ASDA A2-E EtherCAT Interface Servo Drive User Manual

ASDA A2-E EtherCAT Interface Servo Drive User Manual
Delta Electronics, Inc.
Taoyuan Technology Center
No.18, Xinglong Rd., Taoyuan City,
Taoyuan County 33068, Taiwan
TEL: 886-3-362-6301 / FAX: 886-3-371-6301
Asia
Delta Electronics (Jiangsu) Ltd.
Wujiang Plant 3
1688 Jiangxing East Road,
Wujiang Economic Development Zone
Wujiang City, Jiang Su Province, P.R.C. 215200
TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290
Delta Greentech (China) Co., Ltd.
238 Min-Xia Road, Pudong District,
ShangHai, P.R.C. 201209
TEL: 86-21-58635678 / FAX: 86-21-58630003
Delta Electronics (Japan), Inc.
Tokyo Office
2-1-14 Minato-ku Shibadaimon,
Tokyo 105-0012, Japan
TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211
Delta Electronics (Korea), Inc.
1511, Byucksan Digital Valley 6-cha, Gasan-dong,
Geumcheon-gu, Seoul, Korea, 153-704
TEL: 82-2-515-5303 / FAX: 82-2-515-5302
Delta Electronics Int’l (S) Pte Ltd.
4 Kaki Bukit Ave 1, #05-05, Singapore 417939
TEL: 65-6747-5155 / FAX: 65-6744-9228
Delta Electronics (India) Pvt. Ltd.
Plot No 43 Sector 35, HSIIDC
Gurgaon, PIN 122001, Haryana, India
TEL : 91-124-4874900 / FAX : 91-124-4874945
Americas
Delta Products Corporation (USA)
Raleigh Office
P.O. Box 12173,5101 Davis Drive,
Research Triangle Park, NC 27709, U.S.A.
TEL: 1-919-767-3800 / FAX: 1-919-767-8080
Delta Greentech (Brasil) S.A.
Sao Paulo Office
Rua Itapeva, 26 - 3° andar Edificio Itapeva One-Bela Vista
01332-000-São Paulo-SP-Brazil
TEL: 55 11 3568-3855 / FAX: 55 11 3568-3865
Europe
Deltronics (The Netherlands) B.V.
Eindhoven Office
De Witbogt 15, 5652 AG Eindhoven, The Netherlands
TEL: 31-40-2592850 / FAX: 31-40-2592851
*We reserve the right to change the information in this manual without prior notice.
V3.0
DELTA_ASDA-A2-E_UM_EN_20150430
ASDA A2-E EtherCAT Interface Servo Drive User Manual
Industrial Automation Headquarters
ASDA A2-E EtherCAT
Interface Servo Drive
User Manual
www.deltaww.com
Table of Contents
Chapter 1 CoE Drive Overview ................................................................................. 1-1
1.1
Communication Specification ...................................................................... 1-1
1.2
The Interface of Delta EtherCAT Servo Drive .............................................. 1-2
1.3
LED Indicators ............................................................................................. 1-3
1.4
The Topology ............................................................................................... 1-6
1.5
Wiring .......................................................................................................... 1-7
1.5.1 Explanation of I/O (CN1) Connector Signal ............................................ 1-8
1.5.2 CN2 Connector....................................................................................... 1-9
1.5.3 CN5 Connector (Full-closed Loop) ......................................................... 1-10
1.5.4 CN6 EtherCAT Terminal ........................................................................ 1-11
1.5.5 CN7 Extension DI ................................................................................... 1-12
1.5.6 CN-STO.................................................................................................. 1-13
1.5.7 STO with Safety Relay ........................................................................... 1-14
1.5.8 STO Disable ........................................................................................... 1-14
1.6
Dimension .................................................................................................... 1-15
1.6.1 220V Series ............................................................................................ 1-15
1.6.2 400V Series ............................................................................................ 1-17
Chapter 2 System Setup ........................................................................................... 2-1
2.1
Parameter Settings of EtherCAT Mode ....................................................... 2-1
2.2
TwinCAT Setup............................................................................................ 2-3
2.3
Synchronization Modes Setting ................................................................... 2-11
Revision April, 2015
i
ASDA A2-E
Table of Contents
2.3.1 Two Synchronization Modes of Delta Servo ........................................... 2-11
2.3.2 Select the Synchronization Mode ........................................................... 2-12
2.3.3 Synchronous Clock Time Setting ........................................................... 2-12
2.4
PDO Mapping .............................................................................................. 2-14
2.4.1 Default PDO Mappings ........................................................................... 2-14
2.4.2 Re-define a PDO Mapping ..................................................................... 2-15
2.4.3 Using TwinCAT ...................................................................................... 2-16
Chapter 3 EtherCAT Communication States ........................................................... 3-1
3.1
State Transition Operation ........................................................................... 3-2
Chapter 4 EtherCAT Troubleshooting ..................................................................... 4-1
Chapter 5 CANopen Operation Mode....................................................................... 5-1
5.1
Profile Position Mode ................................................................................... 5-1
5.1.1 Description ............................................................................................. 5-1
5.1.2 Operation Procedures ............................................................................ 5-1
5.1.3 Advanced Setting Procedures ................................................................ 5-2
5.1.4 Associated Object List ............................................................................ 5-3
5.2
Interpolation Position Mode ......................................................................... 5-4
5.2.1 Description ............................................................................................. 5-4
5.2.2 Operation Procedures ............................................................................ 5-5
5.2.3 Associated Object List ............................................................................ 5-5
5.3
Cyclic Synchronous Position Mode.............................................................. 5-6
5.3.1 Description ............................................................................................. 5-6
ii
Revision April, 2015
Table of Contents
ASDA A2-E
5.3.2 The Function of CSP Mode .................................................................... 5-6
5.3.3 Operation Procedures ............................................................................ 5-6
5.3.4 Associated Object List ............................................................................ 5-7
5.4
Homing Mode .............................................................................................. 5-8
5.4.1 Description ............................................................................................. 5-8
5.4.2 Operation Procedures ............................................................................ 5-8
5.4.3 Associated Object List ............................................................................ 5-9
5.5
Profile Velocity Mode ................................................................................... 5-10
5.5.1 Description ............................................................................................. 5-10
5.5.2 Operation Procedures ............................................................................ 5-10
5.5.3 Advanced Setting Procedures ................................................................ 5-11
5.5.4 Associated Object List ............................................................................ 5-11
5.6
Cyclic Synchronous Velocity Mode .............................................................. 5-12
5.6.1 Description ............................................................................................. 5-12
5.6.2 The Function of CSV Mode .................................................................... 5-12
5.6.3 Operation Procedures ............................................................................ 5-12
5.6.4 Associated Object List ............................................................................ 5-13
5.7
Profile Torque Mode .................................................................................... 5-14
5.7.1 Description ............................................................................................. 5-14
5.7.2 Operation Procedures ............................................................................ 5-14
5.7.3 Advanced Setting Procedures ................................................................ 5-14
5.7.4 Associated Object List ............................................................................ 5-15
5.8
Cyclic Synchronous Torque Mode ............................................................... 5-16
5.8.1 Description ............................................................................................. 5-16
5.8.2 The Function of CST Mode .................................................................... 5-16
Revision April, 2015
iii
ASDA A2-E
Table of Contents
5.8.3 Operation Procedures ............................................................................ 5-16
5.8.4 Associated Object List ............................................................................ 5-17
5.9
Limit Position Handling Procedure ............................................................... 5-18
5.9.1 Description ............................................................................................. 5-18
5.9.2 Operation Procedures ............................................................................ 5-18
5.10
Touch Probe Function ................................................................................. 5-19
5.10.1 Description ............................................................................................. 5-19
5.10.2 Touch Probe Function ............................................................................ 5-19
5.10.3 Touch Probe Status ................................................................................ 5-20
5.10.4 Associated Object List ............................................................................ 5-21
Chapter 6 Object Dictionary Entries ........................................................................ 6-1
6.1
Specifications for Objects ............................................................................ 6-1
6.1.1 Object Type ............................................................................................ 6-1
6.1.2 Data Type ............................................................................................... 6-1
6.2
Overview of Object Group 1000h ................................................................. 6-2
6.3
Overview of Object Group 6000h ................................................................. 6-3
6.4
Details of Objects......................................................................................... 6-6
Chapter 7 Safety Function (Safe Torque Off, STO) ................................................. 7-1
7.1
Description of Terminal Block ...................................................................... 7-1
7.1.1 Functional Safety Standard and Certificates ........................................... 7-3
iv
7.2
STO Safety Function ................................................................................... 7-3
7.3
Related Parameter Descriptions of STO Function ....................................... 7-5
7.4
Related Alarm Descriptions of STO Function .............................................. 7-6
Revision April, 2015
Table of Contents
ASDA A2-E
Chapter 8 Alarm List.................................................................................................. 8-1
8.1
EtherCAT Communication Fault Messages ................................................. 8-1
8.2
Error Code Table ......................................................................................... 8-4
8.3
SDO Error Message Abort Codes................................................................ 8-7
Chapter 9 Reference .................................................................................................. 9-1
Revision April, 2015
v
ASDA A2-E
Table of Contents
(This page is intentionally left blank.)
vi
Revision April, 2015
Chapter 1 CoE Drive Overview
1.1 Communication Specification
Physical layer
Communication
connector
Network topology
Baud rate
Frame data length
SyncManager
EtherCAT
Communication
FMMU
(Fieldbus Memory
Management Units)
RJ45 × 2 (Connector CN6A=IN, CN6B=OUT)
Line connection
2 x 100 Mbps (full duplex)
Maximum 1484 bytes
SM0: Mailbox output
SM1: Mailbox input
SM2: Process data output
SM3: Process data input
FMMU0: Process data output area
FMMU1: Process data input area
FMMU2: Mailbox status area
Device profile
CoE: CANopen over EtherCAT
Synchronization
mode
DC synchronization ( SYNC0 )
Non- synchronized ( Free Run )
Communication
object
SDO: Service Data Object
PDO: Process Data Object
EMCY: Emergency Data Object
LED indicator
(On RJ45
Connector)
EtherCAT ERR (ER) × 1
EtherCAT Link/Activity (L/A) × 2
EtherCAT RUN (RN) × 1
Application layer
specifications
IEC61800-7 CiA402 Drive Profile
The supported CiA402 operation
modes
Revision April, 2015
100BASE-TX
Profile Position Mode (PP)
Profile Velocity Mode (PV)
Profile Torque Mode (PT)
Homing Mode (HM)
Interpolated Position Mode(IP)
Cycle Synchronized Position Mode (CSP)
Cycle Synchronized Velocity Mode (CSV)
Cycle Synchronized Torque Mode (CST)
1-1
ASDA A2-E
1.2
Chapter 1 Coe Drive Overview
The Interface of Delta EtherCAT Servo Drive
Link/Activity of EtherCAT
input port indicator (L/A)
EtherCAT input port
(CN6)
Run indicator (RUN)
Link/Activity of EtherCAT
output port indicator (L/A)
EtherCAT output
port (CN6)
Error indicator (ERR)
Figure 1 The Interface of Delta EtherCAT Servo Drive
EtherCAT® is registered trademark and patented technology, licensed by Beckhoff
Automation GmbH, Germany.
1-2
Revision April, 2015
Chapter 1 CoE Drive Overview
ASDA A2-E
1.3 LED Indicators
Indicator
state
Indicator pattern
ON
ON
OFF
ON
Blinking
200ms
OFF
Single
Flash
200ms
ON
1000ms
200ms
OFF
ON
OFF
OFF
Figure 2. RJ45 LED indicator pattern
ERROR (ERR) LED
The ERR LED indicator shows the error status of EtherCAT communication.
Indicator state
Revision April, 2015
Slave State
Off
No error
Blinking
State change error
Single Flash
Synchronization error
SyncManager error
On
PDI Watchdog timeout
1-3
ASDA A2-E
Chapter 1 Coe Drive Overview
State change error:
The state machine does not allow the system to change its state
because the wrong parameter settings. Please refer to Figure 29 for
its switching conditions.
Synchronization error:
The synchronization of Master Clock and Slave Clock is failed.
SyncManager error:
The data of process data is lost when receiving.
PDI Watchdog
The hardware failure on slave. Please contact Delta distributors for
timeout:
assistance.
RUN LED
The RUN LED indicator shows the status of EtherCAT state machine
Indicator state
Slave State
Off
INIT
Blinking
PRE-OPERATIONAL
Single Flash
SAFE-OPERATIONAL
On
OPERATIONAL
INIT:
After power on, the EtherCAT slave will get into INIT state if there
is no error. At INIT state, no communication servo is provided.
Accessing slave’s register from the host is available at this state.
1-4
PRE-OPERATIONAL:
The SDO can be used to communicate with its host controller.
SAVE-
Both SDO and TxPDO, which can send cyclic data from the slave
OPERATIONAL:
to the host, are workable.
OPERATIONAL:
SDO, TxPDO and RxPDO are working.
Revision April, 2015
Chapter 1 CoE Drive Overview
ASDA A2-E
Link Activity (L/A) LED
The L/A LED indicator shows the physical link status and the link activity.
Indicator state
Slave State
Off
No link
Blinking
Link and activity
On
Link without activity
No link:
The link has not established yet.
Link and activity:
The data is exchanging with its partners.
Link without activity:
The link is established but no data is exchanging now.
Revision April, 2015
1-5
ASDA A2-E
Chapter 1 Coe Drive Overview
1.4 The Topology
The topology is defined by the host controller. Please refer to the host controller’s
application manual. There are only one input port and one output port on Delta servo drive
for EtherCAT communication ports.
Figure 3 EtherCAT connection topology example
1-6
Revision April, 2015
Chapter 1 CoE Drive Overview
ASDA A2-E
1.5 Wiring
I/O Signal (CN1) Connection and Connector Terminal Layout
In order to have a more flexible communication with the master, 4 programmable
Digital Output (DO) and 7 programmable Digital Input (DI) are provided, which are
parameter P2-18~P2-21 and P2-10~P2-16 respectively. In addition, the differential
output encoder signal A+, A-, B+, B-, Z+ and Z- is also provided. The followings are
the pin diagrams.
CN1 Connector (male)
rear view
CN1 Connector (female)
1
2 DO1-
Digital
output
17 OA
DI1-
Digital input
Digital input
21 OZ
DI3-
Digital input
Digital input
23 DO4+
11 DI5-
12 DI6-
+24V Power
output
19 OB
9
10 DI4-
VDD
Power input
(12~24V)
7
8 DI2-
DO2+
Digital
output
15 NC
5
6 COM+
Digital
output
Digital
output
3
4 DO2-
DO1+
25 DO3+
13 DI7-
Encoder/
B pulse
output
Encoder/
Z pulse
output
Digital input
16
Analog
GND input signal
ground
18
/OA
Encoder/
A pulse
output
20
/OB
Encoder/
B pulse
output
22
/OZ
Encoder/
Z pulse
output
24
DO4-
Digital
output
26
DO3-
Digital
output
Digital
output
Digital input
Digital input
COM-
N/A
Encoder/
A pulse
output
VDD power
ground
14
Digital
output
NOTE
NC means NO CONNECTION. This terminal is for internal use only. Do not connect it, or it may damage the
servo drive.
Revision April, 2015
1-7
ASDA A2-E
Chapter 1 Coe Drive Overview
1.5.1 Explanation of I/O (CN1) Connector Signal
The following details the signals listed in previous section.
General Signals
Signal Name
Position
pulse
(output)
Function
Wiring
Method
(Refer to
3.4.3)
Encoder signal output A, B, Z (Line Driver output)
C13/C14
Pin No
OA
/OA
17
18
OB
/OB
19
20
OZ
/OZ
21
22
VDD is the +24V power provided by the drive and
VDD
5
is for Digital Input (DI) and Digital Output (DO)
signal. The maximum current is 500mA.
COM+ is the common input of Digital Input (DI)
COM+
6
Power
and Digital Output (DO) voltage. When using
VDD, VDD should be connected to COM+. If not
using, it needs to apply the external power (+12V
COM-
14
-
~+24V). Its positive end should connect to COM+
and the negative end should connect to COM-.
GND
16
VCC voltage is based on GND.
NO CONNECTION. This terminal is for internal
Other
NC
15
use only. Do not connect it, or it may damage the
servo drive.
1-8
Revision April, 2015
Chapter 1 CoE Drive Overview
ASDA A2-E
1.5.2 CN2 Connector
CN2 Connector (male)
Rear view
CN2 Connector (female)
Quick Connector
HOUSING: AMP (1-172161-9)
Military Connector
3106A-20-29S
Drive Connector
Pin No
Terminal
Symbol
5
T+
4
T-
-
-
-
-
14,16
Function and Description
Serial communication signal
Motor Connector
Military
Quick
Color
connector connector
A
1
B
4
Reserved
-
-
-
Reserved
-
-
-
+5V
Power +5V
S
7
13,15
GND
Power ground
R
8
-
-
shielding
L
9
Revision April, 2015
input / output (+)
Serial communication signal
input / output (-)
Blue
Blue &
Black
Red/Red &
white
Black/Black
& white
-
1-9
ASDA A2-E
Chapter 1 Coe Drive Overview
1.5.3 CN5 Connector (Full-closed Loop)
Connect linear scale or encoder (A, B, Z format) to the servo and form a full-closed
loop. In position mode, the pulse command issued by the controller is based on the
control loop of the external linear scale. Please refer to Chapter 6.
CN5 Connector (female)
Pin No
Signal Name
Terminal Symbol
Function and Description
1
/Z phase input
Opt_/Z
/Z phase
2
/B phase input
Opt_/B
/B phase
3
B phase input
Opt_B
B phase
4
A phase input
Opt_A
A phase
5
/A phase input
Opt_/A
/A phase
6
Encoder grounding
GND
Ground
7
Encoder grounding
GND
Ground
8
Encoder power
+5V
+ 5V power
9
Z phase input
Opt_Z
Z phase
NOTE
1. It only supports the encoder of AB phase and 5V voltage.
2. The application of full-closed loop: it supports the encoder of highest resolution 1280000 pulse/rev (A
pulse number per motor revolution for a full-closed loop that corresponds to an optical signal with AB
(Quadrature) phase pulses (4x).).
1-10
Revision April, 2015
Chapter 1 CoE Drive Overview
ASDA A2-E
1.5.4 CN6 EtherCAT Terminal
IN
OUT
CN5 Connector (female)
Pin No
Signal Name
Terminal Symbol
Function and Description
1
TX +
TX +
Transmit +
2
TX -
TX -
Transmit -
3
RX +
RX +
Receive +
4
-
-
-
5
-
-
-
6
RX -
7
-
-
-
8
-
-
-
RX -
Receive -
NOTE
1. The maximum distance between two stations should be 50 meters.
2. Please use CAT5e STP Shielding.
Revision April, 2015
1-11
ASDA A2-E
Chapter 1 Coe Drive Overview
1.5.5 CN7 Extension DI
CN7 Connector (male)
Pin No
VDD
*1
24V power
Terminal Symbol
COM+
Function and Description
VDD (24V) power is the same as
the voltage of Pin11 in CN1
2
Extension DI9
EDI 9-
Digital input pin 9-
3
Extension DI10
EDI 10-
Digital input pin 10-
4
Extension DI11
EDI 11-
Digital input pin 11-
5
Extension DI12
EDI 12-
Digital input pin 12-
6
Extension DI13
EDI 13-
Digital input pin 13-
7
Extension DI14
EDI 14-
Digital input pin 14-

1-12
Signal Name
Caution: Do not apply to dual power or it may damage the servo drive.
Revision April, 2015
Chapter 1 CoE Drive Overview
ASDA A2-E
1.5.6 CN-STO
CN-STO Connector (male)
Pin No
Signal Name
VDD24V
*1
power
Terminal Symbol
COM+
Function and Description
VDD (24V) power is the same
as the voltage of Pin11 in CN1
2
STO_A
STO_A
STO input pin A+
3
/STO_A
/STO_A
STO input pin A-
4
STO_B
STO_B
STO input pin B+
5
/STO_B
/STO_B
STO input pin BSTO alarm output pin A,
6
FDBK_A
FDBK_A
Relay Output
Max. Current : 1A
STO alarm output pin B,
7
FDBK_B
FDBK_B
Relay Output
Max. Current : 1A
8
COM-

Revision April, 2015
COM-
VDD(24V) power ground
Caution: Do not apply to dual power or it may damage the servo drive.
1-13
ASDA A2-E
Chapter 1 Coe Drive Overview
1.5.7 STO with Safety Relay
STO
1
ESTOP
24V DC
COM+
2 STO_A
3
/ STO_A
Safety Relay
4 STO_B
5
/ STO_B
6 FDBK_A
7
FDBK_B
8
COM-
1.5.8 STO Disable
STO
1
2
COM+
STO_A
3
/ STO_A
4
STO_B
5
/ STO_B
6 FDBK_A
7
FDBK_B
8
1-14
COM-
Revision April, 2015
Chapter 1 CoE Drive Overview
ASDA A2-E
1.6 Dimension
1.6.1 220V Series
100W/200W/400W
Weight
1.5(3.3)
750W/1kW/1.5kW
Weight
Revision April, 2015
2.0(4.4)
1-15
ASDA A2-E
Chapter 1 Coe Drive Overview
5
70
203
< 0.7
215.5
Ø5
.
82
203.0
5.4
2kW/3kW
Weight
14.5
1-16
62
2.89(6.36)
PE
TERMINIAL
Revision April, 2015
Chapter 1 CoE Drive Overview
ASDA A2-E
1.6.2 400V Series
12.5
Ø5
.5
70
180
173
65
163
5.4
400W/750W/1kW/1.5kW
Weight
47
2.0(4.4)
2kW/3kW/4.5kW/5.5kW
123.5
107
8
70.2
205.5
245
230
Ø6
7
Weight
4.6(10.1)
107
Revision April, 2015
1-17
ASDA A2-E
Chapter 1 Coe Drive Overview
7.5kW
107
5
70.2
205.5
260
8
232
245
254.2
136
119.5
247
Ø6
Weight
PE TERMINAL
4.6(10.1)
NOTE
1. Dimensions are in millimeters (inches); Weights are in kilograms (kg) and pounds (lbs).
2. Dimensions and weights of the servo drive may be revised without prior notice.
1-18
Revision April, 2015
Chapter 2 System Setup
2.1 Parameter Settings of EtherCAT Mode
1. Set parameter P1-01 to 0x0Ch for EtherCAT communication and CANopen as the
application layer.
2. Restart the system of servo drive.
P1-01●
CTL
Address:0102H
Control Mode and Output Direction
0103H
Interface: Panel / Software Communication
Default: 0
Reference: Control Mode: ALL
Unit: Pulse (P mode); r/min (S mode);
N-m (T mode)
Format: Hex
Range: 00 ~ 0x110F
Data Size: 16-bit
Settings:
Control mode settings
PT
PR
S
T
Sz
Tz
PT
Single Mode
00
▲
▲
02
▲
03
▲
04
Multiple Mode
0E
▲
▲
0F
▲
▲
Revision April, 2015
▲
06
▲
T
Sz
Tz
07
▲
▲
▲
08
▲
09
▲
▲
▲
▲
0A
▲
05
S
Dual Mode
▲
01
PR
▲
0B
N/A
0C
CANopen Mode
0D
▲
▲
▲
2-1
ASDA A2-E
Chapter 2 System Setup
PR: Position control mode. The command is from the internal signal. Execution of 64 positions
is via DI.POS0 ~ POS5. A variety of homing control is also provided.
S: Speed control mode. The command is from the external signal or internal signal. Execution
of the command selection is via DI.SPD0 and DI.SPD1.
T: Torque control mode. The command is from the external signal or internal signal. Execution
of the command selection is via DI.TCM0 and DI.TCM1.
Sz: Zero speed / internal speed command
Tz: Zero torque / internal torque command
Dual Mode: The control mode selection is via DI signals. For example, either PT or S control
mode can be selected via DI signal, S-P (see Table A).
Multiple Mode: The control mode selection is via DI signals. For example, PT, PR or S control
mode can be selected via DI signals, S-P and PT-PR (see Table A).
Torque output direction settings
Direction
0
1
Forward
Reverse
Discrete I/O Setting
1: When switching to different mode, digital inputs/outputs (P2-10 ~ P2-22) will be set to the
default value according to the mode you selected.
0: When switching to different mode, the setting value of digital inputs/outputs (P2-10 ~ P2-22)
will remain the same and will not be changed.
2-2
Revision April, 2015
Chapter 2 System Setup
ASDA A2-E
2.2 TwinCAT Setup
A lot of software can be applied to configure EtherCAT system. The following procedures
are the example of TwinCAT of Beckhoff. Please install the software properly before you
start to configure the system.
1.
Copy Delta XML description to the folder the TwinCAT installed (usually
C:\TwinCAT\Io\EtherCAT).
2.
Restart the TwinCAT.
3.
The configuration procedure can be started by applying TwinCAT manager which
shown as below.
Figure 4
4.
Install the Network Interface Card (NIC) for EtherCAT communication.

Revision April, 2015
Select Options → Show Real Time Ethernet Compatible Devices.
2-3
ASDA A2-E
Chapter 2 System Setup
Figure 5

Select the correct Adapter from the devices (NICs) installed in the computer
for EtherCAT communication and click “Install”.
Figure 6
2-4
Revision April, 2015
Chapter 2 System Setup
ASDA A2-E
5.
Open a new project from the drop down menu File → new.
6.
Right click I/O Devices and select Scan Devices or Press <F5> to scan the devices.
Click OK in the pop-up dialog window to confirm the information.
Figure 7
Figure 8
7.
Find Device [n] (EtherCAT), select this device and click OK.
Figure 9
8.
Click Yes to scan for boxes.
Figure 10
Revision April, 2015
2-5
ASDA A2-E
9.
Chapter 2 System Setup
Click Yes to Add drives to NC-Configuration.
Figure 11
10.
Click No and TwinCAT will be switched to Config mode.
Figure 12
11.
TwincAT is in Config Mode. In the left panel, it shows Device (EtherCAT) and you
can find ASDA A2-E CoE Drive.
Figure 13
2-6
Revision April, 2015
Chapter 2 System Setup
12.
ASDA A2-E
Select the Drive (ASDA A2-E) and in Online tab you can check if the device’s
EtherCAT state machine (ESM) is in PREOP state.
Figure 14
13.
Double click on Drive (ASDA A2-E CoE Drive) and it will show:
2nd TxPDO –
3rd RxPDO –
WcState
InfoData
CoE Tx PDO mapping
CoE Rx PDO mapping
Figure 15
Revision April, 2015
2-7
ASDA A2-E
14.
Chapter 2 System Setup
Set the communication cycle* and the default value is 2ms.

Select NC-Task 1 SAF in the left window, and set Cycle ticks as
communication cycle (The minimum value is 1ms) in the right window.
Figure 16
*The communication cycle time, SYNC0 cycle time, and PDO cycle time should be
set to the same value.
15. Set Following Error Calculation to Extern.

Select Axis 1_Drive in the left window → In parameter column of the right
window, select Extern in Following Error Calculation → click Download
and then click OK in pop-up dialog.
Figure 17
2-8
Revision April, 2015
Chapter 2 System Setup
ASDA A2-E
16. Switch TwinCAT to Run Mode.

Press
to generate Mappings → press
to check confiugration → and
press
to activate configuration. TwinCAT will be switched to Run Mode
and then click OK in pop-up dialog.
Figure 18
17. Enable the axis (Servo On).

Under NC-Configuration of the left window, select Axis 1 → select Online
tab in the right window → click Set.
Figure 19

In pop-up dialog, click All to enable the motor.
Figure 20
Revision April, 2015
2-9
ASDA A2-E
Chapter 2 System Setup
18. In Online tab, there are two different speed levels of jogging buttons for forward and
backward movement which can test the system. During the operation, please Be
Ensured that the movement would not damage your system and endanger the
personnel safety.
Figure 21
2-10
Revision April, 2015
Chapter 2 System Setup
ASDA A2-E
2.3 Synchronization Modes Setting
2.3.1 Two Synchronization Modes of Delta Servo
ASDA A2-E supports two synchronization modes, Free Run mode and DCSynchronous mode. Please note that the asynchronous Free Run mode is still under
the definition of “Synchronization Modes” within EtherCAT specification guide.
 Free Run Mode (Asynchronous)
The master and slaves are running in an asynchronous manner. The master and
the slave both have their own clock to calculate the time. In other words, there is no
synchronous clock between the master and the slave. A command sent by the
master and a reply from the slave only consists with a sequential order instead of
strict clock timing. For example, a master sends a PDO at tick t1 and the slave will
receive it at tick t1 or tick t2 and vice versa.
EtherCAT
Data Frame
EtherCAT
Data Frame
EtherCAT
Data Frame
No EtherCAT frame
Application
Task
Application
Task
Application
Task
Application
Task
EtherCAT
Communication
Frame
ASDA-A2-E
Application
(Free Run)
Figure 22 Free Run Mode synchronization
 DC-Synchronous Mode (SYNC0 synchronization)
There exists a clock tick for the master and all slaves operation. A data sent by the
master will be received by slave(s) at the same clock interval. The master will inform
all slaves about its clock and ask slaves to align according to the time. A strict clock
tick is always running within this system.
EtherCAT
Data Frame
EtherCAT
Communication
Frame
EtherCAT
Data Frame
Application
Task
Application
Task
SYN0 Event
SYN0 Event
ASDA-A2-E Application
(SYN0 Synchronization)
Figure 23 DC-Synchronous mode synchronization
Revision April, 2015
2-11
ASDA A2-E
Chapter 2 System Setup
2.3.2 Select the Synchronization Mode
1. Select Drive (ASDA A2-E CoE Drive) in the left window.
2. The DC tab in the right window, users can select DC-Synchronous or Free Run as
the Operation Mode. This is for selecting synchronous or asynchronous mode.
Figure 24
2.3.3 Synchronous Clock Time Setting
1. Select NC-Task 1 SAF in the left window.
2. Click Task in the right window.
3. Cycle ticks are the data exchanging period under the Task tab.
Figure 25
2-12
Revision April, 2015
Chapter 2 System Setup
ASDA A2-E
The unit of cycle for SYNC0 cycle time is 1ms.
SYNC0 cycle time supported
1ms (PDO cycle time = 1ms)
2ms (PDO cycle time = 2ms)
3ms (PDO cycle time = 3ms)
…
* SYNC0 cycle time is used to define PDO cycle time.
Revision April, 2015
2-13
ASDA A2-E
Chapter 2 System Setup
2.4 PDO Mapping
The PDO mapping Objects are allocated from index 0x1600 to 0x1603 for RxPDOs and
0x1A00 to 0x1A03 for TxPDOs in Object Dictionary.
2.4.1 Default PDO Mappings
The following tables are the default PDO mappings of ASDA A2-E CoE Drive for cyclic
data exchange and are also defined in EtherCAT Slave Information file (XML file).
 1st PDO Mapping
RxPDO
(0x1600)
Control Word
(0x6040)
Target Position
(0x607A)
Target Velocity
(0x60FF)
Target Torque
(0x6071)
Mode of Operation
(0x6060)
TxPDO
(0x1A00)
Status Word
(0x6041)
Actual Position
(0x6064)
Actual Velocity
(0x606C)
Actual Torque
(0x6077)
Mode of Operation Display
(0x6061)
 2nd PDO Mapping (default PDO assignment)
RxPDO
(0x1601)
Control Word
(0x6040)
Target Position
(0x607A)
TxPDO
(0x1A01)
Status Word
(0x6041)
Actual Position
(0x6064)
 3rd PDO Mapping
2-14
RxPDO
(0x1602)
Control Word
(0x6040)
Target Velocity
(0x60FF)
TxPDO
(0x1A02)
Status Word
(0x6041)
Actual Position
(0x6064)
Actual Velocity
(0x606C)
Revision April, 2015
Chapter 2 System Setup
ASDA A2-E
 4th PDO Mapping
RxPDO
(0x1603)
Control Word
(0x6040)
Target Torque
(0x6071)
TxPDO
(0x1A03)
Status Word
(0x6041)
Actual Position
(0x6064)
Actual Torque
(0x6077)
2.4.2 Re-define a PDO Mapping
Setup procedure
1. Set 【RxPDO Assignment:0x1C12:0/ TxPDO Assignment: 0x1C13:0】to 0x0 for
disabling the PDO assignment.
2. Set 【RxPDO mapping entry: ex. 0x1601:0/ TxPDO mapping entry: ex. 0x1A01:0】
to 0x0 for disabling the PDO mapping entry setting.
3. Set 【RxPDO mapping entry: ex. 0x1601:0 - 0x1601:7/ TxPDO mapping entry: ex.
0x1A01:0 - 0x1A01:7】.
4. Set 【RxPDO mapping entry: ex. 0x1601:0/ TxPDO mapping entry: ex. 0x1A01:0】
to the number of mapping entries in PDO mapping.
5. Set 【RxPDO Assignment:0x1C12:1/ TxPDO Assignment: 0x1C13:1】to PDO
assignment.
6. Set 【RxPDO Assignment:0x1C12:0/ TxPDO Assignment: 0x1C13:0】to 0x1 for
enabling the PDO assignment.
Revision April, 2015
2-15
ASDA A2-E
Chapter 2 System Setup
2.4.3 Using TwinCAT
1. Press
or Shift and F4 to set/reset TwinCAT to Config Mode (Click OK in pop-up
dialog).
2. Select Drive (ASDA A2-E CoE Drive) in the left window. In Process Data field, you
can change PDO Assignment for another PDO mapping.
3. Right click the PDO Content Window, and find the PDO mapping that you desire to
set, and then you can configure (Insert/Delete/Edit/Move Up/Move Down) the PDO
mapping content.
(8 PDOs is the maximum number of PDO which can be assigned in every PDO
mappings.)
Figure 27
Figure 28 ASD-A2-E CoE drive Object List
2-16
Revision April, 2015
Chapter 2 System Setup
4. After changing the PDO Assignment, press
ASDA A2-E
or F4 to reload I/O devices. (Click
No in pop-up dialog and stay in Config Mode.)
Revision April, 2015
2-17
ASDA A2-E
Chapter 2 System Setup
(This page is intentionally left blank.)
2-18
Revision April, 2015
Chapter 3 EtherCAT
Communication States
ASDA A2-E supports four EtherCAT communication states which are shown as below:

Init (Initialization)

Pre-Operational

Safe-Operational

Operational
Init
(IP)
(PI)
Pre-operational
(OI)
(PS)
(SI)
(SP)
Safe-operational
(OP)
(SO)
(OS)
Operational
Figure 29 The EtherCAT State machine
EtherCAT host controller can switch the states. Different state provides different
service.
State
Description
After power on, the system will be located in this state when hardware
Init
is initialized without any error.
No communication packet is sent at this stage.
The mailbox can be accessed via SDO (Service Data Object).
Pre-Operational
The Emergency message will be sent to the host controller if any
alarm occurs.
Revision April, 2015
3-1
Chapter 3 EtherCAT Communication States
Safe-Operational
ASDA A2-E
Except SDO, for accessing Mailbox, the PDO (Process Data Object)
can only be applied for Process Data Input (TxPDO) at this stage.
The full function of SDO and PDO (TxPDO and RxPDO) are available
Operational
now.
3.1 State Transition Operation
The EtherCAT host will send different state transition command for requesting different
service.
State Change
Description

Master will define the slave address and register SyncManager (0/1),
and it is possible to access mailbox.
IP

Master will command the slave to switch to Safe-Operational state.

SDO from the master will be employed for the settings of PDO
mapping.
PS

Master will define FMMU and register SyncManager (2/3), and slaves
keep sending the PDO (TxPDO) packets to the master.
SO

Master requests the Slave to switch to Operational state.

Master starts to send PDO (RxPDO).

The distributed clock synchronization procedure takes place between
the master and slaves.

All communication functions, including SDO and PDO cannot work.

Switch to Init State.

Disable PDO function.

Switch to Pre-Operational state

Master stops sending Process Data Output (RxPDO).

Switch to Safe-Operational state
PI, SI, OI
SP, OP
OS
3-2
Revision April, 2015
Chapter 4 EtherCAT
Troubleshooting
Q: Why my TwinCAT cannot find EtherCAT Device from all installed NIC
(Network Interface Card) and only shows RT-Ethernet devices?
A:
1. Please refer to TwinCAT setup procedure and make sure NIC is installed
properly.
2. Check if the cable is correctly connected and L/A LED is lit.
Q: The dialog shows “Unknown device type found” while using TwinCAT Scan
boxes.
A:
Copy XML description of the ASDA-A2-E to TwinCAT device description folder
(usually in C:\TwinCAT\Io\EtherCAT) and restart TwinCAT System.
Q: Why does EtherCAT state machine only show INIT in Current State and blank
in DLL status when TwinCAT is in Config Mode?
Figure 30
A:
1. Set parameter P1-01 to 0x0C (EtherCAT communication mode).
2. Check the wiring from the host to EtherCAT communication port CN6A for input
and CN6B for output on servo drive. If the Link LED lit, it indicates that the
physical connection is correct and the drive is connecting.
Revision April, 2015
4-1
ASDA A2-E
Chapter 4 EtherCAT Troubleshooting
Q: TwinCAT shows “following error”.
Figure 31
A:
Set “Following Error Calculation” to Extern:
1. Select Axis 1_Drive in the left window.
2. In Parameter tab, select Extern in Following Error Calculation.
3. Download and click OK in pop-up dialog.
Figure 32
Q: ASDA A2-E servo drive shows AL185
A:
This alarm message occurs because of the disconnection of EtherCAT cable
between the host and the slave. Please check the wiring. After checking the
connection of the cable, it is necessary to re-servo on the drive or set OD 0x6040
to 0x86 for fault reset.
4-2
Revision April, 2015
Chapter 4 EtherCAT Troubleshooting
ASDA A2-E
Q: ASDA A2-E servo drive shows AL180
A:
Working under Operational state and losing three consecutive PDOs will lead to
this alarm.
1. A mechanism inside Delta Servo Drive can be used to monitor the error when
receiving PDO by setting P0-02 to 121. If the number keeps increasing, it can
be interpreted as the exaggerated jitter of PDO or server interference on the
communication cable.
2. Select drive and click Online. If the number in the columns of Lost Frames and
Rx Errors keeps increasing, it means the system have severe interference.
Figure 33
Q: ASDA A2-E servo drive servo drive shows AL3E1
A:
Working under Operational state with CANopen CSP/CSV/CST mode and losing
two consecutive PDOs will lead to this alarm.
1. Check the reference clock whether with big time jitter
2. Fault reset with control word 0x6040.7 = 1
Q: ASDA A2-E servo drive shows AL3E3
A:
Working under Operational state with CANopen CSP/CSV/CST mode and losing
two consecutive PDOs will lead to this alarm.
1. Make sure the host controller periodically and stably sends PDO.
2. Make sure grounding and wiring are both correct.
Revision April, 2015
4-3
ASDA A2-E
Chapter 4 EtherCAT Troubleshooting
(This page is intentionally left blank.)
4-4
Revision April, 2015
Chapter 5 CANopen Operation
Mode
5.1 Profile Position Mode
5.1.1 Description
Servo drive (hereinafter referred to as “Drive”) receives position command from the
host (external) controller (hereinafter referred to as “Host”) and then controls servo
motor to reach the target position.
Pulse of User-defined Unit Definition:
Pulse of User Unit (PUU): No. of
= 1280000
5.1.2 Operation Procedures
1. Set 【Mode of operations:6060h】to profile position mode (0x01).
2. Set 【Target position:607Ah】to the target position (unit: PUU).
3. Set 【Profile velocity:6081h】to the profile velocity (unit: PUU per second).
4. Set 【Profile acceleration:6083h】to plan acceleration slope (millisecond from 0rpm
to 3000rpm).
5. Set 【Profile deceleration:6084h】to plan deceleration slope (millisecond from 0rpm
to 3000rpm).
6. Set 【Controlword:6040h】as (0x06 > 0x07 > 0x0F) to Servo On the drive and
enable the motor.
7. Read 【Statusword:6064h】to obtain feedback position of the motor.
8. Read 【Statusword:6041h】to obtain the drive status of the following error, setpoint acknowledge and target reached.
Revision April, 2015
5-1
Chapter 5 CANopen Operation Mode
ASDA A2-E
5.1.3 Advanced Setting Procedures
1. Host could obtain more information about profile position mode.

Read 【Position demand value:6062h】to obtain the internal position command.
(unit: PUU)

Read 【Position actual value*:6063h】to obtain the actual position value. (unit:
increments)
2. Following error

Set 【Following error window:6065h】 to define the range of tolerated position
value, which also defines the range of the position demand value. (unit: PUU)

Read 【Following error actual value:60F4h】to obtain the actual value of the
following error. (unit: PUU)
accepted following error tolerance
position
following error
window
following error
following error
window
no following error
following error
reference position
Reference position
3. Position window

Set 【Position window:6067h】to define a symmetrical range of the accepted
positions which is relative to the target position. (unit: PUU)

Set 【Position window time:6068h】to plan activation time of target reached.
(unit: millisecond)
5-2
Revision April, 2015
ASDA A2-E
Chapter 5 CANopen Operation Mode
accepted position range
position
position window
position window
position reached
position not reached
position not reached
target position
Position reached
5.1.4 Associated Object List
Index
Name
Type
Attr.
6040h
Controlword
UNSIGNED16
RW
6041h
Statusword
UNSIGNED16
RO
6060h
Modes of operation
INTEGER8
RW
6061h
Modes of operation display
INTEGER8
RO
6062h
Position demand value [PUU]
INTEGER32
RO
6063h
Position actual value [increment]
INTEGER32
RO
6064h
Position actual value
INTEGER32
RO
6065h
Following error window
UNSIGNED32
RW
6067h
Position window
UNSIGNED32
RW
6068h
Position window time
UNSIGNED16
RW
607Ah
Target position
INTEGER32
RW
6081h
Profile velocity
UNSIGNED32
RW
6083h
Profile acceleration
UNSIGNED32
RW
6084h
Profile deceleration
UNSIGNED32
RW
6093h
Position factor
UNSIGNED32
RW
60F4h
Following error actual value
INTEGER32
RO
60FCh
Position demand value
INTEGER32
RO
Revision April, 2015
5-3
Chapter 5 CANopen Operation Mode
ASDA A2-E
5.2 Interpolation Position Mode
5.2.1 Description
The Host sends PDO periodically. With each PDO, the Host sends the next reference
Xi, differece△Xi and controlword to the drive. While the next SYNC0 is receiving, the
drive interpolates from Xi-1 to Xi.

Extrapolation, Jitter Compensation
-
When PDO is delayed, the interpolator will predict the speed and position for
the next time according to the last acceleration.
-
When PDO delays for 2*cycle, the Drive should stop and send out an error
message.

PDO Rx/Tx Mapping record
-
The Drive receives PDOs from the Host

32 bit reference position [position increment]

16 bit symmetrical difference [increments]
△Xi = (Xi+1 – Xi-1)/2 (It is also the same as velocity.)

16 bit controlword
The Drive receives PDOs from the Host (Every PDO contains 8 bytes field which is
shown as below.)
32 bit reference position
5-4
16 bit difference
16 bit controlword
Revision April, 2015
ASDA A2-E
Chapter 5 CANopen Operation Mode
5.2.2 Operation Procedures
1. Set 【Mode of operations:6060h】to interpolation position mode(0x07).
2. Set 【Interpolation sub mode select:60C0h】to Interpolation mode.

If 60C0h is [0], the Host does not send [60C1h Sub-2]. It could save calculating
time of the host and the Drive could also work.

If 60C0h is [-1], the Host needs to send [60C1h Sub-2] and the Drive works more
precisely.
3. Set 【Interpolation time period:60C2h】to predict the cycle that SYNC0 receives
PDO.

60C2h Sub-1 for Interpolation time units. The range is from 1ms to 20ms.
-
60C2h Sub-2 for Interpolation time index. The value is always -3, meaning
the interpolation time unit is 10-3 second.
4. Drive PDO Rx:

60C1h Sub-1 for Pos Cmd (32-bit)

6040h Sub-0 for ControlWord.
5.2.3 Associated Object List
Index
Name
Type
Attr.
6040h
Controlword
UNSIGNED16
RW
6041h
Statusword
UNSIGNED16
RO
6060h
Modes of operation
INTEGER8
RW
6061h
Modes of operation display
INTEGER8
RO
6093h
Position factor
UNSIGNED32
RW
60C0h
Interpolation sub mode select
INTEGER16
RW
60C1h
Interpolation data record
ARRAY
RW
(Please refer to the following “Details of Objects” section for more detailed descriptions)
Revision April, 2015
5-5
Chapter 5 CANopen Operation Mode
ASDA A2-E
5.3 Cyclic Synchronous Position Mode
5.3.1 Description
The Host plans the path in Cyclic Synchronous Position mode and sends PDO
periodically. With each PDO, the Host sends the target position and controlword to the
drive. Velocity offset and torque offset can be used as velocity and torque feedforwad.
5.3.2 The Function of CSP Mode
Torque offset (60B2h)
Velocity offset (60B1h)
Position offset (60B0h)
+
Target
position
(607Ah)
+
+
Position
control
+
+
Velocity
control
+
Torque
control
M
S
Torque actual value
(6077h)
Velocity actual value
(606Ch)
Position actual value
(6064h)
5.3.3 Operation Procedures
1. Set 【Mode of operations:6060h】to cyclic synchronous position mode(0x08).
2. Set 【Interpolation time period:60C2h】 to predict the cycle that SYNC0 receives
PDO.

60C2h Sub-1 for Interpolation time units. The min is from 1ms to 20ms.
- 60C2h Sub-2 for Interpolation time index. The value is always -3, meaning
the interpolation time unit is 10-3 second.
5-6
Revision April, 2015
ASDA A2-E
Chapter 5 CANopen Operation Mode
3. Drive PDO Rx:

607Ah for Target Pos Cmd (32-bit).

6040h Sub-0 for ControlWord.
5.3.4 Associated Object List
Index
Name
Type
Attr.
6040h
Controlword
UNSIGNED16
RW
6041h
Statusword
UNSIGNED16
RO
6060h
Modes of operation
INTEGER8
RW
6061h
Modes of operation display
INTEGER8
RO
607A h
Target position
INTEGER32
RW
60B0 h
Position offset
INTEGER32
RW
6064 h
Position actual value
INTEGER32
RO
60B1 h
Velocity offset
INTEGER32
RW
606Ch
Velocity actual value
INTEGER32
RO
60B2h
Torque offset
INTEGER16
RW
6077h
Torque actual value
INTEGER16
RO
(Please refer to the following “Details of Objects” section for more detailed descriptions)
Revision April, 2015
5-7
Chapter 5 CANopen Operation Mode
ASDA A2-E
5.4 Homing Mode
5.4.1 Description
This mode could help the drive to find the home position. Users can specify the speed,
acceleration and method of homing.
5.4.2 Operation Procedures
1. Set【Mode of operations:6060h】to the homing mode(0x06).
2. Set【Home offset:607Ch】.
3. Set【Homing method:6098h】. The method range is 1 to 35. (Refer to OD-6098h
definition which shows below.)
4. Set【Homing speeds:6099h Sub-1】in order to set speed search for switching. (unit:
rpm)
5. Set【Homing speeds:6099h Sub-2】in order to set speed during the search for zero.
(unit: rpm)
6. Set【Homing acceleration:609Ah】for homing acceleration. (unit: millisecond from
0rpm to 3000rpm)
7. Set【Controlword:6040h】to (0x06  0x07  0x0F) to Servo ON the drive and
enable the motor.
8. Set【Controlword:6040h】to (0x0F  0x1F) to find Home Switch and do homing.
9. Read【Statusword:6041h】to obtain the drive status.
5-8
Revision April, 2015
ASDA A2-E
Chapter 5 CANopen Operation Mode
5.4.3 Associated Object List
Index
Name
Type
Attr.
6040h
Controlword
UNSIGNED16
RW
6041h
Statusword
UNSIGNED16
RO
6060h
Modes of operation
INTEGER8
RW
6061h
Modes of operation display
INTEGER8
RO
607Ch
Home offset
INTEGER32
RW
6093h
Position factor
UNSIGNED32
RW
6098h
Homing method
INTEGER8
RW
6099h
Homing speed
ARRAY
RW
609Ah
Homing acceleration
UNSIGNED32
RW
(Please refer to the following “Details of Objects” section for more detailed descriptions.)
Revision April, 2015
5-9
Chapter 5 CANopen Operation Mode
ASDA A2-E
5.5 Profile Velocity Mode
5.5.1 Description
The drive could receive velocity command and plan acceleration and deceleration.
5.5.2 Operation Procedures
1. Set【Mode of operations:6060h】to profile velocity mode(0x03).
2. Set【Controlword:6040h】as (0x06  0x07  0x0F) to Servo ON the drive and
enable the motor.
(After Servo On, the internal velocity command will be reset and OD-60FFh will be
cleared.)
3. Set【Profile acceleration:6083h】to plan acceleration slope. (millisecond from 0rpm
to 3000rpm)
4. Set【Profile deceleration:6084h】to plan deceleration slope. (millisecond from 0rpm
to 3000rpm)
5. Set【Target velocity:60FFh】. The unit of the target velocity is 0.1rpm.
(If the drive is already servo-on, it will work immediately while receiving velocity
command. OD-60FFh will be cleared to 0 if OD-6060h [Mode] is changed, and
Servo-Off or Quick-Stop is activated.)
6. Read【Statusword:6041h】to obtain the drive status.
5-10
Revision April, 2015
ASDA A2-E
Chapter 5 CANopen Operation Mode
5.5.3 Advanced Setting Procedures
1. Host could obtain the information of velocity mode.

Read【Velocity demand value:606Bh】to inquire the internal velocity command.
(unit: 0.1rpm)

Read【Velocity actual value:606Ch】to obtain the actual velocity value. (unit:
0.1rpm)
2. Host could set velocity monitor threshold.

Set【Velocity window:606Dh】to allocate velocity reached zone. (unit: 0.1rpm)

Set【Velocity widnow time:606Eh】in order to ensure the activation time is
before velocity reached. (unit: millisecond)

Set【Velocity threshold:606Fh】to allocate zero speed level. (unit: 0.1rpm)
5.5.4 Associated Object List
Index
Name
Type
Attr.
6040h
Controlword
UNSIGNED16
RW
6041h
Statusword
UNSIGNED16
RO
6060h
Modes of operation
INTEGER8
RW
6061h
Modes of operation display
INTEGER8
RO
606Bh
Velocity demand value
INTEGER32
RO
606Ch
Velocity actual value
INTEGER32
RO
Index
Name
Type
Attr.
606Dh
Velocity window
UNSIGNED16
RW
606Eh
Velocity window time
UNSIGNED16
RW
606Fh
Velocity threshold
UNSIGNED16
RW
60FFh
Target velocity
INTEGER32
RW
(Please refer to the following “Details of Objects” section for more detailed descriptions)
Revision April, 2015
5-11
Chapter 5 CANopen Operation Mode
ASDA A2-E
5.6 Cyclic Synchronous Velocity Mode
5.6.1 Description
The Host plans the path in Cyclic Synchronous Velocity mode. In this mode, the Host
sends PDO periodically including target position and controlword to drive. In addition,
velocity offset and torque offset can be used as the velocity and torque feedforwad.
5.6.2 The Function of CSV Mode
Torque offset (60B2h)
Velocity offset (60B1h)
+
Target
velocity
(60FFh)
+
+
Velocity
control
+
Torque
control
M
S
Torque actual value
(6077h)
Velocity actual value
(606Ch)
Position actual value
(6064h)
5.6.3 Operation Procedures
1. Set 【Mode of operations:6060h】to cyclic synchronous velocity mode(0x09).
2. Set 【Interpolation time period:60C2h】 to predict the cycle that SYNC0 receives
PDO.

60C2h Sub-1 for Interpolation time units. The min is from 1ms to 20ms.
- 60C2h Sub-2 for Interpolation time index. The value is always -3, meaning
the interpolation time unit is 10-3 second.
5-12
Revision April, 2015
ASDA A2-E
Chapter 5 CANopen Operation Mode
3. Drive PDO Rx:

60F Fh for Target Velocity Cmd (32-bit)

6040h Sub-0 for ControlWord
5.6.4 Associated Object List
Index
Name
Type
Attr.
6040h
Controlword
UNSIGNED16
RW
6041h
Statusword
UNSIGNED16
RO
6060h
Modes of operation
INTEGER8
RW
6061h
Modes of operation display
INTEGER8
RO
60FF h
Target velocity
INTEGER32
RW
60B1 h
Velocity offset
INTEGER32
RW
606Ch
Velocity actual value
INTEGER32
RO
6064 h
Position actual value
INTEGER32
RO
60B2h
Torque offset
INTEGER16
RW
6077h
Torque actual value
INTEGER16
RO
Revision April, 2015
5-13
Chapter 5 CANopen Operation Mode
ASDA A2-E
5.7 Profile Torque Mode
5.7.1 Description
The drive could receive torque command and plan profile torque slope.
5.7.2 Operation Procedures
1. Set 【Mode of operations:6060h】to profile torque mode(4).
2. Set 【Controlword:6040h】as (0x6  0x7  0x0F) to Servo ON the drive and
enable the motor.
(After Servo On the drive, the internal torque command will be reset and OD-6071h
will be cleared. It means the drive is servo-on and starts to receive the torque
command.)
3. Set 【Torque slope:6087h】to plan torque slope time. (unit: millisecond from 0 to
100% rated torque)
4. Set 【Target torque:6071h】to the target torque. The unit is given one rated torque
in a thousand. (OD-6071h will be cleared to 0 if OD-6060h [Mode] changed. ServoOff or Quick-Stop is activated.)
5.7.3 Advanced Setting Procedures
Host could obtain the information of torque mode.
 Read 【Torque demand value:6074h】 to obtain the output value of the torque limit
function. (unit: one rated torque in a thousand)
 Read 【Torque rated current:6075h】to obtain the rated current determined by the
motor and drive type. (unit: multiples of milliamp)
 Read 【Torque actual value:6077h】to obtain the instantaneous torque in servo
motor. (unit: one rated torque in a thousand)
5-14
Revision April, 2015
ASDA A2-E
Chapter 5 CANopen Operation Mode
 Read 【Current actual value:6078h】to obtain the instantaneous current in servo
motor. (unit: one rated torque in a thousand)
5.7.4 Associated Object List
Index
Name
Type
Attr.
6040h
Controlword
UNSIGNED16
RW
6041h
Statusword
UNSIGNED16
RO
6060h
Modes of operation
INTEGER8
RW
6061h
Modes of operation display
INTEGER8
RO
6071h
Target torque
INTEGER16
RW
6074h
Torque demand value
INTEGER16
RO
6075h
Motor rated current
UNSIGNED32
RO
6077h
Torque actual value
INTEGER16
RO
6078h
Current actual value
INTEGER16
RO
6087h
Torque slope
UNSIGNED32
RW
(Please refer to the following “Details of Objects” section for more detailed descriptions.)
Revision April, 2015
5-15
Chapter 5 CANopen Operation Mode
ASDA A2-E
5.8 Cyclic Synchronous Torque Mode
5.8.1 Description
The Host plans the path in Cyclic Synchronous Torque mode. In this mode, the Host
sends PDO periodically including target position and controlword to drive. In addition,
velocity offset and torque offset can be used as the velocity and torque feedforwad.
5.8.2 The Function of CST Mode
Torque offset (60B2h)
+
Target
torque
(6071h)
+
Torque
control
M
S
Torque actual value
(6077h)
Velocity actual value
(606Ch)
Position actual value
(6064h)
5.8.3 Operation Procedures
1. Set【Mode of operations:6060h】to cyclic synchronous torque mode (0x0A).
2. Set【Interpolation time period:60C2h】to predict the cycle that SYNC0 receives
PDO.

60C2h Sub-1 for Interpolation time units. The min is from 1ms to 20ms.
- 60C2h Sub-2 for Interpolation time index. The value is always -3, meaning
the interpolation time unit is 10-3 second.
3. Drive PDO Rx:
5-16

6071h for Target Torque Cmd (16-bit)

6040h Sub-0 for ControlWord.
Revision April, 2015
ASDA A2-E
Chapter 5 CANopen Operation Mode
5.8.4 Associated Object List
Index
Name
Type
Attr.
6040h
Controlword
UNSIGNED16
RW
6041h
Statusword
UNSIGNED16
RO
6060h
Modes of operation
INTEGER8
RW
6061h
Modes of operation display
INTEGER8
RO
6071h
Target torque
INTEGER16
RW
60B2h
Torque offset
INTEGER16
RW
6077h
Torque actual value
INTEGER16
RO
606Ch
Velocity actual value
INTEGER32
RO
6064 h
Position actual value
INTEGER32
RO
(Please refer to the following “Details of Objects” section for more detailed descriptions)
Revision April, 2015
5-17
Chapter 5 CANopen Operation Mode
ASDA A2-E
5.9 Limit Position Handling Procedure
5.9.1 Description
Drive will switch to Quick-Stop status while traveling to the position of positive or
negative limit sensors, and it can be handled by the following procedures.
5.9.2 Operation Procedures
1. The servo panel will show the alarm while sensors are close to the positive or
negative limit. The motor is controlled by a deceleration slope to stop and it is at
Quick-Stop status. The drive will keep in servo-on status but will not accept the
further motion command.
2. Set 【Controlword:6040h】to 0x8F for fault reset and clearing the alarm displayed
on the panel.
3. Set 【Controlword:6040h】to 0x1F/0x0F for Operation Enabled, and then the servo
can accept the motion command again.
4. For a motor at its limit position, there must be a command which can drive the motor
to the backward direction. Or the alarm will be triggered again while the motor starts
moving.
5-18
Revision April, 2015
ASDA A2-E
Chapter 5 CANopen Operation Mode
5.10 Touch Probe Function
5.10.1 Description
Touch Probe function can be enabled by the DI on CN7 or the encoder; among that,
the feedback position can be latched as positive or negative edge with DI13 on CN7.
The time of latch position is shorter than 5 µs and it is used to execute high speed
performance in measuring or packaging applications.
5.10.2 Touch Probe Function
The current status of Touch Probe can be obtained by object 60B8h. The definition of
each bit is as the followings.
Bit
Value
Definition
0
Switch off touch probe 1
1
Enable touch probe 1
0
Trigger first event
1
Continuous
0
Trigger with touch probe 1 input
1
Trigger with zero impulse signal
0
Reserved
0
1
2
3
0
4
1
0
Switch off sampling at positive edge of touch
probe 1
Enable sampling at positive edge of touch probe 1
Switch off sampling at negative edge of touch
probe 1
5
1
6、7
Enable sampling at negative edge of touch probe
1
0
Reserved
0
Switch off touch probe 2
1
Enable touch probe 2
0
Trigger first event
1
Continuous
0
Trigger with touch probe 2 input
8
9
10
Revision April, 2015
5-19
Chapter 5 CANopen Operation Mode
11
ASDA A2-E
1
Trigger with zero impulse signal
0
Reserved
0
Switch off sampling at positive edge of touch
probe 2
12
1
0
Enable sampling at positive edge of touch probe 2
Switch off sampling at negative edge of touch
probe 2
13
1
Enable sampling at negative edge of touch probe
2
14、15
Reserved
5.10.3 Touch Probe Status
The current status of Touch Probe can be obtained by object 60B9h. The definition of
each bit is as the followings.
Bit
Value
Definition
0
Touch probe 1 is switched off
1
Touch probe 1 is enabled
0
Touch probe 1 has no positive edge value stored
1
Touch probe 1 has positive edge value stored
0
Touch probe 1 has no negative edge value stored
1
Touch probe 1 has negative edge value stored
0
Reserved
0
Trigger with touch probe 1 input
1
Trigger with zero impulse signal
0
1
2
3~5
6
7
0,1
Toggle with every update of Touch probe 1 value
Stored
0
Touch probe 2 is switched off
1
Touch probe 2 is enabled
0
Touch probe 2 has no positive edge value stored
1
Touch probe 2 has positive edge value stored
8
9
5-20
Revision April, 2015
ASDA A2-E
Chapter 5 CANopen Operation Mode
0
Touch probe 2 has no negative edge value stored
1
Touch probe 2 has negative edge value stored
0
Reserved
0
Trigger with touch probe 2 input
1
Trigger with zero impulse signal
10
11 ~ 13
14
15
0,1
Toggle with every update of Touch probe 2 value
Stored
5.10.4 Associated Object List
Index
Name
Type
Attr.
60B8h
Touch probe function
UNSIGNED16
RW
60B9h
Touch probe status
UNSIGNED16
RO
60BAh
Touch probe pos1 pos value
INTEGER32
RO
60BBh
Touch probe pos1 neg value
INTEGER32
RO
60BCh
Touch probe pos2 pos value
INTEGER32
RO
60BDh
Touch probe pos2 neg value
INTEGER32
RO
(Please refer to the following “Details of Objects” section for more detailed descriptions)
Revision April, 2015
5-21
Chapter 5 CANopen Operation Mode
ASDA A2-E
(This page is intentionally left blank.)
5-22
Revision April, 2015
Chapter 6 Object Dictionary
Entries
6.1 Specifications for Objects
6.1.1 Object Type
Object Name
Comments
VAR
A single value such as an UNSIGNED8, Boolean, float, INTEGER16
etc.
ARRAY
A multiple data field object where each data field is a sample variable
of the SAME basic data type e.g. array of UNSIGNED16 etc. Subindex 0 is UNSIGNED8 but is not part of the ARRAY data
RECORD
A multiple data field object where the data fields may be any
combination of simple variables. Sub-index 0 is UNSIGNED8 but is
not part of the RECORD data
6.1.2 Data Type
Please refer to CANopen Standard 301.
Revision Aril, 2015
6-1
Chapter 6 Object Dictionary Entries
ASDA A2-E
6.2 Overview of Object Group 1000h
Index
Object Type
Name
Data Type
Access
1000h
VAR
device type
UNSIGNED32
RO
1001h
VAR
error register
UNSIGNED8
RO
1600h~03h
RECORD
Receive PDO mapping
UNSIGNED32
RW
1A00h~03h
RECORD
Transmit PDO mapping
UNSIGNED32
RW
※ Only 1001h could be mapped to PDO.
6-2
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
6.3 Overview of Object Group 6000h
Index
Object
Name
Type
Data Type
Access
Mappable
603Fh
VAR
Error Code
UNSIGNED16
RO
Y
6040h
VAR
Controlword
UNSIGNED16
RW
Y
6041h
VAR
Statusword
UNSIGNED16
RO
Y
605Bh
VAR
Shutdown option code
INTEGER16
RW
N
605Eh
VAR
Fault reaction option code
INTEGER16
RW
N
6060h
VAR
Modes of operation
INTEGER8
RW
Y
6061h
VAR
Modes of operation display
INTEGER8
RO
Y
6062h
VAR
Position demand value [PUU] INTEGER32
RO
Y
6063h
VAR
Position actual value
INTEGER32
RO
Y
[increment]
6064h
VAR
Position actual value
INTEGER32
RO
Y
6065h
VAR
Following error window
UNSIGNED32
RW
Y
6067h
VAR
Position windows
UNSIGNED32
RW
Y
6068h
VAR
Position window time
UNSIGNED16
RW
Y
606Bh
VAR
Velocity demand value
INTEGER32
RO
Y
606Ch
VAR
Velocity actual value
INTEGER32
RO
Y
606Dh
VAR
Velocity window
UNSIGNED16
RW
Y
606Eh
VAR
Velocity window time
UNSIGNED16
RW
Y
606Fh
VAR
Velocity threshold
UNSIGNED16
RW
Y
6071h
VAR
Target torque
INTEGER16
RW
Y
6072h
VAR
Max torque
UNSIGNED16
RW
Y
6074h
VAR
Torque demand value
INTEGER16
RO
Y
6075h
VAR
Motor rated current
UNSIGNED32
RO
Y
6076h
VAR
Motor rated torque
UNSIGNED32
RO
Y
6077h
VAR
Torque actual value
UNSIGNED16
RO
Y
6078h
VAR
Current actual value
INTEGER16
RO
Y
607Ah
VAR
Target position
INTEGER32
RW
Y
Revision April, 2015
6-3
Chapter 6 Object Dictionary Entries
Index
Name
Type
607Ch
VAR
607Dh
ARRAY
607Eh
Data Type
Access
Mappable
Home Offset
INTEGER32
RW
Y
Software position limit
INTEGER32
RW
Y
VAR
Polarity
UNSIGNED8
RW
Y
607Fh
VAR
Max profile velocity
UNSIGNED32
RW
Y
6080h
VAR
Max motor speed
UNSIGNED32
RW
Y
6081h
VAR
Profile velocity
UNSIGNED32
RW
Y
6083h
VAR
Profile acceleration
UNSIGNED32
RW
Y
6084h
VAR
Profile deceleration
UNSIGNED32
RW
Y
6085h
VAR
Quick stop deceleration
UNSIGNED32
RW
Y
6086h
VAR
Motion profile type
INTEGER16
RW
Y
6087h
VAR
Torque slope
UNSIGNED32
RW
Y
6093h
ARRAY
Position factor
UNSIGNED32
RW
Y
6098h
VAR
Homing method
INTEGER8
RW
Y
6099h
ARRAY
Homing speeds
UNSIGNED32
RW
Y
609Ah
VAR
Homing acceleration
UNSIGNED32
RW
Y
60B0h
VAR
Position offset
INTEGER32
RW
Y
60B1h
VAR
Velocity offset
INTEGER32
RW
Y
60B2h
VAR
Torque offset
INTEGER16
RW
Y
60B8h
VAR
Touch probe function
UNSIGNED16
RW
Y
60B9h
VAR
Touch probe status
UNSIGNED16
RO
Y
60BAh
VAR
Touch probe pos1 pos value INTEGER32
RO
Y
60BBh
VAR
Touch probe pos1 neg value INTEGER32
RO
Y
60BCh
VAR
Touch probe pos2 pos value INTEGER32
RO
Y
60BDh
VAR
Touch probe pos2 neg value INTEGER32
RO
Y
60C0h
VAR
Interpolation sub mode select INTEGER16
RW
Y
60C1h
ARRAY
Interpolation data record
UNSIGNED16/32
RW
Y
SIGNED8
RW
Y
60C2h
6-4
Object
ASDA A2-E
RECORD Interpolation time period
60C5h
VAR
Max acceleration
UNSIGNED32
RW
Y
60C6h
VAR
Max deceleration
UNSIGNED32
RW
Y
Revision April, 2015
ASDA A2-E
Index
Chapter 6 Object Dictionary Entries
Object
Type
Name
Data Type
Access
Mappable
60F2h
VAR
Positioning option code
UNSIGNED16
RW
Y
60F4h
VAR
Following error actual value
INTEGER32
RO
Y
60FCh
VAR
Position demand value
INTEGER32
RO
Y
60FDh
VAR
Digital inputs
UNSIGNED32
RO
Y
60FFh
VAR
Target velocity
INTEGER32
RW
Y
6502h
VAR
Supported drive modes
UNSIGNED32
RO
Y
RW
Y
Delta parameter definition
2xxx
Revision April, 2015
VAR
Parameter Mapping
INTEGER16/32
6-5
Chapter 6 Object Dictionary Entries
ASDA A2-E
6.4 Details of Objects
Object 1000h: Device Type
INDEX
1000h
Name
device type
Object Code
VAR
Data Type
UNSIGNED32
Access
RO
PDO Mapping
No
Value Range
UNSIGNED32
Default Value
04020192 h : A2 Series
Object 1001h: Error Register
INDEX
1001h
Name
error register
Object Code
VAR
Data Type
UNSIGNED8
Access
RO
PDO Mapping
Yes
Value Range
UNSIGNED8
Default Value
0
Object 1600h ~ 1604h: Receive PDO Mapping Parameter
6-6
INDEX
1600h ~ 1603h
Name
Receive PDO mapping
Object Code
RECORD
Data Type
PDO Mapping
Access
RW
PDO Mapping
No
Sub-Index
0
Description
Number of mapped application objects in
PDO
Data Type
UNSIGNED8
Access
RW
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
PDO Mapping
No
Value Range
0: deactivated
1~8: activated
Default Value
0
Sub-Index
1~8
Description
PDO mapping for the nth application object
to be mapped
Data Type
UNSIGNED32
Access
RW
PDO Mapping
No
Value Range
UNSIGNED32
Default Value
0
Object Dictionary
Application
aaaa
xx
Object 1
PDO Mapping
0
3
1
bbbb
yy
08h
2
cccc
zz
20h
3
aaaa
xx
10h
Application
Object 2
bbbb
yy
Application
Object 2
cccc
zz
Application
Object 3
Application Object 3
Application Object 1
Object 1A00h ~ 1A04h: Transmit PDO Mapping Parameter
INDEX
1A00h ~ 1A03h
Name
Transmit PDO mapping
Object Code
RECORD
Data Type
PDO Mapping
Access
RW
PDO Mapping
No
Sub-Index
0
Description
Number of mapped application objects in
PDO
Data Type
UNSIGNED8
Revision April, 2015
6-7
Chapter 6 Object Dictionary Entries
Access
RW
PDO Mapping
No
Value Range
0: deactivated
1~8: activated
Default Value
0
Sub-Index
1~8
Description
PDO mapping for the nth application object
to be mapped
Data Type
UNSIGNED32
Access
RW
PDO Mapping
No
Value Range
UNSIGNED32
Default Value
0
ASDA A2-E
Object 1C12h : RxPDO assign
6-8
INDEX
1C12h
Name
RxPDO assign
Object Code
RECORD
Data Type
PDO Mapping assign
Access
RW
PDO Mapping
No
Sub-Index
0
Description
Number of assigned PDO mapping
Data Type
UNSIGNED8
Access
RW
PDO Mapping
No
Value Range
0: deactivated
1: One PDO mapping be assigned to
SycManager2 for RxPDO
Default Value
1
Sub-Index
1
Description
Index of assigned PDO mapping
Data Type
UNSIGNED16
Access
RW
PDO Mapping
No
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
Value Range
1600 h to 1603 h
Default Value
1601 h
Object 1C13h : TxPDO assign
INDEX
1C13h
Name
TxPDO assign
Object Code
RECORD
Data Type
PDO Mapping assign
Access
RW
PDO Mapping
No
Sub-Index
0
Description
Number of assigned PDO mapping
Data Type
UNSIGNED8
Access
RW
PDO Mapping
No
Value Range
0: deactivated
1: One PDO mapping be assigned to
SycManager3 for TxPDO
Default Value
1
Sub-Index
1
Description
Index of assigned PDO mapping
Data Type
UNSIGNED16
Access
RW
PDO Mapping
No
Value Range
1A00 h to 1A03 h
Default Value
1A01 h
Object 603Fh: Error code (error code of CANopen defined)
INDEX
603Fh
Name
Errorcode
Object Code
VAR
Data Type
UNSIGNED16
Access
RO
PDO Mapping
Yes
Value Range
UNSIGNED16
Revision April, 2015
6-9
Chapter 6 Object Dictionary Entries
Default Value
ASDA A2-E
0
Object 6040h: Controlword
INDEX
6040h
Name
Controlword
Object Code
VAR
Data Type
UNSIGNED16
Access
RW
PDO Mapping
Yes
Value Range
UNSIGNED16
Default Value
P1-01 = 0x0C, Default is 0x0004
ControlWord
(6040h)
State Machine
StatusWord
(6041h)
State machine in system context
6-10
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
Bit Definition
15~9
8
7
6~4
3
2
1
0
N/A
Halt
Fault reset
Operation mode
specific
Enable
operation
Quick
Stop
(B-contact)
Enable
voltage
Switch
on
Note:
The user needs to set 6040h to 0x0006->0x0007->0x000F for Servo On step by step.
Operation mode
Bit
PP
HM
IP
PV
PT
4
New set-point
(positive trigger)
Homing operation start
(positive trigger)
N/A
N/A
N/A
5
Change set
immediately
N/A
N/A
N/A
N/A
6
Absolute(0) / relative(1)
N/A
N/A
N/A
N/A
Abbreviation:
PP
Profile Position Mode
HM
Homing Mode
IP
Interpolated Position Mode
PV
Profile Velocity Mode
PT
Profile Torque Mode
Velocity
v2
v1
t0
t1
t2
t3
time
Single set-point
Velocity
v2
v1
t0
t1
t2
time
Change settings immediately
Revision April, 2015
6-11
Chapter 6 Object Dictionary Entries
ASDA A2-E
Object 6041h: Statusword
INDEX
6041h
Name
Statusword
Object Code
VAR
Data Type
UNSIGNED16
Access
RO
PDO Mapping
Yes
Value Range
UNSIGNED16
Default Value
0
Data Description
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
MSB
0
LSB
Bit Definition
0
Ready to switch on
1
Switch on
2
Operation enabled (status of servo on)
3
Fault (the drive will servo off)
4
Voltage enabled
5
Quick stop
6
Switch on disabled
7
Warning (the drive is still servo on)
8
N/A
9
Remote
10
Target reached
11
Internal limit active (Not supported)
PP
HM
IP
PV
PT
12
Set-point
acknowledge
Homing
attained
IP mode active
Zero Speed
N/A
13
Following error
Homing error
N/A
N/A
N/A
14
N/A
N/A
N/A
N/A
N/A
15
N/A
N/A
N/A
N/A
N/A
Note:
Set-point acknowledge: Trajectory generator has assumed the positioning values
Homing attained: Homing mode carried out successfully
IP mode active: interpolated position mode active – mode is running in IP mode
6-12
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
Object 605Bh: Shutdown option code
INDEX
605Bh
Name
Shutdown option code
Object Code
VAR
Data Type
INTEGER16
Access
RW
PDO Mapping
Yes
Value Range
INTEGER16
Default Value
0
Comment
0:Disable drive function
-1:Dynamic break enable
Object 605Eh: Fault reaction option code
INDEX
605Eh
Name
Fault reaction option code
Object Code
VAR
Data Type
INTEGER16
Access
RW
PDO Mapping
Yes
Value Range
INTEGER16
Default Value
2
Comment
0:Disable drive, motor is free to rotate
1:slow down on slow down ramp
2:slow down on quick stop ramp
Object 6060h: Modes of operation
INDEX
6060h
Name
Modes of operation
Object Code
VAR
Data Type
INTEGER8
Access
RW
PDO Mapping
Yes
Value Range
INTEGER8
Default Value
0
Comment
0: Reserved
1: Profile position mode
3: Profile velocity mode
Revision April, 2015
6-13
Chapter 6 Object Dictionary Entries
ASDA A2-E
4: Profile torque mode
6: Homing mode
7: Interpolated position mode
8: Cyclic synchronous position mode
9: Cyclic synchronous velocity mode
10: Cyclic synchronous torque mode
Object 6061h: Modes of operation display
INDEX
6061h
Name
Modes of operation display
Object Code
VAR
Data Type
INTEGER8
Access
RW
PDO Mapping
Yes
Value Range
INTEGER8
Default Value
0
Object 6062h: Position demand value
INDEX
6062h
Name
Position demand value
Object Code
VAR
Data Type
INTEGER32
Access
RO
PDO Mapping
Yes
Value Range
INTEGER32
Default Value
0
Comment
Position command is calculated by
Interpolation theory
Unit: PUU
Object 6063h: Position demand value
6-14
INDEX
6063h
Name
Position actual value*
Object Code
VAR
Data Type
INTEGER32
Access
RO
PDO Mapping
Yes
Value Range
INTEGER32
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
Default Value
0
Comment
Unit: increments
Object 6064h: Position actual value
INDEX
6064h
Name
Position actual value
Object Code
VAR
Data Type
INTEGER32
Access
RO
PDO Mapping
Yes
Value Range
INTEGER32
Default Value
0
Comment
Unit: PUU
Object 6065h: Following error window
INDEX
6065h
Name
Following error window
Object Code
VAR
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Value Range
UNSIGNED32
Default Value
3840000
Comment
Unit: PUU
Object 6067h: Position window
INDEX
6067h
Name
Position window
Object Code
VAR
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Value Range
UNSIGNED32
Default Value
100
Comment
Unit: PUU
Revision April, 2015
6-15
Chapter 6 Object Dictionary Entries
ASDA A2-E
Object 6068h: Position window time
INDEX
6068h
Name
Position window time
Object Code
VAR
Data Type
UNSIGNED16
Access
RW
PDO Mapping
Yes
Value Range
UNSIGNED16
Default Value
0
Comment
Unit: millisecond
Object 606Bh: Velocity demand value
INDEX
606Bh
Name
Velocity demand value
Object Code
VAR
Data Type
INTEGER32
Access
RO
PDO Mapping
Yes
Value Range
INTEGER32
Comment
Unit: 0.1rpm
Object 606Ch: Velocity actual value
6-16
INDEX
606Ch
Name
Velocity actual value
Object Code
VAR
Data Type
INTEGER32
Access
RO
PDO Mapping
Yes
Value Range
INTEGER32
Comment
Unit: 0.1rpm
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
Object 606Dh: Velocity window
INDEX
606Dh
Name
Velocity window
Object Code
VAR
Data Type
INTEGER16
Access
RO
PDO Mapping
Yes
Value Range
0~3000
Default Value
100
Comment
Unit: 0.1rpm
Object 606Eh: Velocity window time
INDEX
606Eh
Name
Velocity window time
Object Code
VAR
Data Type
UNSIGNED16
Access
RW
PDO Mapping
Yes
Value Range
UNSIGNED16
Default Value
0
Comment
Unit: millisecond
Object 606Fh: Velocity threshold
INDEX
606Fh
Name
Velocity threshold
Object Code
VAR
Data Type
UNSIGNED16
Access
RW
PDO Mapping
Yes
Value Range
0~2000
Default Value
100
Comment
Unit: 0.1rpm
Revision April, 2015
6-17
Chapter 6 Object Dictionary Entries
ASDA A2-E
Object 6071h: Target torque
INDEX
6071h
Name
Target torque
Object Code
VAR
Data Type
INTEGER16
Access
RW
PDO Mapping
Yes
Value Range
-3000~3000
Default Value
0
Comment
Unit: one rated torque in a thousand
Object 6072h: Max torque
INDEX
6072h
Name
Max torque
Object Code
VAR
Data Type
UNSIGNED16
Access
RW
PDO Mapping
Yes
Value Range
0~3000
Default Value
3000
Comment
Unit: one rated torque in a thousand
Object 6074h: Torque demand value
6-18
INDEX
6074h
Name
Torque demand value
Object Code
VAR
Data Type
INTEGER16
Access
RO
PDO Mapping
Yes
Value Range
INTEGER16
Comment
Unit: one rated torque in a thousand
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
Object 6075h: Motor rated current
INDEX
6075h
Name
Motor rated current
Object Code
VAR
Data Type
UNSIGNED32
Access
RO
PDO Mapping
Yes
Value Range
UNSIGNED32
Comment
Unit: milliamp
Object 6076h: Motor rated torque
INDEX
6076h
Name
Motor rated torque
Object Code
VAR
Data Type
UNSIGNED32
Access
RO
PDO Mapping
Yes
Value Range
UNSIGNED32
Comment
Unit: one rated torque in a thousand
Object 6077h: Torque actual value
INDEX
6077h
Name
Torque actual value
Object Code
VAR
Data Type
INTEGER16
Access
RO
PDO Mapping
Yes
Value Range
INTEGER16
Comment
Unit: one rated torque in a thousand
Object 6078h: Current actual value
INDEX
6078h
Name
Current actual value
Object Code
VAR
Data Type
INTEGER16
Access
RO
Revision April, 2015
6-19
Chapter 6 Object Dictionary Entries
ASDA A2-E
PDO Mapping
Yes
Value Range
INTEGER16
Comment
Unit: one rated current in a thousand
Object 607Ah: Target position
INDEX
607Ah
Name
Target position
Object Code
VAR
Data Type
INTEGER32
Access
RW
PDO Mapping
Yes
Value Range
INTEGER32
Default Value
0
Comment
For Profile position mode 6060h=1
Unit: PUU
Object 607Ch: Home offset
INDEX
607Ch
Name
Home offset
Object Code
VAR
Data Type
INTEGER32
Access
RW
PDO Mapping
Yes
Value Range
INTEGER32
Default Value
0
Comment
Unit : PUU
Home
Position
home offset
Zero
Position
Home offset
6-20
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
Object 607Dh: Software position limit
INDEX
607Dh
Name
Software position limit
Object Code
ARRAY
Data Type
INTEGER32
Access
RW
PDO Mapping
Yes
Sub-Index
0
Description
Number of entries
Data Type
UNSIGNED8
Access
RO
PDO Mapping
Yes
Value Range
2
Default Value
2
Sub-Index
1
Description
Min position limit
Data Type
INTEGER32
Access
RW
PDO Mapping
Yes
Value Range
-2147483648 ~ +2147483647
Default Value
-2147483648
Comment
Unit: PUU
Sub-Index
2
Description
Max position limit
Data Type
INTEGER32
Access
RW
PDO Mapping
Yes
Value Range
-2147483648 ~ +2147483647
Default Value
+2147483647
Comment
Unit: PUU
Revision April, 2015
6-21
Chapter 6 Object Dictionary Entries
ASDA A2-E
Object 607Fh: Max profile velocity
INDEX
607Fh
Name
Max profile velocity
Object Code
VAR
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Value Range
UNSIGNED32
Default Value
P1-55(rpm) * 10
Comment
Unit:0.1rpm
Object 6080h: Max motor speed
INDEX
6080h
Name
Max motor speed
Object Code
VAR
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Value Range
UNSIGNED32
Default Value
P1-55(rpm)
Comment
Unit: rpm
Object 6081h: Profile velocity
6-22
INDEX
6081h
Name
Profile Velocity
Object Code
VAR
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Value Range
UNSIGNED32
Default Value
10000
Comment
For Profile position mode 6060h=1
Unit: PUU per second
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
Object 6083h: Profile acceleration
INDEX
6083h
Name
Profile acceleration
Object Code
VAR
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Value Range
1~UNSIGNED32
Default Value
200
Comment
For Profile position mode 6060h=1 & Profile
velocity mode 6060h = 3
Unit: millisecond (time from 0rpm to
3000rpm)
Object 6084h: Profile deceleration
INDEX
6084h
Name
Profile deceleration
Object Code
VAR
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Value Range
1~UNSIGNED32
Default Value
200
Comment
For Profile position mode 6060h=1 & Profile
velocity mode 6060h = 3
Unit: millisecond (time from 0rpm to
3000rpm)
Object 6085h: Quick stop deceleration
INDEX
6085h
Name
Quick stop acceleration
Object Code
VAR
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Value Range
UNSIGNED32
Default Value
0
Comment
Unit: millisecond (time from 0rpm to
3000rpm)
Revision April, 2015
6-23
Chapter 6 Object Dictionary Entries
ASDA A2-E
Object 6086h: Motion profile type
INDEX
6086h
Name
Motion profile type
Object Code
VAR
Data Type
INTEGER16
Access
RW
PDO Mapping
Yes
Value Range
INTEGER16
Default Value
0
Object 6087h: Torque slope
INDEX
6087h
Name
Torque slope
Object Code
VAR
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Value Range
UNSIGNED32
Default Value
0
Comment
Unit: millisecond (time from 0 to 100%
rated torque)
Object 6093h: Position factor
6-24
INDEX
6093h
Name
Position factor
Object Code
ARRAY
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Comment
Position factor =
Numerator / Feed_constant
Sub-Index
0
Description
Number of entries
Data Type
UNSIGNED8
Access
RO
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
PDO Mapping
No
Value Range
2
Default Value
2
Sub-Index
1
Description
Numerator
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Default Value
1
Comment
Same as P1-44
Sub-Index
2
Description
Feed_constant
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Default Value
1
Comment
Same as P1-45
Object 6098h: Homing method
INDEX
6098h
Name
Homing method
Object Code
VAR
Data Type
INTEGER8
Access
RW
PDO Mapping
Yes
Value Range
0~35
Default Value
0
1
Index Pulse
Negtive Limit Switch
Method1:Homing on negative limit switch and index pulse
Revision April, 2015
6-25
Chapter 6 Object Dictionary Entries
ASDA A2-E
2
Index Pulse
Positive Limit Switch
Method2:Homing on positive limit switch and index pulse
3
3
4
4
Index Pulse
Home Switch
Method 3 and 4:Homing on positive home switch and index pulse
6-26
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
5
5
6
6
Index Pulse
Home Switch
Method 5 and 6:Homing on negative home switch and index pulse
8
7
10
9
7
10
8
7
9
9
8
10
Index Pulse
Home Switch
Positive Limit Switch
14
12
11
13
14
11
13
12
13
14
11
12
Index Pulse
Home Switch
Negative Limit Switch
Method 7 to 14:Homing on home switch and index pulse
Revision April, 2015
6-27
Chapter 6 Object Dictionary Entries
ASDA A2-E
Method 15 and 16:Reserved (no picture)
19
19
20
20
Home Switch
Method 17 to 30:Homing without an index pulse
Method 31 and 32:Reserved (no picture)
33
34
Index Pulse
Method 33 to 34:Homing on index pulse
Method 35:Homing on current position (no picture)
Object 6099h: Homing speed
6-28
INDEX
6099h
Name
Homing speed
Object Code
ARRAY
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Sub-Index
0
Description
Number of entries
Data Type
UNSIGNED8
Access
RO
PDO Mapping
Yes
Value Range
2
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
Default Value
2
Sub-Index
1
Description
Speed during search for switch
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Value Range
1~2000rpm
Default Value
100
Comment
Unit:0.1rpm
Sub-Index
2
Description
Speed during search for zero
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Value Range
1~500rpm
Default Value
20
Comment
Unit:0.1rpm
Object 609Ah: Homing acceleration
INDEX
609Ah
Name
Homing acceleration
Object Code
VAR
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Value Range
UNSIGNED32
Default Value
100
Comment
Unit: millisecond (time of acc from 0rpm to
3000rpm)
Revision April, 2015
6-29
Chapter 6 Object Dictionary Entries
ASDA A2-E
Object 60B0h: Position offset
INDEX
60B0h
Name
Position offset
Object Code
VAR
Data Type
INTEGER32
Access
RW
PDO Mapping
Yes
Value Range
INTEGER32
Default Value
0
Comment
Unit: PUU
Object 60B1h: Velocity offset
INDEX
60B1h
Name
Velocity offset
Object Code
VAR
Data Type
INTEGER32
Access
RW
PDO Mapping
Yes
Value Range
INTEGER32
Default Value
0
Comment
Unit: 0.1rpm
Object 60B2h: Torque offset
6-30
INDEX
60B2h
Name
Torque offset
Object Code
VAR
Data Type
INTEGER16
Access
RW
PDO Mapping
Yes
Value Range
3000~-3000
Default Value
0
Comment
Unit: one rated torque in a thousand
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
Object 60B8h: Touch probe function
INDEX
60B8h
Name
Touch probe function
Object Code
VAR
Data Type
UNSIGNED16
Access
RW
PDO Mapping
Yes
Value Range
UNSIGNED16
Default Value
0
Comment
0
Object 60B9h: Touch probe status
INDEX
60B9h
Name
Touch probe status
Object Code
VAR
Data Type
UNSIGNED16
Access
RO
PDO Mapping
Yes
Value Range
UNSIGNED16
Default Value
0
Comment
0
Object 60BAh: Touch probe pos1 pos value
INDEX
60BAh
Name
Touch probe pos1 pos value
Object Code
VAR
Data Type
INTEGER32
Access
RO
PDO Mapping
Yes
Value Range
INTEGER32
Default Value
0
Comment
Unit: PUU
Revision April, 2015
6-31
Chapter 6 Object Dictionary Entries
ASDA A2-E
Object 60BBh: Touch probe pos1 neg value
INDEX
60BBh
Name
Touch probe pos1 neg value
Object Code
VAR
Data Type
INTEGER32
Access
RO
PDO Mapping
Yes
Value Range
INTEGER32
Default Value
0
Comment
Unit: PUU
Object 60BCh: Touch probe pos2 pos value
INDEX
60BCh
Name
Touch probe pos2 pos value
Object Code
VAR
Data Type
INTEGER32
Access
RO
PDO Mapping
Yes
Value Range
INTEGER32
Default Value
0
Comment
Unit: PUU
Object 60BDh: Touch probe pos2 neg value
6-32
INDEX
60BDh
Name
Touch probe pos2 neg value
Object Code
VAR
Data Type
INTEGER32
Access
RO
PDO Mapping
Yes
Value Range
INTEGER32
Default Value
0
Comment
Unit: PUU
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
Object 60C0h: Interpolation sub mode select
INDEX
60C0h
Name
Interpolation sub mode select
Object Code
VAR
Data Type
INTEGER16
Access
RW
PDO Mapping
Yes
Value Range
INTEGER16
Default Value
0
Comment
0: manufacturer specific
(Linear interpolation -no need the Pos Difference [OD60C1sub2])
-1: manufacturer specific
( Delta definition -need pos difference [OD-60C1sub2])
Object 60C1h: Interpolation data record
INDEX
60C1h
Name
Interpolation data record
Object Code
ARRAY
Data Type
INTEGER32
Access
RW
PDO Mapping
Yes
Comment
Set this record by PDO every T msec
before SYNC message
Where T is specified by 60C2h:01h
Sub-Index
0
Description
Number of entries
Data Type
UNSIGNED8
Access
RO
PDO Mapping
No
Value Range
2
Default Value
2
Sub-Index
1
Description
Pos_Cmd
Data Type
INTEGER32
Revision April, 2015
6-33
Chapter 6 Object Dictionary Entries
Access
RW
PDO Mapping
Yes
Value Range
INTEGER32
Default Value
0
Comment
Unit: 32-bit CMD_PUU
Sub-Index
2
Description
Velocity – Pos_Cmd difference
Data Type
INTEGER16
Access
RW
PDO Mapping
Yes
Value Range
INTEGER16
Default Value
0
Comment
△Xi = (Xi+1 – Xi-1)/2
ASDA A2-E
(It is also the same as velocity.)
Unit: PUU
Object 60C2h: Interpolation time period
6-34
INDEX
60C2h
Name
Interpolation time period
Object Code
RECORD
Data Type
UNSIGNED8
Access
RW
PDO Mapping
Yes
Comment
The unit of the interpolation time unit is
given in 10interpolation time index seconds
Sub-Index
0
Description
Number of entries
Data Type
UNSIGNED8
Access
RO
PDO Mapping
No
Value Range
2
Default Value
2
Sub-Index
1
Description
Interpolation time units
Data Type
UNSIGNED8
Access
RW
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
PDO Mapping
Yes
Value Range
UNSIGNED8
Default Value
1
Sub-Index
2
Description
Interpolation time index
Data Type
INTEGER8
Access
RW
PDO Mapping
Yes
Value Range
-128~63
Default Value
-3
Object 60C5h: Max acceleration
INDEX
60C5h
Name
Max acceleration
Object Code
VAR
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Value Range
1 ~ 65500
Default Value
200
Comment
Unit: millisecond (min. time from 0 rpm to
3000 rpm)
Object 60C6h: Max deceleration
INDEX
60C6h
Name
Max deceleration
Object Code
VAR
Data Type
UNSIGNED32
Access
RW
PDO Mapping
Yes
Value Range
1 ~ 65500
Default Value
200
Comment
Unit: millisecond (min. time from 3000 rpm
to 0 rpm)
Revision April, 2015
6-35
Chapter 6 Object Dictionary Entries
ASDA A2-E
Object 60F2h: Positioning option code
INDEX
60F2h
Name
Positioning option code
Object Code
VAR
Data Type
UNSIGNED16
Access
RW
PDO Mapping
Yes
Value Range
UNSIGNED16
Default Value
0
Object 60F4h: Following error actual value
INDEX
60F4h
Name
Following error actual value
Object Code
VAR
Data Type
INTEGER32
Access
RO
PDO Mapping
Yes
Value Range
INTEGER32
Comment
Unit: PUU
Object 60FCh: Position demand value*
6-36
INDEX
60FCh
Name
Position demand value*
Object Code
VAR
Data Type
INTEGER32
Access
RO
PDO Mapping
Yes
Value Range
INTEGER32
Comment
Unit: increment
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
Object 60FDh: Digital inputs
INDEX
60FDh
Name
Digital inputs
Object Code
VAR
Data Type
UNSIGNED32
Access
RO
PDO Mapping
Yes
Value Range
UNSIGNED32
Default Value
0
Object 60FFh: Target velocity
INDEX
60FFh
Name
Target velocity
Object Code
VAR
Data Type
INTEGER32
Access
RW
PDO Mapping
Yes
Value Range
INTEGER32
Comment
Unit: 0.1rpm
Object 6502h: Supported drive modes
INDEX
6502h
Name
Supported drive modes
Object Code
VAR
Data Type
UNSIGNED32
Access
Ro
PDO Mapping
Yes
Value Range
UNSIGNED32
Default Value
3EDh
Revision April, 2015
6-37
Chapter 6 Object Dictionary Entries
ASDA A2-E
Object 2xxxh: Manufacturer parameter
INDEX
2xxxh
Name
Manufacturer parameter
Object Code
VAR
Data Type
INTEGER16/INTEGER32
Access
RW
PDO Mapping
Yes
Value Range
NTEGER16/INTEGER32
Default Value
N/A
Object 2xxx is defined to parameter.
If users desire to use CANopen protocol for simulate Keypad press, they could read
and write Keypad parameters via SDO protocol.
Pa-bc <==>
2aBCh
‘BC’ is hexadecimal format of ‘bc’
Users could read the Index first for knowing the Length of Parameter and then change
the data by SDO or PDO.
Example 1: Object 2309h: EtherCAT Synchronization Setting【P3-09】
6-38
INDEX
2309h
Name
EtherCAT Synchronization Setting
Object Code
VAR
Data Type
INTEGER16
Access
RW
PDO Mapping
Yes
Value Range
INTEGER16
Default Value
1512 h
Revision April, 2015
ASDA A2-E
Chapter 6 Object Dictionary Entries
Example 2: Object 212Ch: Electronic Gear 【P1-44】
INDEX
212Ch
Name
Electronic Gear
Object Code
VAR
Data Type
INTEGER32
Access
RW
PDO Mapping
Yes
Value Range
INTEGER32
Revision April, 2015
6-39
Chapter 6 Object Dictionary Entries
ASDA A2-E
(This page is intentionally left blank.)
6-40
Revision April, 2015
Chapter 7 Safety Function (Safe
Torque Off, STO)
7.1 Description of Terminal Block
CN-STO Connector (male)
Pin No
Terminal
Symbol
Function and Description
*1
COM+
VDD (24V) power is identical to pin 5 of CN1
2
STO_A
STO input pin A+
3
/STO_A
STO input pin A-
4
STO_B
STO input pin B+
5
/STO_B
STO input pin B-
6
FDBK_A
STO alarm output pin A, BJT Output
Max. Rating : 80 VDC, 0.5 A
7
FDBK_B
STO alarm output pin B, BJT Output
Max. Rating : 80 VDC, 0.5 A
8
COM-

VDD (24V) power ground
*1: Do not apply to dual power or it may damage the servo drive.
Revision April, 2015
7-1
ASDA A2-E
Chapter 7 Safety Function (Safe Torque Off, STO)
STO with safety relay:
STO
1
ESTOP
24V DC
COM+
2 STO_A
3
/ STO_A
Safety Relay
4 STO_B
5
/ STO_B
6 FDBK_A
7
FDBK_B
8
COM-
STO Disable:
STO
1
2
COM+
STO_A
3
/ STO_A
4
STO_B
5
/ STO_B
6 FDBK_A
7
FDBK_B
8
7-2
COM-
Revision April, 2015
Chapter 7 Safety Function (Safe Torque Off, STO)
ASDA A2-E
7.1.1 Functional Safety Standard and Certificates
Pleasee refer to Chapter 9.
7.2 STO Safety Function
Fault Rate of Safety Function
Item
SFF
HFT (Type A
subsystem)
SIL
PFH
PFDav
Category
PL
MTTFd
DC
Definition
Standard
Safe Failure Fraction
IEC61508
Hardware Fault Tolerance
Safety Integrity Level
Average frequency of dangerous
failure [h-1]
Probability of Dangerous Failure
on Demand
Category
Performance Level
Mean time to dangerous failure
Diagnostic Coverage
Features
Channel 1: 80.08%
Channel 2: 68.91%
IEC61508
1
IEC61508
IEC62061
SIL 2
SILCL 2
IEC61508
9.56×10-10
IEC61508
4.18×10-6
ISO13849-1
ISO13849-1
ISO13849-1
ISO13849-1
Category 3
d
High
Low
Theorem of Safety Function
Two individual hardware circuits control the drive signal of motor current so as to cut off
power supply to avoid generating motor cogging if needed.
See table 1 for the description of theorem
Table 1:
ON =24V
OFF= 0V
Signal
STO signal
Channel
STO_A
~ / STO_A
ON
ON
OFF
OFF
STO_B
~ / STO_B
ON
OFF
ON
OFF
Ready
STO_B lost
(AL502)
(Torque off)
STO_A lost
(AL501)
(Torque off)
STO Mode
(Torque off)
Servo Drive Output Status
Revision April, 2015
Status of Opto-Isolator
7-3
ASDA A2-E
Chapter 7 Safety Function (Safe Torque Off, STO)
(1) Status Description of STO Alarm:
See the figure below. When the motor runs properly (SERVO ON), if STO_A and
STO_B signal (which is also called safety signal) is lost for 10 ms at the same time,
AL500 occurs. Then, servo drive will be in Servo Off status.
10 ms
STO_A
H
L
H
L
ON
OFF
STO_B
S_ON
Servo
status
Servo on
Servo off & AL500
See the figure below. When the motor runs properly (SERVO ON), when one of the safety
signal is lost for 1 s, AL501 or AL502 will occur. Then, servo drive will be in SERVO OFF
status.
1s
STO_A
H
STO_B
L
H
L
S_ON
ON
Servo
status
7-4
Servo on
OFF
Servo off & AL501
Revision April, 2015
Chapter 7 Safety Function (Safe Torque Off, STO)
ASDA A2-E
7.3 Related Parameter Descriptions of STO Function
Through the setting of P2-93, users can determine FDBK status and if FDBK will latch when
STO alarm occurs. Please refer to the following figure for the setting of P2-93:
P2-93 = X X 1 0
0: Logic A
1: Logic B
2: Logic C
3: Logic D
Not in use
1: FDBK no latch
2: FDBK latch
Description of STO Function:
See the table below. Four logics (Logic A, Logic B, Logic C, Logic D) are provided to
standardize FDBK status when different STO alarm occurs. Customers can select the
corresponding logic according to the demands. (In this table, Open means FDBK+ and
FDBK- of CN8 are open circuit. Take Logic C as the example. When AL500 occurs, FDBK+
and FDBK- of CN8 are short circuited.)
FDBK_A & FDBK_B Status
Status of Servo Drive
Logic A
Logic B
Logic C
Logic D
Parameter P2-93
XX10
XX20
XX11
XX21
XX12
XX22
XX13
XX23
FDBK Behavior
No
Latch
Latch
No
Latch
Latch
No
Latch
Latch
No
Latch
Latch
No STO alarm
occurs
Alarm
occurs
Open
Close
Open
Close
AL500 occurs
Close
Open
Close
Open
AL501 occurs
Close
Open
Open
Close
AL502 occurs
Close
Open
Open
Close
AL503 occurs
Close
Open
Open
Close
Open = open circuit; Close = close circuit
If FDBK is latched, when STO alarm occurs, status of FDBK will remain even when the
alarm has been cleared. Please note that when more than one alarm occur, the drive panel
will only display AL500.

Example of Latch:
If Logic C P2-93 = XX22 is set, the FDBK status will be close when safety signal is lost
and AL005 occurs.
1. Since FDBK is selected as Latch, even when the safety signal is back to normal,
FDBK status still remains close. Use the approaches below to reset.
i.
Reconnect power supply. FDBK status returns to open.
ii.
Do not reconnect power supply. Instead, set P2-93=XX12 to make FDBK
status return to open. Then set P2-93=XX22 again. This step is to set
FDBK behavior to Latch.
Revision April, 2015
7-5
ASDA A2-E

Chapter 7 Safety Function (Safe Torque Off, STO)
2. After the FDBK status restores, alarms can be cleared by normal corrective actions.
In this case, AL500 can be cleared by DI: Alm Reset.
Example of No Latch:
If Logic C P2-93 = XX12 is set, the FDBK status will be close when the safety signal is
lost and AL005 occurs.
1. Since FDBK is selected as No Latch, safety signals return to normal and the
FDBK status automatically changes from short-circuited to normal when AL500
occurs. Do not need to set P2-93 to XX12 again.
2. After the FDBK status restores, alarms can be cleared by normal corrective
actions. In this case, AL500 can be solved by DI: Alm Reset.
P2-93
STO
Address:02BAH
02BCH
STO FDBK Control
Interface: Panel / Software Communication
Default: 0
Reference: Control Mode: ALL
Unit: -
Range: -
Format: DEC
Data Size: 16-bit
Settings:
BIT0: Select the logic for FDBK status
BIT1: Determine if FDBK should be Latched
7.4 Related Alarm Descriptions of STO Function
Display
AL500
AL501
AL502
AL503
Alarm Name
Alarm Description
Safety function (STO) is
manually enabled.
STO function is Please check the
enabled
causes.
Make sure the wiring of
STO_A lost STO_A is correct
(signal lost or
error)
Make sure the wiring of
STO_B lost STO_B is correct
(signal lost or
error)
STO_error
Internal circuit of STO_A
~ / STO_A and STO_B ~
/ STO_B is diagnosed as
error
Corrective
Actions
DI.ARST or
write 0 into
P0-01 or
0x6040.Fault
Reset
DI.ARST or
write 0 into
P0-01 or
0x6040.Fault
Reset
DI.ARST or
write 0 into
P0-01 or
0x6040.Fault
Reset
DI.ARST or
write 0 into
P0-01 or
0x6040.Fault
Reset
Corresponding
DO
Servo
Status
ALM
Servo
Off
ALM
Servo
Off
ALM
Servo
Off
ALM
Servo
Off
Causes and Corrective Actions:
7-6
Revision April, 2015
Chapter 7 Safety Function (Safe Torque Off, STO)
ASDA A2-E
AL500: STO Function is enabled
Causes
Checking Method
Safety function (STO) is Safety function (STO) is enabled.
enabled
Please check the causes.
Corrective Actions
DI.ARST or write 0 into P0-01 or
0x6040.Fault Reset
AL502: STO_A lost (Signal is lost or error)
Causes
STO_A loses enable
signal or STO_A signal
does not synchronize
with STO_B signal for
more than 1 second.
Checking Method
Corrective Actions
Make sure the wiring of STO_A is DI.ARST or write 0 into P0-01 or
correct.
0x6040.Fault Reset
AL502: STO_B lost (Signal is lost or error)
Causes
STO_B loses enable
signal or STO_A signal
does not synchronize
with STO_B signal for
more than 1 second.
Checking Method
Make sure the wiring of STO_B is
correct.
Corrective Actions
DI.ARST or write 0 into P0-01 or
0x6040.Fault Reset
AL503: STO_error
Causes
Checking Method
Corrective Actions
STO self-diagnostic error Check if the wiring between STO_A STO circuit error. Please contact
and STO_B is correct.
with distributors.
Revision April, 2015
7-7
ASDA A2-E
Chapter 7 Safety Function (Safe Torque Off, STO)
(This page is intentionally left blank.)
7-8
Revision April, 2015
Chapter 8 Alarm List
8.1
EtherCAT Communication Fault Messages
Emergency Object
Byte
Content
0
1
Emergency Error
Code
2
Error
register
3
4
5
Panel Alarm Code
6
7
N/A
Fault Messages
(If ALARM code is not showed here, please refer to the User Manual)
Display
AL185
AL180
Fault Name
Communication
disconnected
Fault Description
EtherCAT link is disconnected
CANopen RxPDO
The drive dose not receive any RxPDO
timeout (Servo Off)
within three communication cycle times
Clearing Method
6040h fault reset
6040h fault reset
Sub-index error
AL122
occurs when
The specified Sub-index in the message
accessing CANopen does not exist.
6040h fault reset
PDO object.
Data type (size) error
AL123
occurs when
The data length in the message does not
accessing CANopen match the specified object.
6040h fault reset
PDO object.
Data range error
AL124
occurs when
The data in the message has exceeded the
accessing CANopen data range of the specified object.
6040h fault reset
PDO object.
AL125
CANopen PDO
The specified object in the message is read-
object is read-only
only and write-protected (cannot be
6040h fault reset
and write-protected. changed).
CANopen PDO
AL126
object does not
support PDO.
Revision April, 2015
The specified object in the message does
not support PDO.
6040h fault reset
8-1
ASDA A2-E
Chapter 8 Alarm List
CANopen PDO
AL127
object is writeprotected when
Servo On.
AL128
The specified object in the message is
write-protected (cannot be changed) when
6040h fault reset
Servo On.
Error occurs when
An error occurs when loading the default
reading CANopen
settings from EEPROM at start-up. All
PDO object from
CANopen object returns to the default
EEPROM.
setting automatically.
6040h fault reset
Error occurs when
AL129
writing CANopen
An error occurs when writing the current
PDO object into
settings into EEPROM.
6040h fault reset
EEPROM.
The data amount saved in EEPROM has
exceeded the space determined by the
AL130
EEPROM invalid
firmware. Maybe the firmware version has
address range
been upgraded, and the data of old
6040h fault reset
firmware version saved in EEPROM cannot
be used.
AL131
EEPROM checksum
error
The data saved in EEPROM has been
damaged and all CANopen objects return to 6040h fault reset
the default settings automatically.
The parameter is password protected when
AL132
Password error
using CANopen communication to access
the parameter. The users must enter the
6040h fault reset
valid password to unlock the parameter.
AL201
CANopen load/save
1010/1011 error
CANopen SYNC
AL3E1 failed
(Servo Off)
CANopen SYNC
AL3E2 signal error (Servo
Off)
AL3E3
CANopen SYNC
The synchronous communication with the
external controller has failed.
The CANopen SYNC signal is received too
early.
The CANopen SYNC signal is not received
time out (Servo Off) within the specified time.
CANopen IP
AL3E4 command failed
(Servo Off)
8-2
P2-08 = 10 or
Fail while read/write data from/to EEPROM P2-08 = 30,28 after
firmware upgrade
Internal command of CANopen IP mode
cannot be sent and received.
6040h fault reset
6040h fault reset
6040h fault reset
6040h fault reset
Revision April, 2015
Chapter 8 Alarm List
AL3E5
AL500
ASDA A2-E
SYNC period error
Object 0x1006 data error. SYNC period
(Servo Off)
1006h value is invalid.
Safe torque off
(Servo Off)
The safety function (STO) is enabled.
STO_A lost (Servo
Off)
6040h fault reset
STO_A and STO_B change state
simultaneously.
STO_A is de-energized and STO_B is
AL501
6040h fault reset
6040h fault reset
energized. STO_A signal does not
synchronize with STO_B signal for more
than 1 second, please check wiring contact
or STO safety relay.
STO_A is energized and STO_B is de-
AL502
STO_B lost (Servo
Off)
6040h fault reset
energized. STO_A signal does not
synchronize with STO_B signal for more
than 1 second, please check wiring contact
or STO safety relay.
AL503
STO error (Servo
STO self-diagnostic error
6040h fault reset
Off)
Revision April, 2015
8-3
ASDA A2-E
8.2
Chapter 8 Alarm List
Error Code Table
Display
8-4
Description
32bit-ErrorCode
(16bit-ErrorCode +
16bit-Additional Info)
AL001
Overcurrent
2310-0001h
AL002
Overvoltage
3110-0002h
AL003
Undervoltage
3120-0003h
AL004
Motor error
7122-0004h
AL005
Regeneration error
3210-0005h
AL006
Overload
3230-0006h
AL007
Overspeed
8400-0007h
AL008
Abnormal pulse control command
8600-0008h
AL009
Excessive deviation
8611-0009h
AL010
Reserved
0000-0010h
AL011
Encoder error
7305-0011h
AL012
Adjustment error
6320-0012h
AL013
Emergency stop activated
5441-0013h
AL014
Reverse limit switch error
5443-0014h
AL015
Forward limit switch error
5442-0015h
AL016
IGBT temperature error
4210-0016h
AL017
Memory error
5330-0017h
AL018
Encoder output error
7306-0018h
AL019
Serial communication error
7510-0019h
AL020
Serial communication time out
7520-0020h
AL021
Reserved
AL022
Input power phase loss
3130-0022h
AL023
Early warning for overload
3231-0023h
AL024
Encoder initial magnetic field error
7305-0024h
AL025
Encoder internal error
7305-0025h
AL026
Encoder internal error
7305-0026h
AL027
Encoder data error
7305-0027h
Reserved
Revision April, 2015
Chapter 8 Alarm List
ASDA A2-E
AL030
Motor protection error
7121-0030h
AL031
U,V,W wiring error
3300-0031h
AL040
Full-closed loop excessive deviation
8610-0040h
AL099
DSP firmware upgrade
5500-0099h
AL201
CANopen Data Initial Error
6310-0201h
AL283
Forward software limit
5444-0283h
AL285
Reverse software limit
5445-0285h
EtherCAT connection error
8120-0185h
AL185
AL180
AL122
AL123
AL124
(Servo Off)
Node guarding or Heartbeat error (Servo Off)
8130-0180h
Sub-index error occurs when accessing CANopen
8200-0122h
PDO object.
Data type (size) error occurs when accessing
8200-0123h
CANopen PDO object.
Data range error occurs when accessing CANopen
8200-0124h
PDO object.
AL125
CANopen PDO object is read-only and write-protected.
8200-0125h
AL126
CANopen PDO object does not support PDO.
8200-0126h
CANopen PDO object is write-protected when Servo
8200-0127h
AL127
AL128
AL129
On.
Error occurs when reading CANopen PDO object from
8200-0128h
EEPROM.
Error occurs when writing CANopen PDO object into
8200-0129h
EEPROM.
AL130
EEPROM invalid address range.
8200-0130h
AL131
EEPROM checksum error.
8200-0131h
AL132
EEPROM zone error.
8200-0132h
AL201
CANopen load/save 1010/1011 error
6310-0201h
AL3E1
CANopen SYNC failed (Servo Off)
6200-03E1h
AL3E2
CANopen SYNC signal error (Servo Off)
6200-03E2h
AL3E3
CANopen SYNC time out (Servo Off)
6200-03E3h
Revision April, 2015
8-5
ASDA A2-E
8-6
Chapter 8 Alarm List
AL3E4
CANopen IP command failed (Servo Off)
6200-03E4h
AL3E5
SYNC period error (Servo Off)
6200-03E5h
AL500
Safe torque off (Servo Off)
9000-0500h
AL501
STO_A lost (Servo Off)
9000-0501h
AL502
STO_B lost (Servo Off)
9000-0502h
AL503
STO error (Servo Off)
9000-0503h
Revision April, 2015
Chapter 8 Alarm List
8.3
ASDA A2-E
SDO Error Message Abort Codes
Abort Code
Description
05040001 h
Client/server command specifier not valid or unknown
06010002 h
Attempt to write a read-only object
06020000 h
Object does not exist in the object dictionary
06040041 h
Object cannot be mapped to PDO
06040042 h
The number and the length of the objects to be mapped would exceed PDO
length
06060000 h
Access failed due to a hardware error (store or restore error)
06070010 h
Data type does not match; length of the service parameter does not match
06090011 h
Sub-index does not exist
06090030 h
Value range of parameter exceeded (only for writing access)
08000000 h
General error
080000a1 h
Object error when reading from EEPROM
080000a2 h
Object error when writing to EEPROM
080000a3 h
Invalid Range when accessing EEPROM
080000a4 h
Checksum error when accessing EEPROM
080000a5 h
Password error when writing encryption zone
08000020 h
Data cannot be transferred or stored in the application (store or restore signature
error)
08000021 h
Data cannot be transferred or stored in the application because of the local
control (store or restore in wrong state)
08000022 h
Revision April, 2015
Object is on the fly
8-7
ASDA A2-E
Chapter 8 Alarm List
(This page is intentionally left blank.)
8-8
Revision April, 2015
Chapter 9 Reference
1. CANopen Application Layer and Communication Profile, CiA Draft Standard 301,
Version 4.02, Date: 13 February 2002
2. CANopen Device Profile Drives and Motion Control, CiA Draft Standard Proposal 402,
Version 2.0, Date: 26 July 2002
Revision April, 2015
9-1
EC Type-Examination Certificate
Powered by TCPDF (www.tcpdf.org)
Product tested
Safety Function “Safe Torque
Off” (STO)
Certificate
holder
Delta Electronics, Inc.
18 Xinglong Road
Taoyuan County
Taoyuan City 33068
Taiwan, R.O.C.
Type designation
within the drive series VFD-C, VFD-CP, VFD-CT, VFD-CH, VFD-HH,
DPD, VFD-ED-S and ASD-A2.
Details see Annex (Version Release List)
Codes and standards
IEC 61800-5-2:2007
IEC 61800-5-1:2007 (in extracts)
IEC 61800-3:2012
IEC 62061:2012
Intended application
The safety function complies with the requirements of the relevant
standards (Cat. 3 / PL d acc. to EN ISO 13849-1, SIL CL 2 acc. to IEC
62061 / IEC 61508) and can be used in applications up to PL d acc. to EN
ISO 13849-1 and SIL 2 acc. to IEC 62061 / IEC 61508.
Specific requirements
The instructions of the associated Installation and Operating Manual shall
be considered.
EN ISO 13849-1:2008 + AC:2009
IEC 60204-1:2009 (in extracts)
IEC 61508 Parts 1-7:2010
It is confirmed, that the product under test complies with the requirements for machines defined in Annex I
of the EC Directive 2006/42/EC.
Valid until 2020-01-08
The issue of this certificate is based upon an examination, whose results are documented in
Report No. 968/FSP 1074.00/15 dated 2015-01-08.
This certificate is valid only for products which are identical with the product tested. It becomes invalid at any change of
the codes and standards forming the basis of testing for the intended application.
Berlin, 2015-01-08
Certification Body for Machinery, NB 0035
www.fs-products.com
Dipl.-Ing. Eberhard Frejno
TÜV Rheinland Industrie Service GmbH, Alboinstr. 56, 12103 Berlin / Germany
Tel.: +49 30 7562-1557, Fax: +49 30 7562-1370, E-Mail: [email protected]
10/222 12. 12 E A4 ® TÜV, TUEV and TUV are registered trademarks. Utilisation and application requires prior approval.
Reg.-No.: 01/205/5429.00/15
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement