AWL9281 - Richardson RFPD

AWL9281 - Richardson RFPD
AWL9281
802.11b/g/n/ac Power Amplifier, LNA
and Tx/Rx/BT Switch
DATA SHEET - Rev 2.6
FEATURES
APPLICATIONS
The AWL9281 is manufactured using advanced
InGaP HBT technology that offers state-of-the-art
performance, reliability, temperature stability and
ruggedness.
802.11b/g/n/ac WLAN for Fixed, Mobile and
Handheld applications
PRODUCT DESCRIPTION
The ANADIGICS AWL9281 is a high performance
InGaP HBT FEIC that incorporates a 2.4 GHz Power
Amplifier, Low Noise Amplifier, RF Switch and Power
Detector. The FEIC is designed for WLAN transmit
and receive applications in the 2.4 - 2.5 GHz band.
Matched to 50 Ohms and DC blocked at all RF
inputs and outputs, the part requires no additional RF
matching components off-chip.
The antenna port is switched between WLAN transmit,
WLAN receive and BlueTooth with low loss switches.
The integrated power detector circuit facilitates
accurate power control under varying load conditions.
All circuits are biased by a single +3.6 V supply and
consume ultra low current in the OFF mode. The
PA exhibits unparalleled linearity and efficiency for
802.11b/g/n/ac WLAN systems under the toughest
signal conditions within these standards.
GND
ANT
Vrx
Vdet
Vbt
GND
GND
BT
Vcc
2GHz LNA
•
2.5 mm x 2.5 mm x 0.40 mm
Surface Mount Front End IC
ANT
•
•
•
•
SP3T
•
BT
•
•
•
AWL9281
RX
•
TX
•
Supports emerging 802.11ac high-data rate
standard
Fully integrated FEIC including 2.4 GHz Power
Amplifier, Low Noise Amplifier with Bypass
mode and SP3T TX/RX/BT Switch
1.8% Dynamic EVM @ POUT = +17 dBm with
802.11ac, MCS9-HT40 waveform
28 dB of Linear Power Gain
0.5 dB BT Band RF Switch Insertion Loss
Power Detector with High Accuracy over 3:1
VSWR
2.2 dB RX Path Noise Figure with 15 dB Gain
LNA Mode
Single 3.0 to 4.8 V Supply Voltage
50 Ω-Internally Matched RF Ports
Leadfree and RoHS Compliant
2.5 x 2.5 x 0.40 mm QFN Package
2GHz PA
•
2GHz
LNA
Bypass
Vcc
Vcc
LNA_EN
TX
PA_EN
GND
Figure 1: Block Diagram
08/2014
RX
16
15
14
13
ANT
GND
Vrx
Vbt
AWL9281
1
VDET
GND
12
2
GND
BT
11
3
VCC
VCC
10
4
VCC
LNA_EN
TX
PA_EN
GND
RX
AWL9281
5
6
7
8
9
Figure 2: Pinout Diagram
Table 1: Pin Description
2
PIN
NAME
DESCRIPTION
1
VDET
Power detector output
2
GND
Ground
3
VCC
Power Supply. Bias for the transistors in the part.
4
VCC
Power Supply. Bias for the transistors in the part.
5
TX
RF transmit input port. DC blocked internally.
6
PA_EN
7
GND
8
RX
Power Amplifier Enable. On/Off control for the Tx path power amplifier
Ground
RF receive output port. DC blocked internally.
9
LNA_EN
10
VCC
Power Supply. Bias for the transistors in the part.
LNA Enable. On/Off control for the Rx path low noise amplifier
11
BT
Bluetooth RF port
12
GND
13
Vbt
Bluetooth enable. On/Off control for Bluetooth RF path.
14
Vrx
Switch control for receive path
15
GND
Ground
16
ANT
Antenna Port. Common connection for the PA, LNA, and Bluetooth paths. DC
blocked internally.
Ground
DATA SHEET - Rev 2.6
08/2014
AWL9281
ELECTRICAL CHARACTERISTICS
Table 2: Absolute Minimum and Maximum Ratings
PARAMETER
MIN
MAX
UNIT
DC Po wer Supply
-
+6.0
V
RF Input Level, 2.4 GHz PA
-
+5
dBm
Operating Ambient Temperature
-40
+85
C
Storage Temperature
-55
+125
C
Storage Humidity
-
85
%
Junction Temperature
-
150
C
ESD Tolerance
1000
-
V
MSL Rating
MSL-1
-
-
COMMENTS
Modulated
Human body model (HBM)
Functional operation to the specified performance is not implied under these conditions. Operation of any single
parameter in excess of the absolute ratings may cause permanent damage. No damage occurs if one parameter
is set at the limit while all other parameters are set within normal operating ranges.
Table 3: Operating Ranges
PARAMETER
MIN
TYP
MAX
UNIT
COMMENTS
Operating Frequency Ranges
2400
-
2500
MHz
DC Power Supply Voltage (VCC)
+3.0
+3.6
+4.8
V
With RF applied
Control Pin Voltage (PA_EN, LNA_EN,
Vrx, Vbt)
+2.8
0
+3.2
0
+4.8
+0.4
V
Logic High/On
Logic Low/Off
Operating Temperature
-40
-
+85
C
802.11b/g/n/ac
The device may be operated safely over these conditions; however, parametric performance is guaranteed only
over the conditions defined in the electrical specifications.
3
DATA SHEET - Rev 2.6
08/2014
AWL9281
Table 4: Electrical Specifications - TX Mode
(TC = +25°C, VCC = +3.6V, PA_EN = +3.2V, Vrx = 0.0V, Vbt = 0.0V, LNA_EN = 0.0V)
64 QAM OFDM 54 Mbps
PARAMETER
MIN
TYP
MAX
UNIT
Operating Frequency
2400
-
2500
MHz
24
28
30
dB
-
+/-0.25
-
dB
-
-29
195
-26
-
dB
mA
POUT = 19.5 dBm, Dyn Mode 54
Mbps data rate, Avg during packet
-
-34
175
-31
-
dB
mA
POUT = 18 dBm, Dyn Mode 54
Mbps data rate, Avg during packet
-
-35
150
-32
-
dB
mA
POUT = 16 dBm, Dyn Mode 54
Mbps data rate, Avg during packet
-
-40
110
-36
-
dB
mA
POUT = 5 dBm, Dyn Mode 54
Mbps data rate, Avg during packet
-
22
-
-
23.5
-
dBm
-
19
19
-
802.11b DBPSK 1 Mbps data rate,
Raised Root Cosine filtering.
802.11b DBPSK 1 Mbps data rate,
Gaussian filtering.
802.11n MCS0-HT20
802.11n MCS0-HT40
PA Noise Figure
-
5
-
dB
Input Return Loss
-
12
-
dB
Output Return Loss
-
12
-
dB
Output Spurious Levels Harmonics
2 fO
3 fO
4 fO
-
-20
-40
-40
-
dBm/
MHz
Settling Time
-
0.5
-
uS
Quiescent Current (Icq)
-
100
-
mA
Power Gain
Gain Flatness
Error Vector Magnitude (EVM) (1)
Transmit Mask
Notes:
(1) EVM includes system noise floor of 0.6% (-44 dB).
4
DATA SHEET - Rev 2.6
08/2014
COMMENTS
For Power levels up to 22 dBm
1 Mbps CCK
Within 0.5 dB of final value
AWL9281
Table 5: Electrical Specifications - Tx Mode
(TC = +25°C, VCC = +3.6V, PA_EN = +3.2V, Vrx = 0.0V, Vbt = 0.0V, LNA_EN = 0.0V) 802.11n/ac
PARAMETER
MIN
TYP
MAX
UNIT
Operating Frequency
2400
-
2500
MHz
-
-31
185
-28
-
dB
mA
POUT = 19 dBm, MCS7 - HT20
-
-32
175
-29
-
dB
mA
POUT = 18 dBm, MCS8 - HT20
-
-36
160
-33
-
dB
mA
POUT = 17 dBm, MCS9 - HT40
Pass
-
-
N/A
802.11n, 802.11ac at respective
modulation and power levels
noted above
Error Vector Magnitude (EVM) (1)
and Current Consumption
Transmit Mask
COMMENTS
Notes:
(1) EVM includes system noise floor of 0.6% (-44 dB).
Table 6: Electrical Specifications - TX Mode Power Detector
(TC = +25°C, VCC = +3.6V, PA_EN = +3.2V, Vrx = 0.0V, Vbt = 0.0V, LNA_EN = 0.0V)
PARAMETER
MIN
TYP
MAX
UNIT
COMMENTS
Detector Voltage
-
200
300
750
950
-
mV
Total Internal Load Impedance
-
1.5
-
kΩ
Load Accuracy
-
+/-0.5
-
dB
Output Power variation at 3:1
VSWR all phases
Detector Directivity
-
19
-
dB
Output Power variation at 3:1
VSWR all phases
POUT = 0 dBm
POUT = 10 dBm
POUT = 18 dBm
POUT = 22 dBm
Table 7: Electrical Specification - RX LNA Mode
(TC = +25°C, VCC = +3.6V, LNA_EN = +3.2V, Vrx = +3.2V, Vbt = 0.0V, PA_EN = 0.0V)
PARAMETER
MIN
TYP
MAX
UNIT
Operating Frequency
2400
-
2500
MHz
11
14.5
16
dB
Gain Flatness
-
+/-0.25
-
dB
Rx Noise Figure
-
2.2
2.7
dB
Input Return Loss
-
5
-
dB
Output Return Loss
-
12
-
dB
IIP3
-
0
-
dBm
Settling Time
-
0.5
-
uS
Rx Current
-
9
-
mA
Gain - LNA Mode
5
DATA SHEET - Rev 2.6
08/2014
COMMENTS
Across any 40 MHz band
Within 0.5 dB of final value
AWL9281
Table 8: Electrical Specification - RX Bypass Mode
(TC = +25°C, VCC = +3.6V, Vrx = +3.2V, LNA_EN = 0.0V, Vbt = 0.0V, PA_EN = 0.0V)
PARAMETER
MIN
TYP
MAX
UNIT
Operating Frequency
2400
-
2500
MHz
Gain - RX Bypass Mode
-8
-5
-3
dB
Gain Flatness
-
+/-0.25
-
dB
Rx Noise Figure
-
6
-
dB
Input Return Loss
-
12
-
dB
Output Return Loss
-
12
-
dB
IIP3
-
+23
-
dBm
Settling Time
-
0.5
-
uS
COMMENTS
Across any 40 MHz band
Within 0.5 dB of final value
Table 9: Electrical Specifications - Bluetooth Path
(TC = +25°C, VCC = +3.6V, Vrx = 0.0V, Vbt = +3.2V, PA_EN = 0.0V, LNA_EN = 0.0V)
PARAMETER
MIN
TYP
MAX
UNIT
Operating Frequency
2400
-
2500
MHz
Insertion Loss
-
0.5
-
dB
Gain Flatness
-
+/-0.25
-
dB
Input Return Loss
-
10
-
dB
Output Return Loss
-
10
-
dB
BT - RX Isolation
-
20
-
dB
BT to RX
BT - TX Isolation
-
30
-
dB
BT to TX
Settling Time
-
0.5
1.0
µs
6
DATA SHEET - Rev 2.6
08/2014
COMMENTS
Across any 40 MHz band
AWL9281
Table 10: Electrical Specifications - Switch and Control Pin
(TC = +25°C, VCC = +3.6V, Vcontrol High = +3.2V, Vcontrol Low = 0.0V)
PARAMETER
MIN
TYP
MAX
UNIT
COMMENTS
Control Pin Steady State Input
Current (PA_EN)
9
10
0.5
40
uA
uA
Logic Hi/On
Logic Low/OFF
Control Pin Steady State Input
Current (Vbt, Vrx)
-
10
0.5
-
uA
uA
Logic Hi/On
Logic Low/OFF
Control Pin Steady State Input
Current (LNA_EN)
-
300
0.5
-
uA
uA
Logic Hi/On
Logic Low/OFF
Leakage Current
0
3
10
uA
Total from all bias Pins, Controls
in OFF mode Vcc = 3.6V
TX-RX Isolation
-
36
-
dB
Table 11: Switch Modes of Operation
MODES OF OPERATION
7
PA_EN
LNA_EN
Vrx
Vbt
TX
HIGH
LOW
LOW
LOW
RX
LOW
HIGH
HIGH
LOW
RX Bypass
LOW
LOW
HIGH
LOW
BT
LOW
LOW
LOW
HIGH
Power On Reset
LOW
LOW
LOW
LOW
DATA SHEET - Rev 2.6
08/2014
AWL9281
MCS7 - HT20 PERFORMANCE DATA
Figure 3: EVM and ICC vs. Output Power Across
Frequency (VCC = +3.6 V, TC = +25°C)
EVM 2.41GHz
EVM 2.44GHz
-22
EVM 2.47GHz
400.0
-20
360.0
-22
Total Ipkt 2.44GHz
240.0
-30
200.0
-32
160.0
-34
120.0
-40
40.0
-42
0.0
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
280.0
-28
240.0
-30
200.0
-32
160.0
-34
120.0
-36
80.0
-38
80.0
-38
40.0
-40
-42
25
0.0
5
Modulated Output Power (dBm)
-20
7
8
EVM 2.44GHz, +3.6V, +25C
EVM 2.44GHz, +3.6V, -40C
400.0
32
360.0
31
320.0
30
-28
240.0
-30
200.0
-32
160.0
-34
120.0
-36
-38
-40
-42
7
8
9
13
17
18
19
20
21
22
23
24
25
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
26
25
24
40.0
23
0.0
22
25
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Modulated Output Power (dBm)
32
Figure 8: Gain vs. Output Power Across Voltage
and Temp (Frequency = 2.442 GHz)
32
31
31
30
30
29
29
28
28
Gain (dB)
Gain (dB)
16
27
80.0
Figure 7: Gain vs. Output Power Across Voltage
and Temp (Frequency = 2.412 GHz)
27
26
27
26
25
25
Gain 2.412GHz 3.6V +85C
Gain 2.442GHz 3.6V +85C
Gain 2.412GHz 3.6V +25C
24
Gain 2.442GHz 3.6V -40C
Gain 2.412GHz 3.0V +85C
23
Gain 2.442GHz 3.0V +25C
Gain 2.412GHz 3.0V -40C
Gain 2.442GHz 4.8V +85C
Gain 2.412GHz 4.8V +25C
6
7
8
9
10
Gain 2.442GHz 4.8V +25C
21
Gain 2.412GHz 4.8V -40C
5
Gain 2.442GHz 3.0V -40C
22
Gain 2.412GHz 4.8V +85C
21
Gain 2.442GHz 3.0V +85C
23
Gain 2.412GHz 3.0V +25C
22
Gain 2.442GHz 3.6V +25C
24
Gain 2.412GHz 3.6V -40C
Gain 2.442GHz 4.8V -40C
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
20
5
6
7
Modulated Output Power (dBm)
8
15
28
Modulated Output Power (dBm)
20
14
29
Gain (dB)
Total Current (mA) [Average in Packet]
280.0
6
12
Gain 2.472GHz 3.6V +25C
Total Ipkt 2.44GHz, +3.6V, -40C
5
11
Gain 2.442GHz 3.6V +25C
Total Ipkt 2.44GHz, +3.6V, +25C
-26
10
Gain 2.412GHz 3.6V +25C
Total Ipkt 2.44GHz, +3.6V, +85C
-24
9
Figure 6: Gain vs. Output Power Across
Frequency (VCC = +3.6 V, TC = +25°C)
EVM 2.44GHz, +3.6V, +85C
Ttotal Measured EVM (dB)
6
Modulated Output Power (dBm)
Figure 5: EVM and ICC vs. Output Power Across
Temp (Frequency = 2.44 GHz, VCC = +3.6 V)
-22
320.0
-26
Ttotal Measured EVM (dB)
Total Current (mA) [Average in Packet]
Ttotal Measured EVM (dB)
-28
-36
Total Ipkt 2.44GHz
Total Ipkt 2.47GHz
280.0
6
360.0
EVM 2.47GHz
-24
320.0
Total Ipkt 2.47GHz
-26
5
EVM 2.44GHz
Total Ipkt 2.41GHz
Total Ipkt 2.41GHz
-24
400.0
EVM 2.41GHz
Total Current (mA) [Average in Packet]
-20
Figure 4: EVM and ICC vs. Output Power Across
Frequency (VCC = +3.3 V, TC = +25°C)
8
9
10
11
12
13
14
15
16
17
Modulated Output Power (dBm)
DATA SHEET - Rev 2.6
08/2014
18
19
20
21
22
23
24
25
AWL9281
MCS7 - HT20 PERFORMANCE DATA
Figure 9: Gain vs. Output Power Across Voltage
and Temp (Frequency = 2.472 GHz)
32
Figure 10: VDET vs. Output Power Across Voltage
and Temp (Frequency = 2.412 GHz)
1200
Vdet 2.412GHz 3.6V +85C
31
1100
30
1000
29
900
28
800
Vdet 2.412GHz 3.6V +25C
Vdet 2.412GHz 3.6V -40C
Vdet 2.412GHz 3.0V +85C
Vdet 2.412GHz 3.0V +25C
Vdet 2.412GHz 3.0V -40C
Vdet 2.412GHz 4.8V +25C
Detector Voltage (mV)
Gain (dB)
Vdet 2.412GHz 4.8V +85C
27
Vdet 2.412GHz 4.8V -40C
700
26
600
25
500
Gain 2.472GHz 3.6V +85C
Gain 2.472GHz 3.6V +25C
24
400
Gain 2.472GHz 3.6V -40C
Gain 2.472GHz 3.0V +85C
23
300
Gain 2.472GHz 3.0V +25C
200
Gain 2.472GHz 3.0V -40C
22
Gain 2.472GHz 4.8V +85C
100
Gain 2.472GHz 4.8V +25C
21
Gain 2.472GHz 4.8V -40C
20
0
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Modulated Output Power (dBm)
Modulated Output Power (dBm)
Figure 11: VDET vs. Output Power Across Voltage
and Temp (Frequency = 2.442 GHz)
Figure 12: VDET vs. Output Power Across Voltage
and Temp (Frequency = 2.472 GHz)
1200
1200
Vdet 2.442GHz 3.6V +85C
1100
Vdet 2.472GHz 3.6V +85C
Vdet 2.442GHz 3.6V +25C
1100
Vdet 2.472GHz 3.6V +25C
Vdet 2.442GHz 3.6V -40C
1000
Vdet 2.472GHz 3.6V -40C
Vdet 2.442GHz 3.0V +85C
1000
Vdet 2.472GHz 3.0V +85C
Vdet 2.442GHz 3.0V +25C
900
Vdet 2.472GHz 3.0V +25C
Vdet 2.442GHz 3.0V -40C
900
Vdet 2.472GHz 3.0V -40C
Vdet 2.442GHz 4.8V +85C
800
Vdet 2.472GHz 4.8V +85C
Detector Voltage (mV)
Vdet 2.442GHz 4.8V +25C
800
700
Vdet 2.472GHz 4.8V -40C
700
600
600
500
500
400
400
300
300
200
200
100
0
Vdet 2.472GHz 4.8V +25C
Detector Voltage (mV)
Vdet 2.442GHz 4.8V -40C
100
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
0
5
6
7
Modulated Output Power (dBm)
9
8
9
10
11
12
13
14
15
16
17
Modulated Output Power (dBm)
DATA SHEET - Rev 2.6
08/2014
18
19
20
21
22
23
24
25
AWL9281
MCS8 - HT20 PERFORMANCE DATA
Figure 13: EVM and ICC vs. Output Power Across
Frequency (VCC = +3.6 V, TC = +25°C)
400.0
EVM 2.41GHz
EVM 2.44GHz
-22
-20
EVM 2.44GHz
Total Ipkt 2.41GHz
Total Ipkt 2.44GHz
-28
240.0
-30
200.0
-32
160.0
-34
120.0
-36
240.0
-30
200.0
-32
160.0
-34
-42
0.0
-42
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
80.0
-38
-40
8
120.0
-36
40.0
7
280.0
-28
-40
6
320.0
Total Ipkt 2.47GHz
80.0
-38
Total Ipkt 2.44GHz
-26
Ttotal Measured EVM (dB)
280.0
Total Current (mA) [Average in Packet]
Total Ipkt 2.47GHz
Ttotal Measured EVM (dB)
-24
320.0
-26
5
360.0
EVM 2.47GHz
Total Ipkt 2.41GHz
-24
400.0
EVM 2.41GHz
-22
360.0
EVM 2.47GHz
40.0
0.0
5
25
6
7
8
9
10
11
12
13
Figure 15: EVM and ICC vs. Output Power Across
Temp (Frequency = 2.44 GHz, VCC = +3.6 V)
-20
400.0
EVM 2.44GHz, +3.6V, +25C
200.0
-32
160.0
-34
120.0
-36
23
24
25
27
26
25
24
-40
40.0
23
-42
0.0
22
-38
10
11
13
12
14
15
16
17
18
19
20
21
22
23
24
25
5
6
7
8
9
10
11
12
Modulated Output Power (dBm)
13
14
15
16
17
18
19
20
21
22
23
24
25
Modulated Output Power (dBm)
Figure 17: Gain vs. Output Power Across Voltage
and Temp (Frequency = 2.412 GHz)
Figure 18: Gain vs. Output Power Across Voltage
and Temp (Frequency = 2.442 GHz)
32
32
31
31
30
30
29
29
28
28
Gain (dB)
Gain (dB)
22
28
80.0
27
26
27
26
25
25
Gain 2.442GHz 3.6V +85C
Gain 2.412GHz 3.6V +85C
Gain 2.412GHz 3.6V +25C
24
Gain 2.442GHz 3.6V +25C
24
Gain 2.442GHz 3.6V -40C
Gain 2.412GHz 3.6V -40C
Gain 2.442GHz 3.0V +85C
23
Gain 2.412GHz 3.0V +85C
23
Gain 2.442GHz 3.0V +25C
Gain 2.412GHz 3.0V +25C
Gain 2.442GHz 3.0V -40C
22
Gain 2.412GHz 3.0V -40C
22
Gain 2.442GHz 4.8V +85C
Gain 2.412GHz 4.8V +85C
Gain 2.442GHz 4.8V +25C
21
Gain 2.412GHz 4.8V +25C
21
Gain 2.442GHz 4.8V -40C
Gain 2.412GHz 4.8V -40C
20
21
29
Gain (dB)
240.0
-30
Total Current (mA) [Average in Packet]
Ttotal Measured EVM (dB)
-28
9
20
Gain 2.472GHz 3.6V +25C
280.0
8
19
30
Total Ipkt 2.44GHz, +3.6V, -40C
7
18
Gain 2.442GHz 3.6V +25C
320.0
Total Ipkt 2.44GHz, +3.6V, +25C
6
17
Gain 2.412GHz 3.6V +25C
31
Total Ipkt 2.44GHz, +3.6V, +85C
5
16
32
360.0
EVM 2.44GHz, +3.6V, -40C
-26
15
Figure 16: Gain vs. Output Power Across
Frequency (VCC = +3.6 V, TC = +25°C)
EVM 2.44GHz, +3.6V, +85C
-24
14
Modulated Output Power (dBm)
Modulated Output Power (dBm)
-22
Total Current (mA) [Average in Packet]
-20
Figure 14: EVM and ICC vs. Output Power Across
Frequency (VCC = +3.3 V, TC = +25°C)
20
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
5
6
7
10
8
9
10
11
12
13
14
15
16
17
Modulated Output Power (dBm)
Modulated Output Power (dBm)
DATA SHEET - Rev 2.6
08/2014
18
19
20
21
22
23
24
25
AWL9281
MCS8 - HT20 PERFORMANCE DATA
Figure 19: Gain vs. Output Power Across Voltage
and Temp (Frequency = 2.472 GHz)
Figure 20: VDET vs. Output Power Across Voltage
and Temp (Frequency = 2.412 GHz)
32
1200
31
1100
30
1000
29
900
28
800
Vdet 2.412GHz 3.6V +85C
Vdet 2.412GHz 3.6V +25C
Vdet 2.412GHz 3.6V -40C
Vdet 2.412GHz 3.0V +85C
Vdet 2.412GHz 3.0V +25C
Vdet 2.412GHz 3.0V -40C
Vdet 2.412GHz 4.8V +25C
Detector Voltage (mV)
Gain (dB)
Vdet 2.412GHz 4.8V +85C
27
Vdet 2.412GHz 4.8V -40C
700
26
600
25
500
Gain 2.472GHz 3.6V +85C
Gain 2.472GHz 3.6V +25C
24
400
Gain 2.472GHz 3.6V -40C
Gain 2.472GHz 3.0V +85C
23
300
Gain 2.472GHz 3.0V +25C
Gain 2.472GHz 3.0V -40C
22
200
Gain 2.472GHz 4.8V +85C
Gain 2.472GHz 4.8V +25C
21
100
Gain 2.472GHz 4.8V -40C
20
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
0
25
5
6
7
8
9
10
11
12
Modulated Output Power (dBm)
Figure 21: VDET vs. Output Power Across Voltage
and Temp (Frequency = 2.442 GHz)
14
15
16
17
18
19
20
21
22
23
24
25
Figure 22: VDET vs. Output Power Across Voltage
and Temp (Frequency = 2.472 GHz)
1200
1200
Vdet 2.442GHz 3.6V +85C
1100
Vdet 2.472GHz 3.6V +85C
Vdet 2.442GHz 3.6V +25C
1100
Vdet 2.472GHz 3.6V +25C
Vdet 2.442GHz 3.6V -40C
1000
Vdet 2.442GHz 3.0V +85C
900
Vdet 2.442GHz 3.0V -40C
Vdet 2.472GHz 3.6V -40C
1000
Vdet 2.472GHz 3.0V +85C
Vdet 2.442GHz 3.0V +25C
Vdet 2.472GHz 3.0V +25C
900
Vdet 2.472GHz 3.0V -40C
Vdet 2.442GHz 4.8V +85C
800
Vdet 2.472GHz 4.8V +85C
Detector Voltage (mV)
Vdet 2.442GHz 4.8V +25C
800
Vdet 2.472GHz 4.8V +25C
Detector Voltage (mV)
Vdet 2.442GHz 4.8V -40C
700
Vdet 2.472GHz 4.8V -40C
700
600
600
500
500
400
400
300
300
200
200
100
0
13
Modulated Output Power (dBm)
100
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
0
5
6
7
Modulated Output Power (dBm)
11
8
9
10
11
12
13
14
15
16
17
Modulated Output Power (dBm)
DATA SHEET - Rev 2.6
08/2014
18
19
20
21
22
23
24
25
AWL9281
MCS9 - HT40 PERFORMANCE DATA
Figure 23: EVM and ICC vs. Output Power Across
Frequency (VCC = +3.6 V, TC = +25°C)
EVM 2.41GHz
EVM 2.44GHz
-22
EVM 2.47GHz
400.0
-20
360.0
-22
Total Ipkt 2.44GHz
240.0
-30
200.0
-32
160.0
-34
120.0
-36
240.0
-30
200.0
-32
160.0
-34
-38
40.0
-40
-42
0.0
-42
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
120.0
-36
80.0
7
280.0
-28
-40
-38
320.0
-26
Ttotal Measured EVM (dB)
Ttotal Measured EVM (dB)
280.0
-28
Total Ipkt 2.44GHz
Total Ipkt 2.47GHz
Total Current (mA) [Average in Packet]
Total Ipkt 2.47GHz
6
360.0
EVM 2.47GHz
-24
320.0
-26
5
EVM 2.44GHz
Total Ipkt 2.41GHz
Total Ipkt 2.41GHz
-24
400.0
EVM 2.41GHz
80.0
40.0
0.0
5
25
6
7
8
9
10
11
12
13
Figure 25: EVM and ICC vs. Output Power Across
Temp (Frequency = 2.44 GHz, VCC = +3.6 V)
-20
EVM 2.44GHz, +3.6V, +25C
EVM 2.44GHz, +3.6V, -40C
400.0
32
360.0
31
320.0
Total Ipkt 2.44GHz, +3.6V, +25C
30
200.0
-32
160.0
-34
120.0
-36
23
24
25
25
40.0
23
-42
0.0
22
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
5
6
7
8
9
10
11
12
Modulated Output Power (dBm)
13
14
15
16
17
18
19
20
21
22
23
24
25
Modulated Output Power (dBm)
Figure 27: Gain vs. Output Power Across Voltage
and Temp (Frequency = 2.412 GHz)
Figure 28: Gain vs. Output Power Across Voltage
and Temp (Frequency = 2.442 GHz)
32
32
31
31
30
30
29
29
28
28
Gain (dB)
Gain (dB)
22
26
-40
27
26
27
26
25
25
Gain 2.412GHz 3.6V +85C
Gain 2.442GHz 3.6V +85C
Gain 2.412GHz 3.6V +25C
24
Gain 2.442GHz 3.6V +25C
24
Gain 2.412GHz 3.6V -40C
Gain 2.442GHz 3.6V -40C
Gain 2.412GHz 3.0V +85C
23
Gain 2.442GHz 3.0V +25C
Gain 2.412GHz 3.0V -40C
22
Gain 2.442GHz 4.8V +85C
Gain 2.412GHz 4.8V +25C
6
7
8
9
10
Gain 2.442GHz 4.8V +25C
21
Gain 2.412GHz 4.8V -40C
5
Gain 2.442GHz 3.0V -40C
22
Gain 2.412GHz 4.8V +85C
21
Gain 2.442GHz 3.0V +85C
23
Gain 2.412GHz 3.0V +25C
20
21
27
24
-38
9
20
28
80.0
8
19
29
Gain (dB)
240.0
-30
Total Current (mA) [Average in Packet]
Ttotal Measured EVM (dB)
-28
7
18
Gain 2.472GHz 3.6V +25C
280.0
6
17
Gain 2.442GHz 3.6V +25C
Total Ipkt 2.44GHz, +3.6V, -40C
5
16
Gain 2.412GHz 3.6V +25C
Total Ipkt 2.44GHz, +3.6V, +85C
-26
15
Figure 26: Gain vs. Output Power Across
Frequency (VCC = +3.6 V, TC = +25°C)
EVM 2.44GHz, +3.6V, +85C
-24
14
Modulated Output Power (dBm)
Modulated Output Power (dBm)
-22
Total Current (mA) [Average in Packet]
-20
Figure 24: EVM and ICC vs. Output Power Across
Frequency (VCC = +3.3 V, TC = +25°C)
Gain 2.442GHz 4.8V -40C
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
20
5
6
7
Modulated Output Power (dBm)
12
8
9
10
11
12
13
14
15
16
17
Modulated Output Power (dBm)
DATA SHEET - Rev 2.6
08/2014
18
19
20
21
22
23
24
25
AWL9281
MCS9 - HT40 PERFORMANCE DATA
Figure 29: Gain vs. Output Power Across Voltage
and Temp (Frequency = 2.472 GHz)
Figure 30: VDET vs. Output Power Across Voltage
and Temp (Frequency = 2.412 GHz)
32
1200
31
1100
30
1000
29
900
28
800
Vdet 2.412GHz 3.6V +85C
Vdet 2.412GHz 3.6V +25C
Vdet 2.412GHz 3.6V -40C
Vdet 2.412GHz 3.0V +85C
Vdet 2.412GHz 3.0V +25C
Vdet 2.412GHz 3.0V -40C
Vdet 2.412GHz 4.8V +25C
Detector Voltage (mV)
Gain (dB)
Vdet 2.412GHz 4.8V +85C
27
Vdet 2.412GHz 4.8V -40C
700
26
600
25
500
Gain 2.472GHz 3.6V +85C
Gain 2.472GHz 3.6V +25C
24
400
Gain 2.472GHz 3.6V -40C
Gain 2.472GHz 3.0V +85C
23
300
Gain 2.472GHz 3.0V +25C
Gain 2.472GHz 3.0V -40C
22
200
Gain 2.472GHz 4.8V +85C
Gain 2.472GHz 4.8V +25C
21
100
Gain 2.472GHz 4.8V -40C
20
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
0
25
5
6
7
8
9
10
11
12
Modulated Output Power (dBm)
Figure 31: VDET vs. Output Power Across Voltage
and Temp (Frequency = 2.442 GHz)
1200
14
15
16
17
18
19
20
21
22
23
24
25
Figure 32: VDET vs. Output Power Across Voltage
and Temp (Frequency = 2.472 GHz)
1200
Vdet 2.442GHz 3.6V +85C
1100
Vdet 2.472GHz 3.6V +85C
Vdet 2.442GHz 3.6V +25C
1100
Vdet 2.472GHz 3.6V +25C
Vdet 2.442GHz 3.6V -40C
1000
Vdet 2.472GHz 3.6V -40C
Vdet 2.442GHz 3.0V +85C
1000
Vdet 2.472GHz 3.0V +85C
Vdet 2.442GHz 3.0V +25C
900
Vdet 2.472GHz 3.0V +25C
Vdet 2.442GHz 3.0V -40C
900
Vdet 2.472GHz 3.0V -40C
Vdet 2.442GHz 4.8V +85C
800
Vdet 2.472GHz 4.8V +85C
Detector Voltage (mV)
Vdet 2.442GHz 4.8V +25C
800
Vdet 2.472GHz 4.8V +25C
Detector Voltage (mV)
Vdet 2.442GHz 4.8V -40C
700
Vdet 2.472GHz 4.8V -40C
700
600
600
500
500
400
400
300
300
200
200
100
100
0
13
Modulated Output Power (dBm)
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
0
5
6
7
13
8
9
10
11
12
13
14
15
16
17
Modulated Output Power (dBm)
Modulated Output Power (dBm)
DATA SHEET - Rev 2.6
08/2014
18
19
20
21
22
23
24
25
AWL9281
Rx PERFORMANCE DATA
Figure 33: LNA Gain vs. Frequency Across
Voltage and Temp
Figure 34: LNA NF vs. Frequency Across
Voltage and Temp
18
6
5.5
17
15
Noise Figure (dB)
Gain (dB)
14
13
Gain 3.6V +85C
NF 4.8V -40C
3
2.5
Gain 3.6V -40C
1.5
Gain 3.0V +25C
1
Gain 3.0V -40C
9
NF 4.8V +85C
NF 4.8V +25C
3.5
2
Gain 3.6V +25C
Gain 3.0V +85C
10
NF 3.0V +25C
NF 3.0V -40C
4
11
NF 3.6V -40C
NF 3.0V +85C
4.5
12
NF 3.6V +85C
NF 3.6V +25C
5
16
Gain 4.8V +85C
0.5
Gain 4.8V +25C
Gain 4.8V -40C
8
2.4
2.45
2.5
0
Frequency (GHz)
14
2.4
2.45
Frequency (GHz)
DATA SHEET - Rev 2.6
08/2014
2.5
AWL9281
MCS0 - HT20 TRANSMIT MASK PERFORMANCE DATA
25.0
24.0
23.0
22.0
21.0
20.0
19.0
18.0
17.0
16.0
15.0
3.6V -40C
2.412
3.0V -40C
2.442
Freq (MHz)
4.8V -40C
2.472
Figure 36: Transmit Mask Ouput Power vs.
Frequency Across Voltage (TC = +25°C)
PASS MASK OUTPUT POWER
(dBm)
PASS MASK OUTPUT POWER
(dBm)
Figure 35: Transmit Mask Ouput Power vs.
Frequency Across Voltage (TC = -40°C)
25.0
24.0
23.0
22.0
21.0
20.0
19.0
18.0
17.0
16.0
15.0
PASS MASK OUTPUT POWER
(dBm)
Figure 37: Transmit Mask Ouput Power vs.
Frequency Across Voltage (TC = +85°C)
15
25.0
24.0
23.0
22.0
21.0
20.0
19.0
18.0
17.0
16.0
15.0
3.6V +85C
2.412
3.0V +85C
2.442
Freq (MHz)
4.8V +85C
2.472
DATA SHEET - Rev 2.6
08/2014
3.6V +25C
2.412
3.0V +25C
2.442
Freq (MHz)
4.8V +25C
2.472
AWL9281
APPLICATION Schematic
Although not shown in the schematic, a large value capacitor (~ 10 uF) should be connected to the voltage
supply lines for low frequency decoupling.
VRX VBT
RF ANT
16
1
VDET
R1
10kΩ
C3
1000pF
2
3
VCC
C1
10µF
C2
10nF
VCC
C1
10µF
4
14
13
VDET
GND
GND
BT
VCC
VCC
VCC
LNA_EN
C2
10nF
12
11
RF BT
10
9
VCC
C2
10nF
C1
10µF
LNAEN
5
NOTES:
1.
15
RF TX
PA_EN: Internal pull-down resistor.
6
7
8
PAEN
RF RX
LNA_EN: No internal pull-up/down resistor.
VRX: No internal pull-up/down resistor.
VBT: No internal pull-up/down resistor.
2. External pull-up/down resistors are not required on any control lines to maintain or limit idle current.
3. A ‘low’ voltage state (0.0V to +0.4V) should be applied on Vrx and Vbt control lines to avoid possible EVM degrada‚on in transmit mode. If this low logic level
cannot be maintained in transmit mode and it ‘floats’, we recommend using a pull down resistor external to our part on the Vrx/Vbt pins.
Figure 38: Evaluation Board Schematic
16
DATA SHEET - Rev 2.6
08/2014
AWL9281
Figure 39: Package Outline - 16 Pin, 2.5 x 2.5 x 0.40 mm QFN
Pin 1 Identifier
Wafer Number
Date Code
YY= Year WW= Work Week
9281
LLLLL
NN CC
YYWW
Part Number
Lot Number
Country Code(CC)
Figure 40: Branding Specification
17
DATA SHEET - Rev 2.6
08/2014
AWL9281
Figure 41: Recommended PCB Layout
18
DATA SHEET - Rev 2.6
08/2014
AWL9281
COMPONENT PACKAGING
PIN 1
Ao = 2.73 ± 0.05
Bo = 2.73 ± 0.05
Ko = 0.65
Notes:
(1) 10 Sprocket hole pitch cumulative tolerance ± 0.2
(2) Camber in compliance with EIA 481.
(3) Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.
Figure 42: Carrier Tape
19
DATA SHEET - Rev 2.6
08/2014
AWL9281
ORDERING INFORMATION
ORDER NUMBER
TEMPERATURE
RANGE
PACKAGE
DESCRIPTION
COMPONENT PACKAGING
AWL9281P7
-40 C to +85 C
16 pin, 2.5 x 2.5 x 0.40 mm
Surface Mount Module
Bags
AWL9281P9
-40 C to +85 C
16 pin, 2.5 x 2.5 x 0.40 mm
Surface Mount Module
Partial Reel
AWL9281V2
-40 C to +85 C
16 pin, 2.5 x 2.5 x 0.40 mm
Surface Mount Module
5000 piece T/R
EVB9281
-40 C to +85 C
Evaluation Board
Evaluation Board
ANADIGICS, Inc.
141 Mount Bethel Road
Warren, New Jersey 07059, U.S.A.
Tel: +1 (908) 668-5000
Fax: +1 (908) 668-5132
URL: http://www.anadigics.com
IMPORTANT NOTICE
ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice.
The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to
change prior to a product’s formal introduction. Information in Data Sheets have been carefully checked and are assumed
to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers
to verify that the information they are using is current before placing orders.
WARNING
ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product
in any such application without written consent is prohibited.
20
DATA SHEET - Rev 2.6
08/2014
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement