Baumer SXG User's Guide for Dual Gigabit Ethernet

Add to my manuals
64 Pages

advertisement

Baumer SXG User's Guide for Dual Gigabit Ethernet | Manualzz

Baumer SXG

User's Guide for Dual Gigabit Ethernet Cameras with Kodak Sensors

2

Table of Contents

1. General Information ................................................................................................. 6

2. General safety instructions ..................................................................................... 7

3. Intended Use ............................................................................................................. 7

4. General Description ................................................................................................. 7

5. Camera Models ......................................................................................................... 8

5.1 SXG – Cameras with C-Mount ................................................................................ 8

5.2 SXG-F – Cameras with F-Mount ............................................................................. 9

6. Product Specifications .......................................................................................... 10

6.1  Sensor Specifications ........................................................................................... 10

6.1.1  Quantum Efficiency for Baumer SXG Cameras ............................................. 10

6.1.2 Progressive Scan ........................................................................................... 10

6.1.3 Readout Modes ...............................................................................................11

6.2 Timings .................................................................................................................. 13

6.2.1 Free Running Mode ........................................................................................ 13

6.2.2 Trigger Mode .................................................................................................. 14

6.3 Field of View Position ............................................................................................ 18

6.4 Process- and Data Interface ................................................................................. 19

6.4.1 Pin-Assignment Interface ............................................................................... 19

6.4.2  Pin-Assignment Power Supply and Digital IOs .............................................. 19

6.4.3 LED Signaling ................................................................................................. 19

6.5 Environmental Requirements ................................................................................ 20

6.5.1  Temperature and Humidity Range for Storage and Operation ....................... 20

6.5.2 Heat Transmission .......................................................................................... 20

6.5.3 Mechanical Tests ............................................................................................ 21

7. Software .................................................................................................................. 22

7.1  Baumer-GAPI ........................................................................................................ 22

7.2 3 rd

 Party Software .................................................................................................. 22

8. Camera Functionalities .......................................................................................... 23

8.1 Image Acquisition .................................................................................................. 23

8.1.1 Image Format ................................................................................................. 23

8.1.2 Pixel Format ................................................................................................... 24

8.1.3 Exposure Time................................................................................................ 26

8.1.4 Look-Up-Table ................................................................................................ 26

8.1.5 Gamma Correction ......................................................................................... 27

8.1.6  Region of Interest (ROI) ................................................................................. 27

8.1.7  ROI Readout................................................................................................... 27

8.1.8  Binning............................................................................................................ 29

8.1.9  Brightness Correction (Binning Correction) .................................................... 30

3

4

8.2  Color Adjustment – White Balance ....................................................................... 30

8.2.1  User-specific Color Adjustment ...................................................................... 30

8.2.2  One Push White Balance ............................................................................... 30

8.3  Auto Tap Balance .................................................................................................. 31

8.4 Analog Controls ..................................................................................................... 31

8.4.1  Brightness (Offset / Black Level) .................................................................... 31

8.4.2 Gain ................................................................................................................ 31

8.5 Pixel Correction ..................................................................................................... 32

8.5.1 General information ........................................................................................ 32

8.5.2 Correction Algorithm ....................................................................................... 32

8.5.3 Defectpixellist ................................................................................................. 32

8.6 Sequencer ............................................................................................................. 33

8.6.1 General Information ........................................................................................ 33

8.6.2 Examples ........................................................................................................ 34

8.6.3  Capability Characteristics of Baumer-GAPI Sequencer Module .................... 34

8.6.4 Double Shutter ............................................................................................... 35

8.7 Process Interface .................................................................................................. 36

8.7.1  Digital IOs ....................................................................................................... 36

8.8  Trigger Input / Trigger Delay ................................................................................. 38

8.8.1 Trigger Source ................................................................................................ 39

8.8.2 Debouncer ...................................................................................................... 40

8.8.3 Flash Signal .................................................................................................... 40

8.8.4 Timer............................................................................................................... 41

8.8.5 Counter .......................................................................................................... 42

8.9 User Sets .............................................................................................................. 42

8.10  Factory Settings .................................................................................................. 42

9. Interface Functionalities ........................................................................................ 43

9.1  Link Aggregation Group Configuration .................................................................. 43

9.1.1 Camera Control .............................................................................................. 43

9.1.2 Image data stream ......................................................................................... 43

9.2 Device Information ................................................................................................ 44

9.3  Baumer Image Info Header  .................................................................................. 45

9.4  Packet Size and Maximum Transmission Unit (MTU) ........................................... 45

9.5  "Packet Delay" (PD)  ............................................................................................. 46

9.5.1  Example 1: Multi Camera Operation – Minimal IPG ....................................... 46

9.5.2  Example 2: Multi Camera Operation – Optimal IPG ....................................... 47

9.6  Frame Delay ......................................................................................................... 48

9.6.1  Time Saving in Multi-Camera Operation ........................................................ 48

9.6.2  Configuration Example ................................................................................... 49

9.7 Multicast ................................................................................................................ 51

9.8  IP Configuration .................................................................................................... 52

9.8.1 Persistent IP ................................................................................................... 52

9.8.2  DHCP (Dynamic Host Configuration Protocol) ............................................... 52

9.8.3 LLA ................................................................................................................. 53

9.8.4 Force IP .......................................................................................................... 53

9.9 Packet Resend ...................................................................................................... 54

9.9.1 Normal Case................................................................................................... 54

9.9.2 Fault 1: Lost Packet within Data Stream ........................................................ 54

9.9.3 Fault 2: Lost Packet at the End of the Data Stream ....................................... 55

9.9.4 Termination Conditions .................................................................................. 55

9.10 Message Channel ............................................................................................... 56

9.11 Action Commands ............................................................................................... 57

9.11.1 Action Command Trigger .............................................................................. 57

9.11.2 Action Command Timestamp ........................................................................ 58

10. Start-Stop-Behaviour ............................................................................................. 59

10.1  Start / Stop Acquisition (Camera) ........................................................................ 59

10.2  Start / Stop Interface ........................................................................................... 59

10.3  Pause / Resume Interface .................................................................................. 59

10.4 Acquisition Modes ............................................................................................... 59

10.4.1 Free Running ................................................................................................ 59

10.4.2 Trigger .......................................................................................................... 59

10.4.3 Sequencer .................................................................................................... 59

11. Lens install .............................................................................................................. 60

12. Cleaning .................................................................................................................. 61

13. Transport / Storage ................................................................................................ 61

14. Disposal .................................................................................................................. 61

15. Warranty Information ............................................................................................. 62

16. Support .................................................................................................................... 62

17. Conformity .............................................................................................................. 63

17.1 CE ....................................................................................................................... 63

17.2  FCC – Class B Device ........................................................................................ 63

5

6

1. General Information

Thanks for purchasing a camera of the Baumer family. This User´s Guide describes how  to connect, set up and use the camera.

Read this manual carefully and observe the notes and safety instructions!

Target group for this User´s Guide

This User's Guide is aimed at experienced users, which want to integrate camera(s) into  a vision system. 

Copyright

Any duplication or reprinting of this documentation, in whole or in part, and the reproduction of the illustrations even in modified form is permitted only with the written approval of 

Baumer. This document is subject to change without notice.

Classification of the safety instructions

In the User´s Guide, the safety instructions are classified as follows:

Notice

Gives helpful notes on operation or other general recommendations.

Pictogram

Caution

Indicates a possibly dangerous situation. If the situation is not avoided, slight  or minor injury could result or the device may be damaged.

2. General safety instructions

Observe the following safety instruction when using the camera to avoid any damage or  injuries.

Caution

Provide adequate dissipation of heat, to ensure that the temperature does not exceed +60°C (+140°F).

The surface of the camera may be hot during operation and immediately  after use. Be careful when handling the camera and avoid contact over a  longer period.

3. Intended Use

The camera is used to capture images that can be transferred over two GigE interfaces to a PC.

4. General Description

1

2

3

4

Nr. Description

1

(respective) lens mount 

2

Power supply

3

GigE Port 0

6 5

5

6

Nr. Description

4

Digial-IO supply

GigE Port 1

Signaling-LED

7

5. Camera Models

5.1 SXG – Cameras with C-Mount

Figure 1 ►

Front view of a Baumer 

SXG C-Mount camera.

Camera Type

Monochrome

SXG10

SXG20

SXG21

SXG40

SXG80

Color

SXG10c

SXG20c

SXG21c

SXG40c

SXG80c

Dimensions

Sensor

Size

UNC 1/4 20

1/2"

2/3"

2/3"

1"

4/3"

1/2"

2/3"

2/3"

1"

4/3"

Resolution

1024 x 1024

1600 x 1200

1920 x 1080

2336 x 1752

3296 x 2472

1024 x 1024

1600 x 1200

1920 x 1080

2336 x 1752

3296 x 2472

Full

Frames

[max. fps]

120

68

64

32

16

120

68

64

32

16

16 x M3 depth 6

52

72

8

Figure 2 ►

Dimensions of a

Baumer SXG camera.

5.2

SXG-F – Cameras with F-Mount

Camera Type

Monochrome

SXG21-F

SXG40-F

SXG80-F

Color

SXG21c-F

SXG40c-F

SXG80c-F

Dimensions

Sensor

Size

2/3"

1"

4/3"

2/3"

1"

4/3"

UNC 1/4 20

Resolution

1920 x 1080

2336 x 1752

3296 x 2472

1920 x 1080

2336 x 1752

3296 x 2472

Full

Frames

[max. fps]

64

32

16

64

32

16

◄ Figure 3

Front view of a Baumer 

SXG-F camera.

16 x M3 depth 6

52 72

◄ Figure 4

Dimensions of a

Baumer SXG-F camera.

9

6. Product Specifications

6.1 Sensor Specifications

6.1.1 Quantum Efficiency for Baumer SXG Cameras

The  quantum  efficiency  characteristics  of  monochrome  and  color  matrix  sensors  for 

Baumer SXG cameras are displayed in the following graphs. The characteristic curves for  the sensors do not take the characteristics of lenses and light sources without filters into  consideration, but are measured with an AR coated cover glass.

Values relating to the respective technical data sheets of the sensors manufacturer.

Figure 5 ►

Quantum efficiency for 

Baumer SXG cameras.

350 450 550

SXG (monochrome)

650 750 850 950 1050

Wave Length [nm]

350 450

SXG (color)

550 650 750 850 950 1050

Wave Length [nm]

6.1.2 Progressive Scan

All cameras of the SXG series are equipped with Progressive Scan.

Microlens

10

Figure 6 ►

Structure of an imaging sensor with global shutter (interline).

Pixel

Active Area (Photodiode)

Storage Area

Progressive Scan means that all pixels of the sensor are reset and afterwards exposed for a specified interval (t exposure

). 

For  each  pixel  an  adjacent  storage  area  exists.  Once  the  exposure time elapsed, the information of a pixel is transferred immediately to its storage area and read out from  there.

Due to the fact that photosensitive surface gets "lost" by the implementation of the storage  area, the pixels are mostly equipped with microlenses, which focus the light to the pixels  active area.

6.1.3 Readout Modes

The Kodak sensors, used in Baumer SXG cameras, are subdivided into four Taps. 

Due to Baumer's integrated calibration technique, these taps are invisible within the recorded images, but affect the operation and the rate of the readout process and therewith the readout time (t readout

).

6.1.3.1 Quad Mode

On quad readout mode all four taps are read out simultaneously as displayed in the subsequent figure.

◄ Figure 7

Taps of the sensor.

The data of all pixels of one tap are moved to the output register and afterwards transfered to the memory.

Once the information have left the output register, the readout is done. 

This mode provides the full potential of the sensor and leads to the maximum frame rate.

6.1.3.2 Dual Mode

On  dual  readout  mode  two  taps  (Tap 1 + Tap 2 and Tap 3 + Tap  4)  are  combined. 

◄ Figure 8

Quad Tap Readout

Mode.

The data of all pixels of one tap are moved to the output register and afterwards transfered to the memory.

Once the information have left the output register, the readout is finished. 

Due to the fact, that more data needs to be read out, the t readout the quad readout mode.

is increased compared to

It is considered: t readout(Dual Mode)

 ≈ 2 × t readout(Quad Mode)

◄ Figure 9

Dual Tap Readout

Mode.

11

12

6.1.3.3 Single Mode

In single readout mode all taps are combined as displayed in the subsequent figure.

Figure 10 ►

Single Tap Readout

Mode.

The data of all pixels of the sensor are moved to the output register and afterwards transfered to the memory.

Once the information have left the output register, the readout is done. 

Due to the fact, that the complete sensor needs to be read out, the readout time t readout increased compared to quad and dual readout mode.

is

It is considered: t readout(Single Mode)

 ≈ 4 × t readout(Quad Mode)

6.2 Timings

The image acquisition consists of two seperate, successively processed components.

Exposing the pixels on the photosensitive surface of the sensor is only the first part of the  image acquisition. After completion of the first step, the pixels are read out.

Thereby the exposure time (t exposure ed for the readout (t readout

) can be adjusted by the user, however, the time need-

) is given by the particular sensor and image format.

Baumer  cameras  can  be  operated  with  two  modes,  the  Free Running Mode and the

Trigger Mode.

The cameras can be operated non-overlapped

*)

or overlapped. Depending on the mode used, and the combination of exposure and readout time:

Non-overlapped Operation

Here the time intervals are long enough to process exposure and readout successively.

Overlapped Operation

In this operation the exposure of a frame

(n+1) takes place during the readout of  frame (n).

Exposure Exposure

Readout Readout

6.2.1 Free Running Mode

In the "Free Running" mode the camera records images permanently and sends them to  the PC. In order to achieve an optimal (with regard to the adjusted exposure time t and image format) the camera is operated overlapped.

exposure

In case of exposure times equal to / less than the readout time (t frame rate of the camera is reduced.

exposure

 ≤ t readout

), the maximum frame rate is provided for the image format used. For longer exposure times the

Exposure

Readout

Flash t

flash

= t

exposure

t exposure(n) t flash(n) t flashdelay t exposure(n+1) t readout(n) t flash(n+1) t readout(n+1)

Timings:

A - exposure time frame (n) effective

B - image parameters frame (n) effective

C - exposure time frame (n+1) effective

D - image parameters frame (n+1) effective

Image parameters:

Offset

Gain

Mode

Partial Scan

*) Non-overlapped means the same as sequential.

13

6.2.2 Trigger Mode

After a specified external event (trigger) has occurred, image acquisition is started. Depending on the interval of triggers used, the camera operates non-overlapped or overlapped in this mode.

With regard to timings in the trigger mode, the following basic formulas need to be taken into consideration:

Case

t

exposure

< t

readout

t

exposure

> t

readout

(1)

(2)

(3)

(4)

Formula

t t t t

earliestpossibletrigger(n+1) notready(n+1)

= t

earliestpossibletrigger(n+1) notready(n+1)

= t

= t

= t

exposure(n) readout(n)

- t

exposure(n)

+ t

readout(n) exposure(n) exposure(n+1)

- t

exposure(n+1)

6.2.2.1 Overlapped Operation: t exposure(n+2)

= t exposure(n+1)

In overlapped operation attention should be paid to the time interval where the camera is unable to process occuring trigger signals (t exposures. When this process time t external events again.

notready notready

). This interval is situated between two 

has elapsed, the camera is able to react to

After t notready age (t readout(n)

 has elapsed, the timing of (E) depends on the readout time of the current im-

) and exposure time of the next image (t exposure(n+1)

). It can be determined by the  formulas mentioned above (no. 1 or 3, as is the case).

In case of identical exposure times, t notready tion.

remains the same from acquisition to acquisi-

Trigger

Timings:

A - exposure time frame (n) effective

B - image parameters frame (n) effective

C - exposure time frame (n+1) effective

D - image parameters frame (n+1) effective

E - earliest possible trigger

Exposure

Readout

TriggerReady

Image parameters:

Offset

Gain

Mode

Partial Scan

Flash t min t triggerdelay t exposure(n) t notready t flash(n) t flashdelay t exposure(n+1) t readout(n) t flash(n+1) t readout(n+1)

14

6.2.2.2 Overlapped Operation: t exposure(n+2)

> t exposure(n+1)

If the exposure time (t tion, the time the camera is unable to process occuring trigger signals (t down.

exposure

) is increased form the current acquisition to the next acquisinotready

) is scaled 

This can be simulated with the formulas mentioned above (no. 2 or 4, as is the case).

Trigger

Exposure

Readout

TriggerReady

Flash t min t triggerdelay t exposure(n) t notready t flash(n) t flashdelay t exposure(n+1) t readout(n) t flash(n+1) t exposure(n+2) t readout(n+1)

Timings:

A - exposure time frame (n) effective

B - image parameters frame (n) effective

C - exposure time frame (n+1) effective

D - image parameters frame (n+1) effective

E - earliest possible trigger

Image parameters:

Offset

Gain

Mode

Partial Scan

15

6.2.2.3 Overlapped Operation: t exposure(n+2)

< t exposure(n+1)

If the exposure time (t tion, the time the camera is unable to process occuring trigger signals (t up.

exposure

) is decreased from the current acquisition to the next acquisinotready

) is scaled 

When decreasing the t exposure

such, that t notready age will not start (the trigger will be skipped).

exceeds the pause between two incoming trigger signals, the camera is unable to process this trigger and the acquisition of the im-

Trigger t min t triggerdelay t exposure(n)

Timings:

A - exposure time frame (n) effective

B - image parameters frame (n) effective

C - exposure time frame (n+1) effective

D - image parameters frame (n+1) effective

E - earliest possible trigger

F - frame not started / trigger skipped

Image parameters:

Offset

Gain

Mode

Partial Scan

Exposure

Readout

TriggerReady

Flash t notready t exposure(n+1) t readout(n) t readout(n+1) t exposure(n+2 t flash(n) t flashdelay t flash(n+1)

Notice

From a certain frequency of the trigger signal, skipping triggers is unavoidable. In general, this frequency depends on the combination of exposure and readout times.

16

6.2.2.4 Non-overlapped Operation

If the frequency of the trigger signal is selected for long enough, so that the image acquisitions (t exposure

+ t readout

) run successively, the camera operates non-overlapped.

Trigger

Exposure

Readout

TriggerReady

Flash t min t triggerdelay t exposure(n) t notready t flash(n) t flashdelay t readout(n) t exposure(n+1) t flash(n+1) t readout(n+1)

Timings:

A - exposure time frame (n) effective

B - image parameters frame (n) effective

C - exposure time frame (n+1) effective

D - image parameters frame (n+1) effective

E - earliest possible trigger

Image parameters:

Offset

Gain

Mode

Partial Scan

17

18

6.3 Field of View Position

The typical accuracy by assumption of the root mean square value is displayed in the  figures and the table below:

±X

M

±ß

±X

R

Photosensitive surface of the sensor

Figure 11 ►

Sensor accuracy of 

Baumer SXG cameras.

±Z

Camera

Type

SXG10

SXG20

SXG21

SXG40

SXG80

± x

M,typ

[mm]

0,11

0,11

0,11

0,11

0,11

± y

M,typ

[mm]

0,11

0,11

0,11

0,11

0,11

± x

R,typ

[mm]

0,11

0,11

0,11

0,11

0,11

± y

R,typ

[mm]

0,11

0,11

0,11

0,11

0,11

± β typ

[°]

0,51

0,51

0,51

0,55

0,47

± z typ

[mm]

(

C-Mount)

0,025

0,025

0,025

0,025

0,025

± z typ

[mm]

(

F-Mount)

-

-

0,05

0,05

0,05

6.4 Process- and Data Interface

6.4.1 Pin-Assignment Interface

Notice

Both data ports supports Power over Ethernet (38 VDC .. 57 VDC). Both ports can be  connected to a PoE power sourcing equipment however only one port will be used to  power the camera.

For the data transfer, the ports are equal. For Single GigE connect one Port and for Dual

GigE connect the second Port additionally. The order does not matter.

Data / Control 1000 Base-T (Port 0)

LED2 LED1

8 1

Data / Control 1000 Base-T (Port 1)

LED2 LED1

8 1

1 MX1+

(green/white)

(negative/positive V port

)

2 MX1-

(green)

(negative/positive V port

)

3 MX2+

(orange/white)

(positive/negative V port

)

4 MX3+

(blue)

5 MX3-

(blue/white)

1 MX1+

(green/white)

(negative/positive V port

)

6 MX2-

(orange)

(positive/negative V port

)

2 MX1-

(green)

(negative/positive V port

)

7 MX4+

(brown/white)

3 MX2+

(orange/white)

8 MX4-

(brown)

(positive/negative V port

)

4 MX3+

(blue)

5 MX3-

(blue/white)

6 MX2-

(orange)

(positive/negative V port

)

7 MX4+

(brown/white)

8 MX4-

(brown)

6.4.2 Pin-Assignment Power Supply and Digital IOs

1

3

4

Power V

CC

3

M8 / 3 pins

(brown)

(blue)

(black)

4

1

Power V

CC

GND not used

Power Supply

20 VDC ... 30 VDC

3

4

5

1

2

6

7

8

(white)

(brown)

(green)

(yellow)

(grey)

(pink)

(blue)

(red)

5

M8 / 8 pins

4

3

2

8

6

7

1

Line 5

Line 1

Line 0

GND

U ext

Line 3

Line 4

Line 2

6.4.3 LED Signaling

LED

1

2

3

3

Signal

green / green flash yellow green / yellow

1

2

Meaning

Link active / Receiving

Transmitting

Power on / Readout active

◄ Figure 12

LED positions on Baumer SXG  camera.

19

6.5

Environmental Requirements

6.5.1 Temperature and Humidity Range for Storage and Operation

*)

Storage temperature

Operating temperature*

Housing temperature

**)***)

Temperature

-10°C ... +70°C ( +14°F ... +158°F)

+5 °C ... +60°C (+41°F ... +140°F) max. +60°C (+140°F)

* If the environmental temperature exceeds the values listed in the table below, the camera must be cooled. (see Heat Transmission)

Camera Type

Monochrome

SXG10

SXG20

SXG21

SXG40

SXG80

Color

SXG10c

SXG20c

SXG21c

SXG40c

SXG80c

Storage and Operating Humidity

Environmental Temperature

 +19°C (+66.2°F)

 +18°C (+64.4°F)

 +18°C (+64.4°F)

 +16°C (+60.8°F)

+14°C (+57.2°F)

 +20°C (+68°F)

+20°C (+68°F)

+20°C (+68°F)

 +19°C (+66.2°F)

 +19°C (+66.2°F)

Humidity

10% ... 90% non condensing

T

20

Figure 13 ►

Temperature measurement point (T) of 

Baumer SXG cameras.

6.5.2 Heat Transmission

Caution

Provide adequate dissipation of heat, to ensure that the temperature does not exceed +60°C (+140°F).

The surface of the camera may be hot during operation and immediately  after use. Be careful when handling the camera and avoid contact over a  longer period.

As there are numerous possibilities for installation, Baumer does not specifiy a specific  method for proper heat dissipation, but suggest the following principles:

▪ operate the cameras only in mounted condition mounting in combination with forced convection may provide proper heat dissipation

*)

**) 

Please refer to the respective data sheet.

Measured at temperature measurement point (T).

***)  Housing temperature is limited by sensor specifications.

6.5.3 Mechanical Tests

Environmental

Testing

Vibration, sinusodial

Standard

IEC 60068-2-6

Vibration, broad band

Shock

Bump

IEC 60068-

2-64

IEC 60068-

2-27

IEC60068-2-

29

Parameter

Search for Resonance

Amplitude underneath crossover frequencies

Acceleration

Test duration

Frequency range

Acceleration

Displacement

Test duration

Puls time

Acceleration

Pulse Time

Acceleration

10-2000 Hz

1.5 mm

1 g

15 min

20-1000 Hz

10 g

5.7 mm

300 min

11 ms / 6  ms

50 g / 80 g

2 ms

80 g

21

22

7. Software

7.1 Baumer-GAPI

Baumer-GAPI stands for Baumer “Generic Application Programming Interface”. With this

API Baumer provides an interface for optimal integration and control of Baumer Gigabit 

Ethernet (GigE) , Baumer CameraLink

®

 and Baumer FireWire™ (IEEE1394) cameras. 

This software interface allows changing to other camera models or interfaces. It also allows the simultaneous operation of Baumer cameras with Gigabit Ethernet, CameraLink

® and FireWire™ interfaces. 

This GAPI supports Windows

®

 (XP, Vista and Win 7) and Linux

®

 (from Kernel 2.6.x) operating systems in 32 bit, as well as in 64 bit. It provides interfaces to several programming  languages, such as C, C++ and the .NET™ Framework on Windows

®

, as well as Mono on Linux

®

 operating systems, which offers the use of other languages, such as e.g. C# or 

VB.NET.

The SXG camera features are supported from BGAPI V 1.7.0

7.2 3

rd

Party Software

Strict compliance with the Gen<I>Cam™ standard allows Baumer to offer the use of 3 rd

Party Software for operation with cameras of the SX series.

You can find a current listing of 3 rd

 Party Software, which was tested successfully in combination with Baumer cameras, at http://www.baumer.com.

8. Camera Functionalities

8.1 Image Acquisition

8.1.1 Image Format

A digital camera usually delivers image data in at least one format - the native resolution  of the sensor. Baumer cameras are able to provide several image formats (depending on  the type of camera).

Compared  with  standard  cameras,  the image  format on  Baumer  cameras  not only  includes resolution, but a set of predefined parameter.

These parameters are:

▪ Resolution (horizontal and vertical dimensions in pixels)

▪ Binning Mode (see chapter 8.1.8)

Camera Type

Monochrome

SXG10

SXG20

SXG21

SXG40

SXG80

Color

SXG10c

SXG20c

SXG21c

SXG40c

SXG80c

23

24

8.1.2 Pixel Format

On Baumer digital cameras the pixel format depends on the selected image format.

8.1.2.1 Pixel Formats on Baumer SXG Cameras

Camera Type

Monochrome

SXG10

SXG20

SXG21

SXG40

SXG80

Color

SXG10c

SXG20c

SXG21c

SXG40c

SXG80c

8.1.2.2 Definitions

Notice

Below is a general description of pixel formats. The table above shows, which camera  support which formats.

Bayer: Raw data format of color sensors.

Color filters are placed on these sensors in a checkerboard pattern, generally  in a 50% green, 25% red and 25% blue array.

Figure 14 ►

Sensor with Bayer 

Pattern.

Mono: Monochrome. The color range of mono images consists of shades of a single color. In general, shades of gray or black-and-white are synonyms for monochrome.

RGB: Color model, in which all detectable colors are defined by three coordinates, 

Red, Green and Blue.

Red

White

Black

Green

Blue

The three coordinates are displayed within the buffer in the order R, G, B. 

BGR: Here the color alignment mirrors RGB.

YUV: Color model, which is used in the PAL TV standard and in image compression.

In YUV, a high bandwidth luminance signal (Y: luma information) is transmitted  together with two color difference signals with low bandwidth (U and V: chroma information). Thereby U represents the difference between blue and luminance 

(U = B - Y), V is the difference between red and luminance (V = R - Y). The third  color, green, does not need to be transmitted, its value can be calculated from the other three values.

YUV 4:4:4 Here each of the three components has the same sample rate.

Therefore there is no subsampling here.

YUV 4:2:2 The chroma components are sampled at half the sample rate.

This reduces the necessary bandwidth to two-thirds (in relation to 

4:4:4) and causes no, or low visual differences.

YUV 4:1:1 Here the chroma components are sampled at a quater of the sample rate.This decreases the necessary bandwith by half (in  relation to 4:4:4).

◄ Figure 15

RBG color space displayed as color tube.

Pixel depth: In general, pixel depth defines the number of possible different values for  each color channel. Mostly this will be 8 bit, which means 2

8

different "colors".

For RGB or BGR these 8 bits per channel equal 24 bits overall.

8 bit:

10 bit:

Byte 1 Byte 2 unused bits

Byte 3

◄ Figure 16

Bit string of Mono 8 bit and RGB 8 bit.

12 bit:

Byte 1

Byte 1

Byte 2 unused bits

Byte 2

◄ Figure 17

Spreading of Mono 10 bit over 2 bytes.

◄ Figure 18

Spreading of Mono 12 bit over two bytes.

25

26

8.1.3 Exposure Time

On exposure of the sensor, the inclination of photons produces a charge separation on  the semiconductors of the pixels. This results in a voltage difference, which is used for signal extraction.

Light

Photon

Charge Carrier

Figure 19 ►

Incidence of light causes charge separation on the semiconductors of the sensor.

Pixel

The signal strength is influenced by the incoming amount of photons. It can be increased  by increasing the exposure time (t exposure

).

On Baumer SXG cameras, the exposure time can be set within the following ranges (step size 1μsec):

Camera Type

Monochrome

SXG10

SXG20

SXG21

SXG40

SXG80

Color

SXG10c

SXG20c

SXG21c

SXG40c

SXG80c

t exposure

min

10 μsec

10 μsec

10 μsec

10 μsec

10 μsec

10 μsec

10 μsec

10 μsec

10 μsec

10 μsec

t exposure

max

1 sec

1 sec

1 sec

1 sec

1 sec

1 sec

1 sec

1 sec

1 sec

1 sec

8.1.4 Look-Up-Table

The Look-Up-Table (LUT) is employed on Baumer monochrome cameras. It contains 2

12

(4096) values for the available levels of gray. These values can be adjusted by the user.

8.1.5 Gamma Correction

With this feature, Baumer SXG cameras offer the possibility of compensating nonlinearity  in the perception of light by the human eye.

For this correction, the corrected pixel intensity (Y') is calculated from the original intensity  of the sensor's pixel (Y original

) and correction factor γ using the following formula (in oversimplified version):

Y' = Y

γ original

H

0 E

▲ Figure 20

Non-linear perception of the human eye.

H - Perception of bright-

ness

E - Energy of light

8.1.6 Region of Interest (ROI)

With this function it is possible to predefine a so-called Region of Interest (ROI) or Partial 

Scan. This ROI is an region of pixels of the sensor. On image acquisition, only the information of these pixels is sent to the PC. Therefore all the lines of the sensor need not be read out, which decreases the readout time (t readout

). This increases the frame rate.

This function is employed, when only a region of the field of view is of interest. It is coupled  to a reduction in resolution.

The ROI is specified by four values:

▪ Offset X  - x-coordinate of the first relevant pixel

▪ Offset Y  - y-coordinate of the first relevant pixel

▪ Size X  - horizontal size of the ROI

▪ Size Y  - vertical size of the ROI

Start ROI

End ROI

8.1.7 ROI Readout

For the readout of the ROI, the vertical subdivision of the sensor (see 6.1.3. Readout

Modes) is unimportant – only the horizontal subdivision is of note.

Both sensor halves are read out simultaneously as displayed in the subsequent figure.

◄ Figure 21

Parameters of the ROI.

The readout is line based, which means always a complete line of pixels needs to be read  out and afterwards the irrelevant information is discarded.

t

Due to the fact, that the sensor halves are always read out symmetrically, the readout time  readout

 is significantly affected both by the size of the ROI and also by its position.

◄ Figure 22

ROI: Readout.

27

Pixel Information of Interrest

Discarded Pixel Information

ROI

Read out Lines

Figure 23 ►

ROI:

Read out Lines.

The most significant reduction of the readout time – compared to a full frame readout in  dual mode – can be achieved if the ROI is positioned as follows: within one of the sensor halves symmetrically spread to both sensor halves

For example, the readout time of the ROI's in the figures 21 and 22 is the same. 

Figure 24 ►

ROI:

Example  ROI's  with  identical readout times.

On asymmetrically spread ROI's, the readout time is affected by the bigger part of the 

ROI.

An example for this fact is shown in the figure below:

28

Figure 25 ►

ROI:

Read out time linked with position of the ROI.

The ROI has the same size as in figure 21, but is not symmetrically spread to both sensor halves. In this special case the time for the readout of the same number of pixels is increased by 50%, caused only by ROI's position.

8.1.8 Binning

On digital cameras, you can find several operations for progressing sensitivity. One of  them is the so-called "Binning". Here, the charge carriers of neighboring pixels are aggregated. Thus, the progression is greatly increased by the amount of binned pixels. By using  this operation, the progression in sensitivity is coupled to a reduction in resolution.

Baumer cameras support three types of Binning - vertical, horizontal and bidirectional.

In unidirectional binning, vertically or horizontally neighboring pixels are aggregated and  reported to the software as one single "superpixel".

In bidirectional binning, a square of neighboring pixels is aggregated.

Binning Illustration Example

without

1x2

2x1

2x2

◄ Figure 26

Full frame image, no binning of pixels.

◄ Figure 27

Vertical binning causes a vertically compressed  image with doubled brightness.

◄ Figure 28

Horizontal binning causes  a  horizontally  compressed image with doubled brightness.

◄ Figure 29

Bidirectional  binning  causes both a horizontally  and  vertically  compressed image with quadruple brightness.

29

30

8.1.9 Brightness Correction (Binning Correction)

The aggregation of charge carriers may cause an overload. To prevent this, binning correction was introduced. Here, three binning modes need to be considered separately:

Binninig Realization

1x2 1x2 binning is performed within the sensor, binning correction also takes place here. A possible overload is prevented by halving the exposure time.

2x1

2x2

2x1 binning takes place within the FPGA of the camera. The binning correction is realized by aggregating the charge quantities, and then halving  this sum.

2x2 binning is a combination of the above versions.

Binning 2x2

Total charge quantity of the

4 aggregated pixels

Figure 30 ►

Aggregation of charge carriers from four pixels in bidirectional binning.

Charge quantity Super pixel

8.2 Color Adjustment – White Balance

This feature is available on all color cameras of the Baumer SXG series and takes  place within the Bayer processor.

White balance means independent adjustment of the three color channels, red, green and blue by employing of a correction factor for each channel.

Figure 31 ►

Examples of histogramms for a nonadjusted image and for an image after user- specific white balance..

8.2.1 User-specific Color Adjustment

The user-specific color adjustment in Baumer color cameras facilitates adjustment of the  correction factors for each color gain. This way, the user is able to adjust the amplification of each color channel exactly to his needs. The correction factors for the color gains   range from 1 to 4.

non-adjusted histogramm histogramm after user-specific color adjustment

8.2.2 One Push White Balance

Here, the three color spectrums are balanced to a single white point. The correction factors of the color gains are determined by the camera (one time).

non-adjusted histogramm histogramm after

„one push“ white balance

Figure 32 ►

Examples of histogramms for a non-adjusted image and for an image after "one push" white balance.

8.3 Auto Tap Balance

The feature "Auto Tap Balance" corrects the possible differences in brightness of the four 

Taps.

This is achieved by calculating the average of the brightness of the pixels at the border of  the taps (on the figure below green).

8.4 Analog Controls

8.4.1 Brightness (Offset / Black Level)

On Baumer cameras, the Offset / Black Level is adjustable from 0 to 1023 LSB (least  significant bit).

Camera Type Step Size 1 LSB

Relating to

Monochrome

SXG10

SXG20

SXG21

SXG40

SXG80

Color

SXG10c

SXG20c

SXG21c

SXG40c

SXG80c

14 bit

14 bit

14 bit

14 bit

14 bit

14 bit

14 bit

14 bit

14 bit

14 bit

8.4.2 Gain

In industrial environments motion blur is unacceptable. Due to this fact exposure times are limited. However, this causes low output signals from the camera and results in dark images. To solve this issue, the signals can be amplified by user within the camera. This  gain is adjustable from 0 to 26 db.

Notice

Increasing the gain factor causes an increase of image noise.

31

8.5 Pixel Correction

8.5.1 General information

A certain probability for abnormal pixels - the so-called defect pixels -  applies to the sensors of all manufacturers. The charge quantity on these pixels is not linear-dependent on  the exposure time.

The occurrence of these defect pixels is unavoidable and intrinsic to the manufacturing and aging process of the sensors.

The operation of the camera is not affected by these pixels. They only appear as brighter 

(warm pixel) or darker (cold pixel) spot in the recorded image.

Warm Pixel

Figure 33 ►

Distinction of "hot" and

"cold" pixels within the recorded image.

Charge quantity

„Warm Pixel“

Charge quantity

„Cold Pixel“

Cold Pixel

Charge quantity

„Normal Pixel“

Figure 34 ►

Charge  quantity  of  "hot"  and 

"cold" pixels compared with

"normal" pixels.

8.5.2 Correction Algorithm

On  monochrome  cameras  of  the  Baumer  SXG  series,  the  problem  of  defect  pixels  is  solved as follows:

Possible defect pixels are identified during the production process of the camera.

The coordinates of these pixels are stored in the factory settings of the camera (see 

8.5.3 Defectpixellist).

Once the sensor readout is completed, correction takes place:

▪ Before any other processing, the values of one neighboring pixels on the left and the  right side of the defect pixel, will be read out

Then the average value of these 2 pixels is determined

Finally, the value of the defect pixel is substituted by the previously determined  average value

Defect Pixel Average Value Corrected Pixel

32

Figure 35 ►

Schematic diagram of the Baumer pixel  correction.

8.5.3 Defectpixellist

As stated previously, this list is determined within the production process of Baumer cameras and stored in the factory settings. This list is editable.

8.6 Sequencer

8.6.1 General Information

A sequencer is used for the automated control of series of images using different sets of parameters.

m n

0

A

B

n

1

C

n

2 o z n x-1

The figure above displays the fundamental structure of the sequencer module.

The loop counter (m) represents the number of sequence repetitions.

The repeat counter (n) is used to control the amount of images taken with the respective  sets of parameters. For each set there is a separate n.

The start of the sequencer can be realized directly (free running) or via an external event 

(trigger). The source of the external event (trigger source) must be determined before.

The additional frame counter (z) is used to create a half-automated sequencer. It is absolutely independent from the other three counters, and used to determine the number of  frames per external trigger event.

The following timeline displays the temporal course of a sequence with: n   = (A=5), (B=3), (C=2) repetitions per set of parameters o   = 3  sets of parameters (A,B and C) m = 1 sequence and z = 2 frames per trigger

◄ Figure 36

Flow chart of sequencer.

m - number of

sequence repeti-

tions n - number of set

repetitions o - number of

sets of parameters z - number of frames

per trigger

Sequencer Parameter:

The mentioned sets of parameter include the following:

Exposure time

Gain factor

Repeat counter

IO-Value

n = 1 n = 2 z = 2

A n = 3 z = 2 n = 4 n = 5 z = 2 n = 1

B C n = 2 n = 3 n = 1 z = 2 n = 2 z = 2

t

◄ Figure 37

Timeline for a single sequence

33

8.6.2 Examples

8.6.2.1 Sequencer without Machine Cycle

C

C

Sequencer

Start

B

B

A

Figure 38 ►

Example for a fully automated sequencer.

A

The figure above shows an example for a fully automated sequencer with three sets of  parameters (A,B and C). Here the repeat counter (n) is set for (A=5), (B=3), (C=2) and the  loop counter (m) has a value of 2.

When the sequencer is started, with or without an external event, the camera will record the pictures using the sets of parameters A, B and C (which constitutes a sequence).

After that, the sequence is started once again, followed by a stop of the sequencer - in this  case the parameters are maintained.

8.6.2.2 Sequencer Controlled by Machine Steps (trigger)

C

C

34

B

Sequencer

Start

B

A

Figure 39 ►

Example for a half-automated sequencer.

A

Trigger

The figure above shows an example for a half-automated sequencer with three sets of  parameters (A,B and C) from the previous example. The frame counter (z) is set to 2. This  means the camera records two pictures after an incoming trigger signal.

8.6.3 Capability Characteristics of Baumer-GAPI Sequencer Module

▪ up to 128 sets of parameters up to 4 billion loop passes up to 4 billion repetitions of sets of parameters up to 4 billion images per trigger event free running mode without initial trigger

8.6.4 Double Shutter

This feature offers the possibility of capturing two images in a very short interval. Depending on the application, this is performed in conjunction with a flash unit. Thereby the first  exposure time (t exposure

) is arbitrary and accompanied by the first flash. The second exposure time must be equal to, or longer than the readout time (t readout

) of the sensor. Thus the  pixels of the sensor are recepitve again shortly after the first exposure. In order to realize  the second short exposure time without an overrun of the sensor, a second short flash  must be employed, and any subsequent extraneous light prevented.

Trigger

Flash

Exposure

Prevent Light

Readout

On Baumer SXG cameras this feature is realized within the sequencer.

In order to generate this sequence, the sequencer must be configured as follows:

Parameter

Sequencer Run Mode

Sets of parameters (o)

Loops (m)

Repeats (n)

Frames Per Trigger (z)

Setting:

Once by Trigger

2

1

1

2

◄ Figure 40

Example of a double shutter.

35

36

8.7 Process Interface

8.7.1 Digital IOs

Cameras of the Baumer SXG series are equipped with three input lines and three output  lines.

Figure 41►

IO matrix of the 

Baumer  SXG  on  input  side.

Notice

Low Active: At this wiring, only one consumer can be connected. When all Output pins 

(1, 2, 3) connected to IO_GND, then current flows through the resistor as soon as one 

Output is switched. If only one output connected to IO_GND, then this one is only usable.

The other two Outputs are not usable and may not be connected (e.g. IO Power V

CC

)!

Output high active

Camera Customer Device

U ext

Pin

IO Power VCC

IOUT

Out (n)

Pin RL

IO GND

Output low active

Camera Customer Device

IO Power VCC

RL

Out

U ext

Pin (Out1, 2, 3)

IOUT

Out1 or Out2 or Out3

IO GND

Input

Customer Device

DRV

IO GND

IN1 Pin

IN GND Pin

Camera

8.7.1.2 User Definable Inputs

The wiring of these input connectors is left to the user.

Sole exception is the compliance with predetermined high and low levels (0 .. 4,5V low,

11 .. 30V high).

The defined signals will have no direct effect, but can be analyzed and processed on the  software side and used for controlling the camera.

The employment of a so called "IO matrix" offers the possibility of selecting the signal and  the state to be processed.

On the software side the input signals are named "Line0", "Line1" and "Line2".  state selection

(software side)

(Input) Line0

(Input) Line1

(Input) Line2 state high state low state high state low state high state low

IO Matrix

Line0

Line1

Line2

8.7.1.3 Configurable Outputs

With this feature, Baumer offers the possibility of wiring the output connectors to internal  signals, which are controlled on the software side.

Hereby on cameras of the SXG series,  17 signal sources – subdivided into three categories – can be applied to the output connectors.

The first category of output signals represents a loop through of signals on the input side,  such as:

Signal Name

Line0

Line1

Line2

Explanation

Signal of input "Line0" is loopthroughed to this ouput

Signal of input "Line1" is loopthroughed to this ouput

Signal of input "Line2" iys loopthroughed to this ouput

Within the second category you will find signals that are created on camera side:

Signal Name

FrameActive

TriggerReady

TriggerOverlapped

TriggerSkipped

ExposureActive

TransferActive

ExposureEnlarged

Explanation

The camera processes a Frame consisting of exposure and readout

Camera is able to process an incoming trigger signal

The camera operates in overlapped mode

Camera rejected an incoming trigger signal

Sensor exposure in progress

Image transfer via hardware interface in progress

This output marks the period of enlarged exposure time

Beside the 10 signals mentioned above, each output can be wired to a user-defined  signal ("UserOutput0", "UserOutput1", "UserOutput2", "SequencerOut 0...2" or disabled 

("OFF").

(Output) Line 3

(Output) Line 4

(Output) Line 5 state selection

(software side) state high state low state high state low state high state low

IO Matrix signal selection

(software side)

Off

Line0

Line1

Line2

FrameActive

TriggerReady

TriggerOverlapped

TriggerSkipped

ExposureActive

TransferActive

ExposureEnlarged

UserOutput0

UserOutput1

UserOutput2

Timer1Active

Timer2Active

Timer3Active

SequencerOutput0

SequencerOutput1

SequencerOutput2

◄ Figure 42

IO matrix of the 

Baumer SXG on output  side.

37

U

30V

high

11V

4 5V

0

low

t

Figure 43 ▲

Trigger signal, valid for

Baumer cameras.

8.8 Trigger Input / Trigger Delay

Trigger signals are used to synchronize the camera exposure and a machine cycle or, in  case of a software trigger, to take images at predefined time intervals.

Different trigger sources can be used here:

Line0 Actioncommand

Line1

Line2

Off

SW-Trigger

Camera in trigger mode:

A - Trigger delay

B - Exposure time

C - Readout time

Possible settings of the Trigger Delay 

Delay

Number of tracked Triggers

Step

0-2 sec

512

1 µsec

There are three types of trigger modes. The timing diagrams for the three types you can  see below.

Normal Trigger with adjusted Exposure

Trigger (valid)

A

Exposure

B

C

Readout

Time

Pulse Width controlled Exposure

Trigger (valid)

B

C

Exposure

Readout

Time

Edge controlled Exposure

B

C

Trigger (valid)

Exposure

Readout

Time

38

8.8.1 Trigger Source

og ra mm able logic co ntr ol ph oto

electric sens or

Har dware

trigger trigge r signal so ftwa re trigge r others

Each trigger source has to be activated separately. When the trigger mode is activated,  the hardware trigger is activated by default.

◄ Figure 44

Examples of possible trigger sources.

39

8.8.2 Debouncer

The basic idea behind this feature was to seperate interfering signals (short peaks) from  valid square wave signals, which can be important in industrial environments. Debouncing means that invalid signals are filtered out, and signals lasting longer than a user-defined  testing time t

DebounceHigh

will be recognized, and routed to the camera to induce a trigger.

In order to detect the end of a valid signal and filter out possible jitters within the signal, a  second testing time t

If the signal value falls to state low and does not rise within t as end of the signal.

DebounceLow was introduced. This timing is also adjustable by the user. 

DebounceLow

, this is recognized

The debouncing times t

DebounceHigh of 1 μsec.

and t

DebounceLow

are adjustable from 0 to 5 msec in steps

This feature is disabled by default.

U

30V

Debouncer:

Please note that the edges of valid trigger signals are shifted by t

DebounceHigh

!

and t

DebounceLow

Depending on these two timings, the trigger signal might be temporally stretched or compressed.

Incoming signals

(valid and invalid)

11V

4.5V

0

high low

t

∆t

1

∆t

2

∆t

3

∆t

4

∆t

5

∆t

6

Debouncer t

DebounceHigh t

DebounceLow t

U

30V

Figure 45 ►

Principle of the Baumer  debouncer.

Filtered signal

high

11V

4.5V

0 t

∆t x t

DebounceHigh

DebounceLow

high time of the signal

user defined debouncer delay for state high

user defined debouncer delay for state low

low

t

8.8.3 Flash Signal

On  Baumer  cameras,  this  feature  is  realized  by  the  internal  signal  "ExposureActive",  which can be wired to one of the digital outputs.

40

8.8.4 Timer

Timers were introduced for advanced control of internal camera signals.

On Baumer SXG cameras the timer configuration includes four components:

Setting

Timeselector

Description

There are three timers. Own settings for each timer can be  made  . (Timer1, Timer2, Timer3)

TimerTriggerSource This feature provides a source selection for each timer.

TimerTriggerActivation This feature selects that part of the trigger signal (edges or states) that activates the timer.

TimerDelay

TimerDuration

This feature represents the interval between incoming trigger signal and the start of the timer.

(0 μsec .. 2 sec, step: 1 μsec)

By this feature the activation time of the timer is adjustable.

(10 μsec .. 2 sec, step: 1 μsec)

Different Timer Trigger sources can be used:

Timer Trigger sources

Input Line0

Input Line1

Input Line2

SW-Trigger

Exposure Start

Exposure End

Frame Start

Frame End

ActionCommandTrigger TriggerSkipped

For example the using of a timer allows you to control the flash signal in that way, that the  illumination does not start synchronized to the sensor exposure but a predefined interval  earlier.

For this example you must set the following conditions:

Setting

TriggerSource

TimerTriggerSource

Outputline7 (Source)

Value

InputLine0

InputLine0

Timer1Active

TimerTriggerActivation Falling Edge

Trigger Polarity Falling Edge

InputLine0

Exposure

Timer t triggerdelay t

TimerDelay t exposure t

TimerDuration

41

42

8.8.5 Counter

You can count the Events in the table below. The count values of these Events are readable and writable.

With the function "Event Source/activation" you can specify which event should be counted. These events can also be used as a CounterResetSource.

These events are:

CounterTriggerSources / CounterResetSources

Input Line0 ExposureStart

Input Line1

Input Line2

ExposureEnd

FrameStart

Softwaretrigger

ActCmdTrigger

FrameEnd

TriggerSkipped

You can set a counter duration. You can therefore set the number of events to be counted. When the set value is 0, then the maximum number of countable events is 2

32

-1 (4294967295). 

If you specify a value, then the counter counts up to that value and stops. Then a GigE  event is triggered ("Counter1/2End") and the status of the counter changes from ACTIVE  to the readable status COMPLETED. 

Reset the counter

When the reset event is reached or the counter is reset by software with "reset counter",  then the count value is stored under "CounterValueAtReset" and set the counter value back to 0.

8.9

User Sets

Three user sets (1-3) are available for the Baumer cameras of the SXG series. The user  sets can contain the following information:

Parameters

Binning Mode

Defectpixellist

Digital I/O Settings

Exposure Time

Gain Factor

Look-Up-Table

Sequencer

Timer

Fixed Frame Rate

Gamma

Mirroring Control

Partial Scan

Pixelformat

Readout Mode

Testpattern

Trigger Settings

Action Command Parameter

Counter

Frame Delay

Offset

These user sets are stored within the camera and and cannot be saved outside the device.

By employing a so-called "user set default selector", one of the three possible user sets  can be selected as default, which means, the camera starts up with these adjusted parameters.

8.10 Factory Settings

The factory settings are stored in an additional parametrization set which is used by default. This settings are not editable.

9. Interface Functionalities

9.1 Link Aggregation Group Configuration

Link Aggregation (LAG) allows grouping the two links of the SXG camera to form a “virtual” link, enabling the camera to treat the LAG as if it was a single link. This is done in a transparent way from the application perspective. 

It is important to note that LAG does not define the distribution algorithm to be used at the  transmission end of a link aggregation group. Since LAG shows a single MAC/IP, then  switches cannot figure out how to distribute the image traffic: the traffic might end-up on  one outgoing port of the switch.

Characteristic

Number of network interfaces

Number of IP address

Number of stream channels

Load balancing

Physical link down recovery

Grouping configuration

Static LAG

2

1

1

Round-robin distribution algorithm

Packets redistributed on remaining physical link

All  links  are  automatically  grouped  on the device. Manual grouping must be performed on the PC (often called teaming)

9.1.1 Camera Control

The communication for the camera control is always sent on the same physical link of the 

LAG.

9.1.2 Image data stream

A round-robin distribution algorithm allows for a uniform distribution of the bandwidth associated to the image data since all image packets have the same size. So it adequately  balances the bandwidth across the two available links. A suitable packet size must be selected to ensure all physical links can handle it. 

Because of this loose definition of conversation and the selected distribution algorithm, it  is necessary for the receiver of the image data to be tolerant to out-of-order packets and  accommodate longer timeouts than seen with Single Link configuration. 

Special provision must be taken for the inter-packet delay: it represents the delay between packets of the image data stream travelling on a given physical link.

43

9.2 Device Information

This Gigabit Ethernet-specific information on the device is part of the Discovery-Acknowledge of the camera.

Included information:

▪ MAC address

Current IP configuration (persistent IP / 

Current IP parameters (

Manufacturer's name

Manufacturer-specific information

DHCP / LLA)

IP address, subnet mask, gateway)

Device version

Serial number

User-defined name (user programmable string) 

Single GigE

Figure 46 ►

Transmission of data packets with single

GigE

By using Single GigE all data packets are sequentially transmitted over one cable. At the  beginning of a frame will transmitted a Header and at the end will transmitted a Trailer.

Dual GigE

44

Figure 47 ►

Transmission of data packets with Dual GigE

By  using  Dual  GigE  the  data  packets  are  alternately  distributed  over  both  cables.The 

Header and the Trailer are always transmitted over the same cable.

9.3 Baumer Image Info Header

The Baumer Image Info Header is a data packet, which is generated by the camera and  integrated in the first data packet of every image, if chunk mode is activated.

In this integrated data packet are different settings for this image. BGAPI can read the 

Image Info Header. Third Party Software, which supports the chunk mode, can read the  features in the table below.

Feature

ChunkOffsetX

ChunkOffsetY

ChunkWidth

ChunkHeight

ChunkPixelFormat

Description

Horizontal offset from the origin to the area of interest (in pixels).

Vertical offset from the origin to the area of interest (in pixels).

Returns the Width of the image included in the payload.

Returns the Height of the image included in the payload.

Returns the PixelFormat of the image included in the payload.

ChunkExposureTime Returns the exposure time used to capture the image.

ChunkBlackLevelSelector Selects which Black Level to retrieve data from.

ChunkBlackLevel

ChunkFrameID

Returns the black level used to capture the image included in the payload.

Returns the unique Identifier of the frame (or image) included in the payload.

9.4 Packet Size and Maximum Transmission Unit (MTU)

Network packets can be of different sizes. The size depends on the network components employed.  When  using  GigE Vision

®

-  compliant  devices,  it  is  generally  recommended  to use larger packets. On the one hand the overhead per packet is smaller, on the other  hand larger packets cause less CPU load.

The packet size of UDP packets can differ from 576 Bytes up to the MTU.

The MTU describes the maximal packet size which can be handled by all network components involved.

In  principle  modern  network  hardware  supports  a  packet  size  of  1518  Byte,  which  is  specified in the network standard. However, so-called "Jumboframes" are on the advance as Gigabit Ethernet continues to spread. "Jumboframes" merely characterizes a packet  size exceeding 1500 Bytes.

Baumer SXG cameras can handle a MTU of up to 16384 Bytes.

◄ Figure 48

Baumer  Image  Info 

Header

45

9.5 "Packet Delay" (PD)

To achieve optimal results in image transfer, several Ethernet-specific factors need to be  considered when using Baumer SXG cameras.

Upon starting the image transfer of a camera, the data packets are transferred at maximum transfer speed (1 Gbit/sec). In accordance with the network standard, Baumer employs a minimal separation of 12 Bytes between two packets. This separation is called 

"Packet Delay" (PD). In addition to the minimal PD, the GigE Vision

®

standard stipulates that  the PD be scalable (user-defined).

Figure 49 ►

Principle of Packet Delay

▲ Figure 50

Operation of two cameras employing  a Gigabit

Ethernet switch.

Data processing within the  switch  is  displayed  in the next two figures.

9.5.1 Example 1: Multi Camera Operation – Minimal IPG

Setting the IPG to minimum means every image is transfered at maximum speed. Even  by using a frame rate of 1 fps this results in full load on the network. Such "bursts" can lead to an overload of several network components and a loss of packets. This can occur, especially when using several cameras.

In the case of two cameras sending images at the same time, this would theoretically occur at a transfer rate of 2 Gbits/sec. The switch has to buffer this data and transfer it at a  speed of 1 Gbit/sec afterwards. Depending on the internal buffer of the switch, this operates without any problems up to n cameras (n ≥ 1). More cameras would lead to a loss of  packets. These lost packets can however be saved by employing an appropriate resend  mechanism, but this leads to additional load on the network components.

46

Figure 51 ►

Operation  of  two  cameras employing a minimal inter packet gap (IPG).

9.5.2 Example 2: Multi Camera Operation – Optimal IPG

A better method is to increase the IPG to a size of

optimal IPG = packet size + 2 × minimal IPG

In this way both data packets can be transferred successively (zipper principle), and the  switch does not need to buffer the packets.

Max. IPG:

On the Gigabit Ethernet the max. IPG and the data packet must not exceed 1

Gbit. Otherwise data packets can be lost.

◄ Figure 52

Operation of two cameras employing an optimal  inter packet gap (IPG).

47

9.6 Frame Delay

Another approach for packet sorting in multi-camera operation is the so-called Frame Delay, which was introduced to Baumer Gigabit Ethernet cameras in hardware release 2.1.

Due to the fact, that the currently recorded image is stored within the camera and its  transmission starts with a predefined delay, complete images can be transmitted to the  

PC at once.

The following figure should serve as an example:

48

Figure 53 ►

Principle of the Frame delay.

Due to process-related circumstances, the image acquisitions of all cameras end at the same time. Now the cameras are not trying to transmit their images simultaniously, but –  according to the specified transmission delays – subsequently. Thereby the first camera  starts the transmission immediately – with a transmission delay "0".

9.6.1 Time Saving in Multi-Camera Operation

As previously stated, the Frame delay feature was especially designed for multi-camera  operation with employment of different camera models. Just here an significant acceleration of the image transmission can be achieved:

Figure 54 ►

Comparison of frame delay  and  inter  packet  gap,  employed  for  a  multi-camera  system  with different camera models.

For the above mentioned example, the employment of the transmission delay feature results in a time saving – compared to the approach of using the inter paket gap – of approx.

45% (applied to the transmission of all three images).

9.6.2 Configuration Example

For the three used cameras the following data are known:

Camera

Model

Sensor

Resolution

[Pixel]

SXG10 1024 x 1024

SXG20 1600 x 1200

SXG80 3296 x 2472

Pixel Format

(Pixel Depth)

[bit]

8

8

8

Data

Volume

[bit]

8388608

15360000

65181696

Readout

Time

Exposure

Time

[msec]

8

15

56

[msec]

6

6

6

Transfer Time

(DualGigE)

[msec]

≈ 3,91

≈ 7.15

≈ 30.35

The sensor resolution and the readout time (t

The exposure time (t exposure readout

) can be found in the respective 

Technical Data Sheet (TDS). For the example a full frame resolution is used.

) is manually set to  6 msec.

▪ The resulting data volume is calculated as follows:

Resulting Data Volume = horizontal Pixels × vertical Pixels × Pixel Depth

▪ The transfer time (t transferGigE

) for full Dual-GigE transfer rate is calculated as follows:

Transfer Time (Dual-GigE) = Resulting Data Volume / 1024

3

× 500 [msec]

All the cameras are triggered simultaniously.

The transmission delay is realized as a counter, that is started immediately after the sensor readout is started.

Trigger

Camera 1

(HXG20) t exposure(Camera 1)

Timings:

A - exposure start for all cameras

B - all cameras ready for transmission

C - transmission start camera 2

D - transmission start camera 3

t readout(Camera 1)

Camera 2

(HXG40)

Camera 3

(SXG80) t transfer(Camera 1)* t exposure(Camera 2) t readout(Camera 2) t transferGigE(Camera 2) t exposure(Camera 3) t readout(Camera 3) t transferG gE(Camera 3)

* Due to technical issues

the data transfer of

camera 1 does not take

place with full Dual-GigE

speed.

TransmissionDelay

Camera 2

TransmissionDelay

Camera 3

◄ Figure 55

Timing diagram for the transmission delay of the three employed  cameras, using even exposure times.

49

50

In general, the transmission delay is calculated as:

t

Transmissi onDelay ( Camera n )

= t exp osure ( Camera 1 )

+ t readout ( Camera 1 )

− t exp osure ( Camera n )

+ n

n ≥ 3 t transferGi gE ( Camera n 1 )

Therewith for the example, the transmission delays of camera 2 and 3 are calculated as  follows:

t

TransmissionDelay(Camera 2)

= t exposure(Camera 1)

+ t readout(Camera 1)

- t exposure(Camera 2) t

TransmissionDelay(Camera 3)

= t exposure(Camera 1)

+ t readout(Camera 1)

- t exposure(Camera 3)

+ t transferGige(Camera 2)

Solving this equations leads to:

t

TransmissionDelay(Camera 2)

= 6 msec + 8 msec - 6 msec

= 8 msec

= 8000000 ticks t

TransmissionDelay(Camera 3)

= 6 msec + 8 msec - 6 msec + 7.15 msec

= 15.15 msec

= 15150000 ticks

Notice

In BGAPI the delay is specified in ticks. How do convert microseconds into ticks?

1 tick = 1 ns

1 msec = 1000000 ns

1 tick = 0,000001 msec

ticks= t

TransmissionDelay

[msec] / 0,000001 = t

TransmissionDelay

[ticks]

9.7 Multicast

Multicasting offers the possibility to send data packets to more than one destination address – without multiplying bandwidth between camera and Multicast device (e.g. Router  or Switch).

The data is sent out to an intelligent network node, an IGMP (Internet Group Management

Protocol) capable Switch or Router and distributed to the receiver group with the specific  address range.

In the example on the figure below, multicast is used to process image and message data  separately on two differents PC's.

Multicast Addresses:

For multicasting Baumer suggests an adress range from 232.0.1.0 to

232.255.255.255.

◄ Figure 56

Multicast Data Flow

51

Internet Protocol:

On Baumer cameras IP v4  is employed.

Figure 57 ▲

Connection pathway for 

Baumer  Gigabit Ethernet cameras:

The device connects step  by  step  via  the  three descr bed mechanisms.

9.8 IP Configuration

9.8.1 Persistent IP

A persistent IP adress is assigned permanently. Its validity is unlimited.

Notice

Please ensure a valid combination of IP address and subnet mask.

IP range: Subnet mask:

0.0.0.0 – 127.255.255.255

255.0.0.0

128.0.0.0 – 191.255.255.255

255.255.0.0

192.0.0.0 – 223.255.255.255

255.255.255.0

These combinations are not checked by Baumer-GAPI, Baumer-GAPI Viewer or camera on the fly. This check is performed when restarting the camera,  in case of an invalid 

IP - subnet combination the camera will start in LLA mode.

* This feature is disabled by default.

9.8.2 DHCP (Dynamic Host Configuration Protocol)

The DHCP automates the assignment of network parameters such as IP addresses, subnet masks and gateways. This process takes up to 12 sec.

Once the device (client) is connected to a DHCP-enabled network, four steps are processed:

DHCP Discovery

In order to find a DHCP server, the client sends a so called DHCPDISCOVER broadcast to the network.

DHCP:

Please pay attention to the 

DHCP Lease Time.

Figure 58 ►

DHCP Discovery 

(broadcast)

DHCP Offer

After reception of this broadcast, the DHCP server will answer the request by a  unicast, known as DHCPOFFER. This message contains several items of information,  such as:

Information for the client

MAC address offered IP address

Information on server

IP adress subnet mask duration of the lease

52

Figure 59 ►

DHCP offer (unicast)

DHCP Request

Once the client has received this DHCPOFFER, the transaction needs to be confirmed. For this purpose the client sends a so called DHCPREQUEST broadcast to the  network. This message contains the IP address of the offering DHCP server and informs all other possible DHCPservers that the client has obtained all the necessary  information, and there is therefore no need to issue IP information to the client.

◄ Figue 60

DHCP Request

(broadcast)

DHCP Acknowledgement

Once the DHCP server obtains the DHCPREQUEST, a unicast containing all necessary information is sent to the client. This message is called DHCPACK.

According to this information, the client will configure its IP parameters and the process is complete.

DHCP Lease Time:

The validity of DHCP IP addresses is limited by the lease time. When this time is elapsed, the IP configuration needs to be redone.

This causes a connection abort.

◄ Figure 61

DHCP Acknowledgement (unicast)

9.8.3 LLA

LLA (Link-Local Address) refers to a local IP range from 169.254.0.1 to 169.254.254.254  and is used for the automated assignment of an IP address to a device when no other method for IP assignment is available.

The IP address is determined by the host, using a pseudo-random number generator,  which operates in the IP range mentioned above.

Once an address is chosen, this is sent together with an ARP (Address Resolution Protocol) query to the network to check if it already exists. Depending on the response, the 

IP  address  will  be  assigned  to  the  device  (if  not  existing)  or  the  process  is  repeated. 

This method may take some time - the GigE Vision

®

standard stipulates that establishing connection in the LLA should not take longer than 40 seconds, in the worst case it can take up to several minutes.

9.8.4 Force IP

*)

Inadvertent faulty operation may result in connection errors between the PC and the camera.

In this case "Force IP" may be the last resort. The Force IP mechanism sends an IP address and a subnet mask to the MAC address of the camera. These settings are sent without verification and are adapted immediately by the client. They remain valid until the  camera is de-energized.

LLA:

Please ensure operation of the PC within the same subnet as the camera.

*) In the GigE Vision

®

 standard, this feature is defined as "Static IP".

53

9.9 Packet Resend

Due to the fact, that the GigE Vision

®

standard stipulates using a UDP - a stateless user datagram protocol - for data transfer, a mechanism for saving the "lost" data needs to be employed.

Here, a resend request is initiated if one or more packets are damaged during transfer and - due to an incorrect checksum - rejected afterwards.

On this topic one must distinguish between three cases:

9.9.1 Normal Case

In the case of unproblematic data transfer, all packets are transferred in their correct order from the camera to the PC. The probability of this happening is more then 99%.

Figure 62 ►

Data stream without damaged or lost packets.

9.9.2 Fault 1: Lost Packet within Data Stream

If one or more packets are lost within the data stream, this is detected by the fact, that  packet number n is not followed by packet number (n+1). In this case the application  sends a resend request (A). Following this request, the camera sends the next packet and  then resends (B) the lost packet.

Figure 63 ►

Resending lost packets within the data stream.

In our example packet no. 3 is lost. This fault is detected on packet no. 4, and the resend  request  triggered.  Then  the  camera  sends  packet  no.  5,  followed  by  resending  packet no. 3.

54

9.9.3 Fault 2: Lost Packet at the End of the Data Stream

In case of a fault at the end of the data stream, the application will wait for incoming packets for a predefined time. When this time has elapsed, the resend request is  triggered and the "lost" packets will be resent.

In our example, packets from no. 3 to no. 5 are lost. This fault is detected after the predefined time has elapsed and the resend request (A) is triggered. The camera then resends packets no. 3 to no. 5 (B) to complete the image transfer.

9.9.4 Termination Conditions

The resend mechanism will continue until: all packets have reached the pc the maximum of resend repetitions is reached the resend timeout has occured or the camera returns an error.

◄ Figure 64

Resending of lost packets at the end of the data stream.

55

56

9.10 Message Channel

The asynchronous message channel is described in the GigE Vision

®

standard and offers the possibility of event signaling. There is a timestamp (64 bits) for each announced  event, which contains the accurate time the event occurred. Each event can be activated and deactivated separately.

Eventmap SXG:

13

14

15

16

7

8

9

10

11

12

Bit Edge Event-ID

GigE Vision Standard Events

0x0007

SXG Hardware-Events

0 rising 0x9000

1

2 falling rising

0x9001

0x9002

5

6

3

4 falling rising falling rising

0x9003

0x9004

0x9005

0x9006 falling rising falling rising falling rising rising rising rising rising

0x9007

0x9008

0x9009

0x900A

0x900B

0x900C

0x900D

0x900E

0x900F

0x9010

21

22

23

24

25

17

18

19

20 rising rising rising rising rising rising falling rising falling

26

27

28

29 rising rising rising rising

30

31 rising rising

SXG-Software-Events

0x9011

0x9012

0x9013

0x9014

0x9015

0x9016

0x9017

0x9018

0x9019

0x901A

0x901B

0x901C

0x901D

0x901E

0x901F

0x9020

0x9021

0x9022

0x9023

XML-Event-Description

PrimaryApplicationSwitch

Line0RisingEdge

Line0FallingEdge

Line1RisingEdge

Line1FallingEdge

Line2RisingEdge

Line2FallingEdge

Line3RisingEdge

Line3FallingEdge

Line4RisingEdge

Line4FallingEdge

Line5RisingEdge

Line5FallingEdge

ExposureStart

ExposureEnd

FrameStart

FrameEnd

TriggerReady

TriggerOverlapped

TriggerSkipped

Software

Action1

Action2

Link0Up

Link0Down

Link1Up

Link1Down

Timer1End

Timer2End

Timer3End

Counter1End

Counter2End

Gev_Event_Link_Speed_Change

GigEVisionError

EventLost

EventDiscarded

GigEVisionHeartbeatTimeOut

9.11 Action Commands

The basic idea behind this feature was to achieve a simultaneous trigger for multiple cameras.

Action Command

Action Command Trigger

Action Command Timestamp

Description

used to send a trigger to all connected cameras.

used to reset the Timestamp of the connected cameras

Therefore a broadcast ethernet packet was implemented. This packet can be used to induce a trigger as well as other actions.

Due to the fact that different network components feature different latencies and jitters, the trigger over the Ethernet is not as synchronous as a hardware trigger. Nevertheless, applications can deal with these jitters in switched networks, and therefore this is a comfortable method for synchronizing cameras with software additions.

The action command is sent as a broadcast. In addition it is possible to group cameras, so that not all attached cameras respond to a broadcast action command.

Such an action command contains: a Device Key  -  for authorization of the action on this device

▪ a Group Key  -  for triggering actions on separated groups of devices a Group Mask - for extension of the range of separate device groups

9.11.1 Action Command Trigger

The figure below displays three cameras, which are triggered synchronously by a software application.

Action Command:

Since hardware release 2.1 the implemetation of the

Action Command follows the regulations of the GigE

Vision

®

standard 1.2.

Another application of action command is that a secondary application or PC or one of the  attached cameras can actuate the trigger.

◄ Figure 65

Triggering of multiple cameras via trigger over

Ethernet (ToE).

57

58

Figure 66 ►

Timestamping of multiple cameras over Ethernet.

9.11.2 Action Command Timestamp

The figure below show a PC with 1-n connected cameras, which are receives the Action 

Command "Timestamp" from the PC. Thus, the time signal of all 1-n cameras can simultaneously set to 0.

10. Start-Stop-Behaviour

10.1 Start / Stop Acquisition (Camera)

Once the image acquisition is started, three steps are processed within the camera:

▪ Determination of the current set of image parameters

▪ Exposure of the sensor

Readout of the sensor.

Afterwards a repetition of this process takes place until the camera is stopped.

Stopping the acquisition means that the process mentioned above is aborted. If the stop signal occurs within a readout, the current readout will be finished before stopping the  camera. If the stop signal arrives within an exposure, this will be aborted.

Special Case: Asynchronous Reset

The asynchronous reset represents a special case of stopping the current acquisition. 

Thereby exposure is aborted immediately. Thus the current image is not read out and the  image is upcasted.

This feature was introduced to accelerate the changing of image parameters.

Asynchronous Reset:

For further information on the timings of this feature, please see the respective data sheets.

10.2 Start / Stop Interface

Without starting the interface, transmission of image data from the camera to the PC will not proceed. If the image acquisition is started befor the interface is activated, the recorded images are lost.

If the interface is stopped during a transmission, this is aborted immediately.

10.3 Pause / Resume Interface

Pausing while the interface is operational, results in an interim storage of the recorded images within the internal buffer of the camera.

After resuming the interface, the buffered image data will be transferred to the PC.

10.4 Acquisition Modes

In general, three acquisition modes are available for the cameras in the Baumer SXG  series.

10.4.1 Free Running

Free running means the camera records images continuously without external events.

10.4.2 Trigger

The basic idea behind the trigger mode is the synchronization of cameras with machine  cycles. Trigger mode means that image recording  is not continuous, but triggered by  external events.

10.4.3 Sequencer

A sequencer is used for the automated control of series of images, using different settings for exposure time and gain.

59

60

Figure 67 ►

Procedure of lens install

11. Lens install

Notice

Avoid contamination of the sensor and the lens by dust and airborne particles when  mounting a lens to the device!

Therefore the following points are very important:

▪ Attach lenses in an environment that is as dust free as possible!

Keep the dust covers on camera and lens as long as possible!

Hold the camera downwards with unprotected sensor (or filter- /cover glass)!

Avoid contact with any optical surface of the camera or lens!

1. Turn the camera with the lens mount to the bottom.

2. Unscrew the protective cap.

3. Screw the lens on the lens mount.

12. Cleaning

Cover glass

Notice

The sensor is mounted dust-proof. Remove of the cover glass for cleaning is not necessary.

Avoid cleaning the cover glass of the CCD sensor if possible. To prevent dust, follow the instructions under "Install lens".

If you must clean it, use compressed air or a soft, lint free cloth dampened with a small  quantity of pure alcohol.

Housing

volatile solvents

Caution!

Volatile solvents for cleaning.

Volatile solvents damage the surface of the camera.

Never use volatile solvents (benzine, thinner) for cleaning!

To clean the surface of the camera housing, use a soft, dry cloth. To remove persistent  stains, use a soft cloth dampened with a small quantity of neutral detergent, then wipe  dry.

13. Transport / Storage

Notice

Transport the camera only in the original packaging. When the camera is not installed,  then storage the camera in original packaging.

Storage temperature

Storage Humidy

Storage Environment

-10°C ... +70°C ( +14°F ... +158°F)

10% ... 90% non condensing

14. Disposal

Dispose of outdated products with electrical or electronic circuits, not in the normal domestic waste, but rather according to your national law and the  directives 2002/96/EC and 2006/66/EC for recycling within the competent  collectors.

Through the proper disposal of obsolete equipment will help to save valuable resources and prevent possible adverse effects on human health and the environment.

The return of the packaging to the material cycle helps conserve raw materials an reduces the production of waste. When no longer required, dispose of the packaging materials in accordance with the local regulations in force.

Keep the original packaging during the warranty period in order to be able  to pack the device properly in the event of a warranty claim.

61

62

15. Warranty Information

Notice

There are no adjustable parts inside the camera!

In order to avoid the loss of warranty do not open the housing!

Notice

If it is obvious that the device is / was dismantled, reworked or repaired by other than 

Baumer  technicians,  Baumer  Optronic  will  not  take  any  responsibility  for  the  subsequent performance and quality of the device!

16. Support

If you have any problems with the camera, then feel free to contact our support.

Worldwide

Baumer Optronic GmbH

Badstrasse 30

DE-01454 Radeberg, Germany

Tel: +49 (0)3528 4386 845

Website: www.baumer.com

mail: [email protected]

17. Conformity

Cameras of the Baumer SXG family comply with:

CE

FCC Part 15 Class B

RoHS

17.1 CE

We  declare,  under  our  sole  responsibility,  that  the  previously  described  Baumer  SXG  cameras conform with the directives of the CE.

17.2 FCC – Class B Device

This equipment has been tested and found to comply with the limits for a Class B digital  device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used  in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occure in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off an on, the user is encouraged  to try to correct the interference by one or more of the following measures:

Reorient or relocate the receiving antenna.

Increase the separation between the equipment and the receiver.

Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

Consult the dealer or an experienced radio/TV technician for help.

63

Baumer Optronic GmbH

Baumer Optronic GmbH

Badstrasse 30

DE-01454 Radeberg, Germany

Phone +49 (0)3528 4386 0 · Fax +49 (0)3528 4386 86 [email protected] · www.baumer.com

DE-01454 Radeberg, Germany

Phone +49 (0)3528 4386 0 · Fax +49 (0)3528 4386 86 [email protected] · www.baumeroptronic.com

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals