Automotive 8-bit ultra-low-power MCU, 64 KB

Automotive 8-bit ultra-low-power MCU, 64 KB
STM8AL31E8x STM8AL3LE8x
Automotive 8-bit ultra-low-power MCU, 64 KB Flash, EEPROM,
RTC, AES, LCD, timers, USARTs, I2C, SPIs, ADC, DAC, COMPs
Datasheet - production data
Features
• AEC-Q100 grade 1 qualified
• Operating conditions
– Operating power supply range 1.8 V to
3.6 V (down to 1.65 V at power down)
– Temp. range: -40 to 85 or 125 °C
• Low-power features
– 5 low-power modes: Wait, Low-power run
(5.9 µA), Low-power wait (3 µA), Activehalt with full RTC (1.4 µA), Halt (400 nA)
– Consumption: 200 µA/MHz+330 µA
– Fast wake up from Halt mode (4.7 µs)
– Ultra-low leakage per I/0: 50 nA
• Advanced STM8 core
– Harvard architecture and 3-stage pipeline
– Max freq: 16 MHz, 16 CISC MIPS peak
– Up to 40 external interrupt sources
• Reset and supply management
– Low power, ultra safe BOR reset with 5
programmable thresholds
– Ultra-low-power POR/PDR
– Programmable voltage detector (PVD)
• Clock management
– 32 kHz and 1-16 MHz crystal oscillators
– Internal 16 MHz factory-trimmed RC and
38 kHz low consumption RC
– Clock security system
• Low-power RTC
– BCD calendar with alarm interrupt,
– Digital calibration with +/- 0.5ppm accuracy
– Advanced anti-tamper detection
• DMA
– 4 ch. for ADC, encryption hardware
accelerator (AES), DACs, SPIs, I2C,
USARTs, Timers, 1 ch. for memory-tomemory
• LCD: 8x40 or 4x44 w/ step-up converter
December 2016
This is information on a product in full production.
LQFP80
14x14 mm
LQFP64
10x10 mm
LQFP48
7x7 mm
• 12-bit ADC up to 1 Msps /
28 channels,
– Temp. sensor and internal ref.
voltage
• Memories
– Up to 64 Kbytes of Flash with up to
2 Kbytes of data EEPROM with ECC and
RWW
– Flexible write/read protection modes
– Up to 4 Kbytes of RAM
• 2x12-bit DAC (dual mode) with output buffer
• 2 ultra-low-power comparators
– 1 with fixed threshold and 1 rail to rail
– Wakeup capability
• Timers
– Three 16-bit timers with 2 channels (IC,
OC, PWM), quadrature encoder
– One 16-bit advanced control timer with 3
channels, supporting motor control
– One 8-bit timer with 7-bit prescaler
– One window and one independent
watchdog
– Beeper timer with 1, 2 or 4 kHz frequencies
• Communication interfaces
– Two synchronous serial interface (SPI)
– Fast I2C 400 kHz SMBus and PMBus
– Three USARTs (IrDA, LIN 1.3, LIN2.0)
• Up to 67 I/Os, all mappable on interrupt vectors
• Fast on-chip programming and non-intrusive
debugging with SWIM, Bootloader using
USART
• 96-bit unique ID
DocID027180 Rev 5
1/133
www.st.com
STM8AL31E8x STM8AL3LE8x
Table 1. Device summary
2/133
Reference
Part number
STM8AL31E8x
STM8AL31E88, STM8AL31E89, STM8AL31E8A
STM8AL3LE8x
STM8AL3LE88, STM8AL3LE89, STM8AL3LE8A
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3
2.1
STM8AL ultra-low-power 8-bit family benefits . . . . . . . . . . . . . . . . . . . . . .11
2.2
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2
Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3
3.2.1
Advanced STM8 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5
Low-power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6
LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8
DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9
Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.10
Digital-to-analog converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11
Ultra-low-power comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.12
System configuration controller and routing interface . . . . . . . . . . . . . . . 22
3.13
AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.15
3.14.1
16-bit advanced control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.2
16-bit general purpose timers (TIM2, TIM3, TIM5) . . . . . . . . . . . . . . . . 23
3.14.3
8-bit basic timer (TIM4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.15.1
Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.15.2
Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DocID027180 Rev 5
3/133
5
Contents
STM8AL31E8x STM8AL3LE8x
3.16
Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.1
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.2
I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.3
USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.18
Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.19
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6
Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7
Option byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8
Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.1
4/133
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.3.2
Embedded reset and power control block characteristics
9.3.3
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.3.4
Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.3.5
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.3.6
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.3.7
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.3.8
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
DocID027180 Rev 5
. . . . . . . . . . 70
STM8AL31E8x STM8AL3LE8x
9.4
10
Contents
9.3.9
LCD controller (STM8AL3LE8x only) . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.3.10
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.3.11
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.3.12
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.3.13
12-bit DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.3.14
12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.3.15
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.1
LQFP80 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.2
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
10.3
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
11
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
12
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
DocID027180 Rev 5
5/133
5
List of tables
STM8AL31E8x STM8AL3LE8x
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
6/133
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
High-density STM8AL3xE8x low-power device features and peripheral counts. . . . . . . . . 13
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Legend/abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
High-density STM8AL3xE8x pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Factory conversion registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Unique ID registers (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Operating lifetime (OLF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 70
Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Total current consumption and timing in low-power run mode at VDD = 1.65 V
to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Total current consumption in low-power wait mode at VDD = 1.65 V to 3.6 V . . . . . . . . . . 78
Total current consumption and timing in Active-halt mode
at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal . . 80
Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V . . . . . . . . . . . 82
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Flash program memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 96
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
List of tables
I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
DAC output on PB4-PB5-PB6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . 114
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
STM8AL31E8x STM8AL3LE8x ordering information scheme . . . . . . . . . . . . . . . . . . . . . 131
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
DocID027180 Rev 5
7/133
7
List of figures
STM8AL31E8x STM8AL3LE8x
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
8/133
High-density STM8AL3xE8x device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Clock tree diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
STM8AL31E8A 80-pin package pinout (without LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
STM8AL3LE8A 80-pin package pinout (with LCD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
STM8AL31E89 64-pin pinout (without LCD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
STM8AL3LE89 64-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
STM8AL31E88 48-pin pinout (without LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
STM8AL3LE88 48-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Power supply thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Typical IDD(RUN) from RAM vs. VDD (HSI clock source), fCPU =16 MHz(1) . . . . . . . . . . . . . 73
Typical IDD(RUN) from Flash vs. VDD (HSI clock source), fCPU = 16 MHz(1) . . . . . . . . . . . . 74
Typical IDD(Wait) from RAM vs. VDD (HSI clock source), fCPU = 16 MHz(1) . . . . . . . . . . . . . 76
Typical IDD(Wait) from Flash (HSI clock source), fCPU = 16 MHz(1) . . . . . . . . . . . . . . . . . . . 76
Typical IDD(LPR) vs. VDD (LSI clock source), all peripherals OFF . . . . . . . . . . . . . . . . . . . . 77
Typical IDD(LPW) vs. VDD (LSI clock source), all peripherals OFF(1) . . . . . . . . . . . . . . . . . . 78
Typical IDD(AH) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Typical IDD(Halt) vs. VDD (internal reference voltage OFF) . . . . . . . . . . . . . . . . . . . . . . . . 82
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Typical HSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Typical LSI clock source frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Typical VIL and VIH vs. VDD (standard I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Typical VIL and VIH vs. VDD (true open drain I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Typical pull-up resistance RPU vs. VDD with VIN=VSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Typical pull-up current Ipu vs. VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Typical VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Typical VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Typical VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Typical VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Typical VDD - VOH @ VDD = 3.0 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Typical VDD - VOH @ VDD = 1.8 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Typical NRST pull-up resistance RPU vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Typical NRST pull-up current Ipu vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
SPI1 timing diagram - slave mode and CPHA=1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
SPI1 timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Typical application with I2C bus and timing diagram(1)) . . . . . . . . . . . . . . . . . . . . . . . . . . 104
ADC1 accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 116
Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . 116
LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 120
LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
List of figures
LQFP80 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 124
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 127
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
DocID027180 Rev 5
9/133
9
Introduction
1
STM8AL31E8x STM8AL3LE8x
Introduction
This document describes the features, pinout, mechanical data and ordering information of
the high-density STM8AL31E8x and STM8AL3LE8x devices (microcontrollers with 64 Kbyte
Flash memory density). These devices are referred to as high-density devices in
STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU
lines reference manual (RM0031) and in the STM8L and STM8AL Flash programming
manual (PM0054).
For more details on the whole STMicroelectronics ultra-low-power family please refer to
Section 3: Functional overview on page 14.
For information on the debug module and SWIM (single wire interface module), refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
10/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
2
Description
Description
The high-density STM8AL3xE8x ultra-low-power devices feature an enhanced STM8 CPU
core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the
advantages of a CISC architecture with improved code density, a 24-bit linear addressing
space and an optimized architecture for low-power operations.
The family includes an integrated debug module with a hardware interface (SWIM) which
allows non-intrusive in-application debugging and ultrafast Flash programming.
All high-density STM8AL3xE8x microcontrollers feature embedded data EEPROM and lowpower low-voltage single-supply program Flash memory.
The devices incorporate an extensive range of enhanced I/Os and peripherals, a 12-bit
ADC, two DACs, two comparators, a real-time clock, AES, 8x40 or 4x44-segment LCD, four
16-bit timers, one 8-bit timer, as well as standard communication interfaces such as two
SPIs, an I2C interface, and three USARTs. One 8x40 or 4x44-segment LCD is available on
the STM8AL3LE8x devices. The modular design of the peripheral set allows the same
peripherals to be found in different ST microcontroller families including 32-bit families. This
makes any transition to a different family very easy, and simplified even more by the use of
a common set of development tools.
2.1
STM8AL ultra-low-power 8-bit family benefits
High-density STM8AL3xE8x devices are part of the STM8AL automotive ultra-low-power 8bit family providing the following benefits:
•
•
•
•
Integrated system
–
64 Kbytes of high-density embedded Flash program memory
–
2 Kbytes of data EEPROM
–
4 Kbytes of RAM
–
Internal high-speed and low-power low speed RC.
–
Embedded reset
Ultra-low-power consumption
–
1 µA in Active-halt mode
–
Clock gated system and optimized power management
–
Capability to execute from RAM for Low-power wait mode and Low-power run
mode
Advanced features
–
Up to 16 MIPS at 16 MHz CPU clock frequency
–
Direct memory access (DMA) for memory-to-memory or peripheral-to-memory
access.
Short development cycles
–
Application scalability across a common family product architecture with
compatible pinout, memory map and modular peripherals.
–
Wide choice of development tools
DocID027180 Rev 5
11/133
61
Description
STM8AL31E8x STM8AL3LE8x
STM8AL ultra-low-power microcontrollers operates either from 1.8 to 3.6 V (down to 1.65 V
at power-down) or from 1.65 to 3.6 V. They are available in the -40 to +85 °C and -40 to
+125 °C temperature ranges.
These features make the STM8AL ultra-low-power microcontroller families suitable for a
wide range of applications.
The devices are offered in one 48-pin package. Different sets of peripherals are included
depending on the device. Refer to Section 3 for an overview of the complete range of
peripherals proposed in this family.
All STM8AL ultra-low-power products are based on the same architecture with the same
memory mapping and a coherent pinout.
Figure 1 shows the block diagram of the high-density STM8AL3xE8x families.
12/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
2.2
Description
Device overview
Table 2. High-density STM8AL3xE8x low-power device features and peripheral counts
Features
STM8AL3xx8
STM8AL3xx9
Flash (Kbyte)
64
Data EEPROM (Kbyte)
2
AES
1
LCD
Timers
Communication
interfaces
STM8AL3xxA
8x28 or
4x32(1)
8x36 or 4x40(1)
8x40 or 4x44(1)
Basic
1
(8-bit)
1
(8-bit)
1
(8-bit)
General purpose
3
(16-bit)
3
(16-bit)
3
(16-bit)
Advanced control
1
(16-bit)
1
(16-bit)
1
(16-bit)
SPI
2
2
2
I2C
1
1
1
USART
3
3
3
GPIOs
41
(2)
54(2)
68(2)
12-bit synchronized ADC
(number of channels)
1
(25)
1
(28)
1
(28)
Number of channels
2
2
2
2
2
2
Comparators (COMP1/COMP2)
2
2
2
12-Bit DAC
Others
RTC, window watchdog, independent watchdog,
16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external
oscillator
CPU frequency
Operating voltage
16 MHz
1.8 to 3.6 V (down to 1.65 V at power-down) with BOR
-40 to +85 °C / -40 to +125 °C
Operating temperature
Packages
LQFP48
LQFP64
LQFP80
1. STM8AL3LE8x versions only.
2. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as
general purpose output only (PA1).
DocID027180 Rev 5
13/133
61
Functional overview
3
STM8AL31E8x STM8AL3LE8x
Functional overview
Figure 1. High-density STM8AL3xE8x device block diagram
26&B,1
26&B287
0+]LQWHUQDO5&
26&B,1
26&B287
#9''
0+]RVFLOODWRU
N+]RVFLOODWRU
9''
&ORFN
FRQWUROOHU
DQG&66
92/75(*
&ORFNV
WRFRUHDQG
SHULSKHUDOV
N+]LQWHUQDO5&
5(6(7
,QWHUUXSWFRQWUROOHU
'HEXJPRGXOH
6:,0
ELW7LPHU
FKDQQHOV
ELW7LPHU
FKDQQHOV
ELW7LPHU
39'
ELW7LPHU
,5B7,0
,QIUDUHGLQWHUIDFH
'0$FKDQQHOV
6&/6'$
60%
63,B026,63,B0,62
63,B6&.63,B166
63,B026,63,B0,62
63,B6&.63,B166
86$57B5;86$57B7;
86$57B&.
86$57B5;86$57B7;
86$57B&.
86$57B5;86$57B7;
86$57B&.
9
9
''$ 66$
$'&B,1[
9
''5()
9
665()
,ð&
63,
63,
86$57
.E\WH
GDWD((3520
.E\WH5$0
3RUW$
3$>@
3RUW%
3%>@
3RUW&
3&>@
3RUW'
3'>@
3RUW(
3(>@
3RUW)
3)>@
3RUW*
3*>@
3RUW+
3+>@
3RUW,
3,>@
86$57
86$57
#9
9
''$ 66$
ELW$'&
7HPSVHQVRU
%HHSHU
57&
95(),17RXW
&203B,13
&203B,13
&203B,10
'$&$)
,QWHUQDOUHIHUHQFH
YROWDJH
%((3
$/$50&$/,%
7$03
,:'*
N+]FORFN
&203
::'*
&203
ELW'$&
ELW'$&
,)
'$&$)
39'B,1
.E\WH
SURJUDPPHPRU\
ELW7LPHU
FKDQQHOV
1567
%25
$ G G U HV V F R Q W U RO DQ G G DW DE X VHV
FKDQQHOV
9 '' 9
WR 9
9 66
3253'5
670&RUH
6:,0
3RZHU
/&'GULYHU
[RU[
6(*[&20[
ELW'$&
ELW'$&
$(6
9
WR9
/&'
/&'ERRVWHU
069
1. Legend: AF: alternate function
ADC: Analog-to-digital converter
AES: Advanced encryption standard hardware accelerator
14/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Functional overview
BOR: Brownout reset
DMA: Direct memory access
DAC: Digital-to-analog converter
I²C: Inter-integrated circuit multimaster interface
IWDG: Independent watchdog
LCD: Liquid crystal display
POR/PDR: Power on reset / power-down reset
RTC: Real-time clock
SPI: Serial peripheral interface
SWIM: Single wire interface module
USART: Universal synchronous asynchronous receiver transmitter
WWDG: Window watchdog
3.1
Low-power modes
The high-density STM8AL3xE8x devices support five low-power modes to achieve the best
compromise between low-power consumption, short startup time and available wakeup
sources:
•
Wait mode: CPU clock is stopped, but selected peripherals keep running. An internal
or external interrupt or a Reset is used to exit the microcontroller from Wait mode (WFE
or WFI mode).
•
Low-power run mode: The CPU and the selected peripherals are running. Execution
is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data
EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode.
The microcontroller enters Low-power run mode by software and exits from this mode
by software or by a reset.
All interrupts must be masked and are not used to exit the microcontroller from this
mode.
•
Low-power wait mode: This mode is entered when executing a Wait for event in Lowpower run mode. It is similar to Low-power run mode except that the CPU clock is
stopped. The wakeup from this mode is triggered by a Reset or by an internal or
external event (peripheral event generated by the timers, serial interfaces, DMA
controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an
event, the system goes back to Low-power run mode.
All interrupts must be masked and arenot used to exit the microcontroller from this
mode.
•
Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup
is triggered by RTC interrupts, external interrupts or reset.
•
Halt mode: CPU and peripheral clocks are stopped, the device remains powered on.
The RAM content is preserved. The wakeup is triggered by an external interrupt or
reset. A few peripherals have also a wakeup from Halt capability. Switching off the
internal reference voltage reduces power consumption. Through software configuration
it is also possible to wake up the device without waiting for the internal reference
voltage wakeup time to have a fast wakeup time of 5 µs.
DocID027180 Rev 5
15/133
61
Functional overview
STM8AL31E8x STM8AL3LE8x
3.2
Central processing unit STM8
3.2.1
Advanced STM8 Core
The 8-bit STM8 core is designed for code efficiency and performance with an Harvard
architecture and a 3-stage pipeline.
It contains 6 internal registers which are directly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing, and 80 instructions.
Architecture and registers
•
Harvard architecture
•
3-stage pipeline
•
32-bit wide program memory bus - single cycle fetching most instructions
•
X and Y 16-bit index registers - enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations
•
8-bit accumulator
•
24-bit program counter - 16 Mbyte linear memory space
•
16-bit stack pointer - access to a 64 Kbyte level stack
•
8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
•
20 addressing modes
•
Indexed indirect addressing mode for lookup tables located anywhere in the address
space
•
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
3.2.2
•
80 instructions with 2-byte average instruction size
•
Standard data movement and logic/arithmetic functions
•
8-bit by 8-bit multiplication
•
16-bit by 8-bit and 16-bit by 16-bit division
•
Bit manipulation
•
Data transfer between stack and accumulator (push/pop) with direct stack access
•
Data transfer using the X and Y registers or direct memory-to-memory transfers
Interrupt controller
The high-density STM8AL3xE8x devices feature a nested vectored interrupt controller:
16/133
•
Nested interrupts with 3 software priority levels
•
32 interrupt vectors with hardware priority
•
Up to 40 external interrupt sources on 11 vectors
•
Trap and reset interrupts
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Functional overview
3.3
Reset and supply management
3.3.1
Power supply scheme
The device requires a 1.65 V to 3.6 V operating supply voltage (VDD). The external power
supply pins must be connected as follows:
3.3.2
•
VSS1, VDD1, VSS2, VDD2, VSS3, VDD3, VSS4, VDD4= 1.65 to 3.6 V: external power supply
for I/Os and for the internal regulator. Provided externally through VDD pins, the
corresponding ground pin is VSS. VSS1/VSS2/VSS3/VSS4 and VDD1/VDD2/VDD3/VDD4
must not be left unconnected.
•
VSSA, VDDA = 1.65 to 3.6 V: external power supplies for analog peripherals (minimum
voltage to be applied to VDDA is 1.8 V when the ADC1 is used). VDDA and VSSA must
be connected to VDD and VSS, respectively.
•
VREF+, VREF- (for ADC1): external reference voltage for ADC1. Must be provided
externally through VREF+ and VREF- pin.
•
VREF+ (for DAC1/2): external voltage reference for DAC1 and DAC2 must be provided
externally through VREF+.
Power supply supervisor
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active,
and ensures proper operation starting from 1.8 V. As soon as the 1.8 V BOR threshold is
reached, the option byte loading process starts, either to confirm or modify the default
thresholds, or to disable BOR permanently. In this latter case, the VDD min value at power
down is 1.65 V.
Five BOR thresholds are available through option byte, starting from 1.8 V to 3 V. To reduce
the power consumption in Halt mode, it is possible to automatically switch off the internal
reference voltage (and consequently the BOR) in Halt mode. The device remains in reset
state when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any
external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An
interrupt is generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than the VPVD threshold. The interrupt service routine generates then a
warning message and/or put the MCU into a safe state. The PVD is enabled by software.
DocID027180 Rev 5
17/133
61
Functional overview
3.3.3
STM8AL31E8x STM8AL3LE8x
Voltage regulator
The high-density STM8AL3xE8x devices embed an internal voltage regulator for generating
the 1.8 V power supply for the core and peripherals.
This regulator has two different modes:
•
Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event
(WFE) modes.
•
Low-power voltage regulator mode (LPVR) for Halt, Active-halt, Low-power run and
Low-power wait modes.
When entering Halt or Active-halt modes, the system automatically switches from the MVR
to the LPVR in order to reduce current consumption.
3.4
Clock management
The clock controller distributes the system clock (SYSCLK) coming from different oscillators
to the core and the peripherals. It also manages clock gating for low-power modes and
ensures clock robustness.
Features
18/133
•
Clock prescaler: to get the best compromise between speed and current
consumption, the clock frequency to the CPU and peripherals has to be adjusted by a
programmable prescaler
•
Safe clock switching: Clock sources are adaptable safely on the fly in run mode
through a configuration register.
•
Clock management: To reduce power consumption, the clock controller stops the
clock to the core, individual peripherals or memory.
•
System clock sources: 4 different clock sources are available to drive the system
clock:
–
1-16 MHz High speed external crystal (HSE)
–
16 MHz High speed internal RC oscillator (HSI)
–
32.768 Low speed external crystal (LSE)
–
38 kHz Low speed internal RC (LSI)
•
RTC and LCD clock sources: the above four sources are available to clock the RTC
and the LCD, whatever the system clock.
•
Startup clock: After reset, the microcontroller restarts by default with an internal
2 MHz clock (HSI/8). The prescaler ratio and clock source is adjustable by the
application program as soon as the code execution starts.
•
Clock security system (CSS): This feature is enabled by software. If a HSE clock
failure occurs, the system clock is automatically switched to HSI.
•
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Functional overview
Figure 2. Clock tree diagram
&66
26&B287
26&B,1
+6(
+6(26&
0+]
6<6&/.WRFRUHDQG
PHPRU\
6<6&/.
SUHVFDOHU
3&/.
3HULSKHUDO
WRSHULSKHUDOV
FORFOHQDEOHELWV
+6,
+6,5&
0+]
/6,
/6(
/6(
&/.%((36(/>@
/6,
/6,5&
N+]
%((3&/.
WR%((3
,:'*&/.
WR,:'*
57&&/.
57&6(/>@
26&B287
57&
SUHVFDOHU
/6(26&
N+]
26&B,1
/&'SHULSKHUDO
FORFNHQDEOHELW
57&&/.
&66B/6(
57&&/.
&&2
&&2
SUHVFDOHU
WR/&'
+DOW
/&'&/.
FRQILJXUDEOH
FORFNRXWSXW
WR57&
+6,
/6,
+6(
/6(
6<6&/.
WR/&'
/&'SHULSKHUDO
FORFNHQDEOHELW
069
1. The HSE clock source is either an external crystal/ceramic resonator or an external source (HSE bypass).
Refer to Section HSE clock in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31,
STM8AL3L MCU lines reference manual (RM0031).
2. The LSE clock source is either an external crystal/ceramic resonator or a external source (LSE bypass).
Refer to Section LSE clock in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31,
STM8AL3L MCU lines reference manual (RM0031).
3.5
Low-power real-time clock
The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.
Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month,
year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31
day months are made automatically. The subsecond field is also readable in binary format.
The calendar is adjustable from 1 to 32767 RTC clock pulses. This allows to make a
synchronization to a master clock.
The RTC offers a digital calibration which allows an accuracy of +/-0.5ppm.
It provides a programmable alarm and programmable periodic interrupts with wakeup from
Halt capability.
•
Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is
from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time reaches
36 hours
•
Periodic alarms based on the calendar are generated from LSE period to every year
A clock security system detects a failure on LSE, and provides an interrupt with wakeup
capability. The RTC clock automatically switches to LSI in case of LSE failure.
The RTC also provides 3 anti-tamper detection pins. This detection embeds a
programmable filter and wakes-up the MCU.
DocID027180 Rev 5
19/133
61
Functional overview
3.6
STM8AL31E8x STM8AL3LE8x
LCD (Liquid crystal display)
The LCD is only available on STM8AL3LE8x devices.
The liquid crystal display drives up to 8 common terminals and up to 40 segment terminals
to drive up to 320 pixels. This LCD is configurable to drive up to 4 common and 44
segments (up to 176 pixels).
•
Internal step-up converter to guarantee contrast control whatever VDD.
•
Static 1/2, 1/3, 1/4, 1/8 duty supported.
•
Static 1/2, 1/3, 1/4 bias supported.
•
Phase inversion to reduce power consumption and EMI.
•
Up to 8 pixels programmable to blink.
•
The LCD controller operating in Halt mode.
Note:
Unnecessary segments and common pins can be used as general I/O pins.
3.7
Memories
The high-density STM8AL3xE8x devices have the following main features:
•
4 Kbytes of RAM
•
The non-volatile memory is divided into three arrays:
–
64 Kbytes of medium-density embedded Flash program memory
–
2 Kbytes of Data EEPROM
–
Option byte.
The memory supports the read-while-write (RWW): it is possible to execute the code from
the program matrix while programming/erasing the data matrix.
The option byte protects part of the Flash program memory from write and readout piracy.
3.8
DMA
A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and
peripherals-from/to-memory transfer capability. The 4 channels are shared between the
following IPs with DMA capability: ADC1, DAC1,DAC2, AES, I2C1, SPI1, SPI2, USART1,
USART2, USART3, and the 5 Timers.
20/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
3.9
Functional overview
Analog-to-digital converter
•
12-bit analog-to-digital converter (ADC1) with 28 channels (including 4 fast channel),
temperature sensor and internal reference voltage
•
Conversion time down to 1 µs with fSYSCLK= 16 MHz
•
Programmable resolution
•
Programmable sampling time
•
Single and continuous mode of conversion
•
Scan capability: automatic conversion performed on a selected group of analog inputs
•
Analog watchdog: interrupt generation when the converted voltage is outside the
programmed threshold
•
Triggered by timer
Note:
ADC1 can be served by DMA1.
3.10
Digital-to-analog converter
•
12-bit DAC with 2 buffered outputs (two digital signals are converted into two analog
voltage signal outputs)
•
Synchronized update capability using timers
•
DMA capability for each channel
•
External triggers for conversion
•
Noise-wave generation
•
Triangular-wave generation
•
Dual DAC channels with independent or simultaneous conversions
•
Input reference voltage VREF+ for better resolution
Note:
DAC can be served by DMA1.
3.11
Ultra-low-power comparators
The high-density STM8AL3xE8x devices embed two comparators (COMP1 and COMP2)
sharing the same current bias and voltage reference. The voltage reference is an internal or
external (coming from an I/O).
•
One comparator with fixed threshold (COMP1).
•
One comparator rail to rail with fast or slow mode (COMP2). The threshold is one of the
following:
–
DAC output
–
External I/O
–
Internal reference voltage or internal reference voltage submultiple (1/4, 1/2, 3/4)
The two comparators are usable together to offer a window function. They wake up from
Halt mode.
DocID027180 Rev 5
21/133
61
Functional overview
3.12
STM8AL31E8x STM8AL3LE8x
System configuration controller and routing interface
The system configuration controller provides the capability to remap some alternate
functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.
The highly flexible routing interface allows application software to control the routing of
different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog
signals to ADC1, COMP1, COMP2, DAC1 and the internal reference voltage VREFINT. It also
provides a set of registers for efficiently managing the charge transfer acquisition sequence.
3.13
AES
The AES Hardware Accelerator can be used to encipher and decipher data using the AES
algorithm (compatible with FIPS PUB 197, 2001 Nov 26).
•
Key scheduler
•
Key derivation for decryption
•
128-bit data block processed
•
128-bit key length
•
892 clock cycles to encrypt/decrypt one 128-bit block
AES data flow can be served by the DMA1 controller
3.14
Timers
The high-density STM8AL3xE8x devices contain one advanced control timer (TIM1), three
16-bit general purpose timers (TIM2,TIM3 and TIM5) and one 8-bit basic timer (TIM4).
All the timers are served by DMA1.
Table 3 compares the features of the advanced control, general-purpose and basic timers.
Table 3. Timer feature comparison
Timer
Counter Counter
resolution
type
DMA1
request
generation
Any integer
from 1 to 65536
TIM1
TIM2
Prescaler factor
16-bit
up/down
TIM3
Any power of 2
from 1 to 128
Yes
Capture/compare
channels
Complementary
outputs
3+1
3
2
None
TIM5
TIM4
22/133
8-bit
up
Any power of 2
from 1 to 32768
DocID027180 Rev 5
0
STM8AL31E8x STM8AL3LE8x
3.14.1
Functional overview
16-bit advanced control timer (TIM1)
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor control, lighting and half-bridge driver.
3.14.2
3.14.3
•
16-bit up, down and up/down autoreload counter with 16-bit prescaler
•
3 independent capture/compare channels (CAPCOM) configurable as input capture,
output compare, PWM generation (edge and center aligned mode) and single pulse
mode output
•
1 additional capture/compare channel which is not connected to an external I/O
•
Synchronization module to control the timer with external signals
•
Break input to force timer outputs into a defined state
•
3 complementary outputs with adjustable dead time
•
Encoder mode
•
Interrupt capability on various events (capture, compare, overflow, break, trigger)
16-bit general purpose timers (TIM2, TIM3, TIM5)
•
16-bit autoreload (AR) up/down-counter
•
7-bit prescaler adjustable to fixed power of 2 ratios (1…128)
•
2 individually configurable capture/compare channels
•
PWM mode
•
Interrupt capability on various events (capture, compare, overflow, break, trigger)
•
Synchronization with other timers or external signals (external clock, reset, trigger and
enable)
8-bit basic timer (TIM4)
The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable
prescaler. This timer is used for timebase generation with interrupt generation on timer
overflow or for DAC trigger generation.
3.15
Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the applications.
3.15.1
Window watchdog timer
The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
3.15.2
Independent watchdog timer
The independent watchdog peripheral (IWDG) is used to resolve processor malfunctions
due to hardware or software failures.
DocID027180 Rev 5
23/133
61
Functional overview
STM8AL31E8x STM8AL3LE8x
It is clocked by the internal LSI RC clock source, and thus stays active even in case of a
CPU clock failure.
3.16
Beeper
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in
the range of 1, 2 or 4 kHz.
3.17
Communication interfaces
3.17.1
SPI
The serial peripheral interfaces (SPI1 and SPI2) provide half/ full duplex synchronous serial
communication with external devices.
•
Maximum speed: 8 Mbit/s (fSYSCLK/2) both for master and slave
•
Full duplex synchronous transfers
•
Simplex synchronous transfers on 2 lines with a possible bidirectional data line
•
Master or slave operation - selectable by hardware or software
•
Hardware CRC calculation
•
Slave/master selection input pin
Note:
SPI1 and SPI2 can be served by the DMA1 Controller.
3.17.2
I2C
The I2C bus interface (I2C1) provides multi-master capability, and controls all I²C busspecific sequencing, protocol, arbitration and timing.
Note:
24/133
•
Master, slave and multi-master capability
•
Standard mode up to 100 kHz and fast speed modes up to 400 kHz.
•
7-bit and 10-bit addressing modes.
•
SMBus 2.0 and PMBus support
•
Hardware CRC calculation
I2C1 can be served by the DMA1 Controller.
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
3.17.3
Functional overview
USART
The USART interfaces (USART1, USART2 and USART3) allow full duplex, asynchronous
communications with external devices requiring an industry standard NRZ asynchronous
serial data format. It offers a very wide range of baud rates.
Note:
•
1 Mbit/s full duplex SCI
•
SPI1 emulation
•
High precision baud rate generator
•
Smartcard emulation
•
IrDA SIR encoder decoder
•
Single wire half duplex mode
USART1, USART2 and USART3 can be served by the DMA1 Controller.
USART interfaces are used to implement LIN slave communication, with LIN Break
detection on the framing error flag (FE in USART_SR register) with a value of 0 in the
USART data register (USART_DR).
3.18
Infrared (IR) interface
The high-density STM8AL3xE8x devices contain an infrared interface which is used with an
IR LED for remote control functions. Two timer output compare channels are used to
generate the infrared remote control signals.
3.19
Development support
Development tools
Development tools for the STM8 microcontrollers include:
•
The STice emulation system offering tracing and code profiling
•
The STVD high-level language debugger including C compiler, assembler and
integrated development environment
•
The STVP Flash programming software
The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit
debugging/programming tools.
Single wire data interface (SWIM) and debug module
The debug module with its single wire data interface (SWIM) permits non-intrusive real-time
in-circuit debugging and fast memory programming.
The Single wire interface is used for direct access to the debugging module and memory
programming. The interface is activated in all device operation modes.
The non-intrusive debugging module features a performance close to a full-featured
emulator. Beside memory and peripherals, CPU operation is also monitored in real-time by
means of shadow registers.
DocID027180 Rev 5
25/133
61
Functional overview
STM8AL31E8x STM8AL3LE8x
Bootloader
A bootloader is available to reprogram the Flash memory using the USART1, USART2,
USART3 (USARTs in asynchronous mode), SPI1 or SPI2 interfaces.
26/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Pin description
0)
0)
0)
0)
0%
0%
0#
0#
0#
0#
0#
0#
633
6 $$
0#
0#
0'
0'
0'
0'
Figure 3. STM8AL31E8A 80-pin package pinout (without LCD)
0(
0(
0(
0(
0!
.2340!
0!
0!
0!
0!
0!
0!
633!62%&
633
6$$
6$$!
62%&
0'
0'
0'
0$
0$
0$
0$
0&
0&
0&
0&
0&
0&
0&
0&
633
6$$
0"
0"
0"
0"
0"
0"
0'
2ES
0%
0%
0%
0%
0%
0%
0$
0$
0$
0$
0(
0(
0(
0(
6 $$
633
0"
0"
AI
1. Pin 22 is reserved and must be tied to VDD.
2. The above figure shows the package top view.
0)
0)
0)
0)
0%
0%
0#
0#
0#
0#
0#
0#
633
6 $$
0#
0#
0'
0'
0'
0'
Figure 4. STM8AL3LE8A 80-pin package pinout (with LCD)
0(
0(
0(
0(
0!
.2340!
0!
0!
0!
0!
0!
0!
633!62%&
633
6$$
6$$!
62%&
0'
0'
0'
0$
0$
0$
0$
0&
0&
0&
0&
0&
0&
0&
0&
633
6$$
0"
0"
0"
0"
0"
0"
0'
6,#$
0%
0%
0%
0%
0%
0%
0$
0$
0$
0$
0(
0(
0(
0(
6 $$
633
0"
0"
4
Pin description
AI
1. The above figure shows the package top view.
DocID027180 Rev 5
27/133
61
Pin description
STM8AL31E8x STM8AL3LE8x
0%
0%
0#
0#
0#
0#
0#
0#
6 33
6 $$
0#
0#
0'
0'
0'
0'
Figure 5. STM8AL31E89 64-pin pinout (without LCD)
0!
.2340!
0!
0!
0!
0!
0!
0!
6 33!62%&
633
6$$
6$$!
62%&
0'
0'
0'
0$
0$
0$
0$
0&
0&
0&
0&
0&
0&
0"
0"
0"
0"
0"
0"
0'
2ES 0%
0%
0%
0%
0%
0%
0$
0$
0$
0$
6 $$
6 33
0"
0"
AI
1. Pin 18 is reserved and must be tied to VDD.
2. The above figure shows the package top view.
0%
0%
0#
0#
0#
0#
0#
0#
6 33
6 $$
0#
0#
0'
0'
0'
0'
Figure 6. STM8AL3LE89 64-pin pinout (with LCD)
0!
.2340!
0!
0!
0!
0!
0!
0!
6 33!62%&
633
6$$
6$$!
62%&
0'
0'
0'
0$
0$
0$
0$
0&
0&
0&
0&
0&
0&
0"
0"
0"
0"
0"
0"
0'
6,#$
0%
0%
0%
0%
0%
0%
0$
0$
0$
0$
6 $$
6 33
0"
0"
AI
1. The above figure shows the package top view.
28/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Pin description
0%
0%
0#
0#
0#
0#
0#
0#
6 33
6 $$
0#
0#
Figure 7. STM8AL31E88 48-pin pinout (without LCD)
0!
.2340!
0!
0!
0!
0!
0!
0!
633633!62%&
6$$
6$$!
62%&
0$
0$
0$
0$
0&
0"
0"
0"
0"
0"
0"
0"
0%
0%
0%
0%
0%
0%
0$
0$
0$
0$
0"
2ES AI
1. Pin 13 is reserved and must be tied to VDD.
2. The above figure shows the package top view.
0%
0%
0#
0#
0#
0#
0#
0#
6 33
6 $$
0#
0#
Figure 8. STM8AL3LE88 48-pin pinout (with LCD)
0!
.2340!
0!
0!
0!
0!
0!
0!
633633!62%&
6$$
6$$!
62%&
0$
0$
0$
0$
0&
0"
0"
0"
0"
0"
0"
0"
6,#$
0%
0%
0%
0%
0%
0%
0$
0$
0$
0$
0"
AI
1. The above figure shows the package top view.
DocID027180 Rev 5
29/133
61
Pin description
STM8AL31E8x STM8AL3LE8x
Table 4. Legend/abbreviation
Type
I= input, O = output, S = power supply
FT: Five-volt tolerant
Level
Output
Port and control Input
configuration
Output
HS = high sink/source (20 mA)
float = floating, wpu = weak pull-up
T = true open drain, OD = open drain, PP = push pull
Bold X (pin state after reset release).
Unless otherwise specified, the pin state is the same during the reset phase (i.e.
“under reset”) and after internal reset release (i.e. at reset state).
Reset state
Table 5. High-density STM8AL3xE8x pin description
3
-
- PH2/LCD SEG 38 (3)
-
(3)
Main function
(after reset)
X HS X
X Port H0 LCD segment 36
X
X
X HS X
X Port H1 LCD segment 37
I/O FT(5) X
X
X HS X
X Port H2 LCD segment 38
I/O
FT(5)
X
X
X HS X
X Port H3 LCD segment 39
X Reset
I/O
Default alternate function
6
2
2 NRST/PA1
I/O
-
-
X
-
7
3
PA2/OSC_IN/
3 [USART1_TX](2)/
[SPI1_MISO] (2)
I/O
-
X
X
X HS X
HSE oscillator input /
X Port A2 [USART1 transmit] / [SPI1
master in- slave out] /
8
4
4
PA3/OSC_OUT/[USART1
I/O
_RX](2)/[SPI1_MOSI](2)
-
X
X
X HS X
HSE oscillator output /
X Port A3 [USART1 receive]/ [SPI1
master out/slave in]/
5
PA4/TIM2_BKIN/
[TIM2_ETR](2)
5
I/O FT(5) X
LCD_COM0(3)/ADC1_IN2
COMP1_INP
X HS X
Timer 2 - break input /
/[Timer 2 - trigger] /
X Port A4 LCD COM 0 / ADC1 input
2/Comparator 1 positive
input
10
6
PA5/TIM3_BKIN/
[TIM3_ETR](2)/
6
I/O FT(5) X
LCD_COM1(3)/ADC1_IN1/
COMP1_INP
X
X HS X
Timer 3 - break input /
[Timer 3 - trigger] /
X Port A5 LCD_COM 1 /
ADC1 input 1/Comparator 1
positive input
11
7
PA6/ADC1_TRIG/
7 LCD_COM2(3)/ADC1_IN0/ I/O FT(5) X
COMP1_INP
X
X HS X
ADC1 - trigger / LCD_COM2
X Port A6 / ADC1 input 0/Comparator
1 positive input
9
30/133
X
HS X
PP
X
FT(5)
OD
- PH1/LCD SEG 37
High sink/source
-
(1)
Ext. interrupt
2
(3)
- PH3/LCD SEG 39
wpu
- PH0/LCD SEG 36 (3)
floating
LQFP64
-
Output
I/O FT(5) X
Type
LQFP80
Pin name
I/O level
Input
1
4
LQFP48
Pin
number
DocID027180 Rev 5
PA1
STM8AL31E8x STM8AL3LE8x
Pin description
Table 5. High-density STM8AL3xE8x pin description (continued)
PB0(4)/TIM2_CH1/
LCD_SEG10(3)/
39 31 24
ADC1_IN18/
COMP1_INP
PB1/TIM3_CH1/
LCD_SEG11(3)/
40 32 25
ADC1_IN17/
COMP1_INP
PB2/ TIM2_CH2/
LCD_SEG12(3)/
41 33 26
ADC1_IN16/
COMP1_INP
I/O FT(5) X
I/O FT(5) X
(5)
I/O FT
X
I/O FT(5) X
PB3/TIM2_ETR/
I/O FT(5) X
42 34 27 LCD_SEG13(3)/
ADC1_IN15/COMP1_INP
43 35
-
-
44 36
-
-
PB4(4)/SPI1_NSS/
I/O FT(5) X
- LCD_SEG14(3)/
ADC1_IN14/COMP1_INP
PB4(4)/SPI1_NSS/
LCD_SEG14(3)/
28
ADC1_IN14/DAC_OUT2/
COMP1_INP
PB5/SPI1_SCK/
LCD_SEG15(3)/
ADC1_IN13
COMP1_INP
PB5/SPI1_SCK/
LCD_SEG15(3)/
29
ADC1_IN13/DAC_OUT2/
COMP1_INP
I/O FT(5) X
(5)
I/O FT
X
I/O FT(5) X
Main function
(after reset)
High sink/source
X HS X
X Port A7
X HS X
Timer 2 - channel 1 / LCD
segment 10 /
X Port B0
ADC1_IN18/Comparator 1
positive input
X HS X
Timer 3 - channel 1 / LCD
segment 11 /
X Port B1
ADC1_IN17/Comparator 1
positive input
X HS X
Timer 2 - channel 2 / LCD
segment 12 /
X Port B2
ADC1_IN16/Comparator 1
positive input
X HS X
Timer 2 - trigger / LCD
segment 13
X Port B3
/ADC1_IN15/Comparator 1
positive input
X HS X
SPI1 master/slave select /
LCD segment 14 /
X Port B4
ADC1_IN14/Comparator 1
positive input
X HS X
SPI1 master/slave select /
LCD segment 14 /
ADC1_IN14 /
X Port B4
DAC channel 2
output/Comparator 1
positive input
X HS X
SPI1 clock / LCD segment
15 /
X Port B5
ADC1_IN13/Comparator 1
positive input
X HS X
[SPI1 clock] / LCD segment
15 / ADC1_IN13 / DAC
X Port B5 channel 2
output/Comparator 1
positive input
X
X
X
X
X
X
X
X
DocID027180 Rev 5
PP
X
OD
Ext. interrupt
PA7/LCD_SEG0(3)/
TIM5_CH1
Output
wpu
8
floating
LQFP48
8
Pin name
I/O level
LQFP64
12
Input
Type
LQFP80
Pin
number
Default alternate function
LCD segment 0 / TIM5
channel 1
31/133
61
Pin description
STM8AL31E8x STM8AL3LE8x
Table 5. High-density STM8AL3xE8x pin description (continued)
45 37
-
-
PB6/SPI1_MOSI/
- LCD_SEG16(3)/
I/O FT(5) X
ADC1_IN12/COMP1_INP
PB6/SPI1_MOSI/
LCD_SEG16(3)/
30
ADC1_IN12/DAC_OUT2/
COMP1_INP
I/O FT(5) X
PB7/SPI1_MISO/
I/O FT(5) X
46 38 31 LCD_SEG17(3)/
ADC1_IN11/COMP1_INP
X
X
X
Main function
(after reset)
PP
OD
High sink/source
Output
Ext. interrupt
wpu
floating
Pin name
I/O level
Input
Type
LQFP48
LQFP64
LQFP80
Pin
number
Default alternate function
X HS X
SPI1 master out/slave in/
LCD segment 16 /
X Port B6
ADC1_IN12/Comparator 1
positive input
X HS X
SPI1 master out/
slave in / LCD segment 16 /
X Port B6 ADC1_IN12 / DAC channel
2 output/Comparator 1
positive input
X HS X
SPI1 master in- slave out/
LCD segment 17 /
X Port B7
ADC1_IN11/Comparator 1
positive input
65 53 37 PC0/I2C1_SDA
I/O FT(5) X
X
T(6) - Port C0 I2C1 data
66 54 38 PC1/I2C1_SCL
I/O FT(5) X
X
T(6) - Port C1 I2C1 clock
PC2/USART1_RX/
69 57 41 LCD_SEG22/ADC1_IN6/
COMP1_INP/VREFINT
-
-
70 58
PC3/USART1_TX/
42 LCD_SEG23(3)/
ADC1_IN5
I/O FT(5) X
X
X HS X
USART1 receive /
LCD segment 22 /
X Port C2 ADC1_IN6/Comparator 1
positive input/Internal
reference voltage output
I/O FT(5) X
X
X HS X
USART1 transmit /
X Port C3 LCD segment 23 /
ADC1_IN5
X HS X
USART1 transmit /
LCD segment 23 /
X Port C3 ADC1_IN5 /
Comparator 2 negative input
/Comparator 1 input positive
PC3/USART1_TX/
LCD_SEG23(3)/
I/O FT(5) X
ADC1_IN5/COMP2_INM/
COMP1_INP
X
PC4/USART1_CK/
I2C1_SMB/CCO/
I/O FT(5) X
71 59 43 LCD_SEG24(3)/
ADC1_IN4/COMP2_INM/
COMP1_INP
X
X HS X
USART1 synchronous clock
/ I2C1_SMB / Configurable
clock output / LCD segment
X Port C4 24 / ADC1_IN4 /
Comparator 2 negative input
/ Comparator 1 positive
input
PC5/OSC32_IN
72 60 44 /[SPI1_NSS](2)/
[USART1_TX](2)
X
X HS X
LSE oscillator input / [SPI1
X Port C5 master/slave select] /
[USART1 transmit]
32/133
I/O FT(5) X
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Pin description
Table 5. High-density STM8AL3xE8x pin description (continued)
-
-
PC7/LCD_SEG25(3)/
- ADC1_IN3/COMP2_INM/ I/O FT(5) X
COMP1_INP
PC7/LCD_SEG25(3)/
ADC1_IN3/USART3_CK/
46
COMP2_INM/
COMP1_INP
I/O FT(5) X
PD0/TIM3_CH2/
[ADC1_TRIG](2)/
I/O FT(5) X
29 25 20
LCD_SEG7(3)/
ADC1_IN22/COMP2_INP
PD1/TIM3_ETR/
LCD_COM3(3)/
30 26 21
I/O FT(5) X
ADC1_IN21/COMP1_INP/
COMP2_INP
PD2/TIM1_CH1
I/O FT(5) X
31 27 22 /LCD_SEG8(3)/
ADC1_IN20/COMP1_INP
PD3/ TIM1_ETR/
LCD_SEG9(3)/
32 28 23
ADC1_IN19/
COMP1_INP
57 45
-
-
PD4/TIM1_CH2
/LCD_SEG18(3)/
ADC1_IN10/
COMP1_INP
PD4/TIM1_CH2
/LCD_SEG18(3)/
33
ADC1_IN10/SPI2_MISO/
COMP1_INP
I/O FT(5) X
(5)
I/O FT
X
I/O FT(5) X
Main function
(after reset)
High sink/source
X HS X
X Port C6
X HS X
LCD segment 25
/ADC1_IN3/ Comparator
X Port C7
negative input / Comparator
1 positive input
X HS X
LCD segment 25
/ADC1_IN3/ USART3
synchronous clock/
X Port C7
Comparator 2 negative input
/ Comparator 1 positive
input
X HS X
Timer 3 - channel 2 /
[ADC1_Trigger] / LCD
X Port D0 segment 7 / ADC1_IN22 /
Comparator 2 positive input
2
X HS X
Timer 3 - trigger /
LCD_COM3 / ADC1_IN21 /
X Port D1
comparator 1 positive input/
comparator 2 positive input
X HS X
Timer 1 - channel 1 / LCD
segment 8 /
X Port D2
ADC1_IN20/Comparator 1
positive input
X HS X
Timer 1 - trigger / LCD
segment 9 /
X Port D3
ADC1_IN19/Comparator 1
positive input
X HS X
Timer 1 - channel 2 / LCD
segment 18 /
X Port D4
ADC1_IN10/Comparator 1
positive input
X HS X
Timer 1 - channel 2 / LCD
segment 18 /
X Port D4 ADC1_IN10/SPI2 master
in/slave out/Comparator 1
positive input
X
X
X
X
X
X
X
X
DocID027180 Rev 5
PP
X
OD
Ext. interrupt
74 62
I/O FT(5) X
Output
wpu
PC6/OSC32_OUT/
73 61 45 [SPI1_SCK](2)/
[USART1_RX](2)
floating
Pin name
I/O level
Input
Type
LQFP48
LQFP64
LQFP80
Pin
number
Default alternate function
LSE oscillator output / [SPI1
clock] / [USART1 receive]
33/133
61
Pin description
STM8AL31E8x STM8AL3LE8x
Table 5. High-density STM8AL3xE8x pin description (continued)
58 46
-
-
-
60 48
-
-
PD5/TIM1_CH3
/LCD_SEG19(3)/
34
ADC1_IN9/SPI2_MOSI/
COMP1_INP
PD6/TIM1_BKIN
/LCD_SEG20(3)/
ADC1_IN8/RTC_CALIB/
COMP1_INP/VREFINT
PD6/TIM1_BKIN
/LCD_SEG20(3)/
35 ADC1_IN8/RTC_CALIB/
SPI2_SCK/COMP1_INP/
VREFINT
I/O FT(5) X
I/O FT(5) X
I/O FT(5) X
I/O FT(5) X
PD7/TIM1_CH1N
/LCD_SEG21(3)/
I/O FT(5) X
ADC1_IN7/RTC_ALARM/
COMP1_INP/VREFINT
PD7/TIM1_CH1N
/LCD_SEG21(3)/
36 ADC1_IN7/RTC_ALARM/ I/O FT(5) X
SPI2_NSS/COMP1_INP/V
REFINT
Main function
(after reset)
PP
OD
High sink/source
Output
Ext. interrupt
wpu
floating
I/O level
Pin name
PD5/TIM1_CH3
/LCD_SEG19(3)/
ADC1_IN9/
COMP1_INP
59 47
-
Input
Type
LQFP48
LQFP64
LQFP80
Pin
number
Default alternate function
X HS X
Timer 1 - channel 3 / LCD
segment 19 /
X Port D5
ADC1_IN9/Comparator 1
positive input
X HS X
Timer 1 - channel 3 / LCD
segment 19 / ADC1_IN9/
X Port D5 SPI2 master out/slave
in/Comparator 1 positive
input
X HS X
Timer 1 - break input / LCD
segment 20 / ADC1_IN8 /
X Port D6 RTC calibration/Comparator
1 positive input/Internal
reference voltage output
X HS X
Timer 1 - break input / LCD
segment 20 / ADC1_IN8 /
RTC calibration/SPI2
X Port D6
clock/Comparator 1 positive
input/Internal reference
voltage output
X HS X
Timer 1 - inverted channel 1/
LCD segment 21 /
ADC1_IN7 / RTC
X Port D7
alarm/Comparator 1 positive
input/Internal reference
voltage output
X
X HS X
Timer 1 - inverted channel 1/
LCD segment 21 /
ADC1_IN7 / RTC alarm
X Port D7 /SPI2 master/slave
select/Comparator 1 positive
input/Internal reference
voltage output
X
X
X
X
X
61 49
-
PG4/LCD_SEG32/
SPI2_NSS
I/O FT(5) X
X
X HS X
X Port G4
LCD segment 32 / SPI2
master/slave select
62 50
-
PG5/LCD_SEG33/
SPI2_SCK
I/O FT(5) X
X
X HS X
X Port G5
LCD segment 33 / SPI2
clock
63 51
-
PG6/LCD_SEG34/
SPI2_MOSI
I/O FT(5) X
X
X HS X
X Port G6
LCD segment 34 / SPI2
master out- slave in
34/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Pin description
Table 5. High-density STM8AL3xE8x pin description (continued)
X Port G7
LCD segment 35 / SPI2
master in- slave out
23
-
PE0/LCD_SEG1(3)/
TIM5_CH2
I/O FT(5) X
X
X HS X
X Port E0
LCD segment 1 /Timer 5
channel 2
PE0/LCD_SEG1(3)/
TIM5_CH2/RTC_TAMP1
I/O FT(5) X
X
X HS X
X Port E0
LCD segment 1 /Timer 5
channel 2 / RTC tamper 1
PE1/TIM1_CH2N
/LCD_SEG2(3)
I/O FT(5) X
X
X HS X
X Port E1
Timer 1 - inverted channel 2
/ LCD segment 2
PE1/TIM1_CH2N
20 15 /LCD_SEG2(3)/
RTC_TAMP2
I/O FT(5) X
X
X HS X
X Port E1
Timer 1 - inverted channel 2
/ LCD segment 2 /
RTC tamper 2
PE2/TIM1_CH3N
/LCD_SEG3(3)
I/O FT(5) X
X
X HS X
X Port E2
Timer 1 - inverted channel 3
/ LCD segment 3
PE2/TIM1_CH3N
21 16 /LCD_SEG3(3)/
RTC_TAMP3
I/O FT(5) X
X
X HS X
X Port E2
Timer 1 - inverted channel 3
/ LCD segment 3 /
RTC tamper 3
I/O FT(5) X
X
X HS X
X Port E3
LCD segment 4
PE3/LCD_SEG4
USART2_RX
I/O FT(5) X
X
X HS X
X Port E3
LCD segment 4/
USART2 receive
PE4/LCD_SEG5(3)/
DAC_TRIG1
I/O FT(5) X
X
X HS X
X Port E4
LCD segment 5/
DAC 1 trigger
PE4/LCD_SEG5(3)/
I/O FT(5) X
DAC_TRIG2/USART2_TX
X
X HS X
X Port E4
LCD segment 5/
DAC 2 trigger/
USART2 transmit
X Port E5
LCD segment 6 /
ADC1_IN23/Comparator 1
positive input/Comparator 2
positive input
24
-
25
26
27
-
28
-
-
-
19 14
-
-
-
-
-
- PE3/LCD_SEG4(3)
22 17
-
-
23 18
-
(3)/
PE5/LCD_SEG6(3)/
- ADC1_IN23/COMP1_INP/ I/O FT(5) X
COMP2_INP
PE5/LCD_SEG6(3)/
ADC1_IN23/COMP1_INP/
24 19
I/O FT(5) X
COMP2_INP/
USART2_CK
-
PE6/LCD_SEG26(3)/
47 PVD_IN/TIM5_BKIN/
USART3_TX
I/O FT(5) X
X
X HS X
PP
X HS X
OD
X
floating
I/O FT(5) X
Pin name
Type
PG7/LCD_SEG35/
SPI2_MISO
LQFP48
-
LQFP64
64 52
LQFP80
Ext. interrupt
Main function
(after reset)
Output
wpu
I/O level
Input
High sink/source
Pin
number
Default alternate function
X
X HS X
X Port E5
LCD segment 6 /
ADC1_IN23/ Comparator 1
positive input/ Comparator 2
positive input/USART2
synchronous clock
X
X HS X
X Port E6
LCD segment 26 /PVD_IN
/TIM5 break input / USART3
transmit
DocID027180 Rev 5
35/133
61
Pin description
STM8AL31E8x STM8AL3LE8x
Table 5. High-density STM8AL3xE8x pin description (continued)
X Port E6
LCD segment 26 /PVD_IN
/TIM5 break input
76 64
-
PE7/LED_SEG27/
TIM5_ETR
I/O FT(5) X
X
X HS X
X Port E7
LCD segment 27/
TIM5 trigger
PE7/LED_SEG27/
48 TIM5_ETR/
USART3_RX
I/O FT(5) X
X
X HS X
X Port E7
LCD segment 27/TIM5 trigger/USART3 receive
PP
X HS X
OD
X
floating
I/O FT(5) X
Pin name
Type
PE6/LCD_SEG26(3)/
PVD_IN/TIM5_BKIN
LQFP48
-
LQFP64
75 63
LQFP80
Ext. interrupt
Main function
(after reset)
Output
wpu
I/O level
Input
High sink/source
Pin
number
Default alternate function
-
-
77
-
-
PI0/RTC_TAMP1/
[SPI2_NSS]/[TIM3_CH1
I/O FT(5) X
X
X HS X
X Port I0
RTC tamper 1 output
[SPI2 master/slave select]
[TIM3 channel 1]
78
-
-
PI1/RTC_TAMP2/
[SPI2_SCK]
I/O FT(5) X
X
X HS X
X Port I1
RTC tamper 2 output
[SPI2 clock]
79
-
-
PI2/RTC_TAMP3/
[SPI2_MOSI]
I/O FT(5) X
X
X HS X
X Port I2
RTC tamper 3 output
[SPI2 master out- slave in]
80
-
-
PI3/TIM5_CH1/
I/O FT(5) X
[SPI2_MISO]/[TIM3_CH2]
X
X HS X
X Port I3
TIM5 Channel 1
[SPI2 master in- slave out]
[TIM3 channel 2]
-
-
32
PF0/ADC1_IN24/
DAC_OUT1
I/O
-
X
X
X HS X
X Port F0
ADC1_IN24 / DAC 1 output
-
39
PF0/ADC1_IN24/
- DAC_OUT1
[USART3_TX]
I/O
-
X
X
X HS X
X Port F0
ADC1_IN24 /
DAC 1 output/
[USART3 transmit]
-
PF0/ADC1_IN24/
DAC_OUT1/
I/O
[USART3_TX]/[SPI1_MIS
O]
-
X
X
X HS X
X Port F0
ADC1_IN24 / DAC 1 output/
[USART3 transmit]
[SPI1 master in- slave out]
50
-
PF1/ADC1_IN25/
DAC_OUT2/
[USART3_RX]/
[SPI1_MOSI]
I/O
-
X
X
X HS X
X Port F1
ADC1_IN25/
DAC channel 2 output/
[USART3 receive]
[SPI1 master out- slave in]
-
40
PF1/ADC1_IN25/
- DAC_OUT2/
[USART3_RX]
I/O
-
X
X
X HS X
X Port F1
ADC1_IN25/
DAC channel 2 output/
[USART3 receive]
51
-
PF2/ADC1_IN26/
- [SPI1_SCK]/
[USART3_SCK]
I/O
-
X
X
X HS X
X Port F2
ADC1_IN26
[SPI1 clock]
[USART3 clock]
52
-
-
PF3/ADC1_IN27/
[SPI1_NSS]
I/O
-
X
X
X HS X
X Port F3
ADC1_IN26
[SPI1 master/slave select]
49
36/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Pin description
Table 5. High-density STM8AL3xE8x pin description (continued)
X Port F4
LCD COM4
54 42
- PF5/LCD_COM5
I/O FT(5) X
X
X HS X
X Port F5
LCD COM5
- PF6/LCD_COM6
FT(5)
X
X
X HS X
X Port F6
LCD COM6
(5)
X
X
X HS X
X Port F7
LCD COM7
55 43
56 44
LQFP48
- PF7/LCD_COM7
22 18 13
VLCD(7)
I/O
I/O FT
PP
X HS X
OD
X
floating
I/O FT(5) X
Pin name
Type
- PF4/LCD_COM4
LQFP64
53 41
LQFP80
Ext. interrupt
High sink/source
Output
wpu
I/O level
Input
Main function
(after reset)
Pin
number
Default alternate function
S
-
-
-
-
-
-
-
LCD booster external capacitor
15 11 10 VDD1
S
-
-
-
-
-
-
- Digital power supply
14 10
- VSS1
-
-
-
-
-
-
-
- I/O ground
16 12 11 VDDA
S
-
-
-
-
-
-
- Analog supply voltage
17 13 12 VREF+/VREF+_DAC
S
-
-
-
-
-
-
-
ADC1 and DAC1/2 positive voltage
reference
18 14
PG0/LCD SEG
- 28(3)/USART3_RX/
[TIM2_BKIN]
I/O FT(5) X
X
X HS X
X Port G0
LCD segment 28/
USART3 receive /
[Timer 2 - break input]
19 15
PG1/LCD SEG
- 29(3)/USART3_TX/
[TIM3_BKIN]
I/O FT(5) X
X
X HS X
X Port G1
LCD segment 29/
USART3 transmit /
[Timer 3 -break input]
20 16
-
PG2/LCD_SEG 30(3)/
USART3_CK
I/O FT(5) X
X
X HS X
X Port G2
LCD segment 30/
USART 3 synchronous
clock
21 17
-
PG3/LCD SEG 31 (3)/
[TIM3_ETR]
I/O FT(5) X
X
X HS X
X Port G3
LCD segment 31/
[Timer 3 - trigger]
33
- PH4/USART2_RX
I/O FT(5) X
X
X HS X
X Port H4
USART2 receive
X
X
X HS X
X Port H5
USART2 transmit
I/O FT(5) X
X
X HS X
X Port H6
USART2 synchronous
clock/ Timer 5 - channel 1
I/O FT(5) X
X
X HS X
X Port H7
Timer 5 - channel 2
-
(5)
34
-
- PH5/USART2_TX
35
-
-
36
-
- PH7/TIM5_CH2
-
-
9 VSS/VSSA/VREF-
S
-
-
-
-
-
-
-
I/O ground / Analog ground voltage /
ADC1 negative voltage reference
13
9
- VSSA/VREF-
S
-
-
-
-
-
-
-
Analog ground voltage /
ADC1 negative voltage reference
37 29
- VDD3
S
-
-
-
-
-
-
- IOs supply voltage
38 30
- VSS3
S
-
-
-
-
-
-
- IOs ground voltage
PH6/USART2_CK/
TIM5_CH1
I/O FT
DocID027180 Rev 5
37/133
61
Pin description
STM8AL31E8x STM8AL3LE8x
Table 5. High-density STM8AL3xE8x pin description (continued)
5
1
1
PA0(8)/[USART1_CK](2)/
Main function
(after reset)
PP
OD
High sink/source
Output
Ext. interrupt
wpu
floating
I/O level
Pin name
Type
Input
LQFP48
LQFP64
LQFP80
Pin
number
Default alternate function
[USART1 synchronous
clock](2) / SWIM input and
output /
Beep output / Infrared Timer
output
I/O
-
X
X
X HS X
X Port A0
68 56 40 VSS2
S
-
-
-
-
-
-
- IOs ground voltage
67 55 39 VDD2
S
-
-
-
-
-
-
- IOs supply voltage
48
-
- VSS4
S
-
-
-
-
-
-
- IOs ground voltage
47
-
- VDD4
S
-
-
-
-
-
-
- IOs supply voltage
SWIM/BEEP/IR_TIM (9)
1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be
configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1
pin as general purpose output in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU
lines reference manual (RM0031).
2. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a
duplication of the function).
3. Available onSTM8AL3LE8xdevices only.
4. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.
5. In the 5 V tolerant I/Os, the protection diode to VDD is not implemented.
6. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to VDD are
not implemented).
7. Available on STM8AL3LE8x devices only. On STM8AL31E8x devices it is reserved and must be tied to VDD.
8. The PA0 pin is in input pull-up during the reset phase and after reset release.
9. High Sink LED driver capability available on PA0.
Note:
The slope control of all GPIO pins, except true open drain pins, are programmable. By
default the slope control is limited to 2 MHz.
System configuration options
As shown in Table 5: High-density STM8AL3xE8x pin description, some alternate functions
can be remapped on different I/O ports by programming one of the two remapping registers
described in the “Routing interface (RI) and system configuration controller” section in
STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU
lines reference manual (RM0031).
38/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Memory and register map
5
Memory and register map
5.1
Memory mapping
The memory map is shown in Figure 9.
Figure 9. Memory map
[
[ )))
[
5$0.E\WHV
LQFOXGLQJ
VWDFNE\WHV
'DWD((3520
.E\WHV
[ ))
[
[
[
5HVHUYHG
[ ))
[
[ ))
[
[
[
[
[
[
[)))
[
6<6&)*
[$
[$
[%
567
[&
76B)DFWRU\B&219B9
5HVHUYHG
[(
[)
[
[)))
&/.
::'*
,:'*
%((3
57&
5HVHUYHG
[
63,
[
[
[
[
[%
[(
%RRW520
.E\WHV
[))
[ [
5HVHUYHG
[)))
[
[)
[
['
8QLTXH,'
5HVHUYHG
[ ())
[)
:)(
3:5
[ ))
[
[ ))
[
,7&(;7,
[%
95(),17B)DFWRU\B&219
*3,2DQGSHULSKHUDOUHJLVWHUV
[)))
[
)ODVK
'0$
['
2SWLRQE\WHV
5HVHUYHG
[
[
[
[
*3,2SRUWV
[
[&
&386:,0'HEXJ,7&
UHJLVWHUV
['
[(
[)
5HVHWDQGLQWHUUXSWYHFWRUV
[
[
[
+LJKGHQVLW\
)ODVKSURJUDPPHPRU\
.E\WHV
[
,&
86$57
7,0
7,0
7,0
7,0
,57,0
7, 0 $ '& '$ &
63,
$(6
86$57
86$57
/&'
5,
&203
069
1. Refer to Table 9 for an overview of hardware register mapping, to Table 8 for details on I/O port hardware
registers, and to Table 10 for information on CPU/SWIM/debug module controller registers.
DocID027180 Rev 5
39/133
61
Memory and register map
STM8AL31E8x STM8AL3LE8x
Table 6. Flash and RAM boundary addresses
Memory area
Size
Start address
End address
RAM
4 Kbyte
0x00 0000
0x00 0FFF
Flash program memory
64 Kbyte
0x00 8000
0x01 7FFF
5.2
Register map
Table 7. Factory conversion registers
Address
Block
Register label
Register name
Reset
status
0x00 4910
-
VREFINT_Factory_CONV(1)
Internal reference voltage factory
conversion
0xXX
0x00 4911
-
TS_Factory_CONV_V125(2)
Temperature sensor output voltage
0xXX
1. The VREFINT_Factory_CONV byte represents the 8 LSB of the result of the VREFINT 12-bit ADC conversion performed in
factory. The 2 MSB have a fixed value: 0x6.
2. The TS_Factory_CONV_V125 byte represents the 8 LSB of the result of the V125 12-bit ADC conversion performed in
factory. The 2 MSB have a fixed value: 0x3.
Table 8. I/O port hardware register map
Register label
Register name
Reset
status
0x00 5000
PA_ODR
Port A data output latch register
0x00
0x00 5001
PA_IDR
Port A input pin value register
0xXX
PA_DDR
Port A data direction register
0x00
0x00 5003
PA_CR1
Port A control register 1
0x01
0x00 5004
PA_CR2
Port A control register 2
0x00
0x00 5005
PB_ODR
Port B data output latch register
0x00
0x00 5006
PB_IDR
Port B input pin value register
0xXX
PB_DDR
Port B data direction register
0x00
0x00 5008
PB_CR1
Port B control register 1
0x00
0x00 5009
PB_CR2
Port B control register 2
0x00
0x00 500A
PC_ODR
Port C data output latch register
0x00
0x00 500B
PB_IDR
Port C input pin value register
0xXX
PC_DDR
Port C data direction register
0x00
0x00 500D
PC_CR1
Port C control register 1
0x00
0x00 500E
PC_CR2
Port C control register 2
0x00
Address
0x00 5002
0x00 5007
0x00 500C
40/133
Block
Port A
Port B
Port C
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Memory and register map
Table 8. I/O port hardware register map (continued)
Register label
Register name
Reset
status
0x00 500F
PD_ODR
Port D data output latch register
0x00
0x00 5010
PD_IDR
Port D input pin value register
0xXX
PD_DDR
Port D data direction register
0x00
0x00 5012
PD_CR1
Port D control register 1
0x00
0x00 5013
PD_CR2
Port D control register 2
0x00
0x00 5014
PE_ODR
Port E data output latch register
0x00
0x00 5015
PE_IDR
Port E input pin value register
0xXX
PE_DDR
Port E data direction register
0x00
0x00 5017
PE_CR1
Port E control register 1
0x00
0x00 5018
PE_CR2
Port E control register 2
0x00
0x00 5019
PF_ODR
Port F data output latch register
0x00
0x00 501A
PF_IDR
Port F input pin value register
0xXX
PF_DDR
Port F data direction register
0x00
0x00 501C
PF_CR1
Port F control register 1
0x00
0x00 501D
PF_CR2
Port F control register 2
0x00
0x00 501E
PG_ODR
Port F data output latch register
0x00
0x00 501F
PG_IDR
Port G input pin value register
0xXX
PG_DDR
Port G data direction register
0x00
0x00 5021
PG_CR1
Port G control register 1
0x00
0x00 5022
PG_CR2
Port G control register 2
0x00
0x00 5023
PH_ODR
Port H data output latch register
0x00
0x00 5024
PH_IDR
Port H input pin value register
0xXX
PH_DDR
Port H data direction register
0x00
0x00 5026
PH_CR1
Port H control register 1
0x00
0x00 5027
PH_CR2
Port H control register 2
0x00
0x00 5028
PI_ODR
Port I data output latch register
0x00
0x00 5029
PI_IDR
Port I input pin value register
0xXX
PI_DDR
Port I data direction register
0x00
0x00 502B
PI_CR1
Port I control register 1
0x00
0x00 502C
PI_CR2
Port I control register 2
0x00
Address
0x00 5011
0x00 5016
0x00 501B
0x00 5020
0x00 5025
0x00 502A
Block
Port D
Port E
Port F
Port G
Port H
Port I
DocID027180 Rev 5
41/133
61
Memory and register map
STM8AL31E8x STM8AL3LE8x
Table 9. General hardware register map
Address
Block
Register label
0x00 502E
to
0x00 5049
Register name
Reset status
Reserved area (44 byte)
0x00 5050
FLASH_CR1
Flash control register 1
0x00
0x00 5051
FLASH_CR2
Flash control register 2
0x00
FLASH _PUKR
Flash program memory unprotection key
register
0x00
0x00 5053
FLASH _DUKR
Data EEPROM unprotection key register
0x00
0x00 5054
FLASH _IAPSR
Flash in-application programming status
register
0x00
0x00 5052
Flash
0x00 5055
to
0x00 506F
0x00 5070
Reserved area (27 byte)
DMA1
0x00 5071
DMA1_GCSR
DMA1 global configuration & status
register
0xFC
DMA1_GIR1
DMA1 global interrupt register 1
0x00
0x00 5072 to
0x00 5074
Reserved area (3 byte)
0x00 5075
DMA1_C0CR
DMA1 channel 0 configuration register
0x00
0x00 5076
DMA1_C0SPR
DMA1 channel 0 status & priority register
0x00
0x00 5077
DMA1_C0NDTR
DMA1 number of data to transfer register
(channel 0)
0x00
0x00 5078
DMA1_C0PARH
DMA1 peripheral address high register
(channel 0)
0x52
DMA1_C0PARL
DMA1 peripheral address low register
(channel 0)
0x00
0x00 5079
DMA1
0x00 507A
Reserved area (1 byte)
0x00 507B
DMA1_C0M0ARH
DMA1 memory 0 address high register
(channel 0)
0x00
0x00 507C
DMA1_C0M0ARL
DMA1 memory 0 address low register
(channel 0)
0x00
0x00 507D to
0x00 507E
Reserved area (2 byte)
0x00 507F
DMA1_C1CR
DMA1 channel 1 configuration register
0x00
0x00 5080
DMA1_C1SPR
DMA1 channel 1 status & priority register
0x00
0x00 5081
DMA1_C1NDTR
DMA1 number of data to transfer register
(channel 1)
0x00
0x00 5082
DMA1_C1PARH
DMA1 peripheral address high register
(channel 1)
0x52
0x00 5083
DMA1_C1PARL
DMA1 peripheral address low register
(channel 1)
0x00
DMA1
42/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Memory and register map
Table 9. General hardware register map (continued)
Address
Block
Register label
0x00 5084
Register name
Reset status
Reserved area (1 byte)
0x00 5085
DMA1_C1M0ARH
DMA1 memory 0 address high register
(channel 1)
0x00
DMA1_C1M0ARL
DMA1 memory 0 address low register
(channel 1)
0x00
DMA1
0x00 5086
0x00 5087
0x00 5088
Reserved area (2 byte)
0x00 5089
DMA1_C2CR
DMA1 channel 2 configuration register
0x00
0x00 508A
DMA1_C2SPR
DMA1 channel 2 status & priority register
0x00
0x00 508B
DMA1_C2NDTR
DMA1 number of data to transfer register
(channel 2)
0x00
0x00 508C
DMA1_C2PARH
DMA1 peripheral address high register
(channel 2)
0x52
DMA1_C2PARL
DMA1 peripheral address low register
(channel 2)
0x00
0x00 508D
DMA1
0x00 508E
Reserved area (1 byte)
0x00 508F
DMA1_C2M0ARH
DMA1 memory 0 address high register
(channel 2)
0x00
0x00 5090
DMA1_C2M0ARL
DMA1 memory 0 address low register
(channel 2)
0x00
0x00 5091
0x00 5092
Reserved area (2 byte)
0x00 5093
DMA1_C3CR
DMA1 channel 3 configuration register
0x00
0x00 5094
DMA1_C3SPR
DMA1 channel 3 status & priority register
0x00
0x00 5095
DMA1_C3NDTR
DMA1 number of data to transfer register
(channel 3)
0x00
0x00 5096
DMA1_C3PARH_
C3M1ARH
DMA1 peripheral address high register
(channel 3)
0x40
DMA1_C3PARL_
C3M1ARL
DMA1 peripheral address low register
(channel 3)
0x00
0x00 5098
DMA_C3M0EAR
DMA channel 3 memory 0 extended
address register
0x00
0x00 5099
DMA1_C3M0ARH
DMA1 memory 0 address high register
(channel 3)
0x00
0x00 509A
DMA1_C3M0ARL
DMA1 memory 0 address low register
(channel 3)
0x00
0x00 5097
0x00 509B to
0x00 509C
DMA1
Reserved area (3 byte)
DocID027180 Rev 5
43/133
61
Memory and register map
STM8AL31E8x STM8AL3LE8x
Table 9. General hardware register map (continued)
Address
Block
Register label
Register name
Reset status
SYSCFG_RMPCR3
Remapping register 3
0x00
SYSCFG_RMPCR1
Remapping register 1
0x00
0x00 509F
SYSCFG_RMPCR2
Remapping register 2
0x00
0x00 50A0
EXTI_CR1
External interrupt control register 1
0x00
0x00 50A1
EXTI_CR2
External interrupt control register 2
0x00
EXTI_CR3
External interrupt control register 3
0x00
EXTI_SR1
External interrupt status register 1
0x00
0x00 50A4
EXTI_SR2
External interrupt status register 2
0x00
0x00 50A5
EXTI_CONF1
External interrupt port select register 1
0x00
0x00 50A6
WFE_CR1
WFE control register 1
0x00
WFE_CR2
WFE control register 2
0x00
WFE_CR3
WFE control register 3
0x00
WFE_CR4
WFE control register 4
0x00
EXTI_CR4
External interrupt control register 4
0x00
EXTI_CONF2
External interrupt port select register 2
0x00
0x00 509D
0x00 509E
0x00 50A2
0x00 50A3
0x00 50A7
0x00 50A8
SYSCFG
ITC - EXTI
WFE
0x00 50A9
0x00 50AA
0x00 50AB
ITC - EXTI
0x00 50A9
to
0x00 50AF
0x00 50B0
0x00 50B1
0x00 50B2
0x00 50B3
Reserved area (7 byte)
RST
PWR
RST_CR
Reset control register
0x00
RST_SR
Reset status register
0x01
PWR_CSR1
Power control and status register 1
0x00
PWR_CSR2
Power control and status register 2
0x00
0x00 50B4
to
0x00 50BF
Reserved area (12 byte)
0x00 50C0
CLK_CKDIVR
Clock master divider register
0x03
0x00 50C1
CLK_CRTCR
Clock RTC register
0x00(1)
0x00 50C2
CLK_ICKCR
Internal clock control register
0x11
0x00 50C3
CLK_PCKENR1
Peripheral clock gating register 1
0x00
CLK_PCKENR2
Peripheral clock gating register 2
0x00
CLK_CCOR
Configurable clock control register
0x00
0x00 50C6
CLK_ECKCR
External clock control register
0x00
0x00 50C7
CLK_SCSR
System clock status register
0x01
0x00 50C8
CLK_SWR
System clock switch register
0x01
0x00 50C9
CLK_SWCR
Clock switch control register
0xX0
0x00 50C4
0x00 50C5
44/133
CLK
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Memory and register map
Table 9. General hardware register map (continued)
Address
Register label
Register name
Reset status
0x00 50CA
CLK_CSSR
Clock security system register
0x00
0x00 50CB
CLK_CBEEPR
Clock BEEP register
0x00
0x00 50CC
CLK_HSICALR
HSI calibration register
0xXX
CLK_HSITRIMR
HSI clock calibration trimming register
0x00
0x00 50CE
CLK_HSIUNLCKR
HSI unlock register
0x00
0x00 50CF
CLK_REGCSR
Main regulator control status register
0bxx11 100X
0x00 50D0
CLK_PCKENR3
Peripheral clock gating register 3
0x00
0x00 50CD
Block
CLK
0x00 50D1
to
0x00 50D2
0x00 50D3
0x00 50D4
Reserved area (2 byte)
WWDG
WWDG_CR
WWDG control register
0x7F
WWDG_WR
WWDR window register
0x7F
0x00 50D5
to
00 50DF
Reserved area (11 byte)
0x00 50E0
0x00 50E1
IWDG
0x00 50E2
IWDG_KR
IWDG key register
0xXX
IWDG_PR
IWDG prescaler register
0x00
IWDG_RLR
IWDG reload register
0xFF
0x00 50E3
to
0x00 50EF
Reserved area (13 byte)
0x00 50F0
0x00 50F1
0x00 50F2
BEEP_CSR1
BEEP_CSR2
0x00 50F4
to0x00 513F
RTC
0x00 5142
Time register 1
0x00
RTC_TR2
Time register 2
0x00
RTC_TR3
Time register 3
0x00
Reserved area (1 byte)
0x00 5144
0x00 5146
0x00 5147
0x1F
RTC_TR1
0x00 5143
0x00 5145
BEEP control/status register 2
Reserved area (76 byte)
0x00 5140
0x00 5141
0x00
Reserved area (2 byte)
BEEP
0x00 50F3
BEEP control/status register 1
RTC
RTC_DR1
Date register 1
0x01
RTC_DR2
Date register 2
0x21
RTC_DR3
Date register 3
0x00
Reserved area (1 byte)
DocID027180 Rev 5
45/133
61
Memory and register map
STM8AL31E8x STM8AL3LE8x
Table 9. General hardware register map (continued)
Address
Register label
Register name
Reset status
0x00 5148
RTC_CR1
Control register 1
0x00(1)
0x00 5149
RTC_CR2
Control register 2
0x00(1)
RTC_CR3
Control register 3
0x00(1)
0x00 514A
0x00 514B
Block
RTC
Reserved area (1 byte)
0x00 514C
RTC_ISR1
Initialization and status register 1
0x01
0x00 514D
RTC_ISR2
Initialization and Status register 2
0x00
0x00 514E
0x00 514F
Reserved area (2 byte)
0x00 5150
0x00 5151
RTC
0x00 5152
RTC_SPRERH
Synchronous prescaler register high
0x00(1)
RTC_SPRERL
Synchronous prescaler register low
0xFF(1)
RTC_APRER
Asynchronous prescaler register
0x7F(1)
0x00 5153
0x00 5154
0x00 5155
Reserved area (1 byte)
RTC
RTC_WUTRH
Wakeup timer register high
0xFF(1)
RTC_WUTRL
Wakeup timer register low
0xFF(1)
0x00 5156
Reserved area (1 byte)
0x00 5157
RTC_SSRL
Subsecond register low
0x00
0x00 5158
RTC_SSRH
Subsecond register high
0x00
0x00 5159
RTC_WPR
Write protection register
0x00
0x00 5158
RTC_SSRH
Subsecond register high
0x00
0x00 5159
RTC_WPR
Write protection register
0x00
RTC_SHIFTRH
Shift register high
0x00
0x00 515B
RTC_SHIFTRL
Shift register low
0x00
0x00 515C
RTC_ALRMAR1
Alarm A register 1
0x00(1)
0x00 515D
RTC_ALRMAR2
Alarm A register 2
0x00(1)
0x00 515E
RTC_ALRMAR3
Alarm A register 3
0x00(1)
0x00 515F
RTC_ALRMAR4
Alarm A register 4
0x00(1)
0x00 515A
RTC
0x00 5160 to
0x00 5163
Reserved area (4 byte)
0x00 5164
0x00 5165
0x00 5166
0x00 5167 to
0x00 5169
46/133
RTC
RTC_ALRMASSRH
Alarm A subsecond register high
0x00(1)
RTC_ALRMASSRL
Alarm A subsecond register low
0x00(1)
RTC_ALRMASSMS
KR
Alarm A masking register
0x00(1)
Reserved area (3 byte)
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Memory and register map
Table 9. General hardware register map (continued)
Address
Block
0x00 516A
0x00 516B
0x00 516C
RTC
0x00 516D
Register label
Register name
Reset status
RTC_CALRH
Calibration register high
0x00(1)
RTC_CALRL
Calibration register low
0x00(1)
RTC_TCR1
Tamper control register 1
0x00(1)
RTC_TCR2
Tamper control register 2
0x00(1)
0x00 516E to
0x00 518A
0x00 5190
Reserved area
CSSLSE
CSSLSE_CSR
0x00 519A to
0x00 51FF
CSS on LSE control and status register
0x00(1)
Reserved area
0x00 5200
SPI1_CR1
SPI1 control register 1
0x00
0x00 5201
SPI1_CR2
SPI1 control register 2
0x00
0x00 5202
SPI1_ICR
SPI1 interrupt control register
0x00
SPI1_SR
SPI1 status register
0x02
SPI1_DR
SPI1 data register
0x00
0x00 5205
SPI1_CRCPR
SPI1 CRC polynomial register
0x07
0x00 5206
SPI1_RXCRCR
SPI1 Rx CRC register
0x00
0x00 5207
SPI1_TXCRCR
SPI1 Tx CRC register
0x00
0x00 5203
0x00 5204
SPI1
0x00 5208
to
0x00 520F
Reserved area (8 byte)
0x00 5210
I2C1_CR1
I2C1 control register 1
0x00
0x00 5211
I2C1_CR2
I2C1 control register 2
0x00
0x00 5212
I2C1_FREQR
I2C1 frequency register
0x00
0x00 5213
I2C1_OARL
I2C1 own address register low
0x00
0x00 5214
I2C1_OARH
I2C1 own address register high
0x00
0x00 5215
I2C1_OARH
I2C1 own address register for dual mode
0x00
0x00 5216
I2C1_DR
I2C1 data register
0x00
I2C1_SR1
I2C1 status register 1
0x00
0x00 5218
I2C1_SR2
I2C1 status register 2
0x00
0x00 5219
I2C1_SR3
I2C1 status register 3
0x0X
0x00 521A
I2C1_ITR
I2C1 interrupt control register
0x00
0x00 521B
I2C1_CCRL
I2C1 clock control register low
0x00
0x00 521C
I2C1_CCRH
I2C1 clock control register high
0x00
0x00 521D
I2C1_TRISER
I2C1 TRISE register
0x02
0x00 521E
I2C1_PECR
I2C1 packet error checking register
0x00
0x00 5217
I2C1
DocID027180 Rev 5
47/133
61
Memory and register map
STM8AL31E8x STM8AL3LE8x
Table 9. General hardware register map (continued)
Address
Block
Register label
0x00 521F
to
0x00 522F
Register name
Reset status
Reserved area (17 byte)
0x00 5230
USART1_SR
USART1 status register
0xC0
0x00 5231
USART1_DR
USART1 data register
0xXX
0x00 5232
USART1_BRR1
USART1 baud rate register 1
0x00
0x00 5233
USART1_BRR2
USART1 baud rate register 2
0x00
0x00 5234
USART1_CR1
USART1 control register 1
0x00
USART1_CR2
USART1 control register 2
0x00
0x00 5236
USART1_CR3
USART1 control register 3
0x00
0x00 5237
USART1_CR4
USART1 control register 4
0x00
0x00 5238
USART1_CR5
USART1 control register 5
0x00
0x00 5239
USART1_GTR
USART1 guard time register
0x00
0x00 523A
USART1_PSCR
USART1 prescaler register
0x00
0x00 5235
USART1
0x00 523B
to
0x00 524F
Reserved area (21 byte)
0x00 5250
TIM2_CR1
TIM2 control register 1
0x00
0x00 5251
TIM2_CR2
TIM2 control register 2
0x00
0x00 5252
TIM2_SMCR
TIM2 Slave mode control register
0x00
0x00 5253
TIM2_ETR
TIM2 external trigger register
0x00
0x00 5254
TIM2_DER
TIM2 DMA1 request enable register
0x00
0x00 5255
TIM2_IER
TIM2 interrupt enable register
0x00
0x00 5256
TIM2_SR1
TIM2 status register 1
0x00
0x00 5257
TIM2_SR2
TIM2 status register 2
0x00
TIM2_EGR
TIM2 event generation register
0x00
TIM2_CCMR1
TIM2 capture/compare mode register 1
0x00
0x00 525A
TIM2_CCMR2
TIM2 capture/compare mode register 2
0x00
0x00 525B
TIM2_CCER1
TIM2 capture/compare enable register 1
0x00
0x00 525C
TIM2_CNTRH
TIM2 counter high
0x00
0x00 525D
TIM2_CNTRL
TIM2 counter low
0x00
0x00 525E
TIM2_PSCR
TIM2 prescaler register
0x00
0x00 525F
TIM2_ARRH
TIM2 auto-reload register high
0xFF
0x00 5260
TIM2_ARRL
TIM2 auto-reload register low
0xFF
0x00 5261
TIM2_CCR1H
TIM2 capture/compare register 1 high
0x00
0x00 5258
0x00 5259
48/133
TIM2
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Memory and register map
Table 9. General hardware register map (continued)
Address
Register label
Register name
Reset status
0x00 5262
TIM2_CCR1L
TIM2 capture/compare register 1 low
0x00
0x00 5263
TIM2_CCR2H
TIM2 capture/compare register 2 high
0x00
TIM2_CCR2L
TIM2 capture/compare register 2 low
0x00
0x00 5265
TIM2_BKR
TIM2 break register
0x00
0x00 5266
TIM2_OISR
TIM2 output idle state register
0x00
0x00 5264
Block
TIM2
0x00 5267 to
0x00 527F
Reserved area (25 byte)
0x00 5280
TIM3_CR1
TIM3 control register 1
0x00
0x00 5281
TIM3_CR2
TIM3 control register 2
0x00
0x00 5282
TIM3_SMCR
TIM3 Slave mode control register
0x00
0x00 5283
TIM3_ETR
TIM3 external trigger register
0x00
0x00 5284
TIM3_DER
TIM3 DMA1 request enable register
0x00
0x00 5285
TIM3_IER
TIM3 interrupt enable register
0x00
0x00 5286
TIM3_SR1
TIM3 status register 1
0x00
0x00 5287
TIM3_SR2
TIM3 status register 2
0x00
0x00 5288
TIM3_EGR
TIM3 event generation register
0x00
0x00 5289
TIM3_CCMR1
TIM3 Capture/Compare mode register 1
0x00
0x00 528A
TIM3_CCMR2
TIM3 Capture/Compare mode register 2
0x00
TIM3_CCER1
TIM3 Capture/Compare enable register 1
0x00
0x00 528C
TIM3_CNTRH
TIM3 counter high
0x00
0x00 528D
TIM3_CNTRL
TIM3 counter low
0x00
0x00 528E
TIM3_PSCR
TIM3 prescaler register
0x00
0x00 528F
TIM3_ARRH
TIM3 Auto-reload register high
0xFF
0x00 5290
TIM3_ARRL
TIM3 Auto-reload register low
0xFF
0x00 5291
TIM3_CCR1H
TIM3 Capture/Compare register 1 high
0x00
0x00 5292
TIM3_CCR1L
TIM3 Capture/Compare register 1 low
0x00
0x00 5293
TIM3_CCR2H
TIM3 Capture/Compare register 2 high
0x00
0x00 5294
TIM3_CCR2L
TIM3 Capture/Compare register 2 low
0x00
0x00 5295
TIM3_BKR
TIM3 break register
0x00
0x00 5296
TIM3_OISR
TIM3 output idle state register
0x00
0x00 528B
0x00 5297 to
0x00 52AF
TIM3
Reserved area (25 byte)
DocID027180 Rev 5
49/133
61
Memory and register map
STM8AL31E8x STM8AL3LE8x
Table 9. General hardware register map (continued)
Address
Register label
Register name
Reset status
0x00 52B0
TIM1_CR1
TIM1 control register 1
0x00
0x00 52B1
TIM1_CR2
TIM1 control register 2
0x00
0x00 52B2
TIM1_SMCR
TIM1 Slave mode control register
0x00
0x00 52B3
TIM1_ETR
TIM1 external trigger register
0x00
0x00 52B4
TIM1_DER
TIM1 DMA1 request enable register
0x00
0x00 52B5
TIM1_IER
TIM1 Interrupt enable register
0x00
0x00 52B6
TIM1_SR1
TIM1 status register 1
0x00
0x00 52B7
TIM1_SR2
TIM1 status register 2
0x00
0x00 52B8
TIM1_EGR
TIM1 event generation register
0x00
0x00 52B9
TIM1_CCMR1
TIM1 Capture/Compare mode register 1
0x00
0x00 52BA
TIM1_CCMR2
TIM1 Capture/Compare mode register 2
0x00
0x00 52BB
TIM1_CCMR3
TIM1 Capture/Compare mode register 3
0x00
0x00 52BC
TIM1_CCMR4
TIM1 Capture/Compare mode register 4
0x00
0x00 52BD
TIM1_CCER1
TIM1 Capture/Compare enable register 1
0x00
0x00 52BE
TIM1_CCER2
TIM1 Capture/Compare enable register 2
0x00
0x00 52BF
TIM1_CNTRH
TIM1 counter high
0x00
TIM1_CNTRL
TIM1 counter low
0x00
TIM1_PSCRH
TIM1 prescaler register high
0x00
0x00 52C2
TIM1_PSCRL
TIM1 prescaler register low
0x00
0x00 52C3
TIM1_ARRH
TIM1 Auto-reload register high
0xFF
0x00 52C4
TIM1_ARRL
TIM1 Auto-reload register low
0xFF
0x00 52C5
TIM1_RCR
TIM1 Repetition counter register
0x00
0x00 52C6
TIM1_CCR1H
TIM1 Capture/Compare register 1 high
0x00
0x00 52C7
TIM1_CCR1L
TIM1 Capture/Compare register 1 low
0x00
0x00 52C8
TIM1_CCR2H
TIM1 Capture/Compare register 2 high
0x00
0x00 52C9
TIM1_CCR2L
TIM1 Capture/Compare register 2 low
0x00
0x00 52CA
TIM1_CCR3H
TIM1 Capture/Compare register 3 high
0x00
0x00 52CB
TIM1_CCR3L
TIM1 Capture/Compare register 3 low
0x00
0x00 52CC
TIM1_CCR4H
TIM1 Capture/Compare register 4 high
0x00
0x00 52CD
TIM1_CCR4L
TIM1 Capture/Compare register 4 low
0x00
0x00 52CE
TIM1_BKR
TIM1 break register
0x00
0x00 52CF
TIM1_DTR
TIM1 dead-time register
0x00
0x00 52D0
TIM1_OISR
TIM1 output idle state register
0x00
0x00 52D1
TIM1_DCR1
DMA1 control register 1
0x00
0x00 52C0
0x00 52C1
50/133
Block
TIM1
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Memory and register map
Table 9. General hardware register map (continued)
Address
0x00 52D2
0x00 52D3
Block
TIM1
Register label
Register name
Reset status
TIM1_DCR2
TIM1 DMA1 control register 2
0x00
TIM1_DMA1R
TIM1 DMA1 address for burst mode
0x00
0x00 52D4
to
0x00 52DF
Reserved area (12 byte)
0x00 52E0
TIM4_CR1
TIM4 control register 1
0x00
0x00 52E1
TIM4_CR2
TIM4 control register 2
0x00
0x00 52E2
TIM4_SMCR
TIM4 Slave mode control register
0x00
0x00 52E3
TIM4_DER
TIM4 DMA1 request enable register
0x00
TIM4_IER
TIM4 Interrupt enable register
0x00
TIM4_SR1
TIM4 status register 1
0x00
0x00 52E6
TIM4_EGR
TIM4 Event generation register
0x00
0x00 52E7
TIM4_CNTR
TIM4 counter
0x00
0x00 52E8
TIM4_PSCR
TIM4 prescaler register
0x00
0x00 52E9
TIM4_ARR
TIM4 Auto-reload register
0x00
0x00 52E4
0x00 52E5
TIM4
0x00 52EA
to
0x00 52FE
0x00 52FF
Reserved area (21 byte)
IR_CR
Infrared control register
0x00
0x00 5300
TIM5_CR1
TIM5 control register 1
0x00
0x00 5301
TIM5_CR2
TIM5 control register 2
0x00
0x00 5302
TIM5_SMCR
TIM5 Slave mode control register
0x00
0x00 5303
TIM5_ETR
TIM5 external trigger register
0x00
0x00 5304
TIM5_DER
TIM5 DMA1 request enable register
0x00
0x00 5305
TIM5_IER
TIM5 interrupt enable register
0x00
0x00 5306
TIM5_SR1
TIM5 status register 1
0x00
TIM5_SR2
TIM5 status register 2
0x00
TIM5_EGR
TIM5 event generation register
0x00
0x00 5309
TIM5_CCMR1
TIM5 Capture/Compare mode register 1
0x00
0x00 530A
TIM5_CCMR2
TIM5 Capture/Compare mode register 2
0x00
0x00 530B
TIM5_CCER1
TIM5 Capture/Compare enable register 1
0x00
0x00 530C
TIM5_CNTRH
TIM5 counter high
0x00
0x00 530D
TIM5_CNTRL
TIM5 counter low
0x00
0x00 530E
TIM5_PSCR
TIM5 prescaler register
0x00
0x00 530F
TIM5_ARRH
TIM5 Auto-reload register high
0xFF
0x00 5307
0x00 5308
IRTIM
TIM5
DocID027180 Rev 5
51/133
61
Memory and register map
STM8AL31E8x STM8AL3LE8x
Table 9. General hardware register map (continued)
Address
Register label
Register name
Reset status
0x00 5310
TIM5_ARRL
TIM5 Auto-reload register low
0xFF
0x00 5311
TIM5_CCR1H
TIM5 Capture/Compare register 1 high
0x00
0x00 5312
TIM5_CCR1L
TIM5 Capture/Compare register 1 low
0x00
TIM5_CCR2H
TIM5 Capture/Compare register 2 high
0x00
0x00 5314
TIM5_CCR2L
TIM5 Capture/Compare register 2 low
0x00
0x00 5315
TIM5_BKR
TIM5 break register
0x00
0x00 5316
TIM5_OISR
TIM5 output idle state register
0x00
0x00 5313
Block
TIM5
0x00 5317
to
0x00 533F
Reserved area
0x00 5340
ADC1_CR1
ADC1 configuration register 1
0x00
0x00 5341
ADC1_CR2
ADC1 configuration register 2
0x00
0x00 5342
ADC1_CR3
ADC1 configuration register 3
0x1F
0x00 5343
ADC1_SR
ADC1 status register
0x00
0x00 5344
ADC1_DRH
ADC1 data register high
0x00
0x00 5345
ADC1_DRL
ADC1 data register low
0x00
0x00 5346
ADC1_HTRH
ADC1 high threshold register high
0x0F
0x00 5347
ADC1_HTRL
ADC1 high threshold register low
0xFF
ADC1_LTRH
ADC1 low threshold register high
0x00
ADC1_LTRL
ADC1 low threshold register low
0x00
0x00 534A
ADC1_SQR1
ADC1 channel sequence 1 register
0x00
0x00 534B
ADC1_SQR2
ADC1 channel sequence 2 register
0x00
0x00 534C
ADC1_SQR3
ADC1 channel sequence 3 register
0x00
0x00 534D
ADC1_SQR4
ADC1 channel sequence 4 register
0x00
0x00 534E
ADC1_TRIGR1
ADC1 trigger disable 1
0x00
0x00 534F
ADC1_TRIGR2
ADC1 trigger disable 2
0x00
0x00 5350
ADC1_TRIGR3
ADC1 trigger disable 3
0x00
0x00 5351
ADC1_TRIGR4
ADC1 trigger disable 4
0x00
0x00 5348
0x00 5349
ADC1
0x00 5352 to
0x00 537F
Reserved area (46 byte)
0x00 5380
DAC_CH1CR1
DAC channel 1 control register 1
0x00
0x00 5381
DAC_CH1CR2
DAC channel 1 control register 2
0x00
DAC_CH2CR1
DAC channel 2 control register 1
0x00
DAC_CH2CR2
DAC channel 2 control register 2
0x00
0x00 5384
DAC_SWTRIG
DAC software trigger register
0x00
0x00 5385
DAC_SR
DAC status register
0x00
0x00 5382
0x00 5383
52/133
DAC
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Memory and register map
Table 9. General hardware register map (continued)
Address
Block
Register label
0x00 5386 to
0x00 5387
DAC_CH1RDHRH
DAC channel 1 right aligned data holding
register high
0x00
DAC_CH1RDHRL
DAC channel 1 right aligned data holding
register low
0x00
DAC
0x00 5389
0x00 538A to
0x00 538B
Reserved area (2 byte)
0x00 538C
DAC_CH1LDHRH
DAC channel 1 left aligned data holding
register high
0x00
DAC_CH1LDHRL
DAC channel 1 left aligned data holding
register low
0x00
DAC
0x00 538D
0x00 538E
to 0x00 538F
Reserved area (2 byte)
DAC
DAC_CH1DHR8
0x00 5391 to
0x00 5393
0x00 5395
DAC channel 2 right aligned data holding
register high
0x00
DAC_CH2RDHRL
DAC channel 2 right aligned data holding
register low
0x00
0x00 5396 to
0x00 5397
Reserved area (2 byte)
0x00 5398
DAC_CH2LDHRH
DAC channel 2 left aligned data holding
register high
0x00
DAC_CH2LDHRL
DAC channel 2 left aligned data holding
register low
0x00
DAC
0x00 5399
0x00 539A
to 0x00 539B
Reserved area (2 byte)
DAC
DAC_CH2DHR8
0x00 539D
to 0x00 539F
DAC channel 2 8-bit data holding register
0x00
Reserved area (3 byte)
0x00 53A0
DAC_DCH1RDHRH
DAC channel 1 right aligned data holding
register high
0x00
DAC_DCH1RDHRL
DAC channel 1 right aligned data holding
register low
0x00
DAC
0x00 53A2
to 0x00 53AB
0x00
DAC_CH2RDHRH
DAC
0x00 53A1
DAC channel 1 8-bit data holding register
Reserved area (3 byte)
0x00 5394
0x00 539C
Reset status
Reserved area (2 byte)
0x00 5388
0x00 5390
Register name
Reserved area (3 byte)
DocID027180 Rev 5
53/133
61
Memory and register map
STM8AL31E8x STM8AL3LE8x
Table 9. General hardware register map (continued)
Address
Register label
Register name
Reset status
0x00 53AC
DAC_DORH
DAC data output register high
0x00
0x00 53AD
DAC_DORL
DAC data output register low
0x00
0x00 53A2
DAC_DCH2RDHRH
DAC channel 2 right aligned data holding
register high
0x00
0x00 53A3
DAC_DCH2RDHRL
DAC channel 2 right aligned data holding
register low
0x00
0x00 53A4
DAC_DCH1LDHRH
DAC channel 1left aligned data holding
register high
0x00
DAC_DCH1LDHRL
DAC channel 1left aligned data holding
register low
0x00
0x00 53A6
DAC_DCH2LDHRH
DAC channel 2 left aligned data holding
register high
0x00
0x00 53A7
DAC_DCH2LDHRL
DAC channel 2 left aligned data holding
register low
0x00
0x00 53A8
DAC_DCH1DHR8
DAC channel 1 8-bit mode data holding
register
0x00
0x00 53A9
DAC_DCH2DHR8
DAC channel 2 8-bit mode data holding
register
0x00
0x00 53A5
Block
DAC
0x00 53AA to
0x00 53AB
Reserved area (2 byte)
0x00 53AC
DAC
0x00 53AD
DAC_CH1DORH
Reset value
DAC channel 1 data output register high
0x00
DAC_CH1DORL
Reset value
DAC channel 1 data output register low
0x00
0x00 53AE
to 0x00 53AF
Reserved area (2 byte)
0x00 53B0
DAC
0x00 53B1
DAC_CH2DORH
Reset value
DAC channel 2 data output register high
0x00
DAC_CH2DORL
Reset value
DAC channel 2 data output register low
0x00
0x00 53B2
to 0x00 53BF
Reserved area
0x00 53C0
SPI2_CR1
SPI2 control register 1
0x00
0x00 53C1
SPI2_CR2
SPI2 control register 2
0x00
0x00 53C2
SPI2_ICR
SPI2 interrupt control register
0x00
SPI2_SR
SPI2 status register
0x02
SPI2_DR
SPI2 data register
0x00
0x00 53C5
SPI2_CRCPR
SPI2 CRC polynomial register
0x07
0x00 53C6
SPI2_RXCRCR
SPI2 Rx CRC register
0x00
0x00 53C7
SPI2_TXCRCR
SPI2 Tx CRC register
0x00
0x00 53C3
0x00 53C4
54/133
SPI2
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Memory and register map
Table 9. General hardware register map (continued)
Address
Block
Register label
0x00 53C8 to
0x00 53CF
0x00 53D2
Reset status
Reserved area
0x00 53D0
0x00 53D1
Register name
AES
0x00 53D3
AES_CR
AES control register
0x00
AES_SR
AES status register
0x00
AES_DINR
AES data input register
0x00
AES_DOUTR
AES data output register
0x00
0x00 53D4 to
0x00 53DF
Reserved area
0x00 53E0
USART2_SR
USART2 status register
0xC0
0x00 53E1
USART2_DR
USART2 data register
0xXX
0x00 53E2
USART2_BRR1
USART2 baud rate register 1
0x00
0x00 53E3
USART2_BRR2
USART2 baud rate register 2
0x00
0x00 53E4
USART2_CR1
USART2 control register 1
0x00
USART2_CR2
USART2 control register 2
0x00
0x00 53E6
USART2_CR3
USART2 control register 3
0x00
0x00 53E7
USART2_CR4
USART2 control register 4
0x00
0x00 53E8
USART2_CR5
USART2 control register 5
0x00
0x00 53E9
USART2_GTR
USART2 guard time register
0x00
0x00 53EA
USART2_PSCR
USART2 prescaler register
0x00
0x00 53E5
USART2
0x00 53EB to
0x00 53EF
Reserved area
0x00 53F0
USART3_SR
USART3 status register
0xC0
0x00 53F1
USART3_DR
USART3 data register
0xXX
0x00 53F2
USART3_BRR1
USART3 baud rate register 1
0x00
0x00 53F3
USART3_BRR2
USART3 baud rate register 2
0x00
0x00 53F4
USART3_CR1
USART3 control register 1
0x00
USART3_CR2
USART3 control register 2
0x00
0x00 53F6
USART3_CR3
USART3 control register 3
0x00
0x00 53F7
USART3_CR4
USART3 control register 4
0x00
0x00 53F8
USART3_CR5
USART3 control register 5
0x00
0x00 53F9
USART3_GTR
USART3 guard time register
0x00
0x00 53FA
USART3_PSCR
USART3 prescaler register
0x00
0x00 53F5
0x00 53FB to
0x00 53FF
USART3
Reserved area
DocID027180 Rev 5
55/133
61
Memory and register map
STM8AL31E8x STM8AL3LE8x
Table 9. General hardware register map (continued)
Address
Register label
Register name
Reset status
0x00 5400
LCD_CR1
LCD control register 1
0x00
0x00 5401
LCD_CR2
LCD control register 2
0x00
0x00 5402
LCD_CR3
LCD control register 3
0x00
0x00 5403
LCD_FRQ
LCD frequency selection register
0x00
LCD_PM0
LCD Port mask register 0
0x00
LCD_PM1
LCD Port mask register 1
0x00
0x00 5406
LCD_PM2
LCD Port mask register 2
0x00
0x00 5407
LCD_PM3
LCD Port mask register 3
0x00
0x00 5408
LCD_PM4
LCD Port mask register 4
0x00
0x00 5409
LCD_PM5
LCD Port mask register 5
0x00
0x00 5404
0x00 5405
Block
LCD
0x00 540A to
0x00 540B
Reserved area (2 byte)
0x00 540C
LCD_RAM0
LCD display memory 0
0x00
0x00 540D
LCD_RAM1
LCD display memory 1
0x00
0x00 540E
LCD_RAM2
LCD display memory 2
0x00
0x00 540F
LCD_RAM3
LCD display memory 3
0x00
0x00 5410
LCD_RAM4
LCD display memory 4
0x00
0x00 5411
LCD_RAM5
LCD display memory 5
0x00
0x00 5412
LCD_RAM6
LCD display memory 6
0x00
0x00 5413
LCD_RAM7
LCD display memory 7
0x00
0x00 5414
LCD_RAM8
LCD display memory 8
0x00
0x00 5415
LCD_RAM9
LCD display memory 9
0x00
LCD_RAM10
LCD display memory 10
0x00
LCD_RAM11
LCD display memory 11
0x00
0x00 5418
LCD_RAM12
LCD display memory 12
0x00
0x00 5419
LCD_RAM13
LCD display memory 13
0x00
0x00 541A
LCD_RAM14
LCD display memory 14
0x00
0x00 541B
LCD_RAM15
LCD display memory 15
0x00
0x00 541C
LCD_RAM16
LCD display memory 16
0x00
0x00 541D
LCD_RAM17
LCD display memory 17
0x00
0x00 541E
LCD_RAM18
LCD display memory 18
0x00
0x00 541F
LCD_RAM19
LCD display memory 19
0x00
0x00 5420
LCD_RAM20
LCD display memory 20
0x00
0x00 5421
LCD_RAM21
LCD display memory 21
0x00
0x00 5416
0x00 5417
56/133
LCD
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Memory and register map
Table 9. General hardware register map (continued)
Address
Block
Register label
0x00 5422 to
0x00 542E
0x00 542F
Register name
Reset status
Reserved area
LCD
LCD_CR4
0x00 5430
LCD control register 4
Reserved area (1 byte)
0x00
0x00
0x00 5431
RI_ICR1
Timer input capture routing register 1
0x00
0x00 5432
RI_ICR2
Timer input capture routing register 2
0x00
0x00 5433
RI_IOIR1
I/O input register 1
0xXX
0x00 5434
RI_IOIR2
I/O input register 2
0xXX
0x00 5435
RI_IOIR3
I/O input register 3
0xXX
0x00 5436
RI_IOCMR1
I/O control mode register 1
0x00
RI_IOCMR2
I/O control mode register 2
0x00
RI_IOCMR3
I/O control mode register 3
0x00
0x00 5439
RI_IOSR1
I/O switch register 1
0x00
0x00 543A
RI_IOSR2
I/O switch register 2
0x00
0x00 543B
RI_IOSR3
I/O switch register 3
0x00
0x00 543C
RI_IOGCR
I/O group control register
0x3F
0x00 543D
RI_ASCR1
Analog switch register 1
0x00
0x00 543E
RI_ASCR2
Analog switch register 2
0x00
0x00 543F
RI_RCR
Resistor control register 1
0x00
0x00 5440
COMP_CSR1
Comparator control and status register 1
0x00
COMP_CSR2
Comparator control and status register 2
0x00
COMP_CSR3
Comparator control and status register 3
0x00
0x00 5443
COMP_CSR4
Comparator control and status register 4
0x00
0x00 5444
COMP_CSR5
Comparator control and status register 5
0x00
0x00 5437
0x00 5438
RI
0x00 5441
0x00 5442
COMP1/
COMP2
1. These registers are not impacted by a system reset. They are reset at power-on.
DocID027180 Rev 5
57/133
61
Memory and register map
STM8AL31E8x STM8AL3LE8x
Table 10. CPU/SWIM/debug module/interrupt controller registers
Register label
Register name
Reset
status
0x00 7F00
A
Accumulator
0x00
0x00 7F01
PCE
Program counter extended
0x00
0x00 7F02
PCH
Program counter high
0x00
0x00 7F03
PCL
Program counter low
0x00
XH
X index register high
0x00
XL
X index register low
0x00
0x00 7F06
YH
Y index register high
0x00
0x00 7F07
YL
Y index register low
0x00
0x00 7F08
SPH
Stack pointer high
0x03
0x00 7F09
SPL
Stack pointer low
0xFF
0x00 7F0A
CCR
Condition code register
0x28
Address
Block
0x00 7F04
0x00 7F05
CPU(1)
0x00 7F0B to
0x00 7F5F
0x00 7F60
Reserved area (85 byte)
CFG_GCR
Global configuration register
0x00
0x00 7F70
ITC_SPR1
Interrupt Software priority register 1
0xFF
0x00 7F71
ITC_SPR2
Interrupt Software priority register 2
0xFF
0x00 7F72
ITC_SPR3
Interrupt Software priority register 3
0xFF
ITC_SPR4
Interrupt Software priority register 4
0xFF
ITC_SPR5
Interrupt Software priority register 5
0xFF
0x00 7F75
ITC_SPR6
Interrupt Software priority register 6
0xFF
0x00 7F76
ITC_SPR7
Interrupt Software priority register 7
0xFF
0x00 7F77
ITC_SPR8
Interrupt Software priority register 8
0xFF
0x00 7F73
0x00 7F74
CPU
ITC-SPR
0x00 7F78
to
0x00 7F79
0x00 7F80
0x00 7F81
to
0x00 7F8F
58/133
Reserved area (2 byte)
SWIM
SWIM_CSR
SWIM control status register
Reserved area (15 byte)
DocID027180 Rev 5
0x00
STM8AL31E8x STM8AL3LE8x
Memory and register map
Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)
Register label
Register name
Reset
status
0x00 7F90
DM_BK1RE
DM breakpoint 1 register extended byte
0xFF
0x00 7F91
DM_BK1RH
DM breakpoint 1 register high byte
0xFF
0x00 7F92
DM_BK1RL
DM breakpoint 1 register low byte
0xFF
0x00 7F93
DM_BK2RE
DM breakpoint 2 register extended byte
0xFF
0x00 7F94
DM_BK2RH
DM breakpoint 2 register high byte
0xFF
DM_BK2RL
DM breakpoint 2 register low byte
0xFF
0x00 7F96
DM_CR1
DM Debug module control register 1
0x00
0x00 7F97
DM_CR2
DM Debug module control register 2
0x00
0x00 7F98
DM_CSR1
DM Debug module control/status register 1
0x10
0x00 7F99
DM_CSR2
DM Debug module control/status register 2
0x00
0x00 7F9A
DM_ENFCTR
DM enable function register
0xFF
Address
0x00 7F95
Block
DM
0x00 7F9B
to
0x00 7F9F
Reserved area (5 byte)
1. Accessible by debug module only
DocID027180 Rev 5
59/133
61
Interrupt vector mapping
STM8AL31E8x STM8AL3LE8x
6
Interrupt vector mapping
Note:
Slope control of all GPIO pins can be programmed except true open drain pins and by
default is limited to 2 MHz.
Table 11. Interrupt mapping
IRQ
No.
Source
block
RESET
0
Description
Reset
Wakeup
from Halt
mode
Wakeup
from
Active-halt
mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
(WFE
mode)(1)
Yes
Yes
Yes
Yes
0x00 8000
0x00 8004
TRAP
Software interrupt
-
-
-
-
TLI(2)
External Top level Interrupt
-
-
-
-
Vector
address
0x00 8008
(3)
1
FLASH
EOP/WR_PG_DIS
-
-
Yes
Yes
0x00 800C
2
DMA1 0/1
DMA1 channels 0/1
-
-
Yes
Yes(3)
0x00 8010
(3)
0x00 8014
3
DMA1 2/3
DMA1 channels 2/3
4
RTC/LSE_
CSS
RTC alarm interrupt/LSE
CSS interrupt
5
PortE/F interrupt/PVD
EXTI
E/F/PVD(4) interrupt
6
EXTIB/G
7
EXTID/H
8
EXTI0
9
10
EXTI1
EXTI2
External interrupt port B/G
-
-
Yes
Yes
Yes
Yes
Yes
Yes
0x00 8018
Yes
Yes
Yes
Yes(3)
0x00 801C
Yes
Yes
Yes
Yes(3)
0x00 8020
(3)
0x00 8024
External interrupt port D/H
Yes
Yes
Yes
Yes
External interrupt 0
Yes
Yes
Yes
Yes(3)
0x00 8028
Yes
Yes(3)
0x00 802C
Yes
(3)
0x00 8030
(3)
External interrupt 1
Yes
External interrupt 2
Yes
Yes
Yes
Yes
11
EXTI3
External interrupt 3
Yes
Yes
Yes
Yes
0x00 8034
12
EXTI4
External interrupt 4
Yes
Yes
Yes
Yes(3)
0x00 8038
Yes
(3)
0x00 803C
Yes
(3)
Yes
0x00 8040
0x00 8044
13
14
EXTI5
EXTI6
15
EXTI7
16
LCD/AES
17
CLK/
TIM1/
DAC
18
COMP1/
COMP2
ADC1
60/133
External interrupt 5
Yes
External interrupt 6
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes(3)
LCD interrupt/AES interrupt
-
-
Yes
Yes
0x00 8048
System clock switch/CSS
interrupt/TIM1 break/DAC
-
-
Yes
Yes
0x00 804C
Yes
Yes
Yes
Yes(3)
0x00 8050
External interrupt 7
Comparator 1 and 2
interrupt/ADC1
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Interrupt vector mapping
Table 11. Interrupt mapping (continued)
IRQ
No.
Source
block
Description
Wakeup
from Halt
mode
Wakeup
from
Active-halt
mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
(WFE
mode)(1)
-
-
Yes
Yes(3)
0x00 8054
Vector
address
19
TIM2/
USART2
TIM2 update
/overflow/trigger/break/
USART2 transmission
complete/transmit data
register empty
interrupt
20
TIM2/
USART2
Capture/Compare/USART
2 interrupt
-
-
Yes
Yes(3)
0x00 8058
TIM3/
USART3
TIM3 Update
/Overflow/Trigger/Break/
USART3 transmission
complete/transmit data
register empty
interrupt
-
-
Yes
Yes(3)
0x00 805C
22
TIM3/
USART3
TIM3 Capture/Compare/
USART3 Receive register
data full/overrun/idle line
detected/parity error/
interrupt
-
-
Yes
Yes(3)
0x00 8060
23
TIM1
Update /overflow/trigger/
COM
-
-
-
Yes(3)
0x00 8064
24
TIM1
Capture/Compare
-
-
-
Yes(3)
0x00 8068
Yes
Yes(3)
0x00 806C
(3)
21
25
26
27
TIM4
SPI1
USART 1/
TIM5
28
USART 1/
TIM5
29
I2C1/SPI2
Update/overflow/trigger
-
-
Yes
Yes
Yes
Yes
0x00 8070
USART1 transmission
complete/transmit data
register empty/
TIM5 update/overflow/
trigger/break
-
-
Yes
Yes(3)
0x00 8074
USART1 Receive register
data full/overrun/idle line
detected/parity error/
TIM5 capture/compare
-
-
Yes
Yes(3)
0x00 8078
Yes
Yes
Yes
Yes(3)
0x00 807C
End of Transfer
I2C1 interrupt(5)/
SPI2
1. The Low-power wait mode is entered when executing a WFE instruction in Low-power run mode.
2. The TLI interrupt is the logic OR between TIM2 overflow interrupt, and TIM4 overflow interrupts.
3. In WFE mode, this interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes
back to WFE mode. When this interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.
4. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port
E and Port F interrupt. See more details about the external interrupt port select register (EXTI_CONF) in the
STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual
(RM0031).
5. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.
DocID027180 Rev 5
61/133
61
Option byte
7
STM8AL31E8x STM8AL3LE8x
Option byte
Option byte contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated memory block.
All option byte can be modified in ICP mode (with SWIM) by accessing the EEPROM
address. See Table 12 for details on option byte addresses.
The option byte can also be modified ‘on the fly’ by the application in IAP mode, except for
the ROP, UBC and PCODESIZE values which are only taken into account when they are
modified in ICP mode (with the SWIM).
Refer to the STM8AL31E8x/STM8AL3LE8x Flash programming manual (PM0054) and
STM8 SWIM and Debug Manual (UM0470) for information on SWIM programming
procedures.
Table 12. Option byte addresses
Address
Option name
Option
byte
No.
Option bits
7
6
5
4
3
2
1
0
Factory
default
setting
00 4800
Read-out
protection
(ROP)
OPT0
ROP[7:0]
0xAA
00 4802
UBC (User
Boot code size)
OPT1
UBC[7:0]
0x00
00 4807
PCODESIZE
OPT2
PCODE[7:0]
0x00
00 4808
Independent
watchdog
option
OPT3
[3:0]
Reserved
00 4809
Number of
stabilization
clock cycles for
HSE and LSE
oscillators
OPT4
Reserved
00 480A
Brownout reset
(BOR)
OPT5
[3:0]
Reserved
Bootloader
option byte
(OPTBL)
OPTBL
[15:0]
00 480B
00 480C
62/133
WWDG WWDG IWDG
_HALT
_HW
_HALT
LSECNT[1:0]
BOR_TH
IWDG
_HW
HSECNT[1:0]
BOR_
ON
0x00
0x00
0x01
0x00
OPTBL[15:0]
DocID027180 Rev 5
0x00
STM8AL31E8x STM8AL3LE8x
Option byte
Table 13. Option byte description
Option
byte no.
Option description
OPT0
ROP[7:0] Memory readout protection (ROP)
0xAA: Disable readout protection (write access via SWIM protocol)
Refer to Readout protection section in STM8L05xx, STM8L15xx, STM8L162x,
STM8AL31xx and STM8AL3Lxx microcontroller family reference manual (RM0031).
OPT1
UBC[7:0] Size of the user boot code area
UBC[7:0] Size of the user boot code area
0x00: No UBC
0x01: Page 0 reserved for the UBC and write protected.
...
0xFF: Page 0 to 254 reserved for the UBC and write-protected.
Refer to User boot code section in the STM8L05xx, STM8L15xx, STM8L162x,
STM8AL31xx and STM8AL3Lxx microcontroller family reference manual (RM0031).
OPT2
PCODESIZE[7:0] Size of the proprietary code area
0x00: No proprietary code area
0x01: Page 0 reserved for the proprietary code and read/write protected.
...
0xFF: Page 0 to 254 reserved for the proprietary code and read/write protected.
Refer to Proprietary code area (PCODE) section in STM8L05xx, STM8L15xx,
STM8L162x, STM8AL31xx and STM8AL3Lxx microcontroller family reference manual
(RM0031) for more details.
IWDG_HW: Independent watchdog
0: Independent watchdog activated by software
1: Independent watchdog activated by hardware
OPT3
IWDG_HALT: Independent watchdog off in Halt/Active-halt
0: Independent watchdog continues running in Halt/Active-halt mode
1: Independent watchdog stopped in Halt/Active-halt mode
WWDG_HW: Window watchdog
0: Window watchdog activated by software
1: Window watchdog activated by hardware
WWDG_HALT: Window window watchdog reset on Halt/Active-halt
0: Window watchdog stopped in Halt mode
1: Window watchdog generates a reset when MCU enters Halt mode
OPT4
HSECNT: Number of HSE oscillator stabilization clock cycles
0x00 - 1 clock cycle
0x01 - 16 clock cycles
0x10 - 512 clock cycles
0x11 - 4096 clock cycles
LSECNT: Number of LSE oscillator stabilization clock cycles
0x00 - 1 clock cycle
0x01 - 16 clock cycles
0x10 - 512 clock cycles
0x11 - 4096 clock cycles
DocID027180 Rev 5
63/133
64
Option byte
STM8AL31E8x STM8AL3LE8x
Table 13. Option byte description (continued)
Option
byte no.
OPT5
Option description
BOR_ON:
0: Brownout reset off
1: Brownout reset on
BOR_TH[3:1]: Brownout reset thresholds. Refer to Table 20 for details on the thresholds
according to the value of BOR_TH bits.
OPTBL
64/133
OPTBL[15:0]:
This option is checked by the boot ROM code after reset. Depending on the content of
addresses 00 480B, 00 480C and 0x8000 (reset vector) the CPU jumps to the
bootloader or to the reset vector.
Refer to the UM0560 bootloader user manual for more details.
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
8
Unique ID
Unique ID
STM8 devices feature a 96-bit unique device identifier which provides a reference number
that is unique for any device and in any context. The 96 bits of the identifier are never
altered by the user.
The unique device identifier is read in single byte and may then be concatenated using a
custom algorithm.
The unique device identifier is ideally suited:
•
For use as serial numbers
•
For use as security keys to increase the code security in the program memory while
using and combining this unique ID with software cryptographic primitives and
protocols before programming the internal memory.
•
To activate secure boot processes
Table 14. Unique ID registers (96 bits)
Address
0x4926
0x4927
0x4928
Content
description
Unique ID bits
7
6
5
4
3
1
0
U_ID[7:0]
X co-ordinate on
the wafer
U_ID[15:8]
U_ID[23:16]
0x4929
Y co-ordinate on
the wafer
0x492A
Wafer number
U_ID[39:32]
U_ID[31:24]
0x492B
U_ID[47:40]
0x492C
U_ID[55:48]
0x492D
U_ID[63:56]
0x492E
2
Lot number
U_ID[71:64]
0x492F
U_ID[79:72]
0x4930
U_ID[87:80]
0x4931
U_ID[95:88]
DocID027180 Rev 5
65/133
65
Electrical parameters
STM8AL31E8x STM8AL3LE8x
9
Electrical parameters
9.1
Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
9.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA= 25 °C and TA = TA max (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production.
9.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3 V. They are given
only as design guidelines and are not tested.
Typical ADC and DAC accuracy values are determined by characterization of a batch of
samples from a standard diffusion lot over the full temperature range.
9.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
9.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 10.
Figure 10. Pin loading conditions
670$/3,1
S)
06Y9
66/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
9.1.5
Electrical parameters
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 11.
Figure 11. Pin input voltage
670$/3,1
s/E
D^ǀϰϰϭϬϳsϭ
9.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 15: Voltage characteristics,
Table 16: Current characteristics and Table 17: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only, and a functional operation
of the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods of time may affect the device’s reliability.
The device’s mission profile (application conditions) is compliant with the JEDEC JESD47
qualification standard, its extended mission profiles are available on demand.
Table 15. Voltage characteristics
Symbol
VDD- VSS
Ratings
External supply voltage
(including VDDA)(1)
Min
Max
- 0.3
4.0
Input voltage on true open-drain pins
(PC0 and PC1)
VIN(2)
Input voltage on five-volt tolerant (FT)
pins
Input voltage on any other pin
VESD
Electrostatic discharge voltage
Unit
VDD + 4.0
VSS - 0.3
VDD + 4.0
V
4.0
see Absolute maximum
ratings (electrical sensitivity)
on page 118
1. All power (VDD1, VDD2, VDD3, VDD4, VDDA) and ground (VSS1, VSS2, VSS3, VSS4, VSSA) pins must always
be connected to the external power supply.
2. VIN maximum must always be respected. Refer to Table 16. for maximum allowed injected current values.
DocID027180 Rev 5
67/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
Table 16. Current characteristics
Symbol
Ratings
Max.
IVDD
Total current into VDD power line (source)
80
IVSS
Total current out of VSS ground line (sink)
80
Output current sunk by IR_TIM pin
(with high sink LED driver capability)
80
Output current sunk by any other I/O and control pin
25
IIO
Output current sourced by any I/Os and control pin
IINJ(PIN)
ΣIINJ(PIN)
- 25
Injected current on true open-drain pins (PC0 and PC1)(1)
- 5 / +0
Injected current on five-volt tolerant (FT) pins(1)
- 5 / +0
Injected current on any other pin (2)
- 5 / +5
Total injected current (sum of all I/O and control pins) (3)
Unit
mA
± 25
1. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 15. for maximum allowed input voltage values.
2.
A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 15. for maximum allowed input voltage values.
3. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
Table 17. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Value
Storage temperature range
-65 to +150
Maximum junction temperature
150
Unit
°C
Table 18. Operating lifetime (OLF)(1)
Symbol
OLF
Ratings
Conforming to AEC-Q100
Value
Unit
-40 to 125 °C
Grade 1
1. For detailed mission profile analysis, please contact your local ST Sales Office.
68/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
9.3
Electrical parameters
Operating conditions
Subject to general operating conditions for VDD and TA.
9.3.1
General operating conditions
Table 19. General operating conditions
Symbol
fSYSCLK(1)
VDD
VDDA
Parameter
System clock
frequency
Standard operating
voltage
Analog operating
voltage
Power dissipation at
TA= 85 °C for suffix A
devices
PD(3)
Power dissipation at
TA= 125 °C for suffix C
devices
TA
TJ
Temperature range
Junction temperature
range
Conditions
Min.
Max.
Unit
1.65 V ≤VDD < 3.6 V
0
16
MHz
BOR detector enabled
1.65(2)
3.6
V
ADC and DAC
not used
1.65(2)
3.6
V
1.8
3.6
V
ADC or DAC
used
Must be at the same
potential as VDD
LQFP80
-
-
288
LQFP64
-
-
288
LQFP48
-
-
288
LQFP80
-
-
131
LQFP64
-
-
104
LQFP48
-
-
77
1.65 V ≤VDD <
3.6 V (A suffix
version)
-
-40
85
1.65 V ≤VDD <
3.6 V (C suffix
version)
-
-40
125
-40 °C ≤TA < 85 °C
(A suffix version)
-40
105
-40 °C≤ TA < 125 °C
(C suffix version)
-40
130
mW
°C
1. fSYSCLK = fCPU
2. 1.8 V at power-up, 1.65 V at power-down if BOR is disabled.
3. To calculate PDmax(TA), use the formula PDmax=(TJmax -TA)/ΘJA with TJmax in this table and ΘJA in “Thermal characteristics”
table.
DocID027180 Rev 5
69/133
119
Electrical parameters
9.3.2
STM8AL31E8x STM8AL3LE8x
Embedded reset and power control block characteristics
Table 20. Embedded reset and power control block characteristics
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
VDD rise time rate
BOR detector
enabled
0(1)
-
∞(1)
µs/V
VDD fall time rate
BOR detector
enabled
20(1)
-
∞(1)
µs/V
tTEMP
Reset release delay
VDD rising
BOR detector
enabled
-
3
-
ms
VPDR
Power-down reset threshold
Falling edge
1.3
1.5
1.65(2)
VBOR0
Brown-out reset threshold 0
(BOR_TH[2:0]=000)
Falling edge
1.67
1.7
1.74(2)
Rising edge
1.69(2)
1.75
1.80
VBOR1
Brown-out reset threshold 1
(BOR_TH[2:0]=001)
Falling edge
1.87
1.93
1.97(2)
Rising edge
1.96(2)
2.04
2.07
VBOR2
Brown-out reset threshold 2
(BOR_TH[2:0]=010)
Falling edge
2.22
2.3
2.35(2)
Rising edge
2.31(2)
2.41
2.44
VBOR3
Brown-out reset threshold 3
(BOR_TH[2:0]=011)
Falling edge
2.45
2.55
2.60(2)
Rising edge
2.54(2)
2.66
2.7
VBOR4
Brown-out reset threshold 4
(BOR_TH[2:0]=100)
Falling edge
2.68
2.80
2.85(2)
Rising edge
2.78(2)
2.90
2.95
VPVD0
PVD threshold 0
Falling edge
1.80
1.84
1.88(2)
Rising edge
1.88(2)
1.94
1.99
VPVD1
PVD threshold 1
Falling edge
1.98
2.04
2.09(2)
Rising edge
2.08(2)
2.14
2.18
VPVD2
PVD threshold 2
Falling edge
2.2
2.24
2.28(2)
Rising edge
2.28(2)
2.34
2.38
VPVD3
PVD threshold 3
Falling edge
2.39
2.44
2.48(2)
Rising edge
2.47(2)
2.54
2.58
Falling edge
2.57
2.64
2.69(2)
Rising edge
2.68(2)
2.74
2.79
Falling edge
2.77
2.83
2.88(2)
Rising edge
2.87(2)
2.94
2.99
Falling edge
2.97
3.05
3.09(2)
Rising edge
3.08(2)
3.15
3.20
tVDD
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
70/133
DocID027180 Rev 5
V
V
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Table 20. Embedded reset and power control block characteristics (continued)
Symbol
Vhyst
Parameter
Conditions
Hysteresis voltage
Min.
Typ.
Max.
BOR0 threshold
-
40(1)
-
All BOR and PVD
thresholds
excepting BOR0
-
100(1)
-
Unit
mV
1. Guaranteed by design.
2. Guaranteed by characterization results.
Figure 12. Power supply thresholds
9''9''$
939'
9%25
P9
K\VWHUHVLV
P9
K\VWHUHVLV
93'5
,7HQDEOHG
39'RXWSXW
%25UHVHW
1567
%253'5UHVHW
1567
39'
%25DOZD\VDFWLYH
%25GLVDEOHGE\RSWLRQE\WH
06Y9
DocID027180 Rev 5
71/133
119
Electrical parameters
9.3.3
STM8AL31E8x STM8AL3LE8x
Supply current characteristics
Total current consumption
The MCU is placed under the following conditions:
•
All I/O pins in input mode with a static value at VDD or VSS (no load)
•
All peripherals are disabled except if explicitly mentioned.
General conditions for VDD apply, TA = -40 °C to 125 °C.
Table 21. Total current consumption in Run mode
Symbol
Parameter
Conditions
HSI RC osc.
(16 MHz)(2)
Supply
IDD(RUN) current in
run mode(1)
All peripherals
OFF, code
executed
from RAM,
HSE external clock
VDD from
(4)
1.65 V to 3.6 V (fCPU=fHSE)
72/133
Max.
fCPU = 125 kHz
0.40
0.55(3)
fCPU = 1 MHz
0.50
0.65(3)
fCPU = 4 MHz
0.75
1.00(3)
fCPU = 8 MHz
1.10
1.40(3)
fCPU = 16 MHz
1.85
2.35
fCPU = 125 kHz
0.07
0.20(3)
fCPU = 1 MHz
0.20
0.25(3)
fCPU = 4 MHz
0.55
0.75(3)
fCPU = 8 MHz
1.00
1.25(3)
fCPU = 16 MHz
1.90
2.30(3)
LSI RC osc.
(typ. 38 kHz)
fCPU = fLSI
40
50(3)
LSE external clock
(32.768 kHz)
fCPU = fLSE
40
60(3)
fCPU = 125 kHz
0.45
0.60(3)
fCPU = 1 MHz
0.60
0.85(3)
fCPU = 4 MHz
1.10
1.45(3)
fCPU = 8 MHz
1.90
2.40(3)
fCPU = 16 MHz
3.80
4.90
fCPU = 125 kHz
0.30
0.45(3)
fCPU = 1 MHz
0.40
0.55(3)
fCPU = 4 MHz
1.15
1.50(3)
fCPU = 8 MHz
2.15
2.75(3)
fCPU = 16 MHz
4.00
4.75(3)
LSI RC osc.
fCPU = fLSI
100
150(3)
LSE external clock
(32.768 kHz)(6)
fCPU = fLSE
100
120(3)
HSI RC osc.(5)
Supply
IDD(RUN) current in
Run mode
Typ.
All peripherals
OFF, code
executed from
Flash,
HSE external clock
VDD from
1.65 V to 3.6 V (fCPU=fHSE) (4)
Unit
mA
µA
DocID027180 Rev 5
mA
µA
STM8AL31E8x STM8AL3LE8x
Electrical parameters
1. CPU executing typical data processing
2. The run from RAM consumption is approximated with the linear formula:
IDD(run_from_RAM) = Freq. * 95 µA/MHz + 250 µA
3. Guaranteed by characterization results.
4. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption
(IDD HSE) must be added. Refer to Table 32.
5. The run from Flash consumption is approximated with the linear formula:
IDD(run_from_Flash) = Freq. * 200 µA/MHz + 330 µA
6. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 33
Figure 13. Typical IDD(RUN) from RAM vs. VDD (HSI clock source), fCPU =16 MHz(1)
)$$2UN(3)-(Z M!
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
6$$ 6
-36
1. Typical current consumption measured with code executed from RAM.
DocID027180 Rev 5
73/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
Figure 14. Typical IDD(RUN) from Flash vs. VDD (HSI clock source), fCPU = 16 MHz(1)
)$$2UN(3)%%0-(Z M!
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
6$$ 6
-36
1. Typical current consumption measured with code executed from Flash.
74/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
In the following table, data are based on characterization results, unless otherwise
specified.
Table 22. Total current consumption in Wait mode
Symbol
Conditions(1)
Parameter
HSI
Supply
IDD(Wait) current in
Wait mode
CPU not
clocked, all
peripherals
OFF, code
executed from
RAM with
Flash in IDDQ
mode,(2) VDD
from 1.65 V to
3.6 V
HSE external clock
(fCPU=fHSE)(3)
Typ
Max
fCPU = 125 kHz
0.35
0.45(4)
fCPU = 1 MHz
0.35
0.50(4)
fCPU = 4 MHz
0.40
0.60(4)
fCPU = 8 MHz
0.50
0.60(4)
fCPU = 16 MHz
0.70
0.85
fCPU = 125 kHz
0.05
0.10(4)
fCPU = 1 MHz
0.10
0.20(4)
fCPU = 4 MHz
0.20
0.40(4)
fCPU = 8 MHz
0.40
0.65(4)
fCPU = 16 MHz
0.76
1.15(4)
60
80(4)
50
70(4)
fCPU = 125 kHz
0.38
0.55(4)
fCPU = 1 MHz
0.40
0.60(4)
fCPU = 4 MHz
0.50
0.65(4)
fCPU = 8 MHz
0.60
0.75(4)
fCPU = 16 MHz
0.80
0.90
fCPU = 125 kHz
0.07
0.15(4)
fCPU = 1 MHz
0.10
0.20(4)
fCPU = 4 MHz
0.25
0.45(4)
fCPU = 8 MHz
0.50
0.65(4)
fCPU = 16 MHz
1.00
1.20(4)
50
100(4)
50
80(4)
fCPU = fLSI
LSI
LSE(5) external
fCPU = fLSE
clock (32.768 kHz)
HSI
Supply
IDD(Wait) current in
Wait mode
CPU not
clocked, all
peripherals
OFF, code
executed from
Flash, VDD
from 1.65 V to
3.6 V
HSE(3) external
clock (fCPU= HSE)
LSI
fCPU = fLSI
LSE(5) external
fCPU = fLSE
clock (32.768 kHz)
Unit
mA
µA
mA
µA
1. All peripherals OFF, VDD from 1.65 V to 3.6 V, HSI internal RC osc., fCPU = fSYSCLK
2. Flash is configured in IDDQ mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register.
3. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption
(IDD HSE) must be added. Refer to Table 32.
4. Guaranteed by characterization results.
5. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(IDD HSE) must be added. Refer to Table 33
DocID027180 Rev 5
75/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
Figure 15. Typical IDD(Wait) from RAM vs. VDD (HSI clock source), fCPU = 16 MHz(1)
,'' :DLW
+6,0+]P$ ƒ&
ƒ&
ƒ&
9'' 9
069
1. Typical current consumption measured with code executed from RAM.
Figure 16. Typical IDD(Wait) from Flash (HSI clock source), fCPU = 16 MHz(1)
,'':IL+6,0+] ((21P$
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
9''9
-36
1. Typical current consumption measured with code executed from Flash.
76/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Table 23. Total current consumption and timing in low-power run mode at VDD = 1.65 V
to 3.6 V
Symbol
Conditions(1)
Parameter
Supply current
IDD(LPR) in low-power
run mode
LSI RC osc.
(at 38 kHz)
all peripherals OFF
(4)
LSE external
clock
(32.768 kHz)
Typ.
Max.
TA = -40 °C to 25 °C
5.10
6.50(2)
TA = 85 °C
6.80
11.00(3)
TA = 125 °C
13.40
20.00(3)
TA = -40 °C to 25 °C
5.25
5.60(2)
TA = 85 °C
5.85
6.30(2)
TA = 125 °C
14.00
16.50(2)
Unit
μA
1. No floating I/Os
2. Guaranteed by characterization results.
3. Tested at 85°C for temperature range A or 125°C for temperature range C.
4. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 33
Figure 17. Typical IDD(LPR) vs. VDD (LSI clock source), all peripherals OFF
Ϭ͘ϬϮ
ϮϱΣ
Ϭ͘Ϭϭϱ
/ >Ɖ Z ƵŶ > ^ / Ăůů ŽĨĨ ;ŵ Ϳ
ϴϱΣ
ͲϰϬΣ
Ϭ͘Ϭϭ
Ϭ͘ϬϬϱ
Ϭ
ϭ͘ϴ
Ϯ
Ϯ͘Ϯ
Ϯ͘ϰ
Ϯ͘ϲ
Ϯ͘ϴ
s ;s Ϳ
DocID027180 Rev 5
ϯ
ϯ͘Ϯ
ϯ͘ϰ
ϯ͘ϲ
D^ϭϵϭϭϬsϭ
77/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
Table 24. Total current consumption in low-power wait mode at VDD = 1.65 V to 3.6 V
Symbol
Conditions(1)
Parameter
Supply current in
IDD(LPW) low-power wait
mode
LSI RC osc.
(at 38 kHz)
all peripherals OFF
LSE external
clock(4)
(32.768 kHz)
Typ.
Max.
TA = -40 °C to 25 °C
3.00
3.30(2)
TA = 85 °C
4.40
9.00(3)
TA = 125 °C
11.00 18.00(3)
TA = -40 °C to 25 °C
2.35
2.70(2)
TA = 85 °C
3.10
3.70(2)
TA = 125 °C
12.0
14.0(2)
Unit
μA
1. No floating I/Os.
2. Guaranteed by characterization results.
3. Tested at 85°C for temperature range A or 125°C for temperature range C.
4. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 33.
Figure 18. Typical IDD(LPW) vs. VDD (LSI clock source), all peripherals OFF(1)
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
)$$,P7FIRAM ,3)ALLOFF M!
6$$ 6
.47
1. Typical current consumption measured with code executed from RAM.
78/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
In the following table, data are based on characterization results, unless otherwise
specified.
Table 25. Total current consumption and timing in Active-halt mode
at VDD = 1.65 V to 3.6 V
Symbol
Conditions(1)
Parameter
LCD OFF(3)
IDD(AH)
Supply current in
Active-halt mode
LSI RC
(at 38 kHz)
LCD ON
(static duty/
external
VLCD) (4)
LCD ON
(1/4 duty/
external
VLCD) (5)
LCD ON
(1/4 duty/
internal
VLCD) (6)
LCD OFF(8)
IDD(AH)
Supply current in
Active-halt mode
LSE external
clock
(32.768 kHz)
(7)
LCD ON
(static duty/
external
VLCD) (4)
LCD ON
(1/4 duty/
external
VLCD) (5)
LCD ON
(1/4 duty/
internal
VLCD) (6)
IDD(WUFAH)
Supply current
during wakeup
time from Activehalt mode
(using HSI)
-
-
DocID027180 Rev 5
Typ.
Max.(2)
TA = -40 °C to 25 °C
0.90
2.10
TA = 85 °C
1.50
3.40
TA = 125 °C
5.10
12.00
TA = -40 °C to 25 °C
1.40
3.10
TA = 85 °C
1.90
4.30
TA = 125 °C
5.50
13.00
TA = -40 °C to 25 °C
1.90
4.30
TA = 85 °C
2.40
5.40
TA = 125 °C
6.00
15.00
TA = -40 °C to 25 °C
3.90
8.75
TA = 85 °C
4.50
10.20
TA = 125 °C
6.80
16.30
TA = -40 °C to 25 °C
0.50
1.20
TA = 85 °C
0.90
2.10
TA = 125 °C
4.80
11.00
TA = -40 °C to 25 °C
0.85
1.90
TA = 85 °C
1.30
3.20
TA = 125 °C
5.00
12.00
TA = -40 °C to 25 °C
1.50
2.50
TA = 85 °C
1.80
4.20
TA = 125 °C
5.70
14.00
TA = -40 °C to 25 °C
3.40
7.60
TA = 85 °C
3.90
9.20
TA = 125 °C
6.30
15.20
2.40
-
-
Unit
μA
μA
mA
79/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
Table 25. Total current consumption and timing in Active-halt mode
at VDD = 1.65 V to 3.6 V (continued)
Conditions(1)
Symbol
Parameter
tWU_HSI(AH)(9)(10)
Wakeup time from
Active-halt mode
to Run mode
(using HSI)
-
-
tWU_LSI(AH)(9)(10)
Wakeup time from
Active-halt mode
to Run mode
(using LSI)
-
-
Typ.
Max.(2)
Unit
-
4.70
7.00
μs
-
150.0
-
μs
1. No floating I/O, unless otherwise specified.
2. Guaranteed by characterization results.
3. RTC enabled. Clock source = LSI
4. RTC enabled, LCD enabled with external VLCD = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected.
5. RTC enabled, LCD enabled with external VLCD, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
6. LCD enabled with internal LCD booster VLCD = 3 V, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD
connected.
7. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 33
8. RTC enabled. Clock source = LSE
9. Wakeup time until start of interrupt vector fetch.
The first word of interrupt routine is fetched 4 CPU cycles after tWU.
10. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.
Table 26. Typical current consumption in Active-halt mode, RTC clocked by LSE
external crystal
Symbol
Condition(1)
Parameter
VDD = 1.8 V
IDD(AH) (2)
Supply current in Active-halt
mode
VDD = 3 V
VDD = 3.6 V
1. No floating I/O, unless otherwise specified.
2. Based on measurements on bench with 32.768 kHz external crystal oscillator.
3. RTC clock is LSE divided by 32.
80/133
DocID027180 Rev 5
Typ.
LSE
1.15
LSE/32(3)
1.05
LSE
1.30
LSE/32(3)
1.20
LSE
1.45
LSE/32(3)
1.35
Unit
µA
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Figure 19. Typical IDD(AH) vs. VDD (LSI clock source)
ƒ&
ƒ&
ƒ&
)$$!(ALT M!
ƒ&
ƒ&
6$$ 6
-36
DocID027180 Rev 5
81/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
In the following table, data are based on characterization results, unless otherwise
specified.
Table 27. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V
Condition(1)
Symbol
Parameter
IDD(Halt)
Supply current in Halt mode
(ultra-low-power ULP bit =1 in
the PWR_CSR2 register)
Typ.
Max.
TA = -40 °C to 25 °C
0.4
0.9(2)
TA = 85 °C
0.9
2.8(3)
TA = 125 °C
4.4
13(3)
IDD(WUHalt)
Supply current during wakeup
time from Halt mode (using
HSI)
-
2.4
-
tWU_HSI(Halt)(4)(5)
Wakeup time from Halt to Run
mode (using HSI)
-
4.7
7(2)
Wakeup time from Halt mode
to Run mode (using LSI)
-
150
-
tWU_LSI(Halt)
(4)(5)
Unit
µA
mA
µs
1. TA = -40 to 125 °C, no floating I/O, unless otherwise specified.
2. Guaranteed by characterization results.
3. Tested at 85 °C for temperature range A or 125°C for temperature range C.
4. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.
5. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after tWU.
Figure 20. Typical IDD(Halt) vs. VDD (internal reference voltage OFF)
ƒ&
ƒ&
)$$(ALTBGOFFM!
ƒ&
ƒ&
ƒ&
6$$ 6
-36
82/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Current consumption of on-chip peripherals
Table 28. Peripheral current consumption
Symbol
Parameter
Typ.
VDD = 3.0 V
IDD(TIM1)
TIM1 supply current(1)
10
IDD(TIM2)
TIM2 supply current (1)
7
IDD(TIM3)
TIM3 supply current (1)
7
IDD(TIM5)
TIM5 supply current (1)
7
IDD(TIM4)
TIM4 timer supply current (1)
3
IDD(USART1)
USART1 supply current (2)
5
IDD(USART2)
USART2 supply current (2)
5
IDD(USART3)
USART3 supply current (2)
5
IDD(SPI1)
SPI1 supply current (2)
3
IDD(SPI2)
SPI2 supply current (2)
3
IDD(I2C1)
I2C1 supply current (2)
4
IDD(DMA1)
DMA1 supply current(2)
3
IDD(WWDG)
WWDG supply current(2)
1
Peripherals ON(3)
63
IDD(ALL)
DocID027180 Rev 5
Unit
µA/MHz
83/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
Table 28. Peripheral current consumption (continued)
Symbol
Typ.
Parameter
VDD = 3.0 V
IDD(TIM1)
TIM1 supply current(1)
10
IDD(TIM2)
TIM2 supply current (4)
7
IDD(TIM3)
TIM3 supply current (1)
7
IDD(TIM5)
TIM5 supply current (1)
7
IDD(TIM4)
TIM4 timer supply current (1)
3
IDD(USART1)
USART1 supply current (5)
5
IDD(USART2)
USART2 supply current (6)
5
IDD(USART3)
USART3 supply current (7)
5
IDD(SPI1)
SPI1 supply current (4)
3
IDD(SPI2)
SPI2 supply current (4)
3
IDD(I2C1)
I2C1 supply current (4)
4
IDD(DMA1)
DMA1 supply current
3
AES supply current
4
WWDG supply current
1
Peripherals ON(8)
67
IDD(AES)
IDD(WWDG)
IDD(ALL)
IDD(ADC1)
ADC1 supply current(9)
1500
IDD(DAC)
DAC supply current(10)
370
IDD(COMP1)
Comparator 1 supply current(11)
IDD(COMP2)
Comparator 2 supply current(11)
IDD(PVD/BOR)
IDD(BOR)
IDD(IDWDG)
µA/MHz
0.160
Slow mode
2
Fast mode
5
Power voltage detector and brownout Reset unit supply
current (12)
2.6
Brownout Reset unit supply current (12)
2.4
Independent watchdog supply current
Unit
including LSI supply
current
0.45
excluding LSI
supply current
0.05
µA
1. Data based on a differential IDD measurement between all peripherals OFF and a timer counter running at 16 MHz. The
CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.
2. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and
the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling.
Not tested in production.
3. Peripherals listed above the IDD(ALL) parameter ON: TIM1, TIM2, TIM3, TIM4, TIM5, USART1, USART2, USART3, SPI1,
SPI2, I2C1, DMA1, WWDG.
4. Data based on a differential IDD measurement between all peripherals OFF and a timer counter running at 16 MHz. The
CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.
84/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
5. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and
the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling.
Not tested in production.
6. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and
the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling.
Not tested in production.
7. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and
the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling.
Not tested in production.
8. Peripherals listed above the IDD(ALL) parameter ON: TIM1, TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG.
9. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion.
10. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of
VDD /2. Floating DAC output.
11. Data based on a differential IDD measurement between COMP1 or COMP2 in reset configuration and COMP1 or COMP2
enabled with static inputs. Supply current of internal reference voltage excluded.
12. Including supply current of internal reference voltage.
Table 29. Current consumption under external reset
Symbol
IDD(RST)
Parameter
Supply current under
external reset (1)
Conditions
PB1/PB3/PA5 pins are
externally tied to VDD
Typ.
VDD = 1.8 V
48
VDD = 3 V
80
VDD = 3.6 V
95
Unit
µA
1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.
PB1, PB3 and PA5 must be tied externally under reset to avoid the consumption due to their schmitt trigger.
9.3.4
Clock and timing characteristics
HSE external clock (HSEBYP = 1 in CLK_ECKCR)
Subject to general operating conditions for VDD and TA.
Table 30. HSE external clock characteristics
Symbol
fHSE_ext(1)
Parameter
External clock source
frequency
VHSEH
OSC_IN input pin highlevel voltage
VHSEL
OSC_IN input pin lowlevel voltage
Cin(HSE)(1) OSC_IN input capacitance
ILEAK_HSE
Conditions
OSC_IN input leakage
current
-
Min.
Typ.
Max.
Unit
1
-
16
MHz
0.7 x VDD
-
VDD
VSS
-
0.3 x VDD
-
2.6
-
pF
-
-
±500
nA
V
VSS < VIN < VDD
1. Guaranteed by design.
DocID027180 Rev 5
85/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
LSE external clock (LSEBYP=1 in CLK_ECKCR)
The LSE is available on STM8AL31E8x devices only.
Subject to general operating conditions for VDD and TA.
Table 31. LSE external clock characteristics
Symbol
Parameter
Min.
Typ.
Max.
Unit
-
32.768
-
kHz
-
VDD(1)
fLSE_ext
External clock source frequency
VLSEH
OSC32_IN input pin high-level voltage
0.7xVDD(1)
VLSEL
OSC32_IN input pin low-level voltage
VSS(1)
Cin(LSE)
ILEAK_LSE
V
0.3xVDD(1)
OSC32_IN input capacitance
-
0.6
-
pF
OSC32_IN input leakage current
-
-
±500
nA
1. Guaranteed by characterization results.
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 32. HSE oscillator characteristics
Symbol
Conditions
Min.
Typ.
Max.
Unit
High speed external oscillator
frequency
-
1
-
16
MHz
RF
Feedback resistor
-
-
200
-
kΩ
(1)(2)
Recommended load capacitance
-
-
20
-
pF
C = 20 pF,
fOSC = 16 MHz
-
-
2.5 (startup)
0.7 (stabilized)(3)
C = 10 pF,
fOSC =16 MHz
-
-
2.5 (startup)
0.46 (stabilized)(3)
-
3.5(3)
-
-
mA/V
1
-
ms
fHSE
C
IDD(HSE)
gm
tSU(HSE)(4)
Parameter
HSE oscillator power consumption
Oscillator transconductance
Startup time
VDD is stabilized
mA
1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.
Refer to crystal manufacturer for more details
3. Guaranteed by design.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This
value is measured for a standard crystal resonator and it varies significantly with the crystal manufacturer.
86/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Figure 21. HSE oscillator circuit diagram
5P
/P
I+6(WRFRUH
&2
&P
5)
&/
26&,1
JP
5HVRQDWRU
5HVRQDWRU
&RQVXPSWLRQ
FRQWURO
26&287
&/
670
069
HSE oscillator critical gm formula
g mcrit = ( 2 × Π × f HSE ) 2 × R m ( 2Co + C )
2
Rm: Motional resistance (see crystal specification), Lm: Motional inductance (see crystal specification),
Cm: Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification),
CL1=CL2=C: Grounded external capacitance
gm >> gmcrit
LSE crystal/ceramic resonator oscillator
The LSE is available on STM8AL31E8x devices only.
The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
DocID027180 Rev 5
87/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
Table 33. LSE oscillator characteristics
Symbol
Parameter
fLSE
Low speed external oscillator
frequency
RF
Feedback resistor
C(1)(2)
IDD(LSE)
Conditions
Min.
Typ.
Max.
Unit
-
-
32.768
-
kHz
ΔV = 200 mV
-
1.2
-
MΩ
-
-
8
-
pF
VDD = 1.8 V
-
450
-
VDD = 3 V
-
600
-
-
Recommended load capacitance
LSE oscillator power consumption
VDD = 3.6 V
Oscillator transconductance
gm
tSU(LSE)
(4)
-
Startup time
3
VDD is stabilized
nA
750
-
(3)
-
-
µA/V
-
1
-
s
1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small Rm value.
Refer to crystal manufacturer for more details.
3. Guaranteed by design.
4.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation.
This value is measured for a standard crystal resonator and it varies significantly with the crystal manufacturer.
Figure 22. LSE oscillator circuit diagram
5P
/P
I/6(
&2
&P
5)
&/
26&,1
JP
5HVRQDWRU
5HVRQDWRU
&/
&RQVXPSWLRQ
FRQWURO
26&287
670
06Y9
Internal clock sources
Subject to general operating conditions for VDD, and TA.
High speed internal RC oscillator (HSI)
In the following table, data are based on characterization results, not tested in production,
unless otherwise specified.
88/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Table 34. HSI oscillator characteristics
Symbol
fHSI
ACCHSI
Conditions(1)
Parameter
Min.
Typ.
Max.
Unit
MHz
Frequency
VDD = 3.0 V
-
16
-
HSI oscillator user
trimming accuracy
Trimmed by the application for any VDD
and TA conditions
-1
-
1
-5
-
5
Trimming code ≠ multiple of 16
-
0.4
0.7(2)
Trimming code = multiple of 16
-
-
± 1.5(2)
HSI oscillator accuracy VDD ≤1.8 V≤ VDD ≤ 3.6 V
(factory calibrated)
-40 °C ≤TA ≤ 125 °C
%
TRIM
HSI user trimming
step(2)
tsu(HSI)
HSI oscillator setup
time (wakeup time)
-
-
3.7
6 (3)
µs
IDD(HSI)
HSI oscillator power
consumption
-
-
100
140(3)
µA
%
1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified.
2. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16
(0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L15x internal RC oscillator calibration” application note for
more details.
3. Guaranteed by design.
Figure 23. Typical HSI frequency vs. VDD
+6,IUHTXHQF\>0+]@
ƒ&
ƒ&
ƒ&
9''>[email protected]
DocID027180 Rev 5
DLF
89/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
Low speed internal RC oscillator (LSI)
In the following table, data are based on characterization results, not tested in production,
unless otherwise specified.
Table 35. LSI oscillator characteristics
Symbol
fLSI
Parameter
Conditions(1)
Min.
Typ.
Max.
Unit
-
26
38
56
kHz
Frequency
tsu(LSI)
LSI oscillator wakeup time
D(LSI)
LSI oscillator frequency
drift(3)
0 °C ≤TA ≤ 85 °C
(2)
-
-
200
-12
-
11
µs
%
1. VDD = 1.65 V to 3.6 V, TA = -40 to 125 °C unless otherwise specified.
2. Guaranteed by design.
3. This is a deviation for an individual part, once the initial frequency has been measured.
Figure 24. Typical LSI clock source frequency vs. VDD
ƒ&
ƒ&
ƒ&
ƒ&
2#+ #HECK -(Z
ƒ&
6$$ 6
-36
9.3.5
Memory characteristics
TA = -40 to 125 °C unless otherwise specified.
Table 36. RAM and hardware registers
Symbol
VRM
Parameter
Data retention mode
(1)
Conditions
Min.
Typ.
Max.
Unit
Halt mode (or Reset)
1.65
-
-
V
1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware
registers (only in Halt mode). Guaranteed by characterization results.
90/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Flash memory
Table 37. Flash program memory/data EEPROM memory
Symbol
VDD
tprog
Iprog
Parameter
Conditions
Min.
fSYSCLK = 16 MHz
1.65
-
3.6
V
Programming time for 1 or 128 byte (block)
erase/write cycles (on programmed byte)
-
-
6
-
ms
Programming time for 1 to 128 byte (block)
write cycles (on erased byte)
-
-
3
-
ms
TA=+25 °C, VDD = 3.0 V
-
TA=+25 °C, VDD = 1.8 V
-
Operating voltage
(all modes, read/write/erase)
Programming/ erasing consumption
Typ. Max.
-
0.7
-
Unit
mA
Table 38. Flash program memory
Symbol
Parameter
Conditions
Min.
Max.
Unit
TWE
Temperature for writing and erasing
-
-40
125
°C
NWE
Flash program memory endurance
(erase/write cycles)(1)
TA= 25 °C
1000
-
cycles
tRET
Data retention time
TA= 25 °C
40
-
TA= 55 °C
20
-
years
1. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a write/erase operation
addresses a single byte.
Data memory
Table 39. Data memory
Symbol
Parameter
TWE
Temperature for writing and erasing
NWE
Data memory endurance
(erase/write cycles)(1)
tRET
Data retention time
Conditions
Min.
Max.
Unit
-
-40
125
°C
TA= 25 °C
300 k
-
TA= -40 to 125 °C
100 k(2)
-
TA= 25 °C
40(2) (3)
-
TA= 55 °C
(2) (3)
-
20
cycles
years
1. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a write/erase operation
addresses a single byte.
2. More information on the relationship between data retention time and number of write/erase cycles is available in a
separate technical document.
3. Retention time for 256B of data memory after up to 1000 cycles at 125 °C.
DocID027180 Rev 5
91/133
119
Electrical parameters
9.3.6
STM8AL31E8x STM8AL3LE8x
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation.
However, in order to give an indication of the robustness of the microcontroller in cases
when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error, out of spec current
injection on adjacent pins or other functional failure (for example reset, oscillator frequency
deviation, LCD levels, etc.).
The test results are given in the following table.
Table 40. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
9.3.7
Description
Negative
injection
Positive
injection
Injected current on true open-drain pins
-5
+0
Injected current on all 5 V tolerant (FT) pins
-5
+0
Injected current on any other pin
-5
+5
Unit
mA
I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
92/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Table 41. I/O static characteristics
Symbol
VIL
VIH
Vhys
Ilkg
Conditions(1)
Parameter
Input low-level voltage
Input high-level voltage
Schmitt trigger voltage hysteresis (3)
Input leakage current (4)
Min.
Typ.
Max.
Unit
Vss-0.3
-
0.3 x VDD
V
Input voltage on true
open-drain pins (PC0
and PC1)
with VDD < 2 V
-
5.2(2)
Input voltage on true
open-drain pins (PC0
and PC1)
with VDD ≥ 2 V
-
5.5(2)
Input voltage on all
pins
Input voltage on fivevolt tolerant (FT) pins
with VDD < 2 V
0.70 x VDD
V
-
5.2(2)
Input voltage on fivevolt tolerant (FT) pins
with VDD ≥ 2 V
-
5.5(2)
Input voltage on any
other pin
-
VDD+0.3(2)
Standard I/Os
-
200
-
True open drain I/Os
-
200
-
VSS≤VIN≤VDD
Standard I/Os
-
-
50
VSS≤VIN≤VDD
True open drain I/Os
-
-
200
VSS≤VIN≤VDD
PA0 with high sink LED
driver capability
-
-
200
30(6)
45
60(6)
kΩ
-
5
-
pF
RPU
Weak pull-up equivalent resistor(5)
VIN=VSS
CIO
I/O pin capacitance
-
mV
nA
1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified.
2. If VIH maximum is not respected, the injection current must be limited externally to IINJ(PIN) maximum.
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. RPU pull-up equivalent resistor based on a resistive transistor (corresponding IPU current characteristics described in
Figure 28).
6. Guaranteed by characterization results.
DocID027180 Rev 5
93/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
Figure 25. Typical VIL and VIH vs. VDD (standard I/Os)
ƒ&
ƒ&
9,/DQG9,+>[email protected]
ƒ&
9''>[email protected]
DLF
Figure 26. Typical VIL and VIH vs. VDD (true open drain I/Os)
ƒ&
ƒ&
9,/DQG9,+>[email protected]
ƒ&
9''>[email protected]
DLE
94/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Figure 27. Typical pull-up resistance RPU vs. VDD with VIN=VSS
ƒ&
3XOOXSUHVLVWDQFH>NŸ@
ƒ&
ƒ&
9''>[email protected]
DLE
Figure 28. Typical pull-up current Ipu vs. VDD with VIN=VSS
ƒ&
ƒ&
3XOOXSFXUUHQW>—[email protected]
ƒ&
9''>[email protected]
DLE
Output driving current
Subject to general operating conditions for VDD and TA unless otherwise specified.
DocID027180 Rev 5
95/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
Table 42. Output driving current (high sink ports)
I/O
Symbol
Type
Output low-level voltage for an I/O pin
Standard
VOL (1)
Parameter
VOH (2) Output high-level voltage for an I/O pin
Conditions
Min.
Max.
Unit
IIO = +2 mA,
VDD = 3.0 V
-
0.45
V
IIO = +2 mA,
VDD = 1.8 V
-
0.45
V
IIO = +10 mA,
VDD = 3.0 V
-
0.7
V
IIO = -2 mA,
VDD = 3.0 V
VDD-0.45
-
V
IIO = -1 mA,
VDD = 1.8 V
VDD-0.45
-
V
IIO = -10 mA,
VDD = 3.0 V
VDD-0.7
-
V
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 16 and the
sum of IIO (I/O ports and control pins) must not exceed IVDD.
Table 43. Output driving current (true open drain ports)
Open drain
I/O
Symbol
Type
VOL
(1)
Parameter
Output low-level voltage for an I/O pin
Conditions
Min.
Max.
IIO = +3 mA,
VDD = 3.0 V
-
0.45
IIO = +1 mA,
VDD = 1.8 V
-
Unit
V
0.45
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
Table 44. Output driving current (PA0 with high sink LED driver capability)
IR
I/O
Symbol
Type
VOL (1)
Parameter
Output low-level voltage for an I/O pin
Conditions
Min.
Max.
Unit
IIO = +20 mA,
VDD = 2.0 V
-
0.45
V
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
96/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Figure 29. Typical VOL @ VDD = 3.0 V (high sink Figure 30. Typical VOL @ VDD = 1.8 V (high sink
ports)
ports)
#
#
#
#
6/, ;6=
6/, ;6=
#
#
#
#
)/, ;M!=
)/,;M!=
AI
AI
Figure 31. Typical VOL @ VDD = 3.0 V (true open Figure 32. Typical VOL @ VDD = 1.8 V (true open
drain ports)
drain ports)
#
#
#
#
#
#
#
#
6/, ;6=
6/, ;6=
)/, ;M!=
)/, ;M!=
BJ
AI
Figure 33. Typical VDD - VOH @ VDD = 3.0 V (high Figure 34. Typical VDD - VOH @ VDD = 1.8 V (high
sink ports)
sink ports)
#
#
#
#
#
#
#
#
6$$6/( ;6=
6$$6/( ;6=
)/( ;M!=
) /( ;M!=
AI
DocID027180 Rev 5
BJ
97/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
NRST pin
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 45. NRST pin characteristics
Symbol
Parameter
Conditions
Min.
Typ.
Max.
VIL(NRST)
NRST input low-level voltage
-
VSS(1)
-
0.8(1)
VIH(NRST)
NRST input high-level voltage (1)
-
1.4(1)
-
VDD(1)
IOL = 2 mA
for 2.7 V ≤VDD ≤ 3.6 V
-
-
IOL = 1.5 mA
for VDD < 2.7 V
-
VOL(NRST)
VHYST
NRST output low-level voltage (1)
V
0.4(1)
-
10%VDD
(2)(3)
-
-
mV
-
30(1)
45
60(1)
kΩ
NRST input filtered pulse
-
-
-
50(3)
NRST input not filtered pulse
-
300(3)
-
-
NRST input hysteresis
-
NRST pull-up equivalent resistor
VF(NRST)
VNF(NRST)
RPU(NRST)
Unit
ns
1. Guaranteed by characterization results.
2. 200 mV min.
3. Guaranteed by design.
Figure 35. Typical NRST pull-up resistance RPU vs. VDD
ƒ&
3XOOXSUHVLVWDQFH>NŸ@
ƒ&
ƒ&
9''>[email protected]
DLE
98/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Figure 36. Typical NRST pull-up current Ipu vs. VDD
ƒ&
ƒ&
3XOOXSFXUUHQW>—[email protected]
ƒ&
9''>[email protected]
DLE
The reset network shown in Figure 37 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin goes below the VIL max. level specified in
Table 45. Otherwise the reset is not taken into account internally. For power consumptionsensitive applications, the capacity of the external reset capacitor has to be reduced to limit
the charge/discharge current. If the NRST signal is used to reset the external circuitry, the
user must pay attention to the charge/discharge time of the external capacitor to meet the
reset timing conditions of the external devices. The minimum recommended capacity is 10
nF.
Figure 37. Recommended NRST pin configuration
9''
538
([WHUQDO
UHVHW
FLUFXLW
2SWLRQDO
1 567
)LOWHU
,QWHUQDOUHVHW
670
X)
069
DocID027180 Rev 5
99/133
119
Electrical parameters
9.3.8
STM8AL31E8x STM8AL3LE8x
Communication interfaces
SPI1 - Serial peripheral interface
Unless otherwise specified, the parameters given in Table 46 are derived from tests
performed under ambient temperature, fSYSCLK frequency and VDD supply voltage
conditions summarized in Section 9.3.1. Refer to I/O port characteristics for more details on
the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 46. SPI1 characteristics
Symbol
Conditions(1)
Min.
Max.
Master mode
0
8
Slave mode
0
8
SPI1 clock rise and fall
time
Capacitive load: C = 30 pF
-
30
tsu(NSS)(2)
NSS setup time
Slave mode
4 x 1/fSYSCLK
-
th(NSS)(2)
NSS hold time
Slave mode
80
-
SCK high and low time
Master mode,
fMASTER = 8 MHz, fSCK= 4 MHz
105
145
Master mode
30
-
Slave mode
3
-
Master mode
15
-
Slave mode
0
-
fSCK
1/tc(SCK)
tr(SCK)
tf(SCK)
(2)
tw(SCKH)
tw(SCKL)(2)
Parameter
SPI1 clock frequency
tsu(MI) (2)
tsu(SI)(2)
Data input setup time
th(MI) (2)
th(SI)(2)
Data input hold time
ta(SO)(2)(3)
Data output access time
Slave mode
-
3x 1/fSYSCLK
tdis(SO)(2)(4)
30
-
Data output disable time
Slave mode
(2)
Data output valid time
Slave mode (after enable edge)
-
60
tv(MO)(2)
Data output valid time
Master mode (after enable
edge)
-
20
Slave mode (after enable edge)
15
-
Master mode (after enable
edge)
1
-
tv(SO)
th(SO)(2)
th(MO)(2)
Data output hold time
1. Parameters are given by selecting 10 MHz I/O output frequency.
2. Guaranteed by characterization results or by design.
3. Min. time is for the minimum time to drive the output and max. time is for the maximum time to validate the data.
4. Min. time is for the minimum time to invalidate the output and max. time is for the maximum time to put the data in Hi-Z.
100/133
DocID027180 Rev 5
Unit
MHz
ns
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Figure 38. SPI1 timing diagram - slave mode and CPHA=0
166LQSXW
6&.,QSXW
W68166
&3+$ &32/ WK166
WF6&.
WZ6&.+
WZ6&./
&3+$ &32/ W962
WD62
0,62
287387
WU6&.
WI6&.
WK62
06%287
%,7287
06%,1
%,7,1
WGLV62
/6%287
WVX6,
026,
,1387
/6%,1
WK6,
DLF
Figure 39. SPI1 timing diagram - slave mode and CPHA=1(1)
166LQSXW
6&.LQSXW
W68166
&3+$ &32/ &3+$ &32/ WZ6&.+
WZ6&./
WK62
WY62
WD62
0,62
287387
06%287
%,7287
WU6&.
WI6&.
WGLV62
/6%287
WK6,
WVX6,
026,
,1387
WK166
WF6&.
06%,1
%,7,1
/6%,1
DLE
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DocID027180 Rev 5
101/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
Figure 40. SPI1 timing diagram - master mode(1)
+LJK
166LQSXW
6&.2XWSXW
&3+$ &32/ 6&.2XWSXW
WF6&.
&3+$ &32/ &3+$ &32/ &3+$ &32/ WVX0,
0,62
,13 87
WZ6&.+
WZ6&./
06%,1
WU6&.
WI6&.
%,7,1
/6%,1
WK0,
026,
287387
06%287
% , 7287
WY02
/6%287
WK02
DLF
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
102/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
I2C - Inter IC control interface
Subject to general operating conditions for VDD, fSYSCLK, and TA unless otherwise specified.
The STM8AL I2C interface (I2C1) meets the requirements of the Standard I2C
communication protocol described in the following table with the restriction mentioned
below:
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (SDA and SCL).
Table 47. I2C characteristics
Symbol
Parameter
Standard mode I2C
Fast mode I2C(1)
Min.(2)
Max. (2)
Min. (2)
Max. (2)
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0
-
0
900
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
-
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
START condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated START condition setup
time
4.7
-
0.6
-
tsu(STO)
STOP condition setup time
4.0
-
0.6
-
STOP to START condition time (bus
free)
4.7
-
1.3
-
-
400
-
400
tw(STO:STA)
Cb
Capacitive load for each bus line
Unit
μs
ns
μs
pF
1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz).
2. Data based on standard I2C protocol requirement, not tested in production.
Note:
For speeds around 200 kHz, the achieved speed has a ± 5% tolerance.
For other speed ranges, the achieved speed has a ± 2% tolerance.
The above variations depend on the accuracy of the external components used.
DocID027180 Rev 5
103/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
Figure 41. Typical application with I2C bus and timing diagram(1))
9''
NŸ
9''
NŸ
,&EXV
670
Ÿ
6'$
Ÿ
6&/
5HSHDWHG
VWDUW
67$57
WVX67$
WZ67267$
6'$
WI6'$
WU6'$
WVX6'$
WK6'$
67$57
6723
6&/
WK67$
WZ6&/+
WZ6&//
WU6&/
WI6&/
WVX672
06Y9
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD
104/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
9.3.9
Electrical parameters
LCD controller (STM8AL3LE8x only)
In the following table, data are guaranteed by design, not tested in production.
Table 48. LCD characteristics
Symbol
Parameter
Min.
Typ.
Max.
VLCD
LCD external voltage
-
-
3.6
VLCD0
LCD internal reference voltage 0
-
2.6
-
VLCD1
LCD internal reference voltage 1
-
2.7
-
VLCD2
LCD internal reference voltage 2
-
2.8
-
VLCD3
LCD internal reference voltage 3
-
3.0
-
VLCD4
LCD internal reference voltage 4
-
3.1
-
VLCD5
LCD internal reference voltage 5
-
3.2
-
VLCD6
LCD internal reference voltage 6
-
3.4
-
VLCD7
LCD internal reference voltage 7
-
3.5
-
CEXT
VLCD external capacitance
0.1
1
2
at VDD = 1.8 V
-
3
-
at VDD = 3 V
-
3
-
IDD
Supply
current(1)
Supply current
(1)
Unit
V
µF
µA
RHN(2)
High value resistive network (low drive)
-
6.6
-
MΩ
(3)
Low value resistive network (high drive)
-
240
-
kΩ
V33
Segment/Common higher level voltage
-
-
VLCDx
V34
Segment/Common 3/4 level voltage
-
3/4VLCDx
-
V23
Segment/Common 2/3 level voltage
-
2/3VLCDx
-
V12
Segment/Common 1/2 level voltage
-
1/2VLCDx
-
V13
Segment/Common 1/3 level voltage
-
1/3VLCDx
-
V14
Segment/Common 1/4 level voltage
-
1/4VLCDx
-
V0
Segment/Common lowest level voltage
0
-
-
RLN
V
1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels
active, no LCD connected.
2. RHN is the total high value resistive network.
3. RLN is the total low value resistive network.
VLCD external capacitor (STM8AL3LE8x only)
The application achieves a stabilized LCD reference voltage when connecting an external
capacitor CEXT to the VLCD pin. CEXT is specified in Table 48.
DocID027180 Rev 5
105/133
119
Electrical parameters
9.3.10
STM8AL31E8x STM8AL3LE8x
Embedded reference voltage
In the following table, data are based on characterization results, not tested in production,
unless otherwise specified.
Table 49. Reference voltage characteristics
Symbol
IREFINT
TS_VREFINT(1)(2)
IBUF(1)
VREFINT out
Parameter
Conditions
Min.
Typ.
Max.
Unit
Internal reference voltage
consumption
-
-
1.4
-
µA
ADC sampling time when reading the
internal reference voltage
-
-
5
10
µs
Internal reference voltage buffer
consumption (used for ADC)
-
-
13.5
25
µA
Reference voltage output
-
Internal reference voltage low-power
buffer consumption (used for
comparators or output)
1.202
(3)
1.224
-
-
Buffer output current
-
Reference voltage output load
tVREFINT(1)
tBUFEN(1)(2)
ILPBUF(1)
IREFOUT(1)(4)
CREFOUT
ACCVREFINT(5)
STABVREFINT
STABVREFINT
1.242
(3)
V
730
1200
nA
-
-
1
µA
-
-
-
50
pF
Internal reference voltage startup
time
-
-
2
3
ms
Internal reference voltage buffer
startup time once enabled
-
-
-
10
µs
Accuracy of VREFINT stored in the
VREFINT_Factory_CONV byte
-
-
-
±5
mV
-
20
50
ppm/°C
Stability of VREFINT over temperature -40 °C ≤TA ≤ 125 °C
Stability of VREFINT over temperature
0 °C ≤TA ≤ 50 °C
-
-
20
ppm/°C
Stability of VREFINT after 1000 hours
-
-
-
TBD
ppm
1. Guaranteed by design.
2. Defined when ADC output reaches its final value ±1/2LSB
3. Tested in production at VDD = 3 V ±10 mV.
4. To guarantee less than 1% VREFOUT deviation
5. Measured at VDD = 3 V ±10 mV. This value takes into account VDD accuracy and ADC conversion accuracy.
106/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
9.3.11
Electrical parameters
Temperature sensor
In the following table, data are based on characterization results, not tested in production,
unless otherwise specified.
Table 50. TS characteristics
Symbol
Parameter
Min.
Typ.
Max.
Unit
V125 (1)
Sensor reference voltage at 125°C
±5 °C,
0.640
0.660
0.680
V
TL
VSENSOR linearity with temperature
-
±1
±2
°C
Avg_slope
IDD(TEMP)
Average slope
1.59
Consumption
(2)
1.62
-
TSTART(3)
Temperature sensor startup time
-
TS_TEMP
ADC sampling time when reading the
temperature sensor
-
1.65
3.4
6
(2)
mV/°C
(2)
µA
-
10(2)
µs
5
10(2)
µs
1. Tested in production at VDD = 3 V ±10 mV. The 8 LSB of the V125 ADC conversion result are stored in the
TS_Factory_CONV_V125 byte.
2. Guaranteed by design.
3. Defined for ADC output reaching its final value ±1/2LSB.
9.3.12
Comparator characteristics
In the following table, data are guaranteed by design, not tested in production.
Table 51. Comparator 1 characteristics
Symbol
Parameter
Conditions
Min(1)
Typ
Max(1)
Unit
3.6
V
VDDA
Analog supply voltage
-
1.65
R400K
R400K value
-
-
400
-
R10K
R10K value
-
-
10
-
Comparator 1 input
voltage range
-
0.6
Comparator startup time
-
-
7
10
-
-
3
10
-
-
±3
±10
mV
0
1.5
10
mV/1000 h
-
160
260
nA
VIN
tSTART
td
Propagation delay
Voffset
Comparator offset
dVoffset/dt
ICOMP1
(2)
Comparator offset
variation in worst voltage
stress conditions
Current consumption(3)
VDDA = 3.6 V
VIN+ = 0 V
VIN- = VREFINT
TA = 25 ° C
-
VDDA
kΩ
V
µs
1. Guaranteed by characterization results .
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
3. Comparator consumption only. Internal reference voltage not included.
DocID027180 Rev 5
107/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
In the following table, data are guaranteed by design, not tested in production, unless
otherwise specified.
Table 52. Comparator 2 characteristics
Symbol
VDDA
VIN
Parameter
Min
Analog supply voltage
-
1.65
-
3.6
V
Comparator 2 input voltage range
-
0
-
VDDA
V
Fast mode
-
15
20
Slow mode
-
20
25
1.65 V ≤VDDA ≤2.7 V
-
1.8
3.5
2.7 V ≤VDDA ≤3.6 V
-
2.5
6
1.65 V ≤VDDA ≤2.7 V
-
0.8
2
2.7 V ≤VDDA ≤3.6 V
-
1.2
4
-
-
±4
±20
mV
VDDA = 3.3V
TA = 0 to 50 ° C
V- = VREF+, 3/4
VREF+,
1/2 VREF+, 1/4 VREF+.
-
15
30
ppm
/°C
Fast mode
-
3.5
5
Slow mode
-
0.5
2
tSTART
Comparator startup time
td slow
Propagation delay(2) in slow mode
td fast
Propagation delay(2) in fast mode
Voffset
Comparator offset error
dThreshold/dt
ICOMP2
Typ Max(1) Unit
Conditions
Threshold voltage temperature
coefficient
Current consumption(3)
1. Guaranteed by characterization results.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not
included.
108/133
DocID027180 Rev 5
µs
µA
STM8AL31E8x STM8AL3LE8x
9.3.13
Electrical parameters
12-bit DAC characteristics
In the following table, data are guaranteed by design, not tested in production.
Table 53. DAC characteristics
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
VDDA
Analog supply voltage
-
1.8
-
3.6
VREF+
Reference supply voltage
-
1.8
-
VDDA
VREF+ = 3.3 V, no
load, middle code
(0x800)
-
130
220
VREF+ = 3.3 V, no
load, worst code
(0x000)
-
220
350
VDDA = 3.3 V, no
load, middle code
(0x800)
-
210
320
VDDA = 3.3 V, no
load, worst code
(0x000)
-
320
520
-
-40
-
125
Resistive load
DACOUT buffer ON
5
-
Output impedance
DACOUT buffer OFF
-
8
10
kΩ
-
-
-
50
pF
DACOUT buffer ON
0.2
-
VDDA - 0.2
V
DACOUT buffer OFF
0
-
VREF+ -1 LSB
V
Settling time (full scale: for a 12bit input code transition between
the lowest and the highest input
codes when DAC_OUT reaches
the final value ±1LSB)
RL ≥5 kΩ, CL≤ 50 pF
-
7
12
µs
Max frequency for a correct
DAC_OUT (@95%) change
Update rate
when small variation of the input
code (from code i to i+1LSB).
RL ≥ 5 kΩ, CL ≤50 pF
-
-
1
Msps
IVREF
IVDDA
TA
RL(1) (2)
RO
CL
(3)
DAC_OUT
(4)
tsettling
Current consumption on VREF+
supply
Current consumption on VDDA
supply
Temperature range
Capacitive load
DAC_OUT voltage
V
µA
°C
kΩ
tWAKEUP
Wakeup time from OFF state.
Input code between lowest and
highest possible codes.
RL ≥5 kΩ, CL≤50 pF
-
9
15
µs
PSRR+
Power supply rejection ratio (to
VDDA) (static DC measurement)
RL≥ 5 kΩ, CL≤50 pF
-
-60
-35
dB
1. Resistive load between DACOUT and GNDA
2. Output on PF0 or PF1
3. Capacitive load at DACOUT pin
4. It gives the output excursion of the DAC
DocID027180 Rev 5
109/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
In the following table, data are based on characterization results, not tested in production.
Table 54. DAC accuracy
Symbol
Parameter
Typ.
Max.(1)
1.5
3
1.5
3
2
4
2
4
±10
±25
No load
DACOUT buffer OFF
±5
±8
DACOUT buffer OFF
±1.5
±5
Conditions
RL ≥5 kΩ, CL≤50 pF
DNL
DACOUT buffer ON(3)
Differential non linearity(2)
No load
DACOUT buffer OFF
RL ≥5 kΩ, CL≤ 50 pF
INL
DACOUT buffer ON(3)
Integral non linearity(4)
No load
DACOUT buffer OFF
RL ≥5 kΩ, CL≤ 50 pF
Offset
Offset1
DACOUT buffer ON(3)
Offset error(5)
Offset error at Code 1 (6)
RL ≥5 kΩ, CL≤ 50 pF
Gain error
Gain
DACOUT buffer ON(3)
error(7)
No load
DACOUT buffer OFF
RL ≥5 kΩ, CL≤ 50 pF
TUE
DACOUT buffer ON(3)
Total unadjusted error
No load -DACOUT buffer OFF
Unit
12-bit
LSB
+0.1/-0.2 +0.2/-0.5
%
+0/-0.2
+0/-0.4
12
30
8
12
12-bit
LSB
1. Not tested in production.
2. Difference between two consecutive codes - 1 LSB.
3. In 48-pin package devices the DAC2 output buffer must be kept off and no load must be applied on the DAC_OUT2 output.
4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023.
5. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2.
6. Difference between the value measured at Code (0x001) and the ideal value.
7. Difference between the ideal slope of the transfer function and the measured slope computed from Code 0x000 and 0xFFF
when buffer is ON, and from Code giving 0.2 V and (VDDA -0.2) V when buffer is OFF.
110/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
In the following table, data are guaranteed by design, not tested in production.
Table 55. DAC output on PB4-PB5-PB6(1)
Symbol
Rint
Parameter
Internal resistance
between DAC output and
PB4-PB5-PB6 output
Conditions
Max
2.7 V < VDD < 3.6 V
1.4
2.4 V < VDD < 3.6 V
1.6
2.0 V < VDD < 3.6 V
3.2
1.8 V < VDD < 3.6 V
8.2
Unit
kΩ
1. 32 or 28-pin packages only. The DAC channel is routed either on PB4, PB5 or PB6 using the routing
interface I/O switch registers.
DocID027180 Rev 5
111/133
119
Electrical parameters
9.3.14
STM8AL31E8x STM8AL3LE8x
12-bit ADC1 characteristics
In the following table, data are guaranteed by design, not tested in production.
Table 56. ADC1 characteristics
Symbol
Parameter
VDDA
Analog supply voltage
VREF+
Reference supply
voltage
VREF-
Conditions
Min.
Typ.
Max.
Unit
-
1.8
-
3.6
V
2.4 V ≤VDDA≤ 3.6 V
2.4
-
VDDA
V
1.8 V≤VDDA≤ 2.4 V
VDDA
V
Lower reference voltage
-
VSSA
V
IVDDA
Current on the VDDA
input pin
-
-
-
-
IVREF+
Current on the VREF+
input pin
1000
400
-
-
1450
µA
700
(peak)(1)
µA
450
(average)(1)
µA
VAIN
Conversion voltage
range
-
0(2)
-
VREF+
TA
Temperature range
-
-40
-
125
°C
on PF0/1/2/3 fast
channels
-
-
50(3)
kΩ
on all other channels
-
-
on PF0/1/2/3 fast
channels
-
on all other channels
-
2.4 V≤VDDA≤3.6 V
without zooming
0.320
-
16
MHz
1.8 V≤VDDA≤2.4 V
with zooming
0.320
-
8
MHz
VAIN on PF0/1/2/3 fast
channels
-
-
1(3)(4)
MHz
VAIN on all other
channels
-
-
760(3)(4)
kHz
RAIN
CADC
fADC
fCONV
External resistance on
VAIN
Internal sample and hold
capacitor
ADC sampling clock
frequency
12-bit conversion rate
16
-
pF
-
fTRIG
External trigger
frequency
-
-
-
tconv
1/fADC
tLAT
External trigger latency
-
-
-
3.5
1/fSYSCLK
112/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Table 56. ADC1 characteristics (continued)
Symbol
tS
Parameter
Sampling time
tconv
12-bit conversion time
tWKUP
Conditions
Min.
Typ.
Max.
VAIN PF0/1/2/3 fast
channels
VDDA < 2.4 V
0.43(3)(4)
-
-
VAIN PF0/1/2/3 fast
channels
2.4 V ≤VDDA≤ 3.6 V
0.22(3)(4)
-
-
VAIN on slow channels
VDDA < 2.4 V
0.86(3)(4)
-
-
VAIN on slow channels
2.4 V ≤VDDA≤ 3.6 V
0.41(3)(4)
-
-
-
Unit
µs
12000000 / fADC + tS
16 MHz
1(3)
-
Wakeup time from OFF
state
-
-
-
3
tIDLE(5)
Time before a new
conversion
-
-
-
∞
s
tVREFINT
Internal reference
voltage startup time
-
-
-
refer to
Table 49
ms
-
1. The current consumption through VREF is composed of two parameters:
- one constant (max 300 µA)
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses.
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at
1Msps
2. VREF- must be tied to ground.
3. Minimum sampling and conversion time is reached for maximum RAIN= 0.5 kΩ..
4. Value obtained for continuous conversion on fast channel.
5. In the RM0031, tIDLE defines the time between 2 conversions, or between ADC ON and the first conversion. tIDLE is not
relevant for this device.
DocID027180 Rev 5
113/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
In the following three tables, data are guaranteed by characterization result, not tested in
production.
Table 57. ADC1 accuracy with VDDA = 3.3 V to 2.5 V
Symbol
Typ.
Max.(1)
1
1.6
Differential non linearity fADC = 8 MHz
1
1.6
fADC = 4 MHz
1
1.5
fADC = 16 MHz
1.2
2
fADC = 8 MHz
1.2
1.8
fADC = 4 MHz
1.2
1.7
fADC = 16 MHz
2.2
3.0
fADC = 8 MHz
1.8
2.5
fADC = 4 MHz
1.8
2.3
fADC = 16 MHz
1.5
2
fADC = 8 MHz
1
1.5
fADC = 4 MHz
0.7
1.2
1
1.5
Parameter
Conditions
fADC = 16 MHz
DNL
INL
Integral non linearity
TUE
Total unadjusted error
Offset
Offset error
fADC = 16 MHz
Gain
Gain error
fADC = 8 MHz
Unit
LSB
LSB
fADC = 4 MHz
1. Guaranteed by characterization results.
Table 58. ADC1 accuracy with VDDA = 2.4 V to 3.6 V
Symbol
Parameter
Typ.
Max.(1)
Unit
1
2
LSB
1.7
3
LSB
DNL
Differential non linearity
INL
Integral non linearity
TUE
Total unadjusted error
2
4
LSB
Offset
Offset error
1
2
LSB
Gain
Gain error
1.5
3
LSB
1. Guaranteed by characterization results.
Table 59. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V
Symbol
114/133
Parameter
Typ.
Max.(1)
Unit
DNL
Differential non linearity
1
2
LSB
INL
Integral non linearity
2
3
LSB
TUE
Total unadjusted error
3
5
LSB
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Table 59. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V (continued)
Symbol
Parameter
Typ.
Max.(1)
Unit
Offset
Offset error
2
3
LSB
Gain
Gain error
2
3
LSB
1. Guaranteed by characterization results.
Figure 42. ADC1 accuracy characteristics
9''$
95()
RUGHSHQGLQJRQSDFNDJH
>/6%,'($/ (*
([DPSOHRIDQDFWX DOWUDQVIH UFXUYH
7KHLGHDOWUDQVIHUFX UYH
(QGSRLQWFRUUHODWLRQOLQH
(7 7RWDOXQDGMXVWHG(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV
(2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVWLGHDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH
(/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
FRUUHODWLRQOLQH
(7
(2
(/
('
/6%,'($/
966$
9''$
DLH
Figure 43. Typical connection diagram using the ADC
670$/[[[
9''
6DPSOHDQGKROG$'&
FRQYHUWHU
97
9
5$,1 5$'&
$,1[
97
9
9$,1
&SDUDVLWLF ELW
FRQYHUWHU
&$'& ,/ “ Q$
069
1. Refer to Table 56 for the values of RAIN and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 44 or Figure 45,
depending on whether VREF+ is connected to VDDA or not. Good quality ceramic 10 nF
capacitors should be used. They should be placed as close as possible to the chip.
DocID027180 Rev 5
115/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
Figure 44. Power supply and reference decoupling (VREF+ not connected to VDDA)
670$/
9 5()
—)Q)
9 ''$
—)Q)
9 66$9 5()
069
Figure 45. Power supply and reference decoupling (VREF+ connected to VDDA)
670$/
95()9''$
—)Q)
95()±966$
069
116/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
9.3.15
Electrical parameters
EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),
the product is stressed by two electromagnetic events until a failure occurs (indicated by the
LEDs).
•
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms to the ANSI/ESDA/JEDEC JS001, JESD22-A115 and ANSI/ESD S5.3.1.
•
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 61000 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Prequalification trials:
Most of the common failures (unexpected reset and program counter corruption) are
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress is applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software is hardened to
prevent unrecoverable errors occurring (see application note AN1015).
Table 60. EMS data
Symbol
Parameter
Conditions
VFESD
VDD = 3.3 V, TA = +25 °C,
Voltage limits to be applied on
any I/O pin to induce a functional fCPU= 16 MHz,
disturbance
conforms to IEC 61000
VEFTB
Fast transient voltage burst limits
VDD = 3.3 V, TA = +25 °C,
to be applied through 100 pF on
Using HSI
fCPU = 16 MHz,
VDD and VSS pins to induce a
conforms to IEC 61000
Using HSE
functional disturbance
DocID027180 Rev 5
Level/
Class
2B
4A
2B
117/133
119
Electrical parameters
STM8AL31E8x STM8AL3LE8x
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm IEC61967-2 which specifies the board and the loading of each pin.
Table 61. EMI data (1)
Symbol
SEMI
Parameter
Peak level
Conditions
VDD = 3.6 V,
TA = +25 °C,
LQFP80
conforming to
IEC61967-2
Max vs.
Monitored
frequency band
Unit
16 MHz
0.1 MHz to 30 MHz
10
30 MHz to 130 MHz
4
130 MHz to 1 GHz
1
EMI Level
dBμV
1.5
-
1. Guaranteed by characterization results.
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models
are simulated: human body model and charge device model. This test conforms to the
ANSI/ESDA/JEDEC JS-001, JESD22-A115 and ANSI/ESD S5.3.1.
Table 62. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Class
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = 25 °C, conforming
to ANSI/ESDA/
JEDEC JS-001
2
2000
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = 25 °C, conforming
to ANSI/ESD S5.3.1
C4B
500
VESD(MM)
Electrostatic discharge voltage
(machine model)
TA = 25 °C, conforming
to JESD22-A115
M2
200
1. Guaranteed by characterization results.
118/133
Maximum
Unit
value (1)
DocID027180 Rev 5
V
STM8AL31E8x STM8AL3LE8x
Electrical parameters
Static latch-up
•
LU: 3 complementary static tests are required on 10 parts to assess the latch-up
performance. A supply overvoltage (applied to each power supply pin) and a current
injection (applied to each input, output and configurable I/O pin) are performed on each
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details,
refer to the application note AN1181.
Table 63. Electrical sensitivities
Symbol
LU
Parameter
Class (1)
Conditions
TA = 125 °C
Static latch-up class
A
1. Class description: the class is an STMicroelectronics internal specification. The class limits are higher than
the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B
class strictly covers all the JEDEC criteria (international standard).
9.4
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 19: General operating conditions on page 69.
The maximum chip-junction temperature, TJmax, in degree Celsius, may be calculated using
the following equation:
TJmax = TAmax + (PDmax x ΘJA)
Where:
•
TAmax is the maximum ambient temperature in ° C
•
ΘJA is the package junction-to-ambient thermal resistance in ° C/W
•
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)
•
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
•
PI/Omax represents the maximum power dissipation on output pins
Where:
PI/Omax = Σ (VOL*IOL) + Σ((VDD-VOH)*I OH),
taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high-level in
the application.
Table 64. Thermal characteristics(1)
Symbol
Parameter
Value
Unit
ΘJA
Thermal resistance junction-ambient
LQFP48 - 7 x 7 mm
65
°C/W
ΘJA
Thermal resistance junction-ambient
LQFP 64- 10 x 10 mm
48
°C/W
ΘJA
Thermal resistance junction-ambient
LQFP 80- 14 x 14 mm
38
°C/W
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
DocID027180 Rev 5
119/133
119
Package information
10
STM8AL31E8x STM8AL3LE8x
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
10.1
LQFP80 package information
Figure 46. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
#
!
CCC
,
$
K
,
$
$
0).
)$%.4)&)#!4)/.
%
%
%
B
E
3?-%
1. Drawing is not to scale.
120/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Package information
Table 65. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package
mechanical data(1)
millimeters
inches
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.220
0.320
0.380
0.0087
0.0126
0.0150
c
0.090
-
0.200
0.0035
-
0.0079
D
15.800
16.000
16.200
0.6220
0.6299
0.6378
D1
13.800
14.000
14.200
0.5433
0.5512
0.5591
D3
-
12.350
-
-
0.4862
-
E
15.800
16.000
16.200
0.6220
0.6299
0.6378
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
E3
-
12.350
-
-
0.4862
-
e
-
0.650
-
-
0.0256
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID027180 Rev 5
121/133
131
Package information
STM8AL31E8x STM8AL3LE8x
Figure 47. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package
recommended footprint
[email protected]'1
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
122/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Package information
Figure 48. LQFP80 marking example (package top view)
6WDQGDUG67ORJR
3
3URGXFW
LGHQWLILFDWLRQ
5HYLVLRQFRGH
45."&"5$
'DWHFRGH
: 88
3LQLGHQWLILHU
069
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted to run a qualification activity prior to any decision to
use these engineering samples.
DocID027180 Rev 5
123/133
131
Package information
10.2
STM8AL31E8x STM8AL3LE8x
LQFP64 package information
Figure 49. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
PP
*$8*(3/$1(
F
$
$
$
6($7,1*3/$1(
&
$
FFF &
'
'
'
.
/
/
3,1
,'(17,),&$7,21
(
(
(
E
H
:B0(B9
1. Drawing is not to scale.
Table 66. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data
inches(1)
millimeters
Symbol
124/133
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
-
12.000
-
-
0.4724
-
D1
-
10.000
-
-
0.3937
-
D3
-
7.500
-
-
0.2953
-
E
-
12.000
-
-
0.4724
-
E1
-
10.000
-
-
0.3937
-
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Package information
Table 66. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E3
-
7.500
-
-
0.2953
-
e
-
0.500
-
-
0.0197
-
K
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 50. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint
AIC
1. Dimensions are expressed in millimeters.
DocID027180 Rev 5
125/133
131
Package information
STM8AL31E8x STM8AL3LE8x
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 51. LQFP64 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
45."&5$
'DWHFRGH
: 88
6WDQGDUG67ORJR
5HYLVLRQFRGH
3LQLGHQWLILHU
3
069
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted to run a qualification activity prior to any decision to
use these engineering samples.
126/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
LQFP48 package information
Figure 52. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
3%!4).'
0,!.%
#
C
!
!
!
MM
'!5'%0,!.%
CCC #
$
+
!
$
,
,
$
0).
)$%.4)&)#!4)/.
%
%
B
%
10.3
Package information
E
"?-%?6
1. Drawing is not to scale.
DocID027180 Rev 5
127/133
131
Package information
STM8AL31E8x STM8AL3LE8x
Table 67. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.500
-
-
0.2165
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
128/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
Package information
Figure 53. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
AID
1. Dimensions are expressed in millimeters.
DocID027180 Rev 5
129/133
131
Package information
STM8AL31E8x STM8AL3LE8x
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 54. LQFP48 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ 45."&5$
'DWHFRGH
: 88
6WDQGDUG67ORJR
5HYLVLRQFRGH
3LQLGHQWLILHU
3
069
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted to run a qualification activity prior to any decision to
use these engineering samples.
130/133
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
11
Ordering information
Ordering information
Table 68. STM8AL31E8x STM8AL3LE8x ordering information scheme
Example:
STM8 AL
31
E
8
8
T
C
Y
Device family
STM8 microcontroller
Product type
AL = automotive low-power(1)
Device subfamily
31: standard devices
3L: devices with LCD
AES encryption hardware accelerator
E = AES encryption hardware accelerator
Program memory size
8 = 64 Kbytes of Flash memory
Pin count
A = 80 pins
9 = 64 pins
8 = 48 pins
Package
T = LQFP
Temperature range
C = -40 to 125 °C
A = -40 to 85 °C
Packing
Y = tray
X = Tape and reel compliant with EIA 481-C
1. Qualified and characterized according to AECQ100 and Q003 or equivalent, advanced screening
according to AEC Q001 and Q002 or equivalent.
For a list of available options (e.g. memory size, package) and orderable part numbers or for
further information on any aspect of this device, please go to www.st.com or contact the
nearest ST sales office.
DocID027180 Rev 5
131/133
131
Revision history
12
STM8AL31E8x STM8AL3LE8x
Revision history
Table 69. Document revision history
Date
Revision
22-Apr-2015
1
Initial release.
27-Jul-2015
2
Updated the document confidentiality level to “Public”.
No other changes in the content.
19-Aug-2015
3
Changed datasheet status to “production data”.
Added LQFP64 and LQFP80 packages together with
the corresponding part numbers.
4
– Updated Table 5: High-density STM8AL3xE8x pin
description: pin name changed from
PC3/USART1_TX/LCD_SEG23(3)/ADC1_IN5/COMP
_IN3M/COMP2_INM/COMP1_INP to
PC3/USART1_TX/LCD_SEG23(3)/ADC1_IN5/COMP
2_INM/COMP1_INP.
– Added footnote to Table 68: STM8AL31E8x
STM8AL3LE8x ordering information scheme.
– Updated Section : Device marking on page 122,
Section : Device marking on page 126, Section :
Device marking on page 130
– Updated Section 9.2: Absolute maximum ratings
– Updated Figure 12: Power supply thresholds.
5
– Updated Table 5: High-density STM8AL3xE8x pin
description: two pin names changed from
PI0/RTC_TAMP1/[SPI2_NSS]/[TIM3_CH3 to
PI0/RTC_TAMP1/[SPI2_NSS]/[TIM3_CH1
and from
PF2/ADC1_IN26/[SPI2_SCK]/[USART3_SCK] to
PF2/ADC1_IN26/[SPI1_SCK]/[USART3_SCK]
18-Oct-2016
5-Dec-2016
132/133
Changes
DocID027180 Rev 5
STM8AL31E8x STM8AL3LE8x
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved
DocID027180 Rev 5
133/133
133
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement