Infineon TLS810B1LDV33 Voltage Regulator Data Sheet


Add to my manuals
25 Pages

advertisement

Infineon TLS810B1LDV33 Voltage Regulator Data Sheet | Manualzz

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

1 Overview

Quality Requirement Category: Automotive

Features

• Ultra Low Quiescent Current of 5.5 µA

• Wide Input Voltage Range of 2.75 V to 42 V

• Output Current Capacity up to 100 mA

• Off Mode Current Less than 1 µA

• Low Drop Out Voltage of typ. 250 mV @ 100 mA

• Output Current Limit Protection

• Overtemperature Shutdown

• Enable

• Available in PG-DSO-8 EP Package

• Available in PG-TSON-10 Package

• Wide Temperature Range

• Green Product (RoHS Compliant)

• AEC Qualified

Applications

• Applications with direct battery connection

• Automotive general ECUs

• Infotainment, alarm, dashboard

• RKE, immobilizer, gateway

Data Sheet

www.infineon.com/power

1 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Overview

Description

The TLS810B1 is a linear voltage regulator featuring wide input voltage range, low drop out voltage and ultra low quiescent current.

With an input voltage range of 2.75 V to 42 V and ultra low quiescent of only 5.5 µA, the regulator is perfectly suitable for automotive or any other supply systems connected permanently to the battery.

The TLS810B1xxV33 is the fixed 3.3 V output version with an accuracy of 2 % and output current capability up to 100 mA.

The new regulation concept implemented in TLS810B1 combines fast regulation and very good stability while requiring only a small ceramic capacitor of 1 μF at the output.

The tracking region starts already at input voltages of 2.75 V (extended operating range). This makes the

TLS810B1 also suitable to supply automotive systems that need to operate during cranking condition.

Internal protection features like output current limitation and overtemperature shutdown are implemented to protect the device against immediate damage due to failures like output short circuit to GND, over-current and over-temperature.

The device can be switched on and off by the Enable feature. When the device is switched off, the current consumption is typically less than 1 µA.

Type

TLS810B1EJV33

TLS810B1LDV33

Package

PG-DSO-8 EP

PG-TSON-10

Marking

810B1V33

810B1V3

Data Sheet 2 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

6

6.1

6.2

6.2.1

6.2.2

6.3

6.4

6.5

7

8

5

5.1

5.2

5.3

5.4

5.5

5.6

4

4.1

4.2

4.3

2

3

3.1

3.2

3.3

3.4

Table of Contents

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Pin Assignment in PG-DSO-8 EP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Pin Definitions and Functions in PG-DSO-8 EP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Pin Assignment in PG-TSON-10 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Pin Definitions and Functions in PG-TSON-10 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Block Description and Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Voltage Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Typical Performance Characteristics Voltage Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Typical Performance Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Typical Performance Characteristics Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Selection of External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Input Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Output Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Data Sheet 3 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Block Diagram

2 Block Diagram

I

EN

Enable

Current

Limitation

Temperature

Shutdown

GND

Bandgap

Reference

Figure 1 Block Diagram TLS810B1

Q

Data Sheet 4 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Pin Configuration

3 Pin Configuration

3.1

Pin Assignment in PG-DSO-8 EP Package

N.C.

I

EN

GND

1

2

3

4

8

7

6

5

Q

N.C.

N.C.

N.C.

Figure 2 Pin Configuration TLS810B1 in PG-DSO-8 EP package

3.2

Pin Definitions and Functions in PG-DSO-8 EP Package

7

8

5

6

Pin Symbol Function

1

2

3

4

I

N.C.

EN

GND

Input

It is recommended to place a small ceramic capacitor (for example 100 nF) to GND, close to the IC terminals, in order to compensate line influences.

Not connected

Enable

Integrated pull-down resistor.

Enable the IC with high level input signal.

Disable the IC with low level input signal.

Ground

N.C.

N.C.

N.C.

Q

Pad –

Not connected

Not connected

Not connected

Output

Connect an output capacitor C

Exposed Pad

Connect to heatsink area.

Connect to GND.

Q

to GND close to the IC’s terminals, respecting the values

specified for its capacitance and ESR in

Table 2 “Functional Range” on Page 8

.

Data Sheet 5 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Pin Configuration

3.3

Pin Assignment in PG-TSON-10 Package

I

N.C.

EN

N.C.

GND

1

TSON-10

10

2

9

3

8

4

7

5

6

N.C.

Q

N.C.

N.C.

N.C.

Figure 3 Pin Configuration TLS810B1 in PG-TSON-10 package

3.4

Pin Definitions and Functions in PG-TSON-10 Package

7

8

5

6

9

Pin Symbol Function

1

2

3

4

I

N.C.

EN

N.C.

Input

It is recommended to place a small ceramic capacitor (for example 100 nF) to GND, close to the IC terminals, in order to compensate line influences.

Not connected

Enable

Integrated pull-down resistor.

Enable the IC with high level input signal.

Disable the IC with low level input signal.

Not connected

10

GND

N.C.

N.C.

N.C.

Q

N.C.

Pad –

Ground

Not connected

Not connected

Not connected

Output

Connect an output capacitor C

Q

to GND close to the IC’s terminals, respecting the values

specified for its capacitance and ESR in

Table 2 “Functional Range” on Page 8

.

Not connected

Exposed Pad

Connect to heatsink area.

Connect to GND.

Data Sheet 6 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

General Product Characteristics

4 General Product Characteristics

4.1

Absolute Maximum Ratings

Table 1 Absolute Maximum Ratings

1)

T

j

= -40°C to +150°C; all voltages with respect to ground (unless otherwise specified)

Parameter Symbol

Min.

Values

Typ.

Max.

Unit Note or

Test Condition

Voltage Input I, Enable EN

Voltage

Voltage Output Q

V

I

, V

EN

-0.3

– 45 V –

– Voltage

Temperatures

V

Q

-0.3

– 7 V

Junction Temperature

Storage Temperature

T

j

T

stg

-40 –

-55 –

150

150

°C

°C

ESD Absorption

ESD Susceptibility to GND

V

ESD,HBM

-2 – 2 kV

ESD Susceptibility to GND

V

ESD,CDM

-750

1) Not subject to production test, specified by design.

– 750 V

2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF)

3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101

HBM

2)

CDM

3)

at all pins

Number

P_4.1.1

P_4.1.2

P_4.1.3

P_4.1.4

P_4.1.5

P_4.1.6

Notes

1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation.

Data Sheet 7 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

General Product Characteristics

4.2

Functional Range

Table 2 Functional Range

Parameter

Input Voltage Range

Extended Input Voltage

Range

Symbol

V

V

I

I,ext

Min.

V

Q,nom

2.75

+V dr

Values

Typ.

Max.

42

42

Unit Note or

V

V

Test Condition

1)

2)

Number

P_4.2.1

P_4.2.2

Enable Voltage Range

Output Capacitor

Output Capacitor’s ESR

V

EN

C

Q

0

1

ESR(C

Q

) – –

42

100

V

µF

Ω

3)4)

4)

P_4.2.3

P_4.2.4

P_4.2.5

Junction temperature

T

j

-40 – 150 °C –

P_4.2.6

1) Output current is limited internally and depends on the input voltage, see Electrical Characteristics for more details.

2) When V

I

is between V

I,ext.min

and V

Q,nom

+ V dr

, V

Q

= V

I

- V dr

. When V

I

is below V

I,ext,min

, V

Q

can drop down to 0 V.

3) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%.

4) Not subject to production testing, specified by design.

Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table.

Data Sheet 8 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

General Product Characteristics

4.3

Thermal Resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to

www.jedec.org

.

Table 3 Thermal ResistanceTLS810B1 in PG-DSO-8 EP Package

1)

Parameter Symbol Values Unit Note or Test Condition Number

Min. Typ. Max.

Junction to Case

R

thJC

Junction to Ambient

R

thJA

Junction to Ambient

R

thJA

Junction to Ambient

R

thJA

19

51

167

K/W –

K/W 2s2p board

2)

K/W 1s0p board, footprint only

3)

P_4.3.1

P_4.3.2

P_4.3.3

Junction to Ambient

R

thJA

71

60

K/W 1s0p board, 300 mm

2 area on PCB

3)

heatsink

K/W 1s0p board, 600 mm

2 area on PCB

3)

heatsink

P_4.3.4

P_4.3.5

1) Not subject to production test, specified by design

2) Specified R thJA

value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product

(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm

Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

3) Specified R thJA

value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product

(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm

3

board with 1 copper layer (1 x 70µm Cu).

Table 4 Thermal Resistance TLS810B1 in PG-TSON-10 Package

1)

Parameter Symbol Values

Min. Typ. Max.

Unit Note or Test Condition Number

Junction to Case

Junction to Ambient

Junction to Ambient

R

thJC

R

thJA

R

Junction to Ambient

R

thJA thJA

13

60

184

75

K/W –

K/W 2s2p board

2)

K/W 1s0p board, footprint only

3)

K/W 1s0p board, 300 mm

2

heatsink

area on PCB

3)

P_4.3.6

P_4.3.7

P_4.3.8

P_4.3.9

Junction to Ambient

R

thJA

– 64 – K/W 1s0p board, 600 mm

2

heatsink

area on PCB

3)

P_4.3.10

1) Not subject to production test, specified by design

2) Specified R thJA

value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product

(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm

Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

3) Specified R thJA

value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product

(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm

3

board with 1 copper layer (1 x 70µm Cu).

Data Sheet 9 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Block Description and Electrical Characteristics

5 Block Description and Electrical Characteristics

5.1

Voltage Regulation

The output voltage V

Q

is divided by a resistor network. This fractional voltage is compared to an internal voltage reference and the pass transistor is driven accordingly.

The control loop stability depends on the output capacitor C

Q

, the load current, the chip temperature and the internal circuit structure. To ensure stable operation, the output capacitor’s capacitance and its equivalent series resistor ESR requirements given in

“Functional Range” on Page 8

have to be maintained. For details see the typical performance graph

Output Capacitor Series Resistor ESR(C

Q

) versus Output Current I

Q

on

Page 14

. Since the output capacitor is used to buffer load steps, it should be sized according to the application’s needs.

An input capacitor C

I

is not required for stability, but is recommended to compensate line fluctuations. An additional reverse polarity protection diode and a combination of several capacitors for filtering should be used, in case the input is connected directly to the battery line. Connect the capacitors close to the regulator terminals.

In order to prevent overshoots during start-up, a smooth ramping up function is implemented. This ensures almost no overshoots during start-up, mostly independent from load and output capacitance.

Whenever the load current exceeds the specified limit, for example in case of a short circuit, the output current is limited and the output voltage decreases.

The overtemperature shutdown circuit prevents the IC from immediate destruction under fault conditions (for example output continuously short-circuit) by switching off the power stage. After the chip has cooled down, the regulator restarts. This oscillatory thermal behaviour causes the junction temperature to exceed the maximum rating of 150°C and can significantly reduce the IC’s lifetime.

Supply I

I

I

Q

I

Q

Regulated

Output Voltage

Current

Limitation

C

I

V

I

Temperature

Shutdown

Bandgap

Reference

C

Q

C

ESR

V

Q

LOAD

GND

Figure 4 Block Diagram Voltage Regulation

Data Sheet 10 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Block Description and Electrical Characteristics

Table 5 Electrical Characteristics

T

j

= -40°C to +150°C, V

I

= 13.5 V, all voltages with respect to ground (unless otherwise specified).

Typical values are given at T j

= 25°C, V

I

= 13.5 V.

Parameter Symbol Values Unit Note or Test Condition Number

Output Voltage Precision

V

Q

Min.

Typ.

Max.

3.23

3.30

3.37

V 50 µA ≤ I

4 V ≤ V

I

Q

≤ 100 mA,

≤ 28 V

P_5.1.1

P_5.1.2

Output Voltage Precision

V

Q

Output Current Limitation

I

Q,lim

Line Regulation steady-state

ΔV

Q,line

ΔV

Q,load

Load Regulation steady-state

Dropout Voltage

1)

V

dr

= V

I

- V

Q

Ripple Rejection

2)

V

dr

PSRR

3.23

110

-20

3.30

190

1

-1

250

60

3.37

260

20

650

V mA 0 V ≤ V

Q

V

Q,nom

- 0.1 V mV

I

Q

= 1 mA, 6 V ≤ V

I

≤ 32 V mV mV

I

dB

f

I

50 µA ≤ I

Q

4 V ≤ V

I

≤ 50 mA,

≤ 42 V

V

50 µA ≤ I

Q

Q

I

= 6 V,

Q

≤ 100 mA

= 100 mA

= 50 mA, ripple

V

ripple

= 100 Hz,

= 0.5 V p-p

P_5.1.3

P_5.1.4

P_5.1.5

P_5.1.6

P_5.1.7

Overtemperature

Shutdown Threshold

2)

T

j,sd

151 175 – °C

T

j

increasing

P_5.1.8

Overtemperature

Shutdown Threshold

Hysteresis

2)

T

j,sdh

– 10 – K

T

j

decreasing

1) Measured when the output voltage V

Q

has dropped 100 mV from the nominal value obtained at V

I

= 13.5V

2) Not subject to production test, specified by design

P_5.1.9

Data Sheet 11 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Block Description and Electrical Characteristics

5.2

Typical Performance Characteristics Voltage Regulation

200

150

100

50

0

400

350

300

250

Output Voltage V

Q

versus

Junction Temperature T j

3.5

3.45

3.4

3.35

3.3

3.25

3.2

3.15

3.1

0 50

T j

[

°

C]

Dropout Voltage V dr

versus

Junction Temperature T j

I

V

I

Q

= 13.5 V

= 50 mA

100 150

I

Q

= 10 mA

I

Q

= 50 mA

I

Q

= 100 mA

0 50

T j

[

°

C]

100 150

Output Current I

Q

versus

Input Voltage V

I

300

250

200

150

100

50

T j

= −40

°

C

T j

= 25

°

C

T j

= 150

°

C

0

0 10 20

V

I

[V]

Dropout Voltage V dr

versus

Output Current I

Q

30

200

150

100

50

0

0

400

350

300

250

T j

= −40

°

C

T j

= 25

°

C

T j

= 150

°

C

40

20 40

I

Q

[mA]

60 80 100

Data Sheet 12 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Block Description and Electrical Characteristics

Load Regulation ∆V

Q,load

versus

Output Current I

Q

2

1.5

1

0.5

0

0

4

3.5

3

2.5

6

4

10

8

2

0

−2

−4

−6

−8

T j

= −40

°

C

T j

= 25

°

C

T j

= 150

°

C

−10

0 20 40

I

Q

[mA]

60

Output Voltage V

Q

versus

Input Voltage V

I

V

I

= 6 V

80 100

1 2

V

I

[V]

3

I

Q

T j

= 50 mA

= 25

°

C

4 5

Line Regulation ∆V

Q,load

versus

Input Voltage V

I

10

8

6

4

2

0

−2

−4

−6

T j

= −40

°

C

T j

= 25

°

C

T j

= 150

°

C

−8

I

Q

= 1 mA

−10

10 15 20 25

V

I

[V]

30 35 40

Power Supply Ripple Rejection PSRR versus ripple frequency f r

60

50

40

80

70

30

20

10

0

10

−2

I

Q

= 10 mA

C

Q

= 1

μ

F

= 13.5 V V

I

V ripple

T j

= 0.5 Vpp

= 25

°

C

10

−1

10

0 f [kHz]

10

1

10

2

10

3

Data Sheet 13 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Block Description and Electrical Characteristics

Output Capacitor Series Resistor ESR(C

Q

) versus

Output Current I

Q

10

3

Unstable Region

10

2

10

1

10

0

Stable Region

10

−1

10

−2

0 20 40

I

Q

[mA]

60

C

Q

V

I

= 1

μ

F

= 3...28 V

80 100

Data Sheet 14 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Block Description and Electrical Characteristics

5.3

Current Consumption

Table 6 Electrical Characteristics Current Consumption

T

j

= -40°C to +150°C, V

I

= 13.5 V (unless otherwise specified).

Parameter Symbol Values Unit Note or Test Condition Number

I

q,off

Min.

Typ. Max.

– – 1 µA

V

EN

≤ 0.4 V, T j

< 105°C

P_5.3.1

I

Current Consumption q

= I

I

I

Current Consumption q

= I

I

- I

Q

I

Current Consumption q

= I

I

- I

Q

I

Current Consumption q

= I

I

- I

Q

I

Current Consumption q

= I

I

- I

Q

I

I

I

I

q q q q

5.5

6.5

7

7

8

11

12

12

µA

µA

µA

µA

I

I

I

I

Q

Q

Q

Q

= 50 µA, T j

= 50 µA, T j

= 50 µA, T j

= 25°C

< 105°C

< 125°C

= 100 mA, T j

< 125°C

P_5.3.2

P_5.3.3

P_5.3.4

P_5.3.5

Data Sheet 15 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Block Description and Electrical Characteristics

5.4

Typical Performance Characteristics Current Consumption

Current Consumption I q

versus

Output Current I

Q

16

14

12

10

8

6

4

2

0

16

14

12

10

8

6

4

T j

= −40

°

C

T j

= 25

°

C

T j

= 105

°

C

T j

= 125

°

C

2

0

0 20 40

I

Q

[mA]

60

Current Consumption I q

Junction Temperature T

versus j

V

I

= 13.5 V

80 100

0 50

T j

[

°

C]

I

V

I

Q

= 13.5 V

= 50

μ

A

100 150

Current Consumption I q

versus

Input Voltage V

I

40

35

30

25

20

15

10

T j

= −40

°

C

T j

= 25

°

C

T j

= 105

°

C

T j

= 125

°

C

5

0

5 10 15 20 25

V

I

[V]

30

I

Q

= 50

μ

A

35 40

Current Consumption in OFF mode I q,off

Junction Temperature T j

versus

2

1.5

1

0.5

0

4

3.5

V

I

= 13.5 V

V

EN

0.4 V

3

2.5

0 50

T j

[

°

C]

100 150

Data Sheet 16 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Block Description and Electrical Characteristics

5.5

Enable

The device can be switched on and off by the Enable feature. Connect a HIGH level as specified below (for example the battery voltage) to pin EN to enable the device; connect a LOW level as specified below (for example GND) to switch it off. The Enable function has a build-in hysteresis to avoid toggling between ON/OFF state, if signals with slow slopes are appiled to the EN input.

Table 7 Electrical Characteristics Enable

T

j

= -40°C to +150°C, V

I

= 13.5 V, all voltages with respect to ground (unless otherwise specified).

Typical values are given at T j

= 25°C, V

I

= 13.5 V.

Parameter Symbol Values Unit Note or Test Condition

Enable High Level Input

Voltage

V

EN,H

Min.

Typ.

Max.

2 – – V

V

Q

settled

Enable Low Level Input

Voltage

Enable High Level Input

Current

Enable Internal Pull-down

Resistor

I

V

EN,L

R

EN,H

EN

1.25

2

0.8

4

3.5

V

µA

MΩ

V

Q

≤ 0.1 V

V

EN

= 5 V

Number

P_5.5.1

P_5.5.2

P_5.5.3

P_5.5.4

Data Sheet 17 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Block Description and Electrical Characteristics

5.6

Typical Performance Characteristics Enable

Enable Input Current I

EN

versus

Enable Input Voltage V

EN

25

20

15

10

5

0

0

40

35

30

T j

= −40

°

C

T j

= 25

°

C

T j

= 150

°

C

10 20

V

EN

[V]

30 40

Data Sheet 18 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Application Information

6 Application Information

Note:

6.1

The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

Application Diagram

Supply

D

I1

I

I

I

D

I2

<45V

C

I2

C

I1

10μF 100nF

e.g. Ignition

EN

TLS810B1

GND

Q

I

Q

Regulated

Output Voltage

C

Q

1μF

Load

(e.g.

Micro

Controller)

GND

Figure 5 Application Diagram

6.2

Selection of External Components

6.2.1

Input Pin

The typical input circuitry for a linear voltage regulator is shown in the application diagram above.

A ceramic capacitor at the input, in the range of 100 nF to 470 nF, is recommended to filter out the high frequency disturbances imposed by the line for example ISO pulses 3a/b. This capacitor must be placed very close to the input pin of the linear voltage regulator on the PCB.

An aluminum electrolytic capacitor in the range of 10 µF to 470 µF is recommended as an input buffer to smooth out high energy pulses, such as ISO pulse 2a. This capacitor should be placed close to the input pin of the linear voltage regulator on the PCB.

An overvoltage suppressor diode can be used to further suppress any high voltage beyond the maximum rating of the linear voltage regulator and protect the device against any damage due to over-voltage.

The external components at the input are not mandatory for the operation of the voltage regulator, but they are recommended in case of possible external disturbances.

6.2.2

Output Pin

An output capacitor is mandatory for the stability of linear voltage regulators.

Data Sheet 19 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Application Information

The requirement to the output capacitor is given in

“Functional Range” on Page 8

. The graph

Output

Capacitor Series Resistor ESR(C

of the device.

Q

) versus Output Current I

Q

on

Page 14

shows the stable operation range

TLS810B1 is designed to be stable with extremely low ESR capacitors. According to the automotive environment, ceramic capacitors with X5R or X7R dielectrics are recommended.

The output capacitor should be placed as close as possible to the regulator’s output and GND pins and on the same side of the PCB as the regulator itself.

In case of rapid transients of input voltage or load current, the capacitance should be dimensioned in accordance and verified in the real application that the output stability requirements are fulfilled.

6.3

Thermal Considerations

Knowing the input voltage, the output voltage and the load profile of the application, the total power dissipation can be calculated:

P

D

=

(

V

I

V

Q

×

Q

+

V

I

×

I q

(6.1) with

P

D

: continuous power dissipation

V

I

: input voltage

V

Q

: output voltage

I

Q

: output current

I q

: quiescent current

The maximum acceptable thermal resistance R thJA

can then be calculated:

R

=

T

P

D

T

---------------------------a with

T j,max

: maximum allowed junction temperature

T a

: ambient temperature

(6.2)

Based on the above calculation the proper PCB type and the necessary heat sink area can be determined with reference to the specification in

“Thermal Resistance” on Page 9

.

Example

Application conditions:

V

I

= 13.5 V

V

Q

= 3.3 V

I

Q

= 70 mA

T

a

= 105°C

Calculation of R thJA,max

:

P

D

= (V

I

V

Q

) x I

Q

+ V

I

x I q

= (13.5 V – 3.3 V) x 70 mA + 13.5 V x 0.012 mA

Data Sheet 20 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Application Information

= 0.714 W

R

thJA,max

= (T j,max

T a

) / P

D

= (150°C – 105°C) / 0.714 W

= 63.03 K/W

As a result, the PCB design must ensure a thermal resistance R thJA

lower than 63.03 K/W. According to

“Thermal Resistance” on Page 9

, for both package variants PG-DSO-8 EP and PG-TSON-10 the FR4 2s2p

board can be used. Using the FR4 1s0p PCB with PG-DSO-8 EP at least 600 mm² heatsink is required.

6.4

Reverse Polarity Protection

TLS810B1 is not self protected against reverse polarity faults. To protect the device against negative supply

voltage, an external reverse polarity diode is needed, as shown in

Figure 5Figure 32

. The absolute maximum ratings of the device as specified in

“Absolute Maximum Ratings” on Page 7

must be kept.

6.5

Further Application Information

• For further information you may contact

http://www.infineon.com/

Data Sheet 21 Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Package Outlines

7 Package Outlines

+0 -0.1

0.41

±0.09

2)

1.27

C 0.0

8 C

S e a ting Pl a ne

0.2

M

C A-B D 8 x

3 .9

±0.1

1)

0.

3 5 x 45°

0.1

C D 2x

0.19

+0.06

D

6

±0.2

0.64

±0.25

0.2

M

D 8 x

8 5

A

Bottom View

3

±0.2

1 4

Index M a rking

B

1 4

4.9

±0.1

1)

0.1

C A-B 2x

8 5

1) Doe s not incl u de pl as tic or met a l protr us ion of 0.15 m a x. per s ide

2) D a m ba r protr us ion s h a ll b e m a xim u m 0.1 mm tot a l in exce ss of le a d width

3 ) JEDEC reference M S -012 v a ri a tion BA

Figure 6 PG-DSO-8 EP

Data Sheet

3 .

3

±0.1

Pin 1 M a rking

Z (4:1)

0.07 MIN.

0.05

0.1

±0.1

Z

22

0.

3 6

±0.1

2.5

8

±0.1

0.5

3

±0.1

0.5

±0.1

Pin 1 M a rking

0.25

±0.1

PG-T S ON-10-2-PO V02

Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Package Outlines

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant

(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

For further information on alternative packages, please visit our website:

http://www.infineon.com/packages

.

Data Sheet 23

Dimensions in mm

Rev. 1.2

2016-12-20

TLS810B1xxV33

Ultra Low Quiescent Current Linear Voltage Regulator

Revision History

8 Revision History

Revision

1.2

1.1

1.0

Date Changes

2016-12-20 Template updated

2016-10-05 New variant TLS810B1EJV33 in PG-DSO-8 EP added

2016-03-10 Datasheet - Initial version

Data Sheet 24 Rev. 1.2

2016-12-20

Please read the Important Notice and Warnings at the end of this document

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,

DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,

HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,

OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,

SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-12-20

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2016 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about any aspect of this document?

Email: [email protected]

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of

Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest

Infineon Technologies Office (

www.infineon.com

).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon

Technologies office.

Except as otherwise explicitly approved by Infineon

Technologies in a written document signed by authorized representatives of Infineon Technologies,

Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals