Software Manual
R&S FSH-K40 Remote Control Option
for Handheld Spectrum Analyzer
R&S FSH4
R&S FSH8
1309.6000.04
1309.6000.08
1309.6000.14
1309.6000.18
1309.6000.24
1309.6000.28
Test & Measurement
1173.0089.12-04
The firmware of the instrument makes use of several valuable open source software packages. The
verbatim license texts are provided in on the user documentation CD-ROM (included in delivery).
Rohde & Schwarz would like to thank the open source community for their valuable contribution to
embedded computing.
Throughout this manual, the Handheld Spectrum Analyzer R&S® FSH is abbreviated as R&S FSH.
R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG.
Trade names are trademarks of the owners.
Basic Safety Instructions
Always read through and comply with the following safety instructions!
All plants and locations of the Rohde & Schwarz group of companies make every effort to keep the safety
standards of our products up to date and to offer our customers the highest possible degree of safety. Our
products and the auxiliary equipment they require are designed, built and tested in accordance with the
safety standards that apply in each case. Compliance with these standards is continuously monitored by
our quality assurance system. The product described here has been designed, built and tested in
accordance with the attached EC Certificate of Conformity and has left the manufacturer’s plant in a
condition fully complying with safety standards. To maintain this condition and to ensure safe operation,
you must observe all instructions and warnings provided in this manual. If you have any questions
regarding these safety instructions, the Rohde & Schwarz group of companies will be happy to answer
them.
Furthermore, it is your responsibility to use the product in an appropriate manner. This product is designed
for use solely in industrial and laboratory environments or, if expressly permitted, also in the field and must
not be used in any way that may cause personal injury or property damage. You are responsible if the
product is used for any intention other than its designated purpose or in disregard of the manufacturer's
instructions. The manufacturer shall assume no responsibility for such use of the product.
The product is used for its designated purpose if it is used in accordance with its product documentation
and within its performance limits (see data sheet, documentation, the following safety instructions). Using
the product requires technical skills and a basic knowledge of English. It is therefore essential that only
skilled and specialized staff or thoroughly trained personnel with the required skills be allowed to use the
product. If personal safety gear is required for using Rohde & Schwarz products, this will be indicated at
the appropriate place in the product documentation. Keep the basic safety instructions and the product
documentation in a safe place and pass them on to the subsequent users.
Observing the safety instructions will help prevent personal injury or damage of any kind caused by
dangerous situations. Therefore, carefully read through and adhere to the following safety instructions
before and when using the product. It is also absolutely essential to observe the additional safety
instructions on personal safety, for example, that appear in relevant parts of the product documentation. In
these safety instructions, the word "product" refers to all merchandise sold and distributed by the Rohde &
Schwarz group of companies, including instruments, systems and all accessories.
Symbols and safety labels
Notice, general
danger location
Observe product
documentation
ON/OFF supply
voltage
Caution
when
handling
heavy
equipment
Standby
indication
1171.0000.42-05.00
Danger of
electric
shock
Direct current
(DC)
Warning!
Hot surface
PE terminal
Alternating current
(AC)
Ground
Direct/alternating
current (DC/AC)
Ground
terminal
Be careful when
handling
electrostatic
sensitive
devices
Device fully protected by
double (reinforced) insulation
Page 1
Basic Safety Instructions
Tags and their meaning
The following signal words are used in the product documentation in order to warn the reader about risks
and dangers.
indicates a hazardous situation which, if not avoided, will result in death or
serious injury.
indicates a hazardous situation which, if not avoided, could result in death or
serious injury.
indicates a hazardous situation which, if not avoided, could result in minor or
moderate injury.
indicates the possibility of incorrect operation which can result in damage to
the product.
In the product documentation, the word ATTENTION is used synonymously.
These tags are in accordance with the standard definition for civil applications in the European Economic
Area. Definitions that deviate from the standard definition may also exist in other economic areas or
military applications. It is therefore essential to make sure that the tags described here are always used
only in connection with the related product documentation and the related product. The use of tags in
connection with unrelated products or documentation can result in misinterpretation and in personal injury
or material damage.
Operating states and operating positions
The product may be operated only under the operating conditions and in the positions specified by the
manufacturer, without the product's ventilation being obstructed. If the manufacturer's specifications are
not observed, this can result in electric shock, fire and/or serious personal injury or death. Applicable local
or national safety regulations and rules for the prevention of accidents must be observed in all work
performed.
1. Unless otherwise specified, the following requirements apply to Rohde & Schwarz products:
predefined operating position is always with the housing floor facing down, IP protection 2X, pollution
severity 2, overvoltage category 2, use only indoors, max. operating altitude 2000 m above sea level,
max. transport altitude 4500 m above sea level. A tolerance of ±10 % shall apply to the nominal
voltage and ±5 % to the nominal frequency.
2. Do not place the product on surfaces, vehicles, cabinets or tables that for reasons of weight or stability
are unsuitable for this purpose. Always follow the manufacturer's installation instructions when
installing the product and fastening it to objects or structures (e.g. walls and shelves). An installation
that is not carried out as described in the product documentation could result in personal injury or
death.
3. Do not place the product on heat-generating devices such as radiators or fan heaters. The ambient
temperature must not exceed the maximum temperature specified in the product documentation or in
the data sheet. Product overheating can cause electric shock, fire and/or serious personal injury or
death.
1171.0000.42-05.00
Page 2
Basic Safety Instructions
Electrical safety
If the information on electrical safety is not observed either at all to the extent necessary, electric shock,
fire and/or serious personal injury or death may occur.
1. Prior to switching on the product, always ensure that the nominal voltage setting on the product
matches the nominal voltage of the AC supply network. If a different voltage is to be set, the power
fuse of the product may have to be changed accordingly.
2. In the case of products of safety class I with movable power cord and connector, operation is
permitted only on sockets with an earthing contact and protective earth connection.
3. Intentionally breaking the protective earth connection either in the feed line or in the product itself is
not permitted. Doing so can result in the danger of an electric shock from the product. If extension
cords or connector strips are implemented, they must be checked on a regular basis to ensure that
they are safe to use.
4. If the product does not have a power switch for disconnection from the AC supply network, the plug of
the connecting cable is regarded as the disconnecting device. In such cases, always ensure that the
power plug is easily reachable and accessible at all times (corresponding to the length of connecting
cable, approx. 2 m). Functional or electronic switches are not suitable for providing disconnection from
the AC supply network. If products without power switches are integrated into racks or systems, a
disconnecting device must be provided at the system level.
5. Never use the product if the power cable is damaged. Check the power cable on a regular basis to
ensure that it is in proper operating condition. By taking appropriate safety measures and carefully
laying the power cable, you can ensure that the cable will not be damaged and that no one can be
hurt by, for example, tripping over the cable or suffering an electric shock.
6. The product may be operated only from TN/TT supply networks fused with max. 16 A (higher fuse
only after consulting with the Rohde & Schwarz group of companies).
7. Do not insert the plug into sockets that are dusty or dirty. Insert the plug firmly and all the way into the
socket. Otherwise, sparks that result in fire and/or injuries may occur.
8. Do not overload any sockets, extension cords or connector strips; doing so can cause fire or electric
shocks.
9. For measurements in circuits with voltages Vrms > 30 V, suitable measures (e.g. appropriate
measuring equipment, fusing, current limiting, electrical separation, insulation) should be taken to
avoid any hazards.
10. Ensure that the connections with information technology equipment, e.g. PCs or other industrial
computers, comply with the IEC60950-1/EN60950-1 or IEC61010-1/EN 61010-1 standards that apply
in each case.
11. Unless expressly permitted, never remove the cover or any part of the housing while the product is in
operation. Doing so will expose circuits and components and can lead to injuries, fire or damage to the
product.
12. If a product is to be permanently installed, the connection between the PE terminal on site and the
product's PE conductor must be made first before any other connection is made. The product may be
installed and connected only by a licensed electrician.
13. For permanently installed equipment without built-in fuses, circuit breakers or similar protective
devices, the supply circuit must be fused in such a way that anyone who has access to the product, as
well as the product itself, is adequately protected from injury or damage.
1171.0000.42-05.00
Page 3
Basic Safety Instructions
14. Use suitable overvoltage protection to ensure that no overvoltage (such as that caused by a bolt of
lightning) can reach the product. Otherwise, the person operating the product will be exposed to the
danger of an electric shock.
15. Any object that is not designed to be placed in the openings of the housing must not be used for this
purpose. Doing so can cause short circuits inside the product and/or electric shocks, fire or injuries.
16. Unless specified otherwise, products are not liquid-proof (see also section "Operating states and
operating positions", item 1. Therefore, the equipment must be protected against penetration by
liquids. If the necessary precautions are not taken, the user may suffer electric shock or the product
itself may be damaged, which can also lead to personal injury.
17. Never use the product under conditions in which condensation has formed or can form in or on the
product, e.g. if the product has been moved from a cold to a warm environment. Penetration by water
increases the risk of electric shock.
18. Prior to cleaning the product, disconnect it completely from the power supply (e.g. AC supply network
or battery). Use a soft, non-linting cloth to clean the product. Never use chemical cleaning agents such
as alcohol, acetone or diluents for cellulose lacquers.
Operation
1. Operating the products requires special training and intense concentration. Make sure that persons
who use the products are physically, mentally and emotionally fit enough to do so; otherwise, injuries
or material damage may occur. It is the responsibility of the employer/operator to select suitable
personnel for operating the products.
2. Before you move or transport the product, read and observe the section titled "Transport".
3. As with all industrially manufactured goods, the use of substances that induce an allergic reaction
(allergens) such as nickel cannot be generally excluded. If you develop an allergic reaction (such as a
skin rash, frequent sneezing, red eyes or respiratory difficulties) when using a Rohde & Schwarz
product, consult a physician immediately to determine the cause and to prevent health problems or
stress.
4. Before you start processing the product mechanically and/or thermally, or before you take it apart, be
sure to read and pay special attention to the section titled "Waste disposal", item 1.
5. Depending on the function, certain products such as RF radio equipment can produce an elevated
level of electromagnetic radiation. Considering that unborn babies require increased protection,
pregnant women must be protected by appropriate measures. Persons with pacemakers may also be
exposed to risks from electromagnetic radiation. The employer/operator must evaluate workplaces
where there is a special risk of exposure to radiation and, if necessary, take measures to avert the
potential danger.
6. Should a fire occur, the product may release hazardous substances (gases, fluids, etc.) that can
cause health problems. Therefore, suitable measures must be taken, e.g. protective masks and
protective clothing must be worn.
7. If a laser product (e.g. a CD/DVD drive) is integrated into a Rohde & Schwarz product, absolutely no
other settings or functions may be used as described in the product documentation. The objective is to
prevent personal injury (e.g. due to laser beams).
1171.0000.42-05.00
Page 4
Basic Safety Instructions
Repair and service
1. The product may be opened only by authorized, specially trained personnel. Before any work is
performed on the product or before the product is opened, it must be disconnected from the AC supply
network. Otherwise, personnel will be exposed to the risk of an electric shock.
2. Adjustments, replacement of parts, maintenance and repair may be performed only by electrical
experts authorized by Rohde & Schwarz. Only original parts may be used for replacing parts relevant
to safety (e.g. power switches, power transformers, fuses). A safety test must always be performed
after parts relevant to safety have been replaced (visual inspection, PE conductor test, insulation
resistance measurement, leakage current measurement, functional test). This helps ensure the
continued safety of the product.
Batteries and rechargeable batteries/cells
If the information regarding batteries and rechargeable batteries/cells is not observed either at all or to the
extent necessary, product users may be exposed to the risk of explosions, fire and/or serious personal
injury, and, in some cases, death. Batteries and rechargeable batteries with alkaline electrolytes (e.g.
lithium cells) must be handled in accordance with the EN 62133 standard.
1. Cells must not be taken apart or crushed.
2. Cells or batteries must not be exposed to heat or fire. Storage in direct sunlight must be avoided.
Keep cells and batteries clean and dry. Clean soiled connectors using a dry, clean cloth.
3. Cells or batteries must not be short-circuited. Cells or batteries must not be stored in a box or in a
drawer where they can short-circuit each other, or where they can be short-circuited by other
conductive materials. Cells and batteries must not be removed from their original packaging until they
are ready to be used.
4. Keep cells and batteries out of the hands of children. If a cell or a battery has been swallowed, seek
medical aid immediately.
5. Cells and batteries must not be exposed to any mechanical shocks that are stronger than permitted.
6. If a cell develops a leak, the fluid must not be allowed to come into contact with the skin or eyes. If
contact occurs, wash the affected area with plenty of water and seek medical aid.
7. Improperly replacing or charging cells or batteries that contain alkaline electrolytes (e.g. lithium cells)
can cause explosions. Replace cells or batteries only with the matching Rohde & Schwarz type (see
parts list) in order to ensure the safety of the product.
8. Cells and batteries must be recycled and kept separate from residual waste. Rechargeable batteries
and normal batteries that contain lead, mercury or cadmium are hazardous waste. Observe the
national regulations regarding waste disposal and recycling.
Transport
1. The product may be very heavy. Therefore, the product must be handled with care. In some cases,
the user may require a suitable means of lifting or moving the product (e.g. with a lift-truck) to avoid
back or other physical injuries.
1171.0000.42-05.00
Page 5
Informaciones elementales de seguridad
2. Handles on the products are designed exclusively to enable personnel to transport the product. It is
therefore not permissible to use handles to fasten the product to or on transport equipment such as
cranes, fork lifts, wagons, etc. The user is responsible for securely fastening the products to or on the
means of transport or lifting. Observe the safety regulations of the manufacturer of the means of
transport or lifting. Noncompliance can result in personal injury or material damage.
3. If you use the product in a vehicle, it is the sole responsibility of the driver to drive the vehicle safely
and properly. The manufacturer assumes no responsibility for accidents or collisions. Never use the
product in a moving vehicle if doing so could distract the driver of the vehicle. Adequately secure the
product in the vehicle to prevent injuries or other damage in the event of an accident.
Waste disposal
1. If products or their components are mechanically and/or thermally processed in a manner that goes
beyond their intended use, hazardous substances (heavy-metal dust such as lead, beryllium, nickel)
may be released. For this reason, the product may only be disassembled by specially trained
personnel. Improper disassembly may be hazardous to your health. National waste disposal
regulations must be observed.
2. If handling the product releases hazardous substances or fuels that must be disposed of in a special
way, e.g. coolants or engine oils that must be replenished regularly, the safety instructions of the
manufacturer of the hazardous substances or fuels and the applicable regional waste disposal
regulations must be observed. Also observe the relevant safety instructions in the product
documentation. The improper disposal of hazardous substances or fuels can cause health problems
and lead to environmental damage.
Informaciones elementales de seguridad
Es imprescindible leer y observar las siguientes instrucciones e informaciones de seguridad!
El principio del grupo de empresas Rohde & Schwarz consiste en tener nuestros productos siempre al día
con los estándares de seguridad y de ofrecer a nuestros clientes el máximo grado de seguridad. Nuestros
productos y todos los equipos adicionales son siempre fabricados y examinados según las normas de
seguridad vigentes. Nuestro sistema de garantía de calidad controla constantemente que sean cumplidas
estas normas. El presente producto ha sido fabricado y examinado según el certificado de conformidad
adjunto de la UE y ha salido de nuestra planta en estado impecable según los estándares técnicos de
seguridad. Para poder preservar este estado y garantizar un funcionamiento libre de peligros, el usuario
deberá atenerse a todas las indicaciones, informaciones de seguridad y notas de alerta. El grupo de
empresas Rohde & Schwarz está siempre a su disposición en caso de que tengan preguntas referentes a
estas informaciones de seguridad.
Además queda en la responsabilidad del usuario utilizar el producto en la forma debida. Este producto
está destinado exclusivamente al uso en la industria y el laboratorio o, si ha sido expresamente
autorizado, para aplicaciones de campo y de ninguna manera deberá ser utilizado de modo que alguna
persona/cosa pueda sufrir daño. El uso del producto fuera de sus fines definidos o sin tener en cuenta las
instrucciones del fabricante queda en la responsabilidad del usuario. El fabricante no se hace en ninguna
forma responsable de consecuencias a causa del mal uso del producto.
1171.0000.42-05.00
Page 6
Informaciones elementales de seguridad
Se parte del uso correcto del producto para los fines definidos si el producto es utilizado conforme a las
indicaciones de la correspondiente documentación del producto y dentro del margen de rendimiento
definido (ver hoja de datos, documentación, informaciones de seguridad que siguen). El uso del producto
hace necesarios conocimientos técnicos y ciertos conocimientos del idioma inglés. Por eso se debe tener
en cuenta que el producto solo pueda ser operado por personal especializado o personas instruidas en
profundidad con las capacidades correspondientes. Si fuera necesaria indumentaria de seguridad para el
uso de productos de Rohde & Schwarz, encontraría la información debida en la documentación del
producto en el capítulo correspondiente. Guarde bien las informaciones de seguridad elementales, así
como la documentación del producto, y entréguelas a usuarios posteriores.
Tener en cuenta las informaciones de seguridad sirve para evitar en lo posible lesiones o daños por
peligros de toda clase. Por eso es imprescindible leer detalladamente y comprender por completo las
siguientes informaciones de seguridad antes de usar el producto, y respetarlas durante el uso del
producto. Deberán tenerse en cuenta todas las demás informaciones de seguridad, como p. ej. las
referentes a la protección de personas, que encontrarán en el capítulo correspondiente de la
documentación del producto y que también son de obligado cumplimiento. En las presentes
informaciones de seguridad se recogen todos los objetos que distribuye el grupo de empresas
Rohde & Schwarz bajo la denominación de "producto", entre ellos también aparatos, instalaciones así
como toda clase de accesorios.
Símbolos y definiciones de seguridad
Aviso: punto de
peligro general
Observar la
documentación
del producto
Tensión de
alimentación de
PUESTA EN
MARCHA /
PARADA
Atención en
el manejo de
dispositivos
de peso
elevado
Indicación de
estado de
espera
(Standby)
1171.0000.42-05.00
Peligro de
choque
eléctrico
Advertencia:
superficie
caliente
Corriente
continua (DC)
Conexión a
conductor de
protección
Corriente alterna
(AC)
Conexión
a tierra
Conexión
a masa
Corriente
continua /
Corriente alterna
(DC/AC)
Aviso: Cuidado
en el manejo de
dispositivos
sensibles a la
electrostática
(ESD)
El aparato está protegido
en su totalidad por un
aislamiento doble
(reforzado)
Page 7
Informaciones elementales de seguridad
Palabras de señal y su significado
En la documentación del producto se utilizan las siguientes palabras de señal con el fin de advertir contra
riesgos y peligros.
PELIGRO identifica un peligro inminente con riesgo elevado que
provocará muerte o lesiones graves si no se evita.
ADVERTENCIA identifica un posible peligro con riesgo medio de
provocar muerte o lesiones (graves) si no se evita.
ATENCIÓN identifica un peligro con riesgo reducido de provocar
lesiones leves o moderadas si no se evita.
AVISO indica la posibilidad de utilizar mal el producto y, como
consecuencia, dañarlo.
En la documentación del producto se emplea de forma sinónima el
término CUIDADO.
Las palabras de señal corresponden a la definición habitual para aplicaciones civiles en el área
económica europea. Pueden existir definiciones diferentes a esta definición en otras áreas económicas o
en aplicaciones militares. Por eso se deberá tener en cuenta que las palabras de señal aquí descritas
sean utilizadas siempre solamente en combinación con la correspondiente documentación del producto y
solamente en combinación con el producto correspondiente. La utilización de las palabras de señal en
combinación con productos o documentaciones que no les correspondan puede llevar a interpretaciones
equivocadas y tener por consecuencia daños en personas u objetos.
Estados operativos y posiciones de funcionamiento
El producto solamente debe ser utilizado según lo indicado por el fabricante respecto a los estados
operativos y posiciones de funcionamiento sin que se obstruya la ventilación. Si no se siguen las
indicaciones del fabricante, pueden producirse choques eléctricos, incendios y/o lesiones graves con
posible consecuencia de muerte. En todos los trabajos deberán ser tenidas en cuenta las normas
nacionales y locales de seguridad del trabajo y de prevención de accidentes.
1. Si no se convino de otra manera, es para los productos Rohde & Schwarz válido lo que sigue:
como posición de funcionamiento se define por principio la posición con el suelo de la caja para
abajo, modo de protección IP 2X, grado de suciedad 2, categoría de sobrecarga eléctrica 2, uso
solamente en estancias interiores, utilización hasta 2000 m sobre el nivel del mar, transporte hasta
4500 m sobre el nivel del mar. Se aplicará una tolerancia de ±10 % sobre el voltaje nominal y de
±5 % sobre la frecuencia nominal.
2. No sitúe el producto encima de superficies, vehículos, estantes o mesas, que por sus características
de peso o de estabilidad no sean aptos para él. Siga siempre las instrucciones de instalación del
fabricante cuando instale y asegure el producto en objetos o estructuras (p. ej. paredes y estantes). Si
se realiza la instalación de modo distinto al indicado en la documentación del producto, pueden
causarse lesiones o incluso la muerte.
3. No ponga el producto sobre aparatos que generen calor (p. ej. radiadores o calefactores). La
temperatura ambiente no debe superar la temperatura máxima especificada en la documentación del
producto o en la hoja de datos. En caso de sobrecalentamiento del producto, pueden producirse
choques eléctricos, incendios y/o lesiones graves con posible consecuencia de muerte.
1171.0000.42-05.00
Page 8
Informaciones elementales de seguridad
Seguridad eléctrica
Si no se siguen (o se siguen de modo insuficiente) las indicaciones del fabricante en cuanto a seguridad
eléctrica, pueden producirse choques eléctricos, incendios y/o lesiones graves con posible consecuencia
de muerte.
1. Antes de la puesta en marcha del producto se deberá comprobar siempre que la tensión
preseleccionada en el producto coincida con la de la red de alimentación eléctrica. Si es necesario
modificar el ajuste de tensión, también se deberán cambiar en caso dado los fusibles
correspondientes del producto.
2. Los productos de la clase de protección I con alimentación móvil y enchufe individual solamente
podrán enchufarse a tomas de corriente con contacto de seguridad y con conductor de protección
conectado.
3. Queda prohibida la interrupción intencionada del conductor de protección, tanto en la toma de
corriente como en el mismo producto. La interrupción puede tener como consecuencia el riesgo de
que el producto sea fuente de choques eléctricos. Si se utilizan cables alargadores o regletas de
enchufe, deberá garantizarse la realización de un examen regular de los mismos en cuanto a su
estado técnico de seguridad.
4. Si el producto no está equipado con un interruptor para desconectarlo de la red, se deberá considerar
el enchufe del cable de conexión como interruptor. En estos casos se deberá asegurar que el enchufe
siempre sea de fácil acceso (de acuerdo con la longitud del cable de conexión, aproximadamente
2 m). Los interruptores de función o electrónicos no son aptos para el corte de la red eléctrica. Si los
productos sin interruptor están integrados en bastidores o instalaciones, se deberá colocar el
interruptor en el nivel de la instalación.
5. No utilice nunca el producto si está dañado el cable de conexión a red. Compruebe regularmente el
correcto estado de los cables de conexión a red. Asegúrese, mediante las medidas de protección y
de instalación adecuadas, de que el cable de conexión a red no pueda ser dañado o de que nadie
pueda ser dañado por él, p. ej. al tropezar o por un choque eléctrico.
6. Solamente está permitido el funcionamiento en redes de alimentación TN/TT aseguradas con fusibles
de 16 A como máximo (utilización de fusibles de mayor amperaje solo previa consulta con el grupo de
empresas Rohde & Schwarz).
7. Nunca conecte el enchufe en tomas de corriente sucias o llenas de polvo. Introduzca el enchufe por
completo y fuertemente en la toma de corriente. La no observación de estas medidas puede provocar
chispas, fuego y/o lesiones.
8. No sobrecargue las tomas de corriente, los cables alargadores o las regletas de enchufe ya que esto
podría causar fuego o choques eléctricos.
9. En las mediciones en circuitos de corriente con una tensión Ueff > 30 V se deberán tomar las medidas
apropiadas para impedir cualquier peligro (p. ej. medios de medición adecuados, seguros, limitación
de tensión, corte protector, aislamiento etc.).
10. Para la conexión con dispositivos informáticos como un PC o un ordenador industrial, debe
comprobarse que éstos cumplan los estándares IEC60950-1/EN60950-1 o IEC61010-1/EN 61010-1
válidos en cada caso.
11. A menos que esté permitido expresamente, no retire nunca la tapa ni componentes de la carcasa
mientras el producto esté en servicio. Esto pone a descubierto los cables y componentes eléctricos y
puede causar lesiones, fuego o daños en el producto.
1171.0000.42-05.00
Page 9
Informaciones elementales de seguridad
12. Si un producto se instala en un lugar fijo, se deberá primero conectar el conductor de protección fijo
con el conductor de protección del producto antes de hacer cualquier otra conexión. La instalación y
la conexión deberán ser efectuadas por un electricista especializado.
13. En el caso de dispositivos fijos que no estén provistos de fusibles, interruptor automático ni otros
mecanismos de seguridad similares, el circuito de alimentación debe estar protegido de modo que
todas las personas que puedan acceder al producto, así como el producto mismo, estén a salvo de
posibles daños.
14. Todo producto debe estar protegido contra sobretensión (debida p. ej. a una caída del rayo) mediante
los correspondientes sistemas de protección. Si no, el personal que lo utilice quedará expuesto al
peligro de choque eléctrico.
15. No debe introducirse en los orificios de la caja del aparato ningún objeto que no esté destinado a ello.
Esto puede producir cortocircuitos en el producto y/o puede causar choques eléctricos, fuego o
lesiones.
16. Salvo indicación contraria, los productos no están impermeabilizados (ver también el capítulo
"Estados operativos y posiciones de funcionamiento", punto 1). Por eso es necesario tomar las
medidas necesarias para evitar la entrada de líquidos. En caso contrario, existe peligro de choque
eléctrico para el usuario o de daños en el producto, que también pueden redundar en peligro para las
personas.
17. No utilice el producto en condiciones en las que pueda producirse o ya se hayan producido
condensaciones sobre el producto o en el interior de éste, como p. ej. al desplazarlo de un lugar frío a
otro caliente. La entrada de agua aumenta el riesgo de choque eléctrico.
18. Antes de la limpieza, desconecte por completo el producto de la alimentación de tensión (p. ej. red de
alimentación o batería). Realice la limpieza de los aparatos con un paño suave, que no se deshilache.
No utilice bajo ningún concepto productos de limpieza químicos como alcohol, acetona o diluyentes
para lacas nitrocelulósicas.
Funcionamiento
1. El uso del producto requiere instrucciones especiales y una alta concentración durante el manejo.
Debe asegurarse que las personas que manejen el producto estén a la altura de los requerimientos
necesarios en cuanto a aptitudes físicas, psíquicas y emocionales, ya que de otra manera no se
pueden excluir lesiones o daños de objetos. El empresario u operador es responsable de seleccionar
el personal usuario apto para el manejo del producto.
2. Antes de desplazar o transportar el producto, lea y tenga en cuenta el capítulo "Transporte".
3. Como con todo producto de fabricación industrial no puede quedar excluida en general la posibilidad
de que se produzcan alergias provocadas por algunos materiales empleados, los llamados alérgenos
(p. ej. el níquel). Si durante el manejo de productos Rohde & Schwarz se producen reacciones
alérgicas, como p. ej. irritaciones cutáneas, estornudos continuos, enrojecimiento de la conjuntiva o
dificultades respiratorias, debe avisarse inmediatamente a un médico para investigar las causas y
evitar cualquier molestia o daño a la salud.
4. Antes de la manipulación mecánica y/o térmica o el desmontaje del producto, debe tenerse en cuenta
imprescindiblemente el capítulo "Eliminación", punto 1.
1171.0000.42-05.00
Page 10
Informaciones elementales de seguridad
5. Ciertos productos, como p. ej. las instalaciones de radiocomunicación RF, pueden a causa de su
función natural, emitir una radiación electromagnética aumentada. Deben tomarse todas las medidas
necesarias para la protección de las mujeres embarazadas. También las personas con marcapasos
pueden correr peligro a causa de la radiación electromagnética. El empresario/operador tiene la
obligación de evaluar y señalizar las áreas de trabajo en las que exista un riesgo elevado de
exposición a radiaciones.
6. Tenga en cuenta que en caso de incendio pueden desprenderse del producto sustancias tóxicas
(gases, líquidos etc.) que pueden generar daños a la salud. Por eso, en caso de incendio deben
usarse medidas adecuadas, como p. ej. máscaras antigás e indumentaria de protección.
7. En caso de que un producto Rohde & Schwarz contenga un producto láser (p. ej. un lector de
CD/DVD), no debe usarse ninguna otra configuración o función aparte de las descritas en la
documentación del producto, a fin de evitar lesiones (p. ej. debidas a irradiación láser).
Reparación y mantenimiento
1. El producto solamente debe ser abierto por personal especializado con autorización para ello. Antes
de manipular el producto o abrirlo, es obligatorio desconectarlo de la tensión de alimentación, para
evitar toda posibilidad de choque eléctrico.
2. El ajuste, el cambio de partes, el mantenimiento y la reparación deberán ser efectuadas solamente
por electricistas autorizados por Rohde & Schwarz. Si se reponen partes con importancia para los
aspectos de seguridad (p. ej. el enchufe, los transformadores o los fusibles), solamente podrán ser
sustituidos por partes originales. Después de cada cambio de partes relevantes para la seguridad
deberá realizarse un control de seguridad (control a primera vista, control del conductor de
protección, medición de resistencia de aislamiento, medición de la corriente de fuga, control de
funcionamiento). Con esto queda garantizada la seguridad del producto.
Baterías y acumuladores o celdas
Si no se siguen (o se siguen de modo insuficiente) las indicaciones en cuanto a las baterías y
acumuladores o celdas, pueden producirse explosiones, incendios y/o lesiones graves con posible
consecuencia de muerte. El manejo de baterías y acumuladores con electrolitos alcalinos (p. ej. celdas de
litio) debe seguir el estándar EN 62133.
1. No deben desmontarse, abrirse ni triturarse las celdas.
2. Las celdas o baterías no deben someterse a calor ni fuego. Debe evitarse el almacenamiento a la luz
directa del sol. Las celdas y baterías deben mantenerse limpias y secas. Limpiar las conexiones
sucias con un paño seco y limpio.
3. Las celdas o baterías no deben cortocircuitarse. Es peligroso almacenar las celdas o baterías en
estuches o cajones en cuyo interior puedan cortocircuitarse por contacto recíproco o por contacto con
otros materiales conductores. No deben extraerse las celdas o baterías de sus embalajes originales
hasta el momento en que vayan a utilizarse.
4. Mantener baterías y celdas fuera del alcance de los niños. En caso de ingestión de una celda o
batería, avisar inmediatamente a un médico.
5. Las celdas o baterías no deben someterse a impactos mecánicos fuertes indebidos.
1171.0000.42-05.00
Page 11
Informaciones elementales de seguridad
6. En caso de falta de estanqueidad de una celda, el líquido vertido no debe entrar en contacto con la
piel ni los ojos. Si se produce contacto, lavar con agua abundante la zona afectada y avisar a un
médico.
7. En caso de cambio o recarga inadecuados, las celdas o baterías que contienen electrolitos alcalinos
(p. ej. las celdas de litio) pueden explotar. Para garantizar la seguridad del producto, las celdas o
baterías solo deben ser sustituidas por el tipo Rohde & Schwarz correspondiente (ver lista de
recambios).
8. Las baterías y celdas deben reciclarse y no deben tirarse a la basura doméstica. Las baterías o
acumuladores que contienen plomo, mercurio o cadmio deben tratarse como residuos especiales.
Respete en esta relación las normas nacionales de eliminación y reciclaje.
Transporte
1. El producto puede tener un peso elevado. Por eso es necesario desplazarlo o transportarlo con
precaución y, si es necesario, usando un sistema de elevación adecuado (p. ej. una carretilla
elevadora), a fin de evitar lesiones en la espalda u otros daños personales.
2. Las asas instaladas en los productos sirven solamente de ayuda para el transporte del producto por
personas. Por eso no está permitido utilizar las asas para la sujeción en o sobre medios de transporte
como p. ej. grúas, carretillas elevadoras de horquilla, carros etc. Es responsabilidad suya fijar los
productos de manera segura a los medios de transporte o elevación. Para evitar daños personales o
daños en el producto, siga las instrucciones de seguridad del fabricante del medio de transporte o
elevación utilizado.
3. Si se utiliza el producto dentro de un vehículo, recae de manera exclusiva en el conductor la
responsabilidad de conducir el vehículo de manera segura y adecuada. El fabricante no asumirá
ninguna responsabilidad por accidentes o colisiones. No utilice nunca el producto dentro de un
vehículo en movimiento si esto pudiera distraer al conductor. Asegure el producto dentro del vehículo
debidamente para evitar, en caso de un accidente, lesiones u otra clase de daños.
Eliminación
1. Si se trabaja de manera mecánica y/o térmica cualquier producto o componente más allá del
funcionamiento previsto, pueden liberarse sustancias peligrosas (polvos con contenido de metales
pesados como p. ej. plomo, berilio o níquel). Por eso el producto solo debe ser desmontado por
personal especializado con formación adecuada. Un desmontaje inadecuado puede ocasionar daños
para la salud. Se deben tener en cuenta las directivas nacionales referentes a la eliminación de
residuos.
2. En caso de que durante el trato del producto se formen sustancias peligrosas o combustibles que
deban tratarse como residuos especiales (p. ej. refrigerantes o aceites de motor con intervalos de
cambio definidos), deben tenerse en cuenta las indicaciones de seguridad del fabricante de dichas
sustancias y las normas regionales de eliminación de residuos. Tenga en cuenta también en caso
necesario las indicaciones de seguridad especiales contenidas en la documentación del producto. La
eliminación incorrecta de sustancias peligrosas o combustibles puede causar daños a la salud o
daños al medio ambiente.
1171.0000.42-05.00
Page 12
Qualitätszertifikat
Certificate of quality
Certificat de qualité
Sehr geehrter Kunde,
Sie haben sich für den Kauf eines
Rohde & Schwarz-Produktes entschieden. Hiermit erhalten Sie ein
nach modernsten Fertigungsmethoden
hergestelltes Produkt. Es wurde nach
den Regeln unseres Qualitätsmanagementsystems entwickelt, gefertigt
und geprüft. Das Rohde & SchwarzQualitätsmanagementsystem ist u.a.
nach ISO 9001 und ISO 14001
zertifiziert.
Dear Customer,
You have decided to buy a
Rohde & Schwarz product. You are
thus assured of receiving a product
that is manufactured using the most
modern methods available. This
product was developed, manufactured
and tested in compliance with our
quality management system standards. The Rohde & Schwarz quality
management system is certified
according to standards such as
ISO 9001 and ISO 14001.
Der Umwelt verpflichtet
JJ Energie-effiziente,
Environmental commitment
JJ Energy-efficient products
JJ Continuous improvement in
environmental sustainability
JJ ISO 14001-certified environmental
management system
ISO 9001
Certified Environmental System
ISO 14001
Cher client,
Vous avez choisi d’acheter un produit Rohde & Schwarz. Vous disposez
donc d’un produit fabriqué d’après les
méthodes les plus avancées. Le développement, la fabrication et les tests
respectent nos normes de gestion
qualité. Le système de gestion qualité
de Rohde & Schwarz a été homologué,
entre autres, conformément aux normes ISO 9001 et ISO 14001.
Engagement écologique
JJ Produits à efficience énergétique
JJ Amélioration continue de la durabilité
environnementale
JJ Système de gestion de l’environnement certifié selon ISO 14001
1171.0200.11 V 04.00
RoHS-konforme Produkte
JJ Kontinuierliche Weiterentwicklung
nachhaltiger Umweltkonzepte
JJ ISO 14001-zertifiziertes
Umweltmanagementsystem
Certified Quality System
Nachweis_ISO-Zertifizierung_i_d_Kundendok_090910_1171.0517.00 V 04.00.indd 1
08.09.2009 12:59:29
EC Certificate of Conformity
Certificate No.: 2008-45
This is to certify that:
Equipment type
Stock No.
Designation
FSH4
FSH8
1309.6000.04/.14/.24
1309.6000.08/.18/.28
Handheld Spectrum Analyzer
FSH-Z1
FSH-Z14
FSH-Z18
FSH-Z44
1155.4505.02
1120.6001.02
1165.1909.02
1165.2305.02
Average Power Sensor
Directional Power Sensor
Average Power Sensor
Directional Power Sensor
complies with the provisions of the Directive of the Council of the European Union on the
approximation of the laws of the Member States
- relating to electrical equipment for use within defined voltage limits
(2006/95/EC)
- relating to electromagnetic compatibility
(2004/108/EC)
Conformity is proven by compliance with the following standards:
EN 61010-1 : 2001
EN 61326 : 1997 + A1 : 1998 + A2 : 2001 + A3 : 2003
EN 55011 : 1998 + A1 : 1999 + A2 : 2002, Klasse B
EN 61000-3-2 : 2000 + A2 : 2005
EN 61000-3-3 : 1995 + A1 : 2001
For the assessment of electromagnetic compatibility, the limits of radio interference for Class
B equipment as well as the immunity to interference for operation in industry have been used
as a basis.
Affixing the EC conformity mark as from 2008
ROHDE & SCHWARZ GmbH & Co. KG
Mühldorfstr. 15, D-81671 München
Munich, 2008-09-10
Central Quality Management MF-QZ / Radde
1309.6000.01(2008-45)
CE
E-1
Customer Support
Technical support – where and when you need it
For quick, expert help with any Rohde & Schwarz equipment, contact one of our Customer Support
Centers. A team of highly qualified engineers provides telephone support and will work with you to find a
solution to your query on any aspect of the operation, programming or applications of Rohde & Schwarz
equipment.
Up-to-date information and upgrades
To keep your instrument up-to-date and to be informed about new application notes related to your
instrument, please send an e-mail to the Customer Support Center stating your instrument and your wish.
We will take care that you will get the right information.
USA & Canada
Monday to Friday (except US public holidays)
8:00 AM – 8:00 PM Eastern Standard Time (EST)
Tel. from USA
888-test-rsa (888-837-8772) (opt 2)
From outside USA +1 410 910 7800 (opt 2)
Fax
+1 410 910 7801
E-mail
East Asia
Rest of the World
1171.0200.22-04.00
CustomerSupport@rohde-schwarz.com
Monday to Friday (except Singaporean public holidays)
8:30 AM – 6:00 PM Singapore Time (SGT)
Tel.
Fax
+65 6 513 0488
+65 6 846 1090
E-mail
CustomerSupport@rohde-schwarz.com
Monday to Friday
08:00 – 17:00
(except German public holidays)
Central European Time (CET)
Tel.
Fax
+49 89 4129 13774
+49 (0) 89 41 29 637 78
E-mail
CustomerSupport@rohde-schwarz.com
12
Address List
Headquarters, Plants and Subsidiaries
Locations Worldwide
Headquarters
Please refer to our homepage: www.rohde-schwarz.com
◆ Sales Locations
◆ Service Locations
◆ National Websites
ROHDE&SCHWARZ GmbH & Co. KG
Mühldorfstraße 15 · D-81671 München
P.O.Box 80 14 69 · D-81614 München
Phone +49 (89) 41 29-0
Fax +49 (89) 41 29-121 64
info.rs@rohde-schwarz.com
Plants
ROHDE&SCHWARZ Messgerätebau GmbH
Riedbachstraße 58 · D-87700 Memmingen
P.O.Box 16 52 · D-87686 Memmingen
Phone +49 (83 31) 1 08-0
+49 (83 31) 1 08-1124
info.rsmb@rohde-schwarz.com
ROHDE&SCHWARZ GmbH & Co. KG
Werk Teisnach
Kaikenrieder Straße 27 · D-94244 Teisnach
P.O.Box 11 49 · D-94240 Teisnach
Phone +49 (99 23) 8 50-0
Fax +49 (99 23) 8 50-174
info.rsdts@rohde-schwarz.com
ROHDE&SCHWARZ závod
Vimperk, s.r.o.
Location Spidrova 49
CZ-38501 Vimperk
ROHDE&SCHWARZ GmbH & Co. KG
Dienstleistungszentrum Köln
Graf-Zeppelin-Straße 18 · D-51147 Köln
P.O.Box 98 02 60 · D-51130 Köln
Phone +420 (388) 45 21 09
Fax +420 (388) 45 21 13
Phone +49 (22 03) 49-0
Fax +49 (22 03) 49 51-229
info.rsdc@rohde-schwarz.com
service.rsdc@rohde-schwarz.com
Subsidiaries
R&S BICK Mobilfunk GmbH
Fritz-Hahne-Str. 7 · D-31848 Bad Münder
P.O.Box 20 02 · D-31844 Bad Münder
Phone +49 (50 42) 9 98-0
Fax +49 (50 42) 9 98-105
info.bick@rohde-schwarz.com
ROHDE&SCHWARZ FTK GmbH
Wendenschloßstraße 168, Haus 28
D-12557 Berlin
Phone +49 (30) 658 91-122
Fax +49 (30) 655 50-221
info.ftk@rohde-schwarz.com
ROHDE&SCHWARZ SIT GmbH
Am Studio 3
D-12489 Berlin
Phone +49 (30) 658 84-0
Fax +49 (30) 658 84-183
info.sit@rohde-schwarz.com
R&S Systems GmbH
Graf-Zeppelin-Straße 18
D-51147 Köln
GEDIS GmbH
Sophienblatt 100
D-24114 Kiel
HAMEG Instruments GmbH
Industriestraße 6
D-63533 Mainhausen
1171.0200.42-02.00
Phone +49 (22 03) 49-5 23 25
Fax +49 (22 03) 49-5 23 36
info.rssys@rohde-schwarz.com
Phone +49 (431) 600 51-0
Fax +49 (431) 600 51-11
sales@gedis-online.de
Phone +49 (61 82) 800-0
Fax +49 (61 82) 800-100
info@hameg.de
12
R&S FSH
Contents
Contents
Contents......................................................................................................................................... 1
Introduction ................................................................................................................................... 4
Enabling the Option ........................................................................................................................ 4
Interfaces and Protocols.............................................................................................................. 5
SCPI................................................................................................................................................ 5
VISA................................................................................................................................................ 5
LAN Interface............................................................................................................................... 6
USB Interface .............................................................................................................................. 6
Protocols...................................................................................................................................... 6
VXI-11 Basics ................................................................................................................................. 6
Setting Up the Remote Control Connection .............................................................................. 8
Preparing for Remote Control......................................................................................................... 8
Changing the IP Address................................................................................................................ 8
Instrument Model and Command Processing ........................................................................... 9
Input unit ......................................................................................................................................... 9
Command recognition..................................................................................................................... 9
Data base and instrument hardware ............................................................................................ 10
Status reporting system ................................................................................................................ 10
Output unit .................................................................................................................................... 10
SCPI Command Structure and Syntax ..................................................................................... 11
Structure of a Command ........................................................................................................... 11
Common commands..................................................................................................................... 11
Device-Specific Commands ......................................................................................................... 11
Overview of Syntax Elements ................................................................................................... 15
Parameters ................................................................................................................................ 15
Numeric Values ............................................................................................................................ 15
Special Numeric Values................................................................................................................ 16
Boolean Parameters ..................................................................................................................... 16
Text ............................................................................................................................................... 16
Strings........................................................................................................................................... 17
Block data ..................................................................................................................................... 17
Structure of a Program Message .............................................................................................. 17
Responses to Queries............................................................................................................... 18
Command Sequence and Command Synchronization........................................................... 19
Remote Control – Commands ................................................................................................... 20
Common Commands.................................................................................................................. 21
Remote Commands in Spectrum Mode.................................................................................... 24
Setting the Frequency and the Span......................................................................................... 24
Setting Amplitude Parameters .................................................................................................. 28
Setting the Bandwidths.............................................................................................................. 34
Setting and Triggering the Sweep............................................................................................. 35
Working with Traces.................................................................................................................. 39
Using Markers ........................................................................................................................... 43
Markers and Deltamarkers ........................................................................................................... 43
Marker Functions .......................................................................................................................... 51
Using Display Lines and Limit Lines ......................................................................................... 56
Display Lines ................................................................................................................................ 56
Limit Lines..................................................................................................................................... 56
Configuring and Using Measurement Functions....................................................................... 60
Power Measurements................................................................................................................... 60
Measuring the Channel Power ..................................................................................................... 62
Measuring the Adjacent Channel Power ...................................................................................... 64
Measuring the Occupied Bandwidth............................................................................................. 73
1173.0089.12
1
E-4
Contents
R&S FSH
TDMA Measurements................................................................................................................... 74
Working with Channel Tables ....................................................................................................... 74
Using an Isotropic Antenna .......................................................................................................... 75
Remote Commands in Network Analyzer Mode...................................................................... 76
Setting the Frequency and Span............................................................................................... 76
Setting Amplitude Parameters .................................................................................................. 76
Setting the Bandwidth ............................................................................................................... 83
Setting and Triggering the Sweep............................................................................................. 83
Working with Traces.................................................................................................................. 84
Using Markers and Deltamarkers.............................................................................................. 85
Markers and Deltamarkers ........................................................................................................... 85
Marker Functions .......................................................................................................................... 87
Configuring the Measurement................................................................................................... 89
Selecting the Measurement Mode................................................................................................ 89
Calibrating the Measurement ....................................................................................................... 91
Selecting the Result Display ......................................................................................................... 92
Selecting the Measurement Format ............................................................................................. 92
Configuring the Vector Voltmeter (option R&S FSH-K45)............................................................ 94
Remote Commands in the Distance-to-Fault Mode ................................................................ 97
Setting the Frequency and Span............................................................................................... 97
Setting Amplitude Parameters .................................................................................................. 97
Setting the Bandwidth ............................................................................................................... 98
Setting and Triggering the Sweep............................................................................................. 98
Working with Traces.................................................................................................................. 98
Using Markers ........................................................................................................................... 99
Markers and Deltamarkers ........................................................................................................... 99
Configuring the Measurement................................................................................................. 100
Remote Commands in Power Meter Mode............................................................................. 103
Setting the Frequency ............................................................................................................. 103
Configuring Power Level Readout .......................................................................................... 103
Setting the Bandwidths............................................................................................................ 105
Defining the Measurement Time ............................................................................................. 106
Performing Measurements with the Power Sensor ................................................................ 106
Zeroing of the Power Sensor ...................................................................................................... 106
Forward Power Display............................................................................................................... 107
Reading Out Measurement Results ........................................................................................... 107
Selecting a Standard .................................................................................................................. 108
Saving and Restoring Instrument Settings and Measurement Results ............................. 109
Configuring the Instrument ..................................................................................................... 116
Mode Selection........................................................................................................................ 116
Controlling the GPS Receiver ................................................................................................. 117
Display Configuration .............................................................................................................. 120
Audio Settings ......................................................................................................................... 121
Setting up a Network Connection............................................................................................ 122
System Settings....................................................................................................................... 124
Status Reporting System ......................................................................................................... 130
Structure of an SCPI Status Register...................................................................................... 130
CONDition part ........................................................................................................................... 130
PTRansition part ......................................................................................................................... 130
NTRansition part......................................................................................................................... 131
EVENt part .................................................................................................................................. 131
ENABle part ................................................................................................................................ 131
Sum bit........................................................................................................................................ 131
Overview of the Status Register.............................................................................................. 132
Status Byte (STB) and Service Request Enable Register (SRE) ........................................... 133
Event Status Register (ESR) and Event Status Enable Register (ESE) ................................ 134
1173.0089.12
2
E-4
R&S FSH
Contents
STATus:OPERation Register ..................................................................................................... 135
STATus:QUEStionable Register ................................................................................................ 135
STATus:QUEStionable:LIMit Register........................................................................................ 136
Application of the Status Reporting Systems.......................................................................... 136
Service Request ......................................................................................................................... 136
Serial Poll.................................................................................................................................... 137
Query by Means of Commands .................................................................................................. 137
Error Queue Query ..................................................................................................................... 137
Reset Values of the Status Reporting System........................................................................ 138
Remote Commands of the Status Reporting System ........................................................... 139
1173.0089.12
3
E-4
Introduction
R&S FSH
Introduction
With the software application R&S FSH-K40 installed on the instrument, it is possible to operate your
R&S FSH via remote control. In this manual you will find all information necessary to remotely control
the R&S FSH.
Enabling the Option
The Remote Control Option R&S FSH-K40 is enabled by entering a key code. The key code is based
on the unique serial number of the instrument. To retrofit an option, enable it with a key code.
Press the SETUP key.
Press the INSTALLED OPTIONS softkey
Select INSTALL OPTION... under the OPTION ADMINISTRATION header.
Confirm with ENTER.
An entry box in the lower right corner of the screen is displayed.
Type in the the appropriate option key.
Confirm with ENTER.
If the correct key code is entered, the R&S FSH displays
If an invalid key code is entered, the R&S FSH displays
1173.0089.12
4
E-4
R&S FSH
Interfaces and Protocols
Interfaces and Protocols
The R&S FSH supports two different interfaces for remote control.
•
LAN Interface: The protocol is based on TCP/IP and supports the VXI-11 standard.
•
USB Interface
The connectors are located at the side of the instrument and permit a connection to a controller for
remote control via a local area network (LAN) or directly via USB.
SCPI
SCPI (Standard Commands for Programmable Instruments) commands - messages - are used for
remote control. Commands that are not taken from the SCPI standard follow the SCPI syntax rules. The
instrument supports the SCPI version 1999. The SCPI standard is based on standard IEEE 488.2 and
aims at the standardization of device-specific commands, error handling and the status registers. The
tutorial "Automatic Measurement Control - A tutorial on SCPI and IEEE 488.2" from John M. Pieper
(R&S order number 0002.3536.00) offers detailed information on concepts and definitions of SCPI.
The requirements that the SCPI standard places on command syntax, error handling and configuration
of the status registers are explained in detail in the following sections. Tables provide a fast overview of
the bit assignment in the status registers. The tables are supplemented by a comprehensive description
of the status registers.
VISA
VISA is a standardized software interface library providing input and output functions to communicate
with instruments. The I/O channel (LAN or USB) is selected at initialization time by means of a channelspecific resource string. For more information about VISA refer to its user documentation.
The programming examples for remote control are all written in Microsoft® VISUAL BASIC®. Access to
the VISA functions require the declaration of the functions and constants prior to their use in the project.
This can be accomplished either by adding the modules VISA32.BAS and VPPTYPE.BAS or a
reference to the VISA32.DLL to the project.
The modules visa32.bas and vpptype.bas can be found in the <VXIpnpPath>\WinNT\include (typically
C:\VXIpnp\WinNt\include).
1173.0089.12
5
E-4
Interfaces and Protocols
R&S FSH
Manual operation is designed for maximum possible operating convenience. In
contrast, the priority of remote control is the "predictability" of the device status.
Therefore, control programs should always define an initial device status (e.g. with the
command *RST) and then implement the required settings.
LAN Interface
To be integrated in a LAN, the instrument is equipped with a standard LAN interface, consisting of a
connector, a network interface and protocols (VXI-11).
Instrument access via VXI-11 is usually achieved from high level programming platforms by using VISA
as an intermediate abstraction layer. VISA encapsulates the low level VXI-11 (LAN) or USB function
calls and thus makes the transport interface transparent for the user. The necessary VISA library is
available as a separate product. For details contact your local R&S sales representative.
USB Interface
For remote control via the USB connection, the PC and the instrument must be connected via the USB
interface. A USB connection requires the VISA library to be installed. VISA detects and configures the
instrument automatically when the USB connection is established. You do not have to enter an address
string or install a separate driver.
Protocols
VXI-11 Basics
The VXI-11 standard is based on the ONC-RPC protocol which in turn relies on TCP/IP as the
network/transport layer. The TCP/IP network protocol and the associated network services are
preconfigured. TCP/IP ensures connection-oriented communication, where the order of the exchanged
messages is adhered to and interrupted links are identified. With this protocol, messages cannot be
lost.
Remote control of an instrument via a network is based on standardized protocols which follow the OSI
reference model (see Fig. below).
Application
SCPI
Presentation
XDR (VXI-11)
Session
ONC-RPC
Transport
TCP / UDP
Network
IP
Data Link
Ethernet/802.3
Physical
802.3/10BASE-T
1173.0089.12
6
E-4
R&S FSH
Interfaces and Protocols
Figure 1: Example for LAN remote control based on the OSI reference model
Based on TCP/UDP, messages between the controller and the instrument are exchanged via open
network computing (ONC) - remote procedure calls (RPC). With XDR (VXI-11), legal RPC messages
are known as VXI-11 standard. Based on this standard, messages are exchanged between the
controller and the instrument. The messages are identical with SCPI commands. They can be
organized in four groups:
•
program messages (control command to the instrument)
•
response messages (values returned by the instrument)
•
service request (spontaneous queries of the instrument)
•
low-level control messages (interface messages).
A VXI-11 link between a controller and an instrument uses three channels: core, abort and interrupt
channel. Instrument control is mainly performed on the core channel (program, response and low-level
control messages). The abort channel is used for immediate abort of the core channel; the interrupt
channel transmits spontaneous service requests of the instrument. Link setup itself is very complex. For
more details refer to the VXI-11 specification.
Core channel
(program, response,
control messages)
Instrument
Controller
Abort channel (abort)
Interrupt channel
(service request)
Figure 2: VXI-11 channels between instrument and controller
The number of controllers that can address an instrument is practically unlimited in the network. In the
instrument, the individual controllers are clearly distinguished. This distinction continues up to the
application level in the controller, i.e. two applications on a computer are identified by the instrument as
two different controllers.
Controller
Instrument
Controller
Controller
Figure 3: Remote control via LAN from several controllers
The controllers can lock and unlock the instrument for exclusive access. This regulates access to the
instrument of several controllers.
1173.0089.12
7
E-4
Setting Up the Remote Control Connection
R&S FSH
Setting Up the Remote Control Connection
Preparing for Remote Control
The short and simple operating sequence below shows how to put the instrument into operation and
quickly set its basic functions. The current IP address for LAN operation is shown in the SETUP –
Instrument Setup Menu. In case of USB connection the IP address is fixed to 172.16.10.10..
Refer to the Quick Start Guide, chapter "Setting up a LAN or USB Connection to a PC", for instructions
on how to change the IP address.
1. Connect the instrument to the LAN or directly to the controller via USB.
2. Switch on the instruments.
3. Write and start the following program on the controller:
status = viOpenDefaultRM(defaultRM)
' Open default resource manager
status = viOpen(DefaultRM,
"TCPIP::172.16.10.10", 0, 0, vi)
' in case of USB connection
Status = viopen(DefaultRM,
"TCPIP::xxx.xxx.xxx.xxx", 0, 0, vi)
'in case of a LAN connection, with xxx.xxx.xxx.xxx = IP
address
Cmd = "*RST;*CLS"
status = viWrite(vi, Cmd, Len(Cmd), retCount)
' Reset instrument and clear status registers
Cmd = "FREQ:CENT 100MHz"
status = viWrite(vi, Cmd, Len(Cmd), retCount)
' Set center frequency to 100 MHz
Cmd = "FREQ:SPAN 10MHz"
status = viWrite(vi, Cmd, Len(Cmd), retCount)
' Set span to 10 MHz
Cmd = "DISP:TRAC:Y:RLEV -10dBm"
status = viWrite(vi, Cmd, Len(Cmd), retCount)
' Set reference level to -10 dBm
viclose vi
viclose default RM
The instrument now performs a sweep in the frequency range of 95 MHz to 105 MHz.
Changing the IP Address
In order to operate the instrument via remote control, it must be accessed via LAN (IP address) or USB.
If the factory-set remote control address does not fit in the network environment, it can be changed.
Refer to the Quick Start Guide, chapter "Setting up a LAN or USB Connection to a PC", for instructions
on how to change the IP address.
1173.0089.12
8
E-4
R&S FSH
Instrument Model and Command Processing
Instrument Model and Command Processing
The block diagram in Fig. 1-2 shows how SCPI commands are serviced in the instrument. The
individual components work independently and simultaneously. They communicate with each other by
means of so-called "messages".
Figure 4: Instrument model in the case of remote control
Input unit
The input unit receives commands character by character from the controller and collects them in the
input buffer. The input unit sends a message to the command recognition as soon as the input buffer is
full or as soon as it receives a delimiter, <PROGRAM MESSAGE TERMINATOR>, as defined in IEEE
488.2, or the interface message DCL.
If the input buffer is full, the traffic is stopped and the data received up to then are processed.
Subsequently the traffic is continued. If, however, the buffer is not yet full when receiving the delimiter,
the input unit can already receive the next command during command recognition and execution. The
receipt of DCL clears the input buffer and immediately resets the command recognition.
Command recognition
The command recognition analyses the data received from the input unit. It proceeds in the order in
which it receives the data. Only DCL is serviced with priority, for example GET (Group Execute Trigger)
is only executed after the commands received before. Each recognized command is immediately
transferred to the internal instrument settings data base but not executed immediately.
The command recognition detects syntax errors in the commands and transfers them to the status
reporting system. The rest of a program message after a syntax error is analyzed further if possible and
serviced. After the syntax test, the value range of the parameter is checked, if required.
If the command recognition detects a delimiter, it passes the command to an execution unit that
performs the instrument settings. In the meantime, the command recognition is ready to process new
commands (overlapping execution). A DCL command is processed in the same way.
1173.0089.12
9
E-4
Instrument Model and Command Processing
R&S FSH
Data base and instrument hardware
Here the expression "instrument hardware" denotes the part of the instrument fulfilling the actual
instrument function - signal generation, measurement etc. The controller is not included. The term "data
base" denotes a database that manages all the parameters and associated settings required for setting
the instrument hardware.
Setting commands lead to an alteration in the data set. The data set management enters the new
values (e.g. frequency) into the data set, however, only passes them on to the hardware when
requested by the command recognition. This only takes place at the end of a program message.
The data are checked for compatibility with the current instrument settings before they are transmitted
to the instrument hardware. If the execution is not possible, an "execution error" is signaled to the status
reporting system. The corresponding settings are discarded.
Before passing on the data to the hardware, the settling bit in the STATus:OPERation register is set
(refer to section "STATus:OPERation Register"). The hardware executes the settings and resets the bit
again as soon as the new state has settled. This fact can be used to synchronize command servicing.
Queries induce the data set management to send the desired data to the output unit.
Status reporting system
For detailed information refer to section "Status Reporting System".
Output unit
The output unit collects the information requested by the controller, which it receives from the data base
management. It processes it according to the SCPI rules and makes it available in the output buffer.
If the instrument is addressed as a talker without the output buffer containing data or awaiting data from
the data base management, the output unit sends error message "Query UNTERMINATED" to the
status reporting system. No data are sent to the controller, the controller waits until it has reached its
time limit. This behavior is defined by IEEE 488.2 and SCPI.
1173.0089.12
10
E-4
R&S FSH
SCPI Command Structure and Syntax
SCPI Command Structure and Syntax
SCPI (Standard Commands for Programmable Instruments) describes a standard command set for
programming instruments, irrespective of the type of instrument or manufacturer. The goal of the SCPI
consortium is to standardize the device-specific commands to a large extent. For this purpose, a model
was developed which defines the same functions inside a device or for different devices. Command
systems were generated which are assigned to these functions. Thus it is possible to address the same
functions with identical commands. The command systems are of a hierarchical structure.
SCPI is based on standard IEEE 488.2, i.e. it uses the same syntactic basic elements as well as the
common commands defined in this standard. Part of the syntax of the device responses is defined with
greater restrictions than in standard IEEE 488.2 (see section "Responses to Queries").
Not all commands used in the following examples are implemented in the instrument.
Structure of a Command
The commands consist of a so-called header and, in most cases, one or more parameters. Header and
parameter are separated by a "white space" (ASCII code 0 to 9, 11 to 32 decimal, e.g. blank). The
headers may consist of several key words. Queries are formed by directly appending a question mark
to the header.
Common commands
Common commands consist of a header preceded by an asterisk "*" and one or several parameters, if
any.
Examples:
*RST
RESET, resets the device
*ESE 253
EVENT STATUS ENABLE, sets the bits of the event status enable register
*ESR?
EVENT STATUS QUERY, queries the contents of the event status register.
Device-Specific Commands
Hierarchy
Device-specific commands are of hierarchical structure (see Figure 5). The different levels are
represented by combined headers. Headers of the highest level (root level) have only one key word.
This key word denotes a complete command system.
Example
SENSe
This key word denotes the SENSe command system.
For commands of lower levels, the complete path has to be specified, starting on the left with the
highest level, the individual key words being separated by a colon ":".
1173.0089.12
11
E-4
SCPI Command Structure and Syntax
R&S FSH
Example
SENSe:FREQuency:SPAN 10MHZ
This command lies in the third level of the SENSe system. It sets the frequency span.
SENSe
BANDwidth
FREQuency
FUNCtion
STARt
STOP
CENTer
DETector
SPAN
OFFSet
Figure 5: Tree structure the SCPI command systems using the SENSe system as example
Multiple key words
Some key words occur in several levels within one command system. Their effect depends on the
structure of the command, i.e. at which position in the header of a command they are inserted.
Example
SOURce:FM:POLarity NORMal
This command contains key word POLarity in the third command level. It defines the polarity
between modulator and modulation signal.
Example
SOURce:FM:EXTernal:POLarity NORMal
This command contains key word POLarity in the fourth command level. It defines the polarity
between modulation voltage and the resulting direction of the modulation only for the external
signal source indicated.
Optional key words
Some command systems permit certain key words to be inserted into the header or omitted. These key
words are marked by square brackets in the description. The full command length must be recognized
by the instrument for reasons of compatibility with the SCPI standard. Some commands are
considerably shortened by these optional key words.
Example
[SENSe]:BANDwidth[:RESolution]:AUTO
This command couples the resolution bandwidth of the instrument to other parameters. The
following command has the same effect:
BANDwidth:AUTO
1173.0089.12
12
E-4
R&S FSH
SCPI Command Structure and Syntax
Optional keywords with numeric suffixes
Do not omit an optional keyword if it includes a numeric suffix that is relevant for the
effect of the command.
Example
DISPlay[:WINDow<1...4>]:MAXimize <Boolean>
Command DISP:MAX ON refers to window 1.
In order to refer to a window other than 1, you must include the optional
WINDow parameter with the suffix for the required window.
DISP:WIND2:MAX ON refers to window 2.
Long and short form
The key words feature a long form and a short form. Either the short form or the long form can be
entered, other abbreviations are not permitted.
Example
STATus:QUEStionable:ENABle 1 is equivalent to STAT:QUES:ENAB 1
Upper-case and lower-case notation only serves to distinguish the two forms in the
manual, the instrument itself does not distinguish upper-case and lower-case letters.
Parameter
The parameter must be separated from the header by a "white space". If several parameters are
specified in a command, they are separated by a comma ",". A few queries permit the parameters
MINimum, MAXimum and DEFault to be entered. Refer to "Parameters" for a detailed description of the
various parameters.
Example
SENSe:FREQuency:STOP? MAXimum, Response: 3.5E9
This query requests the maximal value for the stop frequency.
Special Characters
|
A vertical stroke in parameter definitions indicates alternative possibilities in the sense of "or". The effect of the
command differs, depending on which parameter is used.
Example
DISPlay:FORMat SINGle | SPLit
If parameter SINGle is selected, full screen is displayed, in the case of SPLit, split screen is displayed.
A selection of key words with an identical effect exists for several commands. These keywords are indicated in the
same line; they are separated by a vertical stroke. Only one of these keywords needs to be included in the header of
the command. The effect of the command is independent of which of the keywords is used.
Example
SENSe:BANDwidth|BWIDth[:RESolution]
The two following commands with identical meaning can be created. They set the frequency of the fixed frequency
signal to 1 kHz:
SENSe:BAND 1
1173.0089.12
13
E-4
SCPI Command Structure and Syntax
R&S FSH
SENSe:BWID 1
[]
Key words in square brackets can be omitted when composing the header. The full command length must be
accepted by the instrument for reasons of compatibility with the SCPI standards.
Example
[SENSe:]BANDwidth|BWIDth[:RESolution]
SENS:BAND:RES is equivalent to BAND
Parameters in square brackets can be incorporated optionally in the command or omitted as well.
Example
MMEMory:NETWork:MAP <string>,<string>[,string>,<string>,<boolean>]
Entries in square brackets are optional or can be omitted.
{}
Parameters in curly brackets are optional and can be inserted once or several times, or omitted.
Example
SENSe:LIST:FREQuency <numeric_value>{,<numeric_value>}
The following are valid commands:
SENS:LIST:FREQ 10
SENS:LIST:FREQ 10,20
SENS:LIST:FREQ 10,20,30,40
Numeric suffix
If a device features several functions or features of the same kind, e.g. inputs, the desired function can
be selected by a suffix added to the command. Entries without suffix are interpreted like entries with the
suffix 1. Optional keywords must be specified if they select a function with the suffix.
Example
SYSTem:COMMunicate:SERial2:BAUD 9600
This command sets the baud rate of a second serial interface.
In case of remote control, suffix counting may differ from the numbers of the
corresponding selection used in manual operation. SCPI prescribes that suffix
counting starts with 1. Suffix 1 is the default state and used when no specific suffix is
specified.
Some standards define a fixed numbering, starting with 0. With GSM, for instance,
slots are counted from 0 to 7. In the case of remote control, the slots are selected with
the suffixes 1 to 8. If the numbering differs in manual operation and remote control, it
is indicated with the respective command.
1173.0089.12
14
E-4
R&S FSH
SCPI Command Structure and Syntax
Overview of Syntax Elements
The following table offers an overview of the syntax elements.
:
The colon separates the key words of a command. In a program message the separating semicolon marks the
uppermost command level.
;
The semicolon separates two commands within a program message. It does not alter the path.
,
The comma separates several parameters of a command.
?
The question mark forms a query.
*
The asterisk marks a common command.
"
Quotation marks introduce a string and terminate it.
#
The hash symbol # introduces binary, octal, hexadecimal and block data.
•
•
•
•
Binary: #B10110
Octal: #O7612
Hexa: #HF3A7
Block: #21312
A "white space" (ASCII-Code 0 to 9, 11 to 32 decimal, e.g. blank) separates header and parameter.
Parameters
For most commands a parameter needs to be supplemented. The parameter has to be separated from
the header by a "white space". Possible parameters are:
•
Numeric values
•
Special numeric values
•
Boolean parameters
•
Text
•
Character strings
•
Block data.
The type of parameter required for each command and the allowed range of values are specified in the
command description.
Numeric Values
Numeric values can be entered in any form, i.e. with sign, decimal point and exponent. Values
exceeding the resolution of the instrument are rounded up or down. The mantissa may comprise up to
255 characters, the exponent must lie inside the value range -32000 to 32000. The exponent is
introduced by an "E" or "e". Entry of the exponent alone is not permissible. In the case of physical
quantities, the unit can be entered. Permissible unit prefixes are G (giga), MA (mega), MOHM and MHZ
are also possible), K (kilo), M (milli), U (micro) and N (nano). If the unit is missing, the basic unit is used.
Example
SENSe:FREQuency:STOP 1.5GHz = SENSe:FREQuency:STOP 1.5E9
1173.0089.12
15
E-4
SCPI Command Structure and Syntax
R&S FSH
Special Numeric Values
The texts MINimum, MAXimum, DEFault, UP and DOWN are interpreted as special numeric values. In
case of a query, the numeric value is returned.
•
MIN/MAX
MINimum and MAXimum denote the minimum and maximum value.
•
DEF
DEFault denotes a preset value which has been stored in the EPROM. This value conforms to the
default setting, as it is called by the *RST command
•
UP/DOWN
UP, DOWN increases or reduces the numerical value by one step. The step width can be specified
via an allocated step command for each parameter which can be set via UP, DOWN.
•
INF/NINF
INFinity, Negative INFinity (NINF) Negative INFinity (NINF) represent the numerical values -9.9E37
or 9.9E37, respectively. INF and NINF are only sent as device reponses.
•
NAN
Not A Number (NAN) represents the value 9.91E37. NAN is only sent as device response. This
value is not defined. Possible causes are the division of zero by zero, the subtraction of infinite from
infinite and the representation of missing values.
Example:
Setting command: SENSe:FREQuency:STOP MAXimum
Query: SENSe:FREQuency:STOP?, Response: 3.5E9
Boolean Parameters
Boolean parameters represent two states. The ON state (logically true) is represented by ON or a
numerical value unequal to 0. The OFF state (logically untrue) is represented by OFF or the numerical
value 0. The numerical values are provided as response for query.
Example
Setting command: DISPlay:WINDow:STATe ON
Query: DISPlay:WINDow:STATe?, Response: 1
Text
Text parameters observe the syntactic rules for key words, i.e. they can be entered using a short or
long form. Like any parameter, they have to be separated from the header by a white space. In the case
of a query, the short form of the text is provided.
Example
Setting command: INPut:COUPling GROund
Query: INPut:COUPling?, Response: GRO
1173.0089.12
16
E-4
R&S FSH
SCPI Command Structure and Syntax
Strings
Strings must always be entered in quotation marks (' or ").
Example
SYSTem:LANGuage "SCPI" or SYSTem:LANGuage 'SCPI'
Block data
Block data are a transmission format which is suitable for the transmission of large amounts of data. A
command using a block data parameter has the following structure:
Example
HEADer:HEADer #45168xxxxxxxx
ASCII character # introduces the data block. The next number indicates how many of the following
digits describe the length of the data block. In the example the 4 following digits indicate the length to
be 5168 bytes. The data bytes follow. During the transmission of these data bytes all end or other
control signs are ignored until all bytes are transmitted.
Structure of a Program Message
A program message may consist of one or several commands. It is terminated by the program message
terminator which is the NL (New Line) charcter for LAN and USB connections.
Several commands in a program message must be separated by a semicolon ";". If the next command
belongs to a different command system, the semicolon is followed by a colon. A colon ":" at the
beginning of a command marks the root node of the command tree.
Example:
CALL InstrWrite(analyzer, "SENSe:FREQuency:CENTer
100MHz;:INPut:ATTenuation 10")
This program message contains two commands. The first one is part of the SENSe command
system and is used to determine the center frequency of the instrument. The second one is part
of the INPut command system and sets the input signal attenuation.
If the successive commands belong to the same system, having one or several levels in common, the
program message can be abbreviated. For that purpose, the second command after the semicolon
starts with the level that lies below the common levels (see also Fig. 1-1). The colon following the
semicolon must be omitted in this case.
Example:
CALL InstrWrite(analyzer, "SENSe:FREQuency:STARt
1E6;:SENSe:FREQuency:STOP 1E9")
This program message is represented in its full length and contains two commands separated
from each other by the semicolon. Both commands are part of the SENSe command system,
subsystem FREQuency, i.e. they have two common levels.
When abbreviating the program message, the second command begins with the level below
SENSe:FREQuency. The colon after the semicolon is omitted. The abbreviated form of the program
message reads as follows:
CALL InstrWrite(analyzer, "SENSe:FREQuency:STARt 1E6;STOP 1E9")
However, a new program message always begins with the complete path.
1173.0089.12
17
E-4
SCPI Command Structure and Syntax
R&S FSH
Example:
CALL InstrWrite(analyzer, "SENSe:FREQuency:STARt 1E6")
CALL InstrWrite(analyzer, "SENSe:FREQuency:STOP 1E9")
Responses to Queries
A query is defined for each setting command unless explicitly specified otherwise. It is formed by adding
a question mark to the associated setting command. According to SCPI, the responses to queries are
partly subject to stricter rules than in standard IEEE 488.2.
•
The requested parameter is transmitted without header.
Example
INPut:COUPling?, Response: DC
•
Maximum values, minimum values and all further quantities, which are requested via a special text
parameter are returned as numerical values.
Example
SENSe:FREQuency:STOP? MAX, Response: 3.5E9
•
Numerical values are output without a unit. Physical quantities are referred to the basic units or to
the units set using the Unit command.
Example
SENSe:FREQuency:CENTer?, Response: 1E6 (for 1 MHz)
•
Truth values <Boolean values> are returned as 0 (for OFF) and 1 (for ON).
Example
SENSe:BANDwidth:AUTO?, Response: 1 (for ON)
•
Text (character data) is returned in a short form.
Example
SYSTem:COMMunicate:SERial:CONTrol:RTS?, Response STAN (for standard)
1173.0089.12
18
E-4
R&S FSH
Command Sequence and Command Synchronization
Command Sequence and Command Synchronization
What has been said above makes clear that all commands can potentially be carried out overlapping. In
order to prevent an overlapping execution of commands, one of the commands *OPC, *OPC? or *WAI
must be used. All three commands cause a certain action only to be carried out after the hardware has
been set. By suitable programming, the controller can be forced to wait for the respective action to
occur (refer to Table 1).
Table 1: Synchronization using *OPC, *OPC? and *WAI
Command
Action
Programming the controller
*OPC
Sets the Operation Complete bit in the ESR
after all previous commands have been
executed.
– Setting bit 0 in the ESE
– Setting bit 5 in the SRE
– Waiting for service request (SRQ)
*OPC?
Stops command processing until 1 is returned.
This is only the case after the Operation
Complete bit has been set in the ESR. This bit
indicates that the previous setting has been
completed.
Sending *OPC? directly after the command whose
processing should be terminated before other commands
can be executed.
*WAI
Stops further command processing until all
commands sent before *WAI have been
executed.
Sending *WAI directly after the command whose
processing should be terminated before other commands
are executed.
For a couple of commands the synchronization to the end of command execution is mandatory in order
to obtain the desired result. The affected commands require either more than one measurement in
order to accomplish the desired instrument setting (e.g. auto range functions), or they require a longer
period of time for execution. If a new command is received during execution of the corresponding
function this may either lead to either to an aborted measurement or to incorrect measurement data.
The following list includes the commands, for which a synchronization via *OPC, *OPC? or *WAI is
mandatory:
Table 2: Commands with mandatory synchronization (overlapping commands)
Command
Purpose
INIT
start measurement (sweep)
INIT:CONT OFF
Set to single sweep
CALC:MARK:FUNC:xx?
All Marker function queries
1173.0089.12
19
E-4
Remote Control – Commands
R&S FSH
Remote Control – Commands
The following chapters provide a detailed description of all remote control commands currently available
for the R&S FSH and its firmware options.
Each section describes the commands for one of the operating modes available in the R&S FSH,
beginning with the description of common commands required to operate the instrument. The structure
is based on that of the operating manual.
•
Common Commands on page 21
•
Remote Commands in Spectrum Mode on page 24
•
Remote Commands in Network Analyzer Mode on page 76
•
Remote Commands in the Distance-to-Fault Mode on page 97
•
Remote Commands in Power Meter Mode on page 103
Each section is subdivided into various tasks required to perform measurements with the R&S FSH,
also based on the structure of the operating manual. Some commands like those for controlling markers
or configuring the frequency axis are available for all operating modes. In that case you will find a list of
these commands in the corresponding section. However, a detailed description is provided only in the
analyzer commands section.
The spectrum analysis and network analysis modes are implemented in the basic
unit. For the other modes, the corresponding options are required.
Following the remote control commands required to perform specific measurements, you will find a
description of general commands used to set up and control basic instrument functions. These
commands are independent of the operating mode. Therefore they are listed separately.
•
Saving and Restoring Instrument Settings and Measurement Results on page 109
•
Configuring the Instrument on page 116
•
Remote Commands of the Status Reporting System on page 139
All chapters begin with a list of commands available in the context of that chapter. Following that list you
will find a detailed description of all commands.
All individual descriptions contain:
•
the complete notation and syntax of the command
•
the description of the effects of the command
•
a list of all parameters available for that command
•
an example of how a program message would look like
•
the *RST value
•
information on SCPI conformity
An alphabetical list of all available commands is provided at the end of this manual.
1173.0089.12
20
E-4
R&S FSH
Common Commands
Common Commands
The common commands are taken from the IEEE 488.2 (IEC 625-2) standard. A particular command
has the same effect on different devices. The headers of these commands consist of an asterisk "*"
followed by three letters. Some of the common commands refer to the "Status Reporting System".
List of Common Commands
•
*CLS (p. 21)
•
*ESE (p. 21)
•
*ESR? (p. 21)
•
*IDN? (p. 22)
•
*IST? (p. 22)
•
*OPC (p. 22)
•
*OPT? (p. 22)
•
*RST (p. 22)
•
*SRE (p. 22)
•
*STB? (p. 23)
•
*TRG (p. 23)
•
*TST? (p. 23)
•
*WAI (p. 23)
*CLS
CLEAR STATUS sets the status byte (STB), the standard event register (ESR) and the EVENt
part of the QUEStionable and the OPERation register to zero. The command does not alter the
mask and transition parts of the registers. It clears the output buffer.
*ESE
EVENT STATUS ENABLE sets the event status enable register to the value indicated. The
query form *ESE? returns the contents of the event status enable register in decimal form.
Parameter
0 to 255
*ESR?
STANDARD EVENT STATUS QUERY returns the contents of the event status register in
decimal form (0 to 255) and subsequently sets the register to zero.
Parameter
0 to 255
1173.0089.12
21
E-4
Common Commands
R&S FSH
*IDN?
IDENTIFICATION QUERY queries the instrument identification.
Return values (examples)
Example for R&S FSH:
Rohde&Schwarz,FSH4,100005/024,1.10
FSH4
device name
100005/024
serial number/model index
1.10
firmware version
*IST?
INDIVIDUAL STATUS QUERY returns the contents of the IST flag in decimal form. The IST flag
is the status bit which is sent during a parallel poll (see chapter "Remote Control - Basics").
Parameter
0|1
*OPC
OPERATION COMPLETE sets bit 0 in the event status register after all preceding commands
have been executed. This bit can be used to initiate a service request (see chapter "Remote
Control - Basics").
*OPT?
OPTION IDENTIFICATION QUERY queries the options included in the instrument and returns a
list of the options installed. The options are separated from each other by means of commas.
Parameter
K<number> software options
For a list of all available options and their description refer to the CD-ROM.
Example
K40, K41, K42, K45
*RST
RESET sets the instrument to a defined default status. The command essentially corresponds
to pressing the PRESET key.
*SRE
SERVICE REQUEST ENABLE sets the service request enable register to the indicated value.
Bit 6 (MSS mask bit) remains 0. This command determines under which conditions a service
request is generated. The query form *SRE? reads the contents of the service request enable
register in decimal form. Bit 6 is always 0.
Parameter
0 to 255
1173.0089.12
22
E-4
R&S FSH
Common Commands
*STB?
READ STATUS BYTE QUERY reads out the contents of the status byte in decimal form.
*TRG
TRIGGER initiates all actions in the currently active test screen expecting a trigger event. This
command corresponds to the INITiate:IMMediate command. For details refer to the
INITiate[:IMMediate].
*TST?
SELF TEST QUERY initiates the self test of the instrument and outputs an error code in decimal
form.
Parameter
0 = no error
*WAI
WAIT-to-CONTINUE permits servicing of subsequent commands only after all preceding
commands have been executed and all signals have settled (see chapter "Remote Control Basics").
1173.0089.12
23
E-4
Remote Commands in Spectrum Mode
R&S FSH
Remote Commands in Spectrum Mode
This section provides a detailed description of all remote control commands required to configure and
perform measurements in Spectrum Analyzer mode.
•
Setting the Frequency and the Span on page 24
•
Setting Amplitude Parameters on page 28
•
Setting the Bandwidths on page 34
•
Setting and Triggering the Sweep on page 35
•
Working with Traces on page 39
•
Using Markers on page 43
•
Using Display Lines and Limit Lines on page 56
•
Configuring and Using Measurement Functions on page 60
Setting the Frequency and the Span
The following commands configure the frequency axis (x-axis) of the active display.
Commands independent of the operating mode
Note that most of the commands for setting the frequency and span are also valid
for other operating modes. If a command is available in another mode, it is indicated
by the list in the respective section.
List of commands:
•
[SENSe:]CHANNel (p. 25)
•
[SENSe:]FREQuency:CENTer (p. 25)
•
[SENSe:]FREQuency:CENTer:STEP (p. 25)
•
[SENSe:]FREQuency:CENTer:STEP:LINK (p. 25)
•
[SENSe:]FREQuency:INPut:MODE (p. 26)
•
[SENSe:]FREQuency:MODE (p. 26)
•
[SENSe:]FREQuency:OFFSet (p. 26)
•
[SENSe:]FREQuency:SPAN (p. 27)
•
[SENSe:]FREQuency:SPAN:AUTO (p. 27)
•
[SENSe:]FREQuency:SPAN:FULL (p. 27)
•
[SENSe:]FREQuency:STARt (p. 27)
•
[SENSe:]FREQuency:STOP (p. 28)
1173.0089.12
24
E-4
R&S FSH
Remote Commands in Spectrum Mode
[SENSe:]CHANNel
This command defines the channel number if the frequency mode is set ot "channel".
Parameter
<numeric value> = number of the channel to be measured.
Example
FREQ:CENT 10
Measures channel number 10.
Characteristics
*RST value:1
SCPI: conform
[SENSe:]FREQuency:CENTer
This command defines the center frequency or the measuring frequency for span = 0.
Parameter
0 to fmax
fmax is specified in the data sheet.
Example
FREQ:CENT 100MHz
Sets the center frequency to 100 MHz.
Characteristics
*RST value: fmax /2 with fmax = maximum frequency
SCPI: conform
[SENSe:]FREQuency:CENTer:STEP
This command defines the step size of the center frequency.
Parameter
0 to fmax
Example
FREQ:CENT:STEP 120MHz
Sets the step size to 120 MHz.
Characteristics
*RST value: – (AUTO 0.1*SPAN is switched on)
SCPI: conform
[SENSe:]FREQuency:CENTer:STEP:LINK
This command couples the step size of the center frequency to span (span >0) or to the
resolution bandwidth (span = 0) or cancels the couplings.
Parameter
DIVTen
Coupling of the step size to 10% of the span
OFF
manual input, no coupling
1173.0089.12
25
E-4
Remote Commands in Spectrum Mode
R&S FSH
Example
FREQ:CENT:STEP:LINK DIVT
Couples the step size to 10% of the span.
Characteristics
*RST value: DIVTen
SCPI: device-specific
[SENSe:]FREQuency:INPut:MODE
This command selects the frequency mode. Select the Channel frequency mode only if you
want to work with channel tables. In this case, the input of the center frequency is not a
frequency value, but a channel number.
Parameter
CHANnel | FREQ
Example
FREQ:INP:MODE CHAN
Sets the frequency mode to work with channel tables.
Characteristics
*RST value: FREQ
SCPI: device-specific
[SENSe:]FREQuency:MODE
This command switches between span > 0 (SWEep) and zero span (CW | FIXed).
For CW and FIXed, the frequency is set via the [SENSe:]FREQuency:CENTer command. In
sweep mode, it is via the [SENSe:]FREQuency:STARt, [SENSe:]FREQuency:STOP,
[SENSe:]FREQuency:CENTer, and [SENSe:]FREQuency:SPAN commands.
Parameter
CW | FIXed | SWEep
Example
FREQ:MODE SWE
Activates sweep mode.
Characteristics
*RST value: SWEep
SCPI: conform
[SENSe:]FREQuency:OFFSet
This command defines the frequency offset of the instrument.
Parameter
–100 GHz to 100 GHz
Example
FREQ:OFFS 1GHZ
Characteristics
*RST value: 0 Hz
SCPI: conform
1173.0089.12
26
E-4
R&S FSH
Remote Commands in Spectrum Mode
[SENSe:]FREQuency:SPAN
This command defines the frequency span.
Parameter
0 to fmax
fmax is specified in the data sheet.
Example
FREQ:SPAN 10MHz
Characteristics
*RST value: fmax with fmax = maximum frequency
SCPI: conform
[SENSe:]FREQuency:SPAN:AUTO
This command activates and deactivates automatic setting of the span. If the Auto Span is
active, the R&S FSH automatically sets the span to best fit the measured channel.
Parameter
ON | OFF
Example
FREQ:SPAN:AUTO ON
Activates the Auto Span function
Characteristics
*RST value: OFF
SCPI: device-specific
[SENSe:]FREQuency:SPAN:FULL
This command sets the frequency span to its maximum.
Parameter
fmax, specified in the data sheet.
Example
FREQ:SPAN:FULL
Characteristics
*RST value: –
SCPI: conform
[SENSe:]FREQuency:STARt
This command defines the start frequency of the analyzer. This command is only available with
span > 0.
Parameter
0 to fmax
fmax is specified in the data sheet.
1173.0089.12
27
E-4
Remote Commands in Spectrum Mode
R&S FSH
Example
FREQ:STAR 20MHz
Characteristics
*RST value: 0
SCPI: conform
[SENSe:]FREQuency:STOP
This command defines the stop frequency of the analyzer. This command is only available with
span > 0.
Parameter
0 to fmax
fmax is specified in the data sheet.
Example
FREQ:STOP 2000MHz
Characteristics
*RST value: fmax
SCPI: conform
Setting Amplitude Parameters
The following commands configure the level axis (y-axis) and level parameters of the active display.
Commands independent of the operating mode
Note that some of the commands for setting the level parameters are also valid for
other operating modes. If a command is available in another mode, it is indicated by
the list in the respective section.
List of commands:
•
DISPlay[:WINDow]:TRACe<1|2>:Y:SPACing (p. 29)
•
DISPlay[:WINDow]:TRACe<1|2>:Y[:SCALe] (p. 29)
•
DISPlay[:WINDow]:TRACe<1|2>:Y[:SCALe]:ADJust (p. 29)
•
DISPlay[:WINDow]:TRACe<1|2>:Y[:SCALe]:RLEVel (p. 30)
•
DISPlay[:WINDow]:TRACe<1|2>:Y[:SCALe]:RLEVel:OFFSet (p. 30)
•
DISPlay[:WINDow]:TRACe<1|2>:Y[:SCALe]:RPOSition (p. 30)
•
INPut:ATTenuation (p. 31)
•
INPut:ATTenuation:MODE (p. 31)
•
INPut:ATTenuation:AUTO (p. 31)
•
INPut:GAIN:STATe (p. 32)
•
INPut:IMPedance (p. 32)
1173.0089.12
28
E-4
R&S FSH
Remote Commands in Spectrum Mode
•
[SENSe:]CORRection:TRANsducer<1...2>[:STATe] (p. 32)
•
[SENSe:]CORRection:TRANsducer<1...2>:SELect (p. 33)
•
[SENSe:]CORRection:TRANsducer<1...2>:UNIT? (p. 33)
•
UNIT:POWer (p. 33)
DISPlay[:WINDow]:TRACe<1|2>:Y:SPACing
This command selects the scaling for the level display range.
Parameter
LOGarithmic
Selects logarithmic scaling.
LINear
Selects linear scaling in %.
Example
DISP:TRAC:Y:SPAC LIN
Selects linear scaling of the level axis.
Characteristics
*RST value: LOGarithmic
SCPI: conform
DISPlay[:WINDow]:TRACe<1|2>:Y[:SCALe]
This command defines the display range of a level axis with logarithmic scaling
(DISPlay[:WINDow]:TRACe<1|2>:Y:SPACing).
For linear scaling, the display range is fixed and cannot be modified.
The numeric suffix <1|2> is irrelevant.
Parameter
10 dB to 200 dB or value in Hz
Example
DISP:TRAC:Y 110dB
Sets the display range to 110 dB.
Characteristics
*RST value: 100dB
SCPI: device–specific
DISPlay[:WINDow]:TRACe<1|2>:Y[:SCALe]:ADJust
This command automatically sets the scaling of the level axis to best fit the measurement
results of the indicated trace.
This command is an event and therefore has no query and no *RST value.
Example
DISP:TRAC:Y:ADJ
Adjusts the y-axis.
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
29
E-4
Remote Commands in Spectrum Mode
R&S FSH
DISPlay[:WINDow]:TRACe<1|2>:Y[:SCALe]:RLEVel
This command defines the reference level.
With the reference level offset <> 0, the indicated value range of the reference level is modified
by the offset.
The unit depends on the setting defined with UNIT:POWer.
The numeric suffix <1|2> is irrelevant.
Parameter
<numeric_value> in dBm, range specified in data sheet
Example
DISP:TRAC:Y:RLEV –60dBm
Sets the reference level to -60 dBm.
Characteristics
*RST value: –20dBm
SCPI: conform
DISPlay[:WINDow]:TRACe<1|2>:Y[:SCALe]:RLEVel:OFFSet
This command defines the offset of the reference level.
The numeric suffix <1|2> is irrelevant.
Parameter
–200dB to 200dB
Example
DISP:TRAC:Y:RLEV:OFFS –10dB
Characteristics
*RST value: 0dB
SCPI: conform
DISPlay[:WINDow]:TRACe<1|2>:Y[:SCALe]:RPOSition
This command defines the position of the reference value. It requires a tracking generator and
active normalization in the Tracking Generator mode.
The numeric suffixes <1|2> is irrelevant.
Parameter
0 to 100PCT
Example
DISP:TRAC:Y:RPOS 50PCT
Sets the position of the reference value to 50%
Characteristics
*RST value:
100 PCT (Spectrum Analyzer mode)
50 PCT (Tracking Generator mode)
SCPI: conform
1173.0089.12
30
E-4
R&S FSH
Remote Commands in Spectrum Mode
INPut:ATTenuation
This command programs the input attenuator.
The attenuation can be set in 5 dB steps. If the defined reference level cannot be set for the set
RF attenuation, the reference level will be adjusted accordingly.
In the default state with Spectrum Analyzer mode, the attenuation set on the step attenuator is
coupled to the reference level of the instrument. If the attenuation is programmed directly, the
coupling to the reference level is switched off.
Parameter
<numeric_value> in dB; range specified in data sheet
Example
INP:ATT 30dB
Sets the attenuation on the attenuator to 30 dB and switches off the coupling to the reference
level.
Characteristics
*RST value: 0 dB (AUTO is set to ON)
SCPI: conform
INPut:ATTenuation:MODE
This command defines the mode for controlling the RF attenuator.
For further information on controlling the RF attenuator refer to the Quick Start Guide, chapter
"Controlling the RF Attenuator" or the Operating Manual, chapter "Setting the Amplitude
Parameters".
Parameter
LDIStortion | LNOise
Example
INP:ATT:MODE LNO
Sets the attenuation mode to Auto Low Noise.
Characteristics
*RST value: LNOise
SCPI: device-specific
INPut:ATTenuation:AUTO
This command automatically couples the input attenuation to the reference level (state ON) or
switches the input attenuation to manual entry (state OFF).
Parameter
ON | OFF
Example
INP:ATT:AUTO ON
Couples the attenuation set on the attenuator to the reference level.
Characteristics
*RST value: ON
SCPI: conform
1173.0089.12
31
E-4
Remote Commands in Spectrum Mode
R&S FSH
INPut:GAIN:STATe
This command switches the preamplifier of the instrument on or off.
Parameter
ON | OFF
Example
INP:GAIN:STAT ON
Activates the preamplifier
Characteristics
*RST value: OFF
SCPI: conform
INPut:IMPedance
This command sets the nominal input impedance of the instrument. The set impedance is taken
into account in all level indications of results.
The setting 75 [ \should be selected, if the 50 [ \input impedance is transformed to a higher
impedance using a 75 [ adapter of the RAZ type (= 25 [ in series to the input impedance of the
instrument). The correction value in this case is 1.76 dB = 10 log (75[ \/ 50[).
Parameter
50 | 75
Example
INP:IMP 75
Sets the input impedance to 75 Ohm.
Characteristics
*RST value: 50 [
SCPI: conform
[SENSe:]CORRection:TRANsducer<1...2>[:STATe]
This command switches the selected transducer factor on or off.
The suffix<1...2> specifies the primary or secondary transducer.
Note: Prior to this command, the [SENSe:]CORRection:TRANsducer<1...2>:SELect
command must be sent.
Parameter
ON | OFF
Example
CORR:TRAN1 ON
Activates the primary transducer
Characteristics
*RST value: OFF
SCPI: device-specific
1173.0089.12
32
E-4
R&S FSH
Remote Commands in Spectrum Mode
[SENSe:]CORRection:TRANsducer<1...2>:SELect
This command selects the transducer factor designated by <name>. If <name> does not exist
yet, a new transducer factor is created.
The suffix<1...2> specifies the primary or secondary transducer.
Note: This command must be sent prior to the commands for modifying transducer factors.
Parameter
<string>=Name of the transducer factor in string data form with a maximum of 8 characters.
Example
CORR:TRAN1:SEL 'FACTOR1'
Selects the 'FACTOR1' as the primary transducer
Characteristics
*RST value: SCPI: device-specific
[SENSe:]CORRection:TRANsducer<1...2>:UNIT?
This command queries the unit of the transducer factor in use.
The suffix <1...2> specified the primary or secondary transducer.
Example
CORR:TRAN2:UNIT?
Queries the unit of the primary transducer.
Characteristics
*RST value: SCPI: device-specific
UNIT:POWer
This command selects the default unit.
Parameter
DBM | DBUV | DBMV | V | W | DUVM | DUAM | V_M | W_M2
Example
UNIT:POW DBUV
Sets the power unit to dBµV.
Characteristics
*RST value: DBM
SCPI: conform
1173.0089.12
33
E-4
Remote Commands in Spectrum Mode
R&S FSH
Setting the Bandwidths
The following commands configure the filter bandwidths of the R&S FSH. Note that both groups of
commands (BANDwidth and BWIDth) are the same.
Commands independent of the operating mode
Note that most of the commands for setting the bandwidth are also valid for other
operating modes. If a command is available in another mode, it is indicated by the
list in the respective section.
List of commands:
•
[SENSe:]BANDwidth|BWIDth[:RESolution] (p. 34)
•
[SENSe:]BANDwidth|BWIDth[:RESolution]:AUTO (p. 34)
•
[SENSe:]BANDwidth|BWIDth:VIDeo (p. 35)
•
[SENSe:]BANDwidth|BWIDth:VIDeo:AUTO (p. 35)
[SENSe:]BANDwidth|BWIDth[:RESolution]
This command defines the resolution bandwidth.
Analog resolution filters of 100 Hz to 3 MHz in 1 - 3 - 10 steps are available.
Parameter
1 Hz to 3 MHz
Example
BAND 100 kHz
Sets the IF bandwidth to 100 kHz
Characteristics
*RST value: – (AUTO is set to ON)
SCPI: conform
[SENSe:]BANDwidth|BWIDth[:RESolution]:AUTO
This command couples the resolution bandwidth to the span or cancels the coupling.
Parameter
ON | OFF
Example
BAND:AUTO OFF
Switches off the coupling of the resolution bandwidth to the span.
Characteristics
*RST value: ON
SCPI: conform
1173.0089.12
34
E-4
R&S FSH
Remote Commands in Spectrum Mode
[SENSe:]BANDwidth|BWIDth:VIDeo
This command defines the instruments video bandwidth.
Parameter
refer to data sheet
Example
BAND:VID 10kHz
Characteristics
*RST value: – (AUTO is set to ON)
SCPI: conform
[SENSe:]BANDwidth|BWIDth:VIDeo:AUTO
This command either automatically couples the instruments video bandwidth to the resolution
bandwidth or cancels the coupling.
Parameter
ON | OFF
Example
BAND:VID:AUTO OFF
Characteristics
*RST value: ON
SCPI: conform
Setting and Triggering the Sweep
The following commands configure the sweep.
Commands independent of the operating mode
Note that most of the commands for setting and triggering are also valid for other
operating modes. If a command is available in another mode, it is indicated by the
list in the respective section.
List of commands
•
*WAI (p. 23)
•
ABORt (p. 36)
•
INITiate[:IMMediate] (p. 36)
•
INITiate:CONTinuous (p. 36)
•
[SENSe:]SWEep:COUNt (p. 37)
•
[SENSe:]SWEep:TIME (p. 37)
•
[SENSe:]SWEep:TIME:AUTO (p. 37)
•
TRIGger[:SEQuence]:HOLDoff[:TIME] (p. 38)
1173.0089.12
35
E-4
Remote Commands in Spectrum Mode
•
TRIGger[:SEQuence]:LEVel:VIDeo (p. 38)
•
TRIGger[:SEQuence]:SLOPe (p. 38)
•
TRIGger[:SEQuence]:SOURce (p. 39)
R&S FSH
ABORt
This command aborts a current measurement and resets the trigger system.
Example
ABOR;:INIT:IMM
Characteristics
RST value: –
SCPI: conform
INITiate[:IMMediate]
The command initiates a new measurement sequence.
With sweep count > 0 or average count > 0, this means a restart of the indicated number of
measurements. With trace functions MAXHold, MINHold and AVERage, the previous results are
reset on restarting the measurement.
In single sweep mode, synchronization to the end of the indicated number of measurements can
be achieved with the command *OPC, *OPC? or *WAI. In continuous–sweep mode,
synchronization to the sweep end is not possible since the overall measurement never ends.
This command is an event and therefore has no *RST value and no query.
Example
INIT:CONT OFF
Switches to single sweep mode.
DISP:WIND:TRAC:MODE AVER
Activates trace averaging.
INIT;*WAI
Starts the measurement and waits for the end of the sweep.
Characteristics
*RST value: –
SCPI: conform
INITiate:CONTinuous
This command determines whether the trigger system is continuously initiated (continuous) or
performs single measurements (single).
This setting refers to the sweep sequence (switching between continuous/single sweep).
Parameter
ON | OFF
Example
INIT:CONT OFF
Switches the sequence single sweep.
INIT:CONT ON
Switches the sequence to continuous sweep.
1173.0089.12
36
E-4
R&S FSH
Remote Commands in Spectrum Mode
Characteristics
*RST value: ON
SCPI: conform
[SENSe:]SWEep:COUNt
This command defines the number of sweeps started with single sweep, which are used for
calculating the average or maximum value. If the values 0 or 1 are set, one sweep is performed.
Parameter
0 to 999
Example
SWE:COUN 64
Sets the number of sweeps to 64.
INIT:CONT OFF
Switches to single sweep mode.
INIT;*WAI
Starts a sweep and waits for its end.
Characteristics
*RST value: 1
SCPI: conform
[SENSe:]SWEep:TIME
In analyzer mode, this command defines the sweep time. The available time values vary
depending on the span setting.
If [SENSe:]SWEep:TIME is directly programmed, automatic coupling to resolution bandwidth
and video bandwidth is switched off.
Parameter
Refer to data sheet
Example
SWE:TIME 10s
Sets the measurement time to 10 s
Characteristics
*RST value: – (AUTO is set to ON)
SCPI: conform
[SENSe:]SWEep:TIME:AUTO
This command controls the automatic coupling of the sweep time to the frequency span and
bandwidth settings.
If [SENSe:]SWEep:TIME is directly programmed, automatic coupling is switched off.
Parameter
ON | OFF
Example
SWE:TIME:AUTO ON
Switches on the coupling to frequency span and bandwidths.
1173.0089.12
37
E-4
Remote Commands in Spectrum Mode
R&S FSH
Characteristics
*RST value: ON
SCPI: conform
TRIGger[:SEQuence]:HOLDoff[:TIME]
This command defines the length of the trigger delay.
Parameter
0 s to +100 s
Example
TRIG:HOLD 500us
Sets the trigger delay to 500 _s.
Characteristics
*RST value: 0 s
SCPI: conform
TRIGger[:SEQuence]:LEVel:VIDeo
This command sets the level of the video trigger source. Video triggering is active in Zero Span
only.
Parameter
0 to 100 PCT
Example
TRIG:LEV:VID 50PCT
Characteristics
*RST value: 50 PCT
SCPI: device–specific
TRIGger[:SEQuence]:SLOPe
This command selects the slope of the trigger signal. The selected trigger slope applies to all
trigger signal sources.
Parameter
POSitive | NEGative
Example
TRIG:SLOP NEG
Characteristics
*RST value: POSitive
SCPI: conform
1173.0089.12
38
E-4
R&S FSH
Remote Commands in Spectrum Mode
TRIGger[:SEQuence]:SOURce
This command selects the trigger source for the start of a sweep.
Parameter
IMMediate (Free Run) | EXTern | VIDeo
Refer to the Operating manual chapter "Setting the Sweep", section "Trigger" for further details
on the trigger modes.
Example
TRIG:SOUR EXT
Selects the external trigger input as source of the trigger signal
Characteristics
*RST value: IMMediate
SCPI: conform
Working with Traces
The following commands set up the trace and the various functions associated with it, e.g. trace
mathematics or the selection of the detector.
Commands independent of the operating mode
Note that most of the commands concerning trace settings are also valid for other
operating modes. If a command is available in another mode, it is indicated by the
list in the respective section.
List of commands
•
CALCulate:MATH<1...2>[:EXPRession][:DEFine] (p. 40)
•
CALCulate:MATH<1...2>:COPY:MEMory (p. 40)
•
CALCulate:MATH<1...2>:STATe (p. 40)
•
DISPlay[:WINDow]:TRACe<1|2>[:STATe] (p. 41)
•
DISPlay[:WINDow]:TRACe<1|2>:MODE (p. 41)
•
FORMat:BORDer (p. 42)
•
[SENSe:]DETector[:FUNCtion] (p. 42)
•
[SENSe:]DETector<1...6>[:FUNCtion]:AUTO (p. 42)
•
TRACe<1|2>[:DATA]? (p. 43)
1173.0089.12
39
E-4
Remote Commands in Spectrum Mode
R&S FSH
CALCulate:MATH<1...2>[:EXPRession][:DEFine]
This command defines the mathematical expression for relating traces to trace1. The trace
mathematics are activated with CALCulate:MATH<1...2>:STATe.
Parameter
(TRACE–MTRACE) Subtracts the trace in memory from the current trace.
(MTRACE–TRACE) Subtracts the current trace from the trace in memory.
Example
CALC:MATH (MTRACE–TRACE)
Selects the subtraction of the current trace from trace in the memory.
Characteristics
*RST value: –
SCPI: conform
CALCulate:MATH<1...2>:COPY:MEMory
This command stores the current trace into the memory trace of the R&S FSH.
This command is an event and therefore has no query and no *RST value.
Example
CALC:MATH:COPY:MEM
Copies the trace into the memory.
Characteristics
*RST value: SCPI: device-specific
CALCulate:MATH<1...2>:STATe
This command switches the mathematical relation of traces on or off.
Parameter
ON | OFF
Example
CALC:MATH:STAT ON
Switches on the trace mathematics.
Characteristics
*RST value: OFF
SCPI: conform
1173.0089.12
40
E-4
R&S FSH
Remote Commands in Spectrum Mode
DISPlay[:WINDow]:TRACe<1|2>[:STATe]
This command switches on or off the display of the corresponding trace.
Parameter
ON | OFF
Example
DISP:TRAC2 ON
Characteristics
*RST value: ON for TRACe1, OFF for TRACe2
SCPI: conform
DISPlay[:WINDow]:TRACe<1|2>:MEMory[:STATe]
This command activates and deactivates the trace stored in the memory of the R&S FSH. The
suffix at TRACe selects the memory slot the trace is stored in.
Parameter
ON | OFF
Example
DISP:TRAC:MEM ON
Activates memory trace 1.
Characteristics
*RST value: OFF
SCPI: device-specific
DISPlay[:WINDow]:TRACe<1|2>:MODE
This command defines the type of display and the evaluation of the traces. WRITE corresponds
to the Clr/Write mode of manual operation. The trace is switched off (= BLANK in manual
operation) with DISPlay[:WINDow]:TRACe<1|2>[:STATe].
The number of measurements for AVERage, MAXHold and MINHold is defined with the
[SENSe:]SWEep:COUNt command. It should be noted that synchronization to the end of the
indicated number of measurements is only possible in single sweep mode.
Parameter
WRITe | AVERage | MAXHold | MINHold | VIEW
For details on trace modes refer to the Operating Manual, chapter "Trace Mode".
Example
SWE:CONT OFF
Switching to single sweep mode.
SWE:COUN 16
Sets the number of measurements to 16.
DISP:TRAC:MODE MAXH
Activates MAXHold mode for the trace.
INIT;*WAI
Starts the measurement and waits for the end of the 16 sweeps.
1173.0089.12
41
E-4
Remote Commands in Spectrum Mode
R&S FSH
Characteristics
*RST value: WRITe
SCPI: device–specific
FORMat:BORDer
This command controls whether binary data is transferred in normal or swapped byte order.
Parameters
SWAPped
The least significant byte is transferred first (little endian)
NORMal
The most significant byte is transferred first (big endian)
Example
FORM:BORD NORM
Changes the byte order to normal mode
Characteristics
*RST value SWAPped
SCPI: conform
[SENSe:]DETector[:FUNCtion]
This command selects the detector for recording measured values of the selected trace.
Parameter
APEak | NEGative | POSitive | SAMPle | RMS
For details on detectors refer to the Operating Manual, chapter "Detectors".
Example
DET POS
Sets the prescan detector to "positive peak".
Characteristics
*RST value: POS
SCPI: conform
[SENSe:]DETector<1...6>[:FUNCtion]:AUTO
This command either couples the detector to the current trace setting or turns coupling off. The
trace is selected by the numeric suffix at DETector.
Parameter
ON | OFF
Example
DET:AUTO OFF
Characteristics
*RST value: ON
SCPI: conform
1173.0089.12
42
E-4
R&S FSH
Remote Commands in Spectrum Mode
TRACe<1|2>[:DATA]?
This command transfers trace data from the control computer to the instrument, the query reads
trace data out of the instrument. The transfer of trace data from the control computer to the
instrument takes place by indicating the trace name and then the data to be transferred.
Parameter
TRACE1 | TRACE2
Return values for trace data in Spectrum Analyzer Mode
631 results are returned, one result for each point of the trace. The returned values are scaled
in the currently selected unit.
Note: With the auto peak detector, only positive peak values can be read out.
Example
TRAC:DATA? TRACE1
Reads out the data for trace 1
Characteristics
*RST value: SCPI: conform
Using Markers
•
Markers and Deltamarkers on page 43
•
Marker Functions on page 51
Markers and Deltamarkers
The following commands are for setting and controlling markers and deltamarkers. If not otherwise
noted, the numeric suffix <1...6> at MARKer or DELTamarker select the marker to be controlled.
In Spectrum Analyzer mode, the numeric suffix <1|2> at CALCulate is irrelevant.
Commands independent of the operating mode
Note that most of the commands for using markers are also valid for other operating
modes. If a command is available in another mode, it is indicated by the list in the
respective section.
List of commands
•
CALCulate<1|2>:DELTamarker<1...6>[:STATe] (p. 44)
•
CALCulate<1|2>:DELTamarker<1...6>:AOFF (p. 44)
•
CALCulate<1|2>:DELTamarker<1...6>:MAXimum[:PEAK] (p. 45)
•
CALCulate<1|2>:DELTamarker<1...6>:MAXimum:NEXT (p. 45)
•
CALCulate<1|2>:DELTamarker<1...6>:MINimum[:PEAK] (p. 45)
•
CALCulate<1|2>:DELTamarker<1...6>:X (p. 45)
•
CALCulate<1|2>:DELTamarker<1...6>:X:RELative? (p. 46)
1173.0089.12
43
E-4
Remote Commands in Spectrum Mode
R&S FSH
•
CALCulate<1|2>:DELTamarker<1...6>:Y? (p. 46)
•
CALCulate<1|2>:MARKer<1...6>[:STATe] (p. 47)
•
CALCulate<1|2>:MARKer<1...6>:AOFF (p. 47)
•
CALCulate<1|2>:MARKer<1...6>:MAXimum[:PEAK] (p. 47)
•
CALCulate<1|2>:MARKer<1...6>:MAXimum:NEXT (p. 48)
•
CALCulate<1|2>:MARKer<1...6>:MINimum[:PEAK] (p. 48)
•
CALCulate<1|2>:MARKer<1...6>:MINimum:NEXT (p. 48)
•
CALCulate<1|2>:MARKer<1...6>:X (p. 48)
•
CALCulate<1|2>:MARKer<1...6>:X:SLIMits[:STATe] (p. 49)
•
CALCulate<1|2>:MARKer<1...6>:X:SLIMits:LEFT (p. 49)
•
CALCulate<1|2>:MARKer<1...6>:X:SLIMits:RIGHt (p. 49)
•
CALCulate<1|2>:MARKer<1...6>:Y? (p. 50)
CALCulate<1|2>:DELTamarker<1...6>[:STATe]
This command switches the delta marker indicated by the suffix on or off.
The suffix 1 is interpreted as delta marker 2 because the first marker has to be a normal marker.
Therefore, using no suffix indicates delta marker 2. If more than one marker (2 to 6) is already
active, the command turns these marker into delta markers. If no delta marker is active yet, the
command activates the delta marker and positions it on the trace maximum.
Parameter
ON | OFF
Example
CALC:DELT3 ON
Switches marker 3 to delta marker mode.
Characteristics
RST value: OFF
SCPI: device–specific
CALCulate<1|2>:DELTamarker<1...6>:AOFF
This command switches off all active delta markers.
Example
CALC:DELT:AOFF
Switches off all delta markers.
Characteristics
RST value: –
SCPI: device–specific
1173.0089.12
44
E-4
R&S FSH
Remote Commands in Spectrum Mode
CALCulate<1|2>:DELTamarker<1...6>:MAXimum[:PEAK]
This command positions the delta marker indicated by the suffix to the current trace maximum.
If necessary, the corresponding delta marker is activated first.
This command is an event and therefore has no *RST value and no query.
Example
CALC:DELT3:MAX
Sets delta marker 3 to the maximum value of the associated trace.
Characteristics
RST value: –
SCPI: device–specific
CALCulate<1|2>:DELTamarker<1...6>:MAXimum:NEXT
This command positions the delta marker indicated by the suffix to the next smaller maximum
value of the trace. The corresponding delta marker is activated first, if necessary.
This command is an event and therefore has no *RST value and no query.
Example
CALC:DELT2:MAX:NEXT
Sets delta marker 2 to the next smaller maximum value.
Characteristics
RST value: –
SCPI: device–specific
CALCulate<1|2>:DELTamarker<1...6>:MINimum[:PEAK]
This command positions the delta marker indicated by the suffix to the current trace minimum.
The corresponding delta marker is activated first, if necessary.
This command is an event and therefore has no *RST value and no query.
Example
CALC:DELT3:MIN
Sets delta marker 3 to the minimum value of the associated trace.
Characteristics
RST value: –
SCPI: device–specific
CALCulate<1|2>:DELTamarker<1...6>:X
This command positions the delta marker indicated by the suffix to the specified frequency
(span > 0) or time (span = 0). The corresponding delta marker is activated first, if necessary.
Note that it is possible to place the marker outside the visible trace. In that case, this value is
invalid.
Parameter
0 to MAX (frequency | sweep time)
1173.0089.12
45
E-4
Remote Commands in Spectrum Mode
R&S FSH
Example
CALC:DELT:MOD REL
Switches the input for all delta markers to relative to marker 1.
CALC:DELT2:X 10.7MHz
Positions delta marker 2 10.7 MHz to the right of marker 1.
CALC:DELT:X?
Outputs the absolute frequency/time of delta marker 1.
CALC:DELT:X:REL?
Outputs the relative frequency/time of delta marker 1.
Characteristics
RST value: –
SCPI: device–specific
CALCulate<1|2>:DELTamarker<1...6>:X:RELative?
This command queries the frequency (span > 0) or time (span = 0) of the delta marker indicated
by the suffix relative to marker 1 or to the reference position. The command activates the
corresponding delta marker, if necessary.
Return value
Frequency in Hz (span > 0) or time in seconds (span = 0)
Example
CALC:DELT3:X:REL?
Outputs the frequency of delta marker 3 relative to marker 1 or relative to the reference position.
Characteristics
RST value: –
SCPI: device–specific
CALCulate<1|2>:DELTamarker<1...6>:Y?
This command queries the measured value of the delta marker indicated by the suffix. The
output is always a relative value referred to marker 1. The corresponding delta marker will be
activated, if necessary.
To obtain a correct query result, a complete sweep with synchronization to the sweep end must
have been performed between the activation of the delta marker and the query of the y value.
This is only possible in single sweep mode.
Return value
Depending on the unit defined or on the activated measuring functions, the query result is
output in the units below:
Parameter or measuring functions
Output unit
DBM | DBPW | DBUV | DBMV | DBUA
dB (lin/log)
WATT | VOLT | AMPere
dB (lin), % (log)
Example
INIT:CONT OFF
Switches to single sweep mode.
CALC:DELT2 ON
Switches on delta marker 2.
1173.0089.12
46
E-4
R&S FSH
Remote Commands in Spectrum Mode
INIT;*WAI
Starts a sweep and waits for its end.
CALC:DELT2:Y?
Outputs measurement value of delta marker 2.
Characteristics
RST value: –
SCPI: device–specific
CALCulate<1|2>:MARKer<1...6>[:STATe]
This command switches on or off the currently selected marker. If no indication is made, marker
1 is selected automatically. If marker 2 to 6 is selected and used as a delta marker, it is
switched to marker mode.
Parameter
ON | OFF
Example
CALC:MARK3 ON
Switches on marker 3 or switches to marker mode.
Characteristics
*RST value: OFF
SCPI: device–specific
CALCulate<1|2>:MARKer<1...6>:AOFF
This command switches off all active markers and all delta markers and active marker/delta
marker measurement functions.
This command is an event and therefore has no *RST value and no query.
Example
CALC:MARK:AOFF
Switches off all markers.
Characteristics
*RST value: –
SCPI: device–specific
CALCulate<1|2>:MARKer<1...6>:MAXimum[:PEAK]
This command positions the marker to the current maximum value of the corresponding trace.
The corresponding marker is activated first or switched to the marker mode.
This command is an event and therefore has no *RST value and no query.
Example
CALC:MARK2:MAX
Positions marker 2 to the maximum value of the trace.
Characteristics
*RST value: –
SCPI: device–specific
1173.0089.12
47
E-4
Remote Commands in Spectrum Mode
R&S FSH
CALCulate<1|2>:MARKer<1...6>:MAXimum:NEXT
This command positions the marker to the next smaller maximum value of the corresponding
trace.
This command is an event and therefore has no *RST value and no query.
Example
CALC:MARK2:MAX:NEXT
Positions marker 2 to the next lower maximum value.
Characteristics
*RST value: –
SCPI: device–specific
CALCulate<1|2>:MARKer<1...6>:MINimum[:PEAK]
This command positions the marker to the current minimum value of the corresponding trace.
The corresponding marker is activated first or switched to marker mode, if necessary.
This command is an event and therefore has no *RST value and no query.
Example
CALC:MARK2:MIN
Positions marker 2 to the minimum value of the trace.
Characteristics
*RST value: –
SCPI: device–specific
CALCulate<1|2>:MARKer<1...6>:MINimum:NEXT
This command positions the marker to the next higher minimum value of the corresponding
trace.
This command is an event and therefore has no *RST value and no query.
Example
CALC:MARK2:MIN
Positions marker 2 to the minimum value of the trace.
CALC:MARK2:MIN:NEXT
Positions marker 2 to the next higher maximum value.
Characteristics
*RST value: –
SCPI: device–specific
CALCulate<1|2>:MARKer<1...6>:X
This command positions the selected marker to the indicated frequency (span > 0) or time (span
= 0). If marker 2 to 6 are selected and used as delta marker, it is switched to marker mode.
Parameter
0 to MAX (frequency | sweep time)
Example
CALC:MARK2:X 10.7MHz
Positions marker 2 to frequency 10.7 MHz.
1173.0089.12
48
E-4
R&S FSH
Remote Commands in Spectrum Mode
Characteristics
*RST value: –
SCPI: device–specific
CALCulate<1|2>:MARKer<1...6>:X:SLIMits[:STATe]
This command activates and deactivates marker search limits.
If the power measurement in zero span is active, this command limits the evaluation range on
the trace.
The numeric suffix <1...6> is irrelevant for this command.
Parameter
ON | OFF
Example
CALC:MARK:X:SLIM ON
Switches on search limitation.
Characteristics
*RST value: OFF
SCPI: device–specific
CALCulate<1|2>:MARKer<1...6>:X:SLIMits:LEFT
This command sets the left limit of the search range for markers and delta markers. Depending
on the span setting of the x–axis the indicated value defines a frequency (span > 0) or time
(span = 0).
The numeric suffix <1...6> is irrelevant for this command.
If the power measurement in zero span is active, this command limits the evaluation range to
the trace.
Note: The function is only available if the search limit for marker and delta marker is switched
on (CALCulate<1|2>:MARKer<1...6>:X:SLIMits[:STATe]).
Parameter
0 to MAX (frequency | sweep time)
Example
CALC:MARK:X:SLIM ON
Switches the search limit function on.
CALC:MARK:X:SLIM:LEFT 10MHz
Sets the left limit of the search range to 10 MHz.
Characteristics
*RST value: – (is set to the left diagram border when switching on search limits)
SCPI: device–specific
CALCulate<1|2>:MARKer<1...6>:X:SLIMits:RIGHt
This command sets the right limit of the search range for markers and delta markers. Depending
on the span setting of the x–axis the indicated value defines a frequency (span > 0) or time
(span = 0).
The numeric suffix <1...6> is irrelevant for this command.
1173.0089.12
49
E-4
Remote Commands in Spectrum Mode
R&S FSH
If the power measurement in zero span is active, this command limits the evaluation range to
the trace.
Note: The function is only available if the search limit for marker and delta marker is switched
on (CALCulate<1|2>:MARKer<1...6>:X:SLIMits[:STATe]).
Parameter
0 to MAX (frequency | sweep time)
Example
CALC:MARK:X:SLIM ON
Switches the search limit function on.
CALC:MARK:X:SLIM:RIGH 20MHz
Sets the right limit of the search range to 20 MHz.
Characteristics
*RST value: – (is set to the right diagram border when switching on search limits)
SCPI: device–specific
CALCulate<1|2>:MARKer<1...6>:Y?
This command queries the measured value of the selected marker. The corresponding marker
is activated before or switched to marker mode, if necessary.
To obtain a correct query result, a complete sweep with synchronization to the sweep end must
be performed between the activation of the marker and the query of the Y value. This is only
possible in single sweep mode.
Return values
Numeric value of the marker position, the unit depends on currently set unit (see UNIT:POWer).
Example
INIT:CONT OFF
Switches to single sweep mode.
CALC:MARK2 ON
Switches marker 2.
INIT;*WAI
Starts a sweep and waits for the end.
CALC:MARK2:Y?
Outputs the measured value of marker 2.
Characteristics
*RST value: –
SCPI: device–specific
1173.0089.12
50
E-4
R&S FSH
Remote Commands in Spectrum Mode
Marker Functions
The following commands perform various kinds of analysis at the marker position.
List of commands
•
CALCulate:MARKer<1...6>:COUNt[:STATe] (p. 51)
•
CALCulate:MARKer<1...6>:COUNt:FREQuency? (p. 52)
•
CALCulate:MARKer<1...6>:FREQuency:MODE (p. 52)
•
CALCulate:MARKer<1...6>:FUNCtion:DEModulation[:STATe] (p. 52)
•
CALCulate:MARKer<1...6>:FUNCtion:DEModulation:HOLDoff (p. 53)
•
CALCulate:MARKer<1...6>:FUNCtion:DEModulation:SELect (p. 53)
•
CALCulate:MARKer<1...6>:FUNCtion:NDBDown:STATe (p. 53)
•
CALCulate:MARKer<1...6>:FUNCtion:NDBDown (p. 54)
•
CALCulate:MARKer<1...6>:FUNCtion:NDBDown:FREQuency? (p. 54)
•
CALCulate:MARKer<1...6>:FUNCtion:NDBDown:RESult? (p. 54)
•
CALCulate:MARKer<1...6>:FUNCtion:NOISe[:STATe] (p. 55)
•
CALCulate:MARKer<1...6>:FUNCtion:NOISe:RESult? (p. 55)
CALCulate:MARKer<1...6>:COUNt[:STATe]
This command switches on or off the frequency counter at the marker position.
The count result is queried with CALCulate:MARKer<1...6>:COUNt:FREQuency?.
Frequency counting is possible only for one marker at a time. If it is activated for another
marker, it is automatically deactivated for the previous marker.
It should be noted that a complete sweep must be performed after switching on the frequency
counter to ensure that the frequency to be measured is actually reached. The synchronization to
the sweep end required for this is only possible in single sweep mode.
Parameter
ON | OFF
Example
INIT:CONT OFF
Switches to single sweep mode.
CALC:MARK ON
Switches on marker 1.
CALC:MARK:COUN ON
Switches on the frequency counter for marker 1.
INIT;*WAI
Starts a sweep and waits for the end.
CALC:MARK:COUN:FREQ?
Outputs the measured value.
Characteristics
*RST value: OFF
SCPI: device–specific
1173.0089.12
51
E-4
Remote Commands in Spectrum Mode
R&S FSH
CALCulate:MARKer<1...6>:COUNt:FREQuency?
This command performs a frequency measurement at the position of the marker indicated by
the suffix at MARKer and returns the result. Before the command, the frequency counter should
be switched on and a complete measurement performed to obtain a correct count result.
Therefore, a single sweep with synchronization must be performed between switching on the
frequency counter and querying the count result.
This command is only a query and therefore has no *RST value.
Example
INIT:CONT OFF
Switches to single sweep mode.
CALC:MARK2 ON
Switches on marker 2.
CALC:MARK2:COUN ON
Switches the frequency counter for marker 2.
INIT;*WAI
Starts a sweep and waits for the end.
CALC:MARK2:COUN:FREQ?
Outputs the measured value of marker 2.
Characteristics
*RST value: –
SCPI: device–specific
CALCulate:MARKer<1...6>:FREQuency:MODE
This command sets the marker frequency display mode.
Parameter
FREQ | CHAN
Example
CALC:MARK:FREQ:MODE FREQ
Selects the frequency display mode.
Characteristics
*RST value: FREQ
SCPI: device-specific
CALCulate:MARKer<1...6>:FUNCtion:DEModulation[:STATe]
This command switches on or off the audio demodulator when the indicated marker is reached.
With span > 0 the hold time can be defined at the corresponding marker position with
CALCulate:MARKer<1...6>:FUNCtion:DEModulation:HOLDoff. In zero span the
demodulation is permanently active.
Parameter
ON | OFF
Example
CALC:MARK3:FUNC:DEM ON
Switches on the demodulation for marker 3.
1173.0089.12
52
E-4
R&S FSH
Remote Commands in Spectrum Mode
Characteristics
*RST value: OFF
SCPI: device–specific
CALCulate:MARKer<1...6>:FUNCtion:DEModulation:HOLDoff
This command defines the hold time at the marker position for the demodulation with span > 0.
The setting is independent of the selected marker, the suffixes and <1...6> are irrelevant.
Parameter
10ms to 500s
Example:
CALC:MARK:FUNC:DEM:HOLD 3s
Characteristics:
*RST value: – (DEModulation is set to OFF)
SCPI: device–specific
CALCulate:MARKer<1...6>:FUNCtion:DEModulation:SELect
This command selects the demodulation type for the audio demodulator. The command is
independent of the selected marker, the suffixes 1 to 6 are irrelevant.
Parameter
AM | FM
Example
CALC:MARK:FUNC:DEM:SEL FM
Characteristics
*RST value: AM
SCPI: device–specific
CALCulate:MARKer<1...6>:FUNCtion:NDBDown:STATe
This command activates and deactivates the n dB Down marker function. The n dB down
function sets two temporary markers n dB below the level of the reference marker (marker 1),
one on the right and the other marker to the left of the reference marker.
The command is independent of the selected marker, the suffixes 1 to 6 are irrelevant.
Parameter
ON | OFF
Example
CALC:MARK:FUNC:NDBD:STAT ON
Activates the n dB down marker function.
Characteristics
*RST value: OFF
SCPI: device-specific
1173.0089.12
53
E-4
Remote Commands in Spectrum Mode
R&S FSH
CALCulate:MARKer<1...6>:FUNCtion:NDBDown
This command defines the distance in dB of the two temporary n dB down markers to the
reference marker.
The command is independent of the selected marker, the suffixes 1 to 6 are irrelevant.
Example
CALC:MARK:FUNC:NDBDown 9
Sets the two temporary markers 9 dB below the reference marker.
Characteristics
*RST value: 3 dB
SCPI: device-specific
CALCulate:MARKer<1...6>:FUNCtion:NDBDown:FREQuency?
This command queries the frequencies of the two temporary n dB down markers.
The command is independent of the selected marker, the suffixes 1 to 6 are irrelevant.
Return values
<frequency1>
absolute frequency of the n dB marker to the left of the reference marker in Hz.
<frequency2>
absolute frequency of the n dB marker to the right of the reference marker in Hz.
Example
CALC:MARK:FUNC:NDBD:FREQ?
This command would return, for example, 100000000, 200000000, meaning that the first marker
position is at 100 MHz, the second marker position is at 200 MHz
Characteristics
*RST value: SCPI: device-specific
CALCulate:MARKer<1...6>:FUNCtion:NDBDown:RESult?
This command queries the frequency spacing or bandwidth of the two temporary n dB down
markers.
The command is independent of the selected marker, the suffixes 1 to 6 are irrelevant.
Return value
Bandwidth in Hz.
Example
CALC:MARK:FUNC:NDBD:RES?
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
54
E-4
R&S FSH
Remote Commands in Spectrum Mode
CALCulate:MARKer<1...6>:FUNCtion:NOISe[:STATe]
This command switches the noise measurement on or off for all markers. The noise power
density is measured at the position of the markers. The result can be queried with
CALCulate:MARKer<1...6>:FUNCtion:NOISe:RESult?.
Parameter
ON | OFF
Example
CALC:MARK:FUNC:NOIS ON
Switches on the noise measurement.
Characteristics
*RST value: OFF
SCPI: device–specific
CALCulate:MARKer<1...6>:FUNCtion:NOISe:RESult?
This command queries the result of the noise measurement.
A complete sweep with synchronization to the sweep end must be performed between switching
on the function and querying the measured value in order to obtain a correct query result. This
is only possible in single sweep mode.
This command is an event and therefore has no *RST value and no query.
Return value
Noise level, the unit depends on the unit set with UNIT:POWer.
Example
INIT:CONT OFF
Switches to single sweep mode.
CALC:MARK2 ON
Switches on marker 2.
CALC:MARK2:FUNC:NOIS ON
Switches on noise measurement for marker 2.
INIT;*WAI
Starts a sweep and waits for the end.
CALC:MARK2:NOIS:RES?
Outputs the noise result of marker 2.
Characteristics
*RST value: –
SCPI: device–specific
1173.0089.12
55
E-4
Remote Commands in Spectrum Mode
R&S FSH
Using Display Lines and Limit Lines
Display Lines
The following commands define the position of the display line.
List of commands
•
CALCulate<1|2>:DLINe
•
CALCulate<1|2>:DLINe:STATe
CALCulate<1|2>:DLINe
This command defines the position of the display line indicated by the suffix. The display line
can be used to mark any level in the diagram.
The command accepts a variety of units which enables you to express a display line position in
a preferred unit without the need to adapt to the instrument’s current unit. Omitting a unit uses
instrument’s current unit.
Parameter
MINimum to MAXimum (depending on current unit)
Example
CALC:DLIN –20dBm
Characteristics
*RST value: – (STATe to OFF)
SCPI: device–specific
CALCulate<1|2>:DLINe:STATe
This command switches the display line on or off.
Parameter
ON | OFF
Example
CALC:DLIN2:STAT OFF
Characteristics
*RST value: OFF
SCPI: device–specific
Limit Lines
The following commands define limit lines and perform the corresponding limit checks.
List of commands
•
CALCulate<1|2>:LIMit<1|2>:BEEP[:STATe]
•
CALCulate<1|2>:LIMit<1|2>:COMMent?
•
CALCulate<1|2>:LIMit<1|2>:DELete
•
CALCulate<1|2>:LIMit<1|2>:FAIL?
1173.0089.12
56
E-4
R&S FSH
•
CALCulate<1|2>:LIMit<1|2>:LOWer:SELect
•
CALCulate<1|2>:LIMit<1|2>:STATe
•
CALCulate<1|2>:LIMit<1|2>:UNIT:X?
•
CALCulate<1|2>:LIMit<1|2>:UNIT[:Y]?
•
CALCulate<1|2>:LIMit<1|2>:UPPer:SELect
Remote Commands in Spectrum Mode
CALCulate<1|2>:LIMit<1|2>:BEEP[:STATe]
This command activates or deactivates the audio beep. If active, the R&S FSH outputs a beep
each time a limit is exceeded.
The numeric suffix <1|2> is irrelevant.
Parameter
ON | OFF
Example
CALC:LIM:BEEP ON
Activates the audio beep.
Characteristics
*RST value: OFF
SCPI: device-specific
CALCulate<1|2>:LIMit<1|2>:COMMent?
This command queries the description of the limit line indicated by the numeric suffix <1|2>. The
maximum number of characters for the comment is 32.
This command is a query and therefore has no RST value.
Return value
<string> = description of the limit line.
Example
CALC:LIM:COMM?
Queries the description of limit line 1.
Characteristics
*RST value: SCPI: device-specific
CALCulate<1|2>:LIMit<1|2>:DELete
This command deletes the limit line indicated by the suffix.
This command is an event and therefore has no *RST value and no query.
Example
CALC:LIM2:DEL
Deletes the second limit line
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
57
E-4
Remote Commands in Spectrum Mode
R&S FSH
CALCulate<1|2>:LIMit<1|2>:FAIL?
This command queries the result of the limit check of the limit line indicated by the suffix.
Note that a complete sweep must have been performed to obtain a correct result. A
synchronization with *OPC, *OPC? or *WAI should therefore be provided. The result of the limit
check is given with 0 for PASS, 1 for FAIL.
Return Values
0 for PASS and 1 for FAIL
Example
INIT;*WAI
Starts a new sweep and waits for its end.
CALC:LIM1:FAIL?
Queries the result of the check for limit line 1.
Characteristics
*RST value: SCPI: conform
CALCulate<1|2>:LIMit<1|2>:LOWer:SELect
This command selects the lower limit line.
This command is an event and therefore has no *RST value and no query.
Parameter
<string> = file name of the limit line
Example
CALC:LIM:LOW:SEL 'LINE1'
Selects the limit line with the name LINE1 as the lower limit line.
Characteristics
*RST value:
SCPI: conform
CALCulate<1|2>:LIMit<1|2>:STATe
This command activates and deactivates the limits.
The result of the limit check can be queried with CALCulate<1|2>:LIMit<1|2>:FAIL?.
Parameter
ON | OFF
Example
CALC:LIM:STAT ON
Switches on the limit check for limit line 1.
Characteristics
*RST value: OFF
SCPI: conform
1173.0089.12
58
E-4
R&S FSH
Remote Commands in Spectrum Mode
CALCulate<1|2>:LIMit<1|2>:UNIT:X?
This command queries the unit of the x-axis.
This command is a query and therefore has no *RST value.
Example
CALC:LIM:UNIT:X?
Queries the x-unit of the first limit line.
Characteristics
*RST value: SCPI: device-specific
CALCulate<1|2>:LIMit<1|2>:UNIT[:Y]?
This command queries the unit of the level axis (y-unit).
This command is a query and therefore has no *RST value.
Example
CALC:LIM1:UNIT?
Queries the y-unit of the first limit line.
Characteristics
*RST value: SCPI: device-specific
CALCulate<1|2>:LIMit<1|2>:UPPer:SELect
This command selects the upper limit line.
This command is an event and therefore has no *RST value and no query.
Parameter
<string>
with <string> = file name of the limit line.
Example
CALC:LIM:UPP:SEL 'LINE2'
Selects the limit line with the name LINE2 as the upper limit line
Characteristics
*RST value: SCPI: conform
1173.0089.12
59
E-4
Remote Commands in Spectrum Mode
R&S FSH
Configuring and Using Measurement Functions
The R&S FSH provides measurement functions which allow you to perform advanced measurements
and can also be controlled remotely.
•
Power Measurements on page 60
•
Measuring the Channel Power on page 62
•
Measuring the Adjacent Channel Power on page 64
•
Measuring the Occupied Bandwidth on page 73
•
TDMA Measurements on page 74
Power Measurements
The following commands configure power measurements. To perform the actual measurement, use the
commands described in section "Setting and Triggering the Sweep".
List of commands
•
CALCulate:MARKer:FUNCtion:LEVel:ONCE (p. 60)
•
CALCulate:MARKer:FUNCtion:POWer[:STATe] (p. 60)
•
CALCulate:MARKer:FUNCtion:POWer:PRESet (p. 61)
•
CALCulate:MARKer:FUNCtion:POWer:PRESet:CHECk? (p. 61)
•
CALCulate:MARKer:FUNCtion:POWer:RESult? (p. 61)
•
CALCulate:MARKer:FUNCtion:POWer:SELect (p. 62)
CALCulate:MARKer:FUNCtion:LEVel:ONCE
This command adjusts the reference level of the R&S FSH to the measured power.
This ensures that the RF attenuation and reference level are optimally adjusted to the signal
level without overloading the R&S FSH or limiting the dynamic range by too small a S/N ratio.
Current measurements are aborted when pressing the softkey to run a series of test sweeps.
The actual measurements are resumed after the automatic level detection is finished.
Example
CALC:MARK:FUNC:LEV:ONCE
Characteristics
*RST value: SCPI: device–specific
CALCulate:MARKer:FUNCtion:POWer[:STATe]
This command activates and deactivates the selected power measurement.
This command is an event and therefore has no *RST value.
Parameter
ON | OFF
1173.0089.12
60
E-4
R&S FSH
Remote Commands in Spectrum Mode
Example
CALC:MARK:FUNC:POW OFF
Switches off the power measurement.
Characteristics
*RST value: –
SCPI: device–specific
CALCulate:MARKer:FUNCtion:POWer:PRESet
This command loads and initializes a predefined Standard from the specified file, and switches
to the corresponding measurement mode. A Standard comprises of parameters specifying
default values for settings related to power measurements. Parameters such as channel
bandwidth, resolution bandwidth, detector type, and sweep time are examples of parameters
stored in a Standard.
Parameter
<string> = file name of the standard
Example
CALC:MARK:FUNC:POW:PRES 'cdma.std'
Selects the file CDMA.STD for the measurement.
Characteristics
*RST value: SCPI: device-specific
CALCulate:MARKer:FUNCtion:POWer:PRESet:CHECk?
This command determines whether the current instrument state is still in compliance with the
Standard currently in use. Modifying instrument settings that are not included in a Standard do
not break Standard compliance; modifying settings that are included in a Standard, will break
compliance.
This command is a query and therefore has no *RST value.
Return Values
0
Instrument Settings are not compliant to the selected standard.
1
Instrument settings are compliant to the selected standard.
Example
CALC:MARK:FUNC:POW:PRES:CHEC?
Queries compliance to the standard currently in use.
Characteristics
*RST value: SCPI: device-specific
CALCulate:MARKer:FUNCtion:POWer:RESult?
This command queries the result of the performed power measurement. If necessary, the
measurement is switched on prior to the query.
To obtain a correct result, a complete sweep with synchronization to the end of the sweep must
be performed before a query is output. Synchronization is possible only in the single sweep
mode.
This command is a query and therefore has no *RST value.
1173.0089.12
61
E-4
Remote Commands in Spectrum Mode
R&S FSH
Parameter and return values
CPOWer
Channel power measurement
With logarithmic scaling (RANGE LOG), the channel power is output in
the currently selected level unit; with linear scaling (RANGE LIN dB or
LIN %), the channel power is output in W.
OBANdwidth | OBWidth
Measurement of occupied bandwidth
The occupied bandwidth in Hz is returned.
TDMA
TDMA measurement. Returns the power of the TDMA signal.
ACP
Adjacent Channel Power measurement.
Example of occupied bandwidth measurement
POW:BAND 90PCT
Defines 90% as the percentage of the power to be contained in the bandwidth range to be
measured.
INIT:CONT OFF
Switches over to single sweep mode.
INIT;*WAI
Starts a sweep and waits for the end of the sweep.
CALC:MARK:FUNC:POW:RES? OBW
Queries the occupied bandwidth measured.
Characteristics
*RST value: –
SCPI: device–specific
CALCulate:MARKer:FUNCtion:POWer:SELect
This command selects the power measurement setting for a standard and previously switches
on the corresponding measurement, if required.
The configuration for a standard comprises of the parameters weighting filter, channel
bandwidth and spacing, resolution and video bandwidth, as well as detector and sweep time.
Parameter
CPOWer
Channel power measurement
OBANdwidth | OBWidth
Measurement of occupied bandwidth
TDMA
Measurement on TDMA signals
ACP
ACP / ACLR measurement
Example
CALC:MARK:FUNC:POW:SEL CPOW
Selects the channel power measurement
Characteristics
*RST value: –
SCPI: device–specific
Measuring the Channel Power
The following commands configure channel power measurements. To perform the actual measurement,
use the commands described in section "Setting and Triggering the Sweep".
Note that the numeric suffix <1…6> at MARKer is irrelevant when using these commands.
1173.0089.12
62
E-4
R&S FSH
Remote Commands in Spectrum Mode
List of commands
•
CALCulate:MARKer<1...6>:FUNCtion:CPOWer:BANDwidth (p. 63)
•
CALCulate:MARKer<1...6>:FUNCtion:CPOWer:MODE (p. 63)
•
CALCulate:MARKer<1...6>:FUNCtion:CPOWer:UNIT (p. 63)
CALCulate:MARKer<1...6>:FUNCtion:CPOWer:BANDwidth
This command sets the channel bandwidth for channel power measurements.
The numeric suffix <1...6> is irrelevant.
Parameter
<numeric> | UP | DOWN
Example
CALC:MARK:FUNC:CPOW:BAND 4 MHZ
Sets the channel bandwidth to 4 MHz.
Characteristics
*RST value: 3.84 MHz
SCPI: device-specific
CALCulate:MARKer<1...6>:FUNCtion:CPOWer:MODE
This command sets the power display mode to Clear / Write or Max Hold for channel power
measurements.
The numeric suffix <1...6> is irrelevant.
Parameter
CLR | MAX
Example
CALC:MARK:FUNC:CPOW:MODE CLR
Selects clear/write trace mode
Characteristics
*RST value: CLR
SCPI: device-specific
CALCulate:MARKer<1...6>:FUNCtion:CPOWer:UNIT
This command defines the unit for channel power measurements.
The numeric suffix <1...6> is irrelevant.
Parameter
DBM | DBMV | DBUV | VOLT | WATT | DUVM | DUAM | V | W | V_M | W_M2
Example
CALC:MARK:FUNC:CPOW:UNIT DBM
Sets the unit to dBm.
Characteristics
*RST value: dBm
SCPI: device-specific
1173.0089.12
63
E-4
Remote Commands in Spectrum Mode
R&S FSH
Measuring the Adjacent Channel Power
The following commands configure Adjacent Channel Power measurements. To perform the actual
measurement, use the commands described in section "Setting and Triggering the Sweep".
•
Configuring and Performing the ACP Measurement on page 64
•
Adjacent Channel Power Limit Check on page 68
Configuring and Performing the ACP Measurement
The following commands are for configuring and performing the adjacent channel power measurement.
List of commands
•
[SENSe:]POWer:ACHannel:ACPairs (p. 64)
•
[SENSe:]POWer:ACHannel:BANDwidth[:CHANnel (p. 64)
•
[SENSe:]POWer:ACHannel:BANDwidth:ACHannel (p. 65)
•
[SENSe:]POWer:ACHannel:BANDwidth:ALTernate<1...11> (p. 65)
•
[SENSe:]POWer:ACHannel:MODE (p. 65)
•
[SENSe:]POWer:ACHannel:PRESet:RLEVel (p. 66)
•
[SENSe:]POWer:ACHannel:REFerence:TXCHannel:AUTO (p. 66)
•
[SENSe:]POWer:ACHannel:REFerence:TXCHannel:MANual (p. 67)
•
[SENSe:]POWer:ACHannel:SPACing[:ACHannel] (p. 67)
•
[SENSe:]POWer:ACHannel:SPACing:ALTernate<1...11> (p. 67)
•
[SENSe:]POWer:ACHannel:SPACing:CHANnel<1...11> (p. 68)
•
[SENSe:]POWer:ACHannel:TXCHannel:COUNt (p. 68)
[SENSe:]POWer:ACHannel:ACPairs
This command sets the number of adjacent channels pair to the left and to the right of the Tx
channel.
Parameter
1 to 12
Example
POW:ACH:ACP 3
Sets 3 adjacent or alternate channels to the left and to the right of the transmission channel.
Characteristics
*RST value: 1
SCPI: device-specific
[SENSe:]POWer:ACHannel:BANDwidth[:CHANnel
This command sets the channel bandwidth of the radio communication system. The bandwidths
of adjacent channels are not influenced by this command.
Instead of BANDwidth, you can also use the alias BWIDth
Parameter
100 Hz to 1000 MHz
1173.0089.12
64
E-4
R&S FSH
Remote Commands in Spectrum Mode
Example
POW:ACH:BAND 120 KHZ
Sets the bandwidth to 120 kHz
Characteristics
*RST value: 14 kHz
SCPI: device-specific
[SENSe:]POWer:ACHannel:BANDwidth:ACHannel
This command sets the channel bandwidth of the adjacent channel in the radio communication
system. If you change the bandwidth of the adjacent channel, the bandwidth of all other
alternate channels is adjusted to the same value.
Instead of BANDwidth, you can also use the alias BWIDth
Parameter
100 Hz to 1000 MHz
Example
POW:ACH:BAND:ACH 120 KHZ
Sets the bandwidth of the adjacent channel to 120 kHz
Characteristics
*RST value: 14 kHz
SCPI: device-specific
[SENSe:]POWer:ACHannel:BANDwidth:ALTernate<1...11>
This command sets the bandwidth of the alternate channels in the radio communication system.
If you change the bandwidth of the first alternate channel, the bandwidth of all other alternate
channels is adjusted to the same value.
The suffix <1...11> selects the number of the alternate channel.
Instead of BANDwidth, you can also use the alias BWIDth
Parameter
100 Hz to 1000 MHz
Example
POW:ACH:BAND:ALT2 120 KHZ
Sets the bandwidth of the second alternate channel to 120 kHz
Characteristics
*RST value: 14 kHz
SCPI: device-specific
[SENSe:]POWer:ACHannel:MODE
This command selects either absolute or relative adjacent channel measurements. The
command is available if span > 0 and if the number of adjacent channel is greater than 0.
Parameter
ABSolute | RELative
1173.0089.12
65
E-4
Remote Commands in Spectrum Mode
R&S FSH
Example
POW:ACH:MODE ABS
Performs an absolute ACP measurement.
Characteristics
*RST value
SCPI: device-specific
[SENSe:]POWer:ACHannel:PRESet:RLEVel
This command adjust the reference level to that of the currently measured channel power. It
also initiates an adjacent channel power measurement.
This ensures that the signal path of the instrument is not overloaded. Since the measurement
bandwidth is significantly smaller than the signal bandwidth in channel power measurements,
the signal path can be overloaded although the trace is still significantly below the reference
level. If the measured channel power equals the reference level, the signal path is not
overloaded.
This command is an event and therefore has no *RST value and no query.
Example
POW:ACH:PRES:RLEV
Initiates an ACP measurement and adjusts the reference level.
Characteristics
*RST value: SCPI: device-specific
[SENSe:]POWer:ACHannel:REFerence:TXCHannel:AUTO
This command activates the automatic selection of a transmission channel to be used as a
reference channel in relative ACP measurements.
You can define the Tx channel with the highest power, the lowest power, or the Tx channel
nearest to the adjacent channels as the reference channel.
The command is available only for multi-carrier channel and adjacent-channel power
measurements with span > 0
Parameter
MINimum
Tx channel with the lowest power
MAXimum
Tx channel with the highest power
LHIGhest
Lowest Tx channel for lower adjacent channels and highest Tx channel for upper
adjacent channels
Example
POW:ACH:REF:TXCH:AUTO MIN
Sets the TX channel with the lowest power as reference channel
Characteristics
*RST value
SCPI: device-specific
1173.0089.12
66
E-4
R&S FSH
Remote Commands in Spectrum Mode
[SENSe:]POWer:ACHannel:REFerence:TXCHannel:MANual
This command defines a transmission channel as the reference channel for relative ACP
measurements.
The command is available only for multi-carrier channel and adjacent-channel power
measurements with span > 0
Parameter
1 to 12
Example
POW:ACH:REF:TXCH:MAN 2
Sets the second Tx channel as reference channel.
Characteristics
*RST value: 1
SCPI: device-specific
[SENSe:]POWer:ACHannel:SPACing[:ACHannel]
This command sets the spacing between the carrier and its adjacent channel.
A change of the adjacent channel spacing causes a change in the spacing of all alternate
channels above the adjacent channel.
Parameter
100 Hz to 2000 MHz
Example
POW:ACH:SPAC 10 KHZ
Defines a channel spacing of the adjacent channel of 10 kHz
Characteristics
*RST value: 14 kHz
SCPI: device-specific
[SENSe:]POWer:ACHannel:SPACing:ALTernate<1...11>
This command sets the spacing between transmission channel and the alternate channels. A
change of the alternate channel spacing causes a change in the spacing of all alternate
channels above the modifed alternate channel. Alternate channels below the modified remain
the same.
The numeric suffix <1...11> at ALTernate selects the alternate channel.
Parameter
100 Hz to 2000 MHz
Example
POW:ACH:SPAC:ALT2 20 KHZ
Defines a channel spacing of the second alternate channel to the transmission channel of 20
kHz.
Characteristics
*RST value: ALT1: 40 kHz; ALT2: 60 kHz; ALT3: 80 kHz etc.
SCPI: device-specific
1173.0089.12
67
E-4
Remote Commands in Spectrum Mode
R&S FSH
[SENSe:]POWer:ACHannel:SPACing:CHANnel<1...11>
This command defines the channel spacing of the transmission channels.
The numeric suffix <1...11> at CHANnel selects the TX channel.
Parameter
14 kHz to 2000 MHz
Example
POW:ACH:SPAC:CHAN2 20 kHz
Defines a channel spacing of the second Tx channel of 14 kHz
Characteristics
*RST value: 20 kHz
SCPI: device-specific
[SENSe:]POWer:ACHannel:TXCHannel:COUNt
This command sets the number of transmission channels.
The command is available for measurements with span > 0.
Parameter
1 to 12
Example
POW:ACH:TXCH:COUN 2
Sets 2 Tx channels.
Characteristics
*RST value: 1
SCPI: device-specific
Adjacent Channel Power Limit Check
The following commands configure and perform limit checks when measuring the adjacent channel
power.
Note that the numeric suffix <1|2> at LIMit is irrelevant when using these commands.
List of commands
•
CALCulate:LIMit<1|2>:ACPower[:STATe] (p. 69)
•
CALCulate:LIMit<1|2>:ACPower:ACHannel[:RELative] (p. 69)
•
CALCulate:LIMit<1|2>:ACPower:ACHannel[:RELative]:STATe (p. 69)
•
CALCulate:LIMit<1|2>:ACPower:ACHannel:ABSolute (p. 70)
•
CALCulate:LIMit<1|2>:ACPower:ACHannel:ABSolute:STATe (p. 70)
•
CALCulate:LIMit<1|2>:ACPower:ACHannel:RESult? (p. 70)
•
CALCulate:LIMit<1|2>:ACPower:ALTernate<1…11>[:RELative] (p. 71)
•
CALCulate:LIMit<1|2>:ACPower:ALTernate<1…11>[:RELative]:STATe (p. 71)
•
CALCulate:LIMit<1|2>:ACPower:ALTernate<1…11>:ABSolute (p. 72)
•
CALCulate:LIMit<1|2>:ACPower:ALTernate<1…11>:ABSolute:STATe (p. 72)
•
CALCulate:LIMit<1|2>:ACPower:ALTernate<1…11>:RESult? (p. 72)
1173.0089.12
68
E-4
R&S FSH
Remote Commands in Spectrum Mode
CALCulate:LIMit<1|2>:ACPower[:STATe]
This command activates and deactivates the limit check for ACP measurements. You have to
use CALCulate:LIMit<1|2>:ACPower:ACHannel[:RELative]:STATe or
CALCulate:LIMit<1...2>:ACPower:ALTernate<1...11>[:RELative]:STATe in combination with this
command to specify whether the limit check should be performed for the upper / lower adjacent
channel or for the alternate adjacent channels.
The numeric suffix <1|2> at LIMit is irrelevant.
Parameter
ON | OFF
Example
CALC:LIM:ACP ON
Activates the limit check
Characteristics
*RST value: OFF
SCPI: device-specific
CALCulate:LIMit<1|2>:ACPower:ACHannel[:RELative]
This command sets the relative limit of the upper / lower adjacent channel. The reference value
for the relative limit value is the measured channel power.
Note that the relative limit has no effect on the limit check if it is below the absolute limit value
(see CALCulate:LIMit<1|2>:ACPower:ACHannel:ABSolute). This mechanism allows
automatic checking of the absolute basic values of adjacent-channel power as defined in mobile
radio standards.
The numeric suffixe <1|2> at LIMit is irrelevant.
Parameter
<numeric value> = relative limit for the upper or lower adjacent channel between 0 and 100 dB
Example
CALC:LIM:ACP:ACH 30
Defines a limit of 30 dB.
Characteristics
*RST value:
SCPI: device-specific
CALCulate:LIMit<1|2>:ACPower:ACHannel[:RELative]:STATe
This command activates the relative limit check of the adjacent channel. The limit check must
be activated with CALCulate:LIMit<1|2>:ACPower[:STATe] For the command to take
effect. CALCulate:LIMit<1|2>:ACPower:ACHannel:RESult? queries the result.
Note that a complete measurement must be performed between switching on the limit check
and the result query, since otherwise no correct results are available.
The numeric suffixe <1|2> at LIMit is irrelevant.
Parameter
ON | OFF
1173.0089.12
69
E-4
Remote Commands in Spectrum Mode
R&S FSH
Example
CALC:LIM:ACP:ACH:STAT ON
Activates the relative limit check.
Characteristics
*RST value: OFF
SCPI: device-specific
CALCulate:LIMit<1|2>:ACPower:ACHannel:ABSolute
This command defines the absolute limit for the lower / upper adjacent channel. It should be
noted that the absolute limit has no effect on the limit check if it is below the relative limit (see
CALCulate:LIMit<1|2>:ACPower:ACHannel[:RELative]). This mechanism allows
automatic checking of the absolute basic values of adjacent-channel power as defined in mobile
radio standards.
The numeric suffix <1|2> at LIMit is irrelevant.
Parameters
<numeric value> = absolute limit for the upper or lower adjacent channel. The range is from 200 dBm to + 200 dBm
Example
CALC:LIM:ACP:ACH:ABS -30
Sets the absolute limit to -30 dBm
Characteristics
*RST value: SCPI: device-specific
CALCulate:LIMit<1|2>:ACPower:ACHannel:ABSolute:STATe
This command activates the absolute limit check of the adjacent channel. The limit check must
be activated with CALCulate:LIMit<1|2>:ACPower[:STATe] For this command to take
effect. CALCulate:LIMit<1|2>:ACPower:ACHannel:RESult? queries the result.
Note that a complete measurement must be performed between switching on the limit check
and the result query, since otherwise no correct results are available.
The numeric suffixe <1|2> at LIMit is irrelevant.
Parameter
ON | OFF
Example
CALC:LIM:ACP:ACH:ABS:STAT ON
Activates the absolute limit check.
Characteristics
*RST value: OFF
SCPI: device-specific
CALCulate:LIMit<1|2>:ACPower:ACHannel:RESult?
This command queries the result of the limit check of the upper / lower adjacent channel. In
case the ACP measurement is not active, the command returns a error.
This command is a query and therefore has no *RST value.
1173.0089.12
70
E-4
R&S FSH
Remote Commands in Spectrum Mode
Return value
FAILED | PASSED
Example
CALC:LIM:ACP:ACH:RES?
Queries the limit check results.
Characteristics
*RST value: SCPI: device-specific
CALCulate:LIMit<1|2>:ACPower:ALTernate<1…11>[:RELative]
This command sets the relative limit of the alternate channels. The reference value for the
relative limit value is the measured channel power.
Note that the relative limit has no effect on the limit check if it is below the absolute limit value
(see CALCulate:LIMit<1|2>:ACPower:ALTernate<1…11>:ABSolute). This mechanism
allows automatic checking of the absolute basic values of adjacent-channel power as defined in
mobile radio standards.
The numeric suffix <1…11> at ALTernate selects the alternate channel number.
Parameter
<numeric value> = absolute limit for the alternate channels between 0 and 100 dB
Example
CALC:LIM:ACP:ALT3 30
Defines a limit of 30 dB for the third alternate channel.
Characteristics
*RST value: SCPI: device-specific
CALCulate:LIMit<1|2>:ACPower:ALTernate<1…11>[:RELative]:STATe
This command activates the relative limit check of the alternate channels. The limit check must
be activated with CALCulate:LIMit<1|2>:ACPower[:STATe] for the command to take
effect.. CALCulate:LIMit<1|2>:ACPower:ACHannel:RESult? queries the result.
Note that a complete measurement must be performed between switching on the limit check
and the result query, since otherwise no correct results are available.
The numeric suffix <1…11> at ALTernate selects the alternate channel number.
Parameter
ON | OFF
Example
CALC:LIM:ACP:ALT3:STAT ON
Activates the relative limit check for the third alternate channel.
Characteristics
*RST value: OFF
SCPI: device-specific
1173.0089.12
71
E-4
Remote Commands in Spectrum Mode
R&S FSH
CALCulate:LIMit<1|2>:ACPower:ALTernate<1…11>:ABSolute
This command defines the absolute limit for the lower / upper adjacent channel. It should be
noted that the absolute limit has no effect on the limit check if it is below the relative limit (see
CALCulate:LIMit<1|2>:ACPower:ALTernate<1…11>[:RELative]). This mechanism
allows automatic checking of the absolute basic values of adjacent-channel power as defined in
mobile radio standards.
The numeric suffix <1…11> at ALTernate selects the alternate channel number.
Parameters
<numeric value> = absolute limit for the upper or lower adjacent channel. The range is from 200 dBm to + 200 dBm
Example
CALC:LIM:ACP:ALT3:ABS -30
Sets the absolute limit to -30 dBm for the third alternate channel.
Characteristics
*RST value: SCPI: device-specific
CALCulate:LIMit<1|2>:ACPower:ALTernate<1…11>:ABSolute:STATe
This command activates the absolute limit check of the alternate channels. The limit check must
be activated with CALCulate:LIMit<1|2>:ACPower[:STATe] for the command to take
effect.. CALCulate:LIMit<1|2>:ACPower:ACHannel:RESult? queries the result.
Note that a complete measurement must be performed between switching on the limit check
and the result query, since otherwise no correct results are available.
The numeric suffix <1…11> at ALTernate selects the alternate channel number.
Parameter
ON | OFF
Example
CALC:LIM:ACP:ALT3:ABS:STAT ON
Activates the absolute limit check for the third alternate channel.
Characteristics
*RST value: OFF
SCPI: device-specific
CALCulate:LIMit<1|2>:ACPower:ALTernate<1…11>:RESult?
This command queries the result of the limit check of the upper / lower alternate channels. In
case the ACP measurement is not active, the command returns an error.
The numeric suffix <1…11> at ALTernate selects the alternate channel number.
This command is a query and therefore has no *RST value.
Return value
FAILED | PASSED
Example
CALC:LIM:ACP:ALT3:RES?
Queries the limit check results for the third alternate channel.
1173.0089.12
72
E-4
R&S FSH
Remote Commands in Spectrum Mode
Characteristics
*RST value: SCPI: device-specific
Measuring the Occupied Bandwidth
The following commands configure the measurement of the Occupied Bandwidth. To perform the actual
measurement, use the commands described in section "Setting and Triggering the Sweep".
List of commands
•
CALCulate:MARKer<1...6>:FUNCtion:OBAN|OBW:BANDwidth (p. 73)
•
CALCulate:MARKer<1...6>:FUNCtion:OBAN|OBW:BANDwidth:PCT (p. 73)
CALCulate:MARKer<1...6>:FUNCtion:OBAN|OBW:BANDwidth
This command sets the channel bandwidth for occupied bandwidth measurements.
Parameter
<numeric>
Example
CALC:MARK:FUNC:OBW:BAND 1 MHZ
Sets the channel bandwidth to 1 MHz
Characteristics
*RST value: 3.84 MHz
SCPI: device-specific
CALCulate:MARKer<1...6>:FUNCtion:OBAN|OBW:BANDwidth:PCT
This command sets the percentage of the total power that defines the occupied bandwidth.
Parameter
10 to 99
Example
CALC:MARK:FUNC:OBW:BAND:PCT 95
Sets the power percentage to 95%
Characteristics
*RST value: 99%
SCPI: device-specific
1173.0089.12
73
E-4
Remote Commands in Spectrum Mode
R&S FSH
TDMA Measurements
The following commands configure TDMA measurements. To perform the actual measurement, use the
commands described in section "Setting and Triggering the Sweep".
List of commands
•
CALCulate:MARKer<1...6>:FUNCtion:TDMA:BURSt (p. 74)
CALCulate:MARKer<1...6>:FUNCtion:TDMA:BURSt
This command sets the burst length of the TDMA signal.
Parameter
31.7 us to 19 ms
Example
CALC:MARK:FUNC:TDMA:BURS 80 US
Sets the burst length to 80 us.
Characteristics
*RST value: 470 us
SCPI: device-specific
Working with Channel Tables
Use the following commands to work with channel tables.
List of commands
•
[SENSe:]CHANnel:TABLe:SELect (p. 74)
[SENSe:]CHANnel:TABLe:SELect
This command selects the specified channel table for upcoming measurements.
This command is an event and therefore has no query and no *RST value.
Parameter
<string>
Example
CHAN:TABL:SEL 'CATV.CHNTAB'
Loads the channel table with the name CATV.
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
74
E-4
R&S FSH
Remote Commands in Spectrum Mode
Using an Isotropic Antenna
This chapter describes all commands available to set up measurements with an isotropic antenna.
List of commands
•
[SENSe:]CORRection:TRANsducer<1...2>:ISOTropic[:STATe]? (p. 75)
[SENSe:]CORRection:TRANsducer<1...2>:ISOTropic[:STATe]?
This command queries if the currently selected transducer is an isotropic antenna.
Return values
0
Transducer is not an isotropic antenna
1
Transducer is an isotropic antenna
Example
CORR:TRAN:ISOT?
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
75
E-4
Remote Commands in Network Analyzer Mode
R&S FSH
Remote Commands in Network Analyzer Mode
The chapter provides information on remote commands that configure and perform two-port
measurements with the tracking generator. These commands are available in Network Analyzer mode
only.
Availability of remote commands for the Network Analyzer
Note that some of the listed remote commands take effect only if options R&S FSHK42 Vector Reflection and Transmission Measurements and / or R&S FSH-K45
Vector Voltmeter are installed.
Setting the Frequency and Span
The following commands configure the frequency axis (x-axis) of the active display.
List of commands
•
[SENSe:]FREQuency:CENTer (p. 25)
•
[SENSe:]FREQuency:CENTer:STEP (p. 25)
•
[SENSe:]FREQuency:CENTer:STEP:LINK (p. 25)
•
[SENSe:]FREQuency:INPut:MODE on page 26
•
[SENSe:]FREQuency:SPAN (p. 27)
•
[SENSe:]FREQuency:SPAN:FULL (p. 27)
•
[SENSe:]FREQuency:STARt (p. 27)
•
[SENSe:]FREQuency:STOP (p. 28)
For a detailed description of the commands refer to "Setting the Frequency and the Span" in Spectrum
Analyzer Mode.
Setting Amplitude Parameters
The following commands configure the level axis (y-axis) and level parameters of the active display.
In Network Analyzer mode, the numeric suffix <1|2> at DISPlay selects the measurement screen in dual
trace mode.
List of commands
•
DISPlay<1|2>:GDELay:REFerence (p. 77)
•
DISPlay<1|2>:GDELay:REFerence:POSition (p. 77)
•
DISPlay<1|2>:GDELay:Y:SCALe (p. 78)
•
DISPlay<1|2>:IMPedance:REFerence:POSition (p. 87)
•
DISPlay<1|2>:LOSS:REFerence (p. 78)
1173.0089.12
76
E-4
R&S FSH
Remote Commands in Network Analyzer Mode
•
DISPlay<1|2>:LOSS:REFerence:POSition (p. 78)
•
DISPlay<1|2>:LOSS:Y:SCALe (p. 79)
•
DISPlay<1|2>:MAGNitude:REFerence (p. 79)
•
DISPlay<1|2>:MAGNitude:REFerence:POSition (p. 79)
•
DISPlay<1|2>:MAGNitude:Y:SCALe (p. 80)
•
DISPlay<1|2>:MAGNitude:Y:SPACing (p. 80)
•
DISPlay<1|2>:PHASe:REFerence (p. 80)
•
DISPlay<1|2>:PHASe:REFerence:POSition (p. 81)
•
DISPlay<1|2>:PHASe:Y:SCALe (p. 81)
•
DISPlay<1|2>:PHASe:UNWRap (p. 81)
•
DISPlay<1|2>:REFLection:Y:SCALe (p. 81)
•
DISPlay<1|2>:REFLection:UNIT (p. 82)
•
DISPlay<1|2>:VSWR:Y:SCALe (p. 82)
•
INPut:ATTenuation (p. 31)
•
INPut:ATTenuation:AUTO (p. 31)
•
INPut:ATTenuation:MODE (p. 31)
•
INPut:IMPedance (p. 32)
•
SOURce:TG:ATTenuation (p. 82)
•
UNIT:POWer (p. 33)
For a detailed description of commands not described below refer to "Setting Amplitude Parameters" in
Spectrum Analyzer Mode.
DISPlay<1|2>:GDELay:REFerence
This command sets the reference level for the Cable Loss measurement format.
Parameter
1 to 10000 ns
Example
DISP:GDEL:REF 20
Sets the reference level to 20 nanoseconds
Characteristics
*RST value: 0 ns
SCPI: device-specific
DISPlay<1|2>:GDELay:REFerence:POSition
This command defines the position of the reference value on the display for the Group Delay
measurement format. Each step shifts the reference position one grid line up or down.
Parameter
1 to 10
1173.0089.12
77
E-4
Remote Commands in Network Analyzer Mode
R&S FSH
Example
DISP:GDEL:REF:POS 0
Sets the reference to the bottom of the display (i.e. the first grid line from the bottom).
Characteristics
*RST value: 5
SCPI: device-specific
DISPlay<1|2>:GDELay:Y:SCALe
This command defines the display range of the y-axis for the Group Delay measurement format.
Parameter
<numeric_value>
Example
DISP:GDEL:Y:SCAL 20E-9
Sets the display range to 20 nanoseconds
Characteristics
*RST value: 100 ns
SCPI: device-specific
DISPlay<1|2>:LOSS:REFerence
This command sets the reference level for the Cable Loss measurement format.
Parameter
<numeric_value>
Example
DISP:LOSS:REF 10
Sets the reference level to 10 dB
Characteristics
*RST value: 0 dB
SCPI: device-specific
DISPlay<1|2>:LOSS:REFerence:POSition
This command defines the position of the reference value on the display for the Cable Loss
measurement format. Each step shifts the reference position one grid line up or down.
Parameter
1 to 10
Example
DISP:LOSS:REF:POS 5
Sets the reference to the center of the display (i.e. the fifth grid line from the bottom).
Characteristics
*RST value: 10
SCPI: device-specific
1173.0089.12
78
E-4
R&S FSH
Remote Commands in Network Analyzer Mode
DISPlay<1|2>:LOSS:Y:SCALe
This command defines the display range of the y-axis with logarithmic scaling for the Cable
Loss measurement format.
Use the DISPlay[:WINDow]:TRACe<1|2>:Y:SPACing command to switch to logarithmic
scaling.
Parameter
<numeric value>
Example
DISP:LOSS:Y:SCAL 20
Sets the display range to 20 dB
Characteristics
*RST value: 100 dB
SCPI: device-specific
DISPlay<1|2>:MAGNitude:REFerence
This command sets the reference level for the magnitude measurement format.
Parameter
<numeric_value>
Example
DISP:MAGN:REF -10
Sets the reference level to -10 dB
Characteristics
*RST value: 0 dB
SCPI: device-specific
DISPlay<1|2>:MAGNitude:REFerence:POSition
This command defines the position of the reference value on the display for the magnitude
measurement format. Each step shifts the reference position one grid line up or down.
Parameter
1 to 10
Example
DISP:MAGN:REF:POS 5
Sets the reference to the center of the display (i.e. the fifth grid line from the bottom).
Characteristics
*RST value: 10
SCPI: device-specific
1173.0089.12
79
E-4
Remote Commands in Network Analyzer Mode
R&S FSH
DISPlay<1|2>:MAGNitude:Y:SCALe
This command defines the display range of the y-axis with logarithmic scaling for the Magnitude
measurement format.
Use the DISPlay[:WINDow]:TRACe<1|2>:Y:SPACing command to switch to logarithmic
scaling.
Parameter
<numeric value>
Example
DISP:MAGN:Y:SCAL 50 DB
Sets the display range of the y-axis to 50 dB
Characteristics
*RST value: 100 dB
SCPI: device-specific
DISPlay<1|2>:MAGNitude:Y:SPACing
This command sets the scaling of the y-axis for the Magnitude measurement format to either
linear or logarithmic.
Parameter
LINear | LOGarithmic
Example
DISP:MAGN:Y:SPAC LIN
Switches the y-axis to linear scaling
Characteristics
*RST value: LOGarithmic
SCPI: device-specific
DISPlay<1|2>:PHASe:REFerence
This command sets the reference level for the Phase measurement format.
Parameter
<numeric_value>
Example
DISP:MAGN:REF -10
Sets the reference level to -10 dB
Characteristics
*RST value: 0 dB
SCPI: device-specific
1173.0089.12
80
E-4
R&S FSH
Remote Commands in Network Analyzer Mode
DISPlay<1|2>:PHASe:REFerence:POSition
This command defines the position of the reference value on the display for the Phase
measurement format.
Parameter
1 to 10
Example
DISP:LOSS:REF:POS 5
Sets the reference to the center of the display (i.e. the fifth grid line from the bottom).
Characteristics
*RST value: 10
SCPI: device-specific
DISPlay<1|2>:PHASe:Y:SCALe
This command defines the display range of the y-axis for the Phase measurement format.
Phase can have values from 0° to 100000°.
Parameter
<numeric value>
Example
DISP:PHAS:Y:SCAL 180
Sets the display range of the phase measurement to 180°
Characteristics
*RST value: 360°
SCPI: device-specific
DISPlay<1|2>:PHASe:UNWRap
This command removes the restriction limiting the value range to +/- 180°. Phase can have
values from 0° to 100000°.
Parameter
ON | OFF
Example
DISP:PHAS:UNWR ON
Activates the phase unwrap
Characteristics
*RST value: OFF
SCPI: device-specific
DISPlay<1|2>:REFLection:Y:SCALe
This command defines the display range of the y-axis for the Reflection Coeffiecient
measurement format.
Use the DISPlay[:WINDow]:TRACe<1|2>:Y:SPACing command to switch to logarithmic
scaling.
1173.0089.12
81
E-4
Remote Commands in Network Analyzer Mode
R&S FSH
Parameter
0 to 1000 mp
Example
DISP:REFL:Y:SCAL 100
Scales the logarithmic y-axis to 100 mp
Characteristics
*RST value: 1000 mp
SCPI: device-specific
DISPlay<1|2>:REFLection:UNIT
This command defines the unit for the reflection coefficient.
Parameter
RHO | MRHO
Example
DISP:REFL:UNIT RHO
Sets the unit to RHO.
Characteristics
*RST value: MRHO
SCPI: device-specific
DISPlay<1|2>:VSWR:Y:SCALe
This command defines the display range of the y-axis for the VSWR measurement format.
Parameter
1...1.1 | 1.5 | 2 | 6 | 11 | 21 | 71
Note:
The number you enter is rounded up to the next possible display range. For example, if
you enter 5, the R&S FSH automatically sets the display range to 1...6.
Example
DISP:VSWR:Y:SCAL 50
Sets the range to 1...71.
Characteristics
*RST value: 1...21
SCPI: device-specific
SOURce:TG:ATTenuation
This command sets the output level of the tracking generator.
You can set the output level by selecting an attenuation value. The range is from 0 dB to 50 dB.
Setting the attenuation to 0 dB results in an output level of 0 dBm. If you set the attenuation to
50 dB, the resulting output level is -50 dBm.
Parameter
0 to 50
1173.0089.12
82
E-4
R&S FSH
Remote Commands in Network Analyzer Mode
Example
SOUR:TG:ATT 50
Sets the attenuation to 50 dB and therefore an output level of –50 dBm
Characteristics
*RST value: 0 dB
SCPI: device-specific
Setting the Bandwidth
The following commands configure the filter bandwidths of the R&S FSH. Note that both groups of
commands (BANDwidth and BWIDth) are the same.
List of commands
•
[SENSe:]BANDwidth|BWIDth[:RESolution] (p. 34)
•
[SENSe:]BANDwidth|BWIDth[:RESolution]:AUTO (p. 34)
For a detailed description of commands refer to "Setting the Bandwidths" in Spectrum Analyzer Mode.
Setting and Triggering the Sweep
The following commands configure the sweep.
List of commands
•
*WAI (p. 23)
•
ABORt (p. 36)
•
INITiate[:IMMediate] (p. 36)
•
INITiate:CONTinuous (p. 36)
•
[SENSe:]SWEep:COUNt (p. 37)
•
[SENSe:]SWEep:TIME (p. 37)
•
[SENSe:]SWEep:TIME:AUTO (p. 37)
•
TRIGger[:SEQuence]:HOLDoff[:TIME] (p. 38)
•
TRIGger[:SEQuence]:SLOPe (p. 38)
•
TRIGger[:SEQuence]:SOURce (p. 39)
For a detailed description of commands refer to "Setting and Triggering the Sweep" in Spectrum
Analyzer Mode.
1173.0089.12
83
E-4
Remote Commands in Network Analyzer Mode
R&S FSH
Working with Traces
The following commands set up the trace and the various functions associated with it, e.g. the selection
of the detector.
List of commands
•
DISPlay[:WINDow]:TRACe<1|2>[:STATe] (p. 41)
•
DISPlay[:WINDow]:TRACe<1|2>:MEMory[:STATe] (p. 41)
•
DISPlay[:WINDow]:TRACe<1|2>:MODE (p. 41)
•
Error! Reference source not found. (p. 41)
•
FORMat:BORDerError! Reference source not found. (p. 42 )
•
[SENSe:]DETector[:FUNCtion] (p. 42)
•
[SENSe:]DETector<1...6>[:FUNCtion]:AUTO (p. 42)
•
TRACE<1|2>[:DATA]? (p. 84)
For a detailed description of commands refer to "Working with Traces" in Spectrum Analyzer Mode.
TRACE<1|2>[:DATA]?
This command transfers trace data from the control computer to the instrument, the query reads
trace data out of the instrument. The transfer of trace data from the control computer to the
instrument takes place by indicating the trace name and then the data to be transferred.
Parameter
TRACE1 | TRACE2
Return values for trace data in Network Analyzer mode
631 results are returned, one result for each point of the trace. The result depends on the
measurement format. The return values are scaled in the currently selected unit.
Note that for the MPHase format (simultaneous measurement of magnitude and phase) 631
polar values are returned in ASCII format separated by commas. For each value, first the
magnitude and then the phase is output.
Example
TRAC:DATA? TRACE1
Reads out the data for trace 1
Characteristics
*RST value: SCPI: conform
1173.0089.12
84
E-4
R&S FSH
Remote Commands in Network Analyzer Mode
Using Markers and Deltamarkers
Markers and Deltamarkers
The following commands are for setting and controlling markers and deltamarkers. If not otherwise
noted, the numeric suffix <1...6> at MARKer or DELTamarker select the marker to be controlled.
In Network Analyzer mode, the numeric suffix <1|2> at CALCulate selects the measurement screen in
dual trace mode.
List of commands
•
CALCulate<1|2>:DELTamarker<1...6>[:STATe] (p. 44)
•
CALCulate<1|2>:DELTamarker<1...6>:AOFF (p. 44)
•
CALCulate<1|2>:DELTamarker<1...6>:MAXimum[:PEAK] (p. 45)
•
CALCulate<1|2>:DELTamarker<1...6>:MAXimum:NEXT (p. 45)
•
CALCulate<1|2>:DELTamarker<1...6>:MINimum[:PEAK] (p. 45)
•
CALCulate<1|2>:DELTamarker<1...6>:X (p. 45)
•
CALCulate<1|2>:DELTamarker<1...6>:X:RELative? (p. 46)
•
CALCulate<1|2>:DELTamarker<1...6>:Y? (p. 46)
•
CALCulate<1|2>:MARKer<1...6>[:STATe] (p. 47)
•
CALCulate<1|2>:MARKer<1...6>:AOFF (p. 47)
•
CALCulate<1|2>:MARKer<1...6>:MAXimum[:PEAK] (p. 47)
•
CALCulate<1|2>:MARKer<1...6>:MAXimum:NEXT (p. 48)
•
CALCulate<1|2>:MARKer<1...6>:MINimum[:PEAK] (p. 48)
•
CALCulate<1|2>:MARKer<1...6>:MINimum:NEXT (p. 48)
•
CALCulate<1|2>:MARKer<1...6>:MODE (p. 85)
•
CALCulate<1|2>:MARKer<1...6>:X (p. 48)
•
CALCulate<1|2>:MARKer<1...6>:X:SLIMits[:STATe] (p. 49)
•
CALCulate<1|2>:MARKer<1...6>:X:SLIMits:LEFT (p. 49)
•
CALCulate<1|2>:MARKer<1...6>:X:SLIMits:RIGHt (p. 49)
•
CALCulate<1|2>:MARKer<1...6>:Y? (p. 86)
For a detailed description of commands not described below refer to "Using Markers" in Spectrum
Analyzer Mode.
CALCulate<1|2>:MARKer<1...6>:MODE
This command selects the marker mode.
Parameter
NORMal
RPDB
1173.0089.12
Reflection Coefficient in complex format (Magnitude (dB)
and Phase (Rho))
85
E-4
Remote Commands in Network Analyzer Mode
RPL
Reflection Coefficient in complex format (Magnitude (lin)
and Phase (Rho))
RSCalar
Reflection Coefficient in complex format (Real and
Imaginary (Rho)))
IMPedance
Impedance in complex fomrat (Real and Imaginary)
ADMittance
Admittance in complex format (Real and Imaginary)
NIMPedance
Standardized impedance in complex format (Real and
Imaginary)
NADMittance
Standardized admittance in complex format (Real and
Imaginary)
R&S FSH
Example
CALC:MARK:MODE ADM
Selects admittance in complex format with real and imaginary components
Characteristics
*RST value: NORMal
SCPI: device–specific
CALCulate<1|2>:MARKer<1...6>:Y?
This command queries the measured value of the selected marker. The corresponding marker
is activated before or switched to marker mode, if necessary.
To obtain a correct query result, a complete sweep with synchronization to the sweep end must
be performed between the activation of the marker and the query of the Y value. This is only
possible in single sweep mode.
Return values
The return values depend on the current measurement format, set with
CALCulate<1|2>:MARKer<1...6>:MODE .
NORMal
<value> = trace value
RPDB (Reflection Coefficient)
<magnitude in dB>, <phase>
RPL (Reflection Coefficient)
<magnitude linear>, <phase>
RSCalar (Reflection Coefficient)
<real part>, <imaginary part>
IMPedance (complex impedance)
<real part>, <imaginary part>
ADMittance (complex admittamce)
<real part>, <imaginary part>
NIMPedance (complex normalized impedance)
<real part>, <imaginary part>
NADMittance (complex normalized admittance)
<real part>, <imaginary part>
Example
INIT:CONT OFF
Switches to single sweep mode.
CALC:MARK2 ON
Switches marker 2.
INIT;*WAI
Starts a sweep and waits for the end.
1173.0089.12
86
E-4
R&S FSH
Remote Commands in Network Analyzer Mode
CALC:MARK2:Y?
Outputs the measured value of marker 2.
Characteristics
*RST value: –
SCPI: device–specific
Marker Functions
The following commands perform various kinds of analysis at the marker position.
In Network Analyzer mode, the numeric suffix <1|2> at DISPlay selects the measurement screen in dual
trace mode.
List of commands
•
DISPlay<1|2>:IMPedance:REFerence:POSition (p. 87)
•
DISPlay<1|2>:ZOOM:AREA[:STATe] (p. 87)
•
DISPlay<1|2>:ZOOM:FACTor (p. 88)
•
DISPlay<1|2>:ZOOM:X (p. 88)
•
DISPlay<1|2>:ZOOM:Y (p. 88)
DISPlay<1|2>:IMPedance:REFerence:POSition
This command defines the reference impedance for the Smith chart measurement format. The
impedance can be between 1m[ and 10 k[.
Parameter
<numeric_value>
Example
DISP:IMP:REF:POS 75 OHM
Sets the reference impedance to 75 Ohm.
Characteristics
*RST value: 50
SCPI: device-specific
DISPlay<1|2>:ZOOM:AREA[:STATe]
This command activates and deactivates the marker zoom function in a Smith chart.
Parameter
ON | OFF
Example
DISP:ZOOM:AREA ON
Activates the marker zoom function.
Characteristics
*RST value: OFF
SCPI: device-specific
1173.0089.12
87
E-4
Remote Commands in Network Analyzer Mode
R&S FSH
DISPlay<1|2>:ZOOM:FACTor
This command defines the zoom factor of the marker zoom function in a Smith chart.
Parameter
2|4|8
Example
DISP:ZOOM:FACT 4
Sets the zoom factor to 4
Characteristics
*RST value: SCPI: device-specific
DISPlay<1|2>:ZOOM:X
This command shifts the zoom window on the x-axis of the Smith chart. '0%' marks the center of
the x-axis in the Smith chart.
Parameter
-50 to 50
Example
DISP:ZOOM:X 10
Shift the zoom window 10% to the right.
Characteristics
*RST value: 0
SCPI: device-specific
DISPlay<1|2>:ZOOM:Y
This command shifts the zoom window on the y-axis of the Smith chart. '0%' marks the center of
the y-axis in the Smith chart.
Parameter
-50 to 50
Example
DISP:ZOOM:Y -25
Shifts the zoom window 25% down.
Characteristics
*RST value: 0
SCPI: device-specific
1173.0089.12
88
E-4
R&S FSH
Remote Commands in Network Analyzer Mode
Configuring the Measurement
This chapter provides information on how to configure two-port measurements with the tracking
generator. The structure follows the order of the actual operation sequence used when performing a
measurement:
•
Selecting the Measurement Mode on page 89
•
Calibrating the Measurement on page 91
•
Selecting the Result Display on page 92
•
Selecting the Measurement Format on page 92
It also deals with configuring the Vector Voltmeter (Option R&S FSH-K45).
•
Configuring the Vector Voltmeter (option R&S FSH-K45) on page 94
To perform the actual measurement, use the commands described in section "Setting and Triggering
the Sweep".
Commands independent of the operating mode
Note that some of the commands for configuring two-port measurements are also
valid for other operating modes. If a command is available in another mode, it is
indicated by the list in the respective section.
Selecting the Measurement Mode
The following commands select the measurement mode and configure user calibration for two-port
measurements.
List of commands:
•
MEASurement<1|2>:MODE (p. 89)
•
CALCulate:CALKit:USER[:STATe] (p. 90)
•
CALCulate:CALKit:USER:LENGth (p. 90)
•
CALCulate:CALKit:USER:OFFSet:LENGth (p. 90)
•
CALCulate:CALKit:USER:NAME (p. 91)
MEASurement<1|2>:MODE
This command sets the measurement mode for network analysis measurements.
The numeric suffix <1|2> at MEASurement selects the measurement screen in dual trace mode.
Parameter
Network analysis
SCALar | VECTor | VVMeter
Example
MEAS:MODE SCAL
Switches the network analysis to scalar measurement mode.
1173.0089.12
89
E-4
Remote Commands in Network Analyzer Mode
R&S FSH
Characteristics
*RST value: VECTor
SCPI: device-specific
CALCulate:CALKit:USER[:STATe]
This command activates and deactivates the user calibration.
Parameter
ON | OFF
Example
CALK:USER ON
Activates the calibration standard.
Characteristics
*RST value: OFF
SCPI: device-specific
CALCulate:CALKit:USER:LENGth
This command defines the electrical length of the user calibration. It is taken into account for
phase measurements and in the Smith Chart.
Parameter
0 mm to 1 m
Example
CALK:USER:LENG 5 MM
Sets the electrical length to 5 millimeter
Characteristics
*RST value: 5.27 mm
SCPI: device-specific
CALCulate:CALKit:USER:OFFSet:LENGth
This command defines the electrical length offset. It is taken into account for phase
measurements and in the Smith Chart when phase correction for additional cables and adapters
has to be performed.
Parameter
0 mm to 100 m
Example
CALK:USER:LENG 500 MM
Sets the offset length to 500 millimeter.
Characteristics
*RST value: 0 mm
SCPI: device-specific
1173.0089.12
90
E-4
R&S FSH
Remote Commands in Network Analyzer Mode
CALCulate:CALKit:USER:NAME
This command defines a name for the user calibration to save the customized settings under a
user defined name.
Parameter
<string>
Example
CALKit:USER:NAME CALKIT1
Renames the calibration standard to CALKIT1
Characteristics
*RST value: SCPI: device-specific
Calibrating the Measurement
The following commands query and control calibration for two-port measurements.
List of commands:
•
CALibration:MODE? (p. 91)
•
CALibration:STATus? (p. 91)
CALibration:MODE?
This command queries if the current measurement mode is calibrated.
This command is a query and therefore has no *RST value.
Return values
0
not calibrated
1
calibrated
Example
CAL:MODE?
Characteristics
*RST value: SCPI: device-specific
CALibration:STATus?
This command queries whether the R&S FSH is fully calibrated for the current measurement
mode or not.
This command is a query and therefore has no *RST value.
Return values
NORM
the R&S FSH is fully calibrated
APPR
1173.0089.12
the R&S FSH is approximately calibrated, meaning that greater measurement
uncertainty must be anticipated
91
E-4
Remote Commands in Network Analyzer Mode
R&S FSH
Example
CAL:STAT?
Queries the calibration status of the R&S FSH
Characteristics
*RST value: SCPI: device-specific
Selecting the Result Display
The following commands select the result display for two-port measurements.
List of commands
•
MEASurement<1|2>:FUNCtion:SELect (p. 92)
MEASurement<1|2>:FUNCtion:SELect
This command selects the result display.
The numeric suffix <1|2> at MEASurement selects the measurement screen in dual trace mode.
Parameter
S11 | S12 | S21 | S22
Example
MEAS:FUNC:SEL S11
Characteristics
*RST value: S11
SCPI: device-specific
Selecting the Measurement Format
The following commands are for selecting and configuring the measurement formats available for twoport measurements.
List of commands:
•
CALCulate:TRACe:CABLe:LENGth[:STATe] (p. 92)
•
CALCulate:TRACe:CABLe:LENGth:RESult? (p. 93)
•
CALCulate:TRACe:LIMit:VSWR:FAIL? (p. 93)
•
DISPlay:GDELay:APERture:STEP (p. 93)
•
MEASurement<1|2>:FORMat (p. 94)
CALCulate:TRACe:CABLe:LENGth[:STATe]
This command sets the electrical cable length state.
Parameter
ON | OFF
Example
CALC:TRAC:CABL:LENG ON
Activates the electrical cable length.
1173.0089.12
92
E-4
R&S FSH
Remote Commands in Network Analyzer Mode
Characteristics
*RST value: OFF
SCPI: device-specific
CALCulate:TRACe:CABLe:LENGth:RESult?
This command queries the measurement result of the electrical cable length.
This command is a query and therefore has no *RST value.
Example
CALC:TRAC:CABL:LENG:RES?
Queries the measurement result of the electrical cable length.
Characteristics
*RST value: SCPI: device-specific
CALCulate:TRACe:LIMit:VSWR:FAIL?
This command queries the results of the limit check for the VSWR measurement format.
This command is a query and therefore has no *RST value.
Return value
0
fail
1
pass
Example
CALC:TRAC:LIM:VSWR:FAIL?
Queries the results of the limit check.
Characteristics
*RST value: SCPI: device-specific
DISPlay:GDELay:APERture:STEP
This command sets the aperture steps for Group Delay measurements.
Parameter
1 to 630
Example
DISP:GDEL:APER:STEP 100
Sets 100 aperture steps.
Characteristics
*RST value: 10
SCPI: device-specific
1173.0089.12
93
E-4
Remote Commands in Network Analyzer Mode
R&S FSH
MEASurement<1|2>:FORMat
This command specifies the graphical format in which the measurement result are presented.
The numeric suffix <1|2> at MEASurement selects the measurement screen in dual trace mode.
Note:
For transmission measurements only the Magnitude, Phase, Magnitude+Phase and
GDelay formats are available.
Parameter
Reflection Measurements
MAGNitude | PHASe | MPHase | VSWR | REFlection | SMITh |
LOSS | GDELay | VVMeter
Transmission Measurements
MAGNitude | PHASe | MPHase | GDELay
Example
MEAS:MODE VECT
Switches to vector measurement mode.
MEAS:FUNC:REFL ON
Activates reflection measurement.
MEAS:FORM SMITh
Displays the reflection in a Smith Chart.
Characteristics
*RST value: MAGNitude
SCPI: device-specific
Configuring the Vector Voltmeter (option R&S FSH-K45)
The following commands configure the vector voltmeter.
Availability of remote commands for the Vector Voltmeter
Note that the listed remote commands take effect only if option R&S FSH-K45
Vector Voltmeter is installed.
List of commands
•
CALCulate:VVMeter:MAGNitude:REFerence? (p. 95)
•
CALCulate:VVMeter:MAGNitude:RESult? (p. 95)
•
CALCulate:VVMeter:PHASe:REFerence? (p. 95)
•
CALCulate:VVMeter:PHASe:RESult? (p. 96)
•
CALCulate:VVMeter:REFerence[:STATe] (p. 96)
1173.0089.12
94
E-4
R&S FSH
Remote Commands in Network Analyzer Mode
CALCulate:VVMeter:MAGNitude:REFerence?
This command queries the reference values for the return loss of the DUT in vector voltmeter
mode.
This command is a query and therefore has no *RST value.
Return values:
<numeric_value> in dB
Example
CALC:VVM:PHAS:REF?
Queries the reference values for the phase.
Characteristics
*RST value: SCPI: device-specific
CALCulate:VVMeter:MAGNitude:RESult?
This command queries the numerical values for the return loss of the DUT in vector voltmeter
mode.
This command is a query and therefore has no *RST value.
Return values:
<numeric_value> in dB
Example
CALC:VVM:MAGN:RES?
Queries the current return loss of the DUT
Characteristics
*RST value: SCPI: device-specific
CALCulate:VVMeter:PHASe:REFerence?
This command queries the reference values for the phase of the DUT in vector voltmeter mode.
This command is a query and therefore has no *RST value.
Return values:
<numeric_value> in degree
Example
CALC:VVM:PHAS:REF?
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
95
E-4
Remote Commands in Network Analyzer Mode
R&S FSH
CALCulate:VVMeter:PHASe:RESult?
This command queries the numerical values for the phase of the DUT in vector voltmeter mode.
This command is a query and therefore has no *RST value.
Return values:
<numeric_value> in degree
Example
CALC:VVM:PHAS:RES?
Queries the current phase of the DUT
Characteristics
*RST value: SCPI: device-specific
CALCulate:VVMeter:REFerence[:STATe]
This command saves the current measurement values as reference values. The reference
values can be used for comparison measurements.
Parameter
ON | OFF
Example
CALC:VVM:REF ON
Activates the reference values.
Characteristics
*RST value: OFF
SCPI: device-specific
1173.0089.12
96
E-4
R&S FSH
Remote Commands in the Distance-to-Fault Mode
Remote Commands in the Distance-to-Fault Mode
The chapter provides information on remote commands that configure and perform two-port
measurements with the tracking generator. These commands are available in Network Analyzer mode
only.
Availability of remote commands for DTF measurements
Note that the listed remote commands take effect only if option R&S FSH-K41
Distance-to-Fault Measurements is installed.
Setting the Frequency and Span
The following commands configure the frequency axis (x-axis) of the active display.
List of commands
•
[SENSe:]FREQuency:CENTer (p. 25)
•
[SENSe:]FREQuency:CENTer:STEP (p. 25)
•
[SENSe:]FREQuency:CENTer:STEP:LINK (p. 25)
•
[SENSe:]FREQuency:SPAN (p. 27)
•
[SENSe:]FREQuency:SPAN:AUTO (p. 27)
•
[SENSe:]FREQuency:SPAN:FULL (p. 27)
•
[SENSe:]FREQuency:STARt (p. 27)
•
[SENSe:]FREQuency:STOP (p. 28)
For a detailed description of the commands refer to "Setting the Frequency and the Span" in Spectrum
Analyzer Mode.
Setting Amplitude Parameters
List of commands
•
DISPlay[:WINDow]:TRACe<1|2>:Y[:SCALe]:ADJust (p. 29)
•
INPut:ATTenuation (p. 31)
•
INPut:ATTenuation:AUTO (p. 31)
•
INPut:ATTenuation:MODE (p. 31)
•
INPut:GAIN:STATe (p. 32)
•
SOURce:TG:ATTenuation (p. 82)
For a detailed description of commands refer to "Setting Amplitude Parameters" in Spectrum Analyzer
Mode.
1173.0089.12
97
E-4
Remote Commands in the Distance-to-Fault Mode
R&S FSH
Setting the Bandwidth
The following commands configure the filter bandwidths of the R&S FSH. Note that both groups of
commands (BANDwidth and BWIDth) are the same.
List of commands
•
[SENSe:]BANDwidth|BWIDth[:RESolution] (p. 34)
•
[SENSe:]BANDwidth|BWIDth[:RESolution]:AUTO (p. 34)
For a detailed description of commands refer to "Setting the Bandwidths" in Spectrum Analyzer Mode.
Setting and Triggering the Sweep
The following commands configure the sweep.
List of commands
•
*WAI (p. 23)
•
ABORt (p. 36)
•
INITiate[:IMMediate] (p. 36)
•
INITiate:CONTinuous (p. 36)
•
[SENSe:]SWEep:COUNt (p. 37)
•
[SENSe:]SWEep:TIME (p. 37)
•
[SENSe:]SWEep:TIME:AUTO (p. 37)
For a detailed description of commands refer to "Setting and Triggering the Sweep" in Spectrum
Analyzer Mode.
Working with Traces
The following commands set up the trace and the various functions associated with it, e.g. the selection
of the detector.
List of commands
•
DISPlay[:WINDow]:TRACe<1|2>[:STATe] (p. 41)
•
DISPlay[:WINDow]:TRACe<1|2>:MEMory[:STATe] (p. 41)
•
DISPlay[:WINDow]:TRACe<1|2>:MODE (p. 41)
•
Error! Reference source not found. (p. Error! Bookmark not defined.)
•
[SENSe:]DETector[:FUNCtion] (p. 42)
•
[SENSe:]DETector<1...6>[:FUNCtion]:AUTO (p. 42)
•
TRACe<1|2>:DATA? (p. 99)
•
UNIT:LENGth (p. 99)
For a detailed description of commands refer to "Working with Traces" in Spectrum Analyzer Mode.
1173.0089.12
98
E-4
R&S FSH
Remote Commands in the Distance-to-Fault Mode
TRACe<1|2>:DATA?
This command transfers trace data from the control computer to the instrument, the query reads
trace data out of the instrument. The transfer of trace data from the control computer to the
instrument takes place by indicating the trace name and then the data to be transferred.
Parameter
TRACE1 | TRACE2 | <numeric_value>
Return values for trace data in Distance-to-Fault Mode
631 results are returned, one result for each point of the trace. The returned values are scaled
in the currently selected unit.
Note: With the auto peak detector, only positive peak values can be read out.
Example
TRAC:DATA? TRACE1
Reads out the data for trace 1
Characteristics
*RST value: SCPI: conform
UNIT:LENGth
This command sets the instrument's default unit of length.
Parameter
METer | FEET
Example
UNIT:LENGth FEET
Sets the unit of length to feet.
Characteristics
*RST value: METer
SCPI: conform
Using Markers
Markers and Deltamarkers
The following commands are for setting and controlling markers and deltamarkers. If not otherwise
noted, the numeric suffix <1...6> at MARKer or DELTamarker select the marker to be controlled.
List of commands
•
CALCulate<1|2>:DELTamarker<1...6>[:STATe] (p. 44)
•
CALCulate<1|2>:DELTamarker<1...6>:AOFF (p. 44)
•
CALCulate<1|2>:DELTamarker<1...6>:MAXimum[:PEAK] (p. 45)
•
CALCulate<1|2>:DELTamarker<1...6>:MAXimum:NEXT (p. 45)
•
CALCulate<1|2>:DELTamarker<1...6>:MINimum[:PEAK] (p. 45)
•
CALCulate<1|2>:DELTamarker<1...6>:X (p. 45)
1173.0089.12
99
E-4
Remote Commands in the Distance-to-Fault Mode
•
CALCulate<1|2>:DELTamarker<1...6>:X:RELative? (p. 46)
•
CALCulate<1|2>:DELTamarker<1...6>:Y? (p. 46)
•
CALCulate<1|2>:MARKer<1...6>[:STATe] (p. 47)
•
CALCulate<1|2>:MARKer<1...6>:AOFF (p. 47)
•
CALCulate<1|2>:MARKer<1...6>:MAXimum[:PEAK] (p. 47)
•
CALCulate<1|2>:MARKer<1...6>:MAXimum:NEXT (p. 48)
•
CALCulate<1|2>:MARKer<1...6>:MINimum[:PEAK] (p. 48)
•
CALCulate<1|2>:MARKer<1...6>:MINimum:NEXT (p. 48)
•
CALCulate<1|2>:MARKer<1...6>:X (p.48 )
•
CALCulate<1|2>:MARKer<1...6>:X:SLIMits[:STATe] (p. 49)
•
CALCulate<1|2>:MARKer<1...6>:X:SLIMits:LEFT (p. 49)
•
CALCulate<1|2>:MARKer<1...6>:X:SLIMits:RIGHt (p. 49)
•
CALCulate<1|2>:MARKer<1...6>:Y? (p. 50)
R&S FSH
For a detailed description of commands not described below refer to "Markers and Deltamarkers" in
Spectrum Analyzer Mode.
Configuring the Measurement
The following commands configure distance-to-fault measurements. To perform the actual
measurement, use the commands described in section "Setting and Triggering the Sweep".
List of commands
•
CALCulate:DTF:CABle:LENGth (p. 100)
•
CALCulate:DTF:CABle:PRESet (p. 101)
•
CALCulate:MARKer<1...6>:FUNCtion:DTF:PEAK:RESult? (p. 101)
•
CALCulate:MARKer<1...6>:FUNCtion:DTF:PEAK:THReshold (p. 101)
•
MEASurement:MODE (p. 102)
CALCulate:DTF:CABle:LENGth
This command defines the maximum length of the cable that is used for distance-to-fault
measurements.
Parameter
3 to 1500 m
Example
CALCulate:DTF:CAB:LENG 2 M
Sets the cable length to 2 meter.
Characteristics
*RST value: 20 m
SCPI: device-specific
1173.0089.12
100
E-4
R&S FSH
Remote Commands in the Distance-to-Fault Mode
CALCulate:DTF:CABle:PRESet
This command selects the cable model that is used for distance-to-fault measurements.
Parameter
<string> = file name of the cable model
Example
CALC:DTF:CAB:PRES 'HLFR.CBLMOD'
Selects the cable model from the file HLFR.CBLMOD
Characteristics
*RST value: SCPI: device-specific
CALCulate:MARKer<1...6>:FUNCtion:DTF:PEAK:RESult?
This command queries the DTF list. It contains the return loss and distance from the
measurement plane of all reflections that exceed the threshold level. The threshold level is
defined with the CALCulate:MARKer<1...6>:FUNCtion:DTF:PEAK:THReshold
command.
The numeric suffix <1..6> is irrelevant.
This command is a query and therefore has no *RST value.
Example
CALC:MARK:FUNC:DTF:PEAK:RES?
Reads out the DTF peak list.
Characteristics
*RST value: SCPI: device-specific
CALCulate:MARKer<1...6>:FUNCtion:DTF:PEAK:THReshold
This commands defines the threshold for the DTF list.
All values which exceed the threshold are in the DTF list and can be queried with the
CALCulate:MARKer<1...6>:FUNCtion:DTF:PEAK:RESult? command.
The numeric suffix <1...6> is irrelevant.
Parameter
<numeric>
Example
CALC MARK:FUNC:DTF:PEAK:THR -20
Sets the threshold to -20 dB
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
101
E-4
Remote Commands in the Distance-to-Fault Mode
R&S FSH
MEASurement:MODE
This command sets the measurement mode for distance to fault measurements..
Parameter
DTFault | REFLection | SPECtrum
Example
MEAS:MODE SCAL
Switches to scalar measurement mode.
Characteristics
*RST value: VECTor
SCPI: device-specific
1173.0089.12
102
E-4
R&S FSH
Remote Commands in Power Meter Mode
Remote Commands in Power Meter Mode
The chapter provides information on remote commands that configure and perform power
measurements with the power sensor. These commands are available in Network Analyzer mode only.
Availability of remote commands for Power Sensor measurements
Note that the listed remote commands take effect only if the power sensors
R&S FSH-Z1, R&S FSH-Z18, R&S FSH-Z14 or R&S FSH-Z44 are installed.
Setting the Frequency
The following chapter describes commands necessary to define frequency settings.
List of commands
•
[SENSe:]PMETer:FREQuency (p. 103)
[SENSe:]PMETer:FREQuency
This command sets the frequency of the power sensor.
Parameter
<numeric value> = frequency in Hz
Example
PMET:FREQ 500 MHZ
Sets the power sensor's frequency to 500 MHz
Characteristics
*RST value: SCPI: device-specific
Configuring Power Level Readout
The following chapter describes commands that configure the power level readout.
List of commands
•
[SENSe:]PMETer:FREQuency (p. 103)
•
CALCulate:PMETer:RELative[:MAGNitude] (p. 104)
•
CALCulate:PMETer:RELative[:MAGNitude]:AUTO (p. 104)
•
CALCulate:PMETer:RELative[:MAGNitude]:OFFSet (p. 104)
•
UNIT<1|2>:PMETer:POWer (p. 104)
1173.0089.12
103
E-4
Remote Commands in Power Meter Mode
R&S FSH
CALCulate:PMETer:RELative[:MAGNitude]
This command sets the reference level for relative measurements.
Parameter
<numeric value> = level of the reference value
Example
CALC:PMET:REL 30
The the reference value to 30 dBm.
Characteristics
*RST value: SCPI: device-specific
CALCulate:PMETer:RELative[:MAGNitude]:AUTO
This command sets the current measurement result as the reference level for relative
measurements.
This command is an event and therefore has no *RST value and no query.
Parameter
ONCE
Example
CALC:PMET:REL ONCE
Characteristics
*RST value: SCPI: device-specific
CALCulate:PMETer:RELative[:MAGNitude]:OFFSet
This command sets the offset of the reference level for relative measurements.
Parameter
<numeric value> = reference offset
Example
CALC:PMET:REL -10
Characteristics
*RST value: SCPI: device-specific
UNIT<1|2>:PMETer:POWer
This command selects the unit of the power sensor.
The suffix at UNIT has the following effects:
Power Measurement with R&S FSH-Z1 and R&S FSH-Z18:
Unit 1
Power unit
Unit 2
not available.
1173.0089.12
104
E-4
R&S FSH
Remote Commands in Power Meter Mode
Power Measurement with R&S FSH-Z14 and R&S FSH-Z44:
Unit 1
Forward Power
Unit 2
Reflected Power
Parameter
DBM | WATT | W | DB | VSWR
Note on the parameter DB: when applied to UNIT1, the power is relative to the reference level,
when applied to UNIT2, the return loss is displayed.
Note on the parameter VSWR: the parameter is only available if applied to UNIT2.
Example
UNIT1:PMET:POW DBM
When measuring with the R&S FSH-Z1 or R&S FSH-Z18: sets unit to dBm.
When measuring with the R&S FSH-Z14 or R&S FSH-Z44: sets unit of forward power to dBm.
Characteristics
*RST value: SCPI: device-specific
Setting the Bandwidths
The following commands configure the filter bandwidths of the R&S FSH.
•
CALCulate:PMETer:PRESet:BANDwidth:VIDeo (p. 105)
CALCulate:PMETer:PRESet:BANDwidth:VIDeo
This command sets the video bandwidth for powe sensor measurements.
Parameter
<numeric value> = video bandwidth in Hz
Example
CALC:PMET:PRES:BAND:VID 4 kHz
Sets a 4 kHz video bandwidth
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
105
E-4
Remote Commands in Power Meter Mode
R&S FSH
Defining the Measurement Time
The following chapter describes commands to define the measurement time of the power sensor.
•
[SENSe:]PMETer:MTIMe (p. 106)
[SENSe:]PMETer:MTIMe
This command sets the duration of measurements with the power sensor.
Parameter
SHORt | NORMal | LONG
Example
PMET:MTIMe SHOR
Sets a short measurement time for power measurements.
Characteristics
*RST value: SCPI: device-specific
Performing Measurements with the Power Sensor
The following chapter describes all commands that are available for performing power measurements
with the power sensor.
•
CALibration:PMETer:ZERO:AUTO (p. 106)
•
[SENSe:]PMETer:DETector[:FUNCtion] (p. 107)
•
FETch<1...2>:PMETer? (p. 107)
•
CALCulate:PMETer:PRESet[:STATe] (p. 108)
•
CALCulate:PMETer:PRESet:SELect (p. 108)
Zeroing of the Power Sensor
CALibration:PMETer:ZERO:AUTO
This commands starts to zero the power sensor.
Parameter
ONCE
Example
CAL:PMET:ZERO:AUTO ONCE
Starts to zero the power meter.
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
106
E-4
R&S FSH
Remote Commands in Power Meter Mode
Forward Power Display
Note that the forward power is only available in conjunction with the R&S FSH-Z14 or R&S FSH-Z44.
[SENSe:]PMETer:DETector[:FUNCtion]
This command selects the forward power display of the power sensor.
Parameter
AVERage
average power
PENVelope
peak envelope power
Example
PMET:DET AVER
Selects the Average weighting mode.
Characteristics
*RST value: SCPI: device-specific
Reading Out Measurement Results
FETch<1...2>:PMETer?
This command queries the results of measurements with the power sensor.
Return values
Measurements with R&S FSH-Z1 or R&S FSH-Z18:
FETch1 returns the power unit
FETch2 not available
Measurements with R&S FSH-Z14 or R&S FSH-Z44
FETch1 forward power
FETch2 reflected power
Example
FET2:PMET?
Returns nothing for R&S FSH-Z1 / R&S FSH-Z18 and the reflected power for R&S FSHZ14 / Z44.
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
107
E-4
Remote Commands in Power Meter Mode
R&S FSH
Selecting a Standard
These commands apply radio communication standards to measurements with the power sensor.
CALCulate:PMETer:PRESet[:STATe]
This command activates and deactivates the usage of a standard for power sensor
measurements.
Parameters
ON | OFF
Example
CALC:PMET:PRES ON
Activates usage of a standard
Characteristics
*RST value: SCPI: device-specific
CALCulate:PMETer:PRESet:SELect
This command selects the standard for measurements with the power sensor.
Parameter
GSM | EDGE | WCDMA | CDMAOne | CDMA2000 | DVBT | DAB | TETRA | USER
Example
CALC:PMET:PRES:SEL GSM
Selects the GSM standard for power sensor measurements
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
108
E-4
R&S FSH
Saving and Restoring Instrument Settings and Measurement Results
Saving and Restoring Instrument Settings and
Measurement Results
The following commands perform various tasks in the context of file management.
These commands are independent from the operating mode.
List of commands
•
DISPlay:WINDow:STORe (p. 109)
•
MMEMory:CATalog? (p. 109)
•
MMEMory:CATalog:DIRectories? (p. 110)
•
MMEMory:CDIRectory (p. 110)
•
MMEMory:COPY (p. 111)
•
MMEMory:DATA (p. 111)
•
MMEMory:DELete (p. 112)
•
MMEMory:FILE (p. 112)
•
MMEMory:FILE:DATE (p. 112)
•
MMEMory:FILE:TIME (p. 113)
•
MMEMory:INIT (p. 113)
•
MMEMory:LOAD:STATe (p. 113)
•
MMEMory:MDIRectory (p. 114)
•
MMEMory:MOVE (p. 114)
•
MMEMory:RDIRectory (p. 114)
•
MMEMory:STORe:STATe (p. 115)
DISPlay:WINDow:STORe
This command makes a screenshot of the current trace.
This command is an event and therefore has no *RST value and no query.
Parameter
<string> = name of the target file
Example
DISP:WIND:STOR
Characteristics
*RST value: SCPI: device-specific
MMEMory:CATalog?
This command reads the indicated directory. According to DOS convention, wild card characters
can be entered in order to query e.g. a list of all files of a certain type.
This command is a query and therefore has no *RST value.
1173.0089.12
109
E-4
Saving and Restoring Instrument Settings and Measurement Results
R&S FSH
Parameter
<path> = DOS Path name
The path name should be in conformance with DOS conventions and may also include the drive
name.
Return values
List of file names in the form of strings separated by commas, i.e.
SPOOL1.WMF,SPOOL2.WMF,SPOOL3.WMF
Example
MMEM:CAT? 'D:\USER\*.DFL'
Returns all files in D:\user with extension ".DFL"
MMEM:CAT? 'D:\USER\SPOOL?.WMF'
Returns all files in D:\USER whose names start with SPOOL, have 6 letters and the extension
".WMF".
Characteristics
*RST value: SCPI: conform
MMEMory:CATalog:DIRectories?
This command lists the size of memory used by files and the size of memory space available
togehter with a list of subdirectories.
This command is a query and therefore has no *RST value.
Example
MMEM:CAT:DIR?
Returns memory allocation and subdirectory information.
Characteristics
*RST value: SCPI: device-specific
MMEMory:CDIRectory
This command changes the current directory.
Parameter
<directory_name> = DOS path name
In addition to the path name, the indication of the directory may contain the drive name. The
path name complies with the DOS conventions.
Example
MMEM:CDIR 'D:\user'
Selects the directory D:\USER.
Characteristics
*RST value: SCPI: conform
1173.0089.12
110
E-4
R&S FSH
Saving and Restoring Instrument Settings and Measurement Results
MMEMory:COPY
This command copies the files indicated in <file_source> to the destination directory indicated
with <file_destination> or to the destination file indicated by <file_destination> if <file_source> is
just a file.
This command is an event and therefore has no *RST value and no query.
Parameter
<file_source>,<file_destination> = <file_name> = DOS file name
The indication of the file name may include the path and the drive name. The file names and
path information must be in accordance with the DOS conventions.
Example
MMEM:COPY 'D:\USER\SETUP.CFG','E:'
Copies the SETUP.CFG file to drive E:
Characteristics
*RST value: SCPI: conform
MMEMory:DATA
This command writes the block data contained in <block> into the file characterized by
<file_name>. The delimiter must be set to EOI to obtain error-free data transfer. The associated
query command reads the indicated file from the mass memory and transfers it to the remote
control computer. It should be noted that the buffer memory of the control computer should be
large enough to store the file. The setting of the delimiter is irrelevant in this case.
The command is useful for reading stored settings files or trace data from the instrument or for
transferring them to the instrument.
Parameter
<file_name>[,<block>]
<file_name>
selects the file to be transferred
<block>
binary data block with the following structure:
•
character '#'
•
digit for the length of the length information
•
indicated number of digits as length information (number of bytes) for the
binary data themselves
•
binary data with the indicated number of bytes
Example
MMEM:DATA 'TEST01.HCP,#216This is the file'
means: #2: the next 2 characters are the length indication; 16: number of subsequent binary
data bytes; This is the file: 16 bytes stored as binary data in the file TEST01.HCP.
MMEM:DATA? 'TEST01.HCP'
Transfers the file TEST01.HCP from the instrument to the control computer.
Characteristics
*RST value: SCPI: conform
1173.0089.12
111
E-4
Saving and Restoring Instrument Settings and Measurement Results
R&S FSH
MMEMory:DELete
This command deletes the indicated files.
Parameter
<file_name> = DOS file name
The indication of the file name contains the path and, optionally, the drive name. Indication of
the path complies with DOS conventions.
Example
MMEM:DEL 'TEST01.HCP'
The file TEST01.HCP is deleted.
Characteristics
*RST value: SCPI: conform
MMEMory:FILE
This command creates a file with the specified name.
Parameter
<string> = file name
Example
MMEM:FILE 'TEST.TXT'
Creates the file TEST.TXT
Characteristics
*RST value: SCPI: conform
MMEMory:FILE:DATE
This command sets or reads the date of the indicated file. The sequence of entry is year, month,
day.
Parameter
1980...2099, 1...12, 1...31
Example
MMEM:FILE:DATE 2010,04,01
Sets the date to April, 1st, 2010.
Characteristics
*RST value: SCPI: conform
1173.0089.12
112
E-4
R&S FSH
Saving and Restoring Instrument Settings and Measurement Results
MMEMory:FILE:TIME
This command sets the time of the indicated file. The sequence of entry is hour, minute, second.
Parameter
0...23, 0...59, 0...59
Example
MMEM:FILE:TIME 12,00,00
Sets the time to 12:00:00
Characteristics
*RST value: SCPI: conform
MMEMory:INIT
This command formats the indicated drive.
Note: Formatting deletes all data stored on the memory drive.
This command is an event and therefore has no *RST value and no query.
Example:
MMEM:INIT
Formats and deletes all data from the drive.
Characteristics:
*RST value: SCPI: conform
MMEMory:LOAD:STATe
This command loads the device settings from *.set files. The contents of the file are loaded and
set as the new device state.
Parameter
1,<file_name>
with <file_name> = DOS file name without extension
The file name includes indication of the path and may also include the drive name. The path
name complies with DOS conventions.
Example
MMEM:LOAD:STAT 1,'D:\USER\TEST01.SET'
Loads the settings from the file TEST01.
Characteristics
*RST value: SCPI: conform
1173.0089.12
113
E-4
Saving and Restoring Instrument Settings and Measurement Results
R&S FSH
MMEMory:MDIRectory
This command creates a new directory. The file name includes indication of the path and may
also include the drive name. The path name complies with DOS conventions.
This command is an event and therefore has no *RST value and no query.
Parameter
<directory_name> = DOS path name
Example
MMEM:MDIR 'D:\USER'
Creates the USER directory on drive D:
Characteristics
*RST value: SCPI: device-specific
MMEMory:MOVE
This command renames existing files, if <file_destination> contains no path. Otherwise the file is
moved to the indicated path and stored under the file name specified there.
This command is an event and therefore has no *RST value and no query.
Parameter
<file_source>,<file_destination> = <file_name> = DOS file name
The file name includes indication of the path and may also include the drive. The path name
complies with DOS conventions.
Example
MMEM:MOVE 'C:\TEST01.CFG','SETUP.CFG'
Renames TEST01.CFG in SETUP.CFG in directory C:\.
MMEM:MOVE 'C:\TEST01.CFG','C:\USER
Moves TEST01.CFG from C:\ to C:\USER.
MMEM:MOVE 'C:\TEST01.CFG','C:\USER\SETUP.CFG'
Moves TEST01.CFG from C:\ to C:\R_S\Instr\user and renames the file in SETUP.CFG.
Characteristics
*RST value: SCPI: conform
MMEMory:RDIRectory
This command deletes the indicated directory. The directory name includes the path and may
also include the drive name. The path name complies with DOS conventions.
This command is an event and therefore has no *RST value and no query.
Parameter
<directory_name> = DOS path name
Example
MMEM:RDIR 'C:\TEST'
Deletes the directory 'TEST' on drive C:
1173.0089.12
114
E-4
R&S FSH
Saving and Restoring Instrument Settings and Measurement Results
Characteristics
*RST value: SCPI: device-specific
MMEMory:STORe:STATe
This command stores the current device settings in a *set file.
This command is an event and therefore has no *RST value and no query.
Parameter
1,<file_name>
with <file_name> = DOS file name without extension
The file name includes the path and may also include the drive name. The path name complies
with DOS conventions.
Example
MMEM:STOR:STAT 1,'DATASET001.SET'
Saves the current device settings in the file DATASET001.SET.
Characteristics
*RST value: SCPI: conform
1173.0089.12
115
E-4
Configuring the Instrument
R&S FSH
Configuring the Instrument
The following commands configure general instrument settings.
These commands are independent from the operating mode.
Mode Selection
This chapter describes all commands that select the operating mode of the R&S FSH.
List of commands
•
INSTrument[:SELect] (p. 116)
•
INSTrument:NSELect (p. 116)
INSTrument[:SELect]
This command switches between the measurement modes by means of text parameters.
Parameter
SANalyzer
Spectrum Analyzer
NAN
Network Analyzer
DTF
Distance to Fault
PM
Power Meter
Example
INST SAN
Switches the instrument to spectrum analyzer mode.
Characteristics
*RST value: SANalyzer
SCPI: conform
INSTrument:NSELect
This command switches between the measurement modes by means of numbers.
Parameter
1
Spectrum Analyzer
2
Network Analyzer
4
Distance-to-Fault
5
Power Meter
Example
INST:NSEL 1
Switches the instrument to spectrum analyzer mode.
1173.0089.12
116
E-4
R&S FSH
Configuring the Instrument
Characteristics
*RST value: 1
SCPI: conform
Controlling the GPS Receiver
This chapter describes all commands that control the GPS receiver.
List of commands
•
SYSTem:POSition:GPS[:STATe] (p. 117)
•
SYSTem:POSition:GPS:CONNected? (p. 117)
•
SYSTem:POSition:GPS:CORRection:FREQuency? (p. 118)
•
SYSTem:POSition:GPS:QUALity (p. 118)
•
SYSTem:POSition:GPS:SATellites? (p. 118)
•
SYSTem:POSition:LATitude? (p. 118)
•
SYSTem:POSition:LONGitude? (p. 119)
•
SYSTem:POSition:VALid? (p. 119)
SYSTem:POSition:GPS[:STATe]
This command activates and deactivates the GPS receiver (R&S HA-Z240).
Note that the GPS receiver only works if a connection between the R&S FSH and a GPS signal
transmitter is established.
Parameter
ON | OFF
Example
SYST:POS:GPS ON
Activates the GPS receiver.
Characteristics:
*RST value: OFF
SCPI: device-specific
SYSTem:POSition:GPS:CONNected?
This command queries if the R&S FSH is currently connected to the GPS receiver (R&S HAZ240).
Return values
0
no connection to a GPS device
1
connection to a GPS device is established
Example
SYST:POS:GPS:CONN?
Characteristics:
*RST value: -
1173.0089.12
117
E-4
Configuring the Instrument
R&S FSH
SCPI: device-specific
SYSTem:POSition:GPS:CORRection:FREQuency?
This command queries the frequency correction factor. This factor is calculated from a reference
signal provided by the GPS receiver R&S HA-Z240. The reference signal is used to determine
the deviation of the internal clock of the instrument, which can be turned into a correction factor
for the measured frequency.
Return values
<floating point value>
If the GPS receiver is deactivated, this query returns 0.
Example
SYST:POS:GPS:CORR:FREQ?
Characteristics:
*RST value: SCPI: device-specific
SYSTem:POSition:GPS:QUALity
This command queries the quality of the GPS signal.
Return values
INSufficient | LOW | MEDium | HIGh | EXCellent
Example
SYST:POS:GPS:QUAL?
Characteristics:
*RST value: SCPI: device-specific
SYSTem:POSition:GPS:SATellites?
This command queries the number of tracked satellites.
Return values
<number of satellites>
Example
SYST:POS:GPS:SAT?
Characteristics:
*RST value: SCPI: device-specific
SYSTem:POSition:LATitude?
This command queries the latitude of the current position of the R&S FSH.
Return values
<sign><degrees>,<minutes>,<seconds>
<sign>
1173.0089.12
no sign = northern hemisphere, negative sign (-) = southern hemisphere
118
E-4
R&S FSH
Configuring the Instrument
<degrees>
degrees of latitude (integer value)
<minutes>
minutes of latitude (integer value)
<seconds>
seconds of latitude (floating point value)
Example
SYST:POS:LAT?
Return value would be, for example, 48,7,40.0 for 48°, 7 ', 40.0" in the northern hemisphere.
Characteristics:
*RST value: SCPI: device-specific
SYSTem:POSition:LONGitude?
This command queries the longitude of the current position of the R&S FSH.
Return values
<sign><degrees>,<minutes>,<seconds>
<sign>
no sign = east, negative sign (-) = west
<degrees>
degrees of longitude (integer value)
<minutes>
minutes of longitude (integer value)
<seconds>
seconds of longitude (floating point value)
Example
SYST:POS:LONG?
Return value would be, for example, 11,36,46.2 for 11°, 36', 46.2" East
Characteristics:
*RST value: SCPI: device-specific
SYSTem:POSition:VALid?
This command queries the validity of the position information.
Return values
0
The position information is not valid
1
The position information is valid.
Example
SYST:POS:VAL?
Characteristics:
*RST value: SCPI: device-specific
1173.0089.12
119
E-4
Configuring the Instrument
R&S FSH
Display Configuration
This chapter describes commands to set up the display of the R&S FSH via remote control.
List of Commands
•
DISPlay:BRIGhtness (p. 120)
•
DISPlay:CMAP (p. 120)
•
DISPlay:CMAP:DEFault (p. 120)
•
DISPlay:DATE:FORMat (p. 121)
DISPlay:BRIGhtness
This command sets the brightness of the display backlight.
Parameter
1 to 1
Example
DISP:BRIG 0.80
Sets the brightness of the display to 80%
Characteristics
*RST value: 0.5 (50%)
SCPI: device-specific
DISPlay:CMAP
This command sets the color scheme of the display to either color or black and white.
Parameter
COLor | BW
Example
DISP:CMAP BW
Sets the screen colors to black and white
Characteristics
*RST value:
SCPI: conform
DISPlay:CMAP:DEFault
This command resets the screen colors of all display items to their default settings, i.e. to the
color scheme.
This command is an event and therefore has no query and no *RST value.
Example
DISP:CMPA:DEF
Restores the default screen colors
1173.0089.12
120
E-4
R&S FSH
Configuring the Instrument
Characteristics
*RST value: SCPI: conform
DISPlay:DATE:FORMat
This command sets the display date format.
Parameter
DDMMyyyy | MMDDyyyy
Example
DISP:DATE:FORM DDMMyyyy
Characteristics
*RST value: DDMMyyyy
SCPI: device-specific
Audio Settings
This chapter describes all commands to control the audio functions of the R&S FSH.
List of commands
•
SYSTem:AUDio:VOLume (p. 121)
•
SYSTem:BEEPer:VOLume (p. 121)
•
SYSTem:BEEPer:KEY:VOLume (p. 122)
SYSTem:AUDio:VOLume
This command sets the volume of the internal speaker. The range is between 0 and 1, with 1
being the maximum possible volume.
Parameter
0 to 1
Example
SYST:AUD:VOL 0.40
Sets the volume to 40%
Characteristics
*RST value: 0.3 (30%)
SCPI: device-specific
SYSTem:BEEPer:VOLume
This command sets the volume of the beeper, activated with
CALCulate<1|2>:LIMit<1|2>:BEEP[:STATe]. The range is between 0 and 1, with 1 being
the maximum possible volume.
Parameter
0 to 1
1173.0089.12
121
E-4
Configuring the Instrument
R&S FSH
Example
SYST:BEEP:VOL 0.50
Sets the volume of the beeper to 50%
Characteristics
*RST value: 0.6 (60%)
SCPI: conform
SYSTem:BEEPer:KEY:VOLume
This command sets the volume of the keyboard clicking. The range is between 0 and 1, with 1
being the maximum possible volume.
Parameter
0 to 1
Example
SYST:BEEP:KEY:VOL 0.10
Sets of keyboard clicking volume to 10%
Characteristics
*RST value: 0.3 (30%)
SCPI: conform
Setting up a Network Connection
This chapter describes all commands that are used if the R&S FSH is part of a network.
List of commands
•
SYSTem:COMMunicate:LAN:ETHernet? (p. 122)
•
SYSTem:COMMunicate:LAN:SUBMask (p. 123)
•
SYSTem:COMMunicate:SOCKet:ADDRess (p. 123)
•
SYSTem:COMMunicate:SOCKet:DHCP[:STATe] (p. 123)
•
SYSTem:COMMunicate:SOCKet:PORT (p. 123)
SYSTem:COMMunicate:LAN:ETHernet?
This command queries the MAC address of the R&S FSH.
This command is a query and therefore has no *RST value.
Example
SYST:COMM:LAN:ETH?
Returns the MAC address
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
122
E-4
R&S FSH
Configuring the Instrument
SYSTem:COMMunicate:LAN:SUBMask
This command sets the subnet mask address of the R&S FSH.
Parameter
<string> = subnet mask address
Example
SYST:COMM:LAN:SUBM '255.255.255.0'
Sets the subnet mask address to 255.255.255.0
Characteristics
*RST value: 255.255.255.0
SCPI: device-specific
SYSTem:COMMunicate:SOCKet:ADDRess
This command sets the IP address of the R&S FSH.
Parameter
<string> = IP address
Example
SYST:COMM:SOCK:ADDR '172.76.68.30'
Sets the IP address of the R&S FSH to 172.76.68.30
Characteristics
*RST value: 172.76.68.24
SCPI: device-specific
SYSTem:COMMunicate:SOCKet:DHCP[:STATe]
This command activates and deactivates the Dynamic Host Configuration Protocol (DHCP).
Parameter
ON | OFF
Example
SYST:COMM:SOCK:DHCP ON
Activates DHCP.
Characteristics
*RST value: ON
SCPI: device-specific
SYSTem:COMMunicate:SOCKet:PORT
This command sets the port number for the connection.
Parameter
<port_number>
Example
SYST:COMM:SOCK:PORT 1000
Sets the port number to 1000
1173.0089.12
123
E-4
Configuring the Instrument
R&S FSH
Characteristics
*RST value: 5555
SCPI: device-specific
System Settings
This chapter describes all commands that define or query general system settings.
List of commands
•
INPut:IMPedance:PAD (p. 124)
•
Error! Reference source not found. (p. Error! Bookmark not defined.)
•
Error! Reference source not found. (p. Error! Bookmark not defined.)
•
SYSTem:BNC<1...2>:MODE (p. 125)
•
SYSTem:DATE (p. 125)
•
SYSTem:ERRor[:NEXT]? (p. 125)
•
SYSTem:ERRor:ALL? (p. 125)
•
SYSTem:ERRor:COUNt? (p. 126)
•
SYSTem:ERRor:CODE[:NEXT]? (p. 126)
•
SYSTem:ERRor:CODE:ALL? (p. 126)
•
SYSTem:HELP:HEADers? (p. 127)
•
SYSTem:HELP:SYNTax? (p. 127)
•
SYSTem:LANGuage:CATalog? (p. 128)
•
SYSTem:POWer:SOURce? (p. 128)
•
SYSTem:POWer:STATus? (p. 128)
•
SYSTem:PRESet:FACTory (p. 128)
•
SYSTem:TIME (p. 129)
•
SYSTem:VERSion? (p. 129)
•
Error! Reference source not found. (p. Error! Bookmark not defined.)
INPut:IMPedance:PAD
This command selects the matching pad connected to the R&S FSH.
Parameter
RAM | RAZ | HZTE
Example
INPut:IMP 75;PAD RAZ
Selects 75 U input impedance and the R&S RAZ as the currently used matching pad.
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
124
E-4
R&S FSH
Configuring the Instrument
SYSTem:BNC<1...2>:MODE
This command selects the function the BNC socket indicated by the numeric suffix is used for.
Parameter
REFerence | TRIGger | BIAS | IF3 | IFDac
Example
SYST:BNC2:MODE BIAS
Sets the seconds BNC socket to BIAS.
Characteristics
*RST value: BNC 1: TRIGger, BNC 2: IF3
SCPI: device-specific
SYSTem:DATE
This command sets the date for the internal calendar.
The sequence of entry is year, month, day.
Parameter
1980 to 2099, 1 to 12, 1 to 31
Example
SYST:DATE 2000,6,1
Characteristics
*RST value: SCPI: conform
SYSTem:ERRor[:NEXT]?
This command queries the earliest error queue entry and deletes it. The entry consists of an
error number and a short description of the error.
Positive error numbers indicate device-specific errors, negative error numbers are error
messages defined by SCPI. If the error queue is empty, the error number 0, "No error", is
returned.
This command is a query and therefore has no *RST value.
Example
STAT:ERR?
Characteristics
*RST value: SCPI: conform
SYSTem:ERRor:ALL?
This command retrieves all entries in the error queue. The entry consists of an error number
and a short description of the error.
Positive error numbers indicate device-specific errors, negative error numbers are error
messages defined by SCPI. If the error queue is empty, the error number 0 is returned.
This command is a query and therefore no *RST value.
1173.0089.12
125
E-4
Configuring the Instrument
R&S FSH
Example
SYST:ERR:ALL?
Characteristics
*RST value: SCPI: device-specific
SYSTem:ERRor:CODE[:NEXT]?
This command queries the earliest error queue entry and deletes it. The entry consists of the
error number only..
Positive error numbers indicate device-specific errors, negative error numbers are error
messages defined by SCPI. If the error queue is empty, the error number 0, "No error", is
returned.
This command is a query and therefore has no *RST value.
Example
STAT:ERR:CODE?
Characteristics
*RST value: SCPI: conform
SYSTem:ERRor:CODE:ALL?
This command retrieves all entries in the error queue. The entry consists of the error number
only..
Positive error numbers indicate device-specific errors, negative error numbers are error
messages defined by SCPI. If the error queue is empty, the error number 0 is returned.
This command is a query and therefore no *RST value.
Example
SYST:ERR:CODE:ALL?
Characteristics
*RST value: SCPI: device-specific
SYSTem:ERRor:COUNt?
This command queries the number of errors currently in the error queue.
This command is a query and therefore no *RST value.
Example
SYST:ERR:COUN?
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
126
E-4
R&S FSH
Configuring the Instrument
SYSTem:HELP:HEADers?
This command returns a list of all common commands and instrument-control commands and
queries implemented in the instrument.
This command is a query and therefore no *RST value.
Example
SYST:HELP:HEAD?
Returns the syntax of all available commands.
Characteristics
*RST value:
SCPI: conform
SYSTem:HELP:SYNTax?
This command returns the full syntax and all parameters of the specified command.
This command is a query and therefore no *RST value.
Parameter
<string> = syntax of command
Example
SYST:HELP:SYNT? 'SYST:ERR?'
Returns the full syntax. In this case: 'SYSTem:ERRor[:NEXT]'.
Characteristics
*RST value: SCPI: device-specific
SYSTem:LANGuage
This command sets the language of the R&S FSH user interface. You can query a list of
available languages with SYSTem:LANGuage:CATalog?.
Parameter
<language> = string of the language
Example
SYST:LANG 'english'
Sets the system language to English
Characteristics
*RST value: SCPI: conform
1173.0089.12
127
E-4
Configuring the Instrument
R&S FSH
SYSTem:LANGuage:CATalog?
This command lists all available system languages.
This command is a query and therefore no *RST value.
Example
SYST:LANG:CAT?
Characteristics
*RST value: SCPI: device-specific
SYSTem:POWer:SOURce?
This command queries whether R&S FSH is battery-powered or line-powered.
This command is a query and therefore has no *RST value.
Return values
ADAP
R&S FSH is powered by the mains adapter.
BATT
R&S FSH is powered by the battery.
Example
SYST:POW:SOUR?
Characteristics
*RST value: SCPI: conform
SYSTem:POWer:STATus?
This command queries the remaining power of the battery.
This command is a query and therefore has no *RST value.
Return values
0...100 %
Example
SYST:POW:STAT?
Characteristics
*RST value: SCPI: conform
SYSTem:PRESet:FACTory
This command initiates an instrument reset back to factory settings.
Example
SYST:PRES:FACT
Resets the R&S FSH to its factory settings.
Characteristics
*RST value: SCPI: device-specific
1173.0089.12
128
E-4
R&S FSH
Configuring the Instrument
SYSTem:TIME
This command sets the internal clock. The sequence of entry is hour, minute, second.
Parameter
0 to 23, 0 to 59, 0 to 59
Example
SYST:TIME 12,30,30
Characteristics
*RST value: SCPI: conform
SYSTem:VERSion?
This command queries the number of the SCPI version, which is relevant for the instrument.
This command is a query and therefore has no *RST value.
Example
SYST:VERS?
Characteristics
*RST value: SCPI: conform
1173.0089.12
129
E-4
Status Reporting System
R&S FSH
Status Reporting System
The status reporting system (Figure 7) stores all information on the present operating state of the
instrument, and on errors which have occurred. This information is stored in the status registers and in
the error queue. The status registers and the error queue can be queried via Ethernet.
The information is of a hierarchical structure. The register status byte (STB) defined in IEEE 488.2 and
its associated mask register service request enable (SRE) form the uppermost level. The STB receives
its information from the standard event status register (ESR) which is also defined in IEEE 488.2 with
the associated mask register standard event status enable (ESE) and registers STATus:OPERation
and STATus:QUEStionable which are defined by SCPI and contain detailed information on the
instrument.
The output buffer contains the messages the instrument returns to the controller. It is not part of the
status reporting system but determines the value of the MAV bit in the STB.
Structure of an SCPI Status Register
Each standard SCPI register consists of 5 parts which each have a width of 16 bits and have different
functions (Figure 6). The individual bits are independent of each other, i.e. each hardware status is
assigned a bit number that applies to all five parts. For example, bit 0 of the STATus:OPERation
register is assigned to the calibration status of the R&S FSH. Bit 15 (the most significant bit) is set to
zero for all parts. Thus the contents of the register parts can be processed by the controller as positive
integer.
15 14 13 12
CONDition Part
3 2 1 0
15 14 13 12
PTRansition Part
3 2 1 0
15 14 13 12
NTRansition Part
3 2 1 0
15 14 13 12
EVENt Part
3 2 1 0
to higher order register
& & & & & & & &
& & & & & & &
+ Sum bit
15 14 13 12
ENABle Part
3 2 1 0
& = logical AND
+ = logical OR
of all bits
Figure 6: The status-register model
CONDition part
The CONDition part is directly written into by the hardware or the sum bit of the next lower register. Its
contents reflects the current instrument status. This register part can only be read, but not written into or
cleared. Its contents is not affected by reading.
PTRansition part
The Positive-TRansition part acts as an edge detector. When a bit of the CONDition part is changed
from 0 to 1, the associated PTR bit decides whether the EVENt bit is set to 1.
PTR bit =1: the EVENt bit is set.
PTR bit =0: the EVENt bit is not set.
This part can be written into and read at will. Its contents is not affected by reading.
1173.0089.12
130
E-4
R&S FSH
Status Reporting System
NTRansition part
The Negative-TRansition part also acts as an edge detector. When a bit of the CONDition part is
changed from 1 to 0, the associated NTR bit decides whether the EVENt bit is set to 1.
NTR-Bit = 1: the EVENt bit is set.
NTR-Bit = 0: the EVENt bit is not set.
This part can be written into and read at will. Its contents is not affected by reading.
With these two edge register parts the user can define which state transition of the condition part (none,
0 to 1, 1 to 0 or both) is stored in the EVENt part.
EVENt part
The EVENt part indicates whether an event has occurred since the last reading, it is the "memory" of
the condition part. It only indicates events passed on by the edge filters. It is permanently updated by
the instrument. This part can only be read by the user. Reading the register clears it. This part is often
equated with the entire register.
ENABle part
The ENABle part determines whether the associated EVENt bit contributes to the sum bit (see below).
Each bit of the EVENt part is ANDed with the associated ENABle bit (symbol '&'). The results of all
logical operations of this part are passed on to the sum bit via an OR function (symbol '+').
ENABle-Bit = 0: the associated EVENt bit does not contribute to the sum bit
ENABle-Bit = 1: if the associated EVENT bit is "1", the sum bit is set to "1" as well.
This part can be written into and read by the user at will. Its contents is not affected by reading.
Sum bit
As indicated above, the sum bit is obtained from the EVENt and ENABle part for each register. The
result is then entered into a bit of the CONDition part of the higher-order register.
The instrument automatically generates the sum bit for each register. Thus an event, e.g. a PLL that
has not locked, can lead to a service request throughout all levels of the hierarchy.
The service request enable register SRE defined in IEEE 488.2 can be taken as
ENABle part of the STB if the STB is structured according to SCPI. By analogy, the
ESE can be taken as the ENABle part of the ESR.
1173.0089.12
131
E-4
Status Reporting System
R&S FSH
Overview of the Status Register
The following figure shows the status registers used by the R&S FSH base unit. The status registers
used by the R&S FSH options are described in separate sections at the end of this chapter.
Figure 7: Overview of the status registers
1173.0089.12
132
E-4
R&S FSH
Status Reporting System
Status Byte (STB) & Service Request Enable Register (SRE)
The STB is already defined in IEEE 488.2. It provides a rough overview of the instrument status by
collecting the pieces of information of the lower registers. It can thus be compared with the CONDition
part of an SCPI register and assumes the highest level within the SCPI hierarchy. A special feature is
that bit 6 acts as the sum bit of the remaining bits of the status byte.
The STATUS BYTE is read using the command "*STB?" or a serial poll.
The STB is linked to the SRE. The latter corresponds to the ENABle part of the SCPI registers in its
function. Each bit of the STB is assigned a bit in the SRE. Bit 6 of the SRE is ignored. If a bit is set in
the SRE and the associated bit in the STB changes from 0 to 1, a service request (SRQ) is generated,
which triggers an interrupt in the controller if this is appropriately configured and can be further
processed there. The SRE can be set using the command "*SRE" and read using the command
"*SRE?"
Table 3: Meaning of the bits used in the Status Byte
Bit No.
Meaning
0...1
Not used
2
Error Queue not empty
The bit is set when an entry is made in the error queue.
If this bit is enabled by the SRE, each entry of the error queue generates a service
request. Thus an error can be recognized and specified in greater detail by polling the
error queue. The poll provides an informative error message. This procedure is to be
recommended since it considerably reduces the problems involved with remote control.
3
QUEStionable status sum bit
The bit is set if an EVENt bit is set in the QUEStionable: status register and the
associated ENABle bit is set to 1.
A set bit indicates a questionable instrument status, which can be specified in greater
detail by polling the QUEStionable status register.
4
MAV bit (message available)
The bit is set if a message is available in the output buffer which can be read.
This bit can be used to enable data to be automatically read from the instrument to the
controller.
5
ESB bit
Sum bit of the event status register. It is set if one of the bits in the event status register
is set and enabled in the event status enable register.
Setting of this bit indicates a serious error which can be specified in greater detail by
polling the event status register.
6
MSS bit (master status summary bit)
The bit is set if the instrument triggers a service request. This is the case if one of the
other bits of this registers is set together with its mask bit in the service request enable
register SRE.
7
OPERation status register sum bit
The bit is set if an EVENt bit is set in the OPERation status register and the associated
ENABle bit is set to 1.
A set bit indicates that the instrument is just performing an action. The type of action can
be determined by polling the OPERation status register.
1173.0089.12
133
E-4
Status Reporting System
R&S FSH
Event Status Register (ESR) and Event Status Enable
Register (ESE)
The ESR is defined in IEEE 488.2. It can be compared with the EVENt part of a SCPI register. The
event status register can be read out using command *ESR?.
The ESE is the associated ENABle part. It can be set using the command *ESE and read using the
command *ESE?.
Table 4: Meaning of the bits in the event status register
Bit No.
Meaning
0
Operation Complete
This bit is set on receipt of the command *OPC exactly when all previous commands
have been executed.
1
2
Not used
Query Error
This bit is set if either the controller wants to read data from the instrument without having
sent a query, or if it does not fetch requested data and sends new instructions to the
instrument instead. The cause is often a query which is faulty and hence cannot be
executed.
3
Device-dependent Error
This bit is set if a device-dependent error occurs. An error message with a number
between -300 and -399 or a positive error number, which denotes the error in greater
detail, is entered into the error queue.
4
Execution Error
This bit is set if a received command is syntactically correct but cannot be performed for
other reasons. An error message with a number between -200 and -300, which denotes
the error in greater detail, is entered into the error queue.
5
Command Error
This bit is set if a command is received, which is undefined or syntactically incorrect. An
error message with a number between -100 and -200, which denotes the error in greater
detail, is entered into the error queue.
6
Not used
7
Power On (supply voltage on)
This bit is set on switching on the instrument.
1173.0089.12
134
E-4
R&S FSH
Status Reporting System
STATus:OPERation Register
In the CONDition part, this register contains information on which actions the instrument is being
executing or, in the EVENt part, information on which actions the instrument has executed since the last
reading. It can be read using the commands STATus:OPERation:CONDition? or
STATus:OPERation[:EVENt]?.
Table 5: Meaning of the bits in the STATus:OPERation register
Bit No.
Meaning
0
CALibrating
This bit is set as long as the instrument is performing a calibration.
1 to 14
15
Not used
This bit is always 0
STATus:QUEStionable Register
This register contains information about indefinite states which may occur if the unit is operated without
meeting the specifications. It can be read using the commands STATus:QUEStionable: CONDition?
and STATus:QUEStionable[:EVENt]?.
Table 6: Meaning of bits in STATus:QUEStionable register
Bit No.
0 to 1
2
Meaning
These bits are not used
BATTERY LOW
If the instrument is running without any external power supply and the charging level of the
internal battery is approximately lower than 5% this bit is set to indcate that the system will
be shut down automatically in approx. 5 minutes.
3
Not used
4
TEMPerature
This bit is set if a questionable temperature occurs.
5 to 8
9
Not used
LIMit (device-specific)
This bit is set if a limit value is violated
10
CALibration
The bit is set if a measurement is performed unaligned (label UNCAL)
11 to 14
Not used
15
This bit is always 0.
1173.0089.12
135
E-4
Status Reporting System
R&S FSH
STATus:QUEStionable:LIMit Register
This register contains information about the observance of limit lines. It can be read using the
commands STATus:QUEStionable:LIMit:CONDition? and STATus:QUEStionable:LIMit[:EVENt]?.
Table 7: Meaning of bits in STATus:QUEStionable:LIMit register
Bit No.
Meaning
0
LIMit 1 FAIL
This bit is set if limit line 1 is violated.
LIMit 2 FAIL
1
This bit is set if limit line 2 is violated.
2 to 14
Not used
15
This bit is always 0.
Application of the Status Reporting Systems
In order to be able to effectively use the status reporting system, the information contained there must
be transmitted to the controller and further processed there. There are several methods which are
represented in the following.
Service Request
Under certain circumstances, the instrument can send a service request (SRQ) to the controller. Usually
this service request initiates an interrupt at the controller, to which the control program can react
appropriately. As evident from Fig. 1-4, an SRQ is always initiated if one or several of bits 2, 3, 4, 5 or 7
of the status byte are set and enabled in the SRE. Each of these bits combines the information of a
further register, the error queue or the output buffer. The ENABle parts of the status registers can be set
so that arbitrary bits in an arbitrary status register initiate an SRQ. In order to make use of the
possibilities of the service request effectively, all bits should be set to "1" in enable registers SRE and
ESE.
Example
Use of the command *OPC to generate an SRQ at the end of a sweep
CALL InstrWrite(analyzer, "*ESE 1")
'Set bit 0 in the ESE (Operation Complete)
CALL InstrWrite(analyzer, "*SRE 32")
'Set bit 5 in the SRE (ESB)?
After its settings have been completed, the instrument generates an SRQ.
The SRQ is the only possibility for the instrument to become active on its own. Each controller program
should set the instrument in a way that a service request is initiated in the case of malfunction. The
program should react appropriately to the service request.
1173.0089.12
136
E-4
R&S FSH
Status Reporting System
Serial Poll
In a serial poll, just as with command *STB, the status byte of an instrument is queried. However, the
query is realized via interface messages and is thus clearly faster. The serial-poll method has already
been defined in IEEE 488.1 and used to be the only standard possibility for different instruments to poll
the status byte. The method also works with instruments which do not adhere to SCPI or IEEE 488.2.
The VISUAL BASIC command for executing a serial poll is IBRSP(). Serial poll is mainly used to obtain
a fast overview of the state of several instruments connected to the controller.
Query by Means of Commands
Each part of any status register can be read by means of queries. The individual commands are listed
in the description of the STATus Subsystem. The returned value is always a number that represents the
bit pattern of the queried register. This number is evaluated by the controller program.
Queries are usually used after an SRQ in order to obtain more detailed information on the cause of the
SRQ.
Error Queue Query
Each error state in the instrument leads to an entry in the error queue. The entries of the error queue
are detailed plain-text error messages that can be displayed via manual operation using the setup menu
or queried via remote control using the command SYSTem:ERRor?. Each call of SYSTem:ERRor?
provides one entry from the error queue. If no error messages are stored there any more, the
instrument responds with 0, "No error".
The error queue should be queried after every SRQ in the controller program as the entries describe
the cause of an error more precisely than the status registers. Especially in the test phase of a
controller program the error queue should be queried regularly since faulty commands from the
controller to the instrument are recorded there as well.
1173.0089.12
137
E-4
Status Reporting System
R&S FSH
Reset Values of the Status Reporting System
Table 8 contains the different commands and events causing the status reporting system to be reset.
None of the commands, except *RST and SYSTem:PRESet, influences the functional instrument
settings. In particular, DCL does not change the instrument settings.
Table 8: Resetting the status reporting system
Event
Switching on supply
voltage
Power-On-StatusClear
Effect
0
DCL,SDC
(Device Clear,
Selected Device
Clear)
*RST or
SYSTem:PRESe
t
STATus:PRESet
*CLS
1
Clear STB,ESR
yes
yes
Clear SRE,ESE
yes
Clear PPE
yes
Clear EVENt parts of the
registers
yes
Clear ENABle parts of all
OPERation and
QUEStionable registers;
Fill ENABle parts of all
other registers with "1".
yes
yes
Fill PTRansition parts with
"1";
Clear NTRansition parts
yes
yes
yes
Clear error queue
yes
yes
yes
Clear output buffer
yes
yes
yes
Clear command
processing and input
buffer
yes
yes
yes
1)
1)
1)
1) Every command being the first in a program message, i.e., immediately following a <PROGRAM MESSAGE TERMINATOR>
clears the output buffer.
1173.0089.12
138
E-4
R&S FSH
Remote Commands of the Status Reporting System
Remote Commands of the Status Reporting System
The following commands control the status-reporting system. *RST does not influence the status
registers.
The OPERation status register contains information about the calibration status of the instrument.
The QUEStionable status register contains information about the status of the reference and local
oscillator, possible overloads of the instrument and the status of limit checks and limit margins.
The commands are independent from the operating mode.
List of commands
•
STATus:PRESet (p. 139)
•
STATus:QUEue[:NEXT] (p. 140)
•
STATus:OPERation[:EVENt]? (p. 140)
•
STATus:OPERation:CONDition? (p. 140)
•
STATus:OPERation:ENABle (p. 140)
•
STATus:OPERation:NTRansition (p. 141)
•
STATus:OPERation:PTRansition (p. 141)
•
STATus:QUEStionable[:EVENt]? (p. 141)
•
STATus:QUEStionable:CONDition? (p. 141)
•
STATus:QUEStionable:ENABle (p. 142)
•
STATus:QUEStionable:NTRansition (p. 142)
•
STATus:QUEStionable:PTRansition (p. 142)
STATus:PRESet
This command resets the edge detectors and ENABle parts of all registers to a defined value.
All PTRansition parts are set to FFFFh, i.e. all transitions from 0 to 1 are detected. All
NTRansition parts are set to 0, i.e. a transition from 1 to 0 in a CONDition bit is not detected.
The ENABle part of the STATus:OPERation and STATus:QUEStionable registers are set to 0,
i.e. all events in these registers are not passed on.
Example
STAT:PRES
Characteristics
*RST value: SCPI: conform
1173.0089.12
139
E-4
Remote Commands of the Status Reporting System
R&S FSH
STATus:QUEue[:NEXT]
This command returns the earliest entry to the error queue and deletes it.
Positive error numbers indicate device-specific errors, negative error numbers are error
messages defined by SCPI. If the error queue is empty, the error number 0, "no error", is
returned. This command is identical with the command SYSTem:ERRor.
Example
STAT:QUE?
Characteristics
*RST value: –
SCPI: conform
STATus:OPERation[:EVENt]?
This command queries the contents of the EVENt section of the STATus:OPERation register.
The contents of the EVENt section are deleted after readout.
Example
STAT:OPER?
Characteristics
*RST value: SCPI: conform
STATus:OPERation:CONDition?
This command queries the CONDition section of the STATus:OPERation register. Readout
does not delete the contents of the CONDition section. The value returned reflects the current
hardware status.
Example
STAT:OPER:COND?
Characteristics
*RST value: SCPI: conform
STATus:OPERation:ENABle
This command sets the bits of the ENABle section of the STATus:OPERation register. The
ENABle register selectively enables the individual events of the associated EVENt section for
the summary bit in the status byte.
Parameter
0 to 65535
Example
STAT:OPER:ENAB 65535
Characteristics
*RST value: SCPI: conform
1173.0089.12
140
E-4
R&S FSH
Remote Commands of the Status Reporting System
STATus:OPERation:NTRansition
This command sets the edge detectors of all bits of the STATus:OPERation register from 1 to 0
for the transitions of the CONDition bit.
Parameter
0 to 65535
Example
STAT:OPER:NTR 65535
Characteristics
*RST value: SCPI: conform
STATus:OPERation:PTRansition
This command sets the edge detectors of all bits of the STATus:OPERation register from 0 to 1
for the transitions of the CONDition bit.
Parameter
0 to 65535
Example
STAT:OPER:PTR 65535
Characteristics
*RST value: SCPI: conform
STATus:QUEStionable[:EVENt]?
This command queries the contents of the EVENt section of the STATus:QUEStionable register.
The contents of the EVENt section are deleted after readout.
Example
STAT:QUES?
Characteristics
*RST value: SCPI: conform
STATus:QUEStionable:CONDition?
This command queries the CONDition section of the STATus:QUEStionable register. Readout
does not delete the contents of the CONDition section. The value returned reflects the current
hardware status.
Example
STAT:QUES:COND?
Characteristics
*RST value: SCPI: conform
1173.0089.12
141
E-4
Remote Commands of the Status Reporting System
R&S FSH
STATus:QUEStionable:ENABle
This command sets the bits of the ENABle section of the STATus:QUEStionable register. The
ENABle register selectively enables the individual events of the associated EVENt section for
the summary bit in the status byte.
Parameter
0 to 65535
Example
STAT:QUES:ENAB 65535
Characteristics
*RST value: SCPI: conform
STATus:QUEStionable:NTRansition
This command sets the edge detectors of all bits of the STATus:QUEStionable register from 1
to 0 for the transitions of the CONDition bit.
Parameter
0 to 65535
Example
STAT:QUES:NTR 65535
Characteristics
*RST value: SCPI: conform
STATus:QUEStionable:PTRansition
This command sets the edge detectors of all bits of the STATus:QUEStionable register from 0
to 1 for the transitions of the CONDition bit.
Parameter
0 to 65535
Example
STAT:OPER:PTR 65535
Characteristics
*RST value: SCPI: conform
1173.0089.12
142
E-4