Get
Configuration
Consistency
Value
Get/Set Heartbeat Interval
UDINT
Structure of:
USINT
STRING
USINT
UINT
USINT
Product code specific
See Table C.1.
Returns the value
3 = Operational
Unique value depending on output of the parameter checksum algorithm.
In seconds. Default = 0
The following common services are implemented for the Identity
Object:
Service
Code
0x0E
0x05
0x10
Table C.5 Identity Object Common Services
Class
No
No
No
Implemented for
Instance
Yes
Yes
Yes
Service
Name
Get_Attribute_Single
Reset
Set_Attribute_Single
Message Router — CLASS CODE 0x0002
No class or instance attributes are supported. The message router object exists only to rout explicit messages to other objects.
C-4
Bulletin 284 CIP Information
DeviceNet Object — CLASS CODE 0x0003
The following class attributes are supported for the DeviceNet Object:
Table C.6 DeviceNet Object Class Attributes
Attribute ID
1
Access Rule
Get
Name
Revision
Data Type
UINT
Value
2
Table C.7 DeviceNet Object Instance Attributes
Attribute
ID
1
Access
Rule
Get/Set
Name
Node Address
Data Type
USINT
2
A single instance (Instance 1) of the DeviceNet Object will be supported. The following instance attributes are supported:
Get/Set Baud Rate USINT
5 Get
8 Get
➊
See Table C.8
Allocation Info
• Allocation Choice
• Master Node Addr
MAC ID Switch Value
Structure of:
• BYTE
• USINT
BOOL
Value
0…63
0 = 125K
1 = 250K
2 = 500K
Allocation_byte ➊
0…63 = address
255 = unallocated
0…63
Table C.8 Allocation_byte
Bit 0
Bit 1
Bit 4
Bit 5
Bit 6
Explicit messaging
Polled I/O
COS I/O
Cyclic I/O
Acknowledge Suppression
The following services are implemented for the DeviceNet Object:
Table C.9 DeviceNet Object Common Services
Service
Code
0x0E
0x10
0x4B
0x4C
Implemented for
Class
Yes
No
No
No
Instance
Yes
Yes
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
Allocate_Master/Slave _Connection_Set
Release_Master/Slave _Connection_Set
Bulletin 284 CIP Information
C-5
Assembly Object — CLASS CODE 0x0004
The following class attributes are supported for the Assembly Object
Table C.10 DeviceNet Assembly Object:
Attribute ID
2
Access Rule
Get
Name
Max Instance
Data Type
UINT
Value
190
All of the various instances of the assembly object will support
Attribute 3. Table C.11 summarizes the various instances that are supported
167
170
171
181
182
183
184
185
186
187
188
189
190
163
164
165
166
Table C.11 DeviceNet Assembly Object Instance Attributes:
Attribute
ID
3
52
120
160
161
162
Type Description
Consumed Required ODVA Consumed Instance
Produced Required ODVA Produced Instance
Produced Custom Parameter Based Word Wise Assembly
Consumed Default Consumed Instance for DOL and SoftStart units
Produced Default Produced Instance for DOL and SoftStart units
Consumed
Standard Consumed Instance for DOL and SoftStart with Network
Inputs
Produced
Standard Produced Instance for DOL and SoftStart with Network
Outputs
Consumed Default Consumed Instance for Inverter type units
Produced Default Produced Instance for Inverter type units
Consumed
Standard Consumed Instance for Inverter type units with Network
Inputs
Produced
Standard Produced Instance for Inverter type units with Network
Outputs
Consumed Power Flex Native Format Consumed Instance
Produced Power Flex Native Format Produced Instance
Produced User Inputs
Consumed Consumed Network Bits (a.k.a Network Inputs)
Produced Produced Network Bits (a.k.a. Network Outputs)
Produced Trip Status Bits
Produced Starter Status Bits
Produced DeviceNet Status Bits
Consumed Starter Control Bits
Consumed Drive Control Bits
Produced Warning Status Bits
Produced 1799 - ZCIO Bits
C-6
Bulletin 284 CIP Information
Custom Parameter Based Word-Wise I/O Assembly
Table C.12 CustomParameter Based Word Wise (Produced) Assembly
Instance
Word Byte
0
1
2
3
5
6
3
4
7
0
1
2
Instance 120
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value of the parameter pointed to by Produced Word 0 Param (low byte)
Value of the parameter pointed to by
Produced Word 0 Param (high byte)
Value of the parameter pointed to by Produced Word 1 Param (low byte)
Value of the parameter pointed to by
Produced Word 1 Param (high byte)
Value of the parameter pointed to by Produced Word 2 Param (low byte)
Value of the parameter pointed to by
Produced Word 2 Param (high byte)
Value of the parameter pointed to by Produced Word 3 Param (low byte)
Value of the parameter pointed to by
Produced Word 3 Param (high byte)
Word-Wise Bit-Packed Assemblies
Assemblies whose instance numbers are 180...189 are all one word
(16 bits) long. They can be used stand-alone, but their main use is to assemble information for EDS file parameters. These Word-Wise assemblies become the building blocks for the Custom Parameter
Based Word-Wise assembly described in Table C.12.
Table C.13 Instance 181 — Hardware Inputs 1…16
Instance 181 — This is a Read Only Status Assembly
Byte
0
1
Bit 7
—
—
Bit 6
—
—
Bit 5
—
—
Bit 4
—
—
Bit 3 Bit 2 Bit 1 Bit 0
Input 4 Input 3 Input 2 Input 1
— — — —
Table C.14 Instance 182 — Consumed Network Inputs 1…16
Instance 182 — This is a Read/Write Control Assembly
Byte
0
1
Bit 7
Net Input
8
Net Input
16
Bit 6
Net Input
7
Net Input
15
Bit 5
Net Input
6
Net Input
14
Bit 4
Net Input
5
Net Input
13
Bit 3
Net Input
4
Net Input
12
Bit 2
Net Input
3
Net Input
11
Bit 1
Net Input
2
Net Input
10
Bit 0
Net Input
1
Net Input
9
Table C.15 Instance 183 — Produced Network Outputs 1…15
Instance 183 — This is a Read Only Status Assembly
Byte
0
1
Bit 7
Net Out 8
Reserved
Bit 6
Net Out
7
Net Out
15
Bit 5
Net Out
6
Net Out
14
Bit 4
Net Out
5
Net Out
13
Bit 3
Net Out
4
Net Out
12
Bit 2
Net Out
3
Net Out
11
Bit 1
Net Out
8
Net Out
10
Bit 0
Net Out
1
Net Out
9
Bulletin 284 CIP Information
C-7
Table C.16 Instance 184 — Trip Status
Instance 184 — This is a Read Only Status Assembly
Byte
0
1
Bit 7
Over
Temp
Misc.
Fault
Bit 6
IO Fault
Retries
Bit 5
Control
Power
Bit 4
Stall
HW Fault EEPROM
Bit 3
Gnd
Fault
DC Bus
Bit 2
Phase
Short
Int
Comm
Bit 1
OL Trip
DNet Flt
Bit 0
140M
Trip
Over
Current
Table C.17 Instance 185 — Starter Status
Instance 185 — This is a Read Only Status Assembly
Byte
0
1
Bit 7
At
Reference
Reserved
Bit 6
Net Ref
Status
Contactor 1
➊
Bit 5
Net Ctl
Status
140M
On
Bit 4
Ready
HOA
Status
Bit 3
Running
Rev
KP Hand
Bit 2
Running
Fwd
KP Jog
Bit 1
Alarm
Bit 0
Tripped
DrvOpto2 DrvOpto1
➊
Refers to source brake contactor status.
Table C.18 Instance 186 — DeviceNet Status
Instance 186 — This is a Read Only Status Assembly
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3
0 — — I/O Flt
1 ZIP 4 Flt
—
ZIP 4
Cnxn
ZIP 3 Flt
I/O Idle
ZIP 3
Cnxn
ZIP 2 Flt
Bit 2 Bit 1
Exp Flt I/O Cnxn
ZIP 2
Cnxn
ZIP 1 Flt
Bit 0
Exp
Cnxn
ZIP 1
Cnxn
Instance 187 — This is a Read/Write Assembly
Byte
0
1
Bit 7
User Out
B
—
Bit 6
User Out
A
—
Bit 5
—
—
Bit 4
Jog Rev
—
Bit 3
Jog Fwd
—
Bit 2
Fault
Reset
—
Bit 1 Bit 0
Run Rev Run Fwd
— —
Instance 188 — This is a Read/Write Assembly
Byte
0
1
Bit 7
—
—
Bit 6
Freq
Select 3
—
Bit 5
Freq
Select 2
—
Bit 4
Freq
Select 1
—
Bit 3 Bit 2 Bit 1 Bit 0
Decel 2 Decel 1 Accel 2 Accel 1
Drv In 4 Drv In 3 Drv In 2 Drv In 1
Table C.19 Instance 189 This is a “Read Only” assembly
Instance 189 Warning Status Bits
Byte
0
1
Bit 7
Reserve d
—
Bit 6
I/O
Warning
—
Bit 5
Control
Power
Warning
HW
Warn
Bit 4
—
—
Bit 3
—
—
Bit 2
—
—
Bit 1
—
Bit 0
—
DN Warn PI Warn
C-8
Bulletin 284 CIP Information
Table C.20 Instance 190 is the 1999-ZCIO Native Format Produced Assembly
Instance 190 1799-ZCIO Native Format Produced Assembly
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0
1
Running
Rev
Reserved
Running
Fwd
Logic
Enable
Warning Tripped Input 3
Reserved
2 Drive In 4 Drive In 3 Drive In 2
Drive In
1
User Out
B
3
4
5
Reserved
Net Out 8 Net Out 7 Net Out 6
Net Out
5
Net Out
ZIP CCV (Low)
4
6 ZIP CCV (High)
Input 2
User Out
A
Net Out
3
Input 1
140M On
Run Rev
Input 0
HOA
Run
Fwd
Jog Rev Jog Fwd
Net Out 2
Net Out
1
Standard Distributed Motor Controller I/O Assemblies
Standard Distributed Motor Controller I/O Assemblies are available on all Starter Types.
Standard Distributed Motor Controller Output (Consumed) Assemblies
Instance 3 is the required output (consumed) assembly defined in the
DeviceNet Motor Starter Profile.
Byte
0
Table C.21 ODVA Starter
Bit 7
—
Bit 6
—
Bit 5
—
Bit 4
—
Bit 3
—
Bit 2
—
Bit 1
—
Bit 0
Run Fwd
Instance 160 is the default output (consumed) assembly for Bulletin
280/281 Distributed Motor Controllers
Byte
0
Table C.22 Instance 160 — Default Consumed Standard Distributed Motor
Controller.
Bit 5 Bit 4 Bit 3 Bit 1 Bit 0 Bit 7
User Out
B
Bit 6
User Out
A
Bit 2
Fault
Reset
Run Rev Run Fwd
Instance 162 is the standard output (consumed) assembly with
Network Inputs for Bulletin 280/281 Distributed Motor Controllers
Table C.23 Standard Consumed Starter with Network Inputs.
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0
User Out
B
User Out
A
Fault
Reset
Run Rev Run Fwd
1 Net In 8 Net In 7 Net In 6 Net In 5 Net In 4 Net In 3 Net In 2 Net In 1
2 Net In 16 Net In 15 Net In 14 Net In 13 Net In 12 Net In 11 Net In 10 Net In 9
Bulletin 284 CIP Information
Bulletin 284 Distributed Motor Controller I/O Assemblies
Bulletin 284 Distributed Motor Controller IO Assemblies are available ONLY on the Bulletin 284 Distributed Motor Controller.
C-9
Standard Distributed Motor Controller Output (Consumed)
Assemblies
Instance 164 is the default output (consumed) assembly for Inverter
Type Distributed Motor Controllers
Table C.24 Instance 164 — Default Consumed Inverter Type Distributed
Motor Controller.
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0
1
2
User Out B User Out A
Drive In 4 Drive In 3
— Jog Rev
Drive In 2 Drive In 1
Jog
Fwd
Decel
2
Fault
Reset
Run Rev
Run
Fwd
Decel 1 Accel 2 Accel 1
Comm Frequency Command (Low) (xxx.x Hz)
3 Comm Frequency Command (High) (xxx.x Hz)
Instance 166 is the standard output (consumed) assembly for Inverter
Type Distributed Motor Controllers with network inputs
1
4
5
2
3
Byte
0
Table C.25 Instance 166 — Consumed Inverter Type Starter with Network
Inputs
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
User Out
B
Drive In
4
User Out
A
Drive In
3
—
Drive In
2
Jog Rev
Drive In
1
Jog Fwd
Decel
2
Fault
Reset
Decel
1
Comm Frequency Command (Low) (xxx.x Hz)
Comm Frequency Command (High) (xxx.x Hz)
Run Rev Run Fwd
Accel
2
Accel
1
Net In 8 Net In 7 Net In 6 Net In 5 Net In 4 Net In 3 Net In 2 Net In 1
Net In 16 Net In 15 Net In 14 Net In 13 Net In 12 Net In 11 Net In 10 Net In 9
Standard Distributed Motor Controller Input (Produced)
Assemblies
Instance 52 is the required input (produced) assembly defined in the
DeviceNet Motor Starter Profile
Byte
—
Table C.26 Instance 52 — ODVA Starter.
Bit 7
—
Bit 6
—
Bit 5
—
Bit 4
—
Bit 3
—
Bit 2
Running
Bit 1
—
Bit 0
Fault
C-10
Bulletin 284 CIP Information
Instance 161 is the default input (produced) assembly for the Bulletin
280/281 Distributed Motor Controller
Byte
0
1
Table C.27 Instance 161 — Default Produced Standard Distributed Motor.
Bit 7
—
—
Bit 6
—
—
Bit 5
—
140M
On
Bit 4
Ready
HOA
Stat.
Bit 3
Running
Rev
Bit 2
Running
Fwd
Bit 1
—
Bit 0
Tripped
User In 3 User In 2 User In 1 User In 0
Instance 163 is the standard input (produced) assembly with Network
Outputs for the Bulletin 280/281 Distributed Motor Controller
Byte
0
1
2
3
4
5
Table C.28 Instance 163 — Standard Produced Starter with Network Outputs and ZIP CCV.
Bit 7 Bit 6
Net Out
8
Logic
Enable
Stat
Net Out
7
Net Out
15
Bit 5
140M
On
Net Out
6
Bit 4
Ready
HOA
Bit 3
Running
Rev
Bit 2
Running
Fwd
Bit 1
Alarm
Bit 0
Tripped
User In 4 User In 3 User In 2 User In 1
Net Out
5
Net Out 4 Net Out 3 Net Out 2 Net Out 1
Net Out
14
Net Out
13
Net Out
12
ZIP Device Value Key (Low)
ZIP Device Value Key (High)
Net Out
11
Net Out
10
Net Out 9
Inverter Type Distributed Motor Controller Input (Produced)
Assemblies
Instance 165 is the default input (produced) assembly for Inverter
Type Distributed Motor Controllers
Byte
0
1
2
3
Table C.29 Default Produced Inverter Type Distributed Motor Controller.
Bit 7
At
Reference
Reserved
Bit 6
Net Ref
Status
Contactor 1
➊
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Net Ctl
Status
Ready
Running
Rev
Running
Fwd
Alarm Tripped
140M
On
HOA
User In 4 User In 3 User In 2 User In 1
Reserved Reserved Reserved Reserved
Output Frequency (Low) (xxx.x Hz)
Output Frequency (High) (xxx.x Hz)
➊
Refers to source brake contactor status.
Bulletin 284 CIP Information
Instance 167 is input (produced) assembly for Inverter Type
Distributed Motor Controllers with Network Outputs
C-11
5
6
7
1
2
3
4
Byte
0
Table C.30 Instance 167 —Produced Inverter Type Starter with Network
Outputs
Bit 7
At
Reference
Reserved
Net Out 8
Bit 6
Net Ref
Status
Contactor 1
➊
Net Out 7
Net Out 15
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Net Ctl
Status
140M
On
Ready
HOA
Status
Running
Rev
Running
Fwd
Alarm Tripped
User In 4 User In 3 User In 2 User In 1
Output Frequency (Low) (xxx.x Hz)
Output Frequency (High) (xxx.x Hz)
Net
Out 6
Net
Out 5
Net Out 4 Net Out 3 Net Out 2 Net Out 1
Net
Out 14
Net
Out 13
Net Out
12
ZIP Device Value Key (Low)
Net Out
11
Net Out
10
Net Out 9
ZIP Device Value Key (High)
➊
Refers to source brake contactor status.
Power Flex Native Assemblies
These assembly instances have the same data format as the Power
Flex Drives with a DNet adapter.
Power Flex Native Consumed Assembly
Instance 170 is the Power Flex Native Format Consumed Assembly
Byte
0
1
2
3
Table C.31 Instance 170 — Power Flex Native Format Consumed Assembly.
Bit 7 Bit 6
MOP Inc reserved
MOP Dec
Freq Select
3
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Direction Cmd
Freq Select
2
Freq
Select 1
Flt Reset
Decel
2
Comm Frequency Command (Low)
Comm Frequency Command (High)
Jog
Decel
1
Start
Accel
2
Stop
Accel
1
C-12
Bulletin 284 CIP Information
Table C.32 Logic Command
Accel 2
1
1
0
0
Decel 2
1
1
0
0
Freq Select 3
1
1
1
1
0
0
0
0
Accel 1
0
1
0
1
Decel 1
0
1
0
1
Freq Select 2
1
1
0
0
1
1
0
0
Freq Select 1
0
1
0
1
0
1
0
1
Description
No Command
Accel 1 Enable
Accel 2 Enable
Hold Accel Rate Selected
No Command
Decel 1 Enable
Decel 2 Enable
Hold Decel Rate Selected
No Command
Freq Source = P136 (Start Source)
Freq Source = P169 (Internal Freq)
Freq Source = Comms
P170 (Preset Freq 0)
P171 (Preset Freq 1)
P172 (Preset Freq 2)
P173 (Preset Freq 3)
Power Flex Native Produced Assembly
Instance 171 is the Power Flex Native Format Produced Assembly.
1
2
3
Byte
0
Table C.33 Instance 171 — PowerFlex Native Format Produced Assembly
Bit 7
Faulted
Drv In 4
Stat
Bit 6 Bit 5 Bit 4 Bit 3
Alarm Deceling Acceling Rot Fwd
Drv In 3
Stat
Drv In 2 Stat Drv In 1
Param
Locked
Drive Error Code (low)
Drive Error Code (high)
Bit 2
Cmd
Fwd
Ctl fm
Net
Bit 1
Running
Bit 0
Ready
Ref fm Net At Ref
Bulletin 284 CIP Information
Connection Object — CLASS CODE 0x0005
No class attributes are supported for the Connection Object.
C-13
Multiple instances of the Connection Object are supported, Instances
1, 2, and 4 from the Group 2 predefined master/slave connection set,
Instances 5 and 6 are available through explicit UCMM connections.
Instance 1 is the Predefined Group 2 Connection Set Explicit
Message Connection. The following Instance 1 attributes is supported
Attribute
ID
1
4
5
8
9
6
7
12
13
14
15
16
2
3
Table C.34 Connection Object Instance 1 Attributes:
Access
Rule
Get
State
Name
Get
Get
Instance Type
Transport Class Trigger
Get
Produced Connection ID
Get
Consumed Connection ID
Get
Get
Get
Initial Comm Characteristics
Produced Connection Size
Get Consumed Connection Size
Get/Set Expected Packet Rate
Watchdog Action
Get
Get
Get
Get
Produced Connection Path
Length
Produced Connection Path
Consumed Connection Path
Length
Consumed Connection Path
Data
Type
Value
USINT
0 = non-existent
1 = configuring
3 = established
4 = timed out
USINT 0 = Explicit Message
USINT
0x83 — Server, Transport
Class 3
UINT
UINT
USINT
UINT
10xxxxxx011 xxxxxx = node address
10xxxxxx100 xxxxxx = node address
USINT 0x22
UINT 0x61
UINT 0x61
UINT in milliseconds
01 = auto delete
03 = deferred delete
0
UINT
Empty
0
Empty
C-14
Bulletin 284 CIP Information
Instance 2 is the Predefined Group 2 Connection Set Polled I/O
Message Connection. The following Instance 2 attributes are supported
Attribute
ID
1
2
3
4
5
8
9
6
7
12
13
14
15
16
Table C.35 Connection Object Instance 2 Attributes:
Access
Get
Get
Get
Get
Produced Connection ID
Get
Consumed Connection ID
Get
Get
Initial Comm Characteristics
Produced Connection Size
Get Consumed Connection Size
Get/Set Expected Packet Rate
Watchdog Action
Get/Set
Get
Get/Set
Get
Get/Set
State
Name
Instance Type
Transport Class Trigger
Produced Connection Path
Length
Produced Connection Path
Consumed Connection Path
Length
Consumed Connection Path
Data
Type
Value
USINT
0 = non-existent
1 = configuring
3 = established
4 = timed out
USINT 1 = I/O Connection
USINT
0x82 — Server,
Transport Class 2 (If alloc_choice != polled and ack suppression is enabled then value =
0x80)
UINT
UINT
USINT
UINT
01111xxxxxx xxxxxx = node address
10xxxxxx101 xxxxxx = node address
USINT 0x21
UINT 0…8
UINT 0…8
UINT in milliseconds
0 = transition to timed out
1 = auto delete
2 = auto reset
8
UINT
21 04 00 25 (assy inst)
00 30 03
8
21 04 00 25 (assy inst)
00 30 03
Bulletin 284 CIP Information
C-15
Instance 4 is the Predefined Group 2 Connection Set Change of State/
Cyclic I/O Message Connection. The following Instance 4 attributes are supported
Attribute
ID
1
2
3
4
5
6
7
8
9
12
13
14
15
16
Table C.36 Connection Object Instance 4 Attributes:
Access
Rule
Get
Get
Get
Get
Produced Connection ID
Get
Consumed Connection ID
Get
Initial Comm Characteristics
Get Produced Connection Size
Get Consumed Connection Size
Get/Set Expected Packet Rate
Watchdog Action
Get
Get
Get
Get
Get/Set
State
Name
Instance Type
Transport Class Trigger
Produced Connection Path
Length
Produced Connection Path
Consumed Connection Path
Length
Consumed Connection Path
Data
Type
Value
USINT
0 = non-existent
1 = configuring
3 = established
4 = timed out
USINT 1 = I/O Connection
USINT
0x00 (Cyclic, unacknowledged)
0x03 (Cyclic, acknowledged)
0x10 (COS, unacknowledged)
0x13 (COS, acknowledged)
UINT
UINT
01101xxxxxx xxxxxx = node address
10xxxxxx101 xxxxxx = node address
USINT
0x02 (acknowledged)
0x0F (unacknowledged)
UINT 0…8
UINT 0…8
UINT in milliseconds
USINT
UINT
0 = transition to timed out
1 = auto delete
2 = auto reset
8
UINT
21 04 00 25 (assy inst)
00 30 03
8
21 04 00 25 (assy inst)
00 30 03
C-16
Bulletin 284 CIP Information
Instances 5…6 will be available Group 3 explicit message connections that are allocated through the UCMM. The following attributes are supported
Attribute
ID
1
2
3
4
5
6
7
8
9
12
13
14
15
16
Table C.37 Connection Object Instance 5...7 Attributes:
Access
Rule
Get
State
Name
Get
Instance Type
Get
Transport Class Trigger
Get
Produced Connection ID
Get
Get
Get
Get
Get
Consumed Connection ID
Get
Get
Get
Initial Comm Characteristics
Produced Connection Size
Consumed Connection Size
Get/Set Expected Packet Rate
Get
Watchdog Action
Produced Connection Path
Length
Produced Connection Path
Consumed Connection Path
Length
Consumed Connection Path
Data
Type
Value
USINT
USINT
USINT
0 = non-existent
1 = configuring
3 = established
4 = timed out
0 = Explicit
Message
0x83 — Server,
Transport Class 3
UINT
UINT
Depends on message group and Message ID
Depends on message group and Message ID
USINT 0x33 (Group 3)
UINT 0
UINT
UINT in milliseconds
USINT
UINT
01 = auto delete
03 = deferred delete
0
UINT
Empty
0
Empty
Bulletin 284 CIP Information
Instances 8…11 are ZIP Consumers. The following instance attributes will be supported:
C-17
Table C.38 Connection Object instance 8...11 Attributes
14
15
16
6
7
8
9
12
13
2
3
4
5
Attribute
ID
Access
Rule
1
Name
State
Get
Get
Get
Instance Type
Transport Class Trigger
Get
Get
Produced Connection ID
Consumed Connection ID
Get
Get
Get
Get
Get
Initial Comm Characteristics
Produced Connection Size
Consumed Connection Size
Get/Set Expected Packet Rate
Get Watchdog Action
Get
Produced Connection Path
Length
Get Produced Connection Path
Consumed Connection Path
Length
Consumed Connection Path
Data
Type
Value
USINT
0=nonexistant
1=configuring
3=established
USINT 1=I/O Connection
USINT
0x20 (COS, unacknowledged)
UINT FFFF (not producing data)
UINT
01101xxxxxx xxxxxx=node address
USINT 0xF0 (unacknowledged)
UINT 0
UINT 8
UINT in milliseconds
USINT 2=auto reset
UINT
0
UINT
0
8
21 0E 03 25 01 00 30 02
The following services are implemented for the Connection Object
Table C.39 Connection Objects Common Services:
Service
Code
0x05
0x0E
0x10
Class
No
No
No
Implemented for
Instance
Yes
Yes
Yes
Service
Name
Reset
Get_Attribute_Single
Set_Attribute_Single
C-18
Bulletin 284 CIP Information
Discrete Input Point Object — CLASS CODE 0x0008
The following class attributes are supported for the Discrete Input
Point Object
Table C.40 Discrete Input Point Object Class Attributes:
Attribute ID
1
2
Access Rule
Get
Get
Name
Revision
Max Instance
Data Type
UINT
UINT
Value
2
4
Four instances of the Discrete Input Point Object are supported. All instances will contain the following attributes
Table C.41 Discrete Input Point Object Instance Attributes:
Attribute ID
3
115
116
Access Rule
Get
Get/Set
Get/Set
Name
Value
Force Enable
Force Value
Data Type
BOOL
BOOL
BOOL
Value
0 = OFF, 1 = ON
0 = Disable,
1 = Enable
0 = OFF, 1 = ON
The following common services are implemented for the Discrete
Input Point Object
Table C.42 Discrete Input Point Object Instance Common Services:
Service
Code
0x0E
0x10
Class
Yes
No
Implemented for
Instance
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
Bulletin 284 CIP Information
C-19
Discrete Output Point Object — CLASS CODE 0x0009
The following class attributes are supported for the Discrete Output
Point Object:
Table C.43 Discrete Output Point Object Class Attributes
Attribute ID
1
2
Access Rule
Get
Get
Name
Revision
Max Instance
Data Type
UINT
UINT
Value
1
10
Ten instances of the Discrete Output Point Object are supported.
Table C.44 summarizes the DOP instances:
Table C.44 Discrete Output Point Object Instance Attributes
Instance
ID
1
2
6
7
8
3
4
5
9
10
Name
Run Fwd
Output
Run Rev
Output
User Output 1
User Output 2
Drive Input 1
Drive Input 2
Drive Input 3
Drive Input 4
Drive Jog
Fwd
Drive Jog Rev
Alternate
Mapping
Description
0029 – 01
– 03
0029 – 01
– 04
Run Forward output. For all starter types, this output is hard wired from the ArmorStart CPU to the actuator
Run Reverse output. For all starter types, this output is hard wired from the ArmorStart CPU to the actuator
These are the two ArmorStart user outputs.
none none none none none none none
These four instances exist for Inverter units only.
They are connected to Drive Inputs 1…4.
This instances exists for Inverter units only none
All instances will contain the following attributes
Table C.45 Discrete Output Point Instance Attributes.
Attribute ID
3
5
6
7
8
113
114
115
116
Access Rule
Get
Get/Set
Get/Set
Get/Set
Get/Set
Get/Set ➊
Get/Set ➊
Get/Set
Get/Set
Name
Value
Fault Action
Fault Value
Idle Action
Idle Value
Pr Fault Action
Pr Fault Value
Force Enable
Force Value
Data Type
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
Value
0 = OFF, 1 = ON
0 = Fault Value attribute, 1 =
Hold Last State
0 = OFF, 1 = ON
0 = Fault Value attribute, 1 =
Hold Last State
0 = OFF, 1 = ON
0 = Pr Fault Value attribute, 1 =
Ignore
0 = OFF, 1 = ON
0 = Disable, 1 =
Enable
0 = OFF, 1 = ON
➊
For DOP Instances 1 and 2, and 9 and 10, Attributes 113 and 114 have Get only access, and their values are always 0
C-20
Bulletin 284 CIP Information
The following common services are implemented for the Discrete
Output Point Object
Table C.46 Discrete Output Common Services:
Service
Code
0x0E
0x10
Class
No
No
Implemented for
Instance
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
Discrete Output Point Object Special Requirements
DOP Instances 3 and 4 Special Behavior
There are many sources that can affect an output point’s value: an I/O message, and explicit message, local logic, network fault and idle conditions, and protection fault conditions. An output point must know how to select which source of data to use to drive its value attribute.
An output that is not bound behaves much the same as in the
DeviceNet Specification. One notable addition to DOP behavior for the ArmorStart implementation is the Protection Fault Action and
Protection Fault Value attributes determine the behavior of the DOP when the ArmorStart faults on a protection fault.
Non-Existant
Power On
Available
Bulletin 284 CIP Information
C-21
The following State Transition Diagram is used for Unbound DOP
Instances 3…8 when they are not used in a Devicelogix
™ Program
Figure C.1 State Transition Diagram — Unbound DOP 3…8
DNet Fault
Protection Fault
DNet Fault Idle
DNet
Idle
Ready
DNet Fault
Connection Transitions to Established
Protection Fault Reset
Protection F
Protection Fault
Protection Fault
Run
C-22
Bulletin 284 CIP Information
DOP Instances 1, 2, 9, and 10 Special Behavior
Besides the sources that can affect output points 3 and 4, DOPs 1 and
2 can be affected by keypad inputs since they double as the Run
Forward and Run Reverse outputs. This adds complexity to their behavior, so their behavior is defined in this section separately.
The following State Transition Diagram is used for DOP Instances 1,
2, 9, and 10:
Figure C.2 DOP Instances 1, 2, 9, and 10
Power Off
Non-Existant
Power Up
Auto State = Auto Init
Auto
Keyad "Hand"
Button Pressed
Hand State = Hand Stop
Keyad "Auto"
Button Pressed
Auto State = Auto Init
Hand
Bulletin 284 CIP Information
The following State Transition Diagram is used in Auto State for
Unbound DOP Instances 1, 2, 9, and 10
Figure C.3 Auto State for Unbound DOP Instances 1, 2, 9, and 10
C-23
Auto Init
DNet Fault
Protection Fault
DNet Fault DNet Fault Idle
DNet
Idle
Ready
Receive Data
DNet Fault
Connection Transitions to Established
Protection Fault Reset
Protection F
Protection Fault
Protection Fault
Run
C-24
Bulletin 284 CIP Information
Hand Key
Pressed
The following State Transition Diagram is used in Hand State for
Bound or Unbound DOPs 1, 2, 9, and 10 with Parameter 45 Keypad
Mode set to 1 = momentary.
Figure C.4
Hand Forward
Dir Key
Pressed
Hand Reverse
Hand Key
Pressed
Hand
Forward
Jog Key
Pressed
Jog
Forward
Off Key
Pressed
Off Key
Pressed
Hand
Reverse
Jog Key
Pressed
Jog
Reverse
Protection
Fault
Direction =
Forward
Direction =
Reverse
Protection Fault
Protection Fault Protection Fault
Hand Key
Pressed
Hand
Forward
Jog Key
Pressed
Jog
Forward
Off
Key
Pressed
Bulletin 284 CIP Information
C-25
The following State Transition Diagram is used in Hand State for
Bound or Unbound DOPs 1, 2, 9, and 10 with Parameter 45 Keypad
Mode set to 1 = maintained.
Figure C.5
Hand Forward Dir Key
Pressed
Hand Reverse
Hand Key
Pressed
Off
Hand
Reverse
Key
Pressed
Jog Key
Pressed
Jog
Reverse
Protection
Fault
Direction =
Forward
Direction =
Reverse
Protection Fault
Protection Fault Protection Fault
C-26
Bulletin 284 CIP Information
Parameter Object — CLASS CODE 0x000F
The following class attributes are supported for the Parameter Object
Table C.47 Parameter Object Class Attributes:
Attribute ID
1
2
8
9
Access Rule
Get
Get
Get
Get
Name
Revision
Max Instance
Parameter Class
Descriptor
Configuration
Assembly Instance
Data Type
UINT
UINT
WORD
UINT
The number of instances of the parameter object depends upon the type of Distributed Motor Controller. There will be a standard set of instances reserved (1…99) for all starters. These instances will be followed by a unique set of instances for each starter type (Bulletin
280/281 or 284).
4
5
6
7
19
20
21
15
16
17
18
11
12
13
14
8
9
10
The following instance attributes are implemented for all parameter attributes
Table C.48 Parameter Object Instance Attributes:
Attribute ID
1
2
3
Access Rule
Get/Set
Get
Get
Name
Value
Link Path Size
Link Path
Data Type
Specified in Descriptor
USINT
Array of:
• BYTE
• EPATH
WORD
EPATH
USINT
SHORT_STRING
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Descriptor
Data Type
Data Size
Parameter Name
String
Units String
Help String
Minimum Value
Maximum Value
Default Value
Scaling Multiplier
Scaling Divisor
Scaling Base
Scaling Offset
Multiplier Link
Divisor Link
Base Link
Offset Link
Decimal Precision
UINT
INT
UINT
UINT
UINT
UINT
USINT
SHORT_STRING
SHORT_STRING
Specified in Descriptor
Specified in Descriptor
Specified in Descriptor
UINT
UINT
Bulletin 284 CIP Information
C-27
The following common services are implemented for the Parameter
Object
Table C.49 Parameter Object Common Services:
Service
Code
0x0E
0x10
0x01
Class
Yes
No
No
Implemented for
Instance
Yes
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
Get_Attributes_All
Parameter Group Object — CLASS CODE 0x0010
The following class attributes are supported for the Parameter Object
Table C.50 Parameter Group Object Class Attributes:
Attribute ID
1
2
Access Rule
Get
Get
Name
Revision
Max Instance
Data Type
UINT
UINT
All Bulletin 284 Motor Starters have the following instances of the parameter group object:
• Instance 1 = DeviceLogix Parameters
• Instance 2 = DeviceNet Parameters
• Instance 3 = Starter Protection Parameters
• Instance 4 = User I/O Parameters
• Instance 5 = Miscellaneous
• Instance 6 = Drive DNet
• Instance 7 = ZIP Parameters
• Instance 8 = Basic Display
• Instance 9 = Basic Program
• Instance 10 = Advanced Program
C-28
Bulletin 284 CIP Information
The following instance attributes are supported for all parameter group instances
Table C.51 Parameter Group Object Instance Attributes:
Attribute ID
1
2
3
4
N
Access Rule
Get
Get
Get
Get
Get
Name
Group Name String
Number of Members
First Parameter
Second Parameter
Nth Parameter
Data Type
SHORT_STRING
UINT
UINT
UINT
UINT
The following common services are implemented for the Parameter
Group Object
Table C.52 Parameter Group Object Service Common Services:
Service
Code
0x0E
Class
Yes
Implemented for
Instance
Yes
Service
Name
Get_Attribute_Single
Discrete Input Group Object — CLASS CODE 0x001D
No class attributes are supported for the Discrete Input Group Object.
A single instance of the Discrete Input Group Object is supported. It contains the following attributes
Table C.53 Discrete Input Instance Attributes:
Attribute ID
3
Access Rule
Get
Name
Number of
Instances
Binding
4
6
7
Get
Get/Set
Get/Set
Off_On_Delay
On_Off_Delay
Data Type
USINT
Array of UINT
UINT
UINT
Value
4
List of DIP instances in usec
In usec
The following common services are implemented for the Discrete
Input Group Object
Table C.54 Discrete Input Group Object Common Services:
Service
Code
0x0E
0x10
Class
No
No
Implemented for
Instance
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
Bulletin 284 CIP Information
C-29
Discrete Output Group Object — CLASS CODE 0x001E
No class attributes are supported for the Discrete Output Group Object.
Two instances of the Discrete Output Group Object are supported. They contain the following attributes
:
Table C.55 Discrete Output Group Instance 1Attributes
Attribute
ID
Access
Rule
Name
Data
Type
3
4
Get
Get
Number of
Instances
Binding
USINT
10
6
104
105
Get/Set Command
Get/Set
Network Status
Override
Get/Set
Comm Status
Override
Value
Array of
UINT
List of DOP instances; 1, 2, 3, 4, 5,
6, 7, 8, 9, 10
BOOL 0 = idle; 1 = run
BOOL
0 = No Override (go to safe state)
1 = Override (run local logic)
BOOL
0 = No override (go to safe state)
1 = Override (run local logic)
Table C.56 Discrete Output Group Instance 2 Attributes
Attribute
ID
3
4
10
113
114
7
8
9
Access
Rule
Name
Get
Number of
Instances
Binding
Get
Get/Set
Fault Action
Get/Set Fault Value
Get/Set
Idle Action
Get/Set Idle Value
Get/Set
Pr Fault Action
Get/Set Pr Fault Value
Data
Type
Value
USINT
4
Array of
UINT
5, 6, 7, 8
BOOL
0 = Fault Value Attribute, 1 = Hold
Last State
BOOL 0 = OFF, 1 = ON
BOOL
0 = Idle Value Attribute, 1 = Hold
Last State
BOOL 0 = OFF, 1 = ON
BOOL
0 = Pr Fault Value Attribute, 1 =
Ignore
BOOL 0 = OFF, 1 = ON
The following common services are implemented for the Discrete Output
Group Object
Table C.57 Discrete Output Group Common Services:
Service
Code
0x0E
0x10
Class
No
No
Implemented for
Instance
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
C-30
Bulletin 284 CIP Information
Control Supervisor Object — CLASS CODE 0x0029
No class attributes will be supported. A single instance (instance 1) of the Control Supervisor Object will be supported
Table C.58 Instance 1 — Control Supervisor Object.
Attribute ID Access Rule
10
12
8
9
100
101
3
4
7
Get/Set
Get/Set
Get
Get
Get
Get
Get/Set
Get/Set
Get/Set
Name
Run FWD
Run REV
Running FWD
Running REV
Ready
Tripped
Fault Reset
Keypad Mode
Keypad Disable
115
124
130
131
150
151
152
153
154
156
157
158
Get
Get/Set
Get/Set
Get/Set
Get/Set
Get
Get
Get
Get
Get
Get
Get
Warning Status
Trip Enable
Trip Reset Mode
Trip Reset Level
High Speed Ena
Base Enclosure
Base Options
Wiring Options
Starter Enclosure
Last PR Trip
DB Status
DB Fault
Data Type
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
WORD
WORD
BOOL
USINT
BOOL
WORD
WORD
WORD
WORD
UINT
WORD
WORD
Value
These Run outputs also map to DOP instances 1 and 2.
0->1 = Trip Reset
0=Maintained; 1=Momentary
0=Not Disabled; 1=Disabled
Bits 0-1 = reserved
Bit 2 = reserved
Bit 3 = reserved
Bit 4 = reserved
Bit 5 = CP Warning
Bit 6 = IO Warning
Bit 7 = reserved
Bit 8 = reserved
Bit 9 = DN Warning
Bits 10-12 = reserved
Bit 13 = HW Warning
Bits 14-15 = reserved
Bit enumerated trip enable word
0=manual; 1=auto
0 – 100%; default = 75
0 = Disable; 1 = Enable
Bit 0 = IP67
Bit 1 = NEMA 4x
Bits 2-15 reserved
Bit 0 = Output Fuse
Bit 1 = Safety Monitor
Bit 2 = CP Fuse Detect
Bits 3-7 = Reserved
Bit 8 = 10A Base
Bit 9 = 25A Base
Bit 10-15 = Reserved
Bit 0 = Conduit
Bit 1 = Round Media
Bits 2-15 = Reserved
Bit 0 = IP67
Bit 1 = NEMA 4x
Bits 2-15 reserved
See Parameter 61
Bit 0 = DB Faulted
Bit 1 = DB Overtemp Warning
Bit 2 = DB On
Bit 3 = DB Flt Reset Inhibit
Bits 4-15 = reserved
Bit 0 = DB Overtemp
Bit 1 = DB OverCurrent
Bit 2 = DB UnderCurrent
Bit 3 = DB Shorted Switch
Bit 4 = DB Open
Bit 5 = reserved
Bit 6 = DB Bus Volt. Link Open
Bit 7 = reserved
Bit 8 = DB Comms
Bits 9-15 = reserved
Bulletin 284 CIP Information
Service
Code
0x0E
0x10
The following common services are implemented for the Control
Supervisor Object
Table C.59 Control Supervisor Object Common Services:
Implemented for
Class
No
No
Instance
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
Acknowledge Handler Object — CLASS CODE 0x002b
No class attributes are supported for the Acknowledge Handler
Object.
C-31
A single instance (Instance 1) of the Acknowledge Handler Object is supported. The following instance attributes are supported
Table C.60 Acknowledge Handler Instance Attributes:
Attribute
ID
1
2
3
Access
Rule
Name
Get/Set Acknowledge Timer
Get Retry Limit
Get COS Producing Connection Instance
Data
Type
Value
UINT milliseconds
USINT 1
UINT 4
The following common services are implemented for the
Acknowledge Handler Object
Table C.61 Acknowledge Handler Common Services:
Service
Code
0x0E
0x10
Class
No
No
Implemented for
Instance
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
C-32
Bulletin 284 CIP Information
DeviceNet Interface Object — CLASS CODE 0x00B4
This vendor specific object has no class attributes.
A single instance (Instance 1) of the DeviceNet Interface Object is supported
Table C.62 DeviceNet Interface Object Instance Attribute:
Attribute ID
17
19
23
24
30
50
64
9
10
7
8
13
15
16
Access
Rule
Name
Get/Set Prod Assy Word 0
Get/Set Prod Assy Word 1
Get/Set Prod Assy Word 2
Get/Set Prod Assy Word 3
Get/Set Starter COS Mask
Get/Set Autobaud Enable
Get/Set
Consumed Assy
Get/Set
Produced Assy
Get/Set Set To Defaults
Get I/O Produced Size
Get
Get
I/O Consumed Size
DNet Voltage
Get/Set PNB COS Mask
Get/Set Unlock Identity Instances
Data Type Min./Max.
USINT
USINT
USINT
USINT
WORD
BOOL
USINT
USINT
BOOL
USINT
UINT
WORD
USINT
0 — 0xFFFF
0 — 1
0…185
100…187
0…1
0…8
0…8
0…0x00FF
Default
6
7
1
5
0xFFFF
1
160
(drive 164)
161
(drive 165)
0
0
0
Description
Defines Word 0 of Assy 120
Defines Word 1 of Assy 120
Defines Word 2 of Assy 120
Defines Word 3 of Assy 120
Change of state mask for starter bits
1 = enabled; 0 = disabled
3, 160, 162, 164, 166, 170, 182, 187, 188
52, 120, 161, 163, 165, 167, 171,
181…190
0 = No action; 1 = Reset
DeviceNet Voltage
Change of state mask for PNBs
Unlock when set to 99 hex
The following common services are implemented for the DeviceNet
Interface Object
Table C.63 DeviceNet Interface Object Common Services:
Service
Code
0x0E
0x10
Class
No
No
Implemented for
Instance
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
Appendix
D
Application of ArmorStart®
Controllers in Group Installation
Group Motor Installations
The following is a method of applying ArmorStart controllers using group motor installation rules as defined in the National Electric Code
(NEC 2005) and Electrical Standard for Industrial Machinery (NFPA
79-2002).
1. List motors of the group in descending order of motor nameplate full load current.
2. Select disconnect means.
a. Sum all locked rotor currents of motors that can be started simultaneously using NEC Table 430.251.
b. Add to that value all the full load currents of any other motors or loads that can be operating at the same time as the motors that start simultaneously, using NEC Table 430.250.
c. Use the total current from a and b above to get an equivalent horsepower value from Table 430.251. That value is the size of the disconnect means in horsepower. (NEC 430.110)
3. Select fuse or circuit breaker protection: Select fuse or circuit breaker size for the largest motor per NEC Table 430.52 and add that ampere value to the total of the full load currents of the rest of the motors. The final value is the fuse or circuit breaker size required. (NEC 430.53C)
4. Select wire: Ampacity of wire feeding a group of motors is not less than 125% of the full-load current rating of the highest rated motor plus the sum of the full load current ratings of all the motors in the group. (NEC 430.24)
5. The code states that any taps supplying a single motor shall have an ampacity not less than one third the ampacity of the branch circuit conductors. (NEC 430.53D) The branch circuit conductors can be defined as the conductors on the load side of the fuse block or circuit breaker. This requirement actually defines the size of the group of motors. For example, if the wire from the fuses or circuit breaker is AWG #8 with rated ampacity of 50 A, the smallest wire you can use as a tap and to the motors is AWG #14 with an ampacity of 20 A. (NEC Table 310.16 for 75
° C wire)
Note that the Bulletin 280 ArmorStart controllers will not accept wire greater than #10 wires at its input terminal blocks. The
ArmorStart cabling to the motor is UL Listed for the controller’s
Hp and is supplied with the ArmorStart controller or as an accessory when longer lengths are required.
D-2
Group Motor Installations
Group motor installations using the ArmorStart in distributed control applications will be largely dictated by the required motor Hp, their locations and the practical concerns of wire-cable routing on the equipment. It should be noted that Group motor installation are designed to use the actual motor Hp and current ratings in NEC Table
430.250 and not the ArmorStart controller’s rating. This allows for the possible standardization of ArmorStart controllers in an installation. An application can be designed using 5 Hp controllers for all motors between say 5 and 2 Hp and 1 Hp controllers for motors 1
Hp and less without having to oversize the wiring and short circuit protection that would result from using the larger ArmorStart controller’s rating.
In the case of using the Bulletin 284 VFD-ArmorStart the actual fullload current of the motor needs to multiplied by the ratio of the drive’s ratio of rated input current to output current to arrive at the actual full-load current. For example, in the case of a 2 Hp VFD-
ArmorStart being used to control a 1 Hp 2.1 A @ 460 V motor, the full-load amperes to be used for the Group motor calculation would be the 2 Hp VFD-ArmorStart’s (Rated Input Current / Rated Output
Current) x 1 Hp motor’s rated full-load current; (5.7 A / 4.0 A)2.1 A =
3.0 A.
The following is a group motor example calculation for a 460 V distributed application that requires two 10 Hp DOL-ArmorStart controlling 10 Hp and 5 Hp motors and four 2 Hp VFD-ArmorStarts controlling one 2 Hp motor and three 1 Hp motors. From NEC Table
430.250 the full-load current of the respective motors are:
Motor Hp
2
1
10
5
1
1
Motor FLC (A)
14
7.6
3.4
2.1
2.1
2.1
Group Motor Installations
D-3
To design the motor circuit using a time delay fuse from NEC Table
430.52 to the rules of NEC 430.53C we start with the largest motor,
10 Hp, and calculate 14 A x 175% = 24.5 A. To this we add the FLC of the 5 Hp motor, 7.6 A, plus the other calculated drive currents for the motors controlled by the VFD-ArmorStarts. The calculated drive currents are given in the following Table:
1
1
2
1
Motor
Hp
Motor FLC
(A)
Drive Input to Output Current Ratio
(See ArmorStart Users Manual -
Appendix A)
3.4
2.1
2.1
2.1
5.57 A/4.0 A = 1.39
3.45 A/2.3 A = 1.5
3.45 A/2.3 A = 1.5
3.45 A/2.3 A = 1.5
Calculated Drive Current
(A)
3.4 x 1.39 = 4.72 A
2.1 x 1.5 = 3.15 A
2.1 x 1.5 = 3.15 A
2.1 x 1.5 = 3.15 A
The total current for the fuse ampacity is calculated in the following
Table:
Motor Hp
2
1
10
5
1
1
Motor FLC (A)
14
7.6
3.4
2.1
2.1
2.1
Total Fuse Current
TD Fuse Current (A)
24.5 A
7.6 A
4.72 A
3.15 A
3.15 A
3.15 A
46.4 A
Therefore the standard fuse available not exceeding 46.4 A is a 40 A fuse.
To calculate the wire ampacity and therefore the size of the motor branch conductor we use NEC 430.24 and calculate the sum of 125% of the largest motor’s FLC plus the FLC of the other motors in the group. The conductor ampacity calculation is given in the following
Table:
Motor Hp
2
1
10
5
1
1
Motor FLC (A)
Total Fuse Current
2.1
2.1
14
7.6
3.4
2.1
Wire Current (A)
14A x 1.25 =17.5A
7.6A
4.89 A
3.15 A
3.15 A
3.15 A
39.4 A
D-4
Group Motor Installations
From NEC Table 310.16 we need to use 8 AWG for the motor branch circuit. Per NEC 430.28 the individual motor tap conductors can be sized down to 1/3 the ampacity of the trunk but not less than 125% of the specific motor’s FLC on the tap. This reduction is further conditionally based on the tap being not more than 25 feet. NFPA 79,
7.2.10.4 and Table 7.2.10.4 restrict the size reduction by the size of the branch circuit fuse size and tap conductor size. For the above case we have used a 40 A time-delay fuse. NFPA 79, Table 7.2.10.4 indicates that the smallest tap conductor can be 12 AWG. NEC Table
310.16 for wire ampacity allows 12 AWG (25 A) to be used in all taps for this application. See the final Group motor circuit design in the following figure:
8 AWG motor branch trunk
40A Time Delay or 50A Inverse Time CB
**
12 AWG motor trunk tap conductors are permissible with 40A Time Delay fuse; 14 AWG are permissible with 50A Inverse Time circuit breaker. (NFPA 79 Table 7.2.10.4)
**
*
10 HP DOL-AS 10 HP DOL-AS 2 HP VFD-AS 2 HP VFD-AS 2 HP VFD-AS 2 HP VFD-AS
SF=1.15
14A FLC
10 HP
SF=1.15
7.6A FLC
5 HP
SF=1.15
3.4A FLC
2 HP
SF=1.15
2.1A FLC
1 HP
SF=1.15
2.1A FLC
1 HP
SF=1.15
2.1A FLC
1 HP
*
Note, the ArmorStart and motor cable are UL Listed together and supplied by Rockwell Automation.
Group Motor Installations
D-5
If the Group motor design were carried out with the intent to use an inverse-time circuit breaker from NEC Table 430.52 to the rules of
NEC 430.53C, we start with the largest motor, 10 Hp, and calculate
14A x 250% = 35 A to this we add the FLC of the 5 Hp motor, 7.6 A, plus the other calculated drive currents for the motors controlled by the VFD-ArmorStarts. The calculated drive currents are given in the following table:
Motor Hp
2
1
10
5
1
1
Motor FLC (A)
2.1
2.1
Total Fuse Current
14
7.6
3.4
2.1
Inverse-Time CB Current (A)
35 A
7.6 A
4.89 A
3.15 A
3.15 A
3.15 A
56.94 A
Therefore for the standard inverse-time circuit breaker available not exceeding 56.94 A we need to use a 50 A inverse-time circuit breaker.
This design will also allow the use of 8 AWG for the motor branch circuit. Continuing than and applying NEC 430.28 the individual motor tap conductors can be sized down to 1/3 the ampacity of the trunk and following the restrictions in NFPA 79, 7.2.10.4 and Table
7.2.10.4 for this case where we have used a 50 A inverse-time circuit breaker. NFPA 79, Table 7.2.10.4 indicates that the smallest tap conductor can now be 14 AWG. See the above figure for this Group motor circuit design.
The above method instructs one on applying ArmorStart controllers using group motor installation rules. Because of the ArmorStart’s capability, rating and Listing this method provides the minimum branch circuit wire and SCPD protection size that can be used. The
Armor Start has been evaluated and tested for group motor installations when being feed by a power source having 65,000 Amps available fault current. The ArmorStart is not a listed combination motor controller, however, but is Listed as Industrial Control
Equipment per UL 508 for group motor installations per NFPA 79.
Under this Listing the NEC and actually NFPA 79 puts an upper bound on the SCPD to be used. That upper bound is dictated by the maximum ratings in Table 7.2.10.4.
D-6
Group Motor Installations
The rules and allowances for sizing of the over current protection for
NFPA 79 motor groups is covered by 7.2.10.4, Table 7.2.10.4 and
Table 13.5.6. These rules in Tables 7.2.10.4 and 13.5.6 are intended to limit the maximum SCPD for a group. Therefore each ArmorStart controller with its factory-supplied output motor cable is suitable for single-motor or multiple-motor group installations on industrial machinery when installed according to NFPA 79, 2002. The controller and output motor cable have been evaluated as a single system. The maximum over current device rating or setting is limited to the value in Table D.1 for the smallest user-supplied input line conductor, by the controller's maximum rating, or as allowed by the
UL Certificate of Compliances 012607-E3125, E96956, and E207834 for the combined use of ArmorStart and ArmorConnect components.
The Certificate of Compliances allow the ArmorStart Distributed
Motor Controllers Models 280*-*10*, 281*-*10* and 284*-*10* respectively to be used with ArmorConnect input cable media 280*-
PWRM22*-M*, 280S-PWRM22*-M* Cable Assembly branch circuit taps, and 280*-M22*-M1 ArmorConnet Panel Mounting
Fittings when the group motor branch circuits are protected with a maximum 40 A non-time delay or a 20 A time delay, Class CC, T or F fuse.
These ArmorStart and ArmorConnect product UL Certification of
Compliances effectively extend Table D.1 to allow ArmorConnect branch circuit taps and mounting fittings constructed with 16 AWG conductor sized to be connected to appropriate ArmorStart motor controllers. See Table D.1.
Group Motor Installations
D-7
Table D.1 Extended NFPA 79, Table 7.210.4, Relationship Between
Conductor Size and Maximum Rating or Setting of Short-Circuit
Protective Devices for Power Circuits
Conductor Size
(AWG)
16 ➋
14
12
6
4
10
8
Max. Ratings
Non-Time Delay Fuse or
Inverse Time Circuit
Breaker ➊ (amperes)
Time Delay or Dual Element
Fuse (amperes)
40 ➌
60
80
100
150
200
250
20
30
40
50
80
➍
100
125
➊
For 16 AWG conductors the branch circuit breaker must be marked for use the 16 AWG wire, NFPA
79, 12.6.1.1.
➋
The UL Certificate of Compliance for the ArmorStart Distributed Motor Controllers models 280*-*10*,
281*-*10*, 284*-*10*; and ArmorConnect input cable media 280*-M22*-M*, 280S-PWRM22*-M* cable assembly branch circuit taps, and 280*-M22*-M1 ArmorConnect panel mounting fittings allows
16 AWG conductors to be used when part of ArmorStart and ArmorConnect components.
➌
The 280*-PWRM22*-M* ArmorConnect cable assembly taps and 280*-22*-M1 panel mounted fittings with 16 AWG conductors are suitably protected when protected in the branch circuit by a 40A nontime delay fuse.
➍
The 280*-PWRM22*-M* ArmorConnect Cable Assembly taps and 280*-22*-M1 Panel Mounted Fittings with 16 AWG conductors are suitably protected when protected in the branch circuit by a 20A time delay fuse.
The Listed ArmorStart motor controllers with their factory supplied motor cable carries the marked maximum ratings shown in the following table.
Voltage
Sym. Amps RMS
Circuit Breaker
Fuse
ArmorConnect ➋
480Y/277
65 kA
100 A
100 A
60 A ➊
Max. Ratings
480
65 kA
100 A
100 A
60 A ➊
600Y/347
30 kA
100 A
100 A
60 A ➊
➊
Class J, CC, and T fuses only.
➋
ArmorConnect power media and tees may only be used with fuses.
600
30 kA
-
60 A ➊
60 A ➊
D-8
Group Motor Installations
To summarize, the design of the ArmorStart controllers in group motor applications is to be carried out as described above. The user supplied line side SCPD and wiring has to meet the minimum requirements determined above, however, the SCPD is required to protect the ArmorStart controller’s associated line side wiring only and can be increased to the values allowed in the maximum ratings tables above. Because the maximum line side conductor for the
ArmorStart is #10 AWG this is the maximum tap wire or daisy-chain wiring that can be used to take advantage of the ArmorStart’s maximum input ratings.
A benefit to the ArmorStart rating and the above design process using
NFPA rules is that the industrial equipment that utilizes several group motor installations on different branch circuits can standardize the size of the SCPD and the branch wiring for all the branch circuits of the installation as long as they do not exceed the maximum ratings of
Table D.1as extended by the UL Certificate of Compliances for combined ArmorStart and ArmorConnect installations, which ever is less.
Appendix
E
ArmorStart Safety-Related Parts
Safety I/O Module and TÜV Requirements
Each ArmorStart Safety Distributed motor controller is intended to be combined with the 1732DS-IB8XOBV4 safety I/O module to form a subsystem that is part of the overall machine stop function. The motor controllers are connected to the safety I/O module through specified cable assemblies. The combination of one of these controllers, the safety module, and the specified interconnecting cables are referred to as the ArmorStart Safety-Related Parts. The part numbers for each of these components is specified below. The combination of these components is shown in Figure E.1. The safety I/O module and PLC program must be configured as outlined. See configuration of Safety
I/O Module and PLC program.
Table E.1 Safety-Related Parts
Catalog Number
280…S*
* - denotes safety version of Bulletin 280
281…S*
* - denotes safety version of Bulletin 280
284…S*
* - denotes safety version of Bulletin 280
1732DS-IB8XOBV4
889D-F4HJDM-*, 889D-F4AEDM-* or equivalent
* - denotes length
Description
Bulletin 280 Distributed Motor Controller – controller is full-voltage, non-reversing
Bulletin 281 Distributed Motor Controller – controller is full-voltage, reversing
Bulletin 281 Distributed Motor Controller – controller is variable-frequency AC drive
Guard I/O DeviceNet Safety Module
• SM cable assembly - Interconnecting cable assembly between safety module input and ArmorStart controller connector labeled “SM”.
Assembly provides contactor position feedback.
• A1/A2 cable assembly -
Interconnecting cable assembly between safety module output and
ArmorStart controller connector labeled “A1/A2”. Assembly provides output contactor coil power and controller power supply.
E-2
Safety I/O Module and TÜV Requirements
ArmorBlock® Guard I/O™
Modules
0
0
Description
ArmorBlock Guard I/O provides all the advantages of traditional distributed I/O for safety systems, but has an IP67 package that can be mounted directly on your machine. On-machine safety I/O reduces wiring time and startup costs for safety controller applications by eliminating electrical boxes and simplifying cable installation. The ArmorBlock family provides industrially hardened I/O blocks that you can mount directly on equipment near sensors or actuators. Wiring the I/O to the sensors and actuators is easy using pre-wired quick disconnect cables.
You can use Guard I/O with any safety controller that communicates on DeviceNet using CIP Safety for the control and monitoring of safety circuits. Guard I/O detects circuit failures at each I/O point while providing detailed diagnostics directly to the controller. With CIP Safety, you can easily integrate safety and standard control systems by using safety and standard messages on the same wire.
The 1732DS ArmorBlock Guard I/O family consists of 24V DC digital I/O modules that communicate on
DeviceNet networks. The I/O connectors are sealed M12 micro style while the network and auxiliary power connectors are sealed mini style. Plus, the ArmorBlock Guard I/O uses the same input and output M12 pin configuration as standard ArmorBlock and Maxum.
Cat. No.
1732DS-IB8XOBv4
Specifications
Electrical
Current Consumption
I/O Operating Voltage Range
Digital Inputs
Number of Inputs
Input Type
Voltage, On-State Input, Min.
Voltage, On-State Input, Max.
Current, On-State Input, Min.
Voltage, On-State Input, Min.
Digital Outputs
Number of Outputs
Output Type
Short Circuit Protection
Standard Pulse Test Outputs
Number of Pulse Test Sources
Pulse Test Output Current
Short Circuit Protection
Mechanical
Approximate Dimensions
Weight
Environmental
Operating Temperature
Relative Humidity
Vibration
Shock, Operating
Enclosure Type Rating
Certifications
85 mA @ 24V DC
19.2…28.8V DC (24V DC +/- 20%)
8 safety single-channel or 4 safety dual-channel current sinking
11V DC
5V DC
3.3 mA
11V DC
4 safety solid-state dual-channel, current sourcing/current sinking pair
Yes
8
0.7 A per point
Yes
179 x 70 x 68.7 mm (7.05 x 2.76 x 2.71 in.)
600 g (1.2 lb)
-20…+60 °C (-4…+140 °F)
10…95%, non-condensing
0.76 mm @ 10…500 Hz
30 g
IP67
UL, CE, C-Tick, CSA, UL NRGF, ODVA Conformance, TÜV
Certified for fuctional safety up to SIL 3, Cat. 4
Safety I/O Module and TÜV Requirements
Micro Connector Pin Assignments
Pin
3
4
1
2
5
Face View Pinout
Input Configuration
Signal
Output Configuration
Pin Signal
Test Output n+1
Safe Input n+1
Input Common
Safe Input n
Test Output n
3
4
1
2
5
Output +24V DC Power
Output n+1 (sinking)
Output Power Common
Output n (sourcing)
Output Power Common
1
4
2
Female
Mini Connector Pin Assignments
Pin
Face View Pinout
Signal
3
4
1
2
5
Drain
V+ (Red)
V- (Black)
CAN_H (White)
CAN_L (Blue)
Male Female
5
3
E-3
Power Configuration Pin Assignments
Pin
Face View Pinout
Signal
3
4
1
2
Output +24V DC Power (Red)
Input +24V DC Power (Green)
Input Power Common (White)
Output Power Common (Black)
Male
ArmorBlock Guard I/O Recommended Compatible Cables and Connectors
Description
DC Micro (M12) Male Cordset
Cat. No.
889D-F4HJ-
➊
DC Micro Style Patchcord
M12 Terminal Chamber, Straight Male
M12 Terminal Chamber, Right Angle Male
➊
Replace symbol with 1 (1 m), 2 (2 m), 5 (5 m), or 10 (10 m) for standard cable length.
889D-F4HJDM-
➊
871A-TS4-DM
871A-TR4-DM
E-4
Safety I/O Module and TÜV Requirements
Figure E.1
Three-Phase Power Media
DeviceNet Media
I/O output
I/O input
The 1732DS Safety I/O module outputs to provided 24V DC power for control power to the ArmorStart - A1/A2 control input
Aux. Power
The 1732DS Safety I/O module inputs will monitor the status of the safety-rated contactors inside the ArmorStart -SM safety monitor input.
Safety Function Definition
The safety function is an uncontrolled stop. The uncontrolled stop is executed by removing the ArmorStart safety controller output voltage in response to a DeviceNet Safety network command.
Limitations of the Safety-Related Parts
The user must provide other components to implement the overall machine stop function. Example components are the DeviceNet safety network, a safety PLC, and a safety input module.
Detection of the contactor state is provided so that a Category 4 architecture can be implemented for the overall machine stop function. The user must provide a safety PLC and program to process the “SM” feedback as required by Category 4. See configuration of safety I/O module and Safety PLC Program.
Safety I/O Module and TÜV Requirements
Configuration of the 1732DS-IBXOBV4 Safety I/O Module and
PLC Program
The safety module must be configured as follows:
Configure the output that is connected to the I/O output cable assembly for:
E-5
• Dual (bipolar mode)
• Safety Pulse Test
Configure the input that is connected to the I/O Input cable assembly as follows:
• Channel = Single
• Mode = Pulsed Test Input from test output X
• Source = Pulsed output from X
ArmorStart Controller - none required
Safety PLC Program – the program must:
• Force the output contactors to the open state when a safetyrelated stop is demanded.
• Force the output contactors to remain in the open state if the SM feedback is open after a safety-related stop is executed (see Note
1 and Note 2).
Note 1: The program must inhibit the contactor closure to satisfy safety category 4 of 13849-1.
Note 2: The SM feedback logic should be implemented only after a safetyrelated stop for the Bulletin 280/281 controllers. It should be ignored during normal operation. One of the series contactors is used for the normal stop/start function for these controllers. Therefore, a malfunctioning contactor circuit cannot be distinguished from a normal running state.
Refer to Publication SAFETY-AT018*, for programming examples.
E-6
Safety I/O Module and TÜV Requirements
Safety-Related Specifications
Component Response Time
Component
1732DS-IB8XOBV4
Bulletin 280
Bulletin 281
Bulletin 284
Response Time (ms)
See Publication 1732DS-IN001*
20…40
20…40
8…12
Probability of Dangerous Failure per hour and MTTF
d
Uncontrolled Stop
for
ArmorStart Safety Controller used in
Combination of ArmorStart Safety-
Related Parts
Bulletin 280…
Bulletin 281…
Bulletin 284…
MTTFd
(years)
100
100
100
Average probability of dangerous failure per hour
(1/h)
5.7E-9
6.0E-9
6.0E-9
Maintenance and Internal Part
Replacement
The ArmorStart Safety controllers do not have any internal maintenance procedures or internal replacement parts. Refer to the
1732DS-IB8XOBV4 safety module documentation for maintenance requirements pertaining to it. It is recommended that the operation of the 1732DS-IB8XOBV4 safety module and the ArmorStart output contactor circuits be verified once per year by performing the contactor circuit verification procedure. The contactor circuit verification procedure must be performed on an ArmorStart Safety controller that has experienced an output short-circuit fault prior to placing the controller back into service.
Contactor Circuit Verification Procedure
Initiate a stop from the safety PLC to the 1732DS-IB8XOBV4
• Verify that the ArmorStart controller output motor voltage is removed.
• Verify that the SM feedback to the safety PLC transitions to the open state.
Troubleshooting
Safety I/O Module and TÜV Requirements
1732DS-IB8XOBV4 Safety Module
Refer to 1732DS-IB8XOBV4 documentation for trouble shooting instructions.
ArmorStart Safety Bulletin 280/281/284 Distributed Motor
Controllers Safety Circuit Troubleshooting
E-7
Symptom
Motor will not start
ArmorStart Controller LED Status
Indication
Power
Off
Fault
Off
Run
Off
Off
On
On
On
Flashing
Off
Flashing
Off
Off
Off
Off
On
Probable Cause Recommended Action
1.
The disconnect switch of the ArmorStart controller is open.
2.
24 VDC not supplied to A1 and A2 at
A1/A2 connector because cable or connections are defective.
3.
1732DS-IB8XOBV4 not supplying 24 VDC to A1 and A2 pins of A1/A2 cable.
There is an ArmorStart controller fault.
After non-safety stop
➀
1.
The controller is not receiving a RUN command.
1.
Check disconnect switch.
2.
Verify cable and connections.
3.
Refer to IN PWR/OUT PWR Indicators in
1732DS-IB8XOBV4 manual.
Refer to ArmorStart Manual for controller fault.
After non-safety stop
➀
1.
Check RUN command source.
After safety stop
➁
1.
The controller is not receiving a RUN command.
2.
SM cable connections (SM1, SM2) open.
3.
SM feedback is open inside control module.
4.
1732DS-IB8XOBV4 is reporting open SM feedback from the IN0...INn inputs.
ArmorStart controller fault is inhibiting
ArmorStart controller start function.
1.
Three-phase power is not being supplied to controller (Bulletin 280/281 controllers).
2.
24 VDC not supplied to P and M at A1/A2 connector because cable or connections are defective.
3.
1732DS-IB8XOBV4 OUT0...OUTn outputs are not supplying 24 VDC to pins P and M of A1/A2 cable assembly.
After safety stop
➁
1.
Check RUN command source.
2.
Check SM cable and connections.
3.
Check SM feedback inside control module.
4.
Refer to I/O Indicators in
1732DS-IB8XOBV4 manual.
Refer to ArmorStart Manual for controller fault.
1.
Verify 3-phase voltage at ArmorStart controller input.
2.
Verify cable and connections.
3.
Refer to I/O Indicators in
1732DS-IB8XOBV4 manual.
➀
Non-safety stop – The 1732DS-IB8XOBV4 does not remove 24V DC from P and M of A1/A2 when a non-safety stop is executed. Restarting the controller after a non-safety stop is not inhibited by the safety circuit.
➁
Safety stop – The 1732DS-IB8XOBV4 removes 24V DC from P and M of A1/A2 when a safety stop is executed. This opens both contactors. Restarting the controller stop is inhibited if the SM feedback is open. The program in the safety controller does not permit the 1732DS-IB8XOBV4 to apply 24V DC to P and M in the A1/A2 cable.
E-8
Notes:
Safety I/O Module and TÜV Requirements
Appendix
F
Accessories
Table F.1 DeviceNet™ Media ➊
Description
KwikLink pigtail drops are Insulation
Displacement Connector (IDC) with integral Class
1 round cables for interfacing devices or power supplies to flat cable
Length m (ft)
1 m (3.3)
2 m (6.5)
3 m (9.8)
6 m (19.8)
Cat. No.
Sealed
1485P-P1E4-B1-N5
1485P-P1E4-B2-N5
1485P-P1E4-B3-N5
1485P-P1E4-B6-N5
DeviceNet Mini- T-Port Tap
Right Keyway
Left Keyway
1485P-P1N5-MN5NF
1485P-P1N5-MN5KM
Gray PVC Thin Cable
Thick Cable
Connector
Mini Straight Female
Mini Straight Male
Mini Straight Female
Mini Right Angle Male
Mini Right Angle Female
Mini Straight Male
Mini Right Angle Female
Mini Straight Male
Mini Straight Female
Mini Straight Male
Mini Straight Female
Mini Right Angle Male
Mini Right Angle Female
Mini Straight Male
Mini Right Angle Female
Mini Straight Male
Length m (ft)
Cat. No.
1485G-P
➋
1485G-P
1485G-P
1485G-P
1485C-P
1485C-P
1485C-P
➋
➋
➋
➌
➌
➌
N5-M5
W5-N5
M5-Z5
W5-Z5
N5-M5
W5-N5
M5-Z5
1485C-P
➌
W5-Z5
Cat. No.
DeviceNet Configuration Terminal — Used to interface with objects on a DeviceNet network.
Includes 1 m communications cable.
Communication cable, color-coded bare leads
Communication cable, microconnector (male)
Panel Mount Adapter/Door Mount Bezel Kit
1 m (3.3)
1 m (3.3)
1 m (3.3)
—
193-DNCT
193-CB1
193-CM1
193-DNCT-BZ1
➊
See publication M116-CA001A-EN-P for complete cable selection information.
➋
Replace symbol with desired length in meters (Example: 1485G-P1N5-M5 for a 1 m cable). Standard cable lengths: 1 m, 2 m, 3 m, 4 m, 5 m, and 6 m.
➌
Replace symbol with desired length in meters (Example: 1485C-P1N5-M5 for a 1 m cable). Standard cable lengths: 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 8 m, 10 m, 12 m,
18 m, 24 m, and 30 m.
NOTE: Stainless steel versions may be ordered by adding an “S” to the cat. no. (Example: 1485CS-P1N5-M5)
F-2
Table F.2 Sensor Media ➊
Description
ArmorStart® I/O
Connection
Pin Count Connector Cat. No.
0
0
DC Micro Patchcord
Input 5-Pin
Straight Female
Straight Male
Straight Female
Right Angle Male
889D-F4ACDM-
➋
889D-F4AACDE-
➋
0
Straight Female
879D-F4ACDM-
➋
Input 5-pin
0
DC Micro V-Cable
Right Angle Male
879D-R4ACM-
➋
Straight Female
Straight Male
889R-F3AERM-
➋
Output 3-pin
AC Micro Patchcord
Straight Female
Right Angle Male
899R-F3AERE-
➊
See Publication M116-CA001A-EN-P for complete cable selection information.
➋
Replace symbol with desired length in meters (Example: 889D-F4ACDM-1 for a 1 m cable). Standard cable lengths: 1 m, 2 m, 5 m, and 10 m.
➋
Table F.3 Sealing Caps
Description
Plastic Sealing Cap (M12)
➌
For Use With
Input I/O Connection
Cat. No.
1485A-M12
Aluminum Sealing Cap (M12)
➌
Stainless Steel Sealing Cap (M12)
➍
Stainless Steel Sealing Cap (M12)
➍
Aluminum Sealing Cap (M22)
➎
Output I/O Connection
Input I/O Connection
Output I/O Connection
Dynamic Brake Receptacle
889A-RMCAP
1485AS-C3
889AS-RMCAP
1485A-C1
➌
To achieve IP 67 rating, sealing caps must be installed on all unused I/O connections.
➍
To achieve IP 69k rating, sealing caps must be installed on all unused I/O connections.
➎
To achieve IP 67 rating, sealing caps must be installed if Dynamic Brake option is not used.
Table F.4 Locking Clips
Description
The clam shell design clips over the ArmorStart motor connector and motor cable to limit customer access.
Package QTY
10
10
Cat. No.
280-MTR22-LC
280-MTR35-LC
Table F.5 Locking Tag
Description Cat. No.
Padlock attachment to the lockable handles, up to three padlocks 4…8 mm (5/16 in.) shackle.
140M-C-M3
F-3
Table F.6 IP67 Dynamic Brake Resistor
Drive and
Motor Size kW
Part Number
Resistance
Ohms ± 5%
Continuous
Power kW
Application Type 1
Max Energy kJ
Max
Braking
Torque % of
Motor
Braking
Torque % of
Motor
Duty
Cycle %
Application Type 2
Braking
Torque % of
Motor
Duty
Cycle %
400-480 Volt AC Input Drives
0.37 (0.5) 284R-360P500-M*
0.75 (1) 284R-360P500-M*
1.5 (2)
2.2 (3)
4 (5)
284R-360P500-M*
284R-120P1K2-M*
284R-120P1K2-M*
360
360
360
120
120
0.086
0.086
0.086
0.26
0.26
17
17
17
52
52
305%
220%
110%
197%
124%
100%
100%
100%
100%
100%
47%
23%
12%
24%
13%
150%
150%
110%
150%
124%
31%
15%
11%
16%
10%
* - Indicates cable length (0.5 m or 1.0 m).
Note: Always check the resistor ohms against minimum resistance for drive being used.
Note: Duty Cycle listed is based on full speed to zero speed deceleration. For constance regen at full speed, duty cycle capability is half of what is listed. Application
Type 1 represents maximum capability up to 100% braking torque where possible. Application Type 2 represents more than 100% braking torque where possible, up to a maximum of 150%.
Figure F.1 Dynamic Brake Resistor Approximate Dimensions
Dimensions are not intended to be used for manufacturing purposes.
H
C
B
D
J
F
G
Cat No.
A
mm (in.)
B
mm (in.)
C D
mm (in.)
E
mm (in.)
F
mm (in.)
G
mm (in.)
H
mm (in.)
J
mm (in.)
284R-360P500
284R120P1K2
89 ± 3
(3.5 ± 0.12)
215 ± 5
(8.46 ± 0.2)
420 ± 5
(16.54 ± 0.2)
*
235 ± 5
(9.25 ± 0.2)
440 ± 5
(17.32 ± 0.2)
60 ± 2
(2.36 ± 0.08)
127
(5)
12.54
(0.49)
60 ± 2
(2.36 ± 0.08)
50 ± 1.5
(1.97 ± 0.06)
* Length is user-selectable based on the suffix added to the catalog number. For a length of 500±10mm, add
-M05 to the end of the catalog number. For a length of
1000±10mm, add
-M1 to the end of the catalog number.
F-4
Notes:
Appendix
G
Bulletin Number
280
Full Voltage Starter
281
Reversing Starter
Communications
D
DeviceNet™
Renewal Parts
Figure G.1 Bulletin 280/281 Safety Control Module Renewal Part Catalog
Structure
280 D – F 12S – N B – R – Option 1
Enclosure Type
F
Type 4 (IP67)
Contactor Size/24V DC Safety
12S
23S
Option 1
3
Hand-Off-Auto Selector Keypad
3FR
Hand-Off-Auto Selector Keypad with Forward/Reverse
Motor Connection
R
Round
Control Module
N
Control Module Only
Overload Selection
Current Range
B
C
D
0.5…2.5 A
1.1…5.5 A
3.2…16 A
Current Rating (A)
0.5…2.5
1.1…5.5
3.2…16
230V AC
50 Hz
0.37
1.1
4
kW
400V AC
50 Hz
0.75
2.2
7.5
Current Rating (A)
0.5…2.5
1.1…5.5
3.2…16
230V AC
50 Hz
0.37
1.1
4
kW
400V AC
50 Hz
0.75
2.2
7.5
Control Module Renewal Part Product Selection
Table G.1 Full Voltage Starters — IP67/NEMA Type 4, Up to 460V AC
200V AC
60 Hz
0.5
1
3
Hp
230V AC
60 Hz
0.5
1
5
460V AC
60 Hz
1
3
10
Cat. No.
24V DC
280D-F12S-NB-R
280D-F12S-NC-R
280D-F23S-ND-R
Table G.2 Reversing Starters — IP67/NEMA Type 4, Up to 460V AC
Cat. No.
200V AC
60 Hz
0.5
1
3
Hp
230V AC
60 Hz
0.5
1
5
460V AC
60 Hz
1
3
10
24V DC
281D-F12S-NB-R
281D-F12S-NC-R
281D-F23S-ND-R
G-2
Renewal Parts
Figure G.2 Bulletin 280 Safety Base Module Renewal Part Catalog Structure
280 D – F NS – 10 – C
Bulletin Number
280
Starter
Communications
D
DeviceNet™
Current Rating (A)
0.5…2.5
1.1…5.5
3.2…16
Enclosure Type
F
Type 4 (IP67)
NS
Base Only
No Control Module
230V AC
50 Hz
0.37
1.1
4
kW
400V AC
50 Hz
0.75
2.2
7.5
Line Connection
C
Conduit Entrance
R
ArmorConnect™ Power Media
Short Circuit Protection (Bul. 140M)
10
10 A Rated Device
25
25 A Rated Device
Base Module Renewal Part Product Selection
Table G.3 Bul. 280 Full Voltage Starters & Bul. 281 Reversing Starters —
IP67/NEMA Type 4, Up to 460V AC with Conduit Entrance
200V AC
60 Hz
0.5
1
3
Hp
230V AC
60 Hz
0.5
1
5
460V AC
60 Hz
1
3
10
Cat. No.
280D-FNS-10-C
280D-FNS-10-C
280D-FNS-25-C
Current Rating (A)
0.5…2.5
1.1…5.5
3.2…16
230V AC
50 Hz
0.37
1.1
4
kW
400V AC
50 Hz
0.75
2.2
7.5
Table G.4 Bul. 280 Full Voltage Starters & Bul. 281 Reversing Starters —
IP67/NEMA Type 4, Up to 460V AC with ArmorConnect
Connectivity
200V AC
60 Hz
0.5
1
3
Hp
230V AC
60 Hz
0.5
1
5
460V AC
60 Hz
1
3
10
Cat. No.
280D-FNS-10-R
280D-FNS-10-R
280D-FNS-25-R
Description
90° M22 Motor Cordset
90° M35 Motor Cordset
Current Rating (A)
0.5…2.5
1.1…5.5
3.2…16
Table G.5 Motor Cables
Cable Rating
IP67/NEMA Type 4
IP67/NEMA Type 4
Length m (ft)
3 (9.8)
6 (19.6)
14 (45.9)
3 (9.8)
6 (19.6)
14 (45.9)
Cat. No.
280-MTRM22-M3
280-MTR22-M6
280-MTR22-M14
280-MTRM35-M3
280-MTR35-M6
280-MTR35-M14
Renewal Parts
Figure G.3 Bulletin 284 Safety Control Module Renewal Part Catalog
Structure
284 D – F V D2P3 S – N – R – Option 1 – Option 2 – Option 3
Bulletin
Number
Communications
D
DeviceNet™
Option 3
EMI
EMI Filter
G-3
Enclosure Type
F
Type 4 (IP67)
Torque Performance Mode
V
Sensorless Vector Control,
Volts per Hz
Control Module
N
Control Module Only
Control Voltage
S
24V DC (Safety)
Option 2
DB1
DB Brake Connector for IP67
SB
Dynamic Brake Resistor
Source Brake Connector
Output Current
Code
D1P4
D2P3
D4P0
D6P0
D7P0
Output
Current
[A] kW
480V Drive
1.4
2.3
4
6
7.6
0.4
0.75
1.5
2.2
4
Hp
0.5
1
2
3
5
Option 1
3
Hand-Off-Auto Selector Keypad with Jog Function
Blank Status Only
Motor Media Type
R
Round
Table G.6 Bulletin 284 Control Module with Sensorless Vector
Performance, IP67/NEMA 4, Up to 480V
Input Voltage
480V 50/60 Hz
3-Phase
kW
0.4
0.75
1.5
2.2
3.0
Hp
0.5
1.0
2.0
3.0
5.0
Output
Current
1.4 A
2.3 A
4.0 A
6.0 A
7.6 A
24 V DC
Control Voltage
284D-FVD1P4S-N-R-DB1-SB
284D-FVD2P3S-N-R-DB1-SB
284D-FVD4P0S-N-R-DB1-SB
284D-FVD6P0S-N-R-DB1-SB
284D-FVD7P6S-N-R-DB1-SB
G-4
Renewal Parts
Figure G.4 Bulletin 284 Safety Base Module Renewal Part Catalog Structure
280 D – F NS – 10 – C
Bulletin
Number
Communications
D
DeviceNet™
Enclosure Type
F
Type 4 (IP67)
Base
NS
Base Only — no starter
Line Media
C
Conduit
R
ArmorConnect™ Power Media
Short-Circuit Protection
Bulletin 140 Current Rating (A)
10
25
10 A Rated Device
25 A Rated Device
Base Module Renewal Part
Product Selection
Table G.7 Bulletin 284 Base Module Renewal Part, IP67/NEMA 4, Up to 480V
AC With Conduit Entrance
Input Voltage
380…480V
50/60 Hz
3-Phase
kW
0.4…2.2
3.0
Hp
0.5…3.0
5.0
Output
Current
1.4…4.0 A
6.0…7.6 A
Cat. No.
280D-FNS-10-C
280D-FNS-25-C
Table G.8 Bulletin 284 Base Module Renewal Part, IP67/NEMA 4, Up to
480V AC with ArmorConnect™ Connectivity
Input Voltage kW Hp
Output
Current
Cat. No.
380…480V
50/60 Hz
3-Phase
0.4…2.2
3.0
0.5…3.0
5.0
1.4…4.0 A
6.0…7.6 A
280D-FNS-10-R
280D-FNS-25-R
Table G.9 Motor Cables
Description Cable Rating
90° M22 Motor
Cordset
IP67/NEMA Type
4
90° M22 Motor
Cordset
(Shielded)
IP67/NEMA Type
4
Length m (ft)
3 m (9.8)
6 m (19.6)
14 m (45.9)
3 m (9.8)
6 m (19.6)
14 m (45.9)
Table G.10 Source Brake Cable
Description Cable Rating
90° M25 Source
Brake Cable
IP67/NEMA Type 4
Length m (ft)
3m (9.8)
6 m (19.6)
14 m (45.9)
Cat. No.
280-MTR22-M3
280-MTR22-M6
280-MTR22-M14
284-MTRS22-M3
284-MTRS22-M6
284-MTRS22-M14
Cat. No.
285-BRC25-M3
285-BRC25-M6
285-BRC25-M14
PID Loop
Appendix
H
PID Setup
The Bulletin 284 ArmorStart® Distributed Motor with sensorless vector control has a built-in PID (proportional, integral, differential) control loop. The PID loop is used to maintain a process feedback
(such as pressure, flow, or tension) at a desired set point. The PID loop works by subtracting the PID feedback from a reference and generating an error value. The PID loop reacts to the error, based on the PID Gains, and outputs a frequency to try to reduce the error value to 0. To enable the PID loop, Parameter 232 (PID Ref Sel) must be set to an option other than 0 PID Disabled.
Exclusive Control and Trim Control are two basic configurations where the PID loop may be used.
Exclusive Control
In Exclusive Control, the Speed Reference becomes 0, and the PID
Output becomes the entire Freq Command. Exclusive Control is used when Parameter 232 (PID Ref Sel) is set to option 1, 2, 3, or 4. This configuration does not require a master reference, only a desired set point, such as a flow rate for a pump.
PID Ref
PID Fdbk
–
+
PID
Error
PID Loop
PID Prop Gain
PID Integ Time
+
+
PID Diff Rate
PID
Output
+
PID Enabled
Accel/Decel
Ramp
Freq
Command
Example
• In a pumping application, the PID Reference equals the Desired
System Pressure set point.
• The Pressure Transducer signal provides PID Feedback to the drive. Fluctuations in actual system pressure, due to changes in flow, result in a PID Error value.
• The drive output frequency increases or decreases to vary motor shaft speed to correct for the PID Error value.
• The Desired System Pressure set point is maintained as valves in the system are opened and closed causing changes in flow.
• When the PID Control Loop is disabled, the Commanded Speed is the Ramped Speed Reference.
PID Feedback =
Pressure Transducer Signal
Pump
PID Reference =
Desired System Pressure
H-2
PID Setup
Trim Control
In Trim Control, the PID Output is added to the Speed Reference. In
Trim mode, the output of the PID loop bypasses the accel/decel ramp as shown. Trim Control is used when Parameter 232 (PID Ref Sel) is set to option 5, 6, 7, or 8.
PID Ref
PID Fdbk
–
+
PID
Error
PID Loop
PID Prop Gain
PID Integ Time
+
+
+
PID Diff Rate
PID
Output
PID Enabled
Speed Ref
Accel/Decel
Ramp
+
+
Output
Freq
Example
• In a winder application, the PID Reference equals the
Equilibrium set point.
• The Dancer Pot signal provides PID Feedback to the drive.
Fluctuations in tension result in a PID Error value.
• The Master Speed Reference sets the wind/unwind speed.
• As tension increases or decreases during winding, the Speed
Reference is trimmed to compensate. Tension is maintained near the Equilibrium set point.
PID Reference =
Equilibrium Set Point
0 Volts
PID Feedback =
Dancer Pot Signal
10 Volts
Speed Reference
PID Setup
H-3
PID Reference and Feedback
Parameter 232 (PID Ref Sel) is used to enable the PID mode
(Parameter 232 ¦ 0 PID Disabled) and to select the source of the PID
Reference. If A132 (PID Ref Sel) is not set to 0 PID Disabled, PID can still be disabled by select programmable digital input options
(Parameters 151…154) such as Jog, Local, or PID Disable.
Option
0
PID Disabled
1
PID Setpoint
4
Comm Port
5
Setpnt, Trim
8
Comm, Trim
Disables the PID loop (default setting)
Description
Selects Exclusive Control. Parameter 137 (PID Setpoint) will be used to set the value of the PID Reference
Selects Exclusive Control. The reference word from a communication network
DeviceNet
™
becomes the PID Reference. The value sent over the network is scaled so that Parameter 135 (Maximum Freq) x 10 = 100% reference. For example, with
(Maximum Freq) = 60 Hz, a value of 600 sent over the network would represent 100% reference.
Selects Trim Control. Parameter 137 (PID Setpoint) will be used to set the value of the
PID Reference.
Selects Trim Control. The reference word from a communication network DeviceNet becomes the PID Reference. The value sent over the network is scaled so that
Parameter 135 (Maximum Freq) x 10 = 100% reference. For example, with (Maximum
Freq) = 60 Hz, a value of 600 sent over the network would represent 100% reference.
Parameter 233 (PID Feedback Sel) is used to select the source of the
PID feedback.
Option
2
Comm Port
Description
The Consumed Assembly (Instance 164 — Default Consumed Inverter Type Distributed
Motor Controller) from a communication network (seepage C-9 for details on the
Consumed Assembly) which becomes the PID Feedback. The value sent over the network is scaled so that Parameter 135 (Maximum Freq) x 10 = 100% Feedback. For example, with (Maximum Freq) = 60 Hz, a value of 600 sent over the network would represent 100% Feedback.
PID Deadband
Parameter 238 (PID Deadband) is used to set a range, in percent, of the PID Reference that the drive will ignore.
Example
• (PID Deadband) is set to 5.0
• The PID Reference is 25.0%
• The PID Regulator will not act on a PID Error that falls between
20.0 and 30.0%
H-4
PID Setup
PID Preload
The value set in Parameter 239 (PID Preload), in Hertz, will be preloaded into the integral component of the PID at any start or enable.
This will cause the drive’s frequency command to initially jump to that preload frequency, and the PID loop starts regulating from there.
PID Enabled
PID Pre-load Value
PID Output
Freq Cmd
PID Pre-load Value > 0
PID Limits
Parameter 230 (PID Trim Hi) and Parameter 231 (PID Trim Lo) are used to limit the PID output and are only used in trim mode. (PID
Trim Hi) sets the maximum frequency for the PID output in trim mode. (PID Trim Lo) sets the reverse frequency limit for the PID output in trim mode. Note that when the PID reaches the Hi or Lo limit, the PID regulator stops integrating so that windup does not occur.
PID Gains
The proportional, integral, and differential gains make up the PID regulator.
• Parameter 234 (PID Prop Gain)
The proportional gain (unitless) affects how the regulator reacts to the magnitude of the error. The proportional component of the
PID regulator outputs a speed command proportional to the PID error. For example, a proportional gain of 1 would output 100% of maximum frequency when the PID error is 100% of the analog input range. A larger value for (PID Prop Gain) makes the proportional component more responsive, and a smaller value makes it less responsive. Setting (PID Prop Gain) to 0.00 disables the proportional component of the PID loop.
PID Setup
H-5
• Parameter 235 (PID Integ Time)
The integral gain (units of seconds) affects how the regulator reacts to error over time and is used to get rid of steady state error. For example, with an integral gain of 2 seconds, the output of the integral gain component would integrate up to 100% of maximum frequency when the PID error is 100% for 2 seconds.
A larger value for (PID Integ Time) makes the integral component less responsive, and a smaller value makes it more responsive. Setting (PID Integ Time) to 0 disables the integral component of the PID loop.
• Parameter 236 (PID Diff Rate)
The Differential gain (units of 1/seconds) affects the rate of change of the PID output. The differential gain is multiplied by the difference between the previous error and current error.
Thus, with a large error the D has a large effect and with a small error the D has less of an effect. This parameter is scaled so that when it is set to 1.00, the process response is 0.1% of (Maximum
Freq) when the process error is changing at 1%/second. A larger value for (PID Diff Rate) makes the differential term have more of an effect and a small value makes it have less of an effect. In many applications, the D gain is not needed. Setting (PID Diff
Rate) to 0.00 (factory default) disables the differential component of the PID loop.
Guidelines for Adjusting the PID Gains
1. Adjust the proportional gain. During this step it may be desirable to disable the integral gain and differential gain by setting them to
0. After a step change in the PID Feedback:
• If the response is too slow increase Parameter 234 (PID Prop
Gain).
• If the response is too quick and/or unstable (see Figure H.1), decrease Parameter 234 (PID Prop Gain).
• Typically, Parameter 234 (PID Prop Gain) is set to some value below the point where the PID begins to go unstable.
2. Adjust the integral gain (leave the proportional gain set as in Step
1). After a step change in the PID Feedback:
• If the response is too slow (see Figure H.2), or the PID
Feedback does not become equal to the PID Reference, decrease Parameter 235 (PID Integ Time).
• If there is a lot of oscillation in the PID Feedback before settling out (see Figure H.3), increase Parameter 235 (PID
Integ Time).
H-6
PID Setup
3. At this point, the differential gain may not be needed. However, if after determining the values for Parameter 234 (PID Prop Gain) and Parameter 235 (PID Integ Time):
• Response is still slow after a step change, increase Parameter
236 (PID Diff Rate).
• Response is still unstable, decrease Parameter 236 (PID Diff
Rate).
The following figures show some typical responses of the PID loop at different points during adjustment of the PID Gains.
Figure H.1 Unstable
PID Reference
PID Feedback
Time
Figure H.2 Slow Response — Over-Damped
PID Reference
PID Feedback
Time
Figure H.3 Oscillation — Under-Damped
PID Reference
PID Feedback
Time
Figure H.4 Good Response — Critically Damped
PID Reference
PID Feedback
Time
Appendix
I
Step Logic, Basic Logic and Timer/
Counter Functions
Four Bulletin 284 ArmorStart® logic functions provide the capability to program simple logic functions without a separate controller.
• Step Logic Function
Steps through up to eight preset speeds based on programmed logic. Programmed logic can include conditions that need to be met from digital inputs programmed as Logic In1 and Logic In2 before stepping from one preset speed to the next. A timer is available for each of the eight steps and is used to program a time delay before stepping from one preset speed to the next.
The status of a digital output can also be controlled based on the step being executed.
• Basic Logic Function
Up to two digital inputs can be programmed as Logic In1 and/or
Logic In2. A digital output can be programmed to change state based on the condition of one or both inputs based on basic logic functions such as AND, OR, NOR. The basic logic functions can be used with or without step logic.
• Timer Function
A digital input can be programmed for Timer Start. A digital output can be programmed as a Timer Out with an output level programmed to the desired time. When the timer reaches the time programmed into the output level the output will change state. The timer can be reset via a digital input programmed as
Reset Timer.
• Counter Function
A digital input can be programmed for Counter In. A digital output can be programmed as Counter Out with an output level programmed to the desired number of counts. When the counter reaches the count programmed into the output level the output will change state. The counter can be reset via a digital input programmed as Reset Counter.
I-2
Step Logic, Basic Logic and Timer/Counter Functions
Step Logic Using Timed Steps
To activate this function, set Parameter 138 (Speed Reference) to 6
Stp Logic. Three parameters are used to configure the logic, speed reference, and time for each step.
• Logic is defined using Parameters 240…247 (Stp Logic x).
• Preset Speeds are set with Parameters 170…177 (Preset Freq x).
• Time of operation for each step is set with Parameters 250…257
(Stp Logic Time x).
The direction of motor rotation can be forward or reverse.
Figure I.1 Using Timed Steps
Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7
Forward
0
Reverse
Time
Step Logic Sequence
• Sequence begins with a valid start command.
• A normal sequence begins with Step 0 and transitions to the next step when the corresponding step logic time has expired.
• Step 7 is followed by Step 0.
• Sequence repeats until a stop is issued or a fault condition occurs.
Step Logic Using Basic Logic
Functions
Step Logic, Basic Logic and Timer/Counter Functions
I-3
Digital input and digital output parameters can be configured to use logic to transition to the next step. Logic In1 and Logic In2 are defined by programming Parameters 151…154 …Digital Inx Sel… to
Option 23 Logic In1 or Option 24 Logic In2.
Example
• Run at Step 0.
• Transition to Step 1 when Logic In1 is true.
Logic senses the edge of Logic In1 when it transitions from Off to On. Logic In1 is not required to remain On.
• Transition to Step 2 when both Logic In1 and Logic In2 are true.
The drive senses the level of both Logic In1 and Logic In2 and transitions to Step 2 when both are On.
• Transition to Step 3 when Logic In2 returns to a false or Off state.
Inputs are not required to remain in the On condition except under the logic conditions used for the transition from Step 2 to
Step 3.
Figure I.2
Start Step 0 Step 1 Step 2 Step 3
Frequency
Logic In1
Logic In2
Time
The step time value and the basic logic may be used together to satisfy machine conditions. For instance, the step may need to run for a minimum time period and then use the basic logic to trigger a transition to the next step.
Figure I.3
Start Step 0 Step 1
Frequency
Logic In1
Logic In2
Time
I-4
Step Logic, Basic Logic and Timer/Counter Functions
Timer Function
Digital inputs and outputs control the timer function and are configured with Parameters 151…154 (Digital Inx Sel) set to 18
Timer Start and 20 Reset Timer.
Digital outputs (relay and opto type) define a preset level and indicate when the level is reached. Level Parameters 156 (Relay Out Level),
159 (Opto Out1 Level), and 162 (Opto Out2 Level) are used to set the desired time in seconds.
Parameters 155 (Relay Out Sel), 158 (Opto Out1 Sel), and 161 (Opto
Out2 Sel) are set to option 16 Timer Out and cause the output to change state when the preset level is reached.
Counter Function
Digital inputs and outputs control the counter function and are configured with Parameters 151…154 (Digital Inx Sel) set to 19
Counter In and 21 Reset Counter.
Digital outputs (relay and opto type) define a preset level and indicate when the level is reached. Level Parameters 156 (Relay Out Level),
159 (Opto Out1 Level), and 162 (Opto Out2 Level) are used to set the desired count value.
Parameters 155 (Relay Out Sel), 158 (Opto Out1 Sel), and 161 (Opto
Out2 Sel) are set to 17 Counter Out which causes the output to change state when the level is reached.
Example
• A photo eye is used to count packages on a conveyor line.
• An accumulator holds the packages until five are collected.
• A diverter arm redirects the group of five packages to a bundling area.
• The diverter arm returns to its original position and triggers a limit switch that resets the counter.
• Parameters are set to the following options:
• 151 (Digital In1 Sel) set to 19 to select Counter In
• 152 (Digital In2 Sel) set to 21 to select Reset Counter
• 155 (Relay Out Sel) set to 17 to select Counter Out
• 156 (Relay Out Level) set to 5.0 (counts)
Step Logic, Basic Logic and Timer/Counter Functions
Step Logic Parameters
Setting
6
7
4
5
8
2
3
0
1
Digit 3
0
Setting
5
6
3
4
0
1
2
9
A
7
8 b
Digit 2
0
Digit 1
F
Digit 0
1
Accel/Decel Parameters Used Step Logic Output State Commanded Direction
1
2
1
1
1
1
1
2
2
2
2
2
Off
Off
Off
On
On
On
Off
Off
Off
On
On
On
FWD
REV
No Output
FWD
REV
No Output
FWD
REV
No Output
FWD
REV
No Output
Setting
5
6
3
4
0
1
2
9
A
7
8
Jump to Step 0
Jump to Step 1
Jump to Step 2
Jump to Step 3
Jump to Step 4
Jump to Step 5
Jump to Step 6
Jump to Step 7
End Program (Normal Stop)
End Program (Coast to Stop)
End Program and Fault (F2)
Logic
Description
Skip Step (jump immediately).
Step based on the time programmed in the respective (Stp Logic Time x) parameter.
Step if Logic In1 is active (logically true).
Step if Logic In2 is active (logically true).
Step if Logic In1 is not active (logically false).
Step if Logic In2 is not active (logically false).
Step if either Logic In1 or Logic In2 is active (logically true).
Step if both Logic In1 and Logic In2 is active (logically true).
Step if neither Logic In1 or Logic In2 is active (logically true).
SKIP
TIMED
TRUE
TRUE
FALSE
FALSE
OR
AND
NOR
Logic
I-5
I-6
Setting
d
E b
C
F
9
A
7
8
5
6
3
4
0
1
2
Setting
d
E
F b
C
9
A
Step Logic, Basic Logic and Timer/Counter Functions
Description
Step if Logic In1 is active (logically true) and Logic In2 is not active (logically false).
Step if Logic In2 is active (logically true) and Logic In1 is not active (logically false).
Step after (Stp Logic Time x) and Logic In1 is active (logically true).
Step after (Stp Logic Time x) and Logic In2 is active (logically true).
Step after (Stp Logic Time x) and Logic In1 is not active (logically false).
Step after (Stp Logic Time x) and Logic In2 is not active (logically false).
Do not step OR no jump to, so use Digit 0 logic.
Description
Skip Step (jump immediately).
Step based on the time programmed in the respective (Stp Logic Time x) parameter.
Step if Logic In1 is active (logically true).
Step if Logic In2 is active (logically true).
Step if Logic In1 is not active (logically false).
Step if Logic In2 is not active (logically false).
Step if either Logic In1 or Logic In2 is active (logically true).
Step if both Logic In1 and Logic In2 is active (logically true).
Step if neither Logic In1 or Logic In2 is active (logically true).
Step if Logic In1 is active (logically true) and Logic In2 is not active (logically false).
Step if Logic In2 is active (logically true) and Logic In1 is not active (logically false).
Step after (Stp Logic Time x) and Logic In1 is active (logically true).
Step after (Stp Logic Time x) and Logic In2 is active (logically true).
Step after (Stp Logic Time x) and Logic In1 is not active (logically false).
Step after (Stp Logic Time x) and Logic In2 is not active (logically false).
Use logic programmed in Digit 1.
Logic
XOR
XOR
TIMED AND
TIMED AND
TIMED OR
TIMED OR
IGNORE
Logic
SKIP
TIMED
TRUE
TRUE
FALSE
FALSE
OR
AND
NOR
XOR
XOR
TIMED AND
TIMED AND
TIMED OR
TIMED OR
IGNORE
Rockwell Automation Support
Rockwell Automation provides technical information on the Web to assist you in using its products.
At http://www.rockwellautomation.com/support you can find technical and application notes, sample code, and links to software service packs. You can also visit our Support Center at https://rockwellautomation.custhelp.com/ for software updates, support chats and forums, technical information, FAQs, and to sign up for product notification updates.
In addition, we offer multiple support programs for installation, configuration, and troubleshooting. For more information, contact your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/services/online-phone .
Installation Assistance
If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can contact Customer Support for initial help in getting your product up and running.
United States or Canada 1.440.646.3434
Outside United States or Canada Use the Worldwide Locator at http://www.rockwellautomation.com/rockwellautomation/support/overview.page
, or contact your local
Rockwell Automation representative.
New Product Satisfaction Return
Rockwell Automation tests all of its products to help ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.
United States
Outside United States
Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.
Please contact your local Rockwell Automation representative for the return procedure.
Documentation Feedback
Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication RA-DU002 , available at http://www.rockwellautomation.com/literature/ .
Rockwell Automation maintains current product environmental information on its website at http://www.rockwellautomation.com/rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page
.
Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400
Publication 280-UM004B-EN-P - January 2015
Supersedes Publication 280-UM004A-EN-P - June 2009 Copyright © 2015 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.
Advertisement
Key features
- IP67/NEMA Type 4 enclosure
- Modular 'plug and play' design
- Quick disconnects for I/O, communications, and motor connections
- Four DC inputs and two relay outputs
- Built-in diagnostics capabilities
- Optional Hand/Off/Auto (HOA) keypad configuration