mikroC PRO for PIC User Manual v100

mikroC PRO for PIC User Manual v100
mikroC PRO for PIC
April 2009.
Reader’s note
DISCLAIMER:
mikroC PRO for PIC and this manual are owned by mikroElektronika and are protected
Reader’s Note
by copyright law and international copyright treaty. Therefore, you should treat this manual
like any other copyrighted material (e.g., a book). The manual and the compiler may not be
copied, partially or as a whole without the written consent from the mikroEelktronika. The
PDF-edition of the manual can be printed for private or local use, but not for distribution.
Modifying the manual or the compiler is strictly prohibited.
HIGH RISK ACTIVITIES:
The mikroC PRO for PIC compiler is not fault-tolerant and is not designed, manufactured
or intended for use or resale as on-line control equipment in hazardous environments requiring fail-safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines, or weapons systems,
in which the failure of the Software could lead directly to death, personal injury, or severe
physical or environmental damage ("High Risk Activities"). mikroElektronika and its suppliers
specifically disclaim any express or implied warranty of fitness for High Risk Activities.
LICENSE AGREEMENT:
By using the mikroC PRO for PIC compiler, you agree to the terms of this agreement.
Only one person may use licensed version of mikroC PRO for PIC compiler at a time.
Copyright © mikroElektronika 2003 - 2009.
This manual covers mikroC PRO for PIC version 1.1 and the related topics. Newer versions may contain changes without prior notice.
COMPILER BUG REPORTS:
The compiler has been carefully tested and debugged. It is, however, not possible to
guarantee a 100 % error free product. If you would like to report a bug, please contact us at
the address [email protected] Please include next information in your bug report:
- Your operating system
- Version of mikroC PRO for PIC
- Code sample
- Description of a bug
CONTACT US:
mikroElektronika
Voice: + 381 (11) 36 28 830
Fax:
+ 381 (11) 36 28 831
Web:
www.mikroe.com
E-mail: [email protected]
Windows is a Registered trademark of Microsoft Corp. All other trade and/or services marks
are the property of the respective owners.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
Table of Contents
CHAPTER 1
Introduction
CHAPTER 2
mikroC PRO for PIC Environment
CHAPTER 3
MikroICD (In-Circuit Debugger)
CHAPTER 4
mikroC PRO for PIC Specifics
CHAPTER 5
PIC Specifics
CHAPTER 6
mikroC PRO for PIC Language Reference
CHAPTER 7
mikroC PRO for PIC Libraries
Table of Contents
mikroC PRO for PIC
CHAPTER 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Where to Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
mikroElektronika Associates License Statement and Limited Warranty . . . . . . . . . . . . 4
IMPORTANT - READ CAREFULLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
LIMITED WARRANTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
HIGH RISK ACTIVITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
GENERAL PROVISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
How to Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Who Gets the License Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
How to Get License Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
After Receiving the License Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
CHAPTER 2
IDE Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Main Menu Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
File Menu Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Edit Menu Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Find Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Replace Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Find In Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Go To Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Regular expressions option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
View Menu Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Toolbars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
File Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Edit Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Advanced Edit Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Find/Replace Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Project Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Build Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Styles Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Tools Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Project Menu Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Run Menu Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Tools Menu Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Help Menu Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Keyboard Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
IDE Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Customizing IDE Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Docking Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Saving Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
IV
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
mikroC PRO for PIC
Table of Contents
Auto Hide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Advanced Code Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Advanced Editor Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Code Assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Code Folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Parameter Assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Code Templates (Auto Complete) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Auto Correct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Spell Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Bookmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Goto Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Comment / Uncomment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Code Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Routine List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Project Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Project Settings Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Library Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Error Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Memory Usage Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
RAM Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Used RAM Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
SFR Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
ROM Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
ROM Memory Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Function Sorted by Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Functions Sorted by Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Functions Sorted by Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Functions Sorted by Name Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Functions Sorted by Size Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Functions sorted by Address Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Function Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Memory Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
MACRO EDITOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Integrated Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
USART Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
EEPROM Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
ASCII Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Seven Segment Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
LCD Custom Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Graphic LCD Bitmap Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
HID Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
UDP Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
V
Table of Contents
mikroC PRO for PIC
Code editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Output settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Simple matches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Escape sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Character classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Metacharacters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Metacharacters - Line separators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Metacharacters - Predefined classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Example: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Metacharacters - Word boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Metacharacters - Iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Metacharacters - Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Metacharacters - Subexpressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Metacharacters - Backreferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
mikroC PRO for PIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Command Line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
New Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
New Project Wizard Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
New Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
New Project Wizard Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Customizing Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Edit Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Managing Project Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Add/Remove Files from Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Project Level Defines: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Source Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Managing Source Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Creating new source file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Opening an existing file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Printing an open file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Saving file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Saving file under a different name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Closing file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Clean Project Folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Output Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Assembly View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Compiler Error Messages: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
VI
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
mikroC PRO for PIC
Table of Contents
Compiler Warning Messages: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Linker Error Messages: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Software Simulator Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Breakpoints Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watch Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
View RAM Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stopwatch Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Software Simulator Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Creating New Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Multiple Library Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
91
91
92
93
93
95
96
97
98
99
CHAPTER 3
mikroICD Debugger Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
mikroICD Debugger Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
mikroICD (In-Circuit Debugger) Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Breakpoints Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Watch Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
EEPROM Watch Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Code Watch Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
mikroICD Code Watch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
View RAM Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Common Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
mikroICD Advanced Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Program Memory Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Program Memory Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
File Register Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Emulator Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Event Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Stopwatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
CHAPTER 4
ANSI Standard Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Divergence from the ANSI C Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
C Language Exstensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Predefined Globals and Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Predefined project level defines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Accessing Individual Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Accessing Individual Bits Of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
sbit type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
bit type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
P18 priority interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Function Calls from Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Interrupt Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
VII
Table of Contents
mikroC PRO for PIC
Linker Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Directive absolute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Directive org . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Directive orgall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Directive funcorg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Indirect Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Built-in Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Hi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Higher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Highest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Delay_us . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Delay_ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Vdelay_ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Delay_Cyc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Clock_Khz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Clock_Mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Get_Fosc_kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Code Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Constant folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Constant propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Copy propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Value numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
"Dead code" elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Stack allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Local vars optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Better code generation and local optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 131
CHAPTER 5
Types Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Nested Calls Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
PIC18FxxJxx Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Shared Address SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
PIC16 Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Breaking Through Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Limits of Indirect Approach Through FSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Memory Type Specifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
rx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
sfr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
CHAPTER 6
Lexical Elements Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
VIII
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
mikroC PRO for PIC
Table of Contents
Whitespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Whitespace in Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Line Splicing with Backslash (\) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
C comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
C++ comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Nested comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Token Extraction Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Integer Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Long and Unsigned Suffixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Hexadecimal Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Binary Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Octal Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Floating Point Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Character Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Escape Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Disambiguation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
String Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Line Continuation with Backslash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Enumeration Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Pointer Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Constant Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Case Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Uniqueness and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Identifier Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Punctuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Parentheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Braces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Comma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Semicolon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Colon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Asterisk (Pointer Declaration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Pound Sign (Preprocessor Directive) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Objects and Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Lvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Rvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
IX
Table of Contents
mikroC PRO for PIC
Scope and Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Name Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Static Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Local Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Type Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Fundamental Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Arithmetic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Integral Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Floating-point Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Enumeration Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Anomous Enum Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Enumeration Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Void Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Void Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Generic Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Derived Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Array Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Array Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Arrays n Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Multi-dimensional Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Pointer Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Null Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Function Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Assign an address to a Function Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Pointer Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Arrays and pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Assignment and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Pointer Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Pointer Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Structure Declaration and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Incomplete Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Untagged Structures and Typedefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Working with Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Size of Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Structures and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
X
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
mikroC PRO for PIC
Table of Contents
Structure Member Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Accessing Nested Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Structure Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Unions Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Size of Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Union Member Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Bit Fields Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Bit Fields Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Type Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Standard Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Details: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Pointer Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Explicit Type Concersions (Typecasting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Declarations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Declarations and Declarators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Linkage Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Internal Linkage Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
External Linkage Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Storage Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Auto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Static . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Extern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Type Qualifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Qualifiers Const . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Qualifier Volatile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Typedef Specifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
asm Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Automatic Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Function Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Function Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Function Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Function Reentrancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Function Calls and Argument Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Argument Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Operators Presidence and Associativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
XI
Table of Contents
mikroC PRO for PIC
Arithmetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Binary Arithmetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Unary Arithmetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Relational Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Relational Operators Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Relational Operators in Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Bitwise Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Bitwise Operators Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Logical Operations on Bit Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Bitwise Shift Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Bitwise versus Logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Logical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Logical Operators Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Logical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Logical Expressions and Side Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Logical versus Bitwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Conditional Operator ? : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Conditional Operator Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Assignment Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Simple Assignment Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Compound Assignment Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Assignment Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Sizeof Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Sizeof Applied to Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Sizeof Applied to Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Comma Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Labeled Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Expression Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Selection Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
If Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Nested If Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Switch Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Nested Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Iteration Statements (Loops) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
While Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Do Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
For Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Jump Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Break and Continue Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Break Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Continue Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Goto Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
XII
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
mikroC PRO for PIC
Table of Contents
Return Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Compound Statements (Blocks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Preprocessor Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Line Continuation with Backslash (\) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Defining Macros and Macro Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Macros with Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Undefining Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
File Inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Explicit Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Preprocessor Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Operator # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Operator ## . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Conditional Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Directives #if, #elif, #else and #endif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Directives #ifdef and #ifndef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
CHAPTER 7
Hardware PIC-specific Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Standard ANSI C Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Miscellaneous Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Library Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Hardware Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
ADC Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
ADC_Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
CAN Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
CANSetOperationMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
CANGetOperationMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
CANInitialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
CANSetBoudRate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
CANSetMask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
CANSetFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
CANRead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
CANWrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
CAN Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
CAN_OP_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
CAN_CONFIG_FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
CAN_TX_MSG_FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
CAN_RX_MSG_FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
CAN_MASK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
CAN_FILTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
XIII
Table of Contents
mikroC PRO for PIC
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
CANSPI Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
External dependecies of CANSPI Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
CANSPISetOperationMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
CANSPIGetOperationMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
CANSPIInitialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
CANSPISetBaudRate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
CANSPISetMask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
CANSPISetFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
CANSPIRead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
CANSPIWrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
CANSPI Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
CANSPI_OP_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
CANSPI_CONFIG_FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
CANSPI_TX_MSG_FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
CANSPI_RX_MSG_FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
CANSPI_MASK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
CANSPI_FILTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Compact Flash Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Cf_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Cf_Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Cf_Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Cf_Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Cf_Read_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Cf_Read_Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Cf_Write_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Cf_Write_Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Cf_Read_Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Cf_Write_Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Cf_Fat_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Cf_Fat_QuickFormat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Cf_Fat_Assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Cf_Fat_Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Cf_Fat_Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Cf_Fat_Rewrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Cf_Fat_Append . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Cf_Fat_Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Cf_Fat_Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Cf_Fat_Set_File_Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
XIV
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
mikroC PRO for PIC
Table of Contents
Cf_Fat_Set_File_Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Cf_Fat_Set_File_Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Cf_Fat_Get_Swap_File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
EEPROM Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
EEPROM_Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
EEPROM_Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Ethernet PIC18FxxJ60 LibrarY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
PIC18FxxJ60 family of microcon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Ethernet_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Ethernet_Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Ethernet_Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Ethernet_doPacket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Ethernet_putByte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Ethernet_putBytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Ethernet_putConstBytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Ethernet_putString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Ethernet_putConstString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Ethernet_getByte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Ethernet_getBytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Ethernet_UserTCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Ethernet_UserUDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Ethernet_getlpAddress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Ethernet_getGwlpAddress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Ethernet_getDnslpAddress(); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Ethernet_getlpMask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Ethernet_confNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Ethernet_arpResolve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Ethernet_sendUDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Ethernet_dnsResolve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Ethernet_initDHCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Ethernet_doDHCPLeaseTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Ethernet_renewDHCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Flash Memory Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
FLASH_Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
FLASH_Read_N_Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
FLASH_Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
FLASH_Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
XV
Table of Contents
mikroC PRO for PIC
FLASH_Erase_Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Graphic LCD Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
External dependencies of Graphic LCD Library . . . . . . . . . . . . . . . . . . . . . . . . 326
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Glcd_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Glcd_Set_Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Glcd_Set_X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Glcd_Set_Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Glcd_Read_Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Glcd_Write_Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Glcd_Fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Glcd_Dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Glcd_Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Glcd_V_Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Glcd_H_Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Glcd_Rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
Glcd_Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
Glcd_Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Glcd_Set_Font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Glcd_Write_Char . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Glcd_Write_Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Glcd_Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
I˛C Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
I2C1_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
I2C1_Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
I2C1_Repeated_Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
I2C1_Is_Idle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
I2C1_Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
I2C1_Wr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
I2C1_Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Keypad Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
External dependencies of Keypad Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Keypad_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Keypad_Key_Press . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Keypad_Key_Click . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
LCD Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
XVI
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
mikroC PRO for PIC
Table of Contents
External dependencies of LCD Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Lcd_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Lcd_Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Lcd_Out_CP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Lcd_Chr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Lcd_Chr_Cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Lcd_Cmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Available LCD Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
HW connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Manchester Code Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
External dependencies of Manchester Code Library . . . . . . . . . . . . . . . . . . . . . 359
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Man_Receive_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Man_Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Man_Send_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Man_Send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Man_Synchro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Man_Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Connection Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Multi Media Card Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Secure Digital Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
External dependencies of MMC Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Mmc_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Mmc_Read_Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Mmc_Write_Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Mmc_Read_Cid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Mmc_Read_Csd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Mmc_Fat_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Mmc_Fat_QuickFormat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Mmc_Fat_Assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Mmc_Fat_Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Mmc_Fat_Rewrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Mmc_Fat_Append . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Mmc_Fat_Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Mmc_Fat_Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Mmc_Fat_Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Mmc_Fat_Set_File_Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Mmc_Fat_Get_File_Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Mmc_Fat_Get_File_Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Mmc_Fat_Get_Swap_File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
XVII
Table of Contents
mikroC PRO for PIC
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
OneWire Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Ow_Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Ow_Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Ow_Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Port Expander Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
External dependencies of Port Expander Library . . . . . . . . . . . . . . . . . . . . . . . 389
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Expander_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Expander_Read_Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Expander_Write_Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Expander_Read_PortA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Expander_Read_PortB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Expander_Read_PortAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Expander_Write_PortA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Expander_Write_PortB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Expander_Write_PortAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Expander_Set_DirectionPortA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Expander_Set_DirectionPortB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Expander_Set_DirectionPortAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
Expander_Set_PullUpsPortA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
Expander_Set_PullUpsPortB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Expander_Set_PullUpsPortAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
PS/2 Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
External dependencies of PS/2 Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Ps2_Config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Ps2_Key_Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Special Function Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
PWM Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
PWM1_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
PWM1_Set_Duty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
PWM1_Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
PWM1_Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
XVIII
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
mikroC PRO for PIC
Table of Contents
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
RS-485 Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
External dependencies of RS-485 Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
RS485Master_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
RS485Master_Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
RS485Master_Send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
RS485slave_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
RS485slave_Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
RS485slave_Send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Message format and CRC calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
Software I˛C Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
External dependecies of Soft_I2C Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Soft_I2C_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
Soft_I2C_Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
Soft_I2C_Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Soft_I2C_Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Soft_I2C_Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Soft_I2C_Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Software SPI Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
External dependencies of Software SPI Library . . . . . . . . . . . . . . . . . . . . . . . . 428
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Soft_Spi_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Soft_Spi_Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Soft_SPI_Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Software UART Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
Soft_UART_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Soft_UART_Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Soft_UART_Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
Soft_Uart_Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
Sound Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Sound_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Sound_Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
SPI Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
XIX
Table of Contents
mikroC PRO for PIC
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Spi_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Spi1_Init_Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
Spi1_Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Spi1_Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
SPI_Set_Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
SPI Ethernet Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
External dependencies of SPI Ethernet Library . . . . . . . . . . . . . . . . . . . . . . . . . 450
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
PIC16 and PIC18: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
PIC18 Only: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Spi_Ethernet_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
Spi_Ethernet_Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
Spi_Ethernet_Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Spi_Ethernet_doPacket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
Spi_Ethernet_putByte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
Spi_Ethernet_putBytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
Spi_Ethernet_putConstBytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Spi_Ethernet_putString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Spi_Ethernet_putConstString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Spi_Ethernet_getByte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Spi_Ethernet_getBytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
Spi_Ethernet_UserTCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Spi_Ethernet_UserUDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
SPI_Ethernet_getIpAddress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
SPI_Ethernet_getGwIpAddress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
SPI_Ethernet_getDnsIpAddress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
SPI_Ethernet_getIpMask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
SPI_Ethernet_confNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
SPI_Ethernet_arpResolve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
SPI_Ethernet_sendUDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
SPI_Ethernet_dnsResolve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
SPI_Ethernet_initDHCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
SPI_Ethernet_doDHCPLeaseTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
SPI_Ethernet_renewDHCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
SPI Graphic LCD Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
External dependencies of SPI Graphic LCD Library . . . . . . . . . . . . . . . . . . . . . 479
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Spi_Glcd_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
SPI_Glcd_Set_Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
XX
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
mikroC PRO for PIC
Table of Contents
SPI_Glcd_Set_Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
SPI_Glcd_Set_X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Spi_Glcd_Read_Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
SPI_Glcd_Write_Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
SPI_Glcd_Fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
SPI_Glcd_Dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
SPI_Glcd_Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
SPI_Glcd_V_Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
SPI_Glcd_H_Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
SPI_Glcd_Rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
SPI_Glcd_Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
SPI_Glcd_Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
SPI_Glcd_Set_Font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
Spi_Glcd_Write_Char . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Spi_Glcd_Write_Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Spi_Glcd_Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
SPI LCD Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
External dependencies of SPI LCD Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Spi_Lcd_Config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
Spi_Lcd_Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Spi_Lcd_Out_Cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Spi_Lcd_Chr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Spi_Lcd_Chr_Cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
Spi_Lcd_Cmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
Available LCD Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
SPI LCD8 (8-bit interface) Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
External dependencies of SPI LCD Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
Spi_Lcd8_Config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Spi_Lcd8_Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Spi_Lcd8_Out_Cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Spi_Lcd8_Chr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Spi_Lcd8_Chr_Cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Spi_Lcd8_Cmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Available LCD Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
SPI T6963C Graphic LCD Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
External dependencies of Spi T6963C Graphic LCD Library . . . . . . . . . . . . . . 507
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
XXI
Table of Contents
mikroC PRO for PIC
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
Spi_T6963C_Config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Spi_T6963C_WriteData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
pi_T6963C_WriteCommand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
Spi_T6963C_SetPtr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Spi_T6963C_WaitReady . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Spi_T6963C_Fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Spi_T6963C_Dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
Spi_T6963C_Write_Char . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
Spi_T6963C_write_Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
Spi_T6963C_line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
Spi_T6963C_rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
Spi_T6963C_box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
Spi_T6963C_circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
Spi_T6963C_image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Spi_T6963C_Sprite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Spi_T6963C_set_cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
Spi_T6963C_clearBit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
Spi_T6963C_setBit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
Spi_T6963C_negBit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Spi_T6963C_DisplayGrPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Spi_T6963C_displayTxtPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Spi_T6963C_setGrPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
Spi_T6963C_setTxtPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
Spi_T6963C_panelFill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Spi_T6963C_GrFill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Spi_T6963C_txtFill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Spi_T6963C_cursor_height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
Spi_T6963C_graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
Spi_T6963C_text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
Spi_T6963C_cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Spi_T6963C_cursor_blink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
T6963C Graphic LCD Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
External dependencies of T6963C Graphic LCD Library . . . . . . . . . . . . . . . . . 530
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
T6963C_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
T6963C_writeData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
T6963C_WriteCommand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
T6963C_SetPtr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
T6963C_waitReady . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
T6963C_fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
T6963C_Dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
XXII
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
mikroC PRO for PIC
Table of Contents
T6963C_write_Char . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
T6963C_write_text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
T6963C_line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
T6963C_rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
T6963C_box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
T6963C_circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
T6963C_image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
T6963C_sprite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
T6963C_set_cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
T6963C_clearBit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
T6963C_setBit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
T6963C_negBit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
T6963C_displayGrPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
T6963C_displayTxtPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
T6963C_setGrPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
T6963C_SetTxtPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
T6963C_PanelFill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
T6963C_grFill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
T6963C_txtFill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
T6963C_cursor_height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
T6963C_Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
T6963C_text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
T6963C_cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
T6963C_Cursor_Blink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
UART Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
Uart_Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
Uart_Data_Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
UART1_Tx_Idle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
UART1_Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
UART1_Read_Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
UART1_Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
UART1_Write_Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
UART_Set_Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
USB HID Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
Descriptor File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
Hid_Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
Hid_Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
id_Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
XXIII
Table of Contents
mikroC PRO for PIC
Hid_Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
HW Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
Standard ANSI C Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
ANSI C Ctype Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
Library Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
isalnum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
isalpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
iscntrl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
isdigit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
isgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
islower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
ispunct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
isspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
isupper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
isxdigit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
toupper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
tolower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
ANSI C Math Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
Library Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
acos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
asin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
atan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
atan2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
ceil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
cos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
cosh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
eval_poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
exp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
fabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
frexp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
ldexp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
log10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
modf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
pow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
sin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
sinh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
sqrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
tan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
tanh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
ANSI C Stdlib Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
Library Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
XXIV
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
mikroC PRO for PIC
Table of Contents
abs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
atof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
atoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
atol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
div . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
ldiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
uldiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
labs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
rand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
srand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
xtoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
Div Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
ANSI C String Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
Library Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
memchr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
memcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
memcpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
memmove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
memset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
strcat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
strchr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
strcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
strcpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
strlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
strncat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
strncpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
strspn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
trncmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
strstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
strcspn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
strpbrk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
strrchr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Miscellaneous Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
Button Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Conversions Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
ByteToStr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
ShortToStr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
WordToStr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
IntToStr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
XXV
Table of Contents
mikroC PRO for PIC
LongintToStr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
LongWordToStr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
FloatToStr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
Dec2Bcd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
Bcd2Dec16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
Dec2Bcd16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
PrintOut Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
PrintOut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
Setjmp Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Setjmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Longjmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
Sprint Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
sprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
sprintl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
sprinti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
Time Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
Time_dateToEpoch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
Time_epochToDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
Time_dateDiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
Library Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
Trigonometry Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
sinE3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
cosE3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
XXVI
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER
1
Introduction to
mikroC PRO for PIC
The mikroC PRO for PIC is a powerful, feature-rich development tool for PIC
microcontrollers. It is designed to provide the programmer with the easiest possible solution to developing applications for embedded systems, without compromising performance or control.
1
CHAPTER 1
mikroC PRO for PIC
Introduction
mikroC PRO for PIC IDE
PIC and C fit together well: PIC is the most popular 8-bit chip in the world, used in
a wide variety of applications, and C, prized for its efficiency, is the natural choice
for developing embedded systems. mikroC PRO for PIC provides a successful
match featuring highly advanced IDE, ANSI compliant compiler, broad set of hardware libraries, comprehensive documentation, and plenty of ready-to-run examples.
Features
mikroC PRO for PIC allows you to quickly develop and deploy complex applications:
Write your C source code using the built-in Code Editor (Code and Parameter
Assistants, Code Folding, Syntax Highlighting, Auto Correct, Code Templates,
and more.)
Use included mikroC PRO for PIC libraries to dramatically speed up the devel
opment: data acquisition, memory, displays, conversions, communication etc.
Monitor your program structure, variables, and functions in the Code Explorer.
Generate commented, human-readable assembly, and standard HEX compati
ble with all programmers.
Use the integrated mikroICD (In-Circuit Debugger) Real-Time debugging tool to
2
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 1
mikroC PRO for PIC
Introduction
monitor program execution on the hardware level.
Inspect program flow and debug executable logic with the integrated Software
Simulator.
Get detailed reports and graphs: RAM and ROM map, code statistics, assembly
listing, calling tree, and more.
mikroC PRO for PIC provides plenty of examples to expand, develop, and use
as building bricks in your projects. Copy them entirely if you deem fit – that’s why
we included them with the compiler.
Where to Start
In case that you’re a beginner in programming PIC microcontrollers, read care
fully the PIC Specifics chapter. It might give you some useful pointers on PIC
constraints, code portability, and good programming practices.
If you are experienced in C programming, you will probably want to consult
mikroC PRO for PIC Specifics first. For language issues, you can always refer to
the comprehensive Language Reference. A complete list of included libraries is
available at mikroC PRO for PIC Libraries.
If you are not very experienced in C programming, don’t panic! mikroC PRO for
PIC provides plenty of examples making it easy for you to go quickly. We sug
gest that you first consult Projects and Source Files, and then start browsing the
examples that you're the most interested in.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
3
CHAPTER 1
mikroC PRO for PIC
Introduction
MIKROELEKTRONIKA ASSOCIATES LICENSE STATEMENT AND
LIMITED WARRANTY
IMPORTANT - READ CAREFULLY
This license statement and limited warranty constitute a legal agreement (“License
Agreement”) between you (either as an individual or a single entity) and mikroElektronika (“mikroElektronika Associates”) for software product (“Software”) identified
above, including any software, media, and accompanying on-line or printed documentation.
BY INSTALLING, COPYING, OR OTHERWISE USING SOFTWARE, YOU AGREE
TO BE BOUND BY ALL TERMS AND CONDITIONS OF THE LICENSE
AGREEMENT.
Upon your acceptance of the terms and conditions of the License Agreement,
mikroElektronika Associates grants you the right to use Software in a way provided
below.
This Software is owned by mikroElektronika Associates and is protected by copyright law and international copyright treaty. Therefore, you must treat this Software
like any other copyright material (e.g., a book).
You may transfer Software and documentation on a permanent basis provided. You
retain no copies and the recipient agrees to the terms of the License Agreement.
Except as provided in the License Agreement, you may not transfer, rent, lease,
lend, copy, modify, translate, sublicense, time-share or electronically transmit or
receive Software, media or documentation. You acknowledge that Software in the
source code form remains a confidential trade secret of mikroElektronika Associates
and therefore you agree not to modify Software or attempt to reverse engineer,
decompile, or disassemble it, except and only to the extent that such activity is
expressly permitted by applicable law notwithstanding this limitation.
If you have purchased an upgrade version of Software, it constitutes a single product with the mikroElektronika Associates software that you upgraded. You may use
the upgrade version of Software only in accordance with the License Agreement.
4
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 1
mikroC PRO for PIC
Introduction
LIMITED WARRANTY
Respectfully excepting the Redistributables, which are provided “as is”, without warranty of any kind, mikroElektronika Associates warrants that Software, once updated and properly used, will perform substantially in accordance with the accompanying documentation, and Software media will be free from defects in materials and
workmanship, for a period of ninety (90) days from the date of receipt. Any implied
warranties on Software are limited to ninety (90) days.
mikroElektronika Associates’ and its suppliers’ entire liability and your exclusive
remedy shall be, at mikroElektronika Associates’ option, either (a) return of the price
paid, or (b) repair or replacement of Software that does not meet mikroElektronika
Associates’ Limited Warranty and which is returned to mikroElektronika Associates
with a copy of your receipt. DO NOT RETURN ANY PRODUCT UNTIL YOU HAVE
CALLED MIKROELEKTRONIKA ASSOCIATES FIRST AND OBTAINED A RETURN
AUTHORIZATION NUMBER. This Limited Warranty is void if failure of Software has
resulted from an accident, abuse, or misapplication. Any replacement of Software
will be warranted for the rest of the original warranty period or thirty (30) days,
whichever is longer.
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
MIKROELEKTRONIKA ASSOCIATES AND ITS SUPPLIERS DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESSED OR IMPLIED,
INCLUDED, BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NON-INFRINGEMENT, WITH REGARD TO SOFTWARE, AND THE PROVISION
OF OR FAILURE TO PROVIDE SUPPORT SERVICES.
IN NO EVENT SHALL MIKROELEKTRONIKA ASSOCIATES OR ITS SUPPLIERS
BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF BUSINESS PROFITS AND BUSINESS INFORMATION, BUSINESS
INTERRUPTION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE
USE OF OR INABILITY TO USE SOFTWARE PRODUCT OR THE PROVISION OF
OR
FAILURE
TO
PROVIDE
SUPPORT
SERVICES,
EVEN
IF
MIKROELEKTRONIKA ASSOCIATES HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. IN ANY CASE, MIKROELEKTRONIKA ASSOCIATES’
ENTIRE LIABILITY UNDER ANY PROVISION OF THIS LICENSE AGREEMENT
SHALL BE LIMITED TO THE AMOUNT ACTUALLY PAID BY YOU FOR
SOFTWARE PRODUCT PROVIDED, HOWEVER, IF YOU HAVE ENTERED INTO
A MIKROELEKTRONIKA ASSOCIATES SUPPORT SERVICES AGREEMENT,
MIKROELEKTRONIKA ASSOCIATES’ ENTIRE LIABILITY REGARDING
SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF THAT
AGREEMENT.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
5
CHAPTER 1
mikroC PRO for PIC
Introduction
HIGH RISK ACTIVITIES
Software is not fault-tolerant and is not designed, manufactured or intended for use
or resale as on-line control equipment in hazardous environments requiring fail-safe
performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines, or weapons
systems, in which the failure of Software could lead directly to death, personal injury,
or severe physical or environmental damage (“High Risk Activities”). mikroElektronika Associates and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.
GENERAL PROVISIONS
This statement may only be modified in writing signed by you and an authorised officer of mikroElektronika Associates. If any provision of this statement is found void
or unenforceable, the remainder will remain valid and enforceable according to its
terms. If any remedy provided is determined to have failed for its essential purpose,
all limitations of liability and exclusions of damages set forth in the Limited Warranty shall remain in effect.
This statement gives you specific legal rights; you may have others, which vary, from
country to country. mikroElektronika Associates reserves all rights not specifically
granted in this statement.
mikroElektronika
Visegradska 1A,
11000 Belgrade,
Europe.
Phone: + 381 11 36 28 830
Fax: +381 11 36 28 831
Web: www.mikroe.com
E-mail: [email protected]
6
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 1
mikroC PRO for PIC
Introduction
TECHNICAL SUPPORT
In case you encounter any problem, you are welcome to our support forums at
www.mikroe.com/forum/. Here, you may also find helpful information, hardware tips,
and practical code snippets. Your comments and suggestions on future development of the mikroC PRO for PIC are always appreciated — feel free to drop a note
or two on our Wishlist.
In our Knowledge Base www.mikroe.com/en/kb/ you can find the answers to Frequently Asked Questions and solutions to known problems. If you can not find the
solution to your problem in Knowledge Base then report it to Support Desk
www.mikroe.com/en/support/. In this way, we can record and track down bugs more
efficiently, which is in our mutual interest. We respond to every bug report and question in a suitable manner, ever improving our technical support.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
7
CHAPTER 1
mikroC PRO for PIC
Introduction
HOW TO REGISTER
The latest version of the mikroC PRO for PIC is always available for downloading
from our website. It is a fully functional software libraries, examples, and comprehensive help included.
The only limitation of the free version is that it cannot generate hex output over 2
KB. Although it might sound restrictive, this margin allows you to develop practical,
working applications with no thinking of demo limit. If you intend to develop really
complex projects in the mikroC PRO for PIC, then you should consider the possibility of purchasing the license key.
Who Gets the License Key
Buyers of the mikroC PRO for PIC are entitled to the license key. After you have
completed the payment procedure, you have an option of registering your mikroC
PRO. In this way you can generate hex output without any limitations.
How to Get License Key
After you have completed the payment procedure, start the program. Select Help › How
to Register from the drop-down menu or click the How To Register Icon
. Fill out the
registration form (figure below), select your distributor, and click the Send button.
8
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 1
mikroC PRO for PIC
Introduction
This will start your e-mail client with message ready for sending. Review the information you have entered, and add the comment if you deem it necessary. Please,
do not modify the subject line.
Upon receiving and verifying your request, we will send the license key to the e-mail
address you specified in the form.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
9
CHAPTER 1
mikroC PRO for PIC
Introduction
After Receiving the License Key
The license key comes as a small autoextracting file – just start it anywhere on your
computer in order to activate your copy of compiler and remove the demo limit. You
do not need to restart your computer or install any additional components. Also,
there is no need to run the mikroC PRO for PIC at the time of activation.
Notes:
The license key is valid until you format your hard disk. In case you need to for
mat the hard disk, you should request a new activation key.
Please keep the activation program in a safe place. Every time you upgrade the
compiler you should start this program again in order to reactivate the license.
10
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER
2
mikroC PRO for PIC
Environment
The mikroC PRO for PIC is an user-friendly and intuitive environment.
11
CHAPTER 2
mikroC PRO for PIC
Environment
IDE Overview
The Code Editor features adjustable Syntax Highlighting, Code Folding, Code
Assistant, Parameters Assistant, Auto Correct for common typos and Code Tem
plates (Auto Complete).
The Code Explorer is at your disposal for easier project management.
The Project Manager alows multiple project management
General project settings can be made in the Project Settings window
Library manager enables simple handling libraries being used in a project
The Error Window displays all errors detected during compiling and linking.
The source-level Software Simulator lets you debug executable logic step-bystep by watching the program flow.
The New Project Wizard is a fast, reliable, and easy way to create a project.
Help files are syntax and context sensitive.
Like in any modern Windows application, you may customize the layout of
mikroC PRO for PIC to suit your needs best.
Spell checker underlines identifiers which are unknown to the project. In this way
it helps the programmer to spot potential problems early, much before the proj
ect is compiled.
Spell checker can be disabled by choosing the option in the Preferences dialog
(F12).
12
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
MAIN MENU OPTIONS
Available Main Menu options are:
Related topics: Keyboard shortcuts
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
13
CHAPTER 2
mikroC PRO for PIC
Environment
FILE MENU OPTIONS
The File menu is the main entry point for manipulation with the source files.
File
Description
Open a new editor window.
Open source file for editing or image file for viewing.
Reopen recently used file.
Save changes for active editor.
Save the active source file with the different name or
change the file type.
Close active source file.
Print Preview.
Exit IDE.
Related topics: Keyboard shortcuts, File Toolbar, Managing Source Files
14
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
EDIT MENU OPTIONS
Edit
Description
Undo last change.
Redo last change.
Cut selected text to clipboard.
Copy selected text to clipboard.
Paste text from clipboard.
Delete selected text.
Select all text in active editor.
Find text in active editor.
Find next occurence of text in active editor.
Find previous occurence of text in active editor.
Replace text in active editor.
Find text in current file, in all opened files, or in files
from desired folder.
Goto to the desired line in active editor.
Advanced Code Editor options
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
15
CHAPTER 2
mikroC PRO for PIC
Environment
Advanced »
Description
Comment selected code or put single line comment if there is no selection.
Uncomment selected code or remove single line
comment if there is no selection.
Indent selected code.
Outdent selected code.
Changes selected text case to lowercase.
Changes selected text case to uppercase.
Changes selected text case to titlercase.
Find Text
Dialog box for searching the document for the specified text. The search is performed in the direction specified. If the string is not found a message is displayed.
16
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Replace Text
Dialog box for searching for a text string in file and replacing it with another text string.
Find In Files
Dialog box for searching for a text string in current file, all opened files, or in files on a disk.
The string to search for is specified in the Text to find field. If Search in directories option
is selected, The files to search are specified in the Files mask and Path fields.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
17
CHAPTER 2
mikroC PRO for PIC
Environment
Go To Line
Dialog box that allows the user to specify the line number at which the cursor should
be positioned.
Regular expressions option
By checking this box, you will be able to advance your search, through Regular
expressions.
Related topics: Keyboard shortcuts, Edit Toolbar, Advanced Edit Toolbar
18
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
VIEW MENU OPTIONS
File
Description
Show/Hide toolbars.
Show/Hide debug windows.
Show/Hide Routine List in active editor.
Show/Hide Project Settings window.
Show/Hide Code Explorer window.
Show/Hide Project Manager window.
Show/Hide Library Manager window.
Show/Hide Bookmarks window.
Show/Hide Error Messages window.
Show/Hide Macro Editor window.
Show Window List window.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
19
CHAPTER 2
mikroC PRO for PIC
Environment
TOOLBARS
File Toolbar
File Toolbar is a standard toolbar with following options:
Icon
Description
Opens a new editor window.
Open source file for editing or image file for viewing.
Save changes for active window.
Save changes in all opened windows.
Close current editor.
Close all editors.
Print Preview.
Edit Toolbar
Edit Toolbar is a standard toolbar with following options:
Icon
Description
Undo last change.
Redo last change.
Cut selected text to clipboard.
Copy selected text to clipboard.
Paste text from clipboard.
20
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Advanced Edit Toolbar
Advanced Edit Toolbar comes with following options:
Icon
Description
Comment selected code or put single line comment if there is no selection
Uncomment selected code or remove single line comment if there is
no selection.
Select text from starting delimiter to ending delimiter.
Go to ending delimiter.
Go to line.
Indent selected code lines.
Outdent selected code lines.
Generate HTML code suitable for publishing current source code on
the web.
Find/Replace Toolbar
Find/Replace Toolbar is a standard toolbar with following options:
Icon
Description
Find text in current editor.
Find next occurence.
Find previous occurence.
Replace text.
Find text in files.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
21
CHAPTER 2
mikroC PRO for PIC
Environment
Project Toolbar
Project Toolbar comes with following options:
Icon
Description
New project
Open Project
Save Project
Close current project.
Edit project settings.
Add existing project to project group.
Remove existing project from project group.
Add File To Project
Remove File From Project
Build Toolbar
Build Toolbar comes with the following options:
Icon
Description
Build current project.
Build all opened projects.
Build and program active project.
Start programmer and load current HEX file.
Open assembly code in editor.
Open lisitng file in editor.
View statistics for current project.
22
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Debugger
Debugger Toolbar comes with following options:
Icon
Description
Start Software Simulator or mikroICD (In-Circuit Debugger).
Run/Pause debugger.
Stop debugger.
Step into.
Step over.
Step out.
Run to cursor.
Toggle breakpoint.
Toggle breakpoints.
Clear breakpoints.
View watch window
View stopwatch window
Styles Toolbar
Styles toolbar allows you to easily customize your workspace.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
23
CHAPTER 2
mikroC PRO for PIC
Environment
Tools Toolbar
Tools Toolbar comes with following default options:
Icon
Description
Run USART Terminal
EEPROM
ASCII Chart
Seven segment decoder tool.
Options menu
The Tools toolbar can easily be customized by adding new tools in Options (F12)
window.
Related topics: Keyboard shortcuts, Integrated Tools, Debugger Windows
24
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
PROJECT MENU OPTIONS
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
25
CHAPTER 2
mikroC PRO for PIC
Environment
Project
Description
Build active project.
Build all projects.
Build and program active project.
View Assembly.
Edit search paths.
Clean Project Folder
Add file to project.
Remove file from project.
Import projects from previous versions of mikroC.
Open New Project Wizard
Open existing project.
Save current project.
Edit project settings
Open project group.
Close project group.
Save active project file with the different name.
Open recently used project.
Close active project.
Related topics: Keyboard shortcuts, Project Toolbar, Creating New Project, Project
Manager, Project Settings
26
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
RUN MENU OPTIONS
Run
Description
Start Software Simulator or mikroICD (InCircuit Debugger).
Stop debugger.
Pause Debugger.
Step Into.
Step Over.
Step Out.
Jump to interrupt in current project.
Toggle Breakpoint.
Breakpoints.
Clear Breakpoints.
Show/Hide Watch Window
Show/Hide Stopwatch Window
Toggle between Pascal source and disassembly.
Related topics: Keyboard shortcuts, Debug Toolbar
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
27
CHAPTER 2
mikroC PRO for PIC
Environment
TOOLS MENU OPTIONS
Tools
Description
Run mikroElektronika Programmer
Run USART Terminal
Run EEPROM Editor
Run ASCII Chart
Run 7 Segment Display Converter
Generate HTML code suitable for publishing
source code on the web.
Run Lcd custom character.
Run Glcd bitmap editor.
Run HID Terminal.
Run UDP communication terminal.
Run mikroBootloader.
Open Options window.
Related topics: Keyboard shortcuts, Tools Toolbar
28
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
HELP MENU OPTIONS
Help
Description
Open Help File.
Open Code Migration Document.
Check if new compiler version is available.
Open mikroElektronika Support Forums in
a default browser.
Open mikroElektronika Web Page in a
default browser.
Information on how to register
Open About window.
Related topics: Keyboard shortcuts
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
29
CHAPTER 2
mikroC PRO for PIC
Environment
KEYBOARD SHORTCUTS
Below is a complete list of keyboard shortcuts available in mikroC PRO for PIC IDE.
30
IDE Shortcuts
Ctrl+Shift+S
Save All
F1
Help
Ctrl+V
Paste
Ctrl+N
New Unit
Ctrl+X
Cut
Ctrl+O
Open
Ctrl+Y
Delete entire line
Ctrl+Shift+O Open Project
Ctrl+Z
Undo
Ctrl+Shift+N New Project
Ctrl+Shift+Z
Redo
Advanced Editor Shortcuts
Ctrl+K
Close Project
Ctrl+F4
Close Unit
Ctrl+Space
Code Assistant
Ctr+Shift+E
Edit Project
Ctrl+Shift+Space
Parameters Assistant
Ctrl+F9
Build
Ctrl+D
Find declaration
Shift+F9
Build All
Ctrl+E
Incremental Search
Ctrl+F11
Build And Program
Ctrl+L
Routine List
Shift+F4
View Breakpoints
Ctrl+G
Goto line
Ctrl+Shift+F5 Clear Breakpoints
Ctrl+J
Insert Code Template
F11
Ctrl+Shift+.
Comment Code
Ctrl+Shift+F1 Project Manager
Ctrl+Shift+,
Uncomment Code
F12
Options
Ctrl+number
Goto bookmark
Alt+X
Close mikroC PRO for PIC
Ctrl+Shift+number Set bookmark
Start mE Programmer
Basic Editor Shortcuts
Ctrl+Shift+I
Indent selection
F3
Find, Find Next
Ctrl+Shift+U
Unindent selection
Shift+F3
Find Previous
TAB
Indent selection
Alt+F3
Grep Search, Find in Files
Shift+TAB
Unindent selection
Ctrl+A
Select All
Alt+Select
Select columns
Ctrl+C
Copy
Ctrl+Alt+Select
Select columns
Ctrl+F
Find
Ctrl+R
Replace
Ctrl+P
Print
Ctrl+Alt+U
Ctrl+S
Save unit
Ctrl+Alt+T
Ctrl+Alt+L
Convert selection to
lowercase
Convert selection to
uppercase
Convert to Titlecase
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
mikroICD Debugger and Software
Simulator Shortcuts
F2
Jump to Interrupt
F4
Run to Cursor
F5
Toggle Breakpoint
F6
Run/Pause Debugger
F7
Step into
F8
Step over
F9
Debug
Ctrl+F2
Stop Debugger
Ctrl+F5
Add to Watch List
Ctrl+F8
Step out
Alt+D
Dissasembly View
Shift+F5
Open Watch Window
Ctrl+Shift+A
Show Advanced Breakpoints
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
31
CHAPTER 2
mikroC PRO for PIC
Environment
IDE OVERVIEW
The mikroC PRO for PIC is an user-friendly and intuitive environment:
The Code Editor features adjustable Syntax Highlighting, Code Folding, Code
Assistant, Parameters Assistant, Auto Correct for common typos and Code Tem
plates (Auto Complete).
The Code Explorer is at your disposal for easier project management.
The Project Manager alows multiple project management
General project settings can be made in the Project Settings window
Library manager enables simple handling libraries being used in a project
The Error Window displays all errors detected during compiling and linking.
The source-level Software Simulator lets you debug executable logic step-bystep by watching the program flow.
The New Project Wizard is a fast, reliable, and easy way to create a project.
Help files are syntax and context sensitive.
Like in any modern Windows application, you may customize the layout of
mikroC PRO for PIC to suit your needs best.
Spell checker underlines identifiers which are unknown to the project. In this way
it helps the programmer to spot potential problems early, much before the project is compiled. Spell checker can be disabled by choosing the option in the
Preferences dialog (F12).
32
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
CUSTOMIZING IDE LAYOUT
Docking Windows
You can increase the viewing and editing space for code, depending on how you
arrange the windows in the IDE.
Step 1: Click the window you want to dock, to give it focus.
Step 2: Drag the tool window from its current location. A guide diamond appears.
The four arrows of the diamond point towards the four edges of the IDE.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
33
CHAPTER 2
mikroC PRO for PIC
Environment
Step 3: Move the pointer over the corresponding portion of the guide diamond. An
outline of the window appears in the designated area.
Step 4: To dock the window in the position indicated, release the mouse button.
Tip: To move a dockable window without snapping it into place, press CTRL while
dragging it.
Saving Layout
Once you have a window layout that you like, you can save the layout by typing the
name for the layout and pressing the Save Layout Icon
.
To set the layout select the desired layout from the layout drop-down list and click
the Set Layout Icon
.
To remove the layout from the drop-down list, select the desired layout from the list
and click the Delete Layout Icon
34
.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Auto Hide
Auto Hide enables you to see more of your code at one time by minimizing tool windows along the edges of the IDE when not in use.
Click the window you want to keep visible to give it focus.
Click the Pushpin Icon
on the title bar of the window.
.
When an auto-hidden window loses focus, it automatically slides back to its tab on
the edge of the IDE. While a window is auto-hidden, its name and icon are visible
on a tab at the edge of the IDE. To display an auto-hidden window, move your pointer over the tab. The window slides back into view and is ready for use.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
35
CHAPTER 2
mikroC PRO for PIC
Environment
ADVANCED CODE EDITOR
The Code Editor is advanced text editor fashioned to satisfy needs of professionals.
General code editing is the same as working with any standard text-editor, including
familiar Copy, Paste and Undo actions, common for Windows environment.
Advanced Editor Features
Adjustable Syntax Highlighting
Code Assistant
Code Folding
Parameter Assistant
Code Templates (Auto Complete)
Auto Correct for common typos
Spell Checker
Bookmarks and Goto Line
Comment / Uncomment
You can configure the Syntax Highlighting, Code Templates and Auto Correct from
the Editor Settings dialog. To access the Settings, click Tools › Options from the
drop-down menu, click the Show Options Icon
or press F12 key.
36
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Code Assistant
If you type the first few letters of a word and then press Ctrl+Space, all valid identifiers matching the letters you have typed will be prompted in a floating panel (see
the image below). Now you can keep typing to narrow the choice, or you can select
one from the list using the keyboard arrows and Enter.
Code Folding
Code folding is IDE feature which allows users to selectively hide and display sections of a source file. In this way it is easier to manage large regions of code within
one window, while still viewing only those subsections of the code that are relevant
during a particular editing session.
While typing, the code folding symbol ( - and + ) appear automatically. Use the folding symbols to hide/unhide the code subsections.
If you place a mouse cursor over the tooltip box, the collapsed text will be shown in
a tooltip style box.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
37
CHAPTER 2
mikroC PRO for PIC
Environment
Parameter Assistant
The Parameter Assistant will be automatically invoked when you open parenthesis
“(” or press Shift+Ctrl+Space. If the name of a valid function precedes the parenthesis, then the expected parameters will be displayed in a floating panel. As you
type the actual parameter, the next expected parameter will become bold.
Code Templates (Auto Complete)
You can insert the Code Template by typing the name of the template (for instance,
whiles), then press Ctrl+J and the Code Editor will automatically generate a code.
You can add your own templates to the list. Select Tools › Options from the drop-down
menu, or click the Show Options Icon
and then select the Auto Complete Tab. Here
you can enter the appropriate keyword, description and code of your template.
Autocomplete macros can retreive system and project information:
-
38
%DATE% - current system date
%TIME% - current system time
%DEVICE% - device(MCU) name as specified in project settings
%DEVICE_CLOCK% - clock as specified in project settings
%COMPILER% - current compiler version
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
These macros can be used in template code, see template ptemplate provided with
mikroC PRO for PIC installation.
Auto Correct
The Auto Correct feature corrects common typing mistakes. To access the list of recognized typos, select Tools › Options from the drop-down menu, or click the Show
Options Icon
and then select the Auto Correct Tab. You can also add your own
preferences to the list.
Also, the Code Editor has a feature to comment or uncomment the selected code by simple click of a mouse, using the Comment Icon
and Uncomment Icon
from
the Code Toolbar.
Spell Checker
The Spell Checker underlines unknown objects in the code, so they can be easily
noticed and corrected before compiling your project.
Select Tools › Options from the drop-down menu, or click the Show Options Icon
and then select the Spell Checker Tab.
Bookmarks
Bookmarks make navigation through a large code easier. To set a bookmark, use
Ctrl+Shift+number. To jump to a bookmark, use Ctrl+number.
Goto Line
The Goto Line option makes navigation through a large code easier. Use the shortcut Ctrl+G to activate this option.
Comment / Uncomment
Also, the Code Editor has a feature to comment or uncomment the selected
code by simple click of a mouse, using the Comment Icon
ment Icon
and Uncom-
from the Code Toolbar.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
39
CHAPTER 2
mikroC PRO for PIC
Environment
CODE EXPLORER
The Code Explorer gives clear view of each item declared inside the source code.
You can jump to a declaration of any item by right clicking it. Also, besides the list of
defined and declared objects, code explorer displays message about first error and
it's location in code.
Following options are available in the Code Explorer:
Icon
Description
Expand/Collapse all nodes in tree.
Locate declaration in code.
40
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
ROUTINE LIST
Routine list diplays list of routines, and enables filtering routines by name. Routine
list window can be accessed by pressing Ctrl+L.
You can jump to a desired routine by double clicking on it.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
41
CHAPTER 2
mikroC PRO for PIC
Environment
PROJECT MANAGER
Project Manager is IDE feature which allows users to manage multiple projects.
Several projects which together make project group may be open at the same time.
Only one of them may be active at the moment.
Setting project in active mode is performed by double click on the desired project
in the Project Manager.
Following options are available in the Project Manager:
42
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Icon
Description
Save project Group.
Open project group.
Close the active project.
Close project group.
Add project to the project group.
Remove project from the project group.
Add file to the active project.
Remove selected file from the project.
Build the active project.
Run mikroElektronika's Flash programmer.
For details about adding and removing files from project see Add/Remove Files from
Project.
Related topics: Project Settings, Project Menu Options, File Menu Options, Project
Toolbar, Build Toolbar, Add/Remove Files from Project
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
43
CHAPTER 2
mikroC PRO for PIC
Environment
PROJECT SETTINGS WINDOW
Following options are available in the Project Settings Window:
Device - select the appropriate device from the device drop-down list.
Oscillator - enter the oscillator frequency value.
Build/Debugger Type - choose debugger type.
Related topics: Edit Project, Customizing Projects
44
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
LIBRARY MANAGER
Library Manager enables simple handling libraries being used in a project. Library
Manager window lists all libraries (extencion .mcl) which are instantly stored in the
compiler Uses folder. The desirable library is added to the project by selecting check
box next to the library name.
In order to have all library functions accessible, simply press the button Check All
and all libraries will be selected. In case none library is needed in a project,
press the button Clear All
and all libraries will be cleared from the project.
Only the selected libraries will be linked.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
45
CHAPTER 2
mikroC PRO for PIC
Environment
Icon
Description
Refresh Library by scanning files in "Uses" folder. Useful when new
libraries are added by copying files to "Uses" folder.
Rebuild all available libraries. Useful when library sources are available and
need refreshing.
Include all available libraries in current project.
No libraries from the list will be included in current project.
Restore library to the state just before last project saving.
Related topics: mikroC PRO for PIC Libraries, Creating New Library
46
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
ERROR WINDOW
In case that errors were encountered during compiling, the compiler will report them
and won’t generate a hex file. The Error Window will be prompted at the bottom of
the main window by default.
The Error Window is located under message tab, and displays location and type of
errors the compiler has encountered. The compiler also reports warnings, but these
do not affect the output; only errors can interefere with the generation of hex.
Double click the message line in the Error Window to highlight the line where the
error was encountered.
Related topics: Error Messages
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
47
CHAPTER 2
mikroC PRO for PIC
Environment
STATISTICS
After successful compilation, you can review statistics of your code. Click the Statistics Icon
.
Memory Usage Windows
Provides overview of RAM and ROM usage in the various forms.
RAM Memory Usage
Displays RAM memory usage in a pie-like form.
48
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Used RAM Locations
Displays used RAM memory locations and their names.
SFR Locations
Displays list of used SFR locations.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
49
CHAPTER 2
mikroC PRO for PIC
Environment
ROM Memory Usage
Displays ROM memory space usage in a pie-like form.
ROM Memory Constants
Displays ROM memory constants and their addresses.
50
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Function Sorted by Name
Sorts and displays functions by their addresses, symbolic names, and unique
assembler names.
Functions Sorted by Size
Sorts and displays functions by their size, in the ascending order.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
51
CHAPTER 2
mikroC PRO for PIC
Environment
Functions Sorted by Addresses
Sorts and displays functions by their addresses, in the ascending order.
Functions Sorted by Name Chart
Sorts and displays functions by their names in a chart-like form.
52
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Functions Sorted by Size Chart
Sorts and displays functions by their sizes in a chart-like form.
Functions sorted by Address Chart
Sorts and displays functions by their addresses in a chart-like form.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
53
CHAPTER 2
mikroC PRO for PIC
Environment
Function Tree
Displays Function Tree with the relevant data for each function.
Memory Summary
Displays summary of RAM and ROM memory in a pie-like form.
54
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
MACRO EDITOR
A macro is a series of keystrokes that have been 'recorded' in the order performed.
A macro allows you to 'record' a series of keystrokes and then 'playback', or repeat,
the recorded keystrokes.
The Macro offers the following commands:
Icon
Description
Starts 'recording' keystrokes for later playback.
Stops capturing keystrokesthat was started when the Start Recordig command was selected.
Allows a macro that has been recorded to be replayed.
New macro.
Delete macro.
Related topics: Advanced Code Editor, Code Templates
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
55
CHAPTER 2
mikroC PRO for PIC
Environment
INTEGRATED TOOLS
USART Terminal
The mikroC PRO for PIC includes the USART communication terminal for RS232
communication. You can launch it from the drop-down menu Tools › USART Terminal or by clicking the USART Terminal Icon
56
from Tools toolbar.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
EEPROM Editor
The EEPROM Editor is used for manipulating MCU's EEPROM memory. You can
launch it from the drop-down menu Tools › EEPROM Editor. When Use this
EEPROM definition is checked compiler will generate Intel hex file
project_name.ihex that contains data from EEPROM editor.
When you run mikroElektronika programmer software from mikroC PRO for PIC IDE
- project_name.hex file will be loaded automatically while ihex file must be loaded
manually.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
57
CHAPTER 2
mikroC PRO for PIC
Environment
ASCII Chart
The ASCII Chart is a handy tool, particularly useful when working with Lcd display.
You can launch it from the drop-down menu Tools › ASCII chart or by clicking the
View ASCII Chart Icon
58
from Tools toolbar.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Seven Segment Converter
The Seven Segment Convertor is a convenient visual panel which returns
decimal/hex value for any viable combination you would like to display on 7seg.
Click on the parts of 7 segment image to get the requested value in the edit boxes.
You can launch it from the drop-down menu Tools › 7 Segment Convertor or by
clicking the Seven Segment Convertor Icon
from Tools toolbar.
LCD Custom Character
mikroC PRO for PIC includes the Lcd Custom Character. Output is mikroC PRO for
PIC compatible code. You can launch it from the drop-down menu Tools › Lcd Custom Character.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
59
CHAPTER 2
mikroC PRO for PIC
Environment
Graphic LCD Bitmap Editor
The mikroC PRO for PIC includes the Graphic Lcd Bitmap Editor. Output is the
mikroC PRO for PIC compatible code. You can launch it from the drop-down menu
Tools › Glcd Bitmap Editor.
60
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
HID Terminal
The mikroC PRO for PIC includes the HID communication terminal for USB communication. You can launch it from the drop-down menu Tools › HID Terminal.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
61
CHAPTER 2
mikroC PRO for PIC
Environment
UDP Terminal
The mikroC PRO for PIC includes the UDP Terminal. You can launch it from the
drop-down menu Tools › UDP Terminal.
62
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
mikroBootloader
(From Microchip’s document AN732) The PIC16F87X family of microcontrollers has
the ability to write to their own program memory. This feature allows a small bootloader program to receive and write new firmware into memory. In its most simple
form, the bootloader starts the user code running, unless it finds that new firmware
should be downloaded. If there is new firmware to be downloaded, it gets the data
and writes it into program memory. There are many variations and additional features that can be added to improve reliability and simplify the use of the bootloader.
Note: mikroBootloader can be used only with PIC MCUs that support flash write.
How to use mikroBootloader?
1. Load the PIC with the appropriate hex file using the conventional programming
techniques (e.g. for PIC16F877A use p16f877a.hex).
2. Start mikroBootloader from the drop-down menu Tools › Bootoader.
3. Click on Setup Port and select the COM port that will be used. Make sure that
BAUD is set to 9600 Kpbs.
4. Click on Open File and select the HEX file you would like to upload.
5. Since the bootcode in the PIC only gives the computer 4-5 sec to connect, you
should reset the PIC and then click on the Connect button within 4-5 seconds.
6. The last line in then history window should now read “Connected”.
7. To start the upload, just click on the Start Bootloader button.
8. Your program will written to the PIC flash. Bootloader will report an errors that
may occur.
9. Reset your PIC and start to execute.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
63
CHAPTER 2
mikroC PRO for PIC
Environment
Features
The boot code gives the computer 5 seconds to get connected to it. If not, it starts
running the existing user code. If there is a new user code to be downloaded, the
boot code receives and writes the data into program memory.
The more common features a bootloader may have are listed below:
Code at the Reset location.
Code elsewhere in a small area of memory.
Checks to see if the user wants new user code to be loaded.
Starts execution of the user code if no new user code is to be loaded.
Receives new user code via a communication channel if code is to be loaded.
Programs the new user code into memory.
Integrating User Code and Boot Code
The boot code almost always uses the Reset location and some additional program
memory. It is a simple piece of code that does not need to use interrupts; therefore,
the user code can use the normal interrupt vector at 0x0004. The boot code must
avoid using the interrupt vector, so it should have a program branch in the address
range 0x0000 to 0x0003. The boot code must be programmed into memory using
conventional programming techniques, and the configuration bits must be programmed at this time. The boot code is unable to access the configuration bits,
since they are not mapped into the program memory space.
64
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
OPTIONS
Options menu consists of three tabs: Code Editor, Tools and Output settings.
Code editor
The Code Editor is advanced text editor fashioned to satisfy needs of professionals.
Tools
The mikroC PRO for PIC includes the Tools tab, which enables the use of shortcuts
to external programs, like Calculator or Notepad.
You can set up to 10 different shortcuts, by editing Tool0 - Tool9.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
65
CHAPTER 2
mikroC PRO for PIC
Environment
Output settings
By modifying Output Settings, user can configure the content of the output files.
You can enable or disable, for example, generation of ASM and List file.
Also, user can choose optimization level, and compiler specific settings, which
include case sensitivity, dynamic link for string literals setting (described in mikroC
PRO for PIC specifics).
Build all files as library enables user to use compiled library (*.mcl) on any PIC
MCU (when this box is checked), or for a selected PIC MCU (when this box is left
unchecked).
For more information on creating new libraries, see Creating New Library.
66
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
REGULAR EXPRESSIONS
Introduction
Regular Expressions are a widely-used method of specifying patterns of text to
search for. Special metacharacters allow you to specify, for instance, that a particular string you are looking for, occurs at the beginning, or end of a line, or contains n
recurrences of a certain character.
Simple matches
Any single character matches itself, unless it is a metacharacter with a special
meaning described below. A series of characters matches that series of characters
in the target string, so the pattern "short" would match "short" in the target string.
You can cause characters that normally function as metacharacters or escape
sequences to be interpreted by preceding them with a backslash "\".
For instance, metacharacter "^" matches beginning of string, but "\^" matches
character "^", and "\\" matches "\", etc.
Examples:
unsigned matches string 'unsigned'
\^unsigned matches string '^unsigned'
Escape sequences
Characters may be specified using a escape sequences: "\n" matches a newline,
"\t" a tab, etc. More generally, \xnn, where nn is a string of hexadecimal digits,
matches the character whose ASCII value is nn.
If you need wide (Unicode) character code, you can use '\x{nnnn}', where 'nnnn'
- one or more hexadecimal digits.
\xnn - char with hex code nn
\x{nnnn)- char with hex code nnnn (one byte for plain text and two bytes for Unicode)
\t - tab (HT/TAB), same as \x09
\n - newline (NL), same as \x0a
\r - car.return (CR), same as \x0d
\f - form feed (FF), same as \x0c
\a - alarm (bell) (BEL), same as \x07
\e - escape (ESC) , same as \x1b
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
67
CHAPTER 2
mikroC PRO for PIC
Environment
Examples:
unsigned\x20int matches 'unsigned int' (note space in the middle)
\tunsigned matches 'unsigned' (predecessed by tab)
Character classes
You can specify a character class, by enclosing a list of characters in [], which will
match any of the characters from the list. If the first character after the "[" is "^", the
class matches any character not in the list.
Examples:
count[aeiou]r finds strings 'countar', 'counter', etc. but not
'countbr', 'countcr', etc.
count[^aeiou]r finds strings 'countbr', 'countcr', etc. but not
'countar', 'counter', etc.
Within a list, the "-" character is used to specify a range, so that a-z represents all
characters between "a" and "z", inclusive.
If you want "-" itself to be a member of a class, put it at the start or end of the list, or
precede it with a backslash.
If you want ']', you may place it at the start of list or precede it with a backslash.
Examples:
[-az] matches 'a', 'z' and '-'
[az-] matches 'a', 'z' and '-'
[a\-z] matches 'a', 'z' and '-'
[a-z] matches all twenty six small characters from 'a' to 'z'
[\n-\x0D] matches any of #10,#11,#12,#13.
[\d-t] matches any digit, '-' or 't'.
[]-a] matches any char from ']'..'a'.
Metacharacters
Metacharacters are special characters which are the essence of regular expressions. There are different types of metacharacters, described below.
68
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Metacharacters - Line separators
^ - start of line
$ - end of line
\A - start of text
\Z - end of text
. - any character in line
Examples:
^PORTA - matches string ' PORTA ' only if it's at the beginning of line
PORTA$ - matches string ' PORTA ' only if it's at the end of line
^PORTA$ - matches string ' PORTA ' only if it's the only string in line
PORT.r - matches strings like 'PORTA', 'PORTB', 'PORT1' and so on
The "^" metacharacter by default is only guaranteed to match beginning of the input
string/text, and the "$" metacharacter only at the end. Embedded line separators
will not be matched by ^" or "$".
You may, however, wish to treat a string as a multi-line buffer, such that the "^" will
match after any line separator within the string, and "$" will match before any line
separator.
Regular expressions works with line separators as recommended at http://www.unicode.org/unicode/reports/tr18/
Metacharacters - Predefined classes
\w - an alphanumeric character (including "_")
\W - a nonalphanumeric character
\d - a numeric character
\D - a non-numeric character
\s - any space (same as [\t\n\r\f])
\S - a non space
You may use \w, \d and \s within custom character classes.
Example:
routi\de - matches strings like 'routi1e', 'routi6e' and so on, but not
'routine', 'routime' and so on.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
69
CHAPTER 2
mikroC PRO for PIC
Environment
Metacharacters - Word boundaries
A word boundary ("\b") is a spot between two characters that has an alphanumeric
character ("\w") on one side, and a nonalphanumeric character ("\W") on the other
side (in either order), counting the imaginary characters off the beginning and end
of the string as matching a "\W".
\b - match a word boundary)
\B - match a non-(word boundary)
Metacharacters - Iterators
Any item of a regular expression may be followed by another type of metacharacters - iterators. Using this metacharacters,you can specify number of occurences of
previous character, metacharacter or subexpression.
* - zero or more ("greedy"), similar to {0,}
+ - one or more ("greedy"), similar to {1,}
? - zero or one ("greedy"), similar to {0,1}
{n} - exactly n times ("greedy")
{n,} - at least n times ("greedy")
{n,m} - at least n but not more than m times ("greedy")
*? - zero or more ("non-greedy"), similar to {0,}?
+? - one or more ("non-greedy"), similar to {1,}?
?? - zero or one ("non-greedy"), similar to {0,1}?
{n}? - exactly n times ("non-greedy")
{n,}? - at least n times ("non-greedy")
{n,m}? - at least n but not more than m times ("non-greedy")
So, digits in curly brackets of the form, {n,m}, specify the minimum number of times
to match the item n and the maximum m. The form {n} is equivalent to {n,n} and
matches exactly n times. The form {n,} matches n or more times. There is no limit
to the size of n or m, but large numbers will chew up more memory and slow down
execution.
So, digits in curly brackets of the form, {n,m}, specify the minimum number of times
to match the item n and the maximum m. The form {n} is equivalent to {n,n} and
matches exactly n times. The form {n,} matches n or more times. There is no limit
to the size of n or m, but large numbers will chew up more memory and slow down
execution.
If a curly bracket occurs in any other context, it is treated as a regular character.
70
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Examples:
count.*r ß- matches strings like 'counter', 'countelkjdflkj9r' and
'countr'
count.+r - matches strings like 'counter', 'countelkjdflkj9r' but not
'countr'
count.?r - matches strings like 'counter', 'countar' and 'countr' but not
'countelkj9r'
counte{2}r - matches string 'counteer'
counte{2,}r - matches strings like 'counteer', 'counteeer', 'counteeer' etc.
counte{2,3}r - matches strings like 'counteer', or 'counteeer' but not
'counteeeer'
A little explanation about "greediness". "Greedy" takes as many as possible, "nongreedy" takes as few as possible.
For example, 'b+' and 'b*' applied to string 'abbbbc' return 'bbbb', 'b+?' returns 'b',
'b*?' returns empty string, 'b{2,3}?' returns 'bb', 'b{2,3}' returns 'bbb'.
Metacharacters - Alternatives
You can specify a series of alternatives for a pattern using "|" to separate them,
so that bit|bat|bot will match any of "bit", "bat", or "bot" in the target string
as would "b(i|a|o)t)". The first alternative includes everything from the last pattern delimiter ("(", "[", or the beginning of the pattern) up to the first "|", and
the last alternative contains everything from the last "|" to the next pattern delimiter. For this reason, it's common practice to include alternatives in parentheses, to
minimize confusion about where they start and end.
Alternatives are tried from left to right, so the first alternative found for which the
entire expression matches, is the one that is chosen. This means that alternatives
are not necessarily greedy. For example: when matching rou|rout against "routine", only the "rou" part will match, as that is the first alternative tried, and it
successfuly matches the target string (this might not seem important, but it is important when you are capturing matched text using parentheses). Also remember that
"|" is interpreted as a literal within square brackets, so if you write [bit|bat|bot],
you're really only matching [biao|].
Examples:
rou(tine|te) - matches strings 'routine' or 'route'.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
71
CHAPTER 2
mikroC PRO for PIC
Environment
Metacharacters - Subexpressions
The bracketing construct ( ... ) may also be used for define regular subexpressions. Subexpressions are numbered based on the left to right order of their opening parenthesis. First subexpression has number '1'.
Examples:
(int){8,10} matches strings which contain 8, 9 or 10 instances of the 'int'
routi([0-9]|a+)e matches 'routi0e', 'routi1e' , 'routine', 'routinne',
'routinnne' etc.
Metacharacters - Backreferences
Metacharacters \1 through \9 are interpreted as backreferences. \ matches previously matched subexpression #.
Examples:
(.)\1+ matches 'aaaa' and 'cc'.
(.+)\1+ matches 'abab' and '123123'
(['"]?)(\d+)\1 matches "13" (in double quotes), or '4' (in single quotes)
or 77 (without quotes) etc.
72
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
mikroC PRO for PIC COMMAND LINE OPTIONS
Usage: mikroCPIC1618.exe [-<opts> [-<opts>]] [<infile> [-<opts>]] [<opts>]] Infile can be of *.c, *.mcl and *.pld type.
The following parameters and some more (see manual) are valid:
- P: MCU for which compilation will be done.
- FO: Set oscillator [in MHz].
- SP: Add directory to the search path list.
- IF: Add directory to the #include search list.
- N: Output files generated to file path specified by filename.
- B: Save compiled binary files (*.mcl) to 'directory'.
- O: Miscellaneous output options.
- DBG: Generate debug info.
- L: Check and rebuild new libraries.
- D: Build all files as libraries.
- Y: Dynamic link for string literals.
- C: Turn on case sensitivity.
- UCD: ICD build type.
Example:
mikroCPIC1618.exe -MSF -DBG -p16F887 -ES -C -O11111114 -fo8 N"C:\Lcd\Lcd.mcppi" -SP"C:\Program Files\Mikroelektronika\mikroC PRO
for PIC\Defs\" -SP"C:\Program Files\Mikroelektronika\mikroC PRO for
PIC\Uses\P16\"
-SP"C:\Lcd\"
"Lcd.c"
"__Lib_Math.mcl"
"__Lib_MathDouble.mcl"
"__Lib_System.mcl"
"__Lib_Delays.mcl"
"__Lib_LcdConsts.mcl" "__Lib_Lcd.mcl"
Parameters used in the example:
- MSF: Short Message Format; used for internal purposes by IDE.
- DBG: Generate debug info.
- p16F887: MCU 16F887 selected.
- C: Turn on case sensitivity.
- O11111114: Miscellaneous output options.
- fo10: Set oscillator frequency [in MHz].
- N"C:\Lcd\Lcd.mcppi" -SP"C:\Program Files\Mikroelektronika\mikroC PRO
for PIC\defs\": Output files generated to file path specified by filename.
- -SP"C:\Program Files\Mikroelektronika\mikroC PRO for PIC\
defs\": Add directory to the search path list.
- SP"C:\Program Files\Mikroelektronika\mikroC PRO for PIC \uses\":
Add directory to the search path list.
- -SP"C:\Lcd\": Add directory to the search path list.
- "Lcd.c" "__Lib_Math.mcl" "__Lib_MathDouble.mcl"
"__Lib_System.mcl" "__Lib_Delays.mcl" "__Lib_LcdConsts.mcl"
"__Lib_Lcd.mcl": Specify input files.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
73
CHAPTER 2
mikroC PRO for PIC
Environment
PROJECTS
The mikroC PRO for PIC organizes applications into projects, consisting of a single
project file (extension .mcppi) and one or more source files (extension ). mikroC
PRO for PIC IDE allows you to manage multiple projects (see Project Manager).
Source files can be compiled only if they are part of a project.
The project file contains the following information:
-
project name and optional description,
target device,
device flags (config word),
device clock,
list of the project source files with paths,
header files (*.h),
binary files (*.mcl),
image files,
other files.
Note that the project does not include files in the same way as preprocessor does,
see Add/Remove Files from Project.
New Project
The easiest way to create a project is by means of the New Project Wizard, dropdown menu Project › New Project or by clicking the New Project Icon
from Project Toolbar.
74
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
New Project Wizard Steps
Start creating your New project, by clicking Next button:
Step One - Select the device from the device drop-down list.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
75
CHAPTER 2
mikroC PRO for PIC
Environment
Step Two - Enter the oscillator frequency value.
Step Three - Specify the location where your project will be saved.
76
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Step Four - Add project file to the project if they are avaiable at this point. You can
always add project files later using Project Manager.
Step Five - Click Finish button to create your New Project.
Related topics: Project Manager, Project Settings
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
77
CHAPTER 2
mikroC PRO for PIC
Environment
PROJECTS
The mikroC PRO for PIC organizes applications into projects, consisting of a single
project file (extension .mcppi) and one or more source files (extension). mikroC
PRO for PIC IDE allows you to manage multiple projects (see Project Manager).
Source files can be compiled only if they are part of a project.
The project file contains the following information:
-
project name and optional description,
target device,
device flags (config word),
device clock,
list of the project source files with paths,
header files (*.h),
binary files (*.mcl),
image files,
other files.
Note that the project does not include files in the same way as preprocessor does,
see Add/Remove Files from Project.
New Project
The easiest way to create a project is by means of the New Project Wizard, dropdown menu Project › New Project or by clicking the New Project Icon
from
Project Toolbar.
78
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
New Project Wizard Steps
Start creating your New project, by clicking Next button:
Step One - Select the device from the device drop-down list.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
79
CHAPTER 2
mikroC PRO for PIC
Environment
Step Two - Enter the oscillator frequency value.
Step Three - Specify the location where your project will be saved.
80
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Step Four - Add project file to the project if they are avaiable at this point. You can
always add project files later using Project Manager.
Step Five - Click Finish button to create your New Project:
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
81
CHAPTER 2
mikroC PRO for PIC
Environment
CUSTOMIZING PROJECTS
Edit Project
You can change basic project settings in the Project Settings window. You can
change chip, and oscillator frequency. Any change in the Project Setting Window
affects currently active project only, so in case more than one project is open, you
have to ensure that exactly the desired project is set as active one in the Project
Manager. Also, you can change configuration bits of the selected chip in the Edit
Project window.
Managing Project Group
mikroC PRO for PIC IDE provides covenient option which enables several projects
to be open simultaneously. If you have several projects being connected in some
way, you can create a project group.
The project group may be saved by clicking the Save Project Group Icon
from
the Project Manager window. The project group may be reopend by clicking the
Open Project Group Icon
. All relevant data about the project group is stored in
the project group file (extension .mpgroup)
Add/Remove Files from Project
The project can contain the following file types:
-
source files
.h header files
.mcl binary files
pld project level defines files
image files
.hex, .asm and .lst files, see output files. These files can not be added or
removed from project.
- other files
82
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
The list of relevant source files is stored in the project file (extension .mcppi).
To add source file to the project, click the Add File to Project Icon
. Each added
source file must be self-contained, i.e. it must have all necessary definitions after
preprocessing.
To remove file(s) from the project, click the Remove File from Project Icon
.
Project Level Defines:
Project Level Defines (.pld) files can also be added to project. Project level define
files enable you to have defines that are visible in all source files in the project. A file
must contain one definition per line in the following form:
<symbol>[=[<value>]]
<symbol (a,b)>[=[<value>]]
Define a macro named symbol. To specify a value, use =<value>. If =<value> is
omitted, 1 is assumed. Do not enter white-space characters immediately before the
"=". If a white-space character is entered immediately after the "=", the macro is
defined as zero token. This option can be specified repeatedly. Each appearance of
symbol will be replaced by the value before compilation.
There are two predefined project level defines. See predefined project level defines
Note: For inclusion of the header files (extension .h), use the preprocessor directive #include. See File Inclusion for more information.
Related topics: Project Manager, Project Settings, Edit Project
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
83
CHAPTER 2
mikroC PRO for PIC
Environment
SOURCE FILES
Source files containing C code should have the extension . The list of source files
relevant to the application is stored in project file with extension .mcppi, along with
other project information. You can compile source files only if they are part of the
project.
Use the preprocessor directive #include to include header files with the extension
.h. Do not rely on the preprocessor to include source files other than headers —
see Add/Remove Files from Project for more information.
Managing Source Files
Creating new source file
To create a new source file, do the following:
1. Select File › New Unit from the drop-down menu, or press Ctrl+N, or click the
New File Icon
from the File Toolbar.
2. A new tab will be opened. This is a new source file. Select File › Save from the
drop-down menu, or press Ctrl+S, or click the Save File Icon
from the File
Toolbar and name it as you want.
If you use the New Project Wizard, an empty source file, named after the project with
extension, will be created automatically. The mikroC PRO for PIC does not require you
to have a source file named the same as the project, it’s just a matter of convenience.
Opening an existing file
1. Select File › Open from the drop-down menu, or press Ctrl+O, or click the Open
File Icon
from the File Toolbar. In Open Dialog browse to the location of the
file that you want to open, select it and click the Open button.
2. The selected file is displayed in its own tab. If the selected file is already open, its
current Editor tab will become active.
Printing an open file
1. Make sure that the window containing the file that you want to print is active.
2. Select File › Print from the drop-down menu, or press Ctrl+P.
3. In the Print Preview Window, set a desired layout of the document and click the
OK button. The file will be printed on the selected printer.
84
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Saving file
1. Make sure that the window containing the file that you want to save is active.
2. Select File › Save from the drop-down menu, or press Ctrl+S, or click the Save
File Icon
from the File Toolbar.
Saving file under a different name
1. Make sure that the window containing the file that you want to save is active.
2. Select File › Save As from the drop-down menu. The New File Name dialog will
be displayed.
3. In the dialog, browse to the folder where you want to save the file.
4. In the File Name field, modify the name of the file you want to save.
5. Click the Save button.
Closing file
1. Make sure that the tab containing the file that you want to close is the active tab.
2. Select File › Close from the drop-down menu, or right click the tab of the file that
you want to close and select Close option from the context menu.
3. If the file has been changed since it was last saved, you will be prompted to save
your changes.
Related topics:File Menu, File Toolbar, Project Manager, Project Settings,
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
85
CHAPTER 2
mikroC PRO for PIC
Environment
CLEAN PROJECT FOLDER
This menu gives you option to choose which files from your current project you want
to delete.
Files marked in bold can be easily recreated by building a project. Other files should
be marked for deletion only with a great care, because IDE cannot recover them.
Related topics: Customizing Projects
86
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
COMPILATION
When you have created the project and written the source code, it's time to compile
it. Select Project › Build from the drop-down menu, or click the Build Icon
from
the Project Toolbar. If more more than one project is open you can compile all open
projects by selecting Project › Build All from the drop-down menu, or click the Build
All Icon
from the Project Toolbar.
Progress bar will appear to inform you about the status of compiling. If there are
some errors, you will be notified in the Error Window. If no errors are encountered,
the mikroC PRO for PIC will generate output files.
Output Files
Upon successful compilation, the mikroC PRO for PIC will generate output files in
the project folder (folder which contains the project file .mcppi). Output files are
summarized in the table below:
Format
Description
File Type
Intel HEX
Intel style hex records. Use this file to program
PIC MCU.
.hex
Binary
mikro Compiled Library. Binary distribution of
application that can be included in other projects.
.mcl
List File
Overview of PIC memory allotment: instruction
addresses, registers, routines and labels.
.lst
Assembler File
Human readable assembly with symbolic names,
extracted from the List File.
.asm
Assembly View
After compiling the program in the mikroC PRO for PIC, you can click the View
Assembly icon
or select Project › View Assembly from the drop-down menu
to review the generated assembly code (.asm file) in a new tab window. Assembly
is human-readable with symbolic names.
Related topics: Project Menu, Project Toolbar, Error Window, Project Manager, Project Settings
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
87
CHAPTER 2
mikroC PRO for PIC
Environment
ERROR MESSAGES
Compiler Error Messages:
- Syntax error: Expected [%s] but [%s] found
- Array element cannot be function
- Function cannot return array
- Inconsistent storage class
- Inconsistent type
- [%s] tag redefined [%s]
- Illegal typecast [%s] [%s]
- "%s" is not valid identifier
- Invalid statement
- Constant expression required
- Internal error [%s]
- Too many actual parameters
- Not enough parameters.
- Invalid expression
- Identifier expected, but [%s] found
- Operator [%s] is not applicable to these operands [%s]
- Assigning to non-lvalue [%s]
- Cannot cast [%s] to [%s]
- Cannot assign [%s] to [%s]
- Lvalue required
- Pointer required
- Argument is out of range
- Undeclared identifier [%s] in expression
- Too many initializers
- Cannot establish this baud rate at [%s] MHz clock
- Stack overflow
- Invalid operator [%s]
- Expected variable, but constant [%s] found
- Expected constant, but [%s] found
- [%s] cannot be used outside a loop
- Unknown type [%s]
- Variable [%s] is redeclared
- Undeclared identifier [%s]
- Output limit has raised 2K words
- [%s] has already been declared [%s]
- Type mismatch: expected [%s], but [%s] found
- File [%s] not found [%s]
- There is not enough RAM space for all variables
- There is not enough ROM space
- Invalid type in Array
- Division by zero
- Incompatible types: [%s] [%s]
- Too many characters
88
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
- Assembler instruction [%s] was not found
- Project name must be specified
- Unknown command line Option: [%s]
- File extension missing: [%s]
- Bad FO argument: [%s]
- Preprocessor exited with error code [%s]
- Bad absolute address [%s]
- Recursion or cross-calling of [%s]
- Reentrancy is not allowed: function[%s] called from two threads
- no files specified
- Device parameter missing (for example -P16F...)
- Invalid parameter string
- Project name must be set
- Specifier needed
- [%s] not found [%s]
- Index out of bounds
- Array dimension must be greater than 0
- Const expression expected
- Integer const expected
- Recursion in definition
- Array corrupted
- Arguments cannot be of void type
- Arguments cannot have explicit memory specificator
- Bad storage class
- Pointer to function required
- Function required
- Illegal pointer conversion to double
- Integer type needed
- Members cannot have memory specifier
- Members cannot be of bit or sbit type
- Too many initializers
- Too many initializers of subaggregate
- Already used [%s]
- Illegal expression with void
- Address must be greater than 0
- [%s] Identifier redefined
- User abort
- Expression must be greater than 0
- Invalid declarator expected "(" or identifier
- typdef name redefined: [%s]
- Declarator error
- Specifer/qualifier list expected
- [%s] already used
- ILevel can be used only with interrupt service routines
- ; expected, but [%s] found
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
89
CHAPTER 2
mikroC PRO for PIC
Environment
- Expected "{"
- [%s] Identifier redefined
- "(" expected, but [%s] found
- ")" expected, but [%s] found
- "case" out of switch
- ":" expected, but [%s] found
- "default" label out of switch
- switch expression must evaluate to integral type
- while expected, but [%s] found
- void func cannot return values
- "continue" outside of loop
- Unreachable code
- Label redefined
- void type in expression
- Too many chars
- Unresolved type
- Arrays of objects containing zero-size arrays are illegal
- Invalid enumerator
- ILevel can be used only with interrupt service routines
- ILevel value must be integral constant
- ILevel out of range "0..4"
- "}" expected [%s] found
- ")" expected, but [%s] found
- "break" outside of loop or switch
- Empty char
- Nonexistent field [%s]
- Illegal char representation: [%s]
- Initializer syntax error: multidimensional array missing subscript
- Too many initializers of subaggregate
- At least one Search Path must be specified
- Not enough RAM for call stack
- Demo Limit
- Parameter [%s] must not be of bit or sbit type
- Function must not have return value of bit or sbit type
90
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Compiler Warning Messages:
-
Bad or missing fosc parameter. Default value 8MHz used
Specified search path does not exist: [%s]
Specified include path does not exist: [%s]
Result is not defined in function: [%s]
Initialization of extern object [%s]
Suspicious pointer conversion
Implicit conversion of pointer to int
Unknown pragma line ignored: [%s]
Implicit conversion of int to ptr
Generated baud rate is [%s] bps (error = [%s] percent)
Unknown memory model [%s], small memory model used instead
IRP bit must be set manually for indirect access to [%s] variable
Variable [%s] has been declared, but not used'
Illegal file type: [%s]
Linker Error Messages:
-
Redefinition of [%s] already defined in [%s]
main function is not defined
System routine is not found for initialization of: [%s]
Bad aggregate definition [%s]
Unresolved extern [%s]
Bad function absolute address [%s]
Not enough RAM [%s]
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
91
CHAPTER 2
mikroC PRO for PIC
Environment
SOFTWARE SIMULATOR OVERVIEW
The Source-level Software Simulator is an integral component of the mikroC PRO
for PIC environment. It is designed to simulate operations of the PIC MCUs and
assist the users in debugging C code written for these devices.
Upon completion of writing your program, choose Release build Type in the Project
Settings window:
After you have successfuly compiled your project, you can run the Software Simulator by selecting Run › Start Debugger from the drop-down menu, or by clicking
the Start Debugger Icon
from the Debugger Toolbar. Starting the Software Sim-
ulator makes more options available: Step Into, Step Over, Step Out, Run to Cursor,
etc. Line that is to be executed is color highlighted (blue by default).
Note: The Software Simulator simulates the program flow and execution of instruction lines, but it cannot fully emulate PIC device behavior, i.e. it doesn’t update
timers, interrupt flags, etc.
92
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
Breakpoints Window
The Breakpoints window manages the list of currently set breakpoints in the project.
Doubleclicking the desired breakpoint will cause cursor to navigate to the corresponding location in source code.
Watch Window
The Software Simulator Watch Window is the main Software Simulator window
which allows you to monitor program items while simulating your program. To show
the Watch Window, select View › Debug Windows › Watch from the drop-down
menu.
The Watch Window displays variables and registers of the MCU, along with their
addresses and values.
There are two ways of adding variable/register to the watch list:
by its real name (variable's name in "C" code). Just select desired variable/register from Select variable from list drop-down menu and click the Add Button
.
by its name ID (assembly variable name). Simply type name ID of they
variable/register you want to display into Search the variable by assemby
name box and click the Add Button
.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
93
CHAPTER 2
mikroC PRO for PIC
Environment
Variables can also be removed from the Watch window, just select the variable that
you want to remove and then click the Remove Button
.
Add All Button
Remove All Button
adds all variables.
removes all variables.
You can also expand/collapse complex variables, i.e. struct type variables, strings...
Values are updated as you go through the simulation. Recently changed items are
colored red.
Double clicking a variable or clicking the Properties Button
opens
the Edit Value window in which you can assign a new value to the selected
variable/register. Also, you can choose the format of variable/register representation
between decimal, hexadecimal, binary, float or character. All representations except
float are unsigned by default. For signed representation click the check box next to
the Signed label.
94
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
An item's value can be also changed by double clicking item's value field and typing
the new value directly.
.
View RAM Window
Debugger View RAM Window is available from the drop-down menu, View › Debug
Windows › View RAM.
The View RAM Window displays the map of PIC’s RAM, with recently changed
items colored red.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
95
CHAPTER 2
mikroC PRO for PIC
Environment
Stopwatch Window
The Software Simulator Stopwatch Window is available from the drop-down menu,
View › Debug Windows › Stopwatch.
The Stopwatch Window displays a current count of cycles/time since the last Software Simulator action. Stopwatch measures the execution time (number of cycles)
from the moment Software Simulator has started and can be reset at any time. Delta
represents the number of cycles between the lines where Software Simulator action
has started and ended.
Note: The user can change the clock in the Stopwatch Window, which will recalculate values for the latest specified frequency. Changing the clock in the Stopwatch
Window does not affect actual project settings – it only provides a simulation.
96
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
SOFTWARE SIMULATOR OPTIONS
Name
Start
Debugger
Run/Pause
Debugger
Stop
Debugger
Description
Function Toolbar
Key
Icon
Start Software Simulator.
[F9]
Run or pause Software Simulator.
[F6]
Stop Software Simulator.
[Ctrl+F2]
Toggle
Breakpoints
Toggle breakpoint at the current cursor
position. To view all breakpoints, select Run
> View Breakpoints from the drop–down
menu. Double clicking an item in the Breakpoints Window List locates the breakpoint.
[F5]
Run to cursor
Execute all instructions between the current
instruction and cursor position.
[F4]
Step Into
Execute the current C (single or multi–cycle)
instruction, then halt. If the instruction is a routine call, enter the routine and halt at the first
instruction following the call.
[F7]
Step Over
Execute the current C (single or
multi–cycle) instruction, then halt.
[F8]
Step Out
Execute all remaining instructions in the
current routine, return and then halt.
[Ctrl+F8]
Related topics: Run Menu, Debug Toolbar
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
97
CHAPTER 2
mikroC PRO for PIC
Environment
CREATING NEW LIBRARY
mikroC PRO for PIC allows you to create your own libraries. In order to create a
library in mikroC PRO for PIC follow the steps bellow:
1. Create a new C source file, see Managing Source Files
2. Save the file in one of the subfolders of the compiler's Uses folder:
DriveName:\Program Files\Mikroelektronika\mikroC PRO for
PIC\Uses\P16\
DriveName:\Program Files\Mikroelektronika\mikroC PRO for
PIC\Uses\P18\
If you are creating library for PIC16 MCU family the file should be saved in P16 folder.
If you are creating library for PIC18 MCU family the file should be saved in P18 fodler.
If you are creating library for PIC16 and PIC18 MCU families the file should be
saved in both folders.
3. Write a code for your library and save it.
4. Add __Lib_Example file in some project, see Project Manager. Recompile the
project.
If you wish to use this library for all MCUs, then you should go to Tools › Options
› Output settings, and check Build all files as library box.
This will build libraries in a common form which will work with all MCUs. If this
box is not checked, then library will be built for selected MCU.
Bear in mind that compiler will report an error if a library built for specific MCU is
used for another one.
5. Compiled file __Lib_Example.mcl should appear in ...\mikroC PRO for
PIC\Uses\ folder.
6. Open the definition file for the MCU that you want to use. This file is placed in the
compiler's Defs folder:
DriveName:\Program Files\Mikroelektronika\mikroC PRO for
PIC\Defs\
and it is named MCU_NAME.mlk, for example 16F887.mlk
7. Add the the following segment of code to <LIBRARIES> node of the definition
file (definition file is in XML format):
<LIB>
<ALIAS>Example_Library</ALIAS>
<FILE>__Lib_Example</FILE>
<TYPE>REGULAR</TYPE>
98
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 2
mikroC PRO for PIC
Environment
</LIB>
8. Add Library to mlk file for each MCU that you want to use with your library.
9. Click Refresh button in Library Manager
10. Example_Library should appear in the Library manager window.
Multiple Library Versions
Library Alias represents unique name that is linked to corresponding Library .mcl
file. For example UART library for 16F887 is different from UART library for 18F4520
MCU. Therefore, two different UART Library versions were made, see mlk files for
these two MCUs. Note that these two libraries have the same Library Alias (UART)
in both mlk files. This approach enables you to have identical representation of
UART library for both MCUs in Library Manager.
Related topics: Library Manager, Project Manager, Managing Source Files
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
99
CHAPTER 2
Environment
100
mikroC PRO for PIC
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER
3
MIKROICD (IN-CIRCUIT
DEBUGGER)
mikroICD is highly effective tool for Real-Time debugging on hardware level. ICD
debugger enables you to execute a mikroC PRO for PIC program on a host PIC
microcontroller and view variable values, Special Function Registers (SFR), memory and EEPROM as the program is running.
101
CHAPTER 3
mikroC PRO for PIC
mikroICD
Step No. 1
If you have appropriate hardware and software for using mikroICD, then, upon completion of writing your program, you will have to choose ICD Debug build type.
Step No. 2
You can run the mikroICD by selecting Run › Debug from the drop-down menu, or
by clicking Debug Icon
. Starting the Debugger makes more options available:
Step Into, Step Over, Run to Cursor, etc. Line that is to be executed is color highlighted (blue by default). There is also notification about program execution and it
can be found on Watch Window (yellow status bar). Note that some functions take
time to execute, so running of program is indicated on Watch Window.
102
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 3
mikroC PRO for PIC
mikroICD
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
103
CHAPTER 3
mikroC PRO for PIC
mikroICD
mikroICD Debugger Options
Name
104
Description
Function Key
Debug
Start Debugger.
[F9]
Run/Pause
Debugger
Run or pause Debugger.
[F6]
Toggle
Breakpoints
Toggle breakpoint at the current cursor position. To view all breakpoints, select Run >
View Breakpoints from the drop–down menu.
Double clicking an item in the Breakpoints
Window List locates the breakpoint.
[F5]
Run to cursor
Execute all instructions between the current
instruction and cursor position.
[F4]
Step Into
Execute the current C (single or multi–cycle)
instruction, then halt. If the instruction is a routine
call, enter the routine and halt at the first instruction following the call.
[F7]
Step Over
Execute the current C (single or multi–cycle)
instruction, then halt. If the instruction is a routine call, skip it and halt at the first instruction
following the call.
[F8]
Flush RAM
Flush current PIC RAM. All variable values
will be changed according to values from
watch window.
N/A
Disassembly
View
Toggle between disassembly and C source
view.
[Alt+D]
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 3
mikroC PRO for PIC
mikroICD
mikroICD Debugger Examples
Here is a step by step mikroICD Debugger Example.
Step No.1
First you have to write a program. We will show how mikroICD works using this
example:
// LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;
sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End LCD module connections
char text[17] = "mikroElektronika";
char i;
void main(){
PORTB = 0;
TRISB = 0;
ANSEL = 0;
ANSELH = 0;
Lcd_Init();
Lcd_Cmd(_LCD_CLEAR);
Lcd_Cmd(_LCD_CURSOR_OFF);
for(i = 1; i < 17; i++) {
Lcd_Chr(1, i, text[i-1]);
}
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
105
CHAPTER 3
mikroC PRO for PIC
mikroICD
Step No. 2
After successful compilation and PIC programming press F9 for starting mikroICD.
After mikroICD initialization blue active line should appear:
Step No. 3
We will debug program line by line. Pressing F8 we are executing code line by line.
It is recommended that user does not use Step Into [F7] and Step Over [F8] over
Delays routines and routines containing delays. Instead use Run to cursor [F4] and
Breakpoints functions.
All changes are read from PIC and loaded into Watch Window. Note that PORTB,
TRISB, ANSEL and ANSELH changed its values. 255 to 0.
106
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 3
mikroC PRO for PIC
mikroICD
Step No. 4
Step Into [F7] and Step Over [F8] are mikroICD debugger functions that are used
in stepping mode. There is also Real-Time mode supported by mikroICD. Functions
that are used in Real-Time mode are Run/ Pause Debugger [F6] and Run to cursor
[F4]. Pressing F4 goes to line selected by user. User just have to select line with
cursor and press F4, and code will be executed until selected line is reached.
Step No. 5
Run(Pause) Debugger [F6] and Toggle Breakpoints [F5] are mikroICD debugger functions
that are used in Real-Time mode. Pressing F5 marks line selected by user for breakpoint.
F6 executes code until breakpoint is reached. After reaching breakpoint Debugger halts.
Here at our example we will use breakpoints for writing "mikroElektronika" on Lcd char by
char. Breakpoint is set on Lcd_Chr and program will stop everytime this function is reached.
After reaching breakpoint we must press F6 again for continuing program execution.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
107
CHAPTER 3
mikroICD
mikroC PRO for PIC
Breakpoints has been separated into two groups. There are hardware and software
break points. Hardware breakpoints are placed in PIC and they provide fastest
debug. Number of hardware breakpoints is limited (1 for P16 and 1 or 3 for P18). If
all hardware brekpoints are used, next breakpoints that will be used are software
breakpoint. Those breakpoints are placed inside mikroICD, and they simulate hardware breakpoints. Software breakpoints are much slower than hardware breakpoints. This differences between hardware and software differences are not visible
in mikroICD software but their different timings are quite notable, so it is important
to know that there is two types of breakpoints.
108
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 3
mikroC PRO for PIC
mikroICD
mikroICD (In-Circuit Debugger) Overview
Breakpoints Window
The Breakpoints window manages the list of currently set breakpoints in the project.
Doubleclicking the desired breakpoint will cause cursor to navigate to the corresponding location in source code.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
109
CHAPTER 3
mikroC PRO for PIC
mikroICD
Watch Window
Debugger Watch Window is the main Debugger window which allows you to monitor program items while running your program. To show the Watch Window, select
View › Debug Windows › Watch Window from the drop-down menu.
The Watch Window displays variables and registers of PIC, with their addresses and
values. Values are updated as you go through the simulation. Use the drop-down
menu to add and remove the items that you want to monitor. Recently changed
items are colored red.
110
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 3
mikroC PRO for PIC
mikroICD
Double clicking an item opens the Edit Value window in which you can assign a new
value to the selected variable/register. Also, you can change view to binary, hex,
char, or decimal for the selected item.
EEPROM Watch Window
mikroICD EEPROM Watch Window is available from the drop-down menu, View ›
Debug Windows › View EEPROM.
The EEPROM Watch window shows current values written into PIC internal
EEPROM memory. There are two action buttons concerning EEPROM Watch window - Write EEPROM and Read EEPROM. Write EEPROM writes data from
EEPROM Watch window into PIC internal EEPROM memory. Read EEPROM reads
data from PIC internal EEPROM memory and loads it up in EEPROM window.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
111
CHAPTER 3
mikroC PRO for PIC
mikroICD
Code Watch Window
mikroICD Code Watch Window is available from the drop-down menu, View ›
Debug Windows › View Code.
The Code Watch window shows code (hex code) written into PIC. There is action
button concerning Code Watch window - Read Code. Read Code reads code from
PIC and loads it up in View Code Window.
Also, you can set an address scope in which hex code will be read.
112
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 3
mikroC PRO for PIC
mikroICD
View RAM Memory
Debugger View RAM Window is available from the drop-down menu, View › Debug
Windows › View RAM.
The View RAM Window displays the map of PIC’s RAM, with recently changed
items colored red.
Common Errors
Trying to program PIC while mikroICD is active.
Trying to debug Release build Type version of program.
Trying to debug changed program code which hasn't been compiled and pro
grammed into PIC.
Trying to select line that is empty for Run to cursor [F4] and Toggle Breakpoints
[F5] functions.
Trying to debug PIC with mikroICD while Watch Dog Timer is enabled.
Trying to debug PIC with mikroICD while Power Up Timer is enabled.
It is not possible to force Code Protect while trying to debug PIC with mikroICD.
Trying to debug PIC with mikroICD with pull-up resistors set to ON on RB6 and RB7.
For correct mikroICD debugging do not use pull-ups.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
113
CHAPTER 3
mikroC PRO for PIC
mikroICD
MIKROICD ADVANCED BREAKPOINTS
mikroICD provides the possibility to use the Advanced Breakpoints. Advanced
Breakpoints can be used with PIC18 and PIC18FJ MCUs. To enable Advanced
Breakpoints set the Advanced Breakpoints checkbox inside Watch window:
To configure Advanced Breakpoints, start mikroICD [F9] and select View › Debug
Windows › Advanced Breakpoints option from the drop-down menu or use
[Ctrl+Shift+A] shortcut.
Note: When Advanced Breakpoints are enabled mikroICD operates in Real-Time
mode, so it will support only the following set of commands: Start Debugger [F9],
Run/Pause Debugger [F6] and Stop Debugger [Ctrl+F2]. Once the Advanced
Breakpoint is reached, the Advanced Breakpoints feature can be disabled and
mikroICD debugging can be continued with full set of commands. If needed,
Advanced Breakepoints can be re-enabled without restarting mikroICD.
Note: Number of Advanced Breakpoints is equal to number of Hardware breakpoints and it depends on used MCU.
114
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 3
mikroC PRO for PIC
mikroICD
Program Memory Break
Program Memory Break is used to set the Advanced Breakpoint to the specific
address in program memory. Because of PIC pipelining mechanism program execution may stop one or two instructions after the address entered in the Address
field. Value entered in the Address field must be in hex format.
Note: Program Memory Break can use the Passcount option. The program execution will stop when the specified program address is reached for the N-th time,
where N is the number entered in the Passcount field. When some Advanced
Breakpoint stops the program execution, passcount counters for all Advanced
Breakpoints will be cleared.
Program Memory Break
Program Memory Break is used to set the Advanced Breakpoint to the specific
address in program memory. Because of PIC pipelining mechanism program execution may stop one or two instructions after the address entered in the Address
field. Value entered in the Address field must be in hex format.
Note: Program Memory Break can use the Passcount option. The program execution will stop when the specified program address is reached for the N-th time,
where N is the number entered in the Passcount field. When some Advanced
Breakpoint stops the program execution, passcount counters for all Advanced
Breakpoints will be cleared.
File Register Break
File Register Break can be used to stop the code execution when read/write access
to the specific data memory location occurs. If Read Access is selected, the File
Register Equal option can be used to set the matching value. The program execution will be stopped when the value read from the specified data memory location is
equal to the number written in the Value field. Values entered in the Address and
Value fields must be in hex format.
Note: File Register Break can also use the Passcount option in the same way as
Program Memory Break.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
115
CHAPTER 3
mikroC PRO for PIC
mikroICD
Emulator Features
Event Breakpoints
Break on Stack Overflow/Underflow: not implemented.
Break on Watchdog Timer: not implemented.
Break on SLEEP: break on SLEEP instruction. SLEEP instruction will not be
executed. If you choose to continue the mikroICD debugging [F6] then the program execution will start from the first instruction following the SLEEP instruction.
Stopwatch
Stopwatch uses Breakpoint#2 and Breakpoint#3 as a Start and Stop conditions. To use the Stopwatch define these two Breakpoints and check the Enable
Stopwatch checkbox.
Stopwatch options:
Halt on Start Condition
Halt on Start Condition (Breakpoint#2): when checked, the program execution
will stop on Breakpoint#2. Otherwise, Breakpoint#2 will be used only to
start the Stopwatch.
Halt on Stop Condition (Breakpoint#3): when checked, the program execution
will stop on Breakpoint#3. Otherwise, Breakpoint#3 will be used only to
stop the Stopwatch.
Reset Stopwatch on Run: when checked, the Stopwatch will be cleared before
continuing program execution and the next counting will start from zero. Otherwise, the next counting will start from the previous Stopwatch value
116
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER
4
mikroC PRO for PIC
Specifics
The following topics cover the specifics of mikroC PRO for PIC compiler:
- ANSI Standard Issues
- Predefined Globals and Constants
- Accessing Individual Bits
- Interrupts
- PIC Pointers
- Linker Directives
- Built-in Routines
- Code Optimization
- Memory Type Specifiers
117
CHAPTER 4
mikroC PRO for PIC
Specifics
ANSI Standard Issues
Divergence from the ANSI C Standard
- Tentative declarations are not supported.
C Language Exstensions
mikroC PRO for PIC has additional set of keywords that do not belong to the ANSI
standard C language keywords:
-
code
data
rx
at
sbit
bit
sfr
Related topics: Keywords, PIC Specific
Predefined Globals and Constants
To facilitate programming of PIC compliant MCUs, the mikroC PRO for PIC implements a number of predefined globals and constants.
All PIC SFR registers and their bits are implicitly declared as global variables.
These identifiers have an external linkage, and are visible in the entire project.
When creating a project, the mikroC PRO for PIC will include an appropriate (*) file
from defs folder, containing declarations of available SFR registers and constants.
For a complete set of predefined globals and constants, look for “Defs” in the mikroC
PRO for PIC installation folder, or probe the Code Assistant for specific letters
(Ctrl+Space in the Code Editor).
MIKROELEKTRONIKA
MIKROELEKTRONIKA
- SOFTWARE
- SOFTWARE
AND HARDWARE
AND HARDWARE
SOLUTIONS
SOLUTIONS
FOR EMBEDDED
FOR EMBEDDED
WORLD WORLD
118
CHAPTER 4
mikroC PRO for PIC
Specifics
Predefined project level defines
There are four predefined project level defines for any project you make. These
defines are based on values that you have entered/edited in the current project:
-
First one is equal to the name of selected device for the project i.e. if 16F887 is
selected device, then 16F887 token will be defined as 1, so it can be used for
conditional compilation:
#ifdef P16F887
...
#endif
-
The second one is __FOSC__ value of frequency (in Khz) for which the project
is built.
Third one is for identifying mikroC PRO for PIC compiler:
#ifdef __MIKROC_PRO_FOR_PIC__
...
#endif
-
Fourth one is for identifying the build version. For instance, if a desired build ver
sion is 142, user should put this in his code:
#if __MIKROC_PRO_FOR_PIC_BUILD__ == 142
...
#endif
User can define custom project level defines.
Accessing Individual Bits
The mikroC PRO for PIC allows you to access individual bits of 8-bit variables. It
also supports sbit and bit data types
Accessing Individual Bits Of Variables
If you are familiar with a particular MCU, you can access bits by name:
// Clear Global Interrupt Bit (GIE)
GIE_bit = 0;
Also, you can simply use the direct member selector (.) with a variable, followed by
one of identifiers B0, B1, … , B7, or F0, F1, … F7, with F7 being the most significant bit:
// Clear bit 0 in INTCON register
INTCON.B0 = 0;
// Set bit 5 in ADCON0 register
ADCON0.F5 = 1;
119
MIKROELEKTRONIKA
MIKROELEKTRONIKA
- SOFTWARE
- SOFTWARE
AND
AND
HARDWARE
HARDWARE
SOLUTIONS
SOLUTIONS
FOR
FOR
EMBEDDED
EMBEDDED WORLD
119
CHAPTER 4
mikroC PRO for PIC
Specifics
There is no need of any special declarations. This kind of selective access is an
intrinsic feature of mikroC PRO for PIC and can be used anywhere in the code. Identifiers B0–B7 are not case sensitive and have a specific namespace. You may override them with your own members B0–B7 within any given structure.
See Predefined Globals and Constants for more information on register/bit names.
Note: If aiming at portability, avoid this style of accessing individual bits, use the bit
fields instead.
sbit type
The mikroC PRO for PIC compiler has sbit data type which provides access to bitaddressable SFRs. You can access them in the following manner:
sbit LEDA at PORTA.B0;
sbit bit_name at sfr-name.B<bit-position>;
sbit LEDB at PORTB.F0;
sbit bit_name at sfr-name.F<bit-position>;
// If you are familiar with a particular MCU and its ports and direction registers (TRIS), you can access bits by their names:
sbit LEDC at RC0_bit;
sbit bit_name at R<port-letter><bit-position>_bit;
sbit TRISC0 at TRISC0_bit;
sbit bit_name at TRIS<port-letter><bit-position>_bit;
bit type
The mikroC PRO for PIC compiler provides a bit data type that may be used for variable declarations. It can not be used for argument lists, and function-return values.
bit bf;
// bit variable
There are no pointers to bit variables:
bit *ptr;
// invalid
An array of type bit is not valid:
bit arr [5];
120
// invalid
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 4
mikroC PRO for PIC
Specifics
Note:
- Bit variables can not be initialized.
- Bit variables can not be members of structures and unions.
- Bit variables do not have addresses, therefore unary operator & (address of) is not
applicable to these variables.
Related topics: Bit fields, Predefined globals and constants
Interrupts
Interrupts can be easily handled by means of reserved word interrupt. mikroC
PRO for PIC implictly declares function interrupt which cannot be redeclared. Its
prototype is:
void interrupt(void);
For P18 low priorty interrupts reserved word is interrupt_low:
void interrupt_low(void);
You are expected to write your own definition (function body) to handle interrupts in
your application.
mikroC PRO for PIC saves the following SFR on stack when entering interrupt and
pops them back upon return:
- PIC12 family: W, STATUS, FSR, PCLATH
- PIC16 family: W, STATUS, FSR, PCLATH
- PIC18 family: FSR (fast context is used to save WREG, STATUS, BSR)
Use the #pragma disablecontexsaving to instruct the compiler not to automatically perform context-switching. This means that no regiser will be saved/restored by
the compiler on entrance/exit from interrupt service routine. This enables the user to
manually write code for saving registers upon entrance and to restore them before
exit from interrupt.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
121
CHAPTER 4
mikroC PRO for PIC
Specifics
P18 priority interrupts
Note: For the P18 family both low and high interrupts are supported.
1. function with name interrupt will be linked as ISR (interrupt service routine)
for high level interrupt
2. function with name interrupt_low will be linked as ISR for low level inter
rupt_low
If interrupt priority feature is to be used then the user should set the appropriate SFR
bits to enable it. For more information refer to datasheet for specific device.
Function Calls from Interrupt
Calling functions from within the interrupt() routine is now possible. The compiler
takes care about the registers being used, both in "interrupt" and in "main" thread,
and performs "smart" context-switching between the two, saving only the registers
that have been used in both threads.Check functions reentrancy.
Interrupt Examples
Here is a simple example of handling the interrupts from TMR0 (if no other interrupts
are allowed):
void interrupt() {
counter++;
TMR0 = 96;
INTCON = $20;
}
In case of multiple interrupts enabled, you need to test which of the interrupts
occurred and then proceed with the appropriate code (interrupt handling):
void interrupt() {
if (INTCON.TMR0IF) {
counter++;
TMR0 = 96;
INTCON.TMR0F = 0;
}
else if (INTCON.RBIF) {
counter++;
TMR0 = 96;
INTCON.RBIF = 0;
}
}
122
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 4
mikroC PRO for PIC
Specifics
Linker Directives
The mikroC PRO uses an internal algorithm to distribute objects within memory. If
you need to have a variable or routine at specific predefined address, use the linker directives absolute and org.
Directive absolute
Directive absolute specifies the starting address in RAM for a variable. If the variable is multi-byte, higher bytes will be stored at the consecutive locations.
Directive absolute is appended to declaration of a variable:
short x absolute 0x22;
// Variable x will occupy 1 byte at address 0x22
int y absolute 0x23;
// Variable y will occupy 2 bytes at addresses 0x23 and 0x24
Be careful when using the absolute directive, as you may overlap two variables by
accident. For example:
char i absolute 0x33;
// Variable i will occupy 1 byte at address 0x33
long jjjj absolute 0x30;
// Variable will occupy 4 bytes at 0x30, 0x31, 0x32, 0x33; thus,
// changing i changes jjjj highest byte at the same time, and vice versa
Directive org
Directive org specifies a starting address of a routine in ROM.
Directive org is appended to the function definition. Directives applied to non-defining declarations will be ignored, with an appropriate warning issued by the linker.
Here is a simple example:
void func(int par) org 0x200 {
// Function will start at address 0x200
asm nop;
}
It is possible to use org directive with functions that are defined externally (such as
library functions). Simply add org directive to function declaration:
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
123
CHAPTER 4
mikroC PRO for PIC
Specifics
void UART_Write1(char data) org 0x200;
Note: Directive org can be applied to any routine except for interrupt.
Directive orgall
If the user wants to place his routines, constants, etc, above a specified address in
ROM, #pragma orgall directive should be used:
#pragma orgall 0x200
Directive funcorg
You can use the #pragma funcorg directive to specify the starting address of a routine in ROM using routine name only:
#pragma funcorg <func_name>
<starting_address>
Related topics: Indirect Function Calls
Indirect Function Calls
If the linker encounters an indirect function call (by a pointer to function), it assumes
that any of the functions addresses of which were taken anywhere in the program,
can be called at that point. Use the #pragma funcall directive to instruct the linker which functions can be called indirectly from the current function:
#pragma funcall <func_name> <called_func>[, <called_func>,...]
A corresponding pragma must be placed in the source module where the function
func_name is implemented. This module must also include declarations of all functions listed in the called_func list.
These functions will be linked if the function func_name is called in the code no matter whether any of them was called or not.
Note: The #pragma funcall directive can help the linker to optimize function frame
allocation in the compiled stack.
Related topics: Linker Directives
124
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 4
mikroC PRO for PIC
Specifics
Built-in Routines
mikroC PRO for PIC compiler provides a set of useful built-in utility functions. Built-in functions do
not require any header files to be included; you can use them in any part of your project.
Built-in routines are implemented as “inline”; i.e. code is generated in the place of the call, so the
call doesn’t count against the nested call limit. The only exceptions are Vdelay_ms, Delay_Cyc
and Get_Fosc_kHz which are actual C routines.
Note: Lo, Hi, Higher and Highest functions are not implemented in compiler any more. If you
want to use these functions you must include built_in.h into your project.
-
Lo
Hi
Higher
Highest
Delay_us
Delay_ms
Vdelay_ms
Delay_Cyc
Clock_Khz
Clock_Mhz
Get_Fosc_kHz
Lo
Prototype
unsigned short Lo(long number);
Returns
Returns the lowest 8 bits (byte) of number, bits 0..7.
Function returns the lowest byte of number. Function does not interpret bit patterns of number – it merely returns 8 bits as found in register.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.
Requires
Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).
Example
d = 0x1AC30F4;
tmp = Lo(d); // Equals 0xF4
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
125
CHAPTER 4
mikroC PRO for PIC
Specifics
Hi
Prototype
unsigned short Hi(long number);
Returns
Returns next to the lowest byte of number, bits 8..15.
Function returns next to the highest byte of number. Function does not interpret
bit patterns of number – it merely returns 8 bits as found in register.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.
Requires
Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).
Example
d = 0x1AC30F4;
tmp = Hi(d); // Equals 0x30
Higher
Prototype
unsigned short Higher(long number);
Returns
Returns next to the highest byte of number, bits 16..23.
Function returns the highest byte of number. Function does not interpret bit patterns of number – it merely returns 8 bits as found in register.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.
126
Requires
Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).
Example
d = 0x1AC30F4;
tmp = Higher(d);
// Equals 0xAC
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 4
mikroC PRO for PIC
Specifics
Highest
Prototype
unsigned short Highest(long number);
Returns
Returns the highest byte of number, bits 24..31.
Function returns next to the highest byte of number. Function does not interpret
bit patterns of number – it merely returns 8 bits as found in register.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.
Requires
Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).
Example
d = 0x1AC30F4;
tmp = Highest(d);
// Equals 0x01
Delay_us
Prototype
void Delay_us(const time_in_us);
Returns
Nothing.
Creates a software delay in duration of time_in_us microseconds (a constant).
Range of applicable constants depends on the oscillator frequency.
Description This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit. This routine generates nested loops
using registers R13, R12, R11 and R10. The number of used registers varies
from 0 to 4, depending on requested time_in_us.
Requires
Nothing.
Example
Delay_us(10);
/* Ten microseconds pause */
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
127
CHAPTER 4
mikroC PRO for PIC
Specifics
Delay_ms
Prototype
void Delay_ms(const time_in_ms);
Returns
Nothing.
Creates a software delay in duration of time_in_ms milliseconds (a constant).
Range of applicable constants depends on the oscillator frequency.
Description This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit. This routine generates nested loops
using registers R13, R12, R11 and R10. The number of used registers varies
from 0 to 4, depending on requested time_in_ms.
Requires
Nothing.
Example
Delay_ms(1000);
/* One second pause */
Vdelay_ms
Prototype
void Vdelay_ms(unsigned time_in_ms);
Returns
Nothing.
Creates a software delay in duration of time_in_ms milliseconds (a variable).
Generated delay is not as precise as the delay created by Delay_ms.
Description
Note that Vdelay_ms is library function rather than a built-in routine; it is presented in this topic for the sake of convenience.
128
Requires
Nothing.
Example
pause = 1000;
// ...
Vdelay_ms(pause);
// ~ one second pause
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 4
mikroC PRO for PIC
Specifics
Delay_Cyc
Prototype
void Delay_Cyc(char Cycles_div_by_10);
Returns
Nothing.
Creates a delay based on MCU clock. Delay lasts for 10 times the input parameter in MCU cycles.
Description
Note that Delay_Cyc is library function rather than a built-in routine; it is presented in this topic for the sake of convenience. There are limitations for
Cycles_div_by_10 value. Value Cycles_div_by_10 must be between 3 and 255.
Requires
Nothing.
Example
Delay_Cyc(10);
/* Hundred MCU cycles pause */
Clock_Khz
Prototype
unsigned Clock_Khz(void);
Returns
Device clock in KHz, rounded to the nearest integer.
Function returns device clock in KHz, rounded to the nearest integer.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.
Requires
Nothing.
Example
clk = Clock_Khz();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
129
CHAPTER 4
mikroC PRO for PIC
Specifics
Clock_Mhz
Prototype
unsigned short Clock_Mhz(void);
Returns
Device clock in MHz, rounded to the nearest integer.
Function returns device clock in MHz, rounded to the nearest integer.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.
Requires
Nothing.
Example
clk = Clock_Mhz();
Get_Fosc_kHz
Prototype
unsigned long Get_Fosc_kHz(void);
Returns
Device clock in KHz, rounded to the nearest integer.
Function returns device clock in KHz, rounded to the nearest integer.
Description
Note that Get_Fosc_kHz is library function rather than a built-in routine; it is presented in this topic for the sake of convenience.
Requires
Nothing.
Example
clk = Clock_Khz();
Code Optimization
Optimizer has been added to extend the compiler usability, cut down the amount of code generated and speed-up its execution. The main features are:
Constant folding
All expressions that can be evaluated in the compile time (i.e. are constant) are being replaced
by their results. (3 + 5 -> 8);
Constant propagation
When a constant value is being assigned to a certain variable, the compiler recognizes this and
replaces the use of the variable by constant in the code that follows, as long as the value of a variable remains unchanged.
130
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 4
mikroC PRO for PIC
Specifics
Copy propagation
The compiler recognizes that two variables have the same value and eliminates one
of them further in the code.
Value numbering
The compiler "recognizes" if two expressions yield the same result and can therefore eliminate the entire computation for one of them.
"Dead code" elimination
The code snippets that are not being used elsewhere in the programme do not affect
the final result of the application. They are automatically removed.
Stack allocation
Temporary registers ("Stacks") are being used more rationally, allowing VERY complex expressions to be evaluated with a minimum stack consumption.
Local vars optimization
No local variables are being used if their result does not affect some of the global or
volatile variables.
Better code generation and local optimization
Code generation is more consistent and more attention is payed to implement specific solutions for the code "building bricks" that further reduce output code size.
Related topics: PIC specifics, mikroC PRO for PIC specifics, Memory type specifiers
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
131
CHAPTER 4
Specifics
132
mikroC PRO for PIC
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER
5
PIC SPECIFICS
In order to get the most from your mikroC PRO for PIC compiler, you should be
familiar with certain aspects of PIC MCU. This knowledge is not essential, but it can
provide you a better understanding of PICs’ capabilities and limitations, and their
impact on the code writing.
133
CHAPTER 5
mikroC PRO for PIC
PIC Specifics
Types Efficiency
First of all, you should know that PIC’s ALU, which performs arithmetic operations,
is optimized for working with bytes. Although mikroC PRO for PIC is capable of handling very complex data types, PIC may choke on them, especially if you are working on some of the older models. This can dramatically increase the time needed for
performing even simple operations. Universal advice is to use the smallest possible
type in every situation. It applies to all programming in general, and doubly so with
microcontrollers.
Get to know your tool. When it comes down to calculus, not all PIC MCUs are of
equal performance. For example, PIC16 family lacks hardware resources to multiply two bytes, so it is compensated by a software algorithm. On the other hand,
PIC18 family has HW multiplier, and as a result, multiplication works considerably
faster.
Nested Calls Limitations
Nested call represents a function call within function body, either to itself (recursive
calls) or to another function. Recursive function calls are supported by mikroC PRO
for PIC but with limitations. Recursive function calls can't contain any function
parameters and local variables due to the PIC’s stack and memory limitations.
mikroC PRO for PIC limits the number of non-recursive nested calls to:
- 8 calls for PIC12 family,
- 8 calls for PIC16 family,
- 31 calls for PIC18 family.
Note that some of the built-in routines do not count against this limit, due to their
“inline” implementation.
Number of the allowed nested calls decreases by one if you use any of the following operators in the code: * / %. It further decreases if you use interrupts in the
program. Number of decreases is specified by number of functions called from interrupt. Check functions reentrancy.
If the allowed number of nested calls is exceeded, the compiler will report a stack
overflow error.
134
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 5
mikroC PRO for PIC
PIC Specifics
PIC18FxxJxx Specifics
Shared Address SFRs
mikroC PRO for PIC does not provide auto setting of bit for acessing alternate register. This is new feature added to pic18fxxjxx family and will be supported in future.
In several locations in the SFR bank, a single address is used to access two different hardware registers. In these cases, a “legacy” register of the standard PIC18
SFR set (such as OSCCON, T1CON, etc.) shares its address with an alternate register. These alternate registers are associated with enhanced configuration options
for peripherals, or with new device features not included in the standard PIC18 SFR
map. A complete list of shared register addresses and the registers associated with
them is provided in datasheet.
PIC16 Specifics
Breaking Through Pages
In applications targeted at PIC16, no single routine should exceed one page (2,000
instructions). If routine does not fit within one page, linker will report an error. When
confront with this problem, maybe you should rethink the design of your application
– try breaking the particular routine into several chunks, etc.
Limits of Indirect Approach Through FSR
Pointers with PIC16 are “near”: they carry only the lower 8 bits of the address. Compiler will automatically clear the 9th bit upon startup, so that pointers will refer to
banks 0 and 1. To access the objects in banks 2 or 3 via pointer, user should manually set the IRP, and restore it to zero after the operation. The stated rules apply to
any indirect approach: arrays, structures and unions assignments, etc.
Note: It is very important to take care of the IRP properly, if you plan to follow this
approach. If you find this method to be inappropriate with too many variables, you
might consider upgrading to PIC18.
Note: If you have many variables in the code, try rearranging them with the linker
directive absolute. Variables that are approached only directly should be moved to
banks 3 and 4 for increased efficiency.
Related topics: mikroC PRO for PIC specifics
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
135
CHAPTER 5
mikroC PRO for PIC
PIC Specifics
MEMORY TYPE SPECIFIERS
The mikroC PRO for PIC supports usage of all memory areas. Each variable may be explicitly
assigned to a specific memory space by including a memory type specifier in the declaration, or
implicitly assigned.
The following memory type specifiers can be used:
-
code
data
rx
sfr
Memory type specifiers can be included in variable declaration.
For example:
char data
data_buffer;
// puts data_buffer in data ram
const char code txt[] = "ENTER PARAMETER:"; // puts text in program memory
code
Description The code memory type may be used for allocating constants in program memory.
Example
// puts txt in program memory
const char code txt[] = "ENTER PARAMETER:";
data
Description This memory specifier is used when storing variable to the internal data SRAM.
Example
// puts PORTG in data ram
sfr data unsigned short PORTG absolute 0x65;
rx
This memory specifier allows variable to be stored in the Rx space (Register file).
Description
Example
136
Note: In most of the cases, there will be enough space left for the user variables in
the Rx space. However, since compiler uses Rx space for storing temporary variables, it might happen that user variables will be stored in the internal data SRAM,
when writing complex programs.
// puts y in Rx space
sfr char rx y;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 5
mikroC PRO for PIC
PIC Specifics
sfr
This memory specifier in combination with (rx, data) allows user to access speDescription cial function registers. It also instructs compiler to maintain same identifier in C and
assembly.
Example
sfr rx char y;
Note: If none of the memory specifiers are used when declaring a variable, data specifier will be
set as default by the compiler.
Related topics: Accessing individual bits, SFRs, Constants, Functions
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
137
CHAPTER 5
PIC Specifics
138
mikroC PRO for PIC
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER
6
mikroC PRO for PIC
Language Reference
The mikroC PRO for PIC Language Reference describes the syntax, semantics and
implementation of the mikroC PRO for PIC language.
The aim of this reference guide is to provide a more understandable description of
the mikroC PRO for PIC language to the user.
139
CHAPTER 6
Language Reference
mikroC PRO for PIC
- Lexical Elements
Whitespace
Comments
Tokens
Constants
Constants Overview
Integer Constants
Floating Point Constants
Character Constants
String Constants
Enumeration Constants
Pointer Constants
Constant Expression
Keywords
Identifiers
Punctuators
- Concepts
Objects and Lvalues
Scope and Visibility
Name Spaces
Duration
- Types
Fundamental Types
Arithmetic Types
Enumerations
Void Type
Derived Types
Arrays
Pointers
Introduction to Pointers
Pointer Arithmetic
Structures
Introduction to Structures
Working with Structures
Structure Member Access
Unions
Bit Fields
Type Conversions
Standard Conversions
Explicit Typecasting
140
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
- Declarations
Introduction to Declarations
Linkage
Storage Classes
Type Qualifiers
Typedef Specifier
ASM Declaration
Initialization
- Functions
Introduction to Functions
Function Calls and Argument Conversion
- Operators
Introduction to Operators
Operators Precedence and Associativity
Arithmetic Operators
Relational Operators
Bitwise Operators
Logical Opeartors
Conditional Operators
Assignment Operators
Sizeof Operator
- Expressions
Introduction to Expressions
Comma Expressions
- Statements
Introduction
Labeled Statements
Expression Statements
Selection Statements
If Statement
Switch Statement
Iteration Statements (Loops)
While Statement
Do Statement
For Statement
Jump Statements
Break and Continue Statements
Goto Statement
Return Statement
Compound Statements (Blocks)
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
141
CHAPTER 6
Language Reference
mikroC PRO for PIC
- Preprocessor
Introduction to Preprocessor
Preprocessor Directives
Macros
File Inclusion
Preprocessor Operators
Conditional Compilation
142
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
LEXICAL ELEMENTS OVERVIEW
The following topics provide a formal definition of the mikroC PRO for PIC lexical
elements. They describe different categories of word-like units (tokens) recognized
by the mikroC PRO for PIC.
In the tokenizing phase of compilation, the source code file is parsed (that is, broken down) into tokens and whitespace. The tokens in the mikroC PRO for PIC are
derived from a series of operations performed on your programs by the compiler and
its built-in preprocessor.
WHITESPACE
Whitespace is a collective name given to spaces (blanks), horizontal and vertical
tabs, newline characters and comments. Whitespace can serve to indicate where
tokens start and end, but beyond this function, any surplus whitespace is discarded.
For example, two sequences
int i; float f;
and
int
i;
float f;
are lexically equivalent and parse identically to give six tokens:
int
i
;
float
f
;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
143
CHAPTER 6
mikroC PRO for PIC
Language Reference
Whitespace in Strings
The ASCII characters representing whitespace can occur within string literals. In that
case they are protected from the normal parsing process (they remain as a part of
the string). For example,
char name[] = "mikro foo";
parses into seven tokens, including a single string literal token:
char
name
[
]
=
"mikro foo"
;
/* just one token here! */
Line Splicing with Backslash (\)
A special case occurs if a line ends with a backslash (\). Both backslash and new
line character are discarded, allowing two physical lines of a text to be treated as
one unit. So, the following code
"mikroC PRO \
for PIC Compiler"
parses into "mikroC PRO for PIC Compiler". Refer to String Constants for more
information.
144
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
COMMENTS
Comments are pieces of a text used to annotate a program and technically are
another form of whitespace. Comments are for the programmer’s use only; they are
stripped from the source text before parsing. There are two ways to delineate comments: the C method and the C++ method. Both are supported by mikroC PRO for
PIC.
You should also follow the guidelines on the use of whitespace and delimiters in
comments, discussed later in this topic to avoid other portability problems.
C comments
C comment is any sequence of characters placed after the symbol pair /*. The comment terminates at the first occurance of the pair */ following the initial /*. The entire
sequence, including four comment-delimiter symbols, is replaced by one space after
macro expansion.
In the mikroC PRO for PIC,
int /* type */ i /* identifier */;
parses as:
int i;
Note that the mikroC PRO for PIC does not support a nonportable token pasting
strategy using /**/. For more information on token pasting, refer to the Preprocessor
Operators.
C++ comments
The mikroC PRO for PIC allows single-line comments using two adjacent slashes
(//). The comment can start in any position and extends until the next new line.
The following code
int i;
int j;
// this is a comment
parses as:
int i;
int j;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
145
CHAPTER 6
Language Reference
mikroC PRO for PIC
Nested comments
ANSI C doesn’t allow nested comments. The attempt to nest a comment like this
/*
int /* declaration */ i; */
fails, because the scope of the first /* ends at the first */. This gives us
i; */
which would generate a syntax error.
146
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
TOKENS
Token is the smallest element of a C program that compiler can recognize. The parser separates tokens from the input stream by creating the longest token possible
using the input characters in a left–to–right scan.
The mikroC PRO for PIC recognizes the following kinds of tokens:
-
keywords
identifiers
constants
operators
punctuators (also known as separators)
Token Extraction Example
Here is an example of token extraction. Take a look at the following example code
sequence:
inter =
a+++b;
First, note that inter would be parsed as a single identifier, rather than as the keyword int followed by the identifier er.
The programmer who has written the code might have intended to write inter =
a + (++b), but it wouldn’t work that way. The compiler would parse it into the
seven following tokens:
inter
=
a
++
+
b
;
//
//
//
//
//
//
//
variable identifier
assignment operator
variable identifier
postincrement operator
addition operator
variable identifier
statement terminator
Note that +++ parses as ++ (the longest token possible) followed by +.
According to the operator precedence rules, our code sequence is actually:
inter (a++)+b;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
147
CHAPTER 6
Language Reference
mikroC PRO for PIC
CONSTANTS
Constants or literals are tokens representing fixed numeric or character values.
The mikroC PRO for PIC supports:
-
integer constants
floating point constants
character constants
string constants (strings literals)
enumeration constants
The data type of a constant is deduced by the compiler using such clues as a
numeric value and format used in the source code.
Integer Constants
Integer constants can be decimal (base 10), hexadecimal (base 16), binary (base
2), or octal (base 8). In the absence of any overriding suffixes, the data type of an
integer constant is derived from its value.
Long and Unsigned Suffixes
The suffix L (or l) attached to any constant forces that constant to be represented
as a long. Similarly, the suffix U (or u) forces a constant to be unsigned. Both L and
U suffixes can be used with the same constant in any order or case: ul, Lu, UL,
etc.
In the absence of any suffix (U, u, L, or l), a constant is assigned the “smallest” of
the following types that can accommodate its value: short, unsigned short,
int, unsigned int, long int, unsigned long int.
Otherwise:
If a constant has the U suffix, its data type will be the first of the following that
can accommodate its value: unsigned short, unsigned int, unsigned
long int.
If a constant has the L suffix, its data type will be the first of the following that can
accommodate its value: long int, unsigned long int.
If a constant has both L and U suffixes, (LU or UL), its data type will be unsigned
long int.
148
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Decimals
Decimal constants from -2147483648 to 4294967295 are allowed. Constants
exceeding these bounds will produce an “Out of range” error. Decimal constants
must not use an initial zero. An integer constant that has an initial zero is interpreted as an octal constant. Thus,
int i = 10;
int i = 010;
int i = 0;
/* decimal 10 */
/* decimal 8 */
/* decimal 0 = octal 0 */
In the absence of any overriding suffixes, the data type of a decimal constant is
derived from its value, as shown below:
Value Assigned to Constant
Assumed Type
< -2147483648
Error: Out of range!
-2147483648 – -32769
long
-32768 – -129
int
-128 – 127
short
128 – 255
unsigned short
256 – 32767
int
32768 – 65535
unsigned int
65536 – 2147483647
long
2147483648 – 4294967295
unsigned long
> 4294967295
Error: Out of range!
Hexadecimal Constants
All constants starting with 0x (or 0X) are taken to be hexadecimal. In the absence
of any overriding suffixes, the data type of an hexadecimal constant is derived from
its value, according to the rules presented above. For example, 0xC367 will be treated as unsigned int.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
149
CHAPTER 6
mikroC PRO for PIC
Language Reference
Binary Constants
All constants starting with 0b (or 0B) are taken to be binary. In the absence of any overriding suffixes, the data type of an binary constant is derived from its value, according
to the rules presented above. For example, 0b11101 will be treated as short.
Octal Constants
All constants with an initial zero are taken to be octal. If an octal constant contains
the illegal digits 8 or 9, an error is reported. In the absence of any overriding suffixes, the data type of an octal constant is derived from its value, according to the rules
presented above. For example, 0777 will be treated as int.
Floating Point Constants
A floating-point constant consists of:
- Decimal integer
- Decimal point
- Decimal fraction
- e or E and a signed integer exponent (optional)
- Type suffix: f or F or l or L (optional)
Either decimal integer or decimal fraction (but not both) can be omitted. Either decimal point or letter e (or E) with a signed integer exponent (but not both) can be omitted. These rules allow conventional and scientific (exponent) notations.
Negative floating constants are taken as positive constants with an unary operator
minus (-) prefixed.
The mikroC PRO for PIC limits floating-point constants to the range
±1.17549435082 * 10-38 .. ±6.80564774407 * 1038.
Here are some examples:
0.
-1.23
23.45e6
2e-5
3E+10
.09E34
//
//
//
//
//
//
=
=
=
=
=
=
0.0
-1.23
23.45 * 10^6
2.0 * 10^-5
3.0 * 10^10
0.09 * 10^34
The mikroC PRO for PIC floating-point constants are of the type double. Note that
the mikroC PRO for PIC’s implementation of ANSI Standard considers float and
double (together with the long double variant) to be the same type.
150
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Character Constants
A character constant is one or more characters enclosed in single quotes, such as
'A', '+', or '\n'. In the mikroC PRO for PIC, single-character constants are
of the unsigned int type. Multi-character constants are referred to as string constants or string literals. For more information refer to String Constants.
Escape Sequences
A backslash character (\) is used to introduce an escape sequence, which allows a
visual representation of certain nongraphic characters. One of the most common
escape constants is the newline character (\n).
A backslash is used with octal or hexadecimal numbers to represent an ASCII symbol
or control code corresponding to that value; for example, '\x3F' for the question
mark. Any value within legal range for data type char (0 to 0xFF for the mikroC PRO
for PIC) can be used. Larger numbers will generate the compiler error “Out of range”.
For example, the octal number \777 is larger than the maximum value allowed (\377)
and will generate an error. The first nonoctal or nonhexadecimal character encountered
in an octal or hexadecimal escape sequence marks the end of the sequence.
Note: You must use the sequence \\ to represent an ASCII backslash, as used in
operating system paths.
The following table shows the available escape sequences:
Sequence
Value
Char
Description
\a
0x07
BEL
Audible bell
\b
0x08
BS
Backspace
\f
0x0C
FF
Formfeed
\n
0x0A
LF
Newline (Linefeed)
\r
0x0D
CR
Carriage Return
\t
0x09
HT
Tab (horizontal)
\v
0x0B
VT
Vertical Tab
\\
0x5C
\
Backslash
\'
0x27
‘
Single quote (Apostrophe)
\"
0x22
‘’
Double quote
\?
0x3F
?
Question mark
\O
any
O = string of up to 3 octal digits
\xH
any
H = string of hex digits
\XH
any
H = string of hex digits
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
151
CHAPTER 6
mikroC PRO for PIC
Language Reference
Disambiguation
Some ambiguous situations might arise when using escape sequences.
Here is an example:
Lcd_Out_Cp("\x091.0 Intro");
This is intended to be interpreted as \x09 and "1.0 Intro". However, the mikroC
PRO for PIC compiles it as the hexadecimal number \x091 and literal string ".0
Intro". To avoid such problems, we could rewrite the code in the following way:
Lcd_Out_Cp("\x09" "1.0 Intro");
For more information on the previous line, refer to String Constants.
Ambiguities might also arise if an octal escape sequence is followed by a nonoctal
digit. For example, the following constant:
"\118"
would be interpreted as a two-character constant made up of the characters \11 and
8, because 8 is not a legal octal digit.
String Constants
String constants, also known as string literals, are a special type of constants which
store fixed sequences of characters. A string literal is a sequence of any number of
characters surrounded by double quotes:
"This is a string."
The null string, or empty string, is written like "". A literal string is stored internally
as a given sequence of characters plus a final null character. A null string is stored
as a single null character.
The characters inside the double quotes can include escape sequences. This code,
for example:
"\t\"Name\"\\\tAddress\n\n"
prints like this:
"Name"\
152
Address
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
The "Name" is preceded by two tabs; The Address is preceded by one tab. The line
is followed by two new lines. The \" provides interior double quotes. The escape
character sequence \\ is translated into \ by the compiler.
Adjacent string literals separated only by whitespace are concatenated during the
parsing phase. For example:
"This is " "just"
" an example."
is equivalent to
"This is just an example."
Line Continuation with Backslash
You can also use the backslash (\) as a continuation character to extend a string
constant across line boundaries:
"This is really \
a one-line string."
Enumeration Constants
Enumeration constants are identifiers defined in enum type declarations. The identifiers are usually chosen as mnemonics to contribute to legibility. Enumeration constants are of int type. They can be used in any expression where integer constants
are valid.
For example:
enum weekdays { SUN = 0, MON, TUE, WED, THU, FRI, SAT };
The identifiers (enumerators) used must be unique within the scope of the enum declaration. Negative initializers are allowed. See Enumerations for details about enum
declarations.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
153
CHAPTER 6
mikroC PRO for PIC
Language Reference
Pointer Constants
A pointer or pointed-at object can be declared with the const modifier. Anything
declared as const cannot change its value. It is also illegal to create a pointer that
might violate a non-assignability of the constant object.
Consider the following examples:
int i;
//
int * pi;
//
int * const cp = &i;
//
const int ci = 7;
//
const int * pci;
//
const int * const cpc = &ci;
i is an int
pi is a pointer to int (uninitialized)
cp is a constant pointer to int
ci is a constant int
pci is a pointer to constant int
// cpc is a constant pointer to a
// constant int
The following assignments are legal:
i = ci;
*cp = ci;
++pci;
pci = cpc;
//
//
//
//
//
//
Assign const-int to int
Assign const-int to
object-pointed-at-by-a-const-pointer
Increment a pointer-to-const
Assign a const-pointer-to-a-const to a
pointer-to-const
The following assignments are illegal:
ci = 0;
ci--;
*pci = 3;
cp = &ci;
cpc++;
pi = pci;
//
//
//
//
//
//
//
//
//
//
NO--cannot assign to a const-int
NO--cannot change a const-int
NO--cannot assign to an object
pointed at by pointer-to-const.
NO--cannot assign to a const-pointer,
even if value would be unchanged.
NO--cannot change const-pointer
NO--if this assignment were allowed,
you would be able to assign to *pci
(a const value) by assigning to *pi.
Similar rules are applayed to the volatile modifier. Note that both const and
volatile can appear as modifiers to the same identifier.
154
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Constant Expressions
A constant expressions can be evaluated during translation rather that runtime and
accordingly may be used in any place that a constant may be.
Constant expressions can consist only of the following:
-
literals,
enumeration constants,
simple constants (no constant arrays or structures),
sizeof operators.
Constant expressions cannot contain any of the following operators, unless the
operators are contained within the operand of a sizeof operator: assignment,
comma, decrement, function call, increment.
Each constant expression can evaluate to a constant that is in the range of representable values for its type.
Constant expression can be used anywhere a constant is legal.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
155
CHAPTER 6
Language Reference
mikroC PRO for PIC
KEYWORDS
Keywords are words reserved for special purposes and must not be used as normal
identifier names.
Beside standard C keywords, all relevant SFR are defined as global variables and
represent reserved words that cannot be redefined (for example: TMR0, PCL, etc).
Probe the Code Assistant for specific letters (Ctrl+Space in Editor) or refer to Predefined Globals and Constants.
Here is an alphabetical listing of keywords in C:
-
asm
auto
break
case
char
const
continue
default
do
double
else
enum
extern
float
for
goto
if
int
long
register
return
short
signed
sizeof
static
struct
switch
typedef
union
unsigned
void
volatile
while
Also, the mikroC PRO for PIC includes a number of predefined identifiers used in
libraries. You could replace them by your own definitions, if you want to develop your
own libraries. For more information, see mikroC PRO for PIC Libraries.
MIKROELEKTRONIKA
MIKROELEKTRONIKA
- SOFTWARE
- SOFTWARE
AND HARDWARE
AND HARDWARE
SOLUTIONS
SOLUTIONS
FOR EMBEDDED
FOR EMBEDDED
WORLD WORLD
156
CHAPTER 6
mikroC PRO for PIC
Language Reference
IDENTIFIERS
Identifiers are arbitrary names of any length given to functions, variables, symbolic
constants, user-defined data types, and labels. All these program elements will be
referred to as objects throughout the help (don't get confused with the meaning of
object in object-oriented programming).
Identifiers can contain the letters a to z and A to Z, underscore character “_”, and
digits 0 to 9. The only restriction is that the first character must be a letter or an
underscore.
Case Sensitivity
The mikroC PRO for PIC identifiers aren't case sensitive by default, so that Sum, sum,
and suM represent an equivalent identifier. Case sensitivity can be activated or suspended in Output Settings window. Even if case sensitivity is turned off Keywords
remain case sensitive and they must be written in lower case.
Uniqueness and Scope
Although identifier names are arbitrary (according to the stated rules), if the same
name is used for more than one identifier within the same scope and sharing the
same name space then error arises. Duplicate names are legal for different name
spaces regardless of scope rules. For more information on scope, refer to Scope
and Visibility.
Identifier Examples
Here are some valid identifiers:
temperature_V1
Pressure
no_hit
dat2string
SUM3
_vtext
… and here are some invalid identifiers:
7temp
%higher
int
j23.07.04
//
//
//
//
NO
NO
NO
NO
-----
cannot
cannot
cannot
cannot
begin with a numeral
contain special characters
match reserved word
contain special characters (dot)
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
157
CHAPTER 6
mikroC PRO for PIC
Language Reference
PUNCTUATORS
The mikroC PRO for PIC punctuators (also known as separators) are:
-
[ ] – Brackets
( ) – Parentheses
{ } – Braces
, – Comma
; – Semicolon
: – Colon
* – Asterisk
= – Equal sign
# – Pound sign
Most of these punctuators also function as operators.
Brackets
Brackets [ ] indicate single and multidimensional array subscripts:
char ch, str[] = "mikro";
int mat[3][4];
ch = str[3];
/* 3 x 4 matrix */
/* 4th element */
Parentheses
Parentheses ( ) are used to group expressions, isolate conditional expressions,
and indicate function calls and function parameters:
d = c * (a + b);
if (d == z) ++x;
func();
void func2(int n);
/* override normal precedence */
/* essential with conditional statement */
/* function call, no args */
/* function declaration with parameters */
Parentheses are recommended in macro definitions to avoid potential precedence
problems during an expansion:
#define CUBE(x) ((x) * (x) * (x))
For more information, refer to Operators Precedence And Associativity and Expressions.
158
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Braces
Braces { } indicate the start and end of a compound statement:
if (d == z) {
++x;
func();
}
Closing brace serves as a terminator for the compound statement, so a semicolon
is not required after }, except in structure declarations. Sometimes, the semicolon
can be illegal, as in
if (statement)
{ ... };
else
{ ... };
/* illegal semicolon! */
For more information, refer to the Compound Statements.
Comma
Comma (,) separates the elements of a function argument list:
void func(int n, float f, char ch);
Comma is also used as an operator in comma expressions. Mixing two uses of
comma is legal, but you must use parentheses to distinguish them. Note that (exp1,
exp2) evalutates both but is equal to the second:
func(i, j);
/* call func with two args */
func((exp1, exp2), (exp3, exp4, exp5)); /* also calls func with two
args! */
Semicolon
Semicolon (;) is a statement terminator. Any legal C expression (including the empty
expression) followed by a semicolon is interpreted as a statement, known as an
expression statement. The expression is evaluated and its value is discarded. If the
expression statement has no side effects, the mikroC PRO for PIC might ignore it.
a + b;
++a;
;
/* Evaluate a + b, but discard value */
/* Side effect on a, but discard value of ++a */
/* Empty expression, or a null statement */
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
159
CHAPTER 6
mikroC PRO for PIC
Language Reference
Semicolons are sometimes used to create an empty statement:
for (i = 0; i < n; i++);
For more information, see the Statements.
Colon
Use colon (:) to indicate the labeled statement:
start: x = 0;
...
goto start;
Labels are discussed in the Labeled Statements.
Asterisk (Pointer Declaration)
Asterisk (*) in a variable declaration denotes the creation of a pointer to a type:
char *char_ptr;
/* a pointer to char is declared */
Pointers with multiple levels of indirection can be declared by indicating a pertinent
number of asterisks:
int **int_ptr;
double ***double_ptr;
/* a pointer to an array of integers */
/* a pointer to a matrix of doubles */
You can also use asterisk as an operator to either dereference a pointer or as multiplication operator:
i = *int_ptr;
a = b * 3.14;
For more information, see the Pointers.
Equal Sign
160
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Equal sign (=) separates variable declarations from initialization lists:
int test[5] = { 1, 2, 3, 4, 5 };
int x = 5;
Equal sign is also used as an assignment operator in expressions:
int a, b, c;
a = b + c;
For more information, see Assignment Operators.
Pound Sign (Preprocessor Directive)
Pound sign (#) indicates a preprocessor directive when it occurs as the first nonwhitespace character on a line. It signifies a compiler action, not necessarily associated with a code generation. See the Preprocessor Directives for more information.
# and ## are also used as operators to perform token replacement and merging dur-
ing the preprocessor scanning phase. See the Preprocessor Operators.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
161
CHAPTER 6
Language Reference
mikroC PRO for PIC
CONCEPTS
This section covers some basic concepts of language, essential for understanding
of how C programs work. First, we need to establish the following terms that will be
used throughout the help:
-
Objects and lvalues
Scope and Visibility
Name Spaces
Duration
Objects
An object is a specific region of memory that can hold a fixed or variable value (or
set of values). This use of a term object is different from the same term, used in
object-oriented languages, which is more general. Our definiton of the word would
encompass functions, variables, symbolic constants, user-defined data types, and
labels.
Each value has an associated name and type (also known as a data type). The
name is used to access the object and can be a simple identifier or complex expression that uniquely refers the object.
Objects and Declarations
Declarations establish a necessary mapping between identifiers and objects. Each
declaration associates an identifier with a data type.
Associating identifiers with objects requires each identifier to have at least two attributes: storage class and type (sometimes referred to as data type). The mikroC PRO
for PIC compiler deduces these attributes from implicit or explicit declarations in the
source code. Usually, only the type is explicitly specified and the storage class specifier assumes the automatic value auto.
Generally speaking, an identifier cannot be legally used in a program before its declaration point in the source code. Legal exceptions to this rule (known as forward references) are labels, calls to undeclared functions, and struct or union tags.
The range of objects that can be declared includes:
- Variables
- Functions
- Types
- Arrays of other types
- Structure, union, and enumeration tags
162
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
-
Language Reference
Structure members
Union members
Enumeration constants
Statement labels
Preprocessor macros
The recursive nature of the declarator syntax allows complex declarators. You’ll
probably want to use typedefs to improve legibility if constructing complex objects.
Lvalues
Lvalue is an object locator: an expression that designates an object. An example of
lvalue expression is *P, where P is any expression evaluating to a non-null pointer.
A modifiable lvalue is an identifier or expression that relates to an object that can be
accessed and legally changed in memory. A const pointer to a constant, for example, is not a modifiable lvalue. A pointer to a constant can be changed (but its dereferenced value cannot).
Historically, l stood for “left”, meaning that lvalue could legally stand on the left (the
receiving end) of an assignment statement. Now only modifiable lvalues can legally stand to the left of an assignment operator. For example, if a and b are nonconstant integer identifiers with properly allocated memory storage, they are both modifiable lvalues, and assignments such as a = 1 and b = a + b are legal.
Rvalues
The expression a + b is not lvalue: a + b = a is illegal because the expression
on the left is not related to an object. Such expressions are sometimes called rvalues (short for right values).
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
163
CHAPTER 6
mikroC PRO for PIC
Language Reference
Scope and Visibility
Scope
The scope of an identifier is a part of the program in which the identifier can be used
to access its object. There are different categories of scope: block (or local), function, function prototype, and file. These categories depend on how and where identifiers are declared.
Block: The scope of an identifier with block (or local) scope starts at the declara
tion point and ends at the end of the block containing the declaration (such block
is known as the enclosing block). Parameter declarations with a function defini
tion also have block scope, limited to the scope of the function body.
File: File scope identifiers, also known as globals, are declared outside of all
blocks; their scope is from the point of declaration to the end of the source file.
Function: The only identifiers having function scope are statement labels. Label
names can be used with goto statements anywhere in the function in which the
label is declared. Labels are declared implicitly by writing label_name: fol
lowed by a statement. Label names must be unique within a function.
Function prototype: Identifiers declared within the list of parameter declarations
in a function prototype (not as a part of a function definition) have a function pro
totype scope. This scope ends at the end of the function prototype.
Visibility
The visibility of an identifier is a region of the program source code from which an
identifier’s associated object can be legally accessed.
Scope and visibility usually coincide, though there are circumstances under which
an object becomes temporarily hidden by the appearance of a duplicate identifier:
the object still exists but the original identifier cannot be used to access it until the
scope of the duplicate identifier ends.
Technically, visibility cannot exceed a scope, but a scope can exceed visibility. See
the following example:
void f (int i) {
int j;
j = 3;
{
double j;
j = 0.1;
// auto by default
// int i and j are in scope and visible
// nested block
// j is local name in the nested block
// i and double j are visible;
// int j = 3 in scope but hidden
}
164
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
j += 1;
// double j out of scope
// int j visible and = 4
}
// i and j are both out of scope
Name Spaces
Name space is a scope within which an identifier must be unique. The mikroC PRO
for PIC uses four distinct categories of identifiers:
1. goto label names - must be unique within the function in which they are
declared.
2. Structure, union, and enumeration tags - must be unique within the block in
which they are defined. Tags declared outside of any function must be unique.
3. Structure and union member names - must be unique within the structure or
union in which they are defined. There is no restriction on the type or offset of
members with the same member name in different structures.
4. Variables, typedefs, functions, and enumeration members - must be unique with
in the scope in which they are defined. Externally declared identifiers must be
unique among externally declared variables.
Duplicate names are legal for different name spaces regardless of the scope rules.
For example:
int blue = 73;
{ // open a block
enum colors { black, red, green, blue, violet, white } c;
/* enumerator blue = 3 now hides outer declaration of int blue */
struct colors { int i, j; };
double red = 2;
// ILLEGAL: colors duplicate tag
// ILLEGAL: redefinition of red
}
blue = 37;
// back in int blue scope
Duration
Duration, closely related to a storage class, defines a period during which the declared identifiers have real, physical objects allocated in memory. We also distinguish between compile-time and run-time objects. Variables, for instance, unlike typedefs and types, have real
memory allocated during run time. There are two kinds of duration: static and local.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
165
CHAPTER 6
mikroC PRO for PIC
Language Reference
Static Duration
Memory is allocated to objects with static duration as soon as execution is underway; this storage allocation lasts until the program terminates. Static duration
objects usually reside in fixed data segments allocated according to the memory
specifier in force. All globals have static duration. All functions, wherever defined,
are objects with static duration. Other variables can be given static duration by using
the explicit static or extern storage class specifiers.
In the mikroC PRO for PIC, static duration objects are not initialized to zero (or null)
in the absence of any explicit initializer.
Don’t mix static duration with file or global scope. An object can have static duration
and local scope – see the example below.
Local Duration
Local duration objects are also known as automatic objects. They are created on the
stack (or in a register) when an enclosing block or a function is entered. They are
deallocated when the program exits that block or function. Local duration objects
must be explicitly initialized; otherwise, their contents are unpredictable.
The storage class specifier auto can be used when declaring local duration variables, but
it is usually redundant, because auto is default for variables declared within a block.
An object with local duration also has local scope because it does not exist outside
of its enclosing block. On the other hand, a local scope object can have static duration. For example:
void f() {
/* local duration variable; init a upon every call to f */
int a = 1;
/* static duration variable; init b only upon first call to f */
static int b = 1;
/* checkpoint! */
a++;
b++;
}
void main() {
/* At checkpoint, we will
f();
// a=1, b=1, after
f();
// a=1, b=2, after
f();
// a=1, b=3, after
// etc.
}
166
have: */
first call,
second call,
third call,
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
TYPES
The mikroC PRO for PIC is a strictly typed language, which means that every object,
function, and expression must have a strictly defined type, known in the time of compilation. Note that the mikroC PRO for PIC works exclusively with numeric types.
The type serves:
to determine the correct memory allocation required initially.
to interpret the bit patterns found in the object during subsequent access.
in many type-checking situations, to ensure that illegal assignments are trapped.
The mikroC PRO for PIC supports many standard (predefined) and user-defined
data types, including signed and unsigned integers in various sizes, floating-point
numbers with various precisions, arrays, structures, and unions. In addition, pointers to most of these objects can be established and manipulated in memory.
The type determines how much memory is allocated to an object and how the program will interpret the bit patterns found in the object’s storage allocation. A given
data type can be viewed as a set of values (often implementation-dependent) that
identifiers of that type can assume, together with a set of operations allowed with
these values. The compile-time operator sizeof allows you to determine the size
in bytes of any standard or user-defined type.
The mikroC PRO for PIC standard libraries and your own program and header files must
provide unambiguous identifiers (or expressions derived from them) and types so that the
mikroC PRO for PIC can consistently access, interpret, and (possibly) change the bit patterns in memory corresponding to each active object in your program.
Type Categories
A common way to categorize types is to divide them into:
- fundamental
- derived
The fudamental types represent types that cannot be split up into smaller parts. They are
sometimes referred to as unstructured types. The fundamental types are void, char,
int, float, and double, together with short, long, signed, and unsigned variants of some of them. For more information on fundamental types, refer to the topic Fundamental Types.
The derived types are also known as structured types and they include pointers to
other types, arrays of other types, function types, structures, and unions. For more
information on derived types, refer to the topic Derived Types.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
167
CHAPTER 6
Language Reference
mikroC PRO for PIC
Fundamental Types
The fudamental types represent types that cannot be divided into more basic elements, and are the model for representing elementary data on machine level. The
fudamental types are sometimes referred to as unstructured types, and are used as
elements in creating more complex derived or user-defined types.
The fundamental types include:
- Arithmetic Types
- Enumerations
- Void Type
Arithmetic Types
The arithmetic type specifiers are built up from the following keywords: void, char,
int, float and double, together with the prefixes short, long, signed and
unsigned. From these keywords you can build both integral and floating-point types.
Integral Types
The types char and int, together with their variants, are considered to be integral
data types. Variants are created by using one of the prefix modifiers short, long,
signed and unsigned.
In the table below is an overview of the integral types – keywords in parentheses
can be (and often are) omitted.
The modifiers signed and unsigned can be applied to both char and int. In the
absence of the unsigned prefix, signed is automatically assumed for integral types.
The only exception is char, which is unsigned by default. The keywords signed
and unsigned, when used on their own, mean signed int and unsigned int,
respectively.
The modifiers short and long can only be applied to int. The keywords short
and long, used on their own, mean short int and long int, respectively.
168
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Type
Size in Bytes
Range
(unsigned) char
1
0 .. 255
signed char
1
- 128 .. 127
(signed) short (int)
1
- 128 .. 127
unsigned short (int)
1
0 .. 255
(signed) int
2
-32768 .. 32767
unsigned (int)
2
0 .. 65535
(signed) long (int)
4
-2147483648 .. 2147483647
unsigned long (int)
4
0 .. 4294967295
Floating-point Types
The types float and double, together with the long double variant, are considered to be floating-point types. The mikroC PRO for PIC’s implementation of an
ANSI Standard considers all three to be the same type.
Floating point in the mikroC PRO for PIC is implemented using the Microchip AN575
32-bit format (IEEE 754 compliant).
An overview of the floating-point types is shown in the table below:
Type
Size in Bytes
Range
float
4
-1.5 * 1045 .. +3.4 * 1038
double
4
-1.5 * 1045 .. +3.4 * 1038
long double
4
-1.5 * 1045 .. +3.4 * 1038
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
169
CHAPTER 6
mikroC PRO for PIC
Language Reference
Enumerations
An enumeration data type is used for representing an abstract, discreet set of values with appropriate symbolic names.
Enumeration Declaration
Enumeration is declared like this:
enum tag {enumeration-list};
Here, tag is an optional name of the enumeration; enumeration-list is a commadelimited list of discreet values, enumerators (or enumeration constants). Each enumerator is assigned a fixed integral value. In the absence of explicit initializers, the
first enumerator is set to zero, and the value of each succeeding enumerator is set
to a value of its predecessor increased by one.
Variables of the enum type are declared the same as variables of any other type. For
example, the following declaration:
enum colors { black, red, green, blue, violet, white } c;
establishes a unique integral type, enum colors, variable c of this type, and set of
enumerators with constant integer values (black = 0, red = 1, ...). In the mikroC PRO
for PIC, a variable of an enumerated type can be assigned any value of the type int
– no type checking beyond that is enforced. That is:
c = red;
c = 1;
// OK
// Also OK, means the same
With explicit integral initializers, you can set one or more enumerators to specific
values. The initializer can be any expression yielding a positive or negative integer
value (after possible integer promotions). Any subsequent names without initializers
will be increased by one. These values are usually unique, but duplicates are legal.
The order of constants can be explicitly re-arranged. For example:
enum colors { black,
red,
green,
blue=6,
violet,
white=4 };
170
//
//
//
//
//
//
value
value
value
value
value
value
0
1
2
6
7
4
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Initializer expression can include previously declared enumerators. For example, in
the following declaration:
enum memory_sizes { bit = 1, nibble = 4 * bit, byte = 2 * nibble,
kilobyte = 1024 * byte };
nibble would acquire the value 4, byte the value 8, and kilobyte the value 8192.
Anomous Enum Type
In our previous declaration, the identifier colors is an optional enumeration tag that
can be used in subsequent declarations of enumeration variables of the enum colors type:
enum colors bg, border;
/* declare variables bg and border */
Like with struct and union declarations, you can omit the tag if no further variables
of this enum type are required:
/* Anonymous enum type: */
enum { black, red, green, blue, violet, white } color;
Enumeration Scope
Enumeration tags share the same name space as structure and union tags. Enumerators share the same name space as ordinary variable identifiers:
int blue = 73;
{ // open a block
enum colors { black, red, green, blue, violet, white } c;
/* enumerator blue = 3 now hides outer declaration of int blue */
struct colors { int i, j; };
double red = 2;
// ILLEGAL: colors duplicate tag
// ILLEGAL: redefinition of red
}
blue = 37;
// back in int blue scope
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
171
CHAPTER 6
Language Reference
mikroC PRO for PIC
Void Type
void is a special type indicating the absence of any value. There are no objects of
void; instead, void is used for deriving more complex types.
Void Functions
Use the void keyword as a function return type if the function does not return a
value.
void print_temp(char temp) {
Lcd_Out_Cp("Temperature:");
Lcd_Out_Cp(temp);
Lcd_Chr_Cp(223); // degree character
Lcd_Chr_Cp('C');
}
Use void as a function heading if the function does not take any parameters. Alternatively, you can just write empty parentheses:
main(void) { // same as main()
...
}
Generic Pointers
Pointers can be declared as void, which means that they can point to any type.
These pointers are sometimes called generic.
172
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Derived Types
The derived types are also known as structured types. They are used as elements
in creating more complex user-defined types.
The derived types include:
-
arrays
pointers
structures
unions
Arrays
Array is the simplest and most commonly used structured type. A variable of array
type is actually an array of objects of the same type. These objects represent elements of an array and are identified by their position in array. An array consists of a
contiguous region of storage exactly large enough to hold all of its elements.
Array Declaration
Array declaration is similar to variable declaration, with the brackets added after
identifer:
type array_name[constant-expression]
This declares an array named as array_name and composed of elements of type. The
type can be any scalar type (except void), user-defined type, pointer, enumeration, or
another array. Result of constant-expression within the brackets determines a number
of elements in array. If an expression is given in an array declarator, it must evaluate to a
positive constant integer. The value is a number of elements in an array.
Each of the elements of an array is indexed from 0 to the number of elements minus
one. If a number of elements is n, elements of array can be approached as variables
array_name[0] .. array_name[n-1] of type.
Here are a few examples of array declaration:
#define MAX = 50
int
vector_one[10];
/* declares an array of 10 integers */
float vector_two[MAX];
/* declares an array of 50 floats
*/
float vector_three[MAX - 20]; /* declares an array of 30 floats
*/
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
173
CHAPTER 6
mikroC PRO for PIC
Language Reference
Array Initialization
An array can be initialized in declaration by assigning it a comma-delimited
sequence of values within braces. When initializing an array in declaration, you can
omit the number of elements – it will be automatically determined according to the
number of elements assigned. For example:
/* Declare an array which holds number of days in each month: */
int days[12] = {31,28,31,30,31,30,31,31,30,31,30,31};
/* This declaration is identical to the previous one */
int days[] = {31,28,31,30,31,30,31,31,30,31,30,31};
If you specify both the length and starting values, the number of starting values must
not exceed the specified length. The opposite is possible, in this case the trailing
“excess” elements will be assigned to some encountered runtime values from memory.
In case of array of char, you can use a shorter string literal notation. For example:
/* The two declarations are identical: */
const char msg1[] = {'T', 'e', 's', 't', '\0'};
const char msg2[] = "Test";
For more information on string literals, refer to String Constants.
Arrays n Expressions
When the name of an array comes up in expression evaluation (except with operators & and sizeof), it is implicitly converted to the pointer pointing to array’s first
element. See Arrays and Pointers for more information.
Multi-dimensional Arrays
An array is one-dimensional if it is of scalar type. One-dimensional arrays are sometimes referred to as vectors.
Multidimensional arrays are constructed by declaring arrays of array type. These
arrays are stored in memory in such way that the right most subscript changes
fastest, i.e. arrays are stored “in rows”. Here is a sample of 2-dimensional array:
float m[50][20];
/* 2-dimensional array of size 50x20 */
A variable m is an array of 50 elements, which in turn are arrays of 20 floats each.
Thus, we have a matrix of 50x20 elements: the first element is m[0][0], the last one
174
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
is m[49][19]. The first element of the 5th row would be m[4][0].
If you don't initialize the array in the declaration, you can omit the first dimension of
multi-dimensional array. In that case, array is located elsewhere, e.g. in another file.
This is a commonly used technique when passing arrays as function parameters:
int a[3][2][4];
/* 3-dimensional array of size 3x2x4 */
void func(int n[][2][4]) { /* we can omit first dimension */
...
n[2][1][3]++; /* increment the last element*/
}
void main() {
...
func(a);
}
You can initialize a multi-dimensional array with an appropriate set of values within
braces. For example:
int a[3][2] = {{1,2}, {2,6}, {3,7}};
Pointers
Pointers are special objects for holding (or “pointing to”) memory addresses. In the
mikroC PRO for PIC, address of an object in memory can be obtained by means of
an unary operator &. To reach the pointed object, we use an indirection operator (*)
on a pointer.
A pointer of type “pointer to object of type” holds the address of (that is, points to)
an object of type. Since pointers are objects, you can have a pointer pointing to a
pointer (and so on). Other objects commonly pointed to include arrays, structures,
and unions.
A pointer to a function is best thought of as an address, usually in a code segment,
where that function’s executable code is stored; that is, the address to which control
is transferred when that function is called.
Although pointers contain numbers with most of the characteristics of unsigned integers, they have their own rules and restrictions for declarations, assignments, conversions, and arithmetic. The examples in the next few sections illustrate these rules
and restrictions.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
175
CHAPTER 6
mikroC PRO for PIC
Language Reference
Pointer Declarations
Pointers are declared the same as any other variable, but with * ahead of identifier.
A type at the beginning of declaration specifies the type of a pointed object. A pointer must be declared as pointing to some particular type, even if that type is void,
which really means a pointer to anything. Pointers to void are often called generic
pointers, and are treated as pointers to char in the mikroC PRO for PIC.
If type is any predefined or user-defined type, including void, the declaration
type *p;
/* Uninitialized pointer */
declares p to be of type “pointer to type”. All scoping, duration, and visibility rules
are applied to the p object just declared. You can view the declaration in this way: if
*p is an object of type, then p has to be a pointer to such object (object of type).
Note: You must initialize pointers before using them! Our previously declared pointer *p is not initialized (i.e. assigned a value), so it cannot be used yet.
Note: In case of multiple pointer declarations, each identifier requires an indirect
operator. For example:
int *pa, *pb, *pc;
/* is same as: */
int *pa;
int *pb;
int *pc;
Once declared, though, a pointer can usually be reassigned so that it points to an
object of another type. The mikroC PRO for PIC lets you reassign pointers without
typecasting, but the compiler will warn you unless the pointer was originally declared
to be pointing to void. You can assign the void* pointer to the non-void* pointer –
refer to void for details.
176
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Null Pointers
A null pointer value is an address that is guaranteed to be different from any valid
pointer in use in a program. Assigning the integer constant 0 to a pointer assigns a
null pointer value to it.
For example:
int *pn = 0;
/* Here's one null pointer */
/* We can test the pointer like this: */
if ( pn == 0 ) { ... }
The pointer type “pointer to void” must not be confused with the null pointer. The
declaration
void *vp;
declares that vp is a generic pointer capable of being assigned to by any “pointer to
type” value, including null, without complaint.
Assignments without proper casting between a “pointer to type1” and a “pointer to
type2”, where type1 and type2 are different types, can invoke a compiler warning
or error. If type1 is a function and type2 isn’t (or vice versa), pointer assignments
are illegal. If type1 is a pointer to void, no cast is needed. If type2 is a pointer to
void, no cast is needed.
Function Pointers
Function Pointers are pointers, i.e. variables, which point to the address of a function.
// Define a function pointer
int (*pt2Function) (float, char, char);
Note: Thus functions and function pointers with different calling convention (argument order, arguments type or return type is different) are incompatible with each
other.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
177
CHAPTER 6
Language Reference
mikroC PRO for PIC
Assign an address to a Function Pointer
It's quite easy to assign the address of a function to a function pointer. Simply take
the name of a suitable and known function. Using the address operator & infront of
the function's name is optional.
//Assign an address to the function pointer
int DoIt (float a, char b, char c){ return a+b+c; }
pt2Function = &DoIt; // assignment
Example:
int addC(char x,char y){
return x+y;
}
int subC(char x,char y){
return x-y;
}
int mulC(char x,char y){
return x*y;
}
int divC(char x,char y){
return x/y;
}
int modC(char x,char y){
return x%y;
}
//array of pointer to functions that receive two chars and returns
int
int (*arrpf[])(char,char) = { addC ,subC,mulC,divC,modC};
int res;
char i;
void main() {
for (i=0;i<5;i++){
res = arrpf[i](10,20);
}
}
178
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Pointer Arithmetic
Pointer arithmetic in the mikroC PRO for PIC is limited to:
-
assigning one pointer to another,
comparing two pointers,
comparing pointer to zero,
adding/subtracting pointer and an integer value,
subtracting two pointers.
The internal arithmetic performed on pointers depends on the memory specifier in
force and the presence of any overriding pointer modifiers. When performing arithmetic with pointers, it is assumed that the pointer points to an array of objects.
Arrays and pointers
Arrays and pointers are not completely independent types in the mikroC PRO for
PIC. When the name of an array comes up in expression evaluation (except with
operators & and sizeof), it is implicitly converted to the pointer pointing to array’s
first element. Due to this fact, arrays are not modifiable lvalues.
Brackets [ ] indicate array subscripts. The expression
id[exp]
is defined as
*((id) + (exp))
where either:
- id is a pointer and exp is an integer, or
- id is an integer and exp is a pointer.
The following statements are true:
&a[i]
a[i]
=
=
a + i
*(a + i)
According to these guidelines, it can be written:
pa = &a[4];
x = *(pa + 3);
/* .. but: */
y = *pa + 3;
// pa points to a[4]
// x = a[7]
// y = a[4] + 3
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
179
CHAPTER 6
mikroC PRO for PIC
Language Reference
Also the care should be taken when using operator precedence:
*pa++;
(*pa)++;
// Equal to *(pa++), increments the pointer
// Increments the pointed object!
The following examples are also valid, but better avoid this syntax as it can make
the code really illegible:
(a + 1)[i] = 3;
// same as: *((a + 1) + i) = 3, i.e. a[i + 1] = 3
(i + 2)[a] = 0;
// same as: *((i + 2) + a) = 0, i.e. a[i + 2] = 0
Assignment and Comparison
The simple assignment operator (=) can be used to assign value of one pointer to
another if they are of the same type. If they are of different types, you must use a
typecast operator. Explicit type conversion is not necessary if one of the pointers is
generic (of the void type).
Assigning the integer constant 0 to a pointer assigns a null pointer value to it.
Two pointers pointing to the same array may be compared by using relational operators ==, !=, <, <=, >, and >=. Results of these operations are the same as if
they were used on subscript values of array elements in question:
int *pa = &a[4], *pb = &a[2];
if (pa == pb) {... /* won't be executed as 4 is not equal to 2 */ }
if (pa > pb) {... /* will be executed as 4 is greater than 2 */ }
You can also compare pointers to zero value – testing in that way if the pointer actually points to anything. All pointers can be successfuly tested for equality or inequality to null:
if (pa == 0) { ... }
if (pb != 0) { ... }
Note: Comparing pointers pointing to different objects/arrays can be performed at
programmer’s own responsibility — a precise overview of data’s physical storage is
required.
180
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Pointer Addition
You can use operators +, ++, and += to add an integral value to a pointer. The
result of addition is defined only if the pointer points to an element of an array and
if the result is a pointer pointing to the same array (or one element beyond it).
If a pointer is declared to point to type, adding an integral value n to the pointer
increments the pointer value by n * sizeof(type) as long as the pointer remains
within the legal range (first element to one beyond the last element). If type has a
size of 10 bytes, then adding 5 to a pointer to type advances the pointer 50 bytes
in memory. In case of the type type, the size of a step is one byte.
For example:
int a[10];
int *pa = &a[0];
*(pa + 3) = 6;
now equals 6 */
pa++;
a[1] */
/* array a containing 10 elements of type int */
/* pa is pointer to int, pointing to a[0] */
/* pa+3 is a pointer pointing to a[3], so a[3]
/* pa now points to the next element of array a:
There is no such element as “one past the last element”, of course, but the pointer
is allowed to assume such value. C “guarantees” that the result of addition is defined
even when pointing to one element past array. If P points to the last array element,
P + 1 is legal, but P + 2 is undefined.
This allows you to write loops which access the array elements in a sequence by
means of incrementing pointer — in the last iteration you will have the pointer pointing to one element past the array, which is legal. However, applying an indirection
operator (*) to a “pointer to one past the last element” leads to undefined behavior.
For example:
void f (some_type a[], int n) {
/* function f handles elements of array a; */
/* array a has n elements of type some_type */
int i;
some_type *p=&a[0];
for ( i = 0; i < n; i++ ) {
/* .. here we do something with *p .. */
p++; /* .. and with the last iteration p exceeds
the last element of array a */
}
/* at this point, *p is undefined! */
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
181
CHAPTER 6
Language Reference
mikroC PRO for PIC
Pointer Subtraction
Similar to addition, you can use operators -, -- , and -= to subtract an integral
value from a pointer.
Also, you may subtract two pointers. The difference will be equal to the distance
between two pointed addresses, in bytes.
For example:
int
int
int
i =
pi2
182
a[10];
*pi1 = &a[0];
*pi2 = &a[4];
pi2 - pi1;
-= (i >> 1);
/* i equals 8 */
/* pi2 = pi2 - 4: pi2 now points to [0] */
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Structures
A structure is a derived type usually representing a user-defined collection of named
members (or components). These members can be of any type, either fundamental
or derived (with some restrictions to be discussed later), in any sequence. In addition, a structure member can be a bit field.
Unlike arrays, structures are considered to be single objects. The mikroC PRO for
PIC structure type lets you handle complex data structures almost as easily as single variables.
Note: the mikroC PRO for PIC does not support anonymous structures (ANSI divergence).
Structure Declaration and Initialization
Structures are declared using the keyword struct::
struct tag {member-declarator-list};
Here, tag is the name of a structure; member-declarator-list is a list of structure
members, actually a list of variable declarations. Variables of structured type are
declared the same as variables of any other type.
The member type cannot be the same as the struct type being currently declared.
However, a member can be a pointer to the structure being declared, as in the following example:
struct mystruct {mystruct s;};
/* illegal! */
struct mystruct {mystruct *ps;}; /* OK */
Also, a structure can contain previously defined structure types when declaring an
instance of declared structure. Here is an example:
/* Structure defining a dot: */
struct Dot {float x, y;};
/* Structure defining a circle: */
struct Circle {
float r;
struct Dot center;
} o1, o2;
/* declare variables o1 and o2 of Circle */
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
183
CHAPTER 6
Language Reference
mikroC PRO for PIC
Note that the structure tag can be omitted, but then additional objects of this type cannot be
declared elsewhere. For more information, see the Untagged Structures below.
Structure is initialized by assigning it a comma-delimited sequence of values within
braces, similar to array. For example:
/* Referring to declarations from the example above: */
/* Declare and initialize dots p and q: */
struct Dot p = {1., 1.}, q = {3.7, -0.5};
/* Declare and initialize circle o1: */
struct Circle o1 = {1., {0., 0.}}; // radius is 1, center is at (0, 0)
Incomplete Declarations
Incomplete declarations are also known as forward declarations. A pointer to a
structure type A can legally appear in the declaration of another structure B before
A has been declared:
struct A; // incomplete
struct B {struct A *pa;};
struct A {struct B *pb;};
The first appearance of A is called incomplete because there is no definition for it at
that point. An incomplete declaration is allowed here, because the definition of B
doesn’t need the size of A.
Untagged Structures and Typedefs
If the structure tag is omitted, an untagged structure is created. The untagged
structures can be used to declare the identifiers in the comma-delimited memberdeclarator-list to be of the given structure type (or derived from it), but additional objects of this type cannot be declared elsewhere.
It is possible to create a typedef while declaring a structure, with or without tag:
/* With tag: */
typedef struct mystruct { ... } Mystruct;
Mystruct s, *ps, arrs[10]; /* same as struct mystruct s, etc. */
/* Without tag: */
typedef struct { ... } Mystruct;
Mystruct s, *ps, arrs[10];
Usually, there is no need to use both tag and typedef: either can be used in structure type declarations.
184
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Untagged structure and union members are ignored during initialization.
Note: See also Working with structures.
WORKING WITH STRUCTURES
Structures represent user-defined types. A set of rules regarding the application of
structures is strictly defined.
Assignment
Variables of the same structured type may be assigned one to another by means of
simple assignment operator (=). This will copy the entire contents of the variable to
destination, regardless of the inner complexity of a given structure.
Note that two variables are of the same structured type only if they are both defined
by the same instruction or using the same type identifier. For example:
/* a and b are of the same type: */
struct {int m1, m2;} a, b;
/* But c and d are _not_ of the same type although
their structure descriptions are identical: */
struct {int m1, m2;} c;
struct {int m1, m2;} d;
Size of Structure
The size of the structure in memory can be retrieved by means of the operator
sizeof. It is not necessary that the size of the structure is equal to the sum of its
members’ sizes. It is often greater due to certain limitations of memory storage.
Structures and Functions
A function can return a structure type or a pointer to a structure type:
mystruct func1(void);
mystruct *func2(void);
/* func1() returns a structure */
/* func2() returns pointer to structure */
A structure can be passed as an argument to a function in the following ways:
void func1(mystruct s;);
void func2(mystruct *sptr;);
/* directly */
/* via a pointer */
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
185
CHAPTER 6
mikroC PRO for PIC
Language Reference
Structure Member Access
Structure and union members are accessed using the following two selection operators:
- . (period)
- -> (right arrow)
The operator . is called the direct member selector and it is used to directly access
one of the structure’s members. Suppose that the object s is of the struct type S and
m is a member identifier of the type M declared in s, then the expression
s.m
// direct access to member m
is of the type M, and represents the member object m in S.
The operator -> is called the indirect (or pointer) member selector. Suppose that the
object s is of the struct type S and ps is a pointer to s. Then if m is a member identifier of the type M declared in s, the expression
ps->m
// indirect access to member m;
// identical to (*ps).m
is of the type M, and represents the member object m in s. The expression ps->m is
a convenient shorthand for (*ps).m
For example:
struct mystruct {
int i;
char str[21];
double d;
} s, *sptr = &s;
...
s.i = 3;
sptr -> d = 1.23;
// assign to the i member of mystruct s
// assign to the d member of mystruct s
The expression s.m is lvalue, providing that s is lvalue and m is not an array type.
The expression sptr->m is an lvalue unless m is an array type.
186
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Accessing Nested Structures
If the structure B contains a field whose type is the structure A, the members of A can
be accessed by two applications of the member selectors:
struct A {
int j; double x;
};
struct B {
int i; struct A aa; double d;
} s, *sptr;
...
s.i = 3;
s.aa.j = 2;
sptr->d = 1.23;
sptr->aa.x = 3.14;
//
//
//
//
assign
assign
assign
assign
3 to
2 to
1.23
3.14
the i member of B
the j member of A
to the d member of B
to x member of A
Structure Uniqueness
Each structure declaration introduces a unique structure type, so that in
struct A {
int i,j; double d;
} aa, aaa;
struct B {
int i,j; double d;
} bb;
the objects aa and aaa are both of the type struct A, but the objects aa and bb are
of different structure types. Structures can be assigned only if the source and destination have the same type:
aa = aaa;
aa = bb;
/* but
aa.i =
aa.j =
aa.d =
/* OK: same type, member by member assignment */
/* ILLEGAL: different types */
you can assign member by member: */
bb.i;
bb.j;
bb.d;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
187
CHAPTER 6
mikroC PRO for PIC
Language Reference
Unions
Union types are derived types sharing many of syntactic and functional features of
structure types. The key difference is that a union members share the same memory space.
Note: The mikroC PRO for PIC does not support anonymous unions (ANSI divergence).
Unions Declaration
Unions have the same declaration as structures, with the keyword union used
instead of struct
union tag { member-declarator-list };
Unlike structures’ members, the value of only one of union’s members can be stored
at any time. Here is a simple example:
union myunion {
int i;
double d;
char ch;
} mu, *pm;
// union tag is 'myunion'
The identifier mu, of the type myunion, can be used to hold a 2-byte int, 4-byte double or single-byte char, but only one of them at a certain moment. The identifier pm
is a pointer to union myunion.
Size of Union
The size of a union is the size of its largest member. In our previous example, both
sizeof(union myunion) and sizeof(mu) return 4, but 2 bytes are unused
(padded) when mu holds the int object, and 3 bytes are unused when mu holds
char.
Union Member Access
Union members can be accessed with the structure member selectors (. and ->), be
careful when doing this:
/* Referring to declarations from the example above: */
pm = &mu;
mu.d = 4.016;
tmp = mu.d; // OK: mu.d = 4.016
188
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
tmp = mu.i;
// peculiar result
pm->i = 3;
tmp = mu.i;
// OK: mu.i = 3
The third line is legal, since mu.i is an integral type. However, the bit pattern in mu.i
corresponds to parts of the previously assigned double. As such, it probably won’t
provide an useful integer interpretation.
When properly converted, a pointer to a union points to each of its members, and
vice versa.
Bit Fields
Bit fields are specified numbers of bits that may or may not have an associated identifier. Bit fields offer a way of subdividing structures into named parts of user-defined
sizes.
Structures and unions can contain bit fields that can be up to 16 bits.
You cannot take the address of a bit field.
Note: If you need to handle specific bits of 8-bit variables (char and unsigned
short) or registers, you don’t need to declare bit fields. Much more elegant solution
is to use the mikroC PRO for PIC’s intrinsic ability for individual bit access — see
Accessing Individual Bits for more information.
Bit Fields Declaration
Bit fields can be declared only in structures and unions. Declare a structure normally and assign individual fields like this (fields need to be unsigned):
struct tag {
unsigned bitfield-declarator-list;
}
Here, tag is an optional name of the structure; bitfield-declarator-list is a
list of bit fields. Each component identifer requires a colon and its width in bits to be
explicitly specified. Total width of all components cannot exceed two bytes (16 bits).
As an object, bit fields structure takes two bytes. Individual fields are packed within
two bytes from right to left. In bitfield-declarator-list, you can omit identifier(s) to create an artificial “padding”, thus skipping irrelevant bits.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
189
CHAPTER 6
mikroC PRO for PIC
Language Reference
For example, if there is a need to manipulate only bits 2–4 of a register as one block,
create a structure like this:
struct {
unsigned : 2,
mybits : 3;
// Skip bits 0 and 1, no identifier here
// Relevant bits 2, 3 and 4
// Bits 5, 6 and 7 are implicitly left out
} myreg;
Here is an example:
typedef struct
lo_nibble :
hi_nibble :
high_byte :
{
4;
4;
8;} myunsigned;
which declares the structured type myunsigned containing three components:
lo_nibble (bits 3..0), hi_nibble (bits 7..4) and high_byte (bits 15..8).
Bit Fields Access
Bit fields can be accessed in the same way as the structure members. Use direct
and indirect member selector (. and ->). For example, we could work with our previously declared myunsigned like this:
// This example writes low byte of bit field of myunsigned type to
PORT0:
myunsigned Value_For_PORT0;
void main() {
...
Value_For_PORT0.lo_nibble = 7;
Value_For_PORT0.hi_nibble = 0x0C;
P0 = *(char *) (void *)&Value_For_PORT0;
// typecasting :
// 1. address of structure to pointer to void
// 2. pointer to void to pointer to char
// 3. dereferencing to obtain the value
}
190
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Type Conversions
The mikroC PRO for PIC is a strictly typed language, with each operator, statement
and function demanding appropriately typed operands/arguments. However, we
often have to use objects of “mismatching” types in expressions. In that case, type
conversion is needed.
Conversion of object of one type means that object's type is changed into another
type. The mikroC PRO for PIC defines a set of standard conversions for built-in
types, provided by compiler when necessary. For more information, refer to the
Standard Conversions.
Conversion is required in the following situations:
- if a statement requires an expression of particular type (according to language definition), and we use an expression of different type,
- if an operator requires an operand of particular type, and we use an operand of different type,
- if a function requires a formal parameter of particular type, and we pass it an object
of different type,
- if an expression following the keyword return does not match the declared function return type,
- if intializing an object (in declaration) with an object of different type.
In these situations, compiler will provide an automatic implicit conversion of types, without
any programmer's interference. Also, the programmer can demand conversion explicitly by
means of the typecast operator. For more information, refer to the Explicit Typecasting.
Standard Conversions
When using arithmetic expression, such as a + b, where a and b are of different
arithmetic types, the mikroC PRO for PIC performs implicit type conversions before
the expression is evaluated. These standard conversions include promotions of
“lower” types to “higher” types in the interests of accuracy and consistency.
Assigning a signed character object (such as a variable) to an integral object results
in automatic sign extension. Objects of type signed char always use sign extension;
objects of type unsigned char always has its high byte set to zero when converted
to int.
Converting a longer integral type to a shorter type truncates the higher order bits
and leaves low-order bits unchanged. Converting a shorter integral type to a longer
type either sign-extends or zero-fills the extra bits of the new value, depending on
whether the shorter type is signed or unsigned, respectively.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
191
CHAPTER 6
mikroC PRO for PIC
Language Reference
Note: Conversion of floating point data into integral value (in assignments or via
explicit typecast) produces correct results only if the float value does not exceed
the scope of destination integral type.
Details:
Here are the steps the mikroC PRO for PIC uses to convert the operands in an arithmetic expression:
First, any small integral types are converted according to the following rules:
1.
2.
3.
4.
5.
char converts to int
signed char converts to int, with the same value
short converts to int, with the same value, sign-extended
unsigned short converts to int, with the same value, zero-filled
enum converts to int, with the same value
After this, any two values associated with an operator are either int (including the
long and unsigned modifiers) or float (equivalent with double and long double
in the mikroC PRO for PIC).
1. If either operand is float, the other operand is converted to float.
2. Otherwise, if either operand is unsigned long, the other operand is converted to
unsigned long.
3. Otherwise, if either operand is long, then the other operand is converted to long.
4. Otherwise, if either operand is unsigned, then the other operand is converted to
unsigned.
5. Otherwise, both operands are int.
The result of the expression is the same type as that of the two operands.
Here are several examples of implicit conversion:
2 + 3.1
5 / 4 * 3.
3. * 5 / 4
/* ? 2. + 3.1 ? 5.1 */
/* ? (5/4)*3. ? 1*3. ? 1.*3. ? 3. */
/* ? (3.*5)/4 ? (3.*5.)/4 ? 15./4 ? 15./4. ? 3.75 */
Pointer Conversion
Pointer types can be converted to other pointer types using the typecasting mechanism:
char *str;
int *ip;
str = (char *)ip;
More generally, the cast type* will convert a pointer to type “pointer to type”.
192
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Explicit Type Concersions (Typecasting)
In most situations, compiler will provide an automatic implicit conversion of types
where needed, without any user's interference. Also, the user can explicitly convert
an operand to another type using the prefix unary typecast operator:
(type) object
This will convert object to a specified type. Parentheses are mandatory.
For example:
/* Let's have two variables of char type: */
char a, b;
/* Following line will coerce a to unsigned int: */
(unsigned int) a;
/* Following line will coerce a to double,
then coerce b to double automatically,
resulting in double type value: */
(double) a + b;
// equivalent to ((double) a) + b;
Declarations
A declaration introduces one or several names to a program – it informs the compiler what the name represents, what its type is, what operations are allowed with it,
etc. This section reviews concepts related to declarations: declarations, definitions,
declaration specifiers, and initialization.
The range of objects that can be declared includes:
- Variables
- Constants
- Functions
- Types
- Structure, union and enumeration tags
- Structure members
- Union members
- Arrays of other types
- Statement labels
- Preprocessor macros
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
193
CHAPTER 6
Language Reference
mikroC PRO for PIC
Declarations and Definitions
Defining declarations, also known as definitions, beside introducing the name of an
object, also establish the creation (where and when) of an object; that is, the allocation of physical memory and its possible initialization. Referencing declarations, or
just declarations, simply make their identifiers and types known to the compiler.
Here is an overview. Declaration is also a definition, except if:
- it declares a function without specifying its body
- it has the extern specifier, and has no initializator or body (in case of func.)
- it is the typedef declaration
There can be many referencing declarations for the same identifier, especially in a
multifile program, but only one defining declaration for that identifier is allowed.
For example:
/* Here is a nondefining declaration of function max; */
/* it merely informs compiler that max is a function */
int max();
/* Here is a definition of function max: */
int max(int x, int y) {
return (x >= y) ? x : y;
}
/* Definition of variable i: */
int i;
/* Following line is an error, i is already defined! */
int i;
Declarations and Declarators
The declaration contains specifier(s) followed by one or more identifiers (declarators). The declaration begins with optional storage class specifiers, type specifiers,
and other modifiers. The identifiers are separated by commas and the list is terminated by a semicolon.
Declarations of variable identifiers have the following pattern:
storage-class [type-qualifier] type var1 [=init1], var2 [=init2], ... ;
where var1, var2,... are any sequence of distinct identifiers with optional initializers.
Each of the variables is declared to be of type; if omitted, type defaults to int. The
specifier storage-class can take the values extern, static, register, or the
194
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
default auto. Optional type-qualifier can take values const or volatile. For
more details, refer to Storage Classes and Type Qualifiers.
For example:
/* Create 3 integer variables called x, y, and z
and initialize x and y to the values 1 and 2, respectively: */
int x = 1, y = 2, z;
// z remains uninitialized
/* Create a floating-point variable q with static modifier,
and initialize it to 0.25: */
static float q = .25;
These are all defining declarations; storage is allocated and any optional initializers
are applied.
Linkage
An executable program is usually created by compiling several independent translation units, then linking the resulting object files with preexisting libraries. A term
translation unit refers to a source code file together with any included files, but without the source lines omitted by conditional preprocessor directives. A problem arises when the same identifier is declared in different scopes (for example, in different
files), or declared more than once in the same scope.
The linkage is a process that allows each instance of an identifier to be associated
correctly with one particular object or function. All identifiers have one of two linkage
attributes, closely related to their scope: external linkage or internal linkage. These
attributes are determined by the placement and format of your declarations, together with an explicit (or implicit by default) use of the storage class specifier static or
extern.
Each instance of a particular identifier with external linkage represents the same
object or function throughout the entire set of files and libraries making up the program. Each instance of a particular identifier with internal linkage represents the
same object or function within one file only.
Linkage Rules
Local names have internal linkage; the same identifier can be used in different files
to signify different objects. Global names have external linkage; identifier signifies
the same object throughout all program files.
If the same identifier appears with both internal and external linkage within the same
file, the identifier will have internal linkage.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
195
CHAPTER 6
Language Reference
mikroC PRO for PIC
Internal Linkage Rules
1. names having file scope, explicitly declared as static, have internal linkage
2. names having file scope, explicitly declared as const and not explicitly declared
as extern, have internal linkage
3. typedef names have internal linkage
4. enumeration constants have internal linkage
External Linkage Rules
1. names having file scope, that do not comply to any of previously stated internal
linkage rules, have external linkage
The storage class specifiers auto and register cannot appear in an external declaration. No more than one external definition can be given for each identifier in a
translation unit declared with internal linkage. An external definition is an external
declaration that defines an object or a function and also allocates a storage. If an
identifier declared with external linkage is used in an expression (other than as part
of the operand of sizeof), then exactly one external definition of that identifier must
be somewhere in the entire program.
Storage Classes
Associating identifiers with objects requires each identifier to have at least two attributes: storage class and type (sometimes referred to as data type). The mikroC PRO
for PIC compiler deduces these attributes from implicit or explicit declarations in the
source code.
A storage class dictates the location (data segment, register, heap, or stack) of
object and its duration or lifetime (the entire running time of the program, or during
execution of some blocks of code). A storage class can be established by the syntax of a declaration, by its placement in the source code, or by both of these factors:
storage-class type identifier
The storage class specifiers in the mikroC PRO for PIC are:
196
auto
register
static
extern
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Auto
The auto modifer is used to define that a local variable has a local duration. This is
the default for local variables and is rarely used. auto can not be used with globals.
See also Functions.
Register
At the moment the modifier register technically has no special meaning. The
mikroC PRO for PIC compiler simply ignores requests for register allocation.
Static
A global name declared with the static specifier has internal linkage, meaning that
it is local for a given file. See Linkage for more information.
A local name declared with the static specifier has static duration. Use static with
a local variable to preserve the last value between successive calls to that function.
See Duration for more information.
Extern
A name declared with the extern specifier has external linkage, unless it has been
previously declared as having internal linkage. A declaration is not a definition if it
has the extern specifier and is not initialized. The keyword extern is optional for
a function prototype.
Use the extern modifier to indicate that the actual storage and initial value of the
variable, or body of the function, is defined in a separate source code module. Functions declared with extern are visible throughout all source files in the program,
unless the function is redefined as static.
See Linkage for more information.
Type Qualifiers
The type qualifiers const and volatile are optional in declarations and do not
actually affect the type of declared object.
Qualifiers Const
The qualifier const implies that a declared object will not change its value during
runtime. In declarations with the const qualifier all objects need to be initialized.
The mikroC PRO for PIC treats objects declared with the const qualifier the same
as literals or preprocessor constants. If the user tries to change an object declared
with the const qualifier compiler will report an error.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
197
CHAPTER 6
mikroC PRO for PIC
Language Reference
For example:
const double PI = 3.14159;
Qualifier Volatile
The qualifier volatile implies that a variable may change its value during runtime
independently from the program. Use the volatile modifier to indicate that a variable
can be changed by a background routine, an interrupt routine, or I/O port. Declaring
an object to be volatile warns the compiler not to make assumptions concerning the
value of an object while evaluating expressions in which it occurs because the value
could be changed at any moment.
Typedef Specifier
The specifier typedef introduces a synonym for a specified type. The typedef declarations are used to construct shorter or more convenient names for types already
defined by the language or declared by the user.
The specifier typedef stands first in the declaration:
typedef <type_definition> synonym;
The typedef keyword assigns synonym to <type_definition>. The synonym
needs to be a valid identifier.
A declaration starting with the typedef specifier does not introduce an object or a
function of a given type, but rather a new name for a given type. In other words, the
typedef declaration is identical to a “normal” declaration, but instead of objects, it
declares types. It is a common practice to name custom type identifiers with starting capital letter — this is not required by the mikroC PRO for PIC. For example:
/* Let's declare a synonym for "unsigned long int" */
typedef unsigned long int Distance;
/* Now, synonym "Distance" can be used as type identifier: */
Distance i; // declare variable i of unsigned long int
In the typedef declaration, as in any other declaration, several types can be
declared at once. For example:
typedef int
*Pti, Array[10];
Here, Pti is a synonym for type “pointer to int”, and Array is a synonym for type
“array of 10 int elements”.
asm Declarations
198
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
The mikroC PRO for PIC allows embedding assembly in the source code by means
of the asm declaration. The declarations _asm and _asm are also allowed in the
mikroC PRO for PIC and have the same meaning. Note that numerals cannnot be
used as absolute addresses for SFR or GPR variables in assembly instructions.
Symbolic names may be used instead (listing will display these names as well as
addresses).
Assembly instructions can be grouped by the asm keyword (or _, or _asm):
asm {
block of assembly instructions
}
There are two ways to embeding single assembly instruction to C code:
asm assembly instruction;
and
asm assembly instruction
Note: semicolon and LF are terminating asm scope for single assembly instructions.
This is the reason why the following syntax is not asm block:
asm
{
block of assembly instructions
}
This code will be interpreted as single empty asm line followed by C compound
statement.
The mikroC PRO for PIC comments (both single-line and multi-line) are allowed in
embedded assembly code.
if you have a global variable "g_var", that is of type long (i.e. 4 bytes), you are to
access it like this:
MOVF
_g_var+0, 0
MOVF
_g_var+1, 0
MOVF
_g_var+2, 0
MOVF
_g_var+3, 0
... etc.
;puts least-significant byte of g_var in W register
;second byte of _g_var; corresponds to Hi(g_var)
;Higher(g_var)
;Highest(g_var)
If you want to know details about asm syntax supported by mikroC PRO for PIC it
is recomended to study asm and lst files generated by compiler. It is also recomended to check "Include source lines in output files" checkbox in Output settings
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
199
CHAPTER 6
Language Reference
mikroC PRO for PIC
Note: Compiler doesn't expect memory banks to be changed inside the assembly
code. If the user wants to do this, then he must restore the previous bank selection.
Related topics: mikroC PRO for PIC specifcs
Initialization
The initial value of a declared object can be set at the time of declaration (initialization). A part of the declaration which specifies the initialization is called initializer.
Initializers for globals and static objects must be constants or constant expressions. The initializer for an automatic object can be any legal expression that evaluates to an assignment-compatible value for the type of the variable involved.
Scalar types are initialized with a single expression, which can optionally be enclosed
in braces. The initial value of an object is that of the expression; the same constraints
for type and conversions as for simple assignments are applied to initializations too.
For example:
int i = 1;
char *s = "hello";
struct complex c = {0.1, -0.2};
// where 'complex' is a structure (float, float)
For structures or unions with automatic storage duration, the initializer must be one
of the following:
- An initializer list.
- A single expression with compatible union or structure type. In this case, the initial
value of the object is that of the expression.
For example:
struct dot {int x; int y; } m = {30, 40};
For more information, refer to Structures and Unions.
Also, you can initialize arrays of character type with a literal string, optionally
enclosed in braces. Each character in the string, including the null terminator, initializes successive elements in the array. For more information, refer to Arrays.
Automatic Initialization
The mikroC PRO for PIC does not provide automatic initialization for objects. Unini-
200
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
tialized globals and objects with static duration will take random values from memory.
FUNCTIONS
Functions are central to C programming. Functions are usually defined as subprograms which return a value based on a number of input parameters. Return value
of the function can be used in expressions – technically, function call is considered
to be an expression like any other.
C allows a function to create results other than its return value, referred to as side
effects. Often, the function return value is not used at all, depending on the side
effects. These functions are equivalent to procedures of other programming languages, such as Pascal. C does not distinguish between procedure and function –
functions play both roles.
Each program must have a single external function named main marking the entry
point of the program. Functions are usually declared as prototypes in standard or
user-supplied header files, or within program files. Functions have external linkage
by default and are normally accessible from any file in the program. This can be
restricted by using the static storage class specifier in function declaration (see
Storage Classes and Linkage).
Note: Check the PIC Specifics for more information on functions’ limitations on the
PIC compliant MCUs.
Function Declaration
Functions are declared in user's source files or made available by linking precompiled libraries. The declaration syntax of the function is:
type function_name(parameter-declarator-list);
The function_name must be a valid identifier. This name is used to call the function; see Function Calls for more information.
type represents the type of function result, and can be of any standard or userdefined type. For functions that do not return value the void type should be used.
The type can be omitted in global function declarations, and function will assume the
int type by default.
Function type can also be a pointer. For example, float* means that a function
result is a pointer to float. The generic pointer void* is also allowed.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
201
CHAPTER 6
mikroC PRO for PIC
Language Reference
The function cannot return an array or another function.
Within parentheses, parameter-declarator-list is a list of formal arguments
that function takes. These declarators specify the type of each function parameter.
The compiler uses this information to check validity of function calls. If the list is
empty, a function does not take any arguments. Also, if the list is void, a function
also does not take any arguments; note that this is the only case when void can
be used as an argument’s type.
Unlike variable declaration, each argument in the list needs its own type specifier
and possible qualifier const or volatile.
Function Prototype
A function can be defined only once in the program, but can be declared several
times, assuming that the declarations are compatible. When declaring a function,
the formal argument's identifier does not have to be specified, but its type does.
This kind of declaration, commonly known as the function prototype, allows better
control over argument number, type checking and type conversions. The name of a
parameter in function prototype has its scope limited to the prototype. This allows
one parameter identifier to have different name in different declarations of the same
function:
/* Here are two prototypes of the same function: */
int test(const char*)
int test(const char*p)
/* declares function test */
/* declares the same function test */
Function prototypes are very useful in documenting code. For example, the function
Cf_Init takes two parameters: Control Port and Data Port. The question is, which
is which? The function prototype:
void Cf_Init(char *ctrlport, char *dataport);
makes it clear. If a header file contains function prototypes, the user can read that
file to get the information needed for writing programs that call these functions. If a
prototype parameter includes an identifier, then the indentifier is only used for error
checking.
202
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Function Definition
Function definition consists of its declaration and function body. The function body
is technically a block – a sequence of local definitions and statements enclosed
within braces {}. All variables declared within function body are local to the function,
i.e. they have function scope.
The function itself can be defined only within the file scope, which means that function declarations cannot be nested.
To return the function result, use the return statement. The statement return in
functions of the void type cannot have a parameter – in fact, the return statement
can be omitted altogether if it is the last statement in the function body.
Here is a sample function definition:
/* function max returns greater one of its 2 arguments: */
int max(int x, int y) {
return (x>=y) ? x : y;
}
Here is a sample function which depends on side effects rather than return value:
/* function converts Descartes coordinates (x,y) to polar (r,fi): */
#include <math.h>
void polar(double x, double y, double *r, double *fi) {
*r = sqrt(x * x + y * y);
*fi = (x == 0 && y == 0) ? 0 : atan2(y, x);
return; /* this line can be omitted */
}
Function Reentrancy
Functions reentrancy is allowed if the function has no parameters and local variables, or if the local variables are placed in the Rx space. Remember that the PIC
has stack and memory limitations which can varies greatly between MCUs.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
203
CHAPTER 6
Language Reference
mikroC PRO for PIC
Function Calls and Argument Conversion
Function Calls
A function is called with actual arguments placed in the same sequence as their
matching formal parameters. Use the function-call operator ():
function_name(expression_1, ... , expression_n)
Each expression in the function call is an actual argument. Number and types of
actual arguments should match those of formal function parameters. If types do not
match, implicit type conversions rules will be applied. Actual arguments can be of
any complexity, but order of their evaluation is not specified.
Upon function call, all formal parameters are created as local objects initialized by
the values of actual arguments. Upon return from a function, a temporary object is
created in the place of the call, and it is initialized by the expression of the return
statement. This means that the function call as an operand in complex expression
is treated as a function result.
If the function has no result (type void) or the result is not needed, then the function call can be written as a self-contained expression.
In C, scalar arguments are always passed to the function by value. The function can
modify the values of its formal parameters, but this has no effect on the actual arguments in the calling routine. A scalar object can be passed by the address if a formal parameter is declared as a pointer. The pointed object can be accessed by
using the indirection operator * .
// For example, Soft_Uart_Read takes the pointer to error variable,
// so it can change the value of an actual argument:
Soft_Uart_Read(&error);
// The following code would be wrong; you would pass the value
// of error variable to the function:
Soft_Uart_Read(error);
Argument Conversions
If a function prototype has not been previously declared, the mikroC PRO for PIC
converts integral arguments to a function call according to the integral widening
(expansion) rules described in Standard Conversions. If a function prototype is in
scope, the mikroC PRO for PIC converts the passed argument to the type of the
declared parameter according to the same conversion rules as in assignment statements.
204
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
If a prototype is present, the number of arguments must match. The types need to
be compatible only to the extent that an assignment can legally convert them. The
user can always use an explicit cast to convert an argument to a type that is acceptable to a function prototype.
Note: If the function prototype does not match the actual function definition, the mikroC
PRO for PIC will detect this if and only if that definition is in the same compilation unit
as the prototype. If you create a library of routines with the corresponding header file of
prototypes, consider including that header file when you compile the library, so that any
discrepancies between the prototypes and actual definitions will be detected.
The compiler is also able to force arguments to change their type to a proper one.
Consider the following code:
int limit = 32;
char ch = 'A';
long res;
// prototype
extern long func(long par1, long par2);
main() {
...
res = func(limit, ch);
}
// function call
Since the program has the function prototype for func, it converts limit and ch to
long, using the standard rules of assignment, before it places them on the stack for
the call to func.
Without the function prototype, limit and ch would be placed on the stack as an
integer and a character, respectively; in that case, the stack passed to func will not
match size or content that func expects, which can cause problems.
Ellipsis ('...') Operator
The ellipsis ('...') consists of three successive periods with no whitespace intervening.
An ellipsis can be used in the formal argument lists of function prototypes to indicate a
variable number of arguments, or arguments with varying types. For example:
void func (int n, char ch, ...);
This declaration indicates that func will be defined in such a way that calls must have
at least two arguments, int and char, but can also have any number of additional arguments.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
205
CHAPTER 6
Language Reference
mikroC PRO for PIC
Example:
#include <stdarg.h>
int addvararg(char a1,...){
va_list ap;
char temp;
va_start(ap,a1);
while( temp = va_arg(ap,char))
a1 += temp;
return a1;
}
int res;
void main() {
res = addvararg(1,2,3,4,5,0);
res = addvararg(1,2,3,4,5,6,7,8,9,10,0);
}
206
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
OPERATORS
Operators are tokens that trigger some computation when applied to variables and
other objects in an expression.
Arithmetic Operators
Assignment Operators
Bitwise Operators
Logical Operators
Reference/Indirect Operators
Relational Operators
Structure Member Selectors
Comma Operator ,
Conditional Operator ? :
Array subscript operator []
Function call operator ()
sizeof Operator
Preprocessor Operators # and ##
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
207
CHAPTER 6
mikroC PRO for PIC
Language Reference
Operators Presidence and Associativity
There are 15 precedence categories, some of them contain only one operator.
Operators in the same category have equal precedence.
If duplicates of operators appear in the table, the first occurrence is unary and the
second binary. Each category has an associativity rule: left-to-right ( ), or right-toleft ( ). In the absence of parentheses, these rules resolve a grouping of expressions with operators of equal precedence.
Precedence Operands
15
Operators
2
()
!
~
&
Associativity
[]
.
->
++
-+
(type)
sizeof
*
14
1
13
2
12
2
+
11
2
10
2
9
2
8
2
&
7
2
^
6
2
|
5
2
&&
4
2
||
3
3
2
2
1
2
*
<
/
%
-
<<
>>
<=
>
==
!=
>=
?:
= *=
/=
%= +=
|= <<=
-=
>>
,
&=
^=
Arithmetic Operators
Arithmetic operators are used to perform mathematical computations. They have
numerical operands and return numerical results. The type char technically represents small integers, so the char variables can be used as operands in arithmetic
operations.
All arithmetic operators associate from left to right.
208
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Operator
Operation
Precedence
Binary Operators
+
addition
12
-
subtraction
12
*
multiplication
13
/
division
13
%
modulus operator returns the remainder of integer
division (cannot be used with floating points)
13
Unary Operators
+
unary plus does not affect the operand
14
-
unary minus changes the sign of the operand
14
++
--
increment adds one to the value of the operand.
Postincrement adds one to the value of the operand
after it evaluates; while preincrement adds one
before it evaluates
decrement subtracts one from the value of the
operand. Postdecrement subtracts one from the
value of the operand after it evaluates; while predecrement subtracts one before it evaluates
14
14
Note: Operator * is context sensitive and can also represent the pointer reference
operator.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
209
CHAPTER 6
mikroC PRO for PIC
Language Reference
Binary Arithmetic Operators
Division of two integers returns an integer, while remainder is simply truncated:
/* for example: */
7 / 4;
/* equals 1 */
7 * 3 / 4;
/* equals 5 */
/* but: */
7. * 3. / 4.;
/* equals 5.25 because we are working with floats */
Remainder operand % works only with integers; the sign of result is equal to the sign
of the first operand:
/* for example: */
9 % 3;
/* equals 0 */
7 % 3;
/* equals 1 */
-7 % 3;
/* equals -1 */
Arithmetic operators can be used for manipulating characters:
'A' + 32;
'G' - 'A' + 'a';
/* equals 'a' (ASCII only) */
/* equals 'g' (both ASCII and EBCDIC) */
Unary Arithmetic Operators
Unary operators ++ and -- are the only operators in C which can be either prefix
(e.g. ++k, --k) or postfix (e.g. k++, k--).
When used as prefix, operators ++ and -- (preincrement and predecrement) add or
subtract one from the value of the operand before the evaluation. When used as suffix, operators ++ and -- (postincrement and postdecrement) add or subtract one
from the value of the operand after the evaluation.
For example:
int j = 5;
j = ++k;
/* k = k + 1, j = k, which gives us j = 6, k = 6 */
but:
int j = 5;
j = k++;
210
/* j = k, k = k + 1, which gives us j = 5, k = 6 */
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Relational Operators
Use relational operators to test equality or inequality of expressions. If an expression evaluates to be true, it returns 1; otherwise it returns 0.
All relational operators associate from left to right.
Relational Operators Overview
Operator
Operation
Precedence
==
equal
9
!=
not equal
9
>
greater than
10
<
less than
10
>=
greater than or equal
10
<=
less than or equal
10
Relational Operators in Expressions
Precedence of arithmetic and relational operators is designated in such a way to
allow complex expressions without parentheses to have expected meaning:
a + 5 >= c - 1.0 / e
/* ? (a + 5) >= (c - (1.0 / e)) */
Do not forget that relational operators return either 0 or 1. Consider the following
examples:
/* ok: */
5 > 7
10 <= 20
/* returns 0 */
/* returns 1 */
/* this can be tricky: */
8 == 13 > 5
/* returns 0, as: 8 == (13 > 5) ? 8 == 1
? 0 */
14 > 5 < 3
/* returns 1, as: (14 > 5) < 3 ? 1 < 3 ?
1 */
a < b < 5
/* returns 1, as: (a < b) < 5 ? (0 or 1)
< 5 ? 1*/
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
211
CHAPTER 6
mikroC PRO for PIC
Language Reference
Bitwise Operators
Use the bitwise operators to modify individual bits of numerical operands.
Bitwise operators associate from left to right. The only exception is the bitwise complement operator ~ which associates from right to left.
Bitwise Operators Overview
Operator
Operation
Precedence
&
bitwise AND; compares pairs of bits and returns 1 if
both bits are 1, otherwise returns 0
8
|
bitwise (inclusive) OR; compares pairs of bits and returns 1 if
either or both bits are 1, otherwise returns 0
6
^
bitwise exclusive OR (XOR); compares pairs of bits
and returns 1 if the bits are complementary, otherwise returns 0
7
~
bitwise complement (unary); inverts each bit
14
<<
bitwise shift left; moves the bits to the left, discards
the far left bit and assigns 0 to the far right bit.
11
>>
bitwise shift right; moves the bits to the right, discards the far right bit and if unsigned assigns 0 to
the far left bit, otherwise sign extends
11
Logical Operations on Bit Level
&
0
1
|
0
1
^
0
1
0
0
0
0
0
1
0
0
1
1
0
1
1
1
1
1
1
0
~
0
1
1
0
Bitwise operators &, | and ^ perform logical operations on the appropriate pairs of bits
of their operands. Operator ~ complements each bit of its operand. For example:
212
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
0x1234 & 0x5678
/* equals 0x1230 */
/* because ..
0x1234 : 0001 0010 0011 0100
0x5678 : 0101 0110 0111 1000
---------------------------&
: 0001 0010 0011 0000
.. that is, 0x1230 */
/* Similarly: */
0x1234 | 0x5678;
0x1234 ^ 0x5678;
~ 0x1234;
/* equals 0x567C */
/* equals 0x444C */
/* equals 0xEDCB */
Note: Operator & can also be a pointer reference operator. Refer to Pointers for
more information.
Bitwise Shift Operators
Binary operators << and >> move the bits of the left operand by a number of positions specified by the right operand, to the left or right, respectively. Right operand
has to be positive.
With shift left (<<), far left bits are discarded and “new” bits on the right are assigned
zeroes. Thus, shifting unsigned operand to the left by n positions is equivalent to
multiplying it by 2n if all discarded bits are zero. This is also true for signed operands
if all discarded bits are equal to a sign bit.
000001 <<
0x3801 <<
5;
4;
/* equals 000040 */
/* equals 0x8010, overflow! */
With shift right (>>), far right bits are discarded and the “freed” bits on the left are
assigned zeroes (in case of unsigned operand) or the value of a sign bit (in case of
signed operand). Shifting operand to the right by n positions is equivalent to dividing it by 2n.
0xFF56 >>
0xFF56u >>
4;
4;
/* equals 0xFFF5 */
/* equals 0x0FF5 */
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
213
CHAPTER 6
mikroC PRO for PIC
Language Reference
Bitwise versus Logical
Do not forget of the principle difference between how bitwise and logical operators
work. For example:
0222222 & 0555555;
0222222 && 0555555;
/* equals 000000 */
/* equals 1 */
~ 0x1234;
! 0x1234;
/* equals 0xEDCB */
/* equals 0 */
Logical Operators
Operands of logical operations are considered true or false, that is non-zero or zero.
Logical operators always return 1 or 0. Operands in a logical expression must be of
scalar type.
Logical operators && and || associate from left to right. Logical negation operator !
associates from right to left.
Logical Operators Overview
Operator
Operation
Precedence
&&
logical AND
5
||
logical OR
4
!
logical negation
14
Logical Operators
&&
0
x
||
0
x
0
0
0
0
0
1
x
0
1
x
1
1
!
0
x
1
0
Precedence of logical, relational, and arithmetic operators was designated in such
a way to allow complex expressions without parentheses to have an expected
meaning:
c >= '0' && c <= '9';
a + 1 == b || ! f(x);
/* reads as: (c >= '0') && (c <= '9') */
/* reads as: ((a + 1) == b) || (! (f(x))) */
Logical AND && returns 1 only if both expressions evaluate to be nonzero, otherwise
214
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
returns 0. If the first expression evaluates to false, the second expression will not be
evaluated. For example:
a > b && c < d;
/* reads as (a > b) && (c < d) */
/* if (a > b) is false (0), (c < d) will not be evaluated */
Logical OR || returns 1 if either of expression evaluates to be nonzero, otherwise
returns 0. If the first expression evaluates to true, the second expression is not evaluated. For example:
a && b || c && d; /* reads as: (a && b) || (c && d) */
/* if (a && b) is true (1), (c && d) will not be evaluated */
Logical Expressions and Side Effects
General rule regarding complex logical expressions is that the evaluation of consecutive logical operands stops at the very moment the final result is known. For example, if we have an expression a && b && c where a is false (0), then operands b
and c will not be evaluated. This is very important if b and c are expressions, as their
possible side effects will not take place!
Logical versus Bitwise
Be aware of the principle difference between how bitwise and logical operators
work. For example:
0222222 & 0555555
0222222 && 0555555
~ 0x1234
! 0x1234
/* equals 000000 */
/* equals 1 */
/* equals 0xEDCB */
/* equals 0 */
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
215
CHAPTER 6
Language Reference
mikroC PRO for PIC
Conditional Operator ? :
The conditional operator ? : is the only ternary operator in C. Syntax of the conditional operator is:
expression1 ? expression2 : expression3
The expression1 is evaluated first. If its value is true, then expression2 evaluates
and expression3 is ignored. If expression1 evaluates to false, then expression3
evaluates and expression2 is ignored. The result will be a value of either expression2 or expression3 depending upon which of them evaluates.
Note: The fact that only one of these two expressions evaluates is very important if
they are expected to produce side effects!
Conditional operator associates from right to left.
Here are a couple of practical examples:
/* Find max(a, b): */
max = ( a > b ) ? a : b;
/* Convert small letter to capital: */
/* (no parentheses are actually necessary) */
c = ( c >= 'a' && c <= 'z' ) ? ( c - 32 ) : c;
Conditional Operator Rules
expression1 must be a scalar expression; expression2 and expression3 must
obey one of the following rules:
1. Both expressions have to be of arithmetic type. expression2 and expression3
are subject to usual arithmetic conversions, which determines the resulting type.
2. Both expressions have to be of compatible struct or union types. The resulting
type is a structure or union type of expression2 and expression3.
3. Both expressions have to be of void type. The resulting type is void.
4. Both expressions have to be of type pointer to qualified or unqualified versions
of compatible types. The resulting type is a pointer to a type qualified with all type
qualifiers of the types pointed to by both expressions.
5. One expression is a pointer, and the other is a null pointer constant. The resulting type is a pointer to a type qualified with all type qualifiers of the types pointed to by both expressions.
6. One expression is a pointer to an object or incomplete type, and the other is a
pointer to a qualified or unqualified version of void. The resulting type is that of
the non-pointer-to-void expression.
216
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Assignment Operators
Unlike many other programming languages, C treats value assignment as operation
(represented by an operator) rather than instruction.
Simple Assignment Operator
For a common value assignment, a simple assignment operator (=) is used:
expression1=expression2
The expression1 is an object (memory location) to which the value of expression2
is assigned. Operand expression1 has to be lvalue and expression2 can be any
expression. The assignment expression itself is not lvalue.
If expression1 and expression2 are of different types, the result of the expression2 will be converted to the type of expression1, if necessary. Refer to Type
Conversions for more information.
Compound Assignment Operator
C allows more comlex assignments by means of compound assignment operators.
The syntax of compound assignment operators is:
expression1 op = expression2
where op can be one of binary operators +, -, *, /, %, &, |, ^, <<, or >>.
Thus, we have 10 different compound assignment operators: +=, -=, *=, /=, %=,
&=, |=, ^=, <<= and >>=. All of them associate from right to left. Spaces separating compound operators (e.g. +=) will generate an error.
Compound assignment has the same effect as
expression1 = expression1 op expression2
except the lvalue expression1 is evaluated only once. For example, expression1+= expression2 is the same as expression1 = expression1 + expression2.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
217
CHAPTER 6
mikroC PRO for PIC
Language Reference
Assignment Rules
For both simple and compound assignment, the operands expression1 and
expression2 must obey one of the following rules:
1. expression1 is of qualified or unqualified arithmetic type and expression2 is of
arithmetic type.
2. expression1 has a qualified or unqualified version of structure or union type
compatible with the type of expression2.
3. expression1 and expression2 are pointers to qualified or unqualified versions
of compatible types and the type pointed to by left has all qualifiers of the type
pointed to by right.
4. Either expression1 or expression2 is a pointer to an object or incomplete type
and the other is a pointer to a qualified or unqualified version of void. The type
pointed to by left has all qualifiers of the type pointed to by right.
5. expression1 is a pointer and expression2 is a null pointer constant.
Sizeof Operator
The prefix unary operator sizeof returns an integer constant that represents the
size of memory space (in bytes) used by its operand (determined by its type, with
some exceptions).
The operator sizeof can take either a type identifier or an unary expression as an
operand. You cannot use sizeof with expressions of function type, incomplete types,
parenthesized names of such types, or with lvalue that designates a bit field object.
Sizeof Applied to Expression
If applied to expression, the size of an operand is determined without evaluating the
expression (and therefore without side effects). The result of the operation will be
the size of the type of the expression’s result.
Sizeof Applied to Type
If applied to a type identifier, sizeof returns the size of the specified type. The unit
for type size is sizeof(char) which is equivalent to one byte. The operation sizeof(char) gives the result 1, whether char is signed or unsigned.
Thus:
sizeof(char)
sizeof(int)
sizeof(unsigned long)
sizeof(float)
218
/*
/*
/*
/*
returns
returns
returns
returns
1
2
4
4
*/
*/
*/
*/
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
When the operand is a non-parameter of array type, the result is the total number of
bytes in the array (in other words, an array name is not converted to a pointer type):
int i, j, a[10];
...
j = sizeof(a[1]);
i = sizeof(a);
/* j = sizeof(int) = 2 */
/* i = 10*sizeof(int) = 20 */
/* To get the number of elements in an array: */
int num_elem = i/j;
If the operand is a parameter declared as array type or function type, sizeof gives
the size of the pointer. When applied to structures and unions, sizeof gives the
total number of bytes, including any padding. The operator sizeof cannot be
applied to a function.
EXPRESSION
Expression is a sequence of operators, operands, and punctuators that specifies a
computation. Formally, expressions are defined recursively: subexpressions can be
nested without formal limit. However, the compiler will report an out-of-memory error
if it can’t compile an expression that is too complex.
In ANSI C, the primary expressions are: constant (also referred to as literal), identifier, and (expression), defined recursively.
Expressions are evaluated according to a certain conversion, grouping, associativity and precedence rules, which depends on the operators used, presence of parentheses and data types of the operands. The precedence and associativity of the
operators are summarized in Operator Precedence and Associativity. The way
operands and subexpressions are grouped does not necessarily specify the actual
order in which they are evaluated by the mikroC PRO for PIC.
Expressions can produce lvalue, rvalue, or no value. Expressions might cause side
effects whether they produce a value or not.
Comma Expressions
One of the specifics of C is that it allows using of comma as a sequence operator to
form so-called comma expressions or sequences. Comma expression is a commadelimited list of expressions – it is formally treated as a single expression so it can
be used in places where an expression is expected. The following sequence:
expression_1, expression_2;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
219
CHAPTER 6
Language Reference
mikroC PRO for PIC
results in the left-to-right evaluation of each expression, with the value and type of
expression_2 giving the result of the whole expression. Result of expression_1
is discarded.
Binary operator comma (,) has the lowest precedence and associates from left to
right, so that a, b, c is the same as (a, b), c. This allows writing sequences
with any number of expressions:
expression_1, expression_2, ... expression_n;
which results in the left-to-right evaluation of each expression, with the value and
type of expression_n giving the result of the whole expression. Results of other
expressions are discarded, but their (possible) side-effect do occur.
For example:
result = ( a = 5, b /= 2, c++ );
/* returns preincremented value of variable c,
but also intializes a, divides b by 2 and increments c */
result = ( x = 10, y = x + 3, x--, z -= x * 3 - --y );
/* returns computed value of variable z,
and also computes x and y */
Note
Do not confuse comma operator (sequence operator) with comma punctuator which
separates elements in a function argument list and initializator lists. To avoid ambiguity with commas in function argument and initializer lists, use parentheses. For
example,
func(i, (j = 1, j + 4), k);
calls the function func with three arguments (i, 5, k), not four.
220
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
STATEMENTS
Statements specify a flow of control as the program executes. In the absence of
specific jump and selection statements, statements are executed sequentially in the
order of appearance in the source code.
Statements can be roughly divided into:
-
Labeled Statements
Expression Statements
Selection Statements
Iteration Statements (Loops)
Jump Statements
Compound Statements (Blocks)
Labeled Statements
Each statement in a program can be labeled. A label is an identifier added before
the statement like this:
label_identifier: statement;
There is no special declaration of a label – it just “tags” the statement. label_identifier has a function scope and the same label cannot be redefined within the
same function.
Labels have their own namespace: label identifier can match any other identifier in
the program.
A statement can be labeled for two reasons:
1. The label identifier serves as a target for the unconditional goto statement,
2. The label identifier serves as a target for the switch statement. For this purpose,
only case and default labeled statements are used:
case constant-expression : statement
default : statement
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
221
CHAPTER 6
mikroC PRO for PIC
Language Reference
Expression Statements
Any expression followed by a semicolon forms an expression statement:
expression;
The mikroC PRO for PIC executes an expression statement by evaluating the
expression. All side effects from this evaluation are completed before the next
statement starts executing. Most of expression statements are assignment statements or function calls.
A null statement is a special case, consisting of a single semicolon (;). The null
statement does nothing, and therefore is useful in situations where the mikroC PRO
for PIC syntax expects a statement but the program does not need one. For example, a null statement is commonly used in “empty” loops:
for (; *q++ = *p++ ;);
/* body of this loop is a null statement */
Selection Statements
Selection or flow-control statements select one of alternative courses of action by
testing certain values. There are two types of selection statements:
if
switch
If Statement
The if statement is used to implement a conditional statement. The syntax of the
if statement is:
if (expression) statement1 [else statement2]
If expression evaluates to true, statement1 executes. If statement is false,
statement2 executes. The expression must evaluate to an integral value; otherwise, the condition is ill-formed. Parentheses around the expression are mandatory.
The else keyword is optional, but no statements can come between if and else.
222
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Nested If Statement
Nested if statements require additional attention. A general rule is that the nested
conditionals are parsed starting from the innermost conditional, with each else
bound to the nearest available if on its left:
if (expression1) statement1
else if (expression2)
if (expression3) statement2
else statement3
/* this belongs to: if (expression3) */
else statement4
/* this belongs to: if (expression2) */
Note
#if and #else preprocessor statements (directives) look similar to if and else
statements, but have very different effects. They control which source file lines are
compiled and which are ignored.
Switch Statements
The switch statement is used to pass control to a specific program branch, based
on a certain condition. The syntax of the switch statement is:
switch (expression) {
case constant-expression_1 : statement_1;
.
.
.
case constant-expression_n : statement_n;
[default : statement;]
}
First, the expression (condition) is evaluated. The switch statement then compares it to all available constant-expressions following the keyword case. If a match
is found, switch passes control to that matching case causing the statement following the match evaluates. Note that constant-expressions must evaluate to
integer. It is not possible to have two same constant expressions evaluating to
the same value.
Parentheses around expression are mandatory.
Upon finding a match, program flow continues normally: the following instructions
will be executed in natural order regardless of the possible case label. If no case
satisfies the condition, the default case evaluates (if the label default is specified).
For example, if a variable i has value between 1 and 3, the following switch would
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
223
CHAPTER 6
mikroC PRO for PIC
Language Reference
always return it as 4:
switch
case
case
case
}
(i) {
1: i++;
2: i++;
3: i++;
To avoid evaluating any other cases and relinquish control from switch, each case
should be terminated with break.
Here is a simple example with switch. Suppose we have a variable phase with only
3 different states (0, 1, or 2) and a corresponding function (event) for each of these
states. This is how we could switch the code to the appopriate routine:
switch (phase) {
case 0: Lo(); break;
case 1: Mid(); break;
case 2: Hi(); break;
case: Message("Invalid state!");
}
Nested Switch
Conditional switch statements can be nested – labels case and default are then
assigned to the innermost enclosing switch statement.
Iteration Statements (Loops)
Iteration statements allows to loop a set of statements. There are three forms of iteration statements in the mikroC PRO for PIC:
while
do
for
While Statement
The while keyword is used to conditionally iterate a statement. The syntax of the
while statement is:
while (expression) statement
The statement executes repeatedly until the value of expression is false. The test
takes place before statement is executed. Thus, if expression evaluates to false
224
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
on the first pass, the loop does not execute. Note that parentheses around expression are mandatory.
Here is an example of calculating scalar product of two vectors, using the while
statement:
int s = 0, i = 0;
while (i < n) {
s += a[i] * b[i];
i++;
}
Note that body of the loop can be a null statement. For example:
while (*q++ = *p++);
Do Statement
The do statement executes until the condition becomes false. The syntax of the do
statement is:
do statement while (expression);
The statement is executed repeatedly as long as the value of expression remains
non-zero. The expression is evaluated after each iteration, so the loop will execute
statement at least once.
Parentheses around expression are mandatory.
Note that do is the only control structure in C which explicitly ends with semicolon
(;). Other control structures end with statement, which means that they implicitly
include a semicolon or closing brace.
Here is an example of calculating scalar product of two vectors, using the do statement:
s = 0; i = 0;
do {
s += a[i] * b[i];
i++;
} while ( i < n );
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
225
CHAPTER 6
mikroC PRO for PIC
Language Reference
For Statement
The for statement implements an iterative loop. The syntax of the for statement
is:
for ([init-expression];
sion]) statement
[condition-expression];
[increment-expres-
Before the first iteration of the loop, init-expression sets the starting variables for
the loop. You cannot pass declarations in init-expression.
condition-expression is checked before the first entry into the block; statement
is executed repeatedly until the value of condition-expression is false. After
each iteration of the loop, increment-expression increments a loop counter. Consequently, i++ is functionally the same as ++i.
All expressions are optional. If condition-expression is left out, it is assumed to
be always true. Thus, “empty” for statement is commonly used to create an endless loop in C:
for ( ; ; ) statement
The only way to break out of this loop is by means of the break statement.
Here is an example of calculating scalar product of two vectors, using the for statement:
for ( s = 0, i = 0; i < n; i++ ) s += a[i] * b[i];
There is another way to do this:
for ( s = 0, i = 0; i < n; s += a[i] * b[i], i++ );
ugly */
/* valid, but
but it is considered a bad programming style. Although legal, calculating the sum
should not be a part of the incrementing expression, because it is not in the service
of loop routine. Note that null statement (;) is used for the loop body.
226
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Jump Statements
The jump statement, when executed, transfers control unconditionally. There are
four such statements in the mikroC PRO for PIC:
break
continue
goto
return
BREAK AND CONTINUE STATEMENTS
Break Statement
Sometimes it is necessary to stop the loop within its body. Use the break statement
within loops to pass control to the first statement following the innermost switch,
for, while, or do block.
break is commonly used in the switch statements to stop its execution upon the
first positive match. For example:
switch (state) {
case 0: Lo(); break;
case 1: Mid(); break;
case 2: Hi(); break;
default: Message("Invalid state!");
}
Continue Statement
The continue statement within loops is used to “skip the cycle”. It passes control
to the end of the innermost enclosing end brace belonging to a looping construct. At
that point the loop continuation condition is re-evaluated. This means that continue demands the next iteration if the loop continuation condition is true.
Specifically, the continue statement within the loop will jump to the marked position as it is shown below:
while (..) {
...
if (val>0) continue;
...
//
continue
jumps
here
}
do {
...
if (val>0) continue;
...
//
continue
jumps
here
while (..);
for (..;..;..) {
...
if (val>0) continue;
...
//
continue
jumps
here
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
227
CHAPTER 6
Language Reference
mikroC PRO for PIC
Goto Statement
The goto statement is used for unconditional jump to a local label — for more information on labels, refer to Labeled Statements. The syntax of the goto statement is:
goto label_identifier;
This will transfer control to the location of a local label specified by label_identifier. The label_identifier has to be a name of the label within the same function in which the goto statement is. The goto line can come before or after the label.
goto is used to break out from any level of nested control structures but it cannot be
used to jump into block while skipping that block’s initializations – for example, jumping into loop’s body, etc.
The use of goto statement is generally discouraged as practically every algorithm can
be realized without it, resulting in legible structured programs. One possible application
of the goto statement is breaking out from deeply nested control structures:
for (...) {
for (...) {
...
if (disaster) goto Error;
...
}
}
.
.
.
Error: /* error handling code */
Return Statement
The return statement is used to exit from the current function back to the calling
routine, optionally returning a value. The syntax is:
return [expression];
This will evaluate expression and return the result. Returned value will be automatically converted to the expected function type, if needed. The expression is
optional; if omitted, the function will return a random value from memory.
Note: The statement return in functions of the void type cannot have expression – in fact, the return statement can be omitted altogether if it is the last statement in the function body.
228
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Compound Statements (Blocks)
The compound statement, or block, is a list (possibly empty) of statements enclosed
in matching braces { }. Syntactically, the block can be considered to be a single
statement, but it also plays a role in the scoping of identifiers. An identifier declared
within the block has a scope starting at the point of declaration and ending at the
closing brace. Blocks can be nested to any depth up to the limits of memory.
For example, the for loop expects one statement in its body, so we can pass it a
compound statement:
for (i = 0; i < n; i++ ) {
int temp = a[i];
a[i] = b[i];
b[i] = temp;
}
Note that, unlike other statements, compound statements do not end with semicolon
(;), i.e. there is never a semicolon following the closing brace.
PREPROCESSOR
Preprocessor is an integrated text processor which prepares the source code for
compiling. Preprocessor allows:
- inserting text from a specifed file to a certain point in the code (see File Inclusion),
- replacing specific lexical symbols with other symbols (see Macros),
- conditional compiling which conditionally includes or omits parts of the code (see
Conditional Compilation).
Note that preprocessor analyzes text at token level, not at individual character level.
Preprocessor is controled by means of preprocessor directives and preprocessor
operators.
Preprocessor Directives
Any line in the source code with a leading # is taken as a preprocessing directive (or
control line), unless # is within a string literal, in a character constant, or embedded
in a comment. The initial # can be preceded or followed by a whitespace (excluding
new lines).
A null directive consists of a line containing the single character #. This line is always
ignored.
Preprocessor directives are usually placed at the beginning of the source code, but
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
229
CHAPTER 6
mikroC PRO for PIC
Language Reference
they can legally appear at any point in a program. The mikroC PRO for PIC preprocessor detects preprocessor directives and parses the tokens embedded in
them. A directive is in effect from its declaration to the end of the program file.
Here is one commonly used directive:
#include <math.h>
For more information on including files with the #include directive, refer to File
Inclusion.
The mikroC PRO for PIC supports standard preprocessor directives:
# (null directive)
#define
#elif
#else
#endif
#error
#if
#ifdef
#ifndef
#include
#line
#undef
Note: For the time being only funcall pragma is supported.
Line Continuation with Backslash (\)
To break directive into multiple lines end the line with a backslash (\):
#define MACRO
230
This directive continues to \
the following line.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Macros
Macros provide a mechanism for a token replacement, prior to compilation, with or
without a set of formal, function-like parameters.
Defining Macros and Macro Expansions
The #define directive defines a macro:
#define macro_identifier <token_sequence>
Each occurrence of macro_identifier in the source code following this control line will
be replaced in the original position with the possibly empty token_sequence (there are
some exceptions, which are discussed later). Such replacements are known as macro
expansions.token_sequence is sometimes called the body of a macro. An empty token
sequence results in the removal of each affected macro identifier from the source code.
No semicolon (;) is needed to terminate a preprocessor directive. Any character
found in the token sequence, including semicolons, will appear in a macro expansion.token_sequence terminates at the first non-backslashed new line encountered. Any sequence of whitespace, including comments in the token sequence, is
replaced with a single-space character.
After each individual macro expansion, a further scan is made of the newly expanded
text. This allows the possibility of using nested macros: the expanded text can contain
macro identifiers that are subject to replacement. However, if the macro expands into
something that looks like a preprocessing directive, such directive will not be recognized by the preprocessor. Any occurrences of the macro identifier found within literal
strings, character constants, or comments in the source code will not be expanded.
A macro won’t be expanded during its own expansion (so #define MACRO MACRO
won’t expand indefinitely).
Here is an example:
/* Here are some simple macros: */
#define ERR_MSG "Out of range!"
#define EVERLOOP for( ; ; )
/* which we could use like this: */
main() {
EVERLOOP {
...
if (error) { Lcd_Out_Cp(ERR_MSG); break; }
...
}
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
231
CHAPTER 6
Language Reference
mikroC PRO for PIC
Attempting to redefine an already defined macro identifier will result in a warning
unless a new definition is exactly the same token-by-token definition as the existing
one. The preferred strategy when definitions might exist in other header files is as
follows:
#ifndef BLOCK_SIZE
#define BLOCK_SIZE 512
#endif
The middle line is bypassed if BLOCK_SIZE is currently defined; if BLOCK_SIZE is
not currently defined, the middle line is invoked to define it.
Macros with Parameters
The following syntax is used to define a macro with parameters:
#define macro_identifier(<arg_list>) <token_sequence>
Note that there can be no whitespace between macro_identifier and “(”. The
optional arg_list is a sequence of identifiers separated by commas, like the argument list of a C function. Each comma-delimited identifier has the role of a formal
argument or placeholder.
Such macros are called by writing
macro_identifier(<actual_arg_list>)
in the subsequent source code. The syntax is identical to that of a function call;
indeed, many standard library C “functions” are implemented as macros. However,
there are some important semantic differences.
The optional actual_arg_list must contain the same number of comma-delimited token sequences, known as actual arguments, as found in the formal arg_list of
the #define line – there must be an actual argument for each formal argument. An
error will be reported if the number of arguments in two lists is not the same.
A macro call results in two sets of replacements. First, the macro identifier and the
parenthesis-enclosed arguments are replaced by the token sequence. Next, any formal arguments occurring in the token sequence are replaced by the corresponding
real arguments appearing in actual_arg_list. Like with simple macro definitions,
rescanning occurs to detect any embedded macro identifiers eligible for expansion.
Here is a simple example:
/* A simple macro which returns greater of its 2 arguments: */
232
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
#define _MAX(A, B) ((A) > (B)) ? (A) : (B)
/* Let's call it: */
x = _MAX(a + b, c + d);
/* Preprocessor will transform the previous line into:
x = ((a + b) > (c + d)) ? (a + b) : (c + d) */
It is highly recommended to put parentheses around each argument in the macro
body in order to avoid possible problems with operator precedence.
Undefining Macros
The #undef directive is used to undefine a macro.
#undef macro_identifier
The directive #undef detaches any previous token sequence from macro_identifier; the macro definition has been forgotten, and macro_identifier is undefined.
No macro expansion occurs within the #undef lines.
The state of being defined or undefined is an important property of an identifier,
regardless of the actual definition. The #ifdef and #ifndef conditional directives,
used to test whether any identifier is currently defined or not, offer a flexible mechanism for controlling many aspects of a compilation.
After a macro identifier has been undefined, it can be redefined with #define, using
the same or different token sequence.
File Inclusion
The preprocessor directive #include pulls in header files (extension .h) into the
source code. Do not rely on preprocessor to include source files (extension ) — see
Add/Remove Files from Project for more information.
The syntax of the #include directive has two formats:
#include <header_name>
#include "header_name"
The preprocessor removes the #include line and replaces it with the entire text of
a header file at that point in the source code. The placement of #include can therefore influence the scope and duration of any identifiers in the included file.
The difference between these two formats lies in searching algorithm employed in
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
233
CHAPTER 6
Language Reference
mikroC PRO for PIC
trying to locate the include file.
If the #include directive is used with the <header_name> version, the search is
made successively in each of the following locations, in this particular order:
1. the mikroC PRO for PIC installation folder › “include” folder
2. user's custom search paths
The "header_name" version specifies a user-supplied include file; the mikroC PRO
for PIC will look for the header file in the following locations, in this particular order:
1. the project folder (folder which contains the project file .mcppi)
2. the mikroC PRO for PIC installation folder › “include” folder
3. user's custom search paths
Explicit Path
By placing an explicit path in header_name, only that directory will be searched. For
example:
#include "C:\my_files\test.h"
Note
There is also a third version of the #include directive, rarely used, which assumes
that neither < nor “ appear as the first non-whitespace character following
#include:
#include macro_identifier
It assumes that macro definition that will expand macro identifier into a valid
delimited header name with either <header_name> or "header_name" formats
exists.
234
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
Preprocessor Operators
The # (pound sign) is a preprocessor directive when it occurs as the first non-whitespace character on a line. Also, # and ## perform operator replacement and merging during the preprocessor scanning phase.
Operator #
In C preprocessor, a character sequence enclosed by quotes is considered a token
and its content is not analyzed. This means that macro names within quotes are not
expanded.
If you need an actual argument (the exact sequence of characters within quotes) as
a result of preprocessing, use the # operator in macro body. It can be placed in front
of a formal macro argument in definition in order to convert the actual argument to
a string after replacement.
For example, let’s have macro LCD_PRINT for printing variable name and value on
Lcd:
#define LCD_PRINT(val) Lcd_Custom_Out_Cp(#val ": "); \
Lcd_Custom_Out_Cp(IntToStr(val));
Now, the following code,
LCD_PRINT(temp)
will be preprocessed to this:
Lcd_Custom_Out_Cp("temp" ": "); Lcd_Custom_Out_Cp(IntToStr(temp));
Operator ##
Operator ## is used for token pasting. Two tokens can be pasted(merged) together
by placing ## in between them (plus optional whitespace on either side). The preprocessor removes whitespace and ##, combining the separate tokens into one new
token. This is commonly used for constructing identifiers.
For example, see the definition of macro SPLICE for pasting two tokens into one
identifier:
#define SPLICE(x,y) x ## _ ## y
Now, the call SPLICE(cnt,2) will expand to the identifier cnt_2.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
235
CHAPTER 6
Language Reference
mikroC PRO for PIC
Note
The mikroC PRO for PIC does not support the older nonportable method of token
pasting using (l/**/r).
Conditional Compilation
Conditional compilation directives are typically used to make source programs easy
to change and easy to compile in different execution environments. The mikroC
PRO for PIC supports conditional compilation by replacing the appropriate sourcecode lines with a blank line.
All conditional compilation directives must be completed in the source or include file
in which they have begun.
Directives #if, #elif, #else and #endif
The conditional directives #if, #elif, #else, and #endif work very similar to
the common C conditional statements. If the expression you write after #if has a
nonzero value, the line group immediately following the #if directive is retained in
the translation unit.
The syntax is:
#if constant_expression_1
<section_1>
[#elif constant_expression_2
<section_2>]
...
[#elif constant_expression_n
<section_n>]
[#else
<final_section>]
#endif
Each #if directive in a source file must be matched by a closing #endif directive.
Any number of #elif directives can appear between #if and #endif directives, but
at most one #else directive is allowed. The #else directive, if present, must be the
last directive before #endif.
sections can be any program text that has meaning to compiler or preprocessor.
The preprocessor selects a single section by evaluating constant_expression fol-
236
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 6
mikroC PRO for PIC
Language Reference
lowing each #if or #elif directive until it finds a true (nonzero) constant expression. The constant expressions are subject to macro expansion.
If all occurrences of constant-expression are false, or if no #elif directives appear,
the preprocessor selects the text block after the #else clause. If the #else clause
is omitted and all instances of constant_expression in the #if block are false, no
section is selected for further processing.
Any processed section can contain further conditional clauses, nested to any depth.
Each nested #else, #elif, or #endif directive belongs to the closest preceding
the #if directive.
The net result of the preceding scenario is that only one code section (possibly
empty) will be compiled.
Directives #ifdef and #ifndef
The #ifdef and #ifndef directives can be used anywhere #if can be used and
they can test whether an identifier is currently defined or not. The line
#ifdef identifier
has exactly the same effect as #if 1 if identifier is currently defined, and the
same effect as #if 0 if identifier is currently undefined. The other directive,
#ifndef, tests true for the “not-defined” condition, producing the opposite results.
The syntax thereafter follows that of #if, #elif, #else, and #endif.
An identifier defined as NULL is considered to be defined.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
237
CHAPTER 6
Language Reference
238
mikroC PRO for PIC
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER
7
mikroC PRO for PIC
Libraries
mikroC PRO for PIC provides a set of libraries which simplify the initialization and
use of PIC compliant MCUs and their modules:
Use Library manager to include mikroC PRO for PIC Libraries in you project.
239
CHAPTER 7
mikroC PRO for PIC
Libraries
Hardware PIC-specific Libraries
- ADC Library
- CAN Library
- CANSPI Library
- Compact Flash Library
- EEPROM Library
- Ethernet PIC18FxxJ60 Library
- Flash Memory Library
- Graphic LCD Library
- I2C Library
- Keypad Library
- LCD Library
- Manchester Code Library
- Muliti Media Card Libray
- OneWire Library
- Port Expander Library
- PrintOut Library
- PS/2 Library
- PWM Library
- RS-485 Library
- Software I2C Library
- Software SPI Library
- Software UART Library
- Sound Library
- SPI Library
- SPI Ethernet Library
- SPI Graphic LCD Library
- SPI LCD Library
- SPI LCD8 Library
- SPI T6963C Graphic LCD Library
- T6963C Graphic LCD Library
- UART Library
- USB HID Library
Standard ANSI C Libraries
- ANSI
- ANSI
- ANSI
- ANSI
C
C
C
C
Ctype Library
Math Library
Stdlib Library
String Library
Miscellaneous Libraries
- Button Library
- Conversions Library
- Sprint Library
- Setjmp Library
- Time Library
- Trigonometry Library
See also Built-in Routines.
240
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
LIBRARY DEPENDENCIES
Certain libraries use (depend on)
function and/or variables, constants defined in other libraries.
Image below shows clear representation about these dependencies.
For example, SPI_Glcd uses
Glcd_Fonts and Port_Expander
library which uses SPI library.
This means that if you check
SPI_Glcd library in Library manager, all libraries on which it depends
will be checked too.
Related topics: Library manager,
PIC Libraries
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
241
CHAPTER 7
mikroC PRO for PIC
Libraries
HARDWARE LIBRARIES
- ADC Library
- CAN Library
- CANSPI Library
- Compact Flash Library
- EEPROM Library
- Ethernet PIC18FxxJ60 Library
- Flash Memory Library
- Graphic Lcd Library
- I˛C Library
- Keypad Library
- Lcd Library
- Manchester Code Library
- Multi Media Card Library
- OneWire Library
- Port Expander Library
- PrintOut Library
- PS/2 Library
- PWM Library
- RS-485 Library
- Software I˛C Library
- Software SPI Library
- Software UART Library
- Sound Library
- SPI Library
- SPI Ethernet Library
- SPI Graphic Lcd Library
- SPI Lcd Library
- SPI Lcd8 Library
- SPI T6963C Graphic Lcd Library
- T6963C Graphic Lcd Library
- UART Library
- USB HID Library
242
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
ADC LIBRARY
ADC (Analog to Digital Converter) module is available with a number of PIC MCU models. Library
function ADC_Read is included to provide you comfortable work with the module.
ADC_Read
Prototype
unsigned ADC_Read(unsigned short channel);
Returns
10-bit unsigned value read from the specified channel.
Initializes PIC’s internal ADC module to work with RC clock. Clock determines
the time period necessary for performing AD conversion (min 12TAD).
Description
Parameter channel represents the channel from which the analog value is to be
acquired. Refer to the appropriate datasheet for channel-to-pin mapping.
Requires
Nothing.
Example
unsigned tmp;
...
tmp = ADC_Read(2);
// Read analog value from channel 2
Library Example
This example code reads analog value from channel 2 and displays it on PORTB and PORTC.
unsigned int temp_res;
void main() {
ANSEL = 0x04;
TRISA = 0xFF;
ANSELH = 0;
TRISC = 0x3F;
TRISB = 0;
do {
temp_res = ADC_Read(2);
PORTB = temp_res;
PORTC = temp_res >> 2;
} while(1);
//
//
//
//
//
Configure AN2 pin as analog
PORTA is input
Configure other AN pins as digital I/O
Pins RC7, RC6 are outputs
PORTB is output
// Get 10-bit results of AD conversion
// Send lower 8 bits to PORTB
// Send 2 most significant bits to RC7, RC6
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
243
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
ADC HW connection
CAN LIBRARY
mikroC PRO for PIC provides a library (driver) for working with the CAN module.
CAN is a very robust protocol that has error detection and signalling, self–checking
and fault confinement. Faulty CAN data and remote frames are re-transmitted automatically, similar to the Ethernet.
Data transfer rates vary from up to 1 Mbit/s at network lengths below 40m to 250
Kbit/s at 250m cables, and can go even lower at greater network distances, down
to 200Kbit/s, which is the minimum bitrate defined by the standard. Cables used are
shielded twisted pairs, and maximum cable length is 1000m.
CAN supports two message formats:
Standard format, with 11 identifier bits, and
Extended format, with 29 identifier bits
Note: CAN Library is supported only by MCUs with the CAN module.
Note: Consult the CAN standard about CAN bus termination resistance.
244
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Routines
CANSetOperationMode
CANGetOperationMode
CANInitialize
CANSetBaudRate
CANSetMask
CANSetFilter
CANRead
CANWrite
Following routines are for the internal use by compiler only:
RegsToCANID
CANIDToRegs
Be sure to check CAN constants necessary for using some of the functions.
CANSetOperationMode
Prototype
void CANSetOperationMode(unsigned short mode, unsigned short
wait_flag);
Returns
Nothing.
Sets CAN to requested mode, i.e. copies mode to CANSTAT. Parameter mode
needs to be one of CAN_OP_MODE constants (see CAN constants).
Parameter wait_flag needs to be either 0 or 0xFF:
Description
If set to 0xFF, this is a blocking call – the function won’t “return” until the
requested mode is set.
If 0, this is a non-blocking call. It does not verify if CAN module is switched to
requested mode or not. Caller must use CANGetOperationMode to verify correct operation mode before performing mode specific operation.
Requires
CAN routines are currently supported only by P18XXX8 PIC MCUs. Microcontroller must be connected to CAN transceiver (MCP2551 or similar) which is
connected to CAN bus.
Example
CANSetOperationMode(_CAN_MODE_CONFIG, 0xFF);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
245
CHAPTER 7
mikroC PRO for PIC
Libraries
CANGetOperationMode
Prototype
unsigned short CANGetOperationMode();
Returns
Current opmode.
Description Function returns current operational mode of CAN module.
Requires
CAN routines are currently supported only by P18XXX8 PIC MCUs. Microcontroller must be connected to CAN transceiver (MCP2551 or similar) which is
connected to CAN bus.
Example
if (CANGetOperationMode() == _CAN_MODE_NORMAL) { ... };
CANInitialize
Prototype
void CANInitialize(char SJW, char BRP, char PHSEG1, char PHSEG2,
char PROPSEG, char CAN_CONFIG_FLAGS);
Returns
Nothing.
Initializes CAN. All pending transmissions are aborted. Sets all mask registers to 0 to
allow all messages. The Config mode is internaly set by this function. Upon a execution of this function Normal mode is set. Filter registers are set according to flag value:
Description
if (CAN_CONFIG_FLAGS & _CAN_CONFIG_VALID_XTD_MSG != 0)
// Set all filters to XTD_MSG
else if (config & _CAN_CONFIG_VALID_STD_MSG != 0)
// Set all filters to STD_MSG
else
// Set half the filters to STD, and the rest to XTD_MSG
Parameters:
SJW as defined in 18XXX8 datasheet (1–4)
BRP as defined in 18XXX8 datasheet (1–64)
PHSEG1 as defined in 18XXX8 datasheet (1–8)
PHSEG2 as defined in 18XXX8 datasheet (1–8)
PROPSEG as defined in 18XXX8 datasheet (1–8)
CAN_CONFIG_FLAGS is formed from predefined constants (see CAN constants)
246
Requires
CAN routines are currently supported only by P18XXX8 PIC MCUs. Microcontroller must be connected to CAN transceiver (MCP2551 or similar) which is connected to CAN bus.
Example
init = _CAN_CONFIG_SAMPLE_THRICE &
_CAN_CONFIG_PHSEG2_PRG_ON &
_CAN_CONFIG_STD_MSG
&
_CAN_CONFIG_DBL_BUFFER_ON &
_CAN_CONFIG_VALID_XTD_MSG &
_CAN_CONFIG_LINE_FILTER_OFF;
...
CANInitialize(1, 1, 3, 3, 1, init);
// initialize CAN
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
CANSetBoudRate
Prototype
void CANSetBaudRate(char SJW, char BRP, char PHSEG1, char PHSEG2,
char PROPSEG, char CAN_CONFIG_FLAGS);
Returns
Nothing.
Sets CAN baud rate. Due to complexity of CAN protocol, you cannot simply force
a bps value. Instead, use this function when CAN is in Config mode. Refer to
datasheet for details.
Parameters:
Description SJW as defined in 18XXX8 datasheet (1–4)
BRP as defined in 18XXX8 datasheet (1–64)
PHSEG1 as defined in 18XXX8 datasheet (1–8)
PHSEG2 as defined in 18XXX8 datasheet (1–8)
PROPSEG as defined in 18XXX8 datasheet (1–8)
CAN_CONFIG_FLAGS is formed from predefined constants (see CAN constants)
Requires
CAN must be in Config mode; otherwise the function will be ignored.
CAN routines are currently supported only by P18XXX8 PIC MCUs. Microcontroller must be connected to CAN transceiver (MCP2551 or similar) which is connected to CAN bus.
Example
init = _CAN_CONFIG_SAMPLE_THRICE &
_CAN_CONFIG_PHSEG2_PRG_ON &
_CAN_CONFIG_STD_MSG
&
_CAN_CONFIG_DBL_BUFFER_ON &
_CAN_CONFIG_VALID_XTD_MSG &
_CAN_CONFIG_LINE_FILTER_OFF;
...
CANSetBaudRate(1, 1, 3, 3, 1, init);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
247
CHAPTER 7
mikroC PRO for PIC
Libraries
CANSetMask
Prototype
void CANSetFilter(char CAN_FILTER, long value, char
CAN_CONFIG_FLAGS);
Returns
Nothing.
Function sets mask for advanced filtering of messages. Given value is bit adjusted to appropriate buffer mask registers.
Parameters:
Description
CAN_MASK is one of predefined constant values (see CAN constants)
value is the mask register value
CAN_CONFIG_FLAGS selects type of message to filter, either
_CAN_CONFIG_XTD_MSG or _CAN_CONFIG_STD_MSG
Requires
CAN must be in Config mode; otherwise the function will be ignored.
CAN routines are currently supported only by P18XXX8 PIC MCUs. Microcontroller must
be connected to CAN transceiver (MCP2551 or similar) which is connected to CAN bus.
Example
// Set all mask bits to 1, i.e. all filtered bits are relevant:
CANSetMask(_CAN_MASK_B1, -1, _CAN_CONFIG_XTD_MSG);
// Note that -1 is just a cheaper way to write 0xFFFFFFFF.
Complement will do the trick and fill it up with ones.
CANSetFilter
Prototype
void CANSetFilter(char CAN_FILTER, long value, char
CAN_CONFIG_FLAGS);
Returns
Nothing.
Function sets message filter. Given value is bit adjusted to appropriate buffer
mask registers.
Parameters:
Description
CAN_FILTER is one of predefined constant values (see CAN constants)
value is the filter register value
CAN_CONFIG_FLAGS selects type of message to filter, either
_CAN_CONFIG_XTD_MSG or
248
_CAN_CONFIG_STD_MSG
Requires
CAN must be in Config mode; otherwise the function will be ignored.
CAN routines are currently supported only by P18XXX8 PIC MCUs. Microcontroller must be
connected to CAN transceiver (MCP2551 or similar) which is connected to CAN bus.
Example
// Set id of filter B1_F1 to 3:
CANSetFilter(_CAN_FILTER_B1_F1, 3, _CAN_CONFIG_XTD_MSG);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
CANRead
Prototype
char CANRead(long *id, char *data, char *datalen, char
*CAN_RX_MSG_FLAGS);
Returns
Message from receive buffer or zero if no message found.
Function reads message from receive buffer. If at least one full receive buffer is found, it is
extracted and returned. If none found, function returns zero. Parameters:
Description id is message identifier
data is an array of bytes up to 8 bytes in length
datalen is data length, from 1–8.
CAN_RX_MSG_FLAGS is value formed from constants (see CAN constants)
Requires
CAN must be in mode in which receiving is possible.
CAN routines are currently supported only by P18XXX8 PIC MCUs. Microcontroller must be
connected to CAN transceiver (MCP2551 or similar) which is connected to CAN bus.
Example
char rcv, rx, len, data[8];
long id;
// ...
rx = 0;
// ...
rcv = CANRead(id, data, len, rx);
CANWrite
Prototype
unsigned short CANWrite(long id, char *data, char datalen, char
CAN_TX_MSG_FLAGS);
Returns
Returns zero if message cannot be queued (buffer full).
If at least one empty transmit buffer is found, function sends message on queue
for transmission. If buffer is full, function returns 0.
Parameters:
id is CAN message identifier. Only 11 or 29 bits may be used depending on
Description
message type (standard or extended)
data is array of bytes up to 8 bytes in length
datalen is data length from 1–8
CAN_TX_MSG_FLAGS is value formed from constants (see CAN constants)
Requires
CAN must be in Normal mode.
CAN routines are currently supported only by P18XXX8 PIC MCUs. Microcontroller must be
connected to CAN transceiver (MCP2551 or similar) which is connected to CAN bus.
Example
char tx, data;
long id;
// ...
tx = _CAN_TX_PRIORITY_0 &
_CAN_TX_XTD_FRAME;
// ...
CANWrite(id, data, 2, tx);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
249
CHAPTER 7
mikroC PRO for PIC
Libraries
CAN Constants
There is a number of constants predefined in CAN library. To be able to use the
library effectively, you need to be familiar with these. You might want to check the
example at the end of the chapter.
CAN_OP_MODE
CAN_OP_MODE
constants
define
CAN
operation
CANSetOperationMode expects one of these as its argument:
const char
_CAN_MODE_BITS
_CAN_MODE_NORMAL
_CAN_MODE_SLEEP
_CAN_MODE_LOOP
_CAN_MODE_LISTEN
_CAN_MODE_CONFIG
=
=
=
=
=
=
0xE0,
0x00,
0x20,
0x40,
0x60,
0x80;
mode.
// Use this to access opmode
Function
bits
CAN_CONFIG_FLAGS
CAN_CONFIG_FLAGS constants define flags related to CAN module configuration.
Functions CANInitialize and CANSetBaudRate expect one of these (or a bitwise
combination) as their argument:
const char
_CAN_CONFIG_DEFAULT
_CAN_CONFIG_PHSEG2_PRG_BIT
_CAN_CONFIG_PHSEG2_PRG_ON
_CAN_CONFIG_PHSEG2_PRG_OFF
250
= 0xFF,
// 11111111
= 0x01,
= 0xFF,
= 0xFE,
// XXXXXXX1
// XXXXXXX0
_CAN_CONFIG_LINE_FILTER_BIT = 0x02,
_CAN_CONFIG_LINE_FILTER_ON = 0xFF,
_CAN_CONFIG_LINE_FILTER_OFF = 0xFD,
// XXXXXX1X
// XXXXXX0X
_CAN_CONFIG_SAMPLE_BIT
_CAN_CONFIG_SAMPLE_ONCE
_CAN_CONFIG_SAMPLE_THRICE
= 0x04,
= 0xFF,
= 0xFB,
// XXXXX1XX
// XXXXX0XX
_CAN_CONFIG_MSG_TYPE_BIT
_CAN_CONFIG_STD_MSG
_CAN_CONFIG_XTD_MSG
= 0x08,
= 0xFF,
= 0xF7,
// XXXX1XXX
// XXXX0XXX
_CAN_CONFIG_DBL_BUFFER_BIT
_CAN_CONFIG_DBL_BUFFER_ON
_CAN_CONFIG_DBL_BUFFER_OFF
= 0x10,
= 0xFF,
= 0xEF,
// XXX1XXXX
// XXX0XXXX
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
_CAN_CONFIG_MSG_BITS
_CAN_CONFIG_ALL_MSG
_CAN_CONFIG_VALID_XTD_MSG
_CAN_CONFIG_VALID_STD_MSG
_CAN_CONFIG_ALL_VALID_MSG
= 0x60,
= 0xFF,
= 0xDF,
= 0xBF,
= 0x9F;
// X11XXXXX
// X10XXXXX
// X01XXXXX
// X00XXXXX
You may use bitwise AND (&) to form config byte out of these values. For example:
init = _CAN_CONFIG_SAMPLE_THRICE &
_CAN_CONFIG_PHSEG2_PRG_ON &
_CAN_CONFIG_STD_MSG
&
_CAN_CONFIG_DBL_BUFFER_ON &
_CAN_CONFIG_VALID_XTD_MSG &
_CAN_CONFIG_LINE_FILTER_OFF;
...
CANInitialize(1, 1, 3, 3, 1, init);
// initialize CAN
CAN_TX_MSG_FLAGS
CAN_TX_MSG_FLAGS are flags related to transmission of a CAN message:
const char
_CAN_TX_PRIORITY_BITS
_CAN_TX_PRIORITY_0
_CAN_TX_PRIORITY_1
_CAN_TX_PRIORITY_2
_CAN_TX_PRIORITY_3
_CAN_TX_FRAME_BIT
_CAN_TX_STD_FRAME
_CAN_TX_XTD_FRAME
=
=
=
=
=
0x03,
0xFC,
0xFD,
0xFE,
0xFF,
//
//
//
//
XXXXXX00
XXXXXX01
XXXXXX10
XXXXXX11
= 0x08,
= 0xFF,
= 0xF7,
// XXXXX1XX
// XXXXX0XX
_CAN_TX_RTR_BIT
= 0x40,
_CAN_TX_NO_RTR_FRAME = 0xFF,
_CAN_TX_RTR_FRAME
= 0xBF;
// X1XXXXXX
// X0XXXXXX
You may use bitwise AND (&) to adjust the appropriate flags. For example:
// form value to be used with CANSendMessage:
send_config = _CAN_TX_PRIORITY_0 &
_CAN_TX_XTD_FRAME &
_CAN_TX_NO_RTR_FRAME;
...
CANSendMessage(id, data, 1, send_config);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
251
CHAPTER 7
mikroC PRO for PIC
Libraries
CAN_RX_MSG_FLAGS
CAN_RX_MSG_FLAGS are flags related to reception of CAN message. If a particular bit is set; cor-
responding meaning is TRUE or else it will be FALSE.
const char
_CAN_RX_FILTER_BITS
_CAN_RX_FILTER_1
_CAN_RX_FILTER_2
_CAN_RX_FILTER_3
_CAN_RX_FILTER_4
_CAN_RX_FILTER_5
_CAN_RX_FILTER_6
_CAN_RX_OVERFLOW
_CAN_RX_INVALID_MSG
_CAN_RX_XTD_FRAME
_CAN_RX_RTR_FRAME
_CAN_RX_DBL_BUFFERED
=
=
=
=
=
=
=
=
=
=
=
=
0x07, // Use this to access filter bits
0x00,
0x01,
0x02,
0x03,
0x04,
0x05,
0x08, // Set if Overflowed else cleared
0x10, // Set if invalid else cleared
0x20, // Set if XTD message else cleared
0x40, // Set if RTR message else cleared
0x80; // Set if this message was hard
ware double-buffered
You may use bitwise AND (&) to adjust the appropriate flags. For example:
if (MsgFlag & _CAN_RX_OVERFLOW != 0) {
...
// Receiver overflow has occurred.
// We have lost our previous message.
}
CAN_MASK
CAN_MASK constants define mask codes. Function CANSetMask expects one of
these as its argument:
#const char
_CAN_MASK_B1 = 0,
_CAN_MASK_B2 = 1;
CAN_FILTER
CAN_FILTER constants define filter codes. Function CANSetFilter expects one of these as its
argument:
const char
_CAN_FILTER_B1_F1
_CAN_FILTER_B1_F2
_CAN_FILTER_B2_F1
_CAN_FILTER_B2_F2
252
=
=
=
=
0,
1,
2,
3,
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
_CAN_FILTER_B2_F3 = 4,
_CAN_FILTER_B2_F4 = 5;
Library Example
This is a simple demonstration of CAN Library routines usage. First node initiates
the communication with the second node by sending some data to its address. The
second node responds by sending back the data incremented by 1. First node then
does the same and sends incremented data back to second node, etc.
Code for the first CAN node:
unsigned char Can_Init_Flags, Can_Send_Flags, Can_Rcv_Flags; // can flags
unsigned char Rx_Data_Len;
// received data length in bytes
char RxTx_Data[8];
// can rx/tx data buffer
char Msg_Rcvd;
// reception flag
const long ID_1st = 12111, ID_2nd = 3;
// node IDs
long Rx_ID;
void main() {
PORTC = 0;
TRISC = 0;
// clear PORTC
// set PORTC as output
Can_Init_Flags = 0;
Can_Send_Flags = 0;
Can_Rcv_Flags = 0;
//
// clear flags
//
Can_Send_Flags = _CAN_TX_PRIORITY_0 &
// form value to be used
_CAN_TX_XTD_FRAME &
// with CANWrite
_CAN_TX_NO_RTR_FRAME;
Can_Init_Flags = _CAN_CONFIG_SAMPLE_THRICE &
_CAN_CONFIG_PHSEG2_PRG_ON &
_CAN_CONFIG_XTD_MSG &
_CAN_CONFIG_DBL_BUFFER_ON &
_CAN_CONFIG_VALID_XTD_MSG;
// form value to be used
// with CANInit
CANInitialize(1,3,3,3,1,Can_Init_Flags);
// Initialize CAN module
CANSetOperationMode(_CAN_MODE_CONFIG,0xFF); // set CONFIGURATION mode
CANSetMask(_CAN_MASK_B1,-1,_CAN_CONFIG_XTD_MSG); // set all mask1 bits to
ones
CANSetMask(_CAN_MASK_B2,-1,_CAN_CONFIG_XTD_MSG); // set all mask2 bits to
ones
CANSetFilter(_CAN_FILTER_B2_F4,ID_2nd,_CAN_CONFIG_XTD_MSG);// set id of
filter B2_F4 to 2nd node ID
CANSetOperationMode(_CAN_MODE_NORMAL,0xFF);
RxTx_Data[0] = 9;
// set NORMAL mode
// set initial data to be sent
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
253
CHAPTER 7
mikroC PRO for PIC
Libraries
CANWrite(ID_1st, RxTx_Data, 1, Can_Send_Flags); // send initial message
while(1) {
// endless loop
Msg_Rcvd = CANRead(&Rx_ID , RxTx_Data , &Rx_Data_Len, &Can_Rcv_Flags); //
receive message
if ((Rx_ID == ID_2nd) && Msg_Rcvd) { // if message received check id
PORTC = RxTx_Data[0]; // id correct, output data at PORTC
RxTx_Data[0]++;
// increment received data
Delay_ms(10);
CANWrite(ID_1st, RxTx_Data, 1, Can_Send_Flags); // send incremented data back
}
}
}
Code for the second CAN node:
unsigned char Can_Init_Flags, Can_Send_Flags, Can_Rcv_Flags; // can
flags
unsigned char Rx_Data_Len;
// received data length in bytes
char RxTx_Data[8];
// can rx/tx data buffer
char Msg_Rcvd;
// reception flag
const long ID_1st = 12111, ID_2nd = 3; // node IDs
long Rx_ID;
void main() {
PORTC = 0;
TRISC = 0;
// clear PORTC
// set PORTC as output
Can_Init_Flags = 0;
Can_Send_Flags = 0;
Can_Rcv_Flags = 0;
//
// clear flags
//
Can_Send_Flags = _CAN_TX_PRIORITY_0 & // form value to be used
_CAN_TX_XTD_FRAME & // with CANWrite
_CAN_TX_NO_RTR_FRAME;
Can_Init_Flags = _CAN_CONFIG_SAMPLE_THRICE & // form value to be used
_CAN_CONFIG_PHSEG2_PRG_ON & // with CANInit
_CAN_CONFIG_XTD_MSG &
_CAN_CONFIG_DBL_BUFFER_ON &
_CAN_CONFIG_VALID_XTD_MSG &
_CAN_CONFIG_LINE_FILTER_OFF;
CANInitialize(1,3,3,3,1,Can_Init_Flags); // initialize external CAN module
CANSetOperationMode(_CAN_MODE_CONFIG,0xFF); // set CONFIGURATION mode
CANSetMask(_CAN_MASK_B1,-1,_CAN_CONFIG_XTD_MSG); // set all mask1
bits to ones
254
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
CANSetMask(_CAN_MASK_B2,-1,_CAN_CONFIG_XTD_MSG); // set all mask2
bits to ones
CANSetFilter(_CAN_FILTER_B2_F3,ID_1st,_CAN_CONFIG_XTD_MSG);// set
id of filter B2_F3 to 1st node ID
CANSetOperationMode(_CAN_MODE_NORMAL,0xFF); // set NORMAL mode
while (1) {
// endless loop
Msg_Rcvd = CANRead(&Rx_ID , RxTx_Data , &Rx_Data_Len,
&Can_Rcv_Flags); // receive message
if ((Rx_ID == ID_1st) && Msg_Rcvd) { // if message received check id
PORTC = RxTx_Data[0]; // id correct, output data at PORTC
RxTx_Data[0]++;
// increment received data
CANWrite(ID_2nd, RxTx_Data, 1, Can_Send_Flags); // send incremented data back
}
}
HW Connection
Example of interfacing CAN transceiver with MCU and bus
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
255
CHAPTER 7
mikroC PRO for PIC
Libraries
CANSPI LIBRARY
The SPI module is available with a number of the PIC compliant MCUs. The mikroC
PRO for PIC provides a library (driver) for working with mikroElektronika's CANSPI
Add-on boards (with MCP2515 or MCP2510) via SPI interface.
The CAN is a very robust protocol that has error detection and signalization,
self–checking and fault confinement. Faulty CAN data and remote frames are retransmitted automatically, similar to the Ethernet.
Data transfer rates depend on distance. For example, 1 Mbit/s can be achieved at network lengths below 40m while 250 Kbit/s can be achieved at network lengths below
250m. The greater distance the lower maximum bitrate that can be achieved. The lowest
bitrate defined by the standard is 200Kbit/s. Cables used are shielded twisted pairs.
CAN supports two message formats:
Standard format, with 11 identifier bits; and
Extended format, with 29 identifier bits.
Note:
Consult the CAN standard about CAN bus termination resistance.
An effective CANSPI communication speed depends on SPI and certainly is
slower than “real” CAN.
The library uses the SPI module for communication. User must initialize SPI
module before using the SPI Graphic Lcd Library.
For MCUs with two SPI modules it is possible to initialize both of them and then
switch by using the SPI_Set_Active() routine.
CANSPI module refers to mikroElektronika's CANSPI Add-on board connected
to SPI module of MCU.
External dependecies of CANSPI Library
The following variables
must be defined in all
projects using CANSPI
Library:
Description:
Example:
extern sfr sbit
CanSpi_CS;
Chip Select line.
sbit CanSpi_CS at
RC0_bit;
extern sfr sbit
CanSpi_Rst;
Reset line.
sbit CanSpi_Rst at
RC2_bit;
extern sfr sbit
CanSpi_CS_Direction;
Direction of the Chip
Select pin.
sbit CanSpi_CS_Direction
at TRISC0_bit;
extern sfr sbit
sbit CanSpi_Rst_Direction
Direction of the Reset pin. at TRISC2_bit;
CanSpi_Rst_Direction;
256
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Routines
-
CANSPISetOperationMode
CANSPIGetOperationMode
CANSPIInitialize
CANSPISetBaudRate
CANSPISetMask
CANSPISetFilter
CANSPIread
CANSPIWrite
The following routines are for an internal use by the library only:
- RegsToCANSPIID
- CANSPIIDToRegs
Be sure to check CANSPI constants necessary for using some of the functions.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
257
CHAPTER 7
mikroC PRO for PIC
Libraries
CANSPISetOperationMode
Prototype
void CANSPISetOperationMode(char mode, char WAIT);
Returns
Nothing.
Sets the CANSPI module to requested mode.
Parameters:
- mode: CANSPI module operation mode. Valid values: CANSPI_OP_MODE conDescription stants (see CANSPI constants).
- WAIT: CANSPI mode switching verification request. If WAIT == 0, the call is nonblocking. The function does not verify if the CANSPI module is switched to
requested mode or not. Caller must use CANSPIGetOperationMode to verify correct operation mode before performing mode specific operation. If WAIT != 0, the
call is blocking – the function won’t “return” until the requested mode is set.
Requires
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or
similar hardware. See connection example at the bottom of this page.
Example
// set the CANSPI module into configuration mode (wait inside
CANSPISetOperationMode until this mode is set)
CANSPISetOperationMode(_CANSPI_MODE_CONFIG, 0xFF);
CANSPIGetOperationMode
Prototype
char CANSPIGetOperationMode();
Returns
Current operation mode.
The function returns current operation mode of the CANSPI module. Check CANDescription SPI_OP_MODE constants (see CANSPI constants) or device datasheet for operation mode codes.
258
Requires
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or
similar hardware. See connection example at the bottom of this page.
Example
// check whether the CANSPI module is in Normal mode and if it
is do something.
if (CANSPIGetOperationMode() == _CANSPI_MODE_NORMAL) {
...
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
CANSPIInitialize
Prototype
void CANSPIInitialize( char SJW, char BRP, char PHSEG1, char
PHSEG2, char PROPSEG, char CANSPI_CONFIG_FLAGS);
Returns
Nothing.
Initializes the CANSPI module.
Stand-Alone CAN controller in the CANSPI module is set to:
-
Disable CAN capture
Continue CAN operation in Idle mode
Do not abort pending transmissions
Fcan clock: 4*Tcy (Fosc)
Baud rate is set according to given parameters
CAN mode: Normal
Filter and mask registers IDs are set to zero
Filter and mask message frame type is set according to CAN_CONFIG_FLAGS value
Description
SAM, SEG2PHTS, WAKFIL and DBEN bits are set according to CANSPI_CONFIG_FLAGS value.
Parameters:
- SJW as defined in CAN controller's datasheet
- BRP as defined in CAN controller's datasheet
- PHSEG1 as defined in CAN controller's datasheet
- PHSEG2 as defined in CAN controller's datasheet
- PROPSEG as defined in CAN controller's datasheet
- CAN_CONFIG_FLAGS is formed from predefined constants (see CANSPI constants)
Global variables:
-
Requires
CanSpi_CS: Chip Select line
CanSpi_Rst: Reset line
CanSpi_CS_Direction: Direction of the Chip Select pin
CanSpi_Rst_Direction: Direction of the Reset pin
must be defined before using this function.
The CANSPI routines are supported only by MCUs with the SPI module.
The SPI module needs to be initialized. See the SPI1_Init and
SPI1_Init_Advanced routines.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or similar hardware. See connection example at the bottom of this page.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
259
CHAPTER 7
mikroC PRO for PIC
Libraries
// CANSPI module connections
sbit CanSpi_CS at RC0_bit;
sbit CanSpi_CS_Direction at TRISC0_bit;
sbit CanSpi_Rst at RC2_bit;
sbit CanSpi_Rst_Direction at TRISC2_bit;
// End CANSPI module connections
Example
260
// initialize the CANSPI module with the appropriate baud rate
and message acceptance flags along with the sampling rules
char CanSPi_Init_Flags;
...
CanSPi_Init_Flags = _CANSPI_CONFIG_SAMPLE_THRICE & // form
value to be used
_CANSPI_CONFIG_PHSEG2_PRG_ON &
// with
CANSPIInitialize
_CANSPI_CONFIG_XTD_MSG &
_CANSPI_CONFIG_DBL_BUFFER_ON &
_CANSPI_CONFIG_VALID_XTD_MSG;
...
SPI1_Init();
// initialize SPI module
CANSPIInitialize(1,3,3,3,1,CanSpi_Init_Flags);
// initialize
external CANSPI module
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
CANSPISetBaudRate
Prototype
void CANSPISetBaudRate( char SJW, char BRP, char PHSEG1, char
PHSEG2, char PROPSEG, char CANSPI_CONFIG_FLAGS);
Returns
Nothing.
Sets the CANSPI module baud rate. Due to complexity of the CAN protocol,
you can not simply force a bps value. Instead, use this function when the
CANSPI module is in Config mode.
SAM, SEG2PHTS and WAKFIL bits are set according to CANSPI_CONFIG_FLAGS
value. Refer to datasheet for details.
Description Parameters:
- SJW as defined in CAN controller's datasheet
- BRP as defined in CAN controller's datasheet
- PHSEG1 as defined in CAN controller's datasheet
- PHSEG2 as defined in CAN controller's datasheet
- PROPSEG as defined in CAN controller's datasheet
- CAN_CONFIG_FLAGS is formed from predefined constants (see CANSPI constants)
The CANSPI module must be in Config mode, otherwise the function will be
ignored. See CANSPISetOperationMode.
Requires
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or
similar hardware. See connection example at the bottom of this page.
Example
// set required baud rate and sampling rules
char canspi_config_flags;
...
CANSPISetOperationMode(CANSPI_MODE_CONFIG,0xFF); // set CONFIGURATION mode (CANSPI module mast be in config mode for baud rate
settings)
canspi_config_flags = _CANSPI_CONFIG_SAMPLE_THRICE &
_CANSPI_CONFIG_PHSEG2_PRG_ON &
_CANSPI_CONFIG_STD_MSG
&
_CANSPI_CONFIG_DBL_BUFFER_ON &
_CANSPI_CONFIG_VALID_XTD_MSG &
_CANSPI_CONFIG_LINE_FILTER_OFF;
CANSPISetBaudRate(1, 1, 3, 3, 1, canspi_config_flags);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
261
CHAPTER 7
mikroC PRO for PIC
Libraries
CANSPISetMask
Prototype
void CANSPISetMask(char CANSPI_MASK, long val, char CANSPI_CONFIG_FLAGS);
Returns
Nothing.
Configures mask for advanced filtering of messages. The parameter value is
bit-adjusted to the appropriate mask registers.
Parameters:
- CAN_MASK: CANSPI module mask number. Valid values: CANSPI_MASK costants
(see CANSPI constants)
Description - val: mask register value
- CAN_CONFIG_FLAGS: selects type of message to filter. Valid values:
CANSPI_CONFIG_ALL_VALID_MSG,
CANSPI_CONFIG_MATCH_MSG_TYPE and CANSPI_CONFIG_STD_MSG,
CANSPI_CONFIG_MATCH_MSG_TYPE and CANSPI_CONFIG_XTD_MSG.
(see CANSPI constants)
The CANSPI module must be in Config mode, otherwise the function will be
ignored. See CANSPISetOperationMode.
Requires
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or
similar hardware. See connection example at the bottom of this page.
// set the appropriate filter mask and message type value
CANSPISetOperationMode(_CANSPI_MODE_CONFIG,0xFF);
// set CONFIGURATION mode (CANSPI module must be in config mode
for mask settings)
Example
262
// Set all B1 mask bits to 1 (all filtered bits are relevant):
// Note that -1 is just a cheaper way to write 0xFFFFFFFF.
// Complement will do the trick and fill it up with ones.
CANSPISetMask(_CANSPI_MASK_B1, -1, _CANSPI_CONFIG_MATCH_MSG_TYPE
& _CANSPI_CONFIG_XTD_MSG);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
CANSPISetFilter
Prototype
void CANSPISetFilter(char CANSPI_FILTER, long val, char
CANSPI_CONFIG_FLAGS);
Returns
Nothing.
Configures message filter. The parameter value is bit-adjusted to the appropriate filter registers.
Parameters:
- CAN_FILTER: CANSPI module filter number. Valid values: CANSPI_FILTER
constants (see CANSPI constants)
Description - val: filter register value
- CAN_CONFIG_FLAGS: selects type of message to filter. Valid values:
CANSPI_CONFIG_ALL_VALID_MSG,
CANSPI_CONFIG_MATCH_MSG_TYPE and CANSPI_CONFIG_STD_MSG,
CANSPI_CONFIG_MATCH_MSG_TYPE and CANSPI_CONFIG_XTD_MSG.
(see CANSPI constants)
The CANSPI module must be in Config mode, otherwise the function will be
ignored. See CANSPISetOperationMode.
Requires
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or
similar hardware. See connection example at the bottom of this page.
Example
// set the appropriate filter value and message type
CANSPISetOperationMode(_CANSPI_MODE_CONFIG,0xFF);
// set CONFIGURATION mode (CANSPI module must be in config mode
for filter settings)
/* Set id of filter B1_F1 to 3: */
CANSPISetFilter(_CANSPI_FILTER_B1_F1, 3, _CANSPI_CONFIG_XTD_MSG);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
263
CHAPTER 7
mikroC PRO for PIC
Libraries
CANSPIRead
Prototype
char CANSPIRead(long *id, char *rd_data, char *data_len, char
*CANSPI_RX_MSG_FLAGS);
- 0 if nothing is received
- 0xFF if one of the Receive Buffers is full (message received)
Returns
If at least one full Receive Buffer is found, it will be processed in the following
way:
- Message ID is retrieved and stored to location provided by the id parameter
- Message data is retrieved and stored to a buffer provided by the rd_data parameter
- Message length is retrieved and stored to location provided by the
data_len parameter
Description - Message flags are retrieved and stored to location provided by the
CAN_RX_MSG_FLAGS parameter
Parameters:
-
id: message identifier storage address
rd_data: data buffer (an array of bytes up to 8 bytes in length)
data_len: data length storage address.
CAN_RX_MSG_FLAGS: message flags storage address
The CANSPI module must be in a mode in which receiving is possible. See
CANSPISetOperationMode.
Requires
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or
similar hardware. See connection example at the bottom of this page.
Example
264
// check the CANSPI module for received messages. If any was
received do something.
char msg_rcvd, rx_flags, data_len;
char data[8];
long msg_id;
...
CANSPISetOperationMode(CA_NSPI_MODE_NORMAL,0xFF);
// set NORMAL mode (CANSPI module must be in mode in which
receive is possible)
...
rx_flags = 0;
// clear message flags
if (msg_rcvd = CANSPIRead(msg_id, data, data_len, rx_flags)) {
...
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
CANSPIWrite
Prototype
Returns
char CANSPIWrite(long id, char *wr_data, char data_len, char CANSPI_TX_MSG_FLAGS);
- 0 if all Transmit Buffers are busy
- 0xFF if at least one Transmit Buffer is available
If at least one empty Transmit Buffer is found, the function sends message in
the queue for transmission.
Parameters:
Description
- id:CAN message identifier. Valid values: 11 or 29 bit values, depending on
message type (standard or extended)
- wr_data: data to be sent (an array of bytes up to 8 bytes in length)
- data_len: data length. Valid values: 1 to 8
- CAN_RX_MSG_FLAGS: message flags
The CANSPI module must be in mode in which transmission is possible. See
CANSPISetOperationMode.
Requires
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or
similar hardware. See connection example at the bottom of this page.
Example
// send message extended CAN message with the appropriate ID and
data
char tx_flags;
char data[8];
long msg_id;
...
CANSPISetOperationMode(_CANSPI_MODE_NORMAL,0xFF);
// set NORMAL mode (CANSPI must be in mode in which transmission
is possible)
tx_flags = _CANSPI_TX_PRIORITY_0 & _CANSPI_TX_XTD_FRAME;
// set message flags
CANSPIWrite(msg_id, data, 2, tx_flags);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
265
CHAPTER 7
mikroC PRO for PIC
Libraries
CANSPI Constants
There is a number of constants predefined in the CANSPI library. You need to be
familiar with them in order to be able to use the library effectively. Check the example at the end of the chapter.
CANSPI_OP_MODE
The CANSPI_OP_MODE constants define CANSPI operation mode. Function
CANSPISetOperationMode expects one of these as it's argument:
const char
_CANSPI_MODE_BITS
_CANSPI_MODE_NORMAL
_CANSPI_MODE_SLEEP
_CANSPI_MODE_LOOP
_CANSPI_MODE_LISTEN
_CANSPI_MODE_CONFIG
= 0xE0,
= 0x00,
= 0x20,
= 0x40,
= 0x60,
= 0x80;
// Use this to access opmode
bits
CANSPI_CONFIG_FLAGS
The CANSPI_CONFIG_FLAGS constants define flags related to the CANSPI module
configuration.
The
functions
CANSPIInitialize,
CANSPISetBaudRate,
CANSPISetMask and CANSPISetFilter expect one of these (or a bitwise combination) as their argument:
const char
_CANSPI_CONFIG_DEFAULT
_CANSPI_CONFIG_PHSEG2_PRG_BIT
_CANSPI_CONFIG_PHSEG2_PRG_ON
_CANSPI_CONFIG_PHSEG2_PRG_OFF
266
= 0xFF,
// 11111111
= 0x01,
= 0xFF,
= 0xFE,
// XXXXXXX1
// XXXXXXX0
_CANSPI_CONFIG_LINE_FILTER_BIT = 0x02,
_CANSPI_CONFIG_LINE_FILTER_ON = 0xFF,
_CANSPI_CONFIG_LINE_FILTER_OFF = 0xFD,
// XXXXXX1X
// XXXXXX0X
_CANSPI_CONFIG_SAMPLE_BIT
_CANSPI_CONFIG_SAMPLE_ONCE
_CANSPI_CONFIG_SAMPLE_THRICE
= 0x04,
= 0xFF,
= 0xFB,
// XXXXX1XX
// XXXXX0XX
_CANSPI_CONFIG_MSG_TYPE_BIT
_CANSPI_CONFIG_STD_MSG
_CANSPI_CONFIG_XTD_MSG
= 0x08,
= 0xFF,
= 0xF7,
// XXXX1XXX
// XXXX0XXX
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
_CANSPI_CONFIG_DBL_BUFFER_BIT
_CANSPI_CONFIG_DBL_BUFFER_ON
_CANSPI_CONFIG_DBL_BUFFER_OFF
= 0x10,
= 0xFF,
= 0xEF,
// XXX1XXXX
// XXX0XXXX
_CANSPI_CONFIG_MSG_BITS
_CANSPI_CONFIG_ALL_MSG
_CANSPI_CONFIG_VALID_XTD_MSG
_CANSPI_CONFIG_VALID_STD_MSG
_CANSPI_CONFIG_ALL_VALID_MSG
= 0x60,
= 0xFF,
= 0xDF,
= 0xBF,
= 0x9F;
// X11XXXXX
// X10XXXXX
// X01XXXXX
// X00XXXXX
You may use bitwise AND (&) to form config byte out of these values. For example:
init = _CANSPI_CONFIG_SAMPLE_THRICE &
_CANSPI_CONFIG_PHSEG2_PRG_ON &
_CANSPI_CONFIG_STD_MSG
&
_CANSPI_CONFIG_DBL_BUFFER_ON &
_CANSPI_CONFIG_VALID_XTD_MSG &
_CANSPI_CONFIG_LINE_FILTER_OFF;
...
CANSPIInitialize(1, 1, 3, 3, 1, init);
// initialize CANSPI
CANSPI_TX_MSG_FLAGS
CANSPI_TX_MSG_FLAGS are flags related to transmission of a CAN message:
const char
_CANSPI_TX_PRIORITY_BITS
_CANSPI_TX_PRIORITY_0
_CANSPI_TX_PRIORITY_1
_CANSPI_TX_PRIORITY_2
_CANSPI_TX_PRIORITY_3
_CANSPI_TX_FRAME_BIT
_CANSPI_TX_STD_FRAME
_CANSPI_TX_XTD_FRAME
=
=
=
=
=
0x03,
0xFC,
0xFD,
0xFE,
0xFF,
//
//
//
//
XXXXXX00
XXXXXX01
XXXXXX10
XXXXXX11
= 0x08,
= 0xFF,
= 0xF7,
// XXXXX1XX
// XXXXX0XX
_CANSPI_TX_RTR_BIT
= 0x40,
_CANSPI_TX_NO_RTR_FRAME = 0xFF,
_CANSPI_TX_RTR_FRAME
= 0xBF;
// X1XXXXXX
// X0XXXXXX
You may use bitwise AND (&) to adjust the appropriate flags. For example:
/* form value to be used as sending message flag : */
send_config = _CANSPI_TX_PRIORITY_0 &
_CANSPI_TX_XTD_FRAME &
_CANSPI_TX_NO_RTR_FRAME;
...
CANSPIWrite(id, data, 1, send_config);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
267
CHAPTER 7
mikroC PRO for PIC
Libraries
CANSPI_RX_MSG_FLAGS
CANSPI_RX_MSG_FLAGS are flags related to reception of CAN message. If a particular bit is set then corresponding meaning is TRUE or else it will be FALSE.
const char
_CANSPI_RX_FILTER_BITS
_CANSPI_RX_FILTER_1
_CANSPI_RX_FILTER_2
_CANSPI_RX_FILTER_3
_CANSPI_RX_FILTER_4
_CANSPI_RX_FILTER_5
_CANSPI_RX_FILTER_6
=
=
=
=
=
=
=
0x07,
0x00,
0x01,
0x02,
0x03,
0x04,
0x05,
// Use this to access filter bits
_CANSPI_RX_OVERFLOW
= 0x08, // Set if Overflowed else cleared
_CANSPI_RX_INVALID_MSG = 0x10, // Set if invalid else cleared
_CANSPI_RX_XTD_FRAME
= 0x20, // Set if XTD message else
cleared
_CANSPI_RX_RTR_FRAME
= 0x40, // Set if RTR message else
cleared
_CANSPI_RX_DBL_BUFFERED = 0x80; // Set if this message was hard
ware double-buffered
You may use bitwise AND (&) to adjust the appropriate flags. For example:
if (MsgFlag & _CANSPI_RX_OVERFLOW != 0) {
...
// Receiver overflow has occurred.
// We have lost our previous message.
}
CANSPI_MASK
The CANSPI_MASK constants define mask codes. Function CANSPISetMask expects
one of these as it's argument:
const char
_CANSPI_MASK_B1 = 0,
_CANSPI_MASK_B2 = 1;
CANSPI_FILTER
The CANSPI_FILTER constants define filter codes. Functions CANSPISetFilter
expects one of these as it's argument:
const char
_CANSPI_FILTER_B1_F1
_CANSPI_FILTER_B1_F2
_CANSPI_FILTER_B2_F1
_CANSPI_FILTER_B2_F2
268
=
=
=
=
0,
1,
2,
3,
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
_CANSPI_FILTER_B2_F3 = 4,
_CANSPI_FILTER_B2_F4 = 5;
Library Example
This is a simple demonstration of CANSPI Library routines usage. First node initiates the communication with the second node by sending some data to its address.
The second node responds by sending back the data incremented by 1. First node
then does the same and sends incremented data back to second node, etc.
Code for the first CANSPI node:
unsigned char Can_Init_Flags, Can_Send_Flags, Can_Rcv_Flags; // can
flags
unsigned char Rx_Data_Len;
// received data length in bytes
char RxTx_Data[8];
// can rx/tx data buffer
char Msg_Rcvd;
// reception flag
const long ID_1st = 12111, ID_2nd = 3;
// node IDs
long Rx_ID;
// CANSPI module connections
sbit CanSpi_CS
at RC0_bit;
sbit CanSpi_CS_Direction
at TRISC0_bit;
sbit CanSpi_Rst
at RC2_bit;
sbit CanSpi_Rst_Direction at TRISC2_bit;
// End CANSPI module connections
void main() {
ANSEL = 0;
ANSELH = 0;
// Configure AN pins as digital I/O
PORTB = 0;
TRISB = 0;
// clear PORTB
// set PORTB as output
Can_Init_Flags = 0;
Can_Send_Flags = 0;
Can_Rcv_Flags = 0;
//
// clear flags
//
Can_Send_Flags = _CANSPI_TX_PRIORITY_0 & // form value to be used
_CANSPI_TX_XTD_FRAME & // with CANSPIWrite
_CANSPI_TX_NO_RTR_FRAME;
Can_Init_Flags = _CANSPI_CONFIG_SAMPLE_THRICE & // Form value to be used
_CANSPI_CONFIG_PHSEG2_PRG_ON & // with CANSPIInit
_CANSPI_CONFIG_XTD_MSG &
_CANSPI_CONFIG_DBL_BUFFER_ON &
_CANSPI_CONFIG_VALID_XTD_MSG;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
269
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI1_Init();
// initialize SPI1 module
CANSPIInitialize(1,3,3,3,1,Can_Init_Flags); // Initialize external CANSPI
module
CANSPISetOperationMode(_CANSPI_MODE_CONFIG,0xFF); // set CONFIGURATION mode
CANSPISetMask(_CANSPI_MASK_B1,-1,_CANSPI_CONFIG_XTD_MSG); // set
all mask1 bits to ones
CANSPISetMask(_CANSPI_MASK_B2,-1,_CANSPI_CONFIG_XTD_MSG); // set
all mask2 bits to ones
CANSPISetFilter(_CANSPI_FILTER_B2_F4,ID_2nd,_CANSPI_CONFIG_XTD_MSG);
// set id of filter B2_F4 to 2nd node ID
CANSPISetOperationMode(_CANSPI_MODE_NORMAL,0xFF); // set NORMAL mode
RxTx_Data[0] = 9;
// set initial data to be sent
CANSPIWrite(ID_1st, RxTx_Data, 1, Can_Send_Flags); // send initial
message
while(1) {
// endless loop
Msg_Rcvd = CANSPIRead(&Rx_ID , RxTx_Data , &Rx_Data_Len,
&Can_Rcv_Flags);// receive message
if ((Rx_ID == ID_2nd) && Msg_Rcvd) {
// if message received check id
PORTB = RxTx_Data[0];
// id correct, output data at PORTC
RxTx_Data[0]++;
// increment received data
Delay_ms(10);
CANSPIWrite(ID_1st, RxTx_Data, 1, Can_Send_Flags);
// send incremented data back
}
}
}
270
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Code for the second CANSPI node:
unsigned char Can_Init_Flags, Can_Send_Flags, Can_Rcv_Flags; // can
flags
unsigned char Rx_Data_Len;
// received data length in bytes
char RxTx_Data[8];
// can rx/tx data buffer
char Msg_Rcvd;
// reception flag
const long ID_1st = 12111, ID_2nd = 3;
// node IDs
long Rx_ID;
// CANSPI module connections
sbit CanSpi_CS
at RC0_bit;
sbit CanSpi_CS_Direction
at TRISC0_bit;
sbit CanSpi_Rst
at RC2_bit;
sbit CanSpi_Rst_Direction at TRISC2_bit;
// End CANSPI module connections
void main() {
ANSEL = 0;
ANSELH = 0;
// Configure AN pins as digital I/O
PORTB = 0;
TRISB = 0;
// clear PORTB
// set PORTB as output
Can_Init_Flags = 0;
Can_Send_Flags = 0;
Can_Rcv_Flags = 0;
//
// clear flags
//
Can_Send_Flags = _CANSPI_TX_PRIORITY_0 & // form value to be used
_CANSPI_TX_XTD_FRAME &
// with CANSPIWrite
_CANSPI_TX_NO_RTR_FRAME;
Can_Init_Flags = _CANSPI_CONFIG_SAMPLE_THRICE & // Form value to be used
_CANSPI_CONFIG_PHSEG2_PRG_ON & // with CANSPIInit
_CANSPI_CONFIG_XTD_MSG &
_CANSPI_CONFIG_DBL_BUFFER_ON &
_CANSPI_CONFIG_VALID_XTD_MSG &
_CANSPI_CONFIG_LINE_FILTER_OFF;
SPI1_Init();
// initialize SPI1 module
CANSPIInitialize(1,3,3,3,1,Can_Init_Flags); // initialize external
CANSPI module
CANSPISetOperationMode(_CANSPI_MODE_CONFIG,0xFF); // set CONFIGURATION mode
CANSPISetMask(_CANSPI_MASK_B1,-1,_CANSPI_CONFIG_XTD_MSG);// set
all mask1 bits to ones
CANSPISetMask(_CANSPI_MASK_B2,-1,_CANSPI_CONFIG_XTD_MSG); // set
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
271
CHAPTER 7
mikroC PRO for PIC
Libraries
all mask2 bits to ones
CANSPISetFilter(_CANSPI_FILTER_B2_F3,ID_1st,_CANSPI_CONFIG_XTD_MSG);
// set id of filter B2_F3 to 1st node ID
CANSPISetOperationMode(_CANSPI_MODE_NORMAL,0xFF);// set NORMAL mode
while (1) {
// endless loop
Msg_Rcvd = CANSPIRead(&Rx_ID , RxTx_Data , &Rx_Data_Len,
&Can_Rcv_Flags); // receive message
if ((Rx_ID == ID_1st) && Msg_Rcvd) { // if message received check id
PORTB = RxTx_Data[0]; // id correct, output data at PORTC
RxTx_Data[0]++;
// increment received data
CANSPIWrite(ID_2nd, RxTx_Data, 1, Can_Send_Flags); // send
incremented data back
}
}
}
HW Connection
Example of interfacing CAN transceiver MCP2510 with MCU via SPI interface
272
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
COMPACT FLASH LIBRARY
The Compact Flash Library provides routines for accessing data on Compact Flash
card (abbr. CF further in text). CF cards are widely used memory elements, commonly used with digital cameras. Great capacity and excellent access time of only
a few microseconds make them very attractive for microcontroller applications.
In CF card, data is divided into sectors. One sector usually comprises 512 bytes.
Routines for file handling, the Cf_Fat routines, are not performed directly but successively through 512B buffer.
Note: Routines for file handling can be used only with FAT16 file system.
Note: Library functions create and read files from the root directory only.
Note: Library functions populate both FAT1 and FAT2 tables when writing to files,
but the file data is being read from the FAT1 table only; i.e. there is no recovery if
the FAT1 table gets corrupted.
Note: If MMC/SD card has Master Boot Record (MBR), the library will work with the
first available primary (logical) partition that has non-zero size. If MMC/SD card has
Volume Boot Record (i.e. there is only one logical partition and no MBRs), the library
works with entire card as a single partition. For more information on MBR, physical
and logical drives, primary/secondary partitions and partition tables, please consult
other resources, e.g. Wikipedia and similar.
Note: Before writing operation, make sure not to overwrite boot or FAT sector as it
could make your card on PC or digital camera unreadable. Drive mapping tools,
such as Winhex, can be of great assistance.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
273
CHAPTER 7
mikroC PRO for PIC
Libraries
The following variables
must be defined in all
projects using Compact
Flash Library:
274
Description:
Example:
extern sfr char
CF_Data_Port;
Compact Flash Data Port.
char CF_Data_Port
at PORTD;
extern sfr sbit
CF_RDY;
Ready signal line.
sbit CF_RDY at
RB7_bit;
extern sfr sbit
CF_WE;
Write Enable signal line.
sbit CF_WE at
RB6_bit;
extern sfr sbit
CF_OE;
Output Enable signal line.
sbit CF_OE at
RB5_bit;
extern sfr sbit
CF_CD1;
Chip Detect signal line.
sbit CF_CD1 at
RB4_bit;
extern sfr sbit
CF_CE1;
Chip Enable signal line.
sbit CF_CE1 at
RB3_bit;
extern sfr sbit
CF_A2;
Address pin 2.
sbit CF_A2 at
RB2_bit;
extern sfr sbit
CF_A1;
Address pin 1.
sbit CF_A1 at
RB1_bit;
extern sfr sbit
CF_A0;
Address pin 0.
sbit CF_A0 at
RB0_bit;
extern sfr sbit
CF_RDY_direction;
Direction of the Ready pin.
sbit CF_RDY_direction at TRISB7_bit;
extern sfr sbit
CF_WE_direction;
Direction of the Write Enable
pin.
sbit CF_WE_direction
at TRISB6_bit;
extern sfr sbit
CF_OE_direction;
Direction of the Output
Enable pin.
sbit CF_OE_direction
at TRISB5_bit;
extern sfr sbit
CF_CD1_direction;
Direction of the Chip Detect
pin.
sbit CF_CD1_direction at TRISB4_bit;
extern sfr sbit
CF_CE1_direction;
Direction of the Chip Enable
pin.
sbit CF_CE1_direction at TRISB3_bit;
extern sfr sbit
CF_A2_direction;
Direction of the Address 2
pin.
sbit CF_A2_direction
at TRISB2_bit;
extern sfr sbit
CF_A1_direction;
Direction of the Address 1
pin.
sbit CF_A1_direction
at TRISB1_bit;
extern sfr sbit
CF_A0_direction;
Direction of the Address 0
pin.
sbit CF_A0_direction
at TRISB0_bit;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Routines
-
Cf_Init
Cf_Detect
Cf_Enable
Cf_Disable
Cf_Read_Init
Cf_Read_Byte
Cf_Write_Init
Cf_Write_Byte
Cf_Read_Sector
Cf_Write_Sector
Routines for file handling:
-
Cf_Fat_Init
Cf_Fat_QuickFormat
Cf_Fat_Assign
Cf_Fat_Reset
Cf_Fat_Read
Cf_Fat_Rewrite
Cf_Fat_Append
Cf_Fat_Delete
Cf_Fat_Write
Cf_Fat_Set_File_Date
Cf_Fat_Get_File_Date
Cf_Fat_Get_File_Size
Cf_Fat_Get_Swap_File
The following routine is for the internal use by compiler only:
- Cf_Issue_ID_Command
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
275
CHAPTER 7
mikroC PRO for PIC
Libraries
Cf_Init
Prototype
void Cf_Init();
Returns
Nothing.
Description Initializes ports appropriately for communication with CF card.
Global variables:
Requires
-
CF_Data_Port : Compact Flash data port
CF_RDY : Ready signal line
CF_WE : Write enable signal line
CF_OE : Output enable signal line
CF_CD1 : Chip detect signal line
CF_CE1 : Enable signal line
CF_A2 : Address pin 2
CF_A1 : Address pin 1
CF_A0 : Address pin 0
CF_RDY_direction : Direction of the Ready pin
CF_WE_direction : Direction of the Write enable pin
CF_OE_direction : Direction of the Output enable pin
CF_CD1_direction : Direction of the Chip detect pin
CF_CE1_direction : Direction of the Chip enable pin
CF_A2_direction : Direction of the Address 2 pin
CF_A1_direction : Direction of the Address 1 pin
CF_A0_direction : Direction of the Address 0 pin
must be defined before using this function.
// set compact flash pinout
char Cf_Data_Port at PORTD;
sbit
sbit
sbit
sbit
sbit
sbit
sbit
sbit
CF_RDY
CF_WE
CF_OE
CF_CD1
CF_CE1
CF_A2
CF_A1
CF_A0
at
at
at
at
at
at
at
at
RB7_bit;
RB6_bit;
RB5_bit;
RB4_bit;
RB3_bit;
RB2_bit;
RB1_bit;
RB0_bit;
Example
sbit CF_RDY_direction at TRISB7_bit;
sbit CF_WE_direction at TRISB6_bit;
sbit CF_OE_direction at TRISB5_bit;
sbit CF_CD1_direction at TRISB4_bit;
sbit CF_CE1_direction at TRISB3_bit;
sbit CF_A2_direction at TRISB2_bit;
sbit CF_A1_direction at TRISB1_bit;
sbit CF_A0_direction at TRISB0_bit;
// end of compact flash pinout
...
Cf_Init();
// initialize CF
276
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Cf_Detect
Prototype
unsigned short Cf_Detect(void);
Returns
- 1 - if CF card was detected
- 0 - otherwise
Description Checks for presence of CF card by reading the chip detect pin.
Requires
The corresponding MCU ports must be appropriately initialized for CF card. See
Cf_Init.
Example
// Wait until CF card is inserted:
do
asm nop;
while (!Cf_Detect());
Cf_Enable
Prototype
void Cf_Enable(void);
Returns
Nothing.
Enables the device. Routine needs to be called only if you have disabled the
Description device by means of the Cf_Disable routine. These two routines in conjunction
allow you to free/occupy data line when working with multiple devices.
Requires
The corresponding MCU ports must be appropriately initialized for CF card. See
Cf_Init.
Example
// enable compact flash
Cf_Enable();
Cf_Disable
Prototype
void Cf_Disable(void);
Returns
Nothing.
Routine disables the device and frees the data lines for other devices. To enable
Description the device again, call Cf_Enable. These two routines in conjunction allow you to
free/occupy data line when working with multiple devices.
Requires
The corresponding MCU ports must be appropriately initialized for CF card. See
Cf_Init.
Example
// disable compact flash
Cf_Disable();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
277
CHAPTER 7
mikroC PRO for PIC
Libraries
Cf_Read_Init
Prototype
void Cf_Read_Init(unsigned long address, unsigned short
sector_count);
Returns
Nothing.
Initializes CF card for reading.
Description
Parameters:
- address: the first sector to be prepared for reading operation.
- sector_count: number of sectors to be prepared for reading operation.
Requires
The corresponding MCU ports must be appropriately initialized for CF card. See
Cf_Init.
Example
// initialize compact flash for reading from sector 590
Cf_Read_Init(590, 1);
Cf_Read_Byte
Prototype
unsigned short Cf_Read_Byte(void);
Returns a byte read from Compact Flash sector buffer.
Returns
Note: Higher byte of the unsigned return value is cleared.
Description
Requires
Reads one byte from Compact Flash sector buffer location currently pointed to
by internal read pointers. These pointers will be autoicremented upon reading.
The corresponding MCU ports must be appropriately initialized for CF card. See
Cf_Init.
CF card must be initialized for reading operation. See Cf_Read_Init.
Example
278
// Read a byte from compact flash:
char data;
...
data = Cf_Read_Byte();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Cf_Write_Init
Prototype
void Cf_Write_Init(unsigned long address, unsigned short sectcnt);
Returns
Nothing.
Initializes CF card for writing.
Description
Parameters:
- address: the first sector to be prepared for writing operation.
- sectcnt: number of sectors to be prepared for writing operation.
Requires
The corresponding MCU ports must be appropriately initialized for CF card. See
Cf_Init.
Example
// initialize compact flash for writing to sector 590
Cf_Write_Init(590, 1);
Cf_Write_Byte
Prototype
void Cf_Write_Byte(unsigned short data_);
Returns
Nothing.
Description
Writes a byte to Compact Flash sector buffer location currently pointed to by
writing pointers. These pointers will be autoicremented upon reading. When
sector buffer is full, its contents will be transfered to appropriate flash memory
sector.
Parameters:
- data_: byte to be written.
Requires
The corresponding MCU ports must be appropriately initialized for CF card. See
Cf_Init.
CF card must be initialized for writing operation. See Cf_Write_Init.
Example
char data = 0xAA;
...
Cf_Write_Byte(data);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
279
CHAPTER 7
mikroC PRO for PIC
Libraries
Cf_Read_Sector
Prototype
void Cf_Read_Sector(unsigned long sector_number, unsigned short
*buffer);
Returns
Nothing.
Reads one sector (512 bytes). Read data is stored into buffer provided by the
buffer parameter.
Description Parameters:
sector_number: sector to be read.
buffer: data buffer of at least 512 bytes in length.
Requires
The corresponding MCU ports must be appropriately initialized for CF card. See
Cf_Init.
Example
// read sector 22
unsigned short data[512];
...
Cf_Read_Sector(22, data);
Cf_Write_Sector
Prototype
void Cf_Write_Sector(unsigned long sector_number, unsigned short
*buffer);
Returns
Nothing.
Writes 512 bytes of data provided by the buffer parameter to one CF sector.
Description
Parameters:
- sector_number: sector to be written to.
- buffer: data buffer of 512 bytes in length.
280
Requires
The corresponding MCU ports must be appropriately initialized for CF card. See
Cf_Init.
Example
// write to sector 22
unsigned short data[512];
...
Cf_Write_Sector(22, data);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Cf_Fat_Init
Prototype
unsigned short Cf_Fat_Init();
Returns
- 0 - if CF card was detected and successfuly initialized
- 1 - if FAT16 boot sector was not found
- 255 - if card was not detected
Description
Initializes CF card, reads CF FAT16 boot sector and extracts necessary data
needed by the library.
Requires
Nothing.
Example
// Init the FAT library
if (!Cf_Fat_Init()) {
...
}
// Init the FAT library
Cf_Fat_QuickFormat
Prototype
unsigned char Cf_Fat_QuickFormat(char *cf_fat_label);
Returns
- 0 - if CF card was detected, successfuly formated and initialized
- 1 - if FAT16 format was unseccessful
- 255 - if card was not detected
Formats to FAT16 and initializes CF card.
Parameters:
- cf_fat_label: volume label (11 characters in length). If less than 11
Description
characters are provided, the label will be padded with spaces. If null string is
passed, the volume will not be labeled.
Note: This routine can be used instead or in conjunction with Cf_Fat_Init routine.
Note: If CF card already contains a valid boot sector, it will remain unchanged
(except volume label field) and only FAT and ROOT tables will be erased. Also,
the new volume label will be set.
Requires
Nothing.
Example
//--- format and initialize the FAT library if (!Cf_Fat_QuickFormat(&cf_fat_label)) {
...
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
281
CHAPTER 7
mikroC PRO for PIC
Libraries
Cf_Fat_Assign
Prototype
unsigned short Cf_Fat_Assign(char *filename, char file_cre_attr);
Returns
- 0 if file does not exist and no new file is created.
- 1 if file already exists or file does not exist but a new file is created.
Assigns file for file operations (read, write, delete...). All subsequent file operations will be applied over the assigned file.
Description
Parameters:
- filename: name of the file that should be assigned for file operations. The file name
should be in DOS 8.3 (file_name.extension) format. The file name and extension will
be automatically padded with spaces by the library if they have less than length
required (i.e. "mikro.tx" -> "mikro .tx "), so the user does not have to take care of that.
The file name and extension are case insensitive. The library will convert them to proper case automatically, so the user does not have to take care of that.
Also, in order to keep backward compatibility with the first version of this library,
file names can be entered as UPPERCASE string of 11 bytes in length with no
dot character between the file name and extension (i.e. "MIKROELETXT" ->
MIKROELE.TXT). In this case the last 3 characters of the string are considered
to be file extension.
- file_cre_attr: file creation and attributs flags. Each bit corresponds to the
appropriate file attribut::
Bit
Mask
Description
0
0x01
Read Only
1
0x02
Hidden
2
0x04
System
3
0x08
Volume Label
4
0x10
Subdirectory
5
0x20
Archive
6
0x40
Device (internal use only, never found on disk)
7
0x80
File creation flag. If the file does not exist and this flag is
set, a new file with specified name will be created.
Note: Long File Names (LFN) are not supported.
282
Requires
CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
Example
// create file with archive attributes if it does not already exist
Cf_Fat_Assign("MIKRO007.TXT",0xA0);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Cf_Fat_Reset
Prototype
void Cf_Fat_Reset(unsigned long *size);
Returns
Nothing.
Opens currently assigned file for reading.
Description
Parameters:
- size: buffer to store file size to. After file has been open for reading its size is
returned through this parameter.
Requires
CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.
Example
unsigned long size;
...
Cf_Fat_Reset(size);
Cf_Fat_Read
Prototype
void Cf_Fat_Read(unsigned short *bdata);
Returns
Nothing.
Reads a byte from currently assigned file opened for reading. Upon function execution file pointers will be set to the next character in the file.
Description Parameters:
- bdata: buffer to store read byte to. Upon this function execution read byte is
returned through this parameter.
Requires
CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.
File must be open for reading. See Cf_Fat_Reset.
Example
char character;
...
Cf_Fat_Read(&character);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
283
CHAPTER 7
mikroC PRO for PIC
Libraries
Cf_Fat_Rewrite
Prototype
void Cf_Fat_Rewrite();
Returns
Nothing.
Description
Opens currently assigned file for writing. If the file is not empty its content will be
erased.
Requires
CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
The file must be previously assigned. See Cf_Fat_Assign.
Example
// open file for writing
Cf_Fat_Rewrite();
Cf_Fat_Append
Prototype
void Cf_Fat_Append();
Returns
Nothing.
Opens currently assigned file for appending. Upon this function execution file
Description pointers will be positioned after the last byte in the file, so any subsequent file writing operation will start from there.
Requires
CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.
Example
// open file for appending
Cf_Fat_Append();
Cf_Fat_Delete
Prototype
void Cf_Fat_Delete();
Returns
Nothing.
Description Deletes currently assigned file from CF card.
284
Requires
CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.
Example
// delete current file
Cf_Fat_Delete();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Cf_Fat_Write
Prototype
void Cf_Fat_Write(char *fdata, unsigned data_len);
Returns
Nothing.
Writes requested number of bytes to currently assigned file opened for writing.
Description
Parameters:
- fdata: data to be written.
- data_len: number of bytes to be written.
Requires
CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.
File must be open for writing. See Cf_Fat_Rewrite or Cf_Fat_Append.
Example
char file_contents[42];
...
Cf_Fat_Write(file_contents, 42); // write data to the assigned
file
Cf_Fat_Set_File_Date
Prototype
void Cf_Fat_Set_File_Date(unsigned int year, unsigned short
month, unsigned short day, unsigned short hours, unsigned short
mins, unsigned short seconds);
Returns
Nothing.
Sets the date/time stamp. Any subsequent file writing operation will write this
stamp to currently assigned file's time/date attributs.
Parameters:
Description - year: year attribute. Valid values: 1980-2107
- month: month attribute. Valid values: 1-12
- day: day attribute. Valid values: 1-31
- hours: hours attribute. Valid values: 0-23
- mins: minutes attribute. Valid values: 0-59
- seconds: seconds attribute. Valid values: 0-59
Requires
CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.
File must be open for writing. See Cf_Fat_Rewrite or Cf_Fat_Append.
Example
Cf_Fat_Set_File_Date(2005,9,30,17,41,0);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
285
CHAPTER 7
mikroC PRO for PIC
Libraries
Cf_Fat_Set_File_Date
Prototype
void Cf_Fat_Get_File_Date(unsigned int *year, unsigned short
*month, unsigned short *day, unsigned short *hours, unsigned
short *mins);
Returns
Nothing.
Reads time/date attributes of currently assigned file.
Parameters:
- year: buffer to store year attribute to. Upon function execution year attribute
is returned through this parameter.
- month: buffer to store month attribute to. Upon function execution month
Description
attribute is returned through this parameter.
- day: buffer to store day attribute to. Upon function execution day attribute is
returned through this parameter.
- hours: buffer to store hours attribute to. Upon function execution hours
attribute is returned through this parameter.
- mins: buffer to store minutes attribute to. Upon function execution minutes
attribute is returned through this parameter.
Requires
CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.
Example
unsigned year;
char month, day, hours, mins;
...
Cf_Fat_Get_File_Date(&year, &month, &day, &hours, &mins);
Cf_Fat_Set_File_Size
Prototype
unsigned long Cf_Fat_Get_File_Size();
Returns
Size of the currently assigned file in bytes.
Description This function reads size of currently assigned file in bytes.
286
Requires
CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.
Example
unsigned long my_file_size;
...
my_file_size = Cf_Fat_Get_File_Size();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Cf_Fat_Get_Swap_File
Prototype
Returns
unsigned long Cf_Fat_Get_Swap_File(unsigned long sectors_cnt,
char *filename, char file_attr);
- Number of the start sector for the newly created swap file, if there was enough free space
on CF card to create file of required size.
- 0 otherwise
This function is used to create a swap file of predefined name and size on the CF
media. If a file with specified name already exists on the media, search for consecutive sectors will ignore sectors occupied by this file. Therefore, it is recommended to erase such file if it exists before calling this function. If it is not erased
and there is still enough space for a new swap file, this function will delete it after
allocating new memory space for a new swap file.
The purpose of the swap file is to make reading and writing to CF media as fast
as possible, by using the Cf_Read_Sector() and Cf_Write_Sector() functions
directly, without potentially damaging the FAT system. Swap file can be considered as a "window" on the media where the user can freely write/read data. It's
main purpose in the mikroC's library is to be used for fast data acquisition; when
the time-critical acquisition has finished, the data can be re-written into a "normal"
file, and formatted in the most suitable way.
Parameters:
- sectors_cnt: number of consecutive sectors that user wants the swap file to have.
- filename: name of the file that should be assigned for file operations. The file name
should be in DOS 8.3 (file_name.extension) format. The file name and extension will
be automatically padded with spaces by the library if they have less than length
required (i.e. "mikro.tx" -> "mikro .tx "), so the user does not have to take care of that.
The file name and extension are case insensitive. The library will convert them to
proper case automatically, so the user does not have to take care of that. Also, in order
Description to keep backward compatibility with the first version of this library, file names can be
entered as UPPERCASE string of 11 bytes in length with no dot chsaracter between
the file name and extension (i.e. "MIKROELETXT" -> MIKROELE.TXT). In this case
the last 3 characters of the string are considered to be file extension.
- file_attr: file creation and attributs flags. Each bit corresponds to the
appropriate file attribut:
Bit
Mask
Description
0
0x01
Read Only
1
0x02
Hidden
2
0x04
System
3
0x08
Volume Label
4
0x10
Subdirectory
5
0x20
Archive
6
0x40
Device (internal use only, never found on disk)
7
0x80
Not used
Note: Long File Names (LFN) are not supported.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
287
CHAPTER 7
mikroC PRO for PIC
Libraries
Requires
CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
Example
//-------------- Try to create a swap file with archive
atribute, whose size will be at least 1000 sectors.
// If it succeeds, it sends the No. of start sector over UART
unsigned long size;
...
size = Cf_Fat_Get_Swap_File(1000, "mikroE.txt", 0x20);
if (size) {
UART_Write(0xAA);
UART_Write(Lo(size));
UART_Write(Hi(size));
UART_Write(Higher(size));
UART_Write(Highest(size));
UART_Write(0xAA);
}
Library Example
The following example demonstrates various aspects of the Cf_Fat16 library: Creation of new file
and writing down to it; Opening existing file and re-writing it (writing from start-of-file); Opening
existing file and appending data to it (writing from end-of-file); Opening a file and reading data from
it (sending it to USART terminal); Creating and modifying several files at once;
// set compact flash pinout
char Cf_Data_Port at PORTD;
sbit
sbit
sbit
sbit
sbit
sbit
sbit
sbit
CF_RDY
CF_WE
CF_OE
CF_CD1
CF_CE1
CF_A2
CF_A1
CF_A0
at
at
at
at
at
at
at
at
RB7_bit;
RB6_bit;
RB5_bit;
RB4_bit;
RB3_bit;
RB2_bit;
RB1_bit;
RB0_bit;
sbit CF_RDY_direction
sbit CF_WE_direction
sbit CF_OE_direction
sbit CF_CD1_direction
sbit CF_CE1_direction
sbit CF_A2_direction
sbit CF_A1_direction
sbit CF_A0_direction
// end of cf pinout
at
at
at
at
at
at
at
at
TRISB7_bit;
TRISB6_bit;
TRISB5_bit;
TRISB4_bit;
TRISB3_bit;
TRISB2_bit;
TRISB1_bit;
TRISB0_bit;
const LINE_LEN = 39;
char err_txt[20]
= "FAT16 not found";
char file_contents[LINE_LEN] = "XX CF FAT16 library by Anton Rieckertn";
288
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
char
filename[14] = "MIKRO00x.TXT";
unsigned short loop, loop2;
unsigned long i, size;
char
Buffer[512];
Libraries
// File names
// UART1 write text and new line (carriage return + line feed)
void UART1_Write_Line(char *uart_text) {
UART1_Write_Text(uart_text);
UART1_Write(13);
UART1_Write(10);
}
// Creates new file and writes some data to it
void M_Create_New_File() {
filename[7] = 'A';
Cf_Fat_Assign(&filename, 0xA0); // Find existing file or create a
new one
Cf_Fat_Rewrite(); // To clear file and start with new data
for(loop = 1; loop <= 99; loop++) {
UART1_Write('.');
file_contents[0] = loop / 10 + 48;
file_contents[1] = loop % 10 + 48;
Cf_Fat_Write(file_contents, LINE_LEN-1); // write data to the
assigned file
}
}
// Creates many new files and writes data to them
void M_Create_Multiple_Files() {
for(loop2 = 'B'; loop2 <= 'Z'; loop2++) {
UART1_Write(loop2);
// signal the progress
filename[7] = loop2;
// set filename
Cf_Fat_Assign(&filename, 0xA0); // find existing file or create
a new one
Cf_Fat_Rewrite(); // To clear file and start with new data
for(loop = 1; loop <= 44; loop++) {
file_contents[0] = loop / 10 + 48;
file_contents[1] = loop % 10 + 48;
Cf_Fat_Write(file_contents, LINE_LEN-1); // write data to the
assigned file
}
}
}
// Opens an existing file and rewrites it
void M_Open_File_Rewrite() {
filename[7] = 'C';
Cf_Fat_Assign(&filename, 0);
Cf_Fat_Rewrite();
for(loop = 1; loop <= 55; loop++) {
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
289
CHAPTER 7
mikroC PRO for PIC
Libraries
file_contents[0] = loop / 10 + 65;
file_contents[1] = loop % 10 + 65;
Cf_Fat_Write(file_contents, LINE_LEN-1);
assigned file
}
}
// write data to the
// Opens an existing file and appends data to it
//
(and alters the date/time stamp)
void M_Open_File_Append() {
filename[7] = 'B';
Cf_Fat_Assign(&filename, 0);
Cf_Fat_Set_File_Date(2005,6,21,10,35,0);
Cf_Fat_Append();
// Prepare file for append
Cf_Fat_Write(" for mikroElektronika 2005n", 27); // Write data to
assigned file
}
// Opens an existing file, reads data from it and puts it to UART
void M_Open_File_Read() {
char character;
filename[7] = 'B';
Cf_Fat_Assign(&filename, 0);
Cf_Fat_Reset(&size);// To read file, procedure returns size of file
for (i = 1; i <= size; i++) {
Cf_Fat_Read(&character);
UART1_Write(character);
// Write data to UART
}
}
// Deletes a file. If file doesn't exist, it will first be created
// and then deleted.
void M_Delete_File() {
filename[7] = 'F';
Cf_Fat_Assign(filename, 0);
Cf_Fat_Delete();
}
// Tests whether file exists, and if so sends its creation date
// and file size via UART
void M_Test_File_Exist() {
unsigned long fsize;
unsigned int
year;
unsigned short month, day, hour, minute;
unsigned char outstr[12];
filename[7] = 'B'; //uncomment this line to search for file that
DOES exists
// filename[7] = 'F'; //uncomment this line to search for file that
DOES NOT exist
290
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
if (Cf_Fat_Assign(filename, 0)) {
//--- file has been found - get its date
Cf_Fat_Get_File_Date(&year, &month, &day, &hour, &minute);
WordToStr(year, outstr);
UART1_Write_Text(outstr);
ByteToStr(month, outstr);
UART1_Write_Text(outstr);
WordToStr(day, outstr);
UART1_Write_Text(outstr);
WordToStr(hour, outstr);
UART1_Write_Text(outstr);
WordToStr(minute, outstr);
UART1_Write_Text(outstr);
//--- get file size
fsize = Cf_Fat_Get_File_Size();
LongToStr((signed long)fsize, outstr);
UART1_Write_Line(outstr);
}
else {
//--- file was not found - signal it
UART1_Write(0x55);
Delay_ms(1000);
UART1_Write(0x55);
}
}
// Tries to create a swap file, whose size will be at least 100
// sectors (see Help for details)
void M_Create_Swap_File() {
unsigned int i;
for(i=0; i<512; i++)
Buffer[i] = i;
size = Cf_Fat_Get_Swap_File(5000, "mikroE.txt", 0x20); // see help
on this function for details
if (size) {
LongToStr((signed long)size, err_txt);
UART1_Write_Line(err_txt);
for(i=0; i<5000; i++) {
Cf_Write_Sector(size++, Buffer);
UART1_Write('.');
}
}
}
// Main. Uncomment the function(s) to test the desired operation(s)
void main() {
#define COMPLETE_EXAMPLE
// comment this line to make simpler/smaller example
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
291
CHAPTER 7
mikroC PRO for PIC
Libraries
ADCON1 |= 0x0F;
CMCON |= 7;
// Configure AN pins as digital
// Turn off comparators
// Initialize UART1 module
UART1_Init(19200);
Delay_ms(10);
UART1_Write_Line("PIC-Started"); // PIC present report
// use fat16 quick format instead of init routine if a formatting
is needed
if (Cf_Fat_Init() == 0) {
Delay_ms(2000); // wait for a while until the card is stabilized
//
period depends on used CF card
//--- Test start
UART1_Write_Line("Test Start.");
//--- Test routines. Uncomment them one-by-one to test certain
features
M_Create_New_File();
#ifdef COMPLETE_EXAMPLE
M_Create_Multiple_Files();
M_Open_File_Rewrite();
M_Open_File_Append();
M_Open_File_Read();
M_Delete_File();
M_Test_File_Exist();
M_Create_Swap_File();
#endif
UART1_Write_Line("Test End.");
}
else {
UART1_Write_Line(err_txt); // Note: Cf_Fat_Init tries to initialize a card more than once.
// If card is not present, initialization may last longer (depending on clock speed)
}
}
292
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
Pin diagram of CF memory card
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
293
CHAPTER 7
mikroC PRO for PIC
Libraries
EEPROM LIBRARY
EEPROM data memory is available with a number of PIC MCUs. mikroC PRO for PIC includes
library for comfortable work with EEPROM.
Library Routines
- Eeprom_Read
- Eeprom_Write
EEPROM_Read
Prototype
unsigned short EEPROM_Read(unsigned int address);
Returns
Returns byte from specified address.
Description
Reads data from specified address. Parameter address is of integer type,
which means it supports MCUs with more than 256 bytes of EEPROM.
Requires
Requires EEPROM module.
Ensure minimum 20ms delay between successive use of routines
EEPROM_Write and EEPROM_Read. Although PIC will write the correct value,
EEPROM_Read might return an undefined result.
Example
unsigned short take;
...
take = EEPROM_Read(0x3F);
EEPROM_Write
Prototype
void EEPROM_Write(unsigned int address, unsigned short data);
Returns
Nothing.
Writes data to specified address. Parameter address is of integer type, which
means it supports MCUs with more than 256 bytes of EEPROM.
Description Be aware that all interrupts will be disabled during execution of EEPROM_Write
routine (GIE bit of INTCON register will be cleared). Routine will restore previous state of this bit on exit.
294
Requires
Requires EEPROM module.
Ensure minimum 20ms delay between successive use of routines
EEPROM_Write and EEPROM_Read. Although PIC will write the correct value,
EEPROM_Read might return an undefined result.
Example
EEPROM_Write(0x32, 19);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
The example demonstrates use of EEPROM Library.
char ii;
// loop variable
void main(){
ANSEL = 0;
ANSELH = 0;
// Configure AN pins as digital I/O
PORTB = 0;
PORTC = 0;
PORTD = 0;
TRISB = 0;
TRISC = 0;
TRISD = 0;
for(ii = 0; ii < 32; ii++)
EEPROM_Write(0x80+ii, ii);
// Fill data buffer
// Write data to address 0x80+ii
EEPROM_Write(0x02,0xAA);
EEPROM_Write(0x50,0x55);
// Write some data at address 2
// Write some data at address 0150
Delay_ms(1000);
PORTB = 0xFF;
PORTC = 0xFF;
Delay_ms(1000);
PORTB = 0x00;
PORTC = 0x00;
Delay_ms(1000);
// Blink PORTB and PORTC diodes
// to indicate reading start
PORTB
display
PORTC
display
= EEPROM_Read(0x02);
it on PORTB
= EEPROM_Read(0x50);
it on PORTC
// Read data from address 2 and
// Read data from address 0x50 and
Delay_ms(1000);
for(ii = 0; ii < 32; ii++) { // Read 32 bytes block from address 0x80
PORTD = EEPROM_Read(0x80+ii); // and display data on PORTD
Delay_ms(250);
}
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
295
CHAPTER 7
Libraries
mikroC PRO for PIC
ETHERNET PIC18FXXJ60 LIBRARY
PIC18FxxJ60 family of microcontrollers feature an embedded Ethernet controller module. This is
a complete connectivity solution, including full implementations of both Media Access Control
(MAC) and Physical Layer transceiver (PHY) modules. Two pulse transformers and a few passive
components are all that are required to connect the microcontroller directly to an Ethernet network.
The Ethernet module meets all of the IEEE 802.3 specifications for 10-BaseT connectivity to a
twisted-pair network. It incorporates a number of packet filtering schemes to limit incoming packets. It also provides an internal DMA module for fast data throughput and hardware assisted IP
checksum calculations. Provisions are also made for two LED outputs to indicate link and network
activity
This library provides the posibility to easily utilize ethernet feature of the above mentioned MCUs.
Ethernet PIC18FxxJ60 library supports:
- IPv4 protocol.
- ARP requests.
- ICMP echo requests.
- UDP requests.
- TCP requests (no stack, no packet reconstruction).
- ARP client with cache.
- DNS client.
- UDP client.
- DHCP client.
- packet fragmentation is NOT supported.
Note: Global library variable Ethernet_userTimerSec is used to keep track of time for all client
implementations (ARP, DNS, UDP and DHCP). It is user responsibility to increment this variable
each second in it's code if any of the clients is used.
For advanced users there are header files ("eth_j60LibDef.h" and
"eth_j60LibPrivate.h") in Uses\P18 folder of the compiler with description of all routines and
Note:
global variables, relevant to the user, implemented in the Ethernet PIC18FxxJ60 Library.
296
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Routines
-
Ethernet_Init
Ethernet_Enable
Ethernet_Disable
Ethernet_doPacket
Ethernet_putByte
Ethernet_putBytes
Ethernet_putString
Ethernet_putConstString
Ethernet_putConstBytes
Ethernet_getByte
Ethernet_getBytes
Ethernet_UserTCP
Ethernet_UserUDP
Ethernet_getIpAddress
Ethernet_getGwIpAddress
Ethernet_getDnsIpAddress
Ethernet_getIpMask
Ethernet_confNetwork
Ethernet_arpResolve
Ethernet_sendUDP
Ethernet_dnsResolve
Ethernet_initDHCP
Ethernet_doDHCPLeaseTime
Ethernet_renewDHCP
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
297
CHAPTER 7
mikroC PRO for PIC
Libraries
Ethernet_Init
Prototype
void Ethernet_Init(unsigned char *mac, unsigned char *ip,
unsigned char fullDuplex);
Returns
Nothing.
This is MAC module routine. It initializes Ethernet controller. This function is
internaly splited into 2 parts to help linker when coming short of memory.
Ethernet controller settings (parameters not mentioned here are set to default):
- receive buffer start address : 0x0000.
- receive buffer end address : 0x19AD.
- transmit buffer start address: 0x19AE.
- transmit buffer end address : 0x1FFF.
- RAM buffer read/write pointers in auto-increment mode.
- receive filters set to default: CRC + MAC Unicast + MAC Broadcast in OR
mode.
- flow control with TX and RX pause frames in full duplex mode.
- frames are padded to 60 bytes + CRC.
Description - maximum packet size is set to 1518.
- Back-to-Back Inter-Packet Gap: 0x15 in full duplex mode; 0x12 in half duplex
mode.
- Non-Back-to-Back Inter-Packet Gap: 0x0012 in full duplex mode; 0x0C12 in
half duplex mode.
- half duplex loopback disabled.
- LED configuration: default (LEDA-link status, LEDB-link activity).
Parameters:
- mac: RAM buffer containing valid MAC address.
- ip: RAM buffer containing valid IP address.
- fullDuplex: ethernet duplex mode switch. Valid values: 0 (half duplex
mode) and 1 (full duplex mode).
Note: If a DHCP server is to be used, IP address should be set to 0.0.0.0.
Requires
Nothing.
#define Ethernet_HALFDUPLEX
#define Ethernet_FULLDUPLEX
Example
0
1
unsigned char myMacAddr[6] = {0x00, 0x14, 0xA5, 0x76, 0x19,
0x3f}; // my MAC address
unsigned char myIpAddr = {192, 168,
1, 60 }; // my IP addr
Ethernet_Init(myMacAddr, myIpAddr, Ethernet_FULLDUPLEX);
298
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Ethernet_Enable
Prototype
void Ethernet_Enable(unsigned char enFlt);
Returns
Nothing.
This is MAC module routine. This routine enables appropriate network traffic on
the MCU's internal Ethernet module by the means of it's receive filters (unicast,
multicast, broadcast, crc). Specific type of network traffic will be enabled if a
corresponding bit of this routine's input parameter is set. Therefore, more than
one type of network traffic can be enabled at the same time. For this purpose,
predefined library constants (see the table below) can be ORed to form appropriate input value.
Parameters:
- enFlt: network traffic/receive filter flags. Each bit corresponds to the appropriate network traffic/receive filter:
Bi
Mask
t
Description
Description
Predefined library
const
0
0x01
MAC Broadcast traffic/receive filter flag. When
set, MAC broadcast traffic will be enabled.
_Ethernet_BROADCAST
1
0x02
MAC Multicast traffic/receive filter flag. When
set, MAC multicast traffic will be enabled.
_Ethernet_MULTICAST
2
0x04
not used
none
3
0x08
not used
none
4
0x10
not used
none
5
0x20
CRC check flag. When set, packets with
invalid CRC field will be discarded.
_Ethernet_CRC
6
0x40
not used
none
7
0x80
MAC Unicast traffic/receive filter flag. When
set, MAC unicast traffic will be enabled.
_Ethernet_UNICAST
Note: Advance filtering available in the MCU's internal Ethernet module such as
Pattern Match, Magic Packet and Hash Table can not be enabled by this
routine. Additionaly, all filters, except CRC, enabled with this routine will work in
OR mode, which means that packet will be received if any of the enabled filters
accepts it.
Note: This routine will change receive filter configuration on-the-fly. It will not, in
any way, mess with enabling/disabling receive/transmit logic or any other part of
the MCU's internal Ethernet module. The MCU's internal Ethernet module should
be properly cofigured by the means of Ethernet_Init routine.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
299
CHAPTER 7
mikroC PRO for PIC
Libraries
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
Ethernet_Enable(_Ethernet_CRC | _Ethernet_UNICAST); // enable
CRC checking and Unicast traffic
Ethernet_Disable
Prototype
void Ethernet_Enable(unsigned char enFlt);
Returns
Nothing.
This is MAC module routine. This routine disables appropriate network traffic on the
MCU's internal Ethernet module by the means of it's receive filters (unicast, multicast,
broadcast, crc). Specific type of network traffic will be disabled if a corresponding bit
of this routine's input parameter is set. Therefore, more than one type of network traffic can be disabled at the same time. For this purpose, predefined library constants
(see the table below) can be ORed to form appropriate input value.
Parameters:
- disFlt: network traffic/receive filter flags. Each bit corresponds to the appropriate network traffic/receive filter:
Bit Mask
Description
0
0x01
1
0x02
2
3
4
0x04
0x08
0x10
5
0x20
6
0x40
7
0x80
Description
Predefined library
const
MAC Broadcast traffic/receive filter flag. When
_Ethernet_BROADCAST
set, MAC broadcast traffic will be disabled.
MAC Multicast traffic/receive filter flag. When
_Ethernet_MULTICAST
set, MAC multicast traffic will be disabled.
not used
none
not used
none
not used
none
CRC check flag. When set, CRC check will
_Ethernet_CRC
be disabled and packets with invalid CRC
field will be accepted.
not used
none
MAC Unicast traffic/receive filter flag. When
_Ethernet_UNICAST
set, MAC unicast traffic will be disabled.
Note: Advance filtering available in the MCU's internal Ethernet module such as
Pattern Match, Magic Packet and Hash Table can not be disabled by this routine.
Note: This routine will change receive filter configuration on-the-fly. It will not, in
any way, mess with enabling/disabling receive/transmit logic or any other part of
the MCU's internal Ethernet module. The MCU's internal Ethernet module
should be properly cofigured by the means of Ethernet_Init routine.
300
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Requires
Ethernet module has to be initialized. See Ethernet_Init..
Example
Ethernet_Disable(_Ethernet_CRC | _Ethernet_UNICAST); // disable
CRC checking and Unicast traffic
Ethernet_doPacket
Prototype
unsigned char Ethernet_doPacket();
- 0 - upon successful packet processing (zero packets received or received
packet processed successfuly).
- 1 - upon reception error or receive buffer corruption. Ethernet controller
Returns
needs to be restarted.
- 2 - received packet was not sent to us (not our IP, nor IP broadcast address).
- 3 - received IP packet was not IPv4.
- 4 - received packet was of type unknown to the library.
This is MAC module routine. It processes next received packet if such exists.
Packets are processed in the following manner:
Description
- ARP & ICMP requests are replied automatically.
- upon TCP request the Ethernet_UserTCP function is called for further processing.
- upon UDP request the Ethernet_UserUDP function is called for further processing.
Note: Ethernet_doPacket must be called as often as possible in user's code.
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
if (Ethernet_doPacket() == 0) { // process received packets
...
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
301
CHAPTER 7
mikroC PRO for PIC
Libraries
Ethernet_putByte
Prototype
void Ethernet_putByte(unsigned char v);
Returns
Nothing.
This is MAC module routine. It stores one byte to address pointed by the current Ethernet controller's write pointer (EWRPT).
Description
Parameters:
- v: value to store
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
char data;
...
Ethernet_putByte(data); // put an byte into Ethernet controller's
buffer
Ethernet_putBytes
Prototype
void Ethernet_putBytes(unsigned char *ptr, unsigned char n);
Returns
Nothing.
This is MAC module routine. It stores requested number of bytes into Ethernet
controller's RAM starting from current Ethernet controller's write pointer (EWRPT)
location.
Description
Parameters:
- ptr: RAM buffer containing bytes to be written into Ethernet controller's RAM.
- n: number of bytes to be written.
302
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
char *buffer = "mikroElektronika";
...
Ethernet_putBytes(buffer, 16); // put an RAM array into Ethernet
controller's buffer
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Ethernet_putConstBytes
Prototype
void Ethernet_putConstBytes(const unsigned char *ptr, unsigned
char n);
Returns
Nothing.
This is MAC module routine. It stores requested number of const bytes into Ethernet controller's RAM starting from current Ethernet controller's write pointer
(EWRPT) location.
Description
Parameters:
- ptr: const buffer containing bytes to be written into Ethernet controller's RAM.
- n: number of bytes to be written.
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
const char *buffer = "mikroElektronika";
...
Ethernet_putConstBytes(buffer, 16); // put a const array into
Ethernet controller's buffer
Ethernet_putString
Prototype
unsigned int Ethernet_putString(unsigned char *ptr);
Returns
Number of bytes written into Ethernet controller's RAM.
This is MAC module routine. It stores whole string (excluding null termination) into
Ethernet controller's RAM starting from current Ethernet controller's write pointer
(EWRPT) location.
Description
Parameters:
- ptr: string to be written into Ethernet controller's RAM.
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
char *buffer = "mikroElektronika";
...
Ethernet_putString(buffer); // put a RAM string into Ethernet
controller's buffer
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
303
CHAPTER 7
mikroC PRO for PIC
Libraries
Ethernet_putConstString
Prototype
unsigned int Ethernet_putConstString(const unsigned char *ptr);
Returns
Number of bytes written into Ethernet controller's RAM.
This is MAC module routine. It stores whole const string (excluding null termination) into Ethernet controller's RAM starting from current Ethernet controller's
Description write pointer (EWRPT) location.
Parameters:
- ptr: const string to be written into Ethernet controller's RAM.
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
const char *buffer = "mikroElektronika";
...
Ethernet_putConstString(buffer); // put a const string into
Ethernet controller's buffer
Ethernet_getByte
Prototype
unsigned char Ethernet_getByte();
Returns
Byte read from Ethernet controller's RAM.
Description
This is MAC module routine. It fetches a byte from address pointed to by current
Ethernet controller's read pointer (ERDPT).
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
char buffer;
...
buffer = Ethernet_getByte(); // read a byte from Ethernet controller's buffer
Ethernet_getBytes
Prototype
void Ethernet_getBytes(unsigned char *ptr, unsigned int addr,
unsigned char n);
Returns
Nothing.
This is MAC module routine. It fetches equested number of bytes from Ethernet
controller's RAM starting from given address. If value of 0xFFFF is passed as
the address parameter, the reading will start from current Ethernet controller's
pointer (ERDPT) location.
Description read
Parameters:
- ptr: buffer for storing bytes read from Ethernet controller's RAM.
- addr: Ethernet controller's RAM start address. Valid values: 0..8192.
- n: number of bytes to be read.
304
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
char buffer[16];
...
Ethernet_getBytes(buffer, 0x100, 16); // read 16 bytes, starting
from address 0x100
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Ethernet_UserTCP
Prototype
unsigned int Ethernet_UserTCP(unsigned char *remoteHost, unsigned
int remotePort, unsigned int localPort, unsigned int reqLength);
Returns
- 0 - there should not be a reply to the request.
- Length of TCP/HTTP reply data field - otherwise.
This is TCP module routine. It is internally called by the library. The user accesses to the TCP/HTTP request by using some of the Ethernet_get routines. The
user puts data in the transmit buffer by using some of the Ethernet_put routines.
The function must return the length in bytes of the TCP/HTTP reply, or 0 if there
is nothing to transmit. If there is no need to reply to the TCP/HTTP requests, just
define this function with return(0) as a single statement.
Description
Parameters:
-
remoteHost: client's IP address.
remotePort: client's TCP port.
localPort: port to which the request is sent.
reqLength: TCP/HTTP request data field length.
Note: The function source code is provided with appropriate example projects.
The code should be adjusted by the user to achieve desired reply.
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
This function is internally called by the library and should not be called by the
user's code.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
305
CHAPTER 7
mikroC PRO for PIC
Libraries
Ethernet_UserUDP
Prototype
unsigned int Ethernet_UserUDP(unsigned char *remoteHost, unsigned
int remotePort, unsigned int destPort, unsigned int reqLength);
Returns
- 0 - there should not be a reply to the request.
- Length of UDP reply data field - otherwise.
This is UDP module routine. It is internally called by the library. The user accesses to the UDP request by using some of the Ethernet_get routines. The user puts
data in the transmit buffer by using some of the Ethernet_put routines. The function must return the length in bytes of the UDP reply, or 0 if nothing to transmit. If
you don't need to reply to the UDP requests, just define this function with a
return(0) as single statement.
Description
Parameters:
-
remoteHost: client's IP address.
remotePort: client's port.
destPort: port to which the request is sent.
reqLength: UDP request data field length.
Note: The function source code is provided with appropriate example projects.
The code should be adjusted by the user to achieve desired reply.
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
This function is internally called by the library and should not be called by the user's code.
Ethernet_getlpAddress
Prototype
unsigned char * Ethernet_getIpAddress();
Returns
Ponter to the global variable holding IP address.
This routine should be used when DHCP server is present on the network to fetch
assigned IP address.
Description
306
Note: User should always copy the IP address from the RAM location returned by
this routine into it's own IP address buffer. These locations should not be altered
by the user in any case!
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
unsigned char ipAddr[4]; // user IP address buffer
...
memcpy(ipAddr, Ethernet_getIpAddress(), 4); // fetch IP address
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Ethernet_getGwlpAddress
Prototype
unsigned char * Ethernet_getGwIpAddress();
Returns
Ponter to the global variable holding gateway IP address.
This routine should be used when DHCP server is present on the network to fetch
assigned gateway IP address.
Description
Note: User should always copy the IP address from the RAM location returned by
this routine into it's own gateway IP address buffer. These locations should not be
altered by the user in any case!
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
unsigned char gwIpAddr[4]; // user gateway IP address buffer
...
memcpy(gwIpAddr, Ethernet_getGwIpAddress(), 4); // fetch gateway
IP address
Ethernet_getDnslpAddress();
Prototype
unsigned char * Ethernet_getDnsIpAddress
Returns
Ponter to the global variable holding DNS IP address.
This routine should be used when DHCP server is present on the network to fetch
assigned DNS IP address.
Description
Note: User should always copy the IP address from the RAM location returned by
this routine into it's own DNS IP address buffer. These locations should not be
altered by the user in any case!
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
unsigned char dnsIpAddr[4]; // user DNS IP address buffer
...
memcpy(dnsIpAddr, Ethernet_getDnsIpAddress(), 4); // fetch DNS
server address
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
307
CHAPTER 7
mikroC PRO for PIC
Libraries
Ethernet_getlpMask
Prototype
unsigned char * Ethernet_getIpMask()
Returns
Ponter to the global variable holding IP subnet mask.
This routine should be used when DHCP server is present on the network to fetch
assigned IP subnet mask.
Description
Note: User should always copy the IP address from the RAM location returned by
this routine into it's own IP subnet mask buffer. These locations should not be
altered by the user in any case!
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
unsigned char IpMask[4]; // user IP subnet mask buffer
...
memcpy(IpMask, Ethernet_getIpMask(), 4); // fetch IP subnet mask
Ethernet_confNetwork
Prototype
void Ethernet_confNetwork(char *ipMask, char *gwIpAddr, char
*dnsIpAddr);
Returns
Nothing.
Configures network parameters (IP subnet mask, gateway IP address, DNS IP
address) when DHCP is not used.
Parameters:
Description - ipMask: IP subnet mask.
- gwIpAddr gateway IP address.
- dnsIpAddr: DNS IP address.
Requires
Example
308
Note: The above mentioned network parameters should be set by this routine
only if DHCP module is not used. Otherwise DHCP will override these settings.
Ethernet module has to be initialized. See Ethernet_Init.
unsigned char ipMask[4]
= {255, 255, 255, 0 }; // network
mask (for example : 255.255.255.0)
unsigned char gwIpAddr[4] = {192, 168,
1, 1 }; // gateway
(router) IP address
unsigned char dnsIpAddr[4] = {192, 168,
1, 1 }; // DNS server IP address
...
Ethernet_confNetwork(ipMask, gwIpAddr, dnsIpAddr); // set network
configuration parameters
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Ethernet_arpResolve
Prototype
unsigned char *Ethernet_arpResolve(unsigned char *ip, unsigned
char tmax);
Returns
- MAC address behind the IP address - the requested IP address was resolved.
- 0 - otherwise.
This is ARP module routine. It sends an ARP request for given IP address and waits for
ARP reply. If the requested IP address was resolved, an ARP cash entry is used for storing the configuration. ARP cash can store up to 3 entries. For ARP cash structure refer to
"eth_j60LibDef.h" header file in the compiler's Uses/P18 folder.
Description Parameters:
- ip: IP address to be resolved.
- tmax: time in seconds to wait for an reply.
Note: The Ethernet services are not stopped while this routine waits for ARP
reply. The incoming packets will be processed normaly during this time.
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
unsigned char IpAddr[4] = {192, 168,
1, 1 }; // IP address
...
Ethernet_arpResolve(IpAddr, 5); // get MAC address behind the
above IP address, wait 5 secs for the response
Ethernet_sendUDP
Prototype
unsigned char Ethernet_sendUDP(unsigned char *destIP, unsigned
int sourcePort, unsigned int destPort, unsigned char *pkt,
unsigned int pktLen);
Returns
- 1 - UDP packet was sent successfully.
- 0 - otherwise.
This is UDP module routine. It sends an UDP packet on the network.
Parameters:
- destIP: remote host IP address.
Description
- sourcePort: local UDP source port number.
- destPort: destination UDP port number.
- pkt: packet to transmit.
- pktLen: length in bytes of packet to transmit.
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
unsigned char IpAddr[4] = {192, 168,
1, 1 }; // remote IP address
...
Ethernet_sendUDP(IpAddr, 10001, 10001, "Hello", 5); // send Hello message to the above IP address, from UDP port 10001 to UDP port 10001
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
309
CHAPTER 7
mikroC PRO for PIC
Libraries
Ethernet_dnsResolve
Prototype
unsigned char *Ethernet_dnsResolve(unsigned char *host, unsigned
char tmax);
Returns
- pointer to the location holding the IP address - the requested host name was
resolved.
- 0 - otherwise.
This is DNS module routine. It sends an DNS request for given host name and
waits for DNS reply. If the requested host name was resolved, it's IP address is
stored in library global variable and a pointer containing this address is returned
by the routine. UDP port 53 is used as DNS port.
Parameters:
Description
- host: host name to be resolved.
- tmax: time in seconds to wait for an reply.
Note: The Ethernet services are not stopped while this routine waits for DNS
reply. The incoming packets will be processed normaly during this time.
Note: User should always copy the IP address from the RAM location returned by
this routine into it's own resolved host IP address buffer. These locations should
not be altered by the user in any case!
Requires
Example
310
Ethernet module has to be initialized. See Ethernet_Init.
unsigned char * remoteHostIpAddr[4]; // user host IP address buffer
...
// SNTP server:
// Zurich, Switzerland: Integrated Systems Lab, Swiss Fed. Inst. of
Technology
// 129.132.2.21: swisstime.ethz.ch
// Service Area: Switzerland and Europe
memcpy(remoteHostIpAddr, Ethernet_dnsResolve("swisstime.ethz.ch", 5), 4);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Ethernet_initDHCL
Prototype
unsigned char Ethernet_initDHCP(unsigned char tmax);
Returns
- 1 - network parameters were obtained successfuly.
- 0 - otherwise.
This is DHCP module routine. It sends an DHCP request for network parameters
(IP, gateway, DNS addresses and IP subnet mask) and waits for DHCP reply. If
the requested parameters were obtained successfuly, their values are stored into
the library global variables.
These parameters can be fetched by using appropriate library IP get routines:
-
Ethernet_getIpAddress - fetch IP address.
Ethernet_getGwIpAddress - fetch gateway IP address.
Ethernet_getDnsIpAddress - fetch DNS IP address.
Ethernet_getIpMask - fetch IP subnet mask.
Description UDP port 68 is used as DHCP client port and UDP port 67 is used as DHCP server port.
Parameters:
- tmax: time in seconds to wait for an reply.
Note: The Ethernet services are not stopped while this routine waits for DNS
reply. The incoming packets will be processed normaly during this time.
Note:
When
DHCP
module
is
used,
global
library
variable
Ethernet_userTimerSec is used to keep track of time. It is user responsibility to
increment this variable each second in it's code.
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
...
Ethernet_initDHCP(5); // get network configuration from DHCP server,
wait 5 sec for the response
...
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
311
CHAPTER 7
mikroC PRO for PIC
Libraries
Ethernet_doDHCPLeaseTime
Prototype
unsigned char Ethernet_doDHCPLeaseTime();
Returns
- 0 - lease time has not expired yet.
- 1 - lease time has expired, it's time to renew it.
This is DHCP module routine. It takes care of IP address lease time by decreDescription menting the global lease time library counter. When this time expires, it's time to
contact DHCP server and renew the lease.
Requires
Ethernet module has to be initialized. See Ethernet_Init.
Example
while(1) {
...
if(Ethernet_doDHCPLeaseTime())
... // it's time to renew the IP address lease
}
Ethernet_renewDHCP
Prototype
unsigned char Ethernet_renewDHCP(unsigned char tmax);
Returns
- 0 - upon success (lease time was renewed).
- 1 - otherwise (renewal request timed out).
This is DHCP module routine. It sends IP address lease time renewal request to
DHCP server.
Description
Parameters:
- tmax: time in seconds to wait for an reply.
Requires
Example
312
Ethernet module has to be initialized. See Ethernet_Init.
while(1) {
...
if(Ethernet_doDHCPLeaseTime())
Ethernet_renewDHCP(5); // it's time to renew the IP address lease,
with 5 secs for a reply
...
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
This code shows how to use the PIC18FxxJ60 Ethernet library:
- the board will reply to ARP & ICMP echo requests
- the board will reply to UDP requests on any port :
returns the request in upper char with a header made of remote host IP &
port number
- the board will reply to HTTP requests on port 80, GET method with pathnames :
/ will return the HTML main page
/s will return board status as text string
/t0 ... /t7 will toggle RD0 to RD7 bit and return HTML main page
all other requests return also HTML main page.
#define _Ethernet_HALFDUPLEX
#define Ethernet_FULLDUPLEX
0
1
/************************************************************
* ROM constant strings
*/
const unsigned char httpHeader[] = "HTTP/1.1 200 OKnContent-type: "
; // HTTP header
const
unsigned
char
httpMimeTypeHTML[]
=
"text/htmlnn"
;
// HTML MIME type
const
unsigned
char
httpMimeTypeScript[]
=
"text/plainnn"
;
// TEXT MIME type
unsigned char httpMethod[] = "GET /";
/*
* web page, splited into 2 parts :
* when coming short of ROM, fragmented data is handled more efficiently by linker
*
* this HTML page calls the boards to get its status, and builds
itself with javascript
*/
const char
*indexPage = // Change the IP address of the page to
be refreshed
"<meta http-equiv="refresh" content="3;url=http://192.168.20.60">
<HTML><HEAD></HEAD><BODY>
<h1>PIC18FxxJ60 Mini Web Server</h1>
<a href=/>Reload</a>
<script src=/s></script>
<table><tr><td
valign=top><table
border=1
style="font-size:20px
;font-family: terminal ;">
<tr><th colspan=2>ADC</th></tr>
<tr><td>AN2</td><td><script>document.write(AN2)</script></td></tr>
<tr><td>AN3</td><td><script>document.write(AN3)</script></td></tr>
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
313
CHAPTER 7
mikroC PRO for PIC
Libraries
</table></td><td><table border=1 style="font-size:20px ;font-family:
terminal ;">
<tr><th colspan=2>PORTB</th></tr>
<script>
var str,i;
str="";
for(i=0;i<8;i++)
{str+="<tr><td bgcolor=pink>BUTTON #"+i+"</td>";
if(PORTB&(1<<i)){str+="<td bgcolor=red>ON";}
else {str+="<td bgcolor=#cccccc>OFF";}
str+="</td></tr>";}
document.write(str) ;
</script>
" ;
const char
*indexPage2 = "</table></td><td>
<table border=1 style="font-size:20px ;font-family: terminal ;">
<tr><th colspan=3>PORTD</th></tr>
<script>
var str,i;
str="";
for(i=0;i<3;i++)
{str+="<tr><td bgcolor=yellow>LED #"+i+"</td>";
if(PORTD&(1<<i)){str+="<td bgcolor=red>ON";}
else {str+="<td bgcolor=#cccccc>OFF";}
str+="</td><td><a href=/t"+i+">Toggle</a></td></tr>";}
document.write(str) ;
</script>
</table></td></tr></table>
This
is
HTTP
request
#<script>document.write(REQ)</script></BODY></HTML>
" ;
/***********************************
* RAM variables
*/
unsigned char
myMacAddr[6] = {0x00, 0x14, 0xA5, 0x76, 0x19, 0x3f};
// my MAC address
unsigned char
myIpAddr[4]
= {192, 168,
20, 60 };
// my IP address
unsigned char
gwIpAddr[4] = {192, 168, 20, 6 };
// gateway
(router) IP address
unsigned char
ipMask[4]
= {255, 255, 255, 0 }; // network mask
(for example : 255.255.255.0)
unsigned char
dnsIpAddr[4] = {192, 168,
20,
1 };
// DNS server IP address
unsigned char
unsigned char
unsigned long
314
getRequest[15];
// HTTP request buffer
dyna[30];
// buffer for dynamic response
httpCounter = 0; // counter of HTTP requests
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
/*******************************************
* functions
*/
/*
* put the constant string pointed to by s to the Ethernet controller's transmit buffer.
*/
/*unsigned int
putConstString(const char *s)
{
unsigned int ctr = 0;
while(*s)
{
Ethernet_putByte(*s++);
ctr++;
}
return(ctr);
}*/
/*
* it will be much faster to use library Ethernet_putConstString routine
* instead of putConstString routine above. However, the code will
be a little
* bit bigger. User should choose between size and speed and pick the
implementation that
* suites him best. If you choose to go with the putConstString definition above
* the #define line below should be commented out.
*
*/
#define putConstString Ethernet_putConstString
/*
* put the string pointed to by s to the Ethernet controller's transmit buffer
*/
/*unsigned int
putString(char *s)
{
unsigned int ctr = 0;
while(*s)
{
Ethernet_putByte(*s++);
ctr++;
}
return(ctr);
}*/
/*
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
315
CHAPTER 7
Libraries
mikroC PRO for PIC
* it will be much faster to use library Ethernet_putString routine
* instead of putString routine above. However, the code will be a
little
* bit bigger. User should choose between size and speed and pick the
implementation that
* suites him best. If you choose to go with the putString definition above
* the #define line below should be commented out.
*
*/
#define putString Ethernet_putString
/*
* this function is called by the library
* the user accesses to the HTTP request by successive calls to
Ethernet_getByte()
* the user puts data in the transmit buffer by successive calls to
Ethernet_putByte()
* the function must return the length in bytes of the HTTP reply,
or 0 if nothing to transmit
*
* if you don't need to reply to HTTP requests,
* just define this function with a return(0) as single statement
*
*/
unsigned int
Ethernet_UserTCP(unsigned char *remoteHost, unsigned
int remotePort, unsigned int localPort, unsigned int reqLength)
{
unsigned int
len = 0;
// my reply length
unsigned char
i;
// general purpose char
if(localPort != 80)//I listen only to web request on port 80
{
return(0);
}
// get 10 first bytes only of the request, the rest does not
matter here
for(i = 0; i < 10; i++)
{
getRequest[i] = Ethernet_getByte();
}
getRequest[10] = 0;
if(memcmp(getRequest, httpMethod, 5))// only GET method is
supported here
{
return(0);
}
316
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
httpCounter++;
// one more request done
if(getRequest[5] == 's') // if request path name starts with
s, store dynamic data in transmit buffer
{
// the text string replied by this request can be
interpreted as javascript statements
// by browsers
len = putConstString(httpHeader); // HTTP header
len += putConstString(httpMimeTypeScript); // with
text MIME type
// add AN2 value to reply
IntToStr(ADC_Read(2), dyna);
len += putConstString("var AN2=");
len += putString(dyna);
len += putConstString(";");
// add AN3 value to reply
IntToStr(ADC_Read(3), dyna);
len += putConstString("var AN3=");
len += putString(dyna);
len += putConstString(";");
// add PORTB value (buttons) to reply
len += putConstString("var PORTB=");
IntToStr(PORTB, dyna);
len += putString(dyna);
len += putConstString(";");
// add PORTD value (LEDs) to reply
len += putConstString("var PORTD=");
IntToStr(PORTD, dyna);
len += putString(dyna);
len += putConstString(";");
// add HTTP requests counter to reply
IntToStr(httpCounter, dyna);
len += putConstString("var REQ=");
len += putString(dyna);
len += putConstString(";");
}
else if(getRequest[5] == 't') // if request path name starts
with t, toggle PORTD (LED) bit number that comes after
{
unsigned char
bitMask = 0; // for bit mask
if(isdigit(getRequest[6])) // if 0 <= bit number <=
9, bits 8 & 9 does not exist but does not matter
{
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
317
CHAPTER 7
mikroC PRO for PIC
Libraries
bitMask = getRequest[6] - '0'; // convert ASCII to integer
bitMask = 1 << bitMask; // create bit mask
PORTD ^= bitMask; // toggle PORTD with xor operator
}
}
if(len == 0)
// what do to by default
{
len = putConstString(httpHeader); // HTTP header
len += putConstString(httpMimeTypeHTML); // with HTML MIME type
len += putConstString(indexPage); // HTML page first part
len += putConstString(indexPage2);// HTML page second part
}
return(len); // return to the library with the number of
bytes to transmit
}
/*
* this function is called by the library
* the user accesses to the UDP request by successive calls to
Ethernet_getByte()
* the user puts data in the transmit buffer by successive calls to
Ethernet_putByte()
* the function must return the length in bytes of the UDP reply, or
0 if nothing to transmit
*
* if you don't need to reply to UDP requests,
* just define this function with a return(0) as single statement
*
*/
unsigned int
Ethernet_UserUDP(unsigned char *remoteHost, unsigned
int remotePort, unsigned int destPort, unsigned int reqLength)
{
unsigned int
len;
// my reply length
// reply is made of the remote host IP address in human readable format
ByteToStr(remoteHost[0], dyna);// first IP address byte
dyna[3] = '.';
ByteToStr(remoteHost[1], dyna + 4);
// second
dyna[7] = '.';
ByteToStr(remoteHost[2], dyna + 8);
// third
dyna[11] = '.';
ByteToStr(remoteHost[3], dyna + 12);
// fourth
dyna[15] = ':';
// add separator
// then remote host port number
WordToStr(remotePort, dyna + 16);
318
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
dyna[21] = '[';
WordToStr(destPort, dyna + 22);
dyna[27] = ']';
dyna[28] = 0;
// the total length of the request is the length of the
dynamic string plus the text of the request
len = 28 + reqLength;
// puts the dynamic string into the transmit buffer
Ethernet_putBytes(dyna, 28);
// then puts the request string converted into upper char
into the transmit buffer
while(reqLength--)
{
Ethernet_putByte(toupper(Ethernet_getByte()));
}
return(len);
UDP reply
}
// back to the library with the length of the
/*
* main entry
*/
void
main()
{
ADCON1 = 0x0B; // ADC convertors will be used with AN2 and AN3
CMCON = 0x07;
// turn off comparators
PORTA = 0;
TRISA = 0xfc;
// set PORTA as input for ADC
// except RA0 and RA1 which will be used as
// ethernet's LEDA and LEDB
PORTB = 0;
TRISB = 0xff;
// set PORTB as input for buttons
PORTD = 0;
TRISD = 0;
// set PORTD as output
/*
* Initialize Ethernet controller
*/
Ethernet_Init(myMacAddr, myIpAddr, Ethernet_FULLDUPLEX);
//dhcp will not be used here, so use preconfigured addresses
Ethernet_confNetwork(ipMask, gwIpAddr, dnsIpAddr);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
319
CHAPTER 7
mikroC PRO for PIC
Libraries
while(1)
// do forever
{
/*
* if necessary, test the return value to get error code
*/
Ethernet_doPacket(); // process incoming Ethernet packets
/*
* add your stuff here if needed
* Ethernet_doPacket() must be called as often as possible
* otherwise packets could be lost
*/
}
}
320
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
FLASH MEMORY LIBRARY
This library provides routines for accessing microcontroller Flash memory. Note that
prototypes differ for PIC16 and PIC18 families.
Note: Due to the P16/P18 family flash specifics, flash library is MCU dependent.
Since the P18 family differ significantlly in number of bytes that can be erased
and/or written to specific MCUs, the appropirate suffix is added to the names of
functions in order to make it easier to use them. Flash memory operations are MCU
dependent :
1. Read operation supported. For this group of MCU's only read function is imple
mented.
2. Read and Write operations supported (write is executed as erase-and-write). For
this group of MCU's read and write functions are implemented. Note that write
operation which is executed as erase-and-write, may write less bytes than it
erases.
3. Read, Write and Erase operations supported. For this group of MCU's read,
write and erase functions are implemented. Further more, flash memory block
has to be erased prior to writting (write operation is not executed as erase-andwrite).
Please refer to MCU datasheet before using flash library.
Library Routines
-
FLASH_Read
FLASH_Read_N_Bytes
FLASH_Write
FLASH_Write_8
FLASH_Write_16
FLASH_Write_32
FLASH_Write_64
FLASH_Erase
FLASH_Erase_64
FLASH_Erase_1024
FLASH_Erase_Write
FLASH_Erase_Write_64
FLASH_Erase_Write_1024
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
321
CHAPTER 7
mikroC PRO for PIC
Libraries
FLASH_Read
// for PIC16
unsigned FLASH_Read(unsigned address);
Prototype
// for PIC18
unsigned short FLASH_Read(long address);
Returns
Returns data byte from Flash memory.
Description Reads data from the specified address in Flash memory.
Requires
Nothing.
Example
// for PIC18
unsigned short tmp;
...
tmp = FLASH_Read(0x0D00);
...
FLASH_Read_N_Bytes
Prototype
void FLASH_Read_N_Bytes(long address, char* data_, unsigned int N);
Returns
Nothing.
Description Reads N data from the specified address in Flash memory to varibale pointed by
data
322
Requires
Nothing.
Example
FLASH_Read_N(0x0D00,data_buffer,sizeof(data_buffer));
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
FLASH_Write
Prototype
// for PIC16
void FLASH_Write(unsigned address, unsigned int* data);
// for PIC18
void FLASH_Write_8(long address, char* data);
void FLASH_Write_16(long address, char* data);
void FLASH_Write_32(long address, char* data);
void FLASH_Write_64(long address, char* data);
Returns
Nothing.
Writes block of data to Flash memory. Block size is MCU dependent.
P16: This function may erase memory segment before writing block of data to it
(MCU dependent). Furthermore, memory segment which will be erased may be
greater than the size of the data block that will be written (MCU dependent).
Description
Therefore it is recommended to write as many bytes as you erase. FLASH_Write
writes 4 flash memory locations in a row, so it needs to be called as many times
as it is necessary to meet the size of the data block that will be written.
P18: This function does not perform erase prior to write.
Requires
Flash memory that will be written may have to be erased before this function is
called (MCU dependent). Refer to MCU datasheet for details.
Write consecutive values in 64 consecutive locations, starting from 0x0D00:
Example
unsigned short toWrite[64];
...
// initialize array:
for (i = 0; i < 64; i++)
toWrite[i] = i;
// write contents of the array to the address 0x0D00:
FLASH_Write_64(0x0D00, toWrite);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
323
CHAPTER 7
mikroC PRO for PIC
Libraries
FLASH_Erase
Prototype
// for PIC16
void FLASH_Erase(unsigned address);
// for PIC18
void FLASH_Erase_64(long address);
void FLASH_Erase_1024(long address);
Returns
Nothing.
Erases memory block starting from a given address. For P16 familly is implementDescription ed only for those MCU's whose flash memory does not support erase-and-write
operations (refer to datasheet for details).
Requires
Nothing.
Erase 64 byte memory memory block, starting from address 0x0D00:
Example
FLASH_Erase_64(0x0D00);
FLASH_Erase_Write
// for PIC18
Prototype
void FLASH_Erase_Write_64(long address, char* data);
void FLASH_Erase_Write_1024(long address, char* data);
Returns
None.
Description Erase then write memory block starting from a given address.
Requires
Nothing.
Example
char toWrite[64];
int i;
...
// initialize array:
for(i=0; i<64; i++) toWrite[i]=i;
// erase block of memory at address 0x0D00 then write contents of
the array to the address 0x0D00:
FLASH_Erase_Write_64(0x0D00, toWrite);
324
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
The example demonstrates simple write to the flash memory for PIC16F887, then
reads the data and displays it on PORTB and PORTC.
char i = 0;
unsigned int addr, data_, dataAR[4][4] = {{ 0x3FAA+0,
0x3FAA+1,
0x3FAA+2, 0x3FAA+3},
{ 0x3FAA+4, 0x3FAA+5,
0x3FAA+6, 0x3FAA+7},
{ 0x3FAA+8, 0x3FAA+9,
0x3FAA+10, 0x3FAA+11},
{0x3FAA+12, 0x3FAA+13,
0x3FAA+14, 0x3FAA+15}};
void main() {
ANSEL = 0;
ANSELH = 0;
PORTB = 0;
TRISB = 0;
PORTC = 0;
TRISC = 0;
Delay_ms(500);
// Configure AN pins as digital I/O
//
//
//
//
Initial PORTB value
Set PORTB as output
Initial PORTC value
Set PORTC as output
// All block writes
// to program memory are done as 16-word erase by
// eight-word write operations. The write operation is
// edge-aligned and cannot occur across boundaries.
// Therefore it is recommended to perform flash writes in 16-word
chunks.
// That is why lower 4 bits of start address [3:0] must be zero.
// Since FLASH_Write routine performs writes in 4-word chunks,
// we need to call it 4 times in a row.
addr = 0x0430;
// starting Flash address, valid for P16F887
for (i = 0; i < 4; i++){
// Write some data to Flash
Delay_ms(100);
FLASH_Write(addr+i*4, dataAR[i]);
}
Delay_ms(500);
addr = 0x0430;
for (i = 0; i < 16; i++){
data_ = FLASH_Read(addr++);
Delay_us(10);
PORTB = data_;
PORTC = data_ >> 8;
Delay_ms(500);
}
//
//
//
//
P16's FLASH is 14-bit wide, so
two MSB's will always be '00'
Display data on PORTB LS Byte
and PORTC MS Byte
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
325
CHAPTER 7
mikroC PRO for PIC
Libraries
GRAPHIC LCD LIBRARY
The mikroC PRO for PIC provides a library for operating Graphic Lcd 128x64 (with
commonly used Samsung KS108/KS107 controller).
For creating a custom set of Glcd images use Glcd Bitmap Editor Tool.
External dependencies of Graphic LCD Library
The following variables must
be defined in all projects
using Graphic LCD Library:
326
Description:
Example:
extern sfr char
GLCD_DataPort;
Glcd Data Port.
char GLCD_DataPort at
PORTD;
extern sfr sbit
GLCD_CS1;
Chip Select 1 line.
sbit GLCD_CS1 at
RB0_bit;
extern sfr sbit
GLCD_CS2;
Chip Select 2 line.
sbit GLCD_CS2 at
RB1_bit;
extern sfr sbit
GLCD_RS;
Register select line.
sbit GLCD_RS at
RB2_bit;
extern sfr sbit
GLCD_RW;
Read/Write line.
sbit GLCD_RW at
RB3_bit;
extern sfr sbit
GLCD_EN;
Enable line.
sbit GLCD_EN at
RB4_bit;
extern sfr sbit
GLCD_RST;
Reset line.
sbit GLCD_RST at
RB5_bit;
extern sfr sbit
GLCD_CS1_Direction;
Direction of the Chip
Select 1 pin.
sbit GLCD_CS1_Direction
at TRISB0_bit;
extern sfr sbit
GLCD_CS2_Direction;
Direction of the Chip
Select 2 pin.
sbit GLCD_CS2_Direction
at TRISB1_bit;
extern sfr sbit
GLCD_RS_Direction;
Direction of the Register select pin.
sbit GLCD_RS_Direction
at TRISB2_bit;
extern sfr sbit
GLCD_RW_Direction;
Direction of the
Read/Write pin.
sbit GLCD_RW_Direction
at TRISB3_bit;
extern sfr sbit
GLCD_EN_Direction;
Direction of the Enable
pin.
sbit GLCD_EN_Direction
at TRISB4_bit;
extern sfr sbit
GLCD_RST_Direction;
Direction of the Reset
pin.
sbit GLCD_RST_Direction
at TRISB5_bit;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Routines
Basic routines:
-
Glcd_Init
Glcd_Set_Side
Glcd_Set_X
Glcd_Set_Page
Glcd_Read_Data
Glcd_Write_Data
Advanced routines:
-
Glcd_Fill
Glcd_Dot
Glcd_Line
Glcd_V_Line
Glcd_H_Line
Glcd_Rectangle
Glcd_Box
Glcd_Circle
Glcd_Set_Font
Glcd_Write_Char
Glcd_Write_Text
Glcd_Image
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
327
CHAPTER 7
mikroC PRO for PIC
Libraries
Glcd_Init
Prototype
void Glcd_Init();
Returns
Nothing.
Description
Initializes the Glcd module. Each of the control lines is both port and pin configurable, while data lines must be on a single port (pins <0:7>).
Global variables:
Requires
-
GLCD_CS1: Chip select 1 signal pin
GLCD_CS2: Chip select 2 signal pin
GLCD_RS: Register select signal pin
GLCD_RW: Read/Write Signal pin
GLCD_EN: Enable signal pin
GLCD_RST: Reset signal pin
GLCD_DataPort: Data port
GLCD_CS1_Direction: Direction of the Chip select 1 pin
GLCD_CS2_Direction: Direction of the Chip select 2 pin
GLCD_RS_Direction: Direction of the Register select signal pin
GLCD_RW_Direction: Direction of the Read/Write signal pin
GLCD_EN_Direction: Direction of the Enable signal pin
GLCD_RST_Direction: Direction of the Reset signal pin
must be defined before using this function.
// glcd pinout settings
char GLCD_DataPort at PORTD;
sbit
sbit
sbit
sbit
sbit
sbit
Example
328
GLCD_CS1 at RB0_bit;
GLCD_CS2 at RB1_bit;
GLCD_RS at RB2_bit;
GLCD_RW at RB3_bit;
GLCD_EN at RB4_bit;
GLCD_RST at RB5_bit;
sbit GLCD_CS1_Direction at TRISB0_bit;
sbit GLCD_CS2_Direction at TRISB1_bit;
sbit GLCD_RS_Direction at TRISB2_bit;
sbit GLCD_RW_Direction at TRISB3_bit;
sbit GLCD_EN_Direction at TRISB4_bit;
sbit GLCD_RST_Direction at TRISB5_bit;
...
ANSEL = 0;
ANSELH = 0;
Glcd_Init();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Glcd_Set_Side
Prototype
void Glcd_Set_Side(unsigned short x_pos);
Returns
Nothing.
Selects Glcd side. Refer to the Glcd datasheet for detailed explaination.
Parameters:
- x_pos: position on x-axis. Valid values: 0..127
Description
The parameter x_pos specifies the Glcd side: values from 0 to 63 specify the
left side, values from 64 to 127 specify the right side.
Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.
Requires
Glcd needs to be initialized, see Glcd_Init routine.
The following two lines are equivalent, and both of them select the left side of
Glcd:
Example
Glcd_Select_Side(0);
Glcd_Select_Side(10);
Glcd_Set_X
Prototype
void Glcd_Set_X(unsigned short x_pos);
Returns
Nothing.
Sets x-axis position to x_pos dots from the left border of Glcd within the selected side.
Parameters:
Description
- x_pos: position on x-axis. Valid values: 0..63
Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.
Requires
Glcd needs to be initialized, see Glcd_Init routine.
Example
Glcd_Set_X(25);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
329
CHAPTER 7
mikroC PRO for PIC
Libraries
Glcd_Set_Page
Prototype
void Glcd_Set_Page(unsigned short page);
Returns
Nothing.
Selects page of the Glcd.
Parameters:
Description
- page: page number. Valid values: 0..7
Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.
Requires
GLCD needs to be initialized, see Glcd_Init routine.
Example
Glcd_Set_Page(5);
Glcd_Read_Data
Prototype
unsigned short Glcd_Read_Data();
Returns
One byte from GLCD memory.
Description
Reads data from from the current location of Glcd memory and moves to the
next location.
Glcd needs to be initialized, see Glcd_Init routine.
Requires
Example
330
Glcd side, x-axis position and page should be set first. See functions
Glcd_Set_Side, Glcd_Set_X, and Glcd_Set_Page.
unsigned short data;
...
data = Glcd_Read_Data();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Glcd_Write_Data
Prototype
void Glcd_Write_Data(unsigned short ddata);
Returns
Nothing.
Writes one byte to the current location in Glcd memory and moves to the next
location.
Description
Parameters:
- ddata: data to be written
Glcd needs to be initialized, see Glcd_Init routine.
Requires
Example
Glcd side, x-axis position and page should be set first. See functions
Glcd_Set_Side, Glcd_Set_X, and Glcd_Set_Page.
unsigned short data;
...
Glcd_Write_Data(data);
Glcd_Fill
Prototype
void Glcd_Fill(unsigned short pattern);
Returns
Nothing.
Fills Glcd memory with the byte pattern.
Parameters:
Description - pattern: byte to fill Glcd memory with
To clear the Glcd screen, use Glcd_Fill(0).
To fill the screen completely, use Glcd_Fill(0xFF).
Requires
Glcd needs to be initialized, see Glcd_Init routine.
Example
// Clear screen
Glcd_Fill(0);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
331
CHAPTER 7
mikroC PRO for PIC
Libraries
Glcd_Dot
Prototype
void Glcd_Dot(unsigned short x_pos, unsigned short y_pos,
unsigned short color);
Returns
Nothing.
Draws a dot on Glcd at coordinates (x_pos, y_pos).
Parameters:
- x_pos: x position. Valid values: 0..127
- y_pos: y position. Valid values: 0..63
Description - color: color parameter. Valid values: 0..2
The parameter color determines a dot state: 0 clears dot, 1 puts a dot, and 2
inverts dot state.
Note: For x and y axis layout explanation see schematic at the bottom of this
page.
Requires
Glcd needs to be initialized, see Glcd_Init routine.
Example
// Invert the dot in the upper left corner
Glcd_Dot(0, 0, 2);
Glcd_Line
Prototype
void Glcd_Line(int x_start, int y_start, int x_end, int y_end,
unsigned short color);
Returns
Nothing.
Draws a line on Glcd.
Parameters:
Description
-
x_start: x coordinate of the line start. Valid values: 0..127
y_start: y coordinate of the line start. Valid values: 0..63
x_end: x coordinate of the line end. Valid values: 0..127
y_end: y coordinate of the line end. Valid values: 0..63
color: color parameter. Valid values: 0..2
The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.
332
Requires
Glcd needs to be initialized, see Glcd_Init routine.
Example
// Draw a line between dots (0,0) and (20,30)
Glcd_Line(0, 0, 20, 30, 1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Glcd_V_Line
Prototype
void Glcd_V_Line(unsigned short y_start, unsigned short y_end,
unsigned short x_pos, unsigned short color);
Returns
Nothing.
Draws a vertical line on Glcd.
Parameters:
Description -
y_start: y coordinate of the line start. Valid values: 0..63
y_end: y coordinate of the line end. Valid values: 0..63
x_pos: x coordinate of vertical line. Valid values: 0..127
color: color parameter. Valid values: 0..2
The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.
Requires
Glcd needs to be initialized, see Glcd_Init routine.
Example
// Draw a vertical line between dots (10,5) and (10,25)
Glcd_V_Line(5, 25, 10, 1);
Glcd_H_Line
Prototype
void Glcd_H_Line(unsigned short x_start, unsigned short x_end,
unsigned short y_pos, unsigned short color);
Returns
Nothing.
Draws a horizontal line on Glcd.
Parameters:
- x_start: x coordinate of the line start. Valid values: 0..127
Description -x_end: x coordinate of the line end. Valid values: 0..127
- y_pos: y coordinate of horizontal line. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.
Requires
Glcd needs to be initialized, see Glcd_Init routine.
Example
// Draw a horizontal line between dots (10,20) and (50,20)
Glcd_H_Line(10, 50, 20, 1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
333
CHAPTER 7
mikroC PRO for PIC
Libraries
Glcd_Rectangle
Prototype
void Glcd_Rectangle(unsigned short x_upper_left, unsigned short
y_upper_left, unsigned short x_bottom_right, unsigned short
y_bottom_right, unsigned short color);
Returns
Nothing.
Draws a rectangle on GLCD.
Parameters:
- x_upper_left: x coordinate of the upper left rectangle corner. Valid values: 0..127
- y_upper_left: y coordinate of the upper left rectangle corner. Valid values: 0..63
- x_bottom_right: x coordinate of the lower right rectangle corner. Valid
Description
values: 0..127
- y_bottom_right: y coordinate of the lower right rectangle corner. Valid
values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the rectangle border: 0 white, 1
black, and 2 inverts each dot.
Requires
GLCD needs to be initialized, see Glcd_Init routine.
Example
// Draw a rectangle between dots (5,5) and (40,40)
Glcd_Rectangle(5, 5, 40, 40, 1);
Glcd_Box
Prototype
void Glcd_Box(unsigned short x_upper_left, unsigned short
y_upper_left, unsigned short x_bottom_right, unsigned short
y_bottom_right, unsigned short color);
Returns
Nothing.
Draws a box on GLCD.
Parameters:
- x_upper_left: x coordinate of the upper left box corner. Valid values: 0..127
- y_upper_left: y coordinate of the upper left box corner. Valid values: 0..63
Description - x_bottom_right: x coordinate of the lower right box corner. Valid values: 0..127
- y_bottom_right: y coordinate of the lower right box corner. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the box fill: 0 white, 1 black, and 2
inverts each dot.
334
Requires
GLCD needs to be initialized, see Glcd_Init routine.
Example
// Draw a box between dots (5,15) and (20,40)
Glcd_Box(5, 15, 20, 40, 1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Glcd_Circle
Prototype
void Glcd_Circle(int x_center, int y_center, int radius, unsigned
short color);
Returns
Nothing.
Draws a circle on GLCD.
Parameters:
Description -
x_center: x coordinate of the circle center. Valid values: 0..127
y_center: y coordinate of the circle center. Valid values: 0..63
radius: radius size
color: color parameter. Valid values: 0..2
The parameter color determines the color of the circle line: 0 white, 1 black,
and 2 inverts each dot.
Requires
GLCD needs to be initialized, see Glcd_Init routine.
Example
// Draw a circle with center in (50,50) and radius=10
Glcd_Circle(50, 50, 10, 1);
Glcd_Set_Font
Prototype
void Glcd_Set_Font(const char *activeFont, unsigned short
aFontWidth, unsigned short aFontHeight, unsigned int aFontOffs);
Returns
Nothing.
Sets font that will be used with Glcd_Write_Char and Glcd_Write_Text routines.
Parameters:
Description
activeFont: font to be set. Needs to be formatted as an array of byte
aFontWidth: width of the font characters in dots.
aFontHeight: height of the font characters in dots.
aFontOffs: number that represents difference between the mikroC PRO for
PIC character set and regular ASCII set (eg. if 'A' is 65 in ASCII character, and
'A' is 45 in the mikroC PRO for PIC character set, aFontOffs is 20). Demo
fonts supplied with the library have an offset of 32, which means that they start
with space.
The user can use fonts given in the file “__Lib_GLCDFonts” file located in the
Uses folder or create his own fonts.
Requires
GLCD needs to be initialized, see Glcd_Init routine.
Example
// Use the custom 5x7 font "myfont" which starts with space (32):
Glcd_Set_Font(&myfont, 5, 7, 32);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
335
CHAPTER 7
mikroC PRO for PIC
Libraries
Glcd_Write_Char
Prototype
void Glcd_Write_Char(unsigned short chr, unsigned short x_pos,
unsigned short page_num, unsigned short color);
Returns
Nothing.
Prints character on the GLCD.
Parameters:
- chr: character to be written
- x_pos: character starting position on x-axis. Valid values: 0..(127-FontWidth)
- page_num: the number of the page on which character will be written. Valid
Description
values: 0..7
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the character: 0 white, 1 black,
and 2 inverts each dot.
Note: For x axis and page layout explanation see schematic at the bottom of
this page.
336
Requires
Glcd needs to be initialized, see Glcd_Init routine. Use Glcd_Set_Font to specify the font for display; if no font is specified, then default 5x8 font supplied with
the library will be used.
Example
// Write character 'C' on the position 10 inside the page 2:
Glcd_Write_Char('C', 10, 2, 1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Glcd_Write_Text
Prototype
void Glcd_Write_Text(char *text, unsigned short x_pos, unsigned
short page_num, unsigned short color);
Returns
Nothing.
Prints text on GLCD.
Parameters:
- text: text to be written
- x_pos: text starting position on x-axis.
- page_num: the number of the page on which text will be written. Valid values: 0..7
Description
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the text: 0 white, 1 black, and 2
inverts each dot.
Note: For x axis and page layout explanation see schematic at the bottom of
this page.
Requires
Glcd needs to be initialized, see Glcd_Init routine. Use Glcd_Set_Font to specify
the font for display; if no font is specified, then default 5x8 font supplied with the
library will be used.
Example
// Write text "Hello world!" on the position 10 inside the page 2:
Glcd_Write_Text("Hello world!", 10, 2, 1);
Glcd_Image
Prototype
void Glcd_Image(code const unsigned short *image);
Returns
Nothing.
Displays bitmap on GLCD.
Parameters:
Description
- image: image to be displayed. Bitmap array must be located in code memory.
Use the mikroC PRO for PIC integrated Glcd Bitmap Editor to convert image to
a constant array suitable for displaying on Glcd.
Requires
Glcd needs to be initialized, see Glcd_Init routine.
Example
// Draw image my_image on Glcd
Glcd_Image(my_image);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
337
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
The following example demonstrates routines of the Glcd library: initialization,
clear(pattern fill), image displaying, drawing lines, circles, boxes and rectangles, text
displaying and handling.
//Declarations----------------------------------------------------------------const code char truck_bmp[1024];
//--------------------------------------------------------------enddeclarations
// Glcd module connections
char GLCD_DataPort at PORTD;
sbit
sbit
sbit
sbit
sbit
sbit
GLCD_CS1
GLCD_CS2
GLCD_RS
GLCD_RW
GLCD_EN
GLCD_RST
at
at
at
at
at
at
RB0_bit;
RB1_bit;
RB2_bit;
RB3_bit;
RB4_bit;
RB5_bit;
sbit GLCD_CS1_Direction at TRISB0_bit;
sbit GLCD_CS2_Direction at TRISB1_bit;
sbit GLCD_RS_Direction at TRISB2_bit;
sbit GLCD_RW_Direction at TRISB3_bit;
sbit GLCD_EN_Direction at TRISB4_bit;
sbit GLCD_RST_Direction at TRISB5_bit;
// End Glcd module connections
void delay2S(){
Delay_ms(2000);
}
// 2 seconds delay function
void main() {
unsigned short ii;
char *someText;
#define COMPLETE_EXAMPLE // comment this line to make
simpler/smaller example
ANSEL = 0;
// Configure AN pins as digital
ANSELH = 0;
C1ON_bit = 0;
// Disable comparators
C2ON_bit = 0;
Glcd_Init();
Glcd_Fill(0x00);
// Initialize GLCD
// Clear GLCD
while(1) {
338
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
#ifdef COMPLETE_EXAMPLE
Glcd_Image(truck_bmp);
delay2S(); delay2S();
#endif
Glcd_Fill(0x00);
Glcd_Box(62,40,124,56,1);
Glcd_Rectangle(5,5,84,35,1);
Glcd_Line(0, 0, 127, 63, 1);
delay2S();
// Draw image
// Clear GLCD
// Draw box
// Draw rectangle
// Draw line
for(ii = 5; ii < 60; ii+=5 ){ // Draw horizontal and vertical lines
Delay_ms(250);
Glcd_V_Line(2, 54, ii, 1);
Glcd_H_Line(2, 120, ii, 1);
}
delay2S();
Glcd_Fill(0x00);
// Clear GLCD
#ifdef COMPLETE_EXAMPLE
Glcd_Set_Font(Character8x7, 8, 7, 32);// Choose font, see
__Lib_GLCDFonts.c in Uses folder
#endif
Glcd_Write_Text("mikroE", 1, 7, 2);
// Write string
for (ii = 1; ii <= 10; ii++)
Glcd_Circle(63,32, 3*ii, 1);
delay2S();
// Draw circles
Glcd_Box(12,20, 70,57, 2);
delay2S();
// Draw box
#ifdef COMPLETE_EXAMPLE
Glcd_Fill(0xFF);
// Fill GLCD
Glcd_Set_Font(Character8x7, 8, 7, 32);// Change font
someText = "8x7 Font";
Glcd_Write_Text(someText, 5, 0, 2);
// Write string
delay2S();
Glcd_Set_Font(System3x5, 3, 5, 32);
// Change font
someText = "3X5 CAPITALS ONLY";
Glcd_Write_Text(someText, 60, 2, 2); // Write string
delay2S();
Glcd_Set_Font(font5x7, 5, 7, 32);
someText = "5x7 Font";
// Change font
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
339
CHAPTER 7
mikroC PRO for PIC
Libraries
Glcd_Write_Text(someText, 5, 4, 2);
delay2S();
// Write string
Glcd_Set_Font(FontSystem5x7_v2, 5, 7, 32); // Change font
someText = "5x7 Font (v2)";
Glcd_Write_Text(someText, 5, 6, 2);
// Write string
delay2S();
#endif
}
}
HW Connection
Glcd HW connection
340
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
I²C LIBRARY
I˛C full master MSSP module is available with a number of PIC MCU models. mikroC PRO for PIC
provides library which supports the master I˛C mode.
Note: Some MCUs have multiple I˛C modules. In order to use the desired I˛C library routine, simply change the number 1 in the prototype with the appropriate module number, i.e.
I2C1_Init(100000);
Library Routines
-
I2C1_Init
I2C1_Start
I2C1_Repeated_Start
I2C1_Is_Idle
I2C1_Rd
I2C1_Wr
I2C1_Stop
I2C1_Init
Prototype
void I2C1_Init(unsigned long clock);
Returns
Nothing.
Initializes I˛C with desired clock (refer to device data sheet for correct values in
respect with Fosc). Needs to be called before using other functions of I˛C Library.
Description
You don’t need to configure ports manually for using the module; library will take
care of the initialization.
Library requires MSSP module on PORTB or PORTC.
Requires
Example
Note: Calculation of the I˛C clock value is carried out by the compiler, as it would
produce a relatively large code if performed on the libary level.
Therefore, compiler needs to know the value of the parameter in the compile time.
That is why this parameter needs to be a constant, and not a variable.
I2C1_Init(100000);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
341
CHAPTER 7
mikroC PRO for PIC
Libraries
I2C1_Start
Prototype
unsigned short I2C1_Start(void);
Returns
If there is no error, function returns 0.
Description Determines if I2C bus is free and issues START signal.
Requires
I2C must be configured before using this function. See I2C1_Init.
Example
I2C1_Start();
I2C1_Repeated_Start
Prototype
void I2C1_Repeated_Start(void);
Returns
Nothing.
Description Issues repeated START signal.
Requires
I2C must be configured before using this function. See I2C1_Init.
Example
I2C1_Repeated_Start();
I2C1_Is_Idle
Prototype
unsigned short I2C1_Is_Idle(void);
Returns 1 if I2C bus is free, otherwise returns 0.
Description Tests if I2C bus is free.
Returns
Requires
I2C must be configured before using this function. See I2C1_Init.
Example
if (I2C1_Is_Idle()) {...}
I2C1_Rd
Prototype
unsigned short I2C1_Rd(unsigned short ack);
Returns
Returns one byte from the slave.
Description
Reads one byte from the slave, and sends not acknowledge signal if parameter
ack is 0, otherwise it sends acknowledge.
Requires
I2C must be configured before using this function. See I2C1_Init.
Also, START signal needs to be issued in order to use this function. See I2C1_Start.
Read data and send not acknowledge signal:
Example
342
unsigned short take;
...
take = I2C1_Rd(0);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
I2C1_Wr
Prototype
unsigned short I2C1_Wr(unsigned short data_);
Returns
Returns 0 if there were no errors.
Description Sends data byte (parameter data) via I2C bus.
Requires
I2C must be configured before using this function. See I2C1_Init.
Also, START signal needs to be issued in order to use this function. See I2C1_Start.
Example
I2C1_Write(0xA3);
I2C1_Stop
Prototype
void I2C1_Stop(void);
Returns
Nothing.
Description Issues STOP signal.
Requires
I2C must be configured before using this function. See I2C1_Init.
Example
I2C1_Stop();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
343
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
This code demonstrates use of I˛C library. PIC MCU is connected (SCL, SDA pins)
to 24c02 EEPROM. Program sends data to EEPROM (data is written at address 2).
Then, we read data via I˛C from EEPROM and send its value to PORTB, to check
if the cycle was successful (see the figure below how to interface 24c02 to PIC).
void main(){
ANSEL = 0;
ANSELH = 0;
PORTB = 0;
TRISB = 0;
I2C1_Init(100000);
I2C1_Start();
I2C1_Wr(0xA2);
I2C1_Wr(2);
I2C1_Wr(0xF0);
I2C1_Stop();
// Configure AN pins as digital I/O
// Configure PORTB as output
//
//
//
//
//
//
initialize I2C communication
issue I2C start signal
send byte via I2C (device address + W)
send byte (address of EEPROM location)
send data (data to be written)
issue I2C stop signal
//
//
//
//
//
//
//
issue I2C start signal
send byte via I2C (device address + W)
send byte (data address)
issue I2C signal repeated start
send byte (device address + R)
Read the data (NO acknowledge)
issue I2C stop signal
Delay_100ms();
I2C1_Start();
I2C1_Wr(0xA2);
I2C1_Wr(2);
I2C1_Repeated_Start();
I2C1_Wr(0xA3);
PORTB = I2C1_Rd(0u);
I2C1_Stop();
}
344
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
Interfacing 24c02 to PIC via I2C
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
345
CHAPTER 7
mikroC PRO for PIC
Libraries
KEYPAD LIBRARY
The mikroC PRO for PIC provides a library for working with 4x4 keypad. The library routines can
also be used with 4x1, 4x2, or 4x3 keypad. For connections explanation see schematic at the bottom of this page.
External dependencies of Keypad Library
The following variable must
be defined in all projects
using Keypad Library:
extern sfr char
keypadPort;
Description:
Keypad Port.
Example:
char keypadPort at PORTD;
Library Routines
- Keypad_Init
- Keypad_Key_Press
- Keypad_Key_Click
Keypad_Init
Prototype
void Keypad_Init(void);
Returns
Nothing.
Description Initializes port for working with keypad.
Global variable:
Requires
- keypadPort - Keypad port
must be defined before using this function.
Example
346
// Keypad module connections
char keypadPort at PORTD;
// End of keypad module connections
...
Keypad_Init();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Keypad_Key_Press
Prototype
char Keypad_Key_Press(void);
Returns
The code of a pressed key (1..16).
If no key is pressed, returns 0.
Description Reads the key from keypad when key gets pressed.
Requires
Port needs to be initialized for working with the Keypad library, see Keypad_Init.
Example
char kp;
...
kp = Keypad_Key_Press();
Keypad_Key_Click
Prototype
char Keypad_Key_Click(void);
Returns
The code of a clicked key (1..16).
If no key is clicked, returns 0.
Call to Keypad_Key_Click is a blocking call: the function waits until some key is
pressed and released. When released, the function returns 1 to 16, depending on
Description the key. If more than one key is pressed simultaneously the function will wait until
all pressed keys are released. After that the function will return the code of the
first pressed key.
Requires
Port needs to be initialized for working with the Keypad library, see Keypad_Init.
Example
char kp;
...
kp = Keypad_Key_Click();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
347
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
This is a simple example of using the Keypad Library. It supports keypads with 1..4
rows and 1..4 columns. The code being returned by Keypad_Key_Click() function is
in range from 1..16. In this example, the code returned is transformed into ASCII
codes [0..9,A..F] and displayed on LCD. In addition, a small single-byte counter displays in the second LCD row number of key presses.
unsigned short kp, cnt, oldstate = 0;
char txt[6];
// Keypad module connections
char keypadPort at PORTD;
// End Keypad module connections
// LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;
sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End LCD module connections
void main() {
cnt = 0;
Keypad_Init();
Lcd_Init();
Lcd_Cmd(_LCD_CLEAR);
Lcd_Cmd(_LCD_CURSOR_OFF);
Lcd_Out(1, 1, "1");
Lcd_Out(1, 1, "Key :");
Lcd_Out(2, 1, "Times:");
do {
kp = 0;
//
//
//
//
//
Reset counter
Initialize Keypad
Initialize Lcd
Clear display
Cursor off
// Write message text on Lcd
// Reset key code variable
// Wait for key to be pressed and released
do
//kp = Keypad_Key_Press();
// Store key code in kp variable
kp = Keypad_Key_Click(); // Store key code in kp variable
while (!kp);
348
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
// Prepare value
switch (kp) {
//case 10: kp
keypad4x3
//case 11: kp
//case 12: kp
//default: kp
for output, transform key to it's ASCII value
= 42; break;
// '*' // Uncomment this block for
= 48; break;
= 35; break;
+= 48;
// '0'
// '#'
case 1: kp = 49; break; // 1 // Uncomment this block for keypad4x4
case 2: kp = 50; break; // 2
case 3: kp = 51; break; // 3
case 4: kp = 65; break; // A
case 5: kp = 52; break; // 4
case 6: kp = 53; break; // 5
case 7: kp = 54; break; // 6
case 8: kp = 66; break; // B
case 9: kp = 55; break; // 7
case 10: kp = 56; break; // 8
case 11: kp = 57; break; // 9
case 12: kp = 67; break; // C
case 13: kp = 42; break; // *
case 14: kp = 48; break; // 0
case 15: kp = 35; break; // #
case 16: kp = 68; break; // D
}
if (kp != oldstate) { // Pressed key differs from previous
cnt = 1;
oldstate = kp;
}
else {
// Pressed key is same as previous
cnt++;
}
Lcd_Chr(1, 10, kp);
// Print key ASCII value on Lcd
if (cnt == 255) {
cnt = 0;
Lcd_Out(2, 10, "
}
// If counter varialble overflow
WordToStr(cnt, txt);
Lcd_Out(2, 10, txt);
} while (1);
");
// Transform counter value to string
// Display counter value on Lcd
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
349
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
4x4 Keypad connection scheme
350
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
LCD LIBRARY
The mikroC PRO for PIC provides a library for communication with Lcds (with
HD44780 compliant controllers) through the 4-bit interface. An example of Lcd connections is given on the schematic at the bottom of this page.
For creating a set of custom Lcd characters use Lcd Custom Character Tool.
External dependencies of LCD Library
The following variables
must be defined in all
projects using Lcd
Library:
Description:
Example:
extern sfr sbit
LCD_RS:
Register Select line.
sbit LCD_RS at
RB4_bit;
extern sfr sbit
LCD_EN:
Enable line.
sbit LCD_EN at
RB5_bit;
extern sfr sbit
LCD_D7;
Data 7 line.
sbit LCD_D7 at
RB3_bit;
extern sfr sbit
LCD_D6;
Data 6 line.
sbit LCD_D6 at
RB2_bit;
extern sfr sbit
LCD_D5;
Data 5 line.
sbit LCD_D5 at
RB1_bit;
extern sfr sbit
LCD_D4;
Data 4 line.
sbit LCD_D4 at
RB0_bit;
extern sfr sbit
LCD_RS_Direction;
Register Select direction pin. at TRISB4_bit;
extern sfr sbit
LCD_EN_Direction;
Enable direction pin.
sbit LCD_EN_Direction
at TRISB5_bit;
extern sfr sbit
LCD_D7_Direction;
Data 7 direction pin.
sbit LCD_D7_Direction
at TRISB3_bit;
extern sfr sbit
LCD_D6_Direction;
Data 6 direction pin.
sbit LCD_D6_Direction
at TRISB2_bit;
extern sfr sbit
LCD_D5_Direction;
Data 5 direction pin.
sbit LCD_D5_Direction
at TRISB1_bit;
extern sfr sbit
LCD_D4_Direction;
Data 4 direction pin.
sbit LCD_D4_Direction
at TRISB0_bit;
sbit LCD_RS_Direction
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
351
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Routines
-
Lcd_Init
Lcd_Out
Lcd_Out_Cp
Lcd_Chr
Lcd_Chr_Cp
Lcd_Cmd
Lcd_Init
Prototype
void Lcd_Init();
Returns
Nothing.
Description Initializes LCD module.
Requires
Global variables:
- LCD_D7: Data bit 7
- LCD_D6: Data bit 6
- LCD_D5: Data bit 5
- LCD_D4: Data bit 4
- LCD_RS: Register Select (data/instruction) signal pin
- LCD_EN: Enable signal pin
- LCD_D7_Direction: Direction of the Data 7 pin
- LCD_D6_Direction: Direction of the Data 6 pin
- LCD_D5_Direction: Direction of the Data 5 pin
- LCD_D4_Direction: Direction of the Data 4 pin
- LCD_RS_Direction: Direction of the Register Select pin
- LCD_EN_Direction: Direction of the Enable signal pin
must be defined before using this function.
Example
352
// Lcd pinout settings
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D7 at RB3_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D4 at RB0_bit;
// Pin direction
sbit LCD_RS_Direction at
sbit LCD_EN_Direction at
sbit LCD_D7_Direction at
sbit LCD_D6_Direction at
sbit LCD_D5_Direction at
sbit LCD_D4_Direction at
...
Lcd_Init();
TRISB4_bit;
TRISB5_bit;
TRISB3_bit;
TRISB2_bit;
TRISB1_bit;
TRISB0_bit;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Lcd_Out
Prototype
void Lcd_Out(char row, char column, char *text);
Returns
Nothing.
Prints text on Lcd starting from specified position. Both string variables and literals can be passed as a text.
Description
Parameters:
- row: starting position row number
- column: starting position column number
- text: text to be written
Requires
The Lcd module needs to be initialized. See Lcd_Init routine.
Example
// Write text "Hello!" on Lcd starting from row 1, column 3:
Lcd_Out(1, 3, "Hello!");
Lcd_Out_CP
Prototype
void Lcd_Out_CP(char *text);
Returns
Nothing.
Prints text on LCD at current cursor position. Both string variables and literals
can be passed as a text.
Description
Parameters:
- text: text to be written
Requires
The Lcd module needs to be initialized. See Lcd_Init routine.
Example
// Write text "Here!" at current cursor position:
Lcd_Out_CP("Here!");
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
353
CHAPTER 7
mikroC PRO for PIC
Libraries
Lcd_Chr
Prototype
void Lcd_Chr(char row, char column, char out_char);
Returns
Nothing.
Prints character on LCD at specified position. Both variables and literals can be
passed as a character.
Description
Parameters:
- row: writing position row number
- column: writing position column number
- out_char: character to be written
Requires
The Lcd module needs to be initialized. See Lcd_Init routine.
Example
// Write character "i" at row 2, column 3:
Lcd_Chr(2, 3, 'i');
Lcd_Chr_Cp
Prototype
void Lcd_Chr_CP(char out_char);
Returns
Nothing.
Prints character on LCD at current cursor position. Both variables and literals
can be passed as a character.
Description
Parameters:
- out_char: character to be written
354
Requires
The Lcd module needs to be initialized. See Lcd_Init routine.
Example
// Write character "e" at current cursor position:
Lcd_Chr_CP('e');
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Lcd_Cmd
Prototype
void Lcd_Cmd(char out_char);
Returns
Nothing.
Sends command to LCD.
Parameters:
Description
- out_char: command to be sent
Note: Predefined constants can be passed to the function, see Available LCD
Commands.
Requires
The LCD module needs to be initialized. See Lcd_Init table.
Example
// Clear Lcd display:
Lcd_Cmd(_LCD_CLEAR);
Available LCD Commands
Lcd Command
Purpose
LCD_FIRST_ROW
Move cursor to the 1st row
LCD_SECOND_ROW
Move cursor to the 2nd row
LCD_THIRD_ROW
Move cursor to the 3rd row
LCD_FOURTH_ROW
Move cursor to the 4th row
LCD_CLEAR
Clear display
LCD_RETURN_HOME
Return cursor to home position, returns a shifted display to its original
position. Display data RAM is unaffected.
LCD_CURSOR_OFF
Turn off cursor
LCD_UNDERLINE_ON
Underline cursor on
LCD_BLINK_CURSOR_ON
Blink cursor on
LCD_MOVE_CURSOR_LEFT
Move cursor left without changing display data RAM
LCD_MOVE_CURSOR_RIGHT
Move cursor right without changing display data RAM
LCD_TURN_ON
Turn LCD display on
LCD_TURN_OFF
Turn LCD display off
LCD_SHIFT_LEFT
Shift display left without changing display data RAM
LCD_SHIFT_RIGHT
Shift display right without changing display data RAM
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
355
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
The following code demonstrates usage of the Lcd Library routines:
// LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;
sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End LCD module connections
char
char
char
char
txt1[]
txt2[]
txt3[]
txt4[]
=
=
=
=
"mikroElektronika";
"EasyPIC5";
"Lcd4bit";
"example";
char i;
// Loop variable
void Move_Delay() {
Delay_ms(500);
}
// Function used for text moving
// You can change the moving speed here
void main(){
TRISB = 0;
PORTB = 0xFF;
TRISB = 0xff;
ANSEL = 0;
ANSELH = 0;
Lcd_Init();
356
// Configure AN pins as digital I/O
// Initialize LCD
Lcd_Cmd(_LCD_CLEAR);
Lcd_Cmd(_LCD_CURSOR_OFF);
Lcd_Out(1,6,txt3);
// Clear display
// Cursor off
// Write text in first row
Lcd_Out(2,6,txt4);
Delay_ms(2000);
Lcd_Cmd(_LCD_CLEAR);
// Write text in second row
Lcd_Out(1,1,txt1);
Lcd_Out(2,5,txt2);
// Write text in first row
// Write text in second row
// Clear display
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Delay_ms(2000);
// Moving text
for(i=0; i<4; i++) {
// Move text to the right 4 times
Lcd_Cmd(_LCD_SHIFT_RIGHT);
Move_Delay();
}
while(1) {
for(i=0; i<8; i++) {
Lcd_Cmd(_LCD_SHIFT_LEFT);
Move_Delay();
}
// Endless loop
// Move text to the left 7 times
for(i=0; i<8; i++) {
// Move text to the right 7 times
Lcd_Cmd(_LCD_SHIFT_RIGHT);
Move_Delay();
}
}
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
357
CHAPTER 7
mikroC PRO for PIC
Libraries
HW connection
LCD HW connection
358
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
MANCHESTER CODE LIBRARY
The mikroC PRO for PIC provides a library for handling Manchester coded signals.
The Manchester code is a code in which data and clock signals are combined to
form a single self-synchronizing data stream; each encoded bit contains a transition
at the midpoint of a bit period, the direction of transition determines whether the bit
is 0 or 1; the second half is the true bit value and the first half is the complement of
the true bit value (as shown in the figure below).
Notes: The Manchester receive routines are blocking calls (Man_Receive_Init
and Man_Synchro). This means that MCU will wait until the task has been performed (e.g. byte is received, synchronization achieved, etc).
Note: Manchester code library implements time-based activities, so interrupts need
to be disabled when using it.
External dependencies of Manchester Code Library
The following variables
must be defined in all projects using Manchester
Code Library:
extern sfr sbit MANRXPIN;
extern sfr sbit MANTXPIN;
extern sfr sbit MANRXPIN_Direction;
extern sfr sbit MANTXPIN_Direction;
Description:
Example:
sbit MANRXPIN at
RC0_bit;
sbit MANTXPIN at
Transmit line.
RC1_bit;
sbit MANRXPIN_Direction
Direction of the Receive pin. at TRISC0_bit;
sbit MANTXPIN_Direction
Direction of the Transmit pin. at TRISC1_bit;
Receive line.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
359
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Routines
-
Man_Receive_Init
Man_Receive
Man_Send_Init
Man_Send
Man_Synchro
Man_Break
The following routines are for the internal use by compiler only:
- Manchester_0
- Manchester_1
- Manchester_Out
Man_Receive_Init
Prototype
Returns
unsigned int Man_Receive_Init();
- 0 - if initialization and synchronization were successful.
- 1 - upon unsuccessful synchronization.
- 255 - upon user abort.
The function configures Receiver pin and performs synchronization procedure in
order to retrieve baud rate out of the incoming signal.
Description
Note: In case of multiple persistent errors on reception, the user should call this
routine once again or Man_Synchro routine to enable synchronization.
Global variables:
Requires
MANRXPIN: Receive line
MANRXPIN_Direction: Direction of the receive pin
must be defined before using this function.
Example
360
// Initialize Receiver
sbit MANRXPIN at RC0_bit;
sbit MANRXPIN_Direction at TRISC0_bit;
...
Man_Receive_Init();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Man_Receive
Prototype
unsigned char Man_Receive(unsigned char *error);
Returns
A byte read from the incoming signal.
The function extracts one byte from incoming signal.
Description
Parameters:
- error: error flag. If signal format does not match the expected, the error flag
will be set to non-zero.
Requires
To use this function, the user must prepare the MCU for receiving. See
Man_Receive_Init.
Example
unsigned char data = 0, error = 0;
...
data = Man_Receive(&error);
if (error)
{ /* error handling */ }
Man_Send_Init
Prototype
void Man_Send_Init();
Returns
Nothing.
Description The function configures Transmitter pin.
Global variables:
Requires
MANTXPIN: Transmit line
MANTXPIN_Direction: Direction of the transmit pin
must be defined before using this function.
Example
// Initialize Transmitter:
sbit MANTXPIN at RC1_bit;
sbit MANTXPIN_Direction at TRISC1_bit;
...
Man_Send_Init();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
361
CHAPTER 7
mikroC PRO for PIC
Libraries
Man_Send
Prototype
void Man_Send(unsigned char tr_data);
Returns
Nothing.
Sends one byte.
Parameters:
Description
- tr_data: data to be sent
Note: Baud rate used is 500 bps.
Requires
To use this function, the user must prepare the MCU for sending. See
Man_Send_Init.
Example
unsigned char msg;
...
Man_Send(msg);
Man_Synchro
Prototype
Returns
unsigned char Man_Synchro();
- 255 - if synchronization was not successful.
- Half of the manchester bit length, given in multiples of 10us - upon successful synchronization.
Description Measures half of the manchester bit length with 10us resolution.
362
Requires
To use this function, you must first prepare the MCU for receiving. See
Man_Receive_Init.
Example
unsigned int man__half_bit_len;
...
man__half_bit_len = Man_Synchro();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Man_Break
Prototype
void Man_Break();
Returns
Nothing.
Description
Man_Receive is blocking routine and it can block the program flow. Call this
routine from interrupt to unblock the program execution. This mechanism is similar to WDT.
Note: Interrupts should be disabled before using Manchester routines again
(see note at the top of this page).
Requires
Nothing.
char data1, error, counter = 0;
void interrupt {
if (INTCON.T0IF) {
if (counter >= 20) {
Man_Break();
counter = 0;
}
else
counter++;
INTCON.T0IF = 0;
// reset counter
// increment counter
// Clear Timer0 overflow interrupt flag
}
}
void main() {
Example
OPTION_REG = 0x04;
// TMR0 prescaler set to 1:32
...
Man_Receive_Init();
...
// try Man_Receive with blocking prevention mechanism
INTCON.GIE = 1;
// Global interrupt enable
INTCON.T0IE = 1;
// Enable Timer0 overflow
interrupt
data1 = Man_Receive(&error);
INTCON.GIE = 0;
// Global interrupt disable
...
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
363
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
The following code is code for the Manchester receiver, it shows how to use the
Manchester Library for receiving data:
// LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;
sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End LCD module connections
// Manchester module connections
sbit MANRXPIN at RC0_bit;
sbit MANRXPIN_Direction at TRISC0_bit;
sbit MANTXPIN at RC1_bit;
sbit MANTXPIN_Direction at TRISC1_bit;
// End Manchester module connections
char error, ErrorCount, temp;
void main() {
ErrorCount = 0;
ANSEL = 0;
ANSELH = 0;
TRISC.F5 = 0;
Lcd_Init();
Lcd_Cmd(_LCD_CLEAR);
// Configure AN pins as digital I/O
// Initialize LCD
// Clear LCD display
Man_Receive_Init();
// Initialize Receiver
while (1) {
// Endless loop
Lcd_Cmd(_LCD_FIRST_ROW);
// Move cursor to the 1st row
while (1) {
// Wait for the "start" byte
temp = Man_Receive(&error);
// Attempt byte receive
if (temp == 0x0B)// "Start" byte, see Transmitter example
break;
// We got the starting sequence
364
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
if (error)
break;
}
// Exit so we do not loop forever
do
{
temp = Man_Receive(&error); // Attempt byte receive
if (error) {
// If error occured
Lcd_Chr_CP('?');
// Write question mark on LCD
ErrorCount++;
// Update error counter
if (ErrorCount > 20) { // In case of multiple errors
temp = Man_Synchro(); // Try to synchronize again
//Man_Receive_Init(); // Alternative, try to Initialize
Receiver again
ErrorCount = 0;
// Reset error counter
}
}
else {
// No error occured
if (temp != 0x0E) // If "End" byte was received(see
Transmitter example)
Lcd_Chr_CP(temp);//
do not write received byte on LCD
}
Delay_ms(25);
}
while (temp != 0x0E);// If "End" byte was received exit do loop
}
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
365
CHAPTER 7
mikroC PRO for PIC
Libraries
The following code is code for the Manchester transmitter, it shows how to use the
Manchester Library for transmitting data:
// Manchester module connections
sbit MANRXPIN at RC0_bit;
sbit MANRXPIN_Direction at TRISC0_bit;
sbit MANTXPIN at RC1_bit;
sbit MANTXPIN_Direction at TRISC1_bit;
// End Manchester module connections
char index, character;
char s1[] = "mikroElektronika";
void main() {
Man_Send_Init();
// Initialize transmitter
while (1) {
Man_Send(0x0B);
Delay_ms(100);
// Endless loop
// Send "start" byte
// Wait for a while
character = s1[0];
index = 0;
while (character) {
Man_Send(character);
Delay_ms(90);
index++;
character = s1[index];
}
Man_Send(0x0E);
Delay_ms(1000);
//
//
//
//
//
//
//
Take first char from string
Initialize index variable
String ends with zero
Send character
Wait for a while
Increment index variable
Take next char from string
// Send "end" byte
}
}
366
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Connection Example
Simple Transmitter connection
Simple Receiver connection
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
367
CHAPTER 7
mikroC PRO for PIC
Libraries
MULTI MEDIA CARD LIBRARY
The Multi Media Card (MMC) is a flash memory card standard. MMC cards are currently available in sizes up to and including 1 GB, and are used in cell phones, mp3
players, digital cameras, and PDA’s.
mikroC PRO for PIC provides a library for accessing data on Multi Media Card via
SPI communication.This library also supports SD(Secure Digital) memory cards.
Secure Digital Card
Secure Digital (SD) is a flash memory card standard, based on the older Multi Media
Card (MMC) format.
SD cards are currently available in sizes of up to and including 2 GB, and are used
in cell phones, mp3 players, digital cameras, and PDAs.
Notes:
- Library works with PIC18 family only;
- The library uses the SPI module for communication. User must initialize
SPI module before using the SPI Graphic Lcd Library.
- For MCUs with two SPI modules it is possible to initialize both of them and
then switch by using the SPI_Set_Active() routine.
- Routines for file handling can be used only with FAT16 file system.
- Library functions create and read files from the root directory only;
- Library functions populate both FAT1 and FAT2 tables when writing to files,
but the file data is being read from the FAT1 table only; i.e. there is no
recovery if FAT1 table is corrupted.
Note: The SPI module has to be initialized through SPI1_Init_Advanced routine
with the following parameters:
-
SPI Master
8bit mode
primary prescaler 16
Slave Select disabled
data sampled in the middle of data output time
clock idle low
Serial output data changes on transition from idle clock state to active
clock state
SPI1_Init_Advanced(_SPI_MASTER_OSC_DIV16,
_SPI_DATA_SAMPLE_MIDDLE,
_SPI_CLK_IDLE_LOW,
_SPI_LOW_2_HIGH); must be called before initializing
Mmc_Init.
368
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Note: Once the MMC/SD card is initialized, the user can reinitialize SPI at higher
speed. See the Mmc_Init and Mmc_Fat_Init routines.
External dependencies of MMC Library
The following variable must
be defined in all projects
using MMC library:
extern sfr sbit
Mmc_Chip_Select;
Description:
Chip select pin.
extern sfr sbit
Direction of the
Mmc_Chip_Select_Direction; chip select pin.
Example:
sbit Mmc_Chip_Select at
RC2_bit
sbit
Mmc_Chip_Select_Direction
at TRISC2_bit;
Library Routines
-
Mmc_Init
Mmc_Read_Sector
Mmc_Write_Sector
Mmc_Read_Cid
Mmc_Read_Csd
Routines for file handling:
-
Mmc_Fat_Init
Mmc_Fat_QuickFormat
Mmc_Fat_Assign
Mmc_Fat_Reset
Mmc_Fat_Read
Mmc_Fat_Rewrite
Mmc_Fat_Append
Mmc_Fat_Delete
Mmc_Fat_Write
Mmc_Fat_Set_File_Date
Mmc_Fat_Get_File_Date
Mmc_Fat_Get_File_Size
Mmc_Fat_Get_Swap_File
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
369
CHAPTER 7
mikroC PRO for PIC
Libraries
Mmc_Init
Prototype
unsigned char Mmc_Init();
Returns
- 0 - if MMC/SD card was detected and successfuly initialized
- 1 - otherwise
Initializes hardware SPI communication; The function returns 1 if MMC card is
Description present and successfuly initialized, otherwise returns 0.
Mmc_Init needs to be called before using other functions of this library.
Global variables:
Requires
- Mmc_Chip_Select: Chip Select line
- Mmc_Chip_Select_Direction: Direction of the Chip Select pin
Example
// MMC module connections
sfr sbit Mmc_Chip_Select at RC2_bit;
sfr sbit Mmc_Chip_Select_Direction at TRISC2_bit;
// MMC module connections
...
SPI1_Init();
error = Mmc_Init(); // Init with CS line at RC2_bit
must be defined before using this function.
Mmc_Read_Sector
Prototype
unsigned char Mmc_Read_Sector(unsigned long sector, char* dbuff);
Returns
Returns 0 if read was successful, or 1 if an error occurred.
Function reads one sector (512 bytes) from MMC card at sector address sector.
Description Read data is stored in the array data. Function returns 0 if read was successful,
or 1 if an error occurred.
370
Requires
Library needs to be initialized, see Mmc_Init.
Example
error = Mmc_Read_Sector(sector, data);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Mmc_Write_Sector
Prototype
unsigned char Mmc_Write_Sector(unsigned long sector, char *dbuff);
Returns
Returns 0 if write was successful; returns 1 if there was an error in sending
write command; returns 2 if there was an error in writing.
Function writes 512 bytes of data to MMC card at sector address sector.
Description Function returns 0 if write was successful, or 1 if there was an error in sending
write command, or 2 if there was an error in writing.
Requires
Library needs to be initialized, see Mmc_Init.
Example
error := Mmc_Write_Sector(sector, data);
Mmc_Read_Cid
Prototype
unsigned char Mmc_Read_Cid(char * data_for_registers);
Returns
Returns 0 if read was successful, or 1 if an error occurred.
Description
Function reads CID register and returns 16 bytes of content into
data_for_registers.
Requires
Library needs to be initialized, see Mmc_Init.
Example
error = Mmc_Read_Cid(data);
Mmc_Read_Csd
Prototype
unsigned char Mmc_Read_Csd(char * data_for_registers);
Returns
Returns 0 if read was successful, or 1 if an error occurred.
Description
Function reads CSD register and returns 16 bytes of content into
data_for_registers.
Requires
Library needs to be initialized, see Mmc_Init.
Example
error = Mmc_Read_Csd(data);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
371
CHAPTER 7
mikroC PRO for PIC
Libraries
Mmc_Fat_Init
Prototype
unsigned short Mmc_Fat_Init();
Returns
- 0 - if MMC/SD card was detected and successfuly initialized
- 1 - if FAT16 boot sector was not found
- 255 - if MMC/SD card was not detected
Initializes MMC/SD card, reads MMC/SD FAT16 boot sector and extracts necesDescription sary data needed by the library.
Note: MMC/SD card has to be formatted to FAT16 file system.
Global variables:
- Mmc_Chip_Select: Chip Select line
- Mmc_Chip_Select_Direction: Direction of the Chip Select pin
Requires
must be defined before using this function.
The appropriate hardware SPI module must be previously initialized. See the
SPI1_Init, SPI1_Init_Advanced routines.
// MMC module connections
sfr sbit Mmc_Chip_Select at RC2_bit;
sfr sbit Mmc_Chip_Select_Direction at TRISC2_bit;
// MMC module connections
// Initialize SPI1 module and set pointer(s) to SPI1 functions
SPI1_Init_Advanced(MASTER_OSC_DIV64, DATA_SAMPLE_MIDDLE,
CLK_IDLE_LOW, LOW_2_HIGH);
Example
// use fat16 quick format instead of init routine if a formatting
is needed
if (!Mmc_Fat_Init()) {
// reinitialize SPI1 at higher speed
SPI1_Init_Advanced(MASTER_OSC_DIV4, DATA_SAMPLE_MIDDLE,
CLK_IDLE_LOW, LOW_2_HIGH);
...
}
372
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Mmc_Fat_QuickFormat
Prototype
unsigned char Mmc_Fat_QuickFormat(char * mmc_fat_label);
Returns
- 0 - if MMC/SD card was detected and successfuly initialized
- 1 - if FAT16 format was unseccessful
- 255 - if MMC/SD card was not detected
Formats to FAT16 and initializes MMC/SD card.
Parameters:
Description
- mmc_fat_label: volume label (11 characters in length). If less than 11 characters are provided, the label will be padded with spaces. If null string is passed
volume will not be labeled
Note: This routine can be used instead or in conjunction with Mmc_Fat_Init routine.
Note: If MMC/SD card already contains a valid boot sector, it will remain
unchanged (except volume label field) and only FAT and ROOT tables will be
erased. Also, the new volume label will be set.
Requires
The appropriate hardware SPI module must be previously initialized.
// Initialize SPI1 module and set pointer(s) to SPI1 functions
SPI1_Init_Advanced(MASTER_OSC_DIV64, DATA_SAMPLE_MIDDLE,
CLK_IDLE_LOW, LOW_2_HIGH);
Example
// Format and initialize MMC/SD card and MMC_FAT16 library globals
if (!Mmc_Fat_QuickFormat(&mmc_fat_label)) {
// Reinitialize the SPI module at higher speed (change primary
prescaler).
SPI1_Init_Advanced(MASTER_OSC_DIV4, DATA_SAMPLE_MIDDLE,
CLK_IDLE_LOW, LOW_2_HIGH);
...
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
373
CHAPTER 7
mikroC PRO for PIC
Libraries
Mmc_Fat_Assign
Prototype
unsigned short Mmc_Fat_Assign(char * filename, char file_cre_attr);
Returns
- 1 - if file already exists or file does not exist but new file is created.
- 0 - if file does not exist and no new file is created.
Assigns file for file operations (read, write, delete...). All subsequent file operations will be applied over the assigned file.
Parameters:
- filename: name of the file that should be assigned for file operations. File name
should be in DOS 8.3 (file_name.extension) format. The file name and extension will
be automatically padded with spaces by the library if they have less than length
required (i.e. "mikro.tx" -> "mikro .tx "), so the user does no have to take care of that.
The file name and extension are case insensitive. The library will convert them to
proper case automatically, so the user does not have to take care of that. Also, in
order to keep backward compatibility with first version of this library, file names can
be entered as UPPERCASE string of 11 bytes in length with no dot character
between file name and extension (i.e. "MIKROELETXT" -> MIKROELE.TXT). In this
case last 3 characters of the string are considered to be file extension.
- file_cre_attr: file creation and attributs flags. Each bit corresponds to
Description appropriate file attribut:
Bit
Mask
Description
0
0x01
Read Only
1
2
3
0x02
0x04
0x08
Hidden
System
Volume Label
4
5
6
0x10
0x20
0x40
7
0x80
Subdirectory
Archive
Device (internal use only, never found on disk)
File creation flag. If file does not exist and this flag is set,
new file with specified name will be created.
Note: Long File Names (LFN) are not supported.
374
Requires
MMC/SD card and MMC library must be initialized for file operations. See
Mmc_Fat_Init.
Example
//Create file with archive attribut if it does not already exists
Mmc_Fat_Assign('MIKROELE.TXT',0xA0);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Mmc_Fat_Reset
Prototype
void Mmc_Fat_Reset(unsigned long * size);
Returns
Nothing.
Procedure resets the file pointer (moves it to the start of the file) of the assigned
Description file, so that the file can be read.
Parameter size stores the size of the assigned file, in bytes.
Requires
The file must be assigned, see Mmc_Fat_Assign.
Example
Mmc_Fat_Reset(size);
Mmc_Fat_Rewrite
Prototype
void Mmc_Fat_Rewrite();
Returns
Nothing.
Description
Procedure resets the file pointer and clears the assigned file, so that new data
can be written into the file.
Requires
The file must be assigned, see Mmc_Fat_Assign.
Example
Mmc_Fat_Rewrite;
Mmc_Fat_Append
Prototype
void Mmc_Fat_Append();
Returns
Nothing.
Description
The procedure moves the file pointer to the end of the assigned file, so that
data can be appended to the file.
Requires
The file must be assigned, see Mmc_Fat_Assign.
Example
Mmc_Fat_Append;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
375
CHAPTER 7
mikroC PRO for PIC
Libraries
Mmc_Fat_Read
Prototype
void Mmc_Fat_Read(unsigned short *bdata);
Returns
Nothing.
Procedure reads the byte at which the file pointer points to and stores data into
Description parameter data. The file pointer automatically increments with each call of
Mmc_Fat_Read.
Requires
The file must be assigned, see Mmc_Fat_Assign. Also, file pointer must be initialized; see Mmc_Fat_Reset.
Example
Mmc_Fat_Read(mydata);
Mmc_Fat_Delete
Prototype
void Mmc_Fat_Delete();
Returns
Nothing.
Description Deletes currently assigned file from MMC/SD card.
Requires
MMC/SD card and MMC library must be initialized for file operations. See
Mmc_Fat_Init.
The file must be previously assigned. See Mmc_Fat_Assign.
Example
// delete current file
Mmc_Fat_Delete();
Mmc_Fat_Write
376
Prototype
void Mmc_Fat_Write(char * fdata, unsigned data_len);
Returns
Nothing.
Description
Procedure writes a chunk of bytes (fdata) to the currently assigned file, at the
position of the file pointer.
Requires
The file must be assigned, see Mmc_Fat_Assign. Also, file pointer must be initialized; see Mmc_Fat_Append or Mmc_Fat_Rewrite.
Example
Mmc_Fat_Write(txt,255);
Mmc_Fat_Write('Hello world',255);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Mmc_Fat_Set_File_Date
Prototype
void Mmc_Fat_Set_File_Date(unsigned int year, unsigned short
month, unsigned short day, unsigned short hours, unsigned short
mins, unsigned short seconds);
Returns
Nothing.
Description
Writes system timestamp to a file. Use this routine before each writing to file;
otherwise, the file will be appended an unknown timestamp.
Requires
The file must be assigned, see Mmc_Fat_Assign. Also, file pointer must be initialized; see Mmc_Fat_Reset.
Example
// April 1st 2005, 18:07:00
Mmc_Fat_Set_File_Date(2005, 4, 1, 18, 7, 0);
Mmc_Fat_Get_File_Date
Prototype
void Mmc_Fat_Get_File_Date(unsigned int *year, unsigned short *month,
unsigned short *day, unsigned short *hours, unsigned short *mins);
Returns
Nothing.
Description
Retrieves date and time for the currently selected file. Seconds are not being
retrieved since they are written in 2-sec increments.
Requires
The file must be assigned, see Mmc_Fat_Assign.
Example
// get Date/time of file
unsigned yr;
char mnth, dat, hrs, mins;
...
file_Name = "MYFILEABTXT";
Mmc_Fat_Assign(file_Name);
Mmc_Fat_Get_File_Date(yr, mnth, dat, hrs, mins);
Mmc_Fat_Get_File_Size
Prototype
unsigned long Mmc_Fat_Get_File_Size();
Returns
This function returns size of active file (in bytes).
Description Retrieves size for currently selected file.
Requires
The file must be assigned, see Mmc_Fat_Assign.
Example
// get Date/time of file
unsigned yr;
char mnth, dat, hrs, mins;
...
file_name = "MYFILEXXTXT";
Mmc_Fat_Assign(file_name);
mmc_size = Mmc_Fat_Get_File_Size;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
377
CHAPTER 7
mikroC PRO for PIC
Libraries
Mmc_Fat_Get_Swap_File
Prototype
unsigned long Mmc_Fat_Get_Swap_File(unsigned long sectors_cnt, char*
filename, char file_attr);
Returns
- Number of the start sector for the newly created swap file, if there was enough
free space on the MMC/SD card to create file of required size.
- 0 - otherwise.
This function is used to create a swap file of predefined name and size on the
MMC/SD media. If a file with specified name already exists on the media, search
for consecutive sectors will ignore sectors occupied by this file. Therefore, it is
recomended to erase such file if it exists before calling this function. If it is not
erased and there is still enough space for new swap file, this function will delete
it after allocating new memory space for new swap file.
The purpose of the swap file is to make reading and writing to MMC/SD media as
fast as possible, by using the Mmc_Read_Sector() and Mmc_Write_Sector()
functions directly, without potentially damaging the FAT system. Swap file can be
considered as a "window" on the media where user can freely write/read the data.
It's main purpose in mikroC's library is to be used for fast data acquisition; when
the time-critical acquisition has finished, the data can be re-written into a "normal"
file, and formatted in the most suitable way.
Description
Parameters:
- sectors_cnt: number of consecutive sectors that user wants the swap file to
have.
- filename: name of the file that should be assigned for file operations. File name
should be in DOS 8.3 (file_name.extension) format. The file name and extension
will be automatically padded with spaces by the library if they have less than
length required (i.e. "mikro.tx" -> "mikro .tx "), so the user does no have to take
care of that. The file name and extension are case insensitive. The library will convert them to proper case automatically, so the user does not have to take care of
that.
Also, in order to keep backward compatibility with first version of this library, file
names can be entered as UPPERCASE string of 11 bytes in length with no dot
character between file name and extension (i.e. "MIKROELETXT" ->
MIKROELE.TXT). In this case last 3 characters of the string are considered to be
file extension.
378
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
- file_attr: file creation and attributs flags. Each bit corresponds to appropriate file attribut:
Description
Bit
Mask
Description
0
0x01
Read Only
1
2
0x02
0x04
Hidden
System
3
0x08
Volume Label
4
5
6
0x10
0x20
0x40
Subdirectory
Archive
Device (internal use only, never found on disk)
7
0x80
Not used
Note: Long File Names (LFN) are not supported.
Requires
MMC/SD card and MMC library must be initialized for file operations. See
Mmc_Fat_Init.
Example
//-------------- Tries to create a swap file, whose size will be at
least 100 sectors.
//If it succeeds, it sends the No. of start sector over UART
void M_Create_Swap_File(){
size = Mmc_Fat_Get_Swap_File(100);
if (size <> 0) {
UART_Write(0xAA);
UART_Write(Lo(size));
UART_Write(Hi(size));
UART_Write(Higher(size));
UART_Write(Highest(size));
UART_Write(0xAA);
}
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
379
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
The following example demonstrates MMC library test. Upon flashing, insert a
MMC/SD card into the module, when you should receive the "Init-OK" message.
Then, you can experiment with MMC read and write functions, and observe the
results through the Usart Terminal.
// MMC module connections
sbit Mmc_Chip_Select
at RC2_bit;
sbit Mmc_Chip_Select_Direction at TRISC2_bit;
// eof MMC module connections
// Variables for MMC routines
unsigned char SectorData[512]; // Buffer for MMC sector reading/writing
unsigned char data_for_registers[16];// buffer for CID and CSD registers
// UART1 write text and new line (carriage return + line feed)
void UART1_Write_Line(char *uart_text) {
UART1_Write_Text(uart_text);
UART1_Write(13);
UART1_Write(10);
}
// Display byte in hex
void PrintHex(unsigned char i) {
unsigned char hi,lo;
hi
hi
hi
if
lo
if
= i & 0xF0;
= hi >> 4;
= hi + '0';
(hi>'9') hi=hi+7;
= (i & 0x0F) + '0';
(lo>'9') lo=lo+7;
// High nibble
// Low nibble
UART1_Write(hi);
UART1_Write(lo);
}
void main() {
const char
FILL_CHAR = 'm';
unsigned int i, SectorNo;
char
mmc_error;
bit
data_ok;
ADCON1 |= 0x0F;
CMCON |= 7;
// Configure AN pins as digital
// Turn off comparators
// Initialize UART1 module
380
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
UART1_Init(19200);
Delay_ms(10);
UART1_Write_Line("PIC-Started"); // PIC present report
// Initialize SPI1 module
SPI1_Init_Advanced(_SPI_MASTER_OSC_DIV64, _SPI_DATA_SAMPLE_MIDDLE,
_SPI_CLK_IDLE_LOW, _SPI_LOW_2_HIGH);
// initialise a MMC card
mmc_error = Mmc_Init();
if(mmc_error == 0)
UART1_Write_Line("MMC Init-OK"); // If MMC present report
else
UART1_Write_Line("MMC Init-error"); // If error report
// Fill MMC buffer with same characters
for(i=0; i<=511; i++)
SectorData[i] = FILL_CHAR;
// Write sector
mmc_error = Mmc_Write_Sector(SectorNo, SectorData);
if(mmc_error == 0)
UART1_Write_Line("Write-OK");
else // if there are errors.....
UART1_Write_Line("Write-Error");
// Reading of CID register
mmc_error = Mmc_Read_Cid(data_for_registers);
if(mmc_error == 0) {
UART1_Write_Text("CID : ");
for(i=0; i<=15; i++)
PrintHex(data_for_registers[i]);
UART1_Write_Line("");
}
else
UART1_Write_Line("CID-error");
// Reading of CSD register
mmc_error = Mmc_Read_Csd(data_for_registers);
if(mmc_error == 0) {
UART1_Write_Text("CSD : ");
for(i=0; i<=15; i++)
PrintHex(data_for_registers[i]);
UART1_Write_Line("");
}
else
UART1_Write_Line("CSD-error");
// Read sector
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
381
CHAPTER 7
mikroC PRO for PIC
Libraries
mmc_error = Mmc_Read_Sector(SectorNo, SectorData);
if(mmc_error == 0) {
UART1_Write_Line("Read-OK");
// Chech data match
data_ok = 1;
for(i=0; i<=511; i++) {
UART1_Write(SectorData[i]);
if (SectorData[i] != FILL_CHAR) {
data_ok = 0;
break;
}
}
UART1_Write_Line("");
if (data_ok)
UART1_Write_Line("Content-OK");
else
UART1_Write_Line("Content-Error");
}
else // if there are errors.....
UART1_Write_Line("Read-Error");
// Signal test end
UART1_Write_Line("Test End.");
}
382
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
MMC interface
MMC back view
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
383
CHAPTER 7
mikroC PRO for PIC
Libraries
ONEWIRE LIBRARY
The OneWire library provides routines for communication via the Dallas OneWire
protocol, for example with DS18x20 digital thermometer. OneWire is a Master/Slave
protocol, and all communication cabling required is a single wire. OneWire enabled
devices should have open collector drivers (with single pull-up resistor) on the
shared data line.
Slave devices on the OneWire bus can even get their power supply from data line.
For detailed schematic see device datasheet.
Some basic characteristics of this protocol are:
-
single master system,
low cost,
low transfer rates (up to 16 kbps),
fairly long distances (up to 300 meters),
small data transfer packages.
Each OneWire device also has a unique 64-bit registration number (8-bit device
type, 48-bit serial number and 8-bit CRC), so multiple slaves can co-exist on the
same bus.
Note that oscillator frequency Fosc needs to be at least 4MHz in order to use the
routines with Dallas digital thermometers.
Note: This library implements time-based activities, so interrupts need to be disabled when using OneWire library.
Library Routines
- Ow_Reset
- Ow_Read
- Ow_Write
384
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Ow_Reset
Prototype
unsigned short Ow_Reset(unsigned short *port, unsigned short pin);
Returns
0 if DS1820 is present, and 1 if not present.
Description
Issues OneWire reset signal for DS1820. Parameters PORT and pin specify the
location of DS1820.
Requires
Works with Dallas DS1820 temperature sensor only.
To reset the DS1820 that is connected to the RA5 pin:
Example
Ow_Reset(&PORTA, 5);
Ow_Read
Prototype
unsigned short Ow_Read(unsigned short *port, unsigned short pin);
Returns
Data read from an external device over the OneWire bus.
Description Reads one byte of data via the OneWire bus.
Requires
Nothing.
Example
unsigned short tmp;
...
tmp = Ow_Read(&PORTA, 5);
Ow_Write
Prototype
void Ow_Write(unsigned short *port, unsigned short pin, unsigned
short par);
Returns
Nothing.
Description Writes one byte of data (argument par) via OneWire bus.
Requires
Nothing.
Example
Ow_Write(&PORTA, 5, 0xCC);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
385
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
This example reads the temperature using DS18x20 connected to pin PORTA.B5.
After reset, MCU obtains temperature from the sensor and prints it on the Lcd. Make
sure to pull-up PORTA.B5 line and to turn off the PORTA LEDs.
// LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;
sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End LCD module connections
//
Set TEMP_RESOLUTION to the corresponding resolution of used
DS18x20 sensor:
// 18S20: 9 (default setting; can be 9,10,11,or 12)
// 18B20: 12
const unsigned short TEMP_RESOLUTION = 9;
char *text = "000.0000";
unsigned temp;
void Display_Temperature(unsigned int temp2write) {
const unsigned short RES_SHIFT = TEMP_RESOLUTION - 8;
char temp_whole;
unsigned int temp_fraction;
// check if temperature is negative
if (temp2write & 0x8000) {
text[0] = '-';
temp2write = ~temp2write + 1;
}
// extract temp_whole
temp_whole = temp2write >> RES_SHIFT;
// convert temp_whole to characters
if (temp_whole/100)
text[0] = temp_whole/100 + 48;
else
text[0] = '0';
386
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
text[1] = (temp_whole/10)%10 + 48;
text[2] = temp_whole%10
+ 48;
// Extract tens digit
// Extract ones digit
// extract temp_fraction and convert it to unsigned int
temp_fraction = temp2write << (4-RES_SHIFT);
temp_fraction &= 0x000F;
temp_fraction *= 625;
// convert temp_fraction to characters
text[4] = temp_fraction/1000
+ 48;
// Extract thousands digit
text[5] = (temp_fraction/100)%10 + 48; // Extract hundreds digit
text[6] = (temp_fraction/10)%10 + 48; // Extract tens digit
text[7] = temp_fraction%10
+ 48; // Extract ones digit
// print temperature on LCD
Lcd_Out(2, 5, text);
}
void main() {
ANSEL = 0;
// Configure AN pins as digital I/O
ANSELH = 0;
Lcd_Init();
// Initialize LCD
Lcd_Cmd(_LCD_CLEAR);
// Clear LCD
Lcd_Cmd(_LCD_CURSOR_OFF);
// Turn cursor off
Lcd_Out(1, 1, " Temperature:
");
// Print degree character, 'C' for Centigrades
Lcd_Chr(2,13,223); // different LCD displays have different char
code for degree
// if you see greek alpha letter try typing 178 instead of 223
Lcd_Chr(2,14,'C');
//--- main loop
do {
//--- perform temperature reading
Ow_Reset(&PORTA, 5);
Ow_Write(&PORTA, 5, 0xCC);
Ow_Write(&PORTA, 5, 0x44);
Delay_us(120);
Ow_Reset(&PORTA, 5);
Ow_Write(&PORTA, 5, 0xCC);
Ow_Write(&PORTA, 5, 0xBE);
// Onewire reset signal
// Issue command SKIP_ROM
// Issue command CONVERT_T
// Issue command SKIP_ROM
// Issue command READ_SCRATCHPAD
temp = Ow_Read(&PORTA, 5);
temp = (Ow_Read(&PORTE, 5) << 8) + temp;
//--- Format and display result on Lcd
Display_Temperature(temp);
Delay_ms(500);
} while (1);
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
387
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
Example of DS1820 connection
388
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
PORT EXPANDER LIBRARY
The mikroC PRO for PIC provides a library for communication with the Microchip’s
Port Expander MCP23S17 via SPI interface. Connections of the PIC compliant MCU
and MCP23S17 is given on the schematic at the bottom of this page.
Note: Library does not use Port Expander interrupts.
Note: The appropriate hardware SPI module must be initialized before using any of
the Port Expander library routines. Refer to SPI Library.
External dependencies of Port Expander Library
The following variables
must be defined in all
projects using Port
Expander Library:
extern sfr sbit
SPExpanderRST;
extern sfr sbit
SPExpanderCS;
Description:
Reset line.
Chip Select line.
extern sfr sbit
Direction of the Reset pin.
SPExpanderRST_Direction;
extern sfr sbit
SPExpanderCS_Direction;
Direction of the Chip
Select pin.
Example:
SPExpanderCS : sbit
at P1.B1;
SPExpanderRST : sbit
at P1.B0;
sbit
SPExpanderRST_Direction
at TRISC0_bit;
sbit
SPExpanderCS_Direction
at TRISC1_bit
Library Routines
-
Expander_Init
Expander_Read_Byte
Expander_Write_Byte
Expander_Read_PortA
Expander_Read_PortB
Expander_Read_PortAB
Expander_Write_PortA
Expander_Write_PortB
Expander_Write_PortAB
Expander_Set_DirectionPortA
Expander_Set_DirectionPortB
Expander_Set_DirectionPortAB
Expander_Set_PullUpsPortA
Expander_Set_PullUpsPortB
Expander_Set_PullUpsPortAB
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
389
CHAPTER 7
mikroC PRO for PIC
Libraries
Expander_Init
Prototype
void Expander_Init(char ModuleAddress);
Returns
Nothing.
Initializes Port Expander using SPI communication.
Port Expander module settings:
Description -
hardware addressing enabled
automatic address pointer incrementing disabled (byte mode)
BANK_0 register adressing
slew rate enabled
Parameters:
- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
Global variables:
Requires
-
SPExpanderCS: Chip Select line
SPExpanderRST: Reset line
SPExpanderCS_Direction: Direction of the Chip Select pin
SPExpanderRST_Direction: Direction of the Reset pin
must be defined before using this function.
SPI module needs to be initialized. See SPI1_Init and SPI1_Init_Advanced routines.
// Port Expander module connections
sbit SPExpanderRST at RC0_bit;
sbit SPExpanderCS at RC1_bit;
sbit SPExpanderRST_Direction at TRISC0_bit;
sbit SPExpanderCS_Direction at TRISC1_bit;
// End Port Expander module connections
Example
...
ANSEL = 0;
ANSELH = 0;
// Configure AN pins as digital I/O
// If Port Expander Library uses SPI module
SPI1_Init();
// Initialize SPI module used with
PortExpander
Expander_Init(0);
// Initialize Port Expander
390
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Expander_Read_Byte
Prototype
char Expander_Read_Byte(char ModuleAddress, char RegAddress);
Returns
Byte read.
The function reads byte from Port Expander.
Parameters:
Description
- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
- RegAddress: Port Expander's internal register address
Requires
Port Expander must be initialized. See Expander_Init.
Example
// Read a byte from Port Expander's register
char read_data;
...
read_data = Expander_Read_Byte(0,1);
Expander_Write_Byte
Prototype
void Expander_Write_Byte(char ModuleAddress, char RegAddress,
char Data);
Returns
Nothing.
Routine writes a byte to Port Expander.
Parameters:
Description
- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
- RegAddress: Port Expander's internal register address
- Data_: data to be written
Requires
Port Expander must be initialized. See Expander_Init.
Example
// Write a byte to the Port Expander's register
Expander_Write_Byte(0,1,$FF);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
391
CHAPTER 7
mikroC PRO for PIC
Libraries
Expander_Read_PortA
Prototype
char Expander_Read_PortA(char ModuleAddress);
Returns
Byte read.
The function reads byte from Port Expander's PortA.
Description
Parameters:
- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
Port Expander must be initialized. See Expander_Init.
Requires
Example
Port Expander's PortA should be configured as an input. See
Expander_Set_DirectionPortA and Expander_Set_DirectionPortAB routines.
// Read a byte from Port Expander's PORTA
char read_data;
...
Expander_Set_DirectionPortA(0,0xFF); // set expander's porta to
be input
...
read_data = Expander_Read_PortA(0);
Expander_Read_PortB
Prototype
char Expander_Read_PortB(char ModuleAddress);
Returns
Byte read.
The function reads byte from Port Expander's PortB.
Description
Parameters:
- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
Port Expander must be initialized. See Expander_Init.
Requires
Example
392
Port Expander's PortB should be configured as input. See Expander_Set_DirectionPortB and Expander_Set_DirectionPortAB routines.
// Read a byte from Port Expander's PORTB
char read_data;
...
Expander_Set_DirectionPortB(0,0xFF);
portb to be input
...
read_data = Expander_Read_PortB(0);
// set expander's
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Expander_Read_PortAB
Prototype
unsigned int Expander_Read_PortAB(char ModuleAddress);
Returns
Word read.
The function reads word from Port Expander's ports. PortA readings are in the
higher byte of the result. PortB readings are in the lower byte of the result.
Description Parameters:
- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
Port Expander must be initialized. See Expander_Init.
Requires
Example
Port Expander's PortA and PortB should be configured as inputs. See
Expander_Set_DirectionPortA, Expander_Set_DirectionPortB and
Expander_Set_DirectionPortAB routines.
// Read a byte from Port Expander's PORTA and PORTB
unsigned int read_data;
...
Expander_Set_DirectionPortAB(0,0xFFFF); // set expander's porta
and portb to be input
...
read_data = Expander_Read_PortAB(0);
Expander_Write_PortA
Prototype
void Expander_Write_PortA(char ModuleAddress, char Data_);
Returns
Nothing.
The function writes byte to Port Expander's PortA.
Parameters:
Description
- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
- Data_: data to be written
Port Expander must be initialized. See Expander_Init.
Requires
Port Expander's PortA should be configured as output. See
Expander_Set_DirectionPortA and Expander_Set_DirectionPortAB routines.
// Write a byte to Port Expander's PORTA
Example
...
Expander_Set_DirectionPortA(0,0x00);
porta to be output
...
Expander_Write_PortA(0, 0xAA);
// set expander's
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
393
CHAPTER 7
mikroC PRO for PIC
Libraries
Expander_Write_PortB
Prototype
void Expander_Write_PortB(char ModuleAddress, char Data_);
Returns
Nothing.
The function writes byte to Port Expander's PortB.
Parameters:
Description
- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
- Data: data to be written
Port Expander must be initialized. See Expander_Init.
Requires
Port Expander's PortB should be configured as output. See
Expander_Set_DirectionPortB and Expander_Set_DirectionPortAB routines.
// Write a byte to Port Expander's PORTB
Example
...
Expander_Set_DirectionPortB(0,0x00);
portb to be output
...
Expander_Write_PortB(0, 0x55);
// set expander's
Expander_Write_PortAB
Prototype
void Expander_Write_PortAB(char ModuleAddress, unsigned int Data_);
Returns
Nothing.
The function writes word to Port Expander's ports.
Parameters:
Description - ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
- Data: data to be written. Data to be written to PortA are passed in Data's
higher byte. Data to be written to PortB are passed in Data's lower byte
Port Expander must be initialized. See Expander_Init.
Requires
Example
394
Port Expander's PortA and PortB should be configured as outputs. See
Expander_Set_DirectionPortA, Expander_Set_DirectionPortB and
Expander_Set_DirectionPortAB routines.
// Write a byte to Port Expander's PORTA and PORTB
...
Expander_Set_DirectionPortAB(0,0x0000);
// set expander's
porta and portb to be output
...
Expander_Write_PortAB(0, 0xAA55);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Expander_Set_DirectionPortA
Prototype
void Expander_Set_DirectionPortA(char ModuleAddress, char Data_);
Returns
Nothing.
The function sets Port Expander's PortA direction.
Parameters:
Description - ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
- Data: data to be written to the PortA direction register. Each bit corresponds
to the appropriate pin of the PortA register. Set bit configures the corresponding pin as an input. Cleared bit configures the corresponding pin as an output.
Requires
Port Expander must be initialized. See Expander_Init.
Example
// Set Port Expander's PORTA to be output
Expander_Set_DirectionPortA(0,0x00);
Expander_Set_DirectionPortB
Prototype
void Expander_Set_DirectionPortB(char ModuleAddress, char Data_);
Returns
Nothing.
The function sets Port Expander's PortB direction.
Parameters:
Description - ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
- Data: data to be written to the PortB direction register. Each bit corresponds
to the appropriate pin of the PortB register. Set bit configures the corresponding pin as an input. Cleared bit configures the corresponding pin as an output.
Requires
Port Expander must be initialized. See Expander_Init.
Example
// Set Port Expander's PORTB to be input
Expander_Set_DirectionPortB(0,0xFF);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
395
CHAPTER 7
mikroC PRO for PIC
Libraries
Expander_Set_DirectionPortAB
Prototype
void Expander_Set_DirectionPortAB(char ModuleAddress, unsigned
int Direction);
Returns
Nothing.
The function sets Port Expander's PortA and PortB direction.
Parameters:
- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
Description
- Direction: data to be written to direction registers. Data to be written to the
PortA direction register are passed in Direction's higher byte. Data to be
written to the PortB direction register are passed in Direction's lower byte.
Each bit corresponds to the appropriate pin of the PortA/PortB register. Set bit
configures the corresponding pin as an input. Cleared bit configures the corresponding pin as an output.
Requires
Port Expander must be initialized. See Expander_Init.
Example
// Set Port Expander's PORTA to be output and PORTB to be input
Expander_Set_DirectionPortAB(0,0x00FF);
Expander_Set_PullUpsPortA
Prototype
void Expander_Set_PullUpsPortA(char ModuleAddress, char Data_);
Returns
Nothing.
The function sets Port Expander's PortA pull up/down resistors.
Parameters:
Description - ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
- Data: data for choosing pull up/down resistors configuration. Each bit
corresponds to the appropriate pin of the PortA register. Set bit enables pull-up
for corresponding pin.
396
Requires
Port Expander must be initialized. See Expander_Init.
Example
// Set Port Expander's PORTA pull-up resistors
Expander_Set_PullUpsPortA(0, 0xFF);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Expander_Set_PullUpsPortB
Prototype
void Expander_Set_PullUpsPortB(char ModuleAddress, char Data_);
Returns
Nothing.
The function sets Port Expander's PortB pull up/down resistors.
Parameters:
Description - ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
- Data: data for choosing pull up/down resistors configuration. Each bit
corresponds to the appropriate pin of the PortB register. Set bit enables
pull-up for corresponding pin.
Requires
Port Expander must be initialized. See Expander_Init.
Example
// Set Port Expander's PORTB pull-up resistors
Expander_Set_PullUpsPortB(0, 0xFF);
Expander_Set_PullUpsPortAB
Prototype
void Expander_Set_PullUpsPortAB(char ModuleAddress, unsigned int
PullUps);
Returns
Nothing.
The function sets Port Expander's PortA and PortB pull up/down resistors.
Parameters:
Description
- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
- PullUps: data for choosing pull up/down resistors configuration. PortA pull
up/down resistors configuration is passed in PullUps's higher byte. PortB pull
up/down resistors configuration is passed in PullUps's lower byte. Each bit
corresponds to the appropriate pin of the PortA/PortB register. Set bit enables
pull-up for corresponding pin.
Requires
Port Expander must be initialized. See Expander_Init.
Example
// Set Port Expander's PORTA and PORTB pull-up resistors
Expander_Set_PullUpsPortAB(0, 0xFFFF);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
397
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
The example demonstrates how to communicate with Port Expander MCP23S17.
Note that Port Expander pins A2 A1 A0 are connected to GND so Port Expander
Hardware Address is 0.
// Port Expander module connections
sbit SPExpanderRST at RC0_bit;
sbit SPExpanderCS at RC1_bit;
sbit SPExpanderRST_Direction at TRISC0_bit;
sbit SPExpanderCS_Direction at TRISC1_bit;
// End Port Expander module connections
unsigned char i = 0;
void main() {
ANSEL = 0;
ANSELH = 0;
TRISB = 0;
PORTB = 0xFF;
// Configure AN pins as digital I/O
// Set PORTB as output
// If Port Expander Library uses SPI1 module
SPI1_Init(); // Initialize SPI module used with PortExpander
//
//
If Port Expander Library uses SPI2 module
SPI2_Init(); // Initialize SPI module used with PortExpander
Expander_Init(0);
// Initialize Port Expander
Expander_Set_DirectionPortA(0, 0x00);
be output
// Set Expander's PORTA to
Expander_Set_DirectionPortB(0,0xFF); // Set Expander's PORTB to be
input
Expander_Set_PullUpsPortB(0,0xFF); // Set pull-ups to all of the
Expander's PORTB pins
while(1) {
// Endless loop
Expander_Write_PortA(0, i++); // Write i to expander's PORTA
PORTB = Expander_Read_PortB(0);
// Read expander's PORTB and
write it to LEDs
Delay_ms(100);
}
}
398
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
Port Expander HW connection
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
399
CHAPTER 7
mikroC PRO for PIC
Libraries
PS/2 LIBRARY
The mikroC PRO for PIC provides a library for communication with the common
PS/2 keyboard.
Note: The library does not utilize interrupts for data retrieval, and requires the oscillator clock to be at least 6MHz.
Note: The pins to which a PS/2 keyboard is attached should be connected to the
pull-up resistors.
Note: Although PS/2 is a two-way communication bus, this library does not provide
MCU-to-keyboard communication; e.g. pressing the Caps Lock key will not turn on
the Caps Lock LED.
External dependencies of PS/2 Library
The following variables must be defined
in all projects using
PS/2 Library:
extern sfr sbit
PS2_Data;
extern sfr sbit
PS2_Clock;
extern sfr sbit
PS2_Data_Direction;
extern sfr sbit
PS2_Clock_Direction;
Description:
Example:
sbit PS2_Data at
RC0_bit
sbit PS2_Clock at
PS/2 Clock line.
RC1_bit;
sbit PS2_Data_Direction
Direction of the PS/2 Data pin. at TRISC0_bit;
sbit PS2_Clock_Direction
Direction of the PS/2 Clock pin. at TRISC1_bit;
PS/2 Data line.
Library Routines
- Ps2_Config
- Ps2_Key_Read
400
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Ps2_Config
Prototype
void Ps2_Config();
Returns
Nothing.
Description Initializes the MCU for work with the PS/2 keyboard.
Global variables:
Requires
-
PS2_Data: Data signal line
PS2_Clock: Clock signal line in
PS2_Data_Direction: Direction of the Data pin
PS2_Clock_Direction: Direction of the Clock pin
must be defined before using this function.
Example
sbit PS2_Data at RC0_bit;
sbit PS2_Clock at RC1_bit;
sbit PS2_Data_Direction at TRISC0_bit;
sbit PS2_Clock_Direction at TRISC1_bit;
...
Ps2_Config();
// Init PS/2 Keyboard
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
401
CHAPTER 7
mikroC PRO for PIC
Libraries
Ps2_Key_Read
Prototype
Returns
unsigned short Ps2_Key_Read(unsigned short *value, unsigned short
*special, unsigned short *pressed);
- 1 if reading of a key from the keyboard was successful
- 0 if no key was pressed
The function retrieves information on key pressed.
Parameters:
Description
402
- value: holds the value of the key pressed. For characters, numerals,
punctuation marks, and space value will store the appropriate ASCII code.
Routine “recognizes” the function of Shift and Caps Lock, and behaves
appropriately. For special function keys see Special Function Keys Table.
- special: is a flag for special function keys (F1, Enter, Esc, etc). If key pressed
is one of these, special will be set to 1, otherwise 0.
- pressed: is set to 1 if the key is pressed, and 0 if it is released.
Requires
PS/2 keyboard needs to be initialized. See Ps2_Config routine.
Example
unsigned short keydata = 0, special = 0, down = 0;
...
// Press Enter to continue:
do {
if (Ps2_Key_Read(&keydata, &special, &down)) {
if (down && (keydata == 16)) break;
}
} while (1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Special Function Keys
Value returned
Num Lock
29
F1
1
Left Arrow
30
F2
2
Right Arrow
31
F3
3
Up Arrow
32
F4
4
Down Arrow
33
F5
5
Escape
34
F6
6
Tab
35
F7
7
F8
8
F9
9
F10
10
F11
11
F12
12
Enter
13
Page Up
14
Page Down
15
Backspace
16
Insert
17
Delete
18
Windows
19
Ctrl
20
Shift
21
Alt
22
Print Screen
23
Pause
24
Caps Lock
25
End
26
Home
27
Scroll Lock
28
Key
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
403
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
This simple example reads values of the pressed keys on the PS/2 keyboard and
sends them via UART.
unsigned short keydata = 0, special = 0, down = 0;
sbit
sbit
sbit
sbit
PS2_Data
at RC0_bit;
PS2_Clock
at RC1_bit;
PS2_Data_Direction at TRISC0_bit;
PS2_Clock_Direction at TRISC1_bit;
void main() {
ANSEL = 0;
ANSELH = 0;
// Configure AN pins as digital I/O
UART1_Init(19200);
// Initialize UART module at 19200 bps
Ps2_Config();
// Init PS/2 Keyboard
Delay_ms(100);
// Wait for keyboard to finish
UART1_Write_Text("Ready");
do {
if (Ps2_Key_Read(&keydata, &special, &down)) {
if (down && (keydata == 16)) {// Backspace
UART1_Write(0x08);
}
else if (down && (keydata == 13)) {// Enter
UART1_Write('r'); // send carriage return to usart terminal
//Usart_Write('n');
// uncomment this line if usart
terminal also expects line feed
// for new line transition
}
else if (down && !special && keydata) {
UART1_Write(keydata);
}
}
Delay_ms(1);
// debounce
} while (1);
}
404
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
Example of PS2 keyboard connection
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
405
CHAPTER 7
mikroC PRO for PIC
Libraries
PWM LIBRARY
CCP module is available with a number of PIC MCUs. mikroC PRO for PIC provides library which
simplifies using PWM HW Module.
Note: Some MCUs have multiple CCP modules. In order to use the desired CCP library routine,
simply change the number 1 in the prototype with the appropriate module number, i.e.
PWM2_Start();
Library Routines
-
PWM1_Init
PWM1_Set_Duty
PWM1_Start
PWM1_Stop
PWM1_Init
Prototype
void PWM1_Init(long freq);
Returns
Nothing.
Initializes the PWM module with duty ratio 0. Parameter freq is a desired PWM
frequency in Hz (refer to device data sheet for correct values in respect with
Description Fosc).
This routine needs to be called before using other functions from PWM Library.
MCU must have CCP module.
Requires
Note: Calculation of the PWM frequency value is carried out by the compiler, as
it would produce a relatively large code if performed on the libary level.
Therefore, compiler needs to know the value of the parameter in the compile time.
That is why this parameter needs to be a constant, and not a variable.
Initialize PWM module at 5KHz:
Example
PWM1_Init(5000);
406
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
PWM1_Set_Duty
Prototype
void PWM1_Set_Duty(unsigned short duty_ratio);
Returns
Nothing.
Sets PWM duty ratio. Parameter duty takes values from 0 to 255, where 0 is
Description 0%, 127 is 50%, and 255 is 100% duty ratio. Other specific values for duty ratio
can be calculated as (Percent*255)/100.
Requires
MCU must have CCP module. PWM1_Init must be called before using this routine.
Set duty ratio to 75%:
Example
PWM1_Set_Duty(192);
PWM1_Start
Prototype
void PWM1_Start(void);
Returns
Nothing.
Description Starts PWM.
Requires
MCU must have CCP module. PWM1_Init must be called before using this routine.
Example
PWM1_Start();
PWM1_Stop
Prototype
void PWM1_Stop(void);
Returns
Nothing.
Description Starts PWM.
Requires
MCU must have CCP module. PWM1_Init must be called before using this routine. PWM1_Start should be called before using this routine, otherwise it will have
no effect as the PWM module is not running.
Example
PWM1_Stop();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
407
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
The example changes PWM duty ratio on RC1 and RC2 pins continually. If LED is
connected to these pins, you can observe the gradual change of emitted light.
unsigned short current_duty, old_duty, current_duty1, old_duty1;
void InitMain() {
ANSEL = 0;
ANSELH = 0;
PORTA = 255;
TRISA = 255;
PORTB = 0;
TRISB = 0;
PORTC = 0;
TRISC = 0;
PWM1_Init(5000);
PWM2_Init(5000);
}
void main() {
InitMain();
current_duty = 16;
current_duty1 = 16;
// Configure AN pins as digital I/O
//
//
//
//
//
//
//
configure PORTA
set PORTB to 0
designate PORTB
set PORTC to 0
designate PORTC
Initialize PWM1
Initialize PWM2
pins as input
pins as output
pins as output
module at 5KHz
module at 5KHz
// initial value for current_duty
// initial value for current_duty1
PWM1_Start();
PWM2_Start();
PWM1_Set_Duty(current_duty);
PWM2_Set_Duty(current_duty1);
//
//
//
//
start PWM1
start PWM2
Set current duty for PWM1
Set current duty for PWM2
while (1) {
// endless loop
if (RA0_bit) {
// button on RA0 pressed
Delay_ms(40);
current_duty++;
// increment current_duty
PWM1_Set_Duty(current_duty);
}
if (RA1_bit) {
// button on RA1 pressed
Delay_ms(40);
current_duty--;
// decrement current_duty
PWM1_Set_Duty(current_duty);
}
if (RA2_bit) {
// button on RA2 pressed
Delay_ms(40);
current_duty1++;
// increment current_duty1
PWM2_Set_Duty(current_duty1);
}
408
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
if (RA3_bit) {
// button on RA3 pressed
Delay_ms(40);
current_duty1--;
// decrement current_duty1
PWM2_Set_Duty(current_duty1);
}
Delay_ms(5);
// slow down change pace a little
}
}
HW Connection
PWM demonstration
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
409
CHAPTER 7
mikroC PRO for PIC
Libraries
RS-485 LIBRARY
RS-485 is a multipoint communication which allows multiple devices to be connected to a single bus. The mikroC PRO for PIC provides a set of library routines for
comfortable work with RS485 system using Master/Slave architecture. Master and
Slave devices interchange packets of information. Each of these packets contains
synchronization bytes, CRC byte, address byte and the data. Each Slave has
unique address and receives only packets addressed to it. The Slave can never initiate communication. It is the user’s responsibility to ensure that only one device
transmits via 485 bus at a time. The RS-485 routines require the UART module. Pins
of UART need to be attached to RS-485 interface transceiver, such as LTC485 or
similar (see schematic at the bottom of this page).
Note: The library uses the UART module for communication. The user must initialize the appropriate UART module before using the RS-485 Library. For MCUs with
two UART modules it is possible to initialize both of them and then switch by using
the UART_Set_Active function. See the UART Library functions.
Library constants:
- START byte value = 150
- STOP byte value = 169
- Address 50 is the broadcast address for all Slaves (packets containing address 50
will be received by all Slaves except the Slaves with addresses 150 and 169).
Note: Since some PIC18 MCUs have multiple UART modules, appropiate UART
module must be initialized. Switching between UART modules in the UART library
is done by the UART_Set_Active function (UART module has to be previously initialized).
External dependencies of RS-485 Library
The following variable
must be defined in all projects using RS-485 Library:
extern sfr sbit
RS485_rxtx_pin;
Description:
Control RS-485
Transmit/Receive operation
mode
extern sfr sbit
Direction of the RS-485
RS485_rxtx_pin_direcTransmit/Receive pin
tion;
410
Example:
sbit RS485_rxtx_pin at
RC2_bit;
sbit
RS485_rxtx_pin_direction at TRISC2_bit;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Routines
-
RS485master_Init
RS485master_Receive
RS485master_Send
RS485slave_Init
RS485slave_Receive
RS485slave_Send
RS485Master_Init
Prototype
void RS485Master_Init();
Returns
Nothing.
Description Initializes MCU as a Master for RS-485 communication.
Global variables:
RS485_rxtx_pin - this pin is connected to RE/DE input of RS-485 transceiv-
er(see schematic at the bottom of this page). RE/DE signal controls RS-485
transceiver operation mode.
Requires
RS485_rxtx_pin_direction - direction of the RS-485 Transmit/Receive pin
must be defined before using this function.
UART HW module needs to be initialized. See UART1_Init.
// RS485 module pinout
sbit RS485_rxtx_pin_direction at RC2_bit;
control set to PORTC.B2
Example
// transmit/receive
// Pin direction
sbit RS485_rxtx_pin_direction at TRISC2_bit;
tion set as output
...
UART1_Init(9600);
RS485Master_Init();
communication
// RxTx pin direc-
// initialize UART module
// intialize MCU as a Master for RS-485
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
411
CHAPTER 7
mikroC PRO for PIC
Libraries
RS485Master_Receive
Prototype
void RS485Master_Receive(char *data_buffer);
Returns
Nothing.
Receives messages from Slaves. Messages are multi-byte, so this routine must
be called for each byte received.
Parameters:
- data_buffer: 7 byte buffer for storing received data, in the following manner:
- data[0..2]: message content
Description - data[3]: number of message bytes received, 1–3
- data[4]: is set to 255 when message is received
- data[5]: is set to 255 if error has occurred
- data[6]: address of the Slave which sent the message
The function automatically adjusts data[4] and data[5] upon every received
message. These flags need to be cleared by software.
Requires
MCU must be initialized as a Master for RS-485 communication. See
RS485master_Init.
Example
char msg[8];
...
RS485Master_Receive(msg);
RS485Master_Send
Prototype
void RS485Master_Send(char *data_buffer, char datalen, char
Slave_address);
Returns
Nothing.
Sends message to Slave(s). Message format can be found at the bottom of this
page.
Description
Parameters:
- data_buffer: data to be sent
- datalen: number of bytes for transmition. Valid values: 0...3.
- slave_address: Slave(s) address
412
Requires
MCU must be initialized as a Master for RS-485 communication. See
RS485Master_Init.
It is the user’s responsibility to ensure (by protocol) that only one device sends
data via 485 bus at a time.
Example
char msg[8];
...
// send 3 bytes of data to Slave with address 0x12
RS485Master_Send(msg, 3, 0x12);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
RS485slave_Init
Prototype
void RS485Slave_Init(char Slave_address);
Returns
Nothing.
Initializes MCU as a Slave for RS-485 communication.
Description Parameters:
- slave_address: Slave address
Global variables:
RS485_rxtx_pin - this pin is connected to RE/DE input of RS-485 transceiv-
Requires
er(see schematic at the bottom of this page). RE/DE signal controls RS-485
transceiver operation mode. Valid values: 1 (for transmitting) and 0 (for receiving)
RS485_rxtx_pin_direction - direction of the RS-485 Transmit/Receive pin
must be defined before using this function.
UART HW module needs to be initialized. See UART1_Init.
// RS485 module pinout
sbit RS485_rxtx_pin at RC2_bit;
set to PORTC.B2
Example
// transmit/receive control
// Pin direction
sbit RS485_rxtx_pin_direction at TRISC2_bit;
tion set as output
// RxTx pin direc-
...
UART1_Init(9600);
// initialize UART module
RS485Slave_Init(160);
// intialize MCU as a Slave
for RS-485 communication with address 160
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
413
CHAPTER 7
mikroC PRO for PIC
Libraries
RS485slave_Receive
Prototype
void RS485Slave_Receive(char *data_buffer);
Returns
Nothing.
Receives messages from Master. If Slave address and Message address field
don't match then the message will be discarded. Messages are multi-byte, so this
routine must be called for each byte received.
Parameters:
Description
-
data_buffer: 6 byte buffer for storing received data, in the following manner:
data[0..2]: message content
data[3]: number of message bytes received, 1–3
data[4]: is set to 255 when message is received
data[5]: is set to 255 if error has occurred
The function automatically adjusts data[4] and data[5] upon every received
message. These flags need to be cleared by software.
414
Requires
MCU must be initialized as a Slave for RS-485 communication. See
RS485slave_Init.
Example
char msg[8];
...
RS485Slave_Read(msg);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
RS485slave_Send
Prototype
void RS485Slave_Send(char *data_buffer, char datalen);
Returns
Nothing.
Sends message to Master. Message format can be found at the bottom of this
page.
Description Parameters:
- data_buffer: data to be sent
- datalen: number of bytes for transmition. Valid values: 0...3.
Requires
MCU must be initialized as a Slave for RS-485 communication. See
RS485slave_Init. It is the user’s responsibility to ensure (by protocol) that only
one device sends data via 485 bus at a time.
Example
char msg[8];
...
// send 2 bytes of data to the Master
RS485Slave_Send(msg, 2);
Library Example
This is a simple demonstration of RS485 Library routines usage.
Master sends message to Slave with address 160 and waits for a response. The Slave accepts
data, increments it and sends it back to the Master. Master then does the same and sends incremented data back to Slave, etc.
Master displays received data on PORTB, while error on receive (0xAA) and number of consecutive unsuccessful retries are displayed on PORTD. Slave displays received data on PORTB,
while error on receive (0xAA) is displayed on PORTD. Hardware configurations in this example
are made for the EasyPIC5 board and 16F887.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
415
CHAPTER 7
mikroC PRO for PIC
Libraries
RS485 Master code:
char dat[10];
char i,j;
// buffer for receving/sending messages
sbit rs485_rxtx_pin at RC2_bit;
// set transcieve pin
sbit rs485_rxtx_pin_direction at TRISC2_bit;
// set transcieve pin
direction
// Interrupt routine
void interrupt() {
RS485Master_Receive(dat);
}
void main(){
long cnt = 0;
ANSEL = 0;
ANSELH = 0;
PORTB
PORTD
TRISB
TRISD
=
=
=
=
// Configure AN pins as digital I/O
0;
0;
0;
0;
UART1_Init(9600);
Delay_ms(100);
// initialize UART1 module
RS485Master_Init();
dat[0] = 0xAA;
dat[1] = 0xF0;
dat[2] = 0x0F;
dat[4] = 0;
dat[5] = 0;
dat[6] = 0;
// initialize MCU as Master
// ensure that message received flag is 0
// ensure that error flag is 0
RS485Master_Send(dat,1,160);
PIE1.RCIE = 1;
PIE2.TXIE = 0;
INTCON.PEIE = 1;
INTCON.GIE = 1;
//
//
//
//
enable interrupt on UART1 receive
disable interrupt on UART1 transmit
enable peripheral interrupts
enable all interrupts
while (1){
// upon completed valid message receiving
//
data[4] is set to 255
cnt++;
416
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
if (dat[5]) {
// if an error detected, signal it
PORTD = 0xAA;
//
by setting portd to 0xAA
}
if (dat[4]) {
// if message received successfully
cnt = 0;
dat[4] = 0;
// clear message received flag
j = dat[3];
for (i = 1; i <= dat[3]; i++) { // show data on PORTB
PORTB = dat[i-1];
}
// increment received dat[0]
dat[0] = dat[0]+1;
// send back to master
Delay_ms(1);
RS485Master_Send(dat,1,160);
}
if (cnt > 100000) {
PORTD ++;
cnt = 0;
RS485Master_Send(dat,1,160);
if (PORTD > 10)
// if sending failed 10 times
RS485Master_Send(dat,1,50); // send message on broadcast
address
}
}
//
function to be properly linked.
}
RS485 Slave code:
char dat[9];
char i,j;
// buffer for receving/sending messages
sbit rs485_rxtx_pin at RC2_bit;
// set transcieve pin
sbit rs485_rxtx_pin_direction at TRISC2_bit; // set transcieve pin
direction
// Interrupt routine
void interrupt() {
RS485Slave_Receive(dat);
}
void main() {
ANSEL = 0;
ANSELH = 0;
PORTB
PORTD
TRISB
TRISD
=
=
=
=
// Configure AN pins as digital I/O
0;
0;
0;
0;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
417
CHAPTER 7
mikroC PRO for PIC
Libraries
UART1_Init(9600);
Delay_ms(100);
RS485Slave_Init(160);
dat[4] = 0;
dat[5] = 0;
dat[6] = 0;
PIE1.RCIE = 1;
PIE2.TXIE = 0;
INTCON.PEIE = 1;
INTCON.GIE = 1;
// initialize UART1 module
// Intialize MCU as slave, address 160
// ensure that message received flag is 0
// ensure that message received flag is 0
// ensure that error flag is 0
// enable interrupt on UART1 receive
// disable interrupt on UART1 transmit
// enable peripheral interrupts
// enable all interrupts
while (1) {
if (dat[5]) {
// if an error detected, signal it by
PORTD = 0xAA;
//
setting portd to 0xAA
dat[5] = 0;
}
if (dat[4]) {
// upon completed valid message receive
dat[4] = 0;
//
data[4] is set to 0xFF
j = dat[3];
for (i = 1; i <= dat[3];i++){
PORTB = dat[i-1];
}
dat[0] = dat[0]+1;
// increment received dat[0]
Delay_ms(1);
RS485Slave_Send(dat,1);
//
and send it back to master
}
}
}
418
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
Example of interfacing PC to 8051 MCU via RS485 bus with LTC485 as
RS-485 transceiver
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
419
CHAPTER 7
mikroC PRO for PIC
Libraries
Message format and CRC calculations
Q: How is CRC checksum calculated on RS485 Master side?
START_BYTE = 0x96; // 10010110
STOP_BYTE = 0xA9; // 10101001
PACKAGE:
-------START_BYTE 0x96
ADDRESS
DATALEN
[DATA1]
[DATA2]
[DATA3]
CRC
STOP_BYTE 0xA9
// if exists
// if exists
// if exists
DATALEN bits
-----------bit7 = 1 MASTER SENDS
0 SLAVE SENDS
bit6 = 1 ADDRESS WAS XORed with 1, IT WAS EQUAL
STOP_BYTE
0 ADDRESS UNCHANGED
bit5 = 0 FIXED
bit4 = 1
DATA3 (if exists) WAS XORed with 1,
START_BYTE or STOP_BYTE
0 DATA3 (if exists) UNCHANGED
bit3 = 1
DATA2 (if exists) WAS XORed with 1,
START_BYTE or STOP_BYTE
0 DATA2 (if exists) UNCHANGED
bit2 = 1
DATA1 (if exists) WAS XORed with 1,
START_BYTE or STOP_BYTE
0 DATA1 (if exists) UNCHANGED
bit1bit0 = 0 to 3 NUMBER OF DATA BYTES SEND
TO START_BYTE or
IT WAS EQUAL TO
IT WAS EQUAL TO
IT WAS EQUAL TO
CRC generation :
---------------crc_send = datalen ^ address;
crc_send ^= data[0];
// if exists
crc_send ^= data[1];
// if exists
crc_send ^= data[2];
// if exists
crc_send = ~crc_send;
if ((crc_send == START_BYTE) || (crc_send == STOP_BYTE))
crc_send++;
NOTE:
DATALEN<4..0>
can
STOP_BYTE<4..0> values.
420
not
take
the
START_BYTE<4..0>
or
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SOFTWARE I²C LIBRARY
The mikroC PRO for PIC provides routines for implementing Software I2C communication. These routines are hardware independent and can be used with any MCU.
The Software I2C library enables you to use MCU as Master in I2C communication.
Multi-master mode is not supported.
Note: This library implements time-based activities, so interrupts need to be disabled when using Software I2C.
Note: All Software I2C Library functions are blocking-call functions (they are waiting
for I2C clock line to become logical one).
Note: The pins used for the Software I2C communication should be connected to
the pull-up resistors. Turning off the LEDs connected to these pins may also be
required.
External dependecies of Soft_I2C Library
The following variables
must be defined in all
projects using Software
I2C Library:
extern sbit
Soft_I2C_Scl;
extern sbit
Soft_I2C_Sda;
Description:
Soft I2C Clock line.
Soft I2C Data line.
Example:
sbit Soft_I2C_Scl at
RC3_bit;
sbit Soft_I2C_Sda at
RC4_bit;
Direction of the Soft
extern sbit
Soft_I2C_Scl_Direction; I2C Clock pin.
sbit Soft_I2C_Scl_Direction
at TRISC3_bit;
Direction of the Soft
extern sbit
Soft_I2C_Sda_Direction; I2C Data pin.
sbit Soft_I2C_Sda_Direction
at TRISC4_bit;
Library Routines
-
Soft_I2C_Init
Soft_I2C_Start
Soft_I2C_Read
Soft_I2C_Write
Soft_I2C_Stop
Soft_I2C_Break
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
421
CHAPTER 7
mikroC PRO for PIC
Libraries
Soft_I2C_Init
Prototype
void Soft_I2C_Init();
Returns
Nothing.
Description Configures the software I˛C module.
Global variables:
Requires
-
Soft_I2C_Scl: Soft I˛C clock line
Soft_I2C_Sda: Soft I˛C data line
Soft_I2C_Scl_Pin_Direction: Direction of the Soft I˛C clock pin
Soft_I2C_Sda_Pin_Direction: Direction of the Soft I˛C data pin
must be defined before using this function.
Example
// Software I2C connections
sbit Soft_I2C_Scl
at RC3_bit;
sbit Soft_I2C_Sda
at RC4_bit;
sbit Soft_I2C_Scl_Direction at TRISC3_bit;
sbit Soft_I2C_Sda_Direction at TRISC4_bit;
// End Software I2C connections
...
Soft_I2C_Init();
Soft_I2C_Start
Prototype
void Soft_I2C_Start(void);
Returns
Nothing.
Description Determines if the I2C bus is free and issues START signal.
422
Requires
Software I2C must be configured before using this function. See Soft_I2C_Init
routine.
Example
// Issue START signal
Soft_I2C_Start();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Soft_I2C_Read
Prototype
unsigned short Soft_I2C_Read(unsigned int ack);
Returns
One byte from the Slave.
Reads one byte from the slave.
Parameters:
Description
- ack: acknowledge signal parameter. If the ack==0 not
acknowledge signal will be sent after reading, otherwise the
acknowledge signal will be sent.
Requires
Soft I˛C must be configured before using this function. See Soft_I2C_Init routine.
Also, START signal needs to be issued in order to use this function. See
Soft_I2C_Start routine.
Example
unsigned short take;
...
// Read data and send the not_acknowledge signal
take = Soft_I2C_Read(0);
Soft_I2C_Write
Prototype
unsigned short Soft_I2C_Write(unsigned short Data_);
Returns
- 0 if there were no errors.
- 1 if write collision was detected on the I˛C bus.
Sends data byte via the I˛C bus.
Description Parameters:
- Data: data to be sent
Requires
Soft I˛C must be configured before using this function. See Soft_I2C_Init routine.
Also, START signal needs to be issued in order to use this function. See
Soft_I2C_Start routine.
Example
unsigned short data, error;
...
error = Soft_I2C_Write(data);
error = Soft_I2C_Write(0xA3);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
423
CHAPTER 7
mikroC PRO for PIC
Libraries
Soft_I2C_Stop
Prototype
void Soft_I2C_Stop(void);
Returns
Nothing.
Description Issues STOP signal.
Requires
Soft I2C must be configured before using this function. See Soft_I2C_Init routine.
Example
// Issue STOP signal
Soft_I2C_Stop();
Soft_I2C_Break
Prototype
void Soft_I2C_Break(void);
Returns
Nothing.
Description
All Software I2C Library functions can block the program flow (see note at the top
of this page). Calling this routine from interrupt will unblock the program execution. This mechanism is similar to WDT.
Note: Interrupts should be disabled before using Software I2C routines again
(see note at the top of this page).
Requires
Nothing.
// Software I2C connections
sbit Soft_I2C_Scl
at RC0_bit;
sbit Soft_I2C_Sda
at RC1_bit;
sbit Soft_I2C_Scl_Direction at TRISC0_bit;
sbit Soft_I2C_Sda_Direction at TRISC1_bit;
// End Software I2C connections
char counter = 0;
void interrupt {
Example
if (INTCON.T0IF) {
if (counter >= 20) {
Soft_I2C_Break();
counter = 0;
}
else
counter++;
INTCON.T0IF = 0;
424
// reset counter
// increment counter
// Clear Timer0 overflow interrupt flag
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
}
}
void main() {
OPTION_REG = 0x04;
Example
// TMR0 prescaler set to 1:32
...
// try Soft_I2C_Init with blocking prevention mechanism
INTCON.GIE = 1;
// Global interrupt enable
INTCON.T0IE = 1;
// Enable Timer0 overflow interrupt
Soft_I2C_Init();
INTCON.GIE = 0;
// Global interrupt disable
...
}
Library Example
The example demonstrates Software I˛C Library routines usage. The PIC MCU is
connected (SCL, SDA pins) to PCF8583 RTC (real-time clock). Program reads date
and time are read from the RTC and prints it on Lcd.
char seconds, minutes, hours, day, month, year;
variables
// Global date/time
// Software I2C connections
sbit Soft_I2C_Scl
at RC3_bit;
sbit Soft_I2C_Sda
at RC4_bit;
sbit Soft_I2C_Scl_Direction at TRISC3_bit;
sbit Soft_I2C_Sda_Direction at TRISC4_bit;
// End Software I2C connections
// LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;
sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
425
CHAPTER 7
mikroC PRO for PIC
Libraries
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End LCD module connections
//--------------------- Reads time and date information from RTC
(PCF8583)
void Read_Time() {
Soft_I2C_Start();
Soft_I2C_Write(0xA0);
Soft_I2C_Write(2);
Soft_I2C_Start();
Soft_I2C_Write(0xA1);
//
//
//
//
//
seconds = Soft_I2C_Read(1);
minutes = Soft_I2C_Read(1);
hours = Soft_I2C_Read(1);
day = Soft_I2C_Read(1);
month = Soft_I2C_Read(0);
Soft_I2C_Stop();
Issue start signal
Address PCF8583, see PCF8583 datasheet
Start from address 2
Issue repeated start signal
Address PCF8583 for reading R/W=1
//
//
//
//
//
//
Read seconds byte
Read minutes byte
Read hours byte
Read year/day byte
Read weekday/month byte
Issue stop signal
}
//-------------------- Formats date and time
void Transform_Time() {
seconds
=
((seconds & 0xF0) >> 4)*10 + (seconds & 0x0F);
Transform seconds
minutes
=
((minutes & 0xF0) >> 4)*10 + (minutes & 0x0F);
Transform months
hours
= ((hours & 0xF0) >> 4)*10 + (hours & 0x0F);
Transform hours
year
=
(day & 0xC0) >> 6;
Transform year
day
= ((day & 0x30) >> 4)*10
+ (day & 0x0F);
Transform day
month
= ((month & 0x10) >> 4)*10 + (month & 0x0F);
Transform month
}
//
//
//
//
//
//
//-------------------- Output values to LCD
void Display_Time() {
Lcd_Chr(1, 6, (day / 10)
+ 48); // Print tens digit of day
variable
Lcd_Chr(1, 7, (day % 10)
+ 48); // Print oness digit of day
variable
Lcd_Chr(1, 9, (month / 10) + 48);
Lcd_Chr(1,10, (month % 10) + 48);
Lcd_Chr(1,15, year
+ 56);
// Print year vaiable + 8
426
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
(start from year 2008)
Lcd_Chr(2, 6,
Lcd_Chr(2, 7,
Lcd_Chr(2, 9,
Lcd_Chr(2,10,
Lcd_Chr(2,12,
Lcd_Chr(2,13,
(hours /
(hours %
(minutes
(minutes
(seconds
(seconds
10)
10)
/ 10)
% 10)
/ 10)
% 10)
+
+
+
+
+
+
48);
48);
48);
48);
48);
48);
}
//------------------ Performs project-wide init
void Init_Main() {
TRISB = 0;
PORTB = 0xFF;
TRISB = 0xff;
ANSEL = 0;
// Configure AN pins as digital I/O
ANSELH = 0;
Soft_I2C_Init();
// Initialize Soft I2C communication
Lcd_Init();
// Initialize LCD
Lcd_Cmd(_LCD_CLEAR);
// Clear LCD display
Lcd_Cmd(_LCD_CURSOR_OFF);
// Turn cursor off
Lcd_Out(1,1,"Date:");
Lcd_Chr(1,8,':');
Lcd_Chr(1,11,':');
Lcd_Out(2,1,"Time:");
Lcd_Chr(2,8,':');
Lcd_Chr(2,11,':');
Lcd_Out(1,12,"200");
// Prepare and output static text on LCD
}
//----------------- Main procedure
void main() {
Delay_ms(2000);
Init_Main();
// Perform initialization
while (1) {
Read_Time();
Transform_Time();
Display_Time();
//
//
//
//
Delay_ms(1000);
Endless loop
Read time from RTC(PCF8583)
Format date and time
Prepare and display on LCD
// Wait 1 second
}
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
427
CHAPTER 7
mikroC PRO for PIC
Libraries
SOFTWARE SPI LIBRARY
The mikroC PRO for PIC provides routines for implementing Software SPI communication. These routines are hardware independent and can be used with any MCU.
The Software SPI Library provides easy communication with other devices via SPI:
A/D converters, D/A converters, MAX7219, LTC1290, etc.
Library configuration:
-
SPI to Master mode
Clock value = 20 kHz.
Data sampled at the middle of interval.
Clock idle state low.
Data sampled at the middle of interval.
Data transmitted at low to high edge.
Note: The Software SPI library implements time-based activities, so interrupts need
to be disabled when using it.
External dependencies of Software SPI Library
The following variables
must be defined in all
projects using Software
SPI Library:
extern sfr sbit
SoftSpi_SDI;
extern sfr sbit
SoftSpi_SDO;
extern sfr sbit
SoftSpi_CLK;
Description:
Example:
sbit SoftSpi_SDI at
RC4_bit;
sbit SoftSpi_SDO at
Data Out line.
RC5_bit;
sbit SoftSpi_CLK at
Clock line.
RC3_bit;
sbit
extern sfr sbit
SoftSpi_SDI_Direction
Direction
of
the
Data
In
pin.
SoftSpi_SDI_Direction;
at TRISC4_bit;
sbit
extern sfr sbit
SoftSpi_SDO_Direction
Direction
of
the
Data
Out
pin
SoftSpi_SDO_Direction;
at TRISC5_bit;
Data In line.
extern sfr sbit
Direction of the Clock pin.
SoftSpi_CLK_Direction;
428
sbit
SoftSpi_CLK_Direction
at TRISC3_bit;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Routines
- Soft_Spi_Init
- Soft_Spi_Read
- Soft_Spi_Write
Soft_Spi_Init
Prototype
void Soft_SPI_Init();
Returns
Nothing.
Description Configures and initializes the software SPI module.
Global variables:
Requires
-
Chip_Select: Chip Select line
SoftSpi_SDI: Data in line
SoftSpi_SDO: Data out line
SoftSpi_CLK: Data clock line
Chip_Select_Direction: Direction
SoftSpi_SDI_Direction: Direction
SoftSpi_SDO_Direction: Direction
SoftSpi_CLK_Direction: Direction
of
of
of
of
the
the
the
the
Chip Select pin
Data in pin
Data out pin
Data clock pin
must be defined before using this function.
// Software SPI module connections
sbit Chip_Select at RC0_bit;
sbit SoftSpi_SDI at RC4_bit;
sbit SoftSpi_SDO at RC5_bit;
sbit SoftSpi_CLK at RC3_bit;
Example
sbit Chip_Select_Direction at TRISC0_bit;
sbit SoftSpi_SDI_Direction at TRISC4_bit;
sbit SoftSpi_SDO_Direction at TRISC5_bit;
sbit SoftSpi_CLK_Direction at TRISC3_bit;
// End Software SPI module connections
...
Soft_SPI_Init(); // Init Soft_SPI
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
429
CHAPTER 7
mikroC PRO for PIC
Libraries
Soft_Spi_Read
Prototype
unsigned short Soft_SPI_Read(char sdata);
Returns
Byte received via the SPI bus.
This routine performs 3 operations simultaneously. It provides clock for the Software SPI bus, reads a byte and sends a byte.
Description
Parameters:
sdata: data to be sent.
Requires
Soft SPI must be initialized before using this function. See Soft_SPI_Init routine.
Example
unsigned short data_read;
char data_send;
...
// Read a byte and assign it to data_read variable
// (data_send byte will be sent via SPI during the Read operation)
data_read = Soft_SPI_Read(data_send);
Soft_SPI_Write
Prototype
void Soft_SPI_Write(char sdata);
Returns
Nothing.
This routine sends one byte via the Software SPI bus.
Description Parameters:
sdata: data to be sent.
430
Requires
Soft SPI must be initialized before using this function. See Soft_SPI_Init routine.
Example
// Write a byte to the Soft SPI bus
Soft_SPI_Write(0xAA);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
This code demonstrates using library routines for Soft_SPI communication. Also,
this example demonstrates working with Microchip's MCP4921 12-bit D/A converter.
// DAC module connections
sbit Chip_Select at RC0_bit;
sbit SoftSpi_CLK at RC3_bit;
sbit SoftSpi_SDI at RC4_bit;
sbit SoftSpi_SDO at RC5_bit;
sbit Chip_Select_Direction at
sbit SoftSpi_CLK_Direction at
sbit SoftSpi_SDI_Direction at
sbit SoftSpi_SDO_Direction at
// End DAC module connections
TRISC0_bit;
TRISC3_bit;
TRISC4_bit;
TRISC5_bit;
unsigned int value;
void InitMain() {
TRISB0_bit = 1;
TRISB1_bit = 1;
Chip_Select = 1;
Chip_Select_Direction = 0;
Soft_SPI_Init();
}
//
//
//
//
//
Set RA0 pin as input
Set RA1 pin as input
Deselect DAC
Set CS# pin as Output
Initialize Soft_SPI
// DAC increments (0..4095) --> output voltage (0..Vref)
void DAC_Output(unsigned int valueDAC) {
char temp;
Chip_Select = 0;
// Select DAC chip
// Send High Byte
temp = (valueDAC >> 8) & 0x0F;// Store valueDAC[11..8] to temp[3..0]
temp |= 0x30;
// Define DAC setting, see MCP4921 datasheet
Soft_SPI_Write(temp);
// Send high byte via Soft SPI
// Send Low Byte
temp = valueDAC;
Soft_SPI_Write(temp);
// Store valueDAC[7..0] to temp[7..0]
// Send low byte via Soft SPI
Chip_Select = 1;
// Deselect DAC chip
}
void main() {
ANSEL
= 0;
// turn off analog inputs
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
431
CHAPTER 7
mikroC PRO for PIC
Libraries
ANSELH = 0;
InitMain();
// Perform main initialization
value = 2048;
// When program starts, DAC gives
//
the output in the mid-range
while (1) {
// Endless loop
if ((RA0_bit) && (value < 4095)) {
value++;
}
else {
if ((RA1_bit) && (value > 0)) {
value--;
}
}
DAC_Output(value);
Delay_ms(1);
// If RA0 button is pressed
//
increment value
// If RA1 button is pressed
//
decrement value
// Send value to DAC chip
// Slow down key repeat pace
}
}
432
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SOFTWARE UART LIBRARY
The mikroC PRO for PIC provides routines for implementing Software UART communication. These routines are hardware independent and can be used with any
MCU. The Software UART Library provides easy communication with other devices
via the RS232 protocol.
Note: The Software UART library implements time-based activities, so interrupts
need to be disabled when using it.
Library Routines
-
Soft_Uart_Init
Soft_Uart_Read
Soft_Uart_Write
Soft_Uart_Break
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
433
CHAPTER 7
mikroC PRO for PIC
Libraries
Soft_UART_Init
Prototype
char Soft_UART_Init(char *port, char rx_pin, char tx_pin,
unsigned long baud_rate, char inverted);
Returns
- 2 - error, requested baud rate is too low
- 1 - error, requested baud rate is too high
- 0 - successful initialization
Configures and initializes the software UART module.
Parameters:
Description
port: port to be used.
rx_pin: sets rx_pin to be used.
tx_pin: sets tx_pin to be used.
baud_rate: baud rate to be set. Maximum baud rate depends on the MCU’s
clock and working conditions.
- inverted: inverted output flag. When set to a non-zero value, inverted logic
on output is used.
Software UART routines use Delay_Cyc routine. If requested baud rate is too low
then calculated parameter for calling Delay_Cyc exceeeds Delay_Cyc argument
range.
If requested baud rate is too high then rounding error of Delay_Cyc argument corrupts Software UART timings.
Requires
Nothing.
This will initialize software UART and establish the communication at 9600 bps:
Example
434
char error;
...
error = Soft_UART_Init(&PORTC, 7, 6, 14400, 0);
Soft UART at 9600 bps
// Initialize
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Soft_UART_Read
Prototype
char Soft_UART_Read(char * error);
Returns
Byte received via UART.
The function receives a byte via software UART.
This is a blocking function call (waits for start bit). Programmer can unblock it by
calling Soft_UART_Break routine.
Description Parameters:
- error: Error flag. Error code is returned through this variable.
0 - no error
1 - stop bit error
255 - user abort, Soft_UART_Break called
Requires
Example
Software UART must be initialized before using this function. See the
Soft_UART_Init routine.
char data, error;
...
// wait until data is received
do
data = Soft_UART_Read(&error);
while (error);
// Now we can work with data:
if (data) {...}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
435
CHAPTER 7
mikroC PRO for PIC
Libraries
Soft_UART_Write
Prototype
void Soft_UART_Write(char udata);
Returns
Nothing.
This routine sends one byte via the Software UART bus.
Description
Parameters:
- udata: data to be sent.
Requires
Software UART must be initialized before using this function. See the
Soft_UART_Init routine.
Be aware that during transmission, software UART is incapable of receiving data –
data transfer protocol must be set in such a way to prevent loss of information.
Example
char some_byte = 0x0A;
...
// Write a byte via Soft Uart
Soft_UART_Write(some_byte);
Soft_Uart_Break
Prototype
void Soft_UART_Break();
Returns
Nothing.
Soft_UART_Read is blocking routine and it can block the program flow. Calling
this routine from the interrupt will unblock the program execution. This mechaDescription nism is similar to WDT.
Note: Interrupts should be disabled before using Software UART routines again
(see note at the top of this page).
Requires
Nothing.
char data1, error, counter = 0;
void interrupt() {
if (INTCON.T0IF) {
if (counter >= 20) {
Soft_UART_Break();
counter = 0;
}
else
counter++;
Example
INTCON.T0IF = 0;
// reset counter
// increment counter
// Clear Timer0 overflow interrupt flag
}
}
436
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
void main() {
OPTION_REG = 0x04;
// TMR0 prescaler set to 1:32
...
if (Soft_UART_Init(&PORTC, 7, 6, 9600, 0) = 0)
Soft_UART_Write(0x55);
Example
...
// try Soft_UART_Read with blocking prevention mechanism
INTCON.GIE = 1;
// Global interrupt enable
INTCON.T0IE = 1;
// Enable Timer0 overflow interrupt
data1 = Soft_UART_Read(&error);
INTCON.GIE = 0;
// Global interrupt disable
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
437
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
This example demonstrates simple data exchange via software UART. If MCU is
connected to the PC, you can test the example from the mikroC PRO for PIC
USART Terminal Tool.
char i, error, byte_read;
// Auxiliary variables
void main(){
ANSEL = 0;
ANSELH = 0;
TRISB = 0x00;
PORTB = 0;
// Configure AN pins as digital I/O
// Set PORTB as output (error signalization)
// No error
error = Soft_UART_Init(&PORTC, 7, 6, 14400, 0); // Initialize Soft
UART at 9600 bps
if (error > 0) {
PORTB = error;
// Signalize Init error
while(1);
// Stop program
}
Delay_ms(100);
for (i = 'z'; i >= 'A'; i--) { // Send bytes from 'z' downto 'A'
Soft_UART_Write(i);
Delay_ms(100);
}
while(1) {
// Endless loop
byte_read = Soft_UART_Read(&error);
// Read byte, then
test error flag
if (error)
// If error was detected
PORTB = error;
//
signal it on PORTB
else
Soft_UART_Write(byte_read);
// If error was not detected, return byte read
}
}
438
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SOUND LIBRARY
The mikroC PRO for PIC provides a Sound Library to supply users with routines necessary for
sound signalization in their applications. Sound generation needs additional hardware, such as
piezo-speaker (example of piezo-speaker interface is given on the schematic at the bottom of this
page).
Library Routines
- Sound_Init
- Sound_Play
Sound_Init
Prototype
void Sound_Init(char *snd_port, char snd_pin);
Returns
Nothing.
Configures the appropriate MCU pin for sound generation.
Description
Parameters:
- snd_port: sound output port address
- snd_pin: sound output pin
Requires
Nothing.
Example
// Initialize the pin RD3 for playing sound
Sound_Init(&PORTD, 3);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
439
CHAPTER 7
mikroC PRO for PIC
Libraries
Sound_Play
Prototype
void Sound_Play(unsigned freq_in_hz, unsigned duration_ms);
Returns
Nothing.
Generates the square wave signal on the appropriate pin.
Description
Parameters:
- freq_in_Hz: signal frequency in Hertz (Hz)
- duration_ms: signal duration in miliseconds (ms)
Note: frequency range is limited by Delay_Cyc parameter. Maximum frequency
that can be produced by this function is Freq_max = Fosc/(80*3). Minimum frequency is Freq_min = Fosc/(80*255). Generated frequency may differ from the
freq_in_hz parameter due to integer arithmetics.
Requires
In order to hear the sound, you need a piezo speaker (or other hardware) on designated port. Also, you must call Sound_Init to prepare hardware for output before
using this function.
Example
// Play sound of 1KHz in duration of 100ms
Sound_Play(1000, 100);
Library Example
The example is a simple demonstration of how to use the Sound Library for playing tones on a piezo speaker.
void Tone1() {
Sound_Play(659, 250);
}
// Frequency = 659Hz, duration = 250ms
void Tone2() {
Sound_Play(698, 250);
}
// Frequency = 698Hz, duration = 250ms
void Tone3() {
Sound_Play(784, 250);
}
// Frequency = 784Hz, duration = 250ms
void Melody() {
Tone1(); Tone2();
Tone1(); Tone2();
Tone1(); Tone2();
Tone1(); Tone2();
Tone1(); Tone2();
Tone3(); Tone3();
440
// Plays the melody "Yellow house"
Tone3(); Tone3();
Tone3(); Tone3();
Tone3();
Tone3(); Tone3();
Tone3();
Tone2(); Tone2(); Tone1();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
}
void ToneA() {
Sound_Play( 880, 50);
}
void ToneC() {
Sound_Play(1046, 50);
}
void ToneE() {
Sound_Play(1318, 50);
}
void Melody2() {
unsigned short i;
for (i = 9; i > 0; i--) {
ToneA(); ToneC(); ToneE();
}
}
void main() {
ANSEL = 0;
ANSELH = 0;
TRISB = 0xF8;
TRISD = 0xF7;
// Configure AN pins as digital I/O
// Configure RB7..RB3 as input
// Configure RD3 as output
Sound_Init(&PORTD, 3);
Sound_Play(1000, 1000);
while (1) {
if (Button(&PORTB,7,1,1))
Tone1();
while (PORTB & 0x80);
// RB7 plays Tone1
// Wait for button to be released
if (Button(&PORTB,6,1,1))
Tone2();
while (PORTB & 0x40);
// RB6 plays Tone2
if (Button(&PORTB,5,1,1))
Tone3();
while (PORTB & 0x20);
// RB5 plays Tone3
if (Button(&PORTB,4,1,1))
Melody2();
while (PORTB & 0x10);
// RB4 plays Melody2
if (Button(&PORTB,3,1,1))
Melody();
while (PORTB & 0x08);
// RB3 plays Melody
// Wait for button to be released
// Wait for button to be released
// Wait for button to be released
// Wait for button to be released
}
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
441
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
Example of Sound Library sonnection
442
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI LIBRARY
SPI module is available with a number of PIC MCU models. mikroC PRO for PIC provides a
library for initializing Slave mode and comfortable work with Master mode. PIC can easily communicate with other devices via SPI: A/D converters, D/A converters, MAX7219, LTC1290, etc.
You need PIC MCU with hardware integrated SPI (for example, PIC16F877).
Note: Some PIC18 MCUs have multiple SPI modules. Switching between the SPI modules in the
SPI library is done by the SPI_Set_Active function (SPI module has to be previously initialized).
Note: In order to use the desired SPI library routine, simply change the number 1 in the prototype
with the appropriate module number, i.e. SPI2_Init();
Library Routines
-
Spi1_Init
Spi1_Init_Advanced
Spi1_Read
Spi1_Write
Spi_Set_Active
Spi_Init
Prototype
void SPI1_Init(void);
Returns
Nothing.
This routine configures and enables SPI module with the following settings:
Description
-
master mode
8 bit data transfer
most significant bit sent first
serial clock low when idle
data sampled on leading edge
serial clock = fosc/4
Requires
You need PIC MCU with hardware integrated SPI.
Example
SPI1_Init();
// Initialize the SPI module with default settings
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
443
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi1_Init_Advanced
Prototype
void SPI1_Init_Advanced(unsigned short master_slav, unsigned short
data_sample, unsigned short clock_idle, unsigned short transmit_edge);
Returns
Nothing.
Configures and initializes SPI. SPI1_Init or SPI1_Init_Advanced needs to be
called before using other functions of SPI Library.
Parameters mode, data_sample and clock_idle configure the SPI module,
and can have the following values:
Description
Predefined library const
SPI work mode:
Description
Master clock = Fosc/4
_SPI_MASTER_OSC_DIV4
Master clock = Fosc/16
_SPI_MASTER_OSC_DIV16
Master clock = Fosc/64
_SPI_MASTER_OSC_DIV64
Master clock source TMR2
_SPI_MASTER_TMR2
Slave select enabled
_SPI_SLAVE_SS_ENABLE
Slave select disabled
_SPI_SLAVE_SS_DIS
Data sampling interval:
Input data sampled in middle of interval
_SPI_DATA_SAMPLE_MIDDLE
Input data sampled at the end of interval _SPI_DATA_SAMPLE_END
SPI clock idle state:
Clock idle HIGH
_SPI_CLK_IDLE_HIGH
Clock idle LOW
_SPI_CLK_IDLE_LOW
Transmit edge:
444
Data transmit on low to high edge
_SPI_LOW_2_HIGH
Data transmit on high to low edge
_SPI_HIGH_2_LOW
Requires
You need PIC MCU with hardware integrated SPI.
Example
// Set SPI1 module to master mode, clock = Fosc/4, data sampled
at the middle of interval, clock idle state low and data transmitted at low to high edge:
SPI1_Init_Advanced(_SPI_MASTER_OSC_DIV4, _SPI_DATA_SAMPLE_MIDDLE,
_SPI_CLK_IDLE_LOW, _SPI_LOW_2_HIGH);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi1_Read
Prototype
unsigned short SPI1_Read(unsigned short buffer);
Returns
Returns the received data.
Reads one byte from the SPI bus.
Description
Parameters:
- buffer: dummy data for clock generation (see device Datasheet for SPI
modules implementation details)
You need PIC MCU with hardware integrated SPI.
Requires
Example
SPI must be initialized and communication established before using this function. See SPI1_Init_Advanced or SPI1_Init.
short take, buffer;
...
take = SPI1_Read(buffer);
Spi1_Write
Prototype
void SPI1_Write(unsigned short data_);
Returns
Nothing.
Writes byte via the SPI bus.
Description Parameters:
- wrdata: data to be sent
You need PIC MCU with hardware integrated SPI.
Requires
Example
SPI must be initialized and communication established before using this function. See SPI1_Init_Advanced or SPI1_Init.
SPI1_Write(1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
445
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Set_Active
Prototype
void SPI_Set_Active(char (*read_ptr)(char))
Returns
Nothing.
Sets the active SPI module which will be used by the SPI routines.
Description Parameters:
- read_ptr: SPI1_Read handler
Requires
Routine is available only for MCUs with two SPI modules.
Used SPI module must be initialized before using this function. See the
SPI1_Init, SPI1_Init_Advanced
Example
SPI_Set_Active(&SPI2_Read); // Sets the SPI2 module active
Library Example
The code demonstrates how to use SPI library functions for communication between SPI module
of the MCU and Microchip's MCP4921 12-bit D/A converter
// DAC module connections
sbit Chip_Select at RC0_bit;
sbit Chip_Select_Direction at TRISC0_bit;
// End DAC module connections
unsigned int value;
void InitMain() {
TRISB0_bit = 1;
TRISB1_bit = 1;
Chip_Select = 1;
Chip_Select_Direction = 0;
SPI1_Init();
}
// Set RA0 pin as input
// Set RA1 pin as input
// Deselect DAC
// Set CS# pin as Output
// Initialize SPI module
// DAC increments (0..4095) --> output voltage (0..Vref)
void DAC_Output(unsigned int valueDAC) {
char temp;
Chip_Select = 0;
// Select DAC chip
// Send High Byte
temp = (valueDAC >> 8) & 0x0F;
// Store valueDAC[11..8] to temp[3..0]
temp |= 0x30;
// Define DAC setting, see MCP4921 datasheet
SPI1_Write(temp);
// Send high byte via SPI
// Send Low Byte
446
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
temp = valueDAC;
SPI1_Write(temp);
// Store valueDAC[7..0] to temp[7..0]
// Send low byte via SPI
Chip_Select = 1;
// Deselect DAC chip
}
void main() {
ANSEL = 0;
ANSELH = 0;
InitMain();
value = 2048;
while (1) {
// Perform main initialization
// When program starts, DAC gives
//
the output in the mid-range
// Endless loop
if ((RA0_bit) && (value < 4095)) {
value++;
}
else {
if ((RA1_bit) && (value > 0)) {
value--;
}
}
DAC_Output(value);
Delay_ms(1);
// If RA0 button is pressed
//
increment value
// If RA1 button is pressed
//
decrement value
// Send value to DAC chip
// Slow down key repeat pace
}
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
447
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
SPI HW connection
448
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI ETHERNET LIBRARY
The ENC28J60 is a stand-alone Ethernet controller with an industry standard Serial
Peripheral Interface (SPI™). It is designed to serve as an Ethernet network interface
for any controller equipped with SPI.
The ENC28J60 meets all of the IEEE 802.3 specifications. It incorporates a number
of packet filtering schemes to limit incoming packets. It also provides an internal
DMA module for fast data throughput and hardware assisted IP checksum calculations. Communication with the host controller is implemented via two interrupt pins
and the SPI, with data rates of up to 10 Mb/s. Two dedicated pins are used for LED
link and network activity indication.
This library is designed to simplify handling of the underlying hardware (ENC28J60).
It works with any PIC with integrated SPI and more than 4 Kb ROM memory. 38 to
40 MHz clock is recommended to get from 8 to 10 Mhz SPI clock, otherwise PIC
should be clocked by ENC28J60 clock output due to its silicon bug in SPI hardware.
If you try lower PIC clock speed, there might be board hang or miss some requests.
SPI Ethernet library supports:
- IPv4 protocol.
- ARP requests.
- ICMP echo requests.
- UDP requests.
- TCP requests (no stack, no packet reconstruction).
- ARP client with cache.
- DNS client.
- UDP client.
- DHCP client.
- packet fragmentation is NOT supported.
Note: Due to PIC16 RAM/Flash limitations PIC16 library does NOT have ARP, DNS,
UDP and DHCP client support implemented.
Note: Global library variable SPI_Ethernet_userTimerSec is used to keep track of
time for all client implementations (ARP, DNS, UDP and DHCP). It is user responsibility to increment this variable each second in it's code if any of the clients is used.
Note: For advanced users there are header files ("eth_enc28j60LibDef.h" and
"eth_enc28j60LibPrivate.h") in Uses\P16 and Uses\P18 folders of the compiler
with description of all routines and global variables, relevant to the user, implemented in the SPI Ethernet Library.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
449
CHAPTER 7
mikroC PRO for PIC
Libraries
Note: The appropriate hardware SPI module must be initialized before using any of
the SPI Ethernet library routines. Refer to SPI Library.
For MCUs with two SPI modules it is possible to initialize both of them and then
switch by using the SPI_Set_Active() routine.
External dependencies of SPI Ethernet Library
The following variables
must be defined in all
projects using SPI Ethernet Library:
Description:
Example:
extern sfr sbit
SPI_Ethernet_CS
ENC28J60 chip select pin. at RC1_bit;
sbit SPI_Ethernet_CS
extern sfr sbit
SPI_Ethernet_RST;
ENC28J60 reset pin.
sbit SPI_Ethernet_Rst
at RC0_bit;
extern sfr sbit
sbit
Direction of the ENC28J60
SPI_Ethernet_CS_Direc
SPI_Ethernet_CS_Direc
chip select pin.
tion;
tion at TRISC1_bit;
extern sfr sbit
sbit
Direction of the ENC28J60
SPI_Ethernet_RST_Dire
SPI_Ethernet_Rst_Dire
reset pin.
ction;
ction at TRISC0_bit;
The following routines must be
defined in all project using SPI
Ethernet Library:
450
Description:
Example:
unsigned int
SPI_Ethernet_UserTCP(unsigned
char *remoteHost, unsigned
int remotePort, unsigned int
localPort, unsigned int
reqLength);
Refer to the library
example at the botTCP request handler. tom of this page for
code implementation.
unsigned int
SPI_Ethernet_UserUDP(unsigned
char *remoteHost, unsigned int
remotePort, unsigned int
destPort, unsigned int
reqLength);
Refer to the library
example at the botUDP request handler. tom of this page for
code implementation.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Routines
PIC16 and PIC18:
-
SPI_Ethernet_Init
SPI_Ethernet_Enable
SPI_Ethernet_Disable
SPI_Ethernet_doPacket
SPI_Ethernet_putByte
SPI_Ethernet_putBytes
SPI_Ethernet_putString
SPI_Ethernet_putConstString
SPI_Ethernet_putConstBytes
SPI_Ethernet_getByte
SPI_Ethernet_getBytes
SPI_Ethernet_UserTCP
SPI_Ethernet_UserUDP
PIC18 Only:
-
SPI_Ethernet_getIpAddress
SPI_Ethernet_getGwIpAddress
SPI_Ethernet_getDnsIpAddress
SPI_Ethernet_getIpMask
SPI_Ethernet_confNetwork
SPI_Ethernet_arpResolve
SPI_Ethernet_sendUDP
SPI_Ethernet_dnsResolve
SPI_Ethernet_initDHCP
SPI_Ethernet_doDHCPLeaseTime
SPI_Ethernet_renewDHCP
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
451
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Ethernet_Init
Prototype
void SPI_Ethernet_Init(unsigned char *mac, unsigned char *ip,
unsigned char fullDuplex);
Returns
Nothing.
This is MAC module routine. It initializes ENC28J60 controller. This function is
internaly splited into 2 parts to help linker when coming short of memory.
ENC28J60 controller settings (parameters not mentioned here are set to default):
- receive buffer start address : 0x0000.
- receive buffer end address : 0x19AD.
- transmit buffer start address: 0x19AE.
- transmit buffer end address : 0x1FFF.
- RAM buffer read/write pointers in auto-increment mode.
- receive filters set to default: CRC + MAC Unicast + MAC Broadcast in OR mode.
- flow control with TX and RX pause frames in full duplex mode.
- frames are padded to 60 bytes + CRC.
- maximum packet size is set to 1518.
Description - Back-to-Back Inter-Packet Gap: 0x15 in full duplex mode; 0x12 in half duplex mode.
- Non-Back-to-Back Inter-Packet Gap: 0x0012 in full duplex mode; 0x0C12 in
half duplex mode.
- Collision window is set to 63 in half duplex mode to accomodate some ENC28J60 revisions silicon bugs.
- CLKOUT output is disabled to reduce EMI generation.
- half duplex loopback disabled.
- LED configuration: default (LEDA-link status, LEDB-link activity).
Parameters:
- mac: RAM buffer containing valid MAC address.
- ip: RAM buffer containing valid IP address.
- fullDuplex: ethernet duplex mode switch. Valid values: 0 (half duplex mode)
and 1 (full duplex mode).
452
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Global variables:
Requires
SPI_Ethernet_CS: Chip Select line
SPI_Ethernet_CS_Direction: Direction of the Chip Select pin
SPI_Ethernet_RST: Reset line
SPI_Ethernet_RST_Direction: Direction of the Reset pin
must be defined before using this function.
The SPI module needs to
SPI1_Init_Advanced routines.
be
#define SPI_Ethernet_HALFDUPLEX
#define SPI_Ethernet_FULLDUPLEX
Example
initialized.
See
the
SPI1_Init
and
0
1
// mE ehternet NIC pinout
sfr sbit SPI_Ethernet_Rst at RC0_bit;
sfr sbit SPI_Ethernet_CS at RC1_bit;
sfr sbit SPI_Ethernet_Rst_Direction at TRISC0_bit;
sfr sbit SPI_Ethernet_CS_Direction at TRISC1_bit;
// end ethernet NIC definitions
unsigned char myMacAddr[6] = {0x00, 0x14, 0xA5, 0x76, 0x19,
0x3f}; // my MAC address
unsigned char myIpAddr
= {192, 168,
1, 60 }; // my IP
addr
SPI1_Init();
SPI_Ethernet_Init(myMacAddr, myIpAddr, SPI_Ethernet_FULLDUPLEX);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
453
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Ethernet_Enable
Prototype
void SPI_Ethernet_Enable(unsigned char enFlt);
Returns
Nothing.
This is MAC module routine. This routine enables appropriate network traffic on
the ENC28J60 module by the means of it's receive filters (unicast, multicast,
broadcast, crc). Specific type of network traffic will be enabled if a corresponding
bit of this routine's input parameter is set. Therefore, more than one type of network traffic can be enabled at the same time. For this purpose, predefined library
constants (see the table below) can be ORed to form appropriate input value.
Parameters:
- enFlt: network traffic/receive filter flags. Each bit corresponds to the appropriate network traffic/receive filter:
Bit Mask
Description
MAC Broadcast traffic/receive filter
0
0x01 flag. When set, MAC broadcast traf-
fic will be enabled.
MAC Multicast traffic/receive filter
1
0x02 flag. When set, MAC multicast traffic
will be enabled.
Description
Predefined library const
_SPI_Ethernet_BROADCAST
_SPI_Ethernet_MULTICAST
2
0x04 not used
none
3
0x08 not used
none
4
0x10 not used
none
5
0x20
6
0x40 not used
7
0x80 When set, MAC unicast traffic will be _SPI_Ethernet_UNICAST
CRC check flag. When set, packets
_SPI_Ethernet_CRC
with invalid CRC field will be discarded.
none
MAC Unicast traffic/receive filter flag.
enabled.
Note: Advance filtering available in the ENC28J60 module such as Pattern
Match, Magic Packet and Hash Table can not be enabled by this routine.
Additionaly, all filters, except CRC, enabled with this routine will work in OR mode,
which means that packet will be received if any of the enabled filters accepts it.
Note: This routine will change receive filter configuration on-the-fly. It will not, in
any way, mess with enabling/disabling receive/transmit logic or any other part of
the ENC28J60 module. The ENC28J60 module should be properly cofigured by
the means of SPI_Ethernet_Init routine.
454
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Requires
Ethernet module has to be initialized. See SPI_Ethernet_Init.
Example
SPI_Ethernet_Enable(_SPI_Ethernet_CRC | _SPI_Ethernet_UNICAST);
// enable CRC checking and Unicast traffic
Spi_Ethernet_Disable
Prototype
void SPI_Ethernet_Disable(unsigned char disFlt);
Returns
Nothing.
This is MAC module routine. This routine disables appropriate network traffic on
the ENC28J60 module by the means of it's receive filters (unicast, multicast,
broadcast, crc). Specific type of network traffic will be disabled if a corresponding
bit of this routine's input parameter is set. Therefore, more than one type of network traffic can be disabled at the same time. For this purpose, predefined library
constants (see the table below) can be ORed to form appropriate input value.
Parameters:
- disFlt: network traffic/receive filter flags. Each bit corresponds to the appropriate network traffic/receive filter:
Bit Mask
Description
Predefined library
const
0
0x01
MAC Broadcast traffic/receive filter flag. When
set, MAC broadcast traffic will be disabled.
1
0x02
MAC Multicast traffic/receive filter flag. When Spi_Ethernet_MUL
TICAST
set, MAC multicast traffic will be disabled.
2
0x04 not used
none
3
0x08 not used
none
4
0x10 not used
none
5
0x20 be disabled and packets with invalid CRC
Description
Spi_Ethernet_BRO
ADCAST
CRC check flag. When set, CRC check will
Spi_Ethernet_CRC
field will be accepted.
6
0x40 not used
7
0x80
MAC Unicast traffic/receive filter flag. When
set, MAC unicast traffic will be disabled.
none
Spi_Ethernet_UNI
CAST
Note: Advance filtering available in the ENC28J60 module such as Pattern
Match, Magic Packet and Hash Table can not be disabled by this routine.
Note: This routine will change receive filter configuration on-the-fly. It will not, in
any way, mess with enabling/disabling receive/transmit logic or any other part of
the ENC28J60 module. The ENC28J60 module should be properly cofigured by
the means of SPI_Ethernet_Init routine.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
455
CHAPTER 7
mikroC PRO for PIC
Libraries
Requires
Ethernet module has to be initialized. See SPI_Ethernet_Init.
Example
SPI_Ethernet_Disable(_SPI_Ethernet_CRC | _SPI_Ethernet_UNICAST);
// disable CRC checking and Unicast traffic
Spi_Ethernet_doPacket
Prototype
unsigned char SPI_Ethernet_doPacket();
Returns
- 0 - upon successful packet processing (zero packets received or received
packet processed successfully).
- 1 - upon reception error or receive buffer corruption. ENC28J60 controller
needs to be restarted.
- 2 - received packet was not sent to us (not our IP, nor IP broadcast address).
- 3 - received IP packet was not IPv4.
- 4 - received packet was of type unknown to the library.
This is MAC module routine. It processes next received packet if such exists.
Packets are processed in the following manner:
- ARP & ICMP requests are replied automatically.
- upon TCP request the Spi_Ethernet_UserTCP function is called for further
Description
processing.
- upon UDP request the Spi_Ethernet_UserUDP function is called for further
processing.
Note: Spi_Ethernet_doPacket must be called as often as possible in user's code.
456
Requires
Ethernet module has to be initialized. See Spi_Ethernet_Init.
Example
if (SPI_Ethernet_doPacket() == 0)(1) {
ets
...
}
// process received pack-
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Ethernet_putByte
Prototype
void SPI_Ethernet_putByte(unsigned char v);
Returns
Nothing.
This is MAC module routine. It stores one byte to address pointed by the current ENC28J60 write pointer (EWRPT).
Description
Parameters:
- v: value to store
Requires
Ethernet module has to be initialized. See Spi_Ethernet_Init.
Example
char data;
...
SPI_Ethernet_putByte(data); // put an byte into ENC28J60 buffer
Spi_Ethernet_putBytes
Prototype
void SPI_Ethernet_putBytes(unsigned char *ptr, unsigned char n);
Returns
Nothing.
This is MAC module routine. It stores requested number of bytes into ENC28J60
RAM starting from current ENC28J60 write pointer (EWRPT) location.
Description Parameters:
- ptr: RAM buffer containing bytes to be written into ENC28J60 RAM.
- n: number of bytes to be written.
Requires
Ethernet module has to be initialized. See Spi_Ethernet_Init.
Example
char *buffer = "mikroElektronika";
...
SPI_Ethernet_putBytes(buffer, 16); // put an RAM array into
ENC28J60 buffer
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
457
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Ethernet_putConstBytes
Prototype
void SPI_Ethernet_putConstBytes(const unsigned char *ptr, unsigned
char n);
Returns
Nothing.
This is MAC module routine. It stores requested number of const bytes into
ENC28J60 RAM starting from current ENC28J60 write pointer (EWRPT) location.
Description Parameters:
- ptr: const buffer containing bytes to be written into ENC28J60 RAM.
- n: number of bytes to be written.
Requires
Ethernet module has to be initialized. See Spi_Ethernet_Init.
Example
const char *buffer = "mikroElektronika";
...
SPI_Ethernet_putConstBytes(buffer, 16); // put a const array into
ENC28J60 buffer
Spi_Ethernet_putString
Prototype
unsigned int SPI_Ethernet_putString(unsigned char *ptr);
Returns
Number of bytes written into ENC28J60 RAM.
This is MAC module routine. It stores whole string (excluding null termination) into
ENC28J60 RAM starting from current ENC28J60 write pointer (EWRPT) location.
Description
Parameters:
- ptr: string to be written into ENC28J60 RAM.
458
Requires
Ethernet module has to be initialized. See Spi_Ethernet_Init.
Example
char *buffer = "mikroElektronika";
...
SPI_Ethernet_putString(buffer); // put a RAM string into ENC28J60
buffer
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Ethernet_putConstString
Prototype
unsigned int SPI_Ethernet_putConstString(const unsigned char *ptr);
Returns
Number of bytes written into ENC28J60 RAM.
This is MAC module routine. It stores whole const string (excluding null termination)
into ENC28J60 RAM starting from current ENC28J60 write pointer (EWRPT) location.
Description
Parameters:
- ptr: const string to be written into ENC28J60 RAM.
Requires
Ethernet module has to be initialized. See Spi_Ethernet_Init.
Example
const char *buffer = "mikroElektronika";
...
SPI_Ethernet_putConstString(buffer); // put a const string into
ENC28J60 buffer
Spi_Ethernet_getByte
Prototype
unsigned char SPI_Ethernet_getByte();
Returns
Byte read from ENC28J60 RAM.
Description
This is MAC module routine. It fetches a byte from address pointed to by current ENC28J60 read pointer (ERDPT).
Requires
Ethernet module has to be initialized. See Spi_Ethernet_Init.
Example
char buffer;
...
buffer = SPI_Ethernet_getByte(); // read a byte from ENC28J60
buffer
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
459
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Ethernet_getBytes
Prototype
void SPI_Ethernet_getBytes(unsigned char *ptr, unsigned int addr,
unsigned char n);
Returns
Nothing.
This is MAC module routine. It fetches equested number of bytes from
ENC28J60 RAM starting from given address. If value of 0xFFFF is passed as the
address parameter, the reading will start from current ENC28J60 read pointer
(ERDPT) location.
Description
Parameters:
- ptr: buffer for storing bytes read from ENC28J60 RAM.
- addr: ENC28J60 RAM start address. Valid values: 0..8192.
- n: number of bytes to be read.
460
Requires
Ethernet module has to be initialized. See Spi_Ethernet_Init.
Example
char buffer[16];
...
SPI_Ethernet_getBytes(buffer, 0x100, 16); // read 16 bytes,
starting from address 0x100
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Ethernet_UserTCP
Prototype
unsigned int SPI_Ethernet_UserTCP(unsigned char *remoteHost,
unsigned int remotePort, unsigned int localPort, unsigned int
reqLength);
- 0 - there should not be a reply to the request.
- Length of TCP/HTTP reply data field - otherwise.
Returns
This is TCP module routine. It is internally called by the library. The user accesses to the TCP/HTTP request by using some of the SPI_Ethernet_get routines.
The user puts data in the transmit buffer by using some of the SPI_Ethernet_put
routines. The function must return the length in bytes of the TCP/HTTP reply, or
0 if there is nothing to transmit. If there is no need to reply to the TCP/HTTP
requests, just define this function with return(0) as a single statement.
Description
Parameters:
-
remoteHost : client's IP address.
remotePort : client's TCP port.
localPort : port to which the request is sent.
reqLength : TCP/HTTP request data field length.
Note: The function source code is provided with appropriate example projects.
The code should be adjusted by the user to achieve desired reply.
Requires
Ethernet module has to be initialized. See Spi_Ethernet_Init.
Example
This function is internally called by the library and should not be called by the
user's code.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
461
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Ethernet_UserUDP
Prototype
unsigned int SPI_Ethernet_UserUDP(unsigned char *remoteHost,
unsigned int remotePort, unsigned int destPort, unsigned int
reqLength);
Returns
- 0 - there should not be a reply to the request.
- Length of UDP reply data field - otherwise.
This is UDP module routine. It is internally called by the library. The user accesses to the UDP request by using some of the SPI_Ethernet_get routines. The user
puts data in the transmit buffer by using some of the SPI_Ethernet_put routines.
The function must return the length in bytes of the UDP reply, or 0 if nothing to
transmit. If you don't need to reply to the UDP requests, just define this function
with a return(0) as single statement.
Description Parameters:
- remoteHost : client's IP address.
- remotePort : client's port.
- destPort : port to which the request is sent.
- reqLength : UDP request data field length.
Note: The function source code is provided with appropriate example projects.
The code should be adjusted by the user to achieve desired reply.
Requires
Ethernet module has to be initialized. See Spi_Ethernet_Init.
Example
This function is internally called by the library and should not be called by the
user's code.
SPI_Ethernet_getIpAddress
Prototype
unsigned char * SPI_Ethernet_getIpAddress();
Returns
Ponter to the global variable holding IP address.
This routine should be used when DHCP server is present on the network to fetch
assigned IP address.
Description Note: User should always copy the IP address from the RAM location returned by
this routine into it's own IP address buffer. These locations should not be altered
by the user in any case.
462
Requires
Ethernet module has to be initialized. See SPI_Ethernet_Init.
Available for PIC18 family MCUs only.
Example
unsigned char ipAddr[4]; // user IP address buffer
...
memcpy(ipAddr, SPI_Ethernet_getIpAddress(), 4); // fetch IP address
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Ethernet_getGwIpAddress
Prototype
unsigned char * SPI_Ethernet_getGwIpAddress();
Returns
Ponter to the global variable holding gateway IP address.
This routine should be used when DHCP server is present on the network to fetch
assigned gateway IP address.
Description
Note: User should always copy the IP address from the RAM location returned by
this routine into it's own gateway IP address buffer. These locations should not be
altered by the user in any case!
Requires
Ethernet module has to be initialized. See SPI_Ethernet_Init.
Available for PIC18 family MCUs only.
Example
unsigned char gwIpAddr[4]; // user gateway IP address buffer
...
memcpy(gwIpAddr, SPI_Ethernet_getGwIpAddress(), 4); // fetch gateway IP address
SPI_Ethernet_getDnsIpAddress
Prototype
unsigned char * SPI_Ethernet_getDnsIpAddress()
Returns
Ponter to the global variable holding DNS IP address.
This routine should be used when DHCP server is present on the network to fetch
assigned DNS IP address.
Description
Note: User should always copy the IP address from the RAM location returned by
this routine into it's own DNS IP address buffer. These locations should not be
altered by the user in any case.
Requires
Ethernet module has to be initialized. See SPI_Ethernet_Init.
Available for PIC18 family MCUs only.
Example
unsigned char dnsIpAddr[4]; // user DNS IP address buffer
...
memcpy(dnsIpAddr, SPI_Ethernet_getDnsIpAddress(), 4); // fetch
DNS server address
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
463
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Ethernet_getIpMask
Prototype
unsigned char * SPI_Ethernet_getIpMask()
Returns
Ponter to the global variable holding IP subnet mask.
This routine should be used when DHCP server is present on the network to
fetch assigned IP subnet mask.
Description
Note: User should always copy the IP address from the RAM location returned
by this routine into it's own IP subnet mask buffer. These locations should not
be altered by the user in any case.
Requires
Ethernet module has to be initialized. See SPI_Ethernet_Init.
Available for PIC18 family MCUs only.
Example
unsigned char IpMask[4]; // user IP subnet mask buffer
...
memcpy(IpMask, SPI_Ethernet_getIpMask(), 4); // fetch IP subnet
mask
SPI_Ethernet_confNetwork
Prototype
void SPI_Ethernet_confNetwork(char *ipMask, char *gwIpAddr, char
*dnsIpAddr);
Returns
Nothing.
Configures network parameters (IP subnet mask, gateway IP address, DNS IP
address) when DHCP is not used.
Parameters:
- ipMask: IP subnet mask.
Description
- gwIpAddr gateway IP address.
- dnsIpAddr: DNS IP address.
Note: The above mentioned network parameters should be set by this routine
only if DHCP module is not used. Otherwise DHCP will override these settings
464
Requires
Ethernet module has to be initialized. See SPI_Ethernet_Init.
Available for PIC18 family MCUs only.
Example
char ipMask[4]
= {255, 255, 255, 0 }; // network mask (for
example : 255.255.255.0)
char gwIpAddr[4] = {192, 168,
1, 1 }; // gateway (router)
IP address
char dnsIpAddr[4] = {192, 168,
1, 1 }; // DNS server IP
address
...
SPI_Ethernet_confNetwork(ipMask, gwIpAddr, dnsIpAddr); // set
network configuration parameters
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Ethernet_arpResolve
Prototype
unsigned char *SPI_Ethernet_arpResolve(unsigned char *ip, unsigned
char tmax);
Returns
- MAC address behind the IP address - the requested IP address was resolved.
- 0 - otherwise.
This is ARP module routine. It sends an ARP request for given IP address and
waits for ARP reply. If the requested IP address was resolved, an ARP cash entry
is used for storing the configuration. ARP cash can store up to 3 entries. For ARP
cash structure refer to "eth_enc28j60LibDef.h" header file in the compiler's
Uses/P18 folder.
Description Parameters:
- ip: IP address to be resolved.
- tmax: time in seconds to wait for an reply.
Note: The Ethernet services are not stopped while this routine waits for ARP
reply. The incoming packets will be processed normaly during this time.
Requires
Ethernet module has to be initialized. See SPI_Ethernet_Init.
Available for PIC18 family MCUs only.
Example
unsigned char IpAddr[4] = {192, 168,
1, 1 }; // IP address
...
SPI_Ethernet_arpResolve(IpAddr, 5); // get MAC address behind the
above IP address, wait 5 secs for the response
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
465
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Ethernet_sendUDP
Prototype
unsigned char SPI_Ethernet_sendUDP(unsigned char *destIP, unsigned
int sourcePort, unsigned int destPort, unsigned char *pkt, unsigned
int pktLen);
Returns
- 1 - UDP packet was sent successfuly.
- 0 - otherwise.
This is UDP module routine. It sends an UDP packet on the network.
Parameters:
Description -
466
destIP: remote host IP address.
sourcePort: local UDP source port number.
destPort: destination UDP port number.
pkt: packet to transmit.
pktLen: length in bytes of packet to transmit.
Requires
Ethernet module has to be initialized. See SPI_Ethernet_Init.
Available for PIC18 family MCUs only.
Example
unsigned char IpAddr[4] = {192, 168,
1, 1 }; // remote IP
address
...
SPI_Ethernet_sendUDP(IpAddr, 10001, 10001, "Hello", 5); // send
Hello message to the above IP address, from UDP port 10001 to
UDP port 10001
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Ethernet_dnsResolve
Prototype
unsigned char * SPI_Ethernet_dnsResolve(unsigned char *host,
unsigned char tmax);
Returns
- pointer to the location holding the IP address - the requested host name was
resolved.
- 0 - otherwise.
This is DNS module routine. It sends an DNS request for given host name and
waits for DNS reply. If the requested host name was resolved, it's IP address is
stored in library global variable and a pointer containing this address is returned
by the routine. UDP port 53 is used as DNS port.
Parameters:
Description
-host: host name to be resolved.
-tmax: time in seconds to wait for an reply.
Note: The Ethernet services are not stopped while this routine waits for DNS
reply. The incoming packets will be processed normaly during this time.
Note: User should always copy the IP address from the RAM location returned by
this routine into it's own resolved host IP address buffer. These locations should
not be altered by the user in any case.
Requires
Ethernet module has to be initialized. See SPI_Ethernet_Init.
Available for PIC18 family MCUs only.
Example
unsigned char * remoteHostIpAddr[4];
// user host IP address
buffer
...
// SNTP server:
// Zurich, Switzerland: Integrated Systems Lab, Swiss Fed. Inst.
of Technology
// 129.132.2.21: swisstime.ethz.ch
// Service Area: Switzerland and Europe
memcpy(remoteHostIpAddr,
SPI_Ethernet_dnsResolve("swisstime.ethz.ch", 5), 4);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
467
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Ethernet_initDHCP
Prototype
unsigned char SPI_Ethernet_initDHCP(unsigned char tmax);
Returns
- 1 - network parameters were obtained successfully.
- 0 - otherwise.
This is DHCP module routine. It sends an DHCP request for network parameters
(IP, gateway, DNS addresses and IP subnet mask) and waits for DHCP reply. If
the requested parameters were obtained successfuly, their values are stored into
the library global variables.
These parameters can be fetched by using appropriate library IP get routines:
-
SPI_Ethernet_getIpAddress - fetch IP address.
SPI_Ethernet_getGwIpAddress - fetch gateway IP address.
SPI_Ethernet_getDnsIpAddress - fetch DNS IP address.
SPI_Ethernet_getIpMask - fetch IP subnet mask.
Description UDP port 68 is used as DHCP client port and UDP port 67 is used as DHCP server port.
Parameters:
- tmax: time in seconds to wait for an reply.
Note: The Ethernet services are not stopped while this routine waits for DNS
reply. The incoming packets will be processed normaly during this time.
Note:
When
DHCP
module
is
used,
global
library
variable
SPI_Ethernet_userTimerSec is used to keep track of time. It is user responsi-
bility to increment this variable each second in it's code.
468
Requires
Ethernet module has to be initialized. See SPI_Ethernet_Init.
Available for PIC18 family MCUs only.
Example
...
SPI_Ethernet_initDHCP(5); // get network configuration from DHCP
server, wait 5 sec for the response
...
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Ethernet_doDHCPLeaseTime
Prototype
unsigned char SPI_Ethernet_doDHCPLeaseTime();
Returns
- 0 - lease time has not expired yet.
- 1 - lease time has expired, it's time to renew it.
This is DHCP module routine. It takes care of IP address lease time by decreDescription menting the global lease time library counter. When this time expires, it's time to
contact DHCP server and renew the lease.
Requires
Ethernet module has to be initialized. See SPI_Ethernet_Init.
Available for PIC18 family MCUs only.
Example
while(1) {
...
if(SPI_Ethernet_doDHCPLeaseTime())
... // it's time to renew the IP address lease
}
SPI_Ethernet_renewDHCP
Prototype
unsigned char SPI_Ethernet_renewDHCP(unsigned char tmax);
Returns
- 1 - upon success (lease time was renewed).
- 0 - otherwise (renewal request timed out).
This is DHCP module routine. It sends IP address lease time renewal request to
DHCP server.
Description
Parameters:
- tmax: time in seconds to wait for an reply.
Requires
Ethernet module has to be initialized. See SPI_Ethernet_Init.
Available for PIC18 family MCUs only.
Example
while(1) {
...
if(SPI_Ethernet_doDHCPLeaseTime())
SPI_Ethernet_renewDHCP(5); // it's time to renew the IP
address lease, with 5 secs for a reply
...
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
469
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
This code shows how to use the Ethernet mini library :
- the board will reply to ARP & ICMP echo requests
- the board will reply to UDP requests on any port :
returns the request in upper char with a header made of remote host IP &
port number
- the board will reply to HTTP requests on port 80, GET method with pathnames :
/ will return the HTML main page
/s will return board status as text string
/t0 ... /t7 will toggle RD0 to RD7 bit and return HTML main page
all other requests return also HTML main page.
// duplex config flags
#define Spi_Ethernet_HALFDUPLEX
#define Spi_Ethernet_FULLDUPLEX
0x00
0x01
// half duplex
// full duplex
// mE ehternet NIC pinout
sfr sbit SPI_Ethernet_Rst at RC0_bit;
sfr sbit SPI_Ethernet_CS at RC1_bit;
sfr sbit SPI_Ethernet_Rst_Direction at TRISC0_bit;
sfr sbit SPI_Ethernet_CS_Direction at TRISC1_bit;
// end ethernet NIC definitions
/************************************************************
* ROM constant strings
*/
const unsigned char httpHeader[] = "HTTP/1.1 200 OKnContent-type: "
; // HTTP header
const
unsigned
char
httpMimeTypeHTML[]
=
"text/htmlnn"
;
// HTML MIME type
const
unsigned
char
httpMimeTypeScript[]
=
"text/plainnn"
;
// TEXT MIME type
unsigned char httpMethod[] = "GET /";
/*
* web page, splited into 2 parts :
* when coming short of ROM, fragmented data is handled more efficiently by linker
*
* this HTML page calls the boards to get its status, and builds
itself with javascript
*/
const char
*indexPage = // Change the IP address of the page to
be refreshed
"<meta http-equiv="refresh" content="3;url=http://192.168.20.60">
470
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
<HTML><HEAD></HEAD><BODY>
<h1>PIC + ENC28J60 Mini Web Server</h1>
<a href=/>Reload</a>
<script src=/s></script>
<table><tr><td
valign=top><table
border=1
style="font-size:20px
;font-family: terminal ;">
<tr><th colspan=2>ADC</th></tr>
<tr><td>AN2</td><td><script>document.write(AN2)</script></td></tr>
<tr><td>AN3</td><td><script>document.write(AN3)</script></td></tr>
</table></td><td><table border=1 style="font-size:20px ;font-family:
terminal ;">
<tr><th colspan=2>PORTB</th></tr>
<script>
var str,i;
str="";
for(i=0;i<8;i++)
{str+="<tr><td bgcolor=pink>BUTTON #"+i+"</td>";
if(PORTB&(1<<i)){str+="<td bgcolor=red>ON";}
else {str+="<td bgcolor=#cccccc>OFF";}
str+="</td></tr>";}
document.write(str) ;
</script>
" ;
const char
*indexPage2 = "</table></td><td>
<table border=1 style="font-size:20px ;font-family: terminal ;">
<tr><th colspan=3>PORTD</th></tr>
<script>
var str,i;
str="";
for(i=0;i<8;i++)
{str+="<tr><td bgcolor=yellow>LED #"+i+"</td>";
if(PORTD&(1<<i)){str+="<td bgcolor=red>ON";}
else {str+="<td bgcolor=#cccccc>OFF";}
str+="</td><td><a href=/t"+i+">Toggle</a></td></tr>";}
document.write(str) ;
</script>
</table></td></tr></table>
This
is
HTTP
request
#<script>document.write(REQ)</script></BODY></HTML>
" ;
/***********************************
* RAM variables
*/
unsigned char
myMacAddr[6] = {0x00, 0x14, 0xA5, 0x76, 0x19, 0x3f};
// my MAC address
unsigned
char
myIpAddr[4]
=
{192,
168,
20,
60};
// my IP address
unsigned char
getRequest[15];
// HTTP request buffer
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
471
CHAPTER 7
mikroC PRO for PIC
Libraries
unsigned char
unsigned long
dyna[30];
// buffer for dynamic response
httpCounter = 0;
// counter of HTTP requests
/*******************************************
* functions
*/
/*
* put the constant string pointed to by s to the ENC transmit buffer.
*/
/*unsigned int
putConstString(const char *s)
{
unsigned int ctr = 0;
while(*s)
{
Spi_Ethernet_putByte(*s++);
ctr++;
}
return(ctr);
}*/
/*
* it will be much faster to use library Spi_Ethernet_putConstString
routine
* instead of putConstString routine above. However, the code will
be a little
* bit bigger. User should choose between size and speed and pick the
implementation that
* suites him best. If you choose to go with the putConstString definition above
* the #define line below should be commented out.
*
*/
#define putConstString SPI_Ethernet_putConstString
/*
* put the string pointed to by s to the ENC transmit buffer
*/
/*unsigned int
putString(char *s)
{
unsigned int ctr = 0;
while(*s)
{
Spi_Ethernet_putByte(*s++);
ctr++;
}
return(ctr);
}*/
472
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
/*
* it will be much faster to use library Spi_Ethernet_putString routine
* instead of putString routine above. However, the code will be a
little
* bit bigger. User should choose between size and speed and pick the
implementation that
* suites him best. If you choose to go with the putString definition above
* the #define line below should be commented out.
*
*/
#define putString SPI_Ethernet_putString
/*
* this function is called by the library
* the user accesses to the HTTP request by successive calls to
Spi_Ethernet_getByte()
* the user puts data in the transmit buffer by successive calls to
Spi_Ethernet_putByte()
* the function must return the length in bytes of the HTTP reply,
or 0 if nothing to transmit
*
* if you don't need to reply to HTTP requests,
* just define this function with a return(0) as single statement
*
*/
unsigned int
SPI_Ethernet_UserTCP(unsigned char *remoteHost,
unsigned int remotePort, unsigned int localPort, unsigned int
reqLength)
{
unsigned int
len = 0;
// my reply length
unsigned int
i;
// general purpose integer
if(localPort != 80) // I listen only to web request on port 80
{
return(0);
}
// get 10 first bytes only of the request, the rest does not
matter here
for(i = 0; i < 10; i++)
{
getRequest[i] = SPI_Ethernet_getByte();
}
getRequest[i] = 0;
if(memcmp(getRequest, httpMethod, 5))
method is supported here
{
// only GET
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
473
CHAPTER 7
mikroC PRO for PIC
Libraries
return(0);
}
httpCounter++;
// one more request done
if(getRequest[5] == 's')
// if request path name starts
with s, store dynamic data in transmit buffer
{
// the text string replied by this request can be
interpreted as javascript statements
// by browsers
len = putConstString(httpHeader);
// HTTP header
len += putConstString(httpMimeTypeScript); // with
text MIME type
// add AN2 value to reply
IntToStr(ADC_Read(2), dyna);
len += putConstString("var AN2=");
len += putString(dyna);
len += putConstString(";");
// add AN3 value to reply
IntToStr(ADC_Read(3), dyna);
len += putConstString("var AN3=");
len += putString(dyna);
len += putConstString(";");
// add PORTB value (buttons) to reply
len += putConstString("var PORTB=");
IntToStr(PORTB, dyna);
len += putString(dyna);
len += putConstString(";");
// add PORTD value (LEDs) to reply
len += putConstString("var PORTD=");
IntToStr(PORTD, dyna);
len += putString(dyna);
len += putConstString(";");
// add HTTP requests counter to reply
IntToStr(httpCounter, dyna);
len += putConstString("var REQ=");
len += putString(dyna);
len += putConstString(";");
}
else if(getRequest[5] == 't') // if request path name starts
with t, toggle PORTD (LED) bit number that comes after
{
unsigned char
bitMask = 0;
// for bit mask
474
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
if(isdigit(getRequest[6])) // if 0 <= bit number
<= 9, bits 8 & 9 does not exist but does not matter
{
bitMask = getRequest[6] - '0'; // convert
ASCII to integer
bitMask = 1 << bitMask; // create bit mask
PORTD ^= bitMask; // toggle PORTD with xor
operator
}
}
if(len == 0)
// what do to by default
{
len = putConstString(httpHeader); // HTTP header
len += putConstString(httpMimeTypeHTML); // with
HTML MIME type
len += putConstString(indexPage); // HTML page first
part
len += putConstString(indexPage2); // HTML page second part
}
return(len); // return to the library with the number of
bytes to transmit
}
/*
* this function is called by the library
* the user accesses to the UDP request by successive calls to
Spi_Ethernet_getByte()
* the user puts data in the transmit buffer by successive calls to
Spi_Ethernet_putByte()
* the function must return the length in bytes of the UDP reply, or
0 if nothing to transmit
*
* if you don't need to reply to UDP requests,
* just define this function with a return(0) as single statement
*
*/
unsigned int
SPI_Ethernet_UserUDP(unsigned char *remoteHost,
unsigned int remotePort, unsigned int destPort, unsigned int
reqLength)
{
unsigned int
len;
// my reply length
unsigned char
*ptr;
// pointer to the dynamic buffer
// reply is made of the remote host IP address in human readable format
ByteToStr(remoteHost[0], dyna); // first IP address byte
dyna[3] = '.';
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
475
CHAPTER 7
mikroC PRO for PIC
Libraries
ByteToStr(remoteHost[1], dyna + 4);
// second
dyna[7] = '.';
ByteToStr(remoteHost[2], dyna + 8);
// third
dyna[11] = '.';
ByteToStr(remoteHost[3], dyna + 12); // fourth
dyna[15] = ':';
// add separator
// then remote host port number
WordToStr(remotePort, dyna + 16);
dyna[21] = '[';
WordToStr(destPort, dyna + 22);
dyna[27] = ']';
dyna[28] = 0;
// the total length of the request is the length of the
dynamic string plus the text of the request
len = 28 + reqLength;
// puts the dynamic string into the transmit buffer
SPI_Ethernet_putBytes(dyna, 28);
// then puts the request string converted into upper char
into the transmit buffer
while(reqLength--)
{
SPI_Ethernet_putByte(toupper(SPI_Ethernet_getByte()));
}
return(len);
UDP reply
}
/*
* main entry
*/
void
main()
{
ANSEL = 0x0C;
PORTA = 0;
TRISA = 0xff;
ANSELH = 0;
PORTB = 0;
TRISB = 0xff;
PORTD = 0;
TRISD = 0;
// back to the library with the length of the
// AN2 and AN3 convertors will be used
// set PORTA as input for ADC
// Configure other AN pins as digital I/O
// set PORTB as input for buttons
// set PORTD as output
/*
476
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
* starts ENC28J60 with :
* reset bit on RC0
* CS bit on RC1
* my MAC & IP address
* full duplex
*/
SPI1_Init();
SPI_Ethernet_Init(myMacAddr, myIpAddr, Spi_Ethernet_FULLDU-
PLEX);
while(1)
// do forever
{
/*
* if necessary, test the return value to get error code
*/
SPI_Ethernet_doPacket();
// process incoming
Ethernet packets
/*
* add your stuff here if needed
* Spi_Ethernet_doPacket() must be called as often as possible
* otherwise packets could be lost
*/
}
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
477
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
478
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI GRAPHIC LCD LIBRARY
The mikroC PRO for PIC provides a library for operating Graphic Lcd 128x64 (with
commonly used Samsung KS108/KS107 controller) via SPI interface.
For creating a custom set of Glcd images use Glcd Bitmap Editor Tool.
Note: The library uses the SPI module for communication. User must initialize SPI
module before using the SPI Graphic Lcd Library.
For MCUs with two SPI modules it is possible to initialize both of them and then
switch by using the SPI_Set_Active() routine.
Note: This Library is designed to work with the mikroElektronika's Serial Lcd/Glcd
Adapter Board pinout, see schematic at the bottom of this page for details.
External dependencies of SPI Graphic LCD Library
The implementation of SPI Graphic Lcd Library routines is based on Port Expander
Library routines.
External dependencies are the same as Port Expander Library external dependencies.
Library Routines
Basic routines:
-
SPI_Glcd_Init
SPI_Glcd_Set_Side
SPI_Glcd_Set_Page
SPI_Glcd_Set_X
SPI_Glcd_Read_Data
SPI_Glcd_Write_Data
Advanced routines:
-
SPI_Glcd_Fill
SPI_Glcd_Dot
SPI_Glcd_Line
SPI_Glcd_V_Line
SPI_Glcd_H_Line
SPI_Glcd_Rectangle
SPI_Glcd_Box
SPI_Glcd_Circle
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
479
CHAPTER 7
mikroC PRO for PIC
Libraries
-
SPI_Glcd_Set_Font
SPI_Glcd_Write_Char
SPI_Glcd_Write_Text
SPI_Glcd_Image
Spi_Glcd_Init
Prototype
void SPI_Glcd_Init(char DeviceAddress);
Returns
Nothing.
Initializes the GLCD module via SPI interface.
Description
Parameters:
- DeviceAddress: spi expander hardware address, see schematic at the
bottom of this page
Global variables:
Requires
-
SPExpanderCS: Chip Select line
SPExpanderRST: Reset line
SPExpanderCS_Direction: Direction of the Chip Select pin
SPExpanderRST_Direction: Direction of the Reset pin
must be defined before using this function.
The SPI module needs to be initialized. See SPI1_Init and SPI1_Init_Advanced
routines.
Example
// Port Expander module connections
sbit SPExpanderRST at RC0_bit;
sbit SPExpanderCS at RC1_bit;
sbit SPExpanderRST_Direction at TRISC0_bit;
sbit SPExpanderCS_Direction at TRISC1_bit;
// End Port Expander module connections
...
// If Port Expander Library uses SPI module :
SPI1_Init(); // Initialize SPI module used with PortExpander
SPI_Glcd_Init(0);
480
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Glcd_Set_Side
Prototype
void SPI_Glcd_Set_Side(char x_pos;
Returns
Nothing.
Selects Glcd side. Refer to the Glcd datasheet for detail explanation.
Parameters:
- x_pos: position on x-axis. Valid values: 0..127
Description
The parameter x_pos specifies the Glcd side: values from 0 to 63 specify the
left side, values from 64 to 127 specify the right side.
Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.
Requires
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
The following two lines are equivalent, and both of them select the left side of
Glcd:
Example
SPI_Glcd_Set_Side(0);
SPI_Glcd_Set_Side(10);
SPI_Glcd_Set_Page
Prototype
void SPI_Glcd_Set_Page(char page);
Returns
Nothing.
Selects page of Glcd.
Parameters:
Description
- page: page number. Valid values: 0..7
Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.
Requires
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Example
SPI_Glcd_Set_Page(5);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
481
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Glcd_Set_X
Prototype
void SPI_Glcd_Set_X(char x_pos);
Returns
Nothing.
Sets x-axis position to x_pos dots from the left border of Glcd within the selected side.
Parameters:
Description
- x_pos: position on x-axis. Valid values: 0..63
Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.
Requires
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Example
SPI_Glcd_Set_X(25);
Spi_Glcd_Read_Data
Prototype
char SPI_Glcd_Read_Data();
Returns
One byte from Glcd memory.
Description
Reads data from the current location of Glcd memory and moves to the next
location.
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Requires
Example
482
Glcd side, x-axis position and page should be set first. See the functions
SPI_Glcd_Set_Side, SPI_Glcd_Set_X, and SPI_Glcd_Set_Page.
char data;
...
data = SPI_Glcd_Read_Data();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Glcd_Write_Data
Prototype
void SPI_Glcd_Write_Data(char Ddata);
Returns
Nothing.
Writes one byte to the current location in Glcd memory and moves to the next
location.
Description
Parameters:
- Ddata: data to be written
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Requires
Example
Glcd side, x-axis position and page should be set first. See the functions
SPI_Glcd_Set_Side, SPI_Glcd_Set_X, and SPI_Glcd_Set_Page.
char data;
...
SPI_Glcd_Write_Data(data);
SPI_Glcd_Fill
Prototype
void SPI_Glcd_Fill(char pattern);
Returns
Nothing.
Fills Glcd memory with byte pattern.
Parameters:
Description - pattern: byte to fill Glcd memory with
To clear the Glcd screen, use SPI_Glcd_Fill(0).
To fill the screen completely, use SPI_Glcd_Fill(0xFF).
Requires
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Example
// Clear screen
SPI_Glcd_Fill(0);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
483
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Glcd_Dot
Prototype
void SPI_Glcd_Dot(char x_pos, char y_pos, char color);
Returns
Nothing.
Draws a dot on Glcd at coordinates (x_pos, y_pos).
Parameters:
- x_pos: x position. Valid values: 0..127
y_pos: y position. Valid values: 0..63
Description
- color: color parameter. Valid values: 0..2
The parameter color determines the dot state: 0 clears dot, 1 puts a dot, and 2
inverts dot state.
Note: For x and y axis layout explanation see schematic at the bottom of this page.
Requires
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Example
// Invert the dot in the upper left corner
SPI_Glcd_Dot(0, 0, 2);
SPI_Glcd_Line
Prototype
void SPI_Glcd_Line(int x_start, int y_start, int x_end, int
y_end, char color);
Returns
Nothing.
Draws a line on Glcd.
Parameters:
Description
-
x_start: x coordinate of the line start. Valid values: 0..127
y_start: y coordinate of the line start. Valid values: 0..63
x_end: x coordinate of the line end. Valid values: 0..127
y_end: y coordinate of the line end. Valid values: 0..63
color: color parameter. Valid values: 0..2
Parameter color determines the line color: 0 white, 1 black, and 2 inverts each
dot.
484
Requires
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Example
// Draw a line between dots (0,0) and (20,30)
SPI_Glcd_Line(0, 0, 20, 30, 1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Glcd_V_Line
Prototype
void SPI_Glcd_V_Line(char y_start, char y_end, char x_pos, char
color);
Returns
Nothing.
Draws a vertical line on Glcd.
Parameters:
Description
-y_start: y coordinate of the line start. Valid values: 0..63
- y_end: y coordinate of the line end. Valid values: 0..63
- x_pos: x coordinate of vertical line. Valid values: 0..127
- color: color parameter. Valid values: 0..2
Parameter color determines the line color: 0 white, 1 black, and 2 inverts each dot.
Requires
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Example
// Draw a vertical line between dots (10,5) and (10,25)
SPI_Glcd_V_Line(5, 25, 10, 1);
SPI_Glcd_H_Line
Prototype
void SPI_Glcd_H_Line(char x_start, char x_end, char y_pos, char
color);
Returns
Nothing.
Draws a horizontal line on Glcd.
Parameters:
Description -
x_start: x coordinate of the line start. Valid values: 0..127
x_end: x coordinate of the line end. Valid values: 0..127
y_pos: y coordinate of horizontal line. Valid values: 0..63
color: color parameter. Valid values: 0..2
The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.
Requires
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Example
// Draw a horizontal line between dots (10,20) and (50,20)
SPI_Glcd_H_Line(10, 50, 20, 1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
485
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Glcd_Rectangle
Prototype
void SPI_Glcd_Rectangle(char x_upper_left, char y_upper_left,
char x_bottom_right, char y_bottom_right, char color);
Returns
Nothing.
Draws a rectangle on Glcd.
Parameters:
- x_upper_left: x coordinate of the upper left rectangle corner. Valid values:
0..127
- y_upper_left: y coordinate of the upper left rectangle corner. Valid values: 0..63
- x_bottom_right: x coordinate of the lower right rectangle corner. Valid valDescription
ues: 0..127
- y_bottom_right: y coordinate of the lower right rectangle corner. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the rectangle border: 0 white, 1
black, and 2 inverts each dot.
Requires
GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.
Example
// Draw a box between dots (5,15) and (20,40)
Spi_Glcd_Box(5, 15, 20, 40, 1);
SPI_Glcd_Box
Prototype
void SPI_Glcd_Box(char x_upper_left, char y_upper_left, char
x_bottom_right, char y_bottom_right, char color);
Returns
Nothing.
Draws a box on Glcd.
Parameters:
- x_upper_left: x coordinate of the upper left box corner. Valid values: 0..127
- y_upper_left: y coordinate of the upper left box corner. Valid values: 0..63
Description - x_bottom_right: x coordinate of the lower right box corner. Valid values: 0..127
- y_bottom_right: y coordinate of the lower right box corner. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the box fill: 0 white, 1 black, and 2
inverts each dot.
486
Requires
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Example
// Draw a box between dots (5,15) and (20,40)
SPI_Glcd_Box(5, 15, 20, 40, 1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Glcd_Circle
Prototype
void SPI_Glcd_Circle(int x_center, int y_center, int radius, char
color);
Returns
Nothing.
Draws a circle on Glcd.
Parameters:
- x_center: x coordinate of the circle center. Valid values: 0..127
- y_center: y coordinate of the circle center. Valid values: 0..63
Description
- radius: radius size
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the circle line: 0 white, 1 black,
and 2 inverts each dot.
Requires
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routine.
Example
// Draw a circle with center in (50,50) and radius=10
SPI_Glcd_Circle(50, 50, 10, 1);
SPI_Glcd_Set_Font
Prototype
void SPI_Glcd_Set_Font(const code char *activeFont, char
aFontWidth, char aFontHeight, unsigned int aFontOffs);
Returns
Nothing.
Sets font that will be used with SPI_Glcd_Write_Char and SPI_Glcd_Write_Text
routines.
Parameters:
- activeFont: font to be set. Needs to be formatted as an array of char
- aFontWidth: width of the font characters in dots.
Description - aFontHeight: height of the font characters in dots.
- aFontOffs: number that represents difference between the mikroC PRO character set and regular ASCII set (eg. if 'A' is 65 in ASCII character, and 'A' is 45
in the mikroC PRO character set, aFontOffs is 20). Demo fonts supplied with
the library have an offset of 32, which means that they start with space.
The user can use fonts given in the file “__Lib_Glcd_fonts” file located in the
Uses folder or create his own fonts..
Requires
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Example
// Use the custom 5x7 font "myfont" which starts with space (32):
SPI_Glcd_Set_Font(myfont, 5, 7, 32);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
487
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Glcd_Write_Char
Prototype
void SPI_Glcd_Write_Char(char chr1, char x_pos, char page_num,
char color);
Returns
Nothing.
Prints character on GLCD.
Parameters:
- chr1: character to be written
- x_pos: character starting position on x-axis. Valid values: 0..(127-FontWidth)
- page_num: the number of the page on which character will be written. Valid
Description
values: 0..7
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the character: 0 white, 1 black,
and 2 inverts each dot.
Note: For x axis and page layout explanation see schematic at the bottom of
this page.
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Requires
Example
488
Use the SPI_Glcd_Set_Font to specify the font for display; if no font is specified, then
the default 5x8 font supplied with the library will be used.
// Write character 'C' on the position 10 inside the page 2:
SPI_Glcd_Write_Char('C', 10, 2, 1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Glcd_Write_Text
Prototype
void SPI_Glcd_Write_Text(char text[], char x_pos, char page_num,
char color);
Returns
Nothing.
Prints text on GLCD.
Parameters:
- text: text to be written
- x_pos: text starting position on x-axis.
- page_num: the number of the page on which text will be written. Valid values: 0..7
Description
-color: color parameter. Valid values: 0..2
The parameter color determines the color of the text: 0 white, 1 black, and 2
inverts each dot.
Note: For x axis and page layout explanation see schematic at the bottom of
this page.
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Requires
Example
Use the SPI_Glcd_Set_Font to specify the font for display; if no font is specified, then
the default 5x8 font supplied with the library will be used.
// Write text "Hello world!" on the position 10 inside the page 2:
SPI_Glcd_Write_Text("Hello world!", 10, 2, 1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
489
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Glcd_Image
Prototype
void SPI_Glcd_Image(const code char *image);
Returns
Nothing.
Displays bitmap on GLCD.
Parameters:
- image: image to be displayed. Bitmap array can be located in both code and
Description RAM memory (due to the mikroC PRO for PIC pointer to const and pointer to
RAM equivalency).
Use the mikroC PRO’s integrated Glcd Bitmap Editor (menu option Tools ›
Glcd Bitmap Editor) to convert image to a constant array suitable for displaying on Glcd.
Requires
Glcd needs to be initialized for SPI communication, see SPI_Glcd_Init routines.
Example
// Draw image my_image on Glcd
SPI_Glcd_Image(my_image);
Library Example
The example demonstrates how to communicate to KS0108 Glcd via the SPI module, using serial to parallel convertor MCP23S17.
const code char truck_bmp[1024];
// Port Expander module connections
sbit SPExpanderRST at RC0_bit;
sbit SPExpanderCS at RC1_bit;
sbit SPExpanderRST_Direction at TRISC0_bit;
sbit SPExpanderCS_Direction at TRISC1_bit;
// End Port Expander module connections
void Delay2s(){
Delay_ms(2000);
}
// 2 seconds delay function
void main() {
char *someText;
char counter;
// If Port Expander Library uses SPI1 module
SPI1_Init();
// Initialize SPI module used with PortExpander
//
490
// If Port Expander Library uses SPI2 module
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
//
Libraries
SPI2_Init();
// Initialize SPI module used with PortExpander
SPI_Glcd_Init(0);
SPI_Glcd_Fill(0x00);
// Initialize Glcd via SPI
// Clear Glcd
while(1) {
SPI_Glcd_Image(truck_bmp);
Delay2s(); Delay2s();
// Draw image
SPI_Glcd_Fill(0x00);
Delay2s;
// Clear Glcd
SPI_Glcd_Box(62,40,124,56,1);
SPI_Glcd_Rectangle(5,5,84,35,1);
SPI_Glcd_Line(0, 63, 127, 0,1);
Delay2s();
// Draw box
// Draw rectangle
// Draw line
for(counter = 5; counter < 60; counter+=5 ) {
tal and vertical line
Delay_ms(250);
SPI_Glcd_V_Line(2, 54, counter, 1);
SPI_Glcd_H_Line(2, 120, counter, 1);
}
Delay2s();
SPI_Glcd_Fill(0x00);
SPI_Glcd_Set_Font(Character8x7, 8, 8, 32);
__Lib_GLCDFonts.c in Uses folder
SPI_Glcd_Write_Text("mikroE", 5, 7, 2);
for (counter = 1; counter <= 10; counter++)
SPI_Glcd_Circle(63,32, 3*counter, 1);
Delay2s();
SPI_Glcd_Box(12,20, 70,63, 2);
Delay2s();
SPI_Glcd_Fill(0xFF);
SPI_Glcd_Set_Font(Character8x7, 8, 7, 32);
someText = "8x7 Font";
SPI_Glcd_Write_Text(someText, 5, 1, 2);
Delay2s();
SPI_Glcd_Set_Font(System3x5, 3, 5, 32);
someText = "3X5 CAPITALS ONLY";
SPI_Glcd_Write_Text(someText, 5, 3, 2);
Delay2s();
// Draw horizon-
// Clear Glcd
// Choose font, see
// Write string
// Draw circles
// Draw box
// Fill Glcd
// Change font
// Write string
// Change font
// Write string
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
491
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_Glcd_Set_Font(font5x7, 5, 7, 32);
someText = "5x7 Font";
SPI_Glcd_Write_Text(someText, 5, 5, 2);
Delay2s();
// Change font
// Write string
SPI_Glcd_Set_Font(FontSystem5x7_v2, 5, 7, 32); // Change font
someText = "5x7 Font (v2)";
SPI_Glcd_Write_Text(someText, 5, 7, 2);
// Write string
Delay2s();
}
}
HW Connection
SPI Glcd HW connection
492
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI LCD LIBRARY
The mikroC PRO for PIC provides a library for communication with Lcd (with
HD44780 compliant controllers) in 4-bit mode via SPI interface.
For creating a custom set of Lcd characters use Lcd Custom Character Tool.
Note: The library uses the SPI module for communication. The user must initialize
the SPI module before using the SPI Lcd Library.
For MCUs with two SPI modules it is possible to initialize both of them and then
switch by using the SPI_Set_Active() routine.
Note: This Library is designed to work with the mikroElektronika's Serial Lcd
Adapter Board pinout. See schematic at the bottom of this page for details.
External dependencies of SPI LCD Library
The implementation of SPI Lcd Library routines is based on Port Expander Library
routines.
External dependencies are the same as Port Expander Library external dependencies.
Library Routines
-
SPI_Lcd_Config
SPI_Lcd_Out
SPI_Lcd_Out_Cp
SPI_Lcd_Chr
SPI_Lcd_Chr_Cp
SPI_Lcd_Cmd
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
493
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Lcd_Config
Prototype
void SPI_Lcd_Config(char DeviceAddress);
Returns
Nothing.
Initializes the LCD module via SPI interface.
Description
Parameters:
- DeviceAddress: spi expander hardware address, see schematic at the
bottom of this page
Global variables:
Requires
-
SPExpanderCS: Chip Select line
SPExpanderRST: Reset line
SPExpanderCS_Direction: Direction of the Chip Select pin
SPExpanderRST_Direction: Direction of the Reset pin
must be defined before using this function.
The SPI module needs to be initialized. See SPI1_Init and SPI1_Init_Advanced
routines.
Example
// Port Expander module connections
sbit SPExpanderRST at RC0_bit;
sbit SPExpanderCS at RC1_bit;
sbit SPExpanderRST_Direction at TRISC0_bit;
sbit SPExpanderCS_Direction at TRISC1_bit;
// End Port Expander module connections
void main() {
// If Port Expander Library uses SPI module
SPI1_Init();
// Initialize SPI module used with PortExpander
SPI_Lcd_Config(0); // initialize Lcd over SPI interface
494
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Lcd_Out
Prototype
void SPI_Lcd_Out(char row, char column, char *text);
Returns
Nothing.
Prints text on the LCD starting from specified position. Both string variables and
literals can be passed as a text.
Description Parameters:
- row: starting position row number
- column: starting position column number
- text: text to be written
Requires
Lcd needs to be initialized for SPI communication, see SPI_Lcd_Config routines.
Example
// Write text "Hello!" on Lcd starting from row 1, column 3:
SPI_Lcd_Out(1, 3, "Hello!");
Spi_Lcd_Out_Cp
Prototype
void SPI_Lcd_Out_CP(char *text);
Returns
Nothing.
Prints text on the LCD at current cursor position. Both string variables and literals can be passed as a text.
Description
Parameters:
- text: text to be written
Requires
Lcd needs to be initialized for SPI communication, see SPI_Lcd_Config routines.
Example
// Write text "Here!" at current cursor position:
SPI_Lcd_Out_CP("Here!");
Spi_Lcd_Chr
Prototype
void SPI_Lcd_Chr(char Row, char Column, char Out_Char);
Returns
Nothing.
Prints character on LCD at specified position. Both variables and literals can be
passed as character.
Description
Parameters:
- Row: writing position row number
- Column: writing position column number
- Out_Char: character to be written
Requires
Lcd needs to be initialized for SPI communication, see SPI_Lcd_Config routines.
Example
// Write character "i" at row 2, column 3:
SPI_Lcd_Chr(2, 3, 'i');
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
495
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Lcd_Chr_Cp
Prototype
void SPI_Lcd_Chr_CP(char Out_Char);
Returns
Nothing.
Prints character on LCD at current cursor position. Both variables and literals
can be passed as character.
Description
Parameters:
- Out_Char: character to be written
Requires
Lcd needs to be initialized for SPI communication, see SPI_Lcd_Config routines.
Example
// Write character "e" at current cursor position:
SPI_Lcd_Chr_Cp('e');
Spi_Lcd_Cmd
Prototype
void SPI_Lcd_Cmd(char out_char);
Returns
Nothing.
Sends command to LCD.
Parameters:
Description
- out_char: command to be sent
Note: Predefined constants can be passed to the function, see Available Lcd
Commands.
496
Requires
Lcd needs to be initialized for SPI communication, see SPI_Lcd_Config routines.
Example
// Clear Lcd display:
SPI_Lcd_Cmd(_LCD_CLEAR);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Available LCD Commands
Lcd Command
Purpose
LCD_FIRST_ROW
Move cursor to the 1st row
LCD_SECOND_ROW
Move cursor to the 2nd row
LCD_THIRD_ROW
Move cursor to the 3rd row
LCD_FOURTH_ROW
Move cursor to the 4th row
LCD_CLEAR
Clear display
LCD_RETURN_HOME
Return cursor to home position, returns a shifted display
to its original position. Display data RAM is unaffected.
LCD_CURSOR_OFF
Turn off cursor
LCD_UNDERLINE_ON
Underline cursor on
LCD_BLINK_CURSOR_ON
Blink cursor on
LCD_MOVE_CURSOR_LEFT
Move cursor left without changing display data RAM
LCD_MOVE_CURSOR_RIGHT
Move cursor right without changing display data RAM
LCD_TURN_ON
Turn LCD display on
LCD_TURN_OFF
Turn LCD display off
LCD_SHIFT_LEFT
Shift display left without changing display data RAM
LCD_SHIFT_RIGHT
Shift display right without changing display data RAM
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
497
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
This example demonstrates how to communicate Lcd via the SPI module, using
serial to parallel convertor MCP23S17.
char *text = "mikroElektronika";
// Port Expander module connections
sbit SPExpanderRST at RC0_bit;
sbit SPExpanderCS at RC1_bit;
sbit SPExpanderRST_Direction at TRISC0_bit;
sbit SPExpanderCS_Direction at TRISC1_bit;
// End Port Expander module connections
void main() {
// If Port Expander Library uses SPI1 module
SPI1_Init();
// Initialize SPI module used with PortExpander
// If Port Expander Library uses SPI2 module
// SPI2_Init(); // Initialize SPI module used with PortExpander
SPI_Lcd_Config(0);
// Initialize Lcd over SPI interface
SPI_Lcd_Cmd(_LCD_CLEAR);
// Clear display
SPI_Lcd_Cmd(_LCD_CURSOR_OFF);// Turn cursor off
SPI_Lcd_Out(1,6, "mikroE");
// Print text to Lcd, 1st row, 6th column
SPI_Lcd_Chr_CP('!');
// Append '!'
SPI_Lcd_Out(2,1, text); // Print text to Lcd, 2nd row, 1st column
// SPI_Lcd_Out(3,1,"mikroE");
// SPI_Lcd_Out(4,15,"mikroE");
// For Lcd with more than two rows
// For Lcd with more than two rows
}
498
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
SPI LCD HW connection
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
499
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI LCD8 (8-BIT INTERFACE) LIBRARY
The mikroC PRO for PIC provides a library for communication with Lcd (with
HD44780 compliant controllers) in 8-bit mode via SPI interface.
For creating a custom set of Lcd characters use Lcd Custom Character Tool.
Note: Library uses the SPI module for communication. The user must initialize the
SPI module before using the SPI Lcd Library.
For MCUs with two SPI modules it is possible to initialize both of them and then
switch by using the SPI_Set_Active() routine.
Note: This Library is designed to work with mikroElektronika's Serial Lcd/Glcd
Adapter Board pinout, see schematic at the bottom of this page for details.
External dependencies of SPI LCD Library
The implementation of SPI Lcd Library routines is based on Port Expander Library
routines.
External dependencies are the same as Port Expander Library external dependencies.
Library Routines
-
500
SPI_Lcd8_Config
SPI_Lcd8_Out
SPI_Lcd8_Out_Cp
SPI_Lcd8_Chr
SPI_Lcd8_Chr_Cp
SPI_Lcd8_Cmd
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Lcd8_Config
Prototype
void SPI_Lcd8_Config(char DeviceAddress);
Returns
Nothing.
Initializes the LCD module via SPI interface.
Description Parameters:
- DeviceAddress: spi expander hardware address, see schematic at the
bottom of this page
Global variables:
Requires
-
SPExpanderCS: Chip Select line
SPExpanderRST: Reset line
SPExpanderCS_Direction: Direction of the Chip Select pin
SPExpanderRST_Direction: Direction of the Reset pin
must be defined before using this function.
The SPI module needs to be initialized. See SPI1_Init and SPI1_Init_Advanced
routines.
Example
// Port Expander module connections
sbit SPExpanderRST at RC0_bit;
sbit SPExpanderCS at RC1_bit;
sbit SPExpanderRST_Direction at TRISC0_bit;
sbit SPExpanderCS_Direction at TRISC1_bit;
// End Port Expander module connections
...
// If Port Expander Library uses SPI module
SPI1_Init();
// Initialize SPI module used with PortExpander
SPI_Lcd8_Config(0); // intialize Lcd in 8bit mode via SPI
Spi_Lcd8_Out
Prototype
void SPI_Lcd8_Out(unsigned short row, unsigned short column, char
*text);
Returns
Nothing.
Prints text on LCD starting from specified position. Both string variables and literals can be passed as a text.
Description
Parameters:
- row: starting position row number
- column: starting position column number
- text: text to be written
Requires
Lcd needs to be initialized for SPI communication, see SPI_Lcd8_Config routines.
Example
// Write text "Hello!" on Lcd starting from row 1, column 3:
SPI_Lcd8_Out(1, 3, "Hello!");
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
501
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Lcd8_Out_Cp
Prototype
void SPI_Lcd8_Chr_CP(char out_char);
Returns
Nothing.
Prints character on Lcd at current cursor position. Both variables and literals
can be passed as character.
Description
Parameters:
- text: text to be written
Requires
Lcd needs to be initialized for SPI communication, see SPI_Lcd8_Config routines.
Example
// Write text "Here!" at current cursor position:
SPI_Lcd8_Out_Cp("Here!");
Spi_Lcd8_Chr
Prototype
void SPI_Lcd8_Chr(unsigned short row, unsigned short column, char
out_char);
Returns
Nothing.
Prints character on LCD at specified position. Both variables and literals can be
passed as character.
Description
Parameters:
- row: writing position row number
- column: writing position column number
- out_char: character to be written
502
Requires
Lcd needs to be initialized for SPI communication, see SPI_Lcd8_Config routines.
Example
// Write character "i" at row 2, column 3:
SPI_Lcd8_Chr(2, 3, 'i');
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_Lcd8_Chr_Cp
Prototype
void SPI_Lcd8_Chr_CP(char out_char);
Returns
Nothing.
Prints character on LCD at current cursor position. Both variables and literals
can be passed as character.
Description
Parameters:
- out_char : character to be written
Requires
Lcd needs to be initialized for SPI communication, see SPI_Lcd8_Config routines.
Print “e” at current cursor position:
Example
// Write character "e" at current cursor position:
SPI_Lcd8_Chr_Cp('e');
Spi_Lcd8_Cmd
Prototype
void SPI_Lcd8_Cmd(char out_char);
Returns
Nothing.
Sends command to LCD.
Parameters:
Description
- out_char: command to be sent
Note: Predefined constants can be passed to the function, see Available LCD
Commands.
Requires
Lcd needs to be initialized for SPI communication, see SPI_Lcd8_Config routines.
Example
// Clear Lcd display:
SPI_Lcd8_Cmd(_LCD_CLEAR);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
503
CHAPTER 7
mikroC PRO for PIC
Libraries
Available LCD Commands
Lcd Command
504
Purpose
LCD_FIRST_ROW
Move cursor to the 1st row
LCD_SECOND_ROW
Move cursor to the 2nd row
LCD_THIRD_ROW
Move cursor to the 3rd row
LCD_FOURTH_ROW
Move cursor to the 4th row
LCD_CLEAR
Clear display
LCD_RETURN_HOME
Return cursor to home position, returns a shifted display
to its original position. Display data RAM is unaffected.
LCD_CURSOR_OFF
Turn off cursor
LCD_UNDERLINE_ON
Underline cursor on
LCD_BLINK_CURSOR_ON
Blink cursor on
LCD_MOVE_CURSOR_LEFT
Move cursor left without changing display data RAM
LCD_MOVE_CURSOR_RIGHT
Move cursor right without changing display data RAM
LCD_TURN_ON
Turn LCD display on
LCD_TURN_OFF
Turn LCD display off
LCD_SHIFT_LEFT
Shift display left without changing display data RAM
LCD_SHIFT_RIGHT
Shift display right without changing display data RAM
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
This example demonstrates how to communicate Lcd in 8-bit mode via the SPI module, using serial to parallel convertor MCP23S17.
char *text = "mikroE";
// Port Expander module connections
sbit SPExpanderRST at RC0_bit;
sbit SPExpanderCS at RC1_bit;
sbit SPExpanderRST_Direction at TRISC0_bit;
sbit SPExpanderCS_Direction at TRISC1_bit;
// End Port Expander module connections
void main() {
// If Port Expander Library uses SPI1 module
SPI1_Init();
// Initialize SPI module used with PortExpander
// If Port Expander Library uses SPI2 module
// SPI2_Init(); // Initialize SPI module used with PortExpander
SPI_Lcd8_Config(0);
// Intialize Lcd in 8bit mode via SPI
SPI_Lcd8_Cmd(_LCD_CLEAR);
// Clear display
SPI_Lcd8_Cmd(_LCD_CURSOR_OFF);
// Turn cursor off
SPI_Lcd8_Out(1,6, text); // Print text to Lcd, 1st row, 6th column...
SPI_Lcd8_Chr_CP('!');
// Append '!'
SPI_Lcd8_Out(2,1, "mikroElektronika");
// Print text to Lcd, 2nd
row, 1st column...
SPI_Lcd8_Out(3,1, text); // For Lcd modules with more than two rows
SPI_Lcd8_Out(4,15, text);// For Lcd modules with more than two rows
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
505
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
SPI LCD8 HW connection
506
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI T6963C GRAPHIC LCD LIBRARY
The mikroC PRO for PIC provides a library for working with Glcds based on
TOSHIBA T6963C controller via SPI interface. The Toshiba T6963C is a very popular Lcd controller for the use in small graphics modules. It is capable of controlling
displays with a resolution up to 240x128. Because of its low power and small outline it is most suitable for mobile applications such as PDAs, MP3 players or mobile
measurement equipment. Although this controller is small, it has a capability of displaying and merging text and graphics and it manages all interfacing signals to the
displays Row and Column drivers.
For creating a custom set of Glcd images use Glcd Bitmap Editor Tool.
Note: The library uses the SPI module for communication. The user must initialize
SPI module before using the SPI T6963C Glcd Library.
For MCUs with two SPI modules it is possible to initialize both of them and then
switch by using the SPI_Set_Active() routine.
Note: This Library is designed to work with mikroElektronika's Serial Glcd 240x128
and 240x64 Adapter Boards pinout, see schematic at the bottom of this page for
details.
Note: Some mikroElektronika's adapter boards have pinout different from T6369C
datasheets. Appropriate relations between these labels are given in the table below:
Adapter Board T6369C datasheet
RS
C/D
R/W
/RD
E
/WR
External dependencies of Spi T6963C Graphic LCD Library
The implementation of SPI T6963C Graphic Lcd Library routines is based on Port
Expander Library routines.
External dependencies are the same as Port Expander Library external dependencies.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
507
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Routines
-
SPI_T6963C_Config
SPI_T6963C_writeData
SPI_T6963C_writeCommand
SPI_T6963C_setPtr
SPI_T6963C_waitReady
SPI_T6963C_fill
SPI_T6963C_dot
SPI_T6963C_write_char
SPI_T6963C_write_text
SPI_T6963C_line
SPI_T6963C_rectangle
SPI_T6963C_box
SPI_T6963C_circle
SPI_T6963C_image
SPI_T6963C_sprite
SPI_T6963C_set_cursor
SPI_T6963C_clearBit
SPI_T6963C_setBit
SPI_T6963C_negBit
Note: The following low level library routines are implemented as macros. These
macros can be found in the SPI_T6963C.h header file which is located in the SPI
T6963C example projects folders.
-
508
SPI_T6963C_displayGrPanel
SPI_T6963C_displayTxtPanel
SPI_T6963C_setGrPanel
SPI_T6963C_setTxtPanel
SPI_T6963C_panelFill
SPI_T6963C_grFill
SPI_T6963C_txtFill
SPI_T6963C_cursor_height
SPI_T6963C_graphics
SPI_T6963C_text
SPI_T6963C_cursor
SPI_T6963C_cursor_blink
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_T6963C_Config
Prototype
void SPI_T6963C_Config(unsigned int width, unsigned char height,
unsigned char fntW, char DeviceAddress, unsigned char wr,
unsigned char rd, unsigned char cd, unsigned char rst);
Returns
Nothing.
Initalizes the Graphic Lcd controller.
Parameters:
-
width: width of the GLCD panel
height: height of the GLCD panel
fntW: font width
DeviceAddress: SPI expander hardware address, see schematic at the
-
bottom of this page
wr: write signal pin on GLCD control port
rd: read signal pin on GLCD control port
cd: command/data signal pin on GLCD control port
rst: reset signal pin on GLCD control port
Display RAM organization:
The library cuts RAM into panels : a complete panel is one graphics panel folDescription lowed by a text panel (see schematic below).
schematic:
+---------------------+ /\
+ GRAPHICS PANEL #0
+ |
+
+ |
+
+ |
+
+ |
+---------------------+ | PANEL 0
+ TEXT PANEL #0
+ |
+
+ \/
+---------------------+ /\
+ GRAPHICS PANEL #1
+ |
+
+ |
+
+ |
+
+ |
+---------------------+ | PANEL 1
+ TEXT PANEL #1
+ |
+
+ |
+---------------------+ \/
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
509
CHAPTER 7
mikroC PRO for PIC
Libraries
Global variables:
Requires
-
SPExpanderCS: Chip Select line
SPExpanderRST: Reset line
SPExpanderCS_Direction: Direction of the Chip Select pin
SPExpanderRST_Direction: Direction of the Reset pin
must be defined before using this function.
The SPI module needs to be initialized. See the SPI1_Init and
SPI1_Init_Advanced routines.
Example
// Port Expander module connections
sbit SPExpanderRST at RC0_bit;
sbit SPExpanderCS at RC1_bit;
sbit SPExpanderRST_Direction at TRISC0_bit;
sbit SPExpanderCS_Direction at TRISC1_bit;
// End Port Expander module connections
...
// Initialize SPI module
SPI1_Init();
SPI_T6963C_Config(240, 64, 8, 0, 0, 1, 3, 4);
Spi_T6963C_WriteData
Prototype
void SPI_T6963C_writeData(unsigned char Ddata);
Returns
Nothing.
Writes data to T6963C controller via SPI interface.
Description
Parameters:
- Ddata: data to be written
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_writeData(AddrL);
Spi_T6963C_WriteCommand
Prototype
void SPI_T6963C_writeCommand(unsigned char Ddata);
Returns
Nothing.
Writes command to T6963C controller via SPI interface.
Description
510
Parameters:
- Ddata: command to be written
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_writeCommand(SPI_T6963C_CURSOR_POINTER_SET);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_T6963C_SetPtr
Prototype
void SPI_T6963C_setPtr(unsigned int p, unsigned char c);
Returns
Nothing.
Sets the memory pointer p for command c.
Description
Parameters:
- p: address where command should be written
- c: command to be written
Requires
SToshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_setPtr(T6963C_grHomeAddr + start,
T6963C_ADDRESS_POINTER_SET);
Spi_T6963C_WaitReady
Prototype
void SPI_T6963C_waitReady(void);
Returns
Nothing.
Description Pools the status byte, and loops until Toshiba Glcd module is ready.
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_waitReady();
Spi_T6963C_Fill
Prototype
void SPI_T6963C_fill(unsigned char v, unsigned int start,
unsigned int len);
Returns
Nothing.
Fills controller memory block with given byte.
Parameters:
Description
- v: byte to be written
- start: starting address of the memory block
- len: length of the memory block in bytes
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_fill(0x33,0x00FF,0x000F);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
511
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_T6963C_Dot
Prototype
void SPI_T6963C_dot(int x, int y, unsigned char color);
Returns
Nothing.
Draws a dot in the current graphic panel of GLCD at coordinates (x, y).
Parameters:
Description
512
- x: dot position on x-axis
- y: dot position on y-axis
- color: color parameter. Valid values: Spi_T6963C_BLACK and
Spi_T6963C_WHITE
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_dot(x0, y0, pcolor);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_T6963C_Write_Char
Prototype
void SPI_T6963C_write_char(unsigned char c, unsigned char x,
unsigned char y, unsigned char mode);
Returns
Nothing.
Writes a char in the current text panel of GLCD at coordinates (x, y).
Parameters:
-
c: char to be written
x: char position on x-axis
y: char position on y-axis
mode: mode parameter. Valid values:
SPI_T6963C_ROM_MODE_OR, SPI_T6963C_ROM_MODE_XOR,
SPI_T6963C_ROM_MODE_AND and
SPI_T6963C_ROM_MODE_TEXT
Description Mode parameter explanation:
-
-
-
OR Mode: In the OR-Mode, text and graphics can be displayed and the data
is logically “OR-ed”. This is the most common way of combining text and
graphics for example labels on buttons.
XOR-Mode: In this mode, the text and graphics data are combined via the
logical “exclusive OR”. This can be useful to display text in negative mode,
i.e. white text on black background.
AND-Mode: The text and graphic data shown on display are combined via
the logical “AND function”.
TEXT-Mode: This option is only available when displaying just a text. The
Text Attribute values are stored in the graphic area of display memory.
For more details see the T6963C datasheet.
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_write_char("A",22,23,AND);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
513
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_T6963C_write_Text
Prototype
void SPI_T6963C_write_text(unsigned char *str, unsigned char x,
unsigned char y, unsigned char mode);
Returns
Nothing.
Writes text in the current text panel of GLCD at coordinates (x, y).
Parameters:
-
str: text to be written
x: text position on x-axis
y: text position on y-axis
mode: mode parameter. Valid values:
SPI_T6963C_ROM_MODE_OR, SPI_T6963C_ROM_MODE_XOR,
SPI_T6963C_ROM_MODE_AND and
SPI_T6963C_ROM_MODE_TEXT
Description
Mode parameter explanation:
-
OR Mode: In the OR-Mode, text and graphics can be displayed and the data
is logically “OR-ed”. This is the most common way of combining text and
graphics for example labels on buttons.
- XOR-Mode: In this mode, the text and graphics data are combined via the
logical “exclusive OR”. This can be useful to display text in negative mode,
i.e. white text on black background.
- AND-Mode: The text and graphic data shown on the display are combined
via the logical “AND function”.
- TEXT-Mode: This option is only available when displaying just a text. The
Text Attribute values are stored in the graphic area of display memory.
For more details see the T6963C datasheet.
514
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_write_text("Glcd LIBRARY DEMO, WELCOME !", 0, 0,
T6963C_ROM_MODE_EXOR);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_T6963C_line
Prototype
void SPI_T6963C_line(int x0, int y0, int x1, int y1, unsigned
char pcolor);
Returns
Nothing.
Draws a line from (x0, y0) to (x1, y1).
Parameters:
Description
- x0: x coordinate of the line start
- y0: y coordinate of the line end
- x1: x coordinate of the line start
- y1: y coordinate of the line end
- pcolor: color parameter. Valid values:
SPI_T6963C_BLACK and SPI_T6963C_WHITE
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_line(0, 0, 239, 127, T6963C_WHITE);
Spi_T6963C_rectangle
Prototype
void SPI_T6963C_rectangle(int x0, int y0, int x1, int y1,
unsigned char pcolor);
Returns
Nothing.
Draws a rectangle on GLCD.
Parameters:
Description
-
x0: x coordinate of the upper left rectangle corner
y0: y coordinate of the upper left rectangle corner
x1: x coordinate of the lower right rectangle corner
y1: y coordinate of the lower right rectangle corner
pcolor: color parameter. Valid values:
SPI_T6963C_BLACK and SPI_T6963C_WHITE
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_rectangle(20, 20, 219, 107, T6963C_WHITE);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
515
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_T6963C_box
Prototype
void SPI_T6963C_box(int x0, int y0, int x1, int y1, unsigned char
pcolor);
Returns
Nothing.
Draws a box on the GLCD
Parameters:
Description
-
x0: x coordinate of the upper left box corner
y0: y coordinate of the upper left box corner
x1: x coordinate of the lower right box corner
y1: y coordinate of the lower right box corner
pcolor: color parameter. Valid values:
SPI_T6963C_BLACK and SPI_T6963C_WHITE
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_box(0, 119, 239, 127, T6963C_WHITE);
Spi_T6963C_circle
Prototype
void SPI_T6963C_circle(int x, int y, long r, unsigned char pcolor);
Returns
Nothing.
Draws a circle on the GLCD.
Parameters:
Description -
x: x coordinate of the circle center
y: y coordinate of the circle center
r: radius size
pcolor: color parameter. Valid values:
SPI_T6963C_BLACK and SPI_T6963C_WHITE
516
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_circle(120, 64, 110, T6963C_WHITE);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_T6963C_image
Prototype
void SPI_T6963C_image(const code char *pic);
Returns
Nothing.
Displays bitmap on GLCD.
Parameters:
- pic: image to be displayed. Bitmap array can be located in both code and
RAM memory (due to the mikroC PRO for PIC pointer to const and pointer to
Description RAM equivalency).
Use the mikroC PRO’s integrated Glcd Bitmap Editor (menu option Tools ›
Glcd Bitmap Editor) to convert image to a constant array suitable for displaying on Glcd.
Note: Image dimension must match the display dimension.
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_image(my_image);
Spi_T6963C_Sprite
Prototype
void SPI_T6963C_sprite(unsigned char px, unsigned char py, const
code char *pic, unsigned char sx, unsigned char sy);
Returns
Nothing.
Fills graphic rectangle area (px, py) to (px+sx, py+sy) with custom size picture.
Parameters:
- px: x coordinate of the upper left picture corner. Valid values: multiples of the
font width
Description - py: y coordinate of the upper left picture corner
- pic: picture to be displayed
- sx: picture width. Valid values: multiples of the font width
- sy: picture height
Note: If px and sx parameters are not multiples of the font width they will be
scaled to the nearest lower number that is a multiple of the font width.
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_sprite(76, 4, einstein, 88, 119); // draw a sprite
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
517
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_T6963C_set_cursor
Prototype
void SPI_T6963C_set_cursor(unsigned char x, unsigned char y);
Returns
Nothing.
Sets cursor to row x and column y.
Description
Parameters:
- x: cursor position row number
- y: cursor position column number
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_set_cursor(cposx, cposy);
Spi_T6963C_clearBit
Prototype
void SPI_T6963C_clearBit(char b);
Returns
Nothing.
Clears control port bit(s).
Description Parameters:
- b: bit mask. The function will clear bit x on control port if bit x in bit mask is set to 1.
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
// clear bits 0 and 1 on control port
SPI_T6963C_clearBit(0x03);
Spi_T6963C_setBit
Prototype
void SPI_T6963C_setBit(char b);
Returns
Nothing.
Sets control port bit(s).
Description Parameters:
- b: bit mask. The function will set bit x on control port if bit x in bit mask is set to 1.
518
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
// set bits 0 and 1 on control port
SPI_T6963C_setBit(0x03);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_T6963C_negBit
Prototype
void SPI_T6963C_negBit(char b);
Returns
Nothing.
Negates control port bit(s).
Description
Parameters:
- b: bit mask. The function will negate bit x on control port if bit x in bit mask is
set to 1.
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
// negate bits 0 and 1 on control port
SPI_T6963C_negBit(0x03);
Spi_T6963C_DisplayGrPanel
Prototype
void SPI_T6963C_displayGrPanel(char n);
Returns
Nothing.
Display selected graphic panel.
Description Parameters:
- n: graphic panel number. Valid values: 0 and 1.
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
// display graphic panel 1
SPI_T6963C_displayGrPanel(1);
Spi_T6963C_displayTxtPanel
Prototype
void SPI_T6963C_displayTxtPanel(char n);
Returns
Nothing.
Display selected text panel.
Description Parameters:
- n: text panel number. Valid values: 0 and 1.
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
// display text panel 1
SPI_T6963C_displayTxtPanel(1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
519
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_T6963C_setGrPanel
Prototype
void SPI_T6963C_setGrPanel(char n);
Returns
Nothing.
Compute start address for selected graphic panel and set appropriate internal
pointers. All subsequent graphic operations will be preformed at this graphic
panel.
Description
Parameters:
- n: graphic panel number. Valid values: 0 and 1.
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
// set graphic panel 1 as current graphic panel.
SPI_T6963C_setGrPanel(1);
Spi_T6963C_setTxtPanel
Prototype
void SPI_T6963C_setTxtPanel(char n);
Returns
Nothing.
Compute start address for selected text panel and set appropriate internal pointers. All subsequent text operations will be preformed at this text panel.
Description
Parameters:
- n: text panel number. Valid values: 0 and 1.
520
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
// set text panel 1 as current text panel.
SPI_T6963C_setTxtPanel(1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_T6963C_panelFill
Prototype
void SPI_T6963C_panelFill(unsigned char v);
Returns
Nothing.
Fill current panel in full (graphic+text) with appropriate value (0 to clear).
Description Parameters:
- v: value to fill panel with.
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
clear current panel
SPI_T6963C_panelFill(0);
Spi_T6963C_GrFill
Prototype
void SPI_T6963C_grFill(unsigned char v);
Returns
Nothing.
Fill current graphic panel with appropriate value (0 to clear).
Description Parameters:
- v: value to fill graphic panel with.
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
// clear current graphic panel
SPI_T6963C_grFill(0);
Spi_T6963C_txtFill
Prototype
void SPI_T6963C_txtFill(unsigned char v);
Returns
Nothing.
Fill current text panel with appropriate value (0 to clear).
Description Parameters:
- v: this value increased by 32 will be used to fill text panel.
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
// clear current text panel
SPI_T6963C_txtFill(0);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
521
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_T6963C_cursor_height
Prototype
void SPI_T6963C_cursor_height(unsigned char n);
Returns
Nothing.
Set cursor size.
Description Parameters:
- n: cursor height. Valid values: 0..7.
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
SPI_T6963C_cursor_height(7);
Spi_T6963C_graphics
Prototype
void SPI_T6963C_graphics(char n);
Returns
Nothing.
Enable/disable graphic displaying.
Description
Parameters:
- n: graphic enable/disable parameter. Valid values: 0 (disable graphic
dispaying) and 1 (enable graphic displaying).
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
// enable graphic displaying
SPI_T6963C_graphics(1);
Spi_T6963C_text
Prototype
void SPI_T6963C_text(char n);
Returns
Nothing.
Enable/disable text displaying.
Description
Parameters:
- n: text enable/disable parameter. Valid values: 0 (disable text dispaying) and 1
(enable text displaying).
522
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
// enable text displaying
SPI_T6963C_text(1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Spi_T6963C_cursor
Prototype
void SPI_T6963C_cursor(char n);
Returns
Nothing.
Set cursor on/off.
Description Parameters:
- n: on/off parameter. Valid values: 0 (set cursor off) and 1 (set cursor on).
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
// set cursor on
SPI_T6963C_cursor(1);
Spi_T6963C_cursor_blink
Prototype
void SPI_T6963C_cursor_blink(char n);
Returns
Nothing.
Enable/disable cursor blinking.
Description
Parameters:
- n: cursor blinking enable/disable parameter. Valid values: 0 (disable cursor
blinking) and 1 (enable cursor blinking).
Requires
Toshiba Glcd module needs to be initialized. See SPI_T6963C_Config routine.
Example
// enable cursor blinking
SPI_T6963C_cursor_blink(1);
Library Example
The following drawing demo tests advanced routines of the SPI T6963C Glcd library. Hardware
configurations in this example are made for the T6963C 240x128 display, EasyPIC5 board and
16F887.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
523
CHAPTER 7
mikroC PRO for PIC
Libraries
#include
"__SPIT6963C.h"
/*
* bitmap pictures stored in ROM
*/
extern const code char me[];
extern const code char einstein[];
// Port Expander module connections
sbit SPExpanderRST at RC0_bit;
sbit SPExpanderCS at RC1_bit;
sbit SPExpanderRST_Direction at TRISC0_bit;
sbit SPExpanderCS_Direction at TRISC1_bit;
// End Port Expander module connections
void main() {
char txt1[] = " EINSTEIN WOULD HAVE LIKED mE";
char txt[] = " GLCD LIBRARY DEMO, WELCOME !";
unsigned
unsigned
unsigned
unsigned
char
int
char
int
TRISA = 0xFF;
ANSEL = 0;
ANSELH = 0;
panel;
i;
curs;
cposx, cposy;
//
//
//
//
current panel
general purpose register
cursor visibility
cursor x-y position
// Configure PORTA as input
// Configure AN pins as digital I/O
// If Port Expander Library uses SPI1 module
SPI1_Init();
// Initialize SPI module used with PortExpander
//
//
// If Port Expander Library uses SPI2 module
SPI2_Init(); // Initialize SPI module used with PortExpander
/*
* init display for 240 pixel width and 128 pixel height
* 8 bits character width
* data bus on MCP23S17 portB
* control bus on MCP23S17 portA
* bit 2 is !WR
* bit 1 is !RD
* bit 0 is !CD
* bit 4 is RST
* chip enable, reverse on, 8x8 font internaly set in library
*/
SPI_T6963C_Config(240, 128, 8, 0, 2, 1, 0, 4);
Delay_ms(1000);
524
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
/*
* Enable both graphics and text display at the same time
*/
SPI_T6963C_graphics(1);
SPI_T6963C_text(1);
panel = 0;
i = 0;
curs = 0;
cposx = cposy = 0;
/*
* Text messages
*/
SPI_T6963C_write_text(txt, 0, 0, SPI_T6963C_ROM_MODE_XOR);
SPI_T6963C_write_text(txt1, 0, 15, SPI_T6963C_ROM_MODE_XOR);
/*
* Cursor
*/
SPI_T6963C_cursor_height(8);
SPI_T6963C_set_cursor(0, 0);
SPI_T6963C_cursor(0);
// 8 pixel height
// move cursor to top left
// cursor off
/*
* Draw rectangles
*/
SPI_T6963C_rectangle(0, 0, 239, 127, SPI_T6963C_WHITE);
SPI_T6963C_rectangle(20, 20, 219, 107, SPI_T6963C_WHITE);
SPI_T6963C_rectangle(40, 40, 199, 87, SPI_T6963C_WHITE);
SPI_T6963C_rectangle(60, 60, 179, 67, SPI_T6963C_WHITE);
/*
* Draw a cross
*/
SPI_T6963C_line(0, 0, 239, 127, SPI_T6963C_WHITE);
SPI_T6963C_line(0, 127, 239, 0, SPI_T6963C_WHITE);
/*
* Draw solid boxes
*/
SPI_T6963C_box(0, 0, 239, 8, SPI_T6963C_WHITE);
SPI_T6963C_box(0, 119, 239, 127, SPI_T6963C_WHITE);
/*
* Draw circles
*/
SPI_T6963C_circle(120, 64, 10, SPI_T6963C_WHITE);
SPI_T6963C_circle(120, 64, 30, SPI_T6963C_WHITE);
SPI_T6963C_circle(120, 64, 50, SPI_T6963C_WHITE);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
525
CHAPTER 7
mikroC PRO for PIC
Libraries
SPI_T6963C_circle(120,
SPI_T6963C_circle(120,
SPI_T6963C_circle(120,
SPI_T6963C_circle(120,
64,
64,
64,
64,
70, SPI_T6963C_WHITE);
90, SPI_T6963C_WHITE);
110, SPI_T6963C_WHITE);
130, SPI_T6963C_WHITE);
SPI_T6963C_sprite(76, 4, einstein, 88, 119); // Draw a sprite
SPI_T6963C_setGrPanel(1);
// Select other graphic panel
SPI_T6963C_image(me);
// Fill the graphic screen with a picture
while(1) {
// Endless loop
/*
* If PORTA_0 is pressed, toggle the display between graphic
panel 0 and graphic 1
*/
if(RA0_bit) {
panel++;
panel &= 1;
SPI_T6963C_displayGrPanel(panel);
Delay_ms(300);
}
/*
* If PORTA_1 is pressed, display only graphic panel
*/
else if(RA1_bit) {
SPI_T6963C_graphics(1);
SPI_T6963C_text(0);
Delay_ms(300);
}
/*
* If PORTA_2 is pressed, display only text panel
*/
else if(RA2_bit) {
SPI_T6963C_graphics(0);
SPI_T6963C_text(1);
Delay_ms(300);
}
/*
* If PORTA_3 is pressed, display text and graphic panels
*/
else if(RA3_bit) {
SPI_T6963C_graphics(1);
SPI_T6963C_text(1);
Delay_ms(300);
}
/*
526
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
* If PORTA_4 is pressed, change cursor
*/
else if(RA4_bit) {
curs++;
if(curs == 3) curs = 0;
switch(curs) {
case 0:
// no cursor
SPI_T6963C_cursor(0);
break;
case 1:
// blinking cursor
SPI_T6963C_cursor(1);
SPI_T6963C_cursor_blink(1);
break;
case 2:
// non blinking cursor
SPI_T6963C_cursor(1);
SPI_T6963C_cursor_blink(0);
break;
}
Delay_ms(300);
}
/*
* Move cursor, even if not visible
*/
cposx++;
if(cposx == SPI_T6963C_txtCols) {
cposx = 0;
cposy++;
if(cposy == SPI_T6963C_grHeight / SPI_T6963C_CHARACTER_HEIGHT)
{
cposy = 0;
}
}
SPI_T6963C_set_cursor(cposx, cposy);
Delay_ms(100);
}
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
527
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
Spi T6963C GLCD HW connection
528
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C GRAPHIC LCD LIBRARY
The mikroC PRO for PIC provides a library for working with Glcds based on
TOSHIBA T6963C controller. The Toshiba T6963C is a very popular Lcd controller
for the use in small graphics modules. It is capable of controlling displays with a resolution up to 240x128. Because of its low power and small outline it is most suitable
for mobile applications such as PDAs, MP3 players or mobile measurement equipment. Although small, this contoller has a capability of displaying and merging text
and graphics and it manages all the interfacing signals to the displays Row and Column drivers.
For creating a custom set of Glcd images use Glcd Bitmap Editor Tool.
Note: ChipEnable(CE), FontSelect(FS) and Reverse(MD) have to be set to appropriate levels by the user outside of the T6963C_init function. See the Library
Example code at the bottom of this page.
Note: Some mikroElektronika's adapter boards have pinout different from T6369C
datasheets. Appropriate relations between these labels are given in the table below:
Adapter Board T6369C datasheet
RS
C/D
R/W
/RD
E
/WR
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
529
CHAPTER 7
mikroC PRO for PIC
Libraries
External dependencies of T6963C Graphic LCD Library
The following variables must
be defined in all projects
using T6963C Graphic LCD
library:
530
Description:
Example:
extern sfr char
T6963C_dataPort;
T6963C Data Port. PORTD;
char T6963C_dataPort at
extern sfr sbit
T6963C_ctrlwr;
Write signal.
sbit T6963C_ctrlwr at
RC2_bit;
extern sfr sbit
T6963C_ctrlrd;
Read signal.
sbit T6963C_ctrlrd at
RC1_bit;
extern sfr sbit
T6963C_ctrlcd;
Command/Data
signal.
sbit T6963C_ctrlcd at
RC0_bit;
extern sfr sbit
T6963C_ctrlrst;
Reset signal.
sbit T6963C_ctrlrst at
RC4_bit;
extern sfr sbit
T6963C_ctrlwr_Direction;
Direction of the
Write pin.
extern sfr sbit
T6963C_ctrlrd_Direction;
Direction of the
Read pin.
extern sfr sbit
T6963C_ctrlcd_Direction;
Direction of the
Data pin.
sbit
T6963C_ctrlwr_Direction
at TRISC2_bit;
sbit
T6963C_ctrlrd_Direction
at TRISC1_bit;
sbit
T6963C_ctrlcd_Direction
at TRISC0_bit;
extern sfr sbit
T6963C_ctrlrst_Direction;
Direction of the
Reset pin.
sbit
T6963C_ctrlrst_Direction
at TRISC4_bit;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Routines
- T6963C_init
- T6963C_writeData
- T6963C_writeCommand
- T6963C_setPtr
- T6963C_waitReady
- T6963C_fill
- T6963C_dot
- T6963C_write_char
- T6963C_write_text
- T6963C_line
- T6963C_rectangle
- T6963C_box
- T6963C_circle
- T6963C_image
- T6963C_sprite
- T6963C_set_cursor
Note: The following low level library routines are implemented as macros. These
macros can be found in the T6963C.h header file which is located in the T6963C
example projects folders.
- T6963C_clearBit
- T6963C_setBit
- T6963C_negBit
- T6963C_displayGrPanel
- T6963C_displayTxtPanel
- T6963C_setGrPanel
- T6963C_setTxtPanel
- T6963C_panelFill
- T6963C_grFill
- T6963C_txtFill
- T6963C_cursor_height
- T6963C_graphics
- T6963C_text
- T6963C_cursor
- T6963C_cursor_blink
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
531
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_Init
Prototype
void T6963C_init(unsigned int width, unsigned char height,
unsigned char fntW);
Returns
Nothing.
Initalizes the Graphic Lcd controller.
Parameters:
- width: width of the GLCD panel
- height: height of the GLCD panel
- fntW: font width
Display RAM organization:
The library cuts the RAM into panels: a complete panel is one graphics panel
followed by a text panel (see schematic below).
Description
schematic:
+---------------------+ /\
+ GRAPHICS PANEL #0
+ |
+
+ |
+
+ |
+
+ |
+---------------------+ | PANEL 0
+ TEXT PANEL #0
+ |
+
+ \/
+---------------------+ /\
+ GRAPHICS PANEL #1
+ |
+
+ |
+
+ |
+
+ |
+---------------------+ | PANEL 1
+ TEXT PANEL #1
+ |
+
+ |
+---------------------+ \/
Global variables:
Requires
-
T6963C_dataPort: Data Port
T6963C_ctrlwr: Write signal pin
T6963C_ctrlrd: Read signal pin
T6963C_ctrlcd: Command/Data signal pin
T6963C_ctrlrst: Reset signal pin
T6963C_ctrlwr_Direction: Direction of Write signal pin
T6963C_ctrlrd_Direction: Direction of Read signal pin
T6963C_ctrlcd_Direction: Direction of Command/Data signal pin
T6963C_ctrlrst_Direction: Direction of Reset signal pin
must be defined before using this function.
532
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Example
Libraries
// T6963C module connections
char T6963C_dataPort at PORTD;
sbit T6963C_ctrlwr at RC2_bit;
sbit T6963C_ctrlrd at RC1_bit;
sbit T6963C_ctrlcd at RC0_bit;
sbit T6963C_ctrlrst at RC4_bit;
sbit T6963C_ctrlwr_Direction at TRISC2_bit;
sbit T6963C_ctrlrd_Direction at TRISC1_bit;
sbit T6963C_ctrlcd_Direction at TRISC0_bit;
sbit T6963C_ctrlrst_Direction at TRISC4_bit;
// End of T6963C module connections
// Signals not used by library, they are set in main function
sbit T6963C_ctrlce at RC3_bit;
// CE signal
sbit T6963C_ctrlfs at RC6_bit;
// FS signal
sbit T6963C_ctrlmd at RC5_bit;
// MD signal
sbit T6963C_ctrlce_Direction at TRISC3_bit;// CE signal direction
sbit T6963C_ctrlfs_Direction at TRISC6_bit;
// FS signal
direction
sbit T6963C_ctrlmd_Direction at TRISC5_bit;
// MD signal
direction
// End T6963C module connections
...
// init display for 240 pixel width, 128 pixel height and 8 bits
character width
T6963C_init(240, 128, 8);
T6963C_writeData
Prototype
void T6963C_writeData(unsigned char mydata);
Returns
Nothing.
Writes data to T6963C controller.
Description Parameters:
- mydata: data to be written
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_writeData(AddrL);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
533
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_WriteCommand
Prototype
void T6963C_writeCommand(unsigned char mydata);
Returns
Nothing.
Writes command to T6963C controller.
Description Parameters:
- mydata: command to be written
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_writeCommand(T6963C_CURSOR_POINTER_SET);
T6963C_SetPtr
Prototype
void T6963C_setPtr(unsigned int p, unsigned char c);
Returns
Nothing.
Sets the memory pointer p for command c.
Description
Parameters:
- p: address where command should be written
- c: command to be written
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_setPtr(T6963C_grHomeAddr + start,
T6963C_ADDRESS_POINTER_SET);
T6963C_waitReady
Prototype
void T6963C_waitReady(void);
Returns
Nothing.
Description Pools the status byte, and loops until Toshiba GLCD module is ready.
534
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_waitReady();
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_fill
Prototype
void T6963C_fill(unsigned char v, unsigned int start, unsigned
int len);
Returns
Nothing.
Fills controller memory block with given byte.
Parameters:
Description
- v: byte to be written
- start: starting address of the memory block
- len: length of the memory block in bytes
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_fill(0x33,0x00FF,0x000F);
T6963C_Dot
Prototype
void T6963C_dot(int x, int y, unsigned char color);
Returns
Nothing.
Draws a dot in the current graphic panel of GLCD at coordinates (x, y).
Parameters:
Description
- x: dot position on x-axis
- y: dot position on y-axis
- color: color parameter. Valid values: T6963C_BLACK and T6963C_WHITE
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_dot(x0, y0, pcolor);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
535
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_write_Char
Prototype
void T6963C_write_char(unsigned char c, unsigned char x, unsigned
char y, unsigned char mode);
Returns
Nothing.
Writes a char in the current text panel of GLCD at coordinates (x, y).
Parameters:
- c: char to be written
- x: char position on x-axis
- y: char position on y-axis
- mode: mode parameter. Valid values: T6963C_ROM_MODE_OR,
T6963C_ROM_MODE_XOR, T6963C_ROM_MODE_AND and
T6963C_ROM_MODE_TEXT
Mode parameter explanation:
Description
-
-
-
OR Mode: In the OR-Mode, text and graphics can be displayed and the data
is logically “OR-ed”. This is the most common way of combining text and
graphics for example labels on buttons.
XOR-Mode: In this mode, the text and graphics data are combined via the
logical “exclusive OR”. This can be useful to display text in the negative
mode, i.e. white text on black background. - AND-Mode: The text and graphic data shown on display are combined via the logical “AND function”.
TEXT-Mode: The text and graphic data shown on display are combined via
the logical “AND function”.
TEXT-Mode: This option is only available when displaying just a text. The
Text Attribute values are stored in the graphic area of display memory.
For more details see the T6963C datasheet.
536
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_write_char('A',22,23,AND);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_write_text
Prototype
void T6963C_write_text(unsigned char *str, unsigned char x,
unsigned char y, unsigned char mode);
Returns
Nothing.
Writes text in the current text panel of GLCD at coordinates (x, y).
Parameters:
- str: text to be written
- x: text position on x-axis
- y: text position on y-axis
- mode: mode parameter. Valid values: T6963C_ROM_MODE_OR,
T6963C_ROM_MODE_XOR, T6963C_ROM_MODE_AND and
T6963C_ROM_MODE_TEXT
Mode parameter explanation:
Description
-
-
-
OR Mode: In the OR-Mode, text and graphics can be displayed and the data
is logically “OR-ed”. This is the most common way of combining text and
graphics for example labels on buttons.
XOR-Mode: In this mode, the text and graphics data are combined via the
logical “exclusive OR”. This can be useful to display text in the negative
mode, i.e. white text on black background.
AND-Mode: The text and graphic data shown on display are combined via
the logical “AND function”.
TEXT-Mode: This option is only available when displaying just a text. The
Text Attribute values are stored in the graphic area of display memory.
For more details see the T6963C datasheet.
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_write_text(" Glcd LIBRARY DEMO, WELCOME !", 0, 0,
T6963C_ROM_MODE_XOR);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
537
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_line
Prototype
void T6963C_line(int x0, int y0, int x1, int y1, unsigned char
pcolor);
Returns
Nothing.
Draws a line from (x0, y0) to (x1, y1).
Parameters:
Description
-
x0: x coordinate of the line start
y0: y coordinate of the line end
x1: x coordinate of the line start
y1: y coordinate of the line end
pcolor: color parameter. Valid values:
T6963C_BLACK and T6963C_WHITE
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_line(0, 0, 239, 127, T6963C_WHITE);
T6963C_rectangle
Prototype
void T6963C_rectangle(int x0, int y0, int x1, int y1, unsigned char
pcolor);
Returns
Nothing.
Draws a rectangle on GLCD.
Parameters:
Description -
538
x0: x coordinate of the upper left rectangle corner
y0: y coordinate of the upper left rectangle corner
x1: x coordinate of the lower right rectangle corner
y1: y coordinate of the lower right rectangle corner
pcolor: color parameter. Valid values: T6963C_BLACK and T6963C_WHITE
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_rectangle, 20, 219, 107, T6963C_WHITE);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_box
Prototype
void T6963C_box(int x0, int y0, int x1, int y1, unsigned char
pcolor);
Returns
Nothing.
Draws a box on GLCD
Parameters:
Description -
x0: x coordinate of the upper left box corner
y0: y coordinate of the upper left box corner
x1: x coordinate of the lower right box corner
y1: y coordinate of the lower right box corner
pcolor: color parameter. Valid values: T6963C_BLACK and T6963C_WHITE
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_box(0, 119, 239, 127, T6963C_WHITE);
T6963C_circle
Prototype
void T6963C_circle(int x, int y, long r, unsigned char pcolor);
Returns
Nothing.
Draws a circle on GLCD.
Parameters:
Description
-
x: x coordinate of the circle center
y: y coordinate of the circle center
r: radius size
pcolor: color parameter. Valid values: T6963C_BLACK and T6963C_WHITE
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_circle(120, 64, 110, T6963C_WHITE);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
539
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_image
Prototype
void T6963C_image(const code char *pic);
Returns
Nothing.
Displays bitmap on GLCD.
Parameters:
- pic: image to be displayed. Bitmap array can be located in both code and
RAM memory (due to the mikroC PRO for PIC pointer to const and pointer to
Description RAM equivalency).
Use the mikroC PRO’s integrated Glcd Bitmap Editor (menu option Tools ›
Glcd Bitmap Editor) to convert image to a constant array suitable for displaying on Glcd.
Note: Image dimension must match the display dimension.
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_image(mc);
T6963C_sprite
Prototype
void T6963C_sprite(unsigned char px, unsigned char py, const code
char *pic, unsigned char sx, unsigned char sy);
Returns
Nothing.
Fills graphic rectangle area (px, py) to (px+sx, py+sy) with custom size picture.
Parameters:
- px: x coordinate of the upper left picture corner. Valid values: multiples of the
font width
Description - py: y coordinate of the upper left picture corner
- pic: picture to be displayed
- sx: picture width. Valid values: multiples of the font width
- sy: picture height
Note: If px and sx parameters are not multiples of the font width they will be
scaled to the nearest lower number that is a multiple of the font width.
540
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_sprite(76, 4, einstein, 88, 119); // draw a sprite
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_set_cursor
Prototype
void T6963C_set_cursor(unsigned char x, unsigned char y);
Returns
Nothing.
Sets cursor to row x and column y.
Description
Parameters:
- x: cursor position row number
- y: cursor position column number
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_set_cursor(cposx, cposy);
T6963C_clearBit
Prototype
void T6963C_clearBit(char b);
Returns
Nothing.
Clears control port bit(s).
Description Parameters:
- b: bit mask. The function will clear bit x on control port if bit x in bit mask is set to 1.
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
// clear bits 0 and 1 on control port
T6963C_clearBit(0x03);
T6963C_setBit
Prototype
void T6963C_setBit(char b);
Returns
Nothing.
Sets control port bit(s).
Description Parameters:
- b: bit mask. The function will set bit x on control port if bit x in bit mask is set to 1.
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
// set bits 0 and 1 on control port
T6963C_setBit(0x03);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
541
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_negBit
Prototype
void T6963C_negBit(char b);
Returns
Nothing.
Negates control port bit(s).
Description
Parameters:
- b: bit mask. The function will negate bit x on control port if bit x in bit mask is
set to 1.
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
// negate bits 0 and 1 on control port
T6963C_negBit(0x03);
T6963C_displayGrPanel
Prototype
void T6963C_displayGrPanel(char n);
Returns
Nothing.
Display selected graphic panel.
Description Parameters:
- n: graphic panel number. Valid values: 0 and 1.
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
// display graphic panel 1
T6963C_displayGrPanel(1);
T6963C_displayTxtPanel
Prototype
void T6963C_displayTxtPanel(char n);
Returns
Nothing.
Display selected text panel.
Description Parameters:
- n: text panel number. Valid values: 0 and 1.
542
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
// display text panel 1
T6963C_displayTxtPanel(1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_setGrPanel
Prototype
void T6963C_setTxtPanel(char n);
Returns
Nothing.
Compute start address for selected graphic panel and set appropriate internal pointers.
All subsequent graphic operations will be preformed at this graphic panel.
Description
Parameters:
- n: graphic panel number. Valid values: 0 and 1.
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
// set text panel 1 as current text panel.
T6963C_setTxtPanel(1);
T6963C_SetTxtPanel
Prototype
void T6963C_setTxtPanel(char n);
Returns
Nothing.
Compute start address for selected text panel and set appropriate internal pointers. All subsequent text operations will be preformed at this text panel.
Description
Parameters:
- n: text panel number. Valid values: 0 and 1.
Requires
Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example
// set text panel 1 as current text panel.
T6963C_setTxtPanel(1);
T6963C_PanelFill
Prototype
void T6963C_panelFill(unsigned char v);
Returns
Nothing.
Fill current panel in full (graphic+text) with appropriate value (0 to clear).
Description Parameters:
- v: value to fill panel with.
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
//clear current panel
T6963C_panelFill(0);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
543
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_grFill
Prototype
void T6963C_grFill(unsigned char v);
Returns
Nothing.
Fill current graphic panel with appropriate value (0 to clear).
Description Parameters:
- v: value to fill graphic panel with.
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
// clear current graphic panel
T6963C_grFill(0);
T6963C_txtFill
Prototype
void T6963C_txtFill(unsigned char v);
Returns
Nothing.
Fill current text panel with appropriate value (0 to clear).
Description Parameters:
- v: this value increased by 32 will be used to fill text panel.
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
// clear current text panel
T6963C_txtFill(0);
T6963C_cursor_height
Prototype
void T6963C_cursor_height(unsigned char n);
Returns
Nothing.
Set cursor size.
Description Parameters:
- n: cursor height. Valid values: 0..7.
544
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
T6963C_cursor_height(7);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_Graphics
Prototype
void T6963C_graphics(char n);
Returns
Nothing.
Enable/disable graphic displaying.
Description
Parameters:
- n: on/off parameter. Valid values: 0 (disable graphic dispaying) and 1 (enable
graphic displaying).
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
// enable graphic displaying
T6963C_graphics(1);
T6963C_text
Prototype
void T6963C_text(char n);
Returns
Nothing.
Enable/disable text displaying.
Description
Parameters:
- n: on/off parameter. Valid values: 0 (disable text dispaying) and 1 (enable text
displaying).
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
// enable text displaying
T6963C_text(1);
T6963C_cursor
Prototype
void T6963C_cursor(char n);
Returns
Nothing.
Set cursor on/off.
Description Parameters:
- n: on/off parameter. Valid values: 0 (set cursor off) and 1 (set cursor on).
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
// set cursor on
T6963C_cursor(1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
545
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_Cursor_Blink
Prototype
void T6963C_cursor_blink(char n);
Returns
Nothing.
Enable/disable cursor blinking.
Description
Parameters:
- n: on/off parameter. Valid values: 0 (disable cursor blinking) and 1 (enable
cursor blinking).
Requires
Toshiba Glcd module needs to be initialized. See the T6963C_init routine.
Example
// enable cursor blinking
T6963C_cursor_blink(1);
Library Example
The following drawing demo tests advanced routines of the T6963C Glcd library. Hardware configurations in this example are made for the T6963C 240x128 display, EasyPIC5 board and
16F887.
#include
"__T6963C.h"
// T6963C module connections
char T6963C_dataPort at PORTD;
// DATA port
sbit
sbit
sbit
sbit
sbit
sbit
sbit
sbit
//
//
//
//
//
//
//
//
T6963C_ctrlwr at RC2_bit;
T6963C_ctrlrd at RC1_bit;
T6963C_ctrlcd at RC0_bit;
T6963C_ctrlrst at RC4_bit;
T6963C_ctrlwr_Direction at
T6963C_ctrlrd_Direction at
T6963C_ctrlcd_Direction at
T6963C_ctrlrst_Direction at
TRISC2_bit;
TRISC1_bit;
TRISC0_bit;
TRISC4_bit;
WR write signal
RD read signal
CD command/data signal
RST reset signal
WR write signal
RD read signal
CD command/data signal
RST reset signal
// Signals not used by library, they are set in main function
sbit T6963C_ctrlce at RC3_bit;
// CE signal
sbit T6963C_ctrlfs at RC6_bit;
// FS signal
sbit T6963C_ctrlmd at RC5_bit;
// MD signal
sbit T6963C_ctrlce_Direction at TRISC3_bit;
// CE signal direction
sbit T6963C_ctrlfs_Direction at TRISC6_bit;
// FS signal direction
sbit T6963C_ctrlmd_Direction at TRISC5_bit;
// MD signal direction
// End T6963C module connections
546
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
/*
* bitmap pictures stored in ROM
*/
const code char mC[];
const code char einstein[];
void main() {
char txt1[] = " EINSTEIN WOULD HAVE LIKED mE";
char txt[] = " GLCD LIBRARY DEMO, WELCOME !";
unsigned
unsigned
unsigned
unsigned
char
int
char
int
TRISA0_bit
TRISA1_bit
TRISA2_bit
TRISA3_bit
TRISA4_bit
=
=
=
=
=
panel;
i;
curs;
cposx, cposy;
1;
1;
1;
1;
1;
T6963C_ctrlce_Direction = 0;
T6963C_ctrlce = 0;
T6963C_ctrlfs_Direction = 0;
T6963C_ctrlfs = 0;
T6963C_ctrlmd_Direction = 0;
T6963C_ctrlmd = 0;
ANSEL = 0;
ANSELH = 0;
// Current panel
// General purpose register
// Cursor visibility
// Cursor x-y position
//
//
//
//
//
Set
Set
Set
Set
Set
RA0
RA1
RA2
RA3
RA4
as
as
as
as
as
input
input
input
input
input
// Enable T6963C
// Font Select 8x8
// Column number select
// Configure AN pins as digital I/O
// Initialize T6369C
T6963C_init(240, 128, 8);
/*
* Enable both graphics and text display at the same time
*/
T6963C_graphics(1);
T6963C_text(1);
panel = 0;
i = 0;
curs = 0;
cposx = cposy = 0;
/*
* Text messages
*/
T6963C_write_text(txt, 0, 0, T6963C_ROM_MODE_XOR);
T6963C_write_text(txt1, 0, 15, T6963C_ROM_MODE_XOR);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
547
CHAPTER 7
mikroC PRO for PIC
Libraries
/*
* Cursor
*/
T6963C_cursor_height(8);
T6963C_set_cursor(0, 0);
T6963C_cursor(0);
// 8 pixel height
// Move cursor to top left
// Cursor off
/*
* Draw rectangles
*/
T6963C_rectangle(0, 0, 239, 127, T6963C_WHITE);
T6963C_rectangle(20, 20, 219, 107, T6963C_WHITE);
T6963C_rectangle(40, 40, 199, 87, T6963C_WHITE);
T6963C_rectangle(60, 60, 179, 67, T6963C_WHITE);
/*
* Draw a cross
*/
T6963C_line(0, 0, 239, 127, T6963C_WHITE);
T6963C_line(0, 127, 239, 0, T6963C_WHITE);
/*
* Draw solid boxes
*/
T6963C_box(0, 0, 239, 8, T6963C_WHITE);
T6963C_box(0, 119, 239, 127, T6963C_WHITE);
/*
* Draw circles
*/
T6963C_circle(120,
T6963C_circle(120,
T6963C_circle(120,
T6963C_circle(120,
T6963C_circle(120,
T6963C_circle(120,
T6963C_circle(120,
64,
64,
64,
64,
64,
64,
64,
10, T6963C_WHITE);
30, T6963C_WHITE);
50, T6963C_WHITE);
70, T6963C_WHITE);
90, T6963C_WHITE);
110, T6963C_WHITE);
130, T6963C_WHITE);
T6963C_sprite(76, 4, einstein, 88, 119);
T6963C_setGrPanel(1);
// Draw a sprite
// Select other graphic panel
T6963C_image(mC);
for(;;) {
// Endless loop
/*
* If RA0 is pressed, display only graphic panel
*/
if(RA0_bit) {
T6963C_graphics(1);
548
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
T6963C_text(0);
Delay_ms(300);
}
/*
* If RA1 is pressed, toggle the display between graphic panel
0 and graphic panel 1
*/
else if(RA1_bit) {
panel++;
panel &= 1;
T6963C_displayGrPanel(panel);
Delay_ms(300);
}
/*
* If RA2 is pressed, display only text panel
*/
else if(RA2_bit) {
T6963C_graphics(0);
T6963C_text(1);
Delay_ms(300);
}
/*
* If RA3 is pressed, display text and graphic panels
*/
else if(RA3_bit) {
T6963C_graphics(1);
T6963C_text(1);
Delay_ms(300);
}
/*
* If RA4 is pressed, change cursor
*/
else if(RA4_bit) {
curs++;
if(curs == 3) curs = 0;
switch(curs) {
case 0:
// no cursor
T6963C_cursor(0);
break;
case 1:
// blinking cursor
T6963C_cursor(1);
T6963C_cursor_blink(1);
break;
case 2:
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
549
CHAPTER 7
mikroC PRO for PIC
Libraries
// non blinking cursor
T6963C_cursor(1);
T6963C_cursor_blink(0);
break;
}
Delay_ms(300);
}
/*
* Move cursor, even if not visible
*/
cposx++;
if(cposx == T6963C_txtCols) {
cposx = 0;
cposy++;
if(cposy == T6963C_grHeight / T6963C_CHARACTER_HEIGHT) {
cposy = 0;
}
}
T6963C_set_cursor(cposx, cposy);
Delay_ms(100);
}
}
550
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
T6963C GLCD HW connection
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
551
CHAPTER 7
mikroC PRO for PIC
Libraries
UART LIBRARY
UART hardware module is available with a number of PIC MCUs. mikroC PRO for
PIC UART Library provides comfortable work with the Asynchronous (full duplex)
mode.
You can easily communicate with other devices via RS-232 protocol (for example
with PC, see the figure at the end of the topic – RS-232 HW connection). You need
a PIC MCU with hardware integrated UART, for example 16F887. Then, simply use
the functions listed below.
Note: Some PIC18 MCUs have multiple UART modules. Switching between the
UART modules in the UART library is done by the UART_Set_Active function (UART
module has to be previously initialized).
Note: In order to use the desired UART library routine, simply change the number 1
in the prototype with the appropriate module number, i.e. UART2_Init(2400);
Library Routines
-
552
UART1_Init
UART1_Data_Ready
UART1_Tx_Idle
UART1_Read
UART1_Read_Text
UART1_Write
UART1_Write_Text
UART_Set_Active
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Uart_Init
Prototype
void UART1_Init(unsigned long baud_rate);
Returns
Nothing.
Initializes desired hardware UART module with the desired baud rate. Refer to the
Description device data sheet for baud rates allowed for specific Fosc. If you specify the
unsupported baud rate, compiler will report an error.
You need PIC MCU with hardware UART.
UART1_Init needs to be called before using other functions from UART Library.
Parameters:
Requires
- baud_rate: requested baud rate
Refer to the device data sheet for baud rates allowed for specific Fosc.
Note: Calculation of the UART baud rate value is carried out by the compiler, as
it would produce a relatively large code if performed on the libary level.
Therefore, compiler needs to know the value of the parameter in the compile time.
That is why this parameter needs to be a constant, and not a variable.
Example
This will initialize hardware UART1 module and establish the communication at
2400 bps:
UART1_Init(2400);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
553
CHAPTER 7
mikroC PRO for PIC
Libraries
Uart_Data_Ready
Prototype
char UART1_Data_Ready();
- 1 if data is ready for reading
- 0 if there is no data in the receive register
Returns
Description Use the function to test if data in receive buffer is ready for reading.
Requires
UART HW module must be initialized and communication established before
using this function. See UART1_Init.
Example
// If data is ready, read it:
if (UART1_Data_Ready() == 1) {
receive = UART1_Read();
}
UART1_Tx_Idle
Prototype
char UART1_Tx_Idle();
- 1 if data is ready for reading
- 0 if there is no data in the receive register
Returns
Description Use the function to test if the transmit shift register is empty or not.
Requires
UART HW module must be initialized and communication established before
using this function. See UART1_Init.
Example
// If the previous data has been shifted out, send next data:
if (UART1_Tx_Idle() == 1) {
UART1_Write(_data);
}
UART1_Read
554
Prototype
char UART1_Read();
Returns
Returns the received byte.
Description
Function receives a byte via UART. Use the function UART1_Data_Ready to
test if data is ready first.
Requires
UART HW module must be initialized and communication established before
using this function. See UART1_Init.
Example
// If data is ready, read it:
if (UART1_Data_Ready() == 1) {
receive = UART1_Read();
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
UART1_Read_Text
Prototype
void UART1_Read_Text(char *Output, char *Delimiter, char
Attempts);
Returns
Nothing.
Reads characters received via UART until the delimiter sequence is detected.
The read sequence is stored in the parameter output; delimiter sequence is
stored in the parameter delimiter.
Description
Requires
This is a blocking call: the delimiter sequence is expected, otherwise the procedure exits (if the delimiter is not found). Parameter Attempts defines number of
received characters in which Delimiter sequence is expected. If Attempts is set
to 255, this routine will continuously try to detect the Delimiter sequence.
UART HW module must be initialized and communication established before
using this function. See UART1_Init.
Read text until the sequence “OK” is received, and send back what’s
been received:
UART1_Init(4800);
Delay_ms(100);
Example
// initialize UART1 module
while (1) {
if (UART1_Data_Ready() == 1) { // if data is received
UART1_Read_Text(output, "delim", 10); // reads text until
'delim' is found
UART1_Write_Text(output); // sends back text
}
}
UART1_Write
Prototype
void UART1_Write(char _data);
Returns
Nothing.
The function transmits a byte via the UART module.
Description
Parameters:
_data: data to be sent
Requires
UART HW module must be initialized and communication established before
using this function. See UART1_Init.
Example
unsigned char _data = 0x1E;
...
UART1_Write(_data);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
555
CHAPTER 7
mikroC PRO for PIC
Libraries
UART1_Write_Text
Prototype
void UART1_Write_Text(char * UART_text);
Returns
Nothing.
Description Sends text (parameter UART_text) via UART. Text should be zero terminated.
Requires
UART HW module must be initialized and communication established before
using this function. See UART1_Init.
Read text until the sequence “OK” is received, and send back
what’s been received:
UART1_Init(4800);
Delay_ms(100);
Example
// initialize UART1 module
while (1) {
if (UART1_Data_Ready() == 1) {
// if data is received
UART1_Read_Text(output, "delim", 10); // reads text until
'delim' is found
UART1_Write_Text(output);
// sends back text
}
}
UART_Set_Active
Prototype
void UART_Set_Active(char (*read_ptr)(), void
(*write_ptr)(unsigned char data_), char (ready_ptr)(), char
(*tx_idle_ptr)())
Returns
Nothing.
Sets active UART module which will be used by the UART library routines.
Parameters:
Description
-
read_ptr: UART1_Read handler
write_ptr: UART1_Write handler
ready_ptr: UART1_Data_Ready handler
tx_idle_ptr: UART1_Tx_Idle handler
Routine is available only for MCUs with two UART modules.
Requires
Example
556
Used UART module must be initialized before using this routine. See
UART1_Init routine
// Activate UART2 module
UART_Set_Active(&UART1_Read, &UART1_Write, &UART1_Data_Ready,
&UART1_Tx_Idle);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
The example demonstrates a simple data exchange via UART. When PIC MCU
receives data, it immediately sends it back. If PIC is connected to the PC (see the
figure below), you can test the example from the mikroC PRO for PIC terminal for
RS-232 communication, menu choice Tools › Terminal.
char uart_rd;
void main() {
UART1_Init(9600);
bps
Delay_ms(100);
lize
while (1) {
if (UART1_Data_Ready()) {
uart_rd = UART1_Read();
UART1_Write(uart_rd);
}
}
// Initialize UART module at 9600
// Wait for UART module to stabi-
// Endless loop
// If data is received,
//
read the received data,
//
and send data via UART
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
557
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
RS-232 HW connection
558
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
USB HID LIBRARY
Universal Serial Bus (USB) provides a serial bus standard for connecting a wide
variety of devices, including computers, cell phones, game consoles, PDA’s, etc.
mikroC PRO for PIC includes a library for working with human interface devices via
Universal Serial Bus. A human interface device or HID is a type of computer device
that interacts directly with and takes input from humans, such as the keyboard,
mouse, graphics tablet, and the like.
Descriptor File
Each project based on the USB HID library should include a descriptor source file
which contains vendor id and name, product id and name, report length, and other
relevant information. To create a descriptor file, use the integrated USB HID terminal of mikroC PRO for PIC(Tools › USB HID Terminal). The default name for
descriptor file is USBdsc.c, but you may rename it.
The provided code in the “Examples” folder works at 48MHz, and the flags should
not be modified without consulting the appropriate datasheet first.
Library Routines
-
Hid_Enable
Hid_Read
Hid_Write
Hid_Disable
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
559
CHAPTER 7
mikroC PRO for PIC
Libraries
Hid_Enable
Prototype
void Hid_Enable(unsigned readbuff, unsigned writebuff);
Returns
Nothing.
Enables USB HID communication. Parameters readbuff and writebuff are
the Read Buffer and the Write Buffer, respectively, which are used for HID comDescription munication.
This function needs to be called before using other routines of USB HID Library.
Requires
Nothing.
Example
Hid_Enable(&rd, &wr);
Hid_Read
Prototype
unsigned char Hid_Read(void);
Returns
Number of characters in the Read Buffer received from the host.
Description
Receives message from host and stores it in the Read Buffer. Function returns
the number of characters received in the Read Buffer.
Requires
USB HID needs to be enabled before using this function. See Hid_Enable.
Example
get = Hid_Read();
Hid_Write
Prototype
unsigned short Hid_Write(unsigned writebuff, unsigned short len);
Returns
1 if data was successfuly sent, 0 if not.
Function sends data from Write Buffer writebuff to host. Write Buffer is the
same parameter as used in initialization; see Hid_Enable. Parameter len
Description should specify a length of the data to be transmitted.
Function call needs to be repeated as long as data is not successfuly sent.
560
Requires
USB HID needs to be enabled before using this function. See Hid_Enable.
Example
// retry until success.
while(!Hid_Write(&my_Usb_Buff, 1));
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Hid_Disable
Prototype
void Hid_Disable(void);
Returns
Nothing.
Description Disables USB HID communication.
Requires
USB HID needs to be enabled before using this function. See Hid_Enable.
Example
Hid_Disable();
Library Example
The following example continually sends sequence of numbers 0..255 to the PC via Universal Serial Bus. usbdsc.c must be included in the project (via mikroC PRO for PIC IDE tool or via
#include mechanism in source code).
unsigned short m, k;
unsigned short userRD_buffer[64];
unsigned short userWR_buffer[64];
void interrupt() {
asm CALL _Hid_InterruptProc
asm nop
}
void Init_Main() {
// Disable all interrupts
// Disable GIE, PEIE, TMR0IE, INT0IE,RBIE
INTCON = 0;
INTCON2 = 0xF5;
INTCON3 = 0xC0;
// Disable Priority Levels on interrupts
RCON.IPEN = 0;
PIE1 = 0;
PIE2 = 0;
PIR1 = 0;
PIR2 = 0;
// Configure all ports with analog function as digital
ADCON1 |= 0x0F;
// Ports Configuration
TRISA = 0;
TRISB = 0;
TRISC = 0xFF;
TRISD = 0xFF;
TRISE = 0x07;
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
561
CHAPTER 7
mikroC PRO for PIC
Libraries
LATA
LATB
LATC
LATD
LATE
=
=
=
=
=
0;
0;
0;
0;
0;
// Clear user RAM
// Banks [00 .. 07] ( 8 x 256 = 2048 Bytes )
asm {
LFSR
FSR0, 0x000
MOVLW
0x08
CLRF
POSTINC0, 0
CPFSEQ
FSR0H, 0
BRA
$ - 2
}
// Timer 0
T0CON = 0x07;
TMR0H = (65536-156) >> 8;
TMR0L = (65536-156) & 0xFF;
INTCON.T0IE = 1;
// Enable T0IE
T0CON.TMR0ON = 1;
}
/** Main Program Routine **/
void main() {
Init_Main();
Hid_Enable(&userRD_buffer, &userWR_buffer);
do {
for (k = 0; k < 255; k++) {
// Prepare send buffer
userWR_buffer[0] = k;
// Send the number via USB
Hid_Write(&userWR_buffer, 1);
}
} while (1);
Hid_Disable();
}
562
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
HW Connection
USB connection scheme
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
563
CHAPTER 7
mikroC PRO for PIC
Libraries
STANDARD ANSI C LIBRARIES
- ANSI
- ANSI
- ANSI
- ANSI
C
C
C
C
Ctype Library
Math Library
Stdlib Library
String Library
ANSI C Ctype Library
The mikroC PRO for PIC provides a set of standard ANSI C library functions for testing and mapping characters.
Note: Not all of the standard functions have been included.
Note: The functions have been mostly implemented according to the ANSI C standard, but certain functions have been modified in order to facilitate PIC programming. Be sure to skim through the description before using standard C functions.
Library Functions
-
564
isalnum
isalpha
iscntrl
isdigit
isgraph
islower
ispunct
isspace
isupper
isxdigit
toupper
tolower
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
isalnum
Prototype
unsigned short isalpha(char character);
Description
Function returns 1 if the character is alphanumeric (A-Z, a-z, 0-9), otherwise
returns zero.
isalpha
Prototype
unsigned short isalpha(char character);
Description
Function returns 1 if the character is alphabetic (A-Z, a-z), otherwise returns
zero.
iscntrl
Prototype
unsigned short iscntrl(char character);
Description
Function returns 1 if the character is a control or delete character(decimal 031 and 127), otherwise returns zero.
isdigit
Prototype
unsigned short isdigit(char character);
Description Function returns 1 if the character is a digit (0-9), otherwise returns zero.
isgraph
Prototype
unsigned short isgraph(char character);
Description
Function returns 1 if the character is a printable, excluding the space (decimal
32), otherwise returns zero.
islower
Prototype
int islower(char character);
Description
Function returns 1 if the character is a lowercase letter (a-z), otherwise returns
zero.
ispunct
Prototype
unsigned short ispunct(char character);
Description
Function returns 1 if the character is a punctuation (decimal 32-47, 58-63, 9196, 123-126), otherwise returns zero.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
565
CHAPTER 7
mikroC PRO for PIC
Libraries
isspace
Prototype
unsigned short isspace(char character);
Description
Function returns 1 if the character is a white space (space, tab, CR, HT, VT,
NL, FF), otherwise returns zero.
isupper
Prototype
unsigned short isupper(char character);
Description
Function returns 1 if the character is an uppercase letter (A-Z), otherwise
returns zero.
isxdigit
Prototype
unsigned short isxdigit(char character);
Description
Function returns 1 if the character is a hex digit (0-9, A-F, a-f), otherwise
returns zero.
toupper
Prototype
unsigned short toupper(char character);
Description
If the character is a lowercase letter (a-z), the function returns an uppercase
letter. Otherwise, the function returns an unchanged input parameter.
tolower
566
Prototype
unsigned short tolower(char character);
Description
If the character is an uppercase letter (A-Z), function returns a lowercase letter. Otherwise, function returns an unchanged input parameter.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
ANSI C Math Library
The mikroC PRO for PIC provides a set of standard ANSI C library functions for
floating point math handling.
Note: Not all of the standard functions have been included.
Note: The functions have been mostly implemented according to the ANSI C standard, but certain functions have been modified in order to facilitate PIC programming. Be sure to skim through the description before using standard C functions.
Library Functions
-
acos
asin
atan
atan2
ceil
cos
cosh
eval_poly
exp
fabs
floor
frexp
ldexp
log
log10
modf
pow
sin
sinh
sqrt
tan
tanh
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
567
CHAPTER 7
mikroC PRO for PIC
Libraries
acos
Prototype
double acos(double x);
Function returns the arc cosine of parameter x; that is, the value whose cosine
Description is x. The input parameter x must be between -1 and 1 (inclusive). The return
value is in radians, between 0 and Π (inclusive).
asin
Prototype
double asin(double x);
Function returns the arc sine of parameter x; that is, the value whose sine is x.
Description The input parameter x must be between -1 and 1 (inclusive). The return value is
in radians, between -Π/2 and Π/2 (inclusive).
atan
Prototype
double atan(double f);
Description
Function computes the arc tangent of parameter f; that is, the value whose tangent is f. The return value is in radians, between -Π/2 and Π/2 (inclusive).
atan2
Prototype
double atan2(double y, double x);
This is the two-argument arc tangent function. It is similar to computing the arc
tangent of y/x, except that the signs of both arguments are used to determine
Description
the quadrant of the result and x is permitted to be zero. The return value is in
radians, between -Π and Π (inclusive).
ceil
Prototype
double ceil(double x);
Description Function returns value of parameter x rounded up to the next whole number.
cos
Prototype
double cos(double f);
Description Function returns the cosine of f in radians. The return value is from -1 to 1.
568
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
cosh
Prototype
double cosh(double x);
Description
Function returns the hyperbolic cosine of x, defined mathematically as (ex+e-x)/2. If
the value of x is too large (if overflow occurs), the function fails.
eval_poly
Prototype
static double eval_poly(double x, const double code * d, int n);
Description
Function Calculates polynom for number x, with coefficients stored in d[], for
degree n.
exp
Prototype
double exp(double x);
Description
Function returns the value of e — the base of natural logarithms — raised to the
power x (i.e. ex).
fabs
Prototype
double fabs(double d);
Description Function returns the absolute (i.e. positive) value of d.
floor
Prototype
double floor(double x);
Description Function returns the value of parameter x rounded down to the nearest integer.
frexp
Prototype
double frexp(double value, int *eptr);
Function splits a floating-point value into a normalized fraction and an integral
Description power of 2. The return value is the normalized fraction and the integer exponent
is stored in the object pointed to by eptr.
ldexp
Prototype
double ldexp(double value, int newexp);
Description
Function returns the result of multiplying the floating-point number num by 2
raised to the power n (i.e. returns x * 2n).
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
569
CHAPTER 7
mikroC PRO for PIC
Libraries
log
Prototype
double log(double x);
Description Function returns the natural logarithm of x (i.e. loge(x)).
log10
Prototype
double log10(double x);
Description Function returns the base-10 logarithm of x (i.e. log10(x)).
modf
Prototype
double modf(double val, double * iptr);
Description
Returns argument val split to the fractional part (function return val) and integer
part (in number iptr).
pow
Prototype
double pow(double x, double y);
Description
Function returns the value of x raised to the power y (i.e. xy). If x is negative,
the function will automatically cast y into unsigned long.
sin
Prototype
double sin(double f);
Description Function returns the sine of f in radians. The return value is from -1 to 1.
sinh
Prototype
double sinh(double x);
Description
Function returns the hyperbolic sine of x, defined mathematically as (ex-ex)/2. If the value of x is too large (if overflow occurs), the function fails.
sqrt
Prototype
double sqrt(double x);
Description Function returns the non negative square root of x.
570
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
tan
Prototype
double tan(double x);
Description
Function returns the tangent of x in radians. The return value spans the
allowed range of floating point in the mikroC PRO for PIC.
tanh
Prototype
double tanh(double x);
Description
Function returns the hyperbolic tangent of x, defined mathematically as
sinh(x)/cosh(x).
ANSI C Stdlib Library
The mikroC PRO for PIC provides a set of standard ANSI C library functions of general utility.
Note: Not all of the standard functions have been included.
Note: Functions have been mostly implemented according to the ANSI C standard, but certain
functions have been modified in order to facilitate PIC programming. Be sure to skim through the
description before using standard C functions.
Library Functions
-
abs
atof
atoi
atol
div
ldiv
uldiv
labs
max
min
rand
srand
xtoi
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
571
CHAPTER 7
mikroC PRO for PIC
Libraries
abs
Prototype
int abs(int a);
Description Function returns the absolute (i.e. positive) value of a.
atof
Prototype
double atof(char *s)
Function converts the input string s into a double precision value and returns the
value. Input string s should conform to the floating point literal format, with an
Description optional whitespace at the beginning. The string will be processed one character
at a time, until the function reaches a character which it doesn’t recognize (including a null character).
atoi
Prototype
int atoi(char *s);
Function converts the input string s into an integer value and returns the value.
The input string s should consist exclusively of decimal digits, with an optional
Description whitespace and a sign at the beginning. The string will be processed one character at a time, until the function reaches a character which it doesn’t recognize
(including a null character).
atol
Prototype
long atol(char *s)
Function converts the input string s into a long integer value and returns the
value. The input string s should consist exclusively of decimal digits, with an
Description optional whitespace and a sign at the beginning. The string will be processed one
character at a time, until the function reaches a character which it doesn’t recognize (including a null character).
div
Prototype
div_t div(int number, int denom);
Function computes the result of division of the numerator number by the denomDescription inator denom; the function returns a structure of type div_t comprising quotient
(quot) and remainder (rem), see Div Structures.
572
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
ldiv
Prototype
ldiv_t ldiv(long number, long denom);
Function is similar to the div function, except that the arguments and result
structure members all have type long.
Description
Function computes the result of division of the numerator number by the denominator denom; the function returns a structure of type ldiv_t comprising quotient (quot) and remainder (rem), see Div Structures.
uldiv
Prototype
uldiv_t uldiv(unsigned long number, unsigned long denom);
Function is similar to the div function, except that the arguments and result
structure members all have type unsigned long.
Description Function computes the result of division of the numerator number by the denominator denom; the function returns a structure of type uldiv_t comprising quotient (quot) and remainder (rem), see Div Structures.
labs
Prototype
long labs(long x);
Description Function returns the absolute (i.e. positive) value of long integer x.
max
Prototype
int max(int a, int b);
Description Function returns greater of the two integers, a and b.
min
Prototype
int min(int a, int b);
Description Function returns lower of the two integers, a and b.
rand
Prototype
int rand();
Function returns a sequence of pseudo-random numbers between 0 and 32767.
Description The function will always produce the same sequence of numbers unless srand
is called to seed the start point.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
573
CHAPTER 7
mikroC PRO for PIC
Libraries
srand
Prototype
void srand(unsigned x);
Function uses x as a starting point for a new sequence of pseudo-random numDescription bers to be returned by subsequent calls to rand. No values are returned by this
function.
xtoi
Prototype
unsigned xtoi(register char *s);
Function converts the input string s consisting of hexadecimal digits into an integer value. The input parameter s should consist exclusively of hexadecimal digDescription its, with an optional whitespace and a sign at the beginning. The string will be
processed one character at a time, until the function reaches a character which it
doesn’t recognize (including a null character).
Div Structures
typedef struct divstruct {
int quot;
int rem;
} div_t;
typedef struct ldivstruct {
long quot;
long rem;
} ldiv_t;
typedef struct uldivstruct {
unsigned long quot;
unsigned long rem;
} uldiv_t;
574
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
ANSI C String Library
The mikroC PRO for PIC provides a set of standard ANSI C library functions useful
for manipulating strings and RAM memory.
Note: Not all of the standard functions have been included.
Note: Functions have been mostly implemented according to the ANSI C standard,
but certain functions have been modified in order to facilitate PIC programming. Be
sure to skim through the description before using standard C functions.
Library Functions
-
memchr
memcmp
memcpy
memmove
memset
strcat
strchr
strcmp
strcpy
strlen
strncat
strncpy
strspn
strncmp
strstr
strcspn
strpbrk
strrchr
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
575
CHAPTER 7
mikroC PRO for PIC
Libraries
memchr
Prototype
void *memchr(void *p, char n, unsigned int v);
Function locates the first occurrence of n in the initial v bytes of memory area
starting at the address p. The function returns the pointer to this location or 0 if
the n was not found.
Description
For parameter p you can use either a numerical value (literal/variable/constant)
indicating memory address or a dereferenced value of an object, for example
&mystring or &P0.
memcmp
Prototype
int memcmp(void *s1, void *s2, int n);
Function compares the first n characters of objects pointed to by s1 and s2 and
returns zero if the objects are equal, or returns a difference between the first difDescription fering characters (in a left-to-right evaluation).
Accordingly, the result is greater than zero if the object pointed to by s1 is greater
than the object pointed to by s2 and vice versa.
memcpy
Prototype
void *memcpy(void *d1, void *s1, int n);
Function copies n characters from the object pointed to by s1 into the object pointDescription ed to by d1. If copying takes place between objects that overlap, the behavior is
undefined. The function returns address of the object pointed to by d1.
memmove
Prototype
void *memmove(void *to, void *from, register int n);
Function copies n characters from the object pointed to by from into the object
Description pointed to by to. Unlike memcpy, the memory areas to and from may overlap.
The function returns address of the object pointed to by to.
memset
Prototype
void *memset(void *p1, char character, int n)
Function copies the value of the character into each of the first n characters of
Description the object pointed by p1. The function returns address of the object pointed to
by p1.
576
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
strcat
Prototype
char *strcat(char *to, char *from);
Function appends a copy of the string from to the string to, overwriting the null
character at the end of to. Then, a terminating null character is added to the
Description result. If copying takes place between objects that overlap, the behavior is undefined. to string must have enough space to store the result. The function returns
address of the object pointed to by to.
strchr
Prototype
char *strchr(char *ptr, char chr);
Function locates the first occurrence of character chr in the string ptr. The function returns a pointer to the first occurrence of character chr, or a null pointer if
Description
chr does not occur in ptr. The terminating null character is considered to be a
part of the string.
strcmp
Prototype
int strcmp(char *s1, char *s2);
Function compares strings s1 and s2 and returns zero if the strings are equal, or
returns a difference between the first differing characters (in a left-to-right evaluDescription
ation). Accordingly, the result is greater than zero if s1 is greater than s2 and vice
versa.
strcpy
Prototype
char *strcpy(char *to, char *from);
Function copies the string from into the string to. If copying is successful, the
Description function returns to. If copying takes place between objects that overlap, the
behavior is undefined.
strlen
Prototype
int strlen(char *s);
Description
Function returns the length of the string s (the terminating null character does not
count against string’s length).
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
577
CHAPTER 7
mikroC PRO for PIC
Libraries
strncat
Prototype
char *strncat(char *to, char *from, int size);
Function appends not more than size characters from the string from to to. The
Description initial character of from overwrites the null character at the end of to. The terminating null character is always appended to the result. The function returns to.
strncpy
Prototype
char *strncpy(char *to, char *from, int size);
Function copies not more than size characters from string from to to. If copying takes place between objects that overlap, the behavior is undefined. If from
Description
is shorter than size characters, then to will be padded out with null characters to
make up the difference. The function returns the resulting string to.
strspn
Prototype
int strspn(char *str1, char *str2);
Function returns the length of the maximum initial segment of str1 which consists
Description entirely of characters from str2. The terminating null character at the end of the
string is not compared.
strncmp
Prototype
Description
int strncmp(char *s1, char *s2, char len);
Function lexicographically compares not more than len characters (characters
that follow the null character are not compared) from the string pointed by s1 to
the string pointed by s2. The function returns a value indicating the s1 and s2
relationship:
Value
< 0
= 0
> 0
578
Meaning
s1 "less than" s2
s1 "equal to" s2
s1 "greater than" s2
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
strstr
Prototype
char *strstr(char *s1, char *s2);
Function locates the first occurrence of the string s2 in the string s1 (excluding
the terminating null character).
Description
The function returns pointer to first occurrence of s2 in s1; if no string was found,
function returns 0. If s2 is a null string, the function returns 0.
strcspn
Prototype
char *strcspn(char * s1, char *s2);
Function computes the length of the maximum initial segment of the string pointed to by s1 that consists entirely of characters that are not in the string pointed
Description to by s2.
The function returns the length of the initial segment.
strpbrk
Prototype
char *strpbrk(char * s1, char *s2);
Function searches s1 for the first occurrence of any character from the string s2.
The terminating null character is not included in the search. The function returns
Description
pointer to the matching character in s1. If s1 contains no characters from s2, the
function returns 0.
strrchr
Prototype
char *strrchr(char * ptr, unsigned int chr);
Function searches the string ptr for the last occurrence of character chr. The
null character terminating ptr is not included in the search. The function returns
Description
pointer to the last chr found in ptr; if no matching character was found, function
returns 0.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
579
CHAPTER 7
mikroC PRO for PIC
Libraries
MISCELLANEOUS LIBRARIES
- Button Library
- Conversions Library
- Sprint Library
- Setjmp Library
- Time Library
- Trigonometry Library
580
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
BUTTON LIBRARY
The Button library contains miscellaneous routines useful for a project development.
Library Routines
- Button
Button
Prototype
unsigned short Button(unsigned short *port, unsigned short pin,
unsigned short time, unsigned short active_state);
Returns
Returns 0 or 255.
Function eliminates the influence of contact flickering upon pressing a button
(debouncing).
Description Parameter port specifies the location of the button; parameter pin is the pin
number on designated port and goes from 0..7; parameter time is a debounce
period in milliseconds; parameter active_state can be either 0 or 1, and it determines if the button is active upon logical zero or logical one.
Requires
Button pin must be configured as input.
Example reads RB0, to which the button is connected; on transition from 1 to 0
(release of button), PORTD is inverted:
Example
do {
if (Button(&PORTB, 0, 1, 1)) oldstate = 1;
if (oldstate && Button(&PORTB, 0, 1, 0)) {
PORTD = ~PORTD;
oldstate = 0;
}
} while(1);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
581
CHAPTER 7
mikroC PRO for PIC
Libraries
CONVERSIONS LIBRARY
The mikroC PRO for PIC Conversions Library provides routines for numerals to
strings and BCD/decimal conversions.
Library Routines
You can get text representation of numerical value by passing it to one of the following routines:
-
ByteToStr
ShortToStr
WordToStr
IntToStr
LongToStr
LongWordToStr
FloatToStr
The following functions convert decimal values to BCD and vice versa:
- Dec2Bcd
- Bcd2Dec16
- Dec2Bcd16
582
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
ByteToStr
Prototype
void ByteToStr(unsigned short input, char *output);
Returns
Nothing.
Converts input byte to a string. The output string has fixed width of 4 characters
including null character at the end (string termination). The output string is right
justified and remaining positions on the left (if any) are filled with blanks.
Description
Parameters:
- input: byte to be converted
- output: destination string
Requires
Destination string should be at least 4 characters in length.
Example
unsigned short t = 24;
char txt[4];
...
ByteToStr(t, txt); // txt is " 24" (one blank here)
ShortToStr
Prototype
void ShortToStr(short input, char *output);
Returns
Nothing.
Converts input signed short number to a string. The output string has fixed width
of 5 characters including null character at the end (string termination). The output
string is right justified and remaining positions on the left (if any) are filled with
blanks.
Description
Parameters:
- input: short number to be converted
- output: destination string
Requires
Destination string should be at least 5 characters in length.
Example
short t = -24;
char txt[5];
...
ShortToStr(t, txt);
// txt is " -24" (one blank here)
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
583
CHAPTER 7
mikroC PRO for PIC
Libraries
WordToStr
Prototype
void WordToStr(unsigned input, char *output);
Returns
Nothing.
Converts input word to a string. The output string has fixed width of 6 characters
including null character at the end (string termination). The output string is right
justified and the remaining positions on the left (if any) are filled with blanks.
Description
Parameters:
- input: word to be converted
- output: destination string
Requires
Destination string should be at least 6 characters in length.
Example
unsigned t = 437;
char txt[6];
...
WordToStr(t, txt);
// txt is "
437" (two blanks here)
IntToStr
Prototype
void IntToStr(int input, char *output);
Returns
Nothing.
Converts input signed integer number to a string. The output string has fixed width
of 7 characters including null character at the end (string termination). The output
string is right justified and the remaining positions on the left (if any) are filled with
blanks.
Description
Parameters:
- input: signed integer number to be converted
- output: destination string
584
Requires
Destination string should be at least 7 characters in length.
Example
int j = -4220;
char txt[7];
...
IntToStr(j, txt);
// txt is " -4220" (one blank here)
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
LongintToStr
Prototype
void LongToStr(long input, char *output);
Returns
Nothing.
Converts input signed long integer number to a string. The output string has fixed
width of 12 characters including null character at the end (string termination). The
output string is right justified and the remaining positions on the left (if any) are
filled with blanks.
Description
Parameters:
- input:signed long integer number to be converted
- output: destination string
Requires
Destination string should be at least 12 characters in length.
Example
long jj = -3700000;
char txt[12];
...
LongToStr(jj, txt);
// txt is "
-3700000" (three blanks here)
LongWordToStr
Prototype
void LongWordToStr(unsigned long input, char *output);
Returns
Nothing.
Converts input unsigned long integer number to a string. The output string has
fixed width of 11 characters including null character at the end (string termination).
The output string is right justified and the remaining positions on the left (if any)
are filled with blanks.
Description
Parameters:
- input: unsigned long integer number to be converted
- output: destination string
Requires
Destination string should be at least 11 characters in length.
Example
unsigned long jj = 3700000;
char txt[11];
...
LongToStr(jj, txt);
// txt is "
3700000" (three blanks here)
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
585
CHAPTER 7
mikroC PRO for PIC
Libraries
FloatToStr
Prototype
unsigned char FloatToStr(float fnum, unsigned char *str);
Returns
-
3
2
1
0
if
if
if
if
input number is NaN
input number is -INF
input number is +INF
conversion was successful
Converts a floating point number to a string.
Parameters:
- input: floating point number to be converted
Description - output: destination string
The output string is left justified and null terminated after the last digit.
Note: Given floating point number will be truncated to 7 most significant digits
before conversion.
586
Requires
Destination string should be at least 14 characters in length.
Example
float ff1 = -374.2;
float ff2 = 123.456789;
float ff3 = 0.000001234;
char txt[15];
...
FloatToStr(ff1, txt); // txt is "-374.2"
FloatToStr(ff2, txt); // txt is "123.4567"
FloatToStr(ff3, txt); // txt is "1.234e-6"
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Dec2Bcd
Prototype
unsigned short Dec2Bcd(unsigned short decnum);
Returns
Converted BCD value.
Converts input unsigned short integer number to its appropriate BCD representation.
Description
Parameters:
- decnum: unsigned short integer number to be converted
Requires
Nothing.
Example
unsigned short a, b;
...
a = 22;
b = Dec2Bcd(a);
// b equals 34
Bcd2Dec16
Prototype
unsigned Bcd2Dec16(unsigned bcdnum);
Returns
Converted decimal value.
Converts 16-bit BCD numeral to its decimal equivalent.
Description Parameters:
- bcdnum: 16-bit BCD numeral to be converted
Requires
Nothing.
Example
unsigned a, b;
...
a = 0x1234;
b = Bcd2Dec16(a);
// a equals 4660
// b equals 1234
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
587
CHAPTER 7
mikroC PRO for PIC
Libraries
Dec2Bcd16
Prototype
unsigned Dec2Bcd16(unsigned decnum);
Returns
Converted BCD value.
Converts unsigned 16-bit decimal value to its BCD equivalent.
Description Parameters:
- decnum unsigned 16-bit decimal number to be converted
588
Requires
Nothing.
Example
unsigned a, b;
...
a = 2345;
b = Dec2Bcd16(a);
// b equals 9029
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
PRINTOUT LIBRARY
The mikroC PRO for PIC provides the PrintOut routine for easy data formatting and printing.
Note: Library works with PIC18 family only.
Library Routines
- PrintOut
PrintOut
Prototype
void PrintOut(void (*prntoutfunc)(char ch), const char *f,...);
Returns
Nothing.
PrintOut is used to format data and print them in a way defined by the user
through a print handler function.
Parameters:
- prntoutfunc: print handler function
- f:format string
The f argument is a format string and may be composed of characters, escape
sequences, and format specifications. Ordinary characters and escape
sequences are copied to the print handler in order in which they are interpreted.
Format specifications always begin with a percent sign (%) and require additional
arguments to be included in the function call.
Description
The format string is read from left to right. The first format specification encountered refers to the first argument after the f parameter and then converts and outputs it using the format specification. The second format specification accesses
the second argument after f, and so on. If there are more arguments than format
specifications, the extra arguments are ignored. Results are unpredictable if there
are not enough arguments for the format specifications. The format specifications
have the following format:
% [flags] [width] [.precision]
[{ l | L }]
conversion_type
Each field in the format specification can be a single character or a number which
specifies a particular format option. The conversion_type field is where a single
character specifies that an argument is interpreted as a character, string, number,
or pointer, as shown in the following table:
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
589
CHAPTER 7
mikroC PRO for PIC
Libraries
conversion_type Argument Type
d
int
Signed decimal number
u
unsigned int
Unsigned decimal number
o
unsigned int
Unsigned octal number
x
unsigned int
X
unsigned int
f
double
e
double
Floating-point number using the format []d.dddde[-]dd
E
double
Floating-point number using the format []d.ddddE[-]dd
g
double
Floating-point number using either e or f
format, whichever is more compact for the
specified value and precision
c
int
int is converted to an unsigned char,
and the resulting character is written
s
char *
String with a terminating null character
p
void *
Pointer value, the X format is used
%
<none>
A % is written. No argument is converted.
The complete conversion specification
shall be %%.
Description
590
Output Format
Unsigned hexadecimal number using
0123456789abcdef
Unsigned hexadecimal number using
0123456789ABCEDF
Floating-point number using the format []dddd.dddd
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
The flags field is where a single character is used to justify the output and to
print +/- signs and blanks, decimal points, and octal and hexadecimal prefixes, as
shown in the following table.
Meaning
Left justify the output in the specified field width.
Prefix the output value with + or - sign if the output is a signed type.
space Prefix the output value with a blank if it is a signed positive value.
(' ') Otherwise, no blank is prefixed.
Prefix a non-zero output value with 0, 0x, or 0X when used with o, x,
and X field types, respectively. When used with the e, E, f, g, and G
#
field types, the # flag forces the output value to include a decimal
point. In any other case the # flag is ignored.
*
Ignore format specifier.
flags
+
The width field is a non-negative number that specifies a minimum number of
printed characters. If a number of characters in the output value is less than width,
blanks are added on the left or right (when the - flag is specified) in order to pad
to the minimum width. If the width is prefixed with 0, then zeros are padded
instead of blanks. The width field never truncates a field. If the length of the output value exceeds the specified width, all characters are output.
Description The precision field is a non-negative number that specifies the number of characters to print, number of significant digits, or number of decimal places. The precision field can cause truncation or rounding of the output value in the case of a
floating-point number as specified in the following table.
flags
d, u, o,
x, X
f
e, E
g
c, C
s
MeaningMeaning of the precision field
The precision field is where you specify the minimum number of
digits that will be included in the output value. Digits are not truncated if the number of digits in an argument exceeds that defined
in the precision field. If the number of digits in the argument is
less than the precision field, the output value is padded on the
left with zeros.
The precision field is where you specify the number of digits to
the right of the decimal point. The last digit is rounded.
The precision field is where you specify the number of digits to
the right of the decimal point. The last digit is rounded.
The precision field is where you specify the maximum number of
significant digits in the output value.
The precision field has no effect on these field types.
The precision field is where you specify the maximum number of
characters in the output value. Excess characters are not output.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
591
CHAPTER 7
mikroC PRO for PIC
Libraries
The optional characters l or L may immediately precede conversion_type to
respectively specify long versions of the integer types d, i, u, o, x, and X.
Description
Requires
You must ensure that the argument type matches that of the format specification. You can use type casts to ensure that the proper type is passed to printout.
Nothing.
Print mikroElektronika example's header file to UART.
void PrintHandler(char c){
UART1_Write(c);
}
void main(){
UART1_Init(9600);
Delay_ms(100);
Example
PrintOut(PrintHandler, "/*\r\n"
" * Project name:\r\n"
"
PrintOutExample (Sample usage
of PrintOut() function)\r\n"
" * Copyright:\r\n"
"
(c) MikroElektronika,
2006.\r\n"
" * Revision History:\r\n"
"
20060710:\r\n"
"
- Initial release\r\n"
" * Description:\r\n"
"
Simple demonstration on usage
of the PrintOut() function\r\n"
" * Test configuration:\r\n"
"
MCU:
PIC18F8520\r\n"
"
Dev.Board:
BigPIC5\r\n"
"
Oscillator:
HS,
%10.3fMHz\r\n"
"
Ext. Modules:
None.\r\n"
"
SW:
mikroC PRO
for PIC\r\n"
" * NOTES:\r\n"
"
None.\r\n"
" */\r\n", Get_Fosc_kHz()/1000.);
}
592
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
SETJMP LIBRARY
This library contains functions and types definitions for bypassing the normal function call and
return discipline. The type declared is jmp_buf which is an array type suitable for holding the information needed to restore a calling environment.
Type declaration is contained in sejmp16.h and setjmp18.h header files for PIC16 and PIC18 family mcus respectively. These headers can be found in the include folder of the compiler. The implementation of this library is different for PIC16 and PIC18 family mcus. For PIC16 family Setjmp
and Longjmp are implemented as macros defined in setjmp16.h header file and for PIC18 family
as functions defined in setjmp library file.
Note: Due to PIC16 family specific of not being able to read/write stack pointer, the program execution after Longjmp ivocation occurs depends on the stack content. That is why, for PIC16 family only, implementation of Setjmp and Longjmp functions is not ANSI C standard compliant.
Library Routines
- Setjmp
- Longjmp
Setjmp
Prototype
int setjmp(jmp_buf env);
Returns
if the return is from direct invocation it returns 0
if the return is from a call to the longjmp it returns nonzero value
This function saves calling position in jmp_buf for later use by longjmp. The
Description parameter env: array of type (jmp_buf) suitible for holding the information needed for restoring calling environment.
Requires
Nothing.
Example
setjmp(buf);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
593
CHAPTER 7
mikroC PRO for PIC
Libraries
Longjmp
Prototype
void longjmp(jmp_buf env, int val);
Returns
longjmp causes setjmp to return val, if val is 0 it will return 1.
Restores calling environment saved in jmp_buf by most recent invocation of
setjmp macro. If there has been no such invocation, or function conatinig the invoDescription cation of setjmp has terminated in the interim, the behaviour is undefined.Parameter env: array of type (jmp_buf) holding the information saved by corresponding
setjmp invocation, val: char value, that will return corresponding setjmp.
594
Requires
Invocation of Longjmp must occur before return from the function in which Setjmp
was called encounters.
Example
longjmp(buf, 2);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
Example demonstrates function cross calling using setjmp and longjmp functions.
When called, Setjmp() saves its calling environment in its jmp_buf argument for later
use by the Longjmp(). Longjmp(), on the other hand, restores the environment
saved by the most recent invocation of the Setjmp() with the corresponding jmp_buf
argument. The given example is for P16.
#include <Setjmp16.h>
#include <Setjmp16.h>
jmp_buf buf;
according
// Note: Program flow diagrams are indexed
// to the sequence of execution
void func33(){
asm nop;
longjmp(buf, 2);
asm nop;
}
void func(){
portb = 3;
if (setjmp(buf) == 2)
portb = 1;
else
func33();
asm nop;
}
void main() {
PORTB = 0;
TRISB = 0;
asm nop;
func();
asm nop;
// 2<----------|
//
|
//
|
// 3-------------->|
//
|
|
//
|
|
//
|
|
//
|
|
// 1<------ |
|
|
//
|
|
|
//
|
|
|
// 3<--------------|
// 4-->|
|
|
//
|
|
|
// 2---------->|
//
|
|
// 4<--|
|
// 5-------|------>depends on stack content
//
|
//
|
//
|
//
|
//
|
//
|
//
|
//
|
// 1------>|
//
//
}
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
595
CHAPTER 7
mikroC PRO for PIC
Libraries
SPRINT LIBRARY
The mikroC PRO for PIC provides the standard ANSI C Sprintf function for easy data formatting.
Note: In addition to ANSI C standard, the Sprint Library also includes two limited versions of the
sprintf function (sprinti and sprintl). These functions take less ROM and RAM and may be
more convenient for use in some cases.
Functions
- sprintf
- sprintl
- sprinti
sprintf
Prototype
sprintf(char *wh, const char *f,...);
Returns
The function returns the number of characters actually written to destination
string.
sprintf is used to format data and print them into destination string.
Parameters:
- wh: destination string
- f: format string
The f argument is a format string and may be composed of characters, escape
sequences, and format specifications. Ordinary characters and escape
sequences are copied to the destination string in the order in which they are interpreted. Format specifications always begin with a percent sign (%) and require
Description additional arguments to be included in the function call.
The format string is read from left to right. The first format specification encountered refers to the first argument after f and then converts and outputs it using
the format specification. The second format specification accesses the second
argument after f, and so on. If there are more arguments than format specifications, then these extra arguments are ignored. Results are unpredictable if there
are not enough arguments for the format specifications. The format specifications
have the following format:
% [flags] [width] [.precision]
596
[{ l | L }]
conversion_type
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Each field in the format specification can be a single character or a number which
specifies a particular format option. The conversion_type field is where a single
character specifies that the argument is interpreted as a character, string, number, or pointer, as shown in the following table:
conversion_type Argument Type
Description
Output Format
d
int
Signed decimal number
u
unsigned int
Unsigned decimal number
o
unsigned int
Unsigned octal number
x
unsigned int
X
unsigned int
f
double
e
double
Floating-point number using the format []d.dddde[-]dd
E
double
Floating-point number using the format []d.ddddE[-]dd
g
double
Floating-point number using either e or f
format, whichever is more compact for the
specified value and precision
c
int
int is converted to an unsigned char,
and the resulting character is written
s
char *
String with a terminating null character
p
void *
Pointer value, the X format is used
%
<none>
A % is written. No argument is converted.
The complete conversion specification
shall be %%.
Unsigned hexadecimal number using
0123456789abcdef
Unsigned hexadecimal number using
0123456789ABCEDF
Floating-point number using the format []dddd.dddd
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
597
CHAPTER 7
mikroC PRO for PIC
Libraries
The flags field is where a single character is used to justify the output and to
print +/- signs and blanks, decimal points, and octal and hexadecimal prefixes,
as shown in the following table.
flags
Meaning
+
Left justify the output in the specified field width.
Prefix the output value with + or - sign if the output is a signed type.
space Prefix the output value with a blank if it is a signed positive value.
(' ') Otherwise, no blank is prefixed.
Prefix a non-zero output value with 0, 0x, or 0X when used with o, x,
and X field types, respectively. When used with the e, E, f, g, and G
#
field types, the # flag forces the output value to include a decimal
point. In any other case the # flag is ignored.
*
Ignore format specifier.
The width field is a non-negative number that specifies a minimum number of
printed characters. If a number of characters in the output value is less than width,
blanks are added on the left or right (when the - flag is specified) in order to pad
to the minimum width. If the width is prefixed with 0, then zeros are padded
instead of blanks. The width field never truncates a field. If the length of the output value exceeds the specified width, all characters are output.
Description The precision field is a non-negative number that specifies the number of characters to print, number of significant digits, or number of decimal places. The precision field can cause truncation or rounding of the output value in the case of a
floating-point number as specified in the following table.
flags
d, u, o,
x, X
f
e, E
g
c, C
s
598
MeaningMeaning of the precision field
The precision field is where you specify the minimum number of
digits that will be included in the output value. Digits are not truncated if the number of digits in an argument exceeds that defined
in the precision field. If the number of digits in the argument is
less than the precision field, the output value is padded on the
left with zeros.
The precision field is where you specify the number of digits to
the right of the decimal point. The last digit is rounded.
The precision field is where you specify the number of digits to
the right of the decimal point. The last digit is rounded.
The precision field is where you specify the maximum number of
significant digits in the output value.
The precision field has no effect on these field types.
The precision field is where you specify the maximum number of
characters in the output value. Excess characters are not output.
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
The optional characters l or L may immediately precede conversion_type to
respectively specify long versions of the integer types d, i, u, o, x, and X.
Description
You must ensure that the argument type matches that of the format specification.
You can use type casts to ensure that the proper type is passed to sprintf.
sprintl
Prototype
sprintl(char
Returns
The function returns the number of characters actually written to destination
string.
*wh, const char *f,...);
Description The same as sprintf, except it doesn't support float-type numbers.
sprinti
Prototype
sprinti(char
Returns
The function returns the number of characters actually written to destination
string.
Description
The same as sprintf, except it doesn't support long integers and float-type numbers.
*wh, const char *f,...);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
599
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
This is a demonstration of the standard C library sprintf routine usage. Three different representations of the same floating poing number obtained by using the sprintf
routine are sent via UART.
double ww = -1.2587538e+1;
char buffer[15];
// Function for sending string to UART
void UartWriteText(char *txt) {
while(*txt)
UART1_Write(*txt++);
}
// Function for sending const string to UART
void UartWriteConstText(const char *txt) {
while(*txt)
UART1_Write(*txt++);
}
void main(){
UART1_Init(4800);
Delay_ms(10);
// Initialize UART module at 4800 bps
UartWriteConstText("Floating
Write message on UART
point
number
representation");
//
sprintf(buffer, "%12e", ww);
// Format ww and store it to buffer
UartWriteConstText("\r\ne format:");
// Write message on UART
UartWriteText(buffer);
// Write buffer on UART
sprintf(buffer, "%12f", ww);
// Format ww and store it to buffer
UartWriteConstText("\r\nf format:");
// Write message on UART
UartWriteText(buffer);
// Write buffer on UART
sprintf(buffer, "%12g", ww); // Format ww and store it to buffer
UartWriteConstText("\r\ng format:");
// Write message on UART
UartWriteText(buffer);
// Write buffer on UART
}
600
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
TIME LIBRARY
The Time Library contains functions and type definitions for time calculations in the
UNIX time format which counts the number of seconds since the "epoch". This is
very convenient for programs that work with time intervals: the difference between
two UNIX time values is a real-time difference measured in seconds.
What is the epoch?
Originally it was defined as the beginning of 1970 GMT. ( January 1, 1970 Julian day
) GMT, Greenwich Mean Time, is a traditional term for the time zone in England.
The TimeStruct type is a structure type suitable for time and date storage. Type
declaration is contained in timelib.h which can be found in the mikroC PRO for PIC
Time Library Demo example folder.
Library Routines
- Time_dateToEpoch
- Time_epochToDate
- Time_dateDiff
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
601
CHAPTER 7
mikroC PRO for PIC
Libraries
Time_dateToEpoch
Prototype
long Time_dateToEpoch(TimeStruct *ts);
Returns
Number of seconds since January 1, 1970 0h00mn00s.
This function returns the unix time : number of seconds since January 1, 1970
0h00mn00s.
Description
Parameters:
- ts: time and date value for calculating unix time.
Requires
Nothing.
Example
#include
"timelib.h"
...
TimeStruct
ts1;
long
epoch;
...
/*
* what is the epoch of the date in ts ?
*/
epoch = Time_dateToEpoch(&ts1);
Time_epochToDate
Prototype
void Time_epochToDate(long e, TimeStruct *ts);
Returns
Nothing.
Converts the unix time to time and date.
Description
Parameters:
- e: unix time (seconds since unix epoch)
- ts: time and date structure for storing conversion output
602
Requires
Nothing.
Example
#include
"timelib.h"
...
TimeStruct
ts2;
long
epoch;
...
/*
* what date is epoch 1234567890 ?
*/
epoch = 1234567890;
Time_epochToDate(epoch, &ts2);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
Time_dateDiff
Prototype
long Time_dateDiff(TimeStruct *t1, TimeStruct *t2);
Returns
Time difference in seconds as a signed long.
This function compares two dates and returns time difference in seconds as a
signed long. Result is positive if t1 is before t2, result is null if t1 is the same as
t2 and result is negative if t1 is after t2.
Parameters:
Description
- t1: time and date structure (the first comparison parameter)
- t2: time and date structure (the second comparison parameter)
Note: This function is implemented as macro in the timelib.h header file which
can be found in the mikroC PRO for PIC Time Library Demo example folder.
Requires
Nothing.
Example
#include
"timelib.h"
...
TimeStruct
ts1, ts2;
long
diff;
...
/*
* how many seconds between these two dates contained in ts1 and
ts2 buffers?
*/
diff = Time_dateDiff(&ts1, &ts2);
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
603
CHAPTER 7
mikroC PRO for PIC
Libraries
Library Example
This example demonstrates Time Library usage.
#include
"timelib.h"
TimeStruct ts1, ts2;
long epoch;
long diff;
void main() {
ts1.ss = 0;
ts1.mn = 7;
ts1.hh = 17;
ts1.md = 23;
ts1.mo = 5;
ts1.yy = 2006;
/*
* What is the epoch of the date in ts ?
*/
epoch = Time_dateToEpoch(&ts1);
/*
* What date is epoch 1234567890 ?
*/
epoch = 1234567890;
Time_epochToDate(epoch, &ts2);
/*
* How much seconds between this two dates ?
*/
diff = Time_dateDiff(&ts1, &ts2);
}
604
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
TRIGONOMETRY LIBRARY
The mikroC PRO for PIC implements fundamental trigonometry functions. These functions are
implemented as look-up tables. Trigonometry functions are implemented in integer format in order
to save memory.
Library Routines
- sinE3
- cosE3
sinE3
Prototype
int sinE3(unsigned angle_deg);
Returns
The function returns the sine of input parameter.
The function calculates sine multiplied by 1000 and rounded to the nearest integer:
result := round(sin(angle_deg)*1000)
Description Parameters:
- angle_deg: input angle in degrees
Note: Return value range: -1000..1000.
Requires
Nothing.
Example
int res;
...
res = sinE3(45);
// result is 707
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
605
CHAPTER 7
mikroC PRO for PIC
Libraries
cosE3
Prototype
int cosE3(unsigned angle_deg);
Returns
The function returns the cosine of input parameter.
The function calculates cosine multiplied by 1000 and rounded to the nearest
integer:
result := round(cos(angle_deg)*1000)
Description
Parameters:
- angle_deg: input angle in degrees
Note: Return value range: -1000..1000.
606
Requires
Nothing.
Example
int res;
...
res = cosE3(196);
// result is -193
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
CHAPTER 7
mikroC PRO for PIC
Libraries
MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD
607
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement