Deployment Guide


Add to my manuals
890 Pages

advertisement

Deployment Guide | Manualzz

Red Hat Enterprise Linux 6

Deployment Guide

Deployment, Configuration and Administration of Red Hat Enterprise Linux 6

Last Updated: 2017-10-20

Red Hat Enterprise Linux 6 Deployment Guide

Deployment, Configuration and Administration of Red Hat Enterprise Linux 6

Marie Doleželová

Red Hat Customer Content Services [email protected]

Mirek Jahoda

Red Hat Customer Content Services [email protected]

Maxim Svistunov

Red Hat Customer Content Services

Stephen Wadeley

Red Hat Customer Content Services

Tomáš Čapek

Red Hat Customer Content Services

Robert Krátký

Red Hat Customer Content Services

Jana Heves

Red Hat Customer Content Services

Jaromír Hradílek

Red Hat Customer Content Services

Douglas Silas

Red Hat Customer Content Services

Barbora Ančincová

Red Hat Customer Content Services

Petr Kovář

Red Hat Customer Content Services

Jiří Herrmann

Red Hat Customer Content Services

Peter Ondrejka

Red Hat Customer Content Services

Petr Bokoč

Red Hat Customer Content Services

Martin Prpič

Red Hat Product Security

Eva Majoršinová

Red Hat Customer Content Services

This document is licensed by Red Hat under the

Creative Commons Attribution-ShareAlike 3.0

Miroslav Svoboda . If you distribute this document, or a modified version of it, you must provide trademarks must be removed.

Milan Navrátil

Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Ella Lackey logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other

Florian Nadge

Red Hat Customer Content Services

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

John Ha

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Deployment Guide documents relevant information regarding the deployment, configuration and administration of Red Hat Enterprise Linux 6. It is oriented towards system administrators with a basic understanding of the system.

Table of Contents

1.1. CHANGING THE KEYBOARD LAYOUT

1.2. ADDING THE KEYBOARD LAYOUT INDICATOR

1.3. SETTING UP A TYPING BREAK

2.1. DATE/TIME PROPERTIES TOOL

2.1.1. Date and Time Properties

2.1.2. Network Time Protocol Properties

2.1.3. Time Zone Properties

2.2. COMMAND LINE CONFIGURATION

2.2.1. Date and Time Setup

2.2.2. Network Time Protocol Setup

3.1. WHAT USERS AND GROUPS ARE

3.2. MANAGING USERS VIA THE USER MANAGER APPLICATION

3.2.1. Viewing Users

3.2.2. Adding a New User

3.2.3. Modifying User Properties

3.3. MANAGING GROUPS VIA THE USER MANAGER APPLICATION

3.3.1. Viewing Groups

3.3.2. Adding a New Group

3.3.3. Modifying Group Properties

3.4. MANAGING USERS VIA COMMAND-LINE TOOLS

3.4.1. Creating Users

3.4.2. Attaching New Users to Groups

3.4.3. Updating Users' Authentication

3.4.4. Modifying User Settings

3.4.5. Deleting Users

3.4.6. Displaying Comprehensive User Information

3.5. MANAGING GROUPS VIA COMMAND-LINE TOOLS

3.5.1. Creating Groups

3.5.2. Attaching Users to Groups

3.5.3. Updating Group Authentication

3.5.4. Modifying Group Settings

3.5.5. Deleting Groups

3.6. ADDITIONAL RESOURCES

3.6.1. Installed Documentation

4.1. THE SU COMMAND

4.2. THE SUDO COMMAND

4.3. ADDITIONAL RESOURCES

Installed Documentation

Online Documentation

5.1. DISABLING CONSOLE PROGRAM ACCESS FOR NON-ROOT USERS

5.2. DISABLING REBOOTING USING CTRL+ALT+DEL

Table of Contents

50

50

53

53

54

44

44

47

48

49

54

55

56

56

56

41

42

42

43

44

38

39

39

40

33

34

35

35

31

31

32

25

27

29

58

59

60

60

60

62

63

1

Deployment Guide

6.1. REGISTERING THE SYSTEM AND ATTACHING SUBSCRIPTIONS

6.2. MANAGING SOFTWARE REPOSITORIES

6.3. REMOVING SUBSCRIPTIONS

6.4. ADDITIONAL RESOURCES

Installed Documentation

Related Books

Online Resources

See Also

7.1. INSTALLING THE RED HAT SUPPORT TOOL

7.2. REGISTERING THE RED HAT SUPPORT TOOL USING THE COMMAND LINE

7.3. USING THE RED HAT SUPPORT TOOL IN INTERACTIVE SHELL MODE

7.4. CONFIGURING THE RED HAT SUPPORT TOOL

7.4.1. Saving Settings to the Configuration Files

7.5. OPENING AND UPDATING SUPPORT CASES USING INTERACTIVE MODE

7.6. VIEWING SUPPORT CASES ON THE COMMAND LINE

7.7. ADDITIONAL RESOURCES

2

8.1. CHECKING FOR AND UPDATING PACKAGES

8.1.1. Checking For Updates

8.1.2. Updating Packages

Updating a Single Package

Updating All Packages and Their Dependencies

Updating Security-Related Packages

Updating Packages Automatically

8.1.3. Preserving Configuration File Changes

8.1.4. Upgrading the System Off-line with ISO and Yum

8.2. PACKAGES AND PACKAGE GROUPS

8.2.1. Searching Packages

8.2.2. Listing Packages

8.2.3. Displaying Package Information

Listing Files Contained in a Package

8.2.4. Installing Packages

Installing Individual Packages

Installing a Package Group

8.2.5. Removing Packages

Removing Individual Packages

Removing a Package Group

8.3. WORKING WITH TRANSACTION HISTORY

8.3.1. Listing Transactions

8.3.2. Examining Transactions

8.3.3. Reverting and Repeating Transactions

8.3.4. Completing Transactions

8.3.5. Starting New Transaction History

8.4. CONFIGURING YUM AND YUM REPOSITORIES

8.4.1. Setting [main] Options

8.4.2. Setting [repository] Options

71

73

73

69

69

69

69

70

67

67

67

67

68

65

66

66

83

84

84

85

85

78

78

80

80

81

75

75

76

76

78

78

78

91

92

93

93

93

86

86

87

88

88

94

97

8.4.3. Using Yum Variables

8.4.4. Viewing the Current Configuration

8.4.5. Adding, Enabling, and Disabling a Yum Repository

Adding a Yum Repository

Enabling a Yum Repository

Disabling a Yum Repository

8.4.6. Creating a Yum Repository

8.4.7. Working with Yum Cache

Enabling the Caches

Using yum in Cache-only Mode

Clearing the yum Caches

8.4.8. Adding the Optional and Supplementary Repositories

8.5. YUM PLUG-INS

8.5.1. Enabling, Configuring, and Disabling Yum Plug-ins

8.5.2. Installing Additional Yum Plug-ins

8.5.3. Plug-in Descriptions

8.6. ADDITIONAL RESOURCES

Installed Documentation

Online Resources

See Also

9.1. UPDATING PACKAGES WITH SOFTWARE UPDATE

Setting the Update-Checking Interval

9.2. USING ADD/REMOVE SOFTWARE

9.2.1. Refreshing Software Sources (Yum Repositories)

9.2.2. Finding Packages with Filters

9.2.3. Installing and Removing Packages (and Dependencies)

9.2.4. Installing and Removing Package Groups

9.2.5. Viewing the Transaction Log

9.3. PACKAGEKIT ARCHITECTURE

9.4. ADDITIONAL RESOURCES

Installed Documentation

Online Documentation

See Also

10.1. THE NETWORKMANAGER DAEMON

10.2. INTERACTING WITH NETWORKMANAGER

10.2.1. Connecting to a Network

10.2.2. Configuring New and Editing Existing Connections

10.2.3. Connecting to a Network Automatically

10.2.4. User and System Connections

10.3. ESTABLISHING CONNECTIONS

10.3.1. Establishing a Wired (Ethernet) Connection

Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

Configuring the Wired Tab

Saving Your New (or Modified) Connection and Making Further Configurations

10.3.2. Establishing a Wireless Connection

Quickly Connecting to an Available Access Point

Connecting to a Hidden Wireless Network

Editing a Connection, or Creating a Completely New One

Table of Contents

106

106

111

111

104

104

105

105

105

111

111

102

102

103

103

103

99

100

101

101

116

118

119

120

121

113

114

115

115

122

122

123

123

133

134

135

135

130

130

132

132

133

125

125

126

127

128

129

3

Deployment Guide

Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

Configuring the Wireless Tab

Saving Your New (or Modified) Connection and Making Further Configurations

10.3.3. Establishing a Mobile Broadband Connection

Saving Your New (or Modified) Connection and Making Further Configurations

Configuring the Mobile Broadband Tab

10.3.4. Establishing a VPN Connection

Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

Configuring the VPN Tab

Saving Your New (or Modified) Connection and Making Further Configurations

10.3.5. Establishing a DSL Connection

Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

Configuring the DSL Tab

Saving Your New (or Modified) Connection and Making Further Configurations

10.3.6. Establishing a Bond Connection

Saving Your New (or Modified) Connection and Making Further Configurations

Configuring the Bond Tab

10.3.7. Establishing a VLAN Connection

Saving Your New (or Modified) Connection and Making Further Configurations

Configuring the VLAN Tab

10.3.8. Establishing an IP-over-InfiniBand (IPoIB) Connection

Saving Your New (or Modified) Connection and Making Further Configurations

Configuring the InfiniBand Tab

10.3.9. Configuring Connection Settings

10.3.9.1. Configuring 802.1X Security

10.3.9.1.1. Configuring TLS (Transport Layer Security) Settings

10.3.9.1.2. Configuring Tunneled TLS Settings

10.3.9.1.3. Configuring Protected EAP (PEAP) Settings

10.3.9.2. Configuring Wireless Security

10.3.9.3. Configuring PPP (Point-to-Point) Settings

10.3.9.4. Configuring IPv4 Settings

Setting the Method

PPPoE Specific Configuration Steps

10.3.9.5. Configuring IPv6 Settings

10.3.9.6. Configuring Routes

11.1. NETWORK CONFIGURATION FILES

11.1.1. Setting the Host Name

11.2. INTERFACE CONFIGURATION FILES

11.2.1. Ethernet Interfaces

11.2.2. Specific ifcfg Options for Linux on System z

11.2.3. Required ifcfg Options for Linux on System z

11.2.4. Channel Bonding Interfaces

11.2.4.1. Check if Bonding Kernel Module is Installed

11.2.4.2. Create a Channel Bonding Interface

11.2.4.2.1. Creating Multiple Bonds

11.2.5. Configuring a VLAN over a Bond

Configuring the Second Server

Testing the VLAN

Optional Steps

11.2.6. Network Bridge

11.2.6.1. Network Bridge with Bond

4

159

159

160

161

162

162

155

156

157

157

158

152

153

155

155

155

146

149

149

151

152

144

145

145

145

146

140

140

141

143

144

136

137

138

138

175

176

181

182

182

182

184

171

172

172

173

173

164

165

165

166

11.2.6.2. Network Bridge with Bonded VLAN

11.2.7. Setting Up 802.1Q VLAN Tagging

11.2.8. Alias and Clone Files

11.2.9. Dialup Interfaces

11.2.10. Other Interfaces

11.3. INTERFACE CONTROL SCRIPTS

11.4. STATIC ROUTES AND THE DEFAULT GATEWAY

Configuring Static Routes Using the Command Line

Configuring The Default Gateway

11.5. CONFIGURING STATIC ROUTES IN IFCFG FILES

11.5.1. Static Routes Using the IP Command Arguments Format

11.5.2. Network/Netmask Directives Format

11.6. CONFIGURING IPV6 TOKENIZED INTERFACE IDENTIFIERS

11.7. NETWORK FUNCTION FILES

11.8. ETHTOOL

11.9. CONFIGURING NETCONSOLE

Configuring a Listening Machine

Configuring a Sending Machine

11.10. ADDITIONAL RESOURCES

Installed Documentation

Online Resources

See Also

12.1. CONFIGURING THE DEFAULT RUNLEVEL

12.2. CONFIGURING THE SERVICES

12.2.1. Using the Service Configuration Utility

12.2.1.1. Enabling and Disabling a Service

12.2.1.2. Starting, Restarting, and Stopping a Service

12.2.1.3. Selecting Runlevels

12.2.2. Using the ntsysv Utility

12.2.2.1. Enabling and Disabling a Service

12.2.2.2. Selecting Runlevels

12.2.3. Using the chkconfig Utility

12.2.3.1. Listing the Services

12.2.3.2. Enabling a Service

12.2.3.3. Disabling a Service

12.3. RUNNING SERVICES

12.3.1. Determining the Service Status

12.3.2. Starting a Service

12.3.3. Stopping a Service

12.3.4. Restarting a Service

12.4. ADDITIONAL RESOURCES

12.4.1. Installed Documentation

12.4.2. Related Books

13.1. CONFIGURING SYSTEM AUTHENTICATION

13.1.1. Launching the Authentication Configuration Tool UI

13.1.2. Selecting the Identity Store for Authentication

13.1.2.1. Configuring LDAP Authentication

13.1.2.2. Configuring NIS Authentication

217

217

218

219

221

5

214

215

215

215

216

212

212

213

213

214

216

216

216

216

208

209

209

211

211

211

211

Table of Contents

197

205

205

205

206

194

195

195

196

197

190

191

193

193

194

186

186

187

188

206

206

206

Deployment Guide

13.1.2.3. Configuring Winbind Authentication

13.1.2.4. Using Kerberos with LDAP or NIS Authentication

13.1.3. Configuring Alternative Authentication Features

13.1.3.1. Using Fingerprint Authentication

13.1.3.2. Setting Local Authentication Parameters

13.1.3.3. Enabling Smart Card Authentication

13.1.3.4. Creating User Home Directories

13.1.4. Configuring Authentication from the Command Line

13.1.4.1. Tips for Using authconfig

13.1.4.2. Configuring LDAP User Stores

13.1.4.3. Configuring NIS User Stores

13.1.4.4. Configuring Winbind User Stores

13.1.4.5. Configuring Kerberos Authentication

13.1.4.6. Configuring Local Authentication Settings

13.1.4.7. Configuring Fingerprint Authentication

13.1.4.8. Configuring Smart Card Authentication

13.1.4.9. Managing Kickstart and Configuration Files

13.1.5. Using Custom Home Directories

13.2. USING AND CACHING CREDENTIALS WITH SSSD

13.2.1. About SSSD

13.2.2. Setting up the sssd.conf File

13.2.2.1. Creating the sssd.conf File

13.2.2.2. Using a Custom Configuration File

13.2.3. Starting and Stopping SSSD

13.2.4. SSSD and System Services

13.2.5. Configuring Services: NSS

About NSS Service Maps and SSSD

NSS Compatibility Mode

13.2.6. Configuring Services: PAM

13.2.7. Configuring Services: autofs

About Automount, LDAP, and SSSD

13.2.8. Configuring Services: sudo

About sudo, LDAP, and SSSD

13.2.9. Configuring Services: OpenSSH and Cached Keys

Configuring OpenSSH to Use SSSD for Host Keys

Configuring OpenSSH to Use SSSD for User Keys

13.2.10. SSSD and Identity Providers (Domains)

13.2.11. Creating Domains: LDAP

Parameters for Configuring an LDAP Domain

LDAP Domain Example

13.2.12. Creating Domains: Identity Management (IdM)

13.2.13. Creating Domains: Active Directory

Mapping Active Directory Securiy IDs and Linux User IDs

The Mechanism of ID Mapping

ID Mapping Parameters

Mapping Users

Active Directory Users and Range Retrieval Searches

Performance and LDAP Referrals

Active Directory as Other Provider Types

13.2.14. Configuring Domains: Active Directory as an LDAP Provider (Alternative)

13.2.15. Domain Options: Setting Username Formats

13.2.16. Domain Options: Enabling Offline Authentication

13.2.17. Domain Options: Setting Password Expirations

6

247

248

249

252

252

240

240

243

243

246

235

235

235

237

238

231

233

233

234

234

229

230

230

231

231

228

228

228

229

229

226

227

227

227

227

222

224

226

226

260

260

260

261

261

254

256

258

258

259

264

268

270

271

Password Expiration Warnings for Non-Password Authentication

13.2.18. Domain Options: Using DNS Service Discovery

13.2.19. Domain Options: Using IP Addresses in Certificate Subject Names (LDAP Only)

13.2.20. Creating Domains: Proxy

13.2.21. Creating Domains: Kerberos Authentication

13.2.22. Creating Domains: Access Control

Using the Simple Access Provider

Using the Access Filters

13.2.23. Creating Domains: Primary Server and Backup Servers

13.2.24. Installing SSSD Utilities

13.2.25. SSSD and UID and GID Numbers

13.2.26. Creating Local System Users

13.2.27. Seeding Users into the SSSD Cache During Kickstart

13.2.28. Managing the SSSD Cache

Purging the SSSD Cache

Deleting Domain Cache Files

13.2.29. Downgrading SSSD

13.2.30. Using NSCD with SSSD

13.2.31. Troubleshooting SSSD

Setting Debug Logs for SSSD Domains

Checking SSSD Log Files

Problems with SSSD Configuration

14.1. THE SSH PROTOCOL

14.1.1. Why Use SSH?

14.1.2. Main Features

14.1.3. Protocol Versions

14.1.4. Event Sequence of an SSH Connection

14.1.4.1. Transport Layer

14.1.4.2. Authentication

14.1.4.3. Channels

14.2. CONFIGURING OPENSSH

14.2.1. Configuration Files

14.2.2. Starting an OpenSSH Server

14.2.3. Requiring SSH for Remote Connections

14.2.4. Using Key-Based Authentication

14.2.4.1. Generating Key Pairs

14.2.4.2. Configuring ssh-agent

14.2.4.3. Multiple required methods of authentication for sshd

14.3. USING OPENSSH CERTIFICATE AUTHENTICATION

14.3.1. Introduction to SSH Certificates

14.3.2. Support for SSH Certificates

14.3.3. Creating SSH CA Certificate Signing Keys

14.3.4. Distributing and Trusting SSH CA Public Keys

14.3.5. Creating SSH Certificates

14.3.5.1. Creating SSH Certificates to Authenticate Hosts

14.3.5.2. Creating SSH Certificates for Authenticating Users

14.3.6. Signing an SSH Certificate Using a PKCS#11 Token

14.3.7. Viewing an SSH CA Certificate

14.3.8. Revoking an SSH CA Certificate

14.4. OPENSSH CLIENTS

14.4.1. Using the ssh Utility

301

301

304

307

307

298

298

298

300

301

295

295

295

296

296

297

298

312

313

316

317

317

307

307

307

310

311

318

318

7

Table of Contents

285

286

286

287

287

282

283

283

284

285

277

280

280

281

282

272

272

274

275

288

288

289

Deployment Guide

14.4.2. Using the scp Utility

14.4.3. Using the sftp Utility

14.5. MORE THAN A SECURE SHELL

14.5.1. X11 Forwarding

14.5.2. Port Forwarding

14.6. ADDITIONAL RESOURCES

14.6.1. Installed Documentation

14.6.2. Useful Websites

15.1. VNC SERVER

15.1.1. Installing VNC Server

15.1.2. Configuring VNC Server

15.1.3. Starting VNC Server

15.1.4. Terminating a VNC Session

15.2. SHARING AN EXISTING DESKTOP

15.3. USING A VNC VIEWER

15.3.1. Installing the VNC Viewer

15.3.2. Connecting to a VNC Server

15.3.2.1. Configuring the Firewall for VNC

15.3.3. Connecting to VNC Server Using SSH

15.4. ADDITIONAL RESOURCES

Installed Documentation

8

16.1. WHY USE DHCP?

16.2. CONFIGURING A DHCPV4 SERVER

16.2.1. Configuration File

16.2.2. Lease Database

16.2.3. Starting and Stopping the Server

16.2.4. DHCP Relay Agent

16.3. CONFIGURING A DHCPV4 CLIENT

16.4. CONFIGURING A MULTIHOMED DHCP SERVER

16.4.1. Host Configuration

16.5. DHCP FOR IPV6 (DHCPV6)

16.5.1. Configuring a DHCPv6 Server

16.5.2. Configuring a DHCPv6 Client

16.6. ADDITIONAL RESOURCES

16.6.1. Installed Documentation

17.1. INTRODUCTION TO DNS

17.1.1. Nameserver Zones

17.1.2. Nameserver Types

17.1.3. BIND as a Nameserver

17.2. BIND

17.2.1. Configuring the named Service

17.2.1.1. Common Statement Types

17.2.1.2. Other Statement Types

17.2.1.3. Comment Tags

17.2.2. Editing Zone Files

17.2.2.1. Common Directives

328

328

328

329

331

331

331

324

324

324

326

327

327

321

322

322

323

319

320

321

321

340

342

342

342

343

343

333

333

333

336

337

338

338

339

345

345

346

352

353

344

344

344

345

354

355

17.2.2.2. Common Resource Records

17.2.2.3. Comment Tags

17.2.2.4. Example Usage

17.2.2.4.1. A Simple Zone File

17.2.2.4.2. A Reverse Name Resolution Zone File

17.2.3. Using the rndc Utility

17.2.3.1. Configuring the Utility

17.2.3.2. Checking the Service Status

17.2.3.3. Reloading the Configuration and Zones

17.2.3.4. Updating Zone Keys

17.2.3.5. Enabling the DNSSEC Validation

17.2.3.6. Enabling the Query Logging

17.2.4. Using the dig Utility

17.2.4.1. Looking Up a Nameserver

17.2.4.2. Looking Up an IP Address

17.2.4.3. Looking Up a Hostname

17.2.5. Advanced Features of BIND

17.2.5.1. Multiple Views

17.2.5.2. Incremental Zone Transfers (IXFR)

17.2.5.3. Transaction SIGnatures (TSIG)

17.2.5.4. DNS Security Extensions (DNSSEC)

17.2.5.5. Internet Protocol version 6 (IPv6)

17.2.6. Common Mistakes to Avoid

17.2.7. Additional Resources

17.2.7.1. Installed Documentation

17.2.7.2. Useful Websites

17.2.7.3. Related Books

18.1. THE APACHE HTTP SERVER

18.1.1. New Features

18.1.2. Notable Changes

18.1.3. Updating the Configuration

18.1.4. Running the httpd Service

18.1.4.1. Starting the Service

18.1.4.2. Stopping the Service

18.1.4.3. Restarting the Service

18.1.4.4. Verifying the Service Status

18.1.5. Editing the Configuration Files

18.1.5.1. Common httpd.conf Directives

18.1.5.2. Common ssl.conf Directives

18.1.5.3. Common Multi-Processing Module Directives

18.1.6. Working with Modules

18.1.6.1. Loading a Module

18.1.6.2. Writing a Module

18.1.7. Setting Up Virtual Hosts

18.1.8. Setting Up an SSL Server

18.1.8.1. An Overview of Certificates and Security

18.1.9. Enabling the mod_ssl Module

18.1.9.1. Enabling and Disabling SSL and TLS in mod_ssl

18.1.10. Enabling the mod_nss Module

18.1.10.1. Enabling and Disabling SSL and TLS in mod_nss

18.1.11. Using an Existing Key and Certificate

404

407

407

407

407

372

372

372

373

403

370

370

370

370

371

371

371

408

408

409

410

412

416

418

9

Table of Contents

365

365

366

366

367

363

363

364

364

364

360

361

361

362

362

355

359

359

359

367

367

367

367

368

368

369

369

Deployment Guide

18.1.12. Generating a New Key and Certificate

18.1.13. Configure the Firewall for HTTP and HTTPS Using the Command Line

18.1.13.1. Checking Network Access for Incoming HTTPS and HTTPS Using the Command Line

18.1.14. Additional Resources

Installed Documentation

Installable Documentation

Online Documentation

10

19.1. EMAIL PROTOCOLS

19.1.1. Mail Transport Protocols

19.1.1.1. SMTP

19.1.2. Mail Access Protocols

19.1.2.1. POP

19.1.2.2. IMAP

19.1.2.3. Dovecot

19.2. EMAIL PROGRAM CLASSIFICATIONS

19.2.1. Mail Transport Agent

19.2.2. Mail Delivery Agent

19.2.3. Mail User Agent

19.3. MAIL TRANSPORT AGENTS

19.3.1. Postfix

19.3.1.1. The Default Postfix Installation

19.3.1.2. Basic Postfix Configuration

19.3.1.2.1. Configuring Postfix to Use Transport Layer Security

19.3.1.3. Using Postfix with LDAP

19.3.1.3.1. The /etc/aliases lookup example

19.3.2. Sendmail

19.3.2.1. Purpose and Limitations

19.3.2.2. The Default Sendmail Installation

19.3.2.3. Common Sendmail Configuration Changes

19.3.2.4. Masquerading

19.3.2.5. Stopping Spam

19.3.2.6. Using Sendmail with LDAP

19.3.3. Fetchmail

19.3.3.1. Fetchmail Configuration Options

19.3.3.2. Global Options

19.3.3.3. Server Options

19.3.3.4. User Options

19.3.3.5. Fetchmail Command Options

19.3.3.6. Informational or Debugging Options

19.3.3.7. Special Options

19.3.4. Mail Transport Agent (MTA) Configuration

19.4. MAIL DELIVERY AGENTS

19.4.1. Procmail Configuration

19.4.2. Procmail Recipes

19.4.2.1. Delivering vs. Non-Delivering Recipes

19.4.2.2. Flags

19.4.2.3. Specifying a Local Lockfile

19.4.2.4. Special Conditions and Actions

19.4.2.5. Recipe Examples

19.4.2.6. Spam Filters

19.5. MAIL USER AGENTS

442

442

443

443

444

440

440

441

441

442

436

437

438

438

439

433

433

434

434

435

445

445

446

446

447

448

449

431

431

432

433

433

430

430

430

431

431

427

427

427

427

427

428

429

419

424

425

426

426

426

426

19.5.1. Securing Communication

19.5.1.1. Secure Email Clients

19.5.1.2. Securing Email Client Communications

19.6. ADDITIONAL RESOURCES

19.6.1. Installed Documentation

19.6.2. Online Documentation

19.6.3. Related Books

20.1. OPENLDAP

20.1.1. Introduction to LDAP

20.1.1.1. LDAP Terminology

20.1.1.2. OpenLDAP Features

20.1.1.3. OpenLDAP Server Setup

20.1.2. Installing the OpenLDAP Suite

20.1.2.1. Overview of OpenLDAP Server Utilities

20.1.2.2. Overview of OpenLDAP Client Utilities

20.1.2.3. Overview of Common LDAP Client Applications

20.1.3. Configuring an OpenLDAP Server

20.1.3.1. Changing the Global Configuration

20.1.3.2. Changing the Database-Specific Configuration

20.1.3.3. Extending Schema

20.1.4. Running an OpenLDAP Server

20.1.4.1. Starting the Service

20.1.4.2. Stopping the Service

20.1.4.3. Restarting the Service

20.1.4.4. Checking the Service Status

20.1.5. Configuring a System to Authenticate Using OpenLDAP

20.1.5.1. Migrating Old Authentication Information to LDAP Format

20.1.6. Additional Resources

20.1.6.1. Installed Documentation

20.1.6.2. Useful Websites

20.1.6.3. Related Books

21.1. SAMBA

21.1.1. Introduction to Samba

What Samba can do:

What Samba cannot do:

21.1.2. Samba Daemons and Related Services

smbd nmbd winbindd

21.1.3. Connecting to a Samba Share

21.1.3.1. Mounting the Share

21.1.4. Configuring a Samba Server

21.1.4.1. Graphical Configuration

21.1.4.2. Command-Line Configuration

21.1.4.3. Encrypted Passwords

21.1.5. Starting and Stopping Samba

21.1.6. Samba Server Types and the smb.conf File

21.1.6.1. Stand-alone Server

Anonymous Read-Only

Table of Contents

449

450

450

451

451

452

452

463

463

463

464

464

457

458

458

459

462

453

453

454

454

455

455

456

464

464

465

465

466

467

467

473

473

474

474

474

469

471

472

472

472

468

468

468

468

468

469

469

469

11

Deployment Guide

12

Anonymous Read/Write

Anonymous Print Server

Secure Read/Write File and Print Server

21.1.6.2. Domain Member Server

Active Directory Domain Member Server

Windows NT4-based Domain Member Server

21.1.6.3. Domain Controller

Primary Domain Controller (PDC) Using tdbsam

Primary Domain Controller (PDC) with Active Directory

21.1.7. Samba Security Modes

21.1.7.1. User-Level Security

Samba Guest Shares

Domain Security Mode (User-Level Security)

Active Directory Security Mode (User-Level Security)

21.1.7.2. Share-Level Security

21.1.8. Samba Account Information Databases

21.1.9. Samba Network Browsing

21.1.9.1. Domain Browsing

21.1.9.2. WINS (Windows Internet Name Server)

21.1.10. Samba with CUPS Printing Support

21.1.10.1. Simple smb.conf Settings

21.1.11. Samba Distribution Programs findsmb

net nmblookup

pdbedit

rpcclient smbcacls smbclient smbcontrol smbpasswd smbspool smbstatus

smbtar testparm

wbinfo

21.1.12. Additional Resources

Installed Documentation

Related Books

Useful Websites

21.2. FTP

21.2.1. The File Transfer Protocol

21.2.2. The vsftpd Server

21.2.2.1. Starting and Stopping vsftpd

21.2.2.2. Starting Multiple Copies of vsftpd

21.2.2.3. Encrypting vsftpd Connections Using TLS

21.2.2.4. SELinux Policy for vsftpd

21.2.2.5. Files Installed with vsftpd

21.2.2.6. vsftpd Configuration Options

21.2.2.6.1. Daemon Options

21.2.2.6.2. Log In Options and Access Controls

21.2.2.6.3. Anonymous User Options

21.2.2.6.4. Local-User Options

490

491

491

491

491

489

489

489

489

490

487

488

489

489

489

485

485

486

486

487

483

483

484

485

485

481

482

482

482

483

477

478

479

479

481

475

475

476

477

494

495

496

496

497

491

492

492

493

493

497

498

500

500

21.2.2.6.5. Directory Options

21.2.2.6.6. File Transfer Options

21.2.2.6.7. Logging Options

21.2.2.6.8. Network Options

21.2.2.6.9. Security Options

21.2.3. Additional Resources

21.2.3.1. Installed Documentation

21.2.3.2. Online Documentation

21.3. PRINTER CONFIGURATION

21.3.1. Starting the Printer Configuration Tool

21.3.2. Starting Printer Setup

21.3.3. Adding a Local Printer

21.3.4. Adding an AppSocket/HP JetDirect printer

21.3.5. Adding an IPP Printer

21.3.6. Adding an LPD/LPR Host or Printer

21.3.7. Adding a Samba (SMB) printer

21.3.8. Selecting the Printer Model and Finishing

21.3.9. Printing a Test Page

21.3.10. Modifying Existing Printers

21.3.10.1. The Settings Page

21.3.10.2. The Policies Page

21.3.10.2.1. Sharing Printers

21.3.10.2.2. The Access Control Page

21.3.10.2.3. The Printer Options Page

21.3.10.2.4. Job Options Page

21.3.10.2.5. Ink/Toner Levels Page

21.3.10.3. Managing Print Jobs

21.3.11. Additional Resources

21.3.11.1. Installed Documentation

21.3.11.2. Useful Websites

22.1. INTRODUCTION TO NTP

22.2. NTP STRATA

22.3. UNDERSTANDING NTP

22.4. UNDERSTANDING THE DRIFT FILE

22.5. UTC, TIMEZONES, AND DST

22.6. AUTHENTICATION OPTIONS FOR NTP

22.7. MANAGING THE TIME ON VIRTUAL MACHINES

22.8. UNDERSTANDING LEAP SECONDS

22.9. UNDERSTANDING THE NTPD CONFIGURATION FILE

22.10. UNDERSTANDING THE NTPD SYSCONFIG FILE

22.11. CHECKING IF THE NTP DAEMON IS INSTALLED

22.12. INSTALLING THE NTP DAEMON (NTPD)

22.13. CHECKING THE STATUS OF NTP

22.14. CONFIGURE THE FIREWALL TO ALLOW INCOMING NTP PACKETS

22.14.1. Configure the Firewall Using the Graphical Tool

22.14.2. Configure the Firewall Using the Command Line

22.14.2.1. Checking Network Access for Incoming NTP Using the Command Line

22.15. CONFIGURE NTPDATE SERVERS

22.16. CONFIGURE NTP

22.16.1. Configure Access Control to an NTP Service

22.16.2. Configure Rate Limiting Access to an NTP Service

534

534

535

535

536

532

532

533

533

534

536

537

529

529

530

530

530

527

527

528

529

13

Table of Contents

513

514

516

519

519

509

509

510

511

512

506

507

507

508

508

502

502

503

504

522

523

524

525

520

520

520

521

522

525

526

Deployment Guide

22.16.3. Adding a Peer Address

22.16.4. Adding a Server Address

22.16.5. Adding a Broadcast or Multicast Server Address

22.16.6. Adding a Manycast Client Address

22.16.7. Adding a Broadcast Client Address

22.16.8. Adding a Manycast Server Address

22.16.9. Adding a Multicast Client Address

22.16.10. Configuring the Burst Option

22.16.11. Configuring the iburst Option

22.16.12. Configuring Symmetric Authentication Using a Key

22.16.13. Configuring the Poll Interval

22.16.14. Configuring Server Preference

22.16.15. Configuring the Time-to-Live for NTP Packets

22.16.16. Configuring the NTP Version to Use

22.17. CONFIGURING THE HARDWARE CLOCK UPDATE

22.18. CONFIGURING CLOCK SOURCES

22.19. ADDITIONAL RESOURCES

22.19.1. Installed Documentation

22.19.2. Useful Websites

23.1. INTRODUCTION TO PTP

23.1.1. Understanding PTP

23.1.2. Advantages of PTP

23.2. USING PTP

23.2.1. Checking for Driver and Hardware Support

23.2.2. Installing PTP

23.2.3. Starting ptp4l

23.2.3.1. Selecting a Delay Measurement Mechanism

23.3. SPECIFYING A CONFIGURATION FILE

23.4. USING THE PTP MANAGEMENT CLIENT

23.5. SYNCHRONIZING THE CLOCKS

23.6. VERIFYING TIME SYNCHRONIZATION

23.7. SERVING PTP TIME WITH NTP

23.8. SERVING NTP TIME WITH PTP

23.9. SYNCHRONIZE TO PTP OR NTP TIME USING TIMEMASTER

23.9.1. Starting timemaster as a Service

23.9.2. Understanding the timemaster Configuration File

23.9.3. Configuring timemaster Options

23.10. IMPROVING ACCURACY

23.11. ADDITIONAL RESOURCES

23.11.1. Installed Documentation

23.11.2. Useful Websites

14

24.1. VIEWING SYSTEM PROCESSES

24.1.1. Using the ps Command

24.1.2. Using the top Command

24.1.3. Using the System Monitor Tool

24.2. VIEWING MEMORY USAGE

24.2.1. Using the free Command

24.2.2. Using the System Monitor Tool

554

554

556

557

557

550

551

553

553

553

558

558

546

547

548

548

549

544

544

545

546

546

541

541

542

542

542

540

540

541

541

541

539

539

539

539

540

537

538

538

538

560

560

561

562

564

564

565

24.3. VIEWING CPU USAGE

24.3.1. Using the System Monitor Tool

24.4. VIEWING BLOCK DEVICES AND FILE SYSTEMS

24.4.1. Using the lsblk Command

24.4.2. Using the blkid Command

24.4.3. Using the findmnt Command

24.4.4. Using the df Command

24.4.5. Using the du Command

24.4.6. Using the System Monitor Tool

24.4.7. Monitoring Files and Directories with gamin

24.5. VIEWING HARDWARE INFORMATION

24.5.1. Using the lspci Command

24.5.2. Using the lsusb Command

24.5.3. Using the lspcmcia Command

24.5.4. Using the lscpu Command

24.6. MONITORING PERFORMANCE WITH NET-SNMP

24.6.1. Installing Net-SNMP

24.6.2. Running the Net-SNMP Daemon

24.6.2.1. Starting the Service

24.6.2.2. Stopping the Service

24.6.2.3. Restarting the Service

24.6.3. Configuring Net-SNMP

24.6.3.1. Setting System Information

24.6.3.2. Configuring Authentication

Configuring SNMP Version 2c Community

Configuring SNMP Version 3 User

24.6.4. Retrieving Performance Data over SNMP

24.6.4.1. Hardware Configuration

24.6.4.2. CPU and Memory Information

24.6.4.3. File System and Disk Information

24.6.4.4. Network Information

24.6.5. Extending Net-SNMP

24.6.5.1. Extending Net-SNMP with Shell Scripts

24.6.5.2. Extending Net-SNMP with Perl

24.7. ADDITIONAL RESOURCES

24.7.1. Installed Documentation

25.1. INSTALLING RSYSLOG

25.1.1. Upgrading to rsyslog version 7

25.2. LOCATING LOG FILES

25.3. BASIC CONFIGURATION OF RSYSLOG

25.3.1. Filters

25.3.2. Actions

Specifying Multiple Actions

25.3.3. Templates

Generating Dynamic File Names

Properties

Template Examples

25.3.4. Global Directives

25.3.5. Log Rotation

25.4. USING THE NEW CONFIGURATION FORMAT

25.4.1. Rulesets

Table of Contents

583

584

584

585

587

590

590

579

580

581

581

582

577

578

578

578

579

575

576

576

577

577

571

573

573

574

575

567

568

569

570

571

565

565

566

566

602

602

603

604

605

606

607

591

591

592

592

593

596

600

601

15

Deployment Guide

25.4.2. Compatibility with sysklogd

25.5. WORKING WITH QUEUES IN RSYSLOG

25.5.1. Defining Queues

Direct Queues

Disk Queues

In-memory Queues

Disk-Assisted In-memory Queues

25.5.2. Creating a New Directory for rsyslog Log Files

25.5.3. Managing Queues

Limiting Queue Size

Discarding Messages

Using Timeframes

Configuring Worker Threads

Batch Dequeuing

Terminating Queues

25.5.4. Using the New Syntax for rsyslog queues

25.6. CONFIGURING RSYSLOG ON A LOGGING SERVER

25.6.1. Using The New Template Syntax on a Logging Server

25.7. USING RSYSLOG MODULES

25.7.1. Importing Text Files

25.7.2. Exporting Messages to a Database

25.7.3. Enabling Encrypted Transport

25.7.4. Using RELP

25.8. DEBUGGING RSYSLOG

25.9. MANAGING LOG FILES IN A GRAPHICAL ENVIRONMENT

25.9.1. Viewing Log Files

25.9.2. Adding a Log File

25.9.3. Monitoring Log Files

25.10. ADDITIONAL RESOURCES

Installed Documentation

Online Documentation

See Also

16

27.1. CRON AND ANACRON

27.1.1. Installing Cron and Anacron

27.1.2. Running the Crond Service

27.1.2.1. Starting and Stopping the Cron Service

27.1.2.2. Stopping the Cron Service

27.1.2.3. Restarting the Cron Service

27.1.3. Configuring Anacron Jobs

27.1.3.1. Examples of Anacron Jobs

27.1.4. Configuring Cron Jobs

27.1.5. Controlling Access to Cron

27.1.6. Black and White Listing of Cron Jobs

27.2. AT AND BATCH

27.2.1. Installing At and Batch

27.2.2. Running the At Service

27.2.2.1. Starting and Stopping the At Service

27.2.2.2. Stopping the At Service

27.2.2.3. Restarting the At Service

625

625

628

629

630

622

623

623

624

625

630

630

630

615

616

617

620

621

614

614

615

615

615

610

611

611

613

614

608

608

610

610

639

639

639

640

640

636

636

638

638

639

633

633

633

634

634

634

634

27.2.3. Configuring an At Job

27.2.4. Configuring a Batch Job

27.2.5. Viewing Pending Jobs

27.2.6. Additional Command-Line Options

27.2.7. Controlling Access to At and Batch

27.3. ADDITIONAL RESOURCES

28.1. INSTALLING ABRT AND STARTING ITS SERVICES

28.2. USING THE GRAPHICAL USER INTERFACE

28.3. USING THE COMMAND-LINE INTERFACE

28.3.1. Viewing Problems

28.3.2. Reporting Problems

28.3.3. Deleting Problems

28.4. CONFIGURING ABRT

28.4.1. ABRT Events

28.4.2. Standard ABRT Installation Supported Events

28.4.3. Event Configuration in ABRT GUI

28.4.4. ABRT Specific Configuration

28.4.5. Configuring ABRT to Detect a Kernel Panic

28.4.6. Automatic Downloads and Installation of Debuginfo Packages

28.4.7. Configuring Automatic Reporting for Specific Types of Crashes

28.4.8. Uploading and Reporting Using a Proxy Server

28.4.9. Configuring Automatic Reporting

28.5. CONFIGURING CENTRALIZED CRASH COLLECTION

28.5.1. Configuration Steps Required on a Dedicated System

28.5.2. Configuration Steps Required on a Client System

28.5.3. Saving Package Information

28.5.4. Testing ABRT's Crash Detection

29.1. OVERVIEW OF TOOLS

29.2. CONFIGURING OPROFILE

29.2.1. Specifying the Kernel

29.2.2. Setting Events to Monitor

29.2.2.1. Sampling Rate

29.2.2.2. Unit Masks

29.2.3. Separating Kernel and User-space Profiles

29.3. STARTING AND STOPPING OPROFILE

29.4. SAVING DATA

29.5. ANALYZING THE DATA

29.5.1. Using opreport

29.5.2. Using opreport on a Single Executable

29.5.3. Getting more detailed output on the modules

29.5.4. Using opannotate

29.6. UNDERSTANDING /DEV/OPROFILE/

29.7. EXAMPLE USAGE

29.8. OPROFILE SUPPORT FOR JAVA

29.8.1. Profiling Java Code

29.9. GRAPHICAL INTERFACE

29.10. OPROFILE AND SYSTEMTAP

29.11. ADDITIONAL RESOURCES

29.11.1. Installed Docs

Table of Contents

640

641

641

642

642

642

683

684

684

685

685

679

679

680

681

681

685

686

689

689

689

673

674

674

675

677

678

678

666

667

667

669

669

660

661

663

665

666

645

647

654

654

656

657

658

658

670

671

672

17

Deployment Guide

29.11.2. Useful Websites

30.1. OVERVIEW OF KERNEL PACKAGES

30.2. PREPARING TO UPGRADE

30.3. DOWNLOADING THE UPGRADED KERNEL

30.4. PERFORMING THE UPGRADE

30.5. VERIFYING THE INITIAL RAM DISK IMAGE

Verifying the Initial RAM Disk Image and Kernel on IBM eServer System i

30.6. VERIFYING THE BOOT LOADER

30.6.1. Configuring the GRUB Boot Loader

30.6.2. Configuring the Loopback Device Limit

30.6.3. Configuring the OS/400 Boot Loader

30.6.4. Configuring the YABOOT Boot Loader

31.1. LISTING CURRENTLY-LOADED MODULES

31.2. DISPLAYING INFORMATION ABOUT A MODULE

31.3. LOADING A MODULE

31.4. UNLOADING A MODULE

31.5. BLACKLISTING A MODULE

31.6. SETTING MODULE PARAMETERS

31.6.1. Loading a Customized Module - Temporary Changes

31.6.2. Loading a Customized Module - Persistent Changes

31.7. PERSISTENT MODULE LOADING

31.8. SPECIFIC KERNEL MODULE CAPABILITIES

31.8.1. Using Channel Bonding

31.8.1.1. Bonding Module Directives

31.9. ADDITIONAL RESOURCES

Installed Documentation

Installable Documentation

Online Documentation

18

32.1. INSTALLING THE KDUMP SERVICE

32.2. CONFIGURING THE KDUMP SERVICE

32.2.1. Configuring kdump at First Boot

32.2.2. Using the Kernel Dump Configuration Utility

Enabling the Service

The Basic Settings Tab

The Target Settings Tab

The Filtering Settings Tab

The Expert Settings Tab

32.2.3. Configuring kdump on the Command Line

Configuring the Memory Usage

Configuring the Target Type

Configuring the Core Collector

Changing the Default Action

Enabling the Service

32.2.4. Testing the Configuration

32.3. ANALYZING THE CORE DUMP

32.3.1. Running the crash Utility

689

717

717

718

718

710

711

711

711

712

701

702

704

705

706

708

709

691

692

693

694

694

696

696

697

699

699

699

727

728

729

729

730

721

724

725

726

726

730

731

719

719

719

720

720

720

32.3.2. Displaying the Message Buffer

32.3.3. Displaying a Backtrace

32.3.4. Displaying a Process Status

32.3.5. Displaying Virtual Memory Information

32.3.6. Displaying Open Files

32.3.7. Exiting the Utility

32.4. USING FADUMP ON IBM POWERPC HARDWARE

Enabling fadump

32.5. ADDITIONAL RESOURCES

Installed Documentation

Useful Websites

33.1. RESCUE MODE

33.2. SINGLE-USER MODE

33.3. EMERGENCY MODE

33.4. RESOLVING PROBLEMS IN SYSTEM RECOVERY MODES

34.1. BASIC REAR USAGE

34.1.1. Installing ReaR

34.1.2. Configuring ReaR

34.1.3. Creating a Rescue System

34.1.4. Scheduling ReaR

34.1.5. Performing a System Rescue

34.2. INTEGRATING REAR WITH BACKUP SOFTWARE

34.2.1. The Built-in Backup Method

34.2.1.1. Configuring the Internal Backup Method

34.2.1.2. Creating a Backup Using the Internal Backup Method

34.2.2. Supported Backup Methods

34.2.3. Unsupported Backup Methods

A.1. AFFECTED SYSTEMS

A.2. SYSTEM REQUIREMENTS

A.3. ENABLING AND DISABLING THE FEATURE

A.4. NOTES FOR ADMINISTRATORS

B.1. RPM DESIGN GOALS

B.2. USING RPM

B.2.1. Finding RPM Packages

B.2.2. Installing and Upgrading

B.2.2.1. Package Already Installed

B.2.2.2. Conflicting Files

B.2.2.3. Unresolved Dependency

B.2.3. Configuration File Changes

B.2.4. Uninstalling

B.2.5. Freshening

B.2.6. Querying

B.2.7. Verifying

B.3. CHECKING A PACKAGE'S SIGNATURE

Table of Contents

735

735

735

736

736

732

733

734

734

736

737

747

748

751

751

751

746

746

746

747

752

753

753

739

741

742

742

755

756

756

756

759

759

760

760

761

762

762

763

764

765

765

766

767

19

Deployment Guide

B.3.1. Importing Keys

B.3.2. Verifying Signature of Packages

B.4. PRACTICAL AND COMMON EXAMPLES OF RPM USAGE

B.5. ADDITIONAL RESOURCES

B.5.1. Installed Documentation

B.5.2. Useful Websites

C.1. THE X SERVER

C.2. DESKTOP ENVIRONMENTS AND WINDOW MANAGERS

C.2.1. Maximum number of concurrent GUI sessions

C.2.2. Desktop Environments

C.2.3. Window Managers

C.3. X SERVER CONFIGURATION FILES

C.3.1. The Structure of the Configuration

C.3.2. The xorg.conf.d Directory

C.3.3. The xorg.conf File

C.3.3.1. The InputClass section

C.3.3.2. The InputDevice section

C.3.3.3. The ServerFlags section

C.3.3.4. The ServerLayout Section

C.3.3.5. The Files section

C.3.3.6. The Monitor section

C.3.3.7. The Device section

C.3.3.8. The Screen section

C.3.3.9. The DRI section

C.4. FONTS

C.4.1. Adding Fonts to Fontconfig

C.5. RUNLEVELS AND X

C.5.1. Runlevel 3

C.5.2. Runlevel 5

C.6. ACCESSING GRAPHICAL APPLICATIONS REMOTELY

C.7. ADDITIONAL RESOURCES

C.7.1. Installed Documentation

C.7.2. Useful Websites

D.1. FILES IN THE /ETC/SYSCONFIG/ DIRECTORY

D.1.1. /etc/sysconfig/arpwatch

D.1.2. /etc/sysconfig/authconfig

D.1.3. /etc/sysconfig/autofs

D.1.4. /etc/sysconfig/clock

D.1.5. /etc/sysconfig/dhcpd

D.1.6. /etc/sysconfig/firstboot

D.1.7. /etc/sysconfig/i18n

D.1.8. /etc/sysconfig/init

D.1.9. /etc/sysconfig/ip6tables-config

D.1.10. /etc/sysconfig/keyboard

D.1.11. /etc/sysconfig/ldap

D.1.12. /etc/sysconfig/named

D.1.13. /etc/sysconfig/network

D.1.14. /etc/sysconfig/ntpd

D.1.15. /etc/sysconfig/quagga

20

778

778

779

780

781

774

775

775

776

777

771

771

772

772

772

773

773

774

784

784

785

785

781

782

782

783

783

767

768

768

770

770

770

796

797

797

798

799

791

792

792

794

795

786

786

786

789

791

791

D.1.16. /etc/sysconfig/radvd

D.1.17. /etc/sysconfig/samba

D.1.18. /etc/sysconfig/saslauthd

D.1.19. /etc/sysconfig/selinux

D.1.20. /etc/sysconfig/sendmail

D.1.21. /etc/sysconfig/spamassassin

D.1.22. /etc/sysconfig/squid

D.1.23. /etc/sysconfig/system-config-users

D.1.24. /etc/sysconfig/vncservers

D.1.25. /etc/sysconfig/xinetd

D.2. DIRECTORIES IN THE /ETC/SYSCONFIG/ DIRECTORY

D.3. ADDITIONAL RESOURCES

D.3.1. Installed Documentation

E.1. A VIRTUAL FILE SYSTEM

E.1.1. Viewing Virtual Files

E.1.2. Changing Virtual Files

E.2. TOP-LEVEL FILES WITHIN THE PROC FILE SYSTEM

E.2.1. /proc/buddyinfo

E.2.2. /proc/cmdline

E.2.3. /proc/cpuinfo

E.2.4. /proc/crypto

E.2.5. /proc/devices

E.2.6. /proc/dma

E.2.7. /proc/execdomains

E.2.8. /proc/fb

E.2.9. /proc/filesystems

E.2.10. /proc/interrupts

E.2.11. /proc/iomem

E.2.12. /proc/ioports

E.2.13. /proc/kcore

E.2.14. /proc/kmsg

E.2.15. /proc/loadavg

E.2.16. /proc/locks

E.2.17. /proc/mdstat

E.2.18. /proc/meminfo

E.2.19. /proc/misc

E.2.20. /proc/modules

E.2.21. /proc/mounts

E.2.22. /proc/mtrr

E.2.23. /proc/partitions

E.2.24. /proc/slabinfo

E.2.25. /proc/stat

E.2.26. /proc/swaps

E.2.27. /proc/sysrq-trigger

E.2.28. /proc/uptime

E.2.29. /proc/version

E.3. DIRECTORIES WITHIN /PROC/

E.3.1. Process Directories

E.3.1.1. /proc/self/

E.3.2. /proc/bus/

E.3.3. /proc/bus/pci

Table of Contents

802

802

802

803

803

800

800

801

801

804

804

805

805

823

824

824

824

826

820

821

822

823

823

826

827

815

819

819

820

820

814

814

814

814

815

811

811

812

813

813

808

809

810

811

811

806

806

807

807

808

808

21

Deployment Guide

E.3.4. /proc/driver/

E.3.5. /proc/fs

E.3.6. /proc/irq/

E.3.7. /proc/net/

E.3.8. /proc/scsi/

E.3.9. /proc/sys/

E.3.9.1. /proc/sys/dev/

E.3.9.2. /proc/sys/fs/

E.3.9.3. /proc/sys/kernel/

E.3.9.4. /proc/sys/net/

E.3.9.5. /proc/sys/vm/

E.3.10. /proc/sysvipc/

E.3.11. /proc/tty/

E.3.12. /proc/PID/

E.4. USING THE SYSCTL COMMAND

E.5. ADDITIONAL RESOURCES

Installable Documentation

837

839

841

841

842

843

844

844

830

832

833

833

834

828

828

828

829

22

Table of Contents

23

Deployment Guide

PART I. BASIC SYSTEM CONFIGURATION

This part covers basic system administration tasks such as keyboard configuration, date and time configuration, managing users and groups, and gaining privileges.

24

CHAPTER 1. KEYBOARD CONFIGURATION

CHAPTER 1. KEYBOARD CONFIGURATION

This chapter describes how to change the keyboard layout, as well as how to add the Keyboard

Indicator applet to the panel. It also covers the option to enforce a typing break, and explains both advantages and disadvantages of doing so.

1.1. CHANGING THE KEYBOARD LAYOUT

The installation program has allowed you to configure a keyboard layout for your system. However, the default settings may not always suit your current needs. To configure a different keyboard layout after the installation, use the Keyboard Preferences tool.

To open Keyboard Layout Preferences, select SystemPreferencesKeyboard from the panel, and click the Layouts tab.

Figure 1.1. Keyboard Layout Preferences

You will be presented with a list of available layouts. To add a new one, click the Add button below the list, and you will be prompted to choose which layout you want to add.

25

Deployment Guide

26

Figure 1.2. Choosing a layout

Currently, there are two ways how to choose the keyboard layout: you can either find it by the country it is associated with (the By country tab), or you can select it by language (the By language tab). In either case, first select the desired country or language from the Country or Language pulldown menu, then specify the variant from the Variants menu. The preview of the layout changes immediately. To confirm the selection, click Add.

Figure 1.3. Selecting the default layout

The layout should appear in the list. To make it the default, select the radio button next to its name. The changes take effect immediately. Note that there is a text-entry field at the bottom of the window where you can safely test your settings. Once you are satisfied, click Close to close the window.

CHAPTER 1. KEYBOARD CONFIGURATION

Figure 1.4. Testing the layout

NOTE

By default, changing the keyboard layout affects the active window only. This means that if you change the layout and switch to another window, this window will use the old one, which might be confusing. To turn this behavior off, clear the Separate layout for

each window check box.

Doing this has its drawbacks though, as you will no longer be able to choose the default layout by selecting the radio button as shown in

Figure 1.3, “Selecting the default layout”

.

To make the layout the default, drag it to the beginning of the list.

1.2. ADDING THE KEYBOARD LAYOUT INDICATOR

If you want to see what keyboard layout you are currently using, or you would like to switch between different layouts with a single mouse click, add the Keyboard Indicator applet to the panel. To do so, right-click the empty space on the main panel, and select the Add to Panel option from the pulldown menu.

27

Deployment Guide

Figure 1.5. Adding a new applet

You will be presented with a list of available applets. Scroll through the list (or start typing “keyboard” into the search field at the top of the window), select Keyboard Indicator, and click the Add button.

28

Figure 1.6. Selecting the Keyboard Indicator

The applet appears immediately, displaying the shortened name of the country the current layout is associated with. To display the actual variant, hover the pointer over the applet icon.

CHAPTER 1. KEYBOARD CONFIGURATION

Figure 1.7. The Keyboard Indicator applet

1.3. SETTING UP A TYPING BREAK

Typing for a long period of time can be not only tiring, but it can also increase the risk of serious health problems, such as carpal tunnel syndrome. One way of preventing this is to configure the system to enforce typing breaks. To do so, select SystemPreferencesKeyboard from the panel, click the

Typing Break tab, and select the Lock screen to enforce typing break check box.

Figure 1.8. Typing Break Properties

To increase or decrease the allowed typing time before the break is enforced, click the up or down button next to the Work interval lasts label respectively. You can do the same with the Break

interval lasts setting to alter the length of the break itself. Finally, select the Allow postponing

29

Deployment Guide

of breaks check box if you want to be able to delay the break in case you need to finish the work. The changes take effect immediately.

30

Figure 1.9. Taking a break

Next time you reach the time limit, you will be presented with a screen advising you to take a break, and a clock displaying the remaining time. If you have enabled it, the Postpone Break button will be located at the bottom right corner of the screen.

CHAPTER 2. DATE AND TIME CONFIGURATION

CHAPTER 2. DATE AND TIME CONFIGURATION

This chapter covers setting the system date and time in Red Hat Enterprise Linux, both manually and using the Network Time Protocol (NTP), as well as setting the adequate time zone. Two methods are covered: setting the date and time using the Date/Time Properties tool, and doing so on the command line.

2.1. DATE/TIME PROPERTIES TOOL

The Date/Time Properties tool allows the user to change the system date and time, to configure the time zone used by the system, and to set up the Network Time Protocol daemon to synchronize the system clock with a time server. Note that to use this application, you must be running the X Window

System (see

Appendix C, The X Window System

for more information on this topic).

To start the tool, select SystemAdministrationDate & Time from the panel, or type the system-

config-date command at a shell prompt (e.g., xterm or GNOME Terminal). Unless you are already authenticated, you will be prompted to enter the superuser password.

Figure 2.1. Authentication Query

2.1.1. Date and Time Properties

As shown in Figure 2.2, “Date and Time Properties” , the

Date/Time Properties tool is divided into two separate tabs. The tab containing the configuration of the current date and time is shown by default.

31

Deployment Guide

32

Figure 2.2. Date and Time Properties

To set up your system manually, follow these steps:

1. Change the current date. Use the arrows to the left and right of the month and year to change the month and year respectively. Then click inside the calendar to select the day of the month.

2. Change the current time. Use the up and down arrow buttons beside the Hour, Minute, and

Second, or replace the values directly.

Click the OK button to apply the changes and exit the application.

2.1.2. Network Time Protocol Properties

If you prefer an automatic setup, select the check box labeled Synchronize date and time over

the network instead. This will display the list of available NTP servers as shown in Figure 2.3,

“Network Time Protocol Properties” .

CHAPTER 2. DATE AND TIME CONFIGURATION

Figure 2.3. Network Time Protocol Properties

Here you can choose one of the predefined servers, edit a predefined server by clicking the Edit button, or add a new server name by clicking Add. In the Advanced Options, you can also select whether you want to speed up the initial synchronization of the system clock, or if you want to use a local time source.

NOTE

Your system does not start synchronizing with the NTP server until you click the OK button at the bottom of the window to confirm your changes.

Click the OK button to apply any changes made to the date and time settings and exit the application.

2.1.3. Time Zone Properties

To configure the system time zone, click the Time Zone tab as shown in Figure 2.4, “Time Zone

Properties” .

33

Deployment Guide

34

Figure 2.4. Time Zone Properties

There are two common approaches to the time zone selection:

1. Using the interactive map. Click “zoom in” and “zoom out” buttons next to the map, or click on the map itself to zoom into the selected region. Then choose the city specific to your time zone. A red X appears and the time zone selection changes in the list below the map.

2. Use the list below the map. To make the selection easier, cities and countries are grouped within their specific continents. Note that non-geographic time zones have also been added to address needs in the scientific community.

If your system clock is set to use UTC, select the System clock uses UTC option. UTC stands for the Universal Time, Coordinated, also known as Greenwich Mean Time (GMT). Other time zones are determined by adding or subtracting from the UTC time.

Click OK to apply the changes and exit the program.

2.2. COMMAND LINE CONFIGURATION

In case your system does not have the Date/Time Properties tool installed, or the X Window Server is not running, you will have to change the system date and time on the command line. Note that in order to perform actions described in this section, you have to be logged in as a superuser:

CHAPTER 2. DATE AND TIME CONFIGURATION

~]$ su -

Password:

2.2.1. Date and Time Setup

The date command allows the superuser to set the system date and time manually:

1. Change the current date. Type the command in the following form at a shell prompt, replacing the YYYY with a four-digit year, MM with a two-digit month, and DD with a two-digit day of the month:

~]# date +%D -s YYYY-MM-DD

For example, to set the date to 2 June 2010, type:

~]# date +%D -s 2010-06-02

2. Change the current time. Use the following command, where HH stands for an hour, MM is a minute, and SS is a second, all typed in a two-digit form:

~]# date +%T -s HH:MM:SS

If your system clock is set to use UTC (Coordinated Universal Time), add the following option:

~]# date +%T -s HH:MM:SS -u

For instance, to set the system clock to 11:26 PM using the UTC, type:

~]# date +%T -s 23:26:00 -u

You can check your current settings by typing date without any additional argument:

Example 2.1. Displaying the current date and time

~]$ date

Wed Jun 2 11:58:48 CEST 2010

2.2.2. Network Time Protocol Setup

As opposed to the manual setup described above, you can also synchronize the system clock with a remote server over the Network Time Protocol (NTP). For the one-time synchronization only, use the

ntpdate command:

1. Firstly, check whether the selected NTP server is accessible:

~]# ntpdate -q server_address

For example:

~]# ntpdate -q 0.rhel.pool.ntp.org

35

Deployment Guide

2. When you find a satisfactory server, run the ntpdate command followed by one or more server addresses:

~]# ntpdate server_address...

For instance:

~]# ntpdate 0.rhel.pool.ntp.org 1.rhel.pool.ntp.org

Unless an error message is displayed, the system time should now be set. You can check the

current by setting typing date without any additional arguments as shown in Section 2.2.1,

“Date and Time Setup” .

3. In most cases, these steps are sufficient. Only if you really need one or more system services to always use the correct time, enable running the ntpdate at boot time:

~]# chkconfig ntpdate on

For more information about system services and their setup, see Chapter 12, Services and

Daemons .

NOTE

If the synchronization with the time server at boot time keeps failing, i.e., you find a relevant error message in the /var/log/boot.log system log, try to add the following line to /etc/sysconfig/network:

NETWORKWAIT=1

36

However, the more convenient way is to set the ntpd daemon to synchronize the time at boot time automatically:

1. Open the NTP configuration file /etc/ntp.conf in a text editor such as vi or nano, or create a new one if it does not already exist:

~]# nano /etc/ntp.conf

2. Now add or edit the list of public NTP servers. If you are using Red Hat Enterprise Linux 6, the file should already contain the following lines, but feel free to change or expand these according to your needs: server 0.rhel.pool.ntp.org iburst server 1.rhel.pool.ntp.org iburst server 2.rhel.pool.ntp.org iburst server 3.rhel.pool.ntp.org iburst

The iburst directive at the end of each line is to speed up the initial synchronization. As of

Red Hat Enterprise Linux 6.5 it is added by default. If upgrading from a previous minor release, and your /etc/ntp.conf file has been modified, then the upgrade to Red Hat Enterprise Linux

6.5 will create a new file /etc/ntp.conf.rpmnew and will not alter the existing

/etc/ntp.conf file.

CHAPTER 2. DATE AND TIME CONFIGURATION

3. Once you have the list of servers complete, in the same file, set the proper permissions, giving the unrestricted access to localhost only: restrict default kod nomodify notrap nopeer noquery restrict -6 default kod nomodify notrap nopeer noquery restrict 127.0.0.1

restrict -6 ::1

4. Save all changes, exit the editor, and restart the NTP daemon:

~]# service ntpd restart

5. Make sure that ntpd is started at boot time:

~]# chkconfig ntpd on

37

Deployment Guide

CHAPTER 3. MANAGING USERS AND GROUPS

3.1. WHAT USERS AND GROUPS ARE

The control of users and groups is a core element of Red Hat Enterprise Linux system administration.

The user of the system is either a human being or an account used by specific applications identified by a unique numerical identification number called user ID (UID). Users within a group can have read permissions, write permissions, execute permissions or any combination of read/write/execute permissions for files owned by that group.

Red Hat Enterprise Linux supports access control lists (ACLs) for files and directories which allow permissions for specific users outside of the owner to be set. For more information about this feature, see the Access Control Lists chapter of the Red Hat Enterprise Linux 6 Storage Administration Guide .

A group is an organization unit tying users together for a common purpose, which can be reading permissions, writing permission, or executing permission for files owned by that group. Similar to UID, each group is associated with a group ID (GID).

NOTE

Red Hat Enterprise Linux reserves user and group IDs below 500 for system users and groups. By default, the User Manager does not display the system users. Reserved user and group IDs are documented in the setup package. To view the documentation, use this command: cat /usr/share/doc/setup-2.8.14/uidgid

The recommended practice is to assign non-reserved IDs starting at 5,000, as the reserved range can increase in the future. To make the IDs assigned to new users by default start at 5,000, change the UID_MIN and GID_MIN directives in the

/etc/login.defs file:

[file contents truncated]

UID_MIN 5000

[file contents truncated]

GID_MIN 5000

[file contents truncated]

Even with new user and group IDs beginning with 5,000, it is recommended not to raise

IDs reserved by system above 500 to avoid conflict with systems that retain the 500 limit.

Each user is a member of exactly one primary group and zero or more supplementary groups. By default, when a file is created, the file's owner is its creator and the file's group is the creator's primary group. A user can temporarily change what group is their primary group with the newgrp command, after which all newly created files are owned by the new group. A supplementary group serves to grant a certain set of users, its members, access to a certain set of files, those owned by this group.

The file is assigned separate read, write, and execute permissions for the owner, the group, and everyone else. The file owner can be changed only by root, and access permissions can be changed by both the root user and file owner.

By default, a file or directory can be modified only by its creator. The setting that determines what permissions are applied to a newly created file or directory is called a umask and can be configured in

38

CHAPTER 3. MANAGING USERS AND GROUPS the /etc/bashrc file for all users, or in ~/.bashrc for each user individually . The configuration in

~/.bashrc overrides the configuration in /etc/bashrc. Additionally, the umask command overrides the default permissions for the duration of the shell session.

To authenticate, a user enters their password. A hash sum is generated from the entered string and compared to the hash sum of the user's password. If the hash sums match, the user authenticates successfully.

Hash sums of user passwords are stored in the /etc/shadow file, which is only readable by the root user. The file also stores information about password aging and policies for specific accounts. The default values for a newly created account are stored in the /etc/login.defs and

/etc/default/useradd files. The Red Hat Enterprise Linux 6 Security Guide provides more securityrelated information about users and groups.

3.2. MANAGING USERS VIA THE USER MANAGER APPLICATION

The User Manager application allows you to view, modify, add, and delete local users and groups in the graphical user interface.

To start the User Manager application:

From the toolbar, select SystemAdministrationUsers and Groups.

Or, type system-config-users at the shell prompt.

NOTE

Unless you have superuser privileges, the application will prompt you to authenticate as

root.

3.2.1. Viewing Users

In order to display the main window of the User Manager to view users, from the toolbar of User

Manager select EditPreferences. If you want to view all the users, that is including system users, clear the Hide system users and groups check box.

The Users tab provides a list of local users along with additional information about their user ID, primary group, home directory, login shell, and full name.

39

Deployment Guide

40

Figure 3.1. Viewing Users

To find a specific user, type the first few letters of the name in the Search filter field and either press Enter, or click the Apply filter button. You can also sort the items according to any of the available columns by clicking the column header.

3.2.2. Adding a New User

If there is a new user you need to add to the system, follow this procedure:

1. Click the Add User button.

2. Enter the user name and full name in the appropriate fields

3. Type the user's password in the Password and Confirm Password fields. The password must be at least six characters long.

NOTE

For safety reasons, choose a long password not based on a dictionary term; use a combination of letters, numbers, and special characters.

4. Select a login shell for the user from the Login Shell drop-down list or accept the default value of /bin/bash.

5. Clear the Create home directory check box if you choose not to create the home directory for a new user in /home/username/.

CHAPTER 3. MANAGING USERS AND GROUPS

You can also change this home directory by editing the content of the Home Directory text box. Note that when the home directory is created, default configuration files are copied into it from the /etc/skel/ directory.

6. Clear the Create a private group for the user check box if you do not want a unique group with the same name as the user to be created. User private group (UPG) is a group assigned to a user account to which that user exclusively belongs, which is used for managing file permissions for individual users.

7. Specify a user ID for the user by selecting Specify user ID manually. If the option is not selected, the next available user ID above 500 is assigned to the new user.

8. Click the OK button to complete the process.

Look at the sample Add New User dialog box configuration:

To configure more advanced user properties, such as password expiration, modify the user's properties after adding the user.

3.2.3. Modifying User Properties

1. Select the user from the user list by clicking once on the user name.

41

Deployment Guide

2. Click Properties from the toolbar or choose FileProperties from the drop-down menu.

42

Figure 3.2. User Properties

3. There are four tabs you can update to your preferences. When you have finished, click the OK button to save your changes.

3.3. MANAGING GROUPS VIA THE USER MANAGER APPLICATION

3.3.1. Viewing Groups

In order to display the main window of User Manager to view groups, from the toolbar select Edit

Preferences. If you want to view all the groups, clear the Hide system users and groups check box.

The Groups tab provides a list of local groups with information about their group ID and group members as you can see in the picture below.

CHAPTER 3. MANAGING USERS AND GROUPS

Figure 3.3. Viewing Groups

To find a specific group, type the first few letters of the name in the Search filter field and either press Enter, or click the Apply filter button. You can also sort the items according to any of the available columns by clicking the column header.

3.3.2. Adding a New Group

If there is a new group you need to add to the system, follow this procedure:

1. Select Add Group from the User Manager toolbar:

Figure 3.4. New Group

2. Type the name of the new group.

3. Specify the group ID (GID) for the new group by checking the Specify group ID manually check box.

43

Deployment Guide

4. Select the GID. Note that Red Hat Enterprise Linux also reserves group IDs lower than 500 for system groups.

5. Click OK to create the group. The new group appears in the group list.

3.3.3. Modifying Group Properties

1. Select the group from the group list by clicking on its name.

2. Click Properties from the toolbar or choose FileProperties from the drop-down menu.

44

Figure 3.5. Group Properties

3. The Group Users tab displays the list of group members. Use this tab to add or remove users from the group. Click OK to save your changes.

3.4. MANAGING USERS VIA COMMAND-LINE TOOLS

When managing users via command line, the following commands are used: useradd, usermod,

userdel, or passwd. The files affected include /etc/passwd which stores user accounts information and /etc/shadow, which stores secure user account information.

3.4.1. Creating Users

The useradd utility creates new users and adds them to the system. Following the short procedure below, you will create a default user account with its UID, automatically create a home directory where default user settings will be stored, /home/username/, and set the default shell to /bin/bash.

1. Run the following command at a shell prompt as root substituting username with the name of your choice:

CHAPTER 3. MANAGING USERS AND GROUPS useradd username

2. By setting a password unlock the account to make it accessible. Type the password twice when the program prompts you to.

passwd

Example 3.1. Creating a User with Default Settings

~]# useradd robert

~]# passwd robert

Changing password for user robert

New password:

Re-type new password: passwd: all authentication tokens updated successfully.

Running the useradd robert command creates an account named robert. If you run cat

/etc/passwd to view the content of the /etc/passwd file, you can learn more about the new user from the line displayed to you: robert:x:502:502::/home/robert:/bin/bash

robert has been assigned a UID of 502, which reflects the rule that the default UID values from 0 to

499 are typically reserved for system accounts. GID, group ID of User Private Group, equals to

UID. The home directory is set to /home/robert and login shell to /bin/bash. The letter x signals that shadow passwords are used and that the hashed password is stored in /etc/shadow.

If you want to change the basic default setup for the user while creating the account, you can choose from a list of command-line options modifying the behavior of useradd (see the useradd(8) man page for the whole list of options). As you can see from the basic syntax of the command, you can add one or more options: useradd [option(s)] username

As a system administrator, you can use the -c option to specify, for example, the full name of the user when creating them. Use -c followed by a string, which adds a comment to the user: useradd -c "string" username

Example 3.2. Specifying a User's Full Name when Creating a User

~]# useradd -c "Robert Smith" robert

~]# cat /etc/passwd robert:x:502:502:Robert Smith:/home/robert:/bin/bash

A user account has been created with user name robert, sometimes called the login name, and full name Robert Smith.

45

Deployment Guide

If you do not want to create the default /home/username/ directory for the user account, set a different one instead of it. Execute the command below: useradd -d home_directory

Example 3.3. Adding a User with non-default Home Directory

~]# useradd -d /home/dir_1 robert

robert's home directory is now not the default /home/robert but /home/dir_1/.

If you do not want to create the home directory for the user at all, you can do so by running useradd with the -M option. However, when such a user logs into a system that has just booted and their home directory does not exist, their login directory will be the root directory. If such a user logs into a system using the su command, their login directory will be the current directory of the previous user.

useradd -M username

If you need to copy a directory content to the /home directory while creating a new user, make use of the

-m and -k options together followed by the path.

Example 3.4. Creating a User while Copying Contents to the Home Directory

The following command copies the contents of a directory named /dir_1 to /home/jane, which is the default home directory of a new user jane:

~]# useradd -m -k /dir_1 jane

46

As a system administrator, you may need to create a temporary account. Using the useradd command, this means creating an account for a certain amount of time only and disabling it at a certain date. This is a particularly useful setting as there is no security risk resulting from forgetting to delete a certain account. For this, the -e option is used with the specified expire_date in the YYYY-MM-DD format.

NOTE

Do not confuse account expiration and password expiration. Account expiration is a particular date, after which it is impossible to log in to the account in any way, as the account no longer exists. Password expiration, the maximum password age and date of password creation or last password change, is the date, when it is not possible to log in using the password (but other ways exist, such as logging in using an SSH key).

useradd -e YYYY-MM-DD username

Example 3.5. Setting the Account Expiration Date

~]# useradd -e 2015-11-05 emily

The account emily will be created now and automatically disabled on 5 November, 2015.

CHAPTER 3. MANAGING USERS AND GROUPS

User's login shell defaults to /bin/bash, but can be changed by the -s option to any other shell different from bash, ksh, csh, tsh, for example.

useradd -s login_shell username

Example 3.6. Adding a User with Non-default Shell

~]# useradd -s /bin/ksh robert

This command creates the user robert which has the /bin/ksh shell.

The -r option creates a system account, which is an account for administrative use that has some, but not all, root privileges. Such accounts have a UID lower than the value of UID_MIN defined in

/etc/login.defs, typically 500 and above for ordinary users.

useradd -r username

3.4.2. Attaching New Users to Groups

The useradd command creates a User Private Group (UPG, a group assigned to a user account to which that user exclusively belongs) whenever a new user is added to the system and names the group after the user. For example, when the account robert is created, an UPG named robert is created at the same time, the only member of which is the user robert.

If you do not want to create a User Private Group for a user for whatever reason, execute the

useradd command with the following option: useradd -N username

Instead of automatically creating UPG or not creating it at all, you can specify the user's group membership with -g and -G options. While the -g option specifies the primary group membership, -G refers to supplementary groups into which the user is also included. The group names you specify must already exist on the system.

Example 3.7. Adding a User to a Group

~]# useradd -g "friends" -G "family,schoolmates" emily

The useradd -g "friends" -G "family,schoolmates" emily command creates the user

emily but emily's primary group is set to friends as specified by the -g option. emily is also a group member of the supplementary groups family and schoolmates.

Provided the user already exists and you want to add them to certain supplementary group(s), use the

usermod command with the -G option and a list of groups divided by commas, no spaces: usermod -G group_1,group_2,group_3

47

Deployment Guide

3.4.3. Updating Users' Authentication

When running the basic useradd username command, the password is automatically set to never expire (see the /etc/shadow file).

If you want to change this, use passwd, the standard utility for administering the /etc/passwd file. The syntax of the passwd command look as follows: passwd option(s) username

You can, for example, lock the specified account. The locking is performed by rendering the encrypted password into an invalid string by prefixing the encrypted string with an the exclamation mark (!). If you later find a reason to unlock the account, passwd has a reverse operation for locking. Only root can carry out these two operations.

passwd -l username passwd -u username

Example 3.8. Unlocking a User Password

~]# passwd -l robert

Locking password for user robert.

passwd: Success

~]# passwd -u robert passwd: Warning: unlocked password would be empty passwd: Unsafe operation (use -f to force)

At first, the -l option locks robert's account password successfully. However, running the passwd

-u command does not unlock the password because by default passwd refuses to create a passwordless account.

48

If you want a password for an account to expire, run passwd with the -e option. The user will be forced to change the password during the next login attempt: passwd -e username

As far as the password lifetime is concerned, setting the minimum time between password changes is useful for forcing the user to really change the password. The system administrator can set the minimum

(the -n option) and the maximum (the -x option) lifetimes. To inform the user about their password expiration, use the -w option. All these options must be accompanied with the number of days and can be run as root only.

Example 3.9. Adjusting Aging Data for User Passwords

~]# passwd -n 10 -x 60 -w 3 jane

The above command has set the minimum password lifetime to 10 days, the maximum password lifetime to 60, and the number of days jane will begin receiving warnings in advance that her password will expire to 3 day.

Later, when you cannot remember the password setting, make use of the -S option which outputs a short information for you to know the status of the password for a given account:

CHAPTER 3. MANAGING USERS AND GROUPS

~]# passwd -S jane jane LK 2014-07-22 10 60 3 -1 (Password locked.)

You can also set the number of days after a password expires with the useradd command, which disables the account permanently. A value of 0 disables the account as soon as the password has expired, and a value of -1 disables the feature, that is, the user will have to change his password when the password expires. The -f option is used to specify the number of days after a password expires until the account is disabled (but may be unblocked by system administrator): useradd -f number-of-days username

For more information on the passwd command see the passwd(1) man page.

3.4.4. Modifying User Settings

When a user already exists and you need to specify any of the options now, use the usermod command.

The logic of using usermod is identical to useradd as well as its syntax: usermod option(s) username

If you need to change the user's user name, use the -l option with the new user name (or login).

Example 3.10. Changing User's Login

~]# usermod -l "emily-smith" emily

The -l option changes the name of the user from the login emily to the new login, emily-smith.

Nothing else is changed. In particular, emily's home directory name (/home/emily) remains the same unless it is changed manually to reflect the new user name.

In a similar way you can change the user's UID or user's home directory. See the example below:

NOTE

Find all files owned by the specified UID in system and change their owner. Do the same for Access Control List (ACL) referring to the UID. It is recommended to check there are no running processes as they keep running with the old UID.

Example 3.11. Changing User's UID and Home Directory

~]# usermod -a -u 699 -d /home/dir_2 robert

The command with -a -u and -d options changes the settings of user robert. Now, his ID is 699 instead of 501, and his home directory is no longer /home/robert but /home/dir_2.

With the usermod command you can also move the content of the user's home directory to a new location, or lock the account by locking its password.

49

Deployment Guide

Example 3.12. Changing User's

~]# usermod -m -d /home/jane -L jane

In this sample command, the -m and -d options used together move the content of jane's home directory to the /home/dir_3 directory. The -L option locks the access to jane's account by locking its password.

50

For the whole list of options to be used with the usermod command, see the usermod(8) man page or run usermod --help on the command line.

3.4.5. Deleting Users

If you want to remove a user account from the system, use the userdel command on the command line as root.

userdel username

Combining userdel with the -r option removes files in the user's home directory along with the home directory itself and the user's mail spool. Files located in other file systems have to be searched for and deleted manually.

userdel -r username

NOTE

The -r option is relatively safer, and thus recommended, compared to -f which forces the removal of the user account even if the user is still logged in.

3.4.6. Displaying Comprehensive User Information

When administering users and groups on your system, you need a good tool to monitor their configuration and activity on the system. Red Hat Enterprise Linux 6 provides you with the lslogins command-line utility, which gives you a comprehensive overview of users and groups, not only regarding user or group account configuration but also their activity on the system.

The general syntax of lslogins is the following: lslogins [OPTIONS] where OPTIONS can be one or more available options and their related parameters. See the

lslogins(1) manual page or the output of the lslogins --help command for the complete list of available options and their usage.

The lslogins utility gives versatile information in a variety of formats based on the chosen options. The following examples introduce the most basic as well as some of the most useful combinations.

Running the lslogins command without any options shows default information about all system and user accounts on the system. Specifically, their UID, user name, and GECOS information, as well as information about the user's last login to the system, and whether their password is locked or login by password disabled.

CHAPTER 3. MANAGING USERS AND GROUPS

Example 3.13. Displaying basic information about all accounts on the system

~]# lslogins

UID USER PWD-LOCK PWD-DENY LAST-LOGIN GECOS

0 root 0 0 root

1 bin 0 1 bin

2 daemon 0 1 daemon

3 adm 0 1 adm

4 lp 0 1 lp

5 sync 0 1 sync

6 shutdown 0 1 Jul21/16:20 shutdown

7 halt 0 1 halt

8 mail 0 1 mail

10 uucp 0 1 uucp

11 operator 0 1 operator

12 games 0 1 games

13 gopher 0 1 gopher

14 ftp 0 1 FTP User

29 rpcuser 0 1 RPC Service User

32 rpc 0 1 Rpcbind Daemon

38 ntp 0 1

42 gdm 0 1

48 apache 0 1 Apache

68 haldaemon 0 1 HAL daemon

69 vcsa 0 1 virtual console memory owner

72 tcpdump 0 1

74 sshd 0 1 Privilege-separated

SSH

81 dbus 0 1 System message bus

89 postfix 0 1

99 nobody 0 1 Nobody

113 usbmuxd 0 1 usbmuxd user

170 avahi-autoipd 0 1 Avahi IPv4LL Stack

173 abrt 0 1

497 pulse 0 1 PulseAudio System

Daemon

498 saslauth 0 1 Saslauthd user

499 rtkit 0 1 RealtimeKit

500 jsmith 0 0 10:56:12 John Smith

501 jdoe 0 0 12:13:53 John Doe

502 esmith 0 0 12:59:05 Emily Smith

503 jeyre 0 0 12:22:14 Jane Eyre

65534 nfsnobody 0 1 Anonymous NFS User

To display detailed information about a single user, run the lslogins LOGIN command, where LOGIN is either a UID or a user name. The following example displays detailed information about John Doe's account and his activity on the system:

Example 3.14. Displaying detailed information about a single account

~]# lslogins jdoe

Username: jdoe

UID: 501

51

Deployment Guide

Gecos field: John Doe

Home directory: /home/jdoe

Shell: /bin/bash

No login: no

Password is locked: no

Password no required: no

Login by password disabled: no

Primary group: jdoe

GID: 501

Supplementary groups: users

Supplementary group IDs: 100

Last login: 12:13:53

Last terminal: pts/3

Last hostname: 192.168.100.1

Hushed: no

Password expiration warn interval: 7

Password changed: Aug01/02:00

Maximal change time: 99999

Password expiration: Sep01/02:00

Selinux context: unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

If you use the --logins=LOGIN option, you can display information about a group of accounts that are specified as a list of UIDs or user names. Specifying the --output=COLUMNS option, where COLUMNS is a list of available output parameters, you can customize the output of the lslogins command. For example, the following command shows login activity of the users root, jsmith, jdoe, and esmith:

Example 3.15. Displaying specific information about a group of users

~]# lslogins --logins=0,500,jdoe,esmith \

> --output=UID,USER,LAST-LOGIN,LAST-TTY,FAILED-LOGIN,FAILED-TTY

UID USER LAST-LOGIN LAST-TTY FAILED-LOGIN FAILED-TTY

0 root

500 jsmith 10:56:12 pts/2

501 jdoe 12:13:53 pts/3

502 esmith 15:46:16 pts/3 15:46:09 ssh:notty

52

The lslogins utility also distinguishes between system and user accounts. To address system accounts in your query, use the --system-accs option. To address user accounts, use the --user-accs. For example, the following command displays information about supplementary groups and password expirations for all user accounts:

Example 3.16. Displaying information about supplementary groups and password expiration for all user accounts

~]# lslogins --user-accs --supp-groups --acc-expiration

UID USER GID GROUP SUPP-GIDS SUPP-GROUPS PWD-WARN PWD-MIN

PWD-MAX PWD-CHANGE

PWD-EXPIR

0 root 0 root 7

99999 Jul21/02:00

500 jsmith 500 jsmith 1000,100 staff,users 7

CHAPTER 3. MANAGING USERS AND GROUPS

99999 Jul21/02:00

501 jdoe 501 jdoe 100 users 7

99999 Aug01/02:00

Sep01/02:00

502 esmith 502 esmith 100 users 7

99999 Aug01/02:00

503 jeyre 503 jeyre 1000,100 staff,users 7

99999 Jul28/02:00

Sep01/02:00

65534 nfsnobody 65534 nfsnobody

Jul21/02:00

The ability to format the output of lslogins commands according to the user's needs makes lslogins an ideal tool to use in scripts and for automatic processing. For example, the following command returns a single string that represents the time and date of the last login. This string can be passed as input to another utility for further processing.

Example 3.17. Displaying a single piece of information without the heading

~]# lslogins --logins=jsmith --output=LAST-LOGIN --time-format=iso | tail -1

2014-08-06T10:56:12+0200

3.5. MANAGING GROUPS VIA COMMAND-LINE TOOLS

Groups are a useful tool for permitting co-operation between different users. There is a set of commands for operating with groups such as groupadd, groupmod, groupdel, or gpasswd. The files affected include /etc/group which stores group account information and /etc/gshadow, which stores secure group account information.

3.5.1. Creating Groups

To add a new group to the system with default settings, the groupadd command is run at the shell prompt as root.

groupadd group_name

Example 3.18. Creating a Group with Default Settings

~]# groupadd friends

The groupadd command creates a new group called friends. You can read more information about the group from the newly-created line in the /etc/group file: classmates:x:30005:

Automatically, the group friends is attached with a unique GID (group ID) of 30005 and is not attached with any users. Optionally, you can set a password for a group by running gpasswd

groupname.

53

Deployment Guide

Alternatively, you can add command options with specific settings.

groupadd option(s) groupname

If you, for example, want to specify the numerical value of the group's ID (GID) when creating the group, run the groupadd command with the -g option. Remember that this value must be unique (unless the -

o option is used) and the value must be non-negative.

groupadd -g GID

Example 3.19. Creating a Group with Specified GID

The command below creates a group named schoolmates and sets GID of 60002 for it:

~]# groupadd -g 60002 schoolmates

When used with -g and GID already exists, groupadd refuses to create another group with existing

GID. As a workaround, use the -f option, with which groupadd creates a group, but with a different

GID.

groupadd -f GID

You may also create a system group by attaching the -r option to the groupadd command. System groups are used for system purposes, which practically means that GID is allocated from 1 to 499 within the reserved range of 999.

groupadd -r group_name

For more information on groupadd, see the groupadd(8) man pages.

3.5.2. Attaching Users to Groups

If you want to add an existing user to the named group, you can make use of the gpasswd command.

gpasswd -a username which_group_to_edit

To remove a user from the named group, run: gpasswd -d username which_group_to_edit

To set the list of group members, write the user names after the --members option dividing them with commas and no spaces: gpasswd --members username_1,username_2 which_group_to_edit

3.5.3. Updating Group Authentication

54

CHAPTER 3. MANAGING USERS AND GROUPS

The gpasswd command administers /etc/group and /etc/gshadow files. Note that this command works only if run by a group administrator.

Who is a group administrator? A group administrator can add and delete users as well as set, change, or remove the group password. A group can have more than one group administrator. The root user can add group administrators with the gpasswd -A users groupname where users is a commaseparated list of existing users you want to be group administrators (without any spaces between commas).

For changing a group's password, run the gpasswd command with the relevant group name. You will be prompted to type the new password of the group.

gpasswd groupname

Example 3.20. Changing a Group Password

~]# gpasswd crowd

Changing password for group crowd

New password:

Re-enter new password:

The password for the group crowd has been changed.

You can also remove the password from the named group by using the -r option.

gpasswd -r schoolmates

3.5.4. Modifying Group Settings

When a group already exists and you need to specify any of the options now, use the groupmod command. The logic of using groupmod is identical to groupadd as well as its syntax: groupmod option(s) groupname

To change the group ID of a given group, use the groupmod command in the following way: groupmod -g GID_NEW which_group_to_edit

NOTE

Find all files owned by the specified GID in system and change their owner. Do the same for Access Control List (ACL) referring to the GID. It is recommended to check there are no running processes as they keep running with the old GID.

To change the name of the group, run the following on the command line. The name of the group will be changed from GROUP_NAME to NEW_GROUP_NAME name.

groupmod -n new_groupname groupname

Example 3.21. Changing a Group's Name

55

Deployment Guide

The following command changes the name of the group schoolmates to crowd:

~]# groupmod -n crowd schoolmates

56

3.5.5. Deleting Groups

The groupdel command modifies the system account files, deleting all entries that see the group. The named group must exist when you execute this command.

groupdel groupname

3.6. ADDITIONAL RESOURCES

See the following resources for more information about managing users and groups.

3.6.1. Installed Documentation

For information about various utilities for managing users and groups, see the following manual pages:

chage(1) — A command to modify password aging policies and account expiration.

gpasswd(1) — A command to administer the /etc/group file.

groupadd(8) — A command to add groups.

grpck(8) — A command to verify the /etc/group file.

groupdel(8) — A command to remove groups.

groupmod(8) — A command to modify group membership.

pwck(8) — A command to verify the /etc/passwd and /etc/shadow files.

pwconv(8) — A tool to convert standard passwords to shadow passwords.

pwunconv(8) — A tool to convert shadow passwords to standard passwords.

useradd(8) — A command to add users.

userdel(8) — A command to remove users.

usermod(8) — A command to modify users.

For information about related configuration files, see:

group(5) — The file containing group information for the system.

passwd(5) — The file containing user information for the system.

shadow(5) — The file containing passwords and account expiration information for the system.

login.defs(5) - The file containing shadow password suite configuration.

CHAPTER 3. MANAGING USERS AND GROUPS

useradd(8) - For /etc/default/useradd, section “Changing the default values” in manual page.

57

Deployment Guide

CHAPTER 4. GAINING PRIVILEGES

System administrators (and in some cases users) will need to perform certain tasks with administrative access. Accessing the system as root is potentially dangerous and can lead to widespread damage to the system and data. This chapter covers ways to gain administrative privileges using the su and sudo programs. These programs allow specific users to perform tasks which would normally be available only to the root user while maintaining a higher level of control and system security.

See the Red Hat Enterprise Linux 6 Security Guide for more information on administrative controls, potential dangers and ways to prevent data loss resulting from improper use of privileged access.

4.1. THE

SU

COMMAND

When a user executes the su command, they are prompted for the root password and, after authentication, are given a root shell prompt.

Once logged in via the su command, the user is the root user and has absolute administrative access to the system

[1]

. In addition, once a user has become root, it is possible for them to use the su command to

change to any other user on the system without being prompted for a password.

Because this program is so powerful, administrators within an organization may want to limit who has access to the command.

One of the simplest ways to do this is to add users to the special administrative group called wheel. To do this, type the following command as root:

~]# usermod -a -G wheel username

In the previous command, replace username with the user name you want to add to the wheel group.

You can also use the User Manager to modify group memberships, as follows. Note: you need

Administrator privileges to perform this procedure.

1. Click the System menu on the Panel, point to Administration and then click Users and

Groups to display the User Manager. Alternatively, type the command system-config-users at a shell prompt.

2. Click the Users tab, and select the required user in the list of users.

3. Click Properties on the toolbar to display the User Properties dialog box (or choose

Properties on the File menu).

4. Click the Groups tab, select the check box for the wheel group, and then click OK.

See

Section 3.2, “Managing Users via the User Manager Application”

for more information about the

User Manager.

After you add the desired users to the wheel group, it is advisable to only allow these specific users to use the su command. To do this, you will need to edit the PAM configuration file for su:

/etc/pam.d/su. Open this file in a text editor and remove the comment (#) from the following line:

#auth required pam_wheel.so use_uid

58

CHAPTER 4. GAINING PRIVILEGES

This change means that only members of the administrative group wheel can switch to another user using the su command.

NOTE

The root user is part of the wheel group by default.

4.2. THE SUDO COMMAND

The sudo command offers another approach to giving users administrative access. When trusted users precede an administrative command with sudo, they are prompted for their own password. Then, when they have been authenticated and assuming that the command is permitted, the administrative command is executed as if they were the root user.

The basic format of the sudo command is as follows:

sudo <command>

In the above example, <command> would be replaced by a command normally reserved for the root user, such as mount.

The sudo command allows for a high degree of flexibility. For instance, only users listed in the

/etc/sudoers configuration file are allowed to use the sudo command and the command is executed in the user's shell, not a root shell. This means the root shell can be completely disabled as shown in the

Red Hat Enterprise Linux 6 Security Guide.

Each successful authentication using the sudo is logged to the file /var/log/messages and the command issued along with the issuer's user name is logged to the file /var/log/secure. Should you require additional logging, use the pam_tty_audit module to enable TTY auditing for specified users by adding the following line to your /etc/pam.d/system-auth file: session required pam_tty_audit.so disable=<pattern> enable=<pattern> where pattern represents a comma-separated listing of users with an optional use of globs. For example, the following configuration will enable TTY auditing for the root user and disable it for all other users: session required pam_tty_audit.so disable=* enable=root

Another advantage of the sudo command is that an administrator can allow different users access to specific commands based on their needs.

Administrators wanting to edit the sudo configuration file, /etc/sudoers, should use the visudo command.

To give someone full administrative privileges, type visudo and add a line similar to the following in the user privilege specification section: juan ALL=(ALL) ALL

This example states that the user, juan, can use sudo from any host and execute any command.

The example below illustrates the granularity possible when configuring sudo:

59

Deployment Guide

60

%users localhost=/sbin/shutdown -h now

This example states that any user can issue the command /sbin/shutdown -h now as long as it is issued from the console.

The man page for sudoers has a detailed listing of options for this file.

IMPORTANT

There are several potential risks to keep in mind when using the sudo command. You can avoid them by editing the /etc/sudoers configuration file using visudo as described above. Leaving the /etc/sudoers file in its default state gives every user in the wheel group unlimited root access.

By default, sudo stores the sudoer's password for a five minute timeout period.

Any subsequent uses of the command during this period will not prompt the user for a password. This could be exploited by an attacker if the user leaves his workstation unattended and unlocked while still being logged in. This behavior can be changed by adding the following line to the /etc/sudoers file:

Defaults timestamp_timeout=<value> where <value> is the desired timeout length in minutes. Setting the <value> to 0 causes sudo to require a password every time.

If a sudoer's account is compromised, an attacker can use sudo to open a new shell with administrative privileges: sudo /bin/bash

Opening a new shell as root in this or similar fashion gives the attacker administrative access for a theoretically unlimited amount of time, bypassing the timeout period specified in the /etc/sudoers file and never requiring the attacker to input a password for sudo again until the newly opened session is closed.

4.3. ADDITIONAL RESOURCES

While programs allowing users to gain administrative privileges are a potential security risk, security itself is beyond the scope of this particular book. You should therefore see sources listed below for more information regarding security and privileged access.

Installed Documentation

su(1) - the manual page for su provides information regarding the options available with this command.

sudo(8) - the manual page for sudo includes a detailed description of this command as well as a list of options available for customizing sudo's behavior.

pam(8) - the manual page describing the use of Pluggable Authentication Modules for Linux.

Online Documentation

CHAPTER 4. GAINING PRIVILEGES

Red Hat Enterprise Linux 6 Security Guide - The Security Guide describes in detail security risks and mitigating techniques related to programs for gaining privileges.

Red Hat Enterprise Linux 6 Managing Single Sign-On and Smart Cards - This guide provides, among other things, a detailed description of Pluggable Authentication Modules (PAM), their configuration and usage.

[1] This access is still subject to the restrictions imposed by SELinux, if it is enabled.

61

Deployment Guide

CHAPTER 5. CONSOLE ACCESS

When normal (non-root) users log into a computer locally, they are given two types of special permissions:

1. They can run certain programs that they otherwise cannot run.

2. They can access certain files that they otherwise cannot access. These files normally include special device files used to access diskettes, CD-ROMs, and so on.

Since there are multiple consoles on a single computer and multiple users can be logged into the computer locally at the same time, one of the users has to essentially win the race to access the files.

The first user to log in at the console owns those files. Once the first user logs out, the next user who logs in owns the files.

In contrast, every user who logs in at the console is allowed to run programs that accomplish tasks normally restricted to the root user. If X is running, these actions can be included as menu items in a graphical user interface. As shipped, these console-accessible programs include halt, poweroff, and

reboot.

5.1. DISABLING CONSOLE PROGRAM ACCESS FOR NON-ROOT

USERS

Non-root users can be denied console access to any program in the

/etc/security/console.apps/ directory. To list these programs, run the following command:

~]$ ls /etc/security/console.apps

abrt-cli-root config-util eject halt poweroff reboot rhn_register setup subscription-manager subscription-manager-gui system-config-network system-config-network-cmd xserver

For each of these programs, console access denial can be configured using the program's Pluggable

Authentication Module (PAM) configuration file. For information about PAMs and their usage, see chapter Pluggable Authentication Modules of the Red Hat Enterprise Linux 6 Managing Single Sign-On and Smart Cards guide.

PAM configuration file for each program in /etc/security/console.apps/ resides in the

/etc/pam.d/ directory and is named the same as the program. Using this file, you can configure PAM to deny access to the program if the user is not root. To do that, insert line auth requisite

pam_deny.so directly after the first uncommented line auth sufficient pam_rootok.so.

Example 5.1. Disabling Access to the Reboot Program

62

CHAPTER 5. CONSOLE ACCESS

To disable non-root console access to /etc/security/console.apps/reboot, insert line auth

requisite pam_deny.so into the /etc/pam.d/reboot PAM configuration file:

#%PAM-1.0

auth sufficient pam_rootok.so

auth requisite pam_deny.so auth required pam_console.so

#auth include system-auth account required pam_permit.so

With this setting, all non-root access to the reboot utility is disabled.

Additionally, several programs in /etc/security/console.apps/ partially derive their PAM configuration from the /etc/pam.d/config-util configuration file. This allows to change configuration for all these programs at once by editing /etc/pam.d/config-util. To find all these programs, search for PAM configuration files that refer to the config-util file:

~]# grep -l "config-util" /etc/pam.d/*

/etc/pam.d/abrt-cli-root

/etc/pam.d/rhn_register

/etc/pam.d/subscription-manager

/etc/pam.d/subscription-manager-gui

/etc/pam.d/system-config-network

/etc/pam.d/system-config-network-cmd

Disabling console program access as described above may be useful in environments where the console is otherwise secured. Security measures may include password protection for BIOS and boot loader, disabling rebooting on pressing Ctrl+Alt+Delete, disabling the power and reset switches, and other. In these cases, you may want to restrict normal user's access to halt, poweroff, reboot, and other programs, which by default are accessible from the console.

5.2. DISABLING REBOOTING USING CTRL+ALT+DEL

The action that happens in response to pressing Ctrl+Alt+Del at console is specified in the

/etc/init/control-alt-delete.conf file. By default, the shutdown utility with the -r option is used to shutdown and reboot the system.

To disable this action, create an overriding configuration file that specifies the exec true command, which does nothing. To do that, run the following command as root:

~]# echo "exec true" >> /etc/init/control-alt-delete.override

63

Deployment Guide

PART II. SUBSCRIPTION AND SUPPORT

To receive updates to the software on a Red Hat Enterprise Linux system it must be subscribed to the

Red Hat Content Delivery Network (CDN) and the appropriate repositories enabled. This part describes how to subscribe a system to the Red Hat Content Delivery Network.

Red Hat provides support via the Customer Portal , and you can access this support directly from the command line using the Red Hat Support Tool. This part describes the use of this command-line tool.

64

CHAPTER 6. REGISTERING THE SYSTEM AND MANAGING SUBSCRIPTIONS

CHAPTER 6. REGISTERING THE SYSTEM AND MANAGING

SUBSCRIPTIONS

The subscription service provides a mechanism to handle Red Hat software inventory and allows you to install additional software or update already installed programs to newer versions using the yum or

PackageKit package managers. In Red Hat Enterprise Linux 6 the recommended way to register your system and attach subscriptions is to use Red Hat Subscription Management.

NOTE

It is also possible to register the system and attach subscriptions after installation during the firstboot process. For detailed information about firstboot see the Firstboot chapter in the Installation Guide for Red Hat Enterprise Linux 6. Note that firstboot is only available on systems after a graphical installation or after a kickstart installation where a desktop and the X window system were installed and graphical login was enabled.

6.1. REGISTERING THE SYSTEM AND ATTACHING SUBSCRIPTIONS

Complete the following steps to register your system and attach one or more subscriptions using Red Hat

Subscription Management. Note that all subscription-manager commands are supposed to be run as root.

1. Run the following command to register your system. You will be prompted to enter your user name and password. Note that the user name and password are the same as your login credentials for Red Hat Customer Portal.

subscription-manager register

2. Determine the pool ID of a subscription that you require. To do so, type the following at a shell prompt to display a list of all subscriptions that are available for your system: subscription-manager list --available

For each available subscription, this command displays its name, unique identifier, expiration date, and other details related to your subscription. To list subscriptions for all architectures, add the --all option. The pool ID is listed on a line beginning with Pool ID.

3. Attach the appropriate subscription to your system by entering a command as follows: subscription-manager attach --pool=pool_id

Replace pool_id with the pool ID you determined in the previous step.

To verify the list of subscriptions your system has currently attached, at any time, run: subscription-manager list --consumed

65

Deployment Guide

NOTE

If you use a firewall or a proxy, you may need additional configuration to allow yum and

subscription-manager to work correctly. Refer to the "Setting Firewall Access for

Content Delivery" section of the Red Hat Enterprise Linux 6 Subscription Management guide if you use a firewall and to the "Using an HTTP Proxy" section if you use a proxy.

For more details on how to register your system using Red Hat Subscription Management and associate it with subscriptions, see the designated solution article . For comprehensive information about subscriptions, see the Red Hat Subscription Management collection of guides.

6.2. MANAGING SOFTWARE REPOSITORIES

When a system is subscribed to the Red Hat Content Delivery Network, a repository file is created in the

/etc/yum.repos.d/ directory. To verify that, use yum to list all enabled repositories: yum repolist

Red Hat Subscription Management also allows you to manually enable or disable software repositories provided by Red Hat. To list all available repositories, use the following command: subscription-manager repos --list

The repository names depend on the specific version of Red Hat Enterprise Linux you are using and are in the following format: rhel-variant-rhscl-version-rpms rhel-variant-rhscl-version-debug-rpms rhel-variant-rhscl-version-source-rpms

Where variant is the Red Hat Enterprise Linux system variant (server or workstation), and version is the Red Hat Enterprise Linux system version (6 or 7), for example: rhel-server-rhscl-6-eus-rpms rhel-server-rhscl-6-eus-source-rpms rhel-server-rhscl-6-eus-debug-rpms

To enable a repository, enter a command as follows: subscription-manager repos --enable repository

Replace repository with a name of the repository to enable.

Similarly, to disable a repository, use the following command: subscription-manager repos --disable repository

Section 8.4, “Configuring Yum and Yum Repositories” provides detailed information about managing

software repositories using yum.

6.3. REMOVING SUBSCRIPTIONS

66

CHAPTER 6. REGISTERING THE SYSTEM AND MANAGING SUBSCRIPTIONS

To remove a particular subscription, complete the following steps.

1. Determine the serial number of the subscription you want to remove by listing information about already attached subscriptions: subscription-manager list --consumed

The serial number is the number listed as serial. For instance, 744993814251016831 in the example below:

SKU: ES0113909

Contract: 01234567

Account: 1234567

Serial: 744993814251016831

Pool ID: 8a85f9894bba16dc014bccdd905a5e23

Active: False

Quantity Used: 1

Service Level: SELF-SUPPORT

Service Type: L1-L3

Status Details:

Subscription Type: Standard

Starts: 02/27/2015

Ends: 02/27/2016

System Type: Virtual

2. Enter a command as follows to remove the selected subscription: subscription-manager remove --serial=serial_number

Replace serial_number with the serial number you determined in the previous step.

To remove all subscriptions attached to the system, run the following command: subscription-manager remove --all

6.4. ADDITIONAL RESOURCES

For more information on how to register your system using Red Hat Subscription Management and associate it with subscriptions, see the resources listed below.

Installed Documentation

subscription-manager(8) — the manual page for Red Hat Subscription Management provides a complete list of supported options and commands.

Related Books

Red Hat Subscription Management collection of guides — These guides contain detailed information how to use Red Hat Subscription Management.

Installation Guide — see the Firstboot chapter for detailed information on how to register during the firstboot process.

Online Resources

67

Deployment Guide

Red Hat Access Labs — The Red Hat Access Labs includes a “Registration Assistant”.

See Also

Chapter 4, Gaining Privileges

documents how to gain administrative privileges by using the su and sudo commands.

Chapter 8, Yum

provides information about using the yum packages manager to install and update software.

Chapter 9, PackageKit provides information about using the

PackageKit package manager to install and update software.

68

CHAPTER 7. ACCESSING SUPPORT USING THE RED HAT SUPPORT TOOL

CHAPTER 7. ACCESSING SUPPORT USING THE RED HAT

SUPPORT TOOL

The Red Hat Support Tool, in the redhat-support-tool package, can function as both an interactive shell and as a single-execution program. It can be run over SSH or from any terminal. It enables, for example, searching the Red Hat Knowledgebase from the command line, copying solutions directly on the command line, opening and updating support cases, and sending files to Red Hat for analysis.

7.1. INSTALLING THE RED HAT SUPPORT TOOL

The Red Hat Support Tool is installed by default on Red Hat Enterprise Linux. If required, to ensure that it is, enter the following command as root:

~]# yum install redhat-support-tool

7.2. REGISTERING THE RED HAT SUPPORT TOOL USING THE

COMMAND LINE

To register the Red Hat Support Tool to the customer portal using the command line, proceed as follows:

1. ~]# redhat-support-tool config user username

Where username is the user name of the Red Hat Customer Portal account.

2. ~]# redhat-support-tool config password

Please enter the password for username:

7.3. USING THE RED HAT SUPPORT TOOL IN INTERACTIVE SHELL

MODE

To start the tool in interactive mode, enter the following command:

~]$ redhat-support-tool

Welcome to the Red Hat Support Tool.

Command (? for help):

The tool can be run as an unprivileged user, with a consequently reduced set of commands, or as root.

The commands can be listed by entering the ? character. The program or menu selection can be exited by entering the q or e character. You will be prompted for your Red Hat Customer Portal user name and password when you first search the Knowledgebase or support cases. Alternately, set the user name and password for your Red Hat Customer Portal account using interactive mode, and optionally save it to the configuration file.

7.4. CONFIGURING THE RED HAT SUPPORT TOOL

When in interactive mode, the configuration options can be listed by entering the command config --

help:

~]# redhat-support-tool

69

Deployment Guide

Welcome to the Red Hat Support Tool.

Command (? for help): config --help

Usage: config [options] config.option <new option value>

Use the 'config' command to set or get configuration file values.

Options:

-h, --help show this help message and exit

-g, --global Save configuration option in /etc/redhat-supporttool.conf.

-u, --unset Unset configuration option.

The configuration file options which can be set are:

user : The Red Hat Customer Portal user.

password : The Red Hat Customer Portal password.

debug : CRITICAL, ERROR, WARNING, INFO, or DEBUG

url : The support services URL.

Default=https://api.access.redhat.com

proxy_url : A proxy server URL.

proxy_user: A proxy server user.

proxy_password: A password for the proxy server user.

ssl_ca : Path to certificate authorities to trust during communication.

kern_debug_dir: Path to the directory where kernel debug symbols should be downloaded and cached. Default=/var/lib/redhat-supporttool/debugkernels

Examples:

- config user

- config user my-rhn-username

- config --unset user

Procedure 7.1. Registering the Red Hat Support Tool Using Interactive Mode

To register the Red Hat Support Tool to the customer portal using interactive mode, proceed as follows:

1. Start the tool by entering the following command:

~]# redhat-support-tool

2. Enter your Red Hat Customer Portal user name:

Command (? for help): config user username

To save your user name to the global configuration file, add the -g option.

3. Enter your Red Hat Customer Portal password:

Command (? for help): config password

Please enter the password for username:

7.4.1. Saving Settings to the Configuration Files

The Red Hat Support Tool, unless otherwise directed, stores values and options locally in the home

70

CHAPTER 7. ACCESSING SUPPORT USING THE RED HAT SUPPORT TOOL directory of the current user, using the ~/.redhat-support-tool/redhat-support-tool.conf configuration file. If required, it is recommended to save passwords to this file because it is only readable by that particular user. When the tool starts, it will read values from the global configuration file

/etc/redhat-support-tool.conf and from the local configuration file. Locally stored values and options take precedence over globally stored settings.

WARNING

It is recommended not to save passwords in the global /etc/redhat-support-

tool.conf configuration file because the password is just base64 encoded and can easily be decoded. In addition, the file is world readable.

To save a value or option to the global configuration file, add the -g, --global option as follows:

Command (? for help): config setting -g value

NOTE

In order to be able to save settings globally, using the -g, --global option, the Red

Hat Support Tool must be run as root because normal users do not have the permissions required to write to /etc/redhat-support-tool.conf.

To remove a value or option from the local configuration file, add the -u, --unset option as follows:

Command (? for help): config setting -u value

This will clear, unset, the parameter from the tool and fall back to the equivalent setting in the global configuration file, if available.

NOTE

When running as an unprivileged user, values stored in the global configuration file cannot be removed using the -u, --unset option, but they can be cleared, unset, from the current running instance of the tool by using the -g, --global option simultaneously with the -u, --unset option. If running as root, values and options can be removed from the global configuration file using -g, --global simultaneously with the -u, --unset option.

7.5. OPENING AND UPDATING SUPPORT CASES USING INTERACTIVE

MODE

Procedure 7.2. Opening a New Support Case Using Interactive Mode

To open a new support case using interactive mode, proceed as follows:

1. Start the tool by entering the following command:

71

Deployment Guide

~]# redhat-support-tool

2. Enter the opencase command:

Command (? for help): opencase

3. Follow the on screen prompts to select a product and then a version.

4. Enter a summary of the case.

5. Enter a description of the case and press Ctrl+D on an empty line when complete.

6. Select a severity of the case.

7. Optionally chose to see if there is a solution to this problem before opening a support case.

8. Confirm you would still like to open the support case.

Support case 0123456789 has successfully been opened

9. Optionally chose to attach an SOS report.

10. Optionally chose to attach a file.

Procedure 7.3. Viewing and Updating an Existing Support Case Using Interactive Mode

To view and update an existing support case using interactive mode, proceed as follows:

1. Start the tool by entering the following command:

~]# redhat-support-tool

2. Enter the getcase command:

Command (? for help): getcase case-number

Where case-number is the number of the case you want to view and update.

3. Follow the on screen prompts to view the case, modify or add comments, and get or add attachments.

Procedure 7.4. Modifying an Existing Support Case Using Interactive Mode

To modify the attributes of an existing support case using interactive mode, proceed as follows:

1. Start the tool by entering the following command:

~]# redhat-support-tool

2. Enter the modifycase command:

Command (? for help): modifycase case-number

72

CHAPTER 7. ACCESSING SUPPORT USING THE RED HAT SUPPORT TOOL

Where case-number is the number of the case you want to view and update.

3. The modify selection list appears:

Type the number of the attribute to modify or 'e' to return to the previous menu.

1 Modify Type

2 Modify Severity

3 Modify Status

4 Modify Alternative-ID

5 Modify Product

6 Modify Version

End of options.

Follow the on screen prompts to modify one or more of the options.

4. For example, to modify the status, enter 3:

Selection: 3

1 Waiting on Customer

2 Waiting on Red Hat

3 Closed

Please select a status (or 'q' to exit):

7.6. VIEWING SUPPORT CASES ON THE COMMAND LINE

Viewing the contents of a case on the command line provides a quick and easy way to apply solutions from the command line.

To view an existing support case on the command line, enter a command as follows:

~]# redhat-support-tool getcase case-number

Where case-number is the number of the case you want to download.

7.7. ADDITIONAL RESOURCES

The Red Hat Knowledgebase article Red Hat Support Tool has additional information, examples, and video tutorials.

73

Deployment Guide

PART III. INSTALLING AND MANAGING SOFTWARE

All software on a Red Hat Enterprise Linux system is divided into RPM packages, which can be installed, upgraded, or removed. This part focuses on product subscriptions and entitlements, and describes how to manage packages on Red Hat Enterprise Linux using both Yum and the PackageKit suite of graphical package management tools.

74

CHAPTER 8. YUM

CHAPTER 8. YUM

Yum is the Red Hat package manager that is able to query for information about available packages, fetch packages from repositories, install and uninstall them, and update an entire system to the latest available version. Yum performs automatic dependency resolution on packages you are updating, installing, or removing, and thus is able to automatically determine, fetch, and install all available dependent packages.

Yum can be configured with new, additional repositories, or package sources, and also provides many plug-ins which enhance and extend its capabilities. Yum is able to perform many of the same tasks that

RPM can; additionally, many of the command-line options are similar. Yum enables easy and simple package management on a single machine or on groups of them.

The following sections assume your system was registered with Red Hat Subscription Management during installation as described in the Red Hat Enterprise Linux 6 Installation Guide . If your system is not subscribed, see

Chapter 6, Registering the System and Managing Subscriptions .

IMPORTANT

Yum provides secure package management by enabling GPG (Gnu Privacy Guard; also known as GnuPG) signature verification on GPG-signed packages to be turned on for all package repositories (i.e. package sources), or for individual repositories. When signature verification is enabled, Yum will refuse to install any packages not GPG-signed with the correct key for that repository. This means that you can trust that the RPM packages you download and install on your system are from a trusted source, such as Red Hat, and

were not modified during transfer. See Section 8.4, “Configuring Yum and Yum

Repositories” for details on enabling signature-checking with Yum, or

Section B.3,

“Checking a Package's Signature” for information on working with and verifying GPG-

signed RPM packages in general.

Yum also enables you to easily set up your own repositories of RPM packages for download and installation on other machines.

Learning Yum is a worthwhile investment because it is often the fastest way to perform system administration tasks, and it provides capabilities beyond those provided by the PackageKit graphical package management tools. See

Chapter 9, PackageKit

for details on using PackageKit.

NOTE

You must have superuser privileges in order to use yum to install, update or remove packages on your system. All examples in this chapter assume that you have already obtained superuser privileges by using either the su or sudo command.

8.1. CHECKING FOR AND UPDATING PACKAGES

8.1.1. Checking For Updates

To see which installed packages on your system have updates available, use the following command:

yum check-update

For example:

75

Deployment Guide

~]# yum check-update

Loaded plugins: product-id, refresh-packagekit, subscription-manager

Updating Red Hat repositories.

INFO:rhsm-app.repolib:repos updated: 0

PackageKit.x86_64 0.5.8-2.el6 rhel

PackageKit-glib.x86_64 0.5.8-2.el6 rhel

PackageKit-yum.x86_64 0.5.8-2.el6 rhel

PackageKit-yum-plugin.x86_64 0.5.8-2.el6 rhel glibc.x86_64 2.11.90-20.el6 rhel glibc-common.x86_64 2.10.90-22 rhel kernel.x86_64 2.6.31-14.el6 rhel kernel-firmware.noarch 2.6.31-14.el6 rhel rpm.x86_64 4.7.1-5.el6 rhel rpm-libs.x86_64 4.7.1-5.el6 rhel rpm-python.x86_64 4.7.1-5.el6 rhel udev.x86_64 147-2.15.el6 rhel yum.noarch 3.2.24-4.el6 rhel

The packages in the above output are listed as having updates available. The first package in the list is

PackageKit, the graphical package manager. The line in the example output tells us:

PackageKit — the name of the package

x86_64 — the CPU architecture the package was built for

0.5.8 — the version of the updated package to be installed

rhel — the repository in which the updated package is located

The output also shows us that we can update the kernel (the kernel package), Yum and RPM themselves (the yum and rpm packages), as well as their dependencies (such as the kernel-firmware, rpm-libs, and rpm-python packages), all using yum.

8.1.2. Updating Packages

You can choose to update a single package, multiple packages, or all packages at once. If any dependencies of the package (or packages) you update have updates available themselves, then they are updated too.

Updating a Single Package

To update a single package, run the following command as root:

yum update package_name

For example, to update the udev package, type:

~]# yum update udev

Loaded plugins: product-id, refresh-packagekit, subscription-manager

Updating Red Hat repositories.

INFO:rhsm-app.repolib:repos updated: 0

Setting up Update Process

Resolving Dependencies

--> Running transaction check

---> Package udev.x86_64 0:147-2.15.el6 set to be updated

--> Finished Dependency Resolution

76

CHAPTER 8. YUM

Dependencies Resolved

==========================================================================

=

Package Arch Version Repository

Size

==========================================================================

=

Updating:

udev x86_64 147-2.15.el6 rhel 337 k

Transaction Summary

==========================================================================

=

Install 0 Package(s)

Upgrade 1 Package(s)

Total download size: 337 k

Is this ok [y/N]:

This output contains several items of interest:

1. Loaded plugins: product-id, refresh-packagekit, subscription-manager

yum always informs you which Yum plug-ins are installed and enabled. See Section 8.5, “Yum

Plug-ins” for general information on Yum plug-ins, or to Section 8.5.3, “Plug-in Descriptions” for

descriptions of specific plug-ins.

2. udev.x86_64 — you can download and install new udev package.

3. yum presents the update information and then prompts you as to whether you want it to perform the update; yum runs interactively by default. If you already know which transactions the yum command plans to perform, you can use the -y option to automatically answer yes to any questions that yum asks (in which case it runs non-interactively). However, you should always examine which changes yum plans to make to the system so that you can easily troubleshoot any problems that might arise.

If a transaction does go awry, you can view Yum's transaction history by using the yum

history command as described in

Section 8.3, “Working with Transaction History”

.

IMPORTANT

yum always installs a new kernel in the same sense that RPM installs a new kernel when you use the command rpm -i kernel. Therefore, you do not need to worry about the distinction between installing and upgrading a kernel package when you use yum: it will do the right thing, regardless of whether you are using the yum update or yum install command.

When using RPM, on the other hand, it is important to use the rpm -i kernel command (which installs a new kernel) instead of rpm -u kernel (which replaces the

current kernel). See Section B.2.2, “Installing and Upgrading”

for more information on installing/upgrading kernels with RPM.

77

Deployment Guide

Updating All Packages and Their Dependencies

To update all packages and their dependencies, enter yum update (without any arguments): yum update

Updating Security-Related Packages

Discovering which packages have security updates available and then updating those packages quickly and easily is important. Yum provides the plug-in for this purpose. The security plug-in extends the yum command with a set of highly-useful security-centric commands, subcommands and options. See

Section 8.5.3, “Plug-in Descriptions” for specific information.

Updating Packages Automatically

It is also possible to set up periodical automatic updates for your packages. For this purpose, Red Hat

Enterprise Linux 6 uses the yum-cron package. It provides a Yum interface for the cron daemon and downloads metadata from your package repositories. With the yum-cron service enabled, the user can schedule an automated daily Yum update as a cron job.

NOTE

The yum-cron package is provided by the Optional subscription channel. See

Section 8.4.8, “Adding the Optional and Supplementary Repositories”

for more information on Red Hat additional channels.

To install yum-cron issue the following command:

~]# yum install yum-cron

By default, the yum-cron service is disabled and needs to be activated and started manually:

~]# chkconfig yum-cron on

~]# service yum-cron start

To verify the status of the service, run the following command:

~]# service yum-cron status

The script included in the yum-cron package can be configured to change the extent and frequency of the updates, as well as to send notifications to e-mail. To customize yum-cron, edit the

/etc/sysconfig/yum-cron file.

Additional details and instructions for yum-cron can be found in the comments within

/etc/sysconfig/yum-cron and at the yum-cron(8) manual page.

8.1.3. Preserving Configuration File Changes

You will inevitably make changes to the configuration files installed by packages as you use your

Red Hat Enterprise Linux system. RPM, which Yum uses to perform changes to the system, provides a mechanism for ensuring their integrity. See

Section B.2.2, “Installing and Upgrading”

for details on how to manage changes to configuration files across package upgrades.

78

8.1.4. Upgrading the System Off-line with ISO and Yum

CHAPTER 8. YUM

For systems that are disconnected from the Internet or Red Hat Network, using the yum update command with the Red Hat Enterprise Linux installation ISO image is an easy and quick way to upgrade systems to the latest minor version. The following steps illustrate the upgrading process:

1. Create a target directory to mount your ISO image. This directory is not automatically created when mounting, so create it before proceeding to the next step. As root, type:

mkdir mount_dir

Replace mount_dir with a path to the mount directory. Typically, users create it as a subdirectory in the /media/ directory.

2. Mount the Red Hat Enterprise Linux 6 installation ISO image to the previously created target directory. As root, type:

mount -o loop iso_name mount_dir

Replace iso_name with a path to your ISO image and mount_dir with a path to the target directory. Here, the -o loop option is required to mount the file as a block device.

3. Copy the media.repo file from the mount directory to the /etc/yum.repos.d/ directory.

Note that configuration files in this directory must have the .repo extension to function properly.

cp mount_dir/media.repo /etc/yum.repos.d/new.repo

This creates a configuration file for the yum repository. Replace new.repo with the filename, for example rhel6.repo.

4. Edit the new configuration file so that it points to the Red Hat Enterprise Linux installation ISO.

Add the following line into the /etc/yum.repos.d/new.repo file: baseurl=file:///mount_dir

Replace mount_dir with a path to the mount point.

5. Update all yum repositories including /etc/yum.repos.d/new.repo created in previous steps. As root, type:

yum update

This upgrades your system to the version provided by the mounted ISO image.

6. After successful upgrade, you can unmount the ISO image. As root, type:

umount mount_dir where mount_dir is a path to your mount directory. Also, you can remove the mount directory created in the first step. As root, type:

rmdir mount_dir

7. If you will not use the previously created configuration file for another installation or update, you can remove it. As root, type:

79

Deployment Guide

rm /etc/yum.repos.d/new.repo

Example 8.1. Upgrading from Red Hat Enterprise Linux 6.3 to 6.4

Imagine you need to upgrade your system without access to the Internet. To do so, you want to use an ISO image with the newer version of the system, called for instance RHEL6.4-Server-

20130130.0-x86_64-DVD1.iso. A target directory created for mounting is /media/rhel6/. As

root, change into the directory with your ISO image and type:

~]# mount -o loop RHEL6.4-Server-20130130.0-x86_64-DVD1.iso

/media/rhel6/

Then set up a yum repository for your image by copying the media.repo file from the mount directory:

~]# cp /media/rhel6/media.repo /etc/yum.repos.d/rhel6.repo

To make yum recognize the mount point as a repository, add the following line into the

/etc/yum.repos.d/rhel6.repo copied in the previous step: baseurl=file:///media/rhel6/

Now, updating the yum repository will upgrade your system to a version provided by RHEL6.4-

Server-20130130.0-x86_64-DVD1.iso. As root, execute:

~]# yum update

When your system is successfully upgraded, you can unmount the image, remove the target directory and the configuration file:

~]# umount /media/rhel6/

~]# rmdir /media/rhel6/

~]# rm /etc/yum.repos.d/rhel6.repo

8.2. PACKAGES AND PACKAGE GROUPS

80

8.2.1. Searching Packages

You can search all RPM package names, descriptions and summaries by using the following command:

yum search term

Replace term with a package name you want to search.

Example 8.2. Searching for packages matching a specific string

To list all packages that match “vim”, “gvim”, or “emacs”, type:

CHAPTER 8. YUM

~]$ yum search vim gvim emacs

Loaded plugins: langpacks, product-id, search-disabled-repos, subscription-manager

============================= N/S matched: vim

============================== vim-X11.x86_64 : The VIM version of the vi editor for the X Window

System vim-common.x86_64 : The common files needed by any version of the VIM editor

[output truncated]

============================ N/S matched: emacs

============================= emacs.x86_64 : GNU Emacs text editor emacs-auctex.noarch : Enhanced TeX modes for Emacs

[output truncated]

Name and summary matches mostly, use "search all" for everything.

Warning: No matches found for: gvim

The yum search command is useful for searching for packages you do not know the name of, but for which you know a related term. Note that by default, yum search returns matches in package name and summary, which makes the search faster. Use the yum search all command for a more exhaustive but slower search.

8.2.2. Listing Packages

yum list and related commands provide information about packages, package groups, and repositories.

All of Yum's list commands allow you to filter the results by appending one or more glob expressions as arguments. Glob expressions are normal strings of characters which contain one or more of the wildcard characters * (which expands to match any character multiple times) and ? (which expands to match any one character).

NOTE

Be careful to escape the glob expressions when passing them as arguments to a yum command, otherwise the Bash shell will interpret these expressions as pathname expansions, and potentially pass all files in the current directory that match the globs to

yum. To make sure the glob expressions are passed to yum as intended, either: escape the wildcard characters by preceding them with a backslash character double-quote or single-quote the entire glob expression.

See

Example 8.3, “Listing all ABRT add-ons and plug-ins using glob expressions” and

Example 8.5, “Listing available packages using a single glob expression with escaped wildcard characters” for an example usage of both these methods.

yum list glob_expression

Lists information on installed and available packages matching all glob expressions.

81

Deployment Guide

Example 8.3. Listing all ABRT add-ons and plug-ins using glob expressions

Packages with various ABRT add-ons and plug-ins either begin with “abrt-addon-”, or “abrtplugin-”. To list these packages, type the following at a shell prompt:

~]# yum list abrt-addon\* abrt-plugin\*

Loaded plugins: product-id, refresh-packagekit, subscription-manager

Updating Red Hat repositories.

INFO:rhsm-app.repolib:repos updated: 0

Installed Packages abrt-addon-ccpp.x86_64 1.0.7-5.el6

@rhel abrt-addon-kerneloops.x86_64 1.0.7-5.el6

@rhel abrt-addon-python.x86_64 1.0.7-5.el6

@rhel abrt-plugin-bugzilla.x86_64 1.0.7-5.el6

@rhel abrt-plugin-logger.x86_64 1.0.7-5.el6

@rhel abrt-plugin-sosreport.x86_64 1.0.7-5.el6

@rhel abrt-plugin-ticketuploader.x86_64 1.0.7-5.el6

@rhel yum list all

Lists all installed and available packages.

yum list installed

Lists all packages installed on your system. The rightmost column in the output lists the repository from which the package was retrieved.

Example 8.4. Listing installed packages using a double-quoted glob expression

To list all installed packages that begin with “krb” followed by exactly one character and a hyphen, type:

~]# yum list installed "krb?-*"

Loaded plugins: product-id, refresh-packagekit, subscription-manager

Updating Red Hat repositories.

INFO:rhsm-app.repolib:repos updated: 0

Installed Packages krb5-libs.x86_64 1.8.1-3.el6

@rhel krb5-workstation.x86_64 1.8.1-3.el6

@rhel

82 yum list available

Lists all available packages in all enabled repositories.

CHAPTER 8. YUM

Example 8.5. Listing available packages using a single glob expression with escaped wildcard characters

To list all available packages with names that contain “gstreamer” and then “plugin”, run the following command:

~]# yum list available gstreamer\*plugin\*

Loaded plugins: product-id, refresh-packagekit, subscription-manager

Updating Red Hat repositories.

INFO:rhsm-app.repolib:repos updated: 0

Available Packages gstreamer-plugins-bad-free.i686 0.10.17-4.el6 rhel gstreamer-plugins-base.i686 0.10.26-1.el6 rhel gstreamer-plugins-base-devel.i686 0.10.26-1.el6 rhel gstreamer-plugins-base-devel.x86_64 0.10.26-1.el6 rhel gstreamer-plugins-good.i686 0.10.18-1.el6 rhel yum grouplist

Lists all package groups.

yum repolist

Lists the repository ID, name, and number of packages it provides for each enabled repository.

8.2.3. Displaying Package Information

To display information about one or more packages (glob expressions are valid here as well), use the following command:

yum info package_name

For example, to display information about the abrt package, type:

~]# yum info abrt

Loaded plugins: product-id, refresh-packagekit, subscription-manager

Updating Red Hat repositories.

INFO:rhsm-app.repolib:repos updated: 0

Installed Packages

Name : abrt

Arch : x86_64

Version : 1.0.7

Release : 5.el6

Size : 578 k

Repo : installed

From repo : rhel

Summary : Automatic bug detection and reporting tool

URL : https://fedorahosted.org/abrt/

83

Deployment Guide

License : GPLv2+

Description: abrt is a tool to help users to detect defects in applications

: and to create a bug report with all informations needed by

: maintainer to fix it. It uses plugin system to extend its

: functionality.

The yum info package_name command is similar to the rpm -q --info package_name command, but provides as additional information the ID of the Yum repository the RPM package is found in (look for the From repo: line in the output).

You can also query the Yum database for alternative and useful information about a package by using the following command:

yumdb info package_name

This command provides additional information about a package, including the check sum of the package

(and algorithm used to produce it, such as SHA-256), the command given on the command line that was invoked to install the package (if any), and the reason that the package is installed on the system (where

user indicates it was installed by the user, and dep means it was brought in as a dependency). For example, to display additional information about the yum package, type:

~]# yumdb info yum

Loaded plugins: product-id, refresh-packagekit, subscription-manager yum-3.2.27-4.el6.noarch

checksum_data =

23d337ed51a9757bbfbdceb82c4eaca9808ff1009b51e9626d540f44fe95f771

checksum_type = sha256

from_repo = rhel

from_repo_revision = 1298613159

from_repo_timestamp = 1298614288

installed_by = 4294967295

reason = user

releasever = 6.1

For more information on the yumdb command, see the yumdb(8) manual page.

Listing Files Contained in a Package

repoquery is a program for querying information from yum repositories similarly to rpm queries. You can query both package groups and individual packages. To list all files contained in a specific package, type:

repoquery --list package_name

Replace package_name with a name of the package you want to inspect. For more information on the

repoquery command, see the repoquery manual page.

To find out which package provides a specific file, you can use the yum provides command, described in

Finding which package owns a file

8.2.4. Installing Packages

Yum allows you to install both a single package and multiple packages, as well as a package group of your choice.

84

CHAPTER 8. YUM

Installing Individual Packages

To install a single package and all of its non-installed dependencies, enter a command in the following form:

yum install package_name

You can also install multiple packages simultaneously by appending their names as arguments:

yum install package_name package_name

If you are installing packages on a multilib system, such as an AMD64 or Intel 64 machine, you can specify the architecture of the package (as long as it is available in an enabled repository) by appending

.arch to the package name. For example, to install the sqlite package for i686, type:

~]# yum install sqlite.i686

You can use glob expressions to quickly install multiple similarly-named packages:

~]# yum install perl-Crypt-\*

In addition to package names and glob expressions, you can also provide file names to yum install.

If you know the name of the binary you want to install, but not its package name, you can give yum

install the path name:

~]# yum install /usr/sbin/named

yum then searches through its package lists, finds the package which provides /usr/sbin/named, if any, and prompts you as to whether you want to install it.

NOTE

If you know you want to install the package that contains the named binary, but you do not know in which bin or sbin directory is the file installed, use the yum provides command with a glob expression:

~]# yum provides "*bin/named"

Loaded plugins: product-id, refresh-packagekit, subscriptionmanager

Updating Red Hat repositories.

INFO:rhsm-app.repolib:repos updated: 0

32:bind-9.7.0-4.P1.el6.x86_64 : The Berkeley Internet Name

Domain (BIND)

: DNS (Domain Name System) server

Repo : rhel

Matched from:

Filename : /usr/sbin/named

yum provides "*/file_name" is a common and useful trick to find the package(s) that contain file_name.

Installing a Package Group

85

Deployment Guide

A package group is similar to a package: it is not useful by itself, but installing one pulls a group of dependent packages that serve a common purpose. A package group has a name and a groupid. The

yum grouplist -v command lists the names of all package groups, and, next to each of them, their groupid in parentheses. The groupid is always the term in the last pair of parentheses, such as kde-

desktop in the following example:

~]# yum -v grouplist kde\*

Loading "product-id" plugin

Loading "refresh-packagekit" plugin

Loading "subscription-manager" plugin

Updating Red Hat repositories.

INFO:rhsm-app.repolib:repos updated: 0

Config time: 0.123

Yum Version: 3.2.29

Setting up Group Process

Looking for repo options for [rhel] rpmdb time: 0.001

group time: 1.291

Available Groups:

KDE Desktop (kde-desktop)

Done

You can install a package group by passing its full group name (without the groupid part) to

groupinstall:

yum groupinstall group_name

You can also install by groupid:

yum groupinstall groupid

You can even pass the groupid (or quoted name) to the install command if you prepend it with an @symbol (which tells yum that you want to perform a groupinstall):

yum install @group

For example, the following are alternative but equivalent ways of installing the KDE Desktop group:

~]# yum groupinstall "KDE Desktop"

~]# yum groupinstall kde-desktop

~]# yum install @kde-desktop

8.2.5. Removing Packages

Similarly to package installation, Yum allows you to uninstall (remove in RPM and Yum terminology) both individual packages and a package group.

Removing Individual Packages

To uninstall a particular package, as well as any packages that depend on it, run the following command as root:

yum remove package_name

86

CHAPTER 8. YUM

As when you install multiple packages, you can remove several at once by adding more package names to the command. For example, to remove totem, rhythmbox, and sound-juicer, type the following at a shell prompt:

~]# yum remove totem rhythmbox sound-juicer

Similar to install, remove can take these arguments: package names glob expressions file lists package provides

WARNING

Yum is not able to remove a package without also removing packages which depend on it. This type of operation can only be performed by RPM, is not advised, and can potentially leave your system in a non-functioning state or cause

applications to misbehave and/or crash. For further information, see Section B.2.4,

“Uninstalling” in the RPM chapter.

Removing a Package Group

You can remove a package group using syntax congruent with the install syntax:

yum groupremove group

yum remove @group

The following are alternative but equivalent ways of removing the KDE Desktop group:

~]# yum groupremove "KDE Desktop"

~]# yum groupremove kde-desktop

~]# yum remove @kde-desktop

IMPORTANT

When you tell yum to remove a package group, it will remove every package in that group, even if those packages are members of other package groups or dependencies of other installed packages. However, you can instruct yum to remove only those packages which are not required by any other packages or groups by adding the

groupremove_leaf_only=1 directive to the [main] section of the /etc/yum.conf

configuration file. For more information on this directive, see Section 8.4.1, “Setting [main]

Options” .

87

Deployment Guide

8.3. WORKING WITH TRANSACTION HISTORY

The yum history command allows users to review information about a timeline of Yum transactions, the dates and times they occurred, the number of packages affected, whether transactions succeeded or were aborted, and if the RPM database was changed between transactions. Additionally, this command can be used to undo or redo certain transactions.

8.3.1. Listing Transactions

To display a list of twenty most recent transactions, as root, either run yum history with no additional arguments, or type the following at a shell prompt:

yum history list

To display all transactions, add the all keyword:

yum history list all

To display only transactions in a given range, use the command in the following form:

yum history list start_id..end_id

You can also list only transactions regarding a particular package or packages. To do so, use the command with a package name or a glob expression:

yum history list glob_expression

For example, the list of the first five transactions looks as follows:

~]# yum history list 1..5

Loaded plugins: product-id, refresh-packagekit, subscription-manager

ID | Login user | Date and time | Action(s) |

Altered

----------------------------------------------------------------------

---------

5 | Jaromir ... <jhradilek> | 2011-07-29 15:33 | Install |

1

4 | Jaromir ... <jhradilek> | 2011-07-21 15:10 | Install |

1

3 | Jaromir ... <jhradilek> | 2011-07-16 15:27 | I, U |

73

2 | System <unset> | 2011-07-16 15:19 | Update |

1

1 | System <unset> | 2011-07-16 14:38 | Install |

1106 history list

All forms of the yum history list command produce tabular output with each row consisting of the following columns:

ID — an integer value that identifies a particular transaction.

Login user — the name of the user whose login session was used to initiate a transaction.

88

CHAPTER 8. YUM

This information is typically presented in the Full Name <username> form. For transactions that were not issued by a user (such as an automatic system update), System <unset> is used instead.

Date and time — the date and time when a transaction was issued.

Action(s) — a list of actions that were performed during a transaction as described in

Table 8.1, “Possible values of the Action(s) field” .

Altered — the number of packages that were affected by a transaction, possibly followed by

additional information as described in Table 8.2, “Possible values of the Altered field”

.

Table 8.1. Possible values of the Action(s) field

Action Abbreviatio n

Description

Downgrade D At least one package has been downgraded to an older version.

At least one package has been removed.

Erase

Install

E

I At least one new package has been installed.

At least one package has been marked as obsolete.

Obsoleting

Reinstall

O

R

Update U

At least one package has been reinstalled.

At least one package has been updated to a newer version.

Table 8.2. Possible values of the Altered field

Symbol Description

<

>

*

Before the transaction finished, the rpmdb database was changed outside Yum.

After the transaction finished, the rpmdb database was changed outside Yum.

The transaction failed to finish.

#

E

P

The transaction finished successfully, but yum returned a non-zero exit code.

The transaction finished successfully, but an error or a warning was displayed.

The transaction finished successfully, but problems already existed in the rpmdb database.

s The transaction finished successfully, but the --skip-broken command-line option was used and certain packages were skipped.

89

Deployment Guide

Yum also allows you to display a summary of all past transactions. To do so, run the command in the following form as root:

yum history summary

To display only transactions in a given range, type:

yum history summary start_id..end_id

Similarly to the yum history list command, you can also display a summary of transactions regarding a certain package or packages by supplying a package name or a glob expression:

yum history summary glob_expression

For instance, a summary of the transaction history displayed above would look like the following:

~]# yum history summary 1..5

Loaded plugins: product-id, refresh-packagekit, subscription-manager

Login user | Time | Action(s) |

Altered

----------------------------------------------------------------------

---------

Jaromir ... <jhradilek> | Last day | Install |

1

Jaromir ... <jhradilek> | Last week | Install |

1

Jaromir ... <jhradilek> | Last 2 weeks | I, U |

73

System <unset> | Last 2 weeks | I, U |

1107 history summary

All forms of the yum history summary command produce simplified tabular output similar to the output of yum history list.

As shown above, both yum history list and yum history summary are oriented towards transactions, and although they allow you to display only transactions related to a given package or packages, they lack important details, such as package versions. To list transactions from the perspective of a package, run the following command as root:

90

yum history package-list glob_expression

For example, to trace the history of subscription-manager and related packages, type the following at a shell prompt:

~]# yum history package-list subscription-manager\*

Loaded plugins: product-id, refresh-packagekit, subscription-manager

ID | Action(s) | Package

----------------------------------------------------------------------

---------

3 | Updated | subscription-manager-0.95.11-1.el6.x86_64

3 | Update | 0.95.17-1.el6_1.x86_64

3 | Updated | subscription-manager-firstboot-0.95.11-

1.el6.x86_64

CHAPTER 8. YUM

3 | Update | 0.95.17-

1.el6_1.x86_64

3 | Updated | subscription-manager-gnome-0.95.11-1.el6.x86_64

3 | Update | 0.95.17-

1.el6_1.x86_64

1 | Install | subscription-manager-0.95.11-1.el6.x86_64

1 | Install | subscription-manager-firstboot-0.95.11-

1.el6.x86_64

1 | Install | subscription-manager-gnome-0.95.11-1.el6.x86_64

history package-list

In this example, three packages were installed during the initial system installation: subscriptionmanager, subscription-manager-firstboot, and subscription-manager-gnome. In the third transaction, all these packages were updated from version 0.95.11 to version 0.95.17.

8.3.2. Examining Transactions

To display the summary of a single transaction, as root, use the yum history summary command in the following form:

yum history summary id

To examine a particular transaction or transactions in more detail, run the following command as root:

yum history info id

The id argument is optional and when you omit it, yum automatically uses the last transaction. Note that when specifying more than one transaction, you can also use a range:

yum history info start_id..end_id

The following is sample output for two transactions, each installing one new package:

~]# yum history info 4..5

Loaded plugins: product-id, refresh-packagekit, subscription-manager

Transaction ID : 4..5

Begin time : Thu Jul 21 15:10:46 2011

Begin rpmdb : 1107:0c67c32219c199f92ed8da7572b4c6df64eacd3a

End time : 15:33:15 2011 (22 minutes)

End rpmdb : 1109:1171025bd9b6b5f8db30d063598f590f1c1f3242

User : Jaromir Hradilek <jhradilek>

Return-Code : Success

Command Line : install screen

Command Line : install yum-plugin-security

Transaction performed with:

Installed rpm-4.8.0-16.el6.x86_64

Installed yum-3.2.29-17.el6.noarch

Installed yum-metadata-parser-1.1.2-16.el6.x86_64

Packages Altered:

Install screen-4.0.3-16.el6.x86_64

Install yum-plugin-security-1.1.30-17.el6.noarch

history info

91

Deployment Guide

You can also view additional information, such as what configuration options were used at the time of the transaction, or from what repository and why were certain packages installed. To determine what additional information is available for a certain transaction, type the following at a shell prompt as root:

yum history addon-info id

Similarly to yum history info, when no id is provided, yum automatically uses the latest transaction.

Another way to see the latest transaction is to use the last keyword:

yum history addon-info last

For instance, for the first transaction in the previous example, the yum history addon-info command would provide the following output:

~]# yum history addon-info 4

Loaded plugins: product-id, refresh-packagekit, subscription-manager

Transaction ID: 4

Available additional history information:

config-main

config-repos

saved_tx history addon-info

In this example, three types of information are available:

config-main — global Yum options that were in use during the transaction. See Section 8.4.1,

“Setting [main] Options” for information on how to change global options.

config-repos — options for individual Yum repositories. See Section 8.4.2, “Setting

[repository] Options” for information on how to change options for individual repositories.

saved_tx — the data that can be used by the yum load-transaction command in order to repeat the transaction on another machine (see below).

To display selected type of additional information, run the following command as root:

yum history addon-info id information

8.3.3. Reverting and Repeating Transactions

Apart from reviewing the transaction history, the yum history command provides means to revert or repeat a selected transaction. To revert a transaction, type the following at a shell prompt as root:

yum history undo id

To repeat a particular transaction, as root, run the following command:

92

yum history redo id

Both commands also accept the last keyword to undo or repeat the latest transaction.

Note that both yum history undo and yum history redo commands only revert or repeat the

CHAPTER 8. YUM steps that were performed during a transaction. If the transaction installed a new package, the yum

history undo command will uninstall it, and if the transaction uninstalled a package the command will again install it. This command also attempts to downgrade all updated packages to their previous version, if these older packages are still available.

When managing several identical systems, Yum also allows you to perform a transaction on one of them, store the transaction details in a file, and after a period of testing, repeat the same transaction on the remaining systems as well. To store the transaction details to a file, type the following at a shell prompt as root:

yum -q history addon-info id saved_tx > file_name

Once you copy this file to the target system, you can repeat the transaction by using the following command as root:

yum load-transaction file_name

Note, however that the rpmdb version stored in the file must be identical to the version on the target system. You can verify the rpmdb version by using the yum version nogroups command.

8.3.4. Completing Transactions

An unexpected situation, such as power loss or system crash, can prevent you from completing your yum transaction. When such event occurs in the middle of your transaction, you can try to resume it later with the following command as root: yum-complete-transaction

The yum-complete-transaction tool searches for incomplete or aborted yum transactions on a system and attempts to complete them. By default, these transactions are listed in the

/var/lib/yum/transaction-all and /var/lib/yum/transaction-done files. If there are more unfinished transactions, yum-complete-transaction attempts to complete the most recent one first.

To clean transaction journal files without attempting to resume the aborted transactions, use the --

cleanup-only option:

yum-complete-transaction --cleanup-only

8.3.5. Starting New Transaction History

Yum stores the transaction history in a single SQLite database file. To start new transaction history, run the following command as root:

yum history new

This will create a new, empty database file in the /var/lib/yum/history/ directory. The old transaction history will be kept, but will not be accessible as long as a newer database file is present in the directory.

8.4. CONFIGURING YUM AND YUM REPOSITORIES

93

Deployment Guide

The configuration file for yum and related utilities is located at /etc/yum.conf. This file contains one mandatory [main] section, which allows you to set Yum options that have global effect, and can also contain one or more [repository] sections, which allow you to set repository-specific options.

However, it is recommended to define individual repositories in new or existing .repo files in the

/etc/yum.repos.d/ directory. The values you define in individual [repository] sections of the

/etc/yum.conf file override values set in the [main] section.

This section shows you how to: set global Yum options by editing the [main] section of the /etc/yum.conf configuration file; set options for individual repositories by editing the [repository] sections in

/etc/yum.conf and .repo files in the /etc/yum.repos.d/ directory; use Yum variables in /etc/yum.conf and files in the /etc/yum.repos.d/ directory so that dynamic version and architecture values are handled correctly; add, enable, and disable Yum repositories on the command line; and, set up your own custom Yum repository.

8.4.1. Setting [main] Options

The /etc/yum.conf configuration file contains exactly one [main] section, and while some of the key-value pairs in this section affect how yum operates, others affect how Yum treats repositories. You can add many additional options under the [main] section heading in /etc/yum.conf.

A sample /etc/yum.conf configuration file can look like this:

[main] cachedir=/var/cache/yum/$basearch/$releasever keepcache=0 debuglevel=2 logfile=/var/log/yum.log

exactarch=1 obsoletes=1 gpgcheck=1 plugins=1 installonly_limit=3

[comments abridged]

# PUT YOUR REPOS HERE OR IN separate files named file.repo

# in /etc/yum.repos.d

The following are the most commonly-used options in the [main] section: assumeyes =value

…where value is one of:

0yum should prompt for confirmation of critical actions it performs. This is the default.

1 — Do not prompt for confirmation of critical yum actions. If assumeyes=1 is set, yum behaves in the same way that the command-line option -y does.

94

CHAPTER 8. YUM cachedir =directory

…where directory is an absolute path to the directory where Yum should store its cache and database files. By default, Yum's cache directory is /var/cache/yum/$basearch/$releasever.

See

Section 8.4.3, “Using Yum Variables”

for descriptions of the $basearch and $releasever

Yum variables.

debuglevel =value

…where value is an integer between 1 and 10. Setting a higher debuglevel value causes yum to display more detailed debugging output. debuglevel=0 disables debugging output, while

debuglevel=2 is the default.

exactarch =value

…where value is one of:

0 — Do not take into account the exact architecture when updating packages.

1 — Consider the exact architecture when updating packages. With this setting, yum will not install an i686 package to update an i386 package already installed on the system. This is the default.

exclude =package_name [more_package_names]

This option allows you to exclude packages by keyword during installation/updates. Listing multiple packages for exclusion can be accomplished by quoting a space-delimited list of packages. Shell globs using wildcards (for example, * and ?) are allowed.

gpgcheck =value

…where value is one of:

0 — Disable GPG signature-checking on packages in all repositories, including local package installation.

1 — Enable GPG signature-checking on all packages in all repositories, including local package installation. gpgcheck=1 is the default, and thus all packages' signatures are checked.

If this option is set in the [main] section of the /etc/yum.conf file, it sets the GPG-checking rule for all repositories. However, you can also set gpgcheck=value for individual repositories instead; that is, you can enable GPG-checking on one repository while disabling it on another. Setting

gpgcheck=value for an individual repository in its corresponding .repo file overrides the default if it is present in /etc/yum.conf.

For more information on GPG signature-checking, see Section B.3, “Checking a Package's

Signature” .

groupremove_leaf_only =value

…where value is one of:

0yum should not check the dependencies of each package when removing a package group. With this setting, yum removes all packages in a package group, regardless of whether those packages are required by other packages or groups. groupremove_leaf_only=0 is the default.

95

Deployment Guide

1yum should check the dependencies of each package when removing a package group, and remove only those packages which are not required by any other package or group.

For more information on removing packages, see Intelligent package group removal .

installonlypkgs =space separated list of packages

Here you can provide a space-separated list of packages which yum can install, but will never update.

See the yum.conf(5) manual page for the list of packages which are install-only by default.

If you add the installonlypkgs directive to /etc/yum.conf, you should ensure that you list all of the packages that should be install-only, including any of those listed under the installonlypkgs section of yum.conf(5). In particular, kernel packages should always be listed in installonlypkgs

(as they are by default), and installonly_limit should always be set to a value greater than 2 so that a backup kernel is always available in case the default one fails to boot.

installonly_limit =value

…where value is an integer representing the maximum number of versions that can be installed simultaneously for any single package listed in the installonlypkgs directive.

The defaults for the installonlypkgs directive include several different kernel packages, so be aware that changing the value of installonly_limit will also affect the maximum number of installed versions of any single kernel package. The default value listed in /etc/yum.conf is

installonly_limit=3, and it is not recommended to decrease this value, particularly below 2.

keepcache =value

…where value is one of:

0 — Do not retain the cache of headers and packages after a successful installation. This is the default.

1 — Retain the cache after a successful installation.

logfile =file_name

…where file_name is an absolute path to the file in which yum should write its logging output. By default, yum logs to /var/log/yum.log.

multilib_policy =value

…where value is one of:

best — install the best-choice architecture for this system. For example, setting

multilib_policy=best on an AMD64 system causes yum to install 64-bit versions of all packages.

all — always install every possible architecture for every package. For example, with

multilib_policy set to all on an AMD64 system, yum would install both the i686 and AMD64 versions of a package, if both were available.

obsoletes =value

…where value is one of:

0 — Disable yum's obsoletes processing logic when performing updates.

96

CHAPTER 8. YUM

1 — Enable yum's obsoletes processing logic when performing updates. When one package declares in its spec file that it obsoletes another package, the latter package will be replaced by the former package when the former package is installed. Obsoletes are declared, for example, when a package is renamed. obsoletes=1 the default.

plugins =value

…where value is one of:

0 — Disable all Yum plug-ins globally.

IMPORTANT

Disabling all plug-ins is not advised because certain plug-ins provide important Yum services. In particular, rhnplugin provides support for RHN Classic, and product-id and subscription-manager plug-ins provide support for the certificate-based

Content Delivery Network (CDN). Disabling plug-ins globally is provided as a convenience option, and is generally only recommended when diagnosing a potential problem with Yum.

1 — Enable all Yum plug-ins globally. With plugins=1, you can still disable a specific Yum plug-in by setting enabled=0 in that plug-in's configuration file.

For more information about various Yum plug-ins, see Section 8.5, “Yum Plug-ins”

. For further

information on controlling plug-ins, see Section 8.5.1, “Enabling, Configuring, and Disabling Yum

Plug-ins” .

reposdir =directory

…where directory is an absolute path to the directory where .repo files are located. All .repo files contain repository information (similar to the [repository] sections of /etc/yum.conf). yum collects all repository information from .repo files and the [repository] section of the

/etc/yum.conf file to create a master list of repositories to use for transactions. If reposdir is not set, yum uses the default directory /etc/yum.repos.d/.

retries =value

…where value is an integer 0 or greater. This value sets the number of times yum should attempt to retrieve a file before returning an error. Setting this to 0 makes yum retry forever. The default value is

10.

For a complete list of available [main] options, see the [main] OPTIONS section of the yum.conf(5) manual page.

8.4.2. Setting [repository] Options

The [repository] sections, where repository is a unique repository ID such as my_personal_repo

(spaces are not permitted), allow you to define individual Yum repositories. To avoid conflicts, custom repositories should not use names used by Red Hat repositories.

The following is a bare-minimum example of the form a [repository] section takes:

97

Deployment Guide

[repository] name=repository_name baseurl=repository_url

Every [repository] section must contain the following directives: name =repository_name

…where repository_name is a human-readable string describing the repository.

baseurl =repository_url

…where repository_url is a URL to the directory where the repodata directory of a repository is located:

If the repository is available over HTTP, use: http://path/to/repo

If the repository is available over FTP, use: ftp://path/to/repo

If the repository is local to the machine, use: file:///path/to/local/repo

If a specific online repository requires basic HTTP authentication, you can specify your user name and password by prepending it to the URL as username:password@link. For example, if a repository on http://www.example.com/repo/ requires a user name of “user” and a password of “password”, then the baseurl link could be specified as

http://user:[email protected]/repo/.

Usually this URL is an HTTP link, such as: baseurl=http://path/to/repo/releases/$releasever/server/$basearch/os/

Note that Yum always expands the $releasever, $arch, and $basearch variables in URLs. For

more information about Yum variables, see Section 8.4.3, “Using Yum Variables”

.

Another useful [repository] directive is the following: enabled =value

…where value is one of:

0 — Do not include this repository as a package source when performing updates and installs. This is an easy way of quickly turning repositories on and off, which is useful when you desire a single package from a repository that you do not want to enable for updates or installs.

1 — Include this repository as a package source.

Turning repositories on and off can also be performed by passing either the --

enablerepo=repo_name or --disablerepo=repo_name option to yum, or through the

Add/Remove Software window of the PackageKit utility.

Many more [repository] options exist. For a complete list, see the [repository] OPTIONS section of the yum.conf(5) manual page.

Example 8.6. A sample /etc/yum.repos.d/redhat.repo file

98

CHAPTER 8. YUM

The following is a sample /etc/yum.repos.d/redhat.repo file:

#

# Red Hat Repositories

# Managed by (rhsm) subscription-manager

#

[red-hat-enterprise-linux-scalable-file-system-for-rhel-6-entitlementrpms] name = Red Hat Enterprise Linux Scalable File System (for RHEL 6

Entitlement) (RPMs) baseurl = https://cdn.redhat.com/content/dist/rhel/entitlement-

6/releases/$releasever/$basearch/scalablefilesystem/os enabled = 1 gpgcheck = 1 gpgkey = file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release sslverify = 1 sslcacert = /etc/rhsm/ca/redhat-uep.pem

sslclientkey = /etc/pki/entitlement/key.pem

sslclientcert = /etc/pki/entitlement/11300387955690106.pem

[red-hat-enterprise-linux-scalable-file-system-for-rhel-6-entitlementsource-rpms] name = Red Hat Enterprise Linux Scalable File System (for RHEL 6

Entitlement) (Source RPMs) baseurl = https://cdn.redhat.com/content/dist/rhel/entitlement-

6/releases/$releasever/$basearch/scalablefilesystem/source/SRPMS enabled = 0 gpgcheck = 1 gpgkey = file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release sslverify = 1 sslcacert = /etc/rhsm/ca/redhat-uep.pem

sslclientkey = /etc/pki/entitlement/key.pem

sslclientcert = /etc/pki/entitlement/11300387955690106.pem

[red-hat-enterprise-linux-scalable-file-system-for-rhel-6-entitlementdebug-rpms] name = Red Hat Enterprise Linux Scalable File System (for RHEL 6

Entitlement) (Debug RPMs) baseurl = https://cdn.redhat.com/content/dist/rhel/entitlement-

6/releases/$releasever/$basearch/scalablefilesystem/debug enabled = 0 gpgcheck = 1 gpgkey = file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release sslverify = 1 sslcacert = /etc/rhsm/ca/redhat-uep.pem

sslclientkey = /etc/pki/entitlement/key.pem

sslclientcert = /etc/pki/entitlement/11300387955690106.pem

8.4.3. Using Yum Variables

You can use and reference the following built-in variables in yum commands and in all Yum configuration files (that is, /etc/yum.conf and all .repo files in the /etc/yum.repos.d/ directory):

99

Deployment Guide

$releasever

You can use this variable to reference the release version of Red Hat Enterprise Linux. Yum obtains the value of $releasever from the distroverpkg=value line in the /etc/yum.conf configuration file. If there is no such line in /etc/yum.conf, then yum infers the correct value by deriving the version number from the redhat-release-server package. The value of $releasever typically consists of the major release number and the variant of Red Hat Enterprise Linux, for example 6Client, or 6Server.

$arch

You can use this variable to refer to the system's CPU architecture as returned when calling Python's

os.uname() function. Valid values for $arch include i686 and x86_64.

$basearch

You can use $basearch to reference the base architecture of the system. For example, i686 machines have a base architecture of i386, and AMD64 and Intel 64 machines have a base architecture of x86_64.

$YUM0-9

These ten variables are each replaced with the value of any shell environment variables with the same name. If one of these variables is referenced (in /etc/yum.conf for example) and a shell environment variable with the same name does not exist, then the configuration file variable is not replaced.

To define a custom variable or to override the value of an existing one, create a file with the same name as the variable (without the “$” sign) in the /etc/yum/vars/ directory, and add the desired value on its first line.

For example, repository descriptions often include the operating system name. To define a new variable called $osname, create a new file with “Red Hat Enterprise Linux” on the first line and save it as

/etc/yum/vars/osname:

~]# echo "Red Hat Enterprise Linux" > /etc/yum/vars/osname

Instead of “Red Hat Enterprise Linux 6”, you can now use the following in the .repo files: name=$osname $releasever

8.4.4. Viewing the Current Configuration

To display the current values of global Yum options (that is, the options specified in the [main] section of the /etc/yum.conf file), run the yum-config-manager with no command-line options: yum-config-manager

To list the content of a different configuration section or sections, use the command in the following form:

yum-config-manager section

You can also use a glob expression to display the configuration of all matching sections:

100

CHAPTER 8. YUM

yum-config-manager glob_expression

For example, to list all configuration options and their corresponding values, type the following at a shell prompt:

~]$ yum-config-manager main \*

Loaded plugins: product-id, refresh-packagekit, subscription-manager

================================== main

===================================

[main] alwaysprompt = True assumeyes = False bandwith = 0 bugtracker_url = https://bugzilla.redhat.com/enter_bug.cgi?

product=Red%20Hat%20Enterprise%20Linux%206&component=yum cache = 0

[output truncated]

8.4.5. Adding, Enabling, and Disabling a Yum Repository

Section 8.4.2, “Setting [repository] Options”

described various options you can use to define a Yum repository. This section explains how to add, enable, and disable a repository by using the yum-

config-manager command.

IMPORTANT

When the system is registered with the certificate-based Red Hat Network, the

Red Hat Subscription Manager tools are used to manage repositories in the

/etc/yum.repos.d/redhat.repo file. See Chapter 6, Registering the System and

Managing Subscriptions for more information how to register a system with Red Hat

Network and use the Red Hat Subscription Manager tools to manage subscriptions.

Adding a Yum Repository

To define a new repository, you can either add a [repository] section to the /etc/yum.conf file, or to a .repo file in the /etc/yum.repos.d/ directory. All files with the .repo file extension in this directory are read by yum, and it is recommended to define your repositories here instead of in

/etc/yum.conf.

WARNING

Obtaining and installing software packages from unverified or untrusted software sources other than Red Hat Network constitutes a potential security risk, and could lead to security, stability, compatibility, and maintainability issues.

Yum repositories commonly provide their own .repo file. To add such a repository to your system and enable it, run the following command as root:

101

Deployment Guide

yum-config-manager --add-repo repository_url

…where repository_url is a link to the .repo file. For example, to add a repository located at http://www.example.com/example.repo, type the following at a shell prompt:

~]# yum-config-manager --add-repo http://www.example.com/example.repo

Loaded plugins: product-id, refresh-packagekit, subscription-manager adding repo from: http://www.example.com/example.repo

grabbing file http://www.example.com/example.repo to

/etc/yum.repos.d/example.repo

example.repo | 413 B

00:00 repo saved to /etc/yum.repos.d/example.repo

Enabling a Yum Repository

To enable a particular repository or repositories, type the following at a shell prompt as root:

yum-config-manager --enable repository

…where repository is the unique repository ID (use yum repolist all to list available repository IDs).

Alternatively, you can use a glob expression to enable all matching repositories:

yum-config-manager --enable glob_expression

For example, to enable repositories defined in the [example], [example-debuginfo], and

[example-source]sections, type:

~]# yum-config-manager --enable example\*

Loaded plugins: product-id, refresh-packagekit, subscription-manager

============================== repo: example

==============================

[example] bandwidth = 0 base_persistdir = /var/lib/yum/repos/x86_64/6Server baseurl = http://www.example.com/repo/6Server/x86_64/ cache = 0 cachedir = /var/cache/yum/x86_64/6Server/example

[output truncated]

When successful, the yum-config-manager --enable command displays the current repository configuration.

Disabling a Yum Repository

To disable a Yum repository, run the following command as root:

yum-config-manager --disable repository

…where repository is the unique repository ID (use yum repolist all to list available repository IDs).

Similarly to yum-config-manager --enable, you can use a glob expression to disable all matching repositories at the same time:

yum-config-manager --disable glob_expression

102

CHAPTER 8. YUM

When successful, the yum-config-manager --disable command displays the current configuration.

8.4.6. Creating a Yum Repository

To set up a Yum repository, follow these steps:

1. Install the createrepo package. To do so, type the following at a shell prompt as root: yum install createrepo

2. Copy all packages that you want to have in your repository into one directory, such as

/mnt/local_repo/.

3. Change to this directory and run the following command: createrepo --database /mnt/local_repo

This creates the necessary metadata for your Yum repository, as well as the sqlite database for speeding up yum operations.

IMPORTANT

Compared to Red Hat Enterprise Linux 5, RPM packages for Red Hat

Enterprise Linux 6 are compressed with the XZ lossless data compression format and can be signed with newer hash algorithms like SHA-256. Consequently, it is not recommended to use the createrepo command on Red Hat

Enterprise Linux 5 to create the package metadata for Red Hat

Enterprise Linux 6.

8.4.7. Working with Yum Cache

By default, yum deletes downloaded data files when they are no longer needed after a successful operation. This minimizes the amount of storage space that yum uses. However, you can enable caching, so that the package files downloaded by yum stay in cache directories. By using cached data, you can carry out certain operations without a network connection, you can also copy packages stored in the caches and reuse them elsewhere.

Yum stores temporary files in the /var/cache/yum/$basearch/$releasever/ directory, where

$basearch and $releasever are Yum variables referring to base architecture of the system and the release version of Red Hat Enterprise Linux. Each configured repository has one subdirectory. For example, the directory /var/cache/yum/$basearch/$releasever/development/packages/ holds packages downloaded from the development repository. You can find the values for the $basearch and $releasever variables in the output of the yum version command.

To change the default cache location, modify the cachedir option in the [main] section of the

/etc/yum.conf configuration file. See

Section 8.4, “Configuring Yum and Yum Repositories”

for more information on configuring yum.

Enabling the Caches

To retain the cache of packages after a successful installation, add the following text to the [main] section of /etc/yum.conf.

keepcache = 1

103

Deployment Guide

Once you enabled caching, every yum operation may download package data from the configured repositories.

To download and make usable all the metadata for the currently enabled yum repositories, type:

yum makecache

This is useful if you want to make sure that the cache is fully up to date with all metadata. To set the time after which the metadata will expire, use the metadata-expire setting in /etc/yum.conf.

Using yum in Cache-only Mode

To carry out a yum command without a network connection, add the -C or --cacheonly command-line option. With this option, yum proceeds without checking any network repositories, and uses only cached files. In this mode, yum may only install packages that have been downloaded and cached by a previous operation.

For instance, to list packages that use the currently cached data with names that contain “gstreamer”, enter the following command:

yum -C list gstreamer*

Clearing the yum Caches

It is often useful to remove entries accumulated in the /var/cache/yum/ directory. If you remove a package from the cache, you do not affect the copy of the software installed on your system. To remove all entries for currently enabled repositories from the cache, type the following as a root:

yum clean all

There are various ways to invoke yum in clean mode depending on the type of cached data you want to

remove. See Table 8.3, “Available yum clean options” for a complete list of available configuration

options.

Table 8.3. Available yum clean options

Option Description expire-cache eliminates time records of the metadata and mirrorlists download for each repository. This forces yum to revalidate the cache for each repository the next time it is used.

packages headers metadata eliminates any cached packages from the system eliminates all header files that previous versions of yum used for dependency resolution eliminates all files that yum uses to determine the remote availability of packages. These metadata are downloaded again the next time yum is run.

104

CHAPTER 8. YUM

Option dbcache rpmdb plugins all

Description eliminates the sqlite cache used for faster access to metadata. Using this option will force yum to download the sqlite metadata the next time it is run.

This does not apply for repositories that contain only

.xml data, in that case, sqlite data are deleted but without subsequent download eliminates any cached data from the local rpmdb enabled plugins are forced to eliminate their cached data removes all of the above

The expire-cache option is most preferred from the above list. In many cases, it is a sufficient and much faster replacement for clean all.

8.4.8. Adding the Optional and Supplementary Repositories

Optional and Supplementary subscription channels provide additional software packages for Red Hat

Enterprise Linux that cover open source licensed software (in the Optional channel) and proprietary licensed software (in the Supplementary channel).

Before subscribing to the Optional and Supplementary channels see the Scope of Coverage Details . If you decide to install packages from these channels, follow the steps documented in the article called

How to access Optional and Supplementary channels, and -devel packages using Red Hat Subscription

Manager (RHSM)?

on the Red Hat Customer Portal.

8.5. YUM PLUG-INS

Yum provides plug-ins that extend and enhance its operations. Certain plug-ins are installed by default.

Yum always informs you which plug-ins, if any, are loaded and active whenever you call any yum command. For example:

~]# yum info yum

Loaded plugins: product-id, refresh-packagekit, subscription-manager

[output truncated]

Note that the plug-in names which follow Loaded plugins are the names you can provide to the --

disableplugins=plugin_name option.

8.5.1. Enabling, Configuring, and Disabling Yum Plug-ins

To enable Yum plug-ins, ensure that a line beginning with plugins= is present in the [main] section of /etc/yum.conf, and that its value is 1: plugins=1

You can disable all plug-ins by changing this line to plugins=0.

105

Deployment Guide

IMPORTANT

Disabling all plug-ins is not advised because certain plug-ins provide important Yum services. In particular, rhnplugin provides support for RHN Classic, and product-id and subscription-manager plug-ins provide support for the certificate-based Content

Delivery Network (CDN). Disabling plug-ins globally is provided as a convenience option, and is generally only recommended when diagnosing a potential problem with

Yum.

Every installed plug-in has its own configuration file in the /etc/yum/pluginconf.d/ directory. You can set plug-in specific options in these files. For example, here is the refresh-packagekit plug-in's

refresh-packagekit.conf configuration file:

[main] enabled=1

Plug-in configuration files always contain a [main] section (similar to Yum's /etc/yum.conf file) in which there is (or you can place if it is missing) an enabled= option that controls whether the plug-in is enabled when you run yum commands.

If you disable all plug-ins by setting enabled=0 in /etc/yum.conf, then all plug-ins are disabled regardless of whether they are enabled in their individual configuration files.

If you merely want to disable all Yum plug-ins for a single yum command, use the --noplugins option.

If you want to disable one or more Yum plug-ins for a single yum command, add the --

disableplugin=plugin_name option to the command. For example, to disable the presto plug-in while updating a system, type:

~]# yum update --disableplugin=presto

The plug-in names you provide to the --disableplugin= option are the same names listed after the

Loaded plugins line in the output of any yum command. You can disable multiple plug-ins by separating their names with commas. In addition, you can match multiple plug-in names or shorten long ones by using glob expressions:

~]# yum update --disableplugin=presto,refresh-pack*

8.5.2. Installing Additional Yum Plug-ins

Yum plug-ins usually adhere to the yum-plugin-plugin_name package-naming convention, but not always: the package which provides the presto plug-in is named yum-presto, for example. You can install a Yum plug-in in the same way you install other packages. For instance, to install the security plug-in, type the following at a shell prompt:

~]# yum install yum-plugin-security

8.5.3. Plug-in Descriptions

The following list provides descriptions and usage instructions for several useful yum plug-ins. Plug-ins are listed by names, brackets contain the name of the package.

106

CHAPTER 8. YUM search-disabled-repos (subscription-manager)

The search-disabled-repos plug-in allows you to temporarily or permanently enable disabled repositories to help resolve dependencies. With this plug-in enabled, when Yum fails to install a package due to failed dependency resolution, it offers to temporarily enable disabled repositories and try again. If the installation succeeds, Yum also offers to enable the used repositories permanently.

Note that the plug-in works only with the repositories that are managed by subscription-manager and not with custom repositories.

IMPORTANT

If yum is executed with the --assumeyes or -y option, or if the assumeyes directive is enabled in /etc/yum.conf, the plug-in enables disabled repositories, both temporarily and permanently, without prompting for confirmation. This may lead to problems, for example, enabling repositories that you do not want enabled.

To configure the search-disabled-repos plug-in, edit the configuration file located in

/etc/yum/pluginconf.d/search-disabled-repos.conf. For the list of directives you can use in the [main] section, see the table below.

Table 8.4. Supported search-disabled-repos.conf directives

Directive Description enabled =value Allows you to enable or disable the plug-in. The value must be either 1

(enabled), or 0 (disabled). The plug-in is enabled by default.

notify_only =value Allows you to restrict the behavior of the plug-in to notifications only. The value must be either 1 (notify only without modifying the behavior of

Yum), or 0 (modify the behavior of Yum). By default the plug-in only notifies the user.

ignored_repos =repositor ies

Allows you to specify the repositories that will not be enabled by the plugin.

kabi (kabi-yum-plugins)

The kabi plug-in checks whether a driver update package conforms with official Red Hat kernel

Application Binary Interface (kABI). With this plug-in enabled, when a user attempts to install a package that uses kernel symbols which are not on a whitelist, a warning message is written to the system log. Additionally, configuring the plug-in to run in enforcing mode prevents such packages from being installed at all.

To configure the kabi plug-in, edit the configuration file located in

/etc/yum/pluginconf.d/kabi.conf. See

Table 8.5, “Supported kabi.conf directives”

for a list of directives that can be used in the [main] section.

Table 8.5. Supported kabi.conf directives

Directive Description

107

Deployment Guide

Directive enabled =value whitelists enforce

=directory

=value

Description

Allows you to enable or disable the plug-in. The value must be either 1

(enabled), or 0 (disabled). When installed, the plug-in is enabled by default.

Allows you to specify the directory in which the files with supported kernel symbols are located. By default, the kabi plug-in uses files provided by the kernel-abi-whitelists package (that is, the /lib/modules/kabi/ directory).

Allows you to enable or disable enforcing mode. The value must be either

1 (enabled), or 0 (disabled). By default, this option is commented out and the kabi plug-in only displays a warning message.

presto (yum-presto)

The presto plug-in adds support to Yum for downloading delta RPM packages, during updates, from repositories which have presto metadata enabled. Delta RPMs contain only the differences between the version of the package installed on the client requesting the RPM package and the updated version in the repository.

Downloading a delta RPM is much quicker than downloading the entire updated package, and can speed up updates considerably. Once the delta RPMs are downloaded, they must be rebuilt to apply the difference to the currently-installed package and thus create the full, updated package. This process takes CPU time on the installing machine. Using delta RPMs is therefore a compromise between time-to-download, which depends on the network connection, and time-to-rebuild, which is

CPU-bound. Using the presto plug-in is recommended for fast machines and systems with slower network connections, while slower machines on very fast connections benefit more from downloading normal RPM packages, that is, by disabling presto.

product-id (subscription-manager)

The product-id plug-in manages product identity certificates for products installed from the Content

Delivery Network. The product-id plug-in is installed by default.

refresh-packagekit (PackageKit-yum-plugin)

The refresh-packagekit plug-in updates metadata for PackageKit whenever yum is run. The

refresh-packagekit plug-in is installed by default.

rhnplugin (yum-rhn-plugin)

The rhnplugin provides support for connecting to RHN Classic. This allows systems registered with RHN Classic to update and install packages from this system. Note that RHN Classic is only provided for older Red Hat Enterprise Linux systems (that is, Red Hat Enterprise Linux 4.x, Red Hat

Enterprise Linux 5.x, and Satellite 5.x) in order to migrate them over to Red Hat Enterprise Linux 6.

The rhnplugin is installed by default.

See the rhnplugin(8) manual page for more information about the plug-in.

security (yum-plugin-security)

108

CHAPTER 8. YUM

Discovering information about and applying security updates easily and often is important to all system administrators. For this reason Yum provides the security plug-in, which extends yum with a set of highly-useful security-related commands, subcommands and options.

You can check for security-related updates as follows:

~]# yum check-update --security

Loaded plugins: product-id, refresh-packagekit, security, subscriptionmanager

Updating Red Hat repositories.

INFO:rhsm-app.repolib:repos updated: 0

Limiting package lists to security relevant ones

Needed 3 of 7 packages, for security elinks.x86_64 0.12-0.13.el6 rhel kernel.x86_64 2.6.30.8-64.el6 rhel kernel-headers.x86_64 2.6.30.8-64.el6 rhel

You can then use either yum update --security or yum update-minimal --security to update those packages which are affected by security advisories. Both of these commands update all packages on the system for which a security advisory has been issued. yum update-minimal

--security updates them to the latest packages which were released as part of a security advisory, while yum update --security will update all packages affected by a security advisory to the latest version of that package available.

In other words, if: the kernel-2.6.30.8-16 package is installed on your system; the kernel-2.6.30.8-32 package was released as a security update; then kernel-2.6.30.8-64 was released as a bug fix update,

...then yum update-minimal --security will update you to kernel-2.6.30.8-32, and yum

update --security will update you to kernel-2.6.30.8-64. Conservative system administrators probably want to use update-minimal to reduce the risk incurred by updating packages as much as possible.

See the yum-security(8) manual page for usage details and further explanation of the enhancements the security plug-in adds to yum.

subscription-manager (subscription-manager)

The subscription-manager plug-in provides support for connecting to Red Hat Network. This allows systems registered with Red Hat Network to update and install packages from the certificate-based Content Delivery Network. The subscription-manager plug-in is installed by default.

See

Chapter 6, Registering the System and Managing Subscriptions for more information how to

manage product subscriptions and entitlements.

yum-downloadonly (yum-plugin-downloadonly)

The yum-downloadonly plug-in provides the --downloadonly command-line option which can be used to download packages from Red Hat Network or a configured Yum repository without installing the packages.

109

Deployment Guide

To install the package, follow the instructions in

Section 8.5.2, “Installing Additional Yum Plug-ins”

.

After the installation, see the contents of the /etc/yum/pluginconf.d/downloadonly.conf file to ensure that the plug-in is enabled:

~]$ cat /etc/yum/pluginconf.d/downloadonly.conf

[main] enabled=1

In the following example, the yum install --downloadonly command is run to download the latest version of the httpd package, without installing it:

~]# yum install httpd --downloadonly

Loaded plugins: downloadonly, product-id, refresh-packagekit, rhnplugin,

: subscription-manager

Updating Red Hat repositories.

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package httpd.x86_64 0:2.2.15-9.el6_1.2 will be updated

---> Package httpd.x86_64 0:2.2.15-15.el6_2.1 will be an update

--> Processing Dependency: httpd-tools = 2.2.15-15.el6_2.1 for package: httpd-2.2.15-15.el6_2.1.x86_64

--> Running transaction check

---> Package httpd-tools.x86_64 0:2.2.15-9.el6_1.2 will be updated

---> Package httpd-tools.x86_64 0:2.2.15-15.el6_2.1 will be an update

--> Finished Dependency Resolution

Dependencies Resolved

========================================================================

========

Package Arch Version Repository

Size

========================================================================

========

Updating:

httpd x86_64 2.2.15-15.el6_2.1 rhel-x86_64-server-6

812 k

Updating for dependencies:

httpd-tools x86_64 2.2.15-15.el6_2.1 rhel-x86_64-server-6

70 k

Transaction Summary

========================================================================

========

Upgrade 2 Package(s)

Total download size: 882 k

Is this ok [y/N]: y

Downloading Packages:

(1/2): httpd-2.2.15-15.el6_2.1.x86_64.rpm | 812 kB

00:00

(2/2): httpd-tools-2.2.15-15.el6_2.1.x86_64.rpm | 70 kB

00:00

--------------------------------------------------------------------

110

CHAPTER 8. YUM

------------

Total 301 kB/s | 882 kB

00:02 exiting because --downloadonly specified

By default, packages downloaded using the --downloadonly option are saved in one of the subdirectories of the /var/cache/yum directory, depending on the Red Hat Enterprise Linux variant and architecture.

If you want to specify an alternate directory to save the packages, pass the --downloaddir option along with --downloadonly:

~]# yum install --downloadonly --downloaddir=/path/to/directory httpd

NOTE

As an alternative to the yum-downloadonly plugin — to download packages without installing them — you can use the yumdownloader utility that is provided by the yumutils package.

8.6. ADDITIONAL RESOURCES

For more information on how to manage software packages on Red Hat Enterprise Linux, see the resources listed below.

Installed Documentation

yum(8) — The manual page for the yum command-line utility provides a complete list of supported options and commands.

yumdb(8) — The manual page for the yumdb command-line utility documents how to use this tool to query and, if necessary, alter the yum database.

yum.conf(5) — The manual page named yum.conf documents available yum configuration options.

yum-utils(1) — The manual page named yum-utils lists and briefly describes additional utilities for managing yum configuration, manipulating repositories, and working with yum database.

Online Resources

Yum Guides — The Yum Guides page on the project home page provides links to further documentation.

Red Hat Access Labs — The Red Hat Access Labs includes a “Yum Repository Configuration

Helper”.

See Also

111

Deployment Guide

Chapter 4, Gaining Privileges

documents how to gain administrative privileges by using the su and sudo commands.

Appendix B, RPM

describes the RPM Package Manager (RPM), the packaging system used by

Red Hat Enterprise Linux.

112

CHAPTER 9. PACKAGEKIT

CHAPTER 9. PACKAGEKIT

Red Hat provides PackageKit for viewing, managing, updating, installing and uninstalling packages compatible with your system. PackageKit consists of several graphical interfaces that can be opened from the GNOME panel menu, or from the Notification Area when PackageKit alerts you that updates are

available. For more information on PackageKit's architecture and available front ends, see Section 9.3,

“PackageKit Architecture” .

9.1. UPDATING PACKAGES WITH SOFTWARE UPDATE

PackageKit displays a starburst icon in the Notification Area whenever updates are available to be installed on your system.

Figure 9.1. PackageKit's icon in the Notification Area

Clicking on the notification icon opens the Software Update window. Alternatively, you can open

Software Updates by clicking SystemAdministrationSoftware Update from the GNOME panel, or running the gpk-update-viewer command at the shell prompt. In the Software Updates window, all available updates are listed along with the names of the packages being updated (minus the

.rpm suffix, but including the CPU architecture), a short summary of the package, and, usually, short descriptions of the changes the update provides. Any updates you do not want to install can be deselected here by unchecking the check box corresponding to the update.

113

Deployment Guide

Figure 9.2. Installing updates with Software Update

The updates presented in the Software Updates window only represent the currently-installed packages on your system for which updates are available; dependencies of those packages, whether they are existing packages on your system or new ones, are not shown until you click Install

Updates.

PackageKit utilizes the fine-grained user authentication capabilities provided by the PolicyKit toolkit whenever you request it to make changes to the system. Whenever you instruct PackageKit to update, install or remove packages, you will be prompted to enter the superuser password before changes are made to the system.

If you instruct PackageKit to update the kernel package, then it will prompt you after installation, asking you whether you want to reboot the system and thereby boot into the newly-installed kernel.

Setting the Update-Checking Interval

Right-clicking on PackageKit's Notification Area icon and clicking Preferences opens the Software

Update Preferences window, where you can define the interval at which PackageKit checks for package updates, as well as whether or not to automatically install all updates or only security updates.

Leaving the Check for updates when using mobile broadband box unchecked is handy for avoiding extraneous bandwidth usage when using a wireless connection on which you are charged for the amount of data you download.

114

CHAPTER 9. PACKAGEKIT

Figure 9.3. Setting PackageKit's update-checking interval

9.2. USING ADD/REMOVE SOFTWARE

To find and install a new package, on the GNOME panel click on SystemAdministration

Add/Remove Software, or run the gpk-application command at the shell prompt.

Figure 9.4. PackageKit's Add/Remove Software window

9.2.1. Refreshing Software Sources (Yum Repositories)

PackageKit refers to Yum repositories as software sources. It obtains all packages from enabled software sources. You can view the list of all configured and unfiltered (see below) Yum repositories by opening Add/Remove Software and clicking SystemSoftware sources. The Software

Sources dialog shows the repository name, as written on the name=<My Repository Name> field of all [repository] sections in the /etc/yum.conf configuration file, and in all repository.repo files in the /etc/yum.repos.d/ directory.

Entries which are checked in the Enabled column indicate that the corresponding repository will be used to locate packages to satisfy all update and installation requests (including dependency resolution). You can enable or disable any of the listed Yum repositories by selecting or clearing the check box. Note that doing so causes PolicyKit to prompt you for superuser authentication.

The Enabled column corresponds to the enabled=<1 or 0> field in [repository] sections. When you

115

Deployment Guide click the check box, PackageKit inserts the enabled=<1 or 0> line into the correct [repository] section if it does not exist, or changes the value if it does. This means that enabling or disabling a repository through the Software Sources window causes that change to persist after closing the window or rebooting the system.

Note that it is not possible to add or remove Yum repositories through PackageKit.

NOTE

Checking the box at the bottom of the Software Sources window causes PackageKit to display source RPM, testing and debuginfo repositories as well. This box is unchecked by default.

After making a change to the available Yum repositories, click on SystemRefresh package lists to make sure your package list is up-to-date.

9.2.2. Finding Packages with Filters

Once the software sources have been updated, it is often beneficial to apply some filters so that

PackageKit retrieves the results of our Find queries faster. This is especially helpful when performing many package searches. Four of the filters in the Filters drop-down menu are used to split results by matching or not matching a single criterion. By default when PackageKit starts, these filters are all unapplied (No filter), but once you do filter by one of them, that filter remains set until you either change it or close PackageKit.

Because you are usually searching for available packages that are not installed on the system, click

FiltersInstalled and select the Only available radio button.

Figure 9.5. Filtering out already-installed packages

Also, unless you require development files such as C header files, click FiltersDevelopment and select the Only end user files radio button. This filters out all of the <package_name>-devel packages we are not interested in.

116

CHAPTER 9. PACKAGEKIT

Figure 9.6. Filtering out development packages from the list of Find results

The two remaining filters with submenus are:

Graphical

Narrows the search to either applications which provide a GUI interface (Only graphical) or those that do not. This filter is useful when browsing for GUI applications that perform a specific function.

Free

Search for packages which are considered to be free software. See the Fedora Licensing List for details on approved licenses.

The remaining filters can be enabled by selecting the check boxes next to them:

Hide subpackages

Checking the Hide subpackages check box filters out generally-uninteresting packages that are typically only dependencies of other packages that we want. For example, checking Hide

subpackages and searching for <package> would cause the following related packages to be filtered out of the Find results (if it exists):

<package>-devel

<package>-libs

<package>-libs-devel

<package>-debuginfo

Only newest packages

Checking Only newest packages filters out all older versions of the same package from the list of results, which is generally what we want. Note that this filter is often combined with the Only

available filter to search for the latest available versions of new (not installed) packages.

Only native packages

117

Deployment Guide

Checking the Only native packages box on a multilib system causes PackageKit to omit listing results for packages compiled for the architecture that runs in compatibility mode. For example, enabling this filter on a 64-bit system with an AMD64 CPU would cause all packages built for the 32bit x86 CPU architecture not to be shown in the list of results, even though those packages are able to run on an AMD64 machine. Packages which are architecture-agnostic (i.e. noarch packages such as crontabs-1.10-32.1.el6.noarch.rpm) are never filtered out by checking Only native

packages. This filter has no affect on non-multilib systems, such as x86 machines.

9.2.3. Installing and Removing Packages (and Dependencies)

With the two filters selected, Only available and Only end user files, search for the screen window manager for the command line and highlight the package. You now have access to some very useful information about it, including: a clickable link to the project homepage; the Yum package group it is found in, if any; the license of the package; a pointer to the GNOME menu location from where the application can be opened, if applicable; and the size of the package, which is relevant when we download and install it.

Figure 9.7. Viewing and installing a package with PackageKit's Add/Remove Software window

When the check box next to a package or group is checked, then that item is already installed on the system. Checking an unchecked box causes it to be marked for installation, which only occurs when the

Apply button is clicked. In this way, you can search for and select multiple packages or package groups before performing the actual installation transactions. Additionally, you can remove installed packages by unchecking the checked box, and the removal will occur along with any pending installations when

Apply is pressed. Dependency resolution, which may add additional packages to be installed or removed, is performed after pressing Apply. PackageKit will then display a window listing those additional packages to install or remove, and ask for confirmation to proceed.

Select screen and click the Apply button. You will then be prompted for the superuser password; enter it, and PackageKit will install screen. After finishing the installation, PackageKit sometimes presents you with a list of your newly-installed applications and offers you the choice of running them immediately.

Alternatively, you will remember that finding a package and selecting it in the Add/Remove Software window shows you the Location of where in the GNOME menus its application shortcut is located, which is helpful when you want to run it.

Once it is installed, you can run screen, a screen manager that allows you to have multiple logins on one terminal, by typing screen at a shell prompt.

screen is a very useful utility, but we decide that we do not need it and we want to uninstall it.

118

CHAPTER 9. PACKAGEKIT

Remembering that we need to change the Only available filter we recently used to install it to Only

installed in FiltersInstalled, we search for screen again and uncheck it. The program did not install any dependencies of its own; if it had, those would be automatically removed as well, as long as they were not also dependencies of any other packages still installed on our system.

WARNING

Although PackageKit automatically resolves dependencies during package installation and removal, it is unable to remove a package without also removing packages which depend on it. This type of operation can only be performed by

RPM, is not advised, and can potentially leave your system in a non-functioning state or cause applications to behave erratically and/or crash.

Figure 9.8. Removing a package with PackageKit's Add/Remove Software window

9.2.4. Installing and Removing Package Groups

PackageKit also has the ability to install Yum package groups, which it calls Package collections.

Clicking on Package collections in the top-left list of categories in the Software Updates window allows us to scroll through and find the package group we want to install. In this case, we want to install

Czech language support (the Czech Support group). Checking the box and clicking apply informs us how many additional packages must be installed in order to fulfill the dependencies of the package group.

119

Deployment Guide

Figure 9.9. Installing the Czech Support package group

Similarly, installed package groups can be uninstalled by selecting Package collections, unchecking the appropriate check box, and applying.

9.2.5. Viewing the Transaction Log

PackageKit maintains a log of the transactions that it performs. To view the log, from the Add/Remove

Software window, click SystemSoftware log, or run the gpk-log command at the shell prompt.

The Software Log Viewer shows the following information:

Date — the date on which the transaction was performed.

Action — the action that was performed during the transaction, for example Updated

packages or Installed packages.

Details — the transaction type such as Updated, Installed, or Removed, followed by a list of affected packages.

Username — the name of the user who performed the action.

Application — the front end application that was used to perform the action, for example

Update System.

Typing the name of a package in the top text entry field filters the list of transactions to those which affected that package.

120

CHAPTER 9. PACKAGEKIT

Figure 9.10. Viewing the log of package management transactions with the Software Log Viewer

9.3. PACKAGEKIT ARCHITECTURE

Red Hat provides the PackageKit suite of applications for viewing, updating, installing and uninstalling packages and package groups compatible with your system. Architecturally, PackageKit consists of several graphical front ends that communicate with the packagekitd daemon back end, which communicates with a package manager-specific back end that utilizes Yum to perform the actual transactions, such as installing and removing packages, etc.

Table 9.1, “PackageKit GUI windows, menu locations, and shell prompt commands” shows the name of

the GUI window, how to start the window from the GNOME desktop or from the Add/Remove

Software window, and the name of the command-line application that opens that window.

Table 9.1. PackageKit GUI windows, menu locations, and shell prompt commands

Window Title Function How to Open Shell Command

Add/Remove Software

Software Update

Software Sources

Software Log Viewer

Software Update

Preferences

Install, remove or view package info

Perform package updates

From the GNOME panel: System

Administration

Add/Remove Software

From the GNOME panel: System

Administration

Software Update gpk-application gpk-update-viewer

Enable and disable Yum repositories

View the transaction log

From Add/Remove

Software : System

Software Sources

From Add/Remove

Software : System

Software Log

Set PackageKit preferences gpk-repo gpk-log gpk-prefs

121

Deployment Guide

Window Title

(Notification Area Alert)

Function How to Open Shell Command

Alerts you when updates are available

From the GNOME panel: System

PreferencesStartup

Applications, the

Startup Programs tab gpk-update-icon

The packagekitd daemon runs outside the user session and communicates with the various graphical front ends. The packagekitd daemon

[2]

communicates via the DBus system message bus with another back end, which utilizes Yum's Python API to perform queries and make changes to the system.

On Linux systems other than Red Hat Enterprise Linux and Fedora, packagekitd can communicate with other back ends that are able to utilize the native package manager for that system. This modular architecture provides the abstraction necessary for the graphical interfaces to work with many different package managers to perform essentially the same types of package management tasks. Learning how to use the PackageKit front ends means that you can use the same familiar graphical interface across many different Linux distributions, even when they utilize a native package manager other than Yum.

In addition, PackageKit's separation of concerns provides reliability in that a crash of one of the GUI windows—or even the user's X Window session—will not affect any package management tasks being supervised by the packagekitd daemon, which runs outside of the user session.

All of the front end graphical applications discussed in this chapter are provided by the gnomepackagekit package instead of by PackageKit and its dependencies.

Finally, PackageKit also comes with a console-based front end called pkcon.

9.4. ADDITIONAL RESOURCES

For more information about PackageKit, see the resources listed below.

Installed Documentation

gpk-application(1) — The manual page containing information about the gpk-

application command.

gpk-backend-status(1) — The manual page containing information about the gpk-

backend-status command.

gpk-install-local-file(1) — The manual page containing information about the gpk-

install-local-file command.

gpk-install-mime-type(1) — The manual page containing information about the gpk-

install-mime-type command.

gpk-install-package-name(1) — The manual page containing information about the qpk-

install-package-name command.

gpk-install-package-name(1) — The manual page containing information about the gpk-

install-package-name command.

122

CHAPTER 9. PACKAGEKIT

gpk-prefs(1) — The manual page containing information about the gpk-prefs command.

gpk-repo(1) — The manual page containing information about the gpk-repo command.

gpk-update-icon(1) — The manual page containing information about the gpk-update-

icon command.

gpk-update-viewer(1) — The manual page containing information about the gpk-update-

viewer command.

pkcon(1) and pkmon(1) — The manual pages containing information about the PackageKit console client.

pkgenpack(1) — The manual page containing information about the PackageKit Pack

Generator.

Online Documentation

PackageKit home page — The PackageKit home page listing detailed information about the

PackageKit software suite.

PackageKit FAQ — An informative list of Frequently Asked Questions for the PackageKit software suite.

See Also

Chapter 8, Yum

documents Yum, the Red Hat package manager.

[2] System daemons are typically long-running processes that provide services to the user or to other programs,

and which are started, often at boot time, by special initialization scripts (often shortened to init scripts). Daemons respond to the service command and can be turned on or off permanently by using the chkconfig on chkconfig off commands. They can typically be recognized by a “d” appended to their name, such as the packagekitd daemon. See

Chapter 12, Services and Daemons for information about system services.

or

123

Deployment Guide

PART IV. NETWORKING

This part describes how to configure the network on Red Hat Enterprise Linux.

124

CHAPTER 10. NETWORKMANAGER

CHAPTER 10. NETWORKMANAGER

NetworkManager is a dynamic network control and configuration system that attempts to keep network devices and connections up and active when they are available. NetworkManager consists of a core daemon, a GNOME Notification Area applet that provides network status information, and graphical configuration tools that can create, edit and remove connections and interfaces. NetworkManager can be used to configure the following types of connections: Ethernet, wireless, mobile broadband (such as cellular 3G), and DSL and PPPoE (Point-to-Point over Ethernet). In addition, NetworkManager allows for the configuration of network aliases, static routes, DNS information and VPN connections, as well as many connection-specific parameters. Finally, NetworkManager provides a rich API via D-Bus which allows applications to query and control network configuration and state.

Previous versions of Red Hat Enterprise Linux included the Network Administration Tool, which was commonly known as system-config-network after its command-line invocation. In Red Hat

Enterprise Linux 6, NetworkManager replaces the former Network Administration Tool while providing enhanced functionality, such as user-specific and mobile broadband configuration. It is also possible to configure the network in Red Hat Enterprise Linux 6 by editing interface configuration files; see

Chapter 11, Network Interfaces

for more information.

NetworkManager may be installed by default on your version of Red Hat Enterprise Linux. To ensure that it is, run the following command as root:

~]# yum install NetworkManager

10.1. THE NETWORKMANAGER DAEMON

The NetworkManager daemon runs with root privileges and is usually configured to start up at boot time. You can determine whether the NetworkManager daemon is running by entering this command as root:

~]# service NetworkManager status

NetworkManager (pid 1527) is running...

The service command will report NetworkManager is stopped if the NetworkManager service is not running. To start it for the current session:

~]# service NetworkManager start

Run the chkconfig command to ensure that NetworkManager starts up every time the system boots:

~]# chkconfig NetworkManager on

For more information on starting, stopping and managing services and runlevels, see Chapter 12,

Services and Daemons .

10.2. INTERACTING WITH NETWORKMANAGER

Users do not interact with the NetworkManager system service directly. Instead, you can perform network configuration tasks via NetworkManager's Notification Area applet. The applet has multiple states that serve as visual indicators for the type of connection you are currently using. Hover the pointer over the applet icon for tooltip information on the current connection state.

125

Deployment Guide

Figure 10.1. NetworkManager applet states

If you do not see the NetworkManager applet in the GNOME panel, and assuming that the

NetworkManager package is installed on your system, you can start the applet by running the following command as a normal user (not root):

~]$ nm-applet &

After running this command, the applet appears in your Notification Area. You can ensure that the applet runs each time you log in by clicking SystemPreferencesStartup Applications to open the

Startup Applications Preferences window. Then, select the Startup Programs tab and check the box next to NetworkManager.

10.2.1. Connecting to a Network

When you left-click on the applet icon, you are presented with: a list of categorized networks you are currently connected to (such as Wired and Wireless); a list of all Available Networks that NetworkManager has detected; options for connecting to any configured Virtual Private Networks (VPNs); and, options for connecting to hidden or new wireless networks.

If you are connected to a network, its name is presented in bold typeface under its network type, such as Wired or Wireless. When many networks are available, such as wireless access points, the More

networks expandable menu entry appears.

126

CHAPTER 10. NETWORKMANAGER

Figure 10.2. The NetworkManager applet's left-click menu, showing all available and connected-to networks

10.2.2. Configuring New and Editing Existing Connections

Next, right-click on the NetworkManager applet to open its context menu, which is the main point of entry for interacting with NetworkManager to configure connections.

Figure 10.3. The NetworkManager applet's context menu

Ensure that the Enable Networking box is checked. If the system has detected a wireless card, then you will also see an Enable Wireless menu option. Check the Enable Wireless check box as well. NetworkManager notifies you of network connection status changes if you check the Enable

Notifications box. Clicking the Connection Information entry presents an informative

Connection Information window that lists the connection type and interface, your IP address and routing details, and so on.

Finally, clicking on Edit Connections opens the Network Connections window, from where you can perform most of your network configuration tasks. Note that this window can also be opened by running, as a normal user:

127

Deployment Guide

~]$ nm-connection-editor &

Figure 10.4. Configure networks using the Network Connections window

There is an arrow head symbol to the left which can be clicked to hide and reveal entries as needed. To create a new connection, click the Add button to view the selection list, select the connection type and click the Create button. Alternatively, to edit an existing connection select the interface name from the list and click the Edit button.

Then, to configure:

wired Ethernet connections, proceed to Section 10.3.1, “Establishing a Wired (Ethernet)

Connection” ;

wireless connections, proceed to

Section 10.3.2, “Establishing a Wireless Connection” ; or,

mobile broadband connections, proceed to Section 10.3.3, “Establishing a Mobile Broadband

Connection” ; or,

VPN connections, proceed to Section 10.3.4, “Establishing a VPN Connection” .

10.2.3. Connecting to a Network Automatically

For any connection type you add or configure, you can choose whether you want NetworkManager to try to connect to that network automatically when it is available.

Procedure 10.1. Configuring NetworkManager to Connect to a Network Automatically When

Detected

1. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

2. Click the arrow head if necessary to reveal the list of connections.

3. Select the specific connection that you want to configure and click Edit.

4. Check Connect automatically to cause NetworkManager to auto-connect to the connection whenever NetworkManager detects that it is available. Uncheck the check box if you do not want NetworkManager to connect automatically. If the box is unchecked, you will have to select that connection manually in the NetworkManager applet's left-click menu to cause it to connect.

128

CHAPTER 10. NETWORKMANAGER

10.2.4. User and System Connections

NetworkManager connections are always either user connections or system connections. Depending on the system-specific policy that the administrator has configured, users may need root privileges to create and modify system connections. NetworkManager's default policy enables users to create and modify user connections, but requires them to have root privileges to add, modify or delete system connections.

User connections are so-called because they are specific to the user who creates them. In contrast to system connections, whose configurations are stored under the /etc/sysconfig/network-

scripts/ directory (mainly in ifcfg-<network_type> interface configuration files), user connection settings are stored in the GConf configuration database and the GNOME keyring, and are only available during login sessions for the user who created them. Thus, logging out of the desktop session causes user-specific connections to become unavailable.

NOTE

Because NetworkManager uses the GConf and GNOME keyring applications to store user connection settings, and because these settings are specific to your desktop session, it is highly recommended to configure your personal VPN connections as user connections. If you do so, other Non-root users on the system cannot view or access these connections in any way.

System connections, on the other hand, become available at boot time and can be used by other users on the system without first logging in to a desktop session.

NetworkManager can quickly and conveniently convert user to system connections and vice versa.

Converting a user connection to a system connection causes NetworkManager to create the relevant interface configuration files under the /etc/sysconfig/network-scripts/ directory, and to delete the GConf settings from the user's session. Conversely, converting a system to a user-specific connection causes NetworkManager to remove the system-wide configuration files and create the corresponding GConf/GNOME keyring settings.

Figure 10.5. The Available to all users check box controls whether connections are userspecific or system-wide

Procedure 10.2. Changing a Connection to be User-Specific instead of System-Wide, or Vice-

Versa

NOTE

Depending on the system's policy, you may need root privileges on the system in order to change whether a connection is user-specific or system-wide.

1. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

129

Deployment Guide

2. If needed, select the arrow head (on the left hand side) to hide and reveal the types of available network connections.

3. Select the specific connection that you want to configure and click Edit.

4. Check the Available to all users check box to ask NetworkManager to make the connection a system-wide connection. Depending on system policy, you may then be prompted for the root password by the PolicyKit application. If so, enter the root password to finalize the change.

Conversely, uncheck the Available to all users check box to make the connection userspecific.

10.3. ESTABLISHING CONNECTIONS

10.3.1. Establishing a Wired (Ethernet) Connection

To establish a wired network connection, Right-click on the NetworkManager applet to open its context menu, ensure that the Enable Networking box is checked, then click on Edit Connections. This opens the Network Connections window. Note that this window can also be opened by running, as a normal user:

~]$ nm-connection-editor &

You can click on the arrow head to reveal and hide the list of connections as needed.

Figure 10.6. The Network Connections window showing the newly created System eth0 connection

The system startup scripts create and configure a single wired connection called System eth0 by default on all systems. Although you can edit System eth0, creating a new wired connection for your custom settings is recommended. You can create a new wired connection by clicking the Add button, selecting the Wired entry from the list that appears and then clicking the Create button.

130

CHAPTER 10. NETWORKMANAGER

Figure 10.7. Selecting a new connection type from the "Choose a Connection Type" list

NOTE

When you add a new connection by clicking the Add button, a list of connection types appears. Once you have made a selection and clicked on the Create button,

NetworkManager creates a new configuration file for that connection and then opens the same dialog that is used for editing an existing connection. There is no difference between these dialogs. In effect, you are always editing a connection; the difference only lies in whether that connection previously existed or was just created by NetworkManager when you clicked Create.

131

Deployment Guide

Figure 10.8. Editing the newly created Wired connection System eth0

Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

Three settings in the Editing dialog are common to all connection types:

Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the Wired section of the Network Connections window.

Connect automatically — Check this box if you want NetworkManager to auto-connect to

this connection when it is available. See Section 10.2.3, “Connecting to a Network Automatically”

for more information.

Available to all users — Check this box to create a connection available to all users on

the system. Changing this setting may require root privileges. See Section 10.2.4, “User and

System Connections” for details.

Configuring the Wired Tab

The final three configurable settings are located within the Wired tab itself: the first is a text-entry field where you can specify a MAC (Media Access Control) address, and the second allows you to specify a cloned MAC address, and third allows you to specify the MTU (Maximum Transmission Unit) value.

Normally, you can leave the MAC address field blank and the MTU set to automatic. These defaults will suffice unless you are associating a wired connection with a second or specific NIC, or performing advanced networking. In such cases, see the following descriptions:

MAC Address

132

CHAPTER 10. NETWORKMANAGER

Network hardware such as a Network Interface Card (NIC) has a unique MAC address (Media

Access Control; also known as a hardware address) that identifies it to the system. Running the ip

addr command will show the MAC address associated with each interface. For example, in the following ip addr output, the MAC address for the eth0 interface (which is

52:54:00:26:9e:f1) immediately follows the link/ether keyword:

~]# ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000

link/ether 52:54:00:26:9e:f1 brd ff:ff:ff:ff:ff:ff

inet 192.168.122.251/24 brd 192.168.122.255 scope global eth0

inet6 fe80::5054:ff:fe26:9ef1/64 scope link

valid_lft forever preferred_lft forever

A single system can have one or more NICs installed on it. The MAC address field therefore allows you to associate a specific NIC with a specific connection (or connections). As mentioned, you can determine the MAC address using the ip addr command, and then copy and paste that value into the MAC address text-entry field.

The cloned MAC address field is mostly for use in such situations were a network service has been restricted to a specific MAC address and you need to emulate that MAC address.

MTU

The MTU (Maximum Transmission Unit) value represents the size in bytes of the largest packet that the connection will use to transmit. This value defaults to 1500 when using IPv4, or a variable number

1280 or higher for IPv6, and does not generally need to be specified or changed.

Saving Your New (or Modified) Connection and Making Further Configurations

Once you have finished editing your wired connection, click the Apply button and NetworkManager will immediately save your customized configuration. Given a correct configuration, you can connect to your new or customized connection by selecting it from the NetworkManager Notification Area applet. See

Section 10.2.1, “Connecting to a Network” for information on using your new or altered connection.

You can further configure an existing connection by selecting it in the Network Connections window and clicking Edit to return to the Editing dialog.

Then, to configure: port-based Network Access Control (PNAC), click the 802.1X Security tab and proceed to

Section 10.3.9.1, “Configuring 802.1X Security”

;

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 10.3.9.4,

“Configuring IPv4 Settings” ; or,

IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 10.3.9.5,

“Configuring IPv6 Settings” .

10.3.2. Establishing a Wireless Connection

133

Deployment Guide

This section explains how to use NetworkManager to configure a wireless (also known as Wi-Fi or

802.11a/b/g/n) connection to an Access Point.

To configure a mobile broadband (such as 3G) connection, see Section 10.3.3, “Establishing a Mobile

Broadband Connection” .

Quickly Connecting to an Available Access Point

The easiest way to connect to an available access point is to left-click on the NetworkManager applet, locate the Service Set Identifier (SSID) of the access point in the list of Available networks, and click on it. If the access point is secured, a dialog prompts you for authentication.

Figure 10.9. Authenticating to a wireless access point

NetworkManager tries to auto-detect the type of security used by the access point. If there are multiple possibilities, NetworkManager guesses the security type and presents it in the Wireless security dropdown menu. To see if there are multiple choices, click the Wireless security dropdown menu and select the type of security the access point is using. If you are unsure, try connecting to each type in turn. Finally, enter the key or passphrase in the Password field. Certain password types, such as a 40bit WEP or 128-bit WPA key, are invalid unless they are of a requisite length. The Connect button will remain inactive until you enter a key of the length required for the selected security type. To learn more

about wireless security, see Section 10.3.9.2, “Configuring Wireless Security”

.

NOTE

In the case of WPA and WPA2 (Personal and Enterprise), an option to select between

Auto, WPA and WPA2 has been added. This option is intended for use with an access point that is offering both WPA and WPA2. Select one of the protocols if you would like to prevent roaming between the two protocols. Roaming between WPA and WPA2 on the same access point can cause loss of service.

If NetworkManager connects to the access point successfully, its applet icon will change into a graphical indicator of the wireless connection's signal strength.

134

CHAPTER 10. NETWORKMANAGER

Figure 10.10. Applet icon indicating a wireless connection signal strength of 75%

You can also edit the settings for one of these auto-created access point connections just as if you had added it yourself. The Wireless tab of the Network Connections window lists all of the connections you have ever tried to connect to: NetworkManager names each of them Auto <SSID>, where SSID is the Service Set identifier of the access point.

Figure 10.11. An example of access points that have previously been connected to

Connecting to a Hidden Wireless Network

All access points have a Service Set Identifier (SSID) to identify them. However, an access point may be configured not to broadcast its SSID, in which case it is hidden, and will not show up in

NetworkManager's list of Available networks. You can still connect to a wireless access point that is hiding its SSID as long as you know its SSID, authentication method, and secrets.

To connect to a hidden wireless network, left-click NetworkManager's applet icon and select Connect

to Hidden Wireless Network to cause a dialog to appear. If you have connected to the hidden network before, use the Connection dropdown to select it, and click Connect. If you have not, leave the Connection dropdown as New, enter the SSID of the hidden network, select its Wireless

security method, enter the correct authentication secrets, and click Connect.

For more information on wireless security settings, see Section 10.3.9.2, “Configuring Wireless Security”

.

Editing a Connection, or Creating a Completely New One

You can edit an existing connection that you have tried or succeeded in connecting to in the past by opening the Wireless tab of the Network Connections, selecting the connection by name (words which follow Auto refer to the SSID of an access point), and clicking Edit.

135

Deployment Guide

You can create a new connection by opening the Network Connections window, clicking the Add button, selecting Wireless, and clicking the Create button.

1. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

2. Click the Add button.

3. Select the Wireless entry from the list.

4. Click the Create button.

Figure 10.12. Editing the newly created Wireless connection 1

Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

Three settings in the Editing dialog are common to all connection types:

Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the Wireless section of the Network Connections window. By default, wireless connections are named the same as the SSID of the wireless access point.

136

CHAPTER 10. NETWORKMANAGER

You can rename the wireless connection without affecting its ability to connect, but it is recommended to retain the SSID name.

Connect automatically — Check this box if you want NetworkManager to auto-connect to

this connection when it is available. See Section 10.2.3, “Connecting to a Network Automatically”

for more information.

Available to all users — Check this box to create a connection available to all users on

the system. Changing this setting may require root privileges. See Section 10.2.4, “User and

System Connections” for details.

Configuring the Wireless Tab

SSID

All access points have a Service Set identifier to identify them. However, an access point may be configured not to broadcast its SSID, in which case it is hidden, and will not show up in

NetworkManager's list of Available networks. You can still connect to a wireless access point that is hiding its SSID as long as you know its SSID (and authentication secrets).

For information on connecting to a hidden wireless network, see the section called “Connecting to a

Hidden Wireless Network” .

Mode

Infrastructure — Set Mode to Infrastructure if you are connecting to a dedicated wireless access point or one built into a network device such as a router or a switch.

Ad-hoc — Set Mode to Ad-hoc if you are creating a peer-to-peer network for two or more mobile devices to communicate directly with each other. If you use Ad-hoc mode, referred to as

Independent Basic Service Set (IBSS) in the 802.11 standard, you must ensure that the same SSID is set for all participating wireless devices, and that they are all communicating over the same channel.

BSSID

The Basic Service Set Identifier (BSSID) is the MAC address of the specific wireless access point you are connecting to when in Infrastructure mode. This field is blank by default, and you are able to connect to a wireless access point by SSID without having to specify its BSSID. If the BSSID is specified, it will force the system to associate to a specific access point only.

For ad-hoc networks, the BSSID is generated randomly by the mac80211 subsystem when the adhoc network is created. It is not displayed by NetworkManager

MAC address

Like an Ethernet Network Interface Card (NIC), a wireless adapter has a unique MAC address (Media

Access Control; also known as a hardware address) that identifies it to the system. Running the ip

addr command will show the MAC address associated with each interface. For example, in the following ip addr output, the MAC address for the wlan0 interface (which is

00:1c:bf:02:f8:70) immediately follows the link/ether keyword:

~]# ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

inet6 ::1/128 scope host

137

Deployment Guide

valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000

link/ether 52:54:00:26:9e:f1 brd ff:ff:ff:ff:ff:ff

inet 192.168.122.251/24 brd 192.168.122.255 scope global eth0

inet6 fe80::5054:ff:fe26:9ef1/64 scope link

valid_lft forever preferred_lft forever

3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP qlen 1000

link/ether 00:1c:bf:02:f8:70 brd ff:ff:ff:ff:ff:ff

inet 10.200.130.67/24 brd 10.200.130.255 scope global wlan0

inet6 fe80::21c:bfff:fe02:f870/64 scope link

valid_lft forever preferred_lft forever

A single system could have one or more wireless network adapters connected to it. The MAC

address field therefore allows you to associate a specific wireless adapter with a specific connection

(or connections). As mentioned, you can determine the MAC address using the ip addr command, and then copy and paste that value into the MAC address text-entry field.

MTU

The MTU (Maximum Transmission Unit) value represents the size in bytes of the largest packet that the connection will use to transmit. If set to a non-zero number, only packets of the specified size or smaller will be transmitted. Larger packets are broken up into multiple Ethernet frames. It is recommended to leave this setting on automatic.

Saving Your New (or Modified) Connection and Making Further Configurations

Once you have finished editing the wireless connection, click the Apply button and NetworkManager will immediately save your customized configuration. Given a correct configuration, you can successfully connect to your the modified connection by selecting it from the NetworkManager Notification Area applet. See

Section 10.2.1, “Connecting to a Network” for details on selecting and connecting to a

network.

You can further configure an existing connection by selecting it in the Network Connections window and clicking Edit to return to the Editing dialog.

Then, to configure: security authentication for the wireless connection, click the Wireless Security tab and

proceed to Section 10.3.9.2, “Configuring Wireless Security”

;

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 10.3.9.4,

“Configuring IPv4 Settings” ; or,

IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 10.3.9.5,

“Configuring IPv6 Settings” .

10.3.3. Establishing a Mobile Broadband Connection

You can use NetworkManager's mobile broadband connection abilities to connect to the following 2G and 3G services:

2G — GPRS (General Packet Radio Service) or EDGE (Enhanced Data Rates for GSM

Evolution)

138

CHAPTER 10. NETWORKMANAGER

3G — UMTS (Universal Mobile Telecommunications System) or HSPA (High Speed Packet

Access)

Your computer must have a mobile broadband device (modem), which the system has discovered and recognized, in order to create the connection. Such a device may be built into your computer (as is the case on many notebooks and netbooks), or may be provided separately as internal or external hardware.

Examples include PC card, USB Modem or Dongle, mobile or cellular telephone capable of acting as a modem.

Procedure 10.3. Adding a New Mobile Broadband Connection

You can configure a mobile broadband connection by opening the Network Connections window, clicking Add, and selecting Mobile Broadband from the list.

1. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

2. Click the Add button to open the selection list. Select Mobile Broadband and then click

Create. The Set up a Mobile Broadband Connection assistant appears.

3. Under Create a connection for this mobile broadband device, choose the 2G- or

3G-capable device you want to use with the connection. If the dropdown menu is inactive, this indicates that the system was unable to detect a device capable of mobile broadband. In this case, click Cancel, ensure that you do have a mobile broadband-capable device attached and recognized by the computer and then retry this procedure. Click the Forward button.

4. Select the country where your service provider is located from the list and click the Forward button.

5. Select your provider from the list or enter it manually. Click the Forward button.

6. Select your payment plan from the dropdown menu and confirm the Access Point Name (APN) is correct. Click the Forward button.

7. Review and confirm the settings and then click the Apply button.

8. Edit the mobile broadband-specific settings by referring to the Configuring the Mobile Broadband

Tab description below .

Procedure 10.4. Editing an Existing Mobile Broadband Connection

Follow these steps to edit an existing mobile broadband connection.

1. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

2. Select the connection you want to edit and click the Edit button.

3. Select the Mobile Broadband tab.

4. Configure the connection name, auto-connect behavior, and availability settings.

Three settings in the Editing dialog are common to all connection types:

139

Deployment Guide

Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the Mobile Broadband section of the Network

Connections window.

Connect automatically — Check this box if you want NetworkManager to auto-

connect to this connection when it is available. See Section 10.2.3, “Connecting to a Network

Automatically” for more information.

Available to all users — Check this box to create a connection available to all users

on the system. Changing this setting may require root privileges. See Section 10.2.4, “User and System Connections” for details.

5. Edit the mobile broadband-specific settings by referring to the Configuring the Mobile Broadband

Tab description below .

Saving Your New (or Modified) Connection and Making Further Configurations

Once you have finished editing your mobile broadband connection, click the Apply button and

NetworkManager will immediately save your customized configuration. Given a correct configuration, you can connect to your new or customized connection by selecting it from the NetworkManager

Notification Area applet. See Section 10.2.1, “Connecting to a Network”

for information on using your new or altered connection.

You can further configure an existing connection by selecting it in the Network Connections window and clicking Edit to return to the Editing dialog.

Then, to configure:

Point-to-point settings for the connection, click the PPP Settings tab and proceed to

Section 10.3.9.3, “Configuring PPP (Point-to-Point) Settings”

;

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 10.3.9.4,

“Configuring IPv4 Settings” ; or,

IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 10.3.9.5,

“Configuring IPv6 Settings” .

Configuring the Mobile Broadband Tab

If you have already added a new mobile broadband connection using the assistant (see Procedure 10.3,

“Adding a New Mobile Broadband Connection” for instructions), you can edit the Mobile Broadband tab to disable roaming if home network is not available, assign a network ID, or instruct

NetworkManager to prefer a certain technology (such as 3G or 2G) when using the connection.

Number

The number that is dialed to establish a PPP connection with the GSM-based mobile broadband network. This field may be automatically populated during the initial installation of the broadband device. You can usually leave this field blank and enter the APN instead.

Username

Enter the user name used to authenticate with the network. Some providers do not provide a user name, or accept any user name when connecting to the network.

Password

Enter the password used to authenticate with the network. Some providers do not provide a password, or accept any password.

140

CHAPTER 10. NETWORKMANAGER

APN

Enter the Access Point Name (APN) used to establish a connection with the GSM-based network.

Entering the correct APN for a connection is important because it often determines: how the user is billed for their network usage; and/or whether the user has access to the Internet, an intranet, or a subnetwork.

Network ID

Entering a Network ID causes NetworkManager to force the device to register only to a specific network. This can be used to ensure the connection does not roam when it is not possible to control roaming directly.

Type

Any — The default value of Any leaves the modem to select the fastest network.

3G (UMTS/HSPA) — Force the connection to use only 3G network technologies.

2G (GPRS/EDGE) — Force the connection to use only 2G network technologies.

Prefer 3G (UMTS/HSPA) — First attempt to connect using a 3G technology such as HSPA or

UMTS, and fall back to GPRS or EDGE only upon failure.

Prefer 2G (GPRS/EDGE) — First attempt to connect using a 2G technology such as GPRS or

EDGE, and fall back to HSPA or UMTS only upon failure.

Allow roaming if home network is not available

Uncheck this box if you want NetworkManager to terminate the connection rather than transition from the home network to a roaming one, thereby avoiding possible roaming charges. If the box is checked, NetworkManager will attempt to maintain a good connection by transitioning from the home network to a roaming one, and vice versa.

PIN

If your device's SIM (Subscriber Identity Module) is locked with a PIN (Personal Identification

Number), enter the PIN so that NetworkManager can unlock the device. NetworkManager must unlock the SIM if a PIN is required in order to use the device for any purpose.

10.3.4. Establishing a VPN Connection

Establishing an encrypted Virtual Private Network (VPN) enables you to communicate securely between your Local Area Network (LAN), and another, remote LAN. After successfully establishing a VPN connection, a VPN router or gateway performs the following actions upon the packets you transmit:

1. it adds an Authentication Header for routing and authentication purposes;

2. it encrypts the packet data; and,

3. it encloses the data with an Encapsulating Security Payload (ESP), which constitutes the decryption and handling instructions.

The receiving VPN router strips the header information, decrypts the data, and routes it to its intended destination (either a workstation or other node on a network). Using a network-to-network connection, the

141

Deployment Guide receiving node on the local network receives the packets already decrypted and ready for processing.

The encryption/decryption process in a network-to-network VPN connection is therefore transparent to clients.

Because they employ several layers of authentication and encryption, VPNs are a secure and effective means of connecting multiple remote nodes to act as a unified intranet.

Procedure 10.5. Adding a New VPN Connection

1. You can configure a new VPN connection by opening the Network Connections window, clicking the Add button and selecting a type of VPN from the VPN section of the new connection list.

2. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

3. Click the Add button.

4. The Choose a Connection Type list appears.

5.

NOTE

The appropriate NetworkManager VPN plug-in for the VPN type you want to

configure must be installed (see Section 8.2.4, “Installing Packages”

for more information on how to install new packages in Red Hat Enterprise Linux 6).

The VPN section in the Choose a Connection Type list will not appear if you do not have a suitable plug-in installed.

6. Select the VPN protocol for the gateway you are connecting to from the Choose a

Connection Type list. The VPN protocols available for selection in the list correspond to the

NetworkManager VPN plug-ins installed. For example, if NetworkManager-openswan, the

NetworkManager VPN plug-in for libreswan, is installed, then the IPsec based VPN will be selectable from the Choose a Connection Type list.

NOTE

In Red Hat Enterprise Linux 6.8, openswan has been obsoleted by libreswan.

NetworkManager-openswan has been modified to support both openswan and libreswan.

After selecting the correct one, press the Create button.

7. The Editing VPN Connection 1 window then appears. This window presents settings customized for the type of VPN connection you selected in

Step 6 .

Procedure 10.6. Editing an Existing VPN Connection

You can configure an existing VPN connection by opening the Network Connections window and selecting the name of the connection from the list. Then click the Edit button.

1. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

142

CHAPTER 10. NETWORKMANAGER

2. Select the connection you want to edit and click the Edit button.

Figure 10.13. Editing the newly created IPsec VPN connection 1

Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

Three settings in the Editing dialog are common to all connection types:

Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the VPN section of the Network Connections window.

Connect automatically — Check this box if you want NetworkManager to auto-connect to

this connection when it is available. See Section 10.2.3, “Connecting to a Network Automatically”

for more information.

Available to all users — Check this box to create a connection available to all users on

the system. Changing this setting may require root privileges. See Section 10.2.4, “User and

143

Deployment Guide

System Connections” for details.

Configuring the VPN Tab

Gateway

The name or IP address of the remote VPN gateway.

Group name

The name of a VPN group configured on the remote gateway.

User password

If required, enter the password used to authenticate with the VPN.

Group password

If required, enter the password used to authenticate with the VPN.

User name

If required, enter the user name used to authenticate with the VPN.

Phase1 Algorithms

If required, enter the algorithms to be used to authenticate and set up an encrypted channel.

Phase2 Algorithms

If required, enter the algorithms to be used for the IPsec negotiations.

Domain

If required, enter the Domain Name.

NAT traversal

Cisco UDP (default) — IPsec over UDP.

NAT-T — ESP encapsulation and IKE extensions are used to handle NAT Traversal.

Disabled — No special NAT measures required.

Disable Dead Peer Detection — Disable the sending of probes to the remote gateway or endpoint.

Saving Your New (or Modified) Connection and Making Further Configurations

Once you have finished editing your new VPN connection, click the Apply button and NetworkManager will immediately save your customized configuration. Given a correct configuration, you can connect to your new or customized connection by selecting it from the NetworkManager Notification Area applet.

See

Section 10.2.1, “Connecting to a Network”

for information on using your new or altered connection.

You can further configure an existing connection by selecting it in the Network Connections window and clicking Edit to return to the Editing dialog.

Then, to configure:

144

CHAPTER 10. NETWORKMANAGER

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 10.3.9.4,

“Configuring IPv4 Settings” .

10.3.5. Establishing a DSL Connection

This section is intended for those installations which have a DSL card fitted within a host rather than the external combined DSL modem router combinations typical of private consumer or SOHO installations.

Procedure 10.7. Adding a New DSL Connection

You can configure a new DSL connection by opening the Network Connections window, clicking the

Add button and selecting DSL from the Hardware section of the new connection list.

1. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

2. Click the Add button.

3. The Choose a Connection Type list appears.

4. Select DSL and press the Create button.

5. The Editing DSL Connection 1 window appears.

Procedure 10.8. Editing an Existing DSL Connection

You can configure an existing DSL connection by opening the Network Connections window and selecting the name of the connection from the list. Then click the Edit button.

1. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

2. Select the connection you want to edit and click the Edit button.

Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

Three settings in the Editing dialog are common to all connection types:

Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the DSL section of the Network Connections window.

Connect automatically — Check this box if you want NetworkManager to auto-connect to

this connection when it is available. See Section 10.2.3, “Connecting to a Network Automatically”

for more information.

Available to all users — Check this box to create a connection available to all users on

the system. Changing this setting may require root privileges. See Section 10.2.4, “User and

System Connections” for details.

Configuring the DSL Tab

Username

Enter the user name used to authenticate with the service provider.

Service

145

Deployment Guide

Leave blank unless otherwise directed.

Password

Enter the password supplied by the service provider.

Saving Your New (or Modified) Connection and Making Further Configurations

Once you have finished editing your DSL connection, click the Apply button and NetworkManager will immediately save your customized configuration. Given a correct configuration, you can connect to your new or customized connection by selecting it from the NetworkManager Notification Area applet. See

Section 10.2.1, “Connecting to a Network” for information on using your new or altered connection.

You can further configure an existing connection by selecting it in the Network Connections window and clicking Edit to return to the Editing dialog.

Then, to configure:

The MAC address and MTU settings, click the Wired tab and proceed to the section called

“Configuring the Wired Tab” ;

Point-to-point settings for the connection, click the PPP Settings tab and proceed to

Section 10.3.9.3, “Configuring PPP (Point-to-Point) Settings”

;

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 10.3.9.4,

“Configuring IPv4 Settings” .

10.3.6. Establishing a Bond Connection

You can use NetworkManager to create a Bond from two or more Wired or Infiniband connections. It is not necessary to create the connections to be bonded first. They can be configured as part of the process to configure the bond. You must have the MAC addresses of the interfaces available in order to complete the configuration process.

NOTE

NetworkManager support for bonding must be enabled by means of the

NM_BOND_VLAN_ENABLED directive and then NetworkManager must be restarted. See

Section 11.2.1, “Ethernet Interfaces” for an explanation of NM_CONTROLLED and the

NM_BOND_VLAN_ENABLED directive. See

Section 12.3.4, “Restarting a Service” for an

explanation of restarting a service such as NetworkManager from the command line.

Alternatively, for a graphical tool see Section 12.2.1, “Using the Service Configuration

Utility” .

Procedure 10.9. Adding a New Bond Connection

You can configure a Bond connection by opening the Network Connections window, clicking Add, and selecting Bond from the list.

1. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

2. Click the Add button to open the selection list. Select Bond and then click Create. The

Editing Bond connection 1 window appears.

146

CHAPTER 10. NETWORKMANAGER

3. On the Bond tab, click Add and select the type of interface you want to use with the bond connection. Click the Create button. Note that the dialog to select the slave type only comes up when you create the first slave; after that, it will automatically use that same type for all further slaves.

4. The Editing bond0 slave 1 window appears. Fill in the MAC address of the first interface to be bonded. The first slave's MAC address will be used as the MAC address for the bond interface. If required, enter a clone MAC address to be used as the bond's MAC address. Click the Apply button.

5. The Authenticate window appears. Enter the root password to continue. Click the

Authenticate button.

6. The name of the bonded slave appears in the Bonded Connections window. Click the Add button to add further slave connections.

7. Review and confirm the settings and then click the Apply button.

8. Edit the bond-specific settings by referring to

the section called “Configuring the Bond Tab”

below.

147

Deployment Guide

Figure 10.14. Editing the newly created Bond connection 1

Procedure 10.10. Editing an Existing Bond Connection

Follow these steps to edit an existing bond connection.

1. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

2. Select the connection you want to edit and click the Edit button.

3. Select the Bond tab.

4. Configure the connection name, auto-connect behavior, and availability settings.

Three settings in the Editing dialog are common to all connection types:

148

CHAPTER 10. NETWORKMANAGER

Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the Bond section of the Network Connections window.

Connect automatically — Select this box if you want NetworkManager to auto-

connect to this connection when it is available. See Section 10.2.3, “Connecting to a Network

Automatically” for more information.

Available to all users — Select this box to create a connection available to all users

on the system. Changing this setting may require root privileges. See Section 10.2.4, “User and System Connections” for details.

5. Edit the bond-specific settings by referring to

the section called “Configuring the Bond Tab”

below.

Saving Your New (or Modified) Connection and Making Further Configurations

Once you have finished editing your bond connection, click the Apply button to save your customized configuration. Given a correct configuration, you can connect to your new or customized connection by

selecting it from the NetworkManager Notification Area applet. See Section 10.2.1, “Connecting to a

Network” for information on using your new or altered connection.

You can further configure an existing connection by selecting it in the Network Connections window and clicking Edit to return to the Editing dialog.

Then, to configure:

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 10.3.9.4,

“Configuring IPv4 Settings” ; or,

IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 10.3.9.5,

“Configuring IPv6 Settings” .

Configuring the Bond Tab

If you have already added a new bond connection (see Procedure 10.9, “Adding a New Bond

Connection” for instructions), you can edit the Bond tab to set the load sharing mode and the type of link monitoring to use to detect failures of a slave connection.

Mode

The mode that is used to share traffic over the slave connections which make up the bond. The default is Round-robin. Other load sharing modes, such as 802.3ad, can be selected by means of the drop-down list.

Link Monitoring

The method of monitoring the slaves ability to carry network traffic.

The following modes of load sharing are selectable from the Mode drop-down list:

Round-robin

Sets a round-robin policy for fault tolerance and load balancing. Transmissions are received and sent out sequentially on each bonded slave interface beginning with the first one available. This mode might not work behind a bridge with virtual machines without additional switch configuration.

Active backup

149

Deployment Guide

Sets an active-backup policy for fault tolerance. Transmissions are received and sent out via the first available bonded slave interface. Another bonded slave interface is only used if the active bonded slave interface fails. Note that this is the only mode available for bonds of InfiniBand devices.

XOR

Sets an XOR (exclusive-or) policy. Transmissions are based on the selected hash policy. The default is to derive a hash by XOR of the source and destination MAC addresses multiplied by the modulo of the number of slave interfaces. In this mode traffic destined for specific peers will always be sent over the same interface. As the destination is determined by the MAC addresses this method works best for traffic to peers on the same link or local network. If traffic has to pass through a single router then this mode of traffic balancing will be suboptimal.

Broadcast

Sets a broadcast policy for fault tolerance. All transmissions are sent on all slave interfaces. This mode might not work behind a bridge with virtual machines without additional switch configuration.

802.3ad

Sets an IEEE 802.3ad dynamic link aggregation policy. Creates aggregation groups that share the same speed and duplex settings. Transmits and receives on all slaves in the active aggregator.

Requires a network switch that is 802.3ad compliant.

Adaptive transmit load balancing

Sets an adaptive Transmit Load Balancing (TLB) policy for fault tolerance and load balancing. The outgoing traffic is distributed according to the current load on each slave interface. Incoming traffic is received by the current slave. If the receiving slave fails, another slave takes over the MAC address of the failed slave. This mode is only suitable for local addresses known to the kernel bonding module and therefore cannot be used behind a bridge with virtual machines.

Adaptive load balancing

Sets an Adaptive Load Balancing (ALB) policy for fault tolerance and load balancing. Includes transmit and receive load balancing for IPv4 traffic. Receive load balancing is achieved through ARP negotiation. This mode is only suitable for local addresses known to the kernel bonding module and therefore cannot be used behind a bridge with virtual machines.

The following types of link monitoring can be selected from the Link Monitoring drop-down list. It is a good idea to test which channel bonding module parameters work best for your bonded interfaces.

MII (Media Independent Interface)

The state of the carrier wave of the interface is monitored. This can be done by querying the driver, by querying MII registers directly, or by using ethtool to query the device. Three options are available:

Monitoring Frequency

The time interval, in milliseconds, between querying the driver or MII registers.

Link up delay

The time in milliseconds to wait before attempting to use a link that has been reported as up. This delay can be used if some gratuitous ARP requests are lost in the period immediately following the link being reported as “up”. This can happen during switch initialization for example.

150

CHAPTER 10. NETWORKMANAGER

Link down delay

The time in milliseconds to wait before changing to another link when a previously active link has been reported as “down”. This delay can be used if an attached switch takes a relatively long time to change to backup mode.

ARP

The address resolution protocol (ARP) is used to probe one or more peers to determine how well the link-layer connections are working. It is dependent on the device driver providing the transmit start time and the last receive time.

Two options are available:

Monitoring Frequency

The time interval, in milliseconds, between sending ARP requests.

ARP targets

A comma separated list of IP addresses to send ARP requests to.

10.3.7. Establishing a VLAN Connection

You can use NetworkManager to create a VLAN using an existing interface. Currently, at time of writing, you can only make VLANs on Ethernet devices.

Procedure 10.11. Adding a New VLAN Connection

You can configure a VLAN connection by opening the Network Connections window, clicking Add, and selecting VLAN from the list.

1. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

2. Click the Add button to open the selection list. Select VLAN and then click Create. The

Editing VLAN Connection 1 window appears.

3. On the VLAN tab, select the parent interface from the drop-down list you want to use for the

VLAN connection.

4. Enter the VLAN ID

5. Enter a VLAN interface name. This is the name of the VLAN interface that will be created. For example, "eth0.1" or "vlan2". (Normally this is either the parent interface name plus "." and the

VLAN ID, or "vlan" plus the VLAN ID.)

6. Review and confirm the settings and then click the Apply button.

7. Edit the VLAN-specific settings by referring to the Configuring the VLAN Tab description below .

Procedure 10.12. Editing an Existing VLAN Connection

Follow these steps to edit an existing VLAN connection.

151

Deployment Guide

1. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

2. Select the connection you want to edit and click the Edit button.

3. Select the VLAN tab.

4. Configure the connection name, auto-connect behavior, and availability settings.

Three settings in the Editing dialog are common to all connection types:

Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the VLAN section of the Network Connections window.

Connect automatically — Check this box if you want NetworkManager to auto-

connect to this connection when it is available. See Section 10.2.3, “Connecting to a Network

Automatically” for more information.

Available to all users — Check this box to create a connection available to all users

on the system. Changing this setting may require root privileges. See Section 10.2.4, “User and System Connections” for details.

5. Edit the VLAN-specific settings by referring to the Configuring the VLAN Tab description below .

Saving Your New (or Modified) Connection and Making Further Configurations

Once you have finished editing your VLAN connection, click the Apply button and NetworkManager will immediately save your customized configuration. Given a correct configuration, you can connect to your new or customized connection by selecting it from the NetworkManager Notification Area applet. See

Section 10.2.1, “Connecting to a Network” for information on using your new or altered connection.

You can further configure an existing connection by selecting it in the Network Connections window and clicking Edit to return to the Editing dialog.

Then, to configure:

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 10.3.9.4,

“Configuring IPv4 Settings” .

Configuring the VLAN Tab

If you have already added a new VLAN connection (see Procedure 10.11, “Adding a New VLAN

Connection” for instructions), you can edit the VLAN tab to set the parent interface and the VLAN ID.

Parent Interface

A previously configured interface can be selected in the drop-down list.

VLAN ID

The identification number to be used to tag the VLAN network traffic.

VLAN interface name

The name of the VLAN interface that will be created. For example, "eth0.1" or "vlan2".

Cloned MAC address

152

CHAPTER 10. NETWORKMANAGER

Optionally sets an alternate MAC address to use for identifying the VLAN interface. This can be used to change the source MAC address for packets sent on this VLAN.

MTU

Optionally sets a Maximum Transmission Unit (MTU) size to be used for packets to be sent over the

VLAN connection.

10.3.8. Establishing an IP-over-InfiniBand (IPoIB) Connection

You can use NetworkManager to create an InfiniBand connection.

Procedure 10.13. Adding a New InfiniBand Connection

You can configure an InfiniBand connection by opening the Network Connections window, clicking

Add, and selecting InfiniBand from the list.

1. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

2. Click the Add button to open the selection list. Select InfiniBand and then click Create. The

Editing InfiniBand Connection 1 window appears.

3. On the InfiniBand tab, select the transport mode from the drop-down list you want to use for the InfiniBand connection.

4. Enter the InfiniBand MAC address.

5. Review and confirm the settings and then click the Apply button.

6. Edit the InfiniBand-specific settings by referring to the Configuring the InfiniBand Tab description below .

153

Deployment Guide

Figure 10.15. Editing the newly created InfiniBand connection 1

Procedure 10.14. Editing an Existing InfiniBand Connection

Follow these steps to edit an existing InfiniBand connection.

1. Right-click on the NetworkManager applet icon in the Notification Area and click Edit

Connections. The Network Connections window appears.

2. Select the connection you want to edit and click the Edit button.

3. Select the InfiniBand tab.

4. Configure the connection name, auto-connect behavior, and availability settings.

Three settings in the Editing dialog are common to all connection types:

Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the InfiniBand section of the Network

Connections window.

Connect automatically — Check this box if you want NetworkManager to auto-

connect to this connection when it is available. See Section 10.2.3, “Connecting to a Network

Automatically” for more information.

154

CHAPTER 10. NETWORKMANAGER

Available to all users — Check this box to create a connection available to all users

on the system. Changing this setting may require root privileges. See Section 10.2.4, “User and System Connections” for details.

5. Edit the InfiniBand-specific settings by referring to the Configuring the InfiniBand Tab description below .

Saving Your New (or Modified) Connection and Making Further Configurations

Once you have finished editing your InfiniBand connection, click the Apply button and

NetworkManager will immediately save your customized configuration. Given a correct configuration, you can connect to your new or customized connection by selecting it from the NetworkManager

Notification Area applet. See Section 10.2.1, “Connecting to a Network”

for information on using your new or altered connection.

You can further configure an existing connection by selecting it in the Network Connections window and clicking Edit to return to the Editing dialog.

Then, to configure:

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 10.3.9.4,

“Configuring IPv4 Settings” ; or,

IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 10.3.9.5,

“Configuring IPv6 Settings” .

Configuring the InfiniBand Tab

If you have already added a new InfiniBand connection (see Procedure 10.13, “Adding a New InfiniBand

Connection” for instructions), you can edit the InfiniBand tab to set the parent interface and the

InfiniBand ID.

Transport mode

Datagram or Connected mode can be selected from the drop-down list. Select the same mode the rest of your IPoIB network is using.

Device MAC address

The MAC address of the InfiniBand capable device to be used for the InfiniBand network traffic.This

hardware address field will be pre-filled if you have InfiniBand hardware installed.

MTU

Optionally sets a Maximum Transmission Unit (MTU) size to be used for packets to be sent over the

InfiniBand connection.

10.3.9. Configuring Connection Settings

10.3.9.1. Configuring 802.1X Security

802.1X security is the name of the IEEE standard for port-based Network Access Control (PNAC).

Simply put, 802.1X security is a way of defining a logical network out of a physical one. All clients who want to join the logical network must authenticate with the server (a router, for example) using the correct 802.1X authentication method.

802.1X security is most often associated with securing wireless networks (WLANs), but can also be

155

Deployment Guide used to prevent intruders with physical access to the network (LAN) from gaining entry. In the past,

DHCP servers were configured not to lease IP addresses to unauthorized users, but for various reasons this practice is both impractical and insecure, and thus is no longer recommended. Instead, 802.1X

security is used to ensure a logically-secure network through port-based authentication.

802.1X provides a framework for WLAN and LAN access control and serves as an envelope for carrying one of the Extensible Authentication Protocol (EAP) types. An EAP type is a protocol that defines how

WLAN security is achieved on the network.

You can configure 802.1X security for a wired or wireless connection type by opening the Network

Connections window (see Section 10.2.2, “Configuring New and Editing Existing Connections” ) and

following the applicable procedure:

Procedure 10.15. For a wired connection...

1. Either click Add, select a new network connection for which you want to configure 802.1X

security and then click Create, or select an existing connection and click Edit.

2. Then select the 802.1X Security tab and check the Use 802.1X security for this

connection check box to enable settings configuration.

3. Proceed to Section 10.3.9.1.1, “Configuring TLS (Transport Layer Security) Settings”

Procedure 10.16. For a wireless connection...

1. Either click on Add, select a new network connection for which you want to configure 802.1X

security and then click Create, or select an existing connection and click Edit.

2. Select the Wireless Security tab.

3. Then click the Security dropdown and choose one of the following security methods: LEAP,

Dynamic WEP (802.1X), or WPA & WPA2 Enterprise.

4. See

Section 10.3.9.1.1, “Configuring TLS (Transport Layer Security) Settings”

for descriptions of which EAP types correspond to your selection in the Security dropdown.

10.3.9.1.1. Configuring TLS (Transport Layer Security) Settings

With Transport Layer Security, the client and server mutually authenticate using the TLS protocol. The server demonstrates that it holds a digital certificate, the client proves its own identity using its client-side certificate, and key information is exchanged. Once authentication is complete, the TLS tunnel is no longer used. Instead, the client and server use the exchanged keys to encrypt data using AES, TKIP or

WEP.

The fact that certificates must be distributed to all clients who want to authenticate means that the EAP-

TLS authentication method is very strong, but also more complicated to set up. Using TLS security requires the overhead of a public key infrastructure (PKI) to manage certificates. The benefit of using

TLS security is that a compromised password does not allow access to the (W)LAN: an intruder must also have access to the authenticating client's private key.

NetworkManager does not determine the version of TLS supported. NetworkManager gathers the parameters entered by the user and passes them to the daemon, wpa_supplicant, that handles the procedure. It in turn uses OpenSSL to establish the TLS tunnel. OpenSSL itself negotiates the SSL/TLS protocol version. It uses the highest version both ends support.

156

CHAPTER 10. NETWORKMANAGER

Identity

Identity string for EAP authentication methods, such as a user name or login name.

User certificate

Click to browse for, and select, a user's certificate.

CA certificate

Click to browse for, and select, a Certificate Authority's certificate.

Private key

Click to browse for, and select, a user's private key file. Note that the key must be password protected.

Private key password

Enter the user password corresponding to the user's private key.

10.3.9.1.2. Configuring Tunneled TLS Settings

Anonymous identity

This value is used as the unencrypted identity.

CA certificate

Click to browse for, and select, a Certificate Authority's certificate.

Inner authentication

PAP — Password Authentication Protocol.

MSCHAP — Challenge Handshake Authentication Protocol.

MSCHAPv2 — Microsoft Challenge Handshake Authentication Protocol version 2.

CHAP — Challenge Handshake Authentication Protocol.

Username

Enter the user name to be used in the authentication process.

Password

Enter the password to be used in the authentication process.

10.3.9.1.3. Configuring Protected EAP (PEAP) Settings

Anonymous Identity

This value is used as the unencrypted identity.

CA certificate

Click to browse for, and select, a Certificate Authority's certificate.

157

Deployment Guide

PEAP version

The version of Protected EAP to use. Automatic, 0 or 1.

Inner authentication

MSCHAPv2 — Microsoft Challenge Handshake Authentication Protocol version 2.

MD5 — Message Digest 5, a cryptographic hash function.

GTC — Generic Token Card.

Username

Enter the user name to be used in the authentication process.

Password

Enter the password to be used in the authentication process.

10.3.9.2. Configuring Wireless Security

Security

None — Do not encrypt the Wi-Fi connection.

WEP 40/128-bit Key — Wired Equivalent Privacy (WEP), from the IEEE 802.11 standard. Uses a single pre-shared key (PSK).

WEP 128-bit Passphrase — An MD5 hash of the passphrase will be used to derive a WEP key.

LEAP — Lightweight Extensible Authentication Protocol, from Cisco Systems.

Dynamic WEP (802.1X) — WEP keys are changed dynamically.

WPA & WPA2 Personal — Wi-Fi Protected Access (WPA), from the draft IEEE 802.11i standard. A replacement for WEP. Wi-Fi Protected Access II (WPA2), from the 802.11i-2004 standard. Personal mode uses a pre-shared key (WPA-PSK).

WPA & WPA2 Enterprise — WPA for use with a RADIUS authentication server to provide IEEE

802.1X network access control.

Password

Enter the password to be used in the authentication process.

NOTE

In the case of WPA and WPA2 (Personal and Enterprise), an option to select between

Auto, WPA and WPA2 has been added. This option is intended for use with an access point that is offering both WPA and WPA2. Select one of the protocols if you would like to prevent roaming between the two protocols. Roaming between WPA and WPA2 on the same access point can cause loss of service.

158

CHAPTER 10. NETWORKMANAGER

Figure 10.16. Editing the Wireless Security tab and selecting the WPA protocol

10.3.9.3. Configuring PPP (Point-to-Point) Settings

Configure Methods

Use point-to-point encryption (MPPE)

Microsoft Point-To-Point Encryption protocol (RFC 3078).

Allow BSD data compression

PPP BSD Compression Protocol (RFC 1977).

Allow Deflate data compression

PPP Deflate Protocol (RFC 1979).

Use TCP header compression

Compressing TCP/IP Headers for Low-Speed Serial Links (RFC 1144).

Send PPP echo packets

LCP Echo-Request and Echo-Reply Codes for loopback tests (RFC 1661).

10.3.9.4. Configuring IPv4 Settings

159

Deployment Guide

Figure 10.17. Editing the IPv4 Settings Tab

The IPv4 Settings tab allows you to configure the method by which you connect to the Internet and enter IP address, route, and DNS information as required. The IPv4 Settings tab is available when you create and modify one of the following connection types: wired, wireless, mobile broadband, VPN or

DSL.

If you are using DHCP to obtain a dynamic IP address from a DHCP server, you can set Method to

Automatic (DHCP).

Setting the Method

Available IPv4 Methods by Connection Type

When you click the Method dropdown menu, depending on the type of connection you are configuring, you are able to select one of the following IPv4 connection methods. All of the methods are listed here according to which connection type or types they are associated with.

Method

Automatic (DHCP) — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses. You do not need to fill in the DHCP client ID field.

Automatic (DHCP) addresses only — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses but you want to assign DNS servers manually.

160

CHAPTER 10. NETWORKMANAGER

Link-Local Only — Choose this option if the network you are connecting to does not have a DHCP server and you do not want to assign IP addresses manually. Random addresses will be selected as per RFC 3927.

Shared to other computers — Choose this option if the interface you are configuring is for sharing an Internet or WAN connection.

Wired, Wireless and DSL Connection Methods

Manual — Choose this option if the network you are connecting to does not have a DHCP server and you want to assign IP addresses manually.

Mobile Broadband Connection Methods

Automatic (PPP) — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses.

Automatic (PPP) addresses only — Choose this option if the network you are connecting to uses a

DHCP server to assign IP addresses but you want to assign DNS servers manually.

VPN Connection Methods

Automatic (VPN) — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses.

Automatic (VPN) addresses only — Choose this option if the network you are connecting to uses a

DHCP server to assign IP addresses but you want to assign DNS servers manually.

DSL Connection Methods

Automatic (PPPoE) — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses.

Automatic (PPPoE) addresses only — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses but you want to assign DNS servers manually.

PPPoE Specific Configuration Steps

If more than one NIC is installed, and PPPoE will only be run over one NIC but not the other, then for correct PPPoE operation it is also necessary to lock the connection to the specific Ethernet device

PPPoE is supposed to be run over. To lock the connection to one specific NIC, do one of the following:

Enter the MAC address in nm-connection-editor for that connection. Optionally select

Connect automatically and Available to all users to make the connection come up without requiring user login after system start.

Set the hardware-address in the [802-3-ethernet] section in the appropriate file for that connection in /etc/NetworkManager/system-connections/ as follows:

[802-3-ethernet] mac-address=00:11:22:33:44:55

Mere presence of the file in /etc/NetworkManager/system-connections/ means that it is

“available to all users”. Ensure that autoconnect=true appears in the [connection] section for the connection to be brought up without requiring user login after system start.

For information on configuring static routes for the network connection, go to Section 10.3.9.6,

“Configuring Routes” .

161

Deployment Guide

10.3.9.5. Configuring IPv6 Settings

Method

Ignore — Choose this option if you want to disable IPv6 settings.

Automatic — Choose this option if the network you are connecting to uses a DHCP server to assign

IP addresses.

Automatic, addresses only — Choose this option if the network you are connecting to uses a

DHCP server to assign IP addresses but you want to assign DNS servers manually.

Manual — Choose this option if the network you are connecting to does not have a DHCP server and you want to assign IP addresses manually.

Link-Local Only — Choose this option if the network you are connecting to does not have a DHCP server and you do not want to assign IP addresses manually. Random addresses will be selected as per RFC 4862.

Shared to other computers — Choose this option if the interface you are configuring is for sharing an Internet or WAN connection.

Addresses

DNS servers — Enter a comma separated list of DNS servers.

Search domains — Enter a comma separated list of domain controllers.

For information on configuring static routes for the network connection, go to Section 10.3.9.6,

“Configuring Routes” .

10.3.9.6. Configuring Routes

A host's routing table will be automatically populated with routes to directly connected networks. The routes are learned by observing the network interfaces when they are “up”. This section is for entering static routes to networks or hosts which can be reached by traversing an intermediate network or connection, such as a VPN or leased line.

162

CHAPTER 10. NETWORKMANAGER

Figure 10.18. Configuring static network routes

Addresses

Address — The IP address of a network, sub-net or host.

Netmask — The netmask or prefix length of the IP address just entered.

Gateway — The IP address of the gateway leading to the network, sub-net or host.

Metric — A network cost, that is to say a preference value to give to this route. Lower values will be preferred over higher values.

Ignore automatically obtained routes

Select this check box to only use manually entered routes for this connection.

Use this connection only for resources on its network

Select this check box to prevent the connection from becoming the default route. Typical examples are where a connection is a VPN or a leased line to a head office and you do not want any Internet bound traffic to pass over the connection. Selecting this option means that only traffic specifically destined for routes learned automatically over the connection or entered here manually will be routed over the connection.

163

Deployment Guide

CHAPTER 11. NETWORK INTERFACES

Under Red Hat Enterprise Linux, all network communications occur between configured software interfaces and physical networking devices connected to the system.

The configuration files for network interfaces are located in the /etc/sysconfig/network-

scripts/ directory. The scripts used to activate and deactivate these network interfaces are also located here. Although the number and type of interface files can differ from system to system, there are three categories of files that exist in this directory:

1. Interface configuration files

2. Interface control scripts

3. Network function files

The files in each of these categories work together to enable various network devices.

This chapter explores the relationship between these files and how they are used.

11.1. NETWORK CONFIGURATION FILES

Before delving into the interface configuration files, let us first itemize the primary configuration files used in network configuration. Understanding the role these files play in setting up the network stack can be helpful when customizing a Red Hat Enterprise Linux system.

The primary network configuration files are as follows:

/etc/hosts

The main purpose of this file is to resolve host names that cannot be resolved any other way. It can also be used to resolve host names on small networks with no DNS server. Regardless of the type of network the computer is on, this file should contain a line specifying the IP address of the loopback device (127.0.0.1) as localhost.localdomain. For more information, see the hosts(5) manual page.

/etc/resolv.conf

This file specifies the IP addresses of DNS servers and the search domain. Unless configured to do otherwise, the network initialization scripts populate this file. For more information about this file, see the resolv.conf(5) manual page.

/etc/sysconfig/network

This file specifies routing and host information for all network interfaces. It is used to contain directives which are to have global effect and not to be interface specific. For more information about this file and the directives it accepts, see

Section D.1.13, “/etc/sysconfig/network” .

/etc/sysconfig/network-scripts/ifcfg-interface-name

For each network interface, there is a corresponding interface configuration script. Each of these files

provide information specific to a particular network interface. See Section 11.2, “Interface

Configuration Files” for more information on this type of file and the directives it accepts.

164

CHAPTER 11. NETWORK INTERFACES

IMPORTANT

Network interface names may be different on different hardware types. See Appendix A,

Consistent Network Device Naming for more information.

WARNING

The /etc/sysconfig/networking/ directory is used by the now deprecated

Network Administration Tool (system-config-network). Its contents should

not be edited manually. Using only one method for network configuration is strongly encouraged, due to the risk of configuration deletion. For more information about

configuring network interfaces using graphical configuration tools, see Chapter 10,

NetworkManager .

11.1.1. Setting the Host Name

To permanently change the static host name, change the HOSTNAME directive in the

/etc/sysconfig/network file. For example:

HOSTNAME=penguin.example.com

Red Hat recommends the static host name matches the fully qualified domain name (FQDN) used for the machine in DNS, such as host.example.com. It is also recommended that the static host name consists only of 7 bit ASCII lower-case characters, no spaces or dots, and limits itself to the format allowed for DNS domain name labels, even though this is not a strict requirement. Older specifications do not permit the underscore, and so their use is not recommended. Changes will only take effect when the networking service, or the system, is restarted.

Note that the FQDN of the host can be supplied by a DNS resolver, by settings in

/etc/sysconfig/network, or by the /etc/hosts file. The default setting of hosts: files dns in

/etc/nsswitch.conf causes the configuration files to be checked before a resolver. The default setting of multi on in the /etc/host.conf file means that all valid values in the /etc/hosts file are returned, not just the first.

Sometimes you may need to use the host table in the /etc/hosts file instead of the HOSTNAME directive in /etc/sysconfig/network, for example, when DNS is not running during system bootup.

To change the host name using the /etc/hosts file, add lines to it in the following format:

192.168.1.2 penguin.example.com penguin

11.2. INTERFACE CONFIGURATION FILES

Interface configuration files control the software interfaces for individual network devices. As the system boots, it uses these files to determine what interfaces to bring up and how to configure them. These files are usually named ifcfg-name, where name refers to the name of the device that the configuration file controls.

165

Deployment Guide

11.2.1. Ethernet Interfaces

One of the most common interface files is /etc/sysconfig/network-scripts/ifcfg-eth0, which controls the first Ethernet network interface card or NIC in the system. In a system with multiple NICs, there are multiple ifcfg-ethX files (where X is a unique number corresponding to a specific interface).

Because each device has its own configuration file, an administrator can control how each interface functions individually.

The following is a sample ifcfg-eth0 file for a system using a fixed IP address:

DEVICE=eth0

BOOTPROTO=none

ONBOOT=yes

NETMASK=255.255.255.0

IPADDR=10.0.1.27

USERCTL=no

The values required in an interface configuration file can change based on other values. For example, the ifcfg-eth0 file for an interface using DHCP looks different because IP information is provided by the DHCP server:

DEVICE=eth0

BOOTPROTO=dhcp

ONBOOT=yes

NetworkManager is graphical configuration tool which provides an easy way to make changes to the

various network interface configuration files (see Chapter 10, NetworkManager for detailed instructions

on using this tool).

However, it is also possible to manually edit the configuration files for a given network interface.

Below is a listing of the configurable parameters in an Ethernet interface configuration file:

BONDING_OPTS =parameters sets the configuration parameters for the bonding device, and is used in

/etc/sysconfig/network-scripts/ifcfg-bondN (see Section 11.2.4, “Channel Bonding

Interfaces” ). These parameters are identical to those used for bonding devices in

/sys/class/net/bonding_device/bonding, and the module parameters for the bonding driver as described in bonding Module Directives.

This configuration method is used so that multiple bonding devices can have different configurations.

In Red Hat Enterprise Linux 6, place all interface-specific bonding options after the BONDING_OPTS directive in ifcfg-name files. See

Where to specify bonding module parameters

for more information.

BOOTPROTO =protocol where protocol is one of the following:

none — No boot-time protocol should be used.

bootp — The BOOTP protocol should be used.

dhcp — The DHCP protocol should be used.

166

CHAPTER 11. NETWORK INTERFACES

BROADCAST =address where address is the broadcast address. This directive is deprecated, as the value is calculated automatically with ipcalc.

DEVICE =name where name is the name of the physical device (except for dynamically-allocated PPP devices where it is the logical name).

DHCP_HOSTNAME =name where name is a short host name to be sent to the DHCP server. Use this option only if the DHCP server requires the client to specify a host name before receiving an IP address.

DHCPV6C =answer where answer is one of the following:

yes — Use DHCP to obtain an IPv6 address for this interface.

no — Do not use DHCP to obtain an IPv6 address for this interface. This is the default value.

An IPv6 link-local address will still be assigned by default. The link-local address is based on the

MAC address of the interface as per RFC 4862.

DHCPV6C_OPTIONS =answer where answer is one of the following:

-P — Enable IPv6 prefix delegation.

-S — Use DHCP to obtain stateless configuration only, not addresses, for this interface.

-N — Restore normal operation after using the -T or -P options.

-T — Use DHCP to obtain a temporary IPv6 address for this interface.

-D — Override the default when selecting the type of DHCP Unique Identifier (DUID) to use.

By default, the DHCP client (dhclient) creates a DHCP Unique Identifier (DUID) based on the link-layer address (DUID-LL) if it is running in stateless mode (with the -S option, to not request an address), or it creates an identifier based on the link-layer address plus a timestamp (DUID-LLT) if it is running in stateful mode (without -S, requesting an address).

The -D option overrides this default, with a value of either LL or LLT.

DNS{1,2} =address where address is a name server address to be placed in /etc/resolv.conf provided that the

PEERDNS directive is not set to no.

ETHTOOL_OPTS =options where options are any device-specific options supported by ethtool. For example, if you wanted to force 100Mb, full duplex:

ETHTOOL_OPTS="autoneg off speed 100 duplex full"

167

Deployment Guide

Instead of a custom initscript, use ETHTOOL_OPTS to set the interface speed and duplex settings.

Custom initscripts run outside of the network init script lead to unpredictable results during a post-boot network service restart.

IMPORTANT

Changing speed or duplex settings almost always requires disabling auto-negotiation with the autoneg off option. This option needs to be stated first, as the option entries are order-dependent.

See

Section 11.8, “Ethtool” for more

ethtool options.

HOTPLUG =answer where answer is one of the following:

yes — This device should be activated when it is hot-plugged (this is the default option).

no — This device should not be activated when it is hot-plugged.

The HOTPLUG=no option can be used to prevent a channel bonding interface from being activated when a bonding kernel module is loaded.

See

Section 11.2.4, “Channel Bonding Interfaces”

for more information about channel bonding interfaces.

HWADDR =MAC-address where MAC-address is the hardware address of the Ethernet device in the form

AA:BB:CC:DD:EE:FF. This directive must be used in machines containing more than one NIC to ensure that the interfaces are assigned the correct device names regardless of the configured load order for each NIC's module. This directive should not be used in conjunction with MACADDR.

NOTE

Persistent device names are now handled by /etc/udev/rules.d/70-

persistent-net.rules.

HWADDR must not be used with System z network devices.

See Section 25.3.3, "Mapping subchannels and network device names", in the Red Hat Enterprise Linux 6 Installation Guide .

IPADDR n=address where address is the IPv4 address and the n is expected to be consecutive positive integers starting from 0 (for example, IPADDR0). It is used for configurations with multiple IP addresses on an interface. It can be omitted if there is only one address being configured.

IPV6ADDR =address where address is the first static, or primary, IPv6 address on an interface.

The format is Address/Prefix-length. If no prefix length is specified, /64 is assumed. Note that this setting depends on IPV6INIT being enabled.

168

CHAPTER 11. NETWORK INTERFACES

IPV6ADDR_SECONDARIES =address where address is one or more, space separated, additional IPv6 addresses.

The format is Address/Prefix-length. If no prefix length is specified, /64 is assumed. Note that this setting depends on IPV6INIT being enabled.

IPV6INIT =answer where answer is one of the following:

yes — Initialize this interface for IPv6 addressing.

no — Do not initialize this interface for IPv6 addressing. This is the default value.

This setting is required for IPv6 static and DHCP assignment of IPv6 addresses. It does not affect IPv6 Stateless Address Autoconfiguration (SLAAC) as per RFC 4862 .

See

Section D.1.13, “/etc/sysconfig/network”

for information on disabling IPv6.

IPV6_AUTOCONF =answer where answer is one of the following:

yes — Enable IPv6 autoconf configuration for this interface.

no — Disable IPv6 autoconf configuration for this interface.

If enabled, an IPv6 address will be requested using Neighbor Discovery (ND) from a router running the radvd daemon.

Note that the default value of IPV6_AUTOCONF depends on IPV6FORWARDING as follows:

If IPV6FORWARDING=yes, then IPV6_AUTOCONF will default to no.

If IPV6FORWARDING=no, then IPV6_AUTOCONF will default to yes and IPV6_ROUTER has no effect.

IPV6_MTU =value where value is an optional dedicated MTU for this interface.

IPV6_PRIVACY =rfc3041 where rfc3041 optionally sets this interface to support RFC 3041 Privacy Extensions for Stateless

Address Autoconfiguration in IPv6 . Note that this setting depends on IPV6INIT option being enabled.

The default is for RFC 3041 support to be disabled. Stateless Autoconfiguration will derive addresses based on the MAC address, when available, using the modified EUI-64 method. The address is appended to a prefix but as the address is normally derived from the MAC address it is globally unique even when the prefix changes. In the case of a link-local address the prefix is fe80::/64 as per RFC 2462 IPv6 Stateless Address Autoconfiguration .

LINKDELAY =time

169

Deployment Guide where time is the number of seconds to wait for link negotiation before configuring the device. The default is 5 secs. Delays in link negotiation, caused by STP for example, can be overcome by increasing this value.

MACADDR =MAC-address where MAC-address is the hardware address of the Ethernet device in the form

AA:BB:CC:DD:EE:FF.

This directive is used to assign a MAC address to an interface, overriding the one assigned to the physical NIC. This directive should not be used in conjunction with the HWADDR directive.

MASTER =bond-interface where bond-interface is the channel bonding interface to which the Ethernet interface is linked.

This directive is used in conjunction with the SLAVE directive.

See

Section 11.2.4, “Channel Bonding Interfaces”

for more information about channel bonding interfaces.

NETMASK n=mask where mask is the netmask value and the n is expected to be consecutive positive integers starting from 0 (for example, NETMASK0). It is used for configurations with multiple IP addresses on an interface. It can be omitted if there is only one address being configured.

NETWORK =address where address is the network address. This directive is deprecated, as the value is calculated automatically with ipcalc.

NM_CONTROLLED =answer where answer is one of the following:

yesNetworkManager is permitted to configure this device. This is the default behavior and can be omitted.

noNetworkManager is not permitted to configure this device.

NOTE

The NM_CONTROLLED directive is now, as of Red Hat Enterprise Linux 6.3, dependent on the NM_BOND_VLAN_ENABLED directive in /etc/sysconfig/network. If and only if that directive is present and is one of yes, y, or true, will NetworkManager detect and manage bonding and VLAN interfaces.

ONBOOT =answer where answer is one of the following:

yes — This device should be activated at boot-time.

no — This device should not be activated at boot-time.

170

CHAPTER 11. NETWORK INTERFACES

PEERDNS =answer where answer is one of the following:

yes — Modify /etc/resolv.conf if the DNS directive is set, if using DHCP, or if using

Microsoft's RFC 1877 IPCP extensions with PPP. In all cases yes is the default.

no — Do not modify /etc/resolv.conf.

SLAVE =answer where answer is one of the following:

yes — This device is controlled by the channel bonding interface specified in the MASTER directive.

no — This device is not controlled by the channel bonding interface specified in the MASTER directive.

This directive is used in conjunction with the MASTER directive.

See

Section 11.2.4, “Channel Bonding Interfaces”

for more about channel bonding interfaces.

SRCADDR =address where address is the specified source IP address for outgoing packets.

USERCTL =answer where answer is one of the following:

yes — Non-root users are allowed to control this device.

no — Non-root users are not allowed to control this device.

11.2.2. Specific ifcfg Options for Linux on System z

SUBCHANNELS=<read_device_bus_id>, <write_device_bus_id>, <data_device_bus_id> where <read_device_bus_id>, <write_device_bus_id>, and <data_device_bus_id> are the three device bus IDs representing a network device.

PORTNAME=myname; where myname is the Open Systems Adapter (OSA) portname or LAN Channel Station (LCS) portnumber.

CTCPROT =answer where answer is one of the following:

0 — Compatibility mode, TCP/IP for Virtual Machines (used with non-Linux peers other than

IBM S/390 and IBM System z operating systems). This is the default mode.

1 — Extended mode, used for Linux-to-Linux Peers.

3 — Compatibility mode for S/390 and IBM System z operating systems.

171

172

Deployment Guide

This directive is used in conjunction with the NETTYPE directive. It specifies the CTC protocol for

NETTYPE='ctc'. The default is 0.

OPTION ='answer' where 'answer' is a quoted string of any valid sysfs attributes and their value. The Red Hat

Enterprise Linux installer currently uses this to configure the layer mode, (layer2), and the relative port number, (portno), of QETH devices. For example:

OPTIONS='layer2=1 portno=0'

11.2.3. Required ifcfg Options for Linux on System z

NETTYPE =answer where answer is one of the following:

ctc — Channel-to-Channel communication. For point-to-point TCP/IP or TTY.

lcs — LAN Channel Station (LCS).

qeth — QETH (QDIO Ethernet). This is the default network interface. It is the preferred installation method for supporting real or virtual OSA cards and HiperSockets devices.

11.2.4. Channel Bonding Interfaces

Red Hat Enterprise Linux allows administrators to bind multiple network interfaces together into a single channel using the bonding kernel module and a special network interface called a channel bonding interface. Channel bonding enables two or more network interfaces to act as one, simultaneously increasing the bandwidth and providing redundancy.

WARNING

The use of direct cable connections without network switches is not supported for bonding. The failover mechanisms described here will not work as expected without the presence of network switches. See the Red Hat Knowledgebase article Why is bonding in not supported with direct connection using crossover cables?

for more information.

NOTE

The active-backup, balance-tlb and balance-alb modes do not require any specific configuration of the switch. Other bonding modes require configuring the switch to aggregate the links. For example, a Cisco switch requires EtherChannel for Modes 0, 2, and 3, but for Mode 4 LACP and EtherChannel are required. See the documentation supplied with your switch and the bonding.txt file in the kernel-doc package (see

Section 31.9, “Additional Resources” ).

CHAPTER 11. NETWORK INTERFACES

11.2.4.1. Check if Bonding Kernel Module is Installed

In Red Hat Enterprise Linux 6, the bonding module is not loaded by default. You can load the module by issuing the following command as root:

~]# modprobe --first-time bonding

No visual output indicates the module was not running and has now been loaded. This activation will not persist across system restarts. See

Section 31.7, “Persistent Module Loading” for an explanation of

persistent module loading. Note that given a correct configuration file using the BONDING_OPTS directive, the bonding module will be loaded as required and therefore does not need to be loaded separately.

To display information about the module, issue the following command:

~]$ modinfo bonding

See the modprobe(8) man page for more command options and see Chapter 31, Working with Kernel

Modules for information on loading and unloading modules.

11.2.4.2. Create a Channel Bonding Interface

To create a channel bonding interface, create a file in the /etc/sysconfig/network-scripts/ directory called ifcfg-bondN, replacing N with the number for the interface, such as 0.

The contents of the file can be identical to whatever type of interface is getting bonded, such as an

Ethernet interface. The only difference is that the DEVICE directive is bondN, replacing N with the number for the interface. The NM_CONTROLLED directive can be added to prevent NetworkManager from configuring this device.

Example 11.1. Example ifcfg-bond0 interface configuration file

The following is an example of a channel bonding interface configuration file:

DEVICE=bond0

IPADDR=192.168.1.1

NETMASK=255.255.255.0

ONBOOT=yes

BOOTPROTO=none

USERCTL=no

NM_CONTROLLED=no

BONDING_OPTS="bonding parameters separated by spaces"

The MAC address of the bond will be taken from the first interface to be enslaved. It can also be specified using the HWADDR directive if required. If you want NetworkManager to control this interface, remove the NM_CONTROLLED=no directive, or set it to yes, and add TYPE=Bond and

BONDING_MASTER=yes.

After the channel bonding interface is created, the network interfaces to be bound together must be configured by adding the MASTER and SLAVE directives to their configuration files. The configuration files for each of the channel-bonded interfaces can be nearly identical.

Example 11.2. Example ifcfg-ethX bonded interface configuration file

173

Deployment Guide

If two Ethernet interfaces are being channel bonded, both eth0 and eth1 can be as follows:

DEVICE=ethX

BOOTPROTO=none

ONBOOT=yes

MASTER=bond0

SLAVE=yes

USERCTL=no

NM_CONTROLLED=no

In this example, replace X with the numerical value for the interface.

Once the interfaces have been configured, restart the network service to bring the bond up. As root, issue the following command:

~]# service network restart

To view the status of a bond, view the /proc/ file by issuing a command in the following format:

cat /proc/net/bonding/bondN

For example:

~]$ cat /proc/net/bonding/bond0

Ethernet Channel Bonding Driver: v3.6.0 (September 26, 2009)

Bonding Mode: load balancing (round-robin)

MII Status: down

MII Polling Interval (ms): 0

Up Delay (ms): 0

Down Delay (ms): 0

For further instructions and advice on configuring the bonding module and to view the list of bonding

parameters, see Section 31.8.1, “Using Channel Bonding”

.

Support for bonding was added to NetworkManager in Red Hat Enterprise Linux 6.3. See

Section 11.2.1, “Ethernet Interfaces”

for an explanation of NM_CONTROLLED and the

NM_BOND_VLAN_ENABLED directive.

174

CHAPTER 11. NETWORK INTERFACES

IMPORTANT

In Red Hat Enterprise Linux 6, interface-specific parameters for the bonding kernel module must be specified as a space-separated list in the BONDING_OPTS="bonding

parameters" directive in the ifcfg-bondN interface file. Do not specify options specific to a bond in /etc/modprobe.d/bonding.conf, or in the deprecated

/etc/modprobe.conf file.

The max_bonds parameter is not interface specific and therefore, if required, should be specified in /etc/modprobe.d/bonding.conf as follows: options bonding max_bonds=1

However, the max_bonds parameter should not be set when using ifcfg-bondN files with the BONDING_OPTS directive as this directive will cause the network scripts to create the bond interfaces as required.

Note that any changes to /etc/modprobe.d/bonding.conf will not take effect until

the module is next loaded. A running module must first be unloaded. See Chapter 31,

Working with Kernel Modules for more information on loading and unloading modules.

11.2.4.2.1. Creating Multiple Bonds

In Red Hat Enterprise Linux 6, for each bond a channel bonding interface is created including the

BONDING_OPTS directive. This configuration method is used so that multiple bonding devices can have different configurations. To create multiple channel bonding interfaces, proceed as follows:

Create multiple ifcfg-bondN files with the BONDING_OPTS directive; this directive will cause the network scripts to create the bond interfaces as required.

Create, or edit existing, interface configuration files to be bonded and include the SLAVE directive.

Assign the interfaces to be bonded, the slave interfaces, to the channel bonding interfaces by means of the MASTER directive.

Example 11.3. Example multiple ifcfg-bondN interface configuration files

The following is an example of a channel bonding interface configuration file:

DEVICE=bondN

IPADDR=192.168.1.1

NETMASK=255.255.255.0

ONBOOT=yes

BOOTPROTO=none

USERCTL=no

NM_CONTROLLED=no

BONDING_OPTS="bonding parameters separated by spaces"

In this example, replace N with the number for the bond interface. For example, to create two bonds create two configuration files, ifcfg-bond0 and ifcfg-bond1.

Create the interfaces to be bonded as per Example 11.2, “Example ifcfg-ethX bonded interface

175

Deployment Guide configuration file” and assign them to the bond interfaces as required using the MASTER=bondN directive. For example, continuing on from the example above, if two interfaces per bond are required, then for two bonds create four interface configuration files and assign the first two using MASTER=bond0 and the next two using MASTER=bond1.

11.2.5. Configuring a VLAN over a Bond

This section will show configuring a VLAN over a bond consisting of two Ethernet links between a server and an Ethernet switch. The switch has a second bond to another server. Only the configuration for the first server will be shown as the other is essentially the same apart from the IP addresses.

WARNING

The use of direct cable connections without network switches is not supported for bonding. The failover mechanisms described here will not work as expected without the presence of network switches. See the Red Hat Knowledgebase article Why is bonding in not supported with direct connection using crossover cables?

for more information.

NOTE

The active-backup, balance-tlb and balance-alb modes do not require any specific configuration of the switch. Other bonding modes require configuring the switch to aggregate the links. For example, a Cisco switch requires EtherChannel for Modes 0, 2, and 3, but for Mode 4 LACP and EtherChannel are required. See the documentation supplied with your switch and the bonding.txt file in the kernel-doc package (see

Section 31.9, “Additional Resources” ).

Check the available interfaces on the server:

~]$ ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast state DOWN qlen

1000

link/ether 52:54:00:19:28:fe brd ff:ff:ff:ff:ff:ff

3: eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast state DOWN qlen

1000

link/ether 52:54:00:f6:63:9a brd ff:ff:ff:ff:ff:ff

Procedure 11.1. Configuring the Interfaces on the Server

1. Configure a slave interface using eth0:

~]# vi /etc/sysconfig/network-scripts/ifcfg-eth0

NAME=bond0-slave0

176

CHAPTER 11. NETWORK INTERFACES

DEVICE=eth0

TYPE=Ethernet

BOOTPROTO=none

ONBOOT=yes

MASTER=bond0

SLAVE=yes

NM_CONTROLLED=no

The use of the NAME directive is optional. It is for display by a GUI interface, such as nm-

connection-editor and nm-applet.

2. Configure a slave interface using eth1:

~]# vi /etc/sysconfig/network-scripts/ifcfg-eth1

NAME=bond0-slave1

DEVICE=eth1

TYPE=Ethernet

BOOTPROTO=none

ONBOOT=yes

MASTER=bond0

SLAVE=yes

NM_CONTROLLED=no

The use of the NAME directive is optional. It is for display by a GUI interface, such as nm-

connection-editor and nm-applet.

3. Configure a channel bonding interface ifcfg-bond0:

~]# vi /etc/sysconfig/network-scripts/ifcfg-bond0

NAME=bond0

DEVICE=bond0

BONDING_MASTER=yes

TYPE=Bond

IPADDR=192.168.100.100

NETMASK=255.255.255.0

ONBOOT=yes

BOOTPROTO=none

BONDING_OPTS="mode=active-backup miimon=100"

NM_CONTROLLED=no

The use of the NAME directive is optional. It is for display by a GUI interface, such as nm-

connection-editor and nm-applet. In this example MII is used for link monitoring, see the

Section 31.8.1.1, “Bonding Module Directives”

section for more information on link monitoring.

4. Check the status of the interfaces on the server:

~]$ ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

link/ether 52:54:00:19:28:fe brd ff:ff:ff:ff:ff:ff

inet6 fe80::5054:ff:fe19:28fe/64 scope link

177

Deployment Guide

valid_lft forever preferred_lft forever

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

link/ether 52:54:00:f6:63:9a brd ff:ff:ff:ff:ff:ff

inet6 fe80::5054:ff:fef6:639a/64 scope link

valid_lft forever preferred_lft forever

Procedure 11.2. Resolving Conflicts with Interfaces

The interfaces configured as slaves should not have IP addresses assigned to them apart from the IPv6 link-local addresses (starting fe80). If you have an unexpected IP address, then there may be another configuration file with ONBOOT set to yes.

1. If this occurs, issue the following command to list all ifcfg files that may be causing a conflict:

~]$ grep -r "ONBOOT=yes" /etc/sysconfig/network-scripts/ | cut -f1 d":" | xargs grep -E "IPADDR|SLAVE"

/etc/sysconfig/network-scripts/ifcfg-lo:IPADDR=127.0.0.1

The above shows the expected result on a new installation. Any file having both the ONBOOT directive as well as the IPADDR or SLAVE directive will be displayed. For example, if the

ifcfg-eth1 file was incorrectly configured, the display might look similar to the following:

~]# grep -r "ONBOOT=yes" /etc/sysconfig/network-scripts/ | cut -f1 d":" | xargs grep -E "IPADDR|SLAVE"

/etc/sysconfig/network-scripts/ifcfg-lo:IPADDR=127.0.0.1

/etc/sysconfig/network-scripts/ifcfg-eth1:SLAVE=yes

/etc/sysconfig/network-scripts/ifcfg-eth1:IPADDR=192.168.55.55

2. Any other configuration files found should be moved to a different directory for backup, or assigned to a different interface by means of the HWADDR directive. After resolving any conflict set the interfaces “down” and “up” again or restart the network service as root:

~]# service network restart

Shutting down interface bond0: [ OK

]

Shutting down loopback interface: [ OK ]

Bringing up loopback interface: [ OK

]

Bringing up interface bond0: Determining if ip address

192.168.100.100 is already in use for device bond0...

[ OK

]

If you are using NetworkManager, you might need to restart it at this point to make it forget the unwanted IP address. As root:

~]# service NetworkManager restart

Procedure 11.3. Checking the bond on the Server

1. Bring up the bond on the server as root:

178

CHAPTER 11. NETWORK INTERFACES

~]# ifup /etc/sysconfig/network-scripts/ifcfg-bond0

Determining if ip address 192.168.100.100 is already in use for device bond0...

2. Check the status of the interfaces on the server:

~]$ ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP qlen 1000

link/ether 52:54:00:19:28:fe brd ff:ff:ff:ff:ff:ff

3: eth1: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP qlen 1000

link/ether 52:54:00:f6:63:9a brd ff:ff:ff:ff:ff:ff

4: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP

link/ether 52:54:00:19:28:fe brd ff:ff:ff:ff:ff:ff

inet 192.168.100.100/24 brd 192.168.100.255 scope global bond0

inet6 fe80::5054:ff:fe19:28fe/64 scope link

valid_lft forever preferred_lft forever

Notice that eth0 and eth1 have master bond0 state UP and bond0 has status of

MASTER,UP.

3. View the bond configuration details:

~]$ cat /proc/net/bonding/bond0

Ethernet Channel Bonding Driver: v3.6.0 (September 26, 2009)

Bonding Mode: transmit load balancing

Primary Slave: None

Currently Active Slave: eth0

MII Status: up

MII Polling Interval (ms): 100

Up Delay (ms): 0

Down Delay (ms): 0

Slave Interface: eth0

MII Status: up

Speed: 100 Mbps

Duplex: full

Link Failure Count: 0

Permanent HW addr: 52:54:00:19:28:fe

Slave queue ID: 0

Slave Interface: eth1

MII Status: up

Speed: 100 Mbps

Duplex: full

179

Deployment Guide

Link Failure Count: 0

Permanent HW addr: 52:54:00:f6:63:9a

Slave queue ID: 0

4. Check the routes on the server:

~]$ ip route

192.168.100.0/24 dev bond0 proto kernel scope link src

192.168.100.100

169.254.0.0/16 dev bond0 scope link metric 1004

Procedure 11.4. Configuring the VLAN on the Server

IMPORTANT

At the time of writing, it is important that the bond has slaves and that they are “up” before bringing up the VLAN interface. At the time of writing, adding a VLAN interface to a bond without slaves does not work. In Red Hat Enterprise Linux 6, setting the ONPARENT directive to yes is important to ensure that the VLAN interface does not attempt to come up before the bond is up. This is because a VLAN virtual device takes the MAC address of its parent, and when a NIC is enslaved, the bond changes its MAC address to that NIC's

MAC address.

NOTE

A VLAN slave cannot be configured on a bond with the fail_over_mac=follow option, because the VLAN virtual device cannot change its MAC address to match the parent's new MAC address. In such a case, traffic would still be sent with the now incorrect source

MAC address.

Some older network interface cards, loopback interfaces, Wimax cards, and some

Infiniband devices, are said to be VLAN challenged, meaning they cannot support VLANs.

This is usually because the devices cannot cope with VLAN headers and the larger MTU size associated with VLANs.

1. Create a VLAN interface file bond0.192:

~]# vi /etc/sysconfig/network-scripts/ifcfg-bond0.192

DEVICE=bond0.192

NAME=bond0.192

BOOTPROTO=none

ONPARENT=yes

IPADDR=192.168.10.1

NETMASK=255.255.255.0

VLAN=yes

NM_CONTROLLED=no

2. Bring up the VLAN interface as root:

~]# ifup /etc/sysconfig/network-scripts/ifcfg-bond0.192

Determining if ip address 192.168.10.1 is already in use for device bond0.192...

180

CHAPTER 11. NETWORK INTERFACES

3. Enabling VLAN tagging on the network switch. Consult the documentation for the switch to see what configuration is required.

4. Check the status of the interfaces on the server:

~]# ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP qlen 1000

link/ether 52:54:00:19:28:fe brd ff:ff:ff:ff:ff:ff

3: eth1: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP qlen 1000

link/ether 52:54:00:f6:63:9a brd ff:ff:ff:ff:ff:ff

4: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP

link/ether 52:54:00:19:28:fe brd ff:ff:ff:ff:ff:ff

inet 192.168.100.100/24 brd 192.168.100.255 scope global bond0

inet6 fe80::5054:ff:fe19:28fe/64 scope link

valid_lft forever preferred_lft forever

5: bond0.192@bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu

1500 qdisc noqueue state UP

link/ether 52:54:00:19:28:fe brd ff:ff:ff:ff:ff:ff

inet 192.168.10.1/24 brd 192.168.10.255 scope global bond0.192

inet6 fe80::5054:ff:fe19:28fe/64 scope link

valid_lft forever preferred_lft forever

Notice there is now bond0.192@bond0 in the list of interfaces and the status is MASTER,UP.

5. Check the route on the server:

~]$ ip route

192.168.100.0/24 dev bond0 proto kernel scope link src

192.168.100.100

192.168.10.0/24 dev bond0.192 proto kernel scope link src

192.168.10.1

169.254.0.0/16 dev bond0 scope link metric 1004

169.254.0.0/16 dev bond0.192 scope link metric 1005

Notice there is now a route for the 192.168.10.0/24 network pointing to the VLAN interface

bond0.192.

Configuring the Second Server

Repeat the configuration steps for the second server, using different IP addresses but from the same subnets respectively.

Test the bond is up and the network switch is working as expected:

~]$ ping -c4 192.168.100.100

PING 192.168.100.100 (192.168.100.100) 56(84) bytes of data.

64 bytes from 192.168.100.100: icmp_seq=1 ttl=64 time=1.35 ms

64 bytes from 192.168.100.100: icmp_seq=2 ttl=64 time=0.214 ms

64 bytes from 192.168.100.100: icmp_seq=3 ttl=64 time=0.383 ms

181

Deployment Guide

64 bytes from 192.168.100.100: icmp_seq=4 ttl=64 time=0.396 ms

--- 192.168.100.100 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3002ms rtt min/avg/max/mdev = 0.214/0.586/1.353/0.448 ms

Testing the VLAN

To test that the network switch is configured for the VLAN, try to ping the first servers' VLAN interface:

~]# ping -c2 192.168.10.1

PING 192.168.10.1 (192.168.10.1) 56(84) bytes of data.

64 bytes from 192.168.10.1: icmp_seq=1 ttl=64 time=0.781 ms

64 bytes from 192.168.10.1: icmp_seq=2 ttl=64 time=0.977 ms

--- 192.168.10.1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1001ms rtt min/avg/max/mdev = 0.781/0.879/0.977/0.098 ms

No packet loss suggests everything is configured correctly and that the VLAN and underlying interfaces are “up”.

Optional Steps

If required, perform further tests by removing and replacing network cables one at a time to verify that failover works as expected. Make use of the ethtool utility to verify which interface is connected to which cable. For example: ethtool --identify ifname integer

Where integer is the number of times to flash the LED on the network interface.

The bonding module does not support STP, therefore consider disabling the sending of BPDU packets from the network switch.

If the system is not linked to the network except over the connection just configured, consider enabling the switch port to transition directly to sending and receiving. For example on a Cisco switch, by means of the portfast command.

11.2.6. Network Bridge

A network bridge is a Link Layer device which forwards traffic between networks based on MAC addresses and is therefore also referred to as a Layer 2 device. It makes forwarding decisions based on tables of MAC addresses which it builds by learning what hosts are connected to each network. A software bridge can be used within a Linux host in order to emulate a hardware bridge, for example in virtualization applications for sharing a NIC with one or more virtual NICs. This case will be illustrated here as an example.

To create a network bridge, create a file in the /etc/sysconfig/network-scripts/ directory called ifcfg-brN, replacing N with the number for the interface, such as 0.

The contents of the file is similar to whatever type of interface is getting bridged to, such as an Ethernet interface. The differences in this example are as follows:

The DEVICE directive is given an interface name as its argument in the format brN, where N is replaced with the number of the interface.

182

CHAPTER 11. NETWORK INTERFACES

The TYPE directive is given an argument Bridge. This directive determines the device type and the argument is case sensitive.

The bridge interface configuration file now has the IP address and the physical interface has only a MAC address.

An extra directive, DELAY=0, is added to prevent the bridge from waiting while it monitors traffic, learns where hosts are located, and builds a table of MAC addresses on which to base its filtering decisions. The default delay of 15 seconds is not needed if no routing loops are possible.

The NM_CONTROLLED=no should be added to the Ethernet interface to prevent

NetworkManager from altering the file. It can also be added to the bridge configuration file in case future versions of NetworkManager support bridge configuration.

The following is a sample bridge interface configuration file using a static IP address:

Example 11.4. Sample ifcfg-br0 interface configuration file

DEVICE=br0

TYPE=Bridge

IPADDR=192.168.1.1

NETMASK=255.255.255.0

ONBOOT=yes

BOOTPROTO=none

NM_CONTROLLED=no

DELAY=0

To complete the bridge another interface is created, or an existing interface is modified, and pointed to the bridge interface. The following is a sample Ethernet interface configuration file pointing to a bridge interface. Configure your physical interface in /etc/sysconfig/network-scripts/ifcfg-ethX, where X is a unique number corresponding to a specific interface, as follows:

Example 11.5. Sample ifcfg-ethX interface configuration file

DEVICE=ethX

TYPE=Ethernet

HWADDR=AA:BB:CC:DD:EE:FF

BOOTPROTO=none

ONBOOT=yes

NM_CONTROLLED=no

BRIDGE=br0

NOTE

For the DEVICE directive, almost any interface name could be used as it does not determine the device type. Other commonly used names include tap, dummy and bond for example. TYPE=Ethernet is not strictly required. If the TYPE directive is not set, the device is treated as an Ethernet device (unless its name explicitly matches a different interface configuration file.)

183

Deployment Guide

You can see

Section 11.2, “Interface Configuration Files” for a review of the directives and options used

in network interface config files.

WARNING

If you are configuring bridging on a remote host, and you are connected to that host over the physical NIC you are configuring, please consider the implications of losing connectivity before proceeding. You will lose connectivity when restarting the service and may not be able to regain connectivity if any errors have been made. Console, or out-of-band access is advised.

Restart the networking service, in order for the changes to take effect, as follows:

service network restart

11.2.6.1. Network Bridge with Bond

An example of a network bridge formed from two or more bonded Ethernet interfaces will now be given as this is another common application in a virtualization environment. If you are not very familiar with the

configuration files for bonded interfaces then please see Section 11.2.4, “Channel Bonding Interfaces”

Create or edit two or more Ethernet interface configuration files, which are to be bonded, as follows:

DEVICE=ethX

TYPE=Ethernet

USERCTL=no

SLAVE=yes

MASTER=bond0

BOOTPROTO=none

HWADDR=AA:BB:CC:DD:EE:FF

NM_CONTROLLED=no

NOTE

Using ethX as the interface name is common practice but almost any name could be used. Names such as tap, dummy and bond are commonly used.

Create or edit one interface configuration file, /etc/sysconfig/network-scripts/ifcfg-bond0, as follows:

DEVICE=bond0

ONBOOT=yes

BONDING_OPTS='mode=1 miimon=100'

BRIDGE=br0

NM_CONTROLLED=no

For further instructions and advice on configuring the bonding module and to view the list of bonding

parameters, see Section 31.8.1, “Using Channel Bonding”

.

184

CHAPTER 11. NETWORK INTERFACES

Create or edit one interface configuration file, /etc/sysconfig/network-scripts/ifcfg-br0, as follows:

DEVICE=br0

ONBOOT=yes

TYPE=Bridge

IPADDR=192.168.1.1

NETMASK=255.255.255.0

NM_CONTROLLED=no

Figure 11.1. A network bridge consisting of two bonded Ethernet interfaces.

We now have two or more interface configuration files with the MASTER=bond0 directive. These point to the configuration file named /etc/sysconfig/network-scripts/ifcfg-bond0, which contains the DEVICE=bond0 directive. This ifcfg-bond0 in turn points to the /etc/sysconfig/network-

scripts/ifcfg-br0 configuration file, which contains the IP address, and acts as an interface to the virtual networks inside the host.

To bring up the new or recently configured interfaces, issue a command as root in the following format: ifup device

Alternatively, restart the networking service, in order for the changes to take effect, as follows:

~]# service network restart

185

Deployment Guide

11.2.6.2. Network Bridge with Bonded VLAN

Virtualization servers that intend to have distinct subnets for its guests while still ensuring availability in the event of a NIC failure will often combine bonds, VLANs, and bridges. An example of this configuration will now be given. By creating a bridge on the VLAN instead of the underlying device we allow VLAN tagging to be handled entirely through the host with no need to configure the guests' interfaces.

1. Ensure the bond and VLAN have been configured as outlined in Section 11.2.5, “Configuring a

VLAN over a Bond” .

2. Create the bridge's configuration file, ifcfg-br0:

~]# vi /etc/sysconfig/network-scripts/ifcfg-br0

DEVICE=br0

ONBOOT=yes

TYPE=Bridge

IPADDR=192.168.10.1

NETMASK=255.255.255.0

NM_CONTROLLED=no

3. Adjust the VLAN's configuration file, ifcfg-bond0.192 from the earlier example, to use the newly created br0 as its master:

~]# vi /etc/sysconfig/network-scripts/ifcfg-bond0.192

DEVICE=bond0.192

BOOTPROTO=none

ONPARENT=yes

#IPADDR=192.168.10.1

#NETMASK=255.255.255.0

VLAN=yes

NM_CONTROLLED=no

BRIDGE=br0

4. To bring up the new or recently configured interfaces, issue a command as root in the following format: ifup device

Alternatively, restart the networking service, in order for the changes to take effect, as follows:

~]# service network restart

11.2.7. Setting Up 802.1Q VLAN Tagging

1. If required, start the VLAN 8021q module by issuing the following command as root:

~]# modprobe --first-time 8021q

No visual output indicates the module was not running and has now been loaded. Note that given a correct configuration file, the VLAN 8021q module will be loaded as required and therefore does not need to be loaded separately.

2. Configure your physical interface in /etc/sysconfig/network-scripts/ifcfg-ethX, where X is a unique number corresponding to a specific interface, as follows:

186

CHAPTER 11. NETWORK INTERFACES

DEVICE=ethX

TYPE=Ethernet

BOOTPROTO=none

ONBOOT=yes

3. Configure the VLAN interface configuration in /etc/sysconfig/network-scripts. The configuration filename should be the physical interface plus a . character plus the VLAN ID number. For example, if the VLAN ID is 192, and the physical interface is eth0, then the configuration filename should be ifcfg-eth0.192:

DEVICE=ethX.192

BOOTPROTO=none

ONBOOT=yes

IPADDR=192.168.1.1

NETMASK=255.255.255.0

USERCTL=no

NETWORK=192.168.1.0

VLAN=yes

If there is a need to configure a second VLAN, with for example, VLAN ID 193, on the same interface, eth0 , add a new file with the name eth0.193 with the VLAN configuration details.

4. Restart the networking service, in order for the changes to take effect. Issue the following command as root:

~]# service network restart

11.2.8. Alias and Clone Files

Two lesser-used types of interface configuration files are alias and clone files. As the ip utility now supports assigning multiple addresses to the same interface it is no longer necessary to use this method of binding multiple addresses to the same interface. The ip command to assign an address can be repeated multiple times in order to assign multiple address. For example:

~]# ip address add 192.168.2.223/24 dev eth1

~]# ip address add 192.168.4.223/24 dev eth1

~]# ip addr

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state

UP qlen 1000

link/ether 52:54:00:fb:77:9e brd ff:ff:ff:ff:ff:ff

inet 192.168.2.223/24 scope global eth1

inet 192.168.4.223/24 scope global eth1

The commands for the ip utility, sometimes referred to as iproute2 after the upstream package name, are documented in the man ip(8) page. The package name in Red Hat Enterprise Linux 6 is iproute.

NOTE

In Red Hat Enterprise Linux 6, NetworkManager now reads ifcfg alias files and assigns the addresses in them to their master interface, using the alias name as the address label. For example, if ifcfg-eth0 and ifcfg-eth0:1 files are present,

NetworkManager reads the alias file's DEVICE line and stores this as an address label.

The use of secondary addresses rather than alias is still preferred.

187

Deployment Guide

For new installations, users should select the Manual method on the IPv4 or IPv6 tab in

NetworkManager to assign multiple IP address to the same interface. For more information on using this tool, see

Chapter 10, NetworkManager .

Alias interface configuration files, which are used to bind multiple addresses to a single interface, use the

ifcfg-if-name:alias-value naming scheme.

For example, an ifcfg-eth0:0 file could be configured to specify DEVICE=eth0:0 and a static IP address of 10.0.0.2, serving as an alias of an Ethernet interface already configured to receive its IP information via DHCP in ifcfg-eth0. Under this configuration, eth0 is bound to a dynamic IP address, but the same physical network card can receive requests via the fixed, 10.0.0.2 IP address.

WARNING

Alias interfaces do not support DHCP.

A clone interface configuration file should use the following naming convention: ifcfg-if-

name-clone-name. While an alias file allows multiple addresses for an existing interface, a clone file is used to specify additional options for an interface. For example, a standard DHCP Ethernet interface called eth0, may look similar to this:

DEVICE=eth0

ONBOOT=yes

BOOTPROTO=dhcp

Since the default value for the USERCTL directive is no if it is not specified, users cannot bring this interface up and down. To give users the ability to control the interface, create a clone by copying

ifcfg-eth0 to ifcfg-eth0-user and add the following line to ifcfg-eth0-user:

USERCTL=yes

This way a user can bring up the eth0 interface using the /sbin/ifup eth0-user command because the configuration options from ifcfg-eth0 and ifcfg-eth0-user are combined. While this is a very basic example, this method can be used with a variety of options and interfaces.

It is no longer possible to create alias and clone interface configuration files using a graphical tool.

However, as explained at the beginning of this section, it is no longer necessary to use this method as it is now possible to directly assign multiple IP address to the same interface. For new installations, users should select the Manual method on the IPv4 or IPv6 tab in NetworkManager to assign multiple IP

address to the same interface. For more information on using this tool, see Chapter 10,

NetworkManager .

11.2.9. Dialup Interfaces

If you are connecting to the Internet via a dialup connection, a configuration file is necessary for the interface.

PPP interface files are named using the following format:

188

ifcfg-pppX where X is a unique number corresponding to a specific interface.

CHAPTER 11. NETWORK INTERFACES

The PPP interface configuration file is created automatically when wvdial, or Kppp is used to create a dialup account. It is also possible to create and edit this file manually.

The following is a typical /etc/sysconfig/network-scripts/ifcfg-ppp0 file:

DEVICE=ppp0

NAME=test

WVDIALSECT=test

MODEMPORT=/dev/modem

LINESPEED=115200

PAPNAME=test

USERCTL=true

ONBOOT=no

PERSIST=no

DEFROUTE=yes

PEERDNS=yes

DEMAND=no

IDLETIMEOUT=600

Serial Line Internet Protocol (SLIP) is another dialup interface, although it is used less frequently. SLIP files have interface configuration file names such as ifcfg-sl0.

Other options that may be used in these files include:

DEFROUTE =answer where answer is one of the following:

yes — Set this interface as the default route.

no — Do not set this interface as the default route.

DEMAND =answer where answer is one of the following:

yes — This interface allows pppd to initiate a connection when someone attempts to use it.

no — A connection must be manually established for this interface.

IDLETIMEOUT =value where value is the number of seconds of idle activity before the interface disconnects itself.

INITSTRING =string where string is the initialization string passed to the modem device. This option is primarily used in conjunction with SLIP interfaces.

LINESPEED =value where value is the baud rate of the device. Possible standard values include 57600, 38400, 19200, and 9600.

189

Deployment Guide

MODEMPORT =device where device is the name of the serial device that is used to establish the connection for the interface.

MTU =value where value is the Maximum Transfer Unit (MTU) setting for the interface. The MTU refers to the largest number of bytes of data a frame can carry, not counting its header information. In some dialup situations, setting this to a value of 576 results in fewer packets dropped and a slight improvement to the throughput for a connection.

NAME =name where name is the reference to the title given to a collection of dialup connection configurations.

PAPNAME =name where name is the user name given during the Password Authentication Protocol (PAP) exchange that occurs to allow connections to a remote system.

PERSIST =answer where answer is one of the following:

yes — This interface should be kept active at all times, even if deactivated after a modem hang up.

no — This interface should not be kept active at all times.

REMIP =address where address is the IP address of the remote system. This is usually left unspecified.

WVDIALSECT =name where name associates this interface with a dialer configuration in /etc/wvdial.conf. This file contains the phone number to be dialed and other important information for the interface.

11.2.10. Other Interfaces

Other common interface configuration files include the following: ifcfg-lo

A local loopback interface is often used in testing, as well as being used in a variety of applications that require an IP address pointing back to the same system. Any data sent to the loopback device is immediately returned to the host's network layer.

190

CHAPTER 11. NETWORK INTERFACES

WARNING

The loopback interface script, /etc/sysconfig/network-scripts/ifcfg-

lo, should never be edited manually. Doing so can prevent the system from operating correctly.

ifcfg-irlan0

An infrared interface allows information between devices, such as a laptop and a printer, to flow over an infrared link. This works in a similar way to an Ethernet device except that it commonly occurs over a peer-to-peer connection.

ifcfg-plip0

A Parallel Line Interface Protocol (PLIP) connection works much the same way as an Ethernet device, except that it utilizes a parallel port.

Interface configuration files for Linux on System z include the following: ifcfg-hsiN

A HiperSockets interface is an interface for high-speed TCP/IP communication within and across z/VM guest virtual machines and logical partitions (LPARs) on an IBM System z mainframe.

11.3. INTERFACE CONTROL SCRIPTS

The interface control scripts activate and deactivate system interfaces. There are two primary interface control scripts that call on control scripts located in the /etc/sysconfig/network-scripts/ directory: /sbin/ifdown and /sbin/ifup.

The ifup and ifdown interface scripts are symbolic links to scripts in the /sbin/ directory. When either of these scripts are called, they require the value of the interface to be specified, such as: ifup eth0

WARNING

The ifup and ifdown interface scripts are the only scripts that the user should use to bring up and take down network interfaces.

The following scripts are described for reference purposes only.

191

Deployment Guide

Two files used to perform a variety of network initialization tasks during the process of bringing up a network interface are /etc/rc.d/init.d/functions and /etc/sysconfig/network-

scripts/network-functions. See

Section 11.7, “Network Function Files” for more information.

After verifying that an interface has been specified and that the user executing the request is allowed to control the interface, the correct script brings the interface up or down. The following are common interface control scripts found within the /etc/sysconfig/network-scripts/ directory: ifup-aliases

Configures IP aliases from interface configuration files when more than one IP address is associated with an interface.

ifup-ippp and ifdown-ippp

Brings ISDN interfaces up and down.

ifup-ipv6 and ifdown-ipv6

Brings IPv6 interfaces up and down.

ifup-plip

Brings up a PLIP interface.

ifup-plusb

Brings up a USB interface for network connections.

ifup-post and ifdown-post

Contains commands to be executed after an interface is brought up or down.

ifup-ppp and ifdown-ppp

Brings a PPP interface up or down.

ifup-routes

Adds static routes for a device as its interface is brought up.

ifdown-sit and ifup-sit

Contains function calls related to bringing up and down an IPv6 tunnel within an IPv4 connection.

ifup-wireless

Brings up a wireless interface.

192

CHAPTER 11. NETWORK INTERFACES

WARNING

Removing or modifying any scripts in the /etc/sysconfig/network-scripts/ directory can cause interface connections to act irregularly or fail. Only advanced users should modify scripts related to a network interface.

The easiest way to manipulate all network scripts simultaneously is to use the /sbin/service command on the network service (/etc/rc.d/init.d/network), as illustrated by the following command:

/sbin/service network action

Here, action can be either start, stop, or restart.

To view a list of configured devices and currently active network interfaces, use the following command:

/sbin/service network status

11.4. STATIC ROUTES AND THE DEFAULT GATEWAY

Static routes are for traffic that must not, or should not, go through the default gateway. Routing is often handled by devices on the network dedicated to routing (although any device can be configured to perform routing). Therefore, it is often not necessary to configure static routes on Red Hat

Enterprise Linux servers or clients. Exceptions include traffic that must pass through an encrypted VPN tunnel or traffic that should take a specific route for reasons of cost or security. The default gateway is for any and all traffic which is not destined for the local network and for which no preferred route is specified in the routing table. The default gateway is traditionally a dedicated network router.

Configuring Static Routes Using the Command Line

If static routes are required, they can be added to the routing table by means of the ip route add command and removed using the ip route del command. The more frequently used ip route commands take the following form: ip route [ add | del | change | append | replace ] destination-address

See the ip-route(8) man page for more details on the options and formats.

Use the ip route command without options to display the IP routing table. For example:

~]$ ip route default via 192.168.122.1 dev eth0 proto static metric 1024

192.168.122.0/24 dev ens9 proto kernel scope link src 192.168.122.107

192.168.122.0/24 dev eth0 proto kernel scope link src 192.168.122.126

To add a static route to a host address, in other words to a single IP address, issue a command as

root:

~]# ip route add 192.0.2.1 via 10.0.0.1 [dev ifname]

193

Deployment Guide

Where 192.0.2.1 is the IP address of the host in dotted decimal notation, 10.0.0.1 is the next hop address and ifname is the exit interface leading to the next hop.

To add a static route to a network, in other words to an IP address representing a range of IP addresses, issue the following command as root:

~]# ip route add 192.0.2.0/24 via 10.0.0.1 [dev ifname] where 192.0.2.0 is the IP address of the destination network in dotted decimal notation and /24 is the network prefix. The network prefix is the number of enabled bits in the subnet mask. This format of network address slash network prefix length is sometimes referred to as classless inter-domain routing

(CIDR) notation.

Static route configuration can be stored per-interface in a /etc/sysconfig/network-

scripts/route-interface file. For example, static routes for the eth0 interface would be stored in the /etc/sysconfig/network-scripts/route-eth0 file. The route-interface file has two formats: ip command arguments and network/netmask directives. These are described below.

See the ip-route(8) man page for more information on the ip route command.

Configuring The Default Gateway

The default gateway is determined by the network scripts which parse the /etc/sysconfig/network file first and then the network interface ifcfg files for interfaces that are “up”. The ifcfg files are parsed in numerically ascending order, and the last GATEWAY directive to be read is used to compose a default route in the routing table.

The default route can thus be indicated by means of the GATEWAY directive and can be specified either globally or in interface-specific configuration files. Specifying the gateway globally has certain advantages in static networking environments, especially if more than one network interface is present. It can make fault finding simpler if applied consistently. There is also the GATEWAYDEV directive, which is a global option. If multiple devices specify GATEWAY, and one interface uses the GATEWAYDEV directive, that directive will take precedence. This option is not recommend as it can have unexpected consequences if an interface goes down and it can complicate fault finding.

In dynamic network environments, where mobile hosts are managed by NetworkManager, gateway information is likely to be interface specific and is best left to be assigned by DHCP. In special cases where it is necessary to influence NetworkManager's selection of the exit interface to be used to reach a gateway, make use of the DEFROUTE=no command in the ifcfg files for those interfaces which do not lead to the default gateway.

Global default gateway configuration is stored in the /etc/sysconfig/network file. This file specifies gateway and host information for all network interfaces. For more information about this file and the directives it accepts, see

Section D.1.13, “/etc/sysconfig/network” .

11.5. CONFIGURING STATIC ROUTES IN IFCFG FILES

Static routes set using ip commands at the command prompt will be lost if the system is shutdown or restarted. To configure static routes to be persistent after a system restart, they must be placed in perinterface configuration files in the /etc/sysconfig/network-scripts/ directory. The file name should be of the format route-ifname. There are two types of commands to use in the configuration

files; ip commands as explained in Section 11.5.1, “Static Routes Using the IP Command Arguments

Format” and the Network/Netmask format as explained in

Section 11.5.2, “Network/Netmask Directives

Format” .

194

CHAPTER 11. NETWORK INTERFACES

11.5.1. Static Routes Using the IP Command Arguments Format

If required in a per-interface configuration file, for example /etc/sysconfig/network-

scripts/route-eth0, define a route to a default gateway on the first line. This is only required if the gateway is not set via DHCP and is not set globally in the /etc/sysconfig/network file: default via 192.168.1.1 dev interface where 192.168.1.1 is the IP address of the default gateway. The interface is the interface that is connected to, or can reach, the default gateway. The dev option can be omitted, it is optional. Note that this setting takes precedence over a setting in the /etc/sysconfig/network file.

If a route to a remote network is required, a static route can be specified as follows. Each line is parsed as an individual route:

10.10.10.0/24 via 192.168.1.1 [dev interface] where 10.10.10.0/24 is the network address and prefix length of the remote or destination network. The address 192.168.1.1 is the IP address leading to the remote network. It is preferably the next hop address but the address of the exit interface will work. The “next hop” means the remote end of a link, for example a gateway or router. The dev option can be used to specify the exit interface interface but it is not required. Add as many static routes as required.

The following is an example of a route-interface file using the ip command arguments format. The default gateway is 192.168.0.1, interface eth0 and a leased line or WAN connection is available at

192.168.0.10. The two static routes are for reaching the 10.10.10.0/24 network and the

172.16.1.10/32 host: default via 192.168.0.1 dev eth0

10.10.10.0/24 via 192.168.0.10 dev eth0

172.16.1.10/32 via 192.168.0.10 dev eth0

In the above example, packets going to the local 192.168.0.0/24 network will be directed out the interface attached to that network. Packets going to the 10.10.10.0/24 network and

172.16.1.10/32 host will be directed to 192.168.0.10. Packets to unknown, remote, networks will use the default gateway therefore static routes should only be configured for remote networks or hosts if the default route is not suitable. Remote in this context means any networks or hosts that are not directly attached to the system.

Specifying an exit interface is optional. It can be useful if you want to force traffic out of a specific interface. For example, in the case of a VPN, you can force traffic to a remote network to pass through a tun0 interface even when the interface is in a different subnet to the destination network.

IMPORTANT

If the default gateway is already assigned from DHCP, the IP command arguments format can cause one of two errors during start-up, or when bringing up an interface from the down state using the ifup command: "RTNETLINK answers: File exists" or 'Error: either

"to" is a duplicate, or "X.X.X.X" is a garbage.', where X.X.X.X is the gateway, or a different

IP address. These errors can also occur if you have another route to another network using the default gateway. Both of these errors are safe to ignore.

11.5.2. Network/Netmask Directives Format

195

Deployment Guide

You can also use the network/netmask directives format for route-interface files. The following is a template for the network/netmask format, with instructions following afterwards:

ADDRESS0=10.10.10.0

NETMASK0=255.255.255.0

GATEWAY0=192.168.1.1

ADDRESS0=10.10.10.0 is the network address of the remote network or host to be reached.

NETMASK0=255.255.255.0 is the netmask for the network address defined with

ADDRESS0=10.10.10.0.

GATEWAY0=192.168.1.1 is the default gateway, or an IP address that can be used to reach

ADDRESS0=10.10.10.0

The following is an example of a route-interface file using the network/netmask directives format.

The default gateway is 192.168.0.1 but a leased line or WAN connection is available at

192.168.0.10. The two static routes are for reaching the 10.10.10.0/24 and 172.16.1.0/24 networks:

ADDRESS0=10.10.10.0

NETMASK0=255.255.255.0

GATEWAY0=192.168.0.10

ADDRESS1=172.16.1.10

NETMASK1=255.255.255.0

GATEWAY1=192.168.0.10

Subsequent static routes must be numbered sequentially, and must not skip any values. For example,

ADDRESS0, ADDRESS1, ADDRESS2, and so on.

11.6. CONFIGURING IPV6 TOKENIZED INTERFACE IDENTIFIERS

In a network, servers are generally given static addresses and these are usually configured manually to avoid relying on a DHCP server which may fail or run out of addresses. The IPv6 protocol introduced

Stateless Address Autoconfiguration (SLAAC) which enables clients to assign themselves an address without relying on a DHCPv6 server. SLAAC derives the IPv6 address based on the interface hardware, therefore it should not be used for servers in case the hardware is changed and the associated SLAAC generated address changes with it. In an IPv6 environment, if the network prefix is changed, or the system is moved to a new location, any manually configured static addresses would have to be edited due to the changed prefix.

To address these problems, the IETF draft Tokenised IPv6 Identifiers has been implemented in the kernel together with corresponding additions to the ip utility. This enables the lower 64 bit interface identifier part of the IPv6 address to be based on a token, supplied by the administrator, leaving the network prefix, the higher 64 bits, to be obtained from router advertisements (RA). This means that if the network interface hardware is changed, the lower 64 bits of the address will not change, and if the system is moved to another network, the network prefix will be obtained from router advertisements automatically, thus no manual editing is required.

To configure an interface to use a tokenized IPv6 identifier, issue a command in the following format as

root user:

~]# ip token set ::1a:2b:3c:4d/64 dev eth4

196

CHAPTER 11. NETWORK INTERFACES

Where ::1a:2b:3c:4d/64 is the token to be used. This setting is not persistent. To make it persistent,

add the command to an init script. See Section 11.3, “Interface Control Scripts”

.

Using a memorable token is possible, but is limited to the range of valid hexadecimal digits. For example, for a DNS server, which traditionally uses port 53, a token of ::53/64 could be used.

To view all the configured IPv6 tokens, issue the following command:

~]$ ip token

token :: dev eth0

token :: dev eth1

token :: dev eth2

token :: dev eth3

token ::1a:2b:3c:4d dev eth4

To view the configured IPv6 token for a specific interface, issue the following command:

~]$ ip token get dev eth4

token ::1a:2b:3c:4d dev eth4

Note that adding a token to an interface will replace a previously allocated token, and in turn invalidate the address derived from it. Supplying a new token causes a new address to be generated and applied, but this process will leave any other addresses unchanged. In other words, a new tokenized identifier only replaces a previously existing tokenized identifier, not any other IP address.

NOTE

Take care not to add the same token to more than one system or interface as the duplicate address detection (DAD) mechanism will not be able to resolve the problem.

Once a token is set, it cannot be cleared or reset, except by rebooting the machine.

11.7. NETWORK FUNCTION FILES

Red Hat Enterprise Linux makes use of several files that contain important common functions used to bring interfaces up and down. Rather than forcing each interface control file to contain these functions, they are grouped together in a few files that are called upon when necessary.

The /etc/sysconfig/network-scripts/network-functions file contains the most commonly used IPv4 functions, which are useful to many interface control scripts. These functions include contacting running programs that have requested information about changes in the status of an interface, setting host names, finding a gateway device, verifying whether or not a particular device is down, and adding a default route.

As the functions required for IPv6 interfaces are different from IPv4 interfaces, a

/etc/sysconfig/network-scripts/network-functions-ipv6 file exists specifically to hold this information. The functions in this file configure and delete static IPv6 routes, create and remove tunnels, add and remove IPv6 addresses to an interface, and test for the existence of an IPv6 address on an interface.

11.8. ETHTOOL

197

Deployment Guide

Ethtool is a utility for configuration of Network Interface Cards (NICs). This utility allows querying and changing settings such as speed, port, auto-negotiation, PCI locations and checksum offload on many network devices, especially Ethernet devices.

We present here a short selection of often used ethtool commands together with some useful commands that are not well known. For a full list of commands type ethtool -h or see the man page,

ethtool(8), for a more comprehensive list and explanation. The first two examples are information queries and show the use of the different formats of the command.

But first, the command structure:

ethtool [option...] devname where option is none or more options, and devname is your Network Interface Card (NIC). For example eth0 or em1.

ethtool

The ethtool command with only a device name as an option is used to print the current settings of the specified device. It takes the following form: ethtool devname where devname is your NIC. For example eth0 or em1.

Some values can only be obtained when the command is run as root. Here is an example of the output when the command is run as root:

~]# ethtool em1

Settings for em1:

Supported ports: [ TP ]

Supported link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

1000baseT/Full

Supported pause frame use: No

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

1000baseT/Full

Advertised pause frame use: No

Advertised auto-negotiation: Yes

Speed: 1000Mb/s

Duplex: Full

Port: Twisted Pair

PHYAD: 2

Transceiver: internal

Auto-negotiation: on

MDI-X: on

Supports Wake-on: pumbg

Wake-on: g

Current message level: 0x00000007 (7)

drv probe link

Link detected: yes

198

CHAPTER 11. NETWORK INTERFACES

Issue the following command, using the short or long form of the argument, to query the specified network device for associated driver information: ethtool -i, --driver devname where devname is your Network Interface Card (NIC). For example eth0 or em1.

Here is an example of the output:

~]$ ethtool -i em1 driver: e1000e version: 2.0.0-k firmware-version: 0.13-3 bus-info: 0000:00:19.0

supports-statistics: yes supports-test: yes supports-eeprom-access: yes supports-register-dump: yes

Here follows a list of command options to query, identify or reset the device. They are in the usual -

short and --long form:

--statistics

The --statistics or -S queries the specified network device for NIC and driver statistics. It takes the following form:

-S, --statistics devname where devname is your NIC.

--identify

The --identify or -p option initiates adapter-specific action intended to enable an operator to easily identify the adapter by sight. Typically this involves blinking one or more LEDs on the specified network port. It takes the following form:

-p, --identify devname integer where integer is length of time in seconds to perform the action, and devname is your NIC.

--show-time-stamping

The --show-time-stamping or -T option queries the specified network device for time stamping parameters. It takes the following form:

-T, --show-time-stamping devname where devname is your NIC.

--show-offload

199

Deployment Guide

The --show-features, or --show-offload, or -k option queries the specified network device for the state of protocol offload and other features. It takes the following form:

-k, --show-features, --show-offload devname where devname is your NIC.

--test

The --test or -t option is used to perform tests on a Network Interface Card. It takes the following form:

-t, --test devname word where word is one of the following:

offline — Perform a comprehensive set of tests. Service will be interrupted.

online — Perform a reduced set of tests. Service should not be interrupted.

external_lb — Perform full set of tests including loopback tests while fitted with a loopback cable.

and devname is your NIC.

Changing some or all settings of the specified network device requires the -s or --change option. All the following options are only applied if the -s or --change option is also specified. For the sake of clarity we will omit it here.

To make these settings permanent you can make use of the ETHTOOL_OPTS directive. It can be used in interface configuration files to set the desired options when the network interface is brought up. See

Section 11.2.1, “Ethernet Interfaces”

for more details on how to use this directive.

--offload

The --features, or --offload, or -K option changes the offload parameters and other features of the specified network device. It takes the following form:

-K, --features, --offload devname feature boolean where feature is a built-in or kernel supplied feature, boolean is one of ON or OFF, and devname is your NIC.

The ethtool(8) man page lists most features. As the feature set is dependent on the NIC driver, you should consult the driver documentation for features not listed in the man page.

--speed

The --speed option is used to set the speed in megabits per second (Mb/s). Omitting the speed value will show the supported device speeds. It takes the following form:

--speed number devname

200

CHAPTER 11. NETWORK INTERFACES where number is the speed in megabits per second (Mb/s), and devname is your NIC.

--duplex

The --duplex option is used to set the transmit and receive mode of operation. It takes the following form:

--duplex word devname where word is one of the following:

half — Sets half-duplex mode. Usually used when connected to a hub.

full — Sets full-duplex mode. Usually used when connected to a switch or another host.

and devname is your NIC.

--port

The --port option is used to select the device port . It takes the following form:

--port value devname where value is one of the following:

tp — An Ethernet interface using Twisted-Pair cable as the medium.

aui — Attachment Unit Interface (AUI). Normally used with hubs.

bnc — An Ethernet interface using BNC connectors and co-axial cable.

mii — An Ethernet interface using a Media Independent Interface (MII).

fibre — An Ethernet interface using Optical Fibre as the medium.

and devname is your NIC.

--autoneg

The --autoneg option is used to control auto-negotiation of network speed and mode of operation

(full-duplex or half-duplex mode). If auto-negotiation is enabled you can initiate re-negotiation of network speeds and mode of operation by using the -r, --negotiate option. You can display the auto-negotiation state using the --a, --show-pause option.

It takes the following form:

--autoneg value devname where value is one of the following:

yes — Allow auto-negotiating of network speed and mode of operation.

no — Do not allow auto-negotiating of network speed and mode of operation.

201

Deployment Guide

0x002

0x004

0x008

0x010

0x020

0x8000

0x1000

0x20000

0x20000

0x40000 and devname is your NIC.

--advertise

The --advertise option is used to set what speeds and modes of operation (duplex mode) are

advertised for auto-negotiation. The argument is one or more hexadecimal values from Table 11.1,

“Ethtool advertise options: speed and mode of operation” .

It takes the following form:

--advertise option devname where option is one or more of the hexadecimal values from the table below and devname is your

NIC.

Table 11.1. Ethtool advertise options: speed and mode of operation

Hex Value Speed Duplex Mode IEEE standard?

0x001 10 Half Yes

10

100

100

1000

1000

2500

10000

20000MLD2

20000MLD2

20000KR2

Full

Full

Full

Full

Full

Half

Full

Half

Full

Full

No

No

Yes

Yes

Yes

No

Yes

Yes

Yes

No

--phyad

The --phyad option is used to change the physical address. Often referred to as the MAC or hardware address but in this context referred to as the physical address.

It takes the following form:

--phyad physical_address devname where physical_address is the physical address in hexadecimal format and devname is your NIC.

202

CHAPTER 11. NETWORK INTERFACES

--xcvr

The --xcvr option is used to select the transceiver type. Currently only “internal” and “external” can be specified. In the future other types might be added.

It takes the following form:

--xcvr word devname where word is one of the following:

internal — Use internal transceiver.

external — Use external transceiver.

and devname is your NIC.

--wol

The --wol option is used to set “Wake-on-LAN” options. Not all devices support this. The argument to this option is a string of characters specifying which options to enable.

It takes the following form:

--wol value devname where value is one or more of the following:

p — Wake on PHY activity.

u — Wake on unicast messages.

m — Wake on multicast messages.

b — Wake on broadcast messages.

g — Wake-on-Lan; wake on receipt of a "magic packet".

s — Enable security function using password for Wake-on-Lan.

d — Disable Wake-on-Lan and clear all settings.

and devname is your NIC.

--sopass

The --sopass option is used to set the “SecureOn” password. The argument to this option must be

6 bytes in Ethernet MAC hexadecimal format (xx:yy:zz:aa:bb:cc).

It takes the following form:

--sopass xx:yy:zz:aa:bb:cc devname where xx:yy:zz:aa:bb:cc is the password in the same format as a MAC address and devname is your

NIC.

203

Deployment Guide probe link timer ifdown ifup rx_err tx_err intr tx_done rx_status pktdata hw wol

--msglvl

The --msglvl option is used to set the driver message-type flags by name or number. The precise meanings of these type flags differ between drivers.

It takes the following form:

--msglvl message_type devname where message_type is one of: message type name in plain text.

hexadecimal number indicating the message type.

and devname is your NIC.

The defined message type names and numbers are shown in the table below:

Table 11.2. Driver message type

Message Type Hex Value Description drv 0x0001 General driver status

0x0040

0x0080

0x0200

0x0400

0x0002

0x0004

0x0008

0x0010

0x0020

0x0800

0x1000

0x2000

0x4000

Hardware probing

Link state

Periodic status check

Interface being brought down

Interface being brought up

Receive error

Transmit error

Interrupt handling

Transmit completion

Receive completion

Packet contents

Hardware status

Wake-on-LAN status

204

CHAPTER 11. NETWORK INTERFACES

11.9. CONFIGURING

NETCONSOLE

The netconsole kernel module enables logging of kernel messages over the network to another computer. It allows kernel debugging when disk logging fails or when using the serial console is not possible.

Configuring a Listening Machine

To enable receiving netconsole logging messages, install the rsyslog package:

]# yum install rsyslog

To configure rsyslogd to listen on the 514/UDP port and receive messages from the network, uncomment the following lines in the MODULES section of /etc/rsyslog.conf:

$ModLoad imudp

$UDPServerRun 514

Restart the rsyslogd service for the changes to take effect:

]# service rsyslog restart

To verify that rsyslogd is listening on the 514/udp port, use the following command:

]# netstat -l | grep syslog udp 0 0 *:syslog *:* udp 0 0 *:syslog *:*

The 0 *:syslog value in the netstat -l output mean that rsyslogd is listening on default

netconsole port, which is defined in the /etc/services file:

]$ cat /etc/services | grep syslog syslog 514/udp syslog-conn 601/tcp # Reliable Syslog Service syslog-conn 601/udp # Reliable Syslog Service syslog-tls 6514/tcp # Syslog over TLS

Configuring a Sending Machine

In Red Hat Enterprise Linux 6, netconsole is configured using the file

/etc/sysconfig/netconsole, which is part of the initscripts package. This package is installed by default and it also provides the netconsole service.

To configure a sending machine, set the value of the SYSLOGADDR variable in the

/etc/sysconfig/netconsole file to match the IP address of the syslogd server, for example:

SYSLOGADDR=192.168.0.1

Restart the netconsole service so the changes take effect. Then, use the chkconfig command to ensure netconsole service starts automatically after next reboot:

]# service netconsole restart

Initializing netconsole [ OK ]

]# chkconfig netconsole on

205

Deployment Guide

By default, the rsyslogd server writes the netconsole messages from the client in

/var/log/messages or in the file specified in rsyslog.conf.

NOTE

To set rsyslogd and netconsole to use a different port, change the following line in

/etc/rsyslog.conf to the desired port number:

$UDPServerRun <PORT>

On the sending machine, uncomment and edit the following line in the

/etc/sysconfig/netconsole file:

SYSLOGPORT=514

For more information about netconsole configuration and troubleshooting tips, see Netconsole Kernel

Documentation .

11.10. ADDITIONAL RESOURCES

The following are resources which explain more about network interfaces.

Installed Documentation

/usr/share/doc/initscripts-version/sysconfig.txt — A guide to available options for network configuration files, including IPv6 options not covered in this chapter.

Online Resources

http://linux-ip.net/gl/ip-cref/ — This document contains a wealth of information about the ip command, which can be used to manipulate routing tables, among other things.

Red Hat Access Labs — The Red Hat Access Labs includes a “Network Bonding Helper”.

See Also

Appendix E, The proc File System

— Describes the sysctl utility and the virtual files within the

/proc/ directory, which contain networking parameters and statistics among other things.

206

PART V. INFRASTRUCTURE SERVICES

PART V. INFRASTRUCTURE SERVICES

This part provides information how to configure services and daemons, configure authentication, and enable remote logins.

207

Deployment Guide

CHAPTER 12. SERVICES AND DAEMONS

Maintaining security on your system is extremely important, and one approach for this task is to manage access to system services carefully. Your system may need to provide open access to particular services

(for example, httpd if you are running a web server). However, if you do not need to provide a service, you should turn it off to minimize your exposure to possible bug exploits.

This chapter explains the concept of runlevels, and describes how to set the default one. It also covers the setup of the services to be run in each of these runlevels, and provides information on how to start, stop, and restart the services on the command line using the service command.

IMPORTANT

When you allow access for new services, always remember that both the firewall and

SELinux need to be configured as well. One of the most common mistakes committed when configuring a new service is neglecting to implement the necessary firewall configuration and SELinux policies to allow access for it. For more information, see the

Red Hat Enterprise Linux 6 Security Guide.

12.1. CONFIGURING THE DEFAULT RUNLEVEL

A runlevel is a state, or mode, defined by services that are meant to be run when this runlevel is selected. Seven numbered runlevels exist (indexed from 0):

Table 12.1. Runlevels in Red Hat Enterprise Linux

Runlevel Description

0

1

Used to halt the system. This runlevel is reserved and cannot be changed.

Used to run in a single-user mode. This runlevel is reserved and cannot be changed.

Not used by default. You are free to define it yourself.

2

3 Used to run in a full multi-user mode with a command-line user interface.

Not used by default. You are free to define it yourself.

4

5

6

Used to run in a full multi-user mode with a graphical user interface.

Used to reboot the system. This runlevel is reserved and cannot be changed.

To check in which runlevel you are operating, type the following:

~]$ runlevel

N 5

The runlevel command displays previous and current runlevel. In this case it is number 5, which means the system is running in a full multi-user mode with a graphical user interface.

208

CHAPTER 12. SERVICES AND DAEMONS

The default runlevel can be changed by modifying the /etc/inittab file, which contains a line near the end of the file similar to the following: id:5:initdefault:

To do so, edit this file as root and change the number on this line to the desired value. The change will take effect the next time you reboot the system.

12.2. CONFIGURING THE SERVICES

To allow you to configure which services are started at boot time, Red Hat Enterprise Linux is shipped with the following utilities: the Service Configuration graphical application, the ntsysv text user interface, and the chkconfig command-line tool.

IMPORTANT

To ensure optimal performance on POWER architecture, it is recommended that the

irqbalance service is enabled. In most cases, this service is installed and configured to run during the Red Hat Enterprise Linux 6 installation. To verify that irqbalance is running, as root, type the following at a shell prompt:

~]# service irqbalance status irqbalance (pid 1234) is running...

For information on how to enable and run a service using a graphical user interface, see

Section 12.2.1, “Using the Service Configuration Utility” . For instructions on how to

perform these task on the command line, see Section 12.2.3, “Using the chkconfig Utility”

and Section 12.3, “Running Services”

respectively.

12.2.1. Using the Service Configuration Utility

The Service Configuration utility is a graphical application developed by Red Hat to configure which services are started in a particular runlevel, as well as to start, stop, and restart them from the menu. To start the utility, select SystemAdministrationServices from the panel, or type the command

system-config-services at a shell prompt.

NOTE

The system-config-services utility is provided by the system-config-services package, which may not be installed by default on your version of Red Hat

Enterprise Linux. To ensure that, first run the following command:

~]$ rpm -q system-config-services

If the package is not installed by default, install it manually by running the following command as root:

~]# yum install system-config-services

209

Deployment Guide

Figure 12.1. The Service Configuration utility

The utility displays the list of all available services (services from the /etc/rc.d/init.d/ directory, as well as services controlled by xinetd) along with their description and the current status. For a complete list of used icons and an explanation of their meaning, see

Table 12.2, “Possible service states”

.

Note that unless you are already authenticated, you will be prompted to enter the superuser password the first time you make a change.

Table 12.2. Possible service states

Icon Description

The service is enabled.

The service is disabled.

The service is enabled for selected runlevels only.

The service is running.

The service is stopped.

There is something wrong with the service.

210

CHAPTER 12. SERVICES AND DAEMONS

Icon Description

The status of the service is unknown.

12.2.1.1. Enabling and Disabling a Service

To enable a service, select it from the list and either click the Enable button on the toolbar, or choose

ServiceEnable from the main menu.

To disable a service, select it from the list and either click the Disable button on the toolbar, or choose

ServiceDisable from the main menu.

12.2.1.2. Starting, Restarting, and Stopping a Service

To start a service, select it from the list and either click the Start button on the toolbar, or choose

ServiceStart from the main menu. Note that this option is not available for services controlled by

xinetd, as they are started by it on demand.

To restart a running service, select it from the list and either click the Restart button on the toolbar, or choose ServiceRestart from the main menu. Note that this option is not available for services controlled by xinetd, as they are started and stopped by it automatically.

To stop a service, select it from the list and either click the Stop button on the toolbar, or choose

ServiceStop from the main menu. Note that this option is not available for services controlled by

xinetd, as they are stopped by it when their job is finished.

12.2.1.3. Selecting Runlevels

To enable the service for certain runlevels only, select it from the list and either click the Customize button on the toolbar, or choose ServiceCustomize from the main menu. Then select the check box beside each runlevel in which you want the service to run. Note that this option is not available for services controlled by xinetd.

12.2.2. Using the ntsysv Utility

The ntsysv utility is a command-line application with a simple text user interface to configure which services are to be started in selected runlevels. To start the utility, type ntsysv at a shell prompt as

root.

211

Deployment Guide

Figure 12.2. The ntsysv utility

The utility displays the list of available services (the services from the /etc/rc.d/init.d/ directory) along with their current status and a description obtainable by pressing F1. For a list of used symbols

and an explanation of their meaning, see Table 12.3, “Possible service states” .

Table 12.3. Possible service states

Symbol Description

[*]

[ ]

The service is enabled.

The service is disabled.

12.2.2.1. Enabling and Disabling a Service

To enable a service, navigate through the list using the Up and Down arrows keys, and select it with the

Spacebar. An asterisk (*) appears in the brackets.

To disable a service, navigate through the list using the Up and Down arrows keys, and toggle its status with the Spacebar. An asterisk (*) in the brackets disappears.

Once you are done, use the Tab key to navigate to the Ok button, and confirm the changes by pressing

Enter. Keep in mind that ntsysv does not actually start or stop the service. If you need to start or stop

the service immediately, use the service command as described in Section 12.3.2, “Starting a

Service” .

12.2.2.2. Selecting Runlevels

By default, the ntsysv utility only affects the current runlevel. To enable or disable services for other runlevels, as root, run the command with the additional --level option followed by numbers from 0 to

6 representing each runlevel you want to configure:

212

CHAPTER 12. SERVICES AND DAEMONS

ntsysv --level runlevels

For example, to configure runlevels 3 and 5, type:

~]# ntsysv --level 35

12.2.3. Using the chkconfig Utility

The chkconfig utility is a command-line tool that allows you to specify in which runlevel to start a selected service, as well as to list all available services along with their current setting. Note that with the exception of listing, you must have superuser privileges to use this command.

12.2.3.1. Listing the Services

To display a list of system services (services from the /etc/rc.d/init.d/ directory, as well as the services controlled by xinetd), either type chkconfig --list, or use chkconfig with no additional arguments. You will be presented with an output similar to the following:

~]# chkconfig --list

NetworkManager 0:off 1:off 2:on 3:on 4:on 5:on 6:off abrtd 0:off 1:off 2:off 3:on 4:off 5:on 6:off acpid 0:off 1:off 2:on 3:on 4:on 5:on 6:off anamon 0:off 1:off 2:off 3:off 4:off 5:off 6:off atd 0:off 1:off 2:off 3:on 4:on 5:on 6:off auditd 0:off 1:off 2:on 3:on 4:on 5:on 6:off avahi-daemon 0:off 1:off 2:off 3:on 4:on 5:on 6:off

... several lines omitted ...

wpa_supplicant 0:off 1:off 2:off 3:off 4:off 5:off 6:off xinetd based services:

chargen-dgram: off

chargen-stream: off

cvs: off

daytime-dgram: off

daytime-stream: off

discard-dgram: off

... several lines omitted ...

time-stream: off

Each line consists of the name of the service followed by its status (on or off) for each of the seven numbered runlevels. For example, in the listing above, NetworkManager is enabled in runlevel 2, 3, 4, and 5, while abrtd runs in runlevel 3 and 5. The xinetd based services are listed at the end, being either on, or off.

To display the current settings for a selected service only, use chkconfig --list followed by the name of the service:

chkconfig --list service_name

For example, to display the current settings for the sshd service, type:

~]# chkconfig --list sshd sshd 0:off 1:off 2:on 3:on 4:on 5:on 6:off

213

Deployment Guide

You can also use this command to display the status of a service that is managed by xinetd. In that case, the output will only contain the information whether the service is enabled or disabled:

~]# chkconfig --list rsync rsync off

12.2.3.2. Enabling a Service

To enable a service in runlevels 2, 3, 4, and 5, type the following at a shell prompt as root:

chkconfig service_name on

For example, to enable the httpd service in these four runlevels, type:

~]# chkconfig httpd on

To enable a service in certain runlevels only, add the --level option followed by numbers from 0 to 6 representing each runlevel in which you want the service to run:

chkconfig service_name on --level runlevels

For instance, to enable the abrtd service in runlevels 3 and 5, type:

~]# chkconfig abrtd on --level 35

The service will be started the next time you enter one of these runlevels. If you need to start the service immediately, use the service command as described in

Section 12.3.2, “Starting a Service” .

Do not use the --level option when working with a service that is managed by xinetd, as it is not supported. For example, to enable the rsync service, type:

~]# chkconfig rsync on

If the xinetd daemon is running, the service is immediately enabled without having to manually restart the daemon.

12.2.3.3. Disabling a Service

To disable a service in runlevels 2, 3, 4, and 5, type the following at a shell prompt as root:

chkconfig service_name off

For instance, to disable the httpd service in these four runlevels, type:

~]# chkconfig httpd off

To disable a service in certain runlevels only, add the --level option followed by numbers from 0 to 6 representing each runlevel in which you do not want the service to run:

chkconfig service_name off --level runlevels

214

CHAPTER 12. SERVICES AND DAEMONS

For instance, to disable the abrtd in runlevels 2 and 4, type:

~]# chkconfig abrtd off --level 24

The service will be stopped the next time you enter one of these runlevels. If you need to stop the service immediately, use the service command as described in

Section 12.3.3, “Stopping a Service” .

Do not use the --level option when working with a service that is managed by xinetd, as it is not supported. For example, to disable the rsync service, type:

~]# chkconfig rsync off

If the xinetd daemon is running, the service is immediately disabled without having to manually restart the daemon.

12.3. RUNNING SERVICES

The service utility allows you to start, stop, or restart the services from the /etc/init.d/ directory.

12.3.1. Determining the Service Status

To determine the current status of a service, type the following at a shell prompt:

service service_name status

For example, to determine the status of the httpd service, type:

~]# service httpd status httpd (pid 7474) is running...

To display the status of all available services at once, run the service command with the --status-

all option:

~]# service --status-all abrt (pid 1492) is running...

acpid (pid 1305) is running...

atd (pid 1540) is running...

auditd (pid 1103) is running...

automount (pid 1315) is running...

Avahi daemon is running cpuspeed is stopped

... several lines omitted ...

wpa_supplicant (pid 1227) is running...

Note that you can also use the Service Configuration utility as described in Section 12.2.1, “Using the

Service Configuration Utility” .

12.3.2. Starting a Service

To start a service, type the following at a shell prompt as root:

service service_name start

215

Deployment Guide

For example, to start the httpd service, type:

~]# service httpd start

Starting httpd: [ OK ]

12.3.3. Stopping a Service

To stop a running service, type the following at a shell prompt as root:

service service_name stop

For example, to stop the httpd service, type:

~]# service httpd stop

Stopping httpd: [ OK ]

12.3.4. Restarting a Service

To restart the service, type the following at a shell prompt as root:

service service_name restart

For example, to restart the httpd service, type:

~]# service httpd restart

Stopping httpd: [ OK ]

Starting httpd: [ OK ]

12.4. ADDITIONAL RESOURCES

12.4.1. Installed Documentation

chkconfig(8) — a manual page for the chkconfig utility.

ntsysv(8) — a manual page for the ntsysv utility.

service(8) — a manual page for the service utility.

system-config-services(8) — a manual page for the system-config-services utility.

12.4.2. Related Books

Red Hat Enterprise Linux 6 Security Guide

A guide to securing Red Hat Enterprise Linux 6. It contains valuable information on how to set up the firewall, as well as the configuration of SELinux.

216

CHAPTER 13. CONFIGURING AUTHENTICATION

CHAPTER 13. CONFIGURING AUTHENTICATION

Authentication is the way that a user is identified and verified to a system. The authentication process requires presenting some sort of identity and credentials, like a user name and password. The credentials are then compared to information stored in some data store on the system. In Red Hat

Enterprise Linux, the Authentication Configuration Tool helps configure what kind of data store to use for user credentials, such as LDAP.

For convenience and potentially part of single sign-on, Red Hat Enterprise Linux can use a central daemon to store user credentials for a number of different data stores. The System Security Services

Daemon (SSSD) can interact with LDAP, Kerberos, and external applications to verify user credentials.

The Authentication Configuration Tool can configure SSSD along with NIS, Winbind, and LDAP, so that authentication processing and caching can be combined.

13.1. CONFIGURING SYSTEM AUTHENTICATION

When a user logs into a Red Hat Enterprise Linux system, that user presents some sort of credential to establish the user identity. The system then checks those credentials against the configured authentication service. If the credentials match and the user account is active, then the user is authenticated. (Once a user is authenticated, then the information is passed to the access control service to determine what the user is permitted to do. Those are the resources the user is authorized to access.)

The information to verify the user can be located on the local system or the local system can reference a user database on a remote system, such as LDAP or Kerberos.

The system must have a configured list of valid account databases for it to check for user authentication.

On Red Hat Enterprise Linux, the Authentication Configuration Tool has both GUI and command-line options to configure any user data stores.

A local system can use a variety of different data stores for user information, including Lightweight

Directory Access Protocol (LDAP), Network Information Service (NIS), and Winbind. Additionally, both

LDAP and NIS data stores can use Kerberos to authenticate users.

IMPORTANT

If a medium or high security level is set during installation or with the Security Level

Configuration Tool, then the firewall prevents NIS authentication. For more information about firewalls, see the "Firewalls" section of the Security Guide.

13.1.1. Launching the Authentication Configuration Tool UI

1. Log into the system as root.

2. Open the System.

3. Select the Administration menu.

4. Select the Authentication item.

217

Deployment Guide

Alternatively, run the system-config-authentication command.

IMPORTANT

Any changes take effect immediately when the Authentication Configuration Tool UI is closed.

There are two configuration tabs in the Authentication dialog box:

Identity & Authentication, which configures the resource used as the identity store (the data repository where the user IDs and corresponding credentials are stored).

Advanced Options, which allows authentication methods other than passwords or certificates, like smart cards and fingerprint.

13.1.2. Selecting the Identity Store for Authentication

The Identity & Authentication tab sets how users should be authenticated. The default is to use local system authentication, meaning the users and their passwords are checked against local system accounts. A Red Hat Enterprise Linux machine can also use external resources which contain the users and credentials, including LDAP, NIS, and Winbind.

218

CHAPTER 13. CONFIGURING AUTHENTICATION

Figure 13.1. Local Authentication

13.1.2.1. Configuring LDAP Authentication

Either the openldap-clients package or the sssd package is used to configure an LDAP server for the user database. Both packages are installed by default.

1. Open the Authentication Configuration Tool, as in Section 13.1.1, “Launching the Authentication

Configuration Tool UI” .

2. Select LDAP in the User Account Database drop-down menu.

219

Deployment Guide

220

3. Set the information that is required to connect to the LDAP server.

LDAP Search Base DN gives the root suffix or distinguished name (DN) for the user directory. All of the user entries used for identity/authentication will exist below this parent entry. For example, ou=people,dc=example,dc=com.

This field is optional. If it is not specified, then the System Security Services Daemon

(SSSD) attempts to detect the search base using the namingContexts and

defaultNamingContext attributes in the LDAP server's configuration entry.

LDAP Server gives the URL of the LDAP server. This usually requires both the host name and port number of the LDAP server, such as ldap://ldap.example.com:389.

Entering the secure protocol in the URL, ldaps://, enables the Download CA

Certificate button.

Use TLS to encrypt connections sets whether to use Start TLS to encrypt the connections to the LDAP server. This enables a secure connection over a standard port.

Selecting TLS enables the Download CA Certificate button, which retrieves the

CHAPTER 13. CONFIGURING AUTHENTICATION issuing CA certificate for the LDAP server from whatever certificate authority issued it. The

CA certificate must be in the privacy enhanced mail (PEM) format.

IMPORTANT

Do not select Use TLS to encrypt connections if the server URL uses a secure protocol (ldaps). This option uses Start TLS, which initiates a secure connection over a standard port; if a secure port is specified, then a protocol like SSL must be used instead of Start TLS.

4. Select the authentication method. LDAP allows simple password authentication or Kerberos authentication.

Using Kerberos is described in Section 13.1.2.4, “Using Kerberos with LDAP or NIS

Authentication” .

The LDAP password option uses PAM applications to use LDAP authentication. This option requires either a secure (ldaps://) URL or the TLS option to connect to the LDAP server.

13.1.2.2. Configuring NIS Authentication

1. Install the ypbind package. This is required for NIS services, but is not installed by default.

~]# yum install ypbind

When the ypbind service is installed, the portmap and ypbind services are started and enabled to start at boot time.

2. Open the Authentication Configuration Tool, as in Section 13.1.1, “Launching the Authentication

Configuration Tool UI” .

3. Select NIS in the User Account Database drop-down menu.

221

Deployment Guide

4. Set the information to connect to the NIS server, meaning the NIS domain name and the server host name. If the NIS server is not specified, the authconfig daemon scans for the NIS server.

5. Select the authentication method. NIS allows simple password authentication or Kerberos authentication.

Using Kerberos is described in Section 13.1.2.4, “Using Kerberos with LDAP or NIS

Authentication” .

For more information about NIS, see the "Securing NIS" section of the Security Guide.

13.1.2.3. Configuring Winbind Authentication

1. Install the samba-winbind package. This is required for Windows integration features in Samba services, but is not installed by default.

~]# yum install samba-winbind

2. Open the Authentication Configuration Tool, as in Section 13.1.1, “Launching the Authentication

Configuration Tool UI” .

222

CHAPTER 13. CONFIGURING AUTHENTICATION

3. Select Winbind in the User Account Database drop-down menu.

4. Set the information that is required to connect to the Microsoft Active Directory domain controller.

Winbind Domain gives the Windows domain to connect to.

This should be in the Windows 2000 format, such as DOMAIN.

Security Model sets the security model to use for Samba clients. authconfig supports four types of security models:

223

Deployment Guide

ads configures Samba to act as a domain member in an Active Directory Server realm.

To operate in this mode, the krb5-server package must be installed and Kerberos must be configured properly. Also, when joining to the Active Directory Server using the command line, the following command must be used: net ads join

domain has Samba validate the user name/password by authenticating it through a

Windows primary or backup domain controller, much like a Windows server.

server has a local Samba server validate the user name/password by authenticating it through another server, such as a Windows server. If the server authentication attempt fails, the system then attempts to authenticate using user mode.

user requires a client to log in with a valid user name and password. This mode does support encrypted passwords.

The user name format must be domain\user, such as EXAMPLE\jsmith.

NOTE

When verifying that a given user exists in the Windows domain, always use Windows 2000-style formats and escape the backslash (\) character.

For example:

~]# getent passwd domain\\user

DOMAIN\user:*:16777216:16777216:Name

Surname:/home/DOMAIN/user:/bin/bash

This is the default option.

Winbind ADS Realm gives the Active Directory realm that the Samba server will join. This is only used with the ads security model.

Winbind Domain Controllers gives the domain controller to use. For more information about domain controllers, see

Section 21.1.6.3, “Domain Controller”

.

Template Shell sets which login shell to use for Windows user account settings.

Allow offline login allows authentication information to be stored in a local cache.

The cache is referenced when a user attempts to authenticate to system resources while the system is offline.

For more information about the Winbind service, see Section 21.1.2, “Samba Daemons and Related

Services” .

For additional information about configuring Winbind and troubleshooting tips, see the Knowledgebase on the Red Hat Customer Portal .

Also, the Red Hat Access Labs page includes the Winbind Mapper utility that generates a part of the

smb.conf file to help you connect a Red Hat Enterprise Linux to an Active Directory.

13.1.2.4. Using Kerberos with LDAP or NIS Authentication

224

CHAPTER 13. CONFIGURING AUTHENTICATION

Both LDAP and NIS authentication stores support Kerberos authentication methods. Using Kerberos has a couple of benefits:

It uses a security layer for communication while still allowing connections over standard ports.

It automatically uses credentials caching with SSSD, which allows offline logins.

Using Kerberos authentication requires the krb5-libs and krb5-workstation packages.

The Kerberos password option from the Authentication Method drop-down menu automatically opens the fields required to connect to the Kerberos realm.

Figure 13.2. Kerberos Fields

Realm gives the name for the realm for the Kerberos server. The realm is the network that uses

Kerberos, composed of one or more key distribution centers (KDC) and a potentially large number of clients.

KDCs gives a comma-separated list of servers that issue Kerberos tickets.

Admin Servers gives a list of administration servers running the kadmind process in the realm.

Optionally, use DNS to resolve server host name and to find additional KDCs within the realm.

For more information about Kerberos, see section "Using Kerberos" of the Red Hat Enterprise Linux 6

Managing Single Sign-On and Smart Cards guide.

225

Deployment Guide

13.1.3. Configuring Alternative Authentication Features

The Authentication Configuration Tool also configures settings related to authentication behavior, apart from the identity store. This includes entirely different authentication methods (fingerprint scans and smart cards) or local authentication rules. These alternative authentication options are configured in the

Advanced Options tab.

Figure 13.3. Advanced Options

13.1.3.1. Using Fingerprint Authentication

When there is appropriate hardware available, the Enable fingerprint reader support option allows fingerprint scans to be used to authenticate local users in addition to other credentials.

13.1.3.2. Setting Local Authentication Parameters

There are two options in the Local Authentication Options area which define authentication behavior on the local system:

226

CHAPTER 13. CONFIGURING AUTHENTICATION

Enable local access control instructs the /etc/security/access.conf file to check for local user authorization rules.

Password Hashing Algorithm sets the hashing algorithm to use to encrypt locally-stored passwords.

13.1.3.3. Enabling Smart Card Authentication

When there are appropriate smart card readers available, a system can accept smart cards (or tokens) instead of other user credentials to authenticate.

Once the Enable smart card support option is selected, then the behaviors of smart card authentication can be defined:

Card Removal Action tells the system how to respond when the card is removed from the card reader during an active session. A system can either ignore the removal and allow the user to access resources as normal, or a system can immediately lock until the smart card is supplied.

Require smart card login sets whether a smart card is required for logins or allowed for logins. When this option is selected, all other methods of authentication are immediately blocked.

WARNING

Do not select this option until you have successfully authenticated to the system using a smart card.

Using smart cards requires the pam_pkcs11 package.

13.1.3.4. Creating User Home Directories

There is an option (Create home directories on the first login) to create a home directory automatically the first time that a user logs in.

This option is beneficial with accounts that are managed centrally, such as with LDAP. However, this option should not be selected if a system like automount is used to manage user home directories.

13.1.4. Configuring Authentication from the Command Line

The authconfig command-line tool updates all of the configuration files and services required for system authentication, according to the settings passed to the script. Along with allowing all of the identity and authentication configuration options that can be set through the UI, the authconfig tool can also be used to create backup and kickstart files.

For a complete list of authconfig options, check the help output and the man page.

13.1.4.1. Tips for Using authconfig

227

Deployment Guide

There are some things to remember when running authconfig:

With every command, use either the --update or --test option. One of those options is required for the command to run successfully. Using --update writes the configuration changes. --test prints the changes to stdout but does not apply the changes to the configuration.

Each enable option has a corresponding disable option.

13.1.4.2. Configuring LDAP User Stores

To use an LDAP identity store, use the --enableldap. To use LDAP as the authentication source, use

--enableldapauth and then the requisite connection information, like the LDAP server name, base

DN for the user suffix, and (optionally) whether to use TLS. The authconfig command also has options to enable or disable RFC 2307bis schema for user entries, which is not possible through the

Authentication Configuration UI.

Be sure to use the full LDAP URL, including the protocol (ldap or ldaps) and the port number. Do not use a secure LDAP URL (ldaps) with the --enableldaptls option.

authconfig --enableldap --enableldapauth -ldapserver=ldap://ldap.example.com:389,ldap://ldap2.example.com:389 -ldapbasedn="ou=people,dc=example,dc=com" --enableldaptls -ldaploadcacert=https://ca.server.example.com/caCert.crt --update

Instead of using --ldapauth for LDAP password authentication, it is possible to use Kerberos with the

LDAP user store. These options are described in Section 13.1.4.5, “Configuring Kerberos

Authentication” .

13.1.4.3. Configuring NIS User Stores

To use a NIS identity store, use the --enablenis. This automatically uses NIS authentication, unless

the Kerberos parameters are explicitly set, so it uses Kerberos authentication ( Section 13.1.4.5,

“Configuring Kerberos Authentication” ). The only parameters are to identify the NIS server and NIS

domain; if these are not used, then the authconfig service scans the network for NIS servers.

authconfig --enablenis --nisdomain=EXAMPLE --nisserver=nis.example.com -update

13.1.4.4. Configuring Winbind User Stores

Windows domains have several different security models, and the security model used in the domain determines the authentication configuration for the local system.

For user and server security models, the Winbind configuration requires only the domain (or workgroup) name and the domain controller host names.

authconfig --enablewinbind --enablewinbindauth --smbsecurity=user|server

--enablewinbindoffline --smbservers=ad.example.com --smbworkgroup=EXAMPLE

--update

228

CHAPTER 13. CONFIGURING AUTHENTICATION

NOTE

The user name format must be domain\user, such as EXAMPLE\jsmith.

When verifying that a given user exists in the Windows domain, always use Windows

2000-style formats and escape the backslash (\) character. For example:

~]# getent passwd domain\\user

DOMAIN\user:*:16777216:16777216:Name

Surname:/home/DOMAIN/user:/bin/bash

For ads and domain security models, the Winbind configuration allows additional configuration for the template shell and realm (ads only). For example: authconfig --enablewinbind --enablewinbindauth --smbsecurity ads -enablewinbindoffline --smbservers=ad.example.com --smbworkgroup=EXAMPLE -smbrealm EXAMPLE.COM --winbindtemplateshell=/bin/sh --update

There are a lot of other options for configuring Windows-based authentication and the information for

Windows user accounts, such as name formats, whether to require the domain name with the user name, and UID ranges. These options are listed in the authconfig help.

13.1.4.5. Configuring Kerberos Authentication

Both LDAP and NIS allow Kerberos authentication to be used in place of their native authentication mechanisms. At a minimum, using Kerberos authentication requires specifying the realm, the KDC, and the administrative server. There are also options to use DNS to resolve client names and to find additional admin servers.

authconfig NIS or LDAP options --enablekrb5 --krb5realm EXAMPLE --krb5kdc kdc.example.com:88,server.example.com:88 --krb5adminserver server.example.com:749 --enablekrb5kdcdns --enablekrb5realmdns --update

13.1.4.6. Configuring Local Authentication Settings

The Authentication Configuration Tool can also control some user settings that relate to security, such as creating home directories, setting password hash algorithms, and authorization. These settings are done independently of identity/user store settings.

For example, to create user home directories: authconfig --enablemkhomedir --update

To set or change the hash algorithm used to encrypt user passwords: authconfig --passalgo=sha512 --update

13.1.4.7. Configuring Fingerprint Authentication

There is one option to enable support for fingerprint readers. This option can be used alone or in conjunction with other authconfig settings, like LDAP user stores.

229

Deployment Guide

~]# authconfig --enablefingerprint --update

13.1.4.8. Configuring Smart Card Authentication

All that is required to use smart cards with a system is to set the --enablesmartcard option:

~]# authconfig --enablesmartcard --update

There are other configuration options for smart cards, such as changing the default smart card module, setting the behavior of the system when the smart card is removed, and requiring smart cards for login.

For example, this command instructs the system to lock out a user immediately if the smart card is removed (a setting of 1 ignores it if the smart card is removed):

~]# authconfig --enablesmartcard --smartcardaction=0 --update

Once smart card authentication has been successfully configured and tested, then the system can be configured to require smart card authentication for users rather than simple password-based authentication.

~]# authconfig --enablerequiresmartcard --update

WARNING

Do not use the --enablerequiresmartcard option until you have successfully authenticated to the system using a smart card. Otherwise, users may be unable to log into the system.

13.1.4.9. Managing Kickstart and Configuration Files

The --update option updates all of the configuration files with the configuration changes. There are a couple of alternative options with slightly different behavior:

--kickstart writes the updated configuration to a kickstart file.

--test prints the full configuration, with changes, to stdout but does not edit any configuration files.

Additionally, authconfig can be used to back up and restore previous configurations. All archives are saved to a unique subdirectory in the /var/lib/authconfig/ directory. For example, the --

savebackup option gives the backup directory as 2011-07-01:

~]# authconfig --savebackup=2011-07-01

This backs up all of the authentication configuration files beneath the

/var/lib/authconfig/backup-2011-07-01 directory.

230

CHAPTER 13. CONFIGURING AUTHENTICATION

Any of the saved backups can be used to restore the configuration using the --restorebackup option, giving the name of the manually-saved configuration:

~]# authconfig --restorebackup=2011-07-01

Additionally, authconfig automatically makes a backup of the configuration before it applies any changes (with the --update option). The configuration can be restored from the most recent automatic backup, without having to specify the exact backup, using the --restorelastbackup option.

13.1.5. Using Custom Home Directories

If LDAP users have home directories that are not in /home and the system is configured to create home directories the first time users log in, then these directories are created with the wrong permissions.

1. Apply the correct SELinux context and permissions from the /home directory to the home directory that is created on the local system. For example:

~]# semanage fcontext -a -e /home /home/locale

2. Install the oddjob-mkhomedir package on the system.

This package provides the pam_oddjob_mkhomedir.so library, which the Authentication

Configuration Tool uses to create home directories. The pam_oddjob_mkhomedir.so library, unlike the default pam_mkhomedir.so library, can create SELinux labels.

The Authentication Configuration Tool automatically uses the pam_oddjob_mkhomedir.so library if it is available. Otherwise, it will default to using pam_mkhomedir.so.

3. Make sure the oddjobd service is running.

4. Re-run the Authentication Configuration Tool and enable home directories, as in Section 13.1.3,

“Configuring Alternative Authentication Features” .

If home directories were created before the home directory configuration was changed, then correct the permissions and SELinux contexts. For example:

~]# semanage fcontext -a -e /home /home/locale

# restorecon -R -v /home/locale

13.2. USING AND CACHING CREDENTIALS WITH SSSD

The System Security Services Daemon (SSSD) provides access to different identity and authentication providers.

13.2.1. About SSSD

Most system authentication is configured locally, which means that services must check with a local user store to determine users and credentials. What SSSD does is allow a local service to check with a local cache in SSSD, but that cache may be taken from any variety of remote identity providers — an LDAP directory, an Identity Management domain, Active Directory, possibly even a Kerberos realm.

SSSD also caches those users and credentials, so if the local system or the identity provider go offline, the user credentials are still available to services to verify.

231

Deployment Guide

SSSD is an intermediary between local clients and any configured data store. This relationship brings a number of benefits for administrators:

Reducing the load on identification/authentication servers. Rather than having every client service attempt to contact the identification server directly, all of the local clients can contact

SSSD which can connect to the identification server or check its cache.

Permitting offline authentication. SSSD can optionally keep a cache of user identities and credentials that it retrieves from remote services. This allows users to authenticate to resources successfully, even if the remote identification server is offline or the local machine is offline.

Using a single user account. Remote users frequently have two (or even more) user accounts, such as one for their local system and one for the organizational system. This is necessary to connect to a virtual private network (VPN). Because SSSD supports caching and offline authentication, remote users can connect to network resources by authenticating to their local machine and then SSSD maintains their network credentials.

Additional Resources

While this chapter covers the basics of configuring services and domains in SSSD, this is not a comprehensive resource. Many other configuration options are available for each functional area in

SSSD; check out the man page for the specific functional area to get a complete list of options.

Some of the common man pages are listed in Table 13.1, “A Sampling of SSSD Man Pages”

. There is also a complete list of SSSD man pages in the "See Also" section of the sssd(8) man page.

Table 13.1. A Sampling of SSSD Man Pages

Functional Area Man Page

General Configuration sssd.conf(8) sudo Services

LDAP Domains

Active Directory Domains sssd-sudo sssd-ldap sssd-ad sssd-ldap

Identity Management (IdM or IPA) Domains sssd-ipa sssd-ldap sssd-krb5 Kerberos Authentication for Domains

OpenSSH Keys sss_ssh_authorizedkeys sss_ssh_knownhostsproxy

232

Functional Area

Cache Maintenance

CHAPTER 13. CONFIGURING AUTHENTICATION

Man Page sss_cache (cleanup) sss_useradd, sss_usermod, sss_userdel, sss_seed

(user cache entry management)

13.2.2. Setting up the sssd.conf File

SSSD services and domains are configured in a .conf file. By default, this is /etc/sssd/sssd.conf

— although that file must be created and configured manually, since SSSD is not configured after installation.

13.2.2.1. Creating the sssd.conf File

There are three parts of the SSSD configuration file:

[sssd], for general SSSD process and operational configuration; this basically lists the configured services, domains, and configuration parameters for each

[service_name], for configuration options for each supported system service, as described in

Section 13.2.4, “SSSD and System Services”

[domain_type/DOMAIN_NAME], for configuration options for each configured identity provider

IMPORTANT

While services are optional, at least one identity provider domain must be configured before the SSSD service can be started.

Example 13.1. Simple sssd.conf File

[sssd] domains = LOCAL services = nss config_file_version = 2

[nss] filter_groups = root filter_users = root

[domain/LOCAL] id_provider = local auth_provider = local access_provider = permit

The [sssd] section has three important parameters:

233

Deployment Guide

domains lists all of the domains, configured in the sssd.conf, which SSSD uses as identity providers. If a domain is not listed in the domains key, it is not used by SSSD, even if it has a configuration section.

services lists all of the system services, configured in the sssd.conf, which use SSSD; when

SSSD starts, the corresponding SSSD service is started for each configured system service. If a service is not listed in the services key, it is not used by SSSD, even if it has a configuration section.

config_file_version sets the version of the configuration file to set file format expectations.

This is version 2, for all recent SSSD versions.

NOTE

Even if a service or domain is configured in the sssd.conf file, SSSD does not interact with that service or domain unless it is listed in the services or domains parameters, respectively, in the [sssd] section.

Other configuration parameters are listed in the sssd.conf man page.

Each service and domain parameter is described in its respective configuration section in this chapter and in their man pages.

13.2.2.2. Using a Custom Configuration File

By default, the sssd process assumes that the configuration file is /etc/sssd/sssd.conf.

An alternative file can be passed to SSSD by using the -c option with the sssd command:

~]# sssd -c /etc/sssd/customfile.conf --daemon

13.2.3. Starting and Stopping SSSD

IMPORTANT

Configure at least one domain before starting SSSD for the first time. See

Section 13.2.10, “SSSD and Identity Providers (Domains)” .

Either the service command or the /etc/init.d/sssd script can start SSSD. For example:

~]# service sssd start

By default, SSSD is not configured to start automatically. There are two ways to change this behavior:

Enabling SSSD through the authconfig command:

~]# authconfig --enablesssd --enablesssdauth --update

Adding the SSSD process to the start list using the chkconfig command:

~]# chkconfig sssd on

234

CHAPTER 13. CONFIGURING AUTHENTICATION

13.2.4. SSSD and System Services

SSSD and its associated services are configured in the sssd.conf file. The [sssd] section also lists the services that are active and should be started when sssd starts within the services directive.

SSSD can provide credentials caches for several system services:

A Name Service Switch (NSS) provider service that answers name service requests from the

sssd_nss module. This is configured in the [nss] section of the SSSD configuration.

This is described in

Section 13.2.5, “Configuring Services: NSS” .

A PAM provider service that manages a PAM conversation through the sssd_pam module. This is configured in the [pam] section of the configuration.

This is described in

Section 13.2.6, “Configuring Services: PAM”

.

An SSH provider service that defines how SSSD manages the known_hosts file and other key-

related configuration. Using SSSD with OpenSSH is described in Section 13.2.9, “Configuring

Services: OpenSSH and Cached Keys” .

An autofs provider service that connects to an LDAP server to retrieve configured mount locations. This is configured as part of an LDAP identity provider in a [domain/NAME] section in the configuration file.

This is described in

Section 13.2.7, “Configuring Services: autofs”

.

A sudo provider service that connects to an LDAP server to retrieve configured sudo policies.

This is configured as part of an LDAP identity provider in a [domain/NAME] section in the configuration file.

This is described in

Section 13.2.8, “Configuring Services: sudo”

.

A PAC responder service that defines how SSSD works with Kerberos to manage Active

Directory users and groups. This is specifically part of managing Active Directory identity

providers with domains, as described in Section 13.2.13, “Creating Domains: Active Directory”

.

13.2.5. Configuring Services: NSS

SSSD provides an NSS module, sssd_nss, which instructs the system to use SSSD to retrieve user information. The NSS configuration must include a reference to the SSSD module, and then the SSSD configuration sets how SSSD interacts with NSS.

About NSS Service Maps and SSSD

The Name Service Switch (NSS) provides a central configuration for services to look up a number of configuration and name resolution services. NSS provides one method of mapping system identities and services with configuration sources.

SSSD works with NSS as a provider services for several types of NSS maps:

Passwords (passwd)

User groups (shadow)

Groups (groups)

235

Deployment Guide

Netgroups (netgroups)

Services (services)

Procedure 13.1. Configuring NSS Services to Use SSSD

NSS can use multiple identity and configuration providers for any and all of its service maps. The default is to use system files for services; for SSSD to be included, the nss_sss module has to be included for the desired service type.

1. Use the Authentication Configuration tool to enable SSSD. This automatically configured the

nsswitch.conf file to use SSSD as a provider.

~]# authconfig --enablesssd --update

This automatically configures the password, shadow, group, and netgroups services maps to use the SSSD module: passwd: files sss shadow: files sss group: files sss netgroup: files sss

2. The services map is not enabled by default when SSSD is enabled with authconfig. To include that map, open the nsswitch.conf file and add the sss module to the services map:

~]# vim /etc/nsswitch.conf

...

services: file sss

...

Procedure 13.2. Configuring SSSD to Work with NSS

The options and configuration that SSSD uses to service NSS requests are configured in the SSSD configuration file, in the [nss] services section.

1. Open the sssd.conf file.

~]# vim /etc/sssd/sssd.conf

2. Make sure that NSS is listed as one of the services that works with SSSD.

[sssd] config_file_version = 2 reconnection_retries = 3 sbus_timeout = 30 services = nss, pam

3. In the [nss] section, change any of the NSS parameters. These are listed in Table 13.2,

“SSSD [nss] Configuration Parameters” .

236

CHAPTER 13. CONFIGURING AUTHENTICATION

[nss] filter_groups = root filter_users = root reconnection_retries = 3 entry_cache_timeout = 300 entry_cache_nowait_percentage = 75

4. Restart SSSD.

~]# service sssd restart

Table 13.2. SSSD [nss] Configuration Parameters

Parameter Value

Format

Description entry_cache_nowait_percent age integer entry_negative_timeout integer

Specifies how long sssd_nss should return cached entries before refreshing the cache. Setting this to zero ( 0 ) disables the entry cache refresh.

This configures the entry cache to update entries in the background automatically if they are requested if the time before the next update is a certain percentage of the next interval. For example, if the interval is 300 seconds and the cache percentage is 75, then the entry cache will begin refreshing when a request comes in at 225 seconds — 75% of the interval.

The allowed values for this option are 0 to 99, which sets the percentage based on the entry_cache_timeout value.

The default value is 50%.

Specifies how long, in seconds, sssd_nss should cache negative cache hits. A negative cache hit is a query for an invalid database entries, including non-existent entries.

filter_users, filter_groups filter_users_in_groups debug_level string

Boolean integer, 0 -

9

Tells SSSD to exclude certain users from being fetched from the NSS database. This is particularly useful for system accounts such as root .

Sets whether users listed in the filter_users list appear in group memberships when performing group lookups. If set to FALSE , group lookups return all users that are members of that group. If not specified, this value defaults to true , which filters the group member lists.

Sets a debug logging level.

NSS Compatibility Mode

NSS compatibility (compat) mode provides the support for additional entries in the /etc/passwd file to ensure that users or members of netgroups have access to the system.

To enable NSS compatibility mode to work with SSSD, add the following entries to the

/etc/nsswitch.conf file:

237

Deployment Guide passwd: compat passwd_compat: sss

Once NSS compatibility mode is enabled, the following passwd entries are supported:

+user -user

Include (+) or exclude (-) a specified user from the Network Information System (NIS) map.

+@netgroup -@netgroup

Include (+) or exclude (-) all users in the given netgroup from the NIS map.

+

Exclude all users, except previously excluded ones from the NIS map.

For more information about NSS compatibility mode, see the nsswitch.conf(5) manual page.

13.2.6. Configuring Services: PAM

WARNING

A mistake in the PAM configuration file can lock users out of the system completely.

Always back up the configuration files before performing any changes, and keep a session open so that any changes can be reverted.

SSSD provides a PAM module, sssd_pam, which instructs the system to use SSSD to retrieve user information. The PAM configuration must include a reference to the SSSD module, and then the SSSD configuration sets how SSSD interacts with PAM.

Procedure 13.3. Configuring PAM

1. Use authconfig to enable SSSD for system authentication.

# authconfig --update --enablesssd --enablesssdauth

This automatically updates the PAM configuration to reference all of the SSSD modules:

#%PAM-1.0

# This file is auto-generated.

# User changes will be destroyed the next time authconfig is run.

auth required pam_env.so

auth sufficient pam_unix.so nullok try_first_pass auth requisite pam_succeed_if.so uid >= 500 quiet auth sufficient pam_sss.so use_first_pass auth required pam_deny.so

account required pam_unix.so

238

CHAPTER 13. CONFIGURING AUTHENTICATION account sufficient pam_localuser.so

account sufficient pam_succeed_if.so uid < 500 quiet account [default=bad success=ok user_unknown=ignore] pam_sss.so

account required pam_permit.so

password requisite pam_cracklib.so try_first_pass retry=3 password sufficient pam_unix.so sha512 shadow nullok try_first_pass use_authtok password sufficient pam_sss.so use_authtok password required pam_deny.so

session optional pam_keyinit.so revoke session required pam_limits.so

session [success=1 default=ignore] pam_succeed_if.so service in crond quiet use_uid session sufficient pam_sss.so

session required pam_unix.so

These modules can be set to include statements, as necessary.

2. Open the sssd.conf file.

# vim /etc/sssd/sssd.conf

3. Make sure that PAM is listed as one of the services that works with SSSD.

[sssd] config_file_version = 2 reconnection_retries = 3 sbus_timeout = 30 services = nss, pam

4. In the [pam] section, change any of the PAM parameters. These are listed in Table 13.3,

“SSSD [pam] Configuration Parameters” .

[pam] reconnection_retries = 3 offline_credentials_expiration = 2 offline_failed_login_attempts = 3 offline_failed_login_delay = 5

5. Restart SSSD.

~]# service sssd restart

Table 13.3. SSSD [pam] Configuration Parameters

Parameter Value Format Description offline_credentials_expiration integer Sets how long, in days, to allow cached logins if the authentication provider is offline. This value is measured from the last successful online login. If not specified, this defaults to zero ( 0 ), which is unlimited.

239

Deployment Guide

Parameter Value Format Description offline_failed_login_attempts offline_failed_login_delay integer integer

Sets how many failed login attempts are allowed if the authentication provider is offline. If not specified, this defaults to zero ( 0 ), which is unlimited.

Sets how long to prevent login attempts if a user hits the failed login attempt limit. If set to zero ( 0 ), the user cannot authenticate while the provider is offline once he hits the failed attempt limit. Only a successful online authentication can re-enable offline authentication. If not specified, this defaults to five

( 5 ).

13.2.7. Configuring Services: autofs

About Automount, LDAP, and SSSD

Automount maps are commonly flat files, which define a relationship between a map, a mount directory, and a fileserver. (Automount is described in the Storage Administration Guide .)

For example, let's say that there is a fileserver called nfs.example.com which hosts the directory pub, and automount is configured to mount directories in the /shares/ directory. So, the mount location is

/shares/pub. All of the mounts are listed in the auto.master file, which identifies the different mount directories and the files which configure them. The auto.shares file then identifies each file server and mount directory which goes into the /shares/ directory. The relationships could be viewed like this:

auto.master

_________|__________

| |

| |

/shares/ auto.shares

|

|

|

nfs.example.com:pub

Every mount point, then, is defined in two different files (at a minimum): the auto.master and

auto.whatever file, and those files have to be available to each local automount process.

One way for administrators to manage that for large environments is to store the automount configuration in a central LDAP directory, and just configure each local system to point to that LDAP directory. That means that updates only need to be made in a single location, and any new maps are automatically recognized by local systems.

For automount-LDAP configuration, the automount files are stored as LDAP entries, which are then translated into the requisite automount files. Each element is then translated into an LDAP attribute.

The LDAP entries look like this:

240

CHAPTER 13. CONFIGURING AUTHENTICATION

# container entry dn: cn=automount,dc=example,dc=com objectClass: nsContainer objectClass: top cn: automount

# master map entry dn: automountMapName=auto.master,cn=automount,dc=example,dc=com objectClass: automountMap objectClass: top automountMapName: auto.master

# shares map entry dn: automountMapName=auto.shares,cn=automount,dc=example,dc=com objectClass: automountMap objectClass: top automountMapName: auto.shares

# shares mount point dn: automountKey=/shares,automountMapName=auto.master,cn=automount,dc=example, dc=com objectClass: automount objectClass: top automountKey: /shares automountInformation: auto.shares

# pub mount point dn: automountKey=pub,automountMapName=auto.shares,cn=automount,dc=example,dc=c om objectClass: automount objectClass: top automountKey: pub automountInformation: filer.example.com:/pub description: pub

The schema elements, then, match up to the structure like this (with the RFC 2307 schema):

auto.master

objectclass: automountMap

filename attribute: automountMapName

_______________________|_________________________

| |

| |

/shares/ auto.shares

objectclass: automount objectclass: automountMap mount point name attribute: automountKey filename attribute: automountMapName map name attribute: automountInformation |

|

|

nfs.example.com:pub

objectclass: automount

mount point name attribute: automountKey

241

Deployment Guide

fileserver attribute: automountInformation

autofs uses those schema elements to derive the automount configuration. The

/etc/sysconfig/autofs file identifies the LDAP server, directory location, and schema elements used for automount entities:

LDAP_URI=ldap://ldap.example.com

SEARCH_BASE="cn=automount,dc=example,dc=com"

MAP_OBJECT_CLASS="automountMap"

ENTRY_OBJECT_CLASS="automount"

MAP_ATTRIBUTE="automountMapName"

ENTRY_ATTRIBUTE="automountKey"

VALUE_ATTRIBUTE="automountInformation"

Rather than pointing the automount configuration to the LDAP directory, it can be configured to point to

SSSD. SSSD, then, stores all of the information that automount needs, and as a user attempts to mount a directory, that information is cached into SSSD. This offers several advantages for configuration — such as failover, service discovery, and timeouts — as well as performance improvements by reducing the number of connections to the LDAP server. Most important, using SSSD allows all mount information to be cached, so that clients can still successfully mount directories even if the LDAP server goes offline.

Procedure 13.4. Configuring autofs Services in SSSD

1. Make sure that the autofs and sssd-common packages are installed.

2. Open the sssd.conf file.

~]# vim /etc/sssd/sssd.conf

3. Add the autofs service to the list of services that SSSD manages.

[sssd] services = nss,pam,autofs

....

4. Create a new [autofs] service configuration section. This section can be left blank; there is only one configurable option, for timeouts for negative cache hits.

This section is required, however, for SSSD to recognize the autofs service and supply the default configuration.

[autofs]

242

5. The automount information is read from a configured LDAP domain in the SSSD configuration, so an LDAP domain must be available. If no additional settings are made, then the configuration defaults to the RFC 2307 schema and the LDAP search base (ldap_search_base) for the automount information. This can be customized:

The directory type, autofs_provider; this defaults to the id_provider value; a value of none explicitly disables autofs for the domain.

CHAPTER 13. CONFIGURING AUTHENTICATION

The search base, ldap_autofs_search_base.

The object class to use to recognize map entries, ldap_autofs_map_object_class

The attribute to use to recognize map names, ldap_autofs_map_name

The object class to use to recognize mount point entries, ldap_autofs_entry_object_class

The attribute to use to recognize mount point names, ldap_autofs_entry_key

The attribute to use for additional configuration information for the mount point, ldap_autofs_entry_value

For example:

[domain/LDAP]

...

autofs_provider=ldap ldap_autofs_search_base=cn=automount,dc=example,dc=com ldap_autofs_map_object_class=automountMap ldap_autofs_entry_object_class=automount ldap_autofs_map_name=automountMapName ldap_autofs_entry_key=automountKey ldap_autofs_entry_value=automountInformation

6. Save and close the sssd.conf file.

7. Configure autofs to look for the automount map information in SSSD by editing the

nsswitch.conf file and changing the location from ldap to sss:

# vim /etc/nsswitch.conf

automount: files sss

8. Restart SSSD.

# service sssd restart

13.2.8. Configuring Services: sudo

About sudo, LDAP, and SSSD

sudo rules are defined in the sudoers file, which must be distributed separately to every machine to maintain consistency.

One way for administrators to manage that for large environments is to store the sudo configuration in a central LDAP directory, and just configure each local system to point to that LDAP directory. That means that updates only need to be made in a single location, and any new rules are automatically recognized by local systems.

For sudo-LDAP configuration, each sudo rule is stored as an LDAP entry, with each component of the

sudo rule defined in an LDAP attribute.

The sudoers rule looks like this:

243

Deployment Guide

Defaults env_keep+=SSH_AUTH_SOCK

...

%wheel ALL=(ALL) ALL

The LDAP entry looks like this:

# sudo defaults dn: cn=defaults,ou=SUDOers,dc=example,dc=com objectClass: top objectClass: sudoRole cn: defaults description: Default sudoOptions go here sudoOption: env_keep+=SSH_AUTH_SOCK

# sudo rule dn: cn=%wheel,ou=SUDOers,dc=example,dc=com objectClass: top objectClass: sudoRole cn: %wheel sudoUser: %wheel sudoHost: ALL sudoCommand: ALL

NOTE

SSSD only caches sudo rules which apply to the local system, depending on the value of the sudoHost attribute. This can mean that the sudoHost value is set to ALL, uses a regular expression that matches the host name, matches the systems netgroup, or matches the systems host name, fully qualified domain name, or IP address.

The sudo service can be configured to point to an LDAP server and to pull its rule configuration from those LDAP entries. Rather than pointing the sudo configuration to the LDAP directory, it can be configured to point to SSSD. SSSD, then, stores all of the information that sudo needs, and every time a user attempts a sudo-related operation, the latest sudo configuration can be pulled from the LDAP directory (through SSSD). SSSD, however, also caches all of the sudo riles, so that users can perform tasks, using that centralized LDAP configuration, even if the LDAP server goes offline.

Procedure 13.5. Configuring sudo with SSSD

All of the SSSD sudo configuration options are listed in the sssd-ldap(5) man page.

1. Make sure that the sssd-common package is installed.

~]$ rpm -q sssd-common

2. Open the sssd.conf file.

~]# vim /etc/sssd/sssd.conf

3. Add the sudo service to the list of services that SSSD manages.

244

CHAPTER 13. CONFIGURING AUTHENTICATION

[sssd] services = nss,pam,sudo

....

4. Create a new [sudo] service configuration section. This section can be left blank; there is only one configurable option, for evaluating the sudo not before/after period.

This section is required, however, for SSSD to recognize the sudo service and supply the default configuration.

[sudo]

5. The sudo information is read from a configured LDAP domain in the SSSD configuration, so an

LDAP domain must be available. For an LDAP provider, these parameters are required:

The directory type, sudo_provider; this is always ldap.

The search base, ldap_sudo_search_base.

The URI for the LDAP server, ldap_uri.

For example:

[domain/LDAP] id_provider = ldap sudo_provider = ldap ldap_uri = ldap://example.com

ldap_sudo_search_base = ou=sudoers,dc=example,dc=com

For an Identity Management (IdM or IPA) provider, there are additional parameters required to perform Kerberos authentication when connecting to the server.

[domain/IDM] id_provider = ipa ipa_domain = example.com

ipa_server = ipa.example.com

ldap_tls_cacert = /etc/ipa/ca.crt

sudo_provider = ldap ldap_uri = ldap://ipa.example.com

ldap_sudo_search_base = ou=sudoers,dc=example,dc=com ldap_sasl_mech = GSSAPI ldap_sasl_authid = host/hostname.example.com

ldap_sasl_realm = EXAMPLE.COM

krb5_server = ipa.example.com

NOTE

The sudo_provider type for an Identity Management provider is still ldap.

6. Set the intervals to use to refresh the sudo rule cache.

245

Deployment Guide

The cache for a specific system user is always checked and updated whenever that user performs a task. However, SSSD caches all rules which relate to the local system. That complete cache is updated in two ways:

Incrementally, meaning only changes to rules since the last full update

(ldap_sudo_smart_refresh_interval, the time in seconds); the default is 15 minutes,

Fully, which dumps the entire caches and pulls in all of the current rules on the LDAP server(ldap_sudo_full_refresh_interval, the time in seconds); the default is six hours.

These two refresh intervals are set separately. For example:

[domain/LDAP]

...

ldap_sudo_full_refresh_interval=86400 ldap_sudo_smart_refresh_interval=3600

NOTE

SSSD only caches sudo rules which apply to the local system. This can mean that the sudoHost value is set to ALL, uses a regular expression that matches the host name, matches the systems netgroup, or matches the systems host name, fully qualified domain name, or IP address.

7. Optionally, set any values to change the schema used for sudo rules.

Schema elements are set in the ldap_sudorule_* attributes. By default, all of the schema elements use the schema defined in sudoers.ldap

; these defaults will be used in almost all deployments.

8. Save and close the sssd.conf file.

9. Configure sudo to look for rules configuration in SSSD by editing the nsswitch.conf file and adding the sss location:

~]# vim /etc/nsswitch.conf

sudoers: files sss

10. Restart SSSD.

~]# service sssd restart

13.2.9. Configuring Services: OpenSSH and Cached Keys

OpenSSH creates secure, encrypted connections between two systems. One machine authenticates to another machine to allow access; the authentication can be of the machine itself for server connections or of a user on that machine. OpenSSH is described in more detail in

Chapter 14, OpenSSH

.

This authentication is performed through public-private key pairs that identify the authenticating user or machine. The remote machine or user attempting to access the machine presents a key pair. The local machine then elects whether to trust that remote entity; if it is trusted, the public key for that remote

246

CHAPTER 13. CONFIGURING AUTHENTICATION machine is stored in the known_hosts file or for the remote user in authorized_keys. Whenever that remote machine or user attempts to authenticate again, the local system checks the known_hosts or

authorized_keys file first to see if that remote entity is recognized and trusted. If it is, then access is granted.

The first problem comes in verifying those identities reliably.

The known_hosts file is a triplet of the machine name, its IP address, and its public key: server.example.com,255.255.255.255 ssh-rsa

AbcdEfg1234ZYX098776/AbcdEfg1234ZYX098776/AbcdEfg1234ZYX098776=

The known_hosts file can quickly become outdated for a number of different reasons: systems using

DHCP cycle through IP addresses, new keys can be re-issued periodically, or virtual machines or services can be brought online and removed. This changes the host name, IP address, and key triplet.

Administrators have to clean and maintain a current known_hosts file to maintain security. (Or system users get in the habit of accepting any machine and key presented, which negates the security benefits of key-based security.)

Additionally, a problem for both machines and users is distributing keys in a scalable way. Machines can send their keys as part of establishing an encrypted session, but users have to supply their keys in advance. Simply propagating and then updating keys consistently is a difficult administrative task.

Lastly, SSH key and machine information are only maintained locally. There may be machines or users on the network which are recognized and trusted by some systems and not by others because the

known_hosts file has not been updated uniformly.

The goal of SSSD is to server as a credentials cache. This includes working as a credentials cache for

SSH public keys for machines and users. OpenSSH is configured to reference SSSD to check for cached keys; SSSD uses Red Hat Linux's Identity Management (IPA) domain as an identity, and Identity

Management actually stores the public keys and host information.

NOTE

Only Linux machines enrolled, or joined, in the Identity Management domain can use

SSSD as a key cache for OpenSSH. Other Unix machines and Windows machines must use the regular authentication mechanisms with the known_hosts file.

Configuring OpenSSH to Use SSSD for Host Keys

OpenSSH is configured in either a user-specific configuration file (~/.ssh/config) or a system-wide configuration file (/etc/ssh/ssh_config). The user file has precedence over the system settings and the first obtained value for a parameter is used. The formatting and conventions for this file are covered in

Chapter 14, OpenSSH .

In order to manage host keys, SSSD has a tool, sss_ssh_knownhostsproxy, which performs two operations:

1. Asks SSSD to retrieve the public host key from the Identity Management server and store it in the /var/lib/sss/pubconf/known_hosts file.

2. Establishes a connection with the host machine, using either a socket (the default) or a proxy command.

This tool has the format:

247

Deployment Guide sss_ssh_knownhostsproxy [-d sssd_domain] [-p ssh_port] HOST

[PROXY_COMMAND]

Table 13.4. sss_ssh_knownhostsproxy Options

Short Argument Long Argument Description

HOSTNAME

-d sssd_domain

PROXY_COMMA

ND

--domain sssd_domain

Gives the host name of the host to check and connect to. In the

OpenSSH configuration file, this can be a token, %h .

Passes a proxy command to use to connect to the SSH client.

This is similar to running ssh -o ProxyCommand= value.

This option is used when running sss_ssh_knownhostsproxy from the command line or through another script, but is not necessary in the OpenSSH configuration file.

Only searches for public keys in entries in the specified domain.

If not given, SSSD searches for keys in all configured domains.

-p port --port port Uses this port to connect to the SSH client. By default, this is port

22.

To use this SSSD tool, add or edit two parameters to the ssh_config or ~/.ssh/config file:

Specify the command to use to connect to the SSH client (ProxyCommand). This is the

sss_ssh_knownhostsproxy, with the desired arguments and host name.

Specify the location of the SSSD hosts file (GlobalKnownHostsFile).

For example, this looks for public keys in all configured SSSD domains and connects over whatever port and host are supplied:

ProxyCommand /usr/bin/sss_ssh_knownhostsproxy -p %p %h

GlobalKnownHostsFile /var/lib/sss/pubconf/known_hosts

Configuring OpenSSH to Use SSSD for User Keys

SSSD can provide user public keys to OpenSSH. The keys are read by the SSH daemon, sshd, directly from the output of the sss_ssh_authorizedkeys tool and are not stored in a file.

To configure sshd to read a user's public keys from an external program, in this case the

sss_ssh_authorizedkeys tool, use the AuthorizedKeysCommand directive in the

/etc/ssh/sshd_config file.

The sss_ssh_authorizedkeys tool can be used to acquire SSH public keys from the user entries in the Identity Management (IPA) domain and output them in OpenSSH authorized_keys format. The command has the following format: sss_ssh_authorizedkeys [-d sssd_domain] USER

Table 13.5. sss_ssh_authorizedkeys Options

248

CHAPTER 13. CONFIGURING AUTHENTICATION

Short Argument Long Argument

USER

-d sssd_domain --domain sssd_domain

Description

The user name or account name for which to obtain the public key. In the OpenSSH configuration file, this can be represented by a token, %u .

Only search for public keys in entries in the specified domain. If not given, SSSD searches for keys in all configured domains.

This feature is configured in /etc/ssh/sshd_config as follows:

AuthorizedKeysCommand /usr/bin/sss_ssh_authorizedkeys

AuthorizedKeysCommandRunAs nobody

These and further options are documented in the sshd_config(5) man page. Note that the sshd service must be restarted for any changes to take effect.

13.2.10. SSSD and Identity Providers (Domains)

SSSD recognizes domains, which are entries within the SSSD configuration file associated with different, external data sources. Domains are a combination of an identity provider (for user information) and, optionally, other providers such as authentication (for authentication requests) and for other operations, such as password changes. (The identity provider can also be used for all operations, if all operations are performed within a single domain or server.)

SSSD works with different LDAP identity providers (including OpenLDAP, Red Hat Directory Server, and

Microsoft Active Directory) and can use native LDAP authentication, Kerberos authentication, or provider-specific authentication protocols (such as Active Directory).

A domain configuration defines the identity provider, the authentication provider, and any specific configuration to access the information in those providers. There are several types of identity and authentication providers:

LDAP, for general LDAP servers

Active Directory (an extension of the LDAP provider type)

Identity Management (an extension of the LDAP provider type)

Local, for the local SSSD database

Proxy

Kerberos (authentication provider only)

The identity and authentication providers can be configured in different combinations in the domain

entry. The possible combinations are listed in Table 13.6, “Identity Store and Authentication Type

Combinations” .

Table 13.6. Identity Store and Authentication Type Combinations

249

Deployment Guide

LDAP

LDAP proxy proxy proxy

Identification Provider

Identity Management (LDAP)

Active Directory (LDAP)

Active Directory (LDAP)

Authentication Provider

Identity Management (LDAP)

Active Directory (LDAP)

Kerberos

LDAP

Kerberos

LDAP

Kerberos proxy

Along with the domain entry itself, the domain name must be added to the list of domains that SSSD will query. For example:

[sssd] domains = LOCAL,Name

...

[domain/Name] id_provider = type auth_provider = type provider_specific = value global = value global attributes are available to any type of domain, such as cache and time out settings. Each identity and authentication provider has its own set of required and optional configuration parameters.

Table 13.7. General [domain] Configuration Parameters

Parameter Value Format Description

250

CHAPTER 13. CONFIGURING AUTHENTICATION

Parameter id_provider

Value Format string

Description

Specifies the data back end to use for this domain. The supported identity back ends are: ldap ipa (Identity Management in Red Hat Enterprise Linux) ad (Microsoft Active Directory) proxy, for a legacy NSS provider, such as nss_nis . Using a proxy ID provider also requires specifying the legacy NSS library to load to start successfully, set in the proxy_lib_name option.

local, the SSSD internal local provider auth_provider string min_id,max_id integer

Sets the authentication provider used for the domain. The default value for this option is the value of id_provider . The supported authentication providers are ldap, ipa, ad, krb5 (Kerberos), proxy, and none.

Optional. Specifies the UID and GID range for the domain. If a domain contains entries that are outside that range, they are ignored. The default value for min_id is 1 ; the default value for max_id is 0 , which is unlimited.

IMPORTANT

The default min_id value is the same for all types of identity provider. If LDAP directories are using UID numbers that start at one, it could cause conflicts with users in the local conflicts, set

/etc/passwd file. To avoid these min_id to 1000 or higher as possible.

cache_credenti als

Boolean entry_cache_ti meout integer

Optional. Specifies whether to store user credentials in the local SSSD domain database cache. The default value for this parameter is false .

Set this value to true for domains other than the LOCAL domain to enable offline authentication.

Optional. Specifies how long, in seconds, SSSD should cache positive cache hits. A positive cache hit is a successful query.

251

Deployment Guide

Parameter Value Format use_fully_qualif ied_names

Boolean

Description

Optional. Specifies whether requests to this domain require fully qualified domain names. If set to true , all requests to this domain must use fully qualified domain names. It also means that the output from the request displays the fully-qualified name. Restricting requests to fully qualified user names allows SSSD to differentiate between domains with users with conflicting user names.

If use_fully_qualified_names is set to false , it is possible to use the fully-qualified name in the requests, but only the simplified version is displayed in the output.

SSSD can only parse names based on the domain name, not the realm name. The same name can be used for both domains and realms, however.

13.2.11. Creating Domains: LDAP

An LDAP domain means that SSSD uses an LDAP directory as the identity provider (and, optionally, also as an authentication provider). SSSD supports several major directory services:

Red Hat Directory Server

OpenLDAP

Identity Management (IdM or IPA)

Microsoft Active Directory 2008 R2

NOTE

All of the parameters available to a general LDAP identity provider are also available to

Identity Management and Active Directory identity providers, which are subsets of the

LDAP provider.

Parameters for Configuring an LDAP Domain

An LDAP directory can function as both an identity provider and an authentication provider. The configuration requires enough information to identify and connect to the user directory in the LDAP server, but the way that those connection parameters are defined is flexible.

Other options are available to provide more fine-grained control, like specifying a user account to use to connect to the LDAP server or using different LDAP servers for password operations. The most common options are listed in

Table 13.8, “LDAP Domain Configuration Parameters”

.

NOTE

Server-side password policies always take precedence over the policy enabled from the client side. For example, when setting the ldap_pwd_policy=shadow option, the policies defined with the shadow LPAD attributes for a user have no effect on whether the password policy is enabled on the OpenLDAP server.

252

CHAPTER 13. CONFIGURING AUTHENTICATION

NOTE

Many other options are listed in the man page for LDAP domain configuration, sssd-

ldap(5).

Table 13.8. LDAP Domain Configuration Parameters

Parameter Description ldap_uri Gives a comma-separated list of the URIs of the LDAP servers to which SSSD will connect. The list is given in order of preference, so the first server in the list is tried first. Listing additional servers provides failover protection. This can be detected from the DNS SRV records if it is not given.

ldap_search_base ldap_tls_reqcert ldap_tls_cacert

Gives the base DN to use for performing LDAP user operations.

IMPORTANT

If used incorrectly, ldap_search_base might cause SSSD lookups to fail.

With an AD provider, setting ldap_search_base is not required. The AD provider automatically discovers all the necessary information. Red Hat recommends not to set the parameter in this situation and instead rely on what the

AD provider discovers.

Specifies how to check for SSL server certificates in a TLS session. There are four options: never disables requests for certificates.

allow requests a certificate, but proceeds normally even if no certificate is given or a bad certificate is given.

try requests a certificate and proceeds normally if no certificate is given, If a bad certificate is given, the session terminates.

demand and hard are the same option. This requires a valid certificate or the session is terminated.

The default is hard.

Gives the full path and file name to the file that contains the CA certificates for all of the CAs that SSSD recognizes. SSSD will accept any certificate issued by these CAs.

This uses the OpenLDAP system defaults if it is not given explicitly.

253

Deployment Guide

Parameter ldap_referrals ldap_schema ldap_search_timeout ldap_network_timeout ldap_opt_timeout

Description

Sets whether SSSD will use LDAP referrals, meaning forwarding queries from one

LDAP database to another. SSSD supports database-level and subtree referrals.

For referrals within the same LDAP server, SSSD will adjust the DN of the entry being queried. For referrals that go to different LDAP servers, SSSD does an exact match on the DN. Setting this value to true enables referrals; this is the default.

Referrals can negatively impact overall performance because of the time spent attempting to trace referrals. Disabling referral checking can significantly improve performance.

Sets what version of schema to use when searching for user entries. This can be rfc2307 , rfc2307bis , ad , or ipa . The default is rfc2307 .

In RFC 2307, group objects use a multi-valued attribute, the names of the users that belong to that group. In RFC 2307bis, group objects use the member memberuid , which lists

attribute, which contains the full distinguished name (DN) of a user or group entry. RFC 2307bis allows nested groups using the member attribute. Because these different schema use different definitions for group membership, using the wrong LDAP schema with SSSD can affect both viewing and managing network resources, even if the appropriate permissions are in place.

For example, with RFC 2307bis, all groups are returned when using nested groups or primary/secondary groups.

$ id uid=500(myserver) gid=500(myserver) groups=500(myserver),510(myothergroup)

If SSSD is using RFC 2307 schema, only the primary group is returned.

This setting only affects how SSSD determines the group members. It does not change the actual user data.

Sets the time, in seconds, that LDAP searches are allowed to run before they are canceled and cached results are returned.

When an LDAP search times out, SSSD automatically switches to offline mode.

Sets the time, in seconds, SSSD attempts to poll an LDAP server after a connection attempt fails. The default is six seconds.

Sets the time, in seconds, to wait before aborting synchronous LDAP operations if no response is received from the server. This option also controls the timeout when communicating with the KDC in case of a SASL bind. The default is five seconds.

LDAP Domain Example

The LDAP configuration is very flexible, depending on your specific environment and the SSSD behavior.

These are some common examples of an LDAP domain, but the SSSD configuration is not limited to these examples.

254

CHAPTER 13. CONFIGURING AUTHENTICATION

NOTE

Along with creating the domain entry, add the new domain to the list of domains for SSSD to query in the sssd.conf file. For example: domains = LOCAL,LDAP1,AD,PROXYNIS

Example 13.2. A Basic LDAP Domain Configuration

An LDAP domain requires three things:

An LDAP server

The search base

A way to establish a secure connection

The last item depends on the LDAP environment. SSSD requires a secure connection since it handles sensitive information. This connection can be a dedicated TLS/SSL connection or it can use

Start TLS.

Using a dedicated TLS/SSL connection uses an LDAPS connection to connect to the server and is therefore set as part of the ldap_uri option:

# An LDAP domain

[domain/LDAP] cache_credentials = true id_provider = ldap auth_provider = ldap ldap_uri = ldaps://ldap.example.com:636 ldap_search_base = dc=example,dc=com

Using Start TLS requires a way to input the certificate information to establish a secure connection dynamically over an insecure port. This is done using the ldap_id_use_start_tls option to use

Start TLS and then ldap_tls_cacert to identify the CA certificate which issued the SSL server certificates.

# An LDAP domain

[domain/LDAP] cache_credentials = true id_provider = ldap auth_provider = ldap ldap_uri = ldap://ldap.example.com

ldap_search_base = dc=example,dc=com ldap_id_use_start_tls = true ldap_tls_reqcert = demand ldap_tls_cacert = /etc/pki/tls/certs/ca-bundle.crt

255

Deployment Guide

13.2.12. Creating Domains: Identity Management (IdM)

The Identity Management (IdM or IPA) identity provider is an extension of a generic LDAP provider. All of the configuration options for an LDAP provider are available to the IdM provider, as well as some additional parameters which allow SSSD to work as a client of the IdM domain and extend IdM functionality.

Identity Management can work as a provider for identities, authentication, access control rules, and passwords, all of the *_provider parameters for a domain. Additionally, Identity Management has configuration options within its own domain to manage SELinux policies, automount information, and host-based access control. All of those features in IdM domains can be tied to SSSD configuraiton, allowing those security-related policies to be applied and cached for system users.

Example 13.3. Basic IdM Provider

An IdM provider, like an LDAP provider, can be set to serve several different services, including identity, authentication, and access control

For IdM servers, there are two additional settings which are very useful (although not required):

Use the specific IdM schema rather than the default RFC 2307 schema.

Set SSSD to update the Identity Management domain's DNS server with the IP address of this client when the client first connects to the IdM domain.

[sssd] domains = local,example.com

...

[domain/example.com] id_provider = ipa ipa_server = ipaserver.example.com

ipa_hostname = ipa1.example.com

auth_provider = ipa access_provider = ipa chpass_provider = ipa

# set which schema to use ldap_schema = ipa

# automatically update IdM DNS records ipa_dyndns_update = true

Identity Management defines and maintains security policies and identities for users across a Linux domain. This includes access control policies, SELinux policies, and other rules. Some of these elements in the IdM domain interact directly with SSSD, using SSSD as an IdM client — and those features can be managed in the IdM domain entry in sssd.conf.

Most of the configuration parameters relate to setting schema elements (which is not relevant in most deployments because IdM uses a fixed schema) and never need to be changed. In fact, none of the features in IdM require client-side settings. But there may be circumstances where tweaking the behavior is helpful.

Example 13.4. IdM Provider with SELinux

256

CHAPTER 13. CONFIGURING AUTHENTICATION

IdM can define SELinux user policies for system users, so it can work as an SELinux provider for

SSSD. This is set in the selinux_provider parameter. The provider defaults to the

id_provider value, so this is not necessary to set explicitly to support SELinux rules. However, it can be useful to explicitly disable SELinux support for the IdM provider in SSSD.

selinux_provider = ipa

Example 13.5. IdM Provider with Host-Based Access Control

IdM can define host-based access controls, restricting access to services or entire systems based on what host a user is using to connect or attempting to connect to. This rules can be evaluated and enforced by SSSD as part of the access provider behavior.

For host-based access controls to be in effect, the Identity Management server must be the access provider, at a minimum.

There are two options which can be set for how SSSD evaluates host-based access control rules:

SSSD can evaluate what machine (source host) the user is using to connect to the IdM resource; this is disabled by default, so that only the target host part of the rule is evaluated.

SSSD can refresh the host-based access control rules in its cache at a specified interval.

For example: access_provider = ipa ipa_hbac_refresh = 120

# check for source machine rules; disabled by default ipa_hbac_support_srchost = true

Example 13.6. Identity Management with Cross-Realm Kerberos Trusts

Identity Management (IdM or IPA) can be configured with trusted relationships between Active

Directory DNS domains and Kerberos realms. This allows Active Directory users to access services and hosts on Linux systems.

There are two configuration settings in SSSD that are used with cross-realm trusts:

A service that adds required data to Kerberos tickets

A setting to support subdomains

Kerberos Ticket Data

Microsoft uses a special authorization structure called privileged access certificates or MS-PAC. A

PAC is embedded in a Kerberos ticket as a way of identifying the entity to other Windows clients and servers in the Windows domain.

SSSD has a special PAC service which generates the additional data for Kerberos tickets. When using an Active Directory domain, it may be necessary to include the PAC data for Windows users. In that case, enable the pac service in SSSD:

257

Deployment Guide

[sssd] services = nss, pam, pac

...

Windows Subdomains

Normally, a domain entry in SSSD corresponds directly to a single identity provider. However, with

IdM cross-realm trusts, the IdM domain can trust another domain, so that the domains are transparent to each other. SSSD can follow that trusted relationship, so that if an IdM domain is configured, any

Windows domain is also automatically searched and supported by SSSD — without having to be configured in a domain section in SSSD.

This is configured by adding the subdomains_provider parameter to the IdM domain section. This is actually an optional parameter; if a subdomain is discovered, then SSSD defaults to using the ipa provider type. However, this parameter can also be used to disable subdomain fetches by setting a value of none.

[domain/IDM]

... subdomains_provider = ipa get_domains_timeout = 300

13.2.13. Creating Domains: Active Directory

The Active Directory identity provider is an extension of a generic LDAP provider. All of the configuration options for an LDAP provider are available to the Active Directory provider, as well as some additional parameters related to user accounts and identity mapping between Active Directory and system users.

There are some fundamental differences between standard LDAP servers and an Active Directory server. When configuring an Active Directory provider, there are some configuration areas, then, which require specific configuration:

Identities using a Windows security ID must be mapped to the corresponding Linux system user

ID.

Searches must account for the range retrieval extension.

There may be performance issues with LDAP referrals.

Mapping Active Directory Securiy IDs and Linux User IDs

There are inherent structural differences between how Windows and Linux handle system users and in the user schemas used in Active Directory and standard LDAPv3 directory services. When using an

Active Directory identity provider with SSSD to manage system users, it is necessary to reconcile the

Active Directory-style user to the new SSSD user. There are two ways to do this:

Using Services for Unix to insert POSIX attributes on Windows user and group entries, and then having those attributes pulled into PAM/NSS

Using ID mapping on SSSD to create a map between Active Directory security IDs (SIDs) and the generated UIDs on Linux

ID mapping is the simplest option for most environments because it requires no additional packages or configuration on Active Directory.

258

CHAPTER 13. CONFIGURING AUTHENTICATION

The Mechanism of ID Mapping

Linux/Unix systems use a local user ID number and group ID number to identify users on the system.

These UID:GID numbers are a simple integer, such as 501:501. These numbers are simple because they are always created and administered locally, even for systems which are part of a larger Linux/Unix domain.

Microsoft Windows and Active Directory use a different user ID structure to identify users, groups, and machines. Each ID is constructed of different segments that identify the security version, the issuing authority type, the machine, and the identity itself. For example:

S-1-5-21-3623811015-3361044348-30300820-1013

The third through sixth blocks are the machine identifier:

S-1-5-21-3623811015-3361044348-30300820-1013

The last block is the relative identifier (RID) which identifies the specific entity:

S-1-5-21-3623811015-3361044348-30300820-1013

A range of possible ID numbers are always assigned to SSSD. (This is a local range, so it is the same for every machine.)

|_____________________________|

| | minimum ID max ID

This range is divided into 10,000 sections (by default), with each section allocated 200,000 IDs.

| slice 1 | slice 2 | ... |

|_________|_________|_________|

| | | | minimum ID max ID

When a new Active Directory domain is detected, the SID is hashed. Then, SSSD takes the modulus of the hash and the number of available sections to determine which ID section to assign to the Active

Directory domain. This is a reliably consistent means of assigning ID sections, so the same ID range is assigned to the same Active Directory domain on most client machines.

| Active | Active | |

|Directory|Directory| |

|domain 1 |domain 2 | ... |

| | | |

| slice 1 | slice 2 | ... |

|_________|_________|_________|

| | | | minimum ID max ID

259

Deployment Guide

NOTE

While the method of assigning ID sections is consistent, ID mapping is based on the

order that an Active Directory domain is encountered on a client machine — so it may not result in consistent ID range assignments on all Linux client machines. If consistency is required, then consider disabling ID mapping and using explicit POSIX attributes.

ID Mapping Parameters

ID mapping is enabled in two parameters, one to enable the mapping and one to load the appropriate

Active Directory user schema: ldap_id_mapping = True ldap_schema = ad

NOTE

When ID mapping is enabled, the uidNumber and gidNumber attributes are ignored.

This prevents any manually-assigned values. If any values must be manually assigned, then all values must be manually assigned, and ID mapping should be disabled.

Mapping Users

When an Active Directory user attempts to log into a local system service for the first time, an entry for that user is created in the SSSD cache. The remote user is set up much like a system user:

A system UID is created for the user based on his SID and the ID range for that domain.

A GID is created for the user, which is identical to the UID.

A private group is created for the user.

A home directory is created, based on the home directory format in the sssd.conf file.

A shell is created, according to the system defaults or the setting in the sssd.conf file.

If the user belongs to any groups in the Active Directory domain, then, using the SID, SSSD adds the user to those groups on the Linux system.

Active Directory Users and Range Retrieval Searches

Microsoft Active Directory has an attribute, MaxValRange, which sets a limit on how many values for a multi-valued attribute will be returned. This is the range retrieval search extension. Essentially, this runs multiuple mini-searches, each returning a subset of the results within a given range, until all matches are returned.

For example, when doing a search for the member attribute, each entry could have multiple values, and there can be multiple entries with that attribute. If there are 2000 matching results (or more), then

MaxValRange limits how many are displayed at once; this is the value range. The given attribute then has an additional flag set, showing which range in the set the result is in:

attribute:range=low-high:value

For example, results 100 to 500 in a search:

260

CHAPTER 13. CONFIGURING AUTHENTICATION member;range=99-499: cn=John Smith...

This is described in the Microsoft documentation at http://msdn.microsoft.com/enus/library/cc223242.aspx

.

SSSD supports range retrievals with Active Directory providers as part of user and group management, without any additional configuration.

However, some LDAP provider attributes which are available to configure searches — such as

ldap_user_search_base — are not performant with range retrievals. Be cautious when configuring search bases in the Active Directory provider domain and consider what searches may trigger a range retrieval.

Performance and LDAP Referrals

Referrals can negatively impact overall performance because of the time spent attempting to trace referrals. There is particularly bad performance degradation when referral chasing is used with an Active

Directory identity provider. Disabling referral checking can significantly improve performance.

LDAP referrals are enabled by default, so they must be explicitly disabled in the LDAP domain configuration. For example: ldap_referrals = false

Active Directory as Other Provider Types

Active Directory can be used as an identity provider and as an access, password, and authentication provider.

There are a number of options in the generic LDAP provider configuration which can be used to configure an Active Directory provider. Using the ad value is a short-cut which automatically pulls in the parameters and values to configure a given provider for Active Directory. For example, using

access_provider = ad to configure an Active Directory access provider expands to this configuration using the explicit LDAP provider parameters: access_provider = ldap ldap_access_order = expire ldap_account_expire_policy = ad

Procedure 13.6. Configuring an Active Directory Identity Provider

Active Directory can work as a provider for identities, authentication, access control rules, and passwords, all of the *_provider parameters for a domain. Additionally, it is possible to load the native

Active Directory schema for user and group entries, rather than using the default RFC 2307.

1. Make sure that both the Active Directory and Linux systems have a properly configured environment.

Name resolution must be properly configured, particularly if service discovery is used with

SSSD.

The clocks on both systems must be in sync for Kerberos to work properly.

2. Set up the Linux system as an Active Directory client and enroll it within the Active Directory domain. This is done by configuring the Kerberos and Samba services on the Linux system.

a. Set up Kerberos to use the Active Directory Kerberos realm.

261

Deployment Guide i. Open the Kerberos client configuration file.

~]# vim /etc/krb5.conf

ii. Configure the [logging] and [libdefaults] sections so that they connect to the

Active Directory realm.

[logging]

default = FILE:/var/log/krb5libs.log

[libdefaults]

default_realm = EXAMPLE.COM

dns_lookup_realm = true

dns_lookup_kdc = true

ticket_lifetime = 24h

renew_lifetime = 7d

rdns = false

forwardable = false

If autodiscovery is not used with SSSD, then also configure the [realms] and

[domain_realm] sections to explicitly define the Active Directory server.

b. Configure the Samba server to connect to the Active directory server.

i. Open the Samba configuration file.

~]# vim /etc/samba/smb.conf

ii. Set the Active Directory domain information in the [global] section.

[global]

workgroup = EXAMPLE

client signing = yes

client use spnego = yes

kerberos method = secrets and keytab

log file = /var/log/samba/%m.log

password server = AD.EXAMPLE.COM

realm = EXAMPLE.COM

security = ads c. Add the Linux machine to the Active Directory domain.

i. Obtain Kerberos credentials for a Windows administrative user.

~]# kinit Administrator ii. Add the machine to the domain using the net command.

~]# net ads join -k

Joined 'server' to dns domain 'example.com'

This creates a new keytab file, /etc/krb5.keytab.

262

CHAPTER 13. CONFIGURING AUTHENTICATION

List the keys for the system and check that the host principal is there.

~]# klist -k

3. Use authconfig to enable SSSD for system authentication.

# authconfig --update --enablesssd --enablesssdauth

4. Set the Active Directory domain as an identity provider in the SSSD configuration, as shown in

Example 13.7, “An Active Directory 2008 R2 Domain”

and Example 13.8, “An Active Directory

2008 R2 Domain with ID Mapping” .

5. Restart the SSH service to load the new PAM configuration.

~]# service sshd restart

6. Restart SSSD after changing the configuration file.

~]# service sssd restart

Example 13.7. An Active Directory 2008 R2 Domain

~]# vim /etc/sssd/sssd.conf

[sssd] config_file_version = 2 domains = ad.example.com

services = nss, pam

...

[domain/ad.example.com] id_provider = ad ad_server = ad.example.com

ad_hostname = ad.example.com

auth_provider = ad chpass_provider = ad access_provider = ad

# defines user/group schema type ldap_schema = ad

# using explicit POSIX attributes in the Windows entries ldap_id_mapping = False

# caching credentials cache_credentials = true

# access controls ldap_access_order = expire ldap_account_expire_policy = ad ldap_force_upper_case_realm = true

263

Deployment Guide

# performance ldap_referrals = false

There are two parameters that are critical for ID mapping: the Active Directory schema must be loaded

(ldap_schema) and ID mapping must be explicitly enabled (ldap_id_mapping).

Example 13.8. An Active Directory 2008 R2 Domain with ID Mapping

~]# vim /etc/sssd/sssd.conf

[sssd] config_file_version = 2 domains = ad.example.com

services = nss, pam

...

[domain/ad.example.com] id_provider = ad ad_server = ad.example.com

ad_hostname = ad.example.com

auth_provider = ad chpass_provider = ad access_provider = ad

# defines user/group schema type ldap_schema = ad

# for SID-UID mapping ldap_id_mapping = True

# caching credentials cache_credentials = true

# access controls ldap_access_order = expire ldap_account_expire_policy = ad ldap_force_upper_case_realm = true

# performance ldap_referrals = false

All of the potential configuration attributes for an Active Directory domain are listed in the sssd-

ldap(5) and sssd-ad(5) man pages.

13.2.14. Configuring Domains: Active Directory as an LDAP Provider (Alternative)

While Active Directory can be configured as a type-specific identity provider, it can also be configured as a pure LDAP provider with a Kerberos authentication provider.

Procedure 13.7. Configuring Active Directory as an LDAP Provider

264

CHAPTER 13. CONFIGURING AUTHENTICATION

1. It is recommended that SSSD connect to the Active Directory server using SASL, which means that the local host must have a service keytab for the Windows domain on the Linux host.

This keytab can be created using Samba.

a. Configure the /etc/krb5.conf file to use the Active Directory realm.

[logging]

default = FILE:/var/log/krb5libs.log

[libdefaults]

default_realm = AD.EXAMPLE.COM

dns_lookup_realm = true

dns_lookup_kdc = true

ticket_lifetime = 24h

renew_lifetime = 7d

rdns = false

forwardable = false

[realms]

# Define only if DNS lookups are not working

# AD.EXAMPLE.COM = {

# kdc = server.ad.example.com

# admin_server = server.ad.example.com

# master_kdc = server.ad.example.com

# }

[domain_realm]

# Define only if DNS lookups are not working

# .ad.example.com = AD.EXAMPLE.COM

# ad.example.com = AD.EXAMPLE.COM

b. Set the Samba configuration file, /etc/samba/smb.conf, to point to the Windows

Kerberos realm.

[global]

workgroup = EXAMPLE

client signing = yes

client use spnego = yes

kerberos method = secrets and keytab

log file = /var/log/samba/%m.log

password server = AD.EXAMPLE.COM

realm = EXAMPLE.COM

security = ads c. To initialize Kerberos, type the following command as root:

~]# kinit [email protected]

d. Then, run the net ads command to log in as an administrator principal. This administrator account must have sufficient rights to add a machine to the Windows domain, but it does not require domain administrator privileges.

~]# net ads join -U Administrator

265

Deployment Guide e. Run net ads again to add the host machine to the domain. This can be done with the host principal (host/FQDN) or, optionally, with the NFS service (nfs/FQDN).

~]# net ads join createupn="host/[email protected]" -U Administrator

2. Make sure that the Services for Unix package is installed on the Windows server.

3. Set up the Windows domain which will be used with SSSD.

a. On the Windows machine, open Server Manager.

b. Create the Active Directory Domain Services role.

c. Create a new domain, such as ad.example.com.

d. Add the Identity Management for UNIX service to the Active Directory Domain Services role.

Use the Unix NIS domain as the domain name in the configuration.

4. On the Active Directory server, create a group for the Linux users.

a. Open Administrative Tools and select Active Directory Users and

Computers.

b. Select the Active Directory domain, ad.example.com.

c. In the Users tab, right-click and select Create a New Group.

d. Name the new group unixusers, and save.

e. Double-click the unixusers group entry, and open the Users tab.

f. Open the Unix Attributes tab.

g. Set the NIS domain to the NIS domain that was configured for ad.example.com and, optionally, set a group ID (GID) number.

5. Configure a user to be part of the Unix group.

a. Open Administrative Tools and select Active Directory Users and

Computers.

b. Select the Active Directory domain, ad.example.com.

c. In the Users tab, right-click and select Create a New User.

d. Name the new user aduser, and make sure that the User must change password at

next logon and Lock account check boxes are not selected.

Then save the user.

e. Double-click the aduser user entry, and open the Unix Attributes tab. Make sure that the Unix configuration matches that of the Active Directory domain and the unixgroup group:

The NIS domain, as created for the Active Directory domain

266

CHAPTER 13. CONFIGURING AUTHENTICATION

The UID

The login shell, to /bin/bash

The home directory, to /home/aduser

The primary group name, to unixusers

NOTE

Password lookups on large directories can take several seconds per request. The initial user lookup is a call to the LDAP server. Unindexed searches are much more resource-intensive, and therefore take longer, than indexed searches because the server checks every entry in the directory for a match. To speed up user lookups, index the attributes that are searched for by SSSD: uid uidNumber gidNumber gecos

6. On the Linux system, configure the SSSD domain.

~]# vim /etc/sssd/sssd.conf

For a complete list of LDAP provider parameters, see the sssd-ldap(5) man pages.

Example 13.9. An Active Directory 2008 R2 Domain with Services for Unix

[sssd] config_file_version = 2 domains = ad.example.com

services = nss, pam

...

[domain/ad.example.com] cache_credentials = true

# for performance ldap_referrals = false id_provider = ldap auth_provider = krb5 chpass_provider = krb5 access_provider = ldap ldap_schema = rfc2307bis ldap_sasl_mech = GSSAPI ldap_sasl_authid = host/[email protected]

267

Deployment Guide

#provide the schema for services for unix ldap_schema = rfc2307bis ldap_user_search_base = ou=user accounts,dc=ad,dc=example,dc=com ldap_user_object_class = user ldap_user_home_directory = unixHomeDirectory ldap_user_principal = userPrincipalName

# optional - set schema mapping

# parameters are listed in sssd-ldap ldap_user_object_class = user ldap_user_name = sAMAccountName ldap_group_search_base = ou=groups,dc=ad,dc=example,dc=com ldap_group_object_class = group ldap_access_order = expire ldap_account_expire_policy = ad ldap_force_upper_case_realm = true ldap_referrals = false krb5_realm = AD-REALM.EXAMPLE.COM

# required krb5_canonicalize = false

7. Restart SSSD.

~]# service sssd restart

13.2.15. Domain Options: Setting Username Formats

One of the primary actions that SSSD performs is mapping a local system user to an identity in the remote identity provider. SSSD uses a combination of the user name and the domain back end name to create the login identity.

As long as they belong to different domains, SSSD can recognize different users with the same user name. For example, SSSD can successfully authenticate both jsmith in the ldap.example.com domain and jsmith in the ldap.otherexample.com domain.

The name format used to construct full user name is (optionally) defined universally in the [sssd] section of the configuration and can then be defined individually in each domain section.

Usernames for different services — LDAP, Samba, Active Directory, Identity Management, even the local system — all have different formats. The expression that SSSD uses to identify user name/domain name sets must be able to interpret names in different formats. This expression is set in the

re_expression parameter.

In the global default, this filter constructs a name in the form name@domain:

(?P<name>[^@]+)@?(?P<domain>[^@]*$)

268

CHAPTER 13. CONFIGURING AUTHENTICATION

NOTE

The regular expression format is Python syntax.

The domain part may be supplied automatically, based on the domain name of the identity provider.

Therefore, a user can log in as jsmith and if the user belongs to the LOCAL domain (for example), then his user name is interpreted by SSSD as jsmith@LOCAL.

However, other identity providers may have other formats. Samba, for example, has a very strict format so that user name must match the form DOMAIN\username. For Samba, then, the regular expression must be:

(?P<domain>[^\\]*?)\\?(?P<name>[^\\]+$)

Some providers, such as Active Directory, support multiple different name formats. Active Directory and

Identity Management, for example, support three different formats by default: username [email protected]

DOMAIN\username

The default value for Active Directory and Identity Management providers, then, is a more complex filter that allows all three name formats:

(((?P<domain>[^\\]+)\\(?P<name>.+$))|((?P<name>[^@]+)@(?P<domain>.+$))|(^(?

P<name>[^@\\]+)$))

NOTE

Requesting information with the fully-qualified name, such as

[email protected], always returns the proper user account. If there are multiple users with the same user name in different domains, specifying only the user name returns the user for whichever domain comes first in the lookup order.

While re_expression is the most important method for setting user name formats, there are two other options which are useful for other applications.

Default Domain Name Value

The first sets a default domain name to be used with all users, default_domain_suffix. (This is a global setting, available in the [sssd] section only.) There may be a case where multiple domains are configured but only one stores user data and the others are used for host or service identities. Setting a default domain name allows users to log in with only their user name, not specifying the domain name

(which would be required for users outside the primary domain).

[sssd]

...

default_domain_suffix = USERS.EXAMPLE.COM

Full Name Format for Output

269

Deployment Guide

The other parameter is related to re_expression, only instead of defining how to interpret a user name, it defines how to print an identified name. The full_name_format parameter sets how the user name and domain name (once determined) are displayed.

full_name_format = %1$s@%2$s

13.2.16. Domain Options: Enabling Offline Authentication

User identities are always cached, as well as information about the domain services. However, user credentials are not cached by default. This means that SSSD always checks with the back end identity provider for authentication requests. If the identity provider is offline or unavailable, there is no way to process those authentication requests, so user authentication could fail.

It is possible to enable offline credentials caching, which stores credentials (after successful login) as part of the user account in the SSSD cache. Therefore, even if an identity provider is unavailable, users can still authenticate, using their stored credentials. Offline credentials caching is primarily configured in each individual domain entry, but there are some optional settings that can be set in the PAM service section, because credentials caching interacts with the local PAM service as well as the remote domain.

[domain/EXAMPLE] cache_credentials = true

There are optional parameters that set when those credentials expire. Expiration is useful because it can prevent a user with a potentially outdated account or credentials from accessing local services indefinitely.

The credentials expiration itself is set in the PAM service, which processes authentication requests for the system.

[sssd] services = nss,pam

...

[pam] offline_credentials_expiration = 3

...

[domain/EXAMPLE] cache_credentials = true

...

offline_credentials_expiration sets the number of days after a successful login that a single credentials entry for a user is preserved in cache. Setting this to zero (0) means that entries are kept forever.

While not related to the credentials cache specifically, each domain has configuration options on when individual user and service caches expire:

account_cache_expiration sets the number of days after a successful login that the entire user account entry is removed from the SSSD cache. This must be equal to or longer than the individual offline credentials cache expiration period.

entry_cache_timeout sets a validity period, in seconds, for all entries stored in the cache before SSSD requests updated information from the identity provider. There are also individual

270

CHAPTER 13. CONFIGURING AUTHENTICATION cache timeout parameters for group, service, netgroup, sudo, and autofs entries; these are listed in the sssd.conf man page. The default time is 5400 seconds (90 minutes).

For example:

[sssd] services = nss,pam

...

[pam] offline_credentials_expiration = 3

...

[domain/EXAMPLE] cache_credentials = true account_cache_expiration = 7 entry_cache_timeout = 14400

...

13.2.17. Domain Options: Setting Password Expirations

Password policies generally set an expiration time, after which passwords expire and must be replaced.

Password expiration policies are evaluated on the server side through the identity provider, then a warning can be processed and displayed in SSSD through its PAM service.

There are two ways to display password expiration warnings:

The pam_pwd_expiration_warning parameter defines the global default setting for all domains on how far in advance of the password expiration to display a warning. This is set for the PAM service.

The pwd_expiration_warning parameter defines the per-domain setting on how far in advance of the password expiration to display a warning.

When using a domain-level password expiration warning, an authentication provider

(auth_provider) must also be configured for the domain.

For example:

[sssd] services = nss,pam

...

[pam] pam_pwd_expiration_warning = 3

...

[domain/EXAMPLE] id_provider = ipa auth_provider = ipa pwd_expiration_warning = 7

The password expiration warning must be sent from the server to SSSD for the warning to be displayed.

If no password warning is sent from the server, no message is displayed through SSSD, even if the password expiration time is within the period set in SSSD.

271

Deployment Guide

If the password expiration warning is not set in SSSD or is set to 0, then the SSSD password warning filter is not applied and the server-side password warning is automatically displayed.

NOTE

As long as the password warning is sent from the server, the PAM or domain password expirations in effect override the password warning settings on the back end identity provider. For example, consider a back end identity provider that has the warning period set at 28 days, but the PAM service in SSSD has it set to 7 days. The provider sends the warning to SSSD starting at 28 days, but the warning is not displayed locally until 7 days, according to the password expiration set in the SSSD configuration.

Password Expiration Warnings for Non-Password Authentication

By default, password expiration is verified only if the user enters the password during authentication.

However, you can configure SSSD to perform the expiration check and display the warning even when a non-password authentication method is used, for example, during SSH login.

To enable password expiration warnings with non-password authentication methods:

1. Make sure the access_provider parameter is set to ldap in the sssd.conf file.

2. Make sure the ldap_pwd_policy parameter is set in sssd.conf. In most situations, the appropriate value is shadow.

3. Add one of the following pwd_expire_* values to the ldap_access_order parameter in

sssd.conf. If the password is about to expire, each one of these values only displays the expiration warning. In addition:

pwd_expire_policy_reject prevents the user from logging in if the password is already expired.

pwd_expire_policy_warn allows the user to log in even if the password is already expired.

pwd_expire_policy_renew prompts the user to immediately change the password if the user attempts to log in with an expired password.

For example:

[domain/EXAMPLE] access_provider = ldap ldap_pwd_policy = shadow ldap_access_order = pwd_expire_policy_warn

For more details on using ldap_access_order and its values, see the sssd-ldap(5) man page.

13.2.18. Domain Options: Using DNS Service Discovery

DNS service discovery, defined in RFC 2782 , allows applications to check the SRV records in a given domain for certain services of a certain type; it then returns any servers discovered of that type.

With SSSD, the identity and authentication providers can either be explicitly defined (by IP address or host name) or they can be discovered dynamically, using service discovery. If no provider server is listed

— for example, if id_provider = ldap is set without a corresponding ldap_uri parameter — then

272

CHAPTER 13. CONFIGURING AUTHENTICATION discovery is automatically used.

The DNS discovery query has this format:

_service._protocol.domain

For example, a scan for an LDAP server using TCP in the example.com domain looks like this:

_ldap._tcp.example.com

NOTE

For every service with which to use service discovery, add a special DNS record to the

DNS server:

_service._protocol._domain TTL priority weight port hostname

For SSSD, the service type is LDAP by default, and almost all services use TCP (except for Kerberos, which starts with UDP). For service discovery to be enabled, the only thing that is required is the domain name. The default is to use the domain portion of the machine host name, but another domain can be specified (using the dns_discovery_domain parameter).

So, by default, no additional configuration needs to be made for service discovery — with one exception.

The password change provider has server discovery disabled by default, and it must be explicitly enabled by setting a service type.

[domain/EXAMPLE]

...

chpass_provider = ldap ldap_chpass_dns_service_name = ldap

While no configuration is necessary, it is possible for server discovery to be customized by using a different DNS domain (dns_discovery_domain) or by setting a different service type to scan for. For example:

[domain/EXAMPLE] id _provider = ldap dns_discovery_domain = corp.example.com

ldap_dns_service_name = ldap chpass_provider = krb5 ldap_chpass_dns_service_name = kerberos

Lastly, service discovery is never used with backup servers; it is only used for the primary server for a provider. What this means is that discovery can be used initially to locate a server, and then SSSD can fall back to using a backup server. To use discovery for the primary server, use _srv_ as the primary server value, and then list the backup servers. For example:

[domain/EXAMPLE] id _provider = ldap ldap_uri = _srv_

273

Deployment Guide ldap_backup_uri = ldap://ldap2.example.com

auth_provider = krb5 krb5_server = _srv_ krb5_backup_server = kdc2.example.com

chpass_provider = krb5 ldap_chpass_dns_service_name = kerberos ldap_chpass_uri = _srv_ ldap_chpass_backup_uri = kdc2.example.com

NOTE

Service discovery cannot be used with backup servers, only primary servers.

If a DNS lookup fails to return an IPv4 address for a host name, SSSD attempts to look up an IPv6 address before returning a failure. This only ensures that the asynchronous resolver identifies the correct address.

The host name resolution behavior is configured in the lookup family order option in the

sssd.conf configuration file.

13.2.19. Domain Options: Using IP Addresses in Certificate Subject Names (LDAP

Only)

Using an IP address in the ldap_uri option instead of the server name may cause the TLS/SSL connection to fail. TLS/SSL certificates contain the server name, not the IP address. However, the subject alternative name field in the certificate can be used to include the IP address of the server, which allows a successful secure connection using an IP address.

Procedure 13.8. Using IP Addresses in Certificate Subject Names

1. Convert an existing certificate into a certificate request. The signing key (-signkey) is the key of the issuer of whatever CA originally issued the certificate. If this is done by an external CA, it requires a separate PEM file; if the certificate is self-signed, then this is the certificate itself. For example: openssl x509 -x509toreq -in old_cert.pem -out req.pem -signkey key.pem

With a self-signed certificate: openssl x509 -x509toreq -in old_cert.pem -out req.pem -signkey old_cert.pem

2. Edit the /etc/pki/tls/openssl.cnf configuration file to include the server's IP address under the [ v3_ca ] section: subjectAltName = IP:10.0.0.10

3. Use the generated certificate request to generate a new self-signed certificate with the specified

IP address:

274

CHAPTER 13. CONFIGURING AUTHENTICATION openssl x509 -req -in req.pem -out new_cert.pem -extfile

./openssl.cnf -extensions v3_ca -signkey old_cert.pem

The -extensions option sets which extensions to use with the certificate. For this, it should be v3_ca to load the appropriate section.

4. Copy the private key block from the old_cert.pem file into the new_cert.pem file to keep all relevant information in one file.

When creating a certificate through the certutil utility provided by the nss-tools package, note that

certutil supports DNS subject alternative names for certificate creation only.

13.2.20. Creating Domains: Proxy

A proxy with SSSD is just a relay, an intermediary configuration. SSSD connects to its proxy service, and then that proxy loads the specified libraries. This allows SSSD to use some resources that it otherwise would not be able to use. For example, SSSD only supports LDAP and Kerberos as authentication providers, but using a proxy allows SSSD to use alternative authentication methods like a fingerprint scanner or smart card.

Table 13.9. Proxy Domain Configuration Parameters

Parameter Description proxy_pam_target Specifies the target to which PAM must proxy as an authentication provider. The

PAM target is a file containing PAM stack information in the default PAM directory,

/etc/pam.d/ .

This is used to proxy an authentication provider.

IMPORTANT

Ensure that the proxy PAM stack does not recursively include pam_sss.so

.

proxy_lib_name Specifies which existing NSS library to proxy identity requests through.

This is used to proxy an identity provider.

Example 13.10. Proxy Identity and Kerberos Authentication

The proxy library is loaded using the proxy_lib_name parameter. This library can be anything as long as it is compatible with the given authentication service. For a Kerberos authentication provider, it must be a Kerberos-compatible library, like NIS.

[domain/PROXY_KRB5] auth_provider = krb5 krb5_server = kdc.example.com

krb5_realm = EXAMPLE.COM

id_provider = proxy proxy_lib_name = nis cache_credentials = true

275

Deployment Guide

Example 13.11. LDAP Identity and Proxy Authentication

The proxy library is loaded using the proxy_pam_target parameter. This library must be a PAM module that is compatible with the given identity provider. For example, this uses a PAM fingerprint module with LDAP:

[domain/LDAP_PROXY] id_provider = ldap ldap_uri = ldap://example.com

ldap_search_base = dc=example,dc=com auth_provider = proxy proxy_pam_target = sssdpamproxy cache_credentials = true

After the SSSD domain is configured, make sure that the specified PAM files are configured. In this example, the target is sssdpamproxy, so create a /etc/pam.d/sssdpamproxy file and load the

PAM/LDAP modules: auth required pam_frprint.so

account required pam_frprint.so

password required pam_frprint.so

session required pam_frprint.so

Example 13.12. Proxy Identity and Authentication

SSSD can have a domain with both identity and authentication proxies. The only configuration given then are the proxy settings, proxy_pam_target for the authentication PAM module and

proxy_lib_name for the service, like NIS or LDAP.

This example illustrates a possible configuration, but this is not a realistic configuration. If LDAP is used for identity and authentication, then both the identity and authentication providers should be set to the LDAP configuration, not a proxy.

[domain/PROXY_PROXY] auth_provider = proxy id_provider = proxy proxy_lib_name = ldap proxy_pam_target = sssdproxyldap cache_credentials = true

Once the SSSD domain is added, then update the system settings to configure the proxy service:

1. Create a /etc/pam.d/sssdproxyldap file which requires the pam_ldap.so module: auth required pam_ldap.so

account required pam_ldap.so

password required pam_ldap.so

session required pam_ldap.so

2. Make sure the nss-pam-ldapd package is installed.

276

CHAPTER 13. CONFIGURING AUTHENTICATION

~]# yum install nss-pam-ldapd

3. Edit the /etc/nslcd.conf file, the configuration file for the LDAP name service daemon, to contain the information for the LDAP directory: uid nslcd gid ldap uri ldaps://ldap.example.com:636 base dc=example,dc=com ssl on tls_cacertdir /etc/openldap/cacerts

13.2.21. Creating Domains: Kerberos Authentication

Both LDAP and proxy identity providers can use a separate Kerberos domain to supply authentication.

Configuring a Kerberos authentication provider requires the key distribution center (KDC) and the

Kerberos domain. All of the principal names must be available in the specified identity provider; if they are not, SSSD constructs the principals using the format username@REALM.

NOTE

Kerberos can only provide authentication; it cannot provide an identity database.

SSSD assumes that the Kerberos KDC is also a Kerberos kadmin server. However, production environments commonly have multiple, read-only replicas of the KDC and only a single kadmin server.

Use the krb5_kpasswd option to specify where the password changing service is running or if it is running on a non-default port. If the krb5_kpasswd option is not defined, SSSD tries to use the

Kerberos KDC to change the password.

The basic Kerberos configuration options are listed in Table 13.10, “Kerberos Authentication

Configuration Parameters” . The sssd-krb5(5) man page has more information about Kerberos

configuration options.

Example 13.13. Basic Kerberos Authentication

# A domain with identities provided by LDAP and authentication by

Kerberos

[domain/KRBDOMAIN] id_provider = ldap chpass_provider = krb5 ldap_uri = ldap://ldap.example.com

ldap_search_base = dc=example,dc=com ldap-tls_reqcert = demand ldap_tls_cacert = /etc/pki/tls/certs/ca-bundle.crt

auth_provider = krb5 krb5_server = kdc.example.com

krb5_backup_server = kerberos.example.com

krb5_realm = EXAMPLE.COM

krb5_kpasswd = kerberos.admin.example.com

krb5_auth_timeout = 15

277

Deployment Guide

Example 13.14. Setting Kerberos Ticket Renewal Options

The Kerberos authentication provider, among other tasks, requests ticket granting tickets (TGT) for users and services. These tickets are used to generate other tickets dynamically for specific services, as accessed by the ticket principal (the user).

The TGT initially granted to the user principal is valid only for the lifetime of the ticket (by default, whatever is configured in the configured KDC). After that, the ticket cannot be renewed or extended.

However, not renewing tickets can cause problems with some services when they try to access a service in the middle of operations and their ticket has expired.

Kerberos tickets are not renewable by default, but ticket renewal can be enabled using the

krb5_renewable_lifetime and krb5_renew_interval parameters.

The lifetime for a ticket is set in SSSD with the krb5_lifetime parameter. This specifies how long a single ticket is valid, and overrides any values in the KDC.

Ticket renewal itself is enabled in the krb5_renewable_lifetime parameter, which sets the maximum lifetime of the ticket, counting all renewals.

For example, the ticket lifetime is set at one hour and the renewable lifetime is set at 24 hours: krb5_lifetime = 1h krb5_renewable_lifetime = 1d

This means that the ticket expires every hour and can be renewed continually up to one day.

The lifetime and renewable lifetime values can be in seconds (s), minutes (m), hours (h), or days (d).

The other option — which must also be set for ticket renewal — is the krb5_renew_interval parameter, which sets how frequently SSSD checks to see if the ticket needs to be renewed. At half of the ticket lifetime (whatever that setting is), the ticket is renewed automatically. (This value is always in seconds.) krb5_lifetime = 1h krb5_renewable_lifetime = 1d krb5_renew_interval = 60s

NOTE

If the krb5_renewable_lifetime value is not set or the krb5_renew_interval parameter is not set or is set to zero (0), then ticket renewal is disabled. Both

krb5_renewable_lifetime and krb5_renew_interval are required for ticket renewal to be enabled.

Table 13.10. Kerberos Authentication Configuration Parameters

Parameter Description

278

CHAPTER 13. CONFIGURING AUTHENTICATION

Parameter chpass_provider krb5_server krb5_backup_server krb5_realm krb5_lifetime

Description

Specifies which service to use for password change operations. This is assumed to be the same as the authentication provider. To use Kerberos, set this to krb5.

Gives the primary Kerberos server, by IP address or host names, to which SSSD will connect.

Gives a comma-separated list of IP addresses or host names of Kerberos servers to which SSSD will connect if the primary server is not available. The list is given in order of preference, so the first server in the list is tried first.

After an hour, SSSD will attempt to reconnect to the primary service specified in the krb5_server parameter.

When using service discovery for KDC or kpasswd servers, SSSD first searches for DNS entries that specify UDP as the connection protocol, and then falls back to TCP.

Identifies the Kerberos realm served by the KDC.

Requests a Kerberos ticket with the specified lifetime in seconds (s), minutes (m), hours (h) or days (d).

krb5_renewable_lifetime Requests a renewable Kerberos ticket with a total lifetime that is specified in seconds (s), minutes (m), hours (h) or days (d).

krb5_renew_interval Sets the time, in seconds, for SSSD to check if tickets should be renewed. Tickets are renewed automatically once they exceed half their lifetime. If this option is missing or set to zero, then automatic ticket renewal is disabled.

krb5_store_password_if

_offline

Sets whether to store user passwords if the Kerberos authentication provider is offline, and then to use that cache to request tickets when the provider is back online. The default is false , which does not store passwords.

krb5_kpasswd Lists alternate Kerberos kadmin servers to use if the change password service is not running on the KDC.

279

Deployment Guide

Parameter krb5_ccname_template

Description

Gives the directory to use to store the user's credential cache. This can be templatized, and the following tokens are supported:

%u, the user's login name

%U, the user's login UID

%p, the user's principal name

%r, the realm name

%h, the user's home directory

%d, the value of the krb5ccache_dir parameter

%P, the process ID of the SSSD client.

%%, a literal percent sign (%)

XXXXXX, a string at the end of the template which instructs SSSD to create a unique filename safely

For example: krb5_ccname_template = FILE:%d/krb5cc_%U_XXXXXX krb5_ccachedir krb5_auth_timeout

Specifies the directory to store credential caches. This can be templatized, using the same tokens as krb5_ccname_template , except for %d and %P . If %u ,

%U , %p , or %h are used, then SSSD creates a private directory for each user; otherwise, it creates a public directory.

Gives the time, in seconds, before an online authentication or change password request is aborted. If possible, the authentication request is continued offline. The default is 15 seconds.

13.2.22. Creating Domains: Access Control

SSSD provides a rudimentary access control for domain configuration, allowing either simple user allow/deny lists or using the LDAP back end itself.

Using the Simple Access Provider

The Simple Access Provider allows or denies access based on a list of user names or groups.

The Simple Access Provider is a way to restrict access to certain, specific machines. For example, if a company uses laptops, the Simple Access Provider can be used to restrict access to only a specific user or a specific group, even if a different user authenticated successfully against the same authentication provider.

The most common options are simple_allow_users and simple_allow_groups, which grant access explicitly to specific users (either the given users or group members) and deny access to everyone else. It is also possible to create deny lists (which deny access only to explicit people and implicitly allow everyone else access).

280

CHAPTER 13. CONFIGURING AUTHENTICATION

The Simple Access Provider adheres to the following four rules to determine which users should or should not be granted access:

If both the allow and deny lists are empty, access is granted.

If any list is provided, allow rules are evaluated first, and then deny rules. Practically, this means that deny rules supersede allow rules.

If an allowed list is provided, then all users are denied access unless they are in the list.

If only deny lists are provided, then all users are allowed access unless they are in the list.

This example grants access to two users and anyone who belongs to the IT group; implicitly, all other users are denied:

[domain/example.com] access_provider = simple simple_allow_users = jsmith,bjensen simple_allow_groups = itgroup

NOTE

The LOCAL domain in SSSD does not support simple as an access provider.

Other options are listed in the sssd-simple man page, but these are rarely used.

Using the Access Filters

An LDAP, Active Directory, or Identity Management server can provide access control rules for a domain. The associated options (ldap_access_filter for LDAP and IdM and ad_access_filter for AD) specify which users are granted access to the specified host. The user filter must be used or all users are denied access. See the examples below:

[domain/example.com] access_provider = ldap ldap_access_filter = memberOf=cn=allowedusers,ou=Groups,dc=example,dc=com

[domain/example.com] access_provider = ad ad_access_filter = memberOf=cn=allowedusers,ou=Groups,dc=example,dc=com

NOTE

Offline caching for LDAP access providers is limited to determining whether the user's last online login attempt was successful. Users that were granted access during their last login will continue to be granted access while offline.

SSSD can also check results by the authorizedService or host attribute in an entry. In fact, all options — LDAP filter, authorizedService, and host — can be evaluated, depending on the user entry and the configuration. The ldap_access_order parameter lists all access control methods to use, in order of how they should be evaluated.

[domain/example.com]

281

Deployment Guide access_provider = ldap ldap_access_filter = memberOf=cn=allowedusers,ou=Groups,dc=example,dc=com ldap_access_order = filter, host, authorized_service

The attributes in the user entry to use to evaluate authorized services or allowed hosts can be customized. Additional access control parameters are listed in the sssd-ldap(5) man page.

13.2.23. Creating Domains: Primary Server and Backup Servers

Identity and authentication providers for a domain can be configured for automatic failover. SSSD attempts to connect to the specified, primary server first. If that server cannot be reached, then SSSD then goes through the listed backup servers, in order.

NOTE

SSSD tries to connect to the primary server every 30 seconds, until the connection can be re-established, and then switches from the backup to the primary.

All of the major service areas have optional settings for primary and backup servers

[3]

.

Table 13.11. Primary and Secondary Server Parameters

Service Area Primary Server Attribute Backup Server Attribute

LDAP identity provider

Active Directory identity provider ldap_uri ad_server ldap_backup_uri ad_backup_server ipa_backup_server Identity Management (IdM or IPA) identity provider ipa_server

Kerberos authentication provider krb5_server

Kerberos authentication provider

Password change provider krb5_server ldap_chpass_uri krb5_backup_server krb5_backup_server ldap_chpass_backup_uri

One and only one server can be set as the primary server. (And, optionally, the primary server can be set to service discovery, using _srv_ rather than a host name.) Multiple backup servers can be set, in a comma-separated list. The backup server list is in order of preference, so the first server listed is tried first.

[domain/EXAMPLE] id_provider = ad ad_server = ad.example.com

ad_backup_server = ad1.example.com, ad-backup.example.com

13.2.24. Installing SSSD Utilities

282

CHAPTER 13. CONFIGURING AUTHENTICATION

Additional tools to handle the SSSD cache, user entries, and group entries are contained in the sssdtools package. This package is not required, but it is useful to install to help administer user accounts.

~]# yum install sssd-tools

NOTE

The sssd-tools package is provided by the Optional subscription channel. See

Section 8.4.8, “Adding the Optional and Supplementary Repositories”

for more information on Red Hat additional channels.

13.2.25. SSSD and UID and GID Numbers

When a user is created — using system tools such as useradd or through an application such as

Red Hat Identity Management or other client tools — the user is automatically assigned a user ID number and a group ID number.

When the user logs into a system or service, SSSD caches that user name with the associated UID/GID numbers. The UID number is then used as the identifying key for the user. If a user with the same name but a different UID attempts to log into the system, then SSSD treats it as two different users with a name collision.

What this means is that SSSD does not recognize UID number changes. It interprets it as a different and new user, not an existing user with a different UID number. If an existing user changes the UID number, that user is prevented from logging into SSSD and associated services and domains. This also has an impact on any client applications which use SSSD for identity information; the user with the conflict will not be found or accessible to those applications.

IMPORTANT

UID/GID changes are not supported in SSSD.

If a user for some reason has a changed UID/GID number, then the SSSD cache must be cleared for that user before that user can log in again. For example:

~] # sss_cache -u jsmith

Cleaning the SSSD cache is covered in the section called “Purging the SSSD Cache” .

13.2.26. Creating Local System Users

There can be times when it is useful to seed users into the SSSD database rather than waiting for users to login and be added.

NOTE

Adding user accounts manually requires the sssd-tools package to be installed.

When creating new system users, it is possible to create a user within the SSSD local identity provider domain. This can be useful for creating new system users, for troubleshooting SSSD configuration, or for creating specialized or nested groups.

283

Deployment Guide

New users can be added using the sss_useradd command.

At its most basic, the sss_useradd command only requires the new user name.

~]# sss_useradd jsmith

There are other options (listed in the sss_useradd(8) man page) which can be used to set attributes on the account, like the UID and GID, the home directory, or groups which the user belongs to.

~]# sss_useradd --UID 501 --home /home/jsmith --groups admin,dev-group jsmith

13.2.27. Seeding Users into the SSSD Cache During Kickstart

NOTE

Adding user accounts manually requires the sssd-tools package to be installed.

With SSSD, users in a remote domain are not available in a local system until that identity is retrieved from the identity provider. However, some network interfaces are not available until a user has logged in

— which is not possible if the user identity is somewhere over the network. In that case, it is possible to seed the SSSD cache with that user identity, associated with the appropriate domain, so that the user can log in locally and active the appropriate interfaces.

This is done using the sss_seed utility: sss_seed --domain EXAMPLE.COM --username testuser --password-file

/tmp/sssd-pwd.txt

This utility requires options that identify, at a minimum, the user name, domain name, and password.

--domain gives the domain name from the SSSD configuration. This domain must already exist in the SSSD configuration.

--username for the short name of the user account.

--password-file for the path and name of a file containing a temporary password for the seed entry. If the user account already exists in the SSSD cache, then the temporary password in this file overwrites the stored password in the SSSD cache.

Additional account configuration options are listed in the sss_seed(8) man page.

This would almost always be run as part of a kickstart or automated setup, so it would be part of a larger set of scripts, which would also enable SSSD, set up an SSSD domain, and create the password file. For example: function make_sssd { cat <<- _EOF_

[sssd] domains = LOCAL services = nss,pam

[nss]

284

CHAPTER 13. CONFIGURING AUTHENTICATION

[pam]

[domain/LOCAL] id_provider = local auth_provider = local access_provider = permit

_EOF_

} make_sssd >> /etc/sssd/sssd.conf

authconfig --enablesssd --enablesssdauth --update function make_pwdfile { cat <<1 _EOF_ password

_EOF_

} make_pwdfile >> /tmp/sssd-pwd.txt

sss_seed --domain EXAMPLE.COM --username testuser --password-file

/tmp/sssd-pwd.txt

13.2.28. Managing the SSSD Cache

SSSD can define multiple domains of the same type and different types of domain. SSSD maintains a separate database file for each domain, meaning each domain has its own cache. These cache files are stored in the /var/lib/sss/db/ directory.

Purging the SSSD Cache

As LDAP updates are made to the identity provider for the domains, it can be necessary to clear the cache to reload the new information quickly.

The cache purge utility, sss_cache, invalidates records in the SSSD cache for a user, a domain, or a group. Invalidating the current records forces the cache to retrieve the updated records from the identity provider, so changes can be realized quickly.

NOTE

This utility is included with SSSD in the sssd package.

Most commonly, this is used to clear the cache and update all records:

~]# sss_cache -E

The sss_cache command can also clear all cached entries for a particular domain:

~]# sss_cache -Ed LDAP1

If the administrator knows that a specific record (user, group, or netgroup) has been updated, then

sss_cache can purge the records for that specific account and leave the rest of the cache intact:

285

Deployment Guide

~]# sss_cache -u jsmith

Table 13.12. Common sss_cache Options

Short Argument Long Argument Description

-E --everything Invalidates all cached entries with the exception of sudo rules.

-d name --domain name

-G

-g name

-N

--groups

--group name

--netgroups

Invalidates cache entries for users, groups, and other entries only within the specified domain.

Invalidates all group records. If -g is also used, -G takes precedence and -g is ignored.

Invalidates the cache entry for the specified group.

Invalidates cache entries for all netgroup cache records. If -n is also used, -N takes precedence and -n is ignored.

Invalidates the cache entry for the specified netgroup.

-n name

-U

--netgroup name

--users

-u name --user name

Invalidates cache entries for all user records. If the -u option is also used, -U takes precedence and -u is ignored.

Invalidates the cache entry for the specified user.

Deleting Domain Cache Files

All cache files are named for the domain. For example, for a domain named exampleldap, the cache file is named cache_exampleldap.ldb.

Be careful when you delete a cache file. This operation has significant effects:

Deleting the cache file deletes all user data, both identification and cached credentials.

Consequently, do not delete a cache file unless the system is online and can authenticate with a user name against the domain's servers. Without a credentials cache, offline authentication will fail.

If the configuration is changed to reference a different identity provider, SSSD will recognize users from both providers until the cached entries from the original provider time out.

It is possible to avoid this by purging the cache, but the better option is to use a different domain name for the new provider. When SSSD is restarted, it creates a new cache file with the new name and the old file is ignored.

13.2.29. Downgrading SSSD

When downgrading — either downgrading the version of SSSD or downgrading the operating system itself — then the existing SSSD cache needs to be removed. If the cache is not removed, then SSSD process is dead but a PID file remains. The SSSD logs show that it cannot connect to any of its associated domains because the cache version is unrecognized.

286

CHAPTER 13. CONFIGURING AUTHENTICATION

(Wed Nov 28 21:25:50 2012) [sssd] [sysdb_domain_init_internal] (0x0010):

Unknown DB version [0.14], expected [0.10] for domain AD!

Users are then no longer recognized and are unable to authenticate to domain services and hosts.

After downgrading the SSSD version:

1. Delete the existing cache database files.

~]# rm -rf /var/lib/sss/db/*

2. Restart the SSSD process.

~]# service sssd restart

Stopping sssd:

[FAILED]

Starting sssd: [ OK

]

13.2.30. Using NSCD with SSSD

SSSD is not designed to be used with the NSCD daemon. Even though SSSD does not directly conflict with NSCD, using both services can result in unexpected behavior, especially with how long entries are cached.

The most common evidence of a problem is conflicts with NFS. When using Network Manager to manage network connections, it may take several minutes for the network interface to come up. During this time, various services attempt to start. If these services start before the network is up and the DNS servers are available, these services fail to identify the forward or reverse DNS entries they need. These services will read an incorrect or possibly empty resolv.conf file. This file is typically only read once, and so any changes made to this file are not automatically applied. This can cause NFS locking to fail on the machine where the NSCD service is running, unless that service is manually restarted.

To avoid this problem, enable caching for hosts and services in the /etc/nscd.conf file and rely on the SSSD cache for the passwd, group, and netgroup entries.

Change the /etc/nscd.conf file: enable-cache hosts yes enable-cache passwd no enable-cache group no enable-cache netgroup no

With NSCD answering hosts requests, these entries will be cached by NSCD and returned by NSCD during the boot process. All other entries are handled by SSSD.

13.2.31. Troubleshooting SSSD

the section called “Setting Debug Logs for SSSD Domains” the section called “Checking SSSD Log Files”

the section called “Problems with SSSD Configuration”

287

Deployment Guide

7

8

9

4

5

6

Setting Debug Logs for SSSD Domains

Each domain sets its own debug log level. Increasing the log level can provide more information about problems with SSSD or with the domain configuration.

To change the log level, set the debug_level parameter for each section in the sssd.conf file for which to produce extra logs. For example:

[domain/LDAP] cache_credentials = true debug_level = 9

Table 13.13. Debug Log Levels

Level Description

0

1

Fatal failures. Anything that would prevent SSSD from starting up or causes it to cease running.

Critical failures. An error that doesn't kill the SSSD, but one that indicates that at least one major feature is not going to work properly.

2

3

Serious failures. An error announcing that a particular request or operation has failed.

Minor failures. These are the errors that would percolate down to cause the operation failure of 2.

Configuration settings.

Function data.

Trace messages for operation functions.

Trace messages for internal control functions.

Contents of function-internal variables that may be interesting.

Extremely low-level tracing information.

NOTE

In versions of SSSD older than 1.8, debug log levels could be set globally in the [sssd] section. Now, each domain and service must configure its own debug log level.

To copy the global SSSD debug log levels into each configuration area in the SSSD configuration file, use the sssd_update_debug_levels.py script.

python -m SSSDConfig.sssd_update_debug_levels.py

Checking SSSD Log Files

288

CHAPTER 13. CONFIGURING AUTHENTICATION

SSSD uses a number of log files to report information about its operation, located in the

/var/log/sssd/ directory. SSSD produces a log file for each domain, as well as an sssd_pam.log and an sssd_nss.log file.

Additionally, the /var/log/secure file logs authentication failures and the reason for the failure.

Problems with SSSD Configuration

Q: SSSD fails to start

A: SSSD requires that the configuration file be properly set up, with all the required entries, before the daemon will start.

SSSD requires at least one properly configured domain before the service will start.

Without a domain, attempting to start SSSD returns an error that no domains are configured:

# sssd -d4

[sssd] [ldb] (3): server_sort:Unable to register control with rootdse!

[sssd] [confdb_get_domains] (0): No domains configured, fatal error!

[sssd] [get_monitor_config] (0): No domains configured.

Edit the /etc/sssd/sssd.conf file and create at least one domain.

SSSD also requires at least one available service provider before it will start. If the problem is with the service provider configuration, the error message indicates that there are no services configured:

[sssd] [get_monitor_config] (0): No services configured!

Edit the /etc/sssd/sssd.conf file and configure at least one service provider.

IMPORTANT

SSSD requires that service providers be configured as a comma-separated list in a single services entry in the /etc/sssd/sssd.conf file. If services are listed in multiple entries, only the last entry is recognized by

SSSD.

Q:

A:

I don't see any groups with 'id' or group members with 'getent group'.

This may be due to an incorrect ldap_schema setting in the [domain/DOMAINNAME] section of

sssd.conf.

SSSD supports RFC 2307 and RFC 2307bis schema types. By default, SSSD uses the more common RFC 2307 schema.

The difference between RFC 2307 and RFC 2307bis is the way which group membership is stored in the LDAP server. In an RFC 2307 server, group members are stored as the multi-valued

memberuid attribute, which contains the name of the users that are members. In an RFC2307bis

289

Deployment Guide server, group members are stored as the multi-valued member or uniqueMember attribute which contains the DN of the user or group that is a member of this group. RFC2307bis allows nested groups to be maintained as well.

If group lookups are not returning any information:

1. Set ldap_schema to rfc2307bis.

2. Delete /var/lib/sss/db/cache_DOMAINNAME.ldb.

3. Restarting SSSD.

If that doesn't work, add this line to sssd.conf: ldap_group_name = uniqueMember

Then delete the cache and restart SSSD again.

Q:

A:

Authentication fails against LDAP.

To perform authentication, SSSD requires that the communication channel be encrypted. This means that if sssd.conf is configured to connect over a standard protocol (ldap://), it attempts to encrypt the communication channel with Start TLS. If sssd.conf is configured to connect over a secure protocol (ldaps://), then SSSD uses SSL.

This means that the LDAP server must be configured to run in SSL or TLS. TLS must be enabled for the standard LDAP port (389) or SSL enabled on the secure LDAPS port (636). With either SSL or TLS, the LDAP server must also be configured with a valid certificate trust.

An invalid certificate trust is one of the most common issues with authenticating against LDAP. If the client does not have proper trust of the LDAP server certificate, it is unable to validate the connection, and SSSD refuses to send the password. The LDAP protocol requires that the password be sent in plaintext to the LDAP server. Sending the password in plaintext over an unencrypted connection is a security problem.

If the certificate is not trusted, a syslog message is written, indicating that TLS encryption could not be started. The certificate configuration can be tested by checking if the LDAP server is accessible apart from SSSD. For example, this tests an anonymous bind over a TLS connection to

test.example.com:

$ ldapsearch -x -ZZ -h test.example.com -b dc=example,dc=com

If the certificate trust is not properly configured, the test fails with this error: ldap_start_tls: Connect error (-11) additional info: TLS error -

8179:Unknown code ___f 13

To trust the certificate:

1. Obtain a copy of the public CA certificate for the certificate authority used to sign the LDAP server certificate and save it to the local system.

2. Add a line to the sssd.conf file that points to the CA certificate on the filesystem.

290

CHAPTER 13. CONFIGURING AUTHENTICATION ldap_tls_cacert = /path/to/cacert

3. If the LDAP server uses a self-signed certificate, remove the ldap_tls_reqcert line from the sssd.conf file.

This parameter directs SSSD to trust any certificate issued by the CA certificate, which is a security risk with a self-signed CA certificate.

Q:

A:

Connecting to LDAP servers on non-standard ports fail.

When running SELinux in enforcing mode, the client's SELinux policy has to be modified to connect to the LDAP server over the non-standard port. For example:

# semanage port -a -t ldap_port_t -p tcp 1389

Q:

A:

NSS fails to return user information

This usually means that SSSD cannot connect to the NSS service.

Ensure that NSS is running:

# service sssd status

If NSS is running, make sure that the provider is properly configured in the [nss] section of the /etc/sssd/sssd.conf file. Especially check the filter_users and

filter_groups attributes.

Make sure that NSS is included in the list of services that SSSD uses.

Check the configuration in the /etc/nsswitch.conf file.

Q:

A:

NSS returns incorrect user information

If searches are returning the incorrect user information, check that there are not conflicting user names in separate domains. When there are multiple domains, set the

use_fully_qualified_domains attribute to true in the /etc/sssd/sssd.conf file. This differentiates between different users in different domains with the same name.

Q:

A:

Setting the password for the local SSSD user prompts twice for the password

When attempting to change a local SSSD user's password, it may prompt for the password twice:

[root@clientF11 tmp]# passwd user1000

Changing password for user user1000.

New password:

Retype new password:

New Password:

Reenter new Password: passwd: all authentication tokens updated successfully.

291

Deployment Guide

This is the result of an incorrect PAM configuration. Ensure that the use_authtok option is correctly configured in your /etc/pam.d/system-auth file.

Q:

A:

I am trying to use sudo rules with an Identity Management (IPA) provider, but no sudo rules are being found, even though sudo is properly configured.

The SSSD client can successfully authenticate to the Identity Management server, and it is properly searching the LDAP directory for sudo rules. However, it is showing that no rules exist.

For example, in the logs:

(Thu Jun 21 10:37:47 2012) [sssd[be[ipa.test]]]

[sdap_sudo_load_sudoers_process] (0x0400): Receiving sudo rules with base [ou=sudoers,dc=ipa,dc=test]

(Thu Jun 21 10:37:47 2012) [sssd[be[ipa.test]]]

[sdap_sudo_load_sudoers_done] (0x0400): Received 0 rules

(Thu Jun 21 10:37:47 2012) [sssd[be[ipa.test]]]

[sdap_sudo_purge_sudoers] (0x0400): Purging SUDOers cache of user's

[admin] rules

(Thu Jun 21 10:37:47 2012) [sssd[be[ipa.test]]]

[sysdb_sudo_purge_byfilter] (0x0400): No rules matched

(Thu Jun 21 10:37:47 2012) [sssd[be[ipa.test]]]

[sysdb_sudo_purge_bysudouser] (0x0400): No rules matched

(Thu Jun 21 10:37:47 2012) [sssd[be[ipa.test]]]

[sdap_sudo_load_sudoers_done] (0x0400): Sudoers is successfuly stored in cache

(Thu Jun 21 10:37:47 2012) [sssd[be[ipa.test]]]

[be_sudo_handler_reply] (0x0200): SUDO Backend returned: (0, 0,

Success)

When using an Identity Management provider for SSSD, SSSD attempts to connect to the underlying LDAP directory using Kerberos/GSS-API. However, by default, SSSD uses an anonymous connection to an LDAP server to retrieve sudo rules. This means that SSSD cannot retrieve the sudo rules from the Identity Management server with its default configuration.

To support retrieving sudo rules with a Kerberos/GSS-API connection, enable GSS-API as the authentication mechanism in the identity provider configuration in sssd.conf. For example:

[domain/ipa.example.com] id_provider = ipa ipa_server = ipa.example.com

ldap_tls_cacert = /etc/ipa/ca.crt

sudo_provider = ldap ldap_uri = ldap://ipa.example.com

ldap_sudo_search_base = ou=sudoers,dc=ipa,dc=example,dc=com ldap_sasl_mech = GSSAPI ldap_sasl_authid = host/hostname.ipa.example.com

ldap_sasl_realm = IPA.EXAMPLE.COM

krb5_server = ipa.example.com

Q: Password lookups on large directories can take several seconds per request. How can this be improved?

292

CHAPTER 13. CONFIGURING AUTHENTICATION

A: The initial user lookup is a call to the LDAP server. Unindexed searches are much more resourceintensive, and therefore take longer, than indexed searches because the server checks every entry in the directory for a match. To speed up user lookups, index the attributes that are searched for by uid uidNumber gidNumber gecos

Q:

A:

An Active Directory identity provider is properly configured in my sssd.conf file, but SSSD fails to connect to it, with GSS-API errors.

SSSD can only connect with an Active Directory provider using its host name. If the host name is not given, the SSSD client cannot resolve the IP address to the host, and authentication fails.

For example, with this configuration:

[domain/ADEXAMPLE] debug_level = 0xFFF0 id_provider = ad ad_server = 255.255.255.255

ad_domain = example.com

krb5_canonicalize = False

The SSSD client returns this GSS-API failure, and the authentication request fails:

(Fri Jul 27 18:27:44 2012) [sssd[be[ADTEST]]] [sasl_bind_send]

(0x0020): ldap_sasl_bind failed (-2)[Local error]

(Fri Jul 27 18:27:44 2012) [sssd[be[ADTEST]]] [sasl_bind_send]

(0x0080): Extended failure message: [SASL(-1): generic failure: GSSAPI

Error: Unspecified GSS failure. Minor code may provide more information (Cannot determine realm for numeric host address)]

To avoid this error, set the ad_server to the name of the Active Directory host.

Q:

A:

I configured SSSD for central authentication, but now several of my applications (such as

Firefox or Adobe) will not start.

Even on 64-bit systems, 32-bit applications require a 32-bit version of SSSD to use to access the password and identity cache. If a 32-bit version of SSSD is not available, but the system is configured to use the SSSD cache, then 32-bit applications can fail to start.

For example, Firefox can fail with permission denied errors:

Failed to contact configuration server. See http://www.gnome.org/projects/gconf/ for information. (Details - 1: IOR file '/tmp/gconfdsomebody/lock/ior' not opened successfully, no gconfd located: Permission denied 2: IOR

293

Deployment Guide file '/tmp/gconfd-somebody/lock/ior' not opened successfully, no gconfd located: Permission denied)

For Adobe Reader, the error shows that the current system user is not recognized:

~]$ acroread

(acroread:12739): GLib-WARNING **: getpwuid_r(): failed due to unknown user id (366)

Other applications may show similar user or permissions errors.

Q:

A:

SSSD is showing an automount location that I removed.

The SSSD cache for the automount location persists even if the location is subsequently changed or removed. To update the autofs information in SSSD:

1. Remove the autofs cache, as described in

the section called “Purging the SSSD Cache”

.

2. Restart SSSD, as in

Section 13.2.3, “Starting and Stopping SSSD” .

[3] Most services default to the identity provider server if a specific server for that service is not set.

294

CHAPTER 14. OPENSSH

CHAPTER 14. OPENSSH

SSH (Secure Shell) is a protocol which facilitates secure communications between two systems using a client-server architecture and allows users to log into server host systems remotely. Unlike other remote communication protocols, such as FTP, Telnet, or rlogin, SSH encrypts the login session, rendering the connection difficult for intruders to collect unencrypted passwords.

The ssh program is designed to replace older, less secure terminal applications used to log into remote hosts, such as telnet or rsh. A related program called scp replaces older programs designed to copy files between hosts, such as rcp. Because these older applications do not encrypt passwords transmitted between the client and the server, avoid them whenever possible. Using secure methods to log into remote systems decreases the risks for both the client system and the remote host.

Red Hat Enterprise Linux includes the general OpenSSH package, openssh, as well as the OpenSSH server, openssh-server, and client, openssh-clients, packages.

14.1. THE SSH PROTOCOL

14.1.1. Why Use SSH?

Potential intruders have a variety of tools at their disposal enabling them to disrupt, intercept, and reroute network traffic in an effort to gain access to a system. In general terms, these threats can be categorized as follows:

Interception of communication between two systems

The attacker can be somewhere on the network between the communicating parties, copying any information passed between them. He may intercept and keep the information, or alter the information and send it on to the intended recipient.

This attack is usually performed using a packet sniffer, a rather common network utility that captures each packet flowing through the network, and analyzes its content.

Impersonation of a particular host

Attacker's system is configured to pose as the intended recipient of a transmission. If this strategy works, the user's system remains unaware that it is communicating with the wrong host.

This attack can be performed using a technique known as DNS poisoning, or via so-called IP spoofing. In the first case, the intruder uses a cracked DNS server to point client systems to a maliciously duplicated host. In the second case, the intruder sends falsified network packets that appear to be from a trusted host.

Both techniques intercept potentially sensitive information and, if the interception is made for hostile reasons, the results can be disastrous. If SSH is used for remote shell login and file copying, these security threats can be greatly diminished. This is because the SSH client and server use digital signatures to verify their identity. Additionally, all communication between the client and server systems is encrypted. Attempts to spoof the identity of either side of a communication does not work, since each packet is encrypted using a key known only by the local and remote systems.

14.1.2. Main Features

The SSH protocol provides the following safeguards:

No one can pose as the intended server

295

Deployment Guide

After an initial connection, the client can verify that it is connecting to the same server it had connected to previously.

No one can capture the authentication information

The client transmits its authentication information to the server using strong, 128-bit encryption.

No one can intercept the communication

All data sent and received during a session is transferred using 128-bit encryption, making intercepted transmissions extremely difficult to decrypt and read.

Additionally, it also offers the following options:

It provides secure means to use graphical applications over a network

Using a technique called X11 forwarding, the client can forward X11 (X Window System) applications from the server. Note that if you set the ForwardX11Trusted option to yes or you use SSH with the -Y option, you bypass the X11 SECURITY extension controls, which can result in a security threat.

It provides a way to secure otherwise insecure protocols

The SSH protocol encrypts everything it sends and receives. Using a technique called port forwarding, an SSH server can become a conduit to securing otherwise insecure protocols, like POP, and increasing overall system and data security.

It can be used to create a secure channel

The OpenSSH server and client can be configured to create a tunnel similar to a virtual private network for traffic between server and client machines.

It supports the Kerberos authentication

OpenSSH servers and clients can be configured to authenticate using the GSSAPI (Generic Security

Services Application Program Interface) implementation of the Kerberos network authentication protocol.

14.1.3. Protocol Versions

Two varieties of SSH currently exist: version 1 and version 2. The OpenSSH suite under Red Hat

Enterprise Linux uses SSH version 2, which has an enhanced key exchange algorithm not vulnerable to the known exploit in version 1. However, for compatibility reasons, the OpenSSH suite does support version 1 connections as well, although version 1 is disabled by default and needs to be enabled in the configuration files.

IMPORTANT

For maximum security, avoid using SSH version 1 and use SSH version 2-compatible servers and clients whenever possible.

14.1.4. Event Sequence of an SSH Connection

The following series of events help protect the integrity of SSH communication between two hosts.

296

CHAPTER 14. OPENSSH

1. A cryptographic handshake is made so that the client can verify that it is communicating with the correct server.

2. The transport layer of the connection between the client and remote host is encrypted using a symmetric cipher.

3. The client authenticates itself to the server.

4. The client interacts with the remote host over the encrypted connection.

14.1.4.1. Transport Layer

The primary role of the transport layer is to facilitate safe and secure communication between the two hosts at the time of authentication and during subsequent communication. The transport layer accomplishes this by handling the encryption and decryption of data, and by providing integrity protection of data packets as they are sent and received. The transport layer also provides compression, speeding the transfer of information.

Once an SSH client contacts a server, key information is exchanged so that the two systems can correctly construct the transport layer. The following steps occur during this exchange:

Keys are exchanged

The public key encryption algorithm is determined

The symmetric encryption algorithm is determined

The message authentication algorithm is determined

The hash algorithm is determined

During the key exchange, the server identifies itself to the client with a unique host key. If the client has never communicated with this particular server before, the server's host key is unknown to the client and it does not connect. OpenSSH notifies the user that the authenticity of the host cannot be established and prompts the user to accept or reject it. The user is expected to independently verify the new host key before accepting it. In subsequent connections, the server's host key is checked against the saved version on the client, providing confidence that the client is indeed communicating with the intended server. If, in the future, the host key no longer matches, the user must remove the client's saved version before a connection can occur.

WARNING

Always verify the integrity of a new SSH server. During the initial contact, an attacker can pretend to be the intended SSH server to the local system without being recognized. To verify the integrity of a new SSH server, contact the server administrator before the first connection or if a host key mismatch occurs.

SSH is designed to work with almost any kind of public key algorithm or encoding format. After an initial key exchange creates a hash value used for exchanges and a shared secret value, the two systems immediately begin calculating new keys and algorithms to protect authentication and future data sent over the connection.

297

Deployment Guide

After a certain amount of data has been transmitted using a given key and algorithm (the exact amount depends on the SSH implementation), another key exchange occurs, generating another set of hash values and a new shared secret value. Even if an attacker is able to determine the hash and shared secret value, this information is only useful for a limited period of time.

14.1.4.2. Authentication

Once the transport layer has constructed a secure tunnel to pass information between the two systems, the server tells the client the different authentication methods supported, such as using a private keyencoded signature or typing a password. The client then tries to authenticate itself to the server using one of these supported methods.

SSH servers and clients can be configured to allow different types of authentication, which gives each side the optimal amount of control. The server can decide which encryption methods it supports based on its security model, and the client can choose the order of authentication methods to attempt from the available options.

14.1.4.3. Channels

After a successful authentication over the SSH transport layer, multiple channels are opened via a

technique called multiplexing

[4]

. Each of these channels handles communication for different terminal sessions and for forwarded X11 sessions.

Both clients and servers can create a new channel. Each channel is then assigned a different number on each end of the connection. When the client attempts to open a new channel, the clients sends the channel number along with the request. This information is stored by the server and is used to direct communication to that channel. This is done so that different types of sessions do not affect one another and so that when a given session ends, its channel can be closed without disrupting the primary SSH connection.

Channels also support flow-control, which allows them to send and receive data in an orderly fashion. In this way, data is not sent over the channel until the client receives a message that the channel is open.

The client and server negotiate the characteristics of each channel automatically, depending on the type of service the client requests and the way the user is connected to the network. This allows great flexibility in handling different types of remote connections without having to change the basic infrastructure of the protocol.

14.2. CONFIGURING OPENSSH

14.2.1. Configuration Files

There are two different sets of configuration files: those for client programs (that is, ssh, scp, and

sftp), and those for the server (the sshd daemon).

System-wide SSH configuration information is stored in the /etc/ssh/ directory as described in

Table 14.1, “System-wide configuration files”

. User-specific SSH configuration information is stored in

~/.ssh/ within the user's home directory as described in Table 14.2, “User-specific configuration files”

.

Table 14.1. System-wide configuration files

298

CHAPTER 14. OPENSSH

File

/etc/ssh/moduli

/etc/ssh/ssh_config

/etc/ssh/ssh_host_key.pub

/etc/ssh/ssh_host_rsa_key

Description

Contains Diffie-Hellman groups used for the Diffie-Hellman key exchange which is critical for constructing a secure transport layer.

When keys are exchanged at the beginning of an SSH session, a shared, secret value is created which cannot be determined by either party alone. This value is then used to provide host authentication.

The default SSH client configuration file. Note that it is overridden by ~/.ssh/config if it exists.

/etc/ssh/sshd_config

/etc/ssh/ssh_host_dsa_key

The configuration file for the sshd daemon.

The DSA private key used by the sshd daemon.

/etc/ssh/ssh_host_dsa_key.

pub

/etc/ssh/ssh_host_key

The DSA public key used by the sshd daemon.

The RSA private key used by the

SSH protocol.

sshd daemon for version 1 of the

The RSA public key used by the sshd daemon for version 1 of the

SSH protocol.

The RSA private key used by the sshd daemon for version 2 of the

SSH protocol.

/etc/ssh/ssh_host_rsa_key.

pub

/etc/pam.d/sshd

The RSA public key used by the sshd daemon for version 2 of the

SSH protocol.

/etc/sysconfig/sshd

The PAM configuration file for the sshd daemon.

Configuration file for the sshd service.

Table 14.2. User-specific configuration files

File Description

~/.ssh/authorized_keys Holds a list of authorized public keys for servers. When the client connects to a server, the server authenticates the client by checking its signed public key stored within this file.

Contains the DSA private key of the user.

~/.ssh/id_dsa

~/.ssh/id_dsa.pub

The DSA public key of the user.

299

Deployment Guide

File

~/.ssh/id_rsa

~/.ssh/id_rsa.pub

~/.ssh/identity

~/.ssh/identity.pub

~/.ssh/known_hosts

Description

The RSA private key used by ssh for version 2 of the SSH protocol.

The RSA public key used by ssh for version 2 of the SSH protocol.

The RSA private key used by ssh for version 1 of the SSH protocol.

The RSA public key used by ssh for version 1 of the SSH protocol.

Contains DSA host keys of SSH servers accessed by the user. This file is very important for ensuring that the SSH client is connecting the correct SSH server.

For information concerning various directives that can be used in the SSH configuration files, see the

ssh_config(5) and sshd_config(5) manual pages.

14.2.2. Starting an OpenSSH Server

In order to run an OpenSSH server, you must have the openssh-server installed (see Section 8.2.4,

“Installing Packages” for more information on how to install new packages in Red Hat

Enterprise Linux 6).

To start the sshd daemon, type the following at a shell prompt:

~]# service sshd start

To stop the running sshd daemon, use the following command:

~]# service sshd stop

If you want the daemon to start automatically at the boot time, type:

~]# chkconfig sshd on

This will enable the service for levels 2, 3, 4, and 5. For more configuration options, see Chapter 12,

Services and Daemons for the detailed information on how to manage services.

Note that if you reinstall the system, a new set of identification keys will be created. As a result, clients who had connected to the system with any of the OpenSSH tools before the reinstall will see the following message:

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!

It is also possible that the RSA host key has just been changed.

300

CHAPTER 14. OPENSSH

To prevent this, you can backup the relevant files from the /etc/ssh/ directory (see Table 14.1,

“System-wide configuration files” for a complete list), and restore them whenever you reinstall the

system.

14.2.3. Requiring SSH for Remote Connections

For SSH to be truly effective, using insecure connection protocols should be prohibited. Otherwise, a user's password may be protected using SSH for one session, only to be captured later while logging in using Telnet. Some services to disable include telnet, rsh, rlogin, and vsftpd.

To disable these services, type the following commands at a shell prompt:

~]# chkconfig telnet off

~]# chkconfig rsh off

~]# chkconfig rlogin off

~]# chkconfig vsftpd off

For more information on runlevels and configuring services in general, see Chapter 12, Services and

Daemons .

14.2.4. Using Key-Based Authentication

To improve the system security even further, you can enforce key-based authentication by disabling the standard password authentication. To do so, open the /etc/ssh/sshd_config configuration file in a text editor such as vi or nano, and change the PasswordAuthentication option as follows:

PasswordAuthentication no

To be able to use ssh, scp, or sftp to connect to the server from a client machine, generate an authorization key pair by following the steps below. Note that keys must be generated for each user separately.

Red Hat Enterprise Linux 6 uses SSH Protocol 2 and RSA keys by default (see Section 14.1.3, “Protocol

Versions” for more information).

IMPORTANT

Do not generate key pairs as root, as only root would be able to use those keys.

NOTE

Before reinstalling your system, back up the ~/.ssh/ directory to keep the generated key pair. Copy the backed-up data to the home directory in the new system for any user you require, including root.

14.2.4.1. Generating Key Pairs

To generate an RSA key pair for version 2 of the SSH protocol, follow these steps:

1. Generate an RSA key pair by typing the following at a shell prompt:

301

Deployment Guide

~]$ ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/home/john/.ssh/id_rsa):

2. Press Enter to confirm the default location (that is, ~/.ssh/id_rsa) for the newly created key.

3. Enter a passphrase, and confirm it by entering it again when prompted to do so. For security reasons, avoid using the same password as you use to log in to your account.

After this, you will be presented with a message similar to this:

Your identification has been saved in /home/john/.ssh/id_rsa.

Your public key has been saved in /home/john/.ssh/id_rsa.pub.

The key fingerprint is: e7:97:c7:e2:0e:f9:0e:fc:c4:d7:cb:e5:31:11:92:14 [email protected]

The key's randomart image is:

+--[ RSA 2048]----+

| E. |

| . . |

| o . |

| . .|

| S . . |

| + o o ..|

| * * +oo|

| O +..=|

| o* o.|

+-----------------+

4. Change the permissions of the ~/.ssh/ directory:

~]$ chmod 700 ~/.ssh

5. Copy the content of ~/.ssh/id_rsa.pub into the ~/.ssh/authorized_keys on the machine to which you want to connect, appending it to its end if the file already exists.

6. Change the permissions of the ~/.ssh/authorized_keys file using the following command:

~]$ chmod 600 ~/.ssh/authorized_keys

To generate a DSA key pair for version 2 of the SSH protocol, follow these steps:

1. Generate a DSA key pair by typing the following at a shell prompt:

~]$ ssh-keygen -t dsa

Generating public/private dsa key pair.

Enter file in which to save the key (/home/john/.ssh/id_dsa):

2. Press Enter to confirm the default location (that is, ~/.ssh/id_dsa) for the newly created key.

302

CHAPTER 14. OPENSSH

3. Enter a passphrase, and confirm it by entering it again when prompted to do so. For security reasons, avoid using the same password as you use to log in to your account.

After this, you will be presented with a message similar to this:

Your identification has been saved in /home/john/.ssh/id_dsa.

Your public key has been saved in /home/john/.ssh/id_dsa.pub.

The key fingerprint is:

81:a1:91:a8:9f:e8:c5:66:0d:54:f5:90:cc:bc:cc:27 [email protected]

The key's randomart image is:

+--[ DSA 1024]----+

| .oo*o. |

| ...o Bo |

| .. . + o. |

|. . E o |

| o..o S |

|. o= . |

|. + |

| . |

| |

+-----------------+

4. Change the permissions of the ~/.ssh/ directory:

~]$ chmod 700 ~/.ssh

5. Copy the content of ~/.ssh/id_dsa.pub into the ~/.ssh/authorized_keys on the machine to which you want to connect, appending it to its end if the file already exists.

6. Change the permissions of the ~/.ssh/authorized_keys file using the following command:

~]$ chmod 600 ~/.ssh/authorized_keys

To generate an RSA key pair for version 1 of the SSH protocol, follow these steps:

1. Generate an RSA key pair by typing the following at a shell prompt:

~]$ ssh-keygen -t rsa1

Generating public/private rsa1 key pair.

Enter file in which to save the key (/home/john/.ssh/identity):

2. Press Enter to confirm the default location (that is, ~/.ssh/identity) for the newly created key.

3. Enter a passphrase, and confirm it by entering it again when prompted to do so. For security reasons, avoid using the same password as you use to log into your account.

After this, you will be presented with a message similar to this:

Your identification has been saved in /home/john/.ssh/identity.

Your public key has been saved in /home/john/.ssh/identity.pub.

The key fingerprint is: cb:f6:d5:cb:6e:5f:2b:28:ac:17:0c:e4:62:e4:6f:59

303

Deployment Guide [email protected]

The key's randomart image is:

+--[RSA1 2048]----+

| |

| . . |

| o o |

| + o E |

| . o S |

| = + . |

| . = . o . .|

| . = o o..o|

| .o o o=o.|

+-----------------+

4. Change the permissions of the ~/.ssh/ directory:

~]$ chmod 700 ~/.ssh

5. Copy the content of ~/.ssh/identity.pub into the ~/.ssh/authorized_keys on the machine to which you want to connect, appending it to its end if the file already exists.

6. Change the permissions of the ~/.ssh/authorized_keys file using the following command:

~]$ chmod 600 ~/.ssh/authorized_keys

See

Section 14.2.4.2, “Configuring ssh-agent” for information on how to set up your system to remember

the passphrase.

IMPORTANT

Never share your private key with anybody; it is for your personal use only.

14.2.4.2. Configuring ssh-agent

To store your passphrase so that you do not have to enter it each time you initiate a connection with a remote machine, you can use the ssh-agent authentication agent. If you are running GNOME, you can configure it to prompt you for your passphrase whenever you log in and remember it during the whole session. Otherwise you can store the passphrase for a certain shell prompt.

To save your passphrase during your GNOME session, follow these steps:

1. Make sure you have the openssh-askpass package installed. If not, see Section 8.2.4, “Installing

Packages” for more information on how to install new packages in Red Hat Enterprise Linux.

2. Select SystemPreferencesStartup Applications from the panel. The Startup

Applications Preferences will be started, and the tab containing a list of available startup programs will be shown by default.

304

CHAPTER 14. OPENSSH

Figure 14.1. Startup Applications Preferences

3. Click the Add button on the right, and enter /usr/bin/ssh-add in the Command field.

Figure 14.2. Adding new application

4. Click Add and make sure the check box next to the newly added item is selected.

305

Deployment Guide

Figure 14.3. Enabling the application

5. Log out and then log back in. A dialog box will appear prompting you for your passphrase. From this point on, you should not be prompted for a password by ssh, scp, or sftp.

Figure 14.4. Entering a passphrase

To save your passphrase for a certain shell prompt, use the following command:

~]$ ssh-add

Enter passphrase for /home/john/.ssh/id_rsa:

Note that when you log out, your passphrase will be forgotten. You must execute the command each time you log in to a virtual console or a terminal window.

306

CHAPTER 14. OPENSSH

14.2.4.3. Multiple required methods of authentication for sshd

For higher security, SSH can require multiple methods of authentication to log in successfully, for example both a passphrase and a public key. Set the RequiredAuthentications2 option in the

/etc/ssh/sshd_config file as desired, for example by running:

~]# echo "RequiredAuthentications2 publickey,password" >>

/etc/ssh/sshd_config

For more information on the available options, see the sshd_config(5) manual page.

14.3. USING OPENSSH CERTIFICATE AUTHENTICATION

14.3.1. Introduction to SSH Certificates

Using public key cryptography for authentication requires copying the public key from every client to every server that the client intends to log into. This system does not scale well and can be an administrative burden. Using a public key from a certificate authority (CA) to authenticate client certificates removes the need to copy keys between multiple systems. While the X.509 Public Key

Infrastructure Certificate system provides a solution to this issue, there is a submission and validation process, with associated fees, to go through in order to get a certificate signed. As an alternative,

OpenSSH supports the creation of simple certificates and associated CA infrastructure.

OpenSSH certificates contain a public key, identity information, and validity constraints. They are signed with a standard SSH public key using the ssh-keygen utility. The format of the certificate is described in /usr/share/doc/openssh-version/PROTOCOL.certkeys.

The ssh-keygen utility supports two types of certificates: user and host. User certificates authenticate users to servers, whereas host certificates authenticate server hosts to users. For certificates to be used for user or host authentication, sshd must be configured to trust the CA public key.

14.3.2. Support for SSH Certificates

Support for certificate authentication of users and hosts using the new OpenSSH certificate format was introduced in Red Hat Enterprise Linux 6.5, in the openssh-5.3p1-94.el6 package. If required, to ensure the latest OpenSSH package is installed, enter the following command as root:

~]# yum install openssh

Package openssh-5.3p1-104.el6_6.1.i686 already installed and latest version

Nothing to do

14.3.3. Creating SSH CA Certificate Signing Keys

Two types of certificates are required, host certificates and user certificates. It is considered better to have two separate keys for signing the two certificates, for example ca_user_key and ca_host_key, however it is possible to use just one CA key to sign both certificates. It is also easier to follow the procedures if separate keys are used, so the examples that follow will use separate keys.

The basic format of the command to sign user's public key to create a user certificate is as follows: ssh-keygen -s ca_user_key -I certificate_ID id_rsa.pub

307

Deployment Guide

Where -s indicates the private key used to sign the certificate, -I indicates an identity string, the certificate_ID, which can be any alpha numeric value. It is stored as a zero terminated string in the certificate. The certificate_ID is logged whenever the certificate is used for identification and it is also used when revoking a certificate. Having a long value would make logs hard to read, therefore using the host name for host certificates and the user name for user certificates is a safe choice.

To sign a host's public key to create a host certificate, add the -h option: ssh-keygen -s ca_host_key -I certificate_ID -h ssh_host_rsa_key.pub

Host keys are generated on the system by default, to list the keys, enter a command as follows:

~]# ls -l /etc/ssh/ssh_host*

-rw-------. 1 root root 668 Jul 9 2014 /etc/ssh/ssh_host_dsa_key

-rw-r--r--. 1 root root 590 Jul 9 2014 /etc/ssh/ssh_host_dsa_key.pub

-rw-------. 1 root root 963 Jul 9 2014 /etc/ssh/ssh_host_key

-rw-r--r--. 1 root root 627 Jul 9 2014 /etc/ssh/ssh_host_key.pub

-rw-------. 1 root root 1671 Jul 9 2014 /etc/ssh/ssh_host_rsa_key

-rw-r--r--. 1 root root 382 Jul 9 2014 /etc/ssh/ssh_host_rsa_key.pub

IMPORTANT

It is recommended to create and store CA keys in a safe place just as with any other private key. In these examples the root user will be used. In a real production environment using an offline computer with an administrative user account is recommended. For guidance on key lengths see NIST Special Publication 800-131A .

Procedure 14.1. Generating SSH CA Certificate Signing Keys

1. On the server designated to be the CA, generate two keys for use in signing certificates. These are the keys that all other hosts need to trust. Choose suitable names, for example

ca_user_key and ca_host_key. To generate the user certificate signing key, enter the following command as root:

~]# ssh-keygen -t rsa -f ~/.ssh/ca_user_key

Generating public/private rsa key pair.

Created directory '/root/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/ca_user_key.

Your public key has been saved in /root/.ssh/ca_user_key.pub.

The key fingerprint is:

11:14:2f:32:fd:5d:f5:e4:7a:5a:d6:b6:a0:62:c9:1f root@host_name.example.com

The key's randomart image is:

+--[ RSA 2048]----+

| .+. o|

| . o +.|

| o + . . o|

| o + . . ..|

| S . ... *|

| . . . .*.|

| = E .. |

308

CHAPTER 14. OPENSSH

| . o . |

| . |

+-----------------+

Generate a host certificate signing key, ca_host_key, as follows:

~]# ssh-keygen -t rsa -f ~/.ssh/ca_host_key

Generating public/private rsa key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/ca_host_key.

Your public key has been saved in /root/.ssh/ca_host_key.pub.

The key fingerprint is: e4:d5:d1:4f:6b:fd:a2:e3:4e:5a:73:52:91:0b:b7:7a root@host_name.example.com

The key's randomart image is:

+--[ RSA 2048]----+

| .. |

| . ....|

| . . o +oo|

| o . o *o|

| S = .|

| o. .|

| *.E. |

| +o= |

| .oo. |

+-----------------+

If required, confirm the permissions are correct:

~]# ls -la ~/.ssh

total 40 drwxrwxrwx. 2 root root 4096 May 22 13:18 .

dr-xr-x---. 3 root root 4096 May 8 08:34 ..

-rw-------. 1 root root 1743 May 22 13:15 ca_host_key

-rw-r--r--. 1 root root 420 May 22 13:15 ca_host_key.pub

-rw-------. 1 root root 1743 May 22 13:14 ca_user_key

-rw-r--r--. 1 root root 420 May 22 13:14 ca_user_key.pub

-rw-r--r--. 1 root root 854 May 8 05:55 known_hosts

-r--------. 1 root root 1671 May 6 17:13 ssh_host_rsa

-rw-r--r--. 1 root root 1370 May 7 14:30 ssh_host_rsa-cert.pub

-rw-------. 1 root root 420 May 6 17:13 ssh_host_rsa.pub

2. Create the CA server's own host certificate by signing the server's host public key together with an identification string such as the host name, the CA server's fully qualified domain name

(FQDN) but without the trailing ., and a validity period. The command takes the following form: ssh-keygen -s ~/.ssh/ca_host_key -I certificate_ID -h -Z

host_name.example.com -V -start:+end /etc/ssh/ssh_host_rsa.pub

The -Z option restricts this certificate to a specific host within the domain. The -V option is for adding a validity period; this is highly recommend. Where the validity period is intended to be one year, fifty two weeks, consider the need for time to change the certificates and any holiday periods around the time of certificate expiry.

309

Deployment Guide

For example:

~]# ssh-keygen -s ~/.ssh/ca_host_key -I host_name -h -Z host_name.example.com -V -1w:+54w5d /etc/ssh/ssh_host_rsa.pub

Enter passphrase:

Signed host key /root/.ssh/ssh_host_rsa-cert.pub: id "host_name" serial 0 for host_name.example.com valid from 2015-05-15T13:52:29 to

2016-06-08T13:52:29

14.3.4. Distributing and Trusting SSH CA Public Keys

Hosts that are to allow certificate authenticated log in from users must be configured to trust the CA's public key that was used to sign the user certificates, in order to authenticate user's certificates. In this example that is the ca_user_key.pub.

Publish the ca_user_key.pub key and download it to all hosts that are required to allow remote users to log in. Alternately, copy the CA user public key to all the hosts. In a production environment, consider copying the public key to an administrator account first. The secure copy command can be used to copy the public key to remote hosts. The command has the following format: scp ~/.ssh/ca_user_key.pub root@host_name.example.com:/etc/ssh/

Where host_name is the host name of a server the is required to authenticate user's certificates presented during the login process. Ensure you copy the public key not the private key. For example, as

root:

~]# scp ~/.ssh/ca_user_key.pub root@host_name.example.com:/etc/ssh/

The authenticity of host 'host_name.example.com (10.34.74.56)' can't be established.

RSA key fingerprint is fc:23:ad:ae:10:6f:d1:a1:67:ee:b1:d5:37:d4:b0:2f.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'host_name.example.com,10.34.74.56' (RSA) to the list of known hosts.

root@host_name.example.com's password: ca_user_key.pub 100% 420

0.4KB/s 00:00

For remote user authentication, CA keys can be marked as trusted per-user in the

~/.ssh/authorized_keys file using the cert-authority directive or for global use by means of the TrustedUserCAKeys directive in the /etc/ssh/sshd_config file. For remote host authentication, CA keys can be marked as trusted globally in the /etc/ssh/known_hosts file or peruser in the ~/.ssh/ssh_known_hosts file.

Procedure 14.2. Trusting the User Signing Key

For user certificates which have one or more principles listed, and where the setting is to have global effect, edit the /etc/ssh/sshd_config file as follows:

TrustedUserCAKeys /etc/ssh/ca_user_key.pub

Restart sshd to make the changes take effect:

~]# service sshd restart

310

CHAPTER 14. OPENSSH

To avoid being presented with the warning about an unknown host, a user's system must trust the CA's public key that was used to sign the host certificates. In this example that is ca_host_key.pub.

Procedure 14.3. Trusting the Host Signing Key

1. Extract the contents of the public key used to sign the host certificate. For example, on the CA: cat ~/.ssh/ca_host_key.pub

ssh-rsa AAAAB5Wm.== [email protected]

2. To configure client systems to trust servers' signed host certificates, add the contents of the

ca_host_key.pub into the global known_hosts file. This will automatically check a server's host advertised certificate against the CA public key for all users every time a new machine is connected to in the domain *.example.com. Login as root and configure the

/etc/ssh/ssh_known_hosts file, as follows:

~]# vi /etc/ssh/ssh_known_hosts

# A CA key, accepted for any host in *.example.com

@cert-authority *.example.com ssh-rsa AAAAB5Wm.

Where ssh-rsa AAAAB5Wm. is the contents of ca_host_key.pub. The above configures the system to trust the CA servers host public key. This enables global authentication of the certificates presented by hosts to remote users.

14.3.5. Creating SSH Certificates

A certifcate is a signed public key. The user's and host's public keys must be copied to the CA server for signing by the CA server's private key.

IMPORTANT

Copying many keys to the CA to be signed can create confusion if they are not uniquely named. If the default name is always used then the latest key to be copied will overwrite the previously copied key, which may be an acceptable method for one administrator. In the example below the default name is used. In a production environment, consider using easily recognizable names. It is recommend to have a designated directory on the CA server owned by an administrative user for the keys to be copied into. Copying these keys to the root user's /etc/ssh/ directory is not recommend. In the examples below an account named admin with a directory named keys/ will be used.

Create an administrator account, in this example admin, and a directory to receive the user's keys. For example:

~]$ mkdir keys

Set the permissions to allow keys to be copied in:

~]$ chmod o+w keys ls -la keys total 8 drwxrwxrwx. 2 admin admin 4096 May 22 16:17 .

drwx------. 3 admin admin 4096 May 22 16:17 ..

311

Deployment Guide

14.3.5.1. Creating SSH Certificates to Authenticate Hosts

The command to sign a host certificate has the following format: ssh-keygen -s ca_host_key -I host_name -h ssh_host_rsa_key.pub

The host certificate will named ssh_host_rsa_key-cert.pub.

Procedure 14.4. Generating a Host Certificate

To authenticate a host to a user, a public key must be generated on the host, passed to the CA server, signed by the CA, and then passed back to be stored on the host to present to a user attempting to log into the host.

1. Host keys are generated automatically on the system. To list them enter the following command:

~]# ls -l /etc/ssh/ssh_host*

-rw-------. 1 root root 668 May 6 14:38 /etc/ssh/ssh_host_dsa_key

-rw-r--r--. 1 root root 590 May 6 14:38

/etc/ssh/ssh_host_dsa_key.pub

-rw-------. 1 root root 963 May 6 14:38 /etc/ssh/ssh_host_key

-rw-r--r--. 1 root root 627 May 6 14:38 /etc/ssh/ssh_host_key.pub

-rw-------. 1 root root 1679 May 6 14:38 /etc/ssh/ssh_host_rsa_key

-rw-r--r--. 1 root root 382 May 6 14:38

/etc/ssh/ssh_host_rsa_key.pub

2. Copy the chosen public key to the server designated as the CA. For example, from the host:

~]# scp /etc/ssh/ssh_host_rsa_key.pub [email protected]:~/keys/ssh_host_rsa_key.pub

The authenticity of host 'ca-server.example.com (10.34.74.58)' can't be established.

RSA key fingerprint is b0:e5:ea:b8:75:e2:f0:b1:fe:5b:07:39:7f:58:64:d9.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'ca-server.example.com,10.34.74.58' (RSA) to the list of known hosts.

[email protected]'s password: ssh_host_rsa_key.pub 100% 382

0.4KB/s 00:00

Alternately, from the CA:

~]$ scp root@host_name.example.com:/etc/ssh/ssh_host_rsa_key.pub

~/keys/ssh_host_rsa_key.pub

3. On the CA server, sign the host's public key. For example, as root:

~]# ssh-keygen -s ~/.ssh/ca_host_key -I host_name -h -Z host_name.example.com -V -1d:+54w

/home/admin/keys/ssh_host_rsa_key.pub

Enter passphrase:

312

CHAPTER 14. OPENSSH

Signed host key /home/admin/keys/ssh_host_rsa_key-cert.pub: id

"host_name" serial 0 for host_name.example.com valid from 2015-05-

26T12:21:54 to 2016-06-08T12:21:54

Where host_name is the host name of the system requiring the certificate.

4. Copy the certificate to the host. For example, from the CA:

~]# scp /home/admin/keys/ssh_host_rsa_key-cert.pub root@host_name.example.com:/etc/ssh/ root@host_name.example.com's password: ssh_host_rsa_key-cert.pub 100% 1384

1.5KB/s 00:00

5. Configure the host to present the certificate to a user's system when a user initiates the login process. As root, edit the /etc/ssh/sshd_config file as follows:

HostCertificate /etc/ssh/ssh_host_rsa_key-cert.pub

6. Restart sshd to make the changes take effect:

~]# service sshd restart

7. On user's systems. remove keys belonging to hosts from the ~/.ssh/known_hosts file if the user has previously logged into the host configured above. When a user logs into the host they should no longer be presented with the warning about the hosts authenticity.

To test the host certificate, on a client system, ensure the client has set up the global

/etc/ssh/known_hosts file, as described in Procedure 14.3, “Trusting the Host Signing Key” , and that the server's public key is not in the ~/.ssh/known_hosts file. Then attempt to log into the server over SSH as a remote user. You should not see a warning about the authenticity of the host. If required, add the -v option to the SSH command to see logging information.

14.3.5.2. Creating SSH Certificates for Authenticating Users

To sign a user's certificate, use a command in the following format: ssh-keygen -s ca_user_key -I user_name -Z user_name -V -start:+end id_rsa.pub

The resulting certificate will be named id_rsa-cert.pub.

The default behavior of OpenSSH is that a user is allowed to log in as a remote user if one of the principals specified in the certificate matches the remote user's name. This can be adjusted in the following ways:

Add more user's names to the certificate during the signing process using the -Z option:

-Z "name1[,name2,...]"

On the user's system, add the public key of the CA in the ~/.ssh/authorized_keys file using the cert-authority directive and list the principals names as follows:

~]# vi ~/.ssh/authorized_keys

313

Deployment Guide

# A CA key, accepted for any host in *.example.com

@cert-authority principals="name1,name2" *.example.com ssh-rsa

AAAAB5Wm.

On the server, create an AuthorizedPrincipalsFile file, either per user or glabally, and add the principles' names to the file for those users allowed to log in. Then in the

/etc/ssh/sshd_config file, specify the file using the AuthorizedPrincipalsFile directive.

Procedure 14.5. Generating a User Certificate

To authenticate a user to a remote host, a public key must be generated by the user, passed to the CA server, signed by the CA, and then passed back to be stored by the user for use when logging in to a host.

1. On client systems, login as the user who requires the certificate. Check for available keys as follows:

~]$ ls -l ~/.ssh/

If no suitable public key exists, generate one and set the directory permissions if the directory is not the default directory. For example, enter the following command:

~]$ ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/home/user1/.ssh/id_rsa):

Created directory '/home/user1/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/user1/.ssh/id_rsa.

Your public key has been saved in /home/user1/.ssh/id_rsa.pub.

The key fingerprint is: b1:f8:26:a7:46:87:c3:60:54:a3:6d:85:0d:60:fe:ce [email protected]

The key's randomart image is:

+--[ RSA 2048]----+

| oo++. |

| o.o.o. |

| .o o . |

| oo . o |

| . oo.S |

| o=.. |

| .Eo+ |

| .= |

| .. |

+-----------------+

By default the directory permissions for a user's keys are drwx------., or octal 0700. If required, confirm the permissions are correct:

~]$ ls -la ~/.ssh

total 16 drwx------. 2 user1 user1 4096 May 7 12:37 .

314

CHAPTER 14. OPENSSH drwx------. 3 user1 user1 4096 May 7 12:37 ..

-rw-------. 1 user1 user1 1679 May 7 12:37 id_rsa

-rw-r--r--. 1 user1 user1 421 May 7 12:37 id_rsa.pub

See

Section 14.2.4, “Using Key-Based Authentication”

for more examples of key generation and for instructions on setting the correct directory permissions.

2. The chosen public key must be copied to the server designated as the CA, in order to be signed.

The secure copy command can be used to do this, the command has the following format: scp ~/.ssh/id_protocol.pub admin@ca_server.example.com:~/keys/

Where protocol is the part of the file name indicating the protocol used to generate the key, for example rsa, admin is an account on the CA server, and /keys/ is a directory setup to receive the keys to be signed.

Copy the chosen public key to the server designated as the CA. For example:

~]$ scp ~/.ssh/id_rsa.pub [email protected]:~/keys/ [email protected]'s password: id_rsa.pub 100% 421 0.4KB/s

00:00

If you have configured the client system to trust the host signing key as described in

Procedure 14.3, “Trusting the Host Signing Key” then you should not see a warning about the authenticity of the remote host.

3. On the CA server, sign the user's public key. For example, as root:

~]# ssh-keygen -s ~/.ssh/ca_user_key -I user1 -Z user1 -V -1d:+54w

/home/admin/keys/id_rsa.pub

Enter passphrase:

Signed user key /home/admin/keys/id_rsa-cert.pub: id "user1" serial

0 for host_name.example.com valid from 2015-05-21T16:43:17 to 2016-

06-03T16:43:17

4. Copy the resulting certificate to the user's ~/.ssh/ directory on their system. For example:

~]# scp /home/admin/keys/id_rsa-cert.pub user1@host_name.example.com:~/.ssh/ user1@host_name.example.com's password: id_rsa-cert.pub 100% 1498 1.5KB/s

00:00

5. If using the standard file names and location then no further configuration is required as the SSH daemon will search for user certificates ending in -cert.pub and use them automatically if it finds them. Note that the default location and file names for for SSH version 2 keys are:

~/.ssh/id_dsa, ~/.ssh/id_ecdsa and ~/.ssh/id_rsa as explained in the

ssh_config(5) manual page. If you use these locations and naming conventions then there is no need for editing the configuration files to enable sshd to present the certificate. They will be used automatically when logging in to a remote system. In this is the case then skip to step 6.

If required to use a non-default directory or file naming convention, then as root, add the following line to the /etc/ssh/ssh_config or ~/.ssh/config files:

315

Deployment Guide

IdentityFile ~/path/key_file

Note that this must be the private key name, do not had .pub or -cert.pub. Ensure the file permission are correct. For example:

~]$ ls -la ~/.ssh/config

-rw-rw-r--. 1 user1 user1 36 May 27 21:49 /home/user1/.ssh/config chmod 700 ~/.ssh/config

~]$ ls -la ~/.ssh/config

-rwx------. 1 user1 user1 36 May 27 21:49 /home/user1/.ssh/config

This will enable the user of this system to be authenticated by a user certificate when logging into a remote system configured to trust the CA user certificate signing key.

6. To test the user certificate, attempt to log into a server over SSH from the user's account. You should do this as the user listed as a principle in the certificate, if any are specified. You should not be prompted for a password. If required, add the -v option to the SSH command to see logging information.

14.3.6. Signing an SSH Certificate Using a PKCS#11 Token

It is possible to sign a host key using a CA key stored in a PKCS#11 token by providing the token library using the -D and identifying the CA key by providing its public half as an argument to the -s option: ssh-keygen -s ca_host_key.pub -D libpkcs11.so -I certificate_ID host_key.pub

In all cases, certificate_ID is a “key identifier” that is logged by the server when the certificate is used for authentication.

Certificates may be configured to be valid only for a set of users or host names, the principals. By default, generated certificates are valid for all users or hosts. To generate a certificate for a specified set of principals, use a comma separated list with the -Z option as follows: ssh-keygen -s ca_user_key.pub -D libpkcs11.so -I certificate_ID -Z

user1,user2 id_rsa.pub

and for hosts: ssh-keygen -s ca_host_key.pub -D libpkcs11.so -I certificate_ID -h -Z host.domain ssh_host_rsa_key.pub

Additional limitations on the validity and use of user certificates may be specified through certificate options. A certificate option may disable features of the SSH session, may be valid only when presented from particular source addresses or may force the use of a specific command. For a list of valid certificate options, see the ssh-keygen(1) manual page for the -O option.

Certificates may be defined to be valid for a specific lifetime. The -V option allows specifying a certificates start and end times. For example: ssh-keygen -s ca_user_key -I certificate_ID id_rsa.pub -V "-1w:+54w5d"

316

CHAPTER 14. OPENSSH

A certificate that is presented at a time outside this range will not be considered valid. By default, certificates are valid indefinitely starting from UNIX Epoch.

14.3.7. Viewing an SSH CA Certificate

To view a certificate, use the -L to list the contents. For example, for a user's certificate:

~]$ ssh-keygen -L -f ~/.ssh/id_rsa-cert.pub

/home/user1/.ssh/id_rsa-cert.pub:

Type: [email protected] user certificate

Public key: RSA-CERT

3c:9d:42:ed:65:b6:0f:18:bf:52:77:c6:02:0e:e5:86

Signing CA: RSA b1:8e:0b:ce:fe:1b:67:59:f1:74:cd:32:af:5f:c6:e8

Key ID: "user1"

Serial: 0

Valid: from 2015-05-27T00:09:16 to 2016-06-09T00:09:16

Principals:

user1

Critical Options: (none)

Extensions:

permit-X11-forwarding

permit-agent-forwarding

permit-port-forwarding

permit-pty

permit-user-rc

To vew a host certificate:

~]# ssh-keygen -L -f /etc/ssh/ssh_host_rsa_key-cert.pub

/etc/ssh/ssh_host_rsa_key-cert.pub:

Type: [email protected] host certificate

Public key: RSA-CERT

1d:71:61:50:05:9b:ec:64:34:27:a5:cc:67:24:03:23

Signing CA: RSA e4:d5:d1:4f:6b:fd:a2:e3:4e:5a:73:52:91:0b:b7:7a

Key ID: "host_name"

Serial: 0

Valid: from 2015-05-26T17:19:01 to 2016-06-08T17:19:01

Principals:

host_name.example.com

Critical Options: (none)

Extensions: (none)

14.3.8. Revoking an SSH CA Certificate

If a certificate is stolen, it should be revoked. Although OpenSSH does not provide a mechanism to distribute the revocation list it is still easier to create the revocation list and distribute it by other means then to change the CA keys and all host and user certificates previously created and distributed.

Keys can be revoked by adding them to the revoked_keys file and specifying the file name in the

sshd_config file as follows:

RevokedKeys /etc/ssh/revoked_keys

Note that if this file is not readable, then public key authentication will be refused for all users.

317

Deployment Guide

To test if a key has been revoked, query the revocation list for the presence of the key. Use a command as follows: ssh-keygen -Qf /etc/ssh/revoked_keys ~/.ssh/id_rsa.pub

A user can revoke a CA certificate by changing the cert-authority directive to revoke in the

known_hosts file.

14.4. OPENSSH CLIENTS

To connect to an OpenSSH server from a client machine, you must have the openssh-clients and

openssh packages installed (see Section 8.2.4, “Installing Packages” for more information on how to

install new packages in Red Hat Enterprise Linux).

14.4.1. Using the ssh Utility

The ssh utility allows you to log in to a remote machine and execute commands there. It is a secure replacement for the rlogin, rsh, and telnet programs.

Similarly to the telnet command, log in to a remote machine by using the following command:

ssh hostname

For example, to log in to a remote machine named penguin.example.com, type the following at a shell prompt:

~]$ ssh penguin.example.com

This will log you in with the same user name you are using on the local machine. If you want to specify a different user name, use a command in the following form:

ssh username@hostname

For example, to log in to penguin.example.com as john, type:

~]$ ssh [email protected]

The first time you initiate a connection, you will be presented with a message similar to this:

The authenticity of host 'penguin.example.com' can't be established.

RSA key fingerprint is 94:68:3a:3a:bc:f3:9a:9b:01:5d:b3:07:38:e2:11:0c.

Are you sure you want to continue connecting (yes/no)?

Type yes to confirm. You will see a notice that the server has been added to the list of known hosts, and a prompt asking for your password:

Warning: Permanently added 'penguin.example.com' (RSA) to the list of known hosts.

[email protected]'s password:

318

CHAPTER 14. OPENSSH

IMPORTANT

Update the host key of an SSH server if the key changes. The client notifies the user that the connection cannot proceed until the server's host key is deleted from the

~/.ssh/known_hosts file. Contact the system administrator of the SSH server to verify the server is not compromised, then remove the line with the name of the remote machine at the beginning.

After entering the password, you will be provided with a shell prompt for the remote machine.

Alternatively, the ssh program can be used to execute a command on the remote machine without logging in to a shell prompt:

ssh [username@]hostname command

For example, the /etc/redhat-release file provides information about the Red Hat Enterprise Linux version. To view the contents of this file on penguin.example.com, type:

~]$ ssh [email protected] cat /etc/redhat-release [email protected]'s password:

Red Hat Enterprise Linux Server release 6.2 (Santiago)

After you enter the correct password, the user name will be displayed, and you will return to your local shell prompt.

14.4.2. Using the

scp

Utility

scp can be used to transfer files between machines over a secure, encrypted connection. In its design, it is very similar to rcp.

To transfer a local file to a remote system, use a command in the following form: scp localfile username@hostname:remotefile

For example, if you want to transfer taglist.vim to a remote machine named

penguin.example.com, type the following at a shell prompt:

~]$ scp taglist.vim [email protected]:.vim/plugin/taglist.vim

[email protected]'s password: taglist.vim 100% 144KB 144.5KB/s

00:00

Multiple files can be specified at once. To transfer the contents of .vim/plugin/ to the same directory on the remote machine penguin.example.com, type the following command:

~]$ scp .vim/plugin/* [email protected]:.vim/plugin/ [email protected]'s password: closetag.vim 100% 13KB 12.6KB/s

00:00 snippetsEmu.vim 100% 33KB 33.1KB/s

00:00 taglist.vim 100% 144KB 144.5KB/s

00:00

319

Deployment Guide

To transfer a remote file to the local system, use the following syntax: scp username@hostname:remotefile localfile

For instance, to download the .vimrc configuration file from the remote machine, type:

~]$ scp [email protected]:.vimrc .vimrc

[email protected]'s password:

.vimrc 100% 2233 2.2KB/s

00:00

14.4.3. Using the

sftp

Utility

The sftp utility can be used to open a secure, interactive FTP session. In its design, it is similar to ftp except that it uses a secure, encrypted connection.

To connect to a remote system, use a command in the following form: sftp username@hostname

For example, to log in to a remote machine named penguin.example.com with john as a user name, type:

~]$ sftp [email protected]

[email protected]'s password:

Connected to penguin.example.com.

sftp>

After you enter the correct password, you will be presented with a prompt. The sftp utility accepts a set

of commands similar to those used by ftp (see Table 14.3, “A selection of available sftp commands”

).

Table 14.3. A selection of available sftp commands

Command Description ls [directory] List the content of a remote directory. If none is supplied, a current working directory is used by default.

cd directory mkdir directory rmdir path put localfile [remotefile] get remotefile [localfile]

Change the remote working directory to directory.

Create a remote directory.

Remove a remote directory.

Transfer localfile to a remote machine.

Transfer remotefile from a remote machine.

For a complete list of available commands, see the sftp(1) manual page.

320

CHAPTER 14. OPENSSH

14.5. MORE THAN A SECURE SHELL

A secure command-line interface is just the beginning of the many ways SSH can be used. Given the proper amount of bandwidth, X11 sessions can be directed over an SSH channel. Or, by using TCP/IP forwarding, previously insecure port connections between systems can be mapped to specific SSH channels.

14.5.1. X11 Forwarding

To open an X11 session over an SSH connection, use a command in the following form: ssh -Y username@hostname

For example, to log in to a remote machine named penguin.example.com with john as a user name, type:

~]$ ssh -Y [email protected]

[email protected]'s password:

When an X program is run from the secure shell prompt, the SSH client and server create a new secure channel, and the X program data is sent over that channel to the client machine transparently.

X11 forwarding can be very useful. For example, X11 forwarding can be used to create a secure, interactive session of the Printer Configuration utility. To do this, connect to the server using ssh and type:

~]$ system-config-printer &

The Printer Configuration Tool will appear, allowing the remote user to safely configure printing on the remote system.

Please note that X11 Forwarding does not distinguish between trusted and untrusted forwarding.

14.5.2. Port Forwarding

SSH can secure otherwise insecure TCP/IP protocols via port forwarding. When using this technique, the SSH server becomes an encrypted conduit to the SSH client.

Port forwarding works by mapping a local port on the client to a remote port on the server. SSH can map any port from the server to any port on the client. Port numbers do not need to match for this technique to work.

NOTE

If you want to use reserved port numbers, please note that setting up port forwarding to listen on ports below 1024 requires root level access.

To create a TCP/IP port forwarding channel which listens for connections on the localhost, use a command in the following form: ssh -L local-port:remote-hostname:remote-port username@hostname

For example, to check email on a server called mail.example.com using POP3 through an encrypted

321

Deployment Guide connection, use the following command:

~]$ ssh -L 1100:mail.example.com:110 mail.example.com

Once the port forwarding channel is in place between the client machine and the mail server, direct a

POP3 mail client to use port 1100 on the localhost to check for new email. Any requests sent to port

1100 on the client system will be directed securely to the mail.example.com server.

If mail.example.com is not running an SSH server, but another machine on the same network is,

SSH can still be used to secure part of the connection. However, a slightly different command is necessary:

~]$ ssh -L 1100:mail.example.com:110 other.example.com

In this example, POP3 requests from port 1100 on the client machine are forwarded through the SSH connection on port 22 to the SSH server, other.example.com. Then, other.example.com connects to port 110 on mail.example.com to check for new email. Note that when using this technique, only the connection between the client system and other.example.com SSH server is secure.

Port forwarding can also be used to get information securely through network firewalls. If the firewall is configured to allow SSH traffic via its standard port (that is, port 22) but blocks access to other ports, a connection between two hosts using the blocked ports is still possible by redirecting their communication over an established SSH connection.

IMPORTANT

The connection is only as secure as the client system because forwarding connections in this way allows any user on the client system to connect to that service. If the client system becomes compromised, an attacker can also access the forwarded services.

If preferred, disable this functionality on the server by specifying a No parameter for the

AllowTcpForwarding line in the /etc/ssh/sshd_config file and restarting the

sshd service.

14.6. ADDITIONAL RESOURCES

For more information about OpenSSH and OpenSSL, see the resources listed below.

14.6.1. Installed Documentation

sshd(8) — a manual page for the sshd daemon.

ssh(1) — a manual page for the ssh client.

scp(1) — a manual page for the scp utility.

sftp(1) — a manual page for the sftp utility.

ssh-keygen(1) — a manual page for the ssh-keygen utility.

ssh_config(5) — a manual page with a full description of available SSH client configuration options.

322

CHAPTER 14. OPENSSH

sshd_config(5) — a manual page with a full description of available SSH daemon configuration options.

/usr/share/doc/openssh-version/ Contains detailed information on the protocols supported by OpenSSH.

14.6.2. Useful Websites

http://www.openssh.com/

The OpenSSH home page containing further documentation, frequently asked questions, links to the mailing lists, bug reports, and other useful resources.

http://www.openssl.org/

The OpenSSL home page containing further documentation, frequently asked questions, links to the mailing lists, and other useful resources.

[4] A multiplexed connection consists of several signals being sent over a shared, common medium. With SSH,

different channels are sent over a common secure connection.

323

Deployment Guide

CHAPTER 15. TIGERVNC

TigerVNC (Tiger Virtual Network Computing) is a system for graphical desktop sharing which allows you to remotely control other computers.

TigerVNC works on the client-server principle: a server shares its output (vncserver) and a client

(vncviewer) connects to the server.

15.1. VNC SERVER

vncserver is a utility which starts a VNC (Virtual Network Computing) desktop. It runs Xvnc with appropriate options and starts a window manager on the VNC desktop. vncserver allows users to run separate sessions in parallel on a machine which can then be accessed by any number of clients from anywhere.

15.1.1. Installing VNC Server

To install the TigerVNC server, run the following command as root:

~]# yum install tigervnc-server

15.1.2. Configuring VNC Server

The VNC server can be configured to start a display for one or more users, provided that accounts for the users exist on the system, with optional parameters such as for display settings, network address and port, and security settings.

Procedure 15.1. Configuring a VNC Display for a Single User

Specify the user name and the display number by editing /etc/sysconfig/vncservers and adding a line in the following format:

VNCSERVERS="display_number:user"

The VNC user names must correspond to users of the system.

Example 15.1. Setting the Display Number for a User

For example, to configure display number 3 for user joe, open the configuration file for editing:

~]# vi /etc/sysconfig/vncservers

Add a line as follows:

VNCSERVERS="3:joe"

Save and close the file.

In the example above, display number 3 and the user joe are set. Do not use 0 as the display number since the main X display of a workstation is usually indicated as 0.

324

CHAPTER 15. TIGERVNC

Procedure 15.2. Configuring a VNC Display for Multiple Users

To set a VNC display for more than one user, specify the user names and display numbers by editing /etc/sysconfig/vncservers and adding a line in the following format:

VNCSERVERS="display_number:user display_number:user"

The VNC user names must correspond to users of the system.

Example 15.2. Setting the Display Numbers for Two Users

For example, to configure two users, open the configuration file for editing:

~]# vi /etc/sysconfig/vncservers

Add a line as follows:

VNCSERVERS="3:joe 4:jill"

Procedure 15.3. Configuring VNC Display Arguments

Specify additional settings in the /etc/sysconfig/vncservers file by adding arguments using the VNCSERVERARGS directive as follows:

VNCSERVERS="display_number:user display_number:user"

VNCSERVERARGS[display_number]="arguments"

Table 15.1. Frequently Used VNC Server Parameters

VNCSERVERARGS Definition

-geometry specifies the size of the VNC desktop to be created, default is 1024x768.

-nolisten tcp

-localhost prevents connections to your VNC server through TCP (Transmission

Control Protocol) prevents remote VNC clients from connecting except when doing so through a secure tunnel

See the Xvnc(1) man page for further options.

Example 15.3. Setting vncserver Arguments

Following on from the example above, to add arguments for two users, edit the

/etc/sysconfig/vncservers file as follows:

VNCSERVERS="3:joe 4:jill"

VNCSERVERARGS[1]="-geometry 800x600 -nolisten tcp -localhost"

VNCSERVERARGS[2]="-geometry 1920×1080 -nolisten tcp -localhost"

325

Deployment Guide

Procedure 15.4. Configuring VNC User Passwords

To set the VNC password for all users defined in the /etc/sysconfig/vncservers file, enter the following command as root:

~]# vncpasswd

Password:

Verify:

To set the VNC password individually for a user:

~]# su - user

~]$ vncpasswd

Password:

Verify:

IMPORTANT

The stored password is not encrypted; anyone who has access to the password file can find the plain-text password.

15.1.3. Starting VNC Server

In order to start a VNC desktop, the vncserver utility is used. It is a Perl script which simplifies the process of starting an Xvnc server. It runs Xvnc with appropriate options and starts a window manager on the VNC desktop. There are three ways to start vncserver:

You can allow vncserver to choose the first available display number, start Xvnc with that display number, and start the default window manager in the Xvnc session. All these steps are provided by one command:

~]$ vncserver

You will be prompted to enter a VNC password the first time the command is run if no VNC password has been set.

Alternately, you can specify a specific display number: vncserver :display_number

vncserver attempts to start Xvnc with that display number and exits if the display number is not available.

For example:

~]$ vncserver :20

Alternately, to start VNC server with displays for the users configured in the

/etc/sysconfig/vncservers configuration file, as root enter:

~]# service vncserver start

326

CHAPTER 15. TIGERVNC

You can enable the vncserver service automatically at system start. Every time you log in,

vncserver is automatically started. As root, run

~]# chkconfig vncserver on

15.1.4. Terminating a VNC Session

Similarly to enabling the vncserver service, you can disable the automatic start of the service at system start:

~]# chkconfig vncserver off

Or, when your system is running, you can stop the service by issuing the following command as root:

~]# service vncserver stop

To terminate a specific display, terminate vncserver using the -kill option along with the display number.

Example 15.4. Terminating a Specific Display

For example, to terminate display number 2, run:

~]# vncserver -kill :2

Example 15.5. Terminating an Xvnc process

If it is not possible to terminate the VNC service or display, terminate the Xvnc session using the process ID (PID). To view the processes, enter:

~]$ service vncserver status

Xvnc (pid 4290 4189) is running...

To terminate process 4290, enter as root:

~]# kill -s 15 4290

15.2. SHARING AN EXISTING DESKTOP

By default a logged in user has a desktop provided by X Server on display 0. A user can share their desktop using the TigerVNC server x0vncserver.

Procedure 15.5. Sharing an X Desktop

To share the desktop of a logged in user, using the x0vncserver, proceed as follows:

1. Enter the following command as root

~]# yum install tigervnc-server

327

Deployment Guide

2. Set the VNC password for the user:

~]$ vncpasswd

Password:

Verify:

3. Enter the following command as that user:

~]$ x0vncserver -PasswordFile=.vnc/passwd -AlwaysShared=1

Provided the firewall is configured to allow connections to port 5900, the remote viewer can now connect

to display 0, and view the logged in users desktop. See Section 15.3.2.1, “Configuring the Firewall for

VNC” for information on how to configure the firewall.

15.3. USING A VNC VIEWER

A VNC viewer is a program which shows the graphical user interface created by the VNC server and can control the VNC server remotely. The desktop that is shared is not by default the same as the desktop that is displayed to a user directly logged into the system. The VNC server creates a unique desktop for every display number. Any number of clients can connect to a VNC server.

15.3.1. Installing the VNC Viewer

To install the TigerVNC client, vncviewer, as root, run the following command:

~]# yum install tigervnc

The TigerVNC client has a graphical user interface (GUI) which can be started by entering the command vncviewer. Alternatively, you can operate vncviewer through the command-line interface

(CLI). To view a list of parameters for vncviewer enter vncviewer -h on the command line.

15.3.2. Connecting to a VNC Server

Once the VNC server is configured, you can connect to it from any VNC viewer.

Procedure 15.6. Connecting to a VNC Server Using a GUI

1. Enter the vncviewer command with no arguments, the VNC Viewer: Connection

Details utility appears. It prompts for a VNC server to connect to.

2. If required, to prevent disconnecting any existing VNC connections to the same display, select the option to allow sharing of the desktop as follows: a. Select the Options button.

b. Select the Misc. tab.

c. Select the Shared button.

d. Press OK to return to the main menu.

3. Enter an address and display number to connect to:

328

CHAPTER 15. TIGERVNC

address:display_number

4. Press Connect to connect to the VNC server display.

5. You will be prompted to enter the VNC password. This will be the VNC password for the user corresponding to the display number unless a global default VNC password was set.

A window appears showing the VNC server desktop. Note that this is not the desktop the normal user sees, it is an Xvnc desktop.

Procedure 15.7. Connecting to a VNC Server Using the CLI

1. Enter the viewer command with the address and display number as arguments: vncviewer address:display_number

Where address is an IP address or host name.

2. Authenticate yourself by entering the VNC password. This will be the VNC password for the user corresponding to the display number unless a global default VNC password was set.

3. A window appears showing the VNC server desktop. Note that this is not the desktop the normal user sees, it is the Xvnc desktop.

15.3.2.1. Configuring the Firewall for VNC

When using a non-encrypted connection, the firewall might block your connection. The VNC protocol is remote framebuffer (RFB), which is transported in TCP packets. If required, open a port for the TCP protocol as described below. When using the -via option, traffic is redirected over SSH which is enabled by default.

NOTE

The default port of VNC server is 5900. To reach the port through which a remote desktop will be accessible, sum the default port and the user's assigned display number. For example, for the second display: 2 + 5900 = 5902.

Procedure 15.8. Opening a Port Using lokkit

The lokkit command provides a way to quickly enable a port using the command line.

1. To enable a specific port, for example port 5902 for TCP, issue the following command as root:

~]# lokkit --port=5902:tcp --update

Note that this will restart the firewall as long as it has not been disabled with the --disabled option. Active connections will be terminated and time out on the initiating machine.

2. Verify whether the chosen port is open. As root, enter:

~]# iptables -L -n | grep 'tcp.*59'

ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:5902

329

Deployment Guide

3. If you are unsure of the port numbers in use for VNC, as root, enter:

~]# netstat -tnlp tcp 0 0 0.0.0.0:6003 0.0.0.0:* LISTEN 4290/Xvnc tcp 0 0 0.0.0.0:5900 0.0.0.0:* LISTEN

7013/x0vncserver tcp 0 0 0.0.0.0:5902 0.0.0.0:* LISTEN 4189/Xvnc tcp 0 0 0.0.0.0:5903 0.0.0.0:* LISTEN 4290/Xvnc tcp 0 0 0.0.0.0:6002 0.0.0.0:* LISTEN 4189/Xvnc

Ports starting 59XX are for the VNC RFB protocol. Ports starting 60XX are for the X windows protocol.

To list the ports and the Xvnc session's associated user, as root, enter:

~]# lsof -i -P | grep vnc

Xvnc 4189 jane 0u IPv6 27972 0t0 TCP *:6002

(LISTEN)

Xvnc 4189 jane 1u IPv4 27973 0t0 TCP *:6002

(LISTEN)

Xvnc 4189 jane 6u IPv4 27979 0t0 TCP *:5902

(LISTEN)

Xvnc 4290 joe 0u IPv6 28231 0t0 TCP *:6003

(LISTEN)

Xvnc 4290 joe 1u IPv4 28232 0t0 TCP *:6003

(LISTEN)

Xvnc 4290 joe 6u IPv4 28244 0t0 TCP *:5903

(LISTEN) x0vncserv 7013 joe 4u IPv4 47578 0t0 TCP *:5900

(LISTEN)

Procedure 15.9. Configuring the Firewall Using an Editor

When preparing a configuration file for multiple installations using administration tools, it is useful to edit the firewall configuration file directly. Note that any mistakes in the configuration file could have unexpected consequences, cause an error, and prevent the firewall settings from being applied.

Therefore, check the /etc/sysconfig/system-config-firewall file thoroughly after editing.

1. To check what the firewall is configured to allow, issue the following command as root to view the firewall configuration file:

~]# less /etc/sysconfig/system-config-firewall

# Configuration file for system-config-firewall

--enabled

--service=ssh

In this example taken from a default installation, the firewall is enabled but VNC ports have not been configured to pass through.

2. Open /etc/sysconfig/system-config-firewall for editing as root and add lines in the following format to the firewall configuration file:

--port=port_number:tcp

330

CHAPTER 15. TIGERVNC

For example, to add port 5902 :

~]# vi /etc/sysconfig/system-config-firewall

# Configuration file for system-config-firewall

--enabled

--service=ssh

--port=5902:tcp

3. Note that these changes will not take effect even if the firewall is reloaded or the system rebooted. To apply the settings in /etc/sysconfig/system-config-firewall, issue the following command as root:

~]# lokkit --update

15.3.3. Connecting to VNC Server Using SSH

VNC is a clear text network protocol with no security against possible attacks on the communication. To make the communication secure, you can encrypt your server-client connection by using the -via option. This will create an SSH tunnel between the VNC server and the client.

The format of the command to encrypt a VNC server-client connection is as follows: vncviewer -via user@host:display_number

Example 15.6. Using the -via Option

1. To connect to a VNC server using SSH, enter a command as follows:

$ vncviewer -via [email protected] 127.0.0.1:3

2. When you are prompted to, type the password, and confirm by pressing Enter.

3. A window with a remote desktop appears on your screen.

For more information on using SSH, see Chapter 14, OpenSSH

.

15.4. ADDITIONAL RESOURCES

For more information about TigerVNC, see the resources listed below.

Installed Documentation

vncserver(1) — The manual page for the VNC server utility.

vncviewer(1) — The manual page for the VNC viewer.

vncpasswd(1) — The manual page for the VNC password command.

Xvnc(1) — The manual page for the Xvnc server configuration options.

x0vncserver(1) — The manual page for the TigerVNC server for sharing existing X servers.

331

Deployment Guide

PART VI. SERVERS

This part discusses various topics related to servers such as how to set up a Web server or share files and directories over the network.

332

CHAPTER 16. DHCP SERVERS

CHAPTER 16. DHCP SERVERS

Dynamic Host Configuration Protocol (DHCP) is a network protocol that automatically assigns TCP/IP information to client machines. Each DHCP client connects to the centrally located DHCP server, which returns the network configuration (including the IP address, gateway, and DNS servers) of that client.

16.1. WHY USE DHCP?

DHCP is useful for automatic configuration of client network interfaces. When configuring the client system, you can choose DHCP instead of specifying an IP address, netmask, gateway, or DNS servers.

The client retrieves this information from the DHCP server. DHCP is also useful if you want to change the

IP addresses of a large number of systems. Instead of reconfiguring all the systems, you can just edit one configuration file on the server for the new set of IP addresses. If the DNS servers for an organization changes, the changes happen on the DHCP server, not on the DHCP clients. When you restart the network or reboot the clients, the changes go into effect.

If an organization has a functional DHCP server correctly connected to a network, laptops and other mobile computer users can move these devices from office to office.

16.2. CONFIGURING A DHCPV4 SERVER

The dhcp package contains an Internet Systems Consortium (ISC) DHCP server. First, install the package as the superuser:

~]# yum install dhcp

Installing the dhcp package creates a file, /etc/dhcp/dhcpd.conf, which is merely an empty configuration file:

~]# cat /etc/dhcp/dhcpd.conf

#

# DHCP Server Configuration file.

# see /usr/share/doc/dhcp*/dhcpd.conf.sample

The sample configuration file can be found at /usr/share/doc/dhcp-

<version>/dhcpd.conf.sample. You should use this file to help you configure

/etc/dhcp/dhcpd.conf, which is explained in detail below.

DHCP also uses the file /var/lib/dhcpd/dhcpd.leases to store the client lease database. See

Section 16.2.2, “Lease Database” for more information.

16.2.1. Configuration File

The first step in configuring a DHCP server is to create the configuration file that stores the network information for the clients. Use this file to declare options and global options for client systems.

The configuration file can contain extra tabs or blank lines for easier formatting. Keywords are caseinsensitive and lines beginning with a hash sign (#) are considered comments.

There are two types of statements in the configuration file:

Parameters — State how to perform a task, whether to perform a task, or what network configuration options to send to the client.

333

Deployment Guide

Declarations — Describe the topology of the network, describe the clients, provide addresses for the clients, or apply a group of parameters to a group of declarations.

The parameters that start with the keyword option are referred to as options. These options control

DHCP options; whereas, parameters configure values that are not optional or control how the DHCP server behaves.

Parameters (including options) declared before a section enclosed in curly brackets ({ }) are considered global parameters. Global parameters apply to all the sections below it.

IMPORTANT

If the configuration file is changed, the changes do not take effect until the DHCP daemon is restarted with the command service dhcpd restart.

NOTE

Instead of changing a DHCP configuration file and restarting the service each time, using the omshell command provides an interactive way to connect to, query, and change the configuration of a DHCP server. By using omshell, all changes can be made while the server is running. For more information on omshell, see the omshell man page.

In Example 16.1, “Subnet Declaration”

, the routers, subnet-mask, domain-search, domain-

name-servers, and time-offset options are used for any host statements declared below it.

For every subnet which will be served, and for every subnet to which the DHCP server is connected, there must be one subnet declaration, which tells the DHCP daemon how to recognize that an address is on that subnet. A subnet declaration is required for each subnet even if no addresses will be dynamically allocated to that subnet.

In this example, there are global options for every DHCP client in the subnet and a range declared.

Clients are assigned an IP address within the range.

Example 16.1. Subnet Declaration subnet 192.168.1.0 netmask 255.255.255.0 {

option routers 192.168.1.254;

option subnet-mask 255.255.255.0;

option domain-search "example.com";

option domain-name-servers 192.168.1.1;

option time-offset -18000; # Eastern Standard

Time

range 192.168.1.10 192.168.1.100;

}

To configure a DHCP server that leases a dynamic IP address to a system within a subnet, modify

Example 16.2, “Range Parameter”

with your values. It declares a default lease time, maximum lease time, and network configuration values for the clients. This example assigns IP addresses in the range

192.168.1.10 and 192.168.1.100 to client systems.

Example 16.2. Range Parameter

334

default-lease-time 600; max-lease-time 7200; option subnet-mask 255.255.255.0; option broadcast-address 192.168.1.255; option routers 192.168.1.254; option domain-name-servers 192.168.1.1, 192.168.1.2; option domain-search "example.com"; subnet 192.168.1.0 netmask 255.255.255.0 {

range 192.168.1.10 192.168.1.100;

}

CHAPTER 16. DHCP SERVERS

To assign an IP address to a client based on the MAC address of the network interface card, use the

hardware ethernet parameter within a host declaration. As demonstrated in Example 16.3, “Static

IP Address Using DHCP” , the host apex declaration specifies that the network interface card with the

MAC address 00:A0:78:8E:9E:AA always receives the IP address 192.168.1.4.

Note that you can also use the optional parameter host-name to assign a host name to the client.

Example 16.3. Static IP Address Using DHCP host apex {

option host-name "apex.example.com";

hardware ethernet 00:A0:78:8E:9E:AA;

fixed-address 192.168.1.4;

}

All subnets that share the same physical network should be declared within a shared-network declaration as shown in

Example 16.4, “Shared-network Declaration” . Parameters within the shared-

network, but outside the enclosed subnet declarations, are considered to be global parameters. The name of the shared-network must be a descriptive title for the network, such as using the title 'test-lab' to describe all the subnets in a test lab environment.

Example 16.4. Shared-network Declaration shared-network name {

option domain-search "test.redhat.com";

option domain-name-servers ns1.redhat.com, ns2.redhat.com;

option routers 192.168.0.254;

#more parameters for EXAMPLE shared-network

subnet 192.168.1.0 netmask 255.255.252.0 {

#parameters for subnet

range 192.168.1.1 192.168.1.254;

}

subnet 192.168.2.0 netmask 255.255.252.0 {

#parameters for subnet

range 192.168.2.1 192.168.2.254;

}

}

335

Deployment Guide

As demonstrated in

Example 16.5, “Group Declaration”

, the group declaration is used to apply global parameters to a group of declarations. For example, shared networks, subnets, and hosts can be grouped.

Example 16.5. Group Declaration group {

option routers 192.168.1.254;

option subnet-mask 255.255.255.0;

option domain-search "example.com";

option domain-name-servers 192.168.1.1;

option time-offset -18000; # Eastern Standard Time

host apex {

option host-name "apex.example.com";

hardware ethernet 00:A0:78:8E:9E:AA;

fixed-address 192.168.1.4;

}

host raleigh {

option host-name "raleigh.example.com";

hardware ethernet 00:A1:DD:74:C3:F2;

fixed-address 192.168.1.6;

}

}

NOTE

You can use the provided sample configuration file as a starting point and add custom configuration options to it. To copy this file to the proper location, use the following command as root:

~]# cp /usr/share/doc/dhcp-<version_number>/dhcpd.conf.sample

/etc/dhcp/dhcpd.conf

... where <version_number> is the DHCP version number.

For a complete list of option statements and what they do, see the dhcp-options man page.

16.2.2. Lease Database

On the DHCP server, the file /var/lib/dhcpd/dhcpd.leases stores the DHCP client lease database. Do not change this file. DHCP lease information for each recently assigned IP address is automatically stored in the lease database. The information includes the length of the lease, to whom the

IP address has been assigned, the start and end dates for the lease, and the MAC address of the network interface card that was used to retrieve the lease.

All times in the lease database are in Coordinated Universal Time (UTC), not local time.

The lease database is recreated from time to time so that it is not too large. First, all known leases are saved in a temporary lease database. The dhcpd.leases file is renamed dhcpd.leases~ and the temporary lease database is written to dhcpd.leases.

The DHCP daemon could be killed or the system could crash after the lease database has been

336

CHAPTER 16. DHCP SERVERS renamed to the backup file but before the new file has been written. If this happens, the dhcpd.leases file does not exist, but it is required to start the service. Do not create a new lease file. If you do, all old leases are lost which causes many problems. The correct solution is to rename the dhcpd.leases~ backup file to dhcpd.leases and then start the daemon.

16.2.3. Starting and Stopping the Server

IMPORTANT

When the DHCP server is started for the first time, it fails unless the dhcpd.leases file exists. Use the command touch /var/lib/dhcpd/dhcpd.leases to create the file if it does not exist.

If the same server is also running BIND as a DNS server, this step is not necessary, as starting the named service automatically checks for a dhcpd.leases file.

To start the DHCP service, use the command /sbin/service dhcpd start. To stop the DHCP server, use the command /sbin/service dhcpd stop.

By default, the DHCP service does not start at boot time. For information on how to configure the daemon to start automatically at boot time, see

Chapter 12, Services and Daemons

.

If more than one network interface is attached to the system, but the DHCP server should only be started on one of the interfaces, configure the DHCP server to start only on that device. In

/etc/sysconfig/dhcpd, add the name of the interface to the list of DHCPDARGS:

# Command line options here

DHCPDARGS=eth0

This is useful for a firewall machine with two network cards. One network card can be configured as a

DHCP client to retrieve an IP address to the Internet. The other network card can be used as a DHCP server for the internal network behind the firewall. Specifying only the network card connected to the internal network makes the system more secure because users can not connect to the daemon via the

Internet.

Other command-line options that can be specified in /etc/sysconfig/dhcpd include:

-p <portnum> — Specifies the UDP port number on which dhcpd should listen. The default is port 67. The DHCP server transmits responses to the DHCP clients at a port number one greater than the UDP port specified. For example, if the default port 67 is used, the server listens on port

67 for requests and responds to the client on port 68. If a port is specified here and the DHCP relay agent is used, the same port on which the DHCP relay agent should listen must be specified. See

Section 16.2.4, “DHCP Relay Agent” for details.

-f — Runs the daemon as a foreground process. This is mostly used for debugging.

-d — Logs the DHCP server daemon to the standard error descriptor. This is mostly used for debugging. If this is not specified, the log is written to /var/log/messages.

-cf <filename> — Specifies the location of the configuration file. The default location is

/etc/dhcp/dhcpd.conf.

-lf <filename> — Specifies the location of the lease database file. If a lease database file already exists, it is very important that the same file be used every time the DHCP server is

337

Deployment Guide started. It is strongly recommended that this option only be used for debugging purposes on nonproduction machines. The default location is /var/lib/dhcpd/dhcpd.leases.

-q — Do not print the entire copyright message when starting the daemon.

16.2.4. DHCP Relay Agent

The DHCP Relay Agent (dhcrelay) allows for the relay of DHCP and BOOTP requests from a subnet with no DHCP server on it to one or more DHCP servers on other subnets.

When a DHCP client requests information, the DHCP Relay Agent forwards the request to the list of

DHCP servers specified when the DHCP Relay Agent is started. When a DHCP server returns a reply, the reply is broadcast or unicast on the network that sent the original request.

The DHCP Relay Agent listens for DHCP requests on all interfaces unless the interfaces are specified in

/etc/sysconfig/dhcrelay with the INTERFACES directive.

To start the DHCP Relay Agent, use the command service dhcrelay start.

16.3. CONFIGURING A DHCPV4 CLIENT

To configure a DHCP client manually, modify the /etc/sysconfig/network file to enable networking and the configuration file for each network device in the /etc/sysconfig/network-scripts directory. In this directory, each device should have a configuration file named ifcfg-eth0, where

eth0 is the network device name.

Make sure that the /etc/sysconfig/network-scripts/ifcfg-eth0 file contains the following lines:

DEVICE=eth0

BOOTPROTO=dhcp

ONBOOT=yes

To use DHCP, set a configuration file for each device.

Other options for the network script include:

DHCP_HOSTNAME — Only use this option if the DHCP server requires the client to specify a host name before receiving an IP address.

PEERDNS=<answer>, where <answer> is one of the following:

yes — Modify /etc/resolv.conf with information from the server. This is the default.

no — Do not modify /etc/resolv.conf.

If you prefer using a graphical interface, see

Chapter 10, NetworkManager

for instructions on using

NetworkManager to configure a network interface to use DHCP.

338

CHAPTER 16. DHCP SERVERS

NOTE

For advanced configurations of client DHCP options such as protocol timing, lease requirements and requests, dynamic DNS support, aliases, as well as a wide variety of values to override, prepend, or append to client-side configurations, see the dhclient and dhclient.conf man pages.

16.4. CONFIGURING A MULTIHOMED DHCP SERVER

A multihomed DHCP server serves multiple networks, that is, multiple subnets. The examples in these sections detail how to configure a DHCP server to serve multiple networks, select which network interfaces to listen on, and how to define network settings for systems that move networks.

Before making any changes, back up the existing /etc/sysconfig/dhcpd and

/etc/dhcp/dhcpd.conf files.

The DHCP daemon listens on all network interfaces unless otherwise specified. Use the

/etc/sysconfig/dhcpd file to specify which network interfaces the DHCP daemon listens on. The following /etc/sysconfig/dhcpd example specifies that the DHCP daemon listens on the eth0 and

eth1 interfaces:

DHCPDARGS="eth0 eth1";

If a system has three network interfaces cards — eth0, eth1, and eth2 — and it is only desired that the

DHCP daemon listens on the eth0 card, then only specify eth0 in /etc/sysconfig/dhcpd:

DHCPDARGS="eth0";

The following is a basic /etc/dhcp/dhcpd.conf file, for a server that has two network interfaces,

eth0 in a 10.0.0.0/24 network, and eth1 in a 172.16.0.0/24 network. Multiple subnet declarations allow you to define different settings for multiple networks: default-lease-time 600; max-lease-time 7200; subnet 10.0.0.0 netmask 255.255.255.0 {

option subnet-mask 255.255.255.0;

option routers 10.0.0.1;

range 10.0.0.5 10.0.0.15;

} subnet 172.16.0.0 netmask 255.255.255.0 {

option subnet-mask 255.255.255.0;

option routers 172.16.0.1;

range 172.16.0.5 172.16.0.15;

} subnet 10.0.0.0 netmask 255.255.255.0;

A subnet declaration is required for every network your DHCP server is serving. Multiple subnets require multiple subnet declarations. If the DHCP server does not have a network interface in a range of a subnet declaration, the DHCP server does not serve that network.

If there is only one subnet declaration, and no network interfaces are in the range of that subnet, the

DHCP daemon fails to start, and an error such as the following is logged to /var/log/messages:

339

Deployment Guide dhcpd: No subnet declaration for eth0 (0.0.0.0).

dhcpd: ** Ignoring requests on eth0. If this is not what dhcpd: you want, please write a subnet declaration dhcpd: in your dhcpd.conf file for the network segment dhcpd: to which interface eth1 is attached. ** dhcpd: dhcpd: dhcpd: Not configured to listen on any interfaces!

option subnet-mask 255.255.255.0;

The option subnet-mask option defines a subnet mask, and overrides the netmask value in the

subnet declaration. In simple cases, the subnet and netmask values are the same.

option routers 10.0.0.1;

The option routers option defines the default gateway for the subnet. This is required for systems to reach internal networks on a different subnet, as well as external networks.

range 10.0.0.5 10.0.0.15;

The range option specifies the pool of available IP addresses. Systems are assigned an address from the range of specified IP addresses.

For further information, see the dhcpd.conf(5) man page.

16.4.1. Host Configuration

Before making any changes, back up the existing /etc/sysconfig/dhcpd and

/etc/dhcp/dhcpd.conf files.

Configuring a Single System for Multiple Networks

The following /etc/dhcp/dhcpd.conf example creates two subnets, and configures an IP address for the same system, depending on which network it connects to: default-lease-time 600; max-lease-time 7200; subnet 10.0.0.0 netmask 255.255.255.0 {

option subnet-mask 255.255.255.0;

option routers 10.0.0.1;

range 10.0.0.5 10.0.0.15;

} subnet 172.16.0.0 netmask 255.255.255.0 {

option subnet-mask 255.255.255.0;

option routers 172.16.0.1;

range 172.16.0.5 172.16.0.15;

} host example0 {

hardware ethernet 00:1A:6B:6A:2E:0B;

fixed-address 10.0.0.20;

} host example1 {

hardware ethernet 00:1A:6B:6A:2E:0B;

fixed-address 172.16.0.20;

}

340

CHAPTER 16. DHCP SERVERS host example0

The host declaration defines specific parameters for a single system, such as an IP address. To configure specific parameters for multiple hosts, use multiple host declarations.

Most DHCP clients ignore the name in host declarations, and as such, this name can be anything, as long as it is unique to other host declarations. To configure the same system for multiple networks, use a different name for each host declaration, otherwise the DHCP daemon fails to start.

Systems are identified by the hardware ethernet option, not the name in the host declaration.

hardware ethernet 00:1A:6B:6A:2E:0B;

The hardware ethernet option identifies the system. To find this address, run the ip link command.

fixed-address 10.0.0.20;

The fixed-address option assigns a valid IP address to the system specified by the hardware

ethernet option. This address must be outside the IP address pool specified with the range option.

If option statements do not end with a semicolon, the DHCP daemon fails to start, and an error such as the following is logged to /var/log/messages:

/etc/dhcp/dhcpd.conf line 20: semicolon expected.

dhcpd: } dhcpd: ^ dhcpd: /etc/dhcp/dhcpd.conf line 38: unexpected end of file dhcpd: dhcpd: ^ dhcpd: Configuration file errors encountered -- exiting

Configuring Systems with Multiple Network Interfaces

The following host declarations configure a single system, which has multiple network interfaces, so that each interface receives the same IP address. This configuration will not work if both network interfaces are connected to the same network at the same time: host interface0 {

hardware ethernet 00:1a:6b:6a:2e:0b;

fixed-address 10.0.0.18;

} host interface1 {

hardware ethernet 00:1A:6B:6A:27:3A;

fixed-address 10.0.0.18;

}

For this example, interface0 is the first network interface, and interface1 is the second interface.

The different hardware ethernet options identify each interface.

If such a system connects to another network, add more host declarations, remembering to: assign a valid fixed-address for the network the host is connecting to.

make the name in the host declaration unique.

341

Deployment Guide

When a name given in a host declaration is not unique, the DHCP daemon fails to start, and an error such as the following is logged to /var/log/messages: dhcpd: /etc/dhcp/dhcpd.conf line 31: host interface0: already exists dhcpd: } dhcpd: ^ dhcpd: Configuration file errors encountered -- exiting

This error was caused by having multiple host interface0 declarations defined in

/etc/dhcp/dhcpd.conf.

16.5. DHCP FOR IPV6 (DHCPV6)

The ISC DHCP includes support for IPv6 (DHCPv6) since the 4.x release with a DHCPv6 server, client and relay agent functionality. The server, client and relay agents support both IPv4 and IPv6. However, the client and the server can only manage one protocol at a time — for dual support they must be started separately for IPv4 and IPv6.

16.5.1. Configuring a DHCPv6 Server

The DHCPv6 server configuration file is installed together with the dhcp package and it can be found at

/etc/dhcp/dhcpd6.conf.

The sample server configuration file can be found at /usr/share/doc/dhcp-

<version>/dhcpd6.conf.sample, in Red Hat Enterprise Linux 6 at /usr/share/doc/dhcp-

4.1.1/dhcpd6.conf.sample.

A simple DHCPv6 server configuration file can look like this: subnet6 2001:db8:0:1::/64 {

range6 2001:db8:0:1::129 2001:db8:0:1::254;

option dhcp6.name-servers fec0:0:0:1::1;

option dhcp6.domain-search "domain.example";

}

For more examples, see the dhcpd.conf(5) man page.

To start the DHCPv6 service, enter the command service dhcpd6 start as root. To stop the

DHCPv6 server, use the command service dhcpdv6 stop.

To pass command-line options to dhcpd daemon when the DHCPv6 service starts, use the

/etc/sysconfig/dhcpd6 file. This file uses the same structure like the /etc/sysconfig/dhcpd:

# cat /etc/sysconfig/dhcpd6

# Command line options here

DHCPDARGS=

The value added to the DHCPDARGS option is passed to the DHCPv6 service, which passes it to the

dhcpd daemon. For more information, see the STANDARD DHCPV6 OPTIONS section in the dhcpd-

options(5) man page. For additional examples, see the Dynamic IPv6 configuration on the Fedora

Project wiki.

16.5.2. Configuring a DHCPv6 Client

342

CHAPTER 16. DHCP SERVERS

The default configuration of the DHCPv6 client works fine in the most cases. However, to configure a

DHCP client manually, create and modify the /etc/dhcp/dhclient.conf file. See the

/usr/share/doc/dhclient-4.1.1/dhclient6.conf.sample for a client configuration file example.

For advanced configurations of DHCPv6 client options such as protocol timing, lease requirements and requests, dynamic DNS support, aliases, as well as a wide variety of values to override, prepend, or append to client-side configurations, see the dhclient.conf(5) man page and the STANDARD

DHCPV6 OPTIONS section in the dhcpd-options(5) man page.

IMPORTANT

In Red Hat Enterprise Linux 6, a DHCPv6 client is correctly handled only by

NetworkManager and should not generally be run separately. That is because DHCPv6, unlike DHCPv4, is not a standalone network configuration protocol but is always supposed to be used together with router discovery.

16.6. ADDITIONAL RESOURCES

For additional information, see The DHCP Handbook; Ralph Droms and Ted Lemon; 2003 or the following resources.

16.6.1. Installed Documentation

dhcpd man page — Describes how the DHCP daemon works.

dhcpd.conf man page — Explains how to configure the DHCP configuration file; includes some examples.

dhcpd.leases man page — Describes a persistent database of leases.

dhcp-options man page — Explains the syntax for declaring DHCP options in dhcpd.conf; includes some examples.

dhcrelay man page — Explains the DHCP Relay Agent and its configuration options.

/usr/share/doc/dhcp-<version>/ — Contains sample files, README files, and release notes for current versions of the DHCP service.

343

Deployment Guide

CHAPTER 17. DNS SERVERS

DNS (Domain Name System), also known as a nameserver, is a network system that associates host names with their respective IP addresses. For users, this has the advantage that they can refer to machines on the network by names that are usually easier to remember than the numerical network addresses. For system administrators, using the nameserver allows them to change the IP address for a host without ever affecting the name-based queries, or to decide which machines handle these queries.

17.1. INTRODUCTION TO DNS

DNS is usually implemented using one or more centralized servers that are authoritative for certain domains. When a client host requests information from a nameserver, it usually connects to port 53. The nameserver then attempts to resolve the name requested. If it does not have an authoritative answer, or does not already have the answer cached from an earlier query, it queries other nameservers, called root nameservers, to determine which nameservers are authoritative for the name in question, and then queries them to get the requested name.

17.1.1. Nameserver Zones

In a DNS server such as BIND (Berkeley Internet Name Domain), all information is stored in basic data elements called resource records (RR). The resource record is usually a fully qualified domain name

(FQDN) of a host, and is broken down into multiple sections organized into a tree-like hierarchy. This hierarchy consists of a main trunk, primary branches, secondary branches, and so on.

Example 17.1. A simple resource record bob.sales.example.com

Each level of the hierarchy is divided by a period (that is, .). In Example 17.1, “A simple resource record” , com defines the top-level domain, example its subdomain, and sales the subdomain of

example. In this case, bob identifies a resource record that is part of the sales.example.com domain.

With the exception of the part furthest to the left (that is, bob), each of these sections is called a zone and defines a specific namespace.

Zones are defined on authoritative nameservers through the use of zone files, which contain definitions of the resource records in each zone. Zone files are stored on primary nameservers (also called master nameservers), where changes are made to the files, and secondary nameservers (also called slave nameservers), which receive zone definitions from the primary nameservers. Both primary and secondary nameservers are authoritative for the zone and look the same to clients. Depending on the configuration, any nameserver can also serve as a primary or secondary server for multiple zones at the same time.

17.1.2. Nameserver Types

There are two nameserver configuration types: authoritative

Authoritative nameservers answer to resource records that are part of their zones only. This category includes both primary (master) and secondary (slave) nameservers.

recursive

344

CHAPTER 17. DNS SERVERS

Recursive nameservers offer resolution services, but they are not authoritative for any zone. Answers for all resolutions are cached in a memory for a fixed period of time, which is specified by the retrieved resource record.

Although a nameserver can be both authoritative and recursive at the same time, it is recommended not to combine the configuration types. To be able to perform their work, authoritative servers should be available to all clients all the time. On the other hand, since the recursive lookup takes far more time than authoritative responses, recursive servers should be available to a restricted number of clients only, otherwise they are prone to distributed denial of service (DDoS) attacks.

17.1.3. BIND as a Nameserver

BIND consists of a set of DNS-related programs. It contains a nameserver called named, an

administration utility called rndc, and a debugging tool called dig. See Chapter 12, Services and

Daemons for more information on how to run a service in Red Hat Enterprise Linux.

17.2. BIND

This chapter covers BIND (Berkeley Internet Name Domain), the DNS server included in Red Hat

Enterprise Linux. It focuses on the structure of its configuration files, and describes how to administer it both locally and remotely.

17.2.1. Configuring the named Service

When the named service is started, it reads the configuration from the files as described in Table 17.1,

“The named service configuration files” .

Table 17.1. The named service configuration files

Path Description

The main configuration file.

/etc/named.conf

/etc/named/ An auxiliary directory for configuration files that are included in the main configuration file.

The configuration file consists of a collection of statements with nested options surrounded by opening and closing curly brackets. Note that when editing the file, you have to be careful not to make any syntax error, otherwise the named service will not start. A typical /etc/named.conf file is organized as follows:

statement-1 ["statement-1-name"] [statement-1-class] {

option-1;

option-2;

option-N;

};

statement-2 ["statement-2-name"] [statement-2-class] {

option-1;

option-2;

option-N;

};

statement-N ["statement-N-name"] [statement-N-class] {

345

Deployment Guide

option-1;

option-2;

option-N;

};

NOTE

If you have installed the bind-chroot package, the BIND service will run in the

/var/named/chroot environment. In that case, the initialization script will mount the above configuration files using the mount --bind command, so that you can manage the configuration outside this environment. There is no need to copy anything into the

/var/named/chroot directory because it is mounted automatically. This simplifies maintenance since you do not need to take any special care of BIND configuration files if it is run in a chroot environment. You can organize everything as you would with BIND not running in a chroot environment.

The following directories are automatically mounted into /var/named/chroot if they are empty in the /var/named/chroot directory. They must be kept empty if you want them to be mounted into /var/named/chroot:

/var/named

/etc/pki/dnssec-keys

/etc/named

/usr/lib64/bind or /usr/lib/bind (architecture dependent).

The following files are also mounted if the target file does not exist in

/var/named/chroot.

/etc/named.conf

/etc/rndc.conf

/etc/rndc.key

/etc/named.rfc1912.zones

/etc/named.dnssec.keys

/etc/named.iscdlv.key

/etc/named.root.key

17.2.1.1. Common Statement Types

The following types of statements are commonly used in /etc/named.conf: acl

The acl (Access Control List) statement allows you to define groups of hosts, so that they can be permitted or denied access to the nameserver. It takes the following form: acl acl-name {

346

CHAPTER 17. DNS SERVERS

match-element;

...

};

The acl-name statement name is the name of the access control list, and the match-element option is usually an individual IP address (such as 10.0.1.1) or a CIDR (Classless Inter-Domain Routing) network notation (for example, 10.0.1.0/24). For a list of already defined keywords, see

Table 17.2, “Predefined access control lists” .

Table 17.2. Predefined access control lists

Keyword Description any Matches every IP address.

Matches any IP address that is in use by the local system.

localhost localnets none

Matches any IP address on any network to which the local system is connected.

Does not match any IP address.

The acl statement can be especially useful in conjunction with other statements such as options.

Example 17.2, “Using acl in conjunction with options”

defines two access control lists, black-hats and red-hats, and adds black-hats on the blacklist while granting red-hats a normal access.

Example 17.2. Using acl in conjunction with options acl black-hats {

10.0.2.0/24;

192.168.0.0/24;

1234:5678::9abc/24;

}; acl red-hats {

10.0.1.0/24;

}; options {

blackhole { black-hats; };

allow-query { red-hats; };

allow-query-cache { red-hats; };

}; include

The include statement allows you to include files in the /etc/named.conf, so that potentially sensitive data can be placed in a separate file with restricted permissions. It takes the following form: include "file-name"

The file-name statement name is an absolute path to a file.

347

Deployment Guide

Example 17.3. Including a file to /etc/named.conf

include "/etc/named.rfc1912.zones"; options

The options statement allows you to define global server configuration options as well as to set defaults for other statements. It can be used to specify the location of the named working directory, the types of queries allowed, and much more. It takes the following form: options {

option;

...

};

For a list of frequently used option directives, see Table 17.3, “Commonly used options”

below.

Table 17.3. Commonly used options

Option Description allow-query allow-querycache blackhole

Specifies which hosts are allowed to query the nameserver for authoritative resource records. It accepts an access control list, a collection of IP addresses, or networks in the CIDR notation. All hosts are allowed by default.

Specifies which hosts are allowed to query the nameserver for non-authoritative data such as recursive queries. Only localhost and localnets are allowed by default.

Specifies which hosts are not allowed to query the nameserver. This option should be used when particular host or network floods the server with requests.

The default option is none .

directory dnssec-enable dnssecvalidation forwarders

Specifies a working directory for the named service. The default option is

/var/named/ .

Specifies whether to return DNSSEC related resource records. The default option is yes .

Specifies whether to prove that resource records are authentic via DNSSEC.

The default option is yes .

Specifies a list of valid IP addresses for nameservers to which the requests should be forwarded for resolution.

348

CHAPTER 17. DNS SERVERS

Option forward

Description

Specifies the behavior of the options: forwarders directive. It accepts the following first — The server will query the nameservers listed in the forwarders directive before attempting to resolve the name on its own.

only — When unable to query the nameservers listed in the forwarders directive, the server will not attempt to resolve the name on its own.

listen-on listen-on-v6 max-cache-size notify

Specifies the IPv4 network interface on which to listen for queries. On a DNS server that also acts as a gateway, you can use this option to answer queries originating from a single network only. All IPv4 interfaces are used by default.

Specifies the IPv6 network interface on which to listen for queries. On a DNS server that also acts as a gateway, you can use this option to answer queries originating from a single network only. All IPv6 interfaces are used by default.

Specifies the maximum amount of memory to be used for server caches. When the limit is reached, the server causes records to expire prematurely so that the limit is not exceeded. In a server with multiple views, the limit applies separately to the cache of each view. The default option is 32M .

Specifies whether to notify the secondary nameservers when a zone is updated. It accepts the following options: yes — The server will notify all secondary nameservers.

no — The server will not notify any secondary nameserver.

master-only — The server will notify primary server for the zone only.

explicit — The server will notify only the secondary servers that are specified in the also-notify list within a zone statement.

pid-file recursion statistics-file

Specifies the location of the process ID file created by the named service.

Specifies whether to act as a recursive server. The default option is yes .

Specifies an alternate location for statistics files. The

/var/named/named.stats

file is used by default.

IMPORTANT

To prevent distributed denial of service (DDoS) attacks, it is recommended that you use the allow-query-cache option to restrict recursive DNS services for a particular subset of clients only.

349

Deployment Guide

See the BIND 9 Administrator Reference Manual referenced in Section 17.2.7.1, “Installed

Documentation” , and the named.conf manual page for a complete list of available options.

Example 17.4. Using the options statement options {

allow-query { localhost; };

listen-on port 53 { 127.0.0.1; };

listen-on-v6 port 53 { ::1; };

max-cache-size 256M;

directory "/var/named";

statistics-file "/var/named/data/named_stats.txt";

recursion yes;

dnssec-enable yes;

dnssec-validation yes;

}; zone

The zone statement allows you to define the characteristics of a zone, such as the location of its configuration file and zone-specific options, and can be used to override the global options statements. It takes the following form: zone zone-name [zone-class] {

option;

...

};

The zone-name attribute is the name of the zone, zone-class is the optional class of the zone, and option is a zone statement option as described in

Table 17.4, “Commonly used options” .

The zone-name attribute is particularly important, as it is the default value assigned for the $ORIGIN directive used within the corresponding zone file located in the /var/named/ directory. The named daemon appends the name of the zone to any non-fully qualified domain name listed in the zone file.

For example, if a zone statement defines the namespace for example.com, use example.com as the zone-name so that it is placed at the end of host names within the example.com zone file.

For more information about zone files, see

Section 17.2.2, “Editing Zone Files” .

Table 17.4. Commonly used options

Option Description allow-query allow-transfer

Specifies which clients are allowed to request information about this zone. This option overrides global allow-query option. All query requests are allowed by default.

Specifies which secondary servers are allowed to request a transfer of the zone's information. All transfer requests are allowed by default.

350

Option allow-update file masters notify type

CHAPTER 17. DNS SERVERS

Description

Specifies which hosts are allowed to dynamically update information in their zone. The default option is to deny all dynamic update requests.

Note that you should be careful when allowing hosts to update information about their zone. Do not set IP addresses in this option unless the server is in

the trusted network. Instead, use TSIG key as described in Section 17.2.5.3,

“Transaction SIGnatures (TSIG)” .

Specifies the name of the file in the named working directory that contains the zone's configuration data.

Specifies from which IP addresses to request authoritative zone information.

This option is used only if the zone is defined as type slave .

Specifies whether to notify the secondary nameservers when a zone is updated. It accepts the following options: yes — The server will notify all secondary nameservers.

no — The server will not notify any secondary nameserver.

master-only — The server will notify primary server for the zone only.

explicit — The server will notify only the secondary servers that are specified in the also-notify list within a zone statement.

Specifies the zone type. It accepts the following options: delegation-only — Enforces the delegation status of infrastructure zones such as COM, NET, or ORG. Any answer that is received without an explicit or implicit delegation is treated as

NXDOMAIN . This option is only applicable in TLDs (Top-Level

Domain) or root zone files used in recursive or caching implementations.

forward — Forwards all requests for information about this zone to other nameservers.

hint — A special type of zone used to point to the root nameservers which resolve queries when a zone is not otherwise known. No configuration beyond the default is necessary with a hint zone.

master — Designates the nameserver as authoritative for this zone.

A zone should be set as the master if the zone's configuration files reside on the system.

slave — Designates the nameserver as a slave server for this zone.

Master server is specified in masters directive.

Most changes to the /etc/named.conf file of a primary or secondary nameserver involve adding, modifying, or deleting zone statements, and only a small subset of zone statement options is usually needed for a nameserver to work efficiently.

In Example 17.5, “A zone statement for a primary nameserver”

, the zone is identified as

351

Deployment Guide

example.com, the type is set to master, and the named service is instructed to read the

/var/named/example.com.zone file. It also allows only a secondary nameserver

(192.168.0.2) to transfer the zone.

Example 17.5. A zone statement for a primary nameserver zone "example.com" IN {

type master;

file "example.com.zone";

allow-transfer { 192.168.0.2; };

};

A secondary server's zone statement is slightly different. The type is set to slave, and the masters directive is telling named the IP address of the master server.

In Example 17.6, “A zone statement for a secondary nameserver” , the named service is configured to

query the primary server at the 192.168.0.1 IP address for information about the example.com zone. The received information is then saved to the /var/named/slaves/example.com.zone file. Note that you have to put all slave zones to /var/named/slaves directory, otherwise the service will fail to transfer the zone.

Example 17.6. A zone statement for a secondary nameserver zone "example.com" {

type slave;

file "slaves/example.com.zone";

masters { 192.168.0.1; };

};

17.2.1.2. Other Statement Types

The following types of statements are less commonly used in /etc/named.conf: controls

The controls statement allows you to configure various security requirements necessary to use the

rndc command to administer the named service.

See

Section 17.2.3, “Using the rndc Utility”

for more information on the rndc utility and its usage.

key

The key statement allows you to define a particular key by name. Keys are used to authenticate various actions, such as secure updates or the use of the rndc command. Two options are used with

key:

algorithm algorithm-name — The type of algorithm to be used (for example, hmac-

md5).

secret "key-value" — The encrypted key.

352

CHAPTER 17. DNS SERVERS

See

Section 17.2.3, “Using the rndc Utility”

for more information on the rndc utility and its usage.

logging

The logging statement allows you to use multiple types of logs, so called channels. By using the

channel option within the statement, you can construct a customized type of log with its own file name (file), size limit ( size), versioning (version), and level of importance (severity). Once a customized channel is defined, a category option is used to categorize the channel and begin logging when the named service is restarted.

By default, named sends standard messages to the rsyslog daemon, which places them in

/var/log/messages. Several standard channels are built into BIND with various severity levels, such as default_syslog (which handles informational logging messages) and default_debug

(which specifically handles debugging messages). A default category, called default, uses the builtin channels to do normal logging without any special configuration.

Customizing the logging process can be a very detailed process and is beyond the scope of this chapter. For information on creating custom BIND logs, see the BIND 9 Administrator Reference

Manual referenced in

Section 17.2.7.1, “Installed Documentation” .

server

The server statement allows you to specify options that affect how the named service should respond to remote nameservers, especially with regard to notifications and zone transfers.

The transfer-format option controls the number of resource records that are sent with each message. It can be either one-answer (only one resource record), or many-answers (multiple resource records). Note that while the many-answers option is more efficient, it is not supported by older versions of BIND.

trusted-keys

The trusted-keys statement allows you to specify assorted public keys used for secure DNS

(DNSSEC). See

Section 17.2.5.4, “DNS Security Extensions (DNSSEC)”

for more information on this topic.

view

The view statement allows you to create special views depending upon which network the host querying the nameserver is on. This allows some hosts to receive one answer regarding a zone while other hosts receive totally different information. Alternatively, certain zones may only be made available to particular trusted hosts while non-trusted hosts can only make queries for other zones.

Multiple views can be used as long as their names are unique. The match-clients option allows you to specify the IP addresses that apply to a particular view. If the options statement is used within a view, it overrides the already configured global options. Finally, most view statements contain multiple zone statements that apply to the match-clients list.

Note that the order in which the view statements are listed is important, as the first statement that matches a particular client's IP address is used. For more information on this topic, see

Section 17.2.5.1, “Multiple Views”

.

17.2.1.3. Comment Tags

353

Deployment Guide

Additionally to statements, the /etc/named.conf file can also contain comments. Comments are ignored by the named service, but can prove useful when providing additional information to a user. The following are valid comment tags:

//

Any text after the // characters to the end of the line is considered a comment. For example: notify yes; // notify all secondary nameservers

#

Any text after the # character to the end of the line is considered a comment. For example: notify yes; # notify all secondary nameservers

/* and */

Any block of text enclosed in /* and */ is considered a comment. For example: notify yes; /* notify all secondary nameservers */

17.2.2. Editing Zone Files

As outlined in

Section 17.1.1, “Nameserver Zones”

, zone files contain information about a namespace.

They are stored in the named working directory located in /var/named/ by default, and each zone file is named according to the file option in the zone statement, usually in a way that relates to the domain in question and identifies the file as containing zone data, such as example.com.zone.

Table 17.5. The named service zone files

Path Description

/var/named/

/var/named/slaves/

/var/named/dynamic/

/var/named/data/

The working directory for the named service. The nameserver is not allowed to write to this directory.

The directory for secondary zones. This directory is writable by the named service.

The directory for other files, such as dynamic DNS

(DDNS) zones or managed DNSSEC keys. This directory is writable by the named service.

The directory for various statistics and debugging files. This directory is writable by the named service.

A zone file consists of directives and resource records. Directives tell the nameserver to perform tasks or apply special settings to the zone, resource records define the parameters of the zone and assign identities to individual hosts. While the directives are optional, the resource records are required in order to provide name service to a zone.

All directives and resource records should be entered on individual lines.

354

CHAPTER 17. DNS SERVERS

17.2.2.1. Common Directives

Directives begin with the dollar sign character followed by the name of the directive, and usually appear at the top of the file. The following directives are commonly used in zone files:

$INCLUDE

The $INCLUDE directive allows you to include another file at the place where it appears, so that other zone settings can be stored in a separate zone file.

Example 17.7. Using the $INCLUDE directive

$INCLUDE /var/named/penguin.example.com

$ORIGIN

The $ORIGIN directive allows you to append the domain name to unqualified records, such as those with the host name only. Note that the use of this directive is not necessary if the zone is specified in

/etc/named.conf, since the zone name is used by default.

In Example 17.8, “Using the $ORIGIN directive”

, any names used in resource records that do not end in a trailing period are appended with example.com.

Example 17.8. Using the $ORIGIN directive

$ORIGIN example.com.

$TTL

The $TTL directive allows you to set the default Time to Live (TTL) value for the zone, that is, how long is a zone record valid. Each resource record can contain its own TTL value, which overrides this directive.

Increasing this value allows remote nameservers to cache the zone information for a longer period of time, reducing the number of queries for the zone and lengthening the amount of time required to propagate resource record changes.

Example 17.9. Using the $TTL directive

$TTL 1D

17.2.2.2. Common Resource Records

The following resource records are commonly used in zone files:

A

The Address record specifies an IP address to be assigned to a name. It takes the following form:

hostname IN A IP-address

355

Deployment Guide

If the hostname value is omitted, the record will point to the last specified hostname.

In Example 17.10, “Using the A resource record”

, the requests for server1.example.com are pointed to 10.0.1.3 or 10.0.1.5.

Example 17.10. Using the A resource record server1 IN A 10.0.1.3

IN A 10.0.1.5

CNAME

The Canonical Name record maps one name to another. Because of this, this type of record is sometimes referred to as an alias record. It takes the following form:

alias-name IN CNAME real-name

CNAME records are most commonly used to point to services that use a common naming scheme, such as www for Web servers. However, there are multiple restrictions for their usage:

CNAME records should not point to other CNAME records. This is mainly to avoid possible infinite loops.

CNAME records should not contain other resource record types (such as A, NS, MX, etc.).

The only exception are DNSSEC related records (that is, RRSIG, NSEC, etc.) when the zone is signed.

Other resource record that point to the fully qualified domain name (FQDN) of a host (that is,

NS, MX, PTR) should not point to a CNAME record.

In Example 17.11, “Using the CNAME resource record” , the A record binds a host name to an IP

address, while the CNAME record points the commonly used www host name to it.

Example 17.11. Using the CNAME resource record server1 IN A 10.0.1.5

www IN CNAME server1

MX

The Mail Exchange record specifies where the mail sent to a particular namespace controlled by this zone should go. It takes the following form:

IN MX preference-value email-server-name

The email-server-name is a fully qualified domain name (FQDN). The preference-value allows numerical ranking of the email servers for a namespace, giving preference to some email systems over others. The MX resource record with the lowest preference-value is preferred over the others.

However, multiple email servers can possess the same value to distribute email traffic evenly among them.

356

CHAPTER 17. DNS SERVERS

In Example 17.12, “Using the MX resource record”

, the first mail.example.com email server is preferred to the mail2.example.com email server when receiving email destined for the

example.com domain.

Example 17.12. Using the MX resource record example.com. IN MX 10 mail.example.com.

IN MX 20 mail2.example.com.

NS

The Nameserver record announces authoritative nameservers for a particular zone. It takes the following form:

IN NS nameserver-name

The nameserver-name should be a fully qualified domain name (FQDN). Note that when two nameservers are listed as authoritative for the domain, it is not important whether these nameservers are secondary nameservers, or if one of them is a primary server. They are both still considered authoritative.

Example 17.13. Using the NS resource record

IN NS dns1.example.com.

IN NS dns2.example.com.

PTR

The Pointer record points to another part of the namespace. It takes the following form:

last-IP-digit IN PTR FQDN-of-system

The last-IP-digit directive is the last number in an IP address, and the FQDN-of-system is a fully qualified domain name (FQDN).

PTR records are primarily used for reverse name resolution, as they point IP addresses back to a

particular name. See Section 17.2.2.4.2, “A Reverse Name Resolution Zone File” for more examples

of PTR records in use.

SOA

The Start of Authority record announces important authoritative information about a namespace to the nameserver. Located after the directives, it is the first resource record in a zone file. It takes the following form:

@ IN SOA primary-name-server hostmaster-email (

serial-number

time-to-refresh

time-to-retry

time-to-expire

minimum-TTL )

357

Deployment Guide

The directives are as follows:

The @ symbol places the $ORIGIN directive (or the zone's name if the $ORIGIN directive is not set) as the namespace being defined by this SOA resource record.

The primary-name-server directive is the host name of the primary nameserver that is authoritative for this domain.

The hostmaster-email directive is the email of the person to contact about the namespace.

The serial-number directive is a numerical value incremented every time the zone file is altered to indicate it is time for the named service to reload the zone.

The time-to-refresh directive is the numerical value secondary nameservers use to determine how long to wait before asking the primary nameserver if any changes have been made to the zone.

The time-to-retry directive is a numerical value used by secondary nameservers to determine the length of time to wait before issuing a refresh request in the event that the primary nameserver is not answering. If the primary server has not replied to a refresh request before the amount of time specified in the time-to-expire directive elapses, the secondary servers stop responding as an authority for requests concerning that namespace.

In BIND 4 and 8, the minimum-TTL directive is the amount of time other nameservers cache the zone's information. In BIND 9, it defines how long negative answers are cached for.

Caching of negative answers can be set to a maximum of 3 hours (that is, 3H).

When configuring BIND, all times are specified in seconds. However, it is possible to use abbreviations when specifying units of time other than seconds, such as minutes (M), hours (H), days

(D), and weeks (W).

Table 17.6, “Seconds compared to other time units”

shows an amount of time in seconds and the equivalent time in another format.

Table 17.6. Seconds compared to other time units

Seconds Other Time Units

60 1M

30M 1800

3600 1H

3H 10800

21600 6H

12H 43200

86400

259200

1D

3D

358

CHAPTER 17. DNS SERVERS

Seconds

604800

31536000

Other Time Units

1W

365D

Example 17.14. Using the SOA resource record

@ IN SOA dns1.example.com. hostmaster.example.com. (

2001062501 ; serial

21600 ; refresh after 6 hours

3600 ; retry after 1 hour

604800 ; expire after 1 week

86400 ) ; minimum TTL of 1 day

17.2.2.3. Comment Tags

Additionally to resource records and directives, a zone file can also contain comments. Comments are ignored by the named service, but can prove useful when providing additional information to the user.

Any text after the semicolon character to the end of the line is considered a comment. For example:

604800 ; expire after 1 week

17.2.2.4. Example Usage

The following examples show the basic usage of zone files.

17.2.2.4.1. A Simple Zone File

Example 17.15, “A simple zone file” demonstrates the use of standard directives and SOA values.

Example 17.15. A simple zone file

$ORIGIN example.com.

$TTL 86400

@ IN SOA dns1.example.com. hostmaster.example.com. (

2001062501 ; serial

21600 ; refresh after 6 hours

3600 ; retry after 1 hour

604800 ; expire after 1 week

86400 ) ; minimum TTL of 1 day

;

;

IN NS dns1.example.com.

IN NS dns2.example.com.

dns1 IN A 10.0.1.1

IN AAAA aaaa:bbbb::1 dns2 IN A 10.0.1.2

IN AAAA aaaa:bbbb::2

359

Deployment Guide

;

;

@ IN MX 10 mail.example.com.

IN MX 20 mail2.example.com.

mail IN A 10.0.1.5

IN AAAA aaaa:bbbb::5 mail2 IN A 10.0.1.6

IN AAAA aaaa:bbbb::6

;

;

; This sample zone file illustrates sharing the same IP addresses

; for multiple services:

; services IN A 10.0.1.10

IN AAAA aaaa:bbbb::10

IN A 10.0.1.11

IN AAAA aaaa:bbbb::11 ftp IN CNAME services.example.com.

www IN CNAME services.example.com.

;

;

In this example, the authoritative nameservers are set as dns1.example.com and

dns2.example.com, and are tied to the 10.0.1.1 and 10.0.1.2 IP addresses respectively using the

A record.

The email servers configured with the MX records point to mail and mail2 via A records. Since these names do not end in a trailing period, the $ORIGIN domain is placed after them, expanding them to

mail.example.com and mail2.example.com.

Services available at the standard names, such as www.example.com (WWW), are pointed at the appropriate servers using the CNAME record.

This zone file would be called into service with a zone statement in the /etc/named.conf similar to the following: zone "example.com" IN {

type master;

file "example.com.zone";

allow-update { none; };

};

17.2.2.4.2. A Reverse Name Resolution Zone File

A reverse name resolution zone file is used to translate an IP address in a particular namespace into an fully qualified domain name (FQDN). It looks very similar to a standard zone file, except that the PTR resource records are used to link the IP addresses to a fully qualified domain name as shown in

Example 17.16, “A reverse name resolution zone file” .

Example 17.16. A reverse name resolution zone file

$ORIGIN 1.0.10.in-addr.arpa.

360

CHAPTER 17. DNS SERVERS

$TTL 86400

@ IN SOA dns1.example.com. hostmaster.example.com. (

2001062501 ; serial

21600 ; refresh after 6 hours

3600 ; retry after 1 hour

604800 ; expire after 1 week

86400 ) ; minimum TTL of 1 day

;

@ IN NS dns1.example.com.

;

1 IN PTR dns1.example.com.

2 IN PTR dns2.example.com.

;

5 IN PTR server1.example.com.

6 IN PTR server2.example.com.

;

3 IN PTR ftp.example.com.

4 IN PTR ftp.example.com.

In this example, IP addresses 10.0.1.1 through 10.0.1.6 are pointed to the corresponding fully qualified domain name.

This zone file would be called into service with a zone statement in the /etc/named.conf file similar to the following: zone "1.0.10.in-addr.arpa" IN {

type master;

file "example.com.rr.zone";

allow-update { none; };

};

There is very little difference between this example and a standard zone statement, except for the zone name. Note that a reverse name resolution zone requires the first three blocks of the IP address reversed followed by .in-addr.arpa. This allows the single block of IP numbers used in the reverse name resolution zone file to be associated with the zone.

17.2.3. Using the rndc Utility

The rndc utility is a command-line tool that allows you to administer the named service, both locally and from a remote machine. Its usage is as follows: rndc [option...] command [command-option]

17.2.3.1. Configuring the Utility

To prevent unauthorized access to the service, named must be configured to listen on the selected port

(that is, 953 by default), and an identical key must be used by both the service and the rndc utility.

Table 17.7. Relevant files

361

Deployment Guide

Path

/etc/named.conf

/etc/rndc.conf

/etc/rndc.key

Description

The default configuration file for the named service.

The default configuration file for the rndc utility.

The default key location.

The rndc configuration is located in /etc/rndc.conf. If the file does not exist, the utility will use the key located in /etc/rndc.key, which was generated automatically during the installation process using the rndc-confgen -a command.

The named service is configured using the controls statement in the /etc/named.conf configuration file as described in

Section 17.2.1.2, “Other Statement Types” . Unless this statement is

present, only the connections from the loopback address (that is, 127.0.0.1) will be allowed, and the key located in /etc/rndc.key will be used.

For more information on this topic, see manual pages and the BIND 9 Administrator Reference Manual

listed in Section 17.2.7, “Additional Resources” .

IMPORTANT

To prevent unprivileged users from sending control commands to the service, make sure only root is allowed to read the /etc/rndc.key file:

~]# chmod o-rwx /etc/rndc.key

17.2.3.2. Checking the Service Status

To check the current status of the named service, use the following command:

~]# rndc status version: 9.7.0-P2-RedHat-9.7.0-5.P2.el6

CPUs found: 1 worker threads: 1 number of zones: 16 debug level: 0 xfers running: 0 xfers deferred: 0 soa queries in progress: 0 query logging is OFF recursive clients: 0/0/1000 tcp clients: 0/100 server is up and running

17.2.3.3. Reloading the Configuration and Zones

To reload both the configuration file and zones, type the following at a shell prompt:

362

CHAPTER 17. DNS SERVERS

~]# rndc reload server reload successful

This will reload the zones while keeping all previously cached responses, so that you can make changes to the zone files without losing all stored name resolutions.

To reload a single zone, specify its name after the reload command, for example:

~]# rndc reload localhost zone reload up-to-date

Finally, to reload the configuration file and newly added zones only, type:

~]# rndc reconfig

NOTE

If you intend to manually modify a zone that uses Dynamic DNS (DDNS), make sure you run the freeze command first:

~]# rndc freeze localhost

Once you are finished, run the thaw command to allow the DDNS again and reload the zone:

~]# rndc thaw localhost

The zone reload and thaw was successful.

17.2.3.4. Updating Zone Keys

To update the DNSSEC keys and sign the zone, use the sign command. For example:

~]# rndc sign localhost

Note that to sign a zone with the above command, the auto-dnssec option has to be set to maintain in the zone statement. For instance: zone "localhost" IN {

type master;

file "named.localhost";

allow-update { none; };

auto-dnssec maintain;

};

17.2.3.5. Enabling the DNSSEC Validation

To enable the DNSSEC validation, type the following at a shell prompt:

~]# rndc validation on

Similarly, to disable this option, type:

363

Deployment Guide

~]# rndc validation off

See the options statement described in

Section 17.2.1.1, “Common Statement Types” for information

on how to configure this option in /etc/named.conf.

17.2.3.6. Enabling the Query Logging

To enable (or disable in case it is currently enabled) the query logging, run the following command:

~]# rndc querylog

To check the current setting, use the status command as described in Section 17.2.3.2, “Checking the

Service Status” .

17.2.4. Using the dig Utility

The dig utility is a command-line tool that allows you to perform DNS lookups and debug a nameserver configuration. Its typical usage is as follows: dig [@server] [option...] name type

See

Section 17.2.2.2, “Common Resource Records”

for a list of common types.

17.2.4.1. Looking Up a Nameserver

To look up a nameserver for a particular domain, use the command in the following form: dig name NS

In Example 17.17, “A sample nameserver lookup”

, the dig utility is used to display nameservers for

example.com.

Example 17.17. A sample nameserver lookup

~]$ dig example.com NS

; <<>> DiG 9.7.1-P2-RedHat-9.7.1-2.P2.fc13 <<>> example.com NS

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57883

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;example.com. IN NS

;; ANSWER SECTION: example.com. 99374 IN NS a.iana-servers.net.

example.com. 99374 IN NS b.iana-servers.net.

;; Query time: 1 msec

;; SERVER: 10.34.255.7#53(10.34.255.7)

;; WHEN: Wed Aug 18 18:04:06 2010

;; MSG SIZE rcvd: 77

364

CHAPTER 17. DNS SERVERS

17.2.4.2. Looking Up an IP Address

To look up an IP address assigned to a particular domain, use the command in the following form: dig name A

In Example 17.18, “A sample IP address lookup” , the dig utility is used to display the IP address of

example.com.

Example 17.18. A sample IP address lookup

~]$ dig example.com A

; <<>> DiG 9.7.1-P2-RedHat-9.7.1-2.P2.fc13 <<>> example.com A

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4849

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 0

;; QUESTION SECTION:

;example.com. IN A

;; ANSWER SECTION: example.com. 155606 IN A 192.0.32.10

;; AUTHORITY SECTION: example.com. 99175 IN NS a.iana-servers.net.

example.com. 99175 IN NS b.iana-servers.net.

;; Query time: 1 msec

;; SERVER: 10.34.255.7#53(10.34.255.7)

;; WHEN: Wed Aug 18 18:07:25 2010

;; MSG SIZE rcvd: 93

17.2.4.3. Looking Up a Hostname

To look up a host name for a particular IP address, use the command in the following form: dig -x address

In Example 17.19, “A sample host name lookup”

, the dig utility is used to display the host name assigned to 192.0.32.10.

Example 17.19. A sample host name lookup

~]$ dig -x 192.0.32.10

; <<>> DiG 9.7.1-P2-RedHat-9.7.1-2.P2.fc13 <<>> -x 192.0.32.10

;; global options: +cmd

;; Got answer:

365

Deployment Guide

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29683

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5, ADDITIONAL: 6

;; QUESTION SECTION:

;10.32.0.192.in-addr.arpa. IN PTR

;; ANSWER SECTION:

10.32.0.192.in-addr.arpa. 21600 IN PTR www.example.com.

;; AUTHORITY SECTION:

32.0.192.in-addr.arpa. 21600 IN NS b.iana-servers.org.

32.0.192.in-addr.arpa. 21600 IN NS c.iana-servers.net.

32.0.192.in-addr.arpa. 21600 IN NS d.iana-servers.net.

32.0.192.in-addr.arpa. 21600 IN NS ns.icann.org.

32.0.192.in-addr.arpa. 21600 IN NS a.iana-servers.net.

;; ADDITIONAL SECTION: a.iana-servers.net. 13688 IN A 192.0.34.43

b.iana-servers.org. 5844 IN A 193.0.0.236

b.iana-servers.org. 5844 IN AAAA 2001:610:240:2::c100:ec c.iana-servers.net. 12173 IN A 139.91.1.10

c.iana-servers.net. 12173 IN AAAA 2001:648:2c30::1:10 ns.icann.org. 12884 IN A 192.0.34.126

;; Query time: 156 msec

;; SERVER: 10.34.255.7#53(10.34.255.7)

;; WHEN: Wed Aug 18 18:25:15 2010

;; MSG SIZE rcvd: 310

17.2.5. Advanced Features of BIND

Most BIND implementations only use the named service to provide name resolution services or to act as an authority for a particular domain. However, BIND version 9 has a number of advanced features that allow for a more secure and efficient DNS service.

IMPORTANT

Before attempting to use advanced features like DNSSEC, TSIG, or IXFR (Incremental

Zone Transfer), make sure that the particular feature is supported by all nameservers in the network environment, especially when you use older versions of BIND or non-BIND servers.

All of the features mentioned are discussed in greater detail in the BIND 9 Administrator Reference

Manual referenced in

Section 17.2.7.1, “Installed Documentation” .

17.2.5.1. Multiple Views

Optionally, different information can be presented to a client depending on the network a request originates from. This is primarily used to deny sensitive DNS entries from clients outside of the local network, while allowing queries from clients inside the local network.

366

CHAPTER 17. DNS SERVERS

To configure multiple views, add the view statement to the /etc/named.conf configuration file. Use the match-clients option to match IP addresses or entire networks and give them special options and zone data.

17.2.5.2. Incremental Zone Transfers (IXFR)

Incremental Zone Transfers (IXFR) allow a secondary nameserver to only download the updated portions of a zone modified on a primary nameserver. Compared to the standard transfer process, this makes the notification and update process much more efficient.

Note that IXFR is only available when using dynamic updating to make changes to master zone records.

If manually editing zone files to make changes, Automatic Zone Transfer (AXFR) is used.

17.2.5.3. Transaction SIGnatures (TSIG)

Transaction SIGnatures (TSIG) ensure that a shared secret key exists on both primary and secondary nameserver before allowing a transfer. This strengthens the standard IP address-based method of transfer authorization, since attackers would not only need to have access to the IP address to transfer the zone, but they would also need to know the secret key.

Since version 9, BIND also supports TKEY, which is another shared secret key method of authorizing zone transfers.

IMPORTANT

When communicating over an insecure network, do not rely on IP address-based authentication only.

17.2.5.4. DNS Security Extensions (DNSSEC)

Domain Name System Security Extensions (DNSSEC) provide origin authentication of DNS data, authenticated denial of existence, and data integrity. When a particular domain is marked as secure, the

SERFVAIL response is returned for each resource record that fails the validation.

Note that to debug a DNSSEC-signed domain or a DNSSEC-aware resolver, you can use the dig utility as described in

Section 17.2.4, “Using the dig Utility”

. Useful options are +dnssec (requests DNSSECrelated resource records by setting the DNSSEC OK bit), +cd (tells recursive nameserver not to validate the response), and +bufsize=512 (changes the packet size to 512B to get through some firewalls).

17.2.5.5. Internet Protocol version 6 (IPv6)

Internet Protocol version 6 (IPv6) is supported through the use of AAAA resource records, and the

listen-on-v6 directive as described in

Table 17.3, “Commonly used options” .

17.2.6. Common Mistakes to Avoid

The following is a list of recommendations on how to avoid common mistakes users make when configuring a nameserver:

Use semicolons and curly brackets correctly

An omitted semicolon or unmatched curly bracket in the /etc/named.conf file can prevent the

named service from starting.

367

Deployment Guide

Use period correctly

In zone files, a period at the end of a domain name denotes a fully qualified domain name. If omitted, the named service will append the name of the zone or the value of $ORIGIN to complete it.

Increment the serial number when editing a zone file

If the serial number is not incremented, the primary nameserver will have the correct, new information, but the secondary nameservers will never be notified of the change, and will not attempt to refresh their data of that zone.

Configure the firewall

If a firewall is blocking connections from the named service to other nameservers, the recommended practice is to change the firewall settings.

WARNING

According to the recent research in DNS security, using a fixed UDP source port for DNS queries is a potential security vulnerability that could allow an attacker to conduct cache-poisoning attacks more easily. To prevent this, configure your firewall to allow queries from a random UDP source port.

17.2.7. Additional Resources

The following sources of information provide additional resources regarding BIND.

17.2.7.1. Installed Documentation

BIND features a full range of installed documentation covering many different topics, each placed in its own subject directory. For each item below, replace version with the version of the bind package installed on the system:

/usr/share/doc/bind-version/

The main directory containing the most recent documentation.

/usr/share/doc/bind-version/arm/

The directory containing the BIND 9 Administrator Reference Manual in HTML and SGML formats, which details BIND resource requirements, how to configure different types of nameservers, how to perform load balancing, and other advanced topics. For most new users of BIND, this is the best place to start.

/usr/share/doc/bind-version/draft/

The directory containing assorted technical documents that review issues related to the DNS service, and propose some methods to address them.

/usr/share/doc/bind-version/misc/

368

CHAPTER 17. DNS SERVERS

The directory designed to address specific advanced issues. Users of BIND version 8 should consult the migration document for specific changes they must make when moving to BIND 9. The

options file lists all of the options implemented in BIND 9 that are used in /etc/named.conf.

/usr/share/doc/bind-version/rfc/

The directory providing every RFC document related to BIND.

There is also a number of man pages for the various applications and configuration files involved with

BIND: man rndc

The manual page for rndc containing the full documentation on its usage.

man named

The manual page for named containing the documentation on assorted arguments that can be used to control the BIND nameserver daemon.

man lwresd

The manual page for lwresd containing the full documentation on the lightweight resolver daemon and its usage.

man named.conf

The manual page with a comprehensive list of options available within the named configuration file.

man rndc.conf

The manual page with a comprehensive list of options available within the rndc configuration file.

17.2.7.2. Useful Websites

http://www.isc.org/software/bind

The home page of the BIND project containing information about current releases as well as a PDF version of the BIND 9 Administrator Reference Manual.

17.2.7.3. Related Books

DNS and BIND by Paul Albitz and Cricket Liu; O'Reilly & Associates

A popular reference that explains both common and esoteric BIND configuration options, and provides strategies for securing a DNS server.

The Concise Guide to DNS and BIND by Nicolai Langfeldt; Que

Looks at the connection between multiple network services and BIND, with an emphasis on taskoriented, technical topics.

369

Deployment Guide

CHAPTER 18. WEB SERVERS

HTTP (Hypertext Transfer Protocol) server, or a web server, is a network service that serves content to a client over the web. This typically means web pages, but any other documents can be served as well.

18.1. THE APACHE HTTP SERVER

This section focuses on the Apache HTTP Server 2.2, a robust, full-featured open source web server developed by the Apache Software Foundation , that is included in Red Hat Enterprise Linux 6. It describes the basic configuration of the httpd service, and covers advanced topics such as adding server modules, setting up virtual hosts, or configuring the secure HTTP server.

There are important differences between the Apache HTTP Server 2.2 and version 2.0, and if you are upgrading from a previous release of Red Hat Enterprise Linux, you will need to update the httpd service configuration accordingly. This section reviews some of the newly added features, outlines important changes, and guides you through the update of older configuration files.

18.1.1. New Features

The Apache HTTP Server version 2.2 introduces the following enhancements:

Improved caching modules, that is, mod_cache and mod_disk_cache.

Support for proxy load balancing, that is, the mod_proxy_balancer module.

Support for large files on 32-bit architectures, allowing the web server to handle files greater than 2GB.

A new structure for authentication and authorization support, replacing the authentication modules provided in previous versions.

18.1.2. Notable Changes

Since version 2.0, few changes have been made to the default httpd service configuration:

The following modules are no longer loaded by default: mod_cern_meta and mod_asis.

The following module is newly loaded by default: mod_ext_filter.

18.1.3. Updating the Configuration

To update the configuration files from the Apache HTTP Server version 2.0, take the following steps:

1. Make sure all module names are correct, since they may have changed. Adjust the

LoadModule directive for each module that has been renamed.

2. Recompile all third party modules before attempting to load them. This typically means authentication and authorization modules.

3. If you use the mod_userdir module, make sure the UserDir directive indicating a directory name (typically public_html) is provided.

4. If you use the Apache HTTP Secure Server, see

Section 18.1.9, “Enabling the mod_ssl Module”

for important information on enabling the Secure Sockets Layer (SSL) protocol.

370

CHAPTER 18. WEB SERVERS

Note that you can check the configuration for possible errors by using the following command:

~]# service httpd configtest

Syntax OK

For more information on upgrading the Apache HTTP Server configuration from version 2.0 to 2.2, see http://httpd.apache.org/docs/2.2/upgrading.html

.

18.1.4. Running the httpd Service

This section describes how to start, stop, restart, and check the current status of the Apache HTTP

Server. To be able to use the httpd service, make sure you have the httpd installed. You can do so by using the following command:

~]# yum install httpd

For more information on the concept of runlevels and how to manage system services in Red Hat

Enterprise Linux in general, see Chapter 12, Services and Daemons .

18.1.4.1. Starting the Service

To run the httpd service, type the following at a shell prompt as root:

~]# service httpd start

Starting httpd: [ OK ]

If you want the service to start automatically at the boot time, use the following command:

~]# chkconfig httpd on

This will enable the service for runlevel 2, 3, 4, and 5. Alternatively, you can use the Service

Configuration utility as described in

Section 12.2.1.1, “Enabling and Disabling a Service”

.

NOTE

If running the Apache HTTP Server as a secure server, a password may be required after the machine boots if using an encrypted private SSL key.

18.1.4.2. Stopping the Service

To stop the running httpd service, type the following at a shell prompt as root:

~]# service httpd stop

Stopping httpd: [ OK ]

To prevent the service from starting automatically at the boot time, type:

~]# chkconfig httpd off

This will disable the service for all runlevels. Alternatively, you can use the Service Configuration utility as described in

Section 12.2.1.1, “Enabling and Disabling a Service”

.

371

Deployment Guide

18.1.4.3. Restarting the Service

There are three different ways to restart a running httpd service:

1. To restart the service completely, enter the following command as root:

~]# service httpd restart

Stopping httpd: [ OK

]

Starting httpd: [ OK

]

This stops the running httpd service and immediately starts it again. Use this command after installing or removing a dynamically loaded module such as PHP.

2. To only reload the configuration, as root, type:

~]# service httpd reload

This causes the running httpd service to reload its configuration file. Any requests being currently processed will be interrupted, which may cause a client browser to display an error message or render a partial page.

3. To reload the configuration without affecting active requests, enter the following command as

root:

~]# service httpd graceful

This causes the running httpd service to reload its configuration file. Any requests being currently processed will use the old configuration.

Alternatively, you can use the Service Configuration utility as described in Section 12.2.1.2, “Starting,

Restarting, and Stopping a Service” .

18.1.4.4. Verifying the Service Status

To verify that the httpd service is running, type the following at a shell prompt:

~]# service httpd status httpd (pid 19014) is running...

Alternatively, you can use the Service Configuration utility as described in Section 12.2.1, “Using the

Service Configuration Utility” .

18.1.5. Editing the Configuration Files

When the httpd service is started, by default, it reads the configuration from locations that are listed in

Table 18.1, “The httpd service configuration files”

.

Table 18.1. The httpd service configuration files

372

CHAPTER 18. WEB SERVERS

Path

/etc/httpd/conf/httpd.

conf

/etc/httpd/conf.d/

Description

The main configuration file.

An auxiliary directory for configuration files that are included in the main configuration file.

Although the default configuration should be suitable for most situations, it is a good idea to become at least familiar with some of the more important configuration options. Note that for any changes to take

effect, the web server has to be restarted first. See Section 18.1.4.3, “Restarting the Service”

for more information on how to restart the httpd service.

To check the configuration for possible errors, type the following at a shell prompt:

~]# service httpd configtest

Syntax OK

To make the recovery from mistakes easier, it is recommended that you make a copy of the original file before editing it.

18.1.5.1. Common httpd.conf Directives

The following directives are commonly used in the /etc/httpd/conf/httpd.conf configuration file:

<Directory>

The <Directory> directive allows you to apply certain directives to a particular directory only. It takes the following form:

<Directory directory>

directive

</Directory>

The directory can be either a full path to an existing directory in the local file system, or a wildcard expression.

This directive can be used to configure additional cgi-bin directories for server-side scripts located outside the directory that is specified by ScriptAlias. In this case, the ExecCGI and AddHandler directives must be supplied, and the permissions on the target directory must be set correctly (that is,

0755).

Example 18.1. Using the <Directory> directive

<Directory /var/www/html>

Options Indexes FollowSymLinks

AllowOverride None

Order allow,deny

Allow from all

</Directory>

373

Deployment Guide

<IfDefine>

The IfDefine directive allows you to use certain directives only when a particular parameter is supplied on the command line. It takes the following form:

<IfDefine [!]parameter>

directive

</IfDefine>

The parameter can be supplied at a shell prompt using the -Dparameter command-line option (for example, httpd -DEnableHome). If the optional exclamation mark (that is, !) is present, the enclosed directives are used only when the parameter is not specified.

Example 18.2. Using the <IfDefine> directive

<IfDefine EnableHome>

UserDir public_html

</IfDefine>

<IfModule>

The <IfModule> directive allows you to use certain directive only when a particular module is loaded. It takes the following form:

<IfModule [!]module>

directive

</IfModule>

The module can be identified either by its name, or by the file name. If the optional exclamation mark

(that is, !) is present, the enclosed directives are used only when the module is not loaded.

Example 18.3. Using the <IfModule> directive

<IfModule mod_disk_cache.c>

CacheEnable disk /

CacheRoot /var/cache/mod_proxy

</IfModule>

<Location>

The <Location> directive allows you to apply certain directives to a particular URL only. It takes the following form:

<Location url>

directive

</Location>

374

CHAPTER 18. WEB SERVERS

The url can be either a path relative to the directory specified by the DocumentRoot directive (for example, /server-info), or an external URL such as http://example.com/server-info.

Example 18.4. Using the <Location> directive

<Location /server-info>

SetHandler server-info

Order deny,allow

Deny from all

Allow from .example.com

</Location>

<Proxy>

The <Proxy> directive allows you to apply certain directives to the proxy server only. It takes the following form:

<Proxy pattern>

directive

</Proxy>

The pattern can be an external URL, or a wildcard expression (for example,

http://example.com/*).

Example 18.5. Using the <Proxy> directive

<Proxy *>

Order deny,allow

Deny from all

Allow from .example.com

</Proxy>

<VirtualHost>

The <VirtualHost> directive allows you apply certain directives to particular virtual hosts only. It takes the following form:

<VirtualHost address[:port]…>

directive

</VirtualHost>

The address can be an IP address, a fully qualified domain name, or a special form as described in

Table 18.2, “Available <VirtualHost> options” .

Table 18.2. Available <VirtualHost> options

375

Deployment Guide

Option

*

_default_

Description

Represents all IP addresses.

Represents unmatched IP addresses.

Example 18.6. Using the <VirtualHost> directive

<VirtualHost *:80>

ServerAdmin [email protected]

DocumentRoot /www/docs/penguin.example.com

ServerName penguin.example.com

ErrorLog logs/penguin.example.com-error_log

CustomLog logs/penguin.example.com-access_log common

</VirtualHost>

AccessFileName

The AccessFileName directive allows you to specify the file to be used to customize access control information for each directory. It takes the following form:

AccessFileName filename

The filename is a name of the file to look for in the requested directory. By default, the server looks for .htaccess.

For security reasons, the directive is typically followed by the Files tag to prevent the files beginning with .ht from being accessed by web clients. This includes the .htaccess and .htpasswd files.

Example 18.7. Using the AccessFileName directive

AccessFileName .htaccess

<Files ~ "^\.ht">

Order allow,deny

Deny from all

Satisfy All

</Files>

Action

The Action directive allows you to specify a CGI script to be executed when a certain media type is requested. It takes the following form:

Action content-type path

The content-type has to be a valid MIME type such as text/html, image/png, or

application/pdf. The path refers to an existing CGI script, and must be relative to the directory specified by the DocumentRoot directive (for example, /cgi-bin/process-image.cgi).

376

CHAPTER 18. WEB SERVERS

Example 18.8. Using the Action directive

Action image/png /cgi-bin/process-image.cgi

AddDescription

The AddDescription directive allows you to specify a short description to be displayed in servergenerated directory listings for a given file. It takes the following form:

AddDescription "description" filename

The description should be a short text enclosed in double quotes (that is, "). The filename can be a full file name, a file extension, or a wildcard expression.

Example 18.9. Using the AddDescription directive

AddDescription "GZIP compressed tar archive" .tgz

AddEncoding

The AddEncoding directive allows you to specify an encoding type for a particular file extension. It takes the following form:

AddEncoding encoding extension

The encoding has to be a valid MIME encoding such as x-compress, x-gzip, etc. The extension is a case sensitive file extension, and is conventionally written with a leading dot (for example, .gz).

This directive is typically used to instruct web browsers to decompress certain file types as they are downloaded.

Example 18.10. Using the AddEncoding directive

AddEncoding x-gzip .gz .tgz

AddHandler

The AddHandler directive allows you to map certain file extensions to a selected handler. It takes the following form:

AddHandler handler extension

The handler has to be a name of a previously defined handler. The extension is a case sensitive file extension, and is conventionally written with a leading dot (for example, .cgi).

This directive is typically used to treat files with the .cgi extension as CGI scripts regardless of the directory they are in. Additionally, it is also commonly used to process server-parsed HTML and image-map files.

377

Deployment Guide

Example 18.11. Using the AddHandler option

AddHandler cgi-script .cgi

AddIcon

The AddIcon directive allows you to specify an icon to be displayed for a particular file in servergenerated directory listings. It takes the following form:

AddIcon path pattern

The path refers to an existing icon file, and must be relative to the directory specified by the

DocumentRoot directive (for example, /icons/folder.png). The pattern can be a file name, a file extension, a wildcard expression, or a special form as described in the following table:

Table 18.3. Available AddIcon options

Option Description

Represents a directory.

^^DIRECTORY^^

^^BLANKICON^^ Represents a blank line.

Example 18.12. Using the AddIcon directive

AddIcon /icons/text.png .txt README

AddIconByEncoding

The AddIconByEncoding directive allows you to specify an icon to be displayed for a particular encoding type in server-generated directory listings. It takes the following form:

AddIconByEncoding path encoding

The path refers to an existing icon file, and must be relative to the directory specified by the

DocumentRoot directive (for example, /icons/compressed.png). The encoding has to be a valid

MIME encoding such as x-compress, x-gzip, etc.

Example 18.13. Using the AddIconByEncoding directive

AddIconByEncoding /icons/compressed.png x-compress x-gzip

AddIconByType

The AddIconByType directive allows you to specify an icon to be displayed for a particular media type in server-generated directory listings. It takes the following form:

378

CHAPTER 18. WEB SERVERS

AddIconByType path content-type

The path refers to an existing icon file, and must be relative to the directory specified by the

DocumentRoot directive (for example, /icons/text.png). The content-type has to be either a valid MIME type (for example, text/html or image/png), or a wildcard expression such as

text/*, image/*, etc.

Example 18.14. Using the AddIconByType directive

AddIconByType /icons/video.png video/*

AddLanguage

The AddLanguage directive allows you to associate a file extension with a specific language. It takes the following form:

AddLanguage language extension

The language has to be a valid MIME language such as cs, en, or fr. The extension is a case sensitive file extension, and is conventionally written with a leading dot (for example, .cs).

This directive is especially useful for web servers that serve content in multiple languages based on the client's language settings.

Example 18.15. Using the AddLanguage directive

AddLanguage cs .cs .cz

AddType

The AddType directive allows you to define or override the media type for a particular file extension.

It takes the following form:

AddType content-type extension

The content-type has to be a valid MIME type such as text/html, image/png, etc. The extension is a case sensitive file extension, and is conventionally written with a leading dot (for example, .cs).

Example 18.16. Using the AddType directive

AddType application/x-gzip .gz .tgz

Alias

The Alias directive allows you to refer to files and directories outside the default directory specified by the DocumentRoot directive. It takes the following form:

Alias url-path real-path

379

Deployment Guide

The url-path must be relative to the directory specified by the DocumentRoot directive (for example,

/images/). The real-path is a full path to a file or directory in the local file system.

This directive is typically followed by the Directory tag with additional permissions to access the target directory. By default, the /icons/ alias is created so that the icons from /var/www/icons/ are displayed in server-generated directory listings.

Example 18.17. Using the Alias directive

Alias /icons/ /var/www/icons/

<Directory "/var/www/icons">

Options Indexes MultiViews FollowSymLinks

AllowOverride None

Order allow,deny

Allow from all

<Directory>

Allow

The Allow directive allows you to specify which clients have permission to access a given directory.

It takes the following form:

Allow from client

The client can be a domain name, an IP address (both full and partial), a network/netmask pair, or

all for all clients.

Example 18.18. Using the Allow directive

Allow from 192.168.1.0/255.255.255.0

AllowOverride

The AllowOverride directive allows you to specify which directives in a .htaccess file can override the default configuration. It takes the following form:

AllowOverride type

The type has to be one of the available grouping options as described in Table 18.4, “Available

AllowOverride options” .

Table 18.4. Available AllowOverride options

Option Description

All All directives in .htaccess

are allowed to override earlier configuration settings.

380

CHAPTER 18. WEB SERVERS

Option

None

AuthConfig

FileInfo

Indexes

Limit

Options [=option,…]

Description

No directive in .htaccess

is allowed to override earlier configuration settings.

Allows the use of authorization directives such as AuthName , AuthType , or

Require .

Allows the use of file type, metadata, and mod_rewrite directives such as

DefaultType , RequestHeader , or RewriteEngine , as well as the

Action directive.

Allows the use of directory indexing directives such as AddDescription ,

AddIcon , or FancyIndexing .

Allows the use of host access directives, that is, Allow , Deny , and Order .

Allows the use of the Options directive. Additionally, you can provide a comma-separated list of options to customize which options can be set using this directive.

Example 18.19. Using the AllowOverride directive

AllowOverride FileInfo AuthConfig Limit

BrowserMatch

The BrowserMatch directive allows you to modify the server behavior based on the client's web browser type. It takes the following form:

BrowserMatch pattern variable

The pattern is a regular expression to match the User-Agent HTTP header field. The variable is an environment variable that is set when the header field matches the pattern.

By default, this directive is used to deny connections to specific browsers with known issues, and to disable keepalives and HTTP header flushes for browsers that are known to have problems with these actions.

Example 18.20. Using the BrowserMatch directive

BrowserMatch "Mozilla/2" nokeepalive

CacheDefaultExpire

The CacheDefaultExpire option allows you to set how long to cache a document that does not have any expiration date or the date of its last modification specified. It takes the following form:

381

Deployment Guide

CacheDefaultExpire time

The time is specified in seconds. The default option is 3600 (that is, one hour).

Example 18.21. Using the CacheDefaultExpire directive

CacheDefaultExpire 3600

CacheDisable

The CacheDisable directive allows you to disable caching of certain URLs. It takes the following form:

CacheDisable path

The path must be relative to the directory specified by the DocumentRoot directive (for example,

/files/).

Example 18.22. Using the CacheDisable directive

CacheDisable /temporary

CacheEnable

The CacheEnable directive allows you to specify a cache type to be used for certain URLs. It takes the following form:

CacheEnable type url

The type has to be a valid cache type as described in

Table 18.5, “Available cache types” . The url

can be a path relative to the directory specified by the DocumentRoot directive (for example,

/images/), a protocol (for example, ftp://), or an external URL such as

http://example.com/.

Table 18.5. Available cache types

Type Description

The memory-based storage manager.

mem disk fd

The disk-based storage manager.

The file descriptor cache.

Example 18.23. Using the CacheEnable directive

CacheEnable disk /

382

CHAPTER 18. WEB SERVERS

CacheLastModifiedFactor

The CacheLastModifiedFactor directive allows you to customize how long to cache a document that does not have any expiration date specified, but that provides information about the date of its last modification. It takes the following form:

CacheLastModifiedFactor number

The number is a coefficient to be used to multiply the time that passed since the last modification of the document. The default option is 0.1 (that is, one tenth).

Example 18.24. Using the CacheLastModifiedFactor directive

CacheLastModifiedFactor 0.1

CacheMaxExpire

The CacheMaxExpire directive allows you to specify the maximum amount of time to cache a document. It takes the following form:

CacheMaxExpire time

The time is specified in seconds. The default option is 86400 (that is, one day).

Example 18.25. Using the CacheMaxExpire directive

CacheMaxExpire 86400

CacheNegotiatedDocs

The CacheNegotiatedDocs directive allows you to enable caching of the documents that were negotiated on the basis of content. It takes the following form:

CacheNegotiatedDocs option

The option has to be a valid keyword as described in Table 18.6, “Available CacheNegotiatedDocs options” . Since the content-negotiated documents may change over time or because of the input from

the requester, the default option is Off.

Table 18.6. Available CacheNegotiatedDocs options

Option Description

On

Off

Enables caching the content-negotiated documents.

Disables caching the content-negotiated documents.

Example 18.26. Using the CacheNegotiatedDocs directive

383

Deployment Guide

CacheNegotiatedDocs On

CacheRoot

The CacheRoot directive allows you to specify the directory to store cache files in. It takes the following form:

CacheRoot directory

The directory must be a full path to an existing directory in the local file system. The default option is

/var/cache/mod_proxy/.

Example 18.27. Using the CacheRoot directive

CacheRoot /var/cache/mod_proxy

CustomLog

The CustomLog directive allows you to specify the log file name and the log file format. It takes the following form:

CustomLog path format

The path refers to a log file, and must be relative to the directory that is specified by the ServerRoot directive (that is, /etc/httpd/ by default). The format has to be either an explicit format string, or a format name that was previously defined using the LogFormat directive.

Example 18.28. Using the CustomLog directive

CustomLog logs/access_log combined

DefaultIcon

The DefaultIcon directive allows you to specify an icon to be displayed for a file in servergenerated directory listings when no other icon is associated with it. It takes the following form:

DefaultIcon path

The path refers to an existing icon file, and must be relative to the directory specified by the

DocumentRoot directive (for example, /icons/unknown.png).

Example 18.29. Using the DefaultIcon directive

DefaultIcon /icons/unknown.png

DefaultType

384

CHAPTER 18. WEB SERVERS

The DefaultType directive allows you to specify a media type to be used in case the proper MIME type cannot be determined by the server. It takes the following form:

DefaultType content-type

The content-type has to be a valid MIME type such as text/html, image/png,

application/pdf, etc.

Example 18.30. Using the DefaultType directive

DefaultType text/plain

Deny

The Deny directive allows you to specify which clients are denied access to a given directory. It takes the following form:

Deny from client

The client can be a domain name, an IP address (both full and partial), a network/netmask pair, or

all for all clients.

Example 18.31. Using the Deny directive

Deny from 192.168.1.1

DirectoryIndex

The DirectoryIndex directive allows you to specify a document to be served to a client when a directory is requested (that is, when the URL ends with the / character). It takes the following form:

DirectoryIndex filename

The filename is a name of the file to look for in the requested directory. By default, the server looks for index.html, and index.html.var.

Example 18.32. Using the DirectoryIndex directive

DirectoryIndex index.html index.html.var

DocumentRoot

The DocumentRoot directive allows you to specify the main directory from which the content is served. It takes the following form:

DocumentRoot directory

385

Deployment Guide

The directory must be a full path to an existing directory in the local file system. The default option is

/var/www/html/.

Example 18.33. Using the DocumentRoot directive

DocumentRoot /var/www/html

ErrorDocument

The ErrorDocument directive allows you to specify a document or a message to be displayed as a response to a particular error. It takes the following form:

ErrorDocument error-code action

The error-code has to be a valid code such as 403 (Forbidden), 404 (Not Found), or 500 (Internal

Server Error). The action can be either a URL (both local and external), or a message string enclosed in double quotes (that is, ").

Example 18.34. Using the ErrorDocument directive

ErrorDocument 403 "Access Denied"

ErrorDocument 404 /404-not_found.html

ErrorLog

The ErrorLog directive allows you to specify a file to which the server errors are logged. It takes the following form:

ErrorLog path

The path refers to a log file, and can be either absolute, or relative to the directory that is specified by the ServerRoot directive (that is, /etc/httpd/ by default). The default option is logs/error_log

Example 18.35. Using the ErrorLog directive

ErrorLog logs/error_log

ExtendedStatus

The ExtendedStatus directive allows you to enable detailed server status information. It takes the following form:

ExtendedStatus option

The option has to be a valid keyword as described in

Table 18.7, “Available ExtendedStatus options” .

The default option is Off.

Table 18.7. Available ExtendedStatus options

386

CHAPTER 18. WEB SERVERS

Option

On

Off

Description

Enables generating the detailed server status.

Disables generating the detailed server status.

Example 18.36. Using the ExtendedStatus directive

ExtendedStatus On

Group

The Group directive allows you to specify the group under which the httpd service will run. It takes the following form:

Group group

The group has to be an existing UNIX group. The default option is apache.

Note that Group is no longer supported inside <VirtualHost>, and has been replaced by the

SuexecUserGroup directive.

Example 18.37. Using the Group directive

Group apache

HeaderName

The HeaderName directive allows you to specify a file to be prepended to the beginning of the servergenerated directory listing. It takes the following form:

HeaderName filename

The filename is a name of the file to look for in the requested directory. By default, the server looks for HEADER.html.

Example 18.38. Using the HeaderName directive

HeaderName HEADER.html

HostnameLookups

The HostnameLookups directive allows you to enable automatic resolving of IP addresses. It takes the following form:

HostnameLookups option

387

Deployment Guide

The option has to be a valid keyword as described in Table 18.8, “Available HostnameLookups options” . To conserve resources on the server, the default option is Off.

Table 18.8. Available HostnameLookups options

Option Description

On

Double

Off

Enables resolving the IP address for each connection so that the host name can be logged. However, this also adds a significant processing overhead.

Enables performing the double-reverse DNS lookup. In comparison to the above option, this adds even more processing overhead.

Disables resolving the IP address for each connection.

Note that when the presence of host names is required in server log files, it is often possible to use one of the many log analyzer tools that perform the DNS lookups more efficiently.

Example 18.39. Using the HostnameLookups directive

HostnameLookups Off

Include

The Include directive allows you to include other configuration files. It takes the following form:

Include filename

The filename can be an absolute path, a path relative to the directory specified by the ServerRoot directive, or a wildcard expression. All configuration files from the /etc/httpd/conf.d/ directory are loaded by default.

Example 18.40. Using the Include directive

Include conf.d/*.conf

IndexIgnore

The IndexIgnore directive allows you to specify a list of file names to be omitted from the servergenerated directory listings. It takes the following form:

IndexIgnore filename

The filename option can be either a full file name, or a wildcard expression.

Example 18.41. Using the IndexIgnore directive

IndexIgnore .??* *~ *# HEADER* README* RCS CVS *,v *,t

388

CHAPTER 18. WEB SERVERS

IndexOptions

The IndexOptions directive allows you to customize the behavior of server-generated directory listings. It takes the following form:

IndexOptions option

The option has to be a valid keyword as described in

Table 18.9, “Available directory listing options” .

The default options are Charset=UTF-8, FancyIndexing, HTMLTable, NameWidth=*, and

VersionSort.

Table 18.9. Available directory listing options

Option Description

Charset =encoding

Type =content-type

DescriptionWidth =value

Specifies the character set of a generated web page. The encoding has to be a valid character set such as UTF-8 or ISO-8859-2 .

Specifies the media type of a generated web page. The content-type has to be a valid MIME type such as text/html or text/plain .

Specifies the width of the description column. The value can be either a number of characters, or an asterisk (that is, * ) to adjust the width automatically.

FancyIndexing

FolderFirst

HTMLTable

IconsAreLinks

IconHeight =value

IconWidth =value

IgnoreCase

IgnoreClient

NameWidth =value

ScanHTMLTitles

Enables advanced features such as different icons for certain files or possibility to re-sort a directory listing by clicking on a column header.

Enables listing directories first, always placing them above files.

Enables the use of HTML tables for directory listings.

Enables using the icons as links.

Specifies an icon height. The value is a number of pixels.

Specifies an icon width. The value is a number of pixels.

Enables sorting files and directories in a case-sensitive manner.

Disables accepting query variables from a client.

Specifies the width of the file name column. The value can be either a number of characters, or an asterisk (that is, * ) to adjust the width automatically.

Enables parsing the file for a description (that is, the title element) in case it is not provided by the AddDescription directive.

389

Deployment Guide

Option

ShowForbidden

SuppressColumnSorting

SuppressDescription

SuppressHTMLPreamble

SuppressIcon

SuppressLastModified

SuppressRules

SuppressSize

TrackModified

VersionSort

XHTML

Description

Enables listing the files with otherwise restricted access.

Disables re-sorting a directory listing by clicking on a column header.

Disables reserving a space for file descriptions.

Disables the use of standard HTML preamble when a file specified by the HeaderName directive is present.

Disables the use of icons in directory listings.

Disables displaying the date of the last modification field in directory listings.

Disables the use of horizontal lines in directory listings.

Disables displaying the file size field in directory listings.

Enables returning the Last-Modified and ETag values in the

HTTP header.

Enables sorting files that contain a version number in the expected manner.

Enables the use of XHTML 1.0 instead of the default HTML 3.2.

Example 18.42. Using the IndexOptions directive

IndexOptions FancyIndexing VersionSort NameWidth=* HTMLTable

Charset=UTF-8

KeepAlive

The KeepAlive directive allows you to enable persistent connections. It takes the following form:

KeepAlive option

The option has to be a valid keyword as described in

Table 18.10, “Available KeepAlive options” . The

default option is Off.

Table 18.10. Available KeepAlive options

Option Description

390

CHAPTER 18. WEB SERVERS

Option

On

Description

Enables the persistent connections. In this case, the server will accept more than one request per connection.

Disables the keep-alive connections.

Off

Note that when the persistent connections are enabled, on a busy server, the number of child processes can increase rapidly and eventually reach the maximum limit, slowing down the server significantly. To reduce the risk, it is recommended that you set KeepAliveTimeout to a low number, and monitor the /var/log/httpd/logs/error_log log file carefully.

Example 18.43. Using the KeepAlive directive

KeepAlive Off

KeepAliveTimeout

The KeepAliveTimeout directive allows you to specify the amount of time to wait for another request before closing the connection. It takes the following form:

KeepAliveTimeout time

The time is specified in seconds. The default option is 15.

Example 18.44. Using the KeepAliveTimeout directive

KeepAliveTimeout 15

LanguagePriority

The LanguagePriority directive allows you to customize the precedence of languages. It takes the following form:

LanguagePriority language

The language has to be a valid MIME language such as cs, en, or fr.

This directive is especially useful for web servers that serve content in multiple languages based on the client's language settings.

Example 18.45. Using the LanguagePriority directive

LanguagePriority sk cs en

Listen

391

Deployment Guide

The Listen directive allows you to specify IP addresses or ports to listen to. It takes the following form:

Listen [ip-address:]port [protocol]

The ip-address is optional and unless supplied, the server will accept incoming requests on a given port from all IP addresses. Since the protocol is determined automatically from the port number, it can be usually omitted. The default option is to listen to port 80.

Note that if the server is configured to listen to a port under 1024, only superuser will be able to start the httpd service.

Example 18.46. Using the Listen directive

Listen 80

LoadModule

The LoadModule directive allows you to load a Dynamic Shared Object (DSO) module. It takes the following form:

LoadModule name path

The name has to be a valid identifier of the required module. The path refers to an existing module file, and must be relative to the directory in which the libraries are placed (that is, /usr/lib/httpd/ on 32-bit and /usr/lib64/httpd/ on 64-bit systems by default).

See

Section 18.1.6, “Working with Modules” for more information on the Apache HTTP Server's DSO

support.

Example 18.47. Using the LoadModule directive

LoadModule php5_module modules/libphp5.so

LogFormat

The LogFormat directive allows you to specify a log file format. It takes the following form:

LogFormat format name

The format is a string consisting of options as described in Table 18.11, “Common LogFormat options” . The name can be used instead of the format string in the CustomLog directive.

Table 18.11. Common LogFormat options

Option Description

Represents the size of the response in bytes.

%b

%h Represents the IP address or host name of a remote client.

392

CHAPTER 18. WEB SERVERS

Option

%l

%r

Description

Represents the remote log name if supplied. If not, a hyphen (that is, ) is used instead.

Represents the first line of the request string as it came from the browser or client.

Represents the status code.

%s

%t

%u

Represents the date and time of the request.

If the authentication is required, it represents the remote user. If not, a hyphen (that is, ) is used instead.

%

{field}

Represents the content of the HTTP header field. The common options include %

{Referer} (the URL of the web page that referred the client to the server) and %{User-

Agent} (the type of the web browser making the request).

Example 18.48. Using the LogFormat directive

LogFormat "%h %l %u %t \"%r\" %>s %b" common

LogLevel

The LogLevel directive allows you to customize the verbosity level of the error log. It takes the following form:

LogLevel option

The option has to be a valid keyword as described in

Table 18.12, “Available LogLevel options” . The

default option is warn.

Table 18.12. Available LogLevel options

Option Description emerg Only the emergency situations when the server cannot perform its work are logged.

alert crit error warn notice

All situations when an immediate action is required are logged.

All critical conditions are logged.

All error messages are logged.

All warning messages are logged.

Even normal, but still significant situations are logged.

393

Deployment Guide

Option info debug

Description

Various informational messages are logged.

Various debugging messages are logged.

Example 18.49. Using the LogLevel directive

LogLevel warn

MaxKeepAliveRequests

The MaxKeepAliveRequests directive allows you to specify the maximum number of requests for a persistent connection. It takes the following form:

MaxKeepAliveRequests number

A high number can improve the performance of the server. Note that using 0 allows unlimited number of requests. The default option is 100.

Example 18.50. Using the MaxKeepAliveRequests option

MaxKeepAliveRequests 100

NameVirtualHost

The NameVirtualHost directive allows you to specify the IP address and port number for a namebased virtual host. It takes the following form:

NameVirtualHost ip-address[:port]

The ip-address can be either a full IP address, or an asterisk (that is, *) representing all interfaces.

Note that IPv6 addresses have to be enclosed in square brackets (that is, [ and ]). The port is optional.

Name-based virtual hosting allows one Apache HTTP Server to serve different domains without using multiple IP addresses.

IMPORTANT

Name-based virtual hosts only work with non-secure HTTP connections. If using virtual hosts with a secure server, use IP address-based virtual hosts instead.

Example 18.51. Using the NameVirtualHost directive

NameVirtualHost *:80

394

CHAPTER 18. WEB SERVERS

Options

The Options directive allows you to specify which server features are available in a particular directory. It takes the following form:

Options option

The option has to be a valid keyword as described in

Table 18.13, “Available server features” .

Table 18.13. Available server features

Option Description

ExecCGI Enables the execution of CGI scripts.

Enables following symbolic links in the directory.

FollowSymLinks

Includes

IncludesNOEXEC

Enables server-side includes.

Enables server-side includes, but does not allow the execution of commands.

Enables server-generated directory listings.

Indexes

MultiViews

SymLinksIfOwnerMatch

Enables content-negotiated “MultiViews”.

Enables following symbolic links in the directory when both the link and the target file have the same owner.

All

None

Enables all of the features above with the exception of

MultiViews .

Disables all of the features above.

IMPORTANT

The SymLinksIfOwnerMatch option is not a security feature as it can be bypassed by an attacker.

Example 18.52. Using the Options directive

Options Indexes FollowSymLinks

Order

The Order directive allows you to specify the order in which the Allow and Deny directives are evaluated. It takes the following form:

Order option

395

Deployment Guide

The option has to be a valid keyword as described in

Table 18.14, “Available Order options”

. The default option is allow,deny.

Table 18.14. Available Order options

Option Description allow,deny deny,allow

Allow directives are evaluated first.

Deny directives are evaluated first.

Example 18.53. Using the Order directive

Order allow,deny

PidFile

The PidFile directive allows you to specify a file to which the process ID (PID) of the server is stored. It takes the following form:

PidFile path

The path refers to a pid file, and can be either absolute, or relative to the directory that is specified by the ServerRoot directive (that is, /etc/httpd/ by default). The default option is

run/httpd.pid.

Example 18.54. Using the PidFile directive

PidFile run/httpd.pid

ProxyRequests

The ProxyRequests directive allows you to enable forward proxy requests. It takes the following form:

ProxyRequests option

The option has to be a valid keyword as described in Table 18.15, “Available ProxyRequests options” . The default option is Off.

Table 18.15. Available ProxyRequests options

Option Description

On

Off

Enables forward proxy requests.

Disables forward proxy requests.

396

CHAPTER 18. WEB SERVERS

Example 18.55. Using the ProxyRequests directive

ProxyRequests On

ReadmeName

The ReadmeName directive allows you to specify a file to be appended to the end of the servergenerated directory listing. It takes the following form:

ReadmeName filename

The filename is a name of the file to look for in the requested directory. By default, the server looks for README.html.

Example 18.56. Using the ReadmeName directive

ReadmeName README.html

Redirect

The Redirect directive allows you to redirect a client to another URL. It takes the following form:

Redirect [status] path url

The status is optional, and if provided, it has to be a valid keyword as described in Table 18.16,

“Available status options” . The path refers to the old location, and must be relative to the directory

specified by the DocumentRoot directive (for example, /docs). The url refers to the current location of the content (for example, http://docs.example.com).

Table 18.16. Available status options

Status Description permanent Indicates that the requested resource has been moved permanently. The 301

(Moved Permanently) status code is returned to a client.

temp seeother gone

Indicates that the requested resource has been moved only temporarily. The

302 (Found) status code is returned to a client.

Indicates that the requested resource has been replaced. The 303 (See Other) status code is returned to a client.

Indicates that the requested resource has been removed permanently. The

410 (Gone) status is returned to a client.

Note that for more advanced redirection techniques, you can use the mod_rewrite module that is part of the Apache HTTP Server installation.

Example 18.57. Using the Redirect directive

397

Deployment Guide

Redirect permanent /docs http://docs.example.com

ScriptAlias

The ScriptAlias directive allows you to specify the location of CGI scripts. It takes the following form:

ScriptAlias url-path real-path

The url-path must be relative to the directory specified by the DocumentRoot directive (for example,

/cgi-bin/). The real-path is a full path to a file or directory in the local file system.

This directive is typically followed by the Directory tag with additional permissions to access the target directory. By default, the /cgi-bin/ alias is created so that the scripts located in the

/var/www/cgi-bin/ are accessible.

The ScriptAlias directive is used for security reasons to prevent CGI scripts from being viewed as ordinary text documents.

Example 18.58. Using the ScriptAlias directive

ScriptAlias /cgi-bin/ /var/www/cgi-bin/

<Directory "/var/www/cgi-bin">

AllowOverride None

Options None

Order allow,deny

Allow from all

</Directory>

ServerAdmin

The ServerAdmin directive allows you to specify the email address of the server administrator to be displayed in server-generated web pages. It takes the following form:

ServerAdmin email

The default option is root@localhost.

This directive is commonly set to webmaster@hostname, where hostname is the address of the server. Once set, alias webmaster to the person responsible for the web server in /etc/aliases, and as superuser, run the newaliases command.

Example 18.59. Using the ServerAdmin directive

ServerAdmin [email protected]

ServerName

398

CHAPTER 18. WEB SERVERS

The ServerName directive allows you to specify the host name and the port number of a web server.

It takes the following form:

ServerName hostname[:port]

The hostname has to be a fully qualified domain name (FQDN) of the server. The port is optional, but when supplied, it has to match the number specified by the Listen directive.

When using this directive, make sure that the IP address and server name pair are included in the

/etc/hosts file.

Example 18.60. Using the ServerName directive

ServerName penguin.example.com:80

ServerRoot

The ServerRoot directive allows you to specify the directory in which the server operates. It takes the following form:

ServerRoot directory

The directory must be a full path to an existing directory in the local file system. The default option is

/etc/httpd/.

Example 18.61. Using the ServerRoot directive

ServerRoot /etc/httpd

ServerSignature

The ServerSignature directive allows you to enable displaying information about the server on server-generated documents. It takes the following form:

ServerSignature option

The option has to be a valid keyword as described in Table 18.17, “Available ServerSignature options” . The default option is On.

Table 18.17. Available ServerSignature options

Option Description

On

Off

Enables appending the server name and version to server-generated pages.

Disables appending the server name and version to server-generated pages.

399

Deployment Guide

Option

EMail

Description

Enables appending the server name, version, and the email address of the system administrator as specified by the ServerAdmin directive to servergenerated pages.

Example 18.62. Using the ServerSignature directive

ServerSignature On

ServerTokens

The ServerTokens directive allows you to customize what information is included in the Server response header. It takes the following form:

ServerTokens option

The option has to be a valid keyword as described in

Table 18.18, “Available ServerTokens options”

.

The default option is OS.

Table 18.18. Available ServerTokens options

Option Description

Prod

Major

Includes the product name only (that is, Apache ).

Includes the product name and the major version of the server (for example,

2 ).

Minor

Min

OS

Full

Includes the product name and the minor version of the server (for example,

2.2

).

Includes the product name and the minimal version of the server (for example,

2.2.15

).

Includes the product name, the minimal version of the server, and the type of the operating system it is running on (for example, Red Hat ).

Includes all the information above along with the list of loaded modules.

Note that for security reasons, it is recommended to reveal as little information about the server as possible.

Example 18.63. Using the ServerTokens directive

ServerTokens Prod

400

CHAPTER 18. WEB SERVERS

SuexecUserGroup

The SuexecUserGroup directive allows you to specify the user and group under which the CGI scripts will be run. It takes the following form:

SuexecUserGroup user group

The user has to be an existing user, and the group must be a valid UNIX group.

For security reasons, the CGI scripts should not be run with root privileges. Note that in

<VirtualHost>, SuexecUserGroup replaces the User and Group directives.

Example 18.64. Using the SuexecUserGroup directive

SuexecUserGroup apache apache

Timeout

The Timeout directive allows you to specify the amount of time to wait for an event before closing a connection. It takes the following form:

Timeout time

The time is specified in seconds. The default option is 60.

Example 18.65. Using the Timeout directive

Timeout 60

TypesConfig

The TypesConfig allows you to specify the location of the MIME types configuration file. It takes the following form:

TypesConfig path

The path refers to an existing MIME types configuration file, and can be either absolute, or relative to the directory that is specified by the ServerRoot directive (that is, /etc/httpd/ by default). The default option is /etc/mime.types.

Note that instead of editing /etc/mime.types, the recommended way to add MIME type mapping to the Apache HTTP Server is to use the AddType directive.

Example 18.66. Using the TypesConfig directive

TypesConfig /etc/mime.types

UseCanonicalName

401

Deployment Guide

The UseCanonicalName allows you to specify the way the server refers to itself. It takes the following form:

UseCanonicalName option

The option has to be a valid keyword as described in Table 18.19, “Available UseCanonicalName options” . The default option is Off.

Table 18.19. Available UseCanonicalName options

Option Description

On

Off

DNS

Enables the use of the name that is specified by the ServerName directive.

Disables the use of the name that is specified by the ServerName directive.

The host name and port number provided by the requesting client are used instead.

Disables the use of the name that is specified by the ServerName directive.

The host name determined by a reverse DNS lookup is used instead.

Example 18.67. Using the UseCanonicalName directive

UseCanonicalName Off

User

The User directive allows you to specify the user under which the httpd service will run. It takes the following form:

User user

The user has to be an existing UNIX user. The default option is apache.

For security reasons, the httpd service should not be run with root privileges. Note that User is no longer supported inside <VirtualHost>, and has been replaced by the SuexecUserGroup directive.

Example 18.68. Using the User directive

User apache

UserDir

The UserDir directive allows you to enable serving content from users' home directories. It takes the following form:

UserDir option

402

CHAPTER 18. WEB SERVERS

The option can be either a name of the directory to look for in user's home directory (typically

public_html), or a valid keyword as described in

Table 18.20, “Available UserDir options”

. The default option is disabled.

Table 18.20. Available UserDir options

Option Description enabled user… Enables serving content from home directories of given users.

disabled [user…] Disables serving content from home directories, either for all users, or, if a space separated list of users is supplied, for given users only.

NOTE

In order for the web server to access the content, the permissions on relevant directories and files must be set correctly. Make sure that all users are able to access the home directories, and that they can access and read the content of the directory specified by the UserDir directive. For example:

~]# chmod a+x /home/username/

~]# chmod a+rx /home/username/public_html/

All files in this directory must be set accordingly.

Example 18.69. Using the UserDir directive

UserDir public_html

18.1.5.2. Common ssl.conf Directives

The Secure Sockets Layer (SSL) directives allow you to customize the behavior of the Apache HTTP

Secure Server, and in most cases, they are configured appropriately during the installation. Be careful when changing these settings, as incorrect configuration can lead to security vulnerabilities.

The following directive is commonly used in /etc/httpd/conf.d/ssl.conf:

SetEnvIf

The SetEnvIf directive allows you to set environment variables based on the headers of incoming connections. It takes the following form:

SetEnvIf option pattern [!]variable[=value]…

The option can be either a HTTP header field, a previously defined environment variable name, or a

valid keyword as described in Table 18.21, “Available SetEnvIf options”

. The pattern is a regular expression. The variable is an environment variable that is set when the option matches the pattern. If the optional exclamation mark (that is, !) is present, the variable is removed instead of being set.

Table 18.21. Available SetEnvIf options

403

Deployment Guide

Option Description

Refers to the client's host name.

Remote_Host

Remote_Addr Refers to the client's IP address.

Refers to the server's IP address.

Server_Addr

Request_Method Refers to the request method (for example, GET ).

Request_Protocol Refers to the protocol name and version (for example, HTTP/1.1

).

Request_URI Refers to the requested resource.

The SetEnvIf directive is used to disable HTTP keepalives, and to allow SSL to close the connection without a closing notification from the client browser. This is necessary for certain web browsers that do not reliably shut down the SSL connection.

Example 18.70. Using the SetEnvIf directive

SetEnvIf User-Agent ".*MSIE.*" \

nokeepalive ssl-unclean-shutdown \

downgrade-1.0 force-response-1.0

Note that for the /etc/httpd/conf.d/ssl.conf file to be present, the mod_ssl needs to be installed.

See

Section 18.1.8, “Setting Up an SSL Server” for more information on how to install and configure an

SSL server.

18.1.5.3. Common Multi-Processing Module Directives

The Multi-Processing Module (MPM) directives allow you to customize the behavior of a particular MPM specific server-pool. Since its characteristics differ depending on which MPM is used, the directives are embedded in IfModule. By default, the server-pool is defined for both the prefork and worker

MPMs.

The following MPM directives are commonly used in /etc/httpd/conf/httpd.conf:

MaxClients

The MaxClients directive allows you to specify the maximum number of simultaneously connected clients to process at one time. It takes the following form:

MaxClients number

A high number can improve the performance of the server, although it is not recommended to exceed

256 when using the prefork MPM.

Example 18.71. Using the MaxClients directive

404

CHAPTER 18. WEB SERVERS

MaxClients 256

MaxRequestsPerChild

The MaxRequestsPerChild directive allows you to specify the maximum number of request a child process can serve before it dies. It takes the following form:

MaxRequestsPerChild number

Setting the number to 0 allows unlimited number of requests.

The MaxRequestsPerChild directive is used to prevent long-lived processes from causing memory leaks.

Example 18.72. Using the MaxRequestsPerChild directive

MaxRequestsPerChild 4000

MaxSpareServers

The MaxSpareServers directive allows you to specify the maximum number of spare child processes. It takes the following form:

MaxSpareServers number

This directive is used by the prefork MPM only.

Example 18.73. Using the MaxSpareServers directive

MaxSpareServers 20

MaxSpareThreads

The MaxSpareThreads directive allows you to specify the maximum number of spare server threads. It takes the following form:

MaxSpareThreads number

The number must be greater than or equal to the sum of MinSpareThreads and

ThreadsPerChild. This directive is used by the worker MPM only.

Example 18.74. Using the MaxSpareThreads directive

MaxSpareThreads 75

MinSpareServers

405

Deployment Guide

The MinSpareServers directive allows you to specify the minimum number of spare child processes. It takes the following form:

MinSpareServers number

Note that a high number can create a heavy processing load on the server. This directive is used by the prefork MPM only.

Example 18.75. Using the MinSpareServers directive

MinSpareServers 5

MinSpareThreads

The MinSpareThreads directive allows you to specify the minimum number of spare server threads. It takes the following form:

MinSpareThreads number

This directive is used by the worker MPM only.

Example 18.76. Using the MinSpareThreads directive

MinSpareThreads 75

StartServers

The StartServers directive allows you to specify the number of child processes to create when the service is started. It takes the following form:

StartServers number

Since the child processes are dynamically created and terminated according to the current traffic load, it is usually not necessary to change this value.

Example 18.77. Using the StartServers directive

StartServers 8

ThreadsPerChild

The ThreadsPerChild directive allows you to specify the number of threads a child process can create. It takes the following form:

ThreadsPerChild number

This directive is used by the worker MPM only.

406

CHAPTER 18. WEB SERVERS

Example 18.78. Using the ThreadsPerChild directive

ThreadsPerChild 25

18.1.6. Working with Modules

Being a modular application, the httpd service is distributed along with a number of Dynamic Shared

Objects (DSOs), which can be dynamically loaded or unloaded at runtime as necessary. By default, these modules are located in /usr/lib/httpd/modules/ on 32-bit and in

/usr/lib64/httpd/modules/ on 64-bit systems.

18.1.6.1. Loading a Module

To load a particular DSO module, use the LoadModule directive as described in Section 18.1.5.1,

“Common httpd.conf Directives” . Note that modules provided by a separate package often have their

own configuration file in the /etc/httpd/conf.d/ directory.

Example 18.79. Loading the mod_ssl DSO

LoadModule ssl_module modules/mod_ssl.so

Once you are finished, restart the web server to reload the configuration. See Section 18.1.4.3,

“Restarting the Service” for more information on how to restart the httpd service.

18.1.6.2. Writing a Module

If you intend to create a new DSO module, make sure you have the httpd-devel package installed. To do so, enter the following command as root:

~]# yum install httpd-devel

This package contains the include files, the header files, and the APache eXtenSion (apxs) utility required to compile a module.

Once written, you can build the module with the following command:

~]# apxs -i -a -c module_name.c

If the build was successful, you should be able to load the module the same way as any other module that is distributed with the Apache HTTP Server.

18.1.7. Setting Up Virtual Hosts

The Apache HTTP Server's built in virtual hosting allows the server to provide different information based on which IP address, host name, or port is being requested.

To create a name-based virtual host, find the virtual host container provided in

/etc/httpd/conf/httpd.conf as an example, remove the hash sign (that is, #) from the beginning

407

Deployment Guide

of each line, and customize the options according to your requirements as shown in Example 18.80,

“Example virtual host configuration” .

Example 18.80. Example virtual host configuration

NameVirtualHost *:80

<VirtualHost *:80>

ServerAdmin [email protected]

DocumentRoot /www/docs/penguin.example.com

ServerName penguin.example.com

ServerAlias www.penguin.example.com

ErrorLog logs/penguin.example.com-error_log

CustomLog logs/penguin.example.com-access_log common

</VirtualHost>

Note that ServerName must be a valid DNS name assigned to the machine. The <VirtualHost> container is highly customizable, and accepts most of the directives available within the main server configuration. Directives that are not supported within this container include User and Group, which were replaced by SuexecUserGroup.

NOTE

If you configure a virtual host to listen on a non-default port, make sure you update the

Listen directive in the global settings section of the /etc/httpd/conf/httpd.conf file accordingly.

To activate a newly created virtual host, the web server has to be restarted first. See Section 18.1.4.3,

“Restarting the Service” for more information on how to restart the httpd service.

18.1.8. Setting Up an SSL Server

Secure Sockets Layer (SSL) is a cryptographic protocol that allows a server and a client to communicate securely. Along with its extended and improved version called Transport Layer Security (TLS), it ensures both privacy and data integrity. The Apache HTTP Server in combination with mod_ssl, a module that uses the OpenSSL toolkit to provide the SSL/TLS support, is commonly referred to as the SSL server.

Red Hat Enterprise Linux also supports the use of Mozilla NSS as the TLS implementation. Support for

Mozilla NSS is provided by the mod_nss module.

Unlike an HTTP connection that can be read and possibly modified by anybody who is able to intercept it, the use of SSL/TLS over HTTP, referred to as HTTPS, prevents any inspection or modification of the transmitted content. This section provides basic information on how to enable this module in the Apache

HTTP Server configuration, and guides you through the process of generating private keys and selfsigned certificates.

18.1.8.1. An Overview of Certificates and Security

Secure communication is based on the use of keys. In conventional or symmetric cryptography, both ends of the transaction have the same key they can use to decode each other's transmissions. On the other hand, in public or asymmetric cryptography, two keys co-exist: a private key that is kept a secret,

408

CHAPTER 18. WEB SERVERS and a public key that is usually shared with the public. While the data encoded with the public key can only be decoded with the private key, data encoded with the private key can in turn only be decoded with the public key.

To provide secure communications using SSL, an SSL server must use a digital certificate signed by a

Certificate Authority (CA). The certificate lists various attributes of the server (that is, the server host name, the name of the company, its location, etc.), and the signature produced using the CA's private key. This signature ensures that a particular certificate authority has signed the certificate, and that the certificate has not been modified in any way.

When a web browser establishes a new SSL connection, it checks the certificate provided by the web server. If the certificate does not have a signature from a trusted CA, or if the host name listed in the certificate does not match the host name used to establish the connection, it refuses to communicate with the server and usually presents a user with an appropriate error message.

By default, most web browsers are configured to trust a set of widely used certificate authorities.

Because of this, an appropriate CA should be chosen when setting up a secure server, so that target users can trust the connection, otherwise they will be presented with an error message, and will have to accept the certificate manually. Since encouraging users to override certificate errors can allow an attacker to intercept the connection, you should use a trusted CA whenever possible. For more information on this, see

Table 18.22, “Information about CA lists used by common web browsers” .

Table 18.22. Information about CA lists used by common web browsers

Web Browser Link

Mozilla root CA list .

Mozilla Firefox

Opera

Internet Explorer

Chromium

Information on root certificates used by Opera .

Information on root certificates used by Microsoft Windows .

Information on root certificates used by the Chromium project .

When setting up an SSL server, you need to generate a certificate request and a private key, and then send the certificate request, proof of the company's identity, and payment to a certificate authority. Once the CA verifies the certificate request and your identity, it will send you a signed certificate you can use with your server. Alternatively, you can create a self-signed certificate that does not contain a CA signature, and thus should be used for testing purposes only.

18.1.9. Enabling the mod_ssl Module

If you intend to set up an SSL or HTTPS server using mod_ssl, you cannot have another application or module, such as mod_nss configured to use the same port. Port 443 is the default port for HTTPS.

To set up an SSL server using the mod_ssl module and the OpenSSL toolkit, install the mod_ssl and openssl packages. Enter the following command as root:

~]# yum install mod_ssl openssl

This will create the mod_ssl configuration file at /etc/httpd/conf.d/ssl.conf, which is included in the main Apache HTTP Server configuration file by default. For the module to be loaded, restart the

httpd service as described in

Section 18.1.4.3, “Restarting the Service” .

409

Deployment Guide

IMPORTANT

Due to the vulnerability described in POODLE: SSLv3 vulnerability (CVE-2014-3566) ,

Red Hat recommends disabling SSL, if it is enabled, and using only TLSv1.1 or

TLSv1.2. Backwards compatibility can be achieved using TLSv1.0. Many products

Red Hat supports have the ability to use SSLv2 or SSLv3 protocols. However, the use of

SSLv2 or SSLv3 is now strongly recommended against.

18.1.9.1. Enabling and Disabling SSL and TLS in mod_ssl

To disable and enable specific versions of the SSL and TLS protocol, either do it globally by adding the

SSLProtocol directive in the “## SSL Global Context” section of the configuration file and removing it everywhere else, or edit the default entry under “# SSL Protocol support” in all “VirtualHost” sections. If you do not specify it in the per-domain VirtualHost section then it will inherit the settings from the global section. To make sure that a protocol version is being disabled the administrator should either only specify SSLProtocol in the “SSL Global Context” section, or specify it in all per-domain VirtualHost sections.

Note that in Red Hat Enterprise Linux 6.8 SSLv2 is disabled by default.

Procedure 18.1. Disable SSLv2 and SSLv3

To disable SSL version 2 and SSL version 3, which implies enabling everything except SSL version 2 and SSL version 3, in all VirtualHost sections, proceed as follows:

1. As root, open the /etc/httpd/conf.d/ssl.conf file and search for all instances of the

SSLProtocol directive. By default, the configuration file contains one section that looks as follows:

~]# vi /etc/httpd/conf.d/ssl.conf

# SSL Protocol support:

# List the enable protocol levels with which clients will be able to

# connect. Disable SSLv2 access by default:

SSLProtocol all -SSLv2

This section is within the VirtualHost section.

2. Edit the SSLProtocol line as follows:

# SSL Protocol support:

# List the enable protocol levels with which clients will be able to

# connect. Disable SSLv2 access by default:

SSLProtocol all -SSLv2 -SSLv3

Repeat this action for all VirtualHost sections. Save and close the file.

3. Verify that all occurrences of the SSLProtocol directive have been changed as follows:

~]# grep SSLProtocol /etc/httpd/conf.d/ssl.conf

SSLProtocol all -SSLv2 -SSLv3

This step is particularly important if you have more than the one default VirtualHost section.

4. Restart the Apache daemon as follows:

410

CHAPTER 18. WEB SERVERS

~]# service httpd restart

Note that any sessions will be interrupted.

Procedure 18.2. Disable All SSL and TLS Protocols Except TLS 1 and Up

To disable all SSL and TLS protocol versions except TLS version 1 and higher, proceed as follows:

1. As root, open the /etc/httpd/conf.d/ssl.conf file and search for all instances of

SSLProtocol directive. By default the file contains one section that looks as follows:

~]# vi /etc/httpd/conf.d/ssl.conf

# SSL Protocol support:

# List the enable protocol levels with which clients will be able to

# connect. Disable SSLv2 access by default:

SSLProtocol all -SSLv2

2. Edit the SSLProtocol line as follows:

# SSL Protocol support:

# List the enable protocol levels with which clients will be able to

# connect. Disable SSLv2 access by default:

SSLProtocol -all +TLSv1 +TLSv1.1 +TLSv1.2

Save and close the file.

3. Verify the change as follows:

~]# grep SSLProtocol /etc/httpd/conf.d/ssl.conf

SSLProtocol -all +TLSv1 +TLSv1.1 +TLSv1.2

4. Restart the Apache daemon as follows:

~]# service httpd restart

Note that any sessions will be interrupted.

Procedure 18.3. Testing the Status of SSL and TLS Protocols

To check which versions of SSL and TLS are enabled or disabled, make use of the openssl

s_client -connect command. The command has the following form: openssl s_client -connect hostname:port -protocol

Where port is the port to test and protocol is the protocol version to test for. To test the SSL server running locally, use localhost as the host name. For example, to test the default port for secure

HTTPS connections, port 443 to see if SSLv3 is enabled, issue a command as follows:

1. ~]# openssl s_client -connect localhost:443 -ssl3

CONNECTED(00000003)

139809943877536:error:14094410:SSL routines:SSL3_READ_BYTES:sslv3 alert handshake failure:s3_pkt.c:1257:SSL alert number 40

139809943877536:error:1409E0E5:SSL routines:SSL3_WRITE_BYTES:ssl

411

Deployment Guide handshake failure:s3_pkt.c:596: output omitted

New, (NONE), Cipher is (NONE)

Secure Renegotiation IS NOT supported

Compression: NONE

Expansion: NONE

SSL-Session:

Protocol : SSLv3 output truncated

The above output indicates that the handshake failed and therefore no cipher was negotiated.

2. ~]$ openssl s_client -connect localhost:443 -tls1_2

CONNECTED(00000003) depth=0 C = --, ST = SomeState, L = SomeCity, O = SomeOrganization,

OU = SomeOrganizationalUnit, CN = localhost.localdomain, emailAddress = [email protected]

output omitted

New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384

Server public key is 2048 bit

Secure Renegotiation IS supported

Compression: NONE

Expansion: NONE

SSL-Session:

Protocol : TLSv1.2

output truncated

The above output indicates that no failure of the handshake occurred and a set of ciphers was negotiated.

The openssl s_client command options are documented in the s_client(1) manual page.

For more information on the SSLv3 vulnerability and how to test for it, see the Red Hat Knowledgebase article POODLE: SSLv3 vulnerability (CVE-2014-3566) .

18.1.10. Enabling the mod_nss Module

If you intend to set up an HTTPS server using mod_nss, the HTTPS server cannot simultaneously use

mod_ssl with its default settings as mod_ssl will use port 443 by default, however this is the default

HTTPS port. If is recommend to remove the package if it is not required.

To remove mod_ssl, enter the following command as root:

~]# yum remove mod_ssl

412

CHAPTER 18. WEB SERVERS

NOTE

If mod_ssl is required for other purposes, modify the /etc/httpd/conf.d/ssl.conf file to use a port other than 443 to prevent mod_ssl conflicting with mod_nss when its port to listen on is changed to 443.

For a specific VirtualHost where HTTPS is required, mod_nss and mod_ssl can only coexist at the same time if they use unique ports. For this reason mod_nss by default uses

8443, but the default port for HTTPS is port 443. The port is specified by the Listen directive as well as in the VirtualHost name or address.

Everything in NSS is associated with a “token”. The software token exists in the NSS database but you can also have a physical token containing certificates. With OpenSSL, discrete certificates and private keys are held in PEM files. With NSS, these are stored in a database. Each certificate and key is associated with a token and each token can have a password protecting it. This password is optional, but if a password is used then the Apache HTTP server needs a copy of it in order to open the database without user intervention at system start.

Procedure 18.4. Configuring mod_nss

1. Install mod_nss as root:

~]# yum install mod_nss

This will create the mod_nss configuration file at /etc/httpd/conf.d/nss.conf. The

/etc/httpd/conf.d/ directory is included in the main Apache HTTP Server configuration file by default. For the module to be loaded, restart the httpd service as described in

Section 18.1.4.3, “Restarting the Service”

.

2. As root, open the /etc/httpd/conf.d/nss.conf file and search for all instances of the

Listen directive.

Edit the Listen 8443 line as follows:

Listen 443

Port 443 is the default port for HTTPS.

3. Edit the default VirtualHost _default_:8443 line as follows:

VirtualHost _default_:443

Edit any other non-default virtual host sections if they exist. Save and close the file.

4. Mozilla NSS stores certificates in a server certificate database indicated by the

NSSCertificateDatabase directive in the /etc/httpd/conf.d/nss.conf file. By default the path is set to /etc/httpd/alias, the NSS database created during installation.

To view the default NSS database, issue a command as follows:

~]# certutil -L -d /etc/httpd/alias

Certificate Nickname Trust

Attributes

413

Deployment Guide

SSL,S/MIME,JAR/XPI cacert

CTu,Cu,Cu

Server-Cert u,u,u alpha u,pu,u

In the above command output, Server-Cert is the default NSSNickname. The -L option lists all the certificates, or displays information about a named certificate, in a certificate database.

The -d option specifies the database directory containing the certificate and key database files.

See the certutil(1) man page for more command line options.

5. To configure mod_nss to use another database, edit the NSSCertificateDatabase line in the /etc/httpd/conf.d/nss.conf file. The default file has the following lines within the

VirtualHost section.

# Server Certificate Database:

# The NSS security database directory that holds the certificates and

# keys. The database consists of 3 files: cert8.db, key3.db and secmod.db.

# Provide the directory that these files exist.

NSSCertificateDatabase /etc/httpd/alias

In the above command output, alias is the default NSS database directory,

/etc/httpd/alias/.

6. To apply a password to the default NSS certificate database, use the following command as

root:

~]# certutil -W -d /etc/httpd/alias

Enter Password or Pin for "NSS Certificate DB":

Enter a password which will be used to encrypt your keys.

The password should be at least 8 characters long, and should contain at least one non-alphabetic character.

Enter new password:

Re-enter password:

Password changed successfully.

7. Before deploying the HTTPS server, create a new certificate database using a certificate signed by a certificate authority (CA).

Example 18.81. Adding a Certificate to the Mozilla NSS database

The certutil command is used to add a CA certificate to the NSS database files:

certutil -d /etc/httpd/nss-db-directory/ -A -n "CA_certificate" -

t CT,, -a -i certificate.pem

The above command adds a CA certificate stored in a PEM-formatted file named

414

CHAPTER 18. WEB SERVERS certificate.pem. The -d option specifies the NSS database directory containing the certificate and key database files, the -n option sets a name for the certificate, -t CT,, means that the certificate is trusted to be used in TLS clients and servers. The -A option adds an existing certificate to a certificate database. If the database does not exist it will be created. The -a option allows the use of ASCII format for input or output, and the -i option passes the

certificate.pem input file to the command.

See the certutil(1) man page for more command line options.

8. The NSS database should be password protected to safeguard the private key.

Example 18.82. Setting_a_Password_for_a_Mozilla_NSS_database

The certutil tool can be used to set a password for an NSS database as follows: certutil -W -d /etc/httpd/nss-db-directory/

For example, for the default database, issue a command as root as follows:

~]# certutil -W -d /etc/httpd/alias

Enter Password or Pin for "NSS Certificate DB":

Enter a password which will be used to encrypt your keys.

The password should be at least 8 characters long, and should contain at least one non-alphabetic character.

Enter new password:

Re-enter password:

Password changed successfully.

9. Configure mod_nss to use the NSS internal software token by changing the line with the

NSSPassPhraseDialog directive as follows:

~]# vi /etc/httpd/conf.d/nss.conf

NSSPassPhraseDialog file:/etc/httpd/password.conf

This is to avoid manual password entry on system start. The software token exists in the NSS database but you can also have a physical token containing your certificates.

10. If the SSL Server Certificate contained in the NSS database is an RSA certificate, make certain that the NSSNickname parameter is uncommented and matches the nickname displayed in step

4 above:

~]# vi /etc/httpd/conf.d/nss.conf

NSSNickname Server-Cert

If the SSL Server Certificate contained in the NSS database is an ECC certificate, make certain that the NSSECCNickname parameter is uncommented and matches the nickname displayed in step 4 above:

~]# vi /etc/httpd/conf.d/nss.conf

NSSECCNickname Server-Cert

415

Deployment Guide

Make certain that the NSSCertificateDatabase parameter is uncommented and points to the NSS database directory displayed in step 4 or configured in step 5 above:

~]# vi /etc/httpd/conf.d/nss.conf

NSSCertificateDatabase /etc/httpd/alias

Replace /etc/httpd/alias with the path to the certificate database to be used.

11. Create the /etc/httpd/password.conf file as root:

~]# vi /etc/httpd/password.conf

Add a line with the following form: internal:password

Replacing password with the password that was applied to the NSS security databases in step 6 above.

12. Apply the appropriate ownership and permissions to the /etc/httpd/password.conf file:

~]# chgrp apache /etc/httpd/password.conf

~]# chmod 640 /etc/httpd/password.conf

~]# ls -l /etc/httpd/password.conf

-rw-r-----. 1 root apache 10 Dec 4 17:13 /etc/httpd/password.conf

13. To configure mod_nss to use the NSS the software token in /etc/httpd/password.conf, edit /etc/httpd/conf.d/nss.conf as follows:

~]# vi /etc/httpd/conf.d/nss.conf

14. Restart the Apache server for the changes to take effect as described in Section 18.1.4.3,

“Restarting the Service”

IMPORTANT

Due to the vulnerability described in POODLE: SSLv3 vulnerability (CVE-2014-3566) ,

Red Hat recommends disabling SSL, if it is enabled, and using only TLSv1.1 or

TLSv1.2. Backwards compatibility can be achieved using TLSv1.0. Many products

Red Hat supports have the ability to use SSLv2 or SSLv3 protocols. However, the use of

SSLv2 or SSLv3 is now strongly recommended against.

18.1.10.1. Enabling and Disabling SSL and TLS in mod_nss

To disable and enable specific versions of the SSL and TLS protocol, either do it globally by adding the

NSSProtocol directive in the “## SSL Global Context” section of the configuration file and removing it everywhere else, or edit the default entry under “# SSL Protocol” in all “VirtualHost” sections. If you do not specify it in the per-domain VirtualHost section then it will inherit the settings from the global section.

To make sure that a protocol version is being disabled the administrator should either only specify

NSSProtocol in the “SSL Global Context” section, or specify it in all per-domain VirtualHost sections.

Note that in Red Hat Enterprise Linux 6.8 SSLv2 is disabled by default.

416

CHAPTER 18. WEB SERVERS

Procedure 18.5. Disable All SSL and TLS Protocols Except TLS 1 and Up in mod_nss

To disable all SSL and TLS protocol versions except TLS version 1 and higher, proceed as follows:

1. As root, open the /etc/httpd/conf.d/nss.conf file and search for all instances of the

NSSProtocol directive. By default, the configuration file contains one section that looks as follows:

~]# vi /etc/httpd/conf.d/nss.conf

# SSL Protocol: output omitted

# Since all protocol ranges are completely inclusive, and no protocol in the

# middle of a range may be excluded, the entry "NSSProtocol

SSLv3,TLSv1.1"

# is identical to the entry "NSSProtocol SSLv3,TLSv1.0,TLSv1.1".

NSSProtocol TLSv1.0,TLSv1.1,TLSv1.2

This section is within the VirtualHost section.

2. Edit the NSSProtocol line as follows:

# SSL Protocol:

NSSProtocol TLSv1.0,TLSv1.1,TLSv1.2

Repeat this action for all VirtualHost sections.

3. Edit the Listen 8443 line as follows:

Listen 443

4. Edit the default VirtualHost _default_:8443 line as follows:

VirtualHost _default_:443

Edit any other non-default virtual host sections if they exist. Save and close the file.

5. Verify that all occurrences of the NSSProtocol directive have been changed as follows:

~]# grep NSSProtocol /etc/httpd/conf.d/nss.conf

# middle of a range may be excluded, the entry "NSSProtocol

SSLv3,TLSv1.1"

# is identical to the entry "NSSProtocol SSLv3,TLSv1.0,TLSv1.1".

NSSProtocol TLSv1.0,TLSv1.1,TLSv1.2

This step is particularly important if you have more than one VirtualHost section.

6. Restart the Apache daemon as follows:

~]# service httpd restart

Note that any sessions will be interrupted.

Procedure 18.6. Testing the Status of SSL and TLS Protocols in mod_nss

417

Deployment Guide

To check which versions of SSL and TLS are enabled or disabled in mod_nss, make use of the

openssl s_client -connect command. Install the openssl package as root:

~]# yum install openssl

The openssl s_client -connect command has the following form: openssl s_client -connect hostname:port -protocol

Where port is the port to test and protocol is the protocol version to test for. To test the SSL server running locally, use localhost as the host name. For example, to test the default port for secure

HTTPS connections, port 443 to see if SSLv3 is enabled, issue a command as follows:

1. ~]# openssl s_client -connect localhost:443 -ssl3

CONNECTED(00000003)

3077773036:error:1408F10B:SSL routines:SSL3_GET_RECORD:wrong version number:s3_pkt.c:337: output omitted

New, (NONE), Cipher is (NONE)

Secure Renegotiation IS NOT supported

Compression: NONE

Expansion: NONE

SSL-Session:

Protocol : SSLv3 output truncated

The above output indicates that the handshake failed and therefore no cipher was negotiated.

2. ~]$ openssl s_client -connect localhost:443 -tls1_2

CONNECTED(00000003) depth=1 C = US, O = example.com, CN = Certificate Shack output omitted

New, TLSv1/SSLv3, Cipher is AES256-SHA

Server public key is 1024 bit

Secure Renegotiation IS supported

Compression: NONE

Expansion: NONE

SSL-Session:

Protocol : TLSv1.2

Cipher : AES256-SHA output truncated

The above output indicates that no failure of the handshake occurred and a set of ciphers was negotiated.

The openssl s_client command options are documented in the s_client(1) manual page.

For more information on the SSLv3 vulnerability and how to test for it, see the Red Hat Knowledgebase article POODLE: SSLv3 vulnerability (CVE-2014-3566) .

18.1.11. Using an Existing Key and Certificate

If you have a previously created key and certificate, you can configure the SSL server to use these files instead of generating new ones. There are only two situations where this is not possible:

418

CHAPTER 18. WEB SERVERS

1. You are changing the IP address or domain name.

Certificates are issued for a particular IP address and domain name pair. If one of these values changes, the certificate becomes invalid.

2. You have a certificate from VeriSign, and you are changing the server software.

VeriSign, a widely used certificate authority, issues certificates for a particular software product,

IP address, and domain name. Changing the software product renders the certificate invalid.

In either of the above cases, you will need to obtain a new certificate. For more information on this topic, see

Section 18.1.12, “Generating a New Key and Certificate”

.

If you want to use an existing key and certificate, move the relevant files to the

/etc/pki/tls/private/ and /etc/pki/tls/certs/ directories respectively. You can do so by issuing the following commands as root:

~]# mv key_file.key /etc/pki/tls/private/hostname.key

~]# mv certificate.crt /etc/pki/tls/certs/hostname.crt

Then add the following lines to the /etc/httpd/conf.d/ssl.conf configuration file:

SSLCertificateFile /etc/pki/tls/certs/hostname.crt

SSLCertificateKeyFile /etc/pki/tls/private/hostname.key

To load the updated configuration, restart the httpd service as described in Section 18.1.4.3,

“Restarting the Service” .

Example 18.83. Using a key and certificate from the Red Hat Secure Web Server

~]# mv /etc/httpd/conf/httpsd.key

/etc/pki/tls/private/penguin.example.com.key

~]# mv /etc/httpd/conf/httpsd.crt

/etc/pki/tls/certs/penguin.example.com.crt

18.1.12. Generating a New Key and Certificate

In order to generate a new key and certificate pair, the crypto-utils package must be installed on the system. In Red Hat Enterprise Linux 6, the mod_ssl package is required by the genkey utility. To install these, enter the following command as root:

~]# yum install crypto-utils mod_ssl

This package provides a set of tools to generate and manage SSL certificates and private keys, and includes genkey, the Red Hat Keypair Generation utility that will guide you through the key generation process.

419

Deployment Guide

IMPORTANT

If the server already has a valid certificate and you are replacing it with a new one, specify a different serial number. This ensures that client browsers are notified of this change, update to this new certificate as expected, and do not fail to access the page. To create a new certificate with a custom serial number, use the following command instead of

genkey:

~]# openssl req -x509 -new -set_serial number -key hostname.key

-out hostname.crt

NOTE

If there already is a key file for a particular host name in your system, genkey will refuse to start. In this case, remove the existing file using the following command as root:

~]# rm /etc/pki/tls/private/hostname.key

To run the utility enter the genkey command as root, followed by the appropriate host name (for example, penguin.example.com):

~]# genkey hostname

To complete the key and certificate creation, take the following steps:

1. Review the target locations in which the key and certificate will be stored.

420

Figure 18.1. Running the genkey utility

Use the Tab key to select the Next button, and press Enter to proceed to the next screen.

CHAPTER 18. WEB SERVERS

2. Using the up and down arrow keys, select a suitable key size. Note that while a larger key increases the security, it also increases the response time of your server. The NIST recommends using 2048 bits. See NIST Special Publication 800-131A .

Figure 18.2. Selecting the key size

Once finished, use the Tab key to select the Next button, and press Enter to initiate the random bits generation process. Depending on the selected key size, this may take some time.

3. Decide whether you want to send a certificate request to a certificate authority.

Figure 18.3. Generating a certificate request

421

Deployment Guide

Use the Tab key to select Yes to compose a certificate request, or No to generate a self-signed certificate. Then press Enter to confirm your choice.

4. Using the Spacebar key, enable ([*]) or disable ([ ]) the encryption of the private key.

Figure 18.4. Encrypting the private key

Use the Tab key to select the Next button, and press Enter to proceed to the next screen.

5. If you have enabled the private key encryption, enter an adequate passphrase. Note that for security reasons, it is not displayed as you type, and it must be at least five characters long.

422

Figure 18.5. Entering a passphrase

CHAPTER 18. WEB SERVERS

Use the Tab key to select the Next button, and press Enter to proceed to the next screen.

IMPORTANT

Entering the correct passphrase is required in order for the server to start. If you lose it, you will need to generate a new key and certificate.

6. Customize the certificate details.

Figure 18.6. Specifying certificate information

Use the Tab key to select the Next button, and press Enter to finish the key generation.

7. If you have previously enabled the certificate request generation, you will be prompted to send it to a certificate authority.

423

Deployment Guide

Figure 18.7. Instructions on how to send a certificate request

Press Enter to return to a shell prompt.

Once generated, add the key and certificate locations to the /etc/httpd/conf.d/ssl.conf configuration file:

SSLCertificateFile /etc/pki/tls/certs/hostname.crt

SSLCertificateKeyFile /etc/pki/tls/private/hostname.key

Finally, restart the httpd service as described in

Section 18.1.4.3, “Restarting the Service”

, so that the updated configuration is loaded.

18.1.13. Configure the Firewall for HTTP and HTTPS Using the Command Line

Red Hat Enterprise Linux does not allow HTTP and HTTPS traffic by default. To enable the system to act as a web server, enable ports and protocols as required. The default port for HTTP is 80 and the default port for HTTPS is 443. In both cases the TCP should be allowed to pass through the firewall.

To enable port 80 for HTTP using the command line, issue the following command as root:

~]# lokkit --port=80:tcp --update

Note that this will restart the firewall as long as it has not been disabled with the --disabled option.

Active connections will be terminated and time out on the initiating machine. Use the lokkit --help command to view the built in help.

To enable port 443 for HTTPS using the command line, issue the following command as root:

~]# lokkit --port=443:tcp --update

424

CHAPTER 18. WEB SERVERS

Note that this will restart the firewall as long as it has not been disabled with the --disabled option.

Active connections will be terminated and time out on the initiating machine. See the /etc/services file for list of services and their associated ports.

When preparing a configuration file for multiple installations using administration tools, it is useful to edit the firewall configuration file directly. Note that any mistakes in the configuration file could have unexpected consequences, cause an error, and prevent the firewall settings from being applied.

Therefore, check the /etc/sysconfig/system-config-firewall file thoroughly after editing. To apply the settings in /etc/sysconfig/system-config-firewall, issue the following command as

root:

~]# lokkit --update

For example, to enable HTTPS to pass through the firewall, by editing the configuration file, become the

root user and add the following line to /etc/sysconfig/system-config-firewall:

--port=443:tcp

Note that these changes will not take effect even if the firewall is reloaded or the system rebooted. To apply the changes in /etc/sysconfig/system-config-firewall, issue the following command as root:

~]# lokkit --update

18.1.13.1. Checking Network Access for Incoming HTTPS and HTTPS Using the

Command Line

To check what the firewall is configured to allow, using the command line, issue the following command as root:

~]# less /etc/sysconfig/system-config-firewall

# Configuration file for system-config-firewall

--enabled

--service=ssh

In this example taken from a default installation, the firewall is enabled but HTTP and HTTPS have not been allowed to pass through.

Once the default port for HTTP is enabled, the following line appears as output in addition to the lines shown above:

--port=80:tcp

To check if the firewall is currently allowing incoming HTTP traffic for clients, issue the following command as root:

~]# iptables -L -n | grep 'tcp.*80'

ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:80

Once the default port for HTTPS is enabled, the following line appears as output in addition to the lines shown above:

425

Deployment Guide

--port=443:tcp

To check if the firewall is currently allowing incoming HTTPS traffic for clients, issue the following command as root:

~]# iptables -L -n | grep 'tcp.*443'

ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:443

18.1.14. Additional Resources

To learn more about the Apache HTTP Server, see the following resources.

Installed Documentation

httpd(8) — The manual page for the httpd service containing the complete list of its command-line options.

genkey(1) — The manual page for genkey utility, provided by the crypto-utils package.

Installable Documentation

http://localhost/manual/ — The official documentation for the Apache HTTP Server with the full description of its directives and available modules. Note that in order to access this documentation, you must have the httpd-manual package installed, and the web server must be running.

Before accessing the documentation, issue the following commands as root:

~]# yum install httpd-manual

~]# service httpd graceful

Online Documentation

http://httpd.apache.org/ — The official website for the Apache HTTP Server with documentation on all the directives and default modules.

http://www.openssl.org/ — The OpenSSL home page containing further documentation, frequently asked questions, links to the mailing lists, and other useful resources.

426

CHAPTER 19. MAIL SERVERS

CHAPTER 19. MAIL SERVERS

Red Hat Enterprise Linux offers many advanced applications to serve and access email. This chapter describes modern email protocols in use today, and some of the programs designed to send and receive email.

19.1. EMAIL PROTOCOLS

Today, email is delivered using a client/server architecture. An email message is created using a mail client program. This program then sends the message to a server. The server then forwards the message to the recipient's email server, where the message is then supplied to the recipient's email client.

To enable this process, a variety of standard network protocols allow different machines, often running different operating systems and using different email programs, to send and receive email.

The following protocols discussed are the most commonly used in the transfer of email.

19.1.1. Mail Transport Protocols

Mail delivery from a client application to the server, and from an originating server to the destination server, is handled by the Simple Mail Transfer Protocol (SMTP).

19.1.1.1. SMTP

The primary purpose of SMTP is to transfer email between mail servers. However, it is critical for email clients as well. To send email, the client sends the message to an outgoing mail server, which in turn contacts the destination mail server for delivery. For this reason, it is necessary to specify an SMTP server when configuring an email client.

Under Red Hat Enterprise Linux, a user can configure an SMTP server on the local machine to handle mail delivery. However, it is also possible to configure remote SMTP servers for outgoing mail.

One important point to make about the SMTP protocol is that it does not require authentication. This allows anyone on the Internet to send email to anyone else or even to large groups of people. It is this characteristic of SMTP that makes junk email or spam possible. Imposing relay restrictions limits random users on the Internet from sending email through your SMTP server, to other servers on the internet.

Servers that do not impose such restrictions are called open relay servers.

Red Hat Enterprise Linux provides the Postfix and Sendmail SMTP programs.

19.1.2. Mail Access Protocols

There are two primary protocols used by email client applications to retrieve email from mail servers: the

Post Office Protocol (POP) and the Internet Message Access Protocol (IMAP).

19.1.2.1. POP

The default POP server under Red Hat Enterprise Linux is Dovecot and is provided by the dovecot package.

427

Deployment Guide

NOTE

In order to use Dovecot, first ensure the dovecot package is installed on your system by running, as root:

~]# yum install dovecot

For more information on installing packages with Yum, see Section 8.2.4, “Installing

Packages” .

When using a POP server, email messages are downloaded by email client applications. By default, most

POP email clients are automatically configured to delete the message on the email server after it has been successfully transferred, however this setting usually can be changed.

POP is fully compatible with important Internet messaging standards, such as Multipurpose Internet Mail

Extensions (MIME), which allow for email attachments.

POP works best for users who have one system on which to read email. It also works well for users who do not have a persistent connection to the Internet or the network containing the mail server.

Unfortunately for those with slow network connections, POP requires client programs upon authentication to download the entire content of each message. This can take a long time if any messages have large attachments.

The most current version of the standard POP protocol is POP3.

There are, however, a variety of lesser-used POP protocol variants:

APOP — POP3 with MD5 authentication. An encoded hash of the user's password is sent from the email client to the server rather than sending an unencrypted password.

KPOP — POP3 with Kerberos authentication.

RPOP — POP3 with RPOP authentication. This uses a per-user ID, similar to a password, to authenticate POP requests. However, this ID is not encrypted, so RPOP is no more secure than standard POP.

For added security, it is possible to use Secure Socket Layer (SSL) encryption for client authentication and data transfer sessions. This can be enabled by using the pop3s service, or by using the stunnel

application. For more information on securing email communication, see Section 19.5.1, “Securing

Communication” .

19.1.2.2. IMAP

The default IMAP server under Red Hat Enterprise Linux is Dovecot and is provided by the dovecot

package. See Section 19.1.2.1, “POP”

for information on how to install Dovecot.

When using an IMAP mail server, email messages remain on the server where users can read or delete them. IMAP also allows client applications to create, rename, or delete mail directories on the server to organize and store email.

IMAP is particularly useful for users who access their email using multiple machines. The protocol is also convenient for users connecting to the mail server via a slow connection, because only the email header information is downloaded for messages until opened, saving bandwidth. The user also has the ability to delete messages without viewing or downloading them.

428

CHAPTER 19. MAIL SERVERS

For convenience, IMAP client applications are capable of caching copies of messages locally, so the user can browse previously read messages when not directly connected to the IMAP server.

IMAP, like POP, is fully compatible with important Internet messaging standards, such as MIME, which allow for email attachments.

For added security, it is possible to use SSL encryption for client authentication and data transfer sessions. This can be enabled by using the imaps service, or by using the stunnel program. For more

information on securing email communication, see Section 19.5.1, “Securing Communication” .

Other free, as well as commercial, IMAP clients and servers are available, many of which extend the

IMAP protocol and provide additional functionality.

19.1.2.3. Dovecot

The imap-login and pop3-login processes which implement the IMAP and POP3 protocols are spawned by the master dovecot daemon included in the dovecot package. The use of IMAP and POP is configured through the /etc/dovecot/dovecot.conf configuration file; by default dovecot runs

IMAP and POP3 together with their secure versions using SSL. To configure dovecot to use POP, complete the following steps:

1. Edit the /etc/dovecot/dovecot.conf configuration file to make sure the protocols variable is uncommented (remove the hash sign (#) at the beginning of the line) and contains the

pop3 argument. For example: protocols = imap pop3 lmtp

When the protocols variable is left commented out, dovecot will use the default values as described above.

2. Make the change operational for the current session by running the following command:

~]# service dovecot restart

3. Make the change operational after the next reboot by running the command:

~]# chkconfig dovecot on

NOTE

Please note that dovecot only reports that it started the IMAP server, but also starts the POP3 server.

Unlike SMTP, both IMAP and POP3 require connecting clients to authenticate using a user name and password. By default, passwords for both protocols are passed over the network unencrypted.

To configure SSL on dovecot:

Edit the /etc/dovecot/conf.d/10-ssl.conf configuration to make sure the

ssl_cipher_list variable is uncommented, and append :!SSLv3: ssl_cipher_list = ALL:!LOW:!SSLv2:!EXP:!aNULL:!SSLv3

429

Deployment Guide

These values ensure that dovecot avoids SSL versions 2 and also 3, which are both known to be insecure. This is due to the vulnerability described in POODLE: SSLv3 vulnerability (CVE-

2014-3566) . See Resolution for POODLE SSL 3.0 vulnerability (CVE-2014-3566) in Postfix and

Dovecot for details.

Edit the /etc/pki/dovecot/dovecot-openssl.cnf configuration file as you prefer.

However, in a typical installation, this file does not require modification.

Rename, move or delete the files /etc/pki/dovecot/certs/dovecot.pem and

/etc/pki/dovecot/private/dovecot.pem.

Execute the /usr/libexec/dovecot/mkcert.sh script which creates the dovecot self signed certificates. These certificates are copied in the /etc/pki/dovecot/certs and

/etc/pki/dovecot/private directories. To implement the changes, restart dovecot:

~]# service dovecot restart

More details on dovecot can be found online at http://www.dovecot.org

.

19.2. EMAIL PROGRAM CLASSIFICATIONS

In general, all email applications fall into at least one of three classifications. Each classification plays a specific role in the process of moving and managing email messages. While most users are only aware of the specific email program they use to receive and send messages, each one is important for ensuring that email arrives at the correct destination.

19.2.1. Mail Transport Agent

A Mail Transport Agent (MTA) transports email messages between hosts using SMTP. A message may involve several MTAs as it moves to its intended destination.

While the delivery of messages between machines may seem rather straightforward, the entire process of deciding if a particular MTA can or should accept a message for delivery is quite complicated. In addition, due to problems from spam, use of a particular MTA is usually restricted by the MTA's configuration or the access configuration for the network on which the MTA resides.

Many modern email client programs can act as an MTA when sending email. However, this action should not be confused with the role of a true MTA. The sole reason email client programs are capable of sending email like an MTA is because the host running the application does not have its own MTA. This is particularly true for email client programs on non-UNIX-based operating systems. However, these client programs only send outbound messages to an MTA they are authorized to use and do not directly deliver the message to the intended recipient's email server.

Since Red Hat Enterprise Linux offers two MTAs, Postfix and Sendmail, email client programs are often not required to act as an MTA. Red Hat Enterprise Linux also includes a special purpose MTA called

Fetchmail.

For more information on Postfix, Sendmail, and Fetchmail, see

Section 19.3, “Mail Transport Agents” .

19.2.2. Mail Delivery Agent

A Mail Delivery Agent (MDA) is invoked by the MTA to file incoming email in the proper user's mailbox. In many cases, the MDA is actually a Local Delivery Agent (LDA), such as mail or Procmail.

430

CHAPTER 19. MAIL SERVERS

Any program that actually handles a message for delivery to the point where it can be read by an email client application can be considered an MDA. For this reason, some MTAs (such as Sendmail and

Postfix) can fill the role of an MDA when they append new email messages to a local user's mail spool file. In general, MDAs do not transport messages between systems nor do they provide a user interface;

MDAs distribute and sort messages on the local machine for an email client application to access.

19.2.3. Mail User Agent

A Mail User Agent (MUA) is synonymous with an email client application. An MUA is a program that, at a minimum, allows a user to read and compose email messages. Many MUAs are capable of retrieving messages via the POP or IMAP protocols, setting up mailboxes to store messages, and sending outbound messages to an MTA.

MUAs may be graphical, such as Evolution, or have simple text-based interfaces, such as pine.

19.3. MAIL TRANSPORT AGENTS

Red Hat Enterprise Linux offers two primary MTAs: Postfix and Sendmail. Postfix is configured as the default MTA, although it is easy to switch the default MTA to Sendmail. To switch the default MTA to

Sendmail, you can either uninstall Postfix or use the following command to switch to Sendmail:

~]# alternatives --config mta

You can also use a command in the following format to enable or disable the desired service: chkconfig service_name on | off

19.3.1. Postfix

Originally developed at IBM by security expert and programmer Wietse Venema, Postfix is a Sendmailcompatible MTA that is designed to be secure, fast, and easy to configure.

To improve security, Postfix uses a modular design, where small processes with limited privileges are launched by a master daemon. The smaller, less privileged processes perform very specific tasks related to the various stages of mail delivery and run in a changed root environment to limit the effects of attacks.

Configuring Postfix to accept network connections from hosts other than the local computer takes only a few minor changes in its configuration file. Yet for those with more complex needs, Postfix provides a variety of configuration options, as well as third party add-ons that make it a very versatile and fullfeatured MTA.

The configuration files for Postfix are human readable and support upward of 250 directives. Unlike

Sendmail, no macro processing is required for changes to take effect and the majority of the most commonly used options are described in the heavily commented files.

19.3.1.1. The Default Postfix Installation

The Postfix executable is /usr/sbin/postfix. This daemon launches all related processes needed to handle mail delivery.

Postfix stores its configuration files in the /etc/postfix/ directory. The following is a list of the more commonly used files:

431

Deployment Guide

access — Used for access control, this file specifies which hosts are allowed to connect to

Postfix.

main.cf — The global Postfix configuration file. The majority of configuration options are specified in this file.

master.cf — Specifies how Postfix interacts with various processes to accomplish mail delivery.

transport — Maps email addresses to relay hosts.

The aliases file can be found in the /etc/ directory. This file is shared between Postfix and Sendmail.

It is a configurable list required by the mail protocol that describes user ID aliases.

IMPORTANT

The default /etc/postfix/main.cf file does not allow Postfix to accept network connections from a host other than the local computer. For instructions on configuring

Postfix as a server for other clients, see Section 19.3.1.2, “Basic Postfix Configuration” .

Restart the postfix service after changing any options in the configuration files under the

/etc/postfix directory in order for those changes to take effect:

~]# service postfix restart

19.3.1.2. Basic Postfix Configuration

By default, Postfix does not accept network connections from any host other than the local host. Perform the following steps as root to enable mail delivery for other hosts on the network:

Edit the /etc/postfix/main.cf file with a text editor, such as vi.

Uncomment the mydomain line by removing the hash sign (#), and replace domain.tld with the domain the mail server is servicing, such as example.com.

Uncomment the myorigin = $mydomain line.

Uncomment the myhostname line, and replace host.domain.tld with the host name for the machine.

Uncomment the mydestination = $myhostname, localhost.$mydomain line.

Uncomment the mynetworks line, and replace 168.100.189.0/28 with a valid network setting for hosts that can connect to the server.

Uncomment the inet_interfaces = all line.

Comment the inet_interfaces = localhost line.

Restart the postfix service.

Once these steps are complete, the host accepts outside emails for delivery.

Postfix has a large assortment of configuration options. One of the best ways to learn how to configure

432

CHAPTER 19. MAIL SERVERS

Postfix is to read the comments within the /etc/postfix/main.cf configuration file. Additional resources including information about Postfix configuration, SpamAssassin integration, or detailed descriptions of the /etc/postfix/main.cf parameters are available online at http://www.postfix.org/ .

19.3.1.2.1. Configuring Postfix to Use Transport Layer Security

Configuring postfix to use transport layer security (TLS) is described in the Red Hat Knowledgebase solution How to configure postfix with TLS?

IMPORTANT

Due to the vulnerability described in Resolution for POODLE SSL 3.0 vulnerability (CVE-

2014-3566) in Postfix and Dovecot , Red Hat recommends disabling SSL, if it is enabled, and using only TLSv1.1 or TLSv1.2. Backwards compatibility can be achieved using

TLSv1.0. Many products Red Hat supports have the ability to use SSLv2 or SSLv3 protocols. However, the use of SSLv2 or SSLv3 is now strongly recommended against.

19.3.1.3. Using Postfix with LDAP

Postfix can use an LDAP directory as a source for various lookup tables (e.g.: aliases, virtual,

canonical, etc.). This allows LDAP to store hierarchical user information and Postfix to only be given the result of LDAP queries when needed. By not storing this information locally, administrators can easily maintain it.

19.3.1.3.1. The /etc/aliases lookup example

The following is a basic example for using LDAP to look up the /etc/aliases file. Make sure your

/etc/postfix/main.cf file contains the following: alias_maps = hash:/etc/aliases, ldap:/etc/postfix/ldap-aliases.cf

Create a /etc/postfix/ldap-aliases.cf file if you do not have one already and make sure it contains the following: server_host = ldap.example.com search_base = dc=example, dc=com where ldap.example.com, example, and com are parameters that need to be replaced with specification of an existing available LDAP server.

NOTE

The /etc/postfix/ldap-aliases.cf file can specify various parameters, including parameters that enable LDAP SSL and STARTTLS. For more information, see the

ldap_table(5) man page.

For more information on LDAP, see

Section 20.1, “OpenLDAP” .

19.3.2. Sendmail

Sendmail's core purpose, like other MTAs, is to safely transfer email among hosts, usually using the

433

Deployment Guide

SMTP protocol. However, Sendmail is highly configurable, allowing control over almost every aspect of how email is handled, including the protocol used. Many system administrators elect to use Sendmail as their MTA due to its power and scalability.

19.3.2.1. Purpose and Limitations

It is important to be aware of what Sendmail is and what it can do, as opposed to what it is not. In these days of monolithic applications that fulfill multiple roles, Sendmail may seem like the only application needed to run an email server within an organization. Technically, this is true, as Sendmail can spool mail to each users' directory and deliver outbound mail for users. However, most users actually require much more than simple email delivery. Users usually want to interact with their email using an MUA, that uses POP or IMAP, to download their messages to their local machine. Or, they may prefer a Web interface to gain access to their mailbox. These other applications can work in conjunction with

Sendmail, but they actually exist for different reasons and can operate separately from one another.

It is beyond the scope of this section to go into all that Sendmail should or could be configured to do. With literally hundreds of different options and rule sets, entire volumes have been dedicated to helping

explain everything that can be done and how to fix things that go wrong. See the Section 19.6,

“Additional Resources” for a list of Sendmail resources.

This section reviews the files installed with Sendmail by default and reviews basic configuration changes, including how to stop unwanted email (spam) and how to extend Sendmail with the Lightweight

Directory Access Protocol (LDAP).

19.3.2.2. The Default Sendmail Installation

In order to use Sendmail, first ensure the sendmail package is installed on your system by running, as

root:

~]# yum install sendmail

In order to configure Sendmail, ensure the sendmail-cf package is installed on your system by running, as root:

~]# yum install sendmail-cf

For more information on installing packages with Yum, see Section 8.2.4, “Installing Packages”

.

Before using Sendmail, the default MTA has to be switched from Postfix. For more information how to switch the default MTA see

Section 19.3, “Mail Transport Agents”

.

The Sendmail executable is /usr/sbin/sendmail.

Sendmail's lengthy and detailed configuration file is /etc/mail/sendmail.cf. Avoid editing the

sendmail.cf file directly. To make configuration changes to Sendmail, edit the

/etc/mail/sendmail.mc file, back up the original /etc/mail/sendmail.cf file, and use the following alternatives to generate a new configuration file:

Use the included makefile in /etc/mail/ to create a new /etc/mail/sendmail.cf configuration file:

~]# make all -C /etc/mail/

434

CHAPTER 19. MAIL SERVERS

All other generated files in /etc/mail (db files) will be regenerated if needed. The old makemap commands are still usable. The make command is automatically used whenever you start or restart the sendmail service.

Alternatively you may use the m4 macro processor to create a new /etc/mail/sendmail.cf.

The m4 macro processor is not installed by default. Before using it to create

/etc/mail/sendmail.cf, install the m4 package as root:

~]# yum install m4

More information on configuring Sendmail can be found in Section 19.3.2.3, “Common Sendmail

Configuration Changes” .

Various Sendmail configuration files are installed in the /etc/mail/ directory including:

access — Specifies which systems can use Sendmail for outbound email.

domaintable — Specifies domain name mapping.

local-host-names — Specifies aliases for the host.

mailertable — Specifies instructions that override routing for particular domains.

virtusertable — Specifies a domain-specific form of aliasing, allowing multiple virtual domains to be hosted on one machine.

Several of the configuration files in /etc/mail/, such as access, domaintable, mailertable and

virtusertable, must actually store their information in database files before Sendmail can use any configuration changes. To include any changes made to these configurations in their database files, run the following command, as root:

~]# makemap hash /etc/mail/<name> < /etc/mail/<name> where <name> represents the name of the configuration file to be updated. You may also restart the

sendmail service for the changes to take effect by running:

~]# service sendmail restart

For example, to have all emails addressed to the example.com domain delivered to bob@other-

example.com, add the following line to the virtusertable file:

@example.com [email protected]

To finalize the change, the virtusertable.db file must be updated:

~]# makemap hash /etc/mail/virtusertable < /etc/mail/virtusertable

Sendmail will create an updated virtusertable.db file containing the new configuration.

19.3.2.3. Common Sendmail Configuration Changes

When altering the Sendmail configuration file, it is best not to edit an existing file, but to generate an entirely new /etc/mail/sendmail.cf file.

435

Deployment Guide

WARNING

Before replacing or making any changes to the sendmail.cf file, create a backup copy.

To add the desired functionality to Sendmail, edit the /etc/mail/sendmail.mc file as root. Once you are finished, restart the sendmail service and, if the m4 package is installed, the m4 macro processor will automatically generate a new sendmail.cf configuration file:

~]# service sendmail restart

IMPORTANT

The default sendmail.cf file does not allow Sendmail to accept network connections from any host other than the local computer. To configure Sendmail as a server for other clients, edit the /etc/mail/sendmail.mc file, and either change the address specified in the Addr= option of the DAEMON_OPTIONS directive from 127.0.0.1 to the IP address of an active network device or comment out the DAEMON_OPTIONS directive all together by placing dnl at the beginning of the line. When finished, regenerate

/etc/mail/sendmail.cf by restarting the service

~]# service sendmail restart

The default configuration in Red Hat Enterprise Linux works for most SMTP-only sites. However, it does not work for UUCP (UNIX-to-UNIX Copy Protocol) sites. If using UUCP mail transfers, the

/etc/mail/sendmail.mc file must be reconfigured and a new /etc/mail/sendmail.cf file must be generated.

Consult the /usr/share/sendmail-cf/README file before editing any files in the directories under the /usr/share/sendmail-cf directory, as they can affect the future configuration of the

/etc/mail/sendmail.cf file.

19.3.2.4. Masquerading

One common Sendmail configuration is to have a single machine act as a mail gateway for all machines on the network. For example, a company may want to have a machine called mail.example.com that handles all of their email and assigns a consistent return address to all outgoing mail.

In this situation, the Sendmail server must masquerade the machine names on the company network so that their return address is [email protected] instead of [email protected].

To do this, add the following lines to /etc/mail/sendmail.mc:

FEATURE(always_add_domain)dnl

FEATURE(`masquerade_entire_domain')dnl

FEATURE(`masquerade_envelope')dnl

FEATURE(`allmasquerade')dnl

436

CHAPTER 19. MAIL SERVERS

MASQUERADE_AS(`example.com.')dnl

MASQUERADE_DOMAIN(`example.com.')dnl

MASQUERADE_AS(example.com)dnl

After generating a new sendmail.cf file using the m4 macro processor, this configuration makes all mail from inside the network appear as if it were sent from example.com.

19.3.2.5. Stopping Spam

Email spam can be defined as unnecessary and unwanted email received by a user who never requested the communication. It is a disruptive, costly, and widespread abuse of Internet communication standards.

Sendmail makes it relatively easy to block new spamming techniques being employed to send junk email. It even blocks many of the more usual spamming methods by default. Main anti-spam features available in sendmail are header checks, relaying denial (default from version 8.9), access database and sender information checks.

For example, forwarding of SMTP messages, also called relaying, has been disabled by default since

Sendmail version 8.9. Before this change occurred, Sendmail directed the mail host (x.edu) to accept messages from one party (y.com) and sent them to a different party (z.net). Now, however, Sendmail must be configured to permit any domain to relay mail through the server. To configure relay domains, edit the /etc/mail/relay-domains file and restart Sendmail

~]# service sendmail restart

However users can also be sent spam from from servers on the Internet. In these instances, Sendmail's access control features available through the /etc/mail/access file can be used to prevent connections from unwanted hosts. The following example illustrates how this file can be used to both block and specifically allow access to the Sendmail server: badspammer.com ERROR:550 "Go away and do not spam us anymore" tux.badspammer.com OK 10.0 RELAY

This example shows that any email sent from badspammer.com is blocked with a 550 RFC-821 compliant error code, with a message sent back. Email sent from the tux.badspammer.com subdomain, is accepted. The last line shows that any email sent from the 10.0.*.* network can be relayed through the mail server.

Because the /etc/mail/access.db file is a database, use the makemap command to update any changes. Do this using the following command as root:

~]# makemap hash /etc/mail/access < /etc/mail/access

Message header analysis allows you to reject mail based on header contents. SMTP servers store information about an email's journey in the message header. As the message travels from one MTA to another, each puts in a Received header above all the other Received headers. It is important to note that this information may be altered by spammers.

The above examples only represent a small part of what Sendmail can do in terms of allowing or blocking access. See the /usr/share/sendmail-cf/README file for more information and examples.

437

Deployment Guide

Since Sendmail calls the Procmail MDA when delivering mail, it is also possible to use a spam filtering

program, such as SpamAssassin, to identify and file spam for users. See Section 19.4.2.6, “Spam

Filters” for more information about using SpamAssassin.

19.3.2.6. Using Sendmail with LDAP

Using LDAP is a very quick and powerful way to find specific information about a particular user from a much larger group. For example, an LDAP server can be used to look up a particular email address from a common corporate directory by the user's last name. In this kind of implementation, LDAP is largely separate from Sendmail, with LDAP storing the hierarchical user information and Sendmail only being given the result of LDAP queries in pre-addressed email messages.

However, Sendmail supports a much greater integration with LDAP, where it uses LDAP to replace separately maintained files, such as /etc/aliases and /etc/mail/virtusertables, on different mail servers that work together to support a medium- to enterprise-level organization. In short, LDAP abstracts the mail routing level from Sendmail and its separate configuration files to a powerful LDAP cluster that can be leveraged by many different applications.

The current version of Sendmail contains support for LDAP. To extend the Sendmail server using LDAP, first get an LDAP server, such as OpenLDAP, running and properly configured. Then edit the

/etc/mail/sendmail.mc to include the following:

LDAPROUTE_DOMAIN('yourdomain.com')dnl

FEATURE('ldap_routing')dnl

NOTE

This is only for a very basic configuration of Sendmail with LDAP. The configuration can differ greatly from this depending on the implementation of LDAP, especially when configuring several Sendmail machines to use a common LDAP server.

Consult /usr/share/sendmail-cf/README for detailed LDAP routing configuration instructions and examples.

Next, recreate the /etc/mail/sendmail.cf file by running the m4 macro processor and again

restarting Sendmail. See Section 19.3.2.3, “Common Sendmail Configuration Changes”

for instructions.

For more information on LDAP, see

Section 20.1, “OpenLDAP” .

19.3.3. Fetchmail

Fetchmail is an MTA which retrieves email from remote servers and delivers it to the local MTA. Many users appreciate the ability to separate the process of downloading their messages located on a remote server from the process of reading and organizing their email in an MUA. Designed with the needs of dial-up users in mind, Fetchmail connects and quickly downloads all of the email messages to the mail spool file using any number of protocols, including POP3 and IMAP. It can even forward email messages to an SMTP server, if necessary.

438

CHAPTER 19. MAIL SERVERS

NOTE

In order to use Fetchmail, first ensure the fetchmail package is installed on your system by running, as root:

~]# yum install fetchmail

For more information on installing packages with Yum, see Section 8.2.4, “Installing

Packages” .

Fetchmail is configured for each user through the use of a .fetchmailrc file in the user's home directory. If it does not already exist, create the .fetchmailrc file in your home directory

Using preferences in the .fetchmailrc file, Fetchmail checks for email on a remote server and downloads it. It then delivers it to port 25 on the local machine, using the local MTA to place the email in the correct user's spool file. If Procmail is available, it is launched to filter the email and place it in a mailbox so that it can be read by an MUA.

19.3.3.1. Fetchmail Configuration Options

Although it is possible to pass all necessary options on the command line to check for email on a remote server when executing Fetchmail, using a .fetchmailrc file is much easier. Place any desired configuration options in the .fetchmailrc file for those options to be used each time the fetchmail command is issued. It is possible to override these at the time Fetchmail is run by specifying that option on the command line.

A user's .fetchmailrc file contains three classes of configuration options: global options — Gives Fetchmail instructions that control the operation of the program or provide settings for every connection that checks for email.

server options — Specifies necessary information about the server being polled, such as the host name, as well as preferences for specific email servers, such as the port to check or number of seconds to wait before timing out. These options affect every user using that server.

user options — Contains information, such as user name and password, necessary to authenticate and check for email using a specified email server.

Global options appear at the top of the .fetchmailrc file, followed by one or more server options, each of which designate a different email server that Fetchmail should check. User options follow server options for each user account checking that email server. Like server options, multiple user options may be specified for use with a particular server as well as to check multiple email accounts on the same server.

Server options are called into service in the .fetchmailrc file by the use of a special option verb,

poll or skip, that precedes any of the server information. The poll action tells Fetchmail to use this server option when it is run, which checks for email using the specified user options. Any server options after a skip action, however, are not checked unless this server's host name is specified when

Fetchmail is invoked. The skip option is useful when testing configurations in the .fetchmailrc file because it only checks skipped servers when specifically invoked, and does not affect any currently working configurations.

The following is an example of a .fetchmailrc file:

439

Deployment Guide set postmaster "user1" set bouncemail poll pop.domain.com proto pop3

user 'user1' there with password 'secret' is user1 here poll mail.domain2.com

user 'user5' there with password 'secret2' is user1 here

user 'user7' there with password 'secret3' is user1 here

In this example, the global options specify that the user is sent email as a last resort (postmaster option) and all email errors are sent to the postmaster instead of the sender (bouncemail option). The

set action tells Fetchmail that this line contains a global option. Then, two email servers are specified, one set to check using POP3, the other for trying various protocols to find one that works. Two users are checked using the second server option, but all email found for any user is sent to user1's mail spool.

This allows multiple mailboxes to be checked on multiple servers, while appearing in a single MUA inbox.

Each user's specific information begins with the user action.

NOTE

Users are not required to place their password in the .fetchmailrc file. Omitting the

with password '<password>' section causes Fetchmail to ask for a password when it is launched.

Fetchmail has numerous global, server, and local options. Many of these options are rarely used or only apply to very specific situations. The fetchmail man page explains each option in detail, but the most common ones are listed in the following three sections.

19.3.3.2. Global Options

Each global option should be placed on a single line after a set action.

daemon seconds — Specifies daemon-mode, where Fetchmail stays in the background.

Replace seconds with the number of seconds Fetchmail is to wait before polling the server.

postmaster — Specifies a local user to send mail to in case of delivery problems.

syslog — Specifies the log file for errors and status messages. By default, this is

/var/log/maillog.

19.3.3.3. Server Options

Server options must be placed on their own line in .fetchmailrc after a poll or skip action.

auth auth-type — Replace auth-type with the type of authentication to be used. By default,

password authentication is used, but some protocols support other types of authentication, including kerberos_v5, kerberos_v4, and ssh. If the any authentication type is used,

Fetchmail first tries methods that do not require a password, then methods that mask the password, and finally attempts to send the password unencrypted to authenticate to the server.

interval number — Polls the specified server every number of times that it checks for email on all configured servers. This option is generally used for email servers where the user rarely receives messages.

440

CHAPTER 19. MAIL SERVERS

port port-number — Replace port-number with the port number. This value overrides the default port number for the specified protocol.

proto protocol — Replace protocol with the protocol, such as pop3 or imap, to use when checking for messages on the server.

timeout seconds — Replace seconds with the number of seconds of server inactivity after which Fetchmail gives up on a connection attempt. If this value is not set, a default of 300 seconds is used.

19.3.3.4. User Options

User options may be placed on their own lines beneath a server option or on the same line as the server option. In either case, the defined options must follow the user option (defined below).

fetchall — Orders Fetchmail to download all messages in the queue, including messages that have already been viewed. By default, Fetchmail only pulls down new messages.

fetchlimit number — Replace number with the number of messages to be retrieved before stopping.

flush — Deletes all previously viewed messages in the queue before retrieving new messages.

limit max-number-bytes — Replace max-number-bytes with the maximum size in bytes that messages are allowed to be when retrieved by Fetchmail. This option is useful with slow network links, when a large message takes too long to download.

password 'password' — Replace password with the user's password.

preconnect "command" — Replace command with a command to be executed before retrieving messages for the user.

postconnect "command" — Replace command with a command to be executed after retrieving messages for the user.

ssl — Activates SSL encryption. At the time of writing, the default action is to use the best available from SSL2, SSL3, SSL23, TLS1, TLS1.1 and TLS1.2. Note that SSL2 is considered obsolete and due to the POODLE: SSLv3 vulnerability (CVE-2014-3566) , SSLv3 should not be used. However there is no way to force the use of TLS1 or newer, therefore ensure the mail server being connected to is configured not to use SSLv2 and SSLv3. Use stunnel where the server cannot be configured not to use SSLv2 and SSLv3.

sslproto — Defines allowed SSL or TLS protocols. Possible values are SSL2, SSL3, SSL23, and TLS1. The default value, if sslproto is omitted, unset, or set to an invalid value, is SSL23.

The default action is to use the best from SSLv3, TLSv1, TLS1.1 and TLS1.2. Note that setting any other value for SSL or TLS will disable all the other protocols. Due to the POODLE: SSLv3 vulnerability (CVE-2014-3566) , it is recommend to omit this option, or set it to SSLv23, and configure the corresponding mail server not to use SSLv2 and SSLv3. Use stunnel where the server cannot be configured not to use SSLv2 and SSLv3.

user "username" — Replace username with the username used by Fetchmail to retrieve messages. This option must precede all other user options.

19.3.3.5. Fetchmail Command Options

441

Deployment Guide

Most Fetchmail options used on the command line when executing the fetchmail command mirror the

.fetchmailrc configuration options. In this way, Fetchmail may be used with or without a configuration file. These options are not used on the command line by most users because it is easier to leave them in the .fetchmailrc file.

There may be times when it is desirable to run the fetchmail command with other options for a particular purpose. It is possible to issue command options to temporarily override a .fetchmailrc setting that is causing an error, as any options specified at the command line override configuration file options.

19.3.3.6. Informational or Debugging Options

Certain options used after the fetchmail command can supply important information.

--configdump — Displays every possible option based on information from .fetchmailrc and Fetchmail defaults. No email is retrieved for any users when using this option.

-s — Executes Fetchmail in silent mode, preventing any messages, other than errors, from appearing after the fetchmail command.

-v — Executes Fetchmail in verbose mode, displaying every communication between

Fetchmail and remote email servers.

-V — Displays detailed version information, lists its global options, and shows settings to be used with each user, including the email protocol and authentication method. No email is retrieved for any users when using this option.

19.3.3.7. Special Options

These options are occasionally useful for overriding defaults often found in the .fetchmailrc file.

-a — Fetchmail downloads all messages from the remote email server, whether new or previously viewed. By default, Fetchmail only downloads new messages.

-k — Fetchmail leaves the messages on the remote email server after downloading them. This option overrides the default behavior of deleting messages after downloading them.

-l max-number-bytes — Fetchmail does not download any messages over a particular size and leaves them on the remote email server.

--quit — Quits the Fetchmail daemon process.

More commands and .fetchmailrc options can be found in the fetchmail man page.

19.3.4. Mail Transport Agent (MTA) Configuration

A Mail Transport Agent (MTA) is essential for sending email. A Mail User Agent (MUA) such as

Evolution, Thunderbird, or Mutt, is used to read and compose email. When a user sends an email from an MUA, the message is handed off to the MTA, which sends the message through a series of MTAs until it reaches its destination.

Even if a user does not plan to send email from the system, some automated tasks or system programs might use the /bin/mail command to send email containing log messages to the root user of the local system.

442

CHAPTER 19. MAIL SERVERS

Red Hat Enterprise Linux 6 provides two MTAs: Postfix and Sendmail. If both are installed, Postfix is the default MTA.

19.4. MAIL DELIVERY AGENTS

Red Hat Enterprise Linux includes two primary MDAs, Procmail and mail. Both of the applications are considered LDAs and both move email from the MTA's spool file into the user's mailbox. However,

Procmail provides a robust filtering system.

This section details only Procmail. For information on the mail command, consult its man page (man

mail).

Procmail delivers and filters email as it is placed in the mail spool file of the localhost. It is powerful, gentle on system resources, and widely used. Procmail can play a critical role in delivering email to be read by email client applications.

Procmail can be invoked in several different ways. Whenever an MTA places an email into the mail spool file, Procmail is launched. Procmail then filters and files the email for the MUA and quits. Alternatively, the MUA can be configured to execute Procmail any time a message is received so that messages are moved into their correct mailboxes. By default, the presence of /etc/procmailrc or of a

~/.procmailrc file (also called an rc file) in the user's home directory invokes Procmail whenever an

MTA receives a new message.

By default, no system-wide rc files exist in the /etc/ directory and no .procmailrc files exist in any user's home directory. Therefore, to use Procmail, each user must construct a .procmailrc file with specific environment variables and rules.

Whether Procmail acts upon an email message depends upon whether the message matches a specified set of conditions or recipes in the rc file. If a message matches a recipe, then the email is placed in a specified file, is deleted, or is otherwise processed.

When Procmail starts, it reads the email message and separates the body from the header information.

Next, Procmail looks for a /etc/procmailrc file and rc files in the /etc/procmailrcs directory for default, system-wide, Procmail environmental variables and recipes. Procmail then searches for a

.procmailrc file in the user's home directory. Many users also create additional rc files for Procmail that are referred to within the .procmailrc file in their home directory.

19.4.1. Procmail Configuration

The Procmail configuration file contains important environmental variables. These variables specify things such as which messages to sort and what to do with the messages that do not match any recipes.

These environmental variables usually appear at the beginning of the ~/.procmailrc file in the following format:

env-variable="value"

In this example, env-variable is the name of the variable and value defines the variable.

There are many environment variables not used by most Procmail users and many of the more important environment variables are already defined by a default value. Most of the time, the following variables are used:

DEFAULT — Sets the default mailbox where messages that do not match any recipes are placed.

443

Deployment Guide

The default DEFAULT value is the same as $ORGMAIL.

INCLUDERC — Specifies additional rc files containing more recipes for messages to be checked against. This breaks up the Procmail recipe lists into individual files that fulfill different roles, such as blocking spam and managing email lists, that can then be turned off or on by using comment characters in the user's ~/.procmailrc file.

For example, lines in a user's ~/.procmailrc file may look like this:

MAILDIR=$HOME/Msgs

INCLUDERC=$MAILDIR/lists.rc

INCLUDERC=$MAILDIR/spam.rc

To turn off Procmail filtering of email lists but leaving spam control in place, comment out the first

INCLUDERC line with a hash sign (#). Note that it uses paths relative to the current directory.

LOCKSLEEP — Sets the amount of time, in seconds, between attempts by Procmail to use a particular lockfile. The default is 8 seconds.

LOCKTIMEOUT — Sets the amount of time, in seconds, that must pass after a lockfile was last modified before Procmail assumes that the lockfile is old and can be deleted. The default is

1024 seconds.

LOGFILE — The file to which any Procmail information or error messages are written.

MAILDIR — Sets the current working directory for Procmail. If set, all other Procmail paths are relative to this directory.

ORGMAIL — Specifies the original mailbox, or another place to put the messages if they cannot be placed in the default or recipe-required location.

By default, a value of /var/spool/mail/$LOGNAME is used.

SUSPEND — Sets the amount of time, in seconds, that Procmail pauses if a necessary resource, such as swap space, is not available.

SWITCHRC — Allows a user to specify an external file containing additional Procmail recipes, much like the INCLUDERC option, except that recipe checking is actually stopped on the referring configuration file and only the recipes on the SWITCHRC-specified file are used.

VERBOSE — Causes Procmail to log more information. This option is useful for debugging.

Other important environmental variables are pulled from the shell, such as LOGNAME, the login name;

HOME, the location of the home directory; and SHELL, the default shell.

A comprehensive explanation of all environments variables, and their default values, is available in the

procmailrc man page.

19.4.2. Procmail Recipes

New users often find the construction of recipes the most difficult part of learning to use Procmail. This difficulty is often attributed to recipes matching messages by using regular expressions which are used to specify qualifications for string matching. However, regular expressions are not very difficult to

444

CHAPTER 19. MAIL SERVERS construct and even less difficult to understand when read. Additionally, the consistency of the way

Procmail recipes are written, regardless of regular expressions, makes it easy to learn by example. To

see example Procmail recipes, see Section 19.4.2.5, “Recipe Examples”

.

Procmail recipes take the following form:

:0 [flags] [: lockfile-name ]

* [ condition_1_special-condition-character condition_1_regular_expression

]

* [ condition_2_special-condition-character condition-2_regular_expression

]

* [ condition_N_special-condition-character condition-N_regular_expression

]

special-action-character

action-to-perform

The first two characters in a Procmail recipe are a colon and a zero. Various flags can be placed after the zero to control how Procmail processes the recipe. A colon after the flags section specifies that a lockfile is created for this message. If a lockfile is created, the name can be specified by replacing

lockfile-name.

A recipe can contain several conditions to match against the message. If it has no conditions, every message matches the recipe. Regular expressions are placed in some conditions to facilitate message matching. If multiple conditions are used, they must all match for the action to be performed. Conditions are checked based on the flags set in the recipe's first line. Optional special characters placed after the asterisk character (*) can further control the condition.

The action-to-perform argument specifies the action taken when the message matches one of the conditions. There can only be one action per recipe. In many cases, the name of a mailbox is used here to direct matching messages into that file, effectively sorting the email. Special action characters may

also be used before the action is specified. See Section 19.4.2.4, “Special Conditions and Actions” for

more information.

19.4.2.1. Delivering vs. Non-Delivering Recipes

The action used if the recipe matches a particular message determines whether it is considered a delivering or non-delivering recipe. A delivering recipe contains an action that writes the message to a file, sends the message to another program, or forwards the message to another email address. A nondelivering recipe covers any other actions, such as a nesting block. A nesting block is a set of actions, contained in braces { }, that are performed on messages which match the recipe's conditions. Nesting blocks can be nested inside one another, providing greater control for identifying and performing actions on messages.

When messages match a delivering recipe, Procmail performs the specified action and stops comparing the message against any other recipes. Messages that match non-delivering recipes continue to be compared against other recipes.

19.4.2.2. Flags

Flags are essential to determine how or if a recipe's conditions are compared to a message. The egrep utility is used internally for matching of the conditions. The following flags are commonly used:

A — Specifies that this recipe is only used if the previous recipe without an A or a flag also matched this message.

445

Deployment Guide

a — Specifies that this recipe is only used if the previous recipe with an A or a flag also matched this message and was successfully completed.

B — Parses the body of the message and looks for matching conditions.

b — Uses the body in any resulting action, such as writing the message to a file or forwarding it.

This is the default behavior.

c — Generates a carbon copy of the email. This is useful with delivering recipes, since the required action can be performed on the message and a copy of the message can continue being processed in the rc files.

D — Makes the egrep comparison case-sensitive. By default, the comparison process is not case-sensitive.

E — While similar to the A flag, the conditions in the recipe are only compared to the message if the immediately preceding recipe without an E flag did not match. This is comparable to an else action.

e — The recipe is compared to the message only if the action specified in the immediately preceding recipe fails.

f — Uses the pipe as a filter.

H — Parses the header of the message and looks for matching conditions. This is the default behavior.

h — Uses the header in a resulting action. This is the default behavior.

w — Tells Procmail to wait for the specified filter or program to finish, and reports whether or not it was successful before considering the message filtered.

W — Is identical to w except that "Program failure" messages are suppressed.

For a detailed list of additional flags, see the procmailrc man page.

19.4.2.3. Specifying a Local Lockfile

Lockfiles are very useful with Procmail to ensure that more than one process does not try to alter a message simultaneously. Specify a local lockfile by placing a colon (:) after any flags on a recipe's first line. This creates a local lockfile based on the destination file name plus whatever has been set in the

LOCKEXT global environment variable.

Alternatively, specify the name of the local lockfile to be used with this recipe after the colon.

19.4.2.4. Special Conditions and Actions

Special characters used before Procmail recipe conditions and actions change the way they are interpreted.

The following characters may be used after the asterisk character (*) at the beginning of a recipe's condition line:

! — In the condition line, this character inverts the condition, causing a match to occur only if the condition does not match the message.

446

CHAPTER 19. MAIL SERVERS

< — Checks if the message is under a specified number of bytes.

> — Checks if the message is over a specified number of bytes.

The following characters are used to perform special actions:

! — In the action line, this character tells Procmail to forward the message to the specified email addresses.

$ — Refers to a variable set earlier in the rc file. This is often used to set a common mailbox that is referred to by various recipes.

| — Starts a specified program to process the message.

{ and } — Constructs a nesting block, used to contain additional recipes to apply to matching messages.

If no special character is used at the beginning of the action line, Procmail assumes that the action line is specifying the mailbox in which to write the message.

19.4.2.5. Recipe Examples

Procmail is an extremely flexible program, but as a result of this flexibility, composing Procmail recipes from scratch can be difficult for new users.

The best way to develop the skills to build Procmail recipe conditions stems from a strong understanding of regular expressions combined with looking at many examples built by others. A thorough explanation of regular expressions is beyond the scope of this section. The structure of Procmail recipes and useful sample Procmail recipes can be found at various places on the Internet. The proper use and adaptation of regular expressions can be derived by viewing these recipe examples. In addition, introductory information about basic regular expression rules can be found in the grep(1) man page.

The following simple examples demonstrate the basic structure of Procmail recipes and can provide the foundation for more intricate constructions.

A basic recipe may not even contain conditions, as is illustrated in the following example:

:0: new-mail.spool

The first line specifies that a local lockfile is to be created but does not specify a name, so Procmail uses the destination file name and appends the value specified in the LOCKEXT environment variable. No condition is specified, so every message matches this recipe and is placed in the single spool file called

new-mail.spool, located within the directory specified by the MAILDIR environment variable. An MUA can then view messages in this file.

A basic recipe, such as this, can be placed at the end of all rc files to direct messages to a default location.

The following example matched messages from a specific email address and throws them away.

:0

* ^From: [email protected]

/dev/null

447

Deployment Guide

With this example, any messages sent by [email protected] are sent to the /dev/null device, deleting them.

WARNING

Be certain that rules are working as intended before sending messages to

/dev/null for permanent deletion. If a recipe inadvertently catches unintended messages, and those messages disappear, it becomes difficult to troubleshoot the rule.

A better solution is to point the recipe's action to a special mailbox, which can be checked from time to time to look for false positives. Once satisfied that no messages are accidentally being matched, delete the mailbox and direct the action to send the messages to /dev/null.

The following recipe grabs email sent from a particular mailing list and places it in a specified folder.

:0:

* ^(From|Cc|To).*tux-lug tuxlug

Any messages sent from the [email protected] mailing list are placed in the tuxlug mailbox automatically for the MUA. Note that the condition in this example matches the message if it has the mailing list's email address on the From, Cc, or To lines.

Consult the many Procmail online resources available in

Section 19.6, “Additional Resources”

for more detailed and powerful recipes.

19.4.2.6. Spam Filters

Because it is called by Sendmail, Postfix, and Fetchmail upon receiving new emails, Procmail can be used as a powerful tool for combating spam.

This is particularly true when Procmail is used in conjunction with SpamAssassin. When used together, these two applications can quickly identify spam emails, and sort or destroy them.

SpamAssassin uses header analysis, text analysis, blacklists, a spam-tracking database, and selflearning Bayesian spam analysis to quickly and accurately identify and tag spam.

NOTE

In order to use SpamAssassin, first ensure the spamassassin package is installed on your system by running, as root:

~]# yum install spamassassin

For more information on installing packages with Yum, see Section 8.2.4, “Installing

Packages” .

448

CHAPTER 19. MAIL SERVERS

The easiest way for a local user to use SpamAssassin is to place the following line near the top of the

~/.procmailrc file:

INCLUDERC=/etc/mail/spamassassin/spamassassin-default.rc

The /etc/mail/spamassassin/spamassassin-default.rc contains a simple Procmail rule that activates SpamAssassin for all incoming email. If an email is determined to be spam, it is tagged in the header as such and the title is prepended with the following pattern:

*****SPAM*****

The message body of the email is also prepended with a running tally of what elements caused it to be diagnosed as spam.

To file email tagged as spam, a rule similar to the following can be used:

:0 Hw * ^X-Spam-Status: Yes spam

This rule files all email tagged in the header as spam into a mailbox called spam.

Since SpamAssassin is a Perl script, it may be necessary on busy servers to use the binary

SpamAssassin daemon (spamd) and the client application ( spamc). Configuring SpamAssassin this way, however, requires root access to the host.

To start the spamd daemon, type the following command:

~]# service spamassassin start

To start the SpamAssassin daemon when the system is booted, use an initscript utility, such as the

Services Configuration Tool (system-config-services), to turn on the spamassassin service.

See

Chapter 12, Services and Daemons for more information about starting and stopping services.

To configure Procmail to use the SpamAssassin client application instead of the Perl script, place the following line near the top of the ~/.procmailrc file. For a system-wide configuration, place it in

/etc/procmailrc:

INCLUDERC=/etc/mail/spamassassin/spamassassin-spamc.rc

19.5. MAIL USER AGENTS

Red Hat Enterprise Linux offers a variety of email programs, both, graphical email client programs, such as Evolution, and text-based email programs such as mutt.

The remainder of this section focuses on securing communication between a client and a server.

19.5.1. Securing Communication

Popular MUAs included with Red Hat Enterprise Linux, such as Evolution and Mutt offer SSL-encrypted email sessions.

Like any other service that flows over a network unencrypted, important email information, such as user names, passwords, and entire messages, may be intercepted and viewed by users on the network.

Additionally, since the standard POP and IMAP protocols pass authentication information unencrypted, it

449

Deployment Guide is possible for an attacker to gain access to user accounts by collecting user names and passwords as they are passed over the network.

19.5.1.1. Secure Email Clients

Most Linux MUAs designed to check email on remote servers support SSL encryption. To use SSL when retrieving email, it must be enabled on both the email client and the server.

SSL is easy to enable on the client-side, often done with the click of a button in the MUA's configuration window or via an option in the MUA's configuration file. Secure IMAP and POP have known port numbers

(993 and 995, respectively) that the MUA uses to authenticate and download messages.

19.5.1.2. Securing Email Client Communications

Offering SSL encryption to IMAP and POP users on the email server is a simple matter.

First, create an SSL certificate. This can be done in two ways: by applying to a Certificate Authority (CA) for an SSL certificate or by creating a self-signed certificate.

WARNING

Self-signed certificates should be used for testing purposes only. Any server used in a production environment should use an SSL certificate granted by a CA.

To create a self-signed SSL certificate for IMAP or POP, change to the /etc/pki/dovecot/ directory, edit the certificate parameters in the /etc/pki/dovecot/dovecot-openssl.cnf configuration file as you prefer, and type the following commands, as root: dovecot]# rm -f certs/dovecot.pem private/dovecot.pem

dovecot]# /usr/libexec/dovecot/mkcert.sh

Once finished, make sure you have the following configurations in your /etc/dovecot/conf.d/10-

ssl.conf file: ssl_cert = </etc/pki/dovecot/certs/dovecot.pem

ssl_key = </etc/pki/dovecot/private/dovecot.pem

Execute the service dovecot restart command to restart the dovecot daemon.

Alternatively, the stunnel command can be used as an encryption wrapper around the standard, nonsecure connections to IMAP or POP services.

The stunnel utility uses external OpenSSL libraries included with Red Hat Enterprise Linux to provide strong cryptography and to protect the network connections. It is recommended to apply to a CA to obtain an SSL certificate, but it is also possible to create a self-signed certificate.

See Using stunnel in the Red Hat Enterprise Linux 6 Security Guide for instructions on how to install

stunnel and create its basic configuration. To configure stunnel as a wrapper for IMAPS and POP3S, add the following lines to the /etc/stunnel/stunnel.conf configuration file:

450

CHAPTER 19. MAIL SERVERS

[pop3s] accept = 995 connect = 110

[imaps] accept = 993 connect = 143

The Security Guide also explains how to start and stop stunnel. Once you start it, it is possible to use an IMAP or a POP email client and connect to the email server using SSL encryption.

19.6. ADDITIONAL RESOURCES

The following is a list of additional documentation about email applications.

19.6.1. Installed Documentation

Information on configuring Sendmail is included with the sendmail and sendmail-cf packages.

/usr/share/sendmail-cf/README — Contains information on the m4 macro processor, file locations for Sendmail, supported mailers, how to access enhanced features, and more.

In addition, the sendmail and aliases man pages contain helpful information covering various

Sendmail options and the proper configuration of the Sendmail /etc/mail/aliases file.

/usr/share/doc/postfix-version-number/ — Contains a large amount of information on how to configure Postfix. Replace version-number with the version number of Postfix.

/usr/share/doc/fetchmail-version-number — Contains a full list of Fetchmail features in the FEATURES file and an introductory FAQ document. Replace version-number with the version number of Fetchmail.

/usr/share/doc/procmail-version-number/ — Contains a README file that provides an overview of Procmail, a FEATURES file that explores every program feature, and an FAQ file with answers to many common configuration questions. Replace version-number with the version number of Procmail.

When learning how Procmail works and creating new recipes, the following Procmail man pages are invaluable:

procmail — Provides an overview of how Procmail works and the steps involved with filtering email.

procmailrc — Explains the rc file format used to construct recipes.

procmailex — Gives a number of useful, real-world examples of Procmail recipes.

procmailsc — Explains the weighted scoring technique used by Procmail to match a particular recipe to a message.

/usr/share/doc/spamassassin-version-number/ — Contains a large amount of information pertaining to SpamAssassin. Replace version-number with the version number of the spamassassin package.

451

Deployment Guide

19.6.2. Online Documentation

How to configure postfix with TLS?

— A Red Hat Knowledgebase article that describes configuring postfix to use TLS.

The Red Hat Knowledgebase article How to Configure a System to Manage Multiple Virtual

Mailboxes Using Postfix and Dovecot describes managing multiple virtual users under one realuser account using Postfix as Mail Transporting Agent (MTA) and Dovecot as IMAP server.

http://www.sendmail.org/ — Offers a thorough technical breakdown of Sendmail features, documentation and configuration examples.

http://www.sendmail.com/ — Contains news, interviews and articles concerning Sendmail, including an expanded view of the many options available.

http://www.postfix.org/ — The Postfix project home page contains a wealth of information about

Postfix. The mailing list is a particularly good place to look for information.

http://www.fetchmail.info/fetchmail-FAQ.html

— A thorough FAQ about Fetchmail.

http://www.procmail.org/ — The home page for Procmail with links to assorted mailing lists dedicated to Procmail as well as various FAQ documents.

http://www.spamassassin.org/ — The official site of the SpamAssassin project.

19.6.3. Related Books

Sendmail Milters: A Guide for Fighting Spam by Bryan Costales and Marcia Flynt; Addison-

Wesley — A good Sendmail guide that can help you customize your mail filters.

Sendmail by Bryan Costales with Eric Allman et al.; O'Reilly & Associates — A good Sendmail reference written with the assistance of the original creator of Delivermail and Sendmail.

Removing the Spam: Email Processing and Filtering by Geoff Mulligan; Addison-Wesley

Publishing Company — A volume that looks at various methods used by email administrators using established tools, such as Sendmail and Procmail, to manage spam problems.

Internet Email Protocols: A Developer's Guide by Kevin Johnson; Addison-Wesley Publishing

Company — Provides a very thorough review of major email protocols and the security they provide.

Managing IMAP by Dianna Mullet and Kevin Mullet; O'Reilly & Associates — Details the steps required to configure an IMAP server.

452

CHAPTER 20. DIRECTORY SERVERS

CHAPTER 20. DIRECTORY SERVERS

20.1. OPENLDAP

LDAP (Lightweight Directory Access Protocol) is a set of open protocols used to access centrally stored information over a network. It is based on the X.500 standard for directory sharing, but is less complex and resource-intensive. For this reason, LDAP is sometimes referred to as “X.500 Lite”.

Like X.500, LDAP organizes information in a hierarchical manner using directories. These directories can store a variety of information such as names, addresses, or phone numbers, and can even be used in a manner similar to the Network Information Service (NIS), enabling anyone to access their account from any machine on the LDAP enabled network.

LDAP is commonly used for centrally managed users and groups, user authentication, or system configuration. It can also serve as a virtual phone directory, allowing users to easily access contact information for other users. Additionally, it can refer a user to other LDAP servers throughout the world, and thus provide an ad-hoc global repository of information. However, it is most frequently used within individual organizations such as universities, government departments, and private companies.

This section covers the installation and configuration of OpenLDAP 2.4, an open source implementation of the LDAPv2 and LDAPv3 protocols.

20.1.1. Introduction to LDAP

Using a client-server architecture, LDAP provides a reliable means to create a central information directory accessible from the network. When a client attempts to modify information within this directory, the server verifies the user has permission to make the change, and then adds or updates the entry as requested. To ensure the communication is secure, the Transport Layer Security (TLS) cryptographic protocol can be used to prevent an attacker from intercepting the transmission.

IMPORTANT

The OpenLDAP suite in Red Hat Enterprise Linux 6 no longer uses OpenSSL. Instead, it uses the Mozilla implementation of Network Security Services (NSS). OpenLDAP continues to work with existing certificates, keys, and other TLS configuration. For more information on how to configure it to use Mozilla certificate and key database, see How do

I use TLS/SSL with Mozilla NSS .

IMPORTANT

Due to the vulnerability described in Resolution for POODLE SSLv3.0 vulnerability (CVE-

2014-3566) for components that do not allow SSLv3 to be disabled via configuration settings , Red Hat recommends that you do not rely on the SSLv3 protocol for security.

OpenLDAP is one of the system components that do not provide configuration parameters that allow SSLv3 to be effectively disabled. To mitigate the risk, it is recommended that you use the stunnel command to provide a secure tunnel, and disable stunnel from using SSLv3. For more information on using stunnel, see the Red Hat Enterprise Linux 6

Security Guide .

The LDAP server supports several database systems, which gives administrators the flexibility to choose the best suited solution for the type of information they are planning to serve. Because of a well-defined client Application Programming Interface (API), the number of applications able to communicate with an

LDAP server is numerous, and increasing in both quantity and quality.

453

Deployment Guide

20.1.1.1. LDAP Terminology

The following is a list of LDAP-specific terms that are used within this chapter: entry

A single unit within an LDAP directory. Each entry is identified by its unique Distinguished Name

(DN).

attribute

Information directly associated with an entry. For example, if an organization is represented as an

LDAP entry, attributes associated with this organization might include an address, a fax number, etc.

Similarly, people can be represented as entries with common attributes such as personal telephone number or email address.

An attribute can either have a single value, or an unordered space-separated list of values. While certain attributes are optional, others are required. Required attributes are specified using the

objectClass definition, and can be found in schema files located in the

/etc/openldap/slapd.d/cn=config/cn=schema/ directory.

The assertion of an attribute and its corresponding value is also referred to as a Relative

Distinguished Name (RDN). Unlike distinguished names that are unique globally, a relative distinguished name is only unique per entry.

LDIF

The LDAP Data Interchange Format (LDIF) is a plain text representation of an LDAP entry. It takes the following form:

[id] dn: distinguished_name

attribute_type: attribute_value

attribute_type: attribute_value

The optional id is a number determined by the application that is used to edit the entry. Each entry can contain as many attribute_type and attribute_value pairs as needed, as long as they are all defined in a corresponding schema file. A blank line indicates the end of an entry.

20.1.1.2. OpenLDAP Features

OpenLDAP suite provides a number of important features:

LDAPv3 Support — Many of the changes in the protocol since LDAP version 2 are designed to make LDAP more secure. Among other improvements, this includes the support for Simple

Authentication and Security Layer (SASL), and Transport Layer Security (TLS) protocols.

LDAP Over IPC — The use of inter-process communication (IPC) enhances security by eliminating the need to communicate over a network.

IPv6 Support — OpenLDAP is compliant with Internet Protocol version 6 (IPv6), the next generation of the Internet Protocol.

LDIFv1 Support — OpenLDAP is fully compliant with LDIF version 1.

454

CHAPTER 20. DIRECTORY SERVERS

Updated C API — The current C API improves the way programmers can connect to and use

LDAP directory servers.

Enhanced Standalone LDAP Server — This includes an updated access control system, thread pooling, better tools, and much more.

20.1.1.3. OpenLDAP Server Setup

The typical steps to set up an LDAP server on Red Hat Enterprise Linux are as follows:

1. Install the OpenLDAP suite. See

Section 20.1.2, “Installing the OpenLDAP Suite”

for more information on required packages.

2. Customize the configuration as described in Section 20.1.3, “Configuring an OpenLDAP Server” .

3. Start the slapd service as described in

Section 20.1.4, “Running an OpenLDAP Server” .

4. Use the ldapadd utility to add entries to the LDAP directory.

5. Use the ldapsearch utility to verify that the slapd service is accessing the information correctly.

20.1.2. Installing the OpenLDAP Suite

The suite of OpenLDAP libraries and tools is provided by the following packages:

Table 20.1. List of OpenLDAP packages

Package Description openldap openldap-clients openldap-servers compat-openldap

A package containing the libraries necessary to run the OpenLDAP server and client applications.

A package containing the command-line utilities for viewing and modifying directories on an LDAP server.

A package containing both the services and utilities to configure and run an LDAP server. This includes the Standalone LDAP Daemon, slapd .

A package containing the OpenLDAP compatibility libraries.

Additionally, the following packages are commonly used along with the LDAP server:

Table 20.2. List of commonly installed additional LDAP packages

Package Description

455

Deployment Guide

Package sssd mod_authz_ldap

Description

A package containing the System Security Services

Daemon (SSSD) , a set of daemons to manage access to remote directories and authentication mechanisms. It provides the Name Service

Switch (NSS) and the Pluggable Authentication Modules (PAM) interfaces toward the system and a pluggable back-end system to connect to multiple different account sources.

A package containing mod_authz_ldap , the LDAP authorization module for the Apache HTTP Server. This module uses the short form of the distinguished name for a subject and the issuer of the client SSL certificate to determine the distinguished name of the user within an

LDAP directory. It is also capable of authorizing users based on attributes of that user's LDAP directory entry, determining access to assets based on the user and group privileges of the asset, and denying access for users with expired passwords. Note that the mod_ssl module is required when using the mod_authz_ldap module.

To install these packages, use the yum command in the following form: yum install package

For example, to perform the basic LDAP server installation, type the following at a shell prompt:

~]# yum install openldap openldap-clients openldap-servers

Note that you must have superuser privileges (that is, you must be logged in as root) to run this command. For more information on how to install new packages in Red Hat Enterprise Linux, see

Section 8.2.4, “Installing Packages”

.

20.1.2.1. Overview of OpenLDAP Server Utilities

To perform administrative tasks, the openldap-servers package installs the following utilities along with the slapd service:

Table 20.3. List of OpenLDAP server utilities

Command Description slapacl slapadd

Allows you to check the access to a list of attributes.

Allows you to add entries from an LDIF file to an LDAP directory.

slapauth Allows you to check a list of IDs for authentication and authorization permissions.

slapcat Allows you to pull entries from an LDAP directory in the default format and save them in an LDIF file.

456

CHAPTER 20. DIRECTORY SERVERS

Command slapdn slapindex slappasswd slapschema

Description

Allows you to check a list of Distinguished Names (DNs) based on available schema syntax.

Allows you to re-index the slapd directory based on the current content. Run this utility whenever you change indexing options in the configuration file.

Allows you to create an encrypted user password to be used with the ldapmodify utility, or in the slapd configuration file.

Allows you to check the compliance of a database with the corresponding schema.

Allows you to check the LDAP server configuration.

slaptest

For a detailed description of these utilities and their usage, see the corresponding manual pages as

referred to in Section 20.1.6.1, “Installed Documentation”

.

IMPORTANT

Although only root can run slapadd, the slapd service runs as the ldap user.

Because of this, the directory server is unable to modify any files created by slapadd. To correct this issue, after running the slapd utility, type the following at a shell prompt:

~]# chown -R ldap:ldap /var/lib/ldap

WARNING

To preserve the data integrity, stop the slapd service before using slapadd,

slapcat, or slapindex. You can do so by typing the following at a shell prompt:

~]# service slapd stop

Stopping slapd:

[ OK ]

For more information on how to start, stop, restart, and check the current status of the slapd service, see

Section 20.1.4, “Running an OpenLDAP Server”

.

20.1.2.2. Overview of OpenLDAP Client Utilities

The openldap-clients package installs the following utilities which can be used to add, modify, and delete entries in an LDAP directory:

457

Deployment Guide

Table 20.4. List of OpenLDAP client utilities

Command Description ldapadd Allows you to add entries to an LDAP directory, either from a file, or from standard input. It is a symbolic link to ldapmodify -a .

Allows you to compare given attribute with an LDAP directory entry.

ldapcompare ldapdelete Allows you to delete entries from an LDAP directory.

Allows you to perform extended LDAP operations.

ldapexop ldapmodify Allows you to modify entries in an LDAP directory, either from a file, or from standard input.

Allows you to modify the RDN value of an LDAP directory entry.

ldapmodrdn ldappasswd Allows you to set or change the password for an LDAP user.

Allows you to search LDAP directory entries.

ldapsearch ldapurl ldapwhoami

Allows you to compose or decompose LDAP URLs.

Allows you to perform a whoami operation on an LDAP server.

With the exception of ldapsearch, each of these utilities is more easily used by referencing a file containing the changes to be made rather than typing a command for each entry to be changed within an

LDAP directory. The format of such a file is outlined in the man page for each utility.

20.1.2.3. Overview of Common LDAP Client Applications

Although there are various graphical LDAP clients capable of creating and modifying directories on the server, none of them is included in Red Hat Enterprise Linux. Popular applications that can access directories in a read-only mode include Mozilla Thunderbird, Evolution, or Ekiga.

20.1.3. Configuring an OpenLDAP Server

By default, OpenLDAP stores its configuration in the /etc/openldap/ directory. Table 20.5, “List of

OpenLDAP configuration files and directories” highlights the most important files and directories within

this directory.

Table 20.5. List of OpenLDAP configuration files and directories

Path Description

/etc/openldap/ldap.con

f

The configuration file for client applications that use the OpenLDAP libraries. This includes ldapadd , ldapsearch , Evolution, etc.

458

CHAPTER 20. DIRECTORY SERVERS

Path

/etc/openldap/slapd.d/

Description

The directory containing the slapd configuration.

In Red Hat Enterprise Linux 6, the slapd service uses a configuration database located in the

/etc/openldap/slapd.d/ directory and only reads the old /etc/openldap/slapd.conf configuration file if this directory does not exist. If you have an existing slapd.conf file from a previous installation, you can either wait for the openldap-servers package to convert it to the new format the next time you update this package, or type the following at a shell prompt as root to convert it immediately:

~]# slaptest -f /etc/openldap/slapd.conf -F /etc/openldap/slapd.d/

The slapd configuration consists of LDIF entries organized in a hierarchical directory structure, and the

recommended way to edit these entries is to use the server utilities described in Section 20.1.2.1,

“Overview of OpenLDAP Server Utilities” .

IMPORTANT

An error in an LDIF file can render the slapd service unable to start. Because of this, it is strongly advised that you avoid editing the LDIF files within the

/etc/openldap/slapd.d/ directory directly.

20.1.3.1. Changing the Global Configuration

Global configuration options for the LDAP server are stored in the

/etc/openldap/slapd.d/cn=config.ldif file. The following directives are commonly used: olcAllows

The olcAllows directive allows you to specify which features to enable. It takes the following form: olcAllows: feature

It accepts a space-separated list of features as described in Table 20.6, “Available olcAllows options” .

The default option is bind_v2.

Table 20.6. Available olcAllows options

Option Description bind_v2 bind_anon_cred

Enables the acceptance of LDAP version 2 bind requests.

Enables an anonymous bind when the Distinguished Name (DN) is empty.

bind_anon_dn update_anon

Enables an anonymous bind when the Distinguished Name (DN) is not empty.

Enables processing of anonymous update operations.

proxy_authz_anon Enables processing of anonymous proxy authorization control.

459

Deployment Guide

Example 20.1. Using the olcAllows directive olcAllows: bind_v2 update_anon olcConnMaxPending

The olcConnMaxPending directive allows you to specify the maximum number of pending requests for an anonymous session. It takes the following form: olcConnMaxPending: number

The default option is 100.

Example 20.2. Using the olcConnMaxPending directive olcConnMaxPending: 100 olcConnMaxPendingAuth

The olcConnMaxPendingAuth directive allows you to specify the maximum number of pending requests for an authenticated session. It takes the following form: olcConnMaxPendingAuth: number

The default option is 1000.

Example 20.3. Using the olcConnMaxPendingAuth directive olcConnMaxPendingAuth: 1000 olcDisallows

The olcDisallows directive allows you to specify which features to disable. It takes the following form: olcDisallows: feature

It accepts a space-separated list of features as described in Table 20.7, “Available olcDisallows options” . No features are disabled by default.

Table 20.7. Available olcDisallows options

Option Description bind_anon Disables the acceptance of anonymous bind requests.

bind_simple Disables the simple bind authentication mechanism.

460

Option tls_2_anon

CHAPTER 20. DIRECTORY SERVERS

Description

Disables the enforcing of an anonymous session when the STARTTLS command is received.

Disallows the STARTTLS command when authenticated.

tls_authc

Example 20.4. Using the olcDisallows directive olcDisallows: bind_anon olcIdleTimeout

The olcIdleTimeout directive allows you to specify how many seconds to wait before closing an idle connection. It takes the following form: olcIdleTimeout: number

This option is disabled by default (that is, set to 0).

Example 20.5. Using the olcIdleTimeout directive olcIdleTimeout: 180 olcLogFile

The olcLogFile directive allows you to specify a file in which to write log messages. It takes the following form: olcLogFile: file_name

The log messages are written to standard error by default.

Example 20.6. Using the olcLogFile directive olcLogFile: /var/log/slapd.log

olcReferral

The olcReferral option allows you to specify a URL of a server to process the request in case the server is not able to handle it. It takes the following form: olcReferral: URL

This option is disabled by default.

Example 20.7. Using the olcReferral directive

461

Deployment Guide olcReferral: ldap://root.openldap.org

olcWriteTimeout

The olcWriteTimeout option allows you to specify how many seconds to wait before closing a connection with an outstanding write request. It takes the following form: olcWriteTimeout

This option is disabled by default (that is, set to 0).

Example 20.8. Using the olcWriteTimeout directive olcWriteTimeout: 180

20.1.3.2. Changing the Database-Specific Configuration

By default, the OpenLDAP server uses Berkeley DB (BDB) as a database back end. The configuration for this database is stored in the /etc/openldap/slapd.d/cn=config/olcDatabase=

{2}bdb.ldif file. The following directives are commonly used in a database-specific configuration: olcReadOnly

The olcReadOnly directive allows you to use the database in a read-only mode. It takes the following form: olcReadOnly: boolean

It accepts either TRUE (enable the read-only mode), or FALSE (enable modifications of the database).

The default option is FALSE.

Example 20.9. Using the olcReadOnly directive olcReadOnly: TRUE olcRootDN

The olcRootDN directive allows you to specify the user that is unrestricted by access controls or administrative limit parameters set for operations on the LDAP directory. It takes the following form: olcRootDN: distinguished_name

It accepts a Distinguished Name (DN). The default option is cn=Manager,dc=my-domain,dc=com.

Example 20.10. Using the olcRootDN directive olcRootDN: cn=root,dc=example,dc=com

462

CHAPTER 20. DIRECTORY SERVERS olcRootPW

The olcRootPW directive allows you to set a password for the user that is specified using the

olcRootDN directive. It takes the following form: olcRootPW: password

It accepts either a plain text string, or a hash. To generate a hash, type the following at a shell prompt:

~]$ slappaswd

New password:

Re-enter new password:

{SSHA}WczWsyPEnMchFf1GRTweq2q7XJcvmSxD

Example 20.11. Using the olcRootPW directive olcRootPW: {SSHA}WczWsyPEnMchFf1GRTweq2q7XJcvmSxD olcSuffix

The olcSuffix directive allows you to specify the domain for which to provide information. It takes the following form: olcSuffix: domain_name

It accepts a fully qualified domain name (FQDN). The default option is dc=my-domain,dc=com.

Example 20.12. Using the olcSuffix directive olcSuffix: dc=example,dc=com

20.1.3.3. Extending Schema

Since OpenLDAP 2.3, the /etc/openldap/slapd.d/cn=config/cn=schema/ directory also contains LDAP definitions that were previously located in /etc/openldap/schema/. It is possible to extend the schema used by OpenLDAP to support additional attribute types and object classes using the default schema files as a guide. However, this task is beyond the scope of this chapter. For more information on this topic, see http://www.openldap.org/doc/admin/schema.html

.

20.1.4. Running an OpenLDAP Server

This section describes how to start, stop, restart, and check the current status of the Standalone LDAP

Daemon. For more information on how to manage system services in general, see Chapter 12, Services and Daemons .

20.1.4.1. Starting the Service

463

Deployment Guide

To run the slapd service, type the following at a shell prompt:

~]# service slapd start

Starting slapd: [ OK ]

If you want the service to start automatically at the boot time, use the following command:

~]# chkconfig slapd on

Note that you can also use the Service Configuration utility as described in Section 12.2.1.1, “Enabling and Disabling a Service” .

20.1.4.2. Stopping the Service

To stop the running slapd service, type the following at a shell prompt:

~]# service slapd stop

Stopping slapd: [ OK ]

To prevent the service from starting automatically at the boot time, type:

~]# chkconfig slapd off

Alternatively, you can use the Service Configuration utility as described in Section 12.2.1.1, “Enabling and Disabling a Service” .

20.1.4.3. Restarting the Service

To restart the running slapd service, type the following at a shell prompt:

~]# service slapd restart

Stopping slapd: [ OK ]

Starting slapd: [ OK ]

This stops the service, and then starts it again. Use this command to reload the configuration.

20.1.4.4. Checking the Service Status

To check whether the service is running, type the following at a shell prompt:

~]# service slapd status slapd (pid 3672) is running...

20.1.5. Configuring a System to Authenticate Using OpenLDAP

In order to configure a system to authenticate using OpenLDAP, make sure that the appropriate packages are installed on both LDAP server and client machines. For information on how to set up the

server, follow the instructions in Section 20.1.2, “Installing the OpenLDAP Suite”

and Section 20.1.3,

“Configuring an OpenLDAP Server” . On a client, type the following at a shell prompt:

~]# yum install openldap openldap-clients sssd

464

CHAPTER 20. DIRECTORY SERVERS

Chapter 13, Configuring Authentication provides detailed instructions on how to configure applications to

use LDAP for authentication.

20.1.5.1. Migrating Old Authentication Information to LDAP Format

The migrationtools package provides a set of shell and Perl scripts to help you migrate authentication information into an LDAP format. To install this package, type the following at a shell prompt:

~]# yum install migrationtools

This will install the scripts to the /usr/share/migrationtools/ directory. Once installed, edit the

/usr/share/migrationtools/migrate_common.ph file and change the following lines to reflect the correct domain, for example:

# Default DNS domain

$DEFAULT_MAIL_DOMAIN = "example.com";

# Default base

$DEFAULT_BASE = "dc=example,dc=com";

Alternatively, you can specify the environment variables directly on the command line. For example, to run the migrate_all_online.sh script with the default base set to dc=example,dc=com, type:

~]# export DEFAULT_BASE="dc=example,dc=com" \

/usr/share/migrationtools/migrate_all_online.sh

To decide which script to run in order to migrate the user database, see Table 20.8, “Commonly used

LDAP migration scripts” .

Table 20.8. Commonly used LDAP migration scripts

Existing Name Service Is LDAP

Running?

Script to Use migrate_all_online.sh

/etc flat files

/etc flat files

NetInfo

NetInfo yes no yes no migrate_all_offline.sh

migrate_all_netinfo_online.sh

migrate_all_netinfo_offline.sh

migrate_all_nis_online.sh

NIS (YP)

NIS (YP) yes no migrate_all_nis_offline.sh

For more information on how to use these scripts, see the README and the migration-tools.txt files in the /usr/share/doc/migrationtools-version/ directory.

20.1.6. Additional Resources

465

Deployment Guide

The following resources offer additional information on the Lightweight Directory Access Protocol. Before configuring LDAP on your system, it is highly recommended that you review these resources, especially the OpenLDAP Software Administrator's Guide.

20.1.6.1. Installed Documentation

The following documentation is installed with the openldap-servers package:

/usr/share/doc/openldap-servers-version/guide.html

A copy of the OpenLDAP Software Administrator's Guide.

/usr/share/doc/openldap-servers-version/README.schema

A README file containing the description of installed schema files.

Additionally, there is also a number of manual pages that are installed with the openldap, openldapservers, and openldap-clients packages:

Client Applications

man ldapadd — Describes how to add entries to an LDAP directory.

man ldapdelete — Describes how to delete entries within an LDAP directory.

man ldapmodify — Describes how to modify entries within an LDAP directory.

man ldapsearch — Describes how to search for entries within an LDAP directory.

man ldappasswd — Describes how to set or change the password of an LDAP user.

man ldapcompare — Describes how to use the ldapcompare tool.

man ldapwhoami — Describes how to use the ldapwhoami tool.

man ldapmodrdn — Describes how to modify the RDNs of entries.

Server Applications

man slapd — Describes command-line options for the LDAP server.

Administrative Applications

man slapadd — Describes command-line options used to add entries to a slapd database.

man slapcat — Describes command-line options used to generate an LDIF file from a

slapd database.

man slapindex — Describes command-line options used to regenerate an index based upon the contents of a slapd database.

man slappasswd — Describes command-line options used to generate user passwords for

LDAP directories.

Configuration Files

466

CHAPTER 20. DIRECTORY SERVERS

man ldap.conf — Describes the format and options available within the configuration file for LDAP clients.

man slapd-config — Describes the format and options available within the configuration directory.

20.1.6.2. Useful Websites

http://www.openldap.org/doc/admin24/

The current version of the OpenLDAP Software Administrator's Guide.

20.1.6.3. Related Books

OpenLDAP by Example by John Terpstra and Benjamin Coles; Prentice Hall.

A collection of practical exercises in the OpenLDAP deployment.

Implementing LDAP by Mark Wilcox; Wrox Press, Inc.

A book covering LDAP from both the system administrator's and software developer's perspective.

Understanding and Deploying LDAP Directory Services by Tim Howes et al.; Macmillan Technical

Publishing.

A book covering LDAP design principles, as well as its deployment in a production environment.

467

Deployment Guide

CHAPTER 21. FILE AND PRINT SERVERS

21.1. SAMBA

Samba is the standard open source Windows interoperability suite of programs for Linux. It implements the server message block (SMB) protocol. Modern versions of this protocol are also known as the common Internet file system (CIFS) protocol. It allows the networking of Microsoft Windows®, Linux,

UNIX, and other operating systems together, enabling access to Windows-based file and printer shares.

Samba's use of SMB allows it to appear as a Windows server to Windows clients.

NOTE

In order to use Samba, first ensure the samba package is installed on your system by running the following command as root:

~]# yum install samba

For more information on installing packages with Yum, see Section 8.2.4, “Installing

Packages” .

21.1.1. Introduction to Samba

Samba is an important component to seamlessly integrate Linux Servers and Desktops into Active

Directory (AD) environments. It can function both as a domain controller (NT4-style) or as a regular domain member (AD or NT4-style).

What Samba can do:

Serve directory trees and printers to Linux, UNIX, and Windows clients

Assist in network browsing (with NetBIOS)

Authenticate Windows domain logins

Provide Windows Internet Name Service (WINS) name server resolution

Act as a Windows NT®-style Primary Domain Controller (PDC)

Act as a Backup Domain Controller (BDC) for a Samba-based PDC

Act as an Active Directory domain member server

Join a Windows NT/2000/2003/2008 PDC

What Samba cannot do:

Act as a BDC for a Windows PDC (and vice versa)

Act as an Active Directory domain controller

21.1.2. Samba Daemons and Related Services

Samba is comprised of three daemons (smbd, nmbd, and winbindd). Three services (smb, nmb, and

winbind) control how the daemons are started, stopped, and other service-related features. These

468

CHAPTER 21. FILE AND PRINT SERVERS services act as different init scripts. Each daemon is listed in detail below, as well as which specific service has control over it.

smbd

The smbd server daemon provides file sharing and printing services to Windows clients. In addition, it is responsible for user authentication, resource locking, and data sharing through the SMB protocol. The default ports on which the server listens for SMB traffic are TCP ports 139 and 445.

The smbd daemon is controlled by the smb service.

nmbd

The nmbd server daemon understands and replies to NetBIOS name service requests such as those produced by SMB/CIFS in Windows-based systems. These systems include Windows 95/98/ME,

Windows NT, Windows 2000, Windows XP, and LanManager clients. It also participates in the browsing protocols that make up the Windows Network Neighborhood view. The default port that the server listens to for NMB traffic is UDP port 137.

The nmbd daemon is controlled by the nmb service.

winbindd

The winbind service resolves user and group information received from a server running Windows NT,

2000, 2003, Windows Server 2008, or Windows Server 2012. This makes Windows user and group information understandable by UNIX platforms. This is achieved by using Microsoft RPC calls, Pluggable

Authentication Modules (PAM), and the Name Service Switch (NSS). This allows Windows NT domain and Active Directory users to appear and operate as UNIX users on a UNIX machine. Though bundled with the Samba distribution, the winbind service is controlled separately from the smb service.

The winbind daemon is controlled by the winbind service and does not require the smb service to be started in order to operate. winbind is also used when Samba is an Active Directory member, and may also be used on a Samba domain controller (to implement nested groups and interdomain trust).

Because winbind is a client-side service used to connect to Windows NT-based servers, further discussion of winbind is beyond the scope of this chapter.

For information on how to configure winbind for authentication, see Section 13.1.2.3, “Configuring

Winbind Authentication” .

NOTE

See

Section 21.1.11, “Samba Distribution Programs” for a list of utilities included in the

Samba distribution.

21.1.3. Connecting to a Samba Share

You can use either Nautilus or command line to connect to available Samba shares.

Procedure 21.1. Connecting to a Samba Share Using Nautilus

1. To view a list of Samba workgroups and domains on your network, select PlacesNetwork from the GNOME panel, and then select the desired network. Alternatively, type smb: in the File

Open Location bar of Nautilus.

As shown in

Figure 21.1, “SMB Workgroups in Nautilus”

, an icon appears for each available SMB workgroup or domain on the network.

469

Deployment Guide

Figure 21.1. SMB Workgroups in Nautilus

2. Double-click one of the workgroup or domain icon to view a list of computers within the workgroup or domain.

470

Figure 21.2. SMB Machines in Nautilus

3. As displayed in

Figure 21.2, “SMB Machines in Nautilus” , an icon exists for each machine within

the workgroup. Double-click on an icon to view the Samba shares on the machine. If a user name and password combination is required, you are prompted for them.

CHAPTER 21. FILE AND PRINT SERVERS

Alternately, you can also specify the Samba server and sharename in the Location: bar for

Nautilus using the following syntax (replace servername and sharename with the appropriate values): smb://servername/sharename

Procedure 21.2. Connecting to a Samba Share Using the Command Line

1. To query the network for Samba servers, use the findsmb command. For each server found, it displays its IP address, NetBIOS name, workgroup name, operating system, and SMB server version: findsmb

2. To connect to a Samba share from a shell prompt, type the following command: smbclient //hostname/sharename -U username

Replace hostname with the host name or IP address of the Samba server you want to connect to, sharename with the name of the shared directory you want to browse, and username with the

Samba user name for the system. Enter the correct password or press Enter if no password is required for the user.

If you see the smb:\> prompt, you have successfully logged in. Once you are logged in, type

help for a list of commands. If you want to browse the contents of your home directory, replace sharename with your user name. If the -U switch is not used, the user name of the current user is passed to the Samba server.

3. To exit smbclient, type exit at the smb:\> prompt.

21.1.3.1. Mounting the Share

Sometimes it is useful to mount a Samba share to a directory so that the files in the directory can be treated as if they are part of the local file system.

To mount a Samba share to a directory, create a directory to mount it to (if it does not already exist), and execute the following command as root: mount -t cifs //servername/sharename /mnt/point/ -o username=username,password=password

This command mounts sharename from servername in the local directory /mnt/point/.

For more information about mounting a samba share, see the mount.cifs(8) manual page.

471

Deployment Guide

NOTE

The mount.cifs utility is a separate RPM (independent from Samba). In order to use

mount.cifs, first ensure the cifs-utils package is installed on your system by running the following command as root:

~]# yum install cifs-utils

For more information on installing packages with Yum, see Section 8.2.4, “Installing

Packages” .

Note that the cifs-utils package also contains the cifs.upcall binary called by the kernel in order to perform kerberized CIFS mounts. For more information on cifs.upcall, see the cifs.upcall(8) manual page.

WARNING

Some CIFS servers require plain text passwords for authentication. Support for plain text password authentication can be enabled using the following command as root:

~]# echo 0x37 > /proc/fs/cifs/SecurityFlags

WARNING: This operation can expose passwords by removing password encryption.

21.1.4. Configuring a Samba Server

The default configuration file (/etc/samba/smb.conf) allows users to view their home directories as a

Samba share. It also shares all printers configured for the system as Samba shared printers. You can attach a printer to the system and print to it from the Windows machines on your network.

21.1.4.1. Graphical Configuration

To configure Samba using a graphical interface, use one of the available Samba graphical user interfaces. A list of available GUIs can be found at http://www.samba.org/samba/GUI/ .

21.1.4.2. Command-Line Configuration

Samba uses /etc/samba/smb.conf as its configuration file. If you change this configuration file, the changes do not take effect until you restart the Samba daemon with the following command as root:

~]# service smb restart

To specify the Windows workgroup and a brief description of the Samba server, edit the following lines in your /etc/samba/smb.conf file: workgroup = WORKGROUPNAME server string = BRIEF COMMENT ABOUT SERVER

472

CHAPTER 21. FILE AND PRINT SERVERS

Replace WORKGROUPNAME with the name of the Windows workgroup to which this machine should belong. The BRIEF COMMENT ABOUT SERVER is optional and is used as the Windows comment about the Samba system.

To create a Samba share directory on your Linux system, add the following section to your

/etc/samba/smb.conf file (after modifying it to reflect your needs and your system):

Example 21.1. An Example Configuration of a Samba Server

[sharename] comment = Insert a comment here path = /home/share/ valid users = tfox carole writable = yes create mask = 0765

The above example allows the users tfox and carole to read and write to the directory

/home/share/, on the Samba server, from a Samba client.

21.1.4.3. Encrypted Passwords

Encrypted passwords are enabled by default because it is more secure to use them. To create a user with an encrypted password, use the smbpasswd utility: smbpasswd -a username

21.1.5. Starting and Stopping Samba

To start a Samba server, type the following command in a shell prompt, as root:

~]# service smb start

IMPORTANT

To set up a domain member server, you must first join the domain or Active Directory using the net join command before starting the smb service. Also it is recommended to run winbind before smbd.

To stop the server, type the following command in a shell prompt, as root:

~]# service smb stop

The restart option is a quick way of stopping and then starting Samba. This is the most reliable way to make configuration changes take effect after editing the configuration file for Samba. Note that the restart option starts the daemon even if it was not running originally.

To restart the server, type the following command in a shell prompt, as root:

~]# service smb restart

473

Deployment Guide

The condrestart (conditional restart) option only starts smb on the condition that it is currently running. This option is useful for scripts, because it does not start the daemon if it is not running.

NOTE

When the /etc/samba/smb.conf file is changed, Samba automatically reloads it after a few minutes. Issuing a manual restart or reload is just as effective.

To conditionally restart the server, type the following command as root:

~]# service smb condrestart

A manual reload of the /etc/samba/smb.conf file can be useful in case of a failed automatic reload by the smb service. To ensure that the Samba server configuration file is reloaded without restarting the service, type the following command, as root:

~]# service smb reload

By default, the smb service does not start automatically at boot time. To configure Samba to start at boot time, use an initscript utility, such as /sbin/chkconfig, /usr/sbin/ntsysv, or the Services

Configuration Tool program. See

Chapter 12, Services and Daemons

for more information regarding these tools.

21.1.6. Samba Server Types and the

smb.conf

File

Samba configuration is straightforward. All modifications to Samba are done in the

/etc/samba/smb.conf configuration file. Although the default smb.conf file is well documented, it does not address complex topics such as LDAP, Active Directory, and the numerous domain controller implementations.

The following sections describe the different ways a Samba server can be configured. Keep in mind your needs and the changes required to the /etc/samba/smb.conf file for a successful configuration.

21.1.6.1. Stand-alone Server

A stand-alone server can be a workgroup server or a member of a workgroup environment. A standalone server is not a domain controller and does not participate in a domain in any way. The following examples include several user-level security configurations. For more information on security modes, see

Section 21.1.7, “Samba Security Modes” .

Anonymous Read-Only

The following /etc/samba/smb.conf file shows a sample configuration needed to implement anonymous read-only file sharing. Two directives are used to configure anonymous access – map to

guest = Bad user and guest account = nobody.

Example 21.2. An Example Configuration of a Anonymous Read-Only Samba Server

[global] workgroup = DOCS netbios name = DOCS_SRV security = user guest account = nobody # default value

474

CHAPTER 21. FILE AND PRINT SERVERS map to guest = Bad user

[data] comment = Documentation Samba Server path = /export read only = yes guest ok = yes

Anonymous Read/Write

The following /etc/samba/smb.conf file shows a sample configuration needed to implement anonymous read/write file sharing. To enable anonymous read/write file sharing, set the read only directive to no. The force user and force group directives are also added to enforce the ownership of any newly placed files specified in the share.

NOTE

Although having an anonymous read/write server is possible, it is not recommended. Any files placed in the share space, regardless of user, are assigned the user/group combination as specified by a generic user (force user) and group (force group) in the /etc/samba/smb.conf file.

Example 21.3. An Example Configuration of a Anonymous Read/Write Samba Server

[global] workgroup = DOCS security = user guest account = nobody # default value map to guest = Bad user

[data] comment = Data path = /export guest ok = yes writeable = yes force user = user force group = group

Anonymous Print Server

The following /etc/samba/smb.conf file shows a sample configuration needed to implement an anonymous print server. Setting browseable to no as shown does not list the printer in Windows

Network Neighborhood. Although hidden from browsing, configuring the printer explicitly is possible.

By connecting to DOCS_SRV using NetBIOS, the client can have access to the printer if the client is also part of the DOCS workgroup. It is also assumed that the client has the correct local printer driver installed, as the use client driver directive is set to yes. In this case, the Samba server has no responsibility for sharing printer drivers to the client.

Example 21.4. An Example Configuration of a Anonymous Print Samba Server

[global] workgroup = DOCS

475

Deployment Guide netbios name = DOCS_SRV security = user map to guest = Bad user printing = cups

[printers] comment = All Printers path = /var/spool/samba guest ok = yes printable = yes use client driver = yes browseable = yes

Secure Read/Write File and Print Server

The following /etc/samba/smb.conf file shows a sample configuration needed to implement a secure read/write file and print server. Setting the security directive to user forces Samba to authenticate client connections. Notice the [homes] share does not have a force user or force group directive as the [public] share does. The [homes] share uses the authenticated user details for any files created as opposed to the force user and force group in [public].

Example 21.5. An Example Configuration of a Secure Read/Write File and Print Samba Server

[global] workgroup = DOCS netbios name = DOCS_SRV security = user printcap name = cups disable spools = yes show add printer wizard = no printing = cups

[homes] comment = Home Directories valid users = %S read only = no browseable = no

[public] comment = Data path = /export force user = docsbot force group = users guest ok = yes

[printers] comment = All Printers path = /var/spool/samba printer admin = john, ed, @admins create mask = 0600 guest ok = yes printable = yes use client driver = yes browseable = yes

476

CHAPTER 21. FILE AND PRINT SERVERS

21.1.6.2. Domain Member Server

A domain member, while similar to a stand-alone server, is logged into a domain controller (either

Windows or Samba) and is subject to the domain's security rules. An example of a domain member server would be a departmental server running Samba that has a machine account on the Primary

Domain Controller (PDC). All of the department's clients still authenticate with the PDC, and desktop profiles and all network policy files are included. The difference is that the departmental server has the ability to control printer and network shares.

Active Directory Domain Member Server

To implement an Active Directory domain member server, follow procedure below:

Procedure 21.3. Adding a Member Server to an Active Directory Domain

1. Create the /etc/samba/smb.conf configuration file on a member server to be added to the

Active Directory domain. Add the following lines to the configuration file:

[global] realm = EXAMPLE.COM

security = ADS encrypt passwords = yes

# Optional. Use only if Samba cannot determine the Kerberos server automatically.

password server = kerberos.example.com

With the above configuration, Samba authenticates users for services being run locally but is also a client of the Active Directory. Ensure that your kerberos realm parameter is shown in all caps (for example realm = EXAMPLE.COM). Since Windows 2000/2003/2008 requires

Kerberos for Active Directory authentication, the realm directive is required. If Active Directory and Kerberos are running on different servers, the password server directive is required to help the distinction.

2. Configure Kerberos on the member server. Create the /etc/krb5.conf configuration file with the following content:

[logging]

default = FILE:/var/log/krb5libs.log

[libdefaults]

default_realm = AD.EXAMPLE.COM

dns_lookup_realm = true

dns_lookup_kdc = true

ticket_lifetime = 24h

renew_lifetime = 7d

rdns = false

forwardable = false

[realms]

# Define only if DNS lookups are not working

# AD.EXAMPLE.COM = {

# kdc = server.ad.example.com

# admin_server = server.ad.example.com

# master_kdc = server.ad.example.com

477

Deployment Guide

# }

[domain_realm]

# Define only if DNS lookups are not working

# .ad.example.com = AD.EXAMPLE.COM

# ad.example.com = AD.EXAMPLE.COM

Uncomment the [realms] and [domain_realm] sections if DNS lookups are not working.

For more information on Kerberos, and the /etc/krb5.conf file, see the Using Kerberos section of the Red Hat Enterprise Linux 6 Managing Single Sign-On and Smart Cards .

3. To join an Active Directory server, type the following command as root on the member server:

~]# net ads join -U administrator%password

The net command authenticates as Administrator using the NT LAN Manager (NTLM) protocol and creates the machine account. Then net uses the machine account credentials to authenticate with Kerberos.

NOTE

Since security = ads and not security = user is used, a local password back end such as smbpasswd is not needed. Older clients that do not support

security = ads are authenticated as if security = domain had been set.

This change does not affect functionality and allows local users not previously in the domain.

Windows NT4-based Domain Member Server

The following /etc/samba/smb.conf file shows a sample configuration needed to implement a

Windows NT4-based domain member server. Becoming a member server of an NT4-based domain is similar to connecting to an Active Directory. The main difference is NT4-based domains do not use

Kerberos in their authentication method, making the /etc/samba/smb.conf file simpler. In this instance, the Samba member server functions as a pass through to the NT4-based domain server.

Example 21.6. An Example Configuration of Samba Windows NT4-based Domain Member

Server

[global] workgroup = DOCS netbios name = DOCS_SRV security = domain

[homes] comment = Home Directories valid users = %S read only = no browseable = no

[public] comment = Data path = /export

478

CHAPTER 21. FILE AND PRINT SERVERS force user = docsbot force group = users guest ok = yes

Having Samba as a domain member server can be useful in many situations. There are times where the

Samba server can have other uses besides file and printer sharing. It may be beneficial to make Samba a domain member server in instances where Linux-only applications are required for use in the domain environment. Administrators appreciate keeping track of all machines in the domain, even if not

Windows-based. In the event the Windows-based server hardware is deprecated, it is quite easy to modify the /etc/samba/smb.conf file to convert the server to a Samba-based PDC. If Windows NTbased servers are upgraded to Windows 2000/2003/2008 the /etc/samba/smb.conf file is easily modifiable to incorporate the infrastructure change to Active Directory if needed.

IMPORTANT

After configuring the /etc/samba/smb.conf file, join the domain before starting Samba by typing the following command as root:

~]# net rpc join -U administrator%password

Note that the -S option, which specifies the domain server host name, does not need to be stated in the

net rpc join command. Samba uses the host name specified by the workgroup directive in the

/etc/samba/smb.conf file instead of it being stated explicitly.

21.1.6.3. Domain Controller

A domain controller in Windows NT is functionally similar to a Network Information Service (NIS) server in a Linux environment. Domain controllers and NIS servers both host user and group information databases as well as related services. Domain controllers are mainly used for security, including the authentication of users accessing domain resources. The service that maintains the user and group database integrity is called the Security Account Manager (SAM). The SAM database is stored differently between Windows and Linux Samba-based systems, therefore SAM replication cannot be achieved and platforms cannot be mixed in a PDC/BDC environment.

In a Samba environment, there can be only one PDC and zero or more BDCs.

IMPORTANT

Samba cannot exist in a mixed Samba/Windows domain controller environment (Samba cannot be a BDC of a Windows PDC or vice versa). Alternatively, Samba PDCs and

BDCs can coexist.

Primary Domain Controller (PDC) Using

tdbsam

The simplest and most common implementation of a Samba PDC uses the new default tdbsam password database back end. Replacing the aging smbpasswd back end, tdbsam has numerous

improvements that are explained in more detail in Section 21.1.8, “Samba Account Information

Databases” . The passdb backend directive controls which back end is to be used for the PDC.

The following /etc/samba/smb.conf file shows a sample configuration needed to implement a

tdbsam password database back end.

479

Deployment Guide

Example 21.7. An Example Configuration of Primary Domain Controller (PDC) Using tdbsam

[global] workgroup = DOCS netbios name = DOCS_SRV passdb backend = tdbsam security = user add user script = /usr/sbin/useradd -m "%u" delete user script = /usr/sbin/userdel -r "%u" add group script = /usr/sbin/groupadd "%g" delete group script = /usr/sbin/groupdel "%g" add user to group script = /usr/sbin/usermod -G "%g" "%u" add machine script = /usr/sbin/useradd -s /bin/false -d /dev/null -g machines "%u"

# The following specifies the default logon script

# Per user logon scripts can be specified in the user

# account using pdbedit logon script = logon.bat

# This sets the default profile path.

# Set per user paths with pdbedit logon drive = H: domain logons = yes os level = 35 preferred master = yes domain master = yes

[homes]

comment = Home Directories

valid users = %S

read only = no

[netlogon]

comment = Network Logon Service

path = /var/lib/samba/netlogon/scripts

browseable = no

read only = no

# For profiles to work, create a user directory under the

# path shown.

# mkdir -p /var/lib/samba/profiles/john

[Profiles]

comment = Roaming Profile Share

path = /var/lib/samba/profiles

read only = no

browseable = no

guest ok = yes

profile acls = yes

# Other resource shares ... ...

To provide a functional PDC system which uses tdbsam follow these steps:

1. Adjust the smb.conf configuration file as shown in Example 21.7, “An Example Configuration of

Primary Domain Controller (PDC) Using tdbsam” .

480

CHAPTER 21. FILE AND PRINT SERVERS

2. Add the root user to the Samba password database. You will be prompted to provide a new

Samba password for the root user:

~]# smbpasswd -a root

New SMB password:

3. Start the smb service:

~]# service smb start

4. Make sure all profile, user, and netlogon directories are created.

5. Add groups that users can be members of:

~]# groupadd -f users

~]# groupadd -f nobody

~]# groupadd -f ntadmins

6. Associate the UNIX groups with their respective Windows groups.

~]# net groupmap add ntgroup="Domain Users" unixgroup=users

~]# net groupmap add ntgroup="Domain Guests" unixgroup=nobody

~]# net groupmap add ntgroup="Domain Admins" unixgroup=ntadmins

7. Grant access rights to a user or a group. For example, to grant the right to add client machines to the domain on a Samba domain controller, to the members to the Domain Admins group, execute the following command:

~]# net rpc rights grant 'DOCS\Domain Admins'

SetMachineAccountPrivilege -S PDC -U root

Keep in mind that Windows systems prefer to have a primary group which is mapped to a domain group such as Domain Users.

Windows groups and users use the same namespace thus not allowing the existence of a group and a user with the same name like in UNIX.

NOTE

If you need more than one domain controller or have more than 250 users, do not use the

tdbsam authentication back end. LDAP is recommended in these cases.

Primary Domain Controller (PDC) with Active Directory

Although it is possible for Samba to be a member of an Active Directory, it is not possible for Samba to operate as an Active Directory domain controller.

21.1.7. Samba Security Modes

There are only two types of security modes for Samba, share-level and user-level, which are collectively known as security levels. Share-level security is deprecated and Red Hat recommends to use user-level security instead. User-level security can be implemented in one of three different ways. The different ways of implementing a security level are called security modes.

481

Deployment Guide

21.1.7.1. User-Level Security

User-level security is the default and recommended setting for Samba. Even if the security = user directive is not listed in the /etc/samba/smb.conf file, it is used by Samba. If the server accepts the client's user name and password, the client can then mount multiple shares without specifying a password for each instance. Samba can also accept session-based user name and password requests.

The client maintains multiple authentication contexts by using a unique UID for each logon.

In the /etc/samba/smb.conf file, the security = user directive that sets user-level security is:

[GLOBAL]

...

security = user

...

Samba Guest Shares

As mentioned above, share-level security mode is deprecated and highly recommended to not use. To configure a Samba guest share without using the security = share parameter, follow the procedure below:

Procedure 21.4. Configuring Samba Guest Shares

1. Create a username map file, in this example /etc/samba/smbusers, and add the following line to it: nobody = guest

2. Add the following directives to the main section in the /etc/samba/smb.conf file. Also, do not use the valid users directive:

[GLOBAL]

...

security = user map to guest = Bad User username map = /etc/samba/smbusers

...

The username map directive provides a path to the username map file specified in the previous step.

3. Add the following directive to the share section in the /ect/samba/smb.conf file. Do not use the valid users directive.

[SHARE]

...

guest ok = yes

...

The following sections describe other implementations of user-level security.

Domain Security Mode (User-Level Security)

482

CHAPTER 21. FILE AND PRINT SERVERS

In domain security mode, the Samba server has a machine account (domain security trust account) and causes all authentication requests to be passed through to the domain controllers. The Samba server is made into a domain member server by using the following directives in the /etc/samba/smb.conf file:

[GLOBAL]

...

security = domain workgroup = MARKETING

...

Active Directory Security Mode (User-Level Security)

If you have an Active Directory environment, it is possible to join the domain as a native Active Directory member. Even if a security policy restricts the use of NT-compatible authentication protocols, the Samba server can join an ADS using Kerberos. Samba in Active Directory member mode can accept Kerberos tickets.

In the /etc/samba/smb.conf file, the following directives make Samba an Active Directory member server:

[GLOBAL]

...

security = ADS realm = EXAMPLE.COM

password server = kerberos.example.com

...

21.1.7.2. Share-Level Security

With share-level security, the server accepts only a password without an explicit user name from the client. The server expects a password for each share, independent of the user name. There have been recent reports that Microsoft Windows clients have compatibility issues with share-level security servers.

This mode is deprecated and Red Hat strongly discourage use of share-level security. Follow steps in

Procedure 21.4, “Configuring Samba Guest Shares” instead of using the security = share directive.

21.1.8. Samba Account Information Databases

The following is a list different back ends you can use with Samba. Other back ends not listed here may also be available.

Plain Text

Plain text back ends are nothing more than the /etc/passwd type back ends. With a plain text back end, all user names and passwords are sent unencrypted between the client and the Samba server.

This method is very insecure and is not recommended for use by any means. It is possible that different Windows clients connecting to the Samba server with plain text passwords cannot support such an authentication method.

smbpasswd

The smbpasswd back end utilizes a plain ASCII text layout that includes the MS Windows LanMan and NT account, and encrypted password information. The smbpasswd back end lacks the storage of the Windows NT/2000/2003 SAM extended controls. The smbpasswd back end is not recommended because it does not scale well or hold any Windows information, such as RIDs for NT-based groups.

The tdbsam back end solves these issues for use in a smaller database (250 users), but is still not an enterprise-class solution.

483

Deployment Guide ldapsam_compat

The ldapsam_compat back end allows continued OpenLDAP support for use with upgraded versions of Samba.

tdbsam

The default tdbsam password back end provides a database back end for local servers, servers that do not need built-in database replication, and servers that do not require the scalability or complexity of LDAP. The tdbsam back end includes all of the smbpasswd database information as well as the previously-excluded SAM information. The inclusion of the extended SAM data allows Samba to implement the same account and system access controls as seen with Windows

NT/2000/2003/2008-based systems.

The tdbsam back end is recommended for 250 users at most. Larger organizations should require

Active Directory or LDAP integration due to scalability and possible network infrastructure concerns.

ldapsam

The ldapsam back end provides an optimal distributed account installation method for Samba. LDAP is optimal because of its ability to replicate its database to any number of servers such as the

Red Hat Directory Server or an OpenLDAP Server. LDAP databases are light-weight and scalable, and as such are preferred by large enterprises. Installation and configuration of directory servers is beyond the scope of this chapter. For more information on the Red Hat Directory Server, see the

Red Hat Directory Server 9.0 Deployment Guide . For more information on LDAP, see Section 20.1,

“OpenLDAP” .

If you are upgrading from a previous version of Samba to 3.0, note that the OpenLDAP schema file

(/usr/share/doc/samba-version/LDAP/samba.schema) and the Red Hat Directory Server schema file (/usr/share/doc/samba-version/LDAP/samba-schema-FDS.ldif) have changed. These files contain the attribute syntax definitions and objectclass definitions that the

ldapsam back end needs in order to function properly.

As such, if you are using the ldapsam back end for your Samba server, you will need to configure

slapd to include one of these schema file. See Section 20.1.3.3, “Extending Schema” for directions

on how to do this.

NOTE

You need to have the openldap-servers package installed if you want to use the

ldapsam back end. To ensure that the package is installed, execute the following command as roots:

~]# yum install openldap-servers

21.1.9. Samba Network Browsing

Network browsing enables Windows and Samba servers to appear in the Windows Network

Neighborhood. Inside the Network Neighborhood, icons are represented as servers and if opened, the server's shares and printers that are available are displayed.

Network browsing capabilities require NetBIOS over TCP/IP. NetBIOS-based networking uses broadcast

(UDP) messaging to accomplish browse list management. Without NetBIOS and WINS as the primary

484

CHAPTER 21. FILE AND PRINT SERVERS method for TCP/IP host name resolution, other methods such as static files (/etc/hosts) or DNS, must be used.

A domain master browser collates the browse lists from local master browsers on all subnets so that browsing can occur between workgroups and subnets. Also, the domain master browser should preferably be the local master browser for its own subnet.

21.1.9.1. Domain Browsing

By default, a Windows server PDC for a domain is also the domain master browser for that domain. A

Samba server must not be set up as a domain master server in this type of situation.

For subnets that do not include the Windows server PDC, a Samba server can be implemented as a local master browser. Configuring the /etc/samba/smb.conf file for a local master browser (or no browsing at all) in a domain controller environment is the same as workgroup configuration (see

Section 21.1.4, “Configuring a Samba Server”

).

21.1.9.2. WINS (Windows Internet Name Server)

Either a Samba server or a Windows NT server can function as a WINS server. When a WINS server is used with NetBIOS enabled, UDP unicasts can be routed which allows name resolution across networks.

Without a WINS server, the UDP broadcast is limited to the local subnet and therefore cannot be routed to other subnets, workgroups, or domains. If WINS replication is necessary, do not use Samba as your primary WINS server, as Samba does not currently support WINS replication.

In a mixed NT/2000/2003/2008 server and Samba environment, it is recommended that you use the

Microsoft WINS capabilities. In a Samba-only environment, it is recommended that you use only one

Samba server for WINS.

The following is an example of the /etc/samba/smb.conf file in which the Samba server is serving as a WINS server:

Example 21.8. An Example Configuration of WINS Server

[global] wins support = yes

NOTE

All servers (including Samba) should connect to a WINS server to resolve NetBIOS names. Without WINS, browsing only occurs on the local subnet. Furthermore, even if a domain-wide list is somehow obtained, hosts cannot be resolved for the client without

WINS.

21.1.10. Samba with CUPS Printing Support

Samba allows client machines to share printers connected to the Samba server. In addition, Samba also allows client machines to send documents built in Linux to Windows printer shares. Although there are other printing systems that function with Red Hat Enterprise Linux, CUPS (Common UNIX Print System) is the recommended printing system due to its close integration with Samba.

21.1.10.1. Simple

smb.conf

Settings

485

Deployment Guide

The following example shows a very basic /etc/samba/smb.conf configuration for CUPS support:

Example 21.9. An Example Configuration of Samba with CUPS Support

[global] load printers = yes printing = cups printcap name = cups

[printers] comment = All Printers path = /var/spool/samba browseable = no guest ok = yes writable = no printable = yes printer admin = @ntadmins

[print$] comment = Printer Drivers Share path = /var/lib/samba/drivers write list = ed, john printer admin = ed, john

Other printing configurations are also possible. To add additional security and privacy for printing confidential documents, users can have their own print spooler not located in a public path. If a job fails, other users would not have access to the file.

The print$ directive contains printer drivers for clients to access if not available locally. The print$ directive is optional and may not be required depending on the organization.

Setting browseable to yes enables the printer to be viewed in the Windows Network Neighborhood, provided the Samba server is set up correctly in the domain or workgroup.

21.1.11. Samba Distribution Programs

findsmb findsmb <subnet_broadcast_address>

The findsmb program is a Perl script which reports information about SMB-aware systems on a specific subnet. If no subnet is specified the local subnet is used. Items displayed include IP address, NetBIOS name, workgroup or domain name, operating system, and version. The findsmb command is used in the following format:

The following example shows the output of executing findsmb as any valid user on a system:

~]$ findsmb

IP ADDR NETBIOS NAME WORKGROUP/OS/VERSION

------------------------------------------------------------------

10.1.59.25 VERVE [MYGROUP] [Unix] [Samba 3.0.0-15]

10.1.59.26 STATION22 [MYGROUP] [Unix] [Samba 3.0.2-7.FC1]

10.1.56.45 TREK +[WORKGROUP] [Windows 5.0] [Windows 2000 LAN

Manager]

10.1.57.94 PIXEL [MYGROUP] [Unix] [Samba 3.0.0-15]

486

CHAPTER 21. FILE AND PRINT SERVERS

10.1.57.137 MOBILE001 [WORKGROUP] [Windows 5.0] [Windows 2000 LAN

Manager]

10.1.57.141 JAWS +[KWIKIMART] [Unix] [Samba 2.2.7a-securityrollup-fix]

10.1.56.159 FRED +[MYGROUP] [Unix] [Samba 3.0.0-14.3E]

10.1.59.192 LEGION *[MYGROUP] [Unix] [Samba 2.2.7-security-rollupfix]

10.1.56.205 NANCYN +[MYGROUP] [Unix] [Samba 2.2.7a-securityrollup-fix] net net <protocol> <function> <misc_options> <target_options>

The net utility is similar to the net utility used for Windows and MS-DOS. The first argument is used to specify the protocol to use when executing a command. The protocol option can be ads, rap, or rpc for specifying the type of server connection. Active Directory uses ads, Win9x/NT3 uses rap, and

Windows NT4/2000/2003/2008 uses rpc. If the protocol is omitted, net automatically tries to determine it.

The following example displays a list of the available shares for a host named wakko:

~]$ net -l share -S wakko

Password:

Enumerating shared resources (exports) on remote server:

Share name Type Description

---------- ---- ----------data Disk Wakko data share tmp Disk Wakko tmp share

IPC$ IPC IPC Service (Samba Server)

ADMIN$ IPC IPC Service (Samba Server)

The following example displays a list of Samba users for a host named wakko:

~]$ net -l user -S wakko root password:

User name Comment

----------------------------andriusb Documentation joe Marketing lisa Sales nmblookup nmblookup <options> <netbios_name>

The nmblookup program resolves NetBIOS names into IP addresses. The program broadcasts its query on the local subnet until the target machine replies.

The following example displays the IP address of the NetBIOS name trek:

~]$ nmblookup trek querying trek on 10.1.59.255

10.1.56.45 trek<00>

487

Deployment Guide pdbedit pdbedit <options>

The pdbedit program manages accounts located in the SAM database. All back ends are supported including smbpasswd, LDAP, and the tdb database library.

The following are examples of adding, deleting, and listing users:

~]$ pdbedit -a kristin new password: retype new password:

Unix username: kristin

NT username:

Account Flags: [U ]

User SID: S-1-5-21-1210235352-3804200048-1474496110-2012

Primary Group SID: S-1-5-21-1210235352-3804200048-1474496110-2077

Full Name: Home Directory: \\wakko\kristin

HomeDir Drive:

Logon Script:

Profile Path: \\wakko\kristin\profile

Domain: WAKKO

Account desc:

Workstations: Munged dial:

Logon time: 0

Logoff time: Mon, 18 Jan 2038 22:14:07 GMT

Kickoff time: Mon, 18 Jan 2038 22:14:07 GMT

Password last set: Thu, 29 Jan 2004 08:29:28

GMT Password can change: Thu, 29 Jan 2004 08:29:28 GMT

Password must change: Mon, 18 Jan 2038 22:14:07 GMT

~]$ pdbedit -v -L kristin

Unix username: kristin

NT username:

Account Flags: [U ]

User SID: S-1-5-21-1210235352-3804200048-1474496110-2012

Primary Group SID: S-1-5-21-1210235352-3804200048-1474496110-2077

Full Name:

Home Directory: \\wakko\kristin

HomeDir Drive:

Logon Script:

Profile Path: \\wakko\kristin\profile

Domain: WAKKO

Account desc:

Workstations: Munged dial:

Logon time: 0

Logoff time: Mon, 18 Jan 2038 22:14:07 GMT

Kickoff time: Mon, 18 Jan 2038 22:14:07 GMT

Password last set: Thu, 29 Jan 2004 08:29:28 GMT

Password can change: Thu, 29 Jan 2004 08:29:28 GMT

Password must change: Mon, 18 Jan 2038 22:14:07 GMT

~]$ pdbedit -L andriusb:505:

488

CHAPTER 21. FILE AND PRINT SERVERS joe:503: lisa:504: kristin:506:

~]$ pdbedit -x joe

~]$ pdbedit -L andriusb:505: lisa:504: kristin:506: rpcclient rpcclient <server> <options>

The rpcclient program issues administrative commands using Microsoft RPCs, which provide access to the Windows administration graphical user interfaces (GUIs) for systems management. This is most often used by advanced users that understand the full complexity of Microsoft RPCs.

smbcacls smbcacls <//server/share> <filename> <options>

The smbcacls program modifies Windows ACLs on files and directories shared by a Samba server or a

Windows server.

smbclient smbclient <//server/share> <password> <options>

The smbclient program is a versatile UNIX client which provides functionality similar to the ftp utility.

smbcontrol smbcontrol -i <options> smbcontrol <options> <destination> <messagetype> <parameters>

The smbcontrol program sends control messages to running smbd, nmbd, or winbindd daemons.

Executing smbcontrol -i runs commands interactively until a blank line or a 'q' is entered.

smbpasswd smbpasswd <options> <username> <password>

The smbpasswd program manages encrypted passwords. This program can be run by a superuser to change any user's password and also by an ordinary user to change their own Samba password.

smbspool smbspool <job> <user> <title> <copies> <options> <filename>

The smbspool program is a CUPS-compatible printing interface to Samba. Although designed for use with CUPS printers, smbspool can work with non-CUPS printers as well.

smbstatus

489

Deployment Guide smbstatus <options>

The smbstatus program displays the status of current connections to a Samba server.

smbtar smbtar <options>

The smbtar program performs backup and restores of Windows-based share files and directories to a local tape archive. Though similar to the tar utility, the two are not compatible.

testparm testparm <options> <filename> <hostname IP_address>

The testparm program checks the syntax of the /etc/samba/smb.conf file. If your smb.conf file is in the default location (/etc/samba/smb.conf) you do not need to specify the location. Specifying the host name and IP address to the testparm program verifies that the hosts.allow and host.deny files are configured correctly. The testparm program also displays a summary of your smb.conf file and the server's role (stand-alone, domain, etc.) after testing. This is convenient when debugging as it excludes comments and concisely presents information for experienced administrators to read. For example:

~]$ testparm

Load smb config files from /etc/samba/smb.conf

Processing section "[homes]"

Processing section "[printers]"

Processing section "[tmp]"

Processing section "[html]"

Loaded services file OK.

Server role: ROLE_STANDALONE

Press enter to see a dump of your service definitions

<enter>

# Global parameters

[global]

workgroup = MYGROUP

server string = Samba Server

security = SHARE

log file = /var/log/samba/%m.log

max log size = 50

socket options = TCP_NODELAY SO_RCVBUF=8192 SO_SNDBUF=8192

dns proxy = no

[homes]

comment = Home Directories

read only = no

browseable = no

[printers]

comment = All Printers

path = /var/spool/samba

printable = yes

browseable = no

[tmp]

comment = Wakko tmp

path = /tmp

490

CHAPTER 21. FILE AND PRINT SERVERS

guest only = yes

[html]

comment = Wakko www

path = /var/www/html

force user = andriusb

force group = users

read only = no

guest only = yes wbinfo wbinfo <options>

The wbinfo program displays information from the winbindd daemon. The winbindd daemon must be running for wbinfo to work.

21.1.12. Additional Resources

The following sections give you the means to explore Samba in greater detail.

Installed Documentation

/usr/share/doc/samba-<version-number>/ — All additional files included with the

Samba distribution. This includes all helper scripts, sample configuration files, and documentation.

See the following man pages for detailed information specific Samba features: smb.conf(5) samba(7) smbd(8) nmbd(8) winbindd(8)

Related Books

The Official Samba-3 HOWTO-Collection by John H. Terpstra and Jelmer R. Vernooij; Prentice

Hall — The official Samba-3 documentation as issued by the Samba development team. This is more of a reference guide than a step-by-step guide.

Samba-3 by Example by John H. Terpstra; Prentice Hall — This is another official release issued by the Samba development team which discusses detailed examples of OpenLDAP,

DNS, DHCP, and printing configuration files. This has step-by-step related information that helps in real-world implementations.

Using Samba, 2nd Edition by Jay Ts, Robert Eckstein, and David Collier-Brown; O'Reilly — A good resource for novice to advanced users, which includes comprehensive reference material.

Useful Websites

http://www.samba.org/ — Homepage for the Samba distribution and all official documentation created by the Samba development team. Many resources are available in HTML and PDF

491

Deployment Guide formats, while others are only available for purchase. Although many of these links are not

Red Hat Enterprise Linux specific, some concepts may apply.

http://samba.org/samba/archives.html — Active email lists for the Samba community. Enabling digest mode is recommended due to high levels of list activity.

Samba newsgroups — Samba threaded newsgroups, such as www.gmane.org

, that use the

NNTP protocol are also available. This an alternative to receiving mailing list emails.

21.2. FTP

The File Transfer Protocol (FTP) is one of the oldest and most commonly used protocols found on the

Internet today. Its purpose is to reliably transfer files between computer hosts on a network without requiring the user to log directly in to the remote host or to have knowledge of how to use the remote system. It allows users to access files on remote systems using a standard set of simple commands.

This section outlines the basics of the FTP protocol and introduces vsftpd, the primary FTP server shipped with Red Hat Enterprise Linux.

21.2.1. The File Transfer Protocol

FTP uses a client-server architecture to transfer files using the TCP network protocol. Because FTP is a rather old protocol, it uses unencrypted user name and password authentication. For this reason, it is considered an insecure protocol and should not be used unless absolutely necessary. However, because

FTP is so prevalent on the Internet, it is often required for sharing files to the public. System administrators, therefore, should be aware of FTP's unique characteristics.

This section describes how to configure vsftpd to establish connections secured by TLS and how to secure an FTP server with the help of SELinux. A good substitute for FTP is sftp from the OpenSSH suite of tools. For information about configuring OpenSSH and about the SSH protocol in general, see

Chapter 14, OpenSSH .

Unlike most protocols used on the Internet, FTP requires multiple network ports to work properly. When an FTP client application initiates a connection to an FTP server, it opens port 21 on the server — known as the command port. This port is used to issue all commands to the server. Any data requested from the server is returned to the client via a data port. The port number for data connections, and the way in which data connections are initialized, vary depending upon whether the client requests the data in active or passive mode.

The following defines these modes: active mode

Active mode is the original method used by the FTP protocol for transferring data to the client application. When an active-mode data transfer is initiated by the FTP client, the server opens a connection from port 20 on the server to the IP address and a random, unprivileged port (greater than 1024) specified by the client. This arrangement means that the client machine must be allowed to accept connections over any port above 1024. With the growth of insecure networks, such as the

Internet, the use of firewalls for protecting client machines is now prevalent. Because these client-side firewalls often deny incoming connections from active-mode FTP servers, passive mode was devised.

passive mode

Passive mode, like active mode, is initiated by the FTP client application. When requesting data from the server, the FTP client indicates it wants to access the data in passive mode and the server

492

CHAPTER 21. FILE AND PRINT SERVERS provides the IP address and a random, unprivileged port (greater than 1024) on the server. The client then connects to that port on the server to download the requested information.

While passive mode does resolve issues for client-side firewall interference with data connections, it can complicate administration of the server-side firewall. You can reduce the number of open ports on a server by limiting the range of unprivileged ports on the FTP server. This also simplifies the process

of configuring firewall rules for the server. See Section 21.2.2.6.8, “Network Options”

for more information about limiting passive ports.

21.2.2. The vsftpd Server

The Very Secure FTP Daemon (vsftpd) is designed from the ground up to be fast, stable, and, most importantly, secure. vsftpd is the only stand-alone FTP server distributed with Red Hat

Enterprise Linux, due to its ability to handle large numbers of connections efficiently and securely.

The security model used by vsftpd has three primary aspects:

Strong separation of privileged and non-privileged processes — Separate processes handle different tasks, and each of these processes runs with the minimal privileges required for the task.

Tasks requiring elevated privileges are handled by processes with the minimal privilege necessary — By taking advantage of compatibilities found in the libcap library, tasks that usually require full root privileges can be executed more safely from a less privileged process.

Most processes run in a chroot jail — Whenever possible, processes are change-rooted to the directory being shared; this directory is then considered a chroot jail. For example, if the

/var/ftp/ directory is the primary shared directory, vsftpd reassigns /var/ftp/ to the new root directory, known as /. This disallows any potential malicious hacker activities for any directories not contained in the new root directory.

Use of these security practices has the following effect on how vsftpd deals with requests:

The parent process runs with the least privileges required — The parent process dynamically calculates the level of privileges it requires to minimize the level of risk. Child processes handle direct interaction with the FTP clients and run with as close to no privileges as possible.

All operations requiring elevated privileges are handled by a small parent process — Much like the Apache HTTP Server, vsftpd launches unprivileged child processes to handle incoming connections. This allows the privileged, parent process to be as small as possible and handle relatively few tasks.

All requests from unprivileged child processes are distrusted by the parent process —

Communication with child processes is received over a socket, and the validity of any information from child processes is checked before being acted on.

Most interactions with FTP clients are handled by unprivileged child processes in a chroot jail

— Because these child processes are unprivileged and only have access to the directory being shared, any crashed processes only allow the attacker access to the shared files.

21.2.2.1. Starting and Stopping vsftpd

The vsftpd RPM installs the /etc/rc.d/init.d/vsftpd script, which can be accessed using the

service command.

493

Deployment Guide

To start the server, type the following as root:

~]# service vsftpd start

To stop the server, as type:

~]# service vsftpd stop

The restart option is a shorthand way of stopping and then starting vsftpd. This is the most efficient way to make configuration changes take effect after editing the configuration file for vsftpd.

To restart the server, as type the following as root:

~]# service vsftpd restart

The condrestart (conditional restart) option only starts vsftpd if it is currently running. This option is useful for scripts, because it does not start the daemon if it is not running. The try-restart option is a synonym.

To conditionally restart the server, as root type:

~]# service vsftpd condrestart

By default, the vsftpd service does not start automatically at boot time. To configure the vsftpd service to start at boot time, use an initscript utility, such as /sbin/chkconfig, /usr/sbin/ntsysv, or the Services Configuration Tool program. See

Chapter 12, Services and Daemons

for more information regarding these tools.

21.2.2.2. Starting Multiple Copies of vsftpd

Sometimes, one computer is used to serve multiple FTP domains. This is a technique called multihoming. One way to multihome using vsftpd is by running multiple copies of the daemon, each with its own configuration file.

To do this, first assign all relevant IP addresses to network devices or alias network devices on the

system. For more information about configuring network devices, device aliases, see Chapter 10,

NetworkManager . For additional information about network configuration scripts, see Chapter 11,

Network Interfaces .

Next, the DNS server for the FTP domains must be configured to reference the correct machine. For information about BIND, the DNS protocol implementation used in Red Hat Enterprise Linux, and its

configuration files, see Section 17.2, “BIND”

.

For vsftpd to answer requests on different IP addresses, multiple copies of the daemon must be running. In order to make this possible, a separate vsftpd configuration file for each required instance of the FTP server must be created and placed in the /etc/vsftpd/ directory. Note that each of these configuration files must have a unique name (such as /etc/vsftpd/vsftpd-site-2.conf) and must be readable and writable only by the root user.

Within each configuration file for each FTP server listening on an IPv4 network, the following directive must be unique: listen_address=N.N.N.N

494

CHAPTER 21. FILE AND PRINT SERVERS

Replace N.N.N.N with a unique IP address for the FTP site being served. If the site is using IPv6, use the listen_address6 directive instead.

Once there are multiple configuration files present in the /etc/vsftpd/ directory, all configured instances of the vsftpd daemon can be started by executing the following command as root:

~]# service vsftpd start

See

Section 21.2.2.1, “Starting and Stopping vsftpd” for a description of other available service

commands.

Individual instances of the vsftpd daemon can be launched from a root shell prompt using the following command:

~]# vsftpd /etc/vsftpd/configuration-file

In the above command, replace configuration-file with the unique name of the requested server's configuration file, such as vsftpd-site-2.conf.

Other directives to consider altering on a per-server basis are: anon_root local_root vsftpd_log_file xferlog_file

For a detailed list of directives that can be used in the configuration file of the vsftpd daemon, see

Section 21.2.2.5, “Files Installed with vsftpd”

.

21.2.2.3. Encrypting vsftpd Connections Using TLS

In order to counter the inherently insecure nature of FTP, which transmits user names, passwords, and data without encryption by default, the vsftpd daemon can be configured to utilize the TLS protocol to authenticate connections and encrypt all transfers. Note that an FTP client that supports TLS is needed to communicate with vsftpd with TLS enabled.

NOTE

SSL (Secure Sockets Layer) is the name of an older implementation of the security protocol. The new versions are called TLS (Transport Layer Security). Only the newer versions (TLS) should be used as SSL suffers from serious security vulnerabilities. The documentation included with the vsftpd server, as well as the configuration directives used in the vsftpd.conf file, use the SSL name when referring to security-related matters, but TLS is supported and used by default when the ssl_enable directive is set to YES.

Set the ssl_enable configuration directive in the vsftpd.conf file to YES to turn on TLS support. The default settings of other TLS-related directives that become automatically active when the ssl_enable option is enabled provide for a reasonably well-configured TLS set up. This includes, among other

495

Deployment Guide things, the requirement to only use the TLS v1 protocol for all connections (the use of the insecure SSL protocol versions is disabled by default) or forcing all non-anonymous logins to use TLS for sending passwords and data transfers.

Example 21.10. Configuring vsftpd to Use TLS

In this example, the configuration directives explicitly disable the older SSL versions of the security protocol in the vsftpd.conf file: ssl_enable=YES ssl_tlsv1=YES ssl_sslv2=NO ssl_sslv3=NO

Restart the vsftpd service after you modify its configuration:

~]# service vsftpd restart

See the vsftpd.conf(5) manual page for other TLS-related configuration directives for fine-tuning the use

of TLS by vsftpd. Also, see Section 21.2.2.6, “vsftpd Configuration Options” for a description of other

commonly used vsftpd.conf configuration directives.

21.2.2.4. SELinux Policy for vsftpd

The SELinux policy governing the vsftpd daemon (as well as other ftpd processes), defines a mandatory access control, which, by default, is based on least access required. In order to allow the FTP daemon to access specific files or directories, appropriate labels need to be assigned to them.

For example, in order to be able to share files anonymously, the public_content_t label must be assigned to the files and directories to be shared. You can do this using the chcon command as root:

~]# chcon -R -t public_content_t /path/to/directory

In the above command, replace /path/to/directory with the path to the directory to which you want to assign the label. Similarly, if you want to set up a directory for uploading files, you need to assign that particular directory the public_content_rw_t label. In addition to that, the

allow_ftpd_anon_write SELinux Boolean option must be set to 1. Use the setsebool command as root to do that:

~]# setsebool -P allow_ftpd_anon_write=1

If you want local users to be able to access their home directories through FTP, which is the default setting on Red Hat Enterprise Linux 6, the ftp_home_dir Boolean option needs to be set to 1. If

vsftpd is to be allowed to run in standalone mode, which is also enabled by default on Red Hat

Enterprise Linux 6, the ftpd_is_daemon option needs to be set to 1 as well.

See the ftpd_selinux(8) manual page for more information, including examples of other useful labels and

Boolean options, on how to configure the SELinux policy pertaining to FTP. Also, see the Red Hat

Enterprise Linux 6 Security-Enhanced Linux for more detailed information about SELinux in general.

21.2.2.5. Files Installed with vsftpd

496

CHAPTER 21. FILE AND PRINT SERVERS

The vsftpd RPM installs the daemon (vsftpd), its configuration and related files, as well as FTP directories onto the system. The following lists the files and directories related to vsftpd configuration:

/etc/pam.d/vsftpd — The Pluggable Authentication Modules (PAM) configuration file for

vsftpd. This file specifies the requirements a user must meet to log in to the FTP server. For more information on PAM, see the Using Pluggable Authentication Modules (PAM) chapter of the Red Hat Enterprise Linux 6 Single Sign-On and Smart Cards guide.

/etc/vsftpd/vsftpd.conf — The configuration file for vsftpd. See Section 21.2.2.6,

“vsftpd Configuration Options” for a list of important options contained within this file.

/etc/vsftpd/ftpusers — A list of users not allowed to log in to vsftpd. By default, this list includes the root, bin, and daemon users, among others.

/etc/vsftpd/user_list — This file can be configured to either deny or allow access to the users listed, depending on whether the userlist_deny directive is set to YES (default) or NO in

/etc/vsftpd/vsftpd.conf. If /etc/vsftpd/user_list is used to grant access to users, the user names listed must not appear in /etc/vsftpd/ftpusers.

/var/ftp/ — The directory containing files served by vsftpd. It also contains the

/var/ftp/pub/ directory for anonymous users. Both directories are world-readable, but writable only by the root user.

21.2.2.6. vsftpd Configuration Options

Although vsftpd may not offer the level of customization other widely available FTP servers have, it offers enough options to satisfy most administrators' needs. The fact that it is not overly feature-laden limits configuration and programmatic errors.

All configuration of vsftpd is handled by its configuration file, /etc/vsftpd/vsftpd.conf. Each directive is on its own line within the file and follows the following format:

directive=value

For each directive, replace directive with a valid directive and value with a valid value.

IMPORTANT

There must not be any spaces between the directive, equal symbol, and the value in a directive.

Comment lines must be preceded by a hash symbol (#) and are ignored by the daemon.

For a complete list of all directives available, see the man page for vsftpd.conf. For an overview of ways to secure vsftpd, see the Red Hat Enterprise Linux 6 Security Guide .

The following is a list of some of the more important directives within /etc/vsftpd/vsftpd.conf. All directives not explicitly found or commented out within the vsftpd's configuration file are set to their default value.

21.2.2.6.1. Daemon Options

The following is a list of directives that control the overall behavior of the vsftpd daemon.

497

Deployment Guide

listen — When enabled, vsftpd runs in standalone mode, which means that the daemon is started independently, not by the xinetd super-server. Red Hat Enterprise Linux 6 sets this value to YES. Note that the SELinux ftpd_is_daemon Boolean option needs to be set for

vsftpd to be allowed to run in standalone mode. See Section 21.2.2.4, “SELinux Policy for vsftpd” and to ftpd_selinux(8) for more information on vsftpd's interaction with the default

SELinux policy. This directive cannot be used in conjunction with the listen_ipv6 directive.

The default value is NO. On Red Hat Enterprise Linux 6, this option is set to YES in the configuration file.

listen_ipv6 — When enabled, vsftpd runs in standalone mode, which means that the daemon is started independently, not by the xinetd super-server. With this directive, it only listens on IPv6 sockets. Note that the SELinux ftpd_is_daemon Boolean option needs to be

set for vsftpd to be allowed to run in standalone mode. See Section 21.2.2.4, “SELinux Policy for vsftpd” and to ftpd_selinux(8) for more information on vsftpd's interaction with the

default SELinux policy. This directive cannot be used in conjunction with the listen directive.

The default value is NO.

session_support — When enabled, vsftpd attempts to maintain login sessions for each user through Pluggable Authentication Modules (PAM). For more information, see the Using

Pluggable Authentication Modules (PAM) chapter of the Red Hat Enterprise Linux 6 Single Sign-

On and Smart Cards and the PAM man pages. If session logging is not necessary, disabling this option allows vsftpd to run with less processes and lower privileges.

The default value is YES.

21.2.2.6.2. Log In Options and Access Controls

The following is a list of directives that control the login behavior and access-control mechanisms.

anonymous_enable — When enabled, anonymous users are allowed to log in. The user names anonymous and ftp are accepted.

The default value is YES.

See

Section 21.2.2.6.3, “Anonymous User Options” for a list of directives affecting anonymous

users.

banned_email_file — If the deny_email_enable directive is set to YES, this directive specifies the file containing a list of anonymous email passwords that are not permitted access to the server.

The default value is /etc/vsftpd/banned_emails.

banner_file — Specifies the file containing text displayed when a connection is established to the server. This option overrides any text specified in the ftpd_banner directive.

There is no default value for this directive.

cmds_allowed — Specifies a comma-delimited list of FTP commands allowed by the server.

All other commands are rejected.

There is no default value for this directive.

498

CHAPTER 21. FILE AND PRINT SERVERS

deny_email_enable — When enabled, any anonymous user utilizing email passwords specified in /etc/vsftpd/banned_emails are denied access to the server. The name of the file referenced by this directive can be specified using the banned_email_file directive.

The default value is NO.

ftpd_banner — When enabled, the string specified within this directive is displayed when a connection is established to the server. This option can be overridden by the banner_file directive.

By default, vsftpd displays its standard banner.

local_enable — When enabled, local users are allowed to log in to the system. Note that the

SELinux ftp_home_dir Boolean option needs to be set for this directive to work as expected.

See

Section 21.2.2.4, “SELinux Policy for vsftpd” and to ftpd_selinux(8) for more

information on vsftpd's interaction with the default SELinux policy.

The default value is NO. On Red Hat Enterprise Linux 6, this option is set to YES in the configuration file.

See

Section 21.2.2.6.4, “Local-User Options”

for a list of directives affecting local users.

pam_service_name — Specifies the PAM service name for vsftpd.

The default value is ftp. On Red Hat Enterprise Linux 6, this option is set to vsftpd in the configuration file.

tcp_wrappers — When enabled, TCP wrappers are used to grant access to the server. If the

FTP server is configured on multiple IP addresses, the VSFTPD_LOAD_CONF environment variable can be used to load different configuration files based on the IP address being requested by the client.

The default value is NO. On Red Hat Enterprise Linux 6, this option is set to YES in the configuration file.

userlist_deny — When used in conjunction with the userlist_enable directive and set to

NO, all local users are denied access unless their user name is listed in the file specified by the

userlist_file directive. Because access is denied before the client is asked for a password, setting this directive to NO prevents local users from submitting unencrypted passwords over the network.

The default value is YES.

userlist_enable — When enabled, users listed in the file specified by the userlist_file directive are denied access. Because access is denied before the client is asked for a password, users are prevented from submitting unencrypted passwords over the network.

The default value is NO. On Red Hat Enterprise Linux 6, this option is set to YES in the configuration file.

userlist_file — Specifies the file referenced by vsftpd when the userlist_enable directive is enabled.

The default value is /etc/vsftpd/user_list, which is created during installation.

499

Deployment Guide

21.2.2.6.3. Anonymous User Options

The following lists directives that control anonymous user access to the server. To use these options, the

anonymous_enable directive must be set to YES.

anon_mkdir_write_enable — When enabled in conjunction with the write_enable directive, anonymous users are allowed to create new directories within a parent directory that has write permissions.

The default value is NO.

anon_root — Specifies the directory vsftpd changes to after an anonymous user logs in.

There is no default value for this directive.

anon_upload_enable — When enabled in conjunction with the write_enable directive, anonymous users are allowed to upload files within a parent directory that has write permissions.

The default value is NO.

anon_world_readable_only — When enabled, anonymous users are only allowed to download world-readable files.

The default value is YES.

ftp_username — Specifies the local user account (listed in /etc/passwd) used for the anonymous FTP user. The home directory specified in /etc/passwd for the user is the root directory of the anonymous FTP user.

The default value is ftp.

no_anon_password — When enabled, the anonymous user is not asked for a password.

The default value is NO.

secure_email_list_enable — When enabled, only a specified list of email passwords for anonymous logins is accepted. This is a convenient way of offering limited security to public content without the need for virtual users.

Anonymous logins are prevented unless the password provided is listed in

/etc/vsftpd/email_passwords. The file format is one password per line, with no trailing white spaces.

The default value is NO.

21.2.2.6.4. Local-User Options

The following lists directives that characterize the way local users access the server. To use these options, the local_enable directive must be set to YES. Note that the SELinux ftp_home_dir

Boolean option needs to be set for users to be able to access their home directories. See

Section 21.2.2.4, “SELinux Policy for vsftpd” and to ftpd_selinux(8) for more information on

vsftpd's interaction with the default SELinux policy.

chmod_enable — When enabled, the FTP command SITE CHMOD is allowed for local users.

This command allows the users to change the permissions on files.

500

CHAPTER 21. FILE AND PRINT SERVERS

The default value is YES.

chroot_list_enable — When enabled, the local users listed in the file specified in the

chroot_list_file directive are placed in a chroot jail upon log in.

If enabled in conjunction with the chroot_local_user directive, the local users listed in the file specified in the chroot_list_file directive are not placed in a chroot jail upon log in.

The default value is NO.

chroot_list_file — Specifies the file containing a list of local users referenced when the

chroot_list_enable directive is set to YES.

The default value is /etc/vsftpd/chroot_list.

chroot_local_user — When enabled, local users are change-rooted to their home directories after logging in.

The default value is NO.

WARNING

Enabling chroot_local_user opens up a number of security issues, especially for users with upload privileges. For this reason, it is not recommended.

guest_enable — When enabled, all non-anonymous users are logged in as the user guest, which is the local user specified in the guest_username directive.

The default value is NO.

guest_username — Specifies the user name the guest user is mapped to.

The default value is ftp.

local_root — Specifies the directory vsftpd changes to after a local user logs in.

There is no default value for this directive.

local_umask — Specifies the umask value for file creation. Note that the default value is in octal form (a numerical system with a base of eight), which includes a “0” prefix. Otherwise, the value is treated as a base-10 integer.

The default value is 077. On Red Hat Enterprise Linux 6, this option is set to 022 in the configuration file.

passwd_chroot_enable — When enabled in conjunction with the chroot_local_user directive, vsftpd change-roots local users based on the occurrence of /./ in the homedirectory field within /etc/passwd.

501

Deployment Guide

The default value is NO.

user_config_dir — Specifies the path to a directory containing configuration files bearing the names of local system users that contain specific settings for those users. Any directive in a user's configuration file overrides those found in /etc/vsftpd/vsftpd.conf.

There is no default value for this directive.

21.2.2.6.5. Directory Options

The following lists directives that affect directories.

dirlist_enable — When enabled, users are allowed to view directory lists.

The default value is YES.

dirmessage_enable — When enabled, a message is displayed whenever a user enters a directory with a message file. This message resides within the current directory. The name of this file is specified in the message_file directive and is .message by default.

The default value is NO. On Red Hat Enterprise Linux 6, this option is set to YES in the configuration file.

force_dot_files — When enabled, files beginning with a dot (.) are listed in directory listings, with the exception of the . and .. files.

The default value is NO.

hide_ids — When enabled, all directory listings show ftp as the user and group for each file.

The default value is NO.

message_file — Specifies the name of the message file when using the

dirmessage_enable directive.

The default value is .message.

text_userdb_names — When enabled, text user names and group names are used in place of UID and GID entries. Enabling this option may negatively affect the performance of the server.

The default value is NO.

use_localtime — When enabled, directory listings reveal the local time for the computer instead of GMT.

The default value is NO.

21.2.2.6.6. File Transfer Options

The following lists directives that affect directories.

download_enable — When enabled, file downloads are permitted.

The default value is YES.

chown_uploads — When enabled, all files uploaded by anonymous users are owned by the

502

CHAPTER 21. FILE AND PRINT SERVERS user specified in the chown_username directive.

The default value is NO.

chown_username — Specifies the ownership of anonymously uploaded files if the

chown_uploads directive is enabled.

The default value is root.

write_enable — When enabled, FTP commands which can change the file system are allowed, such as DELE, RNFR, and STOR.

The default value is NO. On Red Hat Enterprise Linux 6, this option is set to YES in the configuration file.

21.2.2.6.7. Logging Options

The following lists directives that affect vsftpd's logging behavior.

dual_log_enable — When enabled in conjunction with xferlog_enable, vsftpd writes two files simultaneously: a wu-ftpd-compatible log to the file specified in the xferlog_file directive (/var/log/xferlog by default) and a standard vsftpd log file specified in the

vsftpd_log_file directive (/var/log/vsftpd.log by default).

The default value is NO.

log_ftp_protocol — When enabled in conjunction with xferlog_enable and with

xferlog_std_format set to NO, all FTP commands and responses are logged. This directive is useful for debugging.

The default value is NO.

syslog_enable — When enabled in conjunction with xferlog_enable, all logging normally written to the standard vsftpd log file specified in the vsftpd_log_file directive

(/var/log/vsftpd.log by default) is sent to the system logger instead under the FTPD facility.

The default value is NO.

vsftpd_log_file — Specifies the vsftpd log file. For this file to be used, xferlog_enable must be enabled and xferlog_std_format must either be set to NO or, if

xferlog_std_format is set to YES, dual_log_enable must be enabled. It is important to note that if syslog_enable is set to YES, the system log is used instead of the file specified in this directive.

The default value is /var/log/vsftpd.log.

xferlog_enable — When enabled, vsftpd logs connections (vsftpd format only) and filetransfer information to the log file specified in the vsftpd_log_file directive

(/var/log/vsftpd.log by default). If xferlog_std_format is set to YES, file-transfer information is logged, but connections are not, and the log file specified in xferlog_file

(/var/log/xferlog by default) is used instead. It is important to note that both log files and log formats are used if dual_log_enable is set to YES.

503

Deployment Guide

The default value is NO. On Red Hat Enterprise Linux 6, this option is set to YES in the configuration file.

xferlog_file — Specifies the wu-ftpd-compatible log file. For this file to be used,

xferlog_enable must be enabled and xferlog_std_format must be set to YES. It is also used if dual_log_enable is set to YES.

The default value is /var/log/xferlog.

xferlog_std_format — When enabled in conjunction with xferlog_enable, only a wu-

ftpd-compatible file-transfer log is written to the file specified in the xferlog_file directive

(/var/log/xferlog by default). It is important to note that this file only logs file transfers and does not log connections to the server.

The default value is NO. On Red Hat Enterprise Linux 6, this option is set to YES in the configuration file.

IMPORTANT

To maintain compatibility with log files written by the older wu-ftpd FTP server, the

xferlog_std_format directive is set to YES under Red Hat Enterprise Linux 6.

However, this setting means that connections to the server are not logged. To both log connections in vsftpd format and maintain a wu-ftpd-compatible file-transfer log, set

dual_log_enable to YES. If maintaining a wu-ftpd-compatible file-transfer log is not important, either set xferlog_std_format to NO, comment the line with a hash symbol

(“#”), or delete the line entirely.

21.2.2.6.8. Network Options

The following lists directives that define how vsftpd interacts with the network.

accept_timeout — Specifies the amount of time for a client using passive mode to establish a connection.

The default value is 60.

anon_max_rate — Specifies the maximum data transfer rate for anonymous users in bytes per second.

The default value is 0, which does not limit the transfer rate.

connect_from_port_20 — When enabled, vsftpd runs with enough privileges to open port

20 on the server during active-mode data transfers. Disabling this option allows vsftpd to run with less privileges but may be incompatible with some FTP clients.

The default value is NO. On Red Hat Enterprise Linux 6, this option is set to YES in the configuration file.

connect_timeout — Specifies the maximum amount of time a client using active mode has to respond to a data connection, in seconds.

The default value is 60.

504

CHAPTER 21. FILE AND PRINT SERVERS

data_connection_timeout — Specifies maximum amount of time data transfers are allowed to stall, in seconds. Once triggered, the connection to the remote client is closed.

The default value is 300.

ftp_data_port — Specifies the port used for active data connections when

connect_from_port_20 is set to YES.

The default value is 20.

idle_session_timeout — Specifies the maximum amount of time between commands from a remote client. Once triggered, the connection to the remote client is closed.

The default value is 300.

listen_address — Specifies the IP address on which vsftpd listens for network connections.

There is no default value for this directive.

NOTE

If running multiple copies of vsftpd serving different IP addresses, the configuration file for each copy of the vsftpd daemon must have a different

value for this directive. See Section 21.2.2.2, “Starting Multiple Copies of vsftpd”

for more information about multihomed FTP servers.

listen_address6 — Specifies the IPv6 address on which vsftpd listens for network connections when listen_ipv6 is set to YES.

There is no default value for this directive.

NOTE

If running multiple copies of vsftpd serving different IP addresses, the configuration file for each copy of the vsftpd daemon must have a different

value for this directive. See Section 21.2.2.2, “Starting Multiple Copies of vsftpd”

for more information about multihomed FTP servers.

listen_port — Specifies the port on which vsftpd listens for network connections.

The default value is 21.

local_max_rate — Specifies the maximum rate at which data is transferred for local users logged in to the server in bytes per second.

The default value is 0, which does not limit the transfer rate.

max_clients — Specifies the maximum number of simultaneous clients allowed to connect to the server when it is running in standalone mode. Any additional client connections would result in an error message.

The default value is 0, which does not limit connections.

505

Deployment Guide

max_per_ip — Specifies the maximum number of clients allowed to connect from the same source IP address.

The default value is 50. The value 0 switches off the limit.

pasv_address — Specifies the IP address for the public-facing IP address of the server for servers behind Network Address Translation (NAT) firewalls. This enables vsftpd to hand out the correct return address for passive-mode connections.

There is no default value for this directive.

pasv_enable — When enabled, passive-mode connections are allowed.

The default value is YES.

pasv_max_port — Specifies the highest possible port sent to FTP clients for passive-mode connections. This setting is used to limit the port range so that firewall rules are easier to create.

The default value is 0, which does not limit the highest passive-port range. The value must not exceed 65535.

pasv_min_port — Specifies the lowest possible port sent to FTP clients for passive-mode connections. This setting is used to limit the port range so that firewall rules are easier to create.

The default value is 0, which does not limit the lowest passive-port range. The value must not be lower than 1024.

pasv_promiscuous — When enabled, data connections are not checked to make sure they are originating from the same IP address. This setting is only useful for certain types of tunneling.

WARNING

Do not enable this option unless absolutely necessary as it disables an important security feature, which verifies that passive-mode connections originate from the same IP address as the control connection that initiates the data transfer.

The default value is NO.

port_enable — When enabled, active-mode connects are allowed.

The default value is YES.

21.2.2.6.9. Security Options

The following lists directives that can be used to improve vsftpd security.

isolate_network — If enabled, vsftpd uses the CLONE_NEWNET container flag to isolate the unprivileged protocol handler processes, so that they cannot arbitrarily call connect() and

506

CHAPTER 21. FILE AND PRINT SERVERS instead have to ask the privileged process for sockets (the port_promiscuous option must be disabled).

The default value is YES.

isolate — If enabled, vsftpd uses the CLONE_NEWPID and CLONE_NEWIPC container flags to isolate processes to their IPC and PID namespaces to prevent them from interacting with each other.

The default value is YES.

ssl_enable — Enables vsftpd's support for SSL (including TLS). SSL is used both for authentication and subsequent data transfers. Note that all other SSL-related options are only applicable if ssl_enable is set to YES.

The default value is NO.

allow_anon_ssl — Specifies whether anonymous users should be allowed to use secured

SSL connections.

The default value is NO.

require_cert — If enabled, all SSL client connections are required to present a client certificate.

The default value is NO.

21.2.3. Additional Resources

For more information about vsftpd configuration, see the following resources.

21.2.3.1. Installed Documentation

The /usr/share/doc/vsftpd-version-number/ directory — The TUNING file contains basic performance-tuning tips and the SECURITY/ directory contains information about the security model employed by vsftpd.

vsftpd-related man pages — There are a number of man pages for the daemon and the configuration files. The following lists some of the more important man pages.

Server Applications vsftpd(8) — Describes available command-line options for vsftpd.

Configuration Files vsftpd.conf(5) — Contains a detailed list of options available within the configuration file for vsftpd.

hosts_access(5) — Describes the format and options available within the TCP wrappers configuration files: hosts.allow and hosts.deny.

Interaction with SELinux

507

Deployment Guide

man ftpd_selinux — Contains a description of the SELinux policy governing ftpd processes as well as an explanation of the way SELinux labels need to be assigned and

Booleans set.

21.2.3.2. Online Documentation

About vsftpd and FTP in General http://vsftpd.beasts.org/ — The vsftpd project page is a great place to locate the latest documentation and to contact the author of the software.

http://slacksite.com/other/ftp.html

— This website provides a concise explanation of the differences between active and passive-mode FTP.

Red Hat Enterprise Linux Documentation

Red Hat Enterprise Linux 6 Security-Enhanced Linux — The Security-Enhanced Linux for

Red Hat Enterprise Linux 6 describes the basic principles of SELinux and documents in detail how to configure and use SELinux with various services such as the Apache HTTP Server,

Postfix, PostgreSQL, or OpenShift. It explains how to configure SELinux access permissions for system services managed by systemd.

Red Hat Enterprise Linux 6 Security Guide — The Security Guide for Red Hat

Enterprise Linux 6 assists users and administrators in learning the processes and practices of securing their workstations and servers against local and remote intrusion, exploitation, and malicious activity. It also explains how to secure critical system services.

Relevant RFC Documents

RFC 0959 — The original Request for Comments (RFC) of the FTP protocol from the IETF.

RFC 1123 — The small FTP-related section extends and clarifies RFC 0959.

RFC 2228 — FTP security extensions. vsftpd implements the small subset needed to support TLS and SSL connections.

RFC 2389 — Proposes FEAT and OPTS commands.

RFC 2428 — IPv6 support.

21.3. PRINTER CONFIGURATION

The Printer Configuration tool serves for printer configuring, maintenance of printer configuration files, print spool directories and print filters, and printer classes management.

The tool is based on the Common Unix Printing System (CUPS). If you upgraded the system from a previous Red Hat Enterprise Linux version that used CUPS, the upgrade process preserved the configured printers.

508

CHAPTER 21. FILE AND PRINT SERVERS

IMPORTANT

The cupsd.conf man page documents configuration of a CUPS server. It includes directives for enabling SSL support. However, CUPS does not allow control of the protocol versions used. Due to the vulnerability described in Resolution for POODLE SSLv3.0

vulnerability (CVE-2014-3566) for components that do not allow SSLv3 to be disabled via configuration settings , Red Hat recommends that you do not rely on this for security. It is recommend that you use stunnel to provide a secure tunnel and disable SSLv3. For more information on using stunnel, see the Red Hat Enterprise Linux 6 Security Guide .

For ad-hoc secure connections to a remote system's Print Settings tool, use X11 forwarding over SSH as described in

Section 14.5.1, “X11 Forwarding”

.

NOTE

You can perform the same and additional operations on printers directly from the CUPS web application or command line. To access the application, in a web browser, go to http://localhost:631/ . For CUPS manuals see the links on the Home tab of the web site.

21.3.1. Starting the Printer Configuration Tool

With the Printer Configuration tool you can perform various operations on existing printers and set up new printers. However, you can use also CUPS directly (go to http://localhost:631/ to access CUPS).

On the panel, click SystemAdministrationPrinting, or run the system-config-printer command from the command line to start the tool.

The Printer Configuration window depicted in

Figure 21.3, “Printer Configuration window”

appears.

Figure 21.3. Printer Configuration window

21.3.2. Starting Printer Setup

Printer setup process varies depending on the printer queue type.

509

Deployment Guide

If you are setting up a local printer connected with USB, the printer is discovered and added automatically. You will be prompted to confirm the packages to be installed and provide the root password. Local printers connected with other port types and network printers need to be set up manually.

Follow this procedure to start a manual printer setup:

1. Start the Printer Configuration tool (see Section 21.3.1, “Starting the Printer Configuration Tool” ).

2. Go to ServerNewPrinter.

3. In the Authenticate dialog box, type the root user password and confirm.

4. Select the printer connection type and provide its details in the area on the right.

21.3.3. Adding a Local Printer

Follow this procedure to add a local printer connected with other than a serial port:

1. Open the New Printer dialog (see Section 21.3.2, “Starting Printer Setup”

).

2. If the device does not appear automatically, select the port to which the printer is connected in the list on the left (such as Serial Port #1 or LPT #1).

3. On the right, enter the connection properties: for Other

URI (for example file:/dev/lp0) for Serial Port

Baud Rate

Parity

Data Bits

Flow Control

510

CHAPTER 21. FILE AND PRINT SERVERS

Figure 21.4. Adding a local printer

4. Click Forward.

5. Select the printer model. See

Section 21.3.8, “Selecting the Printer Model and Finishing” for

details.

21.3.4. Adding an AppSocket/HP JetDirect printer

Follow this procedure to add an AppSocket/HP JetDirect printer:

1. Open the New Printer dialog (see Section 21.3.1, “Starting the Printer Configuration Tool” ).

2. In the list on the left, select Network PrinterAppSocket/HP JetDirect.

3. On the right, enter the connection settings:

Hostname

Printer host name or IP address.

Port Number

Printer port listening for print jobs (9100 by default).

511

Deployment Guide

Figure 21.5. Adding a JetDirect printer

4. Click Forward.

5. Select the printer model. See

Section 21.3.8, “Selecting the Printer Model and Finishing” for

details.

21.3.5. Adding an IPP Printer

An IPP printer is a printer attached to a different system on the same TCP/IP network. The system this printer is attached to may either be running CUPS or configured to use IPP.

If a firewall is enabled on the printer server, then the firewall must be configured to allow incoming TCP connections on port 631. Note that the CUPS browsing protocol allows client machines to discover shared CUPS queues automatically. To enable this, the firewall on the client machine must be configured to allow incoming UDP packets on port 631.

Follow this procedure to add an IPP printer:

1. Open the New Printer dialog (see Section 21.3.2, “Starting Printer Setup”

).

2. In the list of devices on the left, select Network Printer and Internet Printing Protocol (ipp) or

Internet Printing Protocol (https).

3. On the right, enter the connection settings:

Host

512

CHAPTER 21. FILE AND PRINT SERVERS

The host name of the IPP printer.

Queue

The queue name to be given to the new queue (if the box is left empty, a name based on the device node will be used).

Figure 21.6. Adding an IPP printer

4. Click Forward to continue.

5. Select the printer model. See

Section 21.3.8, “Selecting the Printer Model and Finishing” for

details.

21.3.6. Adding an LPD/LPR Host or Printer

Follow this procedure to add an LPD/LPR host or printer:

1. Open the New Printer dialog (see Section 21.3.2, “Starting Printer Setup”

).

2. In the list of devices on the left, select Network PrinterLPD/LPR Host or Printer.

3. On the right, enter the connection settings:

Host

The host name of the LPD/LPR printer or host.

Optionally, click Probe to find queues on the LPD host.

513

Deployment Guide

Queue

The queue name to be given to the new queue (if the box is left empty, a name based on the device node will be used).

Figure 21.7. Adding an LPD/LPR printer

4. Click Forward to continue.

5. Select the printer model. See

Section 21.3.8, “Selecting the Printer Model and Finishing” for

details.

21.3.7. Adding a Samba (SMB) printer

Follow this procedure to add a Samba printer:

NOTE

Note that in order to add a Samba printer, you need to have the samba-client package installed. You can do so by running, as root: yum install samba-client

For more information on installing packages with Yum, see Section 8.2.4, “Installing

Packages” .

1. Open the New Printer dialog (see Section 21.3.2, “Starting Printer Setup”

).

514

CHAPTER 21. FILE AND PRINT SERVERS

2. In the list on the left, select Network PrinterWindows Printer via SAMBA.

3. Enter the SMB address in the smb:// field. Use the format computer name/printer share. In

Figure 21.8, “Adding a SMB printer” , the computer name is dellbox and the printer share is r2.

Figure 21.8. Adding a SMB printer

4. Click Browse to see the available workgroups/domains. To display only queues of a particular host, type in the host name (NetBios name) and click Browse.

5. Select either of the options:

Prompt user if authentication is required: user name and password are collected from the user when printing a document.

Set authentication details now: provide authentication information now so it is not required later. In the Username field, enter the user name to access the printer. This user must exist on the SMB system, and the user must have permission to access the printer.

The default user name is typically guest for Windows servers, or nobody for Samba servers.

6. Enter the Password (if required) for the user specified in the Username field.

515

516

Deployment Guide

WARNING

Samba printer user names and passwords are stored in the printer server as unencrypted files readable by root and the Linux Printing Daemon, lpd.

Thus, other users that have root access to the printer server can view the user name and password you use to access the Samba printer.

Therefore, when you choose a user name and password to access a Samba printer, it is advisable that you choose a password that is different from what you use to access your local Red Hat Enterprise Linux system.

If there are files shared on the Samba print server, it is recommended that they also use a password different from what is used by the print queue.

7. Click Verify to test the connection. Upon successful verification, a dialog box appears confirming printer share accessibility.

8. Click Forward.

9. Select the printer model. See

Section 21.3.8, “Selecting the Printer Model and Finishing” for

details.

21.3.8. Selecting the Printer Model and Finishing

Once you have properly selected a printer connection type, the system attempts to acquire a driver. If the process fails, you can locate or search for the driver resources manually.

Follow this procedure to provide the printer driver and finish the installation:

1. In the window displayed after the automatic driver detection has failed, select one of the following options:

Select a Printer from database — the system chooses a driver based on the selected make of your printer from the list of Makes. If your printer model is not listed, choose Generic.

Provide PPD file — the system uses the provided PostScript Printer Description (PPD) file for installation. A PPD file may also be delivered with your printer as being normally provided by the manufacturer. If the PPD file is available, you can choose this option and use the browser bar below the option description to select the PPD file.

Search for a printer driver to download — enter the make and model of your printer into the Make and model field to search on OpenPrinting.org for the appropriate packages.

CHAPTER 21. FILE AND PRINT SERVERS

Figure 21.9. Selecting a printer brand

2. Depending on your previous choice provide details in the area displayed below:

Printer brand for the Select printer from database option.

PPD file location for the Provide PPD file option.

Printer make and model for the Search for a printer driver to download option.

3. Click Forward to continue.

4. If applicable for your option, window shown in

Figure 21.10, “Selecting a printer model”

appears.

Choose the corresponding model in the Models column on the left.

NOTE

On the right, the recommended printer driver is automatically selected; however, you can select another available driver. The print driver processes the data that you want to print into a format the printer can understand. Since a local printer is attached directly to your computer, you need a printer driver to process the data that is sent to the printer.

517

Deployment Guide

518

Figure 21.10. Selecting a printer model

5. Click Forward.

6. Under the Describe Printer enter a unique name for the printer in the Printer Name field.

The printer name can contain letters, numbers, dashes (-), and underscores (_); it must not contain any spaces. You can also use the Description and Location fields to add further printer information. Both fields are optional, and may contain spaces.

CHAPTER 21. FILE AND PRINT SERVERS

Figure 21.11. Printer setup

7. Click Apply to confirm your printer configuration and add the print queue if the settings are correct. Click Back to modify the printer configuration.

8. After the changes are applied, a dialog box appears allowing you to print a test page. Click Yes to print a test page now. Alternatively, you can print a test page later as described in

Section 21.3.9, “Printing a Test Page”

.

21.3.9. Printing a Test Page

After you have set up a printer or changed a printer configuration, print a test page to make sure the printer is functioning properly:

1. Right-click the printer in the Printing window and click Properties.

2. In the Properties window, click Settings on the left.

3. On the displayed Settings tab, click the Print Test Page button.

21.3.10. Modifying Existing Printers

To delete an existing printer, in the Printer Configuration window, select the printer and go to

PrinterDelete. Confirm the printer deletion. Alternatively, press the Delete key.

To set the default printer, right-click the printer in the printer list and click the Set as Default button in the context menu.

519

Deployment Guide

21.3.10.1. The Settings Page

To change printer driver configuration, double-click the corresponding name in the Printer list and click the Settings label on the left to display the Settings page.

You can modify printer settings such as make and model, print a test page, change the device location

(URI), and more.

Figure 21.12. Settings page

21.3.10.2. The Policies Page

Click the Policies button on the left to change settings in printer state and print output.

You can select the printer states, configure the Error Policy of the printer (you can decide to abort the print job, retry, or stop it if an error occurs).

You can also create a banner page (a page that describes aspects of the print job such as the originating printer, the user name from the which the job originated, and the security status of the document being printed): click the Starting Banner or Ending Banner drop-down menu and choose the option that best describes the nature of the print jobs (for example, confidential).

21.3.10.2.1. Sharing Printers

On the Policies page, you can mark a printer as shared: if a printer is shared, users published on the network can use it. To allow the sharing function for printers, go to ServerSettings and select

Publish shared printers connected to this system.

Finally, make sure that the firewall allows incoming TCP connections to port 631 (that is Network Printing

Server (IPP) in system-config-firewall).

520

CHAPTER 21. FILE AND PRINT SERVERS

Figure 21.13. Policies page

21.3.10.2.2. The Access Control Page

You can change user-level access to the configured printer on the Access Control page. Click the

Access Control label on the left to display the page. Select either Allow printing for

everyone except these users or Deny printing for everyone except these users and define the user set below: enter the user name in the text box and click the Add button to add the user to the user set.

Figure 21.14. Access Control page

521

Deployment Guide

21.3.10.2.3. The Printer Options Page

The Printer Options page contains various configuration options for the printer media and output, and its content may vary from printer to printer. It contains general printing, paper, quality, and printing size settings.

Figure 21.15. Printer Options page

21.3.10.2.4. Job Options Page

On the Job Options page, you can detail the printer job options. Click the Job Options label on the left to display the page. Edit the default settings to apply custom job options, such as number of copies, orientation, pages per side, scaling (increase or decrease the size of the printable area, which can be used to fit an oversize print area onto a smaller physical sheet of print medium), detailed text options, and custom job options.

522

CHAPTER 21. FILE AND PRINT SERVERS

Figure 21.16. Job Options page

21.3.10.2.5. Ink/Toner Levels Page

The Ink/Toner Levels page contains details on toner status if available and printer status messages.

Click the Ink/Toner Levels label on the left to display the page.

523

Deployment Guide

Figure 21.17. Ink/Toner Levels page

21.3.10.3. Managing Print Jobs

When you send a print job to the printer daemon, such as printing a text file from Emacs or printing an image from GIMP, the print job is added to the print spool queue. The print spool queue is a list of print jobs that have been sent to the printer and information about each print request, such as the status of the request, the job number, and more.

During the printing process, the Printer Status icon appears in the Notification Area on the panel.

To check the status of a print job, click the Printer Status, which displays a window similar to

Figure 21.18, “GNOME Print Status” .

Figure 21.18. GNOME Print Status

To cancel, hold, release, reprint or authenticate a print job, select the job in the GNOME Print Status and on the Job menu, click the respective command.

To view the list of print jobs in the print spool from a shell prompt, type the command lpstat -o. The last few lines look similar to the following:

524

CHAPTER 21. FILE AND PRINT SERVERS

Example 21.11. Example of lpstat -o output

$ lpstat -o

Charlie-60 twaugh 1024 Tue 08 Feb 2011

16:42:11 GMT

Aaron-61 twaugh 1024 Tue 08 Feb 2011

16:42:44 GMT

Ben-62 root 1024 Tue 08 Feb 2011

16:45:42 GMT

If you want to cancel a print job, find the job number of the request with the command lpstat -o and then use the command cancel job number. For example, cancel 60 would cancel the print job in

Example 21.11, “Example of lpstat -o output”

. You can not cancel print jobs that were started by other users with the cancel command. However, you can enforce deletion of such job by issuing the

cancel -U root job_number command. To prevent such canceling change the printer operation policy to Authenticated to force root authentication.

You can also print a file directly from a shell prompt. For example, the command lp sample.txt prints the text file sample.txt. The print filter determines what type of file it is and converts it into a format the printer can understand.

21.3.11. Additional Resources

To learn more about printing on Red Hat Enterprise Linux, see the following resources.

21.3.11.1. Installed Documentation

man lp

The manual page for the lp command that allows you to print files from the command line.

man lpr

The manual page for the lpr command that allows you to print files from the command line.

man cancel

The manual page for the command-line utility to remove print jobs from the print queue.

man mpage

The manual page for the command-line utility to print multiple pages on one sheet of paper.

man cupsd

The manual page for the CUPS printer daemon.

man cupsd.conf

The manual page for the CUPS printer daemon configuration file.

man classes.conf

The manual page for the class configuration file for CUPS.

525

Deployment Guide man lpstat

The manual page for the lpstat command, which displays status information about classes, jobs, and printers.

21.3.11.2. Useful Websites

http://www.linuxprinting.org/

GNU/Linux Printing contains a large amount of information about printing in Linux.

http://www.cups.org/

Documentation, FAQs, and newsgroups about CUPS.

526

CHAPTER 22. CONFIGURING NTP USING NTPD

CHAPTER 22. CONFIGURING NTP USING NTPD

22.1. INTRODUCTION TO NTP

The Network Time Protocol (NTP) enables the accurate dissemination of time and date information in order to keep the time clocks on networked computer systems synchronized to a common reference over the network or the Internet. Many standards bodies around the world have atomic clocks which may be made available as a reference. The satellites that make up the Global Position System contain more than one atomic clock, making their time signals potentially very accurate. Their signals can be deliberately degraded for military reasons. An ideal situation would be where each site has a server, with its own reference clock attached, to act as a site-wide time server. Many devices which obtain the time and date via low frequency radio transmissions or the Global Position System (GPS) exist. However for most situations, a range of publicly accessible time servers connected to the Internet at geographically dispersed locations can be used. These NTP servers provide “Coordinated Universal Time” (UTC).

Information about these time servers can found at www.pool.ntp.org.

Accurate time keeping is important for a number of reasons in IT. In networking for example, accurate time stamps in packets and logs are required. Logs are used to investigate service and security issues and so timestamps made on different systems must be made by synchronized clocks to be of real value.

As systems and networks become increasingly faster, there is a corresponding need for clocks with greater accuracy and resolution. In some countries there are legal obligations to keep accurately synchronized clocks. Please see www.ntp.org for more information. In Linux systems, NTP is implemented by a daemon running in user space. The default NTP daemon in Red Hat

Enterprise Linux 6 is ntpd.

The user space daemon updates the system clock, which is a software clock running in the kernel. Linux uses a software clock as its system clock for better resolution than the typical embedded hardware clock referred to as the “Real Time Clock” (RTC). See the rtc(4) and hwclock(8) man pages for information on hardware clocks. The system clock can keep time by using various clock sources.

Usually, the Time Stamp Counter (TSC) is used. The TSC is a CPU register which counts the number of cycles since it was last reset. It is very fast, has a high resolution, and there are no interrupts. On system start, the system clock reads the time and date from the RTC. The time kept by the RTC will drift away from actual time by up to 5 minutes per month due to temperature variations. Hence the need for the system clock to be constantly synchronized with external time references. When the system clock is being synchronized by ntpd, the kernel will in turn update the RTC every 11 minutes automatically.

22.2. NTP STRATA

NTP servers are classified according to their synchronization distance from the atomic clocks which are the source of the time signals. The servers are thought of as being arranged in layers, or strata, from 1 at the top down to 15. Hence the word stratum is used when referring to a specific layer. Atomic clocks are referred to as Stratum 0 as this is the source, but no Stratum 0 packet is sent on the Internet, all stratum

0 atomic clocks are attached to a server which is referred to as stratum 1. These servers send out packets marked as Stratum 1. A server which is synchronized by means of packets marked stratum n belongs to the next, lower, stratum and will mark its packets as stratum n+1. Servers of the same stratum can exchange packets with each other but are still designated as belonging to just the one stratum, the stratum one below the best reference they are synchronized to. The designation Stratum 16 is used to indicate that the server is not currently synchronized to a reliable time source.

Note that by default NTP clients act as servers for those systems in the stratum below them.

Here is a summary of the NTP Strata:

Stratum 0:

527

Deployment Guide

Atomic Clocks and their signals broadcast over Radio and GPS

GPS (Global Positioning System)

Mobile Phone Systems

Low Frequency Radio Broadcasts WWVB (Colorado, USA.), JJY-40 and JJY-60 (Japan),

DCF77 (Germany), and MSF (United Kingdom)

These signals can be received by dedicated devices and are usually connected by RS-232 to a system used as an organizational or site-wide time server.

Stratum 1:

Computer with radio clock, GPS clock, or atomic clock attached

Stratum 2:

Reads from stratum 1; Serves to lower strata

Stratum 3:

Reads from stratum 2; Serves to lower strata

Stratum n+1:

Reads from stratum n; Serves to lower strata

Stratum 15:

Reads from stratum 14; This is the lowest stratum.

This process continues down to Stratum 15 which is the lowest valid stratum. The label Stratum 16 is used to indicated an unsynchronized state.

22.3. UNDERSTANDING NTP

The version of NTP used by Red Hat Enterprise Linux is as described in RFC 1305 Network Time

Protocol (Version 3) Specification, Implementation and Analysis and RFC 5905 Network Time Protocol

Version 4: Protocol and Algorithms Specification

This implementation of NTP enables sub-second accuracy to be achieved. Over the Internet, accuracy to

10s of milliseconds is normal. On a Local Area Network (LAN), 1 ms accuracy is possible under ideal conditions. This is because clock drift is now accounted and corrected for, which was not done in earlier, simpler, time protocol systems. A resolution of 233 picoseconds is provided by using 64-bit time stamps.

The first 32-bits of the time stamp is used for seconds, the last 32-bits are used for fractions of seconds.

NTP represents the time as a count of the number of seconds since 00:00 (midnight) 1 January, 1900

GMT. As 32-bits is used to count the seconds, this means the time will “roll over” in 2036. However NTP works on the difference between time stamps so this does not present the same level of problem as other implementations of time protocols have done. If a hardware clock that is within 68 years of the correct time is available at boot time then NTP will correctly interpret the current date. The NTP4 specification provides for an “Era Number” and an “Era Offset” which can be used to make software more robust when dealing with time lengths of more than 68 years. Note, please do not confuse this with the Unix Year 2038 problem.

The NTP protocol provides additional information to improve accuracy. Four time stamps are used to

528

CHAPTER 22. CONFIGURING NTP USING NTPD allow the calculation of round-trip time and server response time. In order for a system in its role as NTP client to synchronize with a reference time server, a packet is sent with an “originate time stamp”. When the packet arrives, the time server adds a “receive time stamp”. After processing the request for time and date information and just before returning the packet, it adds a “transmit time stamp”. When the returning packet arrives at the NTP client, a “receive time stamp” is generated. The client can now calculate the total round trip time and by subtracting the processing time derive the actual traveling time. By assuming the outgoing and return trips take equal time, the single-trip delay in receiving the NTP data is calculated.

The full NTP algorithm is much more complex than presented here.

When a packet containing time information is received it is not immediately responded to, but is first subject to validation checks and then processed together with several other time samples to arrive at an estimate of the time. This is then compared to the system clock to determine the time offset, the difference between the system clock's time and what ntpd has determined the time should be. The system clock is adjusted slowly, at most at a rate of 0.5ms per second, to reduce this offset by changing the frequency of the counter being used. It will take at least 2000 seconds to adjust the clock by 1 second using this method. This slow change is referred to as slewing and cannot go backwards. If the time offset of the clock is more than 128ms (the default setting), ntpd can “step” the clock forwards or backwards. If the time offset at system start is greater than 1000 seconds then the user, or an installation script, should make a manual adjustment. See

Chapter 2, Date and Time Configuration

. With the -g option to the ntpd command (used by default), any offset at system start will be corrected, but during normal operation only offsets of up to 1000 seconds will be corrected.

Some software may fail or produce an error if the time is changed backwards. For systems that are sensitive to step changes in the time, the threshold can be changed to 600s instead of 128ms using the

-x option (unrelated to the -g option). Using the -x option to increase the stepping limit from 0.128s to

600s has a drawback because a different method of controlling the clock has to be used. It disables the kernel clock discipline and may have a negative impact on the clock accuracy. The -x option can be added to the /etc/sysconfig/ntpd configuration file.

22.4. UNDERSTANDING THE DRIFT FILE

The drift file is used to store the frequency offset between the system clock running at its nominal frequency and the frequency required to remain in synchronization with UTC. If present, the value contained in the drift file is read at system start and used to correct the clock source. Use of the drift file reduces the time required to achieve a stable and accurate time. The value is calculated, and the drift file replaced, once per hour by ntpd. The drift file is replaced, rather than just updated, and for this reason the drift file must be in a directory for which ntpd has write permissions.

22.5. UTC, TIMEZONES, AND DST

As NTP is entirely in UTC (Universal Time, Coordinated), Timezones and DST (Daylight Saving Time) are applied locally by the system. The file /etc/localtime is a copy of, or symlink to, a zone information file from /usr/share/zoneinfo. The RTC may be in localtime or in UTC, as specified by the 3rd line of /etc/adjtime, which will be one of LOCAL or UTC to indicate how the RTC clock has been set. Users can easily change this setting using the check box System Clock Uses UTC in the

system-config-date graphical configuration tool. See

Chapter 2, Date and Time Configuration for

information on how to use that tool. Running the RTC in UTC is recommended to avoid various problems when daylight saving time is changed.

The operation of ntpd is explained in more detail in the man page ntpd(8). The resources section lists

useful sources of information. See Section 22.19, “Additional Resources” .

22.6. AUTHENTICATION OPTIONS FOR NTP

529

Deployment Guide

NTPv4 added support for the Autokey Security Architecture, which is based on public asymmetric cryptography while retaining support for symmetric key cryptography. The Autokey Security Architecture is described in RFC 5906 Network Time Protocol Version 4: Autokey Specification . The man page

ntp_auth(5) describes the authentication options and commands for ntpd.

An attacker on the network can attempt to disrupt a service by sending NTP packets with incorrect time information. On systems using the public pool of NTP servers, this risk is mitigated by having more than three NTP servers in the list of public NTP servers in /etc/ntp.conf. If only one time source is compromised or spoofed, ntpd will ignore that source. You should conduct a risk assessment and consider the impact of incorrect time on your applications and organization. If you have internal time sources you should consider steps to protect the network over which the NTP packets are distributed. If you conduct a risk assessment and conclude that the risk is acceptable, and the impact to your applications minimal, then you can choose not to use authentication.

The broadcast and multicast modes require authentication by default. If you have decided to trust the network then you can disable authentication by using disable auth directive in the ntp.conf file.

Alternatively, authentication needs to be configured by using SHA1 or MD5 symmetric keys, or by public

(asymmetric) key cryptography using the Autokey scheme. The Autokey scheme for asymmetric cryptography is explained in the ntp_auth(8) man page and the generation of keys is explained in

ntp-keygen(8). To implement symmetric key cryptography, see Section 22.16.12, “Configuring

Symmetric Authentication Using a Key” for an explanation of the key option.

22.7. MANAGING THE TIME ON VIRTUAL MACHINES

Virtual machines cannot access a real hardware clock and a virtual clock is not stable enough as the stability is dependent on the host systems work load. For this reason, para-virtualized clocks should be provided by the virtualization application in use. On Red Hat Enterprise Linux with KVM the default clock source is kvm-clock. See the KVM guest timing management chapter of the Virtualization Host

Configuration and Guest Installation Guide.

22.8. UNDERSTANDING LEAP SECONDS

Greenwich Mean Time (GMT) was derived by measuring the solar day, which is dependent on the

Earth's rotation. When atomic clocks were first made, the potential for more accurate definitions of time became possible. In 1958, International Atomic Time (TAI) was introduced based on the more accurate and very stable atomic clocks. A more accurate astronomical time, Universal Time 1 (UT1), was also introduced to replace GMT. The atomic clocks are in fact far more stable than the rotation of the Earth and so the two times began to drift apart. For this reason UTC was introduced as a practical measure. It is kept within one second of UT1 but to avoid making many small trivial adjustments it was decided to introduce the concept of a leap second in order to reconcile the difference in a manageable way. The difference between UT1 and UTC is monitored until they drift apart by more than half a second. Then only is it deemed necessary to introduce a one second adjustment, forward or backward. Due to the erratic nature of the Earth's rotational speed, the need for an adjustment cannot be predicted far into the future. The decision as to when to make an adjustment is made by the International Earth Rotation and

Reference Systems Service (IERS) . However, these announcements are important only to administrators of Stratum 1 servers because NTP transmits information about pending leap seconds and applies them automatically.

22.9. UNDERSTANDING THE NTPD CONFIGURATION FILE

The daemon, ntpd, reads the configuration file at system start or when the service is restarted. The default location for the file is /etc/ntp.conf and you can view the file by entering the following command:

530

CHAPTER 22. CONFIGURING NTP USING NTPD

~]$ less /etc/ntp.conf

The configuration commands are explained briefly later in this chapter, see Section 22.16, “Configure

NTP” , and more verbosely in the ntp.conf(5) man page.

Here follows a brief explanation of the contents of the default configuration file:

The driftfile entry

A path to the drift file is specified, the default entry on Red Hat Enterprise Linux is: driftfile /var/lib/ntp/drift

If you change this be certain that the directory is writable by ntpd. The file contains one value used to

adjust the system clock frequency after every system or service start. See Understanding the Drift

File for more information.

The access control entries

The following lines setup the default access control restrictions: restrict default kod nomodify notrap nopeer noquery restrict -6 default kod nomodify notrap nopeer noquery

The kod option means a “Kiss-o'-death” packet is to be sent to reduce unwanted queries. The

nomodify options prevents any changes to the configuration. The notrap option prevents ntpdc control message protocol traps. The nopeer option prevents a peer association being formed. The

noquery option prevents ntpq and ntpdc queries, but not time queries, from being answered. The

-6 option is required before an IPv6 address.

Addresses within the range 127.0.0.0/8 are sometimes required by various processes or applications. As the "restrict default" line above prevents access to everything not explicitly allowed, access to the standard loopback address for IPv4 and IPv6 is permitted by means of the following lines:

# the administrative functions.

restrict 127.0.0.1 restrict -6 ::1

Addresses can be added underneath if specifically required by another application. The -6 option is required before an IPv6 address.

Hosts on the local network are not permitted because of the "restrict default" line above. To change this, for example to allow hosts from the 192.0.2.0/24 network to query the time and statistics but nothing more, a line in the following format is required: restrict 192.0.2.0 mask 255.255.255.0 nomodify notrap nopeer

To allow unrestricted access from a specific host, for example 192.0.2.250/32, a line in the following format is required: restrict 192.0.2.250

A mask of 255.255.255.255 is applied if none is specified.

531

Deployment Guide

The restrict commands are explained in the ntp_acc(5) man page.

The public servers entry

By default, as of Red Hat Enterprise 6.5, the ntp.conf file contains four public server entries: server 0.rhel.pool.ntp.org iburst server 1.rhel.pool.ntp.org iburst server 2.rhel.pool.ntp.org iburst server 3.rhel.pool.ntp.org iburst

If upgrading from a previous minor release, and your /etc/ntp.conf file has been modified, then the upgrade to Red Hat Enterprise Linux 6.5 will create a new file /etc/ntp.conf.rpmnew and will not alter the existing /etc/ntp.conf file.

The broadcast multicast servers entry

By default, the ntp.conf file contains some commented out examples. These are largely self

explanatory. See the explanation of the specific commands Section 22.16, “Configure NTP” . If

required, add your commands just below the examples.

NOTE

When the DHCP client program, dhclient, receives a list of NTP servers from the DHCP server, it adds them to ntp.conf and restarts the service. To disable that feature, add

PEERNTP=no to /etc/sysconfig/network.

22.10. UNDERSTANDING THE NTPD SYSCONFIG FILE

The file will be read by the ntpd init script on service start. The default contents is as follows:

# Drop root to id 'ntp:ntp' by default.

OPTIONS="-u ntp:ntp -p /var/run/ntpd.pid -g"

The -g option enables ntpd to ignore the offset limit of 1000s and attempt to synchronize the time even if the offset is larger than 1000s, but only on system start. Without that option ntpd will exit if the time offset is greater than 1000s. It will also exit after system start if the service is restarted and the offset is greater than 1000s even with the -g option.

The -p option sets the path to the pid file and -u sets the user and group to which the daemon should drop the root privileges.

22.11. CHECKING IF THE NTP DAEMON IS INSTALLED

To check if ntpd is installed, enter the following command as root:

~]# yum install ntp

NTP is implemented by means of the daemon or service ntpd, which is contained within the ntp package.

532

CHAPTER 22. CONFIGURING NTP USING NTPD

22.12. INSTALLING THE NTP DAEMON (NTPD)

To install ntpd, enter the following command as root:

~]# yum install ntp

The default installation directory is /usr/sbin/.

22.13. CHECKING THE STATUS OF NTP

To check if ntpd is configured to run at system start, issue the following command:

~]$ chkconfig --list ntpd ntpd 0:off 1:off 2:on 3:on 4:on 5:on 6:off

By default, when ntpd is installed, it is configured to start at every system start.

To check if ntpd is running, issue the following command:

~]$ ntpq -p

remote refid st t when poll reach delay offset jitter

==========================================================================

====

+clock.util.phx2 .CDMA. 1 u 111 128 377 175.495 3.076

2.250

*clock02.util.ph .CDMA. 1 u 69 128 377 175.357 7.641

3.671

ms21.snowflakeh .STEP. 16 u - 1024 0 0.000 0.000

0.000

rs11.lvs.iif.hu .STEP. 16 u - 1024 0 0.000 0.000

0.000

2001:470:28:bde .STEP. 16 u - 1024 0 0.000 0.000

0.000

The command lists connected time servers and displays information indicating when they were last polled and the stability of the replies. The column headings are as follows: remote and refid: remote NTP server, and its NTP server st: stratum of server t: type of server (local, unicast, multicast, or broadcast) poll: how frequently to query server (in seconds) when: how long since last poll (in seconds) reach: octal bitmask of success or failure of last 8 queries (left-shifted); 377 = 11111111 = all recent queries were successful; 257 = 10101111 = 4 most recent were successful, 5 and 7 failed delay: network round trip time (in milliseconds) offset: difference between local clock and remote clock (in milliseconds)

533

Deployment Guide jitter: difference of successive time values from server (high jitter could be due to an unstable clock or, more likely, poor network performance)

To obtain a brief status report from ntpd, issue the following command:

~]$ ntpstat unsynchronised

time server re-starting

polling server every 64 s

~]$ ntpstat synchronised to NTP server (10.5.26.10) at stratum 2

time correct to within 52 ms

polling server every 1024 s

22.14. CONFIGURE THE FIREWALL TO ALLOW INCOMING NTP

PACKETS

The NTP traffic consists of UDP packets on port 123 and needs to be permitted through network and host-based firewalls in order for NTP to function.

22.14.1. Configure the Firewall Using the Graphical Tool

To enable NTP to pass through the firewall, using the graphical tool system-config-firewall, issue the following command as root:

~]# system-config-firewall

The Firewall Configuration window opens. Select Other Ports from the list on the left. Click

Add. The Port and Protocol window opens. Click on one of the port numbers and start typing 123.

Select the “port 123” entry with udp as the protocol. Click OK. The Port and Protocol window closes. Click Apply in the Firewall Configuration window to apply the changes. A dialog box will pop up to ask you to confirm the action, click Yes. Note that any existing sessions will be terminated when you click Yes.

22.14.2. Configure the Firewall Using the Command Line

To enable NTP to pass through the firewall using the command line, issue the following command as

root:

~]# lokkit --port=123:udp --update

Note that this will restart the firewall as long as it has not been disabled with the --disabled option.

Active connections will be terminated and time out on the initiating machine.

When preparing a configuration file for multiple installations using administration tools, it is useful to edit the firewall configuration file directly. Note that any mistakes in the configuration file could have unexpected consequences, cause an error, and prevent the firewall setting from being applied.

Therefore, check the /etc/sysconfig/system-config-firewall file thoroughly after editing.

To enable NTP to pass through the firewall, by editing the configuration file, become the root user and add the following line to /etc/sysconfig/system-config-firewall:

534

CHAPTER 22. CONFIGURING NTP USING NTPD

--port=123:udp

Note that these changes will not take effect until the firewall is reloaded or the system restarted.

22.14.2.1. Checking Network Access for Incoming NTP Using the Command Line

To check if the firewall is configured to allow incoming NTP traffic for clients using the command line, issue the following command as root:

~]# less /etc/sysconfig/system-config-firewall

# Configuration file for system-config-firewall

--enabled

--service=ssh

In this example taken from a default installation, the firewall is enabled but NTP has not been allowed to pass through. Once it is enabled, the following line appears as output in addition to the lines shown above:

--port=123:udp

To check if the firewall is currently allowing incoming NTP traffic for clients, issue the following command as root:

~]# iptables -L -n | grep 'udp.*123'

ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 state NEW udp dpt:123

22.15. CONFIGURE NTPDATE SERVERS

The purpose of the ntpdate service is to set the clock during system boot. This can be used to ensure that the services started after ntpdate will have the correct time and will not observe a jump in the clock. The use of ntpdate and the list of step-tickers is considered deprecated and so Red Hat

Enterprise Linux 6 uses the -g option to the ntpd command by default and not ntpdate. However, the

-g option only enables ntpd to ignore the offset limit of 1000s and attempt to synchronize the time. It does not guarantee the time will be correct when other programs or services are started. Therefore the

ntpdate service can be useful when ntpd is disabled or if there are services which need to be started with the correct time and not observe a jump in the clock.

To check if the ntpdate service is enabled to run at system start, issue the following command:

~]$ chkconfig --list ntpdate ntpdate 0:off 1:off 2:on 3:on 4:on 5:on 6:off

To enable the service to run at system start, issue the following command as root:

~]# chkconfig ntpdate on

To configure ntpdate servers, using a text editor running as root, edit /etc/ntp/step-tickers to include one or more host names as follows:

535

Deployment Guide clock1.example.com

clock2.example.com

The number of servers listed is not very important as ntpdate will only use this to obtain the date information once when the system is starting. If you have an internal time server then use that host name for the first line. An additional host on the second line as a backup is sensible. The selection of backup servers and whether the second host is internal or external depends on your risk assessment. For example, what is the chance of any problem affecting the fist server also affecting the second server?

Would connectivity to an external server be more likely to be available than connectivity to internal servers in the event of a network failure disrupting access to the first server?

The ntpdate service has a file that must contain a list of NTP servers to be used on system start. It is recommend to have at last four servers listed to reduce the chance of a “false ticker” (incorrect time source) influencing the quality of the time offset calculation. However, publicly accessible time sources are rarely incorrect.

22.16. CONFIGURE NTP

To change the default configuration of the NTP service, use a text editor running as root user to edit the

/etc/ntp.conf file. This file is installed together with ntpd and is configured to use time servers from the Red Hat pool by default. The man page ntp.conf(5) describes the command options that can be used in the configuration file apart from the access and rate limiting commands which are explained in the ntp_acc(5) man page.

22.16.1. Configure Access Control to an NTP Service

To restrict or control access to the NTP service running on a system, make use of the restrict command in the ntp.conf file. See the commented out example:

# Hosts on local network are less restricted.

#restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap

The restrict command takes the following form:

restrict option where option is one or more of:

ignore — All packets will be ignored, including ntpq and ntpdc queries.

kod — a “Kiss-o'-death” packet is to be sent to reduce unwanted queries.

limited — do not respond to time service requests if the packet violates the rate limit default values or those specified by the discard command. ntpq and ntpdc queries are not affected.

For more information on the discard command and the default values, see Section 22.16.2,

“Configure Rate Limiting Access to an NTP Service” .

lowpriotrap — traps set by matching hosts to be low priority.

nomodify — prevents any changes to the configuration.

noquery — prevents ntpq and ntpdc queries, but not time queries, from being answered.

536

CHAPTER 22. CONFIGURING NTP USING NTPD

nopeer — prevents a peer association being formed.

noserve — deny all packets except ntpq and ntpdc queries.

notrap — prevents ntpdc control message protocol traps.

notrust — deny packets that are not cryptographically authenticated.

ntpport — modify the match algorithm to only apply the restriction if the source port is the standard NTP UDP port 123.

version — deny packets that do not match the current NTP version.

To configure rate limit access to not respond at all to a query, the respective restrict command has to have the limited option. If ntpd should reply with a KoD packet, the restrict command needs to have both limited and kod options.

The ntpq and ntpdc queries can be used in amplification attacks (see CVE-2013-5211 for more details), do not remove the noquery option from the restrict default command on publicly accessible systems.

22.16.2. Configure Rate Limiting Access to an NTP Service

To enable rate limiting access to the NTP service running on a system, add the limited option to the

restrict command as explained in

Section 22.16.1, “Configure Access Control to an NTP Service”

. If you do not want to use the default discard parameters, then also use the discard command as explained here.

The discard command takes the following form:

discard [average value] [minimum value] [monitor value]

average — specifies the minimum average packet spacing to be permitted, it accepts an argument in log

2

seconds. The default value is 3 (2 3 equates to 8 seconds).

minimum — specifies the minimum packet spacing to be permitted, it accepts an argument in log

2

seconds. The default value is 1 (2 1 equates to 2 seconds).

monitor — specifies the discard probability for packets once the permitted rate limits have been exceeded. The default value is 3000 seconds. This option is intended for servers that receive 1000 or more requests per second.

Examples of the discard command are as follows: discard average 4 discard average 4 minimum 2

22.16.3. Adding a Peer Address

To add the address of a peer, that is to say, the address of a server running an NTP service of the same stratum, make use of the peer command in the ntp.conf file.

537

Deployment Guide

The peer command takes the following form:

peer address where address is an IP unicast address or a DNS resolvable name. The address must only be that of a system known to be a member of the same stratum. Peers should have at least one time source that is different to each other. Peers are normally systems under the same administrative control.

22.16.4. Adding a Server Address

To add the address of a server, that is to say, the address of a server running an NTP service of a higher stratum, make use of the server command in the ntp.conf file.

The server command takes the following form:

server address where address is an IP unicast address or a DNS resolvable name. The address of a remote reference server or local reference clock from which packets are to be received.

22.16.5. Adding a Broadcast or Multicast Server Address

To add a broadcast or multicast address for sending, that is to say, the address to broadcast or multicast

NTP packets to, make use of the broadcast command in the ntp.conf file.

The broadcast and multicast modes require authentication by default. See Section 22.6, “Authentication

Options for NTP” .

The broadcast command takes the following form:

broadcast address where address is an IP broadcast or multicast address to which packets are sent.

This command configures a system to act as an NTP broadcast server. The address used must be a broadcast or a multicast address. Broadcast address implies the IPv4 address 255.255.255.255. By default, routers do not pass broadcast messages. The multicast address can be an IPv4 Class D address, or an IPv6 address. The IANA has assigned IPv4 multicast address 224.0.1.1 and IPv6 address FF05::101 (site local) to NTP. Administratively scoped IPv4 multicast addresses can also be used, as described in RFC 2365 Administratively Scoped IP Multicast .

22.16.6. Adding a Manycast Client Address

To add a manycast client address, that is to say, to configure a multicast address to be used for NTP server discovery, make use of the manycastclient command in the ntp.conf file.

The manycastclient command takes the following form:

manycastclient address where address is an IP multicast address from which packets are to be received. The client will send a request to the address and select the best servers from the responses and ignore other servers. NTP

538

CHAPTER 22. CONFIGURING NTP USING NTPD communication then uses unicast associations, as if the discovered NTP servers were listed in

ntp.conf.

This command configures a system to act as an NTP client. Systems can be both client and server at the same time.

22.16.7. Adding a Broadcast Client Address

To add a broadcast client address, that is to say, to configure a broadcast address to be monitored for broadcast NTP packets, make use of the broadcastclient command in the ntp.conf file.

The broadcastclient command takes the following form: broadcastclient

Enables the receiving of broadcast messages. Requires authentication by default. See Section 22.6,

“Authentication Options for NTP” .

This command configures a system to act as an NTP client. Systems can be both client and server at the same time.

22.16.8. Adding a Manycast Server Address

To add a manycast server address, that is to say, to configure an address to allow the clients to discover the server by multicasting NTP packets, make use of the manycastserver command in the ntp.conf file.

The manycastserver command takes the following form:

manycastserver address

Enables the sending of multicast messages. Where address is the address to multicast to. This should be used together with authentication to prevent service disruption.

This command configures a system to act as an NTP server. Systems can be both client and server at the same time.

22.16.9. Adding a Multicast Client Address

To add a multicast client address, that is to say, to configure a multicast address to be monitored for multicast NTP packets, make use of the multicastclient command in the ntp.conf file.

The multicastclient command takes the following form:

multicastclient address

Enables the receiving of multicast messages. Where address is the address to subscribe to. This should be used together with authentication to prevent service disruption.

This command configures a system to act as an NTP client. Systems can be both client and server at the same time.

22.16.10. Configuring the Burst Option

539

Deployment Guide

Using the burst option against a public server is considered abuse. Do not use this option with public

NTP servers. Use it only for applications within your own organization.

To increase the average quality of time offset statistics, add the following option to the end of a server command: burst

At every poll interval, when the server responds, the system will send a burst of up to eight packets instead of the usual one packet. For use with the server command to improve the average quality of the time-offset calculations.

22.16.11. Configuring the iburst Option

To improve the time taken for initial synchronization, add the following option to the end of a server command: iburst

When the server is unreachable, send a burst of eight packets instead of the usual one packet. The packet spacing is normally 2 s; however, the spacing between the first and second packets can be changed with the calldelay command to allow additional time for a modem or ISDN call to complete.

For use with the server command to reduce the time taken for initial synchronization. As of Red Hat

Enterprise Linux 6.5, this is now a default option in the configuration file.

22.16.12. Configuring Symmetric Authentication Using a Key

To configure symmetric authentication using a key, add the following option to the end of a server or peer command:

key number where number is in the range 1 to 65534 inclusive. This option enables the use of a message authentication code (MAC) in packets. This option is for use with the peer, server, broadcast, and

manycastclient commands.

The option can be used in the /etc/ntp.conf file as follows: server 192.168.1.1 key 10 broadcast 192.168.1.255 key 20 manycastclient 239.255.254.254 key 30

See also

Section 22.6, “Authentication Options for NTP”

.

22.16.13. Configuring the Poll Interval

To change the default poll interval, add the following options to the end of a server or peer command:

minpoll value and maxpoll value

Options to change the default poll interval, where the interval in seconds will be calculated by raising 2 to the power of value, in other words, the interval is expressed in log

2

seconds. The default minpoll value

540

CHAPTER 22. CONFIGURING NTP USING NTPD is 6, 2 6 equates to 64s. The default value for maxpoll is 10, which equates to 1024s. Allowed values are in the range 3 to 17 inclusive, which equates to 8s to 36.4h respectively. These options are for use with the peer or server. Setting a shorter maxpoll may improve clock accuracy.

22.16.14. Configuring Server Preference

To specify that a particular server should be preferred above others of similar statistical quality, add the following option to the end of a server or peer command: prefer

Use this server for synchronization in preference to other servers of similar statistical quality. This option is for use with the peer or server commands.

22.16.15. Configuring the Time-to-Live for NTP Packets

To specify that a particular time-to-live (TTL) value should be used in place of the default, add the following option to the end of a server or peer command:

ttl value

Specify the time-to-live value to be used in packets sent by broadcast servers and multicast NTP servers.

Specify the maximum time-to-live value to use for the “expanding ring search” by a manycast client. The default value is 127.

22.16.16. Configuring the NTP Version to Use

To specify that a particular version of NTP should be used in place of the default, add the following option to the end of a server or peer command:

version value

Specify the version of NTP set in created NTP packets. The value can be in the range 1 to 4. The default is 4.

22.17. CONFIGURING THE HARDWARE CLOCK UPDATE

To configure the system clock to update the hardware clock, also known as the real-time clock (RTC), once after executing ntpdate, add the following line to /etc/sysconfig/ntpdate:

SYNC_HWCLOCK=yes

To update the hardware clock from the system clock, issue the following command as root:

~]# hwclock --systohc

When the system clock is being synchronized by ntpd, the kernel will in turn update the RTC every 11 minutes automatically.

22.18. CONFIGURING CLOCK SOURCES

541

Deployment Guide

To list the available clock sources on your system, issue the following commands:

~]$ cd /sys/devices/system/clocksource/clocksource0/ clocksource0]$ cat available_clocksource kvm-clock tsc hpet acpi_pm clocksource0]$ cat current_clocksource kvm-clock

In the above example, the kernel is using kvm-clock. This was selected at boot time as this is a virtual machine.

To override the default clock source, add a line similar to the following in grub.conf: clocksource=tsc

The available clock source is architecture dependent.

22.19. ADDITIONAL RESOURCES

The following sources of information provide additional resources regarding NTP and ntpd.

22.19.1. Installed Documentation

ntpd(8) man page — Describes ntpd in detail, including the command-line options.

ntp.conf(5) man page — Contains information on how to configure associations with servers and peers.

ntpq(8) man page — Describes the NTP query utility for monitoring and querying an NTP server.

ntpdc(8) man page — Describes the ntpd utility for querying and changing the state of ntpd.

ntp_auth(5) man page — Describes authentication options, commands, and key management for ntpd.

ntp_keygen(8) man page — Describes generating public and private keys for ntpd.

ntp_acc(5) man page — Describes access control options using the restrict command.

ntp_mon(5) man page — Describes monitoring options for the gathering of statistics.

ntp_clock(5) man page — Describes commands for configuring reference clocks.

ntp_misc(5) man page — Describes miscellaneous options.

22.19.2. Useful Websites

http://doc.ntp.org/

The NTP Documentation Archive http://www.eecis.udel.edu/~mills/ntp.html

Network Time Synchronization Research Project.

542

http://www.eecis.udel.edu/~mills/ntp/html/manyopt.html

Information on Automatic Server Discovery in NTPv4.

CHAPTER 22. CONFIGURING NTP USING NTPD

543

Deployment Guide

CHAPTER 23. CONFIGURING PTP USING PTP4L

23.1. INTRODUCTION TO PTP

The Precision Time Protocol (PTP) is a protocol used to synchronize clocks in a network. When used in conjunction with hardware support, PTP is capable of sub-microsecond accuracy, which is far better than is normally obtainable with NTP. PTP support is divided between the kernel and user space. The kernel in Red Hat Enterprise Linux 6 now includes support for PTP clocks, which are provided by network drivers. The actual implementation of the protocol is known as linuxptp, a PTPv2 implementation according to the IEEE standard 1588 for Linux.

The linuxptp package includes the ptp4l and phc2sys programs for clock synchronization. The ptp4l program implements the PTP boundary clock and ordinary clock. With hardware time stamping, it is used to synchronize the PTP hardware clock to the master clock, and with software time stamping it synchronizes the system clock to the master clock. The phc2sys program is needed only with hardware time stamping, for synchronizing the system clock to the PTP hardware clock on the network interface card (NIC).

23.1.1. Understanding PTP

The clocks synchronized by PTP are organized in a master-slave hierarchy. The slaves are synchronized to their masters which may be slaves to their own masters. The hierarchy is created and updated automatically by the best master clock (BMC) algorithm, which runs on every clock. When a clock has only one port, it can be master or slave, such a clock is called an ordinary clock (OC). A clock with multiple ports can be master on one port and slave on another, such a clock is called a boundary clock (BC). The top-level master is called the grandmaster clock, which can be synchronized by using a

Global Positioning System (GPS) time source. By using a GPS-based time source, disparate networks can be synchronized with a high-degree of accuracy.

544

CHAPTER 23. CONFIGURING PTP USING PTP4L

Figure 23.1. PTP grandmaster, boundary, and slave Clocks

23.1.2. Advantages of PTP

One of the main advantages that PTP has over the Network Time Protocol (NTP) is hardware support present in various network interface controllers (NIC) and network switches. This specialized hardware allows PTP to account for delays in message transfer, and greatly improves the accuracy of time synchronization. While it is possible to use non-PTP enabled hardware components within the network, this will often cause an increase in jitter or introduce an asymmetry in the delay resulting in synchronization inaccuracies, which add up with multiple non-PTP aware components used in the communication path. To achieve the best possible accuracy, it is recommended that all networking components between PTP clocks are PTP hardware enabled. Time synchronization in larger networks where not all of the networking hardware supports PTP might be better suited for NTP.

With hardware PTP support, the NIC has its own on-board clock, which is used to time stamp the received and transmitted PTP messages. It is this on-board clock that is synchronized to the PTP master, and the computer's system clock is synchronized to the PTP hardware clock on the NIC. With software

PTP support, the system clock is used to time stamp the PTP messages and it is synchronized to the

545

Deployment Guide

PTP master directly. Hardware PTP support provides better accuracy since the NIC can time stamp the

PTP packets at the exact moment they are sent and received while software PTP support requires additional processing of the PTP packets by the operating system.

23.2. USING PTP

In order to use PTP, the kernel network driver for the intended interface has to support either software or hardware time stamping capabilities.

23.2.1. Checking for Driver and Hardware Support

In addition to hardware time stamping support being present in the driver, the NIC must also be capable of supporting this functionality in the physical hardware. The best way to verify the time stamping capabilities of a particular driver and NIC is to use the ethtool utility to query the interface as follows:

~]# ethtool -T eth3

Time stamping parameters for eth3:

Capabilities:

hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)

software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)

hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)

software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)

software-system-clock (SOF_TIMESTAMPING_SOFTWARE)

hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)

PTP Hardware Clock: 0

Hardware Transmit Timestamp Modes:

off (HWTSTAMP_TX_OFF)

on (HWTSTAMP_TX_ON)

Hardware Receive Filter Modes:

none (HWTSTAMP_FILTER_NONE)

all (HWTSTAMP_FILTER_ALL)

Where eth3 is the interface you want to check.

For software time stamping support, the parameters list should include:

SOF_TIMESTAMPING_SOFTWARE

SOF_TIMESTAMPING_TX_SOFTWARE

SOF_TIMESTAMPING_RX_SOFTWARE

For hardware time stamping support, the parameters list should include:

SOF_TIMESTAMPING_RAW_HARDWARE

SOF_TIMESTAMPING_TX_HARDWARE

SOF_TIMESTAMPING_RX_HARDWARE

23.2.2. Installing PTP

The kernel in Red Hat Enterprise Linux 6 now includes support for PTP. User space support is provided by the tools in the linuxptp package. To install linuxptp, issue the following command as root:

546

CHAPTER 23. CONFIGURING PTP USING PTP4L

~]# yum install linuxptp

This will install ptp4l and phc2sys.

Do not run more than one service to set the system clock's time at the same time. If you intend to serve

PTP time using NTP, see

Section 23.7, “Serving PTP Time With NTP”

.

23.2.3. Starting ptp4l

The ptp4l program tries to use hardware time stamping by default. To use ptp4l with hardware time stamping capable drivers and NICs, you must provide the network interface to use with the -i option.

Enter the following command as root:

~]# ptp4l -i eth3 -m

Where eth3 is the interface you want to configure. Below is example output from ptp4l when the PTP clock on the NIC is synchronized to a master:

~]# ptp4l -i eth3 -m selected eth3 as PTP clock port 1: INITIALIZING to LISTENING on INITIALIZE port 0: INITIALIZING to LISTENING on INITIALIZE port 1: new foreign master 00a069.fffe.0b552d-1 selected best master clock 00a069.fffe.0b552d

port 1: LISTENING to UNCALIBRATED on RS_SLAVE master offset -23947 s0 freq +0 path delay 11350 master offset -28867 s0 freq +0 path delay 11236 master offset -32801 s0 freq +0 path delay 10841 master offset -37203 s1 freq +0 path delay 10583 master offset -7275 s2 freq -30575 path delay 10583 port 1: UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED master offset -4552 s2 freq -30035 path delay 10385

The master offset value is the measured offset from the master in nanoseconds. The s0, s1, s2 strings indicate the different clock servo states: s0 is unlocked, s1 is clock step and s2 is locked. Once the servo is in the locked state (s2), the clock will not be stepped (only slowly adjusted) unless the

pi_offset_const option is set to a positive value in the configuration file (described in the ptp4l(8) man page). The freq value is the frequency adjustment of the clock in parts per billion (ppb). The path delay value is the estimated delay of the synchronization messages sent from the master in nanoseconds. Port 0 is a Unix domain socket used for local PTP management. Port 1 is the eth3 interface (based on the example above.) INITIALIZING, LISTENING, UNCALIBRATED and SLAVE are some of possible port states which change on the INITIALIZE, RS_SLAVE,

MASTER_CLOCK_SELECTED events. In the last state change message, the port state changed from

UNCALIBRATED to SLAVE indicating successful synchronization with a PTP master clock.

The ptp4l program can also be started as a service by running:

~]# service ptp4l start

When running as a service, options are specified in the /etc/sysconfig/ptp4l file. More information on the different ptp4l options and the configuration file settings can be found in the ptp4l(8) man page.

547

Deployment Guide

By default, messages are sent to /var/log/messages. However, specifying the -m option enables logging to standard output which can be useful for debugging purposes.

To enable software time stamping, the -S option needs to be used as follows:

~]# ptp4l -i eth3 -m -S

23.2.3.1. Selecting a Delay Measurement Mechanism

There are two different delay measurement mechanisms and they can be selected by means of an option added to the ptp4l command as follows:

-P

The -P selects the peer-to-peer (P2P) delay measurement mechanism.

The P2P mechanism is preferred as it reacts to changes in the network topology faster, and may be more accurate in measuring the delay, than other mechanisms. The P2P mechanism can only be used in topologies where each port exchanges PTP messages with at most one other P2P port. It must be supported and used by all hardware, including transparent clocks, on the communication path.

-E

The -E selects the end-to-end (E2E) delay measurement mechanism. This is the default.

The E2E mechanism is also referred to as the delay “request-response” mechanism.

-A

The -A enables automatic selection of the delay measurement mechanism.

The automatic option starts ptp4l in E2E mode. It will change to P2P mode if a peer delay request is received.

NOTE

All clocks on a single PTP communication path must use the same mechanism to measure the delay. A warning will be printed when a peer delay request is received on a port using the E2E mechanism. A warning will be printed when a E2E delay request is received on a port using the P2P mechanism.

23.3. SPECIFYING A CONFIGURATION FILE

The command-line options and other options, which cannot be set on the command line, can be set in an optional configuration file.

No configuration file is read by default, so it needs to be specified at runtime with the -f option. For example:

~]# ptp4l -f /etc/ptp4l.conf

A configuration file equivalent to the -i eth3 -m -S options shown above would look as follows:

548

CHAPTER 23. CONFIGURING PTP USING PTP4L

~]# cat /etc/ptp4l.conf

[global] verbose 1 time_stamping software

[eth3]

23.4. USING THE PTP MANAGEMENT CLIENT

The PTP management client, pmc, can be used to obtain additional information from ptp4l as follows:

~]# pmc -u -b 0 'GET CURRENT_DATA_SET' sending: GET CURRENT_DATA_SET

90e2ba.fffe.20c7f8-0 seq 0 RESPONSE MANAGMENT CURRENT_DATA_SET

stepsRemoved 1

offsetFromMaster -142.0

meanPathDelay 9310.0

~]# pmc -u -b 0 'GET TIME_STATUS_NP' sending: GET TIME_STATUS_NP

90e2ba.fffe.20c7f8-0 seq 0 RESPONSE MANAGMENT TIME_STATUS_NP

master_offset 310

ingress_time 1361545089345029441

cumulativeScaledRateOffset +1.000000000

scaledLastGmPhaseChange 0

gmTimeBaseIndicator 0

lastGmPhaseChange 0x0000'0000000000000000.0000

gmPresent true

gmIdentity 00a069.fffe.0b552d

Setting the -b option to zero limits the boundary to the locally running ptp4l instance. A larger boundary value will retrieve the information also from PTP nodes further from the local clock. The retrievable information includes:

stepsRemoved is the number of communication paths to the grandmaster clock.

offsetFromMaster and master_offset is the last measured offset of the clock from the master in nanoseconds.

meanPathDelay is the estimated delay of the synchronization messages sent from the master in nanoseconds.

if gmPresent is true, the PTP clock is synchronized to a master, the local clock is not the grandmaster clock.

gmIdentity is the grandmaster's identity.

For a full list of pmc commands, type the following as root:

~]# pmc help

Additional information is available in the pmc(8) man page.

549

Deployment Guide

23.5. SYNCHRONIZING THE CLOCKS

The phc2sys program is used to synchronize the system clock to the PTP hardware clock (PHC) on the

NIC. The phc2sys service is configured in the /etc/sysconfig/phc2sys configuration file. The default setting in the /etc/sysconfig/phc2sys file is as follows:

OPTIONS="-a -r"

The -a option causes phc2sys to read the clocks to be synchronized from the ptp4l application. It will follow changes in the PTP port states, adjusting the synchronization between the NIC hardware clocks accordingly. The system clock is not synchronized, unless the -r option is also specified. If you want the system clock to be eligible to become a time source, specify the -r option twice.

After making changes to /etc/sysconfig/phc2sys, restart the phc2sys service from the command line by issuing a command as root:

~]# service phc2sys restart

Under normal circumstances, use service commands to start, stop, and restart the phc2sys service.

When you do not want to start phc2sys as a service, you can start it from the command line. For example, enter the following command as root:

~]# phc2sys -a -r

The -a option causes phc2sys to read the clocks to be synchronized from the ptp4l application. If you want the system clock to be eligible to become a time source, specify the -r option twice.

Alternately, use the -s option to synchronize the system clock to a specific interface's PTP hardware clock. For example:

~]# phc2sys -s eth3 -w

The -w option waits for the running ptp4l application to synchronize the PTP clock and then retrieves the

TAI to UTC offset from ptp4l.

Normally, PTP operates in the International Atomic Time (TAI) timescale, while the system clock is kept in Coordinated Universal Time (UTC). The current offset between the TAI and UTC timescales is 36 seconds. The offset changes when leap seconds are inserted or deleted, which typically happens every few years. The -O option needs to be used to set this offset manually when the -w is not used, as follows:

~]# phc2sys -s eth3 -O -36

Once the phc2sys servo is in a locked state, the clock will not be stepped, unless the -S option is used.

This means that the phc2sys program should be started after the ptp4l program has synchronized the

PTP hardware clock. However, with -w, it is not necessary to start phc2sys after ptp4l as it will wait for it to synchronize the clock.

The phc2sys program can also be started as a service by running:

~]# service phc2sys start

550

CHAPTER 23. CONFIGURING PTP USING PTP4L

When running as a service, options are specified in the /etc/sysconfig/phc2sys file. More information on the different phc2sys options can be found in the phc2sys(8) man page.

Note that the examples in this section assume the command is run on a slave system or slave port.

23.6. VERIFYING TIME SYNCHRONIZATION

When PTP time synchronization is working properly, new messages with offsets and frequency adjustments will be printed periodically to the ptp4l and phc2sys (if hardware time stamping is used) outputs. These values will eventually converge after a short period of time. These messages can be seen in /var/log/messages file. An example of the ptp4l output follows: ptp4l[352.359]: selected /dev/ptp0 as PTP clock ptp4l[352.361]: port 1: INITIALIZING to LISTENING on INITIALIZE ptp4l[352.361]: port 0: INITIALIZING to LISTENING on INITIALIZE ptp4l[353.210]: port 1: new foreign master 00a069.fffe.0b552d-1 ptp4l[357.214]: selected best master clock 00a069.fffe.0b552d

ptp4l[357.214]: port 1: LISTENING to UNCALIBRATED on RS_SLAVE ptp4l[359.224]: master offset 3304 s0 freq +0 path delay

9202 ptp4l[360.224]: master offset 3708 s1 freq -29492 path delay

9202 ptp4l[361.224]: master offset -3145 s2 freq -32637 path delay

9202 ptp4l[361.224]: port 1: UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED ptp4l[362.223]: master offset -145 s2 freq -30580 path delay

9202 ptp4l[363.223]: master offset 1043 s2 freq -29436 path delay

8972 ptp4l[364.223]: master offset 266 s2 freq -29900 path delay

9153 ptp4l[365.223]: master offset 430 s2 freq -29656 path delay

9153 ptp4l[366.223]: master offset 615 s2 freq -29342 path delay

9169 ptp4l[367.222]: master offset -191 s2 freq -29964 path delay

9169 ptp4l[368.223]: master offset 466 s2 freq -29364 path delay

9170 ptp4l[369.235]: master offset 24 s2 freq -29666 path delay

9196 ptp4l[370.235]: master offset -375 s2 freq -30058 path delay

9238 ptp4l[371.235]: master offset 285 s2 freq -29511 path delay

9199 ptp4l[372.235]: master offset -78 s2 freq -29788 path delay

9204

An example of the phc2sys output follows: phc2sys[526.527]: Waiting for ptp4l...

phc2sys[527.528]: Waiting for ptp4l...

phc2sys[528.528]: phc offset 55341 s0 freq +0 delay 2729 phc2sys[529.528]: phc offset 54658 s1 freq -37690 delay 2725 phc2sys[530.528]: phc offset 888 s2 freq -36802 delay 2756

551

Deployment Guide phc2sys[531.528]: phc offset 1156 s2 freq -36268 delay 2766 phc2sys[532.528]: phc offset 411 s2 freq -36666 delay 2738 phc2sys[533.528]: phc offset -73 s2 freq -37026 delay 2764 phc2sys[534.528]: phc offset 39 s2 freq -36936 delay 2746 phc2sys[535.529]: phc offset 95 s2 freq -36869 delay 2733 phc2sys[536.529]: phc offset -359 s2 freq -37294 delay 2738 phc2sys[537.529]: phc offset -257 s2 freq -37300 delay 2753 phc2sys[538.529]: phc offset 119 s2 freq -37001 delay 2745 phc2sys[539.529]: phc offset 288 s2 freq -36796 delay 2766 phc2sys[540.529]: phc offset -149 s2 freq -37147 delay 2760 phc2sys[541.529]: phc offset -352 s2 freq -37395 delay 2771 phc2sys[542.529]: phc offset 166 s2 freq -36982 delay 2748 phc2sys[543.529]: phc offset 50 s2 freq -37048 delay 2756 phc2sys[544.530]: phc offset -31 s2 freq -37114 delay 2748 phc2sys[545.530]: phc offset -333 s2 freq -37426 delay 2747 phc2sys[546.530]: phc offset 194 s2 freq -36999 delay 2749

For ptp4l there is also a directive, summary_interval, to reduce the output and print only statistics, as normally it will print a message every second or so. For example, to reduce the output to every 1024 seconds, add the following line to the /etc/ptp4l.conf file: summary_interval 10

An example of the ptp4l output, with summary_interval 6, follows: ptp4l: [615.253] selected /dev/ptp0 as PTP clock ptp4l: [615.255] port 1: INITIALIZING to LISTENING on INITIALIZE ptp4l: [615.255] port 0: INITIALIZING to LISTENING on INITIALIZE ptp4l: [615.564] port 1: new foreign master 00a069.fffe.0b552d-1 ptp4l: [619.574] selected best master clock 00a069.fffe.0b552d

ptp4l: [619.574] port 1: LISTENING to UNCALIBRATED on RS_SLAVE ptp4l: [623.573] port 1: UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED ptp4l: [684.649] rms 669 max 3691 freq -29383 ± 3735 delay 9232 ± 122 ptp4l: [748.724] rms 253 max 588 freq -29787 ± 221 delay 9219 ± 158 ptp4l: [812.793] rms 287 max 673 freq -29802 ± 248 delay 9211 ± 183 ptp4l: [876.853] rms 226 max 534 freq -29795 ± 197 delay 9221 ± 138 ptp4l: [940.925] rms 250 max 562 freq -29801 ± 218 delay 9199 ± 148 ptp4l: [1004.988] rms 226 max 525 freq -29802 ± 196 delay 9228 ± 143 ptp4l: [1069.065] rms 300 max 646 freq -29802 ± 259 delay 9214 ± 176 ptp4l: [1133.125] rms 226 max 505 freq -29792 ± 197 delay 9225 ± 159 ptp4l: [1197.185] rms 244 max 688 freq -29790 ± 211 delay 9201 ± 162

To reduce the output from the phc2sys, it can be called it with the -u option as follows:

~]# phc2sys -u summary-updates

Where summary-updates is the number of clock updates to include in summary statistics. An example follows:

~]# phc2sys -s eth3 -w -m -u 60 phc2sys[700.948]: rms 1837 max 10123 freq -36474 ± 4752 delay 2752 ± 16 phc2sys[760.954]: rms 194 max 457 freq -37084 ± 174 delay 2753 ± 12 phc2sys[820.963]: rms 211 max 487 freq -37085 ± 185 delay 2750 ± 19 phc2sys[880.968]: rms 183 max 440 freq -37102 ± 164 delay 2734 ± 91

552

CHAPTER 23. CONFIGURING PTP USING PTP4L phc2sys[940.973]: rms 244 max 584 freq -37095 ± 216 delay 2748 ± 16 phc2sys[1000.979]: rms 220 max 573 freq -36666 ± 182 delay 2747 ± 43 phc2sys[1060.984]: rms 266 max 675 freq -36759 ± 234 delay 2753 ± 17

23.7. SERVING PTP TIME WITH NTP

The ntpd daemon can be configured to distribute the time from the system clock synchronized by ptp4l or phc2sys by using the LOCAL reference clock driver. To prevent ntpd from adjusting the system clock, the ntp.conf file must not specify any NTP servers. The following is a minimal example of

ntp.conf:

~]# cat /etc/ntp.conf

server 127.127.1.0

fudge 127.127.1.0 stratum 0

NOTE

When the DHCP client program, dhclient, receives a list of NTP servers from the DHCP server, it adds them to ntp.conf and restarts the service. To disable that feature, add

PEERNTP=no to /etc/sysconfig/network.

23.8. SERVING NTP TIME WITH PTP

NTP to PTP synchronization in the opposite direction is also possible. When ntpd is used to synchronize the system clock, ptp4l can be configured with the priority1 option (or other clock options included in the best master clock algorithm) to be the grandmaster clock and distribute the time from the system clock via PTP:

~]# cat /etc/ptp4l.conf

[global] priority1 127

[eth3]

# ptp4l -f /etc/ptp4l.conf

With hardware time stamping, phc2sys needs to be used to synchronize the PTP hardware clock to the system clock:

~]# phc2sys -c eth3 -s CLOCK_REALTIME -w

To prevent quick changes in the PTP clock's frequency, the synchronization to the system clock can be loosened by using smaller P (proportional) and I (integral) constants of the PI servo:

~]# phc2sys -c eth3 -s CLOCK_REALTIME -w -P 0.01 -I 0.0001

23.9. SYNCHRONIZE TO PTP OR NTP TIME USING TIMEMASTER

When there are multiple PTP domains available on the network, or fallback to NTP is needed, the

timemaster program can be used to synchronize the system clock to all available time sources. The

PTP time is provided by phc2sys and ptp4l via shared memory driver (SHM reference clocks to

553

Deployment Guide

chronyd or ntpd (depending on the NTP daemon that has been configured on the system). The NTP daemon can then compare all time sources, both PTP and NTP, and use the best sources to synchronize the system clock.

On start, timemaster reads a configuration file that specifies the NTP and PTP time sources, checks which network interfaces have their own or share a PTP hardware clock (PHC), generates configuration files for ptp4l and chronyd or ntpd, and starts the ptp4l, phc2sys, and chronyd or ntpd processes as needed. It will remove the generated configuration files on exit. It writes configuration files for

chronyd, ntpd, and ptp4l to /var/run/timemaster/.

23.9.1. Starting timemaster as a Service

To start timemaster as a service, issue the following command as root:

~]# service timemaster start

This will read the options in /etc/timemaster.conf. For more information on managing system services in Red Hat Enterprise Linux 6, see Managing Services with systemd.

23.9.2. Understanding the timemaster Configuration File

Red Hat Enterprise Linux provides a default /etc/timemaster.conf file with a number of sections containing default options. The section headings are enclosed in brackets.

To view the default configuration, issue a command as follows:

~]$ less /etc/timemaster.conf

# Configuration file for timemaster

#[ntp_server ntp-server.local]

#minpoll 4

#maxpoll 4

#[ptp_domain 0]

#interfaces eth0

[timemaster] ntp_program chronyd

[chrony.conf] include /etc/chrony.conf

[ntp.conf] includefile /etc/ntp.conf

[ptp4l.conf]

[chronyd] path /usr/sbin/chronyd options -u chrony

[ntpd] path /usr/sbin/ntpd options -u ntp:ntp -g

554

CHAPTER 23. CONFIGURING PTP USING PTP4L

[phc2sys] path /usr/sbin/phc2sys

[ptp4l] path /usr/sbin/ptp4l

Notice the section named as follows:

[ntp_server address]

This is an example of an NTP server section, “ntp-server.local” is an example of a host name for an NTP server on the local LAN. Add more sections as required using a host name or IP address as part of the section name. Note that the short polling values in that example section are not suitable for a public

server, see Chapter 22, Configuring NTP Using ntpd for an explanation of suitable minpoll and

maxpoll values.

Notice the section named as follows:

[ptp_domain number]

A “PTP domain” is a group of one or more PTP clocks that synchronize to each other. They may or may not be synchronized to clocks in another domain. Clocks that are configured with the same domain number make up the domain. This includes a PTP grandmaster clock. The domain number in each “PTP domain” section needs to correspond to one of the PTP domains configured on the network.

An instance of ptp4l is started for every interface which has its own PTP clock and hardware time stamping is enabled automatically. Interfaces that support hardware time stamping have a PTP clock

(PHC) attached, however it is possible for a group of interfaces on a NIC to share a PHC. A separate

ptp4l instance will be started for each group of interfaces sharing the same PHC and for each interface that supports only software time stamping. All ptp4l instances are configured to run as a slave. If an interface with hardware time stamping is specified in more than one PTP domain, then only the first ptp4l instance created will have hardware time stamping enabled.

Notice the section named as follows:

[timemaster]

The default timemaster configuration includes the system ntpd and chrony configuration

(/etc/ntp.conf or /etc/chronyd.conf) in order to include the configuration of access restrictions and authentication keys. That means any NTP servers specified there will be used with timemaster too.

The section headings are as follows:

[ntp_server ntp-server.local] — Specify polling intervals for this server. Create additional sections as required. Include the host name or IP address in the section heading.

[ptp_domain 0] — Specify interfaces that have PTP clocks configured for this domain.

Create additional sections with, the appropriate domain number, as required.

[timemaster] — Specify the NTP daemon to be used. Possible values are chronyd and

ntpd.

[chrony.conf] — Specify any additional settings to be copied to the configuration file generated for chronyd.

555

Deployment Guide

[ntp.conf] — Specify any additional settings to be copied to the configuration file generated for ntpd.

[ptp4l.conf] — Specify options to be copied to the configuration file generated for ptp4l.

[chronyd] — Specify any additional settings to be passed on the command line to chronyd.

[ntpd] — Specify any additional settings to be passed on the command line to ntpd.

[phc2sys] — Specify any additional settings to be passed on the command line to phc2sys.

[ptp4l] — Specify any additional settings to be passed on the command line to all instances of

ptp4l.

The section headings and there contents are explained in detail in the timemaster(8) manual page.

23.9.3. Configuring timemaster Options

Procedure 23.1. Editing the timemaster Configuration File

1. To change the default configuration, open the /etc/timemaster.conf file for editing as

root:

~]# vi /etc/timemaster.conf

2. For each NTP server you want to control using timemaster, create [ntp_server address] sections . Note that the short polling values in the example section are not suitable for a public

server, see Chapter 22, Configuring NTP Using ntpd for an explanation of suitable minpoll and

maxpoll values.

3. To add interfaces that should be used in a domain, edit the #[ptp_domain 0] section and add the interfaces. Create additional domains as required. For example:

[ptp_domain 0]

interfaces eth0

[ptp_domain 1]

interfaces eth1

4. If required to use ntpd as the NTP daemon on this system, change the default entry in the

[timemaster] section from chronyd to ntpd. See Configuring NTP Using the chrony Suite for information on the differences between ntpd and chronyd.

5. If using chronyd as the NTP server on this system, add any additional options below the default

include /etc/chrony.conf entry in the [chrony.conf] section. Edit the default

include entry if the path to /etc/chrony.conf is known to have changed.

6. If using ntpd as the NTP server on this system, add any additional options below the default

include /etc/ntp.conf entry in the [ntp.conf] section. Edit the default include entry if the path to /etc/ntp.conf is known to have changed.

7. In the [ptp4l.conf] section, add any options to be copied to the configuration file generated for ptp4l. This chapter documents common options and more information is available in the

ptp4l(8) manual page.

556

CHAPTER 23. CONFIGURING PTP USING PTP4L

8. In the [chronyd] section, add any command line options to be passed to chronyd when called by timemaster. See Configuring NTP Using the chrony Suite for information on using chronyd.

9. In the [ntpd] section, add any command line options to be passed to ntpd when called by

timemaster. See

Chapter 22, Configuring NTP Using ntpd

for information on using ntpd.

10. In the [phc2sys] section, add any command line options to be passed to phc2sys when called by timemaster. This chapter documents common options and more information is available in the phy2sys(8) manual page.

11. In the [ptp4l] section, add any command line options to be passed to ptp4l when called by

timemaster. This chapter documents common options and more information is available in the

ptp4l(8) manual page.

12. Save the configuration file and restart timemaster by issuing the following command as root:

~]# service timemaster restart

23.10. IMPROVING ACCURACY

Previously, test results indicated that disabling the tickless kernel capability could significantly improve the stability of the system clock, and thus improve the PTP synchronization accuracy (at the cost of increased power consumption). The kernel tickless mode can be disabled by adding nohz=off to the kernel boot option parameters. However, recent improvements applied to kernel-3.10.0-197.el7 have greatly improved the stability of the system clock and the difference in stability of the clock with and without nohz=off should be much smaller now for most users.

The ptp4l and phc2sys applications can be configured to use a new adaptive servo. The advantage over the PI servo is that it does not require configuration of the PI constants to perform well. To make use of this for ptp4l, add the following line to the /etc/ptp4l.conf file: clock_servo linreg

After making changes to /etc/ptp4l.conf, restart the ptp4l service from the command line by issuing the following command as root:

~]# service ptp4l restart

To make use of this for phc2sys, add the following line to the /etc/sysconfig/phc2sys file:

-E linreg

After making changes to /etc/sysconfig/phc2sys, restart the phc2sys service from the command line by issuing the following command as root:

~]# service phc2sys restart

23.11. ADDITIONAL RESOURCES

The following sources of information provide additional resources regarding PTP and the ptp4l tools.

557

Deployment Guide

23.11.1. Installed Documentation

ptp4l(8) man page — Describes ptp4l options including the format of the configuration file.

pmc(8) man page — Describes the PTP management client and its command options.

phc2sys(8) man page — Describes a tool for synchronizing the system clock to a PTP hardware clock (PHC).

23.11.2. Useful Websites

http://linuxptp.sourceforge.net/

The Linux PTP project.

http://www.nist.gov/el/isd/ieee/ieee1588.cfm

The IEEE 1588 Standard.

558

PART VII. MONITORING AND AUTOMATION

PART VII. MONITORING AND AUTOMATION

This part describes various tools that allow system administrators to monitor system performance, automate system tasks, and report bugs.

559

Deployment Guide

CHAPTER 24. SYSTEM MONITORING TOOLS

In order to configure the system, system administrators often need to determine the amount of free memory, how much free disk space is available, how the hard drive is partitioned, or what processes are running.

24.1. VIEWING SYSTEM PROCESSES

24.1.1. Using the ps Command

The ps command allows you to display information about running processes. It produces a static list, that is, a snapshot of what is running when you execute the command. If you want a constantly updated list of running processes, use the top command or the System Monitor application instead.

To list all processes that are currently running on the system including processes owned by other users, type the following at a shell prompt:

ps ax

For each listed process, the ps ax command displays the process ID (PID), the terminal that is associated with it (TTY), the current status (STAT), the cumulated CPU time (TIME), and the name of the executable file (COMMAND). For example:

~]$ ps ax

PID TTY STAT TIME COMMAND

1 ? Ss 0:01 /sbin/init

2 ? S 0:00 [kthreadd]

3 ? S 0:00 [migration/0]

4 ? S 0:00 [ksoftirqd/0]

5 ? S 0:00 [migration/0]

6 ? S 0:00 [watchdog/0]

[output truncated]

To display the owner alongside each process, use the following command:

ps aux

Apart from the information provided by the ps ax command, ps aux displays the effective user name of the process owner (USER), the percentage of the CPU (%CPU) and memory (%MEM) usage, the virtual memory size in kilobytes (VSZ), the non-swapped physical memory size in kilobytes ( RSS), and the time or date the process was started. For instance:

~]$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 1 0.0 0.1 19404 832 ? Ss Mar02 0:01

/sbin/init root 2 0.0 0.0 0 0 ? S Mar02 0:00

[kthreadd] root 3 0.0 0.0 0 0 ? S Mar02 0:00

[migration/0] root 4 0.0 0.0 0 0 ? S Mar02 0:00

[ksoftirqd/0] root 5 0.0 0.0 0 0 ? S Mar02 0:00

560

CHAPTER 24. SYSTEM MONITORING TOOLS

[migration/0] root 6 0.0 0.0 0 0 ? R Mar02 0:00

[watchdog/0]

[output truncated]

You can also use the ps command in a combination with grep to see if a particular process is running.

For example, to determine if Emacs is running, type:

~]$ ps ax | grep emacs

12056 pts/3 S+ 0:00 emacs

12060 pts/2 S+ 0:00 grep --color=auto emacs

For a complete list of available command-line options, see the ps(1) manual page.

24.1.2. Using the top Command

The top command displays a real-time list of processes that are running on the system. It also displays additional information about the system uptime, current CPU and memory usage, or total number of running processes, and allows you to perform actions such as sorting the list or killing a process.

To run the top command, type the following at a shell prompt: top

For each listed process, the top command displays the process ID (PID), the effective user name of the process owner (USER), the priority (PR), the nice value (NI), the amount of virtual memory the process uses (VIRT), the amount of non-swapped physical memory the process uses (RES), the amount of shared memory the process uses (SHR), the process status field S), the percentage of the CPU (%CPU) and memory (%MEM) usage, the accumulated CPU time (TIME+), and the name of the executable file

(COMMAND). For example:

~]$ top top - 02:19:11 up 4 days, 10:37, 5 users, load average: 0.07, 0.13, 0.09

Tasks: 160 total, 1 running, 159 sleeping, 0 stopped, 0 zombie

Cpu(s): 10.7%us, 1.0%sy, 0.0%ni, 88.3%id, 0.0%wa, 0.0%hi, 0.0%si,

0.0%st

Mem: 760752k total, 644360k used, 116392k free, 3988k buffers

Swap: 1540088k total, 76648k used, 1463440k free, 196832k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

14401 jhradile 20 0 313m 10m 5732 S 5.6 1.4 6:27.29 gnome-systemmo

1764 root 20 0 133m 23m 4756 S 5.3 3.2 6:32.66 Xorg

13865 jhradile 20 0 1625m 177m 6628 S 0.7 23.8 0:57.26 java

20 root 20 0 0 0 0 S 0.3 0.0 4:44.39 ata/0

2085 root 20 0 40396 348 276 S 0.3 0.0 1:57.13 udisks-daemon

1 root 20 0 19404 832 604 S 0.0 0.1 0:01.21 init

2 root 20 0 0 0 0 S 0.0 0.0 0:00.01 kthreadd

3 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0

4 root 20 0 0 0 0 S 0.0 0.0 0:00.02 ksoftirqd/0

5 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0

6 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0

7 root 20 0 0 0 0 S 0.0 0.0 0:01.00 events/0

8 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuset

561

Deployment Guide

9 root 20 0 0 0 0 S 0.0 0.0 0:00.00 khelper

10 root 20 0 0 0 0 S 0.0 0.0 0:00.00 netns

11 root 20 0 0 0 0 S 0.0 0.0 0:00.00 async/mgr

12 root 20 0 0 0 0 S 0.0 0.0 0:00.00 pm

[output truncated]

Table 24.1, “Interactive top commands”

contains useful interactive commands that you can use with top.

For more information, see the top(1) manual page.

Table 24.1. Interactive top commands

Command Description

Immediately refreshes the display.

Enter , Space h , ?

Displays a help screen.

Kills a process. You are prompted for the process ID and the signal to send to it.

k n u

Changes the number of displayed processes. You are prompted to enter the number.

Sorts the list by user.

M

P

Sorts the list by memory usage.

Sorts the list by CPU usage.

q Terminates the utility and returns to the shell prompt.

24.1.3. Using the System Monitor Tool

The Processes tab of the System Monitor tool allows you to view, search for, change the priority of, and kill processes from the graphical user interface. To install the tool, issue the following command as

root:

~]# yum install gnome-system-monitor

To start the System Monitor tool, either select ApplicationsSystem ToolsSystem Monitor from the panel, or type gnome-system-monitor at a shell prompt. Then click the Processes tab to view the list of running processes.

562

CHAPTER 24. SYSTEM MONITORING TOOLS

Figure 24.1. System Monitor — Processes

For each listed process, the System Monitor tool displays its name (Process Name), current status

(Status), percentage of the CPU usage (% CPU), nice value (Nice), process ID (ID), memory usage

(Memory), the channel the process is waiting in (Waiting Channel), and additional details about the session (Session). To sort the information by a specific column in ascending order, click the name of that column. Click the name of the column again to toggle the sort between ascending and descending order.

By default, the System Monitor tool displays a list of processes that are owned by the current user.

Selecting various options from the View menu allows you to: view only active processes, view all processes, view your processes, view process dependencies, view a memory map of a selected process, view the files opened by a selected process, and refresh the list of processes.

Additionally, various options in the Edit menu allows you to:

563

Deployment Guide stop a process, continue running a stopped process, end a process, kill a process, change the priority of a selected process, and edit the System Monitor preferences, such as the refresh interval for the list of processes, or what information to show.

You can also end a process by selecting it from the list and clicking the End Process button.

24.2. VIEWING MEMORY USAGE

24.2.1. Using the free Command

The free command allows you to display the amount of free and used memory on the system. To do so, type the following at a shell prompt: free

The free command provides information about both the physical memory (Mem) and swap space

(Swap). It displays the total amount of memory (total), as well as the amount of memory that is in use

(used), free (free), shared (shared), in kernel buffers ( buffers), and cached (cached). For example:

~]$ free

total used free shared buffers cached

Mem: 760752 661332 99420 0 6476

317200

-/+ buffers/cache: 337656 423096

Swap: 1540088 283652 1256436

By default, free displays the values in kilobytes. To display the values in megabytes, supply the -m command-line option:

free -m

For instance:

~]$ free -m

total used free shared buffers cached

Mem: 742 646 96 0 6

309

-/+ buffers/cache: 330 412

Swap: 1503 276 1227

For a complete list of available command-line options, see the free(1) manual page.

564

CHAPTER 24. SYSTEM MONITORING TOOLS

24.2.2. Using the System Monitor Tool

The Resources tab of the System Monitor tool allows you to view the amount of free and used memory on the system.

To start the System Monitor tool, either select ApplicationsSystem ToolsSystem Monitor from the panel, or type gnome-system-monitor at a shell prompt. Then click the Resources tab to view the system's memory usage.

Figure 24.2. System Monitor — Resources

In the Memory and Swap History section, the System Monitor tool displays a graphical representation of the memory and swap usage history, as well as the total amount of the physical memory (Memory) and swap space (Swap) and how much of it is in use.

24.3. VIEWING CPU USAGE

24.3.1. Using the System Monitor Tool

The Resources tab of the System Monitor tool allows you to view the current CPU usage on the system.

To start the System Monitor tool, either select ApplicationsSystem ToolsSystem Monitor from the panel, or type gnome-system-monitor at a shell prompt. Then click the Resources tab to view the system's CPU usage.

565

Deployment Guide

Figure 24.3. System Monitor — Resources

In the CPU History section, the System Monitor tool displays a graphical representation of the CPU usage history and shows the percentage of how much CPU is currently in use.

24.4. VIEWING BLOCK DEVICES AND FILE SYSTEMS

24.4.1. Using the lsblk Command

The lsblk command allows you to display a list of available block devices. To do so, type the following at a shell prompt: lsblk

For each listed block device, the lsblk command displays the device name (NAME), major and minor device number (MAJ:MIN), if the device is removable (RM), what is its size (SIZE), if the device is readonly (RO), what type is it (TYPE), and where the device is mounted (MOUNTPOINT). For example:

~]$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT sr0 11:0 1 1024M 0 rom vda 252:0 0 20G 0 rom

|-vda1 252:1 0 500M 0 part /boot

566

CHAPTER 24. SYSTEM MONITORING TOOLS

`-vda2 252:2 0 19.5G 0 part

|-vg_kvm-lv_root (dm-0) 253:0 0 18G 0 lvm /

`-vg_kvm-lv_swap (dm-1) 253:1 0 1.5G 0 lvm [SWAP]

By default, lsblk lists block devices in a tree-like format. To display the information as an ordinary list, add the -l command-line option:

lsblk -l

For instance:

~]$ lsblk -l

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT sr0 11:0 1 1024M 0 rom vda 252:0 0 20G 0 rom vda1 252:1 0 500M 0 part /boot vda2 252:2 0 19.5G 0 part vg_kvm-lv_root (dm-0) 253:0 0 18G 0 lvm / vg_kvm-lv_swap (dm-1) 253:1 0 1.5G 0 lvm [SWAP]

For a complete list of available command-line options, see the lsblk(8) manual page.

24.4.2. Using the blkid Command

The blkid command allows you to display information about available block devices. To do so, type the following at a shell prompt as root: blkid

For each listed block device, the blkid command displays available attributes such as its universally unique identifier (UUID), file system type (TYPE), or volume label (LABEL). For example:

~]# blkid

/dev/vda1: UUID="7fa9c421-0054-4555-b0ca-b470a97a3d84" TYPE="ext4"

/dev/vda2: UUID="7IvYzk-TnnK-oPjf-ipdD-cofz-DXaJ-gPdgBW"

TYPE="LVM2_member"

/dev/mapper/vg_kvm-lv_root: UUID="a07b967c-71a0-4925-ab02-aebcad2ae824"

TYPE="ext4"

/dev/mapper/vg_kvm-lv_swap: UUID="d7ef54ca-9c41-4de4-ac1b-4193b0c1ddb6"

TYPE="swap"

By default, the blkid command lists all available block devices. To display information about a particular device only, specify the device name on the command line:

blkid device_name

For instance, to display information about /dev/vda1, type:

~]# blkid /dev/vda1

/dev/vda1: UUID="7fa9c421-0054-4555-b0ca-b470a97a3d84" TYPE="ext4"

You can also use the above command with the -p and -o udev command-line options to obtain more detailed information. Note that root privileges are required to run this command:

567

Deployment Guide

blkid -po udev device_name

For example:

~]# blkid -po udev /dev/vda1

ID_FS_UUID=7fa9c421-0054-4555-b0ca-b470a97a3d84

ID_FS_UUID_ENC=7fa9c421-0054-4555-b0ca-b470a97a3d84

ID_FS_VERSION=1.0

ID_FS_TYPE=ext4

ID_FS_USAGE=filesystem

For a complete list of available command-line options, see the blkid(8) manual page.

24.4.3. Using the findmnt Command

The findmnt command allows you to display a list of currently mounted file systems. To do so, type the following at a shell prompt: findmnt

For each listed file system, the findmnt command displays the target mount point (TARGET), source device (SOURCE), file system type (FSTYPE), and relevant mount options (OPTIONS). For example:

~]$ findmnt

TARGET SOURCE FSTYPE OPTIONS

/ /dev/mapper/vg_kvm-lv_root ext4 rw,relatime,sec

|-/proc /proc proc rw,relatime

| |-/proc/bus/usb /proc/bus/usb usbfs rw,relatime

| `-/proc/sys/fs/binfmt_misc binfmt_m rw,relatime

|-/sys /sys sysfs rw,relatime,sec

|-/selinux selinuxf rw,relatime

|-/dev udev devtmpfs rw,relatime,sec

| `-/dev udev devtmpfs rw,relatime,sec

| |-/dev/pts devpts devpts rw,relatime,sec

| `-/dev/shm tmpfs tmpfs rw,relatime,sec

|-/boot /dev/vda1 ext4 rw,relatime,sec

|-/var/lib/nfs/rpc_pipefs sunrpc rpc_pipe rw,relatime

|-/misc /etc/auto.misc autofs rw,relatime,fd=

`-/net -hosts autofs rw,relatime,fd=

[output truncated]

568

CHAPTER 24. SYSTEM MONITORING TOOLS

By default, findmnt lists file systems in a tree-like format. To display the information as an ordinary list, add the -l command-line option:

findmnt -l

For instance:

~]$ findmnt -l

TARGET SOURCE FSTYPE OPTIONS

/proc /proc proc rw,relatime

/sys /sys sysfs rw,relatime,seclabe

/dev udev devtmpfs rw,relatime,seclabe

/dev/pts devpts devpts rw,relatime,seclabe

/dev/shm tmpfs tmpfs rw,relatime,seclabe

/ /dev/mapper/vg_kvm-lv_root ext4 rw,relatime,seclabe

/selinux selinuxf rw,relatime

/dev udev devtmpfs rw,relatime,seclabe

/proc/bus/usb /proc/bus/usb usbfs rw,relatime

/boot /dev/vda1 ext4 rw,relatime,seclabe

/proc/sys/fs/binfmt_misc binfmt_m rw,relatime

/var/lib/nfs/rpc_pipefs sunrpc rpc_pipe rw,relatime

/misc /etc/auto.misc autofs rw,relatime,fd=7,pg

/net -hosts autofs rw,relatime,fd=13,p

[output truncated]

You can also choose to list only file systems of a particular type. To do so, add the -t command-line option followed by a file system type:

findmnt -t type

For example, to list all ext4 file systems, type:

~]$ findmnt -t ext4

TARGET SOURCE FSTYPE OPTIONS

/ /dev/mapper/vg_kvm-lv_root ext4 rw,relatime,seclabel,barrier=1,data=ord

/boot /dev/vda1 ext4 rw,relatime,seclabel,barrier=1,data=ord

For a complete list of available command-line options, see the findmnt(8) manual page.

24.4.4. Using the df Command

The df command allows you to display a detailed report on the system's disk space usage. To do so, type the following at a shell prompt:

569

Deployment Guide df

For each listed file system, the df command displays its name (Filesystem), size (1K-blocks or

Size), how much space is used (Used), how much space is still available (Available), the percentage of space usage (Use%), and where is the file system mounted (Mounted on). For example:

~]$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/vg_kvm-lv_root 18618236 4357360 13315112 25% / tmpfs 380376 288 380088 1% /dev/shm

/dev/vda1 495844 77029 393215 17% /boot

By default, the df command shows the partition size in 1 kilobyte blocks and the amount of used and available disk space in kilobytes. To view the information in megabytes and gigabytes, supply the -h command-line option, which causes df to display the values in a human-readable format:

df -h

For instance:

~]$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/vg_kvm-lv_root 18G 4.2G 13G 25% / tmpfs 372M 288K 372M 1% /dev/shm

/dev/vda1 485M 76M 384M 17% /boot

For a complete list of available command-line options, see the df(1) manual page.

24.4.5. Using the du Command

The du command allows you to displays the amount of space that is being used by files in a directory.

To display the disk usage for each of the subdirectories in the current working directory, run the command with no additional command-line options: du

For example:

~]$ du

14972 ./Downloads

4 ./.gnome2

4 ./.mozilla/extensions

4 ./.mozilla/plugins

12 ./.mozilla

15004 .

By default, the du command displays the disk usage in kilobytes. To view the information in megabytes and gigabytes, supply the -h command-line option, which causes the utility to display the values in a human-readable format:

du -h

570

CHAPTER 24. SYSTEM MONITORING TOOLS

For instance:

~]$ du -h

15M ./Downloads

4.0K ./.gnome2

4.0K ./.mozilla/extensions

4.0K ./.mozilla/plugins

12K ./.mozilla

15M .

At the end of the list, the du command always shows the grand total for the current directory. To display only this information, supply the -s command-line option:

du -sh

For example:

~]$ du -sh

15M .

For a complete list of available command-line options, see the du(1) manual page.

24.4.6. Using the System Monitor Tool

The File Systems tab of the System Monitor tool allows you to view file systems and disk space usage in the graphical user interface.

To start the System Monitor tool, either select ApplicationsSystem ToolsSystem Monitor from the panel, or type gnome-system-monitor at a shell prompt. Then click the File Systems tab to view a list of file systems.

Figure 24.4. System Monitor — File Systems

For each listed file system, the System Monitor tool displays the source device (Device), target mount point (Directory), and file system type (Type), as well as its size ( Total) and how much space is free

(Free), available (Available), and used (Used).

24.4.7. Monitoring Files and Directories with gamin

571

Deployment Guide

Starting with Red Hat Enterprise Linux 6.8, the GLib system library uses gamin for monitoring of files and directories, and detection of their modifications on NFS file systems. By default, gamin uses polling for

NFS file systems instead of inotify. Changes on other file systems are monitored by the inotify monitor that is implemented in GLib directly.

As a subset of the File Alteration Monitor (FAM) system, gamin re-implements the FAM specification with the inotify Linux kernel subsystem. It is a GNOME project, but without any GNOME dependencies. Both glib2 and gamin packages are installed by default.

By default, gamin works without the need of any configuration and it reverts to using polling for all paths matching /mnt/* or /media/* on Linux. Users can override or extend these settings by modifying the content of one of the following configuration files:

/etc/gamin/gaminrc

$HOME/.gaminrc

/etc/gamin/mandatory_gaminrc

The configuration file accepts only the following commands:

Commands accepted by the configuration file notify

To express that kernel monitoring should be used for matching paths.

poll

To express that polling should be used for matching paths.

fsset

To control what notification method is used on a filesystem type.

An example of such configuration file can be seen here:

# configuration for gamin

# Can be used to override the default behaviour.

# notify filepath(s) : indicate to use kernel notification

# poll filepath(s) : indicate to use polling instead

# fsset fsname method poll_limit : indicate what method of notification for the file system

# kernel - use the kernel for notification

# poll - use polling for notification

# none - don't use any notification

# the poll_limit is the number of seconds

# that must pass before a resource is polled again.

# It is optional, and if it is not present the previous

# value will be used or the default.

notify /mnt/local* /mnt/pictures* # use kernel notification on these paths

572

CHAPTER 24. SYSTEM MONITORING TOOLS poll /temp/* # use poll notification on these paths fsset nfs poll 10 # use polling on nfs mounts and poll once every 10 seconds

The three configuration files are loaded in this order:

1. /etc/gamin/gaminrc

2. ~/.gaminrc

3. /etc/gamin/mandatory_gaminrc

The /etc/gamin/mandatory_gaminrc configuration file allows the system administrator to override any potentially dangerous preferences set by the user. When checking a path to guess whether polling or kernel notification should be used, gamin checks first the user-provided rules in their declaration order within the configuration file and then check the predefined rules. This way the first declaration for

/mnt/local* in the example override the default one for /mnt/*.

If gamin is not configured to use the poll notifications on a particular path, it decides based on the file system the path is located on.

24.5. VIEWING HARDWARE INFORMATION

24.5.1. Using the lspci Command

The lspci command allows you to display information about PCI buses and devices that are attached to them. To list all PCI devices that are in the system, type the following at a shell prompt: lspci

This displays a simple list of devices, for example:

~]$ lspci

00:00.0 Host bridge: Intel Corporation 82X38/X48 Express DRAM Controller

00:01.0 PCI bridge: Intel Corporation 82X38/X48 Express Host-Primary PCI

Express Bridge

00:1a.0 USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI

Controller #4 (rev 02)

00:1a.1 USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI

Controller #5 (rev 02)

00:1a.2 USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI

Controller #6 (rev 02)

[output truncated]

You can also use the -v command-line option to display more verbose output, or -vv for very verbose output:

lspci -v|-vv

For instance, to determine the manufacturer, model, and memory size of a system's video card, type:

~]$ lspci -v

[output truncated]

573

Deployment Guide

01:00.0 VGA compatible controller: nVidia Corporation G84 [Quadro FX 370]

(rev a1) (prog-if 00 [VGA controller])

Subsystem: nVidia Corporation Device 0491

Physical Slot: 2

Flags: bus master, fast devsel, latency 0, IRQ 16

Memory at f2000000 (32-bit, non-prefetchable) [size=16M]

Memory at e0000000 (64-bit, prefetchable) [size=256M]

Memory at f0000000 (64-bit, non-prefetchable) [size=32M]

I/O ports at 1100 [size=128]

Expansion ROM at <unassigned> [disabled]

Capabilities: <access denied>

Kernel driver in use: nouveau

Kernel modules: nouveau, nvidiafb

[output truncated]

For a complete list of available command-line options, see the lspci(8) manual page.

24.5.2. Using the lsusb Command

The lsusb command allows you to display information about USB buses and devices that are attached to them. To list all USB devices that are in the system, type the following at a shell prompt: lsusb

This displays a simple list of devices, for example:

~]$ lsusb

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

[output truncated]

Bus 001 Device 002: ID 0bda:0151 Realtek Semiconductor Corp. Mass Storage

Device (Multicard Reader)

Bus 008 Device 002: ID 03f0:2c24 Hewlett-Packard Logitech M-UAL-96 Mouse

Bus 008 Device 003: ID 04b3:3025 IBM Corp.

You can also use the -v command-line option to display more verbose output:

lsusb -v

For instance:

~]$ lsusb -v

[output truncated]

Bus 008 Device 002: ID 03f0:2c24 Hewlett-Packard Logitech M-UAL-96 Mouse

Device Descriptor:

bLength 18

bDescriptorType 1

bcdUSB 2.00

bDeviceClass 0 (Defined at Interface level)

bDeviceSubClass 0

bDeviceProtocol 0

574

CHAPTER 24. SYSTEM MONITORING TOOLS

bMaxPacketSize0 8

idVendor 0x03f0 Hewlett-Packard

idProduct 0x2c24 Logitech M-UAL-96 Mouse

bcdDevice 31.00

iManufacturer 1

iProduct 2

iSerial 0

bNumConfigurations 1

Configuration Descriptor:

bLength 9

bDescriptorType 2

[output truncated]

For a complete list of available command-line options, see the lsusb(8) manual page.

24.5.3. Using the lspcmcia Command

The lspcmcia command allows you to list all PCMCIA devices that are present in the system. To do so, type the following at a shell prompt: lspcmcia

For example:

~]$ lspcmcia

Socket 0 Bridge: [yenta_cardbus] (bus ID: 0000:15:00.0)

You can also use the -v command-line option to display more verbose information, or -vv to increase the verbosity level even further:

lspcmcia -v|-vv

For instance:

~]$ lspcmcia -v

Socket 0 Bridge: [yenta_cardbus] (bus ID: 0000:15:00.0)

Configuration: state: on ready: unknown

For a complete list of available command-line options, see the pccardctl(8) manual page.

24.5.4. Using the lscpu Command

The lscpu command allows you to list information about CPUs that are present in the system, including the number of CPUs, their architecture, vendor, family, model, CPU caches, etc. To do so, type the following at a shell prompt: lscpu

For example:

~]$ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

575

Deployment Guide

Byte Order: Little Endian

CPU(s): 4

On-line CPU(s) list: 0-3

Thread(s) per core: 1

Core(s) per socket: 4

Socket(s): 1

NUMA node(s): 1

Vendor ID: GenuineIntel

CPU family: 6

Model: 23

Stepping: 7

CPU MHz: 1998.000

BogoMIPS: 4999.98

Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 3072K

NUMA node0 CPU(s): 0-3

For a complete list of available command-line options, see the lscpu(1) manual page.

24.6. MONITORING PERFORMANCE WITH NET-SNMP

Red Hat Enterprise Linux 6 includes the Net-SNMP software suite, which includes a flexible and extensible Simple Network Management Protocol (SNMP) agent. This agent and its associated utilities can be used to provide performance data from a large number of systems to a variety of tools which support polling over the SNMP protocol.

This section provides information on configuring the Net-SNMP agent to securely provide performance data over the network, retrieving the data using the SNMP protocol, and extending the SNMP agent to provide custom performance metrics.

24.6.1. Installing Net-SNMP

The Net-SNMP software suite is available as a set of RPM packages in the Red Hat Enterprise Linux

software distribution. Table 24.2, “Available Net-SNMP packages”

summarizes each of the packages and their contents.

Table 24.2. Available Net-SNMP packages

Package Provides net-snmp net-snmp-libs net-snmp-utils

The SNMP Agent Daemon and documentation. This package is required for exporting performance data.

The netsnmp library and the bundled management information bases (MIBs).

This package is required for exporting performance data.

SNMP clients such as snmpget and snmpwalk . This package is required in order to query a system's performance data over SNMP.

net-snmp-perl The mib2c utility and the NetSNMP Perl module.

576

CHAPTER 24. SYSTEM MONITORING TOOLS

Package net-snmp-python

Provides

An SNMP client library for Python.

To install any of these packages, use the yum command in the following form:

yum install package

For example, to install the SNMP Agent Daemon and SNMP clients used in the rest of this section, type the following at a shell prompt:

~]# yum install net-snmp net-snmp-libs net-snmp-utils

Note that you must have superuser privileges (that is, you must be logged in as root) to run this command. For more information on how to install new packages in Red Hat Enterprise Linux, see

Section 8.2.4, “Installing Packages”

.

24.6.2. Running the Net-SNMP Daemon

The net-snmp package contains snmpd, the SNMP Agent Daemon. This section provides information on how to start, stop, and restart the snmpd service, and shows how to enable it in a particular runlevel. For more information on the concept of runlevels and how to manage system services in Red Hat

Enterprise Linux in general, see Chapter 12, Services and Daemons .

24.6.2.1. Starting the Service

To run the snmpd service in the current session, type the following at a shell prompt as root:

service snmpd start

To configure the service to be automatically started at boot time, use the following command:

chkconfig snmpd on

This will enable the service in runlevel 2, 3, 4, and 5. Alternatively, you can use the Service

Configuration utility as described in

Section 12.2.1.1, “Enabling and Disabling a Service”

.

24.6.2.2. Stopping the Service

To stop the running snmpd service, type the following at a shell prompt as root:

service snmpd stop

To disable starting the service at boot time, use the following command:

chkconfig snmpd off

This will disable the service in all runlevels. Alternatively, you can use the Service Configuration utility as described in

Section 12.2.1.1, “Enabling and Disabling a Service”

.

577

Deployment Guide

24.6.2.3. Restarting the Service

To restart the running snmpd service, type the following at a shell prompt:

service snmpd restart

This will stop the service and start it again in quick succession. To only reload the configuration without stopping the service, run the following command instead:

service snmpd reload

This will cause the running snmpd service to reload the configuration.

Alternatively, you can use the Service Configuration utility as described in Section 12.2.1.2, “Starting,

Restarting, and Stopping a Service” .

24.6.3. Configuring Net-SNMP

To change the Net-SNMP Agent Daemon configuration, edit the /etc/snmp/snmpd.conf configuration file. The default snmpd.conf file shipped with Red Hat Enterprise Linux 6 is heavily commented and serves as a good starting point for agent configuration.

This section focuses on two common tasks: setting system information and configuring authentication.

For more information about available configuration directives, see the snmpd.conf(5) manual page.

Additionally, there is a utility in the net-snmp package named snmpconf which can be used to interactively generate a valid agent configuration.

Note that the net-snmp-utils package must be installed in order to use the snmpwalk utility described in this section.

NOTE

For any changes to the configuration file to take effect, force the snmpd service to re-read the configuration by running the following command as root:

service snmpd reload

24.6.3.1. Setting System Information

Net-SNMP provides some rudimentary system information via the system tree. For example, the following snmpwalk command shows the system tree with a default agent configuration.

~]# snmpwalk -v2c -c public localhost system

SNMPv2-MIB::sysDescr.0 = STRING: Linux localhost.localdomain 2.6.32-

122.el6.x86_64 #1 SMP Wed Mar 9 23:54:34 EST 2011 x86_64

SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10

DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (99554) 0:16:35.54

SNMPv2-MIB::sysContact.0 = STRING: Root <root@localhost> (configure

/etc/snmp/snmp.local.conf)

SNMPv2-MIB::sysName.0 = STRING: localhost.localdomain

SNMPv2-MIB::sysLocation.0 = STRING: Unknown (edit /etc/snmp/snmpd.conf)

578

CHAPTER 24. SYSTEM MONITORING TOOLS

By default, the sysName object is set to the host name. The sysLocation and sysContact objects can be configured in the /etc/snmp/snmpd.conf file by changing the value of the syslocation and

syscontact directives, for example: syslocation Datacenter, Row 3, Rack 2 syscontact UNIX Admin <[email protected]>

After making changes to the configuration file, reload the configuration and test it by running the

snmpwalk command again:

~]# service snmpd reload

Reloading snmpd: [ OK ]

~]# snmpwalk -v2c -c public localhost system

SNMPv2-MIB::sysDescr.0 = STRING: Linux localhost.localdomain 2.6.32-

122.el6.x86_64 #1 SMP Wed Mar 9 23:54:34 EST 2011 x86_64

SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10

DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (158357) 0:26:23.57

SNMPv2-MIB::sysContact.0 = STRING: UNIX Admin <[email protected]>

SNMPv2-MIB::sysName.0 = STRING: localhost.localdomain

SNMPv2-MIB::sysLocation.0 = STRING: Datacenter, Row 3, Rack 2

24.6.3.2. Configuring Authentication

The Net-SNMP Agent Daemon supports all three versions of the SNMP protocol. The first two versions

(1 and 2c) provide for simple authentication using a community string. This string is a shared secret between the agent and any client utilities. The string is passed in clear text over the network however and is not considered secure. Version 3 of the SNMP protocol supports user authentication and message encryption using a variety of protocols. The Net-SNMP agent also supports tunneling over SSH, TLS authentication with X.509 certificates, and Kerberos authentication.

Configuring SNMP Version 2c Community

To configure an SNMP version 2c community, use either the rocommunity or rwcommunity directive in the /etc/snmp/snmpd.conf configuration file. The format of the directives is the following:

directive community [source [OID]]

… where community is the community string to use, source is an IP address or subnet, and OID is the

SNMP tree to provide access to. For example, the following directive provides read-only access to the

system tree to a client using the community string “redhat” on the local machine: rocommunity redhat 127.0.0.1 .1.3.6.1.2.1.1

To test the configuration, use the snmpwalk command with the -v and -c options.

~]# snmpwalk -v2c -c redhat localhost system

SNMPv2-MIB::sysDescr.0 = STRING: Linux localhost.localdomain 2.6.32-

122.el6.x86_64 #1 SMP Wed Mar 9 23:54:34 EST 2011 x86_64

SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10

DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (158357) 0:26:23.57

SNMPv2-MIB::sysContact.0 = STRING: UNIX Admin <[email protected]>

SNMPv2-MIB::sysName.0 = STRING: localhost.localdomain

SNMPv2-MIB::sysLocation.0 = STRING: Datacenter, Row 3, Rack 2

579

Deployment Guide

Configuring SNMP Version 3 User

To configure an SNMP version 3 user, use the net-snmp-create-v3-user command. This command adds entries to the /var/lib/net-snmp/snmpd.conf and /etc/snmp/snmpd.conf files which create the user and grant access to the user. Note that the net-snmp-create-v3-user command may only be run when the agent is not running. The following example creates the “admin” user with the password “redhatsnmp”:

~]# service snmpd stop

Stopping snmpd: [ OK ]

~]# net-snmp-create-v3-user

Enter a SNMPv3 user name to create: admin

Enter authentication pass-phrase: redhatsnmp

Enter encryption pass-phrase:

[press return to reuse the authentication pass-phrase] adding the following line to /var/lib/net-snmp/snmpd.conf:

createUser admin MD5 "redhatsnmp" DES adding the following line to /etc/snmp/snmpd.conf:

rwuser admin

~]# service snmpd start

Starting snmpd: [ OK ]

The rwuser directive (or rouser when the -ro command-line option is supplied) that net-snmp-

create-v3-user adds to /etc/snmp/snmpd.conf has a similar format to the rwcommunity and

rocommunity directives:

directive user [noauth|auth|priv] [OID]

… where user is a user name and OID is the SNMP tree to provide access to. By default, the Net-SNMP

Agent Daemon allows only authenticated requests (the auth option). The noauth option allows you to permit unauthenticated requests, and the priv option enforces the use of encryption. The authpriv option specifies that requests must be authenticated and replies should be encrypted.

For example, the following line grants the user “admin” read-write access to the entire tree: rwuser admin authpriv .1

To test the configuration, create a .snmp directory in your user's home directory and a configuration file named snmp.conf in that directory (~/.snmp/snmp.conf) with the following lines: defVersion 3 defSecurityLevel authPriv defSecurityName admin defPassphrase redhatsnmp

The snmpwalk command will now use these authentication settings when querying the agent:

~]$ snmpwalk -v3 localhost system

SNMPv2-MIB::sysDescr.0 = STRING: Linux localhost.localdomain 2.6.32-

122.el6.x86_64 #1 SMP Wed Mar 9 23:54:34 EST 2011 x86_64

[output truncated]

580

CHAPTER 24. SYSTEM MONITORING TOOLS

24.6.4. Retrieving Performance Data over SNMP

The Net-SNMP Agent in Red Hat Enterprise Linux provides a wide variety of performance information over the SNMP protocol. In addition, the agent can be queried for a listing of the installed RPM packages on the system, a listing of currently running processes on the system, or the network configuration of the system.

This section provides an overview of OIDs related to performance tuning available over SNMP. It assumes that the net-snmp-utils package is installed and that the user is granted access to the SNMP tree as described in

Section 24.6.3.2, “Configuring Authentication”

.

24.6.4.1. Hardware Configuration

The Host Resources MIB included with Net-SNMP presents information about the current hardware

and software configuration of a host to a client utility. Table 24.3, “Available OIDs” summarizes the

different OIDs available under that MIB.

Table 24.3. Available OIDs

OID Description

HOST-RESOURCES-MIB::hrSystem Contains general system information such as uptime, number of users, and number of running processes.

HOST-RESOURCES-MIB::hrStorage

HOST-RESOURCES-MIB::hrDevices

HOST-RESOURCES-MIB::hrSWRun

HOST-RESOURCES-MIB::hrSWRunPerf

HOST-RESOURCES-MIB::hrSWInstalled

Contains data on memory and file system usage.

Contains a listing of all processors, network devices, and file systems.

Contains a listing of all running processes.

Contains memory and CPU statistics on the process table from HOST-RESOURCES-MIB::hrSWRun.

Contains a listing of the RPM database.

There are also a number of SNMP tables available in the Host Resources MIB which can be used to retrieve a summary of the available information. The following example displays HOST-RESOURCES-

MIB::hrFSTable:

~]$ snmptable -Cb localhost HOST-RESOURCES-MIB::hrFSTable

SNMP table: HOST-RESOURCES-MIB::hrFSTable

Index MountPoint RemoteMountPoint Type

Access Bootable StorageIndex LastFullBackupDate LastPartialBackupDate

1 "/" "" HOST-RESOURCES-TYPES::hrFSLinuxExt2

readWrite true 31 0-1-1,0:0:0.0 0-1-1,0:0:0.0

5 "/dev/shm" "" HOST-RESOURCES-TYPES::hrFSOther

readWrite false 35 0-1-1,0:0:0.0 0-1-1,0:0:0.0

6 "/boot" "" HOST-RESOURCES-TYPES::hrFSLinuxExt2

readWrite false 36 0-1-1,0:0:0.0 0-1-1,0:0:0.0

581

Deployment Guide

For more information about HOST-RESOURCES-MIB, see the /usr/share/snmp/mibs/HOST-

RESOURCES-MIB.txt file.

24.6.4.2. CPU and Memory Information

Most system performance data is available in the UCD SNMP MIB. The systemStats OID provides a number of counters around processor usage:

~]$ snmpwalk localhost UCD-SNMP-MIB::systemStats

UCD-SNMP-MIB::ssIndex.0 = INTEGER: 1

UCD-SNMP-MIB::ssErrorName.0 = STRING: systemStats

UCD-SNMP-MIB::ssSwapIn.0 = INTEGER: 0 kB

UCD-SNMP-MIB::ssSwapOut.0 = INTEGER: 0 kB

UCD-SNMP-MIB::ssIOSent.0 = INTEGER: 0 blocks/s

UCD-SNMP-MIB::ssIOReceive.0 = INTEGER: 0 blocks/s

UCD-SNMP-MIB::ssSysInterrupts.0 = INTEGER: 29 interrupts/s

UCD-SNMP-MIB::ssSysContext.0 = INTEGER: 18 switches/s

UCD-SNMP-MIB::ssCpuUser.0 = INTEGER: 0

UCD-SNMP-MIB::ssCpuSystem.0 = INTEGER: 0

UCD-SNMP-MIB::ssCpuIdle.0 = INTEGER: 99

UCD-SNMP-MIB::ssCpuRawUser.0 = Counter32: 2278

UCD-SNMP-MIB::ssCpuRawNice.0 = Counter32: 1395

UCD-SNMP-MIB::ssCpuRawSystem.0 = Counter32: 6826

UCD-SNMP-MIB::ssCpuRawIdle.0 = Counter32: 3383736

UCD-SNMP-MIB::ssCpuRawWait.0 = Counter32: 7629

UCD-SNMP-MIB::ssCpuRawKernel.0 = Counter32: 0

UCD-SNMP-MIB::ssCpuRawInterrupt.0 = Counter32: 434

UCD-SNMP-MIB::ssIORawSent.0 = Counter32: 266770

UCD-SNMP-MIB::ssIORawReceived.0 = Counter32: 427302

UCD-SNMP-MIB::ssRawInterrupts.0 = Counter32: 743442

UCD-SNMP-MIB::ssRawContexts.0 = Counter32: 718557

UCD-SNMP-MIB::ssCpuRawSoftIRQ.0 = Counter32: 128

UCD-SNMP-MIB::ssRawSwapIn.0 = Counter32: 0

UCD-SNMP-MIB::ssRawSwapOut.0 = Counter32: 0

In particular, the ssCpuRawUser, ssCpuRawSystem, ssCpuRawWait, and ssCpuRawIdle OIDs provide counters which are helpful when determining whether a system is spending most of its processor time in kernel space, user space, or I/O. ssRawSwapIn and ssRawSwapOut can be helpful when determining whether a system is suffering from memory exhaustion.

More memory information is available under the UCD-SNMP-MIB::memory OID, which provides similar data to the free command:

~]$ snmpwalk localhost UCD-SNMP-MIB::memory

UCD-SNMP-MIB::memIndex.0 = INTEGER: 0

UCD-SNMP-MIB::memErrorName.0 = STRING: swap

UCD-SNMP-MIB::memTotalSwap.0 = INTEGER: 1023992 kB

UCD-SNMP-MIB::memAvailSwap.0 = INTEGER: 1023992 kB

UCD-SNMP-MIB::memTotalReal.0 = INTEGER: 1021588 kB

UCD-SNMP-MIB::memAvailReal.0 = INTEGER: 634260 kB

UCD-SNMP-MIB::memTotalFree.0 = INTEGER: 1658252 kB

UCD-SNMP-MIB::memMinimumSwap.0 = INTEGER: 16000 kB

UCD-SNMP-MIB::memBuffer.0 = INTEGER: 30760 kB

582

CHAPTER 24. SYSTEM MONITORING TOOLS

UCD-SNMP-MIB::memCached.0 = INTEGER: 216200 kB

UCD-SNMP-MIB::memSwapError.0 = INTEGER: noError(0)

UCD-SNMP-MIB::memSwapErrorMsg.0 = STRING:

Load averages are also available in the UCD SNMP MIB. The SNMP table UCD-SNMP-MIB::laTable has a listing of the 1, 5, and 15 minute load averages:

~]$ snmptable localhost UCD-SNMP-MIB::laTable

SNMP table: UCD-SNMP-MIB::laTable

laIndex laNames laLoad laConfig laLoadInt laLoadFloat laErrorFlag laErrMessage

1 Load-1 0.00 12.00 0 0.000000 noError

2 Load-5 0.00 12.00 0 0.000000 noError

3 Load-15 0.00 12.00 0 0.000000 noError

24.6.4.3. File System and Disk Information

The Host Resources MIB provides information on file system size and usage. Each file system (and also each memory pool) has an entry in the HOST-RESOURCES-MIB::hrStorageTable table:

~]$ snmptable -Cb localhost HOST-RESOURCES-MIB::hrStorageTable

SNMP table: HOST-RESOURCES-MIB::hrStorageTable

Index Type Descr

AllocationUnits Size Used AllocationFailures

1 HOST-RESOURCES-TYPES::hrStorageRam Physical memory

1024 Bytes 1021588 388064 ?

3 HOST-RESOURCES-TYPES::hrStorageVirtualMemory Virtual memory

1024 Bytes 2045580 388064 ?

6 HOST-RESOURCES-TYPES::hrStorageOther Memory buffers

1024 Bytes 1021588 31048 ?

7 HOST-RESOURCES-TYPES::hrStorageOther Cached memory

1024 Bytes 216604 216604 ?

10 HOST-RESOURCES-TYPES::hrStorageVirtualMemory Swap space

1024 Bytes 1023992 0 ?

31 HOST-RESOURCES-TYPES::hrStorageFixedDisk /

4096 Bytes 2277614 250391 ?

35 HOST-RESOURCES-TYPES::hrStorageFixedDisk /dev/shm

4096 Bytes 127698 0 ?

36 HOST-RESOURCES-TYPES::hrStorageFixedDisk /boot

1024 Bytes 198337 26694 ?

The OIDs under HOST-RESOURCES-MIB::hrStorageSize and HOST-RESOURCES-

MIB::hrStorageUsed can be used to calculate the remaining capacity of each mounted file system.

I/O data is available both in UCD-SNMP-MIB::systemStats (ssIORawSent.0 and

ssIORawRecieved.0) and in UCD-DISKIO-MIB::diskIOTable. The latter provides much more granular data. Under this table are OIDs for diskIONReadX and diskIONWrittenX, which provide counters for the number of bytes read from and written to the block device in question since the system boot:

~]$ snmptable -Cb localhost UCD-DISKIO-MIB::diskIOTable

SNMP table: UCD-DISKIO-MIB::diskIOTable

583

Deployment Guide

Index Device NRead NWritten Reads Writes LA1 LA5 LA15 NReadX

NWrittenX

...

25 sda 216886272 139109376 16409 4894 ? ? ? 216886272

139109376

26 sda1 2455552 5120 613 2 ? ? ? 2455552

5120

27 sda2 1486848 0 332 0 ? ? ? 1486848

0

28 sda3 212321280 139104256 15312 4871 ? ? ? 212321280

139104256

24.6.4.4. Network Information

The Interfaces MIB provides information on network devices. IF-MIB::ifTable provides an

SNMP table with an entry for each interface on the system, the configuration of the interface, and various packet counters for the interface. The following example shows the first few columns of ifTable on a system with two physical network interfaces:

~]$ snmptable -Cb localhost IF-MIB::ifTable

SNMP table: IF-MIB::ifTable

Index Descr Type Mtu Speed PhysAddress AdminStatus

1 lo softwareLoopback 16436 10000000 up

2 eth0 ethernetCsmacd 1500 0 52:54:0:c7:69:58 up

3 eth1 ethernetCsmacd 1500 0 52:54:0:a7:a3:24 down

Network traffic is available under the OIDs IF-MIB::ifOutOctets and IF-MIB::ifInOctets. The following SNMP queries will retrieve network traffic for each of the interfaces on this system:

~]$ snmpwalk localhost IF-MIB::ifDescr

IF-MIB::ifDescr.1 = STRING: lo

IF-MIB::ifDescr.2 = STRING: eth0

IF-MIB::ifDescr.3 = STRING: eth1

~]$ snmpwalk localhost IF-MIB::ifOutOctets

IF-MIB::ifOutOctets.1 = Counter32: 10060699

IF-MIB::ifOutOctets.2 = Counter32: 650

IF-MIB::ifOutOctets.3 = Counter32: 0

~]$ snmpwalk localhost IF-MIB::ifInOctets

IF-MIB::ifInOctets.1 = Counter32: 10060699

IF-MIB::ifInOctets.2 = Counter32: 78650

IF-MIB::ifInOctets.3 = Counter32: 0

24.6.5. Extending Net-SNMP

The Net-SNMP Agent can be extended to provide application metrics in addition to raw system metrics.

This allows for capacity planning as well as performance issue troubleshooting. For example, it may be helpful to know that an email system had a 5-minute load average of 15 while being tested, but it is more helpful to know that the email system has a load average of 15 while processing 80,000 messages a second. When application metrics are available via the same interface as the system metrics, this also allows for the visualization of the impact of different load scenarios on system performance (for example, each additional 10,000 messages increases the load average linearly until 100,000).

584

CHAPTER 24. SYSTEM MONITORING TOOLS

A number of the applications that ship with Red Hat Enterprise Linux extend the Net-SNMP Agent to provide application metrics over SNMP. There are several ways to extend the agent for custom applications as well. This section describes extending the agent with shell scripts and Perl plug-ins. It assumes that the net-snmp-utils and net-snmp-perl packages are installed, and that the user is granted

access to the SNMP tree as described in Section 24.6.3.2, “Configuring Authentication”

.

24.6.5.1. Extending Net-SNMP with Shell Scripts

The Net-SNMP Agent provides an extension MIB (NET-SNMP-EXTEND-MIB) that can be used to query arbitrary shell scripts. To specify the shell script to run, use the extend directive in the

/etc/snmp/snmpd.conf file. Once defined, the Agent will provide the exit code and any output of the command over SNMP. The example below demonstrates this mechanism with a script which determines the number of httpd processes in the process table.

NOTE

The Net-SNMP Agent also provides a built-in mechanism for checking the process table via the proc directive. See the snmpd.conf(5) manual page for more information.

The exit code of the following shell script is the number of httpd processes running on the system at a given point in time:

#!/bin/sh

NUMPIDS=`pgrep httpd | wc -l` exit $NUMPIDS

To make this script available over SNMP, copy the script to a location on the system path, set the executable bit, and add an extend directive to the /etc/snmp/snmpd.conf file. The format of the

extend directive is the following:

extend name prog args

… where name is an identifying string for the extension, prog is the program to run, and args are the arguments to give the program. For instance, if the above shell script is copied to

/usr/local/bin/check_apache.sh, the following directive will add the script to the SNMP tree: extend httpd_pids /bin/sh /usr/local/bin/check_apache.sh

The script can then be queried at NET-SNMP-EXTEND-MIB::nsExtendObjects:

~]$ snmpwalk localhost NET-SNMP-EXTEND-MIB::nsExtendObjects

NET-SNMP-EXTEND-MIB::nsExtendNumEntries.0 = INTEGER: 1

NET-SNMP-EXTEND-MIB::nsExtendCommand."httpd_pids" = STRING: /bin/sh

NET-SNMP-EXTEND-MIB::nsExtendArgs."httpd_pids" = STRING:

/usr/local/bin/check_apache.sh

NET-SNMP-EXTEND-MIB::nsExtendInput."httpd_pids" = STRING:

NET-SNMP-EXTEND-MIB::nsExtendCacheTime."httpd_pids" = INTEGER: 5

NET-SNMP-EXTEND-MIB::nsExtendExecType."httpd_pids" = INTEGER: exec(1)

NET-SNMP-EXTEND-MIB::nsExtendRunType."httpd_pids" = INTEGER: run-onread(1)

NET-SNMP-EXTEND-MIB::nsExtendStorage."httpd_pids" = INTEGER: permanent(4)

585

Deployment Guide

NET-SNMP-EXTEND-MIB::nsExtendStatus."httpd_pids" = INTEGER: active(1)

NET-SNMP-EXTEND-MIB::nsExtendOutput1Line."httpd_pids" = STRING:

NET-SNMP-EXTEND-MIB::nsExtendOutputFull."httpd_pids" = STRING:

NET-SNMP-EXTEND-MIB::nsExtendOutNumLines."httpd_pids" = INTEGER: 1

NET-SNMP-EXTEND-MIB::nsExtendResult."httpd_pids" = INTEGER: 8

NET-SNMP-EXTEND-MIB::nsExtendOutLine."httpd_pids".1 = STRING:

Note that the exit code (“8” in this example) is provided as an INTEGER type and any output is provided as a STRING type. To expose multiple metrics as integers, supply different arguments to the script using the extend directive. For example, the following shell script can be used to determine the number of processes matching an arbitrary string, and will also output a text string giving the number of processes:

#!/bin/sh

PATTERN= $1

NUMPIDS=`pgrep $PATTERN | wc -l` echo "There are $NUMPIDS $PATTERN processes." exit $NUMPIDS

The following /etc/snmp/snmpd.conf directives will give both the number of httpd PIDs as well as the number of snmpd PIDs when the above script is copied to /usr/local/bin/check_proc.sh: extend httpd_pids /bin/sh /usr/local/bin/check_proc.sh httpd extend snmpd_pids /bin/sh /usr/local/bin/check_proc.sh snmpd

The following example shows the output of an snmpwalk of the nsExtendObjects OID:

~]$ snmpwalk localhost NET-SNMP-EXTEND-MIB::nsExtendObjects

NET-SNMP-EXTEND-MIB::nsExtendNumEntries.0 = INTEGER: 2

NET-SNMP-EXTEND-MIB::nsExtendCommand."httpd_pids" = STRING: /bin/sh

NET-SNMP-EXTEND-MIB::nsExtendCommand."snmpd_pids" = STRING: /bin/sh

NET-SNMP-EXTEND-MIB::nsExtendArgs."httpd_pids" = STRING:

/usr/local/bin/check_proc.sh httpd

NET-SNMP-EXTEND-MIB::nsExtendArgs."snmpd_pids" = STRING:

/usr/local/bin/check_proc.sh snmpd

NET-SNMP-EXTEND-MIB::nsExtendInput."httpd_pids" = STRING:

NET-SNMP-EXTEND-MIB::nsExtendInput."snmpd_pids" = STRING:

...

NET-SNMP-EXTEND-MIB::nsExtendResult."httpd_pids" = INTEGER: 8

NET-SNMP-EXTEND-MIB::nsExtendResult."snmpd_pids" = INTEGER: 1

NET-SNMP-EXTEND-MIB::nsExtendOutLine."httpd_pids".1 = STRING: There are 8 httpd processes.

NET-SNMP-EXTEND-MIB::nsExtendOutLine."snmpd_pids".1 = STRING: There are 1 snmpd processes.

586

CHAPTER 24. SYSTEM MONITORING TOOLS

WARNING

Integer exit codes are limited to a range of 0–255. For values that are likely to exceed 256, either use the standard output of the script (which will be typed as a string) or a different method of extending the agent.

This last example shows a query for the free memory of the system and the number of httpd processes. This query could be used during a performance test to determine the impact of the number of processes on memory pressure:

~]$ snmpget localhost \

'NET-SNMP-EXTEND-MIB::nsExtendResult."httpd_pids"' \

UCD-SNMP-MIB::memAvailReal.0

NET-SNMP-EXTEND-MIB::nsExtendResult."httpd_pids" = INTEGER: 8

UCD-SNMP-MIB::memAvailReal.0 = INTEGER: 799664 kB

24.6.5.2. Extending Net-SNMP with Perl

Executing shell scripts using the extend directive is a fairly limited method for exposing custom application metrics over SNMP. The Net-SNMP Agent also provides an embedded Perl interface for exposing custom objects. The net-snmp-perl package provides the NetSNMP::agent Perl module that is used to write embedded Perl plug-ins on Red Hat Enterprise Linux.

The NetSNMP::agent Perl module provides an agent object which is used to handle requests for a part of the agent's OID tree. The agent object's constructor has options for running the agent as a subagent of snmpd or a standalone agent. No arguments are necessary to create an embedded agent: use NetSNMP::agent ( ':all' ); my $agent = new NetSNMP::agent();

The agent object has a register method which is used to register a callback function with a particular

OID. The register function takes a name, OID, and pointer to the callback function. The following example will register a callback function named hello_handler with the SNMP Agent which will handle requests under the OID .1.3.6.1.4.1.8072.9999.9999:

$agent->register( "hello_world" , ".1.3.6.1.4.1.8072.9999.9999" ,

\&hello_handler);

NOTE

The OID .1.3.6.1.4.1.8072.9999.9999 (NET-SNMP-MIB::netSnmpPlaypen) is typically used for demonstration purposes only. If your organization does not already have a root OID, you can obtain one by contacting an ISO Name Registration Authority (ANSI in the United States).

The handler function will be called with four parameters, HANDLER, REGISTRATION_INFO,

587

Deployment Guide

REQUEST_INFO, and REQUESTS. The REQUESTS parameter contains a list of requests in the current call and should be iterated over and populated with data. The request objects in the list have get and set methods which allow for manipulating the OID and value of the request. For example, the following call will set the value of a request object to the string “hello world”:

$request->setValue(ASN_OCTET_STR, "hello world" );

The handler function should respond to two types of SNMP requests: the GET request and the

GETNEXT request. The type of request is determined by calling the getMode method on the

request_info object passed as the third parameter to the handler function. If the request is a GET request, the caller will expect the handler to set the value of the request object, depending on the OID of the request. If the request is a GETNEXT request, the caller will also expect the handler to set the OID of the request to the next available OID in the tree. This is illustrated in the following code example: my $request; my $string_value = "hello world" ; my $integer_value = "8675309" ; for ($request = $requests; $request; $request = $request-> next ()) { my $oid = $request->getOID(); if ($request_info->getMode() == MODE_GET) { if ($oid == new NetSNMP::OID( ".1.3.6.1.4.1.8072.9999.9999.1.0" )) {

$request->setValue(ASN_OCTET_STR, $string_value);

} elsif ($oid == new NetSNMP::OID( ".1.3.6.1.4.1.8072.9999.9999.1.1" )) {

$request->setValue(ASN_INTEGER, $integer_value);

}

} elsif ($request_info->getMode() == MODE_GETNEXT) { if ($oid == new NetSNMP::OID( ".1.3.6.1.4.1.8072.9999.9999.1.0" )) {

$request->setOID( ".1.3.6.1.4.1.8072.9999.9999.1.1" );

$request->setValue(ASN_INTEGER, $integer_value);

} elsif ($oid < new NetSNMP::OID( ".1.3.6.1.4.1.8072.9999.9999.1.0" )) {

$request->setOID( ".1.3.6.1.4.1.8072.9999.9999.1.0" );

$request->setValue(ASN_OCTET_STR, $string_value);

}

}

}

When getMode returns MODE_GET, the handler analyzes the value of the getOID call on the request object. The value of the request is set to either string_value if the OID ends in “.1.0”, or set to

integer_value if the OID ends in “.1.1”. If the getMode returns MODE_GETNEXT, the handler determines whether the OID of the request is “.1.0”, and then sets the OID and value for “.1.1”. If the request is higher on the tree than “.1.0”, the OID and value for “.1.0” is set. This in effect returns the

“next” value in the tree so that a program like snmpwalk can traverse the tree without prior knowledge of the structure.

The type of the variable is set using constants from NetSNMP::ASN. See the perldoc for

NetSNMP::ASN for a full list of available constants.

The entire code listing for this example Perl plug-in is as follows:

#!/usr/bin/perl use NetSNMP::agent ( ':all' );

588

CHAPTER 24. SYSTEM MONITORING TOOLS use NetSNMP::ASN qw(ASN_OCTET_STR ASN_INTEGER) ; sub hello_handler { my ($handler, $registration_info, $request_info, $requests) = @_; my $request; my $string_value = "hello world" ; my $integer_value = "8675309" ; for ($request = $requests; $request; $request = $request-> next ()) { my $oid = $request->getOID(); if ($request_info->getMode() == MODE_GET) { if ($oid == new NetSNMP::OID( ".1.3.6.1.4.1.8072.9999.9999.1.0" )) {

$request->setValue(ASN_OCTET_STR, $string_value);

} elsif ($oid == new NetSNMP::OID( ".1.3.6.1.4.1.8072.9999.9999.1.1" ))

{

$request->setValue(ASN_INTEGER, $integer_value);

}

} elsif ($request_info->getMode() == MODE_GETNEXT) { if ($oid == new NetSNMP::OID( ".1.3.6.1.4.1.8072.9999.9999.1.0" )) {

$request->setOID( ".1.3.6.1.4.1.8072.9999.9999.1.1" );

$request->setValue(ASN_INTEGER, $integer_value);

} elsif ($oid < new NetSNMP::OID( ".1.3.6.1.4.1.8072.9999.9999.1.0" )) {

$request->setOID( ".1.3.6.1.4.1.8072.9999.9999.1.0" );

$request->setValue(ASN_OCTET_STR, $string_value);

}

}

}

} my $agent = new NetSNMP::agent();

$agent->register( "hello_world" , ".1.3.6.1.4.1.8072.9999.9999" ,

\&hello_handler);

To test the plug-in, copy the above program to /usr/share/snmp/hello_world.pl and add the following line to the /etc/snmp/snmpd.conf configuration file: perl do "/usr/share/snmp/hello_world.pl"

The SNMP Agent Daemon will need to be restarted to load the new Perl plug-in. Once it has been restarted, an snmpwalk should return the new data:

~]$ snmpwalk localhost NET-SNMP-MIB::netSnmpPlaypen

NET-SNMP-MIB::netSnmpPlaypen.1.0 = STRING: "hello world"

NET-SNMP-MIB::netSnmpPlaypen.1.1 = INTEGER: 8675309

The snmpget should also be used to exercise the other mode of the handler:

~]$ snmpget localhost \

NET-SNMP-MIB::netSnmpPlaypen.1.0 \

NET-SNMP-MIB::netSnmpPlaypen.1.1

NET-SNMP-MIB::netSnmpPlaypen.1.0 = STRING: "hello world"

NET-SNMP-MIB::netSnmpPlaypen.1.1 = INTEGER: 8675309

589

Deployment Guide

24.7. ADDITIONAL RESOURCES

To learn more about gathering system information, see the following resources.

24.7.1. Installed Documentation

ps(1) — The manual page for the ps command.

top(1) — The manual page for the top command.

free(1) — The manual page for the free command.

df(1) — The manual page for the df command.

du(1) — The manual page for the du command.

lspci(8) — The manual page for the lspci command.

snmpd(8) — The manual page for the snmpd service.

snmpd.conf(5) — The manual page for the /etc/snmp/snmpd.conf file containing full documentation of available configuration directives.

590

CHAPTER 25. VIEWING AND MANAGING LOG FILES

CHAPTER 25. VIEWING AND MANAGING LOG FILES

Log files are files that contain messages about the system, including the kernel, services, and applications running on it. There are different log files for different information. For example, there is a default system log file, a log file just for security messages, and a log file for cron tasks.

Log files can be very useful when trying to troubleshoot a problem with the system such as trying to load a kernel driver or when looking for unauthorized login attempts to the system. This chapter discusses where to find log files, how to view log files, and what to look for in log files.

Some log files are controlled by a daemon called rsyslogd. The rsyslogd daemon is an enhanced replacement for previous sysklogd, and provides extended filtering, encryption protected relaying of messages, various configuration options, input and output modules, support for transportation via the

TCP or UDP protocols. Note that rsyslog is compatible with sysklogd.

25.1. INSTALLING RSYSLOG

Version 5 of rsyslog, provided in the rsyslog package, is installed by default in Red Hat

Enterprise Linux 6. If required, to ensure that it is, issue the following command as root:

~]# yum install rsyslog

Loaded plugins: product-id, refresh-packagekit, subscription-manager

Package rsyslog-5.8.10-10.el6_6.i686 already installed and latest version

Nothing to do

25.1.1. Upgrading to rsyslog version 7

Version 7 of rsyslog, provided in the rsyslog7 package, is available in Red Hat Enterprise Linux 6. It provides a number of enhancements over version 5, in particular higher processing performance and support for more plug-ins. If required, to change to version 7, make use of the yum shell utility as described below.

Procedure 25.1. Upgrading to rsyslog 7

To upgrade from rsyslog version 5 to rsyslog version 7, it is necessary to install and remove the relevant packages simultaneously. This can be accomplished using the yum shell utility.

1. Enter the following command as root to start the yum shell:

~]# yum shell

Loaded plugins: product-id, refresh-packagekit, subscription-manager

>

The yum shell prompt appears.

2. Enter the following commands to install the rsyslog7 package and remove the rsyslog package.

> install rsyslog7

> remove rsyslog

3. Enter run to start the process:

> run

591

Deployment Guide

--> Running transaction check

---> Package rsyslog.i686 0:5.8.10-10.el6_6 will be erased

---> Package rsyslog7.i686 0:7.4.10-3.el6_6 will be installed

--> Finished Dependency Resolution

====================================================================

========

Package Arch Version Repository

Size

====================================================================

========

Installing:

rsyslog7 i686 7.4.10-3.el6_6 rhel-6-workstation-rpms

1.3 M

Removing:

rsyslog i686 5.8.10-10.el6_6 @rhel-6-workstation-rpms

2.1 M

Transaction Summary

====================================================================

========

Install 1 Package

Remove 1 Package

Total download size: 1.3 M

Is this ok [y/d/N]:y

4. Enter y when prompted to start the upgrade.

5. When the upgrade is completed, the yum shell prompt is displayed. Enter quit or exit to exit the shell:

Finished Transaction

> quit

Leaving Shell

~]#

For information on using the new syntax provided by rsyslog version 7, see Section 25.4, “Using the New

Configuration Format” .

25.2. LOCATING LOG FILES

A list of log files maintained by rsyslogd can be found in the /etc/rsyslog.conf configuration file.

Most log files are located in the /var/log/ directory. Some applications such as httpd and samba have a directory within /var/log/ for their log files.

You may notice multiple files in the /var/log/ directory with numbers after them (for example, cron-

20100906). These numbers represent a time stamp that has been added to a rotated log file. Log files are rotated so their file sizes do not become too large. The logrotate package contains a cron task that automatically rotates log files according to the /etc/logrotate.conf configuration file and the configuration files in the /etc/logrotate.d/ directory.

25.3. BASIC CONFIGURATION OF RSYSLOG

592

CHAPTER 25. VIEWING AND MANAGING LOG FILES

The main configuration file for rsyslog is /etc/rsyslog.conf. Here, you can specify global directives, modules, and rules that consist of filter and action parts. Also, you can add comments in the form of text following a hash sign (#).

25.3.1. Filters

A rule is specified by a filter part, which selects a subset of syslog messages, and an action part, which specifies what to do with the selected messages. To define a rule in your /etc/rsyslog.conf configuration file, define both, a filter and an action, on one line and separate them with one or more spaces or tabs.

rsyslog offers various ways to filter syslog messages according to selected properties. The available filtering methods can be divided into Facility/Priority-based, Property-based, and Expression-based filters.

Facility/Priority-based filters

The most used and well-known way to filter syslog messages is to use the facility/priority-based filters which filter syslog messages based on two conditions: facility and priority separated by a dot. To create a selector, use the following syntax:

FACILITY.PRIORITY where:

FACILITY specifies the subsystem that produces a specific syslog message. For example, the mail subsystem handles all mail-related syslog messages. FACILITY can be represented by one of the following keywords (or by a numerical code): kern (0), user (1),

mail (2), daemon (3), auth (4), syslog (5), lpr (6), news (7), uucp (8), cron (9),

authpriv (10), ftp (11), and local0 through local7 (16 - 23).

PRIORITY specifies a priority of a syslog message. PRIORITY can be represented by one of the following keywords (or by a number): debug (7), info (6), notice (5), warning (4),

err (3), crit (2), alert (1), and emerg (0).

The aforementioned syntax selects syslog messages with the defined or higher priority. By preceding any priority keyword with an equal sign (=), you specify that only syslog messages with the specified priority will be selected. All other priorities will be ignored. Conversely, preceding a priority keyword with an exclamation mark (!) selects all syslog messages except those with the defined priority.

In addition to the keywords specified above, you may also use an asterisk (*) to define all facilities or priorities (depending on where you place the asterisk, before or after the comma). Specifying the priority keyword none serves for facilities with no given priorities. Both facility and priority conditions are case-insensitive.

To define multiple facilities and priorities, separate them with a comma (,). To define multiple selectors on one line, separate them with a semi-colon (;). Note that each selector in the selector field is capable of overwriting the preceding ones, which can exclude some priorities from the pattern.

Example 25.1. Facility/Priority-based Filters

The following are a few examples of simple facility/priority-based filters that can be specified in

/etc/rsyslog.conf. To select all kernel syslog messages with any priority, add the following text into the configuration file:

593

Deployment Guide kern.*

To select all mail syslog messages with priority crit and higher, use this form: mail.crit

To select all cron syslog messages except those with the info or debug priority, set the configuration in the following form: cron.!info,!debug

Property-based filters

Property-based filters let you filter syslog messages by any property, such as timegenerated or

syslogtag. For more information on properties, see the section called “Properties” . You can

compare each of the specified properties to a particular value using one of the compare-operations

listed in Table 25.1, “Property-based compare-operations”

. Both property names and compare operations are case-sensitive.

Property-based filter must start with a colon (:). To define the filter, use the following syntax:

:PROPERTY, [!]COMPARE_OPERATION, "STRING" where:

The PROPERTY attribute specifies the desired property.

The optional exclamation point (!) negates the output of the compare-operation. Other

Boolean operators are currently not supported in property-based filters.

The COMPARE_OPERATION attribute specifies one of the compare-operations listed in

Table 25.1, “Property-based compare-operations”

.

The STRING attribute specifies the value that the text provided by the property is compared to. This value must be enclosed in quotation marks. To escape certain character inside the string (for example a quotation mark (")), use the backslash character (\).

Table 25.1. Property-based compare-operations

Compare-operation Description contains isequal

Checks whether the provided string matches any part of the text provided by the property. To perform case-insensitive comparisons, use contains_i .

Compares the provided string against all of the text provided by the property. These two values must be exactly equal to match.

startswith Checks whether the provided string is found exactly at the beginning of the text provided by the property. To perform caseinsensitive comparisons, use startswith_i .

594

Compare-operation regex ereregex isempty

CHAPTER 25. VIEWING AND MANAGING LOG FILES

Description

Compares the provided POSIX BRE (Basic Regular Expression) against the text provided by the property.

Compares the provided POSIX ERE (Extended Regular

Expression) regular expression against the text provided by the property.

Checks if the property is empty. The value is discarded. This is especially useful when working with normalized data, where some fields may be populated based on normalization result.

Example 25.2. Property-based Filters

The following are a few examples of property-based filters that can be specified in

/etc/rsyslog.conf. To select syslog messages which contain the string error in their message text, use:

:msg, contains, "error"

The following filter selects syslog messages received from the host name host1:

:hostname, isequal, "host1"

To select syslog messages which do not contain any mention of the words fatal and error with any or no text between them (for example, fatal lib error), type:

:msg, !regex, "fatal .* error"

Expression-based filters

Expression-based filters select syslog messages according to defined arithmetic, Boolean or string operations. Expression-based filters use rsyslog's own scripting language called RainerScript to build complex filters.

The basic syntax of expression-based filter looks as follows: if EXPRESSION then ACTION else ACTION where:

The EXPRESSION attribute represents an expression to be evaluated, for example: $msg

startswith 'DEVNAME' or $syslogfacility-text == 'local0'. You can specify more than one expression in a single filter by using and and or operators.

The ACTION attribute represents an action to be performed if the expression returns the value true. This can be a single action, or an arbitrary complex script enclosed in curly braces.

595

Deployment Guide

Expression-based filters are indicated by the keyword if at the start of a new line. The then keyword separates the EXPRESSION from the ACTION. Optionally, you can employ the else keyword to specify what action is to be performed in case the condition is not met.

With expression-based filters, you can nest the conditions by using a script enclosed in curly braces

as in Example 25.3, “Expression-based Filters”

. The script allows you to use facility/priority-based filters inside the expression. On the other hand, property-based filters are not recommended here.

RainerScript supports regular expressions with specialized functions re_match() and

re_extract().

Example 25.3. Expression-based Filters

The following expression contains two nested conditions. The log files created by a program called prog1 are split into two files based on the presence of the "test" string in the message.

if $programname == 'prog1' then {

action(type="omfile" file="/var/log/prog1.log")

if $msg contains 'test' then

action(type="omfile" file="/var/log/prog1test.log")

else

action(type="omfile" file="/var/log/prog1notest.log")

}

See

the section called “Online Documentation” for more examples of various expression-based filters.

RainerScript is the basis for rsyslog's new configuration format, see Section 25.4, “Using the New

Configuration Format”

25.3.2. Actions

Actions specify what is to be done with the messages filtered out by an already-defined selector. The following are some of the actions you can define in your rule:

Saving syslog messages to log files

The majority of actions specify to which log file a syslog message is saved. This is done by specifying a file path after your already-defined selector:

FILTER PATH where FILTER stands for user-specified selector and PATH is a path of a target file.

For instance, the following rule is comprised of a selector that selects all cron syslog messages and an action that saves them into the /var/log/cron.log log file: cron.* /var/log/cron.log

By default, the log file is synchronized every time a syslog message is generated. Use a dash mark

(-) as a prefix of the file path you specified to omit syncing:

FILTER -PATH

596

CHAPTER 25. VIEWING AND MANAGING LOG FILES

Note that you might lose information if the system terminates right after a write attempt. However, this setting can improve performance, especially if you run programs that produce very verbose log messages.

Your specified file path can be either static or dynamic. Static files are represented by a fixed file path as shown in the example above. Dynamic file paths can differ according to the received message.

Dynamic file paths are represented by a template and a question mark (?) prefix:

FILTER ?DynamicFile where DynamicFile is a name of a predefined template that modifies output paths. You can use the dash prefix (-) to disable syncing, also you can use multiple templates separated by a colon (;). For more information on templates, see

the section called “Generating Dynamic File Names”

.

If the file you specified is an existing terminal or /dev/console device, syslog messages are sent to standard output (using special terminal-handling) or your console (using special /dev/consolehandling) when using the X Window System, respectively.

Sending syslog messages over the network

rsyslog allows you to send and receive syslog messages over the network. This feature allows you to administer syslog messages of multiple hosts on one machine. To forward syslog messages to a remote machine, use the following syntax:

@[(zNUMBER)]HOST:[PORT] where:

The at sign (@) indicates that the syslog messages are forwarded to a host using the UDP protocol. To use the TCP protocol, use two at signs with no space between them (@@).

The optional zNUMBER setting enables zlib compression for syslog messages. The NUMBER attribute specifies the level of compression (from 1 – lowest to 9 – maximum). Compression gain is automatically checked by rsyslogd, messages are compressed only if there is any compression gain and messages below 60 bytes are never compressed.

The HOST attribute specifies the host which receives the selected syslog messages.

The PORT attribute specifies the host machine's port.

When specifying an IPv6 address as the host, enclose the address in square brackets ([, ]).

Example 25.4. Sending syslog Messages over the Network

The following are some examples of actions that forward syslog messages over the network (note that all actions are preceded with a selector that selects all messages with any priority). To forward messages to 192.168.0.1 via the UDP protocol, type:

*.* @192.168.0.1

To forward messages to "example.com" using port 6514 and the TCP protocol, use:

*.* @@example.com:6514

597

Deployment Guide

The following compresses messages with zlib (level 9 compression) and forwards them to

2001:db8::1 using the UDP protocol

*.* @(z9)[2001:db8::1]

Output channels

Output channels are primarily used to specify the maximum size a log file can grow to. This is very

useful for log file rotation (for more information see Section 25.3.5, “Log Rotation”

). An output channel is basically a collection of information about the output action. Output channels are defined by the $outchannel directive. To define an output channel in /etc/rsyslog.conf, use the following syntax:

$outchannel NAME, FILE_NAME, MAX_SIZE, ACTION where:

The NAME attribute specifies the name of the output channel.

The FILE_NAME attribute specifies the name of the output file. Output channels can write only into files, not pipes, terminal, or other kind of output.

The MAX_SIZE attribute represents the maximum size the specified file (in FILE_NAME) can grow to. This value is specified in bytes.

The ACTION attribute specifies the action that is taken when the maximum size, defined in

MAX_SIZE, is hit.

To use the defined output channel as an action inside a rule, type:

FILTER :omfile:$NAME

Example 25.5. Output channel log rotation

The following output shows a simple log rotation through the use of an output channel. First, the output channel is defined via the $outchannel directive:

$outchannel log_rotation, /var/log/test_log.log, 104857600,

/home/joe/log_rotation_script and then it is used in a rule that selects every syslog message with any priority and executes the previously-defined output channel on the acquired syslog messages:

*.* :omfile:$log_rotation

Once the limit (in the example 100 MB) is hit, the /home/joe/log_rotation_script is executed. This script can contain anything from moving the file into a different folder, editing specific content out of it, or simply removing it.

Sending syslog messages to specific users

rsyslog can send syslog messages to specific users by specifying a user name of the user you want

598

CHAPTER 25. VIEWING AND MANAGING LOG FILES to send the messages to (as in

Example 25.7, “Specifying Multiple Actions” ). To specify more than

one user, separate each user name with a comma (,). To send messages to every user that is currently logged on, use an asterisk (*).

Executing a program

rsyslog lets you execute a program for selected syslog messages and uses the system() call to execute the program in shell. To specify a program to be executed, prefix it with a caret character (^).

Consequently, specify a template that formats the received message and passes it to the specified

executable as a one line parameter (for more information on templates, see Section 25.3.3,

“Templates” ).

FILTER ^EXECUTABLE; TEMPLATE

Here an output of the FILTER condition is processed by a program represented by EXECUTABLE.

This program can be any valid executable. Replace TEMPLATE with the name of the formatting template.

Example 25.6. Executing a Program

In the following example, any syslog message with any priority is selected, formatted with the

template template and passed as a parameter to the test-program program, which is then executed with the provided parameter:

*.* ^test-program;template

WARNING

When accepting messages from any host, and using the shell execute action, you may be vulnerable to command injection. An attacker may try to inject and execute commands in the program you specified to be executed in your action.

To avoid any possible security threats, thoroughly consider the use of the shell execute action.

Storing syslog messages in a database

Selected syslog messages can be directly written into a database table using the database writer action. The database writer uses the following syntax:

:PLUGIN:DB_HOST,DB_NAME,DB_USER,DB_PASSWORD;[TEMPLATE] where:

The PLUGIN calls the specified plug-in that handles the database writing (for example, the

ommysql plug-in).

The DB_HOST attribute specifies the database host name.

599

Deployment Guide

The DB_NAME attribute specifies the name of the database.

The DB_USER attribute specifies the database user.

The DB_PASSWORD attribute specifies the password used with the aforementioned database user.

The TEMPLATE attribute specifies an optional use of a template that modifies the syslog

message. For more information on templates, see Section 25.3.3, “Templates”

.

IMPORTANT

Currently, rsyslog provides support for MySQL and PostgreSQL databases only. In order to use the MySQL and PostgreSQL database writer functionality, install the rsyslog-mysql and rsyslog-pgsql packages, respectively. Also, make sure you load the appropriate modules in your /etc/rsyslog.conf configuration file:

$ModLoad ommysql # Output module for MySQL support

$ModLoad ompgsql # Output module for PostgreSQL support

For more information on rsyslog modules, see Section 25.7, “Using Rsyslog

Modules” .

Alternatively, you may use a generic database interface provided by the omlibdb module (supports: Firebird/Interbase, MS SQL, Sybase, SQLLite, Ingres, Oracle, mSQL).

Discarding syslog messages

To discard your selected messages, use the tilde character (~).

FILTER ~

The discard action is mostly used to filter out messages before carrying on any further processing. It can be effective if you want to omit some repeating messages that would otherwise fill the log files.

The results of discard action depend on where in the configuration file it is specified, for the best results place these actions on top of the actions list. Please note that once a message has been discarded there is no way to retrieve it in later configuration file lines.

For instance, the following rule discards any cron syslog messages: cron.* ~

Specifying Multiple Actions

For each selector, you are allowed to specify multiple actions. To specify multiple actions for one selector, write each action on a separate line and precede it with an ampersand (&) character:

FILTER ACTION

& ACTION

& ACTION

Specifying multiple actions improves the overall performance of the desired outcome since the specified selector has to be evaluated only once.

600

CHAPTER 25. VIEWING AND MANAGING LOG FILES

Example 25.7. Specifying Multiple Actions

In the following example, all kernel syslog messages with the critical priority (crit) are sent to user

user1, processed by the template temp and passed on to the test-program executable, and forwarded to 192.168.0.1 via the UDP protocol.

kern.=crit user1

& ^test-program;temp

& @192.168.0.1

Any action can be followed by a template that formats the message. To specify a template, suffix an action with a semicolon (;) and specify the name of the template. For more information on templates, see

Section 25.3.3, “Templates”

.

WARNING

A template must be defined before it is used in an action, otherwise it is ignored. In other words, template definitions should always precede rule definitions in

/etc/rsyslog.conf.

25.3.3. Templates

Any output that is generated by rsyslog can be modified and formatted according to your needs with the use of templates. To create a template use the following syntax in /etc/rsyslog.conf:

$template TEMPLATE_NAME,"text %PROPERTY% more text", [OPTION] where:

$template is the template directive that indicates that the text following it, defines a template.

TEMPLATE_NAME is the name of the template. Use this name to refer to the template.

Anything between the two quotation marks ("") is the actual template text. Within this text, special characters, such as \n for new line or \r for carriage return, can be used. Other characters, such as % or ", have to be escaped if you want to use those characters literally.

The text specified between two percent signs (%) specifies a property that allows you to access

specific contents of a syslog message. For more information on properties, see the section called “Properties” .

The OPTION attribute specifies any options that modify the template functionality. The currently supported template options are sql and stdsql, which are used for formatting the text as an

SQL query.

601

Deployment Guide

NOTE

Note that the database writer checks whether the sql or stdsql options are specified in the template. If they are not, the database writer does not perform any action. This is to prevent any possible security threats, such as SQL injection.

See section Storing syslog messages in a database in

Section 25.3.2, “Actions”

for more information.

Generating Dynamic File Names

Templates can be used to generate dynamic file names. By specifying a property as a part of the file path, a new file will be created for each unique property, which is a convenient way to classify syslog messages.

For example, use the timegenerated property, which extracts a time stamp from the message, to generate a unique file name for each syslog message:

$template DynamicFile,"/var/log/test_logs/%timegenerated%-test.log"

Keep in mind that the $template directive only specifies the template. You must use it inside a rule for it to take effect. In /etc/rsyslog.conf, use the question mark (?) in an action definition to mark the dynamic file name template:

*.* ?DynamicFile

Properties

Properties defined inside a template (between two percent signs (%)) enable access various contents of a syslog message through the use of a property replacer. To define a property inside a template

(between the two quotation marks ("")), use the following syntax:

%PROPERTY_NAME[:FROM_CHAR:TO_CHAR:OPTION]% where:

The PROPERTY_NAME attribute specifies the name of a property. A list of all available properties and their detailed description can be found in the rsyslog.conf(5) manual page under the section Available Properties.

FROM_CHAR and TO_CHAR attributes denote a range of characters that the specified property will act upon. Alternatively, regular expressions can be used to specify a range of characters. To do so, set the letter R as the FROM_CHAR attribute and specify your desired regular expression as the TO_CHAR attribute.

The OPTION attribute specifies any property options, such as the lowercase option to convert the input to lowercase. A list of all available property options and their detailed description can be found in the rsyslog.conf(5) manual page under the section Property Options.

The following are some examples of simple properties:

The following property obtains the whole message text of a syslog message:

%msg%

602

CHAPTER 25. VIEWING AND MANAGING LOG FILES

The following property obtains the first two characters of the message text of a syslog message:

%msg:1:2%

The following property obtains the whole message text of a syslog message and drops its last line feed character:

%msg:::drop-last-lf%

The following property obtains the first 10 characters of the time stamp that is generated when the syslog message is received and formats it according to the RFC 3999 date standard.

%timegenerated:1:10:date-rfc3339%

Template Examples

This section presents a few examples of rsyslog templates.

Example 25.8, “A verbose syslog message template” shows a template that formats a syslog message

so that it outputs the message's severity, facility, the time stamp of when the message was received, the host name, the message tag, the message text, and ends with a new line.

Example 25.8. A verbose syslog message template

$template verbose, "%syslogseverity%, %syslogfacility%, %timegenerated%,

%HOSTNAME%, %syslogtag%, %msg%\n"

Example 25.9, “A wall message template” shows a template that resembles a traditional wall message (a

message that is send to every user that is logged in and has their mesg(1) permission set to yes). This template outputs the message text, along with a host name, message tag and a time stamp, on a new line (using \r and \n) and rings the bell (using \7).

Example 25.9. A wall message template

$template wallmsg,"\r\n\7Message from syslogd@%HOSTNAME% at

%timegenerated% ...\r\n %syslogtag% %msg%\n\r"

Example 25.10, “A database formatted message template” shows a template that formats a syslog

message so that it can be used as a database query. Notice the use of the sql option at the end of the template specified as the template option. It tells the database writer to format the message as an

MySQL SQL query.

Example 25.10. A database formatted message template

$template dbFormat,"insert into SystemEvents (Message, Facility,

FromHost, Priority, DeviceReportedTime, ReceivedAt, InfoUnitID,

SysLogTag) values ('%msg%', %syslogfacility%, '%HOSTNAME%',

%syslogpriority%, '%timereported:::date-mysql%', '%timegenerated:::datemysql%', %iut%, '%syslogtag%')", sql

603

Deployment Guide

rsyslog also contains a set of predefined templates identified by the RSYSLOG_ prefix. These are reserved for the syslog's use and it is advisable to not create a template using this prefix to avoid conflicts. The following list shows these predefined templates along with their definitions.

RSYSLOG_DebugFormat

A special format used for troubleshooting property problems.

"Debug line with all properties:\nFROMHOST: '%FROMHOST%', fromhost-ip:

'%fromhost-ip%', HOSTNAME: '%HOSTNAME%', PRI: %PRI%,\nsyslogtag

'%syslogtag%', programname: '%programname%', APP-NAME: '%APP-NAME%',

PROCID: '%PROCID%', MSGID: '%MSGID%',\nTIMESTAMP: '%TIMESTAMP%',

STRUCTURED-DATA: '%STRUCTURED-DATA%',\nmsg: '%msg%'\nescaped msg:

'%msg:::drop-cc%'\nrawmsg: '%rawmsg%'\n\n\"

RSYSLOG_SyslogProtocol23Format

The format specified in IETF's internet-draft ietf-syslog-protocol-23, which is assumed to become the new syslog standard RFC.

"%PRI%1 %TIMESTAMP:::date-rfc3339% %HOSTNAME% %APP-NAME% %PROCID%

%MSGID% %STRUCTURED-DATA% %msg%\n\"

RSYSLOG_FileFormat

A modern-style logfile format similar to TraditionalFileFormat, but with high-precision time stamps and time zone information.

"%TIMESTAMP:::date-rfc3339% %HOSTNAME% %syslogtag%%msg:::sp-if-no-1stsp%%msg:::drop-last-lf%\n\"

RSYSLOG_TraditionalFileFormat

The older default log file format with low-precision time stamps.

"%TIMESTAMP% %HOSTNAME% %syslogtag%%msg:::sp-if-no-1st-sp%%msg:::droplast-lf%\n\"

RSYSLOG_ForwardFormat

A forwarding format with high-precision time stamps and time zone information.

"%PRI%%TIMESTAMP:::date-rfc3339% %HOSTNAME% %syslogtag:1:32%%msg:::spif-no-1st-sp%%msg%\"

RSYSLOG_TraditionalForwardFormat

The traditional forwarding format with low-precision time stamps.

"%PRI%%TIMESTAMP% %HOSTNAME% %syslogtag:1:32%%msg:::sp-if-no-1stsp%%msg%\"

25.3.4. Global Directives

604

CHAPTER 25. VIEWING AND MANAGING LOG FILES

Global directives are configuration options that apply to the rsyslogd daemon. They usually specify a value for a specific predefined variable that affects the behavior of the rsyslogd daemon or a rule that follows. All of the global directives must start with a dollar sign ($). Only one directive can be specified per line. The following is an example of a global directive that specifies the maximum size of the syslog message queue:

$MainMsgQueueSize 50000

The default size defined for this directive (10,000 messages) can be overridden by specifying a different value (as shown in the example above).

You can define multiple directives in your /etc/rsyslog.conf configuration file. A directive affects the behavior of all configuration options until another occurrence of that same directive is detected. Global directives can be used to configure actions, queues and for debugging. A comprehensive list of all

available configuration directives can be found in the section called “Online Documentation”

. Currently, a

new configuration format has been developed that replaces the $-based syntax (see Section 25.4,

“Using the New Configuration Format” ). However, classic global directives remain supported as a legacy

format.

25.3.5. Log Rotation

The following is a sample /etc/logrotate.conf configuration file:

# rotate log files weekly weekly

# keep 4 weeks worth of backlogs rotate 4

# uncomment this if you want your log files compressed compress

All of the lines in the sample configuration file define global options that apply to every log file. In our example, log files are rotated weekly, rotated log files are kept for four weeks, and all rotated log files are compressed by gzip into the .gz format. Any lines that begin with a hash sign (#) are comments and are not processed.

You may define configuration options for a specific log file and place it under the global options.

However, it is advisable to create a separate configuration file for any specific log file in the

/etc/logrotate.d/ directory and define any configuration options there.

The following is an example of a configuration file placed in the /etc/logrotate.d/ directory:

/var/log/messages {

rotate 5

weekly

postrotate

/usr/bin/killall -HUP syslogd

endscript

}

The configuration options in this file are specific for the /var/log/messages log file only. The settings specified here override the global settings where possible. Thus the rotated /var/log/messages log file will be kept for five weeks instead of four weeks as was defined in the global options.

The following is a list of some of the directives you can specify in your logrotate configuration file:

605

Deployment Guide

weekly — Specifies the rotation of log files to be done weekly. Similar directives include: daily monthly yearly

compress — Enables compression of rotated log files. Similar directives include: nocompress

compresscmd — Specifies the command to be used for compressing.

uncompresscmd

compressext — Specifies what extension is to be used for compressing.

compressoptions — Specifies any options to be passed to the compression program used.

delaycompress — Postpones the compression of log files to the next rotation of log files.

rotate INTEGER — Specifies the number of rotations a log file undergoes before it is removed or mailed to a specific address. If the value 0 is specified, old log files are removed instead of rotated.

mail ADDRESS — This option enables mailing of log files that have been rotated as many times as is defined by the rotate directive to the specified address. Similar directives include: nomail

mailfirst — Specifies that the just-rotated log files are to be mailed, instead of the aboutto-expire log files.

maillast — Specifies that the about-to-expire log files are to be mailed, instead of the justrotated log files. This is the default option when mail is enabled.

For the full list of directives and various configuration options, see the logrotate(5) manual page.

25.4. USING THE NEW CONFIGURATION FORMAT

In rsyslog version 7, available for Red Hat Enterprise Linux 6 in the rsyslog7 package, a new configuration syntax is introduced. This new configuration format aims to be more powerful, more intuitive, and to prevent common mistakes by not permitting certain invalid constructs. The syntax enhancement is enabled by the new configuration processor that relies on RainerScript. The legacy format is still fully supported and it is used by default in the /etc/rsyslog.conf configuration file. To install rsyslog 7, see

Section 25.1.1, “Upgrading to rsyslog version 7”

.

RainerScript is a scripting language designed for processing network events and configuring event processors such as rsyslog. The version of RainerScript in rsyslog version 5 is used to define expression-based filters, see

Example 25.3, “Expression-based Filters”

. The version of RainerScript in rsyslog version 7 implements the input() and ruleset() statements, which permit the

/etc/rsyslog.conf configuration file to be written in the new syntax. The new syntax differs mainly in that it is much more structured; parameters are passed as arguments to statements, such as input,

606

CHAPTER 25. VIEWING AND MANAGING LOG FILES action, template, and module load. The scope of options is limited by blocks. This enhances readability and reduces the number of bugs caused by misconfiguration. There is also a significant performance gain. Some functionality is exposed in both syntaxes, some only in the new one.

Compare the configuration written with legacy-style parameters:

$InputFileName /tmp/inputfile

$InputFileTag tag1:

$InputFileStateFile inputfile-state

$InputRunFileMonitor and the same configuration with the use of the new format statement: input(type="imfile" file="/tmp/inputfile" tag="tag1:" statefile="inputfile-state")

This significantly reduces the number of parameters used in configuration, improves readability, and also provides higher execution speed. For more information on RainerScript statements and parameters see

the section called “Online Documentation”

.

25.4.1. Rulesets

Leaving special directives aside, rsyslog handles messages as defined by rules that consist of a filter condition and an action to be performed if the condition is true. With a traditionally written

/etc/rsyslog.conf file, all rules are evaluated in order of appearance for every input message. This process starts with the first rule and continues until all rules have been processed or until the message is discarded by one of the rules.

However, rules can be grouped into sequences called rulesets. With rulesets, you can limit the effect of certain rules only to selected inputs or enhance the performance of rsyslog by defining a distinct set of actions bound to a specific input. In other words, filter conditions that will be inevitably evaluated as false for certain types of messages can be skipped. The legacy ruleset definition in /etc/rsyslog.conf can look as follows:

$RuleSet rulesetname rule rule2

The rule ends when another rule is defined, or the default ruleset is called as follows:

$RuleSet RSYSLOG_DefaultRuleset

With the new configuration format in rsyslog 7, the input() and ruleset() statements are reserved for this operation. The new format ruleset definition in /etc/rsyslog.conf can look as follows: ruleset(name="rulesetname") {

rule

rule2

call rulesetname2

}

Replace rulesetname with an identifier for your ruleset. The ruleset name cannot start with RSYSLOG_

607

Deployment Guide since this namespace is reserved for use by rsyslog. RSYSLOG_DefaultRuleset then defines the default set of rules to be performed if the message has no other ruleset assigned. With rule and rule2 you can define rules in filter-action format mentioned above. With the call parameter, you can nest rulesets by calling them from inside other ruleset blocks.

After creating a ruleset, you need to specify what input it will apply to: input(type="input_type" port="port_num" ruleset="rulesetname");

Here you can identify an input message by input_type, which is an input module that gathered the message, or by port_num – the port number. Other parameters such as file or tag can be specified for

input(). Replace rulesetname with a name of the ruleset to be evaluated against the message. In case an input message is not explicitly bound to a ruleset, the default ruleset is triggered.

You can also use the legacy format to define rulesets, for more information see the section called

“Online Documentation” .

Example 25.11. Using rulesets

The following rulesets ensure different handling of remote messages coming from different ports. Add the following into /etc/rsyslog.conf: ruleset(name="remote-6514") {

action(type="omfile" file="/var/log/remote-6514")

} ruleset(name="remote-601") {

cron.* action(type="omfile" file="/var/log/remote-601-cron")

mail.* action(type="omfile" file="/var/log/remote-601-mail")

} input(type="imtcp" port="6514" ruleset="remote-6514"); input(type="imtcp" port="601" ruleset="remote-601");

Rulesets shown in the above example define log destinations for the remote input from two ports, in case of port 601, messages are sorted according to the facility. Then, the TCP input is enabled and bound to rulesets. Note that you must load the required modules (imtcp) for this configuration to work.

25.4.2. Compatibility with sysklogd

The compatibility mode specified via the -c option exists in rsyslog version 5 but not in version 7. Also, the sysklogd-style command-line options are deprecated and configuring rsyslog through these command-line options should be avoided. However, you can use several templates and directives to configure rsyslogd to emulate sysklogd-like behavior.

For more information on various rsyslogd options, see the rsyslogd(8)manual page.

25.5. WORKING WITH QUEUES IN RSYSLOG

Queues are used to pass content, mostly syslog messages, between components of rsyslog. With queues, rsyslog is capable of processing multiple messages simultaneously and to apply several actions to a single message at once. The data flow inside rsyslog can be illustrated as follows:

608

CHAPTER 25. VIEWING AND MANAGING LOG FILES

Figure 25.1. Message Flow in Rsyslog

Whenever rsyslog receives a message, it passes this message to the preprocessor and then places it into the main message queue. Messages wait there to be dequeued and passed to the rule processor.

The rule processor is a parsing and filtering engine. Here, the rules defined in /etc/rsyslog.conf are applied. Based on these rules, the rule processor evaluates which actions are to be performed. Each action has its own action queue. Messages are passed through this queue to the respective action processor which creates the final output. Note that at this point, several actions can run simultaneously on one message. For this purpose, a message is duplicated and passed to multiple action processors.

Only one queue per action is possible. Depending on configuration, the messages can be sent right to the action processor without action queuing. This is the behavior of direct queues (see below). In case the output action fails, the action processor notifies the action queue, which then takes an unprocessed element back and after some time interval, the action is attempted again.

To sum up, there are two positions where queues stand in rsyslog: either in front of the rule processor as a single main message queue or in front of various types of output actions as action queues. Queues provide two main advantages that both lead to increased performance of message processing: they serve as buffers that decouple producers and consumers in the structure of rsyslog they allow for parallelization of actions performed on messages

Apart from this, queues can be configured with several directives to provide optimal performance for your system. These configuration options are covered in the following sections.

609

Deployment Guide

WARNING

If an output plug-in is unable to deliver a message, it is stored in the preceding message queue. If the queue fills, the inputs block until it is no longer full. This will prevent new messages from being logged via the blocked queue. In the absence of separate action queues this can have severe consequences, such as preventing

SSH logging, which in turn can prevent SSH access. Therefore it is advised to use dedicated action queues for outputs which are forwarded over a network or to a database.

25.5.1. Defining Queues

Based on where the messages are stored, there are several types of queues: direct, in-memory, disk, and disk-assisted in-memory queues that are most widely used. You can choose one of these types for the main message queue and also for action queues. Add the following into /etc/rsyslog.conf:

$objectQueueType queue_type

Here, you can apply the setting for the main message queue (replace object with MainMsg) or for an action queue (replace object with Action). Replace queue_type with one of direct, linkedlist or

fixedarray (which are in-memory queues), or disk.

The default setting for a main message queue is the FixedArray queue with a limit of 10,000 messages.

Action queues are by default set as Direct queues.

Direct Queues

For many simple operations, such as when writing output to a local file, building a queue in front of an action is not needed. To avoid queuing, use:

$objectQueueType Direct

Replace object with MainMsg or with Action to use this option to the main message queue or for an action queue respectively. With direct queue, messages are passed directly and immediately from the producer to the consumer.

Disk Queues

Disk queues store messages strictly on a hard drive, which makes them highly reliable but also the slowest of all possible queuing modes. This mode can be used to prevent the loss of highly important log data. However, disk queues are not recommended in most use cases. To set a disk queue, type the following into /etc/rsyslog.conf:

$objectQueueType Disk

Replace object with MainMsg or with Action to use this option to the main message queue or for an action queue respectively. Disk queues are written in parts, with a default size 10 Mb. This default size can be modified with the following configuration directive:

$objectQueueMaxFileSize size

610

CHAPTER 25. VIEWING AND MANAGING LOG FILES where size represents the specified size of disk queue part. The defined size limit is not restrictive,

rsyslog always writes one complete queue entry, even if it violates the size limit. Each part of a disk queue matches with an individual file. The naming directive for these files looks as follows:

$objectQueueFilename name

This sets a name prefix for the file followed by a 7-digit number starting at one and incremented for each file.

In-memory Queues

With in-memory queue, the enqueued messages are held in memory which makes the process very fast.

The queued data is lost if the computer is power cycled or shut down. However, you can use the

$ActionQueueSaveOnShutdown setting to save the data before shutdown. There are two types of inmemory queues:

FixedArray queue — the default mode for the main message queue, with a limit of 10,000 elements. This type of queue uses a fixed, pre-allocated array that holds pointers to queue elements. Due to these pointers, even if the queue is empty a certain amount of memory is consumed. However, FixedArray offers the best run time performance and is optimal when you expect a relatively low number of queued messages and high performance.

LinkedList queue — here, all structures are dynamically allocated in a linked list, thus the memory is allocated only when needed. LinkedList queues handle occasional message bursts very well.

In general, use LinkedList queues when in doubt. Compared to FixedArray, it consumes less memory and lowers the processing overhead.

Use the following syntax to configure in-memory queues:

$objectQueueType LinkedList

$objectQueueType FixedArray

Replace object with MainMsg or with Action to use this option to the main message queue or for an action queue respectively.

Disk-Assisted In-memory Queues

Both disk and in-memory queues have their advantages and rsyslog lets you combine them in diskassisted in-memory queues. To do so, configure a normal in-memory queue and then add the

$objectQueueFileName directive to define a file name for disk assistance. This queue then becomes disk-assisted, which means it couples an in-memory queue with a disk queue to work in tandem.

The disk queue is activated if the in-memory queue is full or needs to persist after shutdown. With a diskassisted queue, you can set both disk-specific and in-memory specific configuration parameters. This type of queue is probably the most commonly used, it is especially useful for potentially long-running and unreliable actions.

To specify the functioning of a disk-assisted in-memory queue, use the so-called watermarks:

$objectQueueHighWatermark number

$objectQueueLowWatermark number

611

Deployment Guide

Replace object with MainMsg or with Action to use this option to the main message queue or for an action queue respectively. Replace number with a number of enqueued messages. When an in-memory queue reaches the number defined by the high watermark, it starts writing messages to disk and continues until the in-memory queue size drops to the number defined with the low watermark. Correctly set watermarks minimize unnecessary disk writes, but also leave memory space for message bursts since writing to disk files is rather lengthy. Therefore, the high watermark must be lower than the whole queue capacity set with $objectQueueSize. The difference between the high watermark and the overall queue size is a spare memory buffer reserved for message bursts. On the other hand, setting the high watermark too low will turn on disk assistance unnecessarily often.

Example 25.12. Reliable Forwarding of Log Messages to a Server

Rsyslog is often used to maintain a centralized logging system, where log messages are forwarded to a server over the network. To avoid message loss when the server is not available, it is advisable to configure an action queue for the forwarding action. This way, messages that failed to be sent are stored locally until the server is reachable again. Note that such queues are not configurable for connections using the UDP protocol. To establish a fully reliable connection, for example when your logging server is outside of your private network, consider using the RELP protocol described in

Section 25.7.4, “Using RELP” .

Procedure 25.2. Forwarding To a Single Server

Suppose the task is to forward log messages from the system to a server with host name example.com, and to configure an action queue to buffer the messages in case of a server outage. To do so, perform the following steps:

Use the following configuration in /etc/rsyslog.conf or create a file with the following content in the /etc/rsyslog.d/ directory:

$ActionQueueType LinkedList

$ActionQueueFileName example_fwd

$ActionResumeRetryCount -1

$ActionQueueSaveOnShutdown on

*.* @@example.com:6514

Where:

$ActionQueueType enables a LinkedList in-memory queue,

$ActionFileName defines a disk storage, in this case the backup files are created in the /var/lib/rsyslog/ directory with the example_fwd prefix, the $ActionResumeRetryCount -1 setting prevents rsyslog from dropping messages when retrying to connect if server is not responding, enabled $ActionQueueSaveOnShutdown saves in-memory data if rsyslog shuts down, the last line forwards all received messages to the logging server, port specification is optional.

With the above configuration, rsyslog keeps messages in memory if the remote server is not reachable. A file on disk is created only if rsyslog runs out of the configured memory queue space or needs to shut down, which benefits the system performance.

Procedure 25.3. Forwarding To Multiple Servers

612

CHAPTER 25. VIEWING AND MANAGING LOG FILES

The process of forwarding log messages to multiple servers is similar to the previous procedure:

Each destination server requires a separate forwarding rule, action queue specification, and backup file on disk. For example, use the following configuration in /etc/rsyslog.conf or create a file with the following content in the /etc/rsyslog.d/ directory:

$ActionQueueType LinkedList

$ActionQueueFileName example_fwd1

$ActionResumeRetryCount -1

$ActionQueueSaveOnShutdown on

*.* @@example1.com

$ActionQueueType LinkedList

$ActionQueueFileName example_fwd2

$ActionResumeRetryCount -1

$ActionQueueSaveOnShutdown on

*.* @@example2.com

25.5.2. Creating a New Directory for rsyslog Log Files

Rsyslog runs as the syslogd daemon and is managed by SELinux. Therefore all files to which rsyslog is required to write to, must have the appropriate SELinux file context.

Procedure 25.4. Creating a New Working Directory

1. If required to use a different directory to store working files, create a directory as follows:

~]# mkdir /rsyslog

2. Install utilities to manage SELinux policy:

~]# yum install policycoreutils-python

3. Set the SELinux directory context type to be the same as the /var/lib/rsyslog/ directory:

~]# semanage fcontext -a -t syslogd_var_lib_t /rsyslog

4. Apply the SELinux context:

~]# restorecon -R -v /rsyslog restorecon reset /rsyslog context unconfined_u:object_r:default_t:s0-

>unconfined_u:object_r:syslogd_var_lib_t:s0

5. If required, check the SELinux context as follows:

~]# ls -Zd /rsyslog drwxr-xr-x. root root system_u:object_r:syslogd_var_lib_t:s0

/rsyslog

6. Create subdirectories as required. For example:

613

Deployment Guide

~]# mkdir /rsyslog/work

The subdirectories will be created with the same SELinux context as the parent directory.

7. Add the following line in /etc/rsyslog.conf immediately before it is required to take effect:

$WorkDirectory /rsyslog/work

This setting will remain in effect until the next WorkDirectory directive is encountered while parsing the configuration files.

25.5.3. Managing Queues

All types of queues can be further configured to match your requirements. You can use several directives to modify both action queues and the main message queue. Currently, there are more than 20 queue

parameters available, see the section called “Online Documentation”

. Some of these settings are used commonly, others, such as worker thread management, provide closer control over the queue behavior and are reserved for advanced users. With advanced settings, you can optimize rsyslog's performance, schedule queuing, or modify the behavior of a queue on system shutdown.

Limiting Queue Size

You can limit the number of messages that queue can contain with the following setting:

$objectQueueHighWatermark number

Replace object with MainMsg or with Action to use this option to the main message queue or for an action queue respectively. Replace number with a number of enqueued messages. You can set the queue size only as the number of messages, not as their actual memory size. The default queue size is

10,000 messages for the main message queue and ruleset queues, and 1000 for action queues.

Disk assisted queues are unlimited by default and can not be restricted with this directive, but you can reserve them physical disk space in bytes with the following settings:

$objectQueueMaxDiscSpace number

Replace object with MainMsg or with Action. When the size limit specified by number is hit, messages are discarded until sufficient amount of space is freed by dequeued messages.

Discarding Messages

When a queue reaches a certain number of messages, you can discard less important messages in order to save space in the queue for entries of higher priority. The threshold that launches the discarding process can be set with the so-called discard mark:

$objectQueueDiscardMark number

Replace object with MainMsg or with Action to use this option to the main message queue or for an action queue respectively. Here, number stands for a number of messages that have to be in the queue to start the discarding process. To define which messages to discard, use:

$objectQueueDiscardSeverity priority

Replace priority with one of the following keywords (or with a number): debug (7), info (6), notice (5),

warning (4), err (3), crit (2), alert (1), and emerg (0). With this setting, both newly incoming and

614

CHAPTER 25. VIEWING AND MANAGING LOG FILES already queued messages with lower than defined priority are erased from the queue immediately after the discard mark is reached.

Using Timeframes

You can configure rsyslog to process queues during a specific time period. With this option you can, for example, transfer some processing into off-peak hours. To define a time frame, use the following syntax:

$objectQueueDequeueTimeBegin hour

$objectQueueDequeueTimeEnd hour

With hour you can specify hours that bound your time frame. Use the 24-hour format without minutes.

Configuring Worker Threads

A worker thread performs a specified action on the enqueued message. For example, in the main message queue, a worker task is to apply filter logic to each incoming message and enqueue them to the relevant action queues. When a message arrives, a worker thread is started automatically. When the number of messages reaches a certain number, another worker thread is turned on. To specify this number, use:

$objectQueueWorkerThreadMinimumMessages number

Replace number with a number of messages that will trigger a supplemental worker thread. For example, with number set to 100, a new worker thread is started when more than 100 messages arrive. When more than 200 messages arrive, the third worker thread starts and so on. However, too many working threads running in parallel becomes ineffective, so you can limit the maximum number of them by using:

$objectQueueWorkerThreads number where number stands for a maximum number of working threads that can run in parallel. For the main message queue, the default limit is 1 thread. Once a working thread has been started, it keeps running until an inactivity timeout appears. To set the length of timeout, type:

$objectQueueWorkerTimeoutThreadShutdown time

Replace time with the duration set in milliseconds. Without this setting, a zero timeout is applied and a worker thread is terminated immediately when it runs out of messages. If you specify time as -1, no thread will be closed.

Batch Dequeuing

To increase performance, you can configure rsyslog to dequeue multiple messages at once. To set the upper limit for such dequeueing, use:

$objectQueueDequeueBatchSize number

Replace number with the maximum number of messages that can be dequeued at once. Note that a higher setting combined with a higher number of permitted working threads results in greater memory consumption.

Terminating Queues

When terminating a queue that still contains messages, you can try to minimize the data loss by specifying a time interval for worker threads to finish the queue processing:

615

Deployment Guide

$objectQueueTimeoutShutdown time

Specify time in milliseconds. If after that period there are still some enqueued messages, workers finish the current data element and then terminate. Unprocessed messages are therefore lost. Another time interval can be set for workers to finish the final element:

$objectQueueTimeoutActionCompletion time

In case this timeout expires, any remaining workers are shut down. To save data at shutdown, use:

$objectQueueTimeoutSaveOnShutdown time

If set, all queue elements are saved to disk before rsyslog terminates.

25.5.4. Using the New Syntax for rsyslog queues

In the new syntax available in rsyslog 7, queues are defined inside the action() object that can be used both separately or inside a ruleset in /etc/rsyslog.conf. The format of an action queue is as follows: action(type="action_type" queue.size="queue_size" queue.type="queue_type" queue.filename="file_name")

Replace action_type with the name of the module that is to perform the action and replace queue_size with a maximum number of messages the queue can contain. For queue_type, choose disk or select from one of the in-memory queues: direct, linkedlist or fixedarray. For file_name specify only a file name, not a path. Note that if creating a new directory to hold log files, the SELinux context must be

set. See Section 25.5.2, “Creating a New Directory for rsyslog Log Files” for an example.

Example 25.13. Defining an Action Queue

To configure the output action with an asynchronous linked-list based action queue which can hold a maximum of 10,000 messages, enter a command as follows: action(type="omfile" queue.size="10000" queue.type="linkedlist" queue.filename="logfile")

The rsyslog 7 syntax for a direct action queues is as follows:

*.* action(type="omfile" file="/var/lib/rsyslog/log_file

)

The rsyslog 7 syntax for an action queue with multiple parameters can be written as follows:

*.* action(type="omfile"

queue.filename="log_file"

queue.type="linkedlist"

queue.size="10000"

)

616

CHAPTER 25. VIEWING AND MANAGING LOG FILES

The default work directory, or the last work directory to be set, will be used. If required to use a different work directory, add a line as follows before the action queue: global(workDirectory="/directory")

Example 25.14. Forwarding To a Single Server Using the New Syntax

The following example is based on the procedure Procedure 25.2, “Forwarding To a Single Server” in order to show the difference between the traditional sysntax and the rsyslog 7 syntax. The omfwd plug-in is used to provide forwarding over UDP or TCP. The default is UDP. As the plug-in is built in it does not have to be loaded.

Use the following configuration in /etc/rsyslog.conf or create a file with the following content in the /etc/rsyslog.d/ directory:

*.* action(type="omfwd"

queue.type="linkedlist"

queue.filename="example_fwd"

action.resumeRetryCount="-1"

queue.saveOnShutdown="on"

target="example.com" port="6514" protocol="tcp"

)

Where:

queue.type="linkedlist" enables a LinkedList in-memory queue,

queue.filename defines a disk storage. The backup files are created with the example_fwd prefix, in the working directory specified by the preceding global

workDirectory directive, the action.resumeRetryCount -1 setting prevents rsyslog from dropping messages when retrying to connect if server is not responding, enabled queue.saveOnShutdown="on" saves in-memory data if rsyslog shuts down, the last line forwards all received messages to the logging server, port specification is optional.

25.6. CONFIGURING RSYSLOG ON A LOGGING SERVER

The rsyslog service provides facilities both for running a logging server and for configuring individual

systems to send their log files to the logging server. See Example 25.12, “Reliable Forwarding of Log

Messages to a Server” for information on client rsyslog configuration.

The rsyslog service must be installed on the system that you intend to use as a logging server and all systems that will be configured to send logs to it. Rsyslog is installed by default in Red Hat

Enterprise Linux 6. If required, to ensure that it is, enter the following command as root:

~]# yum install rsyslog

617

Deployment Guide

The default protocol and port for syslog traffic is UDP and 514, as listed in the /etc/services file.

However, rsyslog defaults to using TCP on port 514. In the configuration file, /etc/rsyslog.conf,

TCP is indicated by @@.

Other ports are sometimes used in examples, however SELinux is only configured to allow sending and receiving on the following ports by default:

~]# semanage port -l | grep syslog syslogd_port_t tcp 6514, 601 syslogd_port_t udp 514, 6514, 601

The semanage utility is provided as part of the policycoreutils-python package. If required, install the package as follows:

~]# yum install policycoreutils-python

In addition, by default the SELinux type for rsyslog, rsyslogd_t, is configured to permit sending and receiving to the remote shell (rsh) port with SELinux type rsh_port_t, which defaults to TCP on port

514. Therefore it is not necessary to use semanage to explicitly permit TCP on port 514. For example, to check what SELinux is set to permit on port 514, enter a command as follows:

~]# semanage port -l | grep 514 output omitted rsh_port_t tcp 514 syslogd_port_t tcp 6514, 601 syslogd_port_t udp 514, 6514, 601

For more information on SELinux, see Red Hat Enterprise Linux 6 SELinux User Guide .

Perform the steps in the following procedures on the system that you intend to use as your logging server. All steps in these procedure must be made as the root user.

Procedure 25.5. Configure SELinux to Permit rsyslog Traffic on a Port

If required to use a new port for rsyslog traffic, follow this procedure on the logging server and the clients. For example, to send and receive TCP traffic on port 10514, proceed as follows:

1. ~]# semanage port -a -t syslogd_port_t -p tcp 10514

2. Review the SELinux ports by entering the following command:

~]# semanage port -l | grep syslog

3. If the new port was already configured in /etc/rsyslog.conf, restart rsyslog now for the change to take effect:

~]# service rsyslog restart

4. Verify which ports rsyslog is now listening to:

~]# netstat -tnlp | grep rsyslog tcp 0 0 0.0.0.0:10514 0.0.0.0:* LISTEN

2528/rsyslogd

618

CHAPTER 25. VIEWING AND MANAGING LOG FILES tcp 0 0 :::10514 :::* LISTEN

2528/rsyslogd

See the semanage-port(8) manual page for more information on the semanage port command.

Procedure 25.6. Configuring The iptables Firewall

Configure the iptables firewall to allow incoming rsyslog traffic. For example, to allow TCP traffic on port 10514, proceed as follows:

1. Open the /etc/sysconfig/iptables file in a text editor.

2. Add an INPUT rule allowing TCP traffic on port 10514 to the file. The new rule must appear before any INPUT rules that REJECT traffic.

-A INPUT -m state --state NEW -m tcp -p tcp --dport 10514 -j ACCEPT

3. Save the changes to the /etc/sysconfig/iptables file.

4. Restart the iptables service for the firewall changes to take effect.

~]# service iptables restart

Procedure 25.7. Configuring rsyslog to Receive and Sort Remote Log Messages

1. Open the /etc/rsyslog.conf file in a text editor and proceed as follows: a. Add these lines below the modules section but above the Provides UDP syslog

reception section:

# Define templates before the rules that use them

### Per-Host Templates for Remote Systems ###

$template TmplAuthpriv,

"/var/log/remote/auth/%HOSTNAME%/%PROGRAMNAME:::secpathreplace%.log"

$template TmplMsg,

"/var/log/remote/msg/%HOSTNAME%/%PROGRAMNAME:::secpathreplace%.log" b. Replace the default Provides TCP syslog reception section with the following:

# Provides TCP syslog reception

$ModLoad imtcp

# Adding this ruleset to process remote messages

$RuleSet remote1 authpriv.* ?TmplAuthpriv

*.info;mail.none;authpriv.none;cron.none ?TmplMsg

$RuleSet RSYSLOG_DefaultRuleset #End the rule set by switching back to the default rule set

$InputTCPServerBindRuleset remote1 #Define a new input and bind it to the "remote1" rule set

$InputTCPServerRun 10514

619

Deployment Guide

Save the changes to the /etc/rsyslog.conf file.

2. The rsyslog service must be running on both the logging server and the systems attempting to log to it.

a. Use the service command to start the rsyslog service.

~]# service rsyslog start b. To ensure the rsyslog service starts automatically in future, enter the following command as root:

~]# chkconfig rsyslog on

Your log server is now configured to receive and store log files from the other systems in your environment.

25.6.1. Using The New Template Syntax on a Logging Server

Rsyslog 7 has a number of different templates styles. The string template most closely resembles the legacy format. Reproducing the templates from the example above using the string format would look as follows: template(name="TmplAuthpriv" type="string"

string="/var/log/remote/auth/%HOSTNAME%/%PROGRAMNAME:::secpathreplace%.log"

) template(name="TmplMsg" type="string"

string="/var/log/remote/msg/%HOSTNAME%/%PROGRAMNAME:::secpathreplace%.log"

)

These templates can also be written in the list format as follows: template(name="TmplAuthpriv" type="list") {

constant(value="/var/log/remote/auth/")

property(name="hostname")

constant(value="/")

property(name="programname" SecurePath="replace")

constant(value=".log")

} template(name="TmplMsg" type="list") {

constant(value="/var/log/remote/msg/")

property(name="hostname")

constant(value="/")

property(name="programname" SecurePath="replace")

constant(value=".log")

}

This template text format might be easier to read for those new to rsyslog and therefore can be easier to adapt as requirements change.

620

CHAPTER 25. VIEWING AND MANAGING LOG FILES

To complete the change to the new syntax, we need to reproduce the module load command, add a rule set, and then bind the rule set to the protocol, port, and ruleset: module(load="imtcp") ruleset(name="remote1"){

authpriv.* action(type="omfile" DynaFile="TmplAuthpriv")

*.info;mail.none;authpriv.none;cron.none action(type="omfile"

DynaFile="TmplMsg")

} input(type="imtcp" port="10514" ruleset="remote1")

25.7. USING RSYSLOG MODULES

Due to its modular design, rsyslog offers a variety of modules which provide additional functionality.

Note that modules can be written by third parties. Most modules provide additional inputs (see Input

Modules below) or outputs (see Output Modules below). Other modules provide special functionality specific to each module. The modules may provide additional configuration directives that become available after a module is loaded. To load a module, use the following syntax:

$ModLoad MODULE where $ModLoad is the global directive that loads the specified module and MODULE represents your desired module. For example, if you want to load the Text File Input Module (imfile) that enables

rsyslog to convert any standard text files into syslog messages, specify the following line in the

/etc/rsyslog.conf configuration file:

$ModLoad imfile

rsyslog offers a number of modules which are split into the following main categories:

Input Modules — Input modules gather messages from various sources. The name of an input module always starts with the im prefix, such as imfile.

Output Modules — Output modules provide a facility to issue message to various targets such as sending across a network, storing in a database, or encrypting. The name of an output module always starts with the om prefix, such as omsnmp, omrelp, and so on.

Parser Modules — These modules are useful in creating custom parsing rules or to parse malformed messages. With moderate knowledge of the C programming language, you can create your own message parser. The name of a parser module always starts with the pm prefix, such as pmrfc5424, pmrfc3164, and so on.

Message Modification Modules — Message modification modules change content of syslog messages. Names of these modules start with the mm prefix. Message Modification Modules such as mmanon, mmnormalize, or mmjsonparse are used for anonymization or normalization of messages.

String Generator Modules — String generator modules generate strings based on the message content and strongly cooperate with the template feature provided by rsyslog. For more

information on templates, see Section 25.3.3, “Templates”

. The name of a string generator module always starts with the sm prefix, such as smfile or smtradfile.

621

Deployment Guide

Library Modules — Library modules provide functionality for other loadable modules. These modules are loaded automatically by rsyslog when needed and cannot be configured by the user.

A comprehensive list of all available modules and their detailed description can be found at http://www.rsyslog.com/doc/rsyslog_conf_modules.html

.

WARNING

Note that when rsyslog loads any modules, it provides them with access to some of its functions and data. This poses a possible security threat. To minimize security risks, use trustworthy modules only.

25.7.1. Importing Text Files

The Text File Input Module, abbreviated as imfile, enables rsyslog to convert any text file into a stream of syslog messages. You can use imfile to import log messages from applications that create their own text file logs. To load imfile, add the following into /etc/rsyslog.conf:

$ModLoad imfile

$InputFilePollInterval int

It is sufficient to load imfile once, even when importing multiple files. The $InputFilePollInterval global directive specifies how often rsyslog checks for changes in connected text files. The default interval is

10 seconds, to change it, replace int with a time interval specified in seconds.

To identify the text files to import, use the following syntax in /etc/rsyslog.conf:

# File 1

$InputFileName path_to_file

$InputFileTag tag:

$InputFileStateFile state_file_name

$InputFileSeverity severity

$InputFileFacility facility

$InputRunFileMonitor

# File 2

$InputFileName path_to_file2

...

Four settings are required to specify an input text file: replace path_to_file with a path to the text file.

replace tag: with a tag name for this message.

replace state_file_name with a unique name for the state file. State files, which are stored in the rsyslog working directory, keep cursors for the monitored files, marking what partition has already been processed. If you delete them, whole files will be read in again. Make sure that you specify a name that does not already exist.

622

CHAPTER 25. VIEWING AND MANAGING LOG FILES add the $InputRunFileMonitor directive that enables the file monitoring. Without this setting, the text file will be ignored.

Apart from the required directives, there are several other settings that can be applied on the text input.

Set the severity of imported messages by replacing severity with an appropriate keyword. Replace facility with a keyword to define the subsystem that produced the message. The keywords for severity

and facility are the same as those used in facility/priority-based filters, see Section 25.3.1, “Filters”

.

Example 25.15. Importing Text Files

The Apache HTTP server creates log files in text format. To apply the processing capabilities of

rsyslog to apache error messages, first use the imfile module to import the messages. Add the following into /etc/rsyslog.conf:

$ModLoad imfile

$InputFileName /var/log/httpd/error_log

$InputFileTag apache-error:

$InputFileStateFile state-apache-error

$InputRunFileMonitor

25.7.2. Exporting Messages to a Database

Processing of log data can be faster and more convenient when performed in a database rather than with text files. Based on the type of DBMS used, choose from various output modules such as ommysql,

ompgsql, omoracle, or ommongodb. As an alternative, use the generic omlibdbi output module that relies on the libdbi library. The omlibdbi module supports database systems Firebird/Interbase, MS

SQL, Sybase, SQLite, Ingres, Oracle, mSQL, MySQL, and PostgreSQL.

Example 25.16. Exporting Rsyslog Messages to a Database

To store the rsyslog messages in a MySQL database, add the following into /etc/rsyslog.conf:

$ModLoad ommysql

$ActionOmmysqlServerPort 1234

*.* :ommysql:database-server,database-name,database-userid,databasepassword

First, the output module is loaded, then the communication port is specified. Additional information, such as name of the server and the database, and authentication data, is specified on the last line of the above example.

25.7.3. Enabling Encrypted Transport

Confidentiality and integrity in network transmissions can be provided by either the TLS or GSSAPI encryption protocol.

Transport Layer Security (TLS) is a cryptographic protocol designed to provide communication security over the network. When using TLS, rsyslog messages are encrypted before sending, and mutual authentication exists between the sender and receiver.

623

Deployment Guide

Generic Security Service API (GSSAPI) is an application programming interface for programs to access security services. To use it in connection with rsyslog you must have a functioning Kerberos environment.

25.7.4. Using RELP

Reliable Event Logging Protocol (RELP) is a networking protocol for data logging in computer networks.

It is designed to provide reliable delivery of event messages, which makes it useful in environments where message loss is not acceptable.

To configure RELP, first install the rsyslog-relp package both on the server and the client:

~]# yum install rsyslog-relp

Then, configure both the server and the client.

1. To configure the client, configure: loading the required modules the TCP input port the transport settings by adding the following configuration to the /etc/rsyslog.conf file:

$ModLoad omrelp

$ModLoad imuxsock

$ModLoad imtcp

$InputTCPServerRun "port"

*.* :omrelp:"target_IP":"target_port"

Replace port to start a listener at the required port.

Replace target_IP and target_port with the IP address and port that identify the target server.

2. To configure the server: configure loading the modules configure the TCP input similarly to the client configuration configure the rules and choose an action to be performed by adding the following configuration to the /etc/rsyslog.conf file:

$ModLoad imuxsock

$ModLoad imrelp

$RuleSet relp

*.* "log_path"

$InputRELPServerBindRuleset relp

$InputRELPServerRun "target_port"

Replace target_port with the same value as on the clients.

624

CHAPTER 25. VIEWING AND MANAGING LOG FILES

In the previous example, log_path specifies the path for storing messages.

25.8. DEBUGGING RSYSLOG

To run rsyslogd in debugging mode, use the following command:

rsyslogd -dn

With this command, rsyslogd produces debugging information and prints it to the standard output. The

-n stands for "no fork". You can modify debugging with environmental variables, for example, you can store the debug output in a log file. Before starting rsyslogd, type the following on the command line: export RSYSLOG_DEBUGLOG="path" export RSYSLOG_DEBUG="Debug"

Replace path with a desired location for the file where the debugging information will be logged. For a complete list of options available for the RSYSLOG_DEBUG variable, see the related section in the

rsyslogd(8) manual page.

To check if syntax used in the /etc/rsyslog.conf file is valid use:

rsyslogd -N 1

Where 1 represents level of verbosity of the output message. This is a forward compatibility option because currently, only one level is provided. However, you must add this argument to run the validation.

25.9. MANAGING LOG FILES IN A GRAPHICAL ENVIRONMENT

As an alternative to the aforementioned command-line utilities, Red Hat Enterprise Linux 6 provides an accessible GUI for managing log messages.

25.9.1. Viewing Log Files

Most log files are stored in plain text format. You can view them with any text editor such as Vi or

Emacs. Some log files are readable by all users on the system; however, root privileges are required to read most log files.

To view system log files in an interactive, real-time application, use the Log File Viewer.

NOTE

In order to use the Log File Viewer, first ensure the gnome-system-log package is installed on your system by running, as root:

~]# yum install gnome-system-log

The gnome-system-log package is provided by the Optional subscription channel that

must be enabled before installation. See Section 8.4.8, “Adding the Optional and

Supplementary Repositories” for more information on Red Hat additional channels. For

more information on installing packages with Yum, see Section 8.2.4, “Installing

Packages” .

625

Deployment Guide

After you have installed the gnome-system-log package, open the Log File Viewer by clicking

ApplicationsSystem ToolsLog File Viewer, or type the following command at a shell prompt:

~]$ gnome-system-log

The application only displays log files that exist; thus, the list might differ from the one shown in

Figure 25.2, “Log File Viewer”

.

Figure 25.2. Log File Viewer

The Log File Viewer application lets you filter any existing log file. Click on Filters from the menu and select Manage Filters to define or edit the desired filter.

626

CHAPTER 25. VIEWING AND MANAGING LOG FILES

Figure 25.3. Log File Viewer - Filters

Adding or editing a filter lets you define its parameters as is shown in Figure 25.4, “Log File Viewer defining a filter” .

Figure 25.4. Log File Viewer - defining a filter

When defining a filter, the following parameters can be edited:

Name — Specifies the name of the filter.

Regular Expression — Specifies the regular expression that will be applied to the log file and will attempt to match any possible strings of text in it.

Effect

627

Deployment Guide

Highlight — If checked, the found results will be highlighted with the selected color. You may select whether to highlight the background or the foreground of the text.

Hide — If checked, the found results will be hidden from the log file you are viewing.

When you have at least one filter defined, it can be selected from the Filters menu and it will automatically search for the strings you have defined in the filter and highlight or hide every successful match in the log file you are currently viewing.

Figure 25.5. Log File Viewer - enabling a filter

When you select the Show matches only option, only the matched strings will be shown in the log file you are currently viewing.

25.9.2. Adding a Log File

To add a log file you want to view in the list, select FileOpen. This will display the Open Log window

where you can select the directory and file name of the log file you want to view. Figure 25.6, “Log File

Viewer - adding a log file” illustrates the Open Log window.

628

CHAPTER 25. VIEWING AND MANAGING LOG FILES

Figure 25.6. Log File Viewer - adding a log file

Click on the Open button to open the file. The file is immediately added to the viewing list where you can select it and view its contents.

NOTE

The Log File Viewer also allows you to open log files zipped in the .gz format.

25.9.3. Monitoring Log Files

Log File Viewer monitors all opened logs by default. If a new line is added to a monitored log file, the log name appears in bold in the log list. If the log file is selected or displayed, the new lines appear in bold at

the bottom of the log file. Figure 25.7, “Log File Viewer - new log alert” illustrates a new alert in the cron

log file and in the messages log file. Clicking on the cron log file displays the logs in the file with the new lines in bold.

629

Deployment Guide

Figure 25.7. Log File Viewer - new log alert

25.10. ADDITIONAL RESOURCES

For more information on how to configure the rsyslog daemon and how to locate, view, and monitor log files, see the resources listed below.

Installed Documentation

rsyslogd(8) — The manual page for the rsyslogd daemon documents its usage.

rsyslog.conf(5) — The manual page named rsyslog.conf documents available configuration options.

logrotate(8) — The manual page for the logrotate utility explains in greater detail how to configure and use it.

Online Documentation

The rsyslog home page offers additional documentation, configuration examples, and video tutorials.

Make sure to consult the documents relevant to the version you are using: rsyslog version 5 documentation on the rsyslog home page — The default version of rsyslog in

Red Hat Enterprise Linux 6 is version 5.

rsyslog version 7 documentation on the rsyslog home page — Version 7 of rsyslog is available for Red Hat Enterprise Linux 6 in the rsyslog7 package.

Description of queues on the rsyslog Home Page — General information on various types of message queues and their usage.

See Also

Chapter 4, Gaining Privileges

documents how to gain administrative privileges by using the su

630

CHAPTER 25. VIEWING AND MANAGING LOG FILES

Chapter 4, Gaining Privileges documents how to gain administrative privileges by using the su and sudo commands.

631

Deployment Guide

CHAPTER 26. UPGRADING MYSQL

Red Hat is committed to fully supporting the upstream version of MySQL, which is currently included in

Red Hat Enterprise Linux, until the end of production phase 3, as long as upstream security and bug fixes are available. For overview of Red Hat Enterprise Linux Life Cycle, see https://access.redhat.com/support/policy/updates/errata#Production_2_Phase .

More recent versions of MySQL, MySQL 5.6 and MySQL 5.7, are provided as the rh-mysql56 and rhmysql57 Software Collections. These components are part of Red Hat Software Collections, available for all supported releases of Red Hat Enterprise Linux 6 on AMD64 and Intel 64 architectures.

For information on how to get access to Red Hat Software Collections, see the Red Hat Software

Collections Release Notes .

See the Red Hat Software Collections Product Life Cycle document for information regarding length of support for individual components.

Note that you cannot directly migrate from MySQL 5.1 to the currently supported versions. Refer to detailed procedures how to migrate from MySQL 5.1 to MySQL 5.5

, from MySQL 5.5 to MySQL 5.6

, and from MySQL 5.6 to MySQL 5.7

.

632

CHAPTER 27. AUTOMATING SYSTEM TASKS

CHAPTER 27. AUTOMATING SYSTEM TASKS

Tasks, also known as jobs, can be configured to run automatically within a specified period of time, on a specified date, or when the system load average decreases below 0.8.

Red Hat Enterprise Linux is pre-configured to run important system tasks to keep the system updated.

For example, the slocate database used by the locate command is updated daily. A system administrator can use automated tasks to perform periodic backups, monitor the system, run custom scripts, and so on.

Red Hat Enterprise Linux comes with the following automated task utilities: cron, anacron, at, and

batch.

Every utility is intended for scheduling a different job type: while Cron and Anacron schedule recurring

jobs, At and Batch schedule one-time jobs (see

Section 27.1, “Cron and Anacron”

and Section 27.2, “At and Batch” respectively).

27.1. CRON AND ANACRON

Both, Cron and Anacron, are daemons that can schedule execution of recurring tasks to a certain point in time defined by the exact time, day of the month, month, day of the week, and week.

Cron jobs can run as often as every minute. However, the utility assumes that the system is running continuously and if the system is not on at the time when a job is scheduled, the job is not executed.

On the other hand, Anacron remembers the scheduled jobs if the system is not running at the time when the job is scheduled. The job is then exectuted as soon as the system is up. However, Anacron can only run a job once a day.

27.1.1. Installing Cron and Anacron

To install Cron and Anacron, you need to install the cronie package with Cron and the cronie-anacron package with Anacron (cronie-anacron is a sub-package of cronie).

To determine if the packages are already installed on your system, issue the rpm -q cronie

cronie-anacron command. The command returns full names of the cronie and cronie-anacron packages if already installed or notifies you that the packages are not available.

To install the packages, use the yum command in the following form:

yum install package

For example, to install both Cron and Anacron, type the following at a shell prompt:

~]# yum install cronie cronie-anacron

Note that you must have superuser privileges (that is, you must be logged in as root) to run this command. For more information on how to install new packages in Red Hat Enterprise Linux, see

Section 8.2.4, “Installing Packages”

.

27.1.2. Running the Crond Service

The cron and anacron jobs are both picked by the crond service. This section provides information on how to start, stop, and restart the crond service, and shows how to enable it in a particular runlevel. For

633

Deployment Guide more information on the concept of runlevels and how to manage system services in Red Hat

Enterprise Linux in general, see Chapter 12, Services and Daemons .

27.1.2.1. Starting and Stopping the Cron Service

To determine if the service is running, use the command service crond status.

To run the crond service in the current session, type the following at a shell prompt as root:

service crond start

To configure the service to be automatically started at boot time, use the following command:

chkconfig crond on

This command enables the service in runlevel 2, 3, 4, and 5. Alternatively, you can use the Service

Configuration utility as described in

Section 12.2.1.1, “Enabling and Disabling a Service”

.

27.1.2.2. Stopping the Cron Service

To stop the crond service, type the following at a shell prompt as root

service crond stop

To disable starting the service at boot time, use the following command:

chkconfig crond off

This command disables the service in all runlevels. Alternatively, you can use the Service

Configuration utility as described in

Section 12.2.1.1, “Enabling and Disabling a Service”

.

27.1.2.3. Restarting the Cron Service

To restart the crond service, type the following at a shell prompt:

service crond restart

This command stops the service and starts it again in quick succession.

27.1.3. Configuring Anacron Jobs

The main configuration file to schedule jobs is the /etc/anacrontab file, which can be only accessed by the root user. The file contains the following:

SHELL=/bin/sh

PATH=/sbin:/bin:/usr/sbin:/usr/bin

MAILTO=root

# the maximal random delay added to the base delay of the jobs

RANDOM_DELAY=45

# the jobs will be started during the following hours only

START_HOURS_RANGE=3-22

634

CHAPTER 27. AUTOMATING SYSTEM TASKS

#period in days delay in minutes job-identifier command

1 5 cron.daily nice run-parts /etc/cron.daily

7 25 cron.weekly nice run-parts /etc/cron.weekly

@monthly 45 cron.monthly nice run-parts /etc/cron.monthly

The first three lines define the variables that configure the environment in which the anacron tasks run:

SHELL — shell environment used for running jobs (in the example, the Bash shell)

PATH — paths to executable programs

MAILTO — user name of the user who receives the output of the anacron jobs by email

If the MAILTO variable is not defined (MAILTO=), the email is not sent.

The next two variables modify the scheduled time for the defined jobs:

RANDOM_DELAY — maximum number of minutes that will be added to the delay in minutes variable which is specified for each job

The minimum delay value is set, by default, to 6 minutes.

If RANDOM_DELAY is, for example, set to 12, then between 6 and 12 minutes are added to the

delay in minutes for each job in that particular anacrontab. RANDOM_DELAY can also be set to a value below 6, including 0. When set to 0, no random delay is added. This proves to be useful when, for example, more computers that share one network connection need to download the same data every day.

START_HOURS_RANGE — interval, when scheduled jobs can be run, in hours

In case the time interval is missed, for example due to a power failure, the scheduled jobs are not executed that day.

The remaining lines in the /etc/anacrontab file represent scheduled jobs and follow this format: period in days delay in minutes job-identifier command

period in days — frequency of job execution in days

The property value can be defined as an integer or a macro (@daily, @weekly, @monthly), where @daily denotes the same value as integer 1, @weekly the same as 7, and @monthly specifies that the job is run once a month regarless of the length of the month.

delay in minutes — number of minutes anacron waits before executing the job

The property value is defined as an integer. If the value is set to 0, no delay applies.

job-identifier — unique name referring to a particular job used in the log files

command — command to be executed

The command can be either a command such as ls /proc >> /tmp/proc or a command which executes a custom script.

Any lines that begin with a hash sign (#) are comments and are not processed.

635

Deployment Guide

27.1.3.1. Examples of Anacron Jobs

The following example shows a simple /etc/anacrontab file:

SHELL=/bin/sh

PATH=/sbin:/bin:/usr/sbin:/usr/bin

MAILTO=root

# the maximal random delay added to the base delay of the jobs

RANDOM_DELAY=30

# the jobs will be started during the following hours only

START_HOURS_RANGE=16-20

#period in days delay in minutes job-identifier command

1 20 dailyjob nice run-parts /etc/cron.daily

7 25 weeklyjob /etc/weeklyjob.bash

@monthly 45 monthlyjob ls /proc >> /tmp/proc

All jobs defined in this anacrontab file are randomly delayed by 6-30 minutes and can be executed between 16:00 and 20:00.

The first defined job is triggered daily between 16:26 and 16:50 (RANDOM_DELAY is between 6 and 30 minutes; the delay in minutes property adds 20 minutes). The command specified for this job executes all present programs in the /etc/cron.daily directory using the run-parts script (the run-parts scripts accepts a directory as a command-line argument and sequentially executes every program in the directory).

The second job executes the weeklyjob.bash script in the /etc directory once a week.

The third job runs a command, which writes the contents of /proc to the /tmp/proc file (ls /proc

>> /tmp/proc) once a month.

27.1.4. Configuring Cron Jobs

The configuration file for cron jobs is the /etc/crontab, which can be only modified by the root user.

The file contains the following:

SHELL=/bin/bash

PATH=/sbin:/bin:/usr/sbin:/usr/bin

MAILTO=root

HOME=/

# For details see man 4 crontabs

# Example of job definition:

# .---------------- minute (0 - 59)

# | .------------- hour (0 - 23)

# | | .---------- day of month (1 - 31)

# | | | .------- month (1 - 12) OR jan,feb,mar,apr ...

# | | | | .---- day of week (0 - 6) (Sunday=0 or 7) OR sun,mon,tue,wed,thu,fri,sat

# | | | | |

# * * * * * username command to be executed

The first three lines contain the same variable definitions as an anacrontab file: SHELL, PATH, and

MAILTO. For more information about these variables, see Section 27.1.3, “Configuring Anacron Jobs” .

636

CHAPTER 27. AUTOMATING SYSTEM TASKS

In addition, the file can define the HOME variable. The HOME variable defines the directory, which will be used as the home directory when executing commands or scripts run by the job.

The remaining lines in the /etc/crontab file represent scheduled jobs and have the following format: minute hour day month day of week username command

The following define the time when the job is to be run:

minute — any integer from 0 to 59

hour — any integer from 0 to 23

day — any integer from 1 to 31 (must be a valid day if a month is specified)

month — any integer from 1 to 12 (or the short name of the month such as jan or feb)

day of week — any integer from 0 to 7, where 0 or 7 represents Sunday (or the short name of the week such as sun or mon)

The following define other job properties:

username — specifies the user under which the jobs are run

command — the command to be executed

The command can be either a command such as ls /proc /tmp/proc or a command which executes a custom script.

For any of the above values, an asterisk (*) can be used to specify all valid values. If you, for example, define the month value as an asterisk, the job will be executed every month within the constraints of the other values.

A hyphen (-) between integers specifies a range of integers. For example, 1-4 means the integers 1, 2,

3, and 4.

A list of values separated by commas (,) specifies a list. For example, 3, 4, 6, 8 indicates exactly these four integers.

The forward slash (/) can be used to specify step values. The value of an integer will be skipped within a range following the range with /integer. For example, minute value defined as 0-59/2 denotes every other minute in the minute field. Step values can also be used with an asterisk. For instance, if the month value is defined as */3, the task will run every third month.

Any lines that begin with a hash sign (#) are comments and are not processed.

Users other than root can configure cron tasks with the crontab utility. The user-defined crontabs are stored in the /var/spool/cron/ directory and executed as if run by the users that created them.

To create a crontab as a user, login as that user and type the command crontab -e to edit the user's crontab with the editor specified in the VISUAL or EDITOR environment variable. The file uses the same format as /etc/crontab. When the changes to the crontab are saved, the crontab is stored according to user name and written to the file /var/spool/cron/username. To list the contents of your crontab file, use the crontab -l command.

637

Deployment Guide

NOTE

Do not specify the user when defining a job with the crontab utility.

The /etc/cron.d/ directory contains files that have the same syntax as the /etc/crontab file. Only root is allowed to create and modify files in this directory.

NOTE

The cron daemon checks the /etc/anacrontab file, the /etc/crontab file, the

/etc/cron.d/ directory, and the /var/spool/cron/ directory every minute for changes and the detected changes are loaded into memory. It is therefore not necessary to restart the daemon after an anacrontab or a crontab file have been changed.

27.1.5. Controlling Access to Cron

To restrict the access to Cron, you can use the /etc/cron.allow and /etc/cron.deny files. These access control files use the same format with one user name on each line. Mind that no whitespace characters are permitted in either file.

If the cron.allow file exists, only users listed in the file are allowed to use cron, and the cron.deny file is ignored.

If the cron.allow file does not exist, users listed in the cron.deny file are not allowed to use Cron.

The Cron daemon (crond) does not have to be restarted if the access control files are modified. The access control files are checked each time a user tries to add or delete a cron job.

The root user can always use cron, regardless of the user names listed in the access control files.

You can control the access also through Pluggable Authentication Modules (PAM). The settings are stored in the /etc/security/access.conf file. For example, after adding the following line to the file, no other user but the root user can create crontabs:

-:ALL EXCEPT root :cron

The forbidden jobs are logged in an appropriate log file or, when using “crontab -e”, returned to the standard output. For more information, see access.conf.5 (that is, man 5 access.conf).

27.1.6. Black and White Listing of Cron Jobs

Black and white listing of jobs is used to define parts of a job that do not need to be executed. This is useful when calling the run-parts script on a Cron directory, such as /etc/cron.daily: if the user adds programs located in the directory to the job black list, the run-parts script will not execute these programs.

To define a black list, create a jobs.deny file in the directory that run-parts scripts will be executing from. For example, if you need to omit a particular program from /etc/cron.daily, create the

/etc/cron.daily/jobs.deny file. In this file, specify the names of the programs to be omitted from execution (only programs located in the same directory can be enlisted). If a job runs a command which runs the programs from the cron.daily directory, such as run-parts /etc/cron.daily, the programs defined in the jobs.deny file will not be executed.

638

CHAPTER 27. AUTOMATING SYSTEM TASKS

To define a white list, create a jobs.allow file.

The principles of jobs.deny and jobs.allow are the same as those of cron.deny and cron.allow described in section

Section 27.1.5, “Controlling Access to Cron” .

27.2. AT AND BATCH

While Cron is used to schedule recurring tasks, the At utility is used to schedule a one-time task at a specific time and the Batch utility is used to schedule a one-time task to be executed when the system load average drops below 0.8.

27.2.1. Installing At and Batch

To determine if the at package is already installed on your system, issue the rpm -q at command. The command returns the full name of the at package if already installed or notifies you that the package is not available.

To install the packages, use the yum command in the following form:

yum install package

To install At and Batch, type the following at a shell prompt:

~]# yum install at

Note that you must have superuser privileges (that is, you must be logged in as root) to run this command. For more information on how to install new packages in Red Hat Enterprise Linux, see

Section 8.2.4, “Installing Packages”

.

27.2.2. Running the At Service

The At and Batch jobs are both picked by the atd service. This section provides information on how to start, stop, and restart the atd service, and shows how to enable it in a particular runlevel. For more information on the concept of runlevels and how to manage system services in Red Hat Enterprise Linux in general, see

Chapter 12, Services and Daemons .

27.2.2.1. Starting and Stopping the At Service

To determine if the service is running, use the command service atd status.

To run the atd service in the current session, type the following at a shell prompt as root:

service atd start

To configure the service to start automatically at boot, use the following command:

chkconfig atd on

NOTE

It is recommended to start the service at boot automatically.

639

Deployment Guide

This command enables the service in runlevel 2, 3, 4, and 5. Alternatively, you can use the Service

Configuration utility as described in

Section 12.2.1.1, “Enabling and Disabling a Service”

.

27.2.2.2. Stopping the At Service

To stop the atd service, type the following at a shell prompt as root

service atd stop

To disable starting the service at boot time, use the following command:

chkconfig atd off

This command disables the service in all runlevels. Alternatively, you can use the Service

Configuration utility as described in

Section 12.2.1.1, “Enabling and Disabling a Service”

.

27.2.2.3. Restarting the At Service

To restart the atd service, type the following at a shell prompt:

service atd restart

This command stops the service and starts it again in quick succession.

27.2.3. Configuring an At Job

To schedule a one-time job for a specific time with the At utility, do the following:

1. On the command line, type the command at TIME, where TIME is the time when the command is to be executed.

The TIME argument can be defined in any of the following formats:

HH:MM specifies the exact hour and minute; For example, 04:00 specifies 4:00 a.m.

midnight specifies 12:00 a.m.

noon specifies 12:00 p.m.

teatime specifies 4:00 p.m.

MONTHDAYYEAR format; For example, January 15 2012 specifies the 15th day of January in the year 2012. The year value is optional.

MMDDYY, MM/DD/YY, or MM.DD.YY formats; For example, 011512 for the 15th day of

January in the year 2012.

now + TIME where TIME is defined as an integer and the value type: minutes, hours, days, or weeks. For example, now + 5 days specifies that the command will be executed at the same time five days from now.

The time must be specified first, followed by the optional date. For more information about the time format, see the /usr/share/doc/at-<version>/timespec text file.

640

CHAPTER 27. AUTOMATING SYSTEM TASKS

If the specified time has past, the job is executed at the time the next day.

2. In the displayed at> prompt, define the job commands:

Type the command the job should execute and press Enter. Optionally, repeat the step to provide multiple commands.

Enter a shell script at the prompt and press Enter after each line in the script.

The job will use the shell set in the user's SHELL environment, the user's login shell, or

/bin/sh (whichever is found first).

3. Once finished, press Ctrl+D on an empty line to exit the prompt.

If the set of commands or the script tries to display information to standard output, the output is emailed to the user.

To view the list of pending jobs, use the atq command. See Section 27.2.5, “Viewing Pending Jobs”

for more information.

You can also restrict the usage of the at command. For more information, see Section 27.2.7,

“Controlling Access to At and Batch” for details.

27.2.4. Configuring a Batch Job

The Batch application executes the defined one-time tasks when the system load average decreases below 0.8.

To define a Batch job, do the following:

1. On the command line, type the command batch.

2. In the displayed at> prompt, define the job commands:

Type the command the job should execute and press Enter. Optionally, repeat the step to provide multiple commands.

Enter a shell script at the prompt and press Enter after each line in the script.

If a script is entered, the job uses the shell set in the user's SHELL environment, the user's login shell, or /bin/sh (whichever is found first).

3. Once finished, press Ctrl+D on an empty line to exit the prompt.

If the set of commands or the script tries to display information to standard output, the output is emailed to the user.

To view the list of pending jobs, use the atq command. See Section 27.2.5, “Viewing Pending Jobs”

for more information.

You can also restrict the usage of the batch command. For more information, see Section 27.2.7,

“Controlling Access to At and Batch” for details.

27.2.5. Viewing Pending Jobs

To view the pending At and Batch jobs, run the atq command. The atq command displays a list of

641

Deployment Guide pending jobs, with each job on a separate line. Each line follows the job number, date, hour, job class, and user name format. Users can only view their own jobs. If the root user executes the atq command, all jobs for all users are displayed.

27.2.6. Additional Command-Line Options

Additional command-line options for at and batch include the following:

Table 27.1. at and batch Command-Line Options

Option Description

-f Read the commands or shell script from a file instead of specifying them at the prompt.

Send email to the user when the job has been completed.

-m

-v Display the time that the job is executed.

27.2.7. Controlling Access to At and Batch

You can restrict the access to the at and batch commands using the /etc/at.allow and

/etc/at.deny files. These access control files use the same format defining one user name on each line. Mind that no whitespace are permitted in either file.

If the file at.allow exists, only users listed in the file are allowed to use at or batch, and the at.deny file is ignored.

If at.allow does not exist, users listed in at.deny are not allowed to use at or batch.

The at daemon (atd) does not have to be restarted if the access control files are modified. The access control files are read each time a user tries to execute the at or batch commands.

The root user can always execute at and batch commands, regardless of the content of the access control files.

27.3. ADDITIONAL RESOURCES

To learn more about configuring automated tasks, see the following installed documentation:

cron man page contains an overview of cron.

crontab man pages in sections 1 and 5:

The manual page in section 1 contains an overview of the crontab file.

The man page in section 5 contains the format for the file and some example entries.

anacron manual page contains an overview of anacron.

anacrontab manual page contains an overview of the anacrontab file.

642

CHAPTER 27. AUTOMATING SYSTEM TASKS

/usr/share/doc/at-<version>/timespec contains detailed information about the time values that can be used in cron job definitions.

at manual page contains descriptions of at and batch and their command-line options.

643

Deployment Guide

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT)

The Automatic Bug Reporting Tool, commonly abbreviated as ABRT, consists of the abrtd daemon and a number of system services and utilities to process, analyze, and report detected problems. The daemon runs silently in the background most of the time, and springs into action when an application crashes or a kernel oops is detected. The daemon then collects the relevant problem data such as a core file if there is one, the crashing application's command-line parameters, and other data of forensic utility.

For a brief overview of the most important ABRT components, see Table 28.1, “Basic ABRT components” .

IMPORTANT

For Red Hat Enterprise Linux 6.2, the Automatic Bug Reporting Tool has been upgraded to version 2.0. The ABRT 2-series brings major improvements to automatic bug detection and reporting.

Table 28.1. Basic ABRT components

Component Package abrtd abrt

Description

The ABRT daemon which runs under the root user as a background service.

abrt-applet abrt-gui abrt-gui abrt-gui

The program that receives messages from abrtd and informs you whenever a new problem occurs.

The GUI application that shows collected problem data and allows you to further process it.

abrt-cli abrt-ccpp abrt-oops abrt-cli abrt-addon-ccpp abrt-addon-kerneloops

The command-line interface that provides similar functionality to the GUI.

The ABRT service that provides the C/C++ problems analyzer.

The ABRT service that provides the kernel oopses analyzer.

abrt-vmcore abrt-addon-vmcore

[a]

The ABRT service that provides the kernel panic analyzer and reporter.

[a] The abrt-addon-vmcore package is provided by the Optional subscription channel. See Section 8.4.8, “Adding the

Optional and Supplementary Repositories” for more information on Red Hat additional channels.

ABRT currently supports detection of crashes in applications written in the C/C++ and Python languages, as well as kernel oopses. With Red Hat Enterprise Linux 6.3, ABRT can also detect kernel panics if the additional abrt-addon-vmcore package is installed and the kdump crash dumping mechanism is enabled and configured on the system accordingly.

ABRT is capable of reporting problems to a remote issue tracker. Reporting can be configured to

644

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT) happen automatically whenever an issue is detected, or problem data can be stored locally, reviewed, reported, and deleted manually by a user. The reporting tools can send problem data to a Bugzilla database, a Red Hat Technical Support (RHTSupport) site, upload it using FTP/SCP, email it, or write it to a file.

The part of ABRT which handles already-existing problem data (as opposed to, for example, creation of new problem data) has been factored out into a separate project, libreport. The libreport library provides a generic mechanism for analyzing and reporting problems, and it is used by applications other than ABRT. However, ABRT and libreport operation and configuration is closely integrated. They are therefore discussed as one in this document.

Whenever a problem is detected, ABRT compares it with all existing problem data and determines whether that same problem has been recorded. If it has been, the existing problem data is updated and the most recent (duplicate) problem is not recorded again. If this problem is not recognized by ABRT, a

problem data directory is created. A problem data directory typically consists of files such as:

analyzer, architecture, coredump, cmdline, executable, kernel, os_release, reason,

time and uid.

Other files, such as backtrace, can be created during analysis depending on which analyzer method is used and its configuration settings. Each of these files holds specific information about the system and the problem itself. For example, the kernel file records the version of the crashed kernel.

After the problem directory is created and problem data gathered, you can further process, analyze and report the problem using either the ABRT GUI, or the abrt-cli utility for the command line. For more

information about these tools, see

Section 28.2, “Using the Graphical User Interface”

and Section 28.3,

“Using the Command-Line Interface” respectively.

NOTE

If you do not use ABRT to further analyze and report the detected problems but instead you report problems using a legacy problem reporting tool, report, note that you can no longer file new bugs. The report utility can now only be used to attach new content to the already existing bugs in the RHTSupport or Bugzilla database. Use the following command to do so:

report [-v] --target target --ticket ID file

…where target is either strata for reporting to RHTSupport or bugzilla for reporting to

Bugzilla. ID stands for number identifying an existing problem case in the respective database, and file is a file containing information to be added to the problem case.

If you want to report new problems and you do not want to use abrt-cli, you can now use the report-cli utility instead of report. Issue the following command to let report-cli to guide you through the problem reporting process:

report-cli -r dump_directory

…where dump_directory is a problem data directory created by ABRT or some other application using libreport. For more information on report-cli, see man report-

cli.

28.1. INSTALLING ABRT AND STARTING ITS SERVICES

As a prerequisite for its use, the abrtd daemon requires the abrt user to exist for file system

645

646

Deployment Guide operations in the /var/spool/abrt directory. When the abrt package is installed, it automatically creates the abrt user whose UID and GID is 173, if such user does not already exist. Otherwise, the

abrt user can be created manually. In that case, any UID and GID can be chosen, because abrtd does not require a specific UID and GID.

As the first step in order to use ABRT, you should ensure that the abrt-desktop package is installed on your system by running the following command as the root user:

~]# yum install abrt-desktop

With abrt-desktop installed, you will be able to use ABRT only in its graphical interface. If you intend to use ABRT on the command line, install the abrt-cli package:

~]# yum install abrt-cli

See

Section 8.2.4, “Installing Packages”

for more information on how to install packages with the Yum package manager.

Your next step should be to verify that abrtd is running. The daemon is typically configured to start up at boot time. You can use the following command as root to verify its current status:

~]# service abrtd status abrtd (pid 1535) is running...

If the service command returns the abrt is stopped message, the daemon is not running. It can be started for the current session by entering this command:

~]# service abrtd start

Starting abrt daemon: [ OK ]

Similarly, you can follow the same steps to check and start up the abrt-ccpp service if you want ABRT to catch C/C++ crashes. To set ABRT to detect kernel oopses, use the same steps for the abrt-oops service. Note that this service cannot catch kernel oopses which cause the system to fail, to become unresponsive or to reboot immediately. To be able to detect such kernel oopses with ABRT, you need to

install the abrt-vmcore service. If you require this functionality, see Section 28.4.5, “Configuring ABRT to Detect a Kernel Panic” for more information.

When installing ABRT packages, all respective ABRT services are automatically enabled for

runlevels 3 and 5. You can disable or enable any ABRT service for the desired runlevels using the

chkconfig utility. See

Section 12.2.3, “Using the chkconfig Utility”

for more information.

WARNING

Please note that installing ABRT packages overwrites the

/proc/sys/kernel/core_pattern file which can contain a template used to name core dump files. The content of this file will be overwritten to:

|/usr/libexec/abrt-hook-ccpp %s %c %p %u %g %t e

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT)

Finally, if you run ABRT in a graphical desktop environment, you can verify that the ABRT

notification applet is running:

~]$ ps -el | grep abrt-applet

0 S 500 2036 1824 0 80 0 - 61604 poll_s ? 00:00:00 abrtapplet

If the ABRT notification applet is not running, you can start it manually in your current desktop session by running the abrt-applet program:

~]$ abrt-applet &

[1] 2261

The applet can be configured to start automatically when your graphical desktop session starts. You can ensure that the ABRT notification applet is added to the list of programs and selected to run at system startup by selecting the SystemPreferencesStartup Applications menu in the top panel.

Figure 28.1. Setting ABRT notification applet to run automatically.

28.2. USING THE GRAPHICAL USER INTERFACE

The ABRT daemon sends a broadcast D-Bus message whenever a problem report is created. If the

ABRT notification applet is running, it catches this message and displays an orange alarm icon in the

Notification Area. You can open the ABRT GUI application using this icon. As an alternative, you can display the ABRT GUI by selecting the ApplicationSystem ToolsAutomatic Bug Reporting

Tool menu item.

647

Deployment Guide

Alternatively, you can run the ABRT GUI from the command line as follows:

~]$ abrt-gui &

The ABRT GUI provides an easy and intuitive way of viewing, reporting and deleting of reported problems. The ABRT window displays a list of detected problems. Each problem entry consists of the name of the failing application, the reason why the application crashed, and the date of the last occurrence of the problem.

Figure 28.2. An example of running ABRT GUI.

If you double-click on a problem report line, you can access the detailed problem description and proceed with the process of determining how the problem should be analyzed, and where it should be reported.

648

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT)

Figure 28.3. A detailed problem data example

You are first asked to provide additional information about the problem which occurred. You should provide detailed information on how the problem happened and what steps should be done in order to reproduce it. In the next steps, choose how the problem will be analyzed and generate a backtrace depending on your configuration. You can skip the analysis and backtrace-generation steps but remember that developers need as much information about the problem as possible. You can always modify the backtrace and remove any sensitive information you do not want to provide before you send the problem data out.

649

Deployment Guide

Figure 28.4. Selecting how to analyze the problem

Figure 28.5. ABRT analyzing the problem

Next, choose how you want to report the issue. If you are using Red Hat Enterprise Linux, Red Hat

Customer Support is the preferred choice.

650

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT)

Figure 28.6. Selecting a problem reporter

If you choose to report to Red Hat Customer Support, and you have not configured this event yet, you will be warned that this event is not configured properly and you will be offered an option to do so.

Figure 28.7. Warning - missing Red Hat Customer Support configuration

Here, you need to provide your Red Hat login information (See Section 28.4.3, “Event Configuration in

ABRT GUI” for more information on how to acquire it and how to set this event.), otherwise you will fail to

report the problem.

651

Deployment Guide

Figure 28.8. Red Hat Customer Support configuration window

After you have chosen a reporting method and have it set up correctly, review the backtrace and confirm the data to be reported.

Figure 28.9. Reviewing the problem backtrace

652

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT)

Figure 28.10. Confirming the data to report

Finally, the problem data is sent to the chosen destination, and you can now decide whether to continue with reporting the problem using another available method or finish your work on this problem. If you have reported your problem to the Red Hat Customer Support database, a problem case is filed in the database. From now on, you will be informed about the problem resolution progress via email you provided during the process of reporting. You can also oversee the problem case using the URL that is provided to you by ABRT GUI when the problem case is created, or via emails received from Red Hat

Support.

653

Deployment Guide

Figure 28.11. Problem is being reported to the Red Hat Customer Support database

28.3. USING THE COMMAND-LINE INTERFACE

Problem data saved by abrtd can be viewed, reported, and deleted using the command-line interface.

General usage of the abrt-cli tool can be described using the following syntax:

abrt-cli [--version] command [args]

…where args stands for a problem data directory and/or options modifying the commands, and command is one of the following sub-commands:

list — lists problems and views the problem data.

report — analyzes and reports problems.

rm — removes unneeded problems.

info — provides information about a particular problem.

To display help on particular abrt-cli command use:

abrt-cli command --help

The rest of the commands used with abrt-cli are described in the following sections.

28.3.1. Viewing Problems

To view detected problems, enter the abrt-cli list command:

654

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT)

~]# abrt-cli list

Directory: /var/spool/abrt/ccpp-2011-09-13-10:18:14-2895 count: 2 executable: /usr/bin/gdb package: gdb-7.2-48.el6

time: Tue 13 Sep 2011 10:18:14 AM CEST uid: 500

Directory: /var/spool/abrt/ccpp-2011-09-21-18:18:07-2841 count: 1 executable: /bin/bash package: bash-4.1.2-8.el6

time: Wed 21 Sep 2011 06:18:07 PM CEST uid: 500

Directory — Shows the problem data directory that contains all information about the problem.

count — Shows how many times this particular problem occurred.

executable — Indicates which binary or executable script crashed.

package — Shows the name of the package that contains the program that caused the problem.

time — Shows the date and time of the last occurrence of the problem.

uid — Shows the ID of the user which ran the program that crashed.

The following table shows options available with the abrt-cli list command. All options are mutually inclusive so you can combine them according to your need. The command output will be the most comprehensive if you combine all options, and you will receive the least details if you use no additional options.

Table 28.2. The abrt-cli list command options

Option Description

With no additional option, the abrt-cli list command displays only basic information for problems that have not been reported yet.

-d , --detailed

-f

-v

,

,

--full

--verbose

Displays all stored information about problems listed, including a backtrace if it has already been generated.

Displays basic information for all problems including the already-reported ones.

Provides additional information on its actions.

If you want to view information just about one particular problem, you can use the command:

abrt-cli info directory

655

Deployment Guide

…where directory stands for the problem data directory of the problem that is being viewed. The following table shows options available with the abrt-cli info command. All options are mutually inclusive so you can combine them according to your need. The command output will be the most comprehensive if you combine all options, and you will receive the least details if you use no additional options.

Table 28.3. The abrt-cli info command options

Option Description

-d

-v

,

,

--detailed

--verbose

With no additional option, the abrt-cli info command displays only basic information for the problem specified by the problem data directory argument.

Displays all stored information for the problem specified by the problem data directory argument, including a backtrace if it has already been generated.

abrt-cli info provides additional information on its actions.

28.3.2. Reporting Problems

To report a certain problem, use the command:

abrt-cli report directory

...where directory stands for the problem data directory of the problem that is being reported. For example:

~]$ abrt-cli report /var/spool/abrt/ccpp-2011-09-13-10:18:14-2895

How you would like to analyze the problem?

1) Collect .xsession-errors

2) Local GNU Debugger

Select analyzer: _

ABRT prompts you to select an analyzer event for the problem that is being reported. After selecting an event, the problem is analyzed. This can take a considerable amount of time. When the problem report is ready, abrt-cli opens a text editor with the content of the report. You can see what is being reported, and you can fill in instructions on how to reproduce the crash and other comments. You should also check the backtrace, because the backtrace might be sent to a public server and viewed by anyone, depending on the problem reporter event settings.

NOTE

You can choose which text editor is used to check the reports. abrt-cli uses the editor defined in the ABRT_EDITOR environment variable. If the variable is not defined, it checks the VISUAL and EDITOR variables. If none of these variables is set, vi is used. You can set the preferred editor in your .bashrc configuration file. For example, if you prefer

GNU Emacs, add the following line to the file: export VISUAL=emacs

656

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT)

When you are done with the report, save your changes and close the editor. You will be asked which of the configured ABRT reporter events you want to use to send the report.

How would you like to report the problem?

1) Logger

2) Red Hat Customer Support

Select reporter(s): _

After selecting a reporting method, you can proceed with reviewing data to be sent with the report. The following table shows options available with the abrt-cli report command.

Table 28.4. The abrt-cli report command options

Option Description

With no additional option, the abrt-cli report command provides the usual output.

-v , --verbose abrt-cli report provides additional information on its actions.

28.3.3. Deleting Problems

If you are certain that you do not want to report a particular problem, you can delete it. To delete a problem so ABRT does not keep information about it, use the command:

abrt-cli rm directory

...where directory stands for the problem data directory of the problem being deleted. For example:

~]$ abrt-cli rm /var/spool/abrt/ccpp-2011-09-12-18:37:24-4413 rm '/var/spool/abrt/ccpp-2011-09-12-18:37:24-4413'

NOTE

Note that ABRT performs a detection of duplicate problems by comparing new problems with all locally saved problems. For a repeating crash, ABRT requires you to act upon it only once. However, if you delete the crash dump of that problem, the next time this specific problem occurs, ABRT will treat it as a new crash: ABRT will alert you about it, prompt you to fill in a description, and report it. To avoid having ABRT notifying you about a recurring problem, do not delete its problem data.

The following table shows options available with the abrt-cli rm command.

Table 28.5. The abrt-cli rm command options

Option Description

With no additional option, the abrt-cli rm command removes the specified problem data directory with all its contents.

657

Deployment Guide

Option

-v , --verbose

Description abrt-cli rm provides additional information on its actions.

28.4. CONFIGURING ABRT

A problem life cycle is driven by events in ABRT. For example:

Event 1 — a problem data directory is created.

Event 2 — problem data is analyzed.

Event 3 — a problem is reported to Bugzilla.

When a problem is detected and its defining data is stored, the problem is processed by running events on the problem's data directory. For more information on events and how to define one, see

Section 28.4.1, “ABRT Events”

. Standard ABRT installation currently supports several default events that

can be selected and used during problem reporting process. See Section 28.4.2, “Standard ABRT

Installation Supported Events” to see the list of these events.

Upon installation, ABRT and libreport place their respective configuration files into the several directories on a system:

/etc/libreport/ — contains the report_event.conf main configuration file. More information about this configuration file can be found in

Section 28.4.1, “ABRT Events”

.

/etc/libreport/events/ — holds files specifying the default setting of predefined events.

/etc/libreport/events.d/ — keeps configuration files defining events.

/etc/libreport/plugins/ — contains configuration files of programs that take part in events.

/etc/abrt/ — holds ABRT specific configuration files used to modify the behavior of ABRT's services and programs. More information about certain specific configuration files can be found in

Section 28.4.4, “ABRT Specific Configuration”

.

/etc/abrt/plugins/ — keeps configuration files used to override the default setting of

ABRT's services and programs. For more information on some specific configuration files see

Section 28.4.4, “ABRT Specific Configuration” .

28.4.1. ABRT Events

Each event is defined by one rule structure in a respective configuration file. The configuration files are typically stored in the /etc/libreport/events.d/ directory. These configuration files are used by the main configuration file, /etc/libreport/report_event.conf.

The /etc/libreport/report_event.conf file consists of include directives and rules. Rules are typically stored in other configuration files in the /etc/libreport/events.d/ directory. In the standard installation, the /etc/libreport/report_event.conf file contains only one include directive: include events.d/*.conf

658

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT)

If you would like to modify this file, please note that it respects shell metacharacters (*,$,?, etc.) and interprets relative paths relatively to its location.

Each rule starts with a line with a non-space leading character, all subsequent lines starting with the

space character or the tab character are considered a part of this rule. Each rule consists of two parts, a condition part and a program part. The condition part contains conditions in one of the following forms:

VAR=VAL,

VAR!=VAL, or

VAL~=REGEX

…where:

VAR is either the EVENT key word or a name of a problem data directory element (such as

executable, package, hostname, etc.),

VAL is either a name of an event or a problem data element, and

REGEX is a regular expression.

The program part consists of program names and shell interpretable code. If all conditions in the condition part are valid, the program part is run in the shell. The following is an event example:

EVENT=post-create date > /tmp/dt

echo $HOSTNAME `uname -r`

This event would overwrite the contents of the /tmp/dt file with the current date and time, and print the host name of the machine and its kernel version on the standard output.

Here is an example of a yet more complex event which is actually one of the predefined events. It saves relevant lines from the ~/.xsession-errors file to the problem report for any problem for which the

abrt-ccpp services has been used to process that problem, and the crashed application has loaded any X11 libraries at the time of crash:

EVENT=analyze_xsession_errors analyzer=CCpp dso_list~=.*/libX11.*

test -f ~/.xsession-errors || { echo "No ~/.xsession-errors" ; exit 1; }

test -r ~/.xsession-errors || { echo "Can't read ~/.xsessionerrors" ; exit 1; }

executable=`cat executable` &&

base_executable= ${executable##*/} &&

grep -F -e " $base_executable " ~/.xsession-errors | tail -999

>xsession_errors &&

echo "Element 'xsession_errors' saved"

The set of possible events is not hard-set. System administrators can add events according to their need. Currently, the following event names are provided with standard ABRT and libreport installation: post-create

This event is run by abrtd on newly created problem data directories. When the post-create event is run, abrtd checks whether the UUID identifier of the new problem data matches the UUID of any already existing problem directories. If such a problem directory exists, the new problem data is deleted.

659

Deployment Guide analyze_name_suffix

…where name_suffix is the adjustable part of the event name. This event is used to process collected data. For example, the analyze_LocalGDB runs the GNU Debugger ( GDB) utility on a core dump of an application and produces a backtrace of a program. You can view the list of analyze events and choose from it using abrt-gui.

collect_name_suffix

…where name_suffix is the adjustable part of the event name. This event is used to collect additional information on a problem. You can view the list of collect events and choose from it using abrt-gui.

report_name_suffix

…where name_suffix is the adjustable part of the event name. This event is used to report a problem.

You can view the list of report events and choose from it using abrt-gui.

Additional information about events (such as their description, names and types of parameters which can be passed to them as environment variables, and other properties) is stored in the

/etc/libreport/events/event_name.xml files. These files are used by abrt-gui and abrt-cli to make the user interface more friendly. Do not edit these files unless you want to modify the standard installation.

28.4.2. Standard ABRT Installation Supported Events

Standard ABRT installation currently provides a number of default analyzing, collecting and reporting events. Some of these events are also configurable using the ABRT GUI application (for more

information on event configuration using ABRT GUI, see Section 28.4.3, “Event Configuration in ABRT

GUI” ). ABRT GUI only shows the event's unique part of the name which is more readable the user,

instead of the complete event name. For example, the analyze_xsession_errors event is shown as

Collect .xsession-errors in ABRT GUI. The following is a list of default analyzing, collecting and reporting events provided by the standard installation of ABRT: analyze_VMcore — Analyze VM core

Runs GDB (the GNU debugger) on problem data of an application and generates a backtrace of the kernel. It is defined in the /etc/libreport/events.d/vmcore_event.conf configuration file.

analyze_LocalGDB — Local GNU Debugger

Runs GDB (the GNU debugger) on problem data of an application and generates a backtrace of a program. It is defined in the /etc/libreport/events.d/ccpp_event.conf configuration file.

analyze_xsession_errors — Collect .xsession-errors

Saves relevant lines from the ~/.xsession-errors file to the problem report. It is defined in the

/etc/libreport/events.d/ccpp_event.conf configuration file.

report_Logger — Logger

Creates a problem report and saves it to a specified local file. It is defined in the

/etc/libreport/events.d/print_event.conf configuration file.

report_RHTSupport — Red Hat Customer Support

660

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT)

Reports problems to the Red Hat Technical Support system. This possibility is intended for users of

Red Hat Enterprise Linux. It is defined in the

/etc/libreport/events.d/rhtsupport_event.conf configuration file.

report_Mailx — Mailx

Sends a problem report via the Mailx utility to a specified email address. It is defined in the

/etc/libreport/events.d/mailx_event.conf configuration file.

report_Kerneloops — Kerneloops.org

Sends a kernel problem to the oops tracker. It is defined in the

/etc/libreport/events.d/koops_event.conf configuration file.

report_Uploader — Report uploader

Uploads a tarball (.tar.gz) archive with problem data to the chosen destination using the FTP or the

SCP protocol. It is defined in the /etc/libreport/events.d/uploader_event.conf configuration file.

28.4.3. Event Configuration in ABRT GUI

Events can use parameters passed to them as environment variables (for example, the

report_Logger event accepts an output file name as a parameter). Using the respective

/etc/libreport/events/event_name.xml file, ABRT GUI determines which parameters can be specified for a selected event and allows a user to set the values for these parameters. These values are saved by ABRT GUI and reused on subsequent invocations of these events.

Open the Event Configuration window by clicking EditPreferences. This window shows a list of all available events that can be selected during the reporting process. When you select one of the configurable events, you can click the Configure Event button and you will be able to configure settings for that event. If you change any of the events' parameters, they are saved in the Gnome keyring and will be used in the future GUI sessions.

NOTE

All files in the /etc/libreport/ directory hierarchy are world readable and are meant to be used as global settings. Thus, it is not advisable to store user names, passwords or any other sensitive data in them. The per-user settings (set in the GUI application and readable by the owner of $HOME only) are stored in the Gnome keyring or can be stored in a text file in $HOME/.abrt/*.conf for use in abrt-cli.

661

Deployment Guide

Figure 28.12. The Event Configuration Window

The following is a list of all configuration options available for each predefined event that is configurable in the ABRT GUI application.

Logger

In the Logger event configuration window, you can configure the following parameter:

Log file — Specifies a file into which the crash reports are saved (by default, set to

/var/log/abrt.log).

When the Append option is checked, the Logger event will append new crash reports to the log file specified in the Logger file option. When unchecked, the new crash report always replaces the previous one.

Red Hat Customer Support

In the Red Hat Customer Support event configuration window, you can configure the following parameters:

RH Portal URL — Specifies the Red Hat Customer Support URL where crash dumps are sent (by default, set to https://api.access.redhat.com/rs ).

Username — User login which is used to log into Red Hat Customer Support and create a

Red Hat Customer Support database entry for a reported crash. Use your Red Hat Login acquired by creating an account on https://www.redhat.com/en , the Red Hat Customer Portal

662

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT)

( https://access.redhat.com/home ) or the Red Hat Network ( https://rhn.redhat.com/ ).

Password — Password used to log into Red Hat Customer Support (that is, password associated with your Red Hat Login)

When the SSL verify option is checked, the SSL protocol is used when sending the data over the network.

MailX

In the MailX event configuration window, you can configure the following parameters:

Subject — A string that appears in the Subject field of a problem report email sent by

Mailx (by default, set to "[abrt] detected a crash").

Sender — A string that appears in the From field of a problem report email.

Recipient — Email address of the recipient of a problem report email.

When the Send Binary Data option is checked, the problem report email will also contain all binary files associated with the problem in an attachment. The core dump file is also sent as an attachment.

Kerneloops.org

In the Kerneloops.org event configuration window, you can configure the following parameter:

Kerneloops URL — Specifies the URL where Kernel problems are reported to (by default, set to http://submit.kerneloops.org/submitoops.php

)

Report Uploader

In the Report Uploader event configuration widow, you can configure the following parameter:

URL — Specifies the URL where a tarball containing compressed problem data is uploaded using the FTP or SCP protocol (by default, set to ftp://localhost:/tmp/upload).

28.4.4. ABRT Specific Configuration

Standard ABRT installation currently provides the following ABRT specific configuration files:

/etc/abrt/abrt.conf — allows you to modify the behavior of the abrtd service.

/etc/abrt/abrt-action-save-package-data.conf — allows you to modify the behavior of the abrt-action-save-package-data program.

/etc/abrt/plugins/CCpp.conf — allows you to modify the behavior of ABRT's core catching hook.

The following configuration directives are supported in the /etc/abrt/abrt.conf file:

WatchCrashdumpArchiveDir = /var/spool/abrt-upload

This directive is commented out by default. Enable it if you want abrtd to auto-unpack crashdump tarball archives (.tar.gz) which are located in the specified directory. In the example above, it is the

/var/spool/abrt-upload/ directory. Whichever directory you specify in this directive, you must

663

664

Deployment Guide ensure that it exists and it is writable for abrtd. The ABRT daemon will not create it automatically. If you change the default value of this option, be aware that in order to ensure proper functionality of

ABRT, this directory must not be the same as the directory specified for the DumpLocation option.

WARNING

Changing the location for crashdump archives will cause SELinux denials unless you reflect the change in respective SELinux rules first. See the

abrt_selinux(8) manual page for more information on running ABRT in

SELinux.

Remember that if you enable this option when using SELinux, you need to execute the following command in order to set the appropriate Boolean allowing

ABRT to write into the public_content_rw_t domain:

setsebool -P abrt_anon_write 1

MaxCrashReportsSize = size_in_megabytes

This option sets the amount of storage space, in megabytes, used by ABRT to store all problem information from all users. The default setting is 1000 MB. Once the quota specified here has been met, ABRT will continue catching problems, and in order to make room for the new crash dumps, it will delete the oldest and largest ones.

DumpLocation = /var/spool/abrt

This directive is commented out by default. It specifies the location where problem data directories are created and in which problem core dumps and all other problem data are stored. The default location is set to the /var/spool/abrt directory. Whichever directory you specify in this directive, you must ensure that it exists and it is writable for abrtd. If you change the default value of this option, be aware that in order to ensure proper functionality of ABRT, this directory must not be the same as the directory specified for the WatchCrashdumpArchiveDir option.

WARNING

Changing the dump location will cause SELinux denials unless you reflect the change in respective SELinux rules first. See the abrt_selinux(8) manual page for more information on running ABRT in SELinux.

Remember that if you enable this option when using SELinux, you need to execute the following command in order to set the appropriate Boolean allowing

ABRT to write into the public_content_rw_t domain:

setsebool -P abrt_anon_write 1

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT)

The following configuration directives are supported in the /etc/abrt/abrt-action-save-

package-data.conf file:

OpenGPGCheck = yes/no

Setting the OpenGPGCheck directive to yes (the default setting) tells ABRT to only analyze and handle crashes in applications provided by packages which are signed by the GPG keys whose locations are listed in the /etc/abrt/gpg_keys file. Setting OpenGPGCheck to no tells ABRT to catch crashes in all programs.

BlackList = nspluginwrapper, valgrind, strace, [more_packages ]

Crashes in packages and binaries listed after the BlackList directive will not be handled by ABRT.

If you want ABRT to ignore other packages and binaries, list them here separated by commas.

ProcessUnpackaged = yes/no

This directive tells ABRT whether to process crashes in executables that do not belong to any package. The default setting is no.

BlackListedPaths = /usr/share/doc/*, */example*

Crashes in executables in these paths will be ignored by ABRT.

The following configuration directives are supported in the /etc/abrt/plugins/CCpp.conf file:

MakeCompatCore = yes/no

This directive specifies whether ABRT's core catching hook should create a core file, as it could be done if ABRT would not be installed. The core file is typically created in the current directory of the crashed program but only if the ulimit -c setting allows it. The directive is set to yes by default.

SaveBinaryImage = yes/no

This directive specifies whether ABRT's core catching hook should save a binary image to a core dump. It is useful when debugging crashes which occurred in binaries that were deleted. The default setting is no.

28.4.5. Configuring ABRT to Detect a Kernel Panic

With Red Hat Enterprise Linux 6.3, ABRT can detect a kernel panic using the abrt-vmcore service, which is provided by the abrt-addon-vmcore package. The service starts automatically on system boot and searches for a core dump file in the /var/crash/ directory. If a core dump file is found, abrt-

vmcore creates the problem data directory in the /var/spool/abrt/ directory and moves the core dump file to the newly created problem data directory. After the /var/crash/ directory is searched through, the service is stopped until the next system boot.

To configure ABRT to detect a kernel panic, perform the following steps:

1. Ensure that the kdump service is enabled on the system. Especially, the amount of memory that is reserved for the kdump kernel has to be set correctly. You can set it by using the system-

config-kdump graphical tool, or by specifying the crashkernel parameter in the list of kernel

options in the /etc/grub.conf configuration file. See Chapter 32, The kdump Crash Recovery

Service for details on how to enable and configure kdump.

2. Install the abrt-addon-vmcore package using the Yum package installer:

665

Deployment Guide

~]# yum install abrt-addon-vmcore

This installs the abrt-vmcore service with respective support and configuration files. Please note that the abrt-addon-vmcore package is provided by the Optional subscription channel. See

Section 8.4.8, “Adding the Optional and Supplementary Repositories”

for more information on

Red Hat additional channels.

3. Reboot the system for the changes to take effect.

Unless ABRT is configured differently, problem data for any detected kernel panic is now stored in the

/var/spool/abrt/ directory and can be further processed by ABRT just as any other detected kernel oops.

28.4.6. Automatic Downloads and Installation of Debuginfo Packages

ABRT can be configured to automatically download and install packages needed for debugging of particular problems. This feature can be useful if you want to debug problems locally in your company environment. To enable automatic debuginfo downloads and installation, ensure that your system fulfills the following conditions:

The /etc/libreport/events.d/ccpp_event.conf file contains the following analyzer event, which is present uncommented in default configuration:

EVENT=analyze_LocalGDB analyzer=CCpp

abrt-action-analyze-core --core=coredump -o build_ids &&

# In RHEL we don't want to install anything by default

# and also this would fail, as the debuginfo repositories.

# are not available without root password rhbz#759443

# /usr/libexec/abrt-action-install-debuginfo-to-abrt-cache -

-size_mb=4096 &&

abrt-action-generate-backtrace &&

abrt-action-analyze-backtrace

The /etc/libreport/events.d/ccpp_event.conf file contains the following line, which allows ABRT to run binary to install debuginfo packages for the problems being analyzed. This line is, in order to avoid installations of unnecessary content, commented out by default so you have to remove the leading # character to enable it:

/usr/libexec/abrt-action-install-debuginfo-to-abrt-cache -size_mb=4096 &&

The gdb package, which allows you to generate a backtrace during a problem analysis, is installed on your system. If needed, see

Section 8.2.4, “Installing Packages” for more information

on how to install packages with the Yum package manager.

IMPORTANT

Note that debuginfo packages are installed using the rhnplugin which requires root privileges. Therefore, you have to run ABRT as root to be able to install debuginfo packages.

28.4.7. Configuring Automatic Reporting for Specific Types of Crashes

666

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT)

ABRT can be configured to report any detected issues or crashes automatically without any user interaction. This can be achieved by specifying an analyze-and-report rule as a post-create rule. For example, you can instruct ABRT to report Python crashes to Bugzilla immediately without any user interaction by enabling the rule and replacing the EVENT=report_Bugzilla condition with the

EVENT=post-create condition in the /etc/libreport/events.d/python_event.conf file. The new rule will look like the follows:

EVENT=post-create analyzer=Python

test -f component || abrt-action-save-package-data

reporter-bugzilla -c /etc/abrt/plugins/bugzilla.conf

WARNING

Please note that the post-create event is run by abrtd, which usually runs with root privileges.

28.4.8. Uploading and Reporting Using a Proxy Server

The reporter-bugzilla and the reporter-upload tools respect the http_proxy and the ftp_proxy environment variables. When you use environment variables as a part of a reporting event, they inherit their values from the process which performs reporting, usually abrt-gui or abrt-cli. Therefore, you can specify HTTP or FTP proxy servers by using these variables in your working environment.

If you arrange these tools to be a part of the post-create event, they will run as children of the abrtd process. You should either adjust the environment of abrtd or modify the rules to set these variables. For example:

EVENT=post-create analyzer=Python

test -f component || abrt-action-save-package-data

export http_proxy=http://proxy.server:8888/

reporter-bugzilla -c /etc/abrt/plugins/bugzilla.conf

28.4.9. Configuring Automatic Reporting

ABRT can be configured to use µReports. This additional type of bug report has these advantages:

Once enabled, µReports are sent automatically, without user interaction. In contrast, the normal reports are not sent until manually triggered by the user.

µReports are anonymous and do not contain sensitive information. This eliminates the risk that unwanted data will be submitted automatically.

A µReport represents the detected problem as a JSON object. Therefore, it is machine-readable and can be created and processed automatically.

µReports are smaller than full bug reports.

µReports do not require downloading large amounts of debugging information.

667

Deployment Guide

µReports serve several goals. They help to prevent duplicate customer cases that might get created because of multiple occurences of the same bug. Additionally, µReports enable gathering statistics of bug occurences and finding known bugs across different systems. Finally, if authenticated µReports are enabled as described at the end of this section, ABRT can automatically present instant solutions to the customers. However, µReports do not necessarily provide engineers with enough information to fix the bug, for which a full bug report may be necessary.

A µReport generally contains the following information: a call stack trace of a program without any variables, or, in case of multi-threaded C, C++, and

Java programs, multiple stack traces which operating system is used versions of the RPM packages involved in the crash whether the program ran under the root user for kernel oops, possibly information about host hardware

WARNING

Do not enable µReports if you do not want to share information about your hardware with Red Hat.

For µReport examples, see the Examples of µReports article.

With µReports enabled, the following happens by default when a crash is detected:

1. ABRT submits a µReport with basic information about the problem to Red Hat's ABRT server.

2. The server determines whether the problem is already in the bug database.

3. If it is, the server returns a short description of the problem along with a URL of the reported case.

If not, the server invites the user to submit a full problem report.

To enable µReports for all users, run as root:

~]# abrt-auto-reporting enabled or add the following line to the /etc/abrt/abrt.conf file:

AutoreportingEnabled = yes

User-specific configuration is located in the $USER/.config/abrt/ directory. It overrides the systemwide configuration.

To apply the new configuration, restart the ABRT services by running:

668

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT)

~]# service abrtd restart

The default autoreporting behavior - sending µReports - can be changed. To do that, assign a different

ABRT event to the AutoreportingEvent directive in the /etc/abrt/abrt.conf configuration file.

See

Section 28.4.2, “Standard ABRT Installation Supported Events” for an overview of the standard

events.

In Red Hat Enterprise Linux 7.1 and later, customers can also send authenticated µReports, which contain more information: hostname, machine-id (taken from the /etc/machine-id file), and RHN account number. The advantage of authenticated µReports is that they go directly to the Red Hat

Customer Portal, and not only to Red Hat's private crash-report server, as the regular µReports do. This enables Red Hat to provide customers with instant solutions to crashes.

To turn the authenticated automatic reporting on, run the following command as root:

~]# abrt-auto-reporting enabled -u RHN_username

Replace RHN_username with your Red Hat Network username. This command will ask for your password and save it in plain text into the /etc/libreport/plugins/rhtsupport.conf file.

28.5. CONFIGURING CENTRALIZED CRASH COLLECTION

You can set up ABRT so that crash reports are collected from multiple systems and sent to a dedicated system for further processing. This is useful when an administrator does not want to log into hundreds of systems and manually check for crashes found by ABRT. In order to use this method, you need to install the libreport-plugin-reportuploader plug-in (yum install libreport-plugin-

reportuploader). See the following sections on how to configure systems to use ABRT's centralized crash collection.

28.5.1. Configuration Steps Required on a Dedicated System

Complete the following steps on a dedicated (server) system:

1. Create a directory to which you want the crash reports to be uploaded to. Usually,

/var/spool/abrt-upload/ is used (the rest of the document assumes you are using this directory). Make sure this directory is writable by the abrt user.

NOTE

When the abrt-desktop package is installed, it creates a new system user and a group, both named abrt. This user is used by the abrtd daemon, for example, as the owner:group of /var/spool/abrt/* directories.

2. In the /etc/abrt/abrt.conf configuration file, set the WatchCrashdumpArchiveDir directive to the following:

WatchCrashdumpArchiveDir = /var/spool/abrt-upload/

3. Choose your preferred upload mechanism; for example, FTP or SCP. For more information on how to configure FTP, see

Section 21.2, “FTP” . For more information on how to configure SCP,

see Section 14.4.2, “Using the scp Utility” .

669

Deployment Guide

It is advisable to check whether your upload method works. For example, if you use FTP, upload a file using an interactive FTP client:

~]$ ftp ftp> open servername

Name: username

Password: password ftp> cd /var/spool/abrt-upload

250 Operation successful ftp> put testfile ftp> quit

Check whether testfile appeared in the correct directory on the server system.

4. The MaxCrashReportsSize directive (in the /etc/abrt/abrt.conf configuration file) needs to be set to a larger value if the expected volume of crash data is larger than the default

1000 MB.

5. Consider whether you would like to generate a backtrace of C/C++ crashes.

You can disable backtrace generation on the server if you do not want to generate backtraces at all, or if you decide to create them locally on the machine where a problem occurred. In the standard ABRT installation, a backtrace of a C/C++ crash is generated using the following rule in the /etc/libreport/events.d/ccpp_events.conf configuration file:

EVENT=analyze_LocalGDB analyzer=CCpp

abrt-action-analyze-core.py --core=coredump -o build_ids &&

abrt-action-install-debuginfo-to-abrt-cache --size_mb=4096

&&

abrt-action-generate-backtrace &&

abrt-action-analyze-backtrace

You can ensure that this rule is not applied for uploaded problem data by adding the remote!=1 condition to the rule.

6. Decide whether you want to collect package information (the package and the component elements) in the problem data. See

Section 28.5.3, “Saving Package Information”

to find out whether you need to collect package information in your centralized crash collection configuration and how to configure it properly.

28.5.2. Configuration Steps Required on a Client System

Complete the following steps on every client system which will use the central management method:

1. If you do not want to generate a backtrace, or if you decided to generate it on a server system, you need to delete or comment out the corresponding rules in the

/etc/libreport/events.d/ccpp_events.conf file. See Section 28.5.1, “Configuration

Steps Required on a Dedicated System” for an example of such a example.

2. If you decided to not collect package information on client machines, delete, comment out or modify the rule which runs abrt-action-save-package-data in the

/etc/libreport/events.d/abrt_event.conf file. See Section 28.5.3, “Saving Package

Information” to find out whether you need to collect package information in your centralized

crash collection configuration and how to configure it properly.

670

CHAPTER 28. AUTOMATIC BUG REPORTING TOOL (ABRT)

3. Add a rule for uploading problem reports to the server system in the corresponding configuration file. For example, if you want to upload all problems automatically as soon as they are detected, you can use the following rule in the /etc/libreport/events.d/abrt_event.conf configuration file:

EVENT=post-create

reporter-upload -u scp://user:password@server.name/directory

Alternatively, you can use a similar rule that runs the reporter-upload program as the

report_SFX event if you want to store problem data locally on clients and upload it later using

ABRT GUI/CLI. The following is an example of such an event:

EVENT=report_UploadToMyServer

reporter-upload -u scp://user:password@server.name/directory

28.5.3. Saving Package Information

In a single-machine ABRT installation, problems are usually reported to external bug databases such as

RHTSupport or Bugzilla. Reporting to these bug databases usually requires knowledge about the component and package in which the problem occurred. The post-create event runs the abrt-action-

save-package-data tool (among other steps) in order to provide this information in the standard ABRT installation.

If you are setting up a centralized crash collection system, your requirements may be significantly different. Depending on your needs, you have two options:

Internal analysis of problems

After collecting problem data, you do not need to collect package information if you plan to analyze problems in-house, without reporting them to any external bug databases. You might be also interested in collecting crashes that occur in programs written by your organization or third-party applications installed on your system. If such a program is a part of an RPM package, then on client systems and a dedicated crash collecting system, you can only add the respective GPG key to the

/etc/abrt/gpg_keys file or set the following line in the /etc/abrt/abrt-action-save-

package-data.conf file:

OpenGPGCheck = no

If the program does not belong to any RPM package, take the following steps on both, client systems and a dedicated crash collecting system:

Remove the following rule from the /etc/libreport/events.d/abrt_event.conf file:

EVENT=post-create component=

abrt-action-save-package-data

Prevent deletion of problem data directories which do not correspond to any installed package by setting the following directive in the /etc/abrt/abrt-action-save-

package-data.conf file:

ProcessUnpackaged = yes

Reporting to external bug database

671

Deployment Guide

Alternatively, you may want to report crashes to RHTSupport or Bugzilla. In this case, you need to collect package information. Generally, client machines and dedicated crash collecting systems have non-identical sets of installed packages. Therefore, it may happen that problem data uploaded from a client does not correspond to any package installed on the dedicated crash collecting system. In the standard ABRT configuration, this will lead to deletion of problem data (ABRT will consider it to be a crash in an unpackaged executable). To prevent this from happening, it is necessary to modify

ABRT's configuration on the dedicated system in the following way:

Prevent inadvertent collection of package information for problem data uploaded from client machines, by adding the remote!=1 condition in the

/etc/libreport/events.d/abrt_event.conf file:

EVENT=post-create remote!=1 component=

abrt-action-save-package-data

Prevent deletion of problem data directories which do not correspond to any installed package by setting the following directive in /etc/abrt/abrt-action-save-package-

data.conf:

ProcessUnpackaged = yes

NOTE

Note that in this case, no such modifications are necessary on client systems: they continue to collect package information, and continue to ignore crashes in unpackaged executables.

28.5.4. Testing ABRT's Crash Detection

After completing all the steps of the configuration process, the basic setup is finished. To test that this setup works properly use the kill -s SEGV PID command to terminate a process on a client system. For example, start a sleep process and terminate it with the kill command in the following way:

~]$ sleep 100 &

[1] 2823

~]$ kill -s SEGV 2823

ABRT should detect a crash shortly after executing the kill command. Check that the crash was detected by ABRT on the client system (this can be checked by examining the appropriate syslog file, by running the abrt-cli list --full command, or by examining the crash dump created in the

/var/spool/abrt directory), copied to the server system, unpacked on the server system and can be seen and acted upon using abrt-cli or abrt-gui on the server system.

672

CHAPTER 29. OPROFILE

CHAPTER 29. OPROFILE

OProfile is a low overhead, system-wide performance monitoring tool. It uses the performance monitoring hardware on the processor to retrieve information about the kernel and executables on the system, such as when memory is referenced, the number of L2 cache requests, and the number of hardware interrupts received. On a Red Hat Enterprise Linux system, the oprofile package must be installed to use this tool.

Many processors include dedicated performance monitoring hardware. This hardware makes it possible to detect when certain events happen (such as the requested data not being in cache). The hardware normally takes the form of one or more counters that are incremented each time an event takes place.

When the counter value, essentially rolls over, an interrupt is generated, making it possible to control the amount of detail (and therefore, overhead) produced by performance monitoring.

OProfile uses this hardware (or a timer-based substitute in cases where performance monitoring hardware is not present) to collect samples of performance-related data each time a counter generates an interrupt. These samples are periodically written out to disk; later, the data contained in these samples can then be used to generate reports on system-level and application-level performance.

OProfile is a useful tool, but be aware of some limitations when using it:

Use of shared libraries — Samples for code in shared libraries are not attributed to the particular application unless the --separate=library option is used.

Performance monitoring samples are inexact — When a performance monitoring register triggers a sample, the interrupt handling is not precise like a divide by zero exception. Due to the out-of-order execution of instructions by the processor, the sample may be recorded on a nearby instruction.

opreport does not associate samples for inline functions properly — opreport uses a simple address range mechanism to determine which function an address is in. Inline function samples are not attributed to the inline function but rather to the function the inline function was inserted into.

OProfile accumulates data from multiple runs — OProfile is a system-wide profiler and expects processes to start up and shut down multiple times. Thus, samples from multiple runs accumulate. Use the command opcontrol --reset to clear out the samples from previous runs.

Hardware performance counters do not work on guest virtual machines — Because the hardware performance counters are not available on virtual systems, you need to use the timer mode. Run the command opcontrol --deinit, and then execute modprobe oprofile

timer=1 to enable the timer mode.

Non-CPU-limited performance problems — OProfile is oriented to finding problems with CPUlimited processes. OProfile does not identify processes that are asleep because they are waiting on locks or for some other event to occur (for example an I/O device to finish an operation).

29.1. OVERVIEW OF TOOLS

Table 29.1, “OProfile Commands” provides a brief overview of the tools provided with the oprofile

package.

Table 29.1. OProfile Commands

673

Deployment Guide

Command ophelp opimport opannotate opcontrol opreport oprofiled

Description

Displays available events for the system's processor along with a brief description of each.

Converts sample database files from a foreign binary format to the native format for the system. Only use this option when analyzing a sample database from a different architecture.

Creates annotated source for an executable if the application was compiled with debugging symbols. See

Section 29.5.4, “Using opannotate ”

for details.

Configures what data is collected. See Section 29.2, “Configuring OProfile”

for details.

Retrieves profile data. See

Section 29.5.1, “Using opreport ”

for details.

Runs as a daemon to periodically write sample data to disk.

29.2. CONFIGURING OPROFILE

Before OProfile can be run, it must be configured. At a minimum, selecting to monitor the kernel (or selecting not to monitor the kernel) is required. The following sections describe how to use the

opcontrol utility to configure OProfile. As the opcontrol commands are executed, the setup options are saved to the /root/.oprofile/daemonrc file.

29.2.1. Specifying the Kernel

First, configure whether OProfile should monitor the kernel. This is the only configuration option that is required before starting OProfile. All others are optional.

To monitor the kernel, execute the following command as root:

~]# opcontrol --setup --vmlinux=/usr/lib/debug/lib/modules/`uname r`/vmlinux

IMPORTANT

The debuginfo package for the kernel must be installed (which contains the uncompressed kernel) in order to monitor the kernel.

To configure OProfile not to monitor the kernel, execute the following command as root:

~]# opcontrol --setup --no-vmlinux

This command also loads the oprofile kernel module, if it is not already loaded, and creates the

/dev/oprofile/ directory, if it does not already exist. See Section 29.6, “Understanding

/dev/oprofile/” for details about this directory.

674

CHAPTER 29. OPROFILE

Setting whether samples should be collected within the kernel only changes what data is collected, not how or where the collected data is stored. To generate different sample files for the kernel and application libraries, see

Section 29.2.3, “Separating Kernel and User-space Profiles” .

29.2.2. Setting Events to Monitor

Most processors contain counters, which are used by OProfile to monitor specific events. As shown in

Table 29.2, “OProfile Processors and Counters”

, the number of counters available depends on the processor.

Table 29.2. OProfile Processors and Counters

Processor cpu_type Number of Counters

AMD64

AMD Athlon x86-64/hammer i386/athlon

4

4

AMD Family 10h

AMD Family 11h

AMD Family 12h

AMD Family 14h

AMD Family 15h

IBM eServer System i and IBM eServer

System p

IBM POWER4

IBM POWER5

IBM PowerPC 970

IBM S/390 and IBM System z

Intel Core i7

Intel Nehalem microarchitecture

Intel Pentium 4 (non-hyper-threaded)

Intel Pentium 4 (hyper-threaded)

Intel Westmere microarchitecture x86-64/family10 x86-64/family11 x86-64/family12 x86-64/family14 x86-64/family15 timer ppc64/power4 ppc64/power5 ppc64/970 timer i386/core_i7 i386/nehalem i386/p4 i386/p4-ht i386/westmere

4

8

1

4

4

4

8

6

8

4

4

4

4

6

1

675

Deployment Guide

Processor

TIMER_INT cpu_type timer

Number of Counters

1

Use

Table 29.2, “OProfile Processors and Counters”

to verify that the correct processor type was detected and to determine the number of events that can be monitored simultaneously. timer is used as the processor type if the processor does not have supported performance monitoring hardware.

If timer is used, events cannot be set for any processor because the hardware does not have support for hardware performance counters. Instead, the timer interrupt is used for profiling.

If timer is not used as the processor type, the events monitored can be changed, and counter 0 for the processor is set to a time-based event by default. If more than one counter exists on the processor, the counters other than counter 0 are not set to an event by default. The default events monitored are shown in

Table 29.3, “Default Events” .

Table 29.3. Default Events

Processor Default Event for Counter Description

AMD Athlon and AMD64 CPU_CLK_UNHALTED The processor's clock is not halted

The processor's clock is not halted AMD Family 10h, AMD

Family 11h, AMD Family

12h

CPU_CLK_UNHALTED

CPU_CLK_UNHALTED AMD Family 14h, AMD

Family 15h

IBM POWER4 CYCLES

IBM POWER5

IBM PowerPC 970

Intel Core i7

Intel Nehalem microarchitecture

CYCLES

CYCLES

CPU_CLK_UNHALTED

CPU_CLK_UNHALTED

Intel Pentium 4 (hyperthreaded and non-hyperthreaded)

GLOBAL_POWER_EVENTS

CPU_CLK_UNHALTED Intel Westmere microarchitecture

TIMER_INT (none)

The processor's clock is not halted

Processor Cycles

Processor Cycles

Processor Cycles

The processor's clock is not halted

The processor's clock is not halted

The time during which the processor is not stopped

The processor's clock is not halted

Sample for each timer interrupt

676

CHAPTER 29. OPROFILE

The number of events that can be monitored at one time is determined by the number of counters for the processor. However, it is not a one-to-one correlation; on some processors, certain events must be mapped to specific counters. To determine the number of counters available, execute the following command:

~]# ls -d /dev/oprofile/[0-9]*

The events available vary depending on the processor type. To determine the events available for profiling, execute the following command as root (the list is specific to the system's processor type):

~]# ophelp

NOTE

Unless OProfile is be properly configured, the ophelp fails with the following error message:

Unable to open cpu_type file for reading

Make sure you have done opcontrol --init cpu_type 'unset' is not valid you should upgrade oprofile or force the use of timer mode

To configure OProfile, follow the instructions in Section 29.2, “Configuring OProfile”

.

The events for each counter can be configured via the command line or with a graphical interface. For more information on the graphical interface, see

Section 29.9, “Graphical Interface” . If the counter cannot

be set to a specific event, an error message is displayed.

To set the event for each configurable counter via the command line, use opcontrol:

~]# opcontrol --event=event-name:sample-rate

Replace event-name with the exact name of the event from ophelp, and replace sample-rate with the number of events between samples.

29.2.2.1. Sampling Rate

By default, a time-based event set is selected. It creates a sample every 100,000 clock cycles per processor. If the timer interrupt is used, the timer is set to whatever the jiffy rate is and is not usersettable. If the cpu_type is not timer, each event can have a sampling rate set for it. The sampling rate is the number of events between each sample snapshot.

When setting the event for the counter, a sample rate can also be specified:

~]# opcontrol --event=event-name:sample-rate

Replace sample-rate with the number of events to wait before sampling again. The smaller the count, the more frequent the samples. For events that do not happen frequently, a lower count may be needed to capture the event instances.

677

Deployment Guide

WARNING

Be extremely careful when setting sampling rates. Sampling too frequently can overload the system, causing the system to appear as if it is frozen or causing the system to actually freeze.

29.2.2.2. Unit Masks

Some user performance monitoring events may also require unit masks to further define the event.

Unit masks for each event are listed with the ophelp command. The values for each unit mask are listed in hexadecimal format. To specify more than one unit mask, the hexadecimal values must be combined using a bitwise or operation.

~]# opcontrol --event=event-name:sample-rate:unit-mask

29.2.3. Separating Kernel and User-space Profiles

By default, kernel mode and user mode information is gathered for each event. To configure OProfile to ignore events in kernel mode for a specific counter, execute the following command:

~]# opcontrol --event=event-name:sample-rate:unit-mask:0

Execute the following command to start profiling kernel mode for the counter again:

~]# opcontrol --event=event-name:sample-rate:unit-mask:1

To configure OProfile to ignore events in user mode for a specific counter, execute the following command:

~]# opcontrol --event=event-name:sample-rate:unit-mask:kernel:0

Execute the following command to start profiling user mode for the counter again:

~]# opcontrol --event=event-name:sample-rate:unit-mask:kernel:1

When the OProfile daemon writes the profile data to sample files, it can separate the kernel and library profile data into separate sample files. To configure how the daemon writes to sample files, execute the following command as root:

~]# opcontrol --separate=choice choice can be one of the following:

none — Do not separate the profiles (default).

library — Generate per-application profiles for libraries.

678

CHAPTER 29. OPROFILE

kernel — Generate per-application profiles for the kernel and kernel modules.

all — Generate per-application profiles for libraries and per-application profiles for the kernel and kernel modules.

If --separate=library is used, the sample file name includes the name of the executable as well as the name of the library.

NOTE

These configuration changes will take effect when the OProfile profiler is restarted.

29.3. STARTING AND STOPPING OPROFILE

To start monitoring the system with OProfile, execute the following command as root:

~]# opcontrol --start

Output similar to the following is displayed:

Using log file /var/lib/oprofile/oprofiled.log Daemon started. Profiler running.

The settings in /root/.oprofile/daemonrc are used.

The OProfile daemon, oprofiled, is started; it periodically writes the sample data to the

/var/lib/oprofile/samples/ directory. The log file for the daemon is located at

/var/lib/oprofile/oprofiled.log.

IMPORTANT

On a Red Hat Enterprise Linux 6 system, the nmi_watchdog registers with the perf subsystem. Due to this, the perf subsystem grabs control of the performance counter registers at boot time, blocking OProfile from working.

To resolve this, either boot with the nmi_watchdog=0 kernel parameter set, or run the following command to disable nmi_watchdog at run time:

~]# echo 0 > /proc/sys/kernel/nmi_watchdog

To re-enable nmi_watchdog, use the following command:

~]# echo 1 > /proc/sys/kernel/nmi_watchdog

To stop the profiler, execute the following command as root:

~]# opcontrol --shutdown

29.4. SAVING DATA

679

Deployment Guide

Sometimes it is useful to save samples at a specific time. For example, when profiling an executable, it may be useful to gather different samples based on different input data sets. If the number of events to be monitored exceeds the number of counters available for the processor, multiple runs of OProfile can be used to collect data, saving the sample data to different files each time.

To save the current set of sample files, execute the following command, replacing name with a unique descriptive name for the current session.

~]# opcontrol --save=name

The directory /var/lib/oprofile/samples/name/ is created and the current sample files are copied to it.

29.5. ANALYZING THE DATA

Periodically, the OProfile daemon, oprofiled, collects the samples and writes them to the

/var/lib/oprofile/samples/ directory. Before reading the data, make sure all data has been written to this directory by executing the following command as root:

~]# opcontrol --dump

Each sample file name is based on the name of the executable. For example, the samples for the default event on a Pentium III processor for /bin/bash becomes:

\{root\}/bin/bash/\{dep\}/\{root\}/bin/bash/CPU_CLK_UNHALTED.100000

The following tools are available to profile the sample data once it has been collected: opreport opannotate

Use these tools, along with the binaries profiled, to generate reports that can be further analyzed.

WARNING

The executable being profiled must be used with these tools to analyze the data. If it must change after the data is collected, back up the executable used to create the samples as well as the sample files. Please note that the sample file and the binary have to agree. Making a backup is not going to work if they do not match.

oparchive can be used to address this problem.

Samples for each executable are written to a single sample file. Samples from each dynamically linked library are also written to a single sample file. While OProfile is running, if the executable being monitored changes and a sample file for the executable exists, the existing sample file is automatically deleted. Thus, if the existing sample file is needed, it must be backed up, along with the executable used to create it before replacing the executable with a new version. The OProfile analysis tools use the

680

CHAPTER 29. OPROFILE executable file that created the samples during analysis. If the executable changes the analysis tools will be unable to analyze the associated samples. See

Section 29.4, “Saving Data” for details on how to back

up the sample file.

29.5.1. Using

opreport

The opreport tool provides an overview of all the executables being profiled.

The following is part of a sample output:

Profiling through timer interrupt

TIMER:0| samples| %|

------------------

25926 97.5212 no-vmlinux

359 1.3504 pi

65 0.2445 Xorg

62 0.2332 libvte.so.4.4.0

56 0.2106 libc-2.3.4.so

34 0.1279 libglib-2.0.so.0.400.7

19 0.0715 libXft.so.2.1.2

17 0.0639 bash

8 0.0301 ld-2.3.4.so

8 0.0301 libgdk-x11-2.0.so.0.400.13

6 0.0226 libgobject-2.0.so.0.400.7

5 0.0188 oprofiled

4 0.0150 libpthread-2.3.4.so

4 0.0150 libgtk-x11-2.0.so.0.400.13

3 0.0113 libXrender.so.1.2.2

3 0.0113 du

1 0.0038 libcrypto.so.0.9.7a

1 0.0038 libpam.so.0.77

1 0.0038 libtermcap.so.2.0.8

1 0.0038 libX11.so.6.2

1 0.0038 libgthread-2.0.so.0.400.7

1 0.0038 libwnck-1.so.4.9.0

Each executable is listed on its own line. The first column is the number of samples recorded for the executable. The second column is the percentage of samples relative to the total number of samples.

The third column is the name of the executable.

See the opreport man page for a list of available command-line options, such as the -r option used to sort the output from the executable with the smallest number of samples to the one with the largest number of samples.

29.5.2. Using opreport on a Single Executable

To retrieve more detailed profiled information about a specific executable, use opreport:

~]# opreport mode executable executable must be the full path to the executable to be analyzed. mode must be one of the following:

-l

681

Deployment Guide

List sample data by symbols. For example, the following is part of the output from running the command opreport -l /lib/tls/libc-version.so: samples % symbol name

12 21.4286 __gconv_transform_utf8_internal

5 8.9286 _int_malloc 4 7.1429 malloc

3 5.3571 __i686.get_pc_thunk.bx

3 5.3571 _dl_mcount_wrapper_check

3 5.3571 mbrtowc

3 5.3571 memcpy

2 3.5714 _int_realloc

2 3.5714 _nl_intern_locale_data

2 3.5714 free

2 3.5714 strcmp

1 1.7857 __ctype_get_mb_cur_max

1 1.7857 __unregister_atfork

1 1.7857 __write_nocancel

1 1.7857 _dl_addr

1 1.7857 _int_free

1 1.7857 _itoa_word

1 1.7857 calc_eclosure_iter

1 1.7857 fopen@@GLIBC_2.1

1 1.7857 getpid

1 1.7857 memmove

1 1.7857 msort_with_tmp

1 1.7857 strcpy

1 1.7857 strlen

1 1.7857 vfprintf

1 1.7857 write

The first column is the number of samples for the symbol, the second column is the percentage of samples for this symbol relative to the overall samples for the executable, and the third column is the symbol name.

To sort the output from the largest number of samples to the smallest (reverse order), use -r in conjunction with the -l option.

-i symbol-name

List sample data specific to a symbol name. For example, the following output is from the command

opreport -l -i __gconv_transform_utf8_internal /lib/tls/libc-version.so: samples % symbol name

12 100.000 __gconv_transform_utf8_internal

The first line is a summary for the symbol/executable combination.

The first column is the number of samples for the memory symbol. The second column is the percentage of samples for the memory address relative to the total number of samples for the symbol.

The third column is the symbol name.

-d

List sample data by symbols with more detail than -l. For example, the following output is from the command opreport -l -d __gconv_transform_utf8_internal

/lib/tls/libc-version.so:

682

CHAPTER 29. OPROFILE vma samples % symbol name

00a98640 12 100.000 __gconv_transform_utf8_internal

00a98640 1 8.3333

00a9868c 2 16.6667

00a9869a 1 8.3333

00a986c1 1 8.3333

00a98720 1 8.3333

00a98749 1 8.3333

00a98753 1 8.3333

00a98789 1 8.3333

00a98864 1 8.3333

00a98869 1 8.3333

00a98b08 1 8.3333

The data is the same as the -l option except that for each symbol, each virtual memory address used is shown. For each virtual memory address, the number of samples and percentage of samples relative to the number of samples for the symbol is displayed.

-x symbol-name

Exclude the comma-separated list of symbols from the output.

session :name

Specify the full path to the session or a directory relative to the /var/lib/oprofile/samples/ directory.

29.5.3. Getting more detailed output on the modules

OProfile collects data on a system-wide basis for kernel- and user-space code running on the machine.

However, once a module is loaded into the kernel, the information about the origin of the kernel module is lost. The module could have come from the initrd file on boot up, the directory with the various kernel modules, or a locally created kernel module. As a result, when OProfile records sample for a module, it just lists the samples for the modules for an executable in the root directory, but this is unlikely to be the place with the actual code for the module. You will need to take some steps to make sure that analysis tools get the executable.

To get a more detailed view of the actions of the module, you will need to either have the module

"unstripped" (that is installed from a custom build) or have the debuginfo package installed for the kernel.

Find out which kernel is running with the uname -a command, obtain the appropriate debuginfo package and install it on the machine.

Then proceed with clearing out the samples from previous runs with the following command:

~]# opcontrol --reset

To start the monitoring process, for example, on a machine with Westmere processor, run the following command:

~]# opcontrol --setup --vmlinux=/usr/lib/debug/lib/modules/`uname r`/vmlinux --event=CPU_CLK_UNHALTED:500000

Then the detailed information, for instance, for the ext4 module can be obtained with:

683

Deployment Guide

~]# opreport /ext4 -l --image-path /lib/modules/`uname -r`/kernel

CPU: Intel Westmere microarchitecture, speed 2.667e+06 MHz (estimated)

Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00 (No unit mask) count 500000 warning: could not check that the binary file /lib/modules/2.6.32-

191.el6.x86_64/kernel/fs/ext4/ext4.ko has not been modified since the profile was taken. Results may be inaccurate.

samples % symbol name

1622 9.8381 ext4_iget

1591 9.6500 ext4_find_entry

1231 7.4665 __ext4_get_inode_loc

783 4.7492 ext4_ext_get_blocks

752 4.5612 ext4_check_dir_entry

644 3.9061 ext4_mark_iloc_dirty

583 3.5361 ext4_get_blocks

583 3.5361 ext4_xattr_get

479 2.9053 ext4_htree_store_dirent

469 2.8447 ext4_get_group_desc

414 2.5111 ext4_dx_find_entry

29.5.4. Using

opannotate

The opannotate tool tries to match the samples for particular instructions to the corresponding lines in the source code. The resulting files generated should have the samples for the lines at the left. It also puts in a comment at the beginning of each function listing the total samples for the function.

For this utility to work, the appropriate debuginfo package for the executable must be installed on the system. On Red Hat Enterprise Linux, the debuginfo packages are not automatically installed with the corresponding packages that contain the executable. You have to obtain and install them separately.

The general syntax for opannotate is as follows:

~]# opannotate --search-dirs src-dir --source executable

The directory containing the source code and the executable to be analyzed must be specified. See the

opannotate man page for a list of additional command-line options.

29.6. UNDERSTANDING

/DEV/OPROFILE/

The /dev/oprofile/ directory contains the file system for OProfile. Use the cat command to display the values of the virtual files in this file system. For example, the following command displays the type of processor OProfile detected:

~]# cat /dev/oprofile/cpu_type

A directory exists in /dev/oprofile/ for each counter. For example, if there are 2 counters, the directories /dev/oprofile/0/ and dev/oprofile/1/ exist.

Each directory for a counter contains the following files:

count — The interval between samples.

684

CHAPTER 29. OPROFILE

enabled — If 0, the counter is off and no samples are collected for it; if 1, the counter is on and samples are being collected for it.

event — The event to monitor.

extra — Used on machines with Nehalem processors to further specify the event to monitor.

kernel — If 0, samples are not collected for this counter event when the processor is in kernelspace; if 1, samples are collected even if the processor is in kernel-space.

unit_mask — Defines which unit masks are enabled for the counter.

user — If 0, samples are not collected for the counter event when the processor is in userspace; if 1, samples are collected even if the processor is in user-space.

The values of these files can be retrieved with the cat command. For example:

~]# cat /dev/oprofile/0/count

29.7. EXAMPLE USAGE

While OProfile can be used by developers to analyze application performance, it can also be used by system administrators to perform system analysis. For example:

Determine which applications and services are used the most on a system — opreport can be used to determine how much processor time an application or service uses. If the system is used for multiple services but is under performing, the services consuming the most processor time can be moved to dedicated systems.

Determine processor usage — The CPU_CLK_UNHALTED event can be monitored to determine the processor load over a given period of time. This data can then be used to determine if additional processors or a faster processor might improve system performance.

29.8. OPROFILE SUPPORT FOR JAVA

OProfile allows you to profile dynamically compiled code (also known as "just-in-time" or JIT code) of the

Java Virtual Machine (JVM). OProfile in Red Hat Enterprise Linux 6 includes built-in support for the JVM

Tools Interface (JVMTI) agent library, which supports Java 1.5 and higher.

29.8.1. Profiling Java Code

To profile JIT code from the Java Virtual Machine with the JVMTI agent, add the following to the JVM startup parameters:

-agentlib:jvmti_oprofile

NOTE

The oprofile-jit package must be installed on the system in order to profile JIT code with

OProfile.

685

Deployment Guide

To learn more about Java support in OProfile, see the OProfile Manual, which is linked from

Section 29.11, “Additional Resources” .

29.9. GRAPHICAL INTERFACE

Some OProfile preferences can be set with a graphical interface. To start it, execute the oprof_start command as root at a shell prompt. To use the graphical interface, you will need to have the oprofile-gui package installed.

After changing any of the options, save them by clicking the Save and quit button. The preferences are written to /root/.oprofile/daemonrc, and the application exits.

NOTE

Exiting the application does not stop OProfile from sampling.

On the Setup tab, to set events for the processor counters as discussed in Section 29.2.2, “Setting

Events to Monitor” , select the counter from the pulldown menu and select the event from the list. A brief

description of the event appears in the text box below the list. Only events available for the specific counter and the specific architecture are displayed. The interface also displays whether the profiler is running and some brief statistics about it.

686

CHAPTER 29. OPROFILE

Figure 29.1. OProfile Setup

On the right side of the tab, select the Profile kernel option to count events in kernel mode for the currently selected event, as discussed in

Section 29.2.3, “Separating Kernel and User-space Profiles” . If

this option is unselected, no samples are collected for the kernel.

Select the Profile user binaries option to count events in user mode for the currently selected

event, as discussed in Section 29.2.3, “Separating Kernel and User-space Profiles” . If this option is

unselected, no samples are collected for user applications.

Use the Count text field to set the sampling rate for the currently selected event as discussed in

Section 29.2.2.1, “Sampling Rate” .

687

Deployment Guide

If any unit masks are available for the currently selected event, as discussed in Section 29.2.2.2, “Unit

Masks” , they are displayed in the Unit Masks area on the right side of the Setup tab. Select the check

box beside the unit mask to enable it for the event.

On the Configuration tab, to profile the kernel, enter the name and location of the vmlinux file for the kernel to monitor in the Kernel image file text field. To configure OProfile not to monitor the kernel, select No kernel image.

Figure 29.2. OProfile Configuration

If the Verbose option is selected, the oprofiled daemon log includes more information.

If Per-application profiles is selected, OProfile generates per-application profiles for libraries.

688

CHAPTER 29. OPROFILE

This is equivalent to the opcontrol --separate=library command. If Per-application

profiles, including kernel is selected, OProfile generates per-application profiles for the kernel and kernel modules as discussed in

Section 29.2.3, “Separating Kernel and User-space Profiles” . This is

equivalent to the opcontrol --separate=kernel command.

To force data to be written to samples files as discussed in Section 29.5, “Analyzing the Data” , click the

Flush button. This is equivalent to the opcontrol --dump command.

To start OProfile from the graphical interface, click Start. To stop the profiler, click Stop. Exiting the application does not stop OProfile from sampling.

29.10. OPROFILE AND SYSTEMTAP

SystemTap is a tracing and probing tool that allows users to study and monitor the activities of the operating system in fine detail. It provides information similar to the output of tools like netstat, ps,

top, and iostat; however, SystemTap is designed to provide more filtering and analysis options for collected information.

While using OProfile is suggested in cases of collecting data on where and why the processor spends time in a particular area of code, it is less usable when finding out why the processor stays idle.

You might want to use SystemTap when instrumenting specific places in code. Because SystemTap allows you to run the code instrumentation without having to stop and restart the instrumentation, it is particularly useful for instrumenting the kernel and daemons.

For more information on SystemTap, see

Section 29.11.2, “Useful Websites”

for the relevant SystemTap documentation.

29.11. ADDITIONAL RESOURCES

This chapter only highlights OProfile and how to configure and use it. To learn more, see the following resources.

29.11.1. Installed Docs

/usr/share/doc/oprofile-version/oprofile.html — OProfile Manual

oprofile man page — Discusses opcontrol, opreport, opannotate, and ophelp

29.11.2. Useful Websites

http://oprofile.sourceforge.net/ — Contains the latest documentation, mailing lists, IRC channels, and more.

SystemTap Beginners Guide — Provides basic instructions on how to use SystemTap to monitor different subsystems of Red Hat Enterprise Linux in finer detail.

689

Deployment Guide

PART VIII. KERNEL, MODULE AND DRIVER CONFIGURATION

This part covers various tools that assist administrators with kernel customization.

690

CHAPTER 30. MANUALLY UPGRADING THE KERNEL

CHAPTER 30. MANUALLY UPGRADING THE KERNEL

The Red Hat Enterprise Linux kernel is custom-built by the Red Hat Enterprise Linux kernel team to ensure its integrity and compatibility with supported hardware. Before Red Hat releases a kernel, it must first pass a rigorous set of quality assurance tests.

Red Hat Enterprise Linux kernels are packaged in the RPM format so that they are easy to upgrade and verify using the Yum or PackageKit package managers. PackageKit automatically queries the Red Hat

Network servers and informs you of packages with available updates, including kernel packages.

This chapter is therefore only useful for users who need to manually update a kernel package using the

rpm command instead of yum.

WARNING

Whenever possible, use either the Yum or PackageKit package manager to install a new kernel because they always install a new kernel instead of replacing the current one, which could potentially leave your system unable to boot.

WARNING

Building a custom kernel is not supported by the Red Hat Global Services Support team, and therefore is not explored in this manual.

For more information on installing kernel packages with Yum, see

Section 8.1.2, “Updating Packages” .

For information on Red Hat Network, see Chapter 6, Registering the System and Managing

Subscriptions .

30.1. OVERVIEW OF KERNEL PACKAGES

Red Hat Enterprise Linux contains the following kernel packages: kernel — Contains the kernel for single, multicore and multiprocessor systems.

kernel-debug — Contains a kernel with numerous debugging options enabled for kernel diagnosis, at the expense of reduced performance.

kernel-devel — Contains the kernel headers and makefiles sufficient to build modules against the kernel package.

kernel-debug-devel — Contains the development version of the kernel with numerous debugging options enabled for kernel diagnosis, at the expense of reduced performance.

691

Deployment Guide kernel-doc — Documentation files from the kernel source. Various portions of the Linux kernel and the device drivers shipped with it are documented in these files. Installation of this package provides a reference to the options that can be passed to Linux kernel modules at load time.

By default, these files are placed in the /usr/share/doc/kernel-

doc-<kernel_version>/ directory.

kernel-headers — Includes the C header files that specify the interface between the Linux kernel and user-space libraries and programs. The header files define structures and constants that are needed for building most standard programs.

kernel-firmware — Contains all of the firmware files that are required by various devices to operate.

perf — This package contains supporting scripts and documentation for the perf tool shipped in each kernel image subpackage.

30.2. PREPARING TO UPGRADE

Before upgrading the kernel, it is recommended that you take some precautionary steps.

First, ensure that working boot media exists for the system. If the boot loader is not configured properly to boot the new kernel, you can use this media to boot into Red Hat Enterprise Linux.

USB media often comes in the form of flash devices sometimes called pen drives, thumb disks, or keys, or as an externally-connected hard disk device. Almost all media of this type is formatted as a VFAT file system. You can create bootable USB media on media formatted as ext2, ext3, or VFAT.

You can transfer a distribution image file or a minimal boot media image file to USB media. Make sure that sufficient free space is available on the device. Around 4 GB is required for a distribution DVD image, around 700 MB for a distribution CD image, or around 10 MB for a minimal boot media image.

You must have a copy of the boot.iso file from a Red Hat Enterprise Linux installation DVD, or installation CD-ROM #1, and you need a USB storage device formatted with the VFAT file system and around 16 MB of free space. The following procedure will not affect existing files on the USB storage device unless they have the same path names as the files that you copy onto it. To create USB boot media, perform the following commands as root:

1. Install the SYSLINUX boot loader on the USB storage device:

~]# syslinux /dev/sdX1

...where sdX is the device name.

2. Create mount points for boot.iso and the USB storage device:

~]# mkdir /mnt/isoboot /mnt/diskboot

3. Mount boot.iso:

~]# mount -o loop boot.iso /mnt/isoboot

4. Mount the USB storage device:

692

CHAPTER 30. MANUALLY UPGRADING THE KERNEL

~]# mount /dev/<sdX1> /mnt/diskboot

5. Copy the ISOLINUX files from the boot.iso to the USB storage device:

~]# cp /mnt/isoboot/isolinux/* /mnt/diskboot

6. Use the isolinux.cfg file from boot.iso as the syslinux.cfg file for the USB device:

~]# grep -v local /mnt/isoboot/isolinux/isolinux.cfg >

/mnt/diskboot/syslinux.cfg

7. Unmount boot.iso and the USB storage device:

~]# umount /mnt/isoboot /mnt/diskboot

8. You should reboot the machine with the boot media and verify that you are able to boot with it before continuing.

Alternatively, on systems with a floppy drive, you can create a boot diskette by installing the mkbootdisk package and running the mkbootdisk command as root. See man mkbootdisk man page after installing the package for usage information.

To determine which kernel packages are installed, execute the command yum list installed

"kernel-*" at a shell prompt. The output will comprise some or all of the following packages, depending on the system's architecture, and the version numbers may differ:

~]# yum list installed "kernel-*" kernel.x86_64 2.6.32-17.el6 @rhel-x86_64server-6 kernel-doc.noarch 2.6.32-17.el6 @rhel-x86_64server-6 kernel-firmware.noarch 2.6.32-17.el6 @rhel-x86_64server-6 kernel-headers.x86_64 2.6.32-17.el6 @rhel-x86_64server-6

From the output, determine which packages need to be downloaded for the kernel upgrade. For a single

processor system, the only required package is the kernel package. See Section 30.1, “Overview of

Kernel Packages” for descriptions of the different packages.

30.3. DOWNLOADING THE UPGRADED KERNEL

There are several ways to determine if an updated kernel is available for the system.

Security Errata — See http://www.redhat.com/security/updates/ for information on security errata, including kernel upgrades that fix security issues.

The Red Hat Network — For a system subscribed to the Red Hat Network, the yum package manager can download the latest kernel and upgrade the kernel on the system. The Dracut utility will create an initial RAM disk image if needed, and configure the boot loader to boot the new kernel. For more information on installing packages from the Red Hat Network, see

Chapter 8, Yum

. For more information on subscribing a system to the Red Hat Network, see

Chapter 6, Registering the System and Managing Subscriptions

.

693

Deployment Guide

If yum was used to download and install the updated kernel from the Red Hat Network, follow the

instructions in Section 30.5, “Verifying the Initial RAM Disk Image”

and Section 30.6, “Verifying the Boot

Loader” , only do not change the kernel to boot by default. Red Hat Network automatically changes the

default kernel to the latest version. To install the kernel manually, continue to Section 30.4, “Performing the Upgrade” .

30.4. PERFORMING THE UPGRADE

After retrieving all of the necessary packages, it is time to upgrade the existing kernel.

IMPORTANT

It is strongly recommended that you keep the old kernel in case there are problems with the new kernel.

At a shell prompt, change to the directory that contains the kernel RPM packages. Use -i argument with the rpm command to keep the old kernel. Do not use the -U option, since it overwrites the currently installed kernel, which creates boot loader problems. For example:

~]# rpm -ivh kernel-<kernel_version>.<arch>.rpm

The next step is to verify that the initial RAM disk image has been created. See Section 30.5, “Verifying the Initial RAM Disk Image” for details.

30.5. VERIFYING THE INITIAL RAM DISK IMAGE

The job of the initial RAM disk image is to preload the block device modules, such as for IDE, SCSI or

RAID, so that the root file system, on which those modules normally reside, can then be accessed and mounted. On Red Hat Enterprise Linux 6 systems, whenever a new kernel is installed using either the

Yum, PackageKit, or RPM package manager, the Dracut utility is always called by the installation scripts to create an initramfs (initial RAM disk image).

On all architectures other than IBM eServer System i (see the section called “Verifying the Initial RAM

Disk Image and Kernel on IBM eServer System i” ), you can create an initramfs by running the

dracut command. However, you usually don't need to create an initramfs manually: this step is automatically performed if the kernel and its associated packages are installed or upgraded from RPM packages distributed by Red Hat.

You can verify that an initramfs corresponding to your current kernel version exists and is specified correctly in the grub.conf configuration file by following this procedure:

Procedure 30.1. Verifying the Initial RAM Disk Image

1. As root, list the contents in the /boot/ directory and find the kernel

(vmlinuz-<kernel_version>) and initramfs-<kernel_version> with the latest (most recent) version number:

Example 30.1. Ensuring that the kernel and initramfs versions match

~]# ls /boot/ config-2.6.32-17.el6.x86_64 lost+found config-2.6.32-19.el6.x86_64 symvers-2.6.32-

17.el6.x86_64.gz

694

CHAPTER 30. MANUALLY UPGRADING THE KERNEL config-2.6.32-22.el6.x86_64 symvers-2.6.32-

19.el6.x86_64.gz

efi symvers-2.6.32-

22.el6.x86_64.gz

grub System.map-2.6.32-

17.el6.x86_64

initramfs-2.6.32-17.el6.x86_64.img System.map-2.6.32-

19.el6.x86_64

initramfs-2.6.32-19.el6.x86_64.img System.map-2.6.32-

22.el6.x86_64

initramfs-2.6.32-22.el6.x86_64.img vmlinuz-2.6.32-17.el6.x86_64

initrd-2.6.32-17.el6.x86_64kdump.img vmlinuz-2.6.32-19.el6.x86_64

initrd-2.6.32-19.el6.x86_64kdump.img vmlinuz-2.6.32-22.el6.x86_64

initrd-2.6.32-22.el6.x86_64kdump.img

Example 30.1, “Ensuring that the kernel and initramfs versions match” shows that:

we have three kernels installed (or, more correctly, three kernel files are present in

/boot/), the latest kernel is vmlinuz-2.6.32-22.el6.x86_64, and an initramfs file matching our kernel version, initramfs-2.6.32-

22.el6.x86_64.img, also exists.

IMPORTANT

In the /boot/ directory you may find several initrd-<version>kdump.img files. These are special files created by the Kdump mechanism for kernel debugging purposes, are not used to boot the system, and can safely be ignored.

2. (Optional) If your initramfs-<kernel_version> file does not match the version of the latest kernel in /boot/, or, in certain other situations, you may need to generate an initramfs file with the Dracut utility. Simply invoking dracut as root without options causes it to generate an initramfs file in the /boot/ directory for the latest kernel present in that directory:

~]# dracut

You must use the --force option if you want dracut to overwrite an existing initramfs (for example, if your initramfs has become corrupt). Otherwise dracut will refuse to overwrite the existing initramfs file:

~]# dracut

Will not override existing initramfs (/boot/initramfs-2.6.32-

22.el6.x86_64.img) without --force

You can create an initramfs in the current directory by calling dracut

<initramfs_name> <kernel_version>:

~]# dracut "initramfs-$(uname -r).img" $(uname -r)

If you need to specify specific kernel modules to be preloaded, add the names of those modules

695

Deployment Guide

(minus any file name suffixes such as .ko) inside the parentheses of the

add_dracutmodules="<module> [<more_modules>]" directive of the

/etc/dracut.conf configuration file. You can list the file contents of an initramfs image file created by dracut by using the lsinitrd <initramfs_file> command:

~]# lsinitrd initramfs-2.6.32-22.el6.x86_64.img

initramfs-2.6.32-22.el6.x86_64.img:

====================================================================

==== dracut-004-17.el6

====================================================================

==== drwxr-xr-x 23 root root 0 May 3 22:34 .

drwxr-xr-x 2 root root 0 May 3 22:33 proc

-rwxr-xr-x 1 root root 7575 Mar 25 19:53 init drwxr-xr-x 7 root root 0 May 3 22:34 etc drwxr-xr-x 2 root root 0 May 3 22:34 etc/modprobe.d

[output truncated]

See man dracut and man dracut.conf for more information on options and usage.

3. Examine the grub.conf configuration file in the /boot/grub/ directory to ensure that an

initrd initramfs-<kernel_version>.img exists for the kernel version you are booting. See

Section 30.6, “Verifying the Boot Loader” for more information.

Verifying the Initial RAM Disk Image and Kernel on IBM eServer System i

On IBM eServer System i machines, the initial RAM disk and kernel files are combined into a single file, which is created with the addRamDisk command. This step is performed automatically if the kernel and its associated packages are installed or upgraded from the RPM packages distributed by Red Hat; thus, it does not need to be executed manually. To verify that it was created, use the command ls -l

/boot/ to make sure the /boot/vmlinitrd-<kernel_version> file already exists (the

<kernel_version> should match the version of the kernel just installed).

30.6. VERIFYING THE BOOT LOADER

When you install a kernel using rpm, the kernel package creates an entry in the boot loader configuration file for that new kernel. However, rpm does not configure the new kernel to boot as the default kernel.

You must do this manually when installing a new kernel with rpm.

It is always recommended to double-check the boot loader configuration file after installing a new kernel with rpm to ensure that the configuration is correct. Otherwise, the system may not be able to boot into

Red Hat Enterprise Linux properly. If this happens, boot the system with the boot media created earlier and re-configure the boot loader.

In the following table, find your system's architecture to determine the boot loader it uses, and then click on the "See" link to jump to the correct instructions for your system.

Table 30.1. Boot loaders by architecture

Architecture Boot Loader See

696

CHAPTER 30. MANUALLY UPGRADING THE KERNEL

Architecture x86

AMD AMD64 or Intel 64

IBM eServer System i

IBM eServer System p

IBM System z

Boot Loader

GRUB

GRUB

OS/400

YABOOT z/IPL

See

Section 30.6.1, “Configuring the

GRUB Boot Loader”

Section 30.6.1, “Configuring the

GRUB Boot Loader”

Section 30.6.3, “Configuring the

OS/400 Boot Loader”

Section 30.6.4, “Configuring the

YABOOT Boot Loader”

30.6.1. Configuring the GRUB Boot Loader

GRUB's configuration file, /boot/grub/grub.conf, contains a few lines with directives, such as

default, timeout, splashimage and hiddenmenu (the last directive has no argument). The remainder of the file contains 4-line stanzas that each refer to an installed kernel. These stanzas always start with a title entry, after which the associated root, kernel and initrd directives should always be indented. Ensure that each stanza starts with a title that contains a version number (in parentheses) that matches the version number in the kernel /vmlinuz-<version_number> line of the same stanza.

Example 30.2. /boot/grub/grub.conf

# grub.conf generated by anaconda

[comments omitted] default=1 timeout=0 splashimage=(hd0,0)/grub/splash.xpm.gz

hiddenmenu title Red Hat Enterprise Linux (2.6.32-22.el6.x86_64)

root (hd0,0)

kernel /vmlinuz-2.6.32-22.el6.x86_64 ro root=/dev/mapper/vg_vm6b-lv_root rd_LVM_LV=vg_vm6b/lv_root rd_NO_LUKS rd_NO_MD rd_NO_DM LANG=en_US.UTF-8 SYSFONT=latarcyrheb-sun16

KEYBOARDTYPE=pc KEYTABLE=us rhgb quiet crashkernel=auto

initrd /initramfs-2.6.32-22.el6.x86_64.img

title Red Hat Enterprise Linux (2.6.32-19.el6.x86_64)

root (hd0,0)

kernel /vmlinuz-2.6.32-19.el6.x86_64 ro root=/dev/mapper/vg_vm6b-lv_root rd_LVM_LV=vg_vm6b/lv_root rd_NO_LUKS rd_NO_MD rd_NO_DM LANG=en_US.UTF-8 SYSFONT=latarcyrheb-sun16

KEYBOARDTYPE=pc KEYTABLE=us rhgb quiet crashkernel=auto

initrd /initramfs-2.6.32-19.el6.x86_64.img

title Red Hat Enterprise Linux 6 (2.6.32-17.el6.x86_64)

697

Deployment Guide

root (hd0,0)

kernel /vmlinuz-2.6.32-17.el6.x86_64 ro root=/dev/mapper/vg_vm6b-lv_root rd_LVM_LV=vg_vm6b/lv_root rd_NO_LUKS rd_NO_MD rd_NO_DM LANG=en_US.UTF-8 SYSFONT=latarcyrheb-sun16

KEYBOARDTYPE=pc KEYTABLE=us rhgb quiet

initrd /initramfs-2.6.32-17.el6.x86_64.img

If a separate /boot/ partition was created, the paths to the kernel and the initramfs image are

relative to /boot/. This is the case in Example 30.2, “/boot/grub/grub.conf”

, above. Therefore the

initrd /initramfs-2.6.32-22.el6.x86_64.img line in the first kernel stanza means that the

initramfs image is actually located at /boot/initramfs-2.6.32-22.el6.x86_64.img when the root file system is mounted, and likewise for the kernel path (for example: kernel /vmlinuz-

2.6.32-22.el6.x86_64) in each stanza of grub.conf.

NOTE

In kernel boot stanzas in grub.conf, the initrd directive must point to the location

(relative to the /boot/ directory if it is on a separate partition) of the initramfs file corresponding to the same kernel version. This directive is called initrd because the previous tool which created initial RAM disk images, mkinitrd, created what were known as initrd files. Thus the grub.conf directive remains initrd to maintain compatibility with other tools. The file-naming convention of systems using the dracut utility to create the initial RAM disk image is: initramfs-<kernel_version>.img

Dracut is a new utility available in Red Hat Enterprise Linux 6, and much-improved over

mkinitrd. For information on using Dracut, see Section 30.5, “Verifying the Initial RAM

Disk Image” .

You should ensure that the kernel version number as given on the kernel

/vmlinuz-<kernel_version> line matches the version number of the initramfs image given on the initrd /initramfs-<kernel_version>.img line of each stanza. See Procedure 30.1,

“Verifying the Initial RAM Disk Image” for more information.

The default= directive tells GRUB which kernel to boot by default. Each title in grub.conf represents a bootable kernel. GRUB counts the titled stanzas representing bootable kernels starting

with 0. In Example 30.2, “/boot/grub/grub.conf” , the line default=1 indicates that GRUB will boot, by

default, the second kernel entry, i.e. title Red Hat Enterprise Linux (2.6.32-

19.el6.x86_64).

In Example 30.2, “/boot/grub/grub.conf” GRUB is therefore configured to boot an older kernel, when we

compare by version numbers. In order to boot the newer kernel, which is the first title entry in

grub.conf, we would need to change the default value to 0.

After installing a new kernel with rpm, verify that /boot/grub/grub.conf is correct, change the

default= value to the new kernel (while remembering to count from 0), and reboot the computer into the new kernel. Ensure your hardware is detected by watching the boot process output.

If GRUB presents an error and is unable to boot into the default kernel, it is often easiest to try to boot into an alternative or older kernel so that you can fix the problem.

698

CHAPTER 30. MANUALLY UPGRADING THE KERNEL

IMPORTANT

If you set the timeout directive in grub.conf to 0, GRUB will not display its list of bootable kernels when the system starts up. In order to display this list when booting, press and hold any alphanumeric key while and immediately after BIOS information is displayed. GRUB will present you with the GRUB menu.

Alternatively, use the boot media you created earlier to boot the system.

30.6.2. Configuring the Loopback Device Limit

The maximum number of loopback devices in Red Hat Enterprise Linux 6 is set by the max_loop kernel option. For example, to set the maximum number of loopback devices to 64, edit the /etc/grub.conf file, and add max_loop=64 at the end of the kernel line. The line in /etc/grub.conf would then look something like this: kernel /vmlinuz-2.6.32-131.0.15.el6.x86_64 ro root=/dev/mapper/root rhgb quiet max_loop=64 initrd /initramfs-2.6.32-131.0.15.el6.x86_64.img

Reboot the system for the changes to take affect.

By default, eight /dev/loop* devices (/dev/loop0 to /dev/loop7) are automatically generated, but others can be created as desired. For example, to set up a ninth loop device named /dev/loop8, issue the following command as root:

~]# mknod /dev/loop8 b 7 8

Thus, an administrator on a system with a Red Hat Enterprise Linux 6 kernel can create the desired number of loopback devices manually, with an init script, or with a udev rule.

However, if max_loop has been set before the system booted, max_loop becomes a hard limit on the number of loopback devices, and the number of loopback devices cannot be dynamically grown beyond the limit.

30.6.3. Configuring the OS/400 Boot Loader

The /boot/vmlinitrd-<kernel-version> file is installed when you upgrade the kernel. However, you must use the dd command to configure the system to boot the new kernel.

1. As root, issue the command cat /proc/iSeries/mf/side to determine the default side

(either A, B, or C).

2. As root, issue the following command, where <kernel-version> is the version of the new kernel and <side> is the side from the previous command: dd if=/boot/vmlinitrd-<kernel-version> of=/proc/iSeries/mf/<side>/vmlinux bs=8k

Begin testing the new kernel by rebooting the computer and watching the messages to ensure that the hardware is detected properly.

30.6.4. Configuring the YABOOT Boot Loader

699

Deployment Guide

IBM eServer System p uses YABOOT as its boot loader. YABOOT uses /etc/yaboot.conf as its configuration file. Confirm that the file contains an image section with the same version as the kernel package just installed, and likewise for the initramfs image: boot=/dev/sda1 init-message=Welcome to Red Hat Enterprise Linux! Hit <TAB> for boot options partition=2 timeout=30 install=/usr/lib/yaboot/yaboot delay=10 nonvram image=/vmlinuz-2.6.32-17.EL

label=old

read-only

initrd=/initramfs-2.6.32-17.EL.img

append="root=LABEL=/" image=/vmlinuz-2.6.32-19.EL

label=linux

read-only

initrd=/initramfs-2.6.32-19.EL.img

append="root=LABEL=/"

Notice that the default is not set to the new kernel. The kernel in the first image is booted by default. To change the default kernel to boot either move its image stanza so that it is the first one listed or add the directive default and set it to the label of the image stanza that contains the new kernel.

Begin testing the new kernel by rebooting the computer and watching the messages to ensure that the hardware is detected properly.

700

CHAPTER 31. WORKING WITH KERNEL MODULES

CHAPTER 31. WORKING WITH KERNEL MODULES

The Linux kernel is modular, which means it can extend its capabilities through the use of dynamicallyloaded kernel modules. A kernel module can provide: a device driver which adds support for new hardware; or, support for a file system such as btrfs or NFS.

Like the kernel itself, modules can take parameters that customize their behavior, though the default parameters work well in most cases. User-space tools can list the modules currently loaded into a running kernel; query all available modules for available parameters and module-specific information; and load or unload (remove) modules dynamically into or from a running kernel. Many of these utilities, which are provided by the module-init-tools package, take module dependencies into account when performing operations so that manual dependency-tracking is rarely necessary.

On modern systems, kernel modules are automatically loaded by various mechanisms when the conditions call for it. However, there are occasions when it is necessary to load and/or unload modules manually, such as when a module provides optional functionality, one module should be preferred over another although either could provide basic functionality, or when a module is misbehaving, among other situations.

This chapter explains how to: use the user-space module-init-tools package to display, query, load and unload kernel modules and their dependencies; set module parameters both dynamically on the command line and permanently so that you can customize the behavior of your kernel modules; and, load modules at boot time.

NOTE

In order to use the kernel module utilities described in this chapter, first ensure the module-init-tools package is installed on your system by running, as root:

~]# yum install module-init-tools

For more information on installing packages with Yum, see Section 8.2.4, “Installing

Packages” .

31.1. LISTING CURRENTLY-LOADED MODULES

You can list all kernel modules that are currently loaded into the kernel by running the lsmod command:

~]$ lsmod

Module Size Used by xfs 803635 1 exportfs 3424 1 xfs vfat 8216 1 fat 43410 1 vfat tun 13014 2 fuse 54749 2 ip6table_filter 2743 0

701

Deployment Guide ip6_tables 16558 1 ip6table_filter ebtable_nat 1895 0 ebtables 15186 1 ebtable_nat ipt_MASQUERADE 2208 6 iptable_nat 5420 1 nf_nat 19059 2 ipt_MASQUERADE,iptable_nat rfcomm 65122 4 ipv6 267017 33 sco 16204 2 bridge 45753 0 stp 1887 1 bridge llc 4557 2 bridge,stp bnep 15121 2 l2cap 45185 16 rfcomm,bnep cpufreq_ondemand 8420 2 acpi_cpufreq 7493 1 freq_table 3851 2 cpufreq_ondemand,acpi_cpufreq usb_storage 44536 1 sha256_generic 10023 2 aes_x86_64 7654 5 aes_generic 27012 1 aes_x86_64 cbc 2793 1 dm_crypt 10930 1 kvm_intel 40311 0 kvm 253162 1 kvm_intel

[output truncated]

Each row of lsmod output specifies: the name of a kernel module currently loaded in memory; the amount of memory it uses; and, the sum total of processes that are using the module and other modules which depend on it, followed by a list of the names of those modules, if there are any. Using this list, you can first unload all the modules depending the module you want to unload. For more information, see

Section 31.4, “Unloading a Module” .

Finally, note that lsmod output is less verbose and considerably easier to read than the content of the

/proc/modules pseudo-file.

31.2. DISPLAYING INFORMATION ABOUT A MODULE

You can display detailed information about a kernel module by running the modinfo <module_name> command.

NOTE

When entering the name of a kernel module as an argument to one of the module-inittools utilities, do not append a .ko extension to the end of the name. Kernel module names do not have extensions: their corresponding files do.

For example, to display information about the e1000e module, which is the Intel PRO/1000 network driver, run:

702

CHAPTER 31. WORKING WITH KERNEL MODULES

Example 31.1. Listing information about a kernel module with lsmod

~]# modinfo e1000e filename: /lib/modules/2.6.32-

71.el6.x86_64/kernel/drivers/net/e1000e/e1000e.ko

version: 1.2.7-k2 license: GPL description: Intel(R) PRO/1000 Network Driver author: Intel Corporation, <[email protected]> srcversion: 93CB73D3995B501872B2982 alias: pci:v00008086d00001503sv*sd*bc*sc*i* alias: pci:v00008086d00001502sv*sd*bc*sc*i*

[some alias lines omitted] alias: pci:v00008086d0000105Esv*sd*bc*sc*i* depends: vermagic: 2.6.32-71.el6.x86_64 SMP mod_unload modversions parm: copybreak:Maximum size of packet that is copied to a new buffer on receive (uint) parm: TxIntDelay:Transmit Interrupt Delay (array of int) parm: TxAbsIntDelay:Transmit Absolute Interrupt Delay (array of int) parm: RxIntDelay:Receive Interrupt Delay (array of int) parm: RxAbsIntDelay:Receive Absolute Interrupt Delay (array of int) parm: InterruptThrottleRate:Interrupt Throttling Rate (array of int) parm: IntMode:Interrupt Mode (array of int) parm: SmartPowerDownEnable:Enable PHY smart power down (array of int) parm: KumeranLockLoss:Enable Kumeran lock loss workaround

(array of int) parm: WriteProtectNVM:Write-protect NVM [WARNING: disabling this can lead to corrupted NVM] (array of int) parm: CrcStripping:Enable CRC Stripping, disable if your BMC needs the CRC (array of int) parm: EEE:Enable/disable on parts that support the feature

(array of int)

Here are descriptions of a few of the fields in modinfo output: filename

The absolute path to the .ko kernel object file. You can use modinfo -n as a shortcut command for printing only the filename field.

description

A short description of the module. You can use modinfo -d as a shortcut command for printing only the description field.

alias

The alias field appears as many times as there are aliases for a module, or is omitted entirely if there are none.

703

Deployment Guide depends

This field contains a comma-separated list of all the modules this module depends on.

NOTE

If a module has no dependencies, the depends field may be omitted from the output.

parm

Each parm field presents one module parameter in the form parameter_name:description, where: parameter_name is the exact syntax you should use when using it as a module parameter on the command line, or in an option line in a .conf file in the /etc/modprobe.d/ directory; and, description is a brief explanation of what the parameter does, along with an expectation for the type of value the parameter accepts (such as int, unit or array of int) in parentheses.

You can list all parameters that the module supports by using the -p option. However, because useful value type information is omitted from modinfo -p output, it is more useful to run:

Example 31.2. Listing module parameters

~]# modinfo e1000e | grep "^parm" | sort parm: copybreak:Maximum size of packet that is copied to a new buffer on receive (uint) parm: CrcStripping:Enable CRC Stripping, disable if your

BMC needs the CRC (array of int) parm: EEE:Enable/disable on parts that support the feature

(array of int) parm: InterruptThrottleRate:Interrupt Throttling Rate

(array of int) parm: IntMode:Interrupt Mode (array of int) parm: KumeranLockLoss:Enable Kumeran lock loss workaround

(array of int) parm: RxAbsIntDelay:Receive Absolute Interrupt Delay (array of int) parm: RxIntDelay:Receive Interrupt Delay (array of int) parm: SmartPowerDownEnable:Enable PHY smart power down

(array of int) parm: TxAbsIntDelay:Transmit Absolute Interrupt Delay

(array of int) parm: TxIntDelay:Transmit Interrupt Delay (array of int) parm: WriteProtectNVM:Write-protect NVM [WARNING: disabling this can lead to corrupted NVM] (array of int)

31.3. LOADING A MODULE

To load a kernel module, run the modprobe <module_name> command as root. For example, to load the wacom module, run:

704

CHAPTER 31. WORKING WITH KERNEL MODULES

~]# modprobe wacom

By default, modprobe attempts to load the module from the

/lib/modules/<kernel_version>/kernel/drivers/ directory. In this directory, each type of module has its own subdirectory, such as net/ and scsi/, for network and SCSI interface drivers respectively.

Some modules have dependencies, which are other kernel modules that must be loaded before the module in question can be loaded. A list of module dependencies is generated and maintained by the

depmod program that is run automatically whenever a kernel or driver package is installed on the system. The depmod program keeps the list of dependencies in the

/lib/modules/<kernel_version>/modules.dep file. The modprobe command always reads the

modules.dep file when performing operations. When you ask modprobe to load a specific kernel module, it first examines the dependencies of that module, if there are any, and loads them if they are not already loaded into the kernel. modprobe resolves dependencies recursively: If necessary, it loads all dependencies of dependencies, and so on, thus ensuring that all dependencies are always met.

You can use the -v (or --verbose) option to cause modprobe to display detailed information about what it is doing, which may include loading module dependencies. The following is an example of loading the Fibre Channel over Ethernet module verbosely:

Example 31.3. modprobe -v shows module dependencies as they are loaded

~]# modprobe -v fcoe insmod /lib/modules/2.6.32-71.el6.x86_64/kernel/drivers/scsi/scsi_tgt.ko

insmod /lib/modules/2.6.32-

71.el6.x86_64/kernel/drivers/scsi/scsi_transport_fc.ko

insmod /lib/modules/2.6.32-

71.el6.x86_64/kernel/drivers/scsi/libfc/libfc.ko

insmod /lib/modules/2.6.32-

71.el6.x86_64/kernel/drivers/scsi/fcoe/libfcoe.ko

insmod /lib/modules/2.6.32-

71.el6.x86_64/kernel/drivers/scsi/fcoe/fcoe.ko

This example shows that modprobe loaded the scsi_tgt, scsi_transport_fc, libfc and

libfcoe modules as dependencies before finally loading fcoe. Also note that modprobe used the more “primitive” insmod command to insert the modules into the running kernel.

IMPORTANT

Although the insmod command can also be used to load kernel modules, it does not resolve dependencies. Because of this, you should always load modules using modprobe instead.

31.4. UNLOADING A MODULE

You can unload a kernel module by running modprobe -r <module_name> as root. For example, assuming that the wacom module is already loaded into the kernel, you can unload it by running:

~]# modprobe -r wacom

705

Deployment Guide

However, this command will fail if a process is using: the wacom module, a module that wacom directly depends on, or, any module that wacom—through the dependency tree—depends on indirectly.

See

Section 31.1, “Listing Currently-Loaded Modules”

for more information about using lsmod to obtain the names of the modules which are preventing you from unloading a certain module.

For example, if you want to unload the firewire_ohci module (because you believe there is a bug in it that is affecting system stability, for example), your terminal session might look similar to this:

~]# modinfo -F depends firewire_ohci depends: firewire-core

~]# modinfo -F depends firewire_core depends: crc-itu-t

~]# modinfo -F depends crc-itu-t depends:

You have figured out the dependency tree (which does not branch in this example) for the loaded

Firewire modules: firewire_ohci depends on firewire_core, which itself depends on crc-itu-

t.

You can unload firewire_ohci using the modprobe -v -r <module_name> command, where -

r is short for --remove and -v for --verbose:

~]# modprobe -r -v firewire_ohci rmmod /lib/modules/2.6.32-71.el6.x86_64/kernel/drivers/firewire/firewireohci.ko

rmmod /lib/modules/2.6.32-71.el6.x86_64/kernel/drivers/firewire/firewirecore.ko

rmmod /lib/modules/2.6.32-71.el6.x86_64/kernel/lib/crc-itu-t.ko

The output shows that modules are unloaded in the reverse order that they are loaded, given that no processes depend on any of the modules being unloaded.

IMPORTANT

Although the rmmod command can be used to unload kernel modules, it is recommended to use modprobe -r instead.

31.5. BLACKLISTING A MODULE

Sometimes, for various performance or security reasons, it is necessary to prevent the system from using a certain kernel module. This can be achieved by module blacklisting, which is a mechanism used by the modprobe utility to ensure that the kernel cannot automatically load certain modules, or that the modules cannot be loaded at all. This is useful in certain situations, such as when using a certain module poses a security risk to your system, or when the module controls the same hardware or service as another module, and loading both modules would cause the system, or its component, to become unstable or non-operational.

706

CHAPTER 31. WORKING WITH KERNEL MODULES

To blacklist a module, you have to add the following line to the specified configuration file in the

/etc/modprobe.d/ directory as root: blacklist <module_name> where <module_name> is the name of the module being blacklisted.

You can modify the /etc/modprobe.d/blacklist.conf file that already exists on the system by default. However, the preferred method is to create a separate configuration file,

/etc/modprobe.d/<module_name>.conf, that will contain settings specific only to the given kernel module.

Example 31.4. An example of /etc/modprobe.d/blacklist.conf

#

# Listing a module here prevents the hotplug scripts from loading it.

# Usually that'd be so that some other driver will bind it instead,

# no matter which driver happens to get probed first. Sometimes user

# mode tools can also control driver binding.

#

# Syntax: see modprobe.conf(5).

#

# watchdog drivers blacklist i8xx_tco

# framebuffer drivers blacklist aty128fb blacklist atyfb blacklist radeonfb blacklist i810fb blacklist cirrusfb blacklist intelfb blacklist kyrofb blacklist i2c-matroxfb blacklist hgafb blacklist nvidiafb blacklist rivafb blacklist savagefb blacklist sstfb blacklist neofb blacklist tridentfb blacklist tdfxfb blacklist virgefb blacklist vga16fb blacklist viafb

# ISDN - see bugs 154799, 159068 blacklist hisax blacklist hisax_fcpcipnp

# sound drivers blacklist snd-pcsp

707

Deployment Guide

# I/O dynamic configuration support for s390x (bz #563228) blacklist chsc_sch

The blacklist <module_name> command, however, does not prevent the module from being loaded manually, or from being loaded as a dependency for another kernel module that is not blacklisted. To ensure that a module cannot be loaded on the system at all, modify the specified configuration file in the

/etc/modprobe.d/ directory as root with the following line: install <module_name> /bin/ true where <module_name> is the name of the blacklisted module.

Example 31.5. Using module blacklisting as a temporary problem solution

Let's say that a flaw in the Linux kernel's PPP over L2TP module (pppol2pt) has been found, and this flaw could be misused to compromise your system. If your system does not require the

pppol2pt module to function, you can follow this procedure to blacklist pppol2pt completely until this problem is fixed:

1. Verify whether pppol2pt is currently loaded in the kernel by running the following command:

~]# lsmod | grep ^pppol2tp && echo "The module is loaded" || echo

"The module is not loaded"

2. If the module is loaded, you need to unload it and all its dependencies to prevent its possible

misuse. See Section 31.4, “Unloading a Module” for instructions on how to safely unload it.

3. Run the following command to ensure that pppol2pt cannot be loaded to the kernel:

~]# echo "install pppol2tp /bin/true" >

/etc/modprobe.d/pppol2tp.conf

Note that this command overwrites the content of the /etc/modprobe.d/pppol2tp.conf file if it already exists on your system. Check and back up your existing pppol2tp.conf before running this command. Also, if you were unable to unload the module, you have to reboot the system for this command to take effect.

After the problem with the pppol2pt module has been properly fixed, you can delete the

/etc/modprobe.d/pppol2tp.conf file or restore its previous content, which will allow your system to load the pppol2pt module with its original configuration.

IMPORTANT

Before blacklisting a kernel module, always ensure that the module is not vital for your current system configuration to function properly. Improper blacklisting of a key kernel module can result in an unstable or non-operational system.

31.6. SETTING MODULE PARAMETERS

708

CHAPTER 31. WORKING WITH KERNEL MODULES

Like the kernel itself, modules can also take parameters that change their behavior. Most of the time, the default ones work well, but occasionally it is necessary or desirable to set custom parameters for a module. Because parameters cannot be dynamically set for a module that is already loaded into a running kernel, there are two different methods for setting them.

1. Load a kernel module by running the modprobe command along with a list of customized parameters on the command line. If the module is already loaded, you need to first unload all its dependencies and the module itself using the modprobe -r command. This method allows you to run a kernel module with specific settings without making the changes persistent. See

Section 31.6.1, “Loading a Customized Module - Temporary Changes” for more information.

2. Alternatively, specify a list of the customized parameters in an existing or newly-created file in the /etc/modprobe.d/ directory. This method ensures that the module customization is persistent by setting the specified parameters accordingly each time the module is loaded, such

as after every reboot or modprobe command. See Section 31.6.2, “Loading a Customized

Module - Persistent Changes” for more information.

31.6.1. Loading a Customized Module - Temporary Changes

Sometimes it is useful or necessary to run a kernel module temporarily with specific settings. To load a kernel module with customized parameters for the current system session, or until the module is reloaded with different parameters, run modprobe in the following format as root:

~]# modprobe <module_name> [parameter=value​] where [parameter=value​] represents a list of customized parameters available to that module. When loading a module with custom parameters on the command line, be aware of the following:

You can enter multiple parameters and values by separating them with spaces.

Some module parameters expect a list of comma-separated values as their argument. When entering the list of values, do not insert a space after each comma, or modprobe will incorrectly interpret the values following spaces as additional parameters.

The modprobe command silently succeeds with an exit status of 0 if it successfully loads the module, or the module is already loaded into the kernel. Thus, you must ensure that the module is not already loaded before attempting to load it with custom parameters. The modprobe command does not automatically reload the module, or alert you that it is already loaded.

The following procedure illustrates the recommended steps to load a kernel module with custom parameters on the e1000e module, which is the network driver for Intel PRO/1000 network adapters, as an example:

Procedure 31.1. Loading a Kernel Module with Custom Parameters

1. Verify whether the module is not already loaded into the kernel by running the following command:

~]# lsmod|grep e1000e e1000e 236338 0 ptp 9614 1 e1000e

709

Deployment Guide

Note that the output of the command in this example indicates that the e1000e module is already loaded into the kernel. It also shows that this module has one dependency, the ptp module.

2. If the module is already loaded into the kernel, you must unload the module and all its

dependencies before proceeding with the next step. See Section 31.4, “Unloading a Module” for

instructions on how to safely unload it.

3. Load the module and list all custom parameters after the module name. For example, if you wanted to load the Intel PRO/1000 network driver with the interrupt throttle rate set to 3000 interrupts per second for the first, second and third instances of the driver, and Energy Efficient

Ethernet (EEE) turned on

[5]

, you would run, as root:

~]# modprobe e1000e InterruptThrottleRate=3000,3000,3000 EEE=1

This example illustrates passing multiple values to a single parameter by separating them with commas and omitting any spaces between them.

31.6.2. Loading a Customized Module - Persistent Changes

If you want to ensure that a kernel module is always loaded with specific settings, modify an existing or newly-created file in the /etc/modprobe.d/ directory with a line in the following format.

~]# options <module_name> [parameter=value​] where [parameter=value​] represents a list of customized parameters available to that module.

The following procedure illustrates the recommended steps for loading a kernel module with custom parameters on the b43 module for Open Firmware for wireless networks, ensuring that changes persist between module reloads.

Procedure 31.2. Loading a Kernel Module with Custom Parameters - Persistent Changes

1. Add the following line to the /etc/modprobe.d/openfwwf.conf file, which ensures that the

b43 module is always loaded with QoS and hardware-accelerated cryptography disabled: options b43 nohwcrypt=1 qos=0

2. Verify whether the module is not already loaded into the kernel by running the following command:

~]# lsmod|grep ^b43

~]#

Note that the output of the command in this example indicates that the module is currently not loaded into the kernel.

3. If the module is already loaded into the kernel, you must unload the module and all its

dependencies before proceeding with the next step. See Section 31.4, “Unloading a Module” for

instructions on how to safely unload it.

4. Load the b43 module by running the following command:

710

CHAPTER 31. WORKING WITH KERNEL MODULES

~]# modprobe b43

31.7. PERSISTENT MODULE LOADING

As shown in Example 31.1, “Listing information about a kernel module with lsmod”

, many kernel modules are loaded automatically at boot time. You can specify additional modules to be loaded by creating a new <file_name>.modules file in the /etc/sysconfig/modules/ directory, where

<file_name> is any descriptive name of your choice. Your <file_name>.modules files are treated by the system startup scripts as shell scripts, and as such should begin with an interpreter directive (also called a “bang line”) as their first line:

Example 31.6. First line of a file_name.modules file

#!/bin/sh

Additionally, the <file_name>.modules file should be executable. You can make it executable by running: modules]# chmod +x <file_name>.modules

For example, the following bluez-uinput.modules script loads the uinput module:

Example 31.7. /etc/sysconfig/modules/bluez-uinput.modules

#!/bin/sh if [ ! -c /dev/input/uinput ] ; then

exec /sbin/modprobe uinput >/dev/null 2>&1 fi

The if-conditional statement on the third line ensures that the /dev/input/uinput file does not already exist (the ! symbol negates the condition), and, if that is the case, loads the uinput module by calling exec /sbin/modprobe uinput. Note that the uinput module creates the

/dev/input/uinput file, so testing to see if that file exists serves as verification of whether the

uinput module is loaded into the kernel.

The following >/dev/null 2>&1 clause at the end of that line redirects any output to /dev/null so that the modprobe command remains quiet.

31.8. SPECIFIC KERNEL MODULE CAPABILITIES

This section explains how to enable specific kernel capabilities using various kernel modules.

31.8.1. Using Channel Bonding

Red Hat Enterprise Linux allows administrators to bind NICs together into a single channel using the

bonding kernel module and a special network interface, called a channel bonding interface. Channel bonding enables two or more network interfaces to act as one, simultaneously increasing the bandwidth and providing redundancy.

711

Deployment Guide

To channel bond multiple network interfaces, the administrator must perform the following steps:

1. Configure a channel bonding interface as outlined in Section 11.2.4, “Channel Bonding

Interfaces” .

2. To enhance performance, adjust available module options to ascertain what combination works best. Pay particular attention to the miimon or arp_interval and the arp_ip_target

parameters. See Section 31.8.1.1, “Bonding Module Directives”

for a list of available options and how to quickly determine the best ones for your bonded interface.

31.8.1.1. Bonding Module Directives

It is a good idea to test which channel bonding module parameters work best for your bonded interfaces before adding them to the BONDING_OPTS="<bonding parameters>" directive in your bonding interface configuration file (ifcfg-bond0 for example). Parameters to bonded interfaces can be configured without unloading (and reloading) the bonding module by manipulating files in the sysfs file system.

sysfs is a virtual file system that represents kernel objects as directories, files and symbolic links.

sysfs can be used to query for information about kernel objects, and can also manipulate those objects through the use of normal file system commands. The sysfs virtual file system has a line in

/etc/fstab, and is mounted under the /sys/ directory. All bonding interfaces can be configured dynamically by interacting with and manipulating files under the /sys/class/net/ directory.

In order to determine the best parameters for your bonding interface, create a channel bonding interface file such as ifcfg-bond0 by following the instructions in

Section 11.2.4, “Channel Bonding Interfaces” .

Insert the SLAVE=yes and MASTER=bond0 directives in the configuration files for each interface bonded to bond0. Once this is completed, you can proceed to testing the parameters.

First, bring up the bond you created by running ifconfig bond<N> up as root:

~]# ifconfig bond0 up

If you have correctly created the ifcfg-bond0 bonding interface file, you will be able to see bond0 listed in the output of running ifconfig (without any options):

~]# ifconfig bond0 Link encap:Ethernet HWaddr 00:00:00:00:00:00

UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:0 (0.0 b) TX bytes:0 (0.0 b) eth0 Link encap:Ethernet HWaddr 52:54:00:26:9E:F1

inet addr:192.168.122.251 Bcast:192.168.122.255

Mask:255.255.255.0

inet6 addr: fe80::5054:ff:fe26:9ef1/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:207 errors:0 dropped:0 overruns:0 frame:0

TX packets:205 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:70374 (68.7 KiB) TX bytes:25298 (24.7 KiB)

[output truncated]

712

CHAPTER 31. WORKING WITH KERNEL MODULES

To view all existing bonds, even if they are not up, run:

~]# cat /sys/class/net/bonding_masters bond0

You can configure each bond individually by manipulating the files located in the

/sys/class/net/bond<N>/bonding/ directory. First, the bond you are configuring must be taken down:

~]# ifconfig bond0 down

As an example, to enable MII monitoring on bond0 with a 1 second interval, you could run (as root):

~]# echo 1000 > /sys/class/net/bond0/bonding/miimon

To configure bond0 for balance-alb mode, you could run either:

~]# echo 6 > /sys/class/net/bond0/bonding/mode

...or, using the name of the mode:

~]# echo balance-alb > /sys/class/net/bond0/bonding/mode

After configuring options for the bond in question, you can bring it up and test it by running ifconfig

bond<N> up. If you decide to change the options, take the interface down, modify its parameters using

sysfs, bring it back up, and re-test.

Once you have determined the best set of parameters for your bond, add those parameters as a spaceseparated list to the BONDING_OPTS= directive of the /etc/sysconfig/network-scripts/ifcfg-

bond<N> file for the bonding interface you are configuring. Whenever that bond is brought up (for example, by the system during the boot sequence if the ONBOOT=yes directive is set), the bonding options specified in the BONDING_OPTS will take effect for that bond. For more information on configuring bonding interfaces (and BONDING_OPTS), see

Section 11.2.4, “Channel Bonding Interfaces”

.

The following list provides the names of many of the more common channel bonding parameters, along with a descriptions of what they do. For more information, see the brief descriptions for each parm in

modinfo bonding output, or the exhaustive descriptions in the bonding.txt file in the kernel-doc package (see

Section 31.9, “Additional Resources”

).

Bonding Interface Parameters arp_interval=<time_in_milliseconds>

Specifies (in milliseconds) how often ARP monitoring occurs. When configuring this setting, a good starting point for this parameter is 1000.

IMPORTANT

It is essential that both arp_interval and arp_ip_target parameters are specified, or, alternatively, the miimon parameter is specified. Failure to do so can cause degradation of network performance in the event that a link fails.

713

Deployment Guide

If using this setting while in mode=0 or mode=2 (the two load-balancing modes), the network switch must be configured to distribute packets evenly across the NICs. For more information on how to

accomplish this, see the bonding.txt file in the kernel-doc package (see Section 31.9, “Additional

Resources” ).

The value is set to 0 by default, which disables it.

arp_ip_target=<ip_address>​[,<ip_address_2>,…<ip_address_16>​]

Specifies the target IP address of ARP requests when the arp_interval parameter is enabled. Up to 16 IP addresses can be specified in a comma separated list.

arp_validate=<value>

Validate source/distribution of ARP probes; default is none. Other valid values are active, backup, and all.

downdelay=<time_in_milliseconds>

Specifies (in milliseconds) how long to wait after link failure before disabling the link. The value must be a multiple of the value specified in the miimon parameter. The value is set to 0 by default, which disables it.

lacp_rate=<value>

Specifies the rate at which link partners should transmit LACPDU packets in 802.3ad mode. Possible values are:

slow or 0 — Default setting. This specifies that partners should transmit LACPDUs every 30 seconds.

fast or 1 — Specifies that partners should transmit LACPDUs every 1 second.

miimon=<time_in_milliseconds>

Specifies (in milliseconds) how often MII link monitoring occurs. This is useful if high availability is required because MII is used to verify that the NIC is active. To verify that the driver for a particular

NIC supports the MII tool, type the following command as root:

~]# ethtool <interface_name> | grep "Link detected:"

In this command, replace <interface_name> with the name of the device interface, such as eth0, not the bond interface. If MII is supported, the command returns:

Link detected: yes

If using a bonded interface for high availability, the module for each NIC must support MII. Setting the value to 0 (the default), turns this feature off. When configuring this setting, a good starting point for this parameter is 100.

IMPORTANT

It is essential that both arp_interval and arp_ip_target parameters are specified, or, alternatively, the miimon parameter is specified. Failure to do so can cause degradation of network performance in the event that a link fails.

714

CHAPTER 31. WORKING WITH KERNEL MODULES mode=<value>

Allows you to specify the bonding policy. The <value> can be one of:

balance-rr or 0 — Sets a round-robin policy for fault tolerance and load balancing.

Transmissions are received and sent out sequentially on each bonded slave interface beginning with the first one available.

active-backup or 1 — Sets an active-backup policy for fault tolerance. Transmissions are received and sent out via the first available bonded slave interface. Another bonded slave interface is only used if the active bonded slave interface fails.

balance-xor or 2 — Sets an XOR (exclusive-or) policy for fault tolerance and load balancing. Using this method, the interface matches up the incoming request's MAC address with the MAC address for one of the slave NICs. Once this link is established, transmissions are sent out sequentially beginning with the first available interface.

broadcast or 3 — Sets a broadcast policy for fault tolerance. All transmissions are sent on all slave interfaces.

802.3ad or 4 — Sets an IEEE 802.3ad dynamic link aggregation policy. Creates aggregation groups that share the same speed and duplex settings. Transmits and receives on all slaves in the active aggregator. Requires a switch that is 802.3ad compliant.

balance-tlb or 5 — Sets a Transmit Load Balancing (TLB) policy for fault tolerance and load balancing. The outgoing traffic is distributed according to the current load on each slave interface. Incoming traffic is received by the current slave. If the receiving slave fails, another slave takes over the MAC address of the failed slave. This mode is only suitable for local addresses known to the kernel bonding module and therefore cannot be used behind a bridge with virtual machines.

balance-alb or 6 — Sets an Adaptive Load Balancing (ALB) policy for fault tolerance and load balancing. Includes transmit and receive load balancing for IPv4 traffic. Receive load balancing is achieved through ARP negotiation. This mode is only suitable for local addresses known to the kernel bonding module and therefore cannot be used behind a bridge with virtual machines.

num_unsol_na=<number>

Specifies the number of unsolicited IPv6 Neighbor Advertisements to be issued after a failover event.

One unsolicited NA is issued immediately after the failover.

The valid range is 0 - 255; the default value is 1. This parameter affects only the active-backup mode.

primary=<interface_name>

Specifies the interface name, such as eth0, of the primary device. The primary device is the first of the bonding interfaces to be used and is not abandoned unless it fails. This setting is particularly useful when one NIC in the bonding interface is faster and, therefore, able to handle a bigger load.

This setting is only valid when the bonding interface is in active-backup mode. See the

bonding.txt file in the kernel-doc package (see Section 31.9, “Additional Resources” ).

primary_reselect=<value>

Specifies the reselection policy for the primary slave. This affects how the primary slave is chosen to

715

Deployment Guide become the active slave when failure of the active slave or recovery of the primary slave occurs. This parameter is designed to prevent flip-flopping between the primary slave and other slaves. Possible values are:

always or 0 (default) — The primary slave becomes the active slave whenever it comes back up.

better or 1 — The primary slave becomes the active slave when it comes back up, if the speed and duplex of the primary slave is better than the speed and duplex of the current active slave.

failure or 2 — The primary slave becomes the active slave only if the current active slave fails and the primary slave is up.

The primary_reselect setting is ignored in two cases:

If no slaves are active, the first slave to recover is made the active slave.

When initially enslaved, the primary slave is always made the active slave.

Changing the primary_reselect policy via sysfs will cause an immediate selection of the best active slave according to the new policy. This may or may not result in a change of the active slave, depending upon the circumstances updelay=<time_in_milliseconds>

Specifies (in milliseconds) how long to wait before enabling a link. The value must be a multiple of the value specified in the miimon parameter. The value is set to 0 by default, which disables it.

use_carrier=<number>

Specifies whether or not miimon should use MII/ETHTOOL ioctls or netif_carrier_ok() to determine the link state. The netif_carrier_ok() function relies on the device driver to maintains its state with netif_carrier_on/off; most device drivers support this function.

The MII/ETHROOL ioctls tools utilize a deprecated calling sequence within the kernel. However, this is still configurable in case your device driver does not support netif_carrier_on/off.

Valid values are:

1 — Default setting. Enables the use of netif_carrier_ok().

0 — Enables the use of MII/ETHTOOL ioctls.

NOTE

If the bonding interface insists that the link is up when it should not be, it is possible that your network device driver does not support netif_carrier_on/off.

xmit_hash_policy=<value>

Selects the transmit hash policy used for slave selection in balance-xor and 802.3ad modes.

Possible values are:

0 or layer2 — Default setting. This parameter uses the XOR of hardware MAC addresses to generate the hash. The formula used is:

716

CHAPTER 31. WORKING WITH KERNEL MODULES

(<source_MAC_address> XOR <destination_MAC>) MODULO <slave_count>

This algorithm will place all traffic to a particular network peer on the same slave, and is

802.3ad compliant.

1 or layer3+4 — Uses upper layer protocol information (when available) to generate the hash. This allows for traffic to a particular network peer to span multiple slaves, although a single connection will not span multiple slaves.

The formula for unfragmented TCP and UDP packets used is:

((<source_port> XOR <dest_port>) XOR

((<source_IP> XOR <dest_IP>) AND 0xffff)

MODULO <slave_count>

For fragmented TCP or UDP packets and all other IP protocol traffic, the source and destination port information is omitted. For non-IP traffic, the formula is the same as the

layer2 transmit hash policy.

This policy intends to mimic the behavior of certain switches; particularly, Cisco switches with

PFC2 as well as some Foundry and IBM products.

The algorithm used by this policy is not 802.3ad compliant.

2 or layer2+3 — Uses a combination of layer2 and layer3 protocol information to generate the hash.

Uses XOR of hardware MAC addresses and IP addresses to generate the hash. The formula is:

(((<source_IP> XOR <dest_IP>) AND 0xffff) XOR

( <source_MAC> XOR <destination_MAC> ))

MODULO <slave_count>

This algorithm will place all traffic to a particular network peer on the same slave. For non-IP traffic, the formula is the same as for the layer2 transmit hash policy.

This policy is intended to provide a more balanced distribution of traffic than layer2 alone, especially in environments where a layer3 gateway device is required to reach most destinations.

This algorithm is 802.3ad compliant.

31.9. ADDITIONAL RESOURCES

For more information on kernel modules and their utilities, see the following resources.

Installed Documentation

lsmod(8) — The manual page for the lsmod command.

modinfo(8) — The manual page for the modinfo command.

modprobe(8)> — The manual page for the modprobe command.

717

Deployment Guide

rmmod(8) — The manual page for the rmmod command.

ethtool(8) — The manual page for the ethtool command.

mii-tool(8) — The manual page for the mii-tool command.

Installable Documentation

/usr/share/doc/kernel-doc-<kernel_version>/Documentation/ — This directory, which is provided by the kernel-doc package, contains information on the kernel, kernel modules, and their respective parameters. Before accessing the kernel documentation, you must run the following command as root:

~]# yum install kernel-doc

Online Documentation

— The Red Hat Knowledgebase article Which bonding modes work when used with a bridge that virtual machine guests connect to?

[5] Despite what the example might imply, Energy Efficient Ethernet is turned on by default in the

e1000e driver.

718

CHAPTER 32. THE KDUMP CRASH RECOVERY SERVICE

CHAPTER 32. THE KDUMP CRASH RECOVERY SERVICE

When the kdump crash dumping mechanism is enabled, the system is booted from the context of another kernel. This second kernel reserves a small amount of memory and its only purpose is to capture the core dump image in case the system crashes.

Being able to analyze the core dump significantly helps to determine the exact cause of the system failure, and it is therefore strongly recommended to have this feature enabled. This chapter explains how to configure, test, and use the kdump service in Red Hat Enterprise Linux, and provides a brief overview of how to analyze the resulting core dump using the crash debugging utility.

32.1. INSTALLING THE KDUMP SERVICE

In order to use the kdump service on your system, make sure you have the kexec-tools package installed. To do so, type the following at a shell prompt as root:

~]# yum install kexec-tools

For more information on how to install new packages in Red Hat Enterprise Linux, see Section 8.2.4,

“Installing Packages” .

32.2. CONFIGURING THE KDUMP SERVICE

There are three common means of configuring the kdump service: at the first boot, using the Kernel

Dump Configuration graphical utility, and doing so manually on the command line.

IMPORTANT

A limitation in the current implementation of the Intel IOMMU driver can occasionally prevent the kdump service from capturing the core dump image. To use kdump on Intel architectures reliably, it is advised that the IOMMU support is disabled.

WARNING

It is known that the kdump service does not work reliably on certain combinations of

HP Smart Array devices and system boards from the same vendor. Consequent to this, users are strongly advised to test the configuration before using it in production environment, and if necessary, configure kdump to store the kernel crash dump to a remote machine over a network. For more information on how to test the kdump configuration, see

Section 32.2.4, “Testing the Configuration”

.

32.2.1. Configuring kdump at First Boot

When the system boots for the first time, the firstboot application is launched to guide the user through the initial configuration of the freshly installed system. To configure kdump, navigate to the Kdump section and follow the instructions below.

719

Deployment Guide

1. Select the Enable kdump? check box to allow the kdump daemon to start at boot time. This will enable the service for runlevels 2, 3, 4, and 5, and start it for the current session. Similarly, unselecting the check box will disable it for all runlevels and stop the service immediately.

2. Click the up and down arrow buttons next to the Kdump Memory field to increase or decrease the value to configure the amount of memory that is reserved for the kdump kernel. Notice that the Usable System Memory field changes accordingly showing you the remaining memory that will be available to the system.

IMPORTANT

This section is available only if the system has enough memory. To learn about minimum memory requirements of the Red Hat Enterprise Linux 6 system, read the Required minimums section of the Red Hat Enterprise Linux Technology Capabilities and Limits comparison chart. When the kdump crash recovery is enabled, the minimum memory requirements increase by the amount of memory reserved for it. This value is determined by the user, and defaults to 128 MB plus 64 MB for each TB of physical memory (that is, a total of 192 MB for a system with 1 TB of physical memory). The memory can be attempted up to the maximum of 896 MB if required. This is recommended especially in large environments, for example in systems with a large number of Logical Unit Numbers

(LUNs).

32.2.2. Using the Kernel Dump Configuration Utility

To start the Kernel Dump Configuration utility, select SystemAdministrationKernel crash

dumps from the panel, or type system-config-kdump at a shell prompt. You will be presented with a window as shown in

Figure 32.1, “Basic Settings”

.

The utility allows you to configure kdump as well as to enable or disable starting the service at boot time.

When you are done, click Apply to save the changes. The system reboot will be requested, and unless you are already authenticated, you will be prompted to enter the superuser password.

IMPORTANT

On IBM System z or PowerPC systems with SELinux running in Enforcing mode, the

kdumpgui_run_bootloader Boolean must be enabled before launching the Kernel

Dump Configuration utility. This Boolean allows system-config-kdump to run the boot loader in the bootloader_t SELinux domain. To permanently enable the Boolean, run the following command as root:

~]# setsebool -P kdumpgui_run_bootloader 1

Enabling the Service

To start the kdump daemon at boot time, click the Enable button on the toolbar. This will enable the service for runlevels 2, 3, 4, and 5, and start it for the current session. Similarly, clicking the Disable button will disable it for all runlevels and stop the service immediately.

For more information on runlevels and configuring services in general, see Chapter 12, Services and

Daemons .

The Basic Settings Tab

The Basic Settings tab enables you to configure the amount of memory that is reserved for the

kdump kernel. To do so, select the Manual kdump memory settings radio button, and click the up

720

CHAPTER 32. THE KDUMP CRASH RECOVERY SERVICE and down arrow buttons next to the New kdump Memory field to increase or decrease the value. Notice that the Usable Memory field changes accordingly showing you the remaining memory that will be available to the system.

Figure 32.1. Basic Settings

IMPORTANT

This section is available only if the system has enough memory. To learn about minimum memory requirements of the Red Hat Enterprise Linux 6 system, read the Required minimums section of the Red Hat Enterprise Linux Technology Capabilities and Limits comparison chart. When the kdump crash recovery is enabled, the minimum memory requirements increase by the amount of memory reserved for it. This value is determined by the user, and defaults to 128 MB plus 64 MB for each TB of physical memory (that is, a total of 192 MB for a system with 1 TB of physical memory). The memory can be attempted up to the maximum of 896 MB if required. This is recommended especially in large environments, for example in systems with a large number of Logical Unit Numbers

(LUNs).

The Target Settings Tab

The Target Settings tab enables you to specify the target location for the vmcore dump. It can be either stored as a file in a local file system, written directly to a device, or sent over a network using the

NFS (Network File System) or SSH (Secure Shell) protocol.

721

Deployment Guide

Figure 32.2. Target Settings

To save the dump to the local file system, select the Local filesystem radio button. Optionally, you can customize the settings by choosing a different partition from the Partition, and a target directory from the Path pulldown lists.

To write the dump directly to a device, select the Raw device radio button, and choose the desired target device from the pulldown list next to it.

To store the dump to a remote machine, select the Network radio button. To use the NFS protocol, select the NFS radio button, and fill the Server name and Path to directory fields. To use the

SSH protocol, select the SSH radio button, and fill the Server name, Path to directory, and User

name fields with the remote server address, target directory, and a valid remote user name respectively.

See

Chapter 14, OpenSSH for information on how to configure an SSH server, and how to set up a key-

based authentication.

722

CHAPTER 32. THE KDUMP CRASH RECOVERY SERVICE

NOTE

When using Direct-Access Storage Devices (DASDs) as the kdump target, the devices must be specified in the /etc/dasd.conf file with other DASDs, for example:

0.0.2098

0.0.2198

0.0.2298

0.0.2398

Where 0.0.2298 and 0.0.2398 are the DASDs used as the kdump target.

Similarly, when using FCP-attached Small Computer System Interface (SCSI) disks as the kdump target, the disks must be specified in the /etc/zfcp.conf file with other

FCP-Attached SCSI disks, for example:

0.0.3d0c 0x500507630508c1ae 0x402424aa00000000

0.0.3d0c 0x500507630508c1ae 0x402424ab00000000

0.0.3d0c 0x500507630508c1ae 0x402424ac00000000

Where 0.0.3d0c 0x500507630508c1ae 0x402424ab00000000 and 0.0.3d0c

0x500507630508c1ae 0x402424ac00000000 are the FCP-attached SCSI disks used as the kdump target.

See the Adding DASDs and Adding FCP-Attached Logical Units (LUNs) chapters in the

Installation Guide for Red Hat Enterprise Linux 6 for detailed information about configuring DASDs and FCP-attached SCSI disks.

IMPORTANT

When transferring a core file to a remote target over SSH, the core file needs to be serialized for the transfer. This creates a vmcore.flat file in the /var/crash/ directory on the target system, which is unreadable by the crash utility. To convert

vmcore.flat to a dump file that is readable by crash, run the following command as root on the target system:

~]# /usr/sbin/makedumpfile -R */tmp/vmcore-rearranged* <

*vmcore.flat*

For a complete list of currently supported targets, see Table 32.1, “Supported kdump targets” .

Table 32.1. Supported kdump targets

Type Supported Targets Unsupported Targets

Raw device All locally attached raw disks and partitions.

Local file system ext2 , ext3 , ext4 , minix , btrfs and xfs file systems on directly attached disk drives, hardware RAID logical drives,

LVM devices, and mdraid arrays.

Any local file system not explicitly listed as supported in this table, including the auto type (automatic file system detection).

723

Deployment Guide

Type

Remote directory

Supported Targets

Remote directories accessed using the

NFS or SSH protocol over IPv4 .

Remote directories accessed using the iSCSI protocol over software initiators, unless iBFT (iSCSI Boot Firmware

Table) is utilized.

Multipath-based storages.

[a]

Unsupported Targets

Remote directories on the rootfs file system accessed using the NFS protocol.

Remote directories accessed using the iSCSI protocol using iBFT .

Remote directories accessed using the iSCSI protocol over hardware initiators.

Remote directories accessed over IPv6 .

Remote directories accessed using the

SMB / CIFS protocol.

Remote directories accessed using the

FCoE (Fibre Channel over Ethernet) protocol.

Remote directories accessed using wireless network interfaces.

[a] Supported in Red Hat Enterprise Linux 6 from kexec-tools-2.0.0-245.el6 onwards.

The Filtering Settings Tab

The Filtering Settings tab enables you to select the filtering level for the vmcore dump.

724

CHAPTER 32. THE KDUMP CRASH RECOVERY SERVICE

Figure 32.3. Filtering Settings

To exclude the zero page, cache page, cache private, user data, or free page from the dump, select the check box next to the appropriate label.

The Expert Settings Tab

The Expert Settings tab enables you to choose which kernel and initial RAM disk to use, as well as to customize the options that are passed to the kernel and the core collector program.

Figure 32.4. Expert Settings

To use a different initial RAM disk, select the Custom initrd radio button, and choose the desired

RAM disk from the pulldown list next to it.

725

Deployment Guide

To capture a different kernel, select the Custom kernel radio button, and choose the desired kernel image from the pulldown list on the right.

To adjust the list of options that are passed to the kernel at boot time, edit the content of the Edited text field. Note that you can always revert your changes by clicking the Refresh button.

To choose what action to perform when kdump fails to create a core dump, select an appropriate option from the Default action pulldown list. Available options are mount rootfs and run /sbin/init (the default action), reboot (to reboot the system), shell (to present a user with an interactive shell prompt),

halt (to halt the system), and poweroff (to power the system off).

To customize the options that are passed to the makedumpfile core collector, edit the Core

collector text field; see

the section called “Configuring the Core Collector” for more information.

32.2.3. Configuring kdump on the Command Line

Configuring the Memory Usage

Memory reserved for the kdump kernel is always reserved during system boot, which means that the amount of memory is specified in the system's boot loader configuration. This section will explain how to change the amount of reserved memory on AMD64 and Intel 64 systems and IBM Power Systems servers using the GRUB boot loader, and on IBM System z using zipl. To configure the amount of memory to be reserved for the kdump kernel, edit the /boot/grub/grub.conf file and add

crashkernel=<size>M or crashkernel=auto to the list of kernel options as shown in

Example 32.1, “A sample /boot/grub/grub.conf file”

. Note that the crashkernel=auto option only reserves the memory if the physical memory of the system is equal to or greater than:

2 GB on 32-bit and 64-bit x86 architectures;

2 GB on PowerPC if the page size is 4 KB, or 8 GB otherwise;

4 GB on IBM S/390.

Example 32.1. A sample /boot/grub/grub.conf file

# grub.conf generated by anaconda

#

# Note that you do not have to rerun grub after making changes to this file

# NOTICE: You have a /boot partition. This means that

# all kernel and initrd paths are relative to /boot/, eg.

# root (hd0,0)

# kernel /vmlinuz-version ro root=/dev/sda3

# initrd /initrd

#boot=/dev/sda default=0 timeout=5 splashimage=(hd0,0)/grub/splash.xpm.gz

hiddenmenu title Red Hat Enterprise Linux Server (2.6.32-220.el6.x86_64)

root (hd0,0)

kernel /vmlinuz-2.6.32-220.el6.x86_64 ro root=/dev/sda3 crashkernel=128M

initrd /initramfs-2.6.32-220.el6.x86_64.img

726

CHAPTER 32. THE KDUMP CRASH RECOVERY SERVICE

IMPORTANT

This section is available only if the system has enough memory. To learn about minimum memory requirements of the Red Hat Enterprise Linux 6 system, read the Required minimums section of the Red Hat Enterprise Linux Technology Capabilities and Limits comparison chart. When the kdump crash recovery is enabled, the minimum memory requirements increase by the amount of memory reserved for it. This value is determined by the user, and defaults to 128 MB plus 64 MB for each TB of physical memory (that is, a total of 192 MB for a system with 1 TB of physical memory). The memory can be attempted up to the maximum of 896 MB if required. This is recommended especially in large environments, for example in systems with a large number of Logical Unit Numbers

(LUNs).

Configuring the Target Type

When a kernel crash is captured, the core dump can be either stored as a file in a local file system, written directly to a device, or sent over a network using the NFS (Network File System) or SSH (Secure

Shell) protocol. Only one of these options can be set at the moment, and the default option is to store the

vmcore file in the /var/crash/ directory of the local file system. To change this, as root, open the

/etc/kdump.conf configuration file in a text editor and edit the options as described below.

To change the local directory in which the core dump is to be saved, remove the hash sign (“#”) from the beginning of the #path /var/crash line, and replace the value with a desired directory path.

Optionally, if you want to write the file to a different partition, follow the same procedure with the #ext4

/dev/sda3 line as well, and change both the file system type and the device (a device name, a file system label, and UUID are all supported) accordingly. For example: ext3 /dev/sda4 path /usr/local/cores

To write the dump directly to a device, remove the hash sign (“#”) from the beginning of the #raw

/dev/sda5 line, and replace the value with a desired device name. For example: raw /dev/sdb1

To store the dump to a remote machine using the NFS protocol, remove the hash sign (“#”) from the beginning of the #net my.server.com:/export/tmp line, and replace the value with a valid host name and directory path. For example: net penguin.example.com:/export/cores

To store the dump to a remote machine using the SSH protocol, remove the hash sign (“#”) from the beginning of the #net [email protected] line, and replace the value with a valid user name and host name. For example: net [email protected]

See

Chapter 14, OpenSSH for information on how to configure an SSH server, and how to set up a key-

based authentication.

For a complete list of currently supported targets, see Table 32.1, “Supported kdump targets” .

727

Deployment Guide

NOTE

When using Direct-Access Storage Devices (DASDs) as the kdump target, the devices must be specified in the /etc/dasd.conf file with other DASDs, for example:

0.0.2098

0.0.2198

0.0.2298

0.0.2398

Where 0.0.2298 and 0.0.2398 are the DASDs used as the kdump target.

Similarly, when using FCP-attached Small Computer System Interface (SCSI) disks as the kdump target, the disks must be specified in the /etc/zfcp.conf file with other

FCP-Attached SCSI disks, for example:

0.0.3d0c 0x500507630508c1ae 0x402424aa00000000

0.0.3d0c 0x500507630508c1ae 0x402424ab00000000

0.0.3d0c 0x500507630508c1ae 0x402424ac00000000

Where 0.0.3d0c 0x500507630508c1ae 0x402424ab00000000 and 0.0.3d0c

0x500507630508c1ae 0x402424ac00000000 are the FCP-attached SCSI disks used as the kdump target.

See the Adding DASDs and Adding FCP-Attached Logical Units (LUNs) chapters in the

Installation Guide for Red Hat Enterprise Linux 6 for detailed information about configuring DASDs and FCP-attached SCSI disks.

IMPORTANT

When transferring a core file to a remote target over SSH, the core file needs to be serialized for the transfer. This creates a vmcore.flat file in the /var/crash/ directory on the target system, which is unreadable by the crash utility. To convert

vmcore.flat to a dump file that is readable by crash, run the following command as

root on the target system:

~]# /usr/sbin/makedumpfile -R */tmp/vmcore-rearranged* <

*vmcore.flat*

Configuring the Core Collector

To reduce the size of the vmcore dump file, kdump allows you to specify an external application (that is, a core collector) to compress the data, and optionally leave out all irrelevant information. Currently, the only fully supported core collector is makedumpfile.

To enable the core collector, as root, open the /etc/kdump.conf configuration file in a text editor, remove the hash sign (“#”) from the beginning of the #core_collector makedumpfile -c --

message-level 1 -d 31 line, and edit the command-line options as described below.

To enable the dump file compression, add the -c parameter. For example: core_collector makedumpfile -c

728

CHAPTER 32. THE KDUMP CRASH RECOVERY SERVICE

To remove certain pages from the dump, add the -d value parameter, where value is a sum of values of pages you want to omit as described in

Table 32.2, “Supported filtering levels”

. For example, to remove both zero and free pages, use the following: core_collector makedumpfile -d 17 -c

See the manual page for makedumpfile for a complete list of available options.

Table 32.2. Supported filtering levels

Option Description

1 Zero pages

Cache pages 2

4 Cache private

User pages 8

16 Free pages

Changing the Default Action

By default, when kdump fails to create a core dump, the root file system is mounted and /sbin/init is run. To change this behavior, as root, open the /etc/kdump.conf configuration file in a text editor, remove the hash sign (“#”) from the beginning of the #default shell line, and replace the value with

a desired action as described in Table 32.3, “Supported actions”

.

Table 32.3. Supported actions

Option Description

Reboot the system, losing the core in the process.

reboot halt poweroff shell

Halt the system.

Power off the system.

Run the msh session from within the initramfs, allowing a user to record the core manually.

For example: default halt

Enabling the Service

To start the kdump daemon at boot time, type the following at a shell prompt as root:

chkconfig kdump on

729

730

Deployment Guide

This will enable the service for runlevels 2, 3, 4, and 5. Similarly, typing chkconfig kdump off will disable it for all runlevels. To start the service in the current session, use the following command as

root:

service kdump start

For more information on runlevels and configuring services in general, see Chapter 12, Services and

Daemons .

32.2.4. Testing the Configuration

WARNING

The commands below will cause the kernel to crash. Use caution when following these steps, and by no means use them on a production machine.

To test the configuration, reboot the system with kdump enabled, and make sure that the service is running (see

Section 12.3, “Running Services” for more information on how to run a service in Red Hat

Enterprise Linux):

~]# service kdump status

Kdump is operational

Then type the following commands at a shell prompt: echo 1 > /proc/sys/kernel/sysrq echo c > /proc/sysrq-trigger

This will force the Linux kernel to crash, and the address-YYYY-MM-DD-HH:MM:SS/vmcore file will be copied to the location you have selected in the configuration (that is, to /var/crash/ by default).

32.3. ANALYZING THE CORE DUMP

To determine the cause of the system crash, you can use the crash utility, which provides an interactive prompt very similar to the GNU Debugger (GDB). This utility allows you to interactively analyze a running

Linux system as well as a core dump created by netdump, diskdump, xendump, or kdump.

CHAPTER 32. THE KDUMP CRASH RECOVERY SERVICE

IMPORTANT

To analyze the vmcore dump file, you must have the crash and kernel-debuginfo packages installed. To install the crash package in your system, type the following at a shell prompt as root: yum install crash

To install the kernel-debuginfo package, make sure that you have the yum-utils package installed and run the following command as root: debuginfo-install kernel

Note that in order to use this command, you need to have access to the repository with debugging packages. If your system is registered with Red Hat Subscription Management,

enable the rhel-6-variant-debug-rpms repository as described in Section 8.4.4,

“Viewing the Current Configuration” . If your system is registered with RHN Classic,

subscribe the system to the rhel-architecture-variant-6-debuginfo channel as documented here: https://access.redhat.com/site/solutions/9907 .

32.3.1. Running the crash Utility

To start the utility, type the command in the following form at a shell prompt:

crash /usr/lib/debug/lib/modules/kernel/vmlinux

/var/crash/timestamp/vmcore

Note that the kernel version should be the same that was captured by kdump. To find out which kernel you are currently running, use the uname -r command.

Example 32.2. Running the crash utility

~]# crash /usr/lib/debug/lib/modules/2.6.32-69.el6.i686/vmlinux \

/var/crash/127.0.0.1-2010-08-25-08:45:02/vmcore crash 5.0.0-23.el6

Copyright (C) 2002-2010 Red Hat, Inc.

Copyright (C) 2004, 2005, 2006 IBM Corporation

Copyright (C) 1999-2006 Hewlett-Packard Co

Copyright (C) 2005, 2006 Fujitsu Limited

Copyright (C) 2006, 2007 VA Linux Systems Japan K.K.

Copyright (C) 2005 NEC Corporation

Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc.

Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.

This program is free software, covered by the GNU General Public

License, and you are welcome to change it and/or distribute copies of it under certain conditions. Enter "help copying" to see the conditions.

This program has absolutely no warranty. Enter "help warranty" for details.

GNU gdb (GDB) 7.0

Copyright (C) 2009 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later

731

Deployment Guide

<http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying" and "show warranty" for details.

This GDB was configured as "i686-pc-linux-gnu"...

KERNEL: /usr/lib/debug/lib/modules/2.6.32-69.el6.i686/vmlinux

DUMPFILE: /var/crash/127.0.0.1-2010-08-25-08:45:02/vmcore [PARTIAL

DUMP]

CPUS: 4

DATE: Wed Aug 25 08:44:47 2010

UPTIME: 00:09:02

LOAD AVERAGE: 0.00, 0.01, 0.00

TASKS: 140

NODENAME: hp-dl320g5-02.lab.bos.redhat.com

RELEASE: 2.6.32-69.el6.i686

VERSION: #1 SMP Tue Aug 24 10:31:45 EDT 2010

MACHINE: i686 (2394 Mhz)

MEMORY: 8 GB

PANIC: "Oops: 0002 [#1] SMP " (check log for details)

PID: 5591

COMMAND: "bash"

TASK: f196d560 [THREAD_INFO: ef4da000]

CPU: 2

STATE: TASK_RUNNING (PANIC) crash>

32.3.2. Displaying the Message Buffer

To display the kernel message buffer, type the log command at the interactive prompt.

Example 32.3. Displaying the kernel message buffer crash> log

... several lines omitted ...

EIP: 0060:[<c068124f>] EFLAGS: 00010096 CPU: 2

EIP is at sysrq_handle_crash+0xf/0x20

EAX: 00000063 EBX: 00000063 ECX: c09e1c8c EDX: 00000000

ESI: c0a09ca0 EDI: 00000286 EBP: 00000000 ESP: ef4dbf24

DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068

Process bash (pid: 5591, ti=ef4da000 task=f196d560 task.ti=ef4da000)

Stack:

c068146b c0960891 c0968653 00000003 00000000 00000002 efade5c0 c06814d0

<0> fffffffb c068150f b7776000 f2600c40 c0569ec4 ef4dbf9c 00000002 b7776000

<0> efade5c0 00000002 b7776000 c0569e60 c051de50 ef4dbf9c f196d560 ef4dbfb4

Call Trace:

[<c068146b>] ? __handle_sysrq+0xfb/0x160

[<c06814d0>] ? write_sysrq_trigger+0x0/0x50

[<c068150f>] ? write_sysrq_trigger+0x3f/0x50

[<c0569ec4>] ? proc_reg_write+0x64/0xa0

732

CHAPTER 32. THE KDUMP CRASH RECOVERY SERVICE

[<c0569e60>] ? proc_reg_write+0x0/0xa0

[<c051de50>] ? vfs_write+0xa0/0x190

[<c051e8d1>] ? sys_write+0x41/0x70

[<c0409adc>] ? syscall_call+0x7/0xb

Code: a0 c0 01 0f b6 41 03 19 d2 f7 d2 83 e2 03 83 e0 cf c1 e2 04 09 d0

88 41 03 f3 c3 90 c7 05 c8 1b 9e c0 01 00 00 00 0f ae f8 89 f6 <c6> 05

00 00 00 00 01 c3 89 f6 8d bc 27 00 00 00 00 8d 50 d0 83

EIP: [<c068124f>] sysrq_handle_crash+0xf/0x20 SS:ESP 0068:ef4dbf24

CR2: 0000000000000000

Type help log for more information on the command usage.

NOTE

The kernel message buffer includes the most essential information about the system crash and, as such, it is always dumped first in to the vmcore-dmesg.txt file. This is useful when an attempt to get the full vmcore file failed, for example because of lack of space on the target location. By default, vmcore-dmesg.txt is located in the

/var/crash/ directory.

32.3.3. Displaying a Backtrace

To display the kernel stack trace, type the bt command at the interactive prompt. You can use bt pid to display the backtrace of the selected process.

Example 32.4. Displaying the kernel stack trace crash> bt

PID: 5591 TASK: f196d560 CPU: 2 COMMAND: "bash"

#0 [ef4dbdcc] crash_kexec at c0494922

#1 [ef4dbe20] oops_end at c080e402

#2 [ef4dbe34] no_context at c043089d

#3 [ef4dbe58] bad_area at c0430b26

#4 [ef4dbe6c] do_page_fault at c080fb9b

#5 [ef4dbee4] error_code (via page_fault) at c080d809

EAX: 00000063 EBX: 00000063 ECX: c09e1c8c EDX: 00000000 EBP:

00000000

DS: 007b ESI: c0a09ca0 ES: 007b EDI: 00000286 GS:

00e0

CS: 0060 EIP: c068124f ERR: ffffffff EFLAGS: 00010096

#6 [ef4dbf18] sysrq_handle_crash at c068124f

#7 [ef4dbf24] __handle_sysrq at c0681469

#8 [ef4dbf48] write_sysrq_trigger at c068150a

#9 [ef4dbf54] proc_reg_write at c0569ec2

#10 [ef4dbf74] vfs_write at c051de4e

#11 [ef4dbf94] sys_write at c051e8cc

#12 [ef4dbfb0] system_call at c0409ad5

EAX: ffffffda EBX: 00000001 ECX: b7776000 EDX: 00000002

DS: 007b ESI: 00000002 ES: 007b EDI: b7776000

SS: 007b ESP: bfcb2088 EBP: bfcb20b4 GS: 0033

CS: 0073 EIP: 00edc416 ERR: 00000004 EFLAGS: 00000246

733

Deployment Guide

Type help bt for more information on the command usage.

32.3.4. Displaying a Process Status

To display status of processes in the system, type the ps command at the interactive prompt. You can use ps pid to display the status of the selected process.

Example 32.5. Displaying status of processes in the system crash> ps

PID PPID CPU TASK ST %MEM VSZ RSS COMM

> 0 0 0 c09dc560 RU 0.0 0 0 [swapper]

> 0 0 1 f7072030 RU 0.0 0 0 [swapper]

0 0 2 f70a3a90 RU 0.0 0 0 [swapper]

> 0 0 3 f70ac560 RU 0.0 0 0 [swapper]

1 0 1 f705ba90 IN 0.0 2828 1424 init

... several lines omitted ...

5566 1 1 f2592560 IN 0.0 12876 784 auditd

5567 1 2 ef427560 IN 0.0 12876 784 auditd

5587 5132 0 f196d030 IN 0.0 11064 3184 sshd

> 5591 5587 2 f196d560 RU 0.0 5084 1648 bash

Type help ps for more information on the command usage.

32.3.5. Displaying Virtual Memory Information

To display basic virtual memory information, type the vm command at the interactive prompt. You can use vm pid to display information on the selected process.

Example 32.6. Displaying virtual memory information of the current context crash> vm

PID: 5591 TASK: f196d560 CPU: 2 COMMAND: "bash"

MM PGD RSS TOTAL_VM f19b5900 ef9c6000 1648k 5084k

VMA START END FLAGS FILE f1bb0310 242000 260000 8000875 /lib/ld-2.12.so

f26af0b8 260000 261000 8100871 /lib/ld-2.12.so

efbc275c 261000 262000 8100873 /lib/ld-2.12.so

efbc2a18 268000 3ed000 8000075 /lib/libc-2.12.so

efbc23d8 3ed000 3ee000 8000070 /lib/libc-2.12.so

efbc2888 3ee000 3f0000 8100071 /lib/libc-2.12.so

efbc2cd4 3f0000 3f1000 8100073 /lib/libc-2.12.so

efbc243c 3f1000 3f4000 100073 efbc28ec 3f6000 3f9000 8000075 /lib/libdl-2.12.so

efbc2568 3f9000 3fa000 8100071 /lib/libdl-2.12.so

efbc2f2c 3fa000 3fb000 8100073 /lib/libdl-2.12.so

f26af888 7e6000 7fc000 8000075 /lib/libtinfo.so.5.7

f26aff2c 7fc000 7ff000 8100073 /lib/libtinfo.so.5.7

efbc211c d83000 d8f000 8000075 /lib/libnss_files-2.12.so

efbc2504 d8f000 d90000 8100071 /lib/libnss_files-2.12.so

efbc2950 d90000 d91000 8100073 /lib/libnss_files-2.12.so

f26afe00 edc000 edd000 4040075

734

CHAPTER 32. THE KDUMP CRASH RECOVERY SERVICE f1bb0a18 8047000 8118000 8001875 /bin/bash f1bb01e4 8118000 811d000 8101873 /bin/bash f1bb0c70 811d000 8122000 100073 f26afae0 9fd9000 9ffa000 100073

... several lines omitted ...

Type help vm for more information on the command usage.

32.3.6. Displaying Open Files

To display information about open files, type the files command at the interactive prompt. You can use

files pid to display files opened by the selected process.

Example 32.7. Displaying information about open files of the current context crash> files

PID: 5591 TASK: f196d560 CPU: 2 COMMAND: "bash"

ROOT: / CWD: /root

FD FILE DENTRY INODE TYPE PATH

0 f734f640 eedc2c6c eecd6048 CHR /pts/0

1 efade5c0 eee14090 f00431d4 REG /proc/sysrq-trigger

2 f734f640 eedc2c6c eecd6048 CHR /pts/0

10 f734f640 eedc2c6c eecd6048 CHR /pts/0

255 f734f640 eedc2c6c eecd6048 CHR /pts/0

Type help files for more information on the command usage.

32.3.7. Exiting the Utility

To exit the interactive prompt and terminate crash, type exit or q.

Example 32.8. Exiting the crash utility crash> exit

~]#

32.4. USING FADUMP ON IBM POWERPC HARDWARE

Starting with Red Hat Enterprise Linux 6.8 an alternative dumping mechanism to kdump, the firmware-

assisted dump (fadump), is available. The fadump feature is supported only on IBM Power Systems.

The goal of fadump is to enable the dump of a crashed system, and to do so from a fully-reset system, and to minimize the total elapsed time until the system is back in production use. The fadump feature is integrated with kdump infrastructure present in the user space to seemlessly switch between kdump and

fadump mechanisms.

Firmware-assisted dump (fadump) is a reliable alternative to kexec-kdump available on IBM PowerPC

LPARS. It captures vmcore from a fully-reset system with PCI and I/O devices reinitialized. While this mechanism uses the firmware to preserve the memory in case of a crash, it reuses the kdump userspace

735

Deployment Guide scripts to save the vmcore"

To achieve this, fadump registers the regions of memory that must be preserved in the event of a crash with the system firmware. These regions consist of all the system memory contents, except the boot memory, system registers and hardware Page Table Entries (PTEs).

NOTE

The area of memory not preserved and known as boot memory is the amount of RAM required to successfully boot the kernel after a crash event. By default, the boot memory size is 256MB or 5% of total system RAM, whichever is larger.

Unlike a kexec-initiated event, the fadump process uses the production kernel to recover a crash dump.

When booting after a crash, PowerPC hardware makes the device node /proc/device-

tree/rtas/ibm,kernel-dump available to procfs, which the fadump-aware kdump scripts check for to save the vmcore. After this has completed, the system is rebooted cleanly.

Enabling fadump

1. Install and configure kdump as described in

Section 32.1, “Installing the kdump Service” and

Section 32.2, “Configuring the kdump Service” .

2. Add fadump=on to the GRUB_CMDLINE_LINUX line in /etc/default/grub:

GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel/swap crashkernel=auto rd.lvm.lv=rhel/root rhgb quiet fadump=on"

3. (optional) If you want to specify reserved boot memory instead of accepting the defaults, add

fadump_reserve_mem=xxM to GRUB_CMDLINE_LINUX in /etc/default/grub, where xx is the amount of the memory required in megabytes:

GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel/swap crashkernel=auto rd.lvm.lv=rhel/root rhgb quiet fadump=on fadump_reserve_mem=xxM"

IMPORTANT

As with all boot configuration options, it is strongly recommended that you test the configuration before it is needed. If you observe Out of Memory (OOM) errors when booting from the crash kernel, increase the value specified in fadump_reserve_mem= until the crash kernel can boot cleanly. Some trial and error may be required in this case.

32.5. ADDITIONAL RESOURCES

Installed Documentation

kdump.conf(5) — a manual page for the /etc/kdump.conf configuration file containing the full documentation of available options.

makedumpfile(8) — a manual page for the makedumpfile core collector.

kexec(8) — a manual page for kexec.

crash(8) — a manual page for the crash utility.

736

CHAPTER 32. THE KDUMP CRASH RECOVERY SERVICE

/usr/share/doc/kexec-tools-version/kexec-kdump-howto.txt — an overview of the kdump and kexec installation and usage.

/usr/share/doc/kexec-tools-version/fadump-howto.txt — more details about the

fadump mechanism, including PowerPC-specific methods of resetting hardware. Replace version with kexec-tools version installed on your system.

Useful Websites

https://access.redhat.com/kb/docs/DOC-6039

The Red Hat Knowledgebase article about the kexec and kdump configuration.

https://access.redhat.com/kb/docs/DOC-45183

The Red Hat Knowledgebase article about supported kdump targets.

http://people.redhat.com/anderson/

The crash utility homepage.

737

Deployment Guide

PART IX. SYSTEM RECOVERY

This part introduces system recovery modes on Red Hat Enterprise Linux 6 and advises users on how to repair the system in certain situations. It also describes how to use the Relax-and-Recover (ReaR) disaster recovery and system migration utility.

738

CHAPTER 33. SYSTEM RECOVERY

CHAPTER 33. SYSTEM RECOVERY

Red Hat Enterprise Linux 6 offers three system recovery modes, rescue mode, single-user mode, and emergency mode that can be used to repair malfunctioning systems. This chapter describes how to boot into each system recovery mode and gives guidance to resolve certain problems that can only be solved with help of system recovery modes.

These are the usual reasons why you may need to boot to one of the system recovery modes:

You are unable to boot normally into Red Hat Enterprise Linux (runlevel 3 or 5).

You need to resolve hardware or software problems that cannot be resolved while the system is running normally, or you want to access some important files off of your hard drive.

You forgot the root password.

Some of the problems behind are further discussed in Section 33.4, “Resolving Problems in System

Recovery Modes” .

33.1. RESCUE MODE

Rescue mode provides the ability to boot a small Red Hat Enterprise Linux environment entirely from external media, such as CD-ROM or USB drive, instead of the system's hard drive. It contains command-line utilities for repairing a wide variety of issues. In this mode, you can mount file systems as read-only or even to not mount them at all, blacklist or add drivers provided on a driver disc, install or upgrade system packages, or manage partitions.

To boot into rescue mode follow this procedure:

Procedure 33.1. Booting into Rescue Mode

1. Boot the system from either minimal boot media, or a full installation DVD or USB drive, and wait for the boot menu to appear. For details about booting the system from the chosen media, see the respective chapters in the Installation Guide .

2. From the boot menu, append the rescue keyword as a kernel parameter to the boot command line.

3. If your system requires a third-party driver provided on a driver disc to boot, append the additional option dd to the boot command line to load that driver: rescue dd

For more information about using a disc driver at boot time, see the respective chapters in the

Installation Guide .

4. If a driver that is a part of the Red Hat Enterprise Linux 6 distribution prevents the system from booting, blacklist that driver by appending the rdblacklist option to the boot command line: rescue rdblacklist=driver_name

5. Answer a few basic questions and select the location of a valid rescue image as you are prompted to. Select the relevant type from Local CD-ROM, Hard Drive, NFS image, FTP, or

HTTP. The selected location must contain a valid installation tree, and the installation tree must

739

Deployment Guide be for the same version of Red Hat Enterprise Linux as is the disk from which you booted. For more information about how to setup an installation tree on a hard drive, NFS server, FTP server, or HTTP server, see the respective chapters in the Installation Guide .

If you select a rescue image that does not require a network connection, you are asked whether or not you want to establish a network connection. A network connection is useful if you need to backup files to a different computer or install some RPM packages from a shared network location.

6. The following message is displayed:

The rescue environment will now attempt to find your Linux installation and mount it under the directory /mnt/sysimage. You can then make any changes required to your system. If you want to proceed with this step choose 'Continue'. You can also choose to mount your file systems read-only instead of read-write by choosing

'Read-only'. If for some reason this process fails you can choose

'Skip' and this step will be skipped and you will go directly to a command shell.

If you select Continue, the system attempts to mount your root partition under the

/mnt/sysimage/ directory. The root partition typically contains several file systems, such as

/home/, /boot/, and /var/, which are automatically mounted to the correct locations. If mounting the partition fails, you will be notified. If you select Read-Only, the system attempts to mount your file systems under the directory /mnt/sysimage/, but in read-only mode. If you select Skip, your file systems will not be mounted. Choose Skip if you think your file system is corrupted.

7. Once you have your system in rescue mode, the following prompt appears on the virtual console

(VC) 1 and VC 2. Use the Ctrl-Alt-F1 key combination to access VC 1 and Ctrl-Alt-F2 to access VC 2: sh-3.00b#

If you selected Continue to mount your partitions automatically and they were mounted successfully, you are in single-user mode.

Even if your file system is mounted, the default root partition while in rescue mode is a temporary root partition, not the root partition of the file system used during normal user mode (runlevel 3 or 5). If you selected to mount your file system and it mounted successfully, you can change the root partition of the rescue mode environment to the root partition of your file system by executing the following command: sh-3.00b# chroot /mnt/sysimage

This is useful if you need to run commands, such as rpm, that require your root partition to be mounted as /. To exit the chroot environment, type exit to return to the prompt.

If you selected Skip, you can still try to mount a partition or a LVM2 logical volume manually inside

rescue mode by creating a directory and typing the following command: sh-3.00b# mkdir /directory sh-3.00b# mount -t ext4 /dev/mapper/VolGroup00-LogVol02 /directory

740

CHAPTER 33. SYSTEM RECOVERY where /directory is a directory that you have created and /dev/mapper/VolGroup00-LogVol02 is the LVM2 logical volume you want to mount. If the partition is of ext2 or ext3 type, replace ext4 with

ext2 or ext3 respectively.

If you do not know the names of all physical partitions, use the following command to list them: sh-3.00b# fdisk -l

If you do not know the names of all LVM2 physical volumes, volume groups, or logical volumes, use the

pvdisplay, vgdisplay or lvdisplay commands, respectively.

From the prompt, you can run many useful commands, such as:

ssh, scp, and ping if the network is started

dump and restore for users with tape drives

parted and fdisk for managing partitions

rpm for installing or upgrading software

vi for editing text files

33.2. SINGLE-USER MODE

Single-user mode provides a Linux environment for a single user that allows you to recover your system from problems that cannot be resolved in networked multi-user environment. You do not need an external boot device to be able to boot into single-user mode, and you can switch into it directly while the system is running. To switch into single-user mode on the running system, issue the following command from the command line:

~]# init 1

In single-user mode, the system boots with your local file systems mounted, many important services running, and a usable maintenance shell that allows you to perform many of the usual system commands. Therefore, single-user mode is mostly useful for resolving problems when the system boots but does not function properly or you cannot log into it.

WARNING

The single-user mode automatically tries to mount your local file systems.

Booting to single-user mode could result in loss of data if any of your local file systems cannot be successfully mounted.

To boot into single-user mode follow this procedure:

Procedure 33.2. Booting into Single-User Mode

741

Deployment Guide

1. At the GRUB boot screen, press any key to enter the GRUB interactive menu.

2. Select Red Hat Enterprise Linux with the version of the kernel that you want to boot and press the a to append the line.

3. Type single as a separate word at the end of the line and press Enter to exit GRUB edit mode. Alternatively, you can type 1 instead of single.

33.3. EMERGENCY MODE

Emergency mode, provides the minimal bootable environment and allows you to repair your system even in situations when rescue mode is unavailable. In emergency mode, the system mounts only the

root file system, and it is mounted as read-only. Also, the system does not activate any network interfaces and only a minimum of the essential services are set up. The system does not load any init scripts, therefore you can still mount file systems to recover data that would be lost during a reinstallation if init is corrupted or not working.

To boot into emergency mode follow this procedure:

Procedure 33.3. Booting into Emergency Mode

1. At the GRUB boot screen, press any key to enter the GRUB interactive menu.

2. Select Red Hat Enterprise Linux with the version of the kernel that you want to boot and press the a to append the line.

3. Type emergency as a separate word at the end of the line and press Enter to exit GRUB edit mode.

33.4. RESOLVING PROBLEMS IN SYSTEM RECOVERY MODES

This section provides several procedures that explain how to resolve some of the most common problems that needs to be addressed in some of the system recovery modes.

The following procedure shows how to reset a root password:

Procedure 33.4. Resetting a Root Password

1. Boot to single-user mode as described in Procedure 33.2, “Booting into Single-User Mode” .

2. Run the passwd command from the maintenance shell command line.

One of the most common causes for an unbootable system is overwriting of the Master Boot Record

(MBR) that originally contained the GRUB boot loader. If the boot loader is overwritten, you cannot boot

Red Hat Enterprise Linux unless you reconfigure the boot loader in rescue mode.

To reinstall GRUB on the MBR of your hard drive, proceed with the following procedure:

Procedure 33.5. Reinstalling the GRUB Boot Loader

1. Boot to rescue mode as described in Procedure 33.1, “Booting into Rescue Mode” . Ensure that you mount the system's root partition in read-write mode.

2. Execute the following command to change the root partition:

742

CHAPTER 33. SYSTEM RECOVERY sh-3.00b# chroot /mnt/sysimage

3. Run the following command to reinstall the GRUB boot loader: sh-3.00b# /sbin/grub-install boot_part where boot_part is your boot partition (typically, /dev/sda).

4. Review the /boot/grub/grub.conf file, as additional entries may be needed for GRUB to control additional operating systems.

5. Reboot the system.

Another common problem that would render your system unbootable is a change of your root partition number. This can usually happen when resizing a partition or creating a new partition after installation. If the partition number of your root partition changes, the GRUB boot loader might not be able to find it to mount the partition. To fix this problem,boot into rescue mode and modify the

/boot/grub/grub.conf file.

A malfunctioning or missing driver can prevent a system from booting normally. You can use the RPM package manager to remove malfunctioning drivers or to add updated or missing drivers in rescue

mode. If you cannot remove a malfunctioning driver for some reason, you can instead blacklist the driver so that it does not load at boot time.

NOTE

When you install a driver from a driver disc, the driver disc updates all initramfs images on the system to use this driver. If a problem with a driver prevents a system from booting, you cannot rely on booting the system from another initramfs image.

To remove a malfunctioning driver that prevents the system from booting, follow this procedure:

Procedure 33.6. Remove a Driver in Rescue Mode

1. Boot to rescue mode as described in Procedure 33.1, “Booting into Rescue Mode” . Ensure that you mount the system's root partition in read-write mode.

2. Change the root directory to /mnt/sysimage/: sh-3.00b# chroot /mnt/sysimage

3. Run the following command to remove the driver package: sh-3.00b# rpm -e driver_name

4. Exit the chroot environment: sh-3.00b# exit

5. Reboot the system.

To install a missing driver that prevents the system from booting, follow this procedure:

743

Deployment Guide

Procedure 33.7. Installing a Driver in Rescue Mode

1. Boot to rescue mode as described in Procedure 33.1, “Booting into Rescue Mode” . Ensure that you mount the system's root partition in read-write mode.

2. Mount a media with an RPM package that contains the driver and copy the package to a location of your choice under the /mnt/sysimage/ directory, for example:

/mnt/sysimage/root/drivers/.

3. Change the root directory to /mnt/sysimage/: sh-3.00b# chroot /mnt/sysimage

4. Run the following command to install the driver package: sh-3.00b# rpm -ihv /root/drivers/package_name

Note that /root/drivers/ in this chroot environment is /mnt/sysimage/root/drivers/ in the original rescue environment.

5. Exit the chroot environment: sh-3.00b# exit

6. Reboot the system.

To blacklist a driver that prevents the system from booting and to ensure that this driver cannot be loaded after the root device is mounted, follow this procedure:

Procedure 33.8. Blacklisting a Driver in Rescue Mode

1. Boot to rescue mode with the command linux rescue rdblacklist=driver_name, where driver_name is the driver that you need to blacklist. Follow the instructions in

Procedure 33.1, “Booting into Rescue Mode” and ensure that you mount the system's root partition in read-write mode.

2. Open the /boot/grub/grub.conf file in the vi editor: sh-3.00b# vi /boot/grub/grub.conf

3. Identify the default kernel used to boot the system. Each kernel is specified in the grub.conf file with a group of lines that begins title. The default kernel is specified by the default parameter near the start of the file. A value of 0 refers to the kernel described in the first group of lines, a value of 1 refers to the kernel described in the second group, and higher values refer to subsequent kernels in turn.

4. Edit the kernel line of the group to include the option rdblacklist=driver_name, where driver_name is the driver that you need to blacklist. For example: kernel /vmlinuz-2.6.32-71.18-2.el6.i686 ro root=/dev/sda1 rhgb quiet rdblacklist=driver_name

5. Save the file and exit the vi editor by typing:

744

CHAPTER 33. SYSTEM RECOVERY

:wq

6. Run the following command to create a new file /etc/modprobe.d/driver_name.conf that will ensure blacklisting of the driver after the root partition is mounted: echo "install driver_name" >

/mnt/sysimage/etc/modprobe.d/driver_name.conf

7. Reboot the system.

745

Deployment Guide

CHAPTER 34. RELAX-AND-RECOVER (REAR)

When a software or hardware failure breaks the system, the system administrator faces three tasks to restore it to the fully functioning state on a new hardware environment:

1. booting a rescue system on the new hardware

2. replicating the original storage layout

3. restoring user and system files

Most backup software solves only the third problem. To solve the first and second problems, use Relaxand-Recover (ReaR), a disaster recovery and system migration utility.

Backup software creates backups. ReaR complements backup software by creating a rescue system.

Booting the rescue system on a new hardware allows you to issue the rear recover command, which starts the recovery process. During this process, ReaR replicates the partition layout and filesystems, prompts for restoring user and system files from the backup created by backup software, and finally installs the boot loader. By default, the rescue system created by ReaR only restores the storage layout and the boot loader, but not the actual user and system files.

This chapter describes how to use ReaR.

34.1. BASIC REAR USAGE

34.1.1. Installing ReaR

Install the rear package by running the following command as root:

~]# yum install rear

34.1.2. Configuring ReaR

ReaR is configured in the /etc/rear/local.conf file. Specify the rescue system configuration by adding these lines:

OUTPUT=output format

OUTPUT_URL=output location

Substitute output format with rescue system format, for example, ISO for an ISO disk image or USB for a bootable USB.

Substitute output location with where it will be put, for example, file:///mnt/rescue_system/ for a local filesystem directory or sftp://backup:[email protected]/ for an SFTP directory.

Example 34.1. Configuring Rescue System Format and Location

To configure ReaR to output the rescue system as an ISO image into the /mnt/rescue_system/ directory, add these lines to the /etc/rear/local.conf file:

OUTPUT=ISO

OUTPUT_URL=file:///mnt/rescue_system/

746

CHAPTER 34. RELAX-AND-RECOVER (REAR)

See section "Rescue Image Configuration" of the rear(8) man page for a list of all options.

34.1.3. Creating a Rescue System

The following example shows how to create a rescue system with verbose output:

~]# rear -v mkrescue

Relax-and-Recover 1.17.2 / Git

Using log file: /var/log/rear/rear-rhel68.log

mkdir: created directory `/var/lib/rear/output'

Creating disk layout

Creating root filesystem layout

TIP: To login as root via ssh you need to set up

/root/.ssh/authorized_keys or SSH_ROOT_PASSWORD in your configuration file

Copying files and directories

Copying binaries and libraries

Copying kernel modules

Creating initramfs

Making ISO image

Wrote ISO image: /var/lib/rear/output/rear-rhel68.iso (82M)

Copying resulting files to file location

With the configuration from

Example 34.1, “Configuring Rescue System Format and Location”

, ReaR prints the above output. The last two lines confirm that the rescue system has been successfully created and copied to the configured backup location /mnt/rescue_system/. Because the system's host name is rhel-68, the backup location now contains directory rhel-68/ with the rescue system and auxiliary files:

~]# ls -lh /mnt/rescue_system/rhel68/ total 82M

-rw-------. 1 root root 202 May 9 11:46 README

-rw-------. 1 root root 160K May 9 11:46 rear.log

-rw-------. 1 root root 82M May 9 11:46 rear-rhel68.iso

-rw-------. 1 root root 275 May 9 11:46 VERSION

Transfer the rescue system to an external medium to not lose it in case of a disaster.

34.1.4. Scheduling ReaR

To schedule ReaR to regularly create a rescue system using the cron job scheduler, add the following line to the /etc/crontab file:

minute hour day_of_month month day_of_week root /usr/sbin/rear mkrescue

Substitute the above command with the cron time specification (described in detail in Section 27.1.4,

“Configuring Cron Jobs” ).

Example 34.2. Scheduling ReaR

To make ReaR create a rescue system at 22:00 every weekday, add this line to the /etc/crontab file:

0 22 * * 1-5 root /usr/sbin/rear mkrescue

747

Deployment Guide

34.1.5. Performing a System Rescue

To perform a restore or migration:

1. Boot the rescue system on the new hardware. For example, burn the ISO image to a DVD and boot from the DVD.

2. In the console interface, select the "Recover" option:

Figure 34.1. Rescue system: menu

3. You are taken to the prompt:

748

Figure 34.2. Rescue system: prompt

CHAPTER 34. RELAX-AND-RECOVER (REAR)

WARNING

Once you have started recovery in the next step, it probably cannot be undone and you may lose anything stored on the physical disks of the system.

4. Run the rear recover command to perform the restore or migration. The rescue system then recreates the partition layout and filesystems:

Figure 34.3. Rescue system: running "rear recover"

5. Restore user and system files from the backup into the /mnt/local/ directory.

Example 34.3. Restoring User and System Files

In this example, the backup file is a tar archive created per instructions in Section 34.2.1.1,

“Configuring the Internal Backup Method” . First, copy the archive from its storage, then

unpack the files into /mnt/local/, then delete the archive:

~]# scp [email protected]:/srv/backup/rhel68/backup.tar.gz

/mnt/local/

~]# tar xf /mnt/local/backup.tar.gz -C /mnt/local/

~]# rm -f /mnt/local/backup.tar.gz

The new storage has to have enough space both for the archive and the extracted files.

6. Verify that the files have been restored:

~]# ls /mnt/local/

749

Deployment Guide

Figure 34.4. Rescue system: restoring user and system files from the backup

7. Ensure that SELinux relabels the files on the next boot:

~]# touch /mnt/local/.autorelabel

Otherwise you may be unable to log in the system, because the /etc/passwd file may have the incorrect SELinux context.

8. Finish the recovery and reboot the system:

750

Figure 34.5. Rescue system: finishing recovery

ReaR will then reinstall the boot loader. Upon reboot, SELinux will relabel the whole filesystem.

Then you will be able to log in to the recovered system.

CHAPTER 34. RELAX-AND-RECOVER (REAR)

34.2. INTEGRATING REAR WITH BACKUP SOFTWARE

The main purpose of ReaR is to produce a rescue system, but it can also be integrated with backup software. What integration means is different for the built-in, supported, and unsupported backup methods.

34.2.1. The Built-in Backup Method

ReaR ships with a built-in, or internal, backup method. This method is fully integrated with ReaR, which has these advantages: a rescue system and a full-system backup can be created using a single rear mkbackup command the rescue system restores files from the backup automatically

As a result, ReaR can cover the whole process of creating both the rescue system and the full-system backup.

34.2.1.1. Configuring the Internal Backup Method

To make ReaR use its internal backup method, add these lines to /etc/rear/local.conf:

BACKUP=NETFS

BACKUP_URL=backup location

These lines configure ReaR to create an archive with a full-system backup using the tar command.

Substitute backup location with one of the options from the "Backup Software Integration" section of the rear(8) man page. Make sure that the backup location has enough space.

Example 34.4. Adding tar Backups

To expand the example in Section 34.1, “Basic ReaR Usage” , configure ReaR to also output a

tar full-system backup into the /srv/backup/ directory:

OUTPUT=ISO

OUTPUT_URL=file:///mnt/rescue_system/

BACKUP=NETFS

BACKUP_URL=file:///srv/backup/

The internal backup method allows further configuration.

To keep old backup archives when new ones are created, add this line:

NETFS_KEEP_OLD_BACKUP_COPY=y

By default, ReaR creates a full backup on each run. To make the backups incremental, meaning that only the changed files are backed up on each run, add this line:

BACKUP_TYPE=incremental

This automatically sets NETFS_KEEP_OLD_BACKUP_COPY to y.

751

Deployment Guide

To ensure that a full backup is done regularly in addition to incremental backups, add this line:

FULLBACKUPDAY="Day"

Substitute "Day" with one of the "Mon", "Tue", "Wed", "Thu". "Fri", "Sat", "Sun".

ReaR can also include both the rescue system and the backup in the ISO image. To achieve this, set the BACKUP_URL directive to iso:///backup/:

BACKUP_URL=iso:///backup/

This is the simplest method of full-system backup, because the rescue system does not need the user to fetch the backup during recovery. However, it needs more storage. Also, single-ISO backups cannot be incremental.

NOTE

Currently ReaR creates two copies of the ISO image, thus consuming two times more storage. For more information, see note ReaR creates two ISO images instead of one in Red Hat Enterprise Linux 6 Release Notes .

Example 34.5. Configuring Single-ISO Rescue System and Backups

This configuration creates a rescue system and a backup file as a single ISO image and puts it into the /srv/backup/ directory:

OUTPUT=ISO

OUTPUT_URL=file:///srv/backup/

BACKUP=NETFS

BACKUP_URL=iso:///backup/

To use rsync instead of tar, add this line:

BACKUP_PROG=rsync

Note that incremental backups are only supported when using tar.

34.2.1.2. Creating a Backup Using the Internal Backup Method

With BACKUP=NETFS set, ReaR can create either a rescue system, a backup file, or both.

To create a rescue system only, run: rear mkrescue

To create a backup only, run: rear mkbackuponly

To create a rescue system and a backup, run:

752

CHAPTER 34. RELAX-AND-RECOVER (REAR) rear mkbackup

Note that triggering backup with ReaR is only possible if using the NETFS method. ReaR cannot trigger other backup methods.

NOTE

When restoring, the rescue system created with the BACKUP=NETFS setting expects the backup to be present before executing rear recover. Hence, once the rescue system boots, copy the backup file into the directory specified in BACKUP_URL, unless using a single ISO image. Only then run rear recover.

To avoid recreating the rescue system unnecessarily, you can check whether storage layout has changed since the last rescue system was created using these commands:

~]# rear checklayout

~]# echo $?

Non-zero status indicates a change in disk layout. Non-zero status is also returned if ReaR configuration has changed.

IMPORTANT

The rear checklayout command does not check whether a rescue system is currently present in the output location, and can return 0 even if it is not there. So it does not guarantee that a rescue system is available, only that the layout has not changed since the last rescue system has been created.

Example 34.6. Using rear checklayout

To create a rescue system, but only if the layout has changed, use this command:

~]# rear checklayout || rear mkrescue

34.2.2. Supported Backup Methods

In addition to the NETFS internal backup method, ReaR supports several external backup methods. This means that the rescue system restores files from the backup automatically, but the backup creation cannot be triggered using ReaR.

For a list and configuration options of the supported external backup methods, see the "Backup Software

Integration" section of the rear(8) man page.

34.2.3. Unsupported Backup Methods

With unsupported backup methods, there are two options:

1. The rescue system prompts the user to manually restore the files. This scenario is the one described in "Basic ReaR Usage", except for the backup file format, which may take a different form than a tar archive.

753

Deployment Guide

2. ReaR executes the custom commands provided by the user. To configure this, set the BACKUP directive to EXTERNAL. Then specify the commands to be run during backing up and restoration using the EXTERNAL_BACKUP and EXTERNAL_RESTORE directives. Optionally, also specify the

EXTERNAL_IGNORE_ERRORS and EXTERNAL_CHECK directives. See

/usr/share/rear/conf/default.conf for an example configuration.

754

APPENDIX A. CONSISTENT NETWORK DEVICE NAMING

APPENDIX A. CONSISTENT NETWORK DEVICE NAMING

Red Hat Enterprise Linux 6 provides consistent network device naming for network interfaces. This feature changes the name of network interfaces on a system in order to make locating and differentiating the interfaces easier.

Traditionally, network interfaces in Linux are enumerated as eth[0123…], but these names do not necessarily correspond to actual labels on the chassis. Modern server platforms with multiple network adapters can encounter non-deterministic and counter-intuitive naming of these interfaces. This affects both network adapters embedded on the motherboard (Lan-on-Motherboard, or LOM) and add-in (single and multiport) adapters.

The new naming convention assigns names to network interfaces based on their physical location, whether embedded or in PCI slots. By converting to this naming convention, system administrators will no longer have to guess at the physical location of a network port, or modify each system to rename them into some consistent order.

This feature, implemented via the biosdevname program, will change the name of all embedded network interfaces, PCI card network interfaces, and virtual function network interfaces from the existing

eth[0123…] to the new naming convention as shown in Table A.1, “The new naming convention” .

Table A.1. The new naming convention

Device Old Name New Name

Embedded network interface (LOM) eth[0123…

]

em[1234…]

[a]

PCI card network interface eth[0123…

] p<slot>p<ethernet port>

[b]

Virtual function eth[0123…

] p<slot>p<ethernet port>_<virtual in

terface>

[c]

[a] New enumeration starts at

1 .

[b] For example:

p3p4

[c] For example:

p3p4_1

System administrators may continue to write rules in /etc/udev/rules.d/70-persistent-

net.rules to change the device names to anything desired; those will take precedence over this physical location naming convention.

A.1. AFFECTED SYSTEMS

Consistent network device naming is enabled by default for a set of Dell PowerEdge, C Series, and

Precision Workstation systems. For more details regarding the impact on Dell systems, visit https://access.redhat.com/kb/docs/DOC-47318 .

For all other systems, it will be disabled by default; see Section A.2, “System Requirements”

and

Section A.3, “Enabling and Disabling the Feature”

for more details.

755

Deployment Guide

Regardless of the type of system, Red Hat Enterprise Linux 6 guests running under Red Hat

Enterprise Linux 5 hosts will not have devices renamed, since the virtual machine BIOS does not provide

SMBIOS information. Upgrades from Red Hat Enterprise Linux 6.0 to Red Hat Enterprise Linux 6.1 are unaffected, and the old eth[0123…] naming convention will continue to be used.

A.2. SYSTEM REQUIREMENTS

The biosdevname program uses information from the system's BIOS, specifically the type 9 (System

Slot) and type 41 (Onboard Devices Extended Information) fields contained within the SMBIOS. If the system's BIOS does not have SMBIOS version 2.6 or higher and this data, the new naming convention will not be used. Most older hardware does not support this feature because of a lack of BIOSes with the correct SMBIOS version and field information. For BIOS or SMBIOS version information, contact your hardware vendor.

For this feature to take effect, the biosdevname package must also be installed. The biosdevname package is part of the base package group in Red Hat Enterprise Linux 6. All install options, except for

Minimal Install, include this package. It is not installed on upgrades of Red Hat Enterprise Linux 6.0 to

RHEL 6.1.

A.3. ENABLING AND DISABLING THE FEATURE

To disable the consistent network device naming on Dell systems that would normally have it on by default, pass the following option on the boot command line, both during and after installation: biosdevname=0

To enable this feature on other system types that meet the minimum requirements (see Section A.2,

“System Requirements” ), pass the following option on the boot command line, both during and after

installation: biosdevname=1

Unless the system meets the minimum requirements, this option will be ignored and the system will boot with the traditional network interface name format.

If the biosdevname install option is specified, it must remain as a boot option for the lifetime of the system.

A.4. NOTES FOR ADMINISTRATORS

Many system customization files can include network interface names, and thus will require updates if moving a system from the old convention to the new convention. If you use the new naming convention, you will also need to update network interface names in areas such as custom iptables rules, scripts altering irqbalance, and other similar configuration files. Also, enabling this change for installation will require modification to existing kickstart files that use device names via the ksdevice parameter; these kickstart files will need to be updated to use the network device's MAC address or the network device's new name.

Red Hat strongly recommends that you consider this feature to be an install-time choice; enabling or disabling the feature post-install, while technically possible, can be complicated and is not recommended.

For those system administrators who want to do so, on a system that meets the minimum requirements, remove the /etc/udev/rules.d/70-persistent-net.rules file and the HWADDR lines from all

756

APPENDIX A. CONSISTENT NETWORK DEVICE NAMING

/etc/sysconfig/network-scripts/ifcfg-* files. In addition, rename those ifcfg-* files to use this new naming convention. The new names will be in effect after reboot. Remember to update any custom scripts, iptables rules, and service configuration files that might include network interface names.

757

758

Deployment Guide

APPENDIX B. RPM

The RPM Package Manager (RPM) is an open packaging system, which runs on Red Hat

Enterprise Linux as well as other Linux and UNIX systems. Red Hat, Inc. and the Fedora Project encourage other vendors to use RPM for their own products. RPM is distributed under the terms of the

GPL (GNU General Public License).

The RPM Package Manager only works with packages built to work with the RPM format. RPM is itself provided as a pre-installed rpm package. For the end user, RPM makes system updates easy. Installing, uninstalling and upgrading RPM packages can be accomplished with short commands. RPM maintains a database of installed packages and their files, so you can invoke powerful queries and verifications on your system.

The RPM package format has been improved for Red Hat Enterprise Linux 6. RPM packages are now compressed using the XZ lossless data compression format, which has the benefit of greater compression and less CPU usage during decompression, and support multiple strong hash algorithms, such as SHA-256, for package signing and verification.

WARNING

For most package management tasks, the Yum package manager offers equal and often greater capabilities and utility than RPM. Yum also performs and tracks complicated system dependency resolution, and will complain and force system integrity checks if you use RPM as well to install and remove packages. For these reasons, it is highly recommended that you use Yum instead of RPM whenever

possible to perform package management tasks. See Chapter 8, Yum

.

If you prefer a graphical interface, you can use the PackageKit GUI application, which uses Yum as its back end, to manage your system's packages. See

Chapter 9, PackageKit for details.

IMPORTANT

When installing a package, ensure it is compatible with your operating system and processor architecture. This can usually be determined by checking the package name.

Many of the following examples show RPM packages compiled for the AMD64/Intel 64 computer architectures; thus, the RPM file name ends in x86_64.rpm.

During upgrades, RPM handles configuration files carefully, so that you never lose your customizations

—something that you cannot accomplish with regular .tar.gz files.

For the developer, RPM allows you to take software source code and package it into source and binary packages for end users. This process is quite simple and is driven from a single file and optional patches that you create. This clear delineation between pristine sources and your patches along with build instructions eases the maintenance of the package as new versions of the software are released.

APPENDIX B. RPM

NOTE

Because RPM makes changes to your system, you must be logged in as root to install, remove, or upgrade an RPM package.

B.1. RPM DESIGN GOALS

To understand how to use RPM, it can be helpful to understand the design goals of RPM:

Upgradability

With RPM, you can upgrade individual components of your system without completely reinstalling.

When you get a new release of an operating system based on RPM, such as Red Hat

Enterprise Linux, you do not need to reinstall a fresh copy of the operating system your machine (as you might need to with operating systems based on other packaging systems). RPM allows intelligent, fully-automated, in-place upgrades of your system. In addition, configuration files in packages are preserved across upgrades, so you do not lose your customizations. There are no special upgrade files needed to upgrade a package because the same RPM file is used to both install and upgrade the package on your system.

Powerful Querying

RPM is designed to provide powerful querying options. You can perform searches on your entire database for packages or even just certain files. You can also easily find out what package a file belongs to and from where the package came. The files an RPM package contains are in a compressed archive, with a custom binary header containing useful information about the package and its contents, allowing you to query individual packages quickly and easily.

System Verification

Another powerful RPM feature is the ability to verify packages. If you are worried that you deleted an important file for some package, you can verify the package. You are then notified of anomalies, if any—at which point you can reinstall the package, if necessary. Any configuration files that you modified are preserved during reinstallation.

Pristine Sources

A crucial design goal was to allow the use of pristine software sources, as distributed by the original authors of the software. With RPM, you have the pristine sources along with any patches that were used, plus complete build instructions. This is an important advantage for several reasons. For instance, if a new version of a program is released, you do not necessarily have to start from scratch to get it to compile. You can look at the patch to see what you might need to do. All the compiled-in defaults, and all of the changes that were made to get the software to build properly, are easily visible using this technique.

The goal of keeping sources pristine may seem important only for developers, but it results in higher quality software for end users, too.

B.2. USING RPM

RPM has five basic modes of operation (not counting package building): installing, uninstalling, upgrading, querying, and verifying. This section contains an overview of each mode. For complete details and options, try rpm --help or man rpm. You can also see

Section B.5, “Additional Resources”

for more information on RPM.

759

Deployment Guide

B.2.1. Finding RPM Packages

Before using any RPM packages, you must know where to find them. An Internet search returns many

RPM repositories, but if you are looking for Red Hat RPM packages, they can be found at the following locations:

The Red Hat Enterprise Linux installation media contain many installable RPMs.

The initial RPM repositories provided with the YUM package manager. See Chapter 8, Yum for

details on how to use the official Red Hat Enterprise Linux package repositories.

The Extra Packages for Enterprise Linux (EPEL) is a community effort to provide high-quality add-on packages for Red Hat Enterprise Linux. See http://fedoraproject.org/wiki/EPEL for details on EPEL RPM packages.

Unofficial, third-party repositories not affiliated with Red Hat also provide RPM packages.

IMPORTANT

When considering third-party repositories for use with your Red Hat

Enterprise Linux system, pay close attention to the repository's web site with regard to package compatibility before adding the repository as a package source. Alternate package repositories may offer different, incompatible versions of the same software, including packages already included in the Red Hat

Enterprise Linux repositories.

The Red Hat Errata Page, available at http://www.redhat.com/apps/support/errata/ .

B.2.2. Installing and Upgrading

RPM packages typically have file names like tree-1.5.3-2.el6.x86_64.rpm. The file name includes the package name (tree), version (1.5.3), release (2), operating system major version (el6) and CPU architecture (x86_64).

You can use rpm's -U option to: upgrade an existing but older package on the system to a newer version, or install the package even if an older version is not already installed.

That is, rpm -U <rpm_file> is able to perform the function of either upgrading or installing as is appropriate for the package.

Assuming the tree-1.5.3-2.el6.x86_64.rpm package is in the current directory, log in as root and type the following command at a shell prompt to either upgrade or install the tree package as determined by rpm: rpm -Uvh tree-1.5.3-2.el6.x86_64.rpm

NOTE

The -v and -h options (which are combined with -U) cause rpm to print more verbose output and display a progress meter using hash signs.

760

APPENDIX B. RPM

If the upgrade/installation is successful, the following output is displayed:

Preparing... ###########################################

[100%]

1:tree ###########################################

[100%]

WARNING

rpm provides two different options for installing packages: the aforementioned -U option (which historically stands for upgrade), and the -i option, historically standing for install. Because the -U option subsumes both install and upgrade functions, we recommend to use rpm -Uvh with all packages except kernel packages.

You should always use the -i option to install a new kernel package instead of upgrading it. This is because using the -U option to upgrade a kernel package removes the previous (older) kernel package, which could render the system unable to boot if there is a problem with the new kernel. Therefore, use the rpm -i

<kernel_package> command to install a new kernel without replacing any older kernel packages. For more information on installing kernel packages, see

Chapter 30, Manually Upgrading the Kernel

.

The signature of a package is checked automatically when installing or upgrading a package. The signature confirms that the package was signed by an authorized party. For example, if the verification of the signature fails, an error message such as the following is displayed: error: tree-1.5.3-2.el6.x86_64.rpm: Header V3 RSA/SHA256 signature: BAD, key ID d22e77f2

If it is a new, header-only, signature, an error message such as the following is displayed: error: tree-1.5.3-2.el6.x86_64.rpm: Header V3 RSA/SHA256 signature: BAD, key ID d22e77f2

If you do not have the appropriate key installed to verify the signature, the message contains the word

NOKEY: warning: tree-1.5.3-2.el6.x86_64.rpm: Header V3 RSA/SHA1 signature: NOKEY, key ID 57bbccba

See

Section B.3, “Checking a Package's Signature” for more information on checking a package's

signature.

B.2.2.1. Package Already Installed

If a package of the same name and version is already installed, the following output is displayed:

761

Deployment Guide

Preparing... ###########################################

[100%]

package tree-1.5.3-2.el6.x86_64 is already installed

However, if you want to install the package anyway, you can use the --replacepkgs option, which tells RPM to ignore the error: rpm -Uvh --replacepkgs tree-1.5.3-2.el6.x86_64.rpm

This option is helpful if files installed from the RPM were deleted or if you want the original configuration files from the RPM to be installed.

B.2.2.2. Conflicting Files

If you attempt to install a package that contains a file which has already been installed by another package, the following is displayed:

Preparing... ##################################################

file /usr/bin/foobar from install of foo-1.0-1.el6.x86_64 conflicts with file from package bar-3.1.1.el6.x86_64

To make RPM ignore this error, use the --replacefiles option: rpm -Uvh --replacefiles foo-1.0-1.el6.x86_64.rpm

B.2.2.3. Unresolved Dependency

RPM packages may sometimes depend on other packages, which means that they require other packages to be installed to run properly. If you try to install a package which has an unresolved dependency, output similar to the following is displayed: error: Failed dependencies:

bar.so.3()(64bit) is needed by foo-1.0-1.el6.x86_64

If you are installing a package from the Red Hat Enterprise Linux installation media, such as from a CD-

ROM or DVD, the dependencies may be available. Find the suggested package(s) on the Red Hat

Enterprise Linux installation media or on one of the active Red Hat Enterprise Linux mirrors and add it to the command: rpm -Uvh foo-1.0-1.el6.x86_64.rpm bar-3.1.1.el6.x86_64.rpm

If installation of both packages is successful, output similar to the following is displayed:

Preparing... ###########################################

[100%]

1:foo ########################################### [

50%]

2:bar ###########################################

[100%]

You can try the --whatprovides option to determine which package contains the required file.

762

APPENDIX B. RPM rpm -q --whatprovides "bar.so.3"

If the package that contains bar.so.3 is in the RPM database, the name of the package is displayed: bar-3.1.1.el6.i586.rpm

WARNING

Although we can force rpm to install a package that gives us a Failed

dependencies error (using the --nodeps option), this is not recommended, and will usually result in the installed package failing to run. Installing or removing packages with rpm --nodeps can cause applications to misbehave and/or crash, and can cause serious package management problems or, possibly, system failure.

For these reasons, it is best to heed such warnings; the package manager—whether

RPM, Yum or PackageKit—shows us these warnings and suggests possible fixes because accounting for dependencies is critical. The Yum package manager can perform dependency resolution and fetch dependencies from online repositories, making it safer, easier and smarter than forcing rpm to carry out actions without regard to resolving dependencies.

B.2.3. Configuration File Changes

Because RPM performs intelligent upgrading of packages with configuration files, you may see one or the other of the following messages: saving /etc/foo.conf as /etc/foo.conf.rpmsave

This message means that changes you made to the configuration file may not be forward-compatible with the new configuration file in the package, so RPM saved your original file and installed a new one.

You should investigate the differences between the two configuration files and resolve them as soon as possible, to ensure that your system continues to function properly.

Alternatively, RPM may save the package's new configuration file as, for example, foo.conf.rpmnew, and leave the configuration file you modified untouched. You should still resolve any conflicts between your modified configuration file and the new one, usually by merging changes from the old one to the new one with a diff program.

If you attempt to upgrade to a package with an older version number (that is, if a higher version of the package is already installed), the output is similar to the following: package foo-2.0-1.el6.x86_64.rpm (which is newer than foo-1.0-1) is already installed

To force RPM to upgrade anyway, use the --oldpackage option: rpm -Uvh --oldpackage foo-1.0-1.el6.x86_64.rpm

763

764

Deployment Guide

B.2.4. Uninstalling

Uninstalling a package is just as simple as installing one. Type the following command at a shell prompt: rpm -e foo

NOTE

Notice that we used the package name foo, not the name of the original package file,

foo-1.0-1.el6.x86_64. If you attempt to uninstall a package using the rpm -e command and the original full file name, you will receive a package name error.

You can encounter dependency errors when uninstalling a package if another installed package depends on the one you are trying to remove. For example: rpm -e ghostscript error: Failed dependencies:

libgs.so.8()(64bit) is needed by (installed) libspectre-0.2.2-

3.el6.x86_64

libgs.so.8()(64bit) is needed by (installed) foomatic-4.0.3-

1.el6.x86_64

libijs-0.35.so()(64bit) is needed by (installed) gutenprint-5.2.4-

5.el6.x86_64

ghostscript is needed by (installed) printer-filters-1.1-

4.el6.noarch

Similar to how we searched for a shared object library (i.e. a <library_name>.so.<number> file) in

Section B.2.2.3, “Unresolved Dependency”

, we can search for a 64-bit shared object library using this exact syntax (and making sure to quote the file name):

~]# rpm -q --whatprovides "libgs.so.8()(64bit)" ghostscript-8.70-1.el6.x86_64

WARNING

Although we can force rpm to remove a package that gives us a Failed

dependencies error (using the --nodeps option), this is not recommended, and may cause harm to other installed applications. Installing or removing packages with

rpm --nodeps can cause applications to misbehave and/or crash, and can cause serious package management problems or, possibly, system failure. For these reasons, it is best to heed such warnings; the package manager—whether RPM,

Yum or PackageKit—shows us these warnings and suggests possible fixes because accounting for dependencies is critical. The Yum package manager can perform dependency resolution and fetch dependencies from online repositories, making it safer, easier and smarter than forcing rpm to carry out actions without regard to resolving dependencies.

APPENDIX B. RPM

B.2.5. Freshening

Freshening is similar to upgrading, except that only existent packages are upgraded. Type the following command at a shell prompt: rpm -Fvh foo-2.0-1.el6.x86_64.rpm

RPM's freshen option checks the versions of the packages specified on the command line against the versions of packages that have already been installed on your system. When a newer version of an already-installed package is processed by RPM's freshen option, it is upgraded to the newer version.

However, RPM's freshen option does not install a package if no previously-installed package of the same name exists. This differs from RPM's upgrade option, as an upgrade does install packages whether or not an older version of the package was already installed.

Freshening works for single packages or package groups. If you have just downloaded a large number of different packages, and you only want to upgrade those packages that are already installed on your system, freshening does the job. Thus, you do not have to delete any unwanted packages from the group that you downloaded before using RPM.

In this case, issue the following with the *.rpm glob: rpm -Fvh *.rpm

RPM then automatically upgrades only those packages that are already installed.

B.2.6. Querying

The RPM database stores information about all RPM packages installed in your system. It is stored in the directory /var/lib/rpm/, and is used to query what packages are installed, what versions each package is, and to calculate any changes to any files in the package since installation, among other use cases.

To query this database, use the -q option. The rpm -q package name command displays the package name, version, and release number of the installed package <package_name>. For example, using rpm -q tree to query installed package tree might generate the following output: tree-1.5.2.2-4.el6.x86_64

You can also use the following Package Selection Options (which is a subheading in the RPM man page: see man rpm for details) to further refine or qualify your query:

-a — queries all currently installed packages.

-f <file_name> — queries the RPM database for which package owns <file_name>.

Specify the absolute path of the file (for example, rpm -qf /bin/ls instead of rpm -qf ls).

-p <package_file> — queries the uninstalled package <package_file>.

There are a number of ways to specify what information to display about queried packages. The following options are used to select the type of information for which you are searching. These are called the Package Query Options.

-i displays package information including name, description, release, size, build date, install date, vendor, and other miscellaneous information.

765

Deployment Guide

-l displays the list of files that the package contains.

-s displays the state of all the files in the package.

-d displays a list of files marked as documentation (man pages, info pages, READMEs, etc.) in the package.

-c displays a list of files marked as configuration files. These are the files you edit after installation to adapt and customize the package to your system (for example, sendmail.cf,

passwd, inittab, etc.).

For options that display lists of files, add -v to the command to display the lists in a familiar ls -l format.

B.2.7. Verifying

Verifying a package compares information about files installed from a package with the same information from the original package. Among other things, verifying compares the file size, MD5 sum, permissions, type, owner, and group of each file.

The command rpm -V verifies a package. You can use any of the Verify Options listed for querying to specify the packages you want to verify. A simple use of verifying is rpm -V tree, which verifies that all the files in the tree package are as they were when they were originally installed. For example:

To verify a package containing a particular file: rpm -Vf /usr/bin/tree

In this example, /usr/bin/tree is the absolute path to the file used to query a package.

To verify ALL installed packages throughout the system (which will take some time): rpm -Va

To verify an installed package against an RPM package file: rpm -Vp tree-1.5.3-2.el6.x86_64.rpm

This command can be useful if you suspect that your RPM database is corrupt.

If everything verified properly, there is no output. If there are any discrepancies, they are displayed. The format of the output is a string of eight characters (a "c" denotes a configuration file) and then the file name. Each of the eight characters denotes the result of a comparison of one attribute of the file to the value of that attribute recorded in the RPM database. A single period (.) means the test passed. The following characters denote specific discrepancies:

5 — MD5 checksum

S — file size

L — symbolic link

T — file modification time

766

APPENDIX B. RPM

D — device

U — user

G — group

M — mode (includes permissions and file type)

? — unreadable file (file permission errors, for example)

If you see any output, use your best judgment to determine if you should remove the package, reinstall it, or fix the problem in another way.

B.3. CHECKING A PACKAGE'S SIGNATURE

If you want to verify that a package has not been corrupted or tampered with, examine only the md5sum by typing the following command at a shell prompt (where <rpm_file> is the file name of the RPM package): rpm -K --nosignature <rpm_file>

The message <rpm_file>: rsa sha1 (md5) pgp md5 OK (specifically the OK part of it) is displayed. This brief message means that the file was not corrupted during download. To see a more verbose message, replace -K with -Kvv in the command.

On the other hand, how trustworthy is the developer who created the package? If the package is signed with the developer's GnuPG key, you know that the developer really is who they say they are.

An RPM package can be signed using GNU Privacy Guard (or GnuPG), to help you make certain your downloaded package is trustworthy.

GnuPG is a tool for secure communication; it is a complete and free replacement for the encryption technology of PGP, an electronic privacy program. With GnuPG, you can authenticate the validity of documents and encrypt/decrypt data to and from other recipients. GnuPG is capable of decrypting and verifying PGP 5.x files as well.

During installation, GnuPG is installed by default. That way you can immediately start using GnuPG to verify any packages that you receive from Red Hat. Before doing so, you must first import Red Hat's public key.

B.3.1. Importing Keys

To verify Red Hat packages, you must import the Red Hat GnuPG key. To do so, execute the following command at a shell prompt: rpm --import /usr/share/rhn/RPM-GPG-KEY

To display a list of all keys installed for RPM verification, execute the command: rpm -qa gpg-pubkey*

For the Red Hat key, the output includes: gpg-pubkey-db42a60e-37ea5438

767

Deployment Guide

To display details about a specific key, use rpm -qi followed by the output from the previous command: rpm -qi gpg-pubkey-db42a60e-37ea5438

B.3.2. Verifying Signature of Packages

To check the GnuPG signature of an RPM file after importing the builder's GnuPG key, use the following command (replace <rpm-file> with the file name of the RPM package): rpm -K <rpm-file>

If all goes well, the following message is displayed: md5 gpg OK. This means that the signature of the package has been verified, that it is not corrupt, and therefore is safe to install and use.

B.4. PRACTICAL AND COMMON EXAMPLES OF RPM USAGE

RPM is a useful tool for both managing your system and diagnosing and fixing problems. The best way to make sense of all its options is to look at some examples.

Perhaps you have deleted some files by accident, but you are not sure what you deleted. To verify your entire system and see what might be missing, you could try the following command: rpm -Va

If some files are missing or appear to have been corrupted, you should probably either re-install the package or uninstall and then re-install the package.

At some point, you might see a file that you do not recognize. To find out which package owns it, enter: rpm -qf /usr/bin/ghostscript

The output would look like the following: ghostscript-8.70-1.el6.x86_64

We can combine the above two examples in the following scenario. Say you are having problems with /usr/bin/paste. You would like to verify the package that owns that program, but you do not know which package owns paste. Enter the following command, rpm -Vf /usr/bin/paste and the appropriate package is verified.

Do you want to find out more information about a particular program? You can try the following command to locate the documentation which came with the package that owns that program: rpm -qdf /usr/bin/free

The output would be similar to the following:

768

APPENDIX B. RPM

/usr/share/doc/procps-3.2.8/BUGS

/usr/share/doc/procps-3.2.8/FAQ

/usr/share/doc/procps-3.2.8/NEWS

/usr/share/doc/procps-3.2.8/TODO

/usr/share/man/man1/free.1.gz

/usr/share/man/man1/pgrep.1.gz

/usr/share/man/man1/pkill.1.gz

/usr/share/man/man1/pmap.1.gz

/usr/share/man/man1/ps.1.gz

/usr/share/man/man1/pwdx.1.gz

/usr/share/man/man1/skill.1.gz

/usr/share/man/man1/slabtop.1.gz

/usr/share/man/man1/snice.1.gz

/usr/share/man/man1/tload.1.gz

/usr/share/man/man1/top.1.gz

/usr/share/man/man1/uptime.1.gz

/usr/share/man/man1/w.1.gz

/usr/share/man/man1/watch.1.gz

/usr/share/man/man5/sysctl.conf.5.gz

/usr/share/man/man8/sysctl.8.gz

/usr/share/man/man8/vmstat.8.gz

You may find a new RPM, but you do not know what it does. To find information about it, use the following command: rpm -qip crontabs-1.10-32.1.el6.noarch.rpm

The output would be similar to the following:

Name : crontabs Relocations: (not relocatable)

Version : 1.10 Vendor: Red Hat,

Inc.

Release : 32.1.el6 Build Date: Thu 03 Dec

2009 02:17:44 AM CET

Install Date: (not installed) Build Host: js20-bc1-

11.build.redhat.com

Group : System Environment/Base Source RPM: crontabs-

1.10-32.1.el6.src.rpm

Size : 2486 License: Public

Domain and GPLv2

Signature : RSA/8, Wed 24 Feb 2010 08:46:13 PM CET, Key ID

938a80caf21541eb

Packager : Red Hat, Inc. <http://bugzilla.redhat.com/bugzilla>

Summary : Root crontab files used to schedule the execution of programs

Description :

The crontabs package contains root crontab files and directories.

You will need to install cron daemon to run the jobs from the crontabs.

The cron daemon such as cronie or fcron checks the crontab files to see when particular commands are scheduled to be executed. If commands are scheduled, it executes them.

769

Deployment Guide

Crontabs handles a basic system function, so it should be installed on your system.

Perhaps you now want to see what files the crontabs RPM package installs. You would enter the following: rpm -qlp crontabs-1.10-32.1.el6.noarch.rpm

The output is similar to the following:

/etc/cron.daily

/etc/cron.hourly

/etc/cron.monthly

/etc/cron.weekly

/etc/crontab

/usr/bin/run-parts

/usr/share/man/man4/crontabs.4.gz

These are just a few examples. As you use RPM, you may find more uses for it.

B.5. ADDITIONAL RESOURCES

RPM is an extremely complex utility with many options and methods for querying, installing, upgrading, and removing packages. See the following resources to learn more about RPM.

B.5.1. Installed Documentation

rpm --help — This command displays a quick reference of RPM parameters.

man rpm — The RPM man page gives more detail about RPM parameters than the rpm --

help command.

B.5.2. Useful Websites

The RPM website — http://www.rpm.org/

The RPM mailing list can be subscribed to, and its archives read from, here — https://lists.rpm.org/mailman/listinfo/rpm-list

770

APPENDIX C. THE X WINDOW SYSTEM

APPENDIX C. THE X WINDOW SYSTEM

While the heart of Red Hat Enterprise Linux is the kernel, for many users, the face of the operating system is the graphical environment provided by the X Window System, also called X.

Other windowing environments have existed in the UNIX world, including some that predate the release of the X Window System in June 1984. Nonetheless, X has been the default graphical environment for most UNIX-like operating systems, including Red Hat Enterprise Linux, for many years.

The graphical environment for Red Hat Enterprise Linux is supplied by the X.Org Foundation, an open source organization created to manage development and strategy for the X Window System and related technologies. X.Org is a large-scale, rapid-developing project with hundreds of developers around the world. It features a wide degree of support for a variety of hardware devices and architectures, and runs on myriad operating systems and platforms.

The X Window System uses a client-server architecture. Its main purpose is to provide network transparent window system, which runs on a wide range of computing and graphics machines. The X server (the Xorg binary) listens for connections from X client applications via a network or local loopback interface. The server communicates with the hardware, such as the video card, monitor, keyboard, and mouse. X client applications exist in the user space, creating a graphical user interface

(GUI) for the user and passing user requests to the X server.

C.1. THE X SERVER

Red Hat Enterprise Linux 6 uses X server version, which includes several video drivers, EXA, and platform support enhancements over the previous release, among others. In addition, this release includes several automatic configuration features for the X server, as well as the generic input driver,

evdev, that supports all input devices that the kernel knows about, including most mice and keyboards.

X11R7.1 was the first release to take specific advantage of making the X Window System modular. This release split X into logically distinct modules, which make it easier for open source developers to contribute code to the system.

In the current release, all libraries, headers, and binaries live under the /usr/ directory. The

/etc/X11/ directory contains configuration files for X client and server applications. This includes configuration files for the X server itself, the X display managers, and many other base components.

The configuration file for the newer Fontconfig-based font architecture is still

/etc/fonts/fonts.conf. For more information on configuring and adding fonts, see Section C.4,

“Fonts” .

Because the X server performs advanced tasks on a wide array of hardware, it requires detailed information about the hardware it works on. The X server is able to automatically detect most of the hardware that it runs on and configure itself accordingly. Alternatively, hardware can be manually specified in configuration files.

The Red Hat Enterprise Linux system installer, Anaconda, installs and configures X automatically, unless the X packages are not selected for installation. If there are any changes to the monitor, video card or other devices managed by the X server, most of the time, X detects and reconfigures these changes automatically. In rare cases, X must be reconfigured manually.

C.2. DESKTOP ENVIRONMENTS AND WINDOW MANAGERS

Once an X server is running, X client applications can connect to it and create a GUI for the user. A range of GUIs are available with Red Hat Enterprise Linux, from the rudimentary Tab Window Manager

771

Deployment Guide

(twm) to the highly developed and interactive desktop environment (such as GNOME or KDE) that most

Red Hat Enterprise Linux users are familiar with.

To create the latter, more comprehensive GUI, two main classes of X client application must connect to the X server: a window manager and a desktop environment.

C.2.1. Maximum number of concurrent GUI sessions

Multiple GUI sessions for different users can be run at the same time on the same machine. The maximum number of concurrent GUI sessions is limited by the hardware, especially by the memory size, and by the workload demands of the running applications. For common PCs the maximum possible number of concurrent GUI sessions is not higher than 10 to 15, depending on previously described circumstances. Logging the same user into GNOME more than once on the same machine is not supported, because some applications could terminate unexpectedly.

C.2.2. Desktop Environments

A desktop environment integrates various X clients to create a common graphical user environment and a development platform.

Desktop environments have advanced features allowing X clients and other running processes to communicate with one another, while also allowing all applications written to work in that environment to perform advanced tasks, such as drag-and-drop operations.

Red Hat Enterprise Linux provides two desktop environments:

GNOME — The default desktop environment for Red Hat Enterprise Linux based on the GTK+ 2 graphical toolkit.

KDE — An alternative desktop environment based on the Qt 4 graphical toolkit.

Both GNOME and KDE have advanced-productivity applications, such as word processors, spreadsheets, and Web browsers; both also provide tools to customize the look and feel of the GUI.

Additionally, if both the GTK+ 2 and the Qt libraries are present, KDE applications can run in GNOME and vice versa.

C.2.3. Window Managers

Window managers are X client programs which are either part of a desktop environment or, in some cases, stand-alone. Their primary purpose is to control the way graphical windows are positioned, resized, or moved. Window managers also control title bars, window focus behavior, and user-specified key and mouse button bindings.

The Red Hat Enterprise Linux repositories provide five different window managers.

metacity

The Metacity window manager is the default window manager for GNOME. It is a simple and efficient window manager which supports custom themes. This window manager is automatically pulled in as a dependency when the GNOME desktop is installed.

kwin

The KWin window manager is the default window manager for KDE. It is an efficient window manager which supports custom themes. This window manager is automatically pulled in as a dependency when the KDE desktop is installed.

772

APPENDIX C. THE X WINDOW SYSTEM compiz

The Compiz compositing window manager is based on OpenGL and can use 3D graphics hardware to create fast compositing desktop effects for window management. Advanced features, such as a cube workspace, are implemented as loadable plug-ins. To run this window manager, you need to install the compiz package.

mwm

The Motif Window Manager (mwm) is a basic, stand-alone window manager. Since it is designed to be stand-alone, it should not be used in conjunction with GNOME or KDE. To run this window manager, you need to install the openmotif package.

twm

The minimalist Tab Window Manager (twm), which provides the most basic tool set among the available window managers, can be used either as a stand-alone or with a desktop environment. To run this window manager, you need to install the xorg-x11-twm package.

C.3. X SERVER CONFIGURATION FILES

The X server is a single binary executable /usr/bin/Xorg; a symbolic link X pointing to this file is also provided. Associated configuration files are stored in the /etc/X11/ and /usr/share/X11/ directories.

The X Window System supports two different configuration schemes. Configuration files in the

xorg.conf.d directory contain preconfigured settings from vendors and from distribution, and these files should not be edited by hand. Configuration in the xorg.conf file, on the other hand, is done completely by hand but is not necessary in most scenarios.

NOTE

All necessary parameters for a display and peripherals are auto-detected and configured during installation. The configuration file for the X server, /etc/X11/xorg.conf, that was necessary in previous releases, is not supplied with the current release of the X

Window System. It can still be useful to create the file manually to configure new hardware, to set up an environment with multiple video cards, or for debugging purposes.

The /usr/lib/xorg/modules/ (or /usr/lib64/xorg/modules/) directory contains X server modules that can be loaded dynamically at runtime. By default, only some modules in

/usr/lib/xorg/modules/ are automatically loaded by the X server.

When Red Hat Enterprise Linux 6 is installed, the configuration files for X are created using information gathered about the system hardware during the installation process by the HAL (Hardware Abstraction

Layer) configuration back end. Whenever the X server is started, it asks HAL for the list of input devices and adds each of them with their respective driver. Whenever a new input device is plugged in, or an existing input device is removed, HAL notifies the X server about the change. Because of this notification system, devices using the mouse, kbd, or vmmouse driver configured in the xorg.conf file are, by

default, ignored by the X server. See Section C.3.3.3, “The ServerFlags section” for further details.

Additional configuration is provided in the /etc/X11/xorg.conf.d/ directory and it can override or augment any configuration that has been obtained through HAL.

C.3.1. The Structure of the Configuration

773

Deployment Guide

The format of the X configuration files is comprised of many different sections which address specific aspects of the system hardware. Each section begins with a Section "section-name" line, where

"section-name" is the title for the section, and ends with an EndSection line. Each section contains lines that include option names and one or more option values. Some of these are sometimes enclosed in double quotes (").

Some options within the /etc/X11/xorg.conf file accept a Boolean switch which turns the feature on or off. The acceptable values are:

1, on, true, or yes — Turns the option on.

0, off, false, or no — Turns the option off.

The following shows a typical configuration file for the keyboard. Lines beginning with a hash sign (#) are not read by the X server and are used for human-readable comments.

# This file is autogenerated by system-setup-keyboard. Any

# modifications will be lost.

Section "InputClass"

Identifier "system-setup-keyboard"

MatchIsKeyboard "on"

Option "XkbModel" "pc105"

Option "XkbLayout" "cz,us"

# Option "XkbVariant" "(null)"

Option "XkbOptions"

"terminate:ctrl_alt_bksp,grp:shifts_toggle,grp_led:scroll"

EndSection

C.3.2. The

xorg.conf.d

Directory

The X server supports two configuration directories. The /usr/share/X11/xorg.conf.d/ provides separate configuration files from vendors or third-party packages; changes to files in this directory may be overwritten by settings specified in the /etc/X11/xorg.conf file. The /etc/X11/xorg.conf.d/ directory stores user-specific configuration.

Files with the suffix .conf in configuration directories are parsed by the X server upon startup and are treated like part of the traditional xorg.conf configuration file. These files may contain one or more sections; for a description of the options in a section and the general layout of the configuration file, see

Section C.3.3, “The xorg.conf File”

or to the xorg.conf(5) man page. The X server essentially treats the collection of configuration files as one big file with entries from xorg.conf at the end. Users are encouraged to put custom configuration into /etc/xorg.conf and leave the directory for configuration snippets provided by the distribution.

C.3.3. The

xorg.conf

File

In previous releases of the X Window System, /etc/X11/xorg.conf file was used to store initial setup for X. When a change occurred with the monitor, video card or other device managed by the X server, the file needed to be edited manually. In Red Hat Enterprise Linux, there is rarely a need to manually create and edit the /etc/X11/xorg.conf file. Nevertheless, it is still useful to understand various sections and optional parameters available, especially when troubleshooting or setting up unusual hardware configuration.

In the following, some important sections are described in the order in which they appear in a typical

774

APPENDIX C. THE X WINDOW SYSTEM

/etc/X11/xorg.conf file. More detailed information about the X server configuration file can be found in the xorg.conf(5) man page. This section is mostly intended for advanced users as most configuration options described below are not needed in typical configuration scenarios.

C.3.3.1. The

InputClass

section

InputClass is a new type of configuration section that does not apply to a single device but rather to a class of devices, including hot-plugged devices. An InputClass section's scope is limited by the matches specified; in order to apply to an input device, all matches must apply to the device as seen in the example below:

Section "InputClass"

Identifier "touchpad catchall"

MatchIsTouchpad "on"

Driver "synaptics"

EndSection

If this snippet is present in an xorg.conf file or an xorg.conf.d directory, any touchpad present in the system is assigned the synaptics driver.

NOTE

Note that due to alphanumeric sorting of configuration files in the xorg.conf.d directory, the Driver setting in the example above overwrites previously set driver options. The more generic the class, the earlier it should be listed.

The match options specify which devices a section may apply to. To match a device, all match options must correspond. The following options are commonly used in the InputClass section:

MatchIsPointer, MatchIsKeyboard, MatchIsTouchpad, MatchIsTouchscreen,

MatchIsJoystick — Boolean options to specify a type of a device.

MatchProduct "product_name" — this option matches if the product_name substring occurs in the product name of the device.

MatchVendor "vendor_name" — this option matches if the vendor_name substring occurs in the vendor name of the device.

MatchDevicePath "/path/to/device" — this option matches any device if its device path corresponds to the patterns given in the "/path/to/device" template, for example

/dev/input/event*. See the fnmatch(3) man page for further details.

MatchTag "tag_pattern" — this option matches if at least one tag assigned by the HAL configuration back end matches the tag_pattern pattern.

A configuration file may have multiple InputClass sections. These sections are optional and are used to configure a class of input devices as they are automatically added. An input device can match more than one InputClass section. When arranging these sections, it is recommended to put generic matches above specific ones because each input class can override settings from a previous one if an overlap occurs.

C.3.3.2. The

InputDevice

section

775

Deployment Guide

Each InputDevice section configures one input device for the X server. Previously, systems typically had at least one InputDevice section for the keyboard, and most mouse settings were automatically detected.

With Red Hat Enterprise Linux 6, no InputDevice configuration is needed for most setups, and the xorg-x11-drv-* input driver packages provide the automatic configuration through HAL. The default driver for both keyboards and mice is evdev.

The following example shows a typical InputDevice section for a keyboard:

Section "InputDevice"

Identifier "Keyboard0"

Driver "kbd"

Option "XkbModel" "pc105"

Option "XkbLayout" "us"

EndSection

The following entries are commonly used in the InputDevice section:

Identifier — Specifies a unique name for this InputDevice section. This is a required entry.

Driver — Specifies the name of the device driver X must load for the device. If the

AutoAddDevices option is enabled (which is the default setting), any input device section with

Driver "mouse" or Driver "kbd" will be ignored. This is necessary due to conflicts between the legacy mouse and keyboard drivers and the new evdev generic driver. Instead, the server will use the information from the back end for any input devices. Any custom input device configuration in the xorg.conf should be moved to the back end. In most cases, the back end will be HAL and the configuration location will be the /etc/X11/xorg.conf.d directory.

Option — Specifies necessary options pertaining to the device.

A mouse may also be specified to override any auto-detected values for the device. The following options are typically included when adding a mouse in the xorg.conf file:

Protocol — Specifies the protocol used by the mouse, such as IMPS/2.

Device — Specifies the location of the physical device.

Emulate3Buttons — Specifies whether to allow a two-button mouse to act like a threebutton mouse when both mouse buttons are pressed simultaneously.

Consult the xorg.conf(5) man page for a complete list of valid options for this section.

C.3.3.3. The

ServerFlags

section

The optional ServerFlags section contains miscellaneous global X server settings. Any settings in this

section may be overridden by options placed in the ServerLayout section (see Section C.3.3.4, “The

ServerLayout Section” for details).

Each entry within the ServerFlags section occupies a single line and begins with the term Option followed by an option enclosed in double quotation marks (").

The following is a sample ServerFlags section:

776

APPENDIX C. THE X WINDOW SYSTEM

Section "ServerFlags"

Option "DontZap" "true"

EndSection

The following lists some of the most useful options:

"DontZap" "boolean" — When the value of <boolean> is set to true, this setting prevents the use of the Ctrl+Alt+Backspace key combination to immediately terminate the X server.

NOTE

Even if this option is enabled, the key combination still must be configured in the

X Keyboard Extension (XKB) map before it can be used. One way how to add the key combination to the map is to run the following command: setxkbmap -option "terminate:ctrl_alt_bksp"

"DontZoom" "boolean" — When the value of <boolean> is set to true, this setting prevents cycling through configured video resolutions using the Ctrl+Alt+Keypad-Plus and

Ctrl+Alt+Keypad-Minus key combinations.

"AutoAddDevices" "boolean" — When the value of <boolean> is set to false, the server will not hot plug input devices and instead rely solely on devices configured in the xorg.conf file. See

Section C.3.3.2, “The InputDevice section”

for more information concerning input devices. This option is enabled by default and HAL (hardware abstraction layer) is used as a back end for device discovery.

C.3.3.4. The

ServerLayout

Section

The ServerLayout section binds together the input and output devices controlled by the X server. At a minimum, this section must specify one input device and one output device. By default, a monitor (output device) and a keyboard (input device) are specified.

The following example shows a typical ServerLayout section:

Section "ServerLayout"

Identifier "Default Layout"

Screen 0 "Screen0" 0 0

InputDevice "Mouse0" "CorePointer"

InputDevice "Keyboard0" "CoreKeyboard"

EndSection

The following entries are commonly used in the ServerLayout section:

Identifier — Specifies a unique name for this ServerLayout section.

Screen — Specifies the name of a Screen section to be used with the X server. More than one

Screen option may be present.

The following is an example of a typical Screen entry:

Screen 0 "Screen0" 0 0

777

Deployment Guide

The first number in this example Screen entry (0) indicates that the first monitor connector, or head on the video card, uses the configuration specified in the Screen section with the identifier

"Screen0".

An example of a Screen section with the identifier "Screen0" can be found in Section C.3.3.8,

“The Screen section” .

If the video card has more than one head, another Screen entry with a different number and a different Screen section identifier is necessary.

The numbers to the right of "Screen0" give the absolute X and Y coordinates for the upper left corner of the screen (0 0 by default).

InputDevice — Specifies the name of an InputDevice section to be used with the X server.

It is advisable that there be at least two InputDevice entries: one for the default mouse and one for the default keyboard. The options CorePointer and CoreKeyboard indicate that these are the primary mouse and keyboard. If the AutoAddDevices option is enabled, this entry needs not to be specified in the ServerLayout section. If the AutoAddDevices option is disabled, both mouse and keyboard are auto-detected with the default values.

Option "option-name" — An optional entry which specifies extra parameters for the section.

Any options listed here override those listed in the ServerFlags section.

Replace <option-name> with a valid option listed for this section in the xorg.conf(5) man page.

It is possible to put more than one ServerLayout section in the /etc/X11/xorg.conf file. By default, the server only reads the first one it encounters, however. If there is an alternative

ServerLayout section, it can be specified as a command-line argument when starting an X session; as in the Xorg -layout <layoutname> command.

C.3.3.5. The

Files

section

The Files section sets paths for services vital to the X server, such as the font path. This is an optional section, as these paths are normally detected automatically. This section can be used to override automatically detected values.

The following example shows a typical Files section:

Section "Files"

RgbPath "/usr/share/X11/rgb.txt"

FontPath "unix/:7100"

EndSection

The following entries are commonly used in the Files section:

ModulePath — An optional parameter which specifies alternate directories which store X server modules.

C.3.3.6. The

Monitor

section

Each Monitor section configures one type of monitor used by the system. This is an optional entry as most monitors are now detected automatically.

778

APPENDIX C. THE X WINDOW SYSTEM

This example shows a typical Monitor section for a monitor:

Section "Monitor"

Identifier "Monitor0"

VendorName "Monitor Vendor"

ModelName "DDC Probed Monitor - ViewSonic G773-2"

DisplaySize 320 240

HorizSync 30.0 - 70.0

VertRefresh 50.0 - 180.0

EndSection

The following entries are commonly used in the Monitor section:

Identifier — Specifies a unique name for this Monitor section. This is a required entry.

VendorName — An optional parameter which specifies the vendor of the monitor.

ModelName — An optional parameter which specifies the monitor's model name.

DisplaySize — An optional parameter which specifies, in millimeters, the physical size of the monitor's picture area.

HorizSync — Specifies the range of horizontal sync frequencies compatible with the monitor, in kHz. These values help the X server determine the validity of built-in or specified Modeline entries for the monitor.

VertRefresh — Specifies the range of vertical refresh frequencies supported by the monitor, in kHz. These values help the X server determine the validity of built-in or specified Modeline entries for the monitor.

Modeline — An optional parameter which specifies additional video modes for the monitor at particular resolutions, with certain horizontal sync and vertical refresh resolutions. See the

xorg.conf(5) man page for a more detailed explanation of Modeline entries.

Option "option-name" — An optional entry which specifies extra parameters for the section.

Replace <option-name> with a valid option listed for this section in the xorg.conf(5) man page.

C.3.3.7. The

Device

section

Each Device section configures one video card on the system. While one Device section is the minimum, additional instances may occur for each video card installed on the machine.

The following example shows a typical Device section for a video card:

Section "Device"

Identifier "Videocard0"

Driver "mga"

VendorName "Videocard vendor"

BoardName "Matrox Millennium G200"

VideoRam 8192

Option "dpms"

EndSection

779

Deployment Guide

The following entries are commonly used in the Device section:

Identifier — Specifies a unique name for this Device section. This is a required entry.

Driver — Specifies which driver the X server must load to utilize the video card. A list of drivers can be found in /usr/share/hwdata/videodrivers, which is installed with the hwdata package.

VendorName — An optional parameter which specifies the vendor of the video card.

BoardName — An optional parameter which specifies the name of the video card.

VideoRam — An optional parameter which specifies the amount of RAM available on the video card, in kilobytes. This setting is only necessary for video cards the X server cannot probe to detect the amount of video RAM.

BusID — An entry which specifies the bus location of the video card. On systems with only one video card a BusID entry is optional and may not even be present in the default

/etc/X11/xorg.conf file. On systems with more than one video card, however, a BusID entry is required.

Screen — An optional entry which specifies which monitor connector or head on the video card the Device section configures. This option is only useful for video cards with multiple heads.

If multiple monitors are connected to different heads on the same video card, separate Device sections must exist and each of these sections must have a different Screen value.

Values for the Screen entry must be an integer. The first head on the video card has a value of

0. The value for each additional head increments this value by one.

Option "option-name" — An optional entry which specifies extra parameters for the section.

Replace <option-name> with a valid option listed for this section in the xorg.conf(5) man page.

One of the more common options is "dpms" (for Display Power Management Signaling, a VESA standard), which activates the Energy Star energy compliance setting for the monitor.

C.3.3.8. The

Screen

section

Each Screen section binds one video card (or video card head) to one monitor by referencing the

Device section and the Monitor section for each. While one Screen section is the minimum, additional instances may occur for each video card and monitor combination present on the machine.

The following example shows a typical Screen section:

Section "Screen"

Identifier "Screen0"

Device "Videocard0"

Monitor "Monitor0"

DefaultDepth 16

SubSection "Display"

Depth 24

Modes "1280x1024" "1280x960" "1152x864" "1024x768" "800x600" "640x480"

EndSubSection

780

APPENDIX C. THE X WINDOW SYSTEM

SubSection "Display"

Depth 16

Modes "1152x864" "1024x768" "800x600" "640x480"

EndSubSection

EndSection

The following entries are commonly used in the Screen section:

Identifier — Specifies a unique name for this Screen section. This is a required entry.

Device — Specifies the unique name of a Device section. This is a required entry.

Monitor — Specifies the unique name of a Monitor section. This is only required if a specific

Monitor section is defined in the xorg.conf file. Normally, monitors are detected automatically.

DefaultDepth — Specifies the default color depth in bits. In the previous example, 16 (which provides thousands of colors) is the default. Only one DefaultDepth entry is permitted, although this can be overridden with the Xorg command-line option -depth <n>, where <n> is any additional depth specified.

SubSection "Display" — Specifies the screen modes available at a particular color depth.

The Screen section can have multiple Display subsections, which are entirely optional since screen modes are detected automatically.

This subsection is normally used to override auto-detected modes.

Option "option-name" — An optional entry which specifies extra parameters for the section.

Replace <option-name> with a valid option listed for this section in the xorg.conf(5) man page.

C.3.3.9. The

DRI

section

The optional DRI section specifies parameters for the Direct Rendering Infrastructure (DRI). DRI is an interface which allows 3D software applications to take advantage of 3D hardware acceleration capabilities built into most modern video hardware. In addition, DRI can improve 2D performance via hardware acceleration, if supported by the video card driver.

This section is rarely used, as the DRI Group and Mode are automatically initialized to default values. If a different Group or Mode is needed, then adding this section to the xorg.conf file will override the default values.

The following example shows a typical DRI section:

Section "DRI"

Group 0

Mode 0666

EndSection

Since different video cards use DRI in different ways, do not add to this section without first referring to http://dri.freedesktop.org/wiki/ .

C.4. FONTS

781

782

Deployment Guide

Red Hat Enterprise Linux uses Fontconfig subsystem to manage and display fonts under the X Window

System. It simplifies font management and provides advanced display features, such as anti-aliasing.

This system is used automatically for applications programmed using the Qt 3 or GTK+ 2 graphical toolkits, or their newer versions.

The Fontconfig font subsystem allows applications to directly access fonts on the system and use the X

FreeType interface library (Xft) or other rendering mechanisms to render Fontconfig fonts with advanced features such as anti-aliasing. Graphical applications can use the Xft library with Fontconfig to draw text to the screen.

NOTE

Fontconfig uses the /etc/fonts/fonts.conf configuration file, which should not be edited by hand.

WARNING

Any system where the user expects to run remote X applications needs to have the

fonts group installed. This can be done by selecting the group in the installer, and also by running the yum groupinstall fonts command after installation.

C.4.1. Adding Fonts to Fontconfig

Adding new fonts to the Fontconfig subsystem is a straightforward process:

1. To add fonts for an individual user, copy the new fonts into the .fonts/ directory in the user's home directory.

To add fonts system-wide, copy the new fonts into the /usr/share/fonts/ directory. It is a good idea to create a new subdirectory, such as local/ or similar, to help distinguish between user-installed and default fonts.

2. Run the fc-cache command as root to update the font information cache: fc-cache <path-to-font-directory>

In this command, replace <path-to-font-directory> with the directory containing the new fonts

(either /usr/share/fonts/local/ or /home/<user>/.fonts/).

NOTE

Individual users may also install fonts interactively, by typing fonts:/// into the

Nautilus address bar, and dragging the new font files there.

C.5. RUNLEVELS AND X

APPENDIX C. THE X WINDOW SYSTEM

In most cases, the Red Hat Enterprise Linux installer configures a machine to boot into a graphical login environment, known as runlevel 5. It is possible, however, to boot into a text-only multi-user mode called runlevel 3 and begin an X session from there.

The following subsections review how X starts up in both runlevel 3 and runlevel 5. For more information

about runlevels, see Section 12.1, “Configuring the Default Runlevel”

.

C.5.1. Runlevel 3

When in runlevel 3, the best way to start an X session is to log in and type startx. The startx command is a front-end to the xinit command, which launches the X server (Xorg) and connects X client applications to it. Because the user is already logged into the system at runlevel 3, startx does not launch a display manager or authenticate users. See

Section C.5.2, “Runlevel 5” for more information

about display managers.

1. When the startx command is executed, it searches for the .xinitrc file in the user's home directory to define the desktop environment and possibly other X client applications to run. If no

.xinitrc file is present, it uses the system default /etc/X11/xinit/xinitrc file instead.

2. The default xinitrc script then searches for user-defined files and default system files, including .Xresources, .Xmodmap, and .Xkbmap in the user's home directory, and

Xresources, Xmodmap, and Xkbmap in the /etc/X11/ directory. The Xmodmap and Xkbmap files, if they exist, are used by the xmodmap utility to configure the keyboard. The Xresources file is read to assign specific preference values to applications.

3. After setting the above options, the xinitrc script executes all scripts located in the

/etc/X11/xinit/xinitrc.d/ directory. One important script in this directory is xinput.sh, which configures settings such as the default language.

4. The xinitrc script attempts to execute .Xclients in the user's home directory and turns to

/etc/X11/xinit/Xclients if it cannot be found. The purpose of the Xclients file is to start the desktop environment or, possibly, just a basic window manager. The .Xclients script in the user's home directory starts the user-specified desktop environment in the .Xclients-

default file. If .Xclients does not exist in the user's home directory, the standard

/etc/X11/xinit/Xclients script attempts to start another desktop environment, trying

GNOME first, then KDE, followed by twm.

When in runlevel 3, the user is returned to a text mode user session after ending an X session.

C.5.2. Runlevel 5

When the system boots into runlevel 5, a special X client application called a display manager is launched. A user must authenticate using the display manager before any desktop environment or window managers are launched.

Depending on the desktop environments installed on the system, three different display managers are available to handle user authentication.

GDM (GNOME Display Manager) — The default display manager for Red Hat Enterprise Linux.

GNOME allows the user to configure language settings, shutdown, restart or log in to the system.

KDM — KDE's display manager which allows the user to shutdown, restart or log in to the system.

783

Deployment Guide

xdm (X Window Display Manager) — A very basic display manager which only lets the user log in to the system.

When booting into runlevel 5, the /etc/X11/prefdm script determines the preferred display manager by referencing the /etc/sysconfig/desktop file. A list of options for this file is available in this file:

/usr/share/doc/initscripts-<version-number>/sysconfig.txt

where <version-number> is the version number of the initscripts package.

Each of the display managers reference the /etc/X11/xdm/Xsetup_0 file to set up the login screen.

Once the user logs into the system, the /etc/X11/xdm/GiveConsole script runs to assign ownership of the console to the user. Then, the /etc/X11/xdm/Xsession script runs to accomplish many of the tasks normally performed by the xinitrc script when starting X from runlevel 3, including setting system and user resources, as well as running the scripts in the /etc/X11/xinit/xinitrc.d/ directory.

Users can specify which desktop environment they want to use when they authenticate using the GNOME or KDE display managers by selecting it from the Sessions menu item accessed by selecting System

PreferencesMore PreferencesSessions. If the desktop environment is not specified in the display manager, the /etc/X11/xdm/Xsession script checks the .xsession and .Xclients files in the user's home directory to decide which desktop environment to load. As a last resort, the

/etc/X11/xinit/Xclients file is used to select a desktop environment or window manager to use in the same way as runlevel 3.

When the user finishes an X session on the default display (:0) and logs out, the

/etc/X11/xdm/TakeConsole script runs and reassigns ownership of the console to the root user. The original display manager, which continues running after the user logged in, takes control by spawning a new display manager. This restarts the X server, displays a new login window, and starts the entire process over again.

The user is returned to the display manager after logging out of X from runlevel 5.

For more information on how display managers control user authentication, see the

/usr/share/doc/gdm-<version-number>/README, where <version-number> is the version number for the gdm package installed, or the xdm man page.

C.6. ACCESSING GRAPHICAL APPLICATIONS REMOTELY

It is possible to access graphical applications on a remote server using these methods:

You can start a separate application directly from your SSH session in your local X server. For

that, you need to enable X11 forwarding. See Section 14.5.1, “X11 Forwarding”

for details.

You can run the whole X session over network using VNC. This method can be useful, especially when you are using a workstation without X server, for example, a non-Linux system.

See

Chapter 15, TigerVNC for details.

C.7. ADDITIONAL RESOURCES

There is a large amount of detailed information available about the X server, the clients that connect to it, and the assorted desktop environments and window managers.

784

APPENDIX C. THE X WINDOW SYSTEM

C.7.1. Installed Documentation

/usr/share/X11/doc/ — contains detailed documentation on the X Window System architecture, as well as how to get additional information about the Xorg project as a new user.

/usr/share/doc/gdm-<version-number>/README — contains information on how display managers control user authentication.

man xorg.conf — Contains information about the xorg.conf configuration files, including the meaning and syntax for the different sections within the files.

man Xorg — Describes the Xorg display server.

C.7.2. Useful Websites

http://www.X.org/ — Home page of the X.Org Foundation, which produces major releases of the

X Window System bundled with Red Hat Enterprise Linux to control the necessary hardware and provide a GUI environment.

http://dri.sourceforge.net/ — Home page of the DRI (Direct Rendering Infrastructure) project. The

DRI is the core hardware 3D acceleration component of X.

http://www.gnome.org/ — Home of the GNOME project.

http://www.kde.org/ — Home of the KDE desktop environment.

785

Deployment Guide

APPENDIX D. THE SYSCONFIG DIRECTORY

This appendix outlines some of the files and directories found in the /etc/sysconfig/ directory, their function, and their contents. The information in this appendix is not intended to be complete, as many of these files have a variety of options that are only used in very specific or rare circumstances.

NOTE

The actual content of your /etc/sysconfig/ directory depends on the programs you have installed on your machine. To find the name of the package the configuration file belongs to, type the following at a shell prompt:

~]$ yum provides /etc/sysconfig/filename

See

Section 8.2.4, “Installing Packages”

for more information on how to install new packages in Red Hat Enterprise Linux.

D.1. FILES IN THE /ETC/SYSCONFIG/ DIRECTORY

The following sections offer descriptions of files normally found in the /etc/sysconfig/ directory.

D.1.1. /etc/sysconfig/arpwatch

The /etc/sysconfig/arpwatch file is used to pass arguments to the arpwatch daemon at boot time. By default, it contains the following option:

OPTIONS=value

Additional options to be passed to the arpwatch daemon. For example:

OPTIONS="-u arpwatch -e root -s 'root (Arpwatch)'"

D.1.2. /etc/sysconfig/authconfig

The /etc/sysconfig/authconfig file sets the authorization to be used on the host. By default, it contains the following options:

USEMKHOMEDIR=boolean

A Boolean to enable (yes) or disable (no) creating a home directory for a user on the first login. For example:

USEMKHOMEDIR=no

USEPAMACCESS=boolean

A Boolean to enable (yes) or disable (no) the PAM authentication. For example:

USEPAMACCESS=no

USESSSDAUTH=boolean

786

APPENDIX D. THE SYSCONFIG DIRECTORY

A Boolean to enable (yes) or disable (no) the SSSD authentication. For example:

USESSSDAUTH=no

USESHADOW=boolean

A Boolean to enable (yes) or disable (no) shadow passwords. For example:

USESHADOW=yes

USEWINBIND=boolean

A Boolean to enable (yes) or disable (no) using Winbind for user account configuration. For example:

USEWINBIND=no

USEDB=boolean

A Boolean to enable (yes) or disable (no) the FAS authentication. For example:

USEDB=no

USEFPRINTD=boolean

A Boolean to enable (yes) or disable (no) the fingerprint authentication. For example:

USEFPRINTD=yes

FORCESMARTCARD=boolean

A Boolean to enable (yes) or disable (no) enforcing the smart card authentication. For example:

FORCESMARTCARD=no

PASSWDALGORITHM=value

The password algorithm. The value can be bigcrypt, descrypt, md5, sha256, or sha512. For example:

PASSWDALGORITHM=sha512

USELDAPAUTH=boolean

A Boolean to enable (yes) or disable (no) the LDAP authentication. For example:

USELDAPAUTH=no

USELOCAUTHORIZE=boolean

A Boolean to enable (yes) or disable (no) the local authorization for local users. For example:

USELOCAUTHORIZE=yes

787

Deployment Guide

USECRACKLIB=boolean

A Boolean to enable (yes) or disable (no) using the CrackLib. For example:

USECRACKLIB=yes

USEWINBINDAUTH=boolean

A Boolean to enable (yes) or disable (no) the Winbind authentication. For example:

USEWINBINDAUTH=no

USESMARTCARD=boolean

A Boolean to enable (yes) or disable (no) the smart card authentication. For example:

USESMARTCARD=no

USELDAP=boolean

A Boolean to enable (yes) or disable (no) using LDAP for user account configuration. For example:

USELDAP=no

USENIS=boolean

A Boolean to enable (yes) or disable (no) using NIS for user account configuration. For example:

USENIS=no

USEKERBEROS=boolean

A Boolean to enable (yes) or disable (no) the Kerberos authentication. For example:

USEKERBEROS=no

USESYSNETAUTH=boolean

A Boolean to enable (yes) or disable (no) authenticating system accounts with network services. For example:

USESYSNETAUTH=no

USESMBAUTH=boolean

A Boolean to enable (yes) or disable (no) the SMB authentication. For example:

USESMBAUTH=no

USESSSD=boolean

A Boolean to enable (yes) or disable (no) using SSSD for obtaining user information. For example:

USESSSD=no

788

APPENDIX D. THE SYSCONFIG DIRECTORY

USEHESIOD=boolean

A Boolean to enable (yes) or disable (no) using the Hesoid name service. For example:

USEHESIOD=no

See

Chapter 13, Configuring Authentication for more information on this topic.

D.1.3. /etc/sysconfig/autofs

The /etc/sysconfig/autofs file defines custom options for the automatic mounting of devices. This file controls the operation of the automount daemons, which automatically mount file systems when you use them and unmount them after a period of inactivity. File systems can include network file systems,

CD-ROM drives, diskettes, and other media.

By default, it contains the following options:

MASTER_MAP_NAME=value

The default name for the master map. For example:

MASTER_MAP_NAME="auto.master"

TIMEOUT=value

The default mount timeout. For example:

TIMEOUT=300

NEGATIVE_TIMEOUT=value

The default negative timeout for unsuccessful mount attempts. For example:

NEGATIVE_TIMEOUT=60

MOUNT_WAIT=value

The time to wait for a response from mount. For example:

MOUNT_WAIT=-1

UMOUNT_WAIT=value

The time to wait for a response from umount. For example:

UMOUNT_WAIT=12

BROWSE_MODE=boolean

A Boolean to enable (yes) or disable (no) browsing the maps. For example:

BROWSE_MODE="no"

MOUNT_NFS_DEFAULT_PROTOCOL=value

789

Deployment Guide

The default protocol to be used by mount.nfs. For example:

MOUNT_NFS_DEFAULT_PROTOCOL=4

APPEND_OPTIONS=boolean

A Boolean to enable (yes) or disable (no) appending the global options instead of replacing them.

For example:

APPEND_OPTIONS="yes"

LOGGING=value

The default logging level. The value has to be either none, verbose, or debug. For example:

LOGGING="none"

LDAP_URI=value

A space-separated list of server URIs in the form of protocol://server. For example:

LDAP_URI="ldaps://ldap.example.com/"

LDAP_TIMEOUT=value

The synchronous API calls timeout. For example:

LDAP_TIMEOUT=-1

LDAP_NETWORK_TIMEOUT=value

The network response timeout. For example:

LDAP_NETWORK_TIMEOUT=8

SEARCH_BASE=value

The base Distinguished Name (DN) for the map search. For example:

SEARCH_BASE=""

AUTH_CONF_FILE=value

The default location of the SASL authentication configuration file. For example:

AUTH_CONF_FILE="/etc/autofs_ldap_auth.conf"

MAP_HASH_TABLE_SIZE=value

The hash table size for the map cache. For example:

MAP_HASH_TABLE_SIZE=1024

790

APPENDIX D. THE SYSCONFIG DIRECTORY

USE_MISC_DEVICE=boolean

A Boolean to enable (yes) or disable (no) using the autofs miscellaneous device. For example:

USE_MISC_DEVICE="yes"

OPTIONS=value

Additional options to be passed to the LDAP daemon. For example:

OPTIONS=""

D.1.4. /etc/sysconfig/clock

The /etc/sysconfig/clock file controls the interpretation of values read from the system hardware clock. It is used by the Date/Time Properties tool, and should not be edited by hand. By default, it contains the following option:

ZONE=value

The time zone file under /usr/share/zoneinfo that /etc/localtime is a copy of. For example:

ZONE="Europe/Prague"

See

Section 2.1, “Date/Time Properties Tool”

for more information on the Date/Time Properties tool and its usage.

D.1.5. /etc/sysconfig/dhcpd

The /etc/sysconfig/dhcpd file is used to pass arguments to the dhcpd daemon at boot time. By default, it contains the following options:

DHCPDARGS=value

Additional options to be passed to the dhcpd daemon. For example:

DHCPDARGS=

See

Chapter 16, DHCP Servers for more information on DHCP and its usage.

D.1.6. /etc/sysconfig/firstboot

The /etc/sysconfig/firstboot file defines whether to run the firstboot utility. By default, it contains the following option:

RUN_FIRSTBOOT=boolean

A Boolean to enable (YES) or disable (NO) running the firstboot program. For example:

RUN_FIRSTBOOT=NO

791

Deployment Guide

The first time the system boots, the init program calls the /etc/rc.d/init.d/firstboot script, which looks for the /etc/sysconfig/firstboot file. If this file does not contain the

RUN_FIRSTBOOT=NO option, the firstboot program is run, guiding a user through the initial configuration of the system.

NOTE

To start the firstboot program the next time the system boots, change the value of

RUN_FIRSTBOOT option to YES, and type the following at a shell prompt:

~]# chkconfig firstboot on

D.1.7. /etc/sysconfig/i18n

The /etc/sysconfig/i18n configuration file defines the default language, any supported languages, and the default system font. By default, it contains the following options:

LANG=value

The default language. For example:

LANG="en_US.UTF-8"

SUPPORTED=value

A colon-separated list of supported languages. For example:

SUPPORTED="en_US.UTF-8:en_US:en"

SYSFONT=value

The default system font. For example:

SYSFONT="latarcyrheb-sun16"

D.1.8. /etc/sysconfig/init

The /etc/sysconfig/init file controls how the system appears and functions during the boot process. By default, it contains the following options:

BOOTUP=value

The bootup style. The value has to be either color (the standard color boot display), verbose (an old style display which provides more information), or anything else for the new style display, but without ANSI formatting. For example:

BOOTUP=color

RES_COL=value

The number of the column in which the status labels start. For example:

RES_COL=60

792

APPENDIX D. THE SYSCONFIG DIRECTORY

MOVE_TO_COL=value

The terminal sequence to move the cursor to the column specified in RES_COL (see above). For example:

MOVE_TO_COL="echo -en \\033[${RES_COL}G"

SETCOLOR_SUCCESS=value

The terminal sequence to set the success color. For example:

SETCOLOR_SUCCESS="echo -en \\033[0;32m"

SETCOLOR_FAILURE=value

The terminal sequence to set the failure color. For example:

SETCOLOR_FAILURE="echo -en \\033[0;31m"

SETCOLOR_WARNING=value

The terminal sequence to set the warning color. For example:

SETCOLOR_WARNING="echo -en \\033[0;33m"

SETCOLOR_NORMAL=value

The terminal sequence to set the default color. For example:

SETCOLOR_NORMAL="echo -en \\033[0;39m"

LOGLEVEL=value

The initial console logging level. The value has to be in the range from 1 (kernel panics only) to 8

(everything, including the debugging information). For example:

LOGLEVEL=3

PROMPT=boolean

A Boolean to enable (yes) or disable (no) the hotkey interactive startup. For example:

PROMPT=yes

AUTOSWAP=boolean

A Boolean to enable (yes) or disable (no) probing for devices with swap signatures. For example:

AUTOSWAP=no

ACTIVE_CONSOLES=value

The list of active consoles. For example:

793

Deployment Guide

ACTIVE_CONSOLES=/dev/tty[1-6]

SINGLE=value

The single-user mode type. The value has to be either /sbin/sulogin (a user will be prompted for a password to log in), or /sbin/sushell (the user will be logged in directly). For example:

SINGLE=/sbin/sushell

D.1.9. /etc/sysconfig/ip6tables-config

The /etc/sysconfig/ip6tables-config file stores information used by the kernel to set up IPv6 packet filtering at boot time or whenever the ip6tables service is started. Note that you should not modify it unless you are familiar with ip6tables rules. By default, it contains the following options:

IP6TABLES_MODULES=value

A space-separated list of helpers to be loaded after the firewall rules are applied. For example:

IP6TABLES_MODULES="ip_nat_ftp ip_nat_irc"

IP6TABLES_MODULES_UNLOAD=boolean

A Boolean to enable (yes) or disable (no) module unloading when the firewall is stopped or restarted.

For example:

IP6TABLES_MODULES_UNLOAD="yes"

IP6TABLES_SAVE_ON_STOP=boolean

A Boolean to enable (yes) or disable (no) saving the current firewall rules when the firewall is stopped. For example:

IP6TABLES_SAVE_ON_STOP="no"

IP6TABLES_SAVE_ON_RESTART=boolean

A Boolean to enable (yes) or disable (no) saving the current firewall rules when the firewall is restarted. For example:

IP6TABLES_SAVE_ON_RESTART="no"

IP6TABLES_SAVE_COUNTER=boolean

A Boolean to enable (yes) or disable (no) saving the rule and chain counters. For example:

IP6TABLES_SAVE_COUNTER="no"

IP6TABLES_STATUS_NUMERIC=boolean

A Boolean to enable (yes) or disable (no) printing IP addresses and port numbers in a numeric format in the status output. For example:

794

APPENDIX D. THE SYSCONFIG DIRECTORY

IP6TABLES_STATUS_NUMERIC="yes"

IP6TABLES_STATUS_VERBOSE=boolean

A Boolean to enable (yes) or disable (no) printing information about the number of packets and bytes in the status output. For example:

IP6TABLES_STATUS_VERBOSE="no"

IP6TABLES_STATUS_LINENUMBERS=boolean

A Boolean to enable (yes) or disable (no) printing line numbers in the status output. For example:

IP6TABLES_STATUS_LINENUMBERS="yes"

NOTE

You can create the rules manually using the ip6tables command. Once created, type the following at a shell prompt:

~]# service ip6tables save

This will add the rules to /etc/sysconfig/ip6tables. Once this file exists, any firewall rules saved in it persist through a system reboot or a service restart.

D.1.10. /etc/sysconfig/keyboard

The /etc/sysconfig/keyboard file controls the behavior of the keyboard. By default, it contains the following options:

KEYTABLE=value

The name of a keytable file. The files that can be used as keytables start in the

/lib/kbd/keymaps/i386/ directory, and branch into different keyboard layouts from there, all labeled value.kmap.gz. The first file name that matches the KEYTABLE setting is used. For example:

KEYTABLE="us"

MODEL=value

The keyboard model. For example:

MODEL="pc105+inet"

LAYOUT=value

The keyboard layout. For example:

LAYOUT="us"

KEYBOARDTYPE=value

795

Deployment Guide

The keyboard type. Allowed values are pc (a PS/2 keyboard), or sun (a Sun keyboard). For example:

KEYBOARDTYPE="pc"

D.1.11. /etc/sysconfig/ldap

The /etc/sysconfig/ldap file holds the basic configuration for the LDAP server. By default, it contains the following options:

SLAPD_OPTIONS=value

Additional options to be passed to the slapd daemon. For example:

SLAPD_OPTIONS="-4"

SLURPD_OPTIONS=value

Additional options to be passed to the slurpd daemon. For example:

SLURPD_OPTIONS=""

SLAPD_LDAP=boolean

A Boolean to enable (yes) or disable (no) using the LDAP over TCP (that is, ldap:///). For example:

SLAPD_LDAP="yes"

SLAPD_LDAPI=boolean

A Boolean to enable (yes) or disable (no) using the LDAP over IPC (that is, ldapi:///). For example:

SLAPD_LDAPI="no"

SLAPD_LDAPS=boolean

A Boolean to enable (yes) or disable (no) using the LDAP over TLS (that is, ldaps:///). For example:

SLAPD_LDAPS="no"

SLAPD_URLS=value

A space-separated list of URLs. For example:

SLAPD_URLS="ldapi:///var/lib/ldap_root/ldapi ldapi:/// ldaps:///"

SLAPD_SHUTDOWN_TIMEOUT=value

The time to wait for slapd to shut down. For example:

796

APPENDIX D. THE SYSCONFIG DIRECTORY

SLAPD_SHUTDOWN_TIMEOUT=3

SLAPD_ULIMIT_SETTINGS=value

The parameters to be passed to ulimit before the slapd daemon is started. For example:

SLAPD_ULIMIT_SETTINGS=""

See

Section 20.1, “OpenLDAP” for more information on LDAP and its configuration.

D.1.12. /etc/sysconfig/named

The /etc/sysconfig/named file is used to pass arguments to the named daemon at boot time. By default, it contains the following options:

ROOTDIR=value

The chroot environment under which the named daemon runs. The value has to be a full directory path. For example:

ROOTDIR="/var/named/chroot"

Note that the chroot environment has to be configured first (type info chroot at a shell prompt for more information).

OPTIONS=value

Additional options to be passed to named. For example:

OPTIONS="-6"

Note that you should not use the -t option. Instead, use ROOTDIR as described above.

KEYTAB_FILE=value

The keytab file name. For example:

KEYTAB_FILE="/etc/named.keytab"

See

Section 17.2, “BIND”

for more information on the BIND DNS server and its configuration.

D.1.13. /etc/sysconfig/network

The /etc/sysconfig/network file is used to specify information about the desired network configuration. By default, it contains the following options:

NETWORKING=boolean

A Boolean to enable (yes) or disable (no) networking. For example:

NETWORKING=yes

797

Deployment Guide

HOSTNAME=value

The host name of the machine. For example:

HOSTNAME=penguin.example.com

The file may also contain some of the following options:

GATEWAY=value

The IP address of the network's gateway. For example:

GATEWAY=192.168.1.1

This is used as the default gateway when there is no GATEWAY directive in an interface's ifcfg file.

NM_BOND_VLAN_ENABLED=boolean

A Boolean to allow (yes) or disallow (no) the NetworkManager application from detecting and managing bonding, bridging, and VLAN interfaces. For example:

NM_BOND_VLAN_ENABLED=yes

The NM_CONTROLLED directive is dependent on this option.

NOTE

If you want to completely disable IPv6, you should add these lines to /etc/sysctl.conf: net.ipv6.conf.all.disable_ipv6=1 net.ipv6.conf.default.disable_ipv6=1

In addition, adding ipv6.disable=1 to the kernel command line will disable the kernel module net-pf-10 which implements IPv6.

WARNING

Do not use custom init scripts to configure network settings. When performing a post-boot network service restart, custom init scripts configuring network settings that are run outside of the network init script lead to unpredictable results.

D.1.14. /etc/sysconfig/ntpd

The /etc/sysconfig/ntpd file is used to pass arguments to the ntpd daemon at boot time. By default, it contains the following option:

798

APPENDIX D. THE SYSCONFIG DIRECTORY

OPTIONS=value

Additional options to be passed to ntpd. For example:

OPTIONS="-u ntp:ntp -p /var/run/ntpd.pid -g"

See

Section 2.1.2, “Network Time Protocol Properties” or

Section 2.2.2, “Network Time Protocol Setup”

for more information on how to configure the ntpd daemon.

D.1.15. /etc/sysconfig/quagga

The /etc/sysconfig/quagga file holds the basic configuration for Quagga daemons. By default, it contains the following options:

QCONFDIR=value

The directory with the configuration files for Quagga daemons. For example:

QCONFDIR="/etc/quagga"

BGPD_OPTS=value

Additional options to be passed to the bgpd daemon. For example:

BGPD_OPTS="-A 127.0.0.1 -f ${QCONFDIR}/bgpd.conf"

OSPF6D_OPTS=value

Additional options to be passed to the ospf6d daemon. For example:

OSPF6D_OPTS="-A ::1 -f ${QCONFDIR}/ospf6d.conf"

OSPFD_OPTS=value

Additional options to be passed to the ospfd daemon. For example:

OSPFD_OPTS="-A 127.0.0.1 -f ${QCONFDIR}/ospfd.conf"

RIPD_OPTS=value

Additional options to be passed to the ripd daemon. For example:

RIPD_OPTS="-A 127.0.0.1 -f ${QCONFDIR}/ripd.conf"

RIPNGD_OPTS=value

Additional options to be passed to the ripngd daemon. For example:

RIPNGD_OPTS="-A ::1 -f ${QCONFDIR}/ripngd.conf"

ZEBRA_OPTS=value

Additional options to be passed to the zebra daemon. For example:

799

Deployment Guide

ZEBRA_OPTS="-A 127.0.0.1 -f ${QCONFDIR}/zebra.conf"

ISISD_OPTS=value

Additional options to be passed to the isisd daemon. For example:

ISISD_OPTS="-A ::1 -f ${QCONFDIR}/isisd.conf"

WATCH_OPTS=value

Additional options to be passed to the watchquagga daemon. For example:

WATCH_OPTS="-Az -b_ -r/sbin/service_%s_restart -s/sbin/service_%s_start

-k/sbin/service_%s_stop"

WATCH_DAEMONS=value

A space separated list of monitored daemons. For example:

WATCH_DAEMONS="zebra bgpd ospfd ospf6d ripd ripngd"

D.1.16. /etc/sysconfig/radvd

The /etc/sysconfig/radvd file is used to pass arguments to the radvd daemon at boot time. By default, it contains the following option:

OPTIONS=value

Additional options to be passed to the radvd daemon. For example:

OPTIONS="-u radvd"

D.1.17. /etc/sysconfig/samba

The /etc/sysconfig/samba file is used to pass arguments to the Samba daemons at boot time. By default, it contains the following options:

SMBDOPTIONS=value

Additional options to be passed to smbd. For example:

SMBDOPTIONS="-D"

NMBDOPTIONS=value

Additional options to be passed to nmbd. For example:

NMBDOPTIONS="-D"

WINBINDOPTIONS=value

Additional options to be passed to winbindd. For example:

800

APPENDIX D. THE SYSCONFIG DIRECTORY

WINBINDOPTIONS=""

See

Section 21.1, “Samba” for more information on Samba and its configuration.

D.1.18. /etc/sysconfig/saslauthd

The /etc/sysconfig/saslauthd file is used to control which arguments are passed to saslauthd, the SASL authentication server. By default, it contains the following options:

SOCKETDIR=value

The directory for the saslauthd's listening socket. For example:

SOCKETDIR=/var/run/saslauthd

MECH=value

The authentication mechanism to use to verify user passwords. For example:

MECH=pam

DAEMONOPTS=value

Options to be passed to the daemon() function that is used by the

/etc/rc.d/init.d/saslauthd init script to start the saslauthd service. For example:

DAEMONOPTS="--user saslauth"

FLAGS=value

Additional options to be passed to the saslauthd service. For example:

FLAGS=

D.1.19. /etc/sysconfig/selinux

The /etc/sysconfig/selinux file contains the basic configuration options for SELinux. It is a symbolic link to /etc/selinux/config, and by default, it contains the following options:

SELINUX=value

The security policy. The value can be either enforcing (the security policy is always enforced),

permissive (instead of enforcing the policy, appropriate warnings are displayed), or disabled (no policy is used). For example:

SELINUX=enforcing

SELINUXTYPE=value

The protection type. The value can be either targeted (the targeted processes are protected), or

mls (the Multi Level Security protection). For example:

SELINUXTYPE=targeted

801

Deployment Guide

D.1.20. /etc/sysconfig/sendmail

The /etc/sysconfig/sendmail is used to set the default values for the Sendmail application. By default, it contains the following values:

DAEMON=boolean

A Boolean to enable (yes) or disable (no) running sendmail as a daemon. For example:

DAEMON=yes

QUEUE=value

The interval at which the messages are to be processed. For example:

QUEUE=1h

See

Section 19.3.2, “Sendmail” for more information on Sendmail and its configuration.

D.1.21. /etc/sysconfig/spamassassin

The /etc/sysconfig/spamassassin file is used to pass arguments to the spamd daemon (a daemonized version of Spamassassin) at boot time. By default, it contains the following option:

SPAMDOPTIONS=value

Additional options to be passed to the spamd daemon. For example:

SPAMDOPTIONS="-d -c -m5 -H"

See

Section 19.4.2.6, “Spam Filters” for more information on Spamassassin and its configuration.

D.1.22. /etc/sysconfig/squid

The /etc/sysconfig/squid file is used to pass arguments to the squid daemon at boot time. By default, it contains the following options:

SQUID_OPTS=value

Additional options to be passed to the squid daemon. For example:

SQUID_OPTS=""

SQUID_SHUTDOWN_TIMEOUT=value

The time to wait for squid daemon to shut down. For example:

SQUID_SHUTDOWN_TIMEOUT=100

SQUID_CONF=value

802

APPENDIX D. THE SYSCONFIG DIRECTORY

The default configuration file. For example:

SQUID_CONF="/etc/squid/squid.conf"

D.1.23. /etc/sysconfig/system-config-users

The /etc/sysconfig/system-config-users file is the configuration file for the User Manager utility, and should not be edited by hand. By default, it contains the following options:

FILTER=boolean

A Boolean to enable (true) or disable (false) filtering of system users. For example:

FILTER=true

ASSIGN_HIGHEST_UID=boolean

A Boolean to enable (true) or disable (false) assigning the highest available UID to newly added users. For example:

ASSIGN_HIGHEST_UID=true

ASSIGN_HIGHEST_GID=boolean

A Boolean to enable (true) or disable (false) assigning the highest available GID to newly added groups. For example:

ASSIGN_HIGHEST_GID=true

PREFER_SAME_UID_GID=boolean

A Boolean to enable (true) or disable (false) using the same UID and GID for newly added users when possible. For example:

PREFER_SAME_UID_GID=true

See

Section 3.2, “Managing Users via the User Manager Application”

for more information on User

Manager and its usage.

D.1.24. /etc/sysconfig/vncservers

The /etc/sysconfig/vncservers file configures the way the Virtual Network Computing (VNC) server starts up. By default, it contains the following options:

VNCSERVERS=value

A list of space separated display:username pairs. For example:

VNCSERVERS="2:myusername"

VNCSERVERARGS[display]=value

Additional arguments to be passed to the VNC server running on the specified display. For example:

803

Deployment Guide

VNCSERVERARGS[2]="-geometry 800x600 -nolisten tcp -localhost"

D.1.25. /etc/sysconfig/xinetd

The /etc/sysconfig/xinetd file is used to pass arguments to the xinetd daemon at boot time. By default, it contains the following options:

EXTRAOPTIONS=value

Additional options to be passed to xinetd. For example:

EXTRAOPTIONS=""

XINETD_LANG=value

The locale information to be passed to every service started by xinetd. Note that to remove locale information from the xinetd environment, you can use an empty string ("") or none. For example:

XINETD_LANG="en_US"

See

Chapter 12, Services and Daemons for more information on how to configure the xinetd services.

D.2. DIRECTORIES IN THE /ETC/SYSCONFIG/ DIRECTORY

The following directories are normally found in /etc/sysconfig/.

/etc/sysconfig/cbq/

This directory contains the configuration files needed to do Class Based Queuing for bandwidth management on network interfaces. CBQ divides user traffic into a hierarchy of classes based on any combination of IP addresses, protocols, and application types.

/etc/sysconfig/networking/

This directory is used by the now deprecated Network Administration Tool (system-config-

network), and its contents should not be edited manually. For more information about configuring

network interfaces using graphical configuration tools, see Chapter 10, NetworkManager

.

/etc/sysconfig/network-scripts/

This directory contains the following network-related configuration files:

Network configuration files for each configured network interface, such as ifcfg-eth0 for the eth0 Ethernet interface.

Scripts used to bring network interfaces up and down, such as ifup and ifdown.

Scripts used to bring ISDN interfaces up and down, such as ifup-isdn and ifdown-isdn.

Various shared network function scripts which should not be edited directly.

For more information on the /etc/sysconfig/network-scripts/ directory, see Chapter 11,

Network Interfaces .

804

APPENDIX D. THE SYSCONFIG DIRECTORY

/etc/sysconfig/rhn/

This directory contains the configuration files and GPG keys for Red Hat Network. No files in this directory should be edited by hand. For more information on Red Hat Network, see the Red Hat

Network website online at https://rhn.redhat.com/ .

D.3. ADDITIONAL RESOURCES

This chapter is only intended as an introduction to the files in the /etc/sysconfig/ directory. The following source contains more comprehensive information.

D.3.1. Installed Documentation

/usr/share/doc/initscripts-version/sysconfig.txt

A more authoritative listing of the files found in the /etc/sysconfig/ directory and the configuration options available for them.

805

Deployment Guide

APPENDIX E. THE PROC FILE SYSTEM

The Linux kernel has two primary functions: to control access to physical devices on the computer and to schedule when and how processes interact with these devices. The /proc/ directory (also called the

proc file system) contains a hierarchy of special files which represent the current state of the kernel, allowing applications and users to peer into the kernel's view of the system.

The /proc/ directory contains a wealth of information detailing system hardware and any running processes. In addition, some of the files within /proc/ can be manipulated by users and applications to communicate configuration changes to the kernel.

NOTE

Later versions of the 2.6 kernel have made the /proc/ide/ and /proc/pci/ directories obsolete. The /proc/ide/ file system is now superseded by files in sysfs; to retrieve information on PCI devices, use lspci instead. For more information on

sysfs or lspci, see their respective man pages.

E.1. A VIRTUAL FILE SYSTEM

Linux systems store all data as files. Most users are familiar with the two primary types of files: text and binary. But the /proc/ directory contains another type of file called a virtual file. As such, /proc/ is often referred to as a virtual file system.

Virtual files have unique qualities. Most of them are listed as zero bytes in size, but can still contain a large amount of information when viewed. In addition, most of the time and date stamps on virtual files reflect the current time and date, indicative of the fact they are constantly updated.

Virtual files such as /proc/interrupts, /proc/meminfo, /proc/mounts, and

/proc/partitions provide an up-to-the-moment glimpse of the system's hardware. Others, like the

/proc/filesystems file and the /proc/sys/ directory provide system configuration information and interfaces.

For organizational purposes, files containing information on a similar topic are grouped into virtual directories and sub-directories. Process directories contain information about each running process on the system.

E.1.1. Viewing Virtual Files

Most files within /proc/ files operate similarly to text files, storing useful system and hardware data in human-readable text format. As such, you can use cat, more, or less to view them. For example, to display information about the system's CPU, run cat /proc/cpuinfo. This will return output similar to the following: processor : 0 vendor_id : AuthenticAMD cpu family : 5 model : 9 model name : AMD-K6(tm) 3D+

Processor stepping : 1 cpu

MHz : 400.919

cache size : 256 KB fdiv_bug : no

806

APPENDIX E. THE PROC FILE SYSTEM hlt_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 1 wp : yes flags : fpu vme de pse tsc msr mce cx8 pge mmx syscall 3dnow k6_mtrr bogomips : 799.53

Some files in /proc/ contain information that is not human-readable. To retrieve information from such files, use tools such as lspci, apm, free, and top.

NOTE

Some of the virtual files in the /proc/ directory are readable only by the root user.

E.1.2. Changing Virtual Files

As a general rule, most virtual files within the /proc/ directory are read-only. However, some can be used to adjust settings in the kernel. This is especially true for files in the /proc/sys/ subdirectory.

To change the value of a virtual file, use the following command: echo value > /proc/file

For example, to change the host name on the fly, run: echo www.example.com > /proc/sys/kernel/hostname

Other files act as binary or Boolean switches. Typing cat /proc/sys/net/ipv4/ip_forward returns either a 0 (off or false) or a 1 (on or true). A 0 indicates that the kernel is not forwarding network packets. To turn packet forwarding on, run echo 1 > /proc/sys/net/ipv4/ip_forward.

NOTE

Another command used to alter settings in the /proc/sys/ subdirectory is

/sbin/sysctl. For more information on this command, see Section E.4, “Using the sysctl Command”

For a listing of some of the kernel configuration files available in the /proc/sys/ subdirectory, see

Section E.3.9, “/proc/sys/” .

E.2. TOP-LEVEL FILES WITHIN THE

PROC

FILE SYSTEM

Below is a list of some of the more useful virtual files in the top-level of the /proc/ directory.

NOTE

In most cases, the content of the files listed in this section are not the same as those installed on your machine. This is because much of the information is specific to the hardware on which Red Hat Enterprise Linux is running for this documentation effort.

807

Deployment Guide

E.2.1. /proc/buddyinfo

The /proc/buddyinfo file is used primarily for diagnosing memory fragmentation issues. The output depends on the memory layout used, which is architecture specific. The following is an example from a

32-bit system:

Node 0, zone DMA 90 6 2 1 1 ...

Node 0, zone Normal 1650 310 5 0 0 ...

Node 0, zone HighMem 2 0 0 1 1 ...

Using the buddy algorithm, each column represents the number of memory pages of a certain order, a certain size, that are available at any given time. In the example above, for zone DMA, there are 90 of

2 0 *PAGE_SIZE bytes large chunks of memory. Similarly, there are 6 of 2 1 *PAGE_SIZE chunks and 2 of

2 2 *PAGE_SIZE chunks of memory available.

The DMA row references the first 16 MB of memory on the system, the HighMem row references all memory greater than 896 MB on the system, and the Normal row references the memory in between.

On a 64-bit system, the output might look as follows:

Node 0, zone DMA 0 3 1 2 4 3 1 2 3

3 1

Node 0, zone DMA32 295 25850 7065 1645 835 220 78 6 0

1 0

Node 0, zone Normal 3824 3359 736 159 31 3 1 1 1

1 0

The DMA row references the first 16 MB of memory on the system, the DMA32 row references all memory allocated for devices that cannot address memory greater than 4 GB, and the Normal row references all memory above the DMA32 allocation, which includes all memory above 4 GB on the system.

E.2.2. /proc/cmdline

This file shows the parameters passed to the kernel at the time it is started. A sample /proc/cmdline file looks like the following: ro root=/dev/VolGroup00/LogVol00 rhgb quiet 3

This tells us that the kernel is mounted read-only (signified by (ro)), located on the first logical volume

(LogVol00) of the first volume group (/dev/VolGroup00). LogVol00 is the equivalent of a disk partition in a non-LVM system (Logical Volume Management), just as /dev/VolGroup00 is similar in concept to /dev/hda1, but much more extensible.

For more information on LVM used in Red Hat Enterprise Linux, see http://www.tldp.org/HOWTO/LVM-

HOWTO/index.html

.

Next, rhgb signals that the rhgb package has been installed, and graphical booting is supported, assuming /etc/inittab shows a default runlevel set to id:5:initdefault:.

Finally, quiet indicates all verbose kernel messages are suppressed at boot time.

E.2.3. /proc/cpuinfo

808

APPENDIX E. THE PROC FILE SYSTEM

This virtual file identifies the type of processor used by your system. The following is an example of the output typical of /proc/cpuinfo: processor : 0 vendor_id : GenuineIntel cpu family : 15 model : 2 model name : Intel(R) Xeon(TM) CPU 2.40GHz

stepping : 7 cpu

MHz : 2392.371

cache size : 512 KB physical id : 0 siblings : 2 runqueue : 0 fdiv_bug : no hlt_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 2 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm bogomips : 4771.02

processor — Provides each processor with an identifying number. On systems that have one processor, only a 0 is present.

cpu family — Authoritatively identifies the type of processor in the system. For an Intel-based system, place the number in front of "86" to determine the value. This is particularly helpful for those attempting to identify the architecture of an older system such as a 586, 486, or 386.

Because some RPM packages are compiled for each of these particular architectures, this value also helps users determine which packages to install.

model name — Displays the common name of the processor, including its project name.

cpu MHz — Shows the precise speed in megahertz for the processor to the thousandths decimal place.

cache size — Displays the amount of level 2 memory cache available to the processor.

siblings — Displays the total number of sibling CPUs on the same physical CPU for architectures which use hyper-threading.

flags — Defines a number of different qualities about the processor, such as the presence of a floating point unit (FPU) and the ability to process MMX instructions.

E.2.4. /proc/crypto

This file lists all installed cryptographic ciphers used by the Linux kernel, including additional details for each. A sample /proc/crypto file looks like the following: name : sha1 module : kernel

809

Deployment Guide type : digest blocksize : 64 digestsize : 20 name : md5 module : md5 type : digest blocksize : 64 digestsize : 16

E.2.5. /proc/devices

This file displays the various character and block devices currently configured (not including devices whose modules are not loaded). Below is a sample output from this file:

Character devices:

1 mem

4 /dev/vc/0

4 tty

4 ttyS

5 /dev/tty

5 /dev/console

5 /dev/ptmx

7 vcs

10 misc

13 input

29 fb

36 netlink

128 ptm

136 pts

180 usb

Block devices:

1 ramdisk

3 ide0

9 md

22 ide1

253 device-mapper

254 mdp

The output from /proc/devices includes the major number and name of the device, and is broken into two major sections: Character devices and Block devices.

Character devices are similar to block devices, except for two basic differences:

1. Character devices do not require buffering. Block devices have a buffer available, allowing them to order requests before addressing them. This is important for devices designed to store information — such as hard drives — because the ability to order the information before writing it to the device allows it to be placed in a more efficient order.

2. Character devices send data with no preconfigured size. Block devices can send and receive information in blocks of a size configured per device.

For more information about devices, see the devices.txt file in the kernel-doc package (see

Section E.5, “Additional Resources” ).

810

APPENDIX E. THE PROC FILE SYSTEM

E.2.6. /proc/dma

This file contains a list of the registered ISA DMA channels in use. A sample /proc/dma files looks like the following:

4: cascade

E.2.7. /proc/execdomains

This file lists the execution domains currently supported by the Linux kernel, along with the range of personalities they support.

0-0 Linux [kernel]

Think of execution domains as the "personality" for an operating system. Because other binary formats, such as Solaris, UnixWare, and FreeBSD, can be used with Linux, programmers can change the way the operating system treats system calls from these binaries by changing the personality of the task. Except for the PER_LINUX execution domain, different personalities can be implemented as dynamically loadable modules.

E.2.8. /proc/fb

This file contains a list of frame buffer devices, with the frame buffer device number and the driver that controls it. Typical output of /proc/fb for systems which contain frame buffer devices looks similar to the following:

0 VESA VGA

E.2.9. /proc/filesystems

This file displays a list of the file system types currently supported by the kernel. Sample output from a generic /proc/filesystems file looks similar to the following: nodev sysfs nodev rootfs nodev bdev nodev proc nodev sockfs nodev binfmt_misc nodev usbfs nodev usbdevfs nodev futexfs nodev tmpfs nodev pipefs nodev eventpollfs nodev devpts

ext2 nodev ramfs nodev hugetlbfs

iso9660 nodev mqueue

811

Deployment Guide

ext3 nodev rpc_pipefs nodev autofs

The first column signifies whether the file system is mounted on a block device. Those beginning with

nodev are not mounted on a device. The second column lists the names of the file systems supported.

The mount command cycles through the file systems listed here when one is not specified as an argument.

E.2.10. /proc/interrupts

This file records the number of interrupts per IRQ on the x86 architecture. A standard

/proc/interrupts looks similar to the following:

CPU0

0: 80448940 XT-PIC timer

1: 174412 XT-PIC keyboard

2: 0 XT-PIC cascade

8: 1 XT-PIC rtc

10: 410964 XT-PIC eth0

12: 60330 XT-PIC PS/2 Mouse

14: 1314121 XT-PIC ide0

15: 5195422 XT-PIC ide1

NMI: 0

ERR: 0

For a multi-processor machine, this file may look slightly different:

CPU0 CPU1

0: 1366814704 0 XT-PIC timer

1: 128 340 IO-APIC-edge keyboard

2: 0 0 XT-PIC cascade

8: 0 1 IO-APIC-edge rtc

12: 5323 5793 IO-APIC-edge PS/2 Mouse

13: 1 0 XT-PIC fpu

16: 11184294 15940594 IO-APIC-level Intel EtherExpress Pro 10/100

Ethernet

20: 8450043 11120093 IO-APIC-level megaraid

30: 10432 10722 IO-APIC-level aic7xxx

31: 23 22 IO-APIC-level aic7xxx

NMI: 0

ERR: 0

The first column refers to the IRQ number. Each CPU in the system has its own column and its own number of interrupts per IRQ. The next column reports the type of interrupt, and the last column contains the name of the device that is located at that IRQ.

Each of the types of interrupts seen in this file, which are architecture-specific, mean something different.

For x86 machines, the following values are common:

XT-PIC — This is the old AT computer interrupts.

IO-APIC-edge — The voltage signal on this interrupt transitions from low to high, creating an edge, where the interrupt occurs and is only signaled once. This kind of interrupt, as well as the

812

APPENDIX E. THE PROC FILE SYSTEM

IO-APIC-level interrupt, are only seen on systems with processors from the 586 family and higher.

IO-APIC-level — Generates interrupts when its voltage signal is high until the signal is low again.

E.2.11. /proc/iomem

This file shows you the current map of the system's memory for each physical device:

00000000-0009fbff : System RAM

0009fc00-0009ffff : reserved

000a0000-000bffff : Video RAM area

000c0000-000c7fff : Video ROM

000f0000-000fffff : System ROM

00100000-07ffffff : System RAM

00100000-00291ba8 : Kernel code

00291ba9-002e09cb : Kernel data e0000000-e3ffffff : VIA Technologies, Inc. VT82C597 [Apollo VP3] e4000000e7ffffff : PCI Bus #01 e4000000-e4003fff : Matrox Graphics, Inc. MGA G200 AGP e5000000-e57fffff : Matrox Graphics, Inc. MGA G200 AGP e8000000-e8ffffff : PCI Bus #01 e8000000-e8ffffff : Matrox Graphics, Inc. MGA G200 AGP ea000000-ea00007f : Digital Equipment Corporation DECchip 21140

[FasterNet] ea000000-ea00007f : tulip ffff0000-ffffffff : reserved

The first column displays the memory registers used by each of the different types of memory. The second column lists the kind of memory located within those registers and displays which memory registers are used by the kernel within the system RAM or, if the network interface card has multiple

Ethernet ports, the memory registers assigned for each port.

E.2.12. /proc/ioports

The output of /proc/ioports provides a list of currently registered port regions used for input or output communication with a device. This file can be quite long. The following is a partial listing:

0000-001f : dma1

0020-003f : pic1

0040-005f : timer

0060-006f : keyboard

0070-007f : rtc

0080-008f : dma page reg

00a0-00bf : pic2

00c0-00df : dma2

00f0-00ff : fpu

0170-0177 : ide1

01f0-01f7 : ide0

02f8-02ff : serial(auto)

0376-0376 : ide1

03c0-03df : vga+

03f6-03f6 : ide0

03f8-03ff : serial(auto)

0cf8-0cff : PCI conf1

813

Deployment Guide d000-dfff : PCI Bus #01 e000-e00f : VIA Technologies, Inc. Bus Master IDE e000-e007 : ide0 e008-e00f : ide1 e800-e87f : Digital Equipment Corporation DECchip 21140 [FasterNet] e800-e87f : tulip

The first column gives the I/O port address range reserved for the device listed in the second column.

E.2.13. /proc/kcore

This file represents the physical memory of the system and is stored in the core file format. Unlike most

/proc/ files, kcore displays a size. This value is given in bytes and is equal to the size of the physical memory (RAM) used plus 4 KB.

The contents of this file are designed to be examined by a debugger, such as gdb, and is not human readable.

WARNING

Do not view the /proc/kcore virtual file. The contents of the file scramble text output on the terminal. If this file is accidentally viewed, press Ctrl+C to stop the process and then type reset to bring back the command line prompt.

E.2.14. /proc/kmsg

This file is used to hold messages generated by the kernel. These messages are then picked up by other programs, such as /sbin/klogd or /bin/dmesg.

E.2.15. /proc/loadavg

This file provides a look at the load average in regard to both the CPU and IO over time, as well as additional data used by uptime and other commands. A sample /proc/loadavg file looks similar to the following:

0.20 0.18 0.12 1/80 11206

The first three columns measure CPU and IO utilization of the last one, five, and 15 minute periods. The fourth column shows the number of currently running processes and the total number of processes. The last column displays the last process ID used.

In addition, load average also refers to the number of processes ready to run (i.e. in the run queue, waiting for a CPU share.

E.2.16. /proc/locks

This file displays the files currently locked by the kernel. The contents of this file contain internal kernel debugging data and can vary tremendously, depending on the use of the system. A sample

/proc/locks file for a lightly loaded system looks similar to the following:

814

APPENDIX E. THE PROC FILE SYSTEM

1: POSIX ADVISORY WRITE 3568 fd:00:2531452 0 EOF

2: FLOCK ADVISORY WRITE 3517 fd:00:2531448 0 EOF

3: POSIX ADVISORY WRITE 3452 fd:00:2531442 0 EOF

4: POSIX ADVISORY WRITE 3443 fd:00:2531440 0 EOF

5: POSIX ADVISORY WRITE 3326 fd:00:2531430 0 EOF

6: POSIX ADVISORY WRITE 3175 fd:00:2531425 0 EOF

7: POSIX ADVISORY WRITE 3056 fd:00:2548663 0 EOF

Each lock has its own line which starts with a unique number. The second column refers to the class of lock used, with FLOCK signifying the older-style UNIX file locks from a flock system call and POSIX representing the newer POSIX locks from the lockf system call.

The third column can have two values: ADVISORY or MANDATORY. ADVISORY means that the lock does not prevent other people from accessing the data; it only prevents other attempts to lock it. MANDATORY means that no other access to the data is permitted while the lock is held. The fourth column reveals whether the lock is allowing the holder READ or WRITE access to the file. The fifth column shows the ID of the process holding the lock. The sixth column shows the ID of the file being locked, in the format of

MAJOR-DEVICE:MINOR-DEVICE:INODE-NUMBER. The seventh and eighth column shows the start and end of the file's locked region.

E.2.17. /proc/mdstat

This file contains the current information for multiple-disk, RAID configurations. If the system does not contain such a configuration, then /proc/mdstat looks similar to the following:

Personalities : read_ahead not set unused devices: <none>

This file remains in the same state as seen above unless a software RAID or md device is present. In that case, view /proc/mdstat to find the current status of mdX RAID devices.

The /proc/mdstat file below shows a system with its md0 configured as a RAID 1 device, while it is currently re-syncing the disks:

Personalities : [linear] [raid1] read_ahead 1024 sectors md0: active raid1 sda2[1] sdb2[0] 9940 blocks [2/2] [UU] resync=1% finish=12.3min algorithm 2 [3/3] [UUU] unused devices: <none>

E.2.18. /proc/meminfo

This is one of the more commonly used files in the /proc/ directory, as it reports a large amount of valuable information about the system's RAM usage.

The following sample /proc/meminfo virtual file is from a system with 2 GB of RAM and 1 GB of swap space:

MemTotal: 1921988 kB

MemFree: 1374408 kB

Buffers: 32688 kB

Cached: 370540 kB

SwapCached: 0 kB

Active: 344604 kB

Inactive: 80800 kB

815

Deployment Guide

Active(anon): 22364 kB

Inactive(anon): 4 kB

Active(file): 322240 kB

Inactive(file): 80796 kB

Unevictable: 0 kB

Mlocked: 0 kB

SwapTotal: 1048572 kB

SwapFree: 1048572 kB

Dirty: 48 kB

Writeback: 0 kB

AnonPages: 22260 kB

Mapped: 13628 kB

Shmem: 196 kB

Slab: 91648 kB

SReclaimable: 34024 kB

SUnreclaim: 57624 kB

KernelStack: 2880 kB

PageTables: 3620 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 2009564 kB

Committed_AS: 134216 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 12276 kB

VmallocChunk: 34359712840 kB

HardwareCorrupted: 0 kB

AnonHugePages: 0 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 2048 kB

DirectMap4k: 8064 kB

DirectMap2M: 2088960 kB

While the file shows kilobytes (kB; 1 kB equals 1000 B), it is actually kibibytes (KiB; 1 KiB equals 1024

B). This imprecision in /proc/meminfo is known, but is not corrected due to legacy concerns programs rely on /proc/meminfo to specify size with the "kB" string.

Much of the information in /proc/meminfo is used by the free, top, and ps commands. In fact, the output of the free command is similar in appearance to the contents and structure of /proc/meminfo.

However, /proc/meminfo itself has more details:

MemTotal — Total amount of usable RAM, in kibibytes, which is physical RAM minus a number of reserved bits and the kernel binary code.

MemFree — The amount of physical RAM, in kibibytes, left unused by the system.

Buffers — The amount, in kibibytes, of temporary storage for raw disk blocks.

Cached — The amount of physical RAM, in kibibytes, used as cache memory.

SwapCached — The amount of memory, in kibibytes, that has once been moved into swap, then back into the main memory, but still also remains in the swapfile. This saves I/O, because the memory does not need to be moved into swap again.

816

APPENDIX E. THE PROC FILE SYSTEM

Active — The amount of memory, in kibibytes, that has been used more recently and is usually not reclaimed unless absolutely necessary.

Inactive — The amount of memory, in kibibytes, that has been used less recently and is more eligible to be reclaimed for other purposes.

Active(anon) — The amount of anonymous and tmpfs/shmem memory, in kibibytes, that is in active use, or was in active use since the last time the system moved something to swap.

Inactive(anon) — The amount of anonymous and tmpfs/shmem memory, in kibibytes, that is a candidate for eviction.

Active(file) — The amount of file cache memory, in kibibytes, that is in active use, or was in active use since the last time the system reclaimed memory.

Inactive(file) — The amount of file cache memory, in kibibytes, that is newly loaded from the disk, or is a candidate for reclaiming.

Unevictable — The amount of memory, in kibibytes, discovered by the pageout code, that is not evictable because it is locked into memory by user programs.

Mlocked — The total amount of memory, in kibibytes, that is not evictable because it is locked into memory by user programs.

SwapTotal — The total amount of swap available, in kibibytes.

SwapFree — The total amount of swap free, in kibibytes.

Dirty — The total amount of memory, in kibibytes, waiting to be written back to the disk.

Writeback — The total amount of memory, in kibibytes, actively being written back to the disk.

AnonPages — The total amount of memory, in kibibytes, used by pages that are not backed by files and are mapped into userspace page tables.

Mapped — The memory, in kibibytes, used for files that have been mmaped, such as libraries.

Shmem — The total amount of memory, in kibibytes, used by shared memory (shmem) and tmpfs.

Slab — The total amount of memory, in kibibytes, used by the kernel to cache data structures for its own use.

SReclaimable — The part of Slab that can be reclaimed, such as caches.

SUnreclaim — The part of Slab that cannot be reclaimed even when lacking memory.

KernelStack — The amount of memory, in kibibytes, used by the kernel stack allocations done for each task in the system.

PageTables — The total amount of memory, in kibibytes, dedicated to the lowest page table level.

NFS_Unstable — The amount, in kibibytes, of NFS pages sent to the server but not yet committed to the stable storage.

817

Deployment Guide

Bounce — The amount of memory, in kibibytes, used for the block device "bounce buffers".

WritebackTmp — The amount of memory, in kibibytes, used by FUSE for temporary writeback buffers.

CommitLimit — The total amount of memory currently available to be allocated on the system based on the overcommit ratio (vm.overcommit_ratio). This limit is only adhered to if strict overcommit accounting is enabled (mode 2 in vm.overcommit_memory). CommitLimit is calculated with the following formula:

([total RAM pages] - [total huge TLB pages]) * overcommit_ratio

───────────────────────────────────────────────────────────────── +

[total swap pages]

100

For example, on a system with 1 GB of physical RAM and 7 GB of swap with a

vm.overcommit_ratio of 30 it would yield a CommitLimit of 7.3 GB.

Committed_AS — The total amount of memory, in kibibytes, estimated to complete the workload. This value represents the worst case scenario value, and also includes swap memory.

VMallocTotal — The total amount of memory, in kibibytes, of total allocated virtual address space.

VMallocUsed — The total amount of memory, in kibibytes, of used virtual address space.

VMallocChunk — The largest contiguous block of memory, in kibibytes, of available virtual address space.

HardwareCorrupted — The amount of memory, in kibibytes, with physical memory corruption problems, identified by the hardware and set aside by the kernel so it does not get used.

AnonHugePages — The total amount of memory, in kibibytes, used by huge pages that are not backed by files and are mapped into userspace page tables.

HugePages_Total — The total number of hugepages for the system. The number is derived by dividing Hugepagesize by the megabytes set aside for hugepages specified in

/proc/sys/vm/hugetlb_pool. This statistic only appears on the x86, Itanium, and AMD64 architectures.

HugePages_Free — The total number of hugepages available for the system. This statistic only appears on the x86, Itanium, and AMD64 architectures.

HugePages_Rsvd — The number of unused huge pages reserved for hugetlbfs.

HugePages_Surp — The number of surplus huge pages.

Hugepagesize — The size for each hugepages unit in kibibytes. By default, the value is 4096

KB on uniprocessor kernels for 32 bit architectures. For SMP, hugemem kernels, and AMD64, the default is 2048 KB. For Itanium architectures, the default is 262144 KB. This statistic only appears on the x86, Itanium, and AMD64 architectures.

DirectMap4k — The amount of memory, in kibibytes, mapped into kernel address space with

4 kB page mappings.

818

APPENDIX E. THE PROC FILE SYSTEM

DirectMap2M — The amount of memory, in kibibytes, mapped into kernel address space with

2 MB page mappings.

E.2.19. /proc/misc

This file lists miscellaneous drivers registered on the miscellaneous major device, which is device number 10:

63 device-mapper 175 agpgart 135 rtc 134 apm_bios

The first column is the minor number of each device, while the second column shows the driver in use.

E.2.20. /proc/modules

This file displays a list of all modules loaded into the kernel. Its contents vary based on the configuration and use of your system, but it should be organized in a similar manner to this sample /proc/modules file output:

NOTE

This example has been reformatted into a readable format. Most of this information can also be viewed via the /sbin/lsmod command.

nfs 170109 0 - Live 0x129b0000 lockd 51593 1 nfs, Live 0x128b0000 nls_utf8 1729 0 - Live 0x12830000 vfat 12097 0 - Live 0x12823000 fat 38881 1 vfat, Live 0x1287b000 autofs4 20293 2 - Live 0x1284f000 sunrpc 140453 3 nfs,lockd, Live 0x12954000

3c59x 33257 0 - Live 0x12871000 uhci_hcd 28377 0 - Live 0x12869000 md5 3777 1 - Live 0x1282c000 ipv6 211845 16 - Live 0x128de000 ext3 92585 2 - Live 0x12886000 jbd 65625 1 ext3, Live 0x12857000 dm_mod 46677 3 - Live 0x12833000

The first column contains the name of the module.

The second column refers to the memory size of the module, in bytes.

The third column lists how many instances of the module are currently loaded. A value of zero represents an unloaded module.

The fourth column states if the module depends upon another module to be present in order to function, and lists those other modules.

The fifth column lists what load state the module is in: Live, Loading, or Unloading are the only possible values.

The sixth column lists the current kernel memory offset for the loaded module. This information can be useful for debugging purposes, or for profiling tools such as oprofile.

819

Deployment Guide

E.2.21. /proc/mounts

This file provides a list of all mounts in use by the system: rootfs / rootfs rw 0 0

/proc /proc proc rw,nodiratime 0 0 none

/dev ramfs rw 0 0

/dev/mapper/VolGroup00-LogVol00 / ext3 rw 0 0 none /dev ramfs rw 0 0

/proc /proc proc rw,nodiratime 0 0

/sys /sys sysfs rw 0 0 none /dev/pts devpts rw 0 0 usbdevfs /proc/bus/usb usbdevfs rw 0 0

/dev/hda1 /boot ext3 rw 0 0 none /dev/shm tmpfs rw 0 0 none /proc/sys/fs/binfmt_misc binfmt_misc rw 0 0 sunrpc /var/lib/nfs/rpc_pipefs rpc_pipefs rw 0 0

The output found here is similar to the contents of /etc/mtab, except that /proc/mounts is more upto-date.

The first column specifies the device that is mounted, the second column reveals the mount point, and the third column tells the file system type, and the fourth column tells you if it is mounted read-only (ro) or read-write (rw). The fifth and sixth columns are dummy values designed to match the format used in

/etc/mtab.

E.2.22. /proc/mtrr

This file refers to the current Memory Type Range Registers (MTRRs) in use with the system. If the system architecture supports MTRRs, then the /proc/mtrr file may look similar to the following: reg00: base=0x00000000 ( 0MB), size= 256MB: write-back, count=1 reg01: base=0xe8000000 (3712MB), size= 32MB: write-combining, count=1

MTRRs are used with the Intel P6 family of processors (Pentium II and higher) and control processor access to memory ranges. When using a video card on a PCI or AGP bus, a properly configured

/proc/mtrr file can increase performance more than 150%.

Most of the time, this value is properly configured by default. More information on manually configuring this file can be found locally at the following location:

/usr/share/doc/kernel-doc-<kernel_version>/Documentation/<arch>/mtrr.txt

E.2.23. /proc/partitions

This file contains partition block allocation information. A sampling of this file from a basic system looks similar to the following: major minor #blocks name

3 0 19531250 hda

3 1 104391 hda1

3 2 19422585 hda2

253 0 22708224 dm-0

253 1 524288 dm-1

820

APPENDIX E. THE PROC FILE SYSTEM

Most of the information here is of little importance to the user, except for the following columns:

major — The major number of the device with this partition. The major number in the

/proc/partitions, (3), corresponds with the block device ide0, in /proc/devices.

minor — The minor number of the device with this partition. This serves to separate the partitions into different physical devices and relates to the number at the end of the name of the partition.

#blocks — Lists the number of physical disk blocks contained in a particular partition.

name — The name of the partition.

E.2.24. /proc/slabinfo

This file gives full information about memory usage on the slab level. Linux kernels greater than version

2.2 use slab pools to manage memory above the page level. Commonly used objects have their own slab pools.

Instead of parsing the highly verbose /proc/slabinfo file manually, the /usr/bin/slabtop program displays kernel slab cache information in real time. This program allows for custom configurations, including column sorting and screen refreshing.

A sample screen shot of /usr/bin/slabtop usually looks like the following example:

Active / Total Objects (% used) : 133629 / 147300 (90.7%)

Active / Total Slabs (% used) : 11492 / 11493 (100.0%)

Active / Total Caches (% used) : 77 / 121 (63.6%)

Active / Total Size (% used) : 41739.83K / 44081.89K (94.7%)

Minimum / Average / Maximum Object : 0.01K / 0.30K / 128.00K

OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME

44814 43159 96% 0.62K 7469 6 29876K ext3_inode_cache

36900 34614 93% 0.05K 492 75 1968K buffer_head

35213 33124 94% 0.16K 1531 23 6124K dentry_cache

7364 6463 87% 0.27K 526 14 2104K radix_tree_node

2585 1781 68% 0.08K 55 47 220K vm_area_struct

2263 2116 93% 0.12K 73 31 292K size-128

1904 1125 59% 0.03K 16 119 64K size-32

1666 768 46% 0.03K 14 119 56K anon_vma

1512 1482 98% 0.44K 168 9 672K inode_cache

1464 1040 71% 0.06K 24 61 96K size-64

1320 820 62% 0.19K 66 20 264K filp

678 587 86% 0.02K 3 226 12K dm_io

678 587 86% 0.02K 3 226 12K dm_tio

576 574 99% 0.47K 72 8 288K proc_inode_cache

528 514 97% 0.50K 66 8 264K size-512

492 372 75% 0.09K 12 41 48K bio

465 314 67% 0.25K 31 15 124K size-256

452 331 73% 0.02K 2 226 8K biovec-1

420 420 100% 0.19K 21 20 84K skbuff_head_cache

305 256 83% 0.06K 5 61 20K biovec-4

290 4 1% 0.01K 1 290 4K revoke_table

821

Deployment Guide

264 264 100% 4.00K 264 1 1056K size-4096

260 256 98% 0.19K 13 20 52K biovec-16

260 256 98% 0.75K 52 5 208K biovec-64

Some of the more commonly used statistics in /proc/slabinfo that are included into

/usr/bin/slabtop include:

OBJS — The total number of objects (memory blocks), including those in use (allocated), and some spares not in use.

ACTIVE — The number of objects (memory blocks) that are in use (allocated).

USE — Percentage of total objects that are active. ((ACTIVE/OBJS)(100))

OBJ SIZE — The size of the objects.

SLABS — The total number of slabs.

OBJ/SLAB — The number of objects that fit into a slab.

CACHE SIZE — The cache size of the slab.

NAME — The name of the slab.

For more information on the /usr/bin/slabtop program, refer to the slabtop man page.

E.2.25. /proc/stat

This file keeps track of a variety of different statistics about the system since it was last restarted. The contents of /proc/stat, which can be quite long, usually begins like the following example: cpu 259246 7001 60190 34250993 137517 772 0 cpu0 259246 7001 60190 34250993 137517 772 0 intr 354133732 347209999 2272 0 4 4 0 0 3 1 1249247 0 0 80143 0 422626

5169433 ctxt 12547729 btime 1093631447 processes 130523 procs_running 1 procs_blocked 0 preempt 5651840 cpu 209841 1554 21720 118519346 72939 154 27168 cpu0 42536 798 4841 14790880 14778 124 3117 cpu1 24184 569 3875 14794524 30209 29 3130 cpu2 28616 11 2182 14818198 4020 1 3493 cpu3 35350 6 2942 14811519 3045 0 3659 cpu4 18209 135 2263 14820076 12465 0 3373 cpu5 20795 35 1866 14825701 4508 0 3615 cpu6 21607 0 2201 14827053 2325 0 3334 cpu7 18544 0 1550 14831395 1589 0 3447 intr 15239682 14857833 6 0 6 6 0 5 0 1 0 0 0 29 0 2 0 0 0 0 0 0 0 94982 0

286812 ctxt 4209609 btime 1078711415

822

APPENDIX E. THE PROC FILE SYSTEM processes 21905 procs_running 1 procs_blocked 0

Some of the more commonly used statistics include:

cpu — Measures the number of jiffies (1/100 of a second for x86 systems) that the system has been in user mode, user mode with low priority (nice), system mode, idle task, I/O wait, IRQ

(hardirq), and softirq respectively. The IRQ (hardirq) is the direct response to a hardware event.

The IRQ takes minimal work for queuing the "heavy" work up for the softirq to execute. The softirq runs at a lower priority than the IRQ and therefore may be interrupted more frequently.

The total for all CPUs is given at the top, while each individual CPU is listed below with its own statistics. The following example is a 4-way Intel Pentium Xeon configuration with multithreading enabled, therefore showing four physical processors and four virtual processors totaling eight processors.

page — The number of memory pages the system has written in and out to disk.

swap — The number of swap pages the system has brought in and out.

intr — The number of interrupts the system has experienced.

btime — The boot time, measured in the number of seconds since January 1, 1970, otherwise known as the epoch.

E.2.26. /proc/swaps

This file measures swap space and its utilization. For a system with only one swap partition, the output of

/proc/swaps may look similar to the following:

Filename Type Size Used Priority

/dev/mapper/VolGroup00-LogVol01 partition 524280 0 -1

While some of this information can be found in other files in the /proc/ directory, /proc/swap provides a snapshot of every swap file name, the type of swap space, the total size, and the amount of space in use (in kilobytes). The priority column is useful when multiple swap files are in use. The lower the priority, the more likely the swap file is to be used.

E.2.27. /proc/sysrq-trigger

Using the echo command to write to this file, a remote root user can execute most System Request Key commands remotely as if at the local terminal. To echo values to this file, the

/proc/sys/kernel/sysrq must be set to a value other than 0. For more information about the

System Request Key, see Section E.3.9.3, “/proc/sys/kernel/”

.

Although it is possible to write to this file, it cannot be read, even by the root user.

E.2.28. /proc/uptime

This file contains information detailing how long the system has been on since its last restart. The output of /proc/uptime is quite minimal:

350735.47 234388.90

823

Deployment Guide

The first value represents the total number of seconds the system has been up. The second value is the sum of how much time each core has spent idle, in seconds. Consequently, the second value may be greater than the overall system uptime on systems with multiple cores.

E.2.29. /proc/version

This file specifies the version of the Linux kernel, the version of gcc used to compile the kernel, and the time of kernel compilation. It also contains the kernel compiler's user name (in parentheses).

Linux version 2.6.8-1.523 ([email protected]) (gcc version 3.4.1

20040714 \ (Red Hat Enterprise Linux 3.4.1-7)) #1 Mon Aug 16 13:27:03 EDT

2004

This information is used for a variety of purposes, including the version data presented when a user logs in.

E.3. DIRECTORIES WITHIN /PROC/

Common groups of information concerning the kernel are grouped into directories and subdirectories within the /proc/ directory.

E.3.1. Process Directories

Every /proc/ directory contains a number of directories with numerical names. A listing of them may be similar to the following: dr-xr-xr-x 3 root root 0 Feb 13 01:28 1 dr-xr-xr-x 3 root root 0 Feb 13 01:28 1010 dr-xr-xr-x 3 xfs xfs 0 Feb 13 01:28 1087 dr-xr-xr-x 3 daemon daemon 0 Feb 13 01:28 1123 dr-xr-xr-x 3 root root 0 Feb 13 01:28 11307 dr-xr-xr-x 3 apache apache 0 Feb 13 01:28 13660 dr-xr-xr-x 3 rpc rpc 0 Feb 13 01:28 637 dr-xr-xr-x 3 rpcuser rpcuser 0 Feb 13 01:28 666

These directories are called process directories, as they are named after a program's process ID and contain information specific to that process. The owner and group of each process directory is set to the user running the process. When the process is terminated, its /proc/ process directory vanishes.

Each process directory contains the following files:

cmdline — Contains the command issued when starting the process.

cwd — A symbolic link to the current working directory for the process.

environ — A list of the environment variables for the process. The environment variable is given in all upper-case characters, and the value is in lower-case characters.

exe — A symbolic link to the executable of this process.

fd — A directory containing all of the file descriptors for a particular process. These are given in numbered links: total 0

824

APPENDIX E. THE PROC FILE SYSTEM lrwx------ 1 root root 64 May 8 11:31 0 ->

/dev/null lrwx------ 1 root root 64 May 8 11:31 1 ->

/dev/null lrwx------ 1 root root 64 May 8 11:31 2 ->

/dev/null lrwx------ 1 root root 64 May 8 11:31 3 ->

/dev/ptmx lrwx------ 1 root root 64 May 8 11:31 4 -> socket:[7774817] lrwx------ 1 root root 64 May 8 11:31 5 ->

/dev/ptmx lrwx------ 1 root root 64 May 8 11:31 6 -> socket:[7774829] lrwx------ 1 root root 64 May 8 11:31 7 ->

/dev/ptmx

maps — A list of memory maps to the various executables and library files associated with this process. This file can be rather long, depending upon the complexity of the process, but sample output from the sshd process begins like the following:

08048000-08086000 r-xp 00000000 03:03 391479 /usr/sbin/sshd

08086000-08088000 rw-p 0003e000 03:03 391479 /usr/sbin/sshd

08088000-08095000 rwxp 00000000 00:00 0

40000000-40013000 r-xp 0000000 03:03 293205 /lib/ld-2.2.5.so

40013000-40014000 rw-p 00013000 03:03 293205 /lib/ld-2.2.5.so

40031000-40038000 r-xp 00000000 03:03 293282 /lib/libpam.so.0.75

40038000-40039000 rw-p 00006000 03:03 293282 /lib/libpam.so.0.75

40039000-4003a000 rw-p 00000000 00:00 0

4003a000-4003c000 r-xp 00000000 03:03 293218 /lib/libdl-2.2.5.so

4003c000-4003d000 rw-p 00001000 03:03 293218 /lib/libdl-2.2.5.so

mem — The memory held by the process. This file cannot be read by the user.

root — A link to the root directory of the process.

stat — The status of the process.

statm — The status of the memory in use by the process. Below is a sample /proc/statm file:

263 210 210 5 0 205 0

The seven columns relate to different memory statistics for the process. From left to right, they report the following aspects of the memory used:

1. Total program size, in kilobytes.

2. Size of memory portions, in kilobytes.

3. Number of pages that are shared.

4. Number of pages that are code.

5. Number of pages of data/stack.

825

Deployment Guide

6. Number of library pages.

7. Number of dirty pages.

status — The status of the process in a more readable form than stat or statm. Sample output for sshd looks similar to the following:

Name: sshd

State: S (sleeping)

Tgid: 797

Pid: 797

PPid: 1

TracerPid: 0

Uid: 0 0 0 0

Gid: 0 0 0 0

FDSize: 32

Groups:

VmSize: 3072 kB

VmLck: 0 kB

VmRSS: 840 kB

VmData: 104 kB

VmStk: 12 kB

VmExe: 300 kB

VmLib: 2528 kB

SigPnd: 0000000000000000

SigBlk: 0000000000000000

SigIgn: 8000000000001000

SigCgt: 0000000000014005

CapInh: 0000000000000000

CapPrm: 00000000fffffeff

CapEff: 00000000fffffeff

The information in this output includes the process name and ID, the state (such as S

(sleeping) or R (running)), user/group ID running the process, and detailed data regarding memory usage.

E.3.1.1. /proc/self/

The /proc/self/ directory is a link to the currently running process. This allows a process to look at itself without having to know its process ID.

Within a shell environment, a listing of the /proc/self/ directory produces the same contents as listing the process directory for that process.

E.3.2. /proc/bus/

This directory contains information specific to the various buses available on the system. For example, on a standard system containing PCI and USB buses, current data on each of these buses is available within a subdirectory within /proc/bus/ by the same name, such as /proc/bus/pci/.

The subdirectories and files available within /proc/bus/ vary depending on the devices connected to the system. However, each bus type has at least one directory. Within these bus directories are normally at least one subdirectory with a numerical name, such as 001, which contain binary files.

826

APPENDIX E. THE PROC FILE SYSTEM

For example, the /proc/bus/usb/ subdirectory contains files that track the various devices on any

USB buses, as well as the drivers required for them. The following is a sample listing of a

/proc/bus/usb/ directory: total 0 dr-xr-xr-x 1 root root 0 May 3 16:25 001

-r--r--r-- 1 root root 0 May 3 16:25 devices

-r--r--r-- 1 root root 0 May 3 16:25 drivers

The /proc/bus/usb/001/ directory contains all devices on the first USB bus and the devices file identifies the USB root hub on the motherboard.

The following is a example of a /proc/bus/usb/devices file:

T: Bus=01 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2

B: Alloc= 0/900 us ( 0%), #Int= 0, #Iso= 0

D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1

P: Vendor=0000 ProdID=0000 Rev= 0.00

S: Product=USB UHCI Root Hub

S: SerialNumber=d400

C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA

I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub

E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms

E.3.3. /proc/bus/pci

Later versions of the 2.6 Linux kernel have obsoleted the /proc/pci directory in favor of the

/proc/bus/pci directory. Although you can get a list of all PCI devices present on the system using the command cat /proc/bus/pci/devices, the output is difficult to read and interpret.

For a human-readable list of PCI devices, run the following command:

~]# /sbin/lspci -vb

00:00.0 Host bridge: Intel Corporation 82X38/X48 Express DRAM Controller

Subsystem: Hewlett-Packard Company Device 1308

Flags: bus master, fast devsel, latency 0

Capabilities: [e0] Vendor Specific Information <?>

Kernel driver in use: x38_edac

Kernel modules: x38_edac

00:01.0 PCI bridge: Intel Corporation 82X38/X48 Express Host-Primary PCI

Express Bridge (prog-if 00 [Normal decode])

Flags: bus master, fast devsel, latency 0

Bus: primary=00, secondary=01, subordinate=01, sec-latency=0

I/O behind bridge: 00001000-00001fff

Memory behind bridge: f0000000-f2ffffff

Capabilities: [88] Subsystem: Hewlett-Packard Company Device 1308

Capabilities: [80] Power Management version 3

Capabilities: [90] MSI: Enable+ Count=1/1 Maskable- 64bit-

Capabilities: [a0] Express Root Port (Slot+), MSI 00

Capabilities: [100] Virtual Channel <?>

Capabilities: [140] Root Complex Link <?>

Kernel driver in use: pcieport

Kernel modules: shpchp

827

Deployment Guide

00:1a.0 USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI

Controller #4 (rev 02) (prog-if 00 [UHCI])

Subsystem: Hewlett-Packard Company Device 1308

Flags: bus master, medium devsel, latency 0, IRQ 5

I/O ports at 2100

Capabilities: [50] PCI Advanced Features

Kernel driver in use: uhci_hcd

[output truncated]

The output is a sorted list of all IRQ numbers and addresses as seen by the cards on the PCI bus instead of as seen by the kernel. Beyond providing the name and version of the device, this list also gives detailed IRQ information so an administrator can quickly look for conflicts.

E.3.4. /proc/driver/

This directory contains information for specific drivers in use by the kernel.

A common file found here is rtc which provides output from the driver for the system's Real Time Clock

(RTC), the device that keeps the time while the system is switched off. Sample output from

/proc/driver/rtc looks like the following: rtc_time : 16:21:00 rtc_date : 2004-08-31 rtc_epoch : 1900 alarm : 21:16:27

DST_enable : no

BCD : yes

24hr : yes square_wave : no alarm_IRQ : no update_IRQ : no periodic_IRQ : no periodic_freq : 1024 batt_status : okay

For more information about the RTC, see the following installed documentation:

/usr/share/doc/kernel-doc-<kernel_version>/Documentation/rtc.txt.

E.3.5. /proc/fs

This directory shows which file systems are exported. If running an NFS server, typing cat

/proc/fs/nfsd/exports displays the file systems being shared and the permissions granted for those file systems. For more on file system sharing with NFS, see the Network File System (NFS) chapter of the Storage Administration Guide.

E.3.6. /proc/irq/

This directory is used to set IRQ to CPU affinity, which allows the system to connect a particular IRQ to only one CPU. Alternatively, it can exclude a CPU from handling any IRQs.

Each IRQ has its own directory, allowing for the individual configuration of each IRQ. The

/proc/irq/prof_cpu_mask file is a bitmask that contains the default values for the smp_affinity file in the IRQ directory. The values in smp_affinity specify which CPUs handle that particular IRQ.

828

APPENDIX E. THE PROC FILE SYSTEM

For more information about the /proc/irq/ directory, see the following installed documentation:

/usr/share/doc/kerneldoc-kernel_version/Documentation/filesystems/proc.txt

E.3.7. /proc/net/

This directory provides a comprehensive look at various networking parameters and statistics. Each directory and virtual file within this directory describes aspects of the system's network configuration.

Below is a partial list of the /proc/net/ directory:

arp — Lists the kernel's ARP table. This file is particularly useful for connecting a hardware address to an IP address on a system.

atm/ directory — The files within this directory contain Asynchronous Transfer Mode (ATM) settings and statistics. This directory is primarily used with ATM networking and ADSL cards.

dev — Lists the various network devices configured on the system, complete with transmit and receive statistics. This file displays the number of bytes each interface has sent and received, the number of packets inbound and outbound, the number of errors seen, the number of packets dropped, and more.

dev_mcast — Lists Layer2 multicast groups on which each device is listening.

igmp — Lists the IP multicast addresses which this system joined.

ip_conntrack — Lists tracked network connections for machines that are forwarding IP connections.

ip_tables_names — Lists the types of iptables in use. This file is only present if

iptables is active on the system and contains one or more of the following values: filter,

mangle, or nat.

ip_mr_cache — Lists the multicast routing cache.

ip_mr_vif — Lists multicast virtual interfaces.

netstat — Contains a broad yet detailed collection of networking statistics, including TCP timeouts, SYN cookies sent and received, and much more.

psched — Lists global packet scheduler parameters.

raw — Lists raw device statistics.

route — Lists the kernel's routing table.

rt_cache — Contains the current routing cache.

snmp — List of Simple Network Management Protocol (SNMP) data for various networking protocols in use.

sockstat — Provides socket statistics.

tcp — Contains detailed TCP socket information.

829

Deployment Guide

tr_rif — Lists the token ring RIF routing table.

udp — Contains detailed UDP socket information.

unix — Lists UNIX domain sockets currently in use.

wireless — Lists wireless interface data.

E.3.8. /proc/scsi/

The primary file in this directory is /proc/scsi/scsi, which contains a list of every recognized SCSI device. From this listing, the type of device, as well as the model name, vendor, SCSI channel and ID data is available.

For example, if a system contains a SCSI CD-ROM, a tape drive, a hard drive, and a RAID controller, this file looks similar to the following:

Attached devices:

Host: scsi1

Channel: 00

Id: 05

Lun: 00

Vendor: NEC

Model: CD-ROM DRIVE:466

Rev: 1.06

Type: CD-ROM

ANSI SCSI revision: 02

Host: scsi1

Channel: 00

Id: 06

Lun: 00

Vendor: ARCHIVE

Model: Python 04106-XXX

Rev: 7350

Type: Sequential-Access

ANSI SCSI revision: 02

Host: scsi2

Channel: 00

Id: 06

Lun: 00

Vendor: DELL

Model: 1x6 U2W SCSI BP

Rev: 5.35

Type: Processor

ANSI SCSI revision: 02

Host: scsi2

Channel: 02

Id: 00

Lun: 00

Vendor: MegaRAID

Model: LD0 RAID5 34556R

Rev: 1.01

Type: Direct-Access

ANSI SCSI revision: 02

830

APPENDIX E. THE PROC FILE SYSTEM

Each SCSI driver used by the system has its own directory within /proc/scsi/, which contains files specific to each SCSI controller using that driver. From the previous example, aic7xxx/ and

megaraid/ directories are present, since two drivers are in use. The files in each of the directories typically contain an I/O address range, IRQ information, and statistics for the SCSI controller using that driver. Each controller can report a different type and amount of information. The Adaptec AIC-7880 Ultra

SCSI host adapter's file in this example system produces the following output:

Adaptec AIC7xxx driver version: 5.1.20/3.2.4

Compile Options:

TCQ Enabled By Default : Disabled

AIC7XXX_PROC_STATS : Enabled

AIC7XXX_RESET_DELAY : 5

Adapter Configuration:

SCSI Adapter: Adaptec AIC-7880 Ultra SCSI host adapter

Ultra Narrow Controller PCI MMAPed

I/O Base: 0xfcffe000

Adapter SEEPROM Config: SEEPROM found and used.

Adaptec SCSI BIOS: Enabled

IRQ: 30

SCBs: Active 0, Max Active 1, Allocated 15, HW 16, Page 255

Interrupts: 33726

BIOS Control Word: 0x18a6

Adapter Control Word: 0x1c5f

Extended Translation: Enabled

Disconnect Enable Flags: 0x00ff

Ultra Enable Flags: 0x0020

Tag Queue Enable Flags: 0x0000

Ordered Queue Tag Flags: 0x0000

Default Tag Queue Depth: 8

Tagged Queue By Device array for aic7xxx host instance 1:

{255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255}

Actual queue depth per device for aic7xxx host instance 1:

{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}

Statistics:

(scsi1:0:5:0) Device using Narrow/Sync transfers at 20.0 MByte/sec, offset

15

Transinfo settings: current(12/15/0/0), goal(12/15/0/0), user(12/15/0/0)

Total transfers 0 (0 reads and 0 writes)

< 2K 2K+ 4K+ 8K+ 16K+ 32K+ 64K+ 128K+

Reads: 0 0 0 0 0 0 0 0

Writes: 0 0 0 0 0 0 0 0

(scsi1:0:6:0) Device using Narrow/Sync transfers at 10.0 MByte/sec, offset

15

Transinfo settings: current(25/15/0/0), goal(12/15/0/0), user(12/15/0/0)

Total transfers 132 (0 reads and 132 writes)

< 2K 2K+ 4K+ 8K+ 16K+ 32K+ 64K+ 128K+

Reads: 0 0 0 0 0 0 0 0

Writes: 0 0 0 1 131 0 0 0

This output reveals the transfer speed to the SCSI devices connected to the controller based on channel

ID, as well as detailed statistics concerning the amount and sizes of files read or written by that device.

For example, this controller is communicating with the CD-ROM at 20 megabytes per second, while the tape drive is only communicating at 10 megabytes per second.

831

Deployment Guide

E.3.9. /proc/sys/

The /proc/sys/ directory is different from others in /proc/ because it not only provides information about the system but also allows the system administrator to immediately enable and disable kernel features.

WARNING

Use caution when changing settings on a production system using the various files in the /proc/sys/ directory. Changing the wrong setting may render the kernel unstable, requiring a system reboot.

For this reason, be sure the options are valid for that file before attempting to change any value in /proc/sys/.

A good way to determine if a particular file can be configured, or if it is only designed to provide information, is to list it with the -l option at the shell prompt. If the file is writable, it may be used to configure the kernel. For example, a partial listing of /proc/sys/fs looks like the following:

-r--r--r-- 1 root root 0 May 10 16:14 dentry-state

-rw-r--r-- 1 root root 0 May 10 16:14 dir-notify-enable

-rw-r--r-- 1 root root 0 May 10 16:14 file-max

-r--r--r-- 1 root root 0 May 10 16:14 file-nr

In this listing, the files dir-notify-enable and file-max can be written to and, therefore, can be used to configure the kernel. The other files only provide feedback on current settings.

Changing a value within a /proc/sys/ file is done by echoing the new value into the file. For example, to enable the System Request Key on a running kernel, type the command: echo 1 > /proc/sys/kernel/sysrq

This changes the value for sysrq from 0 (off) to 1 (on).

A few /proc/sys/ configuration files contain more than one value. To correctly send new values to them, place a space character between each value passed with the echo command, such as is done in this example: echo 4 2 45 > /proc/sys/kernel/acct

NOTE

Any configuration changes made using the echo command disappear when the system is restarted. To make configuration changes take effect after the system is rebooted, see

Section E.4, “Using the sysctl Command” .

The /proc/sys/ directory contains several subdirectories controlling different aspects of a running kernel.

832

APPENDIX E. THE PROC FILE SYSTEM

E.3.9.1. /proc/sys/dev/

This directory provides parameters for particular devices on the system. Most systems have at least two directories, cdrom/ and raid/. Customized kernels can have other directories, such as parport/, which provides the ability to share one parallel port between multiple device drivers.

The cdrom/ directory contains a file called info, which reveals a number of important CD-ROM parameters:

CD-ROM information, Id: cdrom.c 3.20 2003/12/17 drive name: hdc drive speed: 48 drive # of slots: 1

Can close tray: 1

Can open tray: 1

Can lock tray: 1

Can change speed: 1

Can select disk: 0

Can read multisession: 1

Can read MCN: 1

Reports media changed: 1

Can play audio: 1

Can write CD-R: 0

Can write CD-RW: 0

Can read DVD: 0

Can write DVD-R: 0

Can write DVD-RAM: 0

Can read MRW: 0

Can write MRW: 0

Can write RAM: 0

This file can be quickly scanned to discover the qualities of an unknown CD-ROM. If multiple CD-ROMs are available on a system, each device is given its own column of information.

Various files in /proc/sys/dev/cdrom, such as autoclose and checkmedia, can be used to control the system's CD-ROM. Use the echo command to enable or disable these features.

If RAID support is compiled into the kernel, a /proc/sys/dev/raid/ directory becomes available with at least two files in it: speed_limit_min and speed_limit_max. These settings determine the acceleration of RAID devices for I/O intensive tasks, such as resyncing the disks.

E.3.9.2. /proc/sys/fs/

This directory contains an array of options and information concerning various aspects of the file system, including quota, file handle, inode, and dentry information.

The binfmt_misc/ directory is used to provide kernel support for miscellaneous binary formats.

The important files in /proc/sys/fs/ include:

dentry-state — Provides the status of the directory cache. The file looks similar to the following:

57411 52939 45 0 0 0

833

Deployment Guide

The first number reveals the total number of directory cache entries, while the second number displays the number of unused entries. The third number tells the number of seconds between when a directory has been freed and when it can be reclaimed, and the fourth measures the pages currently requested by the system. The last two numbers are not used and display only zeros.

file-max — Lists the maximum number of file handles that the kernel allocates. Raising the value in this file can resolve errors caused by a lack of available file handles.

file-nr — Lists the number of allocated file handles, used file handles, and the maximum number of file handles.

overflowgid and overflowuid — Defines the fixed group ID and user ID, respectively, for use with file systems that only support 16-bit group and user IDs.

E.3.9.3. /proc/sys/kernel/

This directory contains a variety of different configuration files that directly affect the operation of the kernel. Some of the most important files include:

acct — Controls the suspension of process accounting based on the percentage of free space available on the file system containing the log. By default, the file looks like the following:

4 2 30

The first value dictates the percentage of free space required for logging to resume, while the second value sets the threshold percentage of free space when logging is suspended. The third value sets the interval, in seconds, that the kernel polls the file system to see if logging should be suspended or resumed.

ctrl-alt-del — Controls whether Ctrl+Alt+Delete gracefully restarts the computer using

init (0) or forces an immediate reboot without syncing the dirty buffers to disk (1).

domainname — Configures the system domain name, such as example.com.

exec-shield — Configures the Exec Shield feature of the kernel. Exec Shield provides protection against certain types of buffer overflow attacks.

There are two possible values for this virtual file:

0 — Disables Exec Shield.

1 — Enables Exec Shield. This is the default value.

IMPORTANT

If a system is running security-sensitive applications that were started while Exec

Shield was disabled, these applications must be restarted when Exec Shield is enabled in order for Exec Shield to take effect.

hostname — Configures the system host name, such as www.example.com.

834

APPENDIX E. THE PROC FILE SYSTEM

hotplug — Configures the utility to be used when a configuration change is detected by the system. This is primarily used with USB and Cardbus PCI. The default value of

/sbin/hotplug should not be changed unless testing a new program to fulfill this role.

modprobe — Sets the location of the program used to load kernel modules. The default value is

/sbin/modprobe which means kmod calls it to load the module when a kernel thread calls

kmod.

msgmax — Sets the maximum size of any message sent from one process to another and is set to 8192 bytes by default. Be careful when raising this value, as queued messages between processes are stored in non-swappable kernel memory. Any increase in msgmax would increase RAM requirements for the system.

msgmnb — Sets the maximum number of bytes in a single message queue. The default is

16384.

msgmni — Sets the maximum number of message queue identifiers. The default is 4008.

osrelease — Lists the Linux kernel release number. This file can only be altered by changing the kernel source and recompiling.

ostype — Displays the type of operating system. By default, this file is set to Linux, and this value can only be changed by changing the kernel source and recompiling.

overflowgid and overflowuid — Defines the fixed group ID and user ID, respectively, for use with system calls on architectures that only support 16-bit group and user IDs.

panic — Defines the number of seconds the kernel postpones rebooting when the system experiences a kernel panic. By default, the value is set to 0, which disables automatic rebooting after a panic.

printk — This file controls a variety of settings related to printing or logging error messages.

Each error message reported by the kernel has a loglevel associated with it that defines the importance of the message. The loglevel values break down in this order:

0 — Kernel emergency. The system is unusable.

1 — Kernel alert. Action must be taken immediately.

2 — Condition of the kernel is considered critical.

3 — General kernel error condition.

4 — General kernel warning condition.

5 — Kernel notice of a normal but significant condition.

6 — Kernel informational message.

7 — Kernel debug-level messages.

Four values are found in the printk file:

6 4 1 7

835

Deployment Guide

Each of these values defines a different rule for dealing with error messages. The first value, called the console loglevel, defines the lowest priority of messages printed to the console. (Note that, the lower the priority, the higher the loglevel number.) The second value sets the default loglevel for messages without an explicit loglevel attached to them. The third value sets the lowest possible loglevel configuration for the console loglevel. The last value sets the default value for the console loglevel.

random/ directory — Lists a number of values related to generating random numbers for the kernel.

sem — Configures semaphore settings within the kernel. A semaphore is a System V IPC object that is used to control utilization of a particular process.

shmall — Sets the total amount of shared memory that can be used at one time on the system, in bytes. By default, this value is 2097152.

shmmax — Sets the largest shared memory segment size allowed by the kernel. By default, this value is 33554432. However, the kernel supports much larger values than this.

shmmni — Sets the maximum number of shared memory segments for the whole system. By default, this value is 4096.

sysrq — Activates the System Request Key, if this value is set to anything other than zero (0), the default.

The System Request Key allows immediate input to the kernel through simple key combinations.

For example, the System Request Key can be used to immediately shut down or restart a system, sync all mounted file systems, or dump important information to the console. To initiate a System Request Key, type Alt+SysRq+system request code. Replace system request code with one of the following system request codes:

r — Disables raw mode for the keyboard and sets it to XLATE (a limited keyboard mode which does not recognize modifiers such as Alt, Ctrl, or Shift for all keys).

k — Kills all processes active in a virtual console. Also called Secure Access Key (SAK), it is often used to verify that the login prompt is spawned from init and not a trojan copy designed to capture user names and passwords.

b — Reboots the kernel without first unmounting file systems or syncing disks attached to the system.

c — Crashes the system without first unmounting file systems or syncing disks attached to the system.

o — Shuts off the system.

s — Attempts to sync disks attached to the system.

u — Attempts to unmount and remount all file systems as read-only.

p — Outputs all flags and registers to the console.

t — Outputs a list of processes to the console.

m — Outputs memory statistics to the console.

836

APPENDIX E. THE PROC FILE SYSTEM

0 through 9 — Sets the log level for the console.

e — Kills all processes except init using SIGTERM.

i — Kills all processes except init using SIGKILL.

l — Kills all processes using SIGKILL (including init). The system is unusable after issuing this System Request Key code.

h — Displays help text.

This feature is most beneficial when using a development kernel or when experiencing system freezes.

WARNING

The System Request Key feature is considered a security risk because an unattended console provides an attacker with access to the system. For this reason, it is turned off by default.

See /usr/share/doc/kernel-doc-kernel_version/Documentation/sysrq.txt for more information about the System Request Key.

tainted — Indicates whether a non-GPL module is loaded.

0 — No non-GPL modules are loaded.

1 — At least one module without a GPL license (including modules with no license) is loaded.

2 — At least one module was force-loaded with the command insmod -f.

threads-max — Sets the maximum number of threads to be used by the kernel, with a default value of 2048.

version — Displays the date and time the kernel was last compiled. The first field in this file, such as #3, relates to the number of times a kernel was built from the source base.

E.3.9.4. /proc/sys/net/

This directory contains subdirectories concerning various networking topics. Various configurations at the time of kernel compilation make different directories available here, such as ethernet/, ipv4/, ipx/, and ipv6/. By altering the files within these directories, system administrators are able to adjust the network configuration on a running system.

Given the wide variety of possible networking options available with Linux, only the most common

/proc/sys/net/ directories are discussed.

The /proc/sys/net/core/ directory contains a variety of settings that control the interaction between the kernel and networking layers. The most important of these files are:

837

Deployment Guide

message_burst — Sets the maximum number of new warning messages to be written to the kernel log in the time interval defined by message_cost. The default value of this file is 10.

In combination with message_cost, this setting is used to enforce a rate limit on warning messages written to the kernel log from the networking code and mitigate Denial of Service

(DoS) attacks. The idea of a DoS attack is to bombard the targeted system with requests that generate errors and either fill up disk partitions with log files or require all of the system's resources to handle the error logging.

The settings in message_burst and message_cost are designed to be modified based on the system's acceptable risk versus the need for comprehensive logging. For example, by setting

message_burst to 10 and message_cost to 5, you allow the system to write the maximum number of 10 messages every 5 seconds.

message_cost — Sets a cost on every warning message by defining a time interval for

message_burst. The higher the value is, the more likely the warning message is ignored. The default value of this file is 5.

netdev_max_backlog — Sets the maximum number of packets allowed to queue when a particular interface receives packets faster than the kernel can process them. The default value for this file is 1000.

optmem_max — Configures the maximum ancillary buffer size allowed per socket.

rmem_default — Sets the receive socket buffer default size in bytes.

rmem_max — Sets the receive socket buffer maximum size in bytes.

wmem_default — Sets the send socket buffer default size in bytes.

wmem_max — Sets the send socket buffer maximum size in bytes.

The /proc/sys/net/ipv4/ directory contains additional networking settings. Many of these settings, used in conjunction with one another, are useful in preventing attacks on the system or when using the system to act as a router.

WARNING

An erroneous change to these files may affect remote connectivity to the system.

The following is a list of some of the more important files within the /proc/sys/net/ipv4/ directory:

icmp_echo_ignore_all and icmp_echo_ignore_broadcasts — Allows the kernel to ignore ICMP ECHO packets from every host or only those originating from broadcast and multicast addresses, respectively. A value of 0 allows the kernel to respond, while a value of 1 ignores the packets.

ip_default_ttl — Sets the default Time To Live (TTL), which limits the number of hops a packet may make before reaching its destination. Increasing this value can diminish system performance.

838

APPENDIX E. THE PROC FILE SYSTEM

ip_forward — Permits interfaces on the system to forward packets. By default, this file is set to 0. Setting this file to 1 enables network packet forwarding.

ip_local_port_range — Specifies the range of ports to be used by TCP or UDP when a local port is needed. The first number is the lowest port to be used and the second number specifies the highest port. Any systems that expect to require more ports than the default 1024 to

4999 should use a range from 32768 to 61000.

tcp_syn_retries — Provides a limit on the number of times the system re-transmits a SYN packet when attempting to make a connection.

tcp_retries1 — Sets the number of permitted re-transmissions attempting to answer an incoming connection. Default of 3.

tcp_retries2 — Sets the number of permitted re-transmissions of TCP packets. Default of

15.

The /usr/share/doc/kernel-doc-kernel_version/Documentation/networking/ip-

sysctl.txt file contains a list of files and options available in the /proc/sys/net/ipv4/ and

/proc/sys/net/ipv6/ directories. Use the sysctl -a command to list the parameters in the

sysctl key format.

A number of other directories exist within the /proc/sys/net/ipv4/ directory and each covers a different aspect of the network stack. The /proc/sys/net/ipv4/conf/ directory allows each system interface to be configured in different ways, including the use of default settings for unconfigured devices

(in the /proc/sys/net/ipv4/conf/default/ subdirectory) and settings that override all special configurations (in the /proc/sys/net/ipv4/conf/all/ subdirectory).

IMPORTANT

Red Hat Enterprise Linux 6 defaults to strict reverse path forwarding. Before changing the setting in the rp_filter file, see the entry on Reverse Path Forwarding in the

Red Hat Enterprise Linux 6 Security Guide and The Red Hat Knowledgebase article about rp_filter .

The /proc/sys/net/ipv4/neigh/ directory contains settings for communicating with a host directly connected to the system (called a network neighbor) and also contains different settings for systems more than one hop away.

Routing over IPV4 also has its own directory, /proc/sys/net/ipv4/route/. Unlike conf/ and

neigh/, the /proc/sys/net/ipv4/route/ directory contains specifications that apply to routing with any interfaces on the system. Many of these settings, such as max_size, max_delay, and

min_delay, relate to controlling the size of the routing cache. To clear the routing cache, write any value to the flush file.

Additional information about these directories and the possible values for their configuration files can be found in:

/usr/share/doc/kerneldoc-kernel_version/Documentation/filesystems/proc.txt

E.3.9.5. /proc/sys/vm/

839

Deployment Guide

This directory facilitates the configuration of the Linux kernel's virtual memory (VM) subsystem. The kernel makes extensive and intelligent use of virtual memory, which is commonly referred to as swap space.

The following files are commonly found in the /proc/sys/vm/ directory:

block_dump — Configures block I/O debugging when enabled. All read/write and block dirtying operations done to files are logged accordingly. This can be useful if diagnosing disk spin up and spin downs for laptop battery conservation. All output when block_dump is enabled can be retrieved via dmesg. The default value is 0.

NOTE

If block_dump is enabled at the same time as kernel debugging, it is prudent to stop the klogd daemon, as it generates erroneous disk activity caused by

block_dump.

dirty_background_ratio — Starts background writeback of dirty data at this percentage of total memory, via a pdflush daemon. The default value is 10.

dirty_expire_centisecs — Defines when dirty in-memory data is old enough to be eligible for writeout. Data which has been dirty in-memory for longer than this interval is written out next time a pdflush daemon wakes up. The default value is 3000, expressed in hundredths of a second.

dirty_ratio — Starts active writeback of dirty data at this percentage of total memory for the generator of dirty data, via pdflush. The default value is 20.

dirty_writeback_centisecs — Defines the interval between pdflush daemon wakeups, which periodically writes dirty in-memory data out to disk. The default value is 500, expressed in hundredths of a second.

laptop_mode — Minimizes the number of times that a hard disk needs to spin up by keeping the disk spun down for as long as possible, therefore conserving battery power on laptops. This increases efficiency by combining all future I/O processes together, reducing the frequency of spin ups. The default value is 0, but is automatically enabled in case a battery on a laptop is used.

This value is controlled automatically by the acpid daemon once a user is notified battery power is enabled. No user modifications or interactions are necessary if the laptop supports the ACPI

(Advanced Configuration and Power Interface) specification.

For more information, see the following installed documentation:

/usr/share/doc/kernel-doc-kernel_version/Documentation/laptop-mode.txt

max_map_count — Configures the maximum number of memory map areas a process may have. In most cases, the default value of 65536 is appropriate.

min_free_kbytes — Forces the Linux VM (virtual memory manager) to keep a minimum number of kilobytes free. The VM uses this number to compute a pages_min value for each

lowmem zone in the system. The default value is in respect to the total memory on the machine.

nr_hugepages — Indicates the current number of configured hugetlb pages in the kernel.

840

APPENDIX E. THE PROC FILE SYSTEM

For more information, see the following installed documentation:

/usr/share/doc/kerneldoc-kernel_version/Documentation/vm/hugetlbpage.txt

nr_pdflush_threads — Indicates the number of pdflush daemons that are currently running.

This file is read-only, and should not be changed by the user. Under heavy I/O loads, the default value of two is increased by the kernel.

overcommit_memory — Configures the conditions under which a large memory request is accepted or denied. The following three modes are available:

0 — The kernel performs heuristic memory over commit handling by estimating the amount of memory available and failing requests that are blatantly invalid. Unfortunately, since memory is allocated using a heuristic rather than a precise algorithm, this setting can sometimes allow available memory on the system to be overloaded. This is the default setting.

1 — The kernel performs no memory over commit handling. Under this setting, the potential for memory overload is increased, but so is performance for memory intensive tasks (such as those executed by some scientific software).

2 — The kernel fails any request for memory that would cause the total address space to exceed the sum of the allocated swap space and the percentage of physical RAM specified in /proc/sys/vm/overcommit_ratio. This setting is best for those who desire less risk of memory overcommitment.

NOTE

This setting is only recommended for systems with swap areas larger than physical memory.

overcommit_ratio — Specifies the percentage of physical RAM considered when

/proc/sys/vm/overcommit_memory is set to 2. The default value is 50.

page-cluster — Sets the number of pages read in a single attempt. The default value of 3, which actually relates to 16 pages, is appropriate for most systems.

swappiness — Determines how much a machine should swap. The higher the value, the more swapping occurs. The default value, as a percentage, is set to 60.

All kernel-based documentation can be found in the following locally installed location:

/usr/share/doc/kernel-doc-kernel_version/Documentation/, which contains additional information.

E.3.10. /proc/sysvipc/

This directory contains information about System V IPC resources. The files in this directory relate to

System V IPC calls for messages (msg), semaphores (sem), and shared memory (shm).

E.3.11. /proc/tty/

841

Deployment Guide

This directory contains information about the available and currently used tty devices on the system.

Originally called teletype devices, any character-based data terminals are called tty devices.

In Linux, there are three different kinds of tty devices. Serial devices are used with serial connections, such as over a modem or using a serial cable. Virtual terminals create the common console connection, such as the virtual consoles available when pressing Alt+<F-key> at the system console. Pseudo terminals create a two-way communication that is used by some higher level applications, such as

XFree86. The drivers file is a list of the current tty devices in use, as in the following example: serial /dev/cua 5 64-127 serial:callout serial /dev/ttyS 4 64-127 serial pty_slave /dev/pts 136 0-255 pty:slave pty_master /dev/ptm 128 0-255 pty:master pty_slave /dev/ttyp 3 0-255 pty:slave pty_master /dev/pty 2 0-255 pty:master

/dev/vc/0 /dev/vc/0 4 0 system:vtmaster

/dev/ptmx /dev/ptmx 5 2 system

/dev/console /dev/console 5 1 system:console

/dev/tty /dev/tty 5 0 system:/dev/tty unknown /dev/vc/%d 4 1-63 console

The /proc/tty/driver/serial file lists the usage statistics and status of each of the serial tty lines.

In order for tty devices to be used as network devices, the Linux kernel enforces line discipline on the device. This allows the driver to place a specific type of header with every block of data transmitted over the device, making it possible for the remote end of the connection to treat a block of data as just one in a stream of data blocks. SLIP and PPP are common line disciplines, and each are commonly used to connect systems to one another over a serial link.

E.3.12. /proc/PID/

Out of Memory (OOM) refers to a computing state where all available memory, including swap space, has been allocated. When this situation occurs, it will cause the system to panic and stop functioning as expected. There is a switch that controls OOM behavior in /proc/sys/vm/panic_on_oom. When set to 1 the kernel will panic on OOM. A setting of 0 instructs the kernel to call a function named

oom_killer on an OOM. Usually, oom_killer can kill rogue processes and the system will survive.

The easiest way to change this is to echo the new value to /proc/sys/vm/panic_on_oom.

# cat /proc/sys/vm/panic_on_oom

1

# echo 0 > /proc/sys/vm/panic_on_oom

# cat /proc/sys/vm/panic_on_oom

0

It is also possible to prioritize which processes get killed by adjusting the oom_killer score. In

/proc/PID/ there are two tools labeled oom_adj and oom_score. Valid scores for oom_adj are in the range -16 to +15. To see the current oom_killer score, view the oom_score for the process.

oom_killer will kill processes with the highest scores first.

This example adjusts the oom_score of a process with a PID of 12465 to make it less likely that

oom_killer will kill it.

842

APPENDIX E. THE PROC FILE SYSTEM

# cat /proc/12465/oom_score

79872

# echo -5 > /proc/12465/oom_adj

# cat /proc/12465/oom_score

78

There is also a special value of -17, which disables oom_killer for that process. In the example below,

oom_score returns a value of 0, indicating that this process would not be killed.

# cat /proc/12465/oom_score

78

# echo -17 > /proc/12465/oom_adj

# cat /proc/12465/oom_score

0

A function called badness() is used to determine the actual score for each process. This is done by adding up 'points' for each examined process. The process scoring is done in the following way:

1. The basis of each process's score is its memory size.

2. The memory size of any of the process's children (not including a kernel thread) is also added to the score

3. The process's score is increased for 'niced' processes and decreased for long running processes.

4. Processes with the CAP_SYS_ADMIN and CAP_SYS_RAWIO capabilities have their scores reduced.

5. The final score is then bitshifted by the value saved in the oom_adj file.

Thus, a process with the highest oom_score value will most probably be a non-privileged, recently started process that, along with its children, uses a large amount of memory, has been 'niced', and handles no raw I/O.

E.4. USING THE SYSCTL COMMAND

The /sbin/sysctl command is used to view, set, and automate kernel settings in the /proc/sys/ directory.

For a quick overview of all settings configurable in the /proc/sys/ directory, type the /sbin/sysctl

-a command as root. This creates a large, comprehensive list, a small portion of which looks something like the following: net.ipv4.route.min_pmtu = 552 kernel.sysrq = 0 kernel.sem = 250 32000 32 128

This is the same information seen if each of the files were viewed individually. The only difference is the file location. For example, the /proc/sys/net/ipv4/route/min_pmtu file is listed as

843

Deployment Guide

net.ipv4.route.min_pmtu, with the directory slashes replaced by dots and the proc.sys portion assumed.

The sysctl command can be used in place of echo to assign values to writable files in the

/proc/sys/ directory. For example, instead of using the command echo 1 > /proc/sys/kernel/sysrq use the equivalent sysctl command as follows: sysctl -w kernel.sysrq="1" kernel.sysrq = 1

While quickly setting single values like this in /proc/sys/ is helpful during testing, this method does not work as well on a production system as special settings within /proc/sys/ are lost when the machine is rebooted. To preserve custom settings, add them to the /etc/sysctl.conf file.

The /etc/sysctl.conf file is installed by the initscripts package to override some kernel default values and therefore only contains a few of the possible parameters. Use the sysctl -a command to list the parameters in the sysctl key format. See the /usr/share/doc/kernel-

doc-kernel_version/Documentation/networking/ip-sysctl.txt file for more information on the possible settings.

Each time the system boots, the init program runs the /etc/rc.d/rc.sysinit script. This script contains a command to execute sysctl using /etc/sysctl.conf to determine the values passed to the kernel. Any values added to /etc/sysctl.conf therefore take effect each time the system boots.

Note that modules loaded after sysctl has parsed this file might override the settings.

E.5. ADDITIONAL RESOURCES

Below are additional sources of information about the proc file system.

Installable Documentation

/usr/share/doc/kernel-doc-kernel_version/Documentation/ — This directory, which is provided by the kernel-doc package, contains documentation about the proc file system. Before accessing the kernel documentation, you must run the following command as root:

~]# yum install kernel-doc

/usr/share/doc/kernel-

doc-kernel_version/Documentation/filesystems/proc.txt — Contains assorted, but limited, information about all aspects of the /proc/ directory.

/usr/share/doc/kernel-doc-kernel_version/Documentation/sysrq.txt — An overview of System Request Key options.

/usr/share/doc/kernel-doc-kernel_version/Documentation/sysctl/ — A directory containing a variety of sysctl tips, including modifying values that concern the kernel

(kernel.txt), accessing file systems (fs.txt), and virtual memory use (vm.txt).

844

APPENDIX E. THE PROC FILE SYSTEM

/usr/share/doc/kernel-doc-kernel_version/Documentation/networking/ip-

sysctl.txt — A detailed overview of IP networking options.

845

Deployment Guide

APPENDIX F. REVISION HISTORY

Revision 9-3

Version for 6.9 GA publication.

Wed Mar 15 2017 Mirek Jahoda

Revision 8-3 Mon May 30 2016

The /proc/meminfo appendix section updated; made minor improvements.

Maxim Svistunov

Revision 8-2 Wed May 25 2016

Added Relax-and-Recover (ReaR); made minor improvements.

Maxim Svistunov

Revision 8-1 Thu May 10 2016

Red Hat Enterprise Linux 6.8 GA release of the Deployment Guide.

Revision 7-1 Tue Jul 14 2015

Red Hat Enterprise Linux 6.7 GA release of the Deployment Guide.

Maxim Svistunov

Barbora Ančincová

Revision 7-0 Fri Apr 17 2015

Red Hat Enterprise Linux 6.7 Beta release of the Deployment Guide.

Barbora Ančincová

Revision 6-3 Thu Apr 2 2015 Barbora Ančincová

Updated TigerVNC, Viewing and Managing Log Files , Registering the System and Managing Subscriptions , and The kdump

Crash Recovery Service.

Revision 6-2 Fri Oct 14 2014

Red Hat Enterprise Linux 6.6 GA release of the Deployment Guide.

Barbora Ančincová

Revision 6-1 Fri Aug 22 2014 Jaromír Hradílek

Updated NetworkManager, Network Interfaces, Configuring Authentication, The kdump Crash Recovery Service , and The proc

File System.

Jaromír Hradílek Revision 6-0 Mon Aug 11 2014

Red Hat Enterprise Linux 6.6 Beta release of the Deployment Guide.

Revision 5-1 Thu Nov 21 2013

Red Hat Enterprise Linux 6.5 GA release of the Deployment Guide.

Revision 5-0 Thu Oct 3 2013

Red Hat Enterprise Linux 6.5 Beta release of the Deployment Guide.

Revision 4-1 Thu Feb 21 2013

Red Hat Enterprise Linux 6.4 GA release of the Deployment Guide.

Revision 4-0 Thu Dec 6 2012

Red Hat Enterprise Linux 6.4 Beta release of the Deployment Guide.

Revision 3-1 Wed Jun 20 2012

Red Hat Enterprise Linux 6.3 GA release of the Deployment Guide.

Revision 3-0 Tue Apr 24 2012

Red Hat Enterprise Linux 6.3 Beta release of the Deployment Guide.

Revision 2-1 Tue Dec 6 2011

Red Hat Enterprise Linux 6.2 GA release of the Deployment Guide.

Revision 2-0 Mon Oct 3 2011

Jaromír Hradílek

Jaromír Hradílek

Jaromír Hradílek

Jaromír Hradílek

Jaromír Hradílek

Jaromír Hradílek

Jaromír Hradílek

Jaromír Hradílek

846

Red Hat Enterprise Linux 6.2 Beta release of the Deployment Guide.

Revision 1-1 Wed May 19 2011

Red Hat Enterprise Linux 6.1 GA release of the Deployment Guide.

Revision 1-0 Tue Mar 22 2011

Red Hat Enterprise Linux 6.1 Beta release of the Deployment Guide.

Revision 0-1 Tue Nov 9 2010

Red Hat Enterprise Linux 6.0 GA release of the Deployment Guide.

Revision 0-0 Mon Nov 16 2009

Initialization of the Red Hat Enterprise Linux 6 Deployment Guide.

APPENDIX F. REVISION HISTORY

Jaromír Hradílek

Jaromír Hradílek

Douglas Silas

Douglas Silas

847

Deployment Guide

INDEX

Symbols

.fetchmailrc,

Fetchmail Configuration Options

server options,

Server Options

user options, User Options

.htaccess ,

Common httpd.conf Directives

(see also Apache HTTP Server )

.htpasswd , Common httpd.conf Directives

(see also Apache HTTP Server )

.procmailrc, Procmail Configuration

/dev/oprofile/, Understanding /dev/oprofile/

/etc/named.conf (see BIND)

/etc/sysconfig/ directory (see sysconfig directory)

/etc/sysconfig/dhcpd, Starting and Stopping the Server

/proc/ directory (see proc file system)

/var/spool/anacron ,

Configuring Anacron Jobs

/var/spool/cron , Configuring Cron Jobs

(see OProfile)

A

Access Control

configuring in SSSD, Creating Domains: Access Control

SSSD rules, Creating Domains: Access Control

anacron,

Cron and Anacron

anacron configuration file,

Configuring Anacron Jobs user-defined tasks, Configuring Anacron Jobs anacrontab , Configuring Anacron Jobs

Apache HTTP Server additional resources installable documentation,

Additional Resources

installed documentation,

Additional Resources useful websites, Additional Resources

checking configuration,

Editing the Configuration Files

checking status, Verifying the Service Status

directives

<Directory> ,

Common httpd.conf Directives

<IfDefine> , Common httpd.conf Directives

848

<IfModule> , Common httpd.conf Directives

<Location> ,

Common httpd.conf Directives

<Proxy> ,

Common httpd.conf Directives

<VirtualHost> ,

Common httpd.conf Directives

AccessFileName , Common httpd.conf Directives

Action , Common httpd.conf Directives

AddDescription ,

Common httpd.conf Directives

AddEncoding ,

Common httpd.conf Directives

AddHandler , Common httpd.conf Directives

AddIcon , Common httpd.conf Directives

AddIconByEncoding , Common httpd.conf Directives

AddIconByType ,

Common httpd.conf Directives

AddLanguage , Common httpd.conf Directives

AddType , Common httpd.conf Directives

Alias , Common httpd.conf Directives

Allow , Common httpd.conf Directives

AllowOverride ,

Common httpd.conf Directives

BrowserMatch ,

Common httpd.conf Directives

CacheDefaultExpire , Common httpd.conf Directives

CacheDisable , Common httpd.conf Directives

CacheEnable , Common httpd.conf Directives

CacheLastModifiedFactor , Common httpd.conf Directives

CacheMaxExpire , Common httpd.conf Directives

CacheNegotiatedDocs ,

Common httpd.conf Directives

CacheRoot , Common httpd.conf Directives

CustomLog ,

Common httpd.conf Directives

DefaultIcon , Common httpd.conf Directives

DefaultType , Common httpd.conf Directives

Deny ,

Common httpd.conf Directives

DirectoryIndex ,

Common httpd.conf Directives

DocumentRoot , Common httpd.conf Directives

ErrorDocument ,

Common httpd.conf Directives

ErrorLog , Common httpd.conf Directives

ExtendedStatus , Common httpd.conf Directives

Group , Common httpd.conf Directives

HeaderName , Common httpd.conf Directives

HostnameLookups , Common httpd.conf Directives

Include ,

Common httpd.conf Directives

IndexIgnore , Common httpd.conf Directives

IndexOptions , Common httpd.conf Directives

KeepAlive , Common httpd.conf Directives

KeepAliveTimeout ,

Common httpd.conf Directives

INDEX

849

Deployment Guide

LanguagePriority ,

Common httpd.conf Directives

Listen ,

Common httpd.conf Directives

LoadModule , Common httpd.conf Directives

LogFormat ,

Common httpd.conf Directives

LogLevel , Common httpd.conf Directives

MaxClients , Common Multi-Processing Module Directives

MaxKeepAliveRequests , Common httpd.conf Directives

MaxSpareServers , Common Multi-Processing Module Directives

MaxSpareThreads , Common Multi-Processing Module Directives

MinSpareServers , Common Multi-Processing Module Directives

MinSpareThreads , Common Multi-Processing Module Directives

NameVirtualHost ,

Common httpd.conf Directives

Options ,

Common httpd.conf Directives

Order ,

Common httpd.conf Directives

PidFile ,

Common httpd.conf Directives

ProxyRequests , Common httpd.conf Directives

ReadmeName ,

Common httpd.conf Directives

Redirect , Common httpd.conf Directives

ScriptAlias ,

Common httpd.conf Directives

ServerAdmin ,

Common httpd.conf Directives

ServerName , Common httpd.conf Directives

ServerRoot , Common httpd.conf Directives

ServerSignature , Common httpd.conf Directives

ServerTokens ,

Common httpd.conf Directives

SetEnvIf , Common ssl.conf Directives

StartServers , Common Multi-Processing Module Directives

SuexecUserGroup ,

Common httpd.conf Directives

ThreadsPerChild , Common Multi-Processing Module Directives

Timeout ,

Common httpd.conf Directives

TypesConfig ,

Common httpd.conf Directives

UseCanonicalName ,

Common httpd.conf Directives

User ,

Common httpd.conf Directives

UserDir , Common httpd.conf Directives

directories

/etc/httpd/ ,

Common httpd.conf Directives

/etc/httpd/conf.d/ ,

Editing the Configuration Files

, Common httpd.conf Directives

/usr/lib/httpd/modules/ ,

Common httpd.conf Directives

, Working with Modules

/usr/lib64/httpd/modules/ , Common httpd.conf Directives

, Working with Modules

/var/cache/mod_proxy/ , Common httpd.conf Directives

/var/www/cgi-bin/ , Common httpd.conf Directives

/var/www/html/ ,

Common httpd.conf Directives

850

INDEX

/var/www/icons/ , Common httpd.conf Directives

~/public_html/ , Common httpd.conf Directives

files

.htaccess ,

Common httpd.conf Directives

.htpasswd , Common httpd.conf Directives

/etc/httpd/conf.d/nss.conf ,

Enabling the mod_nss Module

/etc/httpd/conf.d/ssl.conf , Common ssl.conf Directives

, Enabling the mod_ssl Module

/etc/httpd/conf/httpd.conf ,

Editing the Configuration Files

,

Common httpd.conf Directives ,

Common Multi-Processing Module Directives

/etc/httpd/logs/access_log ,

Common httpd.conf Directives

/etc/httpd/logs/error_log , Common httpd.conf Directives

/etc/httpd/run/httpd.pid , Common httpd.conf Directives

/etc/mime.types ,

Common httpd.conf Directives

modules

developing, Writing a Module

loading,

Loading a Module

mod_asis,

Notable Changes

mod_cache,

New Features mod_cern_meta, Notable Changes

mod_disk_cache,

New Features mod_ext_filter, Notable Changes

mod_proxy_balancer,

New Features

mod_rewrite , Common httpd.conf Directives

mod_ssl , Setting Up an SSL Server

mod_userdir,

Updating the Configuration

restarting,

Restarting the Service

SSL server

certificate, An Overview of Certificates and Security

, Using an Existing Key and Certificate

,

Generating a New Key and Certificate

certificate authority, An Overview of Certificates and Security private key, An Overview of Certificates and Security

, Using an Existing Key and

Certificate , Generating a New Key and Certificate

public key, An Overview of Certificates and Security

starting, Starting the Service stopping, Stopping the Service

version 2.2

changes,

Notable Changes features, New Features updating from version 2.0, Updating the Configuration

851

Deployment Guide

virtual host, Setting Up Virtual Hosts

at ,

At and Batch

additional resources,

Additional Resources

authconfig (see Authentication Configuration Tool) commands,

Configuring Authentication from the Command Line

authentication

Authentication Configuration Tool, Configuring System Authentication

using fingerprint support, Using Fingerprint Authentication

using smart card authentication, Enabling Smart Card Authentication

Authentication Configuration Tool and Kerberos authentication,

Using Kerberos with LDAP or NIS Authentication

and LDAP,

Configuring LDAP Authentication

and NIS, Configuring NIS Authentication

and Winbind, Configuring Winbind Authentication

and Winbind authentication,

Configuring Winbind Authentication

authoritative nameserver (see BIND)

Automated Tasks, Automating System Tasks

B

batch , At and Batch

additional resources,

Additional Resources

Berkeley Internet Name Domain (see BIND)

BIND additional resources installed documentation,

Installed Documentation related books, Related Books useful websites, Useful Websites

common mistakes,

Common Mistakes to Avoid

configuration

acl statement, Common Statement Types

comment tags,

Comment Tags

controls statement, Other Statement Types

include statement, Common Statement Types

key statement, Other Statement Types

logging statement,

Other Statement Types

options statement,

Common Statement Types

server statement, Other Statement Types trusted-keys statement, Other Statement Types

852

view statement,

Other Statement Types

zone statement,

Common Statement Types

directories

/etc/named/ ,

Configuring the named Service

/var/named/ ,

Editing Zone Files

/var/named/data/ ,

Editing Zone Files

/var/named/dynamic/ ,

Editing Zone Files

/var/named/slaves/ ,

Editing Zone Files

features

Automatic Zone Transfer (AXFR), Incremental Zone Transfers (IXFR)

DNS Security Extensions (DNSSEC), DNS Security Extensions (DNSSEC)

Incremental Zone Transfer (IXFR), Incremental Zone Transfers (IXFR)

Internet Protocol version 6 (IPv6), Internet Protocol version 6 (IPv6)

multiple views, Multiple Views

Transaction SIGnature (TSIG), Transaction SIGnatures (TSIG)

files

/etc/named.conf ,

Configuring the named Service

, Configuring the Utility

/etc/rndc.conf , Configuring the Utility

/etc/rndc.key , Configuring the Utility

resource record, Nameserver Zones

types authoritative nameserver,

Nameserver Types primary (master) nameserver, Nameserver Zones , Nameserver Types

recursive nameserver,

Nameserver Types

secondary (slave) nameserver,

Nameserver Zones

,

Nameserver Types

utilities dig,

BIND as a Nameserver

, Using the dig Utility

, DNS Security Extensions (DNSSEC)

named, BIND as a Nameserver

, Configuring the named Service

rndc,

BIND as a Nameserver

, Using the rndc Utility

zones

$INCLUDE directive, Common Directives

$ORIGIN directive, Common Directives

$TTL directive, Common Directives

A (Address) resource record, Common Resource Records

CNAME (Canonical Name) resource record, Common Resource Records

comment tags,

Comment Tags

description, Nameserver Zones

example usage,

A Simple Zone File

, A Reverse Name Resolution Zone File

INDEX

853

Deployment Guide

MX (Mail Exchange) resource record, Common Resource Records

NS (Nameserver) resource record, Common Resource Records

PTR (Pointer) resource record, Common Resource Records

SOA (Start of Authority) resource record, Common Resource Records

blkid,

Using the blkid Command

block devices, /proc/devices

(see also /proc/devices)

definition of, /proc/devices

bonding (see channel bonding) boot loader verifying,

Verifying the Boot Loader

boot media,

Preparing to Upgrade

C

ch-email .fetchmailrc

global options, Global Options

channel bonding

configuration, Using Channel Bonding description, Using Channel Bonding

interface

configuration of, Channel Bonding Interfaces

parameters to bonded interfaces, Bonding Module Directives

channel bonding interface (see kernel module)

character devices, /proc/devices

(see also /proc/devices)

definition of, /proc/devices

chkconfig (see services configuration)

Configuration File Changes, Preserving Configuration File Changes

CPU usage,

Viewing CPU Usage

crash analyzing the dump

message buffer, Displaying the Message Buffer

open files, Displaying Open Files

processes, Displaying a Process Status

stack trace, Displaying a Backtrace

virtual memory,

Displaying Virtual Memory Information

854

opening the dump image,

Running the crash Utility

system requirements,

Analyzing the Core Dump

createrepo, Creating a Yum Repository

cron,

Cron and Anacron

additional resources,

Additional Resources

cron configuration file, Configuring Cron Jobs user-defined tasks, Configuring Cron Jobs crontab , Configuring Cron Jobs

CUPS (see Printer Configuration)

D

date (see date configuration) date configuration date,

Date and Time Setup

system-config-date,

Date and Time Properties

default gateway, Static Routes and the Default Gateway

deleting cache files in SSSD,

Managing the SSSD Cache

Denial of Service attack, /proc/sys/net/

(see also /proc/sys/net/ directory)

definition of, /proc/sys/net/

desktop environments (see X)

df, Using the df Command

DHCP, DHCP Servers

additional resources,

Additional Resources

client configuration, Configuring a DHCPv4 Client

command-line options,

Starting and Stopping the Server

connecting to, Configuring a DHCPv4 Client

dhcpd.conf, Configuration File

dhcpd.leases,

Starting and Stopping the Server

dhcpd6.conf, DHCP for IPv6 (DHCPv6)

DHCPv6, DHCP for IPv6 (DHCPv6)

dhcrelay, DHCP Relay Agent

global parameters, Configuration File group, Configuration File

options,

Configuration File

reasons for using, Why Use DHCP?

Relay Agent, DHCP Relay Agent

shared-network, Configuration File

INDEX

855

Deployment Guide

starting the server, Starting and Stopping the Server stopping the server, Starting and Stopping the Server

subnet, Configuration File dhcpd.conf, Configuration File

dhcpd.leases,

Starting and Stopping the Server

DHCPv4

server configuration, Configuring a DHCPv4 Server

dhcrelay, DHCP Relay Agent

dig (see BIND) directory server (see OpenLDAP) display managers (see X)

DNS

definition, DNS Servers

(see also BIND) documentation finding installed,

Practical and Common Examples of RPM Usage

DoS attack (see Denial of Service attack) downgrade and SSSD,

Downgrading SSSD

drivers (see kernel module)

DSA keys

generating, Generating Key Pairs

du, Using the du Command

Dynamic Host Configuration Protocol (see DHCP)

E

email additional resources,

Additional Resources

installed documentation,

Installed Documentation

online documentation,

Online Documentation related books, Related Books

Fetchmail, Fetchmail

mail server

Dovecot, Dovecot

Postfix,

Postfix

Procmail, Mail Delivery Agents

856

program classifications,

Email Program Classifications

protocols, Email Protocols

IMAP,

IMAP

POP, POP

SMTP,

SMTP

security, Securing Communication

clients,

Secure Email Clients

servers,

Securing Email Client Communications

Sendmail,

Sendmail

spam

filtering out, Spam Filters

types

Mail Delivery Agent, Mail Delivery Agent

Mail Transport Agent, Mail Transport Agent

Mail User Agent, Mail User Agent

epoch, /proc/stat

(see also /proc/stat)

definition of, /proc/stat

Ethernet (see network)

Ethtool command devname ,

Ethtool

option

--advertise ,

Ethtool

--autoneg ,

Ethtool

--duplex ,

Ethtool

--features ,

Ethtool

--identify ,

Ethtool

--msglvl , Ethtool

--phyad , Ethtool

--port , Ethtool

--show-features ,

Ethtool

--show-time-stamping , Ethtool

--sopass , Ethtool

--speed , Ethtool

--statistics ,

Ethtool

--test ,

Ethtool

INDEX

857

Deployment Guide

--wol ,

Ethtool

--xcvr ,

Ethtool

exec-shield

enabling, /proc/sys/kernel/ introducing, /proc/sys/kernel/

execution domains, /proc/execdomains

(see also /proc/execdomains)

definition of, /proc/execdomains

extra packages for Enterprise Linux (EPEL)

installable packages, Finding RPM Packages

F

Fetchmail, Fetchmail

additional resources,

Additional Resources

command options,

Fetchmail Command Options

informational,

Informational or Debugging Options special, Special Options

configuration options, Fetchmail Configuration Options

global options, Global Options

server options,

Server Options

user options, User Options

file system virtual (see proc file system) file systems,

Viewing Block Devices and File Systems

files, proc file system changing,

Changing Virtual Files ,

Using the sysctl Command

viewing, Viewing Virtual Files

,

Using the sysctl Command

findmnt, Using the findmnt Command

findsmb,

Connecting to a Samba Share

findsmb program,

Samba Distribution Programs

FQDN (see fully qualified domain name)

frame buffer device, /proc/fb

(see also /proc/fb)

free, Using the free Command

FTP,

FTP

858

(see also vsftpd)

active mode, The File Transfer Protocol command port, The File Transfer Protocol data port, The File Transfer Protocol

definition of, FTP

introducing, The File Transfer Protocol passive mode, The File Transfer Protocol

fully qualified domain name,

Nameserver Zones

G

gamin, Monitoring Files and Directories with gamin

GNOME,

Desktop Environments

(see also X) gnome-system-log (see Log File Viewer)

gnome-system-monitor,

Using the System Monitor Tool

, Using the System Monitor Tool

, Using the System Monitor Tool , Using the System Monitor Tool

GnuPG checking RPM package signatures,

Checking a Package's Signature

group configuration modifying group properties,

Modifying Group Properties

groups additional resources,

Additional Resources

installed documentation,

Installed Documentation

INDEX

GRUB boot loader

configuration file, Configuring the GRUB Boot Loader configuring, Configuring the GRUB Boot Loader

H

hardware

viewing, Viewing Hardware Information

HTTP server (see Apache HTTP Server) httpd (see Apache HTTP Server ) hugepages

configuration of, /proc/sys/vm/

I

ifdown, Interface Control Scripts

859

Deployment Guide

ifup, Interface Control Scripts

information

about your system, System Monitoring Tools

initial RAM disk image verifying,

Verifying the Initial RAM Disk Image

IBM eServer System i, Verifying the Initial RAM Disk Image

initial RPM repositories

installable packages, Finding RPM Packages

insmod, Loading a Module

(see also kernel module) installing package groups

installing package groups with PackageKit, Installing and Removing Package Groups

installing the kernel, Manually Upgrading the Kernel

K

KDE, Desktop Environments

(see also X) kdump additional resources installed documents,

Additional Resources manual pages, Additional Resources websites, Additional Resources

analyzing the dump (see crash) configuring the service

default action, Using the Kernel Dump Configuration Utility

, Configuring kdump on the

Command Line

dump image compression, Using the Kernel Dump Configuration Utility

, Configuring kdump on the Command Line

filtering level, Using the Kernel Dump Configuration Utility

, Configuring kdump on the

Command Line

initial RAM disk, Using the Kernel Dump Configuration Utility

, Configuring kdump on the

Command Line

kernel image, Using the Kernel Dump Configuration Utility

, Configuring kdump on the

Command Line

kernel options, Using the Kernel Dump Configuration Utility

, Configuring kdump on the

Command Line

memory usage,

Configuring kdump at First Boot

, Using the Kernel Dump Configuration

Utility , Configuring kdump on the Command Line

860

INDEX

supported targets,

Using the Kernel Dump Configuration Utility

, Configuring kdump on the

Command Line target location,

Using the Kernel Dump Configuration Utility

, Configuring kdump on the

Command Line

enabling the service, Configuring kdump at First Boot

, Using the Kernel Dump Configuration

Utility , Configuring kdump on the Command Line

fadump,

Using fadump on IBM PowerPC hardware

installing, Installing the kdump Service

running the service, Configuring kdump on the Command Line

system requirements,

Configuring the kdump Service

testing the configuration, Testing the Configuration

kernel

downloading, Downloading the Upgraded Kernel

installing kernel packages, Manually Upgrading the Kernel

kernel packages, Overview of Kernel Packages

package,

Manually Upgrading the Kernel

performing kernel upgrade, Performing the Upgrade

RPM package, Manually Upgrading the Kernel

upgrade kernel available, Downloading the Upgraded Kernel

Red Hat network,

Downloading the Upgraded Kernel

Security Errata,

Downloading the Upgraded Kernel

upgrading preparing,

Preparing to Upgrade

working boot media,

Preparing to Upgrade

upgrading the kernel, Manually Upgrading the Kernel

Kernel Dump Configuration (see kdump) kernel module

bonding module, Using Channel Bonding description, Using Channel Bonding parameters to bonded interfaces, Bonding Module Directives

definition, Working with Kernel Modules

directories

/etc/sysconfig/modules/,

Persistent Module Loading

/lib/modules/<kernel_version>/kernel/drivers/,

Loading a Module

files

/proc/modules, Listing Currently-Loaded Modules

listing

currently loaded modules, Listing Currently-Loaded Modules

861

Deployment Guide

module information, Displaying Information About a Module

loading

at the boot time, Persistent Module Loading

for the current session,

Loading a Module

module parameters

bonding module parameters, Bonding Module Directives

supplying, Setting Module Parameters

unloading,

Unloading a Module

utilities insmod,

Loading a Module

lsmod, Listing Currently-Loaded Modules

modinfo, Displaying Information About a Module

modprobe,

Loading a Module

,

Unloading a Module rmmod, Unloading a Module

kernel package kernel

for single,multicore and multiprocessor systems, Overview of Kernel Packages

kernel-devel

kernel headers and makefiles, Overview of Kernel Packages

kernel-doc documentation files,

Overview of Kernel Packages

kernel-firmware firmware files,

Overview of Kernel Packages

kernel-headers

C header files files, Overview of Kernel Packages

perf firmware files,

Overview of Kernel Packages

kernel upgrading preparing,

Preparing to Upgrade

keyboard configuration, Keyboard Configuration

Keyboard Indicator applet, Adding the Keyboard Layout Indicator

Keyboard Preferences utility,

Changing the Keyboard Layout layout, Changing the Keyboard Layout

typing break, Setting Up a Typing Break

862

Keyboard Indicator (see keyboard configuration)

Keyboard Preferences (see keyboard configuration)

kwin, Window Managers

(see also X)

L

LDAP (see OpenLDAP)

Log File Viewer, Managing Log Files in a Graphical Environment filtering, Viewing Log Files

monitoring, Monitoring Log Files

refresh rate, Viewing Log Files searching, Viewing Log Files

log files, Viewing and Managing Log Files

(see also Log File Viewer)

description, Viewing and Managing Log Files

locating, Locating Log Files

monitoring, Monitoring Log Files

rotating, Locating Log Files

rsyslogd daemon, Viewing and Managing Log Files

viewing, Viewing Log Files

logrotate, Locating Log Files

lsblk, Using the lsblk Command

lscpu,

Using the lscpu Command

lsmod, Listing Currently-Loaded Modules

(see also kernel module)

lspci, Using the lspci Command

, /proc/bus/pci

lspcmcia, Using the lspcmcia Command

lsusb,

Using the lsusb Command

M

Mail Delivery Agent (see email)

Mail Transport Agent (see email) (see MTA)

Mail Transport Agent Switcher, Mail Transport Agent (MTA) Configuration

Mail User Agent, Mail Transport Agent (MTA) Configuration

(see email)

MDA (see Mail Delivery Agent) memory usage,

Viewing Memory Usage

metacity,

Window Managers

(see also X)

modinfo, Displaying Information About a Module

INDEX

863

Deployment Guide

(see also kernel module) modprobe,

Loading a Module ,

Unloading a Module

(see also kernel module) module (see kernel module) module parameters (see kernel module)

MTA (see Mail Transport Agent)

setting default, Mail Transport Agent (MTA) Configuration switching with Mail Transport Agent Switcher, Mail Transport Agent (MTA) Configuration

MUA, Mail Transport Agent (MTA) Configuration

(see Mail User Agent)

Multihomed DHCP

host configuration, Host Configuration

server configuration, Configuring a Multihomed DHCP Server

mwm,

Window Managers

(see also X)

N

named (see BIND) nameserver (see DNS)

net program, Samba Distribution Programs

network additional resources,

Additional Resources

bridge bridging,

Network Bridge

commands

/sbin/ifdown,

Interface Control Scripts

/sbin/ifup,

Interface Control Scripts

/sbin/service network,

Interface Control Scripts

configuration, Interface Configuration Files

configuration files, Network Configuration Files

functions,

Network Function Files

interface configuration files,

Interface Configuration Files

interfaces

802.1Q, Setting Up 802.1Q VLAN Tagging

alias, Alias and Clone Files

channel bonding, Channel Bonding Interfaces

clone,

Alias and Clone Files

dialup, Dialup Interfaces

Ethernet,

Ethernet Interfaces

864

ethtool,

Ethtool

VLAN,

Setting Up 802.1Q VLAN Tagging

scripts, Network Interfaces

Network Time Protocol (see NTP)

NIC binding into single channel,

Using Channel Bonding

nmblookup program, Samba Distribution Programs

NSCD and SSSD,

Using NSCD with SSSD

NTP

configuring, Network Time Protocol Properties

, Network Time Protocol Setup

ntpd,

Network Time Protocol Properties

, Network Time Protocol Setup

ntpdate,

Network Time Protocol Setup

ntpd (see NTP) ntpdate (see NTP) ntsysv (see services configuration)

O

opannotate (see OProfile) opcontrol (see OProfile)

OpenLDAP

checking status, Checking the Service Status

client applications,

Overview of Common LDAP Client Applications

configuration

database, Changing the Database-Specific Configuration

global, Changing the Global Configuration

overview, OpenLDAP Server Setup

directives

olcAllows, Changing the Global Configuration olcConnMaxPending, Changing the Global Configuration olcConnMaxPendingAuth, Changing the Global Configuration

olcDisallows,

Changing the Global Configuration

olcIdleTimeout,

Changing the Global Configuration

olcLogFile,

Changing the Global Configuration

olcReadOnly, Changing the Database-Specific Configuration

olcReferral, Changing the Global Configuration

olcRootDN, Changing the Database-Specific Configuration

olcRootPW,

Changing the Database-Specific Configuration

INDEX

865

Deployment Guide

olcSuffix, Changing the Database-Specific Configuration

olcWriteTimeout, Changing the Global Configuration

directories

/etc/openldap/slapd.d/, Configuring an OpenLDAP Server

/etc/openldap/slapd.d/cn=config/cn=schema/, Extending Schema

features,

OpenLDAP Features

files

/etc/openldap/ldap.conf, Configuring an OpenLDAP Server

/etc/openldap/slapd.d/cn=config.ldif,

Changing the Global Configuration

/etc/openldap/slapd.d/cn=config/olcDatabase={2}bdb.ldif, Changing the Database-Specific

Configuration

installation,

Installing the OpenLDAP Suite

migrating authentication information, Migrating Old Authentication Information to LDAP

Format

packages, Installing the OpenLDAP Suite

restarting,

Restarting the Service running, Starting the Service

schema, Extending Schema

stopping, Stopping the Service

terminology attribute,

LDAP Terminology entry, LDAP Terminology

LDIF, LDAP Terminology

utilities, Overview of OpenLDAP Server Utilities

, Overview of OpenLDAP Client Utilities

OpenSSH,

OpenSSH

,

Main Features

(see also SSH) additional resources,

Additional Resources

client,

OpenSSH Clients

scp,

Using the scp Utility

sftp, Using the sftp Utility

ssh,

Using the ssh Utility

DSA keys

generating, Generating Key Pairs

RSA keys

generating, Generating Key Pairs

RSA Version 1 keys

generating, Generating Key Pairs

866

server,

Starting an OpenSSH Server starting, Starting an OpenSSH Server stopping, Starting an OpenSSH Server

ssh-add,

Configuring ssh-agent ssh-agent, Configuring ssh-agent

ssh-keygen

DSA, Generating Key Pairs

RSA, Generating Key Pairs

RSA Version 1, Generating Key Pairs

using key-based authentication, Using Key-Based Authentication

OpenSSL additional resources,

Additional Resources

SSL (see SSL )

TLS (see TLS )

ophelp, Setting Events to Monitor

opreport (see OProfile)

OProfile,

OProfile

/dev/oprofile/, Understanding /dev/oprofile/

additional resources,

Additional Resources

configuring, Configuring OProfile

separating profiles,

Separating Kernel and User-space Profiles

events

sampling rate, Sampling Rate

setting, Setting Events to Monitor

Java, OProfile Support for Java

monitoring the kernel, Specifying the Kernel

opannotate, Using opannotate

opcontrol,

Configuring OProfile

--no-vmlinux,

Specifying the Kernel

--start,

Starting and Stopping OProfile

--vmlinux=,

Specifying the Kernel

ophelp, Setting Events to Monitor

opreport, Using opreport ,

Getting more detailed output on the modules

on a single executable, Using opreport on a Single Executable

oprofiled, Starting and Stopping OProfile log file, Starting and Stopping OProfile

INDEX

867

Deployment Guide

overview of tools, Overview of Tools

reading data,

Analyzing the Data

saving data,

Saving Data

starting, Starting and Stopping OProfile

SystemTap,

OProfile and SystemTap

unit mask, Unit Masks

oprofiled (see OProfile) oprof_start,

Graphical Interface

OS/400 boot loader

configuration file, Configuring the OS/400 Boot Loader configuring, Configuring the OS/400 Boot Loader

P

package

kernel RPM, Manually Upgrading the Kernel

PackageKit, PackageKit

adding and removing,

Using Add/Remove Software

architecture,

PackageKit Architecture

installing and removing package groups, Installing and Removing Package Groups

installing packages, PackageKit

managing packages,

PackageKit

PolicyKit

authentication, Updating Packages with Software Update

uninstalling packages,

PackageKit updating packages, PackageKit viewing packages, PackageKit

viewing transaction log, Viewing the Transaction Log

packages

adding and removing with PackageKit, Using Add/Remove Software

dependencies, Unresolved Dependency

determining file ownership with,

Practical and Common Examples of RPM Usage

displaying packages yum info,

Displaying Package Information

displaying packages with Yum yum info,

Displaying Package Information

extra packages for Enterprise Linux (EPEL),

Finding RPM Packages

filtering with PackageKit, Finding Packages with Filters

Development,

Finding Packages with Filters

868

Free, Finding Packages with Filters

Hide subpackages,

Finding Packages with Filters

Installed,

Finding Packages with Filters

No filter,

Finding Packages with Filters

Only available, Finding Packages with Filters

Only development, Finding Packages with Filters

Only end user files, Finding Packages with Filters

Only graphical, Finding Packages with Filters

Only installed, Finding Packages with Filters

Only native packages, Finding Packages with Filters

Only newest packages, Finding Packages with Filters filtering with PackageKit for packages, Finding Packages with Filters

finding deleted files from, Practical and Common Examples of RPM Usage

finding RPM packages, Finding RPM Packages initial RPM repositories, Finding RPM Packages

installing a package group with Yum, Installing Packages

installing and removing package groups, Installing and Removing Package Groups

installing packages with PackageKit, PackageKit , Installing and Removing Packages (and

Dependencies) dependencies, Installing and Removing Packages (and Dependencies)

installing RPM, Installing and Upgrading

installing with Yum, Installing Packages

iRed Hat Enterprise Linux installation media,

Finding RPM Packages

kernel

for single,multicore and multiprocessor systems, Overview of Kernel Packages

kernel-devel

kernel headers and makefiles, Overview of Kernel Packages

kernel-doc documentation files,

Overview of Kernel Packages

kernel-firmware firmware files,

Overview of Kernel Packages

kernel-headers

C header files files, Overview of Kernel Packages

listing packages with Yum

Glob expressions, Listing Packages yum grouplist, Listing Packages yum list all, Listing Packages yum list available, Listing Packages

INDEX

869

Deployment Guide yum list installed,

Listing Packages

yum repolist,

Listing Packages yum search, Listing Packages

locating documentation for,

Practical and Common Examples of RPM Usage

managing packages with PackageKit, PackageKit

obtaining list of files, Practical and Common Examples of RPM Usage

packages and package groups,

Packages and Package Groups

perf firmware files,

Overview of Kernel Packages

querying uninstalled, Practical and Common Examples of RPM Usage

removing,

Uninstalling

removing package groups with Yum, Removing Packages

removing packages with PackageKit, Installing and Removing Packages (and Dependencies)

RPM, RPM

already installed, Package Already Installed

configuration file changes,

Configuration File Changes

conflict,

Conflicting Files

failed dependencies,

Unresolved Dependency

freshening, Freshening

pristine sources,

RPM Design Goals

querying, Querying

removing,

Uninstalling source and binary packages, RPM

tips,

Practical and Common Examples of RPM Usage

uninstalling,

Uninstalling

verifying,

Verifying

searching packages with Yum

yum search, Searching Packages

setting packages with PackageKit checking interval,

Updating Packages with Software Update

uninstalling packages with PackageKit, PackageKit

uninstalling packages with Yum,

Removing Packages

yum remove package_name,

Removing Packages

updating currently installed packages

available updates, Updating Packages with Software Update

updating packages with PackageKit, PackageKit

PolicyKit, Updating Packages with Software Update

870

INDEX

Software Update, Updating Packages with Software Update

upgrading RPM, Installing and Upgrading

viewing packages with PackageKit, PackageKit

viewing transaction log, Viewing the Transaction Log

viewing Yum repositories with PackageKit, Refreshing Software Sources (Yum Repositories)

Yum instead of RPM, RPM

pdbedit program,

Samba Distribution Programs

PolicyKit, Updating Packages with Software Update

Postfix,

Postfix default installation, The Default Postfix Installation

postfix, Mail Transport Agent (MTA) Configuration

prefdm (see X) primary nameserver (see BIND)

Printer Configuration

CUPS,

Printer Configuration

IPP Printers,

Adding an IPP Printer

LDP/LPR Printers,

Adding an LPD/LPR Host or Printer

Local Printers,

Adding a Local Printer

New Printer, Starting Printer Setup

Print Jobs,

Managing Print Jobs

Samba Printers,

Adding a Samba (SMB) printer

Settings, The Settings Page

Sharing Printers,

Sharing Printers

printers (see Printer Configuration) proc file system

/proc/buddyinfo, /proc/buddyinfo

/proc/bus/ directory,

/proc/bus/

/proc/bus/pci

viewing using lspci, /proc/bus/pci

/proc/cmdline, /proc/cmdline

/proc/cpuinfo,

/proc/cpuinfo

/proc/crypto,

/proc/crypto

/proc/devices

block devices, /proc/devices character devices, /proc/devices

/proc/dma,

/proc/dma

/proc/driver/ directory, /proc/driver/

/proc/execdomains,

/proc/execdomains

871

Deployment Guide

/proc/fb, /proc/fb

/proc/filesystems,

/proc/filesystems

/proc/fs/ directory, /proc/fs

/proc/interrupts, /proc/interrupts

/proc/iomem, /proc/iomem

/proc/ioports, /proc/ioports

/proc/irq/ directory, /proc/irq/

/proc/kcore, /proc/kcore

/proc/kmsg,

/proc/kmsg

/proc/loadavg, /proc/loadavg

/proc/locks,

/proc/locks

/proc/mdstat, /proc/mdstat

/proc/meminfo,

/proc/meminfo

/proc/misc,

/proc/misc

/proc/modules, /proc/modules

/proc/mounts,

/proc/mounts

/proc/mtrr, /proc/mtrr

/proc/net/ directory, /proc/net/

/proc/partitions,

/proc/partitions

/proc/PID/ directory, /proc/PID/

/proc/scsi/ directory, /proc/scsi/

/proc/self/ directory, /proc/self/

/proc/slabinfo, /proc/slabinfo

/proc/stat, /proc/stat

/proc/swaps,

/proc/swaps

/proc/sys/ directory, /proc/sys/

,

Using the sysctl Command

(see also sysctl)

/proc/sys/dev/ directory, /proc/sys/dev/

/proc/sys/fs/ directory,

/proc/sys/fs/

/proc/sys/kernel/ directory,

/proc/sys/kernel/

/proc/sys/kernel/exec-shield,

/proc/sys/kernel/

/proc/sys/kernel/sysrq (see system request key)

/proc/sys/net/ directory,

/proc/sys/net/

/proc/sys/vm/ directory, /proc/sys/vm/

/proc/sysrq-trigger, /proc/sysrq-trigger

/proc/sysvipc/ directory, /proc/sysvipc/

/proc/tty/ directory, /proc/tty/

/proc/uptime, /proc/uptime

/proc/version,

/proc/version

additional resources,

Additional Resources

installed documentation,

Additional Resources

872

changing files within,

Changing Virtual Files

, /proc/sys/

, Using the sysctl Command

files within, top-level,

Top-level Files within the proc File System

introduced, The proc File System process directories, Process Directories

subdirectories within,

Directories within /proc/

viewing files within, Viewing Virtual Files

processes, Viewing System Processes

Procmail, Mail Delivery Agents

additional resources,

Additional Resources

configuration, Procmail Configuration

recipes,

Procmail Recipes

delivering, Delivering vs. Non-Delivering Recipes

examples, Recipe Examples

flags,

Flags local lockfiles, Specifying a Local Lockfile

non-delivering,

Delivering vs. Non-Delivering Recipes

SpamAssassin, Spam Filters

special actions,

Special Conditions and Actions

special conditions,

Special Conditions and Actions

ps,

Using the ps Command

R

RAM, Viewing Memory Usage

rcp, Using the scp Utility

ReaR

basic usage, Basic ReaR Usage

recursive nameserver (see BIND)

Red Hat Support Tool

getting support on the command line, Accessing Support Using the Red Hat Support Tool

Red Hat Enterprise Linux installation media

installable packages, Finding RPM Packages

Red Hat Subscription Management

subscription, Registering the System and Attaching Subscriptions

removing package groups

removing package groups with PackageKit, Installing and Removing Package Groups

resource record (see BIND)

rmmod, Unloading a Module

INDEX

873

Deployment Guide

(see also kernel module) rndc (see BIND) root nameserver (see BIND) rpcclient program,

Samba Distribution Programs

RPM, RPM

additional resources,

Additional Resources

already installed, Package Already Installed

basic modes, Using RPM

checking package signatures,

Checking a Package's Signature

configuration file changes,

Configuration File Changes conf.rpmsave, Configuration File Changes

conflicts, Conflicting Files dependencies, Unresolved Dependency

design goals, RPM Design Goals powerful querying, RPM Design Goals

system verification,

RPM Design Goals

upgradability,

RPM Design Goals

determining file ownership with,

Practical and Common Examples of RPM Usage

documentation with,

Practical and Common Examples of RPM Usage

failed dependencies,

Unresolved Dependency

file conflicts resolving,

Conflicting Files

file name, Installing and Upgrading

finding deleted files with, Practical and Common Examples of RPM Usage

finding RPM packages, Finding RPM Packages

freshening, Freshening

GnuPG,

Checking a Package's Signature

installing, Installing and Upgrading

md5sum, Checking a Package's Signature

querying, Querying

querying for file list, Practical and Common Examples of RPM Usage querying uninstalled packages, Practical and Common Examples of RPM Usage

tips,

Practical and Common Examples of RPM Usage

uninstalling,

Uninstalling

upgrading,

Installing and Upgrading

verifying,

Verifying

website, Useful Websites

RPM Package Manager (see RPM)

RSA keys

874

generating, Generating Key Pairs

RSA Version 1 keys

generating, Generating Key Pairs

rsyslog, Viewing and Managing Log Files

actions,

Actions configuration, Basic Configuration of Rsyslog

debugging, Debugging Rsyslog

filters,

Filters

global directives, Global Directives

log rotation, Log Rotation

modules, Using Rsyslog Modules

new configuration format, Using the New Configuration Format

queues,

Working with Queues in Rsyslog

rulesets, Rulesets

templates, Templates

runlevel (see services configuration)

S

Samba (see Samba)

Abilities,

Introduction to Samba

Account Information Databases, Samba Account Information Databases

ldapsam,

Samba Account Information Databases

ldapsam_compat,

Samba Account Information Databases

mysqlsam,

Samba Account Information Databases

Plain Text, Samba Account Information Databases smbpasswd, Samba Account Information Databases

tdbsam,

Samba Account Information Databases xmlsam, Samba Account Information Databases

Additional Resources, Additional Resources

installed documentation,

Additional Resources related books, Additional Resources useful websites, Additional Resources

Backward Compatible Database Back Ends,

Samba Account Information Databases

Browsing, Samba Network Browsing

configuration, Configuring a Samba Server , Command-Line Configuration default, Configuring a Samba Server

CUPS Printing Support,

Samba with CUPS Printing Support

CUPS smb.conf,

Simple smb.conf Settings

INDEX

875

Deployment Guide daemon nmbd,

Samba Daemons and Related Services overview, Samba Daemons and Related Services smbd, Samba Daemons and Related Services winbindd, Samba Daemons and Related Services

encrypted passwords, Encrypted Passwords

findsmb,

Connecting to a Samba Share

graphical configuration, Graphical Configuration

Introduction, Introduction to Samba

Network Browsing, Samba Network Browsing

Domain Browsing, Domain Browsing

WINS,

WINS (Windows Internet Name Server)

New Database Back Ends, Samba Account Information Databases

Programs, Samba Distribution Programs findsmb, Samba Distribution Programs

net,

Samba Distribution Programs nmblookup, Samba Distribution Programs

pdbedit,

Samba Distribution Programs

rpcclient,

Samba Distribution Programs smbcacls, Samba Distribution Programs smbclient, Samba Distribution Programs

smbcontrol,

Samba Distribution Programs smbpasswd, Samba Distribution Programs smbspool, Samba Distribution Programs

smbstatus,

Samba Distribution Programs

smbtar,

Samba Distribution Programs testparm, Samba Distribution Programs wbinfo, Samba Distribution Programs

Reference,

Samba

Samba Printers,

Adding a Samba (SMB) printer

Security Modes, Samba Security Modes , User-Level Security

Active Directory Security Mode, User-Level Security

Domain Security Mode, User-Level Security

Share-Level Security, Share-Level Security

User Level Security, User-Level Security

Server Types,

Samba Server Types and the smb.conf File

server types

Domain Controller,

Domain Controller

Domain Member, Domain Member Server

876

Stand Alone,

Stand-alone Server

service conditional restarting,

Starting and Stopping Samba

reloading,

Starting and Stopping Samba

restarting,

Starting and Stopping Samba starting, Starting and Stopping Samba stopping, Starting and Stopping Samba

share

connecting to via the command line, Connecting to a Samba Share connecting to with Nautilus, Connecting to a Samba Share

mounting, Mounting the Share

smb.conf,

Samba Server Types and the smb.conf File

Active Directory Member Server example, Domain Member Server

Anonymous Print Server example,

Stand-alone Server

Anonymous Read Only example, Stand-alone Server

Anonymous Read/Write example,

Stand-alone Server

NT4-style Domain Member example, Domain Member Server

PDC using Active Directory, Domain Controller

PDC using tdbsam, Domain Controller

Secure File and Print Server example,

Stand-alone Server

smbclient, Connecting to a Samba Share

WINS,

WINS (Windows Internet Name Server)

scp (see OpenSSH) secondary nameserver (see BIND) security plug-in (see Security)

Security-Related Packages

updating security-related packages, Updating Packages

Sendmail,

Sendmail

additional resources,

Additional Resources

aliases,

Masquerading

common configuration changes,

Common Sendmail Configuration Changes

default installation, The Default Sendmail Installation

LDAP and,

Using Sendmail with LDAP

limitations,

Purpose and Limitations

masquerading, Masquerading

purpose, Purpose and Limitations

spam,

Stopping Spam

with UUCP, Common Sendmail Configuration Changes

INDEX

877

Deployment Guide sendmail,

Mail Transport Agent (MTA) Configuration

service (see services configuration)

services configuration, Services and Daemons

chkconfig, Using the chkconfig Utility

ntsysv,

Using the ntsysv Utility

runlevel, Configuring the Default Runlevel

service,

Running Services

system-config-services,

Using the Service Configuration Utility

sftp (see OpenSSH) slab pools (see /proc/slabinfo) slapd (see OpenLDAP)

smbcacls program, Samba Distribution Programs

smbclient, Connecting to a Samba Share

smbclient program,

Samba Distribution Programs

smbcontrol program,

Samba Distribution Programs

smbpasswd program,

Samba Distribution Programs

smbspool program,

Samba Distribution Programs

smbstatus program,

Samba Distribution Programs

smbtar program,

Samba Distribution Programs

SpamAssassin

using with Procmail, Spam Filters

ssh (see OpenSSH)

SSH protocol

authentication, Authentication

configuration files, Configuration Files

system-wide configuration files,

Configuration Files user-specific configuration files, Configuration Files

connection sequence,

Event Sequence of an SSH Connection

features,

Main Features

insecure protocols, Requiring SSH for Remote Connections

layers

channels, Channels

transport layer, Transport Layer

port forwarding, Port Forwarding

requiring for remote login,

Requiring SSH for Remote Connections

security risks,

Why Use SSH?

version 1, Protocol Versions version 2, Protocol Versions

X11 forwarding,

X11 Forwarding

878

INDEX ssh-add,

Configuring ssh-agent

SSL ,

Setting Up an SSL Server

(see also Apache HTTP Server )

SSL server (see Apache HTTP Server )

SSSD and NSCD,

Using NSCD with SSSD

configuration file

creating, Setting up the sssd.conf File

location, Using a Custom Configuration File

sections,

Creating the sssd.conf File

downgrading,

Downgrading SSSD

identity provider

local, Creating the sssd.conf File

Kerberos authentication, Creating Domains: Kerberos Authentication

LDAP domain, Creating Domains: LDAP

supported LDAP directories,

Creating Domains: LDAP

Microsoft Active Directory domain, Creating Domains: Active Directory

, Configuring Domains:

Active Directory as an LDAP Provider (Alternative)

proxy domain, Creating Domains: Proxy

sudo rules

rules stored per host, Configuring Services: sudo

startx, Runlevel 3 (see X)

(see also X) static route,

Static Routes and the Default Gateway

stunnel, Securing Email Client Communications

subscriptions, Registering the System and Managing Subscriptions

sysconfig directory

/etc/sysconfig/apm-scripts/ directory,

Directories in the /etc/sysconfig/ Directory

/etc/sysconfig/arpwatch,

/etc/sysconfig/arpwatch

/etc/sysconfig/authconfig,

/etc/sysconfig/authconfig

/etc/sysconfig/autofs, /etc/sysconfig/autofs

/etc/sysconfig/cbq/ directory,

Directories in the /etc/sysconfig/ Directory

/etc/sysconfig/clock, /etc/sysconfig/clock

/etc/sysconfig/dhcpd, /etc/sysconfig/dhcpd

/etc/sysconfig/firstboot,

/etc/sysconfig/firstboot

/etc/sysconfig/init, /etc/sysconfig/init

/etc/sysconfig/ip6tables-config,

/etc/sysconfig/ip6tables-config

/etc/sysconfig/keyboard, /etc/sysconfig/keyboard

879

Deployment Guide

/etc/sysconfig/ldap,

/etc/sysconfig/ldap

/etc/sysconfig/named,

/etc/sysconfig/named

/etc/sysconfig/network, /etc/sysconfig/network

/etc/sysconfig/network-scripts/ directory, Network Interfaces

, Directories in the /etc/sysconfig/

Directory

(see also network)

/etc/sysconfig/networking/ directory, Directories in the /etc/sysconfig/ Directory

/etc/sysconfig/ntpd, /etc/sysconfig/ntpd

/etc/sysconfig/quagga, /etc/sysconfig/quagga

/etc/sysconfig/radvd, /etc/sysconfig/radvd

/etc/sysconfig/rhn/ directory, Directories in the /etc/sysconfig/ Directory

/etc/sysconfig/samba, /etc/sysconfig/samba

/etc/sysconfig/saslauthd,

/etc/sysconfig/saslauthd

/etc/sysconfig/selinux, /etc/sysconfig/selinux

/etc/sysconfig/sendmail,

/etc/sysconfig/sendmail

/etc/sysconfig/spamassassin, /etc/sysconfig/spamassassin

/etc/sysconfig/squid,

/etc/sysconfig/squid

/etc/sysconfig/system-config-users, /etc/sysconfig/system-config-users

/etc/sysconfig/vncservers, /etc/sysconfig/vncservers

/etc/sysconfig/xinetd,

/etc/sysconfig/xinetd

additional information about, The sysconfig Directory

additional resources,

Additional Resources

installed documentation,

Installed Documentation

directories in,

Directories in the /etc/sysconfig/ Directory

files found in,

Files in the /etc/sysconfig/ Directory

sysctl

configuring with /etc/sysctl.conf, Using the sysctl Command controlling /proc/sys/, Using the sysctl Command

SysRq (see system request key) system analysis

OProfile (see OProfile) system information cpu usage,

Viewing CPU Usage

file systems,

Viewing Block Devices and File Systems

gathering, System Monitoring Tools

hardware,

Viewing Hardware Information

memory usage,

Viewing Memory Usage

processes, Viewing System Processes

currently running, Using the top Command

880

INDEX

System Monitor, Using the System Monitor Tool

,

Using the System Monitor Tool

, Using the

System Monitor Tool , Using the System Monitor Tool

system request key

enabling, /proc/sys/

System Request Key

definition of, /proc/sys/

setting timing for,

/proc/sys/kernel/

system-config-authentication (see Authentication Configuration Tool) system-config-date (see time configuration, date configuration) system-config-kdump (see kdump) system-config-services (see services configuration) systems

registration, Registering the System and Managing Subscriptions

subscription management,

Registering the System and Managing Subscriptions

T

testparm program,

Samba Distribution Programs

time configuration date,

Date and Time Setup

synchronize with NTP server, Network Time Protocol Properties

,

Network Time Protocol Setup

system-config-date,

Date and Time Properties

time zone configuration,

Time Zone Properties

TLB cache (see hugepages)

TLS ,

Setting Up an SSL Server

(see also Apache HTTP Server ) tool

Authentication Configuration Tool, Configuring System Authentication

top, Using the top Command

twm, Window Managers

(see also X)

U

updating currently installed packages

available updates, Updating Packages with Software Update

updating packages with PackageKit

PolicyKit, Updating Packages with Software Update

users

881

Deployment Guide additional resources,

Additional Resources

installed documentation,

Installed Documentation

W

882

V

virtual file system (see proc file system) virtual files (see proc file system) virtual host (see Apache HTTP Server ) vsftpd additional resources,

Additional Resources

installed documentation,

Installed Documentation

online documentation,

Online Documentation

condrestart, Starting and Stopping vsftpd

configuration file

/etc/vsftpd/vsftpd.conf, vsftpd Configuration Options

access controls, Log In Options and Access Controls

anonymous user options,

Anonymous User Options

daemon options,

Daemon Options

directory options,

Directory Options

file transfer options,

File Transfer Options

format of, vsftpd Configuration Options

local-user options,

Local-User Options

logging options,

Logging Options

login options,

Log In Options and Access Controls

network options,

Network Options

security options,

Security Options

encrypting, Encrypting vsftpd Connections Using TLS

multihome configuration,

Starting Multiple Copies of vsftpd

restarting,

Starting and Stopping vsftpd

RPM files installed by,

Files Installed with vsftpd

securing,

Encrypting vsftpd Connections Using TLS , SELinux Policy for vsftpd

SELinux,

SELinux Policy for vsftpd

starting, Starting and Stopping vsftpd

starting multiple copies of, Starting Multiple Copies of vsftpd

status, Starting and Stopping vsftpd stopping, Starting and Stopping vsftpd

TLS,

Encrypting vsftpd Connections Using TLS

X

X wbinfo program,

Samba Distribution Programs

web server (see Apache HTTP Server) window managers (see X)

/etc/X11/xorg.conf

Boolean values for, The Structure of the Configuration

Device, The Device section

DRI,

The DRI section

Files section,

The Files section

InputDevice section,

The InputDevice section

introducing, The xorg.conf.d Directory

, The xorg.conf File

Monitor, The Monitor section

Screen,

The Screen section

Section tag,

The Structure of the Configuration

ServerFlags section,

The ServerFlags section

ServerLayout section,

The ServerLayout Section

structure of, The Structure of the Configuration

additional resources,

Additional Resources

installed documentation,

Installed Documentation useful websites, Useful Websites

configuration directory

/etc/X11/xorg.conf.d, The xorg.conf.d Directory

configuration files

/etc/X11/ directory,

X Server Configuration Files

/etc/X11/xorg.conf,

The xorg.conf File

options within,

X Server Configuration Files

server options,

The xorg.conf.d Directory

, The xorg.conf File

desktop environments

GNOME,

Desktop Environments

KDE, Desktop Environments

display managers

configuration of preferred, Runlevel 5 definition of, Runlevel 5

GNOME,

Runlevel 5

KDE, Runlevel 5 prefdm script, Runlevel 5 xdm, Runlevel 5

INDEX

883

Deployment Guide fonts

Fontconfig, Fonts

Fontconfig, adding fonts to, Adding Fonts to Fontconfig

FreeType,

Fonts introducing, Fonts

Xft,

Fonts

introducing, The X Window System

runlevels

3, Runlevel 3

5, Runlevel 5

runlevels and,

Runlevels and X

window managers

kwin, Window Managers

metacity,

Window Managers

mwm,

Window Managers twm, Window Managers

X clients, The X Window System

, Desktop Environments and Window Managers desktop environments, Desktop Environments

startx command,

Runlevel 3

window managers, Window Managers

xinit command,

Runlevel 3

X server, The X Window System

features of, The X Server

X Window System (see X)

X.500 (see OpenLDAP)

X.500 Lite (see OpenLDAP) xinit (see X)

Xorg (see Xorg)

Y

Yum

configuring plug-ins, Enabling, Configuring, and Disabling Yum Plug-ins

configuring Yum and Yum repositories,

Configuring Yum and Yum Repositories

disabling plug-ins,

Enabling, Configuring, and Disabling Yum Plug-ins

displaying packages yum info,

Displaying Package Information

displaying packages with Yum yum info,

Displaying Package Information

884

enabling plug-ins, Enabling, Configuring, and Disabling Yum Plug-ins

installing a package group with Yum, Installing Packages installing with Yum, Installing Packages

listing packages with Yum

Glob expressions, Listing Packages yum grouplist, Listing Packages

yum list,

Listing Packages yum list all, Listing Packages yum list available, Listing Packages

yum list installed,

Listing Packages

yum repolist,

Listing Packages

packages and package groups,

Packages and Package Groups

plug-ins

kabi, Plug-in Descriptions

presto,

Plug-in Descriptions

product-id,

Plug-in Descriptions refresh-packagekit, Plug-in Descriptions

rhnplugin,

Plug-in Descriptions search-disabled-repos, Plug-in Descriptions security, Plug-in Descriptions

subscription-manager,

Plug-in Descriptions yum-downloadonly, Plug-in Descriptions

repository,

Adding, Enabling, and Disabling a Yum Repository

, Creating a Yum Repository

searching packages with Yum

yum search, Searching Packages

setting [main] options,

Setting [main] Options

setting [repository] options, Setting [repository] Options

uninstalling package groups with Yum,

Removing Packages

uninstalling packages with Yum,

Removing Packages

yum remove package_name,

Removing Packages

variables, Using Yum Variables

yum cache, Working with Yum Cache

yum clean,

Working with Yum Cache

Yum plug-ins,

Yum Plug-ins

Yum repositories configuring Yum and Yum repositories,

Configuring Yum and Yum Repositories

yum update,

Upgrading the System Off-line with ISO and Yum

Yum repositories

INDEX

885

Deployment Guide

viewing Yum repositories with PackageKit, Refreshing Software Sources (Yum Repositories)

Yum Updates checking for updates,

Checking For Updates

updating a single package, Updating Packages updating all packages and dependencies, Updating Packages updating packages, Updating Packages updating packages automatically, Updating Packages updating security-related packages, Updating Packages

886

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

advertisement