BACHELOR1 kopie - University of Twente Student Theses

BACHELOR1 kopie - University of Twente Student Theses
Drawing based modeling and simulation in primary school science education - The impact on
students’ attitude towards science and domain specific knowledge
Hanna Schmalz
s1023381
University of Twente
August 2012
2
Abstract
Thirty-one German students (grade 5 and 6) participated in a study which aims at
finding out if animation of drawn models contributes to the understanding of complex
planetary movements and to a positive attitude towards science. They worked with
SimSketch, a modeling tool that gives learners the opportunity to create drawings of
phenomena they study and simulate them afterwards. Their task was the model construction
of the solar system in which the Venus orbit and the Earth’s perspective of Venus’ retrograde
movement were emphasized. The students had to answer special questions before and after
the use of SimSketch to enable the measurement of the treatment‘s effects. Results indicate
that animation of drawn models contributes to the understanding of complex planetary
movements and to a positive attitude towards science although gender differences were found.
Male students improved their attitude towards science after the use of SimSketch whereas
females did not. The female students in return increased their general planetary knowledge
after the treatment which contrasts with the results of male students.
3
Contents
Abstract……………………………………………….……………………………..…..…..…2
Contents..........…………………………………...………………….…………...…….....……3
1. Introduction..……………….……………………………....…………………….........….…4
2. Method...……………………………………………………………….……...……...….….7
2.1 Participants.....……………………………………...…………………….…...……7
2.2 Material.....…………………………………………...……………………...……..8
2.3 Procedure……….…………………………………………………………...….…..9
3.Results.....………………………………..……………………………………………....…...9
3.1 Attitude towards science...........................................………...………………..….10
3.2 General planetary knowledge…………………...….……………………….….…11
3.3 Knowledge of the retrograde movement of Venus………........…....……………..11
3.4 gender differences...................................................................................................12
3.5 Use of SimSketch....................................................................................................14
4. Discussion..…………………...…………………….….…………………………….…….16
5. References.………………………..……..……………….………………………….….….20
Appendix………………………………………………………………………...…………23
4
1. Introduction
Education is a big issue with regard to the future society. The importance of children’s
learning aptitude is therefore recognized during the last decades. The programme for
International Student Assessment (PISA) in 2000 for example aimed to evaluate educational
systems worldwide by testing the students’ skills of knowledge in participating countries.
PISA uses tests, which are designed to evaluate student’s ability to apply their knowledge to
real-life situations. According to this program the importance of science education is the
preparation of students for participation in society (OECD Programme for International
Student Assessment (PISA)). Some of the participating countries like for example Germany
were placed below the average in all tested subjects (Grek, 2009) which leads to a big
challenge for politicians and scientists to find out how educational systems can improve
children’s learning aptitude and arrange an effective acquirement of new knowledge.
The cognitive view of learning suggests that one of the most important elements in the
learning process is how much prior knowledge someone brings to new learning situations and
for this reason knowledge is more than the end product of previous learning; it also guides
new learning (Woolfolk, Hughes & Walkup, 2008). One important way by which learners can
guide their own learning capacities is the use of learning strategies. Especially cognitive
learning strategies which describe skills in rehearsing learning contents or organizing it into a
main topic, are thought to affect comprehension (Leopold & Leutner, 2012). Model-based
learning is one form of cognitive learning strategies. According to Gobert (2000) it describes
the construction of mental models and the subsequent elaboration and revision.
Mental models are internal cognitive representations used to generate external
representations. Prior knowledge for example is one form of a mental model that influences
our perceptions of phenomena and our understanding of representations (Buckley, 2000).
Mental models can be revised or elaborated after an evaluation of their accuracy. Model
revision describes the process by which parts of an existing model are modified and model
elaboration describes the process of adding something to an existing model or combining
existing models. In this context learning describes the continuous adaption of mental models
(Gobert, 2000).
Models in general can be defined as simplified representations of a system focusing on
the specific aspects of this system (Ingham & Gilbert, 1991). The creation of models allows to
5
reflect on certain aspects of phenomena. It is important to use models to formulate hypotheses
and to describe scientific phenomena and for that reason models are an essential component to
build scientific knowledge. Modification and evaluation of models are, furthermore,
important for a scientific world view, because they illustrate the way scientists work (Penner,
2000). It seems obvious that models are of interest for educational research and in the past
decades the value of models to science education has therefore been increasingly recognized
among the science education reform movements (Gobert, 2000).
Current views on science education further underline the significance of getting
students engaged in scientific inquiry activities. The aim is to improve the students
understanding of science contents and scientific practices (Sins, Savelsbergh, van Joolingen &
van Hout-Wolters, 2010). Inquiry learning is an approach to offer authentic experience by
engaging learners in a knowledge construction process (Löhner, van Joolingen, Savelsbergh
& van Hout-Wolters, 2005). It can be described as “an educational activity in which students
individually or collectively investigate a set of phenomena – virtual or real – and draw
conclusions about it” (Kuhn, Black, Keselman, & Kaplan, 2000). Gobert and Pallant (2004)
suggest that students’ engagement in authentic scientific inquiry is an excellent pedagogical
approach to support their content learning, inquiry skill development and understanding of the
nature of science and of scientific models. Authentic scientific inquiry can be made in
different ways, but it definitely presumes active engagement of the students. Drawing is one
of those activities which require active engagement.
When reporting their discoveries scientists do not limit themselves to words, but rely
on diagrams, graphs and similar images to illustrate their results. The same applies to students
who understand a scientific text better when they are asked to visualize or draw the content
instead of engaging in text-focused processing (Leopold & Leutner, 2012). Leopold &
Leutner (2012) have shown that the ability to transfer acquired knowledge to new situations
has been increased through drawing activity whereas students who were ask to summarize the
acquired knowledge were less able to transfer the content to new situations.
According to van Joolingen, Bollen & Leenaars (2010) drawing can form a bridge
between initial ideas and the formal model of a system. A drawing helps identifying the main
components that need to be included in a model and that need to be represented as one or
more variables. Van Joolingen, Bollen, Leenaars & Kenbeek (2010) had two approaches how
to construct a model: drawing to prepare the model and drawing the model itself. Drawing to
6
prepare the model contains three steps: drawing, defining of variables and the transfer of
everything into a computer model. Van Joolingen, Bollen, Leenaars & Kenbeek (2010) found
out that models that have been constructed by students in those three steps help with
activating prior knowledge and with constructing the model itself based on the drawn
elements. This kind of drawing guides learners in making their views on a domain more
specific. For that reason SimSketch (van Joolingen, Bollen, Leenaars, & Kenbeek, 2010)
works with several steps to create a final model. Students have to draw each single part of the
model first, give them names in a second step and tell them at the end how to move.
SimSketch is one modeling tool that gives learners the opportunity to create drawings of
phenomena they study and simulate them afterwards. If they draw for example the earth and
the sun, they can arrange the fact that the earth rotates about its own axis and orbits the sun in
a simulation. Another feature of SimSketch is the possibility to change the viewpoint within
the simulation and adjust velocity and size to perfect the students‘ own construction. That
gives the student the chance to inspect the self-constructed model from every perspective and
to acquire a deeper understanding of the topic. Simulation in general could be defined as an
imitation of a system, which can be used to explore domain-specific knowledge (Penner,
2000). The term computer simulation describes “programs that contain a model of a system
(natural or artificial, e.g., equipment), or process” (de Jong, & van Joolingen, 1998).
Van Joolingen, Bollen and Leenaars (2010) emphasize that simulation based on
knowledge - which is used by SimSketch - can have a positive effects on learning processes.
Learners will be confronted with the consequences of their own ideas and will be able to
adjust these ideas based on this confrontation. Chung, Harmon and Baker (2001) agree with
that idea and specify that simulation-based learning is effective in improving students' skills
in dealing with complex projects, linking theory to real-world application and improving their
problem-solving performance. The use of simulations may, therefore, also be a good tool to
give students an understanding of complex structures occurring in science education.
Especially primary and high school students “perceive science largely as a passive
process of observing and recording events” (Penner, 2000) and if they have to choose their
most disliked subject, it is often science (Osborne & Collins, 2003). Duran, Toral, MartinezTorres and Barrero (2007) found out that computer simulations have positive effects on the
students’ satisfaction, participation and initiative. That leads to the question whether the
image that students have of science can be improved through computer simulation and
7
modeling and whether students can develop a positive attitude towards science and maybe
perceive science as something more active and interesting due to the use of computer
simulations.
The approach is an experimental study in which students are faced with the task of
drawing a model of the solar system using SimSketch. They are directed to assign behavior to
elements in the drawing and ultimately to simulate the self-constructed model. The emphasis
will be the Venus orbit and the earth‘s perspective of Venus’ movements, because if someone
on earth watches Venus for a couple of days he or she will recognize loop-like movements.
The main research question is whether animation of drawn models contributes to the
understanding of complex planetary movements and to a positive attitude towards science. It
is expected that students who construct models and animate them afterwards expand their
domain specific knowledge and understand the complex planetary movements better than
before the model construction and animation (Hypothesis 1). Furthermore it is expected that
students who construct models and animate them afterwards get a more positive attitude
towards science (Hypothesis 2).
Research has shown that girls outperform boys on planning and attention (Naglieri &
Rojahn, 2001) and that boys in contrast have in general more positive attitudes towards
science and greater levels of scientific knowledge than females (von Rotten, 2004). Due to
these findings it is suggested that there are also differences between boys and girls with
regard to the effects of modeling and simulation. It is in question if there are significant
differences between male and female students regarding the understanding of complex
planetary movements and the creation of a positive attitude towards science after the
animation of self-drawn models (subquestion).
2. Method
2.1 Participants
The participants were 31 German students that attend classes five or six of a secondary
school in Bocholt. There were 48,4 % female and 51,6 % male students taking part in the
study with an average age of 11,39 years and a standard deviation of 0,67. In order to
participate the students had to sign up in a list because the number of students that could
participate at the same time was limited to ten. There were seven fixed dates to take part in the
8
study and at each date there was a different number of participants, between one and eight
students.
2.2 Material
In this study SimSketch (van Joolingen, Bollen, Leenaars, & Kenbeek, 2010) is used
as it allows simulation of constructed models. The modeling process consists of two tasks
which require the students to model the solar system and animate it afterwards,
heliocentrically at first and geocentrically (from the earth’s perspective) second. The
computers of the participating school are to run SimSketch and their screens are projected to
touch-screens by Wacom (model: DTZ - 1200W). The projection of the computer-screen onto
the Wacom touch-screen enables the students to simultaneously draw something and watch
the drawing in progress. The tablets allow the students to draw on it with proper pens, but do
not react on tangency of fingers or palms.
By providing two questionnaires, one before and one after the use of SimSketch, the
simulations’ effects on domain specific knowledge and attitudes towards science is measured.
The first questionnaire contains items regarding the general planetary knowledge and the
attitude towards science. General planetary knowledge is measured by seven multiple choice
questions whereas “1” stands for a right and “0” for a wrong answer. The attitude towards
science on the other hand is measured by seven four-point-likert-scale items whereas “1”
means a very negative attitude and “4” a very positive attitude towards science.
The second questionnaire consists of the same items as the first one plus additional
questions regarding Venus. As domain specific knowledge about Venus’ orbit is not expected
before the treatment, there is no pretest. There are two multiple choice and two open
questions measuring Venus knowledge after the treatment. One open question asked the
students to describe the retrograde movement of Venus in own words and the second to make
a drawing of it. In all four questions “1” stands for a right and “0” a wrong answer. In a
second step the two open questions are encoded in another way. There are three criteria for
both questions which could be stated respectively drawn by the students. “0” stands for the
situation in which the student provides no criteria and “3” means that the student provides all
three criteria.
The last point within the second questionnaire is the students’ opinion on SimSketch.
The students evaluate SimSketch by filling out a table with opposing adjectives. Their
9
answers are given on a five-point Likert scale. The score “1” stands for the students’
judgement that the more negative adjective is totally appropriate to describe SimSketch and
the score “5” stands for the opposite judgment. Ten statements were, furthermore, given to
find out how the students think about the use of SimSketch. The students are to react on these
statements by giving or not giving their consent. They respond on a four-point Likert scale
whereas “1” means that they totally disagree and “4” that they perfectly agree.
2.3 Procedure
After a short introduction to the experiment, SimSketch and the use of the Wacom-
tablets, the students filled out the first questionnaire. When they were finished they got the
instruction to run the tutorial of SimSketch and work on the modeling tasks (see Figure 1)
before filling out the second questionnaire. The students were allowed to ask questions
regarding the use of SimSketch and the understanding of the questionnaires at any time.
Figure 1. One student’s drawing of the first task within the modeling program SimSketch
3. Results
The aim of this paper is to investigate the effects on students’ attitude towards science
and domain specific knowledge initiated by the use of SimSketch. The testing procedure
begins with the identification of the variables’ normal distribution by the KolmogorovSmirnov-Test. In case of normal distributed variables T-Tests are used to determine the
10
differences of the scores before and after the use of SimSketch. When there was no normal
distribution the Wilcoxon Signed-Rank-Test is used. This section is split into five subsections.
The first four thematize the main research question and the subquestion, and the last one gives
information about the students’ work with and their opinions on SimSketch.
3.1 Attitude towards science
A one-sided Paired-Sample T-Test (see Table 1) is used to determine the differences
between the measured attitude towards science before (M=3,152; SD=0,329) and after the
treatment (M=3,309; SD=0,401). It turns out that the attitude’s mean after the use of
SimSketch is significantly higher than before, T(31)=2,672; P=0,006.
mean before the treatment
mean after the treatment
It’s fun to invent new things
It’s great to learn about new topics
I like to watch TV shows as “Löwenzahn”
I want to know how things happen
It’s interesting to know how things work
It’s fun to search for problems’ solutions
I like to watch things under magnifying glasses
0
1
2
3
4
5
Figure 1. Mean-values before and after the use of SimSketch for every single item concerning
the attitude towards science
Concerning the mean-values of the single items with regard to the attitude towards
science (see Figure 1), it is striking that the item “It’s interesting to know how things work”
achieves remarkably more positive consent after the use of SimSketch than before. The item
“It’s great to learn about new topics” in contrast is evaluated as less adequate after the
treatment in comparison to the anterior evaluation.
11
3.2 General planetary knowledge
The one-sided non-parametric Wilcoxon Signed-Rank-Test (see Table 2) is used to
find out if students have significantly more planetary knowledge after the use of SimSketch. It
turns out that the distribution of measured general planetary knowledge after the treatment
(M=0,862; SD=0,145) shows systematically higher values than the measured general
planetary knowledge before the treatment (M= 0,806; SD=0,175); P=0,031.
There are some questions for which remarkably many students did not know the right
answer before the treatment. 22,6% did not know what a solar system actually is, 25,8% had
no idea how, respectively if the sun is moving and 35,5% did not give the right answer to the
question why the sun cannot always be seen at the same position in the sky. After the use of
SimSketch the percentages of wrong answers regarding the mentioned questions generally
decreased, but exceptionally in case of the first question. After the treatment only one student
(3,2%) did not know the right answer to the question what the solar system actually is.
3.3 Knowledge of the retrograde movement of Venus
Table 3. Mean, standard deviation and T value of a one-sided One-Sample T-Test on the
knowledge of the retrograde movement of Venus after the use of SimSketch
Knowledge of Venus
N
M
SD
T
d.f.
P
31
0,516
0,376
7,642
30
0,000
A one-sided One-Sample T-Test (see Table 3) is used to determine if the knowledge
of the retrograde movement of Venus after the treatment is significantly higher than the noknowledge expectation before the treatment. It can be ascertained that the knowledge after the
treatment (M=0,516, SD=0,376) is significantly higher than zero, T(31)=7,642; P=0,000.
Table 4. Mean, standard deviation and T value of a one-sided Paired-Sample T-Test on the
students’ ability to reflect knowledge of the retrograde movement of Venus in a written and a
drawn way
Drawn
Venus knowledge
Written
N
M
SD
M
SD
P
31
1,193
1,077
0,581
0,807
0,006
12
The aim of the following test is to find out if the students do better in representing
their new knowledge in a drawing or in describing it in own words. The one-sided nonparametric Wilcoxon Signed-Rank-Test is used to compare the distribution of the items (see
Table 4). It turns out that the distribution of the variable concerning drawn Venus knowledge
(M=1,193; SD=1,077) has values which are systematically higher than values of the variable
concerning written Venus knowledge (M=0,581; SD=0,807); P=0,009.
3.4 gender differences
This section thematizes the treatment’s effect on the attitude towards science, general
planetary knowledge and knowledge of the retrograde movement of Venus, but for each sex
separately due to a file-splitting of the sex-variable. Regarding the attitude towards science it
is possible to compare the mean values using a one-sided Paired-Sample T-Test for female as
well as for male participants, as according to the Kolmogorov-Smirnov-Test all populations
have a normal distribution.
Table 5. Mean, standard deviation and T value of one-sided Paired-Sample T-Tests for each
sex on the attitude towards science and general planetary knowledge before and after the
use of SimSketch
After
treatment
Before
treatment
N
M
SD
M
Attitude towards science
(female)
15
3,352
Attitude towards science
(male)
16
Knowledge (female)
Knowledge (male)
SD
T
df
P
0,319 3,257
0,236
1,375 14
0,095
3,268
0,472 3,0536
0,379
2,301 15
0,018
15
0,857
0,153 0,800
0,169
1,702 14
0,05
16
0,866
0,142 0,812
0,186
1,307 15
0,105
Paired-Sample T-Tests (see Table 5) are performed for both sexes and it can be
ascertained that only the male students’ attitude towards science is significantly higher after
the use of SimSketch, T(16)=2,301; P=0,018. Furthermore, it is tested if the attitude towards
science before respectively after the treatment is equal among both sexes. Two-sided
independent T-Tests are used and it emerges that the females’ prior attitude towards science
(M=3,257; SD=0,236) does not significantly differ from the males’ prior attitude (M=3,305;
13
SD=0,379); T(31)=1,778, P=0,086. For the attitude towards science after the treatment the
findings are similar, the females’ posterior attitude towards science (M=3,352; SD=0,319)
does not significantly differ from the males’ posterior attitude (M=3,268; SD=0,472);
T(31)=0,580, P=0,566.
Regarding the general planetary knowledge the means are compared by the use of a
one-sided Paired-Sample T-Test (see Table 5) for female as well as for male participants,
because again the populations are normal distributed. It turns out that only the female students
scored after the use of SimSketch significantly higher on questions regarding general
planetary knowledge, T(15)=1,702; P=0,05. There was additionally tested if the general
planetary knowledge before respectively after the treatment is equal among both sexes. Twosided independent T-Tests are used and it emerges that the females’ prior knowledge
(M=0,800; SD=0,169) does not significantly differ from the males’ prior knowledge
(M=0,8125; SD=0,186); T(31)=0,192, P=0,849. For the general planetary knowledge after the
treatment the findings are similar, the females’ posterior knowledge (M=0,857; SD=0,153)
does not significantly differ from the males’ posterior knowledge (M=0,866; SD=0,142);
T(31)=0,168, P=0,867.
Table 6. Mean, standard deviation and T value of one-sided One-Sample T-Tests for each
sex on the knowledge of the retrograde movement of Venus after the use of SimSketch
N
M
SD
T
d.f.
P
Knowledge of Venus (female)
15
0,567
0,319
6,859
14
0,000
Knowledge of Venus (male)
16
0,469
0,427
4,392
15
0,000
The knowledge of the retrograde movement of Venus is also tested in both sexes
separately. A one-sided One-Sample T-Test is used (see Table 6) and it turns out that after the
treatment male (T(16)=4,392; P=0,000) as well as female (T(15)=6,859; P=0,000) students’
knowledge of Venus‘ movements is significantly higher than the no-knowledge expectation
before the treatment.
14
3.5 Use of SimSketch
Table 9. Minimum, maximum, mean and standard deviation of the students’ evaluation of
opposing adjectives describing SimSketch
N
Minimu
m
Maximu
m
M
SD
Boring - exciting
31
3,0
5,0
4,484
0,724
Uninspired - creative
30
3,0
5,0
4,667
0,606
Familiar - new
29
1,0
5,0
4,345
1,078
Impractical - useful
30
1,0
5,0
3,967
1,245
Needless - valuable
29
2,0
5,0
3,759
0,912
Confusing - well arranged
30
1,0
5,0
3,300
0,915
Difficult - easy
30
1,0
5,0
3,467
1,137
Technical - human
30
1,0
5,0
2,400
1,037
Not nice - nice
31
3,0
5,0
4,484
0,724
Bad - good
30
2,0
5,0
4,433
0,774
It is striking that the mean-scores of half the items regarding opposing adjectives are
above “4” and therefore very positive. Only for the item by which the students had to choose
between the more negative adjective “technical” and the more positive one “human” the
evaluation’s mean was remarkably lower (see Table 9). In comparison to the other adjectives,
“confusing - well arranged” (M=3,300; SD=0,915) and “difficult - easy” (M=3,467;
SD=1,137) have quite low mean-values as well, but in this case the students still evaluate the
more positive adjective as more appropriate. Concerning the students’ evaluation of opposing
adjectives it is additionally noticeable that there are three items having a minimum score of
“3”. This implies that there are no students evaluating the negative adjective as more
appropriate: “boring -exciting”, “uninspired - creative” and “not nice - nice”.
15
Table 10. Minimum, maximum, mean and standard deviation of the students’ consent to
statements concerning the use of SimSketch
N
Minimu
m
Maximu
m
M
SD
I have frequently worked with such
programs
31
1,0
4,0
1,774
0,920
I found the tasks interesting
31
2,0
4,0
3,419
0,672
I liked to think about the solar system
31
2,0
4,0
3,129
0,619
I enjoyed to work with SimSketch
31
1,0
4,0
3,516
0,724
I found it difficult to work with SimSketch
31
1,0
4,0
2,258
0,893
I think that my drawings are well done
31
1,0
4,0
2,806
0,749
The drawing helped to understand the solar
system
31
1,0
4,0
3,193
0,792
I liked to see my own drawings moving
31
1,0
4,0
3,452
0,723
It was difficult to discover how it is
possible to make the drawing move
31
1,0
4,0
2,484
0,962
The drawing’s movements helped me to
understand the solar system
30
2,0
4,0
3,200
0,714
By analyzing mean-values of the statements concerning SimSketch, it is striking that
six out of ten items have a mean-value higher than “3” (see Table 10). The only statements
which do not get wide approval are “I have frequently worked with such
programs” (M=1,774; SD=0,920), “I found it difficult to work with SimSketch” (M=2,258;
SD=0,893), “I think that my drawings are well done” (M=2,806; SD=0,749) and “It was
difficult to discover how it is possible to make the drawing move” (M=2,484;
SD=0,962).
After the modeling and simulation process the students got to know what the orbits
of the solar system really look like. They were asked to note the differences of their selfconstructed models and the models of the real world. The most common difference was
caused by a mistake during the modeling process. The students had to separate the
components of their model by use of a special feature (“lasso”). This feature enabled the
attribution of movements to single objects of the drawing. 41,9% of the students have not
done this correctly and the simulation did not work as expected. 19,3% forget to name the
16
single objects and 6,4% of the students do not even remember giving the objects instructions
what to do. This mistake resulted in the situation that the simulation could not move at all.
Concerning the simulation’s correctness 32,3% of the students forget to show that the
earth rotates about its own axis, 25,8% let the moon go around the sun and 22,6% of the
students do not remember to coordinate Venus’ movements around the sun. 6,5% of the
students even simulated a geocentric world view where everything goes around the earth.
Furthermore, it was noticeable that 48,4% of the students made mistakes in their model
construction although they have answered the pretest’s questions regarding those phenomena
rightly.
Discussion
With respect to the research question whether animation of drawn models contributes
to the understanding of complex planetary movements and to a positive attitude towards
science it was found that students significantly benefit from the animation of drawn models in
both areas. Additionally, it was discovered that there are gender differences regarding the
research question. Male students significantly improved their attitude towards science after
the use of SimSketch whereas females did not. The female students in return increased their
general planetary knowledge significantly after the treatment which contrasts with the results
of male students. This research additionally demonstrated the differences between the
reproduction of knowledge by means of drawings and descriptions in own words. It emerged
that students significantly better reproduce their knowledge of the retrograde movement of
Venus by means of drawings than by the use of own words.
These results suggest that simulation of drawn models has a positive effect on
students‘ learning aptitude. According to Chung, Harmon and Baker (2001) simulation-based
learning is effective in improving students' skills in dealing with complex projects, linking
theory to real-world application and improving their problem-solving performance. In
pursuance to the present results they attain a deeper understanding of the whole topic, but also
a more positive attitude towards science. Modeling and simulation is one very active way of
learning. Students do not just read or listen to someone teaching ex-cathedra, they actively
create something and experience the contents they are learning. The students’ interaction with
the learning contents is thought to cause the positive effect concerning the attitude towards
science. With SimSketch students actively work with contents by drawing and modifying
17
their own models. They adjust the simulations’ perspective, the velocity and the size to perfect
their own construction and therefore attain a deeper understanding of the topic. Kahle &
Lakes (1983) argued that “lack of experience in science leads to a lack of understanding of
science and contributes to negative attitudes towards science”. With SimSketch students
experience science very actively and, therefore, attain a more positive attitude towards it.
A possible explanation for the students’ improved understanding of complex
planetary movements is the visual stimulation of the students’ attention by the use of the
modeling tool SimSketch. They do not just read something and try to remember the content in
words; they remember the learning contents by use of their self-constructed drawings they
look at during the modeling process. These self-drawn pictures can support comprehension
and remembrance; they may help to build mental models as for example prior knowledge
(Glenberg & Langston, 1992) which can be used to guide new learning (Woolfolk, Hughes &
Walkup, 2008).
Gender differences may occur due to the fact that girls outperform boys on planning
and attention (Naglieri & Rojahn, 2001). That explains the significant improvement of the
females’ general planetary knowledge after the treatment. They use their attention to fully
concentrate on the tasks and learn from it. Boys in contrast have in general more positive
attitudes towards science than girls (Osborne & Collins, 2003; von Rotten, 2004) which is
also in accordance with the results of the present study.
Compared to findings of other researchers there are similar but also contradictory
results. The outcome that students’ abilities increase after model construction is in accordance
with several other researchers (Ainsworth, 2006; van Joolingen, Bollen & Leenaars, 2010;
Rutten, van Joolingen, & van der Veen, 2012). Ainsworth (2006) found that students’
performances can be enhanced by the interaction with appropriate presentations. The results
of the present research are comparable because all students got to see the right animation of
the solar system and after the treatment their performances regarding the general planetary
knowledge improved. Another research (Rutten, van Joolingen, & van der Veen 2012) has
shown that students who use computer simulations in addition to traditional instructions
achieve significantly higher results on their tasks. In the present study simulation is not only
an additional tool but the results are similar because the students improve their abilities after
the use of modeling and simulation as well. Van Joolingen, Bollen & Leenaars (2010) also
agree with with these findings. They ascertained that the process of generating a simulation
18
based on knowledge can have a positive effect on the students’ learning abilities. Learners
will be confronted with the consequences of their own ideas and will be able to adapt these
ideas based on this confrontation.
It was, however, striking that many students were able to answer questions regarding
the solar system even before the treatment, but they had difficulties with relating this prior
knowledge to the computer model they were to construct. This result is consistent with
findings of Sins et al (2005). They brought to light that students often fail to perform model
behavior successfully because they do not use they prior knowledge. The present research
additionally found out that students are better in reproducing acquired knowledge by means of
drawings rather than by the use of own words. That is in accordance with findings of Leopold
and Leutner (2012). They have shown that the ability to transfer acquired knowledge to new
situations can be increased by drawing activity whereas students who are asked to summarize
acquired knowledge are less able to transfer the content to new situations. In the present
research there was no transfer to new situations but even the reproduction of acquired
knowledge appeared to be easier in a drawn way.
Apart from many similarities to results of other researchers, there are still some
points of the present study which conflicts with other findings. According to von Rotten
(2004) males have a more positive attitude towards science and greater levels of scientific
knowledge than females. In the present study there is, however, no proof for a significant
gender difference neither before nor after the treatment. Furthermore, it is found that drawing
to prepare a model - drawing, defining of variables and the transfer of everything into a
computer model - helps with activating prior knowledge and with constructing the model
itself based on the drawn elements (van Joolingen, Bollen, Leenaars & Kenbeek, 2010). The
present results do not agree with that suggestion. Although the students had to draw each
single part of the model first, give them names in a second step and tell them at the end how
to move, 48,4% of the students made mistakes in the model construction although they
answered the pretest’s questions regarding those phenomena rightly. These contrary results
occur due to some limitations of the experiment which should be addressed.
One of those limitations was the special target group for the experiments. Only
German students attending class five and six of one school in Bocholt and consequentially
one school in the whole country were part of the present study. For this reason the chance to
get a large data pool was quite low from the very first and that led to the most critical
19
limitation: the small group of participants. The students’ enrollment was even lower than
expected due to some critical circumstances. The fixed dates for the experiments were
distributed over five weeks and many students forgot their registration for the experiment at
the end of this period. Another point which could have limited the potentiality of the
experiment was the bounded number of possible participants at the same time. Seven fixed
dates had to be arranged to execute the study with an acceptable number of students. For that
reason students who took part in one of the first experiments were able to talk to their
classmates about the tasks and contents. If these classmates participated in the study at a later
point of time, they were prepared and got an improved starting condition. They may got better
results and that could have caused a negative effect on the study’s reliability.
Due to a different number of participants on each date (between one and a group of
eight), some students got a better assistance than others. When there are only one or two
students taking part in an experiment it is much easier to take care of all questions and
problems that occur than in a situation where eight students try to communicate with the
researcher. So it has to be stated that the conditions during the experiment were not equal for
all participants. Because of these inequalities of treatment it is hard to draw conclusions and
not definitely possible to generalize the results to other situations.
After the pilot study it was expected that the students need about 45 minutes to run
through the tasks and complete the questionnaire and for that reason the experiments’ duration
was limited to one hour. Unfortunately some students needed an unexpected amount of time
and so at the end they had to hurry. It was not possible to allow them more time, because the
school’s computer room was always booked in the lesson after and the participants had to
leave on time. The last point which could have limited the potentiality of the experiment was
the weather condition at the second and third fixed date of the study. The temperature was
over 30 degrees in the shade and the air condition in the computer room was not easy to
sustain. The students had problems to focus, asked questions more than once and hardly dealt
with their tasks. Their results might have been different if the experimental conditions had
been more neutral.
In spite of all those limitations the present results still have expressiveness by reason
of the great accordance with researchers of other studies as mentioned before. The biggest
value of these results is the possible application in primary and high schools. Students from
those age-groups “perceive science largely as a passive process of observing and recording
20
events” (Penner, 2000) and that is why educational systems require an improvement in their
ability to teach science. When students were asked which subjects they do like least, the most
disliked subject was science (Osborne & Collins, 2003) and that is a fact which may be
enhanced by means of the present results. Educational systems could be guided in the
direction of active science experiences by use of modeling and simulation programs as
SimSketch. Students may have more fun with sciences, develop a more positive attitude
towards it and improve their abilities and their knowledge in areas of science. Nevertheless, it
has to be said that further research is needed to bring education to perfection. However, the
present results can be used to develop follow-up-studies and so they have already established
a foundation for a great series of further investigations.
Reference
Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple
representations. Learning and Instruction, 16 (3), 183-198.
Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology.
International Journal of Science Education, 22 (9), 895-935.
Chung, G. K. W. K., Harmon, T. C., & Baker, E. L. (2001). The Impact of a Simulation
Based Learning Design Project on Student Learning. IEEE Transactions on
education, 44 (4), 390-398.
de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer
simulation of conceptual domains. Review of educational research, 68(2), 179-201..
Duran, M.J., Gallardo, S., Toral, S.L., Martinez-Torres,R.,& Barrero, F.J. (2007). A learning
methodology using Matlab/Simulink for undergraduate electrical engineering courses
at tending to learner satisfaction outcomes. International Journal of Technology and
Design Education, 17 (1) (2007), 55–73.
Glenberg, A. M., & Langston, W. E. (1992). Comprehension of illustrated text: Pictures help
to build mental models. Journal of Memory and Language, 31 (2), 129-151.
Gobert, J. D. (2000). Introduction to model-based teaching and learning in science
education. International Journal of Science Education, 22 (9), 891-894.
21
Gobert, J. D., & Pallant, A. (2004). Fostering STudents’ Epistemologies of Models via
Authentic Model-Based Tasks. Journal of Science Education and Technology, 13 (1),
7-22.
Grek, S. (2009). Governing by numbers: the PISA ‘effect’ in Europe. Journal
of Education Policy, 24(1), 23-37.
Ingham, A. M., & Gilbert, J. K. (1991). The use of analogue models by students of
chemistry at higher education level. International Journal of Science Education,
13 (2), 193-202).
Joolingen, W. R. van, Bollen, L., & Leenaars, F. A. J. (2010). Using Drawing in
Knowledge Modeling and Simulation for Science Teaching. Advances in
intelligent tutoring systems, 249-264.
Joolingen, W. R. van, Bollen, L., Leenaars, F. A. J., & Kenbeek, W. (2010). Interactive
drawing tools to support modeling of dynamic system. International Society
of the Learning Sciences, Proceedings of the 9th International Conference of the
Learning Sciences - Volume 2, 169-171.
Kahle, J. B., & Lakes, M. K. (1983). The myth of equality in science classrooms. Journal of
Research in Science Teaching, 20 (2), 131–140.
Kuhn, D., Black, J., Keselman, A., & Kaplan, D. (2000). Cognition and Instruction, 18 (4),
495-523.
Leopold, C., & Leutner, D. (2012). Science text comprehension: Drawing, main idea
selection, and summarizing as learning strategies. Learning and Instruction, 22
(1), 16-26.
Löhner, S., van Joolingen, W. R, Savelsbergh, E. R., & van Hout-Wolters, B. (2005).
Students’ reasoning during modeling in an inquiry learning environment.
Computers in Human Behavior, 21 (3), 441-461.
Naglieri, J. A., & Rojahn, J. (2001). Differences in Planning, Attention, Simultaneous, and
Successive (PASS) Cognitive Processes and Achievement. Journal of Educational
Psychology, 93 (2), 430-437.
OECD Programme for International Student Assessment (PISA). What PISA Is. Retrieved
June 25, 2012, from
http://www.pisa.oecd.org/pages/0,3417,en_32252351_32235907_1_1_1_1_1,00.html
22
Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: a review of the
literature and its implication. International Journal of Science Education, 25 (9),
1049-1079.
Penner, D.E. (2000). Cognition, Computers, and Synthetic Science: Building
Knowledge and Meaning Through Modeling. American Educational Research
Association, 25 (1), 1-35
Rotten, F. C. von (2004). Gender differences in attitude towards science in Swizzerland.
Public Understanding of Science, 13 (2), 191-199.
Rutten, N., van Joolingen, W.R., & van der Veen, J.T. (2012). The learning effects of
computer simulations in science education. Computers & Education, 58(1), 136153.
Sins, P. H. M., Savelsbergh, E. R., & Joolingen, W.R. van (2005). The Difficult Process of
Scientific Modelling: An analysis of novices’ reasoning during computer-based
modelling. International Journal of Science Education, 27 (14), 1695-1721.
Sins, P. H. M., Savelsbergh, E. R., Joolingen, W. R. van, & Hout-Wolters, B. H. A. M.
(2010). Effect of face-to-face versus chat communication on performance in a
collaborative inquiry modeling task. Computers & Education, 56 (2), 379-387.
Woolfolk, A., Hughes, M., & Walkup, V. (2008). Psychology in Education. Essex,
Harlow: Pearson Education Limitation.
23
Appendix
questionnaire
Mai, 2012
Liebe Jungs und Mädchen,
Ihr seid dabei an einer Untersuchung der Universität Twente teil zu
nehmen. Dafür schon einmal herzlichen Dank!
Die Untersuchung besteht aus mehreren Teilen, bei denen Ihr Fragen
beantworten und zwei Zeichnungen erstellen sollt. Insgesamt wird die
Untersuchung ungefähr eine halbe Stunde in Anspruch nehmen.
Seid bei allen Fragen so ehrlich wie es geht, denn ihr müsst keine
Angst haben etwas falsch zu machen. Wenn ihr euer Bestes gebt,
reicht das voll und ganz!
Ganz viel Spaß!
Untersuchungsleitung
Hanna Schmalz
24
TEIL 1: Fragen
Du bist ...
! männlich
! weiblich
Wie alt bist du?
! 10 Jahre
! 11 Jahre
! 12 Jahre
! Anders ……………………
Hier werden einige Behauptungen aufgestellt, die sich darauf beziehen welche Einstellung du
zur Wissenschaft hast. Gib hierbei immer an, inwiefern du damit übereinstimmst oder auch
nicht. Kreuze einfach das Kästchen mit der Aussage an, die am besten zu dir passt.
1. Ich habe Spaß daran mir immerzu neue Dinge auszudenken, die mir helfen könnten meine
Umwelt besser zu verstehen.
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
überhaupt nicht
zu
zu
2. Ich finde es toll etwas über neue Themengebiete zu lernen.
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
überhaupt nicht
zu
zu
3. Ich schaue gerne Fernsehsendungen wie “Quarks & Co“, “Löwenzahn” oder „Galileo“.
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
überhaupt nicht
zu
zu
4. Ich bin neugierig und will immer genau wissen wie oder warum etwas passiert. (Zum
Beispiel: Wie entsteht Wind).
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
überhaupt nicht
zu
zu
5. Ich finde es uninteressant zu wissen wie Dinge, mit denen ich mich beschäftige funktionieren
(wie zum Beispiel ein Computer).
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
überhaupt nicht
zu
zu
6. Es macht mir Spaß ständig nach Lösungen für Probleme zu suchen.
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
überhaupt nicht
zu
zu
7. Gegenstände unter einer Lupe anzusehen oder Mikroskope zu benutzen, interessiert mich
nicht besonders.
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
überhaupt nicht
zu
zu
25
Fragen über das Sonnensystem
Hier findest du einige Fragen über das Sonnensystem. Für jede Frage werden vier mögliche Antworten
gegeben, wovon jedoch immer nur eine richtig ist. Markiere die richtige Antwort mit einem Kreis.
Versuche die Fragen so gut es geht auszufüllen und wenn du eine Antwort nicht weißt, kreise trotzdem
eine der vier Möglichkeiten ein.
1. Woraus besteht ein Sonnensystem?
A. Aus allen Sternen die es gibt.
B. Aus einer Sonne und aus Planeten, die sich um die Sonne drehen.
C. Aus Sonne, Mond und Erde.
D. Aus einigen Sonnen.
2.
A.
B.
C.
D.
Was ist die Erde?
Ein Planet.
Ein Stern.
Ein Mond.
Eine kleine Sonne.
3.
A.
B.
C.
D.
Um was dreht sich die Erde?
Die Erde dreht sich um die Sonne.
Die Erde dreht sich um den Mond.
Die Erde dreht sich um nichts herum, aber der Mond und die Sonne drehen sich um die Erde.
Die Erde dreht sich um nichts herum, aber die Sonne dreht sich um die Erde.
4.
A.
B.
C.
D.
Was ist die Sonne?
Ein Satellit.
Ein Planet.
Ein Mond.
Ein Stern.
5.
A.
B.
C.
D.
Um was dreht sich die Sonne?
Die Sonne dreht sich um die Planeten.
Die Sonne dreht sich um die Erde.
Die Sonne dreht sich zusammen mit dem Mond um die Erde.
Die Sonne dreht sich nicht.
6.
A.
B.
C.
D.
Wo ist die Sonne in der Nacht?
Die Sonne steht in der Nacht hinter dem Mond.
Die Sonne ist in der Nacht auf der anderen Seite der Erde.
Wolken verdecken in der Nacht die Sonne.
Die Sterne stehen in der Nacht vor der Sonne.
7. Wie kann das sein, dass man die Sonne von der Erde aus gesehen immer an einer
anderen Stelle sieht?
A. Weil die Erde sich um ihre eigene Achse dreht.
B. Weil die Sonne sich bewegt.
C. Weil die Erde sich um die Sonne dreht.
D. Weil die Sonne sich um ihre eigene Achse dreht.
26
TEIL 2: Zeichnen
Du wirst gleich mit den Zeichenaufgaben beginnen, aber vorher wollen wir dir erst erklären, wie das
Computerprogramm genau funktioniert. Um die Bedienungsanleitung zu öffnen musst du mit der
Maus auf “Beispiele” klicken und dann “Tutorial” auswählen. Wenn du fertig bist, mit den Beispielen,
fang mit der Zeichenaufgabe an.
Lies die Aufgaben gründlich durch bevor du mit dem Zeichnen beginnst.
Zeichnung 1: Sonnensystem
Wir leben alle zusammen auf der Erde und wenn wir tagsüber nach draußen schauen, dann sehen wir
die Sonne. Am Abend sehen wir keine Sonne mehr, aber den Mond und die Sterne. Die Erde, die
Sonne und der Mond befinden sich alle in unserem Sonnensystem genau wie viele andere Planeten
auch.
1. Stelle durch eine Zeichnung dar, wie unser Sonnensystem aussieht. Zeichne hierzu auf jeden
Fall die Sonne, die Erde und den Mond und einen anderen Planeten.
2. Beschreibe durch die Anbringung von “Stickers” wie die Sonne, der Mond und die Erde sich
relativ zueinander bewegen.
3. Wenn du fertig bist, klicke auf “Modelle” und dann auf “Simulation beginnen”, so dass sich
deine Zeichnung bewegen kann.
Zeichnung 2: Umlaufbahn der Venus
Die Venus ist nach Merkur der Planet, der der Sonne am nächsten steht. Wenn man von der Erde aus in
den Himmel schaut und ganz genau auf die Position der Venus achtet, fällt innerhalb einiger Wochen
auf, dass sie sich nicht in einer geraden Linie, sondern in einer Schleifenform bewegt. Hier ist ein Foto
von dieser Schleifenform.
1. Stelle durch eine Zeichnung dar wie die Schleifen zu Stande kommen. Du darfst deine
vorherige Zeichnung benutzen und anpassen, wenn das nötig ist. Zeichne auf jeden Fall die
Erde, die Venus und die Sonne.
2. Beschreibe durch die Anbringung von “Stickers” wie die Sonne, die Erde und die Venus sich
relativ zueinander bewegen.
3. Wenn du fertig bist, klicke auf “Modelle” und dann auf “Simulation beginnen”, so dass sich
deine Zeichnung bewegen kann. Versuche die Schleifen der Venus von der Perspektive der
Erde aus zu simulieren.
27
TEIL 2: Fragen
In der folgenden Tabelle kannst du angeben welches Wort das angewendete
Computerprogramm SimSketch deiner Meinung nach am besten beschreibt. Mach in jeder
Reihe ein Kreuz in der Nähe von dem Wort, das am besten passt. Wenn du das Kreuz in die
Mitte setzt, bedeutet das, dass du beide Wörter gleichermaßen passend findest.
Arbeiten mit dem Computerprogramm SimSketch war...
Langweilig
Phantasielos
Neu
Praktisch
Unnötig
Verwirrend
Einfach
Menschlich
Schön
Gut
Spannend
Kreativ
Schon bekannt
Unpraktisch
Wertvoll
Übersichtlich
Schwer
Technisch
Nicht schön
Schlecht
Mit den folgenden Fragen möchten wir herausfinden, wie du die Zeichenaufgaben und das
Computerprogramm gefunden hast. Gib einfach an inwiefern du mit den Behauptungen
übereinstimmst oder nicht. Es gibt hierbei keine richtigen oder falschen Antworten, denn es
geht nur um deine Meinung. Es ist wichtig, dass du pro Zeile nur ein Kästchen ankreuzt.
1. Ich habe schon öfter mit solchen Programmen gearbeitet.
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
überhaupt nicht
zu
zu
2. Ich fand die Zeichenaufgabe interessant.
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
3. Ich fand es toll über das Sonnensystem nachzudenken.
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
überhaupt nicht
zu
überhaupt nicht
zu
zu
zu
4. Ich fand es toll mit dem Computerprogramm zu arbeiten.
! Ich stimme
überhaupt nicht
zu
! Ich stimme nicht ! Ich stimme zu
zu
! Ich stimme voll zu
5. Ich fand es schwierig mit dem Computerprogramm zu arbeiten.
! Ich stimme
überhaupt nicht
zu
! Ich stimme nicht ! Ich stimme zu
zu
! Ich stimme voll zu
6. Ich denke, dass ich die Zeichnungen gut gemacht habe.
! Ich stimme
überhaupt nicht zu
! Ich stimme nicht ! Ich stimme zu
zu
! Ich stimme voll zu
28
7. Das Zeichnen und Simulieren hat mir geholfen das Sonnensystem besser zu
begreifen.
! Ich stimme
überhaupt nicht
zu
! Ich stimme nicht ! Ich stimme zu
zu
! Ich stimme voll zu
8. Ich fand es toll zu sehen wie die Zeichnungen sich bewegen.
! Ich stimme
überhaupt nicht
zu
! Ich stimme nicht ! Ich stimme zu
zu
! Ich stimme voll zu
9. Ich fand es schwer herauszufinden wie die Zeichnungen sich bewegen.
! Ich stimme
überhaupt nicht
zu
! Ich stimme nicht ! Ich stimme zu
zu
! Ich stimme voll zu
10. Die Zeichnungen zu bewegen hat mir geholfen das Sonnensystem zu verstehen.
! Ich stimme
überhaupt nicht
zu
! Ich stimme nicht ! Ich stimme zu
zu
! Ich stimme voll zu
Die richtige Zeichnung
Wir zeigen dir jetzt in SimSketch die richtige Zeichnung vom Sonnensystem und von der Venus
Umlaufbahn. Geh auf Simulation und drücke dann auf der Tastertur CTRL-O um die Zeichnung des
Sonnensystems zu sehen und dann simulier es mit „Simulieren – Starte Simulation“ und der PlayTaste.
1. Was ist der Unterschied zwischen dem Sonnensystem, das du gezeichnet hast und der
richtigen Zeichnung? Schildere kurz die Unterschiede.
…………………………………………………………………………………………………
…………………………………………………………………………………………………
…………………………………………………………………………
Schau dir auch die richtige Simulation von der Umlaufbahn der Venus an indem du jetzt die
Perspektive veränderst. Wähle „Erde“ als Mittelpunkt. Wenn du jetzt auf den roten Punkt drückst,
werden die Schleifen der Venus richtig deutich.
2. Was ist der Unterschied zwischen der Umlaufbahn der Venus, die du gezeichnet hast und der
richtigen Zeichnung? Schildere kurz die Unterschiede.
…………………………………………………………………………………………………
…………………………………………………………………………………………………
…………………………………………………………………………
TEIL 2: Fragen über das Sonnensystem
Hier findest du noch einmal einige Fragen über das Sonnensystem. Für jede Frage werden vier
mögliche Antworten gegeben, wovon jedoch immer nur eine richtig ist. Markiere die richtige Antwort
mit einem Kreis. Versuche die Fragen so gut es geht auszufüllen und wenn du eine Antwort nicht
weißt, kreise trotzdem eine der vier Möglichkeiten ein. Lass dich nicht von der Wiederholung einiger
Fragen verunsichern.
1. Woraus besteht ein Sonnensystem?
A.
Aus allen Sternen die es gibt.
B.
Aus einer Sonne und aus Planeten, die sich um die Sonne drehen.
C.
Aus Sonne, Mond und Erde.
D.
Aus einigen Sonnen.
29
2. Durch welche Begebenheiten sehen wir die Bewegung der Venus manchmal in
Schleifenform?
A. Die Umlaufbahn der Venus hat eine spezielle Form.
B. Die Venus dreht sich um die Sonne; die Erde um sich selbst und die Sonne. Auf der Erde
haben wir daher eine spezielle Perspektive um die Schleifen sehen zu können.
C. Die Venus hat keine echte Umlaufbahn und bewegt sich darum manchmal zufällig
schleifenförmig.
D. Die Venus dreht sich sehr langsam um den Mond und bewegt sich darum von der Erde aus
gesehen in Schleifenform.
3.
A.
B.
C.
D.
Was ist die Erde?
Ein Planet.
Ein Stern.
Ein Mond
Eine kleine Sonne.
4.
A.
B.
C.
D.
Um was dreht sich die Erde?
Die Erde dreht sich um die Sonne.
Die Erde dreht sich um den Mond.
Die Erde dreht sich um nichts herum, aber der Mond und die Sonne drehen sich um die Erde.
Die Erde dreht sich um nichts herum, aber die Sonne dreht sich um die Erde.
5. Zeichne die Umlaufbahn der Venus aus der Perspektive der Erde.
6.
A.
B.
C.
D.
Was ist die Sonne?
Ein Satellit.
Ein Planet.
Ein Mond.
Ein Stern.
7.
A.
B.
C.
D.
Um was dreht sich die Sonne?
Die Sonne dreht sich um die Planeten.
Die Sonne dreht sich um die Erde.
Die Sonne dreht sich zusammen mit dem Mond um die Erde.
Die Sonne dreht sich nicht.
8.
A.
B.
C.
D.
Wo ist die Sonne in der Nacht?
Die Sonne steht in der Nacht hinter dem Mond.
Die Sonne ist in der Nacht auf der anderen Seite der Erde.
Wolken verdecken in der Nacht die Sonne.
Die Sterne stehen in der Nacht vor der Sonne.
30
9. Wie kann das sein, dass man die Sonne von der Erde aus gesehen immer an einer
anderen Stelle sieht?
A. Weil die Erde sich um ihre eigene Achse dreht.
B. Weil die Sonne sich bewegt.
C. Weil die Erde sich um die Sonne dreht.
D. Weil die Sonne sich um ihre eigene Achse dreht.
10.
A.
B.
C.
D.
Um was dreht sich die Venus?
Die Venus dreht sich um die Sonne.
Die Venus dreht sich um die Erde.
Die Venus dreht sich um den Mond.
Die Venus dreht sich um nichts, aber die Sonne dreht sich um die Venus.
11. Beschreibe in eigenen Worten durch welche Begebenheiten die Schleifenbewegung der
Venus zustande kommt.
…………………………………………………………………………………………………..
…………………………………………………………………………………………………..
…………………………………………………………………………………………………..
…………………………………………………………………………………………………..
…………………………………………………………………………………………………..
…………………………………………………………………………………………………..
…………………………………………………………………………………………………..
…………………………………………………………………………………………………...
………………………………………………………………………………………………….
Hier werden einige Behauptungen aufgestellt, die sich darauf beziehen welche Einstellung du
zur Wissenschaft hast. Gib hierbei immer an, inwiefern du damit übereinstimmst oder auch
nicht. Kreuze einfach das Kästchen mit der Aussage an, die am besten zu dir passt.
1. Ich schaue gerne Fernsehsendungen wie “Quarks & Co“, “Löwenzahn”
oder „Galileo“.
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
überhaupt nicht
zu
zu
2. Ich finde es uninteressant zu wissen wie Dinge, mit denen ich mich beschäftige
funktionieren (wie zum Beispiel ein Computer).
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
überhaupt nicht
zu
zu
3. Ich habe Spaß daran mir immerzu neue Dinge auszudenken, die mir helfen könnten
meine Umwelt besser zu verstehen.
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
überhaupt nicht
zu
zu
4. Gegenstände unter einer Lupe anzusehen oder Mikroskope zu benutzen, interessiert
mich nicht besonders.
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
überhaupt nicht
zu
zu
5. Ich finde es toll etwas über neue Themengebiete zu lernen.
! Ich stimme
überhaupt nicht
zu
! Ich stimme nicht ! Ich stimme zu
zu
! Ich stimme voll zu
31
6. Es macht mir Spaß ständig nach Lösungen für Probleme zu suchen.
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
! Ich stimme voll zu
überhaupt nicht
zu
zu
7. Ich bin neugierig und will immer genau wissen wie oder warum etwas
passiert. (Zum Beispiel: Wie entsteht Wind).
! Ich stimme
! Ich stimme nicht ! Ich stimme zu
überhaupt nicht
zu
zu
! Ich stimme voll zu
Willst du noch etwas zu der Untersuchung anmerken?
…………………………………………………………………………………………………..
…………………………………………………………………………………………………..
…………………………………………………………………………………………………..
…………………………………………………………………………………………………..
…………………………………………………………………………………………………..
…………………………………………………………………………………………………..
…………………………………………………………………………………………………..
…………………………………………………………………………………………………...
………………………………………………………………………………………………….
Das ist das Ende der Untersuchung.
Ich möchte dich bitten deinen Klassenkameraden nicht zu erzählen,
was du in dieser Untersuchung genau gemacht hast. Es würde meine
Ergebnisse verfälschen, wenn jeder Schüler informiert wäre und von
vornherein über das Phänomen der Venus und der Nutzung von
SimSketch bescheid wüsste.
Herzlichen Dank, dass du mitgemacht hast!
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising