High voltage high- and low-side driver for automotive applications

High voltage high- and low-side driver for automotive applications
A6387
High voltage high- and low-side driver for automotive applications
Datasheet - production data
 Outputs in phase with inputs
 Interlocking function
 AECQ100 automotive qualified
Applications
SO-8
 Drive inverters for HEV and EV
Features
 HID ballasts, power supply units
 High voltage rail up to 550 V
 Motion driver for home appliances, factory
automation, industrial drives
 dV/dt immunity ± 50 V/nsec in full temperature
range
 Driver current capability
– 400 mA source
– 650 mA sink
 Switching times 50/30 nsec rise/fall with 1 nF
load
 CMOS/TTL Schmitt-trigger inputs with
hysteresis and pull down
 Internal bootstrap diode
Description
The A6387 is a high voltage device,
manufactured with the BCD™ “offline”
technology. It is a single chip half-bridge gate
driver for N-channel Power MOSFETs or IGBTs.
The high-side (floating) section is designed to
stand a voltage rail of up to 550 V. The logic
inputs are CMOS/TTL compatible for easy
interfacing of the microcontroller or DSP.
Figure 1. Block diagram
BOOTSTRAP DRIVER
8
Vboot
Cboot
VCC
3
H.V.
UV
DETECTION
HVG
DRIVER
HVG
R
7
2
HIN
LOGIC
LEVEL
SHIFTER
S
OUT
6
TO LOAD
VCC
1
5
LVG
4
GND
LIN
LVG
DRIVER
D00IN1135
February 2015
This is information on a product in full production.
DocID023386 Rev 5
1/14
www.st.com
Contents
A6387
Contents
1
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1
AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2
DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4
Input logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5
Bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
CBOOT selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6
Typical characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2/14
DocID023386 Rev 5
A6387
Electrical data
1
Electrical data
1.1
Absolute maximum ratings
Table 1. Absolute maximum ratings
Symbol
Min.
Max.
Unit
- 0.3
18
V
Vcc
Supply voltage
Vout
Output voltage
Vboot
Bootstrap voltage
Vhvg
High-side gate output voltage
Vlvg
Low-side gate output voltage
- 0.3
Vcc + 0.3
V
Logic input voltage
- 0.3
Vcc + 0.3
V
Allowed output slew rate
50
V/ns
Total power dissipation (TA = 85 °C)
750
mW
Tj
Junction temperature
150
°C
Tstg
Storage temperature
-50
150
°C
ESD
Human Body Model
2
Vi
dVout/dt
Ptot
1.2
Parameter
Vboot - 18 Vboot + 0.3
- 0.3
568
V
V
Vout - 0.3 Vboot + 0.3
V
kV
Thermal data
Table 2. Thermal data
Symbol
Rth(JA)
1.3
Parameter
Thermal resistance junction to ambient
Value
Unit
150
°C/W
Recommended operating conditions
Table 3. Recommended operating conditions
Symbol
Pin
Vcc
3
VBO(1)
Vout
Parameter
Test condition
Supply voltage
Min. Max.
6.3
8 - 6 Floating supply voltage
7
-6(2)
Output voltage
fsw
Switching frequency
Tj
Junction temperature
HVG, LVG load CL = 1 nF
-40
Unit
17
V
17
V
530
V
400
kHz
125
°C
1. VBO = Vboot - Vout.
2. LVG off. VCC = 12 V.
DocID023386 Rev 5
3/14
14
Pin connection
2
A6387
Pin connection
Figure 2. Pin connection (top view)
/,1
9ERRW
+,1
+9*
9&&
287
*1'
/9*
',1$
Table 4. Pin description
No.
Pin
Type
Function
1
LIN
I
Low-side driver logic input
2
HIN
I
High-side driver logic input
3
Vcc
P
Low voltage power supply
4
GND
P
Ground
5
LVG (1)
O
Low-side driver output
6
OUT
P
High-side driver floating reference
7
HVG (1)
O
High-side driver output
8
Vboot
P
Bootstrap supply voltage
1. The circuit provides less than 1 V on the LVG and HVG pins (at Isink = 10 mA). This allows the omitting of
the “bleeder” resistor connected between the gate and the source of the external MOSFET normally used
to hold the pin low.
4/14
DocID023386 Rev 5
A6387
Electrical characteristics
3
Electrical characteristics
3.1
AC operation
VCC = 15 V; TJ = -40 °C ÷ 125 °C, unless otherwise specified.
Table 5. AC operation electrical characteristics
Symbol
Pin
Parameter
ton
1 vs. 5 High/low-side driver turn-on
2 vs. 7 propagation delay
toff
1 vs. 5 High/low-side driver turn-off
2 vs. 7 propagation delay
tr
5, 7
Rise time
tf
5, 7
Fall time
Test condition
Min.
Typ.
Max.
Unit
Vout = 0 V
Vboot = VCC
CL = 1 nF
40
120
240
ns
40
110
210
ns
50
100
ns
30
80
ns
CL = 1 nF
Figure 3. Timing of input/output signals; turn-on/off propagation delays
/,1
+,1
WRQ
/9*
WRII
WRQ
+9*
WRII
$0
DocID023386 Rev 5
5/14
14
Electrical characteristics
3.2
A6387
DC operation
VCC = 15 V; TJ = -40 °C ÷ 125 °C, unless otherwise specified
Table 6. DC operation electrical characteristics
Symbol
Pin
Parameter
Test condition
Min.
Typ.
Max.
Unit
Low supply voltage section
Vcc_thON
Vcc UV turn-on threshold
5.5
6
6.3
V
Vcc_thOFF
Vcc UV turn-off threshold
5
5.5
6
V
0.3
0.5
0.7
V
150
220
A
250
320
A
Vcc UV hysteresis
Vcc_hys
3
Iqccu
Undervoltage quiescent
supply current
Iqcc
Quiescent current
RDSon
Bootstrap driver on
resistance(1)
Vcc  5 V
LVG ON

125
Bootstrapped supply voltage section (2)
IQBO
8
ILK
VBO quiescent current
HVG ON
100
A
High voltage leakage
current
Vhvg = Vout = Vboot =
550 V
10
A
High/low-side driver
Iso
5, 7
Isi
High/low-side source shortcircuit current
VIN = Vih (tp < 10 s)
300
400
mA
High/low-side sink shortcircuit current
VIN = Vil (tp < 10 s)
450
650
mA
Logic inputs
Vil
Low level logic threshold
voltage
Vih
High level logic threshold
voltage
1,2
1.4
3.2
Iih
High level logic input
current
VIN = 15 V
Iil
Low level logic input current
VIN = 0 V
8
1. RDS(on) is tested in the following way:
 V CC – V BOOT1  –  V CC – V BOOT2 
R DSON = ----------------------------------------------------------------------------------------------I 1  V CC ,V BOOT1  – I 2  V CC ,V BOOT2 
where I1 is pin 8 current when VBOOT = VBOOT1, I2 when VBOOT = VBOOT2.
2. VBO = Vboot - Vout.
6/14
DocID023386 Rev 5
V
V
20
40
µA
1
µA
A6387
Input logic
The A6387 input logic is VCC (17 V) compatible. An interlocking feature is offered (see
Table 7) to avoid undesired simultaneous turn-on of both power switches driven.
Table 7. Input logic
Input
Output
HIN
LIN
HVG
LVG
0
0
0
0
0
1
0
1
1
0
1
0
1
1
0
0
Figure 4. Timing of input/output signals; interlocking waveforms definition
/,1
,QWHUORFNLQJIXQFWLRQ
4
Input logic
+,1
/9*
+9*
$0
DocID023386 Rev 5
7/14
14
Bootstrap driver
5
A6387
Bootstrap driver
A bootstrap circuitry is needed to supply the high voltage section. This function is normally
accomplished by a high voltage fast recovery diode (Figure 5 a). In the A6387 device
a patented integrated structure replaces the external diode. It is realized by a high voltage
DMOS, driven synchronously with the low-side driver (LVG), with a diode in series, as
shown in Figure 5 b. An internal charge pump (Figure 5 b) provides the DMOS driving
voltage.
CBOOT selection and charging
To choose the proper CBOOT value the external MOS can be seen as an equivalent
capacitor. This capacitor CEXT is related to the MOS total gate charge:
Equation 1
Q gate
C EXT = --------------V gate
The ratio between the capacitors CEXT and CBOOT is proportional to the cyclical voltage loss.
It must be:
CBOOT>>>CEXT
For example: if Qgate is 30 nC and Vgate is 10 V, CEXT is 3 nF. With CBOOT = 100 nF the drop
would be 300 mV.
If HVG must be supplied for a long period, the CBOOT selection must take into account also
the leakage and quiescent losses.
For example: HVG steady-state consumption is lower than 100 A, therefore, if HVG TON is
5 ms, CBOOT must supply 0.5 C to CEXT. This charge on a 1 F capacitor means a voltage
drop of 0.5 V.
The internal bootstrap driver offers a big advantage: the external fast recovery diode can be
avoided (it usually has very high leakage current).
This structure can work only if VOUT is close to GND (or lower) and, in the meantime, the
LVG is on. The charging time (Tcharge) of the CBOOT is the time in which both conditions are
fulfilled and it must be long enough to charge the capacitor.
The bootstrap driver introduces a voltage drop due to the DMOS RDSon (typical value:
125 ). This drop can be neglected at low switching frequency, but it should be taken into
account when operating at high switching frequency.
Equation 2 is useful to compute the drop on the bootstrap DMOS:
Equation 2
Q gate
V drop = I ch arg e R dson  V drop = -------------------R dson
T ch arg e
where Qgate is the gate charge of the external power MOS, RDSon is the ON-resistance of
the bootstrap DMOS, and Tcharge is the charging time of the bootstrap capacitor.
8/14
DocID023386 Rev 5
A6387
Bootstrap driver
For example: using a power MOS with a total gate charge of 30 nC, the drop on the
bootstrap DMOS is about 1 V, if the Tcharge is 5 s. In fact:
Equation 3
30nC
V drop = ---------------  125  0.8V
5s
Vdrop should be taken into account when the voltage drop on CBOOT is calculated: if this drop
is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode
can be used.
Figure 5. Bootstrap driver
'%227
96
9%227
+9
+9*
&%227
9287
72/2$'
/9*
D
9%227
96
+9
+9*
&%227
9287
72/2$'
/9*
E
DocID023386 Rev 5
9/14
14
Typical characteristic
6
A6387
Typical characteristic
Figure 6. Typical rise and fall times vs.
load capacitance
Figure 7. Quiescent current vs. supply
voltage
D99IN1054
time
(nsec)
Iq
(μA)
104
250
D99IN1055
200
Tr
103
150
Tf
100
102
50
10
0
0
1
2
3
4
5 C (nF)
For both high and low side buffers @25˚C Tamb
Figure 8. Turn-on time vs. temperature
8
10
12
14
16 VS(V)
@ Vcc = 15V
200
200
150
Toff (ns)
Ton (ns)
6
250
@ Vcc = 15V
Typ.
100
50
150
Typ.
100
50
0
-45
-25
0
25
50
Tj (°C)
75
100
0
125
Figure 10. Output source current vs.
temperature
-45
-25
0
25
50
Tj (°C)
75
100
125
Figure 11. Output sink current vs.
temperature
1000
1000
@ Vcc = 15V
@ Vcc = 15V
800
current (mA)
800
current (mA)
4
Figure 9. Turn-off time vs. temperature
250
600
Typ.
400
200
600
Typ.
400
200
0
0
-45
10/14
2
0
-25
0
25
50
Tj (°C)
75
100 125
DocID023386 Rev 5
-45
-25
0
25
50
Tj (°C)
75
100 125
A6387
7
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Figure 12. SO-8 package outline
0016023_Rev_E
DocID023386 Rev 5
11/14
14
Package information
A6387
Table 8. SO-8 package mechanical data
Dimensions (mm)
Symbol
Min.
Typ.
A
1.75
A1
0.10
0.25
A2
1.25
b
0.28
0.48
c
0.17
0.23
D
4.80
4.90
5.00
E
5.80
6.00
6.20
E1
3.80
3.90
4.00
e
1.27
h
0.25
0.50
L
0.40
1.27
L1
k
1.04
0°
8°
ccc
12/14
Max.
0.10
DocID023386 Rev 5
A6387
8
Ordering information
Ordering information
Table 9. Ordering information
9
Order code
Package
Packaging
A6387D
SO-8
Tube
A6387DTR
SO-8
Tape and reel
Revision history
Table 10. Document revision history
Date
Revision
05-Jul-2012
1
First release
10-Oct-2013
2
Updated:
Section : Features on page 1 (added “AECQ100 compliant”).
Section : Applications on page 1 added:
– Drive inverters for HEV and EV,
– HID ballasts, power supply units,
– Motion driver for home appliances, factory automation, industrial
drives.
Table 1 on page 3 (removed note below Table 1).
Minor corrections throughout document.
22-Oct-2013
3
Updated Section : Features on page 1 (“replaced AECQ100
compliant” by “AECQ100 automotive qualified”).
14-Apr-2014
4
Updated Section 3.1: AC operation on page 5 (added Figure 3).
Updated Section 4: Input logic on page 7 (added Figure 4).
5
Updated Table 1 (added Human Body Model parameter).
Updated minimum supply voltage in Table 3 and maximum Vcc UV
turn-on threshold voltage in Table 6.
Corrected typo in RDS(on) testing equation in footnote of Table 6.
Updated Figure 5: Bootstrap driver.
04-Feb-2015
Changes
DocID023386 Rev 5
13/14
14
A6387
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
14/14
DocID023386 Rev 5
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement