185 Mass Flow Meter - MKS Instruments, Inc.

185 Mass Flow Meter - MKS Instruments, Inc.
133821-P1
REV D, 11/12/07
ALTATM Series True Digital Mass Flow
Meter/Controller with DeviceNet®
MKS Types 180A, 185A,
1480A, 1485A
Copyright © 2005 by MKS Instruments, Inc.
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, or by any information storage or retrieval
system, except as may be expressly permitted in writing by MKS Instruments, Inc.
Printed in the United States of America
Baratron® and Mass-Flo® are registered trademarks of MKS Instruments, Inc., Andover, MA
DeviceNet™ is a trademark of Open DeviceNet Vendor Association, Inc., Coral Springs, FL
Kel-F® is a registered trademark of 3M, Minneapolis, MN
Swagelok® and VCR® are registered trademarks of Swagelok Marketing Company, Solon, OH
Protected by U. S. Patents 5314164 and 5461913
ii
Table of Contents
Table of Contents
List of References...............................................................................................................................................1
Mass Flow Device Safety Information .............................................................................................................3
Symbols Used in This Instruction Manual .................................................................................................................... 3
Symbols Found on the Unit........................................................................................................................................... 3
Safety Procedures and Precautions................................................................................................................................ 3
Sicherheitshinweise für das Massenflussgerät.................................................................................................5
In dieser Betriebsanleitung vorkommende Symbole ..................................................................................................... 5
Erklärung der am Gerät angebrachten Symbole ............................................................................................................ 5
Sicherheitsvorschriften und Vorsichtsmaßnahmen ....................................................................................................... 5
Informations de sécurité pour appareils de mesure/contrôle de débit massique .........................................7
Symboles utilisés dans ce manuel d'utilisation.............................................................................................................. 7
Symboles figurant sur l'unité ......................................................................................................................................... 7
Mesures de sécurité et précautions ................................................................................................................................ 7
Medidas de seguridad del dispositivo de flujo de masa ..................................................................................9
Símbolos usados en este manual de instrucciones......................................................................................................... 9
Símbolos hallados en la unidad ..................................................................................................................................... 9
Procedimientos y precauciones de seguridad ................................................................................................................ 9
マスフロー機器の安全に関する情報............................................................................................................11
本取扱説明書のマーク ............................................................................................................................................. 11
本機器のマーク ......................................................................................................................................................... 11
安全対策について ..................................................................................................................................................... 12
질량 유량 장치 안전 정보................................................................................................................................15
본 지침 매뉴얼에 사용되는 기호들 ......................................................................................................................... 15
장치에 표시된 기호들 ............................................................................................................................................... 15
안전 절차 및 예방조치 .............................................................................................................................................. 16
Chapter One: General Information ..............................................................................................................19
Introduction ................................................................................................................................................................. 19
How This Manual is Organized................................................................................................................................... 20
Customer Support........................................................................................................................................................ 21
Chapter Two: Installation ..............................................................................................................................23
How to Unpack the MKS ALTA Mass Flow Device .................................................................................................. 23
Product Location and Requirements............................................................................................................................ 24
Setup............................................................................................................................................................................ 25
Dimensions.................................................................................................................................................................. 25
Chapter Three: Overview ..............................................................................................................................35
General Information .................................................................................................................................................... 35
How the MKS ALTA Mass Flow Controller Works................................................................................................... 36
iii
Table of Contents
Overview of ALTA DeviceNet Digital Operation.......................................................................................................37
The Gas Correction Factor (GCF) ...............................................................................................................................42
Chapter Four: Operation............................................................................................................................... 44
DeviceNet Connector ..................................................................................................................................................44
DeviceNet Controls and Indicators..............................................................................................................................44
Power Up .....................................................................................................................................................................47
How to Zero the Flow Device .....................................................................................................................................48
DeviceNet Protocol......................................................................................................................................................49
Identity Object .............................................................................................................................................................52
Message Router Object................................................................................................................................................55
DeviceNet Object ........................................................................................................................................................56
Assembly Object..........................................................................................................................................................58
Supported Assembly Instances ....................................................................................................................................58
Connection Object .......................................................................................................................................................63
S-Device Supervisor Object ........................................................................................................................................68
S-Analog Sensor Object ..............................................................................................................................................75
S-Analog Actuator Object ...........................................................................................................................................79
S-Single Stage Controller Object.................................................................................................................................82
S-Gas Calibration Object.............................................................................................................................................84
Controller Calibration Object ......................................................................................................................................87
Chapter Five: Maintenance ........................................................................................................................... 90
General Information ....................................................................................................................................................90
Zero Adjustment ..........................................................................................................................................................90
Chapter Six: Troubleshooting ....................................................................................................................... 93
Troubleshooting Chart.................................................................................................................................................93
Appendix A: Product Specifications ............................................................................................................. 95
Performance Specifications .........................................................................................................................................95
Physical Specifications ................................................................................................................................................96
Environmental Specifications......................................................................................................................................96
Appendix B: Gas Correction Factors ........................................................................................................... 97
Appendix C: Model Code Explanation....................................................................................................... 101
Model Code Description............................................................................................................................................101
Appendix D: DeviceNet Attribute Summary ............................................................................................. 104
DeviceNet Information ..............................................................................................................................................104
Identity Object, Class Code: 01 (0x01) .....................................................................................................................106
Router Object, Class Code: 02 (0x02) .......................................................................................................................108
DeviceNet Object, Class Code: 03 (0x03).................................................................................................................109
Assembly Object, Class Code: 04 (0x04)..................................................................................................................111
Connection Object, Class Code: 05 (0x05) ...............................................................................................................115
S-Device Supervisor Object, Class Code: 48 (0x30).................................................................................................118
S-Analog Sensor Object, Class Code: 49 (0x31).......................................................................................................123
S-Analog Actuator Object, Class Code: 50 (0x32)....................................................................................................126
S-Single Stage Controller Object, Class Code: 51 (0x33) .........................................................................................128
S-Gas Calibration Object, Class Code: 52 (0x34) .....................................................................................................129
iv
Table of Contents
Controller Calibration Object, Class Code: 102 (0x66) ............................................................................................ 131
Appendix E: Mass Flow Device Sizing Guidelines.....................................................................................134
General Information .................................................................................................................................................. 134
How To Determine the Flow Device Range.............................................................................................................. 134
Appendix F: MKS ALTA Digital MFC Graphical User Interface (GUI) ...............................................136
Overview ................................................................................................................................................................... 136
Software Setup .......................................................................................................................................................... 136
Equipment Needed .................................................................................................................................................... 137
Equipment Setup ....................................................................................................................................................... 138
Starting the GUI ........................................................................................................................................................ 139
Exiting the GUI ......................................................................................................................................................... 140
Description of the Main Control Panel...................................................................................................................... 140
User Mode and Calibration Mode ............................................................................................................................. 141
Calibration Mode Access .......................................................................................................................................... 142
Setting, Adding, and Deleting Gas Tables................................................................................................................. 144
Adjusting PID Tuning Parameters............................................................................................................................. 149
Creating and Modifying Calibration Tables .............................................................................................................. 150
Configuring Polled IO Connection............................................................................................................................ 153
v
Table of Contents
vi
List of Figures
List of Figures
Figure 2: Side View of the MKS ALTA Mass Flow Devices (Welded Fittings) .............................................27
Figure 3: Top View of the MKS ALTA Mass Flow Devices (Welded Fittings)..............................................28
Figure 4: Bottom View of the MKS ALTA Mass Flow Devices (Welded Fittings) ........................................28
Figure 6: Top View of the MKS ALTA Mass Flow Devices (Downport Fittings) ..........................................30
Figure 7: Bottom View of the MKS ALTA Mass Flow Devices (Downport Fittings) ....................................30
Figure 8: Serial Number Label..........................................................................................................................31
Figure 9: Effects of the Proportional Term (Low Proportional Term) .............................................................40
Figure 10: Effects of the Proportional Term (High Proportional Term)...........................................................41
Figure 11: Effects of the Integral Term (Low Integral Term) ..........................................................................41
Figure 12: Effects of the Integral Term (High Integral Term)..........................................................................41
Figure 13: DeviceNet Connector Pin Diagram .................................................................................................44
Figure 14: Baud Rate Rotary Switch ................................................................................................................47
Figure 15: MAC ID (Node Address) Rotary Switches .....................................................................................47
Figure 16: Equipment Setup ...........................................................................................................................138
Figure 17: Start Window.................................................................................................................................139
Figure 18: Communications Setup Window...................................................................................................139
Figure 19: Scan Device Network ....................................................................................................................139
Figure 20: Main Control Panel........................................................................................................................140
Figure 21: Password Control ..........................................................................................................................142
Figure 22: Change Password Window............................................................................................................143
Figure 23: Adding a Calibration Mode Password for a New User .................................................................143
Figure 24: Edit Gas .........................................................................................................................................145
Figure 25: Gas List..........................................................................................................................................147
Figure 26: Copy Cal Table..............................................................................................................................148
Figure 27: Add Mixed Gas .............................................................................................................................149
Figure 28: Tuning Parameters.........................................................................................................................150
Figure 29: Calibration Table ...........................................................................................................................151
Figure 30: Choose IO Assembly Instance.......................................................................................................153
vii
List of Tables
List of Tables
Table 1: Definition of Symbols Found on the Unit ............................................................................................ 3
Tabelle 2: Bedeutung der am Gerät angebrachten Symbole .............................................................................. 5
Tableau 3: Définition des symboles sur l'unité................................................................................................... 7
Tabla 4: Definición de los símbolos hallados en la unidad ................................................................................ 9
表 5: 本機器に使用されているマークについて ......................................................................................... 11
표 6: 장치에 표시된 기호들의 정의 .............................................................................................................. 15
Table 7: User and Calibration Access Rights................................................................................................... 39
Table 8: DeviceNet Communications Connector Pinout.................................................................................. 44
Table 9: Module Status LED Indicators ........................................................................................................... 45
Table 10: Network Status LED Indicators ....................................................................................................... 46
Table 11: Object Models Present in the ALTA ................................................................................................ 50
Table 12: Identity Object Attributes................................................................................................................. 52
Table 13: Status Bytes ...................................................................................................................................... 53
Table 14: State Bytes........................................................................................................................................ 54
Table 15: Identity Object Supported Services .................................................................................................. 54
Table 16: Message Router Object Attributes ................................................................................................... 55
Table 17: Message Router Object Supported Services..................................................................................... 55
Table 18: DeviceNet Object Attributes ............................................................................................................ 56
Table 19: Data Rate Byte ................................................................................................................................. 57
Table 20: DeviceNet Object Supported Services ............................................................................................. 58
Table 21: Assembly Object Attributes ............................................................................................................. 58
Table 22: Supported Static Input Assembly Instances ..................................................................................... 58
Table 23: Assembly Object Static Input Instances ........................................................................................... 59
Table 24: Supported Static Output Assembly Instances................................................................................... 61
Table 25: Assembly Object Static Output Instances ........................................................................................ 62
Table 26: Assembly Object Supported Services .............................................................................................. 63
Table 27: Connection Object Instances ............................................................................................................ 63
Table 28: Connection Object (Explicit Messaging) Attributes ........................................................................ 64
Table 29: Connection Object (I/O Polled Messaging) Attributes .................................................................... 65
Table 30: State Value Descriptions .................................................................................................................. 65
Table 31: Produced Connection Size................................................................................................................ 66
Table 32: Consumed Connection Size.............................................................................................................. 66
Table 33: Watchdog Timeout Action ............................................................................................................... 67
Table 34: Connection Object Supported Services ............................................................................................ 67
Table 35: S-Device Supervisor Object Attributes ............................................................................................ 68
Table 36: Device Status Attribute Values ........................................................................................................ 71
Table 37: Exception Status Bit Map................................................................................................................. 71
Table 38: Exception Detail Device Common Alarm Bit Map ......................................................................... 72
Table 39: Exception Detail Device Specific Alarm Bit Map ........................................................................... 72
viii
List of Figures
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:
Table 65:
Table 66:
Table 67:
Table 68:
Table 69:
Table 70:
Table 71:
Table 72:
Table 73:
Table 74:
Table 75:
Table 76:
Table 77:
Table 78:
Table 79:
Table 80:
Table 81:
Exception Detail Manufacturer Specific Alarm Bit Map .................................................................73
S-Device Supervisor Object Supported Services..............................................................................74
S-Analog Sensor Object Attributes...................................................................................................75
Trip Point Status Bit Map .................................................................................................................76
S-Analog Sensor Object Supported Services....................................................................................78
S-Analog Actuator Object Attributes................................................................................................79
Exception Status Bit Map .................................................................................................................80
S-Analog Actuator Object Supported Services.................................................................................81
S-Single Stage Controller Object Attributes.....................................................................................82
Controller Status Bit Map .................................................................................................................83
S-Single Stage Controller Object Supported Services......................................................................83
S-Gas Calibration Object Class Attributes .......................................................................................84
S-Gas Calibration Object Attributes .................................................................................................84
S-Gas Calibration Object Supported Services ..................................................................................86
Get_All_Instances Response Format................................................................................................86
Controller Calibration Object Attributes ..........................................................................................87
Controller Calibration Object Supported Services ...........................................................................89
Troubleshooting Chart ......................................................................................................................93
Gas Correction Factors .....................................................................................................................97
DeviceNet Message Types..............................................................................................................104
DeviceNet Class Services ...............................................................................................................104
DeviceNet Object Classes...............................................................................................................104
Identity Object Class Attributes......................................................................................................106
Identity Object Instance Attributes .................................................................................................106
Common Services ...........................................................................................................................106
Device States ..................................................................................................................................107
Router Object Class Attributes .......................................................................................................108
Router Object, Instance 1 Attributes...............................................................................................108
Common Services ...........................................................................................................................108
DeviceNet Object Class Attributes .................................................................................................109
DeviceNet Object, Instance 1 Attributes ........................................................................................109
Common Services ...........................................................................................................................109
Assembly Object Class Attributes ..................................................................................................111
Assembly Object, Instance 1 Attributes..........................................................................................111
Assembly Object, Instance 2 Attributes..........................................................................................111
Assembly Object, Instance 6 Attributes..........................................................................................111
Assembly Object, Instance 7 Attributes..........................................................................................111
Assembly Object, Instance 8 Attributes..........................................................................................111
Assembly Object, Instance 14 Attributes........................................................................................112
Assembly Object, Instance 18 Attributes........................................................................................112
Assembly Object, Instance 19 Attributes........................................................................................112
Assembly Object, Instance 20 Attributes........................................................................................112
ix
List of Tables
Table 82: Common Services .......................................................................................................................... 112
Table 83: Assembly Instances ........................................................................................................................ 113
Table 84: Connection Object Class Attributes ............................................................................................... 115
Table 85: Connection Object, Instance 1 Attributes (Explicit Message) ....................................................... 115
Table 86: Connection Object, Instance 2 Attributes (POLL connection)....................................................... 115
Table 87: Common Services .......................................................................................................................... 116
Table 88: Production and Consumed Sizes .................................................................................................... 117
Table 89: S-Device Supervisor Object Class Attributes ................................................................................ 118
Table 90: S-Device Supervisor Object Instance 1.......................................................................................... 118
Table 91: Common Services .......................................................................................................................... 119
Table 92: Object-Specific Services ................................................................................................................ 119
Table 93: Manufacturer-Specific Services ..................................................................................................... 120
Table 94: Exception Status – Attribute 12...................................................................................................... 120
Table 95: Common Exception Detail – Attribute 13 and 14 .......................................................................... 121
Table 96: MFC Exception Detail – Attributes 13 and 14............................................................................... 121
Table 97: Manufacturer Exception Detail – Attributes 13 and 14.................................................................. 122
Table 98: S-Analog Sensor Object Class Attributes ...................................................................................... 123
Table 99: S-Analog Sensor Object Instance 1................................................................................................ 123
Table 100: Common Services ........................................................................................................................ 123
Table 101: Object-Specific Services .............................................................................................................. 123
Table 102: Status – Attribute 7....................................................................................................................... 124
Table 103: S-Analog Actuator Object Class Attributes ................................................................................. 126
Table 104: S-Analog Actuator Object Instance 1........................................................................................... 126
Table 105: Common Services ........................................................................................................................ 126
Table 106: Status – Attribute 7....................................................................................................................... 127
Table 107: S-Single Stage Controller Object Class Attributes....................................................................... 128
Table 108: S- Single Stage Controller Object Instance 1 ............................................................................... 128
Table 109: Common Services ........................................................................................................................ 128
Table 110: Status – Attribute 10..................................................................................................................... 128
Table 111: S-Gas Calibration Object Class Attributes ................................................................................... 129
Table 112: S- Gas Calibration Object Instance 1…20 ................................................................................... 129
Table 113: Common Services ........................................................................................................................ 129
Table 114: Object-Specific Services .............................................................................................................. 129
Table 115: Get All Instances Response.......................................................................................................... 130
Table 116: Controller Calibration Object Class Attributes ............................................................................ 131
Table 117: Controller Calibration Object Instance 1…20.............................................................................. 131
Table 118: Common Services ........................................................................................................................ 132
Table 119: Manufacturer-Specific Services ................................................................................................... 133
Table 120: Summary of User and Calibration Mode Capabilities ................................................................. 142
x
List of References
List of References
The documents listed below are referenced throughout this manual.
[1] “DeviceNet Specification, Volume I: DeviceNet Communication Model and Protocol”, Open DeviceNet
Vendors Association, Inc. Release 2.0.
[2] “DeviceNet Specification, Volume II: DeviceNet Profiles and Object Library”, Open DeviceNet
Vendors Association, Inc. Release 2.0.
[3] “Sensor/Actuator Network Common Device Model”, SEMI Standards Document E54.1-0097.
[4] “Sensor/Actuator Network Communications Standard for DeviceNet”, SEMI Standards Draft Document
E54.4-0097.
[5] “Sensor/Actuator Network Specific Device Model for Mass Flow Devices”, SEMI Standards Draft
Document #2253C.
[6] “Sensor/Actuator Network Standard”, SEMI Standards Document E54-0097.
[7] SEMI Standards Document E52-95.
1
List of References
This page intentionally left blank.
2
Mass Flow Device Safety Information
Mass Flow Device Safety Information
Symbols Used in This Instruction Manual
Definitions of WARNING, CAUTION, and NOTE messages used throughout the manual.
Warning
The WARNING sign denotes a hazard. It calls attention to a procedure, practice,
condition, or the like, which, if not correctly performed or adhered to, could result
in injury to personnel.
Caution
The CAUTION sign denotes a hazard. It calls attention to an operating procedure,
practice, or the like, which, if not correctly performed or adhered to, could result in
damage to or destruction of all or part of the product.
Note
The NOTE sign denotes important information. It calls attention to a procedure, practice,
condition, or the like, which is essential to highlight.
Symbols Found on the Unit
The following table describes symbols that may be found on the unit.
Table 1: Definition of Symbols Found on the Unit
|
On (Supply)
IEC 417, No. 5007
Off (Supply)
IEC 417, No. 5008
Earth (ground)
IEC 417, No. 5017
Protective Earth (ground)
IEC 417, No. 5019
Frame or Chassis
IEC 417, No. 5020
Equipotentiality
IEC 417, No. 5021
Direct Current
IEC 417, No. 5031
Alternating Current
IEC 417, No. 5032
Both Direct and Alternating Current
IEC 417, No. 5033-a
Class II Equipment
IEC 417, No. 5172-a
Three Phase
Alternating Current
IEC 617-2, No. 020206
Caution (refer to accompanying
documents)
ISO 3864, No. B.3.1
Caution, Risk of Electric Shock
ISO 3864, No. B.3.6
Caution, Hot Surface
IEC 417, No. 5041
Safety Procedures and Precautions
Observe the following general safety precautions during all phase of operation of this instrument.
Failure to comply with these precautions or with specific warnings elsewhere in this manual violates
safety standards of intended use of the instrument and may impair the protection provided by the
equipment. MKS Instruments, Inc. assumes no liability for the customer’s failure to comply with these
requirements.
3
Mass Flow Device Safety Information
DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT
Do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to an
MKS Calibration and Service Center for service and repair to ensure that all safety features are maintained.
SERVICE BY QUALIFIED PERSONNEL ONLY
Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be
made by qualified service personnel only.
KEEP AWAY FROM LIVE CIRCUITS
Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even
with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.
USE CAUTION WHEN OPERATING WITH HAZARDOUS MATERIALS
If hazardous materials are used, users must take responsibility to observe the proper safety precautions, completely purge
the instrument when necessary, and ensure that the material used is compatible with sealing materials.
PURGE THE INSTRUMENT
After installing the unit, or before its removal from a system, be sure to purge the unit completely with a clean dry gas to
eliminate all traces of the previously used flow material.
USE PROPER PROCEDURES WHEN PURGING
This instrument must be purged under a ventilation hood, and gloves must be worn to protect personnel.
DO NOT OPERATE IN AN EXPLOSIVE ENVIRONMENT
To avoid explosion, do not operate this product in an explosive environment unless it has been specifically certified for
such operation.
USE PROPER FITTINGS AND TIGHTENING PROCEDURES
All instrument fittings must be consistent with instrument specifications, and compatible with the intended use of the
instrument. Assemble and tighten fittings according to manufacturer's directions.
CHECK FOR LEAK-TIGHT FITTINGS
Before proceeding to instrument setup, carefully check all plumbing connections to the instrument to ensure leak-tight
installation.
OPERATE AT SAFE INLET PRESSURES
This unit should never be operated at pressures higher than the rated maximum pressure (refer to the product
specifications for the maximum allowable pressure).
INSTALL A SUITABLE BURST DISC
When operating from a pressurized gas source, a suitable burst disc should be installed in the vacuum system to prevent
system explosion should the system pressure rise.
KEEP THE UNIT FREE OF CONTAMINANTS
Do not allow contaminants of any kind to enter the unit before or during use. Contamination such as dust, dirt, lint, glass
chips, and metal chips may permanently damage the unit.
ALLOW PROPER WARM UP TIME FOR TEMPERATURE-CONTROLLED UNITS
Temperature-controlled unit will only meet specifications when sufficient time is allowed for the unit to meet, and
stabilize at, the designed operating temperature. Do not zero or calibrate the unit until the warm up is complete.
4
Sicherheitshinweise für das Massenflussgerät
Sicherheitshinweise für das Massenflussgerät
In dieser Betriebsanleitung vorkommende Symbole
Bedeutung der mit WARNUNG!, VORSICHT! und HINWEIS gekennzeichneten Absätze in dieser
Betriebsanleitung.
Warnung!
Das Symbol WARNUNG! weist auf eine Gefahr für das Bedienpersonal hin. Es
macht auf einen Arbeitsablauf, eine Arbeitsweise, einen Zustand oder eine
sonstige Gegebenheit aufmerksam, deren unsachgemäße Ausführung bzw.
ungenügende Berücksichtigung zu Verletzungen führen kann.
Vorsicht!
Das Symbol VORSICHT! weist auf eine Gefahr für das Gerät hin. Es macht auf
einen Bedienungsablauf, eine Arbeitsweise oder eine sonstige Gegebenheit
aufmerksam, deren unsachgemäße Ausführung bzw. ungenügende
Berücksichtigung zu einer Beschädigung oder Zerstörung des Gerätes oder von
Teilen des Gerätes führen kann.
Hinweis
Das Symbol HINWEIS macht auf wichtige Informationen bezüglich eines
Arbeitsablaufs, einer Arbeitsweise, eines Zustands oder einer sonstige Gegebenheit
aufmerksam.
Erklärung der am Gerät angebrachten Symbole
Nachstehender Tabelle sind die Bedeutungen der Symbole zu entnehmen, die am Gerät angebracht sein können.
Tabelle 2: Bedeutung der am Gerät angebrachten Symbole
|
Ein (Energie)
IEC 417, No.5007
Aus (Energie)
IEC 417, No.5008
Erdanschluss
IEC 417, No.5017
Schutzleiteranschluss
IEC 417, No.5019
Masseanschluss
IEC 417, No.5020
Aquipotentialanschluss
IEC 417, No.5021
Gleichstrom
IEC 417, No.5031
Wechselstrom
IEC 417, No.5032
Gleich- oder Wechselstrom
IEC 417, No.5033-a
Durchgängige doppelte oder
verstärkte Isolierung
IEC 417, No.5172-a
Dreileiter-Wechselstrom (Drehstrom)
IEC 617-2, No.020206
Warnung vor einer Gefahrenstelle
(Achtung, Dokumentation beachten)
ISO 3864, No.B.3.1
Warnung vor gefährlicher
elektrischer Spannung
ISO 3864, No.B.3.6
Höhere Temperatur an leicht
zugänglichen Teilen
IEC 417, No.5041
Sicherheitsvorschriften und Vorsichtsmaßnahmen
Folgende allgemeine Sicherheitsvorschriften sind während allen Betriebsphasen dieses Gerätes zu
befolgen. Eine Missachtung der Sicherheitsvorschriften und sonstiger Warnhinweise in dieser
5
Sicherheitshinweise für das Massenflussgerät
Betriebsanleitung verletzt die für dieses Gerät und seine Bedienung geltenden Sicherheitsstandards,
und kann die Schutzvorrichtungen an diesem Gerät wirkungslos machen. MKS Instruments, Inc.
haftet nicht für Missachtung dieser Sicherheitsvorschriften seitens des Kunden.
Niemals Teile austauschen oder Änderungen am Gerät vornehmen!
Ersetzen Sie keine Teile mit baugleichen oder ähnlichen Teilen, und nehmen Sie keine eigenmächtigen Änderungen am
Gerät vor. Schicken Sie das Gerät zwecks Wartung und Reparatur an den MKS-Kalibrierungs- und -Kundendienst ein.
Nur so wird sichergestellt, dass alle Schutzvorrichtungen voll funktionsfähig bleiben.
Wartung nur durch qualifizierte Fachleute!
Das Auswechseln von Komponenten und das Vornehmen von internen Einstellungen darf nur von qualifizierten
Fachleuten durchgeführt werden, niemals vom Bedienpersonal.
Vorsicht vor stromführenden Leitungen!
Ersetzen Sie keine Komponente von Geräten, die an Netzstrom angeschlossen sind. Unter Umständen kann gefährliche
Spannung auch dann bestehen, wenn das Netzanschlusskabel von der Strmversorgung entfernt wurde. Um Verletzungen
vorzubeugen sollten zuerst alle Geräte von der Stromversorgung getrennt und alle Stromkreusläufe entladen werden.
Vorsicht beim Arbeiten mit gefährlichen Stoffen!
Wenn gefährliche Stoffe verwendet werden, muss der Bediener die entsprechenden Sicherheitsvorschriften genauestens
einhalten, das Gerät, falls erforderlich, vollständig spülen, sowie sicherstellen, dass der Gefahrstoff die am Gerät
verwendeten Materialien, insbesondere Dichtungen, nicht angreift.
Spülen des Gerätes mit Gas!
Nach dem Installieren oder vor dem Ausbau aus einem System muss das Gerät unter Einsatz eines reinen Trockengases
vollständig gespült werden, um alle Rückstände des Vorgängermediums zu entfernen.
Anweisungen zum Spülen des Gerätes
Das Gerät darf nur unter einer Ablufthaube gespült werden. Schutzhandschuhe sind zu tragen.
Gerät nicht zusammen mit explosiven Stoffen, Gasen oder Dämpfen benutzen!
Um der Gefahr einer Explosion vorzubeugen, darf dieses Gerät niemals zusammen mit (oder in der Nähe von)
explosiven Stoffen aller Art eingesetzt werden, sofern es nicht ausdrücklich für diesen Zweck zugelassen ist.
Anweisungen zum Installieren der Armaturen!
Alle Anschlussstücke und Armaturenteile müssen mit der Gerätespezifikation übereinstimmen, und mit dem geplanten
Einsatz des Gerätes kompatibel sein. Der Einbau, insbesondere das Anziehen und Abdichten, muss gemäß den
Anweisungen des Herstellers vorgenommen werden.
Verbindungen auf Undichtigkeiten prüfen!
Überprüfen Sie sorgfältig alle Verbindungen der Vakuumkomponenten auf undichte Stellen.
Gerät nur unter zulässigen Anschlussdrücken betreiben!
Betreiben Sie das Gerät niemals unter Drücken, die den maximal zulässigen Druck (siehe Produktspezifikationen)
übersteigen.
Geeignete Berstscheibe installieren!
Wenn mit einer unter Druck stehenden Gasquelle gearbeitet wird, sollte eine geeignete Berstscheibe in das
Vakuumsystem installiert werden, um eine Explosionsgefahr aufgrund von steigendem Systemdruck zu vermeiden.
Verunreinigungen im Gerät vermeiden!
Stellen Sie sicher, dass Verunreinigungen jeglicher Art weder vor dem Einsatz noch während des Betriebs in das
Instrumenteninnere gelangen können. Staub- und Schmutzpartikel, Glassplitter oder Metallspäne können das Gerät
dauerhaft beschädigen oder Prozess- und Messwerte verfälschen.
Bei Geräten mit Temperaturkontrolle korrekte Anwärmzeit einhalten!
Temperaturkontrollierte Geräte arbeiten nur dann gemäß ihrer Spezifikation, wenn genügend Zeit zum Erreichen und
Stabilisieren der Betriebstemperatur eingeräumt wird. Kalibrierungen und Nulleinstellungen sollten daher nur nach
Abschluss des Anwärmvorgangs durchgeführt werden.
6
Informations de sécurité pour appareils de mesure/contrôle de débit massique
Informations de sécurité pour appareils de mesure/contrôle de débit
massique
Symboles utilisés dans ce manuel d'utilisation
Définitions des indications AVERTISSEMENT, ATTENTION, et REMARQUE utilisées dans ce manuel.
Avertissement
L'indication AVERTISSEMENT signale un danger pour le personnel. Elle
attire l'attention sur une procédure, une pratique, une condition, ou toute
autre situation présentant un risque d'accident pour le personnel, en cas
d'exécution incorrecte ou de non-respect des consignes.
Attention
L'indication ATTENTION signale un danger pour l'appareil. Elle attire
l'attention sur une procédure d'exploitation, une pratique, ou toute autre
situation, présentant un risque de dégât ou de destruction partielle ou totale
du produit, en cas d'exécution incorrecte ou de non-respect des consignes.
Remarque
L'indication REMARQUE signale une information importante. Elle attire
l'attention sur une procédure, une pratique, une condition, ou toute autre situation,
présentant un intérêt particulier.
Symboles figurant sur l'unité
Le tableau suivant décrit les symboles pouvant apparaître sur l'unité.
Tableau 3: Définition des symboles sur l'unité
|
Marche (sous tension)
IEC 417, No.5007
Arrêt (hors tension)
IEC 417, No.5008
Terre (masse)
IEC 417, No.5017
Terre de protection (masse)
IEC 417, No.5019
Masse
IEC 417, No.5020
Equipotentialité
IEC 417, No.5021
Courant continu
IEC 417, No.5031
Courant alternatif
IEC 417, No.5032
Courant continu et alternatif
IEC 417, No.5033-a
Matériel de classe II
IEC 417, No.5172-a
Courant alternatif triphasé
IEC 617-2, No.020206
Attention : se reporter
à la documentation
ISO 3864, No.B.3.1
Attention : risque de
choc électrique
ISO 3864, No.B.3.6
Attention : surface brûlante
IEC 417, No.5041
Mesures de sécurité et précautions
Observer les précautions générales de sécurité suivantes pendant toutes les phases d'exploitation de cet
appareil. Le non-respect des ces précautions ou des avertissements du manuel constitue une violation
des normes de sécurité relatives à l'utilisation de l'appareil et peut compromettre la protection assurée
7
Informations de sécurité pour appareils de mesure/contrôle de débit massique
par l'appareil. MKS Instruments, Inc. rejette toute responsabilité en cas de non-respect des consignes
par les clients.
PAS DE REMPLACEMENT DE PIÈCES OU DE MODIFICATION DE L'APPAREIL
Ne pas installer de pièces de remplacement ni effectuer des modifications non autorisées sur l'appareil. Renvoyer
l'appareil à un centre de service et de calibrage MKS pour tout dépannage ou réparation afin de garantir le l'intégrité des
dispositifs de sécurité.
DÉPANNAGE UNIQUEMENT PAR DU PERSONNEL QUALIFIÉ
Le personnel d'exploitation ne doit pas essayer de sortir les composants du boîtier ou faire des réglages internes. Le
dépannage est réservé au personnel qualifié.
ÉLOIGNEMENT DES CIRCUITS SOUS-TENSION
Ne pas remplacer de composants lorsqu’un câble d’alimentation est branché. Dans certaines conditions, des tensions
dangereuses peuvent être présentes même après le retrait du câble d’alimentation. Pour éliminer tout risque de blessure,
procéder toujours à la déconnexion et décharger les circuits avant tout contact physique.
PRÉCAUTION EN CAS D'UTILISATION AVEC DES PRODUITS DANGEREUX
Si des produits dangereux sont utilisés, l'utilisateur est responsable du respect des mesures de sécurité appropriées, de la
purge complète de l'appareil quand elle s’avère nécessaire, et doit s’assurer que les produits utilisés sont compatibles
avec les matériaux d'étanchéité.
PURGE DE L'APPAREIL
Après l'installation de l'unité, ou avant son retrait d'un système, purger l'unité complètement avec un gaz propre et sec
afin d'éliminer toute trace du produit de flux utilisé précédemment.
UTILISATION DES PROCÉDURES APPROPRIÉES POUR LA PURGE
Cet appareil doit être purgé sous une hotte de ventilation. Le personnel doit porter des gants de protection.
PAS D'EXPLOITATION DANS UN ENVIRONNEMENT EXPLOSIF
Pour éviter toute explosion, ne pas utiliser cet appareil dans un environnement explosif, sauf en cas d'homologation
spécifique pour une telle exploitation.
UTILISATION D'ÉQUIPEMENTS ET PROCÉDURES DE SERRAGE APPROPRIÉS
Tous les équipements de l'appareil doivent être conformes à ses spécifications, et compatibles avec l'utilisation prévue de
l'appareil. Assembler et serrer les équipements conformément aux directives du fabricant.
VÉRIFICATION DE L'ÉTANCHÉITÉ DES CONNEXIONS
Vérifier attentivement toutes les connexions des composants pour le vide afin de garantir l'étanchéité de l'installation.
EXPLOITATION AVEC DES PRESSIONS D'ENTRÉE NON DANGEREUSES
Ne jamais utiliser des pressions supérieures à la pression nominale maximum (se reporter aux spécifications de l'unité
pour la pression maximum admissible).
INSTALLATION D'UN DISQUE D'ÉCHAPPEMENT ADAPTÉ
En cas d'exploitation avec une source de gaz pressurisé, installer un disque d'échappement adapté dans le système à vide,
afin d'éviter une explosion du système en cas d'augmentation de la pression.
MAINTIEN DE L'UNITÉ À L'ABRI DES CONTAMINATIONS
Ne pas laisser des produits contaminants pénétrer dans l'unité avant ou pendant l'utilisation. Des produits contaminants
tels que des poussières et des fragments de tissu, de verre et de métal peuvent endommager l'unité de manière
permanente.
RESPECT DU TEMPS D'ÉCHAUFFEMENT APPROPRIÉ POUR LES UNITÉS Á RÉGULATION DE TEMPÉRATURE
Les unités à régulation de température sont conformes à leurs spécifications uniquement quand on leur laisse un temps
suffisant pour atteindre d'une manière stable la température d'exploitation. Ne pas remettre à zéro ou calibrer l'unité tant
que l'échauffement n'est pas terminé.
8
Medidas de seguridad del dispositivo de flujo de masa
Medidas de seguridad del dispositivo de flujo de masa
Símbolos usados en este manual de instrucciones
Definiciones de los mensajes de advertencia, precaución y de las notas usados en el manual.
Advertencia
El símbolo de advertencia indica la posibilidad de que se produzcan daños
personales. Pone de relieve un procedimiento, práctica, estado, etc. que en caso
de no realizarse o cumplirse correctamente puede causar daños personales.
Precaución
El símbolo de precaución indica la posibilidad de producir daños al equipo.
Pone de relieve un procedimiento operativo, práctica, etc. que en caso de no
realizarse o cumplirse correctamente puede causar daños o la destrucción total
o parcial del equipo.
Nota
El símbolo de notas indica información de importancia. Este símbolo pone de relieve
un procedimiento, práctica o condición cuyo conocimiento es esencial destacar.
Símbolos hallados en la unidad
La tabla siguiente contiene los símbolos que puede hallar en la unidad.
Tabla 4: Definición de los símbolos hallados en la unidad
|
Encendido
(alimentación eléctrica)
IEC 417, N° 5007
Apagado
(alimentación eléctrica)
IEC 417, N° 5008
Puesta a tierra
IEC 417, N° 5017
Protección a tierra
IEC 417, N° 5019
Caja o chasis
IEC 417, N° 5020
Equipotencialidad
IEC 417, N° 5021
Corriente continua
IEC 417, N° 5031
Corriente alterna
IEC 417, N° 5032
Corriente continua y alterna
IEC 417, N° 5033-a
Equipo de clase II
IEC 417, N° 5172-a
Corriente alterna trifásica
IEC 617-2, N° 020206
Precaución. Consulte los documentos
adjuntos
ISO 3864, N° B.3.1
Precaución.
Riesgo de descarga eléctrica
ISO 3864, N° B.3.6
Precaución. Superficie caliente
IEC 417, N° 5041
Procedimientos y precauciones de seguridad
Las medidas generales de seguridad descritas a continuación deben observarse durante todas las etapas
de funcionamiento del instrumento. La falta de cumplimiento de dichas medidas de seguridad o de las
advertencias específicas a las que se hace referencia en otras partes de este manual, constituye una
violación de las normas de seguridad establecidas para el uso previsto del instrumento y podría anular
9
Medidas de seguridad del dispositivo de flujo de masa
la protección proporcionada por el equipo. Si el cliente no cumple dichas precauciones y advertencias,
MKS Instruments, Inc. no asume responsabilidad legal alguna.
NO UTILICE PIEZAS NO ORIGINALES O MODIFIQUE EL INSTRUMENTO
No instale piezas que no sean originales ni modifique el instrumento sin autorización. Para asegurar el correcto
funcionamiento de todos los dispositivos de seguridad, envíe el instrumento al Centro de servicio y calibración de MKS
toda vez que sea necesario repararlo o efectuar tareas de mantenimiento.
LAS REPARACIONES DEBEN SER EFECTUADAS ÚNICAMENTE POR TÉCNICOS AUTORIZADOS
Los operarios no deben retirar las tapas del instrumento. El reemplazo de los componentes y las tareas de ajuste deben
ser realizadas únicamente por personal autorizado.
MANTÉNGASE ALEJADO DE LOS CIRCUITOS ACTIVOS
No reemplace componentes con el cable de alimentación eléctrica conectado. En algunos casos, puede haber presente
alto voltaje aun con el cable de alimentación eléctrica desconectado. Para evitar lesiones personales, desconecte siempre
el cable y descargue los circuitos antes de entrar en contacto con los mismos.
TENGA CUIDADO CUANDO TRABAJE CON MATERIALES TÓXICOS
Cuando se utilicen materiales tóxicos, es responsabilidad de los operarios tomar las medidas de seguridad
correspondientes, purgar totalmente el instrumento cuando sea necesario y comprobar que el material utilizado sea
compatible con los materiales de sellado.
PURGUE EL INSTRUMENTO
Una vez instalada la unidad o antes de retirarla del sistema, purgue completamente la unidad con gas limpio y seco para
eliminar todo resto de la sustancia líquida empleada anteriormente.
USE PROCEDIMIENTOS ADECUADOS PARA REALIZAR LA PURGA
El instrumento debe purgarse debajo de una campana de ventilación y deben utilizarse guantes protectores.
NO HAGA FUNCIONAR EL INSTRUMENTO EN AMBIENTES CON RIESGO DE EXPLOSIÓN
Para evitar que se produzcan explosiones, no haga funcionar este instrumento en un ambiente con riesgo de explosiones,
excepto cuando el mismo haya sido certificado específicamente para tal uso.
USE ACCESORIOS ADECUADOS Y REALICE CORRECTAMENTE LOS PROCEDIMIENTOS DE AJUSTE
Todos los accesorios del instrumento deben cumplir las especificaciones del mismo y ser compatibles con el uso que se
debe dar al instrumento. Arme y ajuste los accesorios de acuerdo con las instrucciones del fabricante.
COMPRUEBE QUE LOS ACCESORIOS SEAN A PRUEBA DE FUGAS
Antes de proceder con la instalación del instrumento, inspeccione cuidadosamente todas las conexiones de las tuberías
para comprobar que hayan sido instaladas a prueba de fugas.
HAGA FUNCIONAR EL INSTRUMENTO CON PRESIONES DE ENTRADA SEGURAS
No haga funcionar nunca el instrumento con presiones superiores a la máxima presión nominal (en las especificaciones
del instrumento hallará la presión máxima permitida).
INSTALE UNA CÁPSULA DE SEGURIDAD ADECUADA
Cuando el instrumento funcione con una fuente de gas presurizado, instale una cápsula de seguridad adecuada en el
sistema de vacío para evitar que se produzcan explosiones cuando suba la presión del sistema.
MANTENGA LA UNIDAD LIBRE DE CONTAMINANTES
No permita el ingreso de contaminantes en la unidad antes o durante su uso. Los productos contaminantes tales como
polvo, suciedad, pelusa, lascas de vidrio o virutas de metal pueden dañar irreparablemente la unidad.
CALIENTE ADECUADAMENTE LAS UNIDADES CONTROLADAS POR MEDIO DE TEMPERATURA
Las unidades controladas por medio de temperatura funcionarán de acuerdo con las especificaciones sólo cuando se las
caliente durante el tiempo suficiente para permitir que lleguen y se estabilicen a la temperatura de operación indicada.
No calibre la unidad y no la ponga en cero hasta que finalice el procedimiento de calentamiento.
10
マスフロー機器の安全に関する情報
マスフロー機器の安全に関する情報
本取扱説明書のマーク
本マニュアルでは警告、注意、ポイントのマークを用いて重要な事項を記載しています。
警告
この表示を無視して誤った取り扱い (手順や使用方法、条件など) をすると、人が重傷
を負う可能性が想定される内容を示しています。必ずお読みください。
注意
この表示を無視して誤った取り扱い (手順や使用方法など) をすると、 製品が損傷する
可能性が想定される内容を示しています。必ずお読みください。
ポイント
この表示は手順や使用方法、条件などに関する重要な情報が記載されていることを示
しています。必ずお読みください。
本機器のマーク
以下の表では、本機器に使用されているマークについて説明いたします。
表 5: 本機器に使用されているマークについて
|
オン (電源)
IEC 417, No. 5007
オフ (電源)
IEC 417, No. 5008
接地 (アース)
IEC 417, No. 5017
保護接地 (アース)
IEC 417, No. 5019
フレームまたはシャーシ
IEC 417, No. 5020
等電位
IEC 417, No. 5021
直流
IEC 417, No. 5031
交流
IEC 417, No. 5032
直流と交流
IEC 417, No. 5033-a
クラス 2 機器
IEC 417, No. 5172-a
三相交流
IEC 617-2, No. 020206
注意 (付属書を参照)
ISO 3864, No. B.3.1
注意 (感電の危険あり)
ISO 3864, No. B.3.6
注意 (表面が熱くなっています)
IEC 417, No. 5041
11
マスフロー機器の安全に関する情報
安全対策について
本機器を使用する際は、必ず以下の安全対策を守ってください。これらの安全対策や本マニュアルの
警告を無視すると、機器本来の用途の安全基準を侵害することになり、機器が提供する保護機能が
損なわれる可能性があります。MKS Instruments, Inc. は、顧客側の安全対策の不履行に対して
は一切責任を負いかねます。
勝手に部品を変えたり、本体を改造しないこと
本機器に代用部品を使用したり、不正な改造を加えないでください。すべての安全システムを正しく機能させるた
めの修理やメンテナンスが必要な場合は、本機器を MKS Calibration and Service Center まで戻してください。
修理は必ず専門の修理サービスを利用すること
オペレータは絶対に本機器を分解しないでください。部品の交換や内部の調整は必ず専門の修理サービスを利
用してください。
電流が通じている回路から切断すること
電源ケーブルを接続したままで部品を交換しないでください。特定の状況では、電源ケーブルを取り外した状態
でも危険な電圧が残っている場合があります。感電などの事故を防ぐため、回路に触れる前に必ず電源から切
断し、放電してください。
危険な材料を使用する場合は慎重に機器を使用すること
危険な材料を使用する場合は、使用者は各自の責任の元で適切な安全対策を講じてください。必要に応じて
本機器を浄化してください。また、使用する材料に対するシーリング材の耐久性を確認してください。
機器を浄化すること
本機器を取り付けた後やシステムから取り外す前に、きれいな乾燥ガスで本機器を浄化し、使用した材料を完
全に取り除いてください。
浄化する場合は適切な手順で行うこと
本機器の浄化は換気フードの下で行う必要があります。また、浄化作業を行う人は必ず手袋を着用してください。
爆発の危険性のある環境で機器を使用しないこと
爆発が起きるのを防ぐため、本機器を爆発の危険性のある環境で使用しないでください。ただし、そのような環境
での使用が特別に保証されている場合は除きます。
適切な金具類を使用し、手順に従って金具の締めを行うこと
金具類は本機器の仕様と一致し、機器本来の用途に適合したものである必要があります。金具類の取り付け
や締めは、製造業者の指示に従ってください。
液体の漏れがないよう接続箇所を確認すること
本機器を設定する前に、すべての配管の接続を慎重に確認し、液体が漏れないようにしてください。
安全なインレット圧力で使用すること
12
マスフロー機器の安全に関する情報
定格の最大圧力を超える圧力の下で本機器を絶対に使用しないでください (最大許容圧力については仕様書
を参照)。
適切なバーストディスクを取り付けること
圧力のかかったガスを使用する場合は、万一システムが爆発した場合にシステムの圧力が上昇するのを防ぐため、
真空システムに適切なバーストディスクを取り付けてください。
本機器に異物やゴミが混入しないようにすること
本機器の使用前または使用中に、ほこりやゴミ、繊維、ガラスの破片、金属片などの異物やゴミが混入しないよ
うにしてください。本機器が損傷する可能性があります。
温度調整された機器を十分に温めてから使用すること
温度調整された機器が適切な作動温度にならないうちに使用すると、仕様通りの動作をしないことがあります。
本機器が十分に温まるまでは目盛りをゼロに合わせたり、較正しないでください。
13
질량 유량 장치 안전 정보
질량 유량 장치 안전 정보
본 지침 매뉴얼에 사용되는 기호들
매뉴얼 전체에 사용되는 경고, 주의 및 참고 메시지의 정의.
경고
경고 표시는 위험을 나타냅니다. 이 표시는 올바르게 수행되거나 지켜지지 않을
경우, 사람에게 상해를 입힐 수 있는 절차, 수행지침, 상태 또는 이와 유사한
상황들에 대한 주의를 환기시킵니다.
주의
주의 표시는 위험을 나타냅니다. 이 표시는 올바르게 수행되거나 지켜지지 않을
경우, 제품의 일부나 전체에 손상이나 파손을 일으킬 수 있는 절차, 수행지침 또는
이와 유사한 상황들에 대한 주의를 환기시킵니다.
참고
참고 표시는 중요한 정보를 나타냅니다. 이 표시는 강조할 만한 주요 절차,
수행지침, 상태 또는 이와 유사한 상황들에 대한 주의를 환기시킵니다.
장치에 표시된 기호들
다음 표는 장치에서 볼 수 있는 기호들을 설명합니다.
표 6: 장치에 표시된 기호들의 정의
|
켬 (전원)
IEC 417, No. 5007
끔 (전원)
IEC 417, No. 5008
접지(지면)
IEC 417, No. 5017
보호 접지(지면)
IEC 417, No. 5019
프레임 또는 섀시
IEC 417, No. 5020
등전위성
IEC 417, No. 5021
직류
IEC 417, No. 5031
교류
IEC 417, No. 5032
직류와 교류 모두
IEC 417, No. 5033-a
클래스 II 장비
IEC 417, No. 5172-a
3상 교류
IEC 617-2, No. 020206
주의 (동봉 문서 참조)
ISO 3864, No. B.3.1
주의, 감전 위험
ISO 3864, No. B.3.6
주의, 표면이 뜨거움
IEC 417, No. 5041
15
질량 유량 장치 안전 정보
안전 절차 및 예방조치
본 기계의 모든 작동 시에 다음의 일반 안전 예방조치를 준수하십시오. 아래 예방조치를
준수하지 않거나 본 매뉴얼의 다른 부분에 있는 특정 경고를 준수하지 않을 경우, 기계
사용 목적의 안전 기준을 위반하는 것이 되며, 장비가 제공하는 보호기능을 손상시킬 수
있습니다. MKS Instruments, Inc.는 고객이 본 요건을 준수하지 않는 경우에 대해서는
어떠한 책임도 지지 않습니다.
부품을 교체하거나 기계를 개조하지 마십시오
교체 부품을 설치하거나 기계에 허가되지 않은 어떠한 수정도 가하지 마십시오. 서비스와 수리가
필요한 경우에는 모든 안전 특성이 유지되도록 기계를 MKS 보정 서비스 센터(MKS Calibration and
Service Center)로 보내주십시오.
자격이 있는 사람에게만 서비스를 받으십시오
작동하는 사람은 기계 겉면을 제거해서는 안됩니다. 부품 교체 및 내부 조정은 자격이 있는 서비스
기사에게만 받으실 수 있습니다.
전류가 통하는 회로에서 분리해 보관하십시오
전원 케이블을 연결한 채로 부품을 교체하지 마십시오. 일부 환경에서는 전원 케이블을 제거한
상태라도 위험 전압이 존재할 수 있습니다. 부상을 방지하려면, 전원을 항상 분리하고 회로를
만지기 전에 회로를 방전시키십시오.
위험한 물질과 함께 작동할 때는 주의를 기울이십시오
위험한 물질이 사용되는 경우, 사용자는 필요시 기계를 완전히 청소하여, 적절한 안전 예방조치를
준수할 책임을 지키고, 사용된 물질이 봉인 물질과 함께 사용해도 무방하다고 보증할 수 있어야
합니다.
기계를 청소하십시오
장치를 설치한 후나 시스템에서 장치를 제거하기 전에는 반드시 깨끗한 건조성 기체로 장치를
완전히 청소하여 이전에 사용된 유량 물질의 모든 흔적을 제거하십시오.
청소 시에는 적절한 절차를 사용하십시오
본 기계는 환기 후드 아래에서 청소되어야 하며, 인체 보호를 위해 장갑을 착용해야 합니다.
폭발성 환경에서 작동하지 마십시오
폭발을 방지하려면, 폭발성 환경에서 작동하도록 특별히 승인받지 않은 경우 본 제품을 폭발성
환경에서 작동하지 마십시오.
적절한 조립부품과 조임 절차를 사용하십시오
모든 기계 조립부품은 제품 사양과 일치해야 하고, 기계의 사용 목적에 부합해야 합니다.
제조업체의 지시에 따라 조립부품을 조립하고 조이십시오.
16
질량 유량 장치 안전 정보
누출방지 조립부품을 점검하십시오
기계 설치를 진행하기 전에 기계의 모든 연관 연결부를 점검해 누출방지 설치가 되었는지
확인하십시오.
안전한 흡입 압력에서 작동하십시오
이 장치는 절대 정격 최대 압력보다 높은 압력에서 작동해서는 안됩니다(최대 허용 압력에
대해서는 제품 사양을 참조하십시오).
적합한 안전 파열판을 설치하십시오
가압 가스 공급원에서 작동시, 시스템 폭발이 시스템 압력 상승을 일으키는 것을 방지하기 위해
적합한 안전 파열판이 진공 시스템에 설치되어야 합니다.
장치를 오염이 없는 곳에 보관하십시오
장치를 사용하기 전이나 사용 중에는 어떠한 종류의 오염 물질도 허용해서는 안됩니다. 먼지, 때,
보풀, 유리 조각, 금속 조각과 같은 오염 물질은 영구적으로 장치를 손상시킬 수 있습니다.
온도 제어 장치의 경우 알맞은 시동 시간을 두십시오
온도 제어 장치는 장치가 설계 작동 온도와 일치하고 이 온도에서 안정화될 수 있도록 충분한
시간을 허용해야만 사양에 맞게 작동합니다. 시동이 완료될 때까지 장치를 영점 설정하거나
보정하지 마십시오.
17
Introduction
Chapter One: General Information
Chapter One: General Information
Introduction
The MKS ALTATM series of Mass Flow Devices are metal-sealed, digitally controlled instruments which
accurately measure and control the mass flow of gases. This manual covers the DeviceNet versions of two
mass flow meters (Types 180A and 185A) and three mass flow controllers (Types 1480A, 1485A).
„
Types 180A, 185A, 1480A, and 1485A have traditional 3” footprints with 1.5” width.
„
The models are also differentiated by internal surface finishes. For Types 180A and 1480A surface
finishes are 10Ra with an electro-polished treatment while Types 185A, and 1485A have ultra-clean 5Ra
surface finishes, which are specially treated for the ultimate in purity and corrosive resistance.
Based on a patented MKS Instruments measurement technique, these instruments are laminar flow devices
whose precise indication of mass flow is achieved through the use of a bypass element in parallel with the
sensor tube. These ALTA units feature digital controller circuits and are completely operable through a
DeviceNet network. These devices include a metal cover and RF bypass capacitors and incorporates a design
that virtually eliminates RFI and EMI interference. The MKS ALTA Mass Flow Devices carry the CE mark
indicating compliance with the EMC Directive 89/336/89.
Use the MKS ALTA Mass Flow Controller when both gas flow control and gas flow measurement are
required. The valve can be supplied as normally open or normally closed. Use the MKS ALTA Mass Flow
Meter when only measurement is required.
The MKS ALTA Mass Flow Devices are available in a variety of configurations and types to suit your
specific application needs. Appendix C, Model Code Explanation, page 101, contains the options that must be
specified when ordering a mass flow device.
Design Features
The design of the MKS ALTA Mass Flow Devices incorporates an advanced flow sensor, a control valve, and
an optimized bypass. The latest generation two-element sensing circuit provides accurate, repeatable
performance even in low flow ranges (< 10 sccm). A low temperature effect from ambient temperature
change and a low attitude sensitivity effect are also ensured. The optimized sensor/bypass arrangement
minimizes the flow splitting error for gases with different properties, which dramatically improves
measurement accuracy when gases other than the calibration gas are used.
Digital Features
The DeviceNet interface, compliant to ODVA SEMISIG DeviceNet profile, ensures interoperability in any
DeviceNet mass flow application. In addition, the true digital calibration and valve control electronics,
coupled with standard 11 point calibration, provide for high flow accuracy over a wide range of setpoints and
fast response to even low setpoints. The ALTA DeviceNet Mass Flow device accepts up to 20 gas tables.
19
Chapter One: General Information
How This Manual is Organized
Reliability
To provide excellent reliability, the design contains a low mechanical and electronic components count and
has successfully passed the following test:
„
STRIFE, including temperature cycling and vibration (sine and random tests)
And with a metal braided, shielded cable, properly grounded at both ends:
„
EMC Directive 89/336/EEC for CE Mark compliance
Cleanliness Features
The MKS ALTA Mass Flow Devices use only metal for all external seals. The metal seals eliminate gas
permeation and ensure extremely low external leakage. The internal valve control plug is Teflon or Kel-F
(depending on flow range) which are pure, chemically stable, and not prone to out-gassing or particle
generation. The MKS ALTA Mass Flow Device mechanical design incorporates minimal wetted surface area
and virtual leaks, assuring rapid dry-down. To further enhance its cleanliness, all internal surfaces are
precision machined, electropolished, and subjected to a proprietary cleaning process under Class 100
conditions. The instrument is assembled and double-packaged in a Class 100 clean room environment.
How This Manual is Organized
This manual is designed to provide instructions on how to set up, install, and operate an MKS ALTA Mass
Flow Device.
Before installing your MKS ALTA Mass Flow Device in a system and/or operating it, carefully read
and familiarize yourself with all precautionary notes in the Mass Flow Device Safety Information section
at the front of this manual. In addition, observe and obey all WARNING and CAUTION notes provided
throughout the manual.
Chapter One: General Information (this chapter) introduces the product and describes the organization of the
manual.
Chapter Two: Installation explains the environmental requirements and describes how to mount the
instrument in your system.
Chapter Three: Overview gives a brief description of the instrument and its functionality.
Chapter Four: Operation describes how to use the instrument and explains all the functions and features.
Chapter Five: Maintenance lists any maintenance required to keep the instrument in good working condition.
Chapter Six: Troubleshooting provides a reference should the instrument malfunction.
Appendix A: Product Specifications lists the specifications of the instrument.
Appendix B: Gas Correction Factors lists the gas correction factors of commonly used gases.
Appendix C: Model Code Explanation describes the model code.
Appendix D: DeviceNet Attribute Summary summarizes the DeviceNet attributes.
Appendix E: Mass Flow Device Sizing Guidelines describes the guidelines for correctly sizing mass flow
devices for your process application and is provided for reference.
Appendix F: MKS ALTA Digital MFC Graphical User Interface describes the Windows-based graphical user
interface (GUI). This appendix provides detailed information on the interface kit and user manipulation of gas
tables and PID parameters.
20
How This Manual is Organized
Chapter One: General Information
21
Chapter One: General Information
Customer Support
Customer Support
Standard maintenance and repair services are available at all of the regional MKS Calibration and Service
Centers. MKS also accepts the instruments of other manufacturers for recalibration using the Primary and
Transfer Standard calibration equipment located at our regional service centers.
If any difficulties arise in the use of your MKS ALTA Mass Flow Device, or to obtain information about
companion products MKS offers, contact any authorized MKS Calibration and Service Center. If it is
necessary to return the instrument to MKS, please obtain an RMA Number (Return Material Authorization
Number) from the MKS Calibration and Service Center before shipping. The RMA Number expedites
handling and ensures proper servicing of your instrument.
Please refer to the inside of the back cover of this manual for a list of MKS Calibration and Service Centers.
Warning
All returns to MKS Instruments must be free of harmful, corrosive, radioactive, or
toxic materials.
22
Customer Support
Chapter One: General Information
This page intentionally left blank.
23
Chapter Two: Installation
How to Unpack the MKS ALTA Mass Flow Device
Chapter Two: Installation
How to Unpack the MKS ALTA Mass Flow Device
MKS has carefully packed your MKS ALTA Mass Flow Device so that it will reach you in perfect operating
order. Upon receiving the unit, however, you should check for defects, cracks, broken connectors, etc., to be
certain that damage has not occurred during shipment.
Note
Do not discard any packing materials until you have completed your inspection and are sure the
unit arrived safely.
If you find any damage, notify your carrier and MKS immediately. If it is necessary to return the unit to
MKS, obtain an RMA Number (Return Material Authorization Number) from the MKS Calibration and
Service Center before shipping. Please refer to the inside of the back cover of this manual for a list of MKS
Calibration and Service Centers.
Opening the Package
The MKS ALTA Mass Flow Device is assembled, leak tested with helium, and calibrated in a clean room
environment. The instrument is double-packaged in this environment to ensure maintenance of its particle free
condition during shipment. It is very important to remove the packaging according to good clean room
practices. To maintain at least a minimal level of clean room standards, follow the instructions below:
1. Remove all cardboard and packaging materials. Discard before entering the garmenting room.
2. Remove the outer plastic shipping container in an ante room (garmenting room) or transfer box.
Do not allow this container to enter the clean room.
3. Remove the inner bag in the clean room.
4. Inspect for any damage.
Caution
Only qualified individuals should perform the installation and any user adjustments.
Individuals must comply with all necessary ESD handling precautions while installing
and adjusting the instrument. Proper handling is essential when working with all highly
sensitive precision electronic instruments.
Unpacking Checklist
Standard Equipment:
„
MKS ALTA Mass Flow Device (Controller or Meter)
„
MKS ALTA Mass Flow Device Instruction Manual (this book)
24
Product Location and Requirements
Chapter Two: Installation
Product Location and Requirements
„
Ventilation requirements include sufficient air circulation
„
Ambient operating temperature range: 10° to 45° C (50° to 113° F)
„
Power requirement: 11-25 VDC, 500 mA maximum current @ 11 VDC (230 mA @ 24 VDC nominal)
„
Storage temperature range: -20° to 65° C (-4° and 149° F)
„
Mount the MKS ALTA Mass Flow Device in an upright position if possible, although any mounting
orientation is satisfactory. Refer to Setup, page 25, for more information.
„
Install a separate positive shutoff valve if your system cannot tolerate any leakage through the MKS
ALTA Mass Flow Device. The internal flow control valve is not a positive shutoff valve so some leakage
across the valve may occur.
Warning
Your corporate policy on handling toxic or hazardous gases supersedes the
instructions in this manual. Comply with your corporate policy. MKS assumes no
liability for the safe handling of such materials.
„
Install the MKS ALTA Mass Flow Device in a “flowing” system where gas is continually added and
evacuated. Do not use the controller in a “dead-ended” system (a system which cannot remove excess
mass). The MKS ALTA Mass Flow Device can not vent excess mass to the atmosphere.
„
Warm up time: 30 minutes
„
Use high purity gas filters in line upstream of the device.
„
Observe the pressure limits for the flow device.
Controller:
Maximum gas inlet pressure is 150 psig with properly configured valve (consult factory for cases
where inlet pressure is expected to exceed 40 psig).
Operational differential pressure is:
1. 10 to 40 psid for ≤ 5000 sccm units
2. 15 to 40 psid for > 10,000 sccm units
The standard valve configuration provides control over this pressure range with the outlet at
atmospheric pressure.
For additional information, refer to Appendix A, Product Specifications, page 95.
Meter:
Maximum gas inlet pressure is 150 psig in all cases.
25
Chapter Two: Installation
Setup
Setup
This section describes how to install the MKS ALTA Mass Flow Device into your system.
Follow the guidelines below when setting up the MKS ALTA Mass Flow Device.
1. Set the device into position where it will be connected to a gas supply. Placement of mass flow devices in
orientations other than that in which they were calibrated (typically horizontal) may cause a small zero
shift. The zero offset can be removed by re-zeroing the flow controller using the appropriate DeviceNet
command after the unit is installed and properly warmed-up.
2. Install the flow device in the gas stream such that the flow will be in the direction of the arrow on the
front of the device.
A. Orient the unit properly.
B. Mount the unit into place with the proper hardware. Take care that the gas flow is in the direction of
the arrow on the enclosure of the unit. For surface mount versions, the gas connection is made at this
time. Be sure to insert the appropriate C-seal or W-seal.
C. Connect the gas supply (if not a surface mount unit). For VCR connections, remember to include the
gasket.
D. Perform external leak test.
E. Using switches on top of the unit, select the baud rate and MacID, then power unit through the
DeviceNet cable. The PGM position allows remote programming of valves through the DeviceNet
interface. Refer to Chapter Four, page 44.
F. Power the unit and allow 30 minute warm-up.
3. Allow adequate clearance for the DeviceNet connector.
Refer below for outline dimensions of the flow devices and locations for the mounting hardware.
Dimensions
Refer to the applicable drawings, which follow.
26
Dimensions
Chapter Two: Installation
Welded Fittings
Front and Back Views: 180A, 185A, 1480A, and 1485A
The front of the MKS ALTA Mass Flow Device has an arrow to indicate the direction of gas flow through the
unit. The back of the MKS ALTA Mass Flow Device contains the serial label and connector pin-outs.
Figure 1: Front and Back Views of the MKS ALTA Mass Flow Devices (Welded Fittings)
27
Chapter Two: Installation
Dimensions
Side View: 180A, 185A, 1480A, and 1485A
Figure 2: Side View of the MKS ALTA Mass Flow Devices (Welded Fittings)
28
Dimensions
Chapter Two: Installation
Top View: 180A, 185A, 1480A, and 1485A
Figure 3: Top View of the MKS ALTA Mass Flow Devices (Welded Fittings)
Bottom View: 180A, 185A, 1480A, and 1485A
Figure 4: Bottom View of the MKS ALTA Mass Flow Devices (Welded Fittings)
29
Chapter Two: Installation
Dimensions
Downport Fittings
Front and Back Views: 1480A and 1485A
The front of the MKS ALTA Mass Flow Device has an arrow to indicate the direction of gas flow through the
unit. The back of the MKS ALTA Mass Flow Device contains the serial label and connector pin-outs.
Figure 5: Front View of the MKS ALTA Mass Flow Devices (Downport Fittings)
30
Dimensions
Chapter Two: Installation
Top View: 180A, 185A, 1480A, and 1485A
Figure 6: Top View of the MKS ALTA Mass Flow Devices (Downport Fittings)
Botom View: 180A, 185A, 1480A, and 1485A
Figure 7: Bottom View of the MKS ALTA Mass Flow Devices (Downport Fittings)
Labels
Each ALTA unit has two serial number labels, a small one on top side and the standard, larger label on the
back side. Each label shows the serial number, the model code, the full scale flow range, and the calibration
gas.
31
Chapter Two: Installation
Dimensions
Serial #:
012345678
Range: 100 sccm
Gas:
N2
Model #:
1480A12CR1BV
Serial #: 012345678
Model #: 1480A12CR1BV
RANGE: 100 SCCM GAS: N2
MKS Instruments, Inc.
Made in the USA
Figure 8: Serial Number Label
Fittings
MKS ALTA Mass Flow Devices are available with the following fittings:
„
Swagelok VCR-4, Male (180A, 185A, 1480A, and 1485A).
„
Swagelok compression (180A and 1480A).
„
¼” weld stub (180A, 185A, 1480A, and 1485A).
„
Downport C-Seal (180A, 185A, 1480A, and 1485A). All conform to SEMI Std. 2787.1.
„
Downport W-Seal (180A, 185A, 1480A, and 1485A). All conform to SEMI Std. 2787.3F.
32
Dimensions
Chapter Two: Installation
Mounting Hardware
MKS ALTA Mass Flow Devices with in-line fittings (Swagelok VCR, Swagelok compression, and ¼” weld
stub) have six threaded mounting holes located on the bottom or base of the unit: four #8-32 and two M4.
Depending on the hole pattern chosen, use #8-32 UNC-2B or M4 hardware to mount the instrument. The
figures beginning on page 26 show the location and dimensions of the mounting holes for standard axial
fittings.
The C-Seal and W-Seal downmount fittings are designed for device mounting using four M5-0.8 x 30 mm
long socket head cap screws. In addition, C-Seal units may be mounted using 10-32 UNF x 1.25” long socket
head cap screws if your mounting substrate requires.
Gas Flow
The control valve is not a positive shutoff valve. Some leakage across the valve may occur. Refer to
Appendix A, Product Specifications, page 95, for the leak integrity specifications. If necessary, install a
separate positive shutoff valve in your system.
Note
Connect the MKS ALTA Mass Flow Device to your system so that the gas flows in the direction
of the flow arrow on the front of the unit.
33
Chapter Two: Installation
Dimensions
This page intentionally left blank.
34
General Information
Chapter Three: Overview
Chapter Three: Overview
General Information
Typical Control System Configuration
The MKS ALTA Mass Flow Device is used in a wide variety of control systems, most of which share several
characteristics. Typically, a control system consists of four basic parts:
„
„
„
„
Mass flow transducer
Control electronics
Control valve (Mass Flow Controllers only)
Flow system (whose flow is being controlled by the ALTA DeviceNet Mass Flow Controller)
The MKS ALTA Mass Flow Controller provides the first three components. The mass flow transducer is an
MKS design. The MKS ALTA Mass Flow Controller instrument contains the electronics necessary for flow
control. The control valve included in the MKS ALTA Mass Flow Controller is a proportional control valve.
The flow system can be any process whose flow you need to control. In addition, the MKS ALTA Mass Flow
Controller is capable of metering the mass flow of the gas during the flow control operation.
Flow Measurement Overview
The MKS ALTA Mass Flow Device measures the mass flow rate of a gas and controls the flow rate
according to a given setpoint. The control range is from 2% to 100% of Full Scale (F.S.) with an accuracy of
± 1% of Reading of the calibration gas (20% to 100% of Full Scale). For setpoints between 2% and 20%,
ALTA Mass Flow Devices have an accuracy of ±0.2% FS of the calibration gas.
During valve override - (open), the device operates as a fixed orifice and flow rate is based on differential
pressure across the MFC - (upstream supply pressure – downstream pressure). Determining the actual flow
rate during valve override - (open) - mode requires the use of an additional flow measurement device sized
correctly for the larger flow, such as a mass flow meter or other flow transfer standard.
Typical purge rates for N2 at 25 psig (to atmospheric pressure) for normally open valve:
100 sccm to 10000 sccm --------------150% Full Scale
20000 sccm to 30000 sccm -----------130% Full Scale
Flow Path
Upon entering the MKS ALTA Mass Flow Controller, the gas stream passes first through the metering
section of the instrument for its mass flow to be measured. The gas moves on through the control valve,
which regulates the flow rate according to the given setpoint, and then exits the instrument at the established
rate of flow.
The metering section consists of one of the following:
„
A sensor tube for Full Scale ranges < 10 sccm (N2 equivalent)
„
A sensor tube and parallel bypass for ranges > 10 sccm (N2 equivalent)
The geometry of the sensor tube, in conjunction with the specified full scale flow rate, ensures fully
developed laminar flow in the sensing region. The bypass elements are specifically matched to the
35
Chapter Three: Overview
How the MKS ALTA Mass Flow Controller Works
characteristics of the sensor tube to achieve a laminar flow splitting ratio which remains constant throughout
each range.
Flow Control Range
The MKS ALTA Mass Flow Controller can control flow over a range of 2 to 100% of full scale flow. This
means that an MKS ALTA Mass Flow Controller with a 1000 sccm configuration can control flow from 20 to
1000 sccm, whereas an instrument with a 100 sccm configuration can control flow from 2 to 100 sccm.
Measurement Technique
The flow measurement is based on differential heat transfer between temperature sensing heater elements
which are attached to the sensor tube. This senses the thermal mass movement which is converted to mass
flow via the specific heat, Cp, of the gas.
Control Circuitry
The controller employs the above measurement technique and utilizes a control circuit that provides drive
current for the proportioning control valve. The flow controller accepts a setpoint signal, compares it to its
own flow signal, and generates an error voltage. This error signal is then conditioned by a PID (ProportionalIntegral-Derivative) algorithm and amplified so that it can reposition the control valve, thus reducing the
control error to zero.
With a normally closed valve, the MKS ALTA Mass Flow Controller instrument lifts the armature and plug
assembly from the seat to regulate the gas flow rate. With a normally open valve, the MKS ALTA Mass
Flow Controller instrument forces the armature and plug assembly closer to the seat to regulate the gas flow.
Control Valve
The control valve is a specially constructed solenoid valve in which the armature (moving valve mechanism)
is suspended. The arrangement ensures that no friction is present and makes precise control possible. For an
MKS ALTA Mass Flow Controller with a normally-closed valve the control current is used to lift the
armature and plug assembly from the seat, allowing a controlled flow of gas.
How the MKS ALTA Mass Flow Controller Works
The MKS ALTA Mass Flow Controller compares the flow reading to the setpoint, and positions the valve to
maintain, or achieve, the setpoint rate. The controller functions as a PID (Proportional-Integral-Derivative)
controller. The Proportional (P), Integral (I) and the Derivative (D) terms can be adjusted digitally through the
DeviceNet connection on the MKS ALTA Mass Flow Controller. To facilitate PID adjustment, MKS
Instruments offers a graphical user interface (GUI), which allows for easy communication with the device.
Example
Assume that your MKS ALTA Mass Flow Controller is positioned upstream of the process chamber. The
MKS ALTA Mass Flow Controller is positioned before the chamber so it will regulate the flow rate of the gas
entering the process chamber.
When the actual flow rate reading is less than the setpoint value, the MKS ALTA Mass Flow Controller
opens the valve to increase the amount of gas entering the system. As the valve opens, assuming adequate
differential pressure across the flow controller, gas enters the process chamber, so the flow rate rises to meet
the setpoint value.
36
Overview of ALTA DeviceNet Digital Operation
Chapter Three: Overview
When the actual flow rate reading is more than the setpoint value, the MKS ALTA Mass Flow Controller
closes the valve to decrease the amount of gas entering the system. As the valve closes, there is a reduced
flow of gas entering the process chamber, so the flow rate decreases to meet the setpoint value.
Note
The MKS ALTA Mass Flow Device must have sufficient pressure on its inlet side to achieve the
setpoint.
Overview of ALTA DeviceNet Digital Operation
Your ALTA DeviceNet Mass Flow Device complies with Volume 1 of the ODVA DeviceNet Specification,
Release 2 and the associated SEMI-SIG requirements. A detailed software attribute summary pertaining to the
DeviceNet communications is provided in Appendix D, page 104.
Gas Tables
Each ALTA series Mass Flow Device supports 20 gas calibration tables. The user may copy factory
calibrations into new tables to accommodate alternative gases or adjust the full scale flow rate. It is also
possible, if certified flow standards are available, to create entirely new calibration tables with up to 21 points.
The standard factory calibration contains 11 points.
Associated with each table are the PID control parameters. This allows each gas table to have its own
optimized PID settings. Activating a particular table automatically activates the associated PID settings. Thus,
different process gases can be chosen and the optimum PID parameters can be selected.
Gas tables and associated PID parameters are accessed through the Controller Calibration Object, class code
102 (0x66) as presented in Chapter Four, page 44.
Alternatively, users may access and adjust gas tables through an MKS-supplied GUI communications kit
(fully described in Appendix F, page 136). This includes a GUI CD and security hard key and is available in
two versions: MKS P/N 133900-G1 with USB port hard key and P/N 133900-G2 with parallel port hard key.
Gas Calibration Table Tagging
All gas calibration tables created at the MKS factory are tagged in a manner which prevents editing or
deletion in the field. This ensures that vital calibration and PID tuning information is not lost during
subsequent field adjustment. In order to perform a field calibration or change PID parameters, a new table
must be created. This is very straight foreword. Commonly, the user desires to change the PID tuning
parameters to meet a particular process requirement but would like to maintain the original gas calibration. In
such a case, key attributes (gas table and PID parameters among others) in the base instance of Controller
Calibration Object can be read and then copied to a second instance, which then can be edited.
User Access
ALTA DeviceNet Mass Flow devices can operate in the following two different access modes:
User mode:
The user mode is available to any operator. It offers access to a limited set of
parameters. In user mode, it is possible to operate the device and view many functions
but make few changes. The ODVA specification dictates the level of access to all nonpropriety objects and attributes.
37
Chapter Three: Overview
Calibration mode:
Overview of ALTA DeviceNet Digital Operation
The calibration mode is for use by supervisory personnel at OEM and end user sites. It
provides read only access to most functions and write access to certain select functions.
A password is required to enter calibration mode.
The device returns the operating mode status to attribute 100(0x64) in the S-Device Supervisor Object.
Per ODVA requirements, limiting access rights is only possible on attributes in manufacturer specific objects.
In ALTA DeviceNet Mass Flow devices, the object of interest is the Controller Calibration Object, class code
102 (0x66). Specific access rights are listed in Table 7, page 39.
38
Overview of ALTA DeviceNet Digital Operation
Chapter Three: Overview
Table 7: User and Calibration Access Rights
Controller Calibration Object only, Class Code 102 (0x66)
Access Level
Read Only
Read and Write
User Mode
Calibration Mode
All Instances:
Calibration tables (0x1A – 0x2E)
kP (0x01)
kI (0x02)
kD (0x03)
Sensor Speed-up Tau (0x0A)
Counts, full scale (0x65)
“Factory Tag” Status (0x11)
No write access.
Factory Tagged Instances:
Same as User Mode for all instances.
Instances NOT Factory Tagged:
Calibration tables (0x1A – 0x2E)
kP (0x01)
kI (0x02)
kD (0x03)
Sensor Speed-up Tau (0x0A)
Counts, full scale (0x65)
“Factory Tag” Status (0x11)
Graphical User Interface
To simplify copying of gas tables and editing PID control variables, MKS offers a PC-based graphical user
interface (GUI) kit. This consists of a CD with software and a security hard key that plugs into either the USB
or parallel port of the PD, depending on the kit configuration. With a USB hard key, the kit part number is
133900-G1. With a parallel hard key, the part number is 133900-G2.
“Additional Scalar”
When creating new gas tables based on copying an existing calibration table, an Additional Scalar term is
required that relates the full scale flow and Gas Corrections Factor (GCF) for the new table to those of the
original calibration table that is being copied. The GCFs for common gases are available in Appendix B, page
97.
Additional Scalar = (Original Cal. FS Range/Target FS Range) X (GCF of Target Gas/GCF of Cal. Gas)
Additional Scalars are associated with the gas calibration tables, but are found in the “S-Calibration Object”
(class code 0x34) as attribute 7. Also related to creating new gas tables and found in the S-Calibration Object
are gas standard number, gas symbol, and full scale flow amount. Refer to Chapter Four, page 44, for more
detail.
When copying tables using the MKS graphical user interface, the Additional Scalar is automatically
calculated and loaded.
39
Chapter Three: Overview
Overview of ALTA DeviceNet Digital Operation
Tuning the MKS ALTA Mass Flow Controller
Tuning optimizes the MKS ALTA Mass Flow Controller’s control of flow rate. The Proportional (P), Integral
(I), and Derivative (D) terms adjust the response of the MKS ALTA Mass Flow Controller to changes in
either setpoint mass flow rate or system mass flow rate. The controller responds to changes in either the flow
rate of the system or the setpoint value.
Accessing PID Variables
The PID tuning parameters are associated with specific gas tables. This allows each gas to have it’s own
optimized PID values, facilitating gas switching while in service. In technical DeviceNet terms; gas tables and
their associated PID values share the same “S-Calibration Object” (class code 0x34) instances.
As with gas tables, PID settings made at the MKS factory are tagged and may not be edited. This is for the
user’s protection, preventing accidental resetting of values, which may leave a unit inoperable. However, it in
no way limits the options available to the user. The user, operating in “calibration mode,” simply populates a
new instance with gas table and PID values that may be obtained by copying the contents of an existing
instance. The resulting information may then be edited as needed to obtain the desired performance. The PID
values are located in attributes 1, 2, and 3 of the Controller Calibration Object (class code 0x66).
This approach provides significant flexibility of operation with multiple PID settings to be used with the same
gas (but different gas tables).
For most users, editing PID variables is most readily accomplished using the MKS-supplied graphical user
interface.
Error Signal
An error signal is the difference between the measured mass flow rate and the setpoint mass flow rate. The
error signal is the basis for the operation of the PID algorithm.
Proportional Term
When the Proportional (P) term, or gain, is multiplied by the error signal, a proportional valve drive signal
results. The higher the Proportional (P) control, the greater the change in valve drive signal for a given error
signal. Typically, a higher Proportional (P) control setting yields a faster response. However, too high a
Proportional (P) control setting will cause the mass flow rate to oscillate around the setpoint. Too low a
Proportional (P) control setting will result in a slow response from the mass flow controller. Figures 9 and 10
show the effects of the Proportional (P) term.
Figure 9: Effects of the Proportional Term (Low Proportional Term)
40
Overview of ALTA DeviceNet Digital Operation
Chapter Three: Overview
Figure 10: Effects of the Proportional Term (High Proportional Term)
Integral Term
The action of the Integral (I) term creates a valve drive signal that is proportional to the magnitude and sign of
the area under the error signal curve (error signal with respect to time). Therefore, as time passes, the integral
term acts to position the valve to reduce the error signal to zero. An increase in the integration time increases
the period of time over which the error signal is generated, and the system response gets slower. Figures 11
and 12 show the effect of the Integral term.
Figure 11: Effects of the Integral Term (Low Integral Term)
Figure 12: Effects of the Integral Term (High Integral Term)
Note
To shorten the integration time, increase the I term setting.
41
Chapter Three: Overview
The Gas Correction Factor (GCF)
Derivative Term
The action of the Derivative (D) term creates a valve drive signal that is proportional to the rate of change of
the error signal over time. In moderate amounts, it can be used to reduce overshoot within the system by
adding predictive capabilities to the control algorithm. At high rates of change of the error signal as it
approaches the setpoint quickly (negative slope of the absolute error over time), the derivative term reduces
the effects of the Proportional term. Excessively high Derivative term values can result in instability of the
controller. In general, ALTA series mass flow controllers control well with the Derivative term equal to zero.
Optimizing PID Control Settings
Optimizing the MKS ALTA Mass Flow Controller response in your system involves adjusting the
Proportional, Integral, and Derivative (PID) terms. Since every system is different, the optimum PID settings
may vary. Operating pressures, process gas density, and target setpoints, all contribute to determining the
ideal settings.
Guidelines for Flow Control Tuning
„
Tuning is best done with setpoint changes from zero to the target flow rate.
„
Units are usually delivered with P values between 2600 and 7000, I values between 140 and 350, and the
D term set at zero. The P term is generally around 20 times the value of the I term. After optimizing for
your process, the PID values generally will remain within this range.
„
Increasing the I term will reduce response time, especially at setpoints below 20% of full scale, but
promote flow overshoot during setpoint changes. Increasing the P term reduces the overshoot because the
controller is able to respond more quickly to the indicated overshoot. However, an excessive P term will
cause controller oscillation, a highly undesirable condition. Thus, caution must be exercised in setting the
P term aggressively.
„
Any adjustments to the P and I terms (D is generally kept at zero) should be done incrementally. For
improved response, I should be increased in increments of 20 and P in increments of 400 between
response tests. If excessive overshoot is observed, the P value may be increased somewhat but should not
be allowed to exceed 10,000. For improved control stability, the I term should be decreased in similar
increments (20 for the I term and 400 for the P term).
The Gas Correction Factor (GCF)
A Gas Correction Factor (GCF) is used to indicate the ratio of flow rates of different gases which will
produce the same output voltage from a mass flow device. The GCF is a function of specific heat, density,
and the molecular structure of the gases. Since flow devices are usually calibrated with nitrogen, nitrogen is
used as the baseline gas (GCF = 1). Appendix B, Gas Correction Factors, page 97, lists the gas correction
factors for the most commonly used gases. If the gas you are using is not listed in the appendix, you must
calculate its GCF using the following equation:
GCFx =
(0.3106) (S)
(d x ) (Cp x )
where:
GCFx = Gas Correction Factor for gas X
dx = Standard Density of gas X, g/l (at 0° C and 760 mmHg)
42
The Gas Correction Factor (GCF)
Chapter Three: Overview
Cpx = Specific Heat of gas X, cal/g ° C
0.3106 = (Standard Density of nitrogen) (Specific heat of nitrogen)
S = Molecular Structure correction factor where S equals:
Note
1.030
for Monatomic gases
1.000
for Diatomic gases
0.941
for Triatomic gases
0.880
for Polyatomic gases
When using the GCF, the accuracy of the flow reading may vary by ±5%, however, the
repeatability will remain ±0.2% of F.S.
43
Chapter Four: Operation
DeviceNet Connector
Chapter Four: Operation
DeviceNet Connector
The MKS ALTA Mass Flow devices have one 5-pin, male DeviceNet connector that provides the
communications interface with the DeviceNet network, electrical power from the network bus, and shielding
for the instrument signals. Refer to the figures beginning on page 26 for the location of the connector.
Table 8: DeviceNet Communications Connector Pinout
Pin Number
Signal Name
1
2
3
4
5
Drain
V+
VCAN_H
CAN_L
Figure 13: DeviceNet Connector Pin Diagram
Power Requirements
The MKS ALTA Mass Flow Controller requires an input voltage of 11.0 to 25.0 VDC with <500 mA max @
11 VDC (230 mA @ 24 VDC, nominal). The input voltage, provided by the DeviceNet network, is introduced
to the mass flow controller through the 5-pin micro-style connector located on top of the instrument.
DeviceNet Controls and Indicators
The top panel, shown in the figures beginning on page 26, of the MKS ALTA Mass Flow device contains
several DeviceNet controls and indicators.
The mass flow device has two standard bi-color (green/red) DeviceNet status LEDs, (Module Status LED and
Network Status LED) located on top of the instrument, as shown in the figures beginning on page 26. The
power-up sequence of these LEDs conforms to the requirements in the ODVA DeviceNet Specification,
Volume 1 [1].
Module Status LED
The Module Status LED indicates the status of the individual device, as defined in Table 9, page 45. If no
problems are detected, the Module Status LED illuminates a solid green. If a fault condition is detected, the
Module Status LED illuminates a solid red. The type of error condition is indicated by whether the light is
solid or flashing. Two types of fault condition are reported:
44
DeviceNet Controls and Indicators
Chapter Four: Operation
„
A flashing red LED indicates a major recoverable fault condition
„
A solid red indicates a major unrecoverable fault condition
Table 9: Module Status LED Indicators
LED Status
Solid Green
Flashing Green
Flashing Red
Solid Red
Dark
Flashing Red/Green
Signal Name
System Functioning Normally
Wink ON
Recoverable Fault
Unrecoverable Fault
Power is OFF
Self-Testing
Recoverable Fault Condition
A checksum error with the EEPROM is a major recoverable fault. This fault condition sets its exception status
bit, and the Module Status LED flashes red. The flashing continues until:
„
The exception status bit is reset
„
A new parameter is saved to EEPROM
Or:
„
Power is turned off.
This complies with Volume I of the DeviceNet Specification, Release 2.0.
This fault condition erases all user-changed parameters. The factory defined default values are loaded in the
EEPROM so that the unit can operate. See Exception Alarm Status in Table 11, page 50, for the information
on the exception alarm status bit.
Unrecoverable Fault Condition
A hardware problem with the EEPROM, or a memory problem with the RAM are major unrecoverable faults.
This fault condition sets its exception status bit, and the Module Status LED illuminates solid red, complying
with Volume I of the DeviceNet Specification.
Note
A major unrecoverable fault prevents operation because the device cannot communicate on the
network. Contact MKS Instruments, Inc. for assistance.
45
Chapter Four: Operation
DeviceNet Controls and Indicators
Network Status LED
The Network Status LED indicates the status of the communications link. If no problems are detected, the
Network Status LED illuminates a solid green. A red, dark, or flashing green Network Status LED indicates a
fault condition.
Table 10: Network Status LED Indicators
LED Status
Solid Green
Flashing Green
Solid Red
Dark
Meaning
Communications link is OK.
The device is online and connections are established.
The device is online but no connections are established.
The device has passed the Dup_MAC_ID test and is online, but has no established
connections to other nodes.
Critical link failure.
The device has detected an error that prevents network communication (Duplicate
MAC_ID or bus-off.).
Not powered / Not online.
The device has not completed the Dup_MAC_ID test, or the device is not powered;
check the module status LED.
Baud Rate and MAC ID Switches
The baud rate and MAC ID (node address) for your device can be set through software commands using
standard DeviceNet protocol over the network, or manually using the rotary switches located on the top panel
of the device. The baud rate and MAC ID switches allow you to easily configure units without an operational
network, or to network multiple units quickly.
The baud rate and MAC ID rotary switches support an assigned network position, labeled on the device as
“PGM” to indicate software operation.
If the rotary switch is in the network (PGM) position at power-up, the baud rate or address is read from the
non-volatile memory. Any changes to the values must be made over the network; any changes in the rotary
switch positions after power-up are ignored.
If the rotary switch is not in the network (PGM) position at power-up, the baud rate or address is read directly
from the switches.
Note
The DeviceNet General Error Codes are listed in the ODVA DeviceNet Specification,
Volume 1 [1].
Baud Rate Switch
The 4-position rotary switch, shown in Figure 14, page 47, is used to select the DeviceNet baud rate. The
choices are: PGM (the baud rate is read from the non-volatile memory), 125, 250, and 500 Kb.
The switch positions are numbered in a clockwise direction, to correspond to the increasing address values.
46
Power Up
Chapter Four: Operation
Baud Rate
(Kb)
250
125
500
PGM
Figure 14: Baud Rate Rotary Switch
MAC ID (Node Address) Switches
Two 10-position rotary switches, shown in Figure 15, are used to set the MAC ID (node address).
The MAC ID is an integer identification value assigned to each node on the DeviceNet network.
Node Address
(00-63)
Sets most
significant digit
2
4
4
Sets least
significant digit
0
0
PGM
2
6
8
6
Figure 15: MAC ID (Node Address) Rotary Switches
The valid MAC ID switch positions are 0 to 63. Use the switch on the left to set the most significant digit
(MSD), that is, the factor of ten (10, 20, 30...60). Use the switch on the right to set the least significant digit
(LSD), that is, the increments of one (1, 2, 3...9). The switch positions are numbered in a clockwise direction,
to correspond to the increasing address values.
Note
Setting the switches to a value that is greater than 63 is the same as setting the rotary switch to
the “PGM” position (the baud rate is read from the non-volatile memory).
Note
The MAC ID switch on the top of the device must be set to the network (PGM) position at
power up in order for changes to be made over the network. Any changes in the rotary switch
positions after power up are ignored.
Power Up
At power-up, flow device performs checks on its communications link and internal diagnostic checks of the
EEPROM and RAM. The results of these checks are indicated by the color (green or red) and condition (solid
or flashing) of the status LEDs on top of the instrument. The following LED sequence occurs when the ALTA
is powered up (times are approximate):
1. The Module Status LED flashes first GREEN for ¼ second, then RED for ¼ second, then turns OFF.
2. The Network Status LED flashes first GREEN for ¼ second, then RED for ¼ second, then turns OFF.
3. The Module Status LED flashes from GREEN to RED for five seconds while the device is initializing.
The Network Status LED remains OFF.
47
Chapter Four: Operation
How to Zero the Flow Device
4. The Module Status LED illuminates solid GREEN when initialization is complete.
5. When the device establishes communication with other devices on the network, the Network Status LED
illuminates GREEN.
Note
If the power up LED sequence does not function properly, contact MKS for assistance.
See the figures beginning on page 26 for the location of the Network Status LED and the
Module Status LED. See DeviceNet Controls and Indicators, page 44, for more information on
the operation of the Network Status LED and the Module Status LED.
Warm Up Time
After installation and power up, allow the MKS ALTA Mass Flow Device to warm up for a minimum of 30
minutes.
How to Zero the Flow Device
Although MKS flow devices are zeroed at the factory prior to shipment, it is normal to check the zero and rezero them, if needed, when they are first installed on the tool.
A mass flow device will provide a zero output signal under “no flow” gas conditions. Zero offset from
improper zeroing procedures can contribute to flow measurement inaccuracy. This is more apparent at the
lower end of the device range.
In order to complete a true zeroing of the device, ensure the following conditions are satisfied prior to
beginning the procedure.
„
Device is installed in the orientation intended for final use (i.e. horizontal base down, vertical flow up,
etc.).
„
Device is powered at operating temperature, preferably for 30 or more minutes.
„
Devices subject to ambient temperatures other than room temperature (23º C) should be zeroed under
those conditions.
„
Pressure drop and flow across the device is reduced to zero. Depending on the gas panel configuration,
this may be done by one of the following procedures.
For Systems With Upstream and Downstream Positive Shut-Off Valves
1. Close both the upstream and downstream shut-off valves.
2. Set the device to 100% setpoint (controllers only).
3. Allow pressure across the device to equilibrate as flow output approaches zero and stabilizes.
4. To ensure that actual flow remains at zero, keep the shut-off valves closed. To the controllers, provide
zero setpoint.
5. Wait one minute and activate the zero function. The zero function may be activated in two different ways:
„
Using the set zero command, service code 75 (0x4B) in the S-Analog Sensor Object (class code
0x31).
„
Communicating digitally through the software GUI by clicking the Remote Zero button on the main
screen.
48
DeviceNet Protocol
Chapter Four: Operation
For Systems With Downstream Valve Only
1. Zero the device at typical operating inlet pressure.
2. Close the downstream shut-off valve.
3. Set the device to 100% setpoint (controllers only).
4. Allow pressure to equilibrate across the device as flow output approaches zero and stabilizes.
5. Provide zero setpoint to the device (controllers only).
6. Wait one minute and activate the zero function. The zero function may be activated in two different ways:
„
Using the set zero command, service code 75 (0x4B) in the S-Analog Sensor Object (class code
0x31).
„
Communicating digitally through the software GUI by clicking the Remote Zero button on the main
screen.
For Systems With Upstream Valve Only
1. The device may be re-zeroed with the downstream line under vacuum or atmosphere.
2. Close the upstream valve.
3. Set the device to 100% setpoint (controllers only).
4. The device may be evacuated to vacuum or exposed to atmosphere on the downstream side.
5. For either case, the downstream pressure must be kept constant to ensure there are no fluctuations in
pressure drop across the device, which could induce false flow readings.
6. Allow pressure to equilibrate across the Mass Flow device as flow output approaches zero and stabilizes.
7. Provide zero setpoint to the device (controllers only).
8. Wait one minute and activate the zero function. The zero function may be activated in two different ways:
„
Using the set zero command, service code 75 (0x4B) in the S-Analog Sensor Object (class code
0x31).
„
Communicating digitally through the software GUI by clicking the Remote Zero button on the main
screen.
DeviceNet Protocol
Use this manual with the ODVA DeviceNET Specification Volume I and Volume II [1, 2], and the SEMI
Standards Common and Specific Device Models [3, 4]. Refer to those documents for a complete functional
description of the ALTA Mass Flow device.
This chapter defines the application specific objects used by MKS DeviceNet device. It also defines how
system requirements are mapped to specific objects and attributes in the DeviceNet protocol. Tables defining
the attributes and supported services for each object model are provided. The objects, attributes, and services
described in this manual comply with the definition of an interoperable device on a semiconductor equipment
sensor/actuator network proposed by SEMI [3, 4].
49
Chapter Four: Operation
DeviceNet Protocol
Object Models
The object models used by the ALTA Mass Flow device are listed in Table 11. The attributes and services
associated with each object Model are defined in this chapter.
Descriptions are supplied throughout this document for attributes and services that are either MKS specific, or
require additional specifications beyond the DeviceNet and SEMI specifications [1,2,3,4].
Table 11: Object Models Present in the ALTA
Class Code
(hex)
Maximum
Instances
Identity
01
1
General Information per ODVA:
Vendor
Device Type
Product Code
Revision
Status
Serial Number
Product Name
52
Message Router
02
1
Routes incoming messages to the appropriate
object
55
DeviceNet
03
1
Defines the physical network connections:
MAC ID
Baud Rate
Allocation Information
56
Assembly
04
Process variable
Groups attributes of multiple objects into a
single assembly
58
Connection
05
Process variable
Defines the messaging connections
63
S-Device Supervisor
30
1
General information per SEMI
Device Type
Standard Revision
Manufacturer
Manufacturer Model Number
Firmware/Hardware Revisions
Serial Number
Device Configuration
Device Status
Exception Status
Exception Detail Alarm
Exception Detail Warning
Alarm/Warning Enable
Run Hours
Visual Indicator
Operating Mode
Ambient Temperature
Visual Indicator (“wink function”)
68
Object Model
Functions / Attributes:
(Continued on next page)
50
See
Page
DeviceNet Protocol
Chapter Four: Operation
Table 11: Object Models Present in the ALTA (continued)
Class Code
(hex)
Maximum
Instances
S-Analog Sensor
31
1
General flow information:
Flow Data Type
Flow Units
Reading Valid
Indicated Flow Value
Trip Point Status
Trip Point Alarm Enable
Trip Point Warning Enable
Flow Full Scale
Zero Data Type
Alarm/Warning Trip Points
Averaging Time (Filter Settling Time)
Select Active Gas
Flow Hours
Flow Totalizer
74
S-Analog Actuator
32
1
Valve information:
Valve Data Units
Valve Override Selector
Valve Drive Level Value
Valve Exception Status
Valve Safe State
Valve Alarm/Warning Enable
Valve Alarm/Warning Error Band
79
S-Single Stage
Controller
33
1
Setpoint information:
Setpoint Data Type
Setpoint Units
Setpoint Value
Setpoint Status
Setpoint Alarm/Warning Enable
Setpoint Alarm/Warning Error Band
Ramp Rate
Setpoint Settling Time
82
S-Gas Calibration
34
20
Gas calibration information:
Standard Number
Valid Sensor Instance
Full Scale
Calibration Date
Calibration Gas Number
Number of Points
Calibration Pressure
Calibration Temperature
Gas Symbol
84
Object Model
Functions / Attributes:
(Continued on next page)
51
See
Page
Chapter Four: Operation
Identity Object
Table 11: Object Models Present in the ALTA (continued)
Class Code
(hex)
Maximum
Instances
Bulk Word
64
1
MFC Hardware Calibration Information
84
Bulk Float
65
1
MFC Hardware Calibration Information
84
Controller Calibration
66
1
MFC Tuning Information
87
Object Model
See
Page
Functions / Attributes:
Identity Object
The identity object (Class Code 01hex) includes identity and general information about the MKS Type ALTA
Mass Flow device with DeviceNet, including the serial number, device type, model number, firmware
revisions, hardware revisions, and system status. It is required on all mass flow controller and mass flow
meter devices.
The Identity Object includes the standard DeviceNet Identity Object instance attributes defined in the ODVA
DeviceNet Specification, Volume II [2]. Additional attributes of the DeviceNet Object, specific to the ALTA
instrument, comply with the SEMI Standards [3,4].
The identity object supports the attributes listed in Table 12.
Table 12: Identity Object Attributes
Attribute
ID# (hex)
Description
Data Type
Access
Non-Volatile
Memory
Data
Variable
Initial Setting
01
Vendor ID
UINT
Get
Y
None
36
02
Device Type
UINT
Get
Y
None
26
03
Product Code
UINT
Get
Y
None
4
04
Revision
Major Revision
Minor Revision
STRUCT OF:
USINT
USINT
Get
Y
None
05
Status
UINT
Get
Y
None
0
06
Serial Number
UDINT
Get
Y
None
device specific
07
Product Name
Length
Name
STRUCT OF:
USINT
STRING [16]
Get
Y
None
08
State
USINT
Get
Y
None
100
Controller Rev
Major Revision
Minor Revision
STRUCT OF:
USINT
USINT
Get
Y
None
01
01
16
ALTA DeviceNet
0
01
01
Vendor ID
Attribute ID #1 reports the registered vendor of the device. MKS Instruments, Inc. is identified as vendor #36.
Device Type
Attribute ID #2 reports the type of device on the network, in accordance with the ODVA DeviceNet
Specification, Volume II.
52
Identity Object
Chapter Four: Operation
Product Code
Attribute ID #3 reports the product code as the integer 4 per the ODVA DeviceNet Specification, Volume II.
Revision
Attribute ID #4 reports the software revision per the ODVA DeviceNet Specification, Volume II. The major
revision number will increment as functional enhancements are implemented. The minor revision number will
increment if minor software changes and bug fixes are incorporated.
Status
Attribute ID #5 reports the device status per the ODVA DeviceNet Specification, Volume II. The status of the
device is determined from the bit positions that are set in the returned unsigned integer value. A short table
describing the status bytes is given below:
Table 13: Status Bytes
Status Information
Bit Position
Field Description
00
owned
01
02
03
04
05
06
07
08
reserved
configured
reserved
vendor specific
vendor specific
vendor specific
vendor specific
minor configuration fault
09
minor device fault
10
major configuration fault
11
major device fault
12
13
14
15
reserved
reserved
reserved
reserved
Field Interpretation
0 = not owned
1 = owned (allocated)
0
0
0
0
0
0
0
0 = no fault
1 = minor configuration fault
0 = no fault
1 = minor device fault
0 = no fault
1 = major configuration fault
0 = no fault
1 = major device fault
0
0
0
0
Serial Number
Attribute ID #6 reports the device serial number per the ODVA DeviceNet Specification, Volume II. The
serial number in encoded in the product during the manufacturing process and is guaranteed to be unique
across all product lines produced by MKS Instruments, Inc.
53
Chapter Four: Operation
Identity Object
Product Name
Attribute ID #7 reports the product name as 180A DeviceNet, 185A DeviceNet, 1480A DeviceNet, or 1485A
DeviceNet, per the ODVA DeviceNet Specification, Volume II.
State
Attribute ID #8 reports the device state per the ODVA DeviceNet Specification, Volume II. The device state
reflects whether any errors have occurred during operation and the severity of the errors. The following
device states are supported. The only exit from a Major Unrecoverable Fault condition is a power cycling of
the device. This can be accomplished by physically disconnecting and then reconnecting the device to the
DeviceNet network.
Table 14: State Bytes
State Information
State
Interpretation
0
1
2
3
4
5
Non-Existent
Self Test
Standby
Operating
Major Recoverable Fault
Major Unrecoverable Fault
Cause
Normal Operating Mode
See S-Device Supervisor alarm detail
See S-Device Supervisor alarm detail
Controller Rev
Attribute ID #100 reports the controller revision. The major revision number will increment as functional
enhancements are implemented to the control algorithm and controller firmware. The minor revision number
will increment if minor software changes and bug fixes to the controller firmware incorporated.
The supported DeviceNet services are listed in Table 15.
Table 15: Identity Object Supported Services
Service ID#
(hex)
Service Name
Data Type
Service
Type
Description
0E
Get_Attribute_Single
UINT
Request
Reads the object attribute.
05
Reset
USINT
Request
Place the object into its INITIALIZING state.
Emulates a power cycle.
54
Message Router Object
Chapter Four: Operation
Message Router Object
The Message Router Object (Class Code 02hex) interprets incoming messages and routes it to the proper
device object. The MKS Type ALTA Mass Flow device with DeviceNet supports few message router
attributes.
For a description of the Message Router Object, refer to Volume II of the OVDA DeviceNet Specification.
The message router object supports the attributes listed in Table 16.
Table 16: Message Router Object Attributes
Attribute
ID# (hex)
02
Description
Number of
Connections
Data Type
UINT
Access
Non-Volatile
Memory
Data
Variable
Initial Setting
Get
Y
None
2
The supported DeviceNet services are listed in Table 17.
Table 17: Message Router Object Supported Services
Service ID#
(hex)
0E
Service Name
Get_Attribute_Single
Data Type
Service
Type
UINT
Request
55
Description
Reads the object attribute.
Chapter Four: Operation
DeviceNet Object
DeviceNet Object
The DeviceNet Object (Class Code 03hex) contains attributes defining the configuration and status of physical
attachments to the DeviceNet network. The DeviceNet Object supports the attributes listed in Table 18.
Table 18: DeviceNet Object Attributes
Attribute
ID# (hex)
Description
Data Type
Access
Non-Volatile
Memory
Data Variable
Initial
Setting
01
Node Address
USINT
Get/Set
Y
0 to 63
63
02
Data Rate
USINT
Get/Set
Y
0 = 125k
0
1 = 250k
2 = 500k
03
Bus-Off
Interrupt
BOOL
00 = Hold bus-off state when it
occurs
Get
0
01 = Restore bus, if possible
04
Bus-Off Counter
USINT
05
Allocation
Information
Allocation
Choice Byte
Master’s Node
Address
STRUCT of:
Get/Set
0
06
MAC ID Switch
Change
BOOL
Get
N
0
07
Data Rate Switch
Change
BOOL
Get
N
0
08
Current MAC ID
Switch
USINT
Get
N
09
Current Data
Baud Rate
Switch
USINT
Get
N
Get
BYTE
0 = Explicit
1 = Polled
0 to 63, 255
255 = Not Allocated
USINT
1
255
Node Address
Attribute ID #1 defines the Node Address (network address) of the device per the DeviceNet Specification,
Volume II. Any address from 0 to 63 can be used. The ALTA is shipped with the address set to 63.
The Node Address, also known as the MAC ID, is set using two BCD rotary switches located on the top of the
device, as described previously. Valid MAC ID addresses are 0 to 63 (0x00 to 0x3F). Setting the MAC ID
address to a value greater than 63 will disable the rotary switches and allow the internal software setting of the
MAC ID. The software setting defaults to the last hardware setting stored in non-volatile memory. The rotary
switches are only read during power up.
Data Rate
Attribute ID #2 defines the data rate of the device per the DeviceNet Specification, Volume II. The data rate
can be set to 125k, 250k, or 500k, where:
56
DeviceNet Object
Chapter Four: Operation
Table 19: Data Rate Byte
Data Rate Information
State
0
1
2
3
Interpretation
125 k (initial)
250 k
500 k
Software settable
The ALTA is shipped with the data rate set to 125 K. The value returned will be the switch value if the switch
value is less than 4 or it will return the last data rate.
Bus-Off Interrupt
Attribute ID#3 reports whether an interrupt resets the bus, or the bus is held off.
Bus-Off Counter
Attribute ID#4 reports the number of times the ALTA unit has gone bus-off, per the DeviceNet Specification,
Volume II. Whenever the bus-off counter is reset, the value returns to 0 regardless of the data value provided
in the communication.
Allocation Information
Attribute ID #5 indicates whether a Master/Slave connection set has been allocated, which device has
performed the allocation, and which connections are allocated.
MAC ID Switch Change
Attribute ID#6 reports whether the MAC ID rotary switches have been changed since the unit was last
powered up.
Data Rate Switch Change
Attribute ID#7 reports whether the data rate rotary switch has been changed since the unit was last powered
up.
Current MAC ID Switch
Attribute ID#8 reports the current value of the MAC ID rotary switch settings.
Current Data Rate Switch
Attribute ID#9 reports the current value of the data rate rotary switch setting.
57
Chapter Four: Operation
Assembly Object
DeviceNet Object Supported Services
The four services listed in Table 20 support the DeviceNet Object.
Table 20: DeviceNet Object Supported Services
Service ID#
(hex)
Service Name
Service
Type
Data Type
Description
0E
Get_Attribute_Single
USINT
Request
Reads the object attribute.
10
Set_Attribute_Single
USINT
Request
Modifies the object attribute.
4B
Allocate_Master_Slave
BYTE, USINT
Request
Allocates the Predefined Master/Slave
Connection Set.
4C
Release_Master_Slave
BYTE
Request
Releases the Predefined Master/Slave
Connection Set.
Assembly Object
The Assembly Object (Class Code 04hex) binds the attributes of multiple other objects, allowing a single
connection to carry data to or from them.
Table 21: Assembly Object Attributes
Attribute
ID# (hex)
03
Description
Data Format
Data Type
Access
Non-Volatile
Memory
Data
Variable
Initial Setting
ARRAY of BYTE
Get/Set
N
None
None
Data Format
Attribute ID #03 reports the assembly data for the specified instance.
Supported Assembly Instances
Input and output assembly instances are defined relative to the network, as specified by ODVA.
Table 22: Supported Static Input Assembly Instances
Instance
(hex)
(int)
0x01
0x02
0x03
0x06
0x0E
0x12
(1)
(2)
(3)
(6)
(14)
(18)
Data
Flow Reading (Integer)
Status and Flow Reading (Integer)
Status, Flow Reading (Integer), and Valve (Integer)
Status, Flow Reading, Flow Setpoint, Override, and Valve (Integer)
Status and Flow Reading (Real)
Status, Flow Reading, Flow Setpoint, Override, and Valve (Real)
58
Supported Assembly Instances
Chapter Four: Operation
Table 23: Assembly Object Static Input Instances
Assembly
Instance ID#
(hex)
Description
01
Poll Response #1
Flow β
INT
byte 0
byte 1
INT
Flow β (low byte)
Flow β (high byte)
02
Poll Response #2
Status β
Flow β
USINT
INT
byte 0
byte 1
INT
Flow β (low byte)
Flow β (high byte)
Status β
Flow β
Valve β
USINT
INT
byte 0
byte 1
INT
byte 0
byte 1
INT
Flow β (low byte)
Flow β (high byte)
INT
Valve β (low byte)
Valve β (high byte)
03
06
Poll Response #3
Poll Response #4
Data
Status β
Flow β
Setpoint β
Override β
Valve β
0E
12
Poll Response #5
Poll Response #6
USINT
INT
byte 0
byte 1
INT
byte 0
byte 1
USINT
INT
byte 0
byte 1
Status β
Flow β
USINT
REAL
byte 0
byte 1
byte 2
byte 3
Status β
Flow β
USINT
REAL
byte 0
byte 1
byte 2
byte 3
REAL
byte 0
byte 1
byte 2
byte 3
USINT
REAL
byte 0
byte 1
byte 2
byte 3
Setpoint β
Override β
Valve β
INT
Flow β (low byte)
Flow β (high byte)
INT
Setpoint β (low byte)
Setpoint β (high byte)
INT
Valve β (low byte)
Valve β (high byte)
REAL
Flow β (low byte)
Flow β
Flow β
Flow β (high byte)
REAL
Flow β (low byte)
Flow β
Flow β
Flow β (high byte)
REAL
Setpoint β (low byte)
Setpoint β
Setpoint β
Setpoint β (high byte)
REAL
Valve β (low byte)
Valve β
Valve β
Valve β (high byte)
59
Class
Code ID#
(hex)
Instance
ID#
(hex)
Attribute
ID#
(hex)
31
01
06
30
31
01
01
0C
06
30
31
01
01
0C
06
32
01
06
30
31
01
01
0C
06
33
01
06
32
32
01
01
05
06
30
31
01
01
0C
06
30
31
01
01
0C
06
33
01
06
32
32
01
01
05
06
Chapter Four: Operation
Supported Assembly Instances
β refers to data that is received from the mass flow device. δ refers to data that is sent to the mass flow device.
Assembly instance 0x01, 0x02, 0x06, 0x0E, and 0x12 are used to generate the POLL response packet and
consists of the data described in the table above. Assembly instance 0x07, 0x08, 0x13, and 0x14 are used to
consume the POLL request packet and consists of the data described in the table below.
The poll response is always returned when an I/O poll request is issued.
Poll Response #1
Assembly instance ID #01 reports:
„
Indicated Flow Value from the S-Analog Sensor Object in integer representation (refer to Indicated Flow
Value, page 76)
Poll Response #2
Assembly instance ID #02 reports:
„
Exception Status from the S-Device Supervisor Object (refer to Exception Status, page 71)
„
Indicated Flow Value from the S-Analog Sensor Object in integer representation (refer to Indicated Flow
Value, page 76)
Poll Response #3
Assembly instance ID #03 reports:
„
Exception Status from the S-Device Supervisor Object (refer to Exception Status, page 71)
„
Indicated Flow Value from the S-Analog Sensor Object in integer representation (refer to Indicated Flow
Value, page 76)
„
Valve Drive Level Value from the S-Analog Actuator Object in integer representation (refer to Valve
Drive Level Value, page 80)
Poll Response #4
Assembly instance ID #06 reports:
„
Exception Status from the S-Device Supervisor Object (refer to Exception Status, page 71)
„
Indicated Flow Value from the S-Analog Sensor Object in integer representation (refer to Indicated Flow
Value, page 76)
„
Set Point Value from the S-Single Stage Controller Object in integer representation (refer to
sccm
0x1400 =
„
0x1401 = slm
Setpoint, page 82)
„
Valve Override Selector from the S-Analog Actuator Object (refer to Valve Override Selector, page 80)
„
Valve Drive Level Value from the S-Analog Actuator Object in integer representation (refer to Valve
Drive Level Value, page 80)
Poll Response #5
Assembly instance ID #0E reports:
60
Supported Assembly Instances
Chapter Four: Operation
„
Exception Status from the S-Device Supervisor Object (refer to Exception Status, page 71)
„
Indicated Flow Value from the S-Analog Sensor Object in floating point representation (refer to Indicated
Flow Value, page 76)
Poll Response #6
Assembly instance ID #12 reports:
„
Exception Status from the S-Device Supervisor Object (refer to Exception Status, page 71)
„
Indicated Flow Value from the S-Analog Sensor Object in floating point representation (refer to Indicated
Flow Value, page 76)
„
Set Point Value from the S-Single Stage Controller Object in floating point representation (refer to
0x1400 = sccm
0x1401 = slm
„ Setpoint, page 82)
„
Valve Override Selector from the S-Analog Actuator Object (refer to Valve Override Selector, page 80)
„
Valve Drive Level Value from the S-Analog Actuator Object in floating point representation (refer to
Valve Drive Level Value, page 80)
Table 24: Supported Static Output Assembly Instances
Instance
(hex)
(int)
0x07
0x08
0x13
0x14
(7)
(8)
(19)
(20)
Data
Flow Setpoint (Integer)
Override and Flow Setpoint (Integer)
Flow Setpoint (Real)
Override and Flow Setpoint (Real)
61
Chapter Four: Operation
Supported Assembly Instances
Table 25: Assembly Object Static Output Instances
Assembly
Instance ID#
(hex)
Description
07
Poll Request #1
08
Poll Request #2
13
Poll Request #3
14
Poll Request #4
Data
Setpoint δ
INT
byte 0
byte 1
INT
Setpoint δ (low byte)
Setpoint δ (high byte)
Class
Code ID#
(hex)
Instance
ID#
(hex)
Attribute
ID#
(hex)
33
01
06
Override δ
USINT
32
01
05
Setpoint δ
INT
byte 0
byte 1
INT
Setpoint δ (low byte)
Setpoint δ (high byte)
33
01
06
Setpoint δ
REAL
byte 0
byte 1
byte 2
byte 3
REAL
Setpoint δ (low byte)
Setpoint δ
Setpoint δ
Setpoint δ (high byte)
33
01
06
Override δ
USINT
32
01
05
Setpoint δ
REAL
byte 0
byte 1
byte 2
byte 3
33
01
06
REAL
Setpoint δ (low byte)
Setpoint δ
Setpoint δ
Setpoint δ (high byte)
Poll Request #1
Assembly instance ID #07 reports:
„
„
Set Point Value from the S-Single Stage Controller Object in integer representation (refer to
sccm
0x1400 =
0x1401 = slm
Setpoint, page 82)
Poll Request #2
Assembly instance ID #08 reports:
„
Valve Override Selector from the S-Analog Actuator Object (refer to Valve Override Selector, page 80)
„
Set Point Value from the S-Single Stage Controller Object in integer representation (refer to
sccm
0x1400 =
0x1401 = slm
„ Setpoint, page 82)
Poll Request #3
Assembly instance ID #13 reports:
„
Set Point Value from the S-Single Stage Controller Object in floating point representation (refer to
0x1400 = sccm
0x1401 = slm
„ Setpoint, page 82)
62
Connection Object
Chapter Four: Operation
Poll Request #4
Assembly instance ID #08 reports:
„
Valve Override Selector from the S-Analog Actuator Object (refer to Valve Override Selector, page 80)
„
Set Point Value from the S-Single Stage Controller Object in integer representation (refer to
sccm
0x1400 =
0x1401 = slm
„ Setpoint, page 82)
Assembly Object Supported Service
The Assembly Object is supported by the DeviceNet common service listed in Table 26.
Table 26: Assembly Object Supported Services
Service ID#
(hex)
Service Name
Data Type
Service
Type
Description
0E
Get_Attribute_Single
USINT
Request
Reads the object attribute.
10
Set_Attribute_Single
USINT
Request
Sets the object attribute.
Connection Object
The Connection Object (Class Code 05hex) contains the attributes that define the messaging connections in the
device. Each connection is defined by the type of messaging (Explicit or I/O) it supports. As a Group 2 Slave
Only device, the ALTA supports one explicit message connection and a POLL message connection.
Explicit Messaging
Explicit messaging connections use a direct request / response format, per the DeviceNet Specification.
Poll Request / Response Messaging
The Poll Request is an I/O message transmitted by the Master. It is directed towards a single, specific Slave
(point-to-point). A Master must transmit a separate Poll Request Message for each slave to be polled. The
Poll Response is an I/O message that a Slave transmits back to the Master in response to the Poll Request.
Within a Slave, a single Connection Object receives and transmits the Poll Request and Poll Response
messages.
Table 27: Connection Object Instances
Instance ID# (hex)
01
02
Description
Explicit Messaging
I/O Poll Messaging
Table 28 describes the Connection Object explicit messaging attributes.
63
Chapter Four: Operation
Connection Object
Table 28: Connection Object (Explicit Messaging) Attributes
Attribute ID#
(dec)
Description
Data Type
Explicit
Connection
Default Setting
01
State of Object
USINT
Get
02
Instance Type
USINT
Get
0 = Explicit Message
03
Transport Class Trigger
USINT
Get
0x83
04
Produced Connection ID
UINT
Get/Set*
05
Consumed Connection ID
UINT
Get/Set*
06
Initial Communication
Characteristics
USINT
Get/Set*
0x21=Explicit
07
Produced Connection Size
UINT
Get/Set*
128
08
Consumed Connection Size
UINT
Get/Set*
17
09
Expected Packet Rate
UINT
Get/Set**
2500 msec
12
Watchdog Timeout Action
USINT
Get/Set**
0
13
Produced Connection Path Length
UINT
Get
0
14
Produced Connection Path
Array of: USINT
15
Consumed Connection Path Length
UINT
16
Consumed Connection Path
Array of: USINT
* Set only when the connection is in configuring mode.
** Set not allowed when the connection is waiting for a connection ID.
Table 29 describes the Connection Object I/O polled messaging attributes.
64
Get/Set*
Get
Get/Set*
Empty
0
Empty
Connection Object
Chapter Four: Operation
Table 29: Connection Object (I/O Polled Messaging) Attributes
Attribute ID#
(dec)
Description
Data Type
I/O
Connection
Default Setting
01
State of Object
USINT
Get
02
Instance Type
USINT
Get
1 = I/O Messsaging
03
Transport Class Trigger
USINT
Get
0x83
04
Produced Connection ID
UINT
Get
05
Consumed Connection ID
UINT
Get
06
Initial Communication
Characteristics
USINT
Get
07
Produced Connection Size
UINT
Get
08
Consumed Connection Size
UINT
Get
09
Expected Packet Rate
UINT
Get/Set
2500 msec
12
Watchdog Timeout Action
USINT
Get/Set
0
13
Produced Connection Path Length
UINT
Get
6
14
Produced Connection Path
STRUCT of:
USINT
USINT
USINT
USINT
USINT
USINT
15
Consumed Connection Path Length
UINT
16
Consumed Connection Path
STRUCT of:
USINT
USINT
USINT
USINT
USINT
USINT
0x01=I/O
Get/Set*
0x20
0x04
0x24
0x02 (default)
0x30
0x03
Get
6
Get/Set*
0x20
0x04
0x24
0x07 (default)
0x30
0x03
* Set only when the connection is in configuring mode.
** Set not allowed when the connection is waiting for a connection ID.
State of Object
Attribute #1 indicates the device state as a value between 1 and 5. Table 30 lists the meanings of the values.
Table 30: State Value Descriptions
Value
0
1
2
3
4
State Name
Nonexistent
Configuring
Waiting For Connection
Established
Timed Out
Description
No connection exists.
The connection exists and is waiting for configuration.
Consumed or produced connection ID not set.
The connection has been configured; configuration is applied.
May result from an Inactivity/Watchdog timeout.
65
Chapter Four: Operation
Connection Object
Produced Connection ID
Attribute ID #04 reports the produced connection ID for the specified instance according to the following
table.
Connection 1 Produced Connection ID: 10xxxxxx011
Connection 2 Produced Connection ID: 01111xxxxxx
where xxxxxx represents the Network Address of the device.
Consumed Connection ID
Attribute ID #05 reports the consumed connection ID for the specified instance according to the following
table.
Connection 1 Consumed Connection ID: 10xxxxxx100
Connection 2 Consumed Connection ID: 10xxxxxx101
where xxxxxx represents the Network Address of the device.
Produced Connection Size
Attribute ID #07 reports the produced connection size for the specified instance according to the following
table, where the Assembly ID# refers to the Assembly Instance from the Assembly Object chosen for the
POLL Request of the I/O poll messaging.
Table 31: Produced Connection Size
Assembly ID# (hex)
Size
01
02
06
0E
12
2
3
8
5
14
Consumed Connection Size
Attribute ID #08 reports the consumed connection size for the specified instance according to the following
table, where the Assembly ID# refers to the Assembly Instance from the Assembly Object chosen for the
POLL Response of the I/O poll messaging.
Table 32: Consumed Connection Size
Assembly ID# (hex)
Size
07
08
13
14
2
3
4
5
66
Connection Object
Chapter Four: Operation
Watchdog Timeout Action
Attribute ID #12 reports the action taken by the device on a condition when the watchdog timer has expired
during either explicit or I/O polled messaging.
Table 33: Watchdog Timeout Action
Watchdog Value
Behavior
0
1
2
Timeout
Auto Delete
Auto Reset
Connection Object Supported Services
The supported Connection Object services are listed in Table 34.
Table 34: Connection Object Supported Services
Service ID#
(hex)
Service Name
Data Type
Service Type
Description
05
Reset
USINT
Request
Place the object into its
INITIALIZING state.
0E
Get_Attribute_Single
USINT
Request
Reads the object attribute.
10
Set_Attribute_Single
USINT
Attribute Data Type
Request
Modify the object attribute.
67
Chapter Four: Operation
S-Device Supervisor Object
S-Device Supervisor Object
The S-Device Supervisor Object (Class Code 30hex) manages the functions and behaviors of all the S-type
objects. Table 35 lists the attributes contained in this object.
The S-Device Supervisor Object includes most of the same information, in a different format, that is available
in the Identity Object, in accordance with the ODVA DeviceNet Specification, Volume II [2]. In addition, the
S-Device Supervisor Object includes attributes specific to the MKS mass flow device, which comply with the
SEMI Standards Common and Specific Device Models [3, 5].
One instance of the S-Device Supervisor Object is supported with 23 instance attributes and eight DeviceNet
services.
Table 35: S-Device Supervisor Object Attributes
Attribute
ID#
(hex)
Description
Data Type
Run
Mode
Access
Cal Mode
Access
Non
Volatile
Memory
Data Variable
Initial
Setting
03
Device Type
SHORT
STRING [8]
Get
Get
Yes
MFC/MFM
04
SEMI
Standard
Revision Level
SHORT
STRING [9]
Get
Get
Yes
None
E54--0997
05
Manufacturer
Name
SHORT
STRING [20]
Get
Get
Yes
None
MKS
Instruments
06
Manufacturer
Model
Number
SHORT
STRING [20]
Get
Get
Yes
None
180A
185A
1480A
1485A
07
Firmware
Revision
SHORT
STRING [5]
Get
Get
Yes
Current
Revision
1.000
08
Hardware
Revision
SHORT
STRING [5]
Get
Get
Yes
Current
Revision
1.000
09
Serial Number
SHORT
STRING [30]
Get
Get
Yes
None
0B
Device Status
USINT
Get
Get
No
0=Undefined
1=Self Test
2=Idle
3=Self Test Exc
4=Executing
5=Abort
6=Critical Fault
0C
Exception
Status
USINT
Get
Get
No
None
(Continued on next page)
68
MFC
device
specific
0
0x80
S-Device Supervisor Object
Chapter Four: Operation
Table 35: S-Device Supervisor Object Attributes (continued)
Attribute
ID#
(hex)
0D
0E
Description
Data Type
Exception Detail Alarm
Common
Exception
Detail
STRUCT of:
Size
USINT
Detail
Array of:
Detail n
BYTE
Device
Exception
Detail
STRUCT of:
Size
USINT
Detail
Array of:
Detail n
BYTE
Manufacturer
Exception
Detail
STRUCT of:
Size
USINT
Detail
Array of:
Detail n
BYTE
Exception Detail Warning
Common
Exception
Detail
STRUCT of:
Size
USINT
Detail
Array of:
Detail n
BYTE
Device
Exception
Detail
STRUCT of:
Size
USINT
Detail
Array of:
Detail n
BYTE
Manufacturer
Exception
Detail
STRUCT of:
Size
USINT
Detail
Array of:
Run
Mode
Access
Call Mode
Access
Non
Volatile
Memory
Get
Get
No
None
0
Get
Get
No
None
0
Data Variable
Initial
Setting
Detail n
BYTE
0F
Alarm Enable
BOOL
Get/Set
Get/Set
Yes
0=Disable
1=Enable
0
10
Warning
Enable
BOOL
Get/Set
Get/Set
Yes
0=Disable
1=Enable
0
69
Chapter Four: Operation
S-Device Supervisor Object
Device Type
Attribute ID #03 reports the type of device on the network using an ASCII string. In the response, the unit is
defined as either a mass flow controller (MFC) or a mass flow meter (MFM).
Standard Revision Level
Attribute ID #04 reports the most recent version of the SEMI Standards Device Model to which the unit
adheres. The response is a 9 character (maximum) ASCII string “ENNNNNNYY” where:
E = SEMI assigned value
NNNNNN = Number of the standard [6]
YY = Year of the published standard
The default string is “E54--0997.”
Manufacturer Name
Attribute ID #05 reports the maker of the mass flow device, using an ASCII string. The manufacturer of the
unit is always reported as MKS Instruments, identified with the ASCII string “MKS Instruments”
Manufacturer Model Number
Attribute ID #06 reports the model number of the instrument with an ASCII string. The response reports the
type of mass flow device in use, identified with the ASCII string “180A” or “185” or “1480A” or “1485A”
Firmware Revision Level
Attribute ID #07 reports the version of microprocessor code in the instrument. The firmware revision will be a
text string of the major and minor revision level as listed in the Identity Object. The format of the attribute is
“X.YYY”, where X is the major revision level and YYY is the minor revision level. The default firmware
revision level is “1.000.”
Hardware Revision Level
Attribute ID #08 designates the hardware version of your device with a text string of the major and minor
revision level. The format of the attribute is “X.YYY”, where X is the major revision level and YYY is the
minor revision level. The default hardware revision level is “1.000.”
Serial Number
Attribute ID #09 reports the serial number of the device with an ASCII string of up to 30 characters.
Device Status
Attribute ID #0B designates the state of the S-Device Supervisor Object. The possible object states and their
corresponding values are listed in Table 36. The response reports the attribute value for the appropriate object
state.
70
S-Device Supervisor Object
Chapter Four: Operation
Table 36: Device Status Attribute Values
Attribute Value
0
1
2
3
4
5
6
7 to 255
S-Device Supervisor Object State
Unknown
Initialized / Self Testing
Idle
Self Test Exception
Executing
Abort from Idle or Executing
Critical Fault
Reserved
Exception Status
Attribute ID #0C reports the type of alarm or warning condition detected by the instrument. The alarms and
warnings are identified as being:
„
Device Common—alarm/warning common to all SEMI devices
„
Device Specific—specific to mass flow devices
„
Manufacturer Specific—specific to the MKS unit
The response is a byte structured as a bit mapped variable [3]. The device supports the expanded mode of
reporting exceptions. The bit map defining this variable is listed in Table 37.
Table 37: Exception Status Bit Map
Bit
(Least significant to
Most Significant)
Hex Value
0
1
2
3
4
5
6
7
01
02
04
08
10
20
40
80
Meaning
Alarm – Device Common
Alarm – Device Specific
Alarm – Manufacturer Specific
Reserved – Set to 0
Warning – Device Common
Warning – Device Specific
Warning – Manufacturer Specific
1 – Expanded Method
The response returns a binary value with the least significant bit (bit 0) as the last digit. The response values
are additive, therefore, one hexadecimal (hex) value reports all alarm conditions. For example, if the unit
detects a device specific alarm condition, the unit reports a hex value of “82”, where:
82hex = 1 0 0 0 0 0 1 0
Exception Detail Alarm
Attribute ID #0D identifies the specific alarm condition(s) detected by your mass flow device. The response is
a byte with each bit representing a specific exception (alarm) condition, as listed below. Any bit that is set
indicates that the alarm assigned to that bit is active. The response values are additive, therefore, one value
reports all alarm conditions. The response returns a binary (hex) value with the least significant bit (bit 0) as
71
Chapter Four: Operation
S-Device Supervisor Object
the last digit. The exception detail alarm conditions are reported in an unlatched format; the exception status
bit automatically clears as soon as the alarm condition is corrected.
Table 38: Exception Detail Device Common Alarm Bit Map
Byte [0]
Hex Value
0
1
2
3
4
5
6
7
01
02
04
08
10
20
40
80
Byte [1]
Hex Value
0
1
2
3
4
5
6
7
01
02
04
08
10
20
40
80
Meaning
Exception – Internal Diagnostics
Exception – Microprocessor
Exception – ROM / FLASH Memory
Exception – EEPROM
Exception – RAM Memory
Reserved
Exception – Internal Timer
Reserved
Meaning
Reserved
Reserved
Reserved
Exception – Power Supply Input Voltage
Reserved
Exception – Notify Manufacturer
Exception – Reset
Reserved
Table 39: Exception Detail Device Specific Alarm Bit Map
Byte [0]
Hex Value
0
1
2
3
4
5
6
7
01
02
04
08
10
20
40
80
Meaning
Exception – Flow Reading Valid
Exception – Flow Low
Exception – Flow High
Exception – Flow Control
Exception – Valve Low
Exception – Valve High
Reserved
Reserved
72
S-Device Supervisor Object
Chapter Four: Operation
Table 40: Exception Detail Manufacturer Specific Alarm Bit Map
Byte [0]
Hex Value
0
1
2
3
4
5
6
7
01
02
04
08
10
20
40
80
Meaning
Exception – Speedup Result Invalid
Exception – Bridge Controller Error
Exception – Valve Circuit Error
Exception – No Gas Table Available
Exception – Power Ground Level Invalid
Exception – AD / DA Circuitry Error
Exception – Temperature Out of Range
Exception – Bus Controller Error
Exception Detail Warning
Attribute ID #0E identifies the specific warning condition(s) detected by your mass flow device. The response
is a byte with each bit representing a specific exception (warning) condition. Any bit that is set indicates that
the alarm assigned to that bit is active. The response values are additive, therefore, one value reports all
warning conditions. The response returns a binary (hex) value with the least significant bit (bit 0) as the last
digit. The exception detail warning conditions are reported in an unlatched format; the exception status bit
automatically clears as soon as the warning condition is corrected.
Alarm Enable
Attribute ID #0F specifies whether an alarm condition will be set in the exception status attribute of the SDevice Supervisor Object (refer to Exception Detail Alarm, page 71), where:
0 = Disable
1 = Enable (default)
Warning Enable
Attribute ID #10 specifies whether a warning condition will be set in the exception status attribute of the SDevice Supervisor Object (refer to Exception Detail Warning, above), where:
0 = Disable
1 = Enable (default)
73
Chapter Four: Operation
S-Device Supervisor Object
Table 41: S-Device Supervisor Object Supported Services
Service ID#
(hex)
Service Name
Service
Type
Data Type
Description
0E
Get_Attribute_Single
USINT
Request
Reads the object attribute.
10
Set_Attribute_Single
USINT
Attribute Data Type
Request
Modify the object attribute.
05
Reset
None
Request
Place the MFC into its INITIALIZING
state.
06
Start
None
Request
Place the MFC into its EXECUTING
state.
07
Stop
None
Request
Place the MFC into its IDLE state.(Note
IDLE is the default state after power up)
32
Lock
UINT
(password needed)
Request
Place the device into the User/Cal mode.
Make read-only attributes modifiable
4B
Abort
None
Request
Place the device in its ABORT state.
4C
Recover
None
Request
Cause the device to transition from the
ABORT state to the OPERATING state.
Visual Indicator
Attribute ID 0x65 controls the behavior of the visual indicator (the wink function) on the device. This
attribute controls the flashing of the Module Status LED, which is useful for visually identifying a particular
device on the network, where:
0 = Off (default)
1 = On
It is not in the non-volatile memory; therefore, it is off after a power cycle.
Password: User Mode 0
Cal Mode 0x1234
74
S-Analog Sensor Object
Chapter Four: Operation
S-Analog Sensor Object
The S-Analog Sensor Object (Class Code 31hex) allows you to report the indicated (corrected) flow value, set
and report the high and low trip point alarms, and report various status information on the system flow.
One instance of the S-Analog Sensor Object is supported with 19 instance attributes and four DeviceNet
services.
Table 42: S-Analog Sensor Object Attributes
Run
Mode
Access
Cal
Mode
Access
NonVolatil
e
Memor
y
USINT
Get/Set
Get/Set
Yes
C3hex=INT
CAhex=REAL
Flow Units
UINT
Get
Get
Yes
0x1001 counts
0x1400 sccm
05
Flow Reading
Valid
BOOL
Get
Get
No
0=Invalid
1=Valid
06
Indicated Flow
Value
Specified by
Flow Data Type
Get
Get
No
0 to 100% FS or
0 to 24576 counts
07
Trip Point
Status
BYTE
Get
Get
No
0=Cleared
1=Set
0A
Flow Full Scale
Specified by
Flow Data Type
Get
Get
Yes
FS in sccm or 24576
counts
0C
Zero (Offset-A)
Specified by
Flow Data Type
Get/Set
Get/Set
Yes
-5% to +5% FS
11
Alarm Trip
Point High
Specified by
Flow Data Type
Get/Set
Get/Set
Yes
-10 to 110% FS or
–2458 to 27033 counts
110% FS
or 27033
12
Alarm Trip
Point Low
Specified by
Flow Data Type
Get/Set
Get/Set
Yes
-10 to 110% FS or
–2458 to 27033 counts
-10% FS
or -2458
15
Warning Trip
Point High
Specified by
Flow Data Type
Get/Set
Get/Set
Yes
-10 to 110% FS or
–2458 to 27033 counts
110% FS
or 27033
16
Warning Trip
Point Low
Specified by
Flow Data Type
Get/Set
Get/Set
Yes
-10 to 110% FS or
–2458 to 27033 counts
-10% FS
or -2458
1C
Autozero Status
BOOL
Get
Get
No
0=autozero active
1=autozero not active
0
20
Overrange
Specified by
Flow Data Type
Get/Set
Get/Set
Yes
-10 to 110% FS or
–2458 to 27033 counts
110% FS
or 27033
21
Underrange
Specified by
Flow Data Type
Get/Set
Get/Set
Yes
-10 to 110% FS or
–2458 to 27033 counts
-10% FS
or -2458
23
Select Active
Gas
UINT
Get/Set
Get/Set
Yes
None
1
C8
Flow Hours
UDINT
Get
Get
Yes
None
0
C9
Flow Totalizer
ULINT
Get/Set
Get/Set
No
None
0
Attribute
ID#
(hex)
Description
03
Flow Data Type
04
Data Type
75
Data Variable
Initial
Setting
C3hex
0x1001
0
0
100% FS
or 24576
0
Chapter Four: Operation
S-Analog Sensor Object
Flow Data Type
Attribute ID #03 defines the data type for certain attributes in this object, where:
C3hex = Integer (16 bit; default)
CAhex = Real (floating point)
The attributes in this object which are affected by the flow data type include:
„
Indicated Flow (ID #06)
„
Flow Full Scale (ID # 0A)
„
Zero Data Type (ID #0B)
„
Zero (ID # 0C)
„
Alarm Trip Points (ID #s11 and 12)
„
Warning Trip Points (ID #s15 and 16)
Flow Units
Attribute ID #04 defines the flow units reported with Attribute ID #03 in this object, where:
0x1001 = Counts (default)
0x1400 = sccm
The attributes in this object which are affected by the choice of flow units include:
„
Indicated Flow (ID #06)
„
Flow Full Scale (ID # 0A)
„
Alarm Trip Points (ID #s11 and 12)
„
Warning Trip Points (ID #s15 and 16)
Flow Reading Valid
Attribute ID #05 reports whether or not the flow value reported by Attribute ID #06 in this object is valid,
where:
0 = Invalid (default)
1 = Valid
Indicated Flow Value
Attribute ID #06 reports the value of the indicated flow; the format of the response is dependent on the data
type selected with Attribute ID #03 in this object (refer to Flow Data Type, above, for more information).
The flow is reported either as an integer or a floating point value. The range of the response is 0 to 100% of
full scale or 0 to 24576(0x6000) counts depending the current data unit.
Trip Point Status
Attribute ID #07 reports the status of the alarm and warning exceptions in this object, as defined in Table 43,
page 76.
Table 43: Trip Point Status Bit Map
76
S-Analog Sensor Object
Chapter Four: Operation
Byte [0]
Hex Value
0
1
2
3
4
5
6
7
01
02
04
08
10
20
40
80
Meaning
High Alarm Exception
Low Alarm Exception
High Warning Exception
Low Warning Exception
Reserved
Reserved
Reserved
Reserved
Trip Point Alarm / Warning Enable
Attribute IDs #08 and #09 specify whether the high and low point alarms and warnings will be reported to the
exception status attribute of the S-Device Supervisor Object (refer to Exception Status, page 71), where:
0 = Disable (default)
1 = Enable
Attribute ID #08 controls the high and low alarms; Attribute ID #09 controls the high and low warnings.
If the trip point alarms are enabled, the actual alarm values (set with Attribute IDs #11, 12, 15, and 16 in this
object) are compared to the indicated flow value.
Flow Full Scale
Attribute ID #0A reports the 100% full scale flow value in the units selected with Attribute ID #04 in this
object. The acceptable range of this attribute is 0 to 24576 (0x6000); where 0 corresponds to 0% flow, and
24576 (0x6000) corresponds to 100% flow.
Zero
Attribute ID #0C specifies an offset, in the units selected with Attribute ID #04 in this object, which is applied
to the indicated (corrected) flow value for the active programmed gas, where:
Indicated Flow (ID #06) = Sensor Reading + Zero (ID #0C)
The acceptable input range is -5 to +5% of full scale, in the current flow units. The figures beginning on page
26 illustrate where the zero is incorporated into the calculation of the indicated flow value.
Alarm/Warning High Trip Points
Attribute ID #11 specifies the value for the high trip point alarm. Attribute ID #15 specifies the value for the
high trip point warning.
If the indicated flow value is greater than the specified value, an alarm/warning status indicator is generated.
Alarm/Warning Low Trip Points
Attribute ID #12 specifies the value for the low trip point alarm. Attribute ID #16 specifies the value for the
low trip point warning.
If the indicated flow is less than the specified value, an alarm/warning status indicator is generated.
77
Chapter Four: Operation
S-Analog Sensor Object
Autozero Status
Attribute ID #1C specifies the current status of the autozero function execution. If the autozero function is
actively executing the attribute returns a value of 1. If the autozero function is not actively executing, the
attribute returns a value of 0.
Overrange
Attribute ID #20 specifies the highest valid value for the flow output reading.
Underrange
Attribute ID #21 specifies the lowest valid value for the flow output reading.
Select Active Programmed Gas (Gas Calibration Object Instance)
Attribute ID #23 specifies the current active programmed gas (the gas you want to monitor) from the
programmed gas calibration tables that are stored in your device.
Flow Totalizer
Attribute ID #5F reports the volume of gas in standard cubic centimeters (sccm) that has flowed through the
device since the last time the flow totalizer attribute was set to 0. This attribute can only be reset to 0. This
value is not reset at power up.
Flow Hours
Attribute ID #60 reports the total number of hours the unit has been flowing gas. The resolution of the
response is 1 hour. This value is not reset at power up.
S-Analog Sensor Object Supported Services
The S-Analog Sensor Object is supported by the four DeviceNet services.
Table 44: S-Analog Sensor Object Supported Services
Service ID#
(hex)
Service Name
Data Type
Service
Type
Description
0E
Get_Attribute_Single
USINT
Request
Reads the object attribute.
10
Set_Attribute_Single
USINT
Attribute Data Type
Request
Modify the object attribute.
Zero_Adjust
None
Request
Zero the MFC.
4B(75)
78
S-Analog Actuator Object
Chapter Four: Operation
S-Analog Actuator Object
The S-Analog Actuator Object (Class Code 32hex) contains information on the valve.
Note
The S-Analog Actuator Object is valid for mass flow controllers only. An error
message is returned if you use this object for a mass flow meter. The DeviceNet
General Error Codes are listed in the ODVA DeviceNet Specification, Volume I [1].
One instance of the S-Analog Actuator Object is supported with 10 attributes and three DeviceNet common
services.
Table 45: S-Analog Actuator Object Attributes
Attribute
ID#
(hex)
Run
Mode
Access
Call
Mode
Access
NonVolatile
Memory
Description
03
Valve Data Type
USINT
Get/Set
Get/Set
Yes
C3hex=INT
CAhex=REAL
04
Valve Data Units
UINT
Get/Set
Get/Set
Yes
0x1001= counts or
0x1007=%FS
05
Valve Override
Selector
USINT
Get/Set
Get/Set
No
0=Normal
1= Off/Closed
2=On/Open
3 = hold
4=Safe State
0
06
Valve Drive
Level Value
Specified by
Flow Data Type
Get/Set
Get/Set
No
0 to 100% FS or
0 to 24576 counts
0
07
Valve Exception
Status
BYTE
Get
Get
No
None
0
15
Valve Safe State
USINT
Get/Set
Get/Set
Yes
0=Closed
0
Data Type
Data Variable
Initial
Setting
C3hex
0x1007
Valve Data Type
Attribute ID #03 defines the data type for certain attributes in this object, where:
C3hex = Integer (16 bit; default)
CAhex = Real (floating point)
The attributes in this object which are affected by the valve data type include:
„
Valve Drive Level (ID #06)
Valve Data Units
Attribute ID #04 reports the units that the Valve Drive Level (reported with Attribute ID #06 in this object), is
reported in, where:
0x1001 = counts
0x1007 =% Full Scale
79
Chapter Four: Operation
S-Analog Actuator Object
Valve Override Selector
Attribute ID #05 allows you to override the control valve in accordance with the specification in [5], where:
0 = Normal (default)
1 = Closed
2 = Open
3 = Hold (hold the value set with attribute #6)
4 = Safe State
The override only takes effect when the device is in the EXECUTING sate. When the device transitions to the
ABORT state, this attribute is automatically set to “4”, causing the valve to move to its safe state; that is the
valve closes (refer to Valve Safe State, below). This attribute cannot be written when the device is in the
ABORT state.
Note
When the valve moves to its safe state, the unit acts as if there was a power cycle. Once the
device returns to the OPERATING state, you must reset this attribute by sending a setpoint
command. Refer to S-Single Stage Controller Object, page 82, for more information.
Valve Drive Level Value
Attribute ID #06 reports the value of the valve drive level. The range of this value is 0 to 100% or 0 to 24576
in counts. This attribute can be set only when the “Valve Override” is set to “Hold”.
Valve Exception Status
Attribute ID #07 reports the status of the alarm and warning exceptions in this object. Your mass flow device
does not support the standard S-Analog Actuator valve alarms, therefore, this required attribute always reports
the status as 0.
Table 46: Exception Status Bit Map
Byte [0]
Hex Value
0
1
2
3
4
5
6
7
01
02
04
08
10
20
40
80
Meaning
High Alarm Exception
Low Alarm Exception
High Warning Exception
Low Warning Exception
Reserved
Reserved
Reserved
Reserved
Valve Safe State
Attribute ID #15 defines the normal behavior of the valve whenever there is a loss of power or
communication to the device, where:
0 = Closed
1 = Open
80
S-Analog Actuator Object
Chapter Four: Operation
2 = Hold Last Value
Note
Any time there is a power loss or your device is disconnected from the network, the device
transitions from the EXECUTING state to the IDLE state, and the valve closes. To reset the
valve, you must send a setpoint command (refer to S-Single Stage Controller Object, page 82,
for more information).
S-Analog Actuator Object Supported Services
The S-Analog Actuator Object is supported by the three DeviceNet common services.
Table 47: S-Analog Actuator Object Supported Services
Service ID#
(hex)
Service Name
Service
Type
Data Type
Description
0E
Get_Attribute_Single
USINT
Request
Reads the object attribute
10
Set_Attribute_Single
USINT
Request
Modify the object attribute
81
Chapter Four: Operation
S-Single Stage Controller Object
S-Single Stage Controller Object
The S-Single Stage Controller Object (Class Code 33hex) contains 25 attributes. The supported DeviceNet
Object Services include:
Table 48: S-Single Stage Controller Object Attributes
Attribute
ID#
(hex)
Description
Data Type
Run
Mode
Access
Call
Mode
Access
NonVolatile
Memory
Data Variable
Initial
Setting
03
Setpoint Data Type
USINT
Get/Set
Get/Set
Yes
C3hex=INT
CAhex=REAL
04
Setpoint Data Units
UINT
Get/Set
Get/Set
Yes
Counts=0x1001
slm=0x1401
sccm=0x1400
06
Setpoint
Set by
Attribute #03
Get/Set
Get/Set
No
0A
Status
BYTE
Get
Get
No
Bit 0:Alarm
Exception
0=cleared
1=set
Bit 1: Warning
0=cleared
1=set
0
13
Ramp Rate
UDINT
Get/Set
Get/Set
Yes
0=disables
value=msec to
reach setpoint
0
C3hex
Counts
0
Setpoint Data Type
Attribute ID #03 defines the data type for certain attributes in this object, where:
C3hex = Integer (16 bit; default)
CAhex = Real (floating point)
The attributes affected by the choice of the setpoint data type include:
„
Setpoint Value (ID #06)
Setpoint Data Units
Attribute ID #04 reports the units for the setpoint value reported with Attribute ID #06 in this object, where:
0x1001 = counts
0x1400 = sccm
0x1401 = slm
82
S-Single Stage Controller Object
Chapter Four: Operation
Setpoint
Attribute ID #06 defines the value of the setpoint value (the value to which the device is controlling the flow
of gas). The format of the response is dependent on the data type selected with Attribute ID #03 in this object
(refer to Setpoint Data Type, page 82).
When Attribute ID #03 is set to C3hex, Attribute ID #06 defines the setpoint as an integer. When Attribute ID
#03 is set to CAhex, Attribute ID #06 defines the setpoint as a floating pointer. The range of the setpoint
value attribute is 0 to 100% of full scale or 0 to 24576(0x6000) counts depending on the data unit.
Status
Attribute ID #0A reports the status of the alarm and warning exceptions in this object.
Table 49: Controller Status Bit Map
Byte [0]
Hex Value
0
1
2
3
4
5
6
7
01
02
04
08
10
20
40
80
Meaning
Alarm Exception
Warning Exception
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Ramp Rate
Attribute ID #13 defines the ramp rate at which this object tracks toward the current setpoint value. The ramp
rate specifies how quickly the setpoint is ramped from the previous setpoint value to the current setpoint
value. The acceptable input range is 0 to 12000 milliseconds (msec); the default setting is 0.0.
S-Single Stage Controller Object Supported Services
The S-Single Stage Controller Object is supported by the three DeviceNet common services.
Table 50: S-Single Stage Controller Object Supported Services
Service ID#
(hex)
Service Name
Data Type
Service Type
Description
0E
Get_Attribute_Single
USINT
Request
Reads the object attribute.
10
Set_Attribute_Single
USINT
Request
Modify the object attribute.
83
Chapter Four: Operation
S-Gas Calibration Object
S-Gas Calibration Object
The S-Gas Calibration Object (Class Code 34hex) reports the total number of programmed gas calibration
tables stored in your device, and allows you to access and modify the calibration data within these tables.
Your device can store up to 20 programmed gas calibration tables, each consisting of 21 calibration
parameters.
Table 51: S-Gas Calibration Object Class Attributes
Attribute ID#
(hex)
02
Description
Data Type
Max Object
Instances
Run Mode
Access
Cal Mode
Access
Non-Volatile
Memory
Data
Variable
Initial
Setting
Get
Get
Yes
20
20
UINT
Max Object Instances (Total Gas Calibrations)
Attribute ID #02 reports the total number of programmed gas calibration tables that are stored in your mass
flow device. Your device can store 20 gas calibration tables; five (5) default calibration tables and up to
fifteen (15) user-selected calibration tables.
Only one of the programmed gas tables—for the gas you are monitoring (the active programmed gas)—can
be active at a time. The active programmed gas is selected with the Select Active Gas Attribute (ID #23) in
the S-Analog Sensor Object. Refer to S-Analog Sensor Object Supported Services, page 78, for more
information.
Table 52: S-Gas Calibration Object Attributes
Attribute
ID#
(hex)
Description
Data Type
Run
Mode
Access
Cal
Mode
Access
NonVolatile
Memory
Data
Variable
Initial Setting
03
Gas Standard Number
UINT
Get
Get/Set
Yes
04
Valid Sensor Instance
UINT
Get
Get
Yes
None
1
05
Gas Standard Symbol
SHORT
STRING
Get
Get/Set
Yes
None
0
06
Full Scale Range
STRUCT of:
REAL
UINT
Get
Get/Set
Yes
None
500 (range),
0x1400 (units)
07
Additional Scalar
REAL
Get/Set
Get/Set
Yes
08
Calibration Date
DATE
Get
Get/Set
Yes
None
0
09
Calibration (Reference)
Gas Standard Number
UINT
Get
Get/Set
Yes
None
13
5F
Calibration Pressure (kPa)
REAL
Get
Get/Set
Yes
None
101.32
60
Calibration Temperature
(K)
REAL
Get
Get/Set
Yes
None
273.0
84
13
1.00
S-Gas Calibration Object
Chapter Four: Operation
Gas Standard Number
Attribute ID #03 reports the SEMI assigned code (or gas standard) number for the specified instance. The gas
standard numbers for the gases and vaporizable material that may be used with your mass flow device are
listed in Appendix B, Gas Correction Factors, page 97.
Note
The number of instances in the S-Gas Calibration Object equals the number of gases stored in
your device. For example, to retrieve the gas standard number for stored gas #2, send the
Get_Attribute_Single service for Instance ID #2. If the gas stored at index #2 is Argon, the
response returns its assigned gas standard number of 4.
Valid Sensor Instance
Attribute ID #04 reports the active sensor instance; the value is always reported as 1. This attribute was
designed to identify the active sensor in instruments that can accommodate multiple sensors.
Gas Standard Symbol
Attribute ID #05 reports the gas symbol as a short string. This is generally the ASCII text abbreviation of the
molecular structure.
Full Scale Range
Attribute ID #06 reports the factory set full scale range, in the specified flow units, for the active programmed gas.
0x1001 = Counts (default)
0x1007 = % Full Scale
0x1400 = sccm
0x1401 = slm
Additional Scalar
Attribute ID #07 reports the scalar correction for the gas referenced in the current instance. This additional
scalar reference can be used to contain the Gas Correction Factor for a specific device.
Calibration Date
Attribute ID #08 specifies the date of a user calibration for a specific programmed gas. The acceptable input
range is D#1972-01-01, the start of the Coordinated Universal Time (UTC) era, to D#2151-06-06 (a total
range of 65,565 days).
Calibration Gas Standard Number
Attribute ID #09 reports the SEMI assigned code number for the calibration (or reference) gas, as listed in
Appendix B, Gas Correction Factors, page 97. Nitrogen, which is typically used as the calibration gas, has an
assigned gas standard number of 13.
Calibration Pressure
Attribute ID #5F specifies the standard pressure in kiloPascals (kPa) at which your unit was calibrated for the
active programmed gas. The default pressure is 101.32.
85
Chapter Four: Operation
S-Gas Calibration Object
Calibration Temperature
Attribute ID #60 specifies the standard temperature in Kelvin (K) at which your unit was calibrated for the
active programmed gas. The default temperature is 273.16 (0° C).
S-Gas Calibration Object Supported Services
The S-Gas Calibration Object is supported by the seven DeviceNet services.
Table 53: S-Gas Calibration Object Supported Services
Service ID#
(hex)
Service Name
Data Type
Service
Type
Description
0E
Get_Attribute_Single
USINT
Request
Reads the object attribute.
10
Set_Attribute_Single
USINT
Request
Modify the object attribute.
4B
Get_All_Instances
None
Request
Request a list of all available object
instances with their respective gas
numbers that are supported by the
device
The response to the Get_All_Instances service is shown in the table below:
Table 54: Get_All_Instances Response Format
Parameter Name
Data Type
List Size
USINT
Gas Calibration List
ARRAY of:
STRUCT of:
UINT
UINT
UINT
Description
Reads the object attribute.
S-Gas Calibration Object Instance ID
Gas Standard Number
Valid Sensor Instance
86
Controller Calibration Object
Chapter Four: Operation
Controller Calibration Object
The Controller Calibration Object (Class Code 66hex) allows calibration of the parameters which affect the
performance of the device under operating conditions.
One instance of the Controller Calibration Object is supported with 50 instance attributes and two DeviceNet
services.
Table 55: Controller Calibration Object Attributes
Attribute
ID#
(hex)
Description
Data Type
Run
Mode
Access
Cal
Mode
Access
NonVolatile
Memory
Data Variable
Initial
Setting
01
Controller P
REAL
Get
Get/Set
Yes
Varies*
02
Controller I
REAL
Get
Get/Set
Yes
Varies*
03
Controller D
REAL
Get
Get/Set
Yes
Varies*
0A
Speedup Tau
REAL
Get
Get/Set
Yes
Varies*
1A
Flow Cal Point 0
STRUCT of:
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Sensor Value 0
Flow Value 0
1B
Flow Cal Point 1
Sensor Value 1
Flow Value 1
1C
Flow Cal Point 2
Sensor Value 2
Flow Value 2
1D
Flow Cal Point 3
Sensor Value 3
Flow Value 3
1E
Flow Cal Point 4
Sensor Value 4
Flow Value 4
1F
Flow Cal Point 5
Sensor Value 5
Flow Value 5
20
Flow Cal Point 6
Sensor Value 6
Flow Value 6
21
Flow Cal Point 7
Sensor Value 7
Flow Value 7
22
Flow Cal Point 8
Sensor Value 8
Flow Value 8
23
Flow Cal Point 9
Sensor Value 9
Flow Value 9
24
Flow Cal Point 10
Sensor Value 10
Flow Value 10
25
Flow Cal Point 11
Sensor Value 11
Flow Value 11
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
(Continued on next page)
87
Chapter Four: Operation
Controller Calibration Object
Table 55: Controller Calibration Object Attributes (continued)
Attribute
ID#
(hex)
Description
26
Flow Cal Point 12
Sensor Value 12
Flow Value 12
27
Flow Cal Point 13
Sensor Value 13
Flow Value 13
28
Flow Cal Point 14
Sensor Value 14
Flow Value 14
29
Flow Cal Point 15
Sensor Value 15
Flow Value 15
2A
Flow Cal Point 16
Sensor Value 16
Flow Value 16
2B
Flow Cal Point 17
Sensor Value 17
Flow Value 17
2C
Flow Cal Point 18
Sensor Value 18
Flow Value 18
2D
Flow Cal Point 19
Sensor Value 19
Flow Value 19
2E
Flow Cal Point 20
Sensor Value 20
Flow Value 20
65
Counts Full Scale
Data Type
Run
Mode
Access
Cal
Mode
Access
NonVolatile
Memory
STRUCT of:
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Varies*
Get
Get/Set
Yes
Data Variable
Initial
Setting
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
STRUCT of:
REAL
REAL
UINT
Number of counts
equal to 100 % Full
Scale.
0x6000
* Initial value varies with the calibration of the particular mass flow device.
The attributes within this object instance are only settable when the calibration mode for the device has been
entered. To enter the calibration mode, send the service data 0x02 0x9D using the Set_Attribute_Single
service through an explicit message connection to Object Class Code 0x01, Instance 0x01, Attribute 0x00.
Controller P
P component of the PID controller.
Controller I
I component of the PID controller. High P component values give the possibility of high I component values.
Controller D
D component of the PID controller. Should be zero.
88
Controller Calibration Object
Chapter Four: Operation
Table 56: Controller Calibration Object Supported Services
Service ID#
(hex)
Service Name
Data Type
Service Type
Description
0E
Get_Attribute_Single
USINT
Request
Reads the object attribute.
10
Set_Attribute_Single
USINT
Request
Modify the object attribute.
89
Chapter Five: Maintenance
General Information
Chapter Five: Maintenance
General Information
In general, no maintenance is required other than proper installation and operation. Periodically check for
wear on the cables and inspect the enclosure for visible signs of damage. If a mass flow device fails to operate
properly on receipt, check for shipping damage, and check the DeviceNet cable for proper power supply. Any
damage should be reported to the freight carrier and MKS Instruments immediately. If there is no obvious
damage, and the unit fails to operate properly through the DeviceNet network, obtain an RMA Number
(Return Material Authorization Number) before returning the unit to MKS Instruments for service to expedite
handling and ensure proper servicing of your instrument.
Zero Adjustment
For best accuracy and repeatability, you should check the zero output periodically and reset it, if necessary.
Refer to the zero adjustment procedure, How to Zero the Flow Device page 48.
It is also recommended that the instrument be recalibrated annually if no other time interval has been
specifically established. Refer to the inside of the back cover of this instruction manual for a complete list of
MKS Calibration and Service Centers.
90
Zero Adjustment
Chapter Five: Maintenance
This page intentionally left blank.
91
Troubleshooting Chart
Chapter Six: Troubleshooting
Chapter Six: Troubleshooting
Troubleshooting Chart
Table 57: Troubleshooting Chart
Symptoms
Possible Cause
Remedy
Device does not
power up.
Improper DeviceNet cable.
Malfunctioning electronics.
Device indicates
negative flow.
Incorrect instrument installation
(backwards) in process system.
Controller does not
track setpoint.
Controller mass
flow rate oscillates
Improper PID settings.
Controller has
excessive closed
conductance.
Device does not
achieve full flow.
Inadequate valve preload.
Too high controller gain
Incorrect upstream pressure regulator
Upstream pressure too high
Excessive valve preload
Upstream pressure is too low for the
system.
Excessive valve preload (controller).
93
Check DeviceNet network.
Return unit for service to MKS Calibration
and Service Center.
Reinstall instrument in process system such
that gas flow occurs in the direction of the
arrow on the front of the instrument.
Tune controller according to procedures
outlined in instruction manual.
Reduce gain through DeviceNet interface.
Check manufacturer’s specifications for
correct upstream pressure regulator
Reduce upstream pressure
Return unit for service to MKS Calibration
and Service Center.
Return unit for service to MKS Calibration
and Service Center.
Increase upstream pressure.
Return unit for service to MKS Calibration
and Service Center.
Chapter Six: Troubleshooting
Troubleshooting Chart
This page intentionally left blank.
94
Performance Specifications
Appendix A: Product Specifications
Appendix A: Product Specifications
Performance Specifications
Accuracy
Mass Flow Device
CE Compliance
Electromagnetic Compatibility*
1% of reading from 20% to 100% F.S. (with
calibration gas)
0.2% of F.S. < 20% F.S. (with calibration gas)
EMC Directive 89/336/EEC
Control Adjustments
Derivative
Integral
Proportional
Control Repeatability (controller only)
±0.2% Reading.
Leak Integrity
Internal to external
Through closed control valve
<10-9 scc/sec He
1% F.S. (N2 at 25 psig to atmosphere differential)
Maximum Operating Differential Pressure
10 – 40 psid: 10 sccm to 5000 sccm
15 – 40 psid: 10,000 to 30,000 sccm
Maximum Operating Inlet Pressure
150 psig
Mass Flow Control Range
2 to 100% F.S.
Resolution (measurement)
≤0.01% F.S.
Temperature Coefficient
Zero
Span
≤ ±0.05% F.S./°C
≤ ±0.08% Reading/°C
Settling Time
< 1 second: 10 – 100% F.S.
(< .5 second typical to 100% setpoint)
1- 3 seconds: < 10% F.S.
Warm Up Time
30 minutes
* An overall metal braided shielded cable, properly grounded at both ends, is required during use.
95
Appendix A: Product Specifications
Physical Specifications
Physical Specifications
Burst Pressure
≥1500 psig
Dimensions
1.45” W x 3.00” L (less fittings) x 5.90” H max. (180A, 185A,
1480A, and 1485A)
Fittings
Swagelok 4-VCR® male compatible,
¼” Swagelok compression fittings,
¼” tube stub,
C-Seal downmount,
W-Seal downmount
Full Scale Ranges
Flow
10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000,
20,000 and 30,000 sccm
Input Power
11-25 VDC, 500 mA max @ 11 VDC
(230 mA @ 24 VDC nominal)
Maximum Cable Length
Valve (controller only)
DeviceNet band dependent
Normally closed
Normally open
Type
Typical purge rate for N2 at 25 psig (to atmospheric pressure ):
100 sccm to 10000 sccm ----- 150%
20000 sccm to 30000 sccm ---130%
Kel-F®
Seat Material
Normally closed …………………..≤ 200 sccm
Teflon®
Normally closed……………………≥ 500 sccm
Normally open……………………..≥ 100 sccm
Surface Finish
5 μinches, Ra, electropolished (1485A)
10 μinches, Ra, electropolished (1480A)
Weight
≤ 1.9 lbs (0.86 kg)
Wetted Materials (excluding valve seat)
316L VIM/VAR stainless steel
Environmental Specifications
Ambient Operating Temperature Range
10° to 45° C (50° to 113° F)
Storage Temperature Range
-20° to 65° C (-4° to 149° F)
Storage Humidity Range
0 to 95% Relative Humidity, non-condensing
These product specifications are subject to change without notice.
96
Environmental Specifications
Appendix B: Gas Correction Factors
Appendix B: Gas Correction Factors
Table 58 lists the gas names, symbols, and code numbers for gases and vaporizable materials that may be
used with your digital mass flow device. The gas names are listed alphabetically. Your mass flow device can
store information on a maximum of 20 of these gases.
The information in Table 58 is taken from the SEMI® Standard E52-95, Practice for Referencing Gases Used
in Digital Mass Flow Controllers. The code numbers are integers assigned by SEMI to identify a particular
gas. Contact MKS Instruments for information on materials that are not listed in Table 58.
Note
Standard Pressure is defined as 760 mmHg (14.7 psia).
Standard Temperature is defined as 0oC.
Table 58: Gas Correction Factors
Gas
Symbol
Code Number
Density
g/l @ 0oC
Conversion Factor
Air
Ammonia
Argon
Arsine
Boron Trichloride
Bromine
--NH3
Ar
AsH3
BCl3
Br2
8
29
4
35
70
21
1.293
0.760
1.782
3.478
5.227
7.130
1.00
0.73
1.39
0.67
0.41
0.81
Carbon Dioxide
Carbon Monoxide
Carbon Tetrachloride
Carbon Tetraflouride
(Freon - 14)
Chlorine
CO2
CO
CCl4
CF4
25
9
101
63
1.964
1.250
6.86
3.926
0.70
1.00
0.31
0.42
Cl2
CHClF2
19
3.163
0.86
57
3.858
0.46
C2ClF5
119
6.892
0.24
CClF3
74
4.660
0.38
C2N2
D2
59
14
2.322
0.1799
0.61
1.00
B2H6
CBr2F2
CCl2F2
58
84
1.235
9.362
5.395
0.44
0.19
0.35
CHCl2F
65
4.592
0.42
5.758
0.25
Chlorodifluoromethane
(Freon - 22)
Chloropentafluoroethane
(Freon - 115)
Chlorotrifluoromethane
(Freon - 13)
Cyanogen
Deuterium
Diborane
Dibromodifluoromethane
Dichlorodifluoromethane
(Freon - 12)
Dichlorofluoromethane
(Freon - 21)
Dichloromethysilane
(CH3)2SiCl2
(Continued on next page)
97
Appendix B: Gas Correction Factors
Environmental Specifications
Table 58: Gas Correction Factors (continued)
Gas
Symbol
Code Number
Density
g/l @ 0oC
Conversion Factor
Dichlorosilane
1,2-Dichlorotetrafluoroethane
(Freon - 114)
1,1-Difluoroethylene
(Freon - 1132A)
2,2-Dimethylpropane
Ethane
SiH2Cl2
C2Cl2F4
67
125
4.506
7.626
0.40
0.22
C2H2F2
64
2.857
0.43
C5H12
C2H6
122
54
3.219
1.342
0.21
0.50
Fluorine
Fluoroform
(Freon - 23)
Freon - 11
Freon - 12
Freon - 13
F2
CHF3
18
49
1.695
3.127
0.98
0.50
CCl3F
CCl2F2
CClF3
6.129
5.395
4.660
0.33
0.35
0.38
Freon - 13 B1
Freon - 14
Freon - 21
Freon - 22
Freon - 23
CBrF3
CF4
CHCl2F
CHClF2
CHF3
6.644
3.926
4.592
3.858
3.127
0.37
0.42
0.42
0.46
0.50
Freon - 113
Freon - 114
Freon - 115
Freon - 116
Freon - C318
C2Cl3F3
C2Cl2F4
C2ClF5
C2F6
C4F8
8.360
7.626
6.892
6.157
8.93
0.20
0.22
0.24
0.24
0.164
Freon - 1132A
Helium
Hexafluoroethane
(Freon - 116)
Hydrogen
Hydrogen Bromide
C2H2F2
He
C2F6
1
118
2.857
0.1786
6.157
0.43
1.45
0.24
H2
HBr
7
10
0.0899
3.610
1.01
1.00
Hydrogen Chloride
Hydrogen Fluoride
Isobutylene
Krypton
Methane
HCl
HF
C4H8
Kr
CH4
11
12
106
5
28
1.627
0.893
2.503
3.739
0.715
1.00
1.00
0.29
1.543
0.72
Methyl Fluoride
Molybdenum Hexafluoride
Neon
Nitric Oxide
Nitrogen
CH3F
MoF6
Ne
NO
N2
33
124
2
16
13
1.518
9.366
0.900
1.339
1.250
0.56
0.21
1.46
0.99
1.00
(Continued on next page)
98
Environmental Specifications
Appendix B: Gas Correction Factors
Table 58: Gas Correction Factors (continued)
Gas
Symbol
Code Number
Density
g/l @ 0oC
Conversion Factor
Nitrogen Dioxide
Nitrogen Trifluoride
Nitrous Oxide
Octafluorocyclobutane
(Freon - C318)
Oxygen
NO2
NF3
N2O
C4F8
26
53
27
129
2.052
3.168
1.964
8.93
0.74*
0.48
0.71
0.164
O2
15
1.427
0.993
Pentane
Perfluoropropane
Phosgene
Phosphine
Propane
C5H12
C3F8
COCl2
PH3
C3H8
128
60
31
89
3.219
8.388
4.418
1.517
1.967
0.21
0.17
0.44
0.76
0.36
Propylene
Silane
Silicon Tetrachloride
Silicon Tetrafluoride
Sulfur Dioxide
C3H6
SiH4
SiCl4
SiF4
SO2
69
39
108
88
32
1.877
1.433
7.580
4.643
2.858
0.41
0.60
0.28
0.35
0.69
Sulfur Hexafluoride
Trichlorofluoromethane
(Freon - 11)
Trichlorosilane
1,1,2-Trichloro –
1,2,2-Trifluoroethane
(Freon - 113)
Tungsten Hexafluoride
Xenon
SF6
CCl3F
110
91
6.516
6.129
0.26
0.33
SiHCl3
CCl2FCClF2
or
(C2Cl3F3)
WF6
Xe
147
6.043
8.360
0.33
0.20
13.28
5.858
0.25
1.32
*
121
6
Consult MKS Instruments for this application.
99
Appendix B: Gas Correction Factors
Environmental Specifications
This page intentionally left blank.
100
Model Code Description
Appendix C: Model Code Explanation
Appendix C: Model Code Explanation
Model Code Description
The model code of the MKS ALTA Mass Flow Device defines features of the unit such as device type, flow
range, fittings, valve configuration, connector type, seal material and firmware revision.
1485A
XXX
Y
A
W
Z
VV
Device Type
Mass Flow Full Scale Range
Fitting Type
Valve Configuration
Connector Type
Seal Material
DeviceNet Firmware Version
Device Type (180A, 185A, 1480A, or 1485A)
The type identifies your unit as a specific model MKS ALTA Mass Flow Device.
Mass Flow Full Scale Range (XXX)
The MKS ALTA Mass Flow Device’s mass flow full scale range is indicated by a two digit/one letter code.
The first two digits of this code are the flow full scale range in exponential form. The third letter is the flow
units.
Example: 13C = 1 x 103 sccm
Mass Flow Rate
Ordering Code
10 sccm *
11C
20 sccm *
21C
50 sccm *
51C
100 sccm
12C
200 sccm
22C
500 sccm
52C
1000 sccm
13C
2000 sccm
23C
5000 sccm
53C
10000 sccm
14C
20000 sccm
24C
30000 sccm
34C
* Available on normally closed valve only
101
Appendix C: Model Code Explanation
Model Code Description
FittingType (Y)
The MKS ALTA Mass Flow Device fitting options are designated by a letter code.
Fitting Style
Ordering Code
Swagelok VCR-4 male
R
¼” weld stub
A
Swagelok ¼” compression
(1480A only)
S
Downport C-Seal
per SEMI 2787.1
C
Downport W-Seal
per SEMI 2787.3F
H
Note
180A, 185A, 1480A, and 1485A: 1.5” wide body
Valve Configuration (A)
The MKS ALTA Mass Flow Device’s valve configuration is designated by a single number code.
Valve Configuration
Normally Closed
Normally Open
No valve (meter)
Ordering Code
1
2
3
Connector (W)
The MKS ALTA Mass Flow Device’s connector is designated by a single number code. The MKS ALTA
Mass Flow Devices are also available with a DeviceNet connector.
Connector Type
DeviceNet
Ordering Code
6
Seal Material (Z)
The MKS ALTA Mass Flow Device’s seal material option is designated by a letter code. The MKS ALTA
Mass Flow Devices are available with metal seals.
Seal Material
Metal
Ordering Code
M
Firmware Version (VV)
The MKS ALTA Mass Flow Device’s firmware version options are designated by a two digit number code.
Example: The initial release of the MKS ALTA Mass Flow Controller uses firmware version 10.
DeviceNet Firmware Version
Ordering Code
Normally Closed
12
Normally Open
13
102
Model Code Description
Note
Appendix C: Model Code Explanation
Unless otherwise specified, MKS will ship firmware current to date of order. To receive
previous software revision levels, please specify to customer service at order placement.
103
Appendix D: DeviceNet Attribute Summary
DeviceNet Information
Appendix D: DeviceNet Attribute Summary
DeviceNet Information
The ALTA Digital MFC device operates as a slave on the DeviceNet network. The unit supports Explicit
Messages and Polled I/O Messages of the predefined master/slave connection set. It does not support the
Explicit Unconnected Message Manager (UCMM).
DeviceNet Message Types
As a group 2 slave device the ALTA DIGITAL MFC supports the following message types.
Table 59: DeviceNet Message Types
CAN IDENTIFIER
GROUP 2 Message Type
10xxxxxx111
Duplicate MACID Check Message
10xxxxxx110
Unconnected Explicit Request Message
10xxxxxx101
Master I/O Poll Command Message
10xxxxxx100
Master Explicit Request Message
xxxxxx = Node Address
DeviceNet Class Services
As a group 2 slave device the ALTA DIGITAL MFC supports the following class services and instance services.
Table 60: DeviceNet Class Services
Service Code
05
14
16
75
76
(0x05)
(0x0E)
(0x10)
(0x4B)
(0x4C)
Service Name
Reset
Get Attribute Single
Set Attribute Single
Allocate Group 2 Identifier Set
Release Group 2 Identifier Set
DeviceNet Object Classes
The ALTA DIGITAL MFC device supports the following DeviceNet object classes.
Table 61: DeviceNet Object Classes
Class Code
01
02
03
04
05
(0x01)
(0x02)
(0x03)
(0x04)
(0x05)
Object Type
Identity
Router
DeviceNet
Assembly
Connection
(Continued on next page)
104
DeviceNet Information
Appendix D: DeviceNet Attribute Summary
Table 61: DeviceNet Object Classes (continued)
Class Code
Object Type
48 (0x30)
S-Device Supervisor
49 (0x31)
S-Analog Sensor
50 (0x32)
S-Analog Actuator
51 (0x33)
S-Single Stage Controller
52 (0x34)
S-Gas Calibration
*100 (0x64)
Bulk Word
*101 (0x65)
Bulk Float
102 (0x66)
Controller Calibration
* These Objects are only available in Factory mode.
105
Appendix D: DeviceNet Attribute Summary
Identity Object, Class Code: 01 (0x01)
Identity Object, Class Code: 01 (0x01)
The Identity Object is required on all devices and provides identification of and general information
about the device.
Table 62: Identity Object Class Attributes
Attribute
Access
1
2
6
7
Get
Get
Get
Get
Name
Revision
Max Object Instance
Max Class Identifier
Max Instance Attribute
Type
Value
UINT
UINT
UINT
UINT
1
1
7
8
Table 63: Identity Object Instance Attributes
Attribute
Access
1
2
3
4
Get
Get
Get
Get
5
6
7
8
100
Get
Get
Get
Get
Get
Name
Type
Vendor
Product Type
Product Code
Revision
Major Revision
Minor Revision
Device Status
Serial Number
Product Name
Length
Name
UINT
UINT
UINT
STRUCT OF
USINT
USINT
UINT
UDINT
STRUCT OF
USINT
STRING [16]
State
Controller Revision
Major Revision
Minor Revision
USINT
STRUCT OF
USINT
USINT
Value
36
26
4
See Below
See Below
See Below
16
ALTA Digital
MFC
See Below
(5)
Table 64: Common Services
Service Code
05 (0x05)
14 (0x0E)
Class
No
Yes
Instance
Yes
Yes
Service Name
Reset
Get_Attribute_Single
Revision – Attribute 4
MKS/DIP maintains strict revision control. The major revision number will increment as functional
enhancements are implemented. The minor revision will increment if minor changes are incorporated.
106
Identity Object, Class Code: 01 (0x01)
Appendix D: DeviceNet Attribute Summary
Device Status – Attribute 5
bit 0
owned
bit 1
bit 2
bit 3
bit 4-7
bit 8
reserved
configured
reserved
vendor specific
minor cfg fault
bit 9
minor dev.fault
bit 10
major cfg.fault
bit 11
major dev.fault
bit 12-15
reserved
0=not owned
1=owned (allocated)
0
0
0
0
0=no fault
1=minor fault
0=no fault
1=minor device fault
0=no fault
1=major cfg. fault
0=no fault
1=major device fault
0
Serial Number – Attribute 6
The serial number is encoded in the product during the manufacturing cycle and is guaranteed to be
unique across all product lines produced by DIP/MKS.
State – Attribute 8
The Device State reflects whether any errors have occurred and the severity. The following states are
supported. The only exit from a Major Unrecoverable fault condition is power cycling the device.
Table 65: Device States
State
0
1
2
3
4
5
Interpretation
Non-existent
Self Test
Standby
Operating
Major Recoverable fault
Major Unrecoverable fault
Causes
Normal operating mode
See S_Device_Supervisor Alarm Detail
See S_Device_Supervisor Alarm Detail
Controller Revision – Attribute 100
MKS Instruments maintains strict revision control. The major revision number will increment as
functional enhancements are implemented to the Controller firmware. The minor revision will
increment if minor changes are incorporated to the Controller Firmware.
107
Appendix D: DeviceNet Attribute Summary
Router Object, Class Code: 02 (0x02)
Router Object, Class Code: 02 (0x02)
The Message Router Object provides a messaging connection point through which a Client may address
a service to any object class or instance residing in the physical device.
Table 66: Router Object Class Attributes
Attribute
Access
1
6
7
Get
Get
Get
Name
Revision
Max Class Identifier
Max Instance Attribute
Type
Value
UINT
UINT
UINT
1
7
2
Table 67: Router Object, Instance 1 Attributes
Attribute
Access
2
Get
Name
Number of Connections
Type
Value
UINT
2
Table 68: Common Services
Service Code
Class
Instance
14 (0x0E)
Yes
Yes
108
Service Name
Get_Attribute_Single
DeviceNet Object, Class Code: 03 (0x03)
Appendix D: DeviceNet Attribute Summary
DeviceNet Object, Class Code: 03 (0x03)
Table 69: DeviceNet Object Class Attributes
Attribute
Access
1
Get
Name
Type
Revision
UINT
Value
1
Table 70: DeviceNet Object, Instance 1 Attributes
Attribute
Access
1
2
3
4
5
Get/Set
Get/Set
Get/Set
Get/Set
Get/Spc
6
7
8
9
Get
Get
Get
Get
Name
Type
MACID
Baud Rate
Bus Off Interrupt
Bus Off Counter
USINT
USINT
BOOL
USINT
Allocation Information
Choice Byte
Master Node Addr.
Mac Switch Changed
Baud Switch Changed
Current Mac Switch
Current Baud Switch
STRUCT of
BYTE
USINT
BOOLEAN
BOOLEAN
USINT
USINT
Value
See Below
See Below
See Below
See Below
See Below
Table 71: Common Services
Service Code
Class
Instance
14 (0x0E)
16 (0x10)
75 (0x4B)
76 (0x4C)
Yes
No
No
No
Yes
Yes
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
Allocate Master/Slave
Release Master/Slave
MACID – Attribute 1
The MACID is set using two BCD rotary switches located on the front panel. Valid MACID addresses
are 0 to 63 (0 to 3F Hex). Setting the switch address to a value greater than 63 will disable the switch
and allow software setting of the MACID. The software setting defaults to the last hardware setting.
The switch is only read during power up.
Baud Rate – Attribute 2
Settable only if the Baud Rate switch is set to a value greater than 2. Value returned will be switch value
if less than 4 or the last value set.
Switch/Value
0
1
2
3
Speed
125 kbits
250 kbits
500 kbits
Software settable
109
Appendix D: DeviceNet Attribute Summary
DeviceNet Object, Class Code: 03 (0x03)
Bus Off Interrupt – Attribute 3
Bus Off Interrupt (BOI) determines the action if a Bus Off state is encountered.
BOI
0
1
Action
Hold chip in OFF state (default)
If possible reset CAN chip
Bus Off Counter – Attribute 4
Bus Off Counter will be forced to 0 whenever set regardless of the data value provided.
Allocation Information – Attribute 5
Allocation_byte
bit 0
bit 1
bit 2
bit 3-7
explicit
polled
strobed
reserved
set to 1 to allocate
set to 1 to allocate
(not supported)
(always 0)
110
Assembly Object, Class Code: 04 (0x04)
Appendix D: DeviceNet Attribute Summary
Assembly Object, Class Code: 04 (0x04)
The Assembly Objects bind attributes of multiple objects to allow data to or from each object to be sent
or received over a single connection.
Table 72: Assembly Object Class Attributes
Attribute
Access
1
2
Get
Get
Name
Revision
Max Object
Instance
Type
UINT
UINT
Value
1
20
Table 73: Assembly Object, Instance 1 Attributes
Attribute
Access
3***
Get
Name
Flow β
Type
INT
Value
See S-Analog Sensor, Attribute 6
Table 74: Assembly Object, Instance 2 Attributes
Attribute
Access
3***
Get
Name
Data
Status β
Flow β
Type
STRUCT of
BYTE
INT
Value
See S-Device Supervisor, Attribute 12
See S-Analog Sensor, Attribute 6
Table 75: Assembly Object, Instance 6 Attributes
Attribute
Access
3***
Get
Name
Data
Status β
Flow β
Setpoint
Override β
Valve β
Type
STRUCT of
BYTE
INT
INT
USINT
INT
Value
See S-Device Supervisor, Attribute 12
See S-Analog Sensor, Attribute 6
See S-Single Stage Controller, Attribute 6
See S-Analog Actuator, Attribute 5
See S-Analog Actuator, Attribute 6
Table 76: Assembly Object, Instance 7 Attributes
Attribute
Access
3***
Get/Set
Name
Setpoint δ
Type
INT
Value
See S-Single Stage Controller, Attribute 6
Table 77: Assembly Object, Instance 8 Attributes
Attribute
Access
3***
Get/Set
Name
Data
Override δ
Setpoint δ
Type
STRUCT of
USINT
INT
111
Value
See S-Analog Actuator, Attribute 5
See S-Single Stage Controller, Attribute 6
Appendix D: DeviceNet Attribute Summary
Assembly Object, Class Code: 04 (0x04)
Table 78: Assembly Object, Instance 14 Attributes
Attribute
Access
3***
Get
Name
Type
STRUCT of
BYTE
REAL
Data
Status β
Flow β
Value
See S-Device Supervisor, Attribute 12
See S-Analog Sensor, Attribute 6
Table 79: Assembly Object, Instance 18 Attributes
Attribute
Access
3***
Get
Name
Type
STRUCT of
BYTE
REAL
REAL
USINT
REAL
Data
Status β
Flow β
Setpoint
Override β
Valve β
Value
See S-Device Supervisor, Attribute 12
See S-Analog Sensor, Attribute 6
See S-Single Stage Controller, Attribute 6
See S-Analog Actuator, Attribute 5
See S-Analog Actuator, Attribute 6
Table 80: Assembly Object, Instance 19 Attributes
Attribute
Access
3***
Get/Set
Name
Type
Setpoint δ
REAL
Value
See S-Single Stage Controller, Attribute 6
Table 81: Assembly Object, Instance 20 Attributes
Attribute
Access
3***
Get/Set
Name
Type
STRUCT of
USINT
REAL
Data
Override δ
Setpoint δ
Value
See S-Analog Actuator, Attribute 5
See S-Single Stage Controller, Attribute 6
β: Data that is received from the MFC processor.
δ: Data that is sent to the MFC processor.
Table 82: Common Services
Service Code
14 (0x0E)
16 (0x10)
Class
Instance
Yes
No
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
(1) Assembly instance 1, 2, 6, 14, and 18 are used to generate the POLL response packet and consists
of the data described in the table below.
(2) Assembly instance 7, 8, 19, and 20 are used to consume the POLL request packet and consists of
the data described in the table below.
112
Assembly Object, Class Code: 04 (0x04)
Appendix D: DeviceNet Attribute Summary
Table 83: Assembly Instances
Instance
Byte
1
0
1
0
1
2
0
1
2
3
4
5
6
7
0
1
0
1
2
0
1
2
3
4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
2
6
7
8
14
18
Data
Flow (low byte)
*S-Analog Sensor, Attribute 6
Flow (high byte)
Status
*S-Device Supervisor, Attribute 12
Flow (low byte)
Flow (high byte)
*S-Analog Sensor, Attribute 6
Status
*S-Device Supervisor, Attribute 12
Flow (low byte)
Flow (high byte)
*S-Analog Sensor, Attribute 6
Setpoint (low byte)
Setpoint (high byte)
*S-Single Stage Controller, Attribute 6
Override
*S-Analog Actuator, Attribute 5
Valve (low byte)
Valve (high byte)
*S-Analog Actuator, Attribute 6
Setpoint (low byte)
*S-Single Stage Controller, Attribute 6
Setpoint (high byte)
Override
*S-Analog Actuator, Attribute 5
Setpoint (low byte)
*S-Single Stage Controller, Attribute 6
Setpoint (high byte)
Status
*S-Device Supervisor, Attribute 12
Flow (low byte)
Flow
Flow
Flow (high byte)
*S-Analog Sensor, Attribute 6
Status
*S-Device Supervisor, Attribute 12
Flow (low byte)
Flow
Flow
Flow (high byte)
*S-Analog Sensor, Attribute 6
Setpoint (low byte)
Setpoint
Setpoint
Setpoint (high byte)
*S-Single Stage Controller, Attribute 6
Override
*S-Analog Actuator, Attribute 5
Valve (low byte)
Valve
Valve
Valve (high byte)
*S-Analog Actuator, Attribute 6
(Continued on next page)
113
Appendix D: DeviceNet Attribute Summary
Assembly Object, Class Code: 04 (0x04)
Table 83: Assembly Instances (continued)
19
20
0
1
2
3
0
1
2
3
4
Setpoint (low byte)
Setpoint
Setpoint
Setpoint (high byte)
Override
Setpoint (low byte)
Setpoint
Setpoint
Setpoint (high byte)
*S-Single Stage Controller, Attribute 6
*S-Analog Actuator, Attribute 5
*S-Single Stage Controller, Attribute 6
114
Connection Object, Class Code: 05 (0x05)
Appendix D: DeviceNet Attribute Summary
Connection Object, Class Code: 05 (0x05)
The Connection Objects manage the characteristics of each communication connection. As a Group II
Only Slave device the unit supports one explicit message connection and a POLL message connection.
Table 84: Connection Object Class Attributes
Attribute
Access
1
Get
Name
Type
Revision
UINT
Value
1
Table 85: Connection Object, Instance 1 Attributes (Explicit Message)
Attribute
Access
1
2
3
4
5
6
7
8
9
12
13
14
15
16
Get
Get
Get
Get
Get
Get
Get
Get
Get/Set
Get/Set
Get
Get
Get
Get
Name
Type
State
Instance Type
Transport Class Trigger
Production Connection
Consumed Connection
Initial Comm. Char.
Production Size
Consumed Size
Expected Packet Rate
Timeout Action
Prod. Path Length
Production Path
Cons. Path Length
Consumed Path
USINT
USINT
USINT
UINT
UINT
USINT
UINT
UINT
UINT
USINT
USINT
USINT
Value
See Below
0 = Explicit Message
0x83
See Below
See Below
0x21
128
17
default 2500 msec
See Below
0
(null)
0
(null)
Table 86: Connection Object, Instance 2 Attributes (POLL connection)
Attribute
Access
1
2
3
4
5
6
7
8
9
12
13
Get
Get
Get
Get
Get
Get
Get
Get
Get/Set
Get/Set
Get
Name
Type
State
USINT
Instance Type
USINT
Transport Class Trigger
USINT
Production Connection
UINT
Consumed Connection
UINT
Initial Comm. Char.
USINT
Production Size
UINT
Consumed Size
UINT
Expected Packet Rate
UINT
Timeout Action
USINT
Prod. Path Length
USINT
(Continued on next page)
115
Value
See Below
1 = I/O Message
0x83
See Below
See Below
0x1
See Below
See Below
default 2500 msec
See Below
See Below
Appendix D: DeviceNet Attribute Summary
Connection Object, Class Code: 05 (0x05)
Table 86: Connection Object, Instance 2 Attributes (POLL connection) (continued)
Attribute
Access
14
Get/Set
***
15
16
Get
Get/Set
***
Name
Type
Value
STRUCT of
USINT
USINT
USINT
USINT
USINT
USINT
USINT3
STRUCT of
USINT
USINT
USINT
USINT
USINT
USINT
Production Path
Log. Seg., Class
Class Number
Log.Seg., Instance
Instance Number
Log.Seg., Attribute
Attribute Number
Cons. Path Length
Consume Path
Log. Seg., Class
Class Number
Log.Seg., Instance
Instance Number
Log.Seg., Attribute
Attribute Number
0x20
0x04
0x24
0x02 (default)
0x30
0x03
6
0x20
0x04
0x24
0x07 (default)
0x30
0x03
Table 87: Common Services
Service Code
05 (0x05)
14 (0x0E)
16 (0x10)
Class
Instance
Yes
Yes
No
Yes
Yes
Yes
Service Name
Reset
Get_Attribute_Single
Set_Attribute_Single
State – Attribute 1
Connection States:
0 = non-existent
1 = configuring
3 = established
4 = timed out
Connection ID's – Attributes 4 and 5
Connection 1 Produced Connection ID: 10xxxxxx011
Connection 1 Consumed Connection ID: 10xxxxxx100
Connection 2 Produced Connection ID: 01111xxxxxx
Connection 2 Consumed Connection ID: 10xxxxxx101
xxxxxx = Node Address.
116
Connection Object, Class Code: 05 (0x05)
Appendix D: DeviceNet Attribute Summary
Production and Consumed Sizes – Attributes 7 and 8
The Production and Consumed sizes will change based on what Assembly Instance is chosen for the
POLL request and POLL response. The table below will define the Production and Consumed sizes
with their respective Assembly.
Table 88: Production and Consumed Sizes
Assembly
Production Size
1
2
6
7
8
14
18
19
20
2
3
8
2
3
5
14
4
5
Watch Dog Timeout Activity – Attribute 12
0 = Timeout
1 = Auto Delete
2 = Auto Reset
Consumed Size
(I/O Messaging default)
(Explicit Messaging, fixed value)
117
Appendix D: DeviceNet Attribute Summary
S-Device Supervisor Object, Class Code: 48 (0x30)
S-Device Supervisor Object, Class Code: 48 (0x30)
Table 89: S-Device Supervisor Object Class Attributes
Attribute
Access
1
2
6
7
Get
Get
Get
Get
Name
Type
Revision
Max Object Instance
Max Class Identifier
Max Instance Attribute
UINT
UINT
UINT
UINT
Value
1
1
7
100
Table 90: S-Device Supervisor Object Instance 1
Attribute
Access
3
4
5
6
7
8
9
11***
12***
13
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
***
***
***
***
Name
Type
Device Type
SHORT STRING
SEMI Standard Revision Level
SHORT STRING
Manufacturer’s Name
SHORT STRING
Manufacturer’s Model Number
SHORT STRING
Software Revision Level
SHORT STRING
Hardware Revision Level
SHORT STRING
Manufacturer’s Serial Number
SHORT_STRING
Device Status
USINT
Exception Byte
BYTE
STRUCT of
Exception Detail Alarm
STRUCT of
Common Exception Detail
USINT
Size
ARRAY of
Detail
BYTE
Detail[0]
BYTE
Detail[1]
STRUCT of
Device Exception Detail
USINT
Size
ARRAY of
Detail
BYTE
Detail[0]
Manufacturer Exception Detail STRUCT of
USINT
Size
ARRAY of
Detail
BYTE
Detail[0]
(Continued on next page)
118
Value
MFC
E54-0997
MKS Instruments
ALTA Digital MFC
See Below
See Below
MFC Serial Number
See Below
See Below
2
See Below
See Below
1
See Below
1
See Below
S-Device Supervisor Object, Class Code: 48 (0x30)
Appendix D: DeviceNet Attribute Summary
Table 90: S-Device Supervisor Object Instance 1 (continued)
Attribute
Access
Name
14
Get
Exception Detail Warning
Common Exception Detail
Size
Detail
Detail[0]
Detail[1]
Device Exception Detail
Size
Detail
Detail[0]
Manufacturer Exception Detail
Size
Detail
Detail[0]
STRUCT of
STRUCT of
USINT
ARRAY of
BYTE
BYTE
STRUCT of
USINT
ARRAY of
BYTE
STRUCT of
USINT
ARRAY of
BYTE
***
***
***
***
Type
15***
16***
100
Get/Set
Get/Set
Get
Alarm Enable
Warning Enable
Mode
BOOL
BOOL
USINT
101***
Get/Set
Visual Indicator
USINT
Value
2
See Below
See Below
1
See Below
1
See Below
0=Disable, 1=Enable
0=Disable, 1=Enable
0 = User
1 = Calibration
0=Off, 1=On
Table 91: Common Services
Service Code
05 (0x05)
06 (0x06)
07 (0x07)
14 (0x0E)
16 (0x10)
Class
Instance
No
No
No
Yes
No
Yes
Yes
Yes
Yes
Yes
Service Name
Reset
Start
Stop
Get_Attribute_Single
Set_Attribute_Single
Table 92: Object-Specific Services
Service Code
75 (0x4B)
76 (0x4C)
78 (0x4E)
Parameter
TestID
Class
Instance
No
No
No
Yes
Yes
Yes
Service Name
Abort
Recover
Perform_Diagnostics
Form
Description
USINT
Type of diagnostic test to be performed
Test ID Parameter
Type of diagnostics to be performed
0
Standard
119
Appendix D: DeviceNet Attribute Summary
S-Device Supervisor Object, Class Code: 48 (0x30)
Table 93: Manufacturer-Specific Services
Service Code
50 (0x32)
Parameter
Class
Instance
No
Yes
Form
Password
USINT
Service Name
Change Mode
Description
0x0000 = User
0x1234 = Calibration
Software Revision Level – Attribute 7
The Software Revision will be a text string of the Major and Minor revision information of the
Identity object. It will have the format X.YYY, where X is the major revision and YYY is the Minor
revision. The revision code will match that provided by the Identity object.
Hardware Revision Level – Attribute 8
The Hardware Revision will be a text string reflecting the current revision of the hardware. It will
have the format X.YYY, where X is the major revision and YYY is the Minor revision.
Device Status – Attribute 11
0 = Undefined
1 = Self Testing
2 = Idle
3 = Self-Test Exception
4 = Executing
5 = Abort
6 = Critical Fault
Exception Status – Attribute 12
Table 94: Exception Status – Attribute 12
Bit
0
1
2
3
4
5
6
7
Function
ALARM/ device-common
ALARM/ device-specific
ALARM/ manufacturer-specific
Reserved – set to 0
WARNING/ device-common
WARNING/ device-specific
WARNING/ manufacturer-specific
1 = Expanded Method
120
S-Device Supervisor Object, Class Code: 48 (0x30)
Appendix D: DeviceNet Attribute Summary
Common Exception Detail – Attribute 13 and 14
Table 95: Common Exception Detail – Attribute 13 and 14
Bit
0
1
2
3
4
5
6
7
Common Exception Detail[0]
Bit
Internal diagnostic exception
Microprocessor exception
ROM/FLASH exception
EEPROM exception
RAM exception
0 - Reserved by DeviceNet
Internal real-time exception
0 - Reserved by DeviceNet
0
1
2
3
4
5
6
7
Common Exception Detail[1]
0
0
0
Power supply input voltage
0
Notify manufacturer
Reset exception
0 = Reserved by DeviceNet
Internal Diagnostic Exception:
Bad or no HW calibration
No factory setup
ROM/FLASH exception:
ALARM if there is an exception
WARNING if the FLASH counter overflows
MFC Exception Detail – Attributes 13 and 14
Table 96: MFC Exception Detail – Attributes 13 and 14
Bit
MFC Device Exception Detail
0
Reading Valid
S-Analog Sensor *
1
Flow Low
S-Analog Sensor
2
Flow High
S-Analog Sensor
3
Flow Control
S-Single Stage Controller
4
Valve Low
S-Analog Actuator
5
Valve High
S-Analog Actuator
6
Reserved = 0
7
Reserved = 0
* Only used in Warning Detail. This bit is always 0 in Alarm Detail.
Flow Low/Flow High:
Signal overflow
Flow Control:
Flow controller unstable
Setpoint not reached in time
121
Appendix D: DeviceNet Attribute Summary
S-Device Supervisor Object, Class Code: 48 (0x30)
Manufacturer Exception Detail – Attributes 13 and 14
Table 97: Manufacturer Exception Detail – Attributes 13 and 14
Bit
0
1
2
3
4
5
6
7
Manufacturer Exception Detail
Speedup Result Invalid
Bridge Controller Error
Valve Circuit Error
No Gas Table Available or Used
Power Ground Level Invalid
AD or DA Circuitry Error
Temperature Out Of Range
Bus Controller Error
AD/DA Circuitry Error:
Analog ground level invalid
Reference voltage incorrect
AD device error
DA device error
Attribute 0x65—Visual Indicator
Attribute ID 0x65 controls the behavior of the visual indicator (the wink function) on the device. This
attribute controls the flashing of the Module Status LED, which is useful for visually identifying a
particular device on the network, where:
0 = Off (default)
1 = On
It is not in the non-volatile memory therefore is off after power cycle.
122
S-Analog Sensor Object, Class Code: 49 (0x31)
Appendix D: DeviceNet Attribute Summary
S-Analog Sensor Object, Class Code: 49 (0x31)
Table 98: S-Analog Sensor Object Class Attributes
Attribute
Access
1
2
6
7
Get
Get
Get
Get
Name
Type
Revision
Max Object Instance
Max Class Identifier
Max Instance Attribute
UINT
UINT
UINT
UINT
Value
1
1
7
99
Table 99: S-Analog Sensor Object Instance 1
Attribute
Access
Name
Type
Value
Attribute
3***
4***
Access
Get/Set
Get/Set
Name
Data Type
Data Units
Type
USINT
UINT
5***
6***
7***
10***
17***
18***
21***
22***
28***
32***
33***
35***
Get
Get
Get
Get
Get/Set
Get/Set
Get/Set
Get/Set
Get
Get
Get
Get/Set
BOOL
(See Data Type)
BYTE
(See Data Type)
(See Data Type)
(See Data Type)
(See Data Type)
(See Data Type)
BOOL
(See Data Type)
(See Data Type)
UINT
95***
96***
99
Get Set
Get/Set
Get
Reading Valid
Value (Flow)
Status
Full Scale
Alarm Trip Point High
Alarm Trip Point Low
Warning Trip Point High
Warning Trip Point Low
Autozero Status
Overrange
Underrange
Gas Calibration Object
Instance
Flow Totalizer
Flow Hours
Subclass
0x1001=counts,
0x1400=sccm
0=invalid, 1=valid
See Below
See Below
See Below
See Below
See Below
See Below
See Below
See Below
See Below
See Below
See Below
ULINT
UDINT
UINT
See Below
See Below
1 = Flow Diagnostics
Value
0xC3=INT, 0xCA=REAL
Table 100: Common Services
Service Code
14 (0x0E)
16 (0x10)
Class
Instance
Yes
No
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
Table 101: Object-Specific Services
Service Code
75 (0x4B)
Class
Instance
No
Yes
123
Service Name
Zero_Adjust
Appendix D: DeviceNet Attribute Summary
S-Analog Sensor Object, Class Code: 49 (0x31)
Value (Flow) – Attribute 6
The corrected, converted, calibrated final value of the sensor.
Status – Attribute 7
Table 102: Status – Attribute 7
Bit
0
1
2
3
4
5
6
7
Definition
High Alarm Exception
Low Alarm Exception
High Warning Exception
Low Warning Exception
0 – Reserved
0 – Reserved
0 – Reserved
0 – Reserved
Full Scale – Attribute 10
The value of attribute Value corresponding to the Full Scale calibrated measurement of the sensor.
Default value will be maximum allowable value for the Data Type.
Alarm Trip Point High Attribute 17
Determines the Value above which an Alarm condition will occur.
Alarm Trip Point Low – Attribute 18
Determines the Value below which an Alarm condition will occur.
Warning Trip Point High – Attribute 21
Determines the Value above which a Warning condition will occur.
Warning Trip Point Low – Attribute 22
Determines the Value below which an Warning condition will occur.
Auto Zero Status – Attribute 28
0 = Device is not in process of nulling.
1 = Device in process of nulling.
Overrange – Attribute 32
Specifies the highest valid value.
Underrange – Attribute 33
Specifies the lowest valid value.
124
S-Analog Sensor Object, Class Code: 49 (0x31)
Appendix D: DeviceNet Attribute Summary
Gas Calibration Object Instance – Attribute 35
Value is the selected S-Gas Calibration Object instance.
Flow Totalizer – Attribute 95
Total Gas flowed through the device since this value was last set to zero.
Flow Hours – Attribute 96
Total time device has been powered and flowing gas since this value was last set to zero.
Subclass – Attribute 99
Attributes 95 and 96 of the subclass are supported.
125
Appendix D: DeviceNet Attribute Summary
S-Analog Actuator Object, Class Code: 50 (0x32)
S-Analog Actuator Object, Class Code: 50 (0x32)
Table 103: S-Analog Actuator Object Class Attributes
Attribute
Access
1
2
6
7
Get
Get
Get
Get
Name
Type
Revision
Max Object Instance
Max Class Identifier
Max Instance Attribute
UINT
UINT
UINT
UINT
Value
1
1
7
21
Table 104: S-Analog Actuator Object Instance 1
Attribute
Access
3 ***
4***
5***
6***
7***
21***
Get/Set
Get/Set
Get/Set
Get/Set
Get
Get/Set
Name
Type
Data Type
Data Units
Override
Value (Valve)
Status
Safe State
USINT
UINT
USINT
(See Data Type)
BYTE
USINT
Value
0xC3=INT, 0xCA=REAL
See Below
See Below
See Below
See Below
See Below
Table 105: Common Services
Service Code
14 (0x0E)
16 (0x10)
Class
Instance
Yes
No
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
Data Units – Attribute 4
0x1001 = counts
0x1007 = % Full Scale
0x2D00 = Volts
0x2D01 = mVolts
Override – Attribute 5
0 = Normal
1 = Off/Closed
2 = On/Open
3 = Hold
4 = Safe State
Value (Valve) – Attribute 6
The uncorrected value sent to the analog output for the valve.
126
S-Analog Actuator Object, Class Code: 50 (0x32)
Appendix D: DeviceNet Attribute Summary
Status – Attribute 7
Table 106: Status – Attribute 7
Bit
0
1
2
3
4
5
6
7
Definition
High Alarm Exception
Low Alarm Exception
High Warning Exception
Low Warning Exception
0 - Reserved
0 - Reserved
0 - Reserved
0 - Reserved
Safe State – Attribute 21
0 = Zero / Off / Closed
1 = Full Scale / On / Open
2 = Hold Last Value
127
Appendix D: DeviceNet Attribute Summary
S-Single Stage Controller Object, Class Code: 51
(0x33)
S-Single Stage Controller Object, Class Code: 51 (0x33)
Table 107: S-Single Stage Controller Object Class Attributes
Attribute
Access
1
2
6
7
Get
Get
Get
Get
Name
Type
Revision
Max Object Instance
Max Class Identifier
Max Instance Attribute
UINT
UINT
UINT
UINT
Value
1
1
7
19
Table 108: S- Single Stage Controller Object Instance 1
Attribute
Access
Name
Type
Attribute
3***
4***
Access
Get/Set
Get/Set
Name
Data Type
Data Units
Type
USINT
UINT
6 ***
10 ***
19 ***
Get/Set
Get
Get/Set
Setpoint
Status
Ramp Rate
(See Data Type)
BYTE
UDINT
Value
Value
0xC3=INT, 0xCA=REAL
0x1001=counts,
0x1400=sccm
See Below
See Below
See Below
Table 109: Common Services
Service Code
14 (0x0E)
16 (0x10)
Class
Instance
Yes
No
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
Setpoint – Attribute 6
The Setpoint sent to the device actuator.
Status – Attribute 10
Table 110: Status – Attribute 10
Bit
0
1
2
3
4
5
6
7
Definition
Alarm Exception
Warning Exception
0 – Reserved
0 – Reserved
0 – Reserved
0 – Reserved
0 – Reserved
0 – Reserved
128
S-Gas Calibration Object, Class Code: 52 (0x34)
Appendix D: DeviceNet Attribute Summary
Ramp Rate – Attribute 19
Time in msec to reach the set point.
S-Gas Calibration Object, Class Code: 52 (0x34)
Table 111: S-Gas Calibration Object Class Attributes
Attribute
Access
1
2
6
7
Get
Get
Get
Get
Name
Type
Revision
Max Object Instance
Max Class Identifier
Max Instance Attribute
UINT
UINT
UINT
UINT
Value
1
20
7
99
Table 112: S- Gas Calibration Object Instance 1…20
Attribute
Access
3 ***
Get/Set Ω
Get
Get/Set
Get
4 ***
5
6 ***
7 ***
8
9
95
96
99
Get/Set
Get
Get
Get
Get
Get
Name
Type
Value
Gas Standard Number
UINT
See Below
Valid Sensor Instance
Gas Symbol
UINT
SHORT STRING
1
Gas Type Name
Full Scale
Amount
Units
Additional Scaler
Calibration Date
Calibration Gas Number
Calibration Pressure
Calibration Temperature
Subclass
STRUCT of:
REAL
UINT
REAL
DATE
UINT
REAL
REAL
UINT
See Below
0x1400 = sccm
See Below
See Below
See Below
See Below
See Below
1 = Standard T & P
Table 113: Common Services
Service Code
14 (0x0E)
16 (0x10)
Class
Instance
Yes
No
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
Table 114: Object-Specific Services
Service Code
75 (0x4B)
Class
Instance
Yes
No
129
Service Name
Get_All_Instances
Appendix D: DeviceNet Attribute Summary
S-Gas Calibration Object, Class Code: 52 (0x34)
Table 115: Get All Instances Response
Parameter
Size of List
List of Gas Calibrations
Data Type
UINT
ARRAY of
STRUCT of
UINT
UINT
UINT
Description
Specifies the number of elements in the array.
Supported List
S-Gas Calibration Object Instance ID
Gas Standard Number
Valid Sensor Instance
Gas Standard Number – Attribute 3
0 = No gas type specified
Full Scale – Attribute 6
Amount = The amount, Mass Flow, corresponding to the Full Scale of the associated SAnalog Sensor Object.
Additional Scaler – Attribute 7
Correction for a gas other than the type identified for the object instance by attribute 3.
Calibration Date – Attribute 8
The date this instance was last calibrated. This value is the number of days since 01/01/1972.
Calibration Gas Number – Attribute 9
The gas number used to calibrate the object instance.
Calibration Pressure – Attribute 95
The gas pressure in KiloPascal used during calibration.
Calibration Temperature – Attribute 96
The gas temperature in Degrees C used during calibration.
130
Controller Calibration Object, Class Code: 102 (0x66)
Appendix D: DeviceNet Attribute Summary
Controller Calibration Object, Class Code: 102 (0x66)
Table 116: Controller Calibration Object Class Attributes
Attribute
Access
1
Get
Name
Revision
Type
UINT
Value
3
Table 117: Controller Calibration Object Instance 1…20
Attribute
Access
Name
Type
1
Get/Set Ω
Controller P
REAL
See Below
2
Get/Set Ω
Controller I
REAL
See Below
3
Get/Set Ω
Controller D
REAL
See Below
25
Get/Set Ω
Gas Table Length
USINT
26
Get/Set Ω
27
Get/Set Ω
28
Get/Set Ω
29
Get/Set Ω
30
Get/Set Ω
31
Get/Set Ω
32
Get/Set Ω
33
Get/Set Ω
34
Get/Set Ω
35
Get/Set Ω
STRUCT of
Flow Cal Point 0
REAL
Sensor Value 0
REAL
Flow Value 0
STRUCT of
Flow Cal Point 1
REAL
Sensor Value 1
REAL
Flow Value 1
Flow Cal Point 2
STRUCT of
Sensor Value 2
REAL
REAL
Flow Value 2
STRUCT of
Flow Cal Point 3
REAL
Sensor Value 3
REAL
Flow Value 3
STRUCT of
Flow Cal Point 4
REAL
Sensor Value 4
REAL
Flow Value 4
STRUCT of
Flow Cal Point 5
REAL
Sensor Value 5
REAL
Flow Value 5
STRUCT of
Flow Cal Point 6
REAL
Sensor Value 6
REAL
Flow Value 6
STRUCT of
Flow Cal Point 7
REAL
Sensor Value 7
REAL
Flow Value 7
STRUCT of
Flow Cal Point 8
REAL
Sensor Value 8
REAL
Flow Value 8
STRUCT of
Flow Cal Point 9
REAL
Sensor Value 9
REAL
Flow Value 9
(Continued on next page)
131
Value
Appendix D: DeviceNet Attribute Summary
Controller Calibration Object, Class Code: 102
(0x66)
Table 117: Controller Calibration Object Class Attributes (continued)
Attribute
Access
36
Get/Set Ω
37
Get/Set Ω
38
Get/Set Ω
39
Get/Set Ω
40
Get/Set Ω
41
Get/Set Ω
42
Get/Set Ω
43
Get/Set Ω
44
Get/Set Ω
45
Get/Set Ω
46
Get/Set Ω
101
Get/Set Ω
Name
Flow Cal Point 10
Sensor Value 10
Flow Value 10
Flow Cal Point 11
Sensor Value 11
Flow Value 11
Flow Cal Point 12
Sensor Value 12
Flow Value 12
Flow Cal Point 13
Sensor Value 13
Flow Value 13
Flow Cal Point 14
Sensor Value 14
Flow Value 14
Flow Cal Point 15
Sensor Value 15
Flow Value 15
Flow Cal Point 16
Sensor Value 16
Flow Value 16
Flow Cal Point 17
Sensor Value 17
Flow Value 17
Flow Cal Point 18
Sensor Value 18
Flow Value 18
Flow Cal Point 19
Sensor Value 19
Flow Value 19
Flow Cal Point 20
Sensor Value 20
Flow Value 20
Counts Full Scale
Type
STRUCT of
REAL
REAL
STRUCT of
REAL
REAL
STRUCT of
REAL
REAL
STRUCT of
REAL
REAL
STRUCT of
REAL
REAL
STRUCT of
REAL
REAL
STRUCT of
REAL
REAL
STRUCT of
REAL
REAL
STRUCT of
REAL
REAL
STRUCT of
REAL
REAL
STRUCT of
REAL
REAL
UINT
Value
The number of counts that equal 100%
Full Scale. [default] = 0x6000
Table 118: Common Services
Service Code
14 (0x0E)
16 (0x10)
Class
Instance
Yes
No
Yes
Yes
132
Service Name
Get_Attribute_Single
Set_Attribute_Single
Controller Calibration Object, Class Code: 102 (0x66)
Appendix D: DeviceNet Attribute Summary
Table 119: Manufacturer-Specific Services
Service Code
50 (0x32)
Class
Instance
Yes
No
Service Name
Do Raw Zero
This service is only available in Factory Mode.
Ψ : This attribute is only available in Factory mode.
Ω : This attribute is as follows:
Get in all modes.
Set in Calibration mode as long Factory Tag attribute is equal to 0.
Set in Factory mode.
τ: This attribute is as follows:
Get in all modes.
Set in Factory mode only.
Controller P – Attribute 1
P component of the PID controller.
Controller I – Attribute 2
I component of the PID controller. High P component values give the possibility of high I component
values.
Controller D – Attribute 3
D component of the PID controller. Should be zero.
133
Appendix E: Mass Flow Device Sizing Guidelines
General Information
Appendix E: Mass Flow Device Sizing Guidelines
General Information
To select the correct device for an application, you must determine the:
„
Flow device range
The flow device range depends on the desired flow rate and the gas correction factor for the gas to be used.
MKS states the flow device ranges based on flow rate of nitrogen; the flow rate for other gases may vary.
The proper valve configuration depends upon the flow range, inlet pressure, differential pressure across the
unit, and density of the gas. Proper valve configurations have been established for all standard flow ranges
flowing nitrogen under standard operating pressures. These configurations are suitable for most all gases and
pressure conditions.
How To Determine the Flow Device Range
The Type 1480/1485 device is available in ranges of 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000,
20,000 and 30,000 sccm (N2 equivalent). To select the appropriate range, you must determine the flow rate of
nitrogen that is equivalent to the flow rate of the desired gas. Calculate the ratio of the Gas Correction Factor
(GCF) of nitrogen (1.00) to the GCF of the desired gas (refer to Appendix B, Gas Correction Factors, page
97), as shown in the following example.
Example
You need a flow rate of 250 sccm of argon (Ar). What range flow device should you use?
1. Find the GCF of Ar (1.39, as shown in Appendix B, Gas Correction Factors, page 97).
2. Insert the GCF of Ar in the following formula:
(GCF of N2)
(GCF of Ar)
=
(x)
(Desired flow rate of Ar)
where x is the equivalent flow rate of nitrogen (sccm).
( 1.00 )
( 1.39 )
=
(x)
( 250 sccm Ar )
x = 180 sccm N2
A flow rate of 250 sccm of Ar will produce a flow rate equivalent to 180 sccm of N2. This falls within the
range of a 200 sccm flow device.
When calculating equivalent N2 flows using gas correction factors, be sure to use a flow device with a
sufficient flow rate range. For example, if the calculated equivalent N2 flow in the example shown above is
205 sccm, use a 500 sccm flow device. The 500 sccm instrument can then be calibrated such that 205 sccm
N2 = full scale.
Note
When using a gas with a density higher than nitrogen, be sure that the control valve Full Scale
range can accommodate the desired flow rate. Please call the MKS Applications group if you
have any questions.
134
How To Determine the Flow Device Range
Appendix E: Mass Flow Device Sizing Guidelines
This page intentionally left blank.
135
Overview
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Appendix F: MKS ALTA Digital MFC Graphical User Interface (GUI)
Overview
The ALTA line of digital mass flow devices have calibration and tuning features, which can be altered to
expand the operating range of the devices. Specifically:
„
Calibration tables can be copied to new gas tables to allow device re-ranging or use of alternative gases.
„
Entirely new calibration tables can be created by users who have appropriate flow standards.
„
Each gas table for flow controllers has different PID tuning parameters associated with it. These can be
edited to provide optimum control performance for a particular gases or process conditions. In some
cases, a user might create a new gas table where the gas and full scale flow range remain the same as an
existing table but only the PID parameters are changed.
„
The ALTA Mass Flow Devices have a 20 gas table capacity.
To support these features, MKS Instruments provides a graphical user interface (GUI), which provides digital
access to the ALTA flow devices. This appendix describes use of the GUI, which supports the DeviceNet
version of the product.
The GUI is part of a complete software/hardware interface kit, which includes the following components:
„
The GUI software on a CD.
„
A security hard-key that attaches to either the parallel or USB ports of the Windows-based personal
computer.
The kit is available in two configurations:
With USB port security hard key
MKS P/N 133900-G1
With parallel port security hard key
MKS P/N 133900-G2
Software Setup
The ALTA digital Mass Flow Controller or Mass Flow Meter with DeviceNet interface can run under
Windows 98/WinNT/2000 only.
1. Insert the ALTA DeviceNet Application Kit CD into your CD-ROM drive. The setup wizard will
automatically start.
If the installation does not automatically start, run Setup.exe from the Setup directory.
2. Follow the instructions in the Setup wizard.
3. After completing the GUI software installation, install the Hasp Device Driver by going to
Start Æ Programs Æ Alta DeviceNet MFC. Click on the “Hasp Device Driver” pull-down option and
allow the driver to install.
Now you can start running the program.
136
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Equipment Needed
Equipment Needed
You will need the following equipment:
„
ALTA digital Mass Flow Controller or Mass Flow Meter with DeviceNet interface.
„
Elements included in the DeviceNet interface kit:
—
Graphical user interface (GUI) software, “AltaDeviceNetMFC.exe”
—
One security hard-key, linked to the GUI software
„
Standard DeviceNet communication cables
„
One SST brand DeviceNet communication card
„
Power supply (24V).
„
Assorted DeviceNet cables.
137
Equipment Setup
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Equipment Setup
24 V Power Supply
DeviceNet Hardware
Security
Hard-Key
(for parallel
or USB port)
SST Card Installed
in the PC
DeviceNet Cable
DeviceNet Cable
with 12 mm Female
Microconnector
ALTA DeviceNet MFC
Figure 16: Equipment Setup
138
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Starting the GUI
Starting the GUI
1. Double click the “AltaDeviceNetMFC.exe” shortcut on your computer desktop. The program starts and
following window appears:
Figure 17: Start Window
2. Click START to continue. After clicking START, the following Communications setup window appears.
Figure 18: Communications Setup Window
3. Choose the Baud Rate you selected for your DeviceNet network(500 K, 250 K or 125 K).
4. Choose the Host MAC ID(0 to 63). This is a dedicated address for the SST card. It must be different from
the MAC ID of the other devices on the same network.
5. Click OK to continue. The following panel appears as the software scans the device network.
Figure 19: Scan Device Network
139
Exiting the GUI
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
The Main Control Panel appears:
Figure 20: Main Control Panel
Exiting the GUI
Always formally exit the program before disconnecting the Mass Flow device. If you hot plug any device,
software must be restarted.
„
Click on the “Exit” button in the lower right corner of the Main Control Panel.
Or:
„
Click on “File” pull-down and then “Exit.”
Description of the Main Control Panel
Data Type
The Data Type switch is used to change the data type. Either Integer or Real data type can
be used in the operation.
Data Unit
The Data Unit switch is used to change the data unit. Either Counts or SCCM data unit can
be used in the operation.
Run/Stop
The Run/Stop switch toggles the control mode (run versus stop).
Run
Stop
The GUI puts the MFC in executing state.
The GUI puts the MFC in idle state.
140
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
User Mode and Calibration Mode
Remote Zero
The Remote Zero button zeros the ALTA DeviceNet MFC. Refer to How to Zero the Flow
Device, page 48, for proper zeroing procedures. This is available only in calibration mode.
Exit
The Exit button stops the application. Always formally exit the program before
disconnecting the Mass Flow device. If you hot plug any device, software must be
restarted.
Setpoint
The Setpoint control sets the flow setpoint in sccm or counts.
Valve
Control Mode
The Valve Control Mode sets whether the device is controlling flow, driving its valve full
open, or closing its valve. Simply click on the desired mode.
Flow
The Flow text box displays the current flow rate in sccm or counts.
Calibration
Mode
The Calibration Mode is used to select the GUI access level as user or calibration. A
password is required for calibration access. Refer to User Mode and Calibration Mode,
page 141.
Start Data Log
Checking the Start Data Log check box will cause data to be logged in the DataLog.csv file
in the current PC drive. This can be opened with Microsoft Excel and then saved as a
spreadsheet.
Exception
Status
The Exception Status is used to tell if the unit is running OK or has problem.
Green LED indicates that the unit is running OK. Red LED indicates the unit has problem.
Double click the LED to show what might go wrong. See ODVA specifications for detail.
Menu Items
The File Menu includes two options:
Exit
Print Graph (send to your default printer)
The Setup Menu has the following options:
Calibrate Flow is used to calibrate the gas table.
Edit Gas (Add/Select) is used to select, add, or delete gas tables.
Tuning Parameters is used to set PID values for device control tuning.
Trip Point Setup is used to set the Alarm/Warning trip point values.
Password is used to edit the user password in calibration mode.
Choose IO Assembly Instance is used to choose one of the predefined polled IO connection instances.
User Mode and Calibration Mode
The GUI has two access levels, User and Calibration, selected in the Calibration Mode field in the upper right
corner of the Main Control Panel.
User Mode
When in User mode, the operator has the ability to provide the unit with flow setpoints
and then view flow response and flow read-back.
Calibration Mode
When in Calibration mode, the operator has nearly full access to the key device
calibration and tuning features. Calibration mode access is password protected. The GUI
is delivered with a standard password, which can be changed by the responsible
administrator. Also, multiple users can be added, each with their own password.
141
Calibration Mode Access
Note
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
All tagged gas tables are protected factory-set gas tables. Users are not permitted to make any
changes to tagged gas tables in the User of Calibration Mode.
A more detailed summary is provided in the table below.
Table 120: Summary of User and Calibration Mode Capabilities
User Mode
Calibration Mode
Pick Run versus Stop operation.
Same as User mode.
Provide setpoint and view output.
Same as User mode.
Pick control mode: control, close, open.
Same as User mode.
Log flow output data to .csv format file.
Same as User mode.
Create Calibration mode access passwords.
Create new gas tables by copying calibration tables; apply new
gas correction factors (GCFs) and full scale ranges.
Change PID tuning parameters associated with particular gas
tables.
Create new calibration tables, if certified flow standard is
available (Advanced feature).
Calibration Mode Access
Choosing Calibration mode is done on the Main Control Panel.
1. Click in the Calibration Mode field to reveal a list of choices, which include User and Calibration.
2. Click on Calibration. A small window with fields for the user name and password appears.
Figure 21: Password Control
3. Input the user name and password in the appropriate fields. The GUI is shipped from MKS with the
following default assignments:
User Name: Admin
Password:
cal
The password may be changed or new usesr with their own password added (as described below).
Note
The User Name and Password are case sensitive.
4. Click OK.
142
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Calibration Mode Access
Changing a Password for Calibration Mode Access
1. On the Main Control Panel, choose Setup Æ Password Æ Change. The following window appears:
Figure 22: Change Password Window
2. Enter the User Name, Old Password, and New Password in the fields provided.
3. Re-type the new password into the Confirm Password field.
4. Click OK.
Adding a Calibration Mode Password for a New User
1. On the Main Control Panel, choose Setup Æ Password Æ New. The following window appears:
Figure 23: Adding a Calibration Mode Password for a New User
2. Enter a new User Name and New Password in the fields provided.
3. Re-type the new password in the Confirm Password field.
4. Click OK.
143
Setting, Adding, and Deleting Gas Tables
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Setting, Adding, and Deleting Gas Tables
Note
In order to work with gas tables, the GUI must be in Calibration mode. This is set on the Main
Control Panel, on the lower right side.
Accessing Gas Table Editing
Pull down the Setup submenu and choose Edit Gas (Add/Select). The module will load the gas tables and the
following window appears:
144
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Setting, Adding, and Deleting Gas Tables
Figure 24: Edit Gas
The currently active gas table (Instance ID 1, in this example) is highlighted in red lettering.
145
Setting, Adding, and Deleting Gas Tables
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Setting a Gas Table and Making the Table Active
1. Point to desired gas table and highlight by clicking on it.
2. Click the Select Gas button.
The gas table choice will be downloaded into the Mass Flow device and made active. It will be highlighted in
red in the Edit Gas window.
Adding a Gas Table
Adding gas is based on copying existing tables. There are several guidelines:
„
Tagged gas table instances can be created only by the MKS Factory. They cannot be edited or deleted.
„
When creating a new table, you may copy only from tables originally created by the Factory
„
The full scale flow range of any new tables must fall between 40 and 110% of the original calibration gas
equivalent. For example:
A device with a standard 200 sccm N2 calibration allows tables to be created with N2 equivalent full
scale flows of 80 to 220 sccm. Thus, an additional N2 table with 80 sccm full scale is permitted; but, in
creating an Ar gas table (GCF = 1.39), the specified full scale flow may not be below 111.2 sccm (80 x
1.39). On the other hand, a full scale flow as high as 305.8 sccm (220 x 1.39) is possible.
If an incorrect flow setpoint is input, an error warning will appear. Try again.
The specific steps for adding a new gas table are:
1. In the Edit Gas window, enter the new table instance number in the Set Instance # field.
2. Click the Gas Name dropdown box and the gas list will appear:
146
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Setting, Adding, and Deleting Gas Tables
Figure 25: Gas List
3. Scroll through the list of available gases to find the desired gas. To choose the gas, select the desired gas
and then click Ok button.
The program will return to the Edit Gas window.
4. Click the Add Gas button. The Copy Cal Table window will open.
147
Setting, Adding, and Deleting Gas Tables
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Figure 25: Copy Cal Table
5. Click on the drop down box associated with the From field and choose the desired table to be copied.
Your choice must be among the factory set instances.
6. Enter the input target Full Scale amount.
To assure device accuracy, this value must be within the limits given in the message box on the top.
7. Click the Copy button to create the new table.
Deleting a Gas Table
1. Highlight the gas table to be deleted.
Tagged gas table instances may be altered by the MKS Factory only. These may not be deleted.
2. Click the Delete Gas button. The table will be deleted from the gas table list.
Adding Mixed Gas Table
The specific steps for adding a mixed gas table are:
1. In the Edit Gas window, click the Mixed Gas button.
2. In the following GUI, check the Part check box if part is used to mix(default is in %).
3. Select the first gas to mix
4. Select its percentage or part, example, 30 (30 %),
5. Click Add to add it into Mix Gas list. (You can remove from the list too)
6. Add as many gases as you wish.
7. Select a gas number for this mixed gas between 150 and 200.
148
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Adjusting PID Tuning Parameters
8. Assign a gas name for the mixed gas.
Note
The sum of amount for each mixed gases should be exactly equal to 100.
Figure 26 Add Mixed Gas
Adjusting PID Tuning Parameters
Note
The PID tuning parameters may not be adjusted on factory “tagged” tables. To update the
tuning parameters on such tables, it is necessary to first copy the table to a new instance.
1. Make the desired gas table active. To do so:
Access the Add/Select Gas menu on the Main Control Panel by choosing Setup Æ Edit Gas (Add/
Select).
Choose the gas table associated with the PID parameters to be updated. Make it active by highlighting and
clicking the Select Gas button.
2. Return to the Main Control Panel and select Setup Æ Tuning Parameters. The following window appears:
149
Creating and Modifying Calibration Tables
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Figure 27: Tuning Parameters
Use this window to get, modify, and set the PID parameters.
„
Retrieve values in the active table of the ALTA Mass Flow Controller by clicking the Get All button.
„
Update the parameters as desired. Note that MKS generally recommends keeping the Controller D set at
zero.
„
Download all parameters into the device by clicking the Set All button.
„
Copy one set of PID to another by clicking the Copy button.
Creating and Modifying Calibration Tables
It is possible to perform gas calibration or adjust existing calibration tables using the Calibration Table
Operations window, which is accessed through Set-up Æ Calibration Flow on the Main Control Panel. This is
an advanced feature.
Editing Calibration Tables
Warning
Creating and editing calibration tables is an advanced topic, requiring great care
and certified flow standards. Do not proceed unless properly equipped and
experienced in MFC/MFM calibration.
1. On the Main Control Panel, choose the Setup Æ Calibrate Flow. The following window appears:
150
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Creating and Modifying Calibration Tables
Figure 28: Calibration Table
2. Use this window to modify and re-load data. Up to 21 calibration data points are permitted. The default
number for factory calibrations is 11 points, including zero.
Note
Factory tagged tables may not be edited.
151
Creating and Modifying Calibration Tables
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Modifying Existing Calibration Table (Non-Tagged)
Note
If you make a mistake, just click the Get All button to go back to where you were.
1. Use the Calibration Table Operations window as in creating a new table (above).
2. Click the Get All button.
3. Keep the displayed number of calibration points the same.
4. Based on flow data, edit the table as desired for improved accuracy.
Warning
Do not perform any accuracy testing unless the device is properly zeroed. Refer to
How to Zero the Flow Device, page 48, for proper zeroing procedures.
5. Click the Set and Save All button. This downloads the data to the proper location in the device for the
specified instance. At the same time, it saves the calibration data in the text file called:
CalData_mm-dd-yy_hh-mm-ss.txt
where:
mm
dd
yy
hh
mm
ss
month
date
year
hour
minute
second
For example, CalData_05-27-2003_13-57-06.txt
6. To load the calibrated table file from your computer, click the Load Data button. Then, choose the
calibration data file to be loaded. The calibration data will be loaded in the GUI.
152
Appendix F: MKS ALTA Digital MFC Graphical User
Interface (GUI)
Configuring Polled IO Connection
Configuring Polled IO Connection
There are 10 polled IO connections available. To change the desired polled IO connection.
Before proceeding, refer to pages 58 and 61 for definitions of assembly instances.
1. From the Main Control Panel, choose the Setup Æ Choose IO Assembly Instance. The following appears:
Figure 29: Choose IO Assembly Instance
2. Click the instances you want and then the software will configure the polled IO connection correctly. The
new Output and Input instance number will appear in the Output and Input message box on the left side of
this panel.
153
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement