Étude des mécanismes de localisation auditive et de leur

Étude des mécanismes de localisation auditive et de leur
Université de Montréal
Étude des mécanismes de localisation auditive
et de leur plasticité dans le cortex auditif humain
par
Régis Trapeau
Département de psychologie
Faculté des arts et des sciences
Thèse présentée à la Faculté des études supérieures
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)
en psychologie
décembre, 2015
© Régis Trapeau, 2015.
Université de Montréal
Faculté des études supérieures
Cette thèse intitulée:
Étude des mécanismes de localisation auditive
et de leur plasticité dans le cortex auditif humain
présentée par:
Régis Trapeau
a été évaluée par un jury composé des personnes suivantes:
Pierre Jolicœur,
Marc Schönwiesner,
Karim Jerbi,
Étienne De Villers-Sidani,
Milton Campos,
président-rapporteur
directeur de recherche
membre du jury
examinateur externe
représentant du doyen de la FES
Thèse acceptée le: . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RÉSUMÉ
Pouvoir déterminer la provenance des sons est fondamental pour bien interagir avec notre environnement. La localisation auditive est une faculté importante et complexe du système auditif humain.
Le cerveau doit décoder le signal acoustique pour en extraire les indices qui lui permettent de
localiser une source sonore. Ces indices de localisation auditive dépendent en partie de propriétés
morphologiques et environnementales qui ne peuvent être anticipées par l’encodage génétique. Le
traitement de ces indices doit donc être ajusté par l’expérience durant la période de développement.
À l’âge adulte, la plasticité en localisation auditive existe encore. Cette plasticité a été étudiée au
niveau comportemental, mais on ne connaît que très peu ses corrélats et mécanismes neuronaux.
La présente recherche avait pour objectif d’examiner cette plasticité, ainsi que les mécanismes
d’encodage des indices de localisation auditive, tant sur le plan comportemental, qu’à travers les
corrélats neuronaux du comportement observé. Dans les deux premières études, nous avons imposé
un décalage perceptif de l’espace auditif horizontal à l’aide de bouchons d’oreille numériques.
Nous avons montré que de jeunes adultes peuvent rapidement s’adapter à un décalage perceptif
important. Au moyen de l’IRM fonctionnelle haute résolution, nous avons observé des changements de l’activité corticale auditive accompagnant cette adaptation, en termes de latéralisation
hémisphérique. Nous avons également pu confirmer l’hypothèse de codage par hémichamp comme
représentation de l’espace auditif horizontal. Dans une troisième étude, nous avons modifié l’indice
auditif le plus important pour la perception de l’espace vertical à l’aide de moulages en silicone.
Nous avons montré que l’adaptation à cette modification n’était suivie d’aucun effet consécutif au
retrait des moulages, même lors de la toute première présentation d’un stimulus sonore. Ce résultat
concorde avec l’hypothèse d’un mécanisme dit de many-to-one mapping, à travers lequel plusieurs
profils spectraux peuvent être associés à une même position spatiale. Dans une quatrième étude,
au moyen de l’IRM fonctionnelle et en tirant profit de l’adaptation aux moulages de silicone, nous
avons révélé l’encodage de l’élévation sonore dans le cortex auditif humain.
Mots clés : cortex auditif, localisation auditive, plasticité, IRMf.
v
ABSTRACT
Spatial hearing is an important but complex capacity of the auditory system. The human auditory
system infers the location of a sound source from a variety of acoustic cues, known as auditory
localization cues. Because these cues depend to some degree on morphological and environmental
factors that cannot be predicted by the genetic makeup, their processing has to fine-tuned during
development. Even in adulthood, some plasticity in the processing of localization cues remains.
This plasticity has been studied behaviorally, but very little is known about its neural correlates
and mechanisms. The present research aimed to investigate this plasticity, as well as the encoding
mechanisms of the auditory localization cues, using both behavioral and neuroimaging techniques.
In the first two studies, we shifted the perception of horizontal auditory space using digital earplugs.
We showed that young adults rapidly adapt to a large perceived shift and that adaptation is
accompanied by changes in hemispheric lateralization of auditory cortex activity, as observed
with high-resolution functional MRI. We also confirmed the hypothesis of a hemifield code for
horizontal sound source location representation in the human auditory cortex. In a third study, we
modified the major cue for vertical space perception using silicone earmolds and showed that the
adaptation to this modification was not followed by any aftereffect upon earmolds removal, even at
the very first sound presentation. This result is consistent with the hypothesis of a “many-to-one
mapping” mechanism in which several spectral profiles can become associated with a given spatial
direction. In a fourth study, using functional MRI and taking advantage of the adaptation to
silicone earmolds, we revealed the encoding of sound source elevation in the human auditory
cortex.
Keywords: auditory cortex, spatial hearing, plasticity, fMRI.
vii
TABLE DES MATIÈRES
Résumé
v
Abstract
vii
Table des matières
ix
Liste des figures
xiii
Liste des sigles
xv
CHAPITRE 1 : INTRODUCTION
1.1 Les mécanismes de localisation auditive . . . .
1.1.1 Mécanismes perceptifs . . . . . . . . . .
1.1.2 Physiologie de l’audition spatiale . . . .
1.1.3 Encodage des indices acoustiques . . . .
1.2 Plasticité en localisation auditive . . . . . . . .
1.2.1 Plasticité développementale . . . . . . .
1.2.2 Existence d’une période critique ? . . . .
1.2.3 Importance du contexte comportemental
1.2.4 Implication du cortex auditif . . . . . .
1.2.5 Études chez l’humain . . . . . . . . . . .
1.3 Objectifs et méthodes . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
CHAPITRE 2 : ARTICLE 1 : RELEARNING SOUND LOCALIZATION WITH
DIGITAL EARPLUGS
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Plugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.3 Design and stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
3
3
7
10
15
16
19
21
22
23
31
35
35
36
36
36
36
37
38
38
39
CHAPITRE 3 : ARTICLE 2 : ADAPTATION TO SHIFTED INTERAURAL TIME
DIFFERENCES CHANGES ENCODING OF SOUND LOCATION IN HUMAN AUDITORY CORTEX
41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44
3.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44
3.2.2 Digital earplugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44
3.2.3 Overall procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.4 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.5 Behavioral testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
ix
x
CHAPITRE 0. TABLE DES MATIÈRES
3.3
3.4
3.5
3.6
3.2.6 FMRI data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.7 FMRI data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.8 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1 Behavioral results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2 Neuroimaging Results . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.1 Behavioral recalibration and implications of missing aftereffect . . .
3.4.2 Correlations between horizontal and vertical localization performance
3.4.3 Neural correlates of recalibration . . . . . . . . . . . . . . . . . . . .
3.4.4 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
CHAPITRE 4 : ARTICLE 3 : FAST AND PERSISTENT ADAPTATION TO
NEW SPECTRAL CUES FOR SOUND LOCALIZATION SUGGESTS A MANY-TO-ONE MAPPING MECHANISM
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Earmolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.3 Overall procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.4 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.5 Localization tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.6 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.7 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.8 Binaural recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.9 Directional transfer functions . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1 Relation between VSI (Vertical Spectral Information) and ears free performance
4.3.2 Acoustical effect of the molds . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3 Behavioral effects of the molds . . . . . . . . . . . . . . . . . . . . . . . .
4.3.4 Relation between behavioral effects of the molds and VSI dissimilarity . .
4.3.5 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.6 Aftereffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.7 Persistence tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1 Acoustic factors of behavioral performance . . . . . . . . . . . . . . . . . .
4.4.2 Effect of the molds on horizontal sound localization . . . . . . . . . . . . .
4.4.3 Individual differences in adaptation to modified spectral cues . . . . . . .
4.4.4 Aftereffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.5 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49
50
52
54
54
58
63
64
64
66
67
69
70
70
71
72
74
74
74
74
76
77
78
78
79
80
82
82
83
85
85
86
87
89
90
90
92
93
94
95
xi
CHAPITRE 5 : ARTICLE 4 : THE ENCODING OF SOUND SOURCE ELEVATION IN THE HUMAN AUDITORY CORTEX
97
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
97
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.2 Procedure overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.3 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.4 Detailed procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.5 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.6 Localization tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.7 Training tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.8 FMRI data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.9 FMRI data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.1 Behavioral results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.2 Elevation tuning curves with free ears . . . . . . . . . . . . . . . . . . . . 109
5.3.3 Effect of the molds and adaptation on elevation tuning . . . . . . . . . . . 112
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.2 Behavioral adaptation to modified spectral cues . . . . . . . . . . . . . . . 114
5.4.3 Elevation tuning in auditory cortex . . . . . . . . . . . . . . . . . . . . . . 115
5.4.4 Comparison with horizontal coding . . . . . . . . . . . . . . . . . . . . . . 117
5.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
CHAPITRE 6: DISCUSSION GÉNÉRALE
6.1 Encodage des indices binauraux et plasticité . . . . . . . . . . .
6.2 Encodage des indices spectraux et plasticité . . . . . . . . . . .
6.3 Rapidité d’adaptation, absence d’effet consécutif et persistance
6.4 Variabilité interindividuelle . . . . . . . . . . . . . . . . . . . .
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bibliographie
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
119
119
125
126
129
132
135
LISTE DES FIGURES
1.1
1.2
1.3
1.4
1.5
1.6
Schématisation des indices binauraux . . . . . . . . . . . .
Cône de confusion et fonctions de transfert directionnelles
Voie auditive ascendante . . . . . . . . . . . . . . . . . . .
Modèle de Jeffress . . . . . . . . . . . . . . . . . . . . . .
Le reversing pseudophone de Paul Thomas Young . . . . .
Bouchons d’oreille numériques et moulage en silicone . . .
.
.
.
.
.
.
3
6
9
12
15
32
2.1
2.2
Evolution of P 3’s MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Raw results of P 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
38
39
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
45
46
53
55
56
57
58
59
3.10
3.11
3.12
Earplugs delay and attenuation . . . . . . . . . . . . . . . . . . . . . . . . .
Procedure timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Illustration of the model parameters . . . . . . . . . . . . . . . . . . . . . .
Time course of sound localization performance . . . . . . . . . . . . . . . .
Effect of the digital earplugs on horizontal sound localization performance .
Effect of the digital earplugs on vertical sound localization performance . .
Correlation between azimuth and elevation performance . . . . . . . . . . .
Directional tuning curves . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Observed and modeled distributions of the center of gravity and maximum of
directional tuning curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Distribution of tuning curve center of gravity across auditory cortex . . . .
Sound vs. silence contrasts in both hemispheres and lateralization ratio . . .
Modeled directional tuning curves . . . . . . . . . . . . . . . . . . . . . . .
4.1
4.2
4.3
4.4
4.5
4.6
4.7
Illustration of the acoustic effects of an earmold on the DTFs of one participant
Mean VSI across octave bands . . . . . . . . . . . . . . . . . . . . . . . . .
Mean acoustic effect of an earmold on the DTFs . . . . . . . . . . . . . . .
Effects of the molds on the VSI . . . . . . . . . . . . . . . . . . . . . . . . .
Correlations between behavioral results and acoustical metrics . . . . . . . .
Time course of sound localization performance . . . . . . . . . . . . . . . .
Trial-by-trial localization error in the aftereffect tests . . . . . . . . . . . . .
81
82
83
84
86
88
89
5.1
5.2
5.3
5.4
5.5
5.6
Stimuli locations in the different tasks . . . . . . . . . . . . . . . . . . . . .
Time course of sound localization performance . . . . . . . . . . . . . . . .
Mean elevation tuning curve of all sound-responsive voxels in the right hemisphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Distribution of tuning curve elevation gain across auditory cortex . . . . . .
Behavioral and tuning curve elevation gain . . . . . . . . . . . . . . . . . .
Elevation tuning curve of significant voxels in an elevation effect contrast . .
6.1
Courbes d’accord directionnelles moyennes créées à partir du modèle . . . . 122
xiii
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
60
62
63
65
102
109
110
111
112
113
LISTE DES SIGLES
ADC
Az
BOLD
CN
Analog to Digital Converter / Convertisseur Analogique-Numérique
Azimtuh / Azimut
Blood-Oxygen-Level Dependent / Dépendant du Niveau d’Oxygène Sanguin
Cochlear Nucleus / Noyau Cochléaire
COG
Center of Gravity / Centre de Gravité
DAC
Digital to Analog Converter / Convertisseur Numérique-Analogique
dB HL
dB SPL
Decibel Hearing Level / Décibel Niveau d’Audition
Decibel Sound Pressure Level / Décibel Niveau de Pression Acoustique
DTF
Directional Transfer Function / Fonction de Transfert Directionnelle
DSP
Digital Signal Processor / Processeur de Signal Numérique
EEG
Electroencephalography / Électroencéphalographie
EG
El
fMRI
Elevation Gain / Gain en Élévation
Elevation / Élévation
Functional Magnetic Resonance Imaging /
Imagerie par Résonance Magnétique Fonctionnelle
HRTF
IC
Head-Related Transfer Function / Fonction de Transfert Relative à la Tête
Inferior Colliculus / Colliculus Inférieur
ILD
Interaural Level difference / Différence Interaurale d’Intensité
ITD
Interaural Time difference / Différence Interaurale de Temps
KEMAR
Knowles Electronics Mannequin for Acoustic Research
LED
Light-Emitting Diode / Diode électroluminescente
LSO
Lateral Superior Olive / Olive Supérieure Latérale
MEG
Magnetoencephalography / Magnétoencéphalographie
MGB
Medial Geniculate Nucleus / Corps Genouillé Médian
MNTB
Medial Nucleus of the Trapezoid Body / Noyau Médian du Corps Trapézoide
MSE
Mean Signed Error / Erreur Signée Moyenne
MSO
Medial Superior Olive / Olive Supérieure Médiane
OT
SOC
Optic Tectum / Tectum Optique
Superior Olivary Complex / Complexe Olivaire Supérieur
TR
Repetition Time / Temps de Répétition
VSI
Vertical Spectral Information / Information Spectrale Verticale
xv
CHAPITRE 1
INTRODUCTION
L’ouïe joue un rôle primordial dans le déchiffrage du monde qui nous entoure. Quelques instants
nous suffisent pour analyser les fines variations de pression atmosphérique qui constituent un
événement sonore et en déduire la nature de sa source, sa potentielle dangerosité ou encore sa
provenance. Pouvoir déterminer de manière précise la position d’une source sonore est fondamental
pour bien percevoir et interagir avec notre environnement. La localisation auditive permet en effet
de guider l’attention (Broadbent, 1954 ; Scharf, 1998), d’améliorer la détection, la ségrégation et la
reconnaissance de phénomènes acoustiques divers (Bregman, 1994 ; Yost & Fay, 2007), et pour un
grand nombre d’espèces, c’est un trait sélectif crucial pour la localisation de partenaires sexuels, de
proies ou d’éventuels prédateurs (Masterton & Diamond, 1973). Cette faculté joue également un
rôle de premier plan dans l’intelligibilité et la compréhension de la parole dans un environnement
bruyant (Dirks & Wilson, 1969 ; Hirsh, 1950 ; Kock, 1950 ; MacKeith & Coles, 1971 ; Roman, Wang,
& Brown, 2001), ou lorsqu’il s’agit de prêter attention à un seul interlocuteur quand plusieurs
personnes parlent en même temps (“cocktail party effect”, Bronkhorst, 2000 ; Cherry, 1953 ; Kidd,
Arbogast, Mason, & Gallun, 2005).
Non seulement la localisation auditive est l’une des plus importantes, mais c’est aussi l’une
des facultés les plus complexes du système auditif. Contrairement au système visuel ou somatosensoriel, les récepteurs sensoriels de l’oreille interne ne sont pas organisés topographiquement, mais
tonotopiquement. Le système auditif doit alors décoder le signal acoustique pour en extraire les
indices qui lui permettent de localiser une source sonore (cf. 1.1 Les mécanismes de localisation
auditive). La relation entre ces indices et la position d’une source sonore dépend fortement de
la morphologie de l’auditeur. Par conséquent, les indices de localisation varient d’un individu à
l’autre et sont constamment modifiés pendant la période de développement. Les mécanismes de
traitement de ces indices ne peuvent alors être fixés dès la naissance mais doivent être plastiques.
Tout au long du développement, le système central doit tirer profit de l’expérience sensorielle
1
2
CHAPITRE 1. INTRODUCTION
quotidienne et de l’interaction multimodale, pour améliorer, puis maintenir, ses aptitudes de
localisation auditive. Il a été démontré que cette plasticité, nécessaire afin d’ajuster les mécanismes
de localisation auditive au cours du développement, existe encore à l’âge adulte (cf. 1.2 Plasticité
en localisation auditive). Les limites et le mode opératoire de cette plasticité, ainsi que le rôle
joué par l’expérience sensorielle restent en grande partie indéterminés à ce jour.
Outre l’apport de nouveaux éléments pour la compréhension des mécanismes généraux de la
plasticité du système nerveux central, l’étude de la plasticité du système auditif par l’altération
des indices de localisation auditive est un puissant outil de sondage des mécanismes de traitement
de l’information auditive. Elle peut en effet permettre de révéler des mécanismes neuronaux qui ne
reflètent pas seulement les caractéristiques physiques des stimuli utilisés, mais la perception de ces
stimuli. Ce champ d’études a également de l’importance d’un point de vue clinique. Ses résultats
peuvent indiquer dans quelle mesure et par quels moyens, une ré-acquisition des aptitudes de
localisation auditive est possible suite à un traumatisme auditif ou suite à l’équipement d’appareils
auditifs ou d’implants cochléaires.
Ce chapitre débute par un état de l’art des connaissances psychoacoustiques et neuronales des
mécanismes de localisation auditive, suivi d’une recension des études de la plasticité en localisation
auditive. Il se terminera par l’énoncé des objectifs et des méthodes utilisées pour mener à bien les
différentes études qui composent cette recherche.
1.1. LES MÉCANISMES DE LOCALISATION AUDITIVE
1.1
1.1.1
3
Les mécanismes de localisation auditive
Mécanismes perceptifs
Le système auditif déduit la position d’une source sonore grâce à des indices acoustiques qui
dépendent et sont créés par des propriétés anatomiques du corps humain. Ces indices sont appelés
indices de localisation auditive et sont généralement regroupés en plusieurs classes, à savoir les
indices binauraux, spectraux et dynamiques.
1.1.1.1
Les indices binauraux
Les indices binauraux sont assurés par la présence de deux oreilles, placées de chaque côté du
crâne. La tête produit un effet de diffraction des ondes sonores et crée une ombre acoustique au
niveau de l’oreille la plus éloignée de la source sonore. Par conséquent, lorsqu’une source sonore
ne se trouve pas sur le plan sagittal médian, l’intensité du son qu’elle produit est plus importante
dans une oreille que dans l’autre (voir figure 1.1). Les premières recherches en localisation auditive
ont très vite conclu que cette différence d’intensité procurait un indice de localisation (Steinhauser,
1879 ; Thompson, 1877). Cet indice varie suivant la position d’une source sonore et on parle de
différence interaurale d’intensité (ou ILD1 pour Interaural Level Difference).
Figure 1.1 – Schématisation des indices binauraux.
Dans un souci de cohérence avec les articles de la thèse, ainsi qu’avec la littérature scientifique internationale,
seuls les sigles anglais seront utilisés dans ce texte.
1
4
CHAPITRE 1. INTRODUCTION
Quand la fréquence d’un son diminue, sa longueur d’onde augmente et peut atteindre plusieurs
fois la largeur de la tête. L’ombre acoustique devient alors inexistante et les ILDs sont considérées
comme négligeables pour des fréquences inférieures à environ 1 kHz (Akeroyd, 2006 ; Kuhn,
1987). En dessous de 1.5 kHz, les ILDs sont insuffisantes pour procurer un indice de localisation
exploitable (Middlebrooks & Green, 1991), mais nous arrivons cependant très bien à localiser
les sons de cette gamme de fréquences. Ceci est dû à l’existence d’un deuxième indice binaural,
produit cette fois-ci par la différence de temps qui sépare l’arrivée d’une onde sonore d’une
oreille à l’autre (voir figure 1.1). Cet indice, appelé différence interaurale de temps (ou ITD pour
Interaural Time Difference), est efficace pour des sons basses fréquences et devient ambigu à
partir de fréquences supérieures à environ 1.2 kHz (Middlebrooks & Green, 1991). C’est Lord
Rayleigh (Strutt (Lord Rayleigh), 1907), qui le premier a démontré que les infimes différences
temporelles entre les deux oreilles pouvaient permettre de localiser les sons à basses fréquences.
Cette faculté du système auditif est remarquable quand on considère que la différence temporelle
maximale que produit l’écartement des oreilles de l’être humain est environ 700 µs et que nous
pouvons discriminer des ITDs d’environ 15 µs (Mills, 1958 ; Yost, 1974). La découverte de cette
faculté prouva l’existence de deux mécanismes complémentaires qui permettent au système auditif
humain de localiser respectivement les sons de hautes et basses fréquences. Cette dichotomie
des mécanismes de localisation auditive proposée par Lord Rayleigh est connue sous le nom de
duplex theory of localization. Des études ultérieures ont confirmé cette théorie et montré qu’aux
fréquences intermédiaires des deux mécanismes (entre environ 1 et 2 kHz), les indices sont plus
ambigus et les performances de localisation moindres (Mills, 1958 ; Stevens & Newman, 1936).
Les ITDs peuvent procurer un indice secondaire de localisation pour des sons hautes fréquences
sur la base de leur enveloppe temporelle (Henning, 1974 ; McFadden & Pasanen, 1976). Cette
particularité attribue aux ITDs le rôle de dominant parmi les indices binauraux (Macpherson
& Middlebrooks, 2002). De plus, les ITDs restent constantes en fonction de l’éloignement de la
source sonore de l’auditeur, ce qui n’est pas le cas pour les ILDs. En effet, dans un rayon inférieur
à 1 m, plus la source sonore est proche de l’auditeur, plus les ILDs augmentent, ce qui donne lieu
à une perception biaisée de la position de la source (Brungart & Rabinowitz, 1999).
1.1. LES MÉCANISMES DE LOCALISATION AUDITIVE
5
Les indices binauraux sont de robustes porteurs d’information pour la résolution de l’azimut,
c’est-à-dire la direction angulaire sur le plan horizontal. Cependant, ils sont insuffisants pour
pleinement déterminer la position d’une source sonore, en particulier sur le plan vertical (élévation)
et pour différencier les sons provenant de devant ou de derrière. Différentes positions spatiales,
situées sur la surface d’un cône imaginaire appelé “cône de confusion” (Wallach, 1939), peuvent
en effet produire les mêmes valeurs d’ITD et d’ILD (voir figure 1.2.a). Afin de différencier les
positions qui se trouvent sur ce cône de confusion, une autre classe d’indices est nécessaire, les
indices spectraux.
1.1.1.2
Les indices spectraux
Le relief anatomique du corps humain produit des phénomènes de diffraction des ondes sonores
et ainsi, le torse, la tête et en particulier le pavillon (oreille externe), agissent comme un filtre
spectral des phénomènes acoustiques qui parviennent au canal auditif (Batteau, 1967 ; Gardner,
1973). Pour chaque direction de l’espace auditif, le filtre créé par ces diffractions a une fonction de
transfert unique. L’ensemble des fonctions de transfert relatives à un individu est appelé HRTFs
pour Head-Related Transfer Functions et lorsque les composantes non-directionnelles en sont
soustraites, on parle de fonctions de transfert directionnelles, ou DTFs pour Directional Transfer
Functions. La morphologie des oreilles, de la tête et du corps en général, est propre à chaque
individu et par conséquent les DTFs aussi sont spécifiques à chacun (Middlebrooks, 1999). La
figure 1.2.b–d montre les DTFs de trois individus, pour des positions spatiales placées à ±45° sur
le plan vertical frontal.
Ces diffractions ont pour effet d’amplifier ou diminuer certaines régions du spectre acoustique,
résultant en des fonctions de transfert uniques pour chaque position de l’espace. Les réflexions
au niveau du torse modifient le spectre sonore autour de 2–3 kHz (Algazi, Avendano, & Duda,
2001), alors que le pavillon affecte les plus hautes fréquences, au-delà de 4 kHz (Asano, Suzuki,
& Sone, 1990). Le pavillon est la partie du corps humain qui procure les indices spectraux les
plus robustes. Une occlusion des différentes cavités du pavillon (sans bloquer le canal auditif)
annihile la localisation sur le plan vertical et la différenciation entre les sons provenant de devant
6
CHAPITRE 1. INTRODUCTION
Figure 1.2 – Cône de confusion et fonctions de transfert directionnelles. A) Schématisation du
principe de cône de confusion. B–D) Exemples de DTFs de trois individus différents, pour des positions
spatiales placées à ±45° sur le plan vertical frontal.
ou derrière (Gardner & Gardner, 1973 ; S. R. Oldfield & Parker, 1984a). Langendijk et Bronkhorst
(2002) ont montré que les indices les plus primordiaux pour la localisation sur le plan vertical se
trouvent autour des fréquences 6–12 kHz, alors que les indices importants pour la discrimination
devant-derrière couvrent tout le spectre au-dessus de 4 kHz.
Parce qu’une oreille procure des indices spectraux à elle seule, ces indices ont également été
appelés indices monauraux. Il a cependant été démontré que la localisation monaurale sur le plan
vertical est moins précise que lorsque les informations provenant des deux oreilles sont disponibles
(S. R. Oldfield & Parker, 1986 ; Slattery & Middlebrooks, 1994). Hofman et Van Opstal (2003)
ont proposé que la perception de l’élévation est en partie attribuable à des interactions binaurales
et à la perception de l’azimut. Cette hypothèse a été confirmée par une étude d’adaptation à des
indices spectraux modifiés unilatéralement (M. M. V. Van Wanrooij & Van Opstal, 2005).
1.1.1.3
Les indices dynamiques
En plus des indices binauraux et spectraux, il existe des indices dynamiques qui naissent des
micro-mouvements de la tête de l’auditeur. En 1939, Hans Wallach avait déjà formulé l’hypothèse
selon laquelle ces mouvements de tête aident à résoudre certaines ambiguïtés du cône de confusion.
Cette hypothèse a été vérifiée et il a été montré que les indices dynamiques contribuent à discriminer
les sons provenant de devant ou de derrière (Perrett & Noble, 1997a ; Wightman & Kistler, 1999),
ainsi que sur le plan vertical (Perrett & Noble, 1997b). En l’absence d’indices spectraux, les ITDs
dynamiques procurent un indice saillant pour cette discrimination devant-derrière (Macpherson,
1.1. LES MÉCANISMES DE LOCALISATION AUDITIVE
7
2013). Wightman et Kistler (1999) ont montré que ces indices dynamiques ne sont pertinents que
s’ils sont initiés par l’auditeur lui-même.
1.1.2
1.1.2.1
Physiologie de l’audition spatiale
Structures sous-corticales
Un signal auditif quittant l’oreille interne et la cochlée par le nerf auditif, atteint le noyau
cochléaire (CN, Cochlear Nucleus), où différents types de cellules vont projeter vers différents
noyaux. Les cellules de type IV du noyau cochléaire dorsal sont sensibles à des variations spectrales
à bande étroite (notch-sensitive neurons : Imig, Bibikov, Poirier, & Samson, 2000 ; E. D. Young,
Spirou, Rice, Voigt, & Rees, 1992) et projettent vers les cellules de type O du noyau central du
colliculus inférieur (IC, Inferior Colliculus). Il semblerait que ces groupes de cellules constituent
une première étape du traitement des indices spectraux (Davis, Ramachandran, & May, 2003).
Les cellules touffues du noyau cochléaire ventral quant à elles, déchargent en phase avec le signal
auditif (phase-locking) et projettent vers le complexe supérieur olivaire (SOC, Superior Olivary
Complex ), structure spécialisée dans le traitement des indices binauraux.
Le SOC reçoit des afférences des deux CNs, les afférences controlatérales passant par le corps
trapézoïde. La dichotomie définie au niveau psychophysique entre ITDs et ILDs se retrouve au
niveau neuronal dans le SOC, où deux noyaux, l’olive supérieure médiale (MSO, Medial Superior
Olive) et l’olive supérieure latérale (LSO, Lateral Superior Olive) sont sensibles à chacun de ces
indices respectivement (Brand, Behrend, Marquardt, McAlpine, & Grothe, 2002 ; Irvine, Park, &
McCormick, 2001 ; Masterton, Diamond, Harrison, & Beecher, 1967 ; Park, 1998). Le traitement
des ILDs dans le LSO est possible grâce aux afférences excitatrices qu’il reçoit du CN ipsilatéral
et inhibitrices depuis le noyau médian du corps trapézoïde controlatéral (MNTB, Medial Nucleus
of the Trapezoid Body). Or, l’existence du MNTB chez l’être humain est controversée (Bazwinsky,
Hilbig, Bidmon, & Rübsamen, 2003 ; Hilbig, Beil, Hilbig, Call, & Bidmon, 2009 ; Moore, 2000),
mettant en doute un traitement des ILDs au niveau du LSO, par ailleurs plus petit chez l’humain
8
CHAPITRE 1. INTRODUCTION
que chez d’autres mammifères (Hilbig et al., 2009). De récentes études soutiennent cependant
l’existence de ces structures dans le tronc cérébral humain (Kulesza & Grothe, 2015).
Depuis le SOC, les voies parallèles de traitement des ITDs et ILDs convergent vers le colliculus
inférieur via le lemniscus latéral. L’IC est considéré comme étant une structure centrale du
traitement des indices de localisation, ainsi qu’un centre intégrateur de ces indices (Chase &
Young, 2006). Les neurones de l’IC sont sensibles aux différents indices binauraux ainsi qu’aux
indices monauraux (Casseday & Covey, 1987 ; Casseday, Fremouw, & Covey, 2002 ; Delgutte, Joris,
Litovsky, & Yin, 1995). La dernière étape de la voie ascendante auditive est le corps genouillé
médian du thalamus (MGB, Medial Geniculate Nucleus). Le MGB constitue le point d’entrée de
l’information auditive vers le cortex. La voie auditive ascendante est représentée schématiquement
dans la figure 1.3.
Le colliculus supérieur ne fait pas partie de la voie auditive ascendante, mais reçoit cependant
des projections descendantes du cortex auditif et projette lui-même vers le colliculus inférieur. Une
carte topographique de l’information auditive a été reportée à plusieurs reprises dans les couches
profondes du colliculus supérieur (Gaese & Johnen, 2000 ; King & Hutchings, 1987 ; Middlebrooks
& Knudsen, 1984 ; Palmer & King, 1982).
1.1.2.2
Cortex auditif
Bien qu’une partie importante du traitement des informations auditives pour la localisation
semble prendre place dans des aires sous-corticales, il a été observé que des lésions au niveau du
cortex auditif primaire dégradent les performances de localisation auditive (Jenkins & Merzenich,
1984 ; Jenkins & Masterson, 1982). Les plus importantes dégradations de performances sont
observées lorsque les aires voisines du cortex auditif primaires sont également affectées (Harrington,
Stecker, Macpherson, & Middlebrooks, 2008 ; Malhotra, Stecker, Middlebrooks, & Lomber, 2008 ;
Miller & Recanzone, 2009 ; Nodal et al., 2010). Le traitement de l’espace auditif n’est donc pas
limité au cortex auditif primaire et ces études soulignent l’importance des aires voisines.
Les études de lésions unilatérales ont démontré une importante controlatéralité de la représentation de l’espace auditif au niveau du cortex. Une lésion au niveau du cortex auditif primaire
1.1. LES MÉCANISMES DE LOCALISATION AUDITIVE
9
Figure 1.3 – Voie auditive ascendante. Schéma simplifié de la voie auditive ascendante de la cochlée
au cortex auditif. Les afférences excitatrices sont en noir ou rouge, les afférences inhibitrices sont en gris.
La voie controlatérale vers le cortex auditif gauche est indiquée en rouge.
10
CHAPITRE 1. INTRODUCTION
entraîne en effet des déficits en localisation auditive dans l’hémichamp controlatéral à la lésion,
chez des mammifères comme les primates, les chats ou les furets (Beitel & Kaas, 1993 ; Heffner &
Heffner, 1990 ; Kavanagh & Kelly, 1987). Une inactivation réversible du cortex auditif, par voie
pharmacologique ou cryogénique, entraîne une diminution des aptitudes de localisation sonore chez
l’animal sain, en accord avec les études sur les lésions (Malhotra, Hall, & Lomber, 2004 ; Smith et
al., 2004). Cependant la controlatéralité reportée par les études physiologiques est plus mitigée
dans les études d’imagerie cérébrale chez l’humain, certaines études l’ayant rapportée (Krumbholz,
Schönwiesner, Cramon, et al., 2005 ; Palomäki, Tiitinen, Mäkinen, May, & Alku, 2005 ; Pavani,
Macaluso, Warren, Driver, & Griffiths, 2002 ; Woods et al., 2009), et d’autres non (Brunetti et al.,
2005 ; Jäncke, Wüstenberg, Schulze, & Heinze, 2002 ; Woldorff et al., 1999 ; Zimmer, Lewald, Erb,
& Karnath, 2006).
Une hypothèse de dominance de l’hémisphère droit pour le traitement de l’espace auditif a
également été proposée chez l’humain (Zatorre & Penhune, 2001). Cette hypothèse est corroborée
par des études montrant une forte controlatéralité de l’hémisphère gauche pour le traitement des
ITDs, alors que l’hémisphère gauche répondrait aux deux hémichamps (Kaiser, Lutzenberger,
Preissl, Ackermann, & Birbaumer, 2000 ; Salminen, Tiitinen, Miettinen, Alku, & May, 2010 ;
Schönwiesner, Krumbholz, Rübsamen, Fink, & von Cramon, 2007).
1.1.3
1.1.3.1
Encodage des indices acoustiques
Indices binauraux
La façon dont les ILDs sont encodés au niveau du LSO est facile à concevoir. Le LSO reçoit
des afférences excitatrices ipsilatérales et des afférences inhibitrices controlatérales. La somme des
deux signaux à la sortie du LSO sera donc d’autant plus importante que la source sonore provenait
du côté de l’oreille ipsilatérale (Irvine et al., 2001). Le LSO encode donc les ILDs par un codage
fréquentiel (fréquence de décharge des neurones) et montre une préférence pour l’espace auditif
ipsilatéral. Ce traitement ipsilatéral des ILDs au niveau du tronc cérébral devient controlatéral
1.1. LES MÉCANISMES DE LOCALISATION AUDITIVE
11
dès le mésencéphale étant donné les projections excitatrices majoritairement controlatérales du
LSO vers l’IC (Glendenning, Baker, Hutson, & Masterton, 1992).
L’encodage des ITDs est plus délicat. Le système auditif doit en effet mesurer et comparer
des différences d’arrivée des signaux acoustiques entre les deux oreilles de l’ordre de dizaines
de microsecondes. Lloyd Jeffress proposa en 1948 une théorie d’encodage de fines différences
temporelles, connue sous le nom de Jeffress model (Jeffress, 1948). Ce modèle présuppose l’existence
de neurones qui recevraient des afférences des deux oreilles et qui ne déchargeraient que lorsque ces
afférences sont synchrones. Ces neurones devraient être alignés pour former un réseau et agiraient
comme des détecteurs de coïncidence (coincidence-detector neurones). Le modèle présuppose
également l’existence d’un agencement précis de fibres nerveuses de longueurs différentes qui
formeraient deux groupes de “lignes à retard” opposés (delay-lines). Lorsqu’un son arrive aux deux
oreilles, le modèle fonctionne ainsi : le signal auditif provenant d’une oreille parcourt une ligne à
retard et atteint les différents détecteurs de coïncidence à des intervalles de temps différents ; le
signal provenant de l’autre oreille parcourt la ligne à retard opposée et atteint successivement les
détecteurs de coïncidence dans l’ordre inverse de celui dans lequel le signal de la première oreille
les atteint. Seul le neurone où les deux signaux ont convergé de manière synchrone va décharger
des potentiels d’action. Différentes ITDs sont alors à l’origine de la décharge de différents neurones,
ayant chacun leur ITD préférée. La disposition de ces neurones, les détecteurs de coïncidence,
formerait alors une carte topographique des ITDs et l’encodage des ITDs serait alors spatial (place
code). Le modèle de Jeffress est représenté sur la figure 1.4.
Quarante ans après la proposition de Jeffress, des études chez la chouette effraie ont montré
que les axones des cellules du noyaux magnocellularis2 procurent des lignes à retard et que les
cellules du noyau laminaris3 agissent comme des détecteurs de coïncidence et sont étroitement
sensibles aux ITDs (Carr & Konishi, 1988, 1990). Ces études ainsi que des résultats chez la poule
(Seidl, Rubel, & Harris, 2010), indiquent fortement l’existence d’un modèle proche de celui de
Jeffress chez les oiseaux.
2
3
Homologue aviaire du noyau cochléaire ventral.
Homologue aviaire du MSO.
12
CHAPITRE 1. INTRODUCTION
Figure 1.4 – Modèle de Jeffress. Dans cet exemple, les signaux auditifs correspondant à l’arrivée à
chaque oreille d’un son provenant de 45° vers la droite, se propagent à travers des lignes à retard opposées.
Les signaux se rejoignent de manière synchrone au niveau d’un seul détecteur de coïncidence. De par son
emplacement, la décharge de ce neurone indique alors la provenance du son.
Il a alors longtemps été considéré que le MSO traitait les ITDs selon la vision élégante de
Jeffress. Les résultats d’études chez le mammifère présentent en revanche des incohérences avec ce
modèle et remettent en question l’existence de ce modèle chez l’homme. Les neurones du MSO du
cochon d’inde (McAlpine, Jiang, & Palmer, 2001), du chat (Hancock & Delgutte, 2004), ou encore
de la gerbille (Brand et al., 2002 ; Siveke, Pecka, Seidl, Baudoux, & Grothe, 2006), sont bien
sensibles aux ITDs, mais leur taux de décharge maximal correspond pour la plupart d’entre eux à
des ITDs trop grands pour être produits par l’écartement des oreilles de ces animaux. Aucune carte
topographique des sensibilités aux ITDs n’a été révélée, les neurones répondant majoritairement
de manière équivalente. Ces observations ne satisfaisant pas l’hypothèse d’un codage spatial, il a
été proposé que les ITDs seraient représentées par un codage fréquentiel chez ces espèces. Codage
pour lequel la pente, plutôt que le pic, des courbes d’accords aux ITDs (tuning curves) serait
porteuse d’information (Harper & McAlpine, 2004 ; Lesica, Lingner, & Grothe, 2010). David
McAlpine (2005) propose que la représentation de l’espace auditif chez le mammifère soit alors
effectuée par la comparaison de l’activité neuronale des deux hémisphères, chaque hémisphère
comprenant une population de neurones à sélectivité large et préférant l’espace controlatéral.
Des observations similaires ont été effectuées au niveau du cortex auditif du chat (Middlebrooks,
1.1. LES MÉCANISMES DE LOCALISATION AUDITIVE
13
Xu, Eddins, & Green, 1998 ; Stecker, Harrington, & Middlebrooks, 2005) et du singe (WernerReiss & Groh, 2008 ; Miller & Recanzone, 2009), ce qui supposerait que cette représentation est
également valable au niveau cortical. Ces études montrent également que la controlatéralité n’est
pas évidente au niveau cortical. Ceci implique que la représentation de l’espace auditif n’est pas
forcément effectuée par la comparaison de l’activité neuronale des deux hémisphères, mais plutôt
par celle de deux populations de neurones, préférant chacune un hémichamp, et présentes dans
chaque hémisphère.
Cette hypothèse d’une représentation de l’espace auditif horizontal par deux populations
neuronales à préférences directionnelles opposées (population rate code of two opponent populations) est démontrée chez l’humain par des études en électroencéphalographie (EEG : Magezi
& Krumbholz, 2010) et en magnétoencéphalographie (MEG : Salminen, Tiitinen, Yrttiaho, &
May, 2010 ; Salminen, May, Alku, & Tiitinen, 2009). Le terme “codage par hémichamp” (hemifield
code) est proposé pour caractériser cette représentation (Salminen, Tiitinen, & May, 2012). Les
techniques d’EEG et de MEG ont une résolution spatiale limitée et ne permettent pas d’établir des
courbes d’accord de la sélectivité aux directions spatiales. Ces études n’ont alors pas directement
observé ce codage, mais l’on déduit à partir de paradigmes d’adaptation à un stimulus spécifique.
1.1.3.2
Indices spectraux
Outre l’implication des cellules de type IV du noyau cochléaire dorsal et de leurs projections
vers les cellules de type O de l’IC (Davis et al., 2003), la façon dont sont encodés les indices
spectraux reste inconnue à ce jour. Des études électrophysiologiques chez l’animal ont montré
que des cellules du cortex auditif primaire (Bizley, Nodal, Parsons, & King, 2007 ; Brugge et al.,
1994 ; Mrsic-Flogel, King, & Schnupp, 2005), ainsi que des cellules d’aires corticales plus élevées
(Xu, Furukawa, & Middlebrooks, 1998), étaient sensibles à différentes élévations sonores. Ces
études suggèrent également que les neurones du cortex auditif sont sensibles à plusieurs indices de
localisation à la fois. La façon dont cette sensibilité se manifeste n’a cependant pas été révélée à
ce jour.
1.2. PLASTICITÉ EN LOCALISATION AUDITIVE
15
Figure 1.5 – Le reversing pseudophone de Paul Thomas Young.
1.2
Plasticité en localisation auditive
La question de savoir si les mécanismes de traitement des indices de localisation auditive
pouvaient être modifiés, s’adapter à des contraintes par l’apprentissage de nouvelles associations
entre les informations acoustiques et l’espace auditif, a été posée il y a déjà longtemps. En 1928,
Paul Thomas Young passa 18 jours entre chez lui, son laboratoire et les rues de Berlin, équipé
périodiquement du dispositif représenté figure 1.5, le reversing pseudophone, qui inversait l’arrivée
des signaux acoustiques entre les deux oreilles. Après avoir porté le dispositif plus de 80 heures,
Young n’a reporté aucune adaptation à la manipulation acoustique, sa perception sur le plan
horizontal restant inversée jusqu’à la fin de l’expérience. Ce résultat a été confirmé plus de 70 ans
plus tard par une réplique moderne de l’expérience (Hofman, Vlaming, Termeer, & Van Opstal,
2002). Même si elle peut paraître anecdotique, cette manipulation drastique des informations
acoustiques montre une des limites de la plasticité du système auditif et suggère que certains de
ses mécanismes sont solidement ancrés.
Bien que l’expérience radicale de Young ne fournisse pas de preuve de la plasticité du système
auditif en localisation spatiale, la capacité du cerveau à s’adapter à des indices de localisation
auditive biaisés existe et est nécessaire. Nous avons vu dans la première partie de cette introduction,
que les indices de localisation dépendent fortement de la morphologie de l’auditeur et que le
16
CHAPITRE 1. INTRODUCTION
traitement neuronal de ces indices pour aboutir à la perception d’un espace auditif était complexe.
Les variations anatomiques entre individus rendent impossible une connaissance a priori des
associations entre indices acoustiques et positions spatiales, car elles ne peuvent pas être anticipées
par l’encodage génétique (Rauschecker, 1999). La localisation auditive doit donc être apprise par
l’expérience. De plus, la taille de la tête ainsi que la forme des pavillons sont constamment modifiés
pendant le développement, rendant l’ajustement des mécanismes de localisation obligatoires durant
cette période (Clifton, Gwiazda, Bauer, Clarkson, & Held, 1988 ; Hartley & King, 2010). Une
aptitude naturelle à l’adaptation du traitement des indices de localisation auditive doit alors
exister.
Les bases neurophysiologiques de cette plasticité développementale ont été étudiées chez
l’animal, en particulier la chouette effraie, qui chasse ses proies de nuit grâce à d’exceptionnelles
capacités de localisation auditive ; et le furet, dont la vision limitée l’oblige à se fier principalement
à ses capacités de localisation auditive et son odorat pour se diriger. Ces études ont permis
une meilleure compréhension de la maturation du système auditif et de la construction d’une
représentation de l’espace auditif. L’étude des phénomènes de plasticité en localisation auditive
chez l’animal adulte pose un cadre de réflexion pour l’interprétation des stratégies d’adaptation
chez l’être humain.
1.2.1
Plasticité développementale
Les travaux qui étudient la plasticité développementale observent le comportement et la
maturation du système auditif d’animaux élevés dans des conditions anormales. Deux types de
manipulations ont classiquement été employées pour l’étude du développement de la représentation
de l’espace auditif : la déviation du champ visuel par des prismes ; la perturbation des indices
acoustiques.
1.2.1.1
Déviation du champ visuel
Knudsen et Knudsen (1989) ont élevé des chouettes effraies équipées de prismes qui déplaçaient
leur champ de vision vers la droite. Une fois en âge d’être testées comportementalement, ces
1.2. PLASTICITÉ EN LOCALISATION AUDITIVE
17
chouettes orientaient la tête vers la droite de cibles visuelles ou auditives, d’un angle équivalent
à celui des prismes qu’elles portaient. Les auteurs ont alors conclu que ces animaux avaient
développé une association entre les indices de localisation auditive et leur perception de l’espace
auditif qui concordait avec leur perception de l’espace visuel, bien que celle-ci soit biaisée. Une
fois les prismes retirés, les chouettes orientaient la tête directement vers les cibles visuelles, mais
le décalage persistait avec des stimuli auditifs.
Les corrélats neuronaux de cette plasticité ont été étudiés en comparant les réponses électrophysiologiques pour un groupe de chouettes élevées avec des prismes et un groupe de chouettes
élevées normalement (Brainard & Knudsen, 1993). Les auteurs ont comparé la sélectivité neuronale aux ITDs dans différentes structures sous-corticales : l’IC et le tectum optique4 (OT, Optic
Tectum). L’OT renferme des neurones organisés topographiquement, qui sont à la fois sensibles
aux directions spatiales visuelles et auditives. Une représentation topographique de l’espace auditif
existe dans le noyau externe de l’IC, noyau qui partage des projections ascendantes et descendantes
avec l’OT. Les auteurs ont observé un décalage de la représentation des ITDs à la fois dans l’OT
et dans le noyau externe de l’IC. Par exemple, chez une chouette élevée avec des prismes déviant
le champ visuel de 23° vers la gauche, une cellule qui répondait préférentiellement à un stimulus
visuel à 0° sans prisme, répondait de manière maximale à une ITD de +52 µs, ITD correspondant
à un angle de 20° vers la droite. Ces résultats ont démontré que la représentation neuronale des
indices de localisation auditive est affectée par l’expérience et la perception visuelle. Des résultats
similaires ont été observés au niveau du SC de furets dont l’orientation d’un oeil avait été déviée
de manière chirurgicale au début de leur vie (King, Hutchings, Moore, & Blakemore, 1988).
1.2.1.2
Perturbation des indices acoustiques
La perturbation des indices acoustiques est une manière plus directe d’étudier la plasticité
en localisation auditive. Le moyen de perturber les indices acoustiques le plus simple et le plus
utilisé est l’insertion unilatérale d’un bouchon d’oreille. La manipulation a pour effet d’atténuer le
signal acoustique à l’entrée d’une oreille, et modifie alors les indices binauraux, en particulier le
4
Homologue aviaire du colliculus supérieur.
18
CHAPITRE 1. INTRODUCTION
ILDs. Les ITDs ne sont modifiés que de façon minime. Au niveau comportemental, l’insertion du
bouchon va initialement biaiser la perception auditive du côté de l’oreille libre.
Il a été montré que de jeunes chouettes équipées d’un tel bouchon, pouvaient retrouver leur
capacité à localiser les sons de manière précise après quelques semaines (Knudsen, Esterly, &
Knudsen, 1984). Au cours des premiers tests effectués après avoir retiré le bouchon, les performances
de localisation des chouettes étaient déviées dans la direction opposée de la déviation initialement
induite par le bouchon. Cet effet consécutif (aftereffect) disparut progressivement après quelques
jours passés sans le bouchon.
Mogdans et Knudsen (1992) ont comparé la sélectivité neuronale de l’OT de chouettes élevées
normalement ou avec un bouchon d’oreille. L’étude donna des résultats analogues aux études
utilisant des prismes. Les neurones d’OT ayant un champ récepteur visuel correspondant à une
direction neutre par rapport à la tête de la chouette, répondaient de façon maximale à des ITDs et
ILDs déviés dans la direction de l’oreille libre. Cette déviation de sélectivité neuronale a également
été observée au niveau du noyau externe de l’IC (Mogdans & Knudsen, 1993).
Des études similaires avec des furets ont donné des résultats étonnamment différents. Les furets
eux aussi développent des facultés de localisation auditive normale quand ils sont élevés avec un
bouchon d’oreille, cependant aucun effet consécutif n’est observé après le retrait du bouchon (King,
Parsons, & Moore, 2000). De plus, les enregistrements électrophysiologiques montrent que ces
mêmes furets développent une représentation de l’espace auditif proche de la normale au niveau
de SC. Contrairement aux chouettes, aucun décalage entre les sélectivités auditives et visuelles
n’a été observé.
1.2.1.3
Construction d’une représentation de l’espace auditif
Cet ensemble de résultats met en exergue le rôle de guide que semble jouer la vue pour la
calibration de l’espace auditif. Lorsque l’espace visuel ou auditif est perturbé, la carte de l’espace
auditif semble se développer de façon à être en accord avec la carte de l’espace visuel. Mais la vue
ne semble jamais être calibrée par l’audition. De par son organisation entièrement topographique,
il est probable que la vue procure une vérification fiable de l’exactitude des associations entre
1.2. PLASTICITÉ EN LOCALISATION AUDITIVE
19
indices acoustiques et positions des sources sonores. La vue pourrait ainsi guider la plasticité
quand les univers auditif et visuel sont décalés. Knudsen et Mogdans (1992) ont cependant montré
que la vue ne peut être le seul guide de cette recalibration. Les auteurs ont répété l’expérience
d’occlusion monaurale avec des chouettes auxquelles on avait suturé les paupières. Comme chez les
chouettes pour qui la vue était préservée, les chouettes privées de vision présentaient un décalage
de la sélectivité neuronale des indices binauraux. Bien que ce décalage était moindre que pour les
chouettes qui bénéficiaient de la vue, ce résultat montra que le système auditif avait pu procéder
à des ajustements adaptatifs sans l’influence de cette dernière.
Le fait que les furets élevés avec un bouchon d’oreille développent une carte de l’espace auditif
presque normale dans SC, associé avec leur acquisition de capacités de localisation auditive
normales elles aussi, semble indiquer que cette plasticité n’est pas le résultat d’un changement de
sélectivité neuronale de l’espace auditif comme observé chez la chouette. Des stratégies d’adaptation
différentes, pouvant refléter les différentes stratégies d’encodage des indices acoustiques entre
oiseaux et mammifères (cf. 1.1.3 Encodage des indices acoustiques), semblent exister chez les deux
espèces. L’absence à la fois, d’une modification de la sélectivité neuronale dans SC, et d’un effet
consécutif au niveau comportemental, plaide en faveur d’une hypothèse de repondération des
indices de localisation auditive comme stratégie d’adaptation chez le furet (King et al., 2011).
Cette hypothèse suppose que les indices perturbés seraient mis de côté dans le calcul de la position
des sources sonores, au profit d’indices non altérés. Dans le cas d’une perturbation par l’insertion
d’un bouchon d’oreille, les ITDs constituent l’indice le moins affecté, et une repondération en
faveur de cet indice a été proposée (Kacelnik, Nodal, Parsons, & King, 2006).
1.2.2
Existence d’une période critique ?
La plasticité du cerveau pendant la période de développement est considérable et permet aux
individus de s’adapter à certaines contraintes environnementales qui ne peuvent être prédites par
le patrimoine génétique (Rauschecker, 1999). La période pendant laquelle cette plasticité est à son
apogée est appelée période critique ou période sensible (voir : Hensch, 2004, pour une revue de
littérature). L’existence de cette période critique a été démontrée pour différentes fonctions du
20
CHAPITRE 1. INTRODUCTION
système auditif (Chang & Merzenich, 2003 ; de Villers-Sidani, Chang, Bao, & Merzenich, 2007 ;
Nakahara, Zhang, & Merzenich, 2004), mais l’apprentissage est encore possible après cette période
(Polley, Steinberg, & Merzenich, 2006 ; Recanzone, Schreiner, & Merzenich, 1993). Dans le cadre
de la localisation auditive, les premiers travaux ont fortement suggéré l’existence d’une période
critique. Les résultats d’études plus récentes ont cependant montré que la plasticité en localisation
auditive était aussi possible à l’âge adulte.
L’âge de l’animal au moment où on lui impose des prismes ou un bouchon d’oreille, joue
fortement sur sa capacité d’adaptation à la manipulation ou de récupération post-manipulation.
L’âge auquel on retire le bouchon d’oreille avec lequel des chouettes ont grandi, influe par exemple
sur leur capacité à retrouver des performances normales sans bouchons (Knudsen, Knudsen, &
Esterly, 1984). Plus le bouchon est retiré tard, moins la récupération est rapide, et si l’âge des
chouettes est supérieur à 38–42 semaines au moment du retrait du bouchon, aucune récupération
n’est observée. Ceci suggère que la récupération5 ne peut avoir lieu qu’au cours d’une période
critique, pendant le développement. Il est intéressant de noter que les chouettes qui avaient eu une
certaine expérience de la situation sans bouchon avant qu’un bouchon ne leur fût imposé, étaient
capables de recouvrer des capacités de localisation normales, même si le retrait du bouchon était
effectué après la fin de la période critique. L’effet de l’âge a également été démontré au niveau des
modifications de sélectivité neuronales dans OT chez les chouettes portant des prismes (Knudsen,
1998). L’imposition de prismes à l’âge adulte ne décale pas la sélectivité aux ITDs. Cependant,
si une chouette a grandi avec des prismes, s’est réadaptée à la situation sans prismes et montre
alors une sélectivité neuronale aux ITDs normale, une réinstallation des prismes à l’âge adulte
entraînera à nouveau une modification de la sélectivité neuronale. Ces résultats, ainsi que ceux
de Knudsen, Knudsen et Esterly (1984), suggèrent que pour qu’une adaptation à l’âge adulte
soit possible, il faut que les connexions nécessaires à cette adaptation aient déjà été construites
pendant le développement. Ces études plaident fortement pour l’existence d’une période critique
ou sensible pour la plasticité en localisation auditive, mais des travaux ultérieurs vont montrer
5
Qui peut dans ce cas être considérée comme une réadaptation à la situation sans bouchon.
1.2. PLASTICITÉ EN LOCALISATION AUDITIVE
21
que cette plasticité est possible à l’âge adulte, même sans exposition préalable aux conditions
altérées pendant le développement.
Si plutôt que d’imposer directement des prismes à 23° à la chouette adulte6 , on lui installe
d’abord des prismes à 6° les premières semaines, puis 11° les semaines suivantes, 17°, et enfin 23°,
la chouette s’adapte, et un décalage de sélectivité neuronale comparable à celui observé chez les
jeunes chouettes se produit (Linkenhoker & Knudsen, 2002). L’imposition graduelle de petites
divergences entre les indices acoustiques et visuels permet donc une adaptation à l’âge adulte. Les
auteurs ont également montré qu’après avoir retiré les prismes et laissé le temps aux chouettes
de recouvrer une sélectivité neuronale neutre, les chouettes se réadaptaient rapidement à une
imposition directe de prismes à 23°, et la sélectivité neuronale était à nouveau modifiée. En plus de
montrer que la plasticité à l’âge adulte est possible, cette étude indique donc que les associations
préalablement apprises ne sont pas oubliées et peuvent refaire surface si besoin.
1.2.3
Importance du contexte comportemental
Des études plus récentes ont montré l’importance du contexte comportemental lors de l’adaptation à des indices altérés. Les chouettes qui ont fait l’objet des études recensées précédemment
sont en général gardées captives dans des cages et nourries d’animaux morts7 . Bergan, Ro, Ro et
Knudsen (2005) ont avancé l’idée que forcer les chouettes à utiliser leurs aptitudes de localisation
auditive pour survivre devrait favoriser l’adaptation aux prismes. Ils ont en effet montré que dix
semaines après l’installation de prismes à 17°, des chouettes adultes devant, pour survivre, chasser
des proies vivantes dans la pénombre, présentaient une déviation de la sélectivité neuronale aux
ITDs dans OT cinq fois plus grande que des chouettes qu’on nourrissait de souris mortes. En
outre, l’importance de la déviation corrélait avec les performances de chasse retrouvées pendant la
période d’adaptation.
Tout comme les chouettes, les furets s’adaptent mieux à l’insertion d’un bouchon d’oreille
lorsqu’ils sont jeunes, qu’une fois adultes (King et al., 2000). Mais comme chez la chouette, le
6
7
Prismes d’un “angle d’ouverture” de 23°.
Elles ont toutefois l’occasion de voler de temps en temps dans de grands espaces.
22
CHAPITRE 1. INTRODUCTION
contexte comportemental du furet est important. L’entraînement facilite en effet le processus
d’adaptation. Kacelnik, Nodal, Parsons et King (2006) ont montré une forte corrélation entre
adaptation et fréquence d’entraînements à une tâche de localisation auditive. Ils ont observé
une adaptation beaucoup plus importante et plus rapide chez un groupe entraîné tous les jours,
par rapport à un groupe entraîné une fois tous les six jours, ou un groupe n’ayant pas suivi
d’entraînement. Les auteurs ont également étudié l’adaptation à un bouchon d’oreille pour un
groupe auquel on avait supprimé la vue et ont montré que ce groupe réussissait aussi bien à
s’adapter que les autres. Ce résultat suggère que bien que la vue ait un rôle de guide lorsqu’elle est
présente, d’autres modalités semblent pouvoir procurer un feedback suffisant pour que l’adaptation
puisse se mettre en place.
1.2.4
Implication du cortex auditif
La plasticité et l’implication du cortex auditif dans différents types d’apprentissage perceptif
auditif ont été démontrées à maintes reprises (de Villers-Sidani et al., 2007 ; Nakahara et al., 2004 ;
Polley et al., 2006 ; Recanzone et al., 1993). Nous avons précédemment mentionné l’importance du
cortex auditif pour la perception de l’espace auditif (cf. 1.1.2.2 Cortex auditif), il s’avère crucial
pour sa recalibration. Il a récemment été montré que l’adaptation à une occlusion monaurale
qu’on observe chez le furet adulte sain, est inexistante si le cortex auditif est retiré par ablation
(Nodal et al., 2010). En effet, un furet auquel une partie du cortex auditif a été retirée peut
encore localiser des sons de longue durée, mais sera incapable de les localiser après l’insertion d’un
bouchon d’oreille et plusieurs semaines d’entraînement. Ce constat était identique que la lésion
soit limitée au cortex auditif primaire ou qu’elle touche également les régions voisines.
Le rôle que joue le cortex pour la plasticité en localisation auditive est probablement de guider
la recalibration au niveau sous-cortical. Les projections corticofugales jouent un rôle critique dans
différents types de plasticité auditive (Suga, Xiao, Ma, & Ji, 2002 ; Yan & Suga, 1998), et une
étude récente a montré que l’ablation de ces projections chez le furet empêchait toute adaptation
à une occlusion monaurale (Bajo, Nodal, Moore, & King, 2010).
1.2. PLASTICITÉ EN LOCALISATION AUDITIVE
1.2.5
23
Études chez l’humain
Les études sur les animaux peuvent permettre de faire des inférences sur le modèle humain,
mais il faut garder à l’esprit que les mécanismes auditifs varient d’une espèce à l’autre, rendant
certaines comparaisons ardues. Alors que les études de la plasticité en localisation auditive chez
l’animal n’ont utilisé que des manipulations qui avaient une incidence sur le plan horizontal, les
études chez l’humain ont plus souvent manipulé la perception du plan vertical. Plusieurs études ont
cependant cherché à savoir si l’adulte pouvait s’adapter à des perturbations des indices binauraux.
1.2.5.1
Perturbation des indices binauraux
Le paradigme expérimental d’occlusion monaurale par un bouchon d’oreille utilisé avec l’animal,
l’est également avec l’humain. Il permet de simuler une perte auditive unilatérale, situation qui peut
survenir après un traumatisme acoustique ou physique, après le développement d’un neurinome de
l’acoustique8 , suite à une labyrinthite, l’apparition de la maladie de Menière, etc. . . Il a été montré
que l’insertion d’un bouchon déviait les réponses des participants du côté opposé au bouchon,
et qu’une adaptation modérée est possible lorsque le bouchon est porté continûment pendant
plusieurs jours (Bauer, Matuzsa, Blackmer, & Glucksberg, 1966 ; Florentine, 1976). Lorsque le
protocole de l’étude comprend des sessions d’entraînement discrètes, plutôt que le port continu
du bouchon, l’adaptation est moins nette, voire absente, et semble être spécifique au stimulus
d’entraînement (Butler, 1987 ; McPartland, Culling, & Moore, 1997). Ce constat reflète l’hypothèse
d’importance du contexte comportemental vu chez l’animal, et montre que la plasticité est mieux
observée si les participants ont l’occasion de s’adapter dans des situations naturelles.
Kumpik, Kacelnik et King (2010) ont montré qu’en plus de porter le bouchon continûment,
un entraînement quotidien améliorait les chances d’adaptation. Les auteurs émettent l’hypothèse
que l’adaptation à l’occlusion monaurale est en partie due à une dépendance accrue des indices
spectraux. C’est l’hypothèse de repondération vers des indices plus fiables que nous avons vue
avec le furet (cf. 1.2.1.3 Construction d’une représentation de l’espace auditif et King et al.,
2011). Cette hypothèse est à prendre avec précaution car l’étude comprend certaines limitations
8
Tumeur bénigne du nerf vestibulocochléaire.
24
CHAPITRE 1. INTRODUCTION
importantes. Lors des tests de localisation, la façon dont les participants indiquaient d’où provenait
les sons qui leurs étaient présentés, était de choisir entre 12 haut-parleurs couvrant les 360° du
plan horizontal. Cette méthode ne reflète pas entièrement la perception de l’auditeur puisqu’il
est contraint de choisir entre plusieurs directions imposées. Si un son est entendu entre deux
haut-parleurs, l’auditeur devra donc indiquer le haut-parleur le plus proche de son percept et ne
sera pas libre de pointer la position d’où il a effectivement entendu provenir le son. La résolution
spatiale que procurent les 12 haut-parleurs est seulement de 30°. Cette faible résolution empêche
de détecter des déviations induites par le bouchon d’oreille si elles sont inférieures à 15°. Il semble
que cela ait été le cas, car cette étude ne montre aucun déplacement des réponses des participants
dans la direction opposée à l’oreille dans laquelle est inséré le bouchon, mais seulement une hausse
du nombre d’erreurs de localisation, principalement en matière de confusions entre l’avant et
l’arrière. Les auteurs rapportent en effet que les améliorations de performance observées pendant
la période d’adaptation sont surtout dues à une baisse des confusions entre l’avant et l’arrière.
Comme les indices spectraux permettent la résolution de ce type d’erreurs, les auteurs concluent
que l’adaptation à une occlusion monaurale doit être effectuée par une repondération vers les
indices spectraux. Cependant, comme aucune déviation perceptive sur le plan horizontal n’a pu
être observée au moment de l’insertion du bouchon, il est impossible de savoir si une quelconque
adaptation a eu lieu sur le plan horizontal et si les résultats de l’étude ne reflètent pas seulement
une adaptation à la modification des indices spectraux causée par le bouchon.
D’autres types de modification des indices binauraux ont été expérimentés. Une première
étude (Held, 1955), utilisa un dispositif constitué d’appareils auditifs dont les microphones étaient
déplacés (une rotation sur l’axe vertical), permettant de pivoter artificiellement l’espace auditif sur
le plan horizontal. Les yeux bandés, les participants produisaient d’abord une erreur de 22° quand
ils devaient localiser un haut-parleur cible. Après seulement 7 h passées dans leur environnement
de travail habituel et équipés du dispositif, les participants présentaient une adaptation d’environ
10°.
Trente ans plus tard, Javer et Schwarz (1995) ont utilisé des appareils auditifs dans lesquels une
ligne à retard était ajoutée. Introduire un retard dans une oreille est un moyen efficace de décaler
1.2. PLASTICITÉ EN LOCALISATION AUDITIVE
25
les ITDs. L’ajout du retard provoque une déviation sur le plan horizontal de la direction perçue
par l’auditeur et place les ITDs en contradiction avec les autres indices de localisation auditive,
ainsi qu’avec les informations spatiales des autres modalités sensorielles. Les 12 participants de
cette étude devaient porter ces appareils auditifs du matin au soir sur une période de quatre à six
jours. Trois différentes durées de retard ont été testées, 342, 513 et 684 µs9 . Les performances de
localisation auditive des participants étaient testées avant et après le port des appareils auditifs et
quotidiennement durant la période d’adaptation aux appareils. La tâche de localisation auditive
se déroulait en champ libre et consistait à ajuster la position d’un haut-parleur caché derrière
un rideau, de façon à ce que les sons émis de cet haut-parleur soient perçus exactement en
face de l’auditeur. Juste après insertion des appareils, la déviation perceptive moyenne était
de 30° pour les participants testés avec un retard de 342 µs, de 66° pour ceux dont le retard
était de 513 µs et 68° pour le seul participant testé avec un retard de 684 µs. Ce déplacement
initial s’est en moyenne graduellement estompé durant les 3 à 5 jours d’exposition au retard.
Certains participants montraient de larges progrès après seulement quelques heures. Au dernier
jour d’expérience, d’importantes différences interindividuelles ont été observées quant au degré
d’adaptation, d’une adaptation nulle à complète10 . Les résultats du participant pour lequel un
retard de 684 µs avait été introduit sont difficilement interprétables, car il présentait une déviation
perceptive de 78° du côté opposé à la déviation initiale, lors des dernières tâches de localisation avec
les appareils auditifs. Ceci est probablement dû à un mauvais fonctionnement des appareils auditifs
ou à une confusion quelconque de la part du participant. La capacité d’adaptation à un retard
supérieur à 600 µs reste donc encore à prouver. Immédiatement après avoir retiré les appareils
auditifs, un effet léger consécutif, très faible en comparaison de la déviation perçue initialement
(5° en moyenne, absent chez certains participants) a été mesuré chez quelques participants, effet
consécutif qui disparaissait après quelques minutes. Alors qu’il était largement admis à l’époque de
cette publication que le modèle de Jeffress devait refléter l’encodage des ITDs chez l’humain, les
auteurs ont souligné le fait que leurs résultats étaient en partie incompatibles avec ce modèle. Une
9
10
684 µs correspond à peu près à l’ITD que procure un son provenant d’un angle de 90°.
La durée du retard imposé et le degré d’adaptation n’étaient pas corrélés.
26
CHAPITRE 1. INTRODUCTION
recalibration des ITDs selon le modèle de Jeffress nécessiterait des modifications des dimensions des
axones qui constituent les lignes à retard, ce qui paraît improbable en quelques heures d’adaptation
et incompatible avec l’effet consécutif quasiment absent.
Les deux dernières études que nous venons de présenter (Held, 1955 ; Javer & Schwarz, 1995),
sont les seuls travaux qui avaient pour but de tester une adaptation, dans des situations naturelles
du quotidien, à une modification qui incluait les ITDs. Un décalage des ITDs peut survenir
avec certaines maladies de l’oreille moyenne (Hartley & Moore, 2003 ; Lupo, Koka, Thornton,
& Tollin, 2011), en particulier l’otite séro-muqueuse, qui se caractérise par des épanchements
rétro-tympanique de mucus qui retardent la propagation du signal acoustique. Ce retard cause un
décalage des ITDs pouvant facilement atteindre les 600 µs (Thornton, Chevallier, Koka, Lupo,
& Tollin, 2012). Le décalage des ITDs est également l’un des effets secondaires de l’installation
d’appareils auditifs (Kuk & Korhonen, 2014). Les études de Held (1955), et en particulier Javer et
Schwarz (1995), ont montré que l’adaptation à ce type de perturbation était possible. Cependant,
les protocoles de test de localisation auditive de ces expériences restreignent la position des
sources sonores à la direction droit devant. Ils ne permettent donc pas d’apprécier l’effet de la
modification des ITDs sur l’ensemble du plan horizontal, ni de savoir si l’adaptation est homogène
sur l’ensemble de l’espace auditif. Les tests mis en place dans ces études ne permettent pas
d’émettre des hypothèses sur les stratégies adaptatives employées par le système auditif. On ignore
également si une persistance de l’adaptation existe, c’est-à-dire si l’apprentissage qui a eu lieu
pendant la période d’adaptation est retenu après quelques jours passés sans le dispositif. Une limite
technique de l’étude de Javer et Schwarz (1995), vient du fait que les appareils auditifs n’étaient
pas moulés aux oreilles des participants et ne procuraient donc pas d’atténuation acoustique.
Ceci implique qu’en plus du signal des appareils auditifs comprenant la ligne à retard, le signal
acoustique naturel, sans décalage des ITDs, atteignait également les tympans des participants.
Pour palier ce problème, les auteurs ont cherché à masquer le signal naturel en introduisant un
gain compris entre 5 et 15 dB dans les appareils. La portion de signal acoustique naturel que
pouvait entendre chaque participant était variable et incontrôlable, et a certainement joué sur
l’importante variabilité des résultats.
1.2. PLASTICITÉ EN LOCALISATION AUDITIVE
1.2.5.2
27
Perturbation des indices spectraux
Nous avons vu que les indices spectraux reposent essentiellement sur le filtrage procuré par
la forme des pavillons (cf. 1.1.1.2 Les indices spectraux). Modifier la forme des pavillons crée
donc un nouveau filtrage, et la manipulation va perturber la localisation auditive. Afin de pouvoir
utiliser à nouveau les indices spectraux, le système auditif devra apprendre les associations entre
les nouvelles DTFs et les positions dans l’espace sonore. Une modification progressive des indices
spectraux se produit tout au long de la vie avec l’évolution de la forme de l’oreille (Clifton et
al., 1988), mais peut également survenir brusquement après un accident ou encore l’installation
d’appareils auditifs (Byrne & Noble, 1998).
La première étude de l’adaptation à de nouveaux indices spectraux est celle de Hofman, Van
Riswick et Van Opstal en 1998. Dans cette étude, des moulages en silicone (silicone molds) ont
été placés dans les cavités pavillonnaires de quatre participants11 , qui les ont portés continûment
pendant plusieurs semaines. L’insertion des moulages dégrada considérablement les performances
de localisation des participants sur le plan vertical. Les auteurs ne rapportent pas d’altération
de la performance sur le plan horizontal. Au cours de la période d’adaptation, la dégradation
sur le plan vertical a diminué progressivement, jusqu’à une stabilisation des performances à un
niveau proche de la situation initiale sans moulages. La vitesse d’adaptation était variable entre les
participants, de 19 à 39 jours. À la fin de l’expérience, les aptitudes de localisation des participants
ont été testées immédiatement après qu’ils eurent retiré les moulages et aucun effet consécutif n’a
été observé. La performance des participants lors de ce dernier test était en effet similaire à la
performance initiale. C’est ce résultat qui était le plus stupéfiant. L’apprentissage de nouveaux
indices spectraux n’avait pas remplacé les associations DTFs / espace sonore d’origine. Les auteurs
concluent en faisant un parallèle entre ce type d’adaptation et l’apprentissage d’un nouveau
langage.
Cette étude laisse cependant quelques questions en suspens. Est-ce qu’après à un retour à la
situation normale, sans moulages, les indices spectraux sont retenus par le système auditif ? Est-ce
que le système auditif a besoin de certains indices (visuels, tactiles, dynamiques) pour correctement
11
Les trois auteurs et un sujet naïf.
28
CHAPITRE 1. INTRODUCTION
localiser lors du passage d’une situation à une autre ? C’est-à-dire est-ce que quelques stimulations
sont nécessaires quand les moulages sont retirés, ou bien la performance retourne-t-elle à son
niveau d’origine dès le premier essai ?
Certaines études de la plasticité développementale ont suggéré que la vue jouait un rôle
de guide pour la recalibration de l’espace auditif (cf. 1.2.1 Plasticité développementale). Une
étude récente a analysé l’amplitude et la vitesse d’adaptation à une modification des indices
spectraux, à l’intérieur et en dehors du champ visuel (Carlile & Blackman, 2013). Les auteurs
n’ont observé aucune différence d’adaptation entre ces deux régions de l’espace auditif. Cette
étude, ainsi que la capacité maintes fois prouvée des non-voyants à développer et maintenir des
aptitudes de localisation auditive supérieures à la normale (Doucet et al., 2005 ; Lessard, Paré,
Lepore, & Lassonde, 1998 ; Röder et al., 1999), montrent que les informations visuelles ne sont pas
primordiales pour la recalibration de l’espace auditif. Carlile et Blackman (2013) ont également
examiné la persistance de l’adaptation. Les participants ont réinséré les moulages le temps d’un
test de localisation qui a eu lieu après une semaine passée sans porter les moulages. Les résultats
ont montré qu’environ 70 % de l’adaptation avait été retenue. La semaine passée sans moulages
est courte comparée aux 30 à 60 jours pendant lesquels les moulages étaient portés. Il serait
intéressant de savoir si l’apprentissage peut être retenu pour de plus longues périodes.
Une autre étude du même groupe (Carlile, Balachandar, & Kelly, 2014), a comparé les impacts
de différents types d’entraînement sur l’adaptation à des moulages en silicone. Pendant les 10
jours de port des moulages, les participants effectuaient des sessions d’entraînement quotidiennes
d’une heure chacune. Les participants étaient séparés en quatre groupes en fonction du type
d’entraînement qu’ils suivaient. Le groupe contrôle effectuait uniquement une tâche de localisation
standard dans la pénombre et sans feedback ; un deuxième groupe recevait un feedback visuel
(LED) après chaque réponse de localisation sonore ; pour un troisième groupe, après le feedback
visuel, le son était joué de manière répétée depuis la position d’où il avait été émis avant la
réponse, et l’auditeur devait tourner la tête jusqu’à ce qu’elle soit pointée en direction de la source
sonore ; un dernier groupe suivait un entraînement identique au troisième, mais les lumières de
la pièce étaient allumées, ce qui offrait un cadre visuel de référence. Les résultats ont montré
1.2. PLASTICITÉ EN LOCALISATION AUDITIVE
29
que l’entraînement avec feedback visuel accélérait assez peu le processus d’adaptation, et que les
entraînements dans lesquels une composante sensorimotrice était engagée (troisième et quatrième
groupes) avaient l’impact le plus important sur la quantité et le taux d’adaptation. Ce résultat
confirme ceux d’une étude sur l’apprentissage de nouveaux indices spectraux en environnement
auditif virtuel (Parseihian & Katz, 2012), qui montrait également l’importance de cette composante
sensorimotrice pour l’apprentissage
Des études ont utilisé le paradigme expérimental de modification des indices spectraux afin d’étudier certains mécanismes de localisation auditive (Hofman & Van Opstal, 2003 ; M. M. V. Van Wanrooij & Van Opstal, 2005). Ces études n’ont modifié les indices spectraux que dans une oreille et
ont permis de montrer que la perception de l’élévation était en partie attribuable à des interactions binaurales, à partir desquelles les associations DTFs / espace sonore de chaque oreille sont
pondérées par la perception de l’azimut.
Notons qu’aucune recherche en neuroimagerie n’a étudié les mécanismes de la plasticité en
localisation auditive chez l’humain.
1.3. OBJECTIFS ET MÉTHODES
1.3
31
Objectifs et méthodes
La présente recherche avait pour objectif d’étudier la plasticité du système auditif humain dans
des tâches de localisation sonore, ainsi que les mécanismes d’encodage des indices de localisation
auditive, tant sur le plan comportemental, qu’à travers les corrélats neuronaux du comportement
observé. Dans chacun des quatre articles regroupés dans cette thèse, les mécanismes d’une
potentielle plasticité étaient stimulés par la perturbation d’indices de localisation auditive. Les
deux premiers articles sont consacrés à la modification de l’un des indices binauraux, les ITDs.
Dans les deux derniers articles, ce sont les indices spectraux qui ont été modifiés.
Dans chaque expérience, la perturbation des indices acoustiques était effectuée par un dispositif
intra-auriculaire qui permettait aux participants de s’adapter à la manipulation à travers leurs
activités quotidiennes, en dehors du laboratoire. Bien qu’elle suppose de renoncer au contrôle de
certains paramètres expérimentaux, une exposition continue à la manipulation dans des situations
naturelles est une méthode efficace et écologique qui offre les meilleurs chances d’adaptation
(cf. 1.2.3 Importance du contexte comportemental et 1.2.5 Études chez l’humain).
Pour modifier les ITDs, nous avons été les premiers à utiliser des bouchons d’oreille numériques.
Ces dispositifs sont moulés aux conduits auditifs, permettant ainsi une étanchéité acoustique qui
empêche la majeure partie du signal acoustique naturel d’atteindre le tympan. Le conduit auditif
naturel est alors remplacé par un conduit numérique sous contrôle expérimental. Le moulage sur
mesure procure une atténuation des ondes acoustiques parvenant au tympan de 25 à 50 dB suivant
les fréquences. L’atténuation peut être mesurée alors que les bouchons sont installés dans les oreilles
des participants par une comparaison du signal à l’entrée et à la sortie du bouchon. Les bouchons
comprennent un microphone à l’extérieur, un processeur de signal numérique programmable et
un transducteur (voir figure 1.6.a). Afin de ne pas affecter les ILDs, le gain des bouchons était
identique pour les deux oreilles et il était ajusté de sorte que les bouchons procurent des niveaux
de sonie naturels. La manipulation des ITDs était réalisée par l’ajout d’un retard dans la chaîne
de traitement du signal d’un des deux bouchons. La durée de retard imposée était toujours de
32
CHAPITRE 1. INTRODUCTION
625 µs, soit une durée proche de l’ITD maximale que peut procurer l’écartement de nos deux
oreilles. Cette durée a été choisie afin que l’effet observé soit maximal.
Figure 1.6 – Bouchons d’oreille numériques et moulage en silicone. A) Bouchons d’oreille
numériques. B) Exemple de moulage en silicone inséré dans l’oreille gauche d’un participant.
Dans les deux dernières études, la modification des indices spectraux était effectuée en
employant la même méthode que dans les précédentes études qui ont cherché à modifier cet indice.
Des moulages en silicone n’obstruant pas le canal auditif étaient insérés dans la conque du pavillon
(voir figure 1.6.b).
Tous les tests perceptifs de cette recherche se sont déroulés à l’université de Montréal, dans la
chambre hémi-anéchoïque du laboratoire international de recherche sur le cerveau, la musique et
le son (BRAMS). Un dôme de 80 haut-parleurs était utilisé pour les tests de localisation auditive.
L’utilisation de ce dôme permettait de présenter rapidement des stimuli auditifs provenant de
sources sonores réparties dans l’ensemble de l’espace auditif. Les participants indiquaient leur
perception de la provenance des sons en orientant la tête en direction de la source sonore. Un laser
était attaché à leur tête, leur permettant d’avoir un retour sur la direction pointée. Cette technique
a l’avantage d’être hautement écologique et de permettre une collecte précise et rapide des données
par head-tracking (Carlile, Leong, & Hyams, 1997). Toutes les tâches étaient contrôlées par des
interfaces Tucker-Davis Technologies pilotées par des scripts Matlab tous écrits au cours de la
recherche.
La technique de neuroimagerie choisie au cours de cette recherche pour étudier les corrélats
1.3. OBJECTIFS ET MÉTHODES
33
neuronaux de la perception de l’espace auditif et de sa plasticité était l’imagerie par résonance
magnétique fonctionnelle (fMRI, Functional Magnetic Resonance Imaging). Cette technique noninvasive repose sur l’enregistrement des variations hémodynamiques entraînées par l’activité
cérébrale grâce à la capture du signal BOLD (Blood-Oxygen-Level Dependent). Il a été montré que
le signal BOLD reflète étroitement les potentiels de champs locaux, et dans une certaine mesure
le taux de décharge neuronal, dans le néocortex en général (Ekstrom, 2010), et plus précisément
dans le cortex auditif primaire (Mukamel et al., 2005 ; Nir et al., 2007). L’utilisation de la fMRI
permet une résolution spatiale supérieure aux autres techniques de neuroimagerie non-invasive. La
résolution utilisée lors des études présentées dans cette thèse était de 1.5 × 1.5 × 2.5 mm. Le
volume d’un voxel était alors de 5.625 µl, soit environ cinq fois plus petit que le voxel de 3 mm3
généralement utilisé. L’analyse des données fMRI était effectuée en utilisant FMRISTAT (Worsley
et al., 2002) et des scripts Matlab et reposait principalement sur la construction de courbes
d’accord pour chaque voxel. Les séances en fMRI se sont déroulées à l’Unité de Neuroimagerie
Fonctionnelle (UNF) du Centre de recherche de l’Institut universitaire de gériatrie de Montréal
(CRIUGM) et au Montreal Neurological Institute (MNI).
Il est parfois suggéré que la fMRI n’est pas la technique la plus appropriée pour étudier la
perception auditive en raison du bruit intense émis par le scanner lors des acquisitions d’images.
Cependant la technique de sparse sampling (Hall et al., 1999) permet de s’affranchir de cette
contrainte par l’espacement temporel des acquisitions fonctionnelles et par leur placement à la
fin de longs stimuli auditifs, qui ne sont alors pas masqués par le bruit du scanner. Une seconde
contrainte de la fMRI est l’impossibilité d’utiliser des haut-parleurs pour diffuser les stimuli auditifs
en raison du champ magnétique du scanner. L’utilisation d’écouteurs pour l’investigation de la
perception de la position de sources sonores peut alors paraître problématique, mais l’espace auditif
peut être très fidèlement reproduit par la présentation d’enregistrements binauraux individuels
(Wightman & Kistler, 1989a, 1989b). De tels enregistrements sont effectués depuis le canal auditif
de chaque participant et contiennent alors tous les indices acoustiques propres à la morphologie
du participant. Ces enregistrements permettent également d’extérioriser la perception des stimuli
auditifs.
34
CHAPITRE 1. INTRODUCTION
Le premier article de la thèse est comportemental seulement et avait pour principal objectif de
savoir si l’adaptation à des ITDs décalées de 625 µs était possible. L’utilisation des techniques
susmentionnées a permis d’observer l’effet de la manipulation, ainsi que l’adaptation à cette
manipulation, sur l’ensemble du plan horizontal frontal. Les résultats de l’étude montrent que le
système auditif est capable de rapidement s’adapter à la modification et qu’aucun effet consécutif
à l’adaptation n’est observable.
Le second article rapporte la première tentative d’observation de la plasticité en localisation
auditive chez l’humain par une technique de neuroimagerie fonctionnelle. Sur le plan comportemental cette étude est la continuité de la première. Elle comporte des séances en fMRI qui ont eu
lieu avant et après que la plasticité ait pris place. Ces séances en neuroimagerie nous ont permis
d’identifier des corrélats neuronaux de l’adaptation aux ITDs décalés, ainsi que d’observer certains
mécanismes d’encodage de l’espace acoustique sur le plan horizontal.
Le troisième article décrit une étude comportementale qui était destinée à explorer les mécanismes d’apprentissages de nouveaux indices spectraux, par l’étude de l’absence d’effet consécutif
à une adaptation à des indices spectraux modifiés, et de la persistance de cette adaptation sur
de longues périodes. L’étude a également permis de révéler des corrélations entre différences
interindividuelles comportementales et propriétés acoustiques des indices spectraux.
L’étude en neuroimagerie présentée dans le quatrième article avait pour but d’explorer les
mécanismes encore inconnus de l’encodage de l’élévation sonore dans le cortex auditif. L’adaptation
à des indices spectraux modifiés nous a permis d’étudier les corrélats neuronaux de la perception
de l’élévation, en comparant des données obtenues pour des stimuli physiquement identiques mais
perçus différemment, au cours de séances fMRI qui avaient lieu avant et après l’adaptation.
Au total, cette recherche a nécessité la participation de 72 personnes qui ont chacune été testée
pendant 10 à 15 jours, totalisant plus de 1000 heures de testing, auxquelles il faut ajouter 80
séances d’imagerie par résonance magnétique fonctionnelle.
CHAPITRE 2
ARTICLE 1 : RELEARNING SOUND LOCALIZATION WITH DIGITAL
EARPLUGS
Régis Trapeau and Marc Schönwiesner
Publié dans Canadian Acoustics, 39(3), 116-117.
2.1
Introduction
The auditory system infers the location of sound sources from the processing of different
acoustic cues. As the size of the head and the shape of the ears change over development, the
association between acoustic cues and our expectation of external spatial position can not be
fixed at birth, but has to be plastic. Recent studies on humans have shown that the auditory
system is still capable of such plasticity during adulthood (Hofman et al., 1998; Javer & Schwarz,
1995; M. M. V. Van Wanrooij & Van Opstal, 2005). We aim to explore the principles that govern
an adaptation to shifted Interaural Time Differences (ITDs), one of the two binaural cues for
azimuthal perception with the Interaural Level Differences (ILDs).
We equipped six participants with binaural digital earplugs that allow us to delay the input to
one ear, and thus disrupt the ITDs. Participants were asked to wear the plugs during all waking
hours for 10 days and their ability to localize sounds on the horizontal plane was tested everyday
in free field conditions.
35
36
CHAPITRE 2. RELEARNING SOUND LOCALIZATION WITH DIGITAL EARPLUGS
2.2
2.2.1
Methods
Participants
Two female and four male students aged 26–32 years, with no history of hearing disorder or
neurological disease, participated as paid volunteers, after having given informed consent. The
experimental procedures were approved by the local ethics committee.
2.2.2
Plugs
Each plug contains a programmable signal processor, microphone and transducer and was
fitted to the ears of each participant to create an acoustic seal (attenuation around 25 dB). The
gain of the plugs was adjusted to achieve normal loudness levels. The plugs could be programmed
to delay the incoming sound by a desired duration.
2.2.3
Design and stimuli
Sound localization tests were controlled by a custom-designed Matlab script (r2009a; MathWorks) and stimuli were generated using TDT System 3 (Tucker Davis Technology). The listener
was seated in a hemi-anechoic room, in front of an array of 25 speakers (Orb Audio) mounted
on a 180° arc placed at 90 cm of the listener’s head on the horizontal plane, giving an azimuthal
resolution of 7.5°. In a first sound localization task, the stimulus consisted of 250 ms pulsed-train
(5 bursts of 25 ms) of low-pass filtered pink noise (cf = 2 kHz). This type of stimulus ensures
that the ITDs contribute largely to the azimuthal perception (Middlebrooks & Green, 1991). In a
second sound localization task, the stimulus was identical to the first one, except that its spectrum
was randomized from trial to trial by roving the intensity in 1/6 octave bands by up to 40 dB. The
spectral uncertainty of this stimulus was used to reduce the effectiveness of spectral cues (Kumpik
et al., 2010; Wightman & Kistler, 1997). The overall level of both stimuli was 60 dB(A) at the
position of the listener’s head.
To allow a listener to indicate the perceived location a of stimulus, a laser pointer and a
2.2. METHODS
37
head-tracker (Polhemus Fastrak) were attached on his head, both pointing toward a 0° in azimuth
and elevation direction for a centred head position.
2.2.4
Procedure
During a sound localization run, each location was pseudorandomly presented five times, for a
total of 125 trials per run. No feedback was given. At the beginning of a run, the listener was
asked to seat and lean his neck on a neck rest, so that his head was centred and that the laser
pointed the central speaker (0° in azimuth and elevation). This initial head position was recorded
and the listener had to place his head back in this position (at less than 2 cm and 2°) before
starting each trial. To start a new trial, the listener had to press the button of a stylus. If his
head was correctly placed when the button was pressed, a stimulus was played from one of the
25 speakers. If the head was misplaced no sound was played and the listener was asked to place
his head back to the initial position. After a stimulus was played, the listener had to direct his
head (and the laser pointer) toward the speaker from which he perceived the sound originating
and to press the stylus button to validate his answer. The azimuth of the pointed speaker was
computed from the data given by the head-tracker.
Both sound localization measurements (fixed spectrum and random spectrum tasks) were first
taken without plugs. Secondly, they were repeated with the plugs inserted and no delay added.
Participants were then asked to continue wearing the plugs while engaging in daily activities,
during all waking hours. The sound localization measurements were repeated the next day and
repeated with a delay of 625 µs added in the left plug. At this point of the experiment, no further
modification were made to the plug’s sound processing. These measurements were then repeated
each day during a 10 to 12 days period. At the end of the experiment, measurements were taken
with the plugs still inserted, and repeated immediately after removal of the plugs.
38
CHAPITRE 2. RELEARNING SOUND LOCALIZATION WITH DIGITAL EARPLUGS
2.2.5
Analysis
The metric used to measure the localization accuracy of each listener was the mean signed error
(MSE), a measure of the average discrepancy between listener’s responses and targets locations.
Permutation tests were used to compare the MSEs between different tests of a given listener.
2.3
Results
Insertion of the earplugs without delay affected the localization accuracy of three participants
(results significantly different from those without plugs), even after 24 hours of wearing the plugs.
Additionally, the delay added in the left earplug introduced a much smaller shift in the auditory
space representation of these participants than the others. For these reasons, only the results of
the remaining three participants (P 2, P 3 and P 5) are presented here. For those participants, no
significant difference has been found between the results obtained during the task using a fixed
spectrum stimulus and the task using a random spectrum stimulus. Therefore, only the results of
the fixed spectrum stimulus task are detailed.
Figure 2.1 – Evolution of P3’s MSE. Hour zero corresponds to the measurement immediately after
insertion of the plugs. First measurement was taken without plugs, last one, immediately after removal of
the plugs.
The delay added in the left earplug shifted importantly the responses of P 2, P 3 and P 5
2.4. DISCUSSION AND CONCLUSIONS
39
in the right direction: MSE differences between the measurement without plugs and the first
measurement with plugs and delay = 24.2° (P 2), 29.3° (P 3) and 21.4° (P 5). After 48 hours, MSE
differences between without and with plugs decreased to: −0.95° (P 2), 7.8° (P 3) and 5.4° (P 5).
At the end of the experiment (10 to 12 days of wearing the plugs), the MSEs of P 2, P 3 and P 5
were not significantly different to those measured before the experiment, without plugs. When
measured immediately after removal of the plugs, the MSEs of those participants were still not
significantly different to those measured before the experiment, therefore no aftereffect has been
observed. Figure 2.1 shows the MSE evolution of P 3 during the experiment. Figure 2.2 shows the
raw data of the sound localization tests of P 3 before, during and after wearing of the plugs.
Figure 2.2 – Raw results of P3. A) without plugs. B) immediately after addition of a 625 µs delay in
the left plug. C) on the last day of wearing the plugs. D) immediately after removal of the plugs. Grey
value and radius of the dots increase with the number of similar responses for a specific target.
2.4
Discussion and conclusions
The results show that the human auditory system is capable of a fast adaptation to shifted
ITDs. The finding that the three participants showed no aftereffect in the opposite direction
indicates that the adaptation could be attributed to a reweighting in the processing of the different
spatial cues, more than to a recalibration of the ITDs. When wearing the plugs, the shifted ITDs
40
CHAPITRE 2. RELEARNING SOUND LOCALIZATION WITH DIGITAL EARPLUGS
are in contradiction with the other spatial cues and with visual feedback. A potential strategy
of the auditory system could be to progressively put this biased information aside and to start
relying exclusively on the other cues. As comparable results have been measured when testing
with fixed or random spectrum stimuli, the spectral cues do not seem to play a key role in the
adaptation to altered ITDs. Thus, a reweighting in favour of ILDs may have been the optimal
strategy for sound localization with shifted ITDs. Future experiments will aim to deepen our
understanding of this adaptive process and to determine the cortical sites that are involved in
these processes.
CHAPITRE 3
ARTICLE 2 : ADAPTATION TO SHIFTED INTERAURAL TIME
DIFFERENCES CHANGES ENCODING OF SOUND LOCATION IN HUMAN
AUDITORY CORTEX
Régis Trapeau and Marc Schönwiesner
Publié dans NeuroImage 118, 26-38.
Abstract
The auditory system infers the location of sound sources from the processing of different
acoustic cues. These cues change during development and when assistive hearing devices are worn.
Previous studies have found behavioral recalibration to modified localization cues in human adults,
but very little is known about the neural correlates and mechanisms of this plasticity. We equipped
participants with digital devices, worn in the ear canal that allowed us to delay sound input to
one ear, and thus modify interaural time differences, a major cue for horizontal sound localization.
Participants wore the digital earplugs continuously for nine days while engaged in day-to-day
activities. Daily psychoacoustical testing showed rapid recalibration to the manipulation and
confirmed that adults can adapt to shifted interaural time differences in their daily multisensory
environment. High-resolution functional MRI scans performed before and after recalibration
showed that recalibration was accompanied by changes in hemispheric lateralization of auditory
cortex activity. These changes corresponded to a shift in spatial coding of sound direction
comparable to the observed behavioral recalibration. Fitting the imaging results with a model
of auditory spatial processing also revealed small shifts in voxel-wise spatial tuning within each
hemisphere.
Keywords: auditory cortex, spatial hearing, hemifield code, plasticity, fMRI.
41
42
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
3.1
Introduction
Spatial hearing is an important function of the human auditory system. It guides attention
(Broadbent, 1954; Scharf, 1998) and improves the detection, segregation, and recognition of sounds
(Bregman, 1994; Dirks & Wilson, 1969; Roman et al., 2001). Sound directions are not represented
on the auditory epithelium, but must be computed from monaural and binaural acoustic cues
(Blauert, 1997; Middlebrooks & Green, 1991). The association between acoustic cues and the
perceived location of a sound source depends on the shape of the listener’s ears and head (Carlile,
Martin, & McAnally, 2005; Langendijk & Bronkhorst, 2002; Middlebrooks, 1999). In order to
conserve accurate sound localization when the shape of head and ears change during development,
the auditory system must be able to modify the processing of acoustic cues or their association
with sound locations (Clifton et al., 1988; Hartley & King, 2010). The general ability to recalibrate
spatial hearing recalibration is also crucial to people with hearing aids or cochlear implants (Byrne
& Noble, 1998; Carlile, 2014; Mendonca, 2014). These findings indicate that some natural capacity
for adapting to changes in auditory spatial coding must exist.
Plasticity in spatial hearing has been demonstrated during adulthood in animals (King et al.,
2011; Knudsen, 2002) and humans (Wright & Zhang, 2006). Vertical sound localization can be
regained within weeks after altering spectral cues (Carlile & Blackman, 2013; Hofman et al., 1998;
M. M. V. Van Wanrooij & Van Opstal, 2005). Horizontal sound localization based on interaural
level differences can be regained within a few days after plugging one ear (Bauer et al., 1966;
Kumpik et al., 2010). Only one study (Javer & Schwarz, 1995) manipulated interaural time
differences (ITDs) and demonstrated that humans can adapt to shifted ITDs, but the mechanism
remains unclear. To elucidate it, we shifted ITDs in relation to other auditory cues and vision in
adult humans with programmable earplugs, and monitored participants with behavioral tests and
fMRI while they regained normal sound localization.
Potential mechanisms can be derived from the known mechanisms of sound localization in the
mammalian auditory system. Studies suggest that horizontal sound direction is represented by
a population rate code. In the brainstem of small mammals, ITD tuning curves are wide, span
3.1. INTRODUCTION
43
both hemifields, have maxima outside of the physiological ITD range, and are steepest around
the midline (Brand et al., 2002; Lesica et al., 2010; McAlpine et al., 2001; Siveke et al., 2006).
Data from cats (Middlebrooks et al., 1998; Stecker et al., 2005) and monkeys (Werner-Reiss &
Groh, 2008) also support a population rate code. Studies in humans (Magezi & Krumbholz, 2010;
Salminen, Tiitinen, Yrttiaho, & May, 2010; Salminen et al., 2009) also suggest a rate code of
two neural populations, tuned to each hemifield (hemifield code: Salminen et al., 2012). These
findings are in line with previous studies showing that human auditory cortex is involved in the
processing of auditory space (Brunetti et al., 2005; Deouell, Heller, Malach, D’Esposito, & Knight,
2007; Krumbholz, Schönwiesner, Rübsamen, et al., 2005; Zatorre, Bouffard, Ahad, & Belin, 2002),
and are also in line with results suggesting that a majority of auditory cortical neurons are tuned
to sounds from the contralateral acoustic hemifield (Krumbholz, Schönwiesner, Cramon, et al.,
2005; Palomäki et al., 2005; Pavani et al., 2002; Woods et al., 2009). Ferret studies showed that
the auditory cortex also plays a role in experience-dependent recalibration of spatial hearing (Bajo
et al., 2010; Nodal et al., 2010).
Based on previous findings on recalibration of spatial hearing with modified spatial cues, we
hypothesized that manipulating ITDs would shift auditory spatial perception of our participants
on the horizontal plane, and that this perceptual shift would progressively diminish as participants
adapt. During such an adaptation, the perceived direction of sound sources must change. To
quantify changes in sound direction perception, participants performed regular behavioral sound
localization tests during the adaptation period. Based on the hemifield code and the previously
observed preference for contralateral sounds, we hypothesized that behavioral adaptation would
be accompanied by changes in the activation balance of the left and right auditory cortex. To test
for such changes in hemispheric lateralization, we measured the amplitude and extent of fMRI
responses in the left and right auditory cortex. We also aimed to determine whether adaptation
was accompanied by detectable changes in directional tuning in the human auditory cortex. To
characterize such changes in tuning, we computed high-resolution voxel-wise directional tuning
curves before and after adaptation and fitted a computational model of sound direction coding to
these curves.
44
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
3.2
3.2.1
Materials and Methods
Participants
Twenty volunteers took part in the behavioral experiment after having provided informed
consent. Six of them did not complete the experiment due to various reasons: three participants’
earplugs stopped working during the experiment; two participants preferred to drop out of the
experiment before the end; finally, during the scanning of one participant, the DSP device used for
stimulus presentation blew a fuse. The 14 remaining participants (eight males, aged between 22
and 32 years) were right-handed (self-reported), had no history of hearing disorder or neurological
disease, and had normal or corrected-to-normal vision. None of the participants had past or
current psychiatric diseases, 7 out of 14 played an instrument (5/10 of the fMRI participants),
but none was a professional musician. Participants had hearing thresholds of 15 dB HL or lower,
for octave frequencies between 0.125 and 8 kHz. They had unblocked ear canals, as determined
by a non-diagnostic otoscopy. Two participants experienced consistent front-back confusion when
wearing the earplugs. We could not obtain sound localization measurements from these participants
and thus excluded them from further analysis. Ten of the remaining twelve participants also took
part in neuroimaging sessions. The experimental procedures conformed to the World Medical
Association’s Declaration of Helsinki and were approved by the local ethics committee.
3.2.2
Digital earplugs
We used programmable earplugs (Schönwiesner, Voix, & Pango, 2009), based on an in-ear
technology platform (Sonomax, Montreal, QC, Canada). Silicon plugs were custom-modeled to
each participant’s ear canals, bilaterally. We measured the attenuation provided by the earplugs
with a dual-microphone set-up, one inside the ear canal, one outside (Voix & Laville, 2009).
We then equipped each earplug with a miniaturized microphone, transducer, and digital signal
processor (Voyager, Sound Design Technologies, Burlington, ON, Canada) featuring one audio
input (32 kHz, 20 bit ADC), one amplified audio output (16 kHz, 20 bit DAC) and a specialized
audio processing unit with a 2.048 MHz clock rate. The processing lag of each electronic insert
3.2. MATERIALS AND METHODS
45
was around 600 µs. Such a delay, when applied simultaneously to both ears, is too short to
create perceivable audio-visual disparities (Lewald & Guski, 2003). When turned off, the earplugs
provided an attenuation between ∼ 25 dB at and below 1 kHz and ∼ 45 dB at 8 kHz. The overall
gain, transfer function, and delay of each earplug, were controlled by a custom-made software
and checked with a KEMAR manikin. The gain of the earplugs was adjusted to achieve normal
loudness levels and a digital filter was used to flatten the transducer’s frequency transfer function.
Figure 3.1 shows an example of the delay and attenuation that the earplugs provided.
Figure 3.1 – Earplugs delay and attenuation. Example of recordings from one ear of a KEMAR
mannequin of a 4 ms chirp stimulus presented from a loudspeaker placed in front of the mannequin’s
head. The same stimulus was recorded when the ear was unobstructed (“free”); with an earplug fitted to
one ear of the KEMAR mannequin, inserted but switched off (i.e. full attenuation, “plug off”); with the
earplug switched on, but no delay added (“no delay”), the constant AD-DA delay of the DSP is visible
(grey arrow); with the earplug switched on and time delay of 625 µs added (black arrow, “delay on”).
3.2.3
Overall procedure
Participants wore the earplugs initially for two days without any modification of interaural
time differences (day −2 to day 0, Figure 3.2). During this time, participants habituated to the
earplugs, and we verified that the earplugs themselves (without delay) did not affect horizontal
localization performance. A time delay of 625 µs was then added to the signal processing chain of
the left earplug for the next seven days (days 0 to day 7, Figure 3.2). Participants were informed
that the earplugs would “slightly modify their sound perception”, but they did not know the
nature nor the effects of this modification. Participants were asked to wear the earplugs during all
46
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
waking hours, but to remove them when sleeping or when they might be exposed to water. We
tested participants’ free-field sound localization performance each day; starting with an initial
session before they were equipped with earplugs (day −2, Figure 3.2), and finishing with a session
immediately after the earplugs were removed at the end of the experiment (day 7, Figure 3.2).
Figure 3.2 – Procedure timeline. During their first visit (day −4), participants were fitted with a
pair of earplugs (not worn until day −2), completed a training session, and binaural recordings were
taken. The first fMRI session always took place before the earplugs were worn (day −3). On day −2,
participants performed two free-field localization tasks: one without earplugs and one with earplugs but
without ITD modification. The latter was repeated on day 0, and then the delay was added to the left
earplug. Participants immediately performed another free-field task with modified ITDs, and each day
from day 1 to day 5. The second fMRI session took place on day 6. Day 7 was the last day with earplugs.
Participants performed two free-field tasks, one with the earplugs, and immediately afterwards one without.
A subset of participants also performed an additional closed-field sound localization task that determined
their perceived midline with the fMRI stimuli, one day before each fMRI session (day −4 and day 5).
A subset of 10 participants underwent two identical sessions of fMRI scanning; the first session
before the earplugs were worn (day −3, Figure 3.2), and the second session one day before removing
the earplugs (day 6, Figure 3.2). To ensure that a shift in spatial hearing can be observed with the
stimuli presented in the MRI scanner (see below), six of those participants performed an additional
closed-field sound localization task that determined their perceived midline of the stimuli, one day
before each fMRI session (day −4 and day 5, Figure 3.2).
To minimize procedural learning and stress during the experiment, participants completed a
training session to familiarize themselves with all equipment and tasks (day −4, Figure 3.2).
3.2.4
Stimuli
The stimuli in the free-field sound localization task were 225 ms long trains of pulsed pink
noise (5 bursts of 25 ms). The noise was digitally low-pass filtered with a cut-off frequency of
3.2. MATERIALS AND METHODS
47
2 kHz using a 2nd order butterworth filter (12 dB/octave roll-off) to ensure that azimuthal sound
direction is mainly conveyed by ITDs (Macpherson & Middlebrooks, 2002; Middlebrooks & Green,
1991). However, spectral cues and ILDs in the high frequencies are still usable at the resulting
attenuations (−15 dB at 4 kHz, −30 dB at 8 kHz). The stimulus thus contained all localization
cues to reflect participants’ auditory input in their daily environments while wearing the earplugs.
The overall level of the stimuli was 60 dB SPL at the position of the participant’s head. In
order to minimize location cues caused by differences in loudspeaker transfer functions, we used a
Brüel & Kjær 1/2-inch probe microphone mounted on a robotic arm to measure these functions
and designed inverse finite impulse response filters to equalize amplitude and frequency responses
across loudspeakers.
In each trial during fMRI scanning, participants listened to an individual binaural recording
of a 4 s long pulsed pink noise (same parameters as in the free-field task), presented from one
of 17 different horizontal directions (−60° to +60° azimuth, 0° elevation). Because the digital
earplugs were not MR-compatible, the binaural recordings were obtained from the microphones
contained in the earplugs, and thus captured the participants head–related transfer functions while
wearing the earplugs. Note that these recordings contained all localization cues, ILDs included.
To simulate the ITD shift applied by delaying the left earplug, the left channel of the individual
recording was delayed by 625 µs. These binaural recordings, truncated at 225 ms and including
the 625 µs delay in the left channel, were also used in a closed-field sound localization task (see
below).
Sound localization tests, binaural recordings, and stimulus presentations during fMRI sessions
were controlled with custom Matlab scripts (Mathworks, Natick, MA, USA). Stimuli and recordings
were generated and processed digitally (97.7 kHz sampling rate, 24 bit amplitude resolution) using
TDT System 3 hardware (Tucker Davis Technologies, Alachua, FL, USA). The high sampling rate
enabled us to reproduce microsecond ITDs without waveform interpolation.
48
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
3.2.5
Behavioral testing
Behavioral testing was conducted in a hemi-anechoic room. Participants were seated on a
comfortable chair with a neckrest, located in the centre of a spherical array of loudspeakers (Orb
Audio, New York, NY, USA) with a diameter of 1.8 m. An acoustically transparent black curtain
was placed in front of the loudspeakers to avoid visual capture. The curtain also blocked the view
of the surrounding space. Only a small label indicating the central location (0° in azimuth and
elevation) was visible on the curtain. A laser pointer and an electromagnetic head-tracking sensor
(Polhemus Fastrak, Colchester, VT, USA) were attached to a headband worn by the participant.
The laser light reflected from the curtain served as visual feedback for the head position. Real-time
head position and orientation were used to calculate azimuth and elevation of indicated directions.
3.2.5.1
Free-field sound localization task
Thirteen loudspeakers were used in the free-field sound localization task, covering a circle arc
between −45° to +45° on the horizontal plane. The azimuthal angle between adjacent speakers
was 7.5°. A subset of seven participants was tested with 14 additional loudspeaker, placed at
elevations between −22.5° and +22.5°, 6 on the azimuthal midline and 8 at azimuths of ±22.5° and
±45°. Sound directions were presented in a pseudorandom order designed to minimize adaptation
and assimilation (Cross, 1973), and were repeated five times during a session. After each sound
presentation, participants indicated the perceived direction by turning their head towards the
sound source and pressing a button on a hand-held button box. No feedback was given. At the
beginning of a run, the participant was asked to sit and lean his neck on a neck rest, so that his
head was centered in the loudspeaker arch and the head-mounted laser pointed at the central
location. This initial head position was recorded and the participant had to return to this position
with a tolerance of 2 cm in location and 2° in head angle before starting a trial. If the head
was correctly placed when the button was pressed, a stimulus was played from one of the tested
speakers. If the head was misplaced, a brief warning pure tone was played from a speaker located
above the participant’s head (Az: 0°, El: 82.5°). Horizontal localization accuracy was quantified
3.2. MATERIALS AND METHODS
49
as mean signed error (MSE), the average discrepancy between perceived and physical locations
(Hartmann, 1983). Vertical localization accuracy was quantified as elevation gain (EG), the slope
of the linear regression of perceived versus physical elevations (Hofman et al., 1998). A perfect
localization run gives an EG of 1, while random elevation responses results in zero EG.
3.2.5.2
Closed-field sound localization task
A three-alternative forced-choice staircase procedure was used to measure the perceived midline
of our participants. We presented individual binaural recordings from different horizontal locations
(see 3.2.4 Stimuli) via Beyerdynamic DT 990 Pro open headphones (Beyerdynamic, Farmingdale,
NY, USA). Participants indicated whether they perceived each stimulus left, right, or at the
midline by turning the head in the respective direction. The task stopped after 10 “straight ahead”
responses, the average azimuth of which served as an estimate of the perceived midline. Because
the left channel of the binaural recordings was shifted by 625 µs, initial perceived midlines were
also shifted away from the physical midline.
For behavioral measures, standard error was obtained by bootstrapping the data 10000 times.
3.2.6
3.2.6.1
FMRI data acquisition
MRI hardware and imaging
Functional imaging was performed on a 3 Tesla MRI scanner (Magnetom TIM Trio, Siemens
Healthcare, Erlangen, Germany), equipped with a 12 channel matrix head-coil (Siemens Healthcare,
Erlangen, Germany), using an echo-planar imaging sequence and sparse sampling (Hall et al.,
1999) to minimize the effect of scanner noise artifacts (gradient echo; repetition time (TR) = 8.4 s,
acquisition time = 1 s, echo time = 36 ms; flip angle = 90°). Each functional volume comprised
13 slices with an in-plane resolution of 1.5 × 1.5 mm and a thickness of 2.5 mm (field of view = 192
mm). The slices were oriented parallel to the average angle of left and right lateral sulci (measured
on the structural scan) to fully cover the superior temporal plane in both hemispheres. As a result,
the functional volumes included Heschl’s gyrus, planum temporale, planum polare, and the superior
50
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
temporal gyrus and sulcus. For each participant, a standard whole-brain T1-weighted structural
scan (magnetization-prepared rapid gradient echo sequence) was obtained with a resolution of
1 mm3 for session one and 2 mm3 for session two.
3.2.6.2
Procedure
Because the earplugs were not MR-compatible, participants removed the earplugs just before
entering the scanner room for the second session (the first session was conducted before earplugs
were worn). During the fMRI measurements, the participants listened to the sound stimuli
delivered through MR Confon Optime 1 headphones (MR Confon, Magdeburg, Germany), while
watching a silent nature documentary. Participants were instructed to be mindful of the sound
stimulation, but no task was performed in the scanner. Upon leaving the scanner room, the
participants immediately reinserted the earplugs. Each session was divided into two runs of
152 acquisitions. Each acquisition was directly preceded by either a 4 s long stimulus (positioned
in the TR of 8.4 s so that the maximum response is measured by the subsequent volume acquisition)
or silence. Each of the 17 sound directions was presented 16 times, interleaved with 32 silent
trials in total. Note that the stimuli were ITD-shifted by 625 µs in both sessions. Spatial stimuli
and silent trials were presented in a pseudorandom order, so that the angular difference between
any two subsequent stimuli was greater than 37.5° and silent trials were not presented in direct
succession. Stimulus sequences in both sessions were identical.
3.2.7
FMRI data analysis
The functional data were corrected for head motion by realigning each volume to the third volume of each run and were spatially smoothed with a 3 mm full-width half-maximum 3-dimensional
Gaussian kernel. Each run was then linearly coregistered to the structural scan of the first session.
Preprocessing was done using the MINC software package (McConnel Brain Imaging Center,
Montreal Neurological Institute, Montreal, Canada).
The analysis of the functional data was performed using fMRISTAT (Worsley et al., 2002)
and custom MATLAB scripts. We used general linear models to estimate voxel-wise effects and
3.2. MATERIALS AND METHODS
51
t-values for contrasts of every sound direction versus the silent baseline. To increase signal-tonoise ratio, we combined any three adjacent directions into one condition, which resulted in
48 repetitions per condition. The combination of all sound directions formed a sound versus
silence condition. T-maps were thresholded at p < 0.05, corrected for multiple comparisons
using Gaussian Random Field Theory (Worsley et al., 1996). To assess the lateralization of
the fMRI activation, we computed the normalized (across participants) number of significantly
active voxels and the normalized activation strength (in percentage BOLD signal change), in each
hemisphere for each condition. We calculated these measures independently for each hemisphere
and computed lateralization ratios (left hemisphere / right hemisphere). Statistical analyses on
these ratios were achieved using a two-way analysis of variance for repeated measures. For this
analysis, we compensated for the partial dependence created by combining adjacent directions
into one condition, by reducing the effective degrees of freedom for the factor “direction” from 15
to a conservative value of 7 (8 effectively independent directions − 1).
We computed voxel-wise directional tuning curves by plotting the response size in each
condition for voxels that showed consistent tuning. We calculated the Pearson correlation between
tuning curves extracted independently from the first and the second run of each session for
voxels that responded significantly to at least one sound condition and then discarded voxels
with correlation with a p-values higher than 0.1 and negative r-values. From these tuning curves
we determined voxel-wise direction preference by two methods: a) by finding the direction that
evoked the maximal response in a given voxel (MAX), and b) by computing the centre-of-gravity
(COG) of the voxel tuning curve. We plotted the distributions of tuning preference from each
of these methods and for each participant, hemisphere, and session. These distributions were
normalized and averaged across participants.
For all neuroimaging data averaged across participants, standard error was obtained by
bootstrapping the data 10000 times, using each participant’s mean response.
52
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
3.2.8
Modeling
To aid the interpretation of the fMRI results, we constructed a model of auditory spatial
processing expressed in terms of single-neuron spatial tuning curves. Depending on the values of
its parameters, this model could either reflect the place code theory, the hemifield code theory, or
a mix of both. We performed the same computations on the model data as on the fMRI data and
used a genetic algorithm to find the parameters’ values that minimized the difference between the
model and the fMRI data. All parameters were under genetic algorithm control and their ranges
were fixed as described below.
3.2.8.1
Model description
The model and parameter ranges were inspired by the models proposed by Salminen et al.
(2009). Our model consisted of 10000 sound sensitive neurons distributed in both hemispheres.
These neurons could be of 3 types: noise neurons, hemifield code neurons, and place code neurons.
Noise neurons had random tuning curves with random overall amplitudes ranging between 0 and 1.
The tuning curves of the hemifield code and place code neurons were modeled as Gaussians
with peak amplitude of 1, and with means and standard deviations that depended on several
parameters: the mean preferred azimuth of the hemifield code populations (hemifield population
center, ranging from 45° to 135°); the jitter of the preferred azimuth across neurons (hemifield
population span, from 3° to 40°); the standard deviation of the Gaussians that characterized
the hemifield population tuning curves (hemifield population σ, from 32° to 96°); and the nonuniformity of the tuning width of place code neurons (place code non-uniformity, from 0 [uniform σ
of 22.5°] to 1 [σ increased linearly from 1.1° at 0° azimuth to 87° at 180° azimuth]). Figure 3.3
illustrates how these parameters determine the shape and distribution of the tuning curves.
The proportion of noise neurons was set by the noise ratio parameter. The proportion of
hemifield code neurons among the non-noise neurons was set by the hemifield code ratio parameter.
Additional parameters were the proportion of contralaterally tuned neurons in the hemifield
3.2. MATERIALS AND METHODS
53
Figure 3.3 – Illustration of the model parameters. A) Tuning curves of hemifield code neurons in
the left hemisphere. Each curve shows the level of one model neuron as a function of sound direction.
In this example, the hemifield population contralaterality was set to 90 %. Consequently, most of the
neurons are tuned to the right hemifield. The hemifield population center controls the direction at which
the tuning curves are centered. Note that this value is always opposite for left-tuned and right-tuned
populations, making their location symmetrical with respect to the midline. The hemifield population span
is the jitter of the preferred azimuth across neurons. The hemifield population σ is the standard deviation
of the Gaussians that characterize the hemifield population tuning curves. The shift parameter shifts the
azimuthal stimulus locations at the input of the model and affects all types of neurons. B) Tuning curves
of place code neurons with a place code non-uniformity set to 0 (uniform σ of 22.5°). C) Tuning curves of
place code neurons with a place code non-uniformity set to 0.65 (σ increases linearly from 9° at 0° azimuth
to 64° at a 180° azimuth).
population (hemifield population contralaterality), and a parameter that would shift the azimuthal
stimulus locations at the input of the model (shift).
3.2.8.2
Genetic algorithm
To find the parameter set that minimizes the differences between the model output and the
observed fMRI data, a genetic algorithm was run for each session separately, on a population
of 1000 candidate solutions (i.e. sets of parameters). Each candidate solution was created by
randomly setting parameters to values within the ranges given above. For each generation, a set
of solutions was selected by a mix of elitist strategy (Deb, 2001) and fitness proportionate method
(Holland, 1975) to create a new population of candidate solutions using a uniform crossover
54
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
method (Syswerda, 1989). The probability of a mutation to occur during the creation of a new
generation was set to 1 %.
The fitness of candidate solutions was evaluated by comparing the resulting model output with
the observed fMRI data. For each evaluation, the modeled neurons were randomly distributed
between 500 virtual voxels (10 to 30 neurons per voxel). The proportion of voxels in each virtual
hemisphere was set to the average proportion of significantly active voxels in each hemisphere
in the observed data. Normalized distributions of preferred directions were then computed from
these virtual voxels in the same way as from the fMRI data and compared to the observed data.
The fitness of a solution was computed as the mean likelihood of the model’s preferred direction
distribution (COG and MAX, see 3.2.7 FMRI data analysis) given the bootstrap distribution
(10000 repetitions) of the observed preferred direction at each spatial condition. Due to the noise
neurons, and because neurons were randomly distributed across virtual voxels, the fitness score
varied slightly between evaluations of the same candidate solution. We therefore averaged fitness
scores across four evaluations of a solution. The genetic algorithm terminated when the mean
fitness of the current population of solutions reached an asymptote. To minimize the probability
of converging in local maxima, we repeated this process 50 times with different initial parameters.
3.3
3.3.1
Results
Behavioral results
We used digital earplugs to modify ITD for several days. The majority of participants adapted
within 1 or 2 days to the modified ITDs. Participants showed no aftereffect upon removal of the
earplugs, and retained the capacity to localize sounds with shifted ITDs for several days after
earplug removal. The average time courses of the MSE and EG across participants are shown in
figure 3.4.
The first free-field sound localization test, without earplugs, showed that the participants had
typical localization accuracy with horizontal localization errors close to zero (MSE = −0.07° ± 0.28
[mean ± SE], Figure 3.5a), and high elevation gains (EG = 0.78 ± 0.06, Figure 3.6a). When
3.3. RESULTS
55
Figure 3.4 – Time course of sound localization performance. A) Time course of the mean signed
error on the horizontal plane (n = 12). Participants errors were close to zero when tested without earplugs.
The insertion of the earplugs without ITD shift did not shift their responses. The addition of the 625 µs
delay in the left earplug shifted perceived sound directions by ∼ 25° to the right. This shift diminished
quickly to about 10° during the first two days, before plateauing for the next five days. After earplug
removal, the average accuracy returned immediately back to baseline. B) Time course of the elevation
gain (n = 7). Participants had high elevation gains without earplugs (∼ 0.8). The insertion of the
earplugs largely disrupted their elevation perception, decreasing the elevation gain almost to 0. Although
participants showed a slight recalibration on the vertical plane, the elevation gain remained below 0.2.
After earplug removal, the average elevation gain returned immediately back to baseline. White circles
indicate performance without earplugs; grey circles indicate performance with earplugs but without ITD
shift; black circles indicate performance with earplugs and shifted ITDs. Error bars indicate standard
errors obtained by bootstrapping.
the participants wore the earplugs without additional delay, the horizontal localization accuracy
remained unshifted (MSE = −0.74° ± 0.99, Figure 3.4a), but the azimuthal variance in their
responses increased significantly (mean standard deviation without earplugs 3.78°, against 8.52°
with earplugs; one-tailed permutation test: p < 0.01). With the earplugs, participants initially
experienced an almost complete loss of elevation perception (EG = 0.09 ± 0.04, Figure 3.4b).
The addition of the delay in the left earplug of each participant shifted the perceived sound
directions to the right (MSE = −23.86° ± 2.69, Figure 3.5b) and tended to affect the elevation
gain (from EG = 0.18 ± 0.1 to EG = −0.02 ± 0.08, Figures 3.4b and 3.6b). After only 24 h,
the perceptual horizontal shift of sound directions had diminished to about half of its initial
56
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
value (MSE = −12.97° ± 3.32, Figure 3.4a). After 48 h, the average localization accuracy across
participants reaches a stable level of approximately −10° in MSE and 0.2 in EG. Nonetheless, we
observed individual differences, especially on the horizontal plane. The majority of the participants
(8 of 12) regained close-to-normal horizontal localization performance (MSE = −3.87° ± 0.40)
during the last day of testing. The remaining four participants did not show a consistent
improvement (MSE = −22.39° ± 4.17, on the last test with earplugs).
Figure 3.5 – Effect of the digital earplugs on horizontal sound localization performance. Each
dot represents the average response of a participant at a specific target location. Grey values differentiate
participants (n = 12). Perfect responses would fall on the back lines. A linear fit of the actual responses
is shown by the grey lines. Positive angles are in the right hemifield. A) Before inserting the earplugs,
all participants showed close-to-perfect horizontal sound localization accuracy. B) The insertion of the
earplugs with delay in the left channel shifted the responses of the participants to the right (upwards in the
plot). C) This perceptual shift decreased significantly after seven days with the plugs on. D) Performance
was indistinguishable from baseline immediately after removal of the earplugs.
After the last localization test with the earplugs (Figures 3.5c and 3.6c), the participants
removed the earplugs and immediately repeated the test. Localization accuracy in this final test was indistinguishable from baseline accuracy, i.e. there was no measurable aftereffect
(MSE = −0.62° ± 0.67; EG = 0.76 ± 0.05, Figures 3.4a,b, 3.5d and 3.6d).
Five participants accepted to return three days after having removed the earplugs and to wear
them again for a single localization test. These participants were still able to localize sounds with
shifted ITDs (MSE = −3.34° ± 1.39, similar to −3.92° ± 0.62 on the last day with earplugs).
In order to test whether the recalibration increased the reliance on ILDs, we asked three
participants who showed a large recalibration (from MSE = −25.75°± 2.63 to −2.98°± 1.31 during
week-long recalibration period) to repeat the free-field localization test with stimuli low-pass
3.3. RESULTS
57
Figure 3.6 – Effect of the digital earplugs on vertical sound localization performance. Each
dot represents the average response of a participant at a specific target location. Grey values differentiate
participants (n = 7). Perfect responses would fall on the back lines. A linear fit of the actual responses is
shown by the grey lines. Positive values are upward locations. A) Without earplugs, all participants had
good elevation perception. B) The insertion of the earplugs largely disrupted the elevation perception of
all participants (no increase of response elevation with target location). C) Participants regained some
elevation perception after seven days with the plugs on, but were still far from baseline performance. D)
Performance immediately after removal of the earplugs was similar to baseline.
filtered at 500 Hz to reduce the perceptual weight of ILDs. At our loudspeaker distance only minor
head-shadowing occurs for frequencies below 500 Hz (Akeroyd, 2006; Kuhn, 1987). They localized
these stimuli equally well (MSE = −1.57° ± 1.61) as the original stimuli (MSE = −2.98° ± 1.31).
The earplugs modified not only ITDs, but also spectral cues (head-related transfer functions,
HRTFs) necessary for sound elevation perception. We investigated the relationship between
the rate of recalibration of horizontal sound localization, measured as the change in azimuthal
MSE during the first 48 h with shifted ITDs (day 0 to day 2), and several measures of elevation
perception. We found a positive correlation between the horizontal recalibration rate and the EG
obtained from the first test with earplugs but unshifted ITDs (Pearson r = 0.77, n = 7, p = 0.04,
Figure 3.7a). The correlation was due to differences in the amount of initial EG loss when inserting
the earplugs, not due to preexisting vertical localization ability (correlation between the horizontal
recalibration rate and EG without earplugs: r = 0.003, n = 7, p = 0.99). We also found a strong
positive correlation between horizontal and vertical recalibration rates (Pearson r = 0.92, n = 7,
p = 0.003, Figure 3.7b). We measured the rate of recalibration of vertical sound localization as
change in EG during the first 48 h with earplugs and unshifted ITDs (day −2 to day 0).
58
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
Figure 3.7 – Correlation between azimuth and elevation performance. Each dot represents a
participant (n = 7) and grey values differentiate them. In both panels the x-axis corresponds to a measure
of the rate of recalibration of horizontal sound localization (change in azimuthal MSE between days 0
and 2). In panel A, this variable is plotted against the initial amount of residual elevation perception
with earplugs (EG obtained from the first test with earplugs but without delay). In panel B, it is plotted
against the rate of recalibration of vertical sound localization (change in EG between day −2 and day 0).
3.3.2
Neuroimaging Results
We used high-resolution fMRI to investigate the neural correlates of adaptation to shifted ITDs.
We found changes in the distribution of voxel-wise direction preferences and in the hemispheric
lateralization of fMRI responses to spatial sounds during recalibration.
3.3.2.1
Directional tuning curves
We computed voxel-wise directional tuning curves. In each hemisphere, most of the tuning
curves had similar profiles, with response maxima in the contralateral hemifield and large slopes
3.3. RESULTS
59
crossing both hemifields (Figure 3.8). We did not observe noticeable differences between the
average tuning curves of sessions one and two. In both sessions, average tuning curves in each
hemisphere intersected close to, but consistently to the left of, the midline. The average percentage
BOLD signal change across voxels and participants was 2.75 % at the maximum of the tuning
curves and 2.17 % at the minimum. The effect of sound direction corresponded thus to about a
0.6 % BOLD signal change.
Figure 3.8 – Directional tuning curves. Directional tuning curves of all active voxels in the first fMRI
session in the left (A) and right (B) hemisphere of one participant. Each curve represents the response
magnitude recorded for one voxel for the different directions, normalized between 0 and 100. The darkness
of the curves is proportional to the average responses before normalization. Mean tuning curves are given
by the bold black lines. Most tuning curves had similar shapes, with maximal responses to sounds in the
contralateral hemifield. C) Average tuning curves across all participants, for each hemisphere and each
session, normalized across participants. Identical ITD-shifted recordings were presented in both fMRI
sessions. Average tuning curves were consistent across participants. There was no noticeable difference
between sessions. Grey lines represent data from the left hemisphere, black lines are from the right
hemisphere. Solid lines indicate session one, dashed lines session two. Shaded areas represent the standard
error obtained by bootstrapping the data across participants.
We then reduced voxel tuning curves to two measures of direction preference, the center of
gravity and the location of the maximal response of the tuning curve. In both hemispheres and
both sessions, the distribution of the COGs across participants was centered about 15° from the
midline in the contralateral hemifield (Figure 3.9a,b). In the right hemisphere, the height of the
distribution peak increased from session one to session two. A large proportion of the voxels
responded the strongest to stimuli from the most lateral directions of the contralateral hemifield,
other directions being much less represented (Figure 3.9c,d).
In session one, nearly all voxels in the left hemisphere preferred contralateral stimuli, as their
60
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
Figure 3.9 – Observed and modeled distributions of the center of gravity and maximum of
directional tuning curves. Observed distributions are shown in solid lines, modeled distributions in
thin dashed lines. Observed data were normalized across participants. A and B) The distribution of the
tuning curves COGs in both hemispheres (right in black, left in grey) peaked about 15° from the midline
in the contralateral hemifield for the first (A) and the second session (B). C and D) Most voxels responded
maximally to the most lateral directions of the contralateral hemifield (line colors identical to A) in the
first (C) and the second session (D). In session one, the contralateral bias was larger in the left (∼ 90 %)
than in the right hemisphere (∼ 69 %). From session one to session two, contralaterality did not change in
the left hemisphere, but increased to 75 % in the right hemisphere. Shaded areas represent the standard
error obtained by bootstrapping the data. Dashed lines show the same measures, but calculated from our
model with the parameters found by the genetic algorithm. The distribution of the centre-of-gravity and
the maxima of modeled tuning curves closely approximate the observed curves.
3.3. RESULTS
61
tuning curves had COGs and MAXs in the right hemifield (COG: 96 %; MAX: 85 %). In the right
hemisphere, a slight contralateral bias was found in session one (COG: 73 %; MAX: 66 %). In
session two, these proportions remain stable in the left hemisphere and rose to 77 % and 72 %, for
COG and MAX respectively, in the right hemisphere. Figure 3.10 shows the spatial distribution
of COG across auditory cortex for each participant and the group average.
3.3.2.2
Lateralization
We examined the ratio of the number of voxels in the left and right hemispheres that responded
significantly to each sound direction (Figure 3.11). This ratio increased for more rightward directions up to ∼ 30° in both sessions. Results of a two-way analysis of variance for repeated measures
performed on the ratios showed a significant main effect for sound direction (F7,126 = 18.41,
p < 0.0001), and no interaction between direction and session (F7,126 = 1.20, p = 0.318). The
same analysis performed on the ratio of the activation strength (in percentage BOLD signal
change) of showed similar results, a significant effect for direction (F7,126 = 5.04, p < 0.0001),
and no interaction between direction and session (F < 1).
In session one, we observed a large asymmetry of the distribution of the significant voxels, with
a larger extent of activity in the left than the right hemisphere across all conditions (ratio > 1
for all directions). Smaller ratios were observed in the second session, with stimuli from the
leftmost directions evoking stronger responses in the right than the left hemisphere (ratio < 1).
The analysis of variance revealed an effect for the factor session in the ratio of the number of
significant voxels (F1,126 = 5.12, p = 0.049), but not in the ratio of their mean responses
(F < 1). This reflects the fact that during the first session most of our stimuli (∼ 80 %) were
perceived in the right hemifield (mean perceived midline for the fMRI stimuli of −45.58° ± 3.42,
for six participants). The day before the second fMRI session, the mean perceived midline had
moved toward the midline (−29.45° ± 3.88), reducing the proportion of stimuli perceived in the
right hemifield to ∼ 70 %. An analysis of each hemisphere independently, revealed an effect for
the factor session in the number of significant voxels in the right hemisphere (F1,126 = 5.37,
62
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
Figure 3.10 – Distribution of tuning curve center of gravity across auditory cortex. Results
of both fMRI sessions are combined. Center of gravity of tuning curves in significantly activated voxels
are color coded and superimposed on an axial section of each participant’s T1-weighted scan showing
the left and right temporal lobes. Each slice was tilted 30° forward so that it is parallel to the Sylvian
fissure. The fixed-effects group average is superimposed on a section of the ICBM-152 brain average. Warm
colors represent centers of gravity located in the right hemifield, cold colors represent centers of gravity
located in the left hemifield. The plots show the location and extent of the activity evoked by spatial
sounds in individual brains. The contralaterality of the tuning curve center of gravity (most voxels in each
hemisphere preferred sounds in the contralateral hemifield) is clearly visible. However, in 6 participants (3,
6, 7—10), the right hemisphere also preferred sounds from the ipsilateral hemifield, presumably because
sounds were perceived mostly in the right hemifield before adaptation.
3.3. RESULTS
63
Figure 3.11 – Sound vs. silence contrasts in both hemispheres and lateralization ratio. A)
The number of significant voxels in left hemisphere (normalized across participants) depended on azimuth,
with rightward directions eliciting a more widespread response. There were no differences between sessions.
B) The number of significant voxels in right hemisphere also depended on azimuth, but with leftward
directions eliciting a more widespread response and an increase across directions from session one to two.
C) We divided for each direction the number of significant voxels in the left hemisphere by that in the
right hemisphere, resulting in a lateralization ratio. The lateralization ratio dropped significantly from
session one to two for all directions. Results from the first fMRI session are shown in grey, and results
from the second session in black. Shaded areas represent the standard error obtained by bootstrapping.
p = 0.045), but not in the left hemisphere (F < 1). For both hemispheres, no effect of the factor
session was found in the mean response of the significant voxels.
We modeled the distribution of ratios of the number of significantly active voxels in session
one with a second order gaussian (R2 = 0.99) to predict the perceived directions from ratios
obtained in session two. The predictions were consistently shifted leftward, in the same direction
as the perceptual recalibration. The average shift between predictions and the actual directions
presented was 35.7° across all directions, and 26.5° when considering only directions at which
lateralization ratios varied with direction.
3.3.3
Modeling
The the genetic algorithm found model parameters that resulted in an excellent fit between
model output and observed data (see Figure 3.9). In both sessions, the modeled centre of gravity
and maximal response distributions that were less than one standard error away from the observed
data. When fitting the model to the first session, the mean parameters found after 50 repetitions of
the genetic algorithm were: a ratio of neurons responding randomly to sound locations (noise ratio)
64
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
of 77 %; among the non-noise neurons, 64 % responding in a hemifield code fashion (hemifield code
ratio); these neurons were centered around 94° in each hemisphere (hemifield population center )
with a spread of 13° (hemifield population span) and the Gaussians characterizing these neurons
had a σ of 74° (hemifield population σ); 92 % of the hemifield code neurons were contralateraly
tuned (hemifield population contralaterality); the σ non-uniformity of the place code neurons was
of 0.42 (place code non-uniformity); the horizontal shift of the presented directions was 59° to the
right. The parameters hemifield population span and place code non-uniformity had little influence
on the quality of the fit (they varied randomly between solutions and fitness). The solution
found for session two was similar to that for session one, except for two parameters: hemifield
population center moved closer to the midline (from 94° to 89°), and shift moved also closer to the
midline (from 59° to 52°). Manipulating the shift parameter helped us to interpret the pattern of
COG distributions. Large changes in the shift parameter result in minor, symmetrical, changes
of COG peak locations. This may explain why observed COG distributions were symmetrical
around 0°, even though the stimuli were perceived as shifted to the right. The decrease of the
shift value from session one to session two, was in same direction as the behavioral recalibration
and would partly explain differences found in COG distributions between sessions. Decreasing
shift parameter increases the peak of the modeled COG distribution in the right hemisphere, just
as observed in the data. Figure 3.12 shows an example of the modeled tuning curves obtained
with the parameters found for session one, as well as the average tuning curves of 100 solutions
(50 from each session; see 3.2.8.2 Genetic algorithm). The modeled curves closely resemble the
observed ones (compare with Figure 3.8).
3.4
3.4.1
Discussion
Behavioral recalibration and implications of missing aftereffect
We showed that adult humans can relearn to locate sounds with shifted ITDs. Our behavioral
results confirm and extend those of Javer and Schwarz (1995). We observed faster relearning
of shifted ITDs compared to relearning of spectral cues (∼ 4 weeks: Hofman et al., 1998) or
3.4. DISCUSSION
65
Figure 3.12 – Modeled directional tuning curves. Example of voxelwise directional tuning curves
created by our model, in left (A) and right (B) virtual hemisphere. In this example, the mean parameters
found after 50 repetitions of the genetic algorithm on session one were used. Each curve represents the
response magnitude modeled for one virtual voxel for the different directions, normalized between 0 and 100.
The darkness of the curves is proportional to the average responses before normalization. Mean tuning
curves are given by the bold black lines. C) Average tuning curves of 50 different solutions (i.e. 50 different
sets of parameters) found by the genetic algorithm, for each hemisphere and each session, normalized across
solutions. Grey lines represent data from the left hemisphere, black lines are from the right hemisphere.
Solid lines indicate session one, dashed lines session two.
adaptation to monaural earplugging (>3 days: Bauer et al., 1966; no adaptation during several
days: Florentine, 1976; ∼ 1 week: Kumpik et al., 2010). All of our participants who regained
close-to-normal horizontal sound localization, did so within 48 hours. The difference in adaptation
speed for shifted ITDs compared to other sound localization cues disruptions, may indicate
a different physiological mechanism of adaptation. Our participants adapted without explicit
training by coping with the modified cue in their daily environment. Training may further increase
adaptation speed (Bauer et al., 1966; Butler, 1987; Carlile et al., 2014; Kumpik et al., 2010;
McPartland et al., 1997).
Participants did not mislocalize sounds in the opposite direction upon removal of the earplugs.
Absent aftereffects (ITD: Javer & Schwarz, 1995; HRTF: Hofman et al., 1998; M. M. V. Van Wanrooij & Van Opstal, 2005) or very small aftereffects (ILD: Kumpik et al., 2010) have also been
reported when altering other auditory spatial cues in humans. A potential mechanism of adapting
to an altered cue is to rely on other, intact, cues. Kumpik et al. (2010) showed that the adaptation
to unilateral earplugging resulted in a reweighting toward monaural spectral cues provided by the
unaffected ear. In our study, monaural spectral cues are unlikely to have contributed to spatial
66
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
hearing, because spectral cues were altered in both ears by the earplugs, which protruded into the
concha. Elevation perception was markedly reduced in our participants, even after recalibration,
indicating that only a limited amount of relearning of the spectral cues took place, and that
these cues were not informative during horizontal recalibration. Moreover, we found previously
that randomization of stimulus spectra (Wightman & Kistler, 1997) did not affect localization
performance for our stimuli and apparatus (Trapeau & Schönwiesner, 2011). Our participants had
access to veridical ILD cues when wearing the earplugs in their daily environments. During lab
testing, ILD cues were also available, albeit strongly attenuated, and might thus have contributed
to sound localization. To determine whether adaptive reweighting explained our results, we tested
a subset of participants, who showed large recalibration, with 500 Hz low-pass filtered stimuli, in
which ILD and spectral cues are minimal at our loudspeaker distance. The low-pass filter did not
affect localization performance. Thus, adaptive reweighting towards ILDs cannot fully explain the
observed recalibration.
The lack of an aftereffect does not imply that the ability to localize sounds with shifted ITDs
disappears immediately upon removal of the plugs. Rather, our findings indicate that it persists
through several days without the manipulation, and that both mappings (original and shifted
ITDs) were available to the participants for at least three days after the exposure to shifted ITDs.
We thus argue that some remapping of the correspondence between the localization cues and
sound directions took place, even though it did not override the pre-existing mapping. Hofman et
al. (1998) reported a similar lack of an aftereffect for modified HRTFs and speculated that the
mechanism may be similar to the acquisition of a second language (which also interferes little
with the representation of the native language).
3.4.2
Correlations between horizontal and vertical localization performance
We observed large inter-individual differences from full to little horizontal recalibration. Others
have also observed large differences in sound localization relearning and training (Javer & Schwarz,
1995; Jeffress & Taylor, 1961; Shinn-Cunningham, Durlach, & Held, 1998; Wright & Fitzgerald,
2001). Part of our variability was explained by the reduction in HRTFs availability when the
3.4. DISCUSSION
67
earplugs were first inserted, but not by pre-existing vertical localization accuracy (without
earplugs). Spectral cues contribute little to horizontal sound localization for low-frequency stimuli,
but recalibration in a real-world environment may still depend on the their availability. HRTFs
contribute to some extent to the clarity of an azimuthal percept (Flannery & Butler, 1981)
and knowledge of the horizontal sound location helps monaural listeners to determine elevation
(Butler, Humanski, & Musicant, 1990). Horizontal and vertical sound location and movement
activate common cortical substrates (Pavani et al., 2002). In our data, the increased uncertainty
in horizontal sound localization might be partly due to loss of elevation perception caused by
the earplugs. The disruption of spectral cues might thus have hindered relearning of horizontal
localization. We found that participants who adapted quickly to modified HRTFs also adapted
quickly to shifted ITDs. Thus, either adaptation to one cue enables faster adaptation to the other,
or adaptation operates on combined cues. Evidence for integrated coding of interaural time and
level differences (Edmonds & Krumbholz, 2014) supports the latter view. Differences between
persons, such as in the capacity for plasticity or in the daily sound exposure, may also account for
some variability. Understanding this variability may enable customized training for people with
assistive hearing devices.
3.4.3
Neural correlates of recalibration
We hypothesized that behavioral adaptation to shifted ITDs would be accompanied by changes
in hemispheric lateralization or directional tuning in auditory cortex, based on auditory space
encoding by two opponent neuronal populations (Brand et al., 2002; McAlpine et al., 2001;
Middlebrooks et al., 1998; Siveke et al., 2006; Stecker et al., 2005; Werner-Reiss & Groh, 2008),
which also appears to apply in humans (“hemifield code”, Salminen et al., 2012; Salminen, Tiitinen,
Yrttiaho, & May, 2010; Salminen et al., 2009), and the preference for contralateral sounds
previously observed in the human auditory cortex (Krumbholz, Schönwiesner, Cramon, et al.,
2005; Palomäki et al., 2005; Pavani et al., 2002; Woods et al., 2009).
We computed voxel-wise tuning curves from the fMRI responses to the different sound directions.
Most voxels had broad tuning curves with maxima at the lateral extremes of the tested range of
68
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
directions and shallow slopes across that range. This result confirmed the proposed hemifield code
in the human auditory cortex (Magezi & Krumbholz, 2010; Salminen, Tiitinen, Yrttiaho, & May,
2010; Salminen et al., 2009). Those EEG and MEG studies use a stimulus-specific adaptation
paradigm from which the encoding model is then inferred. The hemifield code model in humans is
still under considerable discussion and there is relatively limited evidence for it at the moment,
especially when comparing to the older literature that supports place code models (Bernstein,
van de Par, & Trahiotis, 1999; Colburn, Isabelle, & Tollin, 1997; Par, Trahiotis, & Bernstein,
2001; Stern & Shear, 1996; reviewed in: Ahveninen, Kopčo, & Jääskeläinen, 2014). We provide
new evidence for the hemifield code model in humans using a different imaging modality (fMRI)
and a different experimental approach (extracting voxel-wise tuning turves for horizontal sound
direction) compared to the previous MEG (Salminen, Tiitinen, Yrttiaho, & May, 2010; Salminen
et al., 2009) and EEG (Magezi & Krumbholz, 2010) studies.
Most voxels in a cortical hemisphere responded best to sounds from the contralateral hemifield
(maxima and centre of gravity of tuning curves were in the contralateral hemifield). Some previous
human neuroimaging studies showed such a contralaterality (Krumbholz, Schönwiesner, Cramon,
et al., 2005; Palomäki et al., 2005; Pavani et al., 2002; Woods et al., 2009), while others did not
(Brunetti et al., 2005; Jäncke et al., 2002; Woldorff et al., 1999; Zimmer et al., 2006). Improved
methods, such as higher spatial resolution, larger number of directions, and cross-validated
responses, helped us to demonstrate this contralaterality more clearly than previously possible.
High spatial resolution also appears to be necessary to record reliable BOLD signal changes
related to ITD (Dechent, Schönwiesner, Voit, Gowland, & Krumbholz, 2007). Contralateral bias
was larger in the left (∼ 90 %) than in the right hemisphere (∼ 69 %), likely because most
stimuli were perceived in the right hemifield in the first session. Contralaterality increased in
the right hemisphere during recalibration (to 75 %). Based on this observation and theoretical
considerations from the hemifield code model, we hypothesized that behavioral recalibration
might be accompanied by a change in the relative magnitude or extent of activation in left and
right auditory cortex. Results indicate that this was the case: the ratio of active voxels in both
hemispheres (lateralization ratio) changed between sessions for all directions; more voxels were
3.4. DISCUSSION
69
significantly active in the right hemisphere after recalibration. Such a change in lateralization may
have been caused by a change in the relative size of the two opponent populations or by a change
in tuning. The results of our modeling analysis support a change in tuning (see 3.4.4 Modeling).
Although the extent of the activation changed between sessions, the mean response amplitude
was very similar. Prior studies also reported changes in extent but not magnitude of activity in
auditory (Jäncke, Shah, Posse, Grosse-Ryuken, & Müller-Gärtner, 1998; Jäncke et al., 1999), visual
(Goodyear & Menon, 1998; Marcar, Straessle, Girard, Loenneker, & Martin, 2004; Mohamed,
Pinus, Faro, Patel, & Tracy, 2002), and motor cortex (Karni et al., 1995). Adjacent cortical areas
may be recruited with only minor changes in the activity of the already active region. Alternatively,
nonlinear coupling between stimulus change and neural or BOLD responses may increase the
extent of the activation with negligible changes in magnitude. In such cases, the extent of the
activity may be a more sensitive indicator of a change in brain processing than the amplitude.
The lateralization ratio depended on the direction of the sound, and we used this dependence
to estimate the corresponding shift in sound direction. This shift was approximately 25°, in the
same direction and comparable to the perceptual shift (∼ 20°) in the free-field between sessions.
There was no obvious change in average tuning curves between the sessions. However, our
modeling results suggested that a small shift may have taken place.
3.4.4
Modeling
Starting from random parameter values, the genetic algorithm consistently found solutions
that conformed to expectations based on the literature and closely matched our neuroimaging
data. In the best-fitting solutions, the majority of direction-sensitive neurons (64 %) responded
in a hemifield code fashion. Their tuning curves were broad Gaussians (σ = 74°) with maxima
around +90° and −90°. These values are close to the parameters of the hemifield code model
proposed by Salminen et al. (2009) and place the steepest part of the tuning curves around the
medial directions. Solutions also exhibited strong contralaterality (92 %).
The shift parameter shifted the presented sound directions at the input stage of the model
and could be considered as resulting from subcortical processing of shifted ITDs. Manipulating
70
CHAPITRE 3. ADAPTATION TO SHIFTED SPATIAL SOUND PERCEPTION
the shift parameter in the model helped us to interpret the pattern of COG distributions. Large
changes in the shift parameter result only in minor, and always symmetrical, changes of COG peak
locations. This may explain why observed COG distributions were symmetrical around 0°, even
though the fMRI stimuli were perceived as shifted to the right. The value of the shift parameter in
session one was in the same direction but somewhat larger (59°) than the perceptual shift measured
in the perceived midline task (45°). In session two, the shift parameter was significantly smaller
(52°). This decrease was in same direction as the behavioral recalibration. The change in the
shift parameter may be evidence for a change in directional tuning, but we cannot determine the
processing level at which it might have occurred. Subcortical neurons may have changed tuning
driven by corticofugal projections. Bajo et al. (2010) demonstrated that removal of corticofugal
projections abolishes experience-dependent recalibration of auditory spatial localization. Tuning
may have also changed in the auditory cortex, such that the steepest part of the tuning curves
migrated, as proposed by Salminen, Aho, and Sams (2013) to explain enhanced auditory spatial
selectivity when attending to off-centre visual stimuli.
3.5
Conclusions
We used digital earplugs to modify ITDs during several days in a natural environment. We
found that adult humans can adapt to this manipulation. This adaptation is accompanied by
changes in hemispheric lateralization in auditory cortex observable with high-resolution fMRI.
Neural-population modeling suggested that a small shift in direction tuning may also have taken
place.
3.6
Acknowledgments
This work was supported by the National Science and Engineering Council of Canada and the
Québec Bio-Imaging Network. RT was supported by the NSERC-Create program in Auditory
Cognitive Neuroscience. MS was supported by the Fonds de recherche du Québec - Santé.
CHAPITRE 4
ARTICLE 3 : FAST AND PERSISTENT ADAPTATION TO NEW SPECTRAL
CUES FOR SOUND LOCALIZATION SUGGESTS A MANY-TO-ONE
MAPPING MECHANISM
Régis Trapeau, Valérie Aubrais and Marc Schönwiesner
En révision (2ème tour) pour publication dans The Journal of the Acoustical Society of America.
Abstract
The adult human auditory system can adapt to changes in spectral cues for sound localization.
This plasticity was demonstrated by changing the shape of the pinna with earmolds. Previous
results indicate that participants regain localization accuracy after several weeks of adaptation
and that the adapted state is retained for at least one week without earmolds. No aftereffect
was observed after mold removal, but any aftereffect may be too short to be observed when
responses are averaged over many trials. This work investigated the lack of aftereffect by analyzing
single-trial responses and modifying visual, auditory, and tactile information during the localization
task. Results showed that participants localized accurately immediately after mold removal, even
at the first stimulus presentation. Knowledge of the stimulus spectrum, tactile information about
the absence of the earmolds, and visual feedback were not necessary to localize accurately after
adaptation. Part of the adaptation persisted for one month without molds. The results are
consistent with the hypothesis of a many-to-one mapping of the spectral cues, in which several
spectral profiles are simultaneously associated with one sound location. Additionally, participants
with acoustically more informative spectral cues localized sounds more accurately, and larger
acoustical disturbances by the molds reduced adaptation success.
PACS number: 43.66.Qp
71
72
CHAPITRE 4. FAST ADAPTATION TO NEW SPECTRAL CUES
4.1
Introduction
The human auditory system infers the location of a sound source from different acoustic
cues. Interaural time (ITD) and level differences (ILD), produced by the separation of the two
ears, enable sound localization on the horizontal plane. These binaural cues are insufficient to
uniquely determine the location of a sound source, because different locations can have the same
ITD and ILD, such as locations along the vertical midline (Blauert, 1997). The auditory system
disambiguates these locations using spectral cues generated by the direction-dependent filtering
of the pinnae and the upper body (head related transfer functions: HRTFs; Morimoto & Ando,
1980; Wightman & Kistler, 1989b).
The morphology of the pinnae and the resultant spectral cues are specific to each individual
(Middlebrooks, 1999), and change throughout the entire lifespan (Carlile et al., 2005; Otte,
Agterberg, Van Wanrooij, Snik, & Van Opstal, 2013). To acquire and conserve accurate sound
localization, the auditory system must be able to recalibrate the association between spectral cues
and sound locations over time (Clifton et al., 1988; Hartley & King, 2010). Abrupt changes of
spectral cues can also occur, for instance when assistive hearing devices are worn (Byrne & Noble,
1998).
It has been demonstrated that human adults can adapt to sudden and substantial changes in
spectral cues (Carlile et al., 2014; Carlile & Blackman, 2013; Hofman et al., 1998; M. M. V. Van Wanrooij & Van Opstal, 2005). In such studies, spectral cues are modified by fitting earmolds to impair
sound localization. After an adaptation period of several weeks during which the molds are worn
continuously, participants regain significant localization accuracy. Training involving auditory
and sensory-motor interactions accelerates the adaptation process (Carlile et al., 2014; Parseihian
& Katz, 2012). Even after two months of exposure and adaptation to modified spectral cues,
participants exhibit no aftereffect when removing the molds and accurately localize sounds with
their native spectral cues. However, it is unknown whether some minimal exposure to the native
spectral cues is needed to accurately localize after removing the molds, because many trials are
typically averaged when measuring sound localization performance, which may obscure short-lived
4.1. INTRODUCTION
73
effects. Even small indications of an aftereffect are theoretically important, because they may be
used to decide between partially different models of the adaptation process. Hofman and colleagues
(1998) suggested that adapting to a new pinna shapes resembles learning a new language, in that
a second set of DTFs is stored without interfering much with the original one. Those authors also
raise the issue that some cue might be necessary to disambiguate the between the stored sets,
although that cue might come from the presented sound itself under certain conditions (Hofman
& Van Opstal, 1998). If a switch is needed, it might also be cued by visual feedback, by prior
knowledge of the stimulus spectrum, or by tactile sensation and the awareness that the molds
were removed. The concept of sets of DTFs may also imply contextual effects when switching
between them, just as, for instance, switching from one language to another unexpectedly will
incur a perceptual penalty. In a second option, which we refer to as “many-to-one mapping”,
new spectral profiles are associated with each sound direction. In this view, there are no distinct
sets of DTFs and thus no switch nor any context effects. To decide among these options, we
measured single-trial localization performance immediately after mold removal and manipulated
visual feedback, tactile feedback, and stimulus spectrum.
The lack of aftereffect raised the question of the persistence of the newly learned spectral cues.
Carlile and Blackman (2013) showed that new spectral-to-spatial associations learned over an
adaptation period of 30 to 60 days are retained after one week without exposure to the modified
cues. Here, we tested the persistence of the adaptation after a long period (one month) that far
exceeded the adaptation period in our study (6 days).
Individuals differ in their ability to locate sound sources (Makous & Middlebrooks, 1990;
Populin, 2008; Savel, 2009; Wightman & Kistler, 1989a). A portion of these differences may be
due to acoustical differences in spectral cues caused by different ear shapes, which may lead to
differences in the amount of information provided by a set of spectral cues for discriminating
directions. Previous studies have failed to demonstrate a relation between acoustic factors and
performance (Andéol, Savel, & Guillaume, 2014; Andéol, Macpherson, & Sabin, 2013; Majdak,
Baumgartner, & Laback, 2014), possibly because they used a suboptimal metric to quantify the
74
CHAPITRE 4. FAST ADAPTATION TO NEW SPECTRAL CUES
efficacy of individual spectral cues. In the present study we develop a new metric to investigate
links between acoustic factors and performance.
4.2
4.2.1
Methods
Participants
Thirty participants (11 males, mean age 26 ± 5 years), took part in the experiment after
having provided informed consent. All participants had hearing thresholds of 15 dB HL or
lower at octave-spaced frequencies between 0.125 and 8 kHz. Participants had no history of
hearing disorder or neurological disease, and had normal or corrected-to-normal vision. They
had unblocked ear canals, as determined by a non-diagnostic otoscopy. The participants received
a monetary compensation for their participation. The experimental procedures conformed to
the World Medical Association’s Declaration of Helsinki and were approved by the local ethics
committee.
4.2.2
Earmolds
Silicone molds were applied to the conchae of the participants to modify ear shapes and distort
spectral cues. Participants were informed that the ear molds would “slightly modify their sound
perception”, but did not know the specific effects of this modification. The molds were created
by applying a fast-curing medical-grade silicon (SkinTite, Smooth-On, Macungie, PA, USA) in a
tapered layer of about 3 to 7 mm thickness on the cymba conchae and the cavum conchae of the
external ear, keeping the ear canal unobstructed.
4.2.3
Overall procedure
The experiment was designed to disrupt participants’ spectral cues using earmolds, to measure
the acoustical and behavioral effects of the molds, to follow participants’ adaptation to the new
listening situation, and to test whether this adaptation persisted after mold removal. Additionally,
we wanted to explore the mechanisms underlying the absence of aftereffects. Participants were
4.2. METHODS
75
randomly assigned to one of three conditions: control (n = 15), visual (n = 8), or spectral (n = 7).
A subset of 12 participants was assigned to a headphone condition. These groups differed only in
the type of aftereffect test; apart from this test, the experimental protocols were identical across
participants. The visual condition was designed to test whether visual feedback aids reverting
to the original spectral cues after mold removal. The spectral condition was designed to test
whether knowledge of the stimulus spectrum is necessary to revert to the original spectral cues
after mold removal. The headphone condition was designed to test whether the tactile sensation
of not wearing molds triggers the switch to the original spectral cues.
To minimize procedural learning and stress during the experiment, participants completed
at least one free-field localization run beforehand to familiarize themselves with the task and all
equipment. Participants performed the task until they were comfortable with it. No feedback
was given. Once this familiarization was complete, participants performed one localization run
which served as baseline. During their first lab visit, participants assigned to the visual or spectral
conditions completed an additional baseline localization run in the free-field, specific to their
condition group.
After the free-field baseline tests were completed, HRTFs were acquired for all participants.
Individual binaural recordings used as stimuli for the subset of participants assigned to the
headphone condition were also acquired at this stage. The participants assigned to the headphone
condition also performed a baseline localization task with headphones.
Earmolds were then fitted to the participants’ ears and participants immediately repeated the
standard free-field localization task. HRTFs were acquired again, this time with the molds on.
From that point on, participants wore the earmolds for six consecutive days.
Starting on the day after the earmolds were fitted (day 1 in Fig. 4.6), the participants performed
a daily routine of free-field localization tasks and training sessions, which continued for six days.
On the day the molds were removed, all participants completed a free-field localization run with
the molds on, then removed their molds and immediately performed the free-field localization task
specific to their condition group. Participants involved in the headphone condition performed an
additional headphone localization run while still wearing the molds.
76
CHAPITRE 4. FAST ADAPTATION TO NEW SPECTRAL CUES
To explore the persistence of the adaptation to disrupted spectral cues, participants returned
to the lab twice, one week and one month after mold removal. During these two visits, molds
were briefly re-inserted and participants completed a free-field localization run while wearing the
molds.
Behavioral testing, training, and binaural recordings were conducted in a hemi-anechoic room
(2.5 × 5.5 × 2.5 m). Participants were seated on a comfortable chair with a neck rest, located
in the centre of a spherical array of 80 loudspeakers (Orb Audio, New York, NY, USA) with a
diameter of 1.8 m. An acoustically transparent black curtain was placed in front of the loudspeakers
to avoid visual capture. Only a small label indicating the central location (0° in azimuth and
elevation) was visible on the curtain. A laser pointer and an electromagnetic head-tracking sensor
(Polhemus Fastrak, Colchester, VT, USA) were attached to a headband worn by the participant.
The laser light reflected from the curtain served as visual feedback for the head position. Real-time
head position and orientation were used to calculate azimuth and elevation of indicated directions.
4.2.4
Stimuli
The stimuli in the free-field sound localization task were 225 ms long trains of pulsed pink
noise (5 equally-spaced bursts of 25 ms duration). The overall level of the stimuli was 60 dB SPL
at the position of the participant’s head. A shorter version (125 ms, 3 bursts) of this stimulus was
used during the training sessions. Stimuli were created afresh on each trial on TDT System 3
hardware (Tucker Davis Technologies, Alachua, FL, USA), at 50 kHz sampling rate and 24 bit
amplitude resolution, and controlled by custom Matlab (Mathworks, Natick, MA, USA) scripts.
In order to minimize location cues caused by differences in loudspeaker transfer functions, we used
a Brüel & Kjær 1/2-inch probe microphone mounted on a robotic arm to measure these functions
and designed inverse finite impulse response filters to equalize amplitude and frequency responses
across loudspeakers.
Stimuli in the spectral condition were 225 ms excerpts of the stimuli described in Zatorre,
Bouffard, and Belin (2004). Forty-five environmental sounds and random mixtures of 8, 15, 30 or
all of these sounds were presented for a total of 181 different stimuli. Each stimulus had a unique
4.2. METHODS
77
spectrum. Stimuli were presented in a pseudorandom order such that no stimulus was repeated
within any sequence of 10 trials.
Stimuli in the headphones condition were individual binaural recordings (ears free) of the
free field stimulus described above. The recordings were played through DT 990 Pro headphones
(Beyerdynamic, Heilbronn, Germany).
4.2.5
Localization tasks
Thirty-seven loudspeakers were used in the free-field sound localization tasks, covering directions
from −45° to +45° in azimuth and elevation. Thirteen loudspeakers were equally distributed
(azimuthal angle between adjacent speakers of 7.5°) on a horizontal arc (0° elevation), and
12 loudspeakers were equally distributed on a vertical arc (0° azimuth). Twelve additional
loudspeakers were symmetrically distributed in the quadrants created by the two arcs (angle
between speakers of 22.5°). Stimulus presentation and response procedures were identical to
the ones described in Trapeau and Schönwiesner (2015). Sound directions were presented in a
pseudorandom order and were repeated five times during a run. After each sound presentation,
participants indicated the perceived direction by turning their head towards the sound source
and pressing a button on a hand-held button box. At the beginning of a run, participants were
asked to sit comfortably and rest their neck on a neck rest, so that the head was centered in the
loudspeaker array and the head-mounted laser pointed to the central location. This initial head
position was recorded and the participant had to return to this position with a tolerance of 2 cm
in location and 2° in head angle before each trial. If the head was correctly placed when the
button was pressed, a stimulus was played from one of the speakers. If the head was misplaced, a
brief warning tone (sinusoid of 150 Hz) was played from a speaker located above the participant’s
head (Az: 0°, El: 82.5°).
This set-up has several advantages, which we believe outweigh the disadvantage of not
measuring the rear field: participants need very little training to use the response system correctly
and consistently; head-turing in the frontal field is a natural response and thus involves little to
no procedural learning; responses are very quick, allowing us to collect many trials; accuracy in
78
CHAPITRE 4. FAST ADAPTATION TO NEW SPECTRAL CUES
the frontal field is high and not necessarily directly comparable with response accuracy in the rear
field because locations cannot be tagged with gaze direction.
The localization procedure in the spectral condition was identical, but a sound with a unique
spectrum was presented in each trial. The localization procedure in the headphones condition was
also identical, except that binaural recording of the stimuli were presented through headphones.
In the visual condition, a visual feedback was provided after each response by briefly blinking a
light-emitting diode (LED) at the location of the sound source to indicate the correct response.
4.2.6
Training
The training sessions were 15 min long and the procedure was inspired by the one described by
Parseihian and Katz (2012). A continuous train of noise bursts (see 4.2.4 Stimuli) was presented
from a random speaker and the delay between stimuli depended on the angular difference between
the sound direction and the participant’s head direction; the smaller the difference, the faster
the rate. Participants were instructed to identify the sound source location as fast as possible by
pointing their head in the perceived direction of the sound source. Once the participants held
their head in the correct direction for 500 ms, the stimulus was considered found and changed
location to a random loudspeaker at least 45° away from the previous one. Participants were
instructed to find as many locations as possible during the run.
4.2.7
Statistical analysis
Vertical and horizontal localization accuracies were quantified by computing the root mean
square of the discrepancies between perceived and physical locations (root mean squared error: RMSE; Hartmann, 1983; Savel, 2009). The vertical and horizontal variance of individual
responses was quantified by computing the standard deviation (SD) of response angles for each
target direction and then taking the mean across directions. Vertical localization performance
was also quantified by the elevation gain (EG), defined as the slope of the linear regression of
perceived versus physical elevations (Hofman et al., 1998). Perfect localization corresponds to an
EG of 1, while random elevation responses result in an EG of 0. Throughout the analysis, paired
4.2. METHODS
79
comparisons were statistically assessed using Wilcoxon signed-rank tests, and relations between
measures were determined using Spearman correlation coefficients.
To analyze trial-by-trial accuracy during the localization test that immediately followed mold
removal, we plotted the trial-by-trial error in the localization test immediately after mold removal.
However, baseline localization accuracy varies across directions (Carlile et al., 1997; Makous &
Middlebrooks, 1990). To account for such differences, we calculated the mean and standard
deviation of the localization error for each direction independently in the baseline test, and
then standardized the trial-by-trial errors in the aftereffect test with these values. A plot of
the standardized trial-by-trial errors thus shows the severity (in terms of how many standard
deviations away) of the localization error in the aftereffect test was for a given trial with respect
to typical performance for the same direction in the baseline test. We then tested the hypothesis
of a decreasing localization error over the first 10 trials using a Mann-Kendall trend test.
4.2.8
Binaural recordings
Individual HRTFs were recorded with and without molds, and their direction-dependent
components, the directional transfer functions, were extracted (DTFs; Middlebrooks, 1999).
Chirps of 5 ms duration were presented 50 times from each of the 80 loudspeakers and recorded
with binaural in-ear microphones. Repetitions were averaged for each location. ER7-14C probe
microphones (Etymotic Research, Elk Grove, Ill) were used for the first 12 participants. For the
remaining 18 participants we used miniature microphones (Sonion 66AF31), placed 2 mm inside
of the entrance to the ear canal. Such recordings from the canal entrance do not contain the
non-directional ear canal transfer function. However, non-directional contributions to the HRTF
were removed from the recordings (see 4.2.9 Directional transfer functions) and thus the change of
microphone and placement did not significantly influence the recordings and results. Participants
were asked not to move during the recordings and keep the reflection of the head-mounted laser
on the fixation mark. Head alignment was verified immediately after each recording by computing
the ITD for sounds presented from the horizontal plane. If any deviation from the midline was
detected, the recording was repeated. Individual binaural recordings of the stimuli used in the
80
CHAPITRE 4. FAST ADAPTATION TO NEW SPECTRAL CUES
free-field sound localization task were also acquired for the 12 participants who took part in the
headphone condition.
4.2.9
Directional transfer functions
DTFs were extracted from the binaural recordings without and with molds using the method
proposed by Middlebrooks (1999). The recordings at each location were filtered by a bank of
triangular band-pass filters equally spaced at 0.0286 octaves (2 % frequency difference). To remove
non-directional portions of the transfer functions (including microphone and ear canal transfer
functions) each measured transfer function was divided by the grand average (RMS) of the transfer
functions of a spatially uniform sample of 48 directions (equally spaced 22.5° apart in azimuth
and elevation, i.e. including the rear field). DTFs for recorded directions located on the median
plane, i.e. 13 elevations from −45° to +45°, were then analyzed further. Figure 4.1.a, b shows the
DTFs obtained for the left ear of one participant, without and with mold respectively.
For each DTF set obtained without molds, we computed the autocorrelation matrix in the
median plane (Fig. 4.1.c), i.e. the matrix of correlation coefficients between the DTFs of each
elevation against each other (Hofman & Van Opstal, 1998). From this autocorrelation matrix we
computed a measure (“vertical spectral information”, VSI) of how well different elevations can
potentially be discriminated by a listener using a given set of DTFs. VSI measures the average
dissimilarity of DTFs across elevations and is defined as one minus the mean of the coefficients
contained in the autocorrelation matrix (excluding the main diagonal). A DTF set of identical
transfer function for all elevations will result in a VSI of 0, whereas highly different transfer
functions will result in a high VSI. The maximal VSI in our recordings was 1.07, which is very
close to the empirical maximum for our number of elevations of 1.072 (maximum of 10000 random
DTF sets of 13 elevations).
To aid comparison with previous studies, we also calculated the spectral strength (which
quantifies the average amount of spectral detail in each DTF), as defined by Andéol et al. (2013,
2014), and derived from Middlebrooks (1999). The spectral strength is the variance of each DTF,
averaged across elevations. The drawback of this measure is that identical DTFs across elevations
4.2. METHODS
81
may give a high spectral strength value even though the listener would be unable to discriminate
elevations.
Figure 4.1 – Illustration of the acoustic effects of an earmold on the DTFs of one participant.
A) DTFs of the free left ear of one participant, computed in the 5657–11314 Hz frequency band. The
color code gives the output spectral amplitude for each frequency and elevation. Each row of these values
thus corresponds to the spectral profile of the DTF at that elevation. Values in between the 13 measured
elevations and 36 frequencies were linearly interpolated for display. B) DTFs of the same ear fitted with
a mold. C) Autocorrelation matrix obtained from the DTFs measured on the free ear. These matrices
contain values varying between −1 and 1 (correlation coefficients), are symmetric, and values along the
main diagonal are always unity. The mean of the matrix, excluding the diagonal, is the VSI (0.83 in this
case). D) Correlation matrix between the two DTFs sets, ear free vs. with mold. The VSI dissimilarity
between free ear and ear with mold is the euclidean distance between the matrices in C and D (1.08 in
this case).
To determine the dissimilarity between the DTFs obtained with and without mold, we first
computed the correlation matrix between all DTFs measured with free ears vs. all DTFs measured
with molded ears (Fig. 4.1.d) and calculated the root-mean-square distance between this correlation
matrix and the autocorrelation matrix of the DTFs measured with free ears. This measure is
referred to as the “VSI dissimilarity” throughout the text.
We computed VSI, VSI dissimilarity and spectral strength, separately for the left and right
ear. When examining the relation between these acoustical metrics and behavior, left and right
ear values were averaged.
82
CHAPITRE 4. FAST ADAPTATION TO NEW SPECTRAL CUES
4.3
4.3.1
Results
Relation between VSI (Vertical Spectral Information) and ears free performance
We computed VSI and spectral strength from the DTF sets obtained without molds in five
octave bands between 4 kHz and 16 kHz (4–8 kHz, 4.8–9.5 kHz, 5.7–11.3 kHz, 6.7–13.5 kHz, 8–
16 kHz). VSIs varied significantly among frequency bands (Kruskal-Wallis test, p = 10e−7), being
highest in the 5.7–11.3 kHz band (Fig. 4.2). The previously used spectral strength measure (Andéol
et al., 2013, 2014; Middlebrooks, 1999), however, did not vary significantly among frequency bands.
When computing VSI in non-overlapping 1/2-octave bands (4–5.7 kHz, 5.7–8 kHz, 8–11.3 kHz,
11.3–16 kHz), it correlated negatively with vertical RMSE in the 5.7–8 kHz frequency band
(R = −0.53, Bonferroni corrected p = 0.0126). In this frequency band, the relations between
the VSI and other elevation metrics were in the predicted directions but not significant (EG:
R = 0.28, p = 0.13756; SD-El: R = −0.18, p = 0.34952). No relation was found between the
VSI and performance in the others 1/2-octave frequency bands. Spectral strength did not correlate
with behavioral data in any of the frequency bands tested.
Figure 4.2 – Mean VSI across octave bands. Mean VSI from the DTF sets obtained without molds
in five octave bands between 4 kHz and 16 kHz. VSI varies significantly among frequency bands. Maximum
VSI is located in the 5.7–11.3 kHz band.
4.3. RESULTS
4.3.2
83
Acoustical effect of the molds
Modification of the relief of the concha reduced the notch situated in the 8–11 kHz frequency
band (Fig. 4.3.a, b, c). A comparable pattern was observed in previous studies (Carlile et al., 2014;
Carlile & Blackman, 2013; Hofman et al., 1998; M. M. V. Van Wanrooij & Van Opstal, 2005).
Figure 4.3 – Mean acoustic effect of an earmold on the DTFs. A) Mean DTFs of all participants
with free ears, computed between 4 and 16 kHz. B) Mean DTFs of all participants with molds. C) Gain
difference of A and B. D) The probability map shows the proportion of participants for which the molds
induced marked changes in spectral amplitude at each elevation and frequency bin.
To verify the consistency of spectral changes across participants, we computed a map of the
proportion of participants for which the molds induced marked changes in spectral amplitude
at each elevation and frequency. We thresholded each participant’s map of the (mean absolute)
differences between the DTFs measured with and without molds by replacing all values above
the threshold with 1 and others with 0. The average of these maps across participants shows
the proportion of participants for which the molds induced above-threshold changes in spectral
amplitude at each elevation and frequency. This proportion was 62 % ± 3 (mean across participants
± standard error) in the 4–8 kHz frequency band, and 93 % ± 1 in the 8–16 kHz band. As
threshold we used the difference in DTFs between elevations with free ears, because participants
were able to distinguish between elevations and thus were able to hear (and use) differences of this
magnitude. For each participant, we thus took the RMS of the DTF (in dB) at each elevation,
and computed the mean absolute difference between all combinations of these values (average
across participants: 2.02 dB ± 0.14) as a measure of spectral differences across elevations with
free ears.
We checked that the addition of the molds to our participants’ ears did not simply decrease
84
CHAPITRE 4. FAST ADAPTATION TO NEW SPECTRAL CUES
acoustical differences between vertical sound locations and thus reduce the amount of spectral
information available for vertical localization. Such a reduction may have led to physiologically
implausible DTFs. The VSI computed with and without molds between 5.7 and 11.3 kHz (the
octave frequency band with highest VSI) showed that the molds did not reduce the acoustical
differences between elevations (ears free = 0.76 ± 0.02; with molds = 0.81 ± 0.03). The left
and right ear VSI without molds were correlated, as predicted (R = 0.47, p = 0.00875). This
correlation still existed after fitting the molds (R = 0.68, p = 0.00003). The VSI with free ears
and with molds of all participants are shown in Figure 4.4.a.
Figure 4.4 – Effects of the molds on the VSI (5.7–11.3 kHz frequency range). A) Left and right
ear VSI. Each dot represent one participant. Grey dots are VSI values of free ears, black dots are VSI
values with molds. Regression lines show the correlations between VSI obtained for the left and right
ears. VSI ranges with and without molds largely overlap, indicating that the molds did not decrease VSI.
The molds also conserved natural similarity between left and right ear VSI B) VSI dissimilarity. Grey
dots show the VSI dissimilarity of free left and right ears between all combinations of two participants.
Each black dot shows the VSI dissimilarity between free ears and molds for one participant. Convex hulls
of both dot clouds largely overlap, indicating that the molds did not induce physiologically implausible
acoustic changes.
To ensure that the spectral modification induced by the molds was in a physiologically
plausible range, i.e. no larger than the variability due to different ear shapes between individuals,
we computed the VSI dissimilarity (in the 5.7–11.3 kHz frequency band and for each ear) between
every possible pair of participants and compared it with the VSI dissimilarities between free and
molded DTFs of each participant (Fig. 4.4.b). The overlap between both distributions confirmed
4.3. RESULTS
85
that spectral modifications induced by the molds were of similar magnitude as the typical difference
of DTFs between individuals.
4.3.3
Behavioral effects of the molds
The insertion of the molds degraded the performance on both the vertical and the horizontal
plane (Fig. 4.6, day 0; vertical performance, ears free vs. molds: RMSE = 10.74 ± 0.4 [mean
± standard error] vs. 24.54 ± 1.5, SD = 4.84 ± 0.23 vs. 8.43 ± 0.75, EG = 0.8 ± 0.03 vs.
0.29 ± 0.05; horizontal performance: RMSE = 5.98 ± 0.26 vs. 11.53 ± 1.62, SD = 2.67 ± 0.13
vs. 4.89 ± 0.71). Molds reduced horizontal localization accuracy at all elevations, but most
strongly at low elevations (10.17° at −45°) and less so at high elevations (3.06° at +45°). Reduced
horizontal accuracy was not explained by changes in binaural cues used for horizontal sound
localization, because the molds had no effect on these cues. In the tested range of azimuths
(−45° to +45°), ILDs and ITDs vary linearly across the horizontal plane. We computed linear
regressions of each participant’s ILDs and ITDs and compared the slopes and the intercepts with
and without molds. Wilcoxon signed rank tests confirmed that ILD and ITD were unchanged
by the molds (ILDs linear regression slopes: 0.34 ± 0.1 vs. 0.33 ± 0.1, p = 0.21; ILDs linear
regression intercepts: 0.30 dB ± 0.30 vs. 0.21 dB ± 0.25, p = 0.84; ITDs linear regression slopes:
8.10 ± 0.08 vs. 8.08 ± 0.09, p = 0.76; ITDs linear regression intercepts: 8.99 µs ± 7.19 vs.
6.69 µs ± 6.28, p = 0.82).
Across individuals, the amount of degradation in vertical and horizontal performance was
correlated (RMSE: R = 0.71, p = 2e − 5; SD: R = 0.85, p = 6e − 7). The regression between
the vertical and horizontal degradation indicates that the minimum increase in vertical RMSE
that caused an increase in horizontal RMSE larger than one SD measured with free ears was 12°.
4.3.4
Relation between behavioral effects of the molds and VSI dissimilarity
The insertion of the molds produced large behavioral effects. To determine whether the
behavioral effects of the molds were related to the acoustical dissimilarity between DTFs with and
without molds, we calculated the relationship between these effects and the VSI dissimilarity. We
86
CHAPITRE 4. FAST ADAPTATION TO NEW SPECTRAL CUES
found a correlation between the difference in initial elevation performance with molds (first test
with molds compared to free ear baseline) and VSI dissimilarity in the 5.7–11.3 kHz frequency
band (Fig. 4.5.b, c; RMSE: R = 0.52, p = 0.00359; EG: R = −0.53, p = 0.00275). As expected,
larger spectral changes caused by the molds led to larger localization errors and smaller EG.
Behavior and VSI dissimilarity still correlated after six days of wearing the molds (Fig. 4.5.d, e;
Last test with molds − ears free baseline, RMSE: R = 0.51, p = 0.00477; EG: R = −0.39,
p = 0.03550). Even if the relation went in the predicted direction, no significant correlation was
found between the vertical SD and the VSI dissimilarity. To test whether the relationship between
acoustical (VSI) dissimilarity and localization accuracy found in the vertical plane also holds
in the horizontal plane, we computed a measure analogous to the VSI across horizontal sound
directions. However, this measure did not correlate with the difference in horizontal localization
accuracy. Differences between the left and right ear DTF may also influence horizontal sound
localization (Hofman & Van Opstal, 2003), however, we found no correlation between changes in
binaural DTF dissimilarity due to the molds and reduction of horizontal localization performance.
Figure 4.5 – Correlations between behavioral results and acoustical metrics. Each dot represents a participant (n = 30). A) Correlation between the vertical localization error (RMSE) and the
acoustic information content (VSI) with free ears in the 5.7–8 kHz frequency band. B–E) Correlation
between VSI dissimilarity (free vs. mold) in the 5.7–11.3 kHz band and vertical behavioral measures: EG
(B) and RMSE (C) differences between the first test with molds and the free ear baseline; EG (D) and
RMSE (E) differences between the last test with molds and the free ear baseline.
4.3.5
Adaptation
The combination of daily multisensory experience and sensory-motor training at the lab for
six days resulted in improved sound localization performance with the molds. The performance
on the last day with molds were significantly better than on the first day with molds for all
4.3. RESULTS
87
metrics except vertical SD (one-tailed Wilcoxon signed rank tests of first vs. last test with molds;
vertical plane: RMSE = 24.54 ± 1.5 vs. 18.58 ± 0.95, p = 10e − 6; SD = 8.43 ± 0.75 vs.
7.98 ± 0.58, p = 0.1995; EG = 0.29 ± 0.05 vs. 0.55 ± 0.04, p = 2e − 6; horizontal plane,
RMSE = 11.53 ± 1.62 vs. 8.49 ± 0.95, p = 0.0171; SD = 4.89 ± 0.71 vs. 3.56 ± 0.31,
p = 0.0458). The development of RMSE, SD, and EG from day 0 to day 6 is shown in Fig. 4.6.
To compare differences in adaptation across participants independent of differing acoustical
disruption caused initially by the molds, we divided the amount of reduction in localization error
(RMSE with molds on day 0 vs. on day 6) by the amount of initial increase in error caused by
the molds (RMSE on day 0 with molds vs. without molds). Individuals showed a continuum of
adaptation success from no adaptation to full recovery of localization performance and did not fall
into discernable groups, such as low and high performers. Individual differences in the increase
in elevation gain and in the reduction in localization error with adaptation are also apparent in
Fig. 4.5.d, e. The amount of adaptation was independent of age and gender.
We examined the relation between the amount of vertical and horizontal adaptation, i.e. the
correlation between the difference in performance along the vertical and horizontal planes from
day 0 to 6. Vertical and horizontal adaptation correlated strongly (RMSE: R = 0.54, p = 0.00223,
SD: R = 0.51, p = 0.00486).
4.3.6
Aftereffect
To test whether the adaptation to the molds induced an aftereffect, the participants removed
the molds after the last free-field localization run with molds (day 6 in Fig. 4.6), and immediately
performed a free-field localization task specific to their condition group. For each group, we
tested whether the performance obtained during this test was reduced compared to the baseline
performance. Immediately after removing the molds, sound localization performance returned to
near baseline values. In the control group, there was a small effect in the vertical SD, suggesting
increased response variability on the vertical plane when compared to baseline (SD = 4.89 ± 0.37
vs. 5.91 ± 0.61, p = 0.0453). The visual, spectral, and headphone conditions had no effect on
localization performance.
88
CHAPITRE 4. FAST ADAPTATION TO NEW SPECTRAL CUES
Figure 4.6 – Time course of sound localization performance. A) Time course of localization error
(RMSE) and response variability (SD) on the vertical plane, and B) on the horizontal plane. The insertion
of the molds significantly increased RMSE and SD on both planes. During the following 6 days, localization
error decreased and elevation gain increased. Immediately after mold removal, performance returned to
baseline level (grey dot on day 6). C) Time course of the elevation gain. Participants had high elevation
gains without molds (∼ 0.8, grey dot on day 0). The insertion of the molds decreased the elevation gain to
∼ 0.3. Elevation gain increased during adaptation to 0.55 on day 6 (black dots). Immediately after mold
removal, elevation gain returned to baseline level (grey dot on day 6). Grey circles indicate performance
without molds, black circles indicate performance with molds. Error bars indicate standard error. Data
points represent the mean across all participants (n = 30), except for the test with free ears on day 6,
which included only control group participants (n = 15) but not participants in the visual and headphone
groups.
4.3. RESULTS
89
Participants may re-adapt to their original ears during the first few sound presentations after
mold removal, thus too fast to observe in the average accuracy across an entire localization
run. To test this hypothesis, we analyzed trial-by-trial accuracy during the localization test that
immediately followed mold removal (Fig. 4.7). No consistent changes in accuracy were apparent
during the test; specifically, performance in the first few trials was not obviously differ from that
in later trials for any of the groups. We also tested for a trend of decreasing localization error
during the first few trials. No such trends were found in any of the conditions (Mann-Kendall
trend test, all p > 0.3).
Figure 4.7 – Trial-by-trial localization error in the aftereffect tests. Black lines display the mean
localization error across participants. Each grey dot represents the error of one participant in a given trial.
Errors were standardized by the direction-specific localization error in the respective baseline tests. Results
in each condition are represented (cont. = control, spect. = spectral, HP = headphone). No consistent
changes in localization accuracy were apparent during the test in any of the conditions.
4.3.7
Persistence tests
Vertical performance at the 1-week and 1-month post-tests (Fig.. 4.6, days 14 and 37) was
not as impaired as performance at the first test with molds (day 0). On both planes, 1-week
post-test performance resembled the performance achieved three days after insertion of the molds
(day 3, 70 % of the adaptation retained on the vertical plane, 90 % on the horizontal plane), while
1-month post-test performance was closest to the performance two days after insertion of the
molds (day 2, 62 % of the adaptation retained on the vertical plane, 68 % on the horizontal plane).
The trial-by-trial accuracy of both post-tests showed the same pattern as the one described in
90
CHAPITRE 4. FAST ADAPTATION TO NEW SPECTRAL CUES
the Aftereffect section (4.3.6): no changes in accuracy were apparent during the run, specifically,
performance in the first few trials was not different from that in later trials.
4.4
Discussion
We modified spectral cues for sound localization in adult listeners over several days to better
understand brain mechanisms of adaptation to modified sensory input. Fitted silicone earmolds
initially disrupted sound localization, but participants regained significant localization accuracy by
continuously wearing the molds and participating in daily training sessions. Localization accuracy
returned to baseline immediately after removing the molds. Visual feedback, unknown sound
spectrum, and tactile feedback of earmolds had no impact on this lack of an aftereffect. Retests
with molds a week or a month after removal showed that participants retained the ability to
localize sound with the modified cues.
4.4.1
Acoustic factors of behavioral performance
Horizontal and vertical sound localization abilities without molds were comparable to previous
reports of two-dimensional human sound localization performance (Hofman et al., 1998; Makous &
Middlebrooks, 1990; Middlebrooks, 1997; S. R. Oldfield & Parker, 1984b; Trapeau & Schönwiesner,
2015). Front back confusions were very rare and had no impact on the presented results. The
majority of the participants did not experience any front-back confusions at all. This is likely due
to several factors: First, molds cause much less front-back confusions for sound stimuli located in
the visual field, than for stimuli located outside of the visual field (Carlile & Blackman, 2013).
Most importantly, while we controlled the position and orientation of participants’ heads, they
were able to do head micro-movements, which are known to resolve front-back confusions (Perrett
& Noble, 1997a; Wightman & Kistler, 1999). When spectral cues are absent, dynamic ITD is a
very salient cue for front-back discrimination (Macpherson, 2013).
Individuals differed in vertical localization accuracy, and we aimed to determine to what extent
these differences were explained by acoustic differences in directional transfer functions caused by
different ear shapes. To quantify the efficacy of the spectral cues for vertical localization provided
4.4. DISCUSSION
91
by a given ear, we defined a new measure (VSI) that reflects how well different elevations can
potentially be discriminated by the direction-dependent filtering of that ear. VSI varied significantly
across 1-octave frequency bands and was highest between 5.7 and 11.3 kHz, which indicates that
spectral information (DTF shape) in this frequency band was most useful to discriminate between
elevations. Using a very different method, the same band was found to be critical for elevation
judgments by selectively removing frequency bands in a virtual auditory display (Langendijk
& Bronkhorst, 2002). The correspondence between these behavioral results and our acoustical
results strongly suggests that the main spectral cues for vertical sound localization lie in this
frequency band.
VSI also varied between individuals, and this variation was correlated with individual vertical
localization accuracy in the 5.7–8 kHz frequency band. Individual differences in vertical localization
abilities were previously reported (Populin, 2008; Wightman & Kistler, 1989a), but no relation
between this variability and acoustic factors has been reported (Andéol et al., 2013, 2014; Majdak
et al., 2014). Studies investigating this relation used spectral strength (Andéol et al., 2013) as
a metric to quantify the quality of the spectral cues in each individual. Spectral strength is a
measure of the overall saliency of the spectral cues, but does not provide information on the
efficacy of the spectral cues to discriminate between elevations. Spectral strength did not vary
across frequency bands, nor did it correlate with behavior. VSI correlated with vertical localization
error in the 5.7–8 kHz frequency band, in which it explained ∼ 25 % of the behavioral variance.
As suggested by previous studies, non-acoustic factors such as attention, perceptual and motor
abilities, and neural processes involved in spectral cue analysis, might also contribute to individual
differences in vertical sound localization.
Using a measure of VSI dissimilarity, we showed that the amount of acoustical change in
spectral cues caused by the molds correlated with the loss in elevation performance that followed
the insertion of the earmolds. This correlation was maintained at the end of the adaptation
period, showing that the speed and amount of adaptation to modified spectral cues depends on
the severity of the acoustic disruption. VSI dissimilarity may be useful in estimating to what
extent different assistive hearing devices disrupt sound localization while patients adapt to the
92
CHAPITRE 4. FAST ADAPTATION TO NEW SPECTRAL CUES
device. We computed VSI dissimilarity on elevations restricted to the median plane, but to explore
ear-specific effects of molds (or hearing devices) DTFs should be extracted from elevations off the
midline where VSI dissimilarity may be somewhat larger due to the orientation of the pinna axis.
4.4.2
Effect of the molds on horizontal sound localization
Spectral cues have a minor influence on the perception of horizontal sound location (Macpherson
& Middlebrooks, 2002). However, some monaurally deaf patients successfully use spectral cues
for azimuth perception (Slattery & Middlebrooks, 1994; M. M. Van Wanrooij & Van Opstal,
2004), and it has been shown that spectral cues contribute to some extent to the accuracy of the
azimuthal percept in normal-hearing participants (Musicant & Butler, 1984; Razavi, O’Neill, &
Paige, 2005; M. M. Van Wanrooij & Van Opstal, 2007). In the present study, earmolds decreased
performance on both the vertical and the horizontal plane, even though binaural cues remained
intact. The reduction in horizontal performance strongly correlated with the reduction in vertical
performance, but not with the amount of acoustical change in spectral cues caused by the molds,
nor with changes in binaural DTF dissimilarity due to the molds. The outcome of the processing
of spectral cues (for instance the elevation percept) must thus play a role in fine azimuthal sound
localization. The notion of integrated processing of sound localization cues is supported by recent
evidence for integrated processing of interaural time and level differences (Edmonds & Krumbholz,
2014). In addition, horizontal and vertical sound movement activates common cortical substrates
(Pavani et al., 2002). M. M. V. Van Wanrooij and Van Opstal (2005) proposed that elevation
perception is partly attributable to binaural interactions, in which the spectral-to-spatial mapping
provided by each ear’s spectral cues is weighted by the azimuthal perception. Incorrect elevation
estimates might perhaps in turn affect the precision of the azimuthal perception. This was the
case in our participants: larger disruption in elevation performance tended to result in larger
disruption of horizontal performance.
4.4. DISCUSSION
4.4.3
93
Individual differences in adaptation to modified spectral cues
Participants’ localization accuracy on the horizontal and vertical planes improved to varying
degrees during the six days of exposure to modified spectral cues. Individual differences ranged
from full adaptation (accuracy indistinguishable from performance with free ears) to no adaptation
(accuracy on day 6 indistinguishable from performance on day 0 after mold insertion). Participants
did not fall into discernable groups, such as low and high performers, but rather formed a
continuum of different adaptation rates between these extreme values. Large individual differences
in adaptation to modified localization cues were previously reported (spectral cues: Carlile &
Blackman, 2013; Hofman et al., 1998; M. M. V. Van Wanrooij & Van Opstal, 2005; ITDs: Javer &
Schwarz, 1995; Trapeau & Schönwiesner, 2015; supernormal cues: Shinn-Cunningham et al., 1998).
Changes in sound localization induced by compressed vision also appear to differ substantially
between individuals (Zwiers, Van Opstal, & Paige, 2003).
It is unclear at the moment whether these differences are attributable to individual differences
in the capacity to adapt, and if so, which factors contribute to such differences. There are also
differences in the acoustical effect of the earmolds. The initial disruption of the localization cues
varied across participants in previous studies and in the present study. In the present study, the
acoustical dissimilarity between DTFs with and without molds still explained a portion (26 %) of
the differences in localization accuracy after six days of adaptation and training. Participants
whose DTFs were disturbed more strongly showed less or slower improvement of localization
accuracy over time. Finally, differences in lifestyle between participants may lead to differences in
the amount and variety of daily sound exposure, in the amount of multisensory interactions, and
so forth. Such differences may also account for some of the observed variability in adaptation. A
better understanding of this variability may require a more tightly controlled DTF manipulation
and adaptation environment than we were able to achieve in the present study.
One might also speculate that procedural learning contributed to the reduction in localization
error during the adaptation time. However, participants performed at least one accommodation
run before the start of the experiment and needed very little training to achieve consistent
94
CHAPITRE 4. FAST ADAPTATION TO NEW SPECTRAL CUES
performance in the task. All participants had performed at least three tests at the start of the
adaptation period, a measurable influence of procedural learning on the performance during the
adaptation period is thus unlikely. In addition, such a learning effect would have resulted in an
improved performance with free ears on day 6 compared to the same test on day 0, but no such
difference was observed.
4.4.4
Aftereffect
Most studies of adaptation to disrupted sound localization cues in humans reported no
evidence of aftereffects upon removal of the manipulation (spectral cues: Carlile & Blackman,
2013; Hofman et al., 1998; M. M. V. Van Wanrooij & Van Opstal, 2005; ITDs: Javer & Schwarz,
1995; Trapeau & Schönwiesner, 2015). One study reported a very small aftereffect (monaural
occlusion: Kumpik et al., 2010). Similarly, ferrets reared with a unilateral earplug that disturbed
ILD information develop sound localization abilities comparable to controls (King et al., 2000) and
showed no aftereffect after removal of the earplug. Barn owls also regain normal sound localization
performance after several weeks of adapting to a unilateral earplug, but in stark contrast to the
results in mammals, the birds mislocalized sounds in the opposite direction after removal of the
plug (Knudsen, Esterly, & Knudsen, 1984). The aftereffect gradually diminished over several
days. This difference between species might be explained by the different encoding mechanisms of
horizontal sound direction (Ashida & Carr, 2011). The Jeffress-type place code found in birds may
be more susceptible to aftereffects. Localization in the visual system also operates on place codes
and consistent aftereffects were observed following adaptation to prism glasses (Hay & Pick Jr.,
1966; Singer & Day, 1966).
In agreement with these ideas and previous results, no aftereffect was observed in the present
study. We initially hypothesized that participants were able to re-accommodate to their original
spectral cues so quickly upon mold removal that the aftereffect is unobservable when averaging
across all trials of our localization task. Contrary to this hypothesis, localization accuracy in the
initial trials was normal, including the first sound exposure after mold removal. This was true
even when unfamiliar sounds with unknown spectra were presented in these trials and when the
4.4. DISCUSSION
95
original DTFs were simulated before mold removal and the participants thus did not know that
stimuli corresponded to the acoustical situation without the molds. These results indicate that the
new spectral-to-spatial mapping learned during adaptation did not override the pre-existing one,
and that both mappings are available to the participant simultaneously. A possible conceptual
mechanism for such an effect is a many-to-one mapping, in which several spectral profiles (DTFs)
may become associated with one spatial location. This situation would require no switch between
sets of DTFs and would thus not result in an aftereffect. Our measurements of trial-by-trial
performance in the two localization tests one week and one month after mold removal are also
consistent this notion. There was no evidence of performance improvements during the first few
trials, i.e. participants did not require any exposure to the altered spectral cues to localize sounds.
Such a mapping could for instance be implemented in the spectro-temporal correlation model
proposed by Hofman and Van Opstal (1998) under the assumption that newly-learned DTFs are
added as input to the “spectral correlator” stage.
4.4.5
Persistence
The perceptual capability of localizing sound with modified DTFs persisted for at least one
month after removal of the molds. We re-measured localization accuracy one week and one month
after removal of the molds and found that performance was significantly better than when the
molds were first inserted. On the horizontal and vertical plane, more than 60 % of the adaptation
was retained after one month without exposure to the modified spectral cues. This result is
remarkable considering the short adaptation period of six days. Retention of adaptation to
modified spectral cues after one week was previously demonstrated with much longer adaptation
periods of 30 to 60 days (Carlile & Blackman, 2013). Even with the shorter adaptation period,
our results at the one-week retest are comparable to those of Carlile and Blackman (2013): about
70 % of the adaptation was retained after one-week without molds in both studies.
A portion of the slight reduction in accuracy might have been caused by participants becoming
less familiar with the testing procedure over the one- and four-week period. However, participants
needed very little initial training with the task to achieve consistent performance, likely because
96
CHAPITRE 4. FAST ADAPTATION TO NEW SPECTRAL CUES
head-turning in the frontal field is a natural response to sound and thus involved little to no
procedural learning. Nevertheless, baseline tests with free ear were not performed during the
persistence tests and we can thus not rule out an effect of procedural learning.
Cue persistence may be the result of a trade-off between the conflicting requirements of
stability and adaptability of the mechanism. Except for accidents and modern interventions like
assistive hearing devices, spectral cues change slowly, which perhaps explains the slow learning
rates that we and others have observed for these cues. Such slow rates may cause some inertia in
the unlearning of spectral cues as well. The decay of cue memory may be appropriate to estimate
the time constant of cue adaptability, because it might be less influenced by perceptual training
and individual differences in sound environment than the learning of new cues. From our data, we
estimated that this time constant is about 6 months, assuming exponential decay.
CHAPITRE 5
ARTICLE 4 : THE ENCODING OF SOUND SOURCE ELEVATION IN THE
HUMAN AUDITORY CORTEX
Régis Trapeau and Marc Schönwiesner
Abstract
Spatial hearing is a crucial capacity of the auditory system. There is a large body of evidence
that horizontal sound direction is represented in the human auditory cortex by a rate code of two
opponent neural populations, tuned to each hemifield. However, very little is known about the
representation of vertical sound direction. Here, we show that voxel-wise elevation tuning curves
in auditory cortex, measured with high-resolution functional magnetic resonance imaging, are
wide and display an approximately linear decrease in activation with increasing elevation. These
results demonstrate that auditory cortex encodes sound source elevation by a rate code with broad
voxel-wise tuning functions preferring lower elevations. We changed participants’ ear shape with
silicon molds to disturb their elevation perception. This manipulation flattened cortical tuning
curves. Curves recovered as participants adapted to the modified ears and regained elevation
perception, showing that cortical elevation tuning reflects the perception of sound source elevation.
5.1
Introduction
Spatial hearing is the capacity of the auditory system to infer the location of a sound source
from the complex acoustic signals that reach both ears. This ability is crucial for an efficient
interaction with the environment, because it guides attention (Broadbent, 1954; Scharf, 1998)
and improves the detection, segregation, and recognition of sounds (Bregman, 1994; Dirks &
Wilson, 1969; Roman et al., 2001). Sound localization is achieved by extracting spatial cues
from the acoustic signal that arise from the position and shape of the two ears. The separation
97
98
CHAPITRE 5. THE ENCODING OF SOUND SOURCE ELEVATION
of the two ears produces interaural time (ITD) and level differences (ILD), which enable sound
localization on the horizontal plane. The direction-dependent filtering of the pinnae and the
upper body generates spectral cues, which allow sound localization on the vertical plane as well as
disambiguating sounds that originate from the front and the back of the listener (Blauert, 1997;
Wightman & Kistler, 1989a).
The cortical encoding of the location of sound sources has been mostly studied on the horizontal
plane. There is a large body of evidence from both animal and human models, that horizontal
sound direction is represented in the auditory cortex by a rate code of two opponent neural
populations, broadly tuned to each hemifield (Magezi & Krumbholz, 2010; Recanzone, Guard,
Phan, & Su, 2000; Salminen et al., 2009; Stecker et al., 2005; Werner-Reiss & Groh, 2008).
Physiological studies in animal models have shown sound elevation sensitivity of neurons in
primary (Bizley et al., 2007; Mrsic-Flogel et al., 2005) and higher-level auditory cortical areas (Xu
et al., 1998), but how the auditory cortex represents elevation has not been revealed. One fMRI
study in humans (Zhang, Zhang, Hu, & Zhang, 2015) presented stimuli at different elevations,
but no tuning curves were constructed from the data as elevations were discriminated only by an
up vs. down contrast. Those results suggested a non-topographic, distributed, representation of
elevation in auditory cortex. Other neuroimaging attempts to study elevation coding were limited
by poor behavioral discrimination of the different elevations presented through headphones (Fujiki,
Riederer, Jousmäki, Mäkelä, & Hari, 2002; Lewald, Riederer, Lentz, & Meister, 2008).
This study aimed to explore the encoding of sound elevation in the human auditory cortex by
extracting voxel-wise elevation tuning curves and manipulating elevation perception. In the first
fMRI session, sound stimuli recorded through the participants’ unmodified ears were presented.
These stimuli included the participants’ native spectral cues and allowed us to measure encoding
of sound elevation under natural conditions. In two subsequent sessions, stimuli carrying modified
spectral cues were presented. Hofman et al. (1998) showed that adult humans can adapt to
modified spectral cues. Audio-sensory-motor training accelerates this adaptation (Carlile et al.,
2014; Parseihian & Katz, 2012; Trapeau, Aubrais, & Schönwiesner, n.d.). In the present study, we
modified the spectral cues of our participants by fitting silicone earmolds. Participants wore these
5.2. METHODS
99
earmolds for one week and received daily training to allow them to adapt to the modified cues.
Stimuli recorded through the modified ears were presented in two identical fMRI sessions, one
before and one after this adaptation. Any change in tuning between the two sessions is therefore
due to the recovery of elevation perception achieved during adaptation, rather than physical
features of the spectral cues, which allows us to directly link auditory cortex tuning to elevation
perception.
5.2
5.2.1
Methods
Participants
Sixteen volunteers took part in the experiment after having provided informed consent. One
participant did not complete the experiment due to a computer error during the first scanning
session. The 15 remaining participants (9 male, 6 female) were between 22 and 41 years of
age (26 years on average ± 4.7 standard deviation). They were right-handed as assessed by a
questionnaire adapted from the Edinburgh Handedness Inventory (R. C. Oldfield, 1971), had no
history of hearing disorder or neurological disease, and had normal or corrected-to-normal vision.
Participants had hearing thresholds of 15 dB HL or lower, for octave frequencies between 0.125
and 8 kHz. They had unblocked ear canals, as determined by a non-diagnostic otoscopy. The
experimental procedures conformed to the World Medical Association’s Declaration of Helsinki
and were approved by the local ethics committee.
5.2.2
Procedure overview
Each participant completed three fMRI sessions. In each session, participants listened passively
to individual binaural recordings of sounds emanating from different elevations. Stimuli played in
fMRI session 1 were recorded from the participants’ unmodified ears and thus included their native
spectral cues. Stimuli played in session 2 were recorded from participants’ ears with added silicone
earmolds. These earmolds were applied to the conchae to modify spectral cues and consequently
disrupt elevation perception. Session 3 was identical to session 2 but took place after participants
100
CHAPITRE 5. THE ENCODING OF SOUND SOURCE ELEVATION
had worn the earmolds for one week. To track performance and accelerate the adaptation process,
participants performed daily sound localization tests and training sessions in the free-field and
with headphones.
5.2.3
Apparatus
The molds were created by applying a fast-curing medical-grade silicon (SkinTite, Smooth-On,
Macungie, PA, USA) in a tapered layer of about 3 to 7 mm thickness on the cymba conchae and
the cavum conchae of the external ear, keeping the ear canal unobstructed.
Behavioral testing, training, and binaural recordings were conducted in a hemi-anechoic room
(2.5 × 5.5 × 2.5 m). Participants were seated in a comfortable chair with a neck rest, located in
the centre of a spherical array of loudspeakers (Orb Audio, New York, NY, USA) with a diameter
of 1.8 m. A LED was mounted at the center of each loudspeaker. In order to minimize location
cues caused by differences in loudspeaker transfer functions, we used a Brüel & Kjær 1/2-inch
probe microphone mounted on a robotic arm to measure these functions and designed inverse
finite impulse response filters to equalize amplitude and frequency responses across loudspeakers.
An acoustically transparent black curtain was placed in front of the loudspeakers to avoid
visual capture. A small label indicating the central location (0° in azimuth and elevation) was
visible on the curtain and served as a fixation mark.
A laser pointer and an electromagnetic head-tracking sensor (Polhemus Fastrak, Colchester,
VT, USA) were attached to a headband worn by the participant. The laser light reflected from the
curtain served as visual feedback for the head position. Real-time head position and orientation
were used to calculate azimuth and elevation of pointed directions.
Individual binaural recordings were taken with miniature microphones (Sonion 66AF31,
Roskilde, Denmark). Sound stimuli of both the closed-field behavioral tasks and fMRI sessions
were delivered through the same pair of S14 insert earphones (Sensimetrics, Maiden, MA, USA).
Sound localization tests, binaural recordings, and stimulus presentations during fMRI sessions
were controlled with custom Matlab scripts (Mathworks, Natick, MA, USA). Stimuli and recordings
5.2. METHODS
101
were generated and processed digitally (48.8 kHz sampling rate, 24 bit amplitude resolution) using
TDT System 3 hardware (Tucker Davis Technologies, Alachua, FL, USA).
5.2.4
Detailed procedure
Earmolds were fitted to the participants’ ears during their first visit. Fitting was done in
silence, and the molds were removed immediately after the silicone had cured (4–5 min). Individual
binaural recordings were then acquired using miniature microphones placed 2 mm inside of the
entrance to the blocked ear canal. Participants were asked not to move during the recordings
and keep the dot of the head-mounted laser on the fixation mark. Recordings were first acquired
from free ears. Without removing the microphones, the earmolds were then inserted for a second
recording and removed immediately afterwards.
To minimize procedural learning during the experiment and to make sure that participants
would have a good elevation perception of our stimuli before their first scan, participants completed
three practice sessions. Each practice session took place on a different day, was done without
molds, and consisted of a sound localization run, a training run, and a localization run again for
both free-field and earphone stimuli.
The first fMRI scanning session was then performed, in which binaural recordings from free
ears were presented. The second scanning session was performed on the next day. Participants
wore the molds during this session and binaural recordings taken with molds were presented.
Earmolds were inserted in silence right before the participants entered the scanner and were
removed immediately after the end of the scanning sequence.
From the next day onwards, participants wore the molds continuously. They were informed
that the earmolds would “slightly modify their sound perception”, but did not know the specific
effect of this modification. Once the molds were inserted, participants immediately performed two
localization runs (one with earphones, the other in the free field), followed by two training runs
(with earphones and free field). On each of the following seven days, participants completed a
sound localization run, a training run, and a localization run again for both free-field and earphone
stimuli.
102
CHAPITRE 5. THE ENCODING OF SOUND SOURCE ELEVATION
Participants were scanned for a third time after seven days wearing the molds. The third
scanning session was identical to the second one. Participants continued wearing the molds until
they performed a last localization run with the molds, less than 24 h after the last scanning
session.
5.2.5
Stimuli
All stimuli used in this experiment, including fMRI stimuli, consisted of broadband pulsed
pink noise (25 ms pulses interleaved with 25 ms silence). Stimuli were presented at 55 dB SPL in
all conditions to optimize elevation perception (Vliegen & Van Opstal, 2004).
During the free-field sound localization task and training, the pulsed pink noise was presented
directly through the loudspeakers. During the closed-field sound localization task and training,
as well as during fMRI sessions, stimuli were presented via MRI-compatible earphones. Stimuli
presented via earphones were individual binaural recordings of the pulsed pink noise presented
from loudspeakers at various locations. The locations of the stimuli presented in the different
tasks are displayed in Fig. 5.1.
Figure 5.1 – Stimuli locations in the different tasks. A) Speaker arrangement during the free-field
localization task. B) Stimulus locations during the closed-field localization task. C) Stimulus locations
during the closed-field training.
Seven elevations were presented during the fMRI sessions (−45° to +45° in 15° steps). Because
elevation perception is more accurate for azimuths away from the median plane (Carlile et al.,
1997; Makous & Middlebrooks, 1990; Wightman & Kistler, 1989a), and for sounds in the left
hemifield (Burke, Letsos, & Butler, 1994), our fMRI stimuli were recorded at 22.5° azimuth in
the left hemifield (Fig. 5.1.b). To ensure that binaural cues would be identical for each elevation
5.2. METHODS
103
presented, we normalized each elevation at the exact same ITD by shifting the left and right
channels to match the ITD measured in the 0° elevation recording, and the exact same ILD by
normalizing RMS amplitudes of the left and right channel to the amplitudes measured in the 0°
elevation recording. The overall intensity at each elevation and for each set of recordings (free
vs. molds) were also normalized to the same RMS amplitude to remove potential intensity cues.
Stimuli for the closed-field localization task were normalized in the same way as the fMRI stimuli.
The duration of the stimulus used in both sound localization tasks (free-field and closed-field),
as well as in the closed-field training task, was 225 ms, i.e. 5 pulses. It was 125 ms (3 pulses) in
the free-field training task and 4350 ms (87 pulses) during the fMRI sessions.
5.2.6
5.2.6.1
Localization tasks
Free-field localization task
The free-field localization task was similar to the one described by Trapeau et al. (n.d.). In
each trial a 225 ms pulsed pink noise was presented from one of 23 loudspeakers covering directions
from −45° to +45° in azimuth and elevation (see Fig. 5.1.a for speaker locations). Each sound
direction was presented was repeated five times during a run, in pseudorandom order. Participants
responded by turning their head and thus pointing the laser dot toward the perceived location.
Head position was measured and required to be within 2 cm in location and 2° in head angle of
the centre position.
5.2.6.2
Closed-field localization task
The procedure in the closed-field localization task was the same as in free-field, except that
stimuli were presented via MRI-compatible earphones instead of loudspeakers. Stimuli were
individual binaural recordings of the free-field stimulus presented from 31 different locations (see
Fig. 5.1.b for stimulus locations).
104
CHAPITRE 5. THE ENCODING OF SOUND SOURCE ELEVATION
5.2.6.3
Statistical analysis
Vertical localization performance was quantified by the elevation gain (EG), defined as the
slope of a linear regression line of perceived versus physical elevations (Hofman et al., 1998).
Perfect localization corresponds to an EG of 1, while random elevation responses result in an EG
of 0.
Behavioral EG was calculated on all locations except when reporting the closed-field EG
corresponding to a scanning session, where it was calculated using only the locations presented in
the scanner, i.e. −45° to +45° elevations at 22.5° azimuth in the left hemifield. The closed-field
EG reported for the first fMRI session corresponds to the EG taken during the last closed-field
localization test of the practice period, i.e. the test before the first fMRI session. The closed-field
EG reported for the second fMRI session (in which binaural recordings with molds were presented)
corresponds to the first closed-field localization test with molds. The closed-field EG reported for
the third fMRI session corresponds to a weighted average of the last localization test (with molds)
before this scan and the first test (also with molds) after the scan. The average was weighted by
the time separating the two localization tests and the scanning session.
5.2.7
Training tasks
Both training tasks involved auditory and sensory-motor interactions, which has been shown
to accelerate the adaptation process (Carlile et al., 2014; Parseihian & Katz, 2012).
5.2.7.1
Free-field training task
The free-field training sessions were 10 min long and the procedure was inspired by Parseihian
and Katz (2012). A continuous train of stimuli (each stimulus was 125 ms and consisted of
3 pulses of pink noise) was presented from a random location in the frontal field (between ±45°
elevation and ±90° azimuth, 61 loudspeakers). The delay between stimuli depended on the angular
difference between the sound direction and the participant’s head direction; the smaller the
difference, the faster the rate. Participants were instructed to identify the sound source location as
5.2. METHODS
105
fast as possible by pointing their head to the perceived location. Once the participants kept their
head in an area of 6° radius around the target location for 500 ms, the stimulus was considered
found and the location was switched to a random new loudspeaker with the constraint that the
new location was at least 45° away from the previous one. Participants were instructed to find as
many locations as possible during the training run.
5.2.7.2
Closed-field training task
The closed-field training consisted of paired auditory and visual stimuli. The auditory stimuli
were identical to the ones used in the closed-field localization task (5 pulses of pink noise with a
total duration of 225 ms), and were also presented through MRI-compatible earphones. Five such
stimuli were presented in each trial from a given loudspeaker with a 500 ms onset asynchrony,
and trials were separated by 1 s pauses without any stimulation. Each trial was presented
from a pseudorandom loudspeaker in the frontal field (Fig. 5.1.c) The visual stimuli were LEDs
blinking in synchrony with the acoustic stimuli and at the location corresponding to the sound
source in the binaural recording in each stimulus presentation. Because binaural recordings were
taken while participant’s head pointed at the central location, participants were asked to keep
their head (and the laser dot) pointed to this position during stimulus presentation. The task
was automatically paused when the head position or orientation was incorrect. To introduce
sensory-motor interactions, participants were asked to shift their gaze toward the blinking LED.
To ensure that participants attended the sound stimuli, they were asked to detect decreases
in sound intensity that occurred infrequently (28 %) and randomly in the third, fourth, or fifth
noise burst (Recanzone, 1998). Participants indicated a detection by pressing a button, which
then briefly paused the task. To add a sensory-motor component to the task, participants pointed
their head toward the position of the detected deviant sound. Once their head direction was held
for 500 ms in a 6° radius area around the target location, the target was considered found and
feedback was given to the participant by briefly blinking the LED at the target location. The task
was restarted when the head position returned at the central location.
During one training run, each location was presented seven times and a decrease in intensity
106
CHAPITRE 5. THE ENCODING OF SOUND SOURCE ELEVATION
occurred twice per location. One run took about 8 minutes to complete. The amount of decrease
in intensity was adjusted by a 1-up 2-down staircase procedure so that participants achieved a
hit rate of 70.71 %. The initial intensity decrement was 10 dB, and participants typically ended
between 2 and 4 dB.
5.2.8
5.2.8.1
FMRI data acquisition
Imaging protocol
Functional imaging was performed on a 3 T MRI scanner (Trio, Siemens Healthcare, Erlangen,
Germany), equipped with a 12 channel matrix head-coil, using an echo-planar imaging sequence
and sparse sampling (Hall et al., 1999) to minimize the effect of scanner noise artifacts (gradient
echo; repetition time (TR) = 8.4 s, acquisition time = 1 s, echo time = 36 ms; flip angle = 90°).
Each functional volume comprised 13 slices with an in-plane resolution of 1.5 × 1.5 mm and a
thickness of 2.5 mm (field of view = 192 mm). The voxel volume was thus only 5.625 µl, about a
fifth of a more commonly used 3 mm3 voxel. The slices were oriented parallel to the average angle
of left and right lateral sulci (measured on the structural scan) to fully cover the superior temporal
plane in both hemispheres. As a result, the functional volumes included Heschl’s gyrus, planum
temporale, planum polare, and the superior temporal gyrus and sulcus. For each participant
and each session, a high-resolution (1 × 1 × 1 mm3 ) whole-brain T1-weighted structural scan
(magnetization-prepared rapid gradient echo sequence) was obtained for anatomical registration.
5.2.8.2
Procedure
During the fMRI measurements, the participants listened to the sound stimuli while watching
a silent nature documentary. Participants were instructed to be mindful of the sound stimulation,
but no task was performed in the scanner.
Each session was divided into two runs of 154 acquisitions including one initial dummy
acquisition, for a total of 308 acquisitions per session and per subject. Each acquisition was
directly preceded by either a 4350 ms long stimulus (positioned in the TR of 8.4 s so that the
5.2. METHODS
107
maximum response is measured by the subsequent volume acquisition) or silence. In a session,
each of the 7 sound elevations was presented 34 times, interleaved with 68 silent trials in total.
Spatial stimuli and silent trials were presented in a pseudorandom order, so that the angular
difference between any two subsequent stimuli was greater than 30° and silent trials were not
presented in direct succession. Stimulus sequences in the three scanning sessions were identical for
each participant, but differed across participants.
5.2.9
FMRI data analysis
The functional data were preprocessed using the MINC software package (McConnel Brain
Imaging Center, Montreal Neurological Institute, Montreal, Canada). Preprocessing included head
motion correction and spatial smoothing with a 3 mm full-width half-maximum 3-dimensional
Gaussian kernel. Each run was linearly registered to the structural scan of the first session and
to the ICBM-152 template for group averaging. General linear model estimates of responses to
sound stimuli vs. silence were computed using fMRISTAT (Worsley et al., 2002). A mask of
sound responsive voxels (all sounds vs. silence and each elevation vs. silence) in each session was
computed for each participant and all further analysis was restricted to voxels in the conjunction
of the masks from the three sessions. Voxel significance was assessed by thresholding T-maps at
p < 0.05, corrected for multiple comparisons using Gaussian Random Field Theory (Worsley
et al., 1996). Because our stimuli were presented in the left hemifield and due to the mostly
contralateral representation of auditory space (Krumbholz, Schönwiesner, Cramon, et al., 2005;
Palomäki et al., 2005; Pavani et al., 2002; Trapeau & Schönwiesner, 2015; Woods et al., 2009), we
analyzed data only in the right hemisphere.
We computed voxel-wise elevation tuning curves by plotting the response size in each elevation
vs. silence contrast. Because we were interested in the shape rather than the overall magnitude
of the tuning curves, tuning curves were standardized by subtracting the mean and dividing
by the standard deviation. We determined the elevation preference of each voxel by computing
two measures: the centre of gravity of the voxel tuning curve (COG) and the slope of the linear
regression of standardized activation vs. standardized elevation (analogous to the behavioral EG,
108
CHAPITRE 5. THE ENCODING OF SOUND SOURCE ELEVATION
we refer to this slope as the tuning curve EG). To avoid selection bias in the mean tuning curves,
we selected voxels according to their COG or EG in one of the two functional runs and extracted
tuning curves from the other run (and inversely; cross-validation).
For all neuroimaging data averaged across participants, standard error was obtained by
bootstrapping the data 10000 times, using each participant’s mean response.
5.3
5.3.1
Results
Behavioral results
Participants had normal elevation perception with a mean EG of 0.75 ± 0.05 (mean ± standard
error) in the first free-field test. The three practice sessions slightly increased EG (0.81 ± 0.04).
Practice sessions were important especially for the closed-field condition, because participants
required some training to perform as well in the less natural closed-field as in the free-field. The
average EG in the first practice session was 0.42 ± 0.06, which improved to free-field performance
by the third session (0.81 ± 0.05). Practically all of this increase happened in the first practice
session and performance was stable from the second to the third practice session.
The insertion of the earmolds produced marked decrease in the free-field EG (0.38 ± 0.05),
and presenting individual binaural recordings taken with earmolds in the closed-field reduced the
EG to about the same level (0.34 ± 0.06). After seven days of wearing the molds and daily
training sessions, the mean EG recovered to 0.6 ± 0.06 in the free-field and to 0.52 ± 0.05 in the
closed field. Figure 5.2 shows the EG time course for all conditions, during the practice and the
adaptation periods. Individual differences in adaptation were large and ranged from full recovery
to no adaptation.
The closed-field EG calculated only at the locations presented in the scanner (22.5° azimuth
in the left hemifield) was, 0.86 ± 0.06, for the first scanning session; 0.42 ± 0.07, for the second
scanning session; 0.56 ± 0.07, for the third scanning session (diamonds in Fig. 5.2).
5.3. RESULTS
109
Figure 5.2 – Time course of sound localization performance. Time course of EG averaged across
all participants (n = 15), shown for the practice period (ears free), and for the adaptation period (with
molds). Grey lines represent the free-field EG, black lines represent the closed-field EG, error bars indicate
standard error. EG was calculated from all target locations. Black diamond symbols represent the
closed-field EG calculated using only the locations corresponding to the fMRI stimuli, i.e. seven elevations
from −45° to +45° at 22.5° azimuth in the left hemifield.
5.3.2
Elevation tuning curves with free ears
Sound stimuli evoked significant activation in the auditory cortex of all participants. We
computed elevation tuning curves for all sound responsive voxels, and observed signal changes
that co-varied with elevation. The average tuning curve across voxels and participants showed a
decrease of activation level with increasing elevation (Fig. 5.3.a). This decrease was observed in all
participants, although the shape and slope of the mean tuning curves differed between participants.
The same response pattern was found both hemispheres, but as expected, the activation was
stronger and more widespread in the contralateral right hemisphere, and we thus only report data
from that hemisphere.
The average tuning curve indicated that the majority of voxels may represent increasing
elevation as an approximately linear decrease in activity. To determine whether there were
any subpopulations with differing tuning, we plotted the (cross-validated) mean tuning curve
across all voxels that preferred a given elevation (tuning curve COG) or showed similar EG. All
of these tuning curves were broad with negative slope (Fig. 5.3.b–f). Cross-validation showed
110
CHAPITRE 5. THE ENCODING OF SOUND SOURCE ELEVATION
that single-voxel elevation preferences to mid- or high-elevations were not repeatable from one
run to another and thus due to noise. This is also supported by the distributions of the COG
and EG across all sound responsive voxels and participants, which exhibited only one distinct
population, centered (mode) at −15.12° COG and −0.84 EG (Fig. 5.3.g, h). We also applied
a dimensionality-reduction technique that excels at clustering high-dimensional data (t-SNE,
Van der Maaten & Hinton, 2008). While this procedure accurately separated tuning curves of
voxels tuned to the left and right hemifield from our previous study on horizontal sound directions,
it did not separate the present elevation tuning curves into distinct groups.
Figure 5.3 – Mean elevation tuning curve of all sound-responsive voxels in the right hemisphere. A–F) Mean elevation tuning curves. Shaded areas indicate the standard error across participants.
A) Mean elevation tuning curve of all sound-responsive voxels. Solid line is the mean tuning curve, dashed
line is its linear regression. The slope of this linear regression is referred to as the elevation gain (EG).
B–F) Cross-validated tuning curves binned by COG or EG (voxels selected in one run, mean tuning curve
extracted from the other run and inversely). Mean tuning curves of voxels grouped by COG are shown
in black. Mean tuning curves of voxels grouped by EG are shown in grey. In most of the bins these two
curves were practically identical. The number of voxels corresponds to the mean number of voxels in each
group across participants. G) Distribution of tuning curve COG. H) Distribution of tuning curve EG.
The group average highlighted two regions outside of auditory cortex that responded to our
5.3. RESULTS
111
stimuli: the right parietal cortex and medial geniculate body (MGB). Tuning curves extracted
from the right parietal cortex resembled those from the auditory cortex, but appeared noisier and
flatter. The mean tuning curve in that area had a negative COG (−3°) and EG (−0.23). Tuning
in the MGB appeared to differ from that found in auditory cortex; tuning curves had slightly
positive COG (9.4°) and EG (0.47).
Because the prevalent shape of tuning in auditory cortex appeared to be a linear decrease
with increasing elevation, we modeled a linear effect of elevation to highlight areas of the auditory
cortex specifically involved in elevation coding. We selected voxels that exhibited positive or
negative activation in this contrast in any of the three sessions. At this stage of the analysis,
one participant had to be excluded because of a malfunction of the earphones during the second
scanning session. Of the remaining 14 participants, 10 displayed significant responses to the linear
effect of elevation contrast (Fig. 5.4).
Figure 5.4 – Distribution of tuning curve elevation gain across auditory cortex. Tuning curve
EG of sound-responsive voxels is superimposed on an axial section of each participant’s T1-weighted scan
showing the right temporal lobe. Each slice was tilted so that it is parallel to the Sylvian fissure. The
fixed-effects group average is superimposed on a section of the ICBM-152 template. The white outlines
delineate the significant voxels in a linear effect of elevation contrast.
Activation decreases with increasing elevation in all significantly active voxels in this contrast;
we found no voxels whose activity increased with elevation. The mean tuning of voxels in this
contrast had the same shape as the one observed in all sound-responsive voxels, but was less noisy.
112
CHAPITRE 5. THE ENCODING OF SOUND SOURCE ELEVATION
5.3.3
Effect of the molds and adaptation on elevation tuning
The above results demonstrate the relationship between physical sound position on the vertical
axis and auditory cortex activity, but our manipulation of spectral cues and elevation perception
allowed us to relate the shape of these tuning curves directly to elevation perception. If auditory
cortex encodes the perception of vertical sound location by a decrease in activity with increasing
elevation, this tuning should be less informative (flatter and/or noisier tuning curves) when
elevation perception is reduced by the earmolds, and it should recover when participants adapt to
the earmolds and regain elevation perception.
Figure 5.5 – Behavioral and tuning curve elevation gain. A) Participants who adapted the most
to the earmolds. B) Participants who did not improve while wearing the earmolds. C) Participants who
were not disturbed by the earmolds. Error bars indicate the standard error across participants.
Not all participants reacted equally to the molds. Four participants showed the expected
pattern, in which elevation perception (measures as behavioral EG) was initially reduced by
the molds and recovered by the last scanning session (Fig. 5.5.a). Voxel-wise tuning curves in
these participants flattened and were noisier when the molds were inserted, but recovered to
approximately the original shape observed for free ears after participants has adapted to the molds
(Fig. 5.5.a). Examples of all voxel-wise tuning curves measured in one participant are shown
for each session in Fig. 5.5.b–d. The change in EG calculated from the tuning curves closely
resembled the one calculated from the behavioral data (Fig. 5.5.a).
Four other participants did not adapt measurably during the 7-day training period, which was
5.4. DISCUSSION
113
Figure 5.6 – Elevation tuning curve of significant voxels in an elevation effect contrast. A)
Mean elevation tuning curves averaged across the four participants who adapted the most, for each session.
Green curve represents session 1 (ears free), orange curve represents session 2 (with molds), blue curve
represents session 3 (with molds, after adaptation). Shaded areas indicate the standard error across
participants. B–D) Elevation tuning curves of all significant voxels for one representative participant for
each session (B: session 1, C: session 2, D: session 3). Each curve represents the response standardized
activation for one voxel for the different elevations. The darkness of the curves is proportional to the
average response before standardization. Mean tuning curves are given by the bold colored lines.
not unexpected because the period was relatively short. These participants showed the expected
initial decrease in EG when the molds were inserted, but EG did not recover by the third session
(Fig 5.5.b). The EG calculated from the voxel-wise tuning curves showed a corresponding drop in
session two and remained at this lower level in session 3.
The two remaining participants were unexpectedly not disturbed by the molds and their
behavioral EG was constant across the three sessions. Again, this pattern was clearly reflected
in the EG calculated for the tuning curves, which also remained approximately constant across
sessions (Fig. 5.5.c).
5.4
5.4.1
Discussion
Summary
The purpose of this study was to explore the coding of sound source elevation in the human
auditory cortex. Using high-resolution fMRI and an experience-dependent adaptation paradigm,
114
CHAPITRE 5. THE ENCODING OF SOUND SOURCE ELEVATION
we demonstrated that auditory cortex encodes sound source elevation by a rate code with broad
voxel-wise tuning functions preferring lower elevations.
5.4.2
Behavioral adaptation to modified spectral cues
Participants had normal elevation perception, and consistent with previous studies, the
insertion of earmolds produced a marked decrease in elevation performance (Hofman et al., 1998;
Trapeau et al., n.d.; M. M. V. Van Wanrooij & Van Opstal, 2005). Most participants recovered a
portion of their elevation perception after wearing the molds during seven days and taking part in
daily training sessions. The adaptation was slightly lower with the earphones than in free-field,
which was expected because the earphone stimulation is experienced only for 8 min during the
daily training sessions, whereas participants experienced free-field sound stimulation with molds
all day long for seven days.
As observed in previous earmold adaptation studies (Carlile & Blackman, 2013; Hofman et al.,
1998; Trapeau et al., n.d.; M. M. V. Van Wanrooij & Van Opstal, 2005), individual differences
in adaptation were large and ranged from full recovery to no adaptation. Various factors might
explain these differences, such as the individual capacity for plasticity or differences in lifestyle
that may have lead to different amounts of daily sound exposure or multisensory interactions
(Carlile, 2014). The acoustical effects of the earmolds vary from one ear to another. In a previous
study that used the same earmold fitting technique and material (Trapeau et al., n.d.), acoustical
differences between directional transfer functions with and without molds explained a portion of
individual differences in the amount of adaptation.
We ensured that participants reached stable performance in the second and third practice
session to exclude effects of procedural learning during the main experiment. Moreover, practice
sessions were critical in the less natural closed-field task, because participants initially performed
worse than in the free-field task. Only closed-field stimuli can be presented in typical human
neuroimaging setups, and the difficulty to achieve proper elevation perception for such stimuli
was a limitation in previous neuroimaging studies (Fujiki et al., 2002; Lewald et al., 2008). To
circumvent this problem we trained participants in an audio-visual sensory-motor task using the
5.4. DISCUSSION
115
same earphones as in the scanner, which allowed participants to achieve accurate perception of
the fMRI stimuli.
5.4.3
Elevation tuning in auditory cortex
Elevation tuning curves were wide and displayed an approximately linear decrease in activation
with increasing elevation. Modifying spectral cues with earmolds, and thereby reducing elevation
perception, resulted in noisier and generally flatter tuning curves. Stimuli in sessions 2 and 3
were physically identical, nevertheless tuning curves measured with these stimuli in session 3
(after adaptation) reflected the perceptual adaptation to the modified cues. In participants who
adapted well, the shape of the tuning curves after adaptation re-approached that measured with
free ears. The correspondence that we observed between behavioral EG (elevation perception) and
tuning curve EG (brain activity), demonstrates that the auditory cortex represents the perceived
elevation of a sound source, rather than physical features of the spectral cues. At the population
level, cortical neurons may thus encode perceived sound source elevation using the slope of the
tuning curves.
All sound-responsive voxels seemed to respond in a similar fashion, and no subpopulations
with different response patterns were found. Why would cortical neurons respond most strongly
to lower elevations? From an evolutionary perspective, one could argue that because humans
are standing on their feet, most events of interest occur below eye level. But such an argument
would imply enhanced localization accuracy for low elevations, which has been found (Makous
& Middlebrooks, 1990; S. R. Oldfield & Parker, 1984b). On the other hand, preference for low
elevation might come from the physical nature of the spectral cues due to general ear shape.
Previous plots of directional transfer functions show trends for more pronounced spectral notches
at low elevations than at high elevations (Cheng & Wakefield, 1999; Middlebrooks, 1997, 1999;
Trapeau et al., n.d.). An early stage in the processing of spectral cues is believed to be carried
out by notch-sensitive neurons of the dorsal cochlear nucleus (Imig et al., 2000; E. D. Young et
al., 1992), and by their projections to type O units of the central nucleus of the inferior colliculus
(Davis et al., 2003). A higher spectral variability of spectral cues at low elevations might result
116
CHAPITRE 5. THE ENCODING OF SOUND SOURCE ELEVATION
in an increased sensitivity of these cells to low elevations. The change in tuning curve with
adaptation measured with identical stimuli demonstrated that spectral variability does not solely
determine the shape of cortical elevation tuning functions. However, such an asymmetry in the
physical nature of the cues may still underlie the general preference for low rather than high
elevations.
Although we have demonstrated the shape of sound elevation tuning for one azimuthal direction
only, there is no reason to assume stark differences at other directions in the frontal field. However,
tuning may well be different in the rear field.
The supine position in the scanner may influenced our results. Body tilt affects sound
localization judgments, at least on the horizontal plane (Comalli & Altshuler, 1971; Lackner,
1974), and sound location is perceived in a world coordinate reference frame (Goossens &
Van Opstal, 1999; Vliegen, Grootel, & Van Opstal, 2004). At the level of the auditory cortex it
is still unclear whether the representation is craniocentric (Altmann, Wilczek, & Kaiser, 2009),
or both craniocentric and allocentric (Schechtman, Shrem, & Deouell, 2012). In the event of an
allocentric representation at this early stage of processing, the position in the scanner might have
influenced the shape of the elevation tuning curves.
We observed a different tuning in the medial geniculate body (MGB) from that measured in
the cortex, suggesting that elevation tuning may be transformed in the thalamus. However, our
MGB results have to be taken with precaution, because the study was not specifically designed to
measure tuning in subcortical areas, and, to our knowledge, no physiological data on elevation
tuning in the MGB is available.
Although we observed experience-dependent changes in auditory cortex, we cannot say whether
this plasticity emerges in the cortex or already in subcortical structures. The corticofugal system
has been suggested to play a role in the modification of subcortical sensory maps in response to
sensory experience (Yan & Suga, 1998) and plays a critical role in experience-dependent auditory
plasticity (Suga et al., 2002). It may also play a role in the adaptation to modified spectral cues,
because these cues are extracted subcortically and a representation of sound elevation might
already exist in the inferior colliculus (as it does for azimuth). In addition, Bajo et al. (2010)
5.4. DISCUSSION
117
demonstrated that removal of corticofugal projections abolishes experience-dependent recalibration
of auditory spatial localization, although this result may only apply to reweighting of different
cues for horizontal localization.
5.4.4
Comparison with horizontal coding
The coding that we observed for sound elevation has some common features with the coding
of horizontal sound direction in the human auditory cortex (hemifield code: Magezi & Krumbholz,
2010; Salminen, Tiitinen, Yrttiaho, & May, 2010; Salminen et al., 2009). In both dimensions, the
tuning is broad and sound direction seems to be encoded by the slope rather than the peak of the
tuning curves. Elevation tuning curves closely resemble azimuthal tuning curves extracted in a
previous study by our group using a similar experimental paradigm (Trapeau & Schönwiesner,
2015). The main difference between the horizontal and vertical space coding is that two distinct
populations appear to code the horizontal space, with each population preferring one hemifield
and being predominantly distributed in the contralateral hemisphere. Elevation, however, seems
to be represented by just one population, distributed in both hemispheres. Since stimuli were
located only in the left hemifield, we cannot test for hemispheric difference in elevation coding.
Regions of the auditory cortex involved in the coding of vertical and horizontal auditory space
seem to largely overlap (compare with Trapeau & Schönwiesner, 2015, Fig. 3.10). Single-unit
recordings demonstrated that cortical neurons are sensitive to multiple localization cues (Brugge
et al., 1994; Mrsic-Flogel et al., 2005; Xu et al., 1998). Since a similar coding strategy seems to
be used for both dimensions of auditory space, this raises the question of how the information
arising from one or the other dimension is differentiated. If there was only one population for each
dimension, firing rates would be ambiguous and represent several pairs of azimuth and elevation.
Horizontal directions are represented by two populations with inverse tuning, which is sufficient
to remove this ambiguity. Similarly, sound elevations in the rear field, which we have not studied,
might be encoded by a second elevation-specific population preferring high elevations to avoid
ambiguous encoding.
118
CHAPITRE 5. THE ENCODING OF SOUND SOURCE ELEVATION
5.4.5
Conclusion
Our results demonstrate that voxel-wise tuning in auditory cortex reflects the perception of
sound source elevation, which appears to be encoded by a rate code with broad tuning functions
preferring lower elevations. This coding was observed for all sound-responsive voxels, suggesting
mechanisms for the integration of vertical and horizontal space representations.
CHAPITRE 6
DISCUSSION GÉNÉRALE
Cette recherche avait pour objectif d’étudier la plasticité du système auditif humain dans sa
capacité à localiser les sources sonores. Dans chacune des quatre études regroupées dans cette
thèse, cette plasticité a été observée. En introduisant artificiellement un retard d’une durée proche
de l’ITD maximale que peut procurer l’écartement de nos oreilles, les deux premières études ont
démontré qu’il était possible de rapidement s’adapter à des ITDs largement décalées. La capacité
d’adaptation à des indices spectraux modifiés a été observée dans les deux études suivantes. L’étude
de la plasticité en localisation auditive par des expériences comportementales et de neuroimagerie,
a permis d’émettre des hypothèses sur l’encodage des indices de localisation auditive, ainsi que
sur les mécanismes adaptatifs par lesquels cette plasticité s’exprime. Ce chapitre est l’occasion
de discuter les résultats obtenus dans les différentes études, d’examiner leurs implications et
potentielles limites, en ayant une vision d’ensemble de la recherche menée au cours de ce doctorat.
6.1
Encodage des indices binauraux et plasticité
Les deux premières études ont démontré sans équivoque que le système auditif pouvait s’adapter
rapidement, et parfois même en seulement quelques heures, à un important décalage des ITDs. En
1995, Javer et Schwarz suggéraient déjà qu’une telle rapidité n’était théoriquement pas compatible
avec le modèle de Jeffress d’encodage des ITDs et que certains mécanismes additionnels devaient
exister. Vingt ans plus tard, nous savons que le modèle de Jeffress semble ne pas s’appliquer
aux mammifères et quelques études récentes suggèrent que ce constat serait également valable
pour l’être humain (cf. 1.1.3 Encodage des indices acoustiques). Le système auditif humain
représenterait alors le plan horizontal de l’espace auditif par deux populations de neurones à
sélectivités directionnelles opposées. Une population préférerait alors l’hémichamp gauche et l’autre
l’hémichamp droit. L’étendue de la sélectivité de chacune de ces deux populations serait large
et serait maximale pour l’extrémité d’un des deux hémichamps. La comparaison entre l’activité
119
120
CHAPITRE 6. DISCUSSION GÉNÉRALE
des deux populations de neurones permettrait alors de déduire la provenance d’un son sur le
plan horizontal. En raison de la très forte controlatéralité observée par les études physiologiques
animales, il a d’abord été suggéré que les deux populations occupaient chacune un hémisphère et
que c’est la comparaison entre l’activité des deux hémisphères qui permettait la localisation sur le
plan horizontal (McAlpine, 2005). Mais ce postulat est en désaccord avec les études de lésions
unilatérales (ex. Haeske-Dewick, Canavan, & Hömberg, 1996 ; Jenkins & Masterson, 1982), qui
montrent que même si la précision en est réduite1 , il est encore possible de localiser des sons sur
le plan horizontal avec un seul hémisphère fonctionnel. Un hémisphère seul contiendrait alors
le matériel neuronal nécessaire pour pouvoir localiser des sons sur le plan horizontal (Schnupp,
Nelken, & King, 2011). Plus récemment, il a été proposé que chaque hémisphère devait contenir
une portion de chacune des deux populations, même si leur répartition resterait majoritairement
controlatérale (hemifield code : Salminen et al., 2009, 2012).
Les résultats fMRI présentés dans le deuxième article concordent parfaitement avec ce modèle.
La plupart des voxels du cortex auditif présentaient des courbes d’accord larges et dont le maximum
se situait à des positions extrêmes d’un hémichamp ou l’autre. Ces observations ont été confirmées
grâce à l’élaboration d’un modèle de représentation de l’espace auditif par des courbes d’accord
neuronales. Un algorithme génétique nous a permis de trouver les valeurs optimales de chacun des
paramètres de ce modèle, afin qu’il reflète au mieux les données réellement observées. L’un des
paramètres du modèle était la proportion de neurones répondant comme suggéré par l’hemifield
code contre ceux répondant suivant le modèle de Jeffress. À chacune des 50 convergences de
l’algorithme génétique, un schéma dans lequel la grande majorité des neurones répondait suivant
l’hemifield code était proposé. Nous pensons alors que nos résultats constituent une forte preuve
de l’existence de ce type d’encodage pour la représentation de l’espace auditif horizontal dans le
cortex auditif. Nous aurons été les premiers à fournir cette preuve en employant la fMRI et en
montrant les courbes d’accord directionnelles des voxels du cortex auditif.
Le modèle nous a également aider à mieux comprendre certains résultats qui étaient surprenants
de prime abord. Pour simuler la situation avec bouchons d’oreille numériques, les stimuli de chaque
1
En particulier dans l’hémichamp controlatéral à la lésion.
6.1. ENCODAGE DES INDICES BINAURAUX ET PLASTICITÉ
121
session fMRI comprenaient le retard de 625 µs dans le canal gauche. En moyenne, ces stimuli
étaient perçus avec un décalage de 45° vers la droite avant l’adaptation. Cependant, les courbes
d’accord directionnelles moyennes de chaque hémisphère se croisaient à quelques 8° à gauche de
la ligne médiane (fig. 3.8) et les distributions des centres de gravité (COG, center of gravity) de
chaque hémisphère étaient positionnées de manière symétrique, à 15° de chaque côté de la ligne
médiane (fig. 3.9). Étant donné le décalage perceptif de 45°, nous nous attendions plutôt à ce que
le croisement des courbes moyennes et la position des distributions des COGs soient décalés par
rapport à la ligne médiane. Les courbes et distributions construites à partir du modèle et de ses
valeurs de paramètres optimales trouvées par l’algorithme génétique, ressemblaient néanmoins de
près aux courbes obtenues expérimentalement. De plus, l’algorithme génétique avait trouvé pour
le paramètre shift 2 , une valeur optimale de 59°, dans la direction prévue. Ceci montre que les
positions des courbes et distributions observées sont bien compatibles avec la présence du décalage
perceptif. Mais pourquoi ce décalage n’est-il pas visible sur ces figures ?
Au moment d’écrire ce chapitre, un nouvel examen des résultats de cet article nous a permis de
répondre à cette question. Si les courbes d’accord sont bien décalées d’une soixantaine de degrés,
alors la courbe moyenne de l’hémisphère gauche devrait avoir son maximum autour de 30° à droite.
C’est le cas pour la courbe modélisée et cela semble l’être également pour les données fMRI. Du
côté de l’hémisphère droit, le maximum devrait se trouver autour de −150°. Ceci est impossible à
observer sur les données fMRI car la fenêtre d’analyse ne couvre que ±60°. Cependant, si c’est
le cas, cela veut dire que l’on n’observe que la partie minimale de la courbe de l’hémisphère
droit, et seulement la partie maximale de la courbe de l’hémisphère gauche. Comme les données
sont normalisées3 , la partie haute de la courbe de l’hémisphère gauche et la partie basse de celle
de l’hémisphère droit, seraient alors placées à hauteur équivalente sur l’axe des ordonnées. On
remarque sur la figure 3.12 que cela semble être le cas. L’introduction de ce biais de placement
des courbes par la normalisation déplace leur point de croisement et explique pourquoi il est si
proche de la ligne médiane et non à des valeurs avoisinant les 60°.
2
3
Qui décale l’azimut à l’entrée du modèle.
Car on veut observer et analyser la forme des courbes d’accord avant toute autre propriété.
122
CHAPITRE 6. DISCUSSION GÉNÉRALE
Nous ne pouvons pas agrandir la fenêtre d’analyse des données fMRI, cependant ceci est
possible avec le modèle. Un agrandissement de la fenêtre d’analyse à ±180° permet de couvrir
toute l’étendue des courbes d’accord du modèle et d’éviter le biais introduit par la normalisation.
Le résultat est visible figure 6.1. Les courbes se croisent bien à un azimut proche du shift de 59°
proposé par l’algorithme génétique.
Figure 6.1 – Courbes d’accord directionnelles moyennes créées à partir du modèle. Courbes
d’accord moyennes du modèle calculées sur une plage d’azimuts de ±180°, plutôt que celle de ±60° avec
laquelle les courbes sont calculées en figure 3.12. Ainsi calculées, la position en ordonnée des courbes
d’accord n’est pas biaisée par la normalisation et les courbes se croisent à environ 58° pour la session 1 et
51° pour la session 2.
Concernant les distributions des COG, leur placement relativement à la ligne médiane s’explique
par le fait que pour des courbes traversant tout l’espace d’analyse, le COG dépend plus de la pente
de la courbe que de sa position. Une courbe de pente positive aura un COG positif. Les pentes
absolues des courbes étant assez proches, les distributions des COGs sont symétriques par rapport
à l’axe médian. Une manipulation des paramètres du modèle montre que plus le paramètre shift
est proche de zéro, plus ces distributions sont écartées, et inversement, plus le shift augmente,
plus ces distributions se rapprochent de la ligne médiane. Ces dernières observations avaient déjà
été faites dans l’article.
L’aspect le plus important des distributions des COG est la hauteur de chaque distribution, car
ces hauteurs reflètent la taille des populations de neurones qui préfèrent l’hémichamp gauche ou
l’hémichamp droit. La figure 3.9) montre que le modèle a très fidèlement reproduit les distributions
6.1. ENCODAGE DES INDICES BINAURAUX ET PLASTICITÉ
123
observées en session 1, alors que le résultat est plus mitigé pour la session 2. En session 2, la
distribution des COGs observée pour l’hémisphère droit augmente nettement par rapport à
la session 1. Cette augmentation est beaucoup moins nette dans les résultats du modèle et la
distribution modélisée ne reflète alors pas complètement les données. Aucune des 50 solutions
générées par l’algorithme génétique n’est arrivée à reproduire cette augmentation de la taille de
la distribution des COGs dans l’hémisphère droit. Ceci est forcément le reflet d’une faiblesse du
modèle, ce qui suit explique laquelle.
Les données fMRI présentées dans l’article montraient une augmentation, entre le première et
la deuxième session, du nombre de voxels répondant de manière significative dans l’hémisphère
droit. Nous avions alors suggéré que ce changement de latéralisation hémisphérique devait être
causé, soit par un changement de la taille relative des deux populations neuronales, soit par
un changement de sélectivité de ces populations. Les deux seuls paramètres du modèle qui ne
présentaient pas des valeurs similaires entre les solutions des sessions 1 et 2 étaient la direction
préférée des populations (qui passe de 94° à 89°) et le shift à l’entrée du modèle (qui diminue de
59° à 52°). Nous avions alors conclu qu’en plus du changement de latéralisation hémisphérique, un
petit shift, c’est-à-dire un déplacement de la sélectivité neuronale, semblait être un des corrélats
de l’adaptation aux ITDs décalées. Cependant, lors de l’évaluation des paramètres du modèle par
l’algorithme génétique, la taille en nombre de voxels de chaque hémisphère correspondait à la
latéralisation hémisphérique réellement observée. Ce paramètre était donc fixe, et le shift était
alors l’un des seuls paramètres avec lequel l’algorithme génétique pouvait jouer pour répliquer les
données observées en session 2. De plus, le paramètre qui déterminait le niveau de controlatéralité
dans la distribution hémisphérique des deux populations neuronales était le même pour les deux
hémisphères. Cela implique que la controlatéralité du modèle était forcément symétrique entre les
deux hémisphères. Ceci n’a pas freiné l’algorithme génétique pour trouver une très bonne solution
pour la session 1, mais il est probable que ce soit ce qui l’a empêché de trouver une aussi bonne
solution pour la session 2. Cette propriété de symétrie de la controlatéralité avait été implémentée
au modèle pour limiter la convergence de l’algorithme génétique vers des maxima locaux, mais
il est très probable qu’elle ait dissimulé une partie des résultats. L’algorithme génétique n’avait
124
CHAPITRE 6. DISCUSSION GÉNÉRALE
en effet pas de contrôle sur la taille relative des deux populations neuronales dans chacun des
deux hémisphères. L’idée que cette propriété ait freiné l’algorithme génétique est renforcée par
l’observation dans les données fMRI d’un changement du niveau de controlatéralité des préférences
aux stimuli avec ITDs décalées dans l’hémisphère droit seulement.
C’est pour ces raisons qu’à travers le présent chapitre, nous nuançons l’hypothèse émise dans
le deuxième article de déplacement de sélectivité neuronale comme mécanisme adaptatif à des
ITDs décalées. Les données ne permettent pas d’émettre de conclusion ferme, mais l’hypothèse
d’un changement de la taille relative des deux populations neuronales4 ne doit pas être mise de
côté. Si l’encodage des indices binauraux tient en partie grâce à la comparaison entre l’activation
des deux populations à sélectivité opposée comme proposé par McAlpine (McAlpine, 2005), il est
probable qu’un des mécanismes adaptatifs soit de maintenir la balance entre ces deux populations.
Avant adaptation aux ITDs décalées, sur l’ensemble des voxels des deux hémisphères dont nous
avons extrait les courbes d’accord, 32 % avaient un COG à gauche de la ligne médiane des stimuli
présentés, contre 68 % à droite5 . Après adaptation ces valeurs sont passées à 37 % pour la gauche
et 63 % pour la droite. Pour compenser le décalage perceptif vers le droite, un changement des
tailles relatives des deux populations en faveur de la population préférant l’hémichamp gauche
aurait donc eu lieu. Comme les stimuli comportaient le décalage en ITDs il est impossible de
savoir qu’elle était la répartition initiale des deux populations dans les deux hémisphères. Les
techniques d’analyse utilisées dans cette étude permettraient de révéler cette répartition à travers
une expérience où des stimuli non modifiés seraient présentés.
Les éclaircissements apportés dans cette partie de la discussion générale nous ont également
permis de montrer que le décalage des ITDs dans les stimuli fMRI est bien observable au niveau
du croisement des courbes d’accord du modèle (fig. 6.1), même s’il n’est pas directement visible
dans les données fMRI.
4
Changement de taille pouvant causer des changements du niveau de controlatéralité différents dans chaque
hémisphère.
5
Données non présentées dans l’article.
6.2. ENCODAGE DES INDICES SPECTRAUX ET PLASTICITÉ
6.2
125
Encodage des indices spectraux et plasticité
La capacité d’adaptation à de nouveaux indices spectraux était déjà connue et beaucoup plus
documentée que la capacité à s’adapter à des ITDs décalées. Nos deux dernières études l’ont à
nouveau démontrée. La troisième étude était destinée à explorer les mécanismes d’apprentissages
de nouveaux indices spectraux et a montré qu’une mise en correspondance des indices spectraux
avec les positions de l’espace dans laquelle plusieurs DTFs pourraient indiquer une même position
(many-to-one mapping), semblait exister6 . La quatrième étude n’avait pas pour but d’étudier
l’adaptation à de nouveaux indices spectraux, mais tirait profit de cette plasticité pour explorer
les mécanismes encore inconnus de l’encodage de l’élévation sonore dans le cortex auditif.
Une modification des indices binauraux entraîne un décalage de la perception sur le plan
horizontal, mais n’affecte pas la discrimination de sources sonores placées à des azimuts différents.
Modifier les indices spectraux n’entraîne pas de décalage mais plutôt une abolition de la perception
sur le plan vertical. Cette particularité, ajoutée à notre capacité d’adaptation à des indices
spectraux modifiés, offre l’opportunité unique de pouvoir présenter à un auditeur des stimuli qu’il
sera incapable de discriminer lors d’une première séance de neuroimagerie, mais pour lesquels il
aura une bonne perception de l’élévation, lors d’une seconde séance, une fois que l’adaptation
a pris place. La comparaison entre les données fonctionnelles de ces deux séances permet alors
d’énoncer des hypothèses relatives à la perception de l’élévation et d’exclure des interprétations
basées seulement sur les propriétés physiques de stimuli. C’est par ce paradigme que nous avons pu
formuler une proposition de l’encodage de l’élévation au niveau du cortex auditif dans le quatrième
article. Il semblerait donc que l’élévation soit encodée de manière distribuée dans le cortex auditif
de chaque hémisphère, par une population de neurones à sélectivité large et préférant les élévations
basses.
Cet encodage partage plusieurs propriétés avec l’encodage des indices binauraux, c’est un codage
fréquentiel, effectué par une population de neurones dont la sélectivité est étendue. L’existence
d’un même type d’encodage pour les différents indices de localisation n’est pas très surprenante.
Ce résultat est discuté plus en détail à la section 6.3 Rapidité d’adaptation, absence d’effet consécutif et
persistance.
6
126
CHAPITRE 6. DISCUSSION GÉNÉRALE
L’organisation tonotopique du cortex auditif oblige à avoir une représentation de l’espace qui
soit distribuée, et effectuée selon un schéma de codage par population (Recanzone & Sutter,
2008). Un tel encodage a également la capacité de transporter différentes propriétés d’un stimulus
simultanément (Abbott & Sejnowski, 1999) et peut donc permettre l’intégration des indices de
localisation en un seul percept de la position spatiale. Les régions du cortex auditif qui montrent
une sensibilité aux indices binauraux et aux indices spectraux semblent en effet largement se
chevaucher (si l’on compare les figures. 3.10 et 5.4), et des études physiologiques chez l’animal
ont montré que des mêmes neurones corticaux montraient une sélectivité à plusieurs indices de
localisation (Brugge et al., 1994 ; Mrsic-Flogel et al., 2005 ; Xu et al., 1998).
Il semble que l’encodage des indices spectraux ne soit porté que par une seule population de
neurones, alors que deux populations encodent l’espace horizontal. Comme nous l’avons discuté
dans le quatrième article, il est possible que l’encodage des indices spectraux ne soit pas limité à
cette population. Nous n’avons en effet pas sondé l’espace auditif situé à l’arrière de l’auditeur.
Il est possible que cette partie de l’espace, pour laquelle d’autres indices spectraux sont en
correspondance avec les positions du plan vertical, soit encodée par une autre population de
neurones montrant quant à elle une préférence pour des élévations hautes.
6.3
Rapidité d’adaptation, absence d’effet consécutif et persistance
La rapidité d’adaptation n’est pas la même suivant l’indice qui a été modifié. Dans les deux
premières études, les participants qui se sont adaptés avec succès aux ITDs décalées, l’ont fait en
moins de 48 h, et ne bénéficiaient d’aucun entraînement spécifique. Dans les études 3 et 4, même
avec un entraînement quotidien, rares sont ceux qui ont retrouvé une performance identique à
l’originale après une semaine d’adaptation à de nouveaux indices spectraux. Sans entraînement, il
a été montré que cette adaptation prenait entre trois et huit semaines (Carlile & Blackman, 2013 ;
Hofman et al., 1998). Une telle différence de rapidité d’adaptation doit pouvoir s’expliquer par
plusieurs facteurs. Comme nous l’avons mentionné précédemment, une modification des indices
binauraux ou des indices spectraux n’a pas du tout la même incidence perceptive. L’adaptation à
6.3. RAPIDITÉ, ABSENCE D’EFFET CONSÉCUTIF ET PERSISTANCE
127
des indices binauraux modifiés consiste essentiellement à ajuster un espace auditif pivoté, alors que
l’adaptation à de nouveaux indices spectraux nécessite l’apprentissage de nouvelles associations
entre indices et positions spatiales. Les résultats du troisième article suggèrent que ce sont bien de
nouvelles associations qui sont faites car les anciennes sont toujours disponibles après adaptation.
L’adaptation nécessite alors sûrement la création de nouvelles connexions neuronales, ce qui a
peu de chances de pouvoir se produire en l’espace de quelques heures. L’existence des indices
binauraux et spectraux repose sur des principes physiques fondamentalement différents et leur
extraction au niveau sous-cortical doit mettre en jeu des mécanismes très différents eux aussi. Le
temps nécessaire pour mettre en place ou modifier ces mécanismes doit donc varier d’un indice à
l’autre. Enfin, il est possible qu’un des facteurs expliquant les différences de rapidité d’adaptation
soit l’exposition préalable aux modifications induites. Les chances pour que les participants aient
déjà été exposés à la modification causée par les moulages en silicone sont inexistantes, alors
qu’une exposition antérieure à des ITDs décalées est très probable. Si elle est unilatérale, l’otite
séro-muqueuse peut en effet induire un décalage des ITDs aussi important que celui causé par le
retard que nous introduisions dans l’un des bouchons d’oreille numériques. Ce type d’otite étant
très fréquent chez le bébé et l’enfant, il est possible que beaucoup d’entre nous aient eu à s’adapter
à des ITDs décalées par le passé. De plus, comme nous l’avons vu dans les études sur la plasticité
développementale (cf. 1.2.2 Existence d’une période critique ?), l’adaptation à une contrainte à
l’âge adulte est facilitée si cette adaptation a déjà eu lieu pendant la période de développement,
or c’est principalement durant cette période que ce type d’otite survient le plus fréquemment. Il
est donc possible qu’un des facteurs expliquant la rapidité d’adaptation à des ITDs décalées, soit
l’exposition antérieure à cette contrainte.
Immédiatement après l’adaptation à des indices de localisation modifiés, aucun effet consécutif
n’est observé, que ce soit pour les indices binauraux ou spectraux. À travers le troisième article,
nous avons inspecté l’absence d’effet consécutif à l’adaptation à de nouveaux indices spectraux
dans de multiples conditions. Dès la toute première présentation d’un stimulus contenant les
indices spectraux d’origine, la performance est du même niveau qu’avant l’adaptation. Ceci est
vrai même dans la condition où les stimuli sont des enregistrements binauraux présentés aux
128
CHAPITRE 6. DISCUSSION GÉNÉRALE
écouteurs. Dans cette condition, les participants portent encore les moulages et ignorent que les
stimuli correspondent à la situation d’origine avant adaptation. Parce que les stimuli ne sont pas
présentés en champ libre, les indices de localisation dynamiques sont également absents dans cette
condition. Ces observations nous ont amené à formuler l’hypothèse que plusieurs DTFs pouvaient
simultanément être associées à une même position spatiale, hypothèse de many-to-one mapping.
Nous avons à nouveau vérifié cette observation au cours de la quatrième étude. Dans cette étude,
les participants étaient entraînés tous les jours à localiser les enregistrements avec indices spectraux
modifiés et leur performance de localisation de ces enregistrements était également mesurée tous
les jours. Au cours d’une de ces tâches quotidiennes nous avons présenté, à l’insu des participants,
les enregistrements contenant les indices spectraux d’origine7 . La performance des participants
lors de cette tâche était identique à celle mesurée avant adaptation.
Dans les études où les ITDs étaient décalées, nous n’avons pas observé d’effet consécutif non
plus. Ultérieurement à la publication de ces études, nous avons analysé le test où les bouchons
d’oreille numériques sont retirés, en utilisant la même méthode que celle présentée dans le troisième
article. Cette analyse montre que dès le premier essai, les participants localisaient correctement
les stimuli. Dans le cas des indices spectraux, l’absence d’effet consécutif est facilement concevable.
De nouveaux indices ont été appris, cet apprentissage n’a pas effacé le savoir-faire antérieur.
Mais dans le cas des indices binauraux, pour lesquels il n’y a a priori pas eu d’apprentissage de
nouveaux indices, mais un ajustement des indices existants, cette particularité est remarquable.
Elle l’est d’autant plus qu’une persistance de l’adaptation aux ITDs modifiées est observée. Dans
la deuxième étude, les participants qui ont à nouveau été testés avec les bouchons d’oreille
numériques, trois jours après les avoir retirés, localisaient aussi bien les stimuli que lors du dernier
test de la période d’adaptation. Une participante, celle qui s’était adaptée en quelques heures, a
été testée un mois après avoir retiré les bouchons. À nouveau, sa performance égalait celle qu’elle
avait obtenue en fin de période d’adaptation.
Un bémol doit cependant être mis à ces observations. Dans les études où nous décalions les
ITDs, le retour aux indices d’origine nécessitait de retirer les bouchons. Or un effet secondaire des
7
Données non présentées dans l’article.
6.4. VARIABILITÉ INTERINDIVIDUELLE
129
bouchons était de modifier les indices spectraux. Donc en retirant les bouchons, non seulement les
ITDs redevenaient ceux d’origine, mais c’était également le cas pour les indices spectraux. Il est
possible que le retour aux indices spectraux d’origine indique au système auditif que la situation a
changé. Il est également possible que l’ajustement des ITDs ait été effectué en relation avec les
indices spectraux modifiés et avec ces indices seulement. Les bouchons d’oreille numériques ne
permettaient pas de modification ou d’annulation instantanée du retard ajouté dans une oreille. Il
fallait retirer les bouchons des oreilles des participants et quelques minutes étaient nécessaires
pour effectuer le changement. Sans cela, nous aurions pu tester si l’annulation subite du retard
entraînait un effet consécutif ou non. Ceci reste donc à vérifier dans une étude future, qui inclurait
des tests de localisation dans un environnement auditif virtuel, par le biais duquel il est facile de
passer instantanément des ITDs décalées aux ITDs normaux, sans que les autres indices ne soient
affectés.
6.4
Variabilité interindividuelle
Dans chacune des études présentées dans cette thèse, les différences interindividuelles en
matière d’adaptation étaient importantes. Après une altération ou une modification de leurs
indices de localisation, certains participants retrouvent rapidement des aptitudes de localisation
très proches de celles précédant la manipulation, d’autres ne montrent aucun signe d’adaptation.
Les différentes performances des participants ne permettent pas de les classer en deux groupes
distincts qui comprendraient seulement ceux qui s’adaptent et ceux qui ne s’adaptent pas. Les
différents degrés d’adaptation observés sont plutôt uniformément répartis entre les deux extrêmes.
Une large variabilité interindividuelle dans le degré d’adaptation à des indices de localisation
biaisés a également été reportée par la majorité des études antérieures du domaine (Carlile
et al., 2014 ; Hofman et al., 1998 ; Javer & Schwarz, 1995 ; Shinn-Cunningham et al., 1998 ;
M. M. V. Van Wanrooij & Van Opstal, 2005). Il est possible que cette variabilité reflète des
prédispositions générales à la plasticité. Cependant une telle hypothèse est difficile à vérifier étant
donné les innombrables facteurs qui peuvent entrer en jeu durant la période d’adaptation. Il faudrait
130
CHAPITRE 6. DISCUSSION GÉNÉRALE
pouvoir observer l’adaptation dans un environnement entièrement contrôlé, mais étant donné
l’importance des interactions multisensorielles en milieu naturel dans le processus d’adaptation,
il est possible que peu ou pas d’adaptation ne prenne place en laboratoire. Il a d’ailleurs été
proposé que la quantité et la qualité de ces interactions jouent un rôle dans l’adaptation (Carlile
et al., 2014 ; Javer & Schwarz, 1995). Différentes activités ou différents styles de vie (par exemple,
travailler toute la journée sur un ordinateur dans un environnement silencieux versus pratiquer des
activités sportives à l’extérieur avec des amis) ont certainement différents impacts sur la rapidité
d’adaptation, mais encore une fois, ces facteurs sont très difficiles à contrôler.
D’autres facteurs sont plus facilement observables et quantifiables. Les performances de
localisation auditive dans des conditions normales varient d’un individu à l’autre (Makous &
Middlebrooks, 1990 ; Populin, 2008 ; Savel, 2009 ; Wightman & Kistler, 1989a). Il est légitime de
penser que ces différences puissent expliquer une partie de la variabilité observée dans l’adaptation
aux indices de localisation modifiés. Les données de nos différentes études n’ont cependant révélé
aucune corrélation entre les performances initiales et la quantité ou la rapidité d’adaptation.
Néanmoins, il faut garder à l’esprit que nos expériences n’étaient pas spécialement conçues pour
étudier ces possibles corrélations, et nos participants étaient de jeunes adultes qui montraient
tous de bonnes performances initiales. Un facteur qui en revanche a expliqué une partie de la
variabilité de l’adaptation à une modification des indices spectraux et binauraux, est le degré de
perturbation des indices spectraux. Dans la troisième étude, nous avons proposé une mesure de la
perturbation acoustique des indices spectraux8 et montré que cette mesure corrélait avec la perte
de performance sur le plan vertical causée par les moulages. Cette corrélation existait encore à la
fin de la période d’adaptation. Les participants qui avaient les plus été perturbés étaient aussi
ceux qui s’adaptaient le moins. Cette corrélation a également été observée pour l’adaptation aux
ITDs décalées. La perte de performance que causaient les bouchons d’oreille sur le plan vertical,
avant qu’un retard ne soit ajouté dans l’un des bouchons, corrélait avec la vitesse d’adaptation sur
le plan horizontal. Le degré de perturbation des indices spectraux semble donc être un important
8
VSI dissimilarity, voir 4.2.9 Directional transfer functions.
6.4. VARIABILITÉ INTERINDIVIDUELLE
131
prédicteur des chances d’adaptation à des indices de localisation modifiés, et suggère qu’il est
impossible de s’adapter à de trop fortes modifications.
Ce dernier point a des conséquences pour la conception d’appareils auditifs. Une part importante
des appareils auditifs sont retournés, ou ne sont pas utilisés par les patients atteints de pertes
auditives (Kochkin, 1999 ; Kochkin et al., 2010). Ces défauts de satisfaction sont imputables aux
insuffisants gains perceptifs qu’offrent les appareils, en particulier en termes de compréhension
de la parole dans le bruit (Wong, Hickson, & McPherson, 2003). L’importance de la localisation
auditive dans l’intelligibilité et la compréhension de la parole dans un environnement bruyant
ou dans une situation dite de cocktail party, n’est plus a démontrer (Bronkhorst, 2000 ; Dirks &
Wilson, 1969 ; Hirsh, 1950 ; Kidd et al., 2005 ; Kock, 1950 ; MacKeith & Coles, 1971 ; Roman et al.,
2001). Or les appareils auditifs perturbent la localisation auditive (Byrne & Noble, 1998 ; Köbler &
Rosenhall, 2002). Ils peuvent décaler les ITDs9 , et modifient fortement les indices spectraux (Kuk
& Korhonen, 2014). Pour que le gain en amplitude acoustique que fournissent les appareils auditifs
soit bénéfique dans des situations ou la compréhension de la parole est mise à l’épreuve, il faut
donc que les patients soient capables de réapprendre à localiser les sons avec leurs appareils. Nos
résultats montrent que cette adaptation sera d’autant plus difficile que la perturbation des indices
de localisation causée par les appareils est grande. Ceci est particulièrement vrai concernant la
modification des indices spectraux. Nous avons en effet vu que l’adaptation, tant sur le plan
horizontal que vertical, dépendait du degré de perturbation initial de ces indices. Pour qu’une
adaptation prenne place et pour que les gains perceptifs offerts par les appareils auditifs soient
maximaux, il est donc important que ces dispositifs soient miniaturisés et que le micro se trouve au
plus proche de l’entrée du canal auditif, afin de perturber le moins possible les indices spectraux.
9
D’autant plus si portés unilatéralement.
132
CHAPITRE 6. DISCUSSION GÉNÉRALE
6.5
Conclusion
Cette recherche avait pour objectif d’étudier la plasticité du système auditif humain dans
des tâches de localisation sonore, ainsi que les mécanismes d’encodage des indices de localisation
auditive. La plasticité en localisation auditive a été observée dans chacune des quatre études
regroupées dans cette thèse. Son analyse par des techniques comportementales et de neuroimagerie,
a permis d’émettre des hypothèses sur l’encodage des indices de localisation auditive, ainsi que
sur les mécanismes adaptatifs par lesquels cette plasticité s’exprime.
La première étude avait pour principal objectif de savoir si l’adaptation à des ITDs décalées de
625 µs était possible. Les résultats ont montré que de jeunes adultes peuvent rapidement s’adapter
à cet important décalage perceptif. Au moyen de la fMRI haute résolution, nous avons pu confirmer
l’hypothèse de codage par hémichamp comme représentation de l’espace auditif horizontal, et
avons observé des changements de l’activité corticale auditive accompagnant l’adaptation. Ces
changements s’expriment en termes de latéralisation hémisphérique, que nous imputons à une
probable modification des tailles relatives des deux populations qui encodent l’espace auditif
horizontal. Les résultats d’une modélisation de la représentation de l’espace auditif horizontal
par des neurones corticaux virtuels, associée à une optimisation des paramètres de ce modèle par
un algorithme génétique, suggèrent qu’un fin réajustement de la sélectivité des populations de
neurones qui encodent l’espace auditif horizontal aurait eu lieu. Les résultats de la modélisation
renforcent également l’hypothèse de codage par hémichamp.
Dans une troisième étude, nous avons modifié les indices spectraux à l’aide de moulages en
silicone. Nous avons montré que l’adaptation à cette modification n’était suivie d’aucun effet
consécutif au retrait des moulages, même lors de la toute première présentation d’un stimulus
sonore. Ce résultat concorde avec l’hypothèse d’un mécanisme dit de many-to-one mapping, à
travers lequel plusieurs profils spectraux peuvent être associés avec une même position spatiale.
La quatrième étude n’avait pas pour but d’étudier l’adaptation à de nouveaux indices spectraux,
mais tirait profit de cette plasticité pour explorer les mécanismes encore inconnus de l’encodage
de l’élévation sonore dans le cortex auditif. Les résultats fMRI nous ont permis de révéler que
6.5. CONCLUSION
133
l’élévation semble être encodée de manière distribuée dans le cortex auditif de chaque hémisphère,
par une population de neurones à sélectivité large et préférant les élévations basses.
Cette recherche constitue une première tentative d’observation de la plasticité corticale dans
des tâches de localisation auditive par la neuroimagerie fonctionnelle. Elle a permis de divulguer
certaines stratégies employées par le système auditif pour s’adapter à une perturbation des
indices de localisation auditive et a montré que la plasticité pouvait être un puissant outil pour
l’exploration des mécanismes neuronaux de la perception.
BIBLIOGRAPHIE
Abbott, L., & Sejnowski, T. J. (1999). Neural Codes and Distributed Representations : Foundations
of Neural Computation. MIT Press.
Ahveninen, J., Kopčo, N., & Jääskeläinen, I. P. (2014). Psychophysics and neuronal bases of
sound localization in humans. Hearing Research, 307 , 86–97.
Akeroyd, M. A. (2006). The psychoacoustics of binaural hearing : La psicoacústica de la audición
binaural. International journal of audiology, 45 (S1), 25–33.
Algazi, V. R., Avendano, C., & Duda, R. O. (2001). Elevation localization and head-related
transfer function analysis at low frequencies. The Journal of the Acoustical Society of
America, 109 (3), 1110–1122.
Altmann, C. F., Wilczek, E., & Kaiser, J. (2009). Processing of Auditory Location Changes after
Horizontal Head Rotation. The Journal of Neuroscience, 29 (41), 13074–13078.
Andéol, G., Macpherson, E. A., & Sabin, A. T. (2013). Sound localization in noise and sensitivity
to spectral shape. Hearing Research, 304 , 20–27.
Andéol, G., Savel, S., & Guillaume, A. (2014). Perceptual factors contribute more than acoustical
factors to sound localization abilities with virtual sources. Auditory Cognitive Neuroscience,
8 , 451.
Asano, F., Suzuki, Y., & Sone, T. (1990). Role of spectral cues in median plane localization. The
Journal of the Acoustical Society of America, 88 (1), 159–168.
Ashida, G., & Carr, C. E. (2011). Sound localization : Jeffress and beyond. Current Opinion in
Neurobiology, 21 (5), 745–751.
Bajo, V. M., Nodal, F. R., Moore, D. R., & King, A. J. (2010). The descending corticocollicular
pathway mediates learning-induced auditory plasticity. Nature neuroscience, 13 (2), 253–260.
Batteau, D. W. (1967). The Role of the Pinna in Human Localization. Proceedings of the Royal
Society of London B : Biological Sciences, 168 (1011), 158–180.
Bauer, R. W., Matuzsa, J. L., Blackmer, R. F., & Glucksberg, S. (1966). Noise localization after
unilateral attenuation. The Journal of the Acoustical Society of America, 40 , 441.
135
136
Bibliographie
Bazwinsky, I., Hilbig, H., Bidmon, H.-J., & Rübsamen, R. (2003). Characterization of the human
superior olivary complex by calcium binding proteins and neurofilament H (SMI-32). The
Journal of Comparative Neurology, 456 (3), 292–303.
Beitel, R. E., & Kaas, J. H. (1993). Effects of bilateral and unilateral ablation of auditory
cortex in cats on the unconditioned head orienting response to acoustic stimuli. Journal of
Neurophysiology, 70 (1), 351–369.
Bergan, J. F., Ro, P., Ro, D., & Knudsen, E. I. (2005). Hunting increases adaptive auditory map
plasticity in adult barn owls. The journal of neuroscience, 25 (42), 9816–9820.
Bernstein, L. R., van de Par, S., & Trahiotis, C. (1999). The normalized interaural correlation :
accounting for NoS pi thresholds obtained with Gaussian and "low-noise" masking noise.
The Journal of the Acoustical Society of America, 106 (2), 870–876.
Bizley, J. K., Nodal, F. R., Parsons, C. H., & King, A. J. (2007). Role of Auditory Cortex in
Sound Localization in the Midsagittal Plane. Journal of Neurophysiology, 98 (3), 1763–1774.
Blauert, J. (1997). Spatial hearing : the psychophysics of human sound localization (Vol. 494).
The MIT press, Cambridge, MA.
Brainard, M. S., & Knudsen, E. I. (1993). Experience-dependent plasticity in the inferior colliculus :
a site for visual calibration of the neural representation of auditory space in the barn owl.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 13 (11),
4589–4608.
Brand, A., Behrend, O., Marquardt, T., McAlpine, D., & Grothe, B. (2002). Precise inhibition is
essential for microsecond interaural time difference coding. Nature, 417 (6888), 543–547.
Bregman, A. S. (1994). Auditory scene analysis : The perceptual organization of sound. MIT
press.
Broadbent, D. E. (1954). The role of auditory localization in attention and memory span. Journal
of experimental psychology, 47 (3), 191.
Bronkhorst, A. W. (2000). The Cocktail Party Phenomenon : A Review of Research on Speech
Intelligibility in Multiple-Talker Conditions. Acta Acustica united with Acustica, 86 (1),
117–128.
Bibliographie
137
Brugge, J. F., Reale, R. A., Hind, J. E., Chan, J. C. K., Musicant, A. D., & Poon, P. W. F. (1994).
Simulation of free-field sound sources and its application to studies of cortical mechanisms
of sound localization in the cat. Hearing Research, 73 (1), 67–84.
Brunetti, M., Belardinelli, P., Caulo, M., Del Gratta, C., Della Penna, S., Ferretti, A., . . . Tartaro,
A. (2005). Human brain activation during passive listening to sounds from different locations :
An fMRI and MEG study. Human brain mapping, 26 (4), 251–261.
Brungart, D. S., & Rabinowitz, W. M. (1999). Auditory localization of nearby sources. Head-related
transfer functions. The Journal of the Acoustical Society of America, 106 (3), 1465–1479.
Burke, K. A., Letsos, A., & Butler, R. A. (1994). Asymmetric performances in binaural localization
of sound in space. Neuropsychologia, 32 (11), 1409–1417.
Butler, R. A. (1987). An analysis of the monaural displacement of sound in space. Perception &
Psychophysics, 41 (1), 1–7.
Butler, R. A., Humanski, R. A., & Musicant, A. D. (1990). Binaural and monaural localization of
sound in two-dimensional space. Perception, 19 (2), 241–256.
Byrne, D., & Noble, W. (1998). Optimizing Sound Localization with Hearing Aids. Trends in
Amplification, 3 (2), 51–73.
Carlile, S. (2014). The plastic ear and perceptual relearning in auditory spatial perception.
Frontiers in Neuroscience, 8 .
Carlile, S., Balachandar, K., & Kelly, H. (2014). Accommodating to new ears : The effects of
sensory and sensory-motor feedback. The Journal of the Acoustical Society of America,
135 (4), 2002–2011.
Carlile, S., & Blackman, T. (2013). Relearning Auditory Spectral Cues for Locations Inside and
Outside the Visual Field. Journal of the Association for Research in Otolaryngology, 15 (2),
249–263.
Carlile, S., Leong, P., & Hyams, S. (1997). The nature and distribution of errors in sound
localization by human listeners. Hearing Research, 114 (1–2), 179–196.
Carlile, S., Martin, R., & McAnally, K. (2005). Spectral Information in Sound Localization. In
International Review of Neurobiology (Vol. Volume 70, pp. 399–434). Academic Press.
138
Bibliographie
Carr, C. E., & Konishi, M. (1988). Axonal delay lines for time measurement in the owl’s brainstem.
Proceedings of the National Academy of Sciences of the United States of America, 85 (21),
8311–8315.
Carr, C. E., & Konishi, M. (1990). A circuit for detection of interaural time differences in the
brain stem of the barn owl. The Journal of Neuroscience : The Official Journal of the
Society for Neuroscience, 10 (10), 3227–3246.
Casseday, J. H., & Covey, E. (1987). Central Auditory Pathways in Directional Hearing. In
W. A. Yost & G. Gourevitch (Eds.), Directional Hearing (pp. 109–145). Springer US. (DOI :
10.1007/978-1-4612-4738-8_5)
Casseday, J. H., Fremouw, T., & Covey, E. (2002). The Inferior Colliculus : A Hub for the
Central Auditory System. In D. Oertel, R. R. Fay, & A. N. Popper (Eds.), Integrative
Functions in the Mammalian Auditory Pathway (pp. 238–318). Springer New York. (DOI :
10.1007/978-1-4757-3654-0_7)
Chang, E. F., & Merzenich, M. M. (2003). Environmental noise retards auditory cortical
development. Science (New York, N.Y.), 300 (5618), 498–502.
Chase, S. M., & Young, E. D. (2006). Spike-timing codes enhance the representation of multiple
simultaneous sound-localization cues in the inferior colliculus. The Journal of Neuroscience :
The Official Journal of the Society for Neuroscience, 26 (15), 3889–3898.
Cheng, C. I., & Wakefield, G. H. (1999, September). Introduction to Head-Related Transfer
Functions (HRTFs) : Representations of HRTFs in Time, Frequency, and Space. Audio
Engineering Society.
Cherry, E. C. (1953). Some Experiments on the Recognition of Speech, with One and with Two
Ears. The Journal of the Acoustical Society of America, 25 (5), 975–979.
Clifton, R. K., Gwiazda, J., Bauer, J. A., Clarkson, M. G., & Held, R. M. (1988). Growth in
head size during infancy : Implications for sound localization. Developmental Psychology,
24 (4), 477.
Bibliographie
139
Colburn, H. S., Isabelle, S. K., & Tollin, D. J. (1997). Modeling binaural detection performance for
individual masker waveforms. Binaural and spatial hearing in real and virtual environments,
533–556.
Comalli, P. E., & Altshuler, M. W. (1971). Effect of body tilt on auditory localization. Perceptual
and Motor Skills, 32 (3), 723–726.
Cross, D. V. (1973). Sequential dependencies and regression in psychophysical judgments.
Perception & Psychophysics, 14 (3), 547–552.
Davis, K. A., Ramachandran, R., & May, B. J. (2003). Auditory processing of spectral cues
for sound localization in the inferior colliculus. Journal of the Association for Research in
Otolaryngology : JARO, 4 (2), 148–163.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 2012). John
Wiley & Sons Chichester.
Dechent, P., Schönwiesner, M., Voit, D., Gowland, P., & Krumbholz, K. (2007). Basic coding
mechanisms in the human auditory cortex – a view through high-resolution fMRI. In (p. 164).
Chicago, USA.
Delgutte, B., Joris, P. X., Litovsky, R. Y., & Yin, T. C. T. (1995). Relative importance of different
acoustic cues to the directional sensitivity of inferior-colliculus neurons. Advances in hearing
research, 288–299.
Deouell, L. Y., Heller, A. S., Malach, R., D’Esposito, M., & Knight, R. T. (2007). Cerebral
responses to change in spatial location of unattended sounds. Neuron, 55 (6), 985–996.
de Villers-Sidani, E., Chang, E. F., Bao, S., & Merzenich, M. M. (2007). Critical period window
for spectral tuning defined in the primary auditory cortex (A1) in the rat. The Journal of
Neuroscience : The Official Journal of the Society for Neuroscience, 27 (1), 180–189.
Dirks, D. D., & Wilson, R. H. (1969). The effect of spatially separated sound sources on speech
intelligibility. Journal of Speech, Language and Hearing Research, 12 (1), 5.
Doucet, M.-E., Guillemot, J.-P., Lassonde, M., Gagné, J.-P., Leclerc, C., & Lepore, F. (2005).
Blind subjects process auditory spectral cues more efficiently than sighted individuals.
Experimental Brain Research, 160 (2), 194–202.
140
Bibliographie
Edmonds, B. A., & Krumbholz, K. (2014). Are interaural time and level differences represented by
independent or integrated codes in the human auditory cortex ? Journal of the Association
for Research in Otolaryngology, 15 (1), 103–114.
Ekstrom, A. (2010). How and when the fMRI BOLD signal relates to underlying neural activity :
The danger in dissociation. Brain research reviews, 62 (2), 233–244.
Flannery, R., & Butler, R. A. (1981). Spectral cues provided by the pinna for monaural localization
in the horizontal plane. Perception & Psychophysics, 29 (5), 438–444.
Florentine, M. (1976). Relation between lateralization and loudness in asymmetrical hearing
losses. Ear and Hearing, 1 (6), 243–251.
Fujiki, N., Riederer, K. A. J., Jousmäki, V., Mäkelä, J. P., & Hari, R. (2002). Human cortical
representation of virtual auditory space : differences between sound azimuth and elevation.
The European Journal of Neuroscience, 16 (11), 2207–2213.
Gaese, B. H., & Johnen, A. (2000). Coding for auditory space in the superior colliculus of the rat.
The European Journal of Neuroscience, 12 (5), 1739–1752.
Gardner, M. B. (1973). Some monaural and binaural facets of median plane localization. The
Journal of the Acoustical Society of America, 54 (6), 1489–1495.
Gardner, M. B., & Gardner, R. S. (1973). Problem of localization in the median plane : effect of
pinnae cavity occlusion. The Journal of the Acoustical Society of America, 53 (2), 400–408.
Glendenning, K. K., Baker, B. N., Hutson, K. A., & Masterton, R. B. (1992). Acoustic chiasm
V : inhibition and excitation in the ipsilateral and contralateral projections of LSO. The
Journal of Comparative Neurology, 319 (1), 100–122.
Goodyear, B. G., & Menon, R. S. (1998). Effect of luminance contrast on BOLD fMRI response
in human primary visual areas. Journal of Neurophysiology, 79 (4), 2204–2207.
Goossens, H. H. L. M., & Van Opstal, A. J. (1999). Influence of Head Position on the Spatial
Representation of Acoustic Targets. Journal of Neurophysiology, 81 (6), 2720–2736.
Haeske-Dewick, H., Canavan, A. G., & Hömberg, V. (1996). Sound localization in egocentric
space following hemispheric lesions. Neuropsychologia, 34 (9), 937–942.
Bibliographie
141
Hall, D. A., Haggard, M. P., Akeroyd, M. A., Palmer, A. R., Summerfield, A. Q., Elliott, M. R., . . .
Bowtell, R. W. (1999). Sparse temporal sampling in auditory fMRI. Human brain mapping,
7 (3), 213–223.
Hancock, K. E., & Delgutte, B. (2004). A Physiologically Based Model of Interaural Time
Difference Discrimination. The Journal of neuroscience : the official journal of the Society
for Neuroscience, 24 (32), 7110–7117.
Harper, N. S., & McAlpine, D. (2004). Optimal neural population coding of an auditory spatial
cue. Nature, 430 (7000), 682–686.
Harrington, I. A., Stecker, G. C., Macpherson, E. A., & Middlebrooks, J. C. (2008). Spatial
sensitivity of neurons in the anterior, posterior, and primary fields of cat auditory cortex.
Hearing research, 240 (1-2), 22–41.
Hartley, D., & King, A. J. (2010). Development of the auditory pathway. The Oxford Handbook
of Auditory Science : The Auditory Brain, 2 , 361.
Hartley, D., & Moore, D. R. (2003). Effects of conductive hearing loss on temporal aspects of
sound transmission through the ear. Hearing Research, 177 (1-2), 53–60.
Hartmann, W. M. (1983). Localization of sound in rooms. The Journal of the Acoustical Society
of America, 74 , 1380.
Hay, J. C., & Pick Jr., H. L. (1966). Visual and proprioceptive adaptation to optical displacement
of the visual stimulus. Journal of Experimental Psychology, 71 (1), 150–158.
Heffner, H. E., & Heffner, R. S. (1990). Effect of bilateral auditory cortex lesions on sound
localization in Japanese macaques. Journal of Neurophysiology, 64 (3), 915–931.
Held, R. (1955). Shifts in binaural localization after prolonged exposures to atypical combinations
of stimuli. The American Journal of Psychology, 68 (4), 526–548.
Henning, G. B. (1974). Detectability of interaural delay in high-frequency complex waveforms.
The Journal of the Acoustical Society of America, 55 (1), 84–90.
Hensch, T. K. (2004). Critical period regulation. Annual Review of Neuroscience, 27 , 549–579.
142
Bibliographie
Hilbig, H., Beil, B., Hilbig, H., Call, J., & Bidmon, H.-J. (2009). Superior olivary complex
organization and cytoarchitecture may be correlated with function and catarrhine primate
phylogeny. Brain Structure & Function, 213 (4-5), 489–497.
Hirsh, I. J. (1950). The Relation between Localization and Intelligibility. The Journal of the
Acoustical Society of America, 22 (2), 196–200.
Hofman, P. M., & Van Opstal, A. J. (1998). Spectro-temporal factors in two-dimensional human
sound localization. The Journal of the Acoustical Society of America, 103 (5), 2634–2648.
Hofman, P. M., & Van Opstal, A. J. (2003). Binaural weighting of pinna cues in human sound
localization. Experimental Brain Research, 148 (4), 458–470.
Hofman, P. M., Van Riswick, J. G., & Van Opstal, A. J. (1998). Relearning sound localization
with new ears. Nature neuroscience, 1 (5), 417–421.
Hofman, P. M., Vlaming, M. S. M. G., Termeer, P. J. J., & Van Opstal, A. J. (2002). A method
to induce swapped binaural hearing. Journal of Neuroscience Methods, 113 (2), 167–179.
Holland, J. H. (1975). Adaptation in natural and artificial systems : An introductory analysis with
applications to biology, control, and artificial intelligence. U Michigan Press.
Imig, T. J., Bibikov, N. G., Poirier, P., & Samson, F. K. (2000). Directionality Derived From
Pinna-Cue Spectral Notches in Cat Dorsal Cochlear Nucleus. Journal of Neurophysiology,
83 (2), 907–925.
Irvine, D. R., Park, V. N., & McCormick, L. (2001). Mechanisms underlying the sensitivity
of neurons in the lateral superior olive to interaural intensity differences. Journal of
Neurophysiology, 86 (6), 2647–2666.
Javer, A. R., & Schwarz, D. W. (1995). Plasticity in human directional hearing. The Journal of
otolaryngology, 24 (2), 111.
Jeffress, L. A. (1948). A place theory of sound localization. J. comp. physiol. Psychol , 41 (1),
35–39.
Jeffress, L. A., & Taylor, R. W. (1961). Lateralization vs localization. The Journal of the
Acoustical Society of America, 33 (4), 482–483.
Bibliographie
143
Jenkins, W. M., & Masterson, R. B. (1982). Sound localization : effects of unilateral lesions in
central auditory system. Journal of Neurophysiology.
Jenkins, W. M., & Merzenich, M. M. (1984). Role of cat primary auditory cortex for soundlocalization behavior. Journal of Neurophysiology, 52 (5), 819–847.
Jäncke, L., Buchanan, T., Lutz, K., Specht, K., Mirzazade, S., & Shah, N. J. (1999). The time
course of the BOLD response in the human auditory cortex to acoustic stimuli of different
duration. Brain Research. Cognitive Brain Research, 8 (2), 117–124.
Jäncke, L., Shah, N. J., Posse, S., Grosse-Ryuken, M., & Müller-Gärtner, H. W. (1998). Intensity
coding of auditory stimuli : an fMRI study. Neuropsychologia, 36 (9), 875–883.
Jäncke, L., Wüstenberg, T., Schulze, K., & Heinze, H. (2002). Asymmetric hemodynamic responses
of the human auditory cortex to monaural and binaural stimulation. Hearing Research,
170 (1-2), 166–178.
Kacelnik, O., Nodal, F. R., Parsons, C. H., & King, A. J. (2006). Training-induced plasticity of
auditory localization in adult mammals. PLoS biology, 4 (4), e71.
Kaiser, J., Lutzenberger, W., Preissl, H., Ackermann, H., & Birbaumer, N. (2000). Righthemisphere dominance for the processing of sound-source lateralization. The Journal of
Neuroscience : The Official Journal of the Society for Neuroscience, 20 (17), 6631–6639.
Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995).
Functional MRI evidence for adult motor cortex plasticity during motor skill learning.
Nature, 377 (6545), 155–158.
Kavanagh, G. L., & Kelly, J. B. (1987). Contribution of auditory cortex to sound localization by
the ferret (Mustela putorius). Journal of neurophysiology, 57 (6), 1746–1766.
Kidd, G. J., Arbogast, T. L., Mason, C. R., & Gallun, F. J. (2005). The advantage of knowing
where to listen. The Journal of the Acoustical Society of America, 118 (6), 3804–3815.
King, A. J., Dahmen, J. C., Keating, P., Leach, N. D., Nodal, F. R., & Bajo, V. M. (2011).
Neural circuits underlying adaptation and learning in the perception of auditory space.
Neuroscience & Biobehavioral Reviews, 35 (10), 2129–2139.
144
Bibliographie
King, A. J., & Hutchings, M. E. (1987). Spatial response properties of acoustically responsive
neurons in the superior colliculus of the ferret : a map of auditory space. Journal of
Neurophysiology, 57 (2), 596–624.
King, A. J., Hutchings, M. E., Moore, D. R., & Blakemore, C. (1988). Developmental plasticity
in the visual and auditory representations in the mammalian superior colliculus. Nature,
332 (6159), 73–76.
King, A. J., Parsons, C. H., & Moore, D. R. (2000). Plasticity in the neural coding of auditory
space in the mammalian brain. Proceedings of the National Academy of Sciences, 97 (22),
11821–11828.
Knudsen, E. I. (1998). Capacity for plasticity in the adult owl auditory system expanded by
juvenile experience. Science (New York, N.Y.), 279 (5356), 1531–1533.
Knudsen, E. I. (2002). Instructed learning in the auditory localization pathway of the barn owl.
Nature, 417 (6886), 322–328.
Knudsen, E. I., Esterly, S. D., & Knudsen, P. F. (1984). Monaural occlusion alters sound
localization during a sensitive period in the barn owl. The Journal of Neuroscience, 4 (4),
1001–1011.
Knudsen, E. I., & Knudsen, P. F. (1989). Vision calibrates sound localization in developing barn
owls. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience,
9 (9), 3306–3313.
Knudsen, E. I., Knudsen, P. F., & Esterly, S. D. (1984). A critical period for the recovery of
sound localization accuracy following monaural occlusion in the barn owl. The Journal of
Neuroscience : The Official Journal of the Society for Neuroscience, 4 (4), 1012–1020.
Knudsen, E. I., & Mogdans, J. (1992). Vision-independent adjustment of unit tuning to sound
localization cues in response to monaural occlusion in developing owl optic tectum. The
Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 12 (9),
3485–3493.
Kochkin, S. (1999). Reducing hearing instrument returns with consumer education. Hearing
Review , 6 (10), 18–20.
Bibliographie
145
Kochkin, S., Beck, D. L., Christensen, L. A., Compton-Conley, C., Fligor, B. J., Kricos, P. B., &
Turner, R. G. (2010). MarkeTrak VIII : The impact of the hearing healthcare professional
on hearing aid user success. Hearing Review , 17 (4), 12–34.
Kock, W. E. (1950). Binaural Localization and Masking. The Journal of the Acoustical Society of
America, 22 (6), 801–804.
Krumbholz, K., Schönwiesner, M., Cramon, D. Y. v., Rübsamen, R., Shah, N. J., Zilles, K., &
Fink, G. R. (2005). Representation of Interaural Temporal Information from Left and Right
Auditory Space in the Human Planum Temporale and Inferior Parietal Lobe. Cerebral
Cortex , 15 (3), 317–324.
Krumbholz, K., Schönwiesner, M., Rübsamen, R., Zilles, K., Fink, G. R., & Von Cramon, D. Y.
(2005). Hierarchical processing of sound location and motion in the human brainstem and
planum temporale. European Journal of Neuroscience, 21 (1), 230–238.
Kuhn, G. F. (1987). Physical acoustics and measurements pertaining to directional hearing. In
Directional hearing (pp. 3–25). Springer.
Kuk, F., & Korhonen, P. (2014). Localization 101 : Hearing Aid Factors in Localization.
Kulesza, R. J., & Grothe, B. (2015). Yes, there is a medial nucleus of the trapezoid body in
humans. Frontiers in Neuroanatomy, 9 .
Kumpik, D. P., Kacelnik, O., & King, A. J. (2010). Adaptive reweighting of auditory localization
cues in response to chronic unilateral earplugging in humans. The Journal of Neuroscience,
30 (14), 4883–4894.
Köbler, S., & Rosenhall, U. (2002). Horizontal localization and speech intelligibility with bilateral
and unilateral hearing aid amplification. International Journal of Audiology, 41 (7), 395–400.
Lackner, J. R. (1974). Changes in Auditory Localization During Body Tilt. Acta Oto-Laryngologica,
77 (1-6), 19–28.
Langendijk, E. H. A., & Bronkhorst, A. W. (2002). Contribution of spectral cues to human sound
localization. The Journal of the Acoustical Society of America, 112 (4), 1583–1596.
Lesica, N. A., Lingner, A., & Grothe, B. (2010). Population coding of interaural time differences
in gerbils and barn owls. The Journal of Neuroscience, 30 (35), 11696–11702.
146
Bibliographie
Lessard, N., Paré, M., Lepore, F., & Lassonde, M. (1998). Early-blind human subjects localize
sound sources better than sighted subjects. Nature, 395 (6699), 278–280.
Lewald, J., & Guski, R. (2003). Cross-modal perceptual integration of spatially and temporally
disparate auditory and visual stimuli. Cognitive brain research, 16 (3), 468–478.
Lewald, J., Riederer, K. A. J., Lentz, T., & Meister, I. G. (2008). Processing of sound location in
human cortex. The European Journal of Neuroscience, 27 (5), 1261–1270.
Linkenhoker, B. A., & Knudsen, E. I. (2002). Incremental training increases the plasticity of the
auditory space map in adult barn owls. Nature, 419 (6904), 293–296.
Lupo, J. E., Koka, K., Thornton, J. L., & Tollin, D. J. (2011). The effects of experimentally
induced conductive hearing loss on spectral and temporal aspects of sound transmission
through the ear. Hearing research, 272 (1-2), 30–41.
MacKeith, N. W., & Coles, R. R. (1971). Binaural advantages in hearing of speech. The Journal
of Laryngology and Otology, 85 (3), 213–232.
Macpherson, E. A. (2013). Cue weighting and vestibular mediation of temporal dynamics in
sound localization via head rotation. Proceedings of Meetings on Acoustics, 19 (1), 050131.
Macpherson, E. A., & Middlebrooks, J. C. (2002). Listener weighting of cues for lateral angle :
the duplex theory of sound localization revisited. The Journal of the Acoustical Society of
America, 111 , 2219.
Magezi, D. A., & Krumbholz, K. (2010). Evidence for Opponent-Channel Coding of Interaural Time
Differences in Human Auditory Cortex. Journal of Neurophysiology, 104 (4), 1997–2007.
Majdak, P., Baumgartner, R., & Laback, B. (2014). Acoustic and non-acoustic factors in
modeling listener-specific performance of sagittal-plane sound localization. Auditory Cognitive
Neuroscience, 5 , 319.
Makous, J. C., & Middlebrooks, J. C. (1990). Two-dimensional sound localization by human
listeners. The Journal of the Acoustical Society of America, 87 (5), 2188–2200.
Malhotra, S., Hall, A. J., & Lomber, S. G. (2004). Cortical control of sound localization in the
cat : unilateral cooling deactivation of 19 cerebral areas. Journal of neurophysiology, 92 (3),
1625–1643.
Bibliographie
147
Malhotra, S., Stecker, G. C., Middlebrooks, J. C., & Lomber, S. G. (2008). Sound Localization
Deficits During Reversible Deactivation of Primary Auditory Cortex and/or the Dorsal Zone.
Journal of Neurophysiology, 99 (4), 1628–1642.
Marcar, V. L., Straessle, A., Girard, F., Loenneker, T., & Martin, E. (2004). When more means
less : a paradox BOLD response in human visual cortex. Magnetic Resonance Imaging,
22 (4), 441–450.
Masterton, B., & Diamond, I. T. (1973). Hearing- Central neural mechanisms. Handbook of
perception., 3 , 407–448.
Masterton, B., Diamond, I. T., Harrison, J. M., & Beecher, M. D. (1967). Medial superior olive
and sound localization. Science (New York, N.Y.), 155 (3770), 1696–1697.
McAlpine, D. (2005). Creating a sense of auditory space. The Journal of physiology, 566 (1),
21–28.
McAlpine, D., Jiang, D., & Palmer, A. R. (2001). A neural code for low-frequency sound
localization in mammals. Nature neuroscience, 4 (4), 396–401.
McFadden, D., & Pasanen, E. G. (1976). Lateralization at high frequencies based on interaural
time differences. The Journal of the Acoustical Society of America, 59 (3), 634–639.
McPartland, J. L., Culling, J. F., & Moore, D. R. (1997). Changes in lateralization and loudness
judgements during one week of unilateral ear plugging. Hearing research, 113 (1), 165–172.
Mendonca, C. (2014). A review on auditory space adaptations to altered head-related cues.
Frontiers in Neuroscience, 8 .
Middlebrooks, J. C. (1997). Spectral shape cues for sound localization. In Binaural and spatial
hearing in real and virtual environments (pp. 77–97). Lawrence Erlbaum Associates, Mahwah,
NJ.
Middlebrooks, J. C. (1999). Individual differences in external-ear transfer functions reduced by
scaling in frequency. The Journal of the Acoustical Society of America, 106 (3), 1480–1492.
Middlebrooks, J. C., & Green, D. M. (1991). Sound Localization by Human Listeners. Annual
Review of Psychology, 42 (1), 135–159.
148
Bibliographie
Middlebrooks, J. C., & Knudsen, E. I. (1984). A neural code for auditory space in the cat’s
superior colliculus. The Journal of Neuroscience : The Official Journal of the Society for
Neuroscience, 4 (10), 2621–2634.
Middlebrooks, J. C., Xu, L., Eddins, A. C., & Green, D. M. (1998). Codes for sound-source
location in nontonotopic auditory cortex. Journal of neurophysiology, 80 (2), 863–881.
Miller, L. M., & Recanzone, G. H. (2009). Populations of auditory cortical neurons can accurately
encode acoustic space across stimulus intensity. Proceedings of the National Academy of
Sciences of the United States of America, 106 (14), 5931–5935.
Mills, A. W. (1958). On the Minimum Audible Angle. The Journal of the Acoustical Society of
America, 30 (4), 237–246.
Mogdans, J., & Knudsen, E. I. (1992). Adaptive adjustment of unit tuning to sound localization
cues in response to monaural occlusion in developing owl optic tectum. The Journal of
Neuroscience : The Official Journal of the Society for Neuroscience, 12 (9), 3473–3484.
Mogdans, J., & Knudsen, E. I. (1993). Early monaural occlusion alters the neural map of interaural
level differences in the inferior colliculus of the barn owl. Brain Research, 619 (1-2), 29–38.
Mohamed, F. B., Pinus, A. B., Faro, S. H., Patel, D., & Tracy, J. I. (2002). BOLD fMRI of the
visual cortex : quantitative responses measured with a graded stimulus at 1.5 Tesla. Journal
of magnetic resonance imaging : JMRI , 16 (2), 128–136.
Moore, J. K. (2000). Organization of the human superior olivary complex. Microscopy Research
and Technique, 51 (4), 403–412.
Morimoto, M., & Ando, Y. (1980). On the simulation of sound localization. Journal of the
Acoustical Society of Japan (E), 1 (3), 167–174.
Mrsic-Flogel, T. D., King, A. J., & Schnupp, J. W. H. (2005). Encoding of Virtual Acoustic Space
Stimuli by Neurons in Ferret Primary Auditory Cortex. Journal of Neurophysiology, 93 (6),
3489–3503.
Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., & Malach, R. (2005). Coupling
between neuronal firing, field potentials, and FMRI in human auditory cortex. Science (New
York, N.Y.), 309 (5736), 951–954.
Bibliographie
149
Musicant, A. D., & Butler, R. A. (1984). The influence of pinnae-based spectral cues on sound
localization. The Journal of the Acoustical Society of America, 75 (4), 1195–1200.
Nakahara, H., Zhang, L. I., & Merzenich, M. M. (2004). Specialization of primary auditory cortex
processing by sound exposure in the "critical period". Proceedings of the National Academy
of Sciences of the United States of America, 101 (18), 7170–7174.
Nir, Y., Fisch, L., Mukamel, R., Gelbard-Sagiv, H., Arieli, A., Fried, I., & Malach, R. (2007). Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal
correlations. Current biology : CB , 17 (15), 1275–1285.
Nodal, F. R., Kacelnik, O., Bajo, V. M., Bizley, J. K., Moore, D. R., & King, A. J. (2010). Lesions
of the auditory cortex impair azimuthal sound localization and its recalibration in ferrets.
Journal of neurophysiology, 103 (3), 1209–1225.
Oldfield, R. C. (1971). The assessment and analysis of handedness : the Edinburgh inventory.
Neuropsychologia, 9 (1), 97–113.
Oldfield, S. R., & Parker, S. P. (1984a). Acuity of sound localisation : a topography of auditory
space. II. Pinna cues absent. Perception, 13 (5), 601–617.
Oldfield, S. R., & Parker, S. P. (1984b). Acuity of sound localisation : a topography of auditory
space. I. Normal hearing conditions. Perception, 13 (5), 581–600.
Oldfield, S. R., & Parker, S. P. (1986). Acuity of sound localisation : a topography of auditory
space. III. Monaural hearing conditions. Perception, 15 (1), 67–81.
Otte, R. J., Agterberg, M. J. H., Van Wanrooij, M. M., Snik, A. F. M., & Van Opstal, A. J.
(2013). Age-related Hearing Loss and Ear Morphology Affect Vertical but not Horizontal
Sound-Localization Performance. Journal of the Association for Research in Otolaryngology,
14 (2), 261–273.
Palmer, A. R., & King, A. J. (1982). The representation of auditory space in the mammalian
superior colliculus. Nature, 299 (5880), 248–249.
Palomäki, K. J., Tiitinen, H., Mäkinen, V., May, P. J., & Alku, P. (2005). Spatial processing in
human auditory cortex : The effects of 3d, ITD, and ILD stimulation techniques. Cognitive
Brain Research, 24 (3), 364–379.
150
Bibliographie
Par, S. v. d., Trahiotis, C., & Bernstein, L. R. (2001). A consideration of the normalization that
is typically included in correlation-based models of binaural detection. The Journal of the
Acoustical Society of America, 109 (2), 830–833.
Park, T. J. (1998). IID sensitivity differs between two principal centers in the interaural intensity
difference pathway : the LSO and the IC. Journal of Neurophysiology, 79 (5), 2416–2431.
Parseihian, G., & Katz, B. F. G. (2012). Rapid head-related transfer function adaptation using a
virtual auditory environment. The Journal of the Acoustical Society of America, 131 (4),
2948–2957.
Pavani, F., Macaluso, E., Warren, J. D., Driver, J., & Griffiths, T. D. (2002). A common cortical
substrate activated by horizontal and vertical sound movement in the human brain. Current
Biology, 12 (18), 1584–1590.
Perrett, S., & Noble, W. (1997a). The contribution of head motion cues to localization of low-pass
noise. Perception & Psychophysics, 59 (7), 1018–1026.
Perrett, S., & Noble, W. (1997b). The effect of head rotations on vertical plane sound localization.
The Journal of the Acoustical Society of America, 102 (4), 2325–2332.
Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory
cortical map reorganization through top-down influences. The Journal of Neuroscience :
The Official Journal of the Society for Neuroscience, 26 (18), 4970–4982.
Populin, L. C. (2008). Human sound localization : measurements in untrained, head-unrestrained
subjects using gaze as a pointer. Experimental Brain Research, 190 (1), 11–30.
Rauschecker, J. P. (1999). Auditory cortical plasticity : a comparison with other sensory systems.
Trends in Neurosciences, 22 (2), 74–80.
Razavi, B., O’Neill, W., & Paige, G. (2005, March). Both Interaural and Spectral Cues Impact
Sound Localization in Azimuth. In 2nd International IEEE EMBS Conference on Neural
Engineering, 2005. Conference Proceedings (pp. 587–590).
Recanzone, G. H. (1998). Rapidly induced auditory plasticity : The ventriloquism aftereffect.
Proceedings of the National Academy of Sciences, 95 (3), 869–875.
Bibliographie
151
Recanzone, G. H., Guard, D. C., Phan, M. L., & Su, T.-I. K. (2000). Correlation Between
the Activity of Single Auditory Cortical Neurons and Sound-Localization Behavior in the
Macaque Monkey. Journal of Neurophysiology, 83 (5), 2723–2739.
Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency
representation of primary auditory cortex following discrimination training in adult owl
monkeys. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience,
13 (1), 87–103.
Recanzone, G. H., & Sutter, M. L. (2008). The Biological Basis of Audition. Annual review of
psychology, 59 .
Roman, N., Wang, D., & Brown, G. J. (2001). Speech segregation based on sound localization. In
(Vol. 4, pp. 2861–2866).
Röder, B., Teder-Sälejärvi, W., Sterr, A., Rösler, F., Hillyard, S. A., & Neville, H. J. (1999).
Improved auditory spatial tuning in blind humans. Nature, 400 (6740), 162–166.
Salminen, N. H., Aho, J., & Sams, M. (2013). Visual task enhances spatial selectivity in the
human auditory cortex. Frontiers in Neuroscience, 7 .
Salminen, N. H., May, P. J., Alku, P., & Tiitinen, H. (2009). A population rate code of auditory
space in the human cortex. PLoS One, 4 (10), e7600.
Salminen, N. H., Tiitinen, H., & May, P. J. (2012). Auditory Spatial Processing in the Human
Cortex. The Neuroscientist, 18 (6), 602–612.
Salminen, N. H., Tiitinen, H., Miettinen, I., Alku, P., & May, P. J. (2010). Asymmetrical
representation of auditory space in human cortex. Brain research, 1306 , 93–99.
Salminen, N. H., Tiitinen, H., Yrttiaho, S., & May, P. J. C. (2010). The neural code for interaural
time difference in human auditory cortex. The Journal of the Acoustical Society of America,
127 (2), EL60–EL65.
Savel, S. (2009). Individual differences and left/right asymmetries in auditory space perception. I.
Localization of low-frequency sounds in free field. Hearing Research, 255 (1–2), 142–154.
Scharf, B. (1998). Auditory attention : The psychoacoustical approach. Attention, 75–117.
152
Bibliographie
Schechtman, E., Shrem, T., & Deouell, L. Y. (2012). Spatial Localization of Auditory Stimuli in
Human Auditory Cortex is Based on Both Head-Independent and Head-Centered Coordinate
Systems. The Journal of Neuroscience, 32 (39), 13501–13509.
Schnupp, J., Nelken, I., & King, A. (2011). Auditory Neuroscience : Making Sense of Sound. MIT
Press.
Schönwiesner, M., Krumbholz, K., Rübsamen, R., Fink, G. R., & von Cramon, D. Y. (2007).
Hemispheric asymmetry for auditory processing in the human auditory brain stem, thalamus,
and cortex. Cerebral Cortex (New York, N.Y. : 1991), 17 (2), 492–499.
Schönwiesner, M., Voix, J., & Pango, P. (2009). Digital earplug for brain plasticity research.
Canadian Acoustics, 37 (3), 94–95.
Seidl, A. H., Rubel, E. W., & Harris, D. M. (2010). Mechanisms for Adjusting Interaural Time
Differences to Achieve Binaural Coincidence Detection. The Journal of neuroscience : the
official journal of the Society for Neuroscience, 30 (1), 70.
Shinn-Cunningham, B. G., Durlach, N. I., & Held, R. M. (1998). Adapting to supernormal
auditory localization cues. The Journal of the Acoustical Society of America, 103 , 3656.
Singer, G., & Day, R. (1966). Spatial adaptation and aftereffect with optically transformed vision :
Effects of active and passive responding and the relationship between test and exposure
responses. Journal of Experimental Psychology, 71 (5), 725–731.
Siveke, I., Pecka, M., Seidl, A. H., Baudoux, S., & Grothe, B. (2006). Binaural response properties
of low-frequency neurons in the gerbil dorsal nucleus of the lateral lemniscus. Journal of
neurophysiology, 96 (3), 1425–1440.
Slattery, W. H., & Middlebrooks, J. C. (1994). Monaural sound localization : Acute versus chronic
unilateral impairment. Hearing Research, 75 (1–2), 38–46.
Smith, A. L., Parsons, C. H., Lanyon, R. G., Bizley, J. K., Akerman, C. J., Baker, G. E., . . . King,
A. J. (2004). An investigation of the role of auditory cortex in sound localization using
muscimol-releasing Elvax. European Journal of Neuroscience, 19 (11), 3059–3072.
Stecker, G. C., Harrington, I. A., & Middlebrooks, J. C. (2005). Location coding by opponent
neural populations in the auditory cortex. PLoS biology, 3 (3), e78.
Bibliographie
153
Steinhauser, A. (1879). The theory of binaural audition. A contribution to the theory of sound.
Philosophical Magazine Series 5 , 7 (42), 181–197.
Stern, R. M., & Shear, G. D. (1996). Lateralization and detection of low-frequency binaural
stimuli : Effects of distribution of internal delay. The Journal of the Acoustical Society of
America, 100 (4), 2278–2288.
Stevens, S. S., & Newman, E. B. (1936). The Localization of Actual Sources of Sound. The
American Journal of Psychology, 48 (2), 297–306.
Strutt (Lord Rayleigh), J. W. (1907). On our perception of sound direction. Philosophical
Magazine, 13 , 214–232.
Suga, N., Xiao, Z., Ma, X., & Ji, W. (2002). Plasticity and Corticofugal Modulation for Hearing
in Adult Animals. Neuron, 36 (1), 9–18.
Syswerda, G. (1989). Uniform crossover in genetic algorithms. In (pp. 2–9). Morgan Kaufmann
Publishers Inc.
Thompson, S. P. (1877). On binaural audition. Philosophical Magazine Series 5 , 4 (25), 274–276.
Thornton, J. L., Chevallier, K. M., Koka, K., Lupo, J. E., & Tollin, D. J. (2012). The Conductive
Hearing Loss Due to an Experimentally Induced Middle Ear Effusion Alters the Interaural
Level and Time Difference Cues to Sound Location. JARO : Journal of the Association for
Research in Otolaryngology, 13 (5), 641–654.
Trapeau, R., Aubrais, V., & Schönwiesner, M. (n.d.). Fast and persistent adaptation to new
spectral cues for sound localization suggests a many-to-one mapping mechanism. The
Journal of the Acoustical Society of America (under review).
Trapeau, R., & Schönwiesner, M. (2011). Relearning sound localization with digital earplugs.
Journal of the Canadian Acoustical Association, 39 (3), 116–117.
Trapeau, R., & Schönwiesner, M. (2015). Adaptation to shifted interaural time differences changes
encoding of sound location in human auditory cortex. NeuroImage, 118 , 26–38.
Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine
Learning Research, 9 (2579-2605), 85.
154
Bibliographie
Van Wanrooij, M. M., & Van Opstal, A. J. (2004). Contribution of Head Shadow and Pinna Cues
to Chronic Monaural Sound Localization. The Journal of Neuroscience, 24 (17), 4163–4171.
Van Wanrooij, M. M., & Van Opstal, A. J. (2007). Sound Localization Under Perturbed Binaural
Hearing. Journal of Neurophysiology, 97 (1), 715–726.
Van Wanrooij, M. M. V., & Van Opstal, A. J. (2005). Relearning sound localization with a new
ear. The Journal of neuroscience, 25 (22), 5413–5424.
Vliegen, J., Grootel, T. J. V., & Van Opstal, A. J. (2004). Dynamic Sound Localization during
Rapid Eye-Head Gaze Shifts. The Journal of Neuroscience, 24 (42), 9291–9302.
Vliegen, J., & Van Opstal, A. J. (2004). The influence of duration and level on human sound
localization. The Journal of the Acoustical Society of America, 115 (4), 1705–1713.
Voix, J., & Laville, F. (2009). The objective measurement of individual earplug field performance.
The Journal of the Acoustical Society of America, 125 (6), 3722–3732.
Wallach, H. (1939). On sound localization. The Journal of the Acoustical Society of America,
10 (4), 270–274.
Werner-Reiss, U., & Groh, J. M. (2008). A rate code for sound azimuth in monkey auditory
cortex : implications for human neuroimaging studies. The Journal of Neuroscience, 28 (14),
3747–3758.
Wightman, F. L., & Kistler, D. J. (1989a). Headphone simulation of free-field listening. II :
Psychophysical validation. The Journal of the Acoustical Society of America, 85 (2), 868–878.
Wightman, F. L., & Kistler, D. J. (1989b). Headphone simulation of free-field listening. I :
Stimulus synthesis. The Journal of the Acoustical Society of America, 85 (2), 858–867.
Wightman, F. L., & Kistler, D. J. (1997). Monaural sound localization revisited. The Journal of
the Acoustical Society of America, 101 , 1050.
Wightman, F. L., & Kistler, D. J. (1999). Resolution of front–back ambiguity in spatial hearing
by listener and source movement. The Journal of the Acoustical Society of America, 105 (5),
2841–2853.
Bibliographie
155
Woldorff, M. G., Tempelmann, C., Fell, J., Tegeler, C., Gaschler-Markefski, B., Hinrichs, H.,
. . . Scheich, H. (1999). Lateralized auditory spatial perception and the contralaterality of
cortical processing as studied with functional magnetic resonance imaging and magnetoencephalography. Human Brain Mapping, 7 (1), 49–66.
Wong, L. L. N., Hickson, L., & McPherson, B. (2003). Hearing aid satisfaction : what does
research from the past 20 years say ? Trends in Amplification, 7 (4), 117–161.
Woods, D. L., Stecker, G. C., Rinne, T., Herron, T. J., Cate, A. D., Yund, E. W., . . . Kang, X.
(2009). Functional Maps of Human Auditory Cortex : Effects of Acoustic Features and
Attention. PLoS ONE , 4 (4), e5183.
Worsley, K. J., Liao, C. H., Aston, J., Petre, V., Duncan, G. H., Morales, F., & Evans, A. C.
(2002). A general statistical analysis for fMRI data. Neuroimage, 15 (1), 1–15.
Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A
unified statistical approach for determining significant signals in images of cerebral activation.
Human brain mapping, 4 (1), 58–73.
Wright, B. A., & Fitzgerald, M. B. (2001). Different patterns of human discrimination learning
for two interaural cues to sound-source location. Proceedings of the National Academy of
Sciences, 98 (21), 12307–12312.
Wright, B. A., & Zhang, Y. (2006). A review of learning with normal and altered sound-localization
cues in human adults : Revisión del aprendizaje en adultos con claves de localización sonora
normales o alteradas. International journal of audiology, 45 (S1), 92–98.
Xu, L., Furukawa, S., & Middlebrooks, J. C. (1998). Sensitivity to Sound-Source Elevation in
Nontonotopic Auditory Cortex. Journal of Neurophysiology, 80 (2), 882–894.
Yan, W., & Suga, N. (1998). Corticofugal modulation of the midbrain frequency map in the bat
auditory system. Nature Neuroscience, 1 (1), 54–58.
Yost, W. A. (1974). Discriminations of interaural phase differences. The Journal of the Acoustical
Society of America, 55 (6), 1299–1303.
Yost, W. A., & Fay, R. R. (2007). Auditory Perception of Sound Sources. Springer Science &
Business Media.
156
Bibliographie
Young, E. D., Spirou, G. A., Rice, J. J., Voigt, H. F., & Rees, A. (1992). Neural Organization and
Responses to Complex Stimuli in the Dorsal Cochlear Nucleus [and Discussion]. Philosophical
Transactions of the Royal Society of London B : Biological Sciences, 336 (1278), 407–413.
Young, P. T. (1928). Auditory localization with acoustical transposition of the ears. Journal of
Experimental Psychology, 11 (6), 399–429.
Zatorre, R. J., Bouffard, M., Ahad, P., & Belin, P. (2002). Where is ’where’ in the human auditory
cortex ? Nature Neuroscience, 5 (9), 905–909.
Zatorre, R. J., Bouffard, M., & Belin, P. (2004). Sensitivity to auditory object features in human
temporal neocortex. The Journal of Neuroscience : The Official Journal of the Society for
Neuroscience, 24 (14), 3637–3642.
Zatorre, R. J., & Penhune, V. B. (2001). Spatial localization after excision of human auditory
cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience,
21 (16), 6321–6328.
Zhang, X., Zhang, Q., Hu, X., & Zhang, B. (2015). Neural representation of three-dimensional
acoustic space in the human temporal lobe. Frontiers in Human Neuroscience, 9 .
Zimmer, U., Lewald, J., Erb, M., & Karnath, H.-O. (2006). Processing of auditory spatial cues in
human cortex : an fMRI study. Neuropsychologia, 44 (3), 454–461.
Zwiers, M. P., Van Opstal, A. J., & Paige, G. D. (2003). Plasticity in human sound localization
induced by compressed spatial vision. Nature Neuroscience, 6 (2), 175–181.
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement