Chapter 9 Polar Coordinates and Complex Numbers 11. Polar Coordinates 9-1 90˚ 120˚ Check for Understanding 180˚ 1. There are infinitely many ways to represent the angle v. Also, r can be positive or negative. 2. Draw the angle v in standard position. Extend the terminal side of the angle in the opposite direction. Locate the point that is r units from the pole along this extension. 3. Sample answer: 60° and 300° Plot (4, 120) such that v is in standard position and r is 4 units from the pole. Extend the terminal side of the angle in the opposite direction. Locate the point that is 4 units from the pole along this extension. r 4 v 120 180 or v 120 180 60 300 4. The points 3 units from the origin in the opposite direction are on the circle where r 3. 5. All ordered pairs of the form (r, v) where r 0. 6. 90˚ 120˚ 150˚ 330˚ 210˚ 240˚ 8. 120˚ 270˚ 90˚ C 180˚ 1 2 3 4 240˚ 270˚ 19 6 13 7 , 2, 13 25 15a. → 2, 6 Chapter 9 (1) → 2, (3) → 2, 19 6 90˚ 120˚ 60˚ 30˚ 5 10 15 20 0˚ 330˚ 300˚ 270˚ 15b. 210 (30) 240 N 2 A 360 (r ) 240 2 360 (20 ) 838 ft2 11 6 5 3 Pages 558–560 7 6 , 2, , 16. 120˚ Exercises 90˚ 0˚ 330˚ 240˚ 274 30˚ 1 2 3 4 210˚ 17. 60˚ E 180˚ (r, v (2k 1)) → 2, 180˚ →2, 6 2(2)) → 2, 6 7 6 300˚ 270˚ 150˚ →2, 6 2(1) → 2, 6 6 0˚ 330˚ 150˚ (r, v 2k) 5 3 3 2 4.37 0 25 6 11 6 7 6 2.52 (3)2 2(2.5)(3 ) cos 4 6 5 6.25 9 15 cos 12 5.25 15 cos 51 2 3 3 2 1 2 3 4 14. P1P2 1 2 3 4 4 3 0 60˚ 1 2 3 4 240˚ 7 6 3 30˚ 240˚ 6 D 2 6 4 3 210˚ 0˚ 90˚ 120˚ 210˚ 5 3 5 6 300˚ 10. Sample answer: 2, 2 270˚ 180˚ 11 6 3 2 2 3 330˚ 210˚ 2, 9. 30˚ 150˚ B 300˚ 150˚ 1 2 3 4 4 3 60˚ 13. 0 7 6 300˚ 240˚ 6 0˚ 330˚ 210˚ 3 5 6 0˚ 1 2 3 4 2 2 3 30˚ A 180˚ 7. 60˚ 1 2 3 4 2 3 5 6 30˚ 150˚ Pages 557–558 12. 60˚ 270˚ 300˚ 2 3 2 3 6 5 6 F 0 1 2 3 4 11 6 7 6 4 3 3 2 5 3 18. 90˚ 120˚ 19. 60˚ 180˚ 0˚ 2 4 6 8 6 H 0 1 2 3 4 G 330˚ 210˚ 240˚ 20. 270˚ 2 2 3 7 6 300˚ 21. 150˚ 90˚ J 4 3 22. 3 2 2 2 3 23. 3 90˚ L 4 3 24. 90˚ 120˚ 240˚ 5 3 3 2 25. 60˚ 180˚ 330˚ 210˚ 240˚ 26. 2 2 3 27. 0 180˚ 1 2 3 4 Q 7 6 4 3 3 2 30˚ 1 2 3 4 270˚ 3 7 3 2(1) → 2, 3 6 0 1 2 3 4 11 6 7 6 35. 6 2 5 6 4 3 3 120˚ 5 3 3 2 90˚ 60˚ 30˚ 150˚ 180˚ 0 1 2 3 4 1 2 3 4 4 3 300˚ 36. 120˚ 90˚ 30˚ 180˚ 1 2 3 4 240˚ 275 0˚ 330˚ 210˚ (r, v (2k 1)180°) → (2, 60° (1)180°) → (2, 240°) → (2, 60° (3)180°) → (2, 600°) 37. 60˚ 150˚ 240˚ 5 3 3 2 270˚ 300˚ 0˚ 330˚ 210˚ 11 6 7 6 → 2, 3 2(0) → 2, 3 → 2, 2 2 3 0˚ 7 300˚ 270˚ 28. Sample answer: 2, 3, 2, 3, (2, 240°), (2, 600°) (r, v 2k) 0˚ 330˚ 2 3 330˚ 240˚ 5 3 1 2 3 4 5 6 60˚ 210˚ 11 6 30˚ 240˚ 34. 33. 60˚ 210˚ 5 3 150˚ R 90˚ 180˚ 1 2 3 4 90˚ 10 150˚ 3 3 2 120˚ 11 6 120˚ 6 5 6 32. 0 P 4 3 3 300˚ 7 6 300˚ 270˚ 0˚ 6 N 4 31. Sample answer: (4, 675°), (4, 1035°), (4, 135°), (4, 495°) (r, v 360k°) → (4, 315 360(1)°) → (4, 675°) → (4, 315 360(2)°) → (4, 1035°) (r, v (2k 1)180°) → (4, 315 (1)180°) → (4, 135°) → (4, 315 (1)180°) → (4, 495°) 330˚ 5 6 0˚ 1 2 3 4 2 2 3 30˚ 150˚ 270˚ → 1, 3 (1) → 1, 3 60˚ M 210˚ 11 6 7 6 13 → 1, 3 (3) → 1, 3 1 2 3 4 1 2 3 4 (r, v (2k 1)) 30˚ 180˚ 7 → 1, 3 2(2) → 1, 3 300˚ 150˚ 0 270˚ → 1, 3 2(1) → 1, 3 330˚ 120˚ 6 5 6 (r, v 2k) 0˚ 1 2 3 4 240˚ 5 3 10 1, 3 60˚ 210˚ 11 6 7 13 4 , 1, , 30. Sample answer: 1, 3, 1, 3 3 30˚ 1 2 3 4 7 6 5 3 K 180˚ 0 3 2 120˚ 6 5 6 11 6 4 3 3 29. Sample answer: (1.5, 540°), (1.5, 900°), (1.5, 0°), (1.5, 360°) (r, v 360k°) → (1.5, 180° 360(1)°) → (1.5, 540°) → (1.5, 180° 360(2)°) → (1.5, 900°) (r, v (2k 1)180°) → (1.5, 180° (1)180°) → (1.5, 0°) → (1.5, 180° (1)180°) → (1.5, 360°) 3 5 6 30˚ 150˚ 2 2 3 2 3 270˚ 2 300˚ 3 6 5 6 0 1 2 3 4 7 6 11 6 4 3 3 2 5 3 Chapter 9 38. 90˚ 120˚ 39. 60˚ 30˚ 150˚ 180˚ 1 2 3 4 0˚ 150˚ 240˚ 40. 90˚ 120˚ 30˚ 1 2 3 4 0˚ 50a. 330˚ 210˚ 240˚ 300˚ 270˚ 49a. When v 120°, r 17. The maximum speed at 120° is 17 knots. 49b. When v 150°, r 13. The maximum speed at 150° is 13 knots. 60˚ r0 180˚ 330˚ 210˚ 90˚ 120˚ 270˚ 1 2 3 4 240˚ 270˚ 0˚ 50b. 300˚ 3 2 3 3 or 120° N N 2 2 A 360 (R ) 360 (r ) 120 120 2 2 360 ((300 ) 360 ((25) ) 120 360 (90,000 625) 93,593 ft2 If each person’s seat requires 6 ft2 of space, 2 52 2(1)(5) cos 6 34 1 7 1 2 5 1 0 cos 12 7 26 10 cos 12 93,593 there are 6 or 15,599 seats. 51. The distance formula is symmetric with respect to (r1, v1) and (r2, v2). That is, 5.35 r22 r12 2r2r1 cos (v1 v2) r12 r22 2r1r2 cos[ (v2 v1)] (2.5)2 (1.75)2 2(2.5)(1.75)cos 2 5 8 r12 r22 2r1r2 cos(v2 v1) 21 9.3125 8.75 cos 40 5 3 3 2 Let R 3 100 or 300 and let r 0.25 100 or 25. 44. P1P2 11 6 4 3 41. r 2 or r 2 for any v. 2 2( 42 6 4)(6) c os (10 5° 170°) 42. P1P2 16 36 48 cos°) (65 52 48 cos) (65 5.63 43. P1P2 0 1 2 3 4 7 6 330˚ 210˚ 6 30˚ 180˚ 3 5 6 300˚ 60˚ 150˚ 2 2 3 21 6.25 30.0625 8.75 cos 40 52a. 120˚ 90˚ 60˚ 30˚ 150˚ 3.16 180˚ 45. P1P2 1.32 (3.6 )2 2(1.3)( 3.6) co s (62 ° (47°)) 1.69 12.966 9.3(62° cos °) 47 14.65 6 9.3(15° cos ) 4.87 46. r (3)2 42 240˚ 5 180° 53° 127° Sample answer: (5, 127°) 47. There are 360° in a circle. If the circle is cut into 6 360 equal pieces, each slice measures 6 or 60°. Beginning at the origin, the equation of the first line is v 0°. The equation of the next line, rotating counterclockwise, is v 0 60 or 60°. The equation of the last line is v 60 60 or 120°. Note that lines extend through the origin, so 3 lines create 6 pieces. 3 mph 54. 3, 2, 4 1, 4, 0 (3)(1) (2)(4) (4)(0) 380 11 No, the vectors are not perpendicular because their inner product is not 0. r1 r2 Chapter 9 300˚ 8 mph 48. P1P2 r12 r22 2r1r2 cos (v v) r12 r22 2r1r2 2 (r1 r 2) 270˚ 52b. P1P2 52 62 2( 5)(6) c os (34 5° 310°) 25 36 60 cos (35°) 61 60 cos (35°) 3.44 No; the planes are 3.44 miles apart. 53. Draw a picture. sin v 38 Boat 1 sin (sin v) sin138 v 22.0° 4 0˚ 330˚ 210˚ sin v 5, v 53° r12 r22 2r1r2 cos 0 2 4 6 8 276 55. Rewrite y 9x 3 as 9x y 3 0. d 63. 3282 82 56. 1682 41 1 sin2a sin2a Distance is always positive. 1 1 sin2a csc2a 1 cot2a 3 57. Arc cos 2 30° 1 In a 30°-60°-90° right triangle, the angle opposite the smallest leg is 30°. 58. y 5 cos 4v Amplitude 5; Period 24 or 2 2 9.3 sin 30° 18.6 sin 30° 9.3 60° sin B 90° B Find c. c sin 60° 9-2 Graphs of Polar Equations Page 565 Check for Understanding 1. Sample answer: r sin 2v The graph of a polar equation whose form is r a cos nv or a sin nv, where n is a positive integer, is a rose. 2. 1 sin v 1 for any value of v. Therefore, the maximum value of r 3 5 sin v is r 3 5(1) or 8. Likewise, the minimum value of r 3 5 sin v is r 3 5(1) or 2. 3. The polar coordinates of a point are not unique. A point of intersection may have one representation that satisfies one equation in a system, another representation that satisfies the other equation, but no representation that satisfies both simultaneously. 4. Barbara is correct. The interval 0 v is not always sufficient. For example, the interval 0 v only generates two of the four petals for the rose r sin 2v. r sin 2v is an example where values of v from 0 to 4 would have to be considered. C 180° 90° 30° 18.6 sin 30° 9.3 sin B 3 59. b sin A 18.6 sin 30° 9.3 Since a b sin A, there is one solution. Find B. Find C. 18.6 sin B 2 4 1 4 0 1 1 0 4 (1) 1 1 0 2 1 3 5 3 4 5 4 3 4 5 2(5) 4(5) 1(1) 11 64. 11 (3) 14 11 (2) 13 11 (1) 12 11 0 11 {(3, 14), (2, 13), (1, 12), (0, 11)} For each x-value, there ia a unique v-value. Yes, the relation is a function. 65. Since the two triangles formed are right triangles, the side opposite the right angles, A B , intercept an arc measuring 180°, or half the circle. AB is a diameter. C d 50 d 50 d The correct choice is E. Ax1 By1 C A2 B2 9(3) (1)(2) (3) 92 ( 1)2 32 82 32 82 82 82 9.3 sin 30° c sin 30° 9.3 sin 60° 9.3 sin 60° c sin 30° c 16.1 60. 3 or 1 positive f(x) x3 4x2 4x 1 0 negative P 1 Q Since there are only positive real zeros, the only rational real zero is 1. 61. x 3 x 5x2 2x 3 x2 5 x 3x 3 3x 15 10 10 → 0. Therefore, the slant As x → , x5 asymptote is y x 3. 62. y-axis: For x: f(x) x4 3x2 2 For x: f(x) (x)4 3(x)2 2 x4 3x2 2 So, in general, point (x, y) is on the graph if and only if (x, y) is on the graph. 5. 90˚ 120˚ 30˚ 150˚ 180˚ 1 2 0˚ 330˚ 210˚ 240˚ 270˚ cardioid 277 6. 60˚ 300˚ 120˚ 90˚ 60˚ 30˚ 150˚ 180˚ 2 4 6 8 0˚ 330˚ 210˚ 240˚ 270˚ 300˚ limaçon Chapter 9 7. 2 3 2 8. 3 6 5 6 11 6 4 3 11. 3 2 2 5 3 0 4 3 3 2 If or 5 6 equation, r 1. If 3 2 2 3 4 3 3 2 330˚ 120˚ 270˚ 300˚ 90˚ 60˚ 30˚ 150˚ 1 0˚ 2 330˚ 210˚ 300˚ 240˚ rose 17. 270˚ 300˚ rose 2 3 2 0 4 8 12 16 4 3 3 2 0 19. 2 3 4 3 cardioid 278 3 2 5 3 0˚ 330˚ 270˚ 300˚ 2 3 2 3 6 5 6 0 11 6 7 6 4 6 8 limaçon 20. 1 2 3 4 2 240˚ 6 5 6 60˚ 30˚ 180˚ 5 3 3 90˚ 210˚ Spiral of Archimedes 2 120˚ 150˚ 11 6 7 6 5 3 18. 3 6 14 10b. Sample answer: 0 v 3 Begin at the origin and “spiral” twice around it, or through 4 radians. Move straight up through 4 2 or 92 radians. Now move to the left slightly, through approximately 92 6 or 14 radians. 3 Chapter 9 0˚ is substituted in either 11 6 7 6 270˚ 60˚ 1 2 3 4 0˚ 180˚ 2 330˚ 5 6 4 8 12 16 16. 1 90˚ 30˚ 240˚ 30˚ 240˚ 6 300˚ lemniscate 60˚ 210˚ 3 5 6 90˚ 180˚ 1, 6, 1, 56, and 2, 32. 10a. 270˚ 210˚ 5 3 150˚ original equation, r 2. The solutions are 2 3 2 120˚ 180˚ 0 11 6 120˚ is substituted in either original 330˚ 150˚ spiral of Archimedes 6 or 56 or 32 0˚ 2 4 6 8 210˚ 14. 3 5 10 15 20 15. 30˚ 240˚ 6 4 3 2 sin 2 cos 2 sin cos 2 sin 1 2 sin2 2 sin2 sin 1 0 (2 sin 1)(sin 1) 0 2 sin 1 0 or sin 1 0 sin 12 sin 1 6 2 3 2 7 6 5 3 60˚ cardioid 11 6 90˚ 150˚ 300˚ 5 6 2 7 6 270˚ circle 13. 1 330˚ 240˚ 120˚ 0˚ 180˚ 1 2 3 4 210˚ 6 12. 60˚ 30˚ 180˚ 3 5 6 90˚ 150˚ spiral of Archimedes 2 3 Exercises 120˚ 0 11 6 4 3 rose 9. 3 6 9 12 7 6 5 3 3 2 6 0 Pages 565–567 3 5 6 1 7 6 2 2 3 1 2 3 4 0 11 6 7 6 4 3 lemniscate 3 2 5 3 21. 90˚ 120˚ 22. 60˚ 120˚ 30˚ 150˚ 180˚ 330˚ 240˚ 30˚ 0˚ 1 2 3 4 330˚ 210˚ 300˚ 270˚ 28. (1, 0.5), (1, 1.0), (1, 2.1), (1, 2.6), (1, 3.7), (1, 4.2), (1, 5.2), (1, 5.8) 60˚ 150˚ 0˚ 180˚ 1 210˚ 90˚ 240˚ 270˚ 300˚ rose cardioid 23. Sample answer: r sin 3v The graph of a polar equation of the form r a cos 3v or r a sin 3v is a rose with 3 petals. 24. Sample answer: r 2v 4 a2 r 12 1 2 a r 2 25. 3 2 cos 1 cos 0 The solution is (3, 0) 2 3 2 3 6 5 6 1 2 3 4 4 3 26. 1 cos 1 cos 2 cos 0 cos 0 2 3 Substituting each angle into either of the original equations gives r 1, so the solutions of the system are 1, 27. 2 3 2 3 6 1 2 and 1, . 0 [4, 4] scl1 by [4, 4] scl1 11 6 7 6 3 2 2 5 3 3 2 5 6 2 or 32 [6, 6] scl:1 by [6, 6] scl1 30. (3.6, 0.6), (2.0, 4.7) 0 11 6 7 6 2 [2, 2] scl1 by [2, 2] scl1 29. (2, 3.5), (2, 5.9) 4 3 3 2 31a. If the lemniscate is 6 units from end to end, then a 12(6) or 3. 5 3 r2 9 cos 2 or r2 9 sin 2 31b. If the lemniscate is 8 units from end to end, then a 12(8) or 4. 3 r2 16 cos 2 or r2 16 sin 2 6 5 6 32. 1 2 4 3 3 2 90˚ 60˚ 0 30˚ 150˚ 11 6 7 6 120˚ 180˚ 5 3 2 4 6 8 330˚ 210˚ 2 sin 2 sin 2 sin sin 2 sin 2 cos sin 0 2 cos sin sin 0 sin (2 cos 1) sin 0 or 2 cos 1 0 0˚ 240˚ 270˚ 300˚ This microphone will pick up more sounds from behind than the cardioid microphone. 33. 0 v 4: Begin at the origin and curl around once, or through 2 radians. Curl around a second time and go through 2 2 or 4 radians. 34. All screens are [1, 1] scl1 by [1, 1] scl1 cos 12 0 or or 3 or 53 If 0 or is substituted in either original equation, r 0. If 3 or 53 is substituted in either original equation, r 3 or r 3 , respectively. The solutions are (0, 0), (0, ), 3, 3, and 3, 53. 279 Chapter 9 34a. r cos 2 r cos 7 r cos 4 r cos 9 When n 11, the innermost loop will be on the left and there will be an additional outer ring. 35. Sample answer: r 1 sin v A heart resembles the shape of a cardioid. The sine function orients the heart so that the axis of symmetry is along the y-axis. If a 1, the heart points in the right direction. 36a. For a limaçon to go back on itself and have an inner loop, r must change sign. This will happen if b a. 36b. For the other two cases, a b. Experimentation shows that the dimple disappears when a 2b, so there is a dimple if b a 2b. 36c. For this remaining case, there is neither an inner loop nor a dimple if a 2b. 37a. Subtracting a from v rotates the graph counterclockwise by an angle of a. 37b. Multiplying v by 1 reflects the graph about the polar axis or x-axis. 37c. Multiplying the function by 1 changes r to its opposite, so the graph is reflected about the origin. 37d. Multiplying the function by c results in a dilation by a factor of c. (Points on the graph move closer to the origin if c 1, or farther away from the origin if c 1.) 38. Sample answer: (4, 405°), (4, 765°), (4, 135°), (4, 225°) (r, 360k°) → (4, 45° 360(1)°) → (4, 405°) → (4, 45° 360(2)°) → (4, 765°) (r, (2k 1)180°) → (4, 45° (1)180°) → (4, 135°) → (4, 45° (1)180°) → (4, 225°) r cos 6 r cos 8 When n 10, two more outer rings will appear. 34b. r cos 3 r cos 5 Chapter 9 280 i j k 2 3 0 1 2 4 3 0 2 0 2 3 i j k 2 4 1 4 1 2 12i 8j 7k 12, 8, 7 2, 3, 0 12, 8, 7 24 (24) 0 or 0 1, 2, 4 12, 8, 7 12 (16) 28 or 0 40. 3.5 cm, 87° w 39. v x2 r cos 2 2 r cos r 2 sec 4. To convert from polar coordinates to rectangular coordinates, substitute r and v into the equations x r cos v and y r sin v. To convert from rectangular coordinates to polar coordinates, use the equation r x2 y2 to find r. If x 0, v Arctan yx. If x 0, v Arctan yx . If x 0, you can use 2 or any coterminal angle for v. 3. 2 sin x 2 41. cos4 x cos2 x sin2 x tan x sin2 x cos2 x (cos2 x sin2 x) sin2 x (cos2 x)(1) sin2 x cos2 x tan2 x tan2 y x tan2 x r tan2 x tan2 x 42. Find C. C 180° 21°15 49°40 109°5 Find b. b sin 49°40 O 28.9 sin 109°5 4 or 2 28.9 sin 49°40 sin 109°5 2, 34 b 23.3 6. r (2)2 (5 )2 Find a. a sin 21°15 28.9 sin 109°5 a sin 109°5 28.9 sin 21°15 28.9 sin 21°15 7. a sin 109°5 a 11.1 NY LA Miami $240 $199 $260 $254 $322 $426 43. Bus Train 8. 12 1 3 44. 1 6 1 8 4 8 1 6 8 9. 8 13 4 8 1 3 16 8 So 3 8 3 3 16 16 10. 2 6 3 The correct choice is A. 9-3 Page 571 11. Polar and Rectangular Coordinates 12. Check for Understanding x 34 2 2 5 v Arctan 2 5.39 4.33 29 (5.39, 4.33) x 2 cos 43 y 2 sin 43 1 3 (1, 3 ) x 2.5 cos 250° y 2.5 sin 250° 0.86 2.35 (0.86, 2.35) y2 r sin v 2 2 r sin v r 2 csc v x2 y2 16 (r cos v)2 (r sin v)2 16 r2(cos2 v sin2 v) 16 r2 16 r 4 or r 4 r6 x2 y2 6 x2 y2 36 r sec v r r 1. Sample answer: (22 , 45°) 22 22 r x r cos 5. r (2 )2 ( )2 v Arctan 2 b sin 109°5 28.9 sin 49°40 b y r sin 1 r cos v 1 1 x Arctan 22 x 1 8 45° 22 2. The quadrant that the point lies in determines y y whether v is given by Arctan x or Arctan x . 281 Chapter 9 13a. 90˚ 120˚ 22. x 1 cos 6 60˚ 3 1 2 30˚ 150˚ 180˚ 3 1 2 3 4 23 , 12 330˚ 210˚ 240˚ 270˚ 23. x 2 cos 270° 0 (0, 2) 24. x 4 cos 210° 300˚ 13b. No. The given point is on the negative x-axis, directly behind the microphone. The polar pattern indicates that the microphone does not pick up any sound from this direction. 3 2 4 25. Pages 572–573 Exercises 2 2 2 14. r 2 ( 2) v Arctan 2 26. 4 8 or 22 Add 2 to obtain v 74. 22, 74 15. r 02 12 27. 1 or 1 Since x 0 when y 1, v 2. 1, 2 16. r 12 ( 3 )2 v Arctan 4 or 2 3 2, 3 17. r 1 2 4 28. 3 1 3 2 4 4 16 v Arctan 3 4 14 29. 3 Arctan or 43 1 24 or 12 12, 43 18. r 32 82 73 8.54 (8.54, 1.21) 42 ( 7)2 19. r 30. v Arctan 83 1.21 7 v Arctan 4 31. 65 8.06 1.05 Add 2 to obtain v 5.23. (8.06, 5.23) 20. x 3 cos 2 0 (0, 3) y 3 sin 2 3 32. 21. x 12 cos 34 y 12 sin 34 12 2 12 2 4 2 4 2 2 42 , 42 Chapter 9 2 33. 282 112 12 2 0˚ y 1 sin 6 y 2 sin 270° 2 y 4 sin 210° 412 23 2 (23 , 2) x 14 cos 130° y 14 sin 130° 9.00 10.72 (9.00, 10.72) x 7 r cos v 7 7 r cos v r 7 sec v y5 r sin v 5 5 r sin v r 5 csc v x2 y2 25 (r cos v)2 (r sin v)2 25 r2(cos2 v sin2 v) 25 r2 25 r 5 or r 5 x2 y2 2y (r cos v)2 (r sin v)2 2r sin v r2 (cos2 v sin2 v) 2r sin v r2 2r sin v r 2 sin v x2 y2 1 (r cos v)2 (r sin v)2 1 r2 (cos2 v sin2 v) 1 r2 (cos 2v) 1 1 r2 cos 2v 2 r sec 2v x2 (y 2)2 4 x2 y2 4y 4 4 (r cos v)2 (r sin v)2 4r sin v 0 r2(cos2 v sin2 v) 4r sin v 0 r2 4r sin v 0 r2 4r sin v r 4 sin v r2 x2 y2 2 x2 y 2 4 r 3 2 x y2 3 x2 y2 9 v 3 34. y 43. horizontal distance: 25(4 2 cos 120°) 75 m east vertical distance: 25(3 2 sin 120°) 118.30 m north y y Arctan x 3 y 3 x 1 2 6 3 y 3 x 1 3 2 1 2y y2 r 3 cos v r2 3r cos v x2 y2 3x 37. r2sin 2v 8 r22 sin v cos v 8 2r sin v r cos v 8 2yx 8 xy 4 38. yx 36. Arctan 6.07 5.47 6.07 5.47 5.47 cos 47.98° tan v Arctan 1 r sin v r2 r sin v x2 y2 y 40. x 325 cos 70° 111.16 (111.16, 305.40) r 8.17 r 8.17∠47.98° 44d. 8.17 sin (3.14t 47.98°) 45. r 2a sin v 2a cos v r2 2ar sin v ar cos v x2 y2 2ay 2ax 2 2 x 2ax y 2ay 0 (x a)2 (y a)2 2a2 The graph of the equation is the circle centered at (a, a) with radius 2 a. 1 39. 4 r sin v r cos v 47.98 v; 47.98° 5.47 r cos 47.98° v 4 5 4 y 325 sin 70° 305.40 46. 120˚ 90˚ 60˚ 30˚ 150˚ — 41. — 6 6 5 24 4 24 24 180˚ 1 2 3 4 0˚ 330˚ 210˚ 0.52 unit 42. Drop a perpendicular from the point with polar coordinates (r, v) to the x-axis. r is the length of the hypotenuse in the resulting right triangle. x is the length of the side adjacent to angle v, so cos v xr. Solving for x gives x r cos v. y is the y length of the side opposite angle v, so sin v r. Solving for y gives y r sin v. (The figure is drawn for a point in the first quadrant, but the signs work out correctly regardless of where in the plane the point is located.) 240˚ 270˚ 300˚ 47. Sample answer: (2, 405°), (2, 765°), (2, 225°), (2, 585°) (r, v 360k°) → (2, 45° 360(1)°) → (2, 405°) → (2, 45° 360(2)°) → (2, 765°) (r, v (2k 1)180°) → (2, 45° (1)180°) → (2, 225°) → (2, 45° (3)180°) → (2, 585°) 48. r2 502 4252 2 50 425 cos 30° r 382.52 mph y (r, ) 50 sin v r 382.52 sin 30° 50 sin 30° 382.52 sin v r 50 sin 30° 382.52 O x 44a. x 4 cos 20° y 4 sin 20° 3.76 1.37 3.76, 1.37 x 5 cos 70° y 5 sin 70° 1.71 4.70 1.71, 4.70 44b. 3.76, 1.37 1.71, 4.70 3.76 1.71, 1.37 4.70 5.47, 6.07 44c. 5.47 r cos v; 6.07 r sin v r sin v y x y x 120˚ O x 35. r 2 csc v r r 2 sin v 30˚ 425 mph 50 mph 3°45 v The direction is 3°45 west of south. x 283 Chapter 9 3. The graph of the equation x k is a vertical line. Since the line is vertical, the x-axis is the normal line through the origin. Therefore, f 0° or f 180°, depending on whether k is positive or negative, respectively. The origin is k units from the given vertical line, so p k. The polar form of the given line is k r cos (v 0°) if k is positive or k r cos (v 180°) if k is negative. Both equations simplify to k r cos v. 4. You can use the extra ordered pairs as a check on your work. If all the ordered pairs you plot are not collinear, then you have made a mistake. sin2 A cos A 1 1 cos2 A cos A 1 0 cos2 A cos A 2 0 (cos A 2)(cos A 1) cos A 2 0 or cos A 1 0 cos A 2 cos A 1 A 0° y 50. 49. 2 y 2 cos 1 O 1 90˚ 180˚ 270˚ 360˚ 5. A2 B2 32 ( 4)2 5 Since C is negative, use 5. 2 4 f Arctan 43 x 3, 1 2 2 ( 53° or 307° p r cos (v f) 2 r cos (v 307°) ) 6. A2 B2 (2)2 42 25 Since C is negative, use 25 . 52. Enter the x-values in L1 and the f(x)-values in L2 of your graphing calculator. Make a scatter plot. The data points are in the shape of parabola. Perform a quadratic regression. a 0.07, b 0.73, c 1.36 Sample answer: y 0.07x2 0.73x 1.36 53. 2 1 0 0 3 0 20 2 4 8 1 0 2 0 1 2 4 5 10 0 x4 2x3 4x2 5x 10 625 145 54. m 25 17 45y 2 0 cos f 35, sin f 5, p 2 30˚ 3 cos 210° 2 3 x 5 y 51. The terminal side is in the third quadrant and the reference angle is 210 180 or 30°. 2 4 9 x y 0 2 2 2 5 5 5 95 25 5 , sin f , p cos f 10 5 5 f Arctan(2) 63° Since cos f 0, but sin f 0, the normal lies in the second quadrant. f 180° 63° or 117° p r cos (v f) (y 145) 60(x 17) 95 10 60 y 60x 875 55. x y and y z, so x z. r cos (v 117°) 7. 3 r cos (v 60°) 0 r cos (v 60°) 3 0 r (cos v cos 60° sin v sin 60°) 3 If x z, then 0 xz 1. The correct choice is C. 3 r sin v 3 0 12r cos v 2 3 y 3 0 12x 2 9-4 y 6 or 0 x 3 x 3 y 6 0 Polar Form of a Linear Equation Pages 577–578 8. Check for Understanding r cos (v 4) 2 1. The polar equation of a line is p r cos (v f). r and v are the variables. p is the length of the normal segment from the line to the origin and f is the angle the normal makes with the positive x-axis. 2. For r to be equal to p, we must have cos (v f) 1. The first positive value of v for which this is true is v f. Chapter 9 r 2 sec v 4 r cos v cos 4 sin v sin 4 2 0 2 2 2 r sin v 2 0 r cos v 2 2 x 2 2 y 2 0 2 x 2 y 4 0 2 284 9. 2 3 2 10. 3 6 5 6 90˚ 30˚ 180˚ 1 2 3 4 2 4 6 8 7 6 240˚ 270˚ 4 f Arctan 3 53° Since cos f 0, but sin f 0, the normal lies in the fourth quadrant. f 360° 53° or 307° p r cos (v f) 2.1 r cos (v 307°) 300˚ Since the shortest distance is along the normal, the answer is (p, f) or 5, 56. 2 3 2 15. A2 B2 32 22 13 Sinc C is negative, use 13 . 3 6 5 6 3 x 13 0 3 2 5 3 16. 4 x 41 25 Since C is positive, use 25. cos f 24 25y 4 0 7 24 , 2 5 , sin f 25 5 10 y 0 1 41 4 541 1041 4 41 , p , sin f cos f 41 41 41 f Arctan 4 51° Since cos f 0, but sin f 0, the normal lies in the fourth quadrant. f 360° 51° or 309° p r cos (v f) 5 p4 f Arctan 274 74° Since cos f 0, but sin f 0, the normal lies in the second quadrant. f 180° 74° or 106° p r cos (v f) 4 r cos (v 106°) 13. A2 B2 212 202 29 Since C is negative, use 29. 21 x 29 5 13 r cos (v 34°) 13 A2 B2 42 ( 5)2 14 Since C is negative, use 41 . Pages 578–579 Exercises 2B 2 12. A 72 ( 24)2 7 2 5x 5 f Arctan 23 34° p r cos (v f) 11 6 4 3 2 y 0 13 13 3 213 5 13 13 , sin f , p cos f 13 13 13 2 4 6 8 7 6 4 cos f 5, sin f 5, p 2.1 11a. p r cos (v f) → 5 r cos v 56 11b. 1 18 y 21 0 0 0 3 5 3 3 2 6 x 10 0˚ 330˚ 210˚ 11 6 4 3 14. A2 B2 62 ( 8)2 10 Since C is negative, use 10. 60˚ 150˚ 0 120˚ 1041 41 r cos (v 309°) A2 B2 (–1)2 32 17. 10 Since C is negative, use 10 . 1 x 10 cos f 2209y 8279 0 3 10 10 10 7 10 y 0 3 10 7 10 , p sin f 10 10 f Arctan (3) 72° Since cos f < 0, but sin f > 0, the normal lies in the second quadrant. f 180° 72° or 108° p r cos (v f) cos f 2219, sin f 2209, p 3 f Arctan 2201 44° p r cos (v f) 3 r cos (v 44°) 7 10 10 r cos (v 108°) 18. 6 r cos (v 120°) 0 r (cos v cos 120° sin v sin 120°) 6 3 r sin v 6 0 12 r cos v 2 3 y 6 0 12x 2 y 12 or 0 x 3 x 3 y 12 0 285 Chapter 9 28. 19. 4 r cos v 4 0 r cos v cos 4 sin v sin 4 4 x 2 y 8 or 0 2 x 2 y 8 0 2 20. 2 r cos (v ) 0 r (cos v cos sin v sin ) 2 0 r cos v 2 0 x 2 x 2 21. 1 r cos (v 330°) 0 r (cos v cos 330° sin v sin 330°) 1 0 r cos v cos r cos v sin v sin 7 6 1 y 2 30˚ 150˚ 180˚ 3 6 9 12 330˚ 210˚ 240˚ 26. 120˚ 270˚ 90˚ 300˚ 0˚ 180˚ 1 2 3 4 330˚ 210˚ 240˚ 270˚ 300˚ 3 11 6 7 6 120˚ 30˚ 2 0 27. 3 2 90˚ 5 3 60˚ 30˚ 150˚ 180˚ 2 4 6 8 0˚ 330˚ 210˚ 240˚ 3 13 5 13 0 3 13 5 13 , p sin f 13 13 r cos (v 56°) Use a graphing calculator and the INTERJECT feature to find solutions to the system at (2.25, 0.31) and (5.39, 0.31). Since p, the length of the normal, must be positive, use f 2.25 and p 0.31. 0.31 r cos (v 2.25) 32a. p r cos (v f) → 6 r cos (v 16°) Since the shortest distance is along the normal, the closest the fly came was p or 6 cm. 32b. (p, f) or (6, 15°) 33. Since both normal segments have length 2, p must be 2 in both equations. Since the two lines intersect at right angles, their normals also intersect at right angles. This can be achieved by having the two f-values differ by 90°. To make sure neither line is vertical, neither f-value should be a multiple of 90°. Therefore, a sample answer is 2 r cos (v 45°) and 2 r cos (v 135°). 34. m 0 (y 4) 0(x 5) → y 4 0 cos f 0, sin f 1, p 4 Since cos f 0 when sin f 1, f 90°. p r cos (v f) 4 r cos (v 90°) 1 2 3 4 4 3 5 3 → p 2 cos 76 f 6 3 2 → p 3 cos 4 f 5 6 60˚ 150˚ Chapter 9 0˚ 4 3 31. p r cos (v f) 11 0 2 3 13 5 13 11 0 25. 11 6 56° p r cos (v f) 11 60˚ 7 6 5 3 2 13 , cos f 13 f Arctan 32 y 10 0 x 3 90˚ 2 4 6 8 13 Since C is negative, use 13 . 3 1 r cos v r sin v 5 0 2 2 3 1 x y 5 0 2 2 120˚ 0 A2 B2 22 32 x y 22 0 3 23. r 5 sec (v 60°) r cos (v 60°) 5 r (cos v cos 60° sin v sin 60°) 5 0 24. 6 2 1 3 r cos v r sin v 11 0 2 2 3 x 2 3 (y 1) 3(x 4) → 2x 3y 5 0 r 11 sec v 76 7 6 11 6 3 2 2 4 2 or 30. m 6 3 2 13 22. 7 6 0 4 3 2 3 5 6 2 4 6 8 7 6 sin v 1 x y 2 or 0 3 3 x y 2 0 29. 3 6 2 2 x y 4 0 2 2 0 2 5 6 2 2 r cos v r sin v 4 0 2 2 1 3 r cos v r 2 2 1 3 x y 1 2 2 2 3 270˚ 300˚ 286 35a. 120˚ 90˚ 40. x 3y 6 60˚ x 6 y 3 30˚ 150˚ y 13x 2 0˚ x t, y 13t 2 12 5 25 0 37 505 0 180˚ N r2 41. A 360 330˚ 210˚ 240˚ 270˚ 65 62 360 300˚ 35b. p r cos (v f) → p 125 cos (130 f) → p 300 cos (70 f) Use a graphing calculator and the INTERSECT feature to find the solutions to the system at (45, 124.43) and (135, 124.43). Sinc p, the length of the normal, must be positive, use f 135° and p 124.43. 124.43 r cos (v 135°) 36. k r sin (v a) k r [sin v cos a cos v sin a] k r sin v cos a r cos v sin a k y cos a x sin a This is the equation of a line in rectangular coordinates. Solving the last equation for y yields k . The slope of the line shows y (tan a)x cos a that a is the angle the line makes with the x-axis. To find the length of the normal segment in the figure, observe that the complementary angle to a in the right triangle is 90° a, so the v-coordinate of P in polar coordinates is 180° (90° a) a 90°. Substitute into the original polar equation to find the r-coordinate of P: k r sin (a 90° a) k r sin 90° kr Therefore, k is the length of the normal segment. y 20.42 ft2 42. Since 360° lies on the x-axis of the unit circle at (1, 0), sin 360° y or 0. (1, 0) x 43. 2x3 5x2 12x 0 x(2x2 5x 12) 0 x(2x 3)(x 4) 0 x 0 or x 32 or x 4 44. c2 d2 48 (c d)(c d) 48 12(c d) 48 cd4 Page 579 1. Mid-Chapter Quiz 90˚ 120˚ 2. 60˚ 180˚ 2 4 6 8 240˚ 120˚ P 270˚ 90˚ 37. p r cos (v f) → p 40 cos (0° f) → p 40 cos (72° f) Use a graphing calculator and the INTERSECT feature to find the solutions of the system at (144, 32.36) and (36, 32.36). Since p, the length of the normal, must be positive, use f 36° and p 32.36. 32.36 r cos (v 36°) 38. r6 x2 y2 6 x2 y2 36 39. The graph of a polar equation of the form r a sin nv is a rose. 0˚ 330˚ 270˚ 300˚ 5. r (2 )2 ( 2 )2 4 or 2 11 6 7 6 4. 2 4 6 8 240˚ 0 1 2 3 4 4 3 60˚ 210˚ 6 30˚ 180˚ x 3 0˚ 300˚ 150˚ 2 5 6 330˚ 210˚ 2 3 30˚ 150˚ 3. O y 2 3 5 3 3 2 2 3 6 5 6 1 0 11 6 7 6 4 3 5 3 3 2 v Arctan 4 2 Since (2 , 2 ) is in the third quadrant, v 4 or 54. 2, 54 6. r 02 ( 4)2 16 or 4 Since x 0 when y 4, v 32. 4, 32 287 Chapter 9 x2 y2 36 x2 y2 36 r 6 or r 6 8. r 2 csc v r sin v 2 y2 9. A2 B2 52 ( 12)2 13 Since C is positive, use 13. 4. Sample answer: x2 1 0 (x i)(x i) 0, where the solutions are x i. x2 xi xi i2 0 x2 (1) 0 x2 1 0 6 4 2 5. i (i ) i2 12 (1) 1 6. i10 i2 (i4)2 i2 i2 (1)2i2 i2 1 (1) or 2 7. (2 3i) (6 i) (2 (6)) (3i i) 4 4i 8. (2.3 4.1i) (1.2 6.3i) (2.3 (1.2)) (4.1i (6.3i)) 3.5 10.4i 9. (2 4i) (1 5i) (2 (1)) (4i 5i) 1 9i 10. (2 i)2 (2 i)(2 i) 4 4i i2 3 4i 7. 5 12 3 y 0 1 3x 13 13 5 12 3 , p cos f 1 3 , sin f 13 13 2 f Arctan 15 67° Since cos f 0, but sin f 0, the normal lies in the second quadrant. f 180° 67° or 113° p r cos ( f) 3 13 r cos (v 113°) A2 B2 (2)2 (6 )2 10. i i 1 2i 11. 1 2i 1 2i 1 2i 210 Since C is negative, use 210 . 6 2 10 2 i 2i2 1 4i2 2 210 y 0 210 x cos f 10 1 , 0 f Arctan sin f 310 10, p i2 5 10 10 25 15i 3 1 12. (2.5 3.1i) (6.2 4.3i) (2.5 (6.2)) (3.1i 4.3i) 3.7 7.4i N 72° Since cos f 0 and sin f 0, the normal lies in the third quadrant. f 180° 72° or 252° p r cos (v f) 10 10 Pages 583–585 r cos (v 252°) Simplifying Complex Numbers 9-5 Page 583 Check for Understanding 1. Find the (positive) remainder when the exponent is divided by 4. If the remainder is 0, the answer is 1; if the remainder is 1, the answer is i; if the remainder is 2, the answer is 1; and if the remainder is 3, the answer is i. 2. Complex Numbers (a bi ) Reals (b 0) Imaginary (b 0) 19. 12 i (2 i) 12 (2) (i (i)) Pure Imaginary (a 0) 32 2i 20. (3 i) (4 5i) (3 (4)) (i (5i)) 7 4i 21. (2 i)(4 3i) 8 10i 3i2 5 10i 22. (1 4i)2 (1 4i)(1 4i) 1 8i 16i2 15 8i 3. When you multiply the denominators, you will be multiplying a complex number and its conjugate. This makes the denominator of the product a real number, so you can then write the answer in the form a bi. Chapter 9 Exercises 13. i6 i4 i2 1 1 1 14. i19 (i4)4 i3 14 i i 15. i1776 (i4)444 1444 1 16. i9 i5 (i4)2 i (i4)2 i3 12 i 12 i i (i) or 0 17. (3 2i) (4 6i) (3 (4)) (2i 6i) 1 8i 18. (7 4i) (2 3i) (7 2) (4i 3i) 9 7i 288 3i 3i 34. (2 i)2 (2 i)(2 i) 23. (1 7 i)(2 5 i) 2 5 i 27 i 35 i2 (2 35 ) (27 5 )i 24. (2 3 )(1 12 ) (2 3 i)(1 12 i) 2 212 i 3 i 36 i2 2 43 i 3 i 6 8 33 i 3i 4 4i i2 3i 3 4i 3 4i 3i 3 4i 3 4i 9 9i 4i2 9 16i2 13 9i 25 1 2i 2i 2i 25. 1 2i 1 2i 1 2i 2 3i 2i2 1 4i2 1235 295i 4 3i 5 35. (1 i)2 (3 2i)2 45 35i 3 2i i 3 2i 4 26. 4 i 4 i 4 i 5 12i 2i 5 12i 5 12i 10i 24i2 25 144i2 11 0 11 17i 7 27. 5i 5i 24 10i 169 5i 5i 24 10 i 169 169 25 10i i2 25 i2 36a. Z R (XL XC )j → Z 10 (1 2)j → Z 10 j ohms → Z 3 (1 1)j → Z 3 0j ohms 36b. (10 j) (3 0j) (10 3) (1j 0j) 13 j ohms 24 10i 26 12 5 i 13 13 28. (x i)(x i) 0 x2 i2 0 x2 1 0 29. (x (2 i))(x (2 i)) 0 (x 2 i)(x 2 i) 0 x2 2x xi 2x 4 2i xi 2i i2 0 x2 4x 4 1 0 x2 4x 5 0 30. (2 i)(3 2i)(1 4i) (6 i 2i2)(1 4i) (8 i)(1 4i) 8 31i 4i2 12 31i 31. (1 3i)(2 2i)(1 2i) (2 8i 6i2)(1 2i) (4 8i)(1 2i) 4 16i 16i2 12 16i 32. 1 3 i 2 1 2 i 1 1 36c. S Z → S 6 3j 1 6 3j 6 3j 6 3j 6 3j 36 9j2 6 3j 45 0.13 0.07j siemens 37a. x 3 4i 37b. No 37c. The solutions need not be complex conjugates because the coefficients in the equation are not all real. 37d. (3 4i)2 8i(3 4i) 25 0 7 24i 24i 32 25 0 00 (3 4i)2 8i(3 4i) 25 0 7 24i 24i 32 25 0 00 38. f(x yi) (x yi)2 x2 2xyi y2 (x2 y2) 2xyi 39a. z0 2 i z1 i(2 i) i2 or 1 2i z2 i(2i 1) 2i2 i or 2 i z3 i(2 i) 2i i2 or 1 2i z4 i(1 2i) i 2i2 or 2 i z5 i(2 i) 2i i2 or 1 2i 1 3 i 2 i 1 2 i 1 2 1 2 i 1 2 i 3i 6i2 2 2 1 2i 12 6 22 3i 3 6 3 2 i 16 3 3 6 2 2 i 3 6i 2 2 i 3 6 i 3 6 i 3 6 i 6 2 6i 3 2i 12i2 9 6i2 (6 2 3) (2 6 3 2)i 15 23 8i (8i)2 4(1)( 25) 2(1) 8i 36 2 2 33. 1 2i i2 9 12i 4i2 2i 5 12i 12 11i 2i2 16 i2 10 11i 17 5i 5i (1 i)(1 i) (3 2i)(3 2i) 26 2 i 25 15 15 5 289 Chapter 9 39b. z0 1 0i z1 (0.5 0.866i)(1 0i) 0.5 0.866i z2 (0.5 0.866i)(0.5 0.866i) 0.25 0.866i 0.75 0.500 0.866i z3 (0.5 0.866i)(0.500 0.866i) 0.250 0.750 1.000 0.000i z4 (0.5 0.866i)(1.000) 0.500 0.866i z5 (0.5 0.866i)(0.500 0.866i) 0.250 0.866i 0.75 0.500 0.866i 46. tan a 43 tan2 a 1 sec2 a 4 2 3 1 25 9 9 25 3 5 sin2 2 48. h x3 x3 tan 52° x 45 x tan 52° 45 tan 52° x3 x tan 52° x3 45 tan 52° 45 tan 52° tan 52° 3 x x 127.40 h x3 127.40(3 ) 221 ft 3 10 p 20 8˚ 30˚ 120˚ 52˚ 45 ft h 60˚ x 49. Enter the x-values in L1 and the f(x)-values in L2 of your graphing calculator. Make a scatter plot. The data points are in the shape of a parabola, so a quadratic function would best model the set of data. 50. Let d depth of the original pool. The second pool’s width 5d 4, the length 10d 6, and the depth d 2. (5d 4)(10d 6)(d 2) 3420 (50d2 70d 24)(d 2) 3420 50d3 100d2 70d2 140d 24d 48 3420 50d3 170d2 164d 3372 0 25d3 85d2 82d 1686 0 Use a graphing calculator to find the solution d 3. The dimensions of the original pool are 15 ft by 30 ft by 3 ft. 51. 80 k(5)(8) 2k y 2(16)(2) 64 0 11 6 5 3 44. x (3), y 6 t1, 4 x 3, y 6 t1, 4 18, 6, 4 22, 6, 3 45. u 4 2, 32, 1 4, 12, 6 6, 227, 5 Chapter 9 3 3 2 12 y 3.5 cos 6t 6 4 3 4 5 period 1 2 or 6 r cos (v 162°) 7 6 5 cos B 1 3 1 18° Since cos f 0, but sin f 0, the normal lies in the second quadrant. f 180° 18° or 162° p r cos (v f) 7 14 21 28 25 cos2 B 169 47. amplitude 2(7) or 3.5 6 210 cos2 B 1 33 x y 0 5 6 2 1123 65 42. A2 b2 62 ( 2)2 210 Since C is positive, use 210 . 2 sin B B cos2 B 1 16 25 4 5 3 41. c1(cos 2t i sin 2t) c2(cos 2t i sin 2t) c1 cos 2t c1i sin 2t c2 cos 2t c2i sin 2t (c1 c2)(cos 2t) (c1 c2)(i sin 2t) (c1 c2)(cos 2t) only if c1 c2 2 3 sin2 B 51 3 5 13 11 43. sin2 csc2 B cos (a B) cos a cos B sin a sin B 2 i 12 5 125 3 10 20 169 144 144 169 12 13 cos2 a sin a 11 2i 11 2i 5 sec2 a sin2 a 2 1 1 csc2 B 2 a 3 2 1 (3 4i)(1 2i) 2 3 210 210 310 10 , cos f 10 , sin f 10 1 f Arctan 3 1 cot2 B csc2 B sin2 a 5 1 1 1 11 2i 1 11 2i 11 2i 125 sec2 cos a a cos2 a 1 40. (1 2i)3 (1 2i)3 cot B 152 290 52. 4. The conjugate of a bi is a bi. (a b i)(a bi) a2 b2, so the friend’s method gives the same answer. Sample answer: The absolute value of 2 3i is 22 32 13 . Using the friend’s method, the absolute value is (2 3 i)(2 3i) 4 9 13 . 5. 2x y (x y)i 5 4i 2x y 5 xy4 2x (x 4) 5 y x 4 x1 y (1) 4 or 3 6. 7. y 7 x2 x 7 y2 x 7 y2 x 7 y2 x 7 y f1(x) 7 x y 53. (6, 8) (6, 1) O (1, 1) x f(x, y) 2x y f(1, 1) 2(1) 1 or 3 f(6, 1) 2(6) 1 or 11 f(6, 8) 2(6) 8 or 4 The maximum value is 3 and the minimum value is 11. 54. x 2y 7z 14 x 3y 5z 21 y 2z 7 x 3y 5z 21 → 5x 15y 25z 105 5x y 2z 7 5x y 2z 7 16y 27z 112 y 2z 7 → 16y 32z 112 16y 27z 112 6y 27z 112 1 59z 0 z0 y 2(0) 7 → y7 x 2(7) 7(0) 14 → x 0 (0, 7, 0) 55. Since BC BD, m∠BDC m ∠DCB x m ∠DBC 180 120 or 60. x x 60 180 2x 120 x 60 x 40 60 40 or 100 The correct choice is A. i 2 2 1 1 O 2 1 (2, 1) i 1 1 2 2 1 2 z 12 ( 2 )2 3 2 v Arctan 2 2 z (22 (1)2 5 2 8. r 2 ( 2)2 7 or 22 8 4 v is in the fourth quadrant. 7 7 2 2i 22 cos 4 i sin 4 5 9. r 42 52 v Arctan 4 41 0.90 4 5i 41 (cos 0.90 i sin 0.90) 0 (2)2 02 10. r v Arctan 2 or 2 4 is on the x-axis at 2. 2 2 (cos i sin ) 11. The Complex and Polar Form of Complex Numbers Pages 589–590 2 1 O 1 2 3 2 3 (4, 3 ) i 5 6 9-6 2 (1, 2 ) 11 6 4 3 1. To find the absolute value of a bi, square a and b, add the squares, then take the square root of the sum. 2. i 0 i; cos 2 0 and sin 2 1 i cos 2 i sin 2 3. Sample answer: z1 i, z2 i 3 2 5 3 4cos 3 i sin 3 3 —— 2 4 i 1 2 i 2 23 2 3 6 2 4 6 8 7 6 Check for Understanding 12. 0 i 2 3 6 5 6 (2, 3) 0 1 2 3 4 7 6 11 6 4 3 3 2 5 3 2(cos 3 i sin 3) 2(0.99 i(0.14)) 1.98 0.28i z1 z2 z1 z2 i (i) i i 0 i i 0 2i 291 Chapter 9 13. 2 3 2 i 19. 3 20. i i 6 5 6 (2, 3) 3 ( 2 , 2) 0 1 2 3 4 7 6 O 5 3 3 2 3 (cos 2 i sin 2 3 2 (1 i(0)) 3 2 14. O 11 6 4 3 (3, 4) 2) z 22 32 13 z 32 ( 4)2 25 or 5 21. i 22. i 1 i 0.63 1 0.90 0.36 1 1.30 O 0.38i O O (0, 3) 1 (1, 5) 102 152 15a. magnitude 325 18.03 N (1)2 (5 )2 z 02 ( 3)2 z 26 9 or 3 23. 24. 15 15b. Arctan 1 0 56.31° (1, 5 ) i i 2 Pages 590–591 (4, 2 ) 1 Exercises 16. 2x 5yi 12 15i 2x 12 5y 15 x6 y 3 17. 1 (x y)i y 3xi 1y x y 3x x (1) 3x 1 2x 1 x 2 18. 4x (y 5)i 2x y (x 7)i y5x7 4x 2x y y x 12 4x 2x (x 12) 3x 12 x 4 y (4) 12 or 8 2 1 O 1 2 O 1 2 z (1)2 (5 )2 6 25. r (4)2 62 52 or 213 z 42 ( 2 )2 18 or 32 v Arctan 3 3 26. r 32 32 18 or 32 4 3 3i 32 cos 4 i sin 4 27. r (1)2 ( )2 3 3 v Arctan 1 4 or 2 4 3 v is in the third quadrant. 4 4 i 2cos 3 i sin 3 1 3 28. r 62 ( 8)2 or 10 5.36 100 v is in the fourth quadrant. 6 8i 10(cos 5.36 i sin 5.36) Chapter 9 292 8 v Arctan 6 2 v Arctan 4 1 29. r (4)2 12 2.90 17 v is in the second quadrant. 4 i 17 (cos 2.90 i sin 2.90) 39. 5 2 0 9 or 3 v is on the x-axis at 3. 3 3(cos 0 i sin 0) 41. 0 42 or 42 32 v is on the x-axis at 42 . 42 42 (cos i sin ) 2 34. r 0 (2)2 4 or 2 3 Since x 0 when y 2, v 2. i 3 2 3 (3, 4 ) 6 5 6 1 2 3 4 4 3 5 3 3 2 2 32 3 2 3 7 6 11 6 4 3 3 2 5 3 3(cos i sin ) 3(1 0) 3 1 O 0.50 0.39i 0.60 0.39i 0.25 i 1 44. i i 1 1 2 2i 32 2 3 i 2 38. 3 2 3 6 5 6 0 1 2 3 4 7 6 0 1 2 3 4 5 3 2 2 i 37. 6 0.44 0.44i 5 3 2 3 i 1 cos 6 i sin 6 32 i 2 2 6 4 3 3cos 4 i sin 4 i (3, ) 11 6 (1, ) 6 11 7 6 2 3 1 0 1 2 3 4 5 3 0.44 0.5i 6 11 6 7 6 i 3 5 6 0 (5, 0) 0 43. 2 3 2 5 6 5(cos 0 i sin 0) 5(1 0) 5 3 36. 42. 3 2 4 6 8 3 2 11 6 2.5(0.54 i(0.84)) 6 4 3 0 1.35 2.10i 7 6 2i 2cos 2 i sin 2 2 3 i v Arctan 3 5 6 0 33. r (4 )2 2 02 2 2 3 2 6 2.5(cos 1 i sin 1) 2 2 2 i 2 v Arctan 3 32 02 32. r (2.5, 1) 4 3 5 i 3 7 6 2cos 4 i sin 4 2 2 2 1 2 3 4 5 3 3 2 i 11 6 4 or 25 2.03 20 v is in the second quadrant. 2 4i 25 (cos 2.03 i sin 2.03) 2 3 5 6 0 1 2 3 4 (2, 5 ) 4 7 6 4 3 v Arctan 2 31. r (2)2 42 40. 3 6 21 or 29 5.47 841 v is in the fourth quadrant. 20 21i 29(cos 5.47 i sin 5.47) 35. 2 i 5 6 v Arctan 2 0 2 202 (21 )2 30. r 2 3 (2, 4 ) 3 4 3 3 2 4 11 6 5 3 4 2cos 3 i sin 3 3 i 2 1 3 6 5 6 1 0 3 6 9 12 (10, 6) 7 6 45. 4 3 3 2 0.5 0.5i 5 3 1 10(cos 6 i sin 6) 10(0.960 i(0.279)) i 1 3 9.60 2.79i i 1 11 6 22 i 2 1 1 O O 1 0.5 0.5i 1 293 Chapter 9 46a. 40∠30° 40(cos 30° j sin 30°) 3 2 40 j 1 2 51. (6 2i)(2 3i) 12 22i 6i2 6 22i 52. x 3 cos 135° y 3 sin 135° 34.64 20j 60∠60° 60(cos 60° j sin 60°) 1 3 602 j 2 2 49a. 49b. 49c. 49d. 50a. 71.96 v Arctan 64.64 tan 60° tan 45° 1 tan 60° tan 45° 3 1 1 (3 )(1) 3 1 1 3 1 3 1 3 3 3 1 3 4 23 2 2 3 v 55. w t 12(2) 1 or 24 v rq 18(24) or 432 cm/s 432 cm/s 4.32 m/s 13.57 m/s 14.11 Arctan 21.69 12 56. sin A 1 8 A sin1 3 2 A 41.8° 47. 2a 3a 1 5 2a 1 3a 5 4a 58. as x → , y → ; as x → , y → y 2x2 2 x 1000 10 0 10 1000 z2 5(cos 0.93 i sin 0.93) z1z2 52 (cos 1.71 i sin 1.71) 7.07(cos 1.71 i sin 1.71) 50c. Sample answer: Let z1 2 4i and z2 1 3i. Then z1 25 (cos 5.18 i sin 5.18) 4.47(cos 5.18 i sin 5.18), z2 10 (cos 1.89 i sin 1.89) 3.16(cos 1.89 i sin 1.89), and z1z2 (2 4i)(1 3i) 10 10i y 2 106 202 2 202 2 106 59. In the fourth month, the person will have received 3 pay raises. $500(1.10)3 $665.50 The correct choice is D. cos 4 i sin 4 102 14.14(cos 0.79 i sin 0.79). 50d. To multiply two complex numbers in polar form, multiply the moduli and add the amplitudes. (In the sample answer for 50c, note that 5.18 1.89 7.07, which is coterminal with 0.79.) Chapter 9 32 50b. z1 2 cos 4 i sin 4 1.41(cos 0.79 i sin 0.79) 2 53. magnitude (3)2 72 58 u 7j u 3, 7 3i 54. tan 105° tan (60° 45°) 25.88 0.58 21.69 14.11j 25.88 (cos 0.58 j sin 0.58) ohms Translate 2 units to the right and down 3 units. Rotate 90° counterclockwise about the origin. Dilate by a factor of 3. Reflect about the real axis. Sample answer: let z1 1 i and z2 3 4i. z1z2 (1 i)(3 4i) 1 7i 2 32 32 2 , 2 96.73 48° v(t) 96.73 sin (250t 48°) 47. The graph of the conjugate of a complex number is obtained by reflecting the original number about the real axis. This reflection does not change the modulus. Since the amplitude is reflected, we can write the amplitude of the conjugate as the opposite of the original amplitude. In other words, the conjugate of r(cos v i sin v) can be written as r(cos (v) i sin (v)), or r(cos v i sin v). 48a. 10(cos 0.7 j sin 0.7) 7.65 6.44j 16(cos 0.5 j sin 0.5) 14.04 7.67j 48b. (7.65 6.44j) (14.04 7.67j) (7.65 14.04) (6.44j 7.67j) 21.69 14.11j ohms 2 48c. r 21.69 14 .112 32 32 30 51.96j 46b. (34.64 20j) (30 51.96j) (34.64 30) (20j 51.96j) 64.64 71.96j 46c. v(t) r sin (250t v°) 2 71 r 64.64 .962 2 32 294 3 9-6B Graphing Calculator Exploration: 5. r 4 Geometry in the Complex Plane 2 v 6 3 3 6 or 2 cos 2 i sin 2 34(0 (1)i) 3 4 Page 592 3 4i 1. They are collinear. 9 v 4 2 4 6. r 2 or 2 9 2 11 4 4 or 4 11 11 2 2 2cos 4 i sin 4 22 i2 2 2 i 7. r 1 (6) 2 5 v 3 6 or 3 2 5 7 6 6 or 6 2. Yes. M is the point obtained when T 0, and N is the point obtained when T 1. 3. The points are again collinear, but closer together. 7 7 3 3cos 6 i sin 6 32 i2 1 33 3 2 2i 22 ( 23 )2 8. r1 16 or 4 r 4(23 ) or 83 r2 (3)2 (3 )2 12 or 23 23 3 v1 Arctan 2 v2 Arctan 3 5 6 3 5 v 3 6 2 9-7 7 3 1 11 11 2cos 6 j sin 6 3cos 3 j sin 3 r 2(3) or 6 11 11 2 13 v 6 3 6 6 6 or 6 V 6cos 6 j sin 6 volts Pages 596–598 Exercises 10. r 4(7) or 28 2 v 3 3 3 3 or Check for Understanding 7 12 43 i 9. E IZ 28(cos i sin ) 28(1 i(0)) 28 1. The modulus of the quotient is the quotient of the moduli of the two complex numbers. The amplitude of the quotient is the difference of the amplitudes of the two complex numbers. 2. Square the modulus of the given complex number and double its amplitude. 3. Addition and subtraction are easier in rectangular form. Multiplication and division are easier in polar form. See students’ work for examples. 4. r 2 2 or 4 7 83 cos 6 i sin 6 83 2 i2 Products and Quotients of Complex Numbers in Polar Form Pages 596 5 6 6 or 6 4. The points are on the line through M and N. 5. If one of a, b, or c equals 0, then aK bM cN is on KMN. If none of a, b, or c equals 0, then aK bM cN lies on or inside KMN. 6. M is the point obtained when T 0 and N is the point obtained when T 1. Thus, a point between M and N is obtained when 0 T 1. 7. The distance between z and 1 i is 5. This defines a circle of radius 5 centered at 1 i. 8. The distance between a point z and a point at 2 3i is 2. z (2 3i) 2 6 3 2 v 4 4 11. r 2 or 3 4 or 2 3cos 2 i sin 2 3(0 i(1)) 3i 12. r 1 2 3 1 v 3 6 or 6 2 3 6 6 or 6 v 2 2 cos 6 i sin 6 1623 i12 1 6 4 2 or 2 3 4(cos 2 i sin 2) 4(1 i(0)) 4 1 12 12 i 295 Chapter 9 3 13. r 5(2) or 10 24. r1 22 ( 2)2 r2 (3)2 32 8 or 22 18 or 32 r 22 (32 ) or 12 v 4 4 3 7 4 4 or 4 7 7 2 10cos 4 i sin 4 102 i2 2 v1 Arctan 2 2 7 3 7 10 11 3 3 12i 25. r1 (2 )2 (2 )2 r2 (3 )2 ( 2 32 )2 4 or 2 36 or 6 r 2 6 or 12 11 v1 Arctan 2 v2 Arctan 3cos 6 i sin 6 32 i 2 33 1 7 17. r 2 2 2 22 2 7 12(cos i sin ) 12(1 i(0)) 12 (3 )2 ( 1)2 r2 22 (23 )2 26. r1 4 or 2 16 or 4 3 v 4 4 4 4 or 2 11 7 4 cos 4 3 2 i sin 2 4 (0 3 i sin 2 2 2 2 or 3 4 2 v1 Arctan 42 3 4 3 v 4 4 2 4 or 2 2 2 cos i sin 2 2 3 3 4 2 5 4 or 4 2 2 2 i 2 2 6 6 or 6 3 23. r 1 5 v 3 3 or 8 4 3 4 4 3 8cos 3 i sin 3 82 i2 1 4 43 i Chapter 9 v2 Arctan 6 6 4 22 3 (0 i(1)) 2 2 3i 12cos 6 i sin 6 122 i2 63 6i 8 62 4 32 42 6 r 2 62 62 72 or 62 r 1 )2 2 (42 )2 27. r1 (4 64 or 8 i (1)) 22 4 4i v 4 2 5 4 3 v 3 6 22. r 2(6) or 12 4 1 2 10 cos 6 i sin 6 1223 i12 7 22 6 6 15 6 or 2 2 2i 11 1 2 4 3i 22 cos 5 6 6 or 6 11 3 ) or 22 21. r 2(2 5 4 11 v 6 3 5 3 v 6 3 4[cos (5.6) i sin (5.6)] 3.10 2.53i 20 v2 Arctan 2 1 3 6 v 2 3.6 or 5.6 20. r 15 or 3 23 v1 Arctan 2 2(cos i sin ) 2(1 i(0)) 2 18. r 3(0.5) or 1.5 v 4 2.5 or 6.5 1.5(cos 6.5 i sin 6.5) 1.46 0.32i 4 1 r 4 or 2 or 2 19. r 1 or 4 5 12 3 33 i 7 4 4 or 3 2 6(cos 300° i sin 300°) 6 i 5 3 2 32 v 4 4 v 240° 60° 300° 1 2 2 2 4 3 2 2i 16. r 2(3) or 6 12cos 2 i sin 2 12(0 i(1)) 6 6 or 6 11 4 or 2 14 3 v 4 4 v 3 2 15. r 1 or 3 3 4 4 5 v 3 6 2 5 6 6 3 6 or 2 18cos 2 i sin 2 18(0 i(1)) 18i 3 7 52 52 i 14. r 6(3) or 18 v2 Arctan 3 2 296 E 28. I Z 5 34. 13 5 3 2j r1 13 13 13 r cos v 6 5 r 2 32 ( 2)2 13 rcos v cos 6 sin v sin 6 5 0 v2 Arctan 3 2x 2y 5 0 5 5 3 1 2r cos v 2r sin v 5 0 r or 13 3 2 v1 0 35. v 0 (0.59) or 0.59 I 13 (cos 0.59 j sin 0.59) 3 2j amps 29. Z 130˚ x lb x lb 23 lb x lb 23 lb 50˚ r 2 42 ( 3)2 25 or 5 r1 100 x lb Prop Since the triangle is isosceles, the base angles are 100 r 5 or 20 180 50 congruent. Each measures 2 or 65°. 3 v2 Arctan 4 v1 0 23 sin 50° 0.64 v 0 (0.64) or 0.64 z 20(cos 0.64 j sin 0.64) 16 12j ohms 30. Start at z1 in the complex plane. Since the modulus z1 5 of z2 is 1, z1z2 and z will 6 2 both have the same modulus as z1. Then z1z2 z1 and z can be located by 2 rotating z1 by 6 7 6 counterclockwise and clockwise, respectively. 23 sin 65° sin 50° 2 3 i z1z2 2 z1 z2 3 36. 6 0 1 2 3 4 3 2 5 x 27.21 x; 27.21 lb cos 2x sin x 1 1 2 sin2 x sin x 1 2 sin2 x sin x 0 sin x (2 sin x 1) 0 sin x 0 or 2 sin x 1 0 x 0° 11 6 4 3 x sin 65° 23 sin 65° x sin 50° 1 sin x 2 x 30° y cos x x cos y arccos x y 38. BC ED BE AF CD 3 AB FE 2 AC AB BC 2 3 or 5 FD FE ED 2 3 or 5 perimeter of rectangle ACDF 3 5 3 5 or 16 perimeter of square BCDE 4(3) or 12 16 12 4 The correct choice is C. 5 3 37. 31a. The point is rotated counterclockwise about the origin by an angle of v. 31b. The point is rotated 60° counterclockwise about the origin. 32. Since a 1, the equation will be the form z2 bz c 0. The coefficient c is the product of the 7 7 solutions, which is 6cos 6 i sin 6, or 33 3i in rectangular form. The coefficient b is the opposite of the sum of the solutions, so convert the solutions to rectangular form to do the addition. 5 b 3cos 3 i sin 3 2cos 6 i sin 6 3 3 2 2i (3 i) 3 2 33 2 3 2i 3 Therefore, the equation is z2 2 33 2 1 x y 10 0 3 0.59 E I 100 4 3j r 5 secv 6 3 2 iz (33 3i) 0. 52 ( 12)2 33. r 9-8 3 Page 602 12 Arctan 5 2 Powers and Roots of Complex Numbers Graphing Calculator Exploration 1. Rewrite 1 in polar form as 1(cos 0 i sin 0). Follow the keystrokes to find the roots at 1, 0.5 0.87i, and 0.5 0.87i. or 13 5.11 169 5 12i 13(cos 5.11 i sin 5.11) 2. Rewrite i in polar form as 1cos 2 i sin 2. Follow the keystrokes to find the roots at 0.92 0.38i, 0.38 0.92i, 0.92 0.38i, and 0.38 0.92i. 297 Chapter 9 3. Rewrite 1 i in polar form as 2 cos 4 i sin 4 . v 2 1 6 cos 162 i sin 162 1cos 1 2 i sin 12 1 Follow the keystrokes to find the roots at 1.06 0.17i, 0.17 1.06i, 0.95 0.49i, 0.76 0.76i, and 0.49 0.95i. 4. equilateral triangle 5. regular pentagon 6. If a 0 and b 0, then a bi a. The principal roots of a positive real number is a positive real number which would lie on the real axis in a complex plane. Pages 604-605 0.97 0.26i 1 3 5 cos () i sin (3)() 02 ( 1)2 1 r 1 4 3 3 4n 3 3 7 7 x2 cos 8 i sin 8 0.92 0.38i 11 11 15 15 x3 cos 8 i sin 8 0.38 0.92i x4 cos 8 i sin 8 0.92 0.38i i 1 i 1 1 O 0.92 0.38i 0.38 0.92i 1 a ai a 0.38 0.92i 0.92 0.38i 4 4i 2. Finding a reciprocal is the same as raising a number to the 1 power, so take the reciprocal of the modulus and multiply the amplitude by 1. a ai 3 4n x1 cos 8 i sin 8 0.38 0.92i 10. 2x3 4 2i 0 → x3 2 i Find the third roots of 2 i. (2)2 (1 )2 5 r a a ai O a 1 1 3 ) x2 (5 4 . By De Moivre’s Theorem, the polar form of (a ai)2 is 2a2cos 2 i sin 2. i sin ) x3 (5 23cos (3)6 i sin (3)6 1 3 8 cos 2 i sin 2 8(0 i (1)) 8i v 2 v 2 i sin 1.29 0.20i cos 3 3 v 4 v 4 cos i sin 3 3 0.81 1.02i O 1 1.29 0.20i 1 5 32 ( 5)2 or 34 v Arctan 3 6. r 1.030376827 34 4 (cos (4)() i sin (4)(v)) 644 960i Chapter 9 v 0.47 1.22i 1 v Arctan or 6 (3 )2 ( 1)2 or 2 5. r 1 3 v i Since cos 2 0, this is a pure imaginary number. v 2n x1 (5 ) 3 cos 3 i sin 3 0.47 1.22i 4. Shembala is correct. The polar form of a ai is a2 cos v 2n (5 ) 3 cos 3 i sin 3 1 4 1 v Arctan 2 3.605240263 1 1 (2 i) 3 [5 (cos (v 2i) i sin (v 2n))] 3 a ai a 1 3 cos 8 i sin 8 5 5 cos 4 i sin 4 2 2 2 i 2 42 3 v 2 (i) 1 (cos 2 2n i sin 2 2n 4 (2 )5 cos (5)4 i sin (5)4 42 2.677945045 1 3 0.82 1.02i 9. x4 i 0 → x4 i Find the fourth roots of i. Check for Understanding 1 v Arctan 2 (2)2 (1 )2 or 5 8. r 1. Same results, 4 4i; answers may vary. (1 i)(1 i)(1 i)(1 i)(1 i) (1 2i i2)(1 2i i2)(1 i) (2i)(2i)(1 i) 4(1 i) 4 4i (1 i)5 → r 2 , v 4 3. 02 12 or 1 7. r 298 1 0.82 1.02i 11. For w1, the modulus ( 0.82 (0.7 )2)2 or 1.13. For w2, the modulus 1.132 or 1.28. For w3, the modulus 1.282 or 1.64. This moduli will approach infinity as the number of iterations increases. Thus, it is an escape set. 21. r (2)2 12 5 ) ( 5 1 4 v Arctan 2 1 2.677945045 cos (v) i sin (v) 1 4 1 4 0.96 0.76i 1 v Arctan 4 42 ( 1)2 17 22. r Pages 605–606 12. 33 Exercises cos (3) 6 i sin 27 cos 2 i sin 2 6 (3) 13. ) (17 (22 ) 162 i sin 2 2 i 2 2 7 ( 2 ) 7 4 1 2 1 4 16 cos 3 i sin 3 16 i 3 2 8 83 i v 2 cos 122 i sin 122 2n 2n cos 3 i sin 3 x1 cos 0 i sin 0 1 6 3 v Arctan 32 ( 6)2 35 16. r 4 4 1 3 1 2 0.9827937232 (13 )2 (cos (2)(v) i sin (2)(v)) 0.03 0.07i 2 O 1 v Arctan 2 4 1 1 3 i 2 1.107148718 4 (25 ) (cos (4)(v) i sin (4)(v)) 112 384i 2 3 1 3 i 3 2 1 i v Arctan 2 22 42 25 18. r 2 x3 cos 3 i sin 3 2 2i (35 )4 (cos (4)(v) i sin (4)(v)) 567 1944i 22 32 13 17. r 2 x2 cos 3 i sin 3 2 2i 1.107148718 1 cos 1434 i sin 1434 0.71 0.71i 26. x3 1 0 → x3 1 Find the third roots of 1. r 1 12 02 1 v0 1 3 1 [1 (cos (0 2n) i sin (0 2n))] 3 v Arctan 1 3 3 24 cos (4)3 i sin (4)3 1 2 1 v Arctan 1 0.91 0.61i 12 ( 3 )2 2 15. r 1 4 02 12 1 25. r 21 4 16 16i cos 134 i sin 134 3 v Arctan 4 2 4 7 2 2 v Arctan 2 4 1.37 0.37i (22 )3cos (3)9 i sin (3)4 162 cos 1 3 (1)2 (1 )2 2 24. r 162 162 i 2 2 14. r (2) 2 22 21 4 cos (v) i sin (v) 1 3 22 22 22 23. r cos (5) 4 i sin (5) 4 5 5 32 cos 4 i sin 4 2 2 32 2 i 2 0.2449786631 1 3 1.60 0.13i 27(0 i(1)) 27i 25 1 3 2 1 19. 32 5 cos 53 i sin 53 1 2cos 2 15 1 i sin 2 15 1.83 0.81i 20. r (1)2 02 1 1 4 1 v cos () i sin () 1 4 1 4 cos 4 i sin 4 0.71 0.71i 299 Chapter 9 27. x5 1 → x5 1 Find the fifth roots of 1. r (1)2 02 1 i 2 2i v 1 5 2 2i 1 1 5 (1) [1 (cos ( 2n) i sin ( 2n))] 2n 2n cos 5 i sin 5 x1 cos x2 cos x3 cos x4 cos x5 cos O 1 i sin 0.81 0.59i 5 5 3 3 i sin 0.31 0.95i 5 5 5 5 i sin 1 5 5 7 7 i sin 0.31 0.95i 5 5 9 9 i sin 0.81 0.59i 5 5 1 1 2i 2 2i 2 30. x4 (1 i) 0 → x4 1 i Find the fourth roots of 1 i. 1 v Arctan 1 4 1 r 12 12 2 1 (1 i) 4 2 cos 4 2n i sin 4 2n 4 i 1 0.31 0.95i 1 8n 8n (2 ) 4 cos 16 i sin 16 0.81 0.59i i 1 O 1 1.07 0.21i 0.81 0.59i 0.31 0.95i 1 3 1 v0 2i 2 1 9 9 1 ) x3 (2 1 x4 (2 ) 3 2 3 17 4 1 (1 3 i) 4 4 64 [64 (cos (0 2n) i sin (0 2n))] n n i sin 2 1 x1 2 1 x2 2 4 (cos i sin ) 22 x3 22 1 x3 2 4 22i Find the fourth roots of 16. 2 02 16 r (16) v 1 4 1 1 i sin 4 28 0.59 1.03i 1.03 0.59i 2n i sin 28 1 4 x1 2 cos 4 i sin 4 2 2 i i sin 4 cos 12 i sin 12 0.59 1.03i 10 10 cos 1 2 i sin 12 1.03 0.59i 22 22 cos 12 i sin 12 0.59 1.03i i 2 cos 4 i sin 4 3 4 5 4 7 4 4 6n x4 2 4 cos 12 i sin 12 1.03 0.59i (16) [16 (cos ( 2n) i sin ( 2n))] 2n 4 6n 1 4 22i 3 3 x4 22 cos 2 i sin 2 3x4 48 0 → x4 16 1 2 4 cos 12 i sin 12 x1 22 (cos 0 i sin 0) 22 2 4 2 cos 3 2n i sin 3 2n 4 22 cos 2 i sin 2 3 4 5 4 7 4 17 cos 1 6 i sin 16 1.07 0.21i 25 25 cos 16 i sin 1 6 0.21 1.07i 3 1 4 1 4 or v Arctan 3 3 1 2i 2 1 4 x2 22 cos 1 4 i 0 → x4 1 3 i. 31. 2x4 2 23 Find the fourth roots of 1 3 i. r (1)2 ( )2 2 3 2 Chapter 9 ) 4 cos 16 i sin 16 0.21 1.07i x2 (2 3 2 1 O 1 x4 2 cos 1 2 2 2 x3 2 cos 0.21 1.07i x1 (2 ) 4 cos 16 i sin 1 6 1.07 0.21i i 2 2 x2 2 cos 1 O 1 1.07 0.21i 28. 2x4 128 0 → x4 64 Find the fourth roots of 64. r 642 02 64 29. 1 0.21 1.07i 1 2 2i 2 2i 2 2i O 0.59 1.03i 1 300 1 1.03 0.59i 32. Rewrite 10 9i in polar form as 9 10 cos tan1 181 38a. The point at (2, 2) becomes the point at (0, 2). From the origin, the point at (2, 2) had a length of 22 and the new point at (0, 2) has a length 2 of 2. The dilation factor is 2. 9 10 i sin tan1 . Use a graphing calculator to find the fifth roots at 0.75 1.51i, 1.20 1.18i, 1.49 0.78i, 0.28 1.66i, and 1.66 0.25i. 33. Rewrite 2 4i in polar form as 25 [cos (tan1 (2)) i sin (tan1 (2))]. Use a graphing calculator to find the sixth roots at 1.26 0.24i, 0.43 1.21i, 0.83 0.97i, 1.26 0.24i, 0.43 1.21i, and 0.83 0.97i. 34. Rewrite 36 20i in polar form as 2 y (0, 2) 1 x 2 2 2 3 4 38b. For w2, the modulus (0.81)2 or 0.66. For w3, the modulus (0.66)2 or 0.44. This moduli will approach 0 as the number of iterations increase. Thus, it is a prisoner set. 36a. In polar form the 31st roots of 1 are given by 2n x3 cos x4 cos x5 cos x6 cos i sin i sin i sin i sin 2 3 3 3 4 3 5 3 1 2(cos 90° i sin 90°) 5 10 v 6 3 11 3 11 6 6 or 6 1 45° 3 1 2 3 i 2 1 cos 45° 2 1 2 43. cos 22.5° cos 2 x2 cos 3 i sin 3 2 2i 2 3 3 3 4 3 5 3 33 3i 41. (2 5i) (3 6i) (6 2i) (2 (3) (6)) (5i 6i 2i) 5i 42. x t, y 2t 7 n 1 22 (cos 45° i sin 45°) 11 cos 3 i sin 3 2 i sin 2 6cos 6 i sin 6 6 2 i 2 1 40. r 2(3) or 6 1 6 [1 (cos (0 2n) i sin (0 2n))] 6 x1 cos 0 i sin 0 1 (cos 45° i sin 45°) 2 2 2 2 The square is rotated 90° counterclockwise and dilated by a factor of 0.5. 39. The roots are the vertices of a regular polygon. Since one of the roots must be a positive real number, a vertex of the polygon lies on the positive real axis and the polygon is symmetric about the real axis. This means that the non-real complex roots occur in conjugate pairs. Since the imaginary part of the sum of two complex conjugates is 0, the imaginary part of the sum of all the roots must be 0. cos 3 1 i sin 31 , n 0, 1, . . . , 30. Then 2n a cos 31 . The maximum value of a cosine expression is 1, and it is achieved in this situation when n 0. 36b. From the polar form in the solution to part a, we 2n 2n get b sin 3 1 . b will be maximized when 31 is as close to 2 as possible. This occurs when n 8, 16 so the maximum value of b is sin 3 1 , or about 0.9987. 37. x6 1 0 → x6 1 Find the sixth roots of 1. r 12 02 1 v0 n 2 0.5 0.5i 2 122 2 or 0.81. 1 1 2 5 35. For w1, the modulus 2n 1 O 1 4106 cos tan1 9 i sin tan1 9. Use a graphing calculator to find the eighth roots at 1.59 0.10i, 1.05 1.19i, 0.10 1.59i, 1.19 1.05i, 1.59 0.10i, 1.05 1.19i, 0.10 1.59i, and 1.19 1.05i. 5 (2, 2) 2 2 1 3 2 2i 1 3 i 2 2 2 1 2 2 2 2 4 2 2 2 44. Find B. B 180° 90° 81°15 8°45 Find a. a tan 81°15 2 8 28 tan 81°15 a 181.9 a 301 Chapter 9 Find c. 15. Sample answer: (4, 585°), (4, 945°), (4, 45°), (4, 405°) (r, v 360k°) → (4, 225° 360(1)°) → (4, 585°) → (4, 225° 360(2)°) → (4, 945°) (r, v (2k 1)180°) → (4, 225° (1)180°) → (4, 45°) → (4, 225° (1)180°) → (4, 405°) 90˚ 16. 17. 2 60 120 2 28 cos 81°15 c 28 c cos 81°15 c 184.1 45. Let x the number of large bears produced. Let y the number of small bears produced. x 300 y 1200 y 400 (300, 900) 1000 x y 1200 800 f(x, y) 9x 5y (800, 400) 600 f(300, 400) 9(300) 5(400) 400 4700 200 (300, 400) x f(300, 900) 9(300) 5(900) O 200 600 1000 7200 f(800, 400) 9(800) 5(400) 9200 Producing 800 large bears and 400 small bears yields the maximum profit. 46. 0.20(6) 1.2 quarts of alcohol 0.60(4) 2.4 quarts of alcohol 1.2 2.4 64 ˚ ˚ 3 180˚ 1 2 3 4 240˚ 270˚ 18. 90˚ 120˚ 3.6 1 or 36% alcohol 0 19. 1. 3. 5. 7. 9. Check for Understanding 2. 4. 6. 8. 10. absolute value prisoner pure imaginary rectangular Argand 120˚ Polar iteration cardioid spiral of Archimedes modulus 11. 120˚ 12. 180˚ 0˚ 1 2 3 4 13. 2 3 270˚ 2 240˚ 300˚ 14. 3 5 6 C 6 1 2 3 4 7 6 11 6 4 3 Chapter 9 3 2 5 3 2 4 3 3 2 270˚ 22 32 (32 , 32 ) 25. x 2 cos 330° 5 3 2 3 2 3 (3 , 1) 302 8 16 24 32 0 11 6 7 6 2 3 3 2 5 3 2 3 6 5 6 2 4 6 8 0 11 6 7 6 4 3 300˚ 6 11 6 0˚ 330˚ limaçon 24. x 6 cos 45° D 7 6 23. 2 4 6 8 3 0 3 6 4 3 30˚ 240˚ 1 2 3 4 5 3 5 6 0˚ 60˚ 210˚ 6 90˚ 300˚ 5 6 0 2 3 270˚ 3 2 2 Spiral of Archimedes 180˚ 330˚ 210˚ 2 3 300˚ 150˚ 0˚ 1 2 3 4 B 330˚ 240˚ 30˚ 180˚ A 210˚ 120˚ 11 6 21. 330˚ 22. 60˚ 150˚ 30˚ 150˚ 7 6 60˚ 210˚ 270˚ 1 2 3 4 4 3 2 4 6 8 3 0 circle 90˚ 120˚ 60˚ 0˚ 30˚ 180˚ Skills and Concepts 90˚ 90˚ 2 5 3 6 300˚ 150˚ 240˚ Pages 608–610 270˚ 3 2 5 6 330˚ 20. Pages 607 2 3 60˚ 210˚ 240˚ 11 6 4 3 1 2 3 4 Chapter 9 Study Guide and Assessment 0 1 2 3 4 7 6 30˚ 180˚ 6 300˚ 150˚ The correct choice is A. 0˚ 330˚ 210˚ 3 5 6 30˚ 150˚ 3 2 rose y 6 sin 45° 22 6 32 y 2 sin 330° 1 2 2 1 5 3 34 2 22 34 2 22 26. x 2 cos 2 (2 , 2 ) 27. x 1 cos y 1 sin 0 (0, 1) y 6 or 0 x 3 x 3 y 6 0 35. 4 r cos v 2 (3 )2 ( 3)2 v Arctan or 23 12 4 3 3 3 5 50 or 52 4 52, 4 36. v Arctan 3 1 30. r (3)2 12 3.16 10 (3.16, 2.82) 37. 2.82 38. v Arctan 4 2 31. r 42 22 20 4.47 (4.47, 0.46) 0.46 39. A2 B2 22 12 32. 5 Since C is positive, use 5 . 2 5 1 5 25 cos f 5, 1 f Arctan 2 40. 3 5 x y 0 41. 5 35 sin f 5, p 5 4 2i 5 2i 5 2i 5 2i 20 18i 4i2 16 18i 16 18 29 29i 42. r cos (v 207°) A2 B2 32 12 33. 10 Since C is positive, use 10 . 5i 1 2i 1 2i 1 2 i 5i 1 2i 5 52 i i 2 i2 1 2i2 (5 2 ) (52 1)i 3 1 52 5 2 3 3i v Arctan 2 2 22 22 43. r 4 10 x y 0 8 or 22 10 22 cos 4 i sin 4 2 10 sin f 1 , p 5 0 4 44. r 12 ( 3)2 v Arctan 1 2 3 5.03 10 10 (cos 5.03 i sin 5.03) 18° Since cos f 0 and sin f 0, the normal lies in the third quadrant. f 180° 18° or 198° p r cos (v f) 210 5 4 2i 5 2i 29 27° Since cos f 0 and sin f 0, the normal lies in the third quadrant. f 180° 27° or 207° p r cos (v f) 0 0 r sin v 4 0 y 4 0 y 4 or y40 i10 i25 (i4)2 i2 (i4)6 i (1)2 (1) (1)6 i 1 i (2 3i) (4 4i) (2 (4)) (3i (4i)) 2 7i (2 7i) (3 i) (2 (3)) (7i (i)) 1 6i 3 3 i (4 3i) 4i 3i4 4(i) 3(1) 3 4i (i 7)(i 7) i2 14i 49 1 14i 49 48 14i 25 4i2 1 10 310 cos f 10, 1 f Arctan 3 0 r cos v cos 2 r sin v sin 2 4 v Arctan 5 29. r 52 52 3 10 3 0 2x 2 y 3 1 23, 43 35 5 3 1 0 2r cos v 2 r sin v 3 1 2 0 r cos v cos 3 r sin v sin 3 3 2 2 28. r 34. 3 r cos v 3 y 2 sin 45. r (1)2 (3 )2 2cos 3 i sin 3 r cos (v 198°) 3 2 or 2 4 2 v Arctan 1 3 2 46. r (6)2 (4 )2 4 v Arctan 6 or 213 3.73 52 213 (cos 3.73 i sin 3.73) 47. r (4)2 (1 )2 1 v Arctan 4 3.39 17 17 (cos 3.39 i sin 3.39) 303 Chapter 9 48. r 42 02 16 or 4 4(cos 0 i sin 0) (2 )2 2 02 49. r 8 or 22 22 (cos i sin ) v0 02 32 50. r v 60. r ( 3 )2 (1 )2 2 27 cos v 2 3 5 6 128 2 6 2 cos 6 i sin 6 1 3 2 2 i 2 ( 3, 5 3) 4 3 2 2 12 cos 3 i sin 3 1 3 12 2 i 2 3 5 11 6 4 5 15 2 16 16i 1 4 1 1 0.92 0.38i 2 1 3 3 3 1 1 1.24 0.22i 162 162 i 55. r 2(5) or 10 10 (cos 2.5 i sin 2.5) 8.01 5.98i v 2 0.5 or 2.5 Page 611 Applications and Problem Solving 65. lemniscate 8 56. r 2 or 4 5 7 10 v 3 cos i sin 3 1 3 2 2 i 2 2 3 6 r cos v 2 5 0 r cos cos 2 r sin v sin 2 5 0 6 6 or r sin v 5 0 y50 y 5 3 E 68. I Z 50 180j 32 4 5j 4 4i 2.2 50 180j 0.5 (cos 0.9 i sin 0.9) 0.31 0.39i 59. r 22 22 22 v Arctan 2 4 2 4 5j 4 5j 4 5j v 1.5 0.6 or 0.9 58. r 4.4 or 0.5 59.04° 67. 3 2 125 21,25 0 145.77 (145.77, 59.04°) 4cos 2 i sin 2 6 6 or 2 4(0 i(1)) 4i v Arctan 7 5 752 1252 66. r 7 v 6 3 3 1 2 3 cos 18 i sin 18 4 4 or 4 2 1 200 470j 900j2 16 25j2 1100 470j2 41 26.83 11.46j amps (2 )8 cos (8)4 i sin (8)4 4096 (cos 2 i sin 2) 4096 304 v Arctan 3 6 2 cos 36 i sin 36 v 4 2 2 Chapter 9 1 cos 42 i sin 42 322 i 2 3 v 2 (3 )2 12 2 64. r 3 or 02 12 1 63. r cos 8 i sin 8 32cos 4 i sin 4 3 2 2 162 2 i 2 54. r 8(4) or 32 57. r 15 162 cos 4 i sin 4 6 63 i 6 4 5 (22 )3 cos (3)4 i sin (3)4 2 v Arctan 2 (2)2 (2 )2 22 62. r 5 3 3 2 3 4(cos 3 i sin 3) 4 5 5 3 cos 3 i sin 3 1 3 3 2 i 2 3 33 2 2i 2 v 3 3 or 3 53. r 4(3) or 12 1 (2 )4 cos (4)4 i sin (4)4 1 2 3 4 7 6 3 i v Arctan 1 3 0 5 3 3 2 4 3 6 11 6 4 3 i 2 5 6 1 2 3 4 7 6 2 3 0 643 64i 52. ( 2, 6 ) (1)2 12 2 61. r 3 i 2 128 9 or 3 3cos 2 i sin 2 51. 1 6 3 (7) 6 i sin (7) 6 7 7 cos 6 i sin 6 1 3 2 i 2 v Arctan Page 611 180 (c b) 180 x xcb The correct choice is E. 4. Volume wh 16,500 75 w 10 16,500 750w 22 w Open-Ended Assessment 1a. Sample answer: 4 6i and 3 2i (4 6i) (3 2i) (4 3) (6i 2i) 7 4i 1b. No. Sample explanation: 2 3i and 5 i also have this sum. (2 3i) (5 i) (2 5) (3i (i)) 7 4i 2a. Sample answer: 4 i z 42 12 17 2b. No. Sample explanation: 1 4i also has this absolute value. z 12 42 17 w 5. 8 h C The answer choices include sin x. Write an expression for the height, using the sine of x. h 1 sin x 8 A 2bh 1 8 sin x h 2 (10)(8 sin x) 40 sin x The correct choice is B. 3. Since PQRS is a parallelogram, sides PQ and SR are parallel and m∠Q m∠S b. M c˚ P Q b˚ T x˚ R a˚ S 1 10 The correct choice is A. 6. Consider the three unmarked angles at the intersection point. One of these angles, say the top one, is the supplement of the other two unmarked angles, because of vertical angles. So the sum of the measures of the unmarked angles is 180°. The sum of the measures of the marked angles and the three unmarked angles is 3(180), since these angles are the interior angles of three triangles. m(sum of marked angles) m(sum of unmarked angles) 3(180) m(sum of marked angles) 180 3(180) m(sum of marked angles) 360 The correct choice is C. 7. Subtract the second equation from the first. 5x2 6x 70 5x2 6y 10 6x 6y 60 x y 10, so 10x 10y 100. The correct choice is E. 8. Since ∠B is a right angle, ∠C is a right angle also, because they are alternate interior angles. In the triangle containing ∠C, 90 x y 180 or x y 90. The straight angle at D is made up of 3 angles. 120 x x 180 2x 60 or x 30 x y 90 (30) y 90 y 60 The correct choice is B. 9. In the slope-intercept form of a line, y mx b, m represents the slope of the line, and b represents the y-intercept. Since the slope is 3 given as 2, the slope-intercept form of the line is 3 y 2x b. Since (–3, 0) is on the line, it satisfies the 3 9 equation. 0 2(–3) b. So b 2. The correct choice is D. 10. Note that consecutive interior angles are supplementary. 110 2x 180 y x 180 2x 70 y (35) 180 x 35 y 145 The answer is 145. B 10 1 1099 100100 10100 9 SAT and ACT Practice x˚ 1 100100 10100 1. ∠a and ∠b form a linear pair, so ∠b is supplementary to ∠a. Since ∠b and ∠d are vertical angles, they are equal in measure. So ∠d is also supplementary to ∠a. Since ∠d and ∠f are alternate interior angles, they are equal. So ∠f is supplementary to ∠a. And since ∠f and ∠h are vertical angles, ∠h is supplementary to ∠a. The angles supplementary to ∠a are angles b, d, f, and h. The correct choice is A. 2. Draw the given triangle and draw the height h from point B. A 75 ft The correct choice is A. Chapter 9 SAT & ACT Preparation Page 613 h 10 ft O N In SMO, c b a 180 or a 180 (c b). Also, x a 180 or a 180 x since consecutive interior angles are supplementary. 305 Chapter 9
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
advertisement