null  null
Draft version May 26, 2016
Preprint typeset using LATEX style emulateapj v. 01/23/15
POPULATION PROPERTIES OF BROWN DWARF ANALOGS TO EXOPLANETS∗
Jacqueline K. Faherty1,2,9 , Adric R. Riedel2,3 , Kelle L. Cruz2,3,11 , Jonathan Gagne1, 10 , Joseph C. Filippazzo2,4,11 ,
Erini Lambrides2 , Haley Fica2 , Alycia Weinberger1 , John R. Thorstensen8 , C. G. Tinney7,12 , Vivienne
Baldassare2,5 , Emily Lemonier2,6 , Emily L. Rice2,4,11
arXiv:1605.07927v1 [astro-ph.SR] 25 May 2016
Draft version May 26, 2016
ABSTRACT
We present a kinematic analysis of 152 low surface gravity M7-L8 dwarfs by adding 18 new parallaxes
(including 10 for comparative field objects), 38 new radial velocities, and 19 new proper motions.
We also add low- or moderate-resolution near-infrared spectra for 43 sources confirming their lowsurface gravity features. Among the full sample, we find 39 objects to be high-likelihood or new bona
fide members of nearby moving groups, 92 objects to be ambiguous members and 21 objects that
are non-members. Using this age calibrated sample, we investigate trends in gravity classification,
photometric color, absolute magnitude, color-magnitude, luminosity and effective temperature. We
find that gravity classification and photometric color clearly separate 5-130 Myr sources from > 3 Gyr
field objects, but they do not correlate one-to-one with the narrower 5 -130 Myr age range. Sources
with the same spectral subtype in the same group have systematically redder colors, but they are
distributed between 1-4σ from the field sequences and the most extreme outlier switches between
intermediate and low-gravity sources either confirmed in a group or not. The absolute magnitudes of
low-gravity sources from J band through W 3 show a flux redistribution when compared to equivalent
ly typed field brown dwarfs that is correlated with spectral subtype. Low-gravity late-type L dwarfs
are fainter at J than the field sequence but brighter by W 3. Low-gravity M dwarfs are > 1 mag
brighter than field dwarfs in all bands from J through W 3. Clouds, which are a far more dominant
opacity source for L dwarfs, are the likely cause. On color magnitude diagrams, the latest-type lowgravity L dwarfs drive the elbow of the L/T transition up to 1 magnitude redder and 1 magnitude
fainter than field dwarfs at MJ but are consistent with or brighter than the elbow at MW 1 and
MW 2 . We conclude that low-gravity dwarfs carry an extreme version of the cloud conditions of field
objects to lower temperatures, which logically extends into the lowest mass directly imaged exoplanets.
Furthermore, there is an indication on CMD’s (such as MJ versus (J-W 2)) of increasingly redder
sequences separated by gravity classification although it is not consistent across all CMD combinations.
Examining bolometric luminosities for planets and low-gravity objects, we confirm that (in general)
young M dwarfs are overluminous while young L dwarfs are normal compared to the field. Using
model extracted radii, this translates into normal to slightly warmer M dwarf temperatures compared
to the field sequence while lower temperatures for L dwarfs with no obvious correlation with assigned
moving group.
Keywords: Astrometry– stars: low-mass– brown dwarfs
∗ THIS
PAPER INCLUDES DATA GATHERED WITH THE 6.5
METER MAGELLAN TELESCOPES LOCATED AT LAS CAMPANAS OBSERVATORY, CHILE.
1 Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA; [email protected]
2 Department of Astrophysics, American Museum of Natural
History, Central Park West at 79th Street, New York, NY 10034;
[email protected]
3 Department of Physics & Astronomy, Hunter College, 695 Park
Avenue, New York, NY 10065, USA
4 Department of Engineering Science & Physics, College of
Staten Island, 2800 Victory Blvd., Staten Island, NY 10301 USA
5 Department of Astronomy, University of Michigan, 1085 S.
University, Ann Arbor, MI 48109
6 Department of Physics & Astronomy, Columbia University,
Broadway and 116th St., New York, NY 10027 USA
7 School of Physics, UNSW Australia, 2052. Australia
8 Department of Physics and Astronomy, Dartmouth College,
Hanover NH 03755, USA
9 Hubble Fellow
10 Sagan Fellow
11 Physics Program, The Graduate Center, City University of
New York, New York, NY 10016
12 Australian Centre for Astrobiology, UNSW Australia, 2052.
Australia
1. INTRODUCTION
At masses <∼ 75 MJup – the H-burning mass limit
– , the interior of a source changes significantly. Below
this mass limit, electron degeneracy pressure sufficiently
slows contraction that the core of a given object is prevented from ever reaching the temperatures required for
nuclear fusion (Hayashi & Nakano 1963, Kumar 1963).
As a consequence, the evolution of substellar mass objects produces a temperature, age, and mass degeneracy
that leads to an important, and at times completely indistinguishable, overlap in the physical properties of the
lowest mass stars, brown dwarfs and planets.
Objects with masses <∼ 75 MJup cool through their
lives with spectral energy distributions evolving as their
atmospheric chemistry changes with decreasing temperatures. The spectral classification for sources in the range
(3000 K > Tef f > 250 K) corresponds to late-type M, L,
T and Y with each class defined by the effects of changing molecular species available in the photosphere (Kirkpatrick 2005, Burgasser et al. 2002a, Cushing et al. 2011).
At the warmest temperatures, the atmosphere is too hot
2
Faherty et al.
for the condensation of solids (Allard & Hauschildt 1995;
Lodders 1999). But as the Tef f falls below 2500 K, both
liquid (e.g. Fe) and solid (e.g. CaTiO3 , VO) mineral
and metal condensates settle into discrete cloud layers
(Ackerman & Marley 2001; Tsuji et al. 1996b,a; Woitke
& Helling 2004; Allard et al. 2001).
As temperatures cool further, cloud layers form at such
deep levels in the photosphere that they have little or
no impact on the emergent spectrum. This transition
between “cloudy” to “cloudless” objects occurs rapidly
over a narrow temperature range (1200-1400 K, corresponding to the transition between L-type and T-type
spectra) and drives extreme photometric, spectroscopic,
and luminosity changes (Burgasser et al. 2002b, Tinney
et al. 2003, Faherty et al. 2012, 2014a, Dupuy & Liu
2012, Radigan et al. 2012, Artigau et al. 2009). Violent
storms (like those seen on Jupiter), along with magneticactivity-inducing aurorae, have been noted as environmental conditions likely to be present at the L-T transition ( Metchev et al. 2015, Radigan et al. 2012, Apai et al.
2013, Hallinan et al. 2015, Buenzli et al. 2014,Gillon et al.
2013, Buenzli et al. 2015, Faherty et al. 2014a, Burgasser
et al. 2014).
Confounding our understanding of cloud formation in
low-temperature atmospheres is mounting evidence for
a correlation between cloud properties and youth. Low
surface gravity brown dwarfs, thought to be young, have
unusually red near to mid-infrared colors and a fainter
absolute magnitude through ∼ 2.5 µm when compared to
their older spectral counterparts with field surface gravities (Faherty et al. 2012, Faherty et al. 2013, Filippazzo
et al. 2015, Liu et al. 2013, Gagné et al. 2015b). Metchev
& Hillenbrand (2006) made the first connection between
age and cloudiness in their study of the young companion
HD 203030B, whose transition to the cloud-free T spectral class appears to be delayed by the presence of thick
clouds. In a detailed study of the prototypical isolated,
young brown dwarf 2M0355+1133, Faherty et al. (2013)
found that the deviant colors and fainter absolute magnitudes were best explained by enhanced dust, or thick
photospheric clouds, shifting flux to longer wavelengths.
At the coldest temperatures, where clouds should all
but have dispersed below the photosphere in field brown
dwarfs, Burgasser et al. (2010b) studied the T8 dwarf
Ross 458 C and found clouds must be considered as an
important opacity source for young T dwarfs.
Exoplanet studies have independently found similar
trends with age and cloud properties. The young planetary mass companions 2M1207 b (< 10 MJup ) and
HR8799 b (< 10 MJup ), are exceedingly red in the nearinfrared and up to 2 magnitudes fainter than field brown
dwarfs of similar Tef f (Marois et al. 2008, 2010, Mohanty
et al. 2007). To reproduce their anomalous observables,
theorists have developed “enhanced” cloudy atmospheric
models with non-equilibrium chemistry (Marley et al.
2012, Barman et al. 2011a,b, Madhusudhan et al. 2011)
in which lower surface gravity alters the vertical mixing
which then leads to high altitude clouds with differing
physical composition (e.g. thicker or thinner aggregations).
In general, M, L, T, and Y classifications identify
brown dwarfs. If the source is older (> 2 - 3 Gyr),
late-type M and early L dwarfs are stars. But if the
source is young (< 1 Gyr), even those warmer classifi-
cations will describe an object that is < 75 MJup . To
date, all directly imaged giant exoplanets have observable properties which lead to their classification squarely
in this well-studied regime. Planetary mass companions
such as 2M1207 b, 51 Eri b, β Pictoris b, ROXs 42B
b, and the giant planets orbiting HR8799, have observables that are similar to L or T brown dwarfs (Chauvin
et al. 2004, Macintosh et al. 2015, Lagrange et al. 2010,
Marois et al. 2008, 2010, Currie et al. 2014, Kraus et al.
2014). Furthermore, there exists a population of “classical” brown dwarfs that overlap in effective temperature,
age – many in the same moving group – , and mass with
directly observed planetary mass companions (e.g. PSO
318, SDSS1110, 0047+6803, Liu et al. 2013, Gagné et al.
2015c, Gizis et al. 2012, 2015). Studies of these two populations in concert may resolve questions of the formation of companions versus isolated equivalents as well as
untangle atmosphere, temperature, age, and metallicity
effects on the observables.
In this work we examine this new population of suspected young, low surface gravity sources that are excellent exoplanet analogs. In section 2 we explain the
sample examined in this work and in section 3 we describe the imaging and spectral data acquired. In section
4 we review new near-infrared spectral types designated
in this work and in section 5 we discuss how we measured
new radial velocities. In section 6 we assess the likelihood
of membership in nearby moving groups such as β Pictoris, AB Doradus, Argus, Columba, TW Hydrae, and
Tucana Horologium. In section 7 we review the diversity
of the whole sample in spectral features, infrared colors,
absolute magnitudes, bolometric luminosities and effective temperatures. In section 8 we place the young brown
dwarf sample in context with directly imaged planetary
mass companions. Conclusions are presented in section
9.
2. THE SAMPLE
Given the age-mass degeneracy of substellar mass objects and an age range of ∼5 - 130 Myr for groups such
as TW Hydrae (5-15 Myr; Weinberger et al. 2013), β
Pictoris (20-26 Myr; Binks & Jeffries 2014, Malo et al.
2014), and AB Doradus (110 - 130 Myr; Barenfeld et al.
2013, Zuckerman et al. 2004) the target temperature for
our sample was Tef f < 3000 K, or, equivalently, sources
with spectral types of M7 or later. This cut-off restricted
us to < 0.07 M or the classic brown dwarf boundary
(Kumar 1963, Hayashi & Nakano 1963).
The suspicion of membership in a nearby moving group
should be accompanied by observed signatures of youth
as kinematics alone leave doubt about chance contamination from the field sample. As such, for this work we
focused on > M7 objects with confirmed spectral signatures of low-gravity in either the optical or the infrared.
We note that while there are isolated T dwarfs thought
to be young (e.g. SDSS 1110, Gagné et al. 2015a, CFBDSIR 2149, Delorme et al. 2012), their spectral peculiarities appear to be subtle making them more difficult
to identify and investigate (see also Best et al. 2015).
For isolated late-type M and L dwarfs suspected to
be young, there are strong spectral differences in the
strength of the alkali lines and metal oxide absorption
bands as well as the shape of the near-infrared H- band
(∼1.65 µm) compared to older field age counterparts (e.g.
3
Brown Dwarf Analogs to Exoplanets
Lucas et al. 2001; Gorlova et al. 2003; Luhman et al.
2004; McGovern et al. 2004; Allers et al. 2007; Rice et al.
2010, 2011, Patience et al. 2012; Faherty et al. 2013).
Physically this can be explained by a change in the balance between ionized and neutral atomic and molecular
species, as a result of lower surface gravity and, consequently, lower gas densities in the photospheric layers (Kirkpatrick et al. 2006). Furthermore, a lower surface gravity is linked to an increase in collision induced
H2 absorption (see e.g. Canty et al. 2013, Tokunaga &
Kobayashi 1999). Changes in the amount of this absorption result in the K- band (∼ 2.2 µm) being suppressed
(or enhanced) and the shape of the H band being modeified to cause the “peaky” H band relative to water opacity seen in young sources (see Rice et al. 2011).
The collection of brown dwarfs with spectral signatures
of a low-surface gravity is increasing13 . Gagné et al.
(2014c, 2015b,c) presented a bayesian analysis of the
brown dwarf population looking for potential new moving group members and uncovered numerous low-gravity
sources. Allers & Liu (2013) presented a near-infrared
spectroscopic study of a large number of known sources.
Aside from those extensive studies, objects have been reported singly in paper (e.g. Kirkpatrick et al. 2006, Liu
et al. 2013, Gagné et al. 2014a,b, 2015a, Faherty et al.
2013, Rice et al. 2010, Gizis et al. 2012, Gauza et al.
2015) or included as a subset to a larger compilation of
field objects (e.g. Cruz et al. 2007, Kirkpatrick et al.
2010, Reid et al. 2007, Thompson et al. 2013). The objects within this paper were drawn from the literature
as well as our ongoing search for new low-surface gravity
objects.
The 15214 low-surface gravity objects examined in this
work are listed in Table 1 with their coordinates, spectral
types, gravity classifications (optical and infrared as applicable), 2MASS and WISE photometry. There are 48
sources in this sample that are lacking an optical spectral
type and 8 sources lacking an infrared spectral type. Of
the 96 objects with both optical and near-infrared data,
there are 67 sources (70%) that have a different optical
spectral type than the infrared although the majority are
within 1 subtype of each other.
For assigning a gravity designation, there are two classification systems based on spectral features. The Cruz
et al. (2009) system uses optical spectra and assigns a
low-surface gravity (γ), intermediate gravity (β), or field
gravity (‘—’ in Table 1 and throughout) based on the
strength of metal oxide absorption bands and alkali lines.
In certain cases a classification of δ is also used for objects that look more extreme than γ (see Gagné et al.
2015b). In this work we label objects as δ in tables but
plot them and discuss them along with γ sources. On the
Cruz et al. (2009) scheme, γ and β objects are thought to
be younger than the Pleiades (age < ∼ 120 Myr, Stauffer
et al. 1998). The Allers & Liu (2013) system uses nearinfrared spectra and evaluates spectral indices to assign
a very low-gravity (vl-g), intermediate gravity (int-g), or
13 Our group maintains a listing of known isolated field objects noted as having gravity sensitive features on a web-based
compendiumhttp : //www.bdnyc.org/young bds
14 While this paper was awaiting acceptance, Aller et al. (2016)
reported a sample of AB Doradus late-type M and L dwarfs. Those
objects are not included in this analysis but should be considered
in future work.
field gravity (fld-g) to a given source. As discussed in
Allers & Liu (2013), the optical and near-infrared gravity systems are broadly consistent. However, to anchor
either requires an age-calibrated sample to ground the
gravity designations as age-indicators.
Figure 1 shows a histogram distribution of the spectral subtypes in the optical and the infrared highlighting
the gravity classification. There are 51 objects classified
optically as γ and 80 with the equivalent infrared classification. There are 27 objects classified optically as β
and 57 with the equivalent infrared classification. Of the
objects which have both optical and infrared gravity designations, 16 sources (17%) have different gravity classifications from the two methods and 23 objects (24%) have
a low-gravity infrared classification but are not noted as
peculiar in the optical. For simplification of the text (and
in large part because the two systems are generally consistent), we have adopted the convention that any object
classified as vl-g or int-g in the infrared is referred to as
γ or β (respectively) in the text, Tables, and Figures.
3. DATA
The sample of 152 M7-L8 ultracool dwarfs comprising
our sample were placed on follow-up programs – either
imaging (parallax, proper motion), spectroscopy (radial
velocity) or both – to determine kinematic membership
in a nearby moving group. Below we describe the data
collected for the suspected young brown dwarf sample.
3.1. Parallax and Proper Motion Imaging
The astrometric images for this program were obtained
using three different instruments and telescopes in the
northern and southern hemispheres. We report parallaxes for eight low-gravity and ten field dwarfs. For 19
objects, we report proper motion alone as we lack enough
epochs to decouple parallaxes. An additional 13 objects
have not yet been imaged by either the northern or southern instruments, and so we report proper motions using
the time baseline between 2MASS and WISE.
3.1.1. Northern Hemisphere Targets
For Northern Hemisphere astrometry targets, we obtained I-band images with the MDM Observatory 2.4m
Hiltner telescope on Kitt Peak, Arizona. Parallaxes are
being measured for both low-surface gravity and field ultracool dwarfs and for this work we report 5 of the former
and 10 of the latter (field dwarfs used for comparison in
the analysis discussed in Section 7).
For most observations at MDM, we used a thinned
SITe CCD detector (named “echelle”) with 2048x2048
pixels and an image scale of 000 .275 pixel−1 . This suffered a hardware failure and was unavailable for some
of the runs. As a substitute, we began using “Nellie”, a
thick, frontside-illuminated STIS CCD which gave 000 .240
pixel−1 . The change in instrument made no discernible
difference to the astrometry. Table 2 gives the pertinent astrometric information. In addition to the parallax
imaging, we took V -band images and determined V − I
colors for the field stars for use in the parallax reduction
and analysis. For a single target field (1552+2948) we
used SDSS colors instead. The reduction and analysis
was similar to that described in Thorstensen (2003) and
Thorstensen et al. (2008), with some modifications.
4
Faherty et al.
Parallax observations through a broadband filter are
subject to differential color refraction (DCR). The effective wavelength of the light reaching the detector for each
star will depend on its spectral energy distribution. Consequently, the target and reference stars can be observed
to have different positions depending on how far from
the zenith the target is observed at each epoch. In previous studies we approximated the I-band DCR correction
as a simple linear trend with V − I color, amounting
to 5 mas per unit V − I per unit tan z (where z is the
zenith distance of each observation). We checked this by
explicitly computing the correction for stars of varying
color using library spectra from Pickles (1998), a tabulation of the I passband from Bessell (1990), and the
atmospheric refraction as a function of wavelength appropriate to the observatory’s elevation. The synthesized
corrections agreed very well with the empirically-derived
linear correction. However, the library spectra did not
extend to objects as red as the present sample and most
are so faint in V that we could not measure V − I accurately. We therefore computed DCR corrections using
the spectral classifications of our targets and spectra of
L and T-dwarfs assembled by Neill Reid15 . The resulting corrections typically amounted to ∼ 25 mas per unit
tan z, that is, the DCR expected on the basis of the linear
relation for a star with (V − I) ≈ 5.
To minimize DCR effects, we restricted the parallax
observations to hour angles within ±2 h of the meridian.
The effect of DCR on parallax is mainly along the eastwest (or X) direction, and the X-component of refraction
is proportional to tan z sin p, where p is the parallactic
angle. This quantity averaged 0.12 for our observations,
reflecting a slight westward bias in hour angle, and its
standard deviation was 0.15. We are therefore confident
that the DCR correction is not affecting our results unduly.
As in previous papers, we used our parallax observations to estimate distances using a Bayesian formalism
that takes into account proper motion, parallax, and
a plausible range of absolute magnitude (Thorstensen
2003). For these targets we assumed a large spread in
absolute magnitude, so that it had essentially no effect
on the distance, and used a velocity distribution characteristic of a disk population to formulate the propermotion prior. For most of the targets, the parallax π
was precise enough that the Lutz-Kelker correction and
other Bayesian priors had little effect on the estimated
distance, which was therefore close to 1/π.
Table 3 lists our measured parallaxes and proper motions and Table 4 shows the comparison with literature
values for four sources with previously reported values.
In the case of MDM measured proper motions, they are
relative to the reference stars, and not absolute. Although the formal errors of the proper motions are typically 1-2 mas yr−1 , this precision is spurious in that the
dispersion of the reference star proper motions is usually
over 10 mas yr−1 , so the relative zero point is correspondingly uncertain.
3.1.2. Southern Hemisphere Targets
We observed 16 of the most southernly targets with
the Carnegie Astrometric Planet Search Camera (CAP15
Available at http://www.stsci.edu/∼inr/ultracool.html
SCam) on the 100-inch du Pont telescope and five with
the FourStar imaging camera (Persson et al. 2013) on the
Magellan Baade Telescope. In the case of both programs,
we are continually imaging objects for the purpose of
measuring parallaxes. However, for this work we report
parallaxes (and proper motions) for only 3 objects with
CAPScam. The remaining 18 objects (13 – CAPScam, 5
– FourStar) need more epochs to decouple parallax from
proper motion and will be the subject of a future paper.
A description of the CAPSCam instrument and the basic data reduction techniques are described in Boss et al.
(2009) and Anglada-Escudé et al. (2012). CAPSCam utilizes a Hawaii-2RG HyViSI detector filtered to a bandpass of 100 nm centered at 865 nm with 2048 x 2048
pixels, each subtending 0.19600 on a side. CAPSCam was
built to simultaneously image bright target stars in a 64
x 64 pixel guide window allowing short exposures while
obtaining longer exposures of fainter reference stars in
the full frame window (e.g. Weinberger et al. 2013). The
brown dwarfs targeted in this program were generally
fainter than the astrometric reference stars so we worked
with only the full frame window. Data were processed
as described in Weinberger et al. (2013). For exposure
times, we used 30s - 120s for our bright targets and 150s
- 300s for our faint targets with no coadds in an 8 - 12
point dither pattern contained in a 1500 box. Pertinent
astrometric information for parallax targets is given in
Table 2.
FourStar is a near-infrared mosaic imager (Persson
et al. 2013) with four 2048 x 2048 Teledyne HAWAII2RG arrays that produce a 10.90 x 10.90 field of view at a
plate scale of 0.15900 pixel−1 . Each target was observed
with the J3 (1.22–1.36 µm) narrow band filter and centered in chip 2. This procedure has proven successful in
our astrometric program for late-T and Y dwarfs (e.g.
Tinney et al. 2012, 2014, Faherty et al. 2014b). Exposure times of 15s with 2 coadds in an 11 point dither
pattern contained in a 1500 box were used for each target. The images were processed as described in Tinney
et al. (2014).
In the case of the 18 proper motion only targets from
either CAPSCam or FourStar, we combine our latest image with that of 2MASS (∆t listed in Table 5). Proper
motions were calculated using the astrometric strategy
described in Faherty et al. (2009). Results are listed in
Table 5.
For three CAPSCam targets there is sufficient data to
solve for both proper motions and parallaxes. For these
sources, the astrometric pipeline described in Weinberger
et al. (2013) was employed. Table 3 lists our measured
parallaxes and proper motions and Table 4 shows the
comparison with literature values for 0241-0326.
3.2. Low and Medium Resolution Spectroscopy
3.2.1. FIRE
We used the 6.5m Baade Magellan telescope and the
Folded-port InfraRed Echellette (FIRE; Simcoe et al.
2013) spectrograph to obtain near-infrared spectra of 36
sources. Observations were made over 7 runs between
2013 July and 2014 September. For all observations, we
used the echellette mode and the 0.600 slit (resolution
λ/∆λ ∼ 6000) covering the full 0.8 - 2.5 µm band with
a spatial resolution of 0.1800 /pixel. Exposure times for
Brown Dwarf Analogs to Exoplanets
each source and number of images acquired are listed
in Table 6. Immediately after each science image, we
obtained an A star for telluric correction and obtained a
ThAr lamp spectra. At the start of the night we obtained
dome flats and Xe flash lamps to construct a pixel-topixel response calibration. Data were reduced using the
FIREHOSE package which is based on the MASE and
SpeX reduction tools (Bochanski et al. 2009, Cushing
et al. 2004, Vacca et al. 2003).
3.2.2. IRTF
We used the 3m NASA Infrared Telescope Facility (IRTF) to obtain low-resolution near-infrared spectroscopy for 10 targets. We used either the 0.00 5 slit or
the 0.00 8 slit depending on conditions. All observations
were aligned to the parallactic angle to obtain R ≡ λ /
∆λ ≈ 120 spectral data over the wavelength range of 0.7
– 2.5 µm. Exposure times for each source and number of
images acquired are listed in Table 6. Immediately after
each science observation we observed an A0 star at a similar airmass for telluric corrections and flux calibration,
as well as an exposure of an internal flat-field and Ar arc
lamp. All data were reduced using the SpeXtool package
version 3.4 using standard settings (Cushing et al. 2004,
Vacca et al. 2003).
3.2.3. TSpec
We used the Triple Spectrograph (TSpec) at the 5 m
Hale Telescope at Palomar Observatory to obtain nearinfrared spectra of two targets. TSpec uses a 1024 x
2048 HAWAII-2 array to cover simultaneously the range
from 1.0 to 2.45µm (Herter et al. 2008). With a 1.1
x 4300 slit, it achieves a resolution of ∼2500. Observations were acquired in an ABBA nod sequence with an
exposure time per nod position of 300s (see Table 6) so
as to mitigate problems with changing OH background
levels. Observations of A0 stars were taken near in time
and near in airmass to the target objects and were used
for telluric correction and flux calibration. Dome flats
were taken to calibrate the pixel-to-pixel response. Data
were reduced using a modified version of Spextool (see
Kirkpatrick et al. 2011).
3.3. High Resolution Spectroscopy
3.3.1. Keck II NIRSPEC
The Keck II near-infrared SPECtrograph (NIRSPEC)
is a Nasmyth focus spectrograph designed to obtain spectra at wavelengths from 0.95 – 5.5µm (McLean et al.
1998). It offers a choice of low-resolution and crossdispersed high resolution spectrographic modes, with optional adaptive optics guidance. In high-resolution mode,
it can achieve resolving powers of up to R=25000 using
a 3 pixel entrance slit, with two orders visible on the
output spectrum (selectable by filter).
Multiple observations of 17 sources were taken in high
resolution mode on Keck II on 14, 15, and 16 September
2008, using the NIRSPEC-5 filter to obtain H-band spectra in Order 49 (1.545 – 1.570µm). Observational data
for each source are listed in Table 7. The data were reduced using the IDL-based spectroscopy reduction package REDSPEC. Many of our observations had very low
signal-to-noise, and so multiple exposures were co-added
before extracting spectra. We tested this procedure by
5
using objects with sufficient signal-to-noise prior to coadding, and by comparing individual against co-added
spectra. The resulting individual exposure spectra were
almost identical to those obtained by co-adding prior to
running REDSPEC reductions. Heliocentric radial velocity corrections were calculated with the IRAF task
rvcorrect, and applied using custom python code.
3.3.2. Gemini South Phoenix
The Phoenix instrument (previously on Gemini South)
is a long-slit, high resolution infrared echelle spectrograph, designed to obtain spectra between 1 – 5 µm at
resolutions between R=50000 and R=80000. Spectra are
not cross-dispersed, leaving only a narrow range of a single order selectable by order-sorting filters.
Observations of 18 sources were taken during semester
2007B and 2009B using the H6420 filter to select H-band
spectra in Order 36 (1.551 – 1.558 µm). Spectra were
reduced using the supplied IDL Phoenix reduction codes.
Observational data for each source are listed in Table 7.
3.3.3. Magellan Clay MIKE
The Magellan Inamori Kyocera Echelle (MIKE) on the
Magellan II (Clay) telescope is a cross-dispersed, high
resolution optical spectrograph, designed to cover the entire optical spectrum range (divided into two channels,
blue: 0.32 – 0.48 µm, and red: 0.44 – 1.00 µm) at a
resolving power of R∼28,000 (blue) and R∼22,000 (red)
using the 1.0” slit. The output spectra contain a large
range of overlapping echelle orders, each covering roughly
0.02µm of the red optical spectrum.
Red-side spectra were taken on 4 July 2006, 1 November 2006, and 2 November 2006. The observations comprise 17 target and standard spectra, with additional
B-type and white dwarf flux calibrators. Observational
data for each source are listed in Table 7. Spectra were
reduced using the IDL MIKE echelle pipeline16 , and orders 38 – 52 (0.92 – 0.65µm) were extracted from every
spectrum. Many of those orders were unusable for our
purposes, and were not used in the final solutions. Telluric atmospheric features dominate the wavebands covered by orders 38 (telluric O2 ), 45 (A band), and 50 (B
band). The orders higher (bluer) than 44 typically had
insufficient signal due to the extreme faint and red colors
of the target objects.
4. NEW NEAR-INFRARED SPECTRAL TYPES
We obtained spectra with FIRE, SpeX, and TSpec
for 43 targets to investigate near-infrared signatures of
youth. Each object had either demonstrated optical lowsurface gravity features, but were missing (or had poor)
near infrared data, or had low signal to noise near infrared spectra. Determining the spectral type and gravity classification for peculiar sources has its difficulties.
Primarily because one wants to ground the peculiar object type by comparing to an equivalent field source.
However, as will be seen in section 7, the low gravity sequence does not easily follow from the field sequence. In the infrared, Allers & Liu (2013) have presented a method for determining gravity classification using indices. Alternatively, the population of low gravity
16
2014
http://web.mit.edu/b̃urles/www/MIKE/ checked 19 JUNE
6
Faherty et al.
sources (especially earlier L types) has grown in number
such that templates of peculiar sources can be made for
comparison (e.g. Gagné et al. 2015b, Cruz et al. submitted). For this work, we have defaulted to a visual match
to templates or known sources – grounded by their optical data – as our primary spectral typing method. However we also check each source against indices to ensure
consistency.
In the case of each new spectrum, we visually compared
to the library of spectra in the SpeX prism library17 as
well as the low gravity templates discussed in Gagné et al.
2015b. For the FIRE and TSpec echelle spectra, we first
binned them to prism resolution (∼ 120). This visual
check to known objects gave the match we found most
reliable for this work in both type and gravity classification and it is listed in the “SpT adopted” column in
Table 9. Figures 3 - 4 show two example spectra (prism
and binned down FIRE data) compared visually to both
field and very low gravity sources, as representations of
our spectral typing method.
As a secondary check, we report the indices analysis
of each object. A near infrared spectral subtype is a
required input for evaluating the gravity classification
with the Allers & Liu (2013) system so we first applied
the subtype indices (as described in Allers & Liu 2013)
and list the results in the “SpT Allers13” column in Table
9. Once we had determined the closest near infrared
type, we evaluated the medium resolution (for FIRE and
TSpec data) and/or the low resolution gravity indices
(for Prism data). We list the results of each in Table
9. In general we found that matching visually to low
gravity templates or known objects versus using indices
were consistent within 1 subtype.
For each of the 5000 trials, the two spectra were crosscorrelated to produce a wavelength shift between them.
A small 400-element region around the peak of the crosscorrelation function was fit with a Gaussian and a linear
term, to locate the exact peak of the cross-correlation
on a sub-element basis. The widths (and therefore permeasurement errors) of the cross-correlation peak were
discarded, assumed to be accounted for in the actual
spread of the resulting set of peaks.
The results of the 5000 trials formed (in welldetermined cases) a Gaussian histogram centered on the
radial velocity shift between the two systems. The width
of that Gaussian was taken to represent the uncertainty
in the measured radial velocity. This pixel shift was converted into km s−1 radial velocity, and corrected for the
known velocity of the standard. Semi-independent verification of the radial velocities was accomplished by measuring the velocity relative to two different standards,
or where available, using multiple orders from the same
spectrum.
The process was sensitive to virtually all unwanted processes that produce features in the brown dwarf spectra.
Chief among these were cosmic rays and detector hot pixels, which were pixel-scale events removed from the spectra prior to interpolation onto the grid and provide very
little signal in the RV correlation. The most important
effect was telluric lines, which appeared like normal spectral features but did not track the radial velocity of the
star. These were dealt with by identifying orders whose
contamination was severe enough to produce discordant
radial velocities and avoiding them in the analysis.
Table 7 lists the final radial velocity values for each
source. Table 8 shows a comparison of sources for which
there was a literature value.
5. RADIAL VELOCITIES
Radial velocities from NIRSPEC, Phoenix, and MIKE
were calculated using a custom python routine, which
uses cross-correlation with standard brown dwarfs to
achieve 1 km s−1 radial velocity precision. Useable spectra have resolving power of R=20,000 or higher, and generally signal-to-noise of at least 20. All data were corrected to heliocentric radial velocity by shifting the wavelength grid. Brown dwarf standards – sourced primarily
from Blake et al. (2010) – were observed and corrected
with the same settings as the targets, and paired with
objects of matching spectral type. Given that our radial
velocity sample is bimodal with peaks at L0 and L4, our
spectra are fit against relatively few standards.
The python code calculates radial velocities on the fly,
and operates on optical and infrared data without modification. The radial velocity inputs were the wavelength,
flux, and uncertainty data as three one-dimensional arrays, for both the target and the standard. The target
and standard spectra were first cropped to only the portion where they overlap, and then interpolated onto a
log-normal wavelength grid.
From there, 5000 trials were conducted with different randomized Gaussian noise added to the wavelength
grids of the target and standard, according to the perelement uncertainties. This was done to account for the
uncertainties on the fluxes and to provide a method of
quantifying the uncertainty on the output radial velocity.
17
http://pono.ucsd.edu/∼adam/browndwarfs/spexprism/
5.1. Instrument-specific Differences
MIKE data has multiple echelle orders, and all
stars were measured against two L2 dwarf standards:
LHS 2924 and BRI 1222-1221 (Mohanty et al. 2003). All
orders were examined by eye, and determinations were
made as to whether they contained sufficient signal for
a believable radial velocity. This was corroborated by
cross-checking the result against other orders from the
same star and radial velocity. Some orders had broader
cross-correlation functions, and the Gaussian was fit to
a 200 pixel region around the peak rather than the standard 100 pixels. In other orders, a small a-physical secondary peak in the final results appeared, and was removed from the Gaussian fit for the final radial velocity
for that order.
After visual inspection, the most consistent orders –
both within the match between the two stars, and between the two standards – were combined into a weighted
mean and weighted standard deviation. For all stars,
the results of orders 39-44, collectively covering 0.77µm
– 0.89µm – were deemed sufficiently reliable (despite the
presence of telluric water features) to be used in the final
result.
6. COMPUTING KINEMATIC PROBABILITIES IN NEARBY
YOUNG MOVING GROUPS
Among the 152 brown dwarfs investigated for kinematic membership in this work, we report 37 new radial
velocities, 8 new parallaxes, and 33 new proper motions
Brown Dwarf Analogs to Exoplanets
(13 of which are reported as new from 2MASS to WISE
proper motion measurements). In total 27 targets have
full kinematics (a parallax, proper motion and radial velocity), and the remaining 123 have only partial kinematics – 16 have a parallax and proper motion but no
radial velocity, 26 have radial velocity and proper motion but no parallax, and 81 have proper motions but no
parallax or radial velocity measurement. All astrometric
information for this sample is listed in Table 10.
As discussed in Section 2, there are 51 objects classified
optically as γ and 80 with the equivalent infrared classification. There are also 27 objects classified optically
as β and 57 with the equivalent infrared classification.
Given the gravity indications, we regard each object as
a potentially young source and investigate membership
in a group within 100 pc of the Sun. To assess the likelihood of membership, we employed four different tools to
examine the available kinematic data:
• BANYAN-I Bayesian statistical calculator (Malo
et al. 2013) and its successor,
• BANYAN-II (Gagné et al. 2014d),
7
Chamaeleon near, Octans, Hyades) but are only considered tentative until further kinematic investigation.
Furthermore, the output of each code should be viewed
slightly differently. In Malo et al. (2013), the authors
adopt a membership probability threshold of 90% to recover bona fide members. Banyan II supplements with a
contamination probability and finds this number should
be < a few percent with a high membership probability
(we impose > 90% based on Banyan I) in order to recover
bona fide members (Gagné et al. 2014d). LACEwING (as
described in Riedel 2015) finds < 20% - 60% is low probability and > 60% is high probability for group membership. Convergent point reports distinct probabilities for
each group between 0 - 100% (hence objects can have >
90% probability of membership in more than one group).
As with Banyan I, we impose > 90% as a high probability
threshold for membership on convergent point as well.
In assessing the membership probability, we found four
different categories for describing an object:
• Non-member, NM: An object that is kinematically
eliminated from falling into a nearby group regardless of future astrometric measurements
• LACEwING (Riedel 2015), and
• Convergent point method of Rodriguez et al.
(2013).
The plurality of measurements in combination with a
visual inspection of an objects kinematics against bona
fide members listed in (Malo et al. 2013) along with the
individual kinematic boxes of Zuckerman & Song (2004)
drove our decision on group membership.
The four different methods test for membership in different sets of groups - LACEwING considers 14 distinct
groups, BANYAN I and II consider 7 groups (or 8 including the “Old” object classification), and the convergence method tests for membership in 6 groups. Each
method has its benefits and flaws. For instance Banyan
I is a fast bayesian formalism that uses flat priors but
assumes (probably unrealistically) that radial velocity,
and proper motion in a given direction are Gaussian.
Banyan II deals better with transforming measurements
to probabilities based on the distribution of known members (does not assume a Gaussian distribution) however
it likely has incomplete/imperfect lists of bonafide members. LACEwING is similar to Banyan I in its assumption that radial velocity, and proper motion in a given
direction are Gaussian but it requires fitting a model to a
(arguably much cleaner list of) bonafide members of multiple groups not covered by the other methods. The convergent point method is a simple yet different approach
that estimates the probability of membership in a known
group by measuring the proper motions in directions parallel and perpendicular to the location of a given groups
convergent point. Unfortunately, this method does not
take into account measured radial velocities or distances.
Given the benefits and flaws of each method, we chose to
take the output of each into consideration as we decided
on membership for each target. For an adequate comparison, we only considered membership in six groups:
TW Hydrae, β Pictoris, Tucana Horologium, Columba,
Argus (which is not tested by the Convergence code),
and AB Doradus. All other groups could not be consistently checked. Therefore they may be mentioned (e.g.
• Ambiguous member, AM: An object that requires
updated astrometric precision because it could either belong to more than one group or it can not
be differentiated from the field
• High-likelihood member, HLM: An object that
does not have full kinematics but is regarded as
high confidence (> 90% in Banayan I, > 90% in
Banyan II with < 5% contamination, > 90% in
convergent point, > 60% in LACEwING) in three
of the four codes, and
• Bona fide member, BM: An object regarded as a
high-likelihood member with full kinematics (parallax, proper motion, radial velocity) demonstrating
that it is in line with known higher mass bona fide
members of nearby groups.
6.1. Full Kinematic Sample
For the 28 targets with full kinematics, we compute the
XYZ spatial positions and UVW velocities following the
formalism of Johnson & Soderblom (1987), which employs U/X in the direction of the Galactic center, providing a right-handed coordinate system. In general, the
resulting values are limited by the parallax precision. For
these 28 objects, visual inspection against the positions
and velocities of the bona fide members in each group (as
listed by Malo et al. 2013) gave an obvious and strong
indication of membership. We used the four other methods listed above as confirmation for the visual inspection. The XYZ spatial positions and UVW velocities for
systems with full kinematic information are given in Table 11. A visual example of the phase-space motions of
0045+1634, a new bona fide member of Argus, is shown
in Figure 2. Among the full kinematic sample, we found
11 objects stand out as bona fide members, 9 objects
are classified as ambiguous, and 8 are classified as nonmembers. The outcome of assessing the likelihood of
membership from each kinematic method is listed in Table 12.
8
Faherty et al.
6.2. Partial Kinematic Sample
Having only partial kinematics for 124 objects limits
our ability to definitively place these targets in a nearby
group. As stated above, the BANYAN I/II, Convergent
Point, and LACEwING methods use varying techniques
to yield membership probabilities. We list the outcomes
of assessing the likelihood of membership for each source
in Table 12. As can be seen from this tabulation, the
results varied across methods. In the case of an object
like 2322-6151, all methods yield a probability of membership in the Tucana Horologium moving group with
three of the 4 yielding > 90% membership. The most
difficult cases were objects like 1154-3400, where each
method yielded a moderate to high probability in a different group (Banyan I and Banyan II both predict Argus, LACEwING predicts TW Hydrae, and Convergent
point predicts Chameleon-near). Our approach to the
analysis was to be conservative with group membership
to eliminate assigning objects to groups that were uncertain. In all we concluded that there were 28 objects
to be regarded as high likelihood members (HLM) of a
known group, 83 objects that were ambiguous (AM), and
13 objects that were non-members (NM). Adding the
full kinematic sample the final tally is 28 high likelihood
members (HLM), 11 bona fide group members (BM), 92
ambiguous (AM), and 21 non-members (NM).
6.3. Comparison with Previous Works
Among the 152 brown dwarfs examined in this work,
11 are newly identified as low-gravity and 141 have been
previously discussed in the literature for membership in
a nearby moving group (e.g. Gagné et al. 2015b,c). Several of the objects – 2M0355, PSO318, 0047+6803, 17414642, 2154-1055, 0608-2753 – have been the subject of
single-object papers (Faherty et al. 2013, Liu et al. 2013,
Schneider et al. 2014, Gagné et al. 2014a,b, Rice et al.
2010). The remaining 129 objects were examined for
membership in a nearby group primarily by Gagné et al.
(2014d) – hereafter G14 – , and Gagné et al. 2015b –
hereafter G15 – using BANYAN II.
There are 69 objects from our sample included in G14,
73 objects in G15 and 6 in both. In G14, there is a hierarchical probability structure that categorizes potential members as: (1) Bona fide, (2) High probability, (3)
Moderate probability and, (4) Low Probability18 . That
structure is not used in G15, but replaced by noting the
probability of membership in a group (multiple groups if
deemed necessary) along with its contamination potential.
Of the 69 objects from our sample examined in G14,
three objects – 2M0355, 2M0123, and TWA 26 – were
declared bona fide members of AB Doradus, Tucana
Horologium, and TW Hydrae respectively. A further 29
objects were deemed high probability members of Argus
(2), AB Doradus (5), β Pictoris (4), Columba (4), and
Tucana Horologium (14). Ten objects were deemed modest probability members of AB Doradus (3), β Pictoris
(3), Columba (1), Argus (1), and Tucana Horologium
(2). Eight objects were deemed low probability members of Argus (1), AB Doradus (1), β Pictoris (4), and
18 See the G14 paper for a detailed description of how to interpret each probability category’
TW Hydrae (2). There were also 16 objects designated
as young field sources (aka “no group membership possible”) and 3 objects designated as peripheral members
or contaminants in a group.
In Table 12, we use our new kinematics and show the
predictions from BANYAN I, BANYAN II, LACEwING,
the convergent point and our plurality decision based on
reviewing the results from all four methods with updated
astrometric measurements for many of the sources. For
the G14 overlap, we agree with 2M0355, 2M0123, and
TWA 26 being considered bona fide members. Among
the high-likelihood sample from G14 we add a new radial velocity, parallax, and/or proper motion to 19 of
the 29 objects and confirm 11 objects as high-likelihood
members and demote 5 objects to ambiguous or nonmember. Our re-evaluation of the kinematics also leads
us to demote 3 objects to ambiguous members rather
than considering them high-likelihood sources in a given
group. Among the moderate and low probability objects
in G14, we add new kinematics to 8 objects and find 5
remain ambiguous and 3 are demoted to non-members.
Our re-evaluation of the kinematics finds that 15 of the
low or moderate probability sources are ambiguous therefore we can not say anything about membership. The
remaining 19 sources that were young field, periphery, or
contaminants in G14 are ambiguous or non-members in
our analysis.
For the 67 objects in G15, we add three new kinematic
points. One object is deemed high-likelihood while the
other 2 are ambiguous. Otherwise, our re-evaluation of
the kinematics leads us to classify 13 objects as highlikelihood members of groups while the remaining 54 are
ambiguous (52) or non-members (2).
In all, we find that when the Bayesian II analysis predictions find group members have a high-likelihood of
membership in a single group (> 99%) while yielding a
contamination probability of <1%, the various kinematic
methods are consistent in their predictions and we take
this to mean that the source is a reliable member.
7. DIVERSITY OF YOUNG BROWN DWARFS
Each one of these moving group members is a possible
benchmark for examining the evolutionary properties of
the brown dwarf and directly imaged exoplanet populations. In this section we evaluate the homogeneity and
diversity of the sample as a whole as well as the subsamples from each moving group.
7.1. Do Gravity Classifications Correspond With Age?
In total there are 51 optically classified γ objects (80
infrared classified equivalents) as well as 27 optically classified β objects ( 57 infrared equivalents). We confirm 20
(28) of the γ objects and 5 (7) of the β objects respectively as high confidence or bona fide members of moving
groups. There are an additional 19 (44) γ objects and
17 (41) β objects regarded as ambiguous members to a
known group, and 12 (10) γ objects and 5 (8) β objects
found to be non members. As stated in Section 2, γ
classified sources have spectral features indicating that
they are a lower surface gravity than the β classified objects. Furthermore, β classified sources are subtly but
distinctively different from the field sample, indicating
– as noted in Allers & Liu 2013 and Cruz et al. 2009–
that they are also younger but not to the extent of the γ
Brown Dwarf Analogs to Exoplanets
objects. The age calibrated sample allows us to test how
well gravity features trace the age of an object.
In Table 13, we list the new members of each group
as well as their optical and/or near-infrared spectral and
gravity classification. As stated in section 6.1, nine bona
fide objects have full kinematics. For the 28 sources missing a radial velocity or parallax but regarded as high
confidence members to a group, we list the kinematically
predicted radial velocity and/or parallax from BANYAN
II – checked to be consistent with LACEwING predictions – in parentheses in Table 13.
In TW Hydrae and β Pictoris, which are the two
youngest groups at ∼ 10 and ∼ 20 Myr respectively, there
are nine M7 or later objects, all of which have a gravity
classification of γ in both the infrared and optical. In
AB Doradus, the oldest association at ∼110 - 130 Myr,
there are eight sources with 4 optical γ (6 infrared) and
1 optical β (2 infrared) objects. Similarly, in Tucana
Horologium, where we have the most number of bona
fide or high-likelihood members, 20 M7 or later, there
are 9 optical γ (10 infrared) and 3 optical β (5 infrared)
objects.
Splitting the sample of BM/HLM objects into < 25
Myr (β Pictoris, TW Hydrae), ∼ 40 Myr (Tucana
Horologium, Columba, Argus), and > 100 Myr (AB Doradus) categories, and using the default spectral type
and gravity classes used in plots within this text, we find
there are (9 γ, 0 β) in < 25 Myr, (14 γ, 8 β) in ∼ 40
Myr, and (6γ, 2 β) in > 100 Myr associations. While
these are still small numbers, the lack of a correlation of
numbers of (γ, β) objects as a function of bin, indicates
that spectral features do not correspond one to one with
age. We note that there are 25 objects that have both an
infrared and optical spectral type and while 6 have differing gravity classifications, 19 are consistent with each
other affirming the diversity. Clearly, what have been
assigned as gravity sensitive features are influenced by
secondary parameters (see also discussions in Allers &
Liu 2013, Liu et al. 2013, G15).
7.2. Photometric Properties: What Do the Colors Tell
Us?
The majority of flux for a brown dwarf emerges in the
infrared. Interestingly, an enormous amount of diversity
among the population can be found by examining infrared colors alone (e.g. Kirkpatrick et al. 2008, Faherty
et al. 2009, 2013, Schmidt et al. 2010).
As quantified in Tables 15 - 16 and visualized in Figures 5 - 14, the scatter for “normal” sources is pronounced, especially among the mid- to late- L dwarfs.
Past works have attributed this to variations in effective
temperature, metallicity, age, or atmosphere conditions
(Faherty et al. 2013, Kirkpatrick et al. 2008, Patten et al.
2006, Knapp et al. 2004).
In Figures 5 - 14 we plot infrared color combinations
for the population. These can be used to examine trends
or lack thereof among the new age-calibrated sample.
The spread for “normal” objects (grey shaded area) in
Figures 5 - 14 was created by isolating sources without
peculiar spectral features (e.g. subdwarfs, low-gravity
objects, and unresolved binaries were eliminated), and
only keeping sources with photometric uncertainties in
the color shown < 0.2 mag. The list was gathered from
9
the dwarfarchives19 compendium and supplemented with
the large ultra cool dwarf surveys from Schmidt et al.
(2010), Mace et al. (2013), Kirkpatrick et al. (2011), and
West et al. (2008) (for M dwarfs).
For the low gravity sample, spectral types, as well as
gravity classifications, are from optical data unless only
infrared was available. We note that most sources plotted have spectral type uncertainties of 0.5. However, as
can be seen in Table 1, low-gravity sources can have up
to a 2 type difference in subtype, as well as differing
gravity indications between the optical and the infrared.
We investigated whether isolating the smaller samples
of optical only or infrared only yielded different trends
than this mixed sample, but found similar results in all
cases. Hence we default to optical classifications and
designations where available, as this is the wavelength
range where the original spectral typing schemes for this
expected temperature range were created.
Overplotted on the grey field sequences in Figures 5 14 are the individual γ or β low-gravity objects. We have
color coded each source by the group it has been assigned
or labeled it as “young field?” for those with ambiguous
or non conforming group kinematics. We have also given
the β and γ objects different symbols so their trends
could be highlighted. Tables 17 - 18 give the infrared
color of each source as well as its deviation from the
mean (see Tables 15 - 16) of normal objects in its spectral
subtype.
In general, the γ and β sources are systematically redder than the mean for their subtype with the deviation
from “normal” increasing with later spectral subtypes.
Objects are most deviant from normal in the (J-W 2)
color (Figure 8) where they are an average of 2σ (or
up to 1.85 mag) redder than the subtype mean value
across all types, and least deviant in the (J-H) color
(Figure 5) where they are an average of ∼ 0.7σ (or up
to 0.6 mag) redder than the subtype mean value across
all types. Typically, the γ sources mark the extreme red
photometric outliers for each subtype bin, although there
are a handful of extreme β sources (e.g. 0153-6744, an
infrared L3 β).
The difference in age between the oldest moving group
investigated and the average age for field sources is more
than ∼ 3 Gyr (field age references Burgasser et al. 2015,
Seifahrt et al. 2010, Faherty et al. 2009). As shown in
Figures 5 - 14, the difference in photometric properties
across this large age gap is distinct. We also investigated
the more subtle age difference changes to the photometric
properties across the 5 - 130 Myr sample. Isolating the
sources that are confidently associated with a moving
group, we conclude that there is no obvious correlation
between the extreme color of an object and the age of the
group. For example, 5-15 Myr TW Hydrae late-type M
and L dwarfs, 25 Myr β Pictoris spectral equivalents and
30 -50 Myr Tucana Horologium spectral equivalents have
similar photometric colors. The exceptions are TWA27A
and TWA28, which are 2-5σ redder than similar objects
in several colors. We note that Schneider et al. (2012a,b)
postulate that these sources may have disks hence their
surroundings may be contributing to the colors.
Comparing internally within the same moving group
(assumed to have the same age and metallicity) we find
19
http://www.dwarfarchives.org
10
Faherty et al.
that objects of the same spectral subtype show a large
diversity in their photometric colors. The best example
is at L0 where there are 5 Tucana Horologium members.
The objects have systematically redder colors, but they
are distributed between 1-4σ from the field mean indicating that since this is a coeval group, diversity must be
driven by yet another parameter. We note that depending on the exact formation mechanism, metallicity variations can not be completely outruled as also contributing
to the diversity among objects in the same group.
Plotted as grey symbols throughout Figures 5 - 14 are
objects that are kinematically ambiguous or unassociated
with any known group. Many of these sources, (such as
the L4γ 1615+4953 and the very oddly reddened M8γ
0435-1441 – see discussion in Allers & Liu 2013 and Cruz
et al. 2003), are among the reddest objects for their spectral bins and rival the associated kinematic members in
their spectral and photometric peculiarities. Conversely,
there are several β sources, such as the L2β 0510-1843,
that fall within the normal range in each color and are
only subtly spectrally different than field sources. Unfortunately, with no group association, we can not comment
on the likelihood of age differences driving the diversity.
It is likely that within this sample, there are objects in
moving groups not yet recognized, as well as sources that
are not young but mimic low surface gravity features due
to secondary parameters (e.g. atmosphere or metallicity
variations).
7.3. Flux Redistribution to Longer Wavelengths for
Younger Objects
As discussed in section 7.2 above, low surface gravity
brown dwarfs are systematically redder for their given
spectral types. Hence, one might expect that they would
not logically follow the absolute magnitude sequence of
field equivalents. Figures 15 - 20 show MJ through MW 3
versus spectral type for all low surface gravity sources
with parallaxes or, in a select few cases, with kinematic
distances. In Table 13 we mark the 25 sources for which
we lack a parallax but have assumed the kinematic distance to a moving group since the object was assessed
as a high-likelihood member. The grey area throughout
each figure is the polynomial relation for the field population at each band recalculated with all known brown
dwarfs with parallaxes. We list all new relations for both
field and low gravity objects used in or calculated for this
work in Table 19. Throughout Figures 15 - 20, individual low surface gravity objects are over plotted and color
coded by group membership and given a symbol representing their gravity designation. The lower portion of
each figure shows the deviation of each low-gravity source
from the mean absolute magnitude value of the spectral
subtype.
7.3.1. Trends with Spectral Type
Focusing on the objects associated with known groups,
there is a distinct difference between the behavior of
low-gravity late-type M dwarfs and L dwarfs. In Figure 15, which shows the MJ band trend, the TW Hydrae and Tucana Horologium late-type M’s are ∼ 2 magnitudes brighter than the field relations whereas the L
dwarfs are normal to ∼1 mag fainter than the field relations. Moving to longer wavelengths, the flux shifts. By
MW 3 , nearly all sources regardless of spectral type have
brighter absolute magnitudes than the field polynomial.
One plausible explanation for this redistribution of flux
is dust grains in the photosphere that absorb and reradiate at cooler temperatures (hence longer wavelengths).
Equally likely is the possibility that there exists thicker
clouds or that there are higher lying clouds in the atmospheres of these sources (e.g. Marocco et al. 2013,
Hiranaka et al. 2015, Faherty et al. 2013).
One main consequence of the young sources deviating from the field in some bands and not in others,
is that the polynomial relations that use spectral type
and photometry to obtain distances, are inappropriate
for low-surface gravity objects. At bluer near-infrared
bands, they would over estimate distances, whereas at
redder near-infrared bands they would under-estimate.
In Table 19 we have taken this into account and present
new spectrophotometric polynomials for suspected young
sources at J through W3 bands. As discussed in Filippazzo et al. (2015), the flux redistribution hinges around
K band. As a result, we recommend this spectral distance polynomial relation for suspected young sources.
7.3.2. Trends with Age
Overall, we find that there is a clear difference in the
behavior of the absolute magnitudes as a function of
spectral type for the > ∼ 3 Gyr field trends in each
band compared to the behavior of the low surface gravity sources. Narrowing in on the 5 - 130 Myr range and
comparing equivalent spectral type sources in differing
groups (such as the L7 sources in AB Doradus and β Pictoris or the Tucana Horologium late- M and L dwarfs)
we find that there is no obvious correlation with age and
absolute magnitude trend. In the case of PSO318 (∼ 25
Myr), 1119-1137, and 1147-2040 (∼ 5 -15 Myr) versus
0047+6803 (∼ 110-130 Myr) or TWA 27A (∼ 5-15 Myr)
versus 0123-6921 (∼30-50 Myr), the sources switch in
brightness depending on the band, but stay within 1σ of
each other from J (∼ 1.25µ m) through W2 (∼ 4.6µ m).
By MW 3 (∼ 11.56µ m), TWA 27 A is over 1 magnitude
brighter than 0123-6921 although this might be due to a
disk and not due to the source (Schneider et al. 2012a,b).
Regardless, it does not appear that the younger sources
show an extreme version of the overall trend indicating
that whatever causes the flux redistribution compared to
the field (> 3 Gyr sample) has a near equal impact from
∼5-15 Myr through ∼110-130 Myr.
7.3.3. Trends with Non-Group Members and Expanded
Explanations for Diversity
The sources with non-conforming group kinematics
(grey points) do not all trace the behavior of the bona
fide/high-likelihood members. For instance, all but 2 of
the γ or β “Young Field?” M7-L1 objects stay within
the polynomial for each band. Furthermore, all but one
of those are classified as β, which is the more subtly altered gravity type. Conversely, the L3 and L4 γ and β
sources move from within the field polynomial band to
being 1-2σ brighter than equivalent sources between MJ
and MW 3 .
There are several explanations for why a spectroscopically classified low gravity object looks normal in other
parameters. Photometric variability may contribute
slightly to their position on spectrophotometric diagrams
Brown Dwarf Analogs to Exoplanets
(e.g. Allers et al. 2016) but it is unlikely to contribute
in a significant way. As shown in works such as Radigan
et al. (2014), and Metchev et al. (2015), large amplitude
photometric variations (> 5%) among brown dwarfs are
rare. Alternatively, rotational velocity could contribute
in a substantial way because it influences global circulation on a given source which causes or disrupts cloud
patterns. In this same vein, the distribution of clouds
by latitude on a given object may not be homogeneous
in structure or grain size. Consequently, (as first proposed by Kirkpatrick et al. 2010) our viewing angle (e.g.
pole-on or equatorial on) would impact the spectral and
photometric appearance. Unfortunately, there is little
information on the rotational velocity distribution of the
young brown dwarf sample so testing this parameter will
require additional data.
The simplest explanation is that sources falling within
“normal” absolute magnitude and luminosity plots with
non-conforming kinematics to any known group may not
be young. Aganze et al. (2016) showed this to be the
case for the d/sdM7 object GJ 660.1B that had a peculiar near infrared spectrum which hinted that it was
young. However this object was co-moving with a higher
mass, low-metallicity star refuting that suggestion. In
the case of GJ 660.1 B, a low-metallicity likely helped
to mimic certain spectral features of youth. In lieu of
the fact that there may be some older contaminants in
the sample, we present all new relations in Table 19 to
be inclusive of all objects in this work with parallaxes as
well as only objects that are considered bonafide or high
likely members of groups.
7.4. Color Magnitude Trends for Young Brown Dwarfs
Color magnitude diagrams have been discussed at
length in the literature as a diagnostic of temperature,
gravity, metallicity, and atmosphere properties of the
brown dwarf population (e.g. Liu et al. 2013, Faherty
et al. 2012, 2013, Filippazzo et al. 2015, G15, Dupuy
& Liu 2012, Patten et al. 2006). Figures 21 - 31 show
the full suite of infrared color magnitude diagrams using JHK (2MASS) and W1W2 (WISE) photometry for
the field parallax sample omitting binaries, subdwarfs,
spectrally peculiar sources and those with absolute magnitude uncertainties > 0.5 in any band. On each plot
we color code objects by spectral ranges of < M9, L0-L4,
L5-L9, T0-T4, and >T5 and we highlight the low surface
gravity objects by their gravity classification. The latest
type sources in our sample are labeled on each plot. On
select plots, we have also labeled the M dwarf members
of β Pictoris and TW Hydrae.
For completeness of the discussion, we have included
the one confirmed isolated T dwarf member of a moving group in the analysis (SDSS1110, T5.5, Gagné et al.
2015a) as well as the L7 wide companion VHS 1256 B
(Gauza et al. 2015). While the latest-type L dwarfs push
the elbow of the L/T transition to an extreme red/faint
color/magnitude, SDSS 1110 falls near spectral equivalents on all color magnitude diagrams. As discussed in
Gagné et al. 2015c and Filippazzo et al. 2015, this source
appears ∼150 K cooler than equivalents but does not
exhibit the extreme color-magnitude properties as seen
with the L dwarfs.
Looking at a given absolute magnitude across all plots
and comparing field objects to low surface gravity ob-
11
jects, we find that the latter can be more than a 1 magnitude redder. The most extreme behavior can be seen
on Figures 24 and 25 which exploits the largest wavelength difference in color (J − W 2) and as discussed in
section 7.2 is where the low-gravity objects are the most
extreme photometric outliers.
As was discussed in section 7.3, there is a distinct difference in the diversity of absolute magnitudes between
young M dwarfs and L dwarfs. Using the color coding
as a visual queue in Figures 21 - 31, the M dwarfs fall
redder than the field sequence but they also scatter to
brighter magnitudes. For the W2 color difference plots
(e.g. MJHK vs (J-W 2), (H-W 2), or (K-W 2)), we label the position of the M dwarfs in TW Hydrae and β
Pictoris as they are strikingly red and bright at these
wavelengths and well separated from the field population.
Comparatively, the L dwarfs flip in their behavior and
can be seen as redder but fainter than field sources.
Focusing on Figures 21 - 22, and 26 which use JHK
photometry only, the latest type sources (e.g. PSO318,
0047+6803, 2244+2043, 1119-1137, 1147-2040) are not
only redder but they also drive the elbow of the L/T
transition ∼ 1 magnitude fainter than the field (notably
in MJ ). Moving to longer wavelengths, this behavior
reverses. By Figures that evaluate colors against MW 1
(∼ 3.4µ m) or MW 2 (e.g. Figure 23 or 28) the latest
type sources are consistent with or slightly brighter than
the elbow. Hence as discussed in section 7.3 and Filippazzo et al. (2015), the flux redistribution of young L
dwarfs seems to hinge very close to the K band. Indeed
the color magnitude diagram that appears to smoothly
and monotonically transition objects from late- M to T
dwarfs is the MK vs (K-W 2) plot in Figure 30. There
is a 10 magnitude difference between the warmest to the
coolest objects and the magnitude seems to monotonically decrease with reddening color showing only a hint
of an L/T transition elbow at MK =13/MW 2 =12. On
this plot, the low-surface gravity sequence lies ∼ 1 magnitude brighter than the field with the exception of a
small fraction of the sample appearing normal (including the AB Doradus T dwarf SDSS1110).
The L/T transition induces a turning elbow on most
color magnitude plots. This feature is brought on when
the clouds dissipate as one moves from warmer L dwarfs
to cooler T dwarfs and CH4 begins to dominate as an
opacity source all conspiring to drive the source colors
blueward. The demonstration that these young sources
are redder and fainter than the field sequence in the nearinfrared indicates that the clouds must persist through
lower temperatures (fainter) and represent an extreme
version of the conditions present for field age equivalents
(redder). The brightening of sources at W1 and W2 at
extreme red colors likely holds clues to the composition
and structure of the clouds as it is a reflection of the
flux redistribution to longer wavelengths as discussed in
section 7.3 above.
For colors and magnitudes evaluated across JH or K
and W1 or W2 (e.g. Figure 27 which shows MH vs HW1), the latest type objects pull the low-gravity sequence
redder than the field while maintaining a small spread in
absolute magnitude from 0103+1935 through PSO318.
Interestingly this indicates similarities in these sources
not readily apparent in current spectral data.
12
Faherty et al.
Lastly, on Figures 21 - 31 we have given γ and β classified sources different symbols to investigate whether
trends between the two could be identified. Throughout,
there is a hint that the sequence of γ classified objects is
redder than that of the β sources. This is most prominent
on Figures 23 - 24 where only four β L dwarfs rival γ
sources in color and/or magnitude. On other figures such
as 21, there appears to be more mixing between the two
gravity classifications. As has been stated throughout
this work, spectral type and the corresponding gravity
classification are difficult to evaluate and can differ between optical and infrared spectra or from low resolution
to medium resolution data. The data as viewed in this
work, seems to indicate that the γ classified sources are
distinct on color magnitude diagrams from the β classified sources with some mixing likely due to a non-uniform
spectral typing methodology.
7.5. The Bolometric Luminosities and Effective
Temperatures of Young Objects
One expects that younger brown dwarfs should have inflated radii compared to equivalent temperature sources
given that they are still contracting. Consequently, one
would expect that γ and β objects would be overluminous when compared to their field age equivalents. A
rough estimate using the Burrows et al. (2001) evolutionary models indicates that 10 Myr (50 Myr) objects with
masses ranging from 10 to 75 MJup have radii that are
25% to 75% (13% to 50%) larger than 1 -3 Gyr dwarfs
with equivalent temperatures. Since Lbol scales as R2 ,
one might expect that this age difference translates into
younger objects being 1.5x - 3.0x (1.3x - 2.3x) overluminous compared to the field.
Initially, studies categorized low surface gravity brown
dwarfs as “underluminous” compared to field sources
based on examining near-infrared absolute magnitude
trends alone (e.g. Faherty et al. 2012). However as discussed in section 7.3, flux shifts to longer wavelengths beyond the H and K bands at lower gravities, so that some
absolute magnitude bands might be fainter but Lbol ’s
are not underluminous compared to the field (Faherty
et al. 2013, Filippazzo et al. 2015). In fact, Filippazzo
et al. (2015) carefully evaluated Lbol values for all brown
dwarfs with parallaxes (or kinematic distances in the case
of high likelihood moving group members) and presented
up to date relations between observables and calculated
Lbol s. In that work, β and γ objects were found to split
along the M/L transition whereby M dwarfs were overluminous and L dwarfs were within to slightly below the
sequence when compared to field objects.
To investigate Lbol trends among the age calibrated
sample, we first calculate values for sources reported
here-in using the technique described in Filippazzo et al.
(2015). In that work, the authors integrate under
the combined optical and near-infrared photometry and
spectra as well as the WISE photometry and mid infrared
spectra where available. As described in previous sections, we use parallaxes where available but supplement
with kinematic distances when a source was regarded as
a high likelihood member to a group (see values in parentheses in Tables 13 and 10). All Lbol , Tef f , and Mass
values are listed in Table 14 as well as Table 13 for
members only.
Figure 32 shows Lbol as a function of spectral type for
all objects compared to the field polynomial from Filippazzo et al. (2015). Also overplotted is the polynomial
fit for objects in groups (labeled as GRP in Table 19).
We highlight bona fide and high-likelihood brown dwarf
moving group members as well as the unassociated γ and
β objects with differing symbols and colors.
Focusing on the age calibrated sample, we find that
late-type M dwarfs assigned to groups are overluminous
compared to the field. The L dwarfs assigned to a
group are mixed, with the majority falling within the
field polynomial relations and a small number falling
slightly above. Comparing group-to-group differences,
the 5-15 Myr TW Hydrae M8 and M9 objects are ∼5x
more luminous than the field while the 30-50 Myr Tucana
Horologium source is ∼2x more luminous. Interestingly,
the TW Hydrae, β Pictoris, and AB Doradus L7’s have
near equal Lbol values, all near the mean value for their
subtype.
Comparing the γ and β gravity sources without membership to the field and high-likelihood group members,
we find that – with the exception of the M7.5 0335+2342
which is highly suspect to be a β Pictoris member (see
note in Table 13) – all non-members fall within the polynomial relations for the field. This trend indicates that
the late- M non-member γ and β sources may not be
young (see discussion in subsection 7.3.3 and section 7.6).
Indeed, 1022+0200 is a late-M non-member with full
kinematics. When we compare the UV velocity of this
source to that of the Eggen & Iben (1989) criterion for
young stars, we find it falls outside of it hinting that it
may be drawn from the older disk population. It remains
unclear how to interpret the non-member L dwarfs as this
trend is in line with group assigned equivalents.
The result of Lbol ’s for γ and β gravity L dwarfs looking
like field sources or in some cases underluminous, implies
that they are cooler than their field spectral equivalents.
In other words, low-gravity or atmospheric conditions
potentially induced at a younger age, mimic spectral features of a warmer object. As young sources are typed on
a scheme anchored by field objects, they are incorrectly
grouped with warmer sources. They certainly stand out
in photometric, spectroscopic, and band by band absolute magnitude comparisons with field sources (e.g. all
of section 7). However the low gravity sequence does
not logically or easily follow off of the field sequence.
Figure 33 shows the Tef f values for γ and β sources calculated using the method described in Filippazzo et al.
(2015) along with the polynomial and residuals for field
objects (from Filippazzo et al. 2015) and group members
(from Table 19). As noted in Filippazzo et al. (2015) –
with the exception of a few – while M dwarfs are similar if not warmer for their given spectral subtype, the
L dwarfs are up to 100-300K cooler. Examining the 5130 Myr age calibrated objects within this sample, we
can not isolate a trend of younger objects being increasingly cooler than older equivalent sources. For example, PSO318 and 0047+6803 are equivalent temperatures
even though there is a ∼100 Myr difference in age.
7.6. Unmatched objects with Signatures of Youth
Among the 152 objects in this sample with reported
spectral signatures of youth in either the optical or the
near-infrared, we confidently find that 39 (∼25%) are
high-likelihood or bona fide members of nearby mov-
Brown Dwarf Analogs to Exoplanets
ing groups. There are 92 (∼61%) dubbed ambiguous
either because their kinematics overlap with more than
one group (including the old field) and they need better
astrometric measurements to differentiate, or there is not
strong enough evidence with the current astrometry to
definitively call it high-likelihood or bona fide. There are
21 objects (∼ 14%) for which we have enough information
to declare them as non-members to any known group assessed in this work. Among the non-members, there are 4
optically classified (3 infrared classified) M dwarfs and 15
optically classified (17 infrared classified) L dwarfs with
12 optically (10 infrared) classified γ objects and 5 optically (8 infrared) classified β objects. Several of these
objects have extreme infrared colors (see Figures 5 - 14).
For instance, 1615+4953 is classified in the optical as an
L4γ and rivals the most exciting late-type objects in its
deviant infrared colors. However, current kinematics do
not show a high probability of membership in any group
despite its having a proper motion and radial velocity.
Similarly, 0435-1441 is strikingly red in JHK, shows
both optical and infrared signatures of youth, and its
spectrum needs to be de-reddened (E(B-V)=1.8). While
it is in the direction of the nearby star-forming region
MBM 20, the distance noted for that cluster (112 - 161
pc) would drive unrealistic absolute magnitudes and Lbol
values for this source.
The current census of young, but, unassociated late- M
and L dwarfs is similar to what has emerged in studies
of early M dwarfs with multiple signatures of youth (e.g.
X-ray, UV and IR-excess, Lithium). A significant portion of objects in the studies of Rodriguez et al. (2013)
and Shkolnik et al. (2011, 2012) are strong candidates
for being 5 -130 Myr objects via their spectral and photometric properties but their kinematics are inconclusive
and their age cannot be determined by a group assignment. Likely, there are a number of groups waiting to
be uncovered that may account for this overabundance of
young, low mass objects. Alternatively, after 5 - 130 Myr
sources have been dynamically moved from their origins
such that tracing back their history to any collection of
objects is beyond our capability.
8. COMPARISONS WITH DIRECTLY IMAGED
EXOPLANETS
Several of the objects discussed herein are in the same
moving groups as directly imaged exoplanets or planetary mass companions. For example, there are two bona
fide or high-likelihood brown dwarfs in the β Pictoris
moving group, home to the 11-13 Jupiter mass planet
β Pictoris b and the newly discovered 2 - 3 Jupiter
mass planet 51 Eri b (Bonnefoy et al. 2013, 2014, Males
et al. 2014, Macintosh et al. 2015), 20 in the Tucana
Horologium association which houses the 10 - 14 MJup
planetary mass companion AB Pictoris b (Chauvin et al.
2005, Bonnefoy et al. 2010) as well as the 12 - 15 MJup
planetary mass companion 2M0219 b (Artigau et al.
2015), and seven in the TW Hydrae Association which
is the home of the 3 - 7 MJup planetary mass companion
2M1207 b (Chauvin et al. 2004, Patience et al. 2012).
As such, the brown dwarfs discussed herein should be
considered siblings of the directly imaged planets as one
can assume that they are co-eval, and share formation
conditions and dynamical histories. The mode of formation for the brown dwarfs versus the directly imaged
13
exoplanets remains a question but will likely drive distinct differences in the observables of each population.
In this section, we look to place the young brown dwarf
sample in context with related exoplanet members.
8.1. Similarities of Brown Dwarfs and Imaged
Exoplanets on Color Magnitude Diagrams
Young isolated brown dwarfs are far easier to accumulate data on than directly imaged exoplanet equivalents
because they do not have a bright star to block when
observing. The collection of currently known giant exoplanets, generally have only infrared (J, H, K, L0 , M 0 )
photometric measurements. Near-infrared spectroscopy
is possible for some although this requires considerable
telescope time and advanced instrumentation (e.g. Oppenheimer et al. 2013, Macintosh et al. 2015, Hinkley
et al. 2015, Bonnefoy et al. 2013, Patience et al. 2012).
Figures 35 - 41 show a full suite of near-infrared color
magnitude diagrams with the same brown dwarf sample
as in Figures 21 - 31 however we now compliment each
with directly imaged exoplanets and color code sources
by their respective moving groups. For L’ band photometry of the brown dwarfs, we have used the small sample of MLT sources with measured MKO L’ – primarily
from Golimowski et al. (2004) – to convert the WISE
W1 band photometry which has comparable wavelength
coverage. The polynomial relation used for converting
between bands is listed in Table 19.
As with the young brown dwarfs discussed herein, an
observable feature of note for the exoplanets is that they
are redder and fainter than the field brown dwarf population in near-infrared color magnitude diagrams. This
is exemplified by the positions of HR8799 b and 2M1207
b both of which sit ∼ 1 mag below the L dwarf sequence
in Figures 35 36, and 37. To explain their position on
near-infrared color magnitude diagrams, several authors
have proposed thick or high-lying photospheric clouds in
their atmospheres (Bowler et al. 2010b, Madhusudhan
et al. 2011, Hinz et al. 2010, Marley et al. 2012, Skemer
et al. 2012, Currie et al. 2011). An alternative theory proposed by Tremblin et al. (2016) has recently emerged that
proposes cloudless atmospheres with thermo-chemical instabilities may invoke some of the features seen here-in.
Further investigation of those models is required before
we can appropriately comment on how well they may
reproduce the large sample presented in this work.
The young brown dwarf sequence in many ways mirrors
that of the directly imaged exoplanets but for warmer
(or older) objects. From the warmest (at M7) to the
coolest (at L7) the low-gravity brown dwarfs are redder
and fainter than their field counterparts. As can be seen
on each Figure, the low-gravity sequence appears to logically extend through many of the directly imaged exoplanets. Interestingly, the youngest exoplanets (those in
Taurus, Upper Scorpius, and ρ Ophiuchus; Kraus et al.
2014, Currie et al. 2014) are redder than either the field
or the low-gravity sequences indicating that – assuming
formation differences do not drastically alter the available compositions – the atmosphere or gravity effects are
most pronounced close to formation.
By color combinations using L’ band, the youngest
planetary mass objects such as ROXs12 b, DH Tau b,
and GQ Lup b are nearly 2 magnitudes redder and >
2 magnitudes brighter than the field sequence. Con-
14
Faherty et al.
versely, the lowest temperature planets around HR8799
fall within or close to the T dwarf sequence. The exception is HR8799 b which has a singificantly redder (J-L)
color than the field sequence as well as the young brown
dwarf sequence. It is also ∼ 2 magnitudes fainter in ML
than the low-gravity sequence which extends redward in
Figure 38 with minimal scatter in ML . Skemer et al.
(2012) have noted that the 3.3µm photometry (not plotted) for the HR8799 planets is brighter than predicted
by evolutionary or atmosphere models. As in Barman
et al. (2011a), Skemer et al. (2012) use thick cloudy nonequilibrium chemistry models and remove CH4 to fit the
data. Similarly, none of the isolated late-type L dwarfs
labeled on Figures 35 - 41 have CH4 in their near infrared
spectra even though 1119-1137, 1147-2040, PSO318 and
0047+6803 have calculated Tef f s which should allow for
detectable CH4 . Interestingly only the planetary mass
companion 2M1207 b rivals the far reaching red sequence
of the young brown dwarfs, yet that source is lacking an
L’ or equivalent band detection. Hence at this point the
late-type young brown dwarf sequence prevails over the
exoplanet sequence in their extreme L’ colors even as the
earliest type youngest planetary mass sources prevail at
slightly bluer magnitudes.
The latest-type low-gravity brown dwarfs, and the
known directly imaged exoplanets push the L/T transition to cooler temperatures and redder colors. Interestingly we have two sets of objects in the same group that
span either side of the famed L/T transition. 0047+6803
(Tef f =1227± 30 K, Mass= 9 - 15 MJup ) and SDSS1110
(Tef f = 926 ± 18, Mass= 7 - 11 MJup ) are both in the
∼110 - 130 Myr AB Doradus moving group. PSO318
(Tef f = 1210 ± 41, Mass= 5 - 9 MJup ) and 51 Eri b
(Tef f = 675 ± 75, Mass= 2 - 12MJup ) are both in the ∼
25 Myr β Pictoris moving group. The two sets differ by
∼100 Myr in age. Comparing 0047+6803 to PSO318 we
find they have similar spectral types, have Tef f within
1σ but may differ in mass by up to ∼10 MJup . Both
push the L/T transition redder on multiple color magnitude diagrams in Figures 21 - 31 and Figures 35 - 41.
Overall PSO318 and 0047+6803 have similar absolute
magnitudes (see Figures 15 - 20) although PSO318 can
be significantly redder in specific colors. 51 Eri b and
SDSS1110 are thought to have similar spectral types but
differ in mass and Tef f by as much as 344 K and 5 MJup
respectively. Interestingly, 51 Eri b is ∼ 2 mag fainter in
MJHL than SDSS 1110. Comparing its position on Figures 35, 38 and 40, 51 Eri b appears much more like the
T8 Ross 458 C thought to be 150 - 800 Myr (Burgasser
et al. 2010b). Regardless for both groups we see that by
the time we have reached the mid to late-T dwarf phase,
sources are back on or very close to, the field sequence.
As cloud clearing is thought to happen at the L/T transition, we surmise this is further evidence that much of
the diversity seen among the young, warm exoplanet and
brown dwarf population is atmosphere related.
A note of caution when looking for similarities on color
magnitude diagrams between brown dwarfs and giant exoplanets comes in the way of comparing the newly discovered L7 companion VHS1256 B to HR8799 b. In Gauza
et al. (2015), the authors noted a similarity of this companion and the giant exoplanet. On Figure 37, the two
have enticingly similar near-infrared values. However,
Figure 42 shows the near-infrared spectrum of each ob-
ject as well as a field L7 to demonstrate strong differences
in H-band. Clearly there is some commonality between
the two sources, but color magnitude combinations alone
do not give a full enough picture to draw conclusions.
The directly imaged companion GJ 504 b is another
example of how we require multiple color magnitude diagram plots to begin exploring the potential characteristics of a single object (Kuzuhara et al. 2013). GJ 504 b
is nearly 1 magnitude redder than late-type T dwarfs in
MJHK vs (J-K) or (H-K) diagrams (Figures 37 and 39),
but it appears normal in MJH vs (J-H) plots (Figure 35).
Recent work by Fuhrmann & Chini (2015) suggest the
primary may not be young therefore this source may not
be planetary mass. Regardless it is a low mass T dwarf
orbiting at < 50 AU, potentially formed in a disk around
a nearby star hence it may be characteristically different
than equivalent temperature T dwarfs (see e.g. Skemer
et al. 2015).
8.1.1. Bolometric Luminosities
Comparing the bolometric luminosities (Lbol ) across
the sample of field objects, new bona fide or highlikelihood moving group members, and directly imaged
exoplanets allows us to investigate how the flux varies
across the sample. For the directly imaged exoplanets,
we use the Lbol values reported in the literature (see
Males et al. 2014, Bonnefoy et al. 2014, Currie et al.
2014).
As discussed in both section 7.5 and Filippazzo et al.
(2015), the young M dwarfs are overluminous for their
spectral type while the young L’s are normal to slightly
underluminous. Several authors have noted this peculiarity among the directly imaged exoplanets as well
(e.g. Bowler et al. 2013, Males et al. 2014). Examining the two populations together allows us to investigate
whether there is an obvious age-associated correlation
within the scatter. The youngest objects in Figure 43
are the directly imaged exoplanets such as ROXs 42B b,
and 1RXS1609 b which belong to star forming regions
at just a few Myr of age. These sources appear overluminous in comparison to equivalent sources regardless of
how late their spectral type (e.g. 1RXS1609b which is
thought to resemble an L4). The latest type planets that
have direct, comparable data – 2M1207 b, HR8799 b, 51
Eri b – are all ∼ 1 σ or more below the field sequence
indicating that they are either far cooler than the latest
L dwarfs or there is unaccounted flux in the bolometric
luminosity calculations. Interestingly, this appears to be
where the young brown dwarf and the directly imaged
exoplanet comparisons diverge. The latest type exoplanets in equivalent age groups to the isolated brown dwarfs,
are either far cooler than any currently discovered young
brown dwarf equivalent, or the physical conditions diverge (e.g. atmosphere conditions, chemistry, other).
8.1.2. Masses from combining Evolutionary Models with
LBol , and Age
In Figure 34, we combine the Lbol values with the ages
of the moving group members to estimate masses. In
Table 14 we also list masses calculated from the spectral energy distribution analysis as described in Filippazzo et al. (2015). Over-plotted on Figure 34 with the
young brown dwarfs are directly imaged planetary and
brown dwarf mass companions with Lbol values collected
Brown Dwarf Analogs to Exoplanets
from the literature. The models from Saumon & Marley (2008)(solid) and Baraffe et al. (2015) (dashed) are
shown with lines of equal mass color coded as stars (>
75 MJup , blue) brown dwarfs (> 13 MJup , green) and
planets (< 13 MJup , red).
It is unclear how each one of the objects in this sample
formed however, using the 13 MJup boundary as a mass
distinguisher between brown-dwarf and planet-type objects, we find that there are close to 9 solitary objects
with masses < 13 MJup . Several of those sources lie in an
ambiguous area where low mass brown dwarfs and planetary mass objects cross (30 - 130 Myr between masses
of 10 - 20 MJup ).
With the exception of Y type objects whose age is
still undetermined (e.g. W0855, Luhman 2014), 11191137, 1147-2040, and PSO318 are the lowest mass isolated sources categorized. PSO 318 has a lower luminosity than β Pictoris b, the 11 - 13 MJup planet in
the same association while 1119-1137 and 1147-2040 are
significantly more luminous than their sibling exoplanet
2M1207b. Interestingly, the AB Doradus equivalently
typed L7 member, 0047+6803, is higher mass than all
of these sources even though its bolometric luminosity is
comparable. Similarly, 0355+1133 which is in the same
group as 0047+6803, shares photometric anomalies with
PSO318 (near-infrared and mid infrared color) and spectral anomalies with 2M1207b yet it is much higher mass.
The overlap in masses of the directly imaged exoplanets and isolated brown dwarfs invites questions of formation given co-evolving groups. Whether the latter was
formed via star formation processes or ejected after planetary formation processes is yet to be seen and requires
further investigation.
9. CONCLUSIONS
In this work we investigate the kinematics and fundamental properties of a sample of 152 suspected young
brown dwarfs. We present near-infrared spectra and confirm low-surface gravity features for 43 of the objects
designating them either intermediate (β) or very low (γ)
gravity sources. We report 18 new parallaxes (10 field
objects for comparison and 8 low surface gravity), 19
new proper motions, and 38 new radial velocities and investigate the likelihood of membership in a nearby moving group. We use four kinematic membership codes (1)
BANYAN I, (2) BANYAN II, (3) LACEwING, and (4)
Convergent method, as well as a visual check of the available space motion for each target against known members
of well known nearby kinematic groups to determine the
likelihood of co-membership for our sources. We categorize objects as (1) bona fide –BM, (2) high-likelihood
–HLM, (2) ambiguous –AM, or (3) non-member –NM of
nearby moving groups. We find 39 sources are bona fide
or high-likelihood members of known associations (8 in
AB Doradus, 1 in Argus, 2 in β Pictoris, 1 in Columba,
7 in TW Hydrae, and 20 in Tucana Horologium). A further 92 objects have an ambiguous status and 21 objects
are not members of any known group evaluated in this
work.
Examining the distribution of gravity classifications
between different groups we find that the youngest association (TW Hydrae) has only very low-gravity (γ)
sources associated with it but slightly older groups such
as Tucana Horologium (9 optically classified, 10 infrared
15
classified γ objects and 3 optically classified, 5 infrared
classified β objects) and AB Doradus (4 optically classified, 6 infrared classified γ objects and 1 optically classified, 2 infrared classified β objects) show a mix of both
intermediate (β) and very low-gravity sources. This diversity is evidence that classically delegated gravity features in the spectra of brown dwarfs are influenced by
other parameters such as metallicity or (more likely) atmospheric conditions.
We investigate colors for the full sample across
the suite of MKO, 2MASS and WISE photometry
(J, H, Ks , W 1, W 2, W 3). In color versus spectral type
diagrams, we find that the γ and β classified objects are
distinct from the field (> 3 Gyr sources). They are most
deviant from the field sequence in the (J-W 2) color where
they are an average of 2σ redder than the subtype mean.
They are least deviant in the (J-H) color where they are
an average of 0.7σ redder than the subtype mean. Based
on the 5 -130 Myr age calibrated sample, we conclude
that the extent of deviation in infrared color is not indicative of the age of the source (meaning redder does
not translate to younger). In any given color a γ or a
β object – whether confirmed in a group or not – may
mark the extreme outlier for a given subtype. We find
that the L0 dwarfs in Tucana Horologium (expected to
have the same, Tef f , age and metallicity) deviate from
the field sequence of infrared colors by between 1 and 4 σ
(depending on the particular color examined). Assuming
clouds are the source of the diversity, we conclude that
there is a variation in cloud properties between otherwise
similar objects.
Examination of the absolute magnitudes for the parallax sample indicates a clear flux redistribution for lowand intermediate-gravity brown dwarfs (compared to
field brown dwarfs) from near-infrared to wavelengths
at (and longer than) the WISE W3 band. There is also
a clear correlation of this trend with spectral subtype.
The M dwarfs are 1-2σ brighter than field equivalents at
J band but 4-5σ brighter at W 3. The L dwarfs are 1-2σ
fainter at J band but 1-2σ brighter at W 3. Clouds, which
are a far more dominant opacity source for L dwarfs, are
likely the cause.
Sources that are not confirmed in groups do not all
trace the same behavior in absolute magnitude or color
indicating that some sources may not be young. Variations in atmospheric conditions or metallicity likely drive
the diversity.
On color-magnitude diagrams, the low-surface gravity
brown dwarfs pull the elbow of the field L/T transition
significantly redder and fainter with the most extreme
case being the MJ vs (J-W 2) plot where young objects
are up to 1 mag redder than the field sequence. Conversely, the MK versus (K-W 2) plot shows a 10 magnitude difference between the warmest and coolest brown
dwarfs yet seems to monotonically decrease in magnitude
with reddening color. On this figure there is little evidence for an L/T transition elbow and the young objects
form a secondary sequence that is ∼1 mag redder than
the field sequence. Interestingly as we move to longer
wavelengths the effect reverses and the latest type objects pull the elbow of the L/T transition back up as
they are equivalent or slightly brighter than field equivalents at MW 1,W 2 . Comparing the sequence of γ and β
classified sources on CMD’s compared to the field, we
16
Faherty et al.
find a hint that the two are distinct with the former redder than the latter. This trend is clearest on the MJ
versus (J-W 2) figure although there is still a small mix
of γ and β sources at extreme colors for a given absolute
magnitude.
Comparing the low-gravity sample with directly imaged exoplanets on color magnitude diagrams we find
that the former sequence logically extends through the
latest type planets on multiple color magnitude diagrams. The small collection of hot, planetary mass objects in star forming regions such as ρ Ophiuchus and
Taurus are strikingly red, bright, and luminous compared
to either the field sequence or the low-gravity objects indicating that the atmosphere and/or gravity effects that
drive the population diversity may be pronounced close
to formation. Comparing β Pictoris members 51 Eri b
(mid T dwarf) and PSO318 (late L dwarf) with AB Doradus members SDSS1110 (mid T dwarf) and 0047+6803
(late L dwarf) we find that even though the members differ by ∼ 100 Myr, the late-type L’s similarly push the elbow of the L/T transition redder and fainter whereas the
T dwarfs appear on or very close to the field sequence.
We surmise that this behavior, seen in two sets of objects at different ages across the L/T transition where
cloud clearing is thought to be significant, is evidence
that much of the diversity seen among young warm exoplanet and brown dwarfs is atmosphere related.
17
Brown Dwarf Analogs to Exoplanets
Number
12/9
14/6
#
γ/β
20
15
9/5
4/8
10
5/5
3/7
5
0
M7
6/3
5/1
2/3
L1 L3 L5
SpT (NIR)
15/4
15
Gravity
γ
β
8/7
#
γ/β
10
7/2
5/3
2/3
5
4/1
3/2
2/3
1/1
1/1
M9
20
Gravity
γ
β
17/9
Number
30
25
L7
0
M7
2/0
0/1
M9
L1 L3 L5
SpT (Opt)
L7
Figure 1. The distribution of objects analyzed in this work organized by spectral subtype and gravity classification in either the nearinfrared (left) or optical (right). For ease of labels in this work, we have chosen to label VL-G and INT-G objects classified using the Allers
& Liu (2013) spectral indices as γ and β respectively. On this plot we also show the number of γ and β at each subtype as a ratio of # γ
/ # β.
18
Faherty et al.
−10
V (km s−1)
−15
−20
AB Doradus
Tuc Hor
β Pictoris
Columba
Argus
TW Hya
−25
−30
−25
−20
−15
−10
U (km s−1)
−5
0
5
W (km s−1)
0
−5
−10
−15
−20
−25
−20
−15
−10
U (km s−1)
−5
0
5
W (km s−1)
0
−5
−10
−15
−20
−35
−30
−25
−20
V (km s−1)
−15
−10
Figure 2. The UVW properties of 0045+1634 (black filled triangle) compared to those of the members of the nearby young groups. Solid
rectangles surround the furthest extent of highly probable members from Torres et al. (2008) but their distribution does not necessarily fill
the entire rectangle.
Brown Dwarf Analogs to Exoplanets
Figure 3. The SpeX prism spectrum of 0055+0134 over-plotted with a sample of field and very low-gravity subtype equivalents.
19
20
Faherty et al.
Figure 4. The FIRE spectrum of 0421-6306 binned to prism resolution and over-plotted with a sample of field and very low-gravity
subtype equivalents.
21
Brown Dwarf Analogs to Exoplanets
1.8
1.6
J−H
1.4
AB Doradus
Tucana Horologium
β Pictoris
Columba and Carina
Argus
TW Hydrae
Young Field?
γ
β
1.2
1.0
0.8
0.6
0.4
M8
L0
L2
L4
Spectral Type
L6
L8
Figure 5. The distribution of J-H color as a function of spectral type. The black filled circle at each subtype is the mean value and the
grey filled area marks the standard deviation spread. The isolated sources that compose this “normal” sample have no spectral peculiarities
(e.g. subdwarfs, low-gravity, unresolved binarity), and were only included if they had a photometric uncertainty in each band < 0.2 mag.
The full list was gathered from the dwarfarchives compendium and supplemented with the large ultra cool dwarf surveys from Schmidt
et al. (2010), Mace et al. (2013), Kirkpatrick et al. (2011), and West et al. (2008) (for M dwarfs). Individual filled squares or five-point
stars are γ or β (respectively) classified objects. Spectral types, as well as gravity classifications, are from optical data unless only infrared
was available. We note that most sources plotted have spectral type uncertainties of 0.5. Objects are color coded by group assignments
(or lack-thereof) discussed in this work. 2MASS photometry is used for JHKs bands.
22
Faherty et al.
3.0
J−Ks
2.5
AB Doradus
Tucana Horologium
β Pictoris
Columba and Carina
Argus
TW Hydrae
Young Field?
γ
β
2.0
1.5
1.0
M8
L0
L2
L4
Spectral Type
L6
Figure 6. The distribution of J-Ks color as a function of spectral type. Symbols are as described in Figure 5.
L8
23
Brown Dwarf Analogs to Exoplanets
4.0
J−W1
3.5
3.0
AB Doradus
Tucana Horologium
β Pictoris
Columba
Argus
TW Hydrae
Young Field?
γ
β
2.5
2.0
1.5
1.0
M8
L0
L2
L4
Spectral Type
L6
Figure 7. The distribution of J-W1 color as a function of spectral type. Symbols are as described in Figure 5.
L8
24
Faherty et al.
5
J−W2
4
3
Young Field?
AB Doradus
Tucana Horologium
β Pictoris
Columba
Argus
TW Hydrae
γ
β
2
M8
L0
L2
L4
Spectral Type
L6
Figure 8. The distribution of J-W2 color as a function of spectral type. Symbols are as described in Figure 5.
L8
25
Brown Dwarf Analogs to Exoplanets
1.2
H−Ks
1.0
0.8
AB Doradus
Tucana Horologium
β Pictoris
Columba
Argus
TW Hydrae
Young Field?
γ
β
0.6
0.4
0.2
M8
L0
L2
L4
Spectral Type
L6
Figure 9. The distribution of H-Ks color as a function of spectral type. Symbols are as described in Figure 5.
L8
26
Faherty et al.
2.5
H−W1
2.0
1.5
AB Doradus
Tucana Horologium
β Pictoris
Columba
Argus
TW Hydrae
Young Field?
γ
β
1.0
0.5
M8
L0
L2
L4
Spectral Type
L6
Figure 10. The distribution of H-W1 color as a function of spectral type. Symbols are as described in Figure 5.
L8
27
Brown Dwarf Analogs to Exoplanets
3.0
H−W2
2.5
2.0
AB Doradus
Tucana Horologium
β Pictoris
Columba
Argus
TW Hydrae
Young Field?
γ
β
1.5
1.0
M8
L0
L2
L4
Spectral Type
L6
Figure 11. The distribution of H-W2 color as a function of spectral type. Symbols are as described in Figure 5.
L8
28
Faherty et al.
1.4
1.0
AB Doradus
Tucana Horologium
β Pictoris
Columba
Argus
TW Hydrae
Young Field?
0.8
γ
β
Ks−W1
1.2
0.6
0.4
0.2
M8
L0
L2
L4
Spectral Type
L6
Figure 12. The distribution of Ks -W1 color as a function of spectral type. Symbols are as described in Figure 5.
L8
29
Brown Dwarf Analogs to Exoplanets
Ks−W2
2.0
1.5
AB Doradus
Tucana Horologium
β Pictoris
Columba
Argus
TW Hydrae
Young Field?
γ
β
1.0
0.5
M8
L0
L2
L4
Spectral Type
L6
Figure 13. The distribution of Ks -W2 color as a function of spectral type. Symbols are as described in Figure 5.
L8
30
Faherty et al.
W1−W2
0.8
AB Doradus
Tucana Horologium
β Pictoris
Columba
Argus
TW Hydrae
Young Field?
γ
β
0.6
0.4
0.2
M8
L0
L2
L4
Spectral Type
L6
Figure 14. The distribution of W1-W2 color as a function of spectral type. Symbols are as described in Figure 5.
L8
31
Brown Dwarf Analogs to Exoplanets
9
AB Doradus
Tucana Horologium
Pictoris
Columba and Carina
Argus
TW Hydrae
Young Field?
MJ (2MASS)
10
11
12
13
14
15
16
Residuals
M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8
Spectral Type
2
1
0
−1
−2
M7
M8
M9
L0
L1
L2
L3
L4
Spectral Type
L5
L6
L7
L8
Figure 15. The spectral type versus MJ plot. The field polynomial listed in Table 19 is represented by the grey area. All JHK photometry
is from 2MASS. Over-plotted are objects in this work with measured parallaxes or estimated kinematic distances from high confidence
group membership. Symbols distinguish very low (γ) from intermediate (β) gravity sources. Objects are color coded by group membership.
For demonstration on the MJ plot only, we also overplot individual field objects (with MJer < 0.5) as black filled circles. Residuals of
individual γ and β objects against the field polynomial are shown in the lower panel.
32
Faherty et al.
8
AB Doradus
Tucana Horologium
Pictoris
Columba and Carina
Argus
TW Hydrae
Young Field?
MH (2MASS)
9
10
11
12
13
14
15
Residuals
M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8
Spectral Type
2
1
0
−1
−2
M7
M8
M9
L0
L1
L2
L3
L4
Spectral Type
L5
L6
L7
L8
Figure 16. The spectral type versus MH plot with residuals against polynomial relations (lower panel). Symbols are as described in
Figure 15.
33
Brown Dwarf Analogs to Exoplanets
AB Doradus
Tucana Horologium
Pictoris
Columba and Carina
Argus
TW Hydrae
Young Field?
8
MKs (2MASS)
9
10
11
12
13
14
Residuals
M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8
Spectral Type
2
1
0
−1
−2
M7
M8
M9
L0
L1
L2
L3
L4
Spectral Type
L5
L6
L7
L8
Figure 17. The spectral type versus MKs plot with residuals against polynomial relations (lower panel). Symbols are as described in
Figure 15.
34
Faherty et al.
AB Doradus
Tucana Horologium
Pictoris
Columba and Carina
Argus
TW Hydrae
Young Field?
MW1 (WISE)
8
9
10
11
12
Residuals
M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8
Spectral Type
2
1
0
−1
−2
M7
M8
M9
L0
L1
L2
L3
L4
Spectral Type
L5
L6
L7
L8
Figure 18. The spectral type versus MW 1 plot with residuals against polynomial relations (lower panel). Symbols are as described in
Figure 15.
Brown Dwarf Analogs to Exoplanets
35
36
Faherty et al.
7
AB Doradus
Tucana Horologium
Pictoris
Columba and Carina
Argus
TW Hydrae
Young Field?
MW2 (WISE)
8
9
10
11
12
Residuals
M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8
Spectral Type
3
2
1
0
−1
−2
M7
M8
M9
L0
L1
L2
L3
L4
Spectral Type
L5
L6
L7
L8
Figure 19. The spectral type versus MW 2 plot with residuals against polynomial relations (lower panel). Symbols are as described in
Figure 15.
37
Brown Dwarf Analogs to Exoplanets
5
AB Doradus
Tucana Horologium
Pictoris
Columba and Carina
Argus
TW Hydrae
Young Field?
6
MW3 (WISE)
7
8
9
10
Residuals
M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8
Spectral Type
4
3
2
1
0
−1
−2
M7
M8
M9
L0
L1
L2
L3
L4
Spectral Type
L5
L6
L7
L8
Figure 20. The spectral type versus MW 3 plot with residuals against polynomial relations (lower panel). Symbols are as described in
Figure 15.
12
10
0326
14
0355
1119
0047
2244
16
PSO318 1147
SDSS1110
12
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
0326 0355
1119
0047
14
2244 PSO318 1147
SDSS1110
16
VHS 1256 b
18
VHS 1256 b
18
MH (2MASS)
MJ (2MASS)
10
8
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
20
−0.5
0.0
0.5
1.0
(J − H) (2MASS)
1.5
2.0
−0.5
0.0
0.5
1.0
(J − H) (2MASS)
1.5
2.0
Figure 21. The (J-H) versus MJ (left) and MH (right) color magnitude diagram for late-type M through T dwarfs (Y dwarfs where
photometry is available). All JHK photometry is on the MKO system. Objects have been color coded by spectral subtype. Binaries,
subdwarfs, spectrally peculiar sources and those with absolute magnitude uncertainties > 0.5 have been omitted. Low-gravity objects are
highlighted as bold filled circles throughout. Objects of interest discussed in detail within the text have been labeled.
38
Faherty et al.
12
8
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
10
0326
14
0355
1147
0047
2244
16
SDSS1110
1119
PSO318
MK (2MASS)
MJ (2MASS)
10
−1
0
1
(J − K) (2MASS)
2
0326 0355
1147
12
2244
14
1119
PSO318
VHS 1256 b
16
SDSS1110
18
VHS 1256 b
18
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
3
−1
0
1
(J − K) (2MASS)
2
3
Figure 22. The (J-K) versus MJ (left) and MK (right) color magnitude diagram. Symbols are as described in Figure 21.
12
8
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
10
0326
SDSS1110
14
0355
0047
0103
16
MW1
MJ (2MASS)
10
1147
2244
1119
PSO318
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
0355
0326
1147
0047
12
SDSS1110
0103
2244 1119
PSO318
14
16
18
18
0
1
2
(J − W1)
3
4
0
1
2
(J − W1)
3
4
Figure 23. The (J-W 1) versus MJ (left) and MW 1 (right) color magnitude diagram. Symbols are as described in Figure 21.
39
Brown Dwarf Analogs to Exoplanets
TWA 26
MJ (2MASS)
10
TWA 27A
TWA 28
TWA 29
2M2000
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
12
0326
14
0355
2244 1119
0103
16
SDSS1110
0047 1147
PSO318
18
1
2
3
(J − W2)
4
Figure 24. The (J-W 2) versus MJ color magnitude diagram. Symbols are as described in Figure 21.
5
40
Faherty et al.
TWA 26 TWA 27A
MW2 (WISE)
8
TWA 28
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
TWA 29
2M2000
10
0326
0355
1147
1119
0047
2244 PSO318
12
0103
SDSS1110
14
1
2
3
(J − W2)
4
5
Figure 25. The (J-W 2) versus MW 2 (right) color magnitude diagram. Symbols are as described in Figure 21.
MH (2MASS)
10
12
8
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
10
0326
0355
1119
14
1147
16
SDSS1110
0047
2244
PSO318
VHS 1256 b
18
MK (2MASS)
8
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
0326
0355 1119
12
14
1147
0047 2244 PSO318
VHS 1256 b
16
SDSS1110
18
20
−0.5
0.0
0.5
(H − K) (2MASS)
1.0
1.5
−0.5
0.0
0.5
(H − K) (2MASS)
1.0
Figure 26. The (H-K) versus MH (left) and MK (right) color magnitude diagram. Symbols are as described in Figure 21.
1.5
41
Brown Dwarf Analogs to Exoplanets
10
MH (2MASS)
8
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
12
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
10
0326 0355
1147
14
0103
SDSS1110
1119
0047
2244 PSO318
MW1
8
0326 0355
1147 1119
12
0103
14
16
0047 2244
PSO318
SDSS1110
16
18
20
18
0.0
0.5
1.0
1.5
(H − W1)
2.0
2.5
0.0
0.5
1.0
1.5
(H − W1)
2.0
2.5
Figure 27. The (H-W1) versus MH (left) and MW 1 (right) color magnitude diagram. Symbols are as described in Figure 21.
MH (2MASS)
10
TWA 26 TWA 27A
TWA 28
TWA 29
2M2000
12
0326 0355
1147
1119
14
0047
2244
16
TWA 27A
TWA 26
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
PSO318
TWA 28
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
TWA 29
2M2000
8
MW2 (WISE)
8
0326 0355
1119
10
1147
0047 2244 PSO318
12
SDSS1110
18
SDSS1110
14
20
1
2
3
(H − W2)
4
5
1
2
3
(H − W2)
4
5
Figure 28. The (H-W 2) versus MH (left) and MW 2 (right) color magnitude diagram. Symbols are as described in Figure 21.
8
MK (2MASS)
0326 0355
1147
0103
14
16
PSO318
2244
1147 PSO318
12
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
0047 2244
0103
14
SDSS1110
16
18
0.0
0355
10
MW1 (WISE)
10
12
8
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
0.5
1.0
(K − W1)
1.5
2.0
18
0.0
SDSS1110
0.5
1.0
(K − W1)
1.5
2.0
Figure 29. The (K-W 1) versus MK (left) and MW 1 (right) color magnitude diagram. Symbols are as described in Figure 21.
42
Faherty et al.
43
Brown Dwarf Analogs to Exoplanets
TWA 26 TWA 27A
TWA 28
TWA 29
2M2000
MK (2MASS)
10
0355
0326
12
8
PSO318
2244
14
16
TWA 28
TWA 27A
TWA 29
2M2000
TWA 26
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
MW2 (WISE)
8
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
0355
0326
10
PSO318
0047
0103
12
2244
SDSS1110
18
SDSS1110
14
1
2
3
(K − W2)
4
5
1
2
3
(K − W2)
4
5
Figure 30. The (K-W 2) versus MK (left) and MW 2 (right) color magnitude diagram. Symbols are as described in Figure 21.
TWA 28
TWA 27A
TWA 29
22000
MW1 (WISE)
10
0355
0326
12
TWA 26
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
8
MW2 (WISE)
8
PSO318
2244
0047
0103
14
< M9
L0 - L4
L5 - L9
T0 - T4
>T5
"
!
TWA 28
TWA 27A
TWA 29
2M2000
0355
10
0326
PSO318
2244
0047
12
0103
SDSS1110
16
SDSS1110
14
18
0.5
1.0
(W1 − W2)
1.5
2.0
0.5
1.0
(W1 − W2)
1.5
2.0
Figure 31. The (W 1-W 2) versus MW 1 (left) and MW 2 (right) color magnitude diagram. Symbols are as described in Figure 21.
44
Faherty et al.
TWA28
−2.5
TWA26
AB Doradus
Tuc Hor
Pictoris
Columba
Argus
TW Hya
Young Field?
TWA29
log (Lbol/LSun)
−3.0
1207
−3.5
0714
0045
2206
2235
0355
PSO318 1119, 1147
−4.0
0047
0153
−4.5
−5.0
M6
1425
0326
Field
Low-G
M8
L0
2M2244
VHS1256 B
L2
L4
SpT
L6
L8
Figure 32. The spectral type versus bolometric luminosity plot. The field polynomial and residuals from Filippazzo et al. (2015) is
represented by the grey area. Over-plotted are objects in this work with measured parallaxes or estimated kinematic distances from high
confidence group membership. Lbol values were calculated as described in Filippazzo et al. (2015). Symbols distinguish very low (γ) from
intermediate (β) gravity sources. Objects are color coded by group membership.
45
Brown Dwarf Analogs to Exoplanets
3000
TWA28
AB Doradus
Tuc Hor
Pictoris
Columba
Argus
TW Hya
Young Field?
TWA26
TWA29
2500
Teff (K)
0045
2000
2235
0355
1500
0047
0153
1000
M6
PSO318
1119, 1147
1425 2206
0326
Field
Low-G
M8
L0
2244
VHS1256 B
L2
L4
SpT
Figure 33. The spectral type versus Tef f plot. Symbols are as described in Figure 32.
L6
L8
46
Faherty et al.
−2.5
−3.0
Lbol (Lsun)
−3.5
TWA 27"
TWA 28
0123
TWA 29
VHS 1256 A
0032
1207-39
AB Pic B
1RXS 1609 b
2M0219 b
PSO 318
1147, 1119
0355
2M0122 B
10 MJup
0047
−4.5
HR8799 d
2M1207 b
GU Psc b
HR8799 b
−5.0
2 MJup
𝜅 And B
β Pic b
−4.0
−5.5
6.5
CD 35-2722 b
51 Eri B
7.0
SDSS1110
7.5
log Age[yr]
8.0
LP261-75 B
HD203030 B
HN Peg B
VHS 1256 B
8.5
Figure 34. The age versus bolometric luminosity plot with model isochrone tracks at constant mass from Saumon & Marley (2008) (solid
lines) and Baraffe et al. (2015) (dashed lines). We have color coded <13 MJup tracks in red, 13 MJup < M < 75 MJup tracks in green
and > 75 MJup blue. Over-plotted are both the young brown dwarfs discussed in this work and directly imaged exoplanets with measured
quantities.
47
Brown Dwarf Analogs to Exoplanets
!
8
MJ (MKO)
10
AB Doradus"
β Pictoris"
Tucana Horologium"
Columba"
TW Hydrae"
< 8 Myr"
!"
!
USco1610-1913 b
2M0219A
GQ Lup b
DH Tau b
ROXs12 b
!
HD1160 B
PMC"
12
2M0219 B
β Pic b
14
16
HN Peg b
AB Pic B
2M0122 B
2M0355
PSO318
SDSS1110
GU Psc b
Ross 458 C
HR8799 cdb
51 Eri b
VHS 1256 B
2M1207 b
18
GJ 504 b
−1.0
−0.5
0.0
0.5
1.0
(J − H) (MKO)
1.5
2.0
Figure 35. The (J-H) versus MJ color magnitude diagram for brown dwarfs and directly imaged planetary mass companions. All
photometry is on the MKO system. For the brown dwarfs lacking MKO L’ photometry, WISE W1 mags were converted using a polynomial
listed in Table 19. Objects have been color coded by nearby moving group membership and those of interest discussed in detail within the
text have been labeled.
48
Faherty et al.
!
AB Doradus"
β Pictoris"
Tucana Horologium"
Columba"
TW Hydrae"
< 8 Myr"
8
10
!"
!
USco1610-1913 b
GQ Lup b
2M0219A
DH Tau b
ROXs12 b
HD1160 B
!
2M0219 B
MH (MKO)
PMC"
AB Pic B
12
β Pic b
2M0122 B
2M0355
HN Peg b
14
PSO318
GU Psc b
16
HR8799 cdb
SDSS1110
Ross 458 C
2M1207 b
VHS 1256 B
51 Eri b
18
GJ 504 b
20
−1.0
−0.5
0.0
0.5
1.0
(J − H) (MKO)
1.5
2.0
Figure 36. The (J-H) versus MH (right) color magnitude diagram for brown dwarfs and directly imaged planetary mass companions.
Symbols are as described in Figure 35.
!
MJ (MKO)
10
!
AB Doradus"
β Pictoris"
Tucana Horologium"
Columba"
TW Hydrae"
< 8 Myr"
!"
!
USco1610-1913 b
2M0219A
GQ Lup b
8
DH Tau b
ROXs12 b
!
10
HD1160 B
PMC"
12
2M0103 B
AB Pic B
β Pic b
HN Peg b
14
16
2M0122 B
2M0355
PSO318
SDSS1110
GU Psc b
Ross 458 C
−1
!"
!
2M1207 b
1
2
(J − K) (MKO)
3
GQ Lup b
DH Tau b
ROXs12 b
HD1160 B
2M0103 B
!
AB Pic B
2M0122 B
PMC"
2M0355
12
PSO318
HN Peg b
14
2M1207 b
HR8799 cdb
GU Psc b
16
GJ 504 b
0
AB Doradus"
USco1610-1913 b
β Pictoris"
Tucana Horologium"
Columba"
TW Hydrae"
< 8 Myr"
VHS 1256 B
SDSS1110
Ross 458 C
HR8799 cdb
VHS 1256 B
18
MK (MKO)
8
18
GJ 504 b
−1
0
1
2
(J − K) (MKO)
3
Figure 37. The (J-K) versus MJ (left) and MK (right) color magnitude diagram for brown dwarfs and directly imaged planetary mass
companions. Symbols are as described in Figure 35.
49
Brown Dwarf Analogs to Exoplanets
AB Doradus"
β Pictoris"
Tucana Horologium"
Columba"
TW Hydrae"
< 8 Myr"
GQ Lup b
DH Tau b
ROXs12 b
GSC6214-210 b
ROXs42B b
!"
!
MJ (MKO)
FU Tau b
2M0122 B
2M0355
14
W0047
SDSS1110
16
HR8799 cdb
2M2244
ROXs12 b
DH Tau b
ROXs42B b
GSC6214-210 b
FU Tau b
10
PSO318
12
2M2244
HR8799 cdb
SDSS1110
51 Eri b
1
2
GJ 504 b
16
GJ 504 b
3
(J − L) (MKO)
4
2M0355
W0047
14
PSO318
!
PMC"
2M0122 B
51 Eri b
18
!"
!
RXS1609 b
PMC"
RXS1609 b
12
GQ Lup b
8
!
AB Doradus"
β Pictoris"
Tucana Horologium"
Columba"
TW Hydrae"
< 8 Myr"
USco1610-1913 b
6
ML (MKO)
10
!
!
USco1610-1913 b
8
1
2
3
(J − L) (MKO)
4
Figure 38. The (J-L) versus MJ (left) and ML (right) color magnitude diagram for brown dwarfs and directly imaged planetary mass
companions. Symbols are as described in Figure 35.
!
MH (MKO)
10
!"
!
USco1610-1913 b
2M0219A
DH Tau b
ROXs12 b
8
FU Tau b
10
2M0219 B
β Pic b
!
PMC"
12
2M0355
2M0122 B
PSO318
HN Peg b
14
GU Psc b
HR8799 ecdb
2M1207 b
SDSS1110
16
MK (MKO)
8
!
AB Doradus"
β Pictoris"
Tucana Horologium"
Columba"
TW Hydrae"
< 8 Myr"
18
0.0
0.5
(H − K) (MKO)
1.0
β Pic b
!
2M0122 B
PMC"
2M0355
PSO318
12
HN Peg b
HR8799 ecdb
14
2M1207 b
GU Psc b
VHS 1256 B
SDSS1110
Ross 458 C
18
GJ 504 b
−0.5
!"
!
ROXs12 b
FU Tau b
2M0219 B
16
VHS 1256 B
Ross 458 C
20
−1.0
USco1610-1913 b
DH Tau b
2M0219A
AB Doradus"
β Pictoris"
Tucana Horologium"
Columba"
TW Hydrae"
< 8 Myr"
1.5
GJ 504 b
−0.5
0.0
0.5
(H − K) (MKO)
1.0
1.5
Figure 39. The (H-K) versus MH (left) and MK (right) color magnitude diagram for brown dwarfs and directly imaged planetary mass
companions. Symbols are as described in Figure 35.
!
USco1610-1913 b
AB Doradus"
β Pictoris"
Tucana Horologium"
Columba"
TW Hydrae"
< 8 Myr"
GQ Lup b
8
DH Tau b
ROXs12 b
10
!"
!
PSO318
2M2244
HR8799 ecdb
16
!"
!
10
!
PMC"
2M0122 B 2M0355
W0047
PSO318
2M2244
12
HR8799 ecd
HR8799 b
SDSS1110
SDSS1110
14
51 Eri b
51 Eri b
18
1.0
1.5
2.0
2.5
3.0
(H − L) (MKO)
3.5
GJ 504 b
16
GJ 504 b
20
0.5
DH Tau b
RXS1609 b
2M0122 B
2M0355
W0047
14
AB Doradus"
β Pictoris"
Tucana Horologium"
Columba"
TW Hydrae"
< 8 Myr"
GQ Lup b
ROXs12 b
!
PMC"
12
!
USco1610-1913 b
8
ML (MKO)
MH (MKO)
RXS1609 b
6
4.0
0.5
1.0
1.5
2.0
2.5
3.0
(H − L) (MKO)
3.5
4.0
Figure 40. The (H-L) versus MH (left) and ML (right) color magnitude diagram for brown dwarfs and directly imaged planetary mass
companions. Symbols are as described in Figure 35.
50
Faherty et al.
!
USco1610-1913 b
DH Tau b
ROXs12 b
GSC6214-210 b
MK (MKO)
10
RXS1609 b
!"
!
2M0355
W0047
12
PMC"
PSO318
2M2244
14
HR8799 ecdb
SDSS1110
16
!
USco1610-1913 b
AB Doradus"
β Pictoris"
Tucana Horologium"
Columba"
TW Hydrae"
< 8 Myr"
6
8
!
GSC6214-210 b
!"
!
RXS1609 b
10
!
PMC"
2M0355
W0047 PSO318
2M2244
SDSS1110
12
HR8799 ecdb
14
GJ 504 b
GJ 504 b
18
0
AB Doradus"
β Pictoris"
Tucana Horologium"
Columba"
TW Hydrae"
< 8 Myr"
GQ Lup b
ROXs12 b
ML (MKO)
GQ Lup b
8
16
1
2
(K − L) (MKO)
3
0.5
1.0
1.5
2.0
2.5
(K − L) (MKO)
3.0
3.5
Figure 41. The (K-L) versus MK (left) and ML (right) color magnitude diagram for brown dwarfs and directly imaged planetary mass
companions. Symbols are as described in Figure 35.
HR8799 b
VHS1256 B
Field L7
Normalized F
1.0
0.8
0.6
0.4
0.2
1.4
1.6
1.8
2.0
2.2
Wavelength (µm)
2.4
2.6
Figure 42. The near-infrared spectrum comparison of HR8799 b (black, from Oppenheimer et al. 2013, Barman et al. 2011a), VHS 1256
B (red, from Gauza et al. 2015), and a field L7 (Gagné et al. (2015b)).
51
Brown Dwarf Analogs to Exoplanets
AB Doradus
Tuc Hor
Pictoris
Columba
Argus
TW Hya
< 10 Myr?
Young Field?
Roxs 42 Bb
−3
CD 35-2722 B
log (Lbol/LSun)
1RXS1609 b
2M0219 b
−4
AB Pic b
β Pic b
HD203030 B
Gu Psc b
2M0122 B
SDSS1110
LP261-75 B
−5
2M1207 b
HR8799 db
Field
Low-G
HN Peg b
51 Eri b
Ross 458 C
−6
M6 M8 L0 L2 L4 L6 L8 T0 T2 T4 T6 T8
SpT
Figure 43. The spectral type versus bolometric luminosity plot for brown dwarfs and directly imaged planets. Lbol values and spectral
types for planets have been taken from the literature with the exception of HR8799bd and 2M1207b which we delegate as L8 objects to
represent their nature as late-type objects. Symbols are as in Figure 32.
––
L1 γ
––
––
M8 –
M9.5 β
L7 –
L0 γ
L4 β
––
L0 γ
––
––
L2 β
M9 β
L7 (γ?)
L2 γ
L0 –
L6 β
L1 β
––
M7.5 γ
L0 γ
L4 γ
M5 –
L0 γ
L2 –
L0 γ
M8 β
M9 β
L0 γ
M9 β
––
––
L0 γ
––
L0 γ
––
M6.5 –
M7 β
––
L2 γ
L0 –
L0 γ
L5 β
M8.5 –
M9 β
––
L4 γ
M8.5 –
L5 γ
L0 β
L0 γ
––
L5 β
M8 γ
00011217+1535355
00040288-6410358
00182834-6703130
00191296-6226005
00192626+4614078
00274197+0503417
00303013-1450333
00325584-4405058
003323.86-152130
00344300-4102266
00374306-5846229
00381489-6403529
00425923+1142104
00452143+1634446
00464841+0715177
00470038+6803543
00550564+0134365
00584253-0651239
01033203+1935361
01174748-3403258
01205114-5200349
01231125-6921379
01244599-5745379
01262109+1428057
01294256-0823580
01415823-4633574
01531463-6744181
02103857-3015313
02212859-6831400
02215494-5412054
02235464-5815067
02251947-5837295
02265658-5327032
02292794-0053282
02340093-6442068
02410564-5511466
02411151-0326587
02501167-0151295f
02530084+1652532d
02535980+3206373
02583123-1520536
03032042-7312300
03164512-2848521
03231002-4631237
03264225-2102057
03350208+2342356
03393521-3525440
03420931-2904317
03421621-6817321
03550477-1032415
03552337+1133437
03572695-4417305
04062677-3812102
04185879-4507413
04210718-6306022
04351455-1414468
(1)
SpT
OpT
(2)
2MASS Designation
L4 β
L1 γ a
L0 γ
L1 γ
M8 β
L0 β a
L4-L6 β
L0 β
L1
L1 β
––
M9.5 β
M9 β
L2 γ a
L0 δ
L6-L8 γ
L2 γ a
L1 β
L6 β
L1 β a
L1 γ
––
L0 γ a
L2 γ
M7 β
L0 γ
L3 β
L0 γ a
––
––
––
M9 γ a
L0 δ
L0 γ
L0β γ a
L1 γ
L1 γ
M7 β
M7 β d
M6 β
L3 β
––
L1 β
L0 γ a
L5 βγ a
M7.5 β
L0 β
L0 β
––
M8.5 β
L3-L6 γ
L0 β
L1 γ
L3 γ
L5 γ a
M7 γ a
SpT
IR
(3)
H
2MASS
(5)
14.505 ± 0.052
14.831 ± 0.073
14.48 ± 0.061
14.618 ± 0.054
11.940 ± 0.021
15.288 ± 0.099
15.273 ± 0.1
13.857 ± 0.032
14.208 ± 0.051
14.807 ± 0.064
14.259 ± 0.051
13.867 ± 0.045
14.074 ± 0.042
12.059 ± 0.034
13.178 ± 0.034
13.968 ± 0.041
15.270 ± 0.074
13.444 ± 0.028
14.897 ± 0.055
14.209 ± 0.038
14.66 ± 0.072
11.711 ± 0.024
15.059 ± 0.088
16.172 ± 0.218
10.085 ± 0.023
13.875 ± 0.024
15.109 ± 0.086
14.161 ± 0.044
13.275 ± 0.032
13.221 ± 0.031
14.003 ± 0.036
13.058 ± 0.025
14.346 ± 0.05
15.746 ± 0.099
14.442 ± 0.055
14.326 ± 0.052
14.811 ± 0.053
12.278 ± 0.021
7.883 ± 0.037
12.931 ± 0.020
14.866 ± 0.06
15.096 ± 0.085
13.772 ± 0.035
14.321 ± 0.061
14.793 ± 0.075
11.655 ± 0.020
10.017 ± 0.020
15.353 ± 0.106
15.386 ± 0.086
12.462 ± 0.024
12.530 ± 0.029
13.531 ± 0.025
15.711 ± 0.101
15.046 ± 0.074
14.284 ± 0.040
10.622 ± 0.027
J
2MASS
(4)
15.522 ± 0.061
15.786 ± 0.071
15.457 ± 0.057
15.64 ± 0.06
12.603 ± 0.017
16.189 ± 0.092
16.278 ± 0.111
14.776 ± 0.032
15.286 ± 0.056
15.707 ± 0.066
15.374 ± 0.050
14.523 ± 0.03
14.754 ± 0.036
13.059 ± 0.018
13.885 ± 0.026
15.604 ± 0.068
16.436 ± 0.114
14.311 ± 0.023
16.288 ± 0.079
15.178 ± 0.034
15.642 ± 0.071
12.320 ± 0.019
16.308 ± 0.104
17.108 ± 0.214
10.655 ± 0.021
14.832 ± 0.041
16.412 ± 0.134
15.066 ± 0.047
13.965 ± 0.033
13.902 ± 0.031
15.070 ± 0.048
13.738 ± 0.025
15.403 ± 0.044
16.490 ± 0.099
15.325 ± 0.062
15.387 ± 0.057
15.799 ± 0.064
12.886 ± 0.026
8.394 ± 0.021
13.616 ± 0.021
15.908 ± 0.072
16.137 ± 0.107
14.578 ± 0.039
15.389 ± 0.069
16.134 ± 0.093
12.250 ± 0.017
10.725 ± 0.018
15.918 ± 0.085
16.854 ± 0.138
13.08 ± 0.025
14.050 ± 0.020
14.367 ± 0.029
16.768 ± 0.126
16.163 ± 0.084
15.565 ± 0.048
11.879 ± 0.029
13.71 ± 0.043
14.010 ± 0.045
13.711 ± 0.039
13.957 ± 0.051
11.502 ± 0.011
14.960 ± 0.115
14.481 ± 0.1
13.270 ± 0.035
13.410 ± 0.039
14.084 ± 0.056
13.590 ± 0.044
13.395 ± 0.033
13.514 ± 0.027
11.370 ± 0.019
12.550 ± 0.025
13.053 ± 0.029
14.440 ± 0.068
12.904 ± 0.032
14.149 ± 0.058
13.490 ± 0.036
13.752 ± 0.053
11.323 ± 0.024
14.320 ± 0.088
15.280 ± 0.145
9.771 ± 0.023
13.100 ± 0.030
14.424 ± 0.103
13.500 ± 0.042
12.806 ± 0.037
12.670 ± 0.030
13.420 ± 0.042
12.560 ± 0.026
13.752 ± 0.045
15.182 ± 0.138
13.850 ± 0.069
13.739 ± 0.038
14.040 ± 0.049
11.909 ± 0.017
7.585 ± 0.043
12.550 ± 0.023
14.192 ± 0.055
14.320 ± 0.084
13.114 ± 0.035
13.700 ± 0.050
13.920 ± 0.065
11.261 ± 0.014
9.550 ± 0.021
14.378 ± 0.085
14.541 ± 0.089
11.975 ± 0.023
11.530 ± 0.019
12.910 ± 0.026
15.110 ± 0.116
14.595 ± 0.088
13.450 ± 0.042
9.951 ± 0.021
K
2MASS
(6)
12.938 ± 0.023
13.370 ± 0.025
13.171 ± 0.025
13.351 ± 0.025
11.260 ± 0.023
14.619 ± 0.036
13.657 ± 0.028
12.820 ± 0.025
12.801 ± 0.025
13.498 ± 0.026
13.125 ± 0.026
12.904 ± 0.024
13.237 ± 0.026
10.768 ± 0.023
12.070 ± 0.026
11.876 ± 0.023
13.682 ± 0.027
12.562 ± 0.025
13.178 ± 0.024
13.028 ± 0.025
13.23 ± 0.026
11.060 ± 0.023
13.773 ± 0.026
14.237 ± 0.029
9.545 ± 0.022
12.551 ± 0.024
13.713 ± 0.026
13.003 ± 0.026
12.471 ± 0.024
12.325 ± 0.024
12.819 ± 0.024
12.234 ± 0.024
13.219 ± 0.025
14.720 ± 0.032
13.247 ± 0.025
13.185 ± 0.023
13.638 ± 0.025
11.691 ± 0.023
7.322 ± 0.027
12.324 ± 0.025
13.623 ± 0.025
13.777 ± 0.025
12.649 ± 0.023
13.075 ± 0.024
12.950 ± 0.024
11.044 ± 0.023
9.133 ± 0.022
13.969 ± 0.027
13.955 ± 0.025
11.712 ± 0.024
10.528 ± 0.023
12.475 ± 0.023
14.449 ± 0.030
13.864 ± 0.027
12.558 ± 0.022
9.711 ± 0.024
W1
WISE
(7)
W2
WISE
(8)
12.517 ± 0.026
12.937 ± 0.027
12.768 ± 0.026
12.883 ± 0.026
11.001 ± 0.020
14.135 ± 0.054
13.263 ± 0.034
12.490 ± 0.025
12.479 ± 0.027
13.098 ± 0.03
12.738 ± 0.027
12.539 ± 0.024
12.918 ± 0.03
10.393 ± 0.019
11.638 ± 0.022
11.268 ± 0.020
13.204 ± 0.033
12.248 ± 0.027
12.696 ± 0.027
12.623 ± 0.026
12.778 ± 0.026
10.818 ± 0.021
13.342 ± 0.032
13.702 ± 0.037
9.327 ± 0.02
12.170 ± 0.022
13.216 ± 0.028
12.652 ± 0.026
12.192 ± 0.023
11.963 ± 0.022
12.431 ± 0.024
11.926 ± 0.023
12.783 ± 0.026
14.328 ± 0.045
12.905 ± 0.026
12.809 ± 0.026
13.256 ± 0.029
11.451 ± 0.022
7.057 ± 0.02
12.127 ± 0.024
13.194 ± 0.028
13.350 ± 0.026
12.312 ± 0.023
12.665 ± 0.024
12.435 ± 0.023
10.767 ± 0.020
8.808 ± 0.019
13.54 ± 0.032
13.482 ± 0.025
11.425 ± 0.022
9.943 ± 0.021
12.086 ± 0.021
14.100 ± 0.041
13.455 ± 0.03
12.135 ± 0.021
9.268 ± 0.021
Table 1
Photometric Properties of Low Surface Gravity Dwarfs
11.498 ± 0.177
12.178 ± 0.244
12.763 ± 0.445
12.378 ± 0.262
10.857 ± 0.070
12.239 ± –
12.275 ± –
11.726 ± 0.187
11.888 ± 0.247
12.596 ± 0.394
12.557 ± 0.380
11.746 ± 0.175
12.175 ± –
9.735 ± 0.040
11.139 ± 0.181
10.327 ± 0.072
11.988 ± –
11.692 ± 0.411
12.234 ± 0.325
11.802 ± 0.186
11.847 ± 0.168
10.595 ± 0.062
12.449 ± 0.313
12.379 ± –
9.206 ± 0.032
11.921 ± 0.212
12.514 ± 0.28
11.934 ± 0.195
11.604 ± 0.107
11.440 ± 0.122
11.644 ± 0.154
11.994 ± 0.190
11.58 ± 0.14
12.679 ± –
12.619 ± 0.279
12.249 ± 0.242
12.766 ± 0.415
11.035 ± 0.158
6.897 ± 0.017
11.808 ± 0.250
12.578 ± 0.305
12.288 ± 0.167
11.743 ± 0.125
11.939 ± 0.160
12.173 ± 0.203
10.762 ± 0.130
8.272 ± 0.017
12.673 ± –
12.994 ± 0.405
10.865 ± 0.095
9.294 ± 0.038
11.600 ± 0.084
12.520 ± –
12.783 ± –
11.598 ± 0.095
9.136 ± 0.034
W3
WISE
(9)
8.953 ± –
9.161 ± –
9.046 ± –
9.114 ± –
9.401 ± –
8.890 ± –
9.149 ± –
9.289 ± –
8.879 ± –
9.285 ± –
9.324 ± –
9.374 ± –
9.151 ± –
8.424 ± 0.261
9.024 ± –
9.095 ± 0.453
8.477 ± –
8.739 ± –
8.290 ± –
9.215 ± –
8.949 ± –
9.426 ± –
8.908 ± –
9.127 ± –
8.891 ± 0.458
9.243 ± –
9.335 ± –
9.355 ± –
9.614 ± –
9.481 ± –
9.466 ± –
9.218 ± –
8.64 ± 0.256
8.724 ± –
9.494 ± –
9.349 ± –
9.000 ± –
8.827 ± –
6.718 ± 0.076
8.509 ± –
9.542 ± –
9.344 ± 0.341
9.364 ± –
9.180 ± –
9.663 ± –
8.932 ± –
7.997 ± 0.110
9.237 ± –
9.723 ± –
8.627 ± 0.309
8.317 ± –
9.318 ± –
9.097 ± –
9.642 ± –
9.245 ± –
8.514 ± 0.310
W4
WISE
(10)
5
15 , 27
5
5
7, 5
6, 27, 36
18, 5
2, 6, 27
2, 6, 27
5
2
5
5
2, 6, 27
1, 5, 27
34, 35
27, 36
18, 5
8, 5
7, 6, 27
5
4
2, 27
21, 6
17, 5
2, 6, 28
1, 5
5, 27
27
1, 13, 27
2
27, 36
5
6
15, 27
5
14, 6
5
20, 25, 5
27, 36
5
15
7, 5
2, 27
5, 27
12, 6
12, 6, 27
5
5
5, 36
2, 5, 21
14, 27
15, 6
5
2, 27
27, 36
Refe
(11)
52
Faherty et al.
M8 β
––
M9 γ
––
L4 γ
––
L5 γ
M6.5 –
L1 γ
––
M8 γ
L2 γ
––
M7 –
L1 –
M8.5 γ
––
L3 β
M8 β
L1 β
M8 –
––
––
L8 –
––
M9 γ
––
L3 β
––
M9 β
L1 β
M8.5 γ
––
L1 γ
––
––
M9 γ
––
––
L0 β
M8 γ
L0 γ
M9 –
M9.5 γ
––
––
––
M9 β
L3 –
M9 –
––
L4 γ
––
M9 γ
L4 γ
L0 β
M9 δ
L4 γ
04362788-4114465
04400972-5126544
04433761+0002051
04493288+1607226
05012406-0010452
05104958-1843548
05120636-2949540
05181131-3101529
05184616-2756457
05264316-1824315
05341594-0631397
05361998-1920396
05402325-0906326
05575096-1359503
06023045+3910592
06085283-2753583
06272161-5308428
06322402-5010349
06524851-5741376
07123786-6155528
07140394+3702459
08095903+4434216
08561384-1342242
08575849+5708514
09451445-7753150
09532126-1014205
09593276+4523309
G196-3B
10212570-2830427
10220489+0200477
10224821+5825453
TWA 28
11064461-3715115
11083081+6830169
11193254-1137466c
11271382-3735076
TWA26
114724.10-204021.3c
11480096-2836488
11544223-3400390
TWA27A
12074836-3900043
12271545-0636458
TWA29
12474428-3816464
12535039-4211215
12563961-2718455
14112131-2119503
14252798-3650229
15104786-2818174
15291017+6312539
15382417-1953116
15470557-1626303A
15474719-2423493
15515237+0941148
15525906+2948485
15575011-2952431
16154255+4953211
(1)
SpT
OpT
(2)
2MASS Designation
M9 γ
L0 γ
M9 γ
M9 γ
L3 γ a
L2 β
L5 β a
M7 β
L1 γ
M7 β
M8 γ
L2 γ a
M9 β
M7 γ
L1 β
L0 γ
L0 β γ
L4 γ
––
L1 γ a
M7.5 β
L6p
M8 γ
L8 –
M9 β
M9 β a
L3 γ
L3 γ
L4 β γ
M9 β
L1 β
M9 γ a
M9 γ
L1 γ
L7 γ
L0 δ
M9 γ
L7 γ
L1 β
L1 β a
M8 γ
L1 γ
M8.5 β
L0 γ
M9 γ
M9.5 γ
L4 β a
M8 β a
L4 γ
M9 β
M8 β
L4 γ a
M9 β
L0 β
>L5 γ a
L0 β
L1 γ a
L3-L6 γ
SpT
IR
(3)
12.430 ± 0.020
14.779 ± 0.056
11.804 ± 0.022
13.49 ± 0.03
13.713 ± 0.033
14.341 ± 0.053
14.156 ± 0.047
11.234 ± 0.022
14.295 ± 0.045
11.836 ± 0.022
15.369 ± 0.096
14.693 ± 0.070
13.849 ± 0.035
12.145 ± 0.026
11.451 ± 0.019
12.897 ± 0.024
15.234 ± 0.091
14.031 ± 0.038
12.965 ± 0.022
14.392 ± 0.042
11.252 ± 0.028
15.184 ± 0.097
12.976 ± 0.028
13.79 ± 0.041
13.232 ± 0.029
12.644 ± 0.026
14.759 ± 0.068
13.648 ± 0.042
15.851 ± 0.112
13.398 ± 0.030
12.642 ± 0.031
12.356 ± 0.020
13.845 ± 0.026
12.235 ± 0.019
15.788 ± 0.034
15.568 ± 0.107
11.996 ± 0.022
15.764± 0.112
15.186 ± 0.081
13.331 ± 0.027
12.390 ± 0.030
14.608 ± 0.049
13.389 ± 0.032
13.800 ± 0.033
14.096 ± 0.036
15.3 ± 0.104
15.374 ± 0.122
11.826 ± 0.026
12.575 ± 0.022
12.11 ± 0.032
10.937 ± 0.028
14.852 ± 0.060
13.243 ± 0.029
13.271 ± 0.032
15.114 ± 0.071
12.606 ± 0.024
15.450 ± 0.104
15.332 ± 0.098
0.023
0.069
0.023
0.026
0.036
0.056
0.055
0.026
0.041
0.019
0.076
0.073
0.037
0.019
0.018
0.026
0.113
0.041
0.025
0.062
0.019
0.114
0.023
0.038
0.028
0.026
0.070
0.045
0.154
0.029
0.023
0.021
0.028
0.02
0.058
0.097
0.026
0.058
0.079
0.031
0.030
0.058
0.025
0.032
0.033
0.104
0.128
0.018
0.028
0.028
0.021
0.063
0.029
0.026
0.110
0.023
0.119
0.137
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
13.097
15.685
12.507
14.272
14.982
15.352
15.463
11.878
15.262
12.358
16.054
15.768
14.586
12.871
12.300
13.595
16.385
15.024
13.632
15.296
11.976
16.437
13.602
15.038
13.893
13.469
15.880
14.831
16.914
14.100
13.499
13.034
14.487
13.123
17.474
16.469
12.686
17.637
16.113
14.195
13.000
15.494
14.195
14.518
14.785
16.002
16.416
12.437
13.747
12.838
11.643
15.934
13.864
13.970
16.319
13.478
16.316
16.789
H
2MASS
(5)
J
2MASS
(4)
12.050 ± 0.024
14.171 ± 0.06
11.220 ± 0.019
13.077 ± 0.029
12.960 ± 0.034
13.813 ± 0.055
13.290 ± 0.041
10.9 ± 0.019
13.620 ± 0.039
11.448 ± 0.021
14.940 ± 0.097
13.850 ± 0.061
13.33 ± 0.047
11.732 ± 0.021
10.865 ± 0.018
12.370 ± 0.024
14.69 ± 0.087
13.337 ± 0.029
12.450 ± 0.021
13.670 ± 0.048
10.838 ± 0.017
14.417 ± 0.058
12.489 ± 0.023
12.962 ± 0.028
12.787 ± 0.029
12.140 ± 0.021
13.673 ± 0.044
12.778 ± 0.033
14.981 ± 0.124
12.900 ± 0.030
12.160 ± 0.023
11.890 ± 0.023
13.339 ± 0.038
11.583 ± 0.017
14.751 ± 0.012
15.229 ± 0.155
11.503 ± 0.023
14.872± 0.011
14.563 ± 0.084
12.850 ± 0.032
11.950 ± 0.030
14.040 ± 0.060
12.884 ± 0.034
13.369 ± 0.036
13.573 ± 0.039
14.739 ± 0.106
14.709 ± 0.093
11.330 ± 0.019
11.805 ± 0.027
11.687 ± 0.03
10.554 ± 0.023
14.000 ± 0.048
12.735 ± 0.027
12.740 ± 0.023
14.310 ± 0.057
12.020 ± 0.026
14.850 ± 0.111
14.310 ± 0.069
K
2MASS
(6)
W1
WISE
(7)
11.740 ± 0.023
13.585 ± 0.024
10.826 ± 0.024
12.73 ± 0.025
12.050 ± 0.024
13.256 ± 0.025
12.378 ± 0.023
10.641 ± 0.023
13.045 ± 0.024
11.201 ± 0.023
14.785 ± 0.036
13.262 ± 0.026
13.03 ± 0.025
11.336 ± 0.023
10.435 ± 0.022
11.976 ± 0.024
13.883 ± 0.026
12.610 ± 0.023
12.153 ± 0.023
12.991 ± 0.024
10.566 ± 0.024
13.344 ± 0.026
12.154 ± 0.023
12.019 ± 0.024
12.512 ± 0.022
11.757 ± 0.023
12.860 ± 0.025
–±–
14.158 ± 0.03
12.612 ± 0.025
11.762 ± 0.023
11.435 ± 0.024
13.072 ± 0.025
11.103 ± 0.024
13.548 ± 0.026
14.462 ± 0.032
11.155 ± 0.023
13.718 ± 0.026
14.139 ± 0.029
12.350 ± 0.023
11.556 ± 0.023
13.634 ± 0.025
12.516 ± 0.03
12.994 ± 0.023
13.108 ± 0.024
14.279 ± 0.027
14.088 ± 0.027
11.077 ± 0.023
10.998 ± 0.022
11.315 ± 0.025
10.29 ± 0.023
13.172 ± 0.027
12.437 ± 0.024
12.407 ± 0.025
13.600 ± 0.025
11.544 ± 0.023
14.435 ± 0.037
13.202 ± 0.024
Table 1 — Continued
11.460 ± 0.021
13.193 ± 0.026
10.476 ± 0.021
12.423 ± 0.027
11.518 ± 0.022
12.94 ± 0.029
11.921 ± 0.023
10.403 ± 0.019
12.661 ± 0.026
10.944 ± 0.021
14.256 ± 0.056
12.789 ± 0.027
12.744 ± 0.028
10.803 ± 0.020
10.124 ± 0.022
11.623 ± 0.021
13.502 ± 0.029
12.169 ± 0.022
11.857 ± 0.021
12.626 ± 0.022
10.346 ± 0.02
12.81 ± 0.028
11.62 ± 0.022
11.415 ± 0.021
12.279 ± 0.022
11.404 ± 0.021
12.363 ± 0.025
–±–
13.677 ± 0.038
12.340 ± 0.029
11.496 ± 0.021
10.793 ± 0.021
12.753 ± 0.027
10.754 ± 0.021
12.883 ± 0.027
14.103 ± 0.047
10.793 ± 0.020
13.090 ± 0.030
13.774 ± 0.039
12.037 ± 0.023
11.009 ± 0.020
13.215 ± 0.028
12.259 ± 0.027
12.623 ± 0.023
12.523 ± 0.025
13.92 ± 0.036
13.695 ± 0.034
10.815 ± 0.022
10.576 ± 0.020
11.012 ± 0.024
10.058 ± 0.021
12.721 ± 0.029
12.144 ± 0.026
12.105 ± 0.032
13.121 ± 0.030
11.207 ± 0.020
14.066 ± 0.058
12.621 ± 0.022
W2
WISE
(8)
11.111 ± 0.082
12.371 ± 0.211
10.031 ± 0.054
11.507 ± 0.216
10.952 ± 0.107
12.68 ± –
11.329 ± 0.105
10.111 ± 0.043
12.581 ± 0.349
10.79 ± 0.081
11.590 ± –
12.551 ± 0.395
11.967 ± 0.267
7.889 ± 0.017
9.591 ± 0.040
11.314 ± 0.113
13.392 ± 0.504
11.729 ± 0.146
11.041 ± 0.053
11.478 ± 0.095
10.202 ± 0.057
11.785 ± 0.206
9.882 ± 0.046
10.376 ± 0.058
12.216 ± –
10.761 ± 0.100
11.654 ± 0.170
–±–
12.431 ± –
11.965 ± 0.411
11.200 ± 0.109
9.385 ± 0.033
12.19 ± –
10.205 ± 0.043
12.244 ± 0.411
11.804 ± 0.185
10.626 ± 0.075
12.155 ± –
12.229 ± –
11.369 ± 0.106
9.456 ± 0.027
13.202 ± 0.530
11.851 ± 0.279
12.562 ± –
10.953 ± 0.077
12.591 ± –
12.474 ± 0.313
10.648 ± 0.065
10.010 ± 0.042
11.078 ± 0.196
9.719 ± 0.027
11.369 ± 0.177
11.715 ± –
12.111 ± –
12.677 ± 0.478
10.664 ± 0.049
12.154 ± 0.344
12.131 ± 0.130
W3
WISE
(9)
9.184 ± –
8.929 ± –
8.423 ± –
8.871 ± –
9.165 ± –
9.188 ± –
9.103 ± –
9.127 ± 0.457
9.219 ± –
8.984 ± –
8.265 ± 0.295
9.242 ± –
8.938 ± –
5.020 ± 0.025
8.428 ± –
9.093 ± –
9.74 ± –
8.919 ± –
9.600 ± 0.373
9.512 ± –
8.798 ± –
9.055 ± –
8.376 ± 0.271
8.569 ± 0.27
9.343 ± –
8.719 ± –
9.044 ± –
–±–
9.247 ± –
8.531 ± –
9.133 ± –
8.021 ± 0.186
9.049 ± –
9.494 ± –
8.940 ± –
9.229 ± –
8.479 ± –
8.913 ± –
9.24 ± –
9.548 ± –
8.029 ± 0.133
9.196 ± –
9.036 ± –
9.093 ± –
8.841 ± 0.293
9.66 ± –
9.452 ± –
8.812 ± –
9.566 ± –
8.25 ± –
9.241 ± 0.331
8.808 ± –
8.549 ± –
8.739 ± –
9.156 ± –
9.003 ± –
8.668 ± –
9.305 ± –
W4
WISE
(10)
13, 6, 27
5
3, 6
5
2, 6, 27
5
14, 5, 27
26, 5
3, 6
5
27, 36
3, 6, 27
5
27, 36
24, 6
14, 6
5
5
1, 13
2, 27
4,1,13, 27
5
5
14, 5
5
3, 5, 27
27
14, 5
5
1,8,6
14, 6
23, 6, 27
5
5
32, 33
5
1, 6, 5
31
5
14, 5, 27
10, 6, 27
19
7, 5
11, 6, 27
19
5
5, 27
7, 5 , 27
1, 5
1, 5
5
27, 36
5
1
1, 27
2, 6
15, 6, 27
3, 6
Refe
(11)
Brown Dwarf Analogs to Exoplanets
53
L0 γ
L3.5 γ
––
L4.5 —
––
M9 γ
L0 γ
M9 γ
L5 β
––
M9 γ
––
––
M8 –
L1.5 –
––
L3 γ
––
L4 β
––
L0 –
––
L4 γ
L3 γ
L0 γ
––
––
L6.5p –
L4 γ
L0 γ
L0 β
L2 γ
M8.5 –
L3 –
––
––
M9 –
M7 –
17111353+2326333
17260007+1538190
17410280-4642218
18212815+1414010
19350976-6200473
19355595-2846343
19564700-7542270
20004841-7523070
20025073-0521524
20113196-5048112
20135152-2806020
20282203-5637024
20334473-5635338
20391314-1126531
20575409-0252302
21140802-2251358bc
21265040-8140293
21324036+1029494
21543454-1055308
21544859-7459134
21572060+8340575
22025794-5605087
22064498-4217208
22081363+2921215
22134491-2136079
22351658-3844154
22353560-5906306
22443167+2043433
22495345+0044046
23153135+0617146
23224684-3133231
23225299-6151275
23231347-0244360
23255604-0259508
23360735-3541489
23433470-3646021
23453903+0055137
23520507-1100435
J
2MASS
(4)
14.499 ± 0.024
15.669 ± 0.063
15.786 ± 0.075
13.431± 0.021
16.254 ± 0.105
13.953 ± 0.024
16.154 ± 0.102
12.734 ± 0.023
15.316 ± 0.049
16.423 ± 0.109
14.242 ± 0.028
13.837 ± 0.021
15.718 ± 0.088
13.792 ± 0.024
13.121 ± 0.021
17.294 ± 0.08
15.542 ± 0.055
16.594 ± 0.138
16.440 ± 0.121
14.288 ± 0.029
13.972 ± 0.026
14.356 ± 0.034
15.555 ± 0.065
15.797 ± 0.084
15.376 ± 0.032
15.183 ± 0.051
14.281 ± 0.029
16.476 ± 0.140
16.587 ± 0.124
15.861 ± 0.082
13.577 ± 0.027
15.545 ± 0.061
13.58 ± 0.023
15.961 ± 0.077
14.651 ± 0.025
16.568 ± 0.13
13.771 ± 0.027
12.84 ± 0.018
SpT
IR
(3)
L1 β a
L3 γ a
L6-L8 γ a
L4 peca
L1 γ
M9 γ a
L2 γ a
M9 γ a
L5-L7 γ a
L3 γ
L0 γ a
M8.5 γ
L0 γ
M7 β
L2 β
L6-L8 γ a
L3 γ a
L4 β
L5 γ a
M9.5 β
M9 γ
M9 γ
L4 γ a
L3 γ
L0 γ
L1.5 γ
M8.5 β
L6-L8 γ a
L3 β a
L0 γ a
L2 β
L3 γ a
M8 β
L1 γ
M9 β
L3-L6 γ
M9 β
M8 β
13.668
14.465
14.534
12.396
15.293
13.180
15.036
11.967
14.278
15.257
13.461
13.243
15.137
13.129
12.268
15.624
14.405
15.366
15.069
13.568
13.066
13.616
14.447
14.793
14.404
14.272
13.592
14.999
15.421
14.757
12.789
14.535
12.925
14.935
13.809
15.011
13.117
12.166
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.030
0.045
0.054
0.017
0.094
0.020
0.096
0.026
0.050
0.081
0.027
0.027
0.109
0.038
0.022
0.04
0.053
0.113
0.082
0.042
0.033
0.035
0.061
0.070
0.055
0.046
0.037
0.065
0.109
0.069
0.023
0.062
0.03
0.069
0.025
0.063
0.026
0.02
H
2MASS
(5)
13.060 ± 0.026
13.660 ± 0.049
13.438 ± 0.035
11.650 ± 0.019
14.724 ± 0.098
12.710 ± 0.028
14.230 ± 0.066
11.510 ± 0.024
13.420 ± 0.035
14.577 ± 0.082
12.940 ± 0.026
12.71 ± 0.027
14.244 ± 0.081
12.68 ± 0.028
11.724 ± 0.023
14.435 ± 0.04
13.550 ± 0.041
14.634 ± 0.1
14.200 ± 0.068
13.084 ± 0.032
12.584 ± 0.025
13.16 ± 0.036
13.610 ± 0.055
14.150 ± 0.073
13.760 ± 0.038
13.631 ± 0.044
13.168 ± 0.032
14.022 ± 0.073
14.360 ± 0.070
14.070 ± 0.063
12.324 ± 0.024
13.860 ± 0.042
12.481 ± 0.026
14.115 ± 0.056
13.385 ± 0.041
14.194 ± 0.064
12.581 ± 0.028
11.742 ± 0.018
K
2MASS
(6)
12.581 ± 0.024
13.071 ± 0.025
12.301 ± 0.025
10.853 ± 0.023
14.059 ± 0.029
12.347 ± 0.026
13.693 ± 0.027
11.108 ± 0.023
12.532 ± 0.023
14.009 ± 0.031
12.525 ± 0.028
12.472 ± 0.022
13.817 ± 0.027
12.465 ± 0.023
11.261 ± 0.022
13.216 ± 0.026
12.910 ± 0.024
14.03 ± 0.033
13.367 ± 0.026
12.708 ± 0.025
12.088 ± 0.023
12.809 ± 0.025
12.823 ± 0.024
13.354 ± 0.027
13.229 ± 0.027
13.007 ± 0.024
12.691 ± 0.024
12.777 ± 0.024
13.576 ± 0.027
13.552 ± 0.026
11.974 ± 0.023
13.243 ± 0.026
12.237 ± 0.025
13.695 ± 0.027
13.002 ± 0.024
13.121 ± 0.024
12.212 ± 0.025
11.44 ± 0.025
W1
WISE
(7)
12.226 ± 0.024
12.694 ± 0.026
11.675 ± 0.023
10.475 ± 0.020
13.65 ± 0.039
11.910 ± 0.025
13.249 ± 0.031
10.797 ± 0.020
12.090 ± 0.026
13.668 ± 0.038
12.163 ± 0.027
12.173 ± 0.024
13.415 ± 0.034
12.166 ± 0.024
10.981 ± 0.020
12.461 ± 0.031
12.472 ± 0.023
13.578 ± 0.042
12.917 ± 0.029
12.376 ± 0.025
11.681 ± 0.021
12.555 ± 0.025
12.376 ± 0.025
12.888 ± 0.027
12.832 ± 0.029
12.647 ± 0.027
12.363 ± 0.026
12.108 ± 0.024
13.144 ± 0.050
13.095 ± 0.031
11.707 ± 0.023
12.841 ± 0.029
11.954 ± 0.024
13.348 ± 0.034
12.647 ± 0.026
12.612 ± 0.027
11.879 ± 0.023
11.146 ± 0.022
W2
WISE
(8)
11.662 ± 0.152
11.556 ± 0.157
11.432 ± 0.190
9.928 ± 0.052
12.881 ± –
10.519 ± 0.076
12.678 ± –
10.550 ± 0.069
11.441 ± 0.209
12.431 ± –
11.877 ± 0.276
12.298 ± 0.315
12.376 ± –
12.596 ± 0.538
10.431 ± 0.079
11.838 ± 0.358
11.885 ± 0.161
12.383 ± 0.379
12.054 ± 0.316
11.991 ± 0.211
11.007 ± 0.079
11.728 ± 0.18
11.887 ± 0.222
12.584 ± 0.391
11.552 ± 0.203
12.535 ± 0.436
12.08 ± 0.309
11.136 ± 0.115
11.284 ± –
11.671 ± 0.230
11.253 ± 0.128
12.679 ± 0.391
12.228 ± 0.391
11.883 ± –
12.518 ± 0.418
11.698 ± 0.188
11.465 ± 0.203
10.849 ± 0.109
W3
WISE
(9)
9.334 ± –
9.309 ± –
8.541 ± –
9.067 ± 0.534
8.559 ± –
8.636 ± –
9.171 ± –
8.548 ± –
8.818 ± –
9.084 ± –
8.663 ± –
8.669 ± –
9.27 ± –
9.04 ± –
8.906 ± –
8.581 ± –
9.357 ± –
8.512 ± –
8.426 ± –
8.913 ± –
8.762 ± –
9.322 ± –
9.259 ± –
9.298 ± –
9.070 ± –
8.773 ± –
9.094 ± –
9.301 ± –
7.687 ± –
8.592 ± –
9.153 ± –
9.378 ± –
8.512 ± –
8.677 ± –
9.177 ± –
9.138 ± –
8.941 ± –
8.877 ± –
W4
WISE
(10)
3, 6, 27
5, 27
5, 27
27, 29, 30
5
27, 36
2, 27
4, 5, 27
3, 5, 27
5
1, 6, 27
5
5
7, 5
7, 25, 27
9, 27
2, 27
5
22, 27
5
5
5
5, 27
14, 5
14, 6
5
5
14, 6, 27
14, 6, 27
27, 36
1, 6
2, 5, 27
3, 5
16, 5
5
5
1, 5
3, 5
Refe
(11)
318, JHK was converted to MKO whereas for 2M119, J and H were converted and for 2M1147 only J was converted.
d
Teegardens Star.
e
References are for the spectral data and gravity analysis (if different then the original spectral data reference).
f
Referred to as TVLM831-154910 in Tinney et al. (1995).
SpeX data we default to the resultant type and classification with that data.
b
This source is referred to as PSO318 for the remainder of the text
c
The sources PSO318, 2M1119, and 2M1147 have photometry reported on the MKO system that we have converted to 2MASS using the relations in Stephens et al. (2009). In the case of PSO
Note. — References: 1=Reid et al. (2008), 2=Cruz et al. (2009), 3=Cruz et al. (2007), 4=Schmidt et al. (2007), 5=Gagné et al. (2015b), 6=Allers & Liu (2013), 7=Cruz et al. (2003),
8=Faherty et al. (2012), 9=Liu et al. (2013), 10=Gizis (2002), 11=Looper et al. (2007) 12=Reid et al. (2002), 13=Faherty et al. (2009), 14=Kirkpatrick et al. (2008), 15=Kirkpatrick et al. (2010),
16=Burgasser et al. (2010a), 17=Reid et al. (2007), 18=Kirkpatrick et al. (2000), 19=Gagné et al. (2014a), 20=Teegarden et al. (2003), 21=Faherty et al. (2013), 22=Gagné et al. (2014b),
23=Scholz et al. (2005) 24=Salim & Gould (2003), 25=Burgasser et al. (2008), 26=Crifo et al. (2005), 27=This paper, 28=Kirkpatrick et al. (2006), 29=Looper et al. (2008), 30=Sahlmann
et al. (2016), 31=Schneider et al. (2016), 32=Kellogg et al. (2016), 33=Kellogg et al. (2015), 34=Gizis et al. (2012), 35=Gizis et al. (2015), 36=Cruz et al. in prep
a
These sources have new infrared spectra presented in this paper. In the majority of cases we use the infrared spectral type and gravity classification diagnosed in this work. If an object had
(1)
SpT
OpT
(2)
2MASS Designation
Table 1 — Continued
54
Faherty et al.
55
Brown Dwarf Analogs to Exoplanets
Table 2
Details on Parallax Targets and Observations
SpT
IR
(3)
Nights
Framesa
Ref Starsa
(1)
SpT
OpT
(2)
(4)
(5)
00452143+1634446
01410321+1804502
02132880+4444453
02235464-5815067
02411151-0326587
02535980+3206373
03140344+1603056
05002100+0330501
06023045+3910592
06154934-0100415
06523073+4710348
09111297+7401081
10224821+5825453
10484281+0111580
13004255+1912354
14162408+1348263
15525906+2948485
21265040-8140293
L2β
L1
L1.5
L0γ
L0γ
M7β
L0
L4
L1
L2
L4.5
L0
L1β
L1
L1
L6
L0β
L3γ
L2γ
L4.5
—
—
L1γ
M6
—
—
L1β
—
—
—
L1β
L4
L3
L6
L0β
L3γ
4
4
5
5
6
5
5
5
7
5
5
4
6
3
5
5
6
6
26
23
34
48
55
28
31
30
77
34
27
24
30
17
47
29
27
90
2MASS Designation
Noteb
Ref
(8)
(9)
(10)
MDM
MDM
MDM
DuPont
DuPont
MDM
MDM
MDM
MDM
MDM
MDM
MDM
MDM
MDM
MDM
MDM
MDM
DuPont
LG
N
N
LG
LG
LG
N
N
LG
N
N
N
LG
N
N
N
LG
LG
1,2
3,4,
5
1
2,13
14
6
6
2,15
7
5
6
2,13
8,9
10,11
12
1,2
1
Telescope
(6)
∆t
(yr)
(7)
24
26
81
26
20
53
37
61
71
62
49
35
15
14
10
11
33
38
3.0
3.3
3.0
4.9
4.9
3.9
3.0
2.8
9.9
2.2
3.0
2.9
4.9
3.0
2.4
3.3
5.3
5.4
Note. — References: 1=Cruz et al. (2009), 2=Allers & Liu (2013), 3=Wilson et al. (2003), 4=Cruz et al. (2007), 5=Cruz et al. (2003), 6=Reid
et al. (2008), 7=Phan-Bao et al. (2008), 8=Hawley et al. (2002), 9=Kendall et al. (2004), 10=Gizis et al. (2000), 11=Burgasser et al. (2008),
12=Bowler et al. (2010a), 13=Kirkpatrick et al. (2008), 14=This paper, 15=Salim & Gould (2003)
a
The number of reference stars and individual image frames used in the parallax solution
b
LG is a low surface gravity object and N is a field object
Table 3
Results of Parallax Program
Name
a
(1)
SpT
OpT
(2)
SpT
IR
(3)
00452143+1634446
01410321+1804502
02132880+4444453
02235464-5815067
02411151-0326587
02535980+3206373
03140344+1603056
05002100+0330501
06023045+3910592
06154934-0100415
06523073+4710348
09111297+7401081
10224821+5825453
10484281+0111580
13004255+1912354
14162408+1348263
15525906+2948485
21265040-8140293
L2β
L1
L1.5
L0γ
L0γ
M7β
L0
L4
L1
L2
L4.5
L0
L1β
L1
L1
L6
L0β
L3γ
L2γ
L4.5
—
—
L1γ
M6
—
—
L2β
—
—
—
L1β
L4
L3
L6
L0β
L3γ
µα a
yr −1
(4)
00
0.355 ± 0.01
0.41 ± 0.01
-0.054 ± 0.01
0.0986 ± 0.0008
0.0737 ± 0.001
0.087 ± 0.01
-0.247 ± 0.01
0.008 ± 0.01
0.157 ± 0.01
0.197 ± 0.01
-0.118 ± 0.01
-0.2 ± 0.01
-0.807 ± 0.01
-0.436 ± 0.01
-0.793 ± 0.01
0.088 ± 0.01
-0.162 ± 0.01
0.0556 ± 0.0014
00
µδ a
yr −1
(5)
-0.04 ± 0.01
-0.047 ± 0.01
-0.147 ± 0.01
-0.0182 ± 0.0009
-0.0242 ± 0.0019
-0.096 ± 0.01
-0.05 ± 0.01
-0.353 ± 0.01
-0.504 ± 0.01
-0.055 ± 0.01
0.136 ± 0.01
-0.145 ± 0.01
-0.73 ± 0.01
-0.218 ± 0.01
-1.231 ± 0.01
0.136 ± 0.01
-0.06 ± 0.01
-0.1018 ± 0.003
πabs
mas
(6)
62.5 ± 3.7
41.0 ± 2.8
50.0 ± 2.1
27.4 ± 2.6
26.7 ± 3.3
17.7 ± 2.5
69.0 ± 2.4
75.2 ± 3.7
88.5 ± 1.6
49.8 ± 2.8
114.9 ± 4.0
45.2 ± 3.1
54.3 ± 2.5
71.9 ± 7.4
70.4 ± 2.5
107.5 ± 3.5
48.8 ± 2.7
31.3 ± 2.6
The proper motions from MDM are not corrected to absolute and have zero-point uncertainties of ∼ 10 mas yr−1 ; see Weinberger et al. (2013)
for a discussion of the du Pont proper motions.
56
Faherty et al.
Table 4
Literature Parallax Comparisons
2MASS Designation
SpT
SpT
00
µα
yr −1
(4)
00
µδ
yr −1
(5)
π
mas
(6)
Ref
(1)
(2)
(3)
00452143+1634446
L2β
L2γ
0.355 ± 0.01
0.3562 ± 0.00137
-0.04 ± 0.01
-0.035 ± 0.0109
62.5 ± 3.7
57.3 ± 2.0
1
2
02411151-0326587
L0γ
L1γ
0.0737 ± 0.001
0.084 ± 0.0117
-0.0242 ± 0.0019
-0.0224 ± 0.0086
26.7 ± 3.3
21.4 ± 2.6
1
2
10224821+5825453
L1β
L1β
-0.807 ± 0.01
-0.799 ± 0.0064
-0.73 ± 0.01
-0.7438 ± 0.0132
54.3 ± 2.5
46.3 ± 1.3
1
2
14162408+1348263
L6
L6
0.088 ± 0.01
0.0951 ± 0.003
0.136 ± 0.01
0.1303 ± 0.003
107.5 ± 3.5
109.9 ± 1.8
1
2
15525906+2948485
L0β
L0β
-0.162 ± 0.01
-0.1541 ± 0.0053
-0.06 ± 0.01
-0.0622 ± 0.0106
48.8 ± 2.7
47.7 ± 0.9
1
3
Note. — References: (1) This work (2) Osorio et al. 2014 (3) Dupuy & Liu 2012
(7)
57
Brown Dwarf Analogs to Exoplanets
Table 5
New Proper Motion Measurements
2MASS
(1)
SpT
OpT
(2)
SpT
NIR
(3)
00040288-6410358
00374306-5846229
01174748-3403258
01262109+1428057
01415823-4633574
02103857-3015313
02340093-6442068
03032042-7312300
03231002-4631237
04062677-3812102
05120636-2949540
05341594-0631397
09532126-1014205
09593276+4523309
TWA 28
11544223-3400390
14112131-2119503
14482563+1031590
15382417-1953116
15474719-2423493
15575011-2952431
16154255+4953211
17111353+2326333
18212815+1414010
19355595-2846343
19564700-7542270
20004841-7523070
20025073-0521524
20135152-2806020
21543454-1055308
22064498-4217208
23153135+0617146
23225299-6151275
L1γ
L0γ
L1β
L4γ
L0γ
L0γ
L0γ
L2γ
L0γ
L0γ
L5γ
M8γ
M9γ
–
M8.5γ
L0β
M9β
L4
L4γ
M9γ
M9δ
L4γ
L0γ
L4.5
M9γ
L0γ
M9γ
L5β
M9γ
L4β
L4γ
L0γ
L2γ
L1γ
—
L1β
L2γ
L0γ
L0γ
L0βγ
—
L0γ
L1γ
L5β
M8γ
M9β
L3γ
M9γ
L1β
M8β
L4pec
L4γ
L0β
L1γ
L3-L6γ
L1β
L4pec
M9γ
L2γ
M9γ
L5-L7γ
L0γ
L5γ
L4γ
L0γ
L3γ
µRA
yr−1
(4)
00
0.064 ± 0.012
0.057 ± 0.01
0.084 ± 0.015
0.07 ± 0.012
0.105 ± 0.01
0.145 ± 0.036
0.088 ± 0.012
0.043 ± 0.012
0.066 ± 0.008
0.009 ± 0.012
-0.01 ± 0.013
0.002 ± 0.012
-0.07 ± 0.007
-0.087 ± 0.009
-0.06 ± 0.008
-0.161 ± 0.008
-0.078 ± 0.009
0.223 ± 0.017
0.026 ± 0.007
-0.135 ± 0.009
-0.01 ± 0.012
-0.08 ± 0.012
-0.063 ± 0.015
0.226 ± 0.008
0.034 ± 0.012
0.009 ± 0.012
0.069 ± 0.012
-0.098 ± 0.005
0.043 ± 0.012
0.175 ± 0.012
0.128 ± 0.013
0.056 ± 0.012
0.062 ± 0.01
µDEC
yr−1
(5)
Ref
(6)
∆t
yr
(7)
-0.047 ± 0.012
0.017 ± 0.005
-0.045 ± 0.008
-0.008 ± 0.012
-0.049 ± 0.01
-0.04 ± 0.007
-0.015 ± 0.012
0.003 ± 0.012
0.001 ± 0.016
0.029 ± 0.012
0.08 ± 0.015
-0.007 ± 0.012
-0.06 ± 0.009
-0.126 ± 0.012
-0.014 ± 0.009
0.012 ± 0.007
-0.073 ± 0.011
-0.118 ± 0.013
-0.045 ± 0.007
-0.127 ± 0.008
-0.028 ± 0.012
0.018 ± 0.012
-0.035 ± 0.012
-0.24 ± 0.007
-0.058 ± 0.012
-0.059 ± 0.012
-0.11 ± 0.004
-0.11 ± 0.008
-0.068 ± 0.012
0.009 ± 0.012
-0.181 ± 0.008
-0.039 ± 0.012
-0.085 ± 0.009
WISE-2MASS
FourStar
FourStar
WISE-2MASS
FourStar
FourStar
WISE-2MASS
WISE-2MASS
FourStar
WISE-2MASS
CAPSCam
WISE-2MASS
CAPSCam
WISE-2MASS
CAPSCam
CAPSCam
CAPSCam
CAPSCam
CAPSCam
CAPSCam
WISE-2MASS
WISE-2MASS
CAPSCam
CAPSCam
CAPSCam
WISE-2MASS
CAPSCam
CAPSCam
WISE-2MASS
WISE-2MASS
CAPSCam
WISE-2MASS
FourStar
10.02
14.15
15.08
9.68
14.29
14.39
10.53
10.48
14.30
9.79
15.14
9.52
15.06
11.33
14.90
14.89
15.77
13.82
15.69
14.79
11.04
12.11
16.85
15.07
14.79
9.72
13.79
15.54
11.03
11.77
15.52
9.96
14.07
00
58
Faherty et al.
Table 6
near-infrared Spectral Data
Note. —
2MASS
(1)
Date-Observed
(2)
Instrument
(3)
Mode
(4)
Slit
(5)
00040288-6410358
00274197+0503417
00452143+1634446
00550564+0134365
01174748-3403258
01174748-3403258(2)
01244599-5745379
02103857-3015313
02103857-3015313(2)
02251947-5837295
02340093-6442068
03231002-4631237
03264225-2102057
04210718-6306022
04351455-1414468
05012406-0010452
05120636-2949540
05120636-2949540(2)
05361998-1920396
07123786-6155528
09532126-1014205
09593276+4523309
11020983-3430355
11544223-3400390
12563961-2718455
14112131-2119503
14482563+1031590
15382417-1953116
15382417-1953116(2)
15515237+0941148
15575011-2952431
17111353+2326333
17260007+1538190
17410280-4642218
18212815+1414010
19355595-2846343
19564700-7542270
20004841-7523070
20025073-0521524
20135152-2806020
20135152-2806020(2)
PSO318
21265040-8140293
21265040-8140293(2)
21543454-1055308
22064498-4217208
22064498-4217208(2)
22064498-4217208(3)
22443167+2043433
22495345+0044046
23153135+0617146
23153135+0617146(2)
11-Sept-2014
08-Aug-2014
08-Aug-2014
04-Sept-2003
12-Sept-2014
11-Sept-2014
11-Sept-2014
11-Sept-2014
29-Dec-2009
28-July-2013
28-July-2013
13-Nov-2007
13-Nov-2007
11-Sept-2014
13-Nov-2007
12-Oct-2007
15-Nov-2013
08-Dec-2011
13-Dec-2013
15-Nov-2013
02-March-2009
30-Dec-2009
12-May-2014
12-May-2014
12-May-2014
12-May-2014
13-May-2014
28-July-2013
04-Sept-2003
15-Aug-2013
28-July-2013
12-May-2014
12-May-2014
11-Sept-2014
12-May-2014
08-Aug-2014
28-July-2013
28-July-2013
28-July-2013
12-May-2014
08-Aug-2014
13-Dec-2013
15-Aug-2013
12-May-2014
08-Aug-2014
12-May-2014
08-Aug-2014
21-Aug-2006
11-Sept-2014
08-Aug-2014
08-Aug-2014
14-Nov-2007
FIRE
FIRE
FIRE
SpeX
FIRE
FIRE
FIRE
FIRE
TripleSpec
FIRE
FIRE
SpeX
SpeX
FIRE
SpeX
SpeX
FIRE
SpeX
FIRE
FIRE
TripleSpec
SpeX
FIRE
FIRE
FIRE
FIRE
FIRE
FIRE
SpeX
FIRE
FIRE
FIRE
FIRE
FIRE
FIRE
FIRE
FIRE
FIRE
FIRE
FIRE
FIRE
FIRE
FIRE
FIRE
FIRE
FIRE
FIRE
SpeX
FIRE
FIRE
FIRE
SpeX
Echelle
Echelle
Echelle
Prism
Echelle
Echelle
Echelle
Echelle
—
Echelle
Echelle
Prism
Prism
Echelle
SXD
Prism
Echelle
Prism
Echelle
Echelle
—
Prism
Echelle
Echelle
Echelle
Echelle
Echelle
Echelle
Prism
Echelle
Echelle
Echelle
Echelle
Echelle
Echelle
Echelle
Echelle
Echelle
Echelle
Echelle
Echelle
Echelle
Echelle
Echelle
Echelle
Echelle
Echelle
Prism
Echelle
Echelle
Echelle
Prism
0.6
0.6
0.6
0.8
0.6
0.6
0.6
0.6
1.1x43”
0.6
0.6
0.5
0.5
0.6
0.5
0.5
0.6
0.5
0.6
0.6
1.1x43”
0.5
0.6
0.6
0.6
0.6
0.6
0.6
0.8
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.5
0.6
0.6
0.6
0.5
Int time
(6)
Images
(7)
900
900
900
180
900
600
900
750
300
600
750
180
180
900
200
90
500
180
650
650
300
180
600
750
900
500
900
900
180
900
900
800
800
1500
650
600
900
300
600
600
600
900
900
800
1200
700
750
180
900
1200
750
180
2
2
2
2
2
2
2
2
6
2
2
5
6
2
4
6
2
8
2
2
6
3
2
2
2
2
2
2
6
2
2
2
2
2
2
2
4
3
2
2
2
4
2
2
2
2
2
5
2
2
2
6
Telescope
(2)
Magellan Clay MIKE
Gemini South Phoenix
Gemini South Phoenix
Gemini South Phoenix
Keck II NIRSPEC
Keck II NIRSPEC
Keck II NIRSPEC
Magellan Clay MIKE
Gemini South Phoenix
Gemini South Phoenix
Gemini South Phoenix
Gemini South Phoenix
Gemini South Phoenix
Gemini South Phoenix
Gemini South Phoenix
Gemini South Phoenix
Keck II NIRSPEC
Gemini South Phoenix
Gemini South Phoenix
Magellan Clay MIKE
Magellan Clay MIKE
Gemini South Phoenix
Gemini South Phoenix
Magellan Clay MIKE
Magellan Clay MIKE
Magellan Clay MIKE
Magellan Clay MIKE
Gemini South Phoenix
Keck II NIRSPEC
Keck II NIRSPEC
Magellan Clay MIKE
Gemini South Phoenix
Magellan Clay MIKE
Magellan Clay MIKE
Keck II NIRSPEC
Keck II NIRSPEC
Keck II NIRSPEC
Keck II NIRSPEC
Magellan Clay MIKE
Magellan Clay MIKE
Magellan Clay MIKE
Gemini South Phoenix
Keck II NIRSPEC
Magellan Clay MIKE
Keck II NIRSPEC
Keck II NIRSPEC
Gemini South Phoenix
Gemini South Phoenix
Gemini South Phoenix
Gemini South Phoenix
Magellan Clay MIKE
Gemini South Phoenix
Gemini South Phoenix
Keck II NIRSPEC
Magellan Clay MIKE
Keck II NIRSPEC
Name
(1)
00325584-4405058
00332386-1521309
00374306-5846229
00374306-5846229
00452143+1634446
00464841+0715177
00550564+0134365
01415823-4633574
02103857-3015313
02103857-3015313
02103857-3015313
02215494-5412054
02235464-5815067
02235464-5815067
02340093-6442068
02340093-6442068
02411151-0326587 a
03231002-4631237
03231002-4631237
03393521-3525440
03572695-4417305
04210718-6306022
04210718-6306022
04351455-1414468
04362788-4114465
04433761+0002051
05012406-0010452
05012406-0010452
05184616-2756457
05184616-2756457
06085283-2753583
06085283-2753583
15474719-2423493
15525906+2948485
16154255+4953211a
17111353+2326333
17260007+1538190
18212815+1414010
19350976-6200473b
20004841-7523070
20135152-2806020
21265040-8140293
22081363+2921215
22134491-2136079
22495345+0044046
23153135+0617146
23224684-3133231
23225299-6151275
23225299-6151275
00242463-0158201c
1224522-123835c
01062285-5933185c
05233822-1403022c
05361998-1920396c
14284323+3310391c
18284076+1229207ac
50000
25000
50000
50000
20000
25000
20000
25000
50000
50000
50000
20000
20000
20000
25000
50000
50000
50000
50000
50000
50000
50000
50000
20000
50000
50000
25000
25000
50000
50000
25000
25000
25000
25000
50000
20000
20000
25000
50000
25000
25000
20000
20000
20000
20000
25000
25000
25000
50000
20000
25000
20000
20000
50000
50000
50000
Resolving Power
(3)
24-Dec-2007
04-Jul-2006
27-Jul-2007
27-Oct-2009
14-Sep-2008
04-Jul-2006
14-Sep-2008
01-Nov-2006
28-Oct-2009
20-Nov-2007
23-Dec-2007
15-Sep-2008
14-Sep-2008
14-Sep-2008
02-Nov-2006
22-Dec-2007
24-Dec-2007
26-Dec-2007
27-Oct-2009
05-Dec-2007
25-Dec-2007
27-Oct-2009
29-Oct-2009
13-Sep-2008
21-Dec-2007
23-Dec-2007
04-Jul-2006
01-Nov-2006
14-Dec-2007
15-Dec-2007
01-Nov-2006
02-Nov-2006
01-Nov-2006
02-Nov-2006
28-Oct-2009
13-Sep-2008
15-Sep-2008
02-Nov-2006
28-Oct-2009
04-Jul-2006
04-Jul-2006
13-Sep-2008
14-Sep-2008
15-Sep-2008
15-Sep-2008
04-Jul-2006
04-Jul-2006
04-Jul-2006
29-Oct-2009
13-Sep-2008
04-Jul-2006
13-Sep-2008
15-Sep-2008
27-Oct-2009
28-Oct-2009
29-Oct-2009
Date-obs
(4)
Table 7
Radial Velocities
11.65± 1.60
-2.87± 0.59
1.18± 0.44
12.48± 0.41
22.07± 0.70
-39.14± 0.38
51.95±15.04
4.40± 2.84
-6.53± 0.24
10.03± 0.49
-15.59± 1.93
-4.92± 4.18
-3.26± 0.90
-14.69± 0.52
33.86± 1.11
7.20± 0.46
5.52± 0.76
4,5
4,5
6,7
1,2,3
4,5
1,2,3
1,2,3
6,7
6,7
6,7
6,7
4
6,7
6
1,2
5
1
12.95± 1.92
-6.37± 0.40
6.63± 0.08
6.01± 0.74
3.16± 0.83
-2.75± 0.27
-1.21± 0.38
6.41± 1.56
7.63± 0.35
7.05± 0.45
7.96± 0.16
10.18± 0.10
9.55± 0.62
10.42± 0.18
12.56± 0.14
11.11± 0.13
6.34± 7.98
13.02± 0.13
12.90± 0.29
7.43± 0.72
10.73± 4.60
15.81± 0.53
14.60± 0.16
16.16± 1.76
14.97± 1.45
16.97± 0.76
21.29± 0.85
22.68± 1.16
24.52± 0.41
24.15± 0.45
28.08± 1.93
26.35± 0.08
-6.52± 0.35
-19.90± 1.38
-25.59± 3.18
-20.69± 0.75
-20.54± 0.84
9.08± 0.17
R.V.
(6)
4,5
6,7
6,7
6,7
1,3
1,2,3
1,2,3
4,5
6,7
6,7
6,7
6,7
6,7
6,7
6,7
6,7
1,2,3
6,7
6,7
4,5
4,5
6,7
6,7
4,5
4,5
4,5
4,5
6,7
1,2
1,2
4,5
6,7
4,5
4,5
1,2,3
1,2,3
1,2,3
2,3
Standards Used
(5)
1.76
1.45
0.76
0.66
11.65± 1.60
-2.87± 0.59
1.18± 0.44
12.48± 0.41
22.07± 0.70
-39.14± 0.38
51.95±15.04
4.40± 2.84
-6.53± 0.24
10.03± 0.49
-15.59± 1.93
-4.92± 4.18
-3.26± 0.90
-14.69± 0.52
33.86± 1.11
6.75± 0.75
-6.52± 0.35
-19.90± 1.38
-25.59± 3.18
-20.69± 0.75
-20.54± 0.84
9.08± 0.17
26.35± 0.07
24.35± 0.19
16.16±
14.97±
16.97±
21.77±
7.43± 0.72
10.73± 4.60
14.70± 0.33
6.34± 7.98
13.00± 0.05
11.76± 0.72
10.18± 0.10
10.36± 0.23
3.16± 0.83
-2.75± 0.27
-1.21± 0.38
6.41± 1.56
7.82± 0.27
12.95± 1.92
-6.37± 0.40
6.62± 0.07
R.V. final
(7)
Brown Dwarf Analogs to Exoplanets
59
Gemini South Phoenix
Keck II NIRSPEC
Keck II NIRSPEC
Keck II NIRSPEC
Gemini South Phoenix
21041491-1037369c
21481633+4003594c
22244381-0158521c
22344161+4041387c
23515044-2537367acd
50000
20000
20000
20000
50000
Resolving Power
(3)
28-Oct-2009
15-Sep-2008
15-Sep-2008
15-Sep-2008
28-Oct-2009
Date-obs
(4)
6,7
1,2,3
1,2
1,2,3
6,7
Standards Used
(5)
-30.90± 1.58
-14.52± 0.71
-36.48± 0.01
-12.49± 0.42
-5.68± 1.82
R.V.
(6)
-30.90± 1.58
-14.52± 0.71
-36.48± 0.01
-12.49± 0.42
-5.68± 1.82
R.V. final
(7)
Note. — Data from 2MASS Cutri et al. (2003) and ALLWISE Cutri & et al. (2013). Standard stars are as follows: 1.) 2MASS J18212815+1414010 (+9.78 Blake et al. 2010), 2.) 2MASS
J00452143+1634446 (+3.29 Blake et al. 2010), 3.) 2MASS J22244381-0158521 (-37.55 Blake et al. 2010), 4.) LHS 2924 (-37.4 Mohanty et al. 2003), 5.) BRI 1222-1221 (-4.8 Mohanty et al.
2003), 6.) 2MASS J11553952-3727350 (+45.0 Seifahrt et al. 2010), 7.) 2MASS J05233822-1403022 (+11.82 Blake et al. 2007)
a
Low Quality Spectrum
b
No Useable Spectrum
c
No Spectroscopic Signs of Youth
d
This object is listed in Filippazzo et al. (2015) with a distance and reference to Faherty+ in prep. The value in that paper was spectrophotometric and should not be regarded as a parallax.
Telescope
(2)
Name
(1)
Table 7 — Continued
60
Faherty et al.
61
Brown Dwarf Analogs to Exoplanets
Table 8
Comparison of new and previously published RVs.
Name
Telescope
(1)
(2)
RVours
kms−1
(3)
00242463-0158201
00452143+1634446
01415823-4633574
03393521-3525440
04433761+0002051
05233822-1403022
06085283-2753583
1224522-123835
14284323+3310391
15525906+2948485
18212815+1414010
20004841-7523070
21041491-1037369
22244381-0158521
23515044-2537367
Gemini South Phoenix
Keck II NIRSPEC
Magellan Clay MIKE
Magellan Clay MIKE
Magellan Clay MIKE
Gemini South Phoenix
Magellan Clay MIKE
Magellan Clay MIKE
Magellan Clay MIKE
Magellan Clay MIKE
Keck II NIRSPEC
Magellan Clay MIKE
Gemini South Phoenix
Keck II NIRSPEC
Gemini South Phoenix
+11.65±1.60
+3.16±0.83
+6.41±1.56
+7.43±0.72
+16.97±0.76
+12.48±0.41
+26.35±0.07
−2.87±0.59
−39.14±0.38
−19.90±1.38
+9.08±0.17
+4.40±2.84
−30.90±1.58
−36.48±0.01
−5.68±1.82
RVothers
kms−1
(4)
+10.4±3
+3.29±0.43
+12±15
+7.6±3
+17.1±3
+12.21±0.21
+24±1
−5.8±3
−37.4±2
−18.43±0.11
+9.78±0.21
+8±2.4
−21.09±0.41
−37.55±0.21
−10±3
RV
ref.
(5)
3
1
2
3
3
1
4
3
7
1
1
5
1
1
3
RVothers
kms−1
(6)
RV
ref.
(7)
+16±2
7
+6±2
8
−4.8±2
7
+11.77±0.97
−21.2±2.2
6
5
−12.3±2.6
5
RVothers
kms−1
(8)
RV
ref.
(9)
RVothers
kms−1
(10)
RV
ref.
(11)
+5.8±2.4
5
+10±2
9
Note. — References: 1. Blake et al. (2010), 2. Kirkpatrick et al. (2006), 3. Reiners (2009), 4. Rice et al. (2010), 5. Burgasser et al. (2015), 6.
Gálvez-Ortiz et al. (2010), 7. Mohanty et al. (2003), 8. Basri (2000), 9. Reid et al. (2002)
Table 9
Adopted near-infrared Spectral Types
Name
(1)
00040288-6410358
00274197+0503417
00452143+1634446
00550564+0134365
01174748-3403258
01174748-3403258(2)
01244599-5745379
02103857-3015313
02103857-3015313(2)
02251947-5837295
02340093-6442068
03231002-4631237
03264225-2102057
04210718-6306022
04351455-1414468
05012406-0010452
05120636-2949540
05120636-2949540(2)
05361998-1920396
07123786-6155528
09532126-1014205
09593276+4523309
11020983-3430355
11544223-3400390
12563961-2718455
14112131-2119503
14482563+1031590
15382417-1953116
15382417-1953116(2)
15515237+0941148
15575011-2952431
17111353+2326333
17260007+1538190
17410280-4642218
18212815+1414010
19355595-2846343
19564700-7542270
20004841-7523070
20025073-0521524
20135152-2806020
20135152-2806020(2)
PSO318
21265040-8140293
21265040-8140293(2)
21543454-1055308
22064498-4217208
22064498-4217208(2)
SpT
Adopted
(2)
SpT
Allers13
(3)
Gravity Score
MedRes
(4)
Gravity Type
MedRes
(5)
Gravity Score
LowRes
(6)
Gravity Type
LowRes
(7)
L1 γ
M8 β
L0 β
L2γ
L1 γ
L1 γ
L0 γ
L0 γ
L0 γ
M9 γ
L0 β/γ
L0γ
L5β γ
L5 γ
M7γ a
L4γ
L4 pec
L5βγ
L1 γ
L1 γ
M9β
L2.3 ± 0.3
M9.0 ± 0.8
L1.5 ± 0.4
L1.0 ± 0.9
L2.2 ± 0.5
L1.9 ± 0.5
L0.7 ± 0.5
L1.0 ± 0.3
L2.2 ± 0.1
M9.4 ± 0.1
L0.8 ± 0.3
M9.0±0.4
L4.1±0.1
L4.2 ± 0.1
M6.8±0.4
L2.4±0.1
L4.1 ± 0.8
L4.3 ± 0.4
L2.1 ± 0.3
L1.5 ± 0.5
M9.7±0.3
2221
2n11
1211
—
1211
2212
2222
2211
2112
1n11
2211
—
—
0n11
2n22
—
2010
—
1222
2211
2n12
VL-G
INT-G
INT-G
—
INT-G
VL-G
VL-G
VL-G
VL-G
INT-G
VL-G
—
—
INT-G
VL-G
—
FLD-G
—
VL-G
VL-G
VL-G
2211
2n01
1211
2122
1211
2222
2222
2211
1122
1n11
2211
2222
0n01
0n01
2n22
2212
2010
0n01
1212
2221
2n02
VL-G
INT-G
INT-G
VL-G
INT-G
VL-G
VL-G
VL-G
VL-G
INT-G
VL-G
VL-G
FLD-G
FLD-G
VL-G
VL-G
FLD-G
FLD-G
VL-G
VL-G
VL-G
M9 γ
L1 β
L4 β
M8 β
L4 pec
L4 γ
L4γ
> L5 γ
L1 γ
L0 pec
L3 β/γ
> L5 γ
L4 pec
M9 γ
L2 γ
M9 γ
> L5 β/γ
L0 γ
L0 γ
L6-L8 γ
L3 γ
L3 γ
L5 γ
L4 β/γ
L3-4 β/γ
M8.3 ± 1.0
L0.8 ± 0.5
L3.4 ± 0.4
M8.3 ± 0.1
L4.7 ± 0.8
L3.5 ± 0.9
L2.1±0.6
L3.3 ± 0.2
L2.3 ± 0.6
L0.4 ± 0.6
L2.6 ± 0.3
L5.3 ± 0.8
L3.5 ± 1.3
M9.3 ± 0.4
L0.9 ± 0.2
L0.2 ± 1.1
L5.5 ± 0.2
L0.0 ± 0.4
L0.0 ± 0.3
L6.8 ± 0.8
L2.4 ± 0.1
L2.4 ± 0.2
L5.5 ± 0.8
L3.3 ± 0.2
L2.7 ± 0.2
2n22
1111
1211
1n11
2010
2211
—
—
2222
2211
1121
—
1111
2n21
2222
2n21
—
2122
2122
—
1221
1221
2n11
1111
—
VL-G
INT-G
INT-G
INT-G
FLD-G
VL-G
—
—
VL-G
VL-G
INT-G
—
INT-G
VL-G
VL-G
VL-G
—
VL-G
VL-G
—
VL-G
VL-G
INT-G
INT-G
—
2n22
1101
1201
1n01
1010
2211
1021
—
2212
2211
1121
—
0101
2n11
2222
2n21
—
2122
2122
—
1221
1221
2n01
1111
—
VL-G
INT-G
INT-G
INT-G
FLD-G
VL-G
INT-G
—
VL-G
VL-G
INT-G
—
FLD-G
INT-G
VL-G
VL-G
—
VL-G
VL-G
—
VL-G
VL-G
INT-G
INT-G
—
62
Faherty et al.
Table 9 — Continued
Name
a
(1)
SpT
Adopted
(2)
SpT
Allers13
(3)
Gravity Score
MedRes
(4)
Gravity Type
MedRes
(5)
Gravity Score
LowRes
(6)
Gravity Type
LowRes
(7)
22064498-4217208(3)
22443167+2043433
22495345+0044046
23153135+0617146
23153135+0617146(2)
L3γ
L6-L8 γ
L1 γ
L0 γ
L0γ
L1.7 ± 0.8
L6.7 ± 0.8
L3.1 ± 0.3
L1.0 ± 0.5
M9.9±0.5
—
—
2011
2222
—
—
—
INT-G
VL-G
—
1?12
—
2011
2212
2222
INT-G
—
INT-G
VL-G
VL-G
Reddening E(B-V)=1.8 and SPT = M7 are a good solution, but spt/reddening is almost degenerate.
—L1γ
——M8–
M9.5β
L7–
L0γ
L4β
—L0γ
——L2β
M9β
L7(γ?)
L2γ
L0–
L6β
L1β
—M7.5γ
L0γ
L4γ
M5–
L0γ
L2–
L0γ
M8β
M9β
L0γ
M9β
——L0γ
—L0γ
——M7β
—L2γ
L0–
L0γ
L5β
M8.5–
M9β
—L4γ
M8.5–
L5γ
L0β
L0γ
—L5β
M8γ
00011217+1535355
00040288-6410358
00182834-6703130
00191296-6226005
00192626+4614078
00274197+0503417
00303013-1450333
00325584-4405058
003323.86-1521309
00344300-4102266
00374306-5846229
00381489-6403529
00425923+1142104
00452143+1634446
00464841+0715177
00470038+6803543
00550564+0134365
00584253-0651239
01033203+1935361
01174748-3403258
01205114-5200349
01231125-6921379
01244599-5745379
01262109+1428057
01294256-0823580
01415823-4633574
01531463-6744181
02103857-3015313
02212859-6831400
02215494-5412054
02235464-5815067
02251947-5837295
02265658-5327032
02292794-0053282
02340093-6442068
02410564-5511466
02411151-0326587
02501167-0151295
02530084+1652532
02535980+3206373
02583123-1520536
03032042-7312300
03164512-2848521
03231002-4631237
03264225-2102057
03350208+2342356
03393521-3525440
03420931-2904317
03421621-6817321
03550477-1032415
03552337+1133437
03572695-4417305b
04062677-3812102
04185879-4507413
04210718-6306022
04351455-1414468
(1)
SpT
(OpT)
(2)
2MASS Designation
L4β
L1γ a
L0γ
L1γ
M8β
L0β
L4-L6β
L0β
L1
L1β
—M9.5β
M9β
L2γ
L0δ
L6-L8γ
L2γ
L1β
L6β
L1β a
L1γ
—L0γ
L2γ
M7β
L0γ
L3β
L0γ a
———M9γ
L0δ
L0γ
L0βγ
L1γ
L1γ
M7β
M7β
M6β
L3β
—L1β
L0γ a
L5βγ a
M7.5β
L0β
L0β
—M8.5β
L3-L6γ
L0β
L1γ
L3γ
L5γ
M7γ
SpT
(IR)
(3)
0.1352±0.0107
0.064±0.012
0.066±0.004
0.0541±0.0047
0.14000±0.06
0.0105±0.0004
0.2497±0.0141
0.12830±0.0034
0.30950±0.0104
0.0939±0.0079
0.05700±0.01
0.0871±0.0038
0.0929±0.017
0.35500±0.01
0.09800±0.022
0.38700±0.004
0.04400±0.024
0.1367±0.002
0.29300±0.0046
0.084±0.015
0.0921±0.0058
0.08278±0.00174
-0.00300±0.01
0.07000±0.012
0.1007±0.0084
0.105±0.01
0.071±0.0037
0.145±0.036
0.05390±0.0044
0.136±0.01
0.09860±0.0008
0.08500±0.01
0.0936±0.0053
-0.00900±0.098
0.088±0.012
0.0965±0.0052
0.07370±0.001
0.0627±0.0087
1.5124±0.0406
0.08700±0.01
0.0625±0.0098
0.04300±0.012
0.0952±0.0082
0.066±0.008
0.108±0.014
0.05400±0.01
0.30580±0.0004
0.0671±0.01
0.0653±0.0028
0.0464±0.0072
0.22500±0.0132
0.06400±0.013
0.00900±0.012
0.0533±0.0084
0.14600±0.008
0.00900±0.014
µRA cos DEC
(00 yr−1 )
(4)
-0.1696±0.0137
-0.047±0.012
-0.0523±0.0126
-0.0345±0.0121
-0.1±0.05
-0.0008±0.0003
-0.0053±0.015
-0.0934±0.003
0.0289±0.0183
-0.0412±0.0108
0.017±0.005
-0.0353±0.0105
-0.0758±0.0152
-0.04±0.01
-0.051±0.01
-0.197±0.004
-0.082±0.024
-0.1226±0.0018
0.0277±0.0047
-0.045±0.008
-0.0404±0.0102
-0.02646±0.00139
0.018±0.019
-0.008±0.012
-0.0564±0.009
-0.049±0.01
-0.0166±0.0127
-0.04±0.007
0.0137±0.0045
-0.01±0.017
-0.0182±0.0009
-0.03±0.018
-0.0028±0.0107
-0.054±0.202
-0.015±0.012
-0.0123±0.0106
-0.0242±0.0019
-0.0306±0.009
0.4305±0.0447
-0.096±0.01
-0.0581±0.0097
0.003±0.012
-0.081±0.0094
0.001±0.016
-0.146±0.015
-0.056±0.01
0.270548±0.0004
-0.0207±0.0122
0.0185±0.0091
-0.0265±0.0065
-0.63±0.015
-0.02±0.019
0.029±0.012
-0.0082±0.0126
0.191±0.018
0.016±0.014
µDEC
(00 yr−1 )
(5)
π
(mas)
(6)
–
(17±1)
–
(21±6)
(31±3)
13.8±1.6
37.42±4.50
21.6±7.2
24.8±2.5
–
–
(23±5)
–
62.5±3.7
–
82±3
–
33.8±4.0
46.9±7.6
(20±3)
(24±4)
21.6±3.3
–
–
–
(25±3)
(21±7)
(32±8)
25.4±3.6
(31±5)
27.4±2.6
–
–
–
(21±5)
(24±4)
21.4±2.6
30.2±4.5
260.63±2.69
17.7±2.5
–
–
–
(17±3)
(41±1)
23.6±1.3
155.89±1.03
–
(21±9)
–
110.8±4.3
–
–
–
–
–
Table 10
Kinematic data on Low Surface Gravity Dwarfs
–
(6.07±2.89)
–
(6.7±2.5)
-19.5±2
–
–
12.95±1.92
-6.37±0.40
–
6.62±0.07
(7.27±2.81)
–
3.16±0.83
-2.75±0.27
-20±1.4
-1.21±0.38
–
–
(3.96±2.09)
(7.22±2.5)
10.9±3
–
–
–
6.409±1.56
(10.41±2.71)
7.82±0.274
–
10.18±0.097
10.36±0.23
–
–
–
11.762±0.721
(11.73±2.44)
6.34±7.98
–
–
–
–
–
–
13.001±0.045
(22.91±2.07)
15.5±1.7
6.92±1.05
–
(13.87±2.62)
–
11.92±0.22
10.73±4.60
–
–
14.70±0.33
16.16±1.76
RV
(km s−1 )
(7)
10
1
1,10
1,10
2,4
3
10,11
1,5
1,6
10
1
1,10
10
1
1,2
7
1,2
5
8
1
1,10
4,9
2
1
10
1
1,10
1
8
1,2
1
2
1,10
1
1
1,10
1
25, 10
24
1
1,10
1
10
1
1,2
12
1,13
1,10
1
10
6,14
1,2
1
10
1,2
1,2
(8)
(Ref)
Brown Dwarf Analogs to Exoplanets
63
M8β
—M9γ
—L4γ
—L5γ
M6.5–
L1γ
—M8γ
L2γ
—M7–
L1–
M8.5γ
—L3β
M8β
L1β
M8–
——L8–
—M9γ
—L3β
—M9β
L1β
M8.5γ
—L1γ
——M9γ
——L0β
M8γ
L0γ
M9–
M9.5γ
———M9β
L3–
M9–
—L4γ
—M9γ
L4γ
L0β
M9δ
L4γ
04362788-4114465
04400972-5126544
04433761+0002051b
04493288+1607226
05012406-0010452
05104958-1843548
05120636-2949540
05181131-3101529
05184616-2756457
05264316-1824315
05341594-0631397
05361998-1920396
05402325-0906326
05575096-1359503
06023045+3910592
06085283-2753583
06272161-5308428
06322402-5010349
06524851-5741376
07123786-6155528
07140394+3702459
08095903+4434216
08561384-1342242
08575849+5708514
09451445-7753150
09532126-1014205
09593276+4523309
G196-3B
10212570-2830427
10220489+0200477
10224821+5825453
TWA28
11064461-3715115
11083081+6830169
11193254-1137466
11271382-3735076
TWA26
114724.10-204021.3
11480096-2836488
11544223-3400390
TWA27A
12074836-3900043
12271545-0636458
TWA29
12474428-3816464
12535039-4211215
12563961-2718455
14112131-2119503
14252798-3650229
15104786-2818174
15291017+6312539
15382417-1953116
15470557-1626303A
15474719-2423493
15515237+0941148
15525906+2948485
15575011-2952431
16154255+4953211
(1)
SpT
(OpT)
(2)
2MASS Designation
M9γ
L0γ
M9γ
M9γ
L3γ
L2β
L5β
M7β
L1γ
M7β
M8γ
L2γ
M9β
M7γ
L1β
L0γ
L0βγ
L4γ
—L1γ
M7.5β
L6p
M8γ
L8—
M9β
M9β
L3γ
L3γ
L4βγ
M9β
L1β
M9γ
M9γ
L1γ
L7γ
L0δ
M9γ
L7γ
L1β
L1β
M8γ
L1γ
M8.5β
L0γ
M9γ
M9.5γ
L4β
M8β
L4γ
M9β
M8β
L4γ
M9β
L0β
>L5γ
L0β
L1γ
L3-L6γ
SpT
(IR)
(3)
0.073±0.012
0.0458±0.0062
0.02800±0.014
0.0196±0.0094
0.19030±0.0095
0.0882±0.0095
-0.01000±0.013
0.0416±0.0068
0.02860±0.0042
0.0247±0.0093
0.00200±0.012
0.02460±0.0053
0.0376±0.0098
0.00000±0.005
0.15700±0.01
0.00890±0.0035
0.0104±0.0066
-0.10020±0.0052
0.00100±0.0034
-0.03570±0.0049
-0.0984±0.0069
-0.1833±0.0081
-0.0576±0.0078
-0.4181±0.0044
-0.0345±0.0016
-0.07000±0.007
-0.08700±0.009
-0.13230±0.0107
-0.0526±0.0131
-0.15620±0.0066
-0.80700±0.01
-0.06720±0.0006
-0.0408±0.0076
-0.2389±0.0026
-.1451±0.0149
-0.0613±0.0138
-0.08120±0.0039
-0.1221±0.012
-0.0743±0.0135
-0.16100±0.008
-0.06300±0.002
-0.0572±0.0079
-0.1141±0.0111
-0.04030±0.0117
-0.03320±0.0071
-0.0388±0.009
-0.0674±0.0102
-0.07800±0.009
-0.28489±0.0014
-0.1092±0.0081
-0.1132±0.0033
0.02600±0.007
-0.0539±0.0087
-0.13500±0.009
-0.07000±0.022
-0.16200±0.01
-0.01000±0.012
-0.08000±0.012
µRA cos DEC
(00 yr−1 )
(4)
0.013±0.016
0.0078±0.0105
-0.099±0.014
-0.038±0.0092
-0.1428±0.0125
-0.0399±0.0106
0.08±0.015
0.0008±0.0081
-0.016±0.004
-0.0227±0.0095
-0.007±0.012
-0.0306±0.005
-0.0292±0.0097
0±0.005
-0.504±0.01
0.0107±0.0035
0.0651±0.0123
-0.0046±0.0088–
0.0292±0.0033
0.0791±0.0048
-0.171±0.0089
-0.2019±0.013
-0.0194±0.0081
-0.3706±0.0113
0.0436±0.0119
-0.06±0.009
-0.126±0.012
-0.2021±0.0137
-0.0375±0.0163
-0.429±0.0068
-0.73±0.01
-0.014±0.0006
-0.0066±0.0102
-0.1922±0.0092
-0.0724±0.016
0.0132±0.0208
-0.0277±0.0021
-0.0745±0.0113
-0.0194±0.0161
0.012±0.007
-0.023±0.003
-0.0248±0.0105
-0.0646±0.0109
-0.0203±0.017
-0.0166±0.0095
-0.0121±0.0132
-0.0565±0.0127
-0.073±0.011
-0.46308±0.001
-0.0399±0.0098
0.0447±0.0091
-0.045±0.007
-0.1253±0.009
-0.127±0.008
-0.05±0.022
-0.06±0.01
-0.028±0.012
0.018±0.012
µDEC
(00 yr−1 )
(5)
Table 10 — Continued
(23±6)
–
–
–
51±3.7
–
–
–
21.4±6.9
–
–
25.6±9.4
–
1.9±1
88.5±1.6
32±3.6
–
–
31.3±3.2
22.9±9.1
80.10±4.8
–
–
–
–
–
–
41±4.1
–
26.4±11.5
54.3±2.5
18.1±0.5
–
–
(35±5)
–
23.82±2.58
(32±4)
–
–
19.1±0.4
(15±3)
–
12.66±2.07
–
–
–
–
86.45±0.83
–
–
–
–
–
–
48.8±2.7
–
–
π
(mas)
(6)
14.972±1.446
–
16.97±0.76
–
21.77±0.66
–
–
–
24.35±0.19
–
–
22.065±0.695
–
30.3±2.8
–
26.35±0.07
–
–
–
–
–
–
–
–
–
–
2.7±0.7
–
–
-7.9±4.8
19.29±0.11
(13.3±1.8)
–
–
8.5±3.3
–
11.6±2
(9.61±)
–
–
11.2±2
(9.48±1.91)
–
(7.74±2.04)
–
–
–
-0.9±2.5
5.37±0.25
–
–
–
–
-6.52±0.35
–
-18.43±0.11
–
-25.59±3.18
RV
(km s−1 )
(7)
1,2
10
1,2
10
1,6
10
1
10
1,8
10
1
1,8
10
12
1
1,8
10
1,10
8
8
26
10
10
10
10
1
1
6
10
8
1
18
10
10
27
10
15,16
28
10
1
16,19
17
10
15
17
10
10
1
13,14
10
10
1
10
1
2
1,14
1
1
(8)
(Ref)
64
Faherty et al.
L0γ
L3.5γ
—L4.5—
—M9γ
L0γ
M9γ
L5β
—M9γ
——M8–
L1.5–
—L3γ
—L4β
—L0–
—L4γ
L3γ
L0γ
——L6.5p–
L4γ
L0γ
L0β
L2γ
M8.5–
L3–
——M9–
M7–
17111353+2326333
17260007+1538190
17410280-4642218
18212815+1414010
19350976-6200473
19355595-2846343
19564700-7542270
20004841-7523070
20025073-0521524
20113196-5048112
20135152-2806020
20282203-5637024
20334473-5635338
20391314-1126531
20575409-0252302
PSO318
21265040-8140293
21324036+1029494
21543454-1055308
21544859-7459134
21572060+8340575
22025794-5605087
22064498-4217208
22081363+2921215
22134491-2136079
22351658-3844154
22353560-5906306
22443167+2043433
22495345+0044046
23153135+0617146
23224684-3133231
23225299-6151275
23231347-0244360
23255604-0259508
23360735-3541489
23433470-3646021
23453903+0055137
23520507-1100435
L1β
L3γ
L6-L8γ
L4pec
L1γ
M9γ
L2γ
M9γ a
L5-L7γ
L3γ
L0γ
M8.5γ
L0γ
M7β
L2β
L6-L8γ
L3γ
L4β
L5γ
M9.5β
M9γ
M9γ
L4γ a
L3γ
L0γ
L1.5γ
M8.5β
L6-L8γ a
L3β
L0γ
L2β
L3γ a
M8β
L1γ
M9β
L3-L6γ
M9β
M8β
SpT
(IR)
(3)
-0.06300±0.015
-0.04310±0.0071
-0.02040±0.0092
0.23027±0.00016
-0.0043±0.0063
0.03400±0.012
0.00900±0.012
0.069±0.012
-0.09800±0.005
0.0213±0.0081
0.04300±0.012
0.0233±0.0053
0.016±0.0061
0.0485±0.009
0.00160±0.0038
0.13730±0.0013
0.05560±0.0014
0.1078±0.0164
0.17500±0.012
0.0407±0.0022
0.1248±0.0008
0.0496±0.0052
0.128±0.013
0.09070±0.003
0.06000±0.011
0.0505±0.0078
0.0556±0.0051
0.252±0.014
0.07500±0.018
0.05600±0.012
-0.19480±0.0074
0.062±0.01
0.0859±0.0097
0.0783±0.0127
0.0696±0.0082
0.087±0.0083
0.0841±0.0134
0.0881±0.009
µRA cos DEC
(00 yr−1 )
(4)
-0.035±0.012
-0.0557±0.0052
-0.343±0.0137
-0.24149±0.00012
-0.0533±0.0162
-0.058±0.012
-0.059±0.012
-0.11±0.004
-0.11±0.008
-0.0713±0.0145
-0.068±0.012
-0.0604±0.0106
-0.0731±0.0125
-0.0898±0.009
-0.0863±0.0039
-0.1387±0.0014
-0.1018±0.003
0.0297±0.0181
0.009±0.012
-0.0796±0.0122
0.0441±0.0154
-0.0696±0.0103
-0.181±0.008
-0.0162±0.0037
-0.063±0.017
-0.0757±0.0109
-0.081±0.0108
-0.214±0.011
0.026±0.018
-0.039±0.012
-0.5273±0.0075
-0.085±0.009
-0.0435±0.0106
-0.0958±0.011
-0.0807±0.0099
-0.0987±0.0125
-0.0461±0.0117
-0.1145±0.0085
µDEC
(00 yr−1 )
(5)
–
28.6±2.9
–
106.65±0.23
–
–
–
(31±1)
–
–
–
–
–
–
70.1±3.7
40.7±2.4
31.3±2.6
–
–
(21±7)
–
–
(35±2)
21.2±0.7
–
(22±2)
(23±5)
(54±4)
–
–
58.6±5.6
(22±1)
–
–
–
–
–
–
π
(mas)
(6)
-20.69±0.75
-20.54±0.84
-5.7±5.1
9.08±0.17
–
–
–
4.397±2.842
–
–
-6.53±0.24
–
–
–
-24.68±0.61
−6.0+0.8
−1.1
10.03±0.49
–
–
(6.21±3.1)
–
–
(7.6±2.0)
-15.59±1.93
-4.92±4.18
(-4.9±3.1)
(1.71±3.14)
(-15.5±1.7)
-3.26±0.90
-14.69±0.52
33.86±1.11
6.747±0.75
–
–
–
–
–
–
RV
(km s−1 )
(7)
1
1,6
20
1,22
10
1
1
1
1
10
1
10
10
10
8
21,23
1
10
1
1,10
10
10
1
1,6
1,2
10
1,10
1,2
1,2
1
1,8
1
10
10
10
10
10
10
(8)
(Ref)
SpeX data we default to the resultant type and classification with that data.
b
These sources were listed in Filippazzo et al. (2015) as members of associations but as has been noted in Table 12, we have downgraded them to ambiguos young objects
Note. — References: 1=This Paper,2=Faherty et al. (2009),3=Dahn et al. (2002),4=Reiners & Basri (2009),5=Marocco et al. (2013),6=Zapatero Osorio et al. (2014),7=Gizis et al.
(2015),8=Faherty et al. (2012),9=Riedel (2015),10=Gagné et al. (2015b),11=Vrba et al. (2004),12=Shkolnik et al. (2012),13=Dieterich et al. (2014),14=Blake et al. (2010),15=Weinberger et al.
(2013),16=Mohanty et al. (2003),17=Gagné et al. (2014a),18=Teixeira et al. (2008),19=Ducourant et al. (2014),20=Schneider et al. (2014),21=Liu et al. (2013), 22=Sahlmann et al. (2016),
23=Allers et al. (2016), 24=Henry et al. (2006), 25=Tinney et al. (1995), 26=Dittmann et al. (2014), 27=Kellogg et al. (2016), 28=Schneider et al. (2016)
a
These sources have new infrared spectra presented in this paper. In the majority of cases we use the infrared spectral type and gravity classification diagnosed in this work. If an object had
(1)
SpT
(OpT)
(2)
2MASS Designation
Table 10 — Continued
Brown Dwarf Analogs to Exoplanets
65
66
Faherty et al.
Table 11
Kinematics for target dwarfs
Name
(1)
U
(2)
V
(3)
W
(4)
X
(5)
Y
(6)
Z
(7)
00325584-4405058
003323.86-1521309
00452143+1634446
00470038+6803543
01231125-6921379
02235464-5815067
02411151-0326587
03350208+2342356
03393521-3525440
03552337+1133437
05012406-0010452
05184616-2756457
05361998-1920396
05575096-1359503
06085283-2753583
10220489+0200477
10224821+5825453
TWA26
TWA27A
14252798-3650229
15525906+2948485
17260007+1538190
18212815+1414010
20575409-0252302
PSO318
21265040-8140293
22081363+2921215
232246843133231
-10.77 ± 3.85
-52.85 ± 5.68
-22.62 ± 1.47
-8.58 ± 1.06
-7.92 ± 1.96
-7.94 ± 0.86
-9.68 ± 4.71
-16.91 ± 1.77
-13.32 ± 0.35
-5.53 ± 0.4
-15.15 ± 0.83
-10.99 ± 0.93
-10.85 ± 1.41
-22.15 ± 7.41
-15.51 ± 0.45
14.87 ± 4.49
-69.35 ± 2.74
-9.02 ± 1.5
-7.62 ± 0.94
-5.23 ± 0.21
-9.73 ± 0.88
-8.66 ± 1.05
12.91 ± 0.12
-12.44 ± 0.45
-10.4 ± 0.7
-7.02 ± 1.07
-15.2 ± 0.87
40.26 ± 2.74
-32.08 ± 8.55
-26.91 ± 3.93
-14.31 ± 1.21
-27.83 ± 1.22
-20.39 ± 2.71
-18.46 ± 1.19
-11.49 ± 1.49
-11.46 ± 2.11
-4.95 ± 0.52
-26.32 ± 1.18
-27 ± 1.74
-21.09 ± 1.55
-18.95 ± 1.83
-18.46 ± 8.29
-19.93 ± 0.34
-53.28 ± 19.96
-67.62 ± 3.48
-18.29 ± 1.94
-18.24 ± 1.77
-26.29 ± 0.27
-22.44 ± 1.11
-21.01 ± 1.34
4.62 ± 0.11
-19.97 ± 0.5
-16.4 ± 0.6
-18.57 ± 1.09
-18.97 ± 1.83
-30.87 ± 3.18
-8.34 ± 2.26
3.23 ± 0.86
-5.02 ± 0.84
-13.53 ± 0.49
-1.82 ± 2.42
-1.11 ± 0.7
-1.39 ± 6.56
-8.08 ± 1.95
-0.1 ± 0.85
-15.34 ± 0.62
-1.08 ± 1.07
-8.64 ± 1.37
-7.49 ± 1.06
-9.3 ± 9.91
-7.79 ± 0.51
-49.14 ± 14.81
0.1 ± 0.87
-3.52 ± 1.42
-3.52 ± 1.03
-14.11 ± 0.19
-4.71 ± 0.78
-6.26 ± 1.11
-11.30 ± 0.06
9.47 ± 0.39
-9.8 ± 0.8
-3.67 ± 0.39
-8.76 ± 1.13
-24.72 ± 1.27
8.96 ± 2.59
-1.86 ± 0.18
-5.66 ± 0.33
-6.52 ± 0.24
14.9 ± 2.11
4.29 ± 0.4
-21.39 ± 2.55
-36.8 ± 2.02
-2.1 ± 0.01
-7.72 ± 0.3
-16.76 ± 1.16
-23.81 ± 6.57
-24 ± 7.34
-309.69 ± 83.51
-16.84 ± 1.82
-11.07 ± 3.8
-10.57 ± 0.48
9.92 ± 1.02
19.49 ± 0.41
8.56 ± 0.08
8.78 ± 0.47
24.62 ± 2.4
6.74 ± 0.01
8.66 ± 0.45
15.2 ± 0.6
17.55 ± 1.41
3.64 ± 0.12
5.55 ± 0.51
-9.24 ± 2.67
8.46 ± 0.82
9.48 ± 0.55
10.23 ± 0.37
-27.1 ± 3.84
-20.41 ± 1.88
1.63 ± 0.19
10.13 ± 0.55
-3.19 ± 0.02
0.25 ± 0.01
-6.02 ± 0.42
-28.98 ± 8
-22.27 ± 6.81
-257.52 ± 69.45
-23.54 ± 2.54
-20.45 ± 7.02
5.61 ± 0.26
-35.32 ± 3.63
-44.22 ± 0.94
-6.42 ± 0.06
9.7 ± 0.52
19.25 ± 1.88
6.17 ± 0.01
8.9 ± 0.47
7.2 ± 0.3
-20.48 ± 1.64
43.76 ± 1.4
1.46 ± 0.13
-41.15 ± 11.89
-39.09 ± 3.8
-11.54 ± 0.67
1.1 ± 0.04
-33.76 ± 4.78
-29.71 ± 2.74
-30.27 ± 3.6
-18.31 ± 1
-5.15 ± 0.03
-4.64 ± 0.18
-8.06 ± 0.56
-23.02 ± 6.35
-15.21 ± 4.65
-131.51 ± 35.46
-11.12 ± 1.2
24.35 ± 8.36
13.98 ± 0.64
19.9 ± 2.04
20.06 ± 0.42
4.39 ± 0.04
15.74 ± 0.85
15.1 ± 1.48
2.11 ± 0.01
-6.96 ± 0.36
-14.6 ± 0.6
-16.95 ± 1.36
-17.14 ± 0.55
-15.97 ± 1.47
Note. — Data is only presented for targets with measured parallax, or measured parallax and radial velocity. While the actual uncertainties
are best described by a radially-oriented ellipsoid, they are given here for comparison to other values.
SpT
(2)
––
L1 γ
––
––
M8 –
M9.5 β
L7 –
L0 γ
L4 β
––
L0 γ
––
––
L2 β
M9 β
L7 (γ?)
L2 γ
L0 –
L6 β
L1 β
––
M7.5 γ
L0 γ
L4 γ
M5 –
L0 γ
L2 –
L0 γ
M8 β
M9 β
L0 γ
M9 β
––
––
L0 γ
––
L0 γ
––
––
M7 β
––
L2 γ
L0 –
L0 γ
L5 β
M8.5 –
M9 β
––
L4 γ
M8.5 –
L5 γ
L0 β
L0 γ
––
L5 β
M8 γ
M8 β
Name
(1)
00011217+1535355
00040288-6410358
00182834-6703130
00191296-6226005
00192626+4614078
00274197+0503417
00303013-1450333
00325584-4405058
003323.86-152130.9
00344300-4102266
00374306-5846229
00381489-6403529
00425923+1142104
00452143+1634446
00464841+0715177
00470038+6803543
00550564+0134365
00584253-0651239
01033203+1935361
01174748-3403258
01205114-5200349
01231125-6921379
01244599-5745379
01262109+1428057
01294256-0823580
01415823-4633574
01531463-6744181
02103857-3015313
02212859-6831400
02215494-5412054
02235464-5815067
02251947-5837295
02265658-5327032
02292794-0053282
02340093-6442068
02410564-5511466
02411151-0326587
02501167-0151295
02530084+1652532
02535980+3206373
02583123-1520536
03032042-7312300
03164512-2848521
03231002-4631237
03264225-2102057
03350208+2342356
03393521-3525440
03420931-2904317
03421621-6817321
03550477-1032415
03552337+1133437
03572695-4417305c
04062677-3812102
04185879-4507413
04210718-6306022
04351455-1414468
04362788-4114465
L4 β
L1 γ a
L0 γ
L1 γ
M8 β
L0 β a
L4-L6 β
L0 β
L1
L1 β
––
M9.5 β
M9 β
L2 γ a
L0 δ
L6-L8 γ
L2 γ a
L1 β
L6 β
L1 β a
L1 γ
––
L0 γ a
L2 γ
M7 β
L0 γ
L3 β
L0 γ a
––
––
––
M9 γ a
L0 δ
L0 γ
L0β γ a
L1 γ
L1 γ
M7 β
M7 β
M6 β
L3 β
––
L1 β
L0 γ a
L5 βγ a
M7.5 β
L0 β
L0 β
––
M8.5 β
L3-L6 γ
L0 β
L1 γ
L3 γ
L5 γ a
M7 γ a
M9 γ
SpT
(3)
97.4
99.6
99.9
99.7
72
0
26.5
67.3
0
98.7
0
99.9
19.6
99.9
31.3
100
9.2
96.5
51.2
98.4
> 99.9
100
0
0
95.9
100
> 99.9
99.4
0.8
99.8
100
57.5
> 99.9
79.8
100
> 99.9
48.5
92.9
...
57.8
88.9
40.7
96.9
99.7
99.4
76.2
40.2
99.7
99.8
93.8
99.6
99.2
0.3
92.7
99.5
0.5
99
BANYAN II
Prob.
(4)
1.1
0
< 0.1
< 0.1
13.3
100
2.6
1
99.8
< 0.1
99.3
< 0.1
53.1
0.1
48.8
0.1
48.3
0.3
15.7
0
< 0.1
0
99.3
99.9
18.9
0
< 0.1
0
99.4
0
0
1.2
< 0.1
1.3
0
< 0.1
0
1.1
...
26.5
< 0.1
0
3.2
0
1
4.9
0.2
< 0.1
< 0.1
< 0.1
1.1
0
79.6
< 0.1
2.4
93.8
0
Contam.
(5)
AB DOR
TUC-HOR
TUC-HOR
TUC-HOR
AB DOR
ARGUS
ARGUS
TUC-HOR
COLUMBA
TUC-HOR
BETA PIC
TUC-HOR
AB DOR
ARGUS
COLUMBA
AB DOR
BETA PIC
AB DOR
ARGUS
TUC-HOR
TUC-HOR
TUC-HOR
COLUMBA
BETA PIC
BETA PIC
TUC-HOR
TUC-HOR
TUC-HOR
AB DOR
TUC-HOR
TUC-HOR
BETA PIC
TUC-HOR
BETA PIC
TUC-HOR
TUC-HOR
TUC-HOR
BETA PIC
FIELD
BETA PIC
TUC-HOR
TUC-HOR
AB DOR
TUC-HOR
AB DOR
BETA PIC
ARGUS
TUC-HOR
TUC-HOR
TUC-HOR
AB DOR
TUC-HOR
COLUMBA
TUC-HOR
BETA PIC
BETA PIC
TUC-HOR
Group
(6)
35.12
38.76
48.71
0
66.42
0
29.65
91.3
0
41.91
0
62.83
0
99.42
24.44
99.95
0
52.5
36.95
30.63
64.54
99.97
0
0
0
99.84
33.25
96.34
0
99.91
99.98
40.52
65.9
81.02
99.56
71.24
0
0
0
20.61
0
31.44
50.99
73.08
44.89
32.48
43.82
27.86
28.33
0
100
54.84
41.07
28.97
52.74
0
87.97
LACEwING
Prob.
(7)
AB DOR
TUC-HOR
TUC-HOR
NONE
AB DOR
NONE
AB DOR
AB DOR
NONE
TUC-HOR
NONE
TUC-HOR
NONE
ARGUS
AB DOR
AB DOR
NONE
AB DOR
Hyades
TUC-HOR
TUC-HOR
TUC-HOR
NONE
NONE
NONE
TUC-HOR
TUC-HOR
TUC-HOR
NONE
TUC-HOR
TUC-HOR
AB DOR
TUC-HOR
AB DOR
TUC-HOR
TUC-HOR
NONE
NONE
NONE
AB DOR
NONE
TUC-HOR
TUC-HOR
TUC-HOR
AB DOR
ARGUS
COMA BER
TUC-HOR
TUC-HOR
NONE
AB DOR
TUC-HOR
Octans
AB DOR
TUC-HOR
NONE
TUC-HOR
Group
(8)
Table 12
Moving Group membership probabilities
43.1
100
76.7
99.7
99
100
98.1
96
60
70.1
71
58
64.9
37
99
56
68
14.3
16
100
100
100
0
99
100
83.5
98.8
56
84
61
95
68
43
96
80
99.9
35
98.8
0
100
77.4
98
99.8
92
66
98
0
96.5
99.7
99.9
18
62
75
91.6
96
89
87
Convergence
Prob.
(9)
AB DOR
TUC-HOR
TUC-HOR
TUC-HOR
AB DOR
CHA-NEAR
CHA-NEAR
AB DOR
CHA-NEAR
TWHYA
CHA-NEAR
TUC-HOR
AB DOR
CHA-NEAR
TWHYA
AB DOR
AB DOR
COLUMBA
CHA-NEAR
TUC-HOR
TUC-HOR
TUCHOR
NONE
CHA-NEAR
COLUMBA
TUC-HOR
TUC-HOR
TUC-HOR
CHA-NEAR
TUC-HOR
TUCHOR
TUC-HOR
TUC-HOR
AB DOR
TUC-HOR
TUC-HOR
CHA-NEAR
TUC-HOR
NONE
BETA PIC
AB DOR
TUC-HOR
AB DOR
TUC-HOR
AB DOR
COLUMBA
NONE
TUC-HOR
TUC-HOR
TWHYA
AB DOR
TUC-HOR
CHA-NEAR
AB DOR
BETA PIC
CHA-NEAR
TUC-HOR
Group
(10)
99.04
100
99.83
89.44
99
100
97.87
100
100
70.48
100
95.91
83.02
100
99
100
100
91.65
96
91
95.18
100
100
100
72.46
100
99.49
100
62
100
100
57
77.57
100
100
95.36
90
67.1
100
97
49.82
87
99.25
100
99
79
100
51.92
98.71
93.24
100
53
100
64.9
99
100
100
BANYAN I
Prob.
(11)
AB DOR
TUC-HOR
TUC-HOR
TUC-HOR
AB DOR
OLD
ARGUS
AB DOR
OLD
TUC-HOR
OLD
TUC-HOR
BETA PIC
ARGUS
COLUMBA
AB DOR
OLD
BETA PIC
OLD
TUC-HOR
TUC-HOR
TUCHOR
OLD
OLD
COLUMBA
TUC-HOR
TUC-HOR
TUC-HOR
AB DOR
TUC-HOR
TUCHOR
TUC-HOR
TUC-HOR
OLD
TUC-HOR
TUC-HOR
OLD
OLD
OLD
BETA PIC
BETA PIC
OLD
AB DOR
TUC-HOR
AB DOR
OLD
OLD
COLUMBA
TUC-HOR
COLUMBA
AB DOR
TUC-HOR
OLD
AB DOR
BETA PIC
OLD
TUC-HOR
Group
(12)
AM
HLM
AM
HLM
HLM
AM
AM
HLM
NM
AM
NM
HLM
AM
BM
AM
BM
NM
AM
AM
HLM
HLM
BM
NM
AM
AM
HLM
HLM
HLM
AM
HLM
BM
AM
AM
AM
HLM
HLM
AM
AM
NM
AM
AM
AM
AM
HLM
HLM
AM
AM
AM
HLM
AM
BM
AM
AM
AM
AM
NM
HLM
Decision
(13)
Brown Dwarf Analogs to Exoplanets
67
SpT
(2)
––
M9 γ
––
L4 γ
––
L5 γ
M6.5 –
L1 γ
––
M8 γ
L2 γ
––
M7 –
L1 –
M8.5 γ
––
L3 β
M8 β
L1 β
M8 –
––
––
L8 –
––
M9 γ
––
L3 β
––
M9 β
L1 β
M8.5 γ
––
L1 γ
––
––
M9 γ
––
––
L0 β
M8 γ
L0 γ
M9 –
M9.5 γ
––
––
––
M9 β
L3 –
M9 –
––
L4 γ
––
M9 γ
L4 γ
L0 β
M9 δ
L4 γ
L0 γ
Name
(1)
04400972-5126544
04433761+0002051c
04493288+1607226
05012406-0010452
05104958-1843548
05120636-2949540
05181131-3101529
05184616-2756457
05264316-1824315
05341594-0631397
05361998-1920396
05402325-0906326
05575096-1359503
06023045+3910592
06085283-2753583
06272161-5308428
06322402-5010349
06524851-5741376
07123786-6155528
07140394+3702459
08095903+4434216
08561384-1342242
08575849+5708514
09451445-7753150
09532126-1014205
09593276+4523309
G196-3B
10212570-2830427
10220489+0200477
10224821+5825453
TWA 28
11064461-3715115
11083081+6830169
11193254-1137466
11271382-3735076
TWA26
114724.10-204021.3
11480096-2836488
11544223-3400390
TWA27A
12074836-3900043
12271545-0636458
TWA29
12474428-3816464
12535039-4211215
12563961-2718455
14112131-2119503
14252798-3650229
15104786-2818174
15291017+6312539
15382417-1953116
15470557-1626303 A
15474719-2423493
15515237+0941148
15525906+2948485
15575011-2952431
16154255+4953211
17111353+2326333
L0 γ
M9 γ
M9 γ
L3 γ a
L2 β
L5 β a
M7 β
L1 γ
M7 β
M8 γ
L2 γ a
M9 β
M7 γ
L1 β
L0 γ
L0 β γ
L4 γ
––
L1 γ a
M7.5 β
L6p
M8 γ
L8 –
M9 β
M9 β a
L3 γ
L3 γ
L4 β γ
M9 β
L1 β
M9 γ a
M9 γ
L1 γ
L7γ
L0 δ
M9 γ
L7γ
L1 β
L1 β a
M8 γ
L1 γ
M8.5 β
L0 γ
M9 γ
M9.5 γ
L4 β a
M8 β a
L4 γ
M9 β
M8 β
L4 γ a
M9 β
L0 β
>L5 γ a
L0 β
L1 γ a
L3-L6 γ
L1 β a
SpT
(3)
86.7
99.7
1.6
20.8
68.6
53.1
96.2
99.4
93.5
0
99.2
72
36.4
2.4
0
87.2
29.5
2.9
78.7
88.9
80.7
4.9
...
90.4
28.7
2.1
41
92.4
2.6
0
99.9
94.6
6
92
92.5
100
91.2
68.9
91
100
99.6
1.5
91.6
36.4
59.3
15.9
0.1
99.9
59.1
24.6
0
10.6
0
0.1
0
0
13.7
0
BANYAN II
Prob.
(4)
< 0.1
3.4
98.2
0.4
6.6
1
8.8
0.1
12.8
99.8
0.1
16.1
0
0.8
100
9.1
76.7
85.4
37.6
0.5
27.4
< 0.1
...
2.8
0
0.3
23.3
< 0.1
6.1
99.9
0
< 0.1
89.9
0.0005
< 0.1
0
<0.1
< 0.1
0.6
0
0
0.6
0
0
0
< 0.1
27.8
0.1
60.2
79.2
100
63.4
98.8
99.1
92.7
100
69
100
Contam.
(5)
TUC-HOR
BETA PIC
BETA PIC
COLUMBA
COLUMBA
BETA PIC
COLUMBA
COLUMBA
COLUMBA
COLUMBA
COLUMBA
COLUMBA
TWHYA
AB DOR
BETA PIC
CARINA
AB DOR
AB DOR
BETA PIC
ARGUS
ARGUS
TWHYA
FIELD
CARINA
TWHYA
TWHYA
AB DOR
TWHYA
AB DOR
AB DOR
TWHYA
TWHYA
CARINA
TWHYA
TWHYA
TWHYA
TWHYA
TWHYA
ARGUS
TWHYA
TWHYA
TWHYA
TWHYA
TWHYA
TWHYA
TWHYA
TWHYA
AB DOR
ARGUS
AB DOR
BETA PIC
AB DOR
BETA PIC
AB DOR
AB DOR
BETA PIC
AB DOR
BETA PIC
Group
(6)
27.19
59.73
0
82.87
23.73
0
0
74.91
0
0
35.23
0
0
46.33
0
37.72
41.77
0
39.12
0
21.49
0
30.21
41.86
87.4
0
20.19
0
0
0
100
0
25.05
16
0
100
19
91.53
76.31
100
99.72
0
76.86
0
0
58.05
65.16
99.99
0
0
0
0
34.23
94.65
21.95
0
31.82
0
LACEwING
Prob.
(7)
Group
(8)
AB DOR
AB DOR
NONE
AB DOR
TUC-HOR
NONE
NONE
COLUMBA
NONE
NONE
COLUMBA
NONE
NONE
AB DOR
NONE
AB DOR
AB DOR
NONE
AB DOR
NONE
AB DOR
NONE
HER-LYRr
Octans
COMA BER
NONE
AB DOR
NONE
NONE
NONE
TWHYA
NONE
AB DOR
TWHYA
NONE
TWHYA
TWHYA
TWHYA
TWHYA
TWHYA
TWHYA
NONE
TWHYA
NONE
NONE
TWHYA
TWHYA
AB DOR
NONE
NONE
NONE
NONE
AB DOR
COMA BER
HER-LYRr
NONE
AB DOR
NONE
Table 12 — Continued
98
78
10.9
15.7
78.8
4.7
88.3
69
92
42
97.2
0
14
97
99.5
77.6
90.4
99.7
98
90
91
99
97
92
100
99
99
97.2
75.8
86
39
99.1
81.4
0
97.1
17
100
19
100
92
94
99.8
96
99.9
99
89.6
6
90.4
13
83.1
100
78
95
99
37
94
90.5
Convergence
Prob.
(9)
AB DOR
AB DOR
TWHYA
TUC-HOR
TWHYA
CHA-NEAR
COLUMBA
COLUMBA
COLUMBA
BETA PIC
BETA PIC
TUC-HOR
TWHYA
COLUMBA
CHA-NEAR
CHA-NEAR
NONE
CHA-NEAR
BETA PIC
CHA-NEAR
CHA-NEAR
TWHYA
CHA-NEAR
CHA-NEAR
TUC-HOR
AB DOR
COLUMBA
AB DOR
NONE
AB DOR
TWHYA
COLUMBA
COLUMBA
TWHYA
CHA-NEAR
TWHYA
TWHYA
TWHYA
CHA-NEAR
TWHYA
TWHYA
COLUMBA
TWHYA
TWHYA
COLUMBA
AB DOR
BETA PIC
AB DOR
CHA-NEAR
AB DOR
NONE
AB DOR
TUC-HOR
BETA PIC
TUC-HOR
AB DOR
COLUMBA
BETA PIC
Group
(10)
72.25
79
82.24
100
87.1
88
91.23
87
88.66
99
57
87.3
76
98
49
84.7
94.89
98
58
87.35
92.79
95.92
93.98
67.56
76
69
95
99.3
100
100
100
99.85
96.63
95.87
99.39
100
98
99.93
98
100
100
72.62
95
76
86.18
99.14
83
100
90.45
93.16
100
78.03
97
93
80
100
63
96
BANYAN I
Prob.
(11)
AB DOR
BETA PIC
BETA PIC
OLD
COLUMBA
OLD
COLUMBA
COLUMBA
COLUMBA
OLD
BETA PIC
COLUMBA
TWHYA
OLD
BETA PIC
COLUMBA
NONE
AB DOR
BETA PIC
ARGUS
ARGUS
OLD
ARGUS
OLD
OLD
OLD
AB DOR
TWHYA
OLD
OLD
TWHYA
TWHYA
AB DOR
TWHYA
TWHYA
TWHYA
TWHYA
TWHYA
ARGUS
TWHYA
TWHYA
TWHYA
TWHYA
TWHYA
TWHYA
TWHYA
TWHYA
AB DOR
ARGUS
AB DOR
OLD
AB DOR
OLD
OLD
OLD
OLD
AB DOR
BETA PIC
Group
(12)
AM
AM
AM
AM
AM
AM
AM
BM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
NM
AM
AM
NM
NM
HLM
AM
AM
HLM
AM
BM
HLM
AM
AM
BM
HLM
AM
HLM
AM
AM
AM
AM
BM
AM
AM
NM
AM
NM
AM
AM
NM
AM
NM
Decision
(13)
68
Faherty et al.
L3.5 γ
––
L4.5 —
––
M9 γ
L0 γ
M9 γ
L5 β
––
M9 γ
––
––
M8 –
L1.5 –
––
L3 γ
––
L4 β
––
L0 –
––
L4 γ
L3 γ
L0 γ
––
––
L6.5p –
L4 γ
L0 γ
L0 β
L2 γ
M8.5 –
L3 –
––
––
M9 –
M7 –
17260007+1538190
17410280-4642218
18212815+1414010
19350976-6200473
19355595-2846343
19564700-7542270
20004841-7523070
20025073-0521524
20113196-5048112
20135152-2806020
20282203-5637024
20334473-5635338
20391314-1126531
20575409-0252302
PSO318
21265040-8140293b
21324036+1029494
21543454-1055308
21544859-7459134
21572060+8340575
22025794-5605087
22064498-4217208
22081363+2921215
22134491-2136079
22351658-3844154
22353560-5906306
22443167+2043433
22495345+0044046
23153135+0617146
23224684-3133231
23225299-6151275
23231347-0244360
23255604-0259508
23360735-3541489
23433470-3646021
23453903+0055137
23520507-1100435
L3 γ a
L6-L8 γ a
L4 peca
L1 γ
M9 γ a
L2 γ a
M9 γ a
L5-L7 γ a
L3 γ
L0 γ a
M8.5 γ
L0 γ
M7 β
L2 β
L6-L8 γ a
L3 γ a
L4 β
L5 γ a
M9.5 β
M9 γ
M9 γ
L4 γ a
L3 γ
L0 γ
L1.5 γ
M8.5 β
L6-L8 γ a
L3 β a
L0 γ a
L2 β
L3 γ a
M8 β
L1 γ
M9 β
L3-L6 γ
M9 β
M8 β
SpT
(3)
0
99.7
0
20.8
25.3
53.3
99.4
0
42.6
77.6
44.3
93.4
2.2
0
99.7
9.3
30.8
16.3
99.4
30.8
98.4
99.1
0.2
35.4
96.2
99.8
99.4
0.2
0
0
99.9
30.6
73.4
50.8
68.9
...
90.6
BANYAN II
Prob.
(4)
99.8
1.8
100
0.2
12.6
0
3.5
47.8
< 0.1
39.5
< 0.1
< 0.1
46.6
100
0.1
1.4
61.6
5.6
< 0.1
62.9
< 0.1
1.4
91.2
45.8
< 0.1
< 0.1
0.5
96.1
99.6
54.5
0
54.4
12.3
30.3
4.8
...
4
Contam.
(5)
AB DOR
BETA PIC
NONE
TUC-HOR
ARGUS
TUC-HOR
BETA PIC
BETA PIC
TUC-HOR
BETA PIC
TUC-HOR
TUC-HOR
AB DOR
TUC-HOR
BETA PIC
BETA PIC
ARGUS
ARGUS
TUC-HOR
AB DOR
TUC-HOR
AB DOR
BETA PIC
BETA PIC
TUC-HOR
TUC-HOR
AB DOR
ARGUS
COLUMBA
AB DOR
TUC-HOR
BETA PIC
AB DOR
AB DOR
AB DOR
FIELD
AB DOR
Group
(6)
0
78.78
0
0
0
26.8
84.05
0
0
28.94
0
0
0
0
60.77
76.51
0
0
44.34
0
32.49
41.75
0
0
20.7
50.74
38.38
0
0
0
98.88
0
21.28
30.17
38.46
0
27.22
LACEwING
Prob.
(7)
NONE
ARGUS
NONE
NONE
NONE
TUC-HOR
TUC-HOR
NONE
NONE
BETA PIC
NONE
NONE
NONE
NONE
ARGUS
BETA PIC
NONE
NONE
TUC-HOR
NONE
TUC-HOR
AB DOR
NONE
NONE
TUC-HOR
TUC-HOR
AB DOR
NONE
NONE
NONE
TUC-HOR
NONE
AB DOR
TUC-HOR
TUC-HOR
NONE
AB DOR
Group
(8)
65
94
0
100
100
97
71
0
96.5
100
94.6
81.7
100
0
99
26
92.8
29
100
63.3
41.7
89
99
100
93.6
99.7
69
61
92
0
34
99.9
91.2
74.5
65.9
99.6
57.2
Convergence
Prob.
(9)
BETA PIC
BETA PIC
NONE
TUC-HOR
CHA-NEAR
COLUMBA
BETA PIC
NONE
COLUMBA
BETA PIC
AB DOR
TUC-HOR
COLUMBA
NONE
BETA PIC
CHA-NEAR
CHA-NEAR
CHA-NEAR
TUC-HOR
AB DOR
TUC-HOR
AB DOR
TWHYA
COLUMBA
TUC-HOR
TUC-HOR
AB DOR
CHA-NEAR
COLUMBA
NONE
TUC-HOR
TWHYA
AB DOR
AB DOR
AB DOR
BETA PIC
AB DOR
Group
(10)
80
100
100
97.32
93
97
100
100
66.53
100
69.85
99.85
71.24
100
100
94
53.44
70
99.94
84
98.75
96
66
72
94.01
99.95
99
100
100
100
100
55.28
98.5
60.89
56.17
40.39
97.85
BANYAN I
Prob.
(11)
OLD
BETA PIC
OLD
TUC-HOR
OLD
TUC-HOR
BETA PIC
OLD
TUC-HOR
BETA PIC
TUC-HOR
TUC-HOR
AB DOR
OLD
BETA PIC
TUC-HOR
ARGUS
ARGUS
TUC-HOR
AB DOR
TUC-HOR
AB DOR
BETA PIC
BETA PIC
TUC-HOR
TUC-HOR
AB DOR
OLD
OLD
OLD
TUC-HOR
OLD
AB DOR
TUC-HOR
TUC-HOR
COLUMBA
AB DOR
Group
(12)
NM
AM
NM
AM
AM
AM
HLM
NM
AM
AM
AM
AM
AM
NM
BM
AM
AM
AM
HLM
AM
AM
HLM
NM
AM
HLM
HLM
HLM
NM
NM
NM
HLM
AM
AM
AM
AM
AM
AM
Decision
(13)
(2013) list this object as an M7 VLGsource however we have chosen to list it as an M7.5 β based on the analysis in Gagné et al. (2014d).
the various photometric and absolute magnitude diagrams in this work, we suspect this source is a β Pictoris member. However refined kinematics will confirm this. Furthermore, Allers & Liu
used in this work, this source also has a PPMXL proper motion. Depending on which value is used in the kinematic analysis, the probability of membership varies. Based on its position on
the β pictoris moving group, however we find this unlikely with the given kinematics. The membership of this interesting wide system remains unknown.
c
These sources were listed in Filippazzo et al. (2015) as members of associations but as has been noted in Table 12, we have downgraded them to ambiguos young objects
d
The source 0335+2342 is listed as a bonafide member of β Pictoris in Gagné et al. (2014d) using a 2MASS to WISE proper motion. Aside from the Shkolnik et al. (2012) proper motion
SpeX data we default to the resultant type and classification with that data.
b
Deacon et al. (2016) use the parallax reported in this work to show that this source is co-moving with the M dwarf TYC 9486-927-1. In that work they report a likelihood of membership in
Note. — Computations of BANYAN I and II were done with the web calculator, without photometric data. BANYAN II and LACEwING were computed assuming the objects are young.
The predicted distance and RV (as predicted by LACEwING for the final group) should be compared to the values in Table 10.
a
These sources have new infrared spectra presented in this paper. In the majority of cases we use the infrared spectral type and gravity classification diagnosed in this work. If an object had
SpT
(2)
Name
(1)
Table 12 — Continued
Brown Dwarf Analogs to Exoplanets
69
Note. —
-0.014±0.0006
-0.0277±0.0021
-0.023±0.003
-0.0724±0.016
-0.0745±0.0113
-0.0248 ± 0.0105
-0.0203±0.017
-0.047 ± 0.012
-0.0345 ± 0.0121
-0.0353 ± 0.0105
-0.045 ± 0.008
-0.0404 ± 0.0102
-0.02646±0.00139
-0.049 ± 0.01
-0.0166 ± 0.0127
-0.04 ± 0.007
-0.01 ± 0.017
-0.0182±0.0009
-0.015 ± 0.012
-0.0123 ± 0.0106
0.001 ± 0.016
0.0185 ± 0.0091
0.013 ± 0.016
-0.0796 ± 0.0122
-0.0757 ± 0.0109
-0.081 ± 0.0108
-0.085 ± 0.009
-0.016±0.004
-0.11 ± 0.004
-0.1387±0.0014
-0.04±0.01
-0.1 ± 0.05
-0.0934±0.003
-0.197±0.004
-0.146 ± 0.015
-0.63±0.015
-0.46308±0.001
-0.181 ± 0.008
-0.214 ± 0.011
µDEC
yr−1
(5)
00
18.1±0.5
23.82±2.58
19.1±0.4
(35±5)
(32±4)
(15 ± 3)
12.66±2.07
(17 ± 1)
(21 ± 6)
(23 ± 5)
(20 ± 3)
(24 ± 4)
21.6±3.3
(25 ± 3)
(21 ± 7)
(32 ± 8)
(31 ± 5)
27.4±2.6
(21 ± 5)
(24 ± 4)
(17 ± 3)
(21 ± 9)
(23 ± 6)
(21 ± 7)
(22±2)
(23 ± 5)
(22 ± 1)
21.4±6.9
(31 ± 1)
40.7±2.4
62.5±3.7
(31±3)
21.6±7.2
82±3
(41 ± 1)
110.8±4.3
86.45±0.83
(35 ± 2)
(54 ± 4)
π
mas
(6)
(13.3±1.8)
11.6±2
11.2±2
8.5±3.3
(9.61±)
(9.48 ± 1.91)
(7.74±2.04)
(6.07 ± 2.89)
(6.7 ± 2.5)
(7.27 ± 2.81)
(3.96 ± 2.09)
(7.22 ± 2.5)
10.9±3
6.409 ± 1.56
(10.41 ± 2.71)
7.82 ± 0.274
10.18 ± 0.097
10.36±0.23
11.762 ± 0.721
(11.73 ± 2.44)
13.001 ± 0.045
(13.87 ± 2.62)
14.972 ± 1.446
(6.21 ± 3.1)
(-4.9±3.1)
(1.71 ± 3.14)
6.747 ± 0.75
24.35±0.19
4.397 ± 2.842
−6.0+0.8
−1.1
3.16±0.83
-19.5 ± 2
12.95±1.92
-20±1.4
(22.91 ± 2.07)
11.92±0.22
5.37±0.25
(7.6 ± 2.0)
(-15.5 ± 1.7)
RV
km s−1
(7)
-2.561±0.024
-2.587±0.094
-2.602±0.018
-4.363±0.124
-4.346±0.109
-3.485±0.076
-2.905±0.142
-3.48±0.051
-3.644±0.248
-3.423±0.189
-3.477±0.13
-3.737±0.145
-2.525±0.133
-3.485±0.104
-3.91±0.29
-3.826±0.217
—
-3.509±0.082
-3.538±0.207
-3.679±0.145
-3.348±0.153
-3.848±0.372
-2.872±0.227
-3.219±0.29
—
-3.294±0.189
-3.606±0.04
-3.575±0.28
-2.972±0.028
-4.39±0.052
-3.405±0.031
-2.773±0.129
-3.388±0.289
-4.429±0.033
-4.235±0.022
-4.104±0.034
-4.038±0.009
-3.997±0.009
-4.503±0.007
(8)
LBol
2664.0±81.0
2641.0±192.0
2635.0±73.0
1223.0±90.0
1235.0±80.0
1882.0±84.0
2394.0±236.0
1904.0±63.0
1755.0±258.0
1957.0±226.0
1902.0±152.0
1685.0±145.0
2743.0±317.0
1899.0±123.0
1545.0±264.0
1610.0±207.0
—
1879.0±98.0
1848.0±229.0
1731.0±151.0
2031.0±201.0
1590.0±349.0
2452.0±404.0
2118.0±385.0
—
2076.0±251.0
1793.0±50.0
1808.0±301.0
2375.0±74.0
1213.0±38.0
2059.0±45.0
2637.0±371.0
2066.0±413.0
1230.0±27.0
1346.0±26.0
1478.0±58.0
1535.0±53.0
1566.0±59.0
1184.0±10.0
Tef f
35.39±10.23
35.3±13.73
33.04±9.32
6.57±1.94
6.64±1.89
13.75±0.75
24.74±8.43
16.11±2.9
14.88±4.52
22.03±9.39
16.36±3.69
13.97±3.51
55.56±33.21
16.2±3.4
11.89±5.36
13.03±4.31
—
15.91±3.12
15.97±4.29
14.49±3.49
23.17±9.75
12.38±6.11
38.5±22.59
28.51±15.15
—
25.13±11.58
15.05±2.66
19.94±9.23
24.28±5.63
6.44±1.29
24.98±4.62
66.62±48.99
41.64±29.47
11.84±2.63
13.77±2.6
21.62±6.14
22.52±6.07
23.15±6.37
10.46±1.49
Massa
18
15,16
16,19
27
28
17
15
1
1,10
1,10
1
1,10
4,9
1
1,10
1
1,2
1
1
1,10
1
1
1,2
1,10
10
1,10
1
1,8
1
21
1
2,4
1,5
7
1,2
6,14
13,14
1
1,2
Ref
These sources have new infrared spectra presented in this paper. In the majority of cases we use the infrared spectral type and gravity classification diagnosed in this work. If an object had
SpeX data we default to the resultant type and classification with that data.
a
M8.5 γ
M9 γ
M8 γ
––
––
L0 γ
M9.5 γ
TW HYDRAE
TWA28
TWA26
TWA27A
11193254-1137466
114724.10-204021.3
12074836-3900043
TWA29
-0.06720±0.0006
-0.08120±0.0039
-0.06300±0.002
-.1451±0.0149
-0.1221±0.012
-0.0572 ± 0.0079
-0.04030±0.0117
0.064 ± 0.012
0.0541 ± 0.0047
0.0871 ± 0.0038
0.084 ± 0.015
0.0921 ± 0.0058
0.08278±0.00174
0.105 ± 0.01
0.071 ± 0.0037
0.145 ± 0.036
0.136 ± 0.01
0.09860±0.0008
0.088 ± 0.012
0.0965 ± 0.0052
0.066 ± 0.008
0.0653 ± 0.0028
0.073 ± 0.012
0.0407 ± 0.0022
0.0505 ± 0.0078
0.0556 ± 0.0051
0.062 ± 0.01
L1 γ a
L1 γ
M9.5 β
L1 β a
L1 γ
––
L0 γ
L3 β
L0 γ a
––
––
L0β γ
L1 γ
L0 γ a
––
M9 γ
M9.5 β
L1.5 γ
M8.5 β
L3 γ a
L1 γ
––
––
L1 β
––
M7.5 γ
L0 γ
L2 –
L0 γ
M9 β
L0 γ
L0 γ
––
L0 γ
L4 γ
M8 β
––
––
––
L2 γ
M9 γ a
M9 γ
M8 γ
L7γ
L7γ
L1 γ
L0 γ
0.02860±0.0042
0.069 ± 0.012
0.13730±0.0013
M9 γ a
L6-L8 γ a
M9 γ
––
L1 γ
0.35500±0.01
L2 γ a
L2 β
L1 γ
0.14000 ± 0.06
0.12830±0.0034
0.38700±0.004
0.108 ± 0.014
0.22500±0.0132
-0.28489±0.0014
0.128 ± 0.013
0.252 ± 0.014
µRA
yr−1
(4)
00
M8 β
L0 β
L6-L8 γ
L5βγ a
L3-L6 γ
L4γ
L4 γ a
L6-L8 γ a
SpT
NIR
(3)
M8 –
L0 γ
L7 (γ?)
L5 β
L5 γ
L3 –
L4 γ
L6.5p –
SpT
OpT
(2)
COLUMBA
05184616-2756457
TUCANA HOROLOGIUM
00040288-6410358
00191296-6226005
00381489-6403529
01174748-3403258
01205114-5200349
01231125-6921379
01415823-4633574
01531463-6744181
02103857-3015313
02215494-5412054
02235464-5815067
02340093-6442068
02410564-5511466
03231002-4631237
03421621-6817321
04362788-4114465
21544859-7459134
22351658-3844154
22353560-5906306
23225299-6151275
AB DORADUS
00192626+4614078
00325584-4405058
00470038+6803543
03264225-2102057
03552337+1133437
14252798-3650229
22064498-4217208
22443167+2043433
ARGUS
00452143+1634446
β Pictoris
20004841-7523070
PSO318
(1)
2MASS
Table 13
High Confidence Moving Group Members
70
Faherty et al.
71
Brown Dwarf Analogs to Exoplanets
Table 14
Fundamental Parameters for Young Sources
SpT
NIR
(3)
π
mas
(4)
LBol b
(1)
SpT
OpT
(2)
00040288-6410358
00191296-6226005
00192626+4614078
00274197+0503417
00303013-1450333
00325584-4405058
003323.86-1521309
00381489-6403529
00452143+1634446
00470038+6803543
00584253-0651239
01033203+1935361
01174748-3403258
01205114-5200349
01231125-6921379
01415823-4633574
01531463-6744181
02103857-3015313
02212859-6831400
02215494-5412054
02235464-5815067
02340093-6442068
02410564-5511466
02411151-0326587
02501167-0151295
02530084+1652532
02535980+3206373
03231002-4631237
03264225-2102057
03350208+2342356
03393521-3525440
03421621-6817321
03552337+1133437
04362788-4114465
05012406-0010452
05184616-2756457
05361998-1920396
05575096-1359503
06023045+3910592
06085283-2753583
06524851-5741376
07123786-6155528
07140394+3702459
G196-3B
10220489+0200477
10224821+5825453
TWA28
11193254-1137466
TWA26
114724.10-204021.3
TWA27A
12074836-3900043
TWA29
14252798-3650229
15525906+2948485
17260007+1538190
18212815+1414010
20004841-7523070
20575409-0252302
PSO318
21265040-8140293
21544859-7459134
22064498-4217208
22081363+2921215
22351658-3844154
22353560-5906306
22443167+2043433
23224684-3133231
23225299-6151275
L1 γ
––
M8 –
M9.5β
L7–
L0γ
L4β
––
L2β
L7(γ?)
L0–
L6β
L1 β
––
M7.5γ
L0 γ
L2 –
L0 γ
M8β
M9 β
L0γ
L0 γ
––
L0γ
——M7β
L0 γ
L5 β
M8.5–
M9β
L4 γ
L5γ
M8 β
L4γ
L1γ
L2γ
M7–
L1–
M8.5γ
M8β
L1β
M8–
L3β
M9β
L1β
M8.5γ
—M9γ
—M8γ
L0 γ
M9.5γ
L3–
L0β
L3.5γ
L4.5—
M9 γ
L1.5–
—L3γ
––
L4 γ
L3γ
––
––
L6.5p –
L0β
L2 γ
L1 γ a
L1 γ
M8 β
L0β
L4-L6β
L0β
L1
M9.5 β
L2γ
L6-L8γ
L1β
L6β
L1 β a
L1 γ
—L0 γ
L3 β
L0 γ a
———L0β γ
L1 γ
L1γ
M7β
M7β
M6β
L0 γ a
L5βγ a
M7.5β
L0β
––
L3-L6γ
M9 γ
L3γ
L1γ
L2γ
M7γ
L1β
L0γ
—L1γ
M7.5β
L3γ
M9β
L1β
M9γ
L7γ
M9γ
L7γ
M8γ
L1 γ
L0γ
L4γ
L0β
L3γ
L4pec
M9 γ a
L2β
L6-L8γ
L3γ
M9.5 β
L4 γ a
L3γ
L1.5 γ
M8.5 β
L6-L8 γ a
L2β
L3 γ a
(17 ± 1)
(21 ± 6)
(31±3)
13.8±1.6
37.42±4.50
21.6±7.2
24.8±2.5
(23 ± 5)
62.5±3.7
82±3
33.8±4.0
46.9±7.6
(20 ± 3)
(24 ± 4)
21.6±3.3
(25 ± 3)
(21 ± 7)
(32 ± 8)
25.4±3.6
(31 ± 5)
27.4±2.6
(21 ± 5)
(24 ± 4)
21.4±2.6
30.2±4.5
260.63±2.69
17.7±2.5
(17 ± 3)
(41 ± 1)
23.6±1.3
155.89±1.03
(21 ± 9)
110.8±4.3
(23 ± 6)
51±3.7
21.4±6.9
25.6±9.4
1.9±1
88.5±1.6
32±3.6
31.3±3.2
22.9±9.1
80.10±4.8
41±4.1
26.4±11.5
54.3±2.5
18.1±0.5
(35±5)
23.82±2.58
(32±4)
19.1±0.4
(15 ± 3)
12.66±2.07
86.45±0.83
48.8±2.7
28.6±2.9
106.65±0.23
(31 ± 1)
70.1±3.7
40.7±2.4
31.3±2.6
(21 ± 7)
(35 ± 2)
21.2±0.7
(22±2)
(23 ± 5)
(54 ± 4)
58.6±5.6
(22 ± 1)
2MASS
(5)
Tef f b
K
(6)
Massb
MJupiter
(7)
-3.48±0.051
-3.644±0.248
-2.773±0.129
-3.545±0.101
-4.378±0.105
-3.388±0.289
-3.616±0.088
-3.423±0.189
-3.405±0.031
-4.429±0.033
-3.635±0.103
-4.407±0.141
-3.477±0.13
-3.737±0.145
-2.525±0.133
-3.485±0.104
-3.91±0.29
-3.826±0.217
—
—
-3.509±0.082
-3.538±0.207
-3.679±0.145
-3.717±0.106
-3.001±0.129
-3.193±0.121
-2.788±0.123
-3.348±0.153
-4.235±0.022
—
-3.563±0.005
-3.848±0.372
-4.104±0.034
-2.872±0.227
-3.962±0.063
-3.575±0.28
-3.826±0.319
—
-3.65±0.016
-3.344±0.098
—
-3.598±0.345
-3.479±0.052
-3.752±0.087
-3.323±0.378
-3.682±0.041
-2.561±0.024
-4.363±0.124
-2.587±0.094
-4.346±0.109
-2.602±0.018
-3.485±0.076
-2.905±0.142
-4.038±0.009
-3.538±0.017
-3.844±0.088
-2.801±0.006
-2.972±0.028
-3.767±0.046
-4.39±0.052
-3.866±0.072
-3.219±0.29
-3.997±0.009
-3.705±0.029
—
-3.294±0.189
-4.503±0.007
-3.85±0.083
-3.606±0.04
1904.0±63.0
1755.0±258.0
2637.0±371.0
1945.0±197.0
1436.0±131.0
2066.0±413.0
1880.0±173.0
1957.0±226.0
2059.0±45.0
1230.0±27.0
1860.0±180.0
1223.0±113.0
1902.0±152.0
1685.0±145.0
2743.0±317.0
1899.0±123.0
1545.0±264.0
1610.0±207.0
—
—
1879.0±98.0
1848.0±229.0
1731.0±151.0
1787.0±172.0
2821.0±242.0
2641.0±210.0
2627.0±362.0
2031.0±201.0
1346.0±26.0
—
1939.0±142.0
1590.0±349.0
1478.0±58.0
2452.0±404.0
1563.0±116.0
1808.0±301.0
1666.0±334.0
—
1857.0±133.0
2147.0±228.0
—
1861.0±412.0
2352.0±97.0
1789.0±177.0
2097.0±526.0
1823.0±136.0
2664.0±81.0
1223.0±90.0
2641.0±192.0
1235.0±80.0
2635.0±73.0
1882.0±84.0
2394.0±236.0
1535.0±53.0
1967.0±153.0
1667.0±146.0
2986.0±23.0
2375.0±74.0
2041.0±88.0
1213.0±38.0
1651.0±132.0
2118.0±385.0
1566.0±59.0
1799.0±131.0
—
2076.0±251.0
1184.0±10.0
1667.0±139.0
1793.0±50.0
16.11±2.9
14.88±4.52
66.62±48.99
31.64±19.25
50.89±23.43
41.64±29.47
29.68±17.71
22.03±9.39
24.98±4.62
11.84±2.63
29.48±17.76
12.82±8.43
16.36±3.69
13.97±3.51
55.56±33.21
16.2±3.4
11.89±5.36
13.03±4.31
—
—
15.91±3.12
15.97±4.29
14.49±3.49
27.68±16.67
103.42±16.17
90.37±13.88
65.02±47.48
23.17±9.75
13.77±2.6
—
29.62±16.67
12.38±6.11
21.62±6.14
38.5±22.59
22.15±13.2
19.94±9.23
27.71±20.46
—
27.88±15.63
37.85±24.05
—
35.66±25.8
77.81±11.75
32.83±20.25
47.09±35.09
27.55±15.72
35.39±10.23
6.57±1.94
35.3±13.73
6.64±1.89
33.04±9.32
13.75±0.75
24.74±8.43
22.52±6.07
30.34±17.3
24.82±14.86
121.27±6.38
24.28±5.63
69.5±13.04
6.44±1.29
24.21±14.3
28.51±15.15
23.15±6.37
26.96±15.2
—
25.13±11.58
10.46±1.49
24.65±14.69
15.05±2.66
72
Faherty et al.
Table 14 — Continued
2MASS
(1)
SpT
OpT
(2)
SpT
NIR
(3)
π
mas
(4)
LBol b
(5)
Tef f b
K
(6)
Massb
MJupiter
(7)
Note. —
b
Lbol, Teff, and Mass are calculated as described in Filippazzo et al. (2015). Values that are slightly different from that work, have been updated
using new data presented in this paper.
a
These sources have new infrared spectra presented in this paper. In the majority of cases we use the infrared spectral type and gravity
classification diagnosed in this work. If an object had SpeX data we default to the resultant type and classification with that data.
a
1998
703
430
231
129
65
65
39
36
18
12
18
M7
M8
M9
L0
L1
L2
L3
L4
L5
L6
L7
L8
0.61
0.65
0.69
0.75
0.81
0.91
0.96
1.07
1.09
1.11
1.11
1.11
(J-H)avg
(3)
0.09
0.09
0.10
0.12
0.14
0.14
0.14
0.17
0.14
0.20
0.12
0.12
σ(J-H)
(4)
1976
698
428
223
125
66
64
38
36
19
12
19
NJ−K a
(5)
0.97
1.06
1.15
1.22
1.35
1.51
1.61
1.74
1.75
1.84
1.81
1.78
(J-K)avg
(6)
0.10
0.11
0.11
0.15
0.19
0.21
0.22
0.25
0.22
0.28
0.16
0.16
σ(J-K)
(7)
1992
692
420
228
114
57
59
34
39
21
13
17
NJ−W 1 a
(8)
1.17
1.27
1.41
1.55
1.71
1.98
2.11
2.40
2.48
2.59
2.54
2.56
(J-W 1)avg
(9)
0.09
0.12
0.14
0.17
0.21
0.28
0.29
0.34
0.25
0.41
0.26
0.20
σ(J-W1)
(10)
1990
692
420
225
114
57
59
33
39
21
13
17
NJ−W 2 a
(11)
1.37
1.49
1.65
1.83
1.97
2.27
2.42
2.74
2.83
3.00
3.01
3.13
(J-W 2)avg
(12)
0.10
0.13
0.17
0.19
0.23
0.32
0.34
0.40
0.30
0.52
0.30
0.24
σ(J-W2)
(13)
Only normal (non- low surface gravity, subdwarf, or young) L dwarfs with photometric uncertainty < 0.1 were used in calculating the average.
NJ−H a
(2)
SpT
(1)
Table 15
Average Infrared Colors of late-type M and L dwarfs
1976
698
428
210
127
65
64
38
36
23
12
20
NH−K a
(14)
0.36
0.41
0.45
0.48
0.54
0.59
0.65
0.67
0.66
0.76
0.70
0.67
(H-K)avg
(15)
0.10
0.09
0.10
0.12
0.13
0.11
0.15
0.14
0.11
0.16
0.09
0.09
σ(H-K)
(16)
Brown Dwarf Analogs to Exoplanets
73
0.55
0.62
0.72
0.81
0.91
1.05
1.16
1.34
1.39
1.49
1.45
1.46
(H-W 1)avg
(3)
0.09
0.10
0.11
0.13
0.15
0.17
0.20
0.24
0.15
0.30
0.19
0.16
σ(H-W1)
(4)
1988
692
420
219
113
56
58
34
39
21
14
18
NH−W 2 a
(5)
0.76
0.84
0.96
1.08
1.17
1.34
1.47
1.67
1.74
1.92
1.91
2.04
(H-W 2)avg
(6)
0.10
0.12
0.15
0.17
0.18
0.22
0.24
0.29
0.20
0.38
0.24
0.19
σ(H-W2)
(7)
1970
687
417
223
112
57
59
34
38
22
14
19
NK−W 1 a
(8)
0.20
0.22
0.26
0.34
0.37
0.45
0.51
0.68
0.74
0.77
0.76
0.80
(K-W 1)avg
(9)
0.09
0.09
0.10
0.12
0.11
0.12
0.14
0.14
0.12
0.20
0.14
0.11
σ(K-W1)
(10)
1970
687
417
219
111
57
59
34
37
22
14
18
NK−W 2 a
(11)
0.41
0.44
0.51
0.61
0.63
0.74
0.82
1.01
1.08
1.19
1.22
1.37
(K-W 2)avg
(12)
Only normal (non- low surface gravity, subdwarf, or young) L dwarfs with photometric uncertainty < 0.1 were used in calculating the average.
1992
692
420
222
113
56
58
34
40
21
14
19
M7
M8
M9
L0
L1
L2
L3
L4
L5
L6
L7
L8
a
NH−W 1 a
(2)
SpT
(1)
Table 16
Average Infrared Colors of late-type M and L dwarfs
0.10
0.11
0.14
0.13
0.14
0.16
0.18
0.18
0.18
0.26
0.19
0.14
σ(K-W2)
(13)
1991
692
421
229
118
58
63
35
41
23
15
19
NW 1−W 2 a
(14)
0.21
0.22
0.24
0.27
0.26
0.29
0.31
0.34
0.35
0.41
0.45
0.56
(W 1-W 2)avg
(15)
0.06
0.06
0.06
0.08
0.06
0.07
0.06
0.07
0.08
0.12
0.09
0.11
σ(W1-W2)
(16)
74
Faherty et al.
SpT
(2)
M7.5γ
M5 –
––
––
M7β
M8.5–
M6.5–
––
M7–
M8–
M8–
M8 –
M8β
M8.5–
M8γ
M8 β
M8γ
M8.5γ
M8β
––
M8.5γ
M8γ
M9–
––
––
––
M8.5–
M7–
M9.5β
––
––
M9β
M9 β
M9β
M9β
M9γ
––
––
––
M9γ
M9β
––
M9γ
M9.5γ
––
––
M9β
M9–
––
M9γ
M9δ
M9γ
M9 γ
M9γ
––
L0–
––
Name
(1)
01231125-6921379
01294256-0823580
02501167-0151295
02530084+1652532
02535980+3206373
03350208+2342356
05181131-3101529
05264316-1824315
05575096-1359503
07140394+3702459
20391314-1126531
00192626+4614078
02212859-6831400
03550477-1032415
04351455-1414468
04362788-4114465
05341594-0631397
06085283-2753583
06524851-5741376
08561384-1342242
TWA28
TWA27A
12271545-0636458
15291017+6312539
20282203-5637024
22353560-5906306
23231347-0244360
23520507-1100435
00274197+0503417
00381489-6403529
00425923+1142104
00464841+0715177
02215494-5412054
02251947-5837295
03393521-3525440
04433761+0002051
04493288+1607226
05402325-0906326
09451445-7753150
09532126-1014205
10220489+0200477
11064461-3715115
TWA26
TWA29
12474428-3816464
12535039-4211215
14112131-2119503
15104786-2818174
15470557-1626303A
15474719-2423493
15575011-2952431
19355595-2846343
20004841-7523070
20135152-2806020
21544859-7459134
21572060+8340575
22025794-5605087
––
M7β
M7β
M7β
M6β
M7.5β
M7β
M7β
M7γ
M7.5β
M7β
M8 β
––
M8.5β
M7γ
M9 γ
M8γ
L0γ
––
M8γ
M9γ
M8γ
M8.5β
M8β
M8.5γ
M8.5 β
M8β
M8β
L0β
M9.5β
M9β
L0δ
––
M9γ
L0β
M9γ
M9γ
M9β
M9β
M9β
M9β
M9γ
M9γ
L0γ
M9γ
M9.5γ
M8β
M9β
M9β
L0β
L1γ
M9γ
M9 γ a
L0γ
M9.5 β
M9γ
M9γ
SpT
(3)
0.0
-0.4
0.0
-1.1
0.8
-0.2
0.4
-1.0
1.3
1.3
0.6
0.1
0.4
-0.4
6.7
0.2
0.4
0.5
0.2
-0.3
0.3
-0.4
1.7
0.6
-0.6
0.4
0.1
0.3
2.1
-0.3
-0.1
0.2
-0.1
-0.1
0.2
0.1
0.9
0.5
-0.3
1.3
0.1
-0.5
0.0
0.3
0.0
0.1
-0.8
0.4
-0.7
0.1
1.8
0.8
0.8
0.9
0.3
2.2
0.5
0.03
0.03
0.03
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.04
0.03
0.05
0.03
0.04
0.03
0.12
0.04
0.03
0.04
0.03
0.04
0.04
0.04
0.03
0.05
0.04
0.03
0.14
0.05
0.06
0.04
0.04
0.04
0.03
0.03
0.04
0.05
0.04
0.04
0.04
0.04
0.03
0.05
0.05
0.15
0.03
0.04
0.04
0.04
0.16
0.03
0.03
0.04
0.05
0.04
0.05
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.61
0.57
0.61
0.51
0.69
0.60
0.64
0.52
0.73
0.72
0.66
0.66
0.69
0.62
1.26
0.67
0.68
0.70
0.67
0.63
0.68
0.61
0.81
0.71
0.59
0.69
0.65
0.67
0.90
0.66
0.68
0.71
0.68
0.68
0.71
0.70
0.78
0.74
0.66
0.82
0.70
0.64
0.69
0.72
0.69
0.70
0.61
0.73
0.62
0.70
0.87
0.77
0.77
0.78
0.72
0.91
0.74
# of σ(J−H) a
(5)
(J-H)
(4)
1.00
0.88
0.98
0.81
1.07
0.99
0.98
0.91
1.14
1.14
1.11
1.10
1.16
1.11
1.93
1.05
1.11
1.23
1.18
1.11
1.14
1.05
1.31
1.09
1.13
1.11
1.10
1.10
1.23
1.13
1.24
1.34
1.23
1.18
1.18
1.29
1.20
1.26
1.11
1.33
1.20
1.15
1.18
1.15
1.21
1.26
1.11
1.15
1.13
1.23
1.47
1.24
1.22
1.30
1.20
1.39
1.20
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.03
0.03
0.03
0.05
0.03
0.02
0.03
0.03
0.03
0.03
0.04
0.02
0.05
0.03
0.04
0.03
0.12
0.04
0.03
0.03
0.03
0.04
0.04
0.03
0.03
0.04
0.03
0.03
0.15
0.04
0.05
0.04
0.04
0.04
0.03
0.03
0.04
0.06
0.04
0.03
0.04
0.05
0.03
0.05
0.05
0.15
0.03
0.04
0.04
0.03
0.16
0.04
0.03
0.04
0.04
0.04
0.05
(J-K)
(6)
0.3
-0.9
0.1
-1.6
1.0
0.2
0.1
-0.6
1.7
1.7
1.4
0.4
0.9
0.4
7.9
-0.1
0.5
1.5
1.1
0.5
0.8
-0.1
2.3
0.3
0.6
0.5
0.4
0.3
0.7
-0.2
0.8
1.7
0.7
0.3
0.2
1.2
0.4
1.0
-0.4
1.6
0.5
0.0
0.3
0.0
0.6
1.0
-0.4
0.0
-0.2
0.7
2.9
0.8
0.7
1.4
0.5
2.2
0.4
# of σ(J−K) a
(7)
1.26
1.11
1.20
1.07
1.29
1.21
1.24
1.16
1.54
1.41
1.33
1.34
1.49
1.37
2.17
1.36
1.27
1.62
1.48
1.45
1.60
1.44
1.68
1.35
1.37
1.59
1.34
1.40
1.57
1.62
1.52
1.82
1.58
1.50
1.59
1.68
1.54
1.56
1.38
1.71
1.49
1.42
1.53
1.52
1.68
1.72
1.36
1.52
1.43
1.56
1.88
1.61
1.63
1.72
1.58
1.88
1.55
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.04
0.03
0.04
0.03
0.08
0.04
0.03
0.03
0.03
0.04
0.04
0.03
0.03
0.04
0.03
0.03
0.10
0.04
0.04
0.04
0.04
0.03
0.03
0.03
0.04
0.04
0.04
0.03
0.04
0.04
0.03
0.04
0.04
0.11
0.03
0.04
0.04
0.04
0.12
0.04
0.03
0.04
0.04
0.03
0.04
(J-W 1)
(8)
1.0
-0.7
0.3
-1.1
1.4
0.4
0.7
-0.1
4.1
2.7
1.7
0.6
1.9
0.8
7.5
0.7
0.0
2.9
1.7
1.5
2.7
1.5
3.4
0.7
0.8
2.7
0.6
1.1
1.1
1.5
0.8
2.9
1.2
0.7
1.3
1.9
0.9
1.0
-0.2
2.2
0.6
0.0
0.9
0.8
1.9
2.2
-0.4
0.8
0.1
1.1
3.4
1.4
1.5
2.2
1.2
3.4
1.0
# of σ(J−W 1) a
(9)
Table 17
Infrared Colors of low gravity late-type M and L dwarfs
1.50
1.33
1.44
1.34
1.49
1.48
1.48
1.41
2.07
1.63
1.63
1.60
1.77
1.66
2.61
1.64
1.80
1.97
1.78
1.98
2.24
1.99
1.94
1.59
1.66
1.92
1.63
1.69
2.05
1.98
1.84
2.25
1.94
1.81
1.92
2.03
1.85
1.84
1.61
2.07
1.76
1.73
1.89
1.90
2.26
2.08
1.62
1.83
1.72
1.87
2.25
2.04
1.94
2.08
1.91
2.29
1.80
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.04
0.03
0.04
0.03
0.09
0.03
0.03
0.03
0.03
0.04
0.04
0.03
0.03
0.04
0.03
0.03
0.11
0.04
0.05
0.03
0.04
0.03
0.03
0.03
0.04
0.05
0.04
0.03
0.04
0.04
0.03
0.04
0.04
0.11
0.03
0.04
0.04
0.04
0.13
0.03
0.03
0.04
0.04
0.03
0.04
(J-W 2)
(10)
1.3
-0.4
0.6
-0.3
1.2
1.1
1.1
0.4
7.0
2.6
2.6
0.9
2.2
1.3
8.6
1.1
2.4
3.7
2.2
3.8
5.8
3.9
3.4
0.7
1.3
3.3
1.0
1.6
2.4
2.0
1.1
3.5
1.7
1.0
1.6
2.2
1.2
1.1
-0.2
2.4
0.6
0.5
1.4
1.4
3.6
2.5
-0.2
1.0
0.4
1.3
3.5
2.3
1.7
2.5
1.5
3.8
0.9
# of σ(J−W 2) a
(11)
0.39
0.31
0.37
0.30
0.38
0.39
0.33
0.39
0.41
0.41
0.45
0.44
0.47
0.49
0.67
0.38
0.43
0.53
0.52
0.49
0.47
0.44
0.50
0.38
0.53
0.42
0.44
0.42
0.33
0.47
0.56
0.63
0.55
0.50
0.47
0.58
0.41
0.52
0.44
0.50
0.50
0.51
0.49
0.43
0.52
0.56
0.50
0.42
0.51
0.53
0.60
0.47
0.46
0.52
0.48
0.48
0.46
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.03
0.03
0.03
0.06
0.03
0.02
0.03
0.03
0.03
0.03
0.05
0.02
0.05
0.03
0.03
0.03
0.14
0.03
0.03
0.04
0.03
0.04
0.05
0.04
0.04
0.05
0.04
0.03
0.15
0.06
0.05
0.04
0.04
0.04
0.03
0.03
0.04
0.06
0.04
0.03
0.04
0.05
0.03
0.05
0.05
0.15
0.03
0.04
0.04
0.04
0.15
0.03
0.04
0.04
0.05
0.04
0.05
(H-K)
(12)
0.3
-0.5
0.1
-0.6
0.2
0.3
-0.3
0.3
0.5
0.5
0.9
0.3
0.7
0.9
2.9
-0.3
0.2
1.3
1.2
0.9
0.6
0.3
1.1
-0.3
1.4
0.2
0.4
0.2
-1.2
0.2
1.1
1.8
1.0
0.5
0.2
1.3
-0.4
0.7
-0.1
0.5
0.5
0.6
0.4
-0.2
0.7
1.1
0.5
-0.3
0.6
0.8
1.5
0.2
0.1
0.7
0.3
0.3
0.1
# of σ(H−K) a
(13)
Brown Dwarf Analogs to Exoplanets
75
SpT
(2)
––
M9–
––
L0γ
L0γ
L0γ
L0 γ
L0 γ
L0γ
––
––
L0 γ
L0γ
L0 γ
––
L0β
L0γ
––
––
––
L0β
L0 γ
L0β
L0γ
L0γ
––
L0γ
L0γ
L0β
L1 γ
––
––
L0–
L1 β
––
––
L0–
L1γ
L1–
L1β
L1β
L1γ
––
––
––
L3–
L2β
L2γ
L2γ
––
L2γ
L1.5–
L2 γ
L2 –
––
––
L3β
––
Name
(1)
23360735-3541489
23453903+0055137
00182834-6703130
00325584-4405058
00374306-5846229
01244599-5745379
01415823-4633574
02103857-3015313
02235464-5815067
02265658-5327032
02292794-0053282
02340093-6442068
02411151-0326587
03231002-4631237
03420931-2904317
03572695-4417305
04062677-3812102
04400972-5126544
06272161-5308428
11271382-3735076
11544223-3400390
12074836-3900043
15525906+2948485
17111353+2326333
19564700-7542270
20334473-5635338
22134491-2136079
23153135+0617146
23224684-3133231
00040288-6410358
00191296-6226005
00344300-4102266
00584253-0651239
01174748-3403258
01205114-5200349
02410564-5511466
03164512-2848521
05184616-2756457
06023045+3910592
07123786-6155528
10224821+5825453
11083081+6830169
11480096-2836488
19350976-6200473
22351658-3844154
23255604-0259508
00452143+1634446
00550564+0134365
03032042-7312300
05104958-1843548
05361998-1920396
20575409-0252302
23225299-6151275
01531463-6744181
02583123-1520536
04185879-4507413
06322402-5010349
09593276+4523309
M9β
M9β
L0γ
L0β
––
L0γ
L0 γ
L0 γ a
––
L0δ
L0γ
L0β γ
L1γ
L0 γ a
L0β
L0β
L1γ
L0γ
L0βγ
L0δ
L1β
L1 γ
L0β
L1β
L2γ
L0γ
L0γ
L0γ
L2β
L1 γ a
L1 γ
L1β
L1β
L1 β a
L1 γ
L1 γ
L1β
L1γ
L1β
L1γ
L1β
L1γ
L1β
L1γ
L1.5 γ
L1γ
L2γ
L2γ
––
L2β
L2γ
L2β
L3 γ a
L3 β
L3β
L3γ
L4γ
L3γ
SpT
(3)
1.5
-0.4
1.9
1.4
3.0
4.2
1.7
1.3
2.6
2.6
-0.1
1.1
2.0
2.7
-1.5
0.7
2.6
1.3
3.3
1.3
1.0
1.1
1.0
0.7
3.1
-1.4
1.9
3.0
0.3
1.0
1.5
0.6
0.4
1.1
1.2
1.8
0.0
1.1
0.3
0.7
0.3
0.6
0.8
1.1
0.7
1.5
0.6
1.8
0.9
0.7
1.2
-0.4
0.7
2.4
0.6
1.1
0.2
1.2
0.04
0.04
0.08
0.05
0.07
0.14
0.05
0.06
0.06
0.07
0.14
0.08
0.08
0.09
0.14
0.04
0.16
0.09
0.15
0.14
0.04
0.08
0.03
0.04
0.14
0.14
0.06
0.11
0.04
0.10
0.08
0.09
0.04
0.05
0.10
0.08
0.05
0.06
0.03
0.07
0.04
0.03
0.11
0.14
0.07
0.10
0.04
0.14
0.14
0.08
0.10
0.03
0.09
0.16
0.09
0.11
0.06
0.10
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.84
0.65
0.98
0.92
1.12
1.25
0.96
0.91
1.07
1.06
0.74
0.88
0.99
1.07
0.57
0.84
1.06
0.91
1.15
0.90
0.86
0.89
0.87
0.83
1.12
0.58
0.97
1.10
0.79
0.96
1.02
0.90
0.87
0.97
0.98
1.06
0.81
0.97
0.85
0.90
0.86
0.89
0.93
0.96
0.91
1.03
1.00
1.17
1.04
1.01
1.08
0.85
1.01
1.30
1.04
1.12
0.99
1.12
# of σ(J−H) a
(5)
(J-H)
(4)
1.27
1.19
1.75
1.51
1.78
1.99
1.73
1.57
1.65
1.65
1.31
1.48
1.76
1.69
1.54
1.46
1.66
1.51
1.70
1.24
1.35
1.45
1.46
1.44
1.92
1.47
1.62
1.79
1.25
1.78
1.68
1.62
1.41
1.69
1.89
1.65
1.46
1.64
1.44
1.63
1.34
1.54
1.55
1.53
1.55
1.85
1.69
2.00
1.82
1.54
1.92
1.40
1.69
1.99
1.72
1.57
1.69
2.21
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.05
0.04
0.07
0.05
0.07
0.14
0.05
0.06
0.06
0.06
0.17
0.09
0.08
0.09
0.12
0.04
0.17
0.09
0.14
0.18
0.04
0.08
0.03
0.04
0.12
0.12
0.05
0.10
0.04
0.08
0.08
0.09
0.04
0.05
0.09
0.07
0.05
0.06
0.03
0.08
0.03
0.03
0.12
0.14
0.07
0.10
0.03
0.13
0.14
0.08
0.10
0.03
0.07
0.17
0.09
0.12
0.05
0.08
(J-K)
(6)
1.1
0.4
3.5
1.9
3.8
5.1
3.4
2.3
2.9
2.9
0.6
1.7
3.6
3.1
2.1
1.6
2.9
2.0
3.2
0.1
0.8
1.6
1.6
1.5
4.7
1.7
2.6
3.8
0.2
2.2
1.8
1.4
0.3
1.8
2.8
1.6
0.6
1.5
0.4
1.5
-0.1
1.0
1.1
0.9
1.1
2.6
0.9
2.3
1.5
0.1
1.9
-0.5
0.8
1.7
0.5
-0.2
0.3
2.7
# of σ(J−K) a
(7)
1.65
1.56
2.29
1.96
2.25
2.54
2.28
2.06
2.25
2.18
1.77
2.08
2.16
2.31
1.95
1.89
2.32
2.10
2.50
2.01
1.85
1.86
1.93
1.92
2.46
1.90
2.15
2.31
1.60
2.42
2.29
2.21
1.75
2.15
2.41
2.20
1.93
2.22
1.87
2.31
1.74
2.02
1.97
2.20
2.18
2.27
2.29
2.75
2.36
2.10
2.51
1.86
2.30
2.70
2.29
2.30
2.41
3.02
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.03
0.04
0.06
0.04
0.06
0.11
0.05
0.05
0.05
0.05
0.10
0.07
0.07
0.07
0.09
0.04
0.13
0.07
0.12
0.10
0.04
0.06
0.03
0.03
0.11
0.09
0.04
0.09
0.04
0.08
0.07
0.07
0.03
0.04
0.08
0.06
0.05
0.05
0.03
0.07
0.03
0.03
0.08
0.11
0.06
0.08
0.03
0.12
0.11
0.06
0.08
0.03
0.07
0.14
0.08
0.09
0.05
0.07
(J-W 1)
(8)
Table 17 — Continued
1.7
1.1
4.3
2.4
4.1
5.8
4.3
3.0
4.1
3.7
1.3
3.1
3.6
4.5
2.3
2.0
4.5
3.2
5.6
2.7
1.7
1.8
2.3
2.2
5.4
2.1
3.5
4.5
0.3
3.4
2.8
2.4
0.2
2.1
3.3
2.3
1.0
2.4
0.7
2.8
0.1
1.5
1.3
2.3
2.2
2.6
1.1
2.8
1.4
0.4
1.9
-0.4
1.2
2.0
0.6
0.7
1.0
3.1
# of σ(J−W 1) a
(9)
2.00
1.89
2.69
2.29
2.64
2.97
2.66
2.41
2.64
2.62
2.16
2.42
2.54
2.72
2.38
2.28
2.67
2.49
2.88
2.37
2.16
2.28
2.27
2.27
2.91
2.30
2.54
2.77
1.87
2.85
2.76
2.61
2.06
2.56
2.86
2.58
2.27
2.60
2.18
2.67
2.00
2.37
2.34
2.60
2.54
2.61
2.67
3.23
2.79
2.41
2.98
2.14
2.70
3.20
2.71
2.71
2.86
3.52
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.04
0.04
0.06
0.04
0.06
0.11
0.05
0.05
0.05
0.05
0.11
0.07
0.07
0.07
0.09
0.04
0.13
0.07
0.12
0.11
0.04
0.06
0.03
0.03
0.11
0.09
0.04
0.09
0.04
0.08
0.07
0.07
0.04
0.04
0.08
0.06
0.05
0.05
0.03
0.07
0.03
0.03
0.09
0.11
0.06
0.08
0.03
0.12
0.11
0.06
0.08
0.03
0.07
0.14
0.08
0.09
0.05
0.07
(J-W 2)
(10)
2.1
1.4
4.5
2.4
4.2
6.0
4.4
3.1
4.3
4.2
1.7
3.1
3.8
4.7
2.9
2.4
4.4
3.5
5.5
2.8
1.7
2.4
2.3
2.3
5.7
2.5
3.8
4.9
0.2
3.8
3.4
2.8
0.4
2.5
3.9
2.6
1.3
2.7
0.9
3.0
0.1
1.7
1.6
2.8
2.5
2.8
1.2
3.0
1.6
0.4
2.2
-0.4
1.4
2.3
0.9
0.8
1.3
3.2
# of σ(J−W 2) a
(11)
0.42
0.54
0.77
0.59
0.67
0.74
0.78
0.66
0.58
0.59
0.56
0.59
0.77
0.62
0.98
0.62
0.60
0.61
0.54
0.34
0.48
0.57
0.59
0.61
0.81
0.89
0.64
0.69
0.47
0.82
0.66
0.72
0.54
0.72
0.91
0.59
0.66
0.68
0.59
0.72
0.48
0.65
0.62
0.57
0.64
0.82
0.69
0.83
0.78
0.53
0.84
0.54
0.68
0.69
0.67
0.45
0.69
1.09
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.05
0.04
0.07
0.05
0.07
0.12
0.04
0.06
0.06
0.07
0.17
0.09
0.07
0.08
0.14
0.04
0.15
0.08
0.13
0.19
0.04
0.08
0.04
0.04
0.12
0.14
0.07
0.09
0.03
0.09
0.07
0.09
0.04
0.05
0.09
0.06
0.05
0.06
0.03
0.06
0.04
0.03
0.12
0.14
0.06
0.09
0.04
0.10
0.12
0.08
0.09
0.03
0.07
0.13
0.08
0.11
0.05
0.08
(H-K)
(12)
-0.3
0.9
2.4
0.9
1.6
2.2
2.5
1.5
0.9
0.9
0.7
0.9
2.4
1.2
4.1
1.2
1.0
1.1
0.5
-1.2
0.0
0.7
0.9
1.1
2.7
3.4
1.4
1.7
-0.1
2.2
0.9
1.4
0.0
1.4
2.8
0.4
0.9
1.0
0.4
1.4
-0.4
0.9
0.6
0.2
0.8
2.2
0.9
2.2
1.7
-0.6
2.3
-0.4
0.8
0.2
0.2
-1.3
0.3
2.9
# of σ(H−K) a
(13)
76
Faherty et al.
L3γ
L3γ
L3γ
L3γ
L3γ
L4β
L1
L2γ
––
L3γ
L4βγ
L4β
L4γ
L4γ
>L5γ
L3-L6γ
L4pec
L4β
L5γ
L4 γ a
L3β
L3-L6γ
L4-L6β
L5βγ a
L3-L6γ
L5γ
L5β
L5-L7γ
L6-L8γ
L6β
L6p
L8—
L7γ
L7γ
L6-L8γ
L6-L8γ
L6-L8 γ a
SpT
(3)
1.6
1.7
1.5
1.3
0.3
-0.3
0.0
-0.8
2.3
1.2
0.0
-0.2
0.6
0.1
0.8
2.3
-0.2
0.9
1.8
0.2
0.6
2.9
-0.6
1.8
3.1
1.4
1.5
-0.4
4.4
1.4
0.7
1.2
4.7
6.4
1.2
4.6
1.8
0.06
0.08
0.14
0.08
0.11
0.08
0.08
0.31
0.16
0.05
0.19
0.18
0.04
0.09
0.13
0.17
0.03
0.18
0.15
0.09
0.17
0.14
0.15
0.12
0.04
0.06
0.07
0.07
0.08
0.10
0.15
0.06
0.07
0.13
0.09
0.09
0.15
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
1.18
1.20
1.17
1.14
1.00
1.02
1.08
0.94
1.47
1.27
1.06
1.04
1.17
1.08
1.21
1.46
1.04
1.23
1.37
1.11
1.17
1.56
1.01
1.34
1.52
1.28
1.31
1.04
1.64
1.39
1.25
1.25
1.67
1.87
1.25
1.66
1.48
# of σ(J−H) a
(5)
(J-H)
(4)
2.05
2.01
1.85
1.99
1.65
1.81
1.88
1.83
2.31
2.02
1.93
1.71
1.94
1.93
2.01
2.48
1.78
1.96
2.24
1.95
2.23
2.37
1.80
2.21
2.52
2.12
2.17
1.90
2.55
2.14
2.02
2.08
2.71
2.77
2.35
2.85
2.45
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.06
0.08
0.14
0.07
0.11
0.07
0.07
0.26
0.16
0.05
0.20
0.16
0.04
0.08
0.12
0.15
0.03
0.17
0.14
0.09
0.14
0.14
0.15
0.11
0.03
0.06
0.07
0.06
0.07
0.10
0.13
0.05
0.06
0.06
0.08
0.09
0.16
(J-K)
(6)
2.0
1.8
1.1
1.7
0.2
0.3
0.5
0.4
2.3
1.1
0.8
-0.1
0.8
0.8
1.1
3.0
0.2
0.9
2.0
0.8
1.9
2.5
0.2
2.1
3.5
1.7
1.9
0.7
4.6
1.1
0.6
1.9
5.6
6.0
3.4
6.5
2.2
# of σ(J−K) a
(7)
3.13
2.60
2.41
2.63
2.44
2.58
2.49
2.87
2.90
2.93
2.76
2.33
2.75
2.76
2.72
3.59
2.58
2.56
3.07
2.73
3.01
3.45
2.62
3.18
3.52
3.01
3.09
2.78
3.73
3.11
3.09
3.02
3.91
3.92
3.49
4.07
3.70
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.05
0.07
0.11
0.06
0.09
0.07
0.06
0.22
0.14
0.04
0.16
0.13
0.04
0.07
0.11
0.14
0.03
0.14
0.12
0.07
0.13
0.13
0.11
0.10
0.03
0.05
0.06
0.05
0.07
0.08
0.12
0.04
0.06
0.06
0.08
0.08
0.14
(J-W 1)
(8)
3.5
1.7
1.0
1.8
1.1
0.5
0.2
1.4
1.5
1.6
1.0
-0.2
1.0
1.1
0.9
3.5
0.5
0.5
2.0
1.0
1.8
3.1
0.6
2.8
4.2
2.1
2.4
1.2
4.6
1.3
1.2
2.3
5.3
5.3
3.6
5.9
2.7
# of σ(J−W 1) a
(9)
3.70
2.98
2.76
3.07
2.91
3.01
2.81
3.41
3.37
3.46
3.24
2.72
3.17
3.21
3.20
4.17
2.96
3.02
3.52
3.18
3.44
3.96
3.02
3.70
4.11
3.43
3.54
3.23
4.34
3.59
3.63
3.62
4.58
4.55
4.11
4.82
4.37
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.05
0.07
0.12
0.06
0.09
0.07
0.06
0.22
0.14
0.04
0.16
0.13
0.03
0.07
0.11
0.14
0.03
0.14
0.12
0.07
0.13
0.13
0.12
0.10
0.03
0.05
0.06
0.06
0.07
0.08
0.12
0.04
0.06
0.07
0.08
0.09
0.14
(J-W 2)
(10)
3.8
1.6
1.0
1.9
1.4
0.7
0.2
1.7
1.6
1.8
1.2
0.0
1.1
1.2
1.1
3.6
0.5
0.7
2.0
1.1
1.8
3.0
0.6
2.9
4.3
2.0
2.4
1.3
4.4
1.1
1.2
2.1
5.2
5.1
3.7
6.0
2.6
# of σ(J−W 2) a
(11)
0.87
0.81
0.68
0.85
0.64
0.80
0.80
0.89
0.84
0.75
0.87
0.67
0.77
0.85
0.80
1.02
0.75
0.73
0.87
0.84
1.06
0.82
0.79
0.87
1.00
0.83
0.87
0.86
0.91
0.75
0.77
0.83
1.04
0.89
1.10
1.19
0.98
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.05
0.07
0.12
0.07
0.10
0.07
0.06
0.26
0.12
0.05
0.17
0.15
0.03
0.08
0.09
0.12
0.03
0.15
0.11
0.08
0.13
0.09
0.14
0.10
0.03
0.06
0.06
0.06
0.05
0.08
0.11
0.05
0.04
0.11
0.06
0.06
0.10
(H-K)
(12)
1.5
1.0
0.2
1.4
0.0
0.9
0.9
1.6
1.2
0.6
1.4
0.0
0.7
1.3
1.0
2.5
0.5
0.4
1.4
1.2
2.8
1.0
1.2
1.9
3.1
1.6
1.9
1.8
2.4
-0.1
0.0
1.8
3.7
2.1
4.4
5.4
1.4
# of σ(H−K) a
(13)
whereas a positive (+) number indicates that the color was redward of the field sequence average.
Values are the # of σ (as reported in Table 15) from the field sequence that each object differs. A negative (-) number indicates that the color was blueward of the field sequence average
L3β
L3.5γ
––
L3γ
L3γ
––
L4β
L4γ
L4 γ
L4γ
––
––
L3–
L4γ
L4γ
L4γ
L4.5—
––
L4β
L4 γ
L4γ
––
L7–
L5 β
L5γ
L5β
L5γ
L5β
L7(γ?)
L6β
––
L8–
—
––
––
––
L6.5p –
G196-3B
17260007+1538190
20113196-5048112
21265040-8140293
22081363+2921215
00011217+1535355
003323.86-1521309
01262109+1428057
03421621-6817321
05012406-0010452
10212570-2830427
12563961-2718455
14252798-3650229
15382417-1953116
15515237+0941148
16154255+4953211
18212815+1414010
21324036+1029494
21543454-1055308
22064498-4217208
22495345+0044046
23433470-3646021
00303013-1450333
03264225-2102057
03552337+1133437
04210718-6306022
05120636-2949540
20025073-0521524
00470038+6803543
01033203+1935361
08095903+4434216
08575849+5708514
11193254-1137466
114724.10-204021.3
17410280-4642218
PSO318
22443167+2043433
a
SpT
(2)
Name
(1)
Table 17 — Continued
Brown Dwarf Analogs to Exoplanets
77
SpT
(2)
M7.5γ
M5–
––
––
M7β
M8.5–
M6.5–
––
M7–
M8–
M8–
M8 –
M8β
M8.5–
M8γ
M8 β
M8γ
M8.5γ
M8β
––
M8.5γ
M8γ
M9–
––
––
––
M8.5–
M7–
M9.5β
––
––
M9β
M9 β
M9β
M9β
M9γ
––
––
––
M9γ
M9β
––
M9γ
M9.5γ
––
––
M9β
M9–
––
M9γ
M9δ
M9γ
M9 γ
M9γ
––
L0–
––
Name
(1)
01231125-6921379
01294256-0823580
02501167-0151295
02530084+1652532
02535980+3206373
03350208+2342356
05181131-3101529
05264316-1824315
05575096-1359503
07140394+3702459
20391314-1126531
00192626+4614078
02212859-6831400
03550477-1032415
04351455-1414468
04362788-4114465
05341594-0631397
06085283-2753583
06524851-5741376
08561384-1342242
TWA28
TWA27A
12271545-0636458
15291017+6312539
20282203-5637024
22353560-5906306
23231347-0244360
23520507-1100435
00274197+0503417
00381489-6403529
00425923+1142104
00464841+0715177
02215494-5412054
02251947-5837295
03393521-3525440
04433761+0002051
04493288+1607226
05402325-0906326
09451445-7753150
09532126-1014205
10220489+0200477
11064461-3715115
TWA26
TWA29
12474428-3816464
12535039-4211215
14112131-2119503
15104786-2818174
15470557-1626303A
15474719-2423493
15575011-2952431
19355595-2846343
20004841-7523070
20135152-2806020
21544859-7459134
21572060+8340575
22025794-5605087
––
M7β
M7β
M7β
M6β
M7.5β
M7β
M7β
M7γ
M7.5β
M7β
M8 β
––
M8.5β
M7γ
M9 γ
M8γ
L0γ
––
M8γ
M9γ
M8γ
M8.5β
M8β
M8.5γ
M8.5 β
M8β
M8β
L0β
M9.5β
M9β
L0δ
––
M9γ
L0β
M9γ
M9γ
M9β
M9β
M9β
M9β
M9γ
M9γ
L0γ
M9γ
M9.5γ
M8β
M9β
M9β
L0β
L1γ
M9γ
M9 γ a
L0γ
M9.5 β
M9γ
M9γ
SpT
(3)
0.65
0.54
0.59
0.56
0.61
0.61
0.59
0.64
0.81
0.69
0.66
0.68
0.80
0.75
0.91
0.69
0.58
0.92
0.81
0.82
0.92
0.83
0.87
0.65
0.77
0.90
0.69
0.73
0.67
0.96
0.84
1.11
0.90
0.82
0.88
0.98
0.76
0.82
0.72
0.89
0.79
0.77
0.84
0.81
0.99
1.02
0.75
0.80
0.81
0.86
1.02
0.83
0.86
0.94
0.86
0.98
0.81
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.03
0.03
0.03
0.05
0.03
0.03
0.03
0.03
0.03
0.04
0.04
0.03
0.04
0.03
0.04
0.03
0.10
0.03
0.03
0.04
0.03
0.04
0.04
0.04
0.03
0.04
0.04
0.03
0.11
0.05
0.05
0.04
0.04
0.03
0.03
0.03
0.04
0.04
0.04
0.03
0.04
0.04
0.03
0.04
0.04
0.11
0.03
0.04
0.04
0.04
0.11
0.03
0.03
0.04
0.05
0.04
0.04
(H-W 1)
(4)
1.1
-0.1
0.4
0.1
0.6
0.7
0.5
0.9
2.9
1.5
1.3
0.6
1.8
1.3
2.9
0.7
-0.4
3.0
1.9
2.0
3.0
2.1
2.5
0.3
1.5
2.8
0.7
1.1
-0.5
2.2
1.1
3.5
1.6
0.9
1.5
2.3
0.4
0.9
0.0
1.5
0.6
0.5
1.1
0.8
2.4
2.7
0.3
0.7
0.8
1.3
2.7
1.0
1.3
2.0
1.3
2.3
0.8
# of σ(H−W 1) a
(5)
0.89
0.76
0.83
0.83
0.80
0.89
0.83
0.89
1.34
0.91
0.96
0.94
1.08
1.04
1.35
0.97
1.11
1.27
1.11
1.36
1.56
1.38
1.13
0.88
1.07
1.23
0.97
1.02
1.15
1.33
1.16
1.54
1.26
1.13
1.21
1.33
1.07
1.11
0.95
1.24
1.06
1.09
1.20
1.18
1.57
1.38
1.01
1.10
1.10
1.17
1.38
1.27
1.17
1.30
1.19
1.39
1.06
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.03
0.03
0.03
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.04
0.03
0.04
0.03
0.03
0.03
0.11
0.03
0.03
0.04
0.03
0.04
0.04
0.04
0.04
0.05
0.04
0.03
0.11
0.05
0.05
0.04
0.04
0.03
0.03
0.03
0.04
0.04
0.04
0.03
0.04
0.04
0.03
0.04
0.04
0.11
0.03
0.04
0.04
0.05
0.12
0.03
0.03
0.04
0.05
0.04
0.04
(H-W 2)
(6)
1.3
0.0
0.7
0.7
0.4
1.3
0.7
1.3
5.8
1.5
2.0
0.8
2.0
1.6
4.3
1.1
2.3
3.6
2.2
4.3
6.0
4.5
2.4
0.3
1.9
3.2
1.1
1.5
1.3
2.5
1.3
3.9
2.0
1.1
1.7
2.5
0.7
1.0
0.0
1.9
0.7
0.9
1.6
1.4
4.1
2.8
0.3
0.9
0.9
1.4
2.8
2.1
1.4
2.3
1.5
2.8
0.7
# of σ(H−W 2) a
(7)
0.26
0.23
0.22
0.26
0.23
0.22
0.26
0.25
0.40
0.27
0.22
0.24
0.33
0.26
0.24
0.31
0.15
0.39
0.30
0.34
0.46
0.39
0.37
0.26
0.24
0.48
0.24
0.30
0.34
0.49
0.28
0.48
0.35
0.33
0.42
0.39
0.35
0.30
0.28
0.38
0.29
0.27
0.35
0.38
0.47
0.46
0.25
0.37
0.30
0.33
0.41
0.36
0.40
0.41
0.38
0.50
0.35
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.03
0.03
0.03
0.05
0.03
0.03
0.03
0.03
0.03
0.03
0.04
0.03
0.04
0.03
0.03
0.03
0.10
0.03
0.03
0.03
0.03
0.04
0.05
0.03
0.03
0.04
0.04
0.03
0.12
0.04
0.04
0.04
0.04
0.04
0.03
0.03
0.04
0.05
0.04
0.03
0.04
0.05
0.03
0.04
0.05
0.11
0.03
0.04
0.04
0.03
0.12
0.04
0.03
0.04
0.04
0.03
0.04
(K-W 1)
(8)
0.7
0.3
0.2
0.7
0.3
0.2
0.7
0.5
2.2
0.8
0.2
0.2
1.3
0.5
0.2
1.0
-0.7
1.9
0.9
1.3
2.6
1.9
1.6
0.5
0.2
2.9
0.3
0.9
0.8
2.3
0.2
2.2
0.9
0.7
1.6
1.3
0.9
0.4
0.2
1.2
0.3
0.1
0.9
1.2
2.1
2.0
-0.1
1.1
0.4
0.7
1.5
1.0
1.4
1.5
1.2
2.4
0.9
# of σ(K−W 1) a
(9)
Table 18
Infrared Colors of low gravity late-type M and L dwarfs
0.51
0.44
0.46
0.53
0.42
0.49
0.50
0.50
0.93
0.49
0.51
0.50
0.61
0.55
0.68
0.59
0.68
0.75
0.59
0.87
1.10
0.94
0.63
0.50
0.54
0.81
0.53
0.60
0.83
0.86
0.60
0.91
0.71
0.63
0.74
0.74
0.65
0.59
0.51
0.74
0.56
0.59
0.71
0.75
1.05
0.82
0.52
0.67
0.59
0.64
0.78
0.80
0.71
0.78
0.71
0.90
0.61
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.03
0.03
0.03
0.05
0.03
0.02
0.03
0.03
0.03
0.03
0.04
0.02
0.04
0.03
0.03
0.03
0.11
0.03
0.03
0.03
0.03
0.04
0.04
0.03
0.04
0.04
0.04
0.03
0.13
0.04
0.04
0.03
0.04
0.03
0.03
0.03
0.04
0.05
0.04
0.03
0.04
0.05
0.03
0.04
0.05
0.11
0.03
0.04
0.04
0.04
0.13
0.04
0.03
0.04
0.04
0.03
0.04
(K-W 2)
(10)
1.0
0.3
0.5
1.2
0.1
0.8
0.9
0.9
5.2
0.8
1.0
0.6
1.6
1.0
2.2
1.4
2.2
2.8
1.4
3.9
6.0
4.6
1.7
0.5
0.9
3.3
0.8
1.4
2.3
2.5
0.6
2.9
1.4
0.9
1.7
1.7
1.0
0.5
0.0
1.6
0.4
0.5
1.4
1.7
3.9
2.2
0.0
1.2
0.6
0.9
2.0
2.1
1.4
1.9
1.4
2.8
0.7
# of σ(K−W 2) a
(11)
0.24
0.22
0.24
0.27
0.20
0.28
0.24
0.26
0.53
0.22
0.30
0.26
0.28
0.29
0.44
0.28
0.53
0.35
0.30
0.53
0.64
0.55
0.26
0.23
0.30
0.33
0.28
0.29
0.48
0.37
0.32
0.43
0.36
0.31
0.32
0.35
0.31
0.29
0.23
0.35
0.27
0.32
0.36
0.37
0.59
0.36
0.26
0.30
0.29
0.30
0.37
0.44
0.31
0.36
0.33
0.41
0.25
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.07
0.03
0.03
0.03
0.03
0.03
0.04
0.03
0.03
0.04
0.03
0.03
0.06
0.03
0.04
0.03
0.03
0.03
0.03
0.03
0.04
0.04
0.03
0.03
0.04
0.04
0.03
0.03
0.03
0.05
0.03
0.03
0.04
0.04
0.07
0.04
0.03
0.04
0.04
0.03
0.04
(W 1-W 2)
(12)
0.5
0.1
0.5
0.9
-0.2
1.1
0.5
0.8
5.4
0.2
1.5
0.7
1.0
1.1
3.7
1.0
5.2
2.2
1.3
5.2
7.0
5.4
0.6
0.2
1.3
1.8
1.0
1.2
4.1
2.1
1.3
3.2
2.0
1.1
1.4
1.8
1.1
0.8
-0.1
1.9
0.5
1.3
2.0
2.2
5.8
2.0
0.4
1.0
0.9
1.0
2.2
3.3
1.2
2.0
1.5
2.8
0.2
# of σ(W 1−W 2) a
(13)
78
Faherty et al.
23360735-3541489
23453903+0055137
00182834-6703130
00325584-4405058
00374306-5846229
01244599-5745379
01415823-4633574
02103857-3015313
02235464-5815067
02265658-5327032
02292794-0053282
02340093-6442068
02411151-0326587
03231002-4631237
03420931-2904317
03572695-4417305
04062677-3812102
04400972-5126544
06272161-5308428
11271382-3735076
11544223-3400390
12074836-3900043
15525906+2948485
17111353+2326333
19564700-7542270
20334473-5635338
22134491-2136079
23153135+0617146
23224684-3133231
00040288-6410358
00191296-6226005
00344300-4102266
00584253-0651239
01174748-3403258
01205114-5200349
02410564-5511466
03164512-2848521
05184616-2756457
06023045+3910592
07123786-6155528
10224821+5825453
11083081+6830169
11480096-2836488
19350976-6200473
22351658-3844154
23255604-0259508
00452143+1634446
00550564+0134365
03032042-7312300
05104958-1843548
05361998-1920396
20575409-0252302
23225299-6151275
01531463-6744181
02583123-1520536
04185879-4507413
06322402-5010349
09593276+4523309
Name
(1)
––
M9–
––
L0γ
L0γ
L0γ
L0 γ
L0 γ
L0γ
––
––
L0 γ
L0γ
L0 γ
––
L0β
L0γ
––
––
––
L0β
L0 γ
L0β
L0γ
L0γ
––
L0γ
L0γ
L0β
L1 γ
––
––
L0–
L1 β
––
––
L0–
L1γ
L1–
L1β
L1β
L1γ
––
––
––
L3–
L2β
L2γ
L2γ
––
L2γ
L1.5–
L2 γ
L2 –
––
––
L3β
––
SpT
(2)
M9β
M9β
L0γ
L0β
––
L0γ
L0 γ
L0 γ a
––
L0δ
L0γ
L0β γ
L1γ
L0 γ a
L0β
L0β
L1γ
L0γ
L0βγ
L0δ
L1β
L1 γ
L0β
L1β
L2γ
L0γ
L0γ
L0γ
L2β
L1 γ a
L1 γ
L1β
L1β
L1 β a
L1 γ
L1 γ
L1β
L1γ
L1β
L1γ
L1β
L1γ
L1β
L1γ
L1.5 γ
L1γ
L2γ
L2γ
––
L2β
L2γ
L2β
L3 γ a
L3 β
L3β
L3γ
L4γ
L3γ
SpT
(3)
0.81
0.91
1.31
1.04
1.13
1.29
1.32
1.16
1.18
1.13
1.03
1.20
1.17
1.25
1.38
1.06
1.26
1.19
1.35
1.11
0.98
0.97
1.06
1.09
1.34
1.32
1.18
1.21
0.82
1.46
1.27
1.31
0.88
1.18
1.43
1.14
1.12
1.25
1.02
1.40
0.88
1.13
1.05
1.23
1.27
1.24
1.29
1.59
1.32
1.09
1.43
1.01
1.29
1.40
1.24
1.18
1.42
1.90
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.03
0.04
0.07
0.04
0.06
0.09
0.03
0.05
0.04
0.06
0.10
0.06
0.06
0.07
0.11
0.03
0.11
0.06
0.09
0.11
0.04
0.06
0.03
0.04
0.10
0.11
0.06
0.07
0.03
0.08
0.06
0.07
0.04
0.05
0.08
0.06
0.04
0.05
0.03
0.05
0.04
0.03
0.09
0.10
0.05
0.07
0.04
0.08
0.09
0.06
0.07
0.03
0.07
0.09
0.07
0.08
0.04
0.07
(H-W 1)
(4)
0.8
1.7
3.8
1.7
2.5
3.7
4.0
2.7
2.9
2.4
1.7
3.0
2.8
3.4
4.4
1.9
3.5
3.0
4.2
2.3
1.3
1.3
1.9
2.1
4.1
3.9
2.8
3.0
0.0
3.7
2.4
2.7
-0.2
1.8
3.5
1.5
1.4
2.3
0.7
3.3
-0.2
1.5
0.9
2.2
2.4
2.2
1.4
3.2
1.6
0.2
2.2
-0.3
1.4
1.2
0.4
0.1
1.3
3.7
# of σ(H−W 1) a
(5)
1.16
1.24
1.71
1.37
1.52
1.72
1.71
1.51
1.57
1.56
1.42
1.54
1.56
1.66
1.81
1.45
1.61
1.59
1.73
1.47
1.29
1.39
1.40
1.44
1.79
1.72
1.57
1.66
1.08
1.89
1.74
1.71
1.20
1.59
1.88
1.52
1.46
1.63
1.33
1.77
1.15
1.48
1.41
1.64
1.63
1.59
1.67
2.07
1.75
1.40
1.90
1.29
1.69
1.89
1.67
1.59
1.86
2.40
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.04
0.03
0.07
0.04
0.06
0.09
0.03
0.05
0.04
0.06
0.11
0.06
0.06
0.07
0.11
0.03
0.11
0.06
0.10
0.12
0.04
0.06
0.03
0.04
0.10
0.11
0.06
0.08
0.03
0.08
0.06
0.07
0.04
0.05
0.08
0.06
0.04
0.05
0.03
0.05
0.04
0.03
0.09
0.10
0.05
0.08
0.04
0.08
0.09
0.06
0.08
0.03
0.07
0.09
0.07
0.08
0.04
0.07
(H-W 2)
(6)
1.3
1.9
3.7
1.7
2.6
3.7
3.7
2.5
2.9
2.8
2.0
2.7
2.8
3.4
4.3
2.1
3.1
3.0
3.8
2.3
1.3
1.8
1.9
2.1
4.2
3.8
2.9
3.4
0.0
4.0
3.1
3.0
0.1
2.3
4.0
1.9
1.6
2.6
0.9
3.3
-0.1
1.7
1.3
2.6
2.5
2.3
1.5
3.3
1.8
0.3
2.6
-0.2
1.6
1.8
0.8
0.5
1.6
3.9
# of σ(H−W 2) a
(7)
0.38
0.37
0.54
0.45
0.47
0.55
0.55
0.50
0.60
0.53
0.46
0.60
0.40
0.63
0.41
0.44
0.66
0.59
0.81
0.77
0.50
0.41
0.48
0.48
0.54
0.43
0.53
0.52
0.35
0.64
0.61
0.59
0.34
0.46
0.52
0.55
0.47
0.57
0.43
0.68
0.40
0.48
0.42
0.67
0.62
0.42
0.60
0.76
0.54
0.56
0.59
0.46
0.62
0.71
0.57
0.73
0.73
0.81
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.05
0.04
0.05
0.04
0.05
0.09
0.04
0.05
0.05
0.05
0.14
0.07
0.06
0.06
0.09
0.03
0.12
0.06
0.09
0.16
0.04
0.07
0.03
0.04
0.07
0.09
0.05
0.07
0.03
0.05
0.06
0.06
0.04
0.04
0.06
0.04
0.04
0.05
0.03
0.05
0.03
0.03
0.09
0.10
0.05
0.06
0.03
0.07
0.09
0.06
0.07
0.03
0.05
0.11
0.06
0.09
0.04
0.05
(K-W 1)
(8)
Table 18 — Continued
1.2
1.1
1.7
0.9
1.0
1.7
1.7
1.3
2.2
1.6
1.0
2.2
0.5
2.4
0.6
0.8
2.7
2.0
3.9
3.6
1.3
0.5
1.1
1.2
1.6
0.7
1.6
1.5
0.1
2.5
2.1
2.0
-0.3
0.8
1.4
1.7
0.9
1.9
0.5
2.8
0.3
1.0
0.5
2.7
2.3
0.5
1.3
2.6
0.8
0.9
1.1
0.1
1.4
1.4
0.4
1.6
1.6
2.2
# of σ(K−W 1) a
(9)
0.74
0.70
0.94
0.78
0.85
0.98
0.93
0.85
0.99
0.97
0.85
0.95
0.78
1.04
0.84
0.82
1.01
0.98
1.19
1.13
0.81
0.82
0.81
0.83
0.98
0.83
0.93
0.98
0.62
1.07
1.07
0.99
0.66
0.87
0.97
0.93
0.80
0.96
0.74
1.04
0.66
0.83
0.79
1.07
0.98
0.77
0.98
1.24
0.97
0.87
1.06
0.74
1.02
1.21
1.00
1.14
1.17
1.31
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.05
0.04
0.05
0.04
0.05
0.09
0.04
0.05
0.05
0.05
0.15
0.07
0.06
0.06
0.09
0.03
0.12
0.07
0.09
0.16
0.04
0.07
0.03
0.04
0.07
0.09
0.05
0.07
0.03
0.05
0.06
0.06
0.04
0.04
0.06
0.05
0.04
0.05
0.03
0.05
0.03
0.03
0.09
0.11
0.05
0.07
0.03
0.08
0.09
0.06
0.07
0.03
0.05
0.11
0.06
0.09
0.04
0.05
(K-W 2)
(10)
1.6
1.4
2.6
1.3
1.9
2.8
2.5
1.8
2.9
2.8
1.9
2.6
1.3
3.3
1.8
1.6
3.1
2.8
4.4
4.0
1.6
1.7
1.6
1.7
2.9
1.7
2.4
2.8
0.1
3.2
3.2
2.5
0.2
1.7
2.5
2.1
1.2
2.4
0.8
3.0
0.2
1.4
1.1
3.2
2.5
1.0
1.5
3.1
1.4
0.8
2.0
0.0
1.7
2.2
1.0
1.8
1.9
2.7
# of σ(K−W 2) a
(11)
0.36
0.33
0.40
0.33
0.39
0.43
0.38
0.35
0.39
0.44
0.39
0.34
0.38
0.41
0.43
0.39
0.35
0.39
0.38
0.36
0.31
0.42
0.34
0.35
0.44
0.40
0.40
0.46
0.27
0.43
0.47
0.40
0.31
0.41
0.45
0.38
0.34
0.38
0.31
0.37
0.27
0.35
0.37
0.41
0.36
0.35
0.38
0.48
0.43
0.32
0.47
0.28
0.40
0.50
0.43
0.41
0.44
0.50
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.04
0.03
0.04
0.04
0.04
0.04
0.03
0.04
0.03
0.04
0.06
0.04
0.04
0.03
0.04
0.03
0.05
0.04
0.04
0.06
0.03
0.04
0.03
0.03
0.04
0.04
0.04
0.04
0.03
0.04
0.04
0.04
0.04
0.04
0.04
0.03
0.03
0.04
0.03
0.03
0.03
0.03
0.05
0.05
0.04
0.04
0.03
0.04
0.04
0.04
0.04
0.03
0.04
0.04
0.04
0.04
0.03
0.04
(W 1-W 2)
(12)
1.9
1.6
1.7
0.8
1.5
2.0
1.4
1.0
1.5
2.1
1.5
0.9
1.4
1.8
2.0
1.5
1.0
1.5
1.4
1.1
0.5
1.9
0.8
1.1
2.2
1.7
1.6
2.3
0.0
2.9
3.5
2.3
0.9
2.4
3.2
1.9
1.3
2.1
0.8
1.8
0.1
1.5
1.8
2.5
1.7
1.4
1.2
2.7
2.0
0.4
2.6
-0.1
1.6
3.1
2.0
1.7
2.2
3.1
# of σ(W 1−W 2) a
(13)
Brown Dwarf Analogs to Exoplanets
79
L3γ
L3γ
L3γ
L3γ
L3γ
L4β
L1
L2γ
––
L3γ
L4βγ
L4β
L4γ
L4γ
>L5γ
L3-L6γ
L4pec
L4β
L5γ
L4 γ a
L3β
L3-L6γ
L4-L6β
L5βγ a
L3-L6γ
L5γ
L5β
L5-L7γ
L6-L8γ
L6β
L6p
L8—
L7γ
L7γ
L6-L8γ
L6-L8γ
L6-L8 γ a
SpT
(3)
1.95
1.39
1.25
1.50
1.44
1.57
1.41
1.94
1.43
1.66
1.69
1.29
1.58
1.68
1.51
2.13
1.54
1.34
1.70
1.62
1.85
1.89
1.62
1.84
2.00
1.73
1.78
1.75
2.09
1.72
1.84
1.77
2.24
2.05
2.23
2.41
2.22
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.05
0.05
0.09
0.06
0.08
0.06
0.06
0.22
0.09
0.04
0.12
0.12
0.03
0.07
0.08
0.10
0.03
0.12
0.09
0.07
0.11
0.07
0.10
0.08
0.04
0.05
0.05
0.06
0.05
0.06
0.10
0.05
0.04
0.11
0.06
0.05
0.07
(H-W 1)
(4)
3.9
1.2
0.4
1.7
1.4
0.9
0.3
2.5
0.4
1.3
1.5
-0.2
1.0
1.4
0.7
3.3
0.8
0.0
1.5
1.2
2.1
2.3
1.5
3.0
4.1
2.2
2.6
2.4
3.4
0.8
1.2
1.9
4.2
3.1
4.1
5.0
2.4
# of σ(H−W 1) a
(5)
2.51
1.77
1.59
1.93
1.91
1.99
1.73
2.47
1.90
2.20
2.17
1.68
2.00
2.13
1.99
2.71
1.92
1.79
2.15
2.07
2.28
2.40
2.01
2.36
2.59
2.15
2.24
2.19
2.70
2.20
2.37
2.38
2.91
2.67
2.86
3.16
2.89
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.05
0.05
0.09
0.06
0.08
0.06
0.06
0.22
0.09
0.04
0.12
0.13
0.03
0.07
0.08
0.10
0.03
0.12
0.09
0.07
0.12
0.07
0.11
0.08
0.04
0.05
0.05
0.06
0.05
0.06
0.10
0.05
0.04
0.12
0.06
0.05
0.07
(H-W 2)
(6)
4.4
1.3
0.5
1.9
1.8
1.1
0.2
2.8
0.8
1.8
1.7
0.0
1.1
1.6
1.1
3.6
0.9
0.4
1.7
1.4
2.1
2.5
1.4
3.1
4.2
2.0
2.5
2.2
3.3
0.7
1.2
1.8
4.1
3.2
4.0
5.2
2.6
# of σ(H−W 2) a
(7)
1.08
0.59
0.57
0.64
0.80
0.77
0.61
1.04
0.59
0.91
0.82
0.62
0.81
0.83
0.71
1.11
0.80
0.60
0.83
0.79
0.78
1.07
0.82
0.97
1.00
0.89
0.91
0.89
1.18
0.97
1.07
0.94
1.20
1.15
1.14
1.22
1.25
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.04
0.06
0.09
0.05
0.08
0.05
0.05
0.15
0.09
0.04
0.13
0.10
0.03
0.06
0.06
0.07
0.03
0.11
0.07
0.06
0.08
0.07
0.10
0.07
0.03
0.05
0.05
0.04
0.04
0.06
0.06
0.04
0.03
0.03
0.04
0.05
0.08
(K-W 1)
(8)
4.1
0.6
0.4
0.9
2.0
0.7
-0.5
2.6
-0.7
1.6
1.0
-0.4
0.9
1.1
0.2
3.1
0.8
-0.5
1.1
0.8
0.7
2.8
0.7
1.9
2.2
1.3
1.4
1.2
3.0
1.0
1.5
1.3
3.2
2.8
2.7
3.3
2.4
# of σ(K−W 1) a
(9)
1.64
0.97
0.91
1.08
1.26
1.19
0.93
1.58
1.06
1.44
1.30
1.01
1.23
1.28
1.19
1.69
1.18
1.06
1.28
1.23
1.22
1.58
1.22
1.49
1.59
1.32
1.37
1.33
1.79
1.45
1.61
1.55
1.87
1.78
1.76
1.97
1.91
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.04
0.06
0.09
0.05
0.08
0.05
0.05
0.15
0.09
0.04
0.13
0.10
0.03
0.06
0.06
0.07
0.03
0.11
0.07
0.06
0.09
0.07
0.11
0.07
0.03
0.05
0.05
0.04
0.04
0.06
0.06
0.04
0.03
0.03
0.04
0.05
0.08
(K-W 2)
(10)
4.6
0.8
0.5
1.4
2.5
1.0
-0.4
3.2
0.3
2.4
1.6
0.0
1.2
1.5
1.0
3.8
0.9
0.3
1.5
1.2
1.1
3.2
0.8
2.3
2.8
1.3
1.6
1.4
3.0
1.0
1.6
1.3
3.4
3.0
2.9
4.0
2.8
# of σ(K−W 2) a
(11)
0.57
0.38
0.34
0.44
0.47
0.42
0.32
0.54
0.47
0.53
0.48
0.39
0.42
0.45
0.48
0.58
0.38
0.45
0.45
0.45
0.43
0.51
0.39
0.51
0.59
0.42
0.46
0.44
0.61
0.48
0.53
0.60
0.67
0.63
0.63
0.75
0.67
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.03
0.04
0.05
0.03
0.04
0.03
0.04
0.05
0.04
0.03
0.05
0.04
0.03
0.04
0.04
0.03
0.03
0.05
0.04
0.03
0.06
0.04
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.04
0.04
0.03
0.04
0.04
0.03
0.04
0.03
(W 1-W 2)
(12)
4.3
1.1
0.5
2.1
2.6
1.2
-0.3
2.8
1.9
2.7
2.0
0.8
1.2
1.6
2.0
3.4
0.5
1.6
1.6
1.5
1.3
2.4
0.6
2.1
2.9
0.9
1.3
1.2
1.8
0.6
1.0
0.4
2.4
2.0
2.0
3.4
2.2
# of σ(W 1−W 2) a
(13)
whereas a positive (+) number indicates that the color was redward of the field sequence average.
Values are the # of σ (as reported in Table 16) from the field sequence that each object differs. A negative (-) number indicates that the color was blueward of the field sequence average
L3β
L3.5γ
––
L3γ
L3γ
––
L4β
L4γ
L4 γ
L4γ
––
––
L3–
L4γ
L4γ
L4γ
L4.5—
––
L4β
L4 γ
L4γ
––
L7–
L5 β
L5γ
L5β
L5γ
L5β
L7(γ?)
L6β
––
L8–
—
––
––
––
L6.5p –
G196-3B
17260007+1538190
20113196-5048112
21265040-8140293
22081363+2921215
00011217+1535355
003323.86-1521309
01262109+1428057
03421621-6817321
05012406-0010452
10212570-2830427
12563961-2718455
14252798-3650229
15382417-1953116
15515237+0941148
16154255+4953211
18212815+1414010
21324036+1029494
21543454-1055308
22064498-4217208
22495345+0044046
23433470-3646021
00303013-1450333
03264225-2102057
03552337+1133437
04210718-6306022
05120636-2949540
20025073-0521524
00470038+6803543
01033203+1935361
08095903+4434216
08575849+5708514
11193254-1137466
114724.10-204021.3
17410280-4642218
PSO318
22443167+2043433
a
SpT
(2)
Name
(1)
Table 18 — Continued
80
Faherty et al.
81
Brown Dwarf Analogs to Exoplanets
Table 19
Coefficients of Polynomial Fits for M6 -T9 Dwarfs
MF ilter
MJ FLD
MJ YNG
MJ GRP
MH FLD
MH YNG
MH GRP
MKs FLD
MKs YNG
MKs GRP
MW 1 FLD
MW 1 YNG
MW 1 GRP
MW 2 FLD
MW 2 YNG
MW 2 GRP
MW 3 FLD
MW 3 YNG
MW 3 GRP
Tef f FLD
Tef f YNG
Tef f YNG2
Tef f GRP
Lbol FLD
Lbol YNG
Lbol YNG2
Lbol GRP
MLconverted a
x
6.0<SpT
7.0<SpT
7.0<SpT
6.0<SpT
7.0<SpT
7.0<SpT
6.0<SpT
7.0<SpT
7.0<SpT
6.0<SpT
7.0<SpT
7.0<SpT
6.0<SpT
7.0<SpT
7.0<SpT
6.0<SpT
7.0<SpT
7.0<SpT
6.0<SpT
7.0<SpT
7.0<SpT
7.0<SpT
7.0<SpT
7.0<SpT
7.0<SpT
7.0<SpT
7.0<SpT
<29.0
<17.0
<17.0
<29.0
<17.0
<17.0
<29.0
<17.0
<17.0
<29.0
<17.0
<17.0
<29.0
<17.0
<17.0
<29.0
<17.0
<17.0
<29.0
<17.0
<28.0
<17.0
<28.0
<17.0
<28.0
<17.0
<28.0
rms
c0
c1
c2
c3
c4
c5
c6
0.402
0.647
0.660
0.389
0.634
0.603
0.537
0.640
0.556
0.365
0.648
0.551
0.398
0.694
0.616
0.446
0.717
0.427
113.431
180.457
197.737
172.215
0.133
0.335
0.206
0.221
-8.350e+00
4.032e-03
-3.825e-03
-7.496e+00
2.642e-03
-3.909e-03
-6.704e+00
-1.585e-02
-4.006e-03
-1.664e-01
-1.397e-02
-4.483e-03
-5.043e-01
-1.507e-02
-6.821e-03
6.462e+00
-1.003e-04
-5.684e-03
4.747e+03
1.330e+00
2.795e+04
7.383e+00
2.787e+00
-6.514e-03
2.059e-01
6.194e-03
-3.46623e-01
7.157e+00
-1.416e-01
1.370e-01
6.406e+00
-1.049e-01
1.346e-01
5.970e+00
7.338e-01
1.378e-01
2.991e+00
5.955e-01
1.505e-01
3.032e+00
5.944e-01
2.322e-01
3.365e-01
-1.670e-03
1.993e-01
-7.005e+02
-66.8637
-9.183e+03
-344.522
-2.310e+00
2.448e-01
9.585
-3.757e-01
3.40366e-02
-1.058e+00
2.097e+00
-9.279e-01
-9.174e-01
1.753e+00
-9.347e-01
-8.481e-01
4.537e+00
-1.031e+00
-3.603e-01
5.247e+00
-1.208e+00
-3.655e-01
5.061e+00
-2.133e+00
1.520e-02
2.023e-01
-1.987e+00
1.155e+02
1235.42
1.360e+03
4879.86
3.727e-01
-3.113e+00
-3.985
2.728e-02
-3.072e-03
7.771e-02
8.478e-01
10.141e+00
6.551e-02
1.207e+00
9.728e+00
5.978e-02
···
9.916e+00
2.258e-02
···
10.403e+00
2.283e-02
···
13.322e+00
-2.573e-03
7.529e+00
13.972e+00
-1.191e+01
-10068.8
-1.066e+02
···
-3.207e-02
9.492e+00
4.923e-01
···
-2.684e-03
···
···
-2.217e-03
···
···
-1.997e-03
···
···
-6.897e-04
···
···
-6.938e-04
···
···
9.477e-05
···
···
6.318e-01
32766.4
4.578e+00
···
1.449e-03
···
-3.048e-02
···
3.478e-05
···
···
2.841e-05
···
···
2.540e-05
···
···
8.337e-06
···
···
8.190e-06
···
···
-1.024e-06
···
···
-1.606e-02
···
-1.016e-01
···
-3.220e-05
···
9.134e-04
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
1.546e-04
···
9.106e-04
···
2.736e-07
···
-1.056e-05
···
Note. — Relations use 2MASS or WISE magnitudes. Polynomial fits to optical M/L dwarfs and NIR T dwarfs (L dwarfs with no optical
spectral type have NIR spectral types) excluding subdwarfs, low-gravity dwarfs, and binaries for the field (FLD) relations. We present polynomials
inclusive of (1) all γ and β sources under the YNG polynomials as well as (2) only High Likelihood/bonafide moving group members under the
P
i
GRP polynomials (see Table 13). The function is defined as MJ,H,Ks,W 1,W 2,W 3,Lbol,T ef f = n
i=0 ci (SpT) and is valid for varying spectral types
M6-T9 where 6=M6, 10=L0, 20=T0, etc. An FTEST was used to determine the goodness of fit for each polynomial. In the case of all FLD
polynomials, the sample of Filippazzo et al. (2015) is used. In the case of all YNG or GRP polynomials, they are valid from M7 - L7. We list a
second Lbol and Teff for the YNG polynomial (captioned YNG2) that includes planetary mass companions (e.g. HN Peg b, Gu Psc b, Ross 458C,
etc) from Filippazzo et al. (2015) and allows us to extend the polynomial from M7-T8.
Pn
a
i
Add W1 photometry to SpT polynomial conversion: MLconverted = W1 +
i=0 ci (SpT)
82
Faherty et al.
This publication has made use of the Carnegie Astrometric Program parallax reduction software as well
as the data products from the Two Micron All-Sky
Survey, which is a joint project of the University of
Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded
by the National Aeronautics and Space Administration
and the National Science Foundation. This research
has alsp made use of the NASA/ IPAC Infrared Science
Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Furthermore, this publication makes use of
data products from the Wide-field Infrared Survey Explorer (WISE), which is a joint project of the University of California, Los Angeles, and the Jet Propulsion
Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by the US National Aeronautics and
Space Administration. Australian access to the Magellan Telescopes was supported through the National Collaborative Research Infrastructure and Collaborative Research Infrastructure Strategies of the Australian Federal
Government. CGT acknowledges the support in this research of Australian Research Council grants DP0774000
and DP130102695. JRT gratefully acknowledges support
from NSF grants AST-0708810 and AST-1008217
REFERENCES
Ackerman, A. S. & Marley, M. S. 2001, ApJ, 556, 872
Aganze, C., Burgasser, A. J., Faherty, J. K., Choban, C., Escala,
I., Lopez, M. A., Jin, Y., Tamiya, T., Tallis, M., & Rockward,
W. 2016, AJ, 151, 46
Allard, F. & Hauschildt, P. H. 1995, ApJ, 445, 433
Allard, F., Hauschildt, P. H., Alexander, D. R., Tamanai, A., &
Schweitzer, A. 2001, ApJ, 556, 357
Aller, K. M., Liu, M. C., Magnier, E. A., Best, W. M. J., Kotson,
M. C., Burgett, W. S., Chambers, K. C., Hodapp, K. W.,
Flewelling, H., Kaiser, N., Metcalf, N., Tonry, J. L., Wainscoat,
R. J., & Waters, C. 2016, ApJ, 821, 120
Allers, K. N., Gallimore, J. F., Liu, M. C., & Dupuy, T. J. 2016,
ArXiv e-prints
Allers, K. N., Jaffe, D. T., Luhman, K. L., Liu, M. C., Wilson,
J. C., Skrutskie, M. F., Nelson, M., Peterson, D. E., Smith,
J. D., & Cushing, M. C. 2007, ApJ, 657, 511
Allers, K. N. & Liu, M. C. 2013, ApJ, 772, 79
Anglada-Escudé, G., Boss, A. P., Weinberger, A. J., Thompson,
I. B., Butler, R. P., Vogt, S. S., & Rivera, E. J. 2012, ApJ, 746,
37
Apai, D., Radigan, J., Buenzli, E., Burrows, A., Reid, I. N., &
Jayawardhana, R. 2013, ApJ, 768, 121
Artigau, É., Gagné, J., Faherty, J., Malo, L., Naud, M.-E.,
Doyon, R., Lafrenière, D., & Beletsky, Y. 2015, ApJ, 806, 254
Baraffe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, A&A,
577, A42
Barenfeld, S. A., Bubar, E. J., Mamajek, E. E., & Young, P. A.
2013, ApJ, 766, 6
Barman, T. S., Macintosh, B., Konopacky, Q. M., & Marois, C.
2011a, ApJ, 733, 65
—. 2011b, ApJL, 735, L39
Basri, G. 2000, ARA&A, 38, 485
Bessell, M. S. 1990, PASP, 102, 1181
Best, W. M. J., Liu, M. C., Magnier, E. A., Deacon, N. R., Aller,
K. M., Redstone, J., Burgett, W. S., Chambers, K. C., Draper,
P., Flewelling, H., Hodapp, K. W., Kaiser, N., Metcalfe, N.,
Tonry, J. L., Wainscoat, R. J., & Waters, C. 2015, ApJ, 814,
118
Binks, A. S. & Jeffries, R. D. 2014, MNRAS, 438, L11
Blake, C. H., Charbonneau, D., & White, R. J. 2010, ApJ, 723,
684
Blake, C. H., Charbonneau, D., White, R. J., Marley, M. S., &
Saumon, D. 2007, ApJ, 666, 1198
Bochanski, J. J., Hennawi, J. F., Simcoe, R. A., Prochaska, J. X.,
West, A. A., Burgasser, A. J., Burles, S. M., Bernstein, R. A.,
Williams, C. L., & Murphy, M. T. 2009, PASP, 121, 1409
Bonnefoy, M., Boccaletti, A., Lagrange, A.-M., Allard, F.,
Mordasini, C., Beust, H., Chauvin, G., Girard, J. H. V.,
Homeier, D., Apai, D., Lacour, S., & Rouan, D. 2013, A&A,
555, A107
Bonnefoy, M., Chauvin, G., Rojo, P., Allard, F., Lagrange, A.-M.,
Homeier, D., Dumas, C., & Beuzit, J.-L. 2010, A&A, 512, A52
Bonnefoy, M., Marleau, G.-D., Galicher, R., Beust, H., Lagrange,
A.-M., Baudino, J.-L., Chauvin, G., Borgniet, S., Meunier, N.,
Rameau, J., Boccaletti, A., Cumming, A., Helling, C., Homeier,
D., Allard, F., & Delorme, P. 2014, A&A, 567, L9
Boss, A. P., Weinberger, A. J., Anglada-Escudé, G., Thompson,
I. B., Burley, G., Birk, C., Pravdo, S. H., Shaklan, S. B.,
Gatewood, G. D., Majewski, S. R., & Patterson, R. J. 2009,
PASP, 121, 1218
Bowler, B. P., Liu, M. C., & Dupuy, T. J. 2010a, ApJ, 710, 45
Bowler, B. P., Liu, M. C., Dupuy, T. J., & Cushing, M. C. 2010b,
ApJ, 723, 850
Bowler, B. P., Liu, M. C., Shkolnik, E. L., & Dupuy, T. J. 2013,
ApJ, 774, 55
Buenzli, E., Apai, D., Radigan, J., Reid, I. N., & Flateau, D.
2014, ApJ, 782, 77
Buenzli, E., Saumon, D., Marley, M. S., Apai, D., Radigan, J.,
Bedin, L. R., Reid, I. N., & Morley, C. V. 2015, ApJ, 798, 127
Burgasser, A. J., Cruz, K. L., Cushing, M., Gelino, C. R., Looper,
D. L., Faherty, J. K., Kirkpatrick, J. D., & Reid, I. N. 2010a,
ApJ, 710, 1142
Burgasser, A. J., Gillon, M., Faherty, J. K., Radigan, J., Triaud,
A. H. M. J., Plavchan, P., Street, R., Jehin, E., Delrez, L., &
Opitom, C. 2014, ApJ, 785, 48
Burgasser, A. J., Kirkpatrick, J. D., Brown, M. E., Reid, I. N.,
Burrows, A., Liebert, J., Matthews, K., Gizis, J. E., Dahn,
C. C., Monet, D. G., Cutri, R. M., & Skrutskie, M. F. 2002a,
ApJ, 564, 421
Burgasser, A. J., Liu, M. C., Ireland, M. J., Cruz, K. L., &
Dupuy, T. J. 2008, ApJ, 681, 579
Burgasser, A. J., Logsdon, S. E., Gagné, J., Bochanski, J. J.,
Faherty, J. K., West, A. A., Mamajek, E. E., Schmidt, S. J., &
Cruz, K. L. 2015, ApJS, 220, 18
Burgasser, A. J., Marley, M. S., Ackerman, A. S., Saumon, D.,
Lodders, K., Dahn, C. C., Harris, H. C., & Kirkpatrick, J. D.
2002b, ApJL, 571, L151
Burgasser, A. J., Simcoe, R. A., Bochanski, J. J., Saumon, D.,
Mamajek, E. E., Cushing, M. C., Marley, M. S., McMurtry, C.,
Pipher, J. L., & Forrest, W. J. 2010b, ApJ, 725, 1405
Burrows, A., Hubbard, W. B., Lunine, J. I., & Liebert, J. 2001,
Reviews of Modern Physics, 73, 719
Canty, J. I., Lucas, P. W., Roche, P. F., & Pinfield, D. J. 2013,
MNRAS, 435, 2650
Chauvin, G., Lagrange, A.-M., Dumas, C., Zuckerman, B.,
Mouillet, D., Song, I., Beuzit, J.-L., & Lowrance, P. 2004,
A&A, 425, L29
Chauvin, G., Lagrange, A.-M., Zuckerman, B., Dumas, C.,
Mouillet, D., Song, I., Beuzit, J.-L., Lowrance, P., & Bessell,
M. S. 2005, A&A, 438, L29
Crifo, F., Phan-Bao, N., Delfosse, X., Forveille, T., Guibert, J.,
Martı́n, E. L., & Reylé, C. 2005, A&A, 441, 653
Cruz, K. L., Kirkpatrick, J. D., & Burgasser, A. J. 2009, AJ, 137,
3345
Cruz, K. L., Reid, I. N., Kirkpatrick, J. D., Burgasser, A. J.,
Liebert, J., Solomon, A. R., Schmidt, S. J., Allen, P. R.,
Hawley, S. L., & Covey, K. R. 2007, AJ, 133, 439
Cruz, K. L., Reid, I. N., Liebert, J., Kirkpatrick, J. D., &
Lowrance, P. J. 2003, AJ, 126, 2421
Currie, T., Burrows, A., Itoh, Y., Matsumura, S., Fukagawa, M.,
Apai, D., Madhusudhan, N., Hinz, P. M., Rodigas, T. J.,
Kasper, M., Pyo, T.-S., & Ogino, S. 2011, ApJ, 729, 128
Currie, T., Daemgen, S., Debes, J., Lafreniere, D., Itoh, Y.,
Jayawardhana, R., Ratzka, T., & Correia, S. 2014, ApJL, 780,
L30
Brown Dwarf Analogs to Exoplanets
Cushing, M. C., Kirkpatrick, J. D., Gelino, C. R., Griffith, R. L.,
Skrutskie, M. F., Mainzer, A., Marsh, K. A., Beichman, C. A.,
Burgasser, A. J., Prato, L. A., Simcoe, R. A., Marley, M. S.,
Saumon, D., Freedman, R. S., Eisenhardt, P. R., & Wright,
E. L. 2011, ApJ, 743, 50
Cushing, M. C., Vacca, W. D., & Rayner, J. T. 2004, PASP, 116,
362
Cutri, R. M. & et al. 2013, VizieR Online Data Catalog, 2328
Cutri, R. M., Skrutskie, M. F., van Dyk, S., Beichman, C. A.,
Carpenter, J. M., Chester, T., Cambresy, L., Evans, T., Fowler,
J., Gizis, J., Howard, E., Huchra, J., Jarrett, T., Kopan, E. L.,
Kirkpatrick, J. D., Light, R. M., Marsh, K. A., McCallon, H.,
Schneider, S., Stiening, R., Sykes, M., Weinberg, M., Wheaton,
W. A., Wheelock, S., & Zacarias, N. 2003, 2MASS All Sky
Catalog of point sources., ed. Cutri, R. M., Skrutskie, M. F.,
van Dyk, S., Beichman, C. A., Carpenter, J. M., Chester, T.,
Cambresy, L., Evans, T., Fowler, J., Gizis, J., Howard, E.,
Huchra, J., Jarrett, T., Kopan, E. L., Kirkpatrick, J. D., Light,
R. M., Marsh, K. A., McCallon, H., Schneider, S., Stiening, R.,
Sykes, M., Weinberg, M., Wheaton, W. A., Wheelock, S., &
Zacarias, N.
Dahn, C. C., Harris, H. C., Vrba, F. J., Guetter, H. H., Canzian,
B., Henden, A. A., Levine, S. E., Luginbuhl, C. B., Monet,
A. K. B., Monet, D. G., Pier, J. R., Stone, R. C., Walker,
R. L., Burgasser, A. J., Gizis, J. E., Kirkpatrick, J. D., Liebert,
J., & Reid, I. N. 2002, AJ, 124, 1170
Deacon, N. R., Schlieder, J. E., & Murphy, S. J. 2016, ArXiv
e-prints
Delorme, P., Gagné, J., Malo, L., Reylé, C., Artigau, E., Albert,
L., Forveille, T., Delfosse, X., Allard, F., & Homeier, D. 2012,
A&A, 548, A26
Dieterich, S. B., Henry, T. J., Jao, W.-C., Winters, J. G., Hosey,
A. D., Riedel, A. R., & Subasavage, J. P. 2014, AJ, 147, 94
Dittmann, J. A., Irwin, J. M., Charbonneau, D., &
Berta-Thompson, Z. K. 2014, ApJ, 784, 156
Ducourant, C., Teixeira, R., Galli, P. A. B., Le Campion, J. F.,
Krone-Martins, A., Zuckerman, B., Chauvin, G., & Song, I.
2014, A&A, 563, A121
Dupuy, T. J. & Liu, M. C. 2012, ArXiv e-prints
Eggen, O. J. & Iben, I. J. 1989, AJ, 97, 431
Faherty, J. K., Beletsky, Y., Burgasser, A. J., Tinney, C., Osip,
D. J., Filippazzo, J. C., & Simcoe, R. A. 2014a, ApJ, 790, 90
Faherty, J. K., Burgasser, A. J., Cruz, K. L., Shara, M. M.,
Walter, F. M., & Gelino, C. R. 2009, AJ, 137, 1
Faherty, J. K., Burgasser, A. J., Walter, F. M., Van der Bliek, N.,
Shara, M. M., Cruz, K. L., West, A. A., Vrba, F. J., &
Anglada-Escudé, G. 2012, ApJ, 752, 56
Faherty, J. K., Rice, E. L., Cruz, K. L., Mamajek, E. E., &
Núñez, A. 2013, AJ, 145, 2
Faherty, J. K., Tinney, C. G., Skemer, A., & Monson, A. J.
2014b, ApJL, 793, L16
Filippazzo, J. C., Rice, E. L., Faherty, J., Cruz, K. L., Van
Gordon, M. M., & Looper, D. L. 2015, ApJ, 810, 158
Fuhrmann, K. & Chini, R. 2015, ApJ, 806, 163
Gagné, J., Burgasser, A. J., Faherty, J. K., Lafreniére, D., Doyon,
R., Filippazzo, J. C., Bowsher, E., & Nicholls, C. P. 2015a,
ApJL, 808, L20
Gagné, J., Faherty, J. K., Cruz, K., Lafrenière, D., Doyon, R.,
Malo, L., & Artigau, É. 2014a, ApJL, 785, L14
Gagné, J., Faherty, J. K., Cruz, K. L., Lafreniére, D., Doyon, R.,
Malo, L., Burgasser, A. J., Naud, M.-E., Artigau, É.,
Bouchard, S., Gizis, J. E., & Albert, L. 2015b, ApJS, 219, 33
Gagné, J., Lafrenière, D., Doyon, R., Artigau, É., Malo, L.,
Robert, J., & Nadeau, D. 2014b, ApJL, 792, L17
Gagné, J., Lafrenière, D., Doyon, R., Malo, L., & Artigau, É.
2014c, ApJ, 783, 121
—. 2014d, ApJ, 783, 121
—. 2015c, ApJ, 798, 73
Gálvez-Ortiz, M. C., Clarke, J. R. A., Pinfield, D. J., Jenkins,
J. S., Folkes, S. L., Pérez, A. E. G., Day-Jones, A. C.,
Burningham, B., Jones, H. R. A., Barnes, J. R., & Pokorny,
R. S. 2010, MNRAS, 409, 552
Gauza, B., Béjar, V. J. S., Pérez-Garrido, A., Rosa Zapatero
Osorio, M., Lodieu, N., Rebolo, R., Pallé, E., & Nowak, G.
2015, ApJ, 804, 96
83
Gillon, M., Triaud, A. H. M. J., Jehin, E., Delrez, L., Opitom, C.,
Magain, P., Lendl, M., & Queloz, D. 2013, A&A, 555, L5
Gizis, J. E. 2002, ApJ, 575, 484
Gizis, J. E., Allers, K. N., Liu, M. C., Harris, H. C., Faherty,
J. K., Burgasser, A. J., & Kirkpatrick, J. D. 2015, ApJ, 799,
203
Gizis, J. E., Faherty, J. K., Liu, M. C., Castro, P. J., Shaw, J. D.,
Vrba, F. J., Harris, H. C., Aller, K. M., & Deacon, N. R. 2012,
AJ, 144, 94
Gizis, J. E., Monet, D. G., Reid, I. N., Kirkpatrick, J. D., Liebert,
J., & Williams, R. J. 2000, AJ, 120, 1085
Golimowski, D. A., Leggett, S. K., Marley, M. S., Fan, X.,
Geballe, T. R., Knapp, G. R., Vrba, F. J., Henden, A. A.,
Luginbuhl, C. B., Guetter, H. H., Munn, J. A., Canzian, B.,
Zheng, W., Tsvetanov, Z. I., Chiu, K., Glazebrook, K.,
Hoversten, E. A., Schneider, D. P., & Brinkmann, J. 2004, AJ,
127, 3516
Gorlova, N. I., Meyer, M. R., Rieke, G. H., & Liebert, J. 2003,
ApJ, 593, 1074
Hallinan, G., Littlefair, S. P., Cotter, G., Bourke, S., Harding,
L. K., Pineda, J. S., Butler, R. P., Golden, A., Basri, G., Doyle,
J. G., Kao, M. M., Berdyugina, S. V., Kuznetsov, A., Rupen,
M. P., & Antonova, A. 2015, Nature, 523, 568
Hawley, S. L., Covey, K. R., Knapp, G. R., Golimowski, D. A.,
Fan, X., Anderson, S. F., Gunn, J. E., Harris, H. C., Ivezić, Ž.,
Long, G. M., Lupton, R. H., McGehee, P. M., Narayanan, V.,
Peng, E., Schlegel, D., Schneider, D. P., Spahn, E. Y., Strauss,
M. A., Szkody, P., Tsvetanov, Z., Walkowicz, L. M.,
Brinkmann, J., Harvanek, M., Hennessy, G. S., Kleinman,
S. J., Krzesinski, J., Long, D., Neilsen, E. H., Newman, P. R.,
Nitta, A., Snedden, S. A., & York, D. G. 2002, AJ, 123, 3409
Hayashi, C. & Nakano, T. 1963, Progress of Theoretical Physics,
30, 460
Henry, T. J., Jao, W.-C., Subasavage, J. P., Beaulieu, T. D.,
Ianna, P. A., Costa, E., & Méndez, R. A. 2006, AJ, 132, 2360
Hinkley, S., Bowler, B. P., Vigan, A., Aller, K. M., Liu, M. C.,
Mawet, D., Matthews, E., Wahhaj, Z., Kraus, S., Baraffe, I., &
Chabrier, G. 2015, ApJL, 805, L10
Hinz, P. M., Rodigas, T. J., Kenworthy, M. A., Sivanandam, S.,
Heinze, A. N., Mamajek, E. E., & Meyer, M. R. 2010, ApJ,
716, 417
Johnson, D. R. H. & Soderblom, D. R. 1987, AJ, 93, 864
Kellogg, K., Metchev, S., Gagne, J., & Faherty, J. 2016, ArXiv
e-prints
Kellogg, K., Metchev, S., Geißler, K., Hicks, S., Kirkpatrick,
J. D., & Kurtev, R. 2015, AJ, 150, 182
Kendall, T. R., Delfosse, X., Martı́n, E. L., & Forveille, T. 2004,
A&A, 416, L17
Kirkpatrick, J. D. 2005, ARA&A, 43, 195
Kirkpatrick, J. D., Barman, T. S., Burgasser, A. J., McGovern,
M. R., McLean, I. S., Tinney, C. G., & Lowrance, P. J. 2006,
ApJ, 639, 1120
Kirkpatrick, J. D., Cruz, K. L., Barman, T. S., Burgasser, A. J.,
Looper, D. L., Tinney, C. G., Gelino, C. R., Lowrance, P. J.,
Liebert, J., Carpenter, J. M., Hillenbrand, L. A., & Stauffer,
J. R. 2008, ApJ, 689, 1295
Kirkpatrick, J. D., Cushing, M. C., Gelino, C. R., Griffith, R. L.,
Skrutskie, M. F., Marsh, K. A., Wright, E. L., Mainzer, A.,
Eisenhardt, P. R., McLean, I. S., Thompson, M. A., Bauer,
J. M., Benford, D. J., Bridge, C. R., Lake, S. E., Petty, S. M.,
Stanford, S. A., Tsai, C.-W., Bailey, V., Beichman, C. A.,
Bloom, J. S., Bochanski, J. J., Burgasser, A. J., Capak, P. L.,
Cruz, K. L., Hinz, P. M., Kartaltepe, J. S., Knox, R. P.,
Manohar, S., Masters, D., Morales-Calderón, M., Prato, L. A.,
Rodigas, T. J., Salvato, M., Schurr, S. D., Scoville, N. Z.,
Simcoe, R. A., Stapelfeldt, K. R., Stern, D., Stock, N. D., &
Vacca, W. D. 2011, ApJS, 197, 19
Kirkpatrick, J. D., Looper, D. L., Burgasser, A. J., Schurr, S. D.,
Cutri, R. M., Cushing, M. C., Cruz, K. L., Sweet, A. C.,
Knapp, G. R., Barman, T. S., Bochanski, J. J., Roellig, T. L.,
McLean, I. S., McGovern, M. R., & Rice, E. L. 2010, ApJS,
190, 100
Kirkpatrick, J. D., Reid, I. N., Liebert, J., Gizis, J. E., Burgasser,
A. J., Monet, D. G., Dahn, C. C., Nelson, B., & Williams, R. J.
2000, AJ, 120, 447
84
Faherty et al.
Knapp, G. R., Leggett, S. K., Fan, X., Marley, M. S., Geballe,
T. R., Golimowski, D. A., Finkbeiner, D., Gunn, J. E.,
Hennawi, J., Ivezić, Z., Lupton, R. H., Schlegel, D. J., Strauss,
M. A., Tsvetanov, Z. I., Chiu, K., Hoversten, E. A.,
Glazebrook, K., Zheng, W., Hendrickson, M., Williams, C. C.,
Uomoto, A., Vrba, F. J., Henden, A. A., Luginbuhl, C. B.,
Guetter, H. H., Munn, J. A., Canzian, B., Schneider, D. P., &
Brinkmann, J. 2004, AJ, 127, 3553
Kraus, A. L., Ireland, M. J., Cieza, L. A., Hinkley, S., Dupuy,
T. J., Bowler, B. P., & Liu, M. C. 2014, ApJ, 781, 20
Kumar, S. S. 1963, ApJ, 137, 1121
Kuzuhara, M., Tamura, M., Kudo, T., Janson, M., Kandori, R.,
Brandt, T. D., Thalmann, C., Spiegel, D., Biller, B., Carson,
J., Hori, Y., Suzuki, R., Burrows, A., Henning, T., Turner,
E. L., McElwain, M. W., Moro-Martı́n, A., Suenaga, T.,
Takahashi, Y. H., Kwon, J., Lucas, P., Abe, L., Brandner, W.,
Egner, S., Feldt, M., Fujiwara, H., Goto, M., Grady, C. A.,
Guyon, O., Hashimoto, J., Hayano, Y., Hayashi, M., Hayashi,
S. S., Hodapp, K. W., Ishii, M., Iye, M., Knapp, G. R., Matsuo,
T., Mayama, S., Miyama, S., Morino, J.-I., Nishikawa, J.,
Nishimura, T., Kotani, T., Kusakabe, N., Pyo, T.-S., Serabyn,
E., Suto, H., Takami, M., Takato, N., Terada, H., Tomono, D.,
Watanabe, M., Wisniewski, J. P., Yamada, T., Takami, H., &
Usuda, T. 2013, ApJ, 774, 11
Lagrange, A.-M., Bonnefoy, M., Chauvin, G., Apai, D.,
Ehrenreich, D., Boccaletti, A., Gratadour, D., Rouan, D.,
Mouillet, D., Lacour, S., & Kasper, M. 2010, Science, 329, 57
Liu, M. C., Magnier, E. A., Deacon, N. R., Allers, K. N., Dupuy,
T. J., Kotson, M. C., Aller, K. M., Burgett, W. S., Chambers,
K. C., Draper, P. W., Hodapp, K. W., Jedicke, R., Kaiser, N.,
Kudritzki, R.-P., Metcalfe, N., Morgan, J. S., Price, P. A.,
Tonry, J. L., & Wainscoat, R. J. 2013, ApJL, 777, L20
Lodders, K. 1999, ApJ, 519, 793
Looper, D. L., Burgasser, A. J., Kirkpatrick, J. D., & Swift, B. J.
2007, ApJL, 669, L97
Looper, D. L., Kirkpatrick, J. D., Cutri, R. M., Barman, T.,
Burgasser, A. J., Cushing, M. C., Roellig, T., McGovern,
M. R., McLean, I. S., Rice, E., Swift, B. J., & Schurr, S. D.
2008, ApJ, 686, 528
Lucas, P. W., Roche, P. F., Allard, F., & Hauschildt, P. H. 2001,
MNRAS, 326, 695
Luhman, K. L. 2014, ApJL, 786, L18
Luhman, K. L., Peterson, D. E., & Megeath, S. T. 2004, ApJ,
617, 565
Mace, G. N., Kirkpatrick, J. D., Cushing, M. C., Gelino, C. R.,
McLean, I. S., Logsdon, S. E., Wright, E. L., Skrutskie, M. F.,
Beichman, C. A., Eisenhardt, P. R., & Kulas, K. R. 2013, ApJ,
777, 36
Macintosh, B., Graham, J. R., Barman, T., De Rosa, R. J.,
Konopacky, Q., Marley, M. S., Marois, C., Nielsen, E. L.,
Pueyo, L., Rajan, A., Rameau, J., Saumon, D., Wang, J. J.,
Ammons, M., Arriaga, P., Artigau, E., Beckwith, S., Brewster,
J., Bruzzone, S., Bulger, J., Burningham, B., Burrows, A. S.,
Chen, C., Chiang, E., Chilcote, J. K., Dawson, R. I., Dong, R.,
Doyon, R., Draper, Z. H., Duchêne, G., Esposito, T. M.,
Fabrycky, D., Fitzgerald, M. P., Follette, K. B., Fortney, J. J.,
Gerard, B., Goodsell, S., Greenbaum, A. Z., Hibon, P., Hinkley,
S., Hufford, T., Hung, L.-W., Ingraham, P., Johnson-Groh, M.,
Kalas, P., Lafreniere, D., Larkin, J. E., Lee, J., Line, M., Long,
D., Maire, J., Marchis, F., Matthews, B. C., Max, C. E.,
Metchev, S., Millar-Blanchaer, M. A., Mittal, T., Morley,
C. V., Morzinski, K. M., Murray-Clay, R., Oppenheimer, R.,
Palmer, D. W., Patel, R., Patience, J., Perrin, M. D., Poyneer,
L. A., Rafikov, R. R., Rantakyrö, F. T., Rice, E., Rojo, P.,
Rudy, A. R., Ruffio, J.-B., Ruiz, M. T., Sadakuni, N.,
Saddlemyer, L., Salama, M., Savransky, D., Schneider, A. C.,
Sivaramakrishnan, A., Song, I., Soummer, R., Thomas, S.,
Vasisht, G., Wallace, J. K., Ward-Duong, K., Wiktorowicz,
S. J., Wolff, S. G., & Zuckerman, B. 2015, ArXiv e-prints
Madhusudhan, N., Burrows, A., & Currie, T. 2011, ApJ, 737, 34
Males, J. R., Close, L. M., Morzinski, K. M., Wahhaj, Z., Liu,
M. C., Skemer, A. J., Kopon, D., Follette, K. B., Puglisi, A.,
Esposito, S., Riccardi, A., Pinna, E., Xompero, M., Briguglio,
R., Biller, B. A., Nielsen, E. L., Hinz, P. M., Rodigas, T. J.,
Hayward, T. L., Chun, M., Ftaclas, C., Toomey, D. W., & Wu,
Y.-L. 2014, ApJ, 786, 32
Malo, L., Doyon, R., Feiden, G. A., Albert, L., Lafrenière, D.,
Artigau, É., Gagné, J., & Riedel, A. 2014, ApJ, 792, 37
Malo, L., Doyon, R., Lafrenière, D., Artigau, É., Gagné, J.,
Baron, F., & Riedel, A. 2013, ApJ, 762, 88
Marley, M. S., Saumon, D., Cushing, M., Ackerman, A. S.,
Fortney, J. J., & Freedman, R. 2012, ArXiv e-prints
Marocco, F., Andrei, A. H., Smart, R. L., Jones, H. R. A.,
Pinfield, D. J., Day-Jones, A. C., Clarke, J. R. A., Sozzetti, A.,
Lucas, P. W., Bucciarelli, B., & Penna, J. L. 2013, AJ, 146, 161
Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I.,
Patience, J., Lafrenière, D., & Doyon, R. 2008, Science, 322,
1348
Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B., &
Barman, T. 2010, Nature, 468, 1080
McGovern, M. R., Kirkpatrick, J. D., McLean, I. S., Burgasser,
A. J., Prato, L., & Lowrance, P. J. 2004, ApJ, 600, 1020
McLean, I. S., Becklin, E. E., Bendiksen, O., Brims, G., Canfield,
J., Figer, D. F., Graham, J. R., Hare, J., Lacayanga, F., Larkin,
J. E., Larson, S. B., Levenson, N., Magnone, N., Teplitz, H., &
Wong, W. 1998, in Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, Vol. 3354, Infrared
Astronomical Instrumentation, ed. A. M. Fowler, 566–578
Metchev, S. A., Heinze, A., Apai, D., Flateau, D., Radigan, J.,
Burgasser, A., Marley, M. S., Artigau, É., Plavchan, P., &
Goldman, B. 2015, ApJ, 799, 154
Metchev, S. A. & Hillenbrand, L. A. 2006, ApJ, 651, 1166
Mohanty, S., Jayawardhana, R., & Barrado y Navascués, D. 2003,
ApJL, 593, L109
Mohanty, S., Jayawardhana, R., Huélamo, N., & Mamajek, E.
2007, ApJ, 657, 1064
Oppenheimer, B. R., Baranec, C., Beichman, C., Brenner, D.,
Burruss, R., Cady, E., Crepp, J. R., Dekany, R., Fergus, R.,
Hale, D., Hillenbrand, L., Hinkley, S., Hogg, D. W., King, D.,
Ligon, E. R., Lockhart, T., Nilsson, R., Parry, I. R., Pueyo, L.,
Rice, E., Roberts, J. E., Roberts, Jr., L. C., Shao, M.,
Sivaramakrishnan, A., Soummer, R., Truong, T., Vasisht, G.,
Veicht, A., Vescelus, F., Wallace, J. K., Zhai, C., &
Zimmerman, N. 2013, ApJ, 768, 24
Patience, J., King, R. R., De Rosa, R. J., Vigan, A., Witte, S.,
Rice, E., Helling, C., & Hauschildt, P. 2012, A&A, 540, A85
Patten, B. M., Stauffer, J. R., Burrows, A., Marengo, M., Hora,
J. L., Luhman, K. L., Sonnett, S. M., Henry, T. J., Raghavan,
D., Megeath, S. T., Liebert, J., & Fazio, G. G. 2006, ApJ, 651,
502
Persson, S. E., Murphy, D. C., Smee, S., Birk, C., Monson, A. J.,
Uomoto, A., Koch, E., Shectman, S., Barkhouser, R., Orndorff,
J., Hammond, R., Harding, A., Scharfstein, G., Kelson, D.,
Marshall, J., & McCarthy, P. J. 2013, PASP, 125, 654
Phan-Bao, N., Bessell, M. S., Martı́n, E. L., Simon, G.,
Borsenberger, J., Tata, R., Guibert, J., Crifo, F., Forveille, T.,
Delfosse, X., Lim, J., & de Batz, B. 2008, MNRAS, 383, 831
Pickles, A. J. 1998, PASP, 110, 863
Radigan, J., Jayawardhana, R., Lafrenière, D., Artigau, É.,
Marley, M., & Saumon, D. 2012, ApJ, 750, 105
Radigan, J., Lafrenière, D., Jayawardhana, R., & Artigau, E.
2014, ApJ, 793, 75
Reid, I. N., Cruz, K. L., & Allen, P. R. 2007, AJ, 133, 2825
Reid, I. N., Cruz, K. L., Kirkpatrick, J. D., Allen, P. R., Mungall,
F., Liebert, J., Lowrance, P., & Sweet, A. 2008, AJ, 136, 1290
Reid, I. N., Kirkpatrick, J. D., Liebert, J., Gizis, J. E., Dahn,
C. C., & Monet, D. G. 2002, AJ, 124, 519
Reiners, A. 2009, ApJL, 702, L119
Reiners, A. & Basri, G. 2009, ApJ, 705, 1416
Rice, E. L., Faherty, J. K., Cruz, K., Barman, T., Looper, D.,
Malo, L., Mamajek, E. E., Metchev, S., & Shkolnik, E. L. 2011,
ArXiv e-prints
Rice, E. L., Faherty, J. K., & Cruz, K. L. 2010, ApJL, 715, L165
Riedel, A. 2015, TBD
Rodriguez, D. R., Zuckerman, B., Kastner, J. H., Bessell, M. S.,
Faherty, J. K., & Murphy, S. J. 2013, ApJ, 774, 101
Sahlmann, J., Lazorenko, P. F., Bouy, H., Martı́n, E. L., Queloz,
D., Ségransan, D., & Zapatero Osorio, M. R. 2016, MNRAS,
455, 357
Salim, S. & Gould, A. 2003, ApJ, 582, 1011
Saumon, D. & Marley, M. S. 2008, ApJ, 689, 1327
Brown Dwarf Analogs to Exoplanets
Schmidt, S. J., Cruz, K. L., Bongiorno, B. J., Liebert, J., & Reid,
I. N. 2007, AJ, 133, 2258
Schmidt, S. J., West, A. A., Hawley, S. L., & Pineda, J. S. 2010,
AJ, 139, 1808
Schneider, A., Melis, C., & Song, I. 2012a, ApJ, 754, 39
Schneider, A., Song, I., Melis, C., Zuckerman, B., & Bessell, M.
2012b, ApJ, 757, 163
Schneider, A. C., Cushing, M. C., Kirkpatrick, J. D., Mace,
G. N., Gelino, C. R., Faherty, J. K., Fajardo-Acosta, S., &
Sheppard, S. S. 2014, AJ, 147, 34
Schneider, A. C., Windsor, J., Cushing, M. C., Kirkpatrick, J. D.,
& Wright, E. L. 2016, ArXiv e-prints
Scholz, R.-D., McCaughrean, M. J., Zinnecker, H., & Lodieu, N.
2005, A&A, 430, L49
Seifahrt, A., Reiners, A., Almaghrbi, K. A. M., & Basri, G. 2010,
A&A, 512, A37
Shkolnik, E. L., Anglada-Escudé, G., Liu, M. C., Bowler, B. P.,
Weinberger, A. J., Boss, A. P., Reid, I. N., & Tamura, M. 2012,
ApJ, 758, 56
Shkolnik, E. L., Liu, M. C., Reid, I. N., Dupuy, T., &
Weinberger, A. J. 2011, ApJ, 727, 6
Simcoe, R. A., Burgasser, A. J., Schechter, P. L., Fishner, J.,
Bernstein, R. A., Bigelow, B. C., Pipher, J. L., Forrest, W.,
McMurtry, C., Smith, M. J., & Bochanski, J. J. 2013, PASP,
125, 270
Skemer, A. J., Hinz, P. M., Esposito, S., Burrows, A., Leisenring,
J., Skrutskie, M., Desidera, S., Mesa, D., Arcidiacono, C.,
Mannucci, F., Rodigas, T. J., Close, L., McCarthy, D., Kulesa,
C., Agapito, G., Apai, D., Argomedo, J., Bailey, V., Boutsia,
K., Briguglio, R., Brusa, G., Busoni, L., Claudi, R., Eisner, J.,
Fini, L., Follette, K. B., Garnavich, P., Gratton, R., Guerra,
J. C., Hill, J. M., Hoffmann, W. F., Jones, T., Krejny, M.,
Males, J., Masciadri, E., Meyer, M. R., Miller, D. L.,
Morzinski, K., Nelson, M., Pinna, E., Puglisi, A., Quanz, S. P.,
Quiros-Pacheco, F., Riccardi, A., Stefanini, P., Vaitheeswaran,
V., Wilson, J. C., & Xompero, M. 2012, ApJ, 753, 14
Skemer, A. J., Morley, C. V., Zimmerman, N. T., Skrutskie,
M. F., Leisenring, J., Buenzli, E., Bonnefoy, M., Bailey, V.,
Hinz, P., Defrére, D., Esposito, S., Apai, D., Biller, B.,
Brandner, W., Close, L., Crepp, J. R., De Rosa, R. J.,
Desidera, S., Eisner, J., Fortney, J., Freedman, R., Henning, T.,
Hofmann, K.-H., Kopytova, T., Lupu, R., Maire, A.-L., Males,
J. R., Marley, M., Morzinski, K., Oza, A., Patience, J., Rajan,
A., Rieke, G., Schertl, D., Schlieder, J., Stone, J., Su, K., Vaz,
A., Visscher, C., Ward-Duong, K., Weigelt, G., & Woodward,
C. E. 2015, ArXiv e-prints
Stauffer, J. R., Schultz, G., & Kirkpatrick, J. D. 1998, ApJL, 499,
L199
Stephens, D. C., Leggett, S. K., Cushing, M. C., Marley, M. S.,
Saumon, D., Geballe, T. R., Golimowski, D. A., Fan, X., &
Noll, K. S. 2009, ApJ, 702, 154
Teegarden, B. J., Pravdo, S. H., Hicks, M., Lawrence, K.,
Shaklan, S. B., Covey, K., Fraser, O., Hawley, S. L., McGlynn,
T., & Reid, I. N. 2003, ApJL, 589, L51
85
Teixeira, R., Ducourant, C., Chauvin, G., Krone-Martins, A.,
Song, I., & Zuckerman, B. 2008, A&A, 489, 825
Thompson, M. A., Kirkpatrick, J. D., Mace, G. N., Cushing,
M. C., Gelino, C. R., Griffith, R. L., Skrutskie, M. F.,
Eisenhardt, P. R. M., Wright, E. L., Marsh, K. A., Mix, K. J.,
Beichman, C. A., Faherty, J. K., Toloza, O., Ferrara, J.,
Apodaca, B., McLean, I. S., & Bloom, J. S. 2013, PASP, 125,
809
Thorstensen, J. R. 2003, AJ, 126, 3017
Thorstensen, J. R., Lépine, S., & Shara, M. 2008, AJ, 136, 2107
Tinney, C. G., Burgasser, A. J., & Kirkpatrick, J. D. 2003, AJ,
126, 975
Tinney, C. G., Faherty, J. K., Kirkpatrick, J. D., Cushing, M.,
Morley, C. V., & Wright, E. L. 2014, ApJ, 796, 39
Tinney, C. G., Faherty, J. K., Kirkpatrick, J. D., Wright, E. L.,
Gelino, C. R., Cushing, M. C., Griffith, R. L., & Salter, G.
2012, ApJ, 759, 60
Tinney, C. G., Reid, I. N., Gizis, J., & Mould, J. R. 1995, AJ,
110, 3014
Tokunaga, A. T. & Kobayashi, N. 1999, AJ, 117, 1010
Torres, C. A. O., Quast, G. R., Melo, C. H. F., & Sterzik, M. F.
2008, Young Nearby Loose Associations, ed. Reipurth, B., 757
Tremblin, P., Amundsen, D. S., Chabrier, G., Baraffe, I.,
Drummond, B., Hinkley, S., Mourier, P., & Venot, O. 2016,
ApJL, 817, L19
Tsuji, T., Ohnaka, K., & Aoki, W. 1996a, A&A, 305, L1
Tsuji, T., Ohnaka, K., Aoki, W., & Nakajima, T. 1996b, A&A,
308, L29
Vacca, W. D., Cushing, M. C., & Rayner, J. T. 2003, PASP, 115,
389
Vrba, F. J., Henden, A. A., Luginbuhl, C. B., Guetter, H. H.,
Munn, J. A., Canzian, B., Burgasser, A. J., Kirkpatrick, J. D.,
Fan, X., Geballe, T. R., Golimowski, D. A., Knapp, G. R.,
Leggett, S. K., Schneider, D. P., & Brinkmann, J. 2004, AJ,
127, 2948
Weinberger, A. J., Anglada-Escudé, G., & Boss, A. P. 2013, ApJ,
762, 118
West, A. A., Hawley, S. L., Bochanski, J. J., Covey, K. R., Reid,
I. N., Dhital, S., Hilton, E. J., & Masuda, M. 2008, AJ, 135, 785
Wilson, J. C., Miller, N. A., Gizis, J. E., Skrutskie, M. F., Houck,
J. R., Kirkpatrick, J. D., Burgasser, A. J., & Monet, D. G.
2003, in IAU Symposium, Vol. 211, Brown Dwarfs, ed.
E. Martı́n, 197
Woitke, P. & Helling, C. 2004, A&A, 414, 335
Zapatero Osorio, M. R., Béjar, V. J. S., Miles-Páez, P. A., Peña
Ramı́rez, K., Rebolo, R., & Pallé, E. 2014, A&A, 568, A6
Zuckerman, B. & Song, I. 2004, ARA&A, 42, 685
Zuckerman, B., Song, I., & Bessell, M. S. 2004, ApJL, 613, L65
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement