Fairchild FEBFAN7631_L17U120A LED Driver User Guide

Fairchild FEBFAN7631_L17U120A LED Driver User Guide
Add to My manuals

FEBFAN7631_L17U120A is a 120 W LED driver designed for universal line applications, featuring a flyback bias regulation, a boost converter for Power-Factor-Correction (PFC), and an LLC resonant converter for a single LED channel with constant current and voltage or individual boost converters for two LED channels with constant current and dimming control. It utilizes Fairchild Power Switch (FPS™) FSL117MRIN, CRM PFC Controller FL7930B, Half-Bridge LLC Controller FAN7631, and Single-Channel Boost Controller (for each controller) FAN73402. The power supply operates on an input voltage range of 85 VRMS – 300 VRMS and provides DC outputs with a constant current of 2.4 A at 50 VMAX for a single LED channel or with constant current and dimming of 1.2 V at 100 V for two LED channels.

advertisement

Assistant Bot

Need help? Our chatbot has already read the manual and is ready to assist you. Feel free to ask any questions about the device, but providing details will make the conversation more productive.

Fairchild FEBFAN7631_L17U120A LED Driver User Guide | Manualzz

User Guide for

FEBFAN7631_L17U120A

120 W LED Driver at Universal Line

Featured Fairchild Products:

FSL117MRIN

FL7930C

FAN7631

FAN73402

Direct questions or comments about this evaluation board to:

“Worldwide Direct Support”

Fairchild Semiconductor.com

© 2013 Fairchild Semiconductor Corporation 1 FEBFAN7631_L17U120A • Rev. 1.0.0

Table of Contents

1. Introduction ............................................................................................................................ 3

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

General Description of FSL117MIRN.................................................................... 3

Features ................................................................................................................... 4

Internal Block Diagram........................................................................................... 4

General Description of FL7930C............................................................................ 5

Features ................................................................................................................... 5

Internal Block Diagram........................................................................................... 6

General Description of FAN7631 ........................................................................... 6

1.8.

1.9.

Features ................................................................................................................... 7

Internal Block Diagram........................................................................................... 7

1.10. General Description of FAN73402 ......................................................................... 8

1.11. Features ................................................................................................................... 8

1.12. Internal Block Diagram........................................................................................... 9

2.

Specifications for Evaluation Board .................................................................................... 10

3.

Photographs.......................................................................................................................... 11

4.

Printed Circuit Board (PCB) ................................................................................................ 12

5.

Schematic ............................................................................................................................. 13

6.

Bill of Materials ................................................................................................................... 18

7.

Transformer Design ............................................................................................................. 22

7.1.

Flyback Transformer (TS801) .............................................................................. 22

7.2.

PFC Inductor (LP801)........................................................................................... 23

7.3.

LLC Transformer (TM801) .................................................................................. 24

8.

Performance of Evaluation Board ........................................................................................ 25

8.1.

System Efficiency ................................................................................................. 25

8.2.

Power Factor and Total Harmonic Discharge (THD) ........................................... 27

8.3.

Constant-Current and voltage Regulation ............................................................. 28

8.4.

Overall Startup Performance................................................................................. 29

8.5.

Startup Performance in Flyback Stage .................................................................. 30

8.6.

Startup Performance in PFC stage ........................................................................ 31

8.7.

Startup Performance in LLC Stage ....................................................................... 32

8.8.

Key Waveforms for Input and Output .................................................................. 33

8.9.

Key Waveforms for Flyback Stage ....................................................................... 34

8.10.

Key Waveforms for PFC Stage............................................................................. 35

8.11.

Key Waveforms for LLC Stage ............................................................................ 37

8.12.

Key Waveforms for Single-Channel Boost Stage ................................................ 39

8.13.

Dimming Performance .......................................................................................... 40

8.14.

LED Short/Open Protection at Multi CH Output ................................................. 42

8.15.

Operating Temperature ......................................................................................... 43

9.

Revision History .................................................................................................................. 44

© 2013 Fairchild Semiconductor Corporation 2 FEBFAN7631_L17U120A • Rev. 1.0.0

This user guide supports the evaluation kit for the FSL117MRIN, FL7930C, FAN7631, and FAN73402; orderable as FEB-L017U120B. It should be used in conjunction with the product datasheets as well as Fairchild’s application notes and technical support team.

Please visit Fairchild’s website at www.fairchildsemi.com

.

1. Introduction

This document describes a proposed solution for a 120 W LED driver consisting of an

AC-DC converter for flyback bias regulation, a boost converter for Power-Factor-

Correction (PFC), an LLC resonant converter for a single LED channel with constant current and voltage or individual boost converters for two LED channels with constant current and dimming control. The input voltage range is 85 V

RMS

– 300 V

RMS

and there are DC outputs with a constant current of 2.4 A at 50 V

MAX

for a single LED channel or with constant current and dimming of 1.2 V at 100 V for two LED channels.

The power supply mainly utilizes:

FSL117MRIN – Green Mode Fairchild Power Switch (FPS™)

FL7930B – CRM PFC Controller

FAN7631 – Half-Bridge LLC Controller

FAN73402 – Single-Channel Boost Controller (for each controller)

FCPF190N60E and FCPF600N60Z – Fairchild SuperFET® Technology

FDPF14N30 – Fairchild UniFET® Technology N-Channel MOSFET

FFPF08H60S – Fairchild Hyperfast Rectifier

MBR20200CT – Fairchild Schottky Rectifier

RURD620CCS9A – Fairchild Ultra-Fast Recovery Rectifier (for discrete)

This document contains important information (e.g. schematic, bill of materials, printed circuit board layout, transformer design documentation), and the typical operating characteristics supporting this evaluation board.

1.1. General Description of FSL117MRIN

The FSL117MRIN is an integrated Pulse Width Modulation (PWM) controller and 700 V

SenseFET specifically designed for offline Switched-Mode Power Supplies (SMPS) with minimal external components. The PWM controller includes an integrated fixedfrequency oscillator, Line Over-Voltage Protection (LOVP), Under-Voltage Lockout

(UVLO), Leading-Edge Blanking (LEB), optimized gate driver, internal soft-start, temperature-compensated precise current sources for loop compensation, and selfprotection circuitry. Compared with a discrete MOSFET and PWM controller solution, the FSL117MRIN can reduce total cost, component count, size, and weight; while simultaneously increasing efficiency, productivity, and system reliability. This device provides a basic platform for cost-effective design of a flyback converter.

© 2013 Fairchild Semiconductor Corporation 3 FEBFAN7631_L17U120A • Rev. 1.0.0

1.1.1. Features

Advanced Soft Burst Mode for Low Standby Power and Low Audible Noise

Random Frequency Fluctuation (RFF) for Low Electromagnetic Interference (EMI)

Pulse-by-Pulse Current Limit

Overload Protection (OLP), Over-Voltage Protection (OVP), Abnormal Over-Current

Protection (AOCP), Internal Thermal Shutdown (TSD) with Hysteresis, Output-Short

Protection (OSP), Line Over-Voltage Protection (LOVP), and Under-Voltage

Lockout (UVLO) with Hysteresis

Low Operating Current (0.4 mA) in Burst Mode

Internal Startup Circuit

Internal Avalanche-Rugged 700 V SenseFET

Built-in Soft-Start: 15 ms

Auto-Restart Mode

1.1.2. Internal Block Diagram

V

STR

5

V

CC

2

Drain

6,7,8

V burst

0.35V / 0.50V

Soft Burst

I

CH

V

REF

V

CC

Good

7.5V / 12V

V

CC

2.0µA

I

DELAY

V

REF

90µA

I

FB

Soft-Start

Random

OSC

PWM

FB

3

3R

R

S Q

R Q

LEB (300ns)

Gate

Driver t

ON

<t

OSP

(1.0

μs)

LPF

V

AOCP

1 GND

V

OSP

V

SD

7.0V

V

CC

V

OVP

24.5V

V

INH

/ V

INL

TSD

V

CC

Good

S Q

R Q

4

V

IN

FSL1117MRIN

Figure 1. Block Diagram of FSL117MRIN

© 2013 Fairchild Semiconductor Corporation 4 FEBFAN7631_L17U120A • Rev. 1.0.0

1.2. General Description of FL7930C

The FL7930C is an active Power Factor Correction (PFC) controller for low- to highpower lumens applications that operate in Critical Conduction Mode (CRM). It uses a voltage-mode PWM that compares an internal ramp signal with the error amplifier output to generate a MOSFET turn-off signal. Because the voltage-mode CRM PFC controller does not need rectified AC line voltage information, it saves the power loss of an input voltage-sensing network. FL7930B provides over-voltage, open-feedback, over-current, input-voltage-absent detection, and under-voltage lockout protections. The FL7930B can be disabled if the INV pin voltage is lower than 0.45 V and the operating current decreases to a very low level. Using a new variable on-time control method, Total

Harmonic Discharge (THD) is lower than conventional CRM boost PFC ICs. The

FL7930C provides a PFC Ready pin that can be used to shutdown the boost power stage when PFC output voltage reaches the proper level (with hysteresis).

1.2.1. Features

Additional PFC-Ready Function

Input-Voltage-Absent-Detection Circuit

Maximum Switching Frequency Limitation.

Internal Soft-Start with Overshoot Prevention

Internal Total harmonic Distortion (THD) Optimizer

Precise Adjustable Output Over-Voltage Protection (OVP)

Open-Feedback Protection and Disable Function

Zero Current Detector (ZDC)

150 μs Internal Startup Timer

MOSFET Over-Current Protection (OCP)

Under-Voltage Lockout with 3.5 V Hysteresis (UVLO)

Low Startup (40 μA) and Operating Current (1.5 mA)

Totem-Pole Output with High State Clamp

+500 / -800 mA Peak Gate Drive Current

SOP-8 Package

© 2013 Fairchild Semiconductor Corporation 5 FEBFAN7631_L17U120A • Rev. 1.0.0

1.2.2. Internal Block Diagram

V

CC

V

REF

V

BIAS

2.5V

REF internal bias

V

CC

H:open reset

-

+

V

Z

V

TH(S/S)

8 V

CC

8.5

12

ZCD 5

INV 1

-

+

V

TH(ZCD)

V

REF

6.5V

THD optimized sawtooth generator

1V

+

Startup without

Overshoot

-

V

REF stair step

-

+ reset clamp circuit

COMP 3 disable

RDY 2

-

INV_open

OVP

UVLO

+

0.35

0.45

V

BIAS restart timer

V

IN

-Absent

Detection

S Q

R Q disable f

MAX limit

2.5

2.675

1.60

2.24

Figure 2.

Block Diagram of FL7930C

+

-

V

CS_LIM thermal shutdown

40k

W

8pF

V

CC gate driver

V

O(MAX)

7

OUT

4

CS

6 GND

1.3. General Description of FAN7631

The FAN7631 is a pulse-frequency modulation controller for high-efficiency half-bridge resonant converters that includes a high-side gate drive circuit, an accurate currentcontrolled oscillator, and various protection functions. The FAN7631 features include variable dead time, high operating frequency up to 600 kHz, protections such as LUVLO, and a selectable latch or A/R protection using the LS pin for user convenience. The Zero-

Voltage-Switching (ZVS) technique reduces the switching losses and improves the efficiency significantly. ZVS also reduces the switching noise noticeably, which allows a small Electromagnetic Interference (EMI) filter. Offering everything necessary to build a reliable and robust resonant converter, the FAN7631 simplifies designs and improves productivity and performance. The FAN7631 can be applied to resonant converter topologies such as series resonant, parallel resonant, and LLC resonant converters.

© 2013 Fairchild Semiconductor Corporation 6 FEBFAN7631_L17U120A • Rev. 1.0.0

RT 2

SS

3

1.3.1. Features

Variable Frequency Control with 50% Duty Cycle for Half-bridge Resonant

Converter Topologies

High Efficiency through Zero-Voltage-Switching (ZVS)

Up to 600 kHz Operating Frequency

High Gate-Driving Current +500 mA/-1000 mA

Precise Adjustable Output Over-Voltage Protection (OVP)

Programmable Dead Time using a Resistor

Pulse Skipping and Burst Operation for Frequency Limit (programmable) at Light-

Load Condition

Simple Remote on/off Control with Selectable Latch or A/R using FI or LS pin

Protection Function; Over-Voltage Protection (OVP), Overload Protection (OLP),

Over-Current Protection (OCP), Abnormal Over-Current Protection (AOCP), Internal

Thermal Shutdown (TSD) and High Precise Line Under-Voltage Lockout (LUVLO)

Level-Change OCP Function during Startup.

SOP-16 Package

1.3.2. Internal Block Diagram

LV

CC

12

Current Controlled Oscillator

+

LVcc Good 16

HV

CC

2V

+

V

RT

2I

CTC

-

I

CTC

V

TH

+

V

TL

+

-

S Q

R Q

-

10 / 12.5 V

+

V

OVP

-

OVP

V

REF

Internal Bias

DT

HV

CC

Good

High-Side

Gate Driver

+

-

8.7 / 9.2 V

15

HO

V

SS_ATART

/ V

SS_END

+

V

SS_END

-

I

SS1

Current

Steering

Block

30µA

I

SS2

-

CS

V

SS_START

+

OLP

Block

-

OVP

OLP

50% Duty Cycle

Frequency

Divider < 600kHz

OCP

A/R

Protection

S Q

R Q

DT

OCP

Low-Side

Gate Driver

AOCP

-

+

V

OCP

-0.56V

CS

14

CTR

4

DT

11

LO

9 CS

I

OLP

30µA

+

-

V

AOCP

-1.1V

PG

10

SG 7

LINE Good

LVcc Good

SKIP

Latch

Protection

+

10µA

I

LINE 0.6 V/ 0.4 V +

Q S

-

Q R

V

RT

3V

-

LV

CC

< 5V

8 1

LS CON

Figure 3. Block Diagram of FAN7631

TSD

+

-

4V

V

FI

6

FI

© 2013 Fairchild Semiconductor Corporation 7 FEBFAN7631_L17U120A • Rev. 1.0.0

1.4. General Description of FAN73402

The FAN73402 is a single-channel boost controller that integrates an N-channel power

MOSFET for PWM dimming using Fairchild’s proprietary planar Double-diffused

MOSFET (DMOS) technology. The IC operates as a constant-current source for driving high-current LEDs. It uses Current Mode control with programmable slope compensation to prevent sub-harmonic oscillation. The IC provides protections including: open-LED protection, over-voltage protection, and direct-short protection for high system reliability. The IC internally generates a FAULT signal with delay if an abnormal LED string condition occurs. PWM dimming and analog dimming functions can be implemented independently. Internal soft-start prevents inrush current flowing into output capacitor at startup.

1.4.1. Features

Single-Channel Boost LED Switch

Internal Power MOSFET for PWM Dimming:

R

DS(ON)

=1.0 Ω at V

GS

=10 V, BV

DSS

=200 V

Current-Mode PWM Control

Internal Programmable Slope Compensation

Wide Supply Voltage Range: 10 V to 35 V

LED Current Regulation: ±1%

Programmable Switching Frequency

Analog and PWM Dimming

Wide Dimming Ratio: On Time=10 µs to DC

Cycle-by-Cycle Current Limiting

Thermal Shutdown: 150°C

Open-LED Protection (OLP)

Over-Voltage Protection (OVP)

Over-Current Protection (OCP)

Error Flag Generation (for External Load Switch)

Internal Soft-Start

16-Lead SOIC Package

© 2013 Fairchild Semiconductor Corporation 8 FEBFAN7631_L17U120A • Rev. 1.0.0

1.4.2. Internal Block Diagram

OVP

3V

20μs Delay

-

OVP

+

100mV

OLP

ADIM

TSD

ADIM*4

1.4~4V

Current

Sense

-

+ gm

+

-

1μs

Delay

OCP

POR

640µs at 200kHz

Auto-Restart

PWM

0.3~3V

S Q

R

1/4 -

+

CMP

0.5V

-

100mV

+

Burst

Operation

4V

16 Steps

Internal Soft-Start

3ms at 200kHz

GND

Switch Off

+

-

0.5V

45µA

R

S

Q

Dim off

5k

PWM

Gate

Driver

Slope

Compensation

CLK+LEB

Oscillator

VCC

ENA

REF

UVLO 9V

-

+

Hys. 1.0V

OLPi Dim off

PWM

1.22V

-

+

Hys. 70mV

5V, max. 3mA

BDIM

OLP

Voltage Reference

& Internal Bias

5μs Delay

40.96ms

at 200kHz

Debounce

Time

OLPi

BDIM

Figure 4. Block Diagram of FAN73402

Current

Sense

+ 0.2V

-

PWM

End of Soft-Start

FAULT

DRV

CS

RT

Drain

SEN

© 2013 Fairchild Semiconductor Corporation 9 FEBFAN7631_L17U120A • Rev. 1.0.0

2. Specifications for Evaluation Board

Table 1. Specifications for LED Lighting Lamp

Input

Description

Voltage

Symbol

V

IN.MIN

V

IN.MAX

V

IN.NOMINAL

Value

85 V

AC

300 V

AC

120 V/230 V

Frequency f

IN

60 Hz/50 Hz

Output

Voltage

Current

Efficiency

[Single Channel]

Standby Power

PF/THD

V

OUT_SINGLE

V

OUT_MULTI.

I

OUT_SINGLE

I

OUT_MULTI.

Eff

85VAC

Eff

120VAC

Eff

140VAC

Eff

180VAC

Eff

230VAC

Eff

300VAC

P

85VAC

50 V

100 V

2.4 A

1.2 A

87.77%

90.06%

90.86%

91.55%

91.99%

92.33%

0.283 W

P

120VAC

P

140VAC

0.306 W

0.315 W

P

180VAC

P

230VAC

P

300VAC

0.319 W

0.341 W

PF/THD

85VAC

PF/THD

120VAC

0.397 W

0.998/4.58%

0.997/4.65%

PF/THD

140VAC

0.995/4.74%

PF/THD

180VAC

PF/THD

230VAC

0.992/5.32%

0.980/7.89%

PF/THD

300VAC

0.945/15.13%

FSL117MRIN T

FSL117MRIN

53.9°C

FAN73402

Temperature

MOSFET

T

FAN73402

T

PFC

T

LLC

T

Boost_Channel

T

LLC

T

Boost_Channel

T

_LLC

82.1°C

63.0°C

59.2°C

61,8°C

67.5°C

69.5°C

72.6°C

Comments

Minimum Input Voltage

Maximum Input Voltage

Nominal Input Voltage

Line Frequency

Output Voltage for Single Channel LED

Output Voltage for Multi Channel LED

Output Current for Single Channel LED

Output Current for Multi Channel LED

Efficiency at 85 V

AC

Line Input Voltage

Efficiency at 120 V

AC

Line Input Voltage

Efficiency at 140 V

AC

Line Input Voltage

Efficiency at 180 V

AC

Line Input Voltage

Efficiency at 230 V

AC

Line Input Voltage

Efficiency at 300 V

AC

Line Input Voltage

Standby Power at 85 V

AC

Line Input Voltage

Standby Power at 120 V

AC

Line Input Voltage

Standby Power at 140 V

AC

Line Input Voltage

Standby Power at 180 V

AC

Line Input Voltage

Standby Power at 230 V

AC

Line Input Voltage

Standby Power at 300 V

AC

Line Input Voltage

PF/THD at 85 V

AC

Line Input Voltage

PF/THD at 120 V

AC

Line Input Voltage

PF/THD at 140 V

AC

Line Input Voltage

PF/THD at 180 V

AC

Line Input Voltage

PF/THD at 230 V

AC

Line Input Voltage

PF/THD at 300 V

AC

Line Input Voltage

FSL117MRIN Temperature at 25°C

FAN73402 Temperature at 25°C

PFC MOSFET Temperature at 25°C

LLC MOSFET Temperature at 25°C

Boost Channel MOSFET Temperature at 25°C

LLC Rectifier Temperature at 25°C

Boost Channel Rectifier Temperature at 25°C

LLC Transformer Temperature at 25°C

All data of the evaluation board measured with the board enclosed in a case and external temperature around 25°C.

© 2013 Fairchild Semiconductor Corporation 10 FEBFAN7631_L17U120A • Rev. 1.0.0

3. Photographs

Figure 5.

Top View [Dimensions: 232mm (L) x 114 mm (W) x 27 mm (H)]

Figure 6.

Bottom View [Dimensions: 232mm (L) x 114 mm (W) x 27 mm (H)]

© 2013 Fairchild Semiconductor Corporation 11 FEBFAN7631_L17U120A • Rev. 1.0.0

4. Printed Circuit Board (PCB)

232 mm

Figure 7. Top Pattern

Figure 8. Bottom Pattern

© 2013 Fairchild Semiconductor Corporation 12 FEBFAN7631_L17U120A • Rev. 1.0.0

5. Schematic

RS805

100k/3216

RS804

100k/3216

VPFC

RS806

30k/3216 RS821

30k/3216

RS822

30k/3216

RS823

30k/3216

1

GND DRAIN

7

CS802

2.2n/3216

DS802

RS1M

RS807

0R/3216

DRAIN

8

3

Vf b DRAIN

6

DS804

1N4003

4

PCS801B

FOD817B

CS807

100n

3

4

Vin

RS812

0R0

Vcc

ICS802

FSL117MRIN

2

CS809

100n

CS808

10uF/50V

4

5

6

1

2

3

TS801

EPC1717

CY 806

4,7n

9

8

7

10

DS801

ES1D

20mA

PS_ON

RS856 QS853

15k KSPT2907A 3

ICS805

KA78L15

I O

1

CS813

10uF/35V

15V

RS857

15k

RS858

10k

QS854

KST2222A

RS855

10k

5.2V

CN805

2

5.2V

1

GND

CON3

CS803

47uF/35V

CS804

470uF/10V

DS803

SB560

RS808

1k

RS824

390/3216

5.2V

RS825

390/3216

RS809

5.1k

1

PCS801A

FOD817B

RS810

1.5k

CS805

NC

2

RS811

12k

CS806

82n

ICS803

KA431SMF2TF RS813

NC

RS814

4.7k

RS818

20k PS_ON

VCC

CS814

10uF/50V

1

ICS804

KA78L15

O

3

I

CS810

100n

QS801

KSPT2907A

4

RS817

20k

PCS802B

FOD817B

RS816

20k

3

1

2

PCS802A

FOD817B

RS815

1k

QS802

KST2222AMTF

RS819

20k

CS811

100n

RS820

20k

QS803

KST2222AMTF

FO

CS815

100n

CS812

100n

SW1

PS_ON

Figure 9.

Schematic for Flyback Bias Regulator Part

© 2013 Fairchild Semiconductor Corporation 13 FEBFAN7631_L17U120A • Rev. 1.0.0

RT2

3D15 t

RT1

3D15 t

FS801

ZNR801

10D561K

250VAC, T6.3AH

DX801

D15XB60

LX801

CV630055

CY 802

470p

CY 801

470p

CX801

470nF

LX802

CV630055

RX801

1M/3216

CX802

470nF

RX802

1M/3216

RX803

1M/3216

DP801

1N5408

VPFC

DP802

FFPF08H60S

LP801

PFC3819QM

CP803

680n/630V

RP801

4.3M

CP801

330uF/250V

RP815

3.3

LL4148

DP804

QP802

FCPF190N60E

RP804

4.3M

CP802

330uF/250V

VCC

DP803

ES1D

RP806

47k

ZDP801

NC

CP805

10uF/35V

RP812

10k

CP806

100n CP808

1u

RP817

NC

8

VCC

5

ZCD

OUT

CS

7

4

3

COMP

CP807

200n

6

GND

INV

1

READY

2

ICP801

FL7930C

RP803

10

RP805

10K

RP811

150

CP809

1n

RP814

0.1/5W

CP811

1n

RP807

4.3M

RP809

4.3M

RP813

91K

RP816

4.7K

PFC OK

CN801

INLET

Figure 10. Schematic for PFC Part

© 2013 Fairchild Semiconductor Corporation 14 FEBFAN7631_L17U120A • Rev. 1.0.0

FAN7631

Figure 11. Schematic for LLC Part

※ RM830 should be NC in case of 50 V/2.4 A output and use 16 k value in case of 100 V/1.2 A output.

© 2013 Fairchild Semiconductor Corporation 15 FEBFAN7631_L17U120A • Rev. 1.0.0

JPM805

15V 15V-1

VLED+

50V/1.2A

RL801

150k

15V-1

CL803

1.2n

DL806

ES1D

RL832

75k

RL834

1.8k

RV801

50k RL838

39k

LL801

68uH/SPI-SDH1360-680

DL801

RURD620

RL802

150k

RL810

9.1k

QL801

FDPF14N30

ENA

DL805

LL4148

PS_ON

RL803

3R3

LL4148

DL803

RL812

10K

RL807

0R

ICL802

FAN73402

CL819

10n

1

VCC

CL806

10uF/50V

CL807

100n

RL817

0.2R/3216

RL822

7.5K

RL816

0.2R/3216

CL817

NC

ADIM1

REF1

FO

2

3

DRV

GND

RL830

NC

4

CL811

10p

5

CS

REF

6

FAULT

7

RT

RL835

150k

8

SENSE

RL837

2R/2W

JPM803

NC

BDIM

16

ADIM

15

CMP

14

OVP

13

ENA

12

DRAIN

10

DRAIN

9

CL801

47uF/160V

CL802

47uF/160V

100V/600mA

BDIM1

RL818

10k

REF1

OVP1

CL809

1.2n

ADIM

OVP1

ENA

RTN1

RL804

150K

RL808

150K

RL813

150K

RL820

12k

CL812

6.8n

RL828

15k

CL815

100n

VLED1

RL847

1K

RL848

100K CL820

1n

BDIM1

VLED+

RTN1

CN803

2

VLED1

1

RTN1

CON3

BDIM1

DIM1+

GND

Figure 12. Schematic for Boost Channel 1.

※ JPM805 should be opened in case of 50 V/2.4 A output and shorted in case of 100 V/1.2 A output.

© 2013 Fairchild Semiconductor Corporation 16 FEBFAN7631_L17U120A • Rev. 1.0.0

VLED+

50V/1.2A

LL802

68uH/SPI-SDH1360-680

DL802

RURD620

100V/600mA

15V-1

DL807

ES1D

QL802

FDPF14N30

RL805

3R3

LL4148

DL804

RL814

10K

RL809

0R

RL823

7.5K

CL804

47uF/160V

CL805

47uF/160V

1

VCC

2

DRV

ICL801

FAN73402

BDIM

16

ADIM

15

BDIM2

RL819

10k

REF2

OVP2

CL810

1.2n

ADIM2

RL839

1.8k

RV802

50k

RL842

39k

CL821

10uF/50V

CL808

0.1u

RL841

75k

CL822

10n

RL826

0.2R/3216

CL818

NC

FO

RL825

0.2R/3216

3

GND

RL831

NC

4

CS

CL813

10p

5

REF

6

FAULT

ADIM2

RL836

150K

7

RT

8

SENSE

RL840

2R/2W

JPM804

NC

CMP

14

OVP

ENA

DRAIN

13

12

10

DRAIN

9

OVP2

ENA

RTN2

RL821

12k

CL814

6.8n

RL829

15k

CL816

100n

RL806

150k

RL811

150k

RL815

150k

VLED2

RL850

1K

RL849

100K

CL823

1n

BDIM2 VLED+

RTN1

CN804

2

VLED1

1

RTN1

CON3

BDIM2

DIM2+

GND

Figure 13. Schematic for Boost Channel 2

© 2013 Fairchild Semiconductor Corporation 17 FEBFAN7631_L17U120A • Rev. 1.0.0

6. Bill of Materials

No. Part Reference

1 BDIM1, BDIM2

2 CL801, CL802, CL804, CL805

3 CL803, CL809, CL810

4 CL806, CS808, CS814, CL821

5

CP806, CS807, CL807, CS809,

CS810, CS811, CM811, CS812,

CS815, CL815, CL816, CM818,

CL808

6 CL811, CL813, CM814

7 CL812, CL814

8 CM807, CM810, CL819, CL822

9 CP809,CP811,CL820,CL823

10 CM801, CM802, CM803, CM804

11 CM806

12 CM808

13 CM809

14 CM816

15 CM817, CM820

16 CM823

17 CM824

18 CN801

19 CN802, CN803, CN804, CN805

20 CP801, CP802

21 CP803

22 CP805, CM812, CS813

23 CP807

24 CP808

25 CS802

26 CS803

27 CS804

C0805C100J5GACTU

C0805C683J5GACTU

C0805C103J5GACTU

C0805C102J5GACTU

NHL 330 µF/250V

C0805C224J5GACTU

C0805C474J5GACTU

C0805C473J5GACTU

4.7 nF/630 V

C0805C822J5GACTU

C0805C562J5GACTU

C1206C473J1GACTU

3 Pin

2 Pin

KMG 330 µF/250 V

680 n/630 V

KMG 10 µF/35 V

C0805C204J5GACTU

C0805C105J5GACTU

C1206C202J5GACTU

KMG 47 µF/35 V

KMG 470 µF/35 V

Part Value

2 Pin

47 µF/160 V

C0805C112J5GACTU

KMG 10 µF/35 V

Qty. Description Vendor

1 2 Pin Connector Molex

4 Electrolytic Capacitor Samyoung

3

1.2 nF/50 V, SMD

MLCC

Kemet

4 Electrolytic Capacitor Samyoung

C0805C104J5GACTU 13

1.2 nF/50 V, SMD

MLCC

Kemet

3

2

4

10 pF/50 V, SMD

MLCC

6.8 nF/50 V, SMD

MLCC

10 nF/50 V, SMD

MLCC

Kemet

Kemet

Kemet

4

1 nF/50 V, SMD

MLCC

Kemet

4 Electrolytic Capacitor Samyoung

1

220 nF/50 V, SMD

MLCC

Kemet

1

1

1

2

1

1

470 nF/50 V, SMD

MLCC

47 nF/50 V, SMD

MLCC

Film Capacitor

8.2 nF/50 V, SMD

MLCC

5.6 nF/50 V, SMD

MLCC

47 nF/100 V, SMD

MLCC

Kemet

Kemet

Sungho

Kemet

Kemet

Kemet

1

4

3 Pin Connector

2 Pin Connector

Molex

Molex

2 Electrolytic Capacitor Samyoung

1 Film Capacitor Sungho

3 Electrolytic Capacitor Samyoung

1

1

200 nF/50 V, SMD

MLCC

1 µF/50 V, SMD

MLCC

Kemet

Kemet

1

2.2 nF/630 V, SMD

MLCC

Kemet

1 Electrolytic Capacitor Samyoung

1 Electrolytic Capacitor Samyoung

© 2013 Fairchild Semiconductor Corporation 18 FEBFAN7631_L17U120A • Rev. 1.0.0

No. Part Reference

28 CS806

29 CX801, CX802

30 CY801, CY802

31 CY803, CY806

32 DL801, DL802

33

34

DM803, DL803, DP804, DL804,

DM805, DL805, DM806, DM807,

DM808, DM809

DS801, DP803, DL806, DL807,

DM810

35 DM801, DM802

36 DM804

37 DP801

38 DP802

39 DS802

40 DS803

41 DS804

42 DX801

43 FS801

44 HS1

45 HS2

46 ICL801, ICL802

47 ICM801

48 ICM803

49 ICP801

50 ICS802

51 ICS803

52 ICS804, ICS805

53 JPM805

54 LL801, LL802

Part Value

C1206C823J5GACTU

MPX334

SDC471J10FS10

SDC472J10FK7

RURD620

1

2

2

1

2

Qty. Description

82 nF/50 V, SMD

MLCC

X-Capacitor

Y-Capacitor

Y-Capacitor

200 V/6 A Ultrafast

Diode

Vendor

Kemet

Carli

Samwha

Samwha

Fairchild

Semiconductor

LL4148 10 Small Signal Diode

Fairchild

Semiconductor

ES1D

MBR20200CT

UF4004

1N5408

FFPF08H60S

RS1M

5

2

1

1

1

1

200 V/1 A, Ultra-Fast

Diode

Fairchild

Semiconductor

200 V/20 A, Schottky

Rectifier

Fairchild

Semiconductor

400 V/1.0 A, Ultra-

Fast Diode

Fairchild

Semiconductor

1000 V/3 A, General

Rectifier

Fairchild

Semiconductor

8 A, 600 V, Hyper-

Fast Diode

1000 V/1 A, Ultra-

Fast Diode

Fairchild

Semiconductor

Fairchild

Semiconductor

SB560

1N4003

1

1

60 V/5 A, Schottky

Rectifier

Ultra-Fast Diode

Fairchild

Semiconductor

Fairchild

Semiconductor

D15XB60

SS-5-3.15 A

150 mm

1

1

1

600 V 15 A, Bridge

Diode

250 V/3.15 A, Fuse

Heat Sink [Primary]

Shindengen

Bussmann

50 mm

FAN73402

FAN7631

TSM103W

FL7930C

FSL117MRIN

KA431SMF2TF

1

2

1

1

1

1

1

Heat Sink

[Secondary]

LED Boost Switch

LLC Controller

Dual OP-Amp

PFC Controller

Green Mode FPS

Shunt Regulator

KA78L15 2

15 V Voltage

Regulator

JUMPER 1 Jumper

68 µH/SPI-SDH1360-680 2 68 µH, SMD Inductor

Fairchild

Semiconductor

Fairchild

Semiconductor

ST

Fairchild

Semiconductor

Fairchild

Semiconductor

Fairchild

Semiconductor

Fairchild

Semiconductor

Molex

TDK

© 2013 Fairchild Semiconductor Corporation 19 FEBFAN7631_L17U120A • Rev. 1.0.0

No. Part Reference

55 LP801

56 LX801, LX802

57 PCM801, PCS801, PCS802

58 QL801, QL802

59 QM801, QM802

60 QP802

61 QS801, QS853

62 QS802, QS803, QS854

63

RL801, RL802, RL804, RL806,

RL808, RL811, RL815, RL835,

RL836, RL813

64 RL803, RL805

65

RL807, RL809, JPM801, JPM802,

RS812

66 RL810

67

RP805, RM809, RP812, RL812,

RL814, RL818, RL819, RM823,

RM839, RS855, RS858

68 RL816, RL817, RL825, RL826

69 RS811, RL820, RL821, RM830

70 RL822 RL823

71

RM828, RL828, RL829, RS856,

RS857

72 RL832, RL841

73 RL834, RL839

74 RL837, RL840

75 RM827, RL838, RM841, RL842

76

RS808, RS815, RM826, RL847,

RL850

77 RM821, RL848, RL849

78 RM801, RM802

79 RM803

80 RM805

81 RM806

82 RM807

83 RM808, RM813

84 RM810

85 RM811, RS814

86 RM812, RM822, RP815

87 RM814

Part Value

PFC3819QM

CV630055

FOD817B

FDPF14N30

FCPF600N60Z

FCPF190N60E

KSPT2907A

KST2222AMTF

RC0805JR-07150KL

RC0805JR-073R3L

RC0805JR-070RL

RC0805JR-079k1L

RC0805JR-0710kL

RC1206JR-070R2L

RC0805JR-0712kL

RC0805JR-077k5L

RC0805JR-0715kL

RC0805JR-0775kL

RC0805JR-071k8L

2 Ω/2 W

RC0805JR-0739kL

RC0805JR-071kL

RC0805JR-07100kL

0.2

Ω/1 W

RC0805FR-0727kL

RC0805JR-071ML

RC0805JR-071k1L

RC0805FR-0724kL

RC0805JR-072M2L

RC0805FR-072k7L

RC0805JR-074k7L

RC0805JR-073R3L

RC0805JR-075k6L

Qty. Description Vendor

1

300 µH, PFC

Inductor

Line Filter

TDK

2

3 Opto-Coupler

TNC

Fairchild

Semiconductor

2 300 V/14 A MOSFET

Fairchild

Semiconductor

2

600 V/R

DSON

:0.19

Ω,

MOSFET

Fairchild

Semiconductor

1

600 V/R

DSON

:0.6

Ω,

MOSFET

Fairchild

Semiconductor

2

3

PNP Transistor

NPN Transistor

Fairchild

Semiconductor

Fairchild

Semiconductor

10 150 kΩ, 2012 SMD

2

5

1

5

2

2

2

4

5

4

4

2

1

1

2

3

2

1

1

1

2

3

1

11

3.3 Ω, 2012 SMD

0 Ω, 2012 SMD

9.1 kΩ, 2012 SMD

10 kΩ, 2012 SMD

0.2 Ω, 3216 SMD

12 kΩ, 2012 SMD

7.5 kΩ, 2012 SMD

15 kΩ, 2012 SMD

75 kΩ, 2012 SMD

1.8 kΩ, 2012 SMD

2 Ω, 2 W Resistor

39 kΩ, 2012 SMD

1 kΩ, 2012 SMD

100 kΩ, 2012 SMD

0.2

Ω, 1 W Resistor

27 kΩ/F, 2012 SMD

1 MΩ, 2012 SMD

1.1 kΩ, 2012 SMD

24 kΩ/F, 2012 SMD

2.2MΩ, 2012 SMD

2.7 kΩ/F, 2012 SMD

4.7 kΩ, 2012 SMD

3.3 Ω, 2012 SMD

5.6 kΩ, 2012 SMD

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Abel

Yageo

Yageo

Yageo

Abel

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

© 2013 Fairchild Semiconductor Corporation 20 FEBFAN7631_L17U120A • Rev. 1.0.0

No. Part Reference

88 RM817

89 RM820

90 RM825

91

RS816, RS817, RS818, RS819,

RS820, RM829

92 RS809, RM832, RM838

93 RM833, RM840

94 RM836

95 RM837

96 RM840

97 RP801, RP804, RP807, RP809

98 RP803

99 RP806

100 RP811

101 RP813

102 RP814

103 RP816

104 RS804, RS805

105 RS806, RS821, RS822, RS823

106 RS807

107 RS810

108 RS824, RS835

109 RT1, RT2

110 RV801, RV802

111 RX801, RX802, RX803

112 SW1

113 TM801

114 TS801

115 ZNR801

116 CL817, CL818, CM805, CS805

117

RS813, RP817, JPM803, JPM804,

RL830, RL831

118 ZDP801

Part Value

RC1206JR-0710RL

RC0805JR-0724kL

RC1206JR-071KL

RC0805JR-0720kL

RC0805JR-075k1L

RC1206JR-0718KL

RC0805JR-072k2L

RC0805FR-0710kL

RC0805FR-072k2L

RC0805JR-074M3L

RC0805JR-0710RL

RC0805JR-0747KL

RC0805JR-07150L

RC0805JR-0791KL

0.1 Ω/5 W

RC0805JR-074K7L

RC1206JR-07100KL

RC1206JR-0730KL

RC1206JR-070RL

RC0805JR-071k5L

RC1206JR-07120L

3D15

50 kΩ/0.5 W

RC1206JR-071ML

Toggle Switch

SRX43EM

EPC1717

10D561K

NC

NC

NC

3

1

1

1

1

4

1

2

4

1

1

1

1

1

1

4

1

3

2

1

1

1

1

2

Qty.

1

1

1

6

2

Description

10 Ω, 2012 SMD

24 kΩ, 2012 SMD

1 kΩ, 3216 SMD

20 kΩ, 2012 SMD

5.1 kΩ, 2012 SMD

18 kΩ, 2012 SMD

2.2 kΩ, 2012 SMD

10 kΩ/F, 2012 SMD

2.2 kΩ/F, 2012 SMD

4.3 MΩ, 2012 SMD

10 Ω, 2012 SMD

47 kΩ, 2012 SMD

150

Ω, 2012 SMD

91 kΩ, 2012 SMD

0.1 Ω, 5 W Resistor

4.7 kΩ, 2012 SMD

100 kΩ, 3216 SMD

30 kΩ, 3216 SMD

0

Ω, 3216 SMD

1.5 kΩ, 2012 SMD

390 Ω, 3216 SMD

NTC Thermistor

50 kΩ, Variable

Resistor

1

MΩ, 3216 SMD

3 Terminal Switch

LLC Transformer

LLC Transformer

MOV

6

1

Vendor

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Abel

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Yageo

Daekwang S

Vishay

Yageo

Phonix

TDK

TDK

Samwha

© 2013 Fairchild Semiconductor Corporation 21 FEBFAN7631_L17U120A • Rev. 1.0.0

7. Transformer Design

5

N

P1

6

N

P2

N

A

7

9

10

7.1. Flyback Transformer (TS801)

Core: EPC1717 (TDK)

Bobbin: 10 Pin

ECP1717

2 N

S2

(3 à4)

N

S1

1

4

N

S2

3

2mm

Barrier

N

S1

(1 à2)

Figure 14. Transformer Pin Assignment and Configuration

N

P1

(10à9)

N

P2

(6 à7)

2mm

Barrier

N

P1

(5 à6)

No.

1

2

3

4

5

6

7

8

9

10

Table 2. Winding Specifications

Winding

N

P1

N

S1

N

P2

N

A

N

S2

Pin (S F)

5 à 6

Wire

0.15

φ

Turns

100 Ts

Winding Method

Solenoid Winding

Insulation: Polyester Tape t = 0.025 mm, 3-Layer

1 à 2 0.45

φ

12 Ts Solenoid Winding

Insulation: Polyester Tape t = 0.025 mm, 3-Layer

6 à 7 0.25

φ

44 Ts Solenoid Winding

Insulation: Polyester Tape t = 0.025 mm, 3-Layer

10 à 9 0.15

φ 37 Ts Solenoid Winding

Insulation: Polyester Tape t = 0.025 mm, 3-Layer

3 à 4 0.25

φ 22 Ts Solenoid Winding

Insulation: Polyester Tape t = 0.025 mm, 3-Layer

Table 3. Electrical Characteristics

Inductance [Lp]

Leakage [Ll]

Pin

5

– 7

5

– 7

Specifications

900 µH ±10%

55 µH

Remark

60 kHz, 1 V

60 kHz, 1 V at Short All Output Pins

© 2013 Fairchild Semiconductor Corporation 22 FEBFAN7631_L17U120A • Rev. 1.0.0

8

5

4

7.2. PFC Inductor (LP801)

Core: PFC3819QM(TDK)

Bobbin: PQM3819, 8 Pin

PFC3819QM

1

6

7

N

A

N

P

2

3

N

P

(1 à3)

Figure 15. Transformer Pin Assignment and Configuration

N

S

(7à6)

Table 4. Winding Specifications

No.

1

2

3

4

Winding

N

P

N

S1

Pin (S F) Wire Turns Winding Method

1 à 3 0.1*65[Litz] 40 Ts Solenoid Winding

Insulation: Polyester Tape t = 0.025 mm, 3-Layer

7 à 6 0.45

φ 4 Ts Solenoid Winding

Insulation: Polyester Tape t = 0.025 mm, 3-Layer

Table 5. Electrical Characteristics

Inductance

Pin

1

– 3

Specifications

300 µH ±10%

Remark

60 kHz, 1 V

© 2013 Fairchild Semiconductor Corporation 23 FEBFAN7631_L17U120A • Rev. 1.0.0

7.3. LLC Transformer (TM801)

Core: SRX43EM (TDK)

Bobbin: EEX4333P12-1, 12 Pin

SRX43EM

2

4

N

P

7

N

S1

10

9

N

S2

12

N

P

(4à2) N

S2

(12à9)

N

S1

(10à7)

Figure 16. Transformer Pin Assignment and Configuration

Table 6. Winding Specifications

No.

1

2

3

4

Winding

N

P

N

S1

N

S2

Pin (S F) Wire Turns Winding Method

4 à 2 0.1

φ * 60 [Litz]] 37 Ts Solenoid Winding

Insulation: Polyester Tape t = 0.025 mm, 3-Layer

12 à9

10 à 7

0.08

φ *120[Litz]]

7 Ts

7 Ts

Insulation: Polyester Tape t = 0.025 mm, 3-Layer

Solenoid Winding

Solenoid Winding

Table 7. Electrical Characteristics

Inductance [Lp]

Leakage [Lr]

Pin

4 – 2

5 – 7

Specifications

810 µH ±10%

105 µH

Remark

100 kHz, 1 V

Short One of the Secondary Windings

© 2013 Fairchild Semiconductor Corporation 24 FEBFAN7631_L17U120A • Rev. 1.0.0

8. Performance of Evaluation Board

Table 8. Test Condition & Equipments

Ambient Temperature

Test Equipment

T

A

= 25°C

AC Power Source: PCR500L by Kikusui

Power Analyzer: PZ4000000 by Yokogawa

Electronic Load: PLZ303WH by KIKUSUI

Multi Meter: 2002 by KEITHLEY, 45 by FLUKE

Oscilloscope: 104Xi by LeCroy

Thermometer: Thermal CAM SC640 by FLIR SYSTEMS

LED: EHP-AX08EL/GT01H-P03 (3W) by Everlight

8.1. System Efficiency

System efficiency is measured in 85 ~ 140 V

AC

[low line, 60 Hz] and 180 ~ 300 V

AC

[high line, 50 Hz] input voltage ranges. The results are for PFC and LLC converters in which a single LED channel can be connected and measured in the rated load condition

[50 V/2.5 A] 30 minutes after AC power is turned on.

Figure 17. System Efficiency

Table 9. System Efficiency

Input Voltage

85 V

AC

[60 Hz]

120 V

AC

[60 Hz]

140 V

AC

[60 Hz]

180 V

AC

[50 Hz]

230 V

AC

[50 Hz]

300 V

AC

[50 Hz]

Output

Voltage[V]

49.69

49.69

49.69

49.69

49.69

49.69

© 2013 Fairchild Semiconductor Corporation

Output

Current [A]

2.503

2.503

2.507

2.502

2.503

2.501

Input

Power [W]

141.70

138.10

137.10

135.80

135.20

134.60

Output

Power [W]

Efficiency

124.37

124.37

124.57

124.32

124.37

124.27

87.77%

90.06%

90.86%

91.55%

91.99%

92.33%

25 FEBFAN7631_L17U120A • Rev. 1.0.0

System efficiency is measured in 85 ~ 140 V

AC

[low line, 60 Hz] and 180 ~ 300 V

AC

[high line, 50Hz] input voltage ranges. The results are for PFC and LLC converters in which a single LED channel can be connected and measured in the 50% load condition

[50 V/1.25 A] 30 minutes after AC power is turned on.

Figure 18. System Efficiency

Table 10. System Efficiency

Input Voltage

85 V

AC

[60 Hz]

120 V

AC

[60 Hz]

140 V

AC

[60 Hz]

180 V

AC

[50 Hz]

230 V

AC

[50 Hz]

300 V

AC

[50 Hz]

Output

Voltage[V]

49.71

49.71

49.71

49.71

49.71

49.71

Output

Current [A]

1.252

1.253

1.253

1.254

1.254

1.252

Output

Voltage [V]

70.80

69.80

69.60

69.50

69.30

69.10

Output

Power [W]

Efficiency

62.24

62.29

62.29

62.34

62.34

62.24

87.91%

89.24%

89.49%

89.69%

89.95%

90.07%

Table 11 shows stand-by power consumption of 85 V

AC

~ 140 V

AC

[low line, 60 Hz] and

180 ~ 300 V

AC

[high line, 50 Hz] input voltage ranges. The results are measured when the

PS-ON switch is turned off.

Table 11. System Efficiency

Input Voltage

85 V

AC

[60 Hz]

120 V

AC

[60 Hz]

140 V

AC

[60 Hz]

180 V

AC

[50 Hz]

230 V

AC

[50 Hz]

300 V

AC

[50 Hz]

Input Power [W]

0.283

0.306

0.315

0.319

0.341

0.397

© 2013 Fairchild Semiconductor Corporation 26 FEBFAN7631_L17U120A • Rev. 1.0.0

8.2. Power Factor and Total Harmonic Discharge (THD)

Power factor and THD were measured in 85 ~ 140 V

AC

[low line, 60 Hz] and 180 ~

300 V

AC

[high line, 50 Hz] input voltage ranges. The measured data were results for the overall system with two channel LED loads connected.

Figure 19. Power Factor & Total Harmonic Distortion

Table 12. Power Factor & Total Harmonic Distortion

Input Voltage Output Current Output Voltage

85 V

AC

[60 Hz]

120 V

AC

[60 Hz]

140 V

AC

[60 Hz]

180 V

AC

[50 Hz]

230 V

AC

[50 Hz]

300 V

AC

[50 Hz]

2.503 A

2.503 A

2.507 A

2.502 A

2.503 A

2.501 A

49.69 V

49.69 V

49.69 V

49.69 V

49.69 V

49.69 V

Power Factor

0.998

0.997

0.995

0.992

0.980

0.945

THD

4.58%

4.65%

4.74%

5.32%

7.89%

15.13%

© 2013 Fairchild Semiconductor Corporation 27 FEBFAN7631_L17U120A • Rev. 1.0.0

8.3. Constant-Current and Voltage Regulation

Table 13 and Figure 20 show the typical CC/CV performance on the board; showing very

stable CC performance over a wide input range. The results are for PFC and LLC converters with a single LED channel connected and measured with E-Load [CR Mode].

Table 13. Constant-Current Regulation by Output Voltage Change (25 V~ 50 V)

Input Voltage

85 V

AC

/ 60 Hz

120 V

AC

/ 60 Hz

230 V

AC

/ 50 Hz

300 V

AC

/ 50 Hz

Min. Max.

V

OUT

[V] I

OUT

[mA] V

OUT

[V] I

OUT

[mA]

49.60 2552 49.70 2560

49.60

49.70

49.70

2552

2552

2552

49.70

49.90

49.90

2560

2560

2560

CV CC

±0.03% ±0.04%

±0.03% ±0.04%

±0.05% ±0.04%

±0.05% ±0.04%

Figure 20. Constant-Current Regulation, Measured by E-Load [CR Mode]

© 2013 Fairchild Semiconductor Corporation 28 FEBFAN7631_L17U120A • Rev. 1.0.0

8.4. Overall Startup Performance

Figure 21 and Figure 22 show the startup performance; including flyback, boost, LLC

resonant converter, and single-channel boost converter at rated output load. The output load current starts flowing after about 469 ms and 340 ms for input voltage 85 V

AC

and

300 V

AC

condition when the AC input power switch turns on; CH1: V

DD_Flyback

(10 V / div), CH2: V

IN

(200 V / div), CH3: V

LED

(50 V / div), CH4: I

LED

(0.5 A / div),

Time Scale: 200 ms / div.

469 ms 340 ms

Figure 21. V

IN

= 85 V

AC

/ 60 Hz

Figure 22. V

IN

= 300 V

AC

/ 50 Hz

Figure 23 and Figure 24 show the startup and stop performance for the PS-ON switch

operation; including boost, LLC resonant converter, and single-channel boost converter.

The output load current starts flowing about 59 ms after the PS-ON switch was turned on and is disconnected when the PS-ON switch was turned off in standby status; CH1: V

DD-

PFC

(10 V / div), CH2: V

PS-ON

(2 V / div), CH3: V

LED

(50 V / div), CH4: I

LED

(0.5 A / div).

59 ms

Figure 23. PS-ON [100 ms/dvi]

© 2013 Fairchild Semiconductor Corporation 29

Figure 24. PS-OFF [5 ms/dvi]

FEBFAN7631_L17U120A • Rev. 1.0.0

8.5. Startup Performance in Flyback Stage

Figure 25 and Figure 26 show the startup performance of the flyback converter. The

output voltage is raised after about 395 ms and 297 ms at 85 V

AC

and 300 V

AC

input voltage, respectively, when the AC input power switch turns on; CH1: V

DD-FLYBACK

(10 V / div), CH2: V

IN

(200 V / div), CH3: V

5V

(2 V / div), CH4: V

DD- FAN73402

(10 V / div), Time Scale: 200 ms / div.

395 ms

297 ms

Figure 25. V

IN

= 85 V

AC

/ 60 Hz

Figure 26. V

IN

= 300 V

AC

/ 50 Hz

Figure 27 and Figure 28 show the startup and stop performance for the flyback converter

according to PS-ON switch operation. Each output voltage is raised at the same time when the PS-ON switch is turned on and V

DD-FAN73402

drops under UVLO after 100 ms since PS-ON switch was turned off in standby status; CH1: V

DD-PFC

(10 V / div), CH2:

V

PS-ON

(2 V / div), CH3: V

5V

(2 V / div), CH4: V

DD-FAN73402

(10 V / div), Time Scale:

200 ms / div.

Figure 27. PS-ON

© 2013 Fairchild Semiconductor Corporation 30

Figure 28. PS-OFF

FEBFAN7631_L17U120A • Rev. 1.0.0

8.6. Startup Performance in PFC Stage

Figure 29 and Figure 30 show the startup performance; including flyback and boost

converter at the rated output load. The PFC output voltage is raised after about 429 ms and 339 ms, respectively, for input voltage 85 V

AC

and 300 V

AC

condition when the AC input power switch turns on; CH1: V

DD-FLYBACK

(10 V / div), CH2: V

IN

(200 V / div),

CH3: V

OUT_PFC

(200 V / div), CH4: V

RDY

(2 V / div), Time Scale: 200 ms / div.

429 ms 339 ms

Figure 29. V

IN

= 85 V

AC

/ 60 Hz

Figure 30. V

IN

= 300V

AC

/ 50 Hz

Figure 31and Figure 32 show the startup and stop performance for the boost converter

according to PS-ON switch operation at rated output load. The PFC output voltage is raised rapidly when the PS-ON switch is turned on and V

DD-PFC

drops below UVLO and

PFC output starts discharging PFC output capacitors when PS-ON switch was turned off in standby status; CH1: V

DD-PFC

(10 V / div), CH2: V

PS-ON

(2 V / div), CH3: V

OUT-PFC

(200 V / div), CH4: V

RDY

(2 V / div) .

Figure 31. PS-ON, [200 ms/div]

© 2013 Fairchild Semiconductor Corporation 31

Figure 32. PS-OFF, [500 ms/div]

FEBFAN7631_L17U120A • Rev. 1.0.0

8.7. Startup Performance in LLC Stage

Figure 33 and Figure 34 show the startup performance; including flyback, boost, and

LLC converter. The LLC output voltage is raised after about 455 ms and 337 ms, respectively, for input voltage 85 V

AC

and 300 V

AC

condition when the AC input power switch turns on; CH1: V

DD-FLYBACK

(10 V / div), CH2: V

IN

(200 V / div), CH3: V

OUT-LLC

(20 V / div), CH4: I

OUT-LLC

(2 A / div), Time Scale: 200 ms / div.

455 ms 337 ms

Figure 33. V

IN

= 85 V

AC

/ 60 Hz

Figure 34. V

IN

= 300 V

AC

/ 50 Hz

Figure 35 and Figure 36 show the startup and stop performance for the LLC converter

according to the PS-ON switch operation at rated output load. The LLC output current is raised up to the rated voltage within 50 ms after the PS-ON switch is turned on and the output current drops to zero quickly when the PS-ON switch is turned off in standby status; CH1: V

DD-LLC

(10 V / div), CH2: V

PS-ON

(2 V / div), CH3: V

OUT_LLC

(20 V / div),

CH4: I

OUT_LLC

(2 A / div), Time Scale: 200 ms / div.

Figure 35. PS-ON

© 2013 Fairchild Semiconductor Corporation 32

Figure 36. PS-OFF

FEBFAN7631_L17U120A • Rev. 1.0.0

8.8. Key Waveforms for Input and Output

Figure 37 and Figure 38 show AC input and output waveforms at 85 V

AC

and 300 V

AC line voltage and rated output load condition, respectively; CH1: I

IN

(5 A / div), CH2: V

IN

(200 V / div), CH3: V

LED

(50 V / div), CH4: I

LED

(0.5 A / div), Time Scale: 5 ms / div.

Figure 37. V

IN

= 85 V

AC

/ 60 Hz, 100% Dim

Figure 38. V

IN

= 300 V

AC

/ 50 Hz, 100% Dim

Figure 39 and Figure 40 show AC input and output waveforms at 85 V

AC

and 300 V

AC line voltage and 50% output load condition, respectively; CH1: V

IN

(2 A / div), CH2: V

IN

(200 V / div), CH3: V

OUT

(50 V / div), CH4: I

LED

(0.5 A / div), Time Scale: 5 ms / div.

Figure 39. V

IN

= 85 V

AC

/ 60 Hz, 50% Dim

Figure 40. V

IN

= 300 V

AC

/ 50 Hz, 50% Dim

© 2013 Fairchild Semiconductor Corporation 33 FEBFAN7631_L17U120A • Rev. 1.0.0

Figure 41 and Figure 42 show AC input and output waveforms at 85 V

AC

and 300 V

AC line voltage and 10% output load condition, respectively; CH1: V

IN

(1 A / div), CH2: V

IN

(200 V / div), CH3: V

OUT

(50 V / div), CH4: I

LED

(0.5 A / div), Time Scale: 5 ms / div. In case of 300 V

AC

, PFC was operated in Burst Mode, so switching pulse were skipped.

Figure 41. V

IN

= 85 V

AC

/ 60 Hz, 10% Dim

Figure 42. V

IN

= 300 V

AC

/ 50 Hz, 10% Dim

8.9. Key Waveforms for Flyback Stage

Figure 43 and Figure 44 show key waveforms of the flyback stage according to the PS-

ON switch operation at rated output load condition; CH1: I

DS- ICS802

(0.5 A / div), CH2:

V

DS-ICS802

(200 V / div), CH3: V

PS-ON

(2 V / div) .

Time Scale: 200 ms / div.

53 kHz

Figure 43. PS-ON

© 2013 Fairchild Semiconductor Corporation 34

Figure 44. PS-OFF

FEBFAN7631_L17U120A • Rev. 1.0.0

8.10. Key Waveforms for PFC Stage

Figure 45 and Figure 46 show key waveforms of PFC stage at 85 V

AC

line voltage and rated output load condition; CH1: I

DS-QP802

(2 A / div), CH2: V

DS-QP802

(200 V / div), CH3:

V

AK-DP802

(200 V / div), CH4: I

AK-DP802

(2 A / div).

53 kHz

Figure 45. V

IN

= 85 V

AC

/ 60 Hz, [5 ms/div] Figure 46. V

IN

= 85 V

AC

/ 60 Hz, [5 µs/div]

Figure 47 and Figure 48 show key waveforms of PFC stage at 85 V

AC

line voltage and no-load condition; CH1: I

DS_QP802

(0.5 A / div), CH2: V

DS_QP802

(200 V / div), CH3:

V

AK_DP802

(200 V / div), CH4: I

AK_DP802

(0.5 A / div).

179 kHz

Figure 47. V

IN

= 85 V

AC

/ 60 Hz, [5 ms/div] Figure 48. V

IN

= 85 V

AC

/ 60 Hz, [2 µs/div]

© 2013 Fairchild Semiconductor Corporation 35 FEBFAN7631_L17U120A • Rev. 1.0.0

Figure 49 and Figure 50 show key waveforms of the PFC stage at 300 V

AC

line voltage and rated output load condition; CH1: I

DS_QP802

(2 A / div), CH2: V

DS_QP802

(200 V / div),

CH3: V

AK_DP802

(200 V / div), CH4: I

AK_DP802

(2 A / div).

62 kHz

Figure 49. V

IN

= 300 V

AC

/ 50 Hz, [2 ms/div]

Figure 50. V

IN

= 300 V

AC

/ 50 Hz, [5 µs/div]

Figure 51 and Figure 52 show key waveforms of the PFC stage at 300 V

AC

line voltage and no-load condition; CH1: I

DS_QP802

(0.5 A / div), CH2: V

DS_QP802

(200 V / div), CH3:

V

AK_DP802

(200 V / div), CH4: I

AK_DP802

(0.5 A / div).

Burst

Figure 51. V

IN

= 300 V

AC

/ 50 Hz, [5 ms/div]

Figure 52. V

IN

= 300 V

AC

/ 50 Hz, [2 µs/div]

© 2013 Fairchild Semiconductor Corporation 36 FEBFAN7631_L17U120A • Rev. 1.0.0

8.11. Key Waveforms for LLC Stage

Figure 53 and Figure 54 show key waveforms in the primary side of the LLC converter at

rated output load condition; CH1: V

GATE-QM802

(10 V / div), CH2: V

GATE-QM801

(10 V / div),

CH3: V

Cr-CM816

(200 V / div), CH4: I

Lr-TM801

(1.0 A / div).

212 kHz

Figure 53. Rated Load [5 ms/div] Figure 54. Rated Load [2 µs/div]

Figure 55 and Figure 56 show key waveforms in the secondary side of the LLC converter

at rated output load condition; CH1: I

_Secondary

(2.0 A / div), CH2: V

AK_DM802

(100 V / div),

CH3: V

AK_DM802

(100 V / div).

Figure 55. Rated Load [5 ms/div] Figure 56. Rated Load [2 µs/div]

© 2013 Fairchild Semiconductor Corporation 37 FEBFAN7631_L17U120A • Rev. 1.0.0

Figure 57 and Figure 58 show key waveforms in the primary side of the LLC converter at

no-load condition; CH1: V

GATE_QM802

(10 V / div), CH2: V

GATE_QM801

(10 V / div), CH3:

V

Cr_CM816

(200 V / div), CH4: I

Lr_TM801

(1.0 A / div) .

Figure 58. No Load [2 µs/div] Figure 57. No Load [5 ms/div]

Figure 59 and Figure 60 show key waveforms in the secondary side of the LLC converter

at no-load condition; CH1: I

_Secondary

(0.5 A / div), CH2: V

AK_DM802

(100 V / div), CH3:

V

AK_DM802

(100 V / div).

Figure 59. No Load [5 ms/div] Figure 60. No Load [2 µs/div]

© 2013 Fairchild Semiconductor Corporation 38 FEBFAN7631_L17U120A • Rev. 1.0.0

8.12. Key Waveforms for Single-Channel Boost Stage

Figure 61 and Figure 62 show key waveforms of a single-channel boost converter at rated

output load condition; CH1: I

DS_QL802

(2.0 A / div), CH2: V

DS_QL802

(100 V / div), CH3:

V

AK_DL802

(100V / div), CH4: I

AK_DL802

(2.0 A / div).

133 kHz

Figure 61. Rated Load [2 ms/div] Figure 62. Rated Load [2 us/div]

Figure 63 and Figure 64 show key waveforms of a single-channel boost converter at 10%

load condition; CH1: I

DS_QL802

(2.0

A / div), CH2: V

DS_QL802

(100 V / div), CH3: V

AK_DL802

(100 V / div), CH4: I

AK_DL802

(2.0 A / div).

132 kHz

Figure 63. 10% Load [2 ms/div] Figure 64. 10% Load [2 µs/div]

© 2013 Fairchild Semiconductor Corporation 39 FEBFAN7631_L17U120A • Rev. 1.0.0

8.13. Dimming Performance

Figure 65 and Figure 66 show key waveforms for analog dimming performance of a

single-channel boost converter at 10% ADIM (V

ADIM

: 0.12 V) and 100% BDIM; CH1:

I

LED

(0.2 A / div), CH2: V

GATE-QL802

(5.0 V / div), CH3: V

BDIM

(5.0 V / div), CH4: V

ADIM

(0.5 V / div).

Figure 65. 10% ADIM [2 ms/div] Figure 66. 10% ADIM [2 µs/div]

Figure 67 and Figure 68 show key waveforms for PWM dimming performance of a

single-channel boost converter at 100% ADIM (V

ADIM

: 1.2 V) and 1% BDIM; CH1: I

LED

(0.5 A / div),

(0.5 V / div).

CH2: V

GATE-QL802

(5.0 V / div), CH3: V

BDIM

(5.0 V / div), CH4: V

ADIM

200 Hz

Figure 67. 1% BDIM [2 ms/div] Figure 68. 1% BDIM [10 µs/div]

© 2013 Fairchild Semiconductor Corporation 40 FEBFAN7631_L17U120A • Rev. 1.0.0

700

600

500

400

300

200

100

0

0

Figure 69 and Figure 70 show the FAN73402’s analog [ADIM] and PWM [BDIM]

dimming characteristic curves.

700

600

500

400

300

200

100

0

0.1

0.3

0.5

0.7

ADIM Voltage [V]

Figure 69. Analog Dimming Characteristics

0.9

1.1

ADIM

1.3

20 40

BDIM: PWM Duty[%]

60

Figure 70. PWM Characteristics

80

BDIM

100

© 2013 Fairchild Semiconductor Corporation 41 FEBFAN7631_L17U120A • Rev. 1.0.0

8.14. LED Short / Open Protection at Multi-Channel Output

Figure 71 and Figure 72 show waveforms for output voltage and current when an LED is

shorted and recovered in one of the LED channels [100 V/0.6 A]; CH1: I

LED

(0.5 A / div),

CH2: V

LED

(50 V / div), CH3: V

GATE-QL802

(5 V / div), Time Scale: 100 ms / div.

LED Short

Figure 71. LED Short Figure 72. Recover from LED Short

Figure 73 and Figure 74 show waveforms for output voltage and current when an LED is

opened and recovered in one of the LED channels [100 V/0.6 A]; CH1: I

LED

(0.5 A / div),

CH2: V

LED

(50 V / div), CH3: V

GATE-QL802

(5 V / div), Time Scale: 100 ms / div.

LED Open

Figure 73. LED Open Figure 74. Recover from LED Open

© 2013 Fairchild Semiconductor Corporation 42 FEBFAN7631_L17U120A • Rev. 1.0.0

8.15. Operating Temperature

Figure 75 shows temperatures measured for the primary and secondary active

components in the top side at 85 V

AC

line voltage and rated output load [two LED channels: 100 V/1.2 A].

Primary Secondary

Transformer:

72.6

ºC

PFC MOSFET:

65.2

ºC

Bridge Diode:

64.2

ºC

LLC MOSFET:

59.4

ºC

Boost MOSFET:

61.8

ºC

LLC Rectifier:

67.5

ºC

Figure 75. Board Temperature - V

IN

[85 V

AC

]

Figure 76 shows temperatures measured for the primary [top] and secondary [bottom]

active components at 300 V

AC

line voltage and rated output load [two LED channels:

100 V/1.2 A].

Primary

Bridge Diode:

50.8

ºC

PFC MOSFET:

54.0

ºC

LLC MOSFET:

51.2

ºC

ICL801_FAN73402:

76.8

ºC

Bottom

ICL802_FAN73402:

82.1

ºC

FSL117MRIN:

53.9

ºC

Figure 76. Board Temperature - V

IN

[300 V

AC

]

Boost Diode DL802:

69.5

ºC

Note: The FAN 73402 temperature can be reduced by changing PCB layout.

© 2013 Fairchild Semiconductor Corporation 43 FEBFAN7631_L17U120A • Rev. 1.0.0

9. Revision History

Rev.

1.0.0

Date

July. 2013

Description

Initial Release

WARNING AND DISCLAIMER

Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users’ Guide. Contact an authorized Fairchild representative with any questions.

The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User’s Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its prod ucts meet Fairchild’s published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no contract exists, Fairchild’s standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO

IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR

USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR

THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS

WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized

Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

© 2013 Fairchild Semiconductor Corporation 44 FEBFAN7631_L17U120A • Rev. 1.0.0

advertisement

Key Features

  • Universal Line Operation
  • Flyback Bias Regulation
  • PFC Boost Converter
  • LLC Resonant Converter
  • Single-Channel Boost Converters
  • Constant Current & Voltage
  • Dimming Control
  • High Efficiency
  • Low Standby Power

Frequently Answers and Questions

What is the input voltage range of the FEBFAN7631_L17U120A LED driver?
The input voltage range is 85 VRMS - 300 VRMS.
What are the output current and voltage options for the FEBFAN7631_L17U120A LED driver?
It offers a constant current of 2.4 A at 50 VMAX for a single LED channel or with constant current and dimming of 1.2 V at 100 V for two LED channels
What are the main Fairchild products utilized in the FEBFAN7631_L17U120A LED driver?
The driver uses the FSL117MRIN Green Mode Fairchild Power Switch (FPS™), FL7930B CRM PFC Controller, FAN7631 Half-Bridge LLC Controller, and FAN73402 Single-Channel Boost Controller.
What types of converters are included in the FEBFAN7631_L17U120A LED driver?
The driver includes a flyback bias regulation, a boost converter for Power-Factor-Correction (PFC), and an LLC resonant converter for a single LED channel with constant current and voltage or individual boost converters for two LED channels with constant current and dimming control.

Related manuals